Loading...
194 - Misc. TractsSladden Engineering ` _6782 Stanton Avenue; Suite A, Buena Park, CA 90621 (714j 523 -0952 Fax (714) 523-1369' 77 -725. Enfield Lane, Suite 100, Palm Desert, CA 92211 (760) 772 -3893 Fax (760) 772 -_3895 '? 450 Egan Avenue, Beaumont, CA 92223 (951) 845 -7743 Fax (951) 845 -8863 ' rte,•`, hf/-•:F ;'.' , � TN�~'� • - � f • l , • ` •• i•r , rte. . ; ' 1 August 22, 2007' } i Project No. 544 -3253 07- 07 -492R Yr Prest- Vuksic Architects 44 -530 San Pablo Avenue, Suite 200 - Palm Desert, California 92260 • a ".q Attention: Mr. John Vuksic Project: St.'-Francis of Assisi Church'Expansion - 1, 47- 225,Washington Street r • Y La Quinta; California - Subject: , Supplemental-Iinfiltration /Percolation Testing for Storm Water Retention . As requested, we have. - performed supplemental subsurface investigation and ' percolation /infiltration testing -on the subject site in order to-evaluate the infiltration potential of the surface soil. This report has been revised from our previous reports dated August 1, 2006 - ' (Report No. 06 -08 -763) and June 15, 2007 (Report No.' 07 -07 -492) to address City of La Quinta • i reviewer concerns. The percolation' rates determined should be helpful in assessing storm water retention needs.. It.is our understanding that on -site storm water retention will'be required. The current, plans indicate that it is proposed to collect storm. water runoff within several shallow retention basins as well as a large Contech multi -plate subsurface retention system. Infiltration ' t - • • testing was previously' performed within 4 shallow test holes excavated in the .areas of the'' , proposed storm water retention systems. Percolation testing was performed on July • 7, -18 and 19, 2006. ' Testing was performed using a - ... double -ring infiltrometer apparatus in'general' accordance 'with ASTM D 3385 test procedures. • ti Measurements were recorded in increments of 10 to 30 inches per hour. r { r •�.�- ,_ Tests results aresummari.cd below: , .Test Hole No. Rate (inches/hour) A a - 4.8 _ B' « a 18 C 18 ' D "� . 7.8 :f' 09800900, al5 --�j (5,p�j --;, <,I W) -J/--Y-KS August 22, 2007 -2= Project No. 544 -3253 07- 07 -492R It should be noted that the infiltration rates determined are ultimate rates based upon field test results. An appropriate safety factor should be applied to account for subsoil inconsistencies and potential silting of the percolating soils. The safety factor should be determined with consideration, to other factors in the storm water retention - system design (particularly storm water volume estimates) and the safety factors associated with those design components. In addition, several' additional exploratory borings were excavated to a maximum depth of approximately.50 feet below existing grade to evaluate the near surface soil conditions as they may impact storm water retention system design. The additional exploratory bores were performed to provide a continuous log of the soils within 15 feet of the bottom of the retention basins as well as the multi -plate retention structure as requested by the City of La Quinta. The bores indicate that the majority of the surface soil consists of fine - grained silty sand' but 'some generally isolated clayey silt layers were observed typically within the lower eastern portion of the site. The approximate bore locations are indicated on the attached plan. The bore logs are also attached to this memo. The approximate surface elevation is indicated on the bore logs along with the proposed bottom of the retention system elevations. The supplemental bores indicate that the previously determined percolation rates remain valid for the design of the majority of the proposed storm water retention systems. The presence of a significant clayey silt layer will limit the infiltration potential within the eastern portion of the site. The proposed multi -plate arch system will extend through the clayey silt layers and therefore reductions on infiltration potential should not be required in accordance with the City of La Quinta draft bulletin regarding storm water retention system design. We appreciate the opportunity to provide service to you on this project. If you have. questions regarding this letter or the data included, please contact the undersigned. Respectfully submitted, SLADDEN ENGINEEF r:.n .. Brett L. Anderso No. C 45389 Principal Engineer J CC Exp. 9 -30- 2008 -4, Peres /lh Copies: 2/Prest- Vuksic Architects 2/Watson & Watson Sladden Engineering SITE PLAN WITH APPROXIMATE BORE HOLE & PERC TEST LOCATIONS - = ` " '. - --- -SITE DEVELOPMENT PERMIT 2006- E THE CITY OF :U1 QU�IfA I S�A7E OF CALORPOA r'. -'� __.. ZQ if-, 7, %. '+ is \ � \� 4• / t'y r ^'� � - s r �. -. � one f� •' I�.`;� � -+� .� / �' '$k - + .', - l^• '' W - ,�.,k /.\ r s,�i`ur' �'Im. u.uoro i*� ,... �Mhe� - yy __. -._ _ _ i •' i\� V� " ' t � ��{''r!�� - `� \�. � / .++�` � -: I ,�. i. • �1.. 4i L�. �'� ��. L�' 1 101-i If ✓ "' B -6 i i I ti. `yv°�ccW*L � L]+ 13i I,, �y �p '/S .. =�i ' ( D6'AI�L.Q9 - �1...• I; v a oax `..; �Re�r.:G Y ��S�F ani . i ti S •� .c>\ � .: _ �, t i rri �"�. ,r. Y .lie t i •�. � t y "Xlji Sm �. 71, _ -.. �-- -� � � ^ `mow _+h �".....•. _ _ '_ •+" m ..� -'."-. ,.. � -' •- � - 'T- f! ST.�RA1.'G6o or � GHIJRCR �' 'r�:I' I,..� ii+FmA°1.`°"' Ass[St �.ar- p rr.�Tr rp A.�._,a.•.�o —h' -./j _RS5 6 -_ - --'_�. IN- '. , �C "�'� - BAStV. S1 --_�>. �rr+ti a � �, "� �,a41 m � �, �$✓e msi a en .�. srrE ' r h �� �OB -pmENT SCALE: As Shown MAP SOURCE: MDS Consulting LEGEND _ JOB NAME: St. Francis of Assisi Church ® APPROXIMATE BORE HOLE LOCATION JOB NO. 544 -3253 APPROXIMATE PERC TEST LOCATION REPORT NO: 07- 07492 rj - Proposed Retention Basins (Basin # 4 Area) K St. Francis of Assisi Church, 47 -225 Washington Street, La Quinta Date: 7/31/2007 - Bore No. 1A Job Number: 544 -3253 • o 3 3 o o . A cn U Gq Description �n0, o Remarks 0 i!j; AMSL Elevation 55 Feet Native Soil 10/12 Silty Sand: Fine Grained SM 0.9 17.9 Grey in color/Dry - 6/14 Silty Sand: Fine Grained SM • 1.2 19.4 Grey in color/Dry - 5/6 Sand: Fine Grained SP 1.9 7.1 Grey in color/Moist 10 - 5/8 Sand: Fine Grained SP 2.3 6.4 Grey in color/Moist - 4/6 Sand: Fine Grained, SP 22.5 7.3 Grey & Brown in color 15 [[ Moist - 4/4 Silty Sand: Fine Grained and Sandy Silt Interbedded SM 5.9 38.4 Grey & Brown in color Moist - its 4/9 Sand: Fine Grained and Sandy Silt (l /2 & 1/2) SM 7.6 48.6 Grey &Yellowish Brown 20 I AMSL Elevation 35 Feet Dry - 6/9 Sand: Fine Grained SP 1.2 4.6 Grey in color/Dry - 4/6 Sand: Fine Grained SP 1.8 11.2 Grey in color/Dry 25 . - r 4/6 Silty Sand: Fine Grained with Silt Lenses SM 3:2 . 22.7 Grey in color/Dry iris 5 . - e 5/7 Silty Sand: Fine Grained and Sandy Silt (1/2 & 1/2) SM 15.9 56.8 Grey & Olive in color/Moist 30 r - 5/5 Silty Sand: Fine Grained with Clayey Silt Interbedded SM 14.6 51.0 Olive in color/Moist - - •7/12 Sand: Fine Grained SP 3.1 9.4 Grey in color/Moist 35 - 6/13 Sand: Fine to Medium Grained SP 2.6 5.7 Grey in color/Moist 8/12 Sand: Fine Grained SP 2.8 6.8 Grey in color/Moist , 40 - 5/6 Sand: Fine Grained SP 3.2 4.5 Note: The stratification lines - (Grey in color/Moist) , represent the approximate _ boundaries between the soil types; the transition may be - 4/4 Silty Sand: Fine Grained and Sandy Silt (1/2 & 1/2) ML/SM 25.5 70.8 45 (Olive & Grey in color/Moist) gradual. - 6/7 Silty Sand: Fine Grained SM 5.1 30.5 - c (Grey in color/Moist) r - 7/9/12 Sand: Fine Grained with Silt Layer -4 Inches, SM 13.6 43.6 Total Depth =--51 Feet 'It(Grey u.. 50 in color/Moist) • + - Bedrock not encountered - IlGroundwater not encountered - ti Sladden Engineering - 4 t' c 0 5 (( ]0 15 20 25 30 35 40 45 AMSL Elevation 60 Feet 4/4 Sand: Fine Grained. and Sandy Silt (1/2 & 1/2) 4/6 Sand: Fine Grained with Sandy Silt Layer -2 Inches J 4/5 Sand: Fine Grained with Thin Silt Lenses 5/9 Silty Sand: Fine Grained. and Silt Interbedded 7/9, Clayey Silt 7/10 Clayey Silt 4/6 Silt 5/7 Silty Sand: Fine Grained with Silt Layer -2 Inches 4/6 Sandy Silt AMSL Elevation 35 Feet 4/7 Silty Sand: Fine Grained 9/14 Silty Sand: Fine Grained 6/10 7/9 Silty Sand: Fine Grained 8/13 Sand: Fine Grained 9/12 Silty Sand: Fine Grained with Silt Interbedded 9/17 Silty Sand: Fine to Medium Grained 11/26 Sand: Fine Grained (Grey in color/Moist) 13/19 Sand: Fine Grained (Grey in color/Moist) 7/9/14 Silty Sand: Fine Grained (Grey in color/Moist) Sladden Engineering Proposed Retention Basins St: Francis of Assisi Church, 47 -225 Washington Street, La Quinta Date: 7/31/2007 1.8 Bore No. 2A Job Number: 544 -3253 Grey & Tan in color/Dry SM 3.5 33.6 Grey & Tan in color/Dry SM 1.8 o. 0 Grey in color/Moist SM i 2.3 47.2 Greyish Tan in color /Moist .. ML 5.9 80.2 Tan 'in color/Dry ML o 80.2 Buff in color/Dry ML 1.1 3 Buff in color/Dry ML 1.0 60.3 Greyish Tan in color/Dry ML 0.6 58.8 Buff in color/Dry SM 0.3 D U) U m 1.1 Descriotion �°, o Remarks 0 5 (( ]0 15 20 25 30 35 40 45 AMSL Elevation 60 Feet 4/4 Sand: Fine Grained. and Sandy Silt (1/2 & 1/2) 4/6 Sand: Fine Grained with Sandy Silt Layer -2 Inches J 4/5 Sand: Fine Grained with Thin Silt Lenses 5/9 Silty Sand: Fine Grained. and Silt Interbedded 7/9, Clayey Silt 7/10 Clayey Silt 4/6 Silt 5/7 Silty Sand: Fine Grained with Silt Layer -2 Inches 4/6 Sandy Silt AMSL Elevation 35 Feet 4/7 Silty Sand: Fine Grained 9/14 Silty Sand: Fine Grained 6/10 7/9 Silty Sand: Fine Grained 8/13 Sand: Fine Grained 9/12 Silty Sand: Fine Grained with Silt Interbedded 9/17 Silty Sand: Fine to Medium Grained 11/26 Sand: Fine Grained (Grey in color/Moist) 13/19 Sand: Fine Grained (Grey in color/Moist) 7/9/14 Silty Sand: Fine Grained (Grey in color/Moist) Sladden Engineering ative Soil SM 1.8 37.3 Grey & Tan in color/Dry SM 3.5 33.6 Grey & Tan in color/Dry SM 1.8 19.8 Grey in color/Moist SM i 2.3 47.2 Greyish Tan in color /Moist .. ML 5.9 80.2 Tan 'in color/Dry ML 2.4 80.2 Buff in color/Dry ML 1.1 78.5 Buff in color/Dry ML 1.0 60.3 Greyish Tan in color/Dry ML 0.6 58.8 Buff in color/Dry SM 0.3 22.1 Grey in color/Dry SM 1.1 22.7 Grey in color/Dry Sample Not Recovered SM i 0.5 20.0 Grey in color/Moist SP 0.7 9.0 Grey in color/Moist SM 0.6 21.4 Grey in color/Moist SM 0.5 17.6 Grey in color/Moist ote: The stratification lines represent the approximate SP 0.7 9.3 boundaries between the soil SP 0.8 . 8.0 type the transition may be gradual. SM 1.1 Total Depth = 51 Feet Bedrock not encountered Groundwater not encountered St. Francis of Assisi Catholic Church Improvments 47 -225 Washington Street, La Quinta Date: 1/25/2006 Boring No. 1 Job Number: 544 -3253 i o o �. a Q coo U pa Description r° o Remarks '0 AMSL Elevation —96 Feet Native Soil - 3/4/5 Sample Not Recovered 5 4/4/4 Sand: Fine Grained SP 89 1 9 Grey in color. 10 4/4/6 Sand: Fine Grained SP 2 7 Grey in color 15 2/4/5 Sand: Fine Grained SP 1 4 Grey in color 20'11.; Oi 2/4/4- Silty Sand: Fine to Coarse Grained with Gravel SM 2 26 onplastic/Greyish Brown in color 25 ' I',:,i,,;, ,;; �;�'�; 2/5/10 Silty Sand: Fine to Coarse Grained .with Gravel SM 97 2 22 Nonplastic /Greyish Brown in color ilRefugal @ —29 Feet 30 - California Split -spoon Sample Total Depth = 29 Feet 35 I Groundwater not encountered - Unrecovered Sample Bedrock not encountered - Standard Penetration Test Sample � I 40 - Note: The stratification lines represent the approximate - boundaries between the soil types; the transition may be 45 gradual. 50 St. Francis of Assisi Catholic Church Improvments ' 47 -225 Washington Street, La Quinta Date: 1/25/2006 Boring No. 2 Job Number: 544 -3253 4. 20 0 5/10/13 Silty Sand: Fine Grained SM 99 1 18 Grey in color iu�li;li� 1; o on P lastic 25 3 3/4/6 Sity Sand: Fine Grained Y q 1 o U pq Description r° o Remarks 0 ' "':!i" ^" Nonplastic AMSL Elevation �96 Feet Native Soil SM 83 2 30 Greyish Brown in color Nonplastic SP 91 1. 3 Grey in color SP _ 96 1 11 Grey in color SP 98 1 11 Grey in color Note: The stratification lines represent the approximate SP 1 10 boundaries between the soil types; the transition may be gradual. Total Depth =51.5 Feet SP 104 1 4 Groundwater not encountered Bedrock not encountered 20 r iii 5/10/13 Silty Sand: Fine Grained SM 99 1 18 Grey in color iu�li;li� 1; on P lastic 25 iiiiilic' = "'' 3/4/6 Sity Sand: Fine Grained SM 1 24 Greyish Brown in color Nonplastic 30 !" i " " M "`' "' TIP! 619113, Silty Sand: Fine to Medium Grained with Fine Gravel SM 91 2 40 Greyish Brown in -color Nonplastic . 35.: 5/8/12 Sand: Fine to,Medium Grained with Fine Gravel SP 1 14 Greyish Brown in color SP 98 1 11 Grey in color Note: The stratification lines represent the approximate SP 1 10 boundaries between the soil types; the transition may be gradual. Total Depth =51.5 Feet SP 104 1 4 Groundwater not encountered Bedrock not encountered St. Francis of Assisi Catholic Church Improvments 47 -225 Washington Street, La Quinta Date: 1/25/2006 Boring No. 3 Job Number: 544 -3253 a 0 0 N 0 o o o C) cn U �q -Descri tion En �D o Remarks 0 AMSL Elevation —82 Feet Native Soil 5 iiliii!!Ilili�; 2/3/4 Silty Sand: Fine Grained SM 91 1 13 'Greyish Brown in color 10 `!!' 2/3/4 Sand: Fine Grained SP 1 8 Grey in color 15 4/8/11 Sand: Fine Grained SP 98 1 8 Grey in color 20 3/5/6 Sand: Fine Grained SP 1 6 Grey in color 25 7/11/14. Sand: Fine Grained SP 94 1 8 Grey in color 30 =!! g ?!iii 3/4/6 Silty Sand: Fine Grained SM 2 15 Greyish Brown in color - California Split -spoon Sample Total Depth = 31.5 Feet 35 I Groundwater not encountered - Unrecovered Sample Bedrock not encountered - Standard Penetration Test Sample 40 - Note: The stratification lines represent the approximate - boundaries between the soil types; the transition may be 45 gradual. 50' 0 AMSL Elevation —82 Feet Native Soil 3/5/7 Sand: Fine Grained SP 98 1 5 Grey in color 5 2/3%5 Sand: Fine Grained SP 1 4 Grey in color 10 7/12/20 Sandy Silt ML 101 5 72 Low Plasticity/Light Brown in color 15 'jj jjjil !:'! 4/5/9 Sand: Fine Grained with Silt Layer �I Inch SM 2 27 Nonplastic /Grey in color 'iy 20 9/14/21 Sand: Fine Grained SP 105 1 7 Grey in color 25 7/10/13 Silty Sand: Fine Grained SM 1 .14 Nonplastic /Grey in color ai,i!iiipl'n . 3 "yMi 0 6/13/26 Silty Sand: Fine Grained with Silt Layers Interbedded SM . 94 4 71 Nonplastic/Grey in color !iiiirl? IU;l � JiIaI �l�)i — 35 6/9/12 Sand: Fine Grained SP 1 12 Grey in color 40 '. 13/26/50 Sand: Fine to Medium Grained SP 106 0 5 Grey in color Note: The stratification lines represent the approximate 45 9/14/17 Silty Sand: Fine Grained' SM 1 12 boundaries between the soil _ r j types; the transition may be l= r gradual. Total Depth = 51.5 Feet 9/13/20 Si] Sand: Fine Grained with Silt Layers Interbedded SM 99 3 52 . Groundwater not encountered 50 ": ^i' h' Y li Bedrock not encountered St. Francis of Assisi Catholic Church Improvments 47 -225 Washington Street, La..Quinta Date: 1/25/2006 Boring No. 4 'Job Number: 544 -3253 4. 0 0 S3. 3 q in o U pq Descri tion Cn o Remarks. 0 AMSL Elevation —82 Feet Native Soil 3/5/7 Sand: Fine Grained SP 98 1 5 Grey in color 5 2/3%5 Sand: Fine Grained SP 1 4 Grey in color 10 7/12/20 Sandy Silt ML 101 5 72 Low Plasticity/Light Brown in color 15 'jj jjjil !:'! 4/5/9 Sand: Fine Grained with Silt Layer �I Inch SM 2 27 Nonplastic /Grey in color 'iy 20 9/14/21 Sand: Fine Grained SP 105 1 7 Grey in color 25 7/10/13 Silty Sand: Fine Grained SM 1 .14 Nonplastic /Grey in color ai,i!iiipl'n . 3 "yMi 0 6/13/26 Silty Sand: Fine Grained with Silt Layers Interbedded SM . 94 4 71 Nonplastic/Grey in color !iiiirl? IU;l � JiIaI �l�)i — 35 6/9/12 Sand: Fine Grained SP 1 12 Grey in color 40 '. 13/26/50 Sand: Fine to Medium Grained SP 106 0 5 Grey in color Note: The stratification lines represent the approximate 45 9/14/17 Silty Sand: Fine Grained' SM 1 12 boundaries between the soil _ r j types; the transition may be l= r gradual. Total Depth = 51.5 Feet 9/13/20 Si] Sand: Fine Grained with Silt Layers Interbedded SM 99 3 52 . Groundwater not encountered 50 ": ^i' h' Y li Bedrock not encountered St. Francis of Assisi Catholic Church Improvmen6 47 -225 Washington Street, La Quinta Date: 1/25/2006 Boring No. 5 Job Number: 544 -3253 ' a. o 0 0 N o 3 0 o �.. o . A ri U pq Description rn � �V o Remarks 0 AMSL Elevation 85 Feet Native Soil 2/3/6 Silty Sand: Fine Grained SM 93 1 25 Nonplastic /Greyish Brown in - color 5 3/2/3 Sand: Fine Grained SP 98 0 11 Grey in color 10 3/6/7 Sand: Fine Grained SP 98 1 11. ` Grey in color 15 - California Split -spoon Sample ' Total Depth =11.5 Feet - Bedrock not encountered 20 Unrecovered Sample Groundwater not encountered - Standard Penetration Test Sample 25 - Note: The stratification lines represent the approximate - boundaries between the soil types; the transition may be _ gradual. 30 35 40 45 50 St. Francis of Assisi Catholic Church Improvments 47 -225 Washington. Street, La Q.uinta Date: 1/25/2006 Boring No. 6 Job Number: 544 -3253 0 0 N Q V) o U 3 o PQ Description r" ° o o Remarks 0 " ^ "' !! AMSL Elevation 69 Feet Native Soil - rUg; i.jj 3/5/7 - Silty Sand: Fine Grained SM 93 22 52 onplastic /Brown in color 5 4/6/10 Sand: Fine Grained SP 103 5 13 Grey in color 10 '• 3/6/7 Sand: Fine Grained - SP 5 7 Grey in color 15 - California Split -spoon Sample i Total Depth =-•11..5 Feet - I Bedrock not encountered 20 Unrecovered Sample Groundwater not encountered - Standard Penetration Test Sample 25 - Note: The stratification lines represent the approximate - boundaries between the soil types; the transition may be _ gradual. 30 35 40 45 50 St. Francis of Assisi Catholic Church Improvments 47 -225 Washington Street, La Quinta Date: 1/25/2006 Boring No. 7 Job Number: 544 -3253 .. ° 0 C)' N A. A' rn DDescription U W ° U o Remarks 0 ' "` ° " "`" AMSL Elevation-62 Feet Native Soil - - IIPiilli 4/8/11 Silty. Sand: Fine Grained with Roots SM 102 13 32 Nonplastic/Dark Grey in color 5/8/8 Silty Sand: Fine Grained with Silt Layers Interbedded SM 102 11 33 Nonplastic/Dark Grey in color 5 - 5/8/8 Silty Sand: Fine Grained and Silt Layers Interbedded SM 106 11 25 onplastic/Brown. in color 10 California Split -spoon Sample Total Depth = 4.5 Feet - I Bedrock not encountered Unrecovered Sample I , Groundwater not encountered Standard Penetration Test Sample 15 20 - Note: The stratification lines represent the approximate _ boundaries between the soil types; the transition may be _ gradual. ` 25 30 35 40 45 50 St. Francis of Assisi Catholic Church Improvments 47 -225 Washington Street, La. Quinta Date: 1/25/2006 Boring No. 8 Job Number:. 544 -3253 0 15 California Split -spoon Sample Total Depth =11.5 Feet Bedrock not encountered 20 Unrecovered Sample Groundwater. not encountered Standard Penetration Test Sample , 25 - Note: The stratification lines represent the approximate boundaries between the soil types; the transition may be gradual. 30 35 40 45 50 U \ o N A rn U pq Description r° Remarks 0 AMSL Elevation —63 Feet Native Soil - 5/7/11 Sand: Fine Grained SP 106 4 9 Grey in color 5 - ;iii';;; ;i ii�lifiiasi 5/7/7 Silty Sand: Fine Grained . SM 99 9. 19 Nonplastic /Grey in color - 10 `(dUSi�ii �u;ur.4i! viii ;; 2/6/11 - Sand: Fine Grained and Silt Layers Interbedded SM 89 27. 63 Nonplastic /Grey &Brown in ; color 15 California Split -spoon Sample Total Depth =11.5 Feet Bedrock not encountered 20 Unrecovered Sample Groundwater. not encountered Standard Penetration Test Sample , 25 - Note: The stratification lines represent the approximate boundaries between the soil types; the transition may be gradual. 30 35 40 45 50 t Double Ring Stormwater Percolation, Data Sheet ` Project S4- F(Gri' 1C.I 5 1.�.� Pmjaet No.! Z-5 Test Hole. Date Excavated: Description of Test Area �l,C.w� �. Soil Classification: Percolation Tested by: 61 o,. �, , (�! Date: % (� Reading Time Time Inner Change Outer Change Outer Inner Outer No. of Interval Ring Inner Ring Outer Ring Ring Ring Reading (min.) (in.) (in.) (in.) (in.) Conversion (in. /hr.) (in. /hr.) 0 V , '100 l om rz �. 7 Double Ring Stormwater Percolation Data Sheet Project' 5� 'f -6_n^' � b n Project No:: ? Lxl. sys Test Hole: Date Excavated: Description of Test Area: Soil Classification: Percolation Tested by: 4�i1 v� , \b., (�i- Date: Reading Time . Time Inner Change Outer Change Outer Inner Outer No. of Interval Ring Inner Ring Outer Ring —Ring- - . Ring Readina (min.) (in.) (in.) (in:) (in.) Conversion (in. /hr.) (inAr.) S I (�� CO _Z10 ,I i Imo/ 1 y ,c� ,L' Z, 6 SD I' z Double Ring Stormwater Percolation Data Sheet ,S3 Project: �°i to ^: Project No.: 144 -3253 C- Test Hole: Date Excavated: Description of Test Area: Soil Classification: Percolation Tested by: ' ]JJG r Date:( ®� Reading Time Time Inner Change Outer Change Outer Inner Outer No. of Interval Ring Inner Ring Outer Ring Ring Ring Readina (min.) (in.) (in.) (in.) (in.) Conversion (in. /hr.) (in. /hr.) ,S3 7J�� C- ® -o ' IC. ): F- i llole 51 i :y0 t 3.5 A`� �� �� f, Double Ring Stormwater Percolation Data Sheet Project: Test Hole_ Date Excavated: Description of Test Area: Soil Classification: Percolation Tested by:'. �+e&I'- (��`�� Date:. Reading Time Time Inner Change Outer Change Outer Inner Outer No. of Interval Ring Inner Ring Outer Ring Ring :Ring Readin-Q (min.) (in.) (in:) (in.) (in.) Conversion (in. /hr.) (in. /hr.) to 4A S2 I Z �.r i 1 �2 1 rs PRE November, 2005 Y PN 0505 -023C )JNDER TH SUPERVISION OF: /), D. HOY, P E. 63526 QPoFESS /O w No. C.63526 0- m cr- m Exp. 9 -30 -2006 CIVIL Tq�OF CALF 11/H4 - -- DA E ECEOVE S 2007 FM�AY uOPA 'WT PRELIMINARY DRAINAGE ANALYSIS FOR TENTATIVE TRACT MAP NO: 33848 RECEIVED Prepared for: FJUL 20 2007 David Mammon, Development Services 6541 Hollywood Blvd., Ste. 203 Los Angeles, Ca. 90028 Prepared by: , !EFWarner engineering CIVIL ENGINEERING / PLANNING / LAND SURVEYING YUCCA VALLEY A PALM DESERT 73 -185 HIGHWAY 111, SUITE A PALM DESERT, CA 92260 (760) 341 -3101 November, 2005 Y PN 0505 -023C )JNDER TH SUPERVISION OF: /), D. HOY, P E. 63526 QPoFESS /O w No. C.63526 0- m cr- m Exp. 9 -30 -2006 CIVIL Tq�OF CALF 11/H4 - -- DA E I } 7 N PURPOSE: The purpose of this study is to determine the volume of retention required to retain the discharge from a 100 -yr storm so as to prevent any increase in discharge to receiving waters or adjacent properties that may result from development of the site. DESCRIPTION OF WATERSHED: The subject site is a 4.84 site south of Avenue 58, just west of Monroe Street in La Quinta, California (APN 764- 180 -003). HYDROLOGIC ANALYSIS: Criteria for this study are based on the Hydrology Manual of the Riverside County Flood Control and Water Conservation District (RCFC &WCD). The synthetic unit hydrograph method was used to determine flood volumes. The calculations were performed using CIVILDESIGN /CIVILCADD, a computer program developed by Joseph E. Bondiamon and Associates Incorporated, which perform the calculations in accordance with RCFCD &CD criteria. RESULTS: STORM PREDEVELOPED POSTDEVELOPED INC. INCREASE 1 00- r/1 hr 18,598 cf 20,940 cf 2,342 cf 1 00- r/3 hr 11,604 cf 18,602 cf 6,998 cf 1 00- r/6 hr 10,568cf 20,820 cf 10,252 cf 100 -yr /24 hr 5,787 cf 24,403 cf 18,616 cf The design storm for this development is the 100 -yr 24 -hr storm (18,616 cubic feet). This volume to be retained onsite within an above ground retention basin as depicted on the attached exhibit. The basins have a combined capacity of 24280 cubic feet, and so will provide adequate retention for the design storm. PR. WW - I SITE VICINITY MAP (NO SCALE) THOMAS BROTHERS GUIDE 2003 EDMON PAGE 5592, COORDINATES 83 ®_ m 4 UNIT HY®ROGRAPHS & PRECIPITATION MAPS .� � �� i � , aa� y l.V�. •b1i � f 1 y n, • o 't K c " r � r . r 't r� i• � l • i • • n i f a J `.•4 y • • n i _ � r ,� � � - . ar � R '� J ~, ���j. e. - — - ^gin'"' LAS � ice' .:1._ •��� ����� T��� � i� ii��lQa +� � Q����a�� C�a� ��_ 1�II® �_ � ®� _— ?�..�... ��� ,.� ,� � � - . •r 1 i { . ._. � .:J!(1' .0 mil, h :;: ('�. - � :fi ..r - , fji'.' h . �• ��:- -=\ ,1.:2 =: � rrev:: _ f '�.�'.._,._. 1. T. -, .: _ ... _ I , \ .. __ .I .r `tt.., , <.. .. ,._ .. r: -- -- ,F•.ti -;�. �:: :�rs: .:ice` `I ^ =x I aR _ � r I m II -. ,I ... ._ v .,. , -< .] _._, _ .,, ,, _, ,, t >: rJ -x�. , ._, _i.... ? ..wl. t..l t 1<r.•.1:.;" - , :5:`y1, ^ lo.lc°rtea h,z ,. <•. I. .y, nun. T1 , j!.; .:.-, •J'r!'.lT! ..�,�,,. may.'. �..s. :f> ;�_• - _ .t.. �.� .r... r A _ - '!� -- � I'. _1 _.5,,. �.) = i"i. :,} - _ ,':,,- C-'_ - T= •LINE , _ � u M I � :: :,. . -. ...., �,: ._ N. ,,. .. .. _ •�,.s.....:- - _- :1 wv �v Penn PR¢ r ,_ ,.. /:, .. rr c F, - :. ....= .. ._. _. ,. _,. -. .rr,::•. ,ec :(;, --`°II 7; 1. l -CJ�` v - _ u u r a �_ , .L � - � J _. r D.� ..... .....: � ~•t�,t - - f'.. ln,. �;ti C ' r: li ,L�,� NO T AfB _ , ... ,,.: ._ ..rnn_ .. .f ... -. A •„ ,. !':"# k _ _ , .. .t. = S:_. .��' ' - i' �i w ., < +m, l I s6 . _ . , i • - „ .F ai 5t r?. I c :J:,. - . �. .. � .. .. �, .. .... t ..•- - � - v_ - '.�.Rm _ .. .S-, . �..: ,1� it - ^:.vj:. ,• n .. .. .., -, >,.. ._ 4 _.. - .. .. _. ,. - .- -r,,.. - .,, , -. ':r': sT., \' C Jq%Mcr Dlnnli _�.: -- OSe .•_�._ LneR 4_ o.,. �,.L. E/ - <y "': '':E' ..J 'U t II Sly_:..:.: ... , , ,.• . .. .__ I;., � ... ... :: -4 -' .� - ..., j ? } _ ,. r j � _ t.:. - � � N. ,.ni : .. ... _ .. dv { .. ! {•]a. -_y ,' -'�_ � / - ,,, _ ! .,' f, -'.� �• SSj UN :�i M, . zjr - c f 'l. _ I .!Y t�_'•:�� (`vv , }. ": -: . "t�r'�' .iH �4S': J �NB flNARDINO -• ,. - _- I_.1._. _ ' /,,/,. t -. D._: ,.. ,. ... .. • Ir .3� -.. �T' �� ,: L':`_' 1`� "' -. -�•,(`:. _'+l^_ -_ - 'SA E I I L„ ..... .. .... '�. ,: _ i ! r f !.O!;Tpf .... � ..__ � .., :" - - -/ .. - .c•J'� 1 '>S. C '..x IV ER510G CO[l AV r3• SADI NN I_ ,4 , r I .. _. .. be - '� I - 31. - , .:. ._.. ,:^.. /.➢ - - ��`' __,,,fit -'il 7S a; c`f'�- (;;:::';7Gr. m T q,�• • _ O _ .. ... ... _. :..... ' _.,, c,= : .. lime, ,w.. .._. , � :.. .. _ - . � >. 7`- , ..: - .. .. ._. (�`' .. .. ., . �,. •. yi... n"'6i:' ,..1., aL - ✓er'� anal,. �1w' P G Mlro , _ -1. - _ ,_ • - u -. .. .. r _ � .. �. r. _ .. -,N :,.. ,,..�' :.. _ . A�• �,,, ,'G�/ n \ , _ .:vil . - ':2�'; : ,/t . � V,IIe � A14,rW •� .n,D,,. 1 «wt w u.n n .+•3 : ,.. w.. , .. x•.. 1,: / .- ['b•'• .ill f /; "'7 . Y Le I r H .>• .....: -_' _ T. I !,: N 1121 - t.. .A: ^'.' :' T a cnlDD n � < I o e,o � - ' • : .. r ... _ .... � .,..I •.. -, :. , ., , I` , e ° . .. 4a[,D!;t P 6s I. , ;�.. M1ri7ia�E� : G'�' ?!']' ' ti ;}1• : 6 r' - � -i.• Jr 's •1 Sai'• i> t N , .. � ..:: :. ,. 1 „ :.. .... '. _ ,.�,: '. `.:: 1. ..'.. .. _.%C•, - ' µa. ;.0 as.(e.a ..r .r ♦. ...1. -y- :..J,d:., , - I I II w y• „ 1 / - r, 1' : a I ea,unorti - i •.�i f J • .. � Bb A BI I �y�7 ,- -_. .,.n,.. .,. ....i,. r !t _. .. , \ ,_ :: s.0 _ <.1,•ra'tJ:R r I, \`ITS ,. :,: ::.. .;.3�• 7 I� �:C >, .1 � � D .,. - Z!+>,r.rro _,.. r o., . , , ry.. � _ ._.. ,r•: -1.- `PJI, -� s:• �������0 . a< ., �( J :.. ... un -. -. :,,r. - -. •. a,.- - �- -7�r'it raw^t.s t. - Ir ,ylj \ \:_ ,, \. �`�. -.. .-, -. -.I .� :7' :, _ Ed fm,on h ... .._ .... ... I _F N!I. Nn, p I 1:':: =. •+ , _ I -r I _ n , ..� .,. - mu u , " �� � IJ In PLI V, ,, I '.-t:: "y ^1� • J' n �L.. - Ntmw - 1• - ' f6 t A:, ♦,. Colon /� t •^ + •' ' '' % : i c' ..L•_ . 'S:" - -... -- W,1 'H,ntl, ` d I. P. , - .... ., ... ,�Lt - , Mj18CN r .. ♦ I,amob,..._. i.zJ a�[ -- <...,,..r _.., -.. .. brZ�Pl rf�-. .R£S•.! y ::"E._� .. __ - N • '* - --- _ ' < t 1 � �1 _ -.. _ _ _ _ .. rt jr . 4N �. :!. nr}' • ::� �i'!11' = 'SE:.:..�'. _ J:e'l^, ' a • . m alto - I: �..•t', - - R - J. ,JB ,d,t•u _ _ r 5 i _'• - _.. ... m r -! -" c ., ,. .. �Y.+ t _.. ..:::. ''�:3 �•- �, ... �i, -..�'' m ring - 14 �7 :. \ - .- - - l,nn,ew ,• ' e ..,ew �•_� .,,�,,.. ." /;t.: k:h �'�„t - -i' _ l; 1 ..`-. -� :¢5 'h -\- :',lI �u r,tdYalrO, „� ..TyT J 1 - .. -. >. , I' . th � ,:• :� 1.., ',`n ✓. , _':•1 , -'�;T. n: J'E t� _ n.lr `. _• J.. �� 37 _ .... .< _. Try, _ ° _ .. ✓ , , _. �''�. ,,:, r� . � ��,:: �: _ � . .�„ . _ _ _ �, + '� ' - rE J I s 1 r n .., _ -'Y. .. .r ..., .: - .. .. :.. -•G- . __ _ .. ♦ o , - ... .. a -- ��`:!( L, Dln 1 - .tL< ��' % "` _ - .� �.}j 'R v aN , - I - L� � ice: f-'. ,a °t`_ ��a >' �• - - , =_ - ._ .. '.•.� , - :- wri 'r R- - a F a• i !at i� � r re'o° Tom- r h .'I - Y'4$ r� NDrmuo. - mllan� .a � u�nel 1 y, {' 1 N ti r^S - .us - - r - w 1 t - D. , z V H yy ,Ilee � f^r , .5 , , 1 � . -- -'6th- . y _ - �� 5 .. .: � . -- nr fl .. ..... ., .i :• .. 7 "''� ..L_-T� -. ' :ii.�:° ., � - v ' , ' _ • , ., ,-,. _ .,, .. .,., !I 'L ....., , .... ,I .... s ,.. •- _ � . y � . .. - .,. ( m I� <,_JI '.1 � . I . \'._ ' _ _ 'R_:._ , .+ahw •G- .� . -: .. , _ "._ r r.:r - - • -__... _ ) -.. �. ... r :. 1:: eiLSS: -ei' /.'..," dNr, ../ t � r .'. r ..:.. - -..� .... .. - Roab.nus _ ._ ' '. : :-.::., -• 5, . •..\„'. [ - �,ir , rvp _ ._ .., ✓:n n ter, .. .. .. ..: I- 5 - .t. w , is 1` I ,,•�`,° t _ { t 'rJS't �.-�,. .:T : s, rJUNIAM'S, y / , -J' LL I+ - ti ^. 1 < _ _ - _ - r. ... .... .. t•..: '' 1. -.._ _ _ mot". „r -�_`, r - - [S w OuN eEy, r . ,dam 1 Z - .r' Mi - f N t' -Atc J. •�. a� 1 �. tt m .. r- , .. <. -• _ •Y�' , . VAG U N P 'A. _ _., .....:...: ::` . 't, •'.I.1; � - `. _Y a J. _ , m .. :- .... \ -_... \ / ( n. .. _ { _ r_ . :•,. , , r .. . r .. . i:.:. ,"� r� .,.: r.. `t - %� "'\ t. t }>. .'i °`i:.. `� I _L . : _. ,�- , -,.r_. \ ..:..\ < 1 .s a .r .\j� F ✓. -,. �. - ,c.. .Y �` .. =:.� I - d . 25- - NIRI � J ::..� n� .*F , s .: I Nil --T t� i ,elac,rM Ur+l rN ( ) .- e"i .:: •-i'1 - ,m /' .... ) r.. / WAm - \ .. -.. _ f _ , , w K . /. '`•C'_., TAe,md _ rig u rrllcc,reu brt lal a '4 %L. b -del U\ t Ir, _ _. _ .�.. ..- 1. `.� 'r•.. __ .. .. .. .. .. L., _ i:. � ='.�';:. ,EAI)zoN` . ., - . , - „: '1./ . J!r :. -.- , ... Y:. _ . . - .. \Y 4 1 ndnll'! • _ - - mil. - - �a "i'.' �, `i• _ ,':1', ",. V,- ;,...._. •�K� <: _ - : ...'."r. i "= ,v.er7�': .. � .. J __. ., -... ,_ :• ••.,.., • -,.r ,.- • ° - _ !� _a'.T_ °': "Ya .o,-' 1 roNRtsM '6.doFo_ .r \ ..1, .i � I s... •�} %U, in `;� c_: .mcru✓r6v� � y ;,L °c 3 0' r h_ .r ... _ _...r.. ��• r <' .. '.- >. < 1 ✓ s_ e5 -mob - t r M _ .... -- � , _ .. ... ••:. ._ ,.• � ..... max:' - - - tt _I .: �• . : _ _ .. . �, : .w .n. ,w . _ 1 .. .. e e :: a � :: .J 'l : <,. - 'Jti: � ARTIN rr n r. N<lR Hr ro 1' k� - •S - - IN N I b _ I I 1. r P n °• I "iv Cn - 1._ r_ _ :.. A Y 4v- . .�.. ,.. .. :.�. non -. �•' r - 2. ,r > r LY ... r •.-: ..: . ._ : .- J:� nt -� .. ..: .... .... ..:- - _ ._, ..l OIMaP F71N J`. : /, aT. I. 'I.'6' ��s-• - �. Ic fi 'L, J ,\ _ �l - •_\•' I. � r AHlllt INDI ,rA u' o ` \ fw >r° .e � <AS LtamcTafO V. WN } _ "yD�p�'p T . }.. .. \a .r, f' / - i.\. .'l „ac , L< .tD -F- 1, - 1 ( 't °-�" - •C.JI'i•j_f.. 1 "I. In f ��r•' -v s c Dmr -. .. •F/ WJ «m.... v - ��U . 1 , �� • r8R . 2% ai': - ..c.� r R ah .. S � _JNtlD A1 :.: . T� fr: ...� '� . un :.. .•"`• r I .. b . i R ch �: ,✓,', _ - i .: .I �} - _.K SN•1. 13 of I Ij ER TIO AK �u.. ,_ .:•.I ...: '. ..T :.`'i: _ '• Ci . n .:.. ^0 ,. -. .. :' s, :. . - - V TeY: � ••,+• /.l E-4{D '.DUN _ �n,:�, _ .RIV.ER E - �..: ::.: -.... ,,�¢ .:. •... , _ _ 1. ... � -` ,mss - _ - W _ ... � ... ,_ , . , L _.. r ..- Y- . ,,.. �. -✓ �''- ` - - t .. � �„ . RID O � ...... . .. .. .... i� , . - . a• _ pJ� _ w , . ..'� . �r,..✓ . -,._. _ ... .. �... } :;' � • :�` . :. - ,. -, .: - ..�I ' �• :.� -: - ''RIVE 5 E •, C LINTY FLOOD .CONTROL .. \,. •ynxm l _...., "1.: • -.:> I. z n U: aL !*ra..r : 1. i'., ' .A \ wn., F'..° ..1 - r_!.c.. h.j dyL. hl• .si 1. 1r., _ ¢o - •':g :�i "apC.. A N D M. M - . -.:•.. .- -., � �.. •. ,p / �t ': ":? .ruq,MUb/6 -.¢l E5'14 - _ Eiy...;"r'. ./- °1 "' l w , -I 4 Malyl�, t✓ �. %` E E ?: '� � '� `ti , , t � } � _,•r �. WATER CONSERVATION DISTRICT T9 S, --i -. , u 1 , \ .-. . _4 .... 'I`1 A. . 'M A.R. A 7. - � •'!✓ .,.. r,m r�r,_,g7 p , '�+• `r- -- s•'t: - I - �. - -YEAR-6-HOUR .. � .. ...._ : _ ..., -. .... �oC. �..., w.,n. ,. .... , � .. �. - .. `_'ti •1 <.r C:,, �r ���,1 - j.,.... - '- :- ,r':., ..- r: -_:�= � i ,.: °.. ._`�.. >� u� 1- >..:. .,fir•. :.r • -. �_..'E �., ,t :.. ..)f..:.,, �,a • \ \ 1 __.. _.,...... ., _ �. !, , ,.Y . . L ... . _. L ,. t _ ..._ . .i I - M NS RA7_ . ... ,:.::.: 1 .- a:... . .:.. . _ _4P.. . - - -:`'���p � - - - .4" : x : '_t ' "'tai`' "",T ` Ro ES�T T`ID:I N"' :A..� ° - , - PRECIPITATION AT10N �N E � _ e, 'mac- •, <...:., ..� .:: -:: , <t. - ' -.. I Jy aloe .ca . , , :. . ,. ...._ , �' � ✓-� '' L 1. -..:. _ S.•' �:,. _ ,. ,. • ... h•,r....,,. .• .. .. .. .. , .. r:. .... ,- - ., d ... �l'!r'c lr. 1 1, \ L.' - ':)lv •. ~ - - - «a.r NO. - : J ... .. .:_, ,,... -, :. � .�_ ,, ...... t _ : _ - .:_ . \ hL:� -'�� 1 •i`` 1 , ��Y�Je(� i/F ''gar,., t.:� • p_ C, ^_t -rT, pl - ihl •1 r <:f: c �y L _ r.n .�i, • � � :;f.\2 C �.. /. ° l' .j ,, r;c IE X-Ar c, r _ • v v. i A PLATE E-5.6 U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 1999, Version 6.0 Study date 11/09/05 File: MammonPreUH1100.out +++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ----------=------------------------------------------------------------- Mammon Unit Hydrograph Pre - developed 100 -yr 1 -hr storm { ------------------------------------------------------------------ - - - - -- Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Warner Engineering, Yucca Valley, CA - S/N 598 --------------------------------------------------------------------- English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format --------------------------------------------------------------------- ----------------------------------------------------------------=--- Drainage Area =- 4.84(Ac.) = 0.008 Sq. Mi. USER Entry of lag time in hours Lag time = 0.250 Hr. Lag time = 15.00 Min. 250 of lag time = 3.75 Min. 40% of lag time = 6.00 Min. Unit time = 15.00 Min. Duration of storm = 1 Hour(s) User Entered.Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] 4.84 0.50 100 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] 4.84 1.60 Weighting[1 *2] 2.42 Weighting[1 *2] 7.74 STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall = 0.500(In) Area Averaged 100 -Year. Rainfall = 1.600(In) Point rain (area averaged) = 1.600(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 1.600(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious % 4.840 53.00 " 0.000 Total Area Entered = 4.84(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2 (In /Hr) (Dec.%) (In /Hr) (Dec.) (In /Hr) 53.0 53.0 0.541 0.000 0.541 1.000 0.541 Sum (F) = 0.541 Area averaged mean soil loss (F) (In /Hr) = 0.541 Minimum soil loss rate ((In /Hr)) = 0.271 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.900 ---=----------------------------------------------------------- - - - - -- Slope of intensity- duration curve for a 1 hour storm = 0.5800 ---------------------------------------------------------------------- U n i t H y d r o g r a p h DESERT S -Curve -------------------------------------------------------------------- Unit Hydrograph Data --------------------------------------------------------------------- Unit time period Time % of lag Distribution Unit Hydrograph (hrs) Graph % (CFS) --------------------------------------------------------------------- 1 0.250 -100.000 17.238 0.841 2 0.500 200.000 49.931 2.436 3 0.750 300.000 16.856 0.822 4 1.000 400.000 7.450 0.363 5 1.250 500.000 4.025 0.196 6 1.500 600.000 2.200 0.107 7 1..750 700.000 1.200 0.059 8 2.000 800.000 1.100 0.054 Sum = 100.000 Sum= 4.878 ----------------------------------------------------------------------- Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max I Low (In /Hr) 1 0.25 12.20 0.781 0.541 - -- 0.24 2 0.50 15.20 0.973 0.541 - -- 0.43 3 0.75 27.60 .1:766 0.541 - -- 1.22 4 1.00 45.00 2.880 0.541 - -- 2.34 Sum = 100.0 Sum = 4.2 Flood volume = Effective rainfall 1•.06(In) times area 4.8(Ac.) /[(In) /(Ft.)] = 0.4(Ac:Ft) Total soil loss = 0.54(In) Total soil loss = 0.218(Ad.Ft) Total rainfall = 1.60(In) Flood volume = 18597.5 Cubic Feet Total soil loss = 9512.0 Cubic Feet -------------=------------------------------------------------------ Peak flow rate of this hydrograph = 6.910(CFS) -------------------------------------------------------------------- +++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ .1 - H O U R S T O R M R u n o f f H y d r o g r a p h -------------------------------------------------------------------- Hydrograph in 15 -Minute intervals ((CFS)) -------------------------------------------------------------------- Time(h+m) Volume Ac.Ft Q(CFS.) 0 2.5 5.0 7.5 10.0 ---------=------------------------------------------------------------- 0 +15 0.0042 '0.20 Q I I I I 0 +30 0.0237. 0'.95 1 VQ I I I I 0 +45 0.0708 2.28 I V QI I I I 1+ 0 0.1822 5.39 I V IQ I I 1 +15 0.3250 6.91 I I I Q V I 1 +30 0.3762 2.48 I Q I I V I 1 +45 0.4000 1.15 1 Q I I I V 2+ 0 0.4130 0.63 I Q I I I V I 2 +15 0.4202 0.35 IQ I I I VI 2 +30 0.4243 0.20 Q I I I VI + 2 45 0 .4269 0.13 I Q I I V •� 1 U n i t H y d r o g r a p h A n a 1 y s i.s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 1999, Version 6.0 Study date 11/09/05 File: MammonPreUH3100.out +++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ------------------------------------------------------------------ - - - - -- Mammon Unit Hydrograph Pre - developed 100 -yr 3 -hr storm Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Warner Engineering, Yucca Valley, CA - S/N 598 --------------------------------------------------------------------- English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format --------------------------------------------------------------------- -------------------------------------------------------------------- Drainage Area = 4.84(Ac.) = 0.008 Sq. Mi. USER Entry of lag time in hours Lag time = 0.250 Hr. Lag time = 15.00 Min. 25% of lag time = 3.75 Min. 40% of lag time = 6.00 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1 *2] 4.84 0.70 3.39 100 YEAR Area rainfall data: Area(Ac.)(1] Rainfall(In)[2] Weighting[1 *2] 4.84 2.00 9.68 STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall = 0.700(In) Area Averaged 100 -Year Rainfall = 2.000(In) Point rain (area averaged) = 2.000(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.000(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious % 4.840 53.00 0.000 Total Area Entered = 4.84(Ac.) U RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2. (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 53.0 53.0 0.541 0.000 0.541 1.000 0.541 Sum (F) = 0.541 Area averaged mean soil loss (F) (In /Hr) = 0.541 Minimum soil loss rate ((In /Hr)) = 0.271 (for 24 hour storm duration) Soil low --------------------------------------------------------------------- loss rate (decimal) = 0.900 U n i t H y d r o g r a p h DESERT S -Curve Unit Hydrograph Data Unit time period Time % of lag Distribution Unit.Hydrograph (hrs) ------------------------------------------- Graph % - - - - -- (CFS) - - -- --- - - - -- - - -- 1 0.250 100.000 17.238 - 0.841 2 0.500 200.000 49.931 2.436 3 0.750 300.000 16.856 0.822 4 1.000 400.000 7.450 0.363 5 1.250 500.000 4.025 0.196 6 1.500 600.000 2.200 0.107 7 1.750 700.000 1.200 0.059 8 2.000 800.000 1.100 0.054 Sum = 100.000 Sum= 4.878 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective ' (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.296 0.541 0.266 0.03 2 0.50 4.80 0.384 0.541 0.346 0.04 3 0.75 5.10 0.408 0.541 0.367 0.04 4 1.00 4.90 0.392 0.541 0.353 0.04 5 1.25 6.60 0.528 0.541 0.475 0.05 6 1.50 7.30 0.584 0.541 - -- 0.04 7 1.75 8.40 0.672 0.541 - -- 0.13 8 2.00 9.00 0.720 0.541 - -- 0:18 9 2.25 12.30 0.984 0.541 - -- Z 0.44 10 2.50 17.60 1.408 0.541 - -- 0.87 11 2.75 16.10 1.288 0.541 - -- 0.75 12 3.00 4.20 0.336 0.541 0.302. 0.03 Sum = 100.0 Sum = 2.6 Flood volume.= Effective rainfall 0.66(In) times area 4.8(Ac.) /[(In) /(Ft.)] = 0.3(Ac.Ft) Total soil loss = 1.34(In) Total soil loss = 0.540(Ac.Ft) Total rainfall = 2.00(In) Flood volume = 11603.9 Cubic Feet Total soil loss = 23533.7 Cubic Feet -------------------------------------------------------------------- Peak -------------------------------------7------------------------------ flow rate. of this hydrograph = 3.204(CFS) +++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 3 - H O U R S T 0 R M R u n.o f f H y d r o g r a p h ------------------------------------------------------=------------- Hydrograph in 15 Minute intervals ((CFS)) r -------------------------------------------------------------------- Time(h +m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0 +15 0.0005 0.02 Q I I I I 0 +30 0.0027 0.10 Q I I I I 0 +45 0.0058 0.15 Q I I I I 1+ 0 0.0094 0.17 QV I I I I 1 +15 0.0134 0.19 Q V I I I I 1 +30 0.0180 0.22 Q V I I I I 1 +45 0.0239 0.29 IQ V I I I I 2+ 0 0.0350 0.54 I Q V I I I I 2 +15 0.0547 0.95 1 Q V I I I I 2 +30 0.0964 2.02 I Q V I I I 2 +45 0.1626 3.20 I I Q I V I I 3+ 0 0.2199 2.78 I IQ I V I 3 +15 ,0.2432 1.13 I Q I I I V I 3 +30 0.2543 0.53. I Q I I I V I 3 +45 0.2602 0.29' IQ I I I VI 4+ 0 0.2635 0.16 Q I I I VI 4 +15 0.2655 0.09 Q I I I VI 4 +30 0.2664 0.04 Q I I I VI 4 +45 0.2664 0.00 Q I I I V r U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 19.99, Version 6.0 Study date 11/09/05 File: MammonPreUH6100.out +++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ------------------------------------------------------------------ - - - - -- Mammon Unit Hydrograph Pre - developed 100 -yr 6 -hr storm ------------------------------------------------------------------------ Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Warner Engineering, Yucca Valley, CA - S/N 598 --------------------------------------------------------------------- English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format -------------------------------------- Drainage Area = 4.84(Ac.) _ USER Entry of lag time in hours Lag time = 0.250 Hr. Lag time = 15.00 Min. 25% of lag time = 3.75 Min. 40% of lag time = 6.00 Min. Unit time = 15.00 Min. Duration of storm = 6 Hour(s) User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] 4.84 0.80 ------------------------------- 0.008 Sq. Mi. Weighting[1 *2] 3.87 100 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1 *2] 4.84 2.50 12.10 STORM EVENT (YEAR) .= 100.00 Area Averaged 2 -Year Rainfall = 0.800(In) Area Averaged 100-Year-Rainfall = 2.500(In) Point rain (area Areal adjustment Adjusted average Sub -Area Data: Area (Ac.') 4.840 Total Area Ente averaged) = 2.500(In) factor = 100.00 % point rain = 2.500(In) Runoff Index Impervious 53.00 0.000 red = 4.84(Ac.) RI RI Infil. Rate Impervious Adj. Infil AMC2 AMC -2 (In /Hr) (Dec.%) (In /Hr) 53.0 53.0 0.541 0.000 0.541 Rate Area% (Dec.) .1.000 Sum (F) Area averaged mean soil loss (F) (In /Hr) = 0.541 Minimum soil loss rate ((In /Hr)) = 0.271 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.900 ------------------------------------------ ------ F (In /Hr) 0.541 = 0.541 U n i t H y d r o g r a p h DESERT S -Curve ------------ -------------------------------------------------------- Unit Hydrograph Data --------------------------------------------------------------------- Unit time period Time % of lag Distribution Unit Hydrograph (hrs) Graph % (CFS) . --------------------------------------------------------------------- 1 0.250 100.000 17.238 0.841 2 0.500 200.000 49.931 2.436 3 0.750 300.000 16.856 0.822. 4 1.000 400.000 7.450 0.363 5 1.250 500.000 4.025 0.196 6. 1.500 600.000 2.200 0.107 7 1.750 700.000 1.200 0.059 8 2.000 800.000 1.100' 0.054 ----------------------------------------------------------------------- Sum = 100.000 Sum= 4.878 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max I Low (In /Hr) 1 0.25 1.70 0.170 0.541 0.153 0.02 2 0.50 1.90 0.190 0.541 0.171 0.02 3 0.75 2.10 0.210 0.541 0.189 0.02 4 1.00 2.20 0.220 0.541 0.198 0.02 5 1.25 2.40 0.240 0.541 0.216 0.02 6 1.50 2.40 0.240 0.541 0.216 0.02 7 1.75 2.40 .0.240 0.541 0.216 0.02 8 2.00 2.50 0.250 0.541 0.225 0.02 9 2.25 2.60 0.260. 0.541 0.234 0.03 10 2.50 2.70 0.270 0.541 0.243 0.03 11 2.75 2.80 0.280 0.541 0.252 0.03 12 3.00 3.00 0.300 0.541 0.270 0.03 13 3.25 3.20 0.320 0.541 0.288 0.03 14 3.50 3.60 0.360 0.541 0.324 0.04 15 3.75 4.30 0.430 0.541 0.387 0.04 16 4.00 4.70 0.470 .0.541 0.423 0.05 17 4.25 5.40 0.540 0.541 0.486 .0.05 18 4.50 6.20 0.620 0.541 - -- 0.08 19 4.75 6.90 0.690 0.541 - -- -0.15 20 5.00 7.50 0.750 0.541 - -- 0.21 21 5.25 10.60 1.060 0.541 - -- 0.52 22 5.50 14.50 1.450 0.541 - -- 0.91 23 5.75 3.40 0.340 0.541 0.306 0.03 24 6.00 1.00 0.100 0.541 0.090 0.01 Sum = 100.0 Sum = 2.4 Flood volume = Effective rainfall 0.60(In) times area 4.8(Ac.) /[(In) /(Ft.)] = 0.2(Ac.Ft) Total soil loss = 1.90(Iri) Total soil loss = 0.766(Ac.Ft) Total rainfall =, - 2.50(In) Flood volume 10567.5 Cubic Feet Total soil loss = 33354.8 Cubic Feet -------------------------------------------------------------------- Peak flow rate of this hydrograph = 2:788(CFS) ------------------------------------------------=------------------- +++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 6 - H O U R S T O R M R u n o f f H y d r o g r a p h -------------------------------------------------------------------- Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------- Time(h +m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 ----------------------------------------------------------------- 0 +15 0.0003 0.01 Q I I I 0 +30 0.0015 0.06 Q I I I 0 +45 0.0031 0.08 Q I I I 1+ 0 0.0050 0.09 Q I I I 1 +15 0.0071 0.10 QV I I I 1 +30• 0.0093 0.11 QV I I I 1 +45 0.0117 0.11 QV I I I 2+ 0 0.0141 0.12 Q V I I I 2 +15 0.0166 0.12 Q V I I I 2 +30 0.0192 0.13 Q V I I I 2 +45 0.0219 0.13 Q V I I I 3+ 0 0.0247 0.14 Q V I I I 3 +15 0.0276 0.14 Q V I I I 3 +30 0.0308 0.15 Q V I I I 3 +45 0.0344 0.17 Q V I I I 4+ 0 0.0384 0.20 Q V I I I 4 +15 0.0430 0.22 Q V I I I 4 +30 0.0485 0.27 IQ V I I I 4 +45 0.0566 0.39 IQ VI I I 5+ 0 0.0698 0.64 1 Q V I I 5 +15 0.0929 1.12 1 Q I V I I 5 +30 0.1400 2.28 1 QI V 1 5 +45 0.1976 2.79 1 IQ I I V 6+ 0 0.2202 1.09 1 Q I I I 6 +15 0.2309 0.52 1 Q I I. I 6 +30 0.2366 0.27 IQ I I I 6 +45 0:2397 0.15 Q I I I 7+ 0 0.2415 0.09 Q I I I 7 +15 0.2425 0.05 Q I I I 7 +30 0.2426 0.00 Q 7+4.5. ------------------------------------------------------------------- d 0.2426 0.00 Q. I I I 10.0 i I I I I I I I I I V 1 V I VI V1 V1 VI VI V s U n i t H y d r o g r a p h ' A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 1999, Version 6.0 Study date 11/09/05 File: MammonPreUH24100.out. +++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ------------------------------------------------------------------------ Mammon Unit Hydrograph Pre - developed 100 -yr 24 -hr storm ------------------------------------------------------------------------ Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Warner Engineering, Yucca Valley, CA - S/N 598 -------------------------------------------------------------------- English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format --------------------------------------------------------------------- -------------------------------------------------------------------- Drainage Area = 4.84(Ac.) = 0.008 Sq. Mi. USER Entry of lag time in hours Lag time = 0.250 Hr. Lag time = 15.00 Min. 25% of lag time = 3.75 Min. 40% of lag time = 6.00 Min. Unit time = 15.00 Min. Duration of storm = 24 Hour(s) User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[23 Weighting[1 *2] 4.84 1.20 5.81 100 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1 *2] 4.84 3.50 16.94 STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall= 1.200(In) Area Averaged 100 -Year Rainfall 3:.500(In) Point rain (area averaged) = 3.500(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 3.500(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious % 4.840 53.00 .0.000. Total Area Entered 4.84(Ac.) r RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2 (In /Hr) (Dec.%) (In /Hr) (Dec.) (In /Hr) 53.0. 53.0 0:541 0.000 0.541 1.000 0.541 Sum (F) = 0.541 Area averaged mean soil loss (F) (In /Hr) = 0.541 Minimum soil loss rate ((In /Hr)) = 0.271 (for 24 hour storm duration) Soil low --------------------------------------------------------------------- loss rate (decimal) = 0.900 U n i t H' y d r o g r a p h DESERT S- Curve -------------------------------------------------------------------- Unit Hydrograph Data - --------------------------------------------------------------- Unit time period Time % of lag Distribution . - - - - -- Unit Hydrograph (hrs) Graph % (CFS) --------------------------------------------------------------------- 1. 0.250 100.000 17.238 0.841 2 0.500 200.000 49.931 2.436 3 0.750 300.000 16.856 0.822 4 1.000 400.000 7.450 0.363 5 1.250 500.000 4.025 0.196 6 1.500 600.000' 2.200 0.107 7 1.750 700.000 1.200 0.059 8 2.000 800.000 1.100 0.054 --------------------------------------------------------------------- Sum = 100.000 Sum= 4.878 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.i Percent (In /Hr) Max Low (In /Hr) 1 0.25 0.20 0.028 0.956 0.025 0.00 2 0.50 0.30 0.042 0.945 0.038 0.00 3 0.75 0.30 0.042 0.934 0.038 0.00 4 1.00 0.40 0.056 0.923 0.050 0.01 5 1.25 0.30 0.042 0.912 0.038 •0.00 6 1.50 0.30 0.042 0.901 0.038 0:00 7 1.75 0.30 0.042 0.890 0.038 0.00 8 2.00 0.40 0.056 0.880 0.050 0.01 9 2.25 0.40 0.056 0.869 0.050 0.01 10' 2.50 0.40 0.056 0.859 0.050 0.01 11 2.75 0.50 0.070 0.848 0.063 0.01 12 3.00 0.50 0.070 0.838 0.063 0.01 13 3.25 0.50 0.070 0.827 0.063 0.01 14 3.50 0.50 0.070 0.817 0.063 0.01 15 3.75 0.50 0.070 0.807 0.063 0.01 16" 4.00 0.60 0.084 0.797 0.076 0.01 17 4.25. 0.60 0.084 0.786 0.076 0.01 18 4.50 0.-70 0.098 0.776 0.088 0.01 19 4.7.5 0.70 0.098 0.767 0.088 0.01 20 5.00 0.80 0.112 0.757 0.101, 0.01 21 5.25 0.60 0.084 0.747 0.076 0.01 22 5.50 0.70 0.098 0.737 0.088 0.01 23 5.75 0.80 0.112 0.727 0.101 0.01 24 6.00 0.80 0.112 0.718 0.101 .0- 01 25 6.25 0.90 0.126 0.70'8 0.113 0.01 26 6.50 0.90 0.126 0.699 0.113 0.01 27 6.75 1.00 0.140 0.689 0.126 0.01 28 7.00 1.00 0.140 0.680 0.126 .0.01 29 7.25 1.00 0.140 0.671 0.126 0.01 30 7.50 1.10 0.154 0.662 0.139 0.02 r 31 7.75 1.20 0.168 0.653 0.151 0.02 32 8.00 1.30 0.182 0.644 0.164 0.02 33 8.25 1.50 0.210 0.635 0.189 0.02 34 8.50 1.50 0.210 0.626 0.189 0.02 35 8.75 1.60 0.224 0.617 0.202 0.02 36 9.00 1.70 0.238 0.608 0.214 0.02 37 9.25 1.90 0.266 0.600 0.239 0.03 38 9.50 2.00 0.280 0.591 0.252 0.03 39 9.75 2.10 0.294 0.583 0.265 0.03 40 10.00 2.20 0.308 0.574 0.277 0.03 41 10.25 1.50 0.210 0.566 0.189 0.02 42 10.50 1.50 0.210 0.558 0.189 0.02 43 10.75 2.00 0.280 0.550 0.252 0.03 44 11.00 2.00 0.280 0.542 0.252 0.03 45 11.25 1.90 0.266 0.534 0.239 0.03 46 11.50 1.90 0.266 0.526 0.239 0.03 47 11.75 1.70 0.238 0.518 0.214 0.02 48 12.00 1.80 0.252 0.510 0.227 0.03 49 12.25 2.50 0.350 0.503 0.315 0.03 50 12.50 2.60 0.364 0.495 0.328 0.04 51 12.75 2.80 0.392 0.488 0.353 0.04 52 13.00 2.90 0.406 0.481 0.365 0.04 53 13.25 3.40 0.476 0.473 - -- 0.00 54 13.50 3.40 0.476 0.466 - -- 0.01 55 13.75 2.30 0.322 .0.459 0.290 0.03 56 14.00 2.30 0.322 0.452 0.290 0.03 57 14.25 2.70 .0.378 0.445 0.340 0.04 58 14.50 2.60 0.364 0.438 0.328 0.04 59 14:75 2.60 0.364 0.432 0.328 0.04 60 15.00 .2.50 0.350 0.425 0.315 0.03 61 15.25 2.40 0.336 0.419 0.302 0.03 62 15.50 2.30 0.322 0.412 0.290 0.03 63 15.75 1.90 0.266 0.406 0.239 0.03 64 16.00 1.90 0.266 0.400 0.239 0.03 65 16.25 0.40 0.056 0.394 0.050 0.01 66 16.50 0.40 0.056 0.388 0.050 0.01 67 .16.75 0.30 0.042 0.382 0.038 0.00 68 17.00 0.30 0.042 0.376 0.038 0.00 69 17.25 0.50 0.070 0.370 0.063 0.01 70 17.50 0.50 0.070 0.365 0.063 0.01 71 17.75 0.50 0.070 0.359 0.063 0.01 72 18.00 0.40 0.056 0.354 0.050 0.01 73 18.25 0.40 0.056 0.349 0.050 0.01 74 18.50 0.40 0.056 0.344 0.050 0.01 75 18.75 0.30 0.042 0.339 0.038 0.00 76 19.00 0.20 0.028 0.334 0.025 0.00 77 19.25 0.30 0.042 0.329 0.038 0.00 78 19.50 0.40 0.056 0.325 0.050 0.01 79 19.75 0.30 0.042 0.320 0.038 0.00 80 20.00 0.20 0.028 0.316 0.025 0.00 81 20.25. 0.30 0.042 0.312 0.038 0.00 82 20.50 0.30 0.042 0.308 0.038 0.00 83' 20.75 0.30 0.042' 0.304 0.038 0.00 84 21.00 0.20 0.028 0.300 0.025 0.00 85 21.25 0.30 0.042 0.296 0.038 0.00 86 21.50 0.20 0.028 0.293 0.025 0.00 87 21.75 0.30 0.042 0.290 0.038 0.00 88 .22.00 0.20 0.028 0.287 0.025 0.00 89 22.25 0.30 0.042 0.284 0.038 0.00 90 22.50 0.20 0.028 0.281 0.025 0.00 91 22.75 0.20 0.028 0.279 0.025 0.00 92 23.00 0.20 0.028 0.277 .0'.025 0.00 93 23.25 0.20 0.028 0.275 0.025 0.00 94 23.50 0.20 0.028 0.273 0.025 0.00 95 23.75 0.20 0.028 0.272 0.025 0.00 96 24.00 0.20 0.028 0.271 0.025 0.00 Sum = 100.0 Sum = 1.3 Flood•volume = Effective rainfall 0.33(In) times area 4.8(Ac.) /[(In) /(Ft.)] = 0.1(Ac.Ft) Total soil loss = 3.17(In) Total soil loss = 1.279(Ac.Ft) Total rainfall = 3.50(In) Flood volume = 5786.5 Cubic Feet Total soil loss = 55705.1 Cubic Feet -------------------------------------------------------------------- Peak flow rate of this hydrograph = 0.183(CFS) -------------------------------------------------------------------- +++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 24 - H O U R S T 0 R M R u n o f f H y d r o g r a p h ---7---------------------------------------------------------------- Hydrograph in 15 Minute intervals ((CFS)) -------------------------------------------------------------------- Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0 +15 0.0000 0.00 Q I I I I 0 +30 0.0003 0.01 Q l I I I 0 +45 0.0006 0.02 Q I I I I 1+ 0 0.0010 0.02 Q I I l I 1 +15 0.0015 0.02 Q I I I I 1 +30 0.0019 0.02 Q I I I I 1 +45 0.0023 0.02 Q 2+ 0 0.0028 0.02 Q I I I I 2 +15 0.0033 0.03 Q I I I I 2 +30 0.0038 0.03 QV I I I I 2 +45 0.0044 0.03 QV I I I I 3+ 0 0.0051 0.03 QV I I I I 3 +15 0.0058 0.03 QV I I I I 3 +30 0.0064 0.03 QV I I I I 3 +45 0.0071 0.03 Q V I I I I 4+ 0 0.0079 0.04 Q V I I I I 4 +15 0.0087 0.04 Q V 4 +30 0.0095 0.04 Q V I I I I 4 +45 0.0105 0.05 Q V I I I I 5+ 0 0.0114 0.05 Q V I I I I 5 +15 0.0125 0.05 Q V I I I I 5 +30 0.0134 0.05 Q V I I I I 5 +45 0:0144 0.05 Q V I I I I 6+ 0 0.0155 0.05 Q V I I I I 6 +15 0.0166 0.05 Q V I I I I 6 +30 0.0178 0.06 Q V I I I I 6 +45 0.0191 0 -06 Q V I I I I 7+ 0 0.0204 0.07 Q V I I I I 7 +15 0.0218 0.07 Q V I I I I 7 +30 0.0232 0.07 Q V I I I I 7 +45 0.0247 0.07 Q V I I I I 8+ 0 0.0264 0.08 Q V I I I I 8 +15 0.0282 0.09 ,Q V I I I I 8 +30 0.0302 0.10 Q VI I I I 8 +45 0.0322 0.10 Q VI I I I 9+ 0 0.0344 0.11 Q V i I I 9 +15 .0.0368 0.11 Q V 9 +30 0.0394 0.12 Q IV I I I 9 +45 0.0421 0.13 Q I V I I I 10+ 0 0.0450 0.14 Q I V I I I 10 +15 .0.0978 0.14 Q 10 +30 0.0502 0.12 Q 10 +45 0.0526 0.11 Q 11+ 0 0.0553 0.13 Q 11 +15 0.0580 0.13" Q 11 +30 0.0607 0.13 Q 11 +45 0.0633 0.13 Q 12+ 0 0.0658 0.12 Q 12 +15 0.0685 0.13 Q 12 +30 0.0718 0.16 Q 12 +45 0.0753 0.17 Q 13+ 0 0.0791 0.18 Q 13 +15 0.0824 0.16 Q 13 +30 0.0839 0.08 Q 13 +45 0.0857 0.08 Q 14+ 0 0.0884 0.13 Q 14 +15 0.0914 0:15 Q 14 +30 0.0949 0.17 Q 14 +45 0.0985 0.17 Q 15+ 0 0.1020 0.17 Q 15 +15 0.1055 0.17 Q 15 +30 0.1090 0.17 Q 1 5 +45 0.1122 0.16 Q -16+ 0 0.1151 0.14 Q 16 +15 0.1175 0.12 Q 16 +30 0.1188 0.06 Q 16 +45 0.1198 0.04 Q 17+ 0 0.1204 0.03 Q 17 +15 0.1210 0.03 Q 17 +30 0.1217 0.03 Q 17 +45 0.1224 0.03. Q 18+ 0 0.1230 0.03 Q 18 +15. 0.1236 0.03 Q 18 +30 0.1242 0.03 Q 18 +45 0.1248 0.03 Q 19+ 0 0.1252, 0.02 Q 19 +15 0.1256 0.02 Q 19 +30 0.1260 0.02 Q 19 +45 0.1265 0.02 Q 20+ 0 0.1269 0.02 Q 20 +15 0.1273 0.02 Q 20 +30 0.1277 0.02- Q 20 +45 0.1281 0.02 Q- 21+ 0 0.1285 0.02 Q 21 +15 0.1289 0.02 Q 21 +30 0.1292 0.02 Q 21 +45 0.1296 0.02 Q 22+ 0 0.1300 0.02 Q 22 +15 0.1303 0.02 Q 22 +30 0.1307 0.02; Q 22 +45 0.1310 0.02 Q 23+ 0 0.1313 0.01 Q 23 +15 0.1316 0.01 Q 23 +30 0.1319 0.01 Q 23 +45 0.1321 0.01 .Q 24+ 0 0.1324 0.01. Q 24 +15 0.1327 0.01 Q 24 +30 0.1327 0.00 Q 24 +45 0.1328 0.00 Q 25+ 0 0.1328 0.00 Q 25 +15 0.1328 0.00 Q 25 +30 0.1328 0.00 Q 25 +45 0.1328, 0.00 Q V I I V I V I I V I I V I I VI I VI I v I V I V I I V I V I V I I V I ( V I I V I I VI V I IV I i v I I I I I I I I I I I I I I 1 I I I I I v I v I V I V V I V I V V V i v I V I V v I V v i v I V V 1 V v V V I v I V VI v VI v VI VI VI, VI VI v VI VI VI VI VI VI V r} . U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 1999, Version 6.0 Study date 11 /09/05 File: MammonDevUH1100.out ++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +• ------------------------------------------------------------------------- Mammon Unit HydrograpH Developed 100 -yr 1 -hr storm =----------------------------------------------------------------------- Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Warner Engineering, Yucca Valley, CA - SIN 598 -----------=--------------------------------------------------------- English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English,Units used in output format --------------------------------------------------------------------- -------------------------------------------------------------------- Drainage Area = 4.84(Ac.) = 0.008 Sq. Mi. USER Entry of lag time in hours + Lag time = 0.250 Hr. Lag time = 15.00 Min. 250 of lag time = 3.75 Min. 40a of lag time = 6.00 Min. Unit time = 15.00 Min. Duration of storm = 1 Hour(s) User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1 *2] 4.84 0.50 2.42 -100 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting.[1 *2] 4.84 1.60 - 7.74 STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall = 0.500(In) Area Averaged 100 -Year Rainfall = 1.600(In) Point rain (area averaged) = 1.600(In) Areal adjustment factor = 100.00 0 Adjusted average point rain = 1.600(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious % 4.840 32.00 0.500 Total Area Entered = 4.84(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 32.0 32.0 0.742 0.500 0.408 1.000 0.408 Sum (F) = 0.408 Area averaged mean soil loss (F) (In /Hr) = 0.408 Minimum soil loss rate ((In /Hr)) = 0.204 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.500 - --------------------------------------------------------------------- Slope of intensity- duration curve for a 1 hour storm = 0.5800 ---------------------------------------------------------------------- U n i t H y d r o g r a p h DESERT S -Curve -------------------------------------------------------------------- Unit Hydrograph Data --------------------------------------------------------------------- Unit time period Time % of lag Distribution Unit Hydrograph (hrs) Graph % (CFS) --------------------------------------------------------------------- 1 0.250 100.000 17.238 0.-841 2 0.500 200.000 49.931 2.436 3 0.750 300.000 16.856 0.822 4 1.000 400.000 7.450 0.363 5 1.250 500.000 4.025 0.196 6 1.500 600.000 2.200 0.107 7 1.750 700.000 1.200 0.059 8 2.000 800.000 1.100 0.054 Sum = 100.000 Sum= 4.878 ----------------------------------------------------------------------- Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max I Low (In /Hr) 1 0.25 12.20 0.781 0.408 - -- 0.37 2 0.50 15.20 0.973 0.408 - -- 0.56 3 0.75 27.60 1.766 0.408 - -- 1.36 4 1.00 45.00 2.880 0.408 - -- 2.47 Sum = 100.0 Sum = 4.8 Flood volume = Effective rainfall 1.19(In) times area 4.8(Ac.) /[(In) /(.Ft.)] = 0.5(Ac.Ft) Total soil loss = 0.41(In) Total soil loss = 0.165(Ac.Ft) Total rainfall = 1.60(In) Flood volume = 20939.5 Cubic Feet Total soil loss = 7170,0 Cubic Feet -------------------------------------------------------------------- Peak flow rate of this hydrograph = 7.419(CFS) -------------------------------------------------------------------- +++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 1 - H O U R S T.0 R M R u n o f f H y d r o g r a p h -------------------------------------------------------------------- Hydrograph in 15 Minute intervals ((CC'S)) ------------------------------------- =------------------ ------------ Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0065 0.31 VQ I I I I 0 +30 0.0351 1.38 1 V Q I I I I 0 +45 0.0934 2".83 1 V IQ I I I 1+ 0 0.2172 5.99 1 1 V I Q I I 1 +15 0.3705 7.42 1 1 +30 0.4258 2.68 1 1 +45 0.4516 1.25 1 Q 2± 0 0.4657 0.68 1 Q 2 +15 0.4735 0.38 IQ 2 +30 0.4780 0.22 Q 2 +45 ----------------------------------- 0.4807 0.13 Q - - - - -- I I QV I Q I I V I I I I V I I i I V I I I I VI I I I VI I I I ---------------------- - - - - V -- U n i t H y d r o g r a p h A n a l y s i s a 4 Copyright (c) CIVILCADD /CIVILDESIGN, 1989.- 1999, Version 6.0 Study date 11 /09/05 File: MammonDevUH3100.out +++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + ± + + + + + + + + + ++ Mammon Unit Hydrograph Developed 100 -yr 3 -hr storm ------------------------------------------------------------------------ Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date = April 1978 Warner Engineering, Yucca Valley, CA - S/N 598 --------------------------------------------------------------------- English (in -lb) Input Units Used English Rainfall Data (Inches] Input Values Used English Units used in output format --------------------------------------------------------------- - - - - -- . -------------------------------------------------------------------- Drainage Area 4.84(Ac.) = 0.008 Sq. Mi. USER Entry of lag time in hours j Lag time = 0.250 Hr. Lag time = 15.00 Min. 250 of lag time = 3.75 Min. 40% of lag time = 6.00 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Area(Ac.) [13 Rainfall(In)[2] Weighting[1 *2] 4.84 0.70 3.39 100 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1 *2] 4.84 2.00 9.68 STORM EVENT (YEAR) = 100:00 Area Averaged 2 -Year Rainfall = 0.700(In) Area Averaged 100 -Year Rainfall .= 2.000(In) Point rain (area averaged) = 2.000(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.000(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious % 4.840 32.00 0.500 Total Area Entered = 4.84(Ac.) RI RI Infil..Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 32.0 32.0 0.742 0.500 0.408 1.000 0.408 Sum (F) = 0.408 Area averaged mean soil loss (F) .(In /Hr) =. 0.408 Minimum soil loss rate ((In /Hr)) =. 0.204 (for 24 hour storm duration) Soil low --------------------------------------------------------------------- loss rate (decimal) = 0.500 U n i t H y d r o g r a p h DESERT S -Curve -------------------------------------------------------------------- Unit Hydrograph Data -------------------------------------------------------------=------- Unit time period Time % of lag. Distribution Unit Hydrograph (hrs) Graph % (CFS) ----=---------------------------------------------------------------- 1 0.250 100.000 17.238 0.841 2 0.500 200.000 49.931 2.436 3 0.750 300.000 16.856 0.822 4 1.000 400.000 7.450 0.363 5 1.250 500.000 4.025 0.196 6 1.500 600.000 2.200 0.107 7 1.750 700.000 1.200 0.0 -59 8 2.000 800.000 1.100 0.054- ----------------------------------------------------------------------- Sum = 100.000 Sum= 4.878 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max I Low (In /Hr) 1 0.25 3.70 .0.296 0.408 0.148 0.15 2 0.50 4.80 0.384 0.408 0.192 0.19 3 0.75 5.10 0.408 0.408 0.204 0.20 4 1.00 4.90 0.392 0.408. 0.196 0.20 5 1.25 6.60 0.528 0.408 - -- 0.12 6 1.50 7.30 0.584 0.408 - -- 0.18 7 1.75 8.40 0.672 0.408. - -- 0.26 8 2.00 9.00 0.720 0.408 - -- 0.31 9 2.25 12.30 0.984 0.408 - -- 0.58 10 2.50 17.'60 1.408 0.408 - -- 1.00 11 2.75 16.10 1.288 0.408 - -- 0.88 12 3.00 4.20 0.336 0.408 0.168 0.17 Sum = 100.0 Sum =. 4.2 Flood volume = Effective rainfall 1.06(In) times area 4.8(Ac.) /[(In) /(Ft.)] = 0.4(Ac.Ft) Total soil loss = 0.94(In) Total soil loss 0.380(Ac.Ft) Total rainfall = 2.00(In) Flood volume .= 18602.0 Cubic Feet Total soil loss = 16535.6 Cubic Feet -------------------------------------------------------------------- Peak flow rate of this hydrograph = 3.852(CFS) -------------------------------------------------------------------- +++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 3- H 0 U. R S T 0 R M. R u n o f f H y d r o -g.r a p h -------------------------------------------------------------------- Hydrograph in 15 Minute intervals ((CFS))_ Time(h +m) ----------------------------------------------------------------- Volume Ac.Ft • Q(CFS) 0 2.5 5.0 7.5 10.0 - - - - -- 0 +15 0.0026 0.12 Q I I I I 0 +30 0.0134 0.52 VQ I I I I 0 +45 0.0291 0.76 1 VQ I I I I 1+ 0 0.0471 0.87 1 QV I I I I 1 +15 0.0646 0.85 1 Q V 1 I I I 1 +30 0.0797 0.73 1 Q V I I I I 1 +45 0.0981 0.89 1 Q VI I I I 2+ 0 0.1223 1.17 1 Q V I I I 2 +15 0.1552 1.59 1 Q I V I I I 2 +30 0.2103 2.67 1 Q VI I I 2 +45 0.2899 3.85 1 1 Q I V I I 3+ 0 0.3606 3.42 1 1 Q I I V 1 3 +15 0.3951 1.67 1 Q I I I V I 3+30 0.4106 0.75 1 Q I I I V I 3 +45 0.4187 0.39 IQ I I I VI 4+ 0 0.4231 .0.22 Q I I I VI 4 +15 0.4257 0.12 Q I I I VI 4 +30 0.4269 0.06 Q I I I VI 4 +45 ----------------------------------------------------------------- 0.4270 0.01 Q I I I V - - - - -- 0 U n i t H y d r o g r a p h A'n a 1 y s i s Copyright (c) CIVILCADD /CIVILDESIGN,. 1989 - 1999, Version 6.0 Study date 11/09/05 File: MammonDevUH6100.out +++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Mammon Unit Hydrograph Developed 100 -yr 6 -hr storm ------------------------------------------------------------------- - - - -'- Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Warner Engineering, Yucca Valley, CA - SIN 598 --------------------------------------------------------------------- English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format ------------------------------------------=-------------------------- -----------------------------------------------------------=-------- Drainage Area = 4.84(Ac.) = 0.008 Sq. Mi. USER Entry of lag time in hours Lag time = 0.250 Hr. Lag time = 15.00 Min. 250 of lag time = 3.75 Min. 400 of lag time = 6.00 Min. Unit time = 15.00 Min. Duration of storm = 6 Hour(s) User Entered Base Flow = 0.00(CFS) 2-YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1 *2] 4.84 0.80 3.87 100 YEAR Area rainfall data: Area(Ac.)[l] Rainfall(In)[2] Weighting[1 *2] 4.84 2.50 12.10 STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall = 0..800(In) Area Averaged 100 -Year Rainfall 2.500(In) Point rain (area averaged) = 2.500(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.500(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious % 4.840 32.00 0.500 Total Area Entered = 4.84(Ac.) RI RI Infil. Rate Impervious Adj. Infil: Rate Area% F AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 32.0 32.0 0.742 0.500 0.408 1.000 0.408 . Sum (F) = 0.408 Area averaged mean soil loss (F) (In /Hr) = 0.408 Minimum soil loss rate ((In /Hr)) = 0.204 (for 24 hour storm duration) Soil low loss rate --------------------------------------------------------------------- (decimal) = 0.500 U n i t H y d r o g r a p h DESERT S -Curve -------------------------------------------------------------------- Unit Hydrograph Data --------------------------------------------------------------------- Unit time period Time % of lag Distribution Unit Hydrograph (hrs) Graph % (CFS) --------------------------------------------------------------------- 1 0.250 100.000 17.238 0.841 2 0.500 200.000 49.931 2.436 3 0.750 300.000 16.856 0.822 4 1.000 400.000 7.450 0.363 5 1.250 500.000 4.025 0.196 6 1.500 600.000 2.200 0.107 7 1.750 700.000 1.200 0.059 8 2.000 800.000 1.100 0.054 ----------------------------------------------------------------------- Sum = 100.000 Sum= 4.878 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 1.70 0.170 0.408 0.085 0.08 2 0.50 1.90 0.190 0.408 0.095 0.09 3 0.75 2.10 0.210 0.408 0.105 0.10 4 1.00 2.20 0.220 0.408 0.110 0.11 5 1.25 2.40 0.240 0.408 0.120 0.12 6 1.50 2.40 0.240 0.408 0.120 0.12 7 1.75 2.40 0.240 0.408 0.120 0.12 8 2.00 2.50 0.250 0.408 0.125 0.12 9 2.25 2.60 0.260 0.408 0.130 0.13 10 2.50 2.70 0.270 0.408 0.135 0.13 11 2.75 2.80 0.280 0.408 0.140 0.14 12 3.00 3.00 0.300 0.408 0.150 0.15 13 3.25 3.20 0.320 0.408 0.160 0.16 14 3.50 3.60 0.360 0.408 0.180 0.18 15 3.75 4.30 0.430 0.408 - -- 0.02 16 4.00 4.70 0.470 0.408 - -- 0.06 17 4.25 5.40 0.540 0.408 - -- 0.13 18 4.50 '6.20 '0.620 0.408 - -- 0.21 19 4.75 6.90 0.690 0.408 - -- 0.28 20 5.00 7.50 0.750 0.408 - -- 0.34 21 5.25 10.60 1.060 0.408 - -- 0.65 22 5.50 14.50 1.450 0.408 - -- 1.04 23 5.75 3.40 0.340 0.408 0.170 0:17 24 6.00 1.00 0.100 0.408 0.050 0.05 Sum = 100.0 Sum = 4.7 Flood volume = Effective rainfall 1.19(In) times area 4.8(Ac.) /[(In) /(Ft.)] = 0.5(Ac.Ft) Total soil loss = 1.31(In) Total soil loss = 0.530(Ac.Ft) Total rainfall = 2.50(In) Flood volume = 20819.8 Cubic Feet Total soil loss = 23102.5 Cubic Feet -------------------------------------------------------------------- Peak flow rate of this hydrograph = 3.432(CFS) -------------------------------------------------------------------- +++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 6 - H O U R S T 0 R M R u n o f f H y d r o g r a p h -------------------------------------------------------------------- Hydrograph in 15 Minute intervals ((CFS)) --------------------------------------------- Time(h+m) Volume Ac.Ft Q(CFS) 7 ----------------------- 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0015 0.07 Q I I I 1 0 +30 0.0074 0.29 VQ I I I I 0 +45 .0.0155 0.39 Q I I I I 1+ 0 0.0249 0..46 IQV I I I 1 +15 .0.0354 0.51 1 Q I I I I 1 +30 0.0467 0.55 .I QV I I I I 1 +45 0.0585 0.57 1 Q V I I I I 2+ 0 0.0705 0.58 1 Q V I I I I 2 +15 0.0830 0.60 1 Q V I I I I 2 +30 0.0959 0.63 1 Q V I I I I 2 +45 0.1093 0.65 1 Q V1 I I I 3+ 0 0.1233 0.68 1 Q V I I I 3 +15 0.1381 0.72 1 Q V I I I 3 +30 0.1540 0.77 1 Q I V I I I 3 +45 0.1684 0.70 1 Q I V I I I 4+ 0 0.1761 0.37 IQ I V I I I 4 +15 0.1845 0.41 IQ I V I I I 4 +30 0.1975 0.63 1 Q I V I I I 4 +45 0.2166 0.93 1 Q I V I I I 5+ 0 0.2420 1.23 1 Q I V I I 5 +15 0.2779 1.73 1 Q I I V I I 5 +30 0.3380 2.91 1 IQ I V I I 5 +45 0.4089 3.43 1 1 Q I V I 6+ 0 0.4433 1.67 1 Q I I I V I 6 +15 0.4605 0.83 1 Q I I I V 1 6 +30 0.4691 0.41 IQ I I I VI 6 +45 0.4736 0.22 Q I I I VI 7+ 0 0.4762 0.12 Q I I I V1 7 +15 0'.4777 0.07 Q I I I V1 7 +30 0.4779 0.01 Q I I I V1 7 +45 ------------------------------=---------------------------------- .0.4780 0.00 Q. I I I V - = - - -- 19 U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 1999, Version-6.0 Study date 11/09/05 File: MammonDevUH24100.out .+++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Mammon Unit Hydrograph Developed 100 -yr 24 -hr storm ------------------------------------------------------------------------ Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Warner Engineering, Yucca Valley, CA - SIN' 598 --------------------------------------------------------------------- English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format --------------------------------------------------------------------- -------------------------------------------------------------------- Drainage Area = 4.84(Ac.) = 0.008 Sq. Mi. USER Entry of lag time in hours Lag time = 0.250 Hr. Lag time = 15.00 Min. 250 of lag time = 3.75 Min. 400 of lag time = 6.00 Min.. Unit time = 15.00 Min. .Duration of storm = 24 Hour(s) User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1 *2] 4.84 1.20 5.81 100 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1 *2] 4.84 3.50 16.94 STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall 1.200(In) Area Averaged 100 -Year Rainfall = 3.500(In) Point rain (area averaged) = 3.500(In) Areal adjustment factor = 100.00 % Adjusted average point rain 3.500(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious % 4.840 32.00 0.500 Total Area Entered = 4.84(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 32.0 32.0 0.742 0.500 0.408 1.000 0.408 Sum (F) = 0.408 Area averaged mean soil loss (F) (In /Hr) = 0.408, Minimum soil loss rate ((In /Hr)) = 0.204 (for 24 hour storm duration) Soil low --------------------------------------------------------------------- loss rate (decimal) = 0.500 U n i t H y d r o g r a p h DESERT S -Curve - - - - -' --------------------------------------------------------------- Unit Hydrograph Data --------------------------------------------------------------------- Unit time period Time % of lag Distribution Unit Hydrograph (hrs) Graph % • (CFS) ------------------------L-------------------------------------------- 1 0.250 100.000 17.238 0.841 2 0.500 200.000 49.931 2.436 3 0.750 300.000 16.856 0.822 4 1.000 400.000 7.450 0.363 5 1.250 500.000 4.025 0.196 6 1.500 600.000 2.200 0.107 7 1.750 700.000 1.200 0.059 8 2.000 800.000 1.100 0.054 ----------------------------------------------------------------------- Sum = 100.000 Sum= 4.878 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max I Low (In /Hr) 1 0.25 0.20 0.028 0.721 0.014 0.01 2 0.50 0.30 0.042 0.712 0.021 0.02 3 0.75' 0.30 0.042 0.704 0.021 0.02 4 1.00 0.40 0.056 0.696 0.028 0.03 5 1.25 0.30 0.042 0.688 0.021 0.02 6 1.50 0.30 0.042 0.679 0.021 0.02 7 1.75 0.30 0.042 0.671 0.021 0.02 8 2.00 0.40 0.056 0.663 0.028 0.03 9 2.25 0.40 0.056 0.655 0.028 0.03 10 2.50 0.40 0.056 0.647 0.028 0.03 11 2.75 0.50 0.070 0.639 0.035 0.03 12 3.00 0.50 0.070 0.631 •0.035 0.03 13 3.25 0.50 0.070 0.624 0.035 0.03 14 3.50 0.50 0.070 0.616 0.035 0.03 15 3.75 .0.50 0.070 0.608 0.035 0.03 16 4.00 0.60 0.084 0.600 0.042 0.04 17 4.25 0.60 0.084 0.593 0.042 0.04 18 4.50 0.70 0.098 0.585 0.049 0.05 19 4.75 0.70 0.098 0.578 0.049 0.05 20 5.00 0.80 0.112 0.570 0.056 0.06 21 5.25 0.60 0.084 0.563 0.042 0.04 22 5.50 0.70 0.098 0.556 0.049 0.05 23 5.75. 0.80 0.112 0.548 0.056 0.06 24 6.00 0.80 0.112 0.541 0.056 0.06 25 6.25 0.90 0.126 0.534 0.063 0.06 26 6.50 0.90 0.126 0.527 0.063 0.06 27 6.75 1.00 0.140 0.520 0.070 0.07 28 7.00 1.00 0:140 0.513 0.070 0.07 29 7.25 1.00 0.140 0.506 0.070 0.07 30 7.50 1.10 0.154 0.499 0.077 0.08 31 7.75 1.20 0.168 0.492 0.084 0.08 32 8.00 1.30 0.182 0.485 0.091 0.09 33 8.25 1.50 0.210 0.478 0.105 0.10 34 8.50 1.50 0.210 0.472 0.105 0.10 35 8.75 1.60 0.224 0.465 0.112 0.11 36 9.00 1.70 0.238 0.459 0.119 0.12 37 9.25 1.90 0.266 0.452 0.133 0.13 38 9.50 2.00 0.280 0.446 0.140 0.14 39 9.75 2.10 0.294 0.439 0.147 0.15 40 10.00 2.20 0.308 0.433 0.154 0.15 41 10.25 1.50 0.210 0.427 0.105 0.10. 42 10.50 1.50 0.210 0.421 0.105 0.10 43 10.75 2.00 0.280 0.414 0.140 0.14 44 11.00 2.00 0.280 0.408 0.140 0.14 45 11.25 1.90 0.266 0.402 0.133 0.13 46 11.50 1.90 0.266 0.396 0.133 0.13 47 11.75 1.70 0.238 0.391 0.119 0.12 48 12.00 1.80 0.252 0.385 0.126 0.13 49 12.25 2.50 0.350 0.379 0.175 0.17 50 12.50 2.60 0.364 0.373 0.182 0.18 51 12.75 2.80 0.392 0.368 - -- 0.02 52 13.00 2.90 0.406 0.362 - -- 0.04 53 13.25 3.40 0.476 0.357 - -- 0.12 54 13.50 3.40 0.476 0.351 - -- 0.12 55 13.75 2.30 0.322 0.346 0.161 0.16 56 14.00 2.30 0.322 0.341 0.161 0.16 57 14.25 2.70 0.378 0.336 - -- 0.04 58 14.50 2.60 0.364 0.330 - -- 0.03 59 14.75 2.60 0.364 0.325 - -- 0.04 60 15.00 2.50 0.350 0.320 - -- 0.03 61 15.25 2.40 .0.336 0.315 - -- 0.02 62 15.50 2.30 0.322 0.311 - -- 0.01 63 15.75 1.90 0.266 0.306 0.133 0.13 64 16.00' 1.90 0.266 0.301 0.133 0.13 65 16.25 0.40 0.056 0.297 0.028 0.03 66 16.50 0.40 0.056 0.292 0.028 0.03 67 16.75 0.30 0.042 0.288 0.021 0.02 68 17.00 0.30 0.042 0.283 0.021 0.02 69 17.25 0.50 0.070 0.279 0.035 0.03 70 17.50 0.50 0.070 0.275 0.035 0.03 71 17.75 0.50 0.070 0.271 0.035 0.03 72 18.00 0.40 0.056 0.267 0.028 0.03 73 18.25 0.40- 0.056 0.263 0.028 0.03 74 18.50 0.40 0.056 0.259 0.028 0.03 75 18.75 0.30 0.042 0.255 0.021 0.02 76 19.00 0.20 0.028 0.,252 0.014 0.01 77 19.25 0.30 0.042 0.248 0.021 0.02 78 19.50 0.40 0.056 0.245 0:028 0.03 79 19.75 0.30 0.042 0.241 0.021 0.02 80 20.00 0.20 0.028 0.238 0.014 0.01 81 20.25 0.30 0.042 0.235 0.021 .0.02 82 20.50 0.30 0.042 0.232 0.021 0.02 83 20.75 0.30 0.042 0.229 0.021 0.02 84 21.00 0.20 0.028 0.226 0.014 0.01 85 21..25 0.30 0.042 0.223 0.021 0.02 86 21.50 0.20 0.028 0.221 0.014 0.01 87 21.75 0.30 0.042 0.218 0.021 0.02 88 22.00 0.2b 0.028 0.216 0.014 0.01 89 22.25 0.30 0.042 0.214 0.021 0.02 90 22.50 0.20 0.028 0.212 0.014 0.01 91 22.75 0.20 0.028 0.210 0.014 0.01 92 23.00 0.20 0.028 0.209 0.014 0.01 93 23.25 0.20 0.028 0.207 0.014 0.0.1 94 23.50 0.20 0.028 0.206 0.014 0.01 95 23.75. 0.20 0.028 0.205 0.014 0.01 96 24.00 0.20 0.028 0.204 0.014 0.01 Sum = 100.0 Sum = 5.6 Flood volume = Effective rainfall 1.39(In) times area 4.8(Ac.) /[(In) /(Ft.)] = 0.6(Ac.Ft) Total soil loss = 2.11(In) Total soil loss = 0.851(Ac.Ft) Total rainfall = 3.50(In) Flood volume = 24403.8 Cubic Feet Total soil loss = 37087.8 Cubic Feet -------------------------------------------------------------------- Peak flow rate of this hydrograph = 0.783(CFS) -------------------------------------------------------------------- +++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 24 - H O U R S T O R M R u n o f f H y d r o g r a p h -------------------------------------------------------------------- Hydrograph in 15 Minute intervals ((CFS)) --------------------------- Time(h+m) Volume Ac.Ft Q(CFS) 0 +15 0.0002 0.01 0 +30 0.0013 0.05 0 +45 0.0030 0.08 1+ 0 0.0050 0.10 1 +15 0.0073 0.11 1 +30 0.0095 0.11 1 +45 0.0116 0.10 2+ 0 0.0139 0.11 2 +15 0.0165 0.13 2 +30 0.0192 0.13 2 +45 0.0221 0.14 3+ 0 0.0254 0.16 3 +15 0.0288 0.16 3 +30 0.0322 0.17 3 +45 0.0357 0.17 4+ 0 0.0394 0.18 4 +15 0.0434 0.19 4 +30 0.0476 0.21 4 +45 0.0523 0.23 5+ 0 0.0572 0.24 5 +15 0.0623 0.25 5 +30 0.0669 0.23 5 +45 0.0719 0.24 6+ 0 0.0773 0.26 6 +15 0.0829 0.27 6 +30 0.0890 0.29 6 +45 0.0953 0.31 7+ 0 0.1021 0.33 7 +15 0.1090. 0.33 7 +30 0.1161 0.34 7 +45 0.1237 0.37 8+ 0 0.1319 0.40 8 +15 0.1409 0.44 8 +30 0.1509 0.48 8 +45 0.1612 0.50 9+ 0 0.1722 0.53 9 +15 0.1840 0.57 9 +30 0.1969 0.62 9 +45 0.2106 0.66 10+ 0 0.2250 0.70 10 +15 0.2392 0.69 10 +30 0.2512 0.58 ----------------------------------------- 0 2.5 5.0 7.5 10.0 ----------7----------------------------- Q I I I I Q I I I I Q I I I I Q Q I I I I Q I I I I Q I I I I Q I I I I QV I I I I QV I I I I QV I I I I QV I I I I Q V I I I I Q V I I I I Q V I I I I Q V I I I I Q V I I I I Q V I I I I Q V I I I I Q V I I I I Q V I I I I Q V I I I I Q V I I I I IQ V I I I I IQ V I I I I IQ V I I I I IQ V I I I I IQ V I I I I IQ V I I I I IQ V I I I I IQ V I I I I IQ VI I I I IQ V I I I IQ V I I I I Q IV I I I I Q I V I ! I I Q I V I I I I Q I V I I I I Q I V I I I I Q I V I I I I Q I V I I I I Q I V I I I .. J 10 +45 0.2630 0.57 1 Q I V I I I 11+ 0 0.2763 0.64 1 Q I VI I I 11 +15 0.2900 0.66 1 Q I V I I 11 +30 0.3034 0.65 1 Q I IV I I 11 +45 0.3166 0.64 1 Q I I V I I 12+ 0 0.3292 0.61 1 Q I I V I I 12 +15 0.3427 0.66 I Q I I V I 12 +30 0.3589 0.78 1 Q I I V ( I 12 +45 0.3735 0.71 1 Q I I V I I 13+ 0. 0.3809 0.36 IQ I I V I I 13 +15 0.3883 0.36 IQ I I V I I 13 +30 0.3988 0.51 1 Q I I V I I 13 +45 0.4111 0.59 1 Q I I VI I 14+ 0 0.4256 0.70 1 Q I I V I 14 +15 0.4390 0.65 1 Q 1 1 V 14 +30 0.4465 0.36 IQ I I IV I 14 +45 0.4519 0.26 IQ I I I V I 15+ 0 0.4565 0.22 Q I I I V 15 +15 0.4602 0.18 Q I I I V I 15 +30 0.4628 0.13 Q I I I V I 15 +45 0.4667 0.19 Q I I I V I 16+ 0 0.4764 0.47 IQ I I I V 1 16 +15 0.4861 0.47 IQ I I I V 1 16 +30 0.4914 .0.26 IQ I I I V I 16 +45 0.4953 0.19 Q I i I V I 17+ 0 0.4983 0.14 Q I i I V I 17 +15 0.5011 0.14 Q I I I V I. 17 +30 0.5045 0.16 Q I I I V I 17 +45 0.5079 0.17 Q I I I V 1 18+ 0 0.5112 0.16 Q I I I V 1 18 +15 0.5142 0.15 Q I I I V I 18 +30 0.5171 0.14 Q I I I V I 18 +45 0.5199 0.13 Q I I I V I 19+ 0 0.5221 0.11 Q I I I V I 19 +15 0.5240 0.09 Q I I I V I 19 +30 0.5262 0.11 Q I I I V I 19 +45 0.5287 0.12 Q I I I V 1 20+ 0 0.5308 0.10 Q I I I V I 20 +15 0.5326 0.09 Q ( I I V 1 20 +30 0.5346 0.10 Q I I I V I 20 +45 0.5367 0.10 Q I I I V I 21+ 0 0.5387 0.10 Q I l I V I 21 +15 0.5404 0.09 Q I I I V I 21 +30 0.5423 0.09 Q I I I V I 21 +45 0.5440 0.08 Q I I I V 1 22+ 0 0.5458 0.09 Q I I I V I 22 +15 0.5475 0.08 Q I I ! VI 22 +30 0.5494 0.09 Q I. I I VI 22 +45 0.5509 0.08 Q I I I VI 23+ 0 0.5524 0.07 Q I I I VI 23 +15 0.5539 0.07 Q I I I VI 23 +30. 0.5553 0.07 Q I I I VI 23 +45 0.5567 0.07 Q I I I VI 24+ 0 0.5581 0.07 Q I I I V1, 24 +15 0.5593 0.06 Q 1 I I VI 24 +30 0.5598 0.02 Q I I I VI 24 +45 0.5600 b:01 Q I I I VI 25+ 0 0.5601 0.01 Q I I I VI 25 +15 0.5602 0.00 Q I I I VI 25 +30 0.5602 0.00 Q I I I VI 25 +45 ------------=---------------------------------------------------- 0.5602 0.00 Q I I I V - - - - -- r LE ` - 01 T ^439.2 43&7 L7-9 438 4375 1 • 437.2 . PIP g 440.9 • 9 441.6 436.1 1 436. 437.5 •435.3 •430.2 •4389 •437.5 437.3 II •43 �C 1 .438.6 4383 438. 439.5 439.8 4 ` v 1& p 75 1 v437.3 _ 7.1 437.3 437.3 437.4 •4�'2 - .8 y • "437.9 " 43 9 3 :37.2 ' 7.1 2 7.1 .5 " 6 383 4 7 4 "4387 .1 •9 2 • 37.3 437.5 5.5 r•1 • .4 7.1 .3 .5 389 4 437. • 5 " S83 437.2 ■ 7.5 •B •.9 ■ 1 " 6 37.1 v 437. d� g 1 " 73 .4 436 4.64 .6 • s 5 4 4 4 2 i 37.4 " " O 1 1 p 7•` v43 •4 .2 436.8 438.4 .. 138.3 4 .5 C 7.4 " ■ " '�` ,/ 7 435 6 V 7.6 3 436. 436.6 438 . "•g K5 437 • " 37.4 x •5 • 7.3 . 37.1 - 4355 KA . 1 37.4 '2 `t35.B 36.4 "4 ■ 435. 1 .3 437.9 • 4 " 7.3 1,3 2 " • e A 4367 31.1 437. • 436.1 K g 4 56 4 7.4 437.4• 7.4 436.4 436.2 435 43E 2 • 4356 43&5 " =glg 7.1 V 5 7.4 DIEIEN: & 6-WA 4373 436.5 436.1 OEPl11: 5.0 •1• 43.3 6 5.2 •435.4 CAF4GlY" 5,3p i vt " 73 438 V 43 4 u " 05 DIRT 437.5 t.3- X436.3" •4353 _ 436.1 • "436. B ' .0 2 311 B "4353 4351 435.3 " . " 9 • .4 •434.3 434.4 7 4.5.:'9 434.5 '. 1 \ 1 \1 .B - /'1436.7n 438.1 4354 9 434.9 4355 • 1 B • � 3 r-d36. 2 .8 I• •4`15..1 .9 4351 434.8• 435,2 4 B V 3 435.7 • +y DIRT .B i I 436' " 437.3 135.6 1 • 5.3 .9 I 435.4 434.3' P •434.6 • .9 435. • • y . ' Q • 4 434.6 DIRT 7 71 5.9 43L.4• 8 434.4 �Yo.4 •434.1 •434.2 8 cl .3 • 6 1M •434.2,i a - � \e 40' 0 Q. BO' 120' SCALE: 1 INCH = 40 FEET LEGEND mm WAM SUB mu num IOIm 669 w Aflm PREPARED FOR: DAVID MAMMON DESIGNS 6541 Ndlynood &.d. S, 20.7 Los Angeles, Co. 80028 PREPARED BY: (( j� o m) DE31 _ 01 I G 92280 (700) 341-am V�I111g I11 U`� -�II III I1gpY�l1��A V,VIH Gar„ •O"L�eO011HIN0��{AIO4pINNY ,�x (lro) sm rye CITY OF INDIO, CA SHEET NO. TENTATNE PARCEL N0. 333848 OF 1 SHM FILE NO. FOR W.O. 9200 3 TRNLER • 438 i 478.3 • i &2 437.4 4 437.3 �T� • 435.5 • •438.7 C 4' -436.8 S 438.2 1 1, 5 • 4355 i • 435.8 DIRT 1.7 437.6 4 437.2 ASPH 436.9 4 438.7 1 10 1 it "436.2 1 { P 025.* CF Dix IR PILE I " 438.8 . . 435.2 4 4353': 436.4 4385 438.5 •438.5 .2 4 436.6 • •435.5 " 4 4353 1 6 4 435.1 " L L •438.2 , ,. 1 11 436.2 . 437.1 .6 • •4355 8 4 N o R • v R v •7 436.1 - 5 5 . R . 438.7 P P ° ° L LE • • .2 • •4351 4 4353 ° ° 437. 2 3 4355• • • 2 3 1 5 4 436.6 4 43 M5 • 436.1 •4357 4 B PI " B B" n 5 9• . .g 4 43 6 6 4 4355 4 435.1 r r N a - � \e 40' 0 Q. BO' 120' SCALE: 1 INCH = 40 FEET LEGEND mm WAM SUB mu num IOIm 669 w Aflm PREPARED FOR: DAVID MAMMON DESIGNS 6541 Ndlynood &.d. S, 20.7 Los Angeles, Co. 80028 PREPARED BY: (( j� o m) DE31 _ 01 I G 92280 (700) 341-am V�I111g I11 U`� -�II III I1gpY�l1��A V,VIH Gar„ •O"L�eO011HIN0��{AIO4pINNY ,�x (lro) sm rye CITY OF INDIO, CA SHEET NO. TENTATNE PARCEL N0. 333848 OF 1 SHM FILE NO. FOR W.O. 9200 . ff .. ' �. $. .. � "� . ff .. ' �. $. f .` ` s � ., TABLE OF CONTENTS GENERAL DISCUSSION c. HYDROLOGIC METHODOLOGY The Rational Method,: as described in the Riverside County Hydrology Manual, was used to calculate the.existing.peak flows from a 10 -year storm frequency..The hydrology calculations,. were conducted through the use of "CivilDesign" hydrology. computer program by CivilDesign Corporation. The hydrology calculations are based on Soil Group A, (Sandy Loam / Loamy Sand) —The selection of the. soil type .is based on .Percolation Testing .Technical Memorandum ' from GeoPentech (September. 22; 2004). Also, in order to take into account :the effect of existing dry wells and sand filters within the, study area, an impervious percentage of 65% is used in the CivilDesign. program:.. The attached hydrology, inap depicts the accumulated runoff for the total drainage area flowing to the Calle Tampico drainage system. HYDROLOGIC CONDITIONS a. EXISTING CONDITIONS The study urea is approximately.25.6 acres with a 10 7-year frequency storm runoff of 41.5 cfs. An off -site drainage area of 48.5 acres, located westerly and basically upstreamof the -study area; is contributing to the drainage area with a 10 =year frequency storm runoff of 70.9 cfs. The study area is manly. occupied by commercial buildings. Ground surface cover consists of existing as phalt concrete pavements and some landscaping. The delineation of the drainage areas is -shown in Downtown, Drainage Study Hydrology Map presented in this report: b:.. EXISTING SITE DRAINAGE This study analyzes these two major drainage _areas thatdrain by sheet flow then street flow towards the north and east and discharge into Calle Tampico. The first area is the off -site area west of the downtown area. This* area drains to Avenida Navarro and Avenida Bermudas . towards the north and discharges. into Calle. Tampico.. The off -site area consists of residential development, commercial areas and La Quinta Village Park. The drainage system does not include catch basins or pipes. Dry wells and local retention areas exist in the park. It is assumed that the.runoff water drains to those dry wells then infiltrates into the soil. The second major'area is the. downtown area that'drains towards Desert C1ub.Drive;.then'.drains towards the north and discharges into Calle Tampico. The. downtown area consists of commercial sites ( retail) and somme residential development. The drainage inthis area is mostly sheet flow into local dry wells,, sand filters and retention basins, then street flows towards Desert Club Drive.. The-street' drainage. system does not include catch basins 'in this area.: . M:\ ILAQOIO 102\ENGR\DESIGNVMR\Drainage Study Report.doc M:\IL-AQOIOIO2\ENGR\DESIGN\HYDR\Drainage Study Report:doc a. OFF -SITE RUNOFF HYDROLOGIC CALCULATIONS hil MA ILAQ0I0l02\ENGR IDESIGMHYDR\Drainage Study Report.doc Riverside County Rational Hydrology Program CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2005 Version 7.1 Rational Hydrology Study Date: 12/13/07 File:LAQ10YR.out ------------------------------- ------------------------------------------ * * * * * * * ** Hydrology Study Control Information * * * * * * * * ** English (in -lb) Units used in.input data file Offsite Area, 10 -yr Storm. Program License Serial Number 6124 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event,(year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.700(In.) 100 year, 1 hour precipitation = 1.600(In.) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity '= 1.070(In /Hr) Slope of intensity duration curve = 0.5900 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 2.000 to Point /Station 4.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 630.000(Ft.) Top (of initial area) elevation = 61.000(Ft.) Bottom (of initial area) elevation = 55.000(Ft.) Difference in elevation = 6.000(Ft.) Slope = 0.00952 s(percent)= 0.95 TC = k(0.370) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 12.364 min. Rainfall intensity = 2.718(In /Hr) for a 10.0 year storm CONDOMINIUM subarea type Runoff Coefficient = 0.739 Decimal fraction' soil group A = 1.000 Decimal fraction soil group.B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Initial subarea runoff = 7.233(CFS) Total initial stream area = 3.600(Ac.) Pervious area fraction = 0.350 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + ++ + + + + + + + + + + + ++ Process from Point /Station 4.000 to Point /Station 6.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 55.000(Ft.) End of street segment elevation = 54.000(Ft.) Length of street segment = 250.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 16.000(Ft.) Distance from crown to crossfall grade break = 14.000(Ft Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on (2) side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter.width = 2.000(Ft.) Gutter hike from flowline = 1.920(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.447(Ft.), Average velocity = 1 Note: depth of flow exceeds.top of street crown. Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 16.000(Ft.) Flow velocity = 1.92(Ft /s) Travel time = 2.17 min. TC = 14.53 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.732 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.350; Impervious fraction Rainfall intensity = 2.471(In /Hr) for a 10.0 Subarea runoff = 6.870(CFS) for 3.800(AC.) Total runoff = 14.103(CFS) Total area = Street flow at end of street = 14.103(CFS) Half street flow at end of street = 7.052(CFS) Depth of flow = 0.478(Ft.), Average velocity = 2 Note: depth of flow exceeds,top of street crown. Flow width (from curb towards crown)= 16.000(Ft.) 10.765(CFS) 923(Ft /s) = 0.650 year storm 7.400(Ac.) 141(Ft /s) Process from Point /Station 6.000 to Point /Station 8.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 54.000(Ft.) End of street segment elevation = 53.000(Ft.) Length of street segment = 250.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 16.000(Ft. Distance from crown to crossfall grade break = 14 Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on (2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = - 2.000(Ft.) Gutter hike from flowline = 1.920(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.508(Ft.), Average velocity = Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 16.000(Ft.) Flow velocity = 2.30(Ft /s) Travel time = 1.81 min. TC.= 16.34 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.726 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group.0 = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 32.00 000(Ft.) 17.340(CFS) 303(Ft /s) 0.38(Ft.) Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 2.306(In /Hr) for a 10.0 year storm Subarea runoff = 6.363(CFS) for 3.800(Ac.) Total runoff = 20.467(CFS) Total area = 11.200(Ac.) Street flow at end of street = 20.467(CFS) Half street flow at end of street 10.233(CFS) Depth of flow = 0.539(Ft.), Average velocity = 2.374(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 1.97(Ft.) Flow width (from curb towards crown)= 16.000(Ft.) ++++++++++++++++++++++++++++++'+++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 8.000 to Point /Station 10.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 53.000(Ft.) End of street segment elevation = 51.000(Ft.) Length of street segment = 250.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 16.000(Ft.) Distance from crown to crossfall grade break = 14.000(Ft.) Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [2) side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.920(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 23.550(CFS) Depth of flow = 0.500(Ft.), Average velocity = 3.234(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 0.00(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 16.000(Ft.) Flow velocity = 3.23(Ft /s) Travel time = 1.29 min. TC = 17.63 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.723 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 2.205(In /Hr) for a 10.0 year storm Subarea runoff = 6.056(CFS) for 3.800(Ac.) Total runoff = 26.522(CFS) Total area = 15.000(Ac.) Street flow at end of street = 26.522(CFS) Half street flow at end of street = 13.261(CFS) Depth of flow = 0.523(Ft.), Average velocity = 3.303(Ft /s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 1.13(Ft.) Flow width (from curb towards crown)= 16.000(Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + ++ + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 10.000 to Point /Station 12.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 51.000(Ft.) End of street segment elevation = 50.000(Ft.) Length of street segment = 250.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 16.000(Ft.) Distance from crown to crossfall grade break = 14.000(Ft.) Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on (2) side(s) of the street Distance from curb to property line = 10.000(Ft.). Slope from curb to property line (v /hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.920(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 28.484(CFS) Depth of flow = 0.606(Ft.), Average velocity = 2.536(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 5.30(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 16.000(Ft.) Flow velocity = 2.54(Ft /s) Travel time =. 1.64 min. TC = 19.27 min. Adding area flow to street CONDOMINIUM subarea type izmnff rnaffiriant = n_719 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 2.092(In /Hr) for a 10.0 year storm Subarea runoff = 3.759(CFS) for 2.500(Ac.) Total runoff = 30.281(CFS) Total area = 17.500(Ac.) Street flow at end of street = 30.281(CFS) Half street flow at end of street = 15.140(CFS) Depth of flow = 0.619(Ft.), Average velocity = 2.569(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property 5.94(Ft.) Flow width (from curb towards crown)= 16.000(Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + ++ + + + + + + + + + + + + + ++ + ++ Process from Point /Station 12.000 to Point /Station 14.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** , , Top of street segment elevation = 50.000(Ft.) End of street segment elevation = 46.000(Ft.) Length of street segment = 575.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft. Distance from crown to crossfall grade break = 18 Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on (2] side(s) of the street Distance from curb to property line = ,13.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.920(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.571(Ft.), Average velocity = Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 20.000(Ft.) Flow velocity = 3.00(Ft /s) Travel time = 3.19 min. TC = 22.47 min. 000(Ft.) 31.588(CFS) 000(Ft /s) 3.55 (Ft.). Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.712 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D =0.000 RI index for soil(AMC,2) = 32.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 1.911(In /Hr) for a 10.0 year storm Subarea runoff = 2.448(CFS) for 1.800(AC.) Total runoff = 32.729(CFS) Total area = 19.300(Ac.) Street flow at end of street = 32.729(CFS) Half street flow at end of street = 16.365(CFS) Depth of flow = 0.577(Ft.), Average velocity = 3.029(Ft /s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 3.84(Ft.) Flow width (from curb towards crown)= 20.000(Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 12.000 to Point /Station 14.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 19.300(Ac.) Runoff from this stream = 32.729(CFS) Time of concentration = 22.47 min. Rainfall intensity = 1.911(In /Hr) Program is now starting with Main Stream No. 2 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 13.000 to Point /Station 14.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 800.000(Ft.) Top (of initial area) elevation = 51.000(Ft.) Bottom (of initial area) elevation = 45.000(Ft.) Difference in elevation = 6.000(Ft.) Slope = 0.00750 s(percent)= 0.75 TC = k(0.370) *[(length ^3) /(elevation change)) ^0.2 Initial area time of concentration = 14.270 min. Rainfall intensity = 2.497(In /Hr) for a 10.0 year storm CONDOMINIUM subarea type Runoff Coefficient = 0.733 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Initial subarea runoff = 4.025(CFS) Total initial stream area = 2.200(Ac.) Pervious area fraction = 0.350 ++++++++++++++++++++++++++++++++++++++++ + + + +. + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 13.000 to Point /Station 14.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside.Main Stream is listed: In Main Stream number: 2 Stream flow area = 2.200(AC.) Runoff from this stream = 4.025(CFS) Time of concentration = 14.27 min. Rainfall intensity = 2.497(In /Hr) Summary of stream data: "Stream Flow rate TC Rainfall Intensity No. (CFS) (min), (In /Hr) 1 32.729 22.47 1.911 2 4.025 14.27 2.497 Largest stream flow has longer time of concentration Qp = 32.729 + sum of Qb Ia /Ib_ 4.025 * 0.765 = 3.080 Qp = 35.809 Total of 2 main streams to confluence: Flow rates before confluence point: 32.729 4.025 Area of streams before confluence: 19.300 2.200 Results of confluence: Total flow rate = 35.809(CFS) Time of concentration = 22.466 min. Effective stream area after confluence = 21.500(Ac.) Process from Point /Station 14.000,to Point /Station 16.000 * * ** STREET FLOW TRAVEL TIME,+ SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 45.000(Ft.). End of street segment elevation =. 42.000(Ft.) Length of street segment = 725.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.920(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 37.195(CFS) Depth of flow = 0.647(Ft.), Average velocity = 2.585(Ft/s)' Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 7.34(Ft.) Streetflow hydraulics at midpoint of. street travel: Halfstreet flow width = 20.000(Ft.) Flow velocity = 2.58(Ft /s) Travel time = 4.67 min. TC = 27.14 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.704 Decimal fraction soil group A = 1.000 Decimal fraction soil group B. = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 1.709(In /Hr) for a 10.0 year storm Subarea runoff = 2.645(CFS) for 2.200(Ac.) Total runoff = 38.454(CFS) Total area = 23.700(Ac.) Street flow at end of street = 38.454(CFS) Half street flow at end of street = 19.227(CFS) Depth of flow = 0.653(Ft..), Average velocity = 2.607(Ft /s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 7.67(Ft.) Flow width (from curb towards crown)= 20.000(Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + ++ + + + + + + + + + + + + + + + + ++ Process from Point /Station 14.000 to Point /Station 16.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 23.700(AC.) Runoff from this stream = 38.454(CFS) Time of concentration = 27.14 min. Rainfall intensity = 1.709(In /Hr) Program is now starting with Main Stream No. 2 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 32.000 to Point /Station 34.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 650.000(Ft.) Top (of initial area) elevation = 56.000(Ft.) Bottom (of initial area) elevation = 50.000(Ft.) Difference in elevation = 6.000(Ft.) Slope = 0.00923 s(percent)= 0.92 TC = k(0.370) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 12.599 min. Rainfall intensity = 2.688(in /Hr) for a 10.0 year storm CONDOMINIUM subarea type Runoff Coefficient = 0.738 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Initial subarea runoff = 1.985(CFS) Total initial stream area = 1.000(Ac.) Pervious area fraction = 0.350 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 34.000 to Point /Station 36.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 50.000(Ft.) End of street segment elevation = 45.000(Ft.) Length of street segment = 650.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [2) side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to.property line (v /hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.920(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.688(CFS) Depth of flow = 0.280(Ft.), Average velocity = 1.767(Ft /s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.004(Ft.) Flow velocity = 1.77(Ft /s) Travel time = 6.13 min. TC = 18.73 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.720 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 2.127(In /Hr) for a 10.0 year storm Subarea runoff = 1.225(CFS) for 0.800(AC.) Total runoff.= 3.210(CFS) Total area = 1.800(AC.) Street flow at end of street = 3.210(CFS) Half street flow at end of street = 1.605(CFS) Depth of flow = 0.294(Ft.), Average velocity = 1.837(Ft /s) Flow width (from'curb towards crown)= 8.680(Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + ++ + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 36.000 to Point /Station 16.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 45.000(Ft.) End of street segment elevation = 42.000(Ft.) Length of street segment = 650.000(Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on (2] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.920(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.601(CFS) Depth of flow = 0.347(Ft.), Average velocity = 1.639(Ft /s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.331(Ft.) Flow velocity = 1.64(Ft /s) Travel time = 6.61 min. TC = 25.34 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.707 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 1.780(In /Hr) for a 10.0 year storm Subarea runoff = 2.641(CFS) for 2.100(AC.) Total runoff = 5.851(CFS) Total area = 3.900(AC.) Street flow at end of street = 5.851(CFS) Half street flow at end of street = 2.925(CFS) Depth of flow = 0.370(Ft.), Average velocity = 1.734(Ft /s) Flow width (from curb towards crown)= 12.517(Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 36.000 to Point /Station 16.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 3.900(AC.) Runoff from this stream = 5.851(CFS) Time of concentration = 25.34 min. Rainfall intensity = 1.780(In /Hr) Program is now starting with Main Stream No. 3 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 20.000 to Point /Station 22.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 650.000(Ft.) Top (of initial area) elevation = 55.000(Ft.) Bottom (of initial area) elevation = 51.000(Ft.) Difference in elevation = 4.000(Ft.) Slope = 0.00615 s(percent)= 0.62 TC = k (0.370) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 13.663 min. Rainfall intensity = 2.562(In /Hr) for a 10:0 year storm CONDOMINIUM subarea type Runoff Coefficient = 0.735 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Initial subarea runoff = 6.776(CFS) Total initial stream area = 3.600(Ac.) Pervious area fraction = 0.350 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + ++ + + + + + + + + + + + + + + + + + ++ Process from Point /Station 22.000 to Point /Station 26.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 51.000(Ft.) End of street segment elevation = 46.000(Ft.) Length of street segment = 550.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 16.000(Ft.) Distance from crown to crossfall grade break = 14.000(Ft.) Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [2) side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 2.000(Ft.) ' Gutter hike from flowline = 1.920(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 11.246(CFS) Depth of flow = 0.404(Ft.), Average velocity = 2.624(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 14.223(Ft.) Flow velocity = 2.62(Ft /s) Travel time = 3.49 min. TC = 17.16 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.724 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 2.240(In /Hr) for a 10.0 year storm Subarea runoff = 8.759(CFS) for 5.400(Ac.) Total runoff = 15.536(CFS) Total area = 9.000(Ac.) Street flow at end of street 15.536(CFS) Half street flow at end of street = 7.768(CFS) Depth of flow = 0.443(Ft.), Average velocity = 2.849(Ft/s) Note: depth of flow exceeds top of street crown. Flow width (from curb towards crown)= 16.000(Ft.) +++++++++++++++++++++++++++++++++++++++ ++ ++ + + + + + + + + + + + + + + + + + + + ++ + + + + ++ Process from Point /Station 24.000 to Point /Station 26.000 * * ** SUBAREA FLOW ADDITION * * ** UNDEVELOPED (good cover) subarea Runoff Coefficient = 0.457 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimallfraction soil group D = 0.000 RI index for soil(AMC 2) = 38.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Time of concentration = 17.16 min. Rainfall intensity = 2.240(In /Hr) for a 10.0 year storm Subarea runoff = 6.853(CFS) for 6.700(Ac.) Total runoff = 22.389(CFS) Total area = 15.700(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /.Station 26.000 to Point /Station 28.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 46.000(Ft.) End of street segment elevation = 43.000(Ft.) Length of street segment = 550.000(Ft.) - Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [2) side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.920(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 23.958(CFS) Depth of flow = 0.546(Ft.), Average velocity = 2.551(Ft /s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 2.31(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 20.000(Ft.) Flow velocity = 2.55(Ft /s) Travel time = 3.59 min. TC = 20.75 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.715 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D.= 0.000 RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 2.002(In /Hr) for a 10.0 year storm Subarea runoff = 3.152(CFS) for 2.200(Ac.) Total runoff = 25.541(CFS) Total area = 17.900(Ac.) Street flow at end of street = 25.541(CFS) Half street flow at end of street = 12.770(CFS) Depth of flow = 0.556(Ft.), Average velocity = 2.594(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 2.81(Ft.) Flow width (from curb towards crown)= 20.000(Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + ++ + + + + + + + + + + + + ++ Process from Point /Station 28.000 to Point /Station 16.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 43.000(Ft.) End of street segment elevation = 42.000(Ft.) Length of street segment = 300.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 40.000(Ft.) Distance from crown to crossfall grade break = 38.000(Ft.) Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [2) side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.920(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 26.968(CFS) Depth of flow = 0.616(Ft.), Average velocity = 2.037(Ft /s) Warning: depth of flow exceeds top of curb Distance that curb overflow reaches into.property = 5.82(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 24.822(Ft.) Flow velocity = 2.04(Ft /s) Travel time = 2.45 min. TC = 23.21 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.710 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 1.875(In /Hr) for 10.0 year storm Subarea runoff = 2.664(CFS) for 2.000(Ac.) Total runoff = 28.204(CFS) Total area = 19.900(Ac.) Street flow at end of street = 28.204(CFS) Half street flow at end of street = 14.102(CFS) Depth of flow = 0.625(Ft.), Average velocity = 2.052(Ft /s) Warning: depth of flow exceeds top of curb Distance that curb overflow reaches into property = 6.23(Ft.) Flow width (from curb towards crown)= 25.226(Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 28.000 to Point /Station 16.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main-Stream number: 3 Stream flow area = 19.900(Ac.) Runoff from this stream = 28.204(CFS) Time of concentration = 23.21 min. Rainfall intensity = 1.875(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 38.454 27.14 1.709 2 5.851 25.34 1.780 3 28.204 23.21 1.875 Largest stream flow has longer time of concentration Qp = 38.454 + sum of Qb Ia /Ib 5.851 * 0.960 = 5.618 Qb Ia /Ib 28.204 * 0.912 = 25.714 Qp = 69.787 i Total of 3 main streams to confluence: Flow rates before confluence point: 38.454 5.851 28.204 Area of streams before confluence: 23.700 3.900 19.900 Results of confluence: Total flow rate = 69.787(CFS) Time of concentration = 27.140 min. Effective stream area after confluence = 47.500(AC.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 16.000 to Point /Station 38.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 42.000(Ft.) End of street segment elevation = 40.000(Ft.) Length of street segment = 200.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 40.000(Ft.) Distance from crown to crossfall grade break = 38.000(Ft.) Slope from gutter to grade break (v /hiz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on (2] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.920(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 70.449(CFS) Depth of flow = 0.693(Ft.), Average velocity = 3.809(Ft /s) Warning: depth of flow exceeds top of curb Distance that curb overflow reaches into property = 9.63(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 28.634(Ft.) Flow velocity = 3.81(Ft /s) Travel time = 0.88 min. TC = 28.02 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.702 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 . Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 1.677(In /Hr) for a 10.0 year storm Subarea runoff = 1.178(CFS) for 1.000(AC.) Total runoff = 70.965(CFS) Total area = 48.500(Ac.) Street flow at end of street = 70.965(CFS) Half street flow at end of street = 35.482(CFS) Depth of flow = 0.694(Ft.), Average velocity = 3.815(Ft /s) Warning: depth of.flow exceeds top of curb Distance that curb overflow reaches into property = 9.70(Ft.) Flow width (from curb towards crown)= 28.704(Ft.) End of computations, total study area = 48.50 (AC.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.440 Area averaged RI index number = 32.8 b. STUDY AREA RUNOFF HYDROLOGIC CALCULATIONS M:\ ILAQ010 102\ENGR\DESIGN\HYDR\Drainage Study Report.doc Riverside County Rational Hydrology Program CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2005 Version 7.1 Rational Hydrology Study Date: 12/13/07 File:lagl0yr.out ------------------------------------------------------------------------ ********* Hydrology Study Control Information * * * * * * * * ** English (in -lb) Units used in input data file -------------=---------------------------------------------------------- Study Area - Downtown, 10 -yr Storm Program License Serial Number 6124 Rational Method.Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.700(In.) 100 year, 1 hour precipitation = 1.600(In.) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 1.070(In /Hr) Slope of intensity duration curve = 0.5900 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 50.000 to Point /Station 52.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 600.000(Ft.) Top (of initial area) elevation = 56.000(Ft.) Bottom (of initial area) elevation = 51.000(Ft.) Difference in elevation = 5.000(Ft.) Slope = 0.00833 s(percent)= 0.83 TC = k(0.370) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 12.454 min. Rainfall intensity = 2.706(In /Hr) for a 10.0 year storm CONDOMINIUM subarea type Runoff Coefficient = 0.739 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Initial subarea runoff = 7.999(CFS) Total initial stream area = 4.000(Ac.) Pervious area fraction = 0.350 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 52.000 to Point /Station 54.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 51.000(Ft.) End of street segment elevation = 47.000(Ft.) Length of street segment .= 400.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 16.000(Ft.) Distance from crown to crossfall grade break = 14.000(Ft.) Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.920(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.412(Ft.), Average velocity = 2 Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 14.613(Ft.) Flow velocity = 2.80(Ft /s) Travel time = 2.38 min. TC = 14.84 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.731 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.350; Impervious fraction Rainfall intensity = 2.441(In /Hr) for a 10.0 Subarea runoff = 9.096(CFS) for 5.100(Ac.) Total runoff = 17.095(CFS) Total area = Street flow at end of street = 17.095(CFS) Half street flow at end of street = 8.547(CFS) Depth of flow = 0.448(Ft.), Average velocity = 3 Note: depth of flow exceeds top of street crown. Flow width (from curb towards crown)= 16.000(Ft.) 12.617(CFS) 797(Ft /s) = 0.650 year storm 9.100(AC.) 046(Ft /s) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 54.000 to Point /Station 56.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 47.000(Ft.) End of street segment elevation = 45.000(Ft.) Length of street segment = 250.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.920(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 19.773(CFS) Depth of flow = 0.485(Ft.), Average velocity = 2.867(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.245(Ft.) Flow velocity = 2.87(Ft /s) Travel time = 1.45 min. TC = 16.29 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.726 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 2.310(In /Hr) for a 10.0 year storm Subarea runoff = 5.202(CFS) for 3.100(Ac.) Total runoff = 22.296(CFS) Total area = 12.200(Ac.) Street flow at end of street = 22.296(CFS) Half street flow at end of street = 11.148(CFS) Depth of flow = 0.503(Ft.), Average velocity = 2.941(Ft /s) Warning: depth of flow exceeds top of curb Distance that curb overflow reaches into property = 0.16(Ft.) Flow width (from curb towards crown)= 19.159(Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 56.000 to Point /Station 58.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 45.000(Ft.) End of street segment elevation = 43.000(Ft.) Length of street segment = 400.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.920(In.) Manning's N in gutter = 0.0150 Manning's N.from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 26.457(CFS) Depth of flow = '0.569(Ft.), Average velocity = 2.536(Ft /s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 3.45(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 20.000(Ft.) Flow velocity = 2.54(Ft /s) Travel time = 2.63 min. TC = 18.92 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.720 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 2.115(In /Hr) for a 10.0 year storm Subarea runoff = 8.217(CFS) for 5.400(Ac.) Total runoff = 30.513(CFS) _ Total area = 17.600(Ac.) Street flow at end of street = 30.513(CFS) Half street flow at end of street = 15.257(CFS) Depth of flow = 0.593(Ft.), Average velocity = 2.632(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 4.65(Ft.) Flow width (from curb towards crown)= 20.000(Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 58.000 to Point /Station 60.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 43.000(Ft.) End of street segment elevation = 42.000(Ft.) Length of street segment = 300.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break =. 18.000(Ft.) Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.920(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 33.429(CFS) Depth of flow = 0.647(Ft.), Average velocity = 2.321(Ft /s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 7.35(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 20.000(Ft.) Flow velocity = 2.32(Ft /s) Travel time = 2.15 min. TC = 21.07 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.715 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 1.984(In /Hr) for a 10.0 year storm Subarea runoff.= 5.673(CFS) for 4.000(Ac.) Total runoff = 36.186(CFS), Total area = 21.600(AC.) Street flow at end of street = 36.186(CFS) Half street flow at end of street = 18.093(CFS) Depth of flow = 0.663(Ft.), Average velocity = 2.369(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 8.14(Ft.) Flow width (from curb towards crown)= 20.000(Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + ++ + + + + + + + ++ Process from Point /Station 60.000 to Point /Station 62.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 42.000(Ft.) End of street segment elevation = 40.000(Ft.) Length of street segment = 400.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18. Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on (2) side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.920(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.637(Ft.), Average velocity = 2 Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = Streetflow'hydraulics at midpoint of street travel: Halfstreet flow width = 20.000(Ft.) Flow velocity = 2.81(Ft /s) Travel time = 2.38 min. TC = 23.45 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.710 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 000 (Ft 38.920(CFS) 805(Ft /s) 6.86(Ft.) Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 1.863(In /Hr) for a 10.0 year storm Subarea runoff = 5.291(CFS) for 4.000(Ac.) Total runoff = 41.477(CFS) Total area 25.600(Ac.) Street flow at end of street = 41.477(CFS) Half street flow at end of street = 20.738(CFS) Depth of flow = 0.650(Ft.), Average velocity = 2.852(Ft /s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown., Distance that curb overflow reaches into property = 7.48(Ft.) Flow width (from curb towards crown)= 20.000(Ft.) End of computations, total study area = 25.60 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.350 Area averaged RI index number 32.0 } L c. STREETS AND CATCH BASIN CAPACITIES M:\ 1LAQ0 10102\ENGR\DESIGN\HYDR\Drainage Study Report.doc AVENIDA BERMUDAS CAPACITY MA LAQ010 102\ENGR\DESIGMHYDR\Drainage Study Report.doc CIVILCADD /CIVILDESIGN Engineering Software, (c) 2004 Version 7.0 -------------------------------------------------------------- - - - - -- Program License Serial Number 6124 ----------------------------------------------------------- * ** Street Flow Analysis * ** AVENIDA BERMUDAS Upstream (headworks) Elevation = 0.710(Ft.) Downstream (outlet) Elevation = 0.000(Ft.) Runoff /Flow Distance = , 100.000(Ft.) Maximum flow rate in channel(s) = 44.400(CFS) -------------------------------------------------------------- - - - - -- Top of street segment elevation = 0.710(Ft.) End of street segment elevation = 0.000(Ft.) Length of street segment = 100.000(Ft.) ,Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 32.000(Ft.) Distance from crown to crossfall grade break = 20.000(Ft.) Slope from gutter to grade break (v /hz)'= 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on (2) side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.920(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N.from grade break to crown = 0.0150 Half street cross section data points: X- coordinate (Ft.) Y- coordinate (Ft.) 0.0000 0.7400 right of way 12.0000 0.5000 top of curb 12.0000 0.0000 flow line 14.0000 0.1600 gutter end 24.0000 0.3600 grade break 44.0000 0.7600 crown Depth of flow = 0.638(Ft.) Average velocity = 3.036(Ft /s) Total flow rate in 1/2 street = 22.200(CFS) Warning: depth'of flow exceeds top of curb Distance that curb overflow reaches into property = 6.91(Ft.) Streetflow hydraulics: Halfstreet flow width (curb to crown) = 25.912(Ft.) Average flow velocity = 3.04(Ft /s) Channel including Gutter and area towards property line: Flow Width = 8.912(Ft.) Flow Area = 1.594(Sq.Ft) Velocity = 2.275(Ft /s) Flow Rate = 3.627(CFS) Froude No. = 0.9480 Channel from outside edge of gutter towards grade break: Flow Width = 10.000(Ft.) Flow Area = 3.782(Sq.Ft) Velocity = 3.889(Ft/s) Flow Rate = 14.709(CFS) Froude No. = 1.1143 Channel from grade break to crown: Flow Width = I 13.912(Ft.) Flow Area = 1.935(Sq.Ft) Velocity = 1.996(Ft /s) Flow Rate = 3.864(CFS) Froude No. = 0.9432 Total flow rate in street = 44.400(CFS) DESERT CLUB DRIVE CAPACITY M:\ ILAQ010102 \ENGR\DESIGN\HYDR\Drainage Study Report.doc . CIVILCADD /CIVILDESIGN Engineering Software, (c) 2004 Version 7.0 -------------------------------------------------------------- - - - - -- Program License Serial Number 6124 ---------------------------------------------------- *** Street Flow Analysis * ** DESERT CLUB DRIVE Upstream (headworks) Elevation = 0.500(Ft.) Downstream (outlet) Elevation = 0.000(Ft.) Runoff /Flow Distance = 100.000(Ft.) Maximum flow rate in channel(s) = 41.500(CFS) ---------------------------------------------- - - - - -- Top of street segment elevation = 0.500(Ft.) End of street segment elevation = 0.000(Ft.) Length of street segment = 100.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 12.000(Ft.) Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [2) side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.920(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Half street cross section data points: X- coordinate (Ft.) Y- coordinate (Ft.) 0.0000 0.7400 right of way 12.0000 0.5000 top of curb 12.0000 0.0000 flow line 14.0000 0.1600 gutter end 20.0000 0.2800 grade break 32.0000 0.5200 crown Depth of flow = 0.650(Ft.) Average velocity = 2.852(Ft /s) Total flow rate in 1/2 street = 20.750(CFS) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 7.49(Ft.) Streetflow hydraulics: Halfstreet flow width (curb to crown) = 20.000(Ft.) Average flow velocity = 2.85(Ft /s) Channel including Gutter and area towards property line: Flow Width = 9.486(Ft.) Flow Area = 1.700(Sq.Ft) Velocity = 2.004(Ft /s) Flow Rate = 3.407(CFS) Froude No. = 0.8345 Channel from outside edge of gutter towards grade break: Flow Width = 6.000(Ft.) Flow Area = 2.578(Sq.Ft) Velocity = 3.718(Ft /s) Flow Rate = 9.585(CFS) Froude No. = 0.9994 Channel from grade break to crown: Flow Width = 12.000(Ft.) Flow Area = 2.997(Sq.Ft) Velocity = 2.589(Ft/s) Flow Rate = 7..758(CFS) Froude No. = 0.9130 Total flow rate in street = 41.500(CFS) CALLE TAMPICO AND CATCH BASIN CAPACITIES M:\ ILAQ0 10102\ENGR\DESIGNUMR\Drainage Study Report.doc CIVILCADD /CIVILDESIGN Engineering Software, (c) 2004 Version 7.0 -------------------------------------------------------------- - - - --- Program License Serial Number 6124 ----------------------------------------------------- *** Street Flow +Inlet Analysis * ** CALLS TAMPICO Upstream (headworks) Elevation = 0.120(Ft.)• Downstream (outlet) Elevation = 0.000(Ft.) Runoff /Flow Distance = 100.000(Ft.) Maximum flow rate in channel(s) = 71.000(CFS) ----------------------------------------------------------- --- - - - - -- Top of street segment elevation = 0.120(Ft.) End of street segment elevation = 0.000(Ft.) Length of street segment = 100.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 40.000(Ft.) Distance from crown to crossfall grade break = 38.000(Ft.) Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1) side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.920(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Half street cross section data points: X- coordinate (Ft.) Y- coordinate (Ft.) 0.0000 0.7400 right of way 12.0000 0.5000 top of curb 12.0000 0.0000 flow line 14.0000 0.1600 gutter end 14.0000 0.1600 grade break 52.0000 0.9200 crown CURB INLET TYPE STREET DRAIN, Opening Height = 8.000(In.) Street Inlet Calculations: Street flow in street inlet depression = 71.000(CFS) Gutter depression depth = 4.000(In.) Gutter depression width = 2.000(Ft.) Depth of flow = 1.447(Ft.) Average velocity = 2.357(Ft /s) Total flow rate in 1/2 street = 71.000(CFS) !!Warning: Water is above left or right bank elevations U.S. DOT Hydraulic Engineering Circular No. 12 inlet calculations: Street flow half width at start of inlet = 40.000(Ft.) Flow rate in gutter section of street = Qw = 19.376(CFS) Given inlet length L = 7.000(Ft.) Ratio of frontal flow to total flow = EO = 0.2729 Street slope is less than 0.5% , Depth of flow indicates an orifice flow condition exists for an opening height of 8.00(In.) Using equation Qi = .67hL(2gd0) ^.5 Maximum inlet flow capacity = 26.478(CFS) Half street cross section data points through curb inlet: X- coordinate (Ft,) Y- coordinate (Ft.) 0.0000 1.0733 right of way 12.0000 0.8333 top of curb 12:0000 0.0000 flow line 14.0000 0.4933 gutter /depression end 14.0000 0.4933 grade break 52.0000 1.2533 crown Remaining flow in street below inlets 44.522(CFS) Depth of flow = 0.977(Ft.) Average velocity = 1.962(Ft /s) Total flow rate in 1/2 street = 44.522(CFS) !!Warning: Water is above left or right bank elevations Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 23.86(Ft.) Streetflow hydraulics: Halfstreet flow width (curb to crown) = 40.000(Ft.) Average flow velocity = 1.96(Ft /s) Channel including Gutter and area towards property line: Flow Width = 14.000(Ft.) Flow Area = 6.081(Sq.Ft) Velocity =. 1.922(Ft /s) Flow Rate = 11.686(CFS) Froude No. = 0.5138 Channel from outside edge of gutter towards grade break: Flow Width = 0.000(Ft.) Flow Area = 0.000(Sq.Ft) Velocity = 0.000(Ft /s) Flow Rate = 0.000(CFS) Froude No. = 0.0000 Channel from grade break to crown: F1ow.Width = 38.000(Ft.) Flow Area = 16.615(Sq.Ft) Velocity = 1.976(Ft /s) Flow Rate = 32.836(CFS) Froude No. = 0.5267 Total flow rate in street = 44.522(CFS) STORM DRAIN: 1/30/2008 . PIPE FLOW CALCULATIONS 1LAQ010102 LINE DESIGNATION 66" RCP in -- - Avenue 52 � V -R0" Desert Club Drive' :. FLOW REGIME.. NORMAL FULL.:: DESIGN FLOW "Q 25," (cfs) _ (BS/ Master Drainage Plan) -. 96.30 cfs ., 100.00 Ids : - - PIPE DIAMETER "d" (inches) 66" 60" PIPE MATERIAL RCP RCP MANN/NGS "n" VALUE 0.013 0.013 PIPE.-SLOPE "S" ' (feeVfeet) 0.0034 0.0010 FRICTION SLOPE "S'�" : (feet/feet) ': 0.0034 0.0015 DEPTH:OF.FLOW "D" (feet) , 2.72' 5.00' CALCULATED FLOW (cfs) 96.3 cfs 100.0 cfs FLOW AREA 'A" (square feet) 11.69 sf 1.9.63 sf WETTED PERIMETER "P" 8.57' 15.71' HYDRAULIC RADIUS "R ". . (A/P) .. 1.36,. 1.25 FLOW.TOP WIDTH, T.(feet) 5.50' 0.001. FLOW VELOCITY. "V" (feet/second) ` 8.23 fps 5.09 fps VELOCITY HEAD (V2 12G) (feet) . 1:05' 0.40' ' SPECIFIC ENERGY (D+ . . VZ 12G) (lb . 3.77' 5.40' FLOW .CAPACITY DEPTH ' RATIO "D/d"' 1.00 1.00 PIPE FLOW CAPACITY (cfs) : 196.67 cfs 82:36 cfs STORM DRAIN: T/30 000 . RECTANGULAR CHANNEL FLOW CALCULATIONS' .: 1LAQ010102. Sladden Engineering 6782 Stanton Ave., Suite A, Buena Park, CA 90621 (714).523 -0952 Fax (714) 523 -1369 39 -725 Garand Ln.,. Suite G, Palm Desert, CA 92211 (760) 772 -3893 Fax (760) 772 -3895 J�ay 21, 2 Project No..544-3166 03-05 -321 Monroe Dates, LLC 1387 Ambassador Way Salt Lake City, Utah 84108 Attention: Mr. Craig Knight Subject: Geotechnical Investigation Project: Proposed 30-Acre Residential Development APN 764- 270 -015 & 746-280-014 Monroe Street & Avenue 61 La Quinta, California Presented herewith is the report.of our Geotechnical Investigation at the site's of the proposed 307 acre residential development. located west of Monroe Street approximately midway between Avenue 60 and Avenue 62 in the City of La Quinta, California. The investigation was performed in order to provide recommendations for site preparation and to assist in foundation design for the proposed single-family residences and the related site improvements. This report presents the results of our field investigation and laboratory testing along with conclusions and recommendations for foundation design and site preparation. This report completes our original scope of services as outlined in our proposal dated April 18, 2003. We appreciate the opportunity to provide service to you on this project. If you have any questions regarding this report, please contact the undersigned. Respectfully submitted, SLADDEN ENGINEERING Brett L. Anddrso�i m� Principal Engineer - E SER/pc I Copies: 4/Monroe Dates, LLC 2 /Cal Vada Surveying M GEOTECHNICAL INVESTIGATION PROPOSED 30-ACRE RESIDENTIAL DEVELOPMENT APN 764-270-015 & 764-286-014 MONROE.9TREET AND AVENUE 61 LA QUINTA, CALIFORNIA. May 21, 2003 TABLE OF CONTENTS INTRODUCTION........... ------- ........ ........................................... ..................................... 1 SCOPEOF WORK ...... : .................................................................. 1 ........................................... 1 PROJECT DESCRIPTION ........... : ......................................... ......---------- ..............I.........:....- GEOLOGY AND SEISMICITY ......................................................................... :- .................... 2) SUBSURFACE CONDITIONS .................................................................................................. LIQUEFACTION ...... -------- *** .............. ..................... CONCLUSIONS AND RECOMMENDATIONS .......................................................... .......... FoundationDesign ............................................... : .............................................................. . 4 Settlements ......... : ........................................................... ............................. .............. ........... 4 Lateral Design .... 7 .............................. ............. ..... .. 5 .................................................... ..... Retaining Walls .................... ......... ......................... I ..................... ...................... ........... 5 Expansive,Soils ...... ................................................................................................. ......... 1. 5 ConcreteSlabs-on-Grade ..................... I ........................... m .................................................... 5 SolubleSulfates ...................... .................. ..... . . . ... : ........................................................... - 5 Tentative Pavement Design .................... .... .. ....... ...................................... - ......... 5 Shrinkage and Subsidence ......................... I .................. : ............ ......................................... 6 GeneralSite Grading ........................... .......................... 7 ............ ........................................ 6 1. Site Clearing ....................... ..................................... -* ....... ........................................ 6 2. Preparation of Building and Foundation Areas ....................................................... 6 3. Placement of Compacted Fill.....:..... ............. 6 4. Preparation of Slab and Pavement Areas... ................... ........................................ 7 5. Testing and Inspectioln ... * ........................................................................................... 7 GENERAL.................................................................................................................. ................ 7 REFERENCES.............................................. ............................................................................. 8 APPENDIX A - Site Plan and Boring Logs Field Exploration APPENDIX B - Laboratory Testing Laboratory Test Results APPENDIX C. -. 1997 UBC Seismic Design Criteria 4 May 21, 2003 1- Project No. 514-3166 03-05-321 INTRODUCTION This report presents the results of our Geotechnical Investigation performed in order to provide recommendations for site preparation and to assist in the design and construction of the foundations for the proposed residential structures. The site of the proposed 30-acre residential subdivision is located west of Monroe Street approximately midway between Avenue 60 and Avenue 62 in the City of La Quinta, California_ The preliminary plans indicate that the proposed project includes a 10 acre parcel (APN 764-280-014) and a 20 acre parcel (APN 764-270-015). The site is located within a newly annexed area of the City of La Quinta. The associated site improvements will include paved roadways, concrete driveways, walkways and patios, underground utilities, and landscape areas. .. SCOPE OF WORK The purpose of our investigation was to determine certain engineering characteristics of the near surface soils on the site in order to develop recommendations for foundation design and site preparation. Our investigation included field exploration, laboratory testing, literature review, engineering analysis and the preparation of this report. Evaluation of hazardous materials or other environmental concerns was not within the scope of services provided. Our investigation was performed in accordance with contemporary geotechnical engineering principles and practice. We make no other warranty, either express or implied. PROJECT DESCRIPTION The' site of the proposed 30-acre residential subdivision is located west of Monroe Street approximately midway between Avenue 60 and Avenue 62 in the City of La Quinta, California. It is our understanding that the project will consist of single-family residences along with various associated site improvements.. It is our understanding that the proposed residences will be of relatively lightweight wood-frame construction and will be supported by conventional shallow spread footings and concrete slabs on grade. The associated site improvements will include paved roadways, concrete walkways, patios, driveways, landscape areas and various underground utilities. The majority of the subject properties are presently occupied by date groves in various phases of use. The date trees throughout the southern 10-acre parcel are presently in production and appear well maintained. The date trees within the northern parcel are partially in production and some of the trees have been removed from the central portion of the property. Monroe Street forms the eastern edge of the site and is paved. The Trilogy at La Quinta development forms the northern, western and southern site boundaries. The subject site and surrounding properties are fairly level throughout as a result of previous agricultural use. Scattered debris was observed on the ground surface throughout the subject site. Overhead and underground utilities exist within the subject properties and along to'the nearby street; Irrigation pipes exist along the property boundaries and also traverse the site. Based upon our previous experience with lightweight residential structures, we expect that isolated column loads will be less than 20 kips and wall loading will be less than to 2.0 kips per linear foot. Grading is expected to include minor cuts and fills to match the nearby elevations and to construct slightly elevated building pads to accommodate site drainage. This does not include removal and recompaction of the bearing soils within the building areas. If the anticipated foundation loading or site grading varies substantially from that assumed the recommendations included in this . report should be reevaluated. .Gnddvn Rna;rivorino May 21, 2003 -2- 'Project No. 544-3166 03- 05-321 GEOLOGY AND SEISMICITY The project site is located within the southwestern Coachella Valley that is part of the broader Salton Trough geomorphic province. The Salton Trough is a northwest trend'ng depression that extends from the Gulf of California to the Banning Pass_ Structurally the Salton Trough is dominated by several northwest trending faults, most notable of which is the San Andreas system. A relatively thick sequence of sedimentary rocks have been deposited in the Coachella Valley portion of the Salton Trough from Miocene to present times. These sediments are predominately terrestrial in nature with some lacustrian and minor marine deposits. The mountains surrounding the Coachella Valley are composed primarily of Precambrian metamorphic and Mesozoic granitic rock_ . The Coachella Valley is situated in one of the more seismically active areas of California. The San Andreas fault zone is considered capable. of generating a maximum credible earthquake of magnitude 8.0 and due to its proximity to the project site (approximately 13.7 kilometers) should be considered the design fault for the project. Seismic activity along the nearby faults continues to affect the area and the Coachella Valley is 'considered one of the more seismically active regions in California. A computer program and pertinent geologic literature were utilized to compile data related to earthquake fault zones in the region and previous seismic activity that may have affected the site_ E-Q. Fault Version 3.00 (Blake) provides a compilation of data related to earthquake faults in the region_ 'The program searches available databases and provides both distances to causitive faults and the corresponding accelerations that may be experienced on the site due to earthquake activity along these.faults. The attenuation relationship utilized for this project was based upon Joyner & Boore (1987) attenuation curves. The information generated was utilized in our liquefaction evaluation The site is not located in any Earthquake Fault zones as designated by the State but is mapped in Riverside County's Liquefaction Zone and Ground' Shaking Hazard Zone IV. Several significant seismic events have occurred within the Coachella Valley during the past 50 years. The events include Desert Hot Springs - 1948 (6.5 Magnitude), Palm Springs - 1986 (5.9 Magnitude); Desert Hot Springs - 1992 (6.1 Magnitude), Landers - '1992 (7.5 Magnitude) and Big Bear - 1992 (6.6 Magnitude). SUBSURFACE CONDITIONS The soils underlying the site consist primarily of silty sands, sandy silts and clayey silts. As is typical for the area,. the silty sand, sandy silt and clayey silt layers are inconsistently interbedded and vary in thickness. Silty sands were the most prominent'soils within our exploratory borings but numerous prominent sandy silt and clayey silt layers were also encountered. The sandy silts and silty sands encountered near the existing ground surface appeared somewhat loose. Sampler penetration resistance (as measured by field blowcounts) indicates that in-place density generally increases with depth. Relatively undisturbed, samples indicated dry density varying from 83 to 117 pounds per cubic foot. The site soils were dry near the surface in most of our borings but several sandy silt and clayey silt layers were found to have high moisture content_ Measured moisture content varied from 1 to 35 percent. Laboratory testing indicates that the surface soil's within the upper 5 feet consist primarily of a somewhat inconsistent . mixture of silty sands and sandy silts. . Expansion testing indicates an expansion index of 0 for the near surface silty sands that are classified as "very low" expansion category soils in accordance with Table 18-I -B of the 1997 Uniform Building Code. May 21, 2003 ICp( %'� �'' ' Project No. 544-3166 03- 05-321 Groundwater was encountered minimum depths of approximately 32 to 38 feet below existing grade Groundwater should not be a factor in a ion esian or cNT LIQUEFACTION Liquefaction occurs with sudden loss of soil strength due to rapid increases in pore pressures within cohesionless soils as a result of repeated cyclic loading during seismic events. Several conditions must be present for liquefaction to occur including; the presence of relatively shallow groundwater, generally loose soils conditions, the susceptibility of soils to liquefaction based upon grain-size characteristics and the generation of significant and repeated seismically induced ground accelerations. Liquefaction affects primarily loose, uniform'grained cohesionless sands with low relative densities- In the case of this project site, several of the factors required for liquefaction to occur are present. As previously indicated, groundwater was encountered at a depths ranging from approximately 16 t within the southeastern portion of the site to over 30 feet within the northwestern portion of the site. Several relatively uniform grained sand and silty san�Zayers were encountered within our borings. The site is located near prominent active fault systems. Due to the presence of groundwater; 'the potential for liquefaction affecting the site was further evaluated. Several silty sand layers encountered near and below the present groundwater surface appear susceptible to liquefaction based upon grain-size characteristics. Liquefaction potential within these silty sand layers was evaluated using methods presented by H.B. Seed in 1985 and subsequently d presented within Special Publication 117. The calculated safety factors are included ' Appendix A. ur analyses suggest that isolated silty sand layers encountered within our borings are ne si - dered too dense to be susceptible to liquefaction. /- CONCLUSIONS AND RECOMMENDATIONS Based upon our field investigation and laboratory testing, it is our opinion that the proposed residential development is feasible from a soil mechanic's standpoint provided that the recommendations included in this report are considered in building foundation design. and site preparation. Due to the somewhat loose condition of the surface soils and the potential for seismic. settlements, remedial grading is recommended for the building areas. We recommend that remedial grading within the proposed building areas include the overexcavation and recompaction of the primary foundation bearing soils. Specific recommendations for site preparation are presented in the Site Grading section of this report. Based upon the generally dense condition of the majority of the sand layers, and the presence of prominent layers of non-liquefiable silts and clays, it is our opinion that the - potential for liquefaction affecting the site is negligible. The remedial grading recommended for building areas will result in the construction of a uniform compacted soil mat beneath all footings. In our opinion, liquefaction related mitigation measures in addition to the site grading and foundation design recommendations included in this report should not be necessary. The site is located in one of the more seismically active areas in California. Design professionals should be aware of the site setting and the potential for earthquake activity during the anticipated life of the structure should be'acknowledged. The accelerations that may be experienced on the site (as previously discussed) should be considered in design. The seismic provisions included in the Uniform Building Code for Seismic Zone 4 should be considered the minimum design criteria. Pertinent 1997 UBC Seismic Design Criteria is summarized in Appendix C. May 21, 2003 ,� Project No_ 544-3166 / 03- 05-321 Caving did occur within our boring and the potential for caving should be expected within deeper excavations_ All excavations should be constructed in accordance with the normal CalOSHA excavation criteria. On the basis of our observations of the materials encountered, we anticipate • that the near surface sandy silts.and silty sands will be classified by CaIOSHA as Type B or C. Soil conditions should be verified in the field by a "Competent person" employed by the Contractor. The near surface soils encountered during our investigation -%vere found to be non-expansive. Laboratory testing indicated an Expansion Index of 0 for the near surface silty sands that corresponds with the "very low" expansion category in accordance with UBC Table 18-1-B. The following recommendations present more detailed design criteria that have been developed on the basis of our field and laboratory investigation. The recommendations are based upon non - expansive soils criteria. Foundation Design= The results of our investigation indicate, that either conventional shallow continuous footings or isolated pad footings that are supported upon properly compacted soils may be expected to provide adequate support for the proposed structure foundations. Building pad grading should be performed as described in the Site Grading Section of this report to provide for uniform and firm bearing conditions for the structure foundations. Footings should extend at least 12 inches beneath lowest adjacent grade. Isolated square or rectangular footings should be at least 2 feet square and continuous footings should be at least 12 inches wide. Continuous footings may be designed using an allowable bearing value of 1500 pounds per square foot (psf) and isolated pad footings may be designed using an allowable bearing pressure of 1800 psf. The allowable bearing pressures are applicable to dead and frequently applied live loads. The allowable bearing pressures may be increased by 1/3 to resist wind and seismic loading. Care should be taken to see that bearing or subgrade soils are not allowed to become saturated from the ponding of rainwater or irrigation. Drainage from the building area should be rapid and complete. The recommendations provided in the preceding paragraph are based on the assumption that all footings will be supported upon properly compacted engineered fill soils. All grading should tie performed under the testing and inspection of the Soils Engineer or his representative. Prior to the placement of concrete, we recommend that the footing excavations be inspected in order to verify that they extend into compacted soil and are free of loose and disturbed materials. Settlements= Settlements resulting. from the anticipated foundation loads should be minimal provided. that the recommendations included in this report are considered in foundation design and construction. The estimated ultimate settlements are calculated to be approximately one inch when using . the recommended bearing values. The potential for liquefaction related seismic settlements of less than 2 inches should be acknowledged. As a practical matter, differential settlements between footings can be assumed as one-half of the total settlement. Lateral Design :• Resistance to lateral loads can be provided by a combination of friction acting at the base of the slabs or foundations and passive earth pressure along the sides of the foundations. A coefficient of friction of 0.40 between soil and concrete may be used with consideration_ to dead load forces only. A passive earth pressure of 250 pounds per square foot, per foot of depth; may be used for the sides of footings that are poured against properly compacted native or approved non-expansive import soils. Passive earth pressure should be ignored within the upper 1 foot except where confined (such as beneath a floor slab).. May 21, 2003 -5- Project No. 544-3166 03-05 -321 Retaining Walls= Retaining walls may be necessary to accomplish the proposed construction. Lateral pressures for use in retaining wall design can be estimated using an equivalent fluid weight of 40 pcflor lever free-draining native backfill conditions. For walls that are to be restrained at the top, the equivalent fluid weight should be increased to 60 pcf for level free- draining native backfill conditions. Backdrains should be provided for the full height of the walls. Expansive Soils= Due to the prominence of "very low" , expansion category soils near the surface, the expansion potential of the foundation bearing soils should not be a controlling factor in foundation or floor slab design. Expansion potential should be reevaluated subsequent to grading. Concrete Slabs- on-Grade= All surfaces to receive concrete slabs-on -grade should be underlain by a minimum compacted non-expansive fill thickness of 24 inches, placed as described in the. Site Grading Section of this report. Where slabs . are to receive moisture sensitive floor coverings or where dampness of the floor slab is not desired, we recommend the use of an appropriate vapor barrier or an adequate capillary break. Vapor barriers should be protected by sand in order to reduce the possibility of puncture and to aid in obtaining uniform concrete curing. Reinforcement of slabs-on-grade in order to resist expansive soil pressures should not be necessary. However, reinforcement will have a beneficial effect in containing cracking due to concrete shrinkage. Temperature and shrinkage related cracking should be anticipated in all concrete slabs- on-grade. Slab reinforcement and the spacing of control joints should be determined by the. Structural Engineer. Soluble Sulfates= The soluble sulfate concentrations of the surface soils were determined to be 132 parts per million (ppm), which is generally considered noncorrosive with respect to concrete. The use of Type V cement and specialized sulfate resistant concrete mix designs should not be necessary. Sulfate testing should be performed subsequent to grading and final concrete mix designs should be selected accordingly. Soluble sulfate content should be reevaluated after rough grading. Tentative Pavement Design = All paving should be underlain by a minimum compacted fill thickness of 12 inches (excluding aggregate base). This may be performed as described in the Site Grading Section of this report- R-Value testing was not conducted during our investigation but based upon the silty nature of the surface soils, an R-Value of approximately 50 appears appropriate for preliminary pavement design. The following preliminary pavement sections are based upon a design R- Value of 50. On-site. roadways subjected to auto and light truck traffic (Traffic Index = 5.5) Use 3.0 inches of asphalt on 4.5 inches of Class 2 base material Aggregate base'should conform to the requirements for Class 2 Aggregate base in Section 26 of CalTrans Standard Specifications, January 1992. Asphaltic concrete should conform to Section 39 of the CalTrans Standard Specifications. The recommended sections should be provided with a uniformly compacted subgrade and precise control of thickness and elevations during placement. cl,..,,.,_.. r1_:..___:_ May 21, 2003 -6- Project No. 544 -3166 03- 05-321 Pavement and slab designs are tentative and should be confirmed at the completion of site grading when the subgrade soils are in- place. This will include sampling and testing of the actual subgrade soils and an analysis based upon the specific traffic information Shrinkage and Subsidence: Volumetric shrinkage of the material that is excavated and replaced as controlled compacted fill should be anticipated. We estimate that this shrinkage could vary from 20 to, 30 percent. Subsidence of the surfaces that are scarified and compacted should be between 0.1 and 0.3 tenths of a foot. This will vary depending upon the type of equipment used, the moisture content of the soil at the time of grading and the actual degree of compaction attained. These values for shrinkage and subsidence are exclusive of losses that will occur due to the stripping of the organic material from the site and the removal of oversize material. General Site Grading = All grading should be performed in accordance with the grading ordinance of the City of La Quinta, California. The following recommendations have been developed on the basis of our field and laboratory testing and are intended to' provide a uniform compacted mat of soil beneath the building slabs and foundations. Site Clearing: Proper site clearing will be very important. Any existing vegetation; palm trees, roots, slabs, foundations, abandoned underground utilities or irrigation lines should be removed from the proposed building areas and the resulting excavations should be properly backfilled. Soils that are disturbed during site clearing should be removed and replaced as controlled compacted fill under the direction of the Soils Engineer. 2.. Preparation of Building and Foundation Areas= In order to provide adequate and uniform bearing conditions, we recommend overexcavation throughout the proposed building areas. The building areas should "be overexcavated to a depth of at least 3 feet below existing grade or 3 feet below the bottom of the footings, whichever is deeper. The exposed soils should then be scarified to a depth of 1 foot, moisture conditioned and recompacted to at least 90 percent relative compaction. The excavated material may then be replaced as engineered fill material as recommended below. Additional removals may be necessary in the vicinity of major palm tree root bulbs. 3. Placement of Compacted Fill: Within the building pad areas, fill materials should be spread in thin lifts, and compacted at near optimum moisture content to a minimum of 90 percent relative compaction. Imported fill material shall have an Expansion Index not exceeding 20. Because some of the near surface soils may be wet when excavated, some drying or stabilization should be expected in the areas of deeper foundations. Stabilization may be accomplished utilizing crushed rock and if necessary geotextile fabric. The wet soils removed during excavation should be dried back to near optimum moisture content or mixed with dry soils prior to placement as engineered fill material. The bottom of the excavations should be stable and unyielding prior to fill placement. The contractor shall notify, the Soils Engineer at least 48 hours in advance 'of importing soils in order to provide sufficient time for the evaluation of proposed import materials. The contractor shall be responsible for delivering material to the site that complies with the project specifications. Approval by the Soils Engineer will be based upon material delivered to the site and not the preliminary evaluation of import sources. May 21, 2003 7 Project No. 544 -3166 03- 05-321 Our observations of the materials encountered during our investigation indicate that compaction within the native soils will be most readily obtained by means of heavy rubber tired equipment and /or sheepsfoot compactors. A uniform and near optimum moisture content should be maintained during fill placement and compaction. 4. Preparation of Slab and Paving Areas = All surfaces to receive asphalt concrete paving or exterior concrete slabs-on-grade, should be underlain by a minimum compacted fill thickness of 12 inches. This may be accomplished by a combination of overexcavation, scarification and recompaction of the surface, and replacement of the excavated material as controlled compacted fill. Compaction of the slab and pavement areas should be to a minimum of 90 percent relative compaction. 5. Testing and Inspection= During grading tests and observations should be performed . by the Soils Engineer or his representative in order to verify that the grading is being performed in accordance with the project specifications. Field density testing shall be performed in accordance with applicable ASTM test standards.' The minimum acceptable degree of compaction shall be 90 percent of the maximum dry density as obtained by the ASTM D1557 -91 test method. Where testing indicates insufficient density, additional compactive effort shall be, applied until retesting indicates satisfactory compaction. GENERAL The findings and recommendations presented in this report are based upon an interpolation of the soil conditions between boring locations and extrapolation of these conditions throughout the proposed building area. Should conditions encountered during grading appear different than those indicated in this report, this office should be notified. This report is considered to be applicable for use by Monroe Dates, LLC and Cal Veda Surveying Inca for the specific site and project described herein. The use of this report by other parties or for other projects is not authorized. The recommendations of this report are contingent upon monitoring of the grading operations by 'a representative of Sladden Engineering.' All recommendations are considered to be tentative pending our review of the grading operations and additional testing, if indicated. If others are employed to perform any soil testing, this office should be notified prior to such testing in order to.coordinate any required site visits by our representative and to assure indemnification of Sladden Engineering. We recommend that a pre-job conference be held on the site prior to the initiation of site grading. The purpose of this meeting will be to assure a complete understanding of the recommendations presented in this report as they apply to the actual grading performed. c•r,..ra,... c..,.:......_:..,. ' May 21, 2003 -8- Project No. 544-3166 03-05-321 REFERENCES ASCE Journal of Geotechnical Engineering Division, April 1974. Boore, Joyner and Fumal (1994) Estimation of Response Spectra and Peak Accelerations from North American Earthquakes, U. S. Geological Survey, Open File Reports 94-127 and 93-509. Finn, W. E. Liam, (1996) Evaluation of Liquefaction Potential for Different Earthquake Magnitudes and Site Conditions, National Center for Earthquake Engineering Research Committee. Joyner and Boore, (1988) Measurements, Characterization and Prediction ofStrong Ground Motion, ASCE Journal of Geotechnical Engineering, Special Publication No. 20. Lee & Albaisa (1974) "Earthquake Induced Settlements in Saturated Sands'. Seed and Idriss (1982) Ground Motions and Soil Liquefaction During Earthquakes, Earthquake Engineering Research Institute Monograph. Seed, Tokimatsu, Harder and Chung, (1985), Influence ofSPT Procedures in Soil. Liquefaction Resistance Evaluations, ASCE Journal of Geotechnical Engineering, Volume 111, No. 12, December. Rogers, Thomas H., Geologic Nlap of California, Santa Ana Map Sheet. Riverside County, 1984, Seismic Safety Element of the Riverside County General Plan �I Sladden Engineerine s .2o-1 .�utaog ue[d al'S V XIC NHddd APPENDIX A. FIELD EXPLORATION For our field investigation, 9 exploratory torings were excavated on May 7 and May 9, 2003, using 9 truck mounted hollow stem auger rig (Mobile B-61) in the approximate locations indicated on the site plan included in this appendix. Continuous log of the materials encountered were prepared on the site by a representative of Sladden Engineering. Boring logs are included in this appendix. Representative undisturbed samples were obtained within our boring by driving a thin-walled steel penetration sampler (California split spoon sampler) or a' Standard Penetration Test (SPT) sampler with a 140 -pound hammer dropping °approximately 30 inches (ASTM D1586). The number of blows required to drive the samplers 18 inches was recorded (generally in 6 inch increments). Blowcounts are indicated on the boring log. The California . samplers are 3.0 inches in diameter, carrying brass sample rings having inner diameters of 2.5 inches. The standard penetration samplers are 2.0 inches in diameter with an inner diameter of 1.5 inches. Undisturbed samples were. removed from the sampler and placed in moisture sealed containers in order to preserve the natural soil moisture content. Bulk samples were obtained from the excavation spoils and samples were then transported to our laboratory for further observations and testing. 3-D TopoQuad] Copyright 0 1999 Del_orme Yarmouth, ME 04096 Source Data: IISCS 1000 A Scale. 1 :25,000 Detail: 13-0 Datum: WGW Vicinity Map North Proposed 30 -Acre Residential Development Monroe Street & Avenue 61 No Scale La Quinta., California Sladden Engineering Project Number: 544 -3166 1 Date: 5 -22 r. 28 2 6 t 7i -- h 2 : •S o , 2 1 _ S--'R J _`_� E 5 mm:ng Pool 5 '. 33 34 VC l 6 s: .. -T• rnP is !' t P� TORRES )MARTINET, ti ] }691E 4 M 50 - Torres 1SOO !t .INJ?I.A'N `ESER�'AT[ON Toro Cem y S '�^ TORR 3-D TopoQuad] Copyright 0 1999 Del_orme Yarmouth, ME 04096 Source Data: IISCS 1000 A Scale. 1 :25,000 Detail: 13-0 Datum: WGW Vicinity Map North Proposed 30 -Acre Residential Development Monroe Street & Avenue 61 No Scale La Quinta., California Sladden Engineering Project Number: 544 -3166 1 Date: 5 -22 'Jtt:r� X 10 . --9 - f6 feet S114 :: Mill, �— ,t 5 ,�� O 3 • --1 - i�ki'l1S r North Approximate Boring Locations, No Scale Boring Location Map Proposed 30 -Acre Residential Development Monroe Street & Avenue 61 La Quinta, California Sladden Engineering Proiect Number: 544 -3166 1 Date: 5 -22 -03 Total Depth = 51.5' _ Recovered Sample Note: The stratification lines No Bedrock 55 m Standard Penetration Sample represent the approximate boundaries between the soil types; P the transitions may be gradual. a 1 Ll Proposed. 10 -Acre Residential Development S.W.C. Monroe Street & Avenue 61 / A.P.N. 764- 280 -014 / La Quinta, California Date: 5 -9 -03 Borin No. 2 Job No ^544 -;1 56 CU 3 >> > > Z o ° DESCRIPTION °> L. = REMARKS E �- cn U 0 q u) D o o U 0 Silty Sand: Brown,, SM - fine grained 5 11/17/25 103 6 17% passing #200 ' 'O 6/11/20 Sand: Brown, slightly silty, SP /S 109 10 16% passing #200 - fine grained with interbedded silty clay layers s 15/18/25 Silh Sand: Brown, SM 108 - 16 °«, passing #200 fine Lrained I 20 Silty Clay: Brown with CL 15/20/20 interbedded silt sand layers 23 65% passing #200 Total Depth = 21.5' - ® Recovered Sample No [bedrock ® Disturbed Sample No. Groundwater 2s 30 35 40 45 50 _ Note: 1•he stratification lines 55 represent the approximate boundaries between the soil ty pes; the transitions may be gradual. r- - Proposed 10 -Acre Residential Development • S.W.C. Monroe Street &Avenue 61 ! A.P.N: 764- 280 -014 ! La Quints, California ' . - Date: 5 =9 -03 Borin No. 3 Job No.: 544 -3166 ? o � DES.CRi?PTION '~ RL�NARKS',• .. c, .sa 3 a. • t Sandy Silt: Bro\'vn, -. I ML slightly clayey � 5h /7 Silty Brown with . y Y� � CL 88 o - 86/ passing 9200 . .interbedded silty sand layers , ` ••,t "0 4/516 Clayey Silt: Brown, •ML 89 2 3. - ° 70% passing #200 .. ' slightly sandy .' is 5/; /6 Silty•Clav: Bro\v%n, I CL T 90 . ;3 - -- 96% passing 9200 ' ZO -, Sand: Brown, slightly silty, ASP; SM - 10/11/20 dine to medium grained 117 5 - -- 13% passing #200 - _ t. Total DeptFi = 21.5' -.4 , ` -Recovered Sample No.Bedrock No Groundwater_ .35 Note: The stratification lines ss . ' • represent the approicimate • - boundaries between the soil types; • _ the transitions may be gradual_ Proposed 10 -Acre Residential Development S.W.C. Monroe Street & Avenue 61 / A.P.N. 764- 280 -014 / La Quinta, California Date: 5 -9 -03 Boring No. 4 Job No.: 544 -3166 o ° DESCRI'TION > o REMARKS L U 0 Sand: Brown, slightly silty, SP /SM i fine to meditun grained 5 _ 10/15/20 Sand: Brown, SP 98. 3 - -- o /o 6 passing X200 ' - fine to medium grained 10 1511.5/15 Clayey Silt: Brown with ML 99 15 SI° passing 4200 - silty fine grained sand layers 15 1010/15 101 19 - 75% passing -200 - Silty Sand: Brown, fine grained SM 20 8/10/20 with interbedded clay silt layers 1 1 1 9 - -- 31 % passing #200 - Total Depth = 21,5' - - Recovered Sample , No Bedrock No Groundwater 25 30 35 ' 40 _ 45 50 _ Note: The stratification lines 55 represent the approximate boundaries between the soil types; the transitions may be gradual. ' Total Depth = 21.5 ® Recovered Sample No Bedrock No Groundwater 25 30 .35 40 45 50 Note: The stratification lines 55 represent the approximate boundaries between the soil types; the transitions may be gradual. Proposed 20 -Acre Residential Development N.W.C. Monroe Street & Avenue 61 / A.P.N. 764 - 270 -015 / La Quinfa, California Date: 5 -9 -03 Borin No. 6 Job No.: 544 -3166 DESCRIPTION o c REMARKS c o. E' " ^ x E. aya, A rn V 00 o C/) Z) °- o oO o U I o Sand: Brown, SP /SM _ slightly silty, fine grained. 5 10/12/18 " " 101 5 - -- 9% passing 4200 io Clayey Silt: Brown, ML 5 /6/10 slightly sandy 94 25 - 71 °o passing #200 I 15 6/6/1 0 Silty Clay Brown CL S_ ; 1 passing o �_ 00 2o Silty Clay: Brown with CL 8/10/15 interbedded silty sand layers 90 28 70 °.'o passing 9200 Total Depth = 21.5' - Recovered Sample No Bedrock - No Groundwater 25 30 35 i 40 45 50 - Note: The stratification lines 55 represent the approximate M boundaries between the soil ty pes; the transitions may be gradual. - Total Depth = 21.5' Recovered Sample No Bedrock - No Groundwater 25 30 35 - 40 45 50 _ Note: The stratification lines 55 represent the approximate boundaries between the soil ty pes; the transitions may be gradual. Proposed 20 -Acre Residential Development N.W.C. Monroe Street & Avenue 61 / A.P.N. 764 - 270 -015 / La Quinta, California Date: 5 -9 -03 Borin No. 8 Job No.: 544 -3166 ' Y CJ C y ° DESCRIPTION o a REMARKS ate- DE� 0 o U o Sandy. Silt: Brown, clayey ML 5 10/13/26 Silty.Sand: Brown, SM 100 2 - -- 25% passing #200 - fine.grained 10 15/22/18 Sand: Brown, SP /SM, 107' 2 10% passing #200 - _ slightly silty, fine grained I i i5 i IS /�� /t0 Saiid: Brown, slightly silt_•. ASP /SM I I? 12 °.o passing #200 - fine to ntediuni grained 20 8 /10/1; Sandy Sili: Brown, clayey Ml 90 15. - 68% passing #200 Total Depth = 21.5' ® Recovered Sample No Bedrock No Groundwater .25 30 35 _ a 40 45 50 _ Note: The. stratification lines - 55 represent the approximate boundaries between the soil types; the transitions may be gradual. - I I I I I I I I I I I Total•Dermh = 21.5 1 Proposed 20 -Acre Residential Development N.W.C. Monroe Street & Avenue 61 / A.P.N. 764 - 270 -015 / La Quinta, California Date: 5 -9 -03 Borine No. 10 Job No.: 544 -3166 c 3. v L c v O o •�° DESCRIPTION n . L •� REMARKS U C1 vo ° o o U ° Clayey Silt: Brown with silty ML - fine grained sand layers s 7/10/20 88 13 66° passing #200 _ Lp 10 8/10/10 Silty Sand: Brown, SM 93 7 - -- 30% passing #200 - very silty, fine grained 1s N7!8!10 ( Silty Clay: Brown CL I 91 II I 32 ( - -- 91° passing' =?00 20' 10 /10 /I5 Silty Sand: Brown. SM 7 20% passing .#200 - fine grained 25 _ 5/5/10 Silt Clay: Brown CL 29 -__ 89 / passing 9200 30 2/3/6 Silty Clay: Brown with fine CL - -- 31 - -- 87% passing #200 grained sand layer 4" thick 35 3/5/10 . - -- 29 - -- 85% passing #200 _ Groundwater) 38' 40 5/5/7 Clayey Silt: Brown with silty ML _ -- 29 - -- 61% passing #200 - fine grained sand layers 45 _ 5/8/12 Silty Sand: Brown, SM - -- 23 passing #200 29% a _ fine grained so Sand: Brown, SP 15/2025 fine to medium grained - -- 17 --- 7% passing #200 - Total Depth = 51.5' - _ Recovered Sample Note: The stratification lines No Bedrock 55 m Standard Penetration represent the approximate boundaries between Sample the soil types; the transitions may be gradual: APPENDIX B Laboratory Testing Laboratory Test Results APPENDIX B LABORATORY TESTING Representative bulk and relatively undisturbed soil samples were obtained in the field and returned to our laboratory for additional observations and testing. 'Laboratory testing was generally performed in two phases. The first phase 8onsisted of testing in order to determine the compaction of the existing natural soil and the general engineering classifications of the soils underlying the site. This testing was performed in order to estimate the engineering characteristics of the soil. and to serve as a basis for selecting samples for the second phase of testing. The second phase consisted of soil mechanics testing. This testing including consolidation, shear strength and expansion testing was performed in order to provide a means of developing specific design recommendations based on the mechanical properties of the soil. CLASSIFICATION AND COMPACTION TESTING Unit Weight and Moisture Content Determinations= Each undisturbed sample was weighed and measured in order to determine its unit weight. A small portion of each sample was then subjected to testing in order to determine its moisture content. This was used in order to determine the dry density of the soil in its natural condition. The results of this testing are shown on the Boring Logs. Maximum Density - Optimum Moisture Determinations Representative soil types were selected for maximum density determinations. This testing was performed in accordance with the ASTM Standard D1557-91, Test Method A. The results of this testing are presented graphically in this appendix. The maximum densities are compared to the field densities of the soil in order to determine the existing relative compaction to the soil. This is shown on the Boring Log,' and is useful in estimating the strength and compressibility of the soil. Classification Testing= Soil samples were selected for classification testing. This testing consists of mechanical grain size analyses and Atterberg Limits determinations. These provide information for developing classifications for the soil .in accordance with the Unified Classification System. This classification system categorizes the soil into groups having similar engineering characteristics. The results of this.testing are very useful in detecting variations in the soils and in selecting samples for further testing. SOIL MECHANIC'S TESTING Direct Shear Testing: One bulk sample was selected .for Direct Shear Testing.. This testing measures the shear strength of the soil under various normal pressures and is used in developing parameters for foundation design and lateral design. Testing was performed using recompacted test specimens, which were saturated prior to testing. Testing was performed using a strain controlled test apparatus with normal pressures ranging from 800 to 2300 pounds per square foot. Expansion Testing: One bulk sample was selected for Expansion testing. Expansion testing was performed in accordance with the UBC Standard 18-2. This testing consists of remolding 4-inch diameter by 1-inch thick test specimens to a moisture content and dry density corresponding to approximately 50 percent saturation. The samples are subjected to a surcharge of 144 pounds per square foot and allowed to reach equilibrium. At that point the specimens are inundated with distilled water. The linear expansion is then measured until complete. Consolidation Testing= Four relatively undisturbed samples were selected for consolidation .testing. For this testing one-inch thick test specimens are subjected to vertical loads varying from 575 psf to 11520 psf applied progressively. The consolidation at each load increment was recorded prior to placement of each subsequent load. The specimens were saturated at the 575 psf or 720 psf load increment. Maximum Density /Optimum Moisture May 12, 2003 ASTM D -1 557 A Rammer Type: Manual ASTM D698/D 1557 Project Nurgber: 544 -3166 Project Name: Ave. 61 & Monroe Lab ID Number: 130 Sample Location: Bulk 1 @ 0 -5' Description:. Silty Fine Sand Maximum Density: 109 pef Optimum Moisture 13.5% L Sieve Size % Retained 0 3/4" 3/8" #4 #DIV /0! May 12, 2003 ASTM D -1 557 A Rammer Type: Manual 145 140 135 130 125 �► A 120 L 0 11s 110 105 100.- May 12, 2003 ASTM D -1 557 A Rammer Type: Manual 0 5 10 15 20 25 Moisture Content, % �► < ----- Zero Air Voids Lines, =,Ipm MEE.��1� ME wh 0 5 10 15 20 25 Moisture Content, % Maximum Density /Optimum Moisture ASTM D698/D1557 Project Number: , 544 -3166 May 12, 2003• Project Name:. Ave. 61 & Monroe ASTM D -1557 A Lab ID Number: Ranu»er Type: Manual Sample Location: Bulk 10 @ 0 -5' Description: Silty Fine Sand Maximum Density: 112 pef Optimum Moisture 13% Sieve.Size % Retained. 3/4" 3/8" #4. #DIV /0! Zero Air' mmmm me's BMW MMIIMS=��=M MM ,oids Lines, mmw �m 20 25 01...1.7..- T' °-'• ----.: .. ._ M 1, 1-41111 INS � Zero Air' mmmm me's BMW MMIIMS=��=M MM ,oids Lines, mmw �m 20 25 01...1.7..- T' °-'• ----.: .. ._ One Dimensional Consolidation ASTM D2435 & D5333 Job Number: 544 -3166 May 13, 2003 Job Name: 'Ave. 61 &'Monroe Initial Dry Density, pcf: 104.0. Sample ID: Boring 1 @ 5' Initial Moisture, %: 2 Soil Description: Silty Sand Initial Void Ratio: 0.603 Specific Gravity: 2.67 % Change in Height VS Normal Presssure Diagram --0 Before Saturation —6 After Saturation - 9= Rebound —f- Hydro Consolidation I , 0 r -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 s�t�s 0.0 1.0 2.0 3.0 4.0 5.0 6.0 70 One Dimensional Consolidation. ASTM D2435 & D5333 Job Number: 541 -3166 May 13, 2003 Job Name: Ave. 61 & Monroe Initial Dry Density, pcf- 99.3 Sample ID: Boring 1 @ 10 Initial Moisture; %: 6 Soil Description: Silty Sand Initial Void Ratio: 0.679 Specific Gravity: 2.67 Hydrocollapse: 0.1 % @ 0.720 ksf % Change in Height vs Normal Presssure Diagram' i �-- Before Saturation —6 After Saturation ) Rebound —f —Hydro Consolidation 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 One Dimensional Consolidation ASTM D2435 & D5333 Job Number: 544 -3166 Job Name: Ave. 61 & Monroe Sample ID: Boring 10 @ 5 Soil Description: Sandy Silt May 13, 2003 Initial Dry Density, pcf- 82.7 Initial Moisture, %: 13 Initial Void Ratio: 1.015 Specific Gravity: 2.67 Hydrocollapse: 0.6% @ 0.575 ksf % Change in Height vs Normal Presssure Diagram —0 Before Saturation — A A .After Saturation --) Rebound — _ — �— Hydro Consolidation 0 -2 -3 -4 -5 -6 -7 -8 -9 -10 0.0 0.5 1.0 1.5 2.0 2.5 3.0. 3.5 4.0 4.5 5.0 One Dimensional Consolidation ASTM D2435 & D5333 Job Number: 544 -3166 Job Name: Ave. 61 & Monroe Sample ID: Boring 10 @ 10 Soil Description: Silty Sand 1 0 -2 -3 -4 -5 -6 -7 -8 -9 -10 % Change in Height vs Normal Presssure Diagram —0 Before Saturation - A After Saturation —) Rebound Hydro Consolidation 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 .5.0 May 13, 2003 Initial Dry Density, pcf: 93.7 Initial Moisture, %: .7 Initial Void Ratio: 0.780 ' Specific Gravity: 2.67 % Change in Height vs Normal Presssure Diagram —0 Before Saturation - A After Saturation —) Rebound Hydro Consolidation 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 .5.0 May 13, 2003 Gradation ASTM C117 & C1.36. . " Project Number: 544 -3166 Project Name: Ave. 61 & Monroe Sample ID: Bulk 1 @ 0 -5` Sieve Sieve Percent Size, in Size, mm Passing 1 " 25.4 1.00 3/41" 19.1 100 1/T' 12.7 100 3/8" 9.53 100 #4 4.75 100 #8 2.36 100 #16 1.18 100 #30 0.60 100 #50 0.30 89 #100 0.15 45 #200 0.074 17 May 13, 2003 100.0 10.0 1.0 0.1 Sieve Size, mm 0.0 0.0 Il'llddr�lh NI Mull N I i nii m •' nP �I C I� N' men No mmiiiiilm�illill§E Ilium H IM 11M ONE 100.0 10.0 1.0 0.1 Sieve Size, mm 0.0 0.0 Expansion Index ' ASTM D 4829/UBC 29 -2 Job Number: 544 =3166 Date: 5/13/03 Job Name:. Ave. 61 & Monroe Tech: Jake Lab ID:. Sample ID: Bulk 1 @ 0 -5' Soil Description: Silty Sand Wt of Soil + Ring: 545.0 Weight of Ring: 179.0 Wt of Wet Soil: 366.0 Percent Moisture: 13% Wet Density, pcf: 110.9. Dry Denstiy, pcf: 98.1 1% Saturation: 49.0 Expansion Rack # Date/Time 5/15/03 9:00 A.M. Initial Reading 0.500 Final Reading 0.500 Expansion Index (Final = Initial) x 1000 EI 0 Sladden Engineering Revised 12/10/02 ANAHEIM TEST LABORATORY 3008 S. ORANGE AVENUE SANTA ANA, CALIFORNIA 92707 PHONE (714) 549 -7267 M To: SLADDEN ENGINEERING:. 6782 STANTON AVE. SUITE A BUENA PARK, CA.90621 :ORM 02 ATTN: BRETT /DAVE PROJECT #544 -3'166 H =1 @ 0 -5' ANALYTICAL REPORT CORROSION SERIES SUMMARY OF DATA N DATE: 5/16/03 RO.No. Chain of Custody Shipper No. Lob. No. A-3187 Specification:. Material: SOIL pH_ SOLUBLE SULFATES. SOLUBLE CHLORIDES MIN. RESISTIVITY per Ca. 417 per Ca. 422. per Ca: 64.3 ppm ppm ohm -cm 6.5 132 297 1,621 0 • • ./A / d m May 21, 2003 -14- Project No. 544 -3166 03-05-321 1997 UNIFORM BUILDING CODE SEISMIC DESIGN INFORMATION The International Conference of Building Officials 1997 Uniform Building Code contains substantial revisions and additions to the earthquake engineering section in Chapter.16. Concepts contained in the code that will be relevant to construction of the proposed structures are summarized below. Ground shaking is expected to be the primary hazard most likely to affect the site, based upon proximity to significant faults capable of generating large earthquakes_ Major fault zones considered to be most likely to create strong ground shaking at the site are listed below. Fault Zone Approximate Distance From Site Fault Type (1997 UBC) San Andreas 13.7 km A San Jacinto 26.9 km A Based on our field observations land understanding of local geologic conditions, the"soil profile type Judged applicable to this site is SD, generally described as stiff or dense soil. The site is located within UBC Seismic Zone 4. The following table presents additional coefficients and factors relevant to seismic mitigation for new construction upon adoption-of the 1997 code. �I Near-Source Near-Source Seismic Seismic Seismic Acceleration Velocity .Coefficient Coefficient Source Factor, Na Factor, N, C, C, San Andreas 1.0 1.05 0.44Na 0.64N, San Jacinto 1.0 1.0 0.44Na 0.64N, Liquefaction Analysis 6 i Boring No.:11 Job.name: I Proposed 30 -Acre Res. Development Job No.:' 544 -3166 .. _... - -- ....... ;Monroe Street & Avenue 61 1 !La Quinta, California Water @1lo. ! amaX= 10 _. _...., . - -- ._.....' {.... ... .. _. . _ ......... ........ ...... ;.. . ... _.._ ... _... ........... a . Sand ......... i.. j.. Corrected `:.... ... ... _ silt _.— ........ -- ..._.......� wcoun s CSRE ... F. S. or clay; Depth(ft.) ; Soil Dens. i Sigma(0) 1 Sigma(0)bar! Tons /ft ^2 Cr, I N N, tau,/Sigma(0)effe6tivel . CSRL CSRUCSRE: (Symbol) 1575 1263 0.632 1258 1 35 44.0 0.98: 0.261 1.00 3.8 sand .___.15.0 .._........_10 .20.0 _._. _..__.... .._ ....�..... _....._.. 105 2100......,... - - -- ....,.. ------._.._...........---...._.._.. 1476 _ ..............._ .......!....._..._;..__...,.... 0.738 ! 1.164 .........._........_....- - --- -- .,._.. 19 22.1 0.96: _...... 0.292 ' ... ' N/A" ....., N /A' _ ... clay __..._... _.. .. 105 .._.... - --. 2625 - -. 1689 ...... _­1 0.845 1.088 ' .._.._.._�_....- f -...- -' _.t..__......._. 15 . -. 16.3 0.94 ........................ 0.312 N /A' N /A" _ clay 30.0 105 3150 1 2 ! 0.951 1 025. 24 - 24.6 0.92 0.326 ! N /A" N /A" silt 35.0 105 3675 2115 1.058 0.972. 15 14.6 0.89 ; 0.331 N /A" N /A' _ silt 40.0 105 4200 2328 1.164 0.927 83 76.9 0.85 0.328 1.00 3.0 sand 45.0 '1* O'5 4725 2541 1.271 0.887 59 52.3 0.82 - 0.326 1.00 3.1 sand 50.0 105 ! 5250. 2754 1.377 0.852 48 40.9 0.77 0.314 1 1.00 3.2 sand _._ _._..- _..___....._�..... i. .......... :. ! N /A' =Silts &Clays are considered non liquefiable 6 , , - r [ a •y f . T • :. " F Y . , A ? ; • '. 1 + ` � � W a' _ 'ir • L Y r * � ' Liquefaction Analysis CA t -Y Boring No�;10 i Job name: IPro osed 30 -Acre Res. Development P Job No.: 1544 -3166 fMonroe Street& Avenue 61 - ILa Quinta, California e ' _ I and Ssilt , ' ted Blowcoun_ - ;Approx. .: I is CSR_ E - F.S. or clay; I........ De th(ft. I Soil Dens. I Si ma(0) Si ma(0)bar Tons /ft ^2 CN N p ) g g I �I' N, rd tau,/Si y _...__ _._ _... - ma 0 effective; 9 O 1 CSRL I CSRUCSRE' - (Symbol) m 15.0 105 • 1575 .: .1.263 0.632 1.258 10.8 13.G'» =;0.98 0.26 N/ '' clay 20.0 105 2100'',. • 1476 " ' 0.738 1.164 '' 25 29.1 -0.96 '0.292 ' N /A' sand .25.0 105 ,2625 1689 0.845 1.088° "` 15 . 16.3 ' 0.94 0.312 N/A* N/A­ �, c ay 30.0 105. 3150 - 1902 0.951 1:025 9 9.2 0:92. 0.326 N /A' clay 35.0 105 ' 3675 2115 0.972 15 1.058 " " 14.6 0.89 ; 0.331 N /A'. clay 40.0 105• '4200 2328 1.164 0.927 12 11.1 0.85: 0.328 N/A* silt - 45.0 105 4725 ! 2541 i 1.271 0.887 20 17.7 0.82 ' 0.326 1. 00 sand 50.0 ' 105 5250 2754 1.377 0.852 45 38.3 0.77 ` 0.314 1.00 •sand 7non-Iiiquefiable 1 : N/A* =Silts &Clays are cn liqueriable =Silts ...._. i - ' "Blow counts "N" converted based on correlation between California Sampler and Standard Penetration Sampler. i , + k *. E Q F .i L T * Version 3.00 DETERMINISTIC ESTIMATION OF PEAK ACCELERATION FROM DIGITIZED FAULTS JOB NUMBER: 544 -3166 DATE: 05 -16 -2003 JOB NAME: Avenue 61 & Monroe Street Ta Quinta, California CALCULATION .:li';E: Test Rv:: = .r,alysis FAULT- DAT?. -. _ _ 'NAM; CD..`sG-LTE. DAT SITE COORDINr:_:"S: SITE LATITUDE: 33.6064 SITE LONGITUDE: '116.2357 SEARCH RADIUS: 100 mi ATTENUATION RELATION: 5) Boore et al. (1997) Horiz. - SOIL (310) UNCERTAINTY (M= Median; .S= Sigma): M Number of Sigmas: 0.0 DISTANCE MEASURE: cd_2drp -SCOND: 0 Basement Depth: 5.00 km Campbell SSR: Campbell SHR: COMPUTE PEAK HORIZONTAL ACCELERATION FAULT -DATA FILE USED: CDMGFLTE.DAT MINIMUM DEPTH VALUE (km): 0.0 --------- - - - - -- EQFAULT SUMMARY --------- - - - - -- ----------------------------- "cTERMINISTIC SITE: PARAMETERS ----------------------- - - - - -- Page 1 ------------------------------------------------------------------------------- I (ESTIMATED MAX. EARTHQUAKE EVENT I APPROXIMATE I ------------------ - ------------ ABBREVIATED. I DISTANCE I MAXIMUM I PEAK (EST. SITE FAULT NAME I mi .(km) IEARTHQUAKEI SITE (INTENSITY i I MAG.(Mw) .I ACCEL. g IMOC.MERC. SAN ANDREAS - Coachella' 1• 8,.5( 13.7)1 7.1 1 0.281 1 IX SAN ANDREAS - Southern 1 8.5( 13.7)1 7.4 1 0.329 1 IX SAN JACINTO-ANZA ! 16.7( 26.911 7,2 0.183 1 VI== SAN JACINTO- COYOTE CREEK 18.3; 29.5)1 6.8 •. 0.138 BURNT MTN. ; 24.8' 39.9); 6'.4 0.089 __ EUREKA PEAK i 25..6.; 'i_2)i c.4 !• 0.087 i -- SAN ANDREAS - San Bernarc.':!._ ! 26. C- °) 0.138 SAN JACIN` 0- - BORPEG0 28.2; - _ . 4 ) ! 6. 6 - BRAWLEY SETSMIC ZONE 1 35.4; 50.9)1 6.4 I 0.068 'J_ EARTHQUAKE VALLEY 1 35.5( 57.1)1 6.5 1 0.071 i VT PINTO MOUNTAIN 1 37.4( 60.2)1 7.0 1 0.089 1 VI?. EMERSON So.- COPPER MTN. 1 38.2( 61.4) 1 6.9 1 0.083 ! VIT PISGAH - BULLION MTN. - MESQUITE_ LK 1 39.0( 62.8) 1 7.1 I 0.091 I V;I ELSINORE- JULIAN• I 39.7(- 63.,9)1 7.1 1 0.090 VT_I LANDERS 1. 39.8( 64.1)1 7.3 1 0.099 i VIT SAN JACINTO -SAN JACINTO VALLEY 1 40.3( 64.8) 1 6.9 1 0.080 I V =I. ELMORE RANCH 1 42.3( 68.0)1 6.6 .1 0.066 1 VI NORTH FRONTAL FAULT ZONE (East; 1 44.8( 72.1) 1 6.7 1 0.080 1 VII ELSINORE- COYOTE MOUNTAIN 1 44.9( 72.3)1 6.8 1 0.070 VI SUPERSTITION MTN. (San Jacinto; 1 46.0( 74.1)1 6.6 1 0.061 1 VI SUPERSTITION HILLS (San Jacinto)( 47.0( 75.6)1 6.6 1 0.060 1 VI ELSINORE- TEMECULA 1 47.5(. 76.4)1. 6.8 1 0.067 1 VI JOHNSON VALLEY (Northern) 1 50.6( 81.5) 1 6.7 1 0.060 1 VI CALICO - HIDALGO 1 51.9( 83.6) 1 7.1 1 0.073. 1 VII. NORTH FRONTAL FAULT ZONE (West) 1 56.5( 91.0)1 7.0. 1 0.079 1 VII. LENWOOD- LOCKHART -OLD WOMAN SPRGSI 56.5( 91.0)! 7.3 1 0.076 1 VIi IMPERIAL 1 61.4( 98.8)1 7.0 i 0.061 1 Vi ELSINORE -GLEN IVY 1 64.1( 103.111 6.8 ! 0.053 1 VI HELENDALE - S. LOCKHARDT 1 64.2( 103.3) 1 7.1 1 0.062 ! VI LAGUNA SALADA 1 64.2( 103.3)i 7.0 1 0.059 I VI SAN JACINTO -SAN BERNARDINO 1 64.2( 103.4) 1 6.7 I 0.050 1 VI CLEGHORN i 72.7( 117.0)1 6.5 1 0.041 1 V ROSE CANYON 1 74.8( 120.3)1 6.9 1 0.049 1 VI NEWPORT- INGLEWOOD (Offshore) 1 75.4( 121.3) 1 6.9 1 0.049 1 VI CHINO- CENTRAL AVE. (Elsinore) 1 78.2( 125.8) 1 6.7 1 0.052 1 VI CUCAMONGA 1 79.7( 128.3)1 7.0 1 0.060 1 V.I WHITTIER 1 82.5( 132.7)1 6.8 1 0.043 1 VI SAN ANDREAS -.Mojave 1 89.0( 143.2)1 7.1 1 0.048 1 VI SAN ANDREAS - 1857 Rupture 1 89.0( 143.2)1 7.8 1 0.069 1 VI CORONADO BANK 1 89.4( 14379)1 .7.4 1 0.056 1 VI ----------------------------- DETERMINISTIC SITE PARAi�,; -.TERS ----------------------------- Page 2 ------------------------------------------------= ---------------------------- - - I IES - iIHATED MAX. EARTHQUAKE EVENT APPROXIMATE .1 ------------------------------- ABBREVIATED I DISTANCE I M:iXIMUM I PEAK JEST. SITE FAULT NAME I mi (km) JEARTHQUAKEJ SITE (INTENSITY I I MAG.(Mw) I ACCEL. 9 JMOD.MERC. SAN JOSE 1 90.7( 146.0.)1 6.5 I 0.042 1 VI SIERRA MADRE 1 93.6( 150.7)1 7.0 1 0.053 1 VI ELYSIAN PARK'THRUST. J 95.0(.152.9)1 6..7 0:045 1 VI GRAVEL HILLS - HARPER LAKE 1 95.9( 154.3) 1 6.9 0.041 I V NEWPORT- INGLEWOOD (L.A:Basin) 1 97.2( 156.4)1 6.9 1 0.040 1 V -END OF SEARCH- 45 Fz�.ULTS FOUND idITHIN THE SPEC =TTED SEARCH RADIUS. THE, SAN' �NDREAS - Coac^ella FAULT IS CLO-. =S= TO THE SIT -E. IT IS AE3OUT• 3.5 MILES ;13.7 km) AWA• . SITE F.CCn-= RATION: 0. =;_ v� 1100' 1000 900 800 700 DO 500 400 300 200 i[iIl] CALIFORNIA FAULT MAP Avenue 61 & Monroe Street / La Quinta, CA 0 -100 -400 -300 -200 -100 0 100 200 300 400 500 600 STRIKE -SLIP FAULTS 5) Boore et al. (1997) Horiz. - SOIL (3 10) M =5 M =6 M =7 M =8 1 -4 o .1 nL` W W U U . Q .01 .001 1 10 100 Distance (adist] (km) DIP -SLIP FAULTS, 5) Booi-e et al_ (1997) . Horiz. - SOIL (310) . M =5 M =6 M =7 M =8 .001 .1 A 10 100 Distance [adistl (km) n `•� 0 c� L a) a� U U i BLIND- THRUST FAULTS 5) Boore et al. (1997) Horiz. -SOIL (310) ® a M =5 M=6 M =7 M =8 i .1 .01 .001 1 10 100 Distance [adist] (km) : MAXIMUM EARTHQUAKES Avenue 6.1 &. Monroe Street / La Quinta, CA 0 c� ^L` W U U a 1 .01 001 .1 1 10 100 Distance (mi) 3 EARTHQUAKE MAGNITUDES & DISTANCES Avenue 61 & Monroe Street / La Quinta, CA 7.75 7.50 7.25 a) 7.00 0 c� 6..75 6.50 .1 1 10 100 Distance (mi) Sladden Engineering 6782 Stanton Ave., Suite A, Buena Park, CA 90621 (714) 523 -0952 Fax (714)'523-1369 39 -725 Garand Ln., Suite G, Palm Desert, CA 92211 (760) 772 -3893 Fax (760) 772 -3895 , May 27, 2003 Project No. 544-3166 03-05 -329 Monroe Dates, -LLC 1387 Ambassador Way Salt.Lake City, Utah 84108 Attention: Mr. Craig A. Knight . Project: Proposed 30-Acre Residential Development APN 764-270-015 & 746- 280-014 Monroe and Avenue 61 La Quinta, California Subject= Percolation Testing for Stormwater Retention Ref= Geotechnical Investigation prepared by Sladden Engineering dated May 21, 2003, Project No. 544-3166, Report No. 03-05 -321. . As requested, we have performed percolation/infiltration testing on the subject site in order to determine the infiltration potential of the surface soils. The percolation rates determined ' should be useful in assessing stormwater retention needs. It is our understanding that on- site stormwater. retention will be required. It is proposed to collect the stormwater runoff within several shallow retention basins. infiltration testing was performed within shallow test holes excavated'in various locations on the site. Percolation testing was performed on May 13, 2003. Testing involved filling th test holes with water and recording t e ro 7the r rface withtime. Measuremen s were recorded in variable time increments upon 7in ration rates. Tests results are. summarized below: Test Hole No. . Rate (inches/hour) A 9.0 B 18.0 C 15.0 D 15.0 E 12.0 . F 4.0 G 6.0 V-% 1 UScc� i :y May 27, 2003 -2- Project No. 544-3166 03- 05-329 It should be noted that the infiltration rates determined are ultimate rates based upon field test results. An appropriate safety factor should be applied to account for subsoil inconsistencies and potential silting of the percolating soils. The safety. factor should be determined with consideration to other factors in the stormwater retention system design (particularly stormwater volume estimates) and the safety factors associated with those design components_ We appreciate the opportunity to provide service to you on this project. If you have questions regarding this letter or the test results included, please contact the undersigned. Respectfully submitted, SLADDEN ENGINEERING PROFESS/0�` ANpF Fyc Brett L. Anderson m N Principal Engineer No• C 453889 Exp. 9/30106 Letter /pc sT�r� CNIL �P )F CAUFCF Copies = 211Monroe Dates, LLC 2 /Cal Vada Surveying t ILI iN 1 A: 1 1 .. 1 t-li, IA- k--" J IN r1-HF .CITY OF L.A. ivt QU I N -F A .. SLo,,,, occ,... v 0,5- ,.r APPRowrO i7.7E PERCOLATZoN G "�`o`^ 7-S-s7-_ LocA 7-ZONs K .. . a e� HYZR0L.ac,Y,�3 f- tyvRAuucs.srLwY fa` MADISON CL�t'� (Cb-xbhC)VcZ) p CC I WI D. APR 1' 2 2007 GTY OF COMMUNITY DEVEWAPMENT DEPARTMENT 10 -Year and 100 -Year Storm Rational Method Analysis for East of Madison, LLC 80 -955 Avenue 52 La Quinta, CA 92253 prepared by: Lim!NConsultants, Inc. 7595 Irvine Center Drive, Suite 130 Irvine, CA 92618 949.453.0111 t4 der the supervision o f Jeremy Patapoff, P.E. pate prepared. April H, 2007 e 63 94 1a D� ��e�� b96* s vtloo 4� I. INTRODUCTION The purpose of this report is to present the hydrology (rational method) and hydraulic (WSPG) analysis for the 10 -year and 100 -year storm water discharge for the proposed Madison Club Clubhouse development, Tentative Tract 34969. The Madison Club is located in the City of La Quinta and is bound by Madison Street, Avenue 54, Avenue 52, and Monroe Street. The proposed development will consist of approximately 470 acres divided into three (3) major project phases; Phase 1, Phase 2 and Villas. This report is specific to the proposed "Storm Drain Improvements for Madison Club Clubhouse" only and represents the report covering the handling of storm water for the Clubhouse watershed boundary. In this report the following will be addressed: sizing of the private residential area drain connections, sizing of the natural drainage channel catch basins, sizing of the residential storm drain lines and sizing of the natural drainage channel adjacent to each side of the private streets within the above mentioned boundary. The first report (Vol. I) titled "Hydrology Report - Madison Club 100 -Year Storm Volume and Storage Analysis" was submitted with the "Mass Grading and Perimeter Wall Plans" and addressed the necessary storage volume to retain all off -site and on -site runoff generated by the largest 100 -year 24 -hour event based on the Synthetic Unit Hydrograph method within the golf lakes and established the 100 -year water surface elevations. The second report (Vol. II) titled "Hydrology and Hydraulics Study for Madison Club Golf' accompanied the "Storm Drain Back - Bone Improvement Plans for Madison Club Golf Course" and addressed the sizing of the backbone storm drain system within the golf course. The third set of reports (Vol. IIIA & IIIB) titled "Storm Drain Improvements for Madison Club Phase 1" and "Storm Drain Improvements for Madison Club Phase 2" addressed the sizing of the private residential area drain connections, sizing of the residential storm drain lines, sizing of the natural drainage channels and drainage channel catch basins throughout the two phases of the Madison Club. Madison Club (on -site) and its perimeter streets (off -site) are hydrologically isolated. All runoff within the project and the portion of the perimeter streets adjacent to the project are to be stored on -site. Within the site there are seven (7) lakes and two (2) low points. Although each watershed drains to a lake or low point within the golf course only four (4) of the seven (7) lake features serves as the project's ultimate storage devices. Each watershed area drains by way of "backbone" storm drains through the golf course to these four lakes. From these four (4) lakes the water is discharged to on -site dry wells (infiltration systems). These dry wells are intended to remove water from the site over time and are not considered part of the routing analysis. The reports titled "Hydrology Report - Madison Club 100 -Year Storm Volume and Storage Analysis" (Vol.. I) and "Hydrology and Hydraulics Study for Madison Club Golf' (Vol. II) provide the analysis for the storage and routing mentioned. In this report the watershed boundary areas were modeled according to the Riverside County Flood Control and Water Conservation District's (RCFC &WCD) Hydrology Manual. Watershed sub areas were created to represent catch basin collection areas within each watershed. The peak 100 -year runoff within a sub area is intended to flow towards a series of catch basins located at low points within the natural drainage channels, then transferred to the storm drain pipelines and finally to their respective storage basins (lakes) via the golf course storm drain backbone system. The peak storm flow discharge rates for the sub -areas were calculated with integrated rational method /unit hydrograph method hydrology software, authored by Advanced Engineering Software (AES), Version 2001, based on the (RCFC &WCD) 1978 Hydrology Manual. The software was used to estimate the peak runoffs generated by a 10 -year and a 100 -year frequency design storm. Storm drain facilities were then designed to accommodate these peak runoff rates. 1 Due to confluencing of multiple streams the peak runoff at the end of each system may not equal the sum of all the individual sub area runoff values. This happens because confluencing accounts for the time of concentration for each merging stream. Every initial area started with a typical 1 -acre lot and the distance to drain the lot via side yard swales to the main swale adjacent to the residential streets. For the street section of flow the natural drainage swale was estimated using a 6 -inch curb height, 5 -foot wide gutter width and a ' friction factor of n= 0.015. The actual drainage swale is 12 -feet wide, 1.67 -feet at the. low points and has a n= 0.035. Therefore the street section used in the rational analysis of this report is producing conservative Q's. The additional areas and pipe travel times followed normal rational ' method convention. Hydraulic pipe flow calculations for the storm drain facilities were performed using Water Surface Pressure Gradient (WSPG) software, establishing a hydraulic grade like for each facility. WSPG software, authorized by CIVILDESIGN Corporation, is based upon the Manning equation for conduit and channel flow, incorporating principles of continuity and conservation of energy. 1 The non - confluenced runoff values were used when sizing the pipe. Natural channel flow capacities were calculated using AES software for V- drains, drainage channel catch basins were analyzed based on the grate inlet capacity in sump conditions ' nomograph from the USDOT Drainage of Highway Pavements Manual and private area drain connections were analyzed using a 10 -year storm and Manning's equation. III. STORM WATER RUNOFF ANALYSIS Natural Drainage Swales and Storm Drain Pipe Instead of curb and gutter the Madison Club residential streets rely on 12 -foot wide natural drainage swales on both sides of the street. These swales follow the same design criteria as grading with side slopes ranging from 2- percent to 3:1 maximum at the low points. In addition the Conditions of Approval require maintaining a minimum grade of 1- percent and the ability to retain a maximum depth of 6- inches of storm water in the 10 -year event and /or one (1) travel lane during the 100 -year storm event. To achieve this three (3) design devices were employed. First the swales were saw - toothed to achieve the 1- percent minimum and create frequent low points. Second, within these low points 24 -inch round catch basins were placed within the channel to capture the flow for Q 100 and transfer it to the storm drain line. Finally, each lot is provided with a 10 -inch private area drain connection to the main storm drain line. The capacity of the swale alone at the low points with 1.67 -feet of depth is 36.8cfs. Because of ' the frequent placement of inlets there are no conditions where the street/swale Q100 exceeds 15 cfs. Therefore all flow is contained within the swale and the Conditions of Approval are met. See Technical Appendix "Natural Drainage Swale Analysis" for calculations of these conditions. Beneath the swales storm drain pipes will be constructed connecting the residential system to the backbone system with the golf course. Depending on the condition either HDPE or RCP pipe was used. When the system crosses under pavement RCP is used. In all other conditions HPDE pipe was specified. 2 r Drainage Channel Catch Basin Sizing At all Swale low points manholes with round grated covers were placed to intercept the runoff. Two (2) types, either ADS or City of La Quinta Standard 314, were used depending on the condition. If the manhole connected to a section of HDPE pipe an ADS 24 -inch manhole basin with an iron grated cover was used. If the manhole connected to a RCP pipe a standard manhole with grated cover was used. Based on the low point conditions of the swale established in the section above a 24 -inch diameter grated inlet with 1.5 -feet of head and 50% clogging can accept 9.5 cfs. Private Area Drain Connections Each residential lot is provided with a private area drain connection to the storm drain system under the drainage swale. The connection was sized to handle a 10 -year storm and a portion of the 100 -year storm. The remainder of the runoff from a 100 -year storm will flow to the natural drainage Swale by way of 0.5- percent minimum side yard swales. Based on the average depth of the storm drain mainline under the swale a minimum 1- percent slope can be maintain on the private area drain systems. Given a 10 -inch pipe the Q is 2.5 cfs based on the Manning's equation. Initial rational method analysis for a 1 -acre lot with 250 -feet of 0.5- percent side yard swale provides a Q100 of 3 cfs and a Q 10 of 1.7 cfs. Therefore in a 100 -year storm 0.5 cfs will flow from the lot to the natural drainage swale. See Technical Appendix for calculations of these conditions. When applying runoff to the natural drainage swale for the rational method analysis all flow from the residential lots was assumed to run off (private area drain system failure). This made the Q's in the swale /street extremely conservative since some of the flow will undoubtedly go directly to the storm drain line via the private area drain system. In addition when sizing the pipes all area drain runoff was applied to the nearest upstream catch basin to be more conservative. Hence the Q100 at that catch basin (node) is a combination of the Q100 in the Swale and in the pipe. Clubhouse Area Drainage The Clubhouse lot is a two- tiered area with buildings, hardscape and landscape. Surface area drains have been placed in the planting areas to capture run off from the roof drains, the hardscape and the planting areas themselves. The run off from the upper tier has been connected to the storm drain system #I I H. The run off to the lower tier has been connected to Lake "F" per the mass grading hydrology zone. Based on the capacity of 6" surface area drains to be 0.19 cfs, including 50% clogging, the maximum area draining to one surface area drain was approximately 2150 sf. There were a total of 61 surface area drains used. The parking lot and tennis court area drains to one (1) curb opening catch basin which then enters storm drain system #1113. Additionally, there are two (2) curb opening catch basin in the Phase 1 Storm Drain system which captures a portion of Meriwether Way. They are CB #9 and CB# 10. The two catch basins in Meriwether Way are in a sump condition and accept a 100 -year runoff of 1.5 cfs each. Based on this information the width was designed as 4 -feet. IV. STORM DRAIN HYDRAULICS The hydraulic analysis was performed utilizing WSPG software to establish the designed pipe line sizes for all mainlines and laterals to convey water from each respective sub -area to the storage basins (lakes). A HGL was initially created for each backbone storm drain using the 100- ' year water surface elevation from the synthetic unit hydrograph analysis of each respective storage basin (lake) and estimated runoff values based on preliminary rational method analysis 3 for the sub -areas contributing to the backbone line. The HGL's in this report were created using the same data as above but include the residential storm drain lines and a detailed rational method analysis for each sub -area. The HGL for each pipe is reflected in the storm drain plans plotted along the design profile of each storm drain. The backbone portion of the design profile was omitted in these plans to eliminate redundancy with the "Storm Drain Back -Bone Improvement Plans for Madison Club Golf Course ". The output reports for each storm drain line can be found in the Technical Appendix for reference. Note: All supporting documentation is located in the Technical Appendix of this report for reference. V. BIBLIOGRAPHY 1. Riverside County Flood Control and Water Conservation District Hydrology Manual (April 1978). 2. Hydrology Report Madison Club 100 -Year Storm Volume and Storage Analysis (March 29, 2005). 3. Hydrology and Hydraulics Study for Madison Club (Golf Course Storm Drain Backbone) (June 22, 2005). s -1 e �. �, �� �� a, ;, ,� ��, �� , ,. . . .,� ,� t sisl- ��sN�w�ois 1 4 1 1 1 1 1 1 1 sisl- ��sN�w�ois FLOW PROCESS FROM NODE 1.00 TO-NODE Z'OO IS CODE � 21 --,------------- -------------�---------------------------------------------- � >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ~====--~-~---====~~��=~===~�~~===��== �� ASSUMED INITIAL SUBAREA UNIFORM � Page 1 . ` LNllO.TXT RATIONAL PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL 8 WATER CONSERVATION DISTRICT (R[FC&WCD} I978 HYDROLOGY MANUAL (c) copyright 1982-2004 Advanced Engineering software (aes) {Rational Tabling Version 6'OD} Release Data: 01/0I/2004 License ID 1566 ` Analysis 'prepared by: R[E[onsultants, Inc' ' 7595 Irvine [enter Drive. suite 130 Irvine, CA 92618 -- (949) 453-011l � ' oES[RrPTInN*OF STUDY � MadisonClub I0-yr * se, Line l � -- � 2/9/07 � * ****-^^---***^+-*-^- ******--^��a�****»�*+ FILE NAME: LNI10'DAT -~ TIME/DATE OF STUDY: I6:37 02/09/2007 --------------------------------------- -_----------------------_------------ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ----------------------------------------------------------------------------- -p�� *SPECIFIED ' -T--'P-'-IZ`(-'~] --'-- � SPECIFIED PERCENT OF ( FOR FRICTION SLOPE 0'95 lO-YB\K STORM 10-MINUTE INTENSITY(IN[H/HOUR} = 2'830 I0-YEAR STORM 60-MINUTE� INTENSITY(IN[A/H0UR) = 1'000 100-YEAR STORM I0-MINUTE INTENSITY IN[H HOUK = 4.520 IOU-YEAR STORM 60-MINUTE INTENSITY(IN[H/HOUR} = 1-600 SLOPE OF I0-YEAR INTENSITY-DURATION CURVE 0.5805893 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE 0.5796024 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 10'00 1-H0UR INTENSITY(IN[H/HOUR} l'UlO .SLOPE OF INTENSITY DURATION CURVE = 0.5806 R[F[&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO R[F[&W[D HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE .COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLO� MODEL* HALF- CROWN TO STREET-[ROS3FALL: [UK8 GUT-TER-GEOMETRIES': MANNING WIDTH [R0S5FALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) {FT} SIDE-/ SIDE/ WAY (FT) {FT} (FT) (FT) (n) l 30'0 20'0 0.018/0.018/0.020 0'67 2'00 O'O]l] 0.167 0'0I50 2 I9.0 14'0 0'020/0'100/0'050 0'50 5'00 0'0100 0'010 0'0I50 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: l' Relative FlOW-De/th = l'UO FEET as [Maximum Allowable street Flow Depth] - (Top-of-Curb) 2' [Depth]*(Velocity) Constraint = 6'0 {FT-FT/S). *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE`* FLOW PROCESS FROM NODE 1.00 TO-NODE Z'OO IS CODE � 21 --,------------- -------------�---------------------------------------------- � >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ~====--~-~---====~~��=~===~�~~===��== �� ASSUMED INITIAL SUBAREA UNIFORM � Page 1 I ''. ` 1 r 1 I I � I 1 LN110.TXT DEVELOPMENT IS SINGLE FAMILY(1 -ACRE LOTS) TC = K*[(LENGTH**3) /(ELEVATION CHANGE)]"*.2 INITIAL SUBAREA FLOW- LENGTH(FEET) = 390.00 UPSTREAM ELEVATION(FEET) = 996.00 DOWNSTREAM.ELEVATION(FEET) = 992.00 ELEVATION DIFFERENCE(FEET) = 4.00 TC = 0.469•[( 390.00•=3)/( 4.00)] * *•.2 = 12.755. 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.482 SINGLE- FAMILY(1 -ACRE LOT) RUNOFF COEFFICIENT = .6863' SOIL CLASSIFICATION IS "B" SUBAREA RUNOFF(CFS) = 1.36 TOTAL AREA(ACRES) = 0.80 . TOTAL RUNOFF(CFS) = 1.36 FLOW PROCESS FROM NODE 3.00.TO NODE 2.00 IS CODE = 81 --------------------- ------------------- - ---------- - ------ ------------------ - » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< -10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.482 SINGLE- FAMILY(1 -ACRE LOT) RUNOFF COEFFICIENT = .6863 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOFF(CFS) 1.19 TOTAL AREA(ACRES). = 1.50 TOTAL RUNOFF(CFS) = 2.55 TC(MIN.-) = 12.75 FLOW PROCESS FROM NODE 2.00 TO NODE 4.00 IS CODE = 62 ------------------------------------------------=------------------- - - - - -- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>( STREET TABLE SECTION # 2 USED)««< -- ------------------------------------------------------------------------- UPSTREAM ELEVATION(FEET).= 992.00 DOWNSTREAM ELEVATION(FEET) = 987.80 STREET LENGTH(FEET) = 400.00 CURB HEIGHT(INCHES) STREET HALFWIDTH(FEET) = 19.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 14.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.100 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) .= 0.050 Manning'S FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning'S FRICTION FACTOR for Back -of -Walk Flow Section =. 0.0200 *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.88 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.21 HALFSTREET FLOOD WIDTH(FEET) = 14.32. AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.60 PRODUCT OF DEPTH &VELOCITY(FT*FT /SEC.) = 0.54 STREET FLOW TRAVEL TIME(MIN.) = 2.57 TC(MIN.) = 15.32 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = .2.231 SINGLE- FAMILY(1 -ACRE LOT) RUNOFF COEFFICIENT = ..6699 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES). 3.10 SUBAREA RUNOFF(CFS) = 4.63. TOTAL AREA(ACRES) 4.60 PEAK FLOW RATE(CFS) = 7.19 END OF'SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) =.0.25 HALFSTREET FLOOD WIDTH(FEET) 16.35 �. FLOW VELOCITY(FEET /SEC.) =. 2.88 DEPTH*VELOCITY(FT *•FT /SEC.) = 0.71 -LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.00 = 790.00 FEET. Page 2 LN110.TXT FLOW PROCESS FROM NODE 5.00 TO NODE. 4.00 IS CODE = 81 ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< -------------------=-------------------------=-----=------------------------ ---------------------------------------------------------------------------- 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.231 SINGLE- FAMILY(1 -ACRE LOT) RUNOFF COEFFICIENT = .6699 SOIL CLASSIFICATION IS "B ". .SUBAREA AREA(ACRES) = 2.20 SUBAREA RUNOFF(CFS) _ .3.29 TOTAL AREA(ACRES) = 6.80 TOTAL RUNOFF(CFS) = 10.48 TC(MIN.) = 15.32 FLOW PROCESS FROM NODE 4..00 TO NODE 8.00 IS.CODE = 31 ----------------------- --------------------- =------------------------------- »»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< . »» >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW)««< ---------------------=---------------------------------------=-------------- ---------------------------------------------------------------------------- ELEVATION DATA: UPSTREAM(FEET) 981.60 DOWNSTREAM(FEET) = 979.50 FLOW LENGTH(FEET) = 210.00 MANNING'S N = 0..013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 12.7 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 6.90 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES 1 PIPE- FLOW(CFS) = 10.48 PIPE TRAVEL TIME(MIN.)• = 0.51 TC(MIN.) = 15.83 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 8.00 = 1000.00 FEET. FLOW PROCESS FROM NODE .8.00 TO NODE 8.00 IS CODE = 1 ---=------------------------------------------------------------------------ »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< -----------------------------------------------=---------------------------- ---------------------------------------------------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 15.83 RAINFALL INTENSITY(INCH /HR) = 2.19 TOTAL STREAM AREA(ACRES) = 6.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.48 FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 21 --------------------------------------------------------=------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< -------------------=-------------------------------------------------------- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS CONDOMINIUM TC = K*[(LENGTH * *3) /(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW- LENGTH(FEET) = 43.0.00 UPSTREAM ELEVATION(FEET) =. 997.10 DOWNSTREAM ELEVATION(FEET) = 992.75 ELEVATION DIFFERENCE(FEET) = 4.35 TC = 0.359 *[( 430.00 *.*3)/(. 4.35)1 * *.2 = 10.179 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.829 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .8149 SOIL CLASSIFICATION IS "B" SUBAREA RUNOFF(CFS) = 4.61 TOTAL AREA(ACRES) = 2.00 TOTAL RUNOFF(CFS) = 4.61 FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 62 >>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »» >( STREET TABLE SECTION # 1 USED) ««< 3 - Page LN110.TXT ' UPSTREAM ELEVATION(FEET) = '992.75 DOWNSTREAM ELEVATION(FEET) = 987.20 STREET LENGTH(FEET) = 430.00 CURB HEIGHT(INCHES) = 8.0 STREET HALFWIDTH(FEET) = 30.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 ' STREET PARKWAY CROSSFALL(DECIMAL) 0.020 Manning 's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk F1oW Section = 0.0200 ' **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 7.30 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.44 '. HALFSTREET FLOOD WIDTH(FEET) = 15.51 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.12 PRODUCT OF DEPTH &VELOCITY(FT°FT /SEC.) = 1.37 STREET FLOW TRAVEL TIME(MIN.) = 2.30 TC(MIN.) = 12.48 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.514 ' SINGLE- FAMILY(1 -ACRE LOT) RUNOFF COEFFICIENT = .6882 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 3.10 SUBAREA RUNOFF(CFS) _ 5.36 TOTAL AREA(ACRES) = 5.10 PEAK FLOW RATE(CFS) = 9.97 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.48 HALFSTREET FLOOD WIDTH(FEET) = 17.62 FLOW.VELOCITY(FEET /SEC.) = 3.36 DEPTH*VELOCITY(FT*FT /SEC.) = 1.60 LONGEST FLOWPATH FROM NODE. 6.00 TO NODE 8.00 = 860.00 FEET. FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 1 t --------------------------------------------------------------------- »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< » »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES «« <' ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2.ARE: TIME OF CONCENTRATION(MIN.) = 12.48 RAINFALL INTENSITY(INCH /HR) = 2.51 TOTAL STREAM AREA(ACRES) = 5.10 PEAK FLOW RATE(CFS) AT CONFLUENCE 9.97 ° CONFLUENCE DATA t STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH /HOUR) (ACRE) 1 10.48 15.83 2.189- 6.80 2 9.97 12.48 2.514 5.10 ' -WARNING********************************** IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC &WCD FORMULA OF PLATE D -1 AS DEFAULT VALUE. THIS FORMULA . ^WILL ^NOT ^NECESSARILY ^RESULT ^IN^THE MAXIMUM VALUE ^OF ^ PEAK ^FLOW. ^^ ^ RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. PEAK FLOW RATE TABLE STREAM RUNOFF TC INTENSITY NUMBER 1. (CFS). (MIN.) 18.23 12.48 (INCH /HOUR) 2.514 Page, 4 LN110.TXT 2 19.16 15.83 2.189 COMPUTED CONFLUENCE'ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS).= 19.16 TC(MIN.) = 15.83 TOTAL AREA(ACRES) = 11.90 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 8.00 = 1000.00 FEET. FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 21 -------------------------------=-------------------------------------- - - - - -- »»> RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS CONDOMINIUM ' TC = K*[(LENGTH *3) /(ELEVATION CHANGE)] * *.2 -INITIAL SUBAREA FLOW- LENGTH(FEET) = 430.00 UPSTREAM ELEVATION(FEET) = 988.40 ' DOWNSTREAM ELEVATION(FEET) = 980.40 ELEVATION DIFFERENCE(FEET) = 8.00 TC = 0.359•[( 430.00**3) /( 8.00)1 **.2 9.012 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.036 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .8192 SOIL CLASSIFICATION IS "B" SUBAREA RUNOFF(CFS) = 1.74 TOTAL AREA(ACRES) = 0.70 TOTAL RUNOFF(CFS) = 1.74 FLOW PROCESS FROM NODE 11.00 TO NODE 10.00 IS CODE = 81 ---------------------------------------------------------------------------- -- »» >ADDITION -OF- SUBAREA -TO_ MAINLINE - PEAK - FLOW < < < < < ---- - - - - -- --- - - - - -- 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.036 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .8192 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 2.60 SUBAREA RUNOFF(CFS) = 6.47 TOTAL AREA(ACRES) .= 3.30 TOTAL RUNOFF(CFS) = 8.21 TC(MIN.) = 9.01 END OF STUDY SUMMARY: ______________ ________ TOTAL AREA(ACRES) 3.30 TC(MIN.) = 9.01 PEAK FLOW RATE(CFS) = 8.21 ----------=-------------=--------========================== -==== ------------ END OF RATIONAL METHOD ANALYSIS R r � I Page 5 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: l. Relative Flm*-Depth = 1.00 FEET ' ^ as imum Allowable "treet Flow Depth) op-of-curb) 2^ {Depth}^{Velocity} [onstraint = 6'0 {FT*FT/S} *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE'* � FLOW PROCESS FROM NODE .1.00 TO NODE 3'00 IS CODE 21 �------------------- �--�------------------------------------------------------- >>>>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<<< ' ASSUMED INITIAL SUBAREA-UNIFORM Page I .' ' ' ` LNl'TXT ` ' RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT . (R[F[&W[D) 1978 HYDROLOGY MANUAL [c] Copyright 1982-2004 Advanced Engineering Software (aes) (Rational Tabling Version 6.OD) ~- Release Date: 01/01/2004 License ID I566 ` Analysis prepared by:- ' R[E Consultants, Inc' .7595-Irvine Center Drive, Suite 130 ' Irvine, [A 92618 [949] 453-0I1I DESCRIPTION OF STUDY ^ Madison Club 100-yr clubhouse, Line l * * + 2/9/07 + �N FILENAME' ' LN1DAT ' ' TIME/DATE OF STUDY: I6:35 02/09/2007 � � �@ ------------------------------------------ 7--------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- U ------�------------------------------------------------------------------- USER-SPECIFIED STORM EVENT(YEAR) ~ 100'00 SPECIFIED MINIMUM PIPE SIZE(INCH) 18'00 �N SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE 10-YEAR STORM 10-MINUTE INTENSITY{IN[H ' HOUQ] 2.030 = 0.95 10-YEAR STORM 00-MINUTE INTENSITY(IN[HHOUR) -1.000 100-YEAR STORM 10'-MINUTE INTEwSITY(Iw[* HOUK) ~ 4'520 I00-YEAR STORM 00-MINUTE INTENSITY(IN[H/HOUK] I'600 SLOPE OF 10-YEAR .INTENSITY-DURATION CURVE 0'5805893 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE ~ 0'5796024 ` COMPUTED RAINFALL INTENSITY DATA: �0 STORM EVENT - I00.00 l-HOUR IwTENSITY(IN[H/H0UR) 1'600 SLOPE OF INTENSITY DURATION CURVE = 0.5798 R[FC&N[D HYDROLOGY MANUAL-"C"-VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLU ENCE VALUES ACCORDING T0 R[FC&W[D HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR D0WNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFL0W AND STKEETFL0W MODEL* �N HALF- CROWN TO STREET-[K0SSF4LL: CURB GUTTER-GEOMETRIES: MANNING WIDTH [ROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO' (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) [FT] (FT) =--- =-=���==�=����=�= -��~�= -==== ====~= ~==~~ l 30.0 20'0 0.018/0.018/0.020 0.67 2'00 0'03I3 0'167 (n) ====~== 0.0150 | 2 19.0 14'0 0.020/0'100/0'050 0.50 5.00 0'0100 0.0I0 0'0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: l. Relative Flm*-Depth = 1.00 FEET ' ^ as imum Allowable "treet Flow Depth) op-of-curb) 2^ {Depth}^{Velocity} [onstraint = 6'0 {FT*FT/S} *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE'* � FLOW PROCESS FROM NODE .1.00 TO NODE 3'00 IS CODE 21 �------------------- �--�------------------------------------------------------- >>>>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<<< ' ASSUMED INITIAL SUBAREA-UNIFORM Page I .' ' ' LNI.TXT .DEVELOPMENT IS SINGLE FAMILY(1 -ACRE LOTS) TC = K*[(LENGTH *3) /(ELEVATION CHAN6E)]*=.2 INITIAL SUBAREA FLOW- LENGTH(FEET) = 390.00 UPSTREAM ELEVATION(FEET) = 996.00 DOWNSTREAM ELEVATION(FEET) = 992.00 .ELEVATION DIFFERENCE(FEET) = . 4.00 TC = 0.469*[( 390.00='*3)/( 4.00)] "*.2 = 12.755 100 YEAR RAINFALL INTENSITY(INCH /HOUR) =' 3.925 SINGLE- FAMILY(1 -ACRE LOT) RUNOFF COEFFICIENT = .7483 . SOIL CLASSIFICATION IS "B" SUBAREA RUNOFF(CFS) = 2.35 TOTAL AREA(ACRES),= 0.80 TOTAL RUNOFF(CFS) = 2.35 FLOW .PROCESS FROM NODE 3.00 TO NODE 2.00 IS CODE = 81 -------------- ---------------------------------------------------------------- » » >ADDITION OF SUBAREA TO.MAINLINE PEAK FLOW« «< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.925 SINGLE- FAMILY(1 -ACRE LOT) RUNOFF COEFFICIENT = .7483 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOFF(CFS) = 2.06 TOTAL AREA(ACRES) = 1.50 TOTAL RUNOFF(CFS) = 4.41 TC(MIN.) = 12.75 FLOW PROCESS FROM NODE 2.00 TO NODE 4.00 IS CODE= 62 ------------------------------------ - ------------------------------------ --- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA ««< »»>( STREET TABLE SECTION # 2 USED) « « <. ---------------------=------------------------------------------------------ ---------------------------------------------------------------------------- UPSTREAM ELEVATION(FEET) = 992.00 DOWNSTREAM ELEVATION(FEET) = 987.80 STREET LENGTH(FEET) = 400.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 19.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 14.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.100 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) 0.050 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk FIOw Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 8.50 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = 17.33 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.00 PRODUCT OF DEPTH &VELOCITY(FT*FT /SEC.) = 0.80 STREET FLOW TRAVEL TIME(MIN.) = 2.22 TC(MIN.) = 14.97 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.577 SINGLE- FAMILY(1 -ACRE LOT) RUNOFF COEFFICIENT = .7369 SOIL CLASSIFICATION IS "B" t SUBAREA AREA(ACRES) 3.10 SUBAREA RUNOFF(CFS) 8.17 TOTAL AREA(ACRES),= 4.60 PEAK'FLOW RATE(CFS) = 12.58 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = 19.00 FLOW VELOCITY(FEET /SEC.) = 3.21 DEPTH*VELOCITY(FT *FT /SEC.) 0.96 LONGEST FLOWPATH FROM -NODE 1.00 TO NODE 4.00 = 790.00 FEET. g LNI.TXT FLOW PROCESS FROM NODE 5.00 TO NODE 4.00 IS CODE = 81 ----------------------------------------------- =------ - --------------------- »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< -------------=--------------------------------------7----------------------- 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.577 SINGLE- FAMILY(1 -ACRE LOT) RUNOFF COEFFICIENT = .7369. SOIL CLASSIFICATION IS "B ". SUBAREA AREA(ACRES) = 2.20 SUBAREA RUNOFF(CFS) = 5.80 TOTAL AREA(ACRES) = 6.80 TOTAL RUNOFF(CFS) = 18.38 TC(MIN.) 14.97 FLOW PROCESS FROM NODE 4.00 TO NODE 8.00 IS CODE = 31 ----------------- 7 -------- ------------- 7 --------- =-= ------------------------ » »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< » »>USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW)««< ---------------------------------------------------------------------------- ELEVATION DATA: UPSTREAM(FEET) = 981.60 DOWNSTREAM(FEET) = 979.50 FLOW LENGTH(FEET) = 210.00 MANNING'S N 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.7 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 7.85 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 18.38 PIPE TRAVEL TIME(MIN.) = 0.45 TC(MIN.) 15.42 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 8.00 =-.1000.00 FEET. FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 1 ---------------------- 7 ----------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES.USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 15.42 RAINFALL• INTENSITY(INCH /HR) = 3.52 TOTAL STREAM AREA(ACRES) = 6.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 18.38 ^^FLOW, PROCESS,FROMJNODE^ ^^6.00 ^TO ^ NODE ^ 7.00 IS CODE _ „21 ^ ^^ ^ ------------------------------------ - --------------------------------------- » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS CONDOMINIUM TC = K*[(LENGTH" *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH(FEET) = 430.00 UPSTREAM ELEVATION(FEET) = 997.10 DOWNSTREAM ELEVATION(FEET) = 992.75 ELEVATION DIFFERENCE(FEET) = 4.35 TC = 0.359*[( 430.00* *"3) /( 4.35)]**.2 = 10.179 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.474 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .8402 SOIL CLASSIFICATION IS "B" SUBAREA RUNOFF(CFS) = 7.52 TOTAL AREA(ACRES)•= 2.00 TOTAL RUNOFF(CFS) _. 7.52 -- FLOW - PROCESS - FROM - NODE 0 TO NODE 8.00 IS CODE 62 -_ - - -- 7.0-- -_ - - -- -- - _-- ---- - - - -_- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STREET TABLE SECTION # 1 USED) « «< ' Page 3 UPSTREAM ELEVATION(FEET) = 992 STREET LENGTH(FEET) = 430.00 STREET HALFWIDTH(FEET) = 30.00 LNI.TXT. 75 DOWNSTREAM ELEVATION(FEET) = 987.20 CURB HEIGHT(INCHES) = 8.0 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.018 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150. Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 "TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 12.22 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) - 0.50 HALFSTREET FLOOD WIDTH(FEET) = 19.10 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.54 PRODUCT OF DEPTH &VELOCITY(FT =•FT /SEC.) = 1.78 STREET FLOW TRAVEL TIME(MIN.) = 2.02 TC(MIN.) = 12.20 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.027 SINGLE- FAMILY(1 -ACRE LOT) RUNOFF COEFFICIENT = .7514 SOIL CLASSIFICATION IS 11611 SUBAREA AREA(ACRES) = 3.10 SUBAREA RUNOFF(CFS) = 9.38 TOTAL AREA(ACRES) .= 5.10 PEAK FLOW RATE(CFS) = 16.90 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.55 HALFSTREET FLOOD WIDTH(FEET) = 21.76 FLOW VELOCITY(FEET /SEC.) = 3.82 DEPTH *VELOCITY(FT =•FT /SEC.) = 2.11 �I ^ ^LONGEST ^FLOWPATH;FROM ^ NODE ^ ^^ ^ ^6^00 TO ^ NODE ^ ^^ ^^ 8^00 ^ =^ ^^860;00 ^ FEET. ^ ^^ FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 1 --------------------------------------------------------------------- >>> >>DESIGNATE .INDEPENDENT STREAM FOR CONFLUENCE « «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES« «< ---------------------------------------------------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.20 RAINFALL INTENSITY(INCH /HR) = 4.03 TOTAL STREAM AREA(ACRES) = 5.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 16.90 CONFLUENCE DATA * . STREAM RUNOFF TC INTENSITY AREA NUMBER (CFS) (MIN.) (INCH /HOUR) (ACRE) 1 18.38 15.42 3.517 6.80 2 16.90 12.20 4.027 5.10 .. ��.. ����..:: �::; �• �• :;��..�;��-�: ;::�•� ;..��•�..��- WARNING.';.. �: �- ��- �:..:; ��• �-.. �: �-.. �• �• �- �:� :.......................... IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC &WCD FORMULA OF PLATE D -1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. FLOW RATE TABLE * RUNOFF TC (CFS) (MIN.) 31.44 .12.20 INTENSITY (INCH /HOUR) 4.027 Page 4 ** PEAK STREAM NUMBER 1 FLOW RATE TABLE * RUNOFF TC (CFS) (MIN.) 31.44 .12.20 INTENSITY (INCH /HOUR) 4.027 Page 4 LNI.TXT 2 33.13 15.42 3.517 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 33.13 TC(MIN.) = 15.42 TOTAL AREA(ACRES) = 11.90 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 8.00 = 1000.00 FEET. FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 21 .. ---------------- -------------- - ------------ - --------------------------------- »»>RATIONAL.METHOD INITIAL SUBAREA ANALYSIS« «< ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS CONDOMINIUM TC = K*[(LENGTH **3) /(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW- LENGTH(FEET) = 430.00 UPSTREAM ELEVATION(FEET) = 988.40 DOWNSTREAM ELEVATION(FEET) = .980.40 ELEVATION DIFFERENCE(FEET) = 8.00 TC = 0.359•[( 430.00**3)/(' 8.00)1 **.2 = 9.012 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.801 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .8436 SOIL CLASSIFICATION IS "B" SUBAREA RUNOFF(CFS) = 2.84 TOTAL AREA(ACRES). _ .0.70 TOTAL RUNOFF(CFS) = 2.84 FLOW PROCESS FROM NODE 11.00 TO NODE 10.00 IS CODE = 81 ------------------------- --------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ------------ ---------- ---------------------=----=---------------------------- ---------------------------------------------------------------------------- 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.801 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .8436 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) _ 2.60 SUBAREA RUNOFF(CFS) = 10.53 TOTAL AREA(ACRES) = 3.30 TOTAL RUNOFF(CFS) = 13.37 TC(MIN.) = 9.01 --------------- END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 3.30 TC(MIN.) = 9.01 PEAK FLOW RATE(CFS) _ .13.37 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- END OF RATIONAL METHOD ANALYSIS 0 line11bclub.OUT 0 FILE: linellBC.lub.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 1 Program Package Serial Number: 1735 WATER SURFACE PROFILE LISTING Date: 3- 5-2007 Time: 3:2:13 Madsion club 100 -yr Phase 1, Line llb 12/13/05 ' is fr irfi f; it fr fr it it irfi it f: fr itA *ir itfr h4ilr frrtAAfr *hit it mfr fr A•fi dof:isi'.:'.;f:kf: fr fr f:hfr ir'.r ie fr f:-!e frrt irfri fr fritrt hie fr it ir{r'.r'.rfrfr ir{r fr A fe frA4biri 4fe it{r it it it fr{<ir{r fr h ithft6fiir it i<i fr irf fr f<irfr ie fr {r frir it {r it it fr fr I invert I Depth I water I Q I Vel vel I Ener y I Super CriticallFlow To ►Hei ht /IBase Wt1 NO wth Station I Elev I (FT) 1 Elev I (CFS) I (FPS) Head I Grd.El.1 EIeV I Depth I Widtp h joiag -FTIOr I.D.1 ZL IPrs /Pip L /Elem " ICh slope I I I I SF Ave[ HF ISE DpthIFroude NlNorm DP I "N" I X -Fall1 ZR IType Ch fif:{rf:4rt:4 it ir!'.:{; irrtfr hie it fr lfr:k fr4Ait k'.:lhi:f: it it i:f: it ft!{:tir k itk �'.r'.: Ifr f:4f:'.:{rQ lit frs`i;{rrt:h lAf::kkf:f::4frrtli: it ir{;�ir:T litfr it it ir{r� {r lit ftir{r it it ir{:!f<{r it it it f; irlfr it fr it it {r fr lfrtfe it it Ifr'.r {: ir'r fc fr I I I I I I I I I I I I I 1995.310 972.650 3.350 976.000 13.37 4.26 .28 976.28 .00 1.32 .00 2.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I- 31.310 .0099 ..0035 .11 3.35 .00 1.11 .013 .00 .00 PIPE I I I I I I I I I I I I 1 2026.620 972.960 3.149 976.109 13.37 4.26 .28 976.39 .00 1.32 .00 2.000 .000 .00 1 .0 71- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -!- -I- I- JUNCT STR .0780 .0028 .01 3.15 :00 .013 .00 .00 PIPE I I I I I I I I I I I I I 2031.620 973.350 2.955 976.305 10.53 3.35 .17 976.48 .00 1.16 .00 2.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- 12.070 .0773 .0022 .03 2.96 .00 .55 .013 .00 .00 PIPE 2043.690 974.283 2.049 976.332 10.53 3.35 .17 976.51 .00 1.16 .00 2.000 .000 .00 1 .0 HYDRAULIC JUMP I I I I I I I I I I I I I 2043.690 974.283 .616 974.899 10.53 12.80 2.55 977.44 .00 1.16 1.85 2.000 .000 .00 1 .0 3.699 .0773 .0494 .18 .62 3.38 .55 .013 .00 .00 PIPE I I l l I l I I I I I I I 2047.389 974.569 .627 975.196 10.53 12.51 2.43 977.63 .00 1.16 1.86 2.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- 6.119 .0773 .0448 .27 .63 3.27 .55 .013 .00 .00 PIPE I I I I I I I I I I I I I • 2053.508 975.042 .649 975.691 10.53 11.93 2.21 977.90 .00 1.16 1.87 2.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- 4.674 .0773 .0393 .18 .6S 3.06 .55 .013 .00 .00 PIPE I I I I I I I I I I I I I 2058.182 975.404 .672 976.075 10.53 11.37 2.01 .978.08 .00 1.16 1.89 2.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- 3.698 .0773 .0344 .13 .67 2.86 .55 .013 .00 .00 PIPE I I I I 1 I I I 1 I I I I 2061.880 975.690 .695 976.385 10.53 10.84 1.83 978.21 .00 1.16 1.90 2.000 .000 .00 1 .0 -I- -I- -I- -l- -I- -I- -l- -I- -I- -I- -I- -I- -I- 1- 2.992 .0773 .0301 .09 70 2.68 .55 .013 .00 .00 PIPE 0 FILE: linellBClub.wsW W S P G W- CIVILDESIGN version 14.06 PAGE 2 Program Package Serial Number: 1735 Madsion club 100 -yr WATER SURFACE PROFILE LISTING Date: 3- 5 -2007 Time: 3: 2:13 • Phase 1, Line llb 12/13/05 . fr',r it fr is it fr it fr f: fr fr is {rf :irf: {r it fete it fr{; fr fr! r{: irf:{: frf; fr{: frf: tf: {:frf:fr'.:f :t:�{r: "rf;fr {rfr {; fr it f:'.;fr:Yf:f:frf: ir�fifrt f: {r fr fr'.rfr{r{:f: it fr fr{:{ r it f;'.:t:fri•{r tr ir{rfr{r it f:irf: fr fr fr it fete fr iri it it ir': 4 it fr fr {e {r it it {r fr ir'.: 's f: fr fr f: I Invert I Depth I water I Q I Vel vel I Ener Yy I Supper ICritical(Flow ToplHei ht /IBase wtI INO wth station _1_ 1 Elev I (FT) I Elev I (CFS) I (FPS) Head I Gr _I_ _I d.El.I Elev I Depth I width IDia9 -FTlor I.D.I ZL IPrs /Pip L /Elem lCh Slope I I 1 I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fall) ZR IType ch irfr'.rrtirf:irk'.e (hir'.rfr'.rfrfirit I rtfrirf;k'.rf;ir I frf:iriririrf: {rfr I hir'.:ieirf;4irf: I f:i:friritirir 1 f:'.:iririr'.rfr I'.;irkir•.rfeirfe'.r 1 ir{:friririrf: I f<fefr',rirfrf:ir I irfrit{ri frfrrt I fr{:frit,Yfr{r I irirf:frfrfir 1 frirfri k I f;frf:at:4Rir I I I I I I l I I I I I ! 2064.872 975.921 .720 976.641 10.53 10.34 1.66 978.30 .00 1.16 1.92 2.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- 2.458 .0773 0264 .06 .72 2.50 .55 .013 .00 .00 PIPE I I I I I I I I I I I I I 2067.330 976.111 .746 976.857 10.53 9.86 1.51 978.37 .00 1.16 1.93 2.000 .000 .00 1 .0 Page 1 Page 2 linellbclub.OUT -I- 2.036 -I- .0773 -I- -I- -I- -I- -I- .0232 -I- .05 -1- .75 -I- 2.34 .55 -I- -I- .013 -I- .00 .00 1- PIPE 2069.366 I I 976.269 .773 I I I 977.042 10.53 9.40 I 1.37 978.41 I I .00 I 1.16 1.95 I 2.000 I I .000 .00 I 1 .0 1.698 .0773 .0203 .03 .77 2.18 .55 .013 .00 .00 PIPE 2071.065 I I 976.400 .801 I I I 977.201 10.53 8.96 I 1.25 978.45 I I .00 I 1.16 1.96 I 2.000 I I .000 .00 I 1 .0 -I- 1.415 -I- .0773 -I- -I- -I- -I- -I- .0178 -I- .03 -I- .80 -I- 2.04 .55 -I- -I- .013 -I- .00 .00 1- PIPE 2072.480 I I 976.510 .830 I I I 977.339 10.53 8.54 I 1.13 978.47 I I .00 I 1.16 1.97 I 2.000 I I .000 .00 I 1 .0 -I- 1.177 -I- .0773 -I- -I- -I- -I- -I- .0157 -I- .02 -I- .83 -I- 1.90 .55 -I- -I- .013 -I- .00 .00 1- PIPE 2073.657 I I 976.601 .860 1 1 I 977.461 10.53 8.15 I 1.03 978.49 I I .00 I 1.16 1.98 I 2.000 I I .000 .00 1 1 .0 -I- .974 -I- .0773 -I- -I- -I- -I- -I- .0138 -I- .01 -I- .86 -I- 1.78 .55 -I- -I- .013 -I- .00 .00 1- PIPE 2074.630 I I 976.676 .892 I I I 977.568 10.53 7.77 I .94 978.50 I I .00 I 1.16 1.99 I 2.000 I I .000 .00 I 1 .0 -I- .797 -I- .0773 -I- -I- -i- -1- -I- .0121 -I- .01 -i- .89 -I- 1.66 .55 -1- -I- .013 -I- .00 .00 1- PIPE 2075.427 I I 976.737 .925 I I I 977.663 10.53 7.41 I .85 978.51 I I .00 I 1.16 1.99 I 2.000 I I .000 .00 I 1 .0 -i- .641 -I- .0773 -I- -I- -I- -I- -I- .0106 -I- .01 -I- .93 -I- 1.55 .55 -I- -I- .013 -I- .00 .00 1- PIPE 2076.068 I I 976.787 .960 I I I 977.747 10.53 7.06 I .77 978.52 I I .00 I 1.16 2.00 I 2.000 I I .000 .00 I 1 .0 -I- .500 -i- .0773 -I- -I- -i- -I- -I- .0094 -I- .00 -I- 96 -I- 1.44 .55 -I- -I- .013 -I- .00 .00 1- PIPE 0 FILE: line11BClub.wsw W S P G W- CIVILDESIGN Version 14.06 PAGE 3 Program Package Serial Number: 1735 WATER SURFACE PROFILE LISTING Date: 3- 5 -2007 Time: 3: 2:13 Madsion Club 100 -yr Phase 1, Line 11b 12/13/05 rt{ri:'. :'.:'.:fr i�ir'.:'.: is is irAf; Y: C: i:'.: i:'.: ir! r':f:'. ri:::f r'.:'.:'. rd:f ri:{ rf: i:':'.:f:'.:{ rf:'• r'.:'. ri: ?ri:f: i;'.:f rf r': i�bf �i:f r'.:'. rf:'. rir ::{rs4{:i : {r ^k::+k'.rf:f:f:t: it it irfr it i�4 k{rfr trir{r'.r'.:f:f:f : ir'.r it ir{r {r it i:fr'.r is frAir fr it }ir is '.: it f: {r it f: bfr it f: I invert I Depth i water I Q I vel vel I Energyy I Supper ICriticallFloW ToplHeight /IBase Wtl INO wth Station I Elev I (FT) I Elev I (CFS) 1 (FPS) Head I Grd.El.I Elev I Depth I width IDia. -FTIor I.D.1 ZL IPrs /Pip L /Elem ICh Slope I I I I SF Avel _1 HF _ ISE DpthlFroude NINOrm Dp I ..N" I X -Fall) ZR _I IType Ch '.: f: f; '.: '.: {r'.: '.: '.: ..i: fr it is it !: f; f; ': {rh is ., f: {r fr f: {r f: f: is f: '.r',r fr .. frir :t is .: tr fr'r f: 'r'r': '-': '.'•'. {r'; it fr kir is {r is '.: f: fr .. .r fr {r is '.: fr ., fr {: {r f: kf; frtr *ir af: irfr fr'.r trfrdfr it it irfr f <{r f: it it it it irtr f: i; f; {r it frir 2076.568 I 1 976.826 .997 I 1 1 977.822 10.53 6.73 1 .70 978.53 1 1 .00 I 1.16 2.00 I 2.000 I I .000 .00 I 1 .0 -I- .373 -I- .0773 -I- -I- -I- -I- -I- .0082 -I- .00 -I- 1.00 -I- 1.34 -I- .55 -I- .013 -I- .00 .00 I- PIPE 2076.941 I I 976.855 1.035 I I I 977.889 10.53 6.42 I .64 978.53 I I .00 I 1.16 2.00 I 2.000 I I .000 .00 I 1 .0 -I- .258 -I- .0773 -I- -I- -I- -I- -I- .0073 -I- .00 -I- 1.03 -I- 1.25 -1- .55 -I- .013 -I- .00 .00 1- PIPE 2077.199 I I 976.875 1.075 I I I 977.949 10.53 6.12 I .58 978.53 I I .00 I 1.16 1.99 I 2.000 I I .000 .00 I 1 .0 -I- .151 -I- .0773 -I- -I- -I- -I- -I- .0064 -I- .00 -I- 1.07 -I- 1.16 -I- .55 -I- .013 -I- .00 .00 1- PIPE 2077.350 l I 976.886 1.117 I I I 978.003 10.53 5.84 I .53 978.53 I I .00 I 1.16 1.99 I 2.000 I I .000 .00 I 1 .0 -I- .050 -I- .0773 -I- -I- -I- -I- -I- .0057 -I- .00 -I- 1.12 -I- 1.08 -I- .55 -I- .013 -I- .00 .00 1- PIPE 2077.400 I I 976.890 1.163 I I I 978.05 I I I I I I I I Page 2 �; �r ter: r rrr r � r� •�� � �r►; � r� � wi � �r � rr linellcclub.OUT 0 FILE: linellcclub.WSw W S P G W- CIVILDESIGN Version 14.06 PAGE 1 Program Package Serial Number: 173S WATER SURFACE PROFILE LISTING Date: 3- 5 -2007 Time: 4:45: 3 Madison Club 100 -yr Phase 1, Line llc 12/13/05 k'.:ktr t:itt:'.:ir irk kie'.r it kirk k'.: •.:k'.r is '.: t:irk•.:i:ir•.r it fra ieirk ktr it it it k frk tr i;kktr is it it t:drt:i: ktr tr f; tek irkkhkir k it itkl: irkhhkkkkhit ktr k irh trhhkirkikkktk irh kfrhh4kirtr irhhf itk i<fi ki: kkk *hirtrk I Invert I Depth I Water I Q I vel vel I Ener yY 1 supper ICriticallFlow To IHei ht /IBase wt INO wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El. p I Elev I Depth I Width Dia9 -FTIor I.D.I ZL 1Prs /Pip L /Elem ICh slope I I I I SF Avel HF ISE D thlFroude N`Norm Dp 1 "N" I X -Fa111 ZR IType Ch '.:kkktrk'.: '.:k �: tr •.r irkkkk• ktt: •-'rkk' .,kkir .: ': k•r t: kktrk': k'r tr': +. +•k •:kkt: kfitk., ., tr •rk kir t: '-..kk t.. ., is kirk kkkkki<kk kkirkkkkk kkkkkfrk kirk it *kie kk{irk kkkkkkk p I I I I I I I I I I I I I I I I I I I 3003.480 973.530 2.690 976.220 2.84 1.61 .04 976.26 .00 .64 .00 1.500 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- 28.987 .0418 .0007 .02 2.69 .00 .37 .013 .00 .00 PIPE I I I I I I I I I I I I I 3032.467 974.741 1.500 976.241 2.84 1.61 .04 976.28 .00 .64 .00 1.500 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- 3.262 .0418 .0007 .00 1.50 .00 .37 .013 .00 .00 PIPE I I I I I I I I I I I I I 3035.729 974.877 1.361 976.238 2.84 1.69 .04 976.28 .00 .64 .87 1.500 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -1- -I- -I- 1- .301 .0418 .0006 .00 1.36 .21 .37 .013 .00 .00 PIPE I I I I I I I I I I I I I 3036.030 974.890 1.348 976.238 2.84 1.70 .04 976.28 .00 .64 .91 1.500 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I- ]UNCT STR .7485 .0004 .00 1.35 .22 .013 .00 .00 PIPE I I I I I I I I l I I I I 3036.070 974.920 1.369 976.289 1.42 .84 .01 976.30 .00 .45 .85 1.500 .000 .00 1 .0 -I- -I- -1- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I- 1.994 .0411 .0002 .00 1.37 .10 .26 .013 .00 .00 PIPE I I I I I I I I I I I I I 3038.064 975.002 1.287 976.288 1.42 .88 .01 976.30 .00 .45 1.05 1.500 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- 1.621 .0411 .0002 .00 1.29 .13 .26 .013 .00 .00 PIPE I I I I I I I I I I I I I 3039.685 975.068 1.219 976.287 1.42 .92 .01 976.30 .00 .45 1.17 1.500 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- 1.408 .0411 .0002 .00 1.22 .14 .26 .013 .00 .00 PIPE I I I I I I I I I I I I I 3041.093 975.126 1.160 976.286 1.42 .97 .01 976.30 .00 .45 1.26 1.500 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- 1.261 .0411 .0002 .00 1.16 .16 .26 .013 .00 .00 PIPE I I I I I I I I I I I I I 3042.354 975.178 1.107 .976.285 1.42 1.02 .02 976.30 .00 .45 1.32 1.500 .000 .00 1 .0 -I- -I- -I- -i- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- 1.146 .0411 .0002 .00 1.11 " .17 .26 .013 .00 .00 PIPE 0 FILE: linellcclub.WSW W S P G W- CIVILDESIGN version 14.06 PAGE 2 Program Package Serial Number: 1735 WATER SURFACE PROFILE LISTING Date: 3- 5 -2007 Time: 4:45: 3 Madison Club 100 -yr Phase 1, Line llc 12/13/05 kki:kktr trk it irk k'.r'.: trk kkkkkkir itkkkirk k'.r irkkkkkk•.:kkkkkk'.:k'.rkkkktc is it ir'.e'.rk•.ei:f : kir t:kkkkirkkkirk kk•.rkkkkir•.:ir'.;k•.: kirkkkkkkktrk kk sit irkkkir i:.,Akkktrk irk'.rk'.rk f;kkkkkkk Invert I Depth I water I Q I vel vel I Energyy I Super ICriticallFlow ToplHeight /IBase wtI INO wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.I Elev I Depth I width IDia. -FTIor I.D.1 ZL IPrs /Pip -I- -I- - - -I- -I- -I- -I- -I- -I- -I- -I_ -1- -1 L /Elem ICh Slope I I I SF Ave1 HF ISE DpthlFroUde NlNOrm Dp I "N'r 1 X -Fd111 ZR [Type Ch irkkkir irk k•.r I kkkkkkkkk I kkt: trkkt: t: I kkkkkir i; kt: I kktr is to k f: t: •.r I irkkkkkk 1 is irk it f: t :k I trkfikkkkkir I kkkkkkk I kkkkki irk I kkkkkkkk I kir irkkkk I trkkf kkfr 1 ktrk kir 1******* I I I I I I I I I I I I I 3043.S00 975.225 1.059 976.284 1.42 1.07 .02 976.30 .00 .45 1.37 1.500 .000 .00 1 .0 1.055 .0411 .0003 .00 1.06 .19 .26 .013 .00 .00 PIPE I I I I I I I I I I I 1 1 3044.555 975.269 1.014 976.282 1.42 1.12 ..02 976.30 .00 .45 1.40 1.500 .000 .00 1 .0 Page 1 r �r r�r, r rr rr� .rr err rr rr r� rr �r rs rr it rr r rr linellcclub.OUT .975 .0411 .0003 .00 1.01 .21 .26 .013 .00 .00 PIPE 3045.530 I I 975.309 I .972 976.281 I 1.42 I 1.17 I .02 I 976.30 .00 I I .45 1.43 I 1.500 I I .000 .00 I 1 .0 -I- .907 -I- .0411 -I- -I- -I- -I- -I- .0003 -I- .00 -I- .97 -I- .22 -I- .26 -I- .013 -I- .00 .00 1- PIPE 3046.438 I I 975.346 I .933 976.279 I 1.42 I 1.23 I .02 I 976.30 .00 f I .45 1.45 1 1.500 I I .000 .00 I 1 .0 -I- .844 -I- .0411 -I- -I- -I- -I- -I- .0004 -I- .00 -I- .93 -I- .24 -I- .26 -I- .013 -I- .00 .00 1- PIPE 3047.282 I I 975.381 .896 I 976.277 I 1.42 I 1.29 I .03 I 976.30 .00 I I .45 1.47 I 1.500 I I .000 .00 I 1 .0 .790 .0411 .0004 .00 .90 .26 .26 .013 .00 .00 PIPE 3048.072 I I 975.413 .862 I 976.27S I 1.42 I 1.3S I .03 I 976.30 .00 I I .45 1.48 I 1.500 I I .000 .00 I 1 .0 -I- .741 -I- .0411 -I- -I- -I- -I- -I- .0005 -I- .00 -I- .86 -I- .28 -I- .26 -I- .013 -I- .00 .00 1- PIPE 3048.813 I I 975.443 .829 I 976.272 I 1.42 I 1.42 1 .03 I 976.30 .00 I I AS 1.49 I 1.500 I I .000 .00 I 1 .0 -I- .693 -I- .0411 -I- -I- -I- -I- -I- .0006 -I- .00 -I- .83 -I- .30 -I- .26 -I- .013 -I- .00 .00 1- PIPE 3049.506 I I 975.472 .798 I 976.270 I 1.42 I 1.49 I .03 I 976.30 .00 I I .45 1.50 I 1.500 I I .000 .00 I 1 .0 .647 .0411 .0006 .00 .80 .33 .26 .013 .00 .00 1- PIPE 3050.153 I ! 975.498 .768 I 976.266 I 1.42 I 1.56 I .04 I 976.30 .00 I I .45 1.50 I 1.500 I I .000 .00 I 1 .0 -I- .608 -I- .0411 -I- -I- -I- -I- -I- .0007 -I- .00 -I- .77 -I- .35 -I- .26 -I- .013 -I- .00 .00 1- PIPE 0 FILE: linellcclub.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 3 Program Package Serial Number: 1735 WATER SURFACE PROFILE LISTING Date: 3- S -2007 Time: 4:45: 3 Madison Club 100 -yr Phase 1, Line llc 12/13/05 k'.rki: irk is it iekk'.: kkkkkitkkir? rkkkirkkkkkkkkkkk ?r�.ki:'.:k'.rkk ?:?: ?: ?rk?r'.: it ic'.:k?r?: in it ?ri:i:k'.; kirkkkk ?rk;; ickkkkk '.rkkkkkkkkkkkkkkkkkkkkkkkkkkk kkitkkkkkkkkir kkkki: kir it Invert I Depth I water I Q I vel vel I Energyy 1 Super ICriticallFlOw ToplHeight /!Base wtl INO wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.E1.i Elev I Depth width width IDia. -FTIor I.D.1 ZL IPrs /Pip -I- L /Elem -I- ICh slope I -I- -I- I -I- I -I- I -I- SF Avel -I- HF ISE -I- DpthlFroude _I NINOrm -I- Dp -I- I "N.. -I- I X-Fa111 ZR -I IType Ch ki: t: is kic ?: is tr I kic it i:kkkkk 1 ki: is is ?: fr irk 1 ?; ?c ?:kir irk it ?c I is it is kir it f<ir ?: 1?r is it ?r ?sic is I k ?: it is is it it 1 kkkt: k?: it it it I k'.r it irkkk I itkkkkkir it 1 itk it irkkkit I kir ir'.r it irk I itkkkkirk 1 kiekitk I t;kkir it it is 3050.761 I I 975.523 .740 I 976.263 I 1.42 I 1.64 I .04 I 976.30 .00 I I .45 1.50 I 1.500 I I .000 .00 I 1 .0 -I- .565 -I- .0411 -I- -I- -I- -I- -I- .0008 -I- .00 -I- .74 -I- .38 -I- .26 -I- .013 -I- .00 .00 1- PIPE 3051.326 I 975.547 I .713 I 976.259 I 1.42 I 1.72 I .05 I 976.31 .00 I I .45 1.50 I 1.500 I I .000 .00 I 1 .0 .468 .0411 .0009 .00 .71 .41 .26 .013 .00 .00 PIPE 3051.794 I I 975.566 .687 I 976.253 I 1.42 I 1.80 I .05 I 976.30 .00 I I .45 1.49 I 1.500 I I .000 .00 I 1 .0 HYDRAULIC JUMP 3051.794 I I 975.566 .269 I 975.835 I 1.42 I 6.60 I .68 I 976.S1 .00 I I .45 1.15 I 1.500 I I .000 .00 I 1 1- .0 -I- 4.915 -I- .0411 -I- -I- -I- -I- -I- .0348 -I- .17 -I- .27 -I- 2.69 -I- .26 -I- .013 -I- .00 .00 PIPE 3056.709 I I 975.768 .278 I 976.046 I 1.42 I 6.29 1 .61 I 976.66 .00 I I .45 1.17 I 1.500 I I .000 .00 I 1 I- .0 -I- 4.338 -I- .0411 -I- -I- -I- -I- -I- .0304 -I- .13 -I- .28 -I- 2.52 -I- .26 -I- .013 -I- .00 .00 PIPE 3061.048 I I 975.946 .288 I 976.234 I 1.42 I 6.00 I .56 I 976.79 .00 I I .45 1.18 I 1.500 I I .000 .00 I 1 1- .0 -I- 2.824 -I- .0411 -I- -I- -I- -I- -I- .0265 -i- .07 -I- .29 -I- 2.36 -I- .26 -I- .013 -I- .00 .00 PIPE Page 2 Page 3 linellcclub.OUT I 3063.872 I 976.062 I .297 I 976.359 1.42 I I 5.72 .51 976.87 I .00 I I .45 1.20 1.500 .000 .00 1 .0 2.016 .0411 .0232 .0S .30 2.21 .26 .013 .00 .00 PIPE I 306S.888 I 976.145 I .307 I 976.452 1.42 I I SAS .46 976.91 I .00 I I .45 1.21 I 1.500 I I .000 .00 I 1 .0 -I- 1.S17 -I- .0411 -I- -I- -I- -I- -I- .0203 -I- .03 -I- .31 -I- 2.07 .26 -I- -I- .013 -I- .00 .00 I- PIPE I 3067.404 I 976.207 I .318 I 976.525 1.42 I I 5.20 .42 976.94 I .00 I I .45 1.23 I 1.500 I I .000 .00 I 1 .0 -I- 1.170 -I- .0411 -I- -I- -I- -I- -I- .0177 -I- .02 -I- 32 -1- 1.94 .26 -I- -I- .013 -I- .00 .00 I- PIPE 0 FILE: linellcclub.wSw W S P G W- CIVILDESIGN Version 14.06 PAGE 4 Program Package serial Number: 1735 WATER SURFACE PROFILE LISTING Date: 3- 5 -2007 Time: 4:45: 3 Madison club 100 -yr Phase 1, Line llc 12/13/05 ickkkit?:'.:? ci:?: irkki:'. ri< kkkkk?: ki: kirkkkkiriekiririrkkkkk:` kirkkirkkkk? rk'.: k? rkkkkkk?: kirkkkkkkkkkkirkkkir'.: trkkkkkkkikkkfrk�kkk #ickkkkfrkkkirkir�kkkkkickkk kirkirkkkir Invert I Depth I water I Q I Vel Vel I Energyy I SuL� IcriticalIFlOW TOplHeight /IBase Wt1 INO Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.EI.I Elev I Depth I Width width IDia. -FTIor I.D.I ZL IPrs /Pip L /Elem Ich slope I I I I SF Ave1 HF ISE DpthIFroude _I NINorm Dp I "Nr I X -Fa111 ZR IType ch kkk'.: '.: •.rk k ?: I kit is f: ':'.rk isk I it it it irk ?; isk I kk'.r it is kf: i:k I is f< ?: '.: i; irk tc ?r I'.r'.: iskk'.r is I f; k'.rk it is is I kirk fe ?:kkitk I ie ?e it tr it is is I kis it it irk irk I kit is irkkkir I irkkkir it ?: I kkit is fr kir I i:kic ick I it it it it irkk I 3068.575 I 976.255 I .329 I 976.584 1.42 I I 4.96 .38 976.97 I .00 I I .45 1.24 I 1.500 I I .000 .00 I 1 .0 .917 .0411 .0155 .01 .33 1.82 .26 .013 .00 .00 PIPE I 3069.492 I 976.293 I .340 I 976.633 1.42 I I 4.73 .35 976.98 I .00 I I .45 1.26 I 1.500 I I .000 .00 I 1 .0 .724 .0411 .0135 .01 .34 1.70 .26 .013 .00 .00 1- PIPE I 3070.216 I 976.323 I .351 I 976.674 1.42 I I 4.51 .32 976.99 I .00 I I .45 1.27 I 1.500 I I .000 .00 I 1 .0 -I- .570 -I- .0411 -I- -I- -I- -I- -I- .0118 -I- .01 -I- .35 -I- 1.59 .26 -1- 71- .013 -1- .00 .00 1- PIPE I 3070.786 I 976.346 i .363 I 976.709 1.42 I I 4.30 .29 977.00 I .00 I I .45 1.29 I 1.500 I I .000 .00 I 1 .0 -I- .441 -I- .0411 -I- -I- -I- -I- -I- .0103 -i- .00 -I- .36 -I- 1.49 .26 -I- -I- .013 -I- .00 .00 1- PIPE I 3071.227 I 976.364 I .376 I 976.740 1.42 I I 4.10 .26 977.00 I .00 I I .45 1.30 I 1.500 I I .000 .00 I 1 .0 -I- .334 -I- .0411 -I- -I- -I- -I- -I- .0090 -I- .00 -I- .38 -I- 1.40 .26 -I- -I- .013 -I- .00 .00 1- PIPE { 3071.561 I 976.378 I .389 I 976.767 1.42 I I 3.91 .24 977.00 I .00 I I .45 1.31 I 1.500 I I .000 .00 I 1 .0 -I- .245 -I- .0411 -I- -I- -I- -I- -I- .0079 -I- .00 -I- .39 -I- 1.31 .26 -I- -I- .013 -I- .00 .00 1- PIPE I 3071.806 I 976.388 I .402 I 976.790 1.42 I I 3.72 .22 977.01 I .00 I I .45 1.33 I 1.500 I I .000 .00 I 1 .0 .166 .0411 .0069 .00 .40 1.23 .26 .013 .00 .00 PIPE I 3071.973 I 976.395 I .416 I 976.811 1.42 I I 3.55 .20 977.01 I .00 I I .45 1.34 I 1.500 I I .000 .00 I 1 .0 -I- .094 -I- .0411 -I- -I- -I- -I- -I- .0061 -I- .00 -I- .42 -I- 1.15 .26 -I- -I- .013 -I- .00 .00 1- PIPE I 3072.067 I 976.399 I .431 I 976.829 1.42 I I 3.39 .18 977.01 I .00 I I .45 1.36 I 1.500 I I .000 .00 I 1 .0 .033 .0411 .0053 .00 .43 1.07 .26 .013 .00 .00 PIPE 0 FILE: linellcclub.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 5 Program Package Serial Number: 1735 WATER SURFACE PROFILE LISTING Date: 3- 5 -2007 Time: 4:45: 3 Madison Club 100 -yr Phase 1, Line 11c 12/13/05 Page 3 r� rr rr rr rr r ar r !r � r �r �r �r r■i �r rig r rr linelicclub.OUT irttirtt Firttttfr irttttttttttttttti: t: irt* ttfrt t'.rttttt tf; tir tr�ttirttt'.rt tttttttttirttttttr irtxtttttrttirtttttttttttttttttirtttttttttttttttttt tttttttt I Invert I Depth I water I Q I vel vel. I Energy I Super ICriticallFlow ToplHeight /laase wt1 INO wth Station I Elev I (FT) I Elev (CFS) I (FPS) Head I Grd.E1.I Elev I Depth 1 width Dla. -FTIor I.D.1 ZL 1Prs /Pip L /Elem tt Ich 44444 Slope itt I tirtttttt I I SF Avel HF ISE DpthlFroude NINorm Dp -� "N" I X -Fa111 ttZR trtt IType Ch ttittttt 1 is L I I tttttitttt 1 444444 #tt I'.: tt:tt'.r it I ittttttt I ttttttttt 1 4444444 I tttttttt I tttttttt 1 4444444 I tttrtttt I I it it tri it it tr I I, I I I I I I I I I• !I 3072.100 976.400 .447 976.847 1.42 3.22 .16 977.01 .00 .45 1.37 1.500 .000 .00 1 .0 0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I- Page 4 r� r► �r �r rr r rr r M r r r r linelldclub.OUT 0 FILE: linelldclub.Wsw W S P G W- CIVILDESIGN Version 14.06 PAGE 1 Program Package Serial Number: 1735 WATER SURFACE PROFILE LISTING Date: 3- 5 -2007 Time: 4:48:41 Madison club 100 -yr Phase 1, Line 11d 12/13/05 kir ?rkt:':k ?:?; it irk ?:kkirkirkfrirk iskktrkkkkkkkkkk` k? rkkkkkkkkkkkt ; ?;t:ki:i:'.:t :ir?:kkkkkk�ktrk kt <kkirk ktr irkkk?:ir?: it it irkkkkkkkkkkkkitkkkk : : ?:kkkkkkkkkkkkkkir kick trk ki;k I invert I Depth I Water I Q I vel vel I EnergyY 1 super ICriticallFlow ToplHeight /IBase wt1 INO wth station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.l Elev I Depth I Width IDia. -FTIor I.D.1 ZL IPrs /Pip L /Elem ICh Slope I I I I -I SF Avel HF ISE DpthlFroude NlNorm DP I "N" I X -Fall1 ZR IType Ch kir ?:kkkki; it ! kkkkk'.rkkk I kir irkkkkk I kkkk?: ki: it it {irk ?: i; ?rk ki: •.r 1 irk k'.rk?r it I ? :'.r'.; i;k?: it I it irkkk?r it ?r it I irkkirk?r ?< I kir ?; it i;kkk I kirk it it ?r it ?r I kir it k Y it ?r I irkkkkkk I ie ?r kir it 1 ?r ?r it it it irk 4001.060 I I 974.890 I 1.370 I 976.260 .1.42 I .84 I .01 976.27 I .00 I .45 I .84 I 1.500 I I .000 .00 I 1 .0 1.955 .0420 .0002 .00 1.37 .10 .26 .013 .00 .00 PIPE 4003.015 I I 974.972 i 1.287 I 976.259 1.42 i .88 I .01 976.27 I .00 I .45 I 1.05 I 1.500 I I .000 .00 I 1 .0 -I- 1.592 -I- :0420 -I- -I- -I- -I- -I- .0002 -I- .00 -I- 1.29 -I- .12 -I- .26 -I- .013 -I- .00 .00 1- PIPE 4004.606 I I 975.039 I 1.220 I 976.258 1.42 I .92 I .01 976.27 I .00 I .45 I 1.17 I 1.500 I I .000 .00 I 1 .0 1.381 .0420 .0002 .00 1.22 .14 .26 .013 .00 .00 PIPE 4005.988 I I 975.097 I 1.161 I 976.257 1.42 I .97 I .01 976.27 I .00 I .45 I 1.26 I 1.500 I I .000 .00 I 1 .0 -I- 1.235 -I- .0420 -I- -I- -I- -I- -I- .0002 -I- .00 -I- 1.16 -I- .16 -I- .26 -I- .013 -I- .00 .00 I- PIPE 4007.222 I I 975.149 I 1.108 I 976.256 1.42 I 1.02 I .02 976.27 I .00 I .45 1 1.32 I 1.500 I I .000 .00 I 1 .0 1.122 .0420 .0002 .00 1.11 .17 .26 .013 .00 .00 PIPE 4008.344 I I 975.196 I 1.059 I 976.255 1.42 I 1.06 I .02 976.27 I .00 I .45 I 1.37 I 1.500 I I .000 .00 I 1 .0 -I- 1.032 -I- .0420 -I- -I- -I- -I- -I- .0003 -I- .00 -I- 1.06 -I- .19 -I- .26 -I- .013 -I- .00 .00 1- PIPE 4009.377 I I 975.239 I 1.014 I 976.253 1.42 I 1.12 I .02 976.27 I .00 I .45 I 1.40 I 1.500 I I .000 .00 I 1 .0 -I- .955 -I- .0420 -I- -I- -I- -I- -I- .0003 -I- .00 -I- 1.01 -I- .21 -I- .26 -I- .013 -I- .00 .00 1- PIPE 4010.331 I I 975.279 I .973 I 976.252 1.42 I 1.17 I .02 976.27 I .00 I .45 I 1.43 I 1.500 I I .000 .00 I 1 .0 -I- .888 -I- .0420 -I- -I- -I- -I- -I- .0003 -I- .00 -I- .97 -I- .22 -I- .26 -I- .013 -I- .00 .00 1- PIPE 4011.220 I I 975.316 ! .934 I 976.250 1.42 I 1.23 I .02 976.27 I .00 I .45 I 1.45 I 1.500 I I .000 .00 I 1 .0 -I- .829 -I- .0420 -I- -I- -I- -I- -I- .0004 -I- .00 -I- 93 -I- .24 -I- .26 -I- .013 -I- .00 .00 1- PIPE 0 FILE: linelldclub.WSw W S P G W- CIVILDESIGN version 14.06 PAGE 2 Program Package Serial Number: 1735 WATER SURFACE PROFILE LISTING Date: 3- 5 -2007 Time: 4:48:41 Madison Club 100 -yr Phase 1, Line lld 12/13/05 •.rk it irirkkkir itkki:k'rkkkkkkirk irk k'.ekkir ?rkkkirk kkkir is irkkkkkkirkkkkkfr irkkkkkkkkir irkkkkkkirkkk? r? rkkkkkkkkkkkkkkkirkkkkkkkkkkkki :kkkirkkkkir it it k?; it it i:k kir it ?rkk I invert I Depth I water I Q I vel Vel I EnergyY 1 Super IcriticallFlow ToplHeight /IBase Wtl INO wth Station I Elev I (FT) 1 Elev I (CFS) 1 (FPS) Head I Grd.E1.I Elev I Depth I width IDia.-FTIor I.D.1 ZL IPrs /Pip L /Elem ICh Slope I I I I SF Avel Hp _1_ ISE DpthlFroude _I_ N{NOrm Dp I "N" I X -Fall{ ZR IType Ch kk ?: ?rkkkkk I irkkkkirkkk I kkkkkkkk 1'.ckkkk ?rk kk I kkk'.: '.: '.r it ?r ?r 1 kkk ?rk k{r I kkkki: k'.r I kkkkkkkkir I kkkkkkk I'.rkkk'.rkkk I kkkkkk'.: '.r I kkkkkirk I hkkkkkk I ktr is ?rk I kkkki: it ?r 4012.049 I I 975.351 I .897 I 976.248 1.42 I 1.29 I .03 976.27 .00 I .45 I 1.47 I 1.500 I I! .000 .00 I 1 .0 -I- .774 -I- .0420 -I- -I- -I- -I- -I- .0004 -I- .00 -I- .90 -I- .26 -I- .26 -I- .013 -I- .00 .00 1- PIPE 4012.822 I 975.384 I I .862 I 976.246 1.42 I 1.35 I .03 976.27 I .00 I .45 I 1.48 I 1.500 I 1 .000 .00 1 1 .0 Page 1 r r r. r r■ir r r r� +� �r r� � �s r r r�� linelldclub.OUT -I- .725 -I- .0420 -I- -I- -1- -I- -I- .0005 -I- .00 -I- .86 -I- .28 -I- .26 -I- .013 -I- .00 .00 I- PIPE I 4013.547 I 975.414 .829 I I 976.243 I 1.42 1.42 I .03 I 976.27 .00 I .45 I 1.49 I 1.500 I I .000 .00 I 1 .0 .678 .0420 .0006 .00 .83 .30 .26 .013 .00 .00 PIPE I 4014.226 I 975.442 .798 I I 976.240 I 1.42 1.49 I .03 I 976.27 .00 I .45 I 1.50 I 1.500 I I .000 .00 I 1 .0 -I- .636 -I- .0420 -I- -I- -I- -I- -I- .0006 -I- .00 -I- .80 -I- .33 -I- .26 -I- .013 -I- .00 .00 1- PIPE I 4014.862 I 975.469 .768 I I 976.237 I 1.42 1.56 I .04 I 976.28 .00 I .45 I 1.50 I 1.500 I I .000 .00 I 1 .0 -I- .592 -I- .0420 -I- -I- -I- -I- -I- .0007 -I- .00 -I- .77 -I- .35 -I- .26 -I- .013 -I- .00 .00 1- PIPE I 4015.454 I 975.494 .740 I I 976.234 I 1.42 1.63 I .04 I 976.28 .00 I .45 I 1.50 I 1.500 I I .000 .00 I 1 .0 .555 .0420 .0008 .00 .74 .38 .26 .013 .00 .00 PIPE . I 4016.009 I 975.517 .713 I I 976.230 I 1.42 1.71 I .05 I 976.28 .00 I .45 I 1.50 I 1.500 I I .000 .00 I 1 .0 -I- .378 -I- .0420 -I- -I- -I- -I- -I- .0009 -I- .00 -I- .71 -I- .41 -I- .26 -I- .013 -I- .00 .00 1- PIPE 4016.388 975.533 .687 976.220 1.42 1.80 .05 976.27 .00 .45 1.49 1.500 .000 .00 1 .0 HYDRAULIC JUMP I 4016.388 I 975.533 .269 I I 975.802 I 1.42 6.60 I .68 I 976.48 .00 I .45 I 1.15 I 1.500 I I .000 .00 I 1 .0 -I- 6.064 -I- .0420 -I- -I- -I- -I- -I- .0348 -I- .21 -I- 27 -I- 2.69 -I- .26 -I- .013 -I- .00 .00 1- PIPE 0 FILE: linelldclub.WSw W S P G W- CIVILDESIGN Version 14.06 PAGE 3 Program Package Serial Number: 1735 WATER SURFACE PROFILE LISTING Date: 3- 5 -2007 Time: 4:48:41 Madison Club 100 -yr Phase 1, Line lld 12/13/05 ;:t:':'. r ;:;:'.:;:i:; :':;: +:';f:i:;:;ri: ism'.;;:;;;;;:;: ir': i:'. r! r;:'.: ir;:;: t:;:'.;'.:; r'.: ir! ri: Y:;:;:'.:;:;:;:'.:;:'. r;:;:'.: i:;:+.:'.:!;+,: �'.:;:;:;: i:;:':;:;: ;:'.:'.:;;iri:k':'.:�;:;r;r; :i; trir i:;:;:Q'.;�- ;;fr;:i;:;;;ra`•l: R;: T:h A•i ;:;r;; ;:;: ;:'.: ;: ;r i:;: i; is 'e;<ir f; I Invert I Depth I water I Q I Vel Vel I EnergyY 1 Super ICriticallFlOW TOplHeight/ Base wtl INO wth Station I Elev I (FT) 1 Elev I (CFS) I (FPS) Head I Grd.El.I Elev I Depth width width IDia. -FTIor I.D.1 ZL IPrs /Pip -I- -I- L /Elem ICh Slope I -I- -I- I I -I- I -i- -I- SF Avel -I- HF ISE -I- D p thlFroude _I NINOrm -I- Dp -I- I "N" -I- I X -Fall) ZR -I IType Ch ;: e ::: :: :::::: :: :: 1;:;: A;::: ;: ;: ;:;; 1 :: r. �::: - .•;:;:.: I ;: ;:;:;:;;,�;:;: ;: I A •; •: ;» •: ;: ;: ;: ;: I ;:;: ;:;:;:;:;: 1;:.. ;:;:;: ;: ;: I ;:;:;: a;: ;; -: �;: l ;: ;:;: r ;:;: I ;: �;:;:;: ;: ;::: 1;:;:;:,� � � :,;: 1 �;:;: ;:;:;:;: I ;: �;:;:;:;: � I �;: a:;:;: I ;: �;:;: ,t;: r. I 4022.451 I 975.788 .278 I I 976.066 I 1.42 6.29 I .61 I 976.68 .00 I .45 I 1.17 I 1.500 I I .000 .00 I 1 .0 -I- 4.010 -I- .0420 -I- -I- -I- -I- -I- .0304 -I- .12 -I- .28 -I- 2.52 -I- .26 -I- .013 -I- .00 .00 1- PIPE I 4026.461 I 975.956 .288 I I 976.243 I 1.42 6.00 i .56 I 976.80 .00 I .45 I 1.18 I 1.500 I I .000 .00 I 1 .0 -I- 2.664 -I- .0420 -I- -I- -1- -I- -I- .0265 -I- .07 -I- .29 -I- 2.36 -I- .26 -I- .013 -I- .00 .00 1- PIPE I 4029.125 I 976.068 .297 I I 976.365 I 1.42 5.72 I .51 I 976.87 .00 I .45 I 1.20 I 1.500 I I .000 .00 I 1 .0 -I- 1.921 -I- .0420 -I- -I- -I- -I- -I- .0232 -I- .04 -I- .30 -I- 2.21 -I- .26 -I- .013 -I- .00 .00 1- PIPE I 4031.046 I 976.148 .307 I I 976.456 I 1.42 5.45 I .46 I 976.92 .00 I .45 I 1.21 I 1.500 I I .000 .00 I 1 .0 1.455 .0420 .0203 .03 .31 2.07 .26 .013 .00 .00 PIPE I 4032.501 I 976.209 .318 I I 976.527 I 1.42 5.20 I .42 I 976.95 .00 I .45 I 1.23 I I 1.500 I .000 .00 I 1 .0 -I- 1.128 -I- .0420 -I- -I- -I- -I- -I- .0177 -I- .02 -I- .32 -I- 1.94 -I- .26 -I- .013 -I- .00 .00 1- PIPE I 4033.629 I 976.257 .329 I I 976.585 I 1.42 4.96 I .38 I 976.97 .00 I .45 I 1.24 I I 1.500 I .000 .00 I 1 .0 -I- .887 -I- .0420 -I- -I- -I- -I- -I- .0155 -I- .01 -I- .33 -I- 1.82 -I- 26 -I- .013 -I- .00 .00 1- PIPE Page 2 M MW M M M r ter.. IM M M M m m'� M M M i M Page 3 linelldclub.OUT 4034.516 I I 976.294 I .340 976.634 I I 1.42 4.73 I .35 I 976.98 00 I .45 I 1.26 I 1.500 I I .000 .00 I 1 .0 -I- .701 -I- .0420 -I- -I- -I- -I- -I- .0135 -I- .01 -I- .34 -I- 1.70 -I- .26 -I- .013 -I- .00 .00 1- PIPE 4035.218 I I 976.323 I .351 976.675 I I 1.42 4.51 I .32 I 976.99 .00 I .45 I 1.27 I 1.500 I I .000 .00 I 1 .0 -I- S53 -I- .0420 -I- -I- -I- -I- -I- .0118 -I- .01 -I- .35 -I- 1.59 -I- .26 -I- .013 -I- .00 .00 I- PIPE 4035.771 I I 976.346 I .363 976.710 I I 1.42 4.30 I .29 I 977.00 .00 I .45 I 1.29 I 1.500 I I .000 .00 I 1 .0 -I- .429 -I- .0420 -I- -I- -I- -I- -I- .0103 -I- .00 -I- .36 -I- 1.49 -I- .26 -I- .013 -I- .00 .00 1- PIPE 0 FILE: linelldclub.wsw W S P G W - CIVILDESIGN version 14.06 PAGE 4 Program Package serial Number: 1735 WATER SURFACE PROFILE LISTING Date: 3- 5 -2007 Time: 4:48:41 Madison Club 100 -yr Phase 1, Line lld 12/13/05 fr fr fr f: fr f; fr t'.: it tr �'.: it f: '.r is is fr it fr'.: i it f: f: fr it fr rt is fr it it it i• f: t ::r fr fr f: f; f; t :",: f; is 3 f; � fr f; :: fr f: 'r f; fr f: '.: '.r f: f: fr t� f: f: f: '.r'.r f: f: f: '.; '.r fr f; f.• fr'::: s4',r f: fr f: fr s k fr fr it it it fr at ir'.: {r fr f: it fr fr it fr f: tr t it fr f: f: fr'.r tr'.r it it fr it ir'<f: it it f; f; I Invert I Depth I water I Q I vel vel I Energyy 1 supper ICriticallFlow ToplHeight /IBase wtI INO Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.I Elev I Depth I width 1Dia. -FTIor I.D.1 ZL 1Prs /Pip L /Elem ICh slope I I I I SF Avel HF ISE DpthlFroude NINorm Dp I "N° I X -Fa111 ZR _I IType Ch fr k'.: '.: fr f: fr f: fr fr .. .. k'r i•'r': ffr'.r'r ., ': .. it 1fr as ....I. .a.; I'• .. tr f•ir f: it h'r it fr f: ': ': it .. '.': ., . I .. �._. -•I.. .....I ;r'..•f..�'r'r fr it :4 i -h,i:fr it fr .. 'rk'r i<.. I ' � I fr i•fe f: it tf:fr:44fr f< fc f: fr fr it it irrt f: f•ir iti f: :Y :4 irA it is i<fs I I 'r f f: fr it fttrit it irrt f< I 4036.200 I I 976.364 I .376 976.740 I I 1.42 4.10 I .26 I 977.00 .00 I .45 I 1.30 I 1.500 I I .000 .00 I 1 .0 -I- .325 -I- .0420 -I- -I- -I- -I- -I- .0090 -I- .00 -I- .38 -I- .1.40 -I- .26 -I- .013 -I- .00 .00 1- PIPE 4036.525 I I 976.378 I .389 976.767• I I 1.42 3.91 I .24 I 977.00 .00 I .45 I 1.31 I 1.500 I I .000 .00 I 1 .0 -I- .239 -I- .0420 -I- -I- -I- -I- -I- 0079 -I- .00 -I- .39 -I- 1.31 -I- .26 -I- .013 -I- .00 .00 I- PIPE 4036.764 I I 976.388 I .402 976.790 I I 1.42 3.72 I .22 I 977.01 .00 I .45 I 1.33 I 1.500 I I .000 .00 1 .0 -I- .162 -I- .0420 -I- -1- -I- -I- -I- .0069 -I- .00 -I- .40 -I- 1.23 -I- .26 -I- .013 -I- .00 .00 1- PIPE 4036.926 I I 976.395 I .416 976.811 I I 1.42 3.55 I .20 I 977.01 .00 I .45 I 1.34 I 1.500 I I .000 .00 I 1 .0 -I- .092 -I- .0420 -I- -I- -I- -I- -I- .0061 -I- .00 -I- .42 -I- 1.15 -I- .26 -I- .013 -I- .00 .00 1- PIPE 4037.018 I I 976.399 I .431 976.829 I I 1.42 3.39 I .18 I 977.01 .00 I .45 I 1.36 I 1.500 I I .000 .00 I 1 .0 -I- .032 -I- .0420 -I- -I- -I- -I- -I- .0053 -I- .00 -I- .43 -I- 1.07 -I- .26 -I- .013 -I- .00 I .00 1- PIPE I 4037.050 I I 976.400 I .447 -I- 976.847 -I- I I 1.42 -I- 3.22 -I- I .16 -I- I 977.01 -I- .00 -I- I I .45 -I- 1.37 -I- I 1.500 -I- I .000 -I- .00 1 I- .0 -I- 0 -I- Page 3 line11hclub.OUT 0 FILE: LINEIIHCLUB.WSW W S P'G W - CIVILDESIGN Version 14.06 PAGE . 1 Program Package Serial Number: 1735 WATER SURFACE PROFILE LISTING Date: 4- 9 -2007 Time: 3:20:21 Madison Club 100 -yr Phase 1, Liine 11h 12/13/05 I Invert I Depth 1 water I Q I Vel vel I Energyy 1 Super ICriticallFloW ToplHeight /IBase wtl INO wth Station I Elev I (FT) I Elev 1 (CFS) I (FPS) Head I Grd.E1.I Elev I Depth I width IDia. -FTIor I.D.1 ZL .IPrs /Pip L /Elem ICh Slope I I I I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fall) ZR IType Ch 8000.770 I I 980.070 4.830 1 984.900 I 16.90 I 5.38 I .45 985.35 I .00 I 1.48 I .00 I 2.000 I I .000 .00 I 1 .0 -I- 246.740 -I- .0100- -1- -I- -I- -I- -I- .0048 -I- 1.17 -I- .00 -I- .00 1.22 -I- -I- .012 -I- .00 .00 1- PIPE 8247.510 I I 982.540 3.570 I 986.110 I 16.90 I 5.38 I .45 986.56 I .00 I 1.48 I .00 I 2.000 I I .000 .00 I 1 .0 ]UNCT STR .0094 .0028 .02 .00 .00 .012 .00 .00 PIPE 8252.840 I 982.590 4.256 I 986.846 I 7.52 I 2.39 I .09 986.94 I .00 I .97 I .00 I 2.000 I I .000 .00 I 1 .0 -I- 176.780 -I- .0100 -I- -I- -I- -I- -I- .0009 -I- .17 -I- .00 -I- .00 -I- .76 -I- .012 -I- .00 .00 1- PIPE 8429.620 -I- 984.360 -I- 2.663 -I- 987.023 -I- 7.52 -I- 2.39 -I- .09 -I- 987.11 -I- .00 .97 .00 2.000 000 .00 1 .0 o -I- -I- -I- -I- -I- I- Page 1 r S NISi�d H�1�� t 1 1 1 1 i 1 1 o� 1 1 1 1 1 1 1 1 1 1 I ' .: I. i i I I I I � I 1 8.0 INTERCEPTION CAPACITY OF INLETS IN SAG LOCATIONS Inlets in sag locations operate as weirs under low head conditions and as orifices at greater depths. Orifice flow begins at depths dependent on the grate size, the curb opening height, or the slot width of the inlet, as the case may be. At depths between those at which weir flow definitely prevails and those at.which orifice flow prevails, flow is in a transition stage. At these depths, control is ill— defined and flow may fluctuate between weir and orifice control. Design procedures adopted for this Circular are based on a conservative approach to estimating the .capacity of inlets in sump locations. The efficiency of inlets in passing.debris is critical in sag locations because all runoff which enters the sag must be passed through the inlet. Total or partial clogging of inlets in these locations can result in hazardous ponded conditions. Grate inlets alone.are not recommended for use in sag locations because of the tendencies of grates to become clogged. Combination inlets or curb— opening inlets are recommended for use in these locations. - 8.1 Grate Inlets A grate inlet in a sag location operates as a weir to depths dependent on the bar configuration and size of.the grate and as an orifice at greater depths. Grates of larger dimension and grates with more open area, i.e., with less space occupied by lateral and longitudinal bars, will operate as weirs to greater depths than smaller grates or grates.with less open area. The capacity of grate inlets operating as weirs i's: Qi' = CwPdl.5 (17) where: P = perimeter of the grate in ft (m) disregarding bars and the side against the curb Cw 3.0 (1.66 for SI) The capacity of a grate inlet operating as an orifice is: Qi = CoA(2gd)0.5 (18) where: Co = orifice coefficient = 0.67 A = clean opening area of the grate, ft 2 (m2) g = 32.16 ft /s2 (9.80 m /s2) MW Ir � ��� � 3 . I sr � � � ►�k LET T:�:,d�- r'ra. -�..� �S Ar4 C�P E F I t0 6 S 4 3 . 2 �. 67 ' � I t ' � 0.8 g 0.6 e Os 0.4 0.3 0.2 2 3 4 S 6 8 10 20 30 40 SO 60 80 100 0l3CHAW8@ Q (FT 3/3) CHART 11. Grate inlet capacity in sump conditions. CoA (z5j,,) Fo-M-Oc-A 1& 1 01'4 PIP - 71 e- 4 A7� GRATE 0PEl`,lING P-1-7/8-4 0.8 Reticuline 0.8 Curved vane 0.35 30* tilt-bar 0.34 - Tested WANWEPA ,10,0 1 PVAV CURB 2 3 4 S 6 8 10 20 30 40 SO 60 80 100 0l3CHAW8@ Q (FT 3/3) CHART 11. Grate inlet capacity in sump conditions. CoA (z5j,,) Fo-M-Oc-A 1& 1 01'4 PIP - 71 e- 4 A7� II 0 NOLLO--*,9NN0l,j ., 32tb' 31�f/�21d 1 1 1 7 1 NOLLO--*,9NN0l,j ., 32tb' 31�f/�21d i 1 1 1 1 1 1 1 1 1 1 1 1 i i 1 Madison club Residential Area Drain connection 10" HDPE 6/6/05 Manning Pipe Cal cul Given Input Data: shape ................... solving for ........... Diameter.........1 .............. Depth.......................... slope ... Manning's n ..................... computed Results: Flowrate........................ Area.......................... wetted Area ............ . ..... ... wetted Perimeter ................ ator circular Flowrate 0.8330 ft 0.8000 ft 0.0100 ft /ft 0.0120 2.5399 Us 0.5450 ft2 0.5378 ft2 2.2831 ft RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT ' (RCFC &WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982 -2004 Advanced Engineering Software (aes) (Rational Tabling version 6.OD) Release Date: 01/01/2004 License ID 1566. Analysis prepared by: RCE Consultants, Inc. one ]enner Street, Suite 200 Irvine, CA'92618 s (949) 453 -0111 -- ° - ° - -° -_ °---° °- -° _ -= DESCRIPTION OF STUDY Madison Club 10 -yr Typical Residential Runoff 6/6/05 FILE NAME: RES- 10.DAT TIME /DATE OF STUDY: 15:01 06/06/2005. ---------------------------------7------------------------------------------ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 10 -YEAR STORM 10- MINUTE INTENSITY(INCH /HOUR) = 2.830 10 -YEAR STORM 60- MINUTE INT.ENSITY(INCH /HOUR) = 1.000 100 -YEAR STORM 10-MINUTE INTENSITY(INCH /HOUR).= 4.520 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.600 SLOPE OF 10 -YEAR INTENSITY - DURATION CURVE = 0.5805893 SLOPE OF 100 -YEAR INTENSITY- DURATION CURVE = 0.5796024 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 70.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.010 SLOPE OF INTENSITY DURATION CURVE = 0.5806 RCFC&WCD HYDROLOGY MANUAL "C "- VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES =USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL' HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER- GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 2 19.0 14.0 0.020/0.100/0.050 0.50 5.00 0.0100 0.010 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative FLOW -Depth = 1.00 FEET as (maximum Allowable street Flow Depth) - (Top -of -Curb) 2. (Depth).* (velocity) Constraint = 6.0 (FT=FT /s) =SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.= FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21 ------------------ ---------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< - - ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY(1 -ACRE LOTS) TC = K= [(LENGTH =3) /(ELEVATION CHANGE)] = °.2 INITIAL SUBAREA FLOW- LENGTH(FEET) = 250.00 UPSTREAM ELEVATION(FEET) = 100.00 DOWNSTREAM ELEVATION(FEET) = 98.75 ELEVATION DIFFERENCE(FEET) = 1.25 TC = 0.469 °[( 250.00 *`3) /( 1.25)1°' °.2 12.326 •10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.531 SINGLE- FAMILY(1 -ACRE LOT) RUNOFF COEFFICIENT = .6893 SOIL CLASSIFICATION IS "B" SUBAREA RUNOFF(CFS) = 1.74 TOTAL AREA(ACRES) = 1.00 TOTAL RUNOFF(CFS) = 1.74 -------------------------------------------------------------- ----------- END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 1.00 TC(MIN.) = 12.33 PEAK FLOW RATE(CFS) = 1.74 END OF RATIONAL METHOD ANALYSIS RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC &WCD) 1978 HYDROLOGY MANUAL (c) copyright 1982 -2004 Advanced Engineering software (aes) (Rational Tabling version 6.OD) Release Date: 01/01/2004 License ID 1566 1 Analysis. prepared by: RCE Consultants, Inc. One J enner Street, suite 200 Irvine, CA 92618 (949) 453 -0111 DESCRIPTION OF STUDY • Madison Club 100 -yr • Typical Residential Runoff -- 6/6/05 FILE NAME: RES- 100.DAT 'TIME /DATE OF STUDY: 14:59 06/06/2005 ------------------------------------------ - -USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ------------------------------------------------------------------------ USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM.PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 10 -YEAR STORM 10- MINUTE INTENSITY(INCH /HOUR) = 2.830 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.000 100 -YEAR STORM 10- MINUTE INTENSITY(INCH /HOUR) = 4.520 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.600 SLOPE OF 10 -YEAR INTENSITY - DURATION CURVE = 0.5805893 SLOPE OF 100 -YEAR INTENSITY- DURATION CURVE = 0.5796024 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.600 SLOPE OF INTENSITY DURATION CURVE = 0.5796 RCFC&WCD HYDROLOGY MANUAL "C "- VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC &!JCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES =USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL= HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER- GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) ___ _ _____ _________________ _ _ _ _ __ _ _ _ __ _ _ _ _ __ _____ ______ 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 2 19.0 14.0 0.020 /0.100/0.050 0.50 5.00 0.0100 0.010 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: ,• 1. Relative Flow -Depth = 1.00 FEET as (Maximum Allowable street Flow Depth) - (Top -of -Curb) 2. (Depth) = (velocity) Constraint = .6.0 (FT=FT /s) =SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY.PIPE. ^- FLOW ^PROCESS ^ FROM ^NODE 1.00 -TO ^NODE2.00- IS^ CODE -= y21 -^ - _ -- ---------------------------------------------------------------------------- --»»>RATIONAL- METHOD- INITIALSUBAP.EA- ANALYSIS « « <__ _________ _ _ _ _ __ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY(1 -ACRE LOTS) TC = K= [(LENGTH= =3) /(ELEVATION CHANGE)]` °.2 INITIAL SUBAREA FLOW- LENGTH(FEET) = 250.00 UPSTREAM ELEVATION(FEET) = 100.00 DOWNSTREAM ELEVATION(FEET). = . 98.75 ELEVATION DIFFERENCE(FEET) = 1.25 TC = 0.469=[( 250.00= 3)/( 1.25)] = *.2 = 12.326 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.004 SINGLE- FAMILY(1 -ACRE LOT) RUNOFF COEFFICIENT = .7507 SOIL CLASSIFICATION IS "B" SUBAREA RUNOFF(CFS),= 3.01 TOTAL AREA(ACRES) = 1.00 TOTAL RUNOFF(CFS) = 3.01 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 1.00 TC(MIN.) = 12.33 PEAK FLOW RATE(CFS) = 3.01 END OF RATIONAL METHOD ANALYSIS aom�.l�nmoo �ais�nr� 9£' 1 -0 DiV Id dVVJ dno8!D sms 01!DOIOH H 0009 1333 0 jpp���(IrrN�� \�{(g / \f le 0 GiGsL��G1�(1 I NOUVNEAs30 dno89 s3ios v AavoNnOG dnoes s-uos aN3a31 13.52'30 (THOUSAND PALM -H.E.I 8 g 'D A D 32�J I. 'J g 3 al Y• .36 •3l -\ �1 322 ^ 33B rr: •':: ..� , ; F C:'. li `"k :-':_ / IX3TRI'_'F♦ A jr D —7— uN0A0.T I_.�- i t `�• ... ��'2 ,• ✓ti cc.l ': .I '. _" ,+,..f 'al. ``'Z. `l a rl 0•`-i ,4 0. . \g•,' •a,�' °...'"•'.. :,'b,' i ,`1 !`'U• i.'I, 5 - -� . r ^� cam' L,. .j l l i 'yF�++ _.'� ^v;;'.., t'.t, -`� T ,'li.. :' '•� °97; :' r ;•I �i'•^^- e Z �"' `;> :) - " G-A ' 5 -t., _i3 •a' ;S 's1�1. ( /.', Lt:':,' ..�`:'- ;_':.s_, _.- ,�._�•.•'��.e .r ` ° ° �`:iI I ,yj" �•. fi�:�;:.7. '�• ":7 'Ifs^ -.- !I', =•' Ijl; i;l ./q�((��'- }`•�./3 - ,•',.' ••I y /� ` .'f= a.: "_._ • I 1 t ii Si,��f Lr: !•CJ,j ^) (I�q r,:., { ! ,' Il �I O ��,:� - •'•l °! 14 ` : r - I: .. ar ,r l� < :, - ?., _':•-, ;SiE '; 1� 1� `a{'''rt� Ir `"1. «� '%• I3 � ":.),� -;,j� �, ^ "� )'•` 6 1 � ;,a _,_,ice °.f. , e : bI °"° „NL ?� �.� A_t:Irr, (Q -`d t'•I '�, r'J.:i -`.�"� 11 -,� � !/ - I i ° '\ \ •�- .- ....1'_•— : ' �f � l�rvf.lw � �.i ./•'',l V2, t•6� �j l—�':� \'.�" ;I: '`_} i L ; r 'f �1 J .' L-..y I 13 ; :.1 101- <. • r `� yf 1,..- 11 y f 1. +;�"`r.. I'.:,5: 22 23 19 60 21. • • -;�: -- , 1 � � �� ��� fir' .��5 L .:` I— [� off• --_. •_ •'-� �I ,''��. `'t'� -�'' �T y �,•• .. '— :lit.; °' "`trst ��`i :r'�`�.. 29 20 -- 274 26 25 30 L ..7 'O \\ I , , • �: • > r,uv fn.l I -1 n` -,lY• "0.1i• • L _ J. �I ` ' j� °fie `0 '•. •� *` •:` °:..�.� . ° E \:,, /• \ 1 \ •a 3'14 - . - x'33 - \. l' A- �L L E Y 9 10 i \\ 11 I .72• I.-- 7 ' •�` ��`, P: .. j9 13•/5' LEGEND HYDROLOGIC SOILS GROUP MtAP SOILS GROUP BOUNDARY A SOILS GROUP DESIGNATION FOR R C F c a W C D _ MYOMA iHYD,mL OEV 11ANUAL 0 FEET 5000 PLATE C -1,37 WI -0 2M,11-3 3!DVN.M flHONVJ � Ij ] �I mod ji 1 1 1 1 1 1 1 1 1 J 1 1 1 >I 1 a , , ivnNvli\r Ago ioz1GAH 0Oig Ojoz N011 ;sw dnoaE) silos v bU v"M09 dno8o silos GN.3J3°I 1 1 1 1 1 1 1 1 1 J 1 1 1 >I 1 a , I i ..^( ' � t L' i i 1�1 r +` ? � _ t T' . - ^mss'. 1 V I " .�' 1 � L. j' I 9 RUNOFF INDEX NUMBERS OF HYDROLOGIC SOIL -COVER COMPLEXES FOR PERVIOUS AREAS -AMC II Cover Type (3) Quality of Soil Group Cover (2)1 A I B I C F D 78 186 191 ( 93 Poor 53 70 NATURAL COVERS - 85 Barren 40 (Rockland, eroded and graded land) 75 Chaparrel, Broadleaf Good (Manzonita, ceanothus and scrub oak) 57 .Chaparrel, Narrowleaf 78 (Chamise and redshank) 71 Grass, Annual or Perennial 88 Meadows or Cienegas Good .. (Areas with seasonally high water table, 72 principal vegetation-is sod forming grass) Door Open Brush 84 (Soft wood shrubs - buckwheat*, sage, etc.) Fair 46 66 77 Woodland Good IAl (Coniferous or broadleaf trees predominate. 175 Canopy density is at least 50 percent) Poor �45 Woodland, Grass 83 (Coniferous or broadleaf trees with canopy 36 60 73 density from 20 to 50 percent) Good URBAN COVERS - 70 77 Poor Residential or Commercial Landscaping 82 (Lawn, shrubs, etc.) Fair Turf 77 (Irrigated and mowed grass) AGRICULTURAL COVERS Good 133 Fallow t (Land - plowed but not tilled or seeded) 78 186 191 ( 93 Poor 53 70 80 85 Fair 40 63 75 81 Good 31 57 71 78 Poor 71 82 88 91 Fair 155 172 181186 Poor 67 78 86 89 Fair. 50 69 79 84 Good 38 61 74 80 Poor 63 77 85 88 Fair 51 70 80 84 Good .. 30 58 72 '78 Door 62 76 84 88 Fair 46 66 77 83 Good IAl K3 175 181' Poor �45 66 177 83 Fair 36 60 73 79 Good 28 55 70 77 Poor 57 73 82 66 Fair 44 65 77 82 Good 133 58 72 79 Good 132 1566 169 175 Poor 58 114 1113 1111 Fair 44 65 77 82 Good 133 58 72 79 76 185 190 192 F U P C D RUNOFF INDEX. NUMBERS FOR PERVIO S AREAS PLATE E-6.1 0.0 2) A RUNOFF INDEX NUMBERS OF HYDROLOGIC SOIL -COVER COMPLEXES FOR PERVIOUS AREAS -AMC II Cover Type•(3) Quality of Soil Group Cover (2 ) A B I C D PERVIOUS ARCS PLATE E °6.1(2of 2) AGRICULTURAL COVERS (cont.) - Legumes, Close Seeded Poor 66 77 85 89 (Alfalfa, sweetclover, timothy -,' etc.) Good 58 72 81 85 Orchards, Deciduous See Note 4 (Apples, apricots, pears, walnuts, etc.) Orchards; Evergreen Poor 57 73 82 86 (Citrus, avocados, etc.) Fair 44 65 77 82 Good 33 58 72 79 Pasture, Drylznd Poor 67 78 86 89 (Annual grasses) Fair 50 69 79 84 Good 38 61 74 80 Pasture, Irrigated Poor 58 74 83 87 (Legumes and perennial grass). Fair 44 65 77 62 Good 33. 58 72 79 Row Crops Poor 72 81 88 91 ' - (Field crops - tomatoes, sugar beets, etc.) Good 67 78 85 89 Small Grain Poor 165 176 184 188 ' (Wheat, oats, barley, etc.) Good �63 75 83 87 1 a � 1 Vinevard See Note 4 Notes: 1. all runoff index (RI) numbers are for antecedent Moisture Condition (AMC) Ii. 2. 'Quality of cover definitions: Poor - Heavily grazed or regularly burned areas. Less than 50 per-' cent of the ground surface is protected by plant coved or brush and tree canopy. Fair - Moderate cover with 50 percent to 75 percent of the ground sur- face protected. Good -Heavy or dense cover with more 'than 75 percent of the ground surface protected, 3. See Plate C-2 for a detailed description of cover types. 4. Use runoff index numbers based on ground cover type. See discussion under "Cover Type Descriptions" on Plate C -2. 5. Reference Bibliography item 17, _ RUNOFF MEX E as .a NUMBERS HybROLOGY MANUAL FOR PERVIOUS ARCS PLATE E °6.1(2of 2) 1 1 1 1 1 1 1 II ACTUAL IMPERVIOUS COVER Recommended Value Land Use (1) Range- Percent For Average Conditions -Percent (2 Natural or Agriculture 0 e 10 0 Single Family Residential: (3) 40,000 S. F. (1 Acre) Lots 10 - 25 20 20,000 S. F. (Z� Acre) Lots 30 - 45 40 7,200 - 10,000 S. F. Lots 45 - 55 50 Multiple Family Residential: Condominiums 45 - 70 65 Apartments 65 - 90 80 Mobile !come Park 60 - 85 75 o t CommTarciai, uo n'LO at 80 `°i00 90 Business or industrial Notes: 1. Land use should be based on ultimate development of the watershedo Long range master plans for the County and incorporated cities should be reviewed to insure reasonable Land use assumptions, 2. Recommended values are based on average conditions which may not apply to a particular study area. The percentage impervious may vaxy greatly even on comparable sized lots clue to differences in dwelling size, improvements, etc. Landscape practices should also be considered as it is common in some areas to use ornamental grav- els underlain by impervious plastic materials in place of lae..ms and shrubs. A field investigation of a study area should always be made, and a review of aerial photos, where available may assist in estimat- ing the percentage of impervious cover in developed areas. 3. For typical. horse ranch subdiLpisions increase impervious area 5 per- cent over the values recommended in the table above. ° IMPERVIOUS COVER t'1YDRO 9GY IMANJAL FOR DEVELOPED AREAS PLATE E °6.3 Ei7 a \/IrINITV A/IAP 33B PAD =995.0 LINE "10A" / / I A{y.1 ( I' + l A \ { { I { ; LEGEND: WATERSHED BOUNDARY ... WATERSHED BOUNDARY SUB -AREA WATERSHED BOUNDARY INITIAL SUB —AREA K*X*_X WATERSHED DESIGNATOR V., �-X WATERSHED AREA XX XXX.X NODE NUMBER / ELEVATION 0XKXy) XXX.X INV —XX NODE NUMBER / ELEVATION / INVERT ELEVATION Q,o=x.x,X.x SUBAREA RUNOFF cfs , PEAK FLOW cfs Q1oO=X.X,X.X SUBAREA RUNOFF cfs , PEAK FLOW cfs �)) GOLF HOLE _ P 5.5 AD =98 , 7 52B PAD- -985.8 , +1� dl A- 51 B �. / ! i7 �� �, �9B r =- PAD= 987'.5 X� f �/ — �, j �` PAD =991.0 , / 50B y PA 9 0 - t fr \ /J \ t _ „ �fz .997.1 \ __ 6 1 ri , 4 u Y - ,'" \, TQ . r � S /Z X ✓ \ i <� ✓F ` Al j� I 1 y J - \ r � ,t _ - - i i ( i :,7 J GRAPHIC SCALE 80 0 40 80 160 320 1 ( IN FEET ) 1 inch = 80 ft. 7595 Irvine Center Dr. C46559 Suite 130 P.E. Irvine, Co. 92618 RICHARD L. CLARK Phone: 949.453.0111 EXP.- 6/30/07 Fax: 949.453.0411 mConsultants, Inc STAMP w 9��m N0. C46559 S)" *EXP. 6- 30 -07* CIVI �� gTfpFCAl1 CITY OF LA QUINTA DRAWING NAME: MDC- HYD -SD -CH HYDROLOGY MAP MADISON CLUB CLUBHOUSE PLAN SHEET TRACT MAP N0. 34969 PORTIONS OF SECTION 10, T.6.S., R.7.E., S.B.M. PROJECT No. 0001 MDC SHEET 1 OF 1 DESIGNED BY:S.W. CHECKED BY: T.B. SCALE: 1 " = 80" FILE No. 0502 REVISIONS DATE NO. DRAWN BY: S.W. DATE: 04/09/07 0 d- O 6 L LI F- F- 0 J Q Qi V L CL Q) E a> 0 L Q I_ ai c O co i 0 0 0 N O n 0 u Q TO RETENTlluN BASIN = o 1.4 Ac SUBAREA �gREAGE ° V) w w O LLJ 7' 2.5, 'Hx8'W DBL. R 7M01 .._...._._ I f ' " �� �' �Z �" I � I ""- - \\ � fit T,0 L QUINTA EVA U. ON CHANNEL TO EXISTING - 13 U — -- I N AVENIDA LA FONDA AvE_ �A FONUN 54" RCP CALLE 10' 18" 1 g" 18 7' 7' City of La Quinta l�/1LLL 60" RCP J11 V nLVn 24" S= 0.0052 __ 7' 8 100' 50' 0' 100' 200' GRAPHIC: SCALE Note: For reduced sized pr�nts, original scale is in inches W --- CALLE B -3__ 3.1 Ac _ -- <� EXISTING SAND FILTER EXISTING RETENTION B ' t( �W CALLE B-2 EXISTING SAND FILTER 5.1 Ac EXISTING LEACH FIELD f II 4 4.0 Ac ■ rRETE TION BASIN 'C' ��: CALLE- 0" RCP / =0.001 Downtown Drainage Study � Hydrology Map "*% P S 0 M A S DATE: 12 -04 -07 REVISED ON: JOB No:1LAQ010102 SHEET 1 OF 1 E 0 3 v O 0 r / z c� LU w 0 z w / N O O O Q J / m M n <i- 00 O n O 0 Q) 0 a LEGEND / HYDROLOGIC DATA STORM FREQUENCY: 10 YEARS TOTAL DRAINAGE STUDY AREA: 74 Acres w w DRAINAGE AREA BOUNDARY o = o > D DRAINAGE SUB —AREA BOUNDARY N N Iz T_ FLOW DIRECTIONAL ARROW EXISTING STORM DRAIN Y DRY WELL 0 G GRATE INLET _ , , CATCH BASIN / WIDTH w � � SOIL GROUP(S): A & B C/1) S SANDY LOAM, LOAMY SAND AND FINE SAND w LAN D_USE.. PES[DEI_TIAL-- &-- C.OM.MERCI -AL —_.__. Q1010 YEAR STORM FLOW Tc TIMOF CONCENTRATION B -18 SUBAREA w w w O LLJ 7' 2.5, 'Hx8'W DBL. R 7M01 .._...._._ I f ' " �� �' �Z �" I � I ""- - \\ � fit T,0 L QUINTA EVA U. ON CHANNEL TO EXISTING - 13 U — -- I N AVENIDA LA FONDA AvE_ �A FONUN 54" RCP CALLE 10' 18" 1 g" 18 7' 7' City of La Quinta l�/1LLL 60" RCP J11 V nLVn 24" S= 0.0052 __ 7' 8 100' 50' 0' 100' 200' GRAPHIC: SCALE Note: For reduced sized pr�nts, original scale is in inches W --- CALLE B -3__ 3.1 Ac _ -- <� EXISTING SAND FILTER EXISTING RETENTION B ' t( �W CALLE B-2 EXISTING SAND FILTER 5.1 Ac EXISTING LEACH FIELD f II 4 4.0 Ac ■ rRETE TION BASIN 'C' ��: CALLE- 0" RCP / =0.001 Downtown Drainage Study � Hydrology Map "*% P S 0 M A S DATE: 12 -04 -07 REVISED ON: JOB No:1LAQ010102 SHEET 1 OF 1 E 0 3 v O 0 r / z c� LU w 0 z w / N O O O Q J / m M n <i- 00 O n O 0 Q) 0 a