Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
LQ Fire Station No. 32 and Corp Yard
1"MM,'SO, Z OG� REPORT 6-11 9�r-f V JI Paul Goble Subject: PCN 09091-La Quinta Fire Station No. 32 and Corporate Yard Construction Phase 1 . Precise i (Grading & Paving,- Demolition &Public /Private Water &Sewer Plans I*ue Date: Thursday, July 30; 2009, - • -..: .. ' �F Status: b(L Waiting on someone else .._ Percent Complete: 0% :• Total Work: ti 0 hours r 7 =Actual Work: 0 hours a, Owner: Angelica Zarco Requested By: Paul Goble j Foj `1.16 30 217 F , (6 360 _ r . .• :, - .- .. .. C ;i'y 6.'15 CONTACT INFORMATION: - RYAN PARKS WITH MSA CONSULTING, INC FAX- (760) 323 -7893 PHONE- (760)320- 981.1 , � � WOW ������. _ •. NOTES: 7/6/2009 - RECEIVED PLAN CHECK ITEM FROM MSA. SENT TO TONY FOR FURTHER PROCESS15(Tf 7/9/09'- Tony started plan review and got the following: INS. �� (Didn't have time to place redlines in the task system.) U 7/10/09 - Tony sent task, redlines, old redlines, and copies to Paul for processing. ��� S ; 7/16/2006-- Paul reviewed and annotated 1st round INCOMPLETE submittal and prepared for 1 transmittal letter. QUESTED PUBLIC WORKS CORRECTIONS (1St Round Check - Incomplete): 1: Sheet 1: Please rework plan submittal based on current City plan check checklists f * A &tS Private Water and Sewer. Applicable checklists are attached for your convenience. r A .2.; Sheet 1: Please call'out overflow routing and all inlets and inlet flow rates on the index map. - ^3.`.,, Sheets 1 & 2: Please include: proposed LandMark additional soil excavation requirement per LandMark Consultants_ , r -July 10, 2009, Geotechnical Investigation Addendum No. 2. 4: Sheet 1: Please provide a van accessible ADA slot and covered ADA parking as redlined. %5. Sheets 1, 6 & 7: Please add signing and striping design details as required. " 6. Sheet 1 and.9: Please reference Sheet 9 as both a Storm Drain and Wet Utility plan. 7 , . Sheet 1: Please identify the map number or APN of all adjacent parcels. 8. ' : Sheet,1: Please submit the companion'signal plan for Desert Club and Avenue 52 for reference. Y , 9. Sheet 2:. Please reference new La Quinta Standard 200 for concrete specifications. Clarify concrete requirements per Geotechnical Engineer recommendations. -10. Sheet 2: Please. reference all walls per separate plan and permit. T 11.' Sheet 2: Please update truncated dome specification to utilize Wausau tile or equal. Sheets 2 and 9: Please provide 1, 1 1/4 degree bends on storm drain piping greater than 12 inches in diameter. 13.'S heet 6: ,Please recheck and rework to curb ramps at south leg of Desert Club /Avenue 52 intersection. Provide symmetry and improved design. Please show all ramps at the signalized intersection. ::� *- •' ' 'ley Mt� to rs. 4p di I Ix VIC ki• 14. Sheets 6, 7, 8 and 9: Please reference all inlet construction on the Precise Grading sheets. 15. Sheet 6: Please dimension and stipple all concrete installation. Clarify existing sidewalk connection points. Reduce the sharp gooseneck of the arterial sidewalk connection as redlined. 16. Sheet 6: Please detail and show in plan view Construction Note 31 - Headwall and Riprap. 17. Sheet 6: Please recheck the southeast curb return for an improved right turn lane or equivalent realignment to improve Fire Station exit geometry. Traffic review of item is also pending. 18. Sheet 6: Please show all roof drain discharge points. 19. Sheet 7: Please clarify absence of ADA facilities at the rear of the Fire Station. Add project note or equal. ADA visitor rear paths not understood. 20. Sheet 7: Please call out the proposed open style tubular gate design to confirm an absence of flow blocking potential with the gate. 21. Sheet 8: Please callout property line as applicable. 22. Sheet 8: Please fully legend improvements. 23. Sheet 8: Please show curb or wheel stops at all parking spaces. 24. Sheets 9 and 12: Please rework cleanout design for storm drain system. Apparent previous design not fully reworked. 25. Sheet 9: Please fully detail all storm water piping designs as redlined. .26. Sheet 10: Please provide typical trench details as redlined. �. Sheet 11: Please recheck bollard design as redlined. 28. Sheet 12: Please rework drywell system as redlined. Proposed system is unconstructable as drawn. Please call out all required details and recheck for velocity concern. 29. Sheet 13: Please correct horizontal control sheet as redlined. 30. Please coordinate the traffic signal design with the improvements shown on the precise grading plans. Offsite Water and Sewer (Development Services Division) comments will follow under separate cover memo(s). Sincerely, Timothy R. Jonasson, P.E. 7/17/2009 - Paul forwarded redlines and transmittal to Angelica /Ed for return to EOR. Paul holding all geotechnical reports given pending additional discussion and rework of issue. Angelica to route copy of 1 st round redline to Building for comment. Paul returned offsite Sewer and Water plans to Tony for review under separate cover. 7/20/2009 - Paul added comment 30 to the transmittal letter per Nazir request. (PG) 7/21/09 - Tony took task from Angelica and started plan check on Offsite Sewer and Water and Onsite Water. Comments are as follows: Offsite Public Sewer (Sheet 1 of 1) 1. Please provide and submit a hydraulic analysis for the sewer system. 2. Please identify the area where the proposed sewer lateral is located because it is not located within the CVWD easement. Please provide specifications for the clean out and detail surface. 40 Please provide specification for the trench backfill. Please provide the minimum clear distance between water and sewer pipes or provide special material piping if not met. 6. Please discuss the type of expected wastewater quality and quantity. 7, Is the text shown here "PROP, PRIVATE SEWER LATERAL" actually the proposed Public Sewer Lateral? If yes, clarify 2 the line is within an approved easement or other. 8. Please provide the minimum 2% slope for laterals. 7/22/09 - Tony finished and started Water Plan Comments '4kblic Water Plans (Total 3 sheets): te: City Engineer will not sign public Utility Plans 1. Sheet 1 and 2: Please submit a hydraulic analysis based on Total Demand and per Appendix A of the California. Plumbing Code (CPC). 2. Sheet 1: Please show Fire Department approval for this fire system. 3. Sheet 2: Please provide information on the meter sizing according to CPC Section 610. 4. Sheet 2 and 1: Please show that these are valves (cast iron or brass bodies) and verify 1 full valve seperating the buildings. 5. Sheet 1: Please provide City General Notes and verify text indicates disenfection of potable water system per CPC Section 609.9 is required. 6. Sheet 1: If maximum pressure exceeds 80 psi, please provide a pressure reducer according to CPC Section 608.2. 7. Sheet 1: Please show where the Blow -Off assembly is located in the Quatities and Plan View. 8. Sheet 3: Please detail the unions being within 12" of regulating devices. 7/23/09 - Tony finished and gave to Paul. 7/24/2009 - Paul edited and annotated 1 st round public water and sewer plan redlines and formal transmittal letter: REQUESTED PUBLIC WORKS CORRECTIONS (15' Round Check): Public Sewer Plan (1 Sheet): 1. Please submit a hydraulic analysis for the sewer system. 2. Please identify all CVWD instrument numbers. Please provide specifications for the sewer clean out and detail surface installation requirements. Please provide a specification for the trench backfill. 5. Please clarify private and public streets in all plan views. 6. Please fully denote and correct the abbreviation listing as required. 7. Please clarify component specifications, as possible. Public Water Plan (3 Sheets): 1. Sheet 1: Please submit a hydraulic analysis for the design.of the water main system, including meter sizing. 2. Sheet 1: Please provide written Fire Department approval for the water main system. 3. Sheet 1: Please fully denote and correct the abbreviation listing as required: 4. Sheet 1: Please expand epoxy and polyethylene encasement callouts and provide component specifications for valves and other fittings, as applicable. 5. Sheet 1: Please clarify required blow -off assemblies, as applicable. 6. All Sheets: Please clarify private and public streets in all plan views. 7. Sheet 1: Please provide a specification for the trench backfill. Allifilease utilize City plan check checklist forms, available at the City Public Works webpage, to reduce required redline mments and FOR corrections. Sincerely, Timothy R. Jonasson, P.E. Public Works Director /City Engineer 024/2009 - Paul forwarded sewer and water redlines and letter to Angelica /Ed for return to EOR. 7/24/2009 - Paul and Ed met with the City Engineer to discuss the hydrology assumptions by MSA for Fire Station 32. MSA's "A" soil assumption (considered "B" by Staff).and impervious area assumption of 83% (considered 90% by Staff), generates a retention requirement of 30,217 ft3 when Staffs assumption differences generate a retention requirement of 36,064 ft3. Additionally, MSA has assumed that offsite flow rates are collected by the inlets at Fire Station 32, but not retained at Fire Station 32. Therefore the 100 year storm overflow of from retention undersizing of. 5,847 ft3 + offsite flow from unstored 2.595 offsite acres tributary to the Station 32 site will either be exhausted by the proposed spill inlet to the existing Avenue 52 RCP storm drain directed to SilverRock or spill to Avenue 52 (if the spill inlet to SilverRock is clogged). The basins for Fire Station 32 are undersized an estimated 29,822 ft3 but spill to an existing storm drain system for the remainder. The City Engineer has approved this atypical design and requests no changes to the hydrology report.. The annotated hydrology report has been forwarded to the central file hydrology shelf. (PG) 7/27/2009 - SENT FAXED NOTICE TO MSA CONSULTING INFORMING THEM THAT CITY ENGINEER HAS NO COMMENTS ON PUBLIC WATER AND SEWER PORTION OF SUBMITTAL. PRECISE GRADING IS CURRENTLY WITH CITY ENGINEER (AZ) • 4 4 65' ;�. 70 0.0 75, 80 ' :.85 51 28382.7: 90 +, 95 " 100 105 1 h_ r BASIN Est.XLS 110 ' ` .. Percolation Rate 6f Retention Basin lwith llow Rate • 120'. £„ 125' 28331.5 •. 130 51 28280.3 r 140 . Data 1 Hr with, 0'.6 in /hi Perc . L (ft) ._ 180 ' For L, W & b input, see graph Cell Y4 ' 150' ' %r `. r W (ft) = 46 28229.2 160' 28229 j., 165 Slopes 28178.1 .l- H(all) (ft) = 2.82 , 180 12249 51 • H (ft) = 3.0 28127.1 . ., b (ft) =, 8.5. , 12249 "" 51. .28076.1 V (ft) = -1.0. Increase H(in) by; 0:25 51 '� r. 0.0 Ratio = 0.3 ' 28025 Perc Rate (in /hr): •, 0.6 27974.0 0.0 r 27974 12217. . Time Interval,(min): 5 Note, col & Cell D9 must be same as Syn Hydro Time Use 27923.1 = Basin Volume at H(all) = .A 12217 51, (cuft); 0.0 27872.2. 29051 Flow Rate 12217 51 Perc - Flow Vol Overflow Volume- 27821. `, Use hydro 51 Lookup Volume minus perc. Volume in Basin 12217 Time (min) Data Here 'Flow Vol Area ( /time int) (ent intial) 27719 12184 51 Fj�r (cfs) (cuft) (sgft) (cuft) (tuft) (cuft) (cuft) _T 0.0 0 0.00 5 0.0 ; 0 "0. 00 ' 0 r 0 0 01 0.0 0.0 0.0 27567.2 4.6 ` 1388 �;! .8479 : 35 1352.9 0.0 1352.9 . 15': 4.9 2836• • .. 8707 '36. 2799.3 0.0 2799.3 27466 - '20 ' ' 4.7 4219 8938 37 4181.7 0.0 4181.7 { .. . 25 , ' 6.5 • • 6136 9229 38 6097.6 0.0 6097.6 51 30 • 7.2 • - 8272 9553 '40 8232.3 0.0 8232.3 . `. 35 t. 8.4 10753 9911 r 41 10711.4 0.0 10711.4 40 '. • 9.0 13421 - 10304 ' 43 13377.6 0.0 13377.6 ' 45', 12.5 , 17125 ' 10825 45 17079.5 0.0 17079.5 50 18.0 , • ' 22493 11513', ; 48 22445.3 0.0 22445.3 55 - , 16.5 • 27387 - 12152 51. 1 27336.8 0.0 27336.8 r" 60 4.0' 28536 ' 12314 51 28485.0 00 284850. 4 65' ;�. 70 0.0 75, 80 ' :.85 51 28382.7: 90 +, 95 " 100 105 ' 110 ' 1151,- f • 120'. £„ 125' 28331.5 •. 130 51 28280.3 r 140 145 ' 150' ` 155' 28229.2 160' 28229 j., 165 - '170 28178.1 0.0 175 180 28485. . 12281 51 28433.8 0.0 28433.8 28434 12281 51 28382.7: 0.0 28382.7 28383 12281 51 - • 28331.5 0.0 28331.5 28332 `12281 51 28280.3 0.0 28280.3 28280 12281 51 28229.2 0.0 28229.2 28229 j., 12249 51 • 28178.1 0.0 28178.1 28178. • 12249 51 • 28127.1 0.0 28127.1 . 28127 12249 "" 51. .28076.1 0.0 28076.1 28076 12249 51 '� 28025.0 0.0 28025.0 ; ' 28025 12249 51 27974.0 0.0 27974.0 27974 12217. 51 27923.1 0.0 27923.1 27923, 12217 51, 27872.2 0.0 27872.2. 1; 27872 , 12217 51 27821.3 0.0 27821.3 27821. 12217 51 27770.4 0.0 27770.4 , 27770 12217 51 27719.5 0.0 27719.5 27719 12184 51 27668.7 0.0 27668.7 ,'27669 12184 51 27617.9 0.0 27617.9 27618 -12184 51 .27567.2 0.0 27567.2 ; 27567 12184 51 27516.4 0.0 27516.4 27516 12184 51 • •' 27465.6 0.0 27465.6 27466 .12152 51 27415.0 0.0 27415.0 27415 ...12152 51 27364.4 0.0 27364.4 ' 27364 12152 51 27313.7' 0.0' 27313.7 27314 . 12152 51 ., 27263.1 0.0 '27263.1 ` 5990 9200 - 70 0.0 375 Y 80 . r •� ! 3 hr BASIN Est.XLS 90 " . 95 ` , X100 7409.8 105 . 7409.8 ' .110 9524 X115. +r Percolation Rate of Retention Basin with Flow Rate 125'. J 130, - 135. 8947.1 140 9791 '145 - 150 ' City Values 3Hr with 0.6 in /hr Perc 155 9911 160 10684.6 165 10684.6 . 170 " 175 11613.1 180. 11613.1 '12826 L (ft) _ 180. For L, W & b input, see'graph Cell Y4 12783.6. • ' 13916 10365 W (ft) : =.. - 46 ;' , ' t ' - - 13872.6 i . - Slope 44 14880.0. SH(all) (ft) = 2.82 14880.0 15972 10640 44 ' H (ft) = 3.0 15927.4.. r J``'►r , b (ft) = 8.5 . -10794 45' - ' '' 0.0 V (ft) = 1.0 11011 ' Increase H(in) by: , ' 0.25 ' ` 18545.7 " 20446 Ratio = 6.3 20399.2 - Perc Rate (in /hr): 0.6 21693 11419 48 21645.5 0.0 ' 21645.5 Time Interval (min): 5.' Note, col A & Cell D9 must be same as Syn Hydro Time Use 0.0 24224.8 r 27055 ' 12120. 50 27004.7 0.0 27004.7 . 30199. _ Basin Volume at H(all) = 29051 cuft Note, Overflow Occuring. See Graph at Cel 1095.9 _.� Flow Rate 12770 Perc Flow Vol Overflow Volume i' • ' 12869 Use hydro 32991.8 Lookup Volume minus perc Volume in Basin .33544.5 Time (min) Data�Here Flow Vol Area ( /time int) (ent intial) 5045.8 .. 29051.0 ' - f., �, ... (cfs) (cuft) (sgft) (cuft)' (cuft) (tuft) (cuft) :. ... 0 0.00 0 0 0 x ` 5 - 0.0 -• 0.00 " . 0 0 0 0 0.0 0.0 + • 10 • ' 1.3 404 8337 35 369.6 0.0 369.6 15 1.1 �.'r 693 8365 35 •658.2 _ '0.0 658.2.. - 20' 1.6 '' 1143 8450 35 1108.2 0.0 1108.2 25 1.6 ., _ 1593 8536 36 1557.8 0.0 1557.8 30 2164 8621 .36 2128.4 ' ` 0.0 2128.4 .2.0 35 1.6 2614 8679 36 2577.5 0.0 40 2.0 3184 8765 37 3147.4 0.0 3147.4 45 2.0 3754 8880 ; 37 3717.0 .0.0 3717.0 , • �, 50 1.6 4202 8938 37. 4164.9 0.0 4164.9 -• -'' ' 55 1.8 • 4691 9025 38 4652.9 :0.0 4652.9 " •, 6611 2.0 5259 9112 38 5221.5 0.0 5221.5 - 5990 9200 - 70 0.0 375 6720 80 . 39 ,85 0.0 90 " . 95 ` X100 7409.8 105 . 7409.8 ' .110 9524 X115. +r ' 120 8057.5 125'. c ' 130, °j 135. 8947.1 140 9791 '145 - 150 9876.8 - 155 9911 160 10684.6 165 10684.6 . 170 " 175 11613.1 180. 5990 9200 ' 38 5951.4. 0.0 5951.4 +' ' 6720 9317 39 6680.8 0.0 6680.8 _ 7449 , 9435 39 7409.8 0.0 7409.8 ' 8097 9524 40 '8057.5 0.0 8057.5 8987 9672 40 8947.1 0.0 8947.1 9918 9791 41 9876.8 0.0 9876.8 - 10726 9911 = 41' 10684.6 0.0 10684.6 . ,11655 10061,: 42-. 11613.1 0.0 11613.1 '12826 10213 "' 43 12783.6 0.0 12783.6. • ' 13916 10365 43 13872.6 0.0 13872.6 i 14924 ' 10517 44 14880.0. 0.0 14880.0 15972 10640 44 ' 15927.4 0:0 15927.4.. 17060 -10794 45' - ' 17014.6 0.0 17014.6 18592 11011 46 18545.7 0.0 18545.7 " 20446 11261 47 • 20399.2 0.0 20399.2 21693 11419 48 21645.5 0.0 ' 21645.5 24274 11767 49 24224.8 0.0 24224.8 r 27055 ' 12120. 50 27004.7 0.0 27004.7 . 30199. 12509 .52 30146.9 1095.9 29051.0 ' 32411 12770 ` 53 32358.1' 3307.1 29051.0 • 33045 12869 54'-., - 32991.8 3940.8 T 29051.0 s 33598 12935 54 .33544.5 4493.4 29051.0 ; 34151 13001 54' 34096.8 5045.8 .. 29051.0 R 34218 : 13001 54 34163.9 5112.9 29051.0 130 ti 140 ' 150 160 ,.. '170 180 ' u 190 200 210 '220 230 l 240 250. 260 270 280 r 290 -300 310 320 330 340 • _350 360. 5019 9054 75 :. 4943.2 0.0 4943.2 5563 9142 J6 -5487.0 0.0 6 hr BASIN Est.XLS, ; > 6107 " ' 9229 ' 77 6030.0 0.0 .r 6650 Percolation of Retention Basin with Flow Rate 6572.3 • 0.0 6572.3 7288 9406 78 7209.8 0.0. 7209.8 7926 .9494 Cit y Value 6Hr ith 0.6 Whir Perc 7846.5 8610 9613 80 8530.1 L (ft) _ 18 For L, W & b input, see graph Cell Y4 9702 ,t 9260.9 W (ft) _ 46 ,. 9260.9 10216 9851 ' 82 Slope 0.0 rf. H(all) (ft) _ -2.82 ,. 83 ., 0.0 H (ft) _� 3.0 10152. b (ft)'= 8.5 12260.8 0.0 ' - 12260.8 T 13552 V (ft) = 1.0 , 13465.8 Increase H(in) by: 0.25 , ' .10517 88 . Ratio = .0.3 14812.8 Perc Rate (in /hr): 0.6 = 16349.7 0.0 16349.7 - 10949 Time Interval (min): ;10 Note, col A & Cell D9 must be same as Syn Hydro Time Use 19943 11199 93 19849.2 0.0 19849.2 21907 11450 95 21811.4 , Basin Volume at H(all) = 29051 cuft Note; Overflow Occuring. See Graph at Cell :. 'Flow 'Rate 23915.1 ' ,Perc. Flow Vol Overflow Volume 26782.5 0.0 Use'hyd_ro 30422 - 'Lookup -.Volume minus perc Volume. in Basin `. 35011 Time (min) Data;Here Flow Vol Area ( /time int) (ent intial) 13200 110 35890.6 ,0 (cfs)` (cuft) (sgft) (cuft) (cuft) (cuft) (cuft) , -.13233 110/,:, 0.00 0 29051.0 0 io y -� 10- 0.0 `0:00 0 0 0.0 0.0 0.0 ' .'•20 0.6 , 332 : -. 8308 69 263.2 ' 0.0 30 0.6 644 8365 70 573.8 0.0 573.8 "' P 40' 0.7' , 1002 8422 70 931.9 0.0 931.9 50 „ . 0.7 1360 ' , ." 8479 71 1289.5 0.0 1289.5 ' 60 0.8 1766 8564 71 1694.4 0.0 -1694.4 F ' .70, , 0.9 ' * ' . 2218 - 8621 72 2146.6 0.0 2146.6 F` ` 80 ` 0.9 . y2671 8707 73 2598.2 0.0 2598.2' . 90 0.9 ' 3122 •8765 73 3049.3 0.0 30493 ,100 0.9 ' 3573 8851 74 3499.6: 0.0 3499.6 110 0.9 4024 8909 74 3949.5 0.0 3949.5 120 1.0 4522 8996 75 4446.6 0.0 r 4446.6 = ` 130 ti 140 ' 150 160 ,.. '170 180 ' u 190 200 210 '220 230 l 240 250. 260 270 280 r 290 -300 310 320 330 340 • _350 360. 5019 9054 75 :. 4943.2 0.0 4943.2 5563 9142 J6 -5487.0 0.0 5487.0 ; 6107 " ' 9229 ' 77 6030.0 0.0 6030.0 , 6650 9317 - 78 6572.3 • 0.0 6572.3 7288 9406 78 7209.8 0.0. 7209.8 7926 .9494 79 7846.5. 0.0 7846.5 8610 9613 80 8530.1 0.0 8530.1 9342 9702 81 9260.9 0.0 9260.9 10216 9851 ' 82 10134.2 0.0 10134.2 , 11233 997,1 83 '11150.3 0.0 •11150.3 ` ` 12345 10152. _85 12260.8 0.0 ' - 12260.8 T 13552 10304 86 13465.8 0.0 13465.8 �. 14900 .10517 88 14812.8 •. 0.0 14812.8 16439 10732 89 16349.7 0.0 16349.7 18120 10949 :91 18028.6 0.0 18028.6 19943 11199 93 19849.2 0.0 19849.2 21907 11450 95 21811.4 , 0.0 21811.4! , 24013 11735 98 23915.1 0.0 23915.1 26883 12088 101'_• . 26782.5 0.0 26782.5 30422 12541 105 30317.2. ' 1266.1 29051.0 35011 ' 13100 109 ' 34901.4 5850.4 - 29051.0 36001 13200 110 35890.6 6839.6 29051.0 36175 13233 110 36064.8 7013.8 29051.0 36089 -.13233 110/,:, " 35978.5 6927.5 29051.0 195 210 225 •240 255 270 285 F, '300 M1 315 330 345 '- 360 375' . 390 405 ,3 420 435 450 465 480 495 .510 525 540 425 '8337 •` 104. 320.8 0.0 320.8 " •t, ' ' 480 8337 104 "' • 375.7: 0.0 375.7' �'• , 24 hr BASIN Est.XLS . 535 *' 105 .430.3 _0.0 430.3 621 y• 105 Percolation' Rate of Retention Basin with Flow Rate 0.0 . �'' 4' City Values 24Hr with 0.6 in/hr Perc .105 602.7 ' " s 602.7 y F 8393 105. 720.5 0.0 720.5 943 L (ft) _ 180' For L, W & b input, see graph Cell Y4 838:0 0.0 838.0 W (ft) _ . 46 842 8393 :105 736.9 Slope 736.9 H(all) (ft) .= -2.82 8422 105 822.6 0.0 H (ft) = 3.0 1045 ' b (ft) ,= ..8.5 105 940.1 0.0 940.1 V (ft) = 1.0. -8422 Increase H(in) by: 0.25 0.0 ` { . Ratio = 0.3 ': r Perc Rate-(in/hr): .. 0.6 782.7 - Time'lnterval (min): 15 Note, col A & Cell D9 must be same as Syn Hydro Time USE :8422 r s. Basin Volume at H(all) = 777.3 .' Note, Overflow Occuring. See Graph'at Cel ? . 29051 cuft 8422 Flow'Rate: 778.2 0.0 Perc Flow Vol Overflow Volume } ? ` Use hydro 849.0 Lookup , Volume minus perc Volume in Basin 0.0 ' Time (min) Data Here Flow Vol Area ( /time int) (ent intial) 0.0 4 ~• ., 1267 (cfs) (cuft) (sqft) (cuft) (cuft) (tuft) 1489 " .0 om 0 '3 ` • 0 0 '• 8564 •(tuft) F. 15• 0.0. 0.00 0 ° 0 0.0 0.0 0.0. .• 30 0.1 95 0 , . 0 95.5, 0.0 95.5. • 45 0.1. - 191.. 8308 104 '87 * 1 '. 0.0. 87.1 60.' - 0-.l,. .: 214 • 8308. • 104 110.5 0.0 110.5 75- 0.1 , 206 8308 104 102.2 0.0 102.2 ' 90 '0.1 ;' 198 8308 104- 93.8 0.0 93.8 105 Al. 189 - 8308 104 85.4 0.0 85.4 120 ` 0.1 213 8308 104 108.8 0.0 A 08.8 . . M1' '135 0.1 ., 236 8308 ' 104. 132.3 0.0 132.3 ` 150 0.1 260 8308 104 155.7 0.0' • 155.7 g "` r ;. • 165,• 0.2 315 8308 104 -. 211.0 • 0.0 211.0 180 0.2 370 • . 8337 104- 265.9 • � 0.0 265.9 195 210 225 •240 255 270 285 F, '300 M1 315 330 345 '- 360 375' . 390 405 ,3 420 435 450 465 480 495 .510 525 540 425 '8337 •` 104. 320.8 0.0 320.8 " •t, ' ' 480 8337 104 "' • 375.7: 0.0 375.7' �'• , 535 8365 105 .430.3 _0.0 430.3 621 8365 105 516.7 0.0 516.7 708 8393 .105 602.7 ' " 0.0 602.7 825 8393 105. 720.5 0.0 720.5 943 -F 8422 105, 838:0 0.0 838.0 842 8393 :105 736.9 0.0 736.9 928 8422 105 822.6 0.0 822.6: 1045 8422 105 940.1 0.0 940.1 963 -8422 105 858.2 0.0 858.2 { . 888 %,8422 105 782.7 0.0 782.7 883 :8422 105 777.3 .' 0.0 777.3 883 8422 105 778.2 0.0 778.2 954 8422 105 849.0' 0.0 849.0 1031 8422 105 926.1 0.0 926.1 ' .1115 8450 = ' 106. 1008.9. 0.0 1008.9 1267 8479 t . -n : •106 - 1161.2 0.0 1161.2 1489 8507 106 1382.9 0.0 1382.9 1781 '• 8564 107 1673.5 ` 0.0 1673.5 a .. 2204 8621 108 2096.7 .0.0 . 2096.7 2634 8679 .108 2525.1 0.0 2525.1 3131 8765 , ,''.; 110. •; 3021.9 0.0 3021.9` 3698 , 8851 ° 111 3587.1 0.0 3587.1 ercolation Rate of Retention Basin with Flow Rate ; FOR ata 1 Hr with 6.6 Whir Perc ''- = 180 'For L, W & b input, see graph Cell Y4 Q _�!-(f 1N (ft) 50.6 ' Slope _ . H(all) (ft) 2.82 r' H (ft) _ 3.0 ..�; ' b (ft) _ -.: - •8:5' V (ft) = 1.0 ; Increase H(in) by: ' 0.25 J Ratio = 0.3 �. " _ Perc Rate (in /hr): � 0.6 - • 1 r 3 ),y��• Time Interval (min): 5 Note, col A &Cell D9 must be same as Syn Hydro Time Use. Rck VI1= ' Basin Volume at H(all) 31489 cuft 7) • Flow Rate Perc Flow Vol Overflow Volume Use hydro Lookup Volume minus perc Volume - • in Basin 1l ) s Time (min) Data Here Flow Vol Area ( /time int) (ent intial) f (cfs) (tuft) (sgft) (tuft) (cuft) (cuft) (cuft) !' . z . 5'` 0.0 0.00 0 ., n0 0.0 ` 0.0 0.0 :r 10 4.3 `` 1276 9282 • 39 1237.4 0.0 1237.4: ` 15 4.6 -; 2608 ., 9485.', 40 2568.2 0.0 2568.2 20 4.4 `, - 3876 9661 40 3835.5 0.0 3835.5 i 25 • 6.1 5678 ;: 9927 41 5636.2 0.0 5636.2 ` 30 6.9 _ 7698 , .10226 43 7655.9 0.0 f 7655.9 •. , 35 8.0 ;.; •..10064 :T 10558 - 44 10020.1 0.0 10020.1 Si • 40 8.7 12617 10894 45 12571.6 0.0 12571.6 '`. 12.1 16206 ` ' 11358 47 16159.1 0.0 16159.1 50 17.7 21461 12051 50 MAn26187.7 21410.4 0.0 21410.4 _ ' a 55 - 16.1 26240 12630 53 0.0 26187:7 ' ..60 • 3.6 27275 12759 53 7221.8 0.0 ' .27221.8 " - 65 27222 12759 53 27168.7 ` 0.0 27168.7 70 27169 12759 53 27115.5 0.0 27115.5 . ` . 75 27116 12759. .53 27062.3 0.0 .' 27062.3 ` 80 27062 12727- 53 27009.3 0.0 27009.3 1' 85, - 27009 12727.. - 53 26956.3 0.0 26956.3 90 26956 - 12727. 53 26903.3 0.0 26903.3 ` 95 26903 12727 53 26850.2 0.0 26850.2 ` 100 26850 12727' 53 - "26797.2 0.0 26797.2 105 26797 12694 53 26744.3 0.0 26744.3 y - 110 26744 12694 53 26691.4 0.0 26691.4. 115 26691 12694 53 26638.5 0.0 26638.5. 120 26639 12694 53 26585.6 0.0 ; 26585.6. 125 26586 12694 53 26532.7 0.0 26532.7 ' 130 26533 12662 53 26480.0 0.0 26480.0 135. 26480 12662 53 26427.2 0.0 26427.2 140 26427 12662 53 26374.5 0.0 26374.5 , 145 26374 '.12662 53 26321.7 . 0.0 26321.7 150 26322 •12662 53 26268.9 0.0 26268.9 155 26269 12630 53 26216.3 , 0.0 26216.3 - ; . 160 26216 °12630.. 53 26163.7 0.0 26163.7 165 .26164 12630 53 26111.1 0.0 26111.1 170 26111 12630 53 26058.5 0.0 26058.5 175 180 26058 26006 12630 12597 53 • • 52 ' 26005.8 25953.3 0.0 0.0 26005.8 25953.3 ; Page 1 Page 1 C far Wt7 65. 41 70 0.0 4570.5. .4611 5227 75 *._ 80 0.0 85 '+ 90 -- 95 JF 100 ' 3hr.XLS . .. 110 0.0 , -7151 120 42 125 ' 0.0, 130 7967 135 Percolation�Rate Retention Basin with Flow Rate 0.0 145 8661 .of 43- 155 0.0 160 , "165 - r . • EOR, Data 3Hr with 0.6 in /hr Perc 9476 10467 44 9432.8 0.0 9432.8 v 10534 10619 44 •_ 10489.3 0.0 10489.3 11509 .L (ft) _ • 180 For L, W & b input, see graph Cell Y4 0.0 11464.5 12404 _ ?" W (ft) _ 50.6 45 ' 0.0 12358.3. Slope 10986 46 r H(all) (ft) = 2.82 0.0 13292.1 ' 14312 ` 11109 H (ft) = 3.0. • z , .; . b (ft) _. 8.5 ` 11295 47 15683.4 V (ft) = y •1.0 }� ' y' Increase H(in) by: r . 0.25 r 0.0 17423.5 . Ratio = 0.3' ' ^Perc Rate (in /hr): 0.6 18556.6 21073 -' 50 21022.7 0.0 Time Interval (min):_- 5 ' Note, col A & Cell D9 must be same as Syn Hydro Time USE` . y Basin Volume at H(all) = 23689.5 26772. 12694 r 53 - 26718.7 w 31489 cuft 28871 'Flow'Rate 54 28816.9 Perc Flow Vol Overflow_ Volume •54 29337.8 Use hydro', 29337.8' • Lookup Volume minus perc Volume in Basin 29777.5 ' . Time (min) DataHere Flow Vol Area ( /time int) (ent intial). 30226 -. 13119 55 ' • • . (cfs) (cuft) (sqft) :.' . (cuft) (cuft) (cuft) (cuft). ? f 0 0.00 0 0 0 , -0.0 '0.00 0 0 0.0 -0.0 `. 0.0 10' 1.0 292 9137 38 . ' 254.0 0.0 ' 254.0' ; - .. •.15`• r 0.7 '. 465 9166 38 427.1 0.0 427.1 1.2. - 800 9224 38 .. 761.6 0.0 761.6 ..'25 + : 1.21- 1135 A,e 9253 1096.1 0,0' 1096.1. ' ; ' 30 1.6 1590 ' 9340 39 1551.4 0.0 1551.4 ' ' 35 1.2 1924 r ' 9369 39 1885.4, 0.0 1885.4 " 40 1.6 ' ` • 2380. 9456 39 2340.3 0.0 2340.3 ' - 45 1.6 2835 ;;- 9515 40 2794.9 0.0 2794.9. a , 50 1.2 3168 9573 40 3128.0 0.0 3128.0 ` 55 -' . 1.4 3541 rM1 9632 ' -40 3501.3 0.0 3501.3 60 1.6 3996 9691 40 3955.2 0.0 .3955.2- Page 1 C far Wt7 65. 41 70 0.0 4570.5. .4611 5227 75 *._ 80 0.0 85 '+ 90 -- 95 0.0 100 6375 105 . .. 110 0.0 •115 -7151 120 42 125 ' 0.0, 130 7967 135 43 7924.4 ' . 0.0 145 8661 150 43- 155 0.0 160 , "165 - 170 175 180 Page 1 C far Wt7 9779 41 4570.5 0.0 4570.5. .4611 5227 9868 41 5185.4 0.0 5185.4',, '. '5841 9957 • ., '41 5800.0 0.0 5800.0 6375 10017 42 6333.4 0.0 6333.4 -7151 10136 42 7108.9 0.0, 7108.9 ' 7967 10256. 43 7924.4 ' . 0.0 7924.4 8661 10346 43- ,, 8618.2 0.0 8618.2 9476 10467 44 9432.8 0.0 9432.8 v 10534 10619 44 •_ 10489.3 0.0 10489.3 11509 -''10741 45 11464.5 0.0 11464.5 12404 . 10863 ' 45 12358.3 0.0 12358.3. 13338 10986 46 13292.1 0.0 13292.1 ' 14312 ` 11109 46 °' 14265.7 0.0 14265.7. 15730 11295 47 15683.4 0.0 15683.4 17472 " .11545 48 17423.5 0.0 17423.5 . 18605 11671. 49 18556.6 0.0 18556.6 21073 11987 50 21022.7 0.0 21022.7 - 23741 , _ 12339 51 23689.5 0.0 23689.5 26772. 12694 r 53 - 26718.7 0.0 26718.7 28871 12955 54 28816.9 0.0 28816.9 29392 13021 •54 29337.8 0.0 29337.8' • 29832 13086 55 29777.5 0.0 29777.5 ' . 30272 13119 ' 55 30217.2 0.0 30217.2 30226 -. 13119 55 3 .6 0.0 30171.6- Page 1 C far Wt7 130 140 - 150 160. r 170' - 180 0.0 190 '. 200. , 9485 210' , . '2583.3 220 2583.3. 230 2979 240 80' 250 #' 6hr.XLS 270. ' 280 3215.1' 290 3215.1 300• • _ 310- 80 r f . Percolation Rate -of R_ etention Basin Flow "Rat' 330 340 9691 350 ' 360 4036.8 with 4036.8 • �'.: S FOR Data 6Hr with 0.6-in /hr Pere'-' - 4494.6 0.0 4494.61• ' 5082. 9838 82 4999.8 0.0 4999.8 , 5731 9927 L (ft) _ .. 180 Foe L, W & b input, see graph Cell Y4 5648.1 6523 ` W (ft) = 50.6 "'84 6439.1 0.0 6439.1 Slope 7410 {, H(all) (ft) = 2.82 .7325.0 y , H (ft) = 3.0 86 b (ft) = 8.5 0.0 8305.5 9516 V (ft) = 1:0 • j • Increase H(in) by:,,,. , 0.25 10830 10649 Ratio = 0.3 0.0 'Pere Rate (in /hr); . 0.6 12287 10863 91 12196.8 0.0 .12196.8 Time Interval (min):. 10 • Note, col A & Cell D9 must be same as Syn Hydro Time Use . .92 13794.0 0.0 13794.0 15627 • 11295 • 94 , 15533.1 . ' Basin Volume at H(all) = 31489 cuft .17510 11545 96 `4 0.0 Flow Rate 20158 a. Pere Flow Vol Overflow Volume,. ' ' Use'hydro 12307 Lookup Volume minus perc Volume. in Basin ' Time (min) Data Here. Flow Vol . - . Area ( /time int) (ent intial) 28608 ` 12923 108 E (cfs) (tuft). (sqft) (tuft) (cuft) (cuft) ' (cuft) 0.0 ..•. 0 0.00 0 12923 0 p 0.0 28368.5 .i . r t: 101- 0.0 0.00 0 0 , 0.0 . 0.0 0.0 ... _.; 20 0.2 108 0 - • 0 108.0. 0:0 108.0 ... ' ' 30 0.3 -.: 264 9137. ; `76 187.8 0.0 187.8 y 40 0.3 392 . ' 9166" 76 315:2 0.0 315.2 . . 50 0.3 519 9166 76 442.7 0.0 442.7 '• ' 60 0.4 + . 694 9195 i„ 77' 617.8 0.0 617.8 " 70 0.5 917 9224 77 840.6 0.0 840.6.: , 80. 0.5 •1140 9253 -77. 1063.2 0.0 1063.2 90 + _ 0.5 1363 � 9311 --78 1285.3 0.0 1285.3 - • +• ;� 100 ' 0.5' 1585 9340 78 1507.1 0.0 1507.1 110 0.5 • 1807" -, '9369 78 1728.7 ` 0.0 1728.7 120 0.6 2076 9398 78 1998.0 0.0 1998.0'. 130 140 - 150 160. r 170' - 180 0.0 190 '. 200. , 9485 210' , . '2583.3 220 2583.3. 230 2979 240 80' 250 0.0 260 270. ' 280 3215.1' 290 3215.1 300• • _ 310- 80 320 0.0 330 340 9691 350 ' 360 4036.8 0.0 2346 9456 79 2266.8 0.0 2266:8 2662 9485 79. , . '2583.3 0.0 2583.3. 2979 9544 80' 2899.3 0.0 2899.3 3295 9573 80 3215.1' 0.0 3215.1 3706 9632 80 3626.2 0.0 3626.2 " 4118 9691 81 4036.8 0.0 4036.8 4576 9779 81 - 4494.6 0.0 4494.61• ' 5082. 9838 82 4999.8 0.0 4999.8 , 5731 9927 83 5648.1 0.0 5648.1 6523 10046 "'84 6439.1 0.0 6439.1 7410 10166', 85 .7325.0 0.0 7325.0 8391 ' 10316 86 8305.5 0.0 8305.5 9516 10467 87 9428.5 0.0 9428.5 - 10830 10649 89 10741.7 0.0 10741.7 „ 12287 10863 91 12196.8 0.0 .12196.8 ° 13886 11079, .92 13794.0 0.0 13794.0 15627 • 11295 • 94 , 15533.1 0.0 15533.1 .17510 11545 96 17413.8 0.0 17413.8 20158 11892 99 20058.5 0.0 20058.5 23473 12307 103 • .23370.6 . 0.0 23370.6 27840 12825 107 0.0 27732.8 28608 ` 12923 108 0.0 28499.8 28560 12923 -108 - P28452.2 0.0 28452.2 28476 12923 108 0.0 28368.5 t ` 195 115 210 ° 0.0 225 240 _ 255 365.6 270 • 285 ' 300 115 315 0.0 330 24hr.XLS 9195. 360 486.2 . 486.2 390 _ 405 ,. =, -420 ` 435 450 Percolation Rate of Retention Basin with Flow Rate. • 480 w, 495 FOR Data 24Hr with 0.6 in/hr Perc. 510 �. 525 540 0.0 ,.I " 1032 - 9253 116 916.1 0.0 916.1 1107 . . - L (ft) = 180 • For L, W & b input, see graph Cell Y4 991.4 '• 1214 9282 W (ft) _ 50.6 1098.1 0.0 .1098.1 ' Slope 9311 116 1236.3 H(all) (ft) _ .. 2.82 a 1236.3 1491 9311 H (ft) _ 3.0% 0.0 1374.5. b (ft) = 8.5 1661 9340 117 1544.2 V (ft) _ 1.0. }� Increase H(in) by: " , 0.25 • • 0.0 1713.5 Ratio = 0.3 Fs „ 117 (iri /hr): 0.6 1914.3 2233 9427 118 2114.7 ' 'Perc-Rate Time Interval (min): 15 'Note, col A & Cell D9 must be same as Syn Hydro Time Use, 14'. - 0.0 2314.7 2665 9485 119 2546.2 0.0 2546.2 2928 `" 9544 119 2808.8 0.0 2808.8 '2809 w, .119.. Basin Volume at H(all) = 31489 cuft 2690.1 2829 9515 119 a 0.0 • Flow Rate 2860 Perc Flow Vol Overflow Volume, 2741.5 2967 Use hydro 1191- Lookup Volume minus perc Volume in Basin 9573 120 Time (min) Data Here Flow Vol Area ( /time int) (ent intial) • :. WS) (cult) (sqft) (cuft) (cuft) (cuft) (cuft) ` 0 L 0.00 1 0 0 U ^ 15 0.0 0.00 0 0 0.0 0.0 0.0 .. 30 0.1 95 0 0 95.5 0.0 95,5 ' 45 0.1 a 191 9137 114 76.7 0.0 76.7 60 0:1 ' 204 9137 114 89.8 0.0 89.8 75 . 0.1 ,185 0 0 185.3 • 0.0 185.3 90 0.1 281. ' 9137• 114 166.6 0.0 166.6 105 0.1 262 9137 114 147.8 0.0 147.8 --120 0.1 275 9137 114 160.9 0.0 160.9 135 0:1 288 9137 114 174.0 0.0 174.0 150 0.1 301 9137 114 187.1 0.0 187.1 , 165 0.2 346 9137 114 232.0 0.0 232.0 ' 180 0.2 391 9166 115 276.5 0.0 276.5 • "' ` 195 115 210 ° 0.0 225 240 _ 255 365.6 270 • 285 ' 300 115 315 0.0 330 .345 9195. 360 486.2 375 .. 486.2 390 _ 405 ,. =, -420 ` 435 450 9224 = 465 • 480 669.7 495 892 510 �. 525 540 436 9166 • 115 321.1 ° 0.0 321.1 = 480 9166 115 � • 365.6 0.0 365.6 ` • • 525 9166 115 410.2 0.0 410.2 601 9195. 115 486.2 0.0 486.2 }.. 677 9195' 115 562.2 0.0 562.2 785 9224 115 669.7 0.0 669.7 892 9224 115 777.1 0.0 777.1 " 1032 - 9253 116 916.1 0.0 916.1 1107 9253 116 991.4. ` 0.0 991.4 '• 1214 9282 116 1098.1 0.0 .1098.1 ' 1353 _ 9311 116 1236.3 0.0 1236.3 1491 9311 116 1374.5 0.0 1374.5. 1661 9340 117 1544.2 0.0 • 1544.2 1831 9369- 117 1713.5. 0.0 1713.5 µ . 2032 9398 117 1914.3 0.0 1914.3 2233 9427 118 2114.7 0.0 2114.7 2433 9456 1_ 118 2314.7 0.0 2314.7 2665 9485 119 2546.2 0.0 2546.2 2928 `" 9544 119 2808.8 0.0 2808.8 '2809 9515 .119.. 2690.1 0.0 2690.1 2829 9515 119 2710.1 0.0 • 2710.1 2860 9515 119 2741.5 0.0 2741.5 2967 9544 1191- 2847.6 T 0.0 2847.6 3148 9573 120 3028.1 0.0 3028.1 Page 1 6 hr BASIN Est.XLS Percolation Rate of Retention Basin with Flow Rate City Values 6Hr with 0.6 in /hr Perc L (ft) = 180 For L, W & b input, see graph Cell Y4 W (ft) = 46 Slope H(all) (ft) = 2.82 H (ft) = 3.0 b (ft) = 8.5 V (ft) = 1.0 Increase H(in) by: 0.25 Ratio = 0.3 Perc Rate (in /hr): 0.6 Time Interval (min): 10 Note, col A & Cell D9 must be same as Syn Hydro Time USE Basin Volume at H(all) = 29051 (cuft) Note, Overflow Occuring. See Graph at Cel V Flow Rate Perc Flow Vol Overflow Volume Use hydro Lookup Volume minus perc Volume in Basin Time (min) Data Here i Flow Vol Area ( /time int) (ent intial) (cfs) . (cuft) (sgft) (cuft) (cuft) (cuft) (cuft) 0 0.00 0 0 0 10 0.0 0.00 0 0 0.0 0.0 0.0 20 0.4 252 8308 69 182.7 0.0 182.7 30 0.5 483 8337 69 413.2 0.0 413.2 40 0.6 761 8393 70 691.0 0.0 691.0 50 0.6 1039 8422 70 968.7 0.0 968.7 60 0.7 1364 8479 71 1293.7 0.0 1293.7 70 0.7 1737 8536 71 1666.3 0.0 1666.3 80 0.7 2110 8593 72 2038.3 0.0 2038.3 90 0.7 2482 8679 72 2409.7 0.0 2409.7 100 110 0.7 0.7 2853 3224 8736 8794 73 73 2780.5 3150.9 0.0 0.0 2780.5 3150.9 120 0.8 3642 8851 74 3568.7 0.0 3568.7 130 0.824 i 4060 8909 74 3986.1 0.0 3986.1 140 j 0.90. 4526 8996 75 4450.6 0.0 4450.6 150 ! 0.90 4990 9054 75 4914.7 0.0 4914.7 160 0.90 5454 9142 76 5378.0 0.0 5378.0 170 + 1.06 ! 6013 9200 77 5936.7 0.0 5936.7 180 1.06 6572 9288 77 6494.6 0.0 6494.6 190 1.14 7178 9376 78 7099.8 0.0 7099.8 200 1:22 j 7831 9494 79 7751.8 0.0 7751.8 210 1:46 8627 9613 80 8546.7 0.0 8546.7 220 }} t 1.70 j 9565 9732 81 9484.4 0.0 9484.4 230 1.86 1 10599 9881 82 10516.6 0.0 10516.6 240 2.02: 11727 10061 84 11643.2 0.0 11643.2 250 i. 2.26 4 12997 10243 85 12912.0 0.0 12912.0 260 2.58 14458 10456 87 14370.8 0.0 14370.8 270 1 2.82 16060 10671 89 15971.5 0.0 15971.5 280 j 3.06 17805 10918 91 17714.0 0.0 17714.0 290 3.30 19691 11167 93 19598.1 0.0 19598.1 300 3.53 21719 11419 95 21623.9 0.0 21623.9 310 4.81 24512 11799 98 24413.3 0.0 24413.3 320 5.93 27972 12217 102 27870.2 0.0 27870.2 330 7.69 32483 12770 106 32376.8 3325.7 29051.0 340 ` 1.70 33396 12902 108 33 0 4237.0 29051.0 350 0.34. 33492 12902 108 C 3338 333.5 29051.0 360 0.04 .___ � -- � 33408 12902 108 33301.0 4249.9 29051.0 Page 1 BASIN Infiltration.XLS Percolation Rate of Retention Basin with Flow Rate • L (ft) = 180' For L, W & b input, see graph Cell Y4 . W (ft) = 46 Slope H(all) (ft) = 2.82 H (ft) = 3.0 b (ft) = 8.5 V (ft) _ • 1.0 Increase H(in) by: 0.25 Ratio = 0.3 Perc Rate (in /hr): C . Time Interval (min): 10 Note, col A & Cell D9 must be same as Syn Hydro Time Use jO�i �� S bit �* f a; (},a. 1l � ae Basin Volume at H all 29051 cuft Flow,Rate.} Perc Flow Vol Overflow Volume sfi' Use hydro's i%0►� Lookup Volume minus perc 'Volume in Basin Ao Time (min) Data Here : Flow Vol Area ( /time int) (ent intial) sk (cuft) (sgft) (cuft) (tuft) (tuft) (tuft) 0 0 0 0 j 10. 0.0� 0.00 0 0 0.0 0.0 0.0 r 20 108 0 0 108.0 0.0 108.0 30 0.3 264 8308 69 194.7 0.0 194.7 40 0.3 398 8337 69 329.0 0.0 329.0 50 0.3 533 8365 70 463.2 0.0 463.2 60 0.4 715 8393 70 645.0 0.0 645.0 ; 70 0.5 945 8422 70- 874.5 0.0 874.5 Q� 80 0.5 1174 8450 70 1103.7 0.0 1103.7 • 90 0.5 1403 8507 71 1332.5 0.0 1332.5 100 0.5 1632 8536 71 1561.1 0.0 1561.1 . 110 0.5 1861 8564 71 1789.4 0.0 1789.4 - 120 0.6 ' 2137 8621 72 2065.1 0.0 2065.1 130 3 �a0 87- 2413 8650 72 2340.7 0.0 2340.7 W` , 140 0.66.,E 2736 8707 73 2663.6 0.0 2663.6 150 - } 0 66v 3059 8765 73 2986.1 0.0 2986.1 160 •' sF" 0:`66.`. 3382 8794 73 3308.4 0.0 3308.4 170 > -M - 0:82�r 3800 8880 74 3725.7 0.0 3725.7 180 X444 -0 82 ` 4217 8938 74 4142.6 0.0 4142.6 r 190 4 0.90 4682 8996 75 4607.0 0.0 4607.0 200 x Y 0.98 r 5194 9083 76 5118.5 0.0 5118.5 210 1 22�,.: 5849 9200 77 5772.8 0.0 5772.8 _ 220y '1 46 6648 9317 78 6569.9 0.0 6569.9 ° -A- 230 x.1:62 "' 7541 9435 79 7461.9 0.0 7461.9 os 240 178=���..., 8528 9583 80 8448.5 0.0 8448.5 n s 250.2.02 - 9659 9761 81 9577.4 0.0 9577.4 n 260 '` 10979 9941 83 10896.4 0.0 10896.4 ���� 2.34 •, o ti� , c 270 2'58 ` 12442 10152 85 12357.5 0.0 12357.5 o 280 'k2 82t 14047 •10395 87 13960.4 0.0 13960.4 290 ~t3.06 '•.� 15794. 10640 89 15704.9 0.0 15704.9 300 112,9_ > 17682 10887 91 17591.2 0.0 17591.2 310 "4 57;m: 20335 11230 94 20241.4 0.0 20241.4 s 320 4 45:69` " 23656 11672 97 23558.8 0.0 23558.8 > > 3301 7-.A5 _ 28028 12249 102 27925.7 0.0 27925.7 H 340 X146 ; 28800 12346 103 28697.6 0.0 28697.6 0 > 350` 0 %1.;0. 28758 12314 103. 28655.0 0.0 28655.0 c7�' 360 - ":0 :04, `� 28679 12314 103 28576.4 0.0 28576.4 q d o '� S • + Page 1 S 1 hr.XLS' ' Percolation Rate of Retention. Basin with Flow Rate 2 h� FOR Data 1 Hr with 0.6 in /hr Pere �. •180 'For •L (ft) _ L, W & b input, see graph Cell Y4 W (ft) = 50.6 Slope `H(all) (ft) - 2.82 H (ft) = 3.0 �q 'b (ft) = 8.5 t V (ft) = 1.0 Q�1 Increase H(in) by: 0.25 z Ratio = 0.3 ; Perc Rate (in /hr): '0.6 `61 ime Interval .-Time (mini): V. 5. Note, col A & Cell D9 must be same as Syn Hydro Time Use • ' -, 1�� • :.. Basin Volume at H(all) = 31489 Flow jRate Perc . Flow Vol Overflow Volume Use hydro Lookup Volume minus perc Volume in Basin ,.._. ` Time-(min) Data Here Flow Vol , Area ( /time int) (ent intial) „ (cfs) (cuft) (sgft) (tuft) (cuft) (cuft) (cuft) i 0 0.00 e 0 .0 0 f ,, ir•'. 5 { 3.7- • 1110.00 9253 39 1071.4. 0.0 1071.4 10 ' 4.8 1 2511 , 9456 39 2472.0 0.0 2472.0 .15 5.1 4002 19691 40 3961.7 0.0 .3961.7 20- , 4.9 5432 •9898 41 5390.4 0.0 5390.4 , -25 6.6 . 7370 10166 42 7328.1 0.0 '7328.1 " .. 30 7.3 9518 10467 '44 9474.5 = 0.0 9474.5 • 35' - 8.4 11994, 10802 45, 11949.5 0.0 11949.5 40 9.0 14649. , t, 11171 47' 14602.9 0.0 14602.9 _ 45:" 12:3',' '- 18293 11640 '' 48 18244.4 0.0 18244.4 50 17.6 • . , 23524 12307 51 ,� 23473.1 0.0 23473.1 . 55 16.1. . 28303 12890 54 28249.4. 0.0 28249:4 ; 60 4.2 29509 13021 54 294455.2' 0.0 29455.2 65 29455 13021 ' S4 29401 .9 0.0 29400.9 �'r .• 70 :' 29401 13021 54 29346.7 0.0 29346.71 , . '75 29347 13021 54 29292.4. 0.0 29292.4 80 13021 54 29238.2 0.0 • 29238:2 t: 85 29238 12988 54 ' • 29184.0 0.0 29184.0 •90 29184 •12988 54 29129.9 0.0 29129.9 _ ` t 95:.- 29130 ` . 12988 54 29075.8 0.0 29075.8 100 - 29076 12988 54 29021.7 0.0 29021.7 i} . a ° 105 .29022 -. 12988 54 28967.6 0.0 28967.6 110. 28968 12955 54 28913.6 0.0 28913.6 115 28914 12955 54 28859.6 0.0 .28859.6 -r ` 120 28860 12955 54 28805.6 0.0 28805.6-1, ' 125 '28806 12955 54 28751.6 0.0 28751.6 ` -1130 28752 12955 54 28697.7 0.0 28697.7 ` 135 28698 12923 54 28643.8 0.0 28643.8 140' (28644 12923 '54 28590.6 0.0 28590.0 145 28590 12923 54 28536.1 0.0 28536.1 ' .150 28536 12923- 54 28482.3 0.0 28482.3- `. 155 28482 .12923 ' F 54 28428.4 . 0.0 28428.4 160 28428 12890 54 28374.7 0.0 28374.7 , 165' 28375 12890 54 28321.0 0.0 28321.0 170 28321 12890 54. _ , 28267.3 0.0 28267.3 175 28267 12890. 54 , 28213.6 0.0 28213.6. r` 180 28214 12890 .54 28159.9 0.0 28159.9 s Page 1; 7747 10226 65 G � 70 8770 , 75 w b.0 3hr.XLS 9792 10497 L '. 85 • 10682 90 „ 95 0.0 10637.9 ! ` Tercolatioli ii Rate-of Retention Basin with' Flow Rate `. 45r 105 0.0 FOR Data Mr with 0.6 in /hr Pere 110 1.0986 46 - ,115 0.0 i L (ft) = 180 • For L, W & b input, see graph Cell Y4 . �- 46 125 W (ft) = 50.6 14418.8 130 11327 • , 47 Slope .0.0 15765.1 ' Hall) (ft) = 2.82 11545 '48 145 ;. H (ft) = 30 . b(ft)= 8.5 155 0.0 _ 160 V(ft): 10• t - " Increase H(in) by: . 0.25 170 12147 51 Ratio = 0.3 . .. Perc Rate (in /hr): 0.6 51 23731.4. 0.0. 23731,4 ` t 26110 12630' Time Interval (min): n 5 Note,'col A & Cell D9 must be same as Syn Hydro Time Use , Basin Volume at H(all) .12955 . - Note, Overflow Occuring. See Graph at Cel 28906.9 31489 cuft 28906.9. 't Flow'Rate 13185 55 Perc Flow Vol Overflow Volume 13650 ' - 57 Use hydro 3310.6 Lookup Volume minus perc Volume in Basin 7665.4 Time (min) Data Here ' Flow Vol Area'. ( /time int) (ent intial) 31488.9 - 47593 15079 63 -(cfs) (cuft) (sqft) (tuft) (cuft) (cuft) (cuft) ^ " 0 0.00 0 64 ,° 0 0 31488.9 49942 ,. 15323 5 -0.0 0.0.0 0 0 0.0 0.0 0.0. 49829.1. 10 1.6 474 ,9166 38 436.1 0.0 436.1 - 15 1.1 779 < 9224 38' 740.7 0.0 740.7 `.' 20 2.0' 1346 9311 39 1307.6 0.0 1307.6 25 . 2.0 1913 9369 39 1874.2 10.0 1874.2 30 2.7 ., 2677 9485 40 2637.3 0.0 2637.3 35' 2.0 ' 3243 9573 40 3203.1 0.0 3203.1 R` . 40 2.7 -4006 9691 ' 40 39653 0.0 3965.3 ' Y x 45 . .. 2.7 4768. 9809 41 4727.1 0.0 • 4727.1' 50 2.0 5333 , • 9868 41 5291.6 0.0 5291.6 55 2.2 5963 9957 41 .5921.4 ` 0.0' 5921.4 60 2.7 6724 10076 42 6682.0 0.0 6682.0 '` = r 7747 10226 65 G � 70 8770 .10376 75 w b.0 8726.7 .` 9792 10497 80 '. 85 • 10682 90 „ 95 0.0 10637.9 ! ` 100 10802.,- 45r 105 0.0 ` 110 1.0986 46 - ,115 0.0 ,120 - �- 46 125 0.0 14418.8 130 11327 • , 47 135 .0.0 15765.1 ' 140 11545 '48 145 ;. 17504.5 150. . 49 155 0.0 _ 160 11956. . i 50 165 0.0 20586.7 170 12147 51 175 180 7747 10226 43 7704.7 0.0 7704.7 8770 .10376 43 - 8726.7 b.0 8726.7 .` 9792 10497 44 9748.2 0.0 9748.2 r 10682 10619 44 10637.9 0.0 10637.9 ! ` 11966 10802.,- 45r 11020.8 0.0 11920.8 13314 1.0986 46 - 13268.6 0.0 13268.6 ` 14465 111,40 46 14418.8 0.0 14418.8 15812 11327 • , 47 15765.1 .0.0 15765.1 ' 17553 11545 '48 17504.5 0.0 17504.5 19161 11766 49 19111.7 0.0 19111.7 20637 11956. . i 50 20586.7. 0.0 20586.7 22177 12147 51 22126.6 0.0 22126.6. 23783 12339 51 23731.4. 0.0. 23731,4 ` t 26110 12630' 53 26057.2 0.0 26057.2 28961 .12955 . - 54.- 28906.9 - 0.0 28906.9. 't 30826 13185 55 30770.8 0.0 30770.8 .34856 13650 ' - 57 34799.5 3310.6 31488.9 ' 39213 14154 59 • . 39154.4 7665.4 31488.9 44159 14700 61 E 44097.9 12609.0 31488.9 - 47593 15079 63 47529.7 16040.8 31488.9: 48464 '15184 63 48400.4 16911.4 31488.9 , 49203 , ` 15253 64 ,° .5 17650.5 31488.9 49942 ,. 15323 64 49878.2 18389.3 31488.9. ..:° 49893 .15323 64 49829.1. 18340.2 31488.9 _ 4280 . .. 81 140 0.0 150 s " :. j r '• _ 6hr.XLS 190 4841 200 Percolation Rate of Retention Basin with Flow Rate 220 " 230 FOR Data 6Hr with,0.6 ih /hr Perc 5318.8 - 250 5318.8 260 5961 270 . t; 280 _ 290 300 . L (ft) _ '180' For L,`W & b input, see graph Cell Y4 320 6592.0 ` . 330 WY(ft) = 50.6 340' 85 350 360 0.0 Slope 8181 H(all) (ft) = 2.82 - 86- h 0.0 8095.2 H (ft) = 3.0 .10407 b (ft) = 8.5 . 8962.0 0.0 8962.0 • , V (ft) = 1.0 `. . „ increase H(in) bye y 0.25 .10061'0 `E 11481 Ratio = 6.3.- 11391.9 Perc Rate (in /hr): R 0.6 12968 - '. 10955 '61 12876.7 0.0 .Time (min): • 10 Note,-col A& Cell D9 must be same as Syn Hydro Time Use . "• ,- 11171 ,Interval 14515.3 0.0 14515.3 • ` 16480 j 95 16385.3 ' 0.0 Overflow Occuring. See Graph at Cel Basin Volume at H(all) = 31489 =Note, 18564.2 0.0 Flow Rate y 21074 Perc Flow Vol Overflow Volume ` _ Use hydro 12339 Lookup Volume minus perc Volume in Basin 26591 Time (min) Data,Here - Flow Vol Area.. ( /time int) (ent intial) 29696 -13054.- 109 29587.1 (cfs) (tuft) (sqft) . '• (cuft) (cuft) (cuft) (cuft) 2440.3 �.0 0.00 0 14188 0 0 7866.9 31488.9 ' •10 '0.0 x0.00 r.+ 0 0 0.0 0.0 47908 t. ' 20 ° , 0.3 ' 175 0 0 . 175.4 0.0 175.4 15114 • , - 30 ` . 0.4 ' , 429' 9166 ' 76 352.1- 0.0 352.1 - 40 0.6 .' 683 9195 77 606.5 0.0 '606.6 c. .. 50 0.6 937 9224 77 860.6 0.0 860.6 `. 60' 0.7 } i 1269 9282 ' ' 77 1192.1 0.0 1192.1 70 - 0.8 .. 1679 9340 78 1600.9 0.0 1600.9. ' 80 0.8 2087 9398 • 78 2009.2 0.0 2009.2 V; " 90 0.8 2496 9456 79 2417.0 0.0 2417.0 ' - ' 100 0.8 2904 9515 '. 79 r 2824.3 0.0 2824.3 7 ` •i 110 0.8 3311 "' 9573 _` 80 3231.2 0.0 3231.2. '" • " ; 120 0.9 3796 -9661 81 3715.1 0.0 3715.1 4280 130 . 81 140 0.0 150 s " ' 160 170 _ 180 190 4841 200 82 210 0.0 220 ' 230 # 240 5318.8 - 250 5318.8 260 5961 270 . t; 280 _ 290 300 . 310 6592.0 320 6592.0 ` . 330 7390 340' 85 350 360 4280 9720 81 4198.5 0.0 4198.5f' s " 4841 9809 82 4759.1 0.0 4759.1 • Y ` 5401. 9898 82 5318.8 0.0 5318.8 . •• 5961 9957 83 -5878.1 0.0 5878.1 t 6676 10076' • • 84 6592.0 0.0 . 6592.0 ` 7390 10166 85 7305.2 0.0 7305.2 8181 10286 86- 8095.2- 0.0 8095.2 " 9049 .10407 87 8962.0 0.0 8962.0 • , 10149 10558 88 10061.0 0.0 .10061'0 `E 11481 10741 ` 90 11391.9 0.0 11391.91 12968 - '. 10955 '61 12876.7 0.0 12876.7 14608 11171 93 14515.3 0.0 14515.3 • ` 16480 11420 95 16385.3 ' 0.0 16385.3 r ' 18662 111703- ' 98 18564.2 0.0 , 18564.2 J ` 21074 11987 + 100 20974.2 0.0 20974.2 _ 23718 12339 103 23614.7 0.0 23614.7 26591 12694' ' 106 26485.7 0.0 26485.7 29696 -13054.- 109 29587.1 0.0 29587.1 34042 .13583 ' 113 33929.3. 2440.3 31488.9 39474 14188 . X118 . '. 39355.8 7866.9 31488.9 46613 , 14975 125 46487.8. 14998.8 31488.9 47908 '15114 126 �' 47782.2 16293.3 31488.9 47880 15114 • , - 126. 4775 .8 16264.9 31488.9 47793 15114 126 47666.8 16177.8 31488.9 195 210 225 240 255 270 285 300 315 330 345 360 ' 375 390 405 420 '435 450 465 480 ' 495 510 525 540 1228 9282, 1112.5 0.0 1112.5' 1371 - 9311 ..-116 116 „'� 0.0 1254.5 1513 9311 •V T , 1396.5 0.0 24hr.XLS ' 1707 9340 117 r t_ 0.0' 1589.8 1900 9369 ' •, ._117 Percolation Rate of Retention Basin with Flow. Rate 1782.7 , = 9427 118 2026.6 0.0 2026.6 ,' 2388 .•.' EOR.Data 24Hr with 0.6 in /hr Perc' 2270.1 4» ' 2684 9485 , L (ft) A 80 - ' ' For L, W &b input, see graph Cell Y4 2565.0 ; x , ' W (ft) = 50.6 119 • 2756.1 0.0 2756.1 Slope 3118 9573 . H(all) (ft) = 2.82 ' . ; "., 2998.2 , H (ft) = 3.0 120 b (ft) _ :8.5 0.0 ". t V (ft) _ 1.0 ' Increase H(in) by: 0.25 4 4050 9691 'Ratio = 0.3 - . 'Perc Rate (in /hr): 0.6 ' 4394 9750 " '1122 4271.7 •0.0 ^. Time Interval (min): ,. 15 Note, col A & Cell D9 must be same as Syn Hydro Time Use 4665.8 0.0 4665.8 'Overflow 9868 123 5059.2 0.0 Basin Volume at H(all) = 31489 cuft Note, Occuring. See Graph at Cel 5451.9 _ 0.0 Flow Rate _ Perc Flow.Vol Overflow Volume 5895.5 Use hydro 10046 Lookup Volume minus perc . Volume in Basin ,6390 'Time (min) Data-Here Flow V61'' ,. Area ( /time int) (ent intial) 6490 J . 10046 126 (cfs) (cuft) (sqft)' (cuft) , (cuft) (cuft) ' (cuft) 6483.1. r, 0, 0.00 0 0 0F `'. '15 0.0. 0.00 0 0 0.0 0.0 0.0 ; 30 0.2 155 0 '0 155.0 0.0 155.0 '; I 45' ° . 0.2 310 - ' 9137 114 195.8 0.0 195.8 { 60 0.2 403 9166 115' 288.0 0.0 288.0 . 75, ' " 0.2 443 9166 115 328.4 0.0 328.4 t. 90 0.2 . " " -483 9166 _ 115 368.9 0.0 368.9 ' .105' 0:2 524: 9166 115 409.3 0.0 409.3 120 0.2 -616 9195 -_ 115 501.1 0.0 501.1 135 0.2 , 708 9195 115 "• 592.9 0.0 592.9. ' •' , 150 0.2 800 9224 r 115 684.3; . 0.0 684.3 165 0.3 . 943 9224 115 827.4 0.0 827:4 it + 180 0.3 1086 ''r 9253 ' 116 970.1 0.0 970.1 195 210 225 240 255 270 285 300 315 330 345 360 ' 375 390 405 420 '435 450 465 480 ' 495 510 525 540 1228 9282, 1112.5 0.0 1112.5' 1371 - 9311 ..-116 116 1254.5 0.0 1254.5 1513 9311 116- 1396.5 0.0 1396.5 ' 1707 9340 117 1589.8 0.0' 1589.8 1900 9369 ' •, ._117 1782.7 - 0.0 1782.7 2144 9427 118 2026.6 0.0 2026.6 ,' 2388 9456 .118 2270.1 .0.0 2270.1 4» ' 2684 9485 119 2565.0 '0.0, 2565.0 ; x 2875 9515 119 • 2756.1 0.0 2756.1 �. = 3118 9573 120 2998.2 0.0 2998.2 , 3412 9603 120 3291.5 0.0 3291.5. 3705 9632 120 3584.5 0.0 3584.5 4 4050 9691 -' 121 3928:5 0.0 3928.5 ' 4394 9750 " '1122 4271.7 •0.0 4271.7 , 4788 9809 123 4665.8 0.0 4665.8 5183 ' 9868 123 5059.2 0.0 5059.2 ' 5576 9927 124 5451.9 _ 0.0 5451.9 6020 9987 125 .5895.5 0.0 5895.5 6516 10046 126 6390.0 0.0 6390.0 ,6390 10046 ' . ' 126 • 6264.7- 0.0 6264.7 6490 J . 10046 126 6364.8 0.0, 6364.8 -6609 10076 126. 6483.1. 0.0 6483.1 + 6849 - 10106 126' 6722.6 0.0 6722.6 7210 10136 ` 127 ., 7083.3 0.0 7083.3 } zr _ `_ Page 1 �`�60 ;►; �. , '.1 hr BASIN Est.XLS V ' Percolation Rate of Retention Basin with Flow Rate City Values Mir with 0.61n /hr Perc (ft)•= . 180 For L, W &,b input, see'graph Cell Y4.Q • f. W (ft),= 46 Slope ' f - H(all) (ft) _ ,2.82 H (ft) _ . 3.0. 8.5 t V (ft) = 1.0 Increase'H(in) by: 0.25' Ratio = 0.3 Perc Rate (in /hr): 0.6 Ual ) Time Interval (min): 5 Note, col A & Cell D9 must be same as Syn. Hydro Time USE ic-�� Basin Volume at H(all) 29051 cuft Note, Overflow Occuring. See Graph at Cell Flow Rate Perc Flow Vol Overflow Volume, Use hydro Lookup } Volume . minus perc Volume _ in Basin Time (min) Data Here Flow Vol Area ( /time int)- (ent intial) b ) (cfs) (cuft) (sqft) (cuft)' . (cuft) _ (tuft) (cuft). ,. 0 OT00 0 0 0 5 0.0 f 0.00. 0 0 0:0 - 0.0 0.04 3; 10 7.5 2254 86211 36 2218.3 0.0- 2218.3 ,15 8:0 4626 8996 37 4588.3 • 0.0 ' �. 4588.3 t ' 20 7.7 6894 9347 39 6854.7 0.0 , , 6854.7 ` 25 10.6. 10028 9821 41 9987.2 %0.0 9987.2 30 11.8 13518 10304 43 '13475.2 0.0 . 13475.2 ' 35 13.6 " 17568 10856 45 . •-` 17522.7 ' 0.0 17522.7 ` 40 14.7. 21922 11450 48 21874.0' 0.0 21874.0 45 203 27958 - -1221T 51 27907.5 0.0 27907.5 50' 29.3 36698 13300 55 i�`x 36643.0 � 7591.9 .: 29051.0 55 26.7 44668 14212 , 59 1124 .7 15557.6 29051:0 • 60• 6.5 46557 14417 60 17445.4• 29051.0.. } 65 46496 14417 60 . 17385.3 29051.0: - �; 70 46436 14417, 60 46376.3 ' 17325.3 29051.0 75 46376 14417 60 46316.2' 17265.2 29051.0 ` 1 ,1 { 80 46316 14383 60 46256.3. 17205.3 29051.0 " 85 46256 14383 60 46196.4 17145.3 29051.0 90 46196 14383 60 .46136.4-. 17085.4 29051.0 95 46136 14383 60 '46076.5 17025.5 29051.0 - t , 100. 46077 14383 60 46016.6 16965.5 29051.0 •'' ' - 105 46017 14349 60 45956.8' 16905.8 29051:0 110 45957 ' 14349 60, '45897.0. 16846.0 29051.0 `115 45897 14349 60 - 45837.2 ' 16786.2 29051.0 4 120 45837 14349 60 45777.4 16726.4' 29051.0 125 45777. 14349. 60 .45717.6 16666.6 .29051.0. ' "I 0, 45718 14314 60 45658.0'. 16607.0- 29051.0 " ` 135 45658 14314 60 45598.4? 16547.3 ' 29051.0 y 140 45598 14314 60 45538.7 16487.7 29051.0 145 45539 14314- 60 45479.1 16428.0 29051.0 #; 150 45479 14314 60 45419.4 16368.4 29051.0 `- 155 45419 14280 60 45359.9 16308.9 29051.0 ` -160 45360 14280: 60 " 45300.4 16249.4 . 29051.0 • ' 165 45300 14280 60 45240.9 16189.9 29051.0 „ 170 45241 14280 60 45181.4 16130.4 29051.0' 175 45181 14280 60 45121.9 16070.9 29051.0 r ` • 180 45122 14280 60 45062.4 16011.4 29051.0' Page 1.. • ,• � - ._ .' , .. .,, ' . ` - • -1 65 70 ' r 75' 80. a 85 90 95' 100 :..105 110 . ' 115 120 r f'i E 125 130 135 140 145 150 155 160 165 170 175 180,. 9962 9791 41 9921.5 0.0 9921.5 11169 9971 42 11127.4-. 0.0 11127.4 $ - 12375 '� ' 12332.6.1 3 hr BASIN Est.XLS ;. t 10304 43 13405.8- 0.0 13405.8 Percolation Rate of Retention Basin With Flow Rate •.: `. " = ° City Values 3Hr with 0.6 in • /hr Perc 10517 44 14872.1 0.0- L (ft) _. ; 180 For L, W & b.input, see graph Cell Y4 45 , W (ft) = 46 16403.2 5 a 17782 r 10887 45 Slope 0.0 Hall) (ft) = 2.82..' 19312 - 11105 46 .19266.1 H (ft) = 3.0, b (ft) = 8.5 11356 47' ;� ' . - 0.0 V (ft) = 1.0. Increase H(in) by: 0.25 22978.6 0.0 .22978.6 Ratio = 0.3 Perc Rate (in /hr): .., 0.6 .0.0 24636.5 ` ..� 12023 50 Time Interval (min):- ' 5 Note, col A & Cell D9 must be same as Syn Hydro Time Use Basin Volume at. H(all) = 51 Note, Overflow Occuring. See Graph at Cel 29051 cuff 30707 ' Flow Rate .52 30654.8, Perc Flow Vol Overflow Volume .54 Use hydro 4635.8 Lookup Volume, f minus'perc 'Volume in Basin'..` t Time (min) Data -Here Flow Vol Area ( /time int) (ent intial) 10892.8 29051.0 t: ' cfs ( ) tuft ( ) � s ft (q) tuft ( ) cuff ( ) tuft ( ) cuff • x ( )`, 0 0:00 0 - 0 w 0 63 53219.7 5 . 0.0 0.00• 0 0 0.0 'r 0.0 0.0 , 10 2.2 657: 8365 35 . 621.7. - 0.0 „ ' . 621'.7 - • 15. 1.81' 114T 8450 -35 1111.7. 0.0 '' 1111.7 ` 20 " 2.6 1900 8564 36, 1863.9 0.0 1863.9 2.6 _ 2652 .8679 -.36 • ' .2615.6- 0.0 :.. 2615.6 . 30 " '3.3 `. 3600 8851 37 3563.6 0.0 3563.6 , -• 35 2.6 ",. 4351. 8967 37 4314.1 ' 0.0 4314.1...E 40 3.3 5299 9112 38 5261.0 F r. 0.0 5261.0 45 3.3 6246 9259 , 39 ' 6207.2 0.0' 6207.2 ' 50 2.6 6995 9376 39 6956.0 0.0 6956.0 -'� • .: r 55 2.8 7810 9494 40 -7770.0 0.0 7770.0 k. 60 3.3 8755 9613 40 8714.8 0.0 �., 8714.8 65 70 ' r 75' 80. a 85 90 95' 100 :..105 110 . ' 115 120 r f'i E 125 130 135 140 145 150 155 160 165 170 175 180,. 9962 9791 41 9921.5 0.0 9921.5 11169 9971 42 11127.4-. 0.0 11127.4 $ - 12375 10152 42 12332.6.1 0.0 12332.6 , 13449 10304 43 13405.8- 0.0 13405.8 , 14916 10517 44 14872.1 0.0- 14872.1 16448 10732 45 -16403.2 0.0 16403.2 5 a 17782 r 10887 45 17736.6 0.0 17736.6 19312 - 11105 46 .19266.1 0.0 19266.1 21236 • 11356 47' 21188.5 - 0.0 21188.5 y 23027 11608 '48 22978.6 0.0 .22978.6 24686 11799. 49 24636.5 .0.0 24636.5 ` 26409 12023 50 26359.1 0.0 26359.1 28198 12249 51 { 28146.5. 0.0 28146.5 30707 ' 12574 .52 30654.8, 1603.7 29051.0 33741 12935 .54 33686.8 4635.8 29051.0 ` • 35788 13167 55 35733.0 6681.9 " 29051.0 40001 13669 57. 39943.8. 10892.8 29051.0 t: 44540 14212 59 44480.6 15429.6 29051.0 '49668 14763 62 49606.1 20555.1 29051.0 53283 15181 63 53219.7 24168.7 29051.0' 54336 15286 64 " '; .54272.2 25221.2 29051'.0 55257 15392 64 55192.9 26141.9 29051.0 " 56178 15463 64 5 3.3 27062.3 29051.0 u 56310 15498 65 56245.7 27194.7 29051.0 .. , 8620 130. 80 140 ' 150. •160 " 170 180 9546 190 " 200 • � 210 10472 '6 hr BASIN Est.XLS . -220, 0.0 230 11396 240 ` 250 0.0 ' . 260 , 12475 270 ...Percolation Rate of ' - Retention Basin with Flow Rate 0:0 - t� •' 13,553 ;City Values 6 Hr with, 0.6 in /hr Perc 310 0.0 320 ; 330 87 340 u. • ;: 350 360 15938 10640 • 15849.1 _ ' .L (ft) 180 .• For L, W.& b input, see graph Cell Y4 -17401 .. .. W (ft) 46 0.0 17310.0 •, ' 19095 11074 Slope . 19002.6 0.0 H(all) (ft) = 2.82 d .. 94 20848.8 H (ft) _ 3.0 22945 «. b (ft).= ' 8.5 96 22848.5 0.0 -22848.5 V (ft) 11863 99 Increase H(in) by: 0.25 25079.2 ` 27720 Ratio = 0.3 27618.5 , Perc Rate (in /hr):. . , 0.6 30493 12541 105 30388.3 ; 29051.0 ` Time Interval (min):.' 10 Note, col A & Cell D9 must be same as Syn Hydro Time Use • 29051.0 Note, Overflow Occuring. See Graph at Cel Basin Volume at H(all) = 29051 cuft 7567.9 29051.0 Flow Rate 13702 114 Perc Flow Vol Overflow Volume 14246 119 Use hydro 15729.5 Lookup Volume= minus perc Volume in Basin . •`s 21514.8 Time (min) Data -Here Flow Vol Area ( /time int) (ent intial). 29051.0 ' 59841 15853 132 (cfs).` �(cuft) (sgft) (cuft) (cuft) (cuft) : (cuft) 309871 0 0.00 0 0 p 60078 15889 10 . .. 0.0.' ... 0.00 0 0 0.0 0.0 0.0 20 0.9 540 8365 70 470.1. 0.0 470.1 30 ' • - - 1:0: ` '1-088 ' 8450. `70 1017.3 0.0 1017.3 . 40- ;• 1.2 1713' ' 8536 '71 1641.6 0.0 1641.6 ' 50 � ' ' 1.2 ': 2337 , `. 8650 "72 2264.9 0.0 2264.9. x 60.: `1.3 3038 8765 73 2965.1 0.0 2965.1 70 1.4 3816 8880 ' . 74 3742.2 6.0 M 3742.2 80' " . 1.4 ' 4593 8996 75 4518.3 0.0 4518.3 90 1.4 .5369 9112' 76 5293.4 0.0 5293.4 100 1.4 6144 + 9229 77. 6067.6 0.0 6067.6 • - 110 ., ` . 4 1.4 6919 ,' . 9347 . 78 6840.7 0.0 6840.7 ; 120 1.5 7770 9465 79 7690.7 0.0 . 7690.7 N 8620 130. 80 140 ' 150. •160 " 170 180 9546 190 " 200 • � 210 10472 9881 . •s -220, 0.0 230 11396 240 ` 250 0.0 ' . 260 , 12475 270 • 280 0:0 290 13,553 300 86 310 0.0 320 14707 330 87 340 u. • ;: 350 360 15938 10640 8620 9613 80 8539.5 0.0 8539.5 9546 9732 81 9465.1. 0.0 9465.1 10472 9881 82 10389.5 0.0 10389 :5 11396 10001 83 11312.8 0.0 ' . 11312.8 y 12475 10152 85 12390.6 0:0 12390.6 ' 13,553 10304 86 13467.0 0.0 13467.0 14707 " 10487, 87 14619.8 0.0 14619.8 15938 10640 89 15849.1 0.0 15849.1 -17401 10856 90 17310.0 0.0 17310.0 •, ' 19095 11074 92 19002.6 0.0 19002.6 20943 ' . 11324 94 20848.8 0.0 20848.8 . 22945 11577 96 22848.5 0.0 -22848.5 "25178 11863 99 25079.2- 0.0 25079.2 ` 27720 12184 102 27618.5 , 0.0 27618.5 - 30493 12541 105 30388.3 1337.3 29051.0 ` 33496 12902 ; 108 33388.6 4337.6 29051.0 36730 13300 111 36619.0 7567.9 29051.0 40194 13702 114 40079.5 - 11028.4 29051.0 44899 14246 119 44780.5 15729.5 29051.0 '. 50690 14867 124 50565.8 21514.8 29051.0 58187 ' 15675 131. 58056.4 29005.4 29051.0 ' 59841 15853 132 59709.2 30658.1 29051.0 ' 60171 15889 132 0038.7 309871 29051.0 60078 15889 132 59945.3 30894.2 29051.0 :: ; . , _ . - ' _. , • i n :' " `. ' 1 � •e CGS �. �� -- . Y _ Page 1 . �� c 60. 1330 195` 106 210 0.0 225 ' 240' ' 8507 255 1376.5 270 1376.5 285 1635- 300 107 315 24 hr BASIN Est.XLS • ,, • 345 8564 360 " 375 1731.2 390 ' 2041 8593 107 ' 'Percolation Rate of Retention Basin with Flow Rate ' . - • I - City Value_s'6 Hr with 0.6 in /hr Perc k 450 2187.4. 465 r'. 480 2549 495 108 510 0.0 525 •. • L (ft)'_ ,'. 180 For L, W & b input, see graph Cell Y4 .108 _ 2338.7 t . W (ft) _ '46 2649 8679 108 Slope 0.0 - 2540.3- H(all) (ft) _ ' ` 2.82'-"- .. 8736 109 2792.8 H (ft) _ ' 3.0. t ' b (ft) _ 8:5 ` .> _ 2721.9 0.0 V (ft) _ '-1.0 2770 Increase H(in) by:._ "0.25 2661.5 0.0 2661.5- Ratio 03 4., 8707 • . + ' Perc Rate (in /hr): 0.6 2714.8 '» ,=. 8736 109 'Time Interval (min): ; 15 Note; col A & Cell D9 must be same as Syn Hydro-Time Use ' Basin Volume at H(all) = •'8765 - Note, Overflow Occuring. See Graph at Cel- 2954.3 29051 cuft ,' Flow' Rate 3250 8794 Perc Flow Vol Overflow Volume " ' • 3 Use'hydro 110 „Lookup Volume minus perc Volume in Basin 8880 Time (min) Data Here. Flow Vol Area time int) (ent intial) 8938 112 4065.5 '... • (cfs)- (cuft) (sgft) (c f u t) (cuft) (cuft) (cuft) . 0 0.00 0 _ 0 0 , 5346.3 6218 ' 15" 0.0. 0.00 0 0- 0.0 0.0 0.0 9376 " 30 0.2 -, 155 • 0 0 155.0 0.0 155.0 " r ;= 45 , -' 0.2 `. 310 8308 104 206:2 0.0 206.2 -� 60 , 0.2 413 s 8337 104 308.7 0.0 308.7 '' '.75 '0.2 464 8337 • , - 104 359.5 0.0 359.5 = • " '90 . , 0.2 - r 515 ` . , • 8337. - 104 410.3 0.0 410.3 ' 105,: 0.2 . .. 565 8365- - 105 460.8 0.0 460.8 120 0:2 668 8365 105 562.9 0.0 562.9 .. 135 0.2 -770 8393 - • 105 664.7 0.0 664.7. , 150 0.2, 165 0.3 • :871 1025 . A422 8422 105 105 766.2 919.3 0.0 0.0 766.2 t 919.3 '' e., ' 180 - 0.3• 1178 8450 106 1072.0 ,0.0 11072.0 1330 195` 106 210 0.0 225 ' 240' ' 8507 255 1376.5 270 1376.5 285 1635- 300 107 315 0.0 330 . • ,, • 345 8564 360 " 375 1731.2 390 ' 2041 8593 107 405 ' . - • 420 - 435 .'. 450 2187.4. 465 2187.4 480 2549 495 108 510 0.0 525 540, 1330 8479 106 1224.4. 0.0 1224.4 1483 8507 106 1376.5 0.0 1376.5 1635- 8536 .. 107 1528.2 0.0 1528.2 , 1838 8564 107 1731.2 0.0 - 1731.2 2041 8593 107 1933.8 0.0" 1933.8 2296 -8650 108 2187.4. 0.0. 2187.4 ti 2549 8679 108 2440.7 0.0 2440.7 2447 8650 .108 _ 2338.7 0.0 2338.7 2649 8679 108 2540.3 0.0 - 2540.3- 2902 8736 109 2792.8 ' 0.0 2792.8 t ' 2831 8707 109 2721.9 0.0 2721.9 '• ; 2770 8707 109 2661.5 0.0 2661.5- 2824 4., 8707 109 2714.8 2714.8 '» '2887 8736 109 2777.9 0.0 2777.9 3064 •'8765 - 110 2954.3 0.0 2954.3 # 3250 8794 110 3140.4 0.0 - 3140.4 " 3447 8822 110 3336.2 0.0 3336.2 3756 8880 111 3644.6 0.0 3644.6 .4177 8938 112 4065.5 0.0 4065.5 4711 9025 113 4598.4 0.0' 4598.4 5461 9142 114 5346.3 0.0 , 5346.3 6218 9259 1'16: 6102.3 0.0 6102.3 7087 9376 117 6969.7 0.0 6969.7 8067 9524 1.19 7948.1 ' 7948.1' ' • -0.0 In oduction + Ff • T 4.16 acre lies within a portion of the Southwest' /4 of Section 6, Township 6 South, Ran , San Bernardino Base and Meridian and contains Assessor's Parcel Numbers 770- 184 -004, 770 - 184 -005 and 770 - 184 -006 and portions of 770 -184 -001, 770- 184 -002 and 770- 184 -003 (see Vicinity Map). The project area is the existing City.of La Quinta Corporate Yard located in the City of La Quinta.. Existing Conditions The project area is covered by FIRM Panel Number 06065C2241 G, revised August 28,. 2008, and amended by LOMR 09- 09- 0538P, dated January 21, 2009, and LOMR 09-09 - 0397P dated January 21, 2009, which indicates the. project area lies within Zone X (shaded), indicating "0.2% annual chance (500 -Year) floodp/ain" (see attached FEMA map). The general direction of drainage is toward the north end of the project.. Surrounding adjacent properties consist of a -walled golf and residential development to the south and east and Fritz Burns Park to the west. The project site does receive off -site flows from Francis Hack Lane to the south and Fritz Burns Park to the west. Per the attached National Cooperative Soil Survey exhibits, th.,h;ol c is soil group classification is Group'A'. Hydrology Requirements The drainage of this ro'ect site falls under the jurisdiction of t o ~ a Quinta. The 9 P l J ,Y„ Q project design shall provide for the capture and storage of the storm' curio enerated in the 100 -year storm. Retention basins will be sized on the basis of S Unit Hydrograph (Shortcut Method) analyses of 1 -, 3 -, 6- and 24 -hour durations for the 100 -year storm event. Proposed Hydrology and Flood Control Improvements As shown on the Hydrology Maps,' on -site storm runoff will be conveyed in gutters and swales to the proposed equalized retention basins at the north end of the project site. Off -site runoff on the south half of Avenue 52 will drain to the existing' catch basin east of the project, matching the current condition. The retention basins will be sized to store the total volume of runoff generated in these tributary drainage areas in a 100 -year storm event. •�� In addition to storm runoff from the project site, off -site storm flowsafr theex, Ling parking lot and tennis courts to the west will be passed through the site -is '. RC -' ational Method Hydrology Exhibit). An overflow inlet is located in the smallerret ntion sin and will be connected to the existing 60" RCP storm drain line located in Avenue 5 At this time, only Phase 1 of the project is under construction. However, the hydrology calculations were analyzed for the ultimate condition. Hydrologic and Hydraulic Methods A Synthetic Unit Hydrograph analysis (short-cut method), as described in the RCFC &WCD Hydrology Manual, was used to determine the volume of storm runoff in the 100 -year storm. The 1 -hour, 3 -hour, 6 -hour and 24 -hour storms were analyzed. Peak flow rates were determined for 100 -year and 10 -year storms using a Rational Method �' 0�- r a ;analysis, as specified in the Riverside County Flood Control & Water Conservation District (RCFC &WCD) Hydrology Manual (1978). From these flow rates, maximum -street flow • depths were then determined for the off -site streets using Manning's Equation, and catch { . basin capacities were calculated using equations from the "Urban Drainage Design Manual' Hydraulic Engineering Circular No. 22. Sources in addition to RC,FCD Hydrology Manual include: City of La Quinta Engineering Bulletin No. 06 -16 -Rainfall Int?Dp 'ty • USDA National Cooperative Soil Survey - Hydrologic Soil G - N OAA Atlas 14 y &e' f The following parameters were utilized in the analyses: Hydrologic Soil Group A -✓` ���• Runoff Index (RI) 32 (Urban Cover) Plate D -5.5 2 -year- 1 -hour Precipitation . 0.45 in 100 -year - 1 -hour Precipitation 2.10 -ink .100 -year - 3 -hour Precipitation 2.70 in 100 -year - 6 -hour Precipitation 3.20 in,' *l� 100 -year - 24 -hour Precipitation 4.25 in'-/ v �O' e of Intensity Duration.Curve 0.59 . .. S esults of Analysis - Synthetic Unit Hydrograph For the purpose s report a percolation factor d 0.6" er our was assume A Maxwell Plus Drywell System ' pcp�osed for the small r ntion b sin to assist with the • X dissipation of nuisance flows as well as rovide drawdown after a orm event. It will be the responsibility of the owner /developer to provid adequate maintenan a of the drywell. n . P XLand Use Summa see attached Synthetic Unit H dro ra sheets nd exhibit): ��-�- Paving /Hardscape and Building Area .35 acr andscaping �p� 0.8 re T tal Area (includes Courtyard Area) . 16 acre G STORM EVENT S MARY uration . 1 -HOUR 3 -HOUR -1"6-HOUR 24 -HOUR Effective Rain in -1.91 2.50 .Flood Volume (cu -ft). acre -ft 28,832 0.66 K: 2,133 1,4 0.72 37,819 0.87 Required Storage (cu -ft) acre -ft 27,800 0.64 29,148 0.67 .25,931 , 0.60 18,460 0.42 Storage Provided cu -ft ,488 - Q -7-2 Factor of Safety 1.13 1.08• 1.21 1.71 Maximum WSEL (ft) Depth (ft) 46.21 2.71 46.32 2.82 46.07 2.57 45.49 1.99 Lowest Flowline Elevation ft 46.75 Difference ft 0.54 0.43 1 0.68 1.26 Lowest Pad Elevation ft 49.02 Difference ft 2.81 2.70 2.95 3.53 Time to De -water Basin Based- on Total Flood Volume (days) 1.2' 1.3 1.3 1.6 i i �3 I a 04 . , � • it Results of Analysis - Rational Method The Hydrology Map shows the nodes and elevations used in the Rational Method analysis, as well as the corresponding 100 -year and 10 -year peak flow rates. The results from the rational analyses are shown below (copies of the rational runs are included in the appendices): 4 100 -Year Event Drainage Area Flow Rate cfs Time of Concentration min Intensity (in/hr). Area acres A -1 8.70 8.38 6.52 1.53 A -2 18.58 9.73 5.98 3.57 A -1 and A -2 26.56 9.73 5.98 5.10 A -3 0.93 5.00 8.79 0.12 B -1 8.62 8.61 6.41 .1.54, 10 -Year Event Drainage Area Flow Rate cfs Time of Concentration min Intensity. in /hr Area acres A -1 4.62 8.38 3.51 1.53 A -2 9.86 9.73 3.22 3.57 A -1 and A -2 14.10 9.73 3.22 5.10 A -3 .0.49 5.00 4.74 0.12 B -1 4.57 8.61 3.46 1.54 Street Capacity Analvsis With a minimum longitudinal street slope of 0.55% (from Precise Grading and Paving Plans), the maximum water capacity of the main drive aisle is 26.76 cfs as shown on Typical Section A -A. The'peak flow rate in a 100 -year storm 'is 26.60 cfs. The peak flow of the 100 -year storm is less than the maximum flow the drive aisle is able to convey. Catch Basin Sizing Catch basins were sized using equations from HEC -22 for curb inlet type basins in sag conditions. It is proposed to use City of La Quinta Standard Number 302 combination catch basin for the basin in the drive aisle and a 24 "x48" drop inlet for the concrete swale along the tennis courts. Catch Basin Summarv. Catch Basin Intercepted Flow Length Gutter Depth Spread Q1oo cfs ft in ft Combo CB 26.60 12.80 7.07 88.56 Grated Inlet 8.62 4.00. 5.36 2.89 Both catch basins thus are shown to be adequately sized to accept peak storm flows in both • the 100 -year and 10 -year storms. Storm Drain Sizinq Two distinct storm drain systems were analyzed using the Storm Sewer module in the Eagle Point software. The hydraulic grade line in the retention basin. was obtained from the maximum water surface elevation for the design storm. Storm drain pipes are proposed to be ADS -N12 HDPE or approved equal. 48" Pipe from Combo Catch Basin to Drywell It is proposed to utilize City of La Quirita Standard No. 302 Combination Catch Basin. The. water will enter the drywell in the small retention basin, which will be connected to the large basin by an 18" equalizer pipe. Only the flow in the catch basin was used in the design. Any water entering the system from the trench drains at the decant station or the drop inlet at the hose drying rack will be minor. Inlet Summary • • Pioe Summary Label Label Intercepted TC HGL HGL W H 26.60 48 63.35 Flow (Q100) Elevation In Out 26.60 48 29.60 2.11 46.91 cfs ft ft ft ft ft 47.52 47.50 Pipe 4 Combo CB 26.60 48.66 48.11 48.09 12.8 9.09 • • Pioe Summary Label System Flow (Q100) cfs Pipe Diameter in Length ft Average Velocity fps HGL In ft HGL Out ft Pipe 1 . 26.60 48 63.35 2.11. 46.34 46.32 Pipe 2 26.60 48 29.60 2.11 46.91 46.90 Pipe .3 26.60 48 83.33 2.11 47.52 47.50 Pipe 4 26.60 48 6.89 2.11 48.09 48.11 Tennis Court/Fire Station Storm Drain Network A 24'x48" drop inlet is proposed to pick up the storm flows from the tennis courts and a 12 "x12" drop inlet will pick up the flows from the fire station lawn area. The water will outlet into the large retention basin north of the existing tennis courts in Fritz Burns Park. Inlet Summary Label Intercepted Grate HGL HGL Flow (Q100) Elevation In Out cfs ft ft ft Drop Inlet 8.62 .49.94 47.84 47.25 0 i Label System Flow_ (Q100) cfs Pipe Diameter in Length ft Average Velocity fps HGL In ft HGL Out ft Pipe 1 9:55 18 9.61 5.40 46.40 46.32 Pipe 2 8.62 • 18 13.39 4.88 46.87 46.78 Pipe 3 8.62 18 7.07 4:88 47.21 47.17 Pipe 4 8.62 .18 88.04 5.24 47.84 47.25 Pipe 5 0.93 6 32.41 4.74 47.67 46.78 Pipe 6 0.93 6 1.00 4:74 48.42 48.32 Conclusion As demonstrated by the calculations included in this report and illustrated by the Hydrology Map, all storm water runoff from the 100 -year and 10 -year storm events may be safely and adequately conveyed to the proposed retention basins, which have sufficient capacity to store the entirety of the runoff. It is concluded therefore that this project conforms to the .hydrologic requirements set forth by the City of La Quinta. VICINITY MAP La Quinta Fire. Station No. 32 and :Corporate Yard j Selected parcel(s);.. . 770- 184 -00.1 "770,- 184 -003 770= 184 =004, 770 - 184 -005 770 -184 -006 ' a'• ; ,.. LEGEND 0 SELECTED PARCEL E ■ .. .PARCELS LA QUINTA .*IMPORTANT* ... . ... This information is made available through the Riverside County Geographic Information System. The information is.for reference purposes only. It'is intended to be used as base level information only and is not intended to replace any recorded documents or other public records. Contact appropriate County Department or Agency if necessary: Reference to recorded documents and public records may be.necessary and is advisable. REPORT PRINTED ON ... Thu.May 07 08:04:45 2009 Vicinity Map q dVW VW3zl • • • It Federal Em' ergency Management Agency �r LVashin.gton, D.C. 20472 The Honorable Don Adolph AUG I 1 2008 Mayor of the City of La Quinta P.O. Box 1504 La Quinta, CA 92247 Dear Mayor Adolph: Case No: 06- 09 -13856V Community: City of La Quinta Community No.: 060709 Effective Date: August 29, 2008 LOMC -VALID This letter revalidates the determinations for properties and/or structures in the referenced community as described in the Letters of Map Change (LOMCs) previously issued by the Department of Homeland Security's Federal Emergency Management Agency (FEMA) on the dates listed on the enclosed table. As of the effective date shown above, these LOMCs will revise the effective National Flood Insurance Program (NFIP) map dated August 28, 2008 for the referenced community, and will remain in effect until superseded by a revision to the NFIP map panei.on which the property is located. The FEMA case number, property identifier, NFIP map panel number, and current flood insurance zone for the revalidated LOMCs are listed on the enclosed table. Case No. Date Issued Identifier Map Panel No. Zone 92 -09 -191 B 08/20/1992 TRACT 14496 -1, LOTS 9-11 06065C2241 G X 94- 09 -808A 10/14/1994 DESERT CLUB TRACT UNIT NO. 5, 06065C2241 X LOT 7'-- 50550 CALLS QUINTO 96- 09 -1202A 10/17/1996 DESERT CLUB TRACT UNIT NO. 5, 06065C2241G X LOT 118--'78740 CALLE.TAMPICO 98- 09458A 05/28/1998 TRACT 27984, LA QUINTA VILLAGE 06065C2241G X SHOPPING CENTER, PARCELS 1 -7; 50929, 50949, 50855, 50801, 50921, 5098 Because these LOMCs will not be printed or distributed to primary map users, such as local insurance agents and mortgage lenders, your community will serve as a repository for this new data. We encourage you to disseminate the information reflected by this letter throughout your community so that interested persons, such as property owners, local insurance agents, and mortgage lenders, may benefit from the, information. For information relating to LOMCs not listed on the enclosed table or. to obtain copies of previously issued LOMR -Fs and LOMAs, if needed, please contact our Map Assistance Center, toll free, at 1- 877 -FEMA -MAP (1- 877 - 336 - 2627). Enclosure cc: Community Map Repository Timothy Jonasson, Public Works Director Sincerely, William R. Blanton Jr., CFM, Chief Engineering Management Branch Mitigation Directorate REVALIDATED LETTERS OF MAP CHANGE FOR CITY OF LA QUINTA . • Case No. Date Issued Identifier Map Panel No: Zone 99- 09 -074A 12/08/1998 TRACT 27984, LA QUINTA VILLAGE 06065C224]G AO SHOPPING CENTER, PARCELS 1-7:.- 50929, 50949, 50855, 50801, 50921, 5 99- 09 -494A 08/09/1999 DESERT CLUB TRACT UNIT NO. 5, 06065C224]G VE LOT 15 -- 78 -510 AVENIDA TUJUNGA 99- 09 -1073A 12/17/1999 TRACT 28019, LOTS 35 -61 06065C224]G X 02- 09 -1517A 01/15/2003 DESERT CLUB TRACT UNIT NO. 5, 06065C2241 G X LOT 96 -- 78 -510 AVENIDA LA FONDA 04- 09 -0567A 04/08/2004 DESERT CLUB TRACT UNIT NO. 5, 06065C224]G X LOT. 188 -- 51305 CALLE PALOMA .. 04- 09 -1222A 03/21/2005 DU14A GARDENS CONDOMINIUMS '. 06065C2241G X UNIT 38 -- . 78376 CALLE LAS RAMBLAS 05- 09 -0430A 05/16/2005 DESERT CLUB, TRACT UNIT NO. 2, 06065C2241G VE BLOCK 4, LOT 23 -- 51 -250 CALLE HUENEME 06- 09 -0039A 01/10/2006 TRACT 14496 -2, LOT 47 -- 49 -531 06065C2241G X AVENIDA VISTA BONITA 06- 09 -BC44A 08/08/2006 Lot 49, Tract 14496 -2 -- 49 -559 AVENIDA 06065C2237G X VISTA BONITA 06- 09 -BF57A 12/05/2006 TRACT 29586, LOT 2 -- 78 -262 CALLS 06065C2241G X ' LAS RAMBLAS 08- 09 -0007X 10/04/2007 49573 AVENIDA VISTA BONITA -- LOT 06065C2237G X 50, TRACT 14496 -2, (CA) 07- 09 -1288A 09/04/20007 49573 AVENIDA VISTA BONITA - 06065C2241G X I. LOT. 50, TRACT 14496 -2, (CA) Page 1 of 4 Issue Date: January 21, 2009 Effective Date: January 21, 2009 Case No.: 09- 09 -0397P LOMB -APP Federal Emergency Management Agency Washington D.C. 20472 1 ` LETTER OF MAP REVISION DETERMINATION DOCUMENT COMMUNITY AND REVISION INFORMATION PROJECT DESCRIPTION BASIS OF REQUEST City of La Quinta NO PROJECT MAP UPDATE Riverside County California COMMUNITY COMMUNITY NO.: 060709 IDENTIFIER La Quinta APPROXIMATE LATITUDE & LONGITUDE: 33.405,-116.180 SOURCE: Other DATUM: NAD.83 ANNOTATED MAPPING ENCLOSURES' ANNOTATED STUDY ENCLOSURES TYPE: FIRM' NO.: 06065C2241 G DATE: August 28, 2008 NO REVISION TO THE FLOOD INSURANCE STUDY REPORT Iclosures reflect changes to flooding sources affected by this revision. rFIRM.- Flood Insurance Rate Map; " FBFM - Flood Boundary and Floodway Map; "' FHBM - Flood Hazard Boundary Map FLOODING SOURCES) & REVISED REACH(ES) Quinta Evacuation Channel - from approximately 1,000 feet downstream of Eisenhower Drive to just downstream; from the intersection of Eisenhower Drive and Calle Tampico to the intersection of Calle Jacumba and Avenida Nuestra SUMMARY OF REVISIONS This Letter of Map Revision (LOMB) is an update to FIRM Panel No. 06065C2241 G for Riverside County, California and Incorporated Areas, which became effective on August 28, 2008. This LOMR updates the.effective FIRM by revising the Special Flood Hazard Area (SFHA), the area subject to inundation by the base -(1- percent - annual- chance) flood, along La Quinta Evacuation Channel, and the areas.shown as being protected from the 1- percent- annual- chance or greater flood hazard by a levee system that has been provisionally accredited, thereby superseding the August 28 FIRM for the revision area. DETERMINATION This document provides the determination from the Department of Homeland Security's Federal Emergency Management Agency (FEMA) regarding a request for a Letter of Map Revision (LOMB) for the area described above. Using the information submitted, we have determined that a revision to the flood hazards depicted in the Flood Insurance Study (FIS) report and /or National Flood Insurance Program (NFIP) map is warranted. This document revises the effective NFIP map, as indicated in the attached documentation. Please use the enclosed annotated map panels revised by this LOMR'for floodplain management purposes and for all flood insurance policies and renewals in.your community. This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1- 877 - 336 -2627 (1- 877 -FEMA MAP) or by letter addressed to the OMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional Information about the NFIP is available on our website at http: / /www.fema.gov /nfip. Joshua A. Smith, CFM, Program Specialist Engineering Management Branch Mitigation Directorate 112553 10.3.1.09090397 102 -D Page 2 of 4, Issue Date: January 21, 2009 Effective Date: January 21, 2009 Case No.: 09- 09 -0397P LOMB -APP Federal Emergency Management Agency Washington, D.C. 20472 - '".�,`. -rte:)• LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED) COMMUNITY INFORMATION APPLICABLE NFIP REGULATIONS /COMMUNITY OBLIGATION We have made this determination pursuant to Section 206 of the Flood Disaster Protection Act of 1973 (P.L. 93 -234) and in accordance with the National Flood Insurance Act of 1968, as amended (Title XIII of the Housing and Urban Development Act of 1968, P.L. 90 -448), 42 U.S.C. 4001 -4128, and 44 CFR Part 65. Pursuant to Section 1361 of the National Flood Insurance Act of 1968, as amended, communities participating in the NFIP are required to adopt and enforce floodplain management regulations that meet or exceed NFIP criteria. These criteria, including adoption of the FIS report and FIRM, and the modifications made by this LOMR, are the minimum requirements for continued NFIP participation and do not supersede more stringent State /Commonwealth or local requirements to which the regulations apply. COMMUNITY REMINDERS We based this determination.on the 1- percent - annual- chance flood discharges computed in the FIS for your community without considering subsequent changes in watershed characteristics that could increase flood discharges. Future development of projects upstream could cause increased flood discharges, which could cause increased flood hazards. A comprehensive restudy of your community's flood hazards would consider the cumulative effects of development on flood discharges subsequent to the publication of e FIS report for your community and could, therefore, establish greater flood hazards in this area. Your community must regulate all proposed floodplain development and ensure that permits required by Federal and/or State /Commonwealth law have been obtained. State /Commonwealth or community officials, based on knowledge of local conditions and in the interest of safety, may set higher standards for construction or may limit development in floodplain areas. If your State /Commonwealth or community has adopted more restrictive or comprehensive floodplain management criteria, those criteria take precedence over the minimum NFIP requirements. We will not print and distribute this LOMR to primary users, such as local insurance agents or mortgage lenders; instead, the community will serve as a repository for the new data. We encourage you to disseminate the information in this LOMR by preparing a news release for publication in your community's newspaper that describes the revision and explains how your community will provide the data and help interpret the NFIP maps. In that way, interested persons, such as property owners, insurance agents, and mortgage lenders, can benefit from the information. This revision involves a provisionally accredited levee. Your community is responsible for maintaining and disseminating information, such as the estimated level of protection provided (which may exceed the 1- percent - annual- chance level) and Emergency Action Plan, for the levee system(s) shown as providing protection. To maintain accreditation, the levee owner or community is required to submit the data and documentation necessary to comply with Section 65.10 of the NFIP regulations by August 8, 2009. If the community or owner does not provide the necessary data and documentation or if the data and documentation provided indicate the levee system does not' comply with Section 65.10 requirements, FEMA will revise the flood hazard and risk information for this area to reflect de- accreditation of the levee system. To mitigate flood risk in residual risk areas, property owners and residents are encouraged to consider flood . insurance and flood proofing or other protective measures. For more information on flood insurance, interested parties should visit the FEMA Website at http: / /www.fema.gov/business /nfip /index.shtm. This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1- 877 - 336 -2627 (1- 877 -FEMA MAP) or by letter addressed to the OMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional Information about the NFIP is available on our website at http: / /www.fema.gov /nfip. Joshua A. Smith, CFM, Program Specialist Engineering Management Branch Mitigation Directorate 112553 10.3.1.09090397 102 -D Page 3 of 4 Issue Date: January 21, 2009 Effective Date: January 21, 2009 Case No.: 09- 09 -0397P LOMB -APP J ` Federal Emergency Management Agency <:;:.• ':?.:` Washington, D.C. 20472 LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED) We have designated a.Consultation Coordination Officer (CCO) to assist your community. The CCO will be the primary liaison between your community and FEMA. For information regarding your CCO, please contact: t . Ms. Sally M. Ziolkowski Director, Mitigation Division Federal Emergency-Management Agency, Region IX 1111 Broadway Street, Suite 1200 Oakland, CA 94607 -4052 (510) 627 -7175 STATUS OF THE COMMUNITY NFIP MAPS We will not physically revise and republish the FIRM for your community to reflect the modifications made by this LOMR at this time. When changes to the previously cited FIRM panel(s) warrant physical revision and republication in the future, we will incorporate the modifications made by this LOMR at that time. n � ii This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1- 877 -336 -2627 (1- 877 -FEMA MAP) or by letter addressed to the OMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional Information about the NFIP is available on our website at http: / /www.fema.gov /nfip. Joshua A. Smith, CFM, Program Specialist Engineering Management Branch Mitigation Directorate 112553 10.3.1.09090397 102 -D Page 4 of 4 Issue Date: January 21, 2009 Effective Date: January 21, 2009 Case No.: 09- 09 -0397P LOMB -APP >'r Federal Emergency Management Agency Washington, D.C. 20472 LETTER OF MAP. REVISION DETERMINATION DOCUMENT (CONTINUED) PUBLIC NOTIFICATION OF REVISION r This revision is effective as of the date of this letter. Any requests to review or alter this determination should be made within 30-days . and must be based on scientific or technical data. This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1- 877 - 336 -2627 (1- 877 -FEMA MAP) or by letter addressed to the OMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional Information about the NFIP is available on our website at http: / /www.fema.gov /nfip. Joshua A. Smith, CFM, Program Specialist Engineering Management Branch - Mitigation Directorate 112553 10.3.1.09090397 102 -D ■ VISTA BONITA ti Z 0 ) 2190000 FT 3V • SITE AREA I ;OWN - IZAULI�B E N--GTP.R%Ec,T, -PERCEN F- A lZISE NNUAt-Cl RWIEV�C "M R tE �SIYSTE THARIH Ell S BEEN ICK M. 0VEkT0PPINGlqRf' ICU LEYEE.SY TE ds; OSSEILE. NIC ............ A: oml� AN13E URANG© • SITE cal . . . . . . . • • . . IZAULI�B E N . ..... uj,. NIC ............ A: • SITE Page 1 of 4 Issue Date: January 21, 2009 Effective Date: January 21, 2009 Case No.: 09- 09 -0538P LOMB -APP . = Federal Emergency Management Agency Washington, D.C. 20472 LETTER OF MAP REVISION DETERMINATION DOCUMENT COMMUNITY AND REVISION INFORMATION PROJECT DESCRIPTION BASIS OF REQUEST City of La Quinta NO PROJECT REISSUANCE Riverside County California COMMUNITY COMMUNITY NO.: 060709 IDENTIFIER' La Quinta APPROXIMATE LATITUDE &. LONGITUDE: 33.673,-116.304 SOURCE: Other DATUM: NAD 83 ANNOTATED MAPPING ENCLOSURES ANNOTATED STUDY ENCLOSURES TYPE: FIRM' NO.: 0606502241 G DATE: August 28, 2008 NO REVISION TO THE FLOOD INSURANCE STUDY. REPORT closures reflect changes to flooding sources affected by this revision. FIRM - Flood Insurance Rate Map; " FBFM - Flood Boundary and Floodway Map; "' FHBM - Flood Hazard Boundary Map FLOODING SOURCE(S) & REVISED REACH(ES) Local Streets.- from Calle Estado to Avenida Bermudas SUMMARY OF REVISIONS This Letter of Map Revision (LOMB) is a reissuance of LOMB dated December 18, 2007 (Case No. 08- 09- 0307P). The December 18 LOMB revised the Special Flood Hazard Area (SFHA), the area that would be inundated by the base (1- percent- annual- chance) flood, along Local Streets. The December 18 LOMR was not incorporated into the new countywide study that became effective on August 28, 2008. Therefore, this LOMR reissues the December 18 LOMR based on the effective information shown on the FIRM for Riverside County, California and Incorporated Areas, dated August 28, 2008. This LOMB does not revised revise the SFHA boundaries from the December 18 LOMB along the revised reach. DETERMINATION This document provides the determination from the Department of Homeland Security's Federal Emergency Management Agency (FEMA)' regarding a request for a Letter of Map Revision (LOMB) for the area described above. Using the information submitted, we have determined that a revision to the flood hazards depicted in the Flood Insurance Study (FIS) report and /or National Flood Insurance Program (NFIP) map is warranted. This document revises the effective NFIP map, as indicated in the attached documentation. Please use the enclosed annotated map panels revised by this LOMB for floodplain management purposes and for all flood.insurance policies and renewals in your community. This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have - any questions about this document, please contact the FEMA Map Assistance Center toll free at 1- 877 - 336 -2627 (1- 877 -FEMA MAP) or by letter addressed to the OMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional Information about the NFIP is available on our website at http: / /www.fema.gov /nfip. Joshua A. Smith, CFM, Program Specialist Engineering Management Branch Mitigation Directorate 112553 10.3.1.09090538 102 -D -A Page 2 of 4 Issue Date: January 21, 2009 Effective Date: January 21, 2009 Case No.: 09- 09 -0538P LOMB -APP Federal Emergency Management Agency Washington D.C. 20472 LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED) COMMUNITY INFORMATION APPLICABLE NFIP REGULATIONS /COMMUNITY OBLIGATION We have made this determination pursuant to Section 206 of the Flood Disaster Protection Act of 1973 (P.L. 93 -234) and in accordance with the National Flood Insurance Act of 1968, as amended (Title XIII of the Housing and Urban Development Act of 1968, P.L. 90 -448), 42 U.S.C. 4001 -4128, and 44 CFR Part 65. Pursuant to Section 1361 of the National Flood Insurance Act of 1968, as amended, communities participating in the NFIP are required to adopt and enforce floodplain management regulations that meet or exceed NFIP criteria. These criteria, including adoption of the FIS report and FIRM, and the modifications made by this LOMR, are the minimum requirements for continued NFIP participation and do not supersede more stringent State /Commonwealth or local requirements to which the regulations apply. COMMUNITY REMINDERS We based this determination on the 1- percent - annual- chance flood discharges computed in the FIS for your community without considering subsequent changes in watershed characteristics that could increase flood discharges. Future development of projects upstream could cause increased flood discharges, which could cause increased flood hazards. A comprehensive restudy of your community's flood hazards would consider the cumulative effects of development on flood discharges subsequent to the publication of e FIS report for your community and could, therefore, establish greater flood hazards in this area. Your community must regulate all proposed floodplain development and ensure that permits required by Federal and/or State /Commonwealth law have been.obtained. State /Commonwealth or community officials, based on knowledge of local conditions and in the interest of safety, may set higher standards for construction or may limit development in floodplain areas. If your State /Commonwealth or community has adopted more restrictive or comprehensive floodplain management criteria, those criteria take precedence over the minimum NFIP requirements. We will not,print and distribute this LOMR to primary users, such as local insurance agents or mortgage lenders; instead, the community will serve as a repository for the new data. We encourage you to disseminate the information in this LOMR by preparing a news release for publication in your community's newspaper that describes the revision and explains how your community will provide the data and help interpret the NFIP maps. In that way, interested persons, such as property owners, insurance agents, and mortgage lenders, can - benefit from the information. This revision involves a provisionally accredited levee. Your community is responsible for maintaining and disseminating information, such as the estimated level of protection provided (which may exceed the 1- percent - annual- chance level) and Emergency Action Plan, for the levee system(s) shown as providing protection. To maintain accreditation, the levee owner or community is required to submit the data and documentation necessary to comply with Section 65.10 of the NFIP regulations by August 8, 2009. If the communityor owner does not provide the necessary data and documentation or if the data and documentation provided indicate the levee system does not comply with Section 65.10 requirements, FEMA will revise the flood hazard and risk information for this area to reflect de- accreditation of the levee system. To mitigate flood risk in residual risk areas, property owners and residents are encouraged to consider flood insurance and flood proofing or other protective measures. For more information on flood insurance, interested parties should visit the FEMA Website at http: / /www.fema .gov/business /nfip /index.shtm. This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1- 877 - 336 -2627 (1- 877 -FEMA MAP) or by letter addressed to the OMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional Information about the NFIP is available on our website at http: / /www.fema.gov /nfip. Joshua A. Smith, CFM, Program Specialist Engineering Management Branch Mitigation Directorate 112553 10.3.1.09090538 102 -D -A Page 3 of 4 Issue Date: January 21, 2009 Effective Date: January 21, 2009 Case No.: 09- 09 -0538P LOMB -APP Federal Emergency Management Agency Washington, D.C.- 20472 a t: LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)... We have designated a Consultation Coordination Officer (CCO) to assist your community. The CCO will be the primary liaison between your community and FEMA. For information regarding your CCO, please contact: Ms. Sally M. Ziolkowski Director, Mitigation Division Federal Emergency Management Agency, Region IX 1111 Broadway Street, Suite 1200 Oakland, CA 94607 -4052 (510) 627 -7175 STATUS OF THE COMMUNITY NFIP MAPS We will not physically revise and republish the FIRM for your community to reflect the modifications made by this LOMR at this time. When changes to the previously cited FIRM pariel(s) warrant physical revision and republication in the future, we will.incorporate the modifications made by this LOMR at that time: I •. This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1- 877 - 336 -2627 (1- 877 -FEMA MAP) or by letter addressed to the OMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional Information about the NFIP is available on our website at http: / /www.fema.gov /nfip. Joshua A. Smith, CFM, Program Specialist Engineering Management Branch - Mitigation Directorate 112553 10.3.1.09090538 102 -D -A Page 4 of 4 Issue Date: January 21, 2009 Effective Date: January 21, 2009 Case No.: 09- 09 -0538P LOMB -APP '= Federal Emergency Management Agency Washington. D.C. 20472 LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED) PUBLIC NOTIFICATION OF REVISION This revision is effective as of the date of this letter. Any requests to review or alter this determination should be made within 30 days and.- must be based on scientific or technical data. y This determination is based on-the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1- 877- 336 -2627 (1- 877 -FEMA MAP) or by letter addressed to the OMPI Depot; 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional Information about the NFIP is available on our website at http: / /www.fema.gov /nfip. Joshua A. Smith, CFM, Program Specialist Engineering Management Branch Mitigation Directorate. 112553 10.3.1.09090538 102 -D -A I. PRECIPITATION RATES NOAA 14 ATLAS "`.POINT PRECIPITATION A ; 7 ' FREQUENCY ESTIMATES ' FROM NOAA ATLAS 14 • California 33.6719 N 116.3017 W 98 feet - from "Precipitation- Frequency Atlas of the United States" NOAA Atlas 14, Volume I, Version 4 ' - •• G.M. Bonnin; D. Martin, B. Lin, T. Parzybok, M.yckta, and D. Riley • - `NOAA, National Weather Service, 5'IIVCT Spring, Maryland, 2006 , Extracted: Mon May 4 2009 _Confidence limits" Seasonality If C06ation Maps . •Other Info. • GIS data ;'Maps 117DOCS I : _ ° Return to state Map•.,. " Precipitation Frequency Estimates (inches) ` i;.. ARP* 5 10 15 30 60 120: 12 24 48 [LjrT0 20 30 45 60 min min min min min mio 3'hr 6 hr hr hr hr day d�Y d d� day 0.10 0.16 0.20 0.26: 0.33 0.44 0.52 0.69_ 0.85 0.90 0.92 0.98 1,08 1.15 1.29 1.44 0 0.14 0.22 0.27 0.36 0.45 0.60 0.69 0.93 1.15 1.23 1.24 1.33 1.46 1.56 1.76 1.97 2.23 2.35 . 0.23 0.34 0.42'. 0.57 0.71 0.93: 1.05 1.38 1.70 1.85 1:87 1.98 2.19 2.35 2.66 2.97: 3.35 3.55 10 0.30 0.46 0.56 0.76 0.94 1.21 1.36 1.75 2.12 2.35 2.35 2.52 2.76 2.97 3.35 3.73 4.20 4.46 25 0.42 0.64 0.79 1:06 1.32 1.64 1.82 2.28. 2.74 3.05 3.08 3.30. 3:58 3.86 4.34 4.79 5.3.7 5.71 I 50 0.53 0.81 1.00 1.34 1.67 2.04 2.21 2.73 3.24 3.63 3.70 3.96 4.26 4.61 5.15 5.66 6.29' 6.71 ' ' 100 0.66 1.00 1.25 1.68 2.08 2:49. 2.67 3.23 3.78 4.26 4.39 4.69 5.00 5.42 6.02 6.58 7.27 7.77 200 0.81 1.24' 1.54 2.07: 2.56 3.02 ' 3.19 3.79. 4.36 4.95 5.15 5.50 5.81 6.30 6.96 7.57 8.29 8.88 500 1.06 1:62 2.00 2.70: 3.34 3.84 4.00 4.62 5.21 5.94 6.29 6.71 6.98 7.58 8.30 8.96 9.70 10.42 1000 1.29 1.96 2:43 3.27 4.05 4:58 4.71 5.33 5.92 6.77 7.26 7.73 7.96 8.65 9.41 10.10 10.83 11.64 These precipitation frequency estimates are based on a partial duration series. ARI is the Average Recurrence Interval. ' ' Please refer to NOAA Atlas 14 Document for more information. NOTE: Formatting forces estimates near zero to appear as zero. 1 * Upper bound of the 90% confidence interval Precipitation Frequency Estimates (inches) ARI ** 10 1530 60 Mh[hr 6 Mi� 24 48 4 7 to 20 30 45 ][Z60] [�Ij min min min. min min hr hr day day day day day day = 0.13 0.20 0.24 0.33 0.41 0.55 0.63 0.84 1.02 1.07 1.08 1.14 1.25 1.33 1.50 1.66- 1.87 1.98 2� 0.18 0.28 0.34 0.46 0.57 0.75 0.85 1.12 1.38 1.47 1.48 1.55 1.70 1.81 2:04 2.28 2.58 2.71 0 0.2$ 0.43 0.54 0.72 0.90 1.14 1.28 1.67 2.04 2.21 2.23 2.32 2.54 2 :72. 3.08 3.43 3.86 4.09. 10 0.38 0.57 0.71 0.95 1.18 1.48 1.65 2.11 2:55 2.79. 2.82 2.94 3.19 3.44' 3.88 4.31 4.84 5.12 725E2] 0.33 0.79 0.98 1.32 1.64 2.00 2.21 2.75 3.28 3.62 3.66 3.87 4.15 4.46 5:02 5.55 6.18 6.58 50 0.66 1.00 1.24 1.67 2.07 2.48 2.68. 3 :30 3.88 4.31 4.32 4.64 4.95 5.32 5.96 6.55 7.27 7.75 100 0.82 1.25 1.54 2.08 2.58 3.03 3.24 3.91. 4.54 5.07 5.13 5.52 5.83 6.27 6.98 7.66 8.43 8.98 200 1.01 EEEfl 1.13 2.56 3.17• 3.68 3.89 4.59 5.26 5.89 6.05 6.51 6.81 7.33 8.10 8.86 9.65 10:28 500 1.32 2.01 2.49. 3.35 4.14 4.72 4.91 5:63 6.31 7.11 7:44 8.00 8.27 8.88 9.73 10.56 11.39 12.14 1000 1.61 2.45 3.03' 4.08 5.05 5.65 5.82 6.53 7.23 8.15 8.64' 9.28 9.48 10.20 11.11 11.99 12.79 13.64 The upper bound of the confidence interval at 90% confidence level is the value which 5% of the simulated quantile values for a given frequency are greater than. These precipitation frequency estimates are based on a partial duration series. ARI is the Average Recurrence Interval. f ' . Please refer to NOAA Atlas 14 Document for more information. NOTE: Formatting prevents estimates near zero to appear as zero - Y ;•1: * Lower bound of the 90% confidence interval Precipitation Frequency Estimates (inches) Z20, 30 45 60 min min min min min min hr hr hr hr hr day a day da da ARI ** S 10 15 30 60 120 3 6 12. 24 48' 4 IF][91 0 0.0 8 0.13 0.16 0.21: 0.26 0.36 0.43 0.57 0.70 0.75 0.79 0.84 0.93 0.99 1.10 1.25 1.4 0 1.48 0 0.11 0.17 0.21 0.29 0.36. 0.49 0.57 0.77 0.95 1.02 1.07 1.14 1.26 1.34 1.51 1.71 1.92 2.03 0 0.18 0.2$ 0.34 0.46 0.57 0.76:; 0.87 1.14 1.41 1.54 1.59' 1,70 1.87 2.01. 2.28 2.57 2.88 3.05 16 0.24 0.36 0.45 0.60 0.74 0.98 1.11 1.44 1.75 1.94 2.01 2.15 2.35 2.54 2.86 3.21 3.60 3.81 25 0.33 0.50 0.62 0.83 1.03 1.31 1.47 1.86 2.24 2.51 2.61 2.79. 3'.02 3.27 3.68 4.1 I . 4.58 4.86 50 0.41 0.62 0.77 1.03 1.28 .1.60 1.77 2.21• 2.62• 2.97 3.10 3.32 3.56 3.87. 4.33 4.82 5.34 5.66 100 0:50 0.76 0.94 1.26 1.56 1.92::2.11 2.58 3.03 3.46 3.63 3.88 4.14 4.50 5.02 5.57 6.13 6.50 200 0.60 0.91 1.13 1.52. 1.88. 2.28 2.48 2.98. 3.46 3.98 4.21 4.50. 4.75 5.17 5.75' 6.33. 6.94 7.36 500 0.76 1.15 1.43 1.92= 2.38 2.83 3.03 3:56 4.06 4.71 5.04 5.37 5.61 6.11 6.75 7.40 8.03' 8.53 1000 0.$9 1.36 1:69 2.27 2.81 3.29:3.48 4.04 4.54 5.29 5.72. 6.10 6.30 6.89 7.55 8.24 8.87 9.46 ;' The lower bound of the confidence interval at 90% confidence level is the value which 5% of the simulated quantile values for a given frequency are less than. II t ..Y.......... y...... "These precipitation frequency estimates aria. based on a partial duration maxima se ies. ARI is the Average Recurrence Interval. Please refer to NOAA Atlas 14 Document for more information. NOTE: Formatting prevents estimates near zero to appear as zero. • .. WT. ext version of tables I Partial duration based Point Precipitation Frequency Estimates - Version: .4 33.670 M 116.3017 W 98•ft 1- 2 ..5 10 25 .: 50 100 '200 500 1000..' Average Recurrence I'ntei-val (years) Mon May 04 ,13.:03 :06 2009 - uration- "" 5 -min 120 -m �- 48 -hr 307da �c- y ... 10 -min � 3 -hr -xF 4 -day -a- 45 -day -o- 15 -min + 6 -hr + 7 -day --a-- 60 -day -m-- 30 -min 12 -hr t " 10 -day + - - • . ... 60 -min -m- ... 24 -hr -B- 20-day... ' Partial" duration based Point Precipitation Frequency Estimates r Version: 4" 33.6719 M 116:3017 W 98 ft I 12 _ 10 12 .L L 11 L L 10 "> 9 31 > '> - 8 t C .0 S L C 1 I :1 I I r. M m 10...10 " a- m 7 q W W N . .0 13 a ' 1 ' to ' m : to m 6 0 .O 07 ou . .V .. Cu .:M .D W : O 1 I I : M. O In I n 5 I I N m 1 1 I - m''' r) 06 M ~13103:06.2009 ID m 4 0 m L cu 3 Mon May 04 2 1 0 1- 2 ..5 10 25 .: 50 100 '200 500 1000..' Average Recurrence I'ntei-val (years) Mon May 04 ,13.:03 :06 2009 - uration- "" 5 -min 120 -m �- 48 -hr 307da �c- y ... 10 -min � 3 -hr -xF 4 -day -a- 45 -day -o- 15 -min + 6 -hr + 7 -day --a-- 60 -day -m-- 30 -min 12 -hr t " 10 -day + - - • . ... 60 -min -m- ... 24 -hr -B- 20-day... ' Partial" duration based Point Precipitation Frequency Estimates r Version: 4" 33.6719 M 116:3017 W 98 ft I 12 _ 10 E .L L L .L. ::i. L L L L > 7'7 "> T 31 > '> . .. I E E' m t C I I C .0 S L C 1 I :1 I I S C 1 I M m 10...10 " a- ".- W a 10 W '1s a W W N . .0 13 a ' 1 ' to ' m : to m I 1 C m m .. M O .O 07 ou . .V .. Cu .:M .D W : O 1 I I : M. O In I n I m I I N m 1 1 I - m''' r) 06 M ~13103:06.2009 ID m Duration cu a. °' `o Mon May 04 t. v. d a ion " 'i 17A Id 11 0'-W 100" W go-IJ Ro"Id 70"1111 i I , These maps were produced using a died map reguestfrom the \ U.S. Census Bureau Mapping and CartoaraohicResources . Tlper Map Server: e - Please read diseldirrier for more information.' Loca�' z 1R.T"W Other•Maps /Photographs View USGS digital orthophoto quadrangle (DOO) covering this location from TerraServer; USGS Aerial Photograph may also be available from this site. A DOQ is a computer - generated image'of an aerial photograph in which image displacement caused by terrain relief and camera tilts has been removed. It combines the image characteristics of a photograph with the geometric qualities of a map. Visit the USGS for more. in formation. Watershed /Stream Flow Information - Find the Watershed for this location using the U.S. Environmental Protection:Agency's site. Climate Data Sources- Precipitation frequency results are based on data from a variety of sources, but largely NCDC. The following links provide general information about, observing sites in the area, regardless of if their data was used in this study. For detailed information about the stations used in this study; please refer to NOAH Atlas 14 Dbcument. Using the National Climatic Data Center's (NCDC) station search engine, Iocate other climate stations within: +/ -30 minutes -- 1--- 1- .d— agrreee OR...:. ;I 9 of this location (33.6719/ - 116.3017); Digital ASCII data can be:obtained directly from NCDC.: Find Natural Resources Conservation Service (MRCS) SNOTEL (SNOwpack TELemetry) stations by visiting the Western Regional Climate Center's state - specific SNOTEL station mapi: Hydrometeorological Design Studies Center DOC ,/�'OAA ,National Weather Service 1325 East -West Highway, - .. Silver Spring, MD 20910 - • uc13 -1669 Queti ... .. . Qstions ?: 1.113SC.Oucstions0noaa.mv: , : ; • _ . ... Disclaimer ... .. INTENSITY VALUES FROM GRAPH CONSTANT FROM GRAPH 22.72 EXPONENT FROM GRAPH 1 0.59 MINUTES ..... RAINFALL .. " .. . NOAA ATLAS 14 INTENSITY - DURATION WORKSHEET ... m. r . _ . " PROJECT NAME La QUinta Fire Station No. 32 58.72. 4.89 . .10 PROJECT NUMBER 1928 15 112.28 28.07 STORM EVENT " 100 Year :::44.35 25 151.77 :63.24 30 DATA FROM NOAA ATLAS 14 84.50 35 185.10 MINUTES.: RAINFALL.. RAINFALL .: 40 200.27 133.52 INTENSITY . DEPTH 214.69 .' 161.01. . 50 (in /hr) in 190.38 55 241.67 5 7.92 0.66 . 254.40 65 266.70 10 6.00 1.00 278.62 325.06 75 .290.20 15 5.00 1.25 301.46 401.95 85 312.44 30 3.36 1.68 323.16 484.73 95 '333.63 60 2.08 2.08 343.88. .. 573.14 105;::•. - 120 1.25 • 2.49 .... 110 363.77 INTENSITY VALUES FROM GRAPH CONSTANT FROM GRAPH 22.72 EXPONENT FROM GRAPH 1 0.59 MINUTES ..... RAINFALL .. RAINFALL: ..:.... INTENSITY DEPTH (in /hr) (in) 5 58.72. 4.89 . .10 88.39 „14.73 15 112.28 28.07 20 133.05 :::44.35 25 151.77 :63.24 30 169.01 84.50 35 185.10 107.98 40 200.27 133.52 45 ". 214.69 .' 161.01. . 50 228.45' 190.38 55 241.67 221.53 60 254.40 254.40 65 266.70 288.93 70 278.62 325.06 75 .290.20 362.75 80 301.46 401.95 85 312.44 442.62 90 323.16 484.73 95 '333.63 528.25 100. .. 343.88. .. 573.14 105;::•. 353.92::., 619:37::;., 110 363.77 66E92 115. 373.44 715.76. 120 382.94. 765:87. 1`: LE.1 _71 V+ IC;F -AA 44 Jpt �wr t 44, m ,,11 ! Q til m I I TUS RM o 4 Francis Hack Ln, ON - 1,1 4 V 411 Jp ry MAP LEGEND MAP INFORMATION Area of Interest (A01) Map Scale: 1:3;650 if printed on A size (8.5" x 11 ") sheet. 0 Area of Interest (AOp The soil surveys that comprise your AOI were mapped at,1:24,000. Soils . . . . Please bar stale o n ea ch m ap sheet o r accurate map Q: Soil Ma':Units „• measurements Soil Ratings „ Source of Map: Natural Resources "Conservation Service .. . • .. < . • . 0 A .. � Web Soil .Survey URL:. http : / /websoilsurvey.nres.usda.gov .. A/D Coordinate System: UTM'Zone 11N NAD83 ... • . t3 . is product is generated from the USDA -NRCS certified data as of This the version date(s) listed below. 0 B/D " Soil Survey Area: Riverside County, Coachella Valley Area, 0 California �. C/D S ury ey Are a Data Version 4, d an 3, 2 00 8 0 D Date(s) aerial images were photographed: 5/31/2005 Not rated or not available . The orthophoto or other base map on which the soil lines were ..: .... :: compiled and.digitized probably differs from the background Political Features imagery displayed on these maps. As a result, some minor shifting ® Cities of map unit boundaries may be evident. Q PLSS Township and . _. Range: . 0 PLSS Section wo Water Features .Oceans . Streams and Canals ”' Transportation. . + Rails N .. Interstate Highways .. .. N US Routes. Major Roads ww Local Roads .. .. USDA Natural Resources,' " Conservation Service Web' Soil Survey 2.1 3/17/2009 National Cooperative Soil Survey .. Page 2 of 4 •.£ .,t Soil Properties and Qualities- =Summary. by Map Unit = Riverside County,'Coachella Valley Area,Califor'n'ia,•' •; Map unit symbol ,,; Map unit name„ •a _ Rating",., , , ,.t Acres in AOI k. ;.Percent of AOI' °. CdC Carsitas gravelly sand, 0 to 9 percent slopes A 5.1 ..... . 9.9 %. MaB Myoma fine sand, 0 to 5 percent slopes A 46.4 90:1 Totals for Area of Interest 51.5 100.0% Description..: Hydrologic soil groups are. based on estimates'of, runoff, potential. Soils. -are assigned to one. of four groups according to the rate of water•infiltration when'the soils are not protected by vegetation; are thoroughly wet, and receive precipitation from long - duration storms. The soils in the .United States are assigned to fourgroups (A, B,. C, and D) and -three dual classes (A/D, B /D, and C /D): -,The groups are defined as'follows: Group A. Soils having a high:' infiltration rate (low runoff potential) whenthoroughly wet. These consist:mainly of deep; well drained. to excessively drained sands or • gravelly sands. the: se soils have a high Tate of water transmission.: Group B: Soils having a moderate infiltration rate when thoroughly wet::These consist'chiefiy of moderately deep or deep, moderately well drained or drained: soils that have moderately fine texture to moderately. coarsei texture. These soils :: have a moderate rate of water transmission. y Group C. Soils having a'slow infiltration rate when thoroughly wet.'These consist . chiefly of soils having a,layer that impedes the downward'rriovement of water or soils of moderately fine texttiie or fine texture. These_soils have a slow 'rate,of water transmission.. Group D. Soils having a.very slow infiltration.rate.(high runoff potential) when thoroughly. wet. These consist chiefly of clays that have a high shrink-swell potentials. soils that have a high water. table; soils that have a claypan or clay layer, at or near the surface,'and soils that :are' shallow over nearly: impervious material. These.soils have a very slow rate of water transmission. If- a.soil is assigned to. a dual hydrologic:group (A/D, B /D, or C /D), the first letter is. for drained areas: and the second is for.undrained areas. Only the soils that in their,' natural condition are in group. D are assigned to dual classes. Rating Options • Aggregation Method: Dominant Condition USDA Natural Resources Web Soil Survey 2.1 3/17/2009, , ' Conservation Service r . - National Cooperative Soil Survey ' . Page '3 of 4 ;`• •• PERCOLATION RATE (in /hr) .. t• DRYWELL DATA RCFCD SYNTHETIC UNIT HYDROGRAPH - SHORTCUT METHOD ' ; NUMBER USED .. DATA INPUT SHEET 1 " ^� July 1,,2009 0.15 cfs WORKSHEET PREPARED BY: ISAW PROJECT NAME La Quinta Fire Station No. 32 and Corporate Y PROJECT NUMBER • -.. LOWEST PAD ELEVATION 1928. ..... . ,.. ;. ` CONCENTRATION POINT DESIGNATION Data Input Sheet AREA DESIGNATION Page '1 of 13 AMC NUMBER Lowloss Conditions: X= Existing; D= Developed; BS= Retention .:AMC II' AREA SOIL TRIBUTARY AREAS ACRES. LOW LOSS . RI . • INFILTRATION- IMPERVIOUS- ' DESIG GROUP CONDITION NUMBER RATE •' 'PERCENT t 2 A PAVING /HARDSCAPE,' 3.35 D 32, 0.74 1.00 9 A LANDSCAPING ' "' 0.81 _ : D .. 32 0.74 ', . . 0.10 a LENGTH OF WATERCOURSE (L) 720 ft LENGTH.TO POINT OPPOSITE CENTROID (Lca) ELEVATION OF HEADWATER, "' , � 55.0 it t� ELEVATION OF CONCENTRATION POINT ' ,' 46:5 ft ` AVERAGE MANNINGS'N' VALUE STORM FREQUENCY (YEAR) i• 100 POINT RAIN 1 -HOUR R. 2.10 in 3 -HOUR 2.70 in -. 6-HOUR ' 3.20 in i 24 -HOUR. , 4.25 in ;`• •• PERCOLATION RATE (in /hr) 0.6 in /hr '. . DRYWELL DATA ' NUMBER USED 1 " PERCOLATION RATE', 0.15 cfs LOWEST FLOWLINE ELEVATION ___ 46.75 • " LOWEST PAD ELEVATION 49.02 Data Input Sheet Page '1 of 13 .• 0 10 RCFC & WCD SYNTHETIC UNIT HYDROGRAPH METHOD BASIC DATA CALCULATION FORM PROJECT: La Quinta Fire Station No. 32 and Corporate Yard Job No.: 1928 BY: SAW 'DATE: .' 7/1!09 PHYSICAL DATA [11 CONCENTRATION POINT [3] STORM DURATION: [21 AREA DESIGNATION 1 -HOUR 3 AREA - ACRES 4.16 4 L -FEET 720 5 L -MILES 0.136 . 6 La -FEET 360.00 [71 La -MILES 0.068 8 ELEVATION OF-HEADWATER 55 [91 ELEVATION OF CONCENTRATION POINT 46.5 10 H -FEET 8.5 11 S- FEET /MILE 62.3 [121 SAO .5 7.90 13 L'LCA/SA0.5 0.001 [141 AVERAGE MANNINGS'N' 0.02 [151 LAG TIME -HOURS 0.04 16 LAG TIME - MINUTES 2.2 1 100.% OF LAG- MINUTES 2.2 [18] 200% OF LAG - MINUTES 4.4 RAINFALL DATA [1] AMC II [2] FREQUENCY -YEARS 100 [3] STORM DURATION: Point Rain 1 -HOUR 2.10 in 3 -HOUR _ 2.70 in . 6 -HOUR 3.20 in 24 -HOUR 4.25 in STORM EVENT SUMMARY . STORM DURATION 1 -HOUR 3 -HOUR 6 -HOUR 24 -HOUR EFFECTIVE RAIN (in) 1.91 2.13 2.08 2.50 FLOOD VOLUME (cu -ft) (acre -ft) 28,832 0.66 32,133 0.74 31,465 0.72 37,819 0.87 REQUIRED STORAGE (cu -ft) (acre -ft) FACTOR OF SAFETY 27,800 0.64 1.13 - 29,148 0.67 1.08 25,931 0.60 1.21 18,460 0.42 1.71 STORAGE PROVIDED (cu -ft) (acre -ft ) 31,488 0.72 PEAK FLOW (cfs) N/A 1 10.341 8.221 1.74 MAXIMUM WSEL (ft) DEPTH ft 46.21 2:71 46.32 2.82 46.07 2.57 45.49 1.99 LOWEST FLOWLINE ELEVATION DIFFERENCE (ft) 46.75 0.54 0.43 1 0.68 1.26 LOWEST PAD ELEVATION DIFFERENCE (ft) 49.02 2.81 2.70. 2.95 3.53 ESTIMATED TIME TO DEWATER BASIN Based on Total Flood Volume & Average Percolation Rate (days) 1.2 1.3 1.3 1.6 NOTE: PEAK FLOW FOR THE 1 -HOUR STORM IS NOT REPRESENTATIVE. PER RCFCD PEAK DISCHARGES FROM THE 3 -HOUR STORM SHOULD NORMALLY COMPARE WELL WITH RATIONAL PEAKS. J Plate E -2.1 Page 2 of 13 RCFC & WCD A�AQ° b�Qd SYNTHETIC UNIT HYDROGRAPH METHOD BASIC DATA CALCULATION FORM AMC II PROJECT: La Quinta Fire Station No. 32 and Corporate Yard Job No.: 1928 lay: SAW DATE: 7/1/09 AVERAGE ADJUSTED LOSS RATE SOIL GROUP' Plate C -1 LAND USE RI NUMBER Plate E-6.1 PERVIOUS AREA INFILTRATION RATE (in/hr) Plate E -6.2 DECIMAL PERCENT OF AREA IMPERVIOUS Plate E -6.3 ADJUSTED INFILTRATION RATE _ (in /hr) AREA AREA WEIGHTED AVERAGE MAX AVERAGE ADJUSTED INFILTRATION RATE (in /hr) LOW LOSS CONDITION LOW LOSS RATE PER RCFC /2322 2 e MIN AVERAGE ADJUSTED INFILTRATION RATE • PAVING /HARDSCAPE 32 0.74 100% 0.07 3.35 1 0.805 0.0596 DEVELOPED 0.1000 0.0805 • LANDSCAPING 32 0.74 10% 0.67 0.81 0.195 0.1311 DEVELOPED 0.8200 0.1597 SUMI 4.16 SUM 0.1907 0.2402 VARIABLE LOSS RATE CURVE 24 -HOUR STORM ONLY) Fm= 0.09L3220481. C= 0.00 1771 NOTE: Low loss rates established per RCFC /2322 (Dated: May- 30 -95) F,= C(24- (T /60)) ^1.55 +Fm = 0.00177 (24- (T /60)) ^1.55 + 0.10 in/hr Undeveloped Condition: Low Loss = 90% CONSTANT LOSS RATE (3 & 6 HOUR STORMS) _ , 0.1907 Developed. Condition: Low Loss = 0.9 - (0.8 %impervious) LOW LOSS RATE = 0.2402 Basin Site: Low Loss = 10% Where: T =Time in "minutes. To get an average value for each unit time period, Use T =1/2 the unit time for the first time period, T =1 1/2 unit time for the second period, etc. RCFC & WCD EFFECTIVE RAIN 1.91 in FLOOD VOLUME SYNTHETIC UNIT HYDROGRAPH METHOD.,' FLOOD VOLUME PROJECT: La Quinta Fire Station No. 32 and'. Corporate Y 0.64 ac -ft REQUIRED STORAGE 27,800 cu -ft MAX WSEL 46.21 ft SHORTCUT METHOD 35.67 ds VERAGE PERCOLATION RATE 17.19 cuft/min Job No.: 1928 AMA Q° GIM °G� 1 -HOUR STORM BY: SAW DATE 7/1/09 UNIT HYDROGRAPH and EFFECTIVE RAIN CALCULATION FORM DRAINAGE AREA -ACRES 4.16 Basin Percolation Rate 0.6 in/hr UNIT TIME - MINUTES 5 ' LAG TIME - MINUTES 2.22 Maxwell Drywells UNIT TIME - PERCENT OF LAG 225.2 Number 1 TOTAL ADJUSTED STORM RAIN- INCHES 2.10 Drywall Percolation Rate 0.15 ds 9.00 cfm CONSTANT LOSS RATE -in /hr 0.19 LOW LOSS RATE - PERCENT ' ' 24.02% Unit Time ' Time Pattern Storm Loss Rate Effective Flood Volume Basin Percolation Percolation Total In Basin Period Minutes Hours Percent Rain Rain Hydrograph In Volume Area Out Basin Depth in /hr in/hr Flow (Plate E -5.9) Max Low in/hr ds cu -ft cu -ft sf cu -ft cu -ft ac -ft ft 1 5 0.08 3.6 0.91 0.19 0.22 0.72 3.01 902 902 7,299 75 826 0.02 43.60 2 10 0.17 4.2 1.06 0.19 0.25 0.87 3.64 1,092 1,918 7,571 77 1,842 0.04 43.73 3 15 0.25 4.4 . 1.11 0.19, 0.27 0.92 3.85 1,155 2,997 7,858 78 2,919 0.07 43.86 4 20 0.33. 4.6 1.16 0.19 0.28 0.97 4.06 1,219 4,138 8,162 79 .4,059 0.09 44.00 . 5 25 ' 0.42 5.0 1.26 0.19 0.30 1.07 4.49 1,346 5,405 8,500 80 5,324 0.12 44.15 6 30 0.50 5.6 1.41 0.19 0.34 1.22 5.12 1,536 6,860 8,888 82 6,778 0.16 44.33' 7 35 0.58 6.4 1.61 0.19 0.39 1.42 5.97 1,790 8,567 9,328 84 8,484 0.19 44.53 8 40 0.67 8.1 2.04 0.19 0.49 1.85 7.76 2,329 10,812 9,842 86 10,726 0.25 44.75 9 45 0.75 13.1 3.30 0.19 0.79 3.11 13.05 3,914 14,641 10,719 90 14,551 0.33 45.11 10 50 0.83 34.5 8.69 0.19 2.09 8.50 35.67 10,701 25,251 12,962 99 25,152 0.58 46.01 .11 55 0.92 6.7 1.69 0.19 0.41 1.50 6.28 1,885 27,037 13,320 101 26,937 0.62 46.15 12 60 1.00 3.8 0.96 0.19 0.23 0.77 3.22 965 27,902 13,494 1 101 27,800 0.64 46.21 EFFECTIVE RAIN & FLOOD VOLUMES SUMMARY EFFECTIVE RAIN 1.91 in FLOOD VOLUME 0.66 ac -ft FLOOD VOLUME 28,832 cu -ft REQUIRED STORAGE 0.64 ac -ft REQUIRED STORAGE 27,800 cu -ft MAX WSEL 46.21 ft PEAK FLOW RATE 35.67 ds VERAGE PERCOLATION RATE 17.19 cuft/min RCFC & WCD ' (nI�IDG o0(SOo ®� SYNTHETIC UNIT HYDROGRAPH METHOD' SHORTCUT- METHOD 3 -HOUR STORM UNIT HYDROGRAPH and EFFECTIVE RAIN CALCULATION FORM PROJECT: La Quinta Fire Station No. 32 and Corporat Job No.: 1928 BY: ' SAW DATE 7/1/09 DRAINAGE AREA -ACRES 4.16 UNIT TIME - MINUTES .5 LAG TIME - MINUTES 2.22 UNIT TIME - PERCENT OF LAG 225.2 TOTAL ADJUSTED STORM RAIN (in) 2.70 CONSTANT LOSS RATE (in /hr) 0.19 LOW LOSS RATE - PERCENT 24.02% ` Basin Percolation Rate 0.6 in /hr Maxwell Drywells Number 1 Drywall Percolation Rate. 0.15 cfs 9.00 cfm Unit Time Period Time Minutes Hours Pattern Percent (Plate E -5.9) Storm Rain in /hr Loss Rate in /hr Max Low Effective Rain in /hr Flood Hydrograph Flow cfs Volume In cu -ft Basin Volume cu -ft Percolation Area sf Percolation Out cu -It Total In Basin cu -ft ac -ft Basin Depth ft' 1 5 0.08 1.3 0.42 0.19 0.10 0.23 0.97 290. 290 7,136 75 215 0.00 43.53 2 10 0.17. 1.3 0.42 0.19 0.10 0.23 290 505 7,194 75 430 0.01 43.55 .3 15 0.25 1.1 0.36 0.19 0.09 0.17 0.70 209 639 7,229 75 564 0.01 43.57 4 20 0.33 1.5 0.49 0.19' 0.12 0.30 1.24 372 935 7,308 75 860 0.02 43.61 5 2S 0.42 1.5 0.49 0.19 0.12 0.30 1.24 372 1,232 7,387 76 1,156 0.03 43.64 6 30 0.50 1.8 _ 0.58 0.19 0.14 0.39- 1.65 494 1,650 7,499 76 1,573 0.04 43.69 7 3S 0.58 1.5 0.49 0.19 0.12 0.30 1.24 372 1,945 7,578 77 1,868 0.04 43.73 8 40 0.67 1.8 0.58 0.19 0.14 0.39 1.65 494 2,362 7,689 77 2,285 0.05 43.78 9 4S .0.75 1.8 0.58 0.19 0.14 0.39 1.65 494 2,779 7,800 78 2,702 0.06 43.83 10 50 0.83 1.5 0.49 0.19 0.12 0.30 1.24 372 3,073 •: 7,879 78 2,995 0.07 43.87 11 5S 0.92 1.6 0.52 0.19 0.12 0.33 1.37 412 3,408 7,968 78 3,330 0.08 43.91 12 60 1.00 1.8 0.58 0.19 0.14 0.39 1.65 494 .3,824 .8,079 79 3,745 - 0.09 43.96 13 65 1.08 2.2 0.71 0.19 0.17 0.52 2.19 657 4,402 8,233 79 4,323 0.10 44.03 14 70 1.17 2.2 0.71 0.19 0.17 0.52 2.19 657 4,980 .8,387 80 4,900 0.11 44.10 15 75 1.25 2.2 0.71 0.19 0.17 0.52. 2.19 657 5,557•= 8,541 81 5,476 0.13 44.17 . 16 80 .1.33 2.0 0.65 0.19 0.16 0.46 1.92 575' 6,052 8,673 81 5,970. 0.14 44.23 17 85 1.42 2.6 0.84 0.19 0.20 0.65 2.73 820 6,790 8,870 82 6,709 0.15 44.32 18 90 1.50 2.7 0.87 0.19 0.21 0.68 2.87 861 7,569 9,077 83 7,487 0:17 44.42 19 95 1.58 2.4 0.78 0.19 0.19 0.59 2.46 739 1 8,225 9,249 84 8,142 0.19 44.50 20• 100 1.67 2.7 0.87 0.19 0.21 0.68 2:87 861 9,002 .9,427 84 8,918 0.20 44.57 21 105 1.75 3.3 1.07 0.19 0.26 0.88 3.68 1,105 10,024 9,661 85 9,938 0.23 44.67 22 110 ' 1.83. 3.1 1.00 0.19 0.24 0.81 3.41 1,024 10,962 9,877 86 10,876 0.25 44.76 23 115 1.92 2.9 .0.94 0.19 0.23.. 0.75 3.14 942 11,819 10,073 87 11,732 0.27 44.84 24 120. 2.00 3.0 0.97 0.19 0.23 0.78 3.28 983 12,715 10,278 88 12,627 0.29 44.93 RCFC & WCD EFFECTIVE RAIN 2.13 in SYNTHETIC UNIT HYDROGRAPH METHOD 0.74 ac -ft FLOOD VOLUME PROJECT: La Quinta Fire station No. 32 and Corporal G`iIS7DD GiOo (SOa ®� , REQUIRED STORAGE 29,148 cu -ft MAX WSEL 46.32.ft SHORTCUT METHOD 10.34 cfs AVERAGE PERCOLATION RATE 17.12 cuf /min Job No.: 1928 �11L1° Ir�M °laL� 3 -HOUR STORM BY: SAW DATE 7/1/09 UNIT HYDROGRAPH and EFFECTIVE RAIN CALCULATION FORM DRAINAGE AREA -ACRES 4.16 Basin Percolation Rate 0.6 in /hr UNIT TIME- MINUTES 5 LAG TIME - MINUTES 2.22 Maxwell Drywells UNIT TIME - PERCENT OF LAG 225.2 _ Number 1 TOTAL ADJUSTED STORM RAIN (in) 2.70 Drywell Percolation Rate - 0.15 cfs ' 9.00 cfm CONSTANT LOSS RATE (in /hr) 0.19 LOW LOSS RATE - PERCENT' 24.02% Unit Time Time Pattern Storm Loss Rate Effective Flood Volume Basin Percolation Percolation.. Total In Basin Period' Minutes Hours Percent Rain Rain Hydrograph In Volume Area • Out Basin Depth in /hr in /hr Flow (Plate E -5.9 ) Max Low in /hr cfs cu -ft cu -ft sf cu -ft cu -ft ac -ft ft 25 125 2.08 3.1 1.00 0.19 0.24 0.81 3.41 1,024 13,651 10,493 89 .13,562 0.31 45.02 26 130 2.17 4.2 1 1.36 0.19 0.33 1.17 4.91 1,472 15,035 10,810 90 14,945 0.34 45.15 • 27 135 2.25 5.0 1.62 0.19 0.39 1.43 6.00 1,799 16,743 11,201 92 16,652 0.38 45.32 28 140 2.33 3.5 1.13 0.19 0.27 0.94 3.96 ' 1,187 1 17,839 11,452 93 1 17,746 0.41 45.42 29 145 2.42, 6.8 2.20 0.19 0.53 2.01 8.44 2,533 20,278 11,963 95 20,184 0.46 45.62 30 150 2.50 7.3 2.37 0.19 0.57 2.17 9.12 2,736 22,920 12,493 97 22,823 0.52 45.83 31 155 2.58 8.2 2.66 0.19 0.64 2.47 10.34 3,103 25,926 13,097 100 25,827 0.59 46.06 32 160 2.67 5.9 1.91 0.19 0.46 1.72 7.22 2,166 27,992 13,512 101 27,891 0.64 46.22 33 165 2.75 2.0 0.65 0.19 0.16 0.46 1.92 575. 28,466 13,607 102 28,365 0.65 46.26 34 170 2.83 1.8 0.58 0.19 0.14 0.39 1.65 494 28,859 13,686 102 28,757 0.66 46.29 35 175 2.92 1.8 0.58 0.19 0.14 0.39 1.65 494 29,250 13,765 102 29,148 0.67 46.32 36 180 3.00 0.6 0.19 0.19 0.05 0.00 0.02 5 29,153 13,745 1 102 29,051 1 0.67 46.31 EFFECTIVE RAIN & FLOOD VOLUMES SUMMARY EFFECTIVE RAIN 2.13 in FLOOD VOLUME 0.74 ac -ft FLOOD VOLUME 32,133 cu -ft REQUIRED STORAGE 0.67 ac -ft REQUIRED STORAGE 29,148 cu -ft MAX WSEL 46.32.ft PEAK FLOW RATE 10.34 cfs AVERAGE PERCOLATION RATE 17.12 cuf /min • % US a �, Af . RCFC & WCD G�L°QGJMLe1d SYNTHETIC UNIT HYDROGRAPH METHOD SHORTCUT METHOD 6 -HOUR STORM. UNIT HYDROGRAPH and EFFECTIVE RAIN CALCULATION FORM PROJECT: La Quinta Fire Station No. 32 and Corp Job No.: 1928 BY: SAW DATE 7/1/09 DRAINAGE AREA -ACRES 4.16 UNIT TIME - MINUTES 5 LAG TIME - MINUTES 2.22 UNIT TIME - PERCENT OF LAG 225.2 TOTAL ADJUSTED STORM RAIN (in) 3.20- CONSTANT LOSS RATE (in /hr) . 0.19 LOW LOSS RATE - PERCENT 24.02 �1 Q,� \ - C �Jw Basin Percolation Rate 0.6 in /hr Maxwell Drywells Number 1 Drywall Percolation Rate 0.15 cfs 9.00 cfm Unit Time Period Time Minutes Hours Pattern Percent (Plate E -5.9) Storm Rain in /hr Loss Rate in /hr Max Low Effective Rain in /hr Flood Hydrograph Flow cfs Volume In cu -ft Basin Volume cu -ft Percolation Area sf Percolation Out cu -ft Total In Basin cu -ft ac -ft Basin Depth ft 1 5 0.08 0.5 0.19 0.19 0.05 0.00 0.01 2 2 7,059 74 0 0.00 43.50 2 10 0.17 0.6 0.23 0.19 0.06 0.04 0.17 50 50 7,072 74 0 0.00 43.50 3 15 0.25 0.6 0.23 0.19 0.06 1 0.04 0.17 50 50 7,072 74 0 0.00 43.50 4 20 0.33 0.6 0.23 0.19 0.06 0.04 0.17 50 50 7,072 74 0 0.00 43.50 5 25 0.42 0.6 0.23 0.19 0.06 0.04 0.17 50 50 7,072 74 0 0.00 43.50 6 30. 0.50 0.7 0.27 0.19 0.06 0.08 0.33 98 98 7,085 75 24 0.00 43.50 7 35 0.58 0.7 1 0.27 0.19 0.06' 0.08 0.33 98 122 7,092 75 47 0.00 43.51 8 40 0.67 0.7 0.27 0.19 0.06 0.08 0.33 98 146 7,098 75 71. 0.00 43.51 9 45 0.75 0.7 0.27 0.19 0.06 0.08 0.33 98 169 7,104 75 95 0.00 43.51 10 50 0.83 0.7 0.27 0.19 0.06 0.08 0.33 98 193 7,110 75 118 0.00 43.51 11 55 0.92 0.7 0.27 0.19 0.06 0.08 0.33 98 217 7,117 75 142 0.00 43.52 12 60 1.00 0.8 0.31 0.19 0.07 0.12 0.49 147 289 7,136 75 214 0.00 43.53 13 65 1.08 0.8 0.31 0.19 0.07 0.12 0.49 147 361 7,155 75 286 0.01 43.54 14 70 1.17 0.8 0.31 0.19 0.07 0.12 0.49 147. 432 7,174 75 357 0.01 43.54 15 75 1.25 0.8 0.31 0.19 0.07 0.12 0.49 147 504 7,193 75 429 0.01 43.55 16 80 1.33 0.8 0.31 0.19 0.07 0.12 0.49 147 576 7,213 75 501 0.01 43.56 17 85 1.42 0.8 0.31 0.19 0.07 0.12 0.49 147 647 7,232 75 572 0.01 43.57 18 90 1.50 0.8 0.31 0.19 0.07 0.12 0.49 147 719 7,251 75 .643 0.01 43.58 19 95 1.58 0.8 0.31 0.19 ' 0.07 0.12 0.49 147 790 7,270 75 715 0.02 43.59 20 100 1.67 0.8 0.31 0.19 0.07 0.12 0.49 147 861 7,289 75 786 0.02 43.60 21 105 1.75 0.8 0.31 0.19 0.07 0.12 0.49 147 933 7,308 75 857 0.02 43.61 22 110 1.83 0.8 0.31 0.19 0.07 0.12 0.49 147 1,004 7,327 76 928 0.02 43.61 23 115 1.92 0.8 0.31 0.19 0.07 0.12 0.49 147 1,075 7,346 76 . 999 0.02 43.62 24 120 2.00 0.9 0.35 0.19 0.08 0.15 0.65 195 1,194 7,377 76 1,118 0.03 43.64 25 125 2.08 0.8 0.31 0.19 0.07 0.12 0.49 147 1,265 7,396 76 1,189 0.03 43.65 26 130 2.17 0.9 0.35 0.19 0.08 0.15 0.65 195 1,384 7,428 76 1,308 0.03 43.66 27 135 2.25 0.9 0.35 0.19 0.08 0.15 0.65 195 1,503 7,460 76 1,427 0.03 43.68 28 140 2.33 0.9 0.35 0.19 0.08 0.15 0.65 195 1,622 7,491 76 1,546 0.04 43.69 29 145 2.42 0.9 0.35 0.19 0.08 0.15 0.65 195 1,740 7,523 76 1,664 0.04 43.70 30 150 2.50 0.9 0.35 0.19 0.08 0.15 0.65 195 1,859 7,555 76 1,783 0.04 43.72 31 155 2.58 0.9 0.35 0.19 0.08 0.15 0.65 195 1,977 7,586 77 1,901 0.04 43.73 32 160 2.67 0.9 0.35 0.19 0.08 0.15. 0.65 195 2,096 7,618 77 2,019 0.05 43.75 33 165 2.75 1.0 0.38 0.19 0.09 0.19 0.81 243 2,262 7,662 77 2,185 0.05 43.77 34 170 2.83 1.0 0.38 0.19 0.09 0.19 0.81 243 2,429 7,707, 1 77 2.351 0.05 43.79 Plate E -2.2 6 -Hour Storm Page 7 of 13 • RCFC & WCD GyIAQG�I� °Gid SYNTHETIC UNIT HYDROGRAPH METHOD SHORTCUT METHOD 6 -HOUR STORM UNIT HYDROGRAPH and EFFECTIVE RAIN CALCULATION FORM PROJECT: La Quinta Fire Station No. 32 and Corp Job No.: 1928 BY: SAW DATE 7/1/09 DRAINAGE AREA -ACRES 4.16 UNIT TIME - MINUTES 5 LAG TIME - MINUTES 2.22 UNIT TIME - PERCENT OF LAG 225.2 TOTAL ADJUSTED STORM RAIN (in) 3.20 CONSTANT LOSS RATE (in/hr) 0.19 LOW LOSS RATE - PERCENT 24.02% Basin Percolation Rate 0.6 in /hr Maxwell Drywells Number 1 Drywell Percolation Rate 0.15 cfs 9.00 cfm Unit Time Period Time Minutes Hours Pattern Percent (Plate E -5.9) Storm Rain in /hr Loss Rate in /hr Max Low Effective Rain in /hr Flood Hydrograph Flow cfs Volume In cu -ft Basin Volume cu -ft Percolation Area sf Percolation Out cu -ft Total In Basin cu -ft ac -ft Basin Depth ft 35 175 2.92 1.0 0.38 0.19 0.09 0.19 0.81 243 2,595 7,751 77 2,517 0.06 43.81 36 180 3.00 1.0 0.38 0.19 0.09 0.19 0.81 243 2,761 7,795 77 2,683 0.06 43.83 37 185 3.08 1.0 0.38 0.19 0.09 0.19 0.81 243 1 2,926 7,839 78 2,849 0.07 43.85 38 190 3.17 1.1 0.42 0.19 0.10 0.23 0.97 292 3,140 7,896 78 3,062 0.07 43.88 39 195 3.25 1.1 0.42 0.19 0.10 0.23 0.97 292 3,354 7,953 78 3,276 0.08 43.90 40 200 3.33 1.1 0.42 0.19 0.10 0.23 0.97 292 3,567 8,010 78 3,489 0.08 43.93 41 205 3.42 1.2 0.46 0.19 0.11 0.27 1.13 340 3,829 8,080 79 3,750 0.09 43.96 42 210 3.50 1.3 0.50 0.19 0.12 0.31 1.29 388 4,138 8,163 79 4,059 0.09 44.00 43 215 3.58 1.4 0.54 0.19 0.13 0.35 1.46 437 4,496 8,258 79 4,417 0.10 44.04 44 220 3.67 1.4 0.54 0.19 0.13 0.35. 1.46 437 4,853 8,353 80 4,773 0.11 44.09 45 225 3.75 1.5 0.58 0.19 0.14 0.39 1.62. 485 5,258 8,461 80 5,178 0.12 44.14 46 230 3.83 1.5 0.58 0.19 0.14 0.39 1.62 .485 5,663 8,569 81 5,582 0.13 44.19 47 235 3.92 1.6 0.61 0.19 0.15 0.42 1.78 533 6,115 8,690 81 6,034 0.14 44.24 48 240 4.00 1.6 0.61 0.19 0.15 0.42 1.78 533 6,567 8,810 82 6,485 0.15 44.30 49 245 4.08 1.7 0.65 0.19 0.16 0.46 1.94 581 7,067 8,944 82 6,985 0.16 44.36 50 250 4.17 1.8 0.69 0.19 0.17 0.50 2.10 630 7,615 9,090 83 7,532 0.17 44.42 51 255 4.25 1.9 0.73 0.19 0.18 0.54 2.26 678 8,210 9,246 84 8,126 0.19 44.50 52 260 4.33 2.0 0.77 0.19 0.18 0.58 2.42 726 8,853 9,393 84 8,769 0.20 44.56 53 265 4.42 2.1 0.81 0.19 0.19 0.62 2.58 775 9,543 9,551 85 9,459 0.22 44.63 54 270 4.50 2.1 0.81 0.19 0.19 0.62 2.58 775 10,233 9,710 85 10,148 0.23 44.69 55 275 4.58 2.2 0.84 0.19 0.20 0.65 2.74 823 10,971 9,879 86 10,885 0.25 44.76 56 280 4.67 2.3 0.88 0.19 0.21 0.69 2.90 871 11,756 10,059 87 11,669 0.27 44.84 57 285 4.75 2.4 0.92 0.19 0.22 0.73 3.07 920 12,589 10,249 88 12,501 0.29 44.92 58 290 "4.83 2.4 0.92 0.19 0.22 0.73 3.07 920 13,421 10,440 89 13,333 0.31 45.00 59 295 4.92 2.5 0.96 0.19 0.23 0.77 3.23 968 14,301 '10,642 89 14,211 0.33 45.08 60 300 5.00 2.6 1.00 0.19 0.24 0.81 3.39 1,016 15,228 10,854 90 15,138 0.35 45.17 61 305 5.08 3.1 1.19 0.19 0.29 1.00 4.19 1,258 16,396 11,122 91 16,304 0.37 45.28 62 310 5.17 3.6 1.38 0.19 0.33 1.19 5.00 1,500 17,804 11,444' 93 17,711 0.41 45.42 63 315 5.25 3.9 1.50 0.19 0.36 1.31 5.48 1,645 19,356 11,778 94 19,262 0.44 45.55 64 320 5.33 4.2 1.61 0.19 0.39 1.42 5.97 1,790 21,051 12,118 95 20,956 0.48 45.68 65 325 5.42 4.7 1.80 0.19 0.43 1.61' 6.77 2,031 22,987 12,507 97 22,890 0.53 45.83 66 330 5.50 5.6 2.15 0.19 0.52 1.96 8.22 2,466 25,356 12,983 99 25,257 0.58 46.02 67 335 '5.58 1.9 0.73 0.19 0.18 0.54 2.26 678 25,935 13,099 100 '25,835 0.59 46.06 68 340. 5.67 0.9 0.35 0.19 0.08 0.15 0.65 195 26,030 13,118 100 25,931 0.60 46.07 Plate E -2.2 6 -Hour Storm Page 8 of 13 RCFC & WCD EFFECTIVE RAIN 2.08 in , SYNTHETIC UNIT HYDROGRAPH METHOD 0.72 ac -ft PROJECT: La Quinta Fire Station No. 32 and Corp REQUIRED STORAGE 0.60 ac -ft REQUIRED STORAGE 25,931 cu -ft SHORTCUT METHOD 46.07 ft PEAK FLOW RATE 8.22 cfs Job No.: 1928 6 -HOUR STORM BY: SAW. DATE 7/1/09 UNIT HYDROGRAPH and EFFECTIVE RAIN CALCULATION FORM DRAINAGE AREA -ACRES 4.16 Basin Percolation Rate 0.6 in /hr UNIT TIME - MINUTES 5 LAG TIME - MINUTES 2.22 Maxwell Drywells UNIT TIME - PERCENT OF LAG 225.2 Number 1 TOTAL ADJUSTED STORM RAIN (in) 3.20 Drywell Percolation Rate 0.15 cfs 9.00 cfm CONSTANT LOSS RATE (in /hr) 0.19 LOW LOSS RATE - PERCENT 24.02% Unit Time Time Pattern Storm Loss Rate Effective Flood Volume Basin Percolation Percolation Total In Basin Period ' Minutes Hours Percent Rain Rain Hydrograph In Volume Area Out Basin Depth in /hr in /hr Flow (Plate E -5.9) Max Low in /hr cfs _ cu -ft cu -ft sf ' cu -ft cu -ft ac -ft ft 69 345 5.75 0.6 ' 0.23 0.19 0.06 0.04 0.17 50 . 25,981 13,108 100 25,881 0.59 46.07 70 350, 5.83 0.5 0.19 0.19 0.05 0.00 0.01 2 25,883 13,088 100 25,783 0.59 46.06 71 355 5.92 0.3 0.12 0.19 0.03 0.09 0.37 110 25,893 13,091 100 25,794 0.59 46.06 72 360 6.00 0.2 0.08 0.19 0.02 0.06 0.24 73 ,86 13,085 100 25,768 0.59 46.06 EFFECTIVE RAIN & FLOOD VOLUMES SUMMARY EFFECTIVE RAIN 2.08 in , FLOOD VOLUME 0.72 ac -ft FLOOD VOLUME 31,465 cu -ft REQUIRED STORAGE 0.60 ac -ft REQUIRED STORAGE 25,931 cu -ft MAX WSEL 46.07 ft PEAK FLOW RATE 8.22 cfs [AVERAGE PERCOLATION. RATE 16.30 cuft/min RCFC $ WCD ((](OdO ®V - G�AMG°\d SYNTHETIC UNIT HYDROGRAPH METHOD - SHORTCUT METHOD 24 -HOUR STORM UNIT HYDROGRAPH and EFFECTIVE RAIN CALCULATION FORM PROJECT: La Quinta Fire Station No. 32 and Cor Job No.: 1928 BY: SAW DATE 7/1/09 DRAINAGE AREA -ACRES 4.16 UNIT TIME - MINUTES 15 LAG TIME - MINUTES 2.22 UNIT TIME - PERCENT OF LAG 676% TOTAL ADJUSTED STORM RAIN (in) 4.25 VARIABLE LOSS RATE (AVG) IN /HR _ Fm = Minimum value on loss curve (in /hr) 0.10 C 0.00177 _ Low Loss Rate (percent) 24.02% Basin Percolation Rate 0.6 in /hr , Maxwell Drywells Number 1 Drywell Percolation Rate 0.15 cfs 9.00 cfm Unit Time Period Time Minutes Hours Pattern Percent (Plate E -5.9) Storm Rain in /hr Loss Rate in /hr Max Low Effective Rain in /hr Flood Hydrograph Flow cfs Volume 16 cu -ft Basin - Volume cu -ft Percolation Area sf Percolation Out cu -ft Total In Basin - cu -ft ac -ft Basin Depth ft 1 15 0.25 0.2 0.034 0.337 0.008 0.03 0.11 98 98 7,085 224 0 0.00 43.50 2 30 0.50 0.3 0.051 0.333 0.012 0.04 0.16 146 146 7,098 224 0 0.00 43.50 3 45 0.75 0.3 0.051 0.329 0.012 0.04 0.16 146 146 7,098 224 0, 0.00 43.50 4 60 1.00 0.4 0.068 0.325 0.016 0.05 0.22 195 195 7,111 224 0 0.00 43.50 5 75 1.25 -0.3 0.051 0.321 0.012 0.04 0.16 .146 146 7,098 224 0 0.00 43.50 6 90 1.50 0.3 0.051 0.317 0.012 0.04 0.16 146, 146 7,098 224 0 .0.00 43.50 7 105 1.75 0.3 0.051 0.314 0.012 0.04 0.16 146 146 7,098 224 0 0.00 43.50 8 120 2.00 0.4 0.068 0.310 0.016 0.05 0.22 195 195 7,111 224 0 0.00 43.50 9 135 2.25 0.4 0.068 0.306 0.016 0.05 0.22 195 195 7,111 224 0 0.00 43.50 10 150 2.50 0.4 0.068 0.302 .0.016 0.05 0.22 195 195 7,111. 224 0 0.00 43.50 11 165 2.75 0.5 0.085 0.299 0.020 0.06 0.27 244 244 7,124 224 20 0.00 43.50 12 180 3.00 0.5 0.085 0.295 0.020 0.06 0.27 244 264 7,129 224 39 0.00 43.50 13 195 3.25 0.5 0.085 0.291 0.020 0.06 0.27 244 283 7,135 224 59 0.00 43.51 14 210 3.50. 0.5 0.085 0.288 0.020 0.06 0.27 244 303 7,140 224 79 0.00 43.51 -15 225 3.75 0.5 0.085 0.284 1 0.020' 0.06 0.27 244 322 .7,145 224 98 0.00 43.51 16 240 4.00 0.6 0.102 0.281 0.024 0.08 0.33 293 391 7,163 225 166 0.00 43.52 17 255 4.25 0.6 0.102 0.277 0.024 0.08 0.33 293 459 7,181 225 234 0.01 43.53 18 270 4.50 0.7 0.119 0.274 0.029 0.09 0.38 1 341 575 7,212 225 350 0.01 43.54 19 285 4.75 0.7 0.119 0.270 0.029 0.09 0.38 341 692 7,243 226 466 0.01 43.56 20 300 5.00 0.8 0.136 0.267 0.033 0.10 0.43 390 856 7,287 226 630 0.01 43.58 21 315 5.25 _ 0.6 0.102 0.263 0.024 0.08 0.33 293 923 7,305 226 696 0.02 43.59 22 330 5.50 0.7 - 0.119 0.260 0.029 0.09 0.38 341 1,038 7,336 227 811 0.02 43.60 23 345 5.75 0.8 0.136 0.256 0.033 0.10 0.43 390 1 1,201 7,379 227 974 0.02 43.62 24 360 6.00 0.8 0.136. 0.253 0.033 0.10 0.43 390 1,364 7,423 228 1,136 0.03 1 43.64 25 375 6.25 0.9 0.153 0.250 0.037 0.12 0.49 439 1,575 7,479 228 1,347 0.03 43.67 26• 390 6.50 0.9 0.153 0.246 0.037 0.12 0.49 439 1,785 7,535 229 '1,556 0.04 43.69 27 405 6.75 1.0 0.170 0.243 0.041 ' 0.13 0.54 488 2,044 7,604 230 1,814 0.04 43.72 28 420 7.00 1.0 0.170 0.240 0.041' 0.13 0.54 488 2,301 7,673 231 2,071 0.05 43.75 29 435 7.25 1.0 0.170 0.236 0.041 0.13 0.54 488 2,558 7,741 232 2,326 0.05 43.79 30 450 7.50 1.1 0.187 0.233 0.045 0.14 0.60 536 2,863 7,822 233 2,630 0.06 43.82 31 465 7.75 1.2 0.204 0.230 0.049 0.16 0.65 585 3,215 7,916 234 2,981 0.07 43.87 32 480 8.00 1.3 0.221 0.227 0.053 0.17 0.70 634 3,615 8,023 235 3,380 0.08 1 43.91 33 495 8.25 1.5 0.255 0.224 0.061 0.03 0.13 .119 3,498 7,992 235 3,263 0.07 43.90 34 510 8.50 1.5 0.255 0.220 0.061 0.03 0.14 130 3,394 7,964 235 3,159 0.07- 43.89 35 525 8.75 1.6 0.272 0.217 0.065 0.05 0.23 206 3,365 7,956 234 .3,131 0.07 43.88 36 540 9.00 1.7 0.289 0.214 0.069 0.07 0.31 282 3,413 7,969 235 3,178 0.07 43.89 37 555 9.25 1,9 0.323 0.211 0.078 0.11 0.47 422 3,600 8,019 235 3,365 0.08 43.91 38 570 9.50 2.0 0.340 0.208 0.082 0.13 0.55 497 3,862 8,089 236 3,626 0.08 43.95 39 585 9.75 2.1 0.357. 0.205 0.086 0.15 0.64 573 4,198 8,179 237 3,961 0.09 43.99 40 600 10.00 2.2 0.374 0.202 0.090 0.17 0.72 648 4,609 8,288 239 4,370 0.10 44.04 41 615 10.25 1.5 0.255 1 0.199 1 0.061 1 0.06 0.23 210 4,580 71 8,280 239 1 4,342 0.10 44.03 Plate E -2.2 24 -Hour Storm Page 10 of 13 r c RCFC & WCD �Qb�Qd SYNTHETIC UNIT'HYDROGRAPH METHOD SHORTCUT METHOD 24 -HOUR STORM UNIT HYDROGRAPH and EFFECTIVE RAIN CALCULATION FORM PROJECT: ` La Ouinta Fire Station No. 32 and'Corp Job No.: 1928 BY: SAW DATE 7/1/09 DRAINAGE AREA -ACRES 4.16 UNIT TIME - MINUTES 15. LAG TIME - MINUTES 2.22 UNIT TIME - PERCENT OF LAG 676% TOTAL ADJUSTED STORM RAIN (in) 4.25 VARIABLE LOSS RATE (AVG) IN /HR Fm = Minimum value on loss curve (in /hr) 0.10 C 0.00177- Low Loss Rate (percent) 24.02% Basin Percolation Rate 0.6 in /hr Y Maxwell Drywells Number 1 Drywall Percolation Rate 0.15 cfs 9.00 cfm Unit Time Period Time Minutes Hours Pattern Percent - (Plate E -5.9) Storm Rain in /hr Loss Rate in /hr Max I Low Effective Rain in/hr Flood Hydrograph Flow cfs Volume In cu -ft Basin Volume cu -ft Percolation Area sf Percolation Out cu -ft Total In Basin cu -ft ac -ft Basin Depth _ ft 42 630 10.50 1.5 - 0.255 0.197 0.061 0.06 0.25 221 4,562 8,276 238 4,324 0.10 44.03 43 645 10.75 2.0 0.340 0.194 0.082 0.15 0.61 552 4,876 8,359 239 4,637 0.11 44.07 44 660 • 11.00 2.0 0.340 0.191 0.082 0.15 0.63 563 5,200 8,446 241 1 4,959 0.11 44.11 45 675 11.25 1.9 0.323 0.188 0.078 0.13 0.57 509 5,469 8,517 241 5,227 0.12 44.14• 46 690 11.50 -1.9 0.323 0.185 0.078 0.14 0.58 520 5,747 8,592 242 • 5,505 0.13 44.18 47 705 11.75 1.7 0.289 0.183 0.069 0.11 - 0.45 402 5,907 8,634 243 5,664 0.13 44.20 48 720 12.00 1.8 0.306 0.180 0.073 0.13 0.53 476 6,140 8,696- 244 5,896 0.14 44.22 49 735 12.25 2.5 0.425 0.177 1 0.102 0.25 1.04 • 936 6,832 8,881 246 6,586 0:15 44.31 50 750 12.50 2.6 0.442 0.174 0.106 0.27 1.12 1,010 7,596 9,085 249 7,348 0.17 44.40 51 765 12.75 2.8 0.476 0.172 0.114 0.30 1.28 1,148 8,496 9,311 251 8,244 0.19 44.51 52 780 13.00 2.9 0.493 0.169 0.118 0.32 1.36 1,222 9,467 9,534 254 9,212 0.21 44.60 53 795• 13.25 3.4 0.578 0.167 0.139 0.41 1.73 1,553 10,765 9,831 258 10,507 0.24 44.73 54 810 13.50 3.4 0.578 0.164 0.139 0.41 1.74 1,562 12,069 10,130 262 11,808 0.27 44.85 55 825 13.75 2.3 0.391 0.162 0.094 0.23 0.96 866 12,674 10,269 263 12,410- 0.28 44.91 56 840 14.00 2.3 0.391 0.159 0.094 0.23 0.97 875 13,285 10,409 265 13,020 0.30 44.97 . 57 855 14.25 2.7 0.459 0.157 - 0.110 0.30 1.27 1,141 14,161 10,610 268 13,893 0.32 45.05 58 870 14.50 2.6 0.442 0.154 0.106 0.29 1.21 1,086 14,979 10,797 270 14,709 0.34 45.13 59 885 14.75 2.6 0.442 0.152 0.106 0.29 1 1.22 1,095 15,804 10,986 272 15,531 0.36 1 45.21 60 900 15.00 2.5 0.425 0.150 0.102 0.28 1.15 1,039 16,571 11,162 275 16,296 0.37 1 45.28 61 915 15.25 2.4 0.408 0.147 0.098 0.26 1.09 984 17,280 11,324 277 17,003 0.39 45.35 62 930 15.50 2.3 0.391 0.145 0.094 0.25 1.03 928 17,931 11,474 278 17,653 0.41 45.41 63 945 15.75 1.9 0.323 0.143 0.078 0.18 0.76 680 18,333 11,565 280 18,053 0.41 45.45 64 960' 16.00 1.9 0.323 0.141 0.078 0.18 0.76 688 18,741 11,654 281 18,460 0.42 45.49 65 975 16.25 0.4 0.068 0.139 0.016 0.05 0.22 195 18,655 11,637 280 18,375 0.42 45.48 - 66 990 16.50 0.4 0.068 0.137 0.016 0.05 0.22 195 118,570 11,620 280 18,290 0.42 45.47 67 1005 16.75 0.3 0.051 0.134 0.012 0.04 1 0.16 146 18,436 1 11,589 280 18,156 1 0.42 45.46 68 1020 17.00 0.3 0.051 0.132 0.012 0.04 0.16 146 18,302 11,559 279 18,023 0.41 45.45 69 1035 17.25 0.5 0.085 0.130 0.020 0.06 0.27 244 18,267 11,550 279 17,987 0.41 45.44 70 1050 17.50 0.5 0.085 0.128 0.020 0.06 0.27 244 18,231 11,542 279 17,952 0.41 45.44 71 1065 17.75 0.5 0.085 0.127 0.020 0.06 0.27 244 18,196 11,534 279 17,917 0.41 45.44 72 1080 18.00 0.4 0.068 0.125 0.016 0.05 0.22 195 18,112 11,515 279 17,833 0.41 45.43 73 1095 18.25 0.4 0.068 0.123 0.016 0.05 0.22 1 195 18,028 11,496 279 17,749 0.41 45.42 74 1110 18.50 0.4 0.068 0.121 0.016 0.05 0.22 195 17,944 11,476 278 17,666 0.41 45.41 75 1125 18.75 0.3 0.051 0.1.19 0.012 0.04 0.16 146 17,812 11,446 278 17,534 0.40' 45.40 76 1140 19.00 0.2 0.034 0.118 0.008. 0.03 0.11 98 17,631 11,405 278 17,354 0.40 45.38 77 1155 19.25 0.3 0.051 0.116 0.012 0.04 0.16. 146 17,500 11,375 277 17,223 0.40 45.37 78 1170 19.50 0.4 0.068 0.114 0.016 0.05 0.22 195 17,418 11,356 277 17,141 0.39 45.36 79 1185 19.75 0.3 0.051 0.113 0.012 0.04 0.16 146 17,287 11,326 277 17,011 0.39 45.35 80 1200 20.00 0.2 0.034 0.111 0.008 0.03 0.11 98 17,108 11,285 276 16,832 0.39 45.33, 81 1 1215 20.25 0.3 0.051 0.110 0.012 0.04 1 0.16 146 16,979 11,255 276 16,703 1 0.38 45.32 82 1230 20.50 0.3 0.051 0.108 0.012 0.04 1 0.16 146 11,226 275 16,574 0.38 45.31 Plate E -2.2 24 -Hour Storm Page 11 of 13 RCFC & WCD GYIAG° G��Q° SYNTHETIC UNIT HYDROGRAPH METHOD SHORTCUT METHOD 24 -HOUR STORM UNIT HYDROGRAPH and EFFECTIVE RAIN CALCULATION FORM PROJECT: La Quinta Fire station No. 32 and Corp Job No.: 1928 , BY: SAW DATE 7/1/09 DRAINAGE AREA -ACRES 4.16 UNIT TIME - MINUTES 15 LAG TIME - MINUTES 2.22 UNIT TIME - PERCENT OF LAG 676% TOTAL ADJUSTED STORM RAIN (in) 4.25 VARIABLE LOSS RATE (AVG) IN /HR Fm = Minimum value on loss curve (in /hr) 0.10 C 0.00177 Low Loss Rate (percent) 24.02% Basin Percolation Rate 0.6 in /hr Maxwell Drywells Number 1 Drywall Percolation Rate • 0.15 cfs 9.00 cfm Unit Time Period Time Minutes Hours Pattern Percent (Plate E =5.9) Storm ' Rain in/hr Loss Rate in /hr Max Low Effective Rain in /hr Flood Hydrograph Flow cfs Volume In cu -ft Basin Volume cu -ft Percolation Area sf Percolation Out cu -ft Total In Basin cu -ft ac -ft Basin Depth ft 83 1245 20.75 0.3 0.051 0.107 0.012 0.04 0.16. 146 16,720 11,196 275 16,445 0.38 45.30 84 1260 21.00 0.2 0.034 0.106 0.008 0.03 0.11 98 16,543 1.1,155 274 16,268 0.37 45.28 85 1275 21.25 0.3. 0.051 .0.104 0.012 0.04 0.16 146 16,415 11,126 274 16,140 0.37 45.27 86 1290 21.50 1 0.2 0.034 0.103 0.008 0.03 0.11 98 16,238 11,086 274 15,964 0.37 45.25 87 1305 21.75 0.3 0.051 0.102 0.012 0.04 0.16 146 16,111 11,056 273 15,838 0.36 45.24 . 88 1320 22.00 0.2 0.034 0.101 0.008 0.03 0.11 98 15,935 11,016 273 15,662 0.36 45.22 89 1335 22.25 0.3 0.051 0.100 0.012 0.04 0.16 146 15,809 10,987 272 15,536 0.36 45.21 90 1350 22.50 0.2 0.034 1 0.099 0.008 0.03 0.11 98 15,634 10,947 272 15,362 0.35 45.19 91 1365 22.75 0.2 0.034 0.098 0.008 0.03 0.11 98 15,460 10,907 271 15,188 0.35 45.18 , 92 1380 23.00 0.2 0.034 0.097 0.008 0.03 0.11 98 15,286 10,867 271 15,015 0.34 45.16 93 1395 23.25, 0.2 0.034 0.097 0.008 0.03 0.11 98 15,112 10,828 1 270 14,842 0.34 1 5.14 94 1410 23.50 0.2 0.034 0.096 0:008 0.03 0. 1.1 98 14,940. 10,788 270 14,670 0.34 45.13 95 1425 23.75 0.2 0.034 0.096 0.008 0.03 0.11 98 14,767 10,748 269 14,498 0.33 45.11 96 1440 24.00 1 0.2 0.034 0.095 0.008 0.03 0.11 98 1 14,595 10,709 1 269 14,327 1 0.33 1 45.09 EFFECTIVE RAIN & FLOOD VOLUMES SUMMARY EFFECTIVE RAIN 2.50 in FLOOD VOLUME 0.87 ac -ft FLOOD VOLUME,' 37,819 cu -ft REQUIRED STORAGE 0.42 ac-ft REQUIRED STORAGE 18,460 cu -ft MAX WSEL 45.49 ft PEAK FLOW RATE 1.74 cfs VERAGE PERCOLATION RATE 16.75 cuft/min. •I •BASIN VOLUME WORKSHEET PROECT La Quinta Fire Station No. 32 and Corporate Yard JOB No. 1928 BASIN DESIGNATION: 0 BASIN CHARACTERISTICS CONTOUR ELEVATION DEPTH INCR TOTAL (ft) (ft) AREA INCR TOTAL (sf) (sf) VOLUME INCR TOTAL (cuft) (cuft) (acre -ft) 43.5 0 0 7,059 0 0 07 44:5 1 1 2,172 9,231 8,145 8,145 0.19 . 45.5 1 2, 2,389 11,620 10,426 18,571 0.43 46.5 1 3 2,594 14,214 12,917 31,488 0.72 F Basin Volume Worksheet Page 13 of 13 I• I' RATIONAL METHOD ANALYSIS, CALCULATIONS 100 -YEAR STORM • Riverside County "Rational Hydrology.Program CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2005 Version 7.1 Rational Hydrology Study Date: 06/30/09• File:1928100YR.out ----------------------------------------------------------------------- 1928 La Quinta Fire Station No. 32 and Corporate Yard 100 Year Storm Hydrology Study Control Information * * * * * * * * ** English '(in -lb)" Units used in input data file Program License Serial Number-6041. ---------------------------=-------------------------------------------- Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.450(In.) 100 year, 1 hour precipitation 2.080(In.) Storm 'event year = 100.0 • Calculated rainfall intensity data: 1 hour intensity = 2.080(In /Hr) Slope`of intensity duration curve = 0.5800-* ++++++++++++++++++++++ ++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + +. + + + + + ++ Process from Point /Station 100.000 to Point /Station 110.000 * * ** INITIAL AREA EVALUATION * * ** A -1 Initial area flow distance = 408.000(Ft.) Top (of initial area) elevation = 57.000(Ft.) Bottom '(of initial area) elevation 53.000(Ft.) Difference in elevation = 4.000(Ft.) ' 'Slope = 0.00980 s(percent)= 0.98 TC = .k(0.300) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 8.377 min. Rainfall intensity .= 6.516(In /Hr) for a 100.0 year storm COMMERCIAL subarea,type Runoff Coefficient = 0.873 Decimal fraction soil.group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil "group C. = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 3'2.00 Pervious area fraction = 0.100; Impervious fraction = 0.9.00 Initial subarea runoff = 8.701(CFS) Total initial stream area = 1.530(Ac..) Pervious area fraction = 0.100 +++++++++++++++++++.++++++++++++++++++++ + + ++ + + + + + + + + + + + + + + + + + + + + + + + + + ++ 0 Process from Point /Station 100.000 to-Point/Station 120.000 * * ** CONFLUENCE OF•MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 1.530(Ac.) Runoff from this stream = 8.701(CFS) Time of concentration = 8.38 min. Rainfall intensity = 6.516(In /Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + +. + + + + + + + + + + + + ++ Process from Point /Station 110.000 to Point /Station 120.000 * * ** INITIAL AREA EVALUATION * * ** A -2 Initial area flow distance = 556.000(Ft.) ,Top (of initial area) elevation = 53.000(Ft.) Bottom (of. initial area) elevation = 48.200(Ft.) Difference in elevat'ion 4.800(Ft.) Slope = 0.00863 s(percent)= 0.86 TC = k(0.300) *[(length ^3) /(elevation •change)] ^0.2 Initial area time of concentration = 9.726 min. Rainfall intensity = 5.976(In /Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.871 Decimal fraction.soil group A ='1.000 Decimal fraction soil group B = 0.000 • Decimal fraction soil group.0 = 0.000 Decimal 'fraction soil group D = 0.000 .RI index for soil(AMC 2) = 3.2.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 18.583(CFS) Total initial stream area = 3.570'(Ac.) Pervious area fraction = 0.100 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 110.000 to Point /Station 120.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = •3.570(Ac.) Runoff from this stream = 18.583(CFS) Time•of concentration = 9.73 min. Rainfall intensity = 5.976(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 8.701 8.38 6.516 2 18.583 9.73 5.976 Largest stream flow has longer time of concentration Qp = 18.583 + sum of. Qb Ia /Ib • 8.701 * 0.917 = . 7.979 Qp = 26.562 Total of 2 main streams to confluence: Flow rates before confluence point: 8.701 18.583 Area of streams before confluence 1.530 3.570 Results of confluence: Total flow rate = 26.562(CFS) Time of concentration = 9.726 min. Effective stream area after confluence = 5.100(Ac.). +++++++++++++++++++++±+++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 150.000 to-Point/Station 160.000 * * ** INITIAL AREA EVALUATION * * ** A -3 Initial area flow distance' = 70.000(Ft.) . Top (of initial area) elevation 49.700(Ft.) Bottom (of initial area) elevation 49.400(Ft.) Difference in elevation = 0.300(Ft.). Slope = 0.00429 s(percent)= 0.43 TC = k (0.300) *[(length ^3)' /(elevation change)] ^0.2 .Warning: TC computed to be less than 5 min.; program is assuming the ,time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. Rainfall intensity = 8.790(In /Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.878 Decimal fraction soil group A = 1.000 • Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 0.926(CFS) Total initial stream area = 0.120(Ac.) Pervious-area fraction = 0.100 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ .Process from Point /Station 200.000 to Point /Station 210.000 * * ** INITIAL AREA EVALUATION. * * ** B -1 Initial area flow distance = 478.000(Ft.) Top (of initial area) elevation '= 55.500(Ft.) -Bottom (of initial area)'elevation = 49.900(Ft.) Difference in elevation = 5..600(Ft.) Slope = 0.01172 s(percent)= 1.17 TC = k(0.300) *[(length ^3) /(elevation change)] ^0.2 e Initial area time of concentration = .8.613 min: Rainfall intensity = 6.412(.In /Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.872 Decimal fraction soil group, A = 1.000 Decimal fraction soil group ,B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 • RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.100; Impervious fraction = 0.900• r Initial subarea runoff = '8.615(CFS) • Total initial stream area = 1.540(Ac.) Pervious area fraction = 0.100 . End of computations, total study area 6.76 (Ac.)' The following figures may be used for a unit hydrograph study of the same area.. Area averaged pervious area fraction(AP) = 0.100 Area averaged RI index number = ,32.0. � 0'' I• I, RATIONAL METHOD ANALYSIS CALCULATIONS 10 -YEAR STORM Riverside County Rational Hydrology Program CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2005 Version 7.1 Rational Hydrology Study Date: 06/30/09 File:192810yr.out . -------------------------=----------------------=----------------- - - - - -- 1928 La Quinta Fire Station No. 32 and Corporate Yard 10.Year Storm * * * * * * * ** Hydrology Study Control Information * * * * * * * * ** English (in -lb) Units used in input data file Program License Serial Number 6041 -------------------------------- =-------------------------- =------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation' District .1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.450(In.) 100 year, 1 hour precipitation = 2•.080(In.) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 1.121(In /Hr) Slope of intensity duration curve = 0.5800 1 . +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 100.000 to Point /Station 110.00.0 * * ** INITIAL AREA EVALUATION * * ** A -1 Initial area flow distance = 408.000(Ft.) Top (of initial area) elevation = 57.000(Ft.) Bottom (of initial area) elevation = 53.000(Ft.) Difference in elevation = 4.000(Ft.) Slope = 0.00980 s(percent)= 0.98 TC = k(0.300) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 8.377 min. Rainfall intensity = 3.511(In /Hr) for a 10.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.860 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction. soil group C = 0.00.0 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0:100; Impervious fraction = 0.900 Initial subarea runoff = 4.618(CFS) Total initial stream area = 1.53.0(Ac.), Pervious area fraction = 0.100 r� +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ •� Process from, Point /Station 100.000 to Point /Station 120.000 * * ** CONFLUENCE OF MAIN STREAMS'**** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 1.530(Ac.) Runoff from this stream = 4.618(CFS) Time of concentration = 8.38 min. Rainfall intensity = 3.511(In /Hr)' Program is now starting with Main Stream No. 2 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 110.000 to Point /Station 120.000 * * ** INITIAL AREA EVALUATION * * ** A -2 Initial area flow distance = 556.000(Ft.) Top (of initial area) elevation = 53.000(Ft.) ' Bottom (of initial area) elevation = .48.200(Ft..) Difference in elevation = 4.800(Ft.) Slope 0.00863 s(percent)= 0.86 TC = k(0.30 0) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 9.726 min. Rainfall intensity.= 3.219(In /Hr) for a 10.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.858 Decimal fraction soil .group A = 1.000 Decimal.fraction soil group B = 0.000 • Decimal fraction soil'group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 32:00 Pervious area fraction = 0..100; Impervious fraction = 0.900 Initial subarea runoff = 9.8.60(CFS) Total initial stream area = 3.570(Ac.) „ Pervious area fraction 0.100 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1.10.000 to Point /Station 120.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 3.570(Ac.) Runoff from this stream = 9.860(CFS) Time of concentration = 9.73 min. Rainfall intensity = 3,:219(In /Hr) Summary of stream data: Stream Flow rate TC. Rainfall Intensity No. (CFS) (min) (In /Hr) 1 4.618' 8.38 3.511 2 9.860 9.73 3.219 Largest stream flow has longer time of concentration Qp = 9.860 + sum of Qb Ia /Ib • 4.618 * 0.917 = 4.235 Qp = 14.095 • • Total of 2 main streams to confluence: Flow rates before confluence point: 4..618 9.860 Area of streams before confluence: 1.530 3.570 Results of confluence: Total flow rate = 14.095(CFS) Time of concentration = 9.726 min. Effective stream area after confluence = 5.100(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 150.000 to Point /Station 160:000 * * ** INITIAL AREA EVALUATION * * ** A =3 Initial area flow distance = . 70.000(Ft.) ' Top (of initial area) elevation = 4-9.700(Ft.) Bottom (of.initial area) elevation = 49.400(Ft.) Difference in elevation = 0.300(Ft.) Slope = 0.00429 -s(percent)= 0.43 TC = k (0.300) *[( length ^3) /(elevation change)]. ^0.2 Warning: TC computed to be less than 5 min.; program is assuming the time of concentration is 5 minutes. Initial area time of concentration = 5.000- min. Rainfall intensity = 4.736(In /Hr) for a 10.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.866 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C, = .:0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 0.492(CFS) Total initial stream area = 0.120(Ac.) . Pervious area fraction = 0.100 ++++++++++++++++++++++++++++++.....+++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +.+ Process from Point /Station 200.000 to Point /Station 210.000 * * ** INITIAL AREA EVALUATION * * ** B -1 Initial a -rea flow distance = 478.000(Ft.) Top (of initial area) elevation = 55.500(Ft.) Bottom (of initial•area) elevation = 49.900(Ft.) Difference in elevation = 5.600(Ft.) Slope = 0.01172 s(percent)= 1.17 TC = k( 0.300) *[(length ^3). /(elevation change)] ^0.2 Initial area time of concentration = 8.613 min. Rainfall intensity = 3.455(In /Hr) for a 10.0 year storm COMMERCIAL.subarea type Runoff Coefficient = 0.859 Decimal fraction•soil group A = 1.000 Decimal fraction soil group B = '0.000 Decimal fraction soil group C•= 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 32.00 0 Pervious area,fraction = 0.100; Impervious fraction = 0.900 • Initial subarea runoff 4.572(CFS) -Total initial stream area = 1.540(Ac.) Pervious area fraction = 0.100 End of computations, total study area = 6.76 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.100 Area averaged RI index number = 32..0 I,. �'P :.. 0 +00.00 ..: 100.20 :0.025 0 +10.00. ... 100.00. ... (0 +42.00'99.69)' ... 0 +40.00 99.50 (0 +42.00, 99.69).. 0 +40.00 :. 99.35 ..: Results . 0 +42.00 99.19 :0+42.00 99.69 Discharge 0 +52.00 ..: 99.89 . . 1, • 99.19 to 100.20 ft Roughness Segment Definitions Flow Area (0 +00.00, 100.20) (0 +10:00, 99.50) . :0.025 . 9950 (0 +10.00; . ) (0 +42.00'99.69)' ... .: 0.015- ' (0 +42.00, 99.69).. (0 +52.00, 99.89) 0.025 ..: Results . Discharge 26.76 W/s ..: :Elevation Range 99.19 to 100.20 ft Flow Area 8.79. ftZ.. Wetted Perimeter... ...32.70 ft :: '::Top. Width ::: 32:00, ft .Normal Depth - .. ... 0.50 ft . Critical Depth :: 0.51 ft Cdtical:Slope :.. 0.00523 ,ft/ft -.'Velocityy .. 3.04 fUs- .. Bentley Systemsjnc. Haestad Methods Solution Center Bentley FlowMaster [08.01.066.170] 5/412009 10:44:51. AM, 27 Siemons Company Drive Suite 200 W Watertown; CT 06795 USA ±1- 203 -755 -1666 Page, 1 of 2 ' Typical :Section A -A • .. Results Velocity Head :0.14 ft Specific Energy ' Y 0.64 ft i iFroude Number 1.02: Flow Type Supercritical GVFjnput Data 7, Downstream. Depth. 0.00' . ft > Length 0.00 ft Number Of Steps 0 GVF Output'Data` ..Upstream Depth 0.00. ft. i Profile Description Profile. Headloss' 0.00 ft Downstream Velocity Infinity , ft/s :.::Upstream Velocity. Infinity ft/s Normal Depth . 0.50 ft Critical Depth. 0.51 ft ::Channel Slope 0.00550:. ft/ft • ''Critical Slope .0:00523• ft/ft �e+ ' .. Bentley Systems, Inc. Haestad Methods Solution Center Bentley F.IowMaster [08.01.066.00] 514/2009 10:44:51 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 - 755 -1666 Page 2 of 2 vy 1 Worksheet for Combination Inlet: In Sag • ' P.,roject•Description Solve For .:_... Spread .... I, i �.. Input Data a Discharge: '. 26.60 ft' /s Gutter Width: 2.00 ft .::Gutter Cross Slope 0.07822 ft/ft Road Cross Slope 0.00500' ft/ft Local Depression 1.00 in ,..Local Depression Width..; : , 4,00: ft .:Grate Width 2.0.0.. ft .. jV. :.: Grate Length •.. :':: 12.80 ft ..... ,.. : l :Grate Type ... P -30 mm: (P- 1 -7/8 ") .' .. .. Clogging 0.00 ... Curb Opening.Length 12.80. ft �, • • Opening Height 6.03 in, Curb Throat Type ( Inclined -. Throat Incline Angle: 66.00 degrees Options' Calculation -mO tion ; Use Both �S Results • •r• .. Spread 88.56.. ft . Depth ^ 7:07 in Gutter Depression 1.76: in :Total Depression 2.76_ it Open Grate Area 15.36 ft= - Active Grate`Weir Length. 16.80. ft. ... .. ♦ •; .,. • .., a - • •..•. .. ... .... ... ... .•. - .� ,•. , • ` :` :.:: Bentley Systems, Inc. Haestad Methods Solution Center Bentley F.IowMaster [06:01.066.60] 712/2009 7:02:36 AM 27' Siemons Company Drive Suite 200 W Watertown, CT 06795 USA ±1- 203 -755 -1666 Page, 1 of 1 Worksheet for Grated Inlet In. Sag ; • Project Descriptiori rs. t Solve For Spreatl Input Data r .. .. t ..._ Discharge: _. ... ... 8.62 ` ft3 /s Left Side Slope 1.00 ft/ft (H:V) '.,'Right Side Slope 1.00` . ft/ft (H:V) Bottom Width 2.00 ft rti ' Grate Width': 2.00 ft .:Grate Length „' 4.00 Local. Depression 0.00. in = Local Depression Width .. :0.00 ft :Grate Type . ; • ; P -30 mm.(P- 1-7/8" ) .Clogging 50.00' Spread : i; 2.89: ft Depth :5.36 in Wetted Perimeter 126 ft Top Width 2:89' . ft Open Grate Area .2.40. ftz Active Grate:Weir Length 10:00 ft s Bentley Systems, lnc. Haestad Methods Solution Center Bentley F.IowMaster [08.01.066.601,_ , 7/2/2009 7:05:18 AM _ 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 -755 -1666 Page. 1 of •" 1 � 0 • EAGEL POINT PIPE NETWORK WORKSHEETS • c Project: 1928 LQFS r No. 32 - Storm Drain • Network: 10 - 48" Pipe to Small Retention Basin Storm- Sewers Detail Report PIPE DESCRIPTION: Pipe d - - -- RAINFALL INFORMATION--- - Return Period = 100 Year, Rainfall File = Tutorial l ' - -- -PIPE INFORMATION--- - Current Pipe— = Pipe 1 Downstream Pipe Outfall Pipe Material = HDPE Pipe. Length = 63.3492 ft Plan Length = 63.3485 ft Pipe Type = Circular Pipe. Dimensions 48.00 in Pipe Manning's "n' = 0.013 Pipe Capacity at Invert Slope = 100.44 cfs Invert Elevation'Downstream = 38.15.00 ft invert Elevation Upstream = 38.4600 ft Invert Slope = 0.49% Invert Slope (Plan Length) = 0.49% Rim Elevation Downstream = 43.5000 ft Rim Elevation Upstream = 46.5000 ft Natural Ground Slope = 4.74 %' Crown Elevation Downstream = 42.1500 ft Crown Elevation Upstream = 42.4600'ft - -- -FLOW INFORMATION---- - Catchment Area = 0.00 ac Runoff Coefficient = 0.500 Inlet Time = 5.00 min Inlet Intensity = 10.24 in /hr Inlet Rational Flow = 0:00 cfs Inlet 'Input Flow = .0.00 cfs Inlet.Hydrograph Flow = 0.00 cfs Total Area = 0.00 ac Weighted Coefficient = 0.500 Total Time of Concentration ' = 5.94 min Total Intensity = 9.85 in /hr Total Rational Flow = 0.00 cfs Total Flow = 26.56 cfs 1 Uniform Capacity = 100-.44 cfs Skipped flow = 0.00 cfs Infiltration = 0.00 gpd • c - - -- HYDRAULIC INFORMATION--=- • HGL Elevation Downstream = 46.3200 ft HGL Elevation Upstream = 46.3417 ft HGL Slope = 0.03 % EGL Elevation Downstream = 46.3895 ft EGL Elevation Upstream = 46.4111'ft _EGL Slope. 0.03 % Critical Depth = 18.2976 in Depth Downstream = 48.0000 in .Depth Upstream = 48.0000 in Velocity Downstream = 2.11 ft /s Velocity Upstream = 2.11 ft /s Uniform Velocity Downstream = 0.00 ft /s Uniform Velocity Upstream = 6.75 ft /s Area Downstream = 12.57 ft ^2 Area Upstream = 12.57 ft ^2 Kj (JLC). = 0.2000 Calculated Junction Loss - =0.563 ft - -- -INLET INFORMATION -- - -. Downstream Inlet t = Outfall Inlet Description = <None> Inlet Type = Undefined Computation Case = Sag Longitudinal Slope 0.00 ft /ft Mannings n -value = 0.000 Pavement Cross -Slope = 0.00 ft /ft Gutter Cross -Slope = 0.00 ft /ft Gutter Local Depression = 0:0000 in • Gutter Width = 0.0000 ft Ponding Width = 0.0000 ft Intercept Efficiency * % Flow from Catchment = 0.00 cfs Carryover from previous inlet = 0.00 cfs Total Flow to Current Inlet = 0.00 cfs Flow Intercepted by Current Inlet = 0.00 cfs Bypassed Flow. 0.00 cfs Pavement Flow = 0.00 cfs Gutter Flow = 0.00 cfs Depth at Curb = 0.0000 in .Depth at Pavement /Gutter Joint = 0.0000 in Pavement Spread = 0..0000 ft Total Spread = 0.0000 ft Gutter Velocity = 0.00 ft /s Curb Efficiency = * % Grate Efficiency = * % Slot Efficiency Total Efficiency = 0.00. % 'PIPE DESCRIPTION: Pipe 2 • .----RAINFALL.INFORMATION---- Return Period = 100 Year Rainfall File = Tutorial - -- =PIPE INFORMATION - - -- Current Pipe = Pipe 2. Downstream Pipe = Pipe 1 Pipe Material = HDPE' Pipe Length = 29.5972 ft Plan Length = 29.5968 ft Pipe Type = •Circular Pipe Dimensions 48.•00 in Pipe Manning's "n" = 0.013 . Pipe Capacity at Invert Slope = 102.22 cfs Invert Elevation Downstream, = .38.4600 ft Invert Elevation'Upstream = 38.6100 ft Invert Slope = 0:51% Invert Slope (Plan Length) = 0.51% Rim Elevation Downstream = 46.5000 ft Rim Elevation Upstream = 46.7000 ft Natural Ground Slope = 0.68% y Crown Elevation Downstream = 42.4600 ft Crown Elevation Upstream = 42.6100 ft - -= -FLOW INFORMATION- - Catchment Area = 0.00 ac + Runoff Coefficient = 0.500 • Inlet, Time = 5.00 min j Inlet Intensity = 10.24 in /hr Inlet Rational Flow = 0.00 cfs `Y Inlet Input Flow = 0.00 cfs Inlet Hydrograph Flow = 0:00 cfs. Total Area = 0.00 ac Weighted Coefficient = 0.500 Total Time of Concentration = 5.71. min. Total Intensity = 9.94 in /hr Total Rational Flow = 0.00 cfs Total Flow = 26.56 cfs Uniform Capacity = 102.22 cfs Skipped flow = 0.00 cfs Infiltration.- = 0,00 gpd t i I• - - -- HYDRAULIC INFORMATION--- - HGL Elevation Downstream 46.9048 ft HGL Elevation Upstream = 46.9149 ft HGL Slope = 0.03 % EGL Elevation Downstream = 46.9742 ft EGL Elevation Upstream = 46.9844 ft EGL Slope = 0.03 % Critical Depth = '18.2976 in Depth Downstream = 48.0000 in Depth Upstream = 48.0000 in Velocity Downstream = 2.11 ft /s Velocity Upstream = 2.11 ft /s Uniform'Velocity Downstream = 6.8.4 ft /s Uniform Velocity Upstream = 6.84 ft /s Area Downstream = 12.57•ft ^2 Area Upstream = 12.57 ft ^2 Kj.(JLC) = 0.2000 Calculated Junction Loss = 0.582 ft - -- -INLET INFORMATION—— Downstream Inlet = Node 1 Inlet Description = <None> Inlet Type = Undefined Computation Case = Sag Longitudinal Slope = 0.00 ft /ft Mannings n -value = 0.000 Pavement Cross -Slope = 0.00 ft /ft Gutter Cross -Slope =.0.00 ft /ft • Gutter Local Depression = 0.0000 in Gutter Width = 0.10000 ft Ponding Width = 0.0000 ft Intercept Efficiency Flow from Catchment = 0.00 cfs Carryover from previous inlet = 0.00 cfs Total Flow to Current Inlet = 0.00 cfs Flow Intercepted by Current Inlet = 0'.00 cfs Bypassed Flow = 0.00 cfs Pavement Flow = 0.00 cfs Gutter Flow = 0.00 cfs ,Depth at Curb = .0.0000 in Depth at Pavement /,Gutter Joint 0.0000 in Pavement Spread = 0.0000 ft Total Spread = 0.0000 ft Gutter.Velocity 0.00 ft /s Curb Efficiency _ * % Grate Efficiency = * %• ' Slot Efficiency = * % Total.Efficiency = 0.00 % I• PIPE DESCRIPTION: Pipe 3 - -- RAINFALL INFORMATION-=- - Return Period Rainfall File - -- -PIPE INFORMATION---- ' Current Pipe Downstream Pipe Pipe Material Pipe Length Plan Length Pipe Type Pipe Dimensions Pipe Manning's "n" Pipe Capacity at Invert Slope Invert Elevation Downstream Invert Elevation Upstream Invert Slope Invert Slope .(Plan Length) Rim Elevation Downstream Rim Elevation Upstream Natural Ground Slope Crown Elevation Downstream Crown Elevation Upstream - -- -FLOW INFORMATION--- - Catchment Area Runoff Coefficient • Inlet Time - Inlet Intensity Inlet Rational Flow Inlet Input Flow Inlet Hydrograph Flow Total Area Weighted Coefficient Total Time of Concentration Total Intensity Total Rational Flow Total Flow Uniform Capacity Skipped flow Infiltration 100 Year Tutorial Pipe 3 Pipe 2 HDPE 83.3339 ft 83.3328, ft Circular 48.00 in 0,. 013 101.93 cfs 38.6100 ft 39.0300 ft 0.50% 0.50% 46.7000 ft 48:5000 ft 2.16% 42.6100 ft 43.0300 ft = 0.00 ac = 0.500 = 5.00 min = 10.24 in /hr 0.00 cfs 0.00 cfs 0.00 cfs ' 0.00 ac 0.500 = 5.05 min 10.22 in /hr 0.00 cfs 26.56 cfs 101.93 cfs 0.00 -cfs 0.00 gpd -7--HYDRAULIC INFORMATION--' - • HGL Elevation Downstream .HGL Elevation Upstream HGL Slope* EGL Elevation Downstream EGL Elevation Upstream EGL Slope Critical Depth Depth Downstream Depth Upstream Velocity Downstream Velocity Upstream Uniform Velocity Downstream Uniform Velocity Upstream Area Downstream Area Upstream Kj (JLC) Calculated Junction'Loss - -- -INLET INFORMATION--- - Downstream Inlet Inlet Description Inlet Type Computation Case Longitudinal Slope Mannings n -value Pavement Cross - Slope. Gutter Cross -Slope • Gutt'er Local Depression Gutter Width Ponding Width Intercept. Efficiency Flow from Catchment Carryover from previous inlet Total Flow to Current Inlet. Flow Intercepted by Current Inlet Bypassed Flow Pavement Flow Gutter Flow Depth at Curb Depth.at Pavement /Gutter Joint Pavement Spread Total Spread Gutter Velocity Curb Efficiency Grate Efficiency Slot Efficiency Total Efficiency • = 47.4968 ft = '47.5253 ft = 0.03 % = 47.5663 ft = 47.5947 ft = 0.03 % = 18.2976 in = 48.0000 in 48.0000 in 2.11 ft /s = 2.11 ft /s 6.82 ft /s = 6.82 ft /s = 12.57 ft ^2 = 12.57 ft ^2 = 0.2Q00 = 0.563 ft Node 2 _ <None> = Undefined = Sag =.0.00 ft /ft 0.000 0.00 ft /ft 0.00 .ft /ft 0 . 0000 , in 0.0000 ft 0.0000 ft - * s 0.00 cfs 0.00 cfs 0.00 cfs 0.00 cfs 0.00 cfs 0.00 cfs 0.00 cfs 0.0000 in ='0.0000 in = 0.0000 ft = 0.0000 ft = 0.00 ft /s - o _ * o - o _ * o - o 0.00`% ~ 100 Year ~ Tutorial ~ ripe A ' ~ Pipe 3 ~ eogE ~ 6.8944 ft ~ 6.8943 ft ~ Circular ~ 48.00 in ~ 0.013 ~ I09'36 ofa ~ 29'0300 ft = 39'0700 ft- = O'58% ~ O'58& ~ 48'5000 ft- = 48'6600 ft = 2'32% ~ 43.0300 ft ~ 43.0700 ft , . ' ~ 0.00 ac = 0.500 = 5.00 min ^— 10.24 in/hr ~ 0.00 ofa ~ 26'56'cka ~ 0.00 ofu ~ 0.00 ac ~ O'5OO ~ 5'08 min , ~ I0-'24 in/hr ~ O'OO ofo ~ 26'56 cfo =109'36 cfo ~ 0.UOofs ~ 0.00 gpd , ^ ^ ' ^ � � � ` . . � � � ` ) ' PIPE DESCRIPTION: Pipe 4 / � ---'RAINFALL INFORMATION---- Return Period ` o ^ . . ^ ` Rainfall rile ` ----ezgE INFORMATION---- � Current Pipe ` ` ' Downstream pipe Pipe Material Pipe Length Length 'jlau Pipe Type Pipe Dimensions gipe'Maooing'a ."u" ' Pipe'Capacity at Invert Slope Invert Elevation Downstream Invert Elevation Upstream � Invert Slope' � Invert' SIbpe (Plan Length) � Rim Elevation Downstream � Rim Elevation Upstream � ,Natural Ground Slope Crown Elevation Downstream . Crown Elevation Upstream ----FLOW INFORMATION---- Catchment Area Runoff Coefficient Inlet Time zoIet Intensity Inlet Rational Flow Inlet Input Flow Inlet Hydzograpb Flow Total Area Weighted Coefficient Total Time of Concentration .� Total Intensity . ' Total aatioual Flow Total Flow Uniform Capacity | ' Skipped flow - | | Infiltration ~ 100 Year ~ Tutorial ~ ripe A ' ~ Pipe 3 ~ eogE ~ 6.8944 ft ~ 6.8943 ft ~ Circular ~ 48.00 in ~ 0.013 ~ I09'36 ofa ~ 29'0300 ft = 39'0700 ft- = O'58% ~ O'58& ~ 48'5000 ft- = 48'6600 ft = 2'32% ~ 43.0300 ft ~ 43.0700 ft , . ' ~ 0.00 ac = 0.500 = 5.00 min ^— 10.24 in/hr ~ 0.00 ofa ~ 26'56'cka ~ 0.00 ofu ~ 0.00 ac ~ O'5OO ~ 5'08 min , ~ I0-'24 in/hr ~ O'OO ofo ~ 26'56 cfo =109'36 cfo ~ 0.UOofs ~ 0.00 gpd , ^ ^ ' ^ � � � ` . . � � � ` ) ' / � ^ � ` � . o ^ . . ^ ` ' ' ^ � , ' � � ` ` � ` - - -- HYDRAULIC INFORMATION---- HGL Elevation Downstream = 48.0888 ft HGL Elevation Upstream = 48.1050 ft HGL Slope = 0.24 % EGL Elevation Downstream = 48.1582 ft . EGL Elevation Upstream = 48.1745 ft EGL Slope = 0.24 % Critical Depth = 18.2976 in Depth Downstream = 48.0000'in Depth Upstream = 48.0000 in Velocity.Downstream 2.11 ft /s Velocity Upstream = 2.11 ft /s Uniform Velocity Downstream = 7.18 ft /s Uniform Velocity Upstream = 0.00 ft /s " Area Downstream = .12..57 ft ^2 Area Upstream = 12.57 ft ^2 Calculated Junction Loss = NA . - -- -INLET INFORMATION---- Downstream Inlet Node 3 Inlet. Description = <None> Inlet Type = 'Undefined Computation Case. = Sag Longitudinal Slope = 0.00 ft /ft Mannings n -value = 0.000 Pavement Cross -Slope = 0.00 ft /ft Gutter Cross - Slope = 0.00 ft /ft 'Gutter Local Depression = 0.0000 in Gutter Width = 0.0000 ft Ponding Width = 0.0000 ft Intercept Efficiency = * % Flow from Catchment = 0.00 cfs Carryover from previous inlet = 0.00 cfs Total Flow to Current Inlet = 0.00 cfs Flow Intercepted by Current Inlet 0.00:cfs Bypassed Flow` ~ = 0.00 cfs Pavement Flow 0.00 cfs Gutter Flow = 0.00 cfs Depth at Curb = 0..0000 in Depth at Pavement /Gutter Joint = 0•.0.000 in Pavement Spread 0.0000 ft Total Spread = 0.0000 ft Gutter Velocity = 0.00 ft /s Curb Efficiency = * % Grate Efficiency , = * % Slot Efficiency = % Total Efficiency .* = 0.00 % • 5 Project: 1928 LQFS No. 32 - Storm Drain • . Network: 20 - Pipe Network to Large Retention Basin Storm -------------------------------------------------------------------------- Sewers Detail Report - - - - -= PIPE DESCRIPTION: Pipe 1 - - -- RAINFALL INFORMATION - - -- Return Period = 100 Year Rainfall File = Tutorial - -- -PIPE INFORMATION--- - Current Pipe = Pipe 1 Downstream Pipe = Outfall Pipe Material = HDPE Pipe Length = 9.6106 ft Plan Length = 9.6105 ft Pipe Type = Circular Pipe Dimensions = 18.00 in Pipe Manning's "n" 0.013 Pipe Capacity at Invert Slope = 7.57 cfs Invert Elevation Downstream = 43.5000 ft Invert Elevation Upstream = 43.5500 ft Invert Slope = 0.520 Invert Slope (Plan Length) = 0.52% Rim Elevation Downstream = 43'.5000 ft Rim Elevation. Upstream = 46.7000 ft Natural Ground Slope 33.30% Crown Elevation Downstream 45.0000 ft' i • Crown Elevation Upstream = 45.0500 ft - -- -FLOW INFORMATION--- - Catchment Area = 0.00 ac Runoff Coefficient =. 0'.500 Inlet, Time . = 5.00 min. Inlet Intensity. = 10.24 in /hr Inlet Rational Flow = 0.00 cfs . Inlet Input Flow = 0.00.cfs.. Inlet Hydrograph Flow = 0.00 cfs Total Area ='0.00 ac Weighted Coefficient = 0..500 Total Time of Concentration = 5.36 min Total Intensity = '10.09 in /hr Total Rational Flow = 0.00 cfs Total Flow = 9.55 cfs Uniform Capacity = 7.57 cfs Skipped flow = 0.00 cfs Infiltration = 0.00 gpd , 0 - I - - -- HYDRAULIC INFORMATION - - - -. HGL Elevation Downstream = 46.3200 ft HGL Elevation Upstream = 46.3995 ft HGL.Slope = 0.83 % EGL Elevation Downstream = 46.7741 ft EGL Elevation Upstream = 46.8536 ft EGL Slope = 0.83 % Critical Depth = 14.3244 in Depth Downstream = 18.0000 in Depth Upstream = 18.0000 in Velocity Downstream = 5.40 ft /s Velocity Upstream = 5.40 ft/.s Uniform Velocity Downstream = 0.00 ft /s Uniform Velocity. Upstream = 5.40 ft /s Area Downstream = 1.77 ft ^2 Area Upstream = 1.77 ft ^2 Kj (JLC) = 0.2000 Calculated Junction Loss = 0.380 ft - -- -INLET INFORMATION - - -> Downstream Inlet = Outfall Inlet Description = <None> Inlet Type = Undefined Computation Case = Sag Longitudinal Slope = 0.00 ft /ft Mannings n -value = 0.000 Pavement Cross - Slope = 0.00 ft /ft Gutter Cross -Slope =.0.00 ft /ft • Gutter Local Depression. = 0.0000 in Gutter Width = 0.0000 ft Ponding Width = 0.0000.ft Intercept Efficiency = * % Flow from Catchment = 0.00 cfs Carryover from previous inlet = 0.00 cfs Total Flow to Current Inlet .= 0.00 -cfs Flow-Intercepted by Current Inlet = 0:00 cfs Bypassed Flow = 0.00 cfs Pavement Flow = 0.00. cfs Gutter Flow = 0.00 cfs Depth at Curb = 0.0000.in Depth at Pavement /Gutter Joint. = 0.0000 in Pavement Spread = 0.0000 ft Total Spread = 0.0000 ft Gutter.Velocity = 0.00 ft /s Curb Efficiency = Grate Efficiency = * % Slot. Efficiency = Total Efficiency = 0.00 % , 0 - I • PIPE DESCRIPTION: Pipe.2 -- RAINFALL INFORMATION--- - Return Period Rainfall File - -- -PIPE INFORMATION---- Current Pipe Downstream Pipe Pipe Material Pipe Length -Plan Length Pipe Type Pipe Dimensions Pipe Manning's "n" Pipe Capacity at Invert Slope Invert Elevation Downstream Invert Elevation Upstream Invert Slope Invert• Slope (Plan Length) Rim Elevation Downstream Rim Elevation Upstream Natural Ground Slope i Crown Elevation Downstream Crown Elevation.Upstream - -- -FLOW INFORMATION--- - Catchment Area Runoff Coefficient • Inlet Time Inlet Intensity Inlet Rational Flow Inlet Input Flow Inlet Hydrograph Flow Total Area Weighted Coefficient. Total Time of Concentration Total Intensity, Total Rational Flow Total Flow Uniform Capacity Skipped flow Infiltration 100 Year Tutorial. Pipe 2 Pipe.1 HDPE 13.3897 ft 13.3895 ft Circular = 18.00 in 0.013 7.59 cfs 43.5500 ft 43.6200 ft = 0.52% = 0.52% = 46-.7000 ft = 49.8000 ft = 23.15% = 45.0500 ft = 45.1200 ft = 0.00 ac = 0.500 5.00 min 10.24 in /hr 0.00 cfs = 0.00 cfs _ 0.00 cfs = 0.00 ac 0.500 =5.31 min = 10.11 in /hr = 0.00 cfs = 8.62 cfs = 7.59 cfs = 0.00 cfs-. = 0.00 gpd -. - -- HYDRAULIC INFORMATION ---- • HGL Elevation Downstream = 46.7796 ft HGL Elevation Upstream. = 46.8698•ft HGL Slope = 0.67 % EGL Elevation Downstream = 47.1495 ft EGL Elevation Upstream = •47.2397 ft EGL Slope =.0.67 % Critical�Depth = 13.6440 in Depth Downstream = 18.0000 in Depth Upstream = 18.0000 in Velocity Downstream = 4.88 ft /s Velocity Upstream = 4.88 ft /s Uniform Velocity Downstream = 4.88 ft /s . Uniform Velocity Upstream = 4.88 ft /s Area Downstream = 1.77 ft ^2 Area Upstream = 1.77 ft ^2 Kj (JLC) = 0.2000 Calculated Junction. Loss = 0.296 ft - -- -INLET 'INFORMATION--- - Downstream Inlet = Node 1 Inlet Description = <None> Inlet Type = Undefined Computation Case = Sag Longitudinal.Slope = 0.00 ft /ft Mannings n- value 0.000 Pavement Cross -Slope 0.00 ft /ft Gutter Cross -Slope = 0.00 ft /ft • Gutter Local Depression = 0.0000-in Gutter Width = 0.0000 ft Ponding,Width = 0.0000 ft Intercept Efficiency _.* % ..Flow from .Catchment = 0.00 cfs. Carryover from previous inlet = 0.00.cfs Total Flow to Current Inlet = 0.00 cfs Flow Intercepted by Current Inlet _. 0:00 cfs Bypassed Flow = 0.00 cfs Pavement Flow = 0.00 cfs Gutter Flow = 0.00 cfs Depth at Curb = 0.0000 in. Depth at Pavement/Gutter Joint =.0.0000 in Pavement Spread. = 0.0000 ft Total Spread 0.0000 ft Gutter Velocity = 0.00 ft /s Curb Efficiency _ * % Grate Efficiency = *•% Slot Efficiency = Total Efficiency = 0.00 % r 1 0 PIPE.DESCRIPTION: Pipe 3 - -- RAINFALL INFORMATION--- - Return Period Rainfall File - -- -PIPE INFORMATION--- - Current Pipe Downstream Pipe Pipe Material Pipe Length Plan Length Pipe Type Pipe Dimensions Pipe Manning Is "n" Pipe Capacity at'Invert Slope Invert Elevation Downstream Invert Elevation Upstream Invert Slope- Invert Slope (Plan Length) Rim Elevation Downstream Rim Elevation Upstream Natural Ground Slope Crown Elevation Downstream Crown Elevation Upstream - -- -FLOW INFORMATION--- - Catchment Area Runoff Coefficient • Inlet 'Time Inlet Intensity Inlet Rational Flow Inlet Input Flow Inlet Hydrograph Flow Total Area Weighted Coefficient Total Time of- Concentration Total Intensity Total'Rational Flow Total Flow Uniform Capacity Skipped flow Infiltration I 100 Year _ .Tutorial Pipe 3 Pipe 2 HDPE = 7.0712 ft 7.0711 ft Circular = 18.00 in , = 0.013 7.49 cfs 43.6200 ft 43.6560 ft 0.51% 0.51% = 4.9.8000 ft = 49.8000 ft 0.00% 45.1200 ft , 45.1560 ft = 0.00 ac = 0.500 - = 5.00 min 10.24 in /hr 0.00 cfs =.0.00 cfs 0.00 cfs 0.00 ac = 0.500 5.29 min = 10.12 in /hr 0.00 cfs 8.62 cfs 7.49 cfs = 0.00 cfs = 0.00 gpd - - -- HYDRAULIC INFORMATION ---- • HGL Elevation Downstream = 47.1657 ft HGL Elevation Upstream = 47.2134 ft HGL Slope =,0.67 % EGL Elevation Downstream = 47.5357 ft EGL Elevation Upstream = 47.5833 ft EGL Slope = 0.67 % Critical Depth = 13.6440 in Depth Downstream 18.0000 in Depth Upstream = 18..0000 in ,Velocity Downstream = 4.88 ft /s Velocity-Upstream = 4.88 ft /s Uniform Velocity Downstream = 4.88 ft /s Uniform Velocity Upstream, = 4.88 ft /s Area Downstream = 1.77 ft ^2 Area Upstream = 1:77 ft ^2 Kj (JLC) = 0.2000 Calculated Junction Loss =.0.036 ft - -- -INLET INFORMATION - - - -. Downstream Inlet = Node 2 Inlet Description _ <None> Inlet Type = Undefined Computation Case = Sag Longitudinal Slope = 0.00 ft /ft Mannings n -value = 0.000 Pavement Cross -Slope =.0.00 ft /ft Gutter Cross -Slope = 0.00 ft /ft Gutter Local Depression = 0.0000 in Gutter Width = 0.0000 ft Ponding Width = 0.0000 ft Intercept Efficiency Flow from Catchment = 0.00 cfs Carryover from previous inlet = 0.00 cfs Total Flow to Current Inlet. = 0.00 cfs Flow Intercepted by Current Inlet = 0.00 cfs Bypassed Flow = 0.00 cfs Pavement Flow = 0.00 cfs Gutter Flow = 0.00 cfs Depth at Curb = 0.0000 in Depth at•Pavement /Gutter Joint = 0..0000 -in Pavement Spread = .0.0000 ft Total Spread = 0.0000 ft Gutter Velocity- = 0.00 ft /s Curb Efficiency = * % Grate Efficiency = * % Slot Efficiency = * % Total Efficiency = 0.00 % N d PIPE DESCRIPTION: Pipe 4 • - -- RAINFALL INFORMATION--- - ,Return Period = 100 Year Rainfall.File = Tutorial - -- -PIPE INFORMATION--- - Current Pipe = Pipe 4 Downstream Pipe Pipe 3 Pipe Material = HDPE Pipe Length = 88.0474 ft Plan Length _. 88.0.034 ft Pipe Type = Circular' Pipe Dimensions = 18.00 in Pipe Manning'.s "n" = 0.013 Pipe Capacity at Invert Slope = 18.67 cfs Invert Elevation-Down . stream = 43.6560 ft Invert Elevation Upstream = '46.4400 ft - Invert Slope = 3.16% Invert Slope (Plan Length) =3.16% Rim Elevation Downstream ='49.8000 ft_ Rim Elevation Upstream. = 49.9400 ft Natural Ground Slope = 0.16% Crown Elevation Downstream = 45.1560 ft . Crown Elevation Upstream = 47.9400 ft - -- -FLOW INFORMATION.--- - Catchment Area =•0.00 ac Runoff Coefficient = 0.500 • Inlet Time =.5.00 min Inlet Intensity = 10.24 in /hr. Inlet Rational Flow = 0.00 cfs Inlet Input Flow = 8.62 cfs Inlet Hydrograph Flow = 0.00 cfs Total Area = 0.00 ac Weighted'Coe.fficient = 0.500 Total Time of Concentration = 5.00 min Total Intensity = 10.24 in /hr Total Rational Flow = 0.00 cfs Total Flow = 8.62 cfs Uniform Capacity = 18.67 cfs Skipped flow = 0.00 cfs Infiltration' = 0.00 gpd. N ---- HYDRAULIC .INFORMATION - - -- • HGL Elevation Downstream HGL Elevation-Upstream HGL Slope EGL Elevation Downstream EGL Elevation Upstream EGL Slope Critical Depth Depth Downstream Depth Upstream Velocity Downstream Velocity Upstream Uniform Velocity Downstream Uniform Velocity Upstream Area Downstream, Area Upstream Kj (JLC) - Calculated Junction Loss - -- -INLET INFORMATION--- - Downstream Inlet Inlet Description*. Inlet Type Computation Case Longitudinal Slope Mannings n -value Pavement Cross - Slope Gutter Cross -Slope • Gutter Local Depression Gutter Width Ponding Width Intercept Efficiency Flow from Catchment Carryover from previous inlet Total Flow to Current Inlet Flow Intercepted by Current Inlet Bypassed Flow Pavement Flow Gutter Flow Depth at Curb .Depth at Pavement /Gutter Joint' Pavement Spread Total Spread Gutter,Velocity Curb Efficiency Grate Efficiency Slot Efficiency Total Efficiency L, 47.2497 ft 47.8447 ft 0.68 % 47.6196 ft 48.2708 ft 0.74 % 13.6440 in 18.0000 in 15.8333 in 4.88 ft /s 5.24 ft /s 10.36 ft /s 0.00 ft /s 1.77 ft ^2 1.65 ft ^2 0.2000 NA = Node 3 = <None> = Undefined = Sag .=-0.00 ft /ft = '0.000 = 0.00 ft /ft = 0.00 ft /ft = 0.0000 in = 0.0000 ft = 0.0000 ft _ * o _ o = 0.0,0 cfs = 0.00 cfs = 0.00 cfs = 0.00 cfs 0.00 cfs 0.00 cfs = 0.00 cfs. 0.0000 in 0.0000 in 0.0000 ft 0.0000 ft 0.00 ft /s _ * o _ * o * o 0.00 % PIPE DESCRIPTION: Pipe 5 • - -=- RAINFALL INFORMATION--- - Return Period = 100 Year Rainfall File = Tutorial - -- -PIPE INFORMATION--- - Current Pipe = Pipe 5 Downstream Pipe = Pipe 1 Pipe Material-. = HDPE Pipe Length = ,32.4129 ft Plan Length : = 32.3667 ft Pipe Type = Circular Pipe Dimensions = 6.00 in Pipe Manning's "n" = 0.013 Pipe,Capacity at Invert Slope = 1.30 cfs Invert,Elevation Downstream = 4 "4.0500-ft Invert Elevation Upstream = 45.7800 ft Invert Slope = 5.34% Invert Slope (Plan Length) = 5.34% Rim Elevation Downstream = 46.7000 ft Rim Elevation Upstream = 49.5000 ft Natural Ground Slope = 8.64% Crown Elevation Downstream = 44.5500 ft Crown Elevation Upstream = 46.2800 ft - -- -FLOW INFORMATION--- - Catchment Area = 0.•00 ac Runoff Coefficient = 0.500 • Inlet Time = 5.00. min Inlet Intensity = 10.24 in /hr Inlet Rational Flow = 0.00 cfs Inlet Input Flow = 0.00 cfs' Inlet Hydrograph Flow = 0.00 cfs Total Area = 0.00 ac Weighted Coefficient = 0.500 , Total Time of Concentration = 5.00 min Total Intensity = 10.24 in /hr Total Rational Flow = 0.00 cfs Total Flow = 0.93 cfs Uniform Capacity = 1.30 cfs Skipped flow = 0.00 cfs Infiltration = 0.00 gpd ---- HYDRAULIC INFORMATION---- • HGL Elevation Downstream HGL Elevation Upstream HGL Slope EGL Elevation Downstream EGL' Elevation Upstream EGL Slope Critical Depth Depth Downstream Depth Upstream Velocity Downstream Velocity Upstream . Uniform Velocity Downstream Uniform Velocity Upstream Area Downstream Area Upstream Kj (JLC) Calculated Junction Loss. - -- -INLET INFORMATION--- - Downstream Inlet Inlet Description Inlet Type Computation Case Longitudinal Slope Mannings n- value. Pavement Cross -Slope Gutter Cross-'Slope Gutter Local Depression Gutter Width Ponding Width Intercept Efficiency Flow from Catchment Carryover from previous inlet Total Flow.to Current Inlet F1owIntercepted by Current Inlet Bypassed Flow Pavement Flow. Gutter Flow Depth at Curb Depth at Pavement/Gutter-Joint Pavement Spread Dotal Spread Gutter Velocity Curb Efficiency Grate Efficiency Slot Efficiency Total Efficiency • 46.7796 ft 47.6712 ft 2.75 % 47.1284 ft 48.0200 ft 2.75 % 5.5770 in 6.0000 in 6.0000 in 4.74 ft /s 4.74 ft /s 4.88 ft /s 7.1'8 ft /s 0.20 ft-2 0.20 ft ^2 0.2000 0.649 ft = Node 1 <None> Undefined Sag 0.00 ft /ft _ 0.000 0.00 ft /ft 0.00 ft /ft 0.0000 in = 0.0000 ft 0.0000 ft _ * o - o 0.00 cfs = 0.00 cfs = 0.00 cfs = 0.00 cfs = 0.00 cfs = 0.00 cfs = 0.00 cfs = 0.0000 in = 0.0000 in = 0.0000 ft = 0.0000 ft = 0.00 ft /s _ * o _ * a - o _ * o = 0 ..0 0 % f r = 100 Year = .Tutorial = Pipe 6 = Pipe 5 = HDPE = 1.0012 ft = 1.0000 ft = Circular = 6.00 in = 0.013 1.25 cfs 45.7800 ft 45.8300 'ft 5.00% 5.00 49.5000 ft 49.4000:ft -9.99% 46.2800 ft = .46.3300 ft 0.00 ac 0.500 5.00 min 10.24 in /hr 0.00 cfs 0.93 cfs 0.00 cfs 0.00 ac = .0.500 =.5.0-0 min 10.24 in /hr 0.00 cfs 0.93 cfs 1.25 cfs' .0.00 cfs 0:00 gpd PIPE DESCRIPTION: Pipe 6 • , - - -.- RAINFALL INFORMATION--- - Return Period Rainfall File ---- PIPE'INFORMATION - - -- Current Pipe Downstream Pipe - Pipe Material Pipe 'Length . Plan Length Pipe Type Pipe Dimensions Pipe Manning's "n ". Pipe Capacity at Invert Slope 'Invert Elevation Downstream Invert Elevation Upstream Invert Slope Invert.Slope (Plan Length) Rim Elevation Downstream Rim Elevation Upstream Natural Ground Slope Crown Elevation Downstream Crown Elevation Upstream - -- -FLOW INFORMATION - - -- - Catchment Area Runoff Coefficient Inlet Time Inlet Intensity Inlet.Rational Flow Inlet Input Flow Inlet Hydrograph.Flow Total Area Weighted Coefficient Total Time of Concentration Total Intensity Total Rational Flow Total Flow Uniform Capacity Skipped flow Infiltration = 100 Year = .Tutorial = Pipe 6 = Pipe 5 = HDPE = 1.0012 ft = 1.0000 ft = Circular = 6.00 in = 0.013 1.25 cfs 45.7800 ft 45.8300 'ft 5.00% 5.00 49.5000 ft 49.4000:ft -9.99% 46.2800 ft = .46.3300 ft 0.00 ac 0.500 5.00 min 10.24 in /hr 0.00 cfs 0.93 cfs 0.00 cfs 0.00 ac = .0.500 =.5.0-0 min 10.24 in /hr 0.00 cfs 0.93 cfs 1.25 cfs' .0.00 cfs 0:00 gpd a - - -- HYDRAULIC INFORMATION ----- • • HGL Elevation Downstream = 48.3207 ft HGL Elevation Upstream = 48.4180 ft HGL Slope = 9.73 % EGL Elevation Downstream = 48.6695 ft EGL Elevation Upstream = 48.7668 ft EGL Slope = 9.73 % Critical Depth 5.5770 in Depth Downstream = 6.0000 in Depth Upstream = 6.0000 in Velocity Downstream = 4.74 ft-/s Velocity Upstream = 4.74 ft /s Uniform Velocity Downstream = 6.99 ft /s Uniform Velocity Upstream = 0:00 ft /s Area Downstream = 0.20 ft ^2 Area Upstream = 0.20 ft ^2 Kj (JLC) = 0.2000 Calculated Junction Loss = NA - -- -INLET INFORMATION--- - Downstream Inlet = Node 5 Inlet.Description = <None> Inlet Type = Undefined Computation Case = Sag Longitudinal Slope = 0.00 ft /ft Mannings n -value = 0.000 Pavement Cross -Slope = 0.00 ft /ft' Gutter Cross -Slope = 0.00 ft /ft Gutter Local Depression = 0..0000 in Gutter Width = 0.0000 -ft Ponding Width = 0.0000 ft Intercept.Efficiency =.* % Flow from Catchment = 0.00.cfs Carryover from previous inlet = 0.00 c.fs Total Flow to Current Inlet = 0.00 cfs' Flow Intercepted by Current Inlet = 0.00 cfs I Bypassed Flow = 0.00 cfs Pavement Flow = 0.00 cfs Gutter Flow = 0.00 cfs Depth at Curb = 0.0000 in Depth at Pavement /Gutter Joint = 0.00.00 in Pavement Spread = 0.0000 ft Total Spread = 0.0000 ft Gutter Velocity = 0.00 ft /s Curb Efficiency = * % Grate Efficiency = * % Slot Efficiency = * % Total,Efficiency• = 0.00 % a • HYDROLOGY MAPS Geotechnical Report _ Pro P p osed Fire Station & Maintenance Facili ty - La Quinta, California Prepared for: City of la .Quinta ` P.O. Box 1504 La Quinta, CA 92253 LANUMAR11 Geo Erigineers and Geologists August 11: Mr. Tom Hartung ` Director of Building and Safety City of La Quinta lP.O. Box 1504 La Quinta, CA 92253 Geotechnical Investigation Proposed Fire Station & Maintenance Facility La Quinta, California LCI Report No. LP08.129 Dear Mr. Hartung: 780 N. 4th Street El Centro, CA 92243 {760) 370 -3000 (760) 337 -8900 tax 77 -948 Wildcat Drive Palm Desert. CA 92211 (760) 360-0666 17601 360.0521 tax 1 This geotechnical report is provided for design and construction of the proposed fire station and maintenance facility located on Avenue 52, west of Washington Street, in La Quinta, California. Our geotechnical investigation was conducted in response to your request for our services. The enclosed I report describes our soil engineering investigation and presents our professional opinions regarding geotechnical conditions at the site to be considered in the design and construction of the project. The findings of this study indicate the site is underlain by interbedded sandy silts, silty sands, and sands. The near surface soils have a very low expansion. The subsurface soils are loose to very dense in nature. Groundwater was not encountered in the borings during the time of exploration. Historic groundwater levels ranged from 60 to 105 feet within the past 70 years in the vicinity of the project site. Severe sulfate and chloride levels were not encountered in the soil samples tested for this study. However, in consideration of general corrosive environment in the vicinity, it is recommended that concrete should use Type V Portland Cement with a maximum water /cement ratio of 0.45 (by weight) and a minimum compressive strength of 4,500 psi, should be used for concrete placed in contact with native soils of this project. Seismic settlements of the dry sands have been calculated and are not expected to occur at the project site due to the dense nature of the subsurface soil. 0 Proposed Fire Station & Maintenance Facility — La Quinta, CA LCI Report No. LP08129 We did not encounter soil conditions that would preclude implementation of the proposed project I provided the recommendations contained in this report are implemented in the design and construction of this project. Our findings, recommendations, and application options are related only through reading the full report, and are best evaluated with the active participation of the engineer of record who developed them. 1 We appreciate the opportunity to provide our findings and professional opinions regarding Igeotechnical conditions at the site. If you have any questions or comments regarding our findings, please call our office at (760) 360 -0665. i Respectfully Submitted, LandMark Consultants, Inc. odd te"mey-Flin PE � C2 c N,q,� Distribution: Client (4) No. C 34432 DCRRE509 -30.09 .10 . Proposed Fire Station & Maintenance Facility — La Quinta, CA LCI Report No. LP08129 TABLE OF CONTENTS Page Section1 ............................................................................................................ ..............................1 INTRODUCTION......................................................................................... ............................:.1 1.1 Project Description ............................................................................. ..............................1 1.2 Purpose and Scope of Work ............................................................... ..............................1 1.3 Authorization ...................................................................................... ..............................2 Section2 ............................................................................................................ ..............................3 METHODS OF INVESTIGATION .............................................................. ..............................3 2.1 Field Exploration ................................................................................ ..............................3 2.2 Laboratory Testing .............................................................................. ..............................4 Section3 ...........................................:................................................................ ..............................5 DISCUSSION................................................................................................ ..............................5 3.1 Site Conditions ................................................................................... ..............................5 Geologic Setting ................................................................................. ..............................6 I3.2 I3.3 Seismicity and Faulting ..................................................................... ..............................6 3.4 Site Acceleration and UBC Seismic Coefficients ............................... ..............................8 3.5 Subsurface Soil ................................................................................... ..............................9 3.6 Groundwater ...................................................................................... ............................... 9 3.7 Seismic Settlement .............................................................................. 3.8 ..............................9 Hydroconsolidation ............................................................................ .............................10 Section4 ........................................................................................................... .............................11 RECONE YMNDATIONS .......................................................:...................... .............................11 4.1 Site Preparation ................................................................................ ............................... 11 4.2 Foundations and Settlements ............................................................. .............................13 4.3 Slabs -On -Grade ................................................................................. 4.4 Mixes .............................14 Concrete xes and Corrosivity . .15 4.5 Excavations ........................................................................................ .............................15 I 4.6 Lateral Earth Pressures ...................................................................... .............................16 4 4.7 Seismic Design ..........:....................................................................... .............................16 4.8 Pavements .......................................................................................... .............................16 5 ........................................................................................................... .............................18 ISection I LIMITATIONS AND ADDITIONAL SERVICES ...................................... .............................18 5.1 Limitations ................................ .....................:......... ....18 .................... ............................... 5.2 Additional Services ............................................................................ .............................19 APPENDIX A: Vicinity and Site Maps APPENDIX B: Subsurface Soil Logs and Soil Key APPENDIX C: Laboratory Test Results APPENDIX D: Seismic Settlement Calculations I APPENDIX E: References 1 Proposed Fire Station & Maintenance Facility — La Quinta, CA LCI Report No. LP08129 Section 1 INTRODUCTION 1.1 Project Description P This report presents the findings of our geotechnical investigation for the proposed fire station and maintenance facility located on Avenue 52, west of Washington Street, in La Quinta, California (See Vicinity Map, Plate A -1). The proposed development will consist of a one story fire station, maintenance office and several storage buildings on approximately 4- acres. A site plan for the proposed development was provided by Pitassi Architects of Rancho Cucamonga, California. The structures are planned to consist of continuous and spread concrete footing, concrete slabs -on- grade and masonry and wood -frame construction. Footing loads at exterior bearing walls are estimated at 1 to 5 kips per lineal foot. Column loads are estimated to range from 5 to 50 kips. If structural loads exceed those stated above, we should be notified so we may evaluate their impact on 1 foundation settlement and bearing capacity. Site development will include building pad preparation, J underground utility installation, parking lot construction, and concrete driveway and sidewalk placement. 1.2 Purpose and Scope of Work The purpose of this geotechnical study was to investigate the upper 51.5 feet of subsurface soil at selected locations within the site for evaluation of physical/engineering properties. From the subsequent field and laboratory data, professional opinions were developed and are provided in this report regarding geotechnical conditions at this site and the effect on design and construction. The scope of our services consisted of the following: < Field exploration and in -situ testing of the site soils at selected locations and depths < Laboratory testing for physical and/or chemical properties of selected samples 1 < Review of the available literature and publications pertaining to local geology, 1 faulting, and seismicity. < Engineering analysis and evaluation of the data collected. < Preparation of this report presenting our findings, professional opinions, and I recommendations for the geotechnical aspects of project design and construction I . LandMark Consultants, Inc. Page 1 i I0 Proposed Fire Station & Maintenance Facility — La Quinta, CA LCI Report No. LP08129 This report addresses the following geotechnical issues: < Subsurface soil and groundwater conditions < Site geology, regional faulting and seismicity, near source factors, and site seismic accelerations < Aggressive soil conditions to metals and concrete Professional opinions with regard to the above issues are presented for the following: < Site grading and earthwork < Building pad and foundation subgrade preparation < Allowable soil bearing pressures and expected settlements < Concrete slabs -on -grade < Lateral earth pressures < Excavation conditions and buried utility installations < Mitigation of the potential effects of salt concentrations in native soil to concrete mixes and steel reinforcement < Seismic design parameters < Pavement structural sections Our scope of work for this report did not include an evaluation of the site for the presence of environmentally hazardous materials or conditions. 1.3 Authorization The Building and Safety Director, Mr. Tom Hartung, of the city of La Quinta provided authorization by written agreement to proceed with our work on July 17, 2008. We conducted our work according to our written proposal dated June 12, 2008. LandMark- Consultants, Inc. Page 2 I Proposed Fire Station & Maintenance Facility — La Quinta, CA LCI Report No. LP08129 • Section 2 • 1VIETHODS OF INVESTIGATION 2.1 Field Exploration Subsurface exploration was performed on July 21, 2008 using 2R Drilling of Ontario, California to advance six (6) borings to depths of 18.5 to 51.5 feet below existing ground surface. The borings I were advanced with a truck- mounted, CUE 55 drill rig using 8 -inch diameter, hollow -stem, continuous -flight augers. The approximate boring locations were established in the field and plotted } on the site map by sighting to discernable site features. The boring locations are shown on the Site and Exploration Plan (Plate A -2). A staff geologist observed the drilling operations and maintained a log of the soil encountered and Isampling depths, visually classified the soil encountered during drilling in accordance with the Unified Soil Classification System, and obtained drive tube and bulk samples of the subsurface materials at selected intervals. Relatively undisturbed soil samples were retrieved using a 2 -inch outside diameter (OD) split -spoon sampler or a 3 -inch OD Modified California Split- Barrel (ring) sampler. The samples were obtained by driving the sampler ahead of the auger tip at selected depths. The drill rig was equipped with a 140 -pound CME automatic hammer with a 30 -inch drop for l conducting Standard Penetration Tests (SPT) in accordance with ASTM D1586. The number of blows required to drive the samplers the last 12 inches of an 18 inch drive length into the soil is l recorded on the boring logs as "blows per foot". Blow counts (N values) reported on the boring logs 1 represent the field blow counts. No corrections have been applied for the effects of gravel, overburden pressure, automatic hammer drive energy, drill rod lengths, liners, and sampler diameter. After logging and sampling the soil, the exploratory borings were backfilled with the excavated material. The backfill was loosely placed and was not compacted to the requirements specified for engineered fill. The existing asphalt surfaces were repaired with asphalt cold patch with black pigment. i The subsurface logs are presented on Plates B -1 through B -6 in Appendix B. A key to the log } symbols is presented on Plate B -7. The stratification lines shown on the subsurface logs represent the approximate boundaries between the various strata. However, the transition from one stratum to another may be gradual over some range of depth. LandMark Consultants, Inc. Page 3 Proposed Fire Station & Maintenance Facility — La Quinta, CA LCI Report No. LP08129 . 2.2 Laboratory Testing Laboratory tests were conducted on selected bulk and relatively undisturbed soil samples to aid in classification and evaluation of selected engineering properties of the site soils. The tests were conducted in general conformance to the procedures of the American Society for Testing and Materials (ASTM) or other standardized methods as referenced below. The laboratory testing j program consisted of the following tests: < Particle Size Analyses (ASTM D422) — used for soil classification < Unit Dry Densities (ASTM D2937) and Moisture Contents (ASTM D2216) — used for insitu soil parameters < Expansion Index (Swell) Test (UBC 18 -2 and ASTM D4829) —used for evaluating relative Iexpansion classification < Collapse Potential (ASTM D5333) — used for hydroconsolidation potential evaluation < Moisture- Density Relationship (ASTM D 1557) — used for soil compaction determinations • 1 < Direct Shear (ASTM D3080) — used for soil strength determination < R Value (ASTM D2844) - used for pavement structural section design < Chemical Analyses (soluble sulfates & chlorides, pH, and resistivity) (Caltrans Methods) used for concrete mix evaluations and corrosion protection requirements fThe laboratory test results are presented on the subsurface logs and on Plates C -1 through C -9 in Appendix C. t� I Engineering parameters of soil strength, compressibility and relative density utilized for developing design criteria provided within this report were obtained from the field and laboratory testing Program. E. i i LandNlark Consultants. Inc. Page 4 i Proposed Fire Station & Maintenance Facility - La Quinta, CA LCI Report No. LP08129 Section 3 • DISCUSSION 3.1 Site Conditions The project site is irregular shaped in plan view, elongated in the north -south direction, is relatively flat - lying, and consists of approximately 4- acres. The site is currently an existing city maintenance yard and fire station. Several portable buildings, metal storage containers, and fire /maintenance equipment and vehicles are located throughout the southern and northwestern portions of the site. Landscape vegetation, consisting of trees, grasses, and small and large bushes are located along the margins of the site. Several chain -link fences separate and divide the southern portion of the site. Frances Hack Lane, a paved 2 -lane roadway, travels in an east -west direction across the southern 'portion of the site. A block wall separates the site from the adjacent properties to the east. The project site is bounded by Avenue 52, a paved 4 -lane roadway, on the north. Adjacent properties are flat -lying and are approximately at the same elevation with this site. Commercial businesses are located across Avenue 52 to the north. Fritz Burns City Park is located • to the west and Traditions Country Club is located to the east and south. Single family residences are located further to the west and northwest. The All American Canal is located approximately 2'/4 miles to the east of the project site. C] The project site lies at an elevation between approximately 50 and 56 feet above mean sea level (MSL) in the Coachella Valley region of the California low desert. Annual rainfall in this and region is less than 4 inches per year with four months of average summertime temperatures above 100 Winter temperatures are mild, seldom reaching freezing. LandMark Consultants. Inc. Page 5 Proposed Fire Station & Maintenance Facility — La Quinta, CA LCI Report No. LP08129 l3.2 Geologic Setting The project site is located in the Coachella Valley portion of the Salton Trough physiographic province. The Salton Trough is a geologic structural depression resulting from large scale regional faulting. The trough is bounded on the northeast by the San Andreas Fault and Chocolate Mountains and the southwest by the Peninsular Range and faults of the San Jacinto Fault Zone. The Salton Trough represents the northward extension of the Gulf of California, containing both marine and non- marine sediments since the Miocene Epoch. Tectonic activity that formed the trough continues at a high rate as evidenced by deformed young sedimentary deposits and high levels of seismicity. Figure 1 shows the location of the site in relation to regional faults and physiographic features. The surrounding regional geology includes the Peninsular Ranges (Santa Rosa and San Jacinto Mountains) to the south and west, the Salton Basin to the southeast, and the Transverse Ranges 1 (Little San Bernardino and Orocopia Mountains) to the north and east. Hundreds of feet to several thousand feet of Quaternary fluvial, lacustrine, and aeolian soil deposits underlie the Coachella Valley. • The southeastern part of the Coachella Valley lies below sea level. In the geologic past, the ancient Lake Cahuilla submerged the area. Calcareous tufa deposits may be observed along the ancient shoreline as high as elevation 45 to 50 feet MSL along the Santa Rosa Mountains from La Quints southward. Lacustrine (lake bed) deposits comprise the subsurface soils over much of the eastern Coachella Valley with alluvial outwash along the flanks of the valley. 3.3 Seismicity and Faulting Faulting and Seismic Sources: We have performed a computer -aided search of known faults or seismic zones that lie within a 62 mile (100 kilometers) radius of the project site as shown on Figure 1 and Table 1. The search identifies known faults within this distance and computes deterministic ground accelerations at the site based on the maximum credible earthquake expected on each of the faults and the distance from the fault to the site. The Maximum Magnitude Earthquake (Mmax) listed was taken from published geologic information available for each fault (Cao, et. al., 2003 and Jennings, 1994). i • } LandMark Consultants, Inc. Page 6 i l0 i� Proposed Fire Station & Maintenance Facility - La Quinta, CA LCI Report No. LP08129 Table 1 FAULT PARAMETERS & DETERMINISTIC ESTIMATES OF PEAK GROUND ACCELERATION (PGA) Fault Name or Seismic Zone Distance (rnQ & Direction from Site Fault Type Fault Length km Maximum Magnitude Mmax Mw Avg Slip Rate m r ) Avg Return Period (Yrs ) Date of Last Rupture (year Largest Historic Event >5.5M ear Est site PGA Reference Notes: 1 2 3 2 4 3 3 3 5 6 San Andreas Fault System - Coachella Valley 8.2 NE A A 95 7.4 25 220 1690+/- 6.5 1948 0.34 - San Gorgonio- Banning 8.4 NNE A A 98 7.4 10 - 1690+/- 6.2 1986 0.33 - San Bernardino Mtn 26 NW A A 107 7.3 24 433 1812 6.5 1812 0.14 - Whole S. Calif. Zone 8.2 NE A A 345 7.9 - - 1857 7.8 1857 0.44 San Jacinto Fault System -Hot Spgs -Buck Ridge 14 SW B A 70 6.5 2 354 6.3 1937 0.14 - Anza Segment 17 SSW A A 90 7.2 12 250 1918 6.8 1918 0.18 - Coyote Creek 19 SW B A 40 6.8 4 175 1968 6.5 1968 0.13 - Borrego Mtn 33 SSE B A 29 6.6 4 175 6.5 1942 0.08 - San Jacinto Valley 36 W B A 42 6.9 12 83 6.8 1899 0.09 - Elmore Ranch 48 SE B A 29 6.6 1 225 1987 5.9 1987 0.06 - Superstition Mtn.. 51 SSE B A 23 6.6 5 500 1440+/- 0.06 - Superstition Hills 52 SE B A 22 6.6 4 250 1987 6.5 1987 0.06 - San Bernardino Seg. 59 WNVY B A 35 6.7 12 100 6.0 1923 0.05 - Whole Zone 18 SW A A 245 7.5 - - 0.20 Mojave Faults Blue Cut 17 NNE B C 30 6.8 1 762 0.15 Bumt Mtn 20 NNW B C 20 6.4 0.6 5,000 1992 7.3 1992 0.11 Eureka Peak 20 N C C 19 6.4 0.6 5,000 1992 6.1 1992 0.11 Morongo 30 NW C C 23 6.5 0.6 1,172 5.5 1947 -0-08 Pinto Mountain 32 NNW B B 73 7.0 2.5 499 0.10 S. Emerson- Copper Mtn. 35 NNE B C 54 6.9 0.6 5,000 0.09 Landers 35 NNW B C 83 7.3 0.6 5,000 1992 7.3 1992 0.11 Bullion Mtn - Mesquite Lk. 35 NE B C 88 7.0 0.6 5,000 0.09 N. Johnson Valley 44 NNW B C 36 6.7 0.6 5,000 0.07 North Frontal Fault Z. (E) 46 NNW B C 27 6.7 0.5 1,727 0.08 Calico - Hidalgo 49 N B C 95 7.1 0.6 5,000 0.08 Lockhart-Old Wmn Spgs 51 NNW B C 149 7.3 0.6 5,000 0.08 Notes: 1. Jennings (1994) and CDMG (1996) 2. CDMG (1996), where Type A faults - slip rate >5 mm /yr and well constrained paleoseismic data Type B faults -- all other faults. 3. WGCEP (1995) 4. CDMG (1996) based on Wells & Coppersmith (1994) 5. Ellsworth Catalog in USGS PP 1515 (1990) and USBR (1976), Mw = moment magnitude, 6. The deterministic estimates of the Site PGA are based on the attenuation relationship of Boore, Joyner, Fumal (1997) Landmark Consultants, Inc. Proposed Fire Station & Maintenance Facility - La Quinta, CA LCI Report No. LP08 129 1 MAP OF REGIONAL FAULTS AND SEISMICITY 34.75 1 34.50 1 1 . t 34.25 } 34.00 BM: Borrego Mountain 33.75 - ) 3350 7,1 E. C 33.25 1 11725 417.00 - 116.75 - 116.50 - 116.25 416.00 - 115.75 Copyright 1997 by Shelton L. Stringer. GE Faults and Seismic Zones from Jennings (1994), Earthquakes modified from Ellsworth (1990) catalog. IFigure 1. Map of Regional Faults and Seismicity s - iLandmark Consultants, Inc. Legends to Faults: BC: Blue Cut BM: Borrego Mountain CC: Coyote Creek 7,1 E. C CL: Cleghom CN: Calico - Newberry EL: Elmore Ranch ,p/ E ELS: Elsinore EM-C: Emerson - Copper Mtn. g E EP: Eureka Peak H: Helendale HS-B Hot Springs -Buck Ridge NF J JV. Johnson Valley LND: Landers M-C L LW. Leawood ' M M: Morongo Rig, Bear M ML: Mesquite Lake NF: North Frontal Zone 6.4 ♦ (92) 7 7.3 (92) O OWS: Old Woman Springs P -B: Pisgah - Bullion sh T P PM Pinto Mtn �\ S M S SA: San Andreas SA -sb P SG-B: San Gorgonio - Banning �n S Y, S SH: Superstition Hills SJ: San Jacinto SG-B 6.2 A o o, S 6 6.1 1921; Ca azon &5 0 we) B BC Palm u u 93 R RIVERSIDE Cd. RAM E 9 San acinto FiS P Palm l7esert i' l l� He !nd SA La Quinla v Project Site An M Mu r1+ B BR 417.00 - 116.75 - 116.50 - 116.25 416.00 - 115.75 Copyright 1997 by Shelton L. Stringer. GE Faults and Seismic Zones from Jennings (1994), Earthquakes modified from Ellsworth (1990) catalog. IFigure 1. Map of Regional Faults and Seismicity s - iLandmark Consultants, Inc. } Proposed Fire Station & Maintenance Facility — La Quinta, CA LCI Report No. LP08129 Seismic Risk: The project site is located in the seismically active Coachella Valley of southern California and is considered likely to be subjected to strong ground motion from earthquakes in the region. The proposed site structures should be designed in accordance with the California Building Code (CBC) for a "Maximum Considered Earthquake" (MCE) and with the appropriate site 1 coefficients. The MCE is defined as the ground motion having a 2 percent probability of being exceeded in 50 years. Seismic Hazards. ► Groundshaking. The primary seismic hazard at the project site is the potential for strong groundshaking during earthquakes along the San Andreas Fault. A further discussion of 1 groundshaking follows in Section 3.4. ► Surface Rupture. The project site does not lie within a State of California, Alquist- Priolo 1 Earthquake Fault Zone. Surface fault rupture is considered to be unlikely at the project site because ` of the well - delineated fault lines through the Coachella Valley as shown on USGS and CDMG maps. However, because of the high tectonic activity and deep alluvium of the region, we cannot preclude the potential for surface rupture on undiscovered or new faults that may underlie the site. ► Liquefaction. Liquefaction is unlikely to be a potential hazard at the site, since the groundwater is deeper than 50 feet (the maximum depth that liquefaction is known to occur). The project site lies in a Riverside County designated zone of low potential for liquefaction (See Riverside County Geographic Information System (GIS) — Liquefaction Zones, Plate A -6). Other Second= Hazards. ► Landsliding. The hazard of landsliding is unlikely due to the regional planar topography. No ancient landslides are shown on geologic maps of the region and no indications of landslides were observed during our site investigation. P. Volcanic hazards. The site is not located in proximity to any known volcanically active area and the risk of volcanic hazards is considered very low. ► Tsunamis, sieches, and flooding. The site does not lie near any large bodies of water, so the threat of tsunami, sieches, or other seismically - induced flooding is unlikely. The project site is 1 located within a Federal Emergency Management Agency (FEMA) 500 -year flood zone and adjacent I to a 100 -year flood zone to the east (as shown on Plate A -5). The project site is not located within a l flood plain review area as designated by Riverside County (See Riverside County Geographic J Information (GIS) — Flood Plain Review, Plate A -7). l ► Expansive soil. The near surface soils at the project site consist of interbedded sandy silts, silty 1 LandMark Consultants, Inc. Page 7 Proposed Fire Station & Maintenance Facility — La Quinta, CA LCI Report No. LP08129 i sands, and sands which have a very low expansion (Plate C -2). We recommend additional testing of the soils during the grading operations to determine the expansive characteristic of these soils. 1 . 3.4 Site Acceleration and UBC Seismic Coefficients Site Acceleration: Deterministic horizontal peak ground accelerations (PGA) from maximum probable earthquakes on regional faults have been estimated and are included in Table 1. Ground motions are dependent primarily on the earthquake magnitude and distance to the seismogenic (rupture) zone. Accelerations also are dependent upon attenuation by rock and soil deposits, direction of rupture and type of fault; therefore, ground motions may vary considerably in the same general area. The deterministic PGA estimate for the project site is based on the ground motion having a 10% probability of being exceeded in 50 years (return period of 475 years). We have used the computer program FRISKSP (Blake, 2000) to provide a probabilistic estimate of the site PGA using the attenuation relationship NEHRP D 250 of Boore, Joyner, and Fumal (1997). The PGA estimate for the Design Basis Earthquake (DBE) for the project site having a 10% 10 probability of being exceeded in 50 years (return period of 475 years) is 0.58g. The PGA estimate for the Maximum Considered Earthquake (MCE) for the project site having a 2% probability of 1 being exceeded in 50 years (return period of 2,500 years) is 0.85g. 2007 CBC (2006113C) Seismic Response Parameters: The 2007 California Building Code (CBC) seismic parameters are based on the Maximum Considered Earthquake with a ground motion that has a 2% probability of occurrence in 50 years. This follows the methodology of the 2006 International Building Code (IBC). Table 2 lists seismic and site coefficients given in Chapter 16 of the CBC. The site soils have been classified as Site Class D (stiff soil profile). Design earthquake ground motions are defined as the earthquake ground motions that are two- thirds (2/3) of the corresponding MCE ground motions. Design earthquake ground motion data are provided in Table 2. LandMark Consultants. Inc. Page 8 Proposed Fire Station - La Quinta, CA LCI Project No. LP08129 Table 2 2006 International Building Code (IBC) and ASCE 7 -05 Seismic Parameters IBC Reference Site Class: D Table 1613.5.2 Latitude: 33.6718 N Longitude: - 116.3015 W Maximum Considered Earthquake (MCE) Ground Motion Short Period Spectral Response S. 1.50 g Figure 1613.5(3) 1 second Spectral Response S, 0.60 g Figure 1613.5(4) Site Coefficient Fa 1.00 , Table 1613.5.3 (1) Site Coefficient F,, 1.50 Table 1613.5.3 (2) Adjusted Short Period Spectral Response SMs 1.50 g = Fa * Sg Adjusted 1 second Spectral Response SMl 0.90 g = F„ * SI Design Earthquake Ground Motion 2.00 Short Period Spectral Response SDS 1.00 g = 2/3 *SNs 1 second Spectral Response SDI 0.60 g = 2 /3 *SMI 0.21 To 0.12 sec =0.2 *SDI /SDs 0.17 Ts 0.60 sec = SDI /SDS Period T (sec) Sa (g) 0.00 0.41 0.05 0.65 0.12 1.00 0.20 1.00 0.30 1.00 0.60 1.00 0.80 0.75 1.00 0.60 1.20 0.50 1.40 0.43 1.60 0.38 1.80 0.33 2.00 0.30 2.20 0.27 2.40 0.25 2.60 0.23 2.80 0.21 3.00 0.20 3.50 0.17 4.00 0.15 lProposed Fire Station & Maintenance Facility — La Quinta, CA LCI Report No. LP08129 3.5 Subsurface Soil Subsurface soils encountered during the field exploration conducted on July21, 2008 consist of loose to very dense interbedded sandy silts, silty sands, and sands. The near surface soils have a very low expansion. The subsurface logs (Plate B -1 through B -6) depict the stratigraphic relationships of the I various soil types. 3.6 Groundwater Groundwater was not encountered in the borings during the time of exploration. According to Coachella Valley Water District (CVWD) readings of groundwater levels from nearby wells, groundwater is located at a depth between approximately 175 and 183 feet below the ground surface in the vicinity of the project site. There is uncertainty in the accuracy of short-term water level measurements, particularly in fine- grained soil. Groundwater levels may fluctuate with precipitation, irrigation of adjacent properties, drainage, and site grading. The groundwater level noted should not i be interpreted to represent an accurate or permanent condition. Based on the regional topography, lie groundwater flow is assumed to be generally towards the northeast within the site area. Flow directions may also vary locally in the vicinity of the site. Historic groundwater records in the vicinity of the project site indicate that groundwater has fluctuated between 60 and 105 feet below the ground surface over the last 70 years according to a report "Coachella Valley Investigation" conducted by the Department of Water Resources, published July 1964. 3.7 Seismic Settlement An evaluation of the non - liquefaction seismic settlement potential was performed using the relationships developed by Tokimatsu and Seed (1984, 1987) for dry sands. This method is an empirical approach to quantify seismic settlement using SPT blow counts and PGA estimates from the probabilistic seismic hazard analysis. The soils beneath the site consist primarily of loose to very dense interbedded sand silt silty sands P Y rY Y � tY and sands. Based on the empirical relationships of the site soils in their present condition, LandMark Consultants, Inc. Page 9 Proposed Fire Station & Maintenance Facility — La Quinta, CA LCI Report No. LP08129 seismically induced settlements of the granular soils at the project site are not expected to occur due to the dense nature of the subsurface soils. The computer printout for the estimate of induced settlement is included in Appendix D. 3.8 Hydroconsolidation In and climatic regions, granular soils have a potential to collapse upon wetting. This collapse (hydroconsolidation) phenomena is the result of the lubrication of soluble cements (carbonates) in the soil matrix causing the soil to densify from its loose configuration during deposition. I Collapse potential tests (Plate C -3 to C -5) indicated a slight risk of collapse upon inundation at the project site. Therefore, development of building foundations is not required to include provisions for lmitigating the hydroconsolidation caused by soil saturation from landscape irrigation or broken utility lines. I* i LandMark Consultants, Inc. Page 10 • Proposed Fire Station & Maintenance Facility — La Quinta, CA LCI Report No. LP08129 Section 4 RECOMMENDATIONS 4.1 Site Preparation Clearing and Grubbin& All surface improvements, debris or vegetation including grass, trees, and weeds on the site at the time of construction should be removed from the construction area. Root balls should be completely excavated. Organic strippings should be hauled from the site and not used as fill. Any trash, construction debris, concrete slabs, old pavement, landfill, and buried obstructions such as old foundations and utility lines exposed during rough grading should be traced to the limits of the foreign material by the grading contractor and removed under our supervision. Any excavations resulting from site clearing should be dish - shaped to the lowest depth of disturbance and backfilied under the observation of the geotechnical engineer's representative. Building Pad Preparation: The existing surface soil within the building pad areas should be removed to 24 inches below the lowest foundation grade or 42 inches below the original grade (whichever is deeper), extending five feet beyond all exterior wall/column lines (including adjacent concreted areas). The exposed sub -grade should be scarified to a depth of 8 inches, uniformly moisture conditioned to at least 2% over optimum moisture, and re- compacted to at least 90% of ASTM D1557 maximum density. The on -site soils are suitable for use as compacted fill and utility trench backfill. Imported fill soil (if required) should similar to onsite soil or non - expansive, granular soil meeting the USCS classifications of SM, SP -SM, or SW -SM with a maximum rock size of 3 inches. The geotechnical engineer should approve imported fill soil sources before hauling material to the site. Native and imported materials should be placed in lifts no greater than 8 inches in loose thickness, uniformly moisture conditioned to at least 2% over optimum moisture, and re- compacted to at least 90% of ASTM D1557 maximum density. In areas other than the building pad which are to receive concrete slabs and asphalt concrete pavement, the ground surface should be over - excavated to a depth of 12 inches, uniformly moisture conditioned to at least 2% over optimum moisture, and re- compacted to at least 90% of ASTM D1557 maximum density. LandMark Consultants. Inc. Page 11 IProposed Fire Station & Maintenance Facility — La Quinta, CA LCI Report No. LP08129 Trench Backfill: On -site soil free of debris, vegetation, and other deleterious matter may be suitable for use as utility trench backfill. Backfill within roadways should be placed in layers not more that 6 inches in thickness, uniformly moisture conditioned to at least 2% over optimum moisture and mechanically compacted to a minimum of 90% of the ASTM D1557 maximum dry density except Ifor the top 12 inches of the trench which shall be compacted to at least 95 %. Native backfill should } only be placed and compacted after encapsulating buried pipes with suitable bedding and pipe envelope material. Pipe envelope/bedding should either be clean sand (Sand Equivalent SF>30) or crushed rock when encountering groundwater. A geotextile filter fabric (Mirafi 140N or equivalent) should be used to encapsulate the crushed rock to reduce the potential for in- washing of fines into the gravel void , space. Precautions should be taken in the compaction of the backfill to avoid damage to the pipes and structures. Moisture Control and Drainage: The moisture condition of the building pad should be maintained during trenching and utility installation until concrete is placed or should be rewetted before initiating delayed construction. If soil drying is noted, a 2 to 3 inch depth of water may be used in • the bottom of footings to restore footing subgrade moisture and reduce potential edge lift. Adequate site drainage is essential to future performance the project. Infiltration of excess irrigation water and stormwaters can adversely affect the p rformanc a soil at the site. Positive drainage should be maintained away from all dares (5% for 5 feet minim across unpaved areas) to prevent ponding and subsequent satur the utters and downspouts may be considered as a means to convey water away from foundations. If landscape irrigation is allowed next to the building, drip irrigation systems or lined planter boxes should be used. The subgrade soil should be maintained in a moist, but not saturated state, and not allowed to dry out. Drainage should be maintained without ponding. Observation and Density Testing_ All site preparation and fill placement should be continuously observed and tested by a representative of a qualified geotechnical engineering firm. Full -time observation services during the excavation and scarification process is necessary to detect undesirable materials or conditions and soft areas that may be encountered in the construction area. The geotechnical firm that provides observation and testing during construction shall assume the responsibility of " geotechnical engineer of record' and, as such, shall perform additional tests and LandMark Consultants, Inc. Page 12 Proposed Fire Station & Maintenance Facility — La Quinta, CA LCI Report No. LP08129 1 J investigation as necessary to satisfy themselves as to the site conditions and the recommendations for site development. l Auxiliary Structures Foundation Preparation: Auxiliary structures such as free standing or retaining Iwalls should have the existing soil beneath the structure foundation prepared in the manner recommended for the building pad except the preparation needed only to extend 24 inches below and beyond the footing. 4.2 Foundations and Settlements Shallow spread footings and continuous wall footings are suitable to support the structures provided they are founded on a layer of properly prepared and compacted soil as described in Section 4.1. The foundations may be designed using an allowable soil bearing pressure of 2,000 psf. The allowable soil pressure may be increased by 20% for each foot of embedment depth in excess of 18 inches and by one -third for short term loads induced by winds or seismic nts. The maximum allowable soil ��• J`��9�,pressure at increased embedment depths shall not exce 3,200 �� �1 X411 exterior and interior foundations should be embedded a minimum of 18 inches below the building s pad or lowest adjacent final grade, whichever is deeper. Spread footings should ��, , minim dth of 24 inches and should not be structurally isolated. Recommended concrete f rein n and sizing for all footings should be provided by the structural engineer. 5° \1 FS I P Resistance to horizontal loads will be developed by passive earth pressure on the sides of footings J and frictional resistance developed along the bases of footings and concrete slabs. Passive resistance I to lateral earth pressure may be calculated using an equivalent fluid pressure of 300 pcf to resist lateral loadings. The top one foot of embedment should not be considered in computing passive J resistance unless the adjacent area is confined by a slab or pavement. An allowable friction coefficient of 0.40 may also be ed ase o ootmgs to resist lateral loading. Foundation movement estimated s non- seismic) loadings and static site conditions are estimated to not exc 3/4 i h with differential movement of about two- thirds of total movement for l • the loading assumptions stated above when the subgrade preparation guidelines given above are 7 LandMark Consultants, Inc. Page 13 1 Proposed Fire Station & Maintenance Facili!X — La Quinta, CA LCI Report No. LP08129 followed. Foundation movements under the seismic loading due to dry settlement are provided in iSection 3.7 of this report. 10 1�• 4.3 Slabs -On -Grade Concrete slabs and flatwork should be a minimum q5 4es thick. Concrete floor slabs may either be monolithically placed with the foundation or dowelled after footing placement. The concrete slabs may be placed on granular subgrade that has been compacted at least 90% relative compaction (ASTM D1557) and moistened to near optimum moisture just before the concrete p acement. .` k. N, v.wt, - -1 s'' , . s To provide protection against vapor or water transmission thro a slabs, we recommend that the slabs -on -grade be underlain by a layer of clean concrete x6d at least 4 inches thick. To provide additional protection against water vapor transmission through the slab in areas where vinyl or other moisture - sensitive floor covering is planned, we recommend that a 10 -mil thick impermeable plastic membrane (visqueen) be placed at mid - height within the sand layer. The vapor inhibitor should be installed in accordance with the manufacturer's instructions. We recommend that at least a 2 -foot lap be provided at the membrane edges or that the edges be sealed. slab and flatwork reinforcement should consist of chaired rebar slab (minimum of No. 4 bars at 18 -inch centers, both StGy!> ,A0�.9. rc reinfor ment - eight to N rests 1 mid crackin .� thickness and steel reinforcement are minimums I-1 only and should be verified by the structural engineer /designer knowing the actual project loadings The construction joint between the foundation and any mowstrips /sidewalks placed adjacent to foundations should be sealed with a polyurethane based non - hardening sealant to prevent moisture migration between the joint. Control joints should be provided in all concrete slabs -on -grade at a maximum spacing (in feet) of 2 to 3 times the slab thickness (in inches) as recommended by American Concrete Institute (ACI) guidelines. All joints should form approximately square patterns to reduce randomly oriented contraction cracks. Contraction joints in the slabs should be tooled at the time of the pour or sawcut (' /a of slab depth) within 6 to 8 hours of concrete placement. Construction (cold) joints in foundations and area flatwork should either be thickened butt joints with dowels or a thickened keyed joint designed to resist vertical deflection at the joint. All joints in flatwork should be sealed LandMark Consultants, Inc. Page 14 Proposed Fire Station & Maintenance Facility — La Quinta, CA LCI Report No. LP08129 to prevent moisture, vermin, or foreign material intrusion. Precautions should be taken to prevent _ • curling of slabs in this and desert region (refer to ACI guidelines). l All independent concrete flatworks should be underlain by 12 inches of moisture conditioned and 1 compacted soils. All flatwork should be jointed in square patterns and at irregularities in shape at a maximum spacing of 10 feet or the least width of the sidewalk. 4.4 Concrete Mixes and Corrosivity Selected chemical analyses for corrosivity were conducted on bulk samples of the near surface soil from the project site (Plate C -9). The native soils have low levels of sulfate ion concentrations (105 ppm), and low levels of chloride ion concentrations (80 ppm). Resistivity determinations on the soil indicate a moderate potential for metal loss because of electrochemical corrosion processes. In consideration of general corrosive environment in the vicinity, it is recommended that concrete should use Type V Portland Cement with a maximum water /cement ratio of 0.45 (by weight), and a minimum compressive strength of 4,500 psi, should be used for concrete placed in contact with native soil on this project (sitework including streets, sidewalks, driveways, patios, and foundations). A minimum concrete cover of three (3) inches is recommended around steel reinforcing or embedded components (anchor bolts, hold - downs, etc.) exposed to native soil or landscape water (to 18 inches above grade). The concrete should also be thoroughly vibrated during placement. Landmark does not practice corrosion engineering. We recommend that a qualified corrosion engineer evaluate the corrosion potential on metal construction materials and concrete at the site. 4.5 Excavations All site excavations should conform to CalOSHA requirements for Type C soil. The contractor is solely responsible for the safety of workers entering trenches. Temporary excavations with depths of 4 feet or less may be cut nearly vertical for short duration. Temporary slopes should be no steeper LandMark Consultants, Inc. Page 15 Proposed Fire Station & Maintenance Facility — La Quinta, CA LCI Report No. LP08129 than 1.5:1(horizontal:vertical). Sandy soil slopes should be kept moist, but not saturated, to reduce the potential of raveling or sloughing. Excavations deeper than 4 feet will require shoring or slope inclinations in conformance to CAL /OSHA regulations for Type C soil. Surcharge loads of stockpiled soil or construction materials should be set back from the top of the slope a minimum distance equal to the height of the slope. All permanent slopes should not be steeper than 3:1 to reduce wind and rain erosion. Protected slopes with ground cover may be as steep as 2:1. However, maintenance with motorized equipment may not be possible at this inclination. 4.6 Lateral Earth Pressures j Earth retaining structures, such as retaining walls, should be designed to resist the soil pressure imposed by the retained soil mass. Walls with granular drained backfill may be designed for an Iassumed static earth pressure equivalent to that exerted by a fluid weighing 35 pcf for unrestrained y (active) conditions (able to rotate 0.1 % of wall height), and 50 pcf for restrained (at -rest) conditions. ' • These values should be verified at the actual wall locations during construction. 4.7 Seismic Design This site is located in the seismically active southern California area and the site structures are subject to strong ground shaking due to potential fault movements along the San Andreas Fault. Engineered design and earthquake - resistant construction are the common solutions to increase safety and development of seismic areas. Designs should comply with the latest edition of the CBC for Seismic Zone 4 using the seismic coefficients given in Section 3.4 of this report. 4.8 Pavements Pavements should be designed according to CALTRANS or other acceptable methods. Traffic indices were not provided by the project engineer or owner; therefore, we have provided structural sections for several traffic indices for comparative evaluation. The public agency or design engineer LandMark Consultants. Inc. Page 16 i i i i • Proposed Fire Station & Maintenance Facility — La Quints, CA LCI Report No. LP08129 should decide the appropriate traffic index for the site. Maintenance of proper drainage is necessary to prolong the service life of the pavements. Based on the current State of California CALTRANS method, R -value of 50 for the subgrade soil and assumed traffic indices, the following table provides our estimates for asphaltic concrete (AC) and Portland Cement Concrete (PCC) pavement sections. 0 RECOMY[ENDED PAVEMENTS SECTIONS R -Value of Subgrade Soil - 50 i7ecism Methnd - CALTRANS 2006 Traffic Fleu`bie: Pavements Rigid (PCC} Pavements Asphaltic Aggregate Concrete Aggregate Index Concrete Base Thickness Base (assumed) assumed Thickness Thickness (in.) Thickness Thickness (in.) (in.) 5.0 3.0 4.0 6.0 4.0 6.0 3.5 4.0 6.0 6.0 7.0 4.5 4.0 6.0 8.0 8.0 5.0 5.5 8.0 8.0 Notes: 1) 2) 3) 4) Asphaltic concrete shall be Caltrans, Type B, lh inch maximum medium grading, compacted to a minimum of 95% of the 75 -blow Marshall density (ASTM D1559). Aggregate base shall conform to Caitrans Class 2 (3/4 in. maximum), compacted to a minimum of 95% of ASTM D1557 maximum dry density. Place pavements on 8 inches of moisture conditioned (minimum 4% above optimum) native soil compacted to a minimum of 90% of the maximum dry density determined by ASTM D1557. . Portland cement concrete for pavements should have Type V cement, a minimum compressive strength of 4,500 psi at 28 days, and a maximum water- cement ratio of 0.45. LandMark Consultants. Inc. Page 17 Proposed Fire Station & Maintenance Facility — La Quinta, CA LCI Report No. LP08129 Section 5 . LIMITATIONS AND ADDITIONAL SERVICES 5.1 Limitations The recommendations and conclusions within this report are based on current information regarding the proposed fire station and maintenance facility located on Avenue 52, west of Washington Street, in La Quinta, California. The conclusions and recommendations of this report are invalid if: < Structural loads change from those stated or the structures are relocated. < The Additional Services section of this report is not followed. • This report is used for adjacent or other property. • Changes of grade or groundwater occur between the issuance of this report and construction other than those anticipated in this report. • Any other change that materially alters the project from that proposed at the time this report was prepared. Findings and recommendations in this report are based on selected points of field exploration, geologic literature, laboratory testing, and our understanding of the proposed project. Our analysis of data and recommendations presented herein are based on the assumption that soil conditions do not vary significantly from those found at specific exploratory locations. Variations in soil conditions can exist between and beyond the exploration points or groundwater elevations may change. If detected, these conditions may require additional studies, consultation, and possible design revisions. This report contains information that may be useful in the preparation of contract specifications. However, the report is not worded is such a manner that we recommend its use as a construction specification document without proper modification. The use of information contained in this report for bidding purposes should be done at the contractor's option and risk. This report was prepared according to the generally accepted geotechnical engineering standards of practice that existed in Riverside County at the time the report was prepared. No express or implied warranties are made in connection with our services. This report should be considered invalid for periods after two years from the report date without a review of the validity of the findings and recommendations by our firm, because of potential changes in the Geotechnical Engineering Standards of Practice. LandMark Consultants. Inc. Page 18 • Proposed Fire Station & Maintenance Facility — La Quinta, CA LCI Report No. LP08129 The client has responsibility to see that all parties to the project including, designer, contractor, and subcontractor are made aware of this entire report. The use of information contained in this report for bidding purposes should be done at the contractor's option and risk. 5.2 Additional Services We recommend that Landmark Consultants, Inc. be retained as the geotechnical consultant to provide the tests and observations services during construction. If Landmark Consultants does not provide such services then the geotechnical engineeringfirm providing such tests and observations shall become the geotechnical engineer of record and assume responsibility for the project. The recommendations presented in this report are based on the assumption that: < Consultation during development of design and construction documents to check that the geotechnical recommendations are appropriate for the proposed project and that the geotechnical recommendations are properly interpreted and incorporated into the documents. < LandMark Consultants will have the opportunity to review and comment on the plans and specifications for the project prior to the issuance of such for bidding. • Continuous observation, inspection, and testing by the geotechnical consultant of record during site clearing, grading, excavation, placement of fills, building pad and subgrade preparation, and backfilling of utility trenches. • Observation of foundation excavations and reinforcing steel before concrete placement. • Other consultation as necessary during design and construction. We emphasize our review of the project plans and specifications to check for compatibility with our recommendations and conclusions. Additional information concerning the scope and cost of these services can be obtained from our office. LandMark Consultants, Inc. Page 19 • •� i 62 - L` L1'• �\ ,�. s,t,• r<lar¢TUx eu:Penair. aoz spri�ics `�,: l / ° �✓ PlA61OPJP.E z 111)• ozl•., � Qua S .r 'Zc•, �'/ F. S,9 ,Itrs tour ra _ a =•%'_ g� �`' `., N � B P . = a /D ; a : ^ 5 "� ;'s:�. NCR /1' MONUMENT n... C O/' V / 1� ff a °• 'a `'n.rr.r a...'c '� -lui. �.`._z.,. ..� \:..,, u: war I 2 i \� e r`t.`•` F .Y��:ro•r c � el - ��L7� .i•_ v. R l � Y y m _ •m. •'•!,� G -P :. rwn" !t w 'ALM P 4 F't1�G[O•TOF' 11ZA(ID PAESFIIYE ; p :a ti�. .: i r ram tae. `^J'°' rs f L50 �i� -., 4 u-c :i.n Wr. \a' = it {�.....`. ^!•Yr. a DIC:O• ,�'a 4- Vl� .\ p:,na,.. �.�:�ia.> =»; 97 HILLS u' e G n<n• k AICMa -... 0 RD o liirrv3 l..c= a,:JA•� d �1 � • n ".s :w m.." } �1�s � = 4e F �\�J�/ / /((( PANC140 .� -. 4,;6 3 f II ci•, tau, I < �r X L: JA CAl71�lVTE" }p 3..dT." C " <I�.L1GE _';'�• ry %YO '( �. INDIAN Project S� /tee+ { °W faYAT10N � �+ ! 5 s%E a s 5 �f w„oan4a u.,.r• ., cmros,e o _ , -`^ •�_5 !< 3 f ern c a ate... n• c \ �.. =r tslr,:L.a.0 ADP .•F, � \, 7 bF r< ., `3 OG I a L4 — s c .. e - I < ,�.,:.✓•,T�.•nr"� 'b <�' �vrr::'_x� � xat ry'�.'��1•IEUS � "1? '� a.-..r a.<. a, - ,, \��.rt<,. \ - t 1�,�O.:T.- .,,......: 111tH; \ A 4 Pa:lil•r PYDM116 PEAT r �" Y._.........�Tx� ;' t r.'/ P�,, c ..15 ',�"` • \i, �1 l "mil. �''''!. r",i: � < 'u M�.. � fi D<Py 4n."n __,,. —•, �' ._.�� a t....r . n.•, V F WIIDERNE55 .\ a. r n4.u.� J�'" i T.c �,. ,/ 1� . P1AN.MINGf .s AREA � ^: A,iraln, ni <�• <S :,�r ..:/ �e :: �' j <v� .' « E n°M°r'<a.e' THElii.1 .., �-� Y\Y. MA: luu r 1.� rr'd L•1:4 — -... •� I� STAlF GAM i � M � � r l �' cn. (1 nrs,i n` LTI1.+ AIFRi: `+ � 1 ' a vw.s. �! �r 3 "1 n r., -. , _ =1 •... ^•Oi IT 4 -0 es .yl _y J,t !' �. •vnn s.nx.�i w.o "('I.�: ?.1 . t7/ rv4C�Cjb! �� �.. •" _ i e � nt r1 J r _•v,<y�°«+ °.�ro't ;7` -' :1r •i<. .., s,:.. �. e, /(+ 1 Q: -;n-�\ ( B6 �' 6 t r� swu aOSA n p✓Jti ...:'.':'.j'..... 4u S;: °� qh. ?a E n ». r� fi>cii M1ESfRT:1TfON.' Lo Q`r "i c°�coi y -- �Ei �;, / WEB T� ��' � •w `• II % 4'YYY� C:O ::•:�OD�,r° �'i SANTA ROSH £ LT t. +"..- +.�E "",.''.3 J2All i k [ J IIl / �\`. 1.1lSDRIH 19S 1 li�ys„u �P.. r: S" ...�\ WILDERNESS 'cr -> ., e� i,SEC A anA Prr taro 3: 9 tit' / �4: �� �` <,Ir t •.••1 '4 �� l` f' 'I ! `', +<rif [Itr:.a InCl,n c<.<rv,tbn.i ncrca LANDMARK Plate Project No.: LP08129 Vicinity Map A -1 • l I lyu,•I I c:R r.Or. I I- - C j,"30 "Ue- 5Z _ RE STR•\7+ � \ -�B -2 .Lr1pr[E ^AQt!Itw �l )) I ..I (la (�•,Kln IY•1.O0.1 vxot Ph v7'a vux,�r wn. I Sfr_l: pl�_lS NIKM. I I g..tcc•+�Sp l +i I L J RpEs SHOO VA�IT LC Vi \T SID, tilpt/ SJl "OV1' OAT .Opt EwM 4a t L. eaend kEI Approximate Boring Location (typ) Quatemary Lake Deposits/Alluvium (Younger) 0 65 13Geology Map of California - Santa Ana Sheet (1:250,000) Scale in Feet NDMARK Plate Project No.: LP08129 Site and Exploration Plan A -2 Project Site Wvu B-6 iT� � -.I I'-- I o.n.crw�r_ LEOUN Er OYaO I j � �T[L 4 AApE ! I sss 3f I r Tom: Px5 I PA c�c I I 1 4 = CLOxO 1 i EV voucc ;AN YAl COn I I i ENCLO%O I I J i D; ENCLOSED ItELrtt�:ll 1 I 1.„ .. I s +oQA,-f wA9t I au� I I uus Cw :SOv fNCLOMO —_J a: L_ —! smuzr L Qt -Qat "'RACE L. eaend kEI Approximate Boring Location (typ) Quatemary Lake Deposits/Alluvium (Younger) 0 65 13Geology Map of California - Santa Ana Sheet (1:250,000) Scale in Feet NDMARK Plate Project No.: LP08129 Site and Exploration Plan A -2 i • i i i i ij�ro c i III � �4^ �� •II . ' 1 l� 'r' .:wa. WJ'LvP�." — :. . :c f • ,.y' •n.r '.••�' 'ter. i `•;��V: 5' -:. „•.. :.� ��•. ^� b lA� ter:,;�� I•,;...� Is: - ry -:::: a 1;••i 4i:- rMaD It it Ai Is GbA .i l k GtiA �C : ` `► 0' V Q `' m •.{ J RYA r r. 'Y ••lam 'ii.+ �% ' � ' i. � � F'::�� Ru ` ' La ju to Vi f ,cc • LANDMARK USDA Soil Conservation } Project No.: LP08129 Soil Service Map v � Plate A -3 . m I�,.-�. . � '`1 •' i. ': D� � �: •�' •��; 1'�. ^'�1:.2 ':k erg'^ �.��•J::� • LANDMARK USDA Soil Conservation } Project No.: LP08129 Soil Service Map v � Plate A -3 . m SOIL SURVEY OF Riverside County, California Coachella Valley Area Al Al N W *Nli 4 . . . . . . . . . . . bit! United States Department of Agriculture Soil Conservation Service in cooperation with University of California Agricultural Experiment Station Pg,66 .Soil nnmc and Depth mnp symbol In Bidland: BA-------------•-------------------- Borrow Pits: BP- - - - - -. _. Bull Trail: BtE------------------ - - - - -- 0 -3 3 31 31 -60 Cajon CaD------------------------ 0 -60 Cajon Variant: bD -------------------- 0 -14 14--60 Carri2o: CcC----------------- - - - - -- 0-10 10.39 34 -60 Carsilas: CdC, CdE ------------------ 0 -60 CIB-------------- ------ - -- 0 -10 10 -60 ChC-------- ------- - - - - -- 0 -60 CkB....................... 0-60 Carsitns Vrtrinnt.: Cm6, CME------------ - - - - -- 0 -18 Is Chuckawalla: Co B, CoD .................. 0 -12 12 -15 25 -00 Chuakawalln: CnC, CnE ..... ........... - 0 -12 12 -25 25 -60 Coachella: CPA, CpB ...... ............ CrA....................... CsA----------------------- Flnvaqucnlc: Fa -- ................. Fluveats: Fe---- ------ -- --- -- -- - - - --- 0 -I1 I1 -60 U -M 0 -10 111 -40 40 -60 0_60 0-00 SOIL S U R\/EY 178DA Ie_xlurc Stony anntly loran �andv clnt� lunm_ S:tndY lupin, luam .. . . . ...... . ......... Lonmv .and-------- - - - - -- Sand ------------ Sand, Inntay sand, gravelly sand..._ .. . Stony snnd ............................ Very gravelly coarse sand ............... Very stuny coarse sand ----------------- Gravelly Sand ------------------------- Sand.................................. Gravelly sand ......................... Cobbly s :tad --------------------------- Fine sand ......... .. .. Small, fine .�cuul ------------------------ Weathered bedrock ..................... Very Kravelly andy clay loam_ ...... _ . _ Very gravelly fine s:ttttli loam very cobbly fmc sandy loam, very gr velly Sandy loam. Very gravelly sand, very cobbly sand- Cobbly fine sandy Main . ............. Very gravelh• fine candy loam, veq robbl, finosnndy Ioum, very gravully Sandy loni Very gravelly snnd, very cobbly smut... . Fine: and - -- ------ ------ --- --- -------- S:44,fine-- sand: ........................ Fine sand ............................. Fine Santly loans.------- .-------- - - - - -- Sand, fine sand ........................ . Loamy sand, loamy fine sand-- - - - - -- . - Variablt ---------------- Variable ............... Classif iuttion I- nified AASH'ro S�{ C1. -111,, CL, SN1 -SC, SC CI, -mi„ S1I, S1hSC SIM S \1, SP-Sm S11, P,C1I SP, SP S11 GP SP, SP's1[ SP, 81"'i I 511, SP -SAi SP, SP -.S11 SP, SP -S11 S17 S11, SP -S11 ----------------- CiC, am-GC t,1[, GP -G11 GP, SP, G1P, SW C1I G1[, GP -C1.1 G P, SP, OW, 811' Sill 511, SP -SU S1i S1I, 1f 1, S,11, SP-SM am, S11 -SC A-2, A -4 A -4, A -6 A -2, A -4 A -2 A - 2, A-3 A -f, A -'l, A -3 A -1, A -1, A -3 A -1 A -1 A -1 A -2, A -3 A -1 A -1 A -'l A -2, A -3 A -•L A -1, A -'l A -1 A -1, A-2 A -1, A A -1 A -2 A -'l, A -3 A -2 A -4 A -? .1 -:3 A -2, A -4 d\ dx S -d d1\ d\ d d\ -d El-d1\ U1\ 5 -d r.1 -g d\ d,\ c1 d\ d\ dX dN 11 d1\7 dX d\ d1\ 01 -d CI-9 r -d \i x +�pw x1pltgvld .................. OF-4T OS -UV 001 001 0 OOT 001 0 09-01 g� -01 FS-OL 001 U01 0 - ........ SE -OF. OR -50 o01 001 0 .................. 5£ -5 OS -09 001 001 0 .................. 9f -O7. OS -59 001 001 0 ------------------ 5 -0 SC•51 OS -OE OO -gl• 00 -c S7. -ST OE-c qt-ST Ur.-OE OR-cV 09 -S us -ua OV -0Z t =r -SIC 0V- 0r 09-0Y o£ -sz ........ 5 -0 S£-ST 09-0£ 00-56 SF. -ST Of: -5 !'TS-S1 OL`-Or 00-56 OO -4 �1£-qZ OZ -51 9£ -0E OS -0£ SS -S6 Ot -0 ------- --- -- -- - - -- OE-5 08-0 001 -53 OOT-96 0 . -" ..___....... 9E-OZ US-V9 001 -SL 001 -0S 51 -0 -- -- - - -" . •.. 01-0 o5 -Su OS-V 001 -SS 0£-ST .......... . 01 -0 OS -SF. 9L -0S OOT -SS 0 --- '-- .......•••.. 91 -9 O'- -OS 001 -03 OOf -�G 0 -- - ------ - - - - -' 01-0 OS -SF. 05-05 001 -59 OT -0 _ ... ' • • "' - . - • - • " 01 -0 OS -06 001 -05 001 -00 084, .................. 5 -0 e5 -071 OS-SC 00 of. 01 -0 ......•_ "" ... ..•' 01 -0 01-01• 001 -09 001 -06 OZ -ol .................. 09 -c SL-R 001-OL 001 0 .................. c1-5 UL-UV OUT -C9 001 O .................. 09 -51 9/-'05 001 -03 OOT -SG 0• o£-Sf OL -0£ OS--Ot= SG-09 001 -06 0Fr0 O1• -SF. SS -t>S 00-0! OOT -06 001- Sfi OT-0 Of.-Si OL-SS 001-06 001 -50 OZ -�- 1tsw1 pillbi'1 OOZ Ll Tod L9'6d Pg.68 t 1 1 . Soil name and Depth map symbol SOIL SUR\/EY USDA texture Loamy fine sand____ ______ ___ _____ _ - - - -- In Gilman: AIL Ge8__ _____ _____ _______ ____ 0 -8 Stratified loamy sand to silty clay loam_ -__ 8 -60 GbA,GbB,GcA------------ 0-8 Stratified loamy sand to silty clay loam. _ _ R -00 GdA-------- - - -- -_ - -. 0 -8 'lilt. loam-------------------------------- 8 -40 Stratified loamy sand to silty clay loam_.._ •10 -60 GeA, GIA -------- _......... 0 -8 8 -60 Gravel pits and dumps: GP. Imperial: IeA 11A .................... 0 -00 Ime,' IoCr: Irepperial part ............... Gullied land part., 0 -00 Indio: lP, Ir---------------------- 0-•10 10 -40 Is, It ---------------------- 0 -10 10 -00 Lithic Torripsamments: L R2; Lithic Torripsamments part. 0-1 •1 Rock outcrop part. Al ivle8, M60, Mee ........... 0 -60 Niland: Nag ----------------------- 0--21 21 -60 Nb B-•- ---•- •---•=- .. ---- -- 0-23 l•3 -60 Owstott: O m0.-- -- •-•-•-•-- - -- - -- 0 -10 10 Orz: Omstott part-------------- 0 -10 10 Rock outcrop part. Riverwr,sh: RA. Rock outcrop: RO. RTz• Bock outcrop part. LithiclorripsnmmentcparL 0 -4 4 Rubblo land: RU. Saltoa: Se--------- ----- --- ---- 0-9 11 -(iQ Sb ------------------------ 0 -9 9 -00 SOIL SUR\/EY USDA texture Loamy fine sand____ ______ ___ _____ _ - - - -- SI14 Stratified lonmysand to silty clay loam_.-_ AIL Tine snnd? loam- ---------------- ---- --- AIL, S14 Stratified loamy sand to silty clay loam_ -__ \iL Tine sandy loam_____________ _____ _ _ _ _ __ SIM IM T. Stratified loamy sand to silty clay loam. _ _ od: Silty clay lean, -------------------------- CL 'lilt. loam-------------------------------- llL Stratified loamy sand to silty clay loam_.._ W Silty clay --------- ---- --- _ -- •-•--- - --- Silty cloy-- ---- ----- ---- - - -_ -- Fine sandy loam ------------------------- Very f ins sandy Ion m, silt loam, sandy loam_. Very fine sandy loam___________________ _ Very fine sandy loam, silt loam, sandy loam. Sand, lonmysand,fineeand --------------- Unweathered bodrook____- _ - ___- _____ -_ CH CH S,�•f, \f I. NIL \IL 10L S,-,I, SP -Sl1f Fine sand-- --- ----- -- ------ ------- - ----- SM Sand --------------------------------- ._ Sll, SP -SM Silty clay ------- --- --- ------ -- ---•-- - -- Cf., CH Sand ----------------------------------- SAt SP -3111 Silty clay ------------------------------- CL, CH Coarse sandy loam ----------------------- 0.1 Weathered bedrock____ ______ __ __________ Gravelly fine sandy le an--- -- ------ - - - - -- SIl Weathered bedrotC Sand, loamy sand, fine sand --------------- Unweathered bedrock. Mae sandy loam _- - - - - -. _---------------- Clny, silty e-lay, silty elny loam--------- _ _ _ Silty clay loam ..... ..................... Clay, silty clay, silty clay loam ............ Sm, SP-S.I SIN-1-SC CH, CL CH, CL CH, CL Clnssificst•ioll Unified AASHTO A -2, A-4 A--4 A-4 AA A -7 A -1 A-4 A -7 A -7 A -4 A -4 •l -4 A-4 A -2, A -3 A -2 A -3, A -2 A -7 A -3, A -2 A -7 A-2, A -4 A -2, A -4 A-2, A -3 A-1 A-ti, A -7 A-0, A -7 A-6, A -7 Pg. b9 S<-'::)IL S U R\/EY Percentage passing Fragments sieve number — Liquid Plasticty >3 . limit index inches 4 10 40 200 Pet Pet 0 100 100 70-80 25-50 ------------ - - - - -- NP 0 100 95 -100 80-100 5030 ------------ - - - - -- NP 0 100 95 -100 70 -85 40-55 10 -30 NP -5 0 100 95 -100 80 -100 50-60 ------------ - - - - -- NP 0 100 100 70-85 40-55 20 -30 NP-5 0 100 100 80-100 50-60 0 100 100 95-100 85-95 25 -45 10-20 0 100 95 -100 90 -100 70 -90 20 -30 NP-5 0 100 95 -100 80-100 5030 ------- ----- -- - - -- NP 0 100 100 100 90-95 50-70 25-45 0 100 100 100 90 -95 50 -70 2545 0 95- 100 95 -100 7045 40 -55 15-30 NP -5 0 95 -100 95 -100 80 -100 50-70 1530 NP -5 0 95 -100 95 -100 86 -95 50-65 15 -30 NP -5 0 95 -100 95 -100 80 -100 5040 15 -30 NP -5 0 75 -100 50 -100 50-80 5 -35 ------- ---- --- - -- NP 0 100 80-100 65-80 20-35 ------------ - - - - -- NP 0 00-100 75 -95 50-65 5 -15 ------------ - - - - -- NP 0 100 100 05 -100 90 -96 45 -70 25-46 0 90 -100 75 -100 5035 5-15 ------------ - - - - -- NP 0 100 100 95- 100 90-95 45 -70 25-15 0 100 i00 60-70 30-50 15-25 NP -5 0 7585 65-75 56-70 25-40 15-25 NP-5 0 75400 50-100 50-80 5 -35 ------------------ NP 0 100 100 70-85 40 -50 15 -30 5 -10 0 100 100 90 -100 75 -95 35-00 25 -35 0 I00 100 95-100 85 -95 35-60 15-35 0 100 100 90-100 75 -95 35-60 25-35 ' Pg.70 SO 1 L S U R\/EY Chrssilication Soil name and map symbol Depth USDA texture l:ritfictl !n Sobobn: Sol) --- -- ----- ------ - - - - - -- 0 -13 Cobbly sand ............................ Sl' -S \1 13-60 Very stony sand, very cobbty mind, very GP, SP gravelly sand. Sp E._________________ _ _ _ __. 0 -13 Stonysn nr l ------------ ..---------- - - - - -- GP -011, SP -511 13-00 Yery stony sand, very cobble sand, very GP, SP gravelly Band. Torriorthents: TO 2: Torriorthenla part. 0 -60 V friable. Rock outerop part. Tujun a: TpE--------------- - - - - -- 0 -60 Pine sand ----------------------- - - - - -- Sl'i TrC------------------ - - - - -- 0 -00 Cruvelly loamy mild --------------------- -fine SP -SII, SP TsB .. ................. . .... 0 -00 Loamy ward------------------------- 511.1 AASHTO A -1 A -1 A -1 A -2 A -1 A -1, A -4 dN ------------ - - - - -- 05-09 06-98 001-5L 001-06 0 (IN ------------ - - - - -- 01-0 09-06 91709 00-OL 0 d 1 ------------------ 99-M 9S-99 001-94 001-06 0 dN ------------ - - - - -- S -0 S-0 94-91 09 09-01 9"Z dN ----------------- - 01-S 09-01, 01-09 09-01 09-oz aN - - -- ------ -- --- --- 9-0 99-91 0t-oc W-of Gf-09 dN .................. 01-9 Ot-99 91-09 08-99 ac-09 ooz of 01 Nopul I!Wll - - - -- A11011SVICI ppibil OAU!S NuIssua asuluaDjacl ,kE3/\Z-J(-)S -11<--)S L /-'f3d J. I watl It X. La LS AN 7. apo tm s opy g t e rme Yarmouth, Source Uata: S , IOOO ft Srn1e:1 : VWU Wall;, 13-0 Wtum:11'CS84 Reference: USGS Topographic Map Site Coordinates La Quinta, CA Quadrangle Lat: 33.672N Scale 1:25,000 Long: 116.302W LANDMARK Plate Project No.: LP08129 Topographic Map A-4 r•P •,a GJ /�• •';ily�' p ,. -:.' •lii`: ,\:, ^t � 'dA E is.'��'��.'�At•i `'... Sp r. ,-':�;.. -%�� - �::.:: �,.. : = -: • water Well ���� ..:.. ;;,•; •�,,�� ': ;:;.s. 1y ..� , �, e - tom`•, I 2 '� • - _ ___ 6 ' /� '(� - -._. 'tea i• = °`Q - _"` ,water }.�.;•, _ P- • � � - _ ��.: .. ..111, 1'�`' �� � \•D• `` - • �• t, a ` � +'" .:. ,' � p '. -� 401 =; �: •je'• `�';i iii a 'r �� '��t•.��;. �F ante: -_ :� :r:•± ::': ' ,i�� .`�t •� : • � �i � it � - ?�-:: ='� %' � -. --�., .:r',.- - t`. �. 1` "�9ii �"�j i ' j'.:_ ii;\ {�9_�,; °;J' .itl \ "� �,• / :,J .:� "•�.,,'', ".`,i; -;. 'r ..ap0" :)T _ _ �, ' ��ii•_ d •v,$:� (,n • /:tea ✓ ", /' :y 1. '•,� ,ic'-.L' +'. - r' i �:1 � �' !I�,,i'' I `'' • ,11 ri �- -,\ 1� to _ l l .i ;l —�• /:i I- Win' -.. ,� -• - .��.� `�':♦ � / -'�i �.;; 1. "! �4. i �'•! _ �.j � l�'�\ i ` t r •�� •' '' ':�_• i' /,� -. C ,ill ` : �, ;ii!tr r: I ! •I rrJ \:1 � i -�a :.,; Jli .��� _'' \: 1:,,,.• I, :;�,': r. -1 r: S •. _,:'•;'... .,, - �]]& u. � _ �,' � i9s - fjlJ '' ' vI /('' -f1� ' � �::,�:.: `• _.r ,` k s .�:r _',��1i,: :Li �'•..`,• �`- :" , )l�r` <:� � ` ; .` �^;.,`r..�,�'�:,,'} J�::,, t'; :1: z . _ 'i`I: , \!G 'Gi' ;. _- (a 'J ;` �! `(l :`,.!' • � ;f4e;g= :�,�•° !� �•/ ! ' '':TL ! �. �n \'���I;7- �'.� -. .I ,. e''- `v�,, � �. .SY)hi • ` u _ .�f \,�J�?',J7':�`.�r , -,.f: t I LIMIT ST OF - � ."., - -•1 fi DETAILED STUDY �, a •�`�a�'Jt•� � y�j �'�V. Y � `try • r/.�t.. Y d+•f X y'�f 'l '' �x� i LIMIT OF •.�,- .F4 DETAILED STUDY + ZONE B La attinta t � .�Xi.. •lag. 4' _ i� W. a -V� -1. + , ??x,,, e i � p �. �f ale '+ ?' Z • ,1� � '• a r � r ELEVATION REFERENCE MARKS �* •t r t tl t REFERENCE _ ELEVATION `s , • . MARK (FT. NOVO) DESCRIPTION OF LOCATION r - RM107 47.888 Standard disk, stamped PD-104-7D, set in top of eortttele post, 0.5 ;7 . s , r L "•di mile was of La Quints Post Office on Calla Tampico, 30 feet south y :=!Y• � ;};? ,ro y of the interline. Established by Rirecsidc County Flood Control District, Riverside Count, Swveyots;Offke; Rlws(de County Road -., ,L•' =( Department,Califomia State Deparuoiniof Transportadon, or U.S. Geologies Storey. , RM108 . 39.881 Standard disk, stamped PD•103.70, set in top of concrete Dort, 145 _ feet west'and 30 feet =Ill of the centerline of Intersection of = •Ys. �' _ Avenida Bermudas ad Callc Tampico. Established by Rlxrside [� `�d.;i f: • 's° ' County Flood Control District, Riverside County Sumcyori'Offlcdp li !_,:r -;. ;ii• i - - , Riverside County Road Department, California State Depi'itmenf of Tramportatlen, or U.S. Geological Survey. . C ;.M•X.,; ;Y�.. RM109 43.772 Standard disk, stamped PD- i02 -70, set in top of concrete post, 46 - tp feet north and 315 feet weft of she .rnterlino of lntorscetlan of 50th Avenue and WahhWon Street. Establibhed by RlversWe County Flood Control District, Riverside County Surmyors?UfFiee; }m �• q v f: Riverside County Road Department, California State Departntttif ' of Transportation, or U.S. Geological Surrey. 01z;' t• ;F ''4i =Y#t< RM_tt7 - 272.447 Standard disk, stamped PD- 106.70, set In top of oortctelo post, 30 ;• = feet north of the centerline of Calle Poirero between Avenida rn a yam""- d Iktron and Avenida Vallejo. Established by Rivenrdo Count Flood Control District, Rlvcmldc County SurveyorCQ /fjfs, Rlver- :'cd' <„ti tide County Road Department, California State Department of Transportation, or U.S. Geological Survey. fL • - ' • - �, �� ,� "• �, r� �f1a� Project Site , -1 01f; t r a ' . '. '- . � I Y e ! - #{ �. Reference: Federal Emergency Management Agency (FEMA) t> .� La Quinta, California, Riverside County Community -Panel Number 060245 2270 A , i• a -- - - f ' LANDMARK Plate MProject No.: LP08129 t r Flood Insurance Rate Map (FIRM) A -5 i i i 1• KEY TO MAP 500 -Year Flood Boundary--..------------ - 100 -Year Flood Boundary• zo�� a =— - -- -- Zone Designationss 100 -Year Flood Boundary - -- - -- ZONE:B 500- Year.Flood Boundary •--- ••- -• - -•• Base Hoot[ Elevation Litie 513 - ^-�^^- tUhh Elevation In Feet ** F3asc Flood Elevation in Feet 1EL987) Wlicre Un)forttt Within Zonc4* Elevadon Reference Marl. RM7x Dine D Hbundary --- ------ �- -- Rivet Mile •M1..5 "°Refetriwed to the National Geodetic Vertical Datum of 1929 . *EXPLANATION OF ZONE DESIGNATIONS ZONE EXPLANATION A -Areas of 100 -year flood; base flood elevations and flood hazard factors not determined. AO Areas of 100 -year shallow flooding where 'depths arc between one (1) and three (3) feet; average depths of inundation are shown, but no flood hazard factors are determined. AH Areas of 100 -year shallow flooding where depths are between one (1) and three (3) feet; base flood elevations are shown, but no flood hazard factors are determined. All •A30 Areas of 100 -year flood; base flood .elevations and flood hazard factors determined. A99 Areas of 100 -year flood to be protected by flood protection system under construction; base flood elevations and flood hazard factors not determined. 8 Areas between limits of the 100 -year flood and 500 - year flood; or certain areas st7bject to i00 -year flood- ing with average depths less than one (1) foot or where the contributing drainage area is less than one square mile; or areas protected by levees from the base flood. (Medium shading). C Areas of minimal flooding. (No shading) D ' Areas of undetermined, but possible, flood hazards. V Areas of 100:year coastal flood with velocity (wave action); base flood elevations and flood hazard factors not determined. V1 -V30 Areas of 100 -year coastal flood with velocity (wave action); base *flood elevations and flood hazard factors determined. NOTES TO USER. Certaiii ;,leas not in the special flood hazard areas (zones A and V) may be protected by flood control structures. This mi;if is for flood insurance purposes only; it does not neces- sarily shpw all areas subject to flooding in the community or all planitnctric features outside special flood hazard areas. For adjoining map panels, see separately printed Index To Map RIVERSIDE COUNTY GIS AVENUE 52 I Project Site I!. w m O O• U Z w � 4 4. • LA OUINTA FRANCIS al S Ll �� DpTO.OR 6fRKCgL Cp Appi ox scale ,1:2735 Riverside Count GIS LIQUEFACTION FPARCELS LOW MODERATE CITY BOUNDARY 'IMPORTANT* This information is made available through the Riverside County Geographic Information System. The information is for reference purposes only. It is intended to be used as base level information only and is not intended to replace any recorded documents or other public records. Contact appropriate County Department or Agency if necessary. Reference to recorded documents and public records may be necessary and is advisable. LANDMARK Riverside County Geographic Information System (GIS) Plate Project No.: LP08129 Liquefaction Zones A_g RIVERSIDE COUNTY GIS J l \ AvErtue sz u, Project Site y W 1 o ° U 2 Q W W O !.A QUlNTA FRANCI S HA "pti G IDS_ 1 � Cr; C Appf ox scale ,1035 1` ` X f Riverside County GIS -� 95 Feel J FLOOD PLAIN REVIEW PARCELS CITY BOUNDARY 'IMPORTANT' This information is.made available through the Riverside County Geographic Information System. The information is for reference purposes only. It is intended to be used as base level information only and is not Intended to replace any recorded documents or other public records. Contact appropriate County Department or Agency if necessary. Reference to recorded documents and public records may be necessary and is advisable. LANDMARK Riverside County Geographic Information System (GIS) Plate Project No.: LP08129 Flood Plain Review A -7 RIVERSIDE COUNTY GIS �r AVENUE 52 o Project Site g tY . rc ww o z G u .z ww w a LA�Q(/INTA FRANCIS HACK LI Gy,T� oR r Appi ox scale 1:2735 Riverside County GIS �'- 95 Feet SUBSIDENCE PARCELS I SUSCEPTIBLE CITY BOUNDARY 'IMPORTANT' This information is made available through the Riverside County Geographic Information System. The information is for reference purposes only. It is intended to be used as base level Information only and is not intended to replace any recorded documents or other public records. Contact appropriate County Department or Agency if necessary. Reference to recorded documents and public records may be necessary and is advisable. LANuMARK Riverside Coun Geographic Information System (GIS) Plate Project No.: LP081!9—JI Subsidence A-8 i 1• 1 0 .10 19 CLIENT: City of La Quinta METHOD OF DRILLING: CME 55 w /autohammer PROJECT: Proposed Fire Station & Maintenance Facility - La Quinta, CA DATE OBSERVED: 07/21/08 LOCATION: See Site and Exploration Plan LOGGED BY: T.B.F. LOG OF BORING B -1 Q c 0. SHEET 7 OF 1 Z z 2 z ° f o DESCRIPTION OF MATERIAL q z r ,� U. c4 o v v4i m SURFACE ELEV. +/- 52 feet o= d n Asphalt 3" Base: 4" SILTY SAND (SM): Light brown, damp. 23 5 0 medium dense 8.5 0 . W1111 SANDY SILT (ML): Brown, medium dense, damp, -- fine grained. 10 29 SILTY SAND /SAND (SM/SP): Light brown, medium 4.2 108.0 dense, damp. 15 22 SILTY SAND /SANDY SILT (SM /ML): light brown, 8.3 97.5 39 medium dense, damp. 2 0 86 SANDY SILT (ML): Olive brown, very dense, damp, 5.2 101.6 fine grained. 25 52 dense, humid 1.4 101.0 60 SILTY SAND (SM): Light brown, dense, damp. 3 18 SANDY SILT (ML): Light brown, medium dense, damp, fine grained. 35 24 NR 4 24 43 5 27 SILTY SAND /SAND (SM /SP): Light brown, medium dense, damp. j 50 26 9 End of Boring at 51.5 feet. 55 No groundwater was encountered at the time of drilling. ** Blows not corrected for the presence of gravel, overburden pressure, sampler size or increase drive energy for automatic hammers. Project No: LANDMARK Plate LP08129 B -1 l� 10 1 0 CLIENT: City of La Quinta METHOD OF DRILLING: CME 55 w /autohammer PROJECT: Proposed Fire Station & Maintenance Facility - La Quinta, CA DATE OBSERVED: 07/21/08 LOCATION: See Site and Exploration Plan LOGGED BY: T.B. z LOG OF BORING B -2 W a c SHEET 1 OF 1 y^ a m W � $ DESCRIPTION OF MATERIAL 5 z o" o° SURFACE ELEV. +/_ 53 feet U c 0 � 5 IL d Aspahlt 3" Base: 6" SILTY S ND AND S M/ L: Light ro damp, 12 SANDY SILT (ML): Brown medium dense moist. 17.5 95.5 73 SILTY SAND (SM): Brown, medium dense, damp. 5 18 SANDY SILT (ML): Light brown medium dense moist. 13.3 94.6 SILTY SAND (SM): Light brown, medium dense, damp. 1 SAND (SP)- Light hrm&m mAdhim r1pnRe- damp- R A A SANDY SILT (ML): Light brown, medium dense, .1QR 48 1 damp, fine grained. 10 SILTY SAND (SM): Light brown, medium dense, damp. - 2G-If, SANDY SILT (ML): Light brown, medium dense, damp, 47 fine grained. 25 3 35 -40- End of Boring at 23.5 feet. No groundwater was encountered at the time of drilling. *' Blows not corrected for the presence of gravel, overburden pressure, sampler sae or increase drive energy for automatic hammers. Project No: LANDMARK Plate LP08129 B•2 1 l� Iw CLIENT: City of La Quinta METHOD OF DRILLING: CME 55 w /autohammer PROJECT: Proposed Fire Station & Maintenance Facility - La Quinta, CA DATE OBSERVED: 07/21/08 LOCATION: See Site and Exploration Plan LOGGED BY: T.B. LOG OF BORING B -3 x a '� o a SHEET 1 OF 1 �Z _ W o M 7-W t j ? ! g ° d a DESCRIPTION OF MATERIAL 5 O Q�Q N o J m g SURFACE EIFI/. +/- 54 feet z 2 v a o OIL Ve w j Q -+ N a id H d Asphalt: 4" Base: 6' SILTY SAND (SM): Light brown, damp. 5 18 medium dense 4.4 103.9 21 10 25 7.6 98.0 15 28 SANDY SILT (ML): Light brown, medium dense, moist, 15.1 92.6 64 fine grained. 2 27 damp 7.3 100.9 25 12 80 30 17 SILTY SAND (SM): Light brown, medium dense, damp. 35 40 End of Boring at 31.5 feet. No groundwater was encountered at the time of drilling. Blows not corrected for the presence of gravel, overburden pressure, sampler size or increase drive energy for automatic hammers. _Project No: LANuMARK Plate LP08129 ff "` B -3 1* l� CLIENT: City of La Quinta METHOD OF DRILLING: CME 55 w /autohammer PROJECT: Proposed Fire Station & Maintenance Facility - La Quinta, CA DATE OBSERVED: 07121/0.8 LOCATION: See Site and Exploration Plan LOGGED BY: T.B. LOG OF BORING B-�4 9 F W c 2 LU SHEET 1 OF 1 ° V 1= W y DESCRIPTION OF MATERIAL z Z z o f O m V 2 �z z 4U y o Ui "�' Q � in °d' SURFACE ELEV. +1- 54 feet CL 'L Asphalt 3" Base: 6" :., ., 0 SILTY SAND /SAND (SM /SP): Light brown, humid. 16 medium dense 1.7 95.0 8 5 19 SILTY SAND (SW Light brown medium dense damp. 3.7 94.0 SANDY SILT (ML): Light brown, medium dense, damp, 1 fine grained. 9 SILTY SAND (SM): Light brown, loose, damp. 29 15 13 medium dense 20 125- 30 35 4 End of Boring at 18.5 feet. No groundwater was encountered at the time of drilling. Blows not corrected for the presence of gravel, overburden pressure, sampler size or increase drive energy for automatic hammers. Project No: LANuMARK Plate LP08129 B-4 i .10 CLIENT: City of La Quinta METHOD OF DRILLING: CME 55 w /autohammer PROJECT: Proposed Fire Station & Maintenance Facility - La Quinta, CA DATE OBSERVED: 07/21/08 LOCATION: See Site and Exploration Plan LOGGED BY: T.B. LOG OF BORING B -5 c w E SHEET 1 OF 1 W o = r Y DESCRIPTION OF MATERIAL W o� o c ° �'�' U; CD SURFACE ELEV. +/- 56 feet a Asphalt: 3" Base: 6" SILTY SAND (SM): Light brown, damp. 0 5 10 SILTY SAND/SANDY SILT (SM /ML): Light brown, 13.7 88.9 40 medium dense, moist, fine grained. 1 13 SILTY SAND /SAND (SM /SP): Light brown, medium 7.7 107.4 dense, damp. 15 8 SILTY SAND (SM): Light brown, loose, damp. 36 20 8 SANDY SILT (ML): Light brown, loose, damp, fine grained. 25 30 35 End of Boring at 21.5 feet. No groundwater was encountered at the time of drilling. Blows not corrected for the presence of gravel, overburden pressure, sampler size or increase drive energy for automatic hammers. Project No: LANDMARK Plate LP08129 B-5 i 1 -1 0 . 1* • CLIENT: City of La Quinta METHOD OF DRILLING: CME 65 w /autohammer PROJECT: Proposed Fire Station & Maintenance Facility - La Quinta, CA DATE OBSERVED: 07/21/08 LOCATION: See Site and Exploration Plan LOGGED BY: T.B. Z LOG OF BORING B -6 y o z SHEET 1 OF 1_ 00 Z t ? P n q 1 DESCRIPTION OF MATERIALS Z o y O ° � i< SURFACE ELEV. +/- 55 feet 2 0 } c 04 V� ' 8 a =' ' 0 W oa SILTY SAND (SM): Light brown, moist. 7 loose 11.1 87.9 29 SILTY SAND /SAND (SM /SP): Light brown, loose, damp. 5 16 light brown to yellowish brown, medium dense, 1.8 108.1 humid 10 11 SANDY SILT (ML): Light brown, medium dense, damp. 72 fine grained. 15 12 SILTY SAND (SM): Light brown, medium dense, damp. 20 r 5 3 35 40 End of Boring at 18.5 feet No groundwater was encountered at the time of drilling. Blows not corrected for the presence of gravel, overburden pressure, sampler size or increase drive energy for automatic hammers. Project No: LANDMARK Plate LP08129 B-6 DEFINITION BlovvslR' OF TERMS PRIMARY DIVISIONS 4-10 I SYMBOLS 1030 SECONDARY DIVISIONS 30.50 Gravels Clean o o GW Well graded gravels, gravel -sand mbdures, little or no fines : Gp poorly graded gravels, or gravel-sand mixtures, tittle or no fines Hard More than half gravels Qess then 5°� fines e soi of coarse fraction is Gravel GM Silty gravels, gravel-sand-silt silt mixtures, non plastic fines grained More than half of larger than No. 4 sieved with fines GC Clayey y YgY 9 gravel-sand-clay cta mixtures, plastic fines material Is larger Sands Clean sands (less SW Well graded sands, gravelly sands, little or no fines : }� % "% SP Poorly graded sands or gravelly sands, little or no fines than No. 200 sieve More than half than 5% fines) of coarse fraction Sands SIN Silty sands, sand -silt mixtures, non - plastic fines Is smaller than No. 4 sieve with fines SC Clayey sands, sand -day mixtures, plastic fines Silts and clays ML Inorganic silts, dayey silts with slight plasticity Fine grained soils Liquid limit is ��/ % CL Inorganic clays of low to medium plasticity, gravely, sandy, or lean clays OL Organic silts and organic days of tow plasticity More than half of less than 5096 material is smaller Silts and clays MH Inorganic silts, micaoeous or diatomaceous silty soils, elastie silts Man No. 200 sieve Liquid limit is �� Inorganic days of high plasticity, fat days more than 509'o i% =;• OH Organic days medium to high plasticity, organic sifts Highly organic soils AtVV Peat and other highly organic soils GRAIN SIZES Silts and Clays Sand Gravel Cobbles Boulders Fine Medium Coarse Fme Coarse 200 4 10 4 US Standard Series Slave Sands. Gravels etc. BlovvslR' Very Loose 0.4 Loose 4-10 Medium Dense 1030 Dense 30.50 ll Very Dense Over50 3/4" 3° 12 Clear Square Openings clays 8 Plastic Sflts Strength " Very Soft 0-0.25 0-2 Soft 0.25.0.5 2-4 Finn 0.5 -1.0 4-6 Stiff 1.0 -2.0 8-16 Very Stiff 2.0 -4.0 18-32 Hard Over 4.0 Over 32 Number of blows of 140 lb. hammer falling 30 inches to drive a 2 inch O.D. (13/8 In. I.D.) split spoon (ASTM 01586). Unconfined compressive strength in tons/s f. as determined by laboratory testing or approximated by the Standard Penetration Test (ASTM D1586), Pocket Penetrometer, Torvane, or visual observation. Type of Samples. aRing Sample N Standard Penetration Test I Shelby Tube 0 Bulk (Bag) Sample Drilling Notes. 1. Sampling and Blow Counts Ring Sampler - Number of blows per foot of a 140 lb, hammer falling 30 inches. Standard Penetration Test - Number of blows per foot Shelby Tube - Three (3) Inch nominal diameter tube hydraulically pushed. 2. P. P. = Pocket Penetrometer (tons/s.Q. 3. NR =No recovery. 4. GWTJE = Ground Water Table observed @ specified time. LANDMARK Plate Project No.: LP08129 Key to Logs B -7 a XICINaci v SIEVE ANALYSIS HYDROMETER ANALYSIS Gravel Sand Silt and Clay F2etion Coarse Fl.. kil 1 s� ii rs Coae Medium Fine i i i i i • LANDMARK CONSULTANTS, INC. CLIENT: City of La Quinta PROJECT: Proposed Fire Statioin & Maintenance Facility - La Quinta, CA JOB NO: LP08129 DATE: 08101 /08 EXPANSION INDEX TEST (UBC 29 -2 & ASTM D4829) Compacted Sample Initial Dry Final Volumetric Expansion Location & Moisture Density Moisture Swell Index Expansive Depth (ft) (%) (pco ( %) (%) (EI) Potential B -2 12.6 101.2 22.5 0.3 3 0 -2 Very Low UBC CLASSIFICATION 0 -20 Very Low 20 -50 Low 50 -90 Medium 90 -130 High 130+ Very High Note: " The measured El have been adjusted to the estimated El at 50% saturation in accordance with Section 10.1.2 of ASTM D4829. LANnMAu Expansion Index Plate Project No: LP08129 Test Results C -2 ` |� | ` 0 0 JCOLLAPSE POTENTIAL TEST (ASTM 06333)1 PO JA ter C0144e: J W ed FOU I h 111#6 (Slight)I -12 Silty Sand/Sand (SM/SP) 0.1 10 100 Pressure (ksf) Results of Test: Initial Final Dry Density, pelf. 97.5 103.3 Water Content %: 8.3 22.7 Void Ratio, e: 0.697 0.6021 Saturation, %-. 31 100 LANDMARK Collapse Potential Plate Project No: LP08129 Test Results -3 ' 0 Fa to Ila I 0.1 1 10 100 Pressure (ksf) Results of Test: Initial Final Dry Density, pd: 108.9 114.3 Water Content %: 6.4 16.9 Saturation, %: 33 100 LANnMARK, Geo-Efigineers and Geologists Collapse Potential Plate Project No: LP08129 Test Results I [ C-4 ICOLLAPSE POTENTIAL TEST (ASTIVI D53 2 T P0 0 -2 I Coll e 12 -3 -4 -5 —J d) -T W I ' - . . -6 -7 .8 -9 -10 -12 Silty Sand (SM) B-3 @ 15 ft -13 -14 0.1 1 10 100 Pressure (ksf) Results of Test: Initial Final Dry Density, pcf 92.6 97.5 Water Content, %: 15.1 26.3 Void Ratio, e: 0.786 0.6971 Saturation, %: 51 100 LANnMARK, �i Geo-Engineers and Goic-logists Collapse Potential Plate Project No: LP08129 Test Results C-5 IL ai i i i i i i • 0 145 140 135 130 125 CL C 120 115 110 105 100 L 0 5 Client: City of La Quinta Project-Proposed Fire Station & Maintenance Project No. LP08129 Date: 07/23/08 SUMMARY OF TEST RESULTS Description: Silty Sand (SM) Sample Location: B -1 @ 1 -5 ft Test Method: ASTM D1557A Maximum Dry Density (pcf): 115.5 Optimum Moisture Content ( %): 12.5 10 15 20 Moisture Content ( %) Curves of 100°A saturation for specific gravity equal to: 2.75 2.70 2.65 25 3( LANDMARK Plate Project No: LP08129 Moisture Density Relationship C -6 LANDMARK CONSULTANTS, INC. CLIENT: PROJECT: JOB NO: DIRECT SHEAF SAMPLE LOCATION: SAMPLE DESCRIPTION: City of La Qbinta Proposed Fire Station & Maintenance Facility LP081 29 DATE: 07128108 t TEST - REMOLDED (ASTM D3080) B-1 @ 0-5 fl Silty Sand (SM) Shear Stress vs Rel. Displacement 2.0 � 'II iillil .? T-. I I! I? I! N 1.5 N N 21.0 a) (00.5 0.0.,, 0 5 10 15 Relative Displacement ( %) 4 N 3 Y N co 2 N 1 0 0 ILLns c Specimen: 1 1 2 3 Avg. Moisture Content, %: 12.5 12.5 12.5 12.5 Dry Density, pcf: 104.0 104.0 104.0 104.0 Saturation, %: 56 56 56 Moisture Content, %: 22.4 22.1 22.4 Dry Density, pcf• 103.9 104.4 103.9 Saturation, %: 100 100 100 Normal Stress, ksf: 1.07 1.63 2.19 Peak Shear Stress, ksf: 0.89 1.27 1.57 Residual Shear Stress, ksf. 0.80 1.10 1.47 Deformation Rate, in. /min. 0.010 0.010 0.010 Peak Residual Angle of Internal Friction, deg.: 31 1 31 Cohesion, ksf: 0.24 0.14 DIRECT SHEAR TEST RESULTS - -- I F4 ! — I i - • J i : 1 i j I I �T -� -- I I -i- ! i e Peak Residual i I I 1 I 1 2 3 4 5 6 7 8 Normal Stress (ksf) LANDers MARK Geo-Engine and Geologists Direct Shear Plate Project No: LP08129 Test Results C -7 100 90 so. 70 60 50 40 30 20 10 n LANDMARK GEOTECHNICAL CLIENT: City of La Quinta PROJECT: Proposed Fire Station & Maintenance Facility - La Quinta, CA JOB NO: LP08129 DATE: 07/23/08 Lab No.: 2952 R VALUE TEST (CAL TEST 301) SAMPLE DESCRIPTION: Silty Sand (SM) SAMPLE LOCATION: B -5 @ 0 -5 ft Specimen ID: A B C Moisture Content, W. 11.8% 12.7% 13.611/6 Dry Density, pcf. 114.9 114.6 112.4 Compaction foot pressure, psi: 350 350 350 Specimen Height, in.: 2.48 2.48 2.50 Stabilometer, Ph @ 1000 lb: 28 32 37 Stabilometer, Ph @ 2000 lb: 49 55 62 Displacement: 4.77 5.18 6.13 Expansion pressure, psf. 44 35 26 Exudation pressure, psi: 409 286 155 Equilibrum R Value: 55 49 40 R Value at 300 psi: 50 EXUDATION PRESSURE CHART 0 100 200 300 400 500 Exudation Pressure (psi) LANDMIWK Project No: - LP08129 R Value Test Results 600 700 a00 Plate C -8 I r-� - - -' I I - I I I I___ 0 100 200 300 400 500 Exudation Pressure (psi) LANDMIWK Project No: - LP08129 R Value Test Results 600 700 a00 Plate C -8 LANDMARK CONSULTANTS, INC. CLIENT: City of La Quinta PROJECT: Proposed Fire Station & Maintenance Facility - La Quinta, CA JOB NO: LP08129 DATE: 07 /28/08 CHEMICAL ANALYSES Boring: B-1 Sample Depth, ft: 0 -5 pH: 7.79 Resistivity (ohm -cm): 3,200 Chloride (CI), ppm: 80 Sulfate (SO4), ppm: 105 Normal Grade Steel Normal Grade Steel LANDMARK, Project No: LP08129 Soluble Chlorides Resistivity 0-200 200-700 700-1500 > 1500 1 -1000 1000 -2000 2000 - 10,000 10,000+ Low Moderate Severe Very Severe Very Severe Severe Moderate Low Selected Chemical Analyses Results CalTrans Method 643 643 422 417 Plate C -9 General Guidelines for Soil Corrosivity Material Chemical Amount in Degree of Affected A- eq nt Soil (gp o- Corrsivity Concrete Soluble 0-1000 Low Sulfates 1000-2000 Moderate 2000 -20,000 Severe > 20,000 Very Severe Normal Grade Steel Normal Grade Steel LANDMARK, Project No: LP08129 Soluble Chlorides Resistivity 0-200 200-700 700-1500 > 1500 1 -1000 1000 -2000 2000 - 10,000 10,000+ Low Moderate Severe Very Severe Very Severe Severe Moderate Low Selected Chemical Analyses Results CalTrans Method 643 643 422 417 Plate C -9 Q XICINaddv n � Seismic Settlement Calculation Project Name: Proposed Fire Station & Maintenance Facility - La Quinta, CA Project No.: LP08129 Location: s -i Maximum Credible Earthquake 7.4 Design Ground Motion 0.589 Total Unit Weight 115 pd Nc Water Unit Weight, 62.4 poll 14.2 Oepth to Groundwater 60 ft Hammer Effenclency so Rod Length 3 i Mod. Cal SPT DEPTH THICKNESS Liquefiable O•PRESS N1(60 ) Fine Contact Nlggrp Gmax Shear Strain Gam eff EIS Enc Settlement TOTAL 20 5 5 1 0.29 24.1 23 31 0.193 613 5.66E -04 3.40E -04 3.32E -04 0.00 29 10 5 l 0.58 28.2 9 29 0.385 854 7.26E -04 4.61E -04 4.50E-04 0.00 22 15 5 1 0.86 19.9 39 29 0.578 1043 8.301-04 5.34E -04 5.22E -04 0.01 86 20 5 l 1.15 1 72.8 60 92 1 0.771 1773 3.82E-04 6.10E-05 5.96E-05 0.00 50 25 5 1 1.44 39.9 60 53 0,963 1646 5.95E04 1.85E -04 1.81E-04 0.00 18 30 5 1 1.73 26.8 45 37 1.156 1604 8.01 E-04 3.9113-04 3.72E -04 0.00 24 35 5 1 2.01 33.9 45 46 1.348 1856 6.92E-04 2.57E -04 2.51E-04 0.00 24 40 5 1 2.30 31.7 43 43 1.541 1945 7.04E -04 2.80E-04 2.74&04 0.00 27 45 5 1 2.59 33.7 9 35 1.734 1921 7.71E -04 3.97E -04 3.87E -04 0.00 26 50 5 1 1 2.88 30.8 9 32 1.926 1966 7.59E -04 1 4.35E-04 424E,04 0.00 0.03 REFERENCES (1) Tokimatsu and Seed, 1984, Simplified Procedures for the Evaluation of Settlements in Clean Sands. (2) Seed and Idriss, 1982, Ground Motion and Soil Liquefaction During Earthquakes, EERI Monograph. (3) Youd, Leslie, 1997. Proceeding of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils (4) Pmdel, Daniel, 1998. )GEE, Vol. 124, No. 4, ASCE (5) Seed, et.al., 2003, Recent Advances in Soil Liquefaction Engineering: A Unified and Consistent Framework. University of Califomia, Earthquake Engineering Research Center Report 2003 -06, 71 p. REFERENCES 1 Aran go I. 1996 Ma gni tude Scaling Factors for Liquefaction Soil Evaluations: . A CE Geotechnical Journal, Vol. 122, No. 11. Bartlett, Steven F. and Youd, T. Leslie, 1995, Empirical Prediction of Liquefaction - Induced Lateral Spread: ASCE Geotechnical Journal, Vol. 121, No. 4. Blake, T. F., 2000, FRISKSP - A computer program for the probabilistic estimation of seismic hazard using faults as earthquake sources. Bolt, B. A., 1974, Duration of Strong Motion: Proceedings 5th World Conference on Earthquake Engineering, Rome, Italy, June 1974. Boore, D. M., Joyner, W. B., and Fumal, T. E., 1994, Estimation of response spectra and peak accelerations from western North American earthquakes: U.S. Geological Survey Open File Reports 94-127 and 93 -509. Boore, D. M., Joyner, W. B., and Fumal, T. E., 1997, Empirical Near - Source Attenuation Relationships for Horizontal and Vertical Components of Peak Ground 1 Acceleration, Peak Ground Velocity, and Pseudo - Absolute Acceleration Response Spectra: Seismological Research Letters, Vol. 68, No. 1, p. 154 -179. 1 Bray, J. D., Sancio, R. B., Riemer, M. F. and Durgunoglu, T., (2004) Liquefaction Susceptibility. of Fine - Grained Soils: Proc. 11th Inter. Conf. in Soil Dynamics 1 and Earthquake Engineering and P Inter. Cord. on Earthquake Geotechnical Engineering., Doolin, Kammerer, Nogami, Seed, and Towhata, Eds., Berkeley, CA, Jan. 7 -9, V.1, pp. 655 -662. Building Seismic Safety Council (BSSC), 1991, NEHRP recommended provisions for the development of seismic regulations of new buildings, Parts 1, 2 and Map_ s: FEMA 222, January 1992 California Division of Mines and Geology (CDMG), 1996, California Fault Parameters: available at.bq://www.consrv.ca.gov/dmg/shem/fltindex.html California Division of Mines and Geology (CDMG), 1962, Geologic Map of California — Santa Ana Quadrangle Sheet: California Division of Mines and Geology, Scale 1:250,000. Cao, T., Bryant, W. A., Rowshandel, B., Branum, D., and Wills, C. J., 2003, The revised 2002 California probabilistic seismic hazards maps: California Geological Survey: hM://www.conservation.ca.gov/cgs/rghM/Zsha. Department of Water Resources (DWR), 1964, Coachella Valley Investigation: Department of Water Resources, Bulletin No. 108. I Ellsworth, W. L., 1990, Earthquake History, 1769 -1989 in: The San Andreas Fault System, California: U.S. Geological Survey Professional Paper 1515, 283 p. International Conference of Building Officials (ICBO), 1994, Uniform Building Code, 1994 Edition. International Conference of Building Officials (ICBO), 1997, Uniform Building Code, 1997 Edition. Ishihara, K. (1985), Stability of natural deposits during earthquakes, Proc. 11'' Int. Conf. On Soil Mech. And Found. Engrg., Vol. 1, A. A. Balkema, Rotterdam, The Netherlands, 321 -376. Jennings, C. W., 1994, Fault activity map of California and Adjacent Areas: California Division of Mines and Geology, DMG Geologic Map No. 6. Jones, L. and Hauksson, E., 1994, Review of potential earthquake sources in Southern California: Applied Technology Council, Proceedings of ATC 35 -1. Joyner, W. B. and Boore, D. M., 1988, Measurements, characterization, and prediction of strong ground motion: ASCE Geotechnical Special Pub. No. 20. Mualchin, L. and Jones, A. L., 1992, Peak acceleration from maximum credible earthquakes in California (Rock and Stiff Soil Sites): California Division of Mines and Geology, DMG Open File Report 92 -01. Naeim, F. and Anderson, J. C., 1993, Classification and evaluation of earthquake records for design: Earthquake Engineering Research Institute, NEHRP Report. National Research Council, Committee of Earthquake Engineering, 1985, Liquefaction of Soils during Earthquakes: National Academy Press, Washington, D.C. Norris, Robert M., Robert W., Webb, 1976, Geology of California: University of California, Santa Barbara. Porcella, R. L., Matthiesen, R B., and Maley, R. P., 1982, Strong -motion data recorded in the United States: U.S. Geological Survey Professional Paper 1254, p. 289- 318. 1 Robertson, P. K., 1996, Soil Liquefaction and its evaluation based on SPT and CPT: in unpublished paper presented at 1996 NCEER Liquefaction Workshop 1 40 jSeed, Harry B., Idriss, I. M., and Arango I., 1983, Evaluation of liquefaction potential using field performance data: ASCE Geotechnical Journal, Vol. 109, No. 3. Seed, Harry B., et al, 1985, Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations: ASCE Geotechnical Journal, Vol. 113, No. 8. Sharp, R. V., 1989, Personal communication, USGS, Menlo Park, CA. Stringer, S. L., 1996, EQFAULT.WK4, A computer program for the estimation of deterministic site acceleration. Stringer, S. L. 1996, LIQUEFY.WK4, A computer program for the Empirical Prediction of Earthquake - Induced Liquefaction Potential. Structural Engineers Association of California (SEAOC), 1990, Recommended lateral force requirements and commentary. Tokimatsu, . K. and Seed H. B., 1987, Evaluation of settlements in sands due to earthquake shaking: ASCE Geotechnical Journal, v. 113, no. 8. U.S. Geological Survey (USGS), 1990, The San Andreas Fault System, California, Professional Paper 1515. U.S. Geological Survey (USGS), 1996, National Seismic Hazard Maps: available at http://gidage-cT.usgs.gov Wallace, R. E., 1990, The San Andreas Fault System, California: U.S. Geological Survey Professional Paper 1515, 283 p. Working Group on California Earthquake Probabilities (WGCEP), 1988, Probabilities of large earthquakes occurring in California on the San Andreas Fault: U.S. Geological Survey Open -File Report 88 -398. Working Group on California Earthquake Probabilities (WGCEP), 1992, Future seismic hazards in southern California, Phase I Report: California Division of Mines and Geology. Working Group on California Earthquake Probabilities (WGCEP), 1995, Seismic hazards in southern California, Probable Earthquakes, 1994 -2014, Phase II Report: Southern California Earthquake Center. ' Youd, T. Leslie and Gams, C. T., 1995, Liquefaction induced ground surface disruption: ASCE Geotechnical Journal, Vol. 121, No. 11. LmuMUK' � Leo M1�nglneers�an tlGeolog�s,.ts DBEIMBEISBE Company TEIE'FAX Palm Desert Office Date: May 8, 2009 y C.Pr 3 To: Mr. Bruce Kassler MSA Consulting From: Greg M. Chandra., R. E. gchandra @landmark- cc_.com Subject: Proposed Fire. Station, & aintenance Facilities . Landmark Project_ No. P08129 With referenced to our conve sa.tion regarding the materials for the pavement sections for the subject pro' .ct, it is our understanding that the existing asphalt itiftte rvi e pu veraze and used as base grade materials for the avements of the subiect;ect. We recommend that these materials should be prepared to meet the specification of either Processed Miscellaneous Base or Pulverized Miscellaneous Base of Section 200 -2.5 or 200 -2.8 of the latest GREENBOOK Specification. We also recommend that these materials. will be used as base grade materials for the light traffic areas, such as employee car parking areas. Please do not hesitate to call if you have any 'q'uesti'on or require additional information: 780. N. `ouah St El Centro, C:4 92243;{760)370.3000; 1-ax(760)337 -8300 77 -548 iVildcat Dnvie; Palm Desert, CA 9221 1:1700)300 -06$8; = ax1750)360.0521 ' 1 LANDMARK' . a MBECorrpmy 780 N. 4th Street B Centro, CA 92243 (760) 3703000 (760) 337 -8900 fa( May 4, 2009 77-948 Wildcat Drive Palm Desert, CA 92211 (760) 3600665 Mr. Tom Hartung (760) 360.0521 fax Director of Building and Safety City of La Quinta P.O: Box 1504 La Quinta, CA 92253 Subject: Additional.Information Proposed Fire Station & Maintenance Facility La Quinta, California LCI Project No.: LP08129 Dear Mr. Hartung, As requested by .your engineer, recommendations for Concrete Mixes and Corrosivity, • Section 4.4 second paragraph of the geotechnical investigation report for the subject project, dated August 14, 2008, should be read as follow: A minimum of 2,500 psi concrete Type 11 Portland Cement with a. maximum water /cement ratio of 6.60 (by weight) should be used for concrete in placed in contact with native soil on this project (sitework including streets, sidewalks, driveways, patios and foundations). Please do not hesitate to call if you have any questions or require additional information. t Sincerely Yours, La dM rk Consultants, Inc. oFp,V c G No. C 34432 TI Greg Chan a, P.E., MASCE �� EXRRE.309 -30-09 Princ* al En eer • � � �j' C INt 9L 1 j� ...:.f�... +:.N.j mss`., . �;fi1 ,� `+t�� ..__. Ae_� >.s .. qr...t ..ti. n, .t. .L .,ww?r... �e•v.z i f Y,, - .:,�.wt��;' i�... �v `xry�'.�r• ��. ''w �'• �xYrr .. i '.J; 1r .'; .,« ..:.:'� _. LANDMARK . lil Ali 11 l �• • • .illhe- 12. 2009 \Ir. Brian i \McKinney, P.E_ City of-La Quinta — hUblic Works Department P.O. Box 1501 La Quinta, CA 92247 Subject: Soil Infiltration Testing Proposed 'Fire Station & Mpintenance Facility- La Quints, Californi,l LCI Project No.: LP09055 780 N. 4th Street. El Centro. CA 92243. (760) 370 -3000 (760) 337=8900fax 77 -948 Wildcat Drive Palm Desert; CA 922)'1 (760) 360.0665 (760) 360.0521 fax Reference: Geotechnical Investigation Report for the project site; prepared by Land\mlark Consultants,.i.nc., elated April 14, 2008. DUic VIr. McKinney: • As requested, we have conducted soil infiltration testing for the proposed storm- �•vater i-etentio►1 basin(s) located on Avenue 52, west of Washington Street, in La. Quinta, California. The proposed systein. will consist of storm -water retention basin(s) for the proposed fire station and maintenance facility. Site Conditions The project site is irregular shaped in plan view, 'elongated in the north- sovali: direction, is relatively flat - lying, and. consists o1' approximately 4- acres; Tile site is currently an existing city maintenance yard and :fire station. Several. portable buildings, metal. storage conwiners, and fire /maintenance equipment and vehicles are located throughout the southern.,and northwestern portions of the site. .Landscape vegetation, consisting of trees, grasses, and sinall and large - bushes are located along the margins of the site. Several chain -link fences separate and. divide the souther)! portion of the site. Frances. Hack. Lane, a paved 2 -1ane .roachvay, travels in a(! east- west direction across the southern portion of tale site. A. block wall separates the site froin.the •.roq. -d . F . l r . . • - 1?roposed Fire Station R: Maintenance facility —La Quinnta, CA LCI Report No. Li?00055 adjacent properties to the east. The. project site is bounded by Avenue 52, a paned 4 -lane roadway, on the no.rtll. Adjacent properties. are flat - lying and are approximately at the same elevation wvith this site. Coilunercial businesses. are located aG`oss Avenue 52 to the north. , l'ritr Burns City Park, is located to the west and Traditions Country Club is located to the east and. south. Single family residences are located further to the west and northwest: 71110, All, A:me6can Canal is. located approximately 2'/ miles to the east of the project site. The project site. Kies aran elevation between approximately 50. and 56 feet above mean sea level (AMSL) hi the Coachella Valley. region of the California low desert..A inual rainfall. in this arid region is less: than 4 inches per year with :four months. of average sunihiertime temperatures above 100 Winter teiilperatuecs.are mild, seldom reaching -freezing. Gcolugic Setting The project site is located in. the Coachella 'Valley portion of the Salton Trough p.hystogi 1pllic province. The Salton Trough is a .geolggic structural depression resulting from large scale regional Faulting. The trough is bounded on the northeast by the San Andreas :Fault anti Chocolate Mountains and the southwest by the Peni»sular Range and faults of the. San Jacinto Fault Zone. The Salton. Trough. represents the northward extension oi' the Gulf of California, containing. both marine and:.non- matrine sediments since the Miocene Lpoeh. Tectonic :activity that i:orined the trough continues at a }nigh rate as. evidenced by deformed young :sedinnentary deposits and high levels: of seismicity. The surrounding regional. geology .includes the Peninsular .Ranges. (Santa Rosa and San Jacinto Mornntahis) to the south and west, the Salton Basin to the southeast, and. the Transverse Ranges (Little San'Bernardino and. Oi?ocopia Mountains) W the north and.east. The Coachella Valley is underlain by IIUnCIPe(Is of feet to several 41101.1sai.id feet of 'Quaternary fluvial, lacustrine, and acolian soil deposits. Landmark Consultants, Inc. Paje 2 .Proposed Dire Station. & Maintenance facility — La Qui.nta, CA LO Report No. LP0905.5 • The soittheasteril part of the Coachella Valley Lies below sea level. 'I m the geologic past, the area was submerged' by ancient Lake Cahailla. .Calcareous tufa cleposits may be observed along the . ancient shoreline as high as elevation. 45 feet above Mean Sea Level (AMSL) along the Santa Rosa Mountains from La Quinta sortth\warel. Lacustr:ine (lake bed) cleposits comprise the subsurface soils over i»uch of the eastern Coachella Valley with alluvial outwash along, the flanks of the valley. Field Exploration Subsurface exploration was performed on June 4, 2009 using a backlloe to excavate t\wo (2) infiltration test pits to a depth of four (4) .:feet below the existing ground. surface. The approximate Inflltratlol.l locations \were established in the field and plotted on the site neap by sighting to discernable site -I:eattu,es. A staff geologist. observed the :operati.ons:.and visua Hy- classified the soil encountered in the. i.pf.ltration test hits i.n accordance \vith'the Unified Soil Classification System. A previous geotechnical investi.gatio.il conducted by Laitdtvlaik. Consultants,. Inc. on. July 21, 2008 for the project site consisted of drilling six (6) test borings to depths of 18.5 to 5.1.5 fleet below the existing grouuel surface usinga Civil 5.5 chill rig. Boriog B -1, the closest bolting to the infiltration Locations, \vas used i.n this report to show the :subsurface soil strata. The boring and in:fil.tration locations are shown on the Site and.Exploration. Plan (Plate.A -2).. The subsurface log is presented on Plate .I3 -1. Hi Appendix B. A key to the log symbols is presented, on Plate B -2. "File .stratification lines sliowr► oti the subsurface log represent the approximate boundaries between the vaaious. strata. However, the transition from one stratum to another may be gradual over some range of depth. • Landmark Consulttmts, Inc. Page 3 Y 1� Proposed Fire,Station & \ plain .tenance.Facility -La Quinta, CA LCI.ReportNo. LP09055 Subsurfice'SoiIs Soils encountered during the time of field explorations conducted on July 21.. 2Q0$ and Rine .4, 9-009, consists primarily of silty sand with. sandy silt. layers encountered at a depth of approximately 24 feet below the existing ground surface. The .near surface soils at the project site are non - expansive in nature. The subsurface log (Plate .13 -1) depicts the stratigraphic relationships of the various.soil types. Groatidwater GI'oUnd \water was'not encountered in. the .infiluration test pits. chn�i.ng the time of exjhloration. on June 4, 2009. ,according to the Coachella_ Valley Water District .(CV W'D) readi.ngs of groundwater levels. from nearby wells, groundwater is located at a depth between approximately .175 and 1.83 feet below the groumd sti111ce iii the viehi:it)% of the project site. There is uncertainty in the accuracy of short -term water level measu.rements,, particularly in :fine- graitied' soil. Groundwater levels may llactuate Nwith precipitation, irrigation of adjacent properties, drainage; atid.site grading: The groundvvater.level noted should not be interpreted to represent nit accut`ate or permanent condition. Based .on the regional topography, groundwater flow is assumed to be generally towards the northeast within the site area. Flow directions may also vary locally in th.e vic.i.nity of the site. 'Historic groundwater records in the vicinity of the project site indicate that groundwater .Iias fluctuated between 60 anti 105 feet below the ground surface within the past 70 years according to a report "Coachella Valley hivest.igation" conducted by the Departhient of Water Resources, published July `1964. Landmark Consultants; Inc: Rage 4 i ,. ;�. • • r1 L.J Proposed hire Station R Maintenance FaciIit), — IA Quillta, CA :l CI .Report loo. LP09055 Infiltration Tests for Retention Basin(s) infiltration. tests for storm -water retention. basin(s) was perfol?iled on June 4, 2009 at this site, as showm on. Plate A -2. These tests. were performed using the .double -ring infiltrometer test method (ASTM D33$5).. This test method consisted Of driving..two. riligs, one inside the other, into the bottom 6f the excavated test pits. The outer ring, was placed 6 inches below the bottom of he excavated test pits and the inner ring was placed 4 inches below the bottom. of flee excavated :test hits. Graduated cylinders attached to Hoses were placed on the ground surface, above the test pits. The hoses were run 6.0111 the graduated cylinders to the inner. ring and annular space (the space between the inner and outer l'ing). Two constant level float valves were attached to the end of the hoses of the graduated cylinders hi order to help maintain a constant water level in. the Inner .ring and anllt11i11- space. Tile inner ring and lll,llLllal' space were then filled w+lth 4 inches. of water. The .graduated cylinders were filled with water up to the 17^ inch mark. The tests were run by maintahlnlg a constant water level of .4 inches Ill the ulnel, ruig and annular space while controlling the water flow using the float valves and reading the amomit the water level drops in the graduated cylinders,. This is the amount of water added to the .system to maintain a constant water level of 4 inches. The anlotult the water level drops in the graduated cylinders, for the inner ring and alundar space, is then 'recorded. The volume of water added to. tile inner ring, to .maintain the water level constant, is the measure of the volume of Liquid that infiltrates the soil. Tile tests were run at different tim* intervals for 360 minutes or 6 holll's. East Side .Retention Basin Taking the readings fi-om the inner ring, the test results indicate that the stabilised infiltration rate in the .soil raliges from 0.6 to. 9.0 inches . per hour or 0.4 to 5.'61. gallons per hour per square, foot. A soil infiltration rate of 0.6 inches per hour or 0.4 gallons per horny per square foot may be used for the retention basin design. Landmark. Colisultahis, tic. Page ,5 VA • • .Proposed l?ire- Station &'Maintenance FaciI4y — ILa Quinta; CA. L C1 Report No. (.1:'09055 West Side Retention Basin Taking the readings ft•om tlxe inner ring; .the. test; results indicate that the stabilised i.nfitration rate in the soil ranges from 1 5.4 to 21.0 inches per liou,r o.r 9:6 to 13.1 gallons per ho.itr per .square foot. A soil infiltration rate of 1.5,4 it.tche's pert otir or 9.6 gallons per ,hour per square foot may be used for the retention basin design. The fiield test results are summarized with the infiltration. rate calculations: and plots of the infiltration rate in gallons per-Irons her square foot versus, total. elapsed time n Appendix C of this report. We appreciate the opportunity to Pro'Vide. 01.117 prbfcssion�l scIT ices I:f you :hake any.c uestions or conitnents regarding 01.11. 6ndiugs;.please call our office at (760)3'60 -0665. Respectfully Submitted, LinrrlMark consn/trnrts, h1c. Greg. Princi Attac ra, P.E , i\ ASCE Pzvr. La �_ oC No. C 34432 a EXPIRES.09 30 09: CIVIL nents: Appendix A: Vicinity and Site Maps Apliendix 13: Soil Boring Log and Soil Key Appendi .C: Soil 'Infiltration Test ReSL11 N Landmark: Consultants, Inc. Page 6 .k c.SS. ,�,� �.IMr'�, .y.y F: .v .,. � ��l�ta±.+ a+., ..yt' -xi:� f ^x .}.o , ry,A .1�..t:.M���� F•^y '�rr,.!.• t.. . •� j .� - .. . � W] West Retention Basin Project Site Le end -- - -� - -- - -_._� = Approximate Boring Location (typ) - 07 -21 -08 f Q Approximate Infiltration Test Location (typ) 06 -04 -09 DMA ,II LANRK., Geo- Engineers and Geologists East Retention Basin 0' - 65 .130 Scale in Feet Plate Project No:.:, LP09055 Site and Exploration Plan -2 _ -.ry , it , , r.,. .�.L. •:w w,v ...NC- ,+,r.:+ .. x:e.Mi.�.,. u:_,.f.,W3w -- ..4.a... �, S>,ee'b' i^M'k;i: Y.."" ...,t.a.4 !'st.� Ywi "ait..,a �s i�+ esg`;; .' ,. !�i .< �•rF'1., v�:'s{i. �` s.�.,ji:.�G. • 0 • CLIENT: City of La Quinta METHOD OF DRILLING: CME 55 w/autoha•mmer PROJECT: Proposed Fire Station & Maintenance Facility - La,Quinta, CA DATE OBSERVED: 07121/08 -OCATION: See Site and Exploration Plan _ LOGGED BY: T.,B. F. LL LOG OF BORING NG B-1 o a '0 Z . 0 Ui SHEET 1 OF 1 D :Z a 0 W W '- LU 0. bc ; DESCRIPTION 0 F MATERIAL IL - Lu Z 9 �-- 0 0 d 2 0 U J 0� 0 00 0. SURFACE ELEV. +/- 52 feet : t) Z L) 0 cc Z 0 a (L M . .. . ........ Asphalt: 3" Base: 4" SILTY SAND (SM): Light brown, damp. 23 5-1 20 medium dense 8.5 104.2 j - 2 9 SILTY SAND/SAND (SM/SP): Light brown, medium 4.2 108.0 dense, damp. 15i 22 22 SILTY SAND (SM): light brown, medium dense, 8.3 97.5, 39 damp, fine grained. -20i I 86 olive brown, very dense 5.2 101.6, 25-1 J111111rWi 52 SANDY SILT (ML)- Olive brown, dense, damp. 1.4 101.0• 60 1 (L--s' SILTY SAND (SM): Light brown, dense, damp. 30i I 18 SANDY SILT (ML)+. Light brown, medium dense,, damp, fine grained. 35i i 24 NR -40-11. N! 24 VERY SILTY SAND (SM)* Light brown, medium dense, 43 damp, fine grained. 45-1 27 SILTY SAND /SAND. (SMISP): Light brown, medium dense, damp. 56i 26 End of Boring at 51.6 feet. 55-1 No groundwater was encountered at the time of drilling. Blows not corrected for the presence of gravel, overburden pressure, -sampler size or increase drive energy for automatic hammers.. Project No: LA�� MARK Plate LP09065- r• ,�: d:+t.sV'waR''..zr.,.,' -.. Ft`i ±�.'o.. ,� �ae%•�:..�r�G.r ....^r:' . t... , 3.�tr:wci;rtY t'id� .ti k;.+rti -: i, Y�• r•. ��+e, _ x� _e I6i •.: r`b _wx� r"�`�rF k4., rill• -S' �,. +i::y 3h `�xF r{:', .aM � n �. �A ,,: r in+ is ,w...`',"«s tw'1'r,•e'ibi.:f.�.t�w. �. �.: nx DEFINITION OF TERMS PRIMARY.DIV.ISIONS SYMBOLSI SECONDARY DIVISIONS I { l Gravels i!;;o0•.11 Clean' ; GV41 Well grafed.yravels, gravehsaiid iniztures little or no fines, I t , Y S1 i .More then half ravels (less;thali il g of fines) a a:.. .5% -. • �� GP Poorly graded. gravels, or gfavel•sand °mixtures, little or no fines -- - `r „^ ;coarse Coarse grained'soils7 fraction jjj' - - -J- rq� is GravellI ... -- _- ............._. _ - _ GM 'Silty gravels gravetsand -sift mixtures; non plastic fines f u. Mor&than Half of larger than No wilh•fines {r9 ✓a 4 sieve iii! __.... GC •Clayey.graveis, gravel -sand -clay rnixtiires .plastic rives material is larger Sands �LClean sands ((essli `. { i SW'. Well graded sands, gravelly sands little or no fines - - _ �• r than 5% fines) 11t '�1l SP Poorly or little fines than No. 200 sieve More than half•�_�. gPade-d`sands gravelly sands; or no °f�acc°hone 1 ' l� SM , Silty sands,, sand -sill mixtures, non - plastic fines f - is smaller.than with fines ' 1 /. ' - SC Clayey sands sand -clay mixtures. p lastic fines t H ,f No. 4 sieve _.... x slits and.clays ML-' In organic sills; clayey sills with slightplasliciry- . ) f +� CL i Inorganic clays of lots to medium plaslicity grave'ly.•sandy_or lean clays ' fine grained soils• , Llquld limit is _ I•I•�•Ii�0L Organic silts and organic clays of low plasticity , . , less Ilian 50% o More than hall of 3 it MH 1+ Inor anlc silts :micaceous or'dialomaceous silt soils; elaslic sills ! malerlal is smaller Slits and clays: 9 y__,___, _ rr -_ _ _•_ - -_ i `' ' � � i, CH t Inorganic clays of high plasticity, fat clays than No. 200: sieve tiquid'limil is . F � j• niore, than .50 %: (. OH Organic clays.of :tedium to high plasticity organic.silts Highly organic soils PT Peat and other highly organic soils GRAIN SIZES .. 'Boulders. c : t an �c Sills and Clays Sand Gravel I A Cobbles t Fine Medium , _ Coarse Fine Coarse . Jt ' -�i r 200 4 10' 4: 314" 3., 12,•. US Standard Series Sieve: Clear:Square Openings �. .1' Clays. &:Plastic Silts` t Strength ! Sands, Gravels; etc.'i =810 is)ft. ' �! Very Sol 0 -0:25 r 0 -2 1^ __...__.._ ry l ' r Very Loose 0- l 1r Soft 0..25-0 ' 5 2 -4,, • i { , Loose 4 410 Firni. 0:5 -1 -. T 4 -8 ) yr Medium Dense i!r 10.30 Stiff 3 1.0 -2.0 ♦ 8 =16 A a Dense �` 30 =50 Very•Sliff 1'r - 2.0-4.6 { 16 -32 4,1 Very Dense �Over'50 r Hard • Over 4.0 ! Over•32 F ' t Number,of blows of 140 lb. hammer falling 30 inches to drive a 2 inch O.D. (1 318'in. I.D:) splitspoon (ASTM D.1586). " Unconfined compressive. strength in tons /s:L as delermined by laboratory testing.or.approximaled by the Standard t Penetration Test (ASTM 01586), Pocket.Penetrometer, Torvane, or visual observation. Type of,Samples: •Ring.Sample L�1 Standard PenelratiorrTest. I Shelby ;Tube 0 Bulk (Bag) Sample, Drilling Notes, t )..Sampling andbB 6w.Counts ,. Ring Sampler- Number ofblows per foot of .a 140 Ib.'hammerfalling 30 inches. Standard Penetration T.eM, Number of blows per'fooL • ; w Shelby Tube. - Three (3). inch nominal diameter tube hydraulically pushed. y: 2. P..P..= Pocket Penetrometer (tonsrs.l.), r 3: NR = Norecovery: 1 t 4., GWT Ground Water Table observed @ specified time. �, Plate . Project No.! LP09055 Key to Logs B -2` ,�: d:+t.sV'waR''..zr.,.,' -.. Ft`i ±�.'o.. ,� �ae%•�:..�r�G.r ....^r:' . t... , 3.�tr:wci;rtY t'id� .ti k;.+rti -: i, Y�• r•. ��+e, _ x� _e I6i •.: r`b _wx� r"�`�rF k4., rill• -S' �,. +i::y 3h `�xF r{:', .aM � n �. �A ,,: r in+ is ,w...`',"«s tw'1'r,•e'ibi.:f.�.t�w. �. �.: nx °�. ,f , .���`, c, ... -r. ,.�i. w .i �., ae,i k��t.7 °y. A .' ;f� t t�. �E" ..�1� .. � ., ai , �. ° LANDMARK CONSULTANTS, Inc. INFILTRATION RATE OF SOILS IN FIELD USING DOUBLE -RING INFILTROMETER ASTM D3385' CLIENT: City of La Ou(nfa PROJECT: Proposed Fire Station and Maintenance Facility • La Quinta. CA J08 No.: LP09055 DATE TESTED: 61412009 TEST HOLE No.: 1 -1 (1 ) Outer Ring Diam: 215 In (3)= ¶'((1)!2]' Outer Ring Area.: 433.74. In' (2) Inner Ring Oiam.: 11.75 In (4)--j•[(2) /2]' Inner Ring Area.: 108.43 In' (5) = (3d) Anular. Space Area: 325.30 In' SOIL TYPE: Very Silly Sand (SM) LIQUID USED: Tap Water GROUND SURFACE TEMPATURE ( °F): 80 TESTED 8Y: Emie. TOTAL DEPTH OF TEST HOLE (ft):.4 • (6) Liquid Container Dlam (Outer Ring): 6.00 In (6a) liquid Contalner Olam (inner Ring); 3.50 In (7ji1Tj(6u2)' Liquid Contalnor Area: 28.27 In' Liquid Containor Area: 9.62 W 111'- 7,48 gal 1 ft=121n Inner Ring Anular Space Time Initial Fiuli! Final Fluid Change in water Date Initial Time Final Time Interval (min) Reading in Reading. In level In Infiltration Ratc Inlhr Infiltration Rate gal/hr %s/ In Fluid Reading In Final Fluid Reading In Change In Watea Level In Infiltration Rate Inlhr - Infiltration Rate .gallhrist .Liquid Temperature „F 8 9 10 -= 8 9 11 12 13 - 111H12 114)= 131 10160 15 14 12.0'7.48- 16 (17) 118) =16 17 (19 ) - (18 10 60 120) °((19)112.0)'7.48 6/412009 10:03 10:18. 15 17.75 15.50 2.25. 9.0 , 5.6. 17.75 65.50 2.25 9.0 5:6. 81 . 10:20 10:35 15 17.75 17.50 '0.25 1.0 0.6 117;75- 17.38 :0.38 1.5. 0.9 84' 10:37 16:52 15 17.75 17.63. 0.13 0.5 0.3 17:75 17.38 0.38 i.5. jf I 0.9 66 10:55 100 .15 17;75 17.50 0.25- 1,0. 0.6 17.75 17.38 .0.38 1;5 0,9 88 11:11 11 :41 30 17.75: 17.13 0.63 1.3 0.8 17_75 16.88 0.88 1.8 1:1 88 11:42 12:12 30 17.75 17.38 0.38 0:8 0.5 17,75 17.38 0.38 0.8 0.5. 90 12:13 13:13 60 17.75. 16.75 1.00 1,0 6.6 17.75 16.88 0.88 0.9 0.5 95 13:14 14:14 60 17.75 17.13 0.63 0.6: 0.4 17.75 96.88 0,88 0.9 0.5 95 14 :15 15:15 60 17.75 16.88 0.88 0.9 0.5 17.75 16.98 0.88 6.9 0.5 95 15:16' 16:16 60 17,75 16.88 .0.88 0.9 0,5 17,75 1 16.75 1.00 1.0 0.6 95 LanclMark Consultants, Inc. C =1. .1 Infiltration 'I 6.000 5.000 N 4.000 = . i t f4, C R 3.000 it C o. w 2.000 Inner. Ring Annular Space MIXING 15 65 115 165 215 265. 315 .365 415 Elapsed Time in min s. 4: " LANDMARK CONSULTANTS, Inc. INFILTRATION RATE OF SOILS IN FIELD USING DOUBLE -RING INFILTROMETER ASTM D3385 CLIENT: City of La Ouinta SOIL TYPE: Silty Sand (SM) PROJECT: Proposed Fire Station and Maintenance Facility . La Ouinta. CA LIQUID USED: Tap Water JOB No.: LP09055 GROUND SURFACE TEMPATURE ( "F): 72 DATE TESTED: 6(412009 TESTED BY: Ernio TEST HOLE No.: 0 TOTAL.DEPTH OF TEST HOLE (ft): a: (1) Outer Ring'Diam: 23.5 In (3)=¶ [(4) /2]' Outer Ring 433.74 In' (6) Liquid Container Diam (Outer Ring): 6,00 In (6a) Iiquid'Contatnor Oiam (Inner Ring): (2) Inner Ring.Diam.: 11.75 In (4)-- rI(2)12]' Inner Ring 108.43 In' (7)19'((6p2]' Liquid Container Area: 28.27 to (7a)�11 [(BpzJ' Liquid Conuinor Aroa: (5) _ (34) Anular Space 325.30 1n' " 9 Tt °= 7.4&gai 1 ft -121n Inner Ring Anular Space 3;50 In 9:62 In' ' Date " Initial Time Final Time Time Interval (min) tnitlal Fluid Reading In Final Fluid Reading In Change In water idgcl In Infiltration. Rate In/hr Infiltration Rate gal /hr /at Initial Fluid - Reading In: Final Fluid Reading in Change In Lcvcl In Infiltration Rate Infiltration In/hr Infiltration Rate gaUhrlsf Liquid Temperature .�F 8 9 10 (8 )40 .11 .12 13 =11 72 (ta. i1rliolro0 15 [(14y12.0]'7.48 76 (17 (te) 16 17) Ita) - hey toyao (20)x, ((t9y1201'7.48 6/412009 '11:17. 11:32 15 17.75 12.50 5.25 21.0 13:1 17.75 12.38 5.38 21.5 13.4 86 11:33 71:x8 t5 17.75 72.63 5..13: 20.5 73.8 17.75 .12.50 5.25 27.0 53,7. 88 ' 11:49. 12:04 15 17:75' 13.25 4.50 18:0= 11.2 17.15 13.38 4.38. 57.5 I 70:9 -89 12:05 12:20 15 17.75 13.38 4.38 77.5 10:9 17.75 13.50 4.25 i7.0 10i5 90 12:27- 12:51 30 .17,75 10.00 7,75. 75.5 9.7 17.75 10.13 7.63 15.3 9.5 90 12:52 13:22 30 17.75 9.25 8.50- 47,0 50,6 17.75 9:38 8.38 16.8 70.4 90 13:23 74:23 60 17.75 1.25 16,50 16:5 70.3 17.75 1.00 16:75 16.8 10.4. 95 14:24 75:24 Ii0 77.75 7.25 16.50 16:5 10.3 17,75 t;38 tG38 16.4 10.2 95 15:25 16:25 60 17.75 0.75 17.00 1 7.0 70.6' 17,75 .0.50 77.25 I j 17,3 10:8 :95 16:26 17:26 60 77.75 2:38 15.38 75.4 LandMark Coinsultants, Inc. C -2 9.6 17.75 2.00 75.75 75.8 9.8 93 I • Infiltratibn 2 -o- -Inner Ring, --E--. Annular Space; tt in.uuu J 14.000 12.000. ;:. w. 10.00.0 8.000 ea 6.000 4.000 2.000' x 0.000 -o- -Inner Ring, --E--. Annular Space; tt ' Asph. / ✓ `"'�.- ..-- _�,.�„ 1 RETENTION BASIN I WSEloo =46.32 \ BOTTOM =43.50 O O Y DURATION 1 -HOUR 3 -HOUR jN d3n {I i Wl dt { I I� LAND USE AREA I I © STREETS /HARDSCAPE 3.35 AC i 3 "' I TM �p Y % "✓ C d,.' I R4 .w� f f r 3 S-+ G d k ±r•!f"s �a t�,✓ Trr ar��? , i O I p I� bd i Y f I II.- d 1J :EV DEPTH (ft) 1 2.71 w x 1.99 EI I 3 I LANDSCAPING W W W W �I ; I oMHl I� STREETS /HARDSCAPE` I ° 1 IL O 3�•. ,. %(... :. �n� y.::ip .. � ".R�'£Ci �4Sti yz7 kt G'� t��n .. „���n���� Y DURATION 1 -HOUR 3 -HOUR jN d3n {I i Wl dt { I I� LAND USE AREA I I © STREETS /HARDSCAPE 3.35 AC i 3 "' I TM �p Y % "✓ C d,.' I R4 .w� f f r 3 S-+ G d k ±r•!f"s �a t�,✓ Trr ar��? , i O I p I� bd i Y f I II.- d 1J :EV DEPTH (ft) 1 2.71 w x 1.99 EI I 3 I LANDSCAPING W W W W �I ; I oMHl I� STREETS /HARDSCAPE` I ° 1 IL FRANCIS HACK LANE ETENTION BASIN WSEloo =46.32 oC 0 ll/ 11' lli i i i i i it i it Asph. DURATION 1 -HOUR 3 -HOUR �I {I i LAND USE SUMMARY 1.91 { I I� LAND USE AREA I I © STREETS /HARDSCAPE 3.35 AC (( I LANDSCAPING /OPEN SPACE 0.73 AC I I� RETENTION BASINS 0.08 AC FACTOR OF SAFETY I I TOTAL AREA 4.16 AC i O I p I� SUB -AREA LEGEND 46.32 I II.- 45.49 DEPTH (ft) 1 2.71 w { 1.99 EI I 3 I LANDSCAPING W W W W �I ; I oMHl I� STREETS /HARDSCAPE` I ° 1 IL O �I p II I I I S I i) I I I II I I �I I� STORM EVENT SUMMARY DEVELOPED CONDITION DURATION 1 -HOUR 3 -HOUR 6 -HOUR 24 -HOUR EFFECTIVE RAIN (in) 1.91 2.13 2.08 2.50 FLOOD VOLUME (cu -ft (acre -ft) 28,832 0.66 32,133 0.74 31,465 1 0.72 37,819 0.87 REQUIRED STORAGE (cu -ft (acre -ft 27,800 0.64 29,148 0.67 25,931 0.60 18,460 0.42 STORAGE PROVIDED (cu -ft ) (acre -ft ) 31,488 0.72 FACTOR OF SAFETY 1.13 1.08 1.21 1.71 MAXIMUM WSEL (ft) 46.21 46.32 46.07 45.49 DEPTH (ft) 1 2.71 2.82 2.57 1.99 1 0.6 IN /HR PERCOLATION RATE USED i i iP COMBINED BASIN VOLUME SUMMARY CONTOUR ELEVATION (ft) BASIN DEPTH (ft) CONTOUR AREA (sf) VOLUME INCREMENTAL (cu -ft) VOLUME TOTAL (cu -ft) VOLUME TOTAL (acre -ft) 43.5 0 7,059 0 0 0.00 44.5 1 9,231 8,145 8,145 0.19 45.5 2 11,620 10,426 18,571 0.43 46.5 3 14,214 12,917 31,488 0.72 3:1 SIDE SLOPES ( I� ( I I I -r OE OBS. CBS. mow•_ '- _//� 4 ( `�, OF I� Asph. A 7-0 CBS . { i - - - - _ Or,, ` ---- 0 FIRE STATION NO. 32 AND CORPORATE YARD SYNTHETIC UNIT HYDROGRAPH EXHIBIT 0' 30' 60' 90' 120' SCALE 1"=30' JULY 2, 2009 d d) 0 U N 0 V 0 N 0 N N Q LEGEND DESERT CLUB DRIVE ---� DRAINAGE DIRECTION o r Aspn 1 ` oes. TRIBUTARY DRAINAGE AREA BOUNDARY rJp B 2 TRIBUTARY DRAINAGE AREA ID - - --. ��� 1 47.6 L -556 RUN -OFF LENGTH CAL.LE .4t _ R �� -- , 4 ' / �` / A -`3.57 DRAINAGE AREA (AC) -�' 1 I °"'"'+......._. 472 �YO I �I �I r I JBS. I I) I M nc. ( ° J tl O 0 I � / OI / 5 I onc. I / I 0 nc. cn I I I �I O > I, i I 11 08S. 1 / I / { 10 I I i51�lUi / .'^�.,...."`w... -..' Asph. ,•'rte ..- -✓ \ O g� \\ 0, -,,_ l< ID 0,0 JION`�-a 48.4 � "�, .,,- ,,_ ''.✓ � ` '-' - T`" --' /,,., _'. "... -- � / �) ( %/ 503 , y . - - -50 -- ` w "..^- - _ _ -•48 1 / ,r J ,r+ /. /� ' / rp 1 50.7 50.5 47.6 a / O 5 51.2 512 50.7 `' - \ .• ✓ - - 505 RA P, 1 48.3 f�% / I / % ' h / j � f � 9B< 50 515 ..... ` d Asph. �47 ell 51.7 � ! --� _ -_ ,,% ` 48 - PROPOSED MAXWELL PLUS 1 r• �' � / `t ll DRYWELL SYSTEM ` oe ip 152.7 52- 51-- --"" +"''• 48.7 .w•""� / - - --^ 4 j \ ` - 53,3 - �`== __ _ -- 50 , �-- --- - �-�`� ` `r ., /(}( / } { i RETENTION BAS I N WSEloo =46.32 49-- -- ---- -- ���9�4g .✓ 475 47 BOTTOM =43.50 _------ - - ---_ -- - - - - - -_ - - -_ -__ 482 e -- Ft "s A kOS - ,g_ .�"" a r s- f� _ QS 52 u aS�ff�i� wig ° 1� r� .,,,,.,,,o= "°'""".» =ice J_ ,,,,.�"iw.. @-"` ,�_�,/✓, / ..-^" ' �, - ..�"""r / "'....`. 52N Asph. .,,✓"' 515 -50.5.- _ (DO / -1 _ _ - ...._ _... - - --- "'--- ._.......,.- .......,..- 49.9 O 4 •49 - 51.1 \BS. An nn / e --' 0aa ftj oes. OBS. - .��...- "------- - ----- !! - -_ _ -__ "~=--- _ - _ -_...- --- �I l 1100 � NC_N1S HACK LANI I � 7.0 � FR -� � � Asph. � l { U L - - - - _ - -� - r-T G°`� ( Z ✓ '� 8^`` `59� 8oS- - r` 11 J GOO 57 59 -60"" .-- i ""� �. � / / .✓.� "' `� .." -"' 55.9 -- -6 =-I _ -- - -" _61 ` f ° DEL QATO DR ' .1....1.- J',-f'��`._''`•/'" � y-.^ -'6� '� � 56.4 \_,` >\ !! y (i tia �� R 0' 30' 60' 90' 120' SCALE 1 " =30' f � 1� (( 49.4 I J� 1 ) O� + � J Asph. J / 49.8 / 0 r r 50.1 t C 503 ' 1 i { j I� f�0 512 �y ! Asph. I I ! I I I I I i 51.4 I I� O 1 111 1 w I� I � I III 54 > I�IFi j °I I 0O w I 5! 519 �I I 53.7 Asph. �I 77 i I I ( t I I� 52.6 ' I I L 53.7 \ I� 1 - II I I 53.4 ( _ 1 11), IL ' // \') 54.7 ` Conc. 1 O' 545 Arm JULY 2, 2009 MSA CONSULTING, INC. DESIGN SAW BY PLANNING ■ CIVIL ENGINEERING ■ LAND SURVEYIING DRAWN BY SAW 34200 BOB HOPE DRIVE ■ RANCHO MIltAGE ■ CA !92270 CHECK BY TELEPHONE (760) 320 -9811 ■ FAx (760) 323 -78393 BSK C5 0 U Q D) 0 t\ N C`! O. O O R n 50.7 C 9.94 T� 100=816,'e 10 =4T71 II I s f � 1� (( 49.4 I J� 1 ) O� + � J Asph. J / 49.8 / 0 r r 50.1 t C 503 ' 1 i { j I� f�0 512 �y ! Asph. I I ! I I I I I i 51.4 I I� O 1 111 1 w I� I � I III 54 > I�IFi j °I I 0O w I 5! 519 �I I 53.7 Asph. �I 77 i I I ( t I I� 52.6 ' I I L 53.7 \ I� 1 - II I I 53.4 ( _ 1 11), IL ' // \') 54.7 ` Conc. 1 O' 545 Arm JULY 2, 2009 MSA CONSULTING, INC. DESIGN SAW BY PLANNING ■ CIVIL ENGINEERING ■ LAND SURVEYIING DRAWN BY SAW 34200 BOB HOPE DRIVE ■ RANCHO MIltAGE ■ CA !92270 CHECK BY TELEPHONE (760) 320 -9811 ■ FAx (760) 323 -78393 BSK C5 0 U Q D) 0 t\ N C`! O. O O R n