AR (13-1664) (Structural Calculations)RrA ,7
r -j
77570 Springfield Cone, Suite "Y Telephone: (760) 360-9998
Palm Desert, CA 92211 •
Fax: (760) 360-9903
Structural Calculation
For Lathrop Residence
At 49298 - Montana, Way, Rancho La Quinta
Country -La Quinita, CA.
Type Of Proiect: Residential *2013
Addition
C0jYA%f-tI)PI0,
%�j 4
G HA4
�o
Gyz
M
NO. C 67613
W M,
EXP. 0
Designer: Jorgel Garcia Design Associates
OF
Date: Decemb'er'03,2013
Design by: R.A., C/ry
Job No. 1312117 QUI
DEP q.
otj 0
3 C041s7R C -r/
. b
CLIENT: !�{�� SHEET:
t ? Ret' �"� RA Structural:Enzineering
SUBJECT: A-cict,�4c t I — -- JOB NO: I I2I!
-DESIGN BY: R- R
DATE.
WLl So
W � 2� �•� x •IS 2�3 `�� �� •
wl�z'' I� x i•5 2-4 plf l Wall
lir •s• (X I'S C�,,.�e✓'�
D(0.92) Lr(0.68)
D 0.229 Lr 0.15
V TO
gN
NMR`t:'irirtr+l+irt�;Jlt%�.{'L14`>^�«T'$.i ,
6x8
a
Span =6.0ft r
e�pjihed:L08dS� ?cxI,-%"l?,7 NP f� r Service loads entered. Load Factors will be applied for calculations.
Beam self weight calculated and added to loads
Uniform Load : D='0.2290, Lr = 0.150 , Tributary Width =1.0 ft, (Roof)
Point Load : • D = 0.920, Lr = 0.680 k (x,1.50 ft, (Girder Truss)
Maximum Bending Stress Ratio =
Title: Lathrop Residence
Job # 1312117
6x8
Section used for this span
Dsgnr: -
R.A -
fv : Actual =
•EA,
STRUCTURAL ENGINEERING, Project Desc,;
,
Load Combination
'
_
Project Notes ;
• '
,
CIVIL AND STRUCTURAL ENGINEERING
Span # where maximum occurs =
Span # 1
Maximum Deflection _
13,
m3lD klpV�
esNoAasProjeathro llahrop
Max Downward L+Lr+S Deflection
u � + ;:� '} .h,
W-.ro-o-*d B-• e•-a. r,f.«a `rke-�4 i�+
- p
f i � �-;t
Fe
.
�ym a.„:sa'
Description : 8M#1
0 <360
,.FtNlJkAll
,aOcalcs?C:lUsersv
..'.8201BId645A 6_111e.4
Material Properties
Calculations
per NDS 2005, IBC 2009, CBC 2010 ASCE 7-05
Analysis Method: Allowable Stress Design
Fb - Tension
1,350.0 psi
E: Modulus of Elasticity
Load Combination 2006 1 BC & ASCE 7-05
Fb - Compr
1,350.0 psi
Ebend- xx 1,600.0 ksi
a
Fc - Prll
925.0 psi
,
Eminbend - xx 580.0 ksi
Wood Species : Douglas Fir"- Larch
= Fc - Perp
625.0 psi
Wood Grade : No.1
Fv • .
•170.0 psi
1.000
+r
Beam Bracing ': Completely Llnbracecl
Ft
675.0 psi
Density 32.210pcf
+D+0.750Lr+0.750L+0.750W+H
41.000
f
D(0.92) Lr(0.68)
D 0.229 Lr 0.15
V TO
gN
NMR`t:'irirtr+l+irt�;Jlt%�.{'L14`>^�«T'$.i ,
6x8
a
Span =6.0ft r
e�pjihed:L08dS� ?cxI,-%"l?,7 NP f� r Service loads entered. Load Factors will be applied for calculations.
Beam self weight calculated and added to loads
Uniform Load : D='0.2290, Lr = 0.150 , Tributary Width =1.0 ft, (Roof)
Point Load : • D = 0.920, Lr = 0.680 k (x,1.50 ft, (Girder Truss)
Maximum Bending Stress Ratio =
0.5451 'Maximum Shear Stress Ratio =
Section used for this span
6x8
Section used for this span
fb :'Actual =
733.80psi +
fv : Actual =
. FB; Allowable
1,347.61 psi
Fv : Allowable -
Load Combination
'
+D+Lr+H
Load Combination
Location of maximum on span =
1.980ft
Location of maximum on span =
Span # where maximum occurs =
Span # 1
Span # where maximum occurs =
Maximum Deflection _
Max Downward L+Lr+S Deflection
0.026 in 'Ratio=
2748
Max Upward L+Lr+S Deflection
0.000 in Ratio=
0 <360
Max Downward Total Deflection
0.065 in Ratio=
1107
Max Upward Total Deflection
0.000 in Ratio=
' 0 <240
_
MEE=
•
0.456 :1
6x8"
77.52 psi
170.00 psi
+D+Lr+H
- - 0.000 ft
Span # 1
.�. . _. 4 "„ r. "+*rew�- +r"sw
MazlmumgForcest8�=Stresses for; Loadf:Combin. ations,
'
Load Combination
Max Stress Ratios
Summary of Moment Values
Summary of Shear Values
Segment Length Span #
M V • ° Cd
C FN
C r C m C t Mactual fb-design
Fb-allow
Vactual
fv-design Fv-allow
' +D
'
1.000
1.000 1.000 * 1.000
' Length = 6.0 ft 1
0.323 0.270 1.000
1.000
1.000 1.000 1.000. 1.87. 435.91
1,347.61
- 1.26
45.88 170.00
+D+Lr+H
1.000
1.000"1:000.*1-000.
_
Length = 6.0 ft 1
- +D+0.750Lr+0.750L+H
0.545 ' 0.456 1.000
1.000
1.000 1000' 1:000-�g��"3"15 �--733.80 1,347.61
.o00 LA
III,
2.13
77.52 170.00
1.000
1.000 1.060
OUI� �-/�/�
Length = 6.0 ft " 1
0.489 0.409 1.000
1.000
1 �000f 659.31`11,3p47.61
SAF=BP
1.91
69.61 170.00' ,
+D+0.750Lr+0.750L+0.750W+H
41.000
Y
1.000 1:000 1,000 DEPT
Length = 6.0 ft 1
0.485 0.409 1.000
1.0011
0
1.000 �1 A00 a1°000 t� �2?83` 659.31 '
1,347.61
1.91
69.61 ,170.00
�+Le
1.000!
1.000E 1.000C100017STRL128Tl�
1347.61
gthL=6,.0ftOL+0.5250,+H
0.489 -0.409 1.000
1.00
9.31
1.91
69.61 170.00
��Oue�all;MazimumhQ;efl ce tions'Unfact ro ed^L ds��'
� '
Load Combination
Span Max. "' Defl
1-6 atio_ nn f_!li5an---L-oad Combination
Max. "+" Defl "Location
In Span '
D+Lr t
1 0.0650
2.850
0.0000
0.000
Title: Lathrop Residence Job # 1312117
Dsgnr. R.A
STRUCTURAL ENGINEERING Project Desc.:
Project Notes:
CIVIL AND STRUCTURAL ENGINEERING
uescnptlon : am$1
,.
Vertical"Reactions, ,:_Unfactored , tea,` a Support notation : Far left is #1 Values in KIPS
Load Combination
Support 1
Support 2
Overall MAXimum
2.365
1.565
D Only
1.405
0.945
Lr Only
6.960
0.620
D+Lr
2.365
1.565
CtTY OF L4 QUI4V7'�
RUILDII\G �.
& SAFETY DEPT.
4PPIROVED
FOR CONSTRUCTION
DATE
�� BY
Id (L, Max) ? 0.03 In, at 2.750 ft from left end, < d L = L / 360 [Satisfactory]
d (Ker D+L, Max) _ 0.09 in, at 2,750 ft from left end _ < d Kcr D. L = L / 180 [Satisfactory]
Where Kir = 1.50 , (NDS 3.5.2)
DETERMINE CAMBER AT 1.5 (DEAD +`SELF WEIGH)
d (1.5D, Max) = 0.06 In, at 2.750 ft from left end•
YUILDING &sAFE �lIIN' 1
�' DEP
Fo o COVED
N TRUCTiON
DArE
�_ BY
11
Reza
PROJECT: BM #2
PAGE:
A$ har„„Dur CLIENT: Lathrop Residence
"
DESIGN BY: RAM
JOB N0. 1312117
DATE:
12/3/2013
REVIEW BY: R.A..
Wbo"dBeamDes nBase
INPUT DATA & DESIGN SUMMARY
MEMBER SIZE 6 x 6
L
No. 1, Douglas Fir -Larch t L
MEMBER SPAN L = 5:5
ft
UNIFORMLY DISTRIBUTED DEAD LOAD wD = 230
lbs/ft -
PD1 + + Poz
UNIFORMLY DISTRIBUTED LIVE LOAD WL = 170
lbs/ft
W`
CONCENTRATED DEAD LOADS PD1 = 0
lbs
WD
(0 for no concentrated load) L1 = 0
ft
PD2 = 0
lbs
L2 = 0
ft
DEFLECTION LIMIT OF LIVE LOAD d L = L / 360
Camber => 0.06 Inch
DEFLECTION LIMIT OF LONG-TERM dKwD.L = L / 180
THE BEAM DESIGN IS ADEQUATE.
Does member have continuous lateral support by top diaphragm ?
(1= yes, 0= no) 0 No
Code Duration Factor, CCondition
Code
Designation
1 0.90 Dead Load
1
Select Structural, Douglas Fir -Larch
2 1.00 Occupancy Live Load
2
No. 1, Douglas Fir -Larch
3 1.15. Snow Load
3
No. 2, Douglas Fir -Larch
4 1.25 Construction Load
4
Select Structural, Southern Pine
5 1.60 Wind/Earthquake Load
5
No. 1, Southern Pine
6 2.00 Impact Load
6
No. 2, Southern Pine
Choice => 4 • Construction Load
Choice
L=> 2
ANALYSIS
DETERMINE REACTIONS, MOMENT, SHEAR
wseuvm = 7 lbs / It RLan = 1.12 kips
RRieh1=
1.12 kips
VMax = 0.93 kips, at 5.5 Inch from left end
MM. =
1.54
ft -kips, at 2.75 ft from left end
DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES
"
b = 5.50 in E'r„ 1f1 = 580 ksi
E = Ex=
1600
ksi Fb = 1687.5 psi
d = 5.50 in FbE _ 30851 psi
Fb =
1,350
psi F = FbE / Fb' = 18.28
A = 30.3 int 1 = 76 in
'F„ =
170
psi Fe = 1,683 psi
SS.,= 27.7 in3 Ra= 4.750 c50
E' =.
1,600
ksi Fv' = 213 psi
1E= 10.3 (ft, Tab 3.3.3 footnote l)
CD CM C1 Ci CL CF Cv
C,
Cr
1.25 1.00 I 1.00 1.00 1.00 1.00 1.00
(
1.00
1.00
CHECK BENDING AND SHEAR CAPACITIES
fb = MMax / Sx =• 665 psi < Fb = 1683
psi
[Satisfactory]
fV = 1.5 VMax / A = 46 psi < F„
[Satisfactory]
CHECK DEFLECTIONS
Id (L, Max) ? 0.03 In, at 2.750 ft from left end, < d L = L / 360 [Satisfactory]
d (Ker D+L, Max) _ 0.09 in, at 2,750 ft from left end _ < d Kcr D. L = L / 180 [Satisfactory]
Where Kir = 1.50 , (NDS 3.5.2)
DETERMINE CAMBER AT 1.5 (DEAD +`SELF WEIGH)
d (1.5D, Max) = 0.06 In, at 2.750 ft from left end•
YUILDING &sAFE �lIIN' 1
�' DEP
Fo o COVED
N TRUCTiON
DArE
�_ BY
11
CHECK THE BEAM CAPACITY WITH AXIAL LOAD
AXIAL LOAD F = 2 kips
THE ALLOWABLE COMPRESSIVE STRESS IS
Fc =' Fc CD CP CF .= 1309 psi
V V V V Y V v v V v
Where F, _ 925 psi
CD = 160
F F
_
CF = 1.00 (Lumber only)
1
CP = (1+F) / 2c - [(1+F) / 2c)2 - F / c]os _ 0.884
Fe* _ F, CD CF = 1480 psi
La = Ke L =; 1.0 L =. 66
in
b = 5.5 in
SF =slenderness ratio = 12.0
< 50 [Satisfies NDS 2005 Sec. 3.7.1.4]
FIE = 0.822.E'mm / SFS = 3311
psi
E'min = 580 ksi
F = FIE / Fc = 2.237
c = 0.8
THE ACTUAL COMPRESSIVE STRESS IS
f, = F / A = 66 psi <
Fc [Satisfactory]
i
THE ALLOWABLE FLEXURAL STRESS IS
Fb = 2154 psi,: [.for CD = 1.6
]
THE ACTUAL FLEXURAL STRESS IS
fb = (M + Fe) / S = 1062 psi <
Fti [Satisfactory]'
CHECK COMBINED STRESS [NDS 2005 Sec. 3.9.2]
(f, / F,' )Z + fb / [Fb' (1 - f, / FcE)j = 0.506
< 1 [Satisfactory]
CITY OF LA Q�1���q
RUILDI�G & SAFETY'
DEPT.
PROVE®
F�
R CONSTRUCTION
DATE
—� BY
r
Reza PROJECT: Wood Post Design PAGE:
As har OUr CLIENT: Lathrop Residence DESIGN BY: R.A.
g p JOB NO.: 1312117 DATE: 12/3/2013 REVIEW BY: R.A.
ables for Wood Post Design Based on NDS 2005
URATION FACTOR (1.0, 1.15, 1.25, 1.6) Co = 1.00 , (NDS 2.3.2)
OMMERCIAL GRADE (# 1 or # 2) # 2
Post Axial Capacity for Doualas Fir -Larch * 2_ (kind
Height
Section Size
Section Size
ft
ft
4x4
4x6
4x8
4x10
4x12
6x6
6x8
6x10
6x12
8x8
8x10
6
10.89
16.85
21.84
27.34
33.25
19.59
26.72
33.85
40.97
37.92
48.03
7
8.68
13.51
17.62
22.21
27.01
18.89
25.76
32.63
39.49
37.33
47.28
8
6.96
10.87
14.22
18.00
21.89
17.99
24.54
31.08
37.63
36.59
46.34
9 1
5.66
8.85
11.60
14.72
17.90
16.91
23.06
29.21
35.35
35.69
45.21
10
4.67
7.31
9.59
12.19
14.82
15.66
21.35
27.05
32.74
34.61
43.84
11
3.90
6.12
8.04
10.23
12.44
14.32
19.52
24.73
29.93
33.34
42.23
12
3.31
5.19
6.83
8.69
10.57
12.96
17.67
22.39
27.10
31.87
40.37
13
2.84
4.46
5.86
7.46
9.08
11.67
15.91
20.15
24.39
30.23
38.30
14
2.46
3.86
5.08
6.47
7.87
10.47
14.28
18.09
21.90
28.46
36.05
15 1
2.15
3.38
4.45
5.67
6.89
9.41
12.83
16.25
19.67
26.62
33.72
16
1.90
2.98
3.92
5.00
6.08
8.46
11.54
14.62
17.70
24.76
31.37
17
1.69
2.65
3.49
4.44
5.40
7.63
10.41
13.19
15.96
22.96
29.08
18
1.51
2.37
3.12
3.97
4.83
6.91
9.42
11.93
14.44
21.23
26.89
19
1.36
2.13
2.80
3.57
4.35
6.27
8.55
10.83
13.12
19.62
24.85
20
1.23
1.92
2.53
3.23
3.93
5.72
7.79
1 9.87
11.95
18.13
22.96
21
1.11
1.75
2.30
2.94
3.57
5.22
7.12
1 9.02
10.92
16.76
21.23
22
1.02
1.59
2.10
2.68
3.26
4.79
6.53
1 8.28
10.02
15.52
19.66
23
0.93
1.46
1.92
2.45
2.98
4.41
6.01
1 7.62
9.22
14.39
1 18.23
24
0.85
1.34
1.77
2.26
2.74
4.07
5.55
7.03
8.51
13.36
16.93
25
0.79
1.24
1.63
2.08
2.53
3.77
5.13
6.50
7.87
12.43
15.75
26
0.73
1.15
1.51
1.92
2.34
3.49
4.76
6.03
7.30
11.59
14.68
27
0.68
1.06
1.40
1.79
2.17
3.25
4.43
5.61
6.80
10.82
13.71
28
0.63
0.99
1.30
1.66
2.02
3.03
4.13
5.23
6.34
10.13
12.83
29
0.59
0.92
1.22
1.55
1.89
2.83
3.86
4.89
5.92
9.49
12.02
30
0.55
0.86
1.14
1.45
1.76
2.65
3.62
4.58
5.54
8.91
11.29
Post Axial Capacity for Southern Pine it 2_ (kind
Height
Section Size
ft
4x4
4x6
4x8
4x10
4x12 6x6
6x8
6x10
6x12
8x8
8x10
6
11.10
17.27
22.54
28.44
34.17 14.96
20.41
25.85
31.29
28.68
36.32
7
8.79
13.73
17.98
22.77
27.49 14.57
19.87
25.16
30.46
28.33
35.89
8
7.02
10.98
14.41
18.30
22.15 14.07
19.18
24.30
29.42
27.91
35.36
9 1
5.69
8.91
11.71
14.89
18.05 13.45
18.35
23.24
28.13
27.41
34.72
10
4.69
7.35
1 9.66
12.30
14.91 12.72
17.35
21.98
26.61
26.80
33.95
11
3.92
6.15
8.09
10.30
12.50 1 11.90
16.22
20.55
24.87
26.09
1 33.05
12
3.32
5.21
6.86
8.74
10.61 11.00
15.00
19.00
23.00
25.26
1 32.00
13
2.85
4.47
5.88
7.50
9.10 10.09
13.76
17.42
21.09
24.32
30.81
14
2.47
3.87
5.10
6.50
7.89 9.20
12.54
15.88
19.23
23.27
29.47
15
2.16
3.39
4.46
5.69
6.91 8.36
11.40
14.44
17.48
22.12
28.02
16 1
1.90
2.99
1 3.93
5.01
6.09 7.59
10.35
13.11
15.87
20.91
26.48
17 1
1.69
2.65
3.49
4.45
5.41 6.89
9.40
11.91
14.42
19.66
24.91
18
1.51
2.37
3.12
3.98
4.84 1 6.27
8.56 1
10.84
13.12
18.42
23.33
19
1.36
2.13
2.81
3.58
4.35 5.72
7.80
9.88
11.96
17.21
1 21.80
20
1.23
1.93
2.54
3.24
3.93 5.23
7.13
9.04
10.94
16.05
20.33
21
1.11
1.75
2.30
2.94
3.57 4.80
6.54
8.28
10.03
14.95
18.94
22
1.02
1.60
2.10
2.68
3.26 4.41
6.01
7.62
9.22
13.93
17.65
23
0.93
1.46
i 1.93
2.46
t"-299- 4.06
5.54
7.02
8.50
12.98
16.45
24
0.86
1.34
1.77
2.26
' 2`74 -v -a -3'76- X5.12
6.49
7.86
12.11
15.34
25
0.79
1.24
1.63
2.08 i
253 Y 'r 3,r48 C:
A 4.:7.5-116-.01-
7.28
11.31
14.33
26
0.73
1.15
1.51
1.93 1
t2!3.41 t l i ,3.23"
L.44:1 ( ,1 5!59 #- - -6'76
10.58
13.40
27
0.68
1.06
1.40
1.79 ,1
2.17""""3.01 & g4)1j,-- 5°20V i %'x;6.30
9.90
12.54
28
0.63
0.99
1.30
1.661
2.0211 t'2V,A-,
:3`834-,
Y4!85=,C
5.88
9.28
11.76
29
0.59
0.92
1.22
1.551
1.0-9,,' . 2631"' i a 3),58,/,1-1,454
•5.50
8.72
11.04
30
0.55
0.86
1.14
1 1.45,p
1.76"11 (2!445Ata �-,=3 36: t - Y4,�)5
5A5
8.20
10.39
Note: DArE
1. The bold values require steel bearin plate as,
2. The table values are from Wood Column software
lnt
"��• 110N
- 1213/13
Converting Addresses to/from Latitude/Longitude/Altitude in One Step (Geocoding)
Converting Addresses to/from Latitude/Longitude/Altitude in One
Step
Stephen P. Morse, San Francisco
Batc_h;Mode (Forward);, 46.atch 4( Re �;Batch�Mode�(Altitude) Deg/Min/¢Sec,to ®ecima
Computing Distances; ;:F. �requ< ently;AskedQue tiosnsr�My,Othe�r,. Wtebpages]
address 49298 Montana Way,
— latitude
city La Quinta
longitude -��
state iCalifornia — _ �� above values must be in decimal
ztp92253 _ with minus signs for south and west
country United States;
�DetermjneMAticlr�ess,� reG� :sets
JDetermineLat/Lonn tGet--Altitudes reg sets
U Access geocoder.us / geocoder.ca (takes a relatively long time)
from goode,I latitude longitude altitude
decimal - 33.690751000000011-116.283141
deg -min -sec 33° 41' 26.7036"1 -1:IEI6' 59.3076"
fromay hoo latitude longitude altitude
decimal 1133.690552 -116.28347
deg -min -sec 33° 41'25.9872'11-116' 17' 0.492"�
49298 Montana Way, La Quinta, California 92253
49298 Montana W
etc�nrnnren nrn fin�IlhMnn nhn 9�1
12/3/13 Design Maps Summary Report
J%Vq(;Design, Maps Summary Report
r
User -Specified Input 4
Report Title '• Lathrop Residence
Wed December 4, 2013 00:32:23 UTC'
Building Code Reference Documerit'.ASCE 7-05,Standard
+ (which utilizes USGS hazard data available in 2002)•
Site Coordinates 33.690750N, 116.28314°W £;
Site Soil'Classification Site Class D - "Stiff Soil". -
Occupancy}Category IM III
. I>VN
4.
1
rr jy.
I 4t:( ♦r
1 Y
t.
j
r
r i
t „caµ�{�rca�&•q 1� t rt. Pz.j �» s 2013?�
i..�.�«�,� t....t�'i':���'�c�%�..�3�'•f',+r.'s��w':���..:�.,,.....:JX����. O MapQuest -
USGS-Provided Output
SS = 1.500 g, _ SMS = 1.500 g SDS = 1.000 g
S1 = 0.600 g • SMi = '0.900 g SD1 = 0.600 g
MCE•Response Spectrum -Design Response Spectrum
1. fi5 ; �' i � •
"
1.50--
1.05
.50 1.05 0.77
CI 0.90 .. ;
� CI'0.66
LA 0.75 _ y 0.55 '
O.GO t 0.44
• ' 0.45 i0.33 r + r
•0.30 0.22--
0.15 �. a r
0.00 V ( 69bo - - .
0.00 0.20 0.40 0.60 0.80 i 1.00 1.20 1.40 1.60 1.80 2100 r . `0:00_0.'il--w'c�0 � i0�80 0 N .20 1.40 1.60 1.80 2.00
V Period, T (sec) g�ff �1r�1( i. S��E PenodT (sec) ,
N_ DEPT.
Although this information is a!product of the U.S. Geologica9`Surveyrwvcprov�e no= �arranty, expressed or implied, y•
as to the accuracy of the datalcontained therein. This tool is nota substitu e f ,'rTt�hriical s bject-matter
knowledge. i DATE ~
BY
a eohazards.uso s.a ov/desia nmaos/us/summarv.DhD?temoIate=minimal&latitude=33.69075100000001 &long itude=-116.283141 &siteclass- 3&risl categ ory=0&edit... 1/1
.l
I�l000 Res + 51SS b
4
X
i
! � '�.$ �i,� C iGtravtc,�/eYS� d�b•�G �ls� .
-�- av15 ve,vs-e
!
Cl LA
!
BUILDING0 A X111N-lA
SAFETY QEPT.
i FOR C� �.®,/��
! NSTRUCTIpN
DATE
�� BY
CLIENT:
_
RA Structural Enzineerin�
SHEET:
SUBJECT: dna» }
JOB NO I31z� l
DESIGN BY:
A
"_ `
DATE: tz./ 3/ ►3
L,x,f eiaL
?via i� st s _
Se15mIc
3o�S�x 1��1 I°
��-x �2x3o•5�
�t Zq
X
P s x J -t� 2
t� X
.l
I�l000 Res + 51SS b
4
X
i
! � '�.$ �i,� C iGtravtc,�/eYS� d�b•�G �ls� .
-�- av15 ve,vs-e
!
Cl LA
!
BUILDING0 A X111N-lA
SAFETY QEPT.
i FOR C� �.®,/��
! NSTRUCTIpN
DATE
�� BY
l .
Reza .' PROJE{ • .�-s • , ..
CT Seismic Load -Diaphragm A (R=6.5) PAGE:
sg ha rpo u I CLIENT: Lathrop Residence DESIGN BY: RIA.
JOB NO.: 131211.7_ DATE: REVIEW BY:
One Story Seismic Analysis Based on IBC .06./ CBC 07
Determine Base Shear (Derived from ASCE 7-05 Sec. 12.8)
V = MAX{MIN I SD11 / (RT) SDS I/R] 0.01 0.5S11/R)W
= MAX{MIN[ 0.89W! , 0.15W ] , 0.01W. , 0.05W)
= 0.15 W, (SD) (for S, z 0.6 g only)
= 0.11 W, (ASD) = 2.28 kips r
Where SDS = 1 (ASCE 7-05 Sec 11.4.4)
SD11= 0.6 (ASCE 7-05 Sec 11.4.4)
S1, 0.6 (ASCE 7-05 Sec 11.4.1) ,
" R 6.5 (ASCE 7-05 Tab 12.2-1)
= 1 (IBC 06 Tab 1604.5 & ASCE 7-05 Tab 11.5-1)
. Ct = .0:02 (ASCE 7-05 Tab 12.8-2)
I
hn'= . 9.0 ft
X_ 0.75 (ASCE 7-05 Tab 12.8-2)
T = Ct (hn)x = 0.104 sec, (ASCE 7-05 Sec 12.8.2.1)
Calculate Vertical Distribution' of Forces & Allowable Elastic Drift (ASCE'7-05, Sec 12.8.3 & 12.8.6)
Level WX hx hxk Wxhxk Fx , ASD (12.8-11) sxe,allowable, ASD
Roof 20.71 9 9.0 . 186 2.3 (o. 11 wx) 0.4
20.7 186 2.3
Where k = 11 for T <= 0.5 sxe,allowable, ASD = Da 1/ (1.4 Cd), (ASCE 7-05 Sec 12.8.6)
k = 0.5 T + 0.75 for T @ (0.5 , 2.5) Cd = 4 (ASCE 7-05 Tab 12.2-1)
k = 2' for T >= 2.5 Aa = 0.02 hsx, (ASCE 7-05 Tab 12.12-1)
Calculate Diaphragm Forces (ASCE,7-05, Sec 12.10.1.1)
Level WX I% Fx EFx Fpx , ASD, (12.10-1)
Roof 20:7 20.7 2.3 2.3 2.8 ( 0.13 Wx )
20:7 - 2.3
Where Fmin =fi0.2 SDS I Wx / 1.5 ASD
Finax 0.4 SDS I Wx / 1.5 , AS
t I Quip �1
UUiLUINU & SAFETY DEPT.
� PROVED
i FOR CONSTRUCTION
4 DATE �_ By
Reza PROJECT: Wind Load PAGE:
Our
As har CLIENT: Lathrop Residence DESIGN BY:
g P JOB NO.: 1312117• DATE: 12/03/13 REVIEW BY:
INPUT DATA
Exposure category (B, C or D)
Importance factor, pg 73, (0.87, 1.0 or 1.15)
Basic wind speed
Topographic factor(Sec.s.5.7.z, p630 & 47)
Building height to eave
Building height to ridge
Building length
Building width
I =
V =
Krt =
he =
hr =
L =
B
B
Roof apple 6 = 26.57
Roof an le 0 = 0.00
1.00
Category II
G CD T
85
mph
(+GCD i) (-GC I)
(+GCD i)
1
Flat =
0.55
4.07 8.03
0.40
ft
L
2
13:5
ft
-0.69
, -9.57
28
It
14
ft
Effective area of components A - 10 112
DESIGN SUMMARY
Max horizontal force normal to building length, L, face = 3.78 kips
Max horizontal force normal to building length, B, face = 1.65 kips
Max total horizontal torsional load = 12.45 ft -kips
Max total upward force - 3.92 kips
ANALYSIS
Velocity pressure
qh = 0.00256 KIT Krt Kd V21 = 11.01 psf
where: qh = velocity pressure at mean roof height, h. (Eq. 6-15, page 31)
Kh = velocity pressure exposure coefficient evaluated at height, h, (Tab. 6-3, Case 1,pg 75) = 0.70
Kd =.wind directionality, factor. (Tab. 6-4, for building, page 76) = 0.85
h = mean roof height = 11.75 ft
< 60 ft, [Satisfactory]'
< Min (L, B), [Satisfactory]
Design pressures for MWFRS
p =.qh [(G C°f )-(G CPi )]
where: p = pressure in appropriate zone. (Eq. 6-18, page 32).
G C° r = product of gust effect factor and external pressure coefficient, see table below. (Fig. 6-10, page 55 & 56)
G C° I = product of gust effect factor and internal pressure coefficient. (Fig. 6-5, Enclosed Building, page 49)
0.18 or -0.18
a = width of edge strips, Fig 6-10, note 9, page 56, MAX[ MIN(0.1 B, 0.4h), 0.048,3] = 3.00 ft
(IBC Fig.1609.6,2.2, footnote 5)
Net Pressures s , Basic Load Cases Net Pressures s , Torsional Load Cases
3E 3 2 4CORNER
ZONE 2/3 BOUNDARY
2E 3E 3 3T
6E 6 �fi a6-spry-�c-yp_ 44^ a®.2E:2�2T 6
<E�i C E p �j'y�
5 15r DJILDIN a PE �' ,,,� T.
DEFERENCE CORNER IE REtO REFERENCE-CORNER_
e pWIND DIRECTION WIND DIRECTION WIND DIRECTION
IO
Transverse Direction ' Longitudinal �irectio FOR0�9STRD,rac ion 1
Basic Load Cases , Torsion
G
WIND DIRECTION
Longitudinal Direction
0
Roof apple 6 = 26.57
Roof an le 0 = 0.00
G C°+
Net Pressure with
G CD T
Net Pressure with
Surface
(+GCD i) (-GC I)
(+GCD i)
(-GCp i )
1
0.55
4.07 8.03
0.40
2.42
6.38
2
-0.10
-3.07 0.89
-0.69
, -9.57
-5.61
3
-0.45
-6.90 -2.94
-0.37
-6.05
-2.09
4
-0.39
-6.28 -2.32
-0.29
-5.17
-1.21
1E
0.73
6.03 9.99
0.61
4.73
8.69
2E
-0.19
-4.08 -0.11
-1.07
-13.76
-9.79
3E
-0.58
-8.42 -4.46
-0.53
-7.81
-3.85
4E
-0.53
-7.87 -3.91
-0.43
-6.71
-2.75
5
-0.45
-6.93 -2.97
-0.45
-6.93
-2.91
6
1 -0.45
1 -6.93 1 -2.97
1 -0.45
-6.93
1 -2.97
3E 3 2 4CORNER
ZONE 2/3 BOUNDARY
2E 3E 3 3T
6E 6 �fi a6-spry-�c-yp_ 44^ a®.2E:2�2T 6
<E�i C E p �j'y�
5 15r DJILDIN a PE �' ,,,� T.
DEFERENCE CORNER IE REtO REFERENCE-CORNER_
e pWIND DIRECTION WIND DIRECTION WIND DIRECTION
IO
Transverse Direction ' Longitudinal �irectio FOR0�9STRD,rac ion 1
Basic Load Cases , Torsion
G
WIND DIRECTION
Longitudinal Direction
0
Roof an
le 0 = 26:57
GC°T
Net Pressure with
Surface
(+GCDi)
(-GCpi)
1T
0:55
1.02
2.01
2T
-0.10
-0.77
0.22
3T
-0.45
-1.73
-0.74
4T
1 -0.39
1 -1.57
-0.58
Roof an
le 0 = 0.00
Surface
GC°r
Net Pressure with
(+GCpI)
(-GC°1)
IT
0.40
0.61
1.60
2T
-0.69
-2.39
-1.40
3T
-0.37
-1.51
-0.52
4T
1 -0.29,
-1.29
-0.30
3E 3 2 4CORNER
ZONE 2/3 BOUNDARY
2E 3E 3 3T
6E 6 �fi a6-spry-�c-yp_ 44^ a®.2E:2�2T 6
<E�i C E p �j'y�
5 15r DJILDIN a PE �' ,,,� T.
DEFERENCE CORNER IE REtO REFERENCE-CORNER_
e pWIND DIRECTION WIND DIRECTION WIND DIRECTION
IO
Transverse Direction ' Longitudinal �irectio FOR0�9STRD,rac ion 1
Basic Load Cases , Torsion
G
WIND DIRECTION
Longitudinal Direction
0
Basic Load Cases in Transverse Direction Basic Load Cases In Longitudinal Direction
}
Torsional Load Cases In Transverse Direction Torsional Load Cases in Longitudinal Direction
Design pressures for components and cladding
P = qh[ (G Cp) - (G CpJ]
where: p = pressure on component. (Eq. 6-22, pg 33) z'° < s 5., ,°^^" ' z i i 2 2 i i� ri _ i i
Pmin = 10 psf (Sec. 6.1.4.2).
,� i --Z -t, }~a�33 z��
GCp = external pressure coefficient. ° Walls
see table below. (Fig. 6-11, page 57 -60) Roof e.,• Roof e»
Surface Area Pressure k with
(%z) (+GCP I) ' (-GCP j )
1 220 0.90 1.77
2 172 -0.53 0.15
3 172 -1.19 -0.51
4 220 -1.38 -0.51
1E 60 0.36 0.60
2E 47 -0.19 -0.01
3E 47 0.40 0.21
4E' •. 60 =0.47 -0.23
E Horiz. 3.50 3.50
Vert. =2.06 -0.51
10 psf min. Horiz. 3.78 3.78
Sec. 6.1.4.1 Vert
Area
e
k with
(+GCP �)
(-GCo � )
s
(rt'>
Basic Load Cases in Transverse Direction Basic Load Cases In Longitudinal Direction
}
Torsional Load Cases In Transverse Direction Torsional Load Cases in Longitudinal Direction
Design pressures for components and cladding
P = qh[ (G Cp) - (G CpJ]
where: p = pressure on component. (Eq. 6-22, pg 33) z'° < s 5., ,°^^" ' z i i 2 2 i i� ri _ i i
Pmin = 10 psf (Sec. 6.1.4.2).
,� i --Z -t, }~a�33 z��
GCp = external pressure coefficient. ° Walls
see table below. (Fig. 6-11, page 57 -60) Roof e.,• Roof e»
Surface Area Pressure k with
(%z) (+GCP I) ' (-GCP j )
1 220 0.90 1.77
2 172 -0.53 0.15
3 172 -1.19 -0.51
4 220 -1.38 -0.51
1E 60 0.36 0.60
2E 47 -0.19 -0.01
3E 47 0.40 0.21
4E' •. 60 =0.47 -0.23
E Horiz. 3.50 3.50
Vert. =2.06 -0.51
10 psf min. Horiz. 3.78 3.78
Sec. 6.1.4.1 Vert
Surface
Area
Pressure
k with
(+GCP �)
(-GCo � )
(-GCP � )
(rt'>
1
96
0.23
0.61
2
125
-1.20
-0.70
3
125.
-0.76
-0.26
4
96
-0.49
-0.12
1 E
69
0.33
0.60 ,
2E
94
-;1.29
-0.92
3E
94 ,
-0:73
-0.36
4E
69
-0.46
-0.19
E
Horiz.
1.51
1.51
'-1
Vert.
-3.56
47
10 psf min.
Horiz.
1.65
1 '
.
-3.92
-3.92
Surface
Area
Pressure
k with
(+GCP �)
(-GCo � )
(-GCP � )
(rt'>
1
96
0.23
0.61
2
125
-1.20
-0.70
3
125.
-0.76
-0.26
4
96
-0.49
-0.12
1 E
69
0.33
0.60 ,
2E
94
-;1.29
-0.92
3E
94 ,
-0:73
-0.36
4E
69
-0.46
-0.19
E
Horiz.
1.51
1.51
'-1
Vert.
-3.56
47
10 psf min.
Horiz.
1.65
1 '
sec. it.t.a.t
Vert.
-3.92
-0.23
Surface
" Area
Pressure k with"
Torsion ft -k '
(+(jOp i) (-GCP i)
(+GCP �)
(-GCP � )
Zone 5
GC - GC
(ft)
1
1
80
0.33
0.64
2
4
2
63
-0.19
0.06
0
0
3
63
-0.43
-0.18
1
0
4
80
-0.50
-0.19
3
1
1E
60
0.36
0.60
4
7
2E
47
-0.19
-0.01
'-1
0
3E
47
-0.40
'-0.21
2
1 '
4E
60
-0.47
-0.23
5
3
1T
140
0.14
0.28
-1
-2
2T
110
•-0.08
0.02
0 "
0
3T
110
-0.19 •
-0.08
-1
0
4T
140
-0.22
-0.08
-2
-1
Total Horiz. Torsional Load, MT '
12
12
Surface
Area
Pressure k with
Torsion ft -k
(+(jOp i) (-GCP i)
(+GCP �)
(-GCP � )
Zone 5
GC - GC
(ft)
1
13
0.03 0.08
0
0
2
31 -
-0.30 -0.18
1
1
3
31
-0.19 -0.07
-1
0
4
13
-0.07 -0.02
0
0
1 E
69
0.33 0.60
1
2
2E
94
-1.29 -0.92
4
3
3E
94
-0.73 -0.36 •
-2
-1
4E
69
-0.46 -0.19
2
1
1T
82
0.05 0.13
0
0
2T
125
-0.30 -0.18
-2
-1
3T
125
-0.19 -0.07
1
0
4T
82
-0.11 -0.02
0
0
Total Horiz. Torsional Load, MT
4.0
4.0.
Comp. 8 Cladding
Pressure
( psf)
Effective
Area (ftz)
Zone 1
GC - GC
Zone 2
GC -GCP
GC
Zone 3
- GC
Zone 4
GC - GC
Zone 5
GC - GC
Com
10
0.50
-0.90
0.50
-1.70 .
0.50
-2.60
1.00
-1.10
1.00
Comp. 8 Cladding
Pressure
( psf)
Zone 1
Zone 2
Zone 3
Zane 4
Zone 5
positive Negative Positive Negative Poshlve Negative Positive Negative
PositiveNe alive
10.00. -11.89 10.00 -20.69 10.00 -30.59. 12.99 -14.09•
1.
12.99 -17.39
r
P
CLIENT: SHEET:
SUBJECT: 4dath�-o RA Structural Enzine JOB NO:1��2t�� .
DESIGN BY: }2 � DATE:. 12./? / s
5�2ar IIJO�Ii '. #-i
L
-T� �g !mss l $ ° Q
ti
25
( P.A. 06
Cb,� w e P
sl�eav p �
� h2ar Uvavi.t ��
slo
13.x'
A
S�ne.a✓ l,Uaucloj
(l
r
u� sem• -+ire "
i CITY OF LA t UINTA
S �eavwaLt 4 L� L = BUILDING & SAFETY DEPT.
P Rz�4llo--® p C
6 --POR CONSTRUCTION
C�aav DAB
Reza. PROJECT: SheaVN` #1'�, "" , f"i° ,;-* PAGE c Ft
CLIENT: Liathrop Resldence'y` ,?''�` rw - #'
As har OUr DESIGN BY R:A rt
JOB NO.: *1312117=*•� �" _ 'DATE 'j X3/2013 REVIEW BY:
INPUT DATA
LATERAL FORCE ON DIAPHRAGM: vena. WN'D = plf,for wind
vdia, SEISMIC =' '•-1,t35;' plf,for seismic
+s r
GRAVITY LOADS ON THE ROOF: WDA = I '` 16 � plf,for dead load
WLL _85 plf,for live load
DIMENSIONS: LW= lig":a.+it h1. — X10 jit
L = *.8Ex''ft hp= ipft
PANEL GRADEor 0 1 = a
( ) �1 *�_,� <= Sheathing and Single -Floor
MINIMUM NOMINAL PANEL THICKNESS = *�318.?t in
COMMON NAIL SIZE (0=6d,,1=8d, 2=10d) £ 18d
SPECIFIC GRAVITY OF FRAMING MEMBERS !�+0:5 A
EDGE STUD SECTION il.'1 Ot pcs, b = 2 t. in , h = ,i;
SPECIES (1 = DFL, 2 = SP) i �.�1�1' DOUGLAS FIR -LARCH
111.r11
L `
W
vd'a hp
h
TL Ta
GRADE (1, 2, 3, 4, 5, or 6) t 4 w'; No. 2 Lw
STORY OPTION (1=ground level, 2=upper level) yL1j c"1 ground level shear wall.
THE SHEAR WALL DESIGN IS ADEQUATE.
DESIGN SUMMARY
BLOCKED 3/8 SHEATHING WITH 8d COMMON NAILS
@ 4 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD,
5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 44 in O.C.
HOLD-DOWN FORCES: TL = 1.65 k , TR = 1.85 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN)
DRAG STRUT FORCES: F = 0.00 k
EDGE STUD: 1 - 2" x 6" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. `
SHEAR WALL DEFLECTION: = 0.33 in.
ANALYSIS
CHECK MAX SHEAR WALL DIMENSION RATIO L t B = 1.3 < 3 5 , [Satisfactory]
DETERMINE REQUIRED CAPACITY vb = 237 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 4 in)
THE SHEAR C-APAC:ITIFS PER IRC: Takla 2306 d 1
Ivute. I nu inulr;areu snear numuers nave reaucea uy sperc�mnc gravity Tactor per 1m; note a,
VE DRAG STRUT FORCE: F = (L -LW) MAX( vdla, WINO, flDvdia. SEISMIC) = 0.00 k ( 00 = 1 ) (Sec. 1633.2.6)
VE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11E)
5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 44 in O.C.
THF Hf)I n-r)C)wm FnRCFR-
Panel Grade
Common
Nail
Min.
Penetration
in
Min.
Thickness
in
Blacked Nail Spacing
Boundary & All Edges
SEISMIC
6 1 4 3 2
Sheathing and Single -Floor
8d
1 1/2
1 3/8
220 1 320 410 1 530
Ivute. I nu inulr;areu snear numuers nave reaucea uy sperc�mnc gravity Tactor per 1m; note a,
VE DRAG STRUT FORCE: F = (L -LW) MAX( vdla, WINO, flDvdia. SEISMIC) = 0.00 k ( 00 = 1 ) (Sec. 1633.2.6)
VE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11E)
5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 44 in O.C.
THF Hf)I n-r)C)wm FnRCFR-
ECK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2)
A — A&e dl -g + AShear + O N d slip + OCho d splice ,sl
Where: vb = 237 pit, ASD
A = 16.50 in`
t= 0.221 in
ECK EDGE STUD CAPACITY
Pmax = 2.10 kips, (this value should incl dd
F� = 1350 psi CD = 1.60
E = 1600 ksl CF = 1.10
(TL & TR values should include upper level UPLIFT forces if
RI). 1,3 ,,.h ha
=CD YftO LAEQL e! P�
=gWW,W\, G & SA GM—M)+o4 IpsT.
0.002, li21 ROd\eaE0._1Sa in
FOR CONSTRUCTION
ARD%ads-If-applicable) f
= 0.38 A
0.328 in, ASD <
ke,allowable, Aso = 0.429 in
[Satisfactory] (ASCE 7-05 12.8.6)
Cd= 4 1= 1
,(ASCE 7-05 Tab 12.2-1 & Tab 11.5-1)
Aa = 0.02 h.
(ASCE 7-05 Tab 12.12-1)
= 8.25 in'
F� = 894 psi > %= 255 psi
[Satisfactory]
vd;a
I
Wall Seismic
at mid-storylbs
Moments ft-lbsMoments
OverturningURi
Resisting Safety Net Uplift
(ft -lbs) Factors lbs
Holddown
SIMPSON
SEISMIC
165
128
13840
6240 0.9 T = 1028
r
y'b
6240 0.9 TR = 1028
23Z
18960
6240 2/3 T� = 1850WIND
6240 2/3 TR = 1850
ECK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2)
A — A&e dl -g + AShear + O N d slip + OCho d splice ,sl
Where: vb = 237 pit, ASD
A = 16.50 in`
t= 0.221 in
ECK EDGE STUD CAPACITY
Pmax = 2.10 kips, (this value should incl dd
F� = 1350 psi CD = 1.60
E = 1600 ksl CF = 1.10
(TL & TR values should include upper level UPLIFT forces if
RI). 1,3 ,,.h ha
=CD YftO LAEQL e! P�
=gWW,W\, G & SA GM—M)+o4 IpsT.
0.002, li21 ROd\eaE0._1Sa in
FOR CONSTRUCTION
ARD%ads-If-applicable) f
= 0.38 A
0.328 in, ASD <
ke,allowable, Aso = 0.429 in
[Satisfactory] (ASCE 7-05 12.8.6)
Cd= 4 1= 1
,(ASCE 7-05 Tab 12.2-1 & Tab 11.5-1)
Aa = 0.02 h.
(ASCE 7-05 Tab 12.12-1)
= 8.25 in'
F� = 894 psi > %= 255 psi
[Satisfactory]
Reza
PROJECT: ShearWall #2 PAGE:
CLIENT: Lathrop Residence DESIGN BY : R.A.
As har,OUr JOB NO: 131211.7 DATE: 12/3/2013 REVIEW BY: R.A.
Wood�Shea�j�Wall�with�an�O:enin GBaseda_on�IB.C�0.6,//,�CB,C�07�'/�?NDSTr05�
INPUT DATA V dic
1
LATERAL FORCE ON DIAPHRAGM:
Vala. WIND =
140
plf,forwind
(SERVICE LOADS) ,
VdI.. SEISMIC =
110
plf,for seismic
DIMENSIONS: ; LI = 2
ft, L2 -
9.5
STRAr
ft. L, = 2 ft
Hr = 4.5
ft „Hz =
4
ft. Hs 71.5 ft
KING STUD SECTION 1
pcs, b =
2
in, h = 6 in
SPECIES (1 = DFL, 2 = SP)
1
DOUGLAS FIR -LARCH
` GRADE( 1, 2, 3, 4, 5, or 6)
4
No.
EDGE STUD SECTION ' 1
pcs, b =
,2
2
in. h = 6 in
SPECIES (1 = DFL; 2 = SP)
1
DOUGLAS
FIR -LARCH
GRADE ( 1, 2, 3, 4, 5, or 6)
4
No. 2
PANEL GRADE (0 of 1) _ - 1
<= Sheathing
and Single
-Floor
MINIMUM NOMINAL PANEL THICKNESS
15/32
in
M
S
COMMON NAIL SIZE (0=6d, 1=8d, 2=10d) 1 ad THE SHEAR WALL DESIGN IS ADEQUATE.
SPECIFIC GRAVITY OF FRAMING MEMBERS 0.5
STORY OPTION (1 ground level, 2=upper level) 1 ground level shear wall
1 ,s
DESIGN SUMMARY
BLOCKED 15/32 SHEATHING WITH 8d COMMON NAILS
Q 3 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD,
5/8 in DIA.'x 10 in LONG ANCHOR BOLTS @ 48 in O.C.
HOLD-DOWN FORCES: TL' 1.40 k , TR = 1.40 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN)
MAX STRAP FORCE: F = 1.55 k (USE SIMPSON C816 OVER WALL SHEATHING WITH FLAT BLOCKING)
KING STUD: 1 - 2" x 6" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. _
EDGE STUD: 1 - 2" x 6" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT.
SHEAR WALL DEFLECTION: o = 0.30 In
I / V L1 + 0.5 L2 ,
F7/
1
L, L2 L3
r L
i TL TR
'ASSUME INFLECTION POINT AT MIDDLE OF WINDO\N
i
L1 L2/2 L2/2 L3 ,
F1 _— F2 F2 F3 _
I 1
1. F4 ,' 2 I F4 I 3 F4 I 4
I
F
FS F6 .. F7 F8
F9 F10 F11 F12
, FS
F8
5
F5 F8
I I F13 - - - F14 '
F5 �y–®�,q tT FB _
OF LfAt QUI
BUILDING & SAFE' DEPT.8
��� �
FS _ F6
` F15 F16 FOR_CONSAP TRl/CTI�F.1j'7V F18 -
{ F5
F19. F20 F6 I
Q BY _
g
_! `�, F21 r)f T —F71—. � �®- 1
+ F22 F23 F23 , F24
I TL FREE–BODY INDIVIDUA' PAN SOF WA TR
ra
ANALYSIS
vdie
plf)
Min.Min.
Overturning
Moments ft -lbs)
cont'd
CHECK MAX SHEAR WALL DIMENSION RATIO h / w = 2.0 <
3.5
[Satisfactory]
Thickness
Boundary & All Edges
DETERMINE FORCES & SHEAR STRESS OF FREE -BODY INDIVIDUAL PANELS OF WALL
Nail
8d
(in)
1 12
(in)
15/32
- INDIVIDUAL PANEL ,' W (it) H (it) MAX SHEAR STRESS (plQ
- NO.
FORCE (IbO
NO.
FORCE (Ibf) '
1 2.00 1.50 303
F1
-607
F13
490
2 4.75 1.50 327
F2
1552
F14
490
3 4.75 1.50 327
F3
-607
F1 5
1435
4 .1 2.00 1.50 -303
F4 "
490
F15
945 -
5 2.00 2.00 473 _
F5
945
F17
945
8 2.00 2.00 473
FB
1552
F16
1435
7 '. 2.00 2.00 473
F7
"1552
F19
961 -
8 2.00 2.00 473
F8
945
F20
961
9 2.00 4.50 -8
F9,
-455
F21
910
10 4.75 4.50 202
Fi0
945
F22
-16
11 4.75 4.50 .202',
F11
645
F23
gel
12 .; 2.00 4.50 -8
F12
X55
F24
18
DETERMINE REQUIRED CAPACITY ve = 473 plf, ( 1
Side Panel Required, the Max.
Nail Spacing = 3 in ).
THE SHEAR CAPACITIES PER IBC Table 2306 4 1 / UBCTable 23-11-1-1
- ------..--- ..............q .,yw„w a,=vny edl,Nl lice col, note a.
DETERMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab. 11 E)
5/8 in DIA. x 10 in LONG ANCHOR BOLTS Q 48 in O.C.
THF Hnl n_nr%M d cnorcc. "
vdie
plf)
Min.Min.
Overturning
Moments ft -lbs)
Blocked Nail Spacing
Panel Grade
Common
Penetration
Thickness
Boundary & All Edges
Sheathing and Single -Floor
KIM- Th. -I, A;...,-
Nail
8d
(in)
1 12
(in)
15/32
6
260
' 4 1 3
1 380 490
1 2
640
- ------..--- ..............q .,yw„w a,=vny edl,Nl lice col, note a.
DETERMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab. 11 E)
5/8 in DIA. x 10 in LONG ANCHOR BOLTS Q 48 in O.C.
THF Hnl n_nr%M d cnorcc. "
CHECK MAXIMUM SHEAR WALL DEFLECTION: (IBC Section, 2305.3.2)
vdie
plf)
Wall Seismic
at mid-sto (lbs)
Overturning
Moments ft -lbs)
Resisting Safety Net Uplift
Moments ft -lbs) Factors Ibs
Holddown
SIMPSON
SEISMIC
110
216
15930
Left 0 0.9 T = 1180
9
Right 0 0.9 _ T = 1180
WIND
140
d, = 0.15 in
18900
Left 0 2/3 T = 1400
pti
Q�
Right 0 2/3 T = 1400
CHECK MAXIMUM SHEAR WALL DEFLECTION: (IBC Section, 2305.3.2)
11 L a 1 R vdiue5 snceum me uae upper level UPLIFT forces if applicable)
A=Oez,ibeg+"OSlwur+ONdn.1,0+Acho,d'dee;ftp=8v°h +yyh+0.75he,+ha°
=
EALw
Gt L,.
0.298 In, ASD <
Where: vp = 473. plf, , ASD Lw = 13.5 It
E = 1.7E+06 psi
8xe.allowable, Aso = 0.429 in
[Satisfactory] (ASCE 7-0512.8.6)
A = 16.50 in` h = 10 It
G = 9.0E+04 psi
Cd = 4 1 = 1
I = 0.298 in e„ = 0.000 in
d, = 0.15 in
(ASCE 7.05 Tab 12.2-1 8 Tab 11.5.1)
i
A.- 0.02 h„
(ASCE 7-05 Tab 12.12-1)
CHECK KING STUD CAPACITY
Pmax = 0.95 kips
FG = 1350 psi Ca = 1.60
Co - 0.38
A- 8.25 In'
E _ ; 1600 ksl Cr = 1.10
F� = 894 psi
> i� = 115 psi
[Satisfactory]
CHECK EDGE STUD CAPACITY -
Pmax = : 1.40 kips, (this value should Include upper level DOWNWARD loads if applicable)
F, = : 1350 psi Ca = 1,60
Cep = 0.38
A = 8.25 In'
E = 1600 ksi CF = 1.10
F, = 894 • psi
> %= 170 psi
[Satisfactory)
MY OF L A t ��
BUILDING & SAFETY DEPT.
A r3 V
FOR CONSTRUCTION
DATE BY
-1 4
Reza PROJECT: Shear Wall #3
PAGE:
CLIENT: Lathrop Residence DESIGN BY : R.A.
As h a r Q U r
JOB NO.: 13921'17 DATE : 12/3/2013
_Chow`►�tiu�ulur►:,...,.::�o=__.:.w__.........�,...�.._--�--..,.._..----- -- REVIEW BY: R.A:.
INPUT DATA
LATERAL FORCE ON DIAPHRAGM: Vdla, WIND = 150 plf,for wind
11 Vdla, SEISMIC — 270 plf,for seismic
GRAVITY LOADS ON THE ROOF: WDL = 115 plf,for dead load
WILL = 85 , plf,for live load
DIMENSIONS: Lw= 5.5 ft, h = 10 ft
L = 5.5 ft, h,= 0 ft
PANEL GRADE (0 or 1) _� 1 <= Sheathing and Single -Floor
MINIMUM NOMINAL PANEL THICKNESS = 3/8 in
COMMON NAIL SIZE (0=6d, 1=8d, 2=10d) 1 • 8d
SPECIFIC GRAVITY OF FRAMING MEMBERS 0.5
EDGE STUD SECTION 1 pcs, b = 2 in, h = 6 in
SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH
GRADE ( 1, 2, 3, 4,'5, or 6) 4 No. 2
STORY OPTION ( 1=ground level, 2=upper level) 1 ground level shear wall
(
DESIGN SUMMARY -
BLOCKED 3/8 SHEATHING WITH 8d COMMON NAILS
@ 4 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD,
5/8 in DIA. x 10 in LONG ANCHOR BOLTS ® 38 in O.C.
HOLD-DOWN FORCES: TL = 2.30 k , TR = 2.30 k
DRAG STRUT FORCES: F = 0.00 k
EDGE STUD: 1 - 2" x 6" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT.
SHEAR WALL DEFLECTION: e = 0.44 in
L
W
Min.
Min.
Blocked Nail Spacing
Vim _ �— T—
F
r,
h,
Penetration
h
Boundary & All Edges
T.
h Lw
(USE PHD2-SDS3 SIMPSON HOLD-DOWN)
YSIS (
MAX SHEAR WALL DIMENSION RATIO L / B = 1.8 < 3,5 -(Satisfactory]
MINE REQUIRED CAPACITY vb = 270 pif, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 4 in)
THF SHPAP CAPACITIcc oco mn T..LI— ..o,.e .
uy aNcUd nc alcIVnY Iactur per ItlG note a.
DETERMINE DRAG STRUT FORCE: F = (L -Lw) MAX( Vdla, WIND, C)oVdla, SEISMIC) = 0.00 k ( DO = 1 ) (Sec. 1633.2.6)
DETERMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E)
5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 38 In O.C.
TNF Hnl n_nn%nrM -nonce.
vdla I
(pin
Min.
Min.
Blocked Nail Spacing
Panel Grade
Common
Penetration
Thickness
Boundary & All Edges
Sheathing and Single -Floor
M,f.- Tk_ ...d:....a..A
Nail
8d
in
1 1/2
in
3/8
6 4 3 2
220 320 410 530
uy aNcUd nc alcIVnY Iactur per ItlG note a.
DETERMINE DRAG STRUT FORCE: F = (L -Lw) MAX( Vdla, WIND, C)oVdla, SEISMIC) = 0.00 k ( DO = 1 ) (Sec. 1633.2.6)
DETERMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E)
5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 38 In O.C.
TNF Hnl n_nn%nrM -nonce.
.CK SHEAR WALL DEFLECTION: (IBC Section 2305.3.2) t I L a 1 R values snoula Incluae upper level UPLIFT forces if applicable)
0 =A &,d;,1 + + _ 8ynh' Vbhhdo
g e sn o, e No;, slip + OClnw/ splice snp — +—+0.') ei + _� __-0-442 in, ASD >
EAL,�_Gt � '
r pw tl STA sze,allowable, nsD = 0.429 in
Where: vb = 270 plf , ASD Lw = Cft q iOF E = 1:7E_+06 psi (ASCE 7-05 12.8.6)
A= 16.50 in` h = �16
0GUNLDING &G(SXOE±044 si)ERT. �Ca=....4 1= 1
t= 0.221 in e„ = 0.003 In [dam= 0.15 In ,ASCE 7-05 Tab 12.2-1 & Tab 11.5-1)
APP OV � ea= 0.02 n.
FOR CONSTRUCTION , (ASCE 7-05 Tab 12.12-1)
CHECK EDGE STUD CAPACITY
Pmax = 2.21 kips, (this value should include
F, = 1350 , psi CD = 1.60
E = 1600 1 ksi CF = 1:10
levp,,Ik1QWN..WARD-loads-if- pp7icab1fl
Com—"0'38®— A = 8.25 in'
F� = 894 psi > f, = 288 psi
[Satisfactory] G
vdla I
(pin
Wall Seismic
at mid -story Ibs)
Overturning
Moments (ft -lbs)
Resisting Safety Net Uplift
Moments ft -lbs Factors lbs
Holddown
SIMPSON
SEISMIC
270 -
88
15290
Left 2949 0.9 T = 1 2297
j
Right 2949 0.9 TR = 2297
WIND
150
8250
Left 2949 2/3 TL = 1143
50�
p`t
Q�
Right 1 2949 2/3 1 TR = 1143
.CK SHEAR WALL DEFLECTION: (IBC Section 2305.3.2) t I L a 1 R values snoula Incluae upper level UPLIFT forces if applicable)
0 =A &,d;,1 + + _ 8ynh' Vbhhdo
g e sn o, e No;, slip + OClnw/ splice snp — +—+0.') ei + _� __-0-442 in, ASD >
EAL,�_Gt � '
r pw tl STA sze,allowable, nsD = 0.429 in
Where: vb = 270 plf , ASD Lw = Cft q iOF E = 1:7E_+06 psi (ASCE 7-05 12.8.6)
A= 16.50 in` h = �16
0GUNLDING &G(SXOE±044 si)ERT. �Ca=....4 1= 1
t= 0.221 in e„ = 0.003 In [dam= 0.15 In ,ASCE 7-05 Tab 12.2-1 & Tab 11.5-1)
APP OV � ea= 0.02 n.
FOR CONSTRUCTION , (ASCE 7-05 Tab 12.12-1)
CHECK EDGE STUD CAPACITY
Pmax = 2.21 kips, (this value should include
F, = 1350 , psi CD = 1.60
E = 1600 1 ksi CF = 1:10
levp,,Ik1QWN..WARD-loads-if- pp7icab1fl
Com—"0'38®— A = 8.25 in'
F� = 894 psi > f, = 288 psi
[Satisfactory] G
Reza PROJECT: Shear Wall #4 PAGE:
1, CLIENT : Lathrop Residence
AS h a r O U C . JOB NO.: .1312117 _ , , - DATE: 12/3/2013 REVIEW BY: R.A.
Sfiear WaII1r[RWM'W?jBas0dIN0njtIBCJ06�'/jCBC?(0,VV`/JND:STGShim
INPUT DATA j L
LATERAL FORCE ON DIAPHRAGM: Vdia, WIND = 138 pif,for wind
Vdia, SEISMIC = 248W
plf,for seismic .
GRAVITY LOADS ON THE ROOF: wog = 115 plf,for dead load
WILL = 85 plf,for live load V. hp
---------------------------
DIMENSIONS: Lw= i 6 ft, h= 10 it F
L = I 6 ft, hp= 0 it
PANEL GRADE (0 or 1) = 1 —Sheathing and Single -Floor h
MINIMUM NOMINAL PANEL THICKNESS = 3/8' in
COMMON NAIL SIZE ( 0=6d..1 =8d, 2=10d) 1• 8d
SPECIFIC GRAVITY OF FRAMING MEMBERS 0.5
EDGE STUD SECTION } 1 pcs, b = 2 in, h = 6 in %
T, T.
SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH
GRADE ( 1, 2,.3. 4, 5, or 6) 4 No. 2 Lw
STORY OPTION ( 1=ground level, 2=upper level) 1 ground level shear wall
THE SHEAR WALL DESIGN IS ADEQUATE.
DESIGN SUMMARY
BLOCKED 3/8 SHEATHING WITH 8d COMMON NAILS
@ 4 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD,
5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 42 in O.C.
HOLD-DOWN FORCES: TL = 2.03 k , TR = 2.03 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN)
DRAG STRUT FORCES: F = 0.00 k
EDGE STUD: 1'- 2" x 6" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT.
SHEAR WALL DEFLECTION: D = 0.40 in
ANALYSIS I
CHECK MAX SHEAR WALLDIMENSION RATIO L / B = •.1.7 < 3.5 [Satisfactory]
DETERMINE REQUIRED CAPACITY vb = 248. plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 4 in)
THF CHFCR r:CPar^.ITIFC D=R IRf` T,kli eInc A I
'
Min.
Min. Blocked Nail Spacing
Panel Grade
Common
Penetration
Thickness Boundary & All Edges
Nail
in
in 6 4 3 2
Sheathing and Single -Floor
8d
1 1/2
3/8 220 320 1 410 '. 530
•c. uc ..0 .a cu 011cal rturnutsts nave teuuceu Dy specmc gravity tactor per IbL; note a.
RMINE DRAG STRUT;FORCE: F = (L -L.„) MAX( Vdia• WIND, OoVaia• SEISMIC) = 0.00 k (f)o =
RMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab. 11E)
5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 42 in O.C.
THE HOLD-DOWN FOROFC-
1 ) (Sec. 1633.2.6)
( i L a TR values snould Include upper level UPLIFT forces if applicable)
CHECK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2)
3 h
O=A&r din +Aslcur+ + _ 8vbh vb hd _
g ONail slip OClort/ splice stip — +—.+•U:75•he� + 4 0.402-�In, ASD
EAL,p • GC CITY 0 � � � � Re,all"wa-ble ASD' 0.429 in
Where: Vb= 248 plL, ASD Lw= 8 ft gUIL�E�7E+08��psi-� [SaUsfac�ory] (ASCE 7-05 12.8.6)
A = 16.50 in h = 10 ft G = �9 0E+04 ps' Cd = r 1= 1
t = 0.221 In a 0.002 in �d �- 0 51 a in E®,(ASCE 7-05 Tab 12.2-1 &Tab 11.5-1)
FOR CONSTRUC-f10V41a= 002 h,
r
(ASCE 7.05 Tab 12.12-1)
1
CHECK EDGE STUD CAPACITY DATE BY
I
Pmax = 2.10 kips, (this value should include upper level DOWNWARD loads if_applicable)
F, = 1350 psi CD = 1.60 CP = 0.38 A = 8.25 in'
E = 1600 ksl CF = 1.10 F�* = 894 psi > fc = 254 psi
[Satisfactory] ��
Vdia,-
If)
Wall Seismic
at mid -story Ibs
Overturning
Moments ft -lbs
Resisting Safety Net Uplift
Moments (ft -lbs) Factors (lbs)
Holddown
SIMPSON
SEISMIC
248
96
15360
Left 3510 0.9 T 2034
� _
�
y0�
p1
Q
Right 3510 0.9 TR = 2034
WIND
138
II
8280
Left 3510 2/3 T = 990
Right 1 3510 1 2/3 T - 990
( i L a TR values snould Include upper level UPLIFT forces if applicable)
CHECK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2)
3 h
O=A&r din +Aslcur+ + _ 8vbh vb hd _
g ONail slip OClort/ splice stip — +—.+•U:75•he� + 4 0.402-�In, ASD
EAL,p • GC CITY 0 � � � � Re,all"wa-ble ASD' 0.429 in
Where: Vb= 248 plL, ASD Lw= 8 ft gUIL�E�7E+08��psi-� [SaUsfac�ory] (ASCE 7-05 12.8.6)
A = 16.50 in h = 10 ft G = �9 0E+04 ps' Cd = r 1= 1
t = 0.221 In a 0.002 in �d �- 0 51 a in E®,(ASCE 7-05 Tab 12.2-1 &Tab 11.5-1)
FOR CONSTRUC-f10V41a= 002 h,
r
(ASCE 7.05 Tab 12.12-1)
1
CHECK EDGE STUD CAPACITY DATE BY
I
Pmax = 2.10 kips, (this value should include upper level DOWNWARD loads if_applicable)
F, = 1350 psi CD = 1.60 CP = 0.38 A = 8.25 in'
E = 1600 ksl CF = 1.10 F�* = 894 psi > fc = 254 psi
[Satisfactory] ��
:t
db
rof(
' RA 79.—7RU
IJrJ✓
• 1 � r i
77570 Springfield Lane,! Suite "D" Telephone: (760) 360-9998
Palm Desert, CA• 92211 Fax: (760) 360-9903 ,
r F Structural Calculation +
ForLathrop Residence.._ F
At 49298 Montana Way, Rancho La Quinta
Country Club; La Quin•ta, CA
Tvve Of Proiect: Residential
Addition i
Revision #1 (1/20/14)
Owner
iR"' E C EIV
MAR 13 -2014
CITY OF LA QUINTA_ Q�pFESS/O
}
COMMUNITY DEVELOPMENT ��o �,gGM,gR�2
LU
r N0: C 67613 m
Designer: Jorge Garcia Design Associates a ,
8 U l D TA
EDEP
AP 'f�' T.
FOR COST � ,
Date: December 03, 2013 CTION
Design by: R.A. DATE 3
F3
Job No. 1312117 t
CLIENT: G ,-46, f ,ZescL « RA Structural En lneeYljZ SHEET:
SUBJECT: 0 ; g. JOB NO: 13 is I �:
DESIGN BY: DATE: 120 / 14
Vl
l�s� • s LevPtAe_L �7 Pte- tl
CITY OF L QUINT�A
BUILDING & SAFETY DEPT.
APPROVED
FOR CONSTRUCTION
DATE ------ BY
Reza;• PROJECT: ShearWall #2 PAGE
As har OUr CLIENT: Lathrop Residence - DESIGN BY: R.A.
JOB NO.: 1312117 DATE: w2woid REVIEW BY: R.A.
1Nood S6'ea�aWalliwitfitanEiO enin dB'a'sed�on IBCx06 >i:CBC�0;7 MRS 05
- V
dw
INPUT DATA
LATERAL FORCE ON DIAPHRAGM:
I
Vft, WIND =
140
plf,for wind
(SERVICE LOADS) '
Vdia. SEISMIC =
110
plf,for seismic
DIMENSIONS: L, = 4.8
ft, L2 =
4
ft. L3 =
STRAP
4.8 ft
Hi= 3'
t
ft, Hz -
5
ft, H3 _
2 ft
KING STUD SECTION 1
pcs, b -
2
in, h =
6 in
r SPECIES (1 = DFL, 2 = SP)
1
DOUGLAS FIR -LARCH
GRADE (i, 2, 3.4. 5, or 6)
4
No. 2
EDGE STUD SECTION 1
pcs, b -
2
In, h =
6 in
SPECIES (1 - DFL, 2 - SP)
1
DOUGLAS FIR -LARCH
GRADE Q, 2, 3, 4, 5, or 6)
4
No. 2
PANEL GRADE (0 or 1) = 1
<= Sheathing and Single
-Floor
t
MINIMUM NOMINAL PANEL THICKNESS
3/8 '
in
M
2
2
2
COMMON NAIL SIZE (0=6d, 1=8d, 2=10d) 1 8d THE SHEAR WALL DESIGN IS ADEQUATE.
SPECIFIC GRAVITY OF FRAMING MEMBERS 0.5
STORY OPTION ( 1 L ground level, 2 -upper level) 1 ground level shear wall e r
DESIGN SUMMARY
BLOCKED 3/8 SHEATHING WITH 8d COMMON NAILS
@ 4 in O.C. BOUNDARY 8 ALL EDGES / 12 in O.C. FIELD,
5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C.
i • �
HOLD-DOWN FORCES: TL - 1.40 Ii , TR = 1.40 k (USE PHD2-SD83 SIMPSON HOLD-DOWN)
MAX STRAP FORCE:, F = 0.63 It (USE SIMPSON CS22 OVER WALL SHEATHING WITH FLAT BLOCKING)
KING STUD: 1 - 2" x 6" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT.
EDGE STUD: 1 - 2" x 6" DOUGLAS FIR -LARCH No: 2, CONTINUOUS FULL HEIGHT.
SHEAR WALL DEFLECTION: A = 0.28 in
C�6
V L1 + 0.5 L2
7/2
I W2Z
1
a�
L1 L2 L3
L - ..
,
1 TL TR
1 ASSUME INFLECTION POINT AT MIDDLE OF WINDOW
L1 L2/2 L2/2 L3
1 F1 _ F2 _ F2 _ F3 _ I
1 - F4 1 2 F4 1' F4 \ 4
�. F5 —,F F6 F7 8
F9 , F10 F11 F12 -
- F5 r F8
a r 6
i F5 C Y O F s. 9k :; �o //��
8� j B A
F13 . . BUILDING & SAFETY DEFOT.
+ F5
PPR ��U
7 FO%� CONS' RUC(OfV
I F5 F8
.• F15 F16 DATE F18 c
F5 F19 20 FS
I 1 I
_ 9 I F21 I 1 0 F21 I 1 1 F21
f22 F23 F23 0
TL FREE—BODY
ODY INDIVIDUAL PANELS OF WAI F24 � TR
r
(vote: I ne moicateo shear numbers nave reduced by specific gravity factor per IBC note a.
DETERMINE MAX SPACING OF 5/8° DIA ANCHOR BOLT (NDS 2005, Tab.11E)
5/8 in DIA. x 10 In LONG ANCHOR BOLTS @ 48 in O.C.
THE HOLD-DOWN FORCES:
Panel Grade
Common
Nail
Min.
Penetration
(in)
in.
Thickness
(in)
Blocked Nail Spacing
Boundary & All Edges
SEISMIC
6 4 3 2
Sheathing and Single -Floor
8d
1 1/2
cont'd
JALYSIS
WIND
'
140
19040
Left 0 2/3 T = 1400
IECK MAX SHEARiWALL DIMENSION RATIO
h /w = 1.0 <
3.5•
(Satisfactory)
'
TERMINE FORCES & SHEAR STRESS OF FREE -BODY INDIVIDUAL PANELS OF WALL
-Aazrr/ing+OSlrar+AA'aaslip+AClordsplkrslip_gVAh +v'h+0.75hea+hd°
INDIVIDUAL PANEL, W (ft) H (it) MAX SHEAR STRESS (p10
NO.
FORCE (Ib1)
NO.
FORCE (lbl)
1 4.80 2.00
67
F1
322
F13
630
2 2.00 2.00
315
F2
630
F14
630
3 2.00 2.00
315
F3
322
F15
1126
4 4.80 2.00
67
F4
630
F16
496
5 4.80 2.50
198
-F5 .
952
F17
496
6 4.80 2.50
198
F6
630
F18
1126
7 4.80 2.50
198
F7
630
F19
513
-8 4.80 2.50
198
F8
952
F20
513
9 4.60 3.00
91
F9
134
F21
770
10 ' 2.00 3.00
257
F10
496
F22
439
11 2.00 3.00
257
F1'I
496
F23
513
12 4.80 ,3.00
91
F12
134
F24
439
:TERMINE REQUIRED CAPACITY vp =
315 plf, (" 1
Side Panel Required, the Max. Nail Spacing
4 In)
THF SHFAR CAPACITIES PER IRs: TaNe
2306 d 1 / I IRr'TaNe 93-11.1.1
U
DEPT.
(vote: I ne moicateo shear numbers nave reduced by specific gravity factor per IBC note a.
DETERMINE MAX SPACING OF 5/8° DIA ANCHOR BOLT (NDS 2005, Tab.11E)
5/8 in DIA. x 10 In LONG ANCHOR BOLTS @ 48 in O.C.
THE HOLD-DOWN FORCES:
Panel Grade
Common
Nail
Min.
Penetration
(in)
in.
Thickness
(in)
Blocked Nail Spacing
Boundary & All Edges
SEISMIC
6 4 3 2
Sheathing and Single -Floor
8d
1 1/2
3/8
220 320 410 530
(vote: I ne moicateo shear numbers nave reduced by specific gravity factor per IBC note a.
DETERMINE MAX SPACING OF 5/8° DIA ANCHOR BOLT (NDS 2005, Tab.11E)
5/8 in DIA. x 10 In LONG ANCHOR BOLTS @ 48 in O.C.
THE HOLD-DOWN FORCES:
0 2/3 T 1400 Q
VQI'
I
Wall Seismic
at mid-storyIbs
Overturning
Momenta ft -lbs
Resisting Safety Net Uplift
Momenta ft -lbs Factors Ibs
Holddown
"SIMPSON
SEISMIC
110
218
16048
Leo 0 0.9 T - 1180
�O
Right 0 0.9 T = 1180
WIND
'
140
19040
Left 0 2/3 T = 1400
Ory
�
Right
D , ,
(TL & TR values should include upper level UPLIFT forces if applicable)
CHECK MAXIMUM SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2)
r
'
-Aazrr/ing+OSlrar+AA'aaslip+AClordsplkrslip_gVAh +v'h+0.75hea+hd°
= 0.278 In, ASD <
EAL,,,
fit
, Lw 8xe,allowabte,Aso` 0.429 in
Where: vp = 315 plf, , ASD Lw = 13.6 ft
E = 1.7E+06 psi [Satisfactory] (ASCE 7.05 12.8.8)
A = 16,50 in` h = 10 It
G = 9.0E+04 psi Ca = 4 1= 1
t = 0.221 in e„ = 0.000 in
d. = 0.15 In (ASCE 7.05 Tab 12.2-1 & Tab 11.5-1)
A. = 0.02 h„
(ASCE 7-05 Tab 12.12-1)
r
CHECK KING STUD CAPACITY
Pm' x = 0.50 kips
F° - 1350 psi Ca = 1.60
Co =
0.38 A= 8:25 In=
. E-- 1600 ksi CF a 1.10
F, =
894 psi > " f,- 60 psi
'
[Satisfactory]
CHECK EDGE STUD CAPACITY
Pmax = 1.40 kips, (this value should include upper level DOWNWARD loads if applicable)
F, - 1350 psi Co = 1.60
Cp =
0.38 A = 8.25 in'
E = 1800 ksi CF - 1.10
F. _
894 psi > f, = 170 psi
[Satisfactory]
U
DEPT.
BUILDING & SAFEN
A PROV
,�0
FOR CON
BY_��-.
DATE ��.
D , ,