Loading...
AR (13-1664) (Structural Calculations)RrA ,7 r -j 77570 Springfield Cone, Suite "Y Telephone: (760) 360-9998 Palm Desert, CA 92211 • Fax: (760) 360-9903 Structural Calculation For Lathrop Residence At 49298 - Montana, Way, Rancho La Quinta Country -La Quinita, CA. Type Of Proiect: Residential *2013 Addition C0jYA%f-tI)PI0, %�j 4 G HA4 �o Gyz M NO. C 67613 W M, EXP. 0 Designer: Jorgel Garcia Design Associates OF Date: Decemb'er'03,2013 Design by: R.A., C/ry Job No. 1312117 QUI DEP q. otj 0 3 C041s7R C -r/ . b CLIENT: !�{�� SHEET: t ? Ret' �"� RA Structural:Enzineering SUBJECT: A-cict,�4c t I — -- JOB NO: I I2I! -DESIGN BY: R- R DATE. WLl So W � 2� �•� x •IS 2�3 `�� �� • wl�z'' I� x i•5 2-4 plf l Wall lir •s• (X I'S C�,,.�e✓'� D(0.92) Lr(0.68) D 0.229 Lr 0.15 V TO gN NMR`t:'irirtr+l+irt�;Jlt%�.{'L14`>^�«T'$.i , 6x8 a Span =6.0ft r e�pjihed:L08dS� ?cxI,-%"l?,7 NP f� r Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Uniform Load : D='0.2290, Lr = 0.150 , Tributary Width =1.0 ft, (Roof) Point Load : • D = 0.920, Lr = 0.680 k (x,1.50 ft, (Girder Truss) Maximum Bending Stress Ratio = Title: Lathrop Residence Job # 1312117 6x8 Section used for this span Dsgnr: - R.A - fv : Actual = •EA, STRUCTURAL ENGINEERING, Project Desc,; , Load Combination ' _ Project Notes ; • ' , CIVIL AND STRUCTURAL ENGINEERING Span # where maximum occurs = Span # 1 Maximum Deflection _ 13, m3lD klpV� esNoAasProjeathro llahrop Max Downward L+Lr+S Deflection u � + ;:� '} .h, W-.ro-o-*d B-• e•-a. r,f.«a `rke-�4 i�+ - p f i � �-;t Fe . �ym a.„:sa' Description : 8M#1 0 <360 ,.FtNlJkAll ,aOcalcs?C:lUsersv ..'.8201BId645A 6_111e.4 Material Properties Calculations per NDS 2005, IBC 2009, CBC 2010 ASCE 7-05 Analysis Method: Allowable Stress Design Fb - Tension 1,350.0 psi E: Modulus of Elasticity Load Combination 2006 1 BC & ASCE 7-05 Fb - Compr 1,350.0 psi Ebend- xx 1,600.0 ksi a Fc - Prll 925.0 psi , Eminbend - xx 580.0 ksi Wood Species : Douglas Fir"- Larch = Fc - Perp 625.0 psi Wood Grade : No.1 Fv • . •170.0 psi 1.000 +r Beam Bracing ': Completely Llnbracecl Ft 675.0 psi Density 32.210pcf +D+0.750Lr+0.750L+0.750W+H 41.000 f D(0.92) Lr(0.68) D 0.229 Lr 0.15 V TO gN NMR`t:'irirtr+l+irt�;Jlt%�.{'L14`>^�«T'$.i , 6x8 a Span =6.0ft r e�pjihed:L08dS� ?cxI,-%"l?,7 NP f� r Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Uniform Load : D='0.2290, Lr = 0.150 , Tributary Width =1.0 ft, (Roof) Point Load : • D = 0.920, Lr = 0.680 k (x,1.50 ft, (Girder Truss) Maximum Bending Stress Ratio = 0.5451 'Maximum Shear Stress Ratio = Section used for this span 6x8 Section used for this span fb :'Actual = 733.80psi + fv : Actual = . FB; Allowable 1,347.61 psi Fv : Allowable - Load Combination ' +D+Lr+H Load Combination Location of maximum on span = 1.980ft Location of maximum on span = Span # where maximum occurs = Span # 1 Span # where maximum occurs = Maximum Deflection _ Max Downward L+Lr+S Deflection 0.026 in 'Ratio= 2748 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.065 in Ratio= 1107 Max Upward Total Deflection 0.000 in Ratio= ' 0 <240 _ MEE= • 0.456 :1 6x8" 77.52 psi 170.00 psi +D+Lr+H - - 0.000 ft Span # 1 .�. . _. 4 "„ r. "+*rew�- +r"sw MazlmumgForcest8�=Stresses for; Loadf:Combin. ations, ' Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V • ° Cd C FN C r C m C t Mactual fb-design Fb-allow Vactual fv-design Fv-allow ' +D ' 1.000 1.000 1.000 * 1.000 ' Length = 6.0 ft 1 0.323 0.270 1.000 1.000 1.000 1.000 1.000. 1.87. 435.91 1,347.61 - 1.26 45.88 170.00 +D+Lr+H 1.000 1.000"1:000.*1-000. _ Length = 6.0 ft 1 - +D+0.750Lr+0.750L+H 0.545 ' 0.456 1.000 1.000 1.000 1000' 1:000-�g��"3"15 �--733.80 1,347.61 .o00 LA III, 2.13 77.52 170.00 1.000 1.000 1.060 OUI� �-/�/� Length = 6.0 ft " 1 0.489 0.409 1.000 1.000 1 �000f 659.31`11,3p47.61 SAF=BP 1.91 69.61 170.00' , +D+0.750Lr+0.750L+0.750W+H 41.000 Y 1.000 1:000 1,000 DEPT Length = 6.0 ft 1 0.485 0.409 1.000 1.0011 0 1.000 �1 A00 a1°000 t� �2?83` 659.31 ' 1,347.61 1.91 69.61 ,170.00 �+Le 1.000! 1.000E 1.000C100017STRL128Tl� 1347.61 gthL=6,.0ftOL+0.5250,+H 0.489 -0.409 1.000 1.00 9.31 1.91 69.61 170.00 ��Oue�all;MazimumhQ;efl ce tions'Unfact ro ed^L ds��' � ' Load Combination Span Max. "' Defl 1-6 atio_ nn f_!li5an---L-oad Combination Max. "+" Defl "Location In Span ' D+Lr t 1 0.0650 2.850 0.0000 0.000 Title: Lathrop Residence Job # 1312117 Dsgnr. R.A STRUCTURAL ENGINEERING Project Desc.: Project Notes: CIVIL AND STRUCTURAL ENGINEERING uescnptlon : am$1 ,. Vertical"Reactions, ,:_Unfactored , tea,` a Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 2.365 1.565 D Only 1.405 0.945 Lr Only 6.960 0.620 D+Lr 2.365 1.565 CtTY OF L4 QUI4V7'� RUILDII\G �. & SAFETY DEPT. 4PPIROVED FOR CONSTRUCTION DATE �� BY Id (L, Max) ? 0.03 In, at 2.750 ft from left end, < d L = L / 360 [Satisfactory] d (Ker D+L, Max) _ 0.09 in, at 2,750 ft from left end _ < d Kcr D. L = L / 180 [Satisfactory] Where Kir = 1.50 , (NDS 3.5.2) DETERMINE CAMBER AT 1.5 (DEAD +`SELF WEIGH) d (1.5D, Max) = 0.06 In, at 2.750 ft from left end• YUILDING &sAFE �lIIN' 1 �' DEP Fo o COVED N TRUCTiON DArE �_ BY 11 Reza PROJECT: BM #2 PAGE: A$ har„„Dur CLIENT: Lathrop Residence " DESIGN BY: RAM JOB N0. 1312117 DATE: 12/3/2013 REVIEW BY: R.A.. Wbo"dBeamDes nBase INPUT DATA & DESIGN SUMMARY MEMBER SIZE 6 x 6 L No. 1, Douglas Fir -Larch t L MEMBER SPAN L = 5:5 ft UNIFORMLY DISTRIBUTED DEAD LOAD wD = 230 lbs/ft - PD1 + + Poz UNIFORMLY DISTRIBUTED LIVE LOAD WL = 170 lbs/ft W` CONCENTRATED DEAD LOADS PD1 = 0 lbs WD (0 for no concentrated load) L1 = 0 ft PD2 = 0 lbs L2 = 0 ft DEFLECTION LIMIT OF LIVE LOAD d L = L / 360 Camber => 0.06 Inch DEFLECTION LIMIT OF LONG-TERM dKwD.L = L / 180 THE BEAM DESIGN IS ADEQUATE. Does member have continuous lateral support by top diaphragm ? (1= yes, 0= no) 0 No Code Duration Factor, CCondition Code Designation 1 0.90 Dead Load 1 Select Structural, Douglas Fir -Larch 2 1.00 Occupancy Live Load 2 No. 1, Douglas Fir -Larch 3 1.15. Snow Load 3 No. 2, Douglas Fir -Larch 4 1.25 Construction Load 4 Select Structural, Southern Pine 5 1.60 Wind/Earthquake Load 5 No. 1, Southern Pine 6 2.00 Impact Load 6 No. 2, Southern Pine Choice => 4 • Construction Load Choice L=> 2 ANALYSIS DETERMINE REACTIONS, MOMENT, SHEAR wseuvm = 7 lbs / It RLan = 1.12 kips RRieh1= 1.12 kips VMax = 0.93 kips, at 5.5 Inch from left end MM. = 1.54 ft -kips, at 2.75 ft from left end DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES " b = 5.50 in E'r„ 1f1 = 580 ksi E = Ex= 1600 ksi Fb = 1687.5 psi d = 5.50 in FbE _ 30851 psi Fb = 1,350 psi F = FbE / Fb' = 18.28 A = 30.3 int 1 = 76 in 'F„ = 170 psi Fe = 1,683 psi SS.,= 27.7 in3 Ra= 4.750 c50 E' =. 1,600 ksi Fv' = 213 psi 1E= 10.3 (ft, Tab 3.3.3 footnote l) CD CM C1 Ci CL CF Cv C, Cr 1.25 1.00 I 1.00 1.00 1.00 1.00 1.00 ( 1.00 1.00 CHECK BENDING AND SHEAR CAPACITIES fb = MMax / Sx =• 665 psi < Fb = 1683 psi [Satisfactory] fV = 1.5 VMax / A = 46 psi < F„ [Satisfactory] CHECK DEFLECTIONS Id (L, Max) ? 0.03 In, at 2.750 ft from left end, < d L = L / 360 [Satisfactory] d (Ker D+L, Max) _ 0.09 in, at 2,750 ft from left end _ < d Kcr D. L = L / 180 [Satisfactory] Where Kir = 1.50 , (NDS 3.5.2) DETERMINE CAMBER AT 1.5 (DEAD +`SELF WEIGH) d (1.5D, Max) = 0.06 In, at 2.750 ft from left end• YUILDING &sAFE �lIIN' 1 �' DEP Fo o COVED N TRUCTiON DArE �_ BY 11 CHECK THE BEAM CAPACITY WITH AXIAL LOAD AXIAL LOAD F = 2 kips THE ALLOWABLE COMPRESSIVE STRESS IS Fc =' Fc CD CP CF .= 1309 psi V V V V Y V v v V v Where F, _ 925 psi CD = 160 F F _ CF = 1.00 (Lumber only) 1 CP = (1+F) / 2c - [(1+F) / 2c)2 - F / c]os _ 0.884 Fe* _ F, CD CF = 1480 psi La = Ke L =; 1.0 L =. 66 in b = 5.5 in SF =slenderness ratio = 12.0 < 50 [Satisfies NDS 2005 Sec. 3.7.1.4] FIE = 0.822.E'mm / SFS = 3311 psi E'min = 580 ksi F = FIE / Fc = 2.237 c = 0.8 THE ACTUAL COMPRESSIVE STRESS IS f, = F / A = 66 psi < Fc [Satisfactory] i THE ALLOWABLE FLEXURAL STRESS IS Fb = 2154 psi,: [.for CD = 1.6 ] THE ACTUAL FLEXURAL STRESS IS fb = (M + Fe) / S = 1062 psi < Fti [Satisfactory]' CHECK COMBINED STRESS [NDS 2005 Sec. 3.9.2] (f, / F,' )Z + fb / [Fb' (1 - f, / FcE)j = 0.506 < 1 [Satisfactory] CITY OF LA Q�1���q RUILDI�G & SAFETY' DEPT. PROVE® F� R CONSTRUCTION DATE —� BY r Reza PROJECT: Wood Post Design PAGE: As har OUr CLIENT: Lathrop Residence DESIGN BY: R.A. g p JOB NO.: 1312117 DATE: 12/3/2013 REVIEW BY: R.A. ables for Wood Post Design Based on NDS 2005 URATION FACTOR (1.0, 1.15, 1.25, 1.6) Co = 1.00 , (NDS 2.3.2) OMMERCIAL GRADE (# 1 or # 2) # 2 Post Axial Capacity for Doualas Fir -Larch * 2_ (kind Height Section Size Section Size ft ft 4x4 4x6 4x8 4x10 4x12 6x6 6x8 6x10 6x12 8x8 8x10 6 10.89 16.85 21.84 27.34 33.25 19.59 26.72 33.85 40.97 37.92 48.03 7 8.68 13.51 17.62 22.21 27.01 18.89 25.76 32.63 39.49 37.33 47.28 8 6.96 10.87 14.22 18.00 21.89 17.99 24.54 31.08 37.63 36.59 46.34 9 1 5.66 8.85 11.60 14.72 17.90 16.91 23.06 29.21 35.35 35.69 45.21 10 4.67 7.31 9.59 12.19 14.82 15.66 21.35 27.05 32.74 34.61 43.84 11 3.90 6.12 8.04 10.23 12.44 14.32 19.52 24.73 29.93 33.34 42.23 12 3.31 5.19 6.83 8.69 10.57 12.96 17.67 22.39 27.10 31.87 40.37 13 2.84 4.46 5.86 7.46 9.08 11.67 15.91 20.15 24.39 30.23 38.30 14 2.46 3.86 5.08 6.47 7.87 10.47 14.28 18.09 21.90 28.46 36.05 15 1 2.15 3.38 4.45 5.67 6.89 9.41 12.83 16.25 19.67 26.62 33.72 16 1.90 2.98 3.92 5.00 6.08 8.46 11.54 14.62 17.70 24.76 31.37 17 1.69 2.65 3.49 4.44 5.40 7.63 10.41 13.19 15.96 22.96 29.08 18 1.51 2.37 3.12 3.97 4.83 6.91 9.42 11.93 14.44 21.23 26.89 19 1.36 2.13 2.80 3.57 4.35 6.27 8.55 10.83 13.12 19.62 24.85 20 1.23 1.92 2.53 3.23 3.93 5.72 7.79 1 9.87 11.95 18.13 22.96 21 1.11 1.75 2.30 2.94 3.57 5.22 7.12 1 9.02 10.92 16.76 21.23 22 1.02 1.59 2.10 2.68 3.26 4.79 6.53 1 8.28 10.02 15.52 19.66 23 0.93 1.46 1.92 2.45 2.98 4.41 6.01 1 7.62 9.22 14.39 1 18.23 24 0.85 1.34 1.77 2.26 2.74 4.07 5.55 7.03 8.51 13.36 16.93 25 0.79 1.24 1.63 2.08 2.53 3.77 5.13 6.50 7.87 12.43 15.75 26 0.73 1.15 1.51 1.92 2.34 3.49 4.76 6.03 7.30 11.59 14.68 27 0.68 1.06 1.40 1.79 2.17 3.25 4.43 5.61 6.80 10.82 13.71 28 0.63 0.99 1.30 1.66 2.02 3.03 4.13 5.23 6.34 10.13 12.83 29 0.59 0.92 1.22 1.55 1.89 2.83 3.86 4.89 5.92 9.49 12.02 30 0.55 0.86 1.14 1.45 1.76 2.65 3.62 4.58 5.54 8.91 11.29 Post Axial Capacity for Southern Pine it 2_ (kind Height Section Size ft 4x4 4x6 4x8 4x10 4x12 6x6 6x8 6x10 6x12 8x8 8x10 6 11.10 17.27 22.54 28.44 34.17 14.96 20.41 25.85 31.29 28.68 36.32 7 8.79 13.73 17.98 22.77 27.49 14.57 19.87 25.16 30.46 28.33 35.89 8 7.02 10.98 14.41 18.30 22.15 14.07 19.18 24.30 29.42 27.91 35.36 9 1 5.69 8.91 11.71 14.89 18.05 13.45 18.35 23.24 28.13 27.41 34.72 10 4.69 7.35 1 9.66 12.30 14.91 12.72 17.35 21.98 26.61 26.80 33.95 11 3.92 6.15 8.09 10.30 12.50 1 11.90 16.22 20.55 24.87 26.09 1 33.05 12 3.32 5.21 6.86 8.74 10.61 11.00 15.00 19.00 23.00 25.26 1 32.00 13 2.85 4.47 5.88 7.50 9.10 10.09 13.76 17.42 21.09 24.32 30.81 14 2.47 3.87 5.10 6.50 7.89 9.20 12.54 15.88 19.23 23.27 29.47 15 2.16 3.39 4.46 5.69 6.91 8.36 11.40 14.44 17.48 22.12 28.02 16 1 1.90 2.99 1 3.93 5.01 6.09 7.59 10.35 13.11 15.87 20.91 26.48 17 1 1.69 2.65 3.49 4.45 5.41 6.89 9.40 11.91 14.42 19.66 24.91 18 1.51 2.37 3.12 3.98 4.84 1 6.27 8.56 1 10.84 13.12 18.42 23.33 19 1.36 2.13 2.81 3.58 4.35 5.72 7.80 9.88 11.96 17.21 1 21.80 20 1.23 1.93 2.54 3.24 3.93 5.23 7.13 9.04 10.94 16.05 20.33 21 1.11 1.75 2.30 2.94 3.57 4.80 6.54 8.28 10.03 14.95 18.94 22 1.02 1.60 2.10 2.68 3.26 4.41 6.01 7.62 9.22 13.93 17.65 23 0.93 1.46 i 1.93 2.46 t"-299- 4.06 5.54 7.02 8.50 12.98 16.45 24 0.86 1.34 1.77 2.26 ' 2`74 -v -a -3'76- X5.12 6.49 7.86 12.11 15.34 25 0.79 1.24 1.63 2.08 i 253 Y 'r 3,r48 C: A 4.:7.5-116-.01- 7.28 11.31 14.33 26 0.73 1.15 1.51 1.93 1 t2!3.41 t l i ,3.23" L.44:1 ( ,1 5!59 #- - -6'76 10.58 13.40 27 0.68 1.06 1.40 1.79 ,1 2.17""""3.01 & g4)1j,-- 5°20V i %'x;6.30 9.90 12.54 28 0.63 0.99 1.30 1.661 2.0211 t'2V,A-, :3`834-, Y4!85=,C 5.88 9.28 11.76 29 0.59 0.92 1.22 1.551 1.0-9,,' . 2631"' i a 3),58,/,1-1,454 •5.50 8.72 11.04 30 0.55 0.86 1.14 1 1.45,p 1.76"11 (2!445Ata �-,=3 36: t - Y4,�)5 5A5 8.20 10.39 Note: DArE 1. The bold values require steel bearin plate as, 2. The table values are from Wood Column software lnt "��• 110N - 1213/13 Converting Addresses to/from Latitude/Longitude/Altitude in One Step (Geocoding) Converting Addresses to/from Latitude/Longitude/Altitude in One Step Stephen P. Morse, San Francisco Batc_h;Mode (Forward);, 46.atch 4( Re �;Batch�Mode�(Altitude) Deg/Min/¢Sec,to ®ecima Computing Distances; ;:F. �requ< ently;AskedQue tiosnsr�My,Othe�r,. Wtebpages] address 49298 Montana Way, — latitude city La Quinta longitude -�� state iCalifornia — _ �� above values must be in decimal ztp92253 _ with minus signs for south and west country United States; �DetermjneMAticlr�ess,� reG� :sets JDetermineLat/Lonn tGet--Altitudes reg sets U Access geocoder.us / geocoder.ca (takes a relatively long time) from goode,I latitude longitude altitude decimal - 33.690751000000011-116.283141 deg -min -sec 33° 41' 26.7036"1 -1:IEI6' 59.3076" fromay hoo latitude longitude altitude decimal 1133.690552 -116.28347 deg -min -sec 33° 41'25.9872'11-116' 17' 0.492"� 49298 Montana Way, La Quinta, California 92253 49298 Montana W etc�nrnnren nrn fin�IlhMnn nhn 9�1 12/3/13 Design Maps Summary Report J%Vq(;Design, Maps Summary Report r User -Specified Input 4 Report Title '• Lathrop Residence Wed December 4, 2013 00:32:23 UTC' Building Code Reference Documerit'.ASCE 7-05,Standard + (which utilizes USGS hazard data available in 2002)• Site Coordinates 33.690750N, 116.28314°W £; Site Soil'Classification Site Class D - "Stiff Soil". - Occupancy}Category IM III . I>VN 4. 1 rr jy. I 4t:( ♦r 1 Y t. j r r i t „caµ�{�rca�&•q 1� t rt. Pz.j �» s 2013?� i..�.�«�,� t....t�'i':���'�c�%�..�3�'•f',+r.'s��w':���..:�.,,.....:JX����. O MapQuest - USGS-Provided Output SS = 1.500 g, _ SMS = 1.500 g SDS = 1.000 g S1 = 0.600 g • SMi = '0.900 g SD1 = 0.600 g MCE•Response Spectrum -Design Response Spectrum 1. fi5 ; �' i � • " 1.50-- 1.05 .50 1.05 0.77 CI 0.90 .. ; � CI'0.66 LA 0.75 _ y 0.55 ' O.GO t 0.44 • ' 0.45 i0.33 r + r •0.30 0.22-- 0.15 �. a r 0.00 V ( 69bo - - . 0.00 0.20 0.40 0.60 0.80 i 1.00 1.20 1.40 1.60 1.80 2100 r . `0:00_0.'il--w'c�0 � i0�80 0 N .20 1.40 1.60 1.80 2.00 V Period, T (sec) g�ff �1r�1( i. S��E PenodT (sec) , N_ DEPT. Although this information is a!product of the U.S. Geologica9`Surveyrwvcprov�e no= �arranty, expressed or implied, y• as to the accuracy of the datalcontained therein. This tool is nota substitu e f ,'rTt�hriical s bject-matter knowledge. i DATE ~ BY a eohazards.uso s.a ov/desia nmaos/us/summarv.DhD?temoIate=minimal&latitude=33.69075100000001 &long itude=-116.283141 &siteclass- 3&risl categ ory=0&edit... 1/1 .l I�l000 Res + 51SS b 4 X i ! � '�.$ �i,� C iGtravtc,�/eYS� d�b•�G �ls� . -�- av15 ve,vs-e ! Cl LA ! BUILDING0 A X111N-lA SAFETY QEPT. i FOR C� �.®,/�� ! NSTRUCTIpN DATE �� BY CLIENT: _ RA Structural Enzineerin� SHEET: SUBJECT: dna» } JOB NO I31z� l DESIGN BY: A "_ ` DATE: tz./ 3/ ►3 L,x,f eiaL ?via i� st s _ Se15mIc 3o�S�x 1��1 I° ��-x �2x3o•5� �t Zq X P s x J -t� 2 t� X .l I�l000 Res + 51SS b 4 X i ! � '�.$ �i,� C iGtravtc,�/eYS� d�b•�G �ls� . -�- av15 ve,vs-e ! Cl LA ! BUILDING0 A X111N-lA SAFETY QEPT. i FOR C� �.®,/�� ! NSTRUCTIpN DATE �� BY l . Reza .' PROJE{ • .�-s • , .. CT Seismic Load -Diaphragm A (R=6.5) PAGE: sg ha rpo u I CLIENT: Lathrop Residence DESIGN BY: RIA. JOB NO.: 131211.7_ DATE: REVIEW BY: One Story Seismic Analysis Based on IBC .06./ CBC 07 Determine Base Shear (Derived from ASCE 7-05 Sec. 12.8) V = MAX{MIN I SD11 / (RT) SDS I/R] 0.01 0.5S11/R)W = MAX{MIN[ 0.89W! , 0.15W ] , 0.01W. , 0.05W) = 0.15 W, (SD) (for S, z 0.6 g only) = 0.11 W, (ASD) = 2.28 kips r Where SDS = 1 (ASCE 7-05 Sec 11.4.4) SD11= 0.6 (ASCE 7-05 Sec 11.4.4) S1, 0.6 (ASCE 7-05 Sec 11.4.1) , " R 6.5 (ASCE 7-05 Tab 12.2-1) = 1 (IBC 06 Tab 1604.5 & ASCE 7-05 Tab 11.5-1) . Ct = .0:02 (ASCE 7-05 Tab 12.8-2) I hn'= . 9.0 ft X_ 0.75 (ASCE 7-05 Tab 12.8-2) T = Ct (hn)x = 0.104 sec, (ASCE 7-05 Sec 12.8.2.1) Calculate Vertical Distribution' of Forces & Allowable Elastic Drift (ASCE'7-05, Sec 12.8.3 & 12.8.6) Level WX hx hxk Wxhxk Fx , ASD (12.8-11) sxe,allowable, ASD Roof 20.71 9 9.0 . 186 2.3 (o. 11 wx) 0.4 20.7 186 2.3 Where k = 11 for T <= 0.5 sxe,allowable, ASD = Da 1/ (1.4 Cd), (ASCE 7-05 Sec 12.8.6) k = 0.5 T + 0.75 for T @ (0.5 , 2.5) Cd = 4 (ASCE 7-05 Tab 12.2-1) k = 2' for T >= 2.5 Aa = 0.02 hsx, (ASCE 7-05 Tab 12.12-1) Calculate Diaphragm Forces (ASCE,7-05, Sec 12.10.1.1) Level WX I% Fx EFx Fpx , ASD, (12.10-1) Roof 20:7 20.7 2.3 2.3 2.8 ( 0.13 Wx ) 20:7 - 2.3 Where Fmin =fi0.2 SDS I Wx / 1.5 ASD Finax 0.4 SDS I Wx / 1.5 , AS t I Quip �1 UUiLUINU & SAFETY DEPT. � PROVED i FOR CONSTRUCTION 4 DATE �_ By Reza PROJECT: Wind Load PAGE: Our As har CLIENT: Lathrop Residence DESIGN BY: g P JOB NO.: 1312117• DATE: 12/03/13 REVIEW BY: INPUT DATA Exposure category (B, C or D) Importance factor, pg 73, (0.87, 1.0 or 1.15) Basic wind speed Topographic factor(Sec.s.5.7.z, p630 & 47) Building height to eave Building height to ridge Building length Building width I = V = Krt = he = hr = L = B B Roof apple 6 = 26.57 Roof an le 0 = 0.00 1.00 Category II G CD T 85 mph (+GCD i) (-GC I) (+GCD i) 1 Flat = 0.55 4.07 8.03 0.40 ft L 2 13:5 ft -0.69 , -9.57 28 It 14 ft Effective area of components A - 10 112 DESIGN SUMMARY Max horizontal force normal to building length, L, face = 3.78 kips Max horizontal force normal to building length, B, face = 1.65 kips Max total horizontal torsional load = 12.45 ft -kips Max total upward force - 3.92 kips ANALYSIS Velocity pressure qh = 0.00256 KIT Krt Kd V21 = 11.01 psf where: qh = velocity pressure at mean roof height, h. (Eq. 6-15, page 31) Kh = velocity pressure exposure coefficient evaluated at height, h, (Tab. 6-3, Case 1,pg 75) = 0.70 Kd =.wind directionality, factor. (Tab. 6-4, for building, page 76) = 0.85 h = mean roof height = 11.75 ft < 60 ft, [Satisfactory]' < Min (L, B), [Satisfactory] Design pressures for MWFRS p =.qh [(G C°f )-(G CPi )] where: p = pressure in appropriate zone. (Eq. 6-18, page 32). G C° r = product of gust effect factor and external pressure coefficient, see table below. (Fig. 6-10, page 55 & 56) G C° I = product of gust effect factor and internal pressure coefficient. (Fig. 6-5, Enclosed Building, page 49) 0.18 or -0.18 a = width of edge strips, Fig 6-10, note 9, page 56, MAX[ MIN(0.1 B, 0.4h), 0.048,3] = 3.00 ft (IBC Fig.1609.6,2.2, footnote 5) Net Pressures s , Basic Load Cases Net Pressures s , Torsional Load Cases 3E 3 2 4CORNER ZONE 2/3 BOUNDARY 2E 3E 3 3T 6E 6 �fi a6-spry-�c-yp_ 44^ a®.2E:2�2T 6 <E�i C E p �j'y� 5 15r DJILDIN a PE �' ,,,� T. DEFERENCE CORNER IE REtO REFERENCE-CORNER_ e pWIND DIRECTION WIND DIRECTION WIND DIRECTION IO Transverse Direction ' Longitudinal �irectio FOR0�9STRD,rac ion 1 Basic Load Cases , Torsion G WIND DIRECTION Longitudinal Direction 0 Roof apple 6 = 26.57 Roof an le 0 = 0.00 G C°+ Net Pressure with G CD T Net Pressure with Surface (+GCD i) (-GC I) (+GCD i) (-GCp i ) 1 0.55 4.07 8.03 0.40 2.42 6.38 2 -0.10 -3.07 0.89 -0.69 , -9.57 -5.61 3 -0.45 -6.90 -2.94 -0.37 -6.05 -2.09 4 -0.39 -6.28 -2.32 -0.29 -5.17 -1.21 1E 0.73 6.03 9.99 0.61 4.73 8.69 2E -0.19 -4.08 -0.11 -1.07 -13.76 -9.79 3E -0.58 -8.42 -4.46 -0.53 -7.81 -3.85 4E -0.53 -7.87 -3.91 -0.43 -6.71 -2.75 5 -0.45 -6.93 -2.97 -0.45 -6.93 -2.91 6 1 -0.45 1 -6.93 1 -2.97 1 -0.45 -6.93 1 -2.97 3E 3 2 4CORNER ZONE 2/3 BOUNDARY 2E 3E 3 3T 6E 6 �fi a6-spry-�c-yp_ 44^ a®.2E:2�2T 6 <E�i C E p �j'y� 5 15r DJILDIN a PE �' ,,,� T. DEFERENCE CORNER IE REtO REFERENCE-CORNER_ e pWIND DIRECTION WIND DIRECTION WIND DIRECTION IO Transverse Direction ' Longitudinal �irectio FOR0�9STRD,rac ion 1 Basic Load Cases , Torsion G WIND DIRECTION Longitudinal Direction 0 Roof an le 0 = 26:57 GC°T Net Pressure with Surface (+GCDi) (-GCpi) 1T 0:55 1.02 2.01 2T -0.10 -0.77 0.22 3T -0.45 -1.73 -0.74 4T 1 -0.39 1 -1.57 -0.58 Roof an le 0 = 0.00 Surface GC°r Net Pressure with (+GCpI) (-GC°1) IT 0.40 0.61 1.60 2T -0.69 -2.39 -1.40 3T -0.37 -1.51 -0.52 4T 1 -0.29, -1.29 -0.30 3E 3 2 4CORNER ZONE 2/3 BOUNDARY 2E 3E 3 3T 6E 6 �fi a6-spry-�c-yp_ 44^ a®.2E:2�2T 6 <E�i C E p �j'y� 5 15r DJILDIN a PE �' ,,,� T. DEFERENCE CORNER IE REtO REFERENCE-CORNER_ e pWIND DIRECTION WIND DIRECTION WIND DIRECTION IO Transverse Direction ' Longitudinal �irectio FOR0�9STRD,rac ion 1 Basic Load Cases , Torsion G WIND DIRECTION Longitudinal Direction 0 Basic Load Cases in Transverse Direction Basic Load Cases In Longitudinal Direction } Torsional Load Cases In Transverse Direction Torsional Load Cases in Longitudinal Direction Design pressures for components and cladding P = qh[ (G Cp) - (G CpJ] where: p = pressure on component. (Eq. 6-22, pg 33) z'° < s 5., ,°^^" ' z i i 2 2 i i� ri _ i i Pmin = 10 psf (Sec. 6.1.4.2). ,� i --Z -t, }~a�33 z�� GCp = external pressure coefficient. ° Walls see table below. (Fig. 6-11, page 57 -60) Roof e.,• Roof e» Surface Area Pressure k with (%z) (+GCP I) ' (-GCP j ) 1 220 0.90 1.77 2 172 -0.53 0.15 3 172 -1.19 -0.51 4 220 -1.38 -0.51 1E 60 0.36 0.60 2E 47 -0.19 -0.01 3E 47 0.40 0.21 4E' •. 60 =0.47 -0.23 E Horiz. 3.50 3.50 Vert. =2.06 -0.51 10 psf min. Horiz. 3.78 3.78 Sec. 6.1.4.1 Vert Area e k with (+GCP �) (-GCo � ) s (rt'> Basic Load Cases in Transverse Direction Basic Load Cases In Longitudinal Direction } Torsional Load Cases In Transverse Direction Torsional Load Cases in Longitudinal Direction Design pressures for components and cladding P = qh[ (G Cp) - (G CpJ] where: p = pressure on component. (Eq. 6-22, pg 33) z'° < s 5., ,°^^" ' z i i 2 2 i i� ri _ i i Pmin = 10 psf (Sec. 6.1.4.2). ,� i --Z -t, }~a�33 z�� GCp = external pressure coefficient. ° Walls see table below. (Fig. 6-11, page 57 -60) Roof e.,• Roof e» Surface Area Pressure k with (%z) (+GCP I) ' (-GCP j ) 1 220 0.90 1.77 2 172 -0.53 0.15 3 172 -1.19 -0.51 4 220 -1.38 -0.51 1E 60 0.36 0.60 2E 47 -0.19 -0.01 3E 47 0.40 0.21 4E' •. 60 =0.47 -0.23 E Horiz. 3.50 3.50 Vert. =2.06 -0.51 10 psf min. Horiz. 3.78 3.78 Sec. 6.1.4.1 Vert Surface Area Pressure k with (+GCP �) (-GCo � ) (-GCP � ) (rt'> 1 96 0.23 0.61 2 125 -1.20 -0.70 3 125. -0.76 -0.26 4 96 -0.49 -0.12 1 E 69 0.33 0.60 , 2E 94 -;1.29 -0.92 3E 94 , -0:73 -0.36 4E 69 -0.46 -0.19 E Horiz. 1.51 1.51 '-1 Vert. -3.56 47 10 psf min. Horiz. 1.65 1 ' . -3.92 -3.92 Surface Area Pressure k with (+GCP �) (-GCo � ) (-GCP � ) (rt'> 1 96 0.23 0.61 2 125 -1.20 -0.70 3 125. -0.76 -0.26 4 96 -0.49 -0.12 1 E 69 0.33 0.60 , 2E 94 -;1.29 -0.92 3E 94 , -0:73 -0.36 4E 69 -0.46 -0.19 E Horiz. 1.51 1.51 '-1 Vert. -3.56 47 10 psf min. Horiz. 1.65 1 ' sec. it.t.a.t Vert. -3.92 -0.23 Surface " Area Pressure k with" Torsion ft -k ' (+(jOp i) (-GCP i) (+GCP �) (-GCP � ) Zone 5 GC - GC (ft) 1 1 80 0.33 0.64 2 4 2 63 -0.19 0.06 0 0 3 63 -0.43 -0.18 1 0 4 80 -0.50 -0.19 3 1 1E 60 0.36 0.60 4 7 2E 47 -0.19 -0.01 '-1 0 3E 47 -0.40 '-0.21 2 1 ' 4E 60 -0.47 -0.23 5 3 1T 140 0.14 0.28 -1 -2 2T 110 •-0.08 0.02 0 " 0 3T 110 -0.19 • -0.08 -1 0 4T 140 -0.22 -0.08 -2 -1 Total Horiz. Torsional Load, MT ' 12 12 Surface Area Pressure k with Torsion ft -k (+(jOp i) (-GCP i) (+GCP �) (-GCP � ) Zone 5 GC - GC (ft) 1 13 0.03 0.08 0 0 2 31 - -0.30 -0.18 1 1 3 31 -0.19 -0.07 -1 0 4 13 -0.07 -0.02 0 0 1 E 69 0.33 0.60 1 2 2E 94 -1.29 -0.92 4 3 3E 94 -0.73 -0.36 • -2 -1 4E 69 -0.46 -0.19 2 1 1T 82 0.05 0.13 0 0 2T 125 -0.30 -0.18 -2 -1 3T 125 -0.19 -0.07 1 0 4T 82 -0.11 -0.02 0 0 Total Horiz. Torsional Load, MT 4.0 4.0. Comp. 8 Cladding Pressure ( psf) Effective Area (ftz) Zone 1 GC - GC Zone 2 GC -GCP GC Zone 3 - GC Zone 4 GC - GC Zone 5 GC - GC Com 10 0.50 -0.90 0.50 -1.70 . 0.50 -2.60 1.00 -1.10 1.00 Comp. 8 Cladding Pressure ( psf) Zone 1 Zone 2 Zone 3 Zane 4 Zone 5 positive Negative Positive Negative Poshlve Negative Positive Negative PositiveNe alive 10.00. -11.89 10.00 -20.69 10.00 -30.59. 12.99 -14.09• 1. 12.99 -17.39 r P CLIENT: SHEET: SUBJECT: 4dath�-o RA Structural Enzine JOB NO:1��2t�� . DESIGN BY: }2 � DATE:. 12./? / s 5�2ar IIJO�Ii '. #-i L -T� �g !mss l $ ° Q ti 25 ( P.A. 06 Cb,� w e P sl�eav p � � h2ar Uvavi.t �� slo 13.x' A S�ne.a✓ l,Uaucloj (l r u� sem• -+ire " i CITY OF LA t UINTA S �eavwaLt 4 L� L = BUILDING & SAFETY DEPT. P Rz�4llo--® p C 6 --POR CONSTRUCTION C�aav DAB Reza. PROJECT: SheaVN` #1'�, "" , f"i° ,;-* PAGE c Ft CLIENT: Liathrop Resldence'y` ,?''�` rw - #' As har OUr DESIGN BY R:A rt JOB NO.: *1312117=*•� �" _ 'DATE 'j X3/2013 REVIEW BY: INPUT DATA LATERAL FORCE ON DIAPHRAGM: vena. WN'D = plf,for wind vdia, SEISMIC =' '•-1,t35;' plf,for seismic +s r GRAVITY LOADS ON THE ROOF: WDA = I '` 16 � plf,for dead load WLL _85 plf,for live load DIMENSIONS: LW= lig":a.+it h1. — X10 jit L = *.8Ex''ft hp= ipft PANEL GRADEor 0 1 = a ( ) �1 *�_,� <= Sheathing and Single -Floor MINIMUM NOMINAL PANEL THICKNESS = *�318.?t in COMMON NAIL SIZE (0=6d,,1=8d, 2=10d) £ 18d SPECIFIC GRAVITY OF FRAMING MEMBERS !�+0:5 A EDGE STUD SECTION il.'1 Ot pcs, b = 2 t. in , h = ,i; SPECIES (1 = DFL, 2 = SP) i �.�1�1' DOUGLAS FIR -LARCH 111.r11 L ` W vd'a hp h TL Ta GRADE (1, 2, 3, 4, 5, or 6) t 4 w'; No. 2 Lw STORY OPTION (1=ground level, 2=upper level) yL1j c"1 ground level shear wall. THE SHEAR WALL DESIGN IS ADEQUATE. DESIGN SUMMARY BLOCKED 3/8 SHEATHING WITH 8d COMMON NAILS @ 4 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 44 in O.C. HOLD-DOWN FORCES: TL = 1.65 k , TR = 1.85 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 2" x 6" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. ` SHEAR WALL DEFLECTION: = 0.33 in. ANALYSIS CHECK MAX SHEAR WALL DIMENSION RATIO L t B = 1.3 < 3 5 , [Satisfactory] DETERMINE REQUIRED CAPACITY vb = 237 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 4 in) THE SHEAR C-APAC:ITIFS PER IRC: Takla 2306 d 1 Ivute. I nu inulr;areu snear numuers nave reaucea uy sperc�mnc gravity Tactor per 1m; note a, VE DRAG STRUT FORCE: F = (L -LW) MAX( vdla, WINO, flDvdia. SEISMIC) = 0.00 k ( 00 = 1 ) (Sec. 1633.2.6) VE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 44 in O.C. THF Hf)I n-r)C)wm FnRCFR- Panel Grade Common Nail Min. Penetration in Min. Thickness in Blacked Nail Spacing Boundary & All Edges SEISMIC 6 1 4 3 2 Sheathing and Single -Floor 8d 1 1/2 1 3/8 220 1 320 410 1 530 Ivute. I nu inulr;areu snear numuers nave reaucea uy sperc�mnc gravity Tactor per 1m; note a, VE DRAG STRUT FORCE: F = (L -LW) MAX( vdla, WINO, flDvdia. SEISMIC) = 0.00 k ( 00 = 1 ) (Sec. 1633.2.6) VE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 44 in O.C. THF Hf)I n-r)C)wm FnRCFR- ECK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) A — A&e dl -g + AShear + O N d slip + OCho d splice ,sl Where: vb = 237 pit, ASD A = 16.50 in` t= 0.221 in ECK EDGE STUD CAPACITY Pmax = 2.10 kips, (this value should incl dd F� = 1350 psi CD = 1.60 E = 1600 ksl CF = 1.10 (TL & TR values should include upper level UPLIFT forces if RI). 1,3 ,,.h ha =CD YftO LAEQL e! P� =gWW,W\, G & SA GM—M)+o4 IpsT. 0.002, li21 ROd\eaE0._1Sa in FOR CONSTRUCTION ARD%ads-If-applicable) f = 0.38 A 0.328 in, ASD < ke,allowable, Aso = 0.429 in [Satisfactory] (ASCE 7-05 12.8.6) Cd= 4 1= 1 ,(ASCE 7-05 Tab 12.2-1 & Tab 11.5-1) Aa = 0.02 h. (ASCE 7-05 Tab 12.12-1) = 8.25 in' F� = 894 psi > %= 255 psi [Satisfactory] vd;a I Wall Seismic at mid-storylbs Moments ft-lbsMoments OverturningURi Resisting Safety Net Uplift (ft -lbs) Factors lbs Holddown SIMPSON SEISMIC 165 128 13840 6240 0.9 T = 1028 r y'b 6240 0.9 TR = 1028 23Z 18960 6240 2/3 T� = 1850WIND 6240 2/3 TR = 1850 ECK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) A — A&e dl -g + AShear + O N d slip + OCho d splice ,sl Where: vb = 237 pit, ASD A = 16.50 in` t= 0.221 in ECK EDGE STUD CAPACITY Pmax = 2.10 kips, (this value should incl dd F� = 1350 psi CD = 1.60 E = 1600 ksl CF = 1.10 (TL & TR values should include upper level UPLIFT forces if RI). 1,3 ,,.h ha =CD YftO LAEQL e! P� =gWW,W\, G & SA GM—M)+o4 IpsT. 0.002, li21 ROd\eaE0._1Sa in FOR CONSTRUCTION ARD%ads-If-applicable) f = 0.38 A 0.328 in, ASD < ke,allowable, Aso = 0.429 in [Satisfactory] (ASCE 7-05 12.8.6) Cd= 4 1= 1 ,(ASCE 7-05 Tab 12.2-1 & Tab 11.5-1) Aa = 0.02 h. (ASCE 7-05 Tab 12.12-1) = 8.25 in' F� = 894 psi > %= 255 psi [Satisfactory] Reza PROJECT: ShearWall #2 PAGE: CLIENT: Lathrop Residence DESIGN BY : R.A. As har,OUr JOB NO: 131211.7 DATE: 12/3/2013 REVIEW BY: R.A. Wood�Shea�j�Wall�with�an�O:enin GBaseda_on�IB.C�0.6,//,�CB,C�07�'/�?NDSTr05� INPUT DATA V dic 1 LATERAL FORCE ON DIAPHRAGM: Vala. WIND = 140 plf,forwind (SERVICE LOADS) , VdI.. SEISMIC = 110 plf,for seismic DIMENSIONS: ; LI = 2 ft, L2 - 9.5 STRAr ft. L, = 2 ft Hr = 4.5 ft „Hz = 4 ft. Hs 71.5 ft KING STUD SECTION 1 pcs, b = 2 in, h = 6 in SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH ` GRADE( 1, 2, 3, 4, 5, or 6) 4 No. EDGE STUD SECTION ' 1 pcs, b = ,2 2 in. h = 6 in SPECIES (1 = DFL; 2 = SP) 1 DOUGLAS FIR -LARCH GRADE ( 1, 2, 3, 4, 5, or 6) 4 No. 2 PANEL GRADE (0 of 1) _ - 1 <= Sheathing and Single -Floor MINIMUM NOMINAL PANEL THICKNESS 15/32 in M S COMMON NAIL SIZE (0=6d, 1=8d, 2=10d) 1 ad THE SHEAR WALL DESIGN IS ADEQUATE. SPECIFIC GRAVITY OF FRAMING MEMBERS 0.5 STORY OPTION (1 ground level, 2=upper level) 1 ground level shear wall 1 ,s DESIGN SUMMARY BLOCKED 15/32 SHEATHING WITH 8d COMMON NAILS Q 3 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA.'x 10 in LONG ANCHOR BOLTS @ 48 in O.C. HOLD-DOWN FORCES: TL' 1.40 k , TR = 1.40 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN) MAX STRAP FORCE: F = 1.55 k (USE SIMPSON C816 OVER WALL SHEATHING WITH FLAT BLOCKING) KING STUD: 1 - 2" x 6" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. _ EDGE STUD: 1 - 2" x 6" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: o = 0.30 In I / V L1 + 0.5 L2 , F7/ 1 L, L2 L3 r L i TL TR 'ASSUME INFLECTION POINT AT MIDDLE OF WINDO\N i L1 L2/2 L2/2 L3 , F1 _— F2 F2 F3 _ I 1 1. F4 ,' 2 I F4 I 3 F4 I 4 I F FS F6 .. F7 F8 F9 F10 F11 F12 , FS F8 5 F5 F8 I I F13 - - - F14 ' F5 �y–®�,q tT FB _ OF LfAt QUI BUILDING & SAFE' DEPT.8 ��� � FS _ F6 ` F15 F16 FOR_CONSAP TRl/CTI�F.1j'7V F18 - { F5 F19. F20 F6 I Q BY _ g _! `�, F21 r)f T —F71—. � �®- 1 + F22 F23 F23 , F24 I TL FREE–BODY INDIVIDUA' PAN SOF WA TR ra ANALYSIS vdie plf) Min.Min. Overturning Moments ft -lbs) cont'd CHECK MAX SHEAR WALL DIMENSION RATIO h / w = 2.0 < 3.5 [Satisfactory] Thickness Boundary & All Edges DETERMINE FORCES & SHEAR STRESS OF FREE -BODY INDIVIDUAL PANELS OF WALL Nail 8d (in) 1 12 (in) 15/32 - INDIVIDUAL PANEL ,' W (it) H (it) MAX SHEAR STRESS (plQ - NO. FORCE (IbO NO. FORCE (Ibf) ' 1 2.00 1.50 303 F1 -607 F13 490 2 4.75 1.50 327 F2 1552 F14 490 3 4.75 1.50 327 F3 -607 F1 5 1435 4 .1 2.00 1.50 -303 F4 " 490 F15 945 - 5 2.00 2.00 473 _ F5 945 F17 945 8 2.00 2.00 473 FB 1552 F16 1435 7 '. 2.00 2.00 473 F7 "1552 F19 961 - 8 2.00 2.00 473 F8 945 F20 961 9 2.00 4.50 -8 F9, -455 F21 910 10 4.75 4.50 202 Fi0 945 F22 -16 11 4.75 4.50 .202', F11 645 F23 gel 12 .; 2.00 4.50 -8 F12 X55 F24 18 DETERMINE REQUIRED CAPACITY ve = 473 plf, ( 1 Side Panel Required, the Max. Nail Spacing = 3 in ). THE SHEAR CAPACITIES PER IBC Table 2306 4 1 / UBCTable 23-11-1-1 - ------..--- ..............q .,yw„w a,=vny edl,Nl lice col, note a. DETERMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab. 11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS Q 48 in O.C. THF Hnl n_nr%M d cnorcc. " vdie plf) Min.Min. Overturning Moments ft -lbs) Blocked Nail Spacing Panel Grade Common Penetration Thickness Boundary & All Edges Sheathing and Single -Floor KIM- Th. -I, A;...,- Nail 8d (in) 1 12 (in) 15/32 6 260 ' 4 1 3 1 380 490 1 2 640 - ------..--- ..............q .,yw„w a,=vny edl,Nl lice col, note a. DETERMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab. 11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS Q 48 in O.C. THF Hnl n_nr%M d cnorcc. " CHECK MAXIMUM SHEAR WALL DEFLECTION: (IBC Section, 2305.3.2) vdie plf) Wall Seismic at mid-sto (lbs) Overturning Moments ft -lbs) Resisting Safety Net Uplift Moments ft -lbs) Factors Ibs Holddown SIMPSON SEISMIC 110 216 15930 Left 0 0.9 T = 1180 9 Right 0 0.9 _ T = 1180 WIND 140 d, = 0.15 in 18900 Left 0 2/3 T = 1400 pti Q� Right 0 2/3 T = 1400 CHECK MAXIMUM SHEAR WALL DEFLECTION: (IBC Section, 2305.3.2) 11 L a 1 R vdiue5 snceum me uae upper level UPLIFT forces if applicable) A=Oez,ibeg+"OSlwur+ONdn.1,0+Acho,d'dee;ftp=8v°h +yyh+0.75he,+ha° = EALw Gt L,. 0.298 In, ASD < Where: vp = 473. plf, , ASD Lw = 13.5 It E = 1.7E+06 psi 8xe.allowable, Aso = 0.429 in [Satisfactory] (ASCE 7-0512.8.6) A = 16.50 in` h = 10 It G = 9.0E+04 psi Cd = 4 1 = 1 I = 0.298 in e„ = 0.000 in d, = 0.15 in (ASCE 7.05 Tab 12.2-1 8 Tab 11.5.1) i A.- 0.02 h„ (ASCE 7-05 Tab 12.12-1) CHECK KING STUD CAPACITY Pmax = 0.95 kips FG = 1350 psi Ca = 1.60 Co - 0.38 A- 8.25 In' E _ ; 1600 ksl Cr = 1.10 F� = 894 psi > i� = 115 psi [Satisfactory] CHECK EDGE STUD CAPACITY - Pmax = : 1.40 kips, (this value should Include upper level DOWNWARD loads if applicable) F, = : 1350 psi Ca = 1,60 Cep = 0.38 A = 8.25 In' E = 1600 ksi CF = 1.10 F, = 894 • psi > %= 170 psi [Satisfactory) MY OF L A t �� BUILDING & SAFETY DEPT. A r3 V FOR CONSTRUCTION DATE BY -1 4 Reza PROJECT: Shear Wall #3 PAGE: CLIENT: Lathrop Residence DESIGN BY : R.A. As h a r Q U r JOB NO.: 13921'17 DATE : 12/3/2013 _Chow`►�tiu�ulur►:,...,.::�o=__.:.w__.........�,...�.._--�--..,.._..----- -- REVIEW BY: R.A:. INPUT DATA LATERAL FORCE ON DIAPHRAGM: Vdla, WIND = 150 plf,for wind 11 Vdla, SEISMIC — 270 plf,for seismic GRAVITY LOADS ON THE ROOF: WDL = 115 plf,for dead load WILL = 85 , plf,for live load DIMENSIONS: Lw= 5.5 ft, h = 10 ft L = 5.5 ft, h,= 0 ft PANEL GRADE (0 or 1) _� 1 <= Sheathing and Single -Floor MINIMUM NOMINAL PANEL THICKNESS = 3/8 in COMMON NAIL SIZE (0=6d, 1=8d, 2=10d) 1 • 8d SPECIFIC GRAVITY OF FRAMING MEMBERS 0.5 EDGE STUD SECTION 1 pcs, b = 2 in, h = 6 in SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH GRADE ( 1, 2, 3, 4,'5, or 6) 4 No. 2 STORY OPTION ( 1=ground level, 2=upper level) 1 ground level shear wall ( DESIGN SUMMARY - BLOCKED 3/8 SHEATHING WITH 8d COMMON NAILS @ 4 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS ® 38 in O.C. HOLD-DOWN FORCES: TL = 2.30 k , TR = 2.30 k DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 2" x 6" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: e = 0.44 in L W Min. Min. Blocked Nail Spacing Vim _ �— T— F r, h, Penetration h Boundary & All Edges T. h Lw (USE PHD2-SDS3 SIMPSON HOLD-DOWN) YSIS ( MAX SHEAR WALL DIMENSION RATIO L / B = 1.8 < 3,5 -(Satisfactory] MINE REQUIRED CAPACITY vb = 270 pif, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 4 in) THF SHPAP CAPACITIcc oco mn T..LI— ..o,.e . uy aNcUd nc alcIVnY Iactur per ItlG note a. DETERMINE DRAG STRUT FORCE: F = (L -Lw) MAX( Vdla, WIND, C)oVdla, SEISMIC) = 0.00 k ( DO = 1 ) (Sec. 1633.2.6) DETERMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 38 In O.C. TNF Hnl n_nn%nrM -nonce. vdla I (pin Min. Min. Blocked Nail Spacing Panel Grade Common Penetration Thickness Boundary & All Edges Sheathing and Single -Floor M,f.- Tk_ ...d:....a..A Nail 8d in 1 1/2 in 3/8 6 4 3 2 220 320 410 530 uy aNcUd nc alcIVnY Iactur per ItlG note a. DETERMINE DRAG STRUT FORCE: F = (L -Lw) MAX( Vdla, WIND, C)oVdla, SEISMIC) = 0.00 k ( DO = 1 ) (Sec. 1633.2.6) DETERMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 38 In O.C. TNF Hnl n_nn%nrM -nonce. .CK SHEAR WALL DEFLECTION: (IBC Section 2305.3.2) t I L a 1 R values snoula Incluae upper level UPLIFT forces if applicable) 0 =A &,d;,1 + + _ 8ynh' Vbhhdo g e sn o, e No;, slip + OClnw/ splice snp — +—+0.') ei + _� __-0-442 in, ASD > EAL,�_Gt � ' r pw tl STA sze,allowable, nsD = 0.429 in Where: vb = 270 plf , ASD Lw = Cft q iOF E = 1:7E_+06 psi (ASCE 7-05 12.8.6) A= 16.50 in` h = �16 0GUNLDING &G(SXOE±044 si)ERT. �Ca=....4 1= 1 t= 0.221 in e„ = 0.003 In [dam= 0.15 In ,ASCE 7-05 Tab 12.2-1 & Tab 11.5-1) APP OV � ea= 0.02 n. FOR CONSTRUCTION , (ASCE 7-05 Tab 12.12-1) CHECK EDGE STUD CAPACITY Pmax = 2.21 kips, (this value should include F, = 1350 , psi CD = 1.60 E = 1600 1 ksi CF = 1:10 levp,,Ik1QWN..WARD-loads-if- pp7icab1fl Com—"0'38®— A = 8.25 in' F� = 894 psi > f, = 288 psi [Satisfactory] G vdla I (pin Wall Seismic at mid -story Ibs) Overturning Moments (ft -lbs) Resisting Safety Net Uplift Moments ft -lbs Factors lbs Holddown SIMPSON SEISMIC 270 - 88 15290 Left 2949 0.9 T = 1 2297 j Right 2949 0.9 TR = 2297 WIND 150 8250 Left 2949 2/3 TL = 1143 50� p`t Q� Right 1 2949 2/3 1 TR = 1143 .CK SHEAR WALL DEFLECTION: (IBC Section 2305.3.2) t I L a 1 R values snoula Incluae upper level UPLIFT forces if applicable) 0 =A &,d;,1 + + _ 8ynh' Vbhhdo g e sn o, e No;, slip + OClnw/ splice snp — +—+0.') ei + _� __-0-442 in, ASD > EAL,�_Gt � ' r pw tl STA sze,allowable, nsD = 0.429 in Where: vb = 270 plf , ASD Lw = Cft q iOF E = 1:7E_+06 psi (ASCE 7-05 12.8.6) A= 16.50 in` h = �16 0GUNLDING &G(SXOE±044 si)ERT. �Ca=....4 1= 1 t= 0.221 in e„ = 0.003 In [dam= 0.15 In ,ASCE 7-05 Tab 12.2-1 & Tab 11.5-1) APP OV � ea= 0.02 n. FOR CONSTRUCTION , (ASCE 7-05 Tab 12.12-1) CHECK EDGE STUD CAPACITY Pmax = 2.21 kips, (this value should include F, = 1350 , psi CD = 1.60 E = 1600 1 ksi CF = 1:10 levp,,Ik1QWN..WARD-loads-if- pp7icab1fl Com—"0'38®— A = 8.25 in' F� = 894 psi > f, = 288 psi [Satisfactory] G Reza PROJECT: Shear Wall #4 PAGE: 1, CLIENT : Lathrop Residence AS h a r O U C . JOB NO.: .1312117 _ , , - DATE: 12/3/2013 REVIEW BY: R.A. Sfiear WaII1r[RWM'W?jBas0dIN0njtIBCJ06�'/jCBC?(0,VV`/JND:STGShim INPUT DATA j L LATERAL FORCE ON DIAPHRAGM: Vdia, WIND = 138 pif,for wind Vdia, SEISMIC = 248W plf,for seismic . GRAVITY LOADS ON THE ROOF: wog = 115 plf,for dead load WILL = 85 plf,for live load V. hp --------------------------- DIMENSIONS: Lw= i 6 ft, h= 10 it F L = I 6 ft, hp= 0 it PANEL GRADE (0 or 1) = 1 —Sheathing and Single -Floor h MINIMUM NOMINAL PANEL THICKNESS = 3/8' in COMMON NAIL SIZE ( 0=6d..1 =8d, 2=10d) 1• 8d SPECIFIC GRAVITY OF FRAMING MEMBERS 0.5 EDGE STUD SECTION } 1 pcs, b = 2 in, h = 6 in % T, T. SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH GRADE ( 1, 2,.3. 4, 5, or 6) 4 No. 2 Lw STORY OPTION ( 1=ground level, 2=upper level) 1 ground level shear wall THE SHEAR WALL DESIGN IS ADEQUATE. DESIGN SUMMARY BLOCKED 3/8 SHEATHING WITH 8d COMMON NAILS @ 4 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 42 in O.C. HOLD-DOWN FORCES: TL = 2.03 k , TR = 2.03 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1'- 2" x 6" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: D = 0.40 in ANALYSIS I CHECK MAX SHEAR WALLDIMENSION RATIO L / B = •.1.7 < 3.5 [Satisfactory] DETERMINE REQUIRED CAPACITY vb = 248. plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 4 in) THF CHFCR r:CPar^.ITIFC D=R IRf` T,kli eInc A I ' Min. Min. Blocked Nail Spacing Panel Grade Common Penetration Thickness Boundary & All Edges Nail in in 6 4 3 2 Sheathing and Single -Floor 8d 1 1/2 3/8 220 320 1 410 '. 530 •c. uc ..0 .a cu 011cal rturnutsts nave teuuceu Dy specmc gravity tactor per IbL; note a. RMINE DRAG STRUT;FORCE: F = (L -L.„) MAX( Vdia• WIND, OoVaia• SEISMIC) = 0.00 k (f)o = RMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab. 11E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 42 in O.C. THE HOLD-DOWN FOROFC- 1 ) (Sec. 1633.2.6) ( i L a TR values snould Include upper level UPLIFT forces if applicable) CHECK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) 3 h O=A&r din +Aslcur+ + _ 8vbh vb hd _ g ONail slip OClort/ splice stip — +—.+•U:75•he� + 4 0.402-�In, ASD EAL,p • GC CITY 0 � � � � Re,all"wa-ble ASD' 0.429 in Where: Vb= 248 plL, ASD Lw= 8 ft gUIL�E�7E+08��psi-� [SaUsfac�ory] (ASCE 7-05 12.8.6) A = 16.50 in h = 10 ft G = �9 0E+04 ps' Cd = r 1= 1 t = 0.221 In a 0.002 in �d �- 0 51 a in E®,(ASCE 7-05 Tab 12.2-1 &Tab 11.5-1) FOR CONSTRUC-f10V41a= 002 h, r (ASCE 7.05 Tab 12.12-1) 1 CHECK EDGE STUD CAPACITY DATE BY I Pmax = 2.10 kips, (this value should include upper level DOWNWARD loads if_applicable) F, = 1350 psi CD = 1.60 CP = 0.38 A = 8.25 in' E = 1600 ksl CF = 1.10 F�* = 894 psi > fc = 254 psi [Satisfactory] �� Vdia,- If) Wall Seismic at mid -story Ibs Overturning Moments ft -lbs Resisting Safety Net Uplift Moments (ft -lbs) Factors (lbs) Holddown SIMPSON SEISMIC 248 96 15360 Left 3510 0.9 T 2034 � _ � y0� p1 Q Right 3510 0.9 TR = 2034 WIND 138 II 8280 Left 3510 2/3 T = 990 Right 1 3510 1 2/3 T - 990 ( i L a TR values snould Include upper level UPLIFT forces if applicable) CHECK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) 3 h O=A&r din +Aslcur+ + _ 8vbh vb hd _ g ONail slip OClort/ splice stip — +—.+•U:75•he� + 4 0.402-�In, ASD EAL,p • GC CITY 0 � � � � Re,all"wa-ble ASD' 0.429 in Where: Vb= 248 plL, ASD Lw= 8 ft gUIL�E�7E+08��psi-� [SaUsfac�ory] (ASCE 7-05 12.8.6) A = 16.50 in h = 10 ft G = �9 0E+04 ps' Cd = r 1= 1 t = 0.221 In a 0.002 in �d �- 0 51 a in E®,(ASCE 7-05 Tab 12.2-1 &Tab 11.5-1) FOR CONSTRUC-f10V41a= 002 h, r (ASCE 7.05 Tab 12.12-1) 1 CHECK EDGE STUD CAPACITY DATE BY I Pmax = 2.10 kips, (this value should include upper level DOWNWARD loads if_applicable) F, = 1350 psi CD = 1.60 CP = 0.38 A = 8.25 in' E = 1600 ksl CF = 1.10 F�* = 894 psi > fc = 254 psi [Satisfactory] �� :t db rof( ' RA 79.—7RU IJrJ✓ • 1 � r i 77570 Springfield Lane,! Suite "D" Telephone: (760) 360-9998 Palm Desert, CA• 92211 Fax: (760) 360-9903 , r F Structural Calculation + ForLathrop Residence.._ F At 49298 Montana Way, Rancho La Quinta Country Club; La Quin•ta, CA Tvve Of Proiect: Residential Addition i Revision #1 (1/20/14) Owner iR"' E C EIV MAR 13 -2014 CITY OF LA QUINTA_ Q�pFESS/O } COMMUNITY DEVELOPMENT ��o �,gGM,gR�2 LU r N0: C 67613 m Designer: Jorge Garcia Design Associates a , 8 U l D TA EDEP AP 'f�' T. FOR COST � , Date: December 03, 2013 CTION Design by: R.A. DATE 3 F3 Job No. 1312117 t CLIENT: G ,-46, f ,ZescL « RA Structural En lneeYljZ SHEET: SUBJECT: 0 ; g. JOB NO: 13 is I �: DESIGN BY: DATE: 120 / 14 Vl l�s� • s LevPtAe_L �7 Pte- tl CITY OF L QUINT�A BUILDING & SAFETY DEPT. APPROVED FOR CONSTRUCTION DATE ------ BY Reza;• PROJECT: ShearWall #2 PAGE As har OUr CLIENT: Lathrop Residence - DESIGN BY: R.A. JOB NO.: 1312117 DATE: w2woid REVIEW BY: R.A. 1Nood S6'ea�aWalliwitfitanEiO enin dB'a'sed�on IBCx06 >i:CBC�0;7 MRS 05 - V dw INPUT DATA LATERAL FORCE ON DIAPHRAGM: I Vft, WIND = 140 plf,for wind (SERVICE LOADS) ' Vdia. SEISMIC = 110 plf,for seismic DIMENSIONS: L, = 4.8 ft, L2 = 4 ft. L3 = STRAP 4.8 ft Hi= 3' t ft, Hz - 5 ft, H3 _ 2 ft KING STUD SECTION 1 pcs, b - 2 in, h = 6 in r SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH GRADE (i, 2, 3.4. 5, or 6) 4 No. 2 EDGE STUD SECTION 1 pcs, b - 2 In, h = 6 in SPECIES (1 - DFL, 2 - SP) 1 DOUGLAS FIR -LARCH GRADE Q, 2, 3, 4, 5, or 6) 4 No. 2 PANEL GRADE (0 or 1) = 1 <= Sheathing and Single -Floor t MINIMUM NOMINAL PANEL THICKNESS 3/8 ' in M 2 2 2 COMMON NAIL SIZE (0=6d, 1=8d, 2=10d) 1 8d THE SHEAR WALL DESIGN IS ADEQUATE. SPECIFIC GRAVITY OF FRAMING MEMBERS 0.5 STORY OPTION ( 1 L ground level, 2 -upper level) 1 ground level shear wall e r DESIGN SUMMARY BLOCKED 3/8 SHEATHING WITH 8d COMMON NAILS @ 4 in O.C. BOUNDARY 8 ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. i • � HOLD-DOWN FORCES: TL - 1.40 Ii , TR = 1.40 k (USE PHD2-SD83 SIMPSON HOLD-DOWN) MAX STRAP FORCE:, F = 0.63 It (USE SIMPSON CS22 OVER WALL SHEATHING WITH FLAT BLOCKING) KING STUD: 1 - 2" x 6" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. EDGE STUD: 1 - 2" x 6" DOUGLAS FIR -LARCH No: 2, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.28 in C�6 V L1 + 0.5 L2 7/2 I W2Z 1 a� L1 L2 L3 L - .. , 1 TL TR 1 ASSUME INFLECTION POINT AT MIDDLE OF WINDOW L1 L2/2 L2/2 L3 1 F1 _ F2 _ F2 _ F3 _ I 1 - F4 1 2 F4 1' F4 \ 4 �. F5 —,F F6 F7 8 F9 , F10 F11 F12 - - F5 r F8 a r 6 i F5 C Y O F s. 9k :; �o //�� 8� j B A F13 . . BUILDING & SAFETY DEFOT. + F5 PPR ��U 7 FO%� CONS' RUC(OfV I F5 F8 .• F15 F16 DATE F18 c F5 F19 20 FS I 1 I _ 9 I F21 I 1 0 F21 I 1 1 F21 f22 F23 F23 0 TL FREE—BODY ODY INDIVIDUAL PANELS OF WAI F24 � TR r (vote: I ne moicateo shear numbers nave reduced by specific gravity factor per IBC note a. DETERMINE MAX SPACING OF 5/8° DIA ANCHOR BOLT (NDS 2005, Tab.11E) 5/8 in DIA. x 10 In LONG ANCHOR BOLTS @ 48 in O.C. THE HOLD-DOWN FORCES: Panel Grade Common Nail Min. Penetration (in) in. Thickness (in) Blocked Nail Spacing Boundary & All Edges SEISMIC 6 4 3 2 Sheathing and Single -Floor 8d 1 1/2 cont'd JALYSIS WIND ' 140 19040 Left 0 2/3 T = 1400 IECK MAX SHEARiWALL DIMENSION RATIO h /w = 1.0 < 3.5• (Satisfactory) ' TERMINE FORCES & SHEAR STRESS OF FREE -BODY INDIVIDUAL PANELS OF WALL -Aazrr/ing+OSlrar+AA'aaslip+AClordsplkrslip_gVAh +v'h+0.75hea+hd° INDIVIDUAL PANEL, W (ft) H (it) MAX SHEAR STRESS (p10 NO. FORCE (Ib1) NO. FORCE (lbl) 1 4.80 2.00 67 F1 322 F13 630 2 2.00 2.00 315 F2 630 F14 630 3 2.00 2.00 315 F3 322 F15 1126 4 4.80 2.00 67 F4 630 F16 496 5 4.80 2.50 198 -F5 . 952 F17 496 6 4.80 2.50 198 F6 630 F18 1126 7 4.80 2.50 198 F7 630 F19 513 -8 4.80 2.50 198 F8 952 F20 513 9 4.60 3.00 91 F9 134 F21 770 10 ' 2.00 3.00 257 F10 496 F22 439 11 2.00 3.00 257 F1'I 496 F23 513 12 4.80 ,3.00 91 F12 134 F24 439 :TERMINE REQUIRED CAPACITY vp = 315 plf, (" 1 Side Panel Required, the Max. Nail Spacing 4 In) THF SHFAR CAPACITIES PER IRs: TaNe 2306 d 1 / I IRr'TaNe 93-11.1.1 U DEPT. (vote: I ne moicateo shear numbers nave reduced by specific gravity factor per IBC note a. DETERMINE MAX SPACING OF 5/8° DIA ANCHOR BOLT (NDS 2005, Tab.11E) 5/8 in DIA. x 10 In LONG ANCHOR BOLTS @ 48 in O.C. THE HOLD-DOWN FORCES: Panel Grade Common Nail Min. Penetration (in) in. Thickness (in) Blocked Nail Spacing Boundary & All Edges SEISMIC 6 4 3 2 Sheathing and Single -Floor 8d 1 1/2 3/8 220 320 410 530 (vote: I ne moicateo shear numbers nave reduced by specific gravity factor per IBC note a. DETERMINE MAX SPACING OF 5/8° DIA ANCHOR BOLT (NDS 2005, Tab.11E) 5/8 in DIA. x 10 In LONG ANCHOR BOLTS @ 48 in O.C. THE HOLD-DOWN FORCES: 0 2/3 T 1400 Q VQI' I Wall Seismic at mid-storyIbs Overturning Momenta ft -lbs Resisting Safety Net Uplift Momenta ft -lbs Factors Ibs Holddown "SIMPSON SEISMIC 110 218 16048 Leo 0 0.9 T - 1180 �O Right 0 0.9 T = 1180 WIND ' 140 19040 Left 0 2/3 T = 1400 Ory � Right D , , (TL & TR values should include upper level UPLIFT forces if applicable) CHECK MAXIMUM SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) r ' -Aazrr/ing+OSlrar+AA'aaslip+AClordsplkrslip_gVAh +v'h+0.75hea+hd° = 0.278 In, ASD < EAL,,, fit , Lw 8xe,allowabte,Aso` 0.429 in Where: vp = 315 plf, , ASD Lw = 13.6 ft E = 1.7E+06 psi [Satisfactory] (ASCE 7.05 12.8.8) A = 16,50 in` h = 10 It G = 9.0E+04 psi Ca = 4 1= 1 t = 0.221 in e„ = 0.000 in d. = 0.15 In (ASCE 7.05 Tab 12.2-1 & Tab 11.5-1) A. = 0.02 h„ (ASCE 7-05 Tab 12.12-1) r CHECK KING STUD CAPACITY Pm' x = 0.50 kips F° - 1350 psi Ca = 1.60 Co = 0.38 A= 8:25 In= . E-- 1600 ksi CF a 1.10 F, = 894 psi > " f,- 60 psi ' [Satisfactory] CHECK EDGE STUD CAPACITY Pmax = 1.40 kips, (this value should include upper level DOWNWARD loads if applicable) F, - 1350 psi Co = 1.60 Cp = 0.38 A = 8.25 in' E = 1800 ksi CF - 1.10 F. _ 894 psi > f, = 170 psi [Satisfactory] U DEPT. BUILDING & SAFEN A PROV ,�0 FOR CON BY_��-. DATE ��. D , ,