194 - Misc. TractsSladden Engineering
` _6782 Stanton Avenue; Suite A, Buena Park, CA 90621 (714j 523 -0952 Fax (714) 523-1369'
77 -725. Enfield Lane, Suite 100, Palm Desert, CA 92211 (760) 772 -3893 Fax (760) 772 -_3895
'? 450 Egan Avenue, Beaumont, CA 92223 (951) 845 -7743 Fax (951) 845 -8863
' rte,•`, hf/-•:F ;'.' , � TN�~'� • - � f • l , • ` •• i•r , rte. .
; ' 1 August 22, 2007' } i Project No. 544 -3253
07- 07 -492R
Yr Prest- Vuksic Architects
44 -530 San Pablo Avenue, Suite 200
- Palm Desert, California 92260 • a
".q Attention: Mr. John Vuksic
Project: St.'-Francis of Assisi Church'Expansion - 1,
47- 225,Washington Street r
• Y La Quinta; California -
Subject: , Supplemental-Iinfiltration /Percolation Testing for Storm Water Retention .
As requested, we have. - performed supplemental subsurface investigation and
' percolation /infiltration testing -on the subject site in order to-evaluate the infiltration potential of
the surface soil. This report has been revised from our previous reports dated August 1, 2006 -
' (Report No. 06 -08 -763) and June 15, 2007 (Report No.' 07 -07 -492) to address City of La Quinta • i
reviewer concerns. The percolation' rates determined should be helpful in assessing storm water
retention needs.. It.is our understanding that on -site storm water retention will'be required. The
current, plans indicate that it is proposed to collect storm. water runoff within several shallow
retention basins as well as a large Contech multi -plate subsurface retention system. Infiltration '
t - • • testing was previously' performed within 4 shallow test holes excavated in the .areas of the'' ,
proposed storm water retention systems.
Percolation testing was performed on July • 7, -18 and 19, 2006. ' Testing was performed using a -
...
double -ring infiltrometer apparatus in'general' accordance 'with ASTM D 3385 test procedures. • ti
Measurements were recorded in increments of 10 to 30 inches per hour.
r { r
•�.�- ,_ Tests results aresummari.cd below:
,
.Test Hole No.
Rate
(inches/hour)
A a -
4.8
_
B' «
a 18
C
18
' D "� .
7.8
:f'
09800900,
al5
--�j
(5,p�j --;, <,I W)
-J/--Y-KS
August 22, 2007 -2= Project No. 544 -3253
07- 07 -492R
It should be noted that the infiltration rates determined are ultimate rates based upon field test
results. An appropriate safety factor should be applied to account for subsoil inconsistencies and
potential silting of the percolating soils. The safety factor should be determined with
consideration, to other factors in the storm water retention - system design (particularly storm
water volume estimates) and the safety factors associated with those design components.
In addition, several' additional exploratory borings were excavated to a maximum depth of
approximately.50 feet below existing grade to evaluate the near surface soil conditions as they
may impact storm water retention system design. The additional exploratory bores were
performed to provide a continuous log of the soils within 15 feet of the bottom of the retention
basins as well as the multi -plate retention structure as requested by the City of La Quinta. The
bores indicate that the majority of the surface soil consists of fine - grained silty sand' but 'some
generally isolated clayey silt layers were observed typically within the lower eastern portion of
the site. The approximate bore locations are indicated on the attached plan. The bore logs are
also attached to this memo. The approximate surface elevation is indicated on the bore logs
along with the proposed bottom of the retention system elevations.
The supplemental bores indicate that the previously determined percolation rates remain valid
for the design of the majority of the proposed storm water retention systems. The presence of a
significant clayey silt layer will limit the infiltration potential within the eastern portion of the
site. The proposed multi -plate arch system will extend through the clayey silt layers and
therefore reductions on infiltration potential should not be required in accordance with the City
of La Quinta draft bulletin regarding storm water retention system design.
We appreciate the opportunity to provide service to you on this project. If you have. questions
regarding this letter or the data included, please contact the undersigned.
Respectfully submitted,
SLADDEN ENGINEEF
r:.n ..
Brett L. Anderso No. C 45389
Principal Engineer J CC
Exp. 9 -30- 2008 -4,
Peres /lh
Copies: 2/Prest- Vuksic Architects
2/Watson & Watson
Sladden Engineering
SITE PLAN WITH APPROXIMATE BORE HOLE & PERC TEST LOCATIONS
- = ` " '. - --- -SITE DEVELOPMENT PERMIT 2006-
E THE CITY OF :U1 QU�IfA I S�A7E OF CALORPOA
r'. -'� __..
ZQ
if-, 7,
%. '+ is \ � \� 4• /
t'y
r
^'� � - s r �. -.
�
one
f� •' I�.`;� � -+� .� /
�' '$k - +
.',
-
l^• '' W - ,�.,k /.\ r s,�i`ur' �'Im. u.uoro i*�
,... �Mhe� -
yy __. -._ _ _
i •' i\�
V�
"
'
t � ��{''r!�� - `� \�. � / .++�` � -: I ,�. i. • �1.. 4i L�. �'� ��. L�'
1
101-i If ✓ "' B -6 i i
I ti. `yv°�ccW*L � L]+ 13i I,,
�y �p '/S
.. =�i ' ( D6'AI�L.Q9
- �1...• I;
v a oax `..; �Re�r.:G Y
��S�F
ani
. i ti S •� .c>\ � .: _ �, t i rri �"�. ,r.
Y .lie t i •�. �
t y
"Xlji
Sm
�. 71, _
-..
�-- -� � � ^ `mow _+h �".....•.
_ _ '_ •+" m ..� -'."-. ,..
� -' •- �
- 'T-
f! ST.�RA1.'G6o or � GHIJRCR
�' 'r�:I' I,..� ii+FmA°1.`°"' Ass[St
�.ar- p rr.�Tr
rp A.�._,a.•.�o —h' -./j _RS5 6 -_ - --'_�.
IN-
'. , �C "�'� - BAStV. S1 --_�>. �rr+ti a � �, "�
�,a41 m
�
�, �$✓e
msi a en
.�.
srrE
' r
h �� �OB -pmENT
SCALE: As Shown MAP SOURCE: MDS Consulting
LEGEND _
JOB NAME: St. Francis of Assisi Church
® APPROXIMATE BORE HOLE LOCATION
JOB NO. 544 -3253
APPROXIMATE PERC TEST LOCATION
REPORT NO: 07- 07492
rj
- Proposed Retention Basins (Basin # 4 Area) K
St. Francis of Assisi Church, 47 -225 Washington Street, La Quinta
Date: 7/31/2007 - Bore No. 1A Job Number: 544 -3253
•
o
3
3
o
o .
A
cn
U
Gq
Description
�n0,
o
Remarks
0
i!j;
AMSL Elevation 55 Feet
Native Soil
10/12
Silty Sand: Fine Grained
SM
0.9
17.9
Grey in color/Dry
-
6/14
Silty Sand: Fine Grained
SM
• 1.2
19.4
Grey in color/Dry
-
5/6
Sand: Fine Grained
SP
1.9
7.1
Grey in color/Moist
10
-
5/8
Sand: Fine Grained
SP
2.3
6.4
Grey in color/Moist
-
4/6
Sand: Fine Grained,
SP
22.5
7.3
Grey & Brown in color
15
[[
Moist
-
4/4
Silty Sand: Fine Grained and Sandy Silt Interbedded
SM
5.9
38.4
Grey & Brown in color
Moist
-
its
4/9
Sand: Fine Grained and Sandy Silt (l /2 & 1/2)
SM
7.6
48.6
Grey &Yellowish Brown
20
I
AMSL Elevation 35 Feet
Dry
-
6/9
Sand: Fine Grained
SP
1.2
4.6
Grey in color/Dry
-
4/6
Sand: Fine Grained
SP
1.8
11.2
Grey in color/Dry
25
.
-
r
4/6
Silty Sand: Fine Grained with Silt Lenses
SM
3:2 .
22.7
Grey in color/Dry
iris 5
.
-
e
5/7
Silty Sand: Fine Grained and Sandy Silt (1/2 & 1/2)
SM
15.9
56.8
Grey & Olive in color/Moist
30
r
-
5/5
Silty Sand: Fine Grained with Clayey Silt Interbedded
SM
14.6
51.0
Olive in color/Moist -
-
•7/12
Sand: Fine Grained
SP
3.1
9.4
Grey in color/Moist
35
-
6/13
Sand: Fine to Medium Grained
SP
2.6
5.7
Grey in color/Moist
8/12
Sand: Fine Grained
SP
2.8
6.8
Grey in color/Moist ,
40
-
5/6
Sand: Fine Grained
SP
3.2
4.5
Note: The stratification lines
-
(Grey in color/Moist) ,
represent the approximate
_
boundaries between the soil
types; the transition may be
-
4/4
Silty Sand: Fine Grained and Sandy Silt (1/2 & 1/2)
ML/SM
25.5
70.8
45
(Olive & Grey in color/Moist)
gradual.
-
6/7
Silty Sand: Fine Grained
SM
5.1
30.5
-
c
(Grey in color/Moist)
r
-
7/9/12
Sand: Fine Grained with Silt Layer -4 Inches,
SM
13.6
43.6
Total Depth =--51 Feet
'It(Grey
u..
50
in color/Moist)
•
+ -
Bedrock not encountered
-
IlGroundwater
not encountered
- ti
Sladden Engineering
- 4
t'
c
0
5 ((
]0
15
20
25
30
35
40
45
AMSL Elevation 60 Feet
4/4 Sand: Fine Grained. and Sandy Silt (1/2 & 1/2)
4/6 Sand: Fine Grained with Sandy Silt Layer -2 Inches
J
4/5 Sand: Fine Grained with Thin Silt Lenses
5/9 Silty Sand: Fine Grained. and Silt Interbedded
7/9, Clayey Silt
7/10 Clayey Silt
4/6 Silt
5/7 Silty Sand: Fine Grained with Silt Layer -2 Inches
4/6 Sandy Silt
AMSL Elevation 35 Feet
4/7 Silty Sand: Fine Grained
9/14 Silty Sand: Fine Grained
6/10
7/9 Silty Sand: Fine Grained
8/13 Sand: Fine Grained
9/12 Silty Sand: Fine Grained with Silt Interbedded
9/17 Silty Sand: Fine to Medium Grained
11/26 Sand: Fine Grained
(Grey in color/Moist)
13/19 Sand: Fine Grained
(Grey in color/Moist)
7/9/14 Silty Sand: Fine Grained
(Grey in color/Moist)
Sladden Engineering
Proposed Retention Basins
St: Francis of Assisi Church, 47 -225 Washington Street, La Quinta
Date:
7/31/2007
1.8
Bore No. 2A Job Number: 544 -3253
Grey & Tan in color/Dry
SM
3.5
33.6
Grey & Tan in color/Dry
SM
1.8
o.
0
Grey in color/Moist
SM
i
2.3
47.2
Greyish Tan in color /Moist
..
ML
5.9
80.2
Tan 'in color/Dry
ML
o
80.2
Buff in color/Dry
ML
1.1
3
Buff in color/Dry
ML
1.0
60.3
Greyish Tan in color/Dry
ML
0.6
58.8
Buff in color/Dry
SM
0.3
D
U)
U m
1.1
Descriotion
�°,
o
Remarks
0
5 ((
]0
15
20
25
30
35
40
45
AMSL Elevation 60 Feet
4/4 Sand: Fine Grained. and Sandy Silt (1/2 & 1/2)
4/6 Sand: Fine Grained with Sandy Silt Layer -2 Inches
J
4/5 Sand: Fine Grained with Thin Silt Lenses
5/9 Silty Sand: Fine Grained. and Silt Interbedded
7/9, Clayey Silt
7/10 Clayey Silt
4/6 Silt
5/7 Silty Sand: Fine Grained with Silt Layer -2 Inches
4/6 Sandy Silt
AMSL Elevation 35 Feet
4/7 Silty Sand: Fine Grained
9/14 Silty Sand: Fine Grained
6/10
7/9 Silty Sand: Fine Grained
8/13 Sand: Fine Grained
9/12 Silty Sand: Fine Grained with Silt Interbedded
9/17 Silty Sand: Fine to Medium Grained
11/26 Sand: Fine Grained
(Grey in color/Moist)
13/19 Sand: Fine Grained
(Grey in color/Moist)
7/9/14 Silty Sand: Fine Grained
(Grey in color/Moist)
Sladden Engineering
ative Soil
SM
1.8
37.3
Grey & Tan in color/Dry
SM
3.5
33.6
Grey & Tan in color/Dry
SM
1.8
19.8
Grey in color/Moist
SM
i
2.3
47.2
Greyish Tan in color /Moist
..
ML
5.9
80.2
Tan 'in color/Dry
ML
2.4
80.2
Buff in color/Dry
ML
1.1
78.5
Buff in color/Dry
ML
1.0
60.3
Greyish Tan in color/Dry
ML
0.6
58.8
Buff in color/Dry
SM
0.3
22.1
Grey in color/Dry
SM
1.1
22.7
Grey in color/Dry
Sample Not Recovered
SM
i
0.5
20.0
Grey in color/Moist
SP
0.7
9.0
Grey in color/Moist
SM
0.6
21.4
Grey in color/Moist
SM
0.5
17.6
Grey in color/Moist
ote: The stratification lines
represent the approximate
SP
0.7
9.3
boundaries between the soil
SP
0.8 .
8.0
type the transition may be
gradual.
SM
1.1
Total Depth = 51 Feet
Bedrock not encountered
Groundwater not encountered
St. Francis of Assisi Catholic Church Improvments
47 -225 Washington Street, La Quinta
Date: 1/25/2006 Boring No. 1 Job Number: 544 -3253
i
o
o
�.
a
Q
coo
U
pa
Description
r°
o
Remarks
'0
AMSL Elevation —96 Feet
Native Soil
-
3/4/5
Sample Not Recovered
5
4/4/4
Sand: Fine Grained
SP
89
1
9
Grey in color.
10
4/4/6
Sand: Fine Grained
SP
2
7
Grey in color
15
2/4/5
Sand: Fine Grained
SP
1
4
Grey in color
20'11.;
Oi
2/4/4-
Silty Sand: Fine to Coarse Grained with Gravel
SM
2
26
onplastic/Greyish Brown
in color
25
' I',:,i,,;, ,;;
�;�'�;
2/5/10
Silty Sand: Fine to Coarse Grained .with Gravel
SM
97
2
22
Nonplastic /Greyish Brown in
color
ilRefugal
@ —29 Feet
30
-
California Split -spoon Sample
Total Depth = 29 Feet
35
I
Groundwater not encountered
-
Unrecovered Sample
Bedrock not encountered
-
Standard Penetration Test Sample
�
I
40
-
Note: The stratification lines represent the approximate
-
boundaries between the soil types; the transition may be
45
gradual.
50
St. Francis of Assisi Catholic Church Improvments
' 47 -225 Washington Street, La Quinta
Date: 1/25/2006 Boring No. 2 Job Number: 544 -3253
4.
20
0
5/10/13
Silty Sand: Fine Grained
SM
99
1
18
Grey in color
iu�li;li� 1;
o
on P lastic
25
3
3/4/6
Sity Sand: Fine Grained
Y
q
1
o
U
pq
Description
r°
o
Remarks
0
' "':!i" ^"
Nonplastic
AMSL Elevation �96 Feet
Native Soil
SM 83 2 30 Greyish Brown in color
Nonplastic
SP 91 1. 3 Grey in color
SP _ 96 1 11 Grey in color
SP 98 1 11 Grey in color
Note: The stratification lines
represent the approximate
SP 1 10 boundaries between the soil
types; the transition may be
gradual.
Total Depth =51.5 Feet
SP 104 1 4 Groundwater not encountered
Bedrock not encountered
20
r iii
5/10/13
Silty Sand: Fine Grained
SM
99
1
18
Grey in color
iu�li;li� 1;
on P lastic
25
iiiiilic' = "''
3/4/6
Sity Sand: Fine Grained
SM
1
24
Greyish Brown in color
Nonplastic
30
!" i " " M "`' "'
TIP!
619113,
Silty Sand: Fine to Medium Grained with Fine Gravel
SM
91
2
40
Greyish Brown in -color
Nonplastic .
35.:
5/8/12
Sand: Fine to,Medium Grained with Fine Gravel
SP
1
14
Greyish Brown in color
SP 98 1 11 Grey in color
Note: The stratification lines
represent the approximate
SP 1 10 boundaries between the soil
types; the transition may be
gradual.
Total Depth =51.5 Feet
SP 104 1 4 Groundwater not encountered
Bedrock not encountered
St. Francis of Assisi Catholic Church Improvments
47 -225 Washington Street, La Quinta
Date: 1/25/2006 Boring No. 3 Job Number: 544 -3253
a
0
0
N
0
o
o
o
C)
cn
U
�q
-Descri tion
En
�D
o
Remarks
0
AMSL Elevation —82 Feet
Native Soil
5
iiliii!!Ilili�;
2/3/4
Silty Sand: Fine Grained
SM
91
1
13 'Greyish
Brown in color
10
`!!'
2/3/4
Sand: Fine Grained
SP
1
8
Grey in color
15
4/8/11
Sand: Fine Grained
SP
98
1
8
Grey in color
20
3/5/6
Sand: Fine Grained
SP
1
6
Grey in color
25
7/11/14.
Sand: Fine Grained
SP
94
1
8
Grey in color
30
=!!
g ?!iii
3/4/6
Silty Sand: Fine Grained
SM
2
15
Greyish Brown in color
-
California Split -spoon Sample
Total Depth = 31.5 Feet
35
I
Groundwater not encountered
-
Unrecovered Sample
Bedrock not encountered
-
Standard Penetration Test Sample
40
-
Note: The stratification lines represent the approximate
-
boundaries between the soil types; the transition may be
45
gradual.
50'
0 AMSL Elevation —82 Feet Native Soil
3/5/7 Sand: Fine Grained SP 98 1 5 Grey in color
5 2/3%5 Sand: Fine Grained SP 1 4 Grey in color
10 7/12/20 Sandy Silt ML 101 5 72 Low Plasticity/Light Brown
in color
15 'jj jjjil !:'! 4/5/9 Sand: Fine Grained with Silt Layer �I Inch SM 2 27 Nonplastic /Grey in color
'iy
20 9/14/21 Sand: Fine Grained SP 105 1 7 Grey in color
25
7/10/13 Silty Sand: Fine Grained SM 1 .14 Nonplastic /Grey in color
ai,i!iiipl'n .
3 "yMi
0
6/13/26 Silty Sand: Fine Grained with Silt Layers Interbedded SM . 94 4 71 Nonplastic/Grey in color
!iiiirl?
IU;l �
JiIaI �l�)i —
35 6/9/12 Sand: Fine Grained SP 1 12 Grey in color
40 '. 13/26/50 Sand: Fine to Medium Grained SP 106 0 5 Grey in color
Note: The stratification lines
represent the approximate
45 9/14/17 Silty Sand: Fine Grained' SM 1 12 boundaries between the soil
_ r j types; the transition may be
l= r gradual.
Total Depth = 51.5 Feet
9/13/20 Si] Sand: Fine Grained with Silt Layers Interbedded SM 99 3 52 . Groundwater not encountered
50 ": ^i' h' Y
li
Bedrock not encountered
St. Francis of Assisi Catholic Church Improvments
47 -225 Washington Street, La..Quinta
Date: 1/25/2006
Boring No. 4 'Job Number: 544 -3253
4.
0
0
S3.
3
q
in
o
U
pq
Descri tion
Cn
o
Remarks.
0 AMSL Elevation —82 Feet Native Soil
3/5/7 Sand: Fine Grained SP 98 1 5 Grey in color
5 2/3%5 Sand: Fine Grained SP 1 4 Grey in color
10 7/12/20 Sandy Silt ML 101 5 72 Low Plasticity/Light Brown
in color
15 'jj jjjil !:'! 4/5/9 Sand: Fine Grained with Silt Layer �I Inch SM 2 27 Nonplastic /Grey in color
'iy
20 9/14/21 Sand: Fine Grained SP 105 1 7 Grey in color
25
7/10/13 Silty Sand: Fine Grained SM 1 .14 Nonplastic /Grey in color
ai,i!iiipl'n .
3 "yMi
0
6/13/26 Silty Sand: Fine Grained with Silt Layers Interbedded SM . 94 4 71 Nonplastic/Grey in color
!iiiirl?
IU;l �
JiIaI �l�)i —
35 6/9/12 Sand: Fine Grained SP 1 12 Grey in color
40 '. 13/26/50 Sand: Fine to Medium Grained SP 106 0 5 Grey in color
Note: The stratification lines
represent the approximate
45 9/14/17 Silty Sand: Fine Grained' SM 1 12 boundaries between the soil
_ r j types; the transition may be
l= r gradual.
Total Depth = 51.5 Feet
9/13/20 Si] Sand: Fine Grained with Silt Layers Interbedded SM 99 3 52 . Groundwater not encountered
50 ": ^i' h' Y
li
Bedrock not encountered
St. Francis of Assisi Catholic Church Improvmen6
47 -225 Washington Street, La Quinta
Date: 1/25/2006 Boring No. 5 Job Number: 544 -3253
'
a.
o
0
0
N
o
3
0
o
�..
o .
A
ri
U
pq
Description
rn
�
�V
o
Remarks
0
AMSL Elevation 85 Feet
Native Soil
2/3/6
Silty Sand: Fine Grained
SM
93
1
25
Nonplastic /Greyish Brown in
-
color
5
3/2/3
Sand: Fine Grained
SP
98
0
11
Grey in color
10
3/6/7
Sand: Fine Grained
SP
98
1
11. `
Grey in color
15
-
California Split -spoon Sample '
Total Depth =11.5 Feet
-
Bedrock not encountered
20
Unrecovered Sample
Groundwater not encountered
-
Standard Penetration Test Sample
25
-
Note: The stratification lines represent the approximate
-
boundaries between the soil types; the transition may be
_
gradual.
30
35
40
45
50
St. Francis of Assisi Catholic Church Improvments
47 -225 Washington. Street, La Q.uinta
Date: 1/25/2006 Boring No. 6 Job Number: 544 -3253
0
0
N
Q
V)
o
U
3
o
PQ
Description
r"
°
o
o
Remarks
0
" ^ "' !!
AMSL Elevation 69 Feet
Native Soil
-
rUg; i.jj
3/5/7
-
Silty Sand: Fine Grained
SM
93
22
52
onplastic /Brown in color
5
4/6/10
Sand: Fine Grained
SP
103
5
13
Grey in color
10
'•
3/6/7
Sand: Fine Grained -
SP
5
7
Grey in color
15
-
California Split -spoon Sample
i
Total Depth =-•11..5 Feet
-
I
Bedrock not encountered
20
Unrecovered Sample
Groundwater not encountered
-
Standard Penetration Test Sample
25
-
Note: The stratification lines represent the approximate
-
boundaries between the soil types; the transition may be
_
gradual.
30
35
40
45
50
St. Francis of Assisi Catholic Church Improvments
47 -225 Washington Street, La Quinta
Date: 1/25/2006 Boring No. 7 Job Number: 544 -3253
..
°
0
C)'
N
A.
A'
rn
DDescription
U
W
°
U
o
Remarks
0
' "` ° " "`"
AMSL Elevation-62 Feet
Native Soil
- -
IIPiilli
4/8/11
Silty. Sand: Fine Grained with Roots
SM
102
13
32
Nonplastic/Dark Grey in color
5/8/8
Silty Sand: Fine Grained with Silt Layers Interbedded
SM
102
11
33
Nonplastic/Dark Grey in color
5
-
5/8/8
Silty Sand: Fine Grained and Silt Layers Interbedded
SM
106
11
25
onplastic/Brown. in color
10
California Split -spoon Sample
Total Depth = 4.5 Feet
-
I
Bedrock not encountered
Unrecovered Sample
I
,
Groundwater not encountered
Standard Penetration Test Sample
15
20
-
Note: The stratification lines represent the approximate
_
boundaries between the soil types; the transition may be
_
gradual. `
25
30
35
40
45
50
St. Francis of Assisi Catholic Church Improvments
47 -225 Washington Street, La. Quinta
Date: 1/25/2006 Boring No. 8 Job Number:. 544 -3253
0
15
California Split -spoon Sample Total Depth =11.5 Feet
Bedrock not encountered
20 Unrecovered Sample Groundwater. not encountered
Standard Penetration Test Sample ,
25
- Note: The stratification lines represent the approximate
boundaries between the soil types; the transition may be
gradual.
30
35
40
45
50
U
\
o
N
A
rn
U
pq
Description
r°
Remarks
0
AMSL Elevation —63 Feet
Native Soil
-
5/7/11
Sand: Fine Grained
SP
106
4
9
Grey in color
5
-
;iii';;; ;i
ii�lifiiasi
5/7/7
Silty Sand: Fine Grained
.
SM
99
9.
19
Nonplastic /Grey in color
-
10
`(dUSi�ii
�u;ur.4i! viii
;;
2/6/11
-
Sand: Fine Grained and Silt Layers Interbedded
SM
89
27.
63
Nonplastic /Grey &Brown in
;
color
15
California Split -spoon Sample Total Depth =11.5 Feet
Bedrock not encountered
20 Unrecovered Sample Groundwater. not encountered
Standard Penetration Test Sample ,
25
- Note: The stratification lines represent the approximate
boundaries between the soil types; the transition may be
gradual.
30
35
40
45
50
t Double Ring Stormwater Percolation, Data Sheet
`
Project S4- F(Gri' 1C.I
5 1.�.�
Pmjaet No.! Z-5
Test Hole.
Date Excavated:
Description of Test Area
�l,C.w�
�.
Soil Classification:
Percolation Tested by:
61 o,. �, , (�!
Date: % (�
Reading Time Time
Inner Change
Outer Change
Outer Inner Outer
No. of Interval
Ring Inner
Ring Outer
Ring Ring Ring
Reading (min.)
(in.) (in.)
(in.) (in.)
Conversion (in. /hr.) (in. /hr.)
0
V , '100
l om rz
�.
7
Double Ring Stormwater Percolation Data Sheet
Project' 5� 'f -6_n^'
� b
n Project No:: ? Lxl. sys
Test Hole:
Date Excavated:
Description of Test Area:
Soil Classification:
Percolation Tested by:
4�i1 v� ,
\b., (�i-
Date:
Reading Time . Time
Inner
Change Outer
Change Outer Inner Outer
No. of Interval
Ring
Inner Ring
Outer Ring —Ring- - . Ring
Readina (min.)
(in.)
(in.) (in:)
(in.) Conversion (in. /hr.) (inAr.)
S
I (�� CO
_Z10
,I
i Imo/
1 y ,c�
,L'
Z,
6
SD
I'
z
Double Ring Stormwater Percolation Data Sheet
,S3
Project: �°i
to ^:
Project No.: 144 -3253
C-
Test Hole:
Date Excavated:
Description of Test Area:
Soil Classification:
Percolation Tested by: ' ]JJG
r
Date:( ®�
Reading Time Time
Inner Change Outer Change
Outer Inner Outer
No. of Interval
Ring Inner Ring Outer
Ring Ring Ring
Readina (min.)
(in.) (in.) (in.) (in.)
Conversion (in. /hr.) (in. /hr.)
,S3
7J��
C-
® -o
'
IC. ): F- i
llole
51
i :y0
t
3.5
A`�
��
��
f,
Double Ring Stormwater Percolation Data Sheet
Project:
Test Hole_ Date Excavated:
Description of Test Area: Soil Classification:
Percolation Tested by:'. �+e&I'- (��`�� Date:.
Reading Time Time Inner Change Outer Change Outer Inner Outer
No. of Interval Ring Inner Ring Outer Ring Ring :Ring
Readin-Q (min.) (in.) (in:) (in.) (in.) Conversion (in. /hr.) (in. /hr.)
to
4A S2
I
Z
�.r
i
1
�2
1
rs
PRE
November, 2005
Y PN 0505 -023C
)JNDER TH SUPERVISION OF:
/), D. HOY, P E. 63526
QPoFESS /O
w No. C.63526 0- m
cr- m
Exp. 9 -30 -2006
CIVIL
Tq�OF CALF
11/H4 - --
DA E
ECEOVE
S 2007
FM�AY
uOPA 'WT
PRELIMINARY DRAINAGE ANALYSIS
FOR
TENTATIVE TRACT MAP NO: 33848
RECEIVED
Prepared for:
FJUL 20 2007
David Mammon, Development Services
6541 Hollywood Blvd., Ste. 203
Los Angeles, Ca. 90028
Prepared by:
,
!EFWarner
engineering
CIVIL ENGINEERING / PLANNING / LAND SURVEYING
YUCCA VALLEY A PALM DESERT
73 -185 HIGHWAY 111, SUITE A
PALM DESERT, CA 92260
(760) 341 -3101
November, 2005
Y PN 0505 -023C
)JNDER TH SUPERVISION OF:
/), D. HOY, P E. 63526
QPoFESS /O
w No. C.63526 0- m
cr- m
Exp. 9 -30 -2006
CIVIL
Tq�OF CALF
11/H4 - --
DA E
I
} 7
N
PURPOSE:
The purpose of this study is to determine the volume of retention required to
retain the discharge from a 100 -yr storm so as to prevent any increase in
discharge to receiving waters or adjacent properties that may result from
development of the site.
DESCRIPTION OF WATERSHED:
The subject site is a 4.84 site south of Avenue 58, just west of Monroe Street in
La Quinta, California (APN 764- 180 -003).
HYDROLOGIC ANALYSIS:
Criteria for this study are based on the Hydrology Manual of the Riverside County
Flood Control and Water Conservation District (RCFC &WCD). The synthetic unit
hydrograph method was used to determine flood volumes. The calculations were
performed using CIVILDESIGN /CIVILCADD, a computer program developed by
Joseph E. Bondiamon and Associates Incorporated, which perform the
calculations in accordance with RCFCD &CD criteria.
RESULTS:
STORM
PREDEVELOPED
POSTDEVELOPED
INC. INCREASE
1 00- r/1 hr
18,598 cf
20,940 cf
2,342 cf
1 00- r/3 hr
11,604 cf
18,602 cf
6,998 cf
1 00- r/6 hr
10,568cf
20,820 cf
10,252 cf
100 -yr /24 hr
5,787 cf
24,403 cf
18,616 cf
The design storm for this development is the 100 -yr 24 -hr storm
(18,616 cubic feet). This volume to be retained onsite within an above ground
retention basin as depicted on the attached exhibit. The basins have a combined
capacity of 24280 cubic feet, and so will provide adequate retention for the
design storm.
PR. WW - I
SITE
VICINITY MAP
(NO SCALE)
THOMAS BROTHERS GUIDE 2003 EDMON
PAGE 5592, COORDINATES 83
®_
m
4
UNIT HY®ROGRAPHS & PRECIPITATION MAPS
.� � �� i � ,
aa� y
l.V�. •b1i � f
1 y n,
• o 't K c
" r
� r .
r
't
r�
i•
� l
• i
• • n i
f
a
J
`.•4
y
• • n i
_ � r
,� � � - .
ar �
R
'�
J ~,
���j.
e. - —
- ^gin'"'
LAS �
ice'
.:1._
•��� �����
T���
� i�
ii��lQa
+�
�
Q����a��
C�a�
��_
1�II®
�_
� ®�
_—
?�..�...
��� ,.�
,� � � - .
•r
1
i
{
. ._. � .:J!(1' .0 mil, h :;: ('�. - � :fi ..r - , fji'.' h . �• ��:- -=\ ,1.:2 =: � rrev:: _
f '�.�'.._,._.
1.
T.
-, .: _ ... _ I , \ .. __ .I .r `tt.., , <.. .. ,._ .. r: -- -- ,F•.ti -;�. �:: :�rs: .:ice` `I
^ =x
I
aR
_ � r I m II -. ,I ... ._ v .,. , -< .] _._, _ .,, ,, _, ,, t >: rJ -x�. , ._, _i.... ? ..wl. t..l t 1<r.•.1:.;" - , :5:`y1, ^ lo.lc°rtea h,z ,.
<•. I. .y, nun. T1 , j!.; .:.-, •J'r!'.lT! ..�,�,,. may.'. �..s. :f> ;�_• - _ .t.. �.� .r... r
A _ - '!� -- � I'. _1 _.5,,. �.) = i"i. :,} - _ ,':,,- C-'_ - T= •LINE
,
_ � u
M I � :: :,. . -. ...., �,: ._ N. ,,. .. .. _ •�,.s.....:- - _- :1 wv �v Penn
PR¢
r ,_ ,.. /:, .. rr c F, - :. ....= .. ._. _. ,. _,. -. .rr,::•. ,ec :(;, --`°II 7; 1. l -CJ�` v -
_ u u r a �_ , .L � - � J _. r D.� ..... .....: � ~•t�,t - - f'.. ln,. �;ti
C '
r: li ,L�,� NO T AfB _ , ... ,,.: ._ ..rnn_ .. .f ... -. A •„ ,. !':"# k _ _ , .. .t. = S:_. .��' ' -
i'
�i
w ., < +m, l I s6 . _ . , i • - „ .F ai 5t r?. I c :J:,.
- . �. .. � .. .. �, .. .... t ..•- - � - v_ - '.�.Rm _ .. .S-, . �..: ,1� it - ^:.vj:.
,• n .. .. .., -, >,.. ._ 4 _.. - .. .. _. ,. - .- -r,,.. - .,, , -. ':r': sT., \' C Jq%Mcr Dlnnli
_�.: -- OSe .•_�._ LneR 4_ o.,. �,.L. E/ - <y "': '':E' ..J
'U
t
II Sly_:..:.: ... , , ,.• . .. .__ I;., � ... ... :: -4 -'
.� - ..., j ? } _ ,. r j � _ t.:. - � � N. ,.ni : .. ... _ .. dv { .. ! {•]a. -_y ,' -'�_ � / - ,,, _ ! .,' f, -'.� �• SSj
UN
:�i M, .
zjr
-
c
f 'l. _ I .!Y t�_'•:�� (`vv , }. ": -: . "t�r'�' .iH �4S': J �NB flNARDINO -•
,. - _- I_.1._. _ ' /,,/,. t -. D._: ,.. ,. ... .. • Ir .3� -.. �T' �� ,: L':`_' 1`� "' -. -�•,(`:. _'+l^_ -_ - 'SA E
I I L„ ..... .. .... '�. ,: _ i ! r f !.O!;Tpf .... � ..__ � .., :" - - -/ .. - .c•J'� 1 '>S. C '..x IV ER510G CO[l
AV
r3• SADI NN I_ ,4
,
r
I
.. _. .. be -
'�
I -
31. -
, .:. ._.. ,:^.. /.➢ - - ��`' __,,,fit -'il 7S a; c`f'�- (;;:::';7Gr.
m
T q,�•
• _ O _ .. ... ... _. :..... ' _.,, c,= : .. lime, ,w.. .._. , � :.. .. _ -
.
� >. 7`- , ..: - .. .. ._. (�`' .. .. ., . �,. •. yi... n"'6i:' ,..1., aL - ✓er'� anal,.
�1w' P G Mlro , _ -1. - _ ,_ • - u -. .. .. r _ � .. �. r. _ .. -,N :,.. ,,..�' :.. _ . A�• �,,, ,'G�/ n \ , _ .:vil . - ':2�'; : ,/t . � V,IIe � A14,rW
•� .n,D,,. 1 «wt w u.n n .+•3 : ,.. w.. , .. x•.. 1,: / .- ['b•'• .ill f /; "'7 . Y
Le
I r
H .>• .....: -_' _ T. I !,: N 1121 - t.. .A: ^'.' :'
T
a
cnlDD n � < I o e,o � - ' • : .. r ... _ .... � .,..I •.. -, :. , ., , I` , e ° . .. 4a[,D!;t P 6s I. , ;�.. M1ri7ia�E� : G'�' ?!']' ' ti ;}1• :
6 r' - � -i.• Jr 's
•1 Sai'•
i> t
N
, .. � ..:: :. ,. 1 „ :.. .... '. _ ,.�,: '. `.:: 1. ..'.. .. _.%C•, - ' µa.
;.0 as.(e.a ..r .r ♦. ...1. -y- :..J,d:.,
,
- I I II w y•
„
1 /
-
r,
1'
: a I ea,unorti -
i •.�i f
J
• .. � Bb A BI I �y�7
,- -_. .,.n,.. .,. ....i,. r !t _. .. , \ ,_ :: s.0 _ <.1,•ra'tJ:R r I, \`ITS ,. :,: ::.. .;.3�• 7 I� �:C >,
.1 � � D .,. - Z!+>,r.rro _,.. r o., . , , ry.. � _ ._.. ,r•: -1.- `PJI, -� s:• �������0
. a< ., �( J :.. ... un -. -. :,,r. - -. •. a,.- - �- -7�r'it raw^t.s t. - Ir ,ylj \ \:_ ,, \. �`�.
-.. .-, -. -.I .� :7' :, _ Ed fm,on h ... .._ .... ... I _F N!I. Nn, p I 1:':: =. •+ ,
_
I
-r
I _ n
,
..� .,. - mu u , " �� � IJ In PLI V, ,, I '.-t:: "y ^1� • J' n �L..
- Ntmw - 1• -
'
f6
t A:,
♦,. Colon /� t •^ + •' ' '' % : i c' ..L•_ . 'S:" - -... -- W,1 'H,ntl, `
d I. P.
,
- .... ., ... ,�Lt - , Mj18CN r .. ♦ I,amob,..._. i.zJ a�[ -- <...,,..r _.., -.. .. brZ�Pl rf�-. .R£S•.! y ::"E._� .. __
-
N
• '* - --- _ ' < t 1 � �1 _ -.. _ _ _ _ .. rt jr . 4N �. :!. nr}' • ::� �i'!11' = 'SE:.:..�'. _ J:e'l^,
' a • . m alto - I: �..•t', - -
R -
J.
,JB ,d,t•u _ _
r
5 i _'• -
_.. ... m r -! -" c ., ,. .. �Y.+ t _.. ..:::. ''�:3 �•- �, ... �i, -..�'' m ring - 14 �7
:. \ - .- - - l,nn,ew ,• ' e ..,ew �•_� .,,�,,.. ." /;t.: k:h �'�„t - -i' _ l; 1 ..`-. -� :¢5 'h -\- :',lI �u r,tdYalrO, „� ..TyT
J
1
-
..
-. >. , I' . th � ,:• :� 1.., ',`n ✓. , _':•1 , -'�;T. n: J'E t� _ n.lr `. _•
J..
�� 37 _ .... .< _. Try, _ ° _ .. ✓ , , _. �''�. ,,:, r� . � ��,:: �: _ � . .�„ . _ _ _ �, + '� ' -
rE
J
I
s
1
r
n .., _ -'Y. .. .r ..., .: - .. .. :.. -•G- . __ _ .. ♦ o , - ... .. a -- ��`:!( L, Dln 1 - .tL< ��' % "` _ - .� �.}j 'R v aN , -
I -
L� � ice: f-'. ,a °t`_ ��a >' �•
- - , =_ - ._ .. '.•.�
,
-
:-
wri
'r R- -
a F
a• i
!at i� � r re'o°
Tom-
r
h .'I
- Y'4$ r� NDrmuo.
-
mllan�
.a
� u�nel
1 y,
{' 1
N ti
r^S - .us
- -
r -
w 1
t -
D.
,
z
V
H
yy ,Ilee �
f^r , .5
,
,
1 � . -- -'6th- . y _ - �� 5 .. .: � . -- nr fl .. ..... ., .i :• .. 7 "''� ..L_-T� -. ' :ii.�:° ., � -
v '
,
' _ •
, ., ,-,. _ .,, .. .,., !I 'L ....., , .... ,I .... s ,.. •- _ � . y � . .. - .,. ( m I� <,_JI '.1 � . I . \'._ ' _ _ 'R_:._ , .+ahw
•G-
.�
. -: .. , _ "._ r r.:r - - • -__... _ ) -.. �. ... r :. 1:: eiLSS: -ei' /.'..," dNr, ../
t �
r .'. r ..:.. - -..� .... .. - Roab.nus _ ._ ' '. : :-.::., -• 5, . •..\„'. [ - �,ir , rvp
_ ._ .., ✓:n n ter, .. .. .. ..: I- 5 - .t.
w , is
1` I ,,•�`,° t _ { t 'rJS't �.-�,. .:T : s, rJUNIAM'S, y / , -J' LL I+ -
ti ^.
1
< _ _ - _ - r. ... .... .. t•..: '' 1. -.._ _ _ mot". „r -�_`,
r - -
[S
w
OuN
eEy,
r . ,dam
1 Z
- .r'
Mi - f
N t'
-Atc
J.
•�.
a�
1
�. tt
m .. r- , .. <. -• _ •Y�' , . VAG U N P 'A. _ _., .....:...: ::` . 't, •'.I.1; � - `. _Y
a J. _ , m .. :- .... \ -_... \ / ( n. .. _ { _ r_ . :•,. , , r .. . r .. . i:.:. ,"� r� .,.: r.. `t - %� "'\ t. t }>. .'i °`i:.. `� I _L .
: _. ,�- , -,.r_. \ ..:..\ < 1 .s a .r .\j� F ✓. -,. �. - ,c.. .Y �` .. =:.�
I
-
d . 25- -
NIRI � J ::..� n�
.*F ,
s .:
I Nil
--T t�
i
,elac,rM Ur+l rN ( ) .- e"i .:: •-i'1 - ,m
/' .... ) r.. / WAm - \ .. -.. _ f _ , , w K . /. '`•C'_., TAe,md
_ rig
u rrllcc,reu brt lal
a
'4
%L. b -del
U\
t
Ir, _ _. _ .�.. ..- 1. `.� 'r•.. __ .. .. .. .. .. L., _ i:. � ='.�';:. ,EAI)zoN`
. ., - . , - „: '1./ . J!r :. -.- , ... Y:. _ . . - .. \Y 4 1 ndnll'! • _ - - mil. - - �a "i'.' �, `i• _ ,':1', ",. V,- ;,...._. •�K� <: _ -
: ...'."r. i "= ,v.er7�': .. � .. J __. ., -... ,_ :• ••.,.., • -,.r ,.- • ° - _ !� _a'.T_ °': "Ya .o,-' 1 roNRtsM
'6.doFo_ .r \ ..1, .i � I s... •�} %U, in `;� c_: .mcru✓r6v� � y ;,L °c 3 0' r
h_ .r ... _ _...r.. ��• r <' .. '.- >. < 1
✓ s_ e5
-mob -
t
r M
_ .... -- � , _ .. ... ••:. ._ ,.• � ..... max:'
- -
-
tt
_I
.: �• . : _ _ .. . �, : .w .n. ,w . _ 1 .. .. e e :: a � :: .J 'l : <,. - 'Jti: �
ARTIN
rr n
r.
N<lR Hr ro 1' k� - •S - - IN N I
b _
I
I 1. r P n °• I "iv
Cn -
1._
r_ _
:..
A Y 4v-
. .�.. ,.. .. :.�. non -. �•' r -
2.
,r
> r
LY ...
r •.-: ..: . ._ : .- J:� nt -� .. ..: .... .... ..:- - _ ._, ..l OIMaP F71N J`. : /, aT. I. 'I.'6' ��s-• -
�.
Ic fi 'L, J ,\ _ �l - •_\•' I.
� r
AHlllt INDI ,rA
u' o `
\
fw
>r° .e � <AS LtamcTafO
V. WN
}
_ "yD�p�'p T . }.. .. \a .r, f' / - i.\. .'l „ac , L< .tD -F- 1, - 1 ( 't °-�" - •C.JI'i•j_f.. 1 "I. In f ��r•' -v
s c
Dmr
-. ..
•F/ WJ «m.... v - ��U . 1 ,
�� • r8R . 2% ai': - ..c.� r R ah .. S
� _JNtlD A1
:.: . T� fr: ...� '� . un :.. .•"`• r I .. b
. i
R ch
�: ,✓,', _ - i .:
.I �}
-
_.K
SN•1. 13 of I Ij ER
TIO
AK �u.. ,_ .:•.I ...: '. ..T :.`'i: _
'• Ci . n .:.. ^0 ,. -. .. :' s, :. . - - V TeY: � ••,+• /.l E-4{D '.DUN _ �n,:�, _ .RIV.ER E
- �..: ::.: -.... ,,�¢ .:. •... , _ _ 1. ... � -` ,mss - _ -
W _
... � ... ,_ , . , L _.. r ..- Y- . ,,.. �. -✓ �''- ` - - t .. � �„ . RID O
� ...... . .. .. .... i� , . - . a• _ pJ� _ w , . ..'� . �r,..✓ . -,._. _ ... .. �... } :;' � • :�` . :. - ,. -, .: - ..�I ' �• :.� -: - ''RIVE 5 E •, C LINTY FLOOD .CONTROL
..
\,. •ynxm l _...., "1.: • -.:> I. z n U: aL !*ra..r : 1. i'., ' .A
\ wn., F'..° ..1 - r_!.c.. h.j dyL. hl• .si 1. 1r., _ ¢o - •':g :�i "apC.. A N D
M. M - . -.:•.. .- -., � �.. •. ,p / �t ': ":? .ruq,MUb/6 -.¢l E5'14 - _ Eiy...;"r'.
./- °1 "' l w , -I 4 Malyl�, t✓ �. %` E E ?: '� � '� `ti , , t � } � _,•r �. WATER CONSERVATION DISTRICT
T9 S, --i -.
,
u 1
, \ .-. . _4 .... 'I`1 A. . 'M A.R. A 7. - � •'!✓ .,.. r,m r�r,_,g7 p , '�+• `r- -- s•'t: - I - �. -
-YEAR-6-HOUR
.. � .. ...._ : _ ..., -. .... �oC. �..., w.,n. ,. .... , � .. �. - .. `_'ti •1 <.r C:,, �r ���,1 - j.,.... - '- :- ,r':., ..- r: -_:�=
�
i ,.: °.. ._`�.. >� u� 1- >..:. .,fir•. :.r • -. �_..'E �., ,t :.. ..)f..:.,, �,a
• \ \ 1 __.. _.,...... ., _ �. !, , ,.Y . . L ... . _. L ,. t _ ..._ . .i I - M NS RA7_ . ... ,:.::.: 1 .- a:... . .:.. . _ _4P.. . - - -:`'���p � - - - .4" : x : '_t ' "'tai`' "",T ` Ro ES�T T`ID:I N"' :A..� ° - ,
-
PRECIPITATION
AT10N �N E � _ e,
'mac- •, <...:., ..� .:: -:: , <t. - ' -..
I Jy
aloe .ca . , , :. . ,. ...._ , �' � ✓-� '' L 1. -..:. _ S.•' �:,. _ ,.
,. • ... h•,r....,,. .• .. .. .. .. , .. r:. .... ,- - ., d ... �l'!r'c lr. 1 1, \ L.' - ':)lv •. ~ - - - «a.r NO.
- : J ... .. .:_, ,,... -, :. � .�_ ,, ...... t _ : _ - .:_ . \ hL:� -'�� 1 •i`` 1 , ��Y�Je(� i/F ''gar,., t.:� •
p_ C, ^_t -rT, pl - ihl •1 r <:f: c �y L _ r.n
.�i, • � � :;f.\2 C �.. /. °
l'
.j
,, r;c
IE
X-Ar
c,
r _ •
v
v.
i
A
PLATE E-5.6
U n i t H y d r o g r a p h A n a l y s i s
Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 1999, Version 6.0
Study date 11/09/05 File: MammonPreUH1100.out
+++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
----------=-------------------------------------------------------------
Mammon Unit Hydrograph Pre - developed 100 -yr 1 -hr storm {
------------------------------------------------------------------ - - - - --
Riverside County Synthetic Unit Hydrology Method
RCFC & WCD Manual date - April 1978
Warner Engineering, Yucca Valley, CA - S/N 598
---------------------------------------------------------------------
English (in -lb) Input Units Used
English Rainfall Data (Inches) Input Values Used
English Units used in output format
---------------------------------------------------------------------
----------------------------------------------------------------=---
Drainage Area =- 4.84(Ac.) = 0.008 Sq. Mi.
USER Entry of lag time in hours
Lag time = 0.250 Hr.
Lag time = 15.00 Min.
250 of lag time = 3.75 Min.
40% of lag time = 6.00 Min.
Unit time = 15.00 Min.
Duration of storm = 1 Hour(s)
User Entered.Base Flow = 0.00(CFS)
2 YEAR Area rainfall data:
Area(Ac.)[1] Rainfall(In)[2]
4.84 0.50
100 YEAR Area rainfall data:
Area(Ac.)[1] Rainfall(In)[2]
4.84 1.60
Weighting[1 *2]
2.42
Weighting[1 *2]
7.74
STORM EVENT (YEAR) = 100.00
Area Averaged 2 -Year Rainfall = 0.500(In)
Area Averaged 100 -Year. Rainfall = 1.600(In)
Point rain (area averaged) = 1.600(In)
Areal adjustment factor = 100.00 %
Adjusted average point rain = 1.600(In)
Sub -Area Data:
Area(Ac.) Runoff Index Impervious %
4.840 53.00 " 0.000
Total Area Entered = 4.84(Ac.)
RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F
AMC2 AMC -2 (In /Hr) (Dec.%) (In /Hr) (Dec.) (In /Hr)
53.0 53.0 0.541 0.000 0.541 1.000 0.541
Sum (F) = 0.541
Area averaged mean soil loss (F) (In /Hr) = 0.541
Minimum soil loss rate ((In /Hr)) = 0.271
(for 24 hour storm duration)
Soil low loss rate (decimal) = 0.900
---=----------------------------------------------------------- - - - - --
Slope of intensity- duration curve for a 1 hour storm = 0.5800
----------------------------------------------------------------------
U n i t H y d r o g r a p h
DESERT S -Curve
--------------------------------------------------------------------
Unit Hydrograph Data
---------------------------------------------------------------------
Unit time period Time % of lag Distribution Unit Hydrograph
(hrs) Graph % (CFS)
---------------------------------------------------------------------
1 0.250 -100.000 17.238 0.841
2 0.500 200.000 49.931 2.436
3 0.750 300.000 16.856 0.822
4 1.000 400.000 7.450 0.363
5 1.250 500.000 4.025 0.196
6 1.500 600.000 2.200 0.107
7 1..750 700.000 1.200 0.059
8 2.000 800.000 1.100 0.054
Sum = 100.000 Sum= 4.878
-----------------------------------------------------------------------
Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective
(Hr.) Percent (In /Hr) Max I Low (In /Hr)
1 0.25 12.20 0.781 0.541 - -- 0.24
2 0.50 15.20 0.973 0.541 - -- 0.43
3 0.75 27.60 .1:766 0.541 - -- 1.22
4 1.00 45.00 2.880 0.541 - -- 2.34
Sum = 100.0 Sum = 4.2
Flood volume = Effective rainfall 1•.06(In)
times area 4.8(Ac.) /[(In) /(Ft.)] = 0.4(Ac:Ft)
Total soil loss = 0.54(In)
Total soil loss = 0.218(Ad.Ft)
Total rainfall = 1.60(In)
Flood volume = 18597.5 Cubic Feet
Total soil loss = 9512.0 Cubic Feet
-------------=------------------------------------------------------
Peak flow rate of this hydrograph = 6.910(CFS)
--------------------------------------------------------------------
+++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
.1 - H O U R S T O R M
R u n o f f H y d r o g r a p h
--------------------------------------------------------------------
Hydrograph in 15 -Minute intervals ((CFS))
--------------------------------------------------------------------
Time(h+m) Volume Ac.Ft Q(CFS.) 0 2.5 5.0 7.5 10.0
---------=-------------------------------------------------------------
0 +15 0.0042 '0.20 Q I I I I
0 +30 0.0237. 0'.95 1 VQ I I I I
0 +45 0.0708 2.28 I V QI I I I
1+ 0 0.1822 5.39 I V IQ I I
1 +15
0.3250
6.91
I I I Q V I
1 +30
0.3762
2.48
I Q I I V I
1 +45
0.4000
1.15
1 Q I I I V
2+ 0
0.4130
0.63
I Q I I I V I
2 +15
0.4202
0.35
IQ I I I VI
2 +30
0.4243
0.20
Q I I I VI
+
2 45
0 .4269
0.13
I
Q I I V
•� 1
U n i t H y d r o g r a p h A n a 1 y s i.s
Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 1999, Version 6.0
Study date 11/09/05 File: MammonPreUH3100.out
+++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
------------------------------------------------------------------ - - - - --
Mammon Unit Hydrograph Pre - developed 100 -yr 3 -hr storm
Riverside County Synthetic Unit Hydrology Method
RCFC & WCD Manual date - April 1978
Warner Engineering, Yucca Valley, CA - S/N 598
---------------------------------------------------------------------
English (in -lb) Input Units Used
English Rainfall Data (Inches) Input Values Used
English Units used in output format
---------------------------------------------------------------------
--------------------------------------------------------------------
Drainage Area = 4.84(Ac.) = 0.008 Sq. Mi.
USER Entry of lag time in hours
Lag time = 0.250 Hr.
Lag time = 15.00 Min.
25% of lag time = 3.75 Min.
40% of lag time = 6.00 Min.
Unit time = 15.00 Min.
Duration of storm = 3 Hour(s)
User Entered Base Flow = 0.00(CFS)
2 YEAR Area rainfall data:
Area(Ac.)[1] Rainfall(In)[2] Weighting[1 *2]
4.84 0.70 3.39
100 YEAR Area rainfall data:
Area(Ac.)(1] Rainfall(In)[2] Weighting[1 *2]
4.84 2.00 9.68
STORM EVENT (YEAR) = 100.00
Area Averaged 2 -Year Rainfall = 0.700(In)
Area Averaged 100 -Year Rainfall = 2.000(In)
Point rain (area averaged) = 2.000(In)
Areal adjustment factor = 100.00 %
Adjusted average point rain = 2.000(In)
Sub -Area Data:
Area(Ac.) Runoff Index Impervious %
4.840 53.00 0.000
Total Area Entered = 4.84(Ac.)
U
RI
RI Infil.
Rate Impervious
Adj. Infil. Rate Area% F
AMC2 AMC -2. (In
/Hr) (Dec. %)
(In /Hr)
(Dec.) (In /Hr)
53.0
53.0 0.541
0.000
0.541
1.000 0.541
Sum (F) = 0.541
Area averaged
mean
soil loss (F)
(In /Hr) = 0.541
Minimum
soil loss
rate ((In /Hr))
= 0.271
(for 24
hour storm
duration)
Soil low
---------------------------------------------------------------------
loss rate
(decimal) =
0.900
U n i
t H y d r o g
r a p h
DESERT S -Curve
Unit
Hydrograph Data
Unit time
period
Time % of lag
Distribution
Unit.Hydrograph
(hrs)
-------------------------------------------
Graph %
- - - - --
(CFS)
- - -- --- - - - -- - - --
1
0.250
100.000
17.238
-
0.841
2
0.500
200.000
49.931
2.436
3
0.750
300.000
16.856
0.822
4
1.000
400.000
7.450
0.363
5
1.250
500.000
4.025
0.196
6
1.500
600.000
2.200
0.107
7
1.750
700.000
1.200
0.059
8
2.000
800.000
1.100
0.054
Sum = 100.000 Sum=
4.878
Unit Time
Pattern
Storm Rain
Loss rate(In. /Hr)
Effective
'
(Hr.)
Percent
(In /Hr)
Max Low
(In /Hr)
1
0.25
3.70
0.296
0.541 0.266
0.03
2
0.50
4.80
0.384
0.541 0.346
0.04
3
0.75
5.10
0.408
0.541 0.367
0.04
4
1.00
4.90
0.392
0.541 0.353
0.04
5
1.25
6.60
0.528
0.541 0.475
0.05
6
1.50
7.30
0.584
0.541 - --
0.04
7
1.75
8.40
0.672
0.541 - --
0.13
8
2.00
9.00
0.720
0.541 - --
0:18
9
2.25
12.30
0.984
0.541 - --
Z 0.44
10
2.50
17.60
1.408
0.541 - --
0.87
11
2.75
16.10
1.288
0.541 - --
0.75
12
3.00
4.20
0.336
0.541 0.302.
0.03
Sum =
100.0
Sum = 2.6
Flood
volume.= Effective rainfall 0.66(In)
times area
4.8(Ac.) /[(In) /(Ft.)] = 0.3(Ac.Ft)
Total
soil loss =
1.34(In)
Total
soil loss =
0.540(Ac.Ft)
Total
rainfall =
2.00(In)
Flood
volume =
11603.9 Cubic Feet
Total
soil loss =
23533.7 Cubic Feet
--------------------------------------------------------------------
Peak
-------------------------------------7------------------------------
flow rate. of this hydrograph = 3.204(CFS)
+++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + ++
3 - H O U R
S T 0 R M
R
u n.o f f H y d r o g r a p
h
------------------------------------------------------=-------------
Hydrograph in 15 Minute intervals
((CFS))
r
--------------------------------------------------------------------
Time(h +m)
Volume Ac.Ft
Q(CFS)
0 2.5 5.0
7.5 10.0
-----------------------------------------------------------------------
0 +15
0.0005
0.02
Q I I
I I
0 +30
0.0027
0.10
Q I I
I I
0 +45
0.0058
0.15
Q I I
I I
1+ 0
0.0094
0.17
QV I I
I I
1 +15
0.0134
0.19
Q V I I
I I
1 +30
0.0180
0.22
Q V I I
I I
1 +45
0.0239
0.29
IQ V I I
I I
2+ 0
0.0350
0.54
I Q V I I
I I
2 +15
0.0547
0.95
1 Q V I I
I I
2 +30
0.0964
2.02
I Q V I
I I
2 +45
0.1626
3.20
I I Q I V
I I
3+ 0
0.2199
2.78
I IQ I
V I
3 +15
,0.2432
1.13
I Q I I
I V I
3 +30
0.2543
0.53.
I Q I I
I V I
3 +45
0.2602
0.29'
IQ I I
I VI
4+ 0
0.2635
0.16
Q I I
I VI
4 +15
0.2655
0.09
Q I I
I VI
4 +30
0.2664
0.04
Q I I
I VI
4 +45
0.2664
0.00
Q I I
I V
r
U n i t H y d r o g r a p h A n a l y s i s
Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 19.99, Version 6.0
Study date 11/09/05 File: MammonPreUH6100.out
+++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
------------------------------------------------------------------ - - - - --
Mammon Unit Hydrograph Pre - developed 100 -yr 6 -hr storm
------------------------------------------------------------------------
Riverside County Synthetic Unit Hydrology Method
RCFC & WCD Manual date - April 1978
Warner Engineering, Yucca Valley, CA - S/N 598
---------------------------------------------------------------------
English (in -lb) Input Units Used
English Rainfall Data (Inches) Input Values Used
English Units used in output format
--------------------------------------
Drainage Area = 4.84(Ac.) _
USER Entry of lag time in hours
Lag time = 0.250 Hr.
Lag time = 15.00 Min.
25% of lag time = 3.75 Min.
40% of lag time = 6.00 Min.
Unit time = 15.00 Min.
Duration of storm = 6 Hour(s)
User Entered Base Flow = 0.00(CFS)
2 YEAR Area rainfall data:
Area(Ac.)[1] Rainfall(In)[2]
4.84 0.80
-------------------------------
0.008 Sq. Mi.
Weighting[1 *2]
3.87
100 YEAR Area rainfall data:
Area(Ac.)[1] Rainfall(In)[2] Weighting[1 *2]
4.84 2.50 12.10
STORM EVENT (YEAR) .= 100.00
Area Averaged 2 -Year Rainfall = 0.800(In)
Area Averaged 100-Year-Rainfall = 2.500(In)
Point rain (area
Areal adjustment
Adjusted average
Sub -Area Data:
Area (Ac.')
4.840
Total Area Ente
averaged) = 2.500(In)
factor = 100.00 %
point rain = 2.500(In)
Runoff Index Impervious
53.00 0.000
red = 4.84(Ac.)
RI RI Infil. Rate Impervious Adj. Infil
AMC2 AMC -2 (In /Hr) (Dec.%) (In /Hr)
53.0 53.0 0.541 0.000 0.541
Rate Area%
(Dec.)
.1.000
Sum (F)
Area averaged mean soil loss (F) (In /Hr) = 0.541
Minimum soil loss rate ((In /Hr)) = 0.271
(for 24 hour storm duration)
Soil low loss rate (decimal) = 0.900
------------------------------------------ ------
F
(In /Hr)
0.541
= 0.541
U n i
t H y d r o g r
a p h
DESERT S -Curve
------------
--------------------------------------------------------
Unit
Hydrograph Data
---------------------------------------------------------------------
Unit time period
Time % of lag
Distribution Unit
Hydrograph
(hrs)
Graph %
(CFS) .
---------------------------------------------------------------------
1
0.250
100.000
17.238
0.841
2
0.500
200.000
49.931
2.436
3
0.750
300.000
16.856
0.822.
4
1.000
400.000
7.450
0.363
5
1.250
500.000
4.025
0.196
6.
1.500
600.000
2.200
0.107
7
1.750
700.000
1.200
0.059
8
2.000
800.000
1.100'
0.054
-----------------------------------------------------------------------
Sum
= 100.000
Sum=
4.878
Unit Time
Pattern
Storm Rain Loss rate(In. /Hr)
Effective
(Hr.)
Percent
(In /Hr)
Max I
Low
(In /Hr)
1
0.25
1.70
0.170
0.541
0.153
0.02
2
0.50
1.90
0.190
0.541
0.171
0.02
3
0.75
2.10
0.210
0.541
0.189
0.02
4
1.00
2.20
0.220
0.541
0.198
0.02
5
1.25
2.40
0.240
0.541
0.216
0.02
6
1.50
2.40
0.240
0.541
0.216
0.02
7
1.75
2.40
.0.240
0.541
0.216
0.02
8
2.00
2.50
0.250
0.541
0.225
0.02
9
2.25
2.60
0.260.
0.541
0.234
0.03
10
2.50
2.70
0.270
0.541
0.243
0.03
11
2.75
2.80
0.280
0.541
0.252
0.03
12
3.00
3.00
0.300
0.541
0.270
0.03
13
3.25
3.20
0.320
0.541
0.288
0.03
14
3.50
3.60
0.360
0.541
0.324
0.04
15
3.75
4.30
0.430
0.541
0.387
0.04
16
4.00
4.70
0.470 .0.541
0.423
0.05
17
4.25
5.40
0.540
0.541
0.486
.0.05
18
4.50
6.20
0.620
0.541
- --
0.08
19
4.75
6.90
0.690
0.541
- --
-0.15
20
5.00
7.50
0.750
0.541
- --
0.21
21
5.25
10.60
1.060
0.541
- --
0.52
22
5.50
14.50
1.450
0.541
- --
0.91
23
5.75
3.40
0.340
0.541
0.306
0.03
24
6.00
1.00
0.100
0.541
0.090
0.01
Sum =
100.0
Sum =
2.4
Flood
volume = Effective rainfall
0.60(In)
times
area
4.8(Ac.) /[(In) /(Ft.)]
=
0.2(Ac.Ft)
Total
soil loss
= 1.90(Iri)
Total
soil loss
= 0.766(Ac.Ft)
Total
rainfall =,
- 2.50(In)
Flood volume 10567.5 Cubic Feet
Total soil loss = 33354.8 Cubic Feet
--------------------------------------------------------------------
Peak flow rate of this hydrograph = 2:788(CFS)
------------------------------------------------=-------------------
+++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
6 - H O U R S T O R M
R u n o f f H y d r o g r a p h
--------------------------------------------------------------------
Hydrograph in 15 Minute intervals ((CFS))
-------------------------------------------------------------
Time(h +m)
Volume Ac.Ft
Q(CFS)
0 2.5 5.0 7.5
-----------------------------------------------------------------
0 +15
0.0003
0.01
Q I I I
0 +30
0.0015
0.06
Q I I I
0 +45
0.0031
0.08
Q I I I
1+ 0
0.0050
0.09
Q I I I
1 +15
0.0071
0.10
QV I I I
1 +30•
0.0093
0.11
QV I I I
1 +45
0.0117
0.11
QV I I I
2+ 0
0.0141
0.12
Q V I I I
2 +15
0.0166
0.12
Q V I I I
2 +30
0.0192
0.13
Q V I I I
2 +45
0.0219
0.13
Q V I I I
3+ 0
0.0247
0.14
Q V I I I
3 +15
0.0276
0.14
Q V I I I
3 +30
0.0308
0.15
Q V I I I
3 +45
0.0344
0.17
Q V I I I
4+ 0
0.0384
0.20
Q V I I I
4 +15
0.0430
0.22
Q V I I I
4 +30
0.0485
0.27
IQ V I I I
4 +45
0.0566
0.39
IQ VI I I
5+ 0
0.0698
0.64
1 Q V I I
5 +15
0.0929
1.12
1 Q I V I I
5 +30
0.1400
2.28
1 QI V 1
5 +45
0.1976
2.79
1 IQ I I V
6+ 0
0.2202
1.09
1 Q I I I
6 +15
0.2309
0.52
1 Q I I. I
6 +30
0.2366
0.27
IQ I I I
6 +45
0:2397
0.15
Q I I I
7+ 0
0.2415
0.09
Q I I I
7 +15
0.2425
0.05
Q I I I
7 +30
0.2426
0.00
Q
7+4.5.
-------------------------------------------------------------------
d
0.2426
0.00
Q. I I I
10.0
i
I
I
I
I
I
I
I
I
I
V 1
V I
VI
V1
V1
VI
VI
V
s
U n i t H y d r o g r a p h ' A n a l y s i s
Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 1999, Version 6.0
Study date 11/09/05 File: MammonPreUH24100.out.
+++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
------------------------------------------------------------------------
Mammon Unit Hydrograph Pre - developed 100 -yr 24 -hr storm
------------------------------------------------------------------------
Riverside County Synthetic Unit Hydrology Method
RCFC & WCD Manual date - April 1978
Warner Engineering, Yucca Valley, CA - S/N 598
--------------------------------------------------------------------
English (in -lb) Input Units Used
English Rainfall Data (Inches) Input Values Used
English Units used in output format
---------------------------------------------------------------------
--------------------------------------------------------------------
Drainage Area = 4.84(Ac.) = 0.008 Sq. Mi.
USER Entry of lag time in hours
Lag time = 0.250 Hr.
Lag time = 15.00 Min.
25% of lag time = 3.75 Min.
40% of lag time = 6.00 Min.
Unit time = 15.00 Min.
Duration of storm = 24 Hour(s)
User Entered Base Flow = 0.00(CFS)
2 YEAR Area rainfall data:
Area(Ac.)[1] Rainfall(In)[23 Weighting[1 *2]
4.84 1.20 5.81
100 YEAR Area rainfall data:
Area(Ac.)[1] Rainfall(In)[2] Weighting[1 *2]
4.84 3.50 16.94
STORM EVENT (YEAR) = 100.00
Area Averaged 2 -Year Rainfall= 1.200(In)
Area Averaged 100 -Year Rainfall 3:.500(In)
Point rain (area averaged) = 3.500(In)
Areal adjustment factor = 100.00 %
Adjusted average point rain = 3.500(In)
Sub -Area Data:
Area(Ac.) Runoff Index Impervious %
4.840 53.00 .0.000.
Total Area Entered 4.84(Ac.)
r
RI RI
Infil.
Rate Impervious
Adj. Infil. Rate Area% F
AMC2 AMC
-2 (In
/Hr) (Dec.%)
(In /Hr)
(Dec.) (In /Hr)
53.0. 53.0
0:541
0.000
0.541
1.000 0.541
Sum (F) = 0.541
Area averaged
mean
soil loss (F)
(In /Hr) =
0.541
Minimum
soil loss
rate ((In /Hr))
= 0.271
(for 24
hour storm
duration)
Soil low
---------------------------------------------------------------------
loss rate
(decimal) =
0.900
U n i
t H' y d r o g
r a p h
DESERT S- Curve
--------------------------------------------------------------------
Unit
Hydrograph Data
-
---------------------------------------------------------------
Unit time period
Time % of lag
Distribution
.
- - - - --
Unit Hydrograph
(hrs)
Graph %
(CFS)
---------------------------------------------------------------------
1.
0.250
100.000
17.238
0.841
2
0.500
200.000
49.931
2.436
3
0.750
300.000
16.856
0.822
4
1.000
400.000
7.450
0.363
5
1.250
500.000
4.025
0.196
6
1.500
600.000'
2.200
0.107
7
1.750
700.000
1.200
0.059
8
2.000
800.000
1.100
0.054
---------------------------------------------------------------------
Sum = 100.000
Sum=
4.878
Unit Time
Pattern
Storm Rain
Loss rate(In. /Hr)
Effective
(Hr.i
Percent
(In /Hr)
Max
Low
(In /Hr)
1
0.25
0.20
0.028
0.956
0.025
0.00
2
0.50
0.30
0.042
0.945
0.038
0.00
3
0.75
0.30
0.042
0.934
0.038
0.00
4
1.00
0.40
0.056
0.923
0.050
0.01
5
1.25
0.30
0.042
0.912
0.038
•0.00
6
1.50
0.30
0.042
0.901
0.038
0:00
7
1.75
0.30
0.042
0.890
0.038
0.00
8
2.00
0.40
0.056
0.880
0.050
0.01
9
2.25
0.40
0.056
0.869
0.050
0.01
10'
2.50
0.40
0.056
0.859
0.050
0.01
11
2.75
0.50
0.070
0.848
0.063
0.01
12
3.00
0.50
0.070
0.838
0.063
0.01
13
3.25
0.50
0.070
0.827
0.063
0.01
14
3.50
0.50
0.070
0.817
0.063
0.01
15
3.75
0.50
0.070
0.807
0.063
0.01
16"
4.00
0.60
0.084
0.797
0.076
0.01
17
4.25.
0.60
0.084
0.786
0.076
0.01
18
4.50
0.-70
0.098
0.776
0.088
0.01
19
4.7.5
0.70
0.098
0.767
0.088
0.01
20
5.00
0.80
0.112
0.757
0.101,
0.01
21
5.25
0.60
0.084
0.747
0.076
0.01
22
5.50
0.70
0.098
0.737
0.088
0.01
23
5.75
0.80
0.112
0.727
0.101
0.01
24
6.00
0.80
0.112
0.718
0.101
.0- 01
25
6.25
0.90
0.126
0.70'8
0.113
0.01
26
6.50
0.90
0.126
0.699
0.113
0.01
27
6.75
1.00
0.140
0.689
0.126
0.01
28
7.00
1.00
0.140
0.680
0.126
.0.01
29
7.25
1.00
0.140
0.671
0.126
0.01
30
7.50
1.10
0.154
0.662
0.139
0.02
r
31
7.75
1.20
0.168
0.653
0.151
0.02
32
8.00
1.30
0.182
0.644
0.164
0.02
33
8.25
1.50
0.210
0.635
0.189
0.02
34
8.50
1.50
0.210
0.626
0.189
0.02
35
8.75
1.60
0.224
0.617
0.202
0.02
36
9.00
1.70
0.238
0.608
0.214
0.02
37
9.25
1.90
0.266
0.600
0.239
0.03
38
9.50
2.00
0.280
0.591
0.252
0.03
39
9.75
2.10
0.294
0.583
0.265
0.03
40
10.00
2.20
0.308
0.574
0.277
0.03
41
10.25
1.50
0.210
0.566
0.189
0.02
42
10.50
1.50
0.210
0.558
0.189
0.02
43
10.75
2.00
0.280
0.550
0.252
0.03
44
11.00
2.00
0.280
0.542
0.252
0.03
45
11.25
1.90
0.266
0.534
0.239
0.03
46
11.50
1.90
0.266
0.526
0.239
0.03
47
11.75
1.70
0.238
0.518
0.214
0.02
48
12.00
1.80
0.252
0.510
0.227
0.03
49
12.25
2.50
0.350
0.503
0.315
0.03
50
12.50
2.60
0.364
0.495
0.328
0.04
51
12.75
2.80
0.392
0.488
0.353
0.04
52
13.00
2.90
0.406
0.481
0.365
0.04
53
13.25
3.40
0.476
0.473
- --
0.00
54
13.50
3.40
0.476
0.466
- --
0.01
55
13.75
2.30
0.322
.0.459
0.290
0.03
56
14.00
2.30
0.322
0.452
0.290
0.03
57
14.25
2.70
.0.378
0.445
0.340
0.04
58
14.50
2.60
0.364
0.438
0.328
0.04
59
14:75
2.60
0.364
0.432
0.328
0.04
60
15.00
.2.50
0.350
0.425
0.315
0.03
61
15.25
2.40
0.336
0.419
0.302
0.03
62
15.50
2.30
0.322
0.412
0.290
0.03
63
15.75
1.90
0.266
0.406
0.239
0.03
64
16.00
1.90
0.266
0.400
0.239
0.03
65
16.25
0.40
0.056
0.394
0.050
0.01
66
16.50
0.40
0.056
0.388
0.050
0.01
67
.16.75
0.30
0.042
0.382
0.038
0.00
68
17.00
0.30
0.042
0.376
0.038
0.00
69
17.25
0.50
0.070
0.370
0.063
0.01
70
17.50
0.50
0.070
0.365
0.063
0.01
71
17.75
0.50
0.070
0.359
0.063
0.01
72
18.00
0.40
0.056
0.354
0.050
0.01
73
18.25
0.40
0.056
0.349
0.050
0.01
74
18.50
0.40
0.056
0.344
0.050
0.01
75
18.75
0.30
0.042
0.339
0.038
0.00
76
19.00
0.20
0.028
0.334
0.025
0.00
77
19.25
0.30
0.042
0.329
0.038
0.00
78
19.50
0.40
0.056
0.325
0.050
0.01
79
19.75
0.30
0.042
0.320
0.038
0.00
80
20.00
0.20
0.028
0.316
0.025
0.00
81
20.25.
0.30
0.042
0.312
0.038
0.00
82
20.50
0.30
0.042
0.308
0.038
0.00
83'
20.75
0.30
0.042'
0.304
0.038
0.00
84
21.00
0.20
0.028
0.300
0.025
0.00
85
21.25
0.30
0.042
0.296
0.038
0.00
86
21.50
0.20
0.028
0.293
0.025
0.00
87
21.75
0.30
0.042
0.290
0.038
0.00
88
.22.00
0.20
0.028
0.287
0.025
0.00
89
22.25
0.30
0.042
0.284
0.038
0.00
90
22.50
0.20
0.028
0.281
0.025
0.00
91
22.75
0.20
0.028
0.279
0.025
0.00
92
23.00
0.20
0.028
0.277
.0'.025
0.00
93
23.25
0.20
0.028
0.275
0.025
0.00
94 23.50
0.20
0.028 0.273 0.025
0.00
95 23.75
0.20
0.028 0.272 0.025
0.00
96 24.00
0.20
0.028 0.271 0.025
0.00
Sum =
100.0
Sum =
1.3
Flood•volume
= Effective rainfall 0.33(In)
times
area
4.8(Ac.) /[(In) /(Ft.)] = 0.1(Ac.Ft)
Total
soil loss =
3.17(In)
Total
soil loss =
1.279(Ac.Ft)
Total
rainfall =
3.50(In)
Flood
volume =
5786.5 Cubic Feet
Total
soil loss =
55705.1 Cubic Feet
--------------------------------------------------------------------
Peak
flow rate of
this hydrograph = 0.183(CFS)
--------------------------------------------------------------------
+++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
24 - H O U R S T 0 R M
R u
n o f f H y d r o g r a p h
---7----------------------------------------------------------------
Hydrograph
in 15 Minute intervals ((CFS))
--------------------------------------------------------------------
Time(h+m)
Volume Ac.Ft
Q(CFS) 0 2.5 5.0
7.5 10.0
-----------------------------------------------------------------------
0 +15
0.0000
0.00 Q I I
I I
0 +30
0.0003
0.01 Q l I
I I
0 +45
0.0006
0.02 Q I I
I I
1+ 0
0.0010
0.02 Q I I
l I
1 +15
0.0015
0.02 Q I I
I I
1 +30
0.0019
0.02 Q I I
I I
1 +45
0.0023
0.02 Q
2+ 0
0.0028
0.02 Q I I
I I
2 +15
0.0033
0.03 Q I I
I I
2 +30
0.0038
0.03 QV I I
I I
2 +45
0.0044
0.03 QV I I
I I
3+ 0
0.0051
0.03 QV I I
I I
3 +15
0.0058
0.03 QV I I
I I
3 +30
0.0064
0.03 QV I I
I I
3 +45
0.0071
0.03 Q V I I
I I
4+ 0
0.0079
0.04 Q V I I
I I
4 +15
0.0087
0.04 Q V
4 +30
0.0095
0.04 Q V I I
I I
4 +45
0.0105
0.05 Q V I I
I I
5+ 0
0.0114
0.05 Q V I I
I I
5 +15
0.0125
0.05 Q V I I
I I
5 +30
0.0134
0.05 Q V I I
I I
5 +45
0:0144
0.05 Q V I I
I I
6+ 0
0.0155
0.05 Q V I I
I I
6 +15
0.0166
0.05 Q V I I
I I
6 +30
0.0178
0.06 Q V I I
I I
6 +45
0.0191
0 -06 Q V I I
I I
7+ 0
0.0204
0.07 Q V I I
I I
7 +15
0.0218
0.07 Q V I I
I I
7 +30
0.0232
0.07 Q V I I
I I
7 +45
0.0247
0.07 Q V I I
I I
8+ 0
0.0264
0.08 Q V I I
I I
8 +15
0.0282
0.09 ,Q V I I
I I
8 +30
0.0302
0.10 Q VI I
I I
8 +45
0.0322
0.10 Q VI I
I I
9+ 0
0.0344
0.11 Q V i
I I
9 +15
.0.0368
0.11 Q V
9 +30
0.0394
0.12 Q IV I
I I
9 +45
0.0421
0.13 Q I V I
I I
10+ 0
0.0450
0.14 Q I V I
I I
10 +15
.0.0978
0.14
Q
10 +30
0.0502
0.12
Q
10 +45
0.0526
0.11
Q
11+ 0
0.0553
0.13
Q
11 +15
0.0580
0.13"
Q
11 +30
0.0607
0.13
Q
11 +45
0.0633
0.13
Q
12+ 0
0.0658
0.12
Q
12 +15
0.0685
0.13
Q
12 +30
0.0718
0.16
Q
12 +45
0.0753
0.17
Q
13+ 0
0.0791
0.18
Q
13 +15
0.0824
0.16
Q
13 +30
0.0839
0.08
Q
13 +45
0.0857
0.08
Q
14+ 0
0.0884
0.13
Q
14 +15
0.0914
0:15
Q
14 +30
0.0949
0.17
Q
14 +45
0.0985
0.17
Q
15+ 0
0.1020
0.17
Q
15 +15
0.1055
0.17
Q
15 +30
0.1090
0.17
Q
1 5 +45
0.1122
0.16
Q
-16+ 0
0.1151
0.14
Q
16 +15
0.1175
0.12
Q
16 +30
0.1188
0.06
Q
16 +45
0.1198
0.04
Q
17+ 0
0.1204
0.03
Q
17 +15
0.1210
0.03
Q
17 +30
0.1217
0.03
Q
17 +45
0.1224
0.03.
Q
18+ 0
0.1230
0.03
Q
18 +15.
0.1236
0.03
Q
18 +30
0.1242
0.03
Q
18 +45
0.1248
0.03
Q
19+ 0
0.1252,
0.02
Q
19 +15
0.1256
0.02
Q
19 +30
0.1260
0.02
Q
19 +45
0.1265
0.02
Q
20+ 0
0.1269
0.02
Q
20 +15
0.1273
0.02
Q
20 +30
0.1277
0.02-
Q
20 +45
0.1281
0.02
Q-
21+ 0
0.1285
0.02
Q
21 +15
0.1289
0.02
Q
21 +30
0.1292
0.02
Q
21 +45
0.1296
0.02
Q
22+ 0
0.1300
0.02
Q
22 +15
0.1303
0.02
Q
22 +30
0.1307
0.02;
Q
22 +45
0.1310
0.02
Q
23+ 0
0.1313
0.01
Q
23 +15
0.1316
0.01
Q
23 +30
0.1319
0.01
Q
23 +45
0.1321
0.01
.Q
24+ 0
0.1324
0.01.
Q
24 +15
0.1327
0.01
Q
24 +30
0.1327
0.00
Q
24 +45
0.1328
0.00
Q
25+ 0
0.1328
0.00
Q
25 +15
0.1328
0.00
Q
25 +30
0.1328
0.00
Q
25 +45
0.1328,
0.00
Q
V I I
V I
V I I
V I I
V I I
VI I
VI I
v I
V
I V I
I V I
V
I V I
I V I
( V I
I V I
I VI
V
I IV
I i v
I I
I I
I I
I I
I I
I I
I I
1 I
I I
I I
v I
v I
V I
V
V I
V I
V
V
V i
v I
V I
V
v I
V
v i
v I
V
V 1
V
v
V
V I
v I
V
VI
v
VI
v
VI
VI
VI,
VI
VI
v
VI
VI
VI
VI
VI
VI
V
r} .
U n i t H y d r o g r a p h A n a l y s i s
Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 1999, Version 6.0
Study date 11 /09/05 File: MammonDevUH1100.out
++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +•
-------------------------------------------------------------------------
Mammon Unit HydrograpH Developed 100 -yr 1 -hr storm
=-----------------------------------------------------------------------
Riverside County Synthetic Unit Hydrology Method
RCFC & WCD Manual date - April 1978
Warner Engineering, Yucca Valley, CA - SIN 598
-----------=---------------------------------------------------------
English (in -lb) Input Units Used
English Rainfall Data (Inches) Input Values Used
English,Units used in output format
---------------------------------------------------------------------
--------------------------------------------------------------------
Drainage Area = 4.84(Ac.) = 0.008 Sq. Mi.
USER Entry of lag time in hours
+ Lag time = 0.250 Hr.
Lag time = 15.00 Min.
250 of lag time = 3.75 Min.
40a of lag time = 6.00 Min.
Unit time = 15.00 Min.
Duration of storm = 1 Hour(s)
User Entered Base Flow = 0.00(CFS)
2 YEAR Area rainfall data:
Area(Ac.)[1] Rainfall(In)[2] Weighting[1 *2]
4.84 0.50 2.42
-100 YEAR Area rainfall data:
Area(Ac.)[1] Rainfall(In)[2] Weighting.[1 *2]
4.84 1.60 - 7.74
STORM EVENT (YEAR) = 100.00
Area Averaged 2 -Year Rainfall = 0.500(In)
Area Averaged 100 -Year Rainfall = 1.600(In)
Point rain (area averaged) = 1.600(In)
Areal adjustment factor = 100.00 0
Adjusted average point rain = 1.600(In)
Sub -Area Data:
Area(Ac.) Runoff Index Impervious %
4.840 32.00 0.500
Total Area Entered = 4.84(Ac.)
RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F
AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr)
32.0 32.0 0.742 0.500 0.408 1.000 0.408
Sum (F) = 0.408
Area averaged mean soil loss (F) (In /Hr) = 0.408
Minimum soil loss rate ((In /Hr)) = 0.204
(for 24 hour storm duration)
Soil low loss rate (decimal) = 0.500
- ---------------------------------------------------------------------
Slope of intensity- duration curve for a 1 hour storm = 0.5800
----------------------------------------------------------------------
U n i t H y d r o g r a p h
DESERT S -Curve
--------------------------------------------------------------------
Unit Hydrograph Data
---------------------------------------------------------------------
Unit time period Time % of lag Distribution Unit Hydrograph
(hrs) Graph % (CFS)
---------------------------------------------------------------------
1 0.250 100.000 17.238 0.-841
2 0.500 200.000 49.931 2.436
3 0.750 300.000 16.856 0.822
4 1.000 400.000 7.450 0.363
5 1.250 500.000 4.025 0.196
6 1.500 600.000 2.200 0.107
7 1.750 700.000 1.200 0.059
8 2.000 800.000 1.100 0.054
Sum = 100.000 Sum= 4.878
-----------------------------------------------------------------------
Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective
(Hr.) Percent (In /Hr) Max I Low (In /Hr)
1 0.25 12.20 0.781 0.408 - -- 0.37
2 0.50 15.20 0.973 0.408 - -- 0.56
3 0.75 27.60 1.766 0.408 - -- 1.36
4 1.00 45.00 2.880 0.408 - -- 2.47
Sum = 100.0 Sum = 4.8
Flood volume = Effective rainfall 1.19(In)
times area 4.8(Ac.) /[(In) /(.Ft.)] = 0.5(Ac.Ft)
Total soil loss = 0.41(In)
Total soil loss = 0.165(Ac.Ft)
Total rainfall = 1.60(In)
Flood volume = 20939.5 Cubic Feet
Total soil loss = 7170,0 Cubic Feet
--------------------------------------------------------------------
Peak flow rate of this hydrograph = 7.419(CFS)
--------------------------------------------------------------------
+++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
1 - H O U R S T.0 R M
R u n o f f H y d r o g r a p h
--------------------------------------------------------------------
Hydrograph in 15 Minute intervals ((CC'S))
------------------------------------- =------------------ ------------
Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0
-----------------------------------------------------------------------
0+15 0.0065 0.31 VQ I I I I
0 +30 0.0351 1.38 1 V Q I I I I
0 +45 0.0934 2".83 1 V IQ I I I
1+ 0 0.2172 5.99 1 1 V I Q I I
1 +15
0.3705
7.42 1
1 +30
0.4258
2.68 1
1 +45
0.4516
1.25 1 Q
2± 0
0.4657
0.68 1 Q
2 +15
0.4735
0.38 IQ
2 +30
0.4780
0.22 Q
2 +45
-----------------------------------
0.4807
0.13 Q
- - - - --
I I QV
I
Q I I
V
I
I I I
V I
I i I
V I
I I I
VI
I I I
VI
I I I
---------------------- -
- - -
V
--
U n i t H y d r o g r a p h A n a l y s i s
a 4
Copyright (c) CIVILCADD /CIVILDESIGN, 1989.- 1999, Version 6.0
Study date 11 /09/05 File: MammonDevUH3100.out
+++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + ± + + + + + + + + + ++
Mammon Unit Hydrograph Developed 100 -yr 3 -hr storm
------------------------------------------------------------------------
Riverside County Synthetic Unit Hydrology Method
RCFC & WCD Manual date = April 1978
Warner Engineering, Yucca Valley, CA - S/N 598
---------------------------------------------------------------------
English (in -lb) Input Units Used
English Rainfall Data (Inches] Input Values Used
English Units used in output format
--------------------------------------------------------------- - - - - -- .
--------------------------------------------------------------------
Drainage Area 4.84(Ac.) = 0.008 Sq. Mi.
USER Entry of lag time in hours
j Lag time = 0.250 Hr.
Lag time = 15.00 Min.
250 of lag time = 3.75 Min.
40% of lag time = 6.00 Min.
Unit time = 15.00 Min.
Duration of storm = 3 Hour(s)
User Entered Base Flow = 0.00(CFS)
2 YEAR Area rainfall data:
Area(Ac.) [13 Rainfall(In)[2] Weighting[1 *2]
4.84 0.70 3.39
100 YEAR Area rainfall data:
Area(Ac.)[1] Rainfall(In)[2] Weighting[1 *2]
4.84 2.00 9.68
STORM EVENT (YEAR) = 100:00
Area Averaged 2 -Year Rainfall = 0.700(In)
Area Averaged 100 -Year Rainfall .= 2.000(In)
Point rain (area averaged) = 2.000(In)
Areal adjustment factor = 100.00 %
Adjusted average point rain = 2.000(In)
Sub -Area Data:
Area(Ac.) Runoff Index Impervious %
4.840 32.00 0.500
Total Area Entered = 4.84(Ac.)
RI RI Infil..Rate Impervious Adj. Infil. Rate Area% F
AMC2 AMC -2 (In /Hr) (Dec. %)
(In /Hr) (Dec.) (In /Hr)
32.0
32.0 0.742
0.500
0.408 1.000
0.408
Sum
(F) = 0.408
Area averaged
mean
soil loss (F)
.(In /Hr) =. 0.408
Minimum
soil loss
rate ((In /Hr))
=. 0.204
(for 24
hour storm
duration)
Soil low
---------------------------------------------------------------------
loss rate
(decimal) =
0.500
U n i
t H y d r o g
r a p h
DESERT S -Curve
--------------------------------------------------------------------
Unit
Hydrograph Data
-------------------------------------------------------------=-------
Unit time
period
Time % of lag.
Distribution Unit
Hydrograph
(hrs)
Graph %
(CFS)
----=----------------------------------------------------------------
1
0.250
100.000
17.238
0.841
2
0.500
200.000
49.931
2.436
3
0.750
300.000
16.856
0.822
4
1.000
400.000
7.450
0.363
5
1.250
500.000
4.025
0.196
6
1.500
600.000
2.200
0.107
7
1.750
700.000
1.200
0.0 -59
8
2.000
800.000
1.100
0.054-
-----------------------------------------------------------------------
Sum = 100.000 Sum=
4.878
Unit Time
Pattern
Storm Rain
Loss rate(In. /Hr)
Effective
(Hr.)
Percent
(In /Hr)
Max I Low
(In /Hr)
1
0.25
3.70
.0.296
0.408 0.148
0.15
2
0.50
4.80
0.384
0.408 0.192
0.19
3
0.75
5.10
0.408
0.408 0.204
0.20
4
1.00
4.90
0.392
0.408. 0.196
0.20
5
1.25
6.60
0.528
0.408 - --
0.12
6
1.50
7.30
0.584
0.408 - --
0.18
7
1.75
8.40
0.672
0.408. - --
0.26
8
2.00
9.00
0.720
0.408 - --
0.31
9
2.25
12.30
0.984
0.408 - --
0.58
10
2.50
17.'60
1.408
0.408 - --
1.00
11
2.75
16.10
1.288
0.408 - --
0.88
12
3.00
4.20
0.336
0.408 0.168
0.17
Sum =
100.0
Sum =.
4.2
Flood
volume = Effective rainfall
1.06(In)
times area
4.8(Ac.) /[(In)
/(Ft.)] = 0.4(Ac.Ft)
Total
soil loss =
0.94(In)
Total
soil loss
0.380(Ac.Ft)
Total
rainfall =
2.00(In)
Flood
volume .=
18602.0 Cubic
Feet
Total
soil loss =
16535.6
Cubic Feet
--------------------------------------------------------------------
Peak
flow rate of this hydrograph
= 3.852(CFS)
--------------------------------------------------------------------
+++++++++++++++++++++++++++++++++++++
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
3- H 0 U. R
S T 0 R M.
R
u n o f f
H y d r o -g.r a p h
--------------------------------------------------------------------
Hydrograph in 15
Minute intervals ((CFS))_
Time(h +m)
-----------------------------------------------------------------
Volume Ac.Ft • Q(CFS) 0
2.5 5.0
7.5 10.0
- - - - --
0 +15
0.0026
0.12
Q I I
I I
0 +30
0.0134
0.52
VQ I I
I I
0 +45
0.0291
0.76
1 VQ I I
I I
1+ 0
0.0471
0.87
1 QV I I
I I
1 +15
0.0646
0.85
1 Q V 1 I
I I
1 +30
0.0797
0.73
1 Q V I I
I I
1 +45
0.0981
0.89
1 Q VI I
I I
2+ 0
0.1223
1.17
1 Q V I
I I
2 +15
0.1552
1.59
1 Q I V I
I I
2 +30
0.2103
2.67
1 Q VI
I I
2 +45
0.2899
3.85
1 1 Q I
V I I
3+ 0
0.3606
3.42
1 1 Q I
I V 1
3 +15
0.3951
1.67
1 Q I I
I V I
3+30
0.4106
0.75
1 Q I I
I V I
3 +45
0.4187
0.39
IQ I I
I VI
4+ 0
0.4231
.0.22
Q I I
I VI
4 +15
0.4257
0.12
Q I I
I VI
4 +30
0.4269
0.06
Q I I
I VI
4 +45
-----------------------------------------------------------------
0.4270
0.01
Q I I
I V
- - - - --
0
U n i t H y d r o g r a p h A'n a 1 y s i s
Copyright (c) CIVILCADD /CIVILDESIGN,. 1989 - 1999, Version 6.0
Study date 11/09/05 File: MammonDevUH6100.out
+++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Mammon Unit Hydrograph Developed 100 -yr 6 -hr storm
------------------------------------------------------------------- - - - -'-
Riverside County Synthetic Unit Hydrology Method
RCFC & WCD Manual date - April 1978
Warner Engineering, Yucca Valley, CA - SIN 598
---------------------------------------------------------------------
English (in -lb) Input Units Used
English Rainfall Data (Inches) Input Values Used
English Units used in output format
------------------------------------------=--------------------------
-----------------------------------------------------------=--------
Drainage Area = 4.84(Ac.) = 0.008 Sq. Mi.
USER Entry of lag time in hours
Lag time = 0.250 Hr.
Lag time = 15.00 Min.
250 of lag time = 3.75 Min.
400 of lag time = 6.00 Min.
Unit time = 15.00 Min.
Duration of storm = 6 Hour(s)
User Entered Base Flow = 0.00(CFS)
2-YEAR Area rainfall data:
Area(Ac.)[1] Rainfall(In)[2] Weighting[1 *2]
4.84 0.80 3.87
100 YEAR Area rainfall data:
Area(Ac.)[l] Rainfall(In)[2] Weighting[1 *2]
4.84 2.50 12.10
STORM EVENT (YEAR) = 100.00
Area Averaged 2 -Year Rainfall = 0..800(In)
Area Averaged 100 -Year Rainfall 2.500(In)
Point rain (area averaged) = 2.500(In)
Areal adjustment factor = 100.00 %
Adjusted average point rain = 2.500(In)
Sub -Area Data:
Area(Ac.) Runoff Index Impervious %
4.840 32.00 0.500
Total Area Entered = 4.84(Ac.)
RI RI Infil. Rate Impervious Adj. Infil: Rate Area% F
AMC2 AMC -2 (In /Hr) (Dec. %)
(In /Hr)
(Dec.) (In /Hr)
32.0 32.0 0.742
0.500
0.408
1.000 0.408
.
Sum (F) = 0.408
Area averaged mean
soil loss (F)
(In /Hr) =
0.408
Minimum soil loss
rate ((In /Hr))
= 0.204
(for 24 hour storm
duration)
Soil low loss rate
---------------------------------------------------------------------
(decimal) =
0.500
U n i
t H y d r o g
r a p h
DESERT S -Curve
--------------------------------------------------------------------
Unit Hydrograph
Data
---------------------------------------------------------------------
Unit time period
Time % of lag
Distribution
Unit Hydrograph
(hrs)
Graph %
(CFS)
---------------------------------------------------------------------
1
0.250
100.000
17.238
0.841
2
0.500
200.000
49.931
2.436
3
0.750
300.000
16.856
0.822
4
1.000
400.000
7.450
0.363
5
1.250
500.000
4.025
0.196
6
1.500
600.000
2.200
0.107
7
1.750
700.000
1.200
0.059
8
2.000
800.000
1.100
0.054
-----------------------------------------------------------------------
Sum = 100.000
Sum=
4.878
Unit
Time
Pattern
Storm Rain
Loss rate(In. /Hr)
Effective
(Hr.)
Percent
(In /Hr)
Max
Low
(In /Hr)
1
0.25
1.70
0.170
0.408
0.085
0.08
2
0.50
1.90
0.190
0.408
0.095
0.09
3
0.75
2.10
0.210
0.408
0.105
0.10
4
1.00
2.20
0.220
0.408
0.110
0.11
5
1.25
2.40
0.240
0.408
0.120
0.12
6
1.50
2.40
0.240
0.408
0.120
0.12
7
1.75
2.40
0.240
0.408
0.120
0.12
8
2.00
2.50
0.250
0.408
0.125
0.12
9
2.25
2.60
0.260
0.408
0.130
0.13
10
2.50
2.70
0.270
0.408
0.135
0.13
11
2.75
2.80
0.280
0.408
0.140
0.14
12
3.00
3.00
0.300
0.408
0.150
0.15
13
3.25
3.20
0.320
0.408
0.160
0.16
14
3.50
3.60
0.360
0.408
0.180
0.18
15
3.75
4.30
0.430
0.408
- --
0.02
16
4.00
4.70
0.470
0.408
- --
0.06
17
4.25
5.40
0.540
0.408
- --
0.13
18
4.50
'6.20
'0.620
0.408
- --
0.21
19
4.75
6.90
0.690
0.408
- --
0.28
20
5.00
7.50
0.750
0.408
- --
0.34
21
5.25
10.60
1.060
0.408
- --
0.65
22
5.50
14.50
1.450
0.408
- --
1.04
23
5.75
3.40
0.340
0.408
0.170
0:17
24
6.00
1.00
0.100
0.408
0.050
0.05
Sum =
100.0
Sum = 4.7
Flood
volume = Effective rainfall
1.19(In)
times
area
4.8(Ac.) /[(In)
/(Ft.)] =
0.5(Ac.Ft)
Total
soil loss =
1.31(In)
Total
soil loss =
0.530(Ac.Ft)
Total
rainfall =
2.50(In)
Flood
volume =
20819.8 Cubic
Feet
Total
soil loss =
23102.5
Cubic Feet
--------------------------------------------------------------------
Peak flow rate of this hydrograph = 3.432(CFS)
--------------------------------------------------------------------
+++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
6 - H O U R S T 0 R M
R u n o f f H y d r o g r a p h
--------------------------------------------------------------------
Hydrograph in 15 Minute intervals ((CFS))
---------------------------------------------
Time(h+m)
Volume Ac.Ft
Q(CFS)
7 -----------------------
0 2.5 5.0
7.5 10.0
-----------------------------------------------------------------------
0+15
0.0015
0.07
Q I I
I 1
0 +30
0.0074
0.29
VQ I I
I I
0 +45
.0.0155
0.39
Q I I
I I
1+ 0
0.0249
0..46
IQV I I
I
1 +15
.0.0354
0.51
1 Q I I
I I
1 +30
0.0467
0.55
.I QV I I
I I
1 +45
0.0585
0.57
1 Q V I I
I I
2+ 0
0.0705
0.58
1 Q V I I
I I
2 +15
0.0830
0.60
1 Q V I I
I I
2 +30
0.0959
0.63
1 Q V I I
I I
2 +45
0.1093
0.65
1 Q V1 I
I I
3+ 0
0.1233
0.68
1 Q V I
I I
3 +15
0.1381
0.72
1 Q V I
I I
3 +30
0.1540
0.77
1 Q I V I
I I
3 +45
0.1684
0.70
1 Q I V I
I I
4+ 0
0.1761
0.37
IQ I V I
I I
4 +15
0.1845
0.41
IQ I V I
I I
4 +30
0.1975
0.63
1 Q I V I
I I
4 +45
0.2166
0.93
1 Q I V I
I I
5+ 0
0.2420
1.23
1 Q I V
I I
5 +15
0.2779
1.73
1 Q I I V
I I
5 +30
0.3380
2.91
1 IQ I
V I I
5 +45
0.4089
3.43
1 1 Q I
V I
6+ 0
0.4433
1.67
1 Q I I
I V I
6 +15
0.4605
0.83
1 Q I I
I V 1
6 +30
0.4691
0.41
IQ I I
I VI
6 +45
0.4736
0.22
Q I I
I VI
7+ 0
0.4762
0.12
Q I I
I V1
7 +15
0'.4777
0.07
Q I I
I V1
7 +30
0.4779
0.01
Q I I
I V1
7 +45
------------------------------=----------------------------------
.0.4780
0.00
Q. I I
I V
- = - - --
19
U n i t H y d r o g r a p h A n a l y s i s
Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 1999, Version-6.0
Study date 11/09/05 File: MammonDevUH24100.out
.+++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Mammon Unit Hydrograph Developed 100 -yr 24 -hr storm
------------------------------------------------------------------------
Riverside County Synthetic Unit Hydrology Method
RCFC & WCD Manual date - April 1978
Warner Engineering, Yucca Valley, CA - SIN'
598
---------------------------------------------------------------------
English (in -lb) Input Units Used
English Rainfall Data (Inches) Input Values Used
English Units used in output format
---------------------------------------------------------------------
--------------------------------------------------------------------
Drainage Area = 4.84(Ac.) = 0.008 Sq. Mi.
USER Entry of lag time in hours
Lag time = 0.250 Hr.
Lag time = 15.00 Min.
250 of lag time = 3.75 Min.
400 of lag time = 6.00 Min..
Unit time = 15.00 Min.
.Duration of storm = 24 Hour(s)
User Entered Base Flow = 0.00(CFS)
2 YEAR Area rainfall data:
Area(Ac.)[1] Rainfall(In)[2] Weighting[1 *2]
4.84 1.20 5.81
100 YEAR Area rainfall data:
Area(Ac.)[1] Rainfall(In)[2] Weighting[1 *2]
4.84 3.50 16.94
STORM EVENT (YEAR) = 100.00
Area Averaged 2 -Year Rainfall 1.200(In)
Area Averaged 100 -Year Rainfall = 3.500(In)
Point rain (area averaged) = 3.500(In)
Areal adjustment factor = 100.00 %
Adjusted average point rain 3.500(In)
Sub -Area Data:
Area(Ac.) Runoff Index Impervious %
4.840 32.00 0.500
Total Area Entered = 4.84(Ac.)
RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F
AMC2 AMC -2 (In /Hr) (Dec. %)
(In /Hr)
(Dec.) (In /Hr)
32.0 32.0
0.742
0.500
0.408
1.000 0.408
Sum (F) = 0.408
Area averaged
mean
soil loss (F)
(In /Hr) =
0.408,
Minimum
soil loss
rate ((In /Hr))
= 0.204
(for 24
hour storm duration)
Soil low
---------------------------------------------------------------------
loss rate
(decimal) =
0.500
U n i
t H y d r o g
r a p h
DESERT S -Curve
- - - - -'
---------------------------------------------------------------
Unit
Hydrograph Data
---------------------------------------------------------------------
Unit time period
Time % of lag
Distribution
Unit Hydrograph
(hrs)
Graph %
•
(CFS)
------------------------L--------------------------------------------
1
0.250
100.000
17.238
0.841
2
0.500
200.000
49.931
2.436
3
0.750
300.000
16.856
0.822
4
1.000
400.000
7.450
0.363
5
1.250
500.000
4.025
0.196
6
1.500
600.000
2.200
0.107
7
1.750
700.000
1.200
0.059
8
2.000
800.000
1.100
0.054
-----------------------------------------------------------------------
Sum = 100.000
Sum=
4.878
Unit
Time
Pattern
Storm Rain
Loss rate(In. /Hr)
Effective
(Hr.)
Percent
(In /Hr)
Max I
Low
(In /Hr)
1
0.25
0.20
0.028
0.721
0.014
0.01
2
0.50
0.30
0.042
0.712
0.021
0.02
3
0.75'
0.30
0.042
0.704
0.021
0.02
4
1.00
0.40
0.056
0.696
0.028
0.03
5
1.25
0.30
0.042
0.688
0.021
0.02
6
1.50
0.30
0.042
0.679
0.021
0.02
7
1.75
0.30
0.042
0.671
0.021
0.02
8
2.00
0.40
0.056
0.663
0.028
0.03
9
2.25
0.40
0.056
0.655
0.028
0.03
10
2.50
0.40
0.056
0.647
0.028
0.03
11
2.75
0.50
0.070
0.639
0.035
0.03
12
3.00
0.50
0.070
0.631 •0.035
0.03
13
3.25
0.50
0.070
0.624
0.035
0.03
14
3.50
0.50
0.070
0.616
0.035
0.03
15
3.75
.0.50
0.070
0.608
0.035
0.03
16
4.00
0.60
0.084
0.600
0.042
0.04
17
4.25
0.60
0.084
0.593
0.042
0.04
18
4.50
0.70
0.098
0.585
0.049
0.05
19
4.75
0.70
0.098
0.578
0.049
0.05
20
5.00
0.80
0.112
0.570
0.056
0.06
21
5.25
0.60
0.084
0.563
0.042
0.04
22
5.50
0.70
0.098
0.556
0.049
0.05
23
5.75.
0.80
0.112
0.548
0.056
0.06
24
6.00
0.80
0.112
0.541
0.056
0.06
25
6.25
0.90
0.126
0.534
0.063
0.06
26
6.50
0.90
0.126
0.527
0.063
0.06
27
6.75
1.00
0.140
0.520
0.070
0.07
28
7.00
1.00
0:140
0.513
0.070
0.07
29
7.25
1.00
0.140
0.506
0.070
0.07
30
7.50
1.10
0.154
0.499
0.077
0.08
31
7.75
1.20
0.168
0.492
0.084
0.08
32
8.00
1.30
0.182
0.485
0.091
0.09
33
8.25
1.50
0.210
0.478
0.105
0.10
34
8.50
1.50
0.210
0.472
0.105
0.10
35
8.75
1.60
0.224
0.465
0.112
0.11
36
9.00
1.70
0.238
0.459
0.119
0.12
37
9.25
1.90
0.266
0.452
0.133
0.13
38
9.50
2.00
0.280
0.446
0.140
0.14
39
9.75
2.10
0.294
0.439
0.147
0.15
40
10.00
2.20
0.308
0.433
0.154
0.15
41
10.25
1.50
0.210
0.427
0.105
0.10.
42
10.50
1.50
0.210
0.421
0.105
0.10
43
10.75
2.00
0.280
0.414
0.140
0.14
44
11.00
2.00
0.280
0.408
0.140
0.14
45
11.25
1.90
0.266
0.402
0.133
0.13
46
11.50
1.90
0.266
0.396
0.133
0.13
47
11.75
1.70
0.238
0.391
0.119
0.12
48
12.00
1.80
0.252
0.385
0.126
0.13
49
12.25
2.50
0.350
0.379
0.175
0.17
50
12.50
2.60
0.364
0.373
0.182
0.18
51
12.75
2.80
0.392
0.368
- --
0.02
52
13.00
2.90
0.406
0.362
- --
0.04
53
13.25
3.40
0.476
0.357
- --
0.12
54
13.50
3.40
0.476
0.351
- --
0.12
55
13.75
2.30
0.322
0.346
0.161
0.16
56
14.00
2.30
0.322
0.341
0.161
0.16
57
14.25
2.70
0.378
0.336
- --
0.04
58
14.50
2.60
0.364
0.330
- --
0.03
59
14.75
2.60
0.364
0.325
- --
0.04
60
15.00
2.50
0.350
0.320
- --
0.03
61
15.25
2.40
.0.336
0.315
- --
0.02
62
15.50
2.30
0.322
0.311
- --
0.01
63
15.75
1.90
0.266
0.306
0.133
0.13
64
16.00'
1.90
0.266
0.301
0.133
0.13
65
16.25
0.40
0.056
0.297
0.028
0.03
66
16.50
0.40
0.056
0.292
0.028
0.03
67
16.75
0.30
0.042
0.288
0.021
0.02
68
17.00
0.30
0.042
0.283
0.021
0.02
69
17.25
0.50
0.070
0.279
0.035
0.03
70
17.50
0.50
0.070
0.275
0.035
0.03
71
17.75
0.50
0.070
0.271
0.035
0.03
72
18.00
0.40
0.056
0.267
0.028
0.03
73
18.25
0.40-
0.056
0.263
0.028
0.03
74
18.50
0.40
0.056
0.259
0.028
0.03
75
18.75
0.30
0.042
0.255
0.021
0.02
76
19.00
0.20
0.028
0.,252
0.014
0.01
77
19.25
0.30
0.042
0.248
0.021
0.02
78
19.50
0.40
0.056
0.245
0:028
0.03
79
19.75
0.30
0.042
0.241
0.021
0.02
80
20.00
0.20
0.028
0.238
0.014
0.01
81
20.25
0.30
0.042
0.235
0.021
.0.02
82
20.50
0.30
0.042
0.232
0.021
0.02
83
20.75
0.30
0.042
0.229
0.021
0.02
84
21.00
0.20
0.028
0.226
0.014
0.01
85
21..25
0.30
0.042
0.223
0.021
0.02
86
21.50
0.20
0.028
0.221
0.014
0.01
87
21.75
0.30
0.042
0.218
0.021
0.02
88
22.00
0.2b
0.028
0.216
0.014
0.01
89
22.25
0.30
0.042
0.214
0.021
0.02
90
22.50
0.20
0.028
0.212
0.014
0.01
91
22.75
0.20
0.028
0.210
0.014
0.01
92
23.00
0.20
0.028
0.209
0.014
0.01
93
23.25
0.20
0.028
0.207
0.014
0.0.1
94
23.50
0.20
0.028
0.206
0.014
0.01
95
23.75.
0.20
0.028
0.205
0.014
0.01
96 24.00 0.20 0.028 0.204 0.014 0.01
Sum = 100.0 Sum = 5.6
Flood volume = Effective rainfall 1.39(In)
times area 4.8(Ac.) /[(In) /(Ft.)] = 0.6(Ac.Ft)
Total soil loss = 2.11(In)
Total soil loss = 0.851(Ac.Ft)
Total rainfall = 3.50(In)
Flood volume = 24403.8 Cubic Feet
Total soil loss = 37087.8 Cubic Feet
--------------------------------------------------------------------
Peak flow rate of this hydrograph = 0.783(CFS)
--------------------------------------------------------------------
+++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
24 - H O U R S T O R M
R u n o f f H y d r o g r a p h
--------------------------------------------------------------------
Hydrograph in 15 Minute intervals ((CFS))
---------------------------
Time(h+m) Volume Ac.Ft Q(CFS)
0 +15
0.0002
0.01
0 +30
0.0013
0.05
0 +45
0.0030
0.08
1+ 0
0.0050
0.10
1 +15
0.0073
0.11
1 +30
0.0095
0.11
1 +45
0.0116
0.10
2+ 0
0.0139
0.11
2 +15
0.0165
0.13
2 +30
0.0192
0.13
2 +45
0.0221
0.14
3+ 0
0.0254
0.16
3 +15
0.0288
0.16
3 +30
0.0322
0.17
3 +45
0.0357
0.17
4+ 0
0.0394
0.18
4 +15
0.0434
0.19
4 +30
0.0476
0.21
4 +45
0.0523
0.23
5+ 0
0.0572
0.24
5 +15
0.0623
0.25
5 +30
0.0669
0.23
5 +45
0.0719
0.24
6+ 0
0.0773
0.26
6 +15
0.0829
0.27
6 +30
0.0890
0.29
6 +45
0.0953
0.31
7+ 0
0.1021
0.33
7 +15
0.1090.
0.33
7 +30
0.1161
0.34
7 +45
0.1237
0.37
8+ 0
0.1319
0.40
8 +15
0.1409
0.44
8 +30
0.1509
0.48
8 +45
0.1612
0.50
9+ 0
0.1722
0.53
9 +15
0.1840
0.57
9 +30
0.1969
0.62
9 +45
0.2106
0.66
10+ 0
0.2250
0.70
10 +15
0.2392
0.69
10 +30
0.2512
0.58
-----------------------------------------
0 2.5 5.0 7.5 10.0
----------7-----------------------------
Q I I I I
Q I I I I
Q I I I I
Q
Q I I I I
Q I I I I
Q I I I I
Q I I I I
QV I I I I
QV I I I I
QV I I I I
QV I I I I
Q V I I I I
Q V I I I I
Q V I I I I
Q V I I I I
Q V I I I I
Q V I I I I
Q V I I I I
Q V I I I I
Q V I I I I
Q V I I I I
Q V I I I I
IQ V I I I I
IQ V I I I I
IQ V I I I I
IQ V I I I I
IQ V I I I I
IQ V I I I I
IQ V I I I I
IQ V I I I I
IQ VI I I I
IQ V I I I
IQ V I I I
I Q IV I I I
I Q I V I ! I
I Q I V I I I
I Q I V I I I
I Q I V I I I
I Q I V I I I
I Q I V I I I
I Q I V I I I
..
J
10 +45
0.2630
0.57
1 Q I
V I I I
11+ 0
0.2763
0.64
1 Q I
VI I I
11 +15
0.2900
0.66
1 Q I
V I I
11 +30
0.3034
0.65
1 Q I
IV I I
11 +45
0.3166
0.64
1 Q I
I V I I
12+ 0
0.3292
0.61
1 Q I
I V I I
12 +15
0.3427
0.66
I Q I
I V I
12 +30
0.3589
0.78
1 Q I
I V ( I
12 +45
0.3735
0.71
1 Q I
I V I I
13+ 0.
0.3809
0.36
IQ I
I V I I
13 +15
0.3883
0.36
IQ I
I V I I
13 +30
0.3988
0.51
1 Q I
I V I I
13 +45
0.4111
0.59
1 Q I
I VI I
14+ 0
0.4256
0.70
1 Q I
I V I
14 +15
0.4390
0.65
1 Q 1
1 V
14 +30
0.4465
0.36
IQ I
I IV I
14 +45
0.4519
0.26
IQ I
I I V I
15+ 0
0.4565
0.22
Q I
I I V
15 +15
0.4602
0.18
Q I
I I V I
15 +30
0.4628
0.13
Q I
I I V I
15 +45
0.4667
0.19
Q I
I I V I
16+ 0
0.4764
0.47
IQ I
I I V 1
16 +15
0.4861
0.47
IQ I
I I V 1
16 +30
0.4914
.0.26
IQ I
I I V I
16 +45
0.4953
0.19
Q I
i I V I
17+ 0
0.4983
0.14
Q I
i I V I
17 +15
0.5011
0.14
Q I
I I V I.
17 +30
0.5045
0.16
Q I
I I V I
17 +45
0.5079
0.17
Q I
I I V 1
18+ 0
0.5112
0.16
Q I
I I V 1
18 +15
0.5142
0.15
Q I
I I V I
18 +30
0.5171
0.14
Q I
I I V I
18 +45
0.5199
0.13
Q I
I I V I
19+ 0
0.5221
0.11
Q I
I I V I
19 +15
0.5240
0.09
Q I
I I V I
19 +30
0.5262
0.11
Q I
I I V I
19 +45
0.5287
0.12
Q I
I I V 1
20+ 0
0.5308
0.10
Q I
I I V I
20 +15
0.5326
0.09
Q (
I I V 1
20 +30
0.5346
0.10
Q I
I I V I
20 +45
0.5367
0.10
Q I
I I V I
21+ 0
0.5387
0.10
Q I
l I V I
21 +15
0.5404
0.09
Q I
I I V I
21 +30
0.5423
0.09
Q I
I I V I
21 +45
0.5440
0.08
Q I
I I V 1
22+ 0
0.5458
0.09
Q I
I I V I
22 +15
0.5475
0.08
Q I
I ! VI
22 +30
0.5494
0.09
Q I.
I I VI
22 +45
0.5509
0.08
Q I
I I VI
23+ 0
0.5524
0.07
Q I
I I VI
23 +15
0.5539
0.07
Q I
I I VI
23 +30.
0.5553
0.07
Q I
I I VI
23 +45
0.5567
0.07
Q I
I I VI
24+ 0
0.5581
0.07
Q I
I I V1,
24 +15
0.5593
0.06
Q 1
I I VI
24 +30
0.5598
0.02
Q I
I I VI
24 +45
0.5600
b:01
Q I
I I VI
25+ 0
0.5601
0.01
Q I
I I VI
25 +15
0.5602
0.00
Q I
I I VI
25 +30
0.5602
0.00
Q I
I I VI
25 +45
------------=----------------------------------------------------
0.5602
0.00
Q I
I I V
- - - - --
r
LE
` - 01 T
^439.2 43&7
L7-9 438 4375
1 • 437.2
.
PIP g
440.9 • 9
441.6 436.1 1 436.
437.5
•435.3 •430.2 •4389 •437.5 437.3 II •43 �C
1 .438.6 4383 438.
439.5 439.8 4
` v 1& p 75
1 v437.3 _ 7.1
437.3 437.3
437.4 •4�'2 - .8 y
• "437.9 " 43
9
3 :37.2
' 7.1 2
7.1
.5 " 6 383 4 7 4 "4387 .1 •9 2 • 37.3
437.5
5.5 r•1 • .4 7.1
.3 .5
389 4 437. • 5 " S83 437.2
■
7.5 •B •.9 ■ 1 " 6 37.1
v
437. d�
g 1 " 73 .4 436 4.64 .6
•
s
5 4 4 4 2 i
37.4 " " O
1 1 p
7•` v43 •4 .2 436.8 438.4 ..
138.3
4 .5 C 7.4 "
■ "
'�` ,/ 7 435 6
V 7.6 3 436. 436.6
438
. "•g K5 437 • " 37.4 x •5 • 7.3 . 37.1 - 4355
KA . 1 37.4 '2 `t35.B
36.4 "4
■
435.
1 .3
437.9 • 4 " 7.3 1,3 2
" • e
A 4367 31.1 437. • 436.1 K g 4 56
4 7.4
437.4• 7.4 436.4 436.2 435
43E 2 •
4356
43&5 "
=glg 7.1
V 5
7.4 DIEIEN: & 6-WA
4373 436.5 436.1 OEPl11: 5.0
•1• 43.3 6 5.2 •435.4 CAF4GlY" 5,3p
i
vt " 73
438
V 43 4
u " 05
DIRT
437.5 t.3- X436.3" •4353
_
436.1 • "436. B ' .0
2 311
B "4353
4351 435.3 " .
" 9 • .4 •434.3 434.4
7 4.5.:'9 434.5 '.
1 \ 1 \1 .B - /'1436.7n
438.1 4354 9 434.9
4355 • 1
B • �
3 r-d36. 2 .8
I•
•4`15..1 .9 4351 434.8•
435,2
4 B V 3 435.7 • +y
DIRT .B i
I 436'
" 437.3
135.6 1 • 5.3 .9
I 435.4 434.3'
P •434.6 • .9 435.
• • y .
' Q • 4
434.6 DIRT
7 71
5.9 43L.4•
8
434.4
�Yo.4 •434.1 •434.2 8
cl
.3 • 6 1M
•434.2,i
a -
� \e
40' 0 Q. BO' 120'
SCALE: 1 INCH = 40 FEET
LEGEND
mm WAM SUB mu num
IOIm 669 w Aflm
PREPARED FOR:
DAVID MAMMON DESIGNS
6541 Ndlynood &.d.
S, 20.7
Los Angeles, Co. 80028
PREPARED BY: (( j�
o m) DE31 _ 01 I G 92280 (700) 341-am
V�I111g I11 U`� -�II III I1gpY�l1��A V,VIH Gar„
•O"L�eO011HIN0��{AIO4pINNY ,�x (lro) sm rye
CITY OF INDIO, CA SHEET NO.
TENTATNE PARCEL N0. 333848 OF 1 SHM
FILE NO.
FOR W.O.
9200
3
TRNLER •
438 i
478.3 •
i
&2
437.4 4
437.3 �T�
• 435.5 •
•438.7 C 4'
-436.8 S
438.2 1
1,
5 •
4355 i
• 435.8
DIRT
1.7 437.6 4
437.2 ASPH 436.9 4
438.7 1
10
1
it
"436.2 1
{
P
025.* CF
Dix IR
PILE I " 438.8 .
.
435.2 4
4353':
436.4
4385
438.5 •438.5 .2 4
436.6 •
•435.5
" 4
4353 1
6 4
435.1
" L
L
•438.2 ,
,. 1
11
436.2 .
437.1
.6 •
•4355
8 4
N
o R
• v
R
v •7
436.1 - 5
5 .
R
.
438.7 P
P °
° L
LE •
• .2 •
•4351 4
4353 °
°
437.
2 3
4355• •
• 2
3
1
5 4
436.6 4
43 M5 •
436.1
•4357
4 B
PI "
B
B" n
5
9• .
.g 4
43 6
6 4
4355 4
435.1 r
r
N
a -
� \e
40' 0 Q. BO' 120'
SCALE: 1 INCH = 40 FEET
LEGEND
mm WAM SUB mu num
IOIm 669 w Aflm
PREPARED FOR:
DAVID MAMMON DESIGNS
6541 Ndlynood &.d.
S, 20.7
Los Angeles, Co. 80028
PREPARED BY: (( j�
o m) DE31 _ 01 I G 92280 (700) 341-am
V�I111g I11 U`� -�II III I1gpY�l1��A V,VIH Gar„
•O"L�eO011HIN0��{AIO4pINNY ,�x (lro) sm rye
CITY OF INDIO, CA SHEET NO.
TENTATNE PARCEL N0. 333848 OF 1 SHM
FILE NO.
FOR W.O.
9200
.
ff ..
' �.
$.
.. � "�
.
ff ..
' �.
$.
f
.` `
s � .,
TABLE OF CONTENTS
GENERAL DISCUSSION
c. HYDROLOGIC METHODOLOGY
The Rational Method,: as described in the Riverside County Hydrology Manual, was used to
calculate the.existing.peak flows from a 10 -year storm frequency..The hydrology calculations,.
were conducted through the use of "CivilDesign" hydrology. computer program by CivilDesign
Corporation. The hydrology calculations are based on Soil Group A, (Sandy Loam / Loamy
Sand) —The selection of the. soil type .is based on .Percolation Testing .Technical Memorandum '
from GeoPentech (September. 22; 2004). Also, in order to take into account :the effect of existing
dry wells and sand filters within the, study area, an impervious percentage of 65% is used in the
CivilDesign. program:..
The attached hydrology, inap depicts the accumulated runoff for the total drainage area flowing to
the Calle Tampico drainage system.
HYDROLOGIC CONDITIONS
a. EXISTING CONDITIONS
The study urea is approximately.25.6 acres with a 10 7-year frequency storm runoff of 41.5 cfs. An
off -site drainage area of 48.5 acres, located westerly and basically upstreamof the -study area; is
contributing to the drainage area with a 10 =year frequency storm runoff of 70.9 cfs. The study
area is manly. occupied by commercial buildings. Ground surface cover consists of existing
as phalt concrete pavements and some landscaping. The delineation of the drainage areas is
-shown in Downtown, Drainage Study Hydrology Map presented in this report:
b:.. EXISTING SITE DRAINAGE
This study analyzes these two major drainage _areas thatdrain by sheet flow then street flow
towards the north and east and discharge into Calle Tampico. The first area is the off -site area
west of the downtown area. This* area drains to Avenida Navarro and Avenida Bermudas .
towards the north and discharges. into Calle. Tampico.. The off -site area consists of residential
development, commercial areas and La Quinta Village Park. The drainage system does not
include catch basins or pipes. Dry wells and local retention areas exist in the park. It is assumed
that the.runoff water drains to those dry wells then infiltrates into the soil.
The second major'area is the. downtown area that'drains towards Desert C1ub.Drive;.then'.drains
towards the north and discharges into Calle Tampico. The. downtown area consists of
commercial sites ( retail) and somme residential development. The drainage inthis area is mostly
sheet flow into local dry wells,, sand filters and retention basins, then street flows towards Desert
Club Drive.. The-street' drainage. system does not include catch basins 'in this area.: .
M:\ ILAQOIO 102\ENGR\DESIGNVMR\Drainage Study Report.doc
M:\IL-AQOIOIO2\ENGR\DESIGN\HYDR\Drainage Study Report:doc
a. OFF -SITE RUNOFF HYDROLOGIC CALCULATIONS
hil
MA ILAQ0I0l02\ENGR IDESIGMHYDR\Drainage Study Report.doc
Riverside County Rational Hydrology Program
CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2005 Version 7.1
Rational Hydrology Study Date: 12/13/07 File:LAQ10YR.out
------------------------------- ------------------------------------------
* * * * * * * ** Hydrology Study Control Information * * * * * * * * **
English (in -lb) Units used in.input data file
Offsite Area, 10 -yr Storm.
Program License Serial Number 6124
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
Storm event,(year) = 10.00 Antecedent Moisture Condition = 2
2 year, 1 hour precipitation = 0.700(In.)
100 year, 1 hour precipitation = 1.600(In.)
Storm event year = 10.0
Calculated rainfall intensity data:
1 hour intensity '= 1.070(In /Hr)
Slope of intensity duration curve = 0.5900
+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 2.000 to Point /Station 4.000
* * ** INITIAL AREA EVALUATION * * **
Initial area flow distance = 630.000(Ft.)
Top (of initial area) elevation = 61.000(Ft.)
Bottom (of initial area) elevation = 55.000(Ft.)
Difference in elevation = 6.000(Ft.)
Slope = 0.00952 s(percent)= 0.95
TC = k(0.370) *[(length ^3) /(elevation change)] ^0.2
Initial area time of concentration = 12.364 min.
Rainfall intensity = 2.718(In /Hr) for a 10.0 year storm
CONDOMINIUM subarea type
Runoff Coefficient = 0.739
Decimal fraction' soil group A = 1.000
Decimal fraction soil group.B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.350; Impervious fraction = 0.650
Initial subarea runoff = 7.233(CFS)
Total initial stream area = 3.600(Ac.)
Pervious area fraction = 0.350
+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + ++ + + + + + + + + + + + ++
Process from Point /Station 4.000 to Point /Station 6.000
* * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * **
Top of street segment elevation = 55.000(Ft.)
End of street segment elevation = 54.000(Ft.)
Length of street segment = 250.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 16.000(Ft.)
Distance from crown to crossfall grade break = 14.000(Ft
Slope from gutter to grade break (v /hz) = 0.020
Slope from grade break to crown (v /hz) = 0.020
Street flow is on (2) side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v /hz) = 0.020
Gutter.width = 2.000(Ft.)
Gutter hike from flowline = 1.920(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
Depth of flow = 0.447(Ft.), Average velocity = 1
Note: depth of flow exceeds.top of street crown.
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 16.000(Ft.)
Flow velocity = 1.92(Ft /s)
Travel time = 2.17 min. TC = 14.53 min.
Adding area flow to street
CONDOMINIUM subarea type
Runoff Coefficient = 0.732
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.350; Impervious fraction
Rainfall intensity = 2.471(In /Hr) for a 10.0
Subarea runoff = 6.870(CFS) for 3.800(AC.)
Total runoff = 14.103(CFS) Total area =
Street flow at end of street = 14.103(CFS)
Half street flow at end of street = 7.052(CFS)
Depth of flow = 0.478(Ft.), Average velocity = 2
Note: depth of flow exceeds,top of street crown.
Flow width (from curb towards crown)= 16.000(Ft.)
10.765(CFS)
923(Ft /s)
= 0.650
year storm
7.400(Ac.)
141(Ft /s)
Process from Point /Station 6.000 to Point /Station 8.000
* * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * **
Top of street segment elevation = 54.000(Ft.)
End of street segment elevation = 53.000(Ft.)
Length of street segment = 250.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 16.000(Ft.
Distance from crown to crossfall grade break = 14
Slope from gutter to grade break (v /hz) = 0.020
Slope from grade break to crown (v /hz) = 0.020
Street flow is on (2] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v /hz) = 0.020
Gutter width = - 2.000(Ft.)
Gutter hike from flowline = 1.920(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
Depth of flow = 0.508(Ft.), Average velocity =
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property =
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 16.000(Ft.)
Flow velocity = 2.30(Ft /s)
Travel time = 1.81 min. TC.= 16.34 min.
Adding area flow to street
CONDOMINIUM subarea type
Runoff Coefficient = 0.726
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group.0 = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
000(Ft.)
17.340(CFS)
303(Ft /s)
0.38(Ft.)
Pervious area fraction = 0.350; Impervious fraction = 0.650
Rainfall intensity = 2.306(In /Hr) for a 10.0 year storm
Subarea runoff = 6.363(CFS) for 3.800(Ac.)
Total runoff = 20.467(CFS) Total area = 11.200(Ac.)
Street flow at end of street = 20.467(CFS)
Half street flow at end of street 10.233(CFS)
Depth of flow = 0.539(Ft.), Average velocity = 2.374(Ft/s)
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property = 1.97(Ft.)
Flow width (from curb towards crown)= 16.000(Ft.)
++++++++++++++++++++++++++++++'+++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 8.000 to Point /Station 10.000
* * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * **
Top of street segment elevation = 53.000(Ft.)
End of street segment elevation = 51.000(Ft.)
Length of street segment = 250.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 16.000(Ft.)
Distance from crown to crossfall grade break = 14.000(Ft.)
Slope from gutter to grade break (v /hz) = 0.020
Slope from grade break to crown (v /hz) = 0.020
Street flow is on [2) side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v /hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 1.920(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 23.550(CFS)
Depth of flow = 0.500(Ft.), Average velocity = 3.234(Ft/s)
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property = 0.00(Ft.)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 16.000(Ft.)
Flow velocity = 3.23(Ft /s)
Travel time = 1.29 min. TC = 17.63 min.
Adding area flow to street
CONDOMINIUM subarea type
Runoff Coefficient = 0.723
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.350; Impervious fraction = 0.650
Rainfall intensity = 2.205(In /Hr) for a 10.0 year storm
Subarea runoff = 6.056(CFS) for 3.800(Ac.)
Total runoff = 26.522(CFS) Total area = 15.000(Ac.)
Street flow at end of street = 26.522(CFS)
Half street flow at end of street = 13.261(CFS)
Depth of flow = 0.523(Ft.), Average velocity = 3.303(Ft /s)
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property = 1.13(Ft.)
Flow width (from curb towards crown)= 16.000(Ft.)
+++++++++++++++++++++++++++++++++++++++ + + + + + + + ++ + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 10.000 to Point /Station 12.000
* * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * **
Top of street segment elevation = 51.000(Ft.)
End of street segment elevation = 50.000(Ft.)
Length of street segment = 250.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 16.000(Ft.)
Distance from crown to crossfall grade break = 14.000(Ft.)
Slope from gutter to grade break (v /hz) = 0.020
Slope from grade break to crown (v /hz) = 0.020
Street flow is on (2) side(s) of the street
Distance from curb to property line = 10.000(Ft.).
Slope from curb to property line (v /hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 1.920(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 28.484(CFS)
Depth of flow = 0.606(Ft.), Average velocity = 2.536(Ft/s)
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property = 5.30(Ft.)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 16.000(Ft.)
Flow velocity = 2.54(Ft /s)
Travel time =. 1.64 min. TC = 19.27 min.
Adding area flow to street
CONDOMINIUM subarea type
izmnff rnaffiriant = n_719
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.350; Impervious fraction = 0.650
Rainfall intensity = 2.092(In /Hr) for a 10.0 year storm
Subarea runoff = 3.759(CFS) for 2.500(Ac.)
Total runoff = 30.281(CFS) Total area = 17.500(Ac.)
Street flow at end of street = 30.281(CFS)
Half street flow at end of street = 15.140(CFS)
Depth of flow = 0.619(Ft.), Average velocity = 2.569(Ft/s)
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property 5.94(Ft.)
Flow width (from curb towards crown)= 16.000(Ft.)
+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + ++ + + + + + + + + + + + + + ++ + ++
Process from Point /Station 12.000 to Point /Station 14.000
* * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** , ,
Top of street segment elevation = 50.000(Ft.)
End of street segment elevation = 46.000(Ft.)
Length of street segment = 575.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 20.000(Ft.
Distance from crown to crossfall grade break = 18
Slope from gutter to grade break (v /hz) = 0.020
Slope from grade break to crown (v /hz) = 0.020
Street flow is on (2] side(s) of the street
Distance from curb to property line = ,13.000(Ft.)
Slope from curb to property line (v /hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 1.920(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
Depth of flow = 0.571(Ft.), Average velocity =
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property =
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 20.000(Ft.)
Flow velocity = 3.00(Ft /s)
Travel time = 3.19 min. TC = 22.47 min.
000(Ft.)
31.588(CFS)
000(Ft /s)
3.55 (Ft.).
Adding area flow to street
CONDOMINIUM subarea type
Runoff Coefficient = 0.712
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D =0.000
RI index for soil(AMC,2) = 32.00
Pervious area fraction = 0.350; Impervious fraction = 0.650
Rainfall intensity = 1.911(In /Hr) for a 10.0 year storm
Subarea runoff = 2.448(CFS) for 1.800(AC.)
Total runoff = 32.729(CFS) Total area = 19.300(Ac.)
Street flow at end of street = 32.729(CFS)
Half street flow at end of street = 16.365(CFS)
Depth of flow = 0.577(Ft.), Average velocity = 3.029(Ft /s)
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property = 3.84(Ft.)
Flow width (from curb towards crown)= 20.000(Ft.)
+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 12.000 to Point /Station 14.000
* * ** CONFLUENCE OF MAIN STREAMS * * **
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 19.300(Ac.)
Runoff from this stream = 32.729(CFS)
Time of concentration = 22.47 min.
Rainfall intensity = 1.911(In /Hr)
Program is now starting with Main Stream No. 2
+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 13.000 to Point /Station 14.000
* * ** INITIAL AREA EVALUATION * * **
Initial area flow distance = 800.000(Ft.)
Top (of initial area) elevation = 51.000(Ft.)
Bottom (of initial area) elevation = 45.000(Ft.)
Difference in elevation = 6.000(Ft.)
Slope = 0.00750 s(percent)= 0.75
TC = k(0.370) *[(length ^3) /(elevation change)) ^0.2
Initial area time of concentration = 14.270 min.
Rainfall intensity = 2.497(In /Hr) for a 10.0 year storm
CONDOMINIUM subarea type
Runoff Coefficient = 0.733
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.350; Impervious fraction = 0.650
Initial subarea runoff = 4.025(CFS)
Total initial stream area = 2.200(Ac.)
Pervious area fraction = 0.350
++++++++++++++++++++++++++++++++++++++++ + + + +. + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 13.000 to Point /Station 14.000
* * ** CONFLUENCE OF MAIN STREAMS * * **
The following data inside.Main Stream is listed:
In Main Stream number: 2
Stream flow area = 2.200(AC.)
Runoff from this stream = 4.025(CFS)
Time of concentration = 14.27 min.
Rainfall intensity = 2.497(In /Hr)
Summary of stream data:
"Stream Flow rate TC Rainfall Intensity
No. (CFS) (min), (In /Hr)
1 32.729 22.47 1.911
2 4.025 14.27 2.497
Largest stream flow has longer time of concentration
Qp = 32.729 + sum of
Qb Ia /Ib_
4.025 * 0.765 = 3.080
Qp = 35.809
Total of 2 main streams to confluence:
Flow rates before confluence point:
32.729 4.025
Area of streams before confluence:
19.300 2.200
Results of confluence:
Total flow rate = 35.809(CFS)
Time of concentration = 22.466 min.
Effective stream area after confluence = 21.500(Ac.)
Process from Point /Station 14.000,to Point /Station 16.000
* * ** STREET FLOW TRAVEL TIME,+ SUBAREA FLOW ADDITION * * **
Top of street segment elevation = 45.000(Ft.).
End of street segment elevation =. 42.000(Ft.)
Length of street segment = 725.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v /hz) = 0.020
Slope from grade break to crown (v /hz) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 13.000(Ft.)
Slope from curb to property line (v /hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 1.920(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 37.195(CFS)
Depth of flow = 0.647(Ft.), Average velocity = 2.585(Ft/s)'
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property = 7.34(Ft.)
Streetflow hydraulics at midpoint of. street travel:
Halfstreet flow width = 20.000(Ft.)
Flow velocity = 2.58(Ft /s)
Travel time = 4.67 min. TC = 27.14 min.
Adding area flow to street
CONDOMINIUM subarea type
Runoff Coefficient = 0.704
Decimal fraction soil group A = 1.000
Decimal fraction soil group B. = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.350; Impervious fraction = 0.650
Rainfall intensity = 1.709(In /Hr) for a 10.0 year storm
Subarea runoff = 2.645(CFS) for 2.200(Ac.)
Total runoff = 38.454(CFS) Total area = 23.700(Ac.)
Street flow at end of street = 38.454(CFS)
Half street flow at end of street = 19.227(CFS)
Depth of flow = 0.653(Ft..), Average velocity = 2.607(Ft /s)
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property = 7.67(Ft.)
Flow width (from curb towards crown)= 20.000(Ft.)
+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + ++ + + + + + + + + + + + + + + + + ++
Process from Point /Station 14.000 to Point /Station 16.000
* * ** CONFLUENCE OF MAIN STREAMS * * **
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 23.700(AC.)
Runoff from this stream = 38.454(CFS)
Time of concentration = 27.14 min.
Rainfall intensity = 1.709(In /Hr)
Program is now starting with Main Stream No. 2
+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 32.000 to Point /Station 34.000
* * ** INITIAL AREA EVALUATION * * **
Initial area flow distance = 650.000(Ft.)
Top (of initial area) elevation = 56.000(Ft.)
Bottom (of initial area) elevation = 50.000(Ft.)
Difference in elevation = 6.000(Ft.)
Slope = 0.00923 s(percent)= 0.92
TC = k(0.370) *[(length ^3) /(elevation change)] ^0.2
Initial area time of concentration = 12.599 min.
Rainfall intensity = 2.688(in /Hr) for a 10.0 year storm
CONDOMINIUM subarea type
Runoff Coefficient = 0.738
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.350; Impervious fraction = 0.650
Initial subarea runoff = 1.985(CFS)
Total initial stream area = 1.000(Ac.)
Pervious area fraction = 0.350
+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 34.000 to Point /Station 36.000
* * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * **
Top of street segment elevation = 50.000(Ft.)
End of street segment elevation = 45.000(Ft.)
Length of street segment = 650.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v /hz) = 0.020
Slope from grade break to crown (v /hz) = 0.020
Street flow is on [2) side(s) of the street
Distance from curb to property line = 13.000(Ft.)
Slope from curb to.property line (v /hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 1.920(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 2.688(CFS)
Depth of flow = 0.280(Ft.), Average velocity = 1.767(Ft /s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 8.004(Ft.)
Flow velocity = 1.77(Ft /s)
Travel time = 6.13 min. TC = 18.73 min.
Adding area flow to street
CONDOMINIUM subarea type
Runoff Coefficient = 0.720
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.350; Impervious fraction = 0.650
Rainfall intensity = 2.127(In /Hr) for a 10.0 year storm
Subarea runoff = 1.225(CFS) for 0.800(AC.)
Total runoff.= 3.210(CFS) Total area = 1.800(AC.)
Street flow at end of street = 3.210(CFS)
Half street flow at end of street = 1.605(CFS)
Depth of flow = 0.294(Ft.), Average velocity = 1.837(Ft /s)
Flow width (from'curb towards crown)= 8.680(Ft.)
+++++++++++++++++++++++++++++++++++++++ + + + + + ++ + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 36.000 to Point /Station 16.000
* * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * **
Top of street segment elevation = 45.000(Ft.)
End of street segment elevation = 42.000(Ft.)
Length of street segment = 650.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v /hz) = 0.020
Slope from grade break to crown (v /hz) = 0.020
Street flow is on (2] side(s) of the street
Distance from curb to property line = 13.000(Ft.)
Slope from curb to property line (v /hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 1.920(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 4.601(CFS)
Depth of flow = 0.347(Ft.), Average velocity = 1.639(Ft /s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 11.331(Ft.)
Flow velocity = 1.64(Ft /s)
Travel time = 6.61 min. TC = 25.34 min.
Adding area flow to street
CONDOMINIUM subarea type
Runoff Coefficient = 0.707
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.350; Impervious fraction = 0.650
Rainfall intensity = 1.780(In /Hr) for a 10.0 year storm
Subarea runoff = 2.641(CFS) for 2.100(AC.)
Total runoff = 5.851(CFS) Total area = 3.900(AC.)
Street flow at end of street = 5.851(CFS)
Half street flow at end of street = 2.925(CFS)
Depth of flow = 0.370(Ft.), Average velocity = 1.734(Ft /s)
Flow width (from curb towards crown)= 12.517(Ft.)
+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 36.000 to Point /Station 16.000
* * ** CONFLUENCE OF MAIN STREAMS * * **
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 3.900(AC.)
Runoff from this stream = 5.851(CFS)
Time of concentration = 25.34 min.
Rainfall intensity = 1.780(In /Hr)
Program is now starting with Main Stream No. 3
+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 20.000 to Point /Station 22.000
* * ** INITIAL AREA EVALUATION * * **
Initial area flow distance = 650.000(Ft.)
Top (of initial area) elevation = 55.000(Ft.)
Bottom (of initial area) elevation = 51.000(Ft.)
Difference in elevation = 4.000(Ft.)
Slope = 0.00615 s(percent)= 0.62
TC = k (0.370) *[(length ^3) /(elevation change)] ^0.2
Initial area time of concentration = 13.663 min.
Rainfall intensity = 2.562(In /Hr) for a 10:0 year storm
CONDOMINIUM subarea type
Runoff Coefficient = 0.735
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.350; Impervious fraction = 0.650
Initial subarea runoff = 6.776(CFS)
Total initial stream area = 3.600(Ac.)
Pervious area fraction = 0.350
+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + ++ + + + + + + + + + + + + + + + + + ++
Process from Point /Station 22.000 to Point /Station 26.000
* * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * **
Top of street segment elevation = 51.000(Ft.)
End of street segment elevation = 46.000(Ft.)
Length of street segment = 550.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 16.000(Ft.)
Distance from crown to crossfall grade break = 14.000(Ft.)
Slope from gutter to grade break (v /hz) = 0.020
Slope from grade break to crown (v /hz) = 0.020
Street flow is on [2) side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v /hz) = 0.020
Gutter width = 2.000(Ft.) '
Gutter hike from flowline = 1.920(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 11.246(CFS)
Depth of flow = 0.404(Ft.), Average velocity = 2.624(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 14.223(Ft.)
Flow velocity = 2.62(Ft /s)
Travel time = 3.49 min. TC = 17.16 min.
Adding area flow to street
CONDOMINIUM subarea type
Runoff Coefficient = 0.724
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.350; Impervious fraction = 0.650
Rainfall intensity = 2.240(In /Hr) for a 10.0 year storm
Subarea runoff = 8.759(CFS) for 5.400(Ac.)
Total runoff = 15.536(CFS) Total area = 9.000(Ac.)
Street flow at end of street 15.536(CFS)
Half street flow at end of street = 7.768(CFS)
Depth of flow = 0.443(Ft.), Average velocity = 2.849(Ft/s)
Note: depth of flow exceeds top of street crown.
Flow width (from curb towards crown)= 16.000(Ft.)
+++++++++++++++++++++++++++++++++++++++ ++ ++ + + + + + + + + + + + + + + + + + + + ++ + + + + ++
Process from Point /Station 24.000 to Point /Station 26.000
* * ** SUBAREA FLOW ADDITION * * **
UNDEVELOPED (good cover) subarea
Runoff Coefficient = 0.457
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimallfraction soil group D = 0.000
RI index for soil(AMC 2) = 38.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Time of concentration = 17.16 min.
Rainfall intensity = 2.240(In /Hr) for a 10.0 year storm
Subarea runoff = 6.853(CFS) for 6.700(Ac.)
Total runoff = 22.389(CFS) Total area = 15.700(Ac.)
+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /.Station 26.000 to Point /Station 28.000
* * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * **
Top of street segment elevation = 46.000(Ft.)
End of street segment elevation = 43.000(Ft.)
Length of street segment = 550.000(Ft.) -
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v /hz) = 0.020
Slope from grade break to crown (v /hz) = 0.020
Street flow is on [2) side(s) of the street
Distance from curb to property line = 13.000(Ft.)
Slope from curb to property line (v /hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 1.920(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 23.958(CFS)
Depth of flow = 0.546(Ft.), Average velocity = 2.551(Ft /s)
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property = 2.31(Ft.)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 20.000(Ft.)
Flow velocity = 2.55(Ft /s)
Travel time = 3.59 min. TC = 20.75 min.
Adding area flow to street
CONDOMINIUM subarea type
Runoff Coefficient = 0.715
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D.= 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.350; Impervious fraction = 0.650
Rainfall intensity = 2.002(In /Hr) for a 10.0 year storm
Subarea runoff = 3.152(CFS) for 2.200(Ac.)
Total runoff = 25.541(CFS) Total area = 17.900(Ac.)
Street flow at end of street = 25.541(CFS)
Half street flow at end of street = 12.770(CFS)
Depth of flow = 0.556(Ft.), Average velocity = 2.594(Ft/s)
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property = 2.81(Ft.)
Flow width (from curb towards crown)= 20.000(Ft.)
+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + ++ + + + + + + + + + + + + ++
Process from Point /Station 28.000 to Point /Station 16.000
* * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * **
Top of street segment elevation = 43.000(Ft.)
End of street segment elevation = 42.000(Ft.)
Length of street segment = 300.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 40.000(Ft.)
Distance from crown to crossfall grade break = 38.000(Ft.)
Slope from gutter to grade break (v /hz) = 0.020
Slope from grade break to crown (v /hz) = 0.020
Street flow is on [2) side(s) of the street
Distance from curb to property line = 12.000(Ft.)
Slope from curb to property line (v /hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 1.920(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 26.968(CFS)
Depth of flow = 0.616(Ft.), Average velocity = 2.037(Ft /s)
Warning: depth of flow exceeds top of curb
Distance that curb overflow reaches into.property = 5.82(Ft.)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 24.822(Ft.)
Flow velocity = 2.04(Ft /s)
Travel time = 2.45 min. TC = 23.21 min.
Adding area flow to street
CONDOMINIUM subarea type
Runoff Coefficient = 0.710
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.350; Impervious fraction = 0.650
Rainfall intensity = 1.875(In /Hr) for 10.0 year storm
Subarea runoff = 2.664(CFS) for 2.000(Ac.)
Total runoff = 28.204(CFS) Total area = 19.900(Ac.)
Street flow at end of street = 28.204(CFS)
Half street flow at end of street = 14.102(CFS)
Depth of flow = 0.625(Ft.), Average velocity = 2.052(Ft /s)
Warning: depth of flow exceeds top of curb
Distance that curb overflow reaches into property = 6.23(Ft.)
Flow width (from curb towards crown)= 25.226(Ft.)
+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 28.000 to Point /Station 16.000
* * ** CONFLUENCE OF MAIN STREAMS * * **
The following data inside Main Stream is listed:
In Main-Stream number: 3
Stream flow area = 19.900(Ac.)
Runoff from this stream = 28.204(CFS)
Time of concentration = 23.21 min.
Rainfall intensity = 1.875(In /Hr)
Summary of stream data:
Stream Flow rate TC Rainfall Intensity
No. (CFS) (min) (In /Hr)
1 38.454 27.14 1.709
2 5.851 25.34 1.780
3 28.204 23.21 1.875
Largest stream flow has longer time of concentration
Qp = 38.454 + sum of
Qb Ia /Ib
5.851 * 0.960 = 5.618
Qb Ia /Ib
28.204 * 0.912 = 25.714
Qp = 69.787
i
Total of 3 main streams to confluence:
Flow rates before confluence point:
38.454 5.851 28.204
Area of streams before confluence:
23.700 3.900 19.900
Results of confluence:
Total flow rate = 69.787(CFS)
Time of concentration = 27.140 min.
Effective stream area after confluence = 47.500(AC.)
+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 16.000 to Point /Station 38.000
* * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * **
Top of street segment elevation = 42.000(Ft.)
End of street segment elevation = 40.000(Ft.)
Length of street segment = 200.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 40.000(Ft.)
Distance from crown to crossfall grade break = 38.000(Ft.)
Slope from gutter to grade break (v /hiz) = 0.020
Slope from grade break to crown (v /hz) = 0.020
Street flow is on (2] side(s) of the street
Distance from curb to property line = 12.000(Ft.)
Slope from curb to property line (v /hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 1.920(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 70.449(CFS)
Depth of flow = 0.693(Ft.), Average velocity = 3.809(Ft /s)
Warning: depth of flow exceeds top of curb
Distance that curb overflow reaches into property = 9.63(Ft.)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 28.634(Ft.)
Flow velocity = 3.81(Ft /s)
Travel time = 0.88 min. TC = 28.02 min.
Adding area flow to street
CONDOMINIUM subarea type
Runoff Coefficient = 0.702
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000 .
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.350; Impervious fraction = 0.650
Rainfall intensity = 1.677(In /Hr) for a 10.0 year storm
Subarea runoff = 1.178(CFS) for 1.000(AC.)
Total runoff = 70.965(CFS) Total area = 48.500(Ac.)
Street flow at end of street = 70.965(CFS)
Half street flow at end of street = 35.482(CFS)
Depth of flow = 0.694(Ft.), Average velocity = 3.815(Ft /s)
Warning: depth of.flow exceeds top of curb
Distance that curb overflow reaches into property = 9.70(Ft.)
Flow width (from curb towards crown)= 28.704(Ft.)
End of computations, total study area = 48.50 (AC.)
The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.440
Area averaged RI index number = 32.8
b. STUDY AREA RUNOFF HYDROLOGIC CALCULATIONS
M:\ ILAQ010 102\ENGR\DESIGN\HYDR\Drainage Study Report.doc
Riverside County Rational Hydrology Program
CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2005 Version 7.1
Rational Hydrology Study Date: 12/13/07 File:lagl0yr.out
------------------------------------------------------------------------
********* Hydrology Study Control Information * * * * * * * * **
English (in -lb) Units used in input data file
-------------=----------------------------------------------------------
Study Area - Downtown, 10 -yr Storm
Program License Serial Number 6124
Rational Method.Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
Storm event (year) = 10.00 Antecedent Moisture Condition = 2
2 year, 1 hour precipitation = 0.700(In.)
100 year, 1 hour precipitation = 1.600(In.)
Storm event year = 10.0
Calculated rainfall intensity data:
1 hour intensity = 1.070(In /Hr)
Slope of intensity duration curve = 0.5900
+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 50.000 to Point /Station 52.000
* * ** INITIAL AREA EVALUATION * * **
Initial area flow distance = 600.000(Ft.)
Top (of initial area) elevation = 56.000(Ft.)
Bottom (of initial area) elevation = 51.000(Ft.)
Difference in elevation = 5.000(Ft.)
Slope = 0.00833 s(percent)= 0.83
TC = k(0.370) *[(length ^3) /(elevation change)] ^0.2
Initial area time of concentration = 12.454 min.
Rainfall intensity = 2.706(In /Hr) for a 10.0 year storm
CONDOMINIUM subarea type
Runoff Coefficient = 0.739
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.350; Impervious fraction = 0.650
Initial subarea runoff = 7.999(CFS)
Total initial stream area = 4.000(Ac.)
Pervious area fraction = 0.350
+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 52.000 to Point /Station 54.000
* * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * **
Top of street segment elevation = 51.000(Ft.)
End of street segment elevation = 47.000(Ft.)
Length of street segment .= 400.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 16.000(Ft.)
Distance from crown to crossfall grade break = 14.000(Ft.)
Slope from gutter to grade break (v /hz) = 0.020
Slope from grade break to crown (v /hz) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v /hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 1.920(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
Depth of flow = 0.412(Ft.), Average velocity = 2
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 14.613(Ft.)
Flow velocity = 2.80(Ft /s)
Travel time = 2.38 min. TC = 14.84 min.
Adding area flow to street
CONDOMINIUM subarea type
Runoff Coefficient = 0.731
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.350; Impervious fraction
Rainfall intensity = 2.441(In /Hr) for a 10.0
Subarea runoff = 9.096(CFS) for 5.100(Ac.)
Total runoff = 17.095(CFS) Total area =
Street flow at end of street = 17.095(CFS)
Half street flow at end of street = 8.547(CFS)
Depth of flow = 0.448(Ft.), Average velocity = 3
Note: depth of flow exceeds top of street crown.
Flow width (from curb towards crown)= 16.000(Ft.)
12.617(CFS)
797(Ft /s)
= 0.650
year storm
9.100(AC.)
046(Ft /s)
+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 54.000 to Point /Station 56.000
* * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * **
Top of street segment elevation = 47.000(Ft.)
End of street segment elevation = 45.000(Ft.)
Length of street segment = 250.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v /hz) = 0.020
Slope from grade break to crown (v /hz) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 13.000(Ft.)
Slope from curb to property line (v /hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 1.920(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 19.773(CFS)
Depth of flow = 0.485(Ft.), Average velocity = 2.867(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 18.245(Ft.)
Flow velocity = 2.87(Ft /s)
Travel time = 1.45 min. TC = 16.29 min.
Adding area flow to street
CONDOMINIUM subarea type
Runoff Coefficient = 0.726
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.350; Impervious fraction = 0.650
Rainfall intensity = 2.310(In /Hr) for a 10.0 year storm
Subarea runoff = 5.202(CFS) for 3.100(Ac.)
Total runoff = 22.296(CFS) Total area = 12.200(Ac.)
Street flow at end of street = 22.296(CFS)
Half street flow at end of street = 11.148(CFS)
Depth of flow = 0.503(Ft.), Average velocity = 2.941(Ft /s)
Warning: depth of flow exceeds top of curb
Distance that curb overflow reaches into property = 0.16(Ft.)
Flow width (from curb towards crown)= 19.159(Ft.)
+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 56.000 to Point /Station 58.000
* * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * **
Top of street segment elevation = 45.000(Ft.)
End of street segment elevation = 43.000(Ft.)
Length of street segment = 400.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v /hz) = 0.020
Slope from grade break to crown (v /hz) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 13.000(Ft.)
Slope from curb to property line (v /hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 1.920(In.)
Manning's N in gutter = 0.0150
Manning's N.from gutter to grade break 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 26.457(CFS)
Depth of flow = '0.569(Ft.), Average velocity = 2.536(Ft /s)
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property = 3.45(Ft.)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 20.000(Ft.)
Flow velocity = 2.54(Ft /s)
Travel time = 2.63 min. TC = 18.92 min.
Adding area flow to street
CONDOMINIUM subarea type
Runoff Coefficient = 0.720
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.350; Impervious fraction = 0.650
Rainfall intensity = 2.115(In /Hr) for a 10.0 year storm
Subarea runoff = 8.217(CFS) for 5.400(Ac.)
Total runoff = 30.513(CFS) _ Total area = 17.600(Ac.)
Street flow at end of street = 30.513(CFS)
Half street flow at end of street = 15.257(CFS)
Depth of flow = 0.593(Ft.), Average velocity = 2.632(Ft/s)
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property = 4.65(Ft.)
Flow width (from curb towards crown)= 20.000(Ft.)
+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 58.000 to Point /Station 60.000
* * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * **
Top of street segment elevation = 43.000(Ft.)
End of street segment elevation = 42.000(Ft.)
Length of street segment = 300.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break =. 18.000(Ft.)
Slope from gutter to grade break (v /hz) = 0.020
Slope from grade break to crown (v /hz) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 13.000(Ft.)
Slope from curb to property line (v /hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 1.920(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
33.429(CFS)
Depth of flow = 0.647(Ft.), Average velocity = 2.321(Ft
/s)
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property =
7.35(Ft.)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 20.000(Ft.)
Flow velocity = 2.32(Ft /s)
Travel time = 2.15 min. TC = 21.07 min.
Adding area flow to street
CONDOMINIUM subarea type
Runoff Coefficient = 0.715
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.350; Impervious fraction
= 0.650
Rainfall intensity = 1.984(In /Hr) for a 10.0
year storm
Subarea runoff.= 5.673(CFS) for 4.000(Ac.)
Total runoff = 36.186(CFS), Total area =
21.600(AC.)
Street flow at end of street = 36.186(CFS)
Half street flow at end of street = 18.093(CFS)
Depth of flow = 0.663(Ft.), Average velocity = 2.369(Ft/s)
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property =
8.14(Ft.)
Flow width (from curb towards crown)= 20.000(Ft.)
+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + ++ + + + + + + + ++
Process from Point /Station 60.000 to Point /Station 62.000
* * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * **
Top of street segment elevation = 42.000(Ft.)
End of street segment elevation = 40.000(Ft.)
Length of street segment = 400.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.
Slope from gutter to grade break (v /hz) = 0.020
Slope from grade break to crown (v /hz) = 0.020
Street flow is on (2) side(s) of the street
Distance from curb to property line = 13.000(Ft.)
Slope from curb to property line (v /hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 1.920(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
Depth of flow = 0.637(Ft.), Average velocity = 2
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property =
Streetflow'hydraulics at midpoint of street travel:
Halfstreet flow width = 20.000(Ft.)
Flow velocity = 2.81(Ft /s)
Travel time = 2.38 min. TC = 23.45 min.
Adding area flow to street
CONDOMINIUM subarea type
Runoff Coefficient = 0.710
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
000 (Ft
38.920(CFS)
805(Ft /s)
6.86(Ft.)
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 32.00
Pervious area fraction = 0.350; Impervious fraction = 0.650
Rainfall intensity = 1.863(In /Hr) for a 10.0 year storm
Subarea runoff = 5.291(CFS) for 4.000(Ac.)
Total runoff = 41.477(CFS) Total area 25.600(Ac.)
Street flow at end of street = 41.477(CFS)
Half street flow at end of street = 20.738(CFS)
Depth of flow = 0.650(Ft.), Average velocity = 2.852(Ft /s)
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.,
Distance that curb overflow reaches into property = 7.48(Ft.)
Flow width (from curb towards crown)= 20.000(Ft.)
End of computations, total study area = 25.60 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.350
Area averaged RI index number 32.0
}
L
c. STREETS AND CATCH BASIN CAPACITIES
M:\ 1LAQ0 10102\ENGR\DESIGN\HYDR\Drainage Study Report.doc
AVENIDA BERMUDAS CAPACITY
MA LAQ010 102\ENGR\DESIGMHYDR\Drainage Study Report.doc
CIVILCADD /CIVILDESIGN Engineering Software, (c) 2004 Version 7.0
-------------------------------------------------------------- - - - - --
Program License Serial Number 6124
-----------------------------------------------------------
* ** Street Flow Analysis * **
AVENIDA BERMUDAS
Upstream (headworks) Elevation = 0.710(Ft.)
Downstream (outlet) Elevation = 0.000(Ft.)
Runoff /Flow Distance = , 100.000(Ft.)
Maximum flow rate in channel(s) = 44.400(CFS)
-------------------------------------------------------------- - - - - --
Top of street segment elevation = 0.710(Ft.)
End of street segment elevation = 0.000(Ft.)
Length of street segment = 100.000(Ft.)
,Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 32.000(Ft.)
Distance from crown to crossfall grade break = 20.000(Ft.)
Slope from gutter to grade break (v /hz)'= 0.020
Slope from grade break to crown (v /hz) = 0.020
Street flow is on (2) side(s) of the street
Distance from curb to property line = 12.000(Ft.)
Slope from curb to property line (v /hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 1.920(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N.from grade break to crown = 0.0150
Half street cross section data points:
X- coordinate (Ft.) Y- coordinate (Ft.)
0.0000 0.7400 right of way
12.0000 0.5000 top of curb
12.0000 0.0000 flow line
14.0000 0.1600 gutter end
24.0000 0.3600 grade break
44.0000 0.7600 crown
Depth of flow = 0.638(Ft.)
Average velocity = 3.036(Ft /s)
Total flow rate in 1/2 street = 22.200(CFS)
Warning: depth'of flow exceeds top of curb
Distance that curb overflow reaches into property = 6.91(Ft.)
Streetflow hydraulics:
Halfstreet flow width (curb to crown) = 25.912(Ft.)
Average flow velocity = 3.04(Ft /s)
Channel including Gutter and area towards property line:
Flow Width = 8.912(Ft.) Flow Area = 1.594(Sq.Ft)
Velocity = 2.275(Ft /s) Flow Rate = 3.627(CFS)
Froude No. = 0.9480
Channel from outside edge of gutter towards grade break:
Flow Width = 10.000(Ft.) Flow Area = 3.782(Sq.Ft)
Velocity = 3.889(Ft/s) Flow Rate = 14.709(CFS)
Froude No. = 1.1143
Channel from grade break to crown:
Flow Width = I 13.912(Ft.) Flow Area = 1.935(Sq.Ft)
Velocity = 1.996(Ft /s) Flow Rate = 3.864(CFS)
Froude No. = 0.9432
Total flow rate in street = 44.400(CFS)
DESERT CLUB DRIVE CAPACITY
M:\ ILAQ010102 \ENGR\DESIGN\HYDR\Drainage Study Report.doc .
CIVILCADD /CIVILDESIGN Engineering Software, (c) 2004 Version 7.0
-------------------------------------------------------------- - - - - --
Program License Serial Number 6124
----------------------------------------------------
*** Street Flow Analysis * **
DESERT CLUB DRIVE
Upstream (headworks) Elevation = 0.500(Ft.)
Downstream (outlet) Elevation = 0.000(Ft.)
Runoff /Flow Distance = 100.000(Ft.)
Maximum flow rate in channel(s) = 41.500(CFS)
---------------------------------------------- - - - - --
Top of street segment elevation = 0.500(Ft.)
End of street segment elevation = 0.000(Ft.)
Length of street segment = 100.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 12.000(Ft.)
Slope from gutter to grade break (v /hz) = 0.020
Slope from grade break to crown (v /hz) = 0.020
Street flow is on [2) side(s) of the street
Distance from curb to property line = 12.000(Ft.)
Slope from curb to property line (v /hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 1.920(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Half street cross section data points:
X- coordinate (Ft.) Y- coordinate (Ft.)
0.0000 0.7400 right of way
12.0000 0.5000 top of curb
12.0000 0.0000 flow line
14.0000 0.1600 gutter end
20.0000 0.2800 grade break
32.0000 0.5200 crown
Depth of flow = 0.650(Ft.)
Average velocity = 2.852(Ft /s)
Total flow rate in 1/2 street = 20.750(CFS)
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property = 7.49(Ft.)
Streetflow hydraulics:
Halfstreet flow width (curb to crown) = 20.000(Ft.)
Average flow velocity = 2.85(Ft /s)
Channel including Gutter and area towards property line:
Flow Width = 9.486(Ft.) Flow Area = 1.700(Sq.Ft)
Velocity = 2.004(Ft /s) Flow Rate = 3.407(CFS)
Froude No. = 0.8345
Channel from outside edge of gutter towards grade break:
Flow Width = 6.000(Ft.) Flow Area = 2.578(Sq.Ft)
Velocity = 3.718(Ft /s) Flow Rate = 9.585(CFS)
Froude No. = 0.9994
Channel from grade break to crown:
Flow Width = 12.000(Ft.) Flow Area = 2.997(Sq.Ft)
Velocity = 2.589(Ft/s) Flow Rate = 7..758(CFS)
Froude No. = 0.9130
Total flow rate in street = 41.500(CFS)
CALLE TAMPICO AND CATCH BASIN CAPACITIES
M:\ ILAQ0 10102\ENGR\DESIGNUMR\Drainage Study Report.doc
CIVILCADD /CIVILDESIGN Engineering Software, (c) 2004 Version 7.0
-------------------------------------------------------------- - - - ---
Program License Serial Number 6124
-----------------------------------------------------
*** Street Flow +Inlet Analysis * **
CALLS TAMPICO
Upstream (headworks) Elevation = 0.120(Ft.)•
Downstream (outlet) Elevation = 0.000(Ft.)
Runoff /Flow Distance = 100.000(Ft.)
Maximum flow rate in channel(s) = 71.000(CFS)
----------------------------------------------------------- --- - - - - --
Top of street segment elevation = 0.120(Ft.)
End of street segment elevation = 0.000(Ft.)
Length of street segment = 100.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 40.000(Ft.)
Distance from crown to crossfall grade break = 38.000(Ft.)
Slope from gutter to grade break (v /hz) = 0.020
Slope from grade break to crown (v /hz) = 0.020
Street flow is on [1) side(s) of the street
Distance from curb to property line = 12.000(Ft.)
Slope from curb to property line (v /hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 1.920(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Half street cross section data points:
X- coordinate (Ft.) Y- coordinate (Ft.)
0.0000 0.7400 right of way
12.0000 0.5000 top of curb
12.0000 0.0000 flow line
14.0000 0.1600 gutter end
14.0000 0.1600 grade break
52.0000 0.9200 crown
CURB INLET TYPE STREET DRAIN, Opening Height = 8.000(In.)
Street Inlet Calculations:
Street flow in street inlet depression = 71.000(CFS)
Gutter depression depth = 4.000(In.)
Gutter depression width = 2.000(Ft.)
Depth of flow = 1.447(Ft.)
Average velocity = 2.357(Ft /s)
Total flow rate in 1/2 street = 71.000(CFS)
!!Warning: Water is above left or right bank elevations
U.S. DOT Hydraulic Engineering Circular No. 12 inlet calculations:
Street flow half width at start of inlet = 40.000(Ft.)
Flow rate in gutter section of street = Qw = 19.376(CFS)
Given inlet length L = 7.000(Ft.)
Ratio of frontal flow to total flow = EO = 0.2729
Street slope is less than 0.5% ,
Depth of flow indicates an orifice flow
condition exists for an opening height of 8.00(In.)
Using equation Qi = .67hL(2gd0) ^.5
Maximum inlet flow capacity = 26.478(CFS)
Half street cross section data points through curb inlet:
X- coordinate (Ft,) Y- coordinate (Ft.)
0.0000 1.0733 right of way
12.0000 0.8333 top of curb
12:0000 0.0000 flow line
14.0000 0.4933 gutter /depression end
14.0000 0.4933 grade break
52.0000 1.2533 crown
Remaining flow in street below inlets 44.522(CFS)
Depth of flow = 0.977(Ft.)
Average velocity = 1.962(Ft /s)
Total flow rate in 1/2 street = 44.522(CFS)
!!Warning: Water is above left or right bank elevations
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property = 23.86(Ft.)
Streetflow hydraulics:
Halfstreet flow width (curb to crown) = 40.000(Ft.)
Average flow velocity = 1.96(Ft /s)
Channel including Gutter and area towards property line:
Flow Width
= 14.000(Ft.)
Flow Area =
6.081(Sq.Ft)
Velocity =.
1.922(Ft /s)
Flow Rate =
11.686(CFS)
Froude No.
= 0.5138
Channel from outside edge of gutter
towards grade
break:
Flow Width
= 0.000(Ft.)
Flow Area =
0.000(Sq.Ft)
Velocity =
0.000(Ft /s)
Flow Rate =
0.000(CFS)
Froude No.
= 0.0000
Channel from grade
break to crown:
F1ow.Width
= 38.000(Ft.)
Flow Area =
16.615(Sq.Ft)
Velocity =
1.976(Ft /s)
Flow Rate =
32.836(CFS)
Froude No.
= 0.5267
Total flow rate in
street = 44.522(CFS)
STORM DRAIN: 1/30/2008 .
PIPE FLOW CALCULATIONS 1LAQ010102
LINE DESIGNATION
66" RCP in --
- Avenue 52
� V -R0" Desert
Club Drive'
:. FLOW REGIME..
NORMAL
FULL.::
DESIGN FLOW "Q 25," (cfs) _
(BS/ Master Drainage Plan) -.
96.30 cfs .,
100.00 Ids
: -
-
PIPE DIAMETER "d" (inches)
66"
60"
PIPE MATERIAL
RCP
RCP
MANN/NGS "n" VALUE
0.013
0.013
PIPE.-SLOPE "S" ' (feeVfeet)
0.0034
0.0010
FRICTION SLOPE "S'�"
: (feet/feet) ':
0.0034
0.0015
DEPTH:OF.FLOW "D" (feet) ,
2.72'
5.00'
CALCULATED FLOW (cfs)
96.3 cfs
100.0 cfs
FLOW AREA 'A" (square feet)
11.69 sf
1.9.63 sf
WETTED PERIMETER "P"
8.57'
15.71'
HYDRAULIC RADIUS "R ". .
(A/P) ..
1.36,.
1.25
FLOW.TOP WIDTH, T.(feet)
5.50'
0.001.
FLOW VELOCITY. "V"
(feet/second) `
8.23 fps
5.09 fps
VELOCITY HEAD (V2 12G)
(feet) .
1:05'
0.40'
'
SPECIFIC ENERGY (D+ . .
VZ 12G) (lb
.
3.77'
5.40'
FLOW .CAPACITY DEPTH
' RATIO "D/d"'
1.00
1.00
PIPE FLOW CAPACITY (cfs)
: 196.67 cfs
82:36 cfs
STORM DRAIN: T/30 000 .
RECTANGULAR CHANNEL FLOW CALCULATIONS' .: 1LAQ010102.
Sladden Engineering
6782 Stanton Ave., Suite A, Buena Park, CA 90621 (714).523 -0952 Fax (714) 523 -1369
39 -725 Garand Ln.,. Suite G, Palm Desert, CA 92211 (760) 772 -3893 Fax (760) 772 -3895
J�ay 21, 2 Project No..544-3166
03-05 -321
Monroe Dates, LLC
1387 Ambassador Way
Salt Lake City, Utah 84108
Attention: Mr. Craig Knight
Subject: Geotechnical Investigation
Project: Proposed 30-Acre Residential Development
APN 764- 270 -015 & 746-280-014
Monroe Street & Avenue 61
La Quinta, California
Presented herewith is the report.of our Geotechnical Investigation at the site's of the proposed 307
acre residential development. located west of Monroe Street approximately midway between Avenue
60 and Avenue 62 in the City of La Quinta, California. The investigation was performed in order to
provide recommendations for site preparation and to assist in foundation design for the proposed
single-family residences and the related site improvements.
This report presents the results of our field investigation and laboratory testing along with
conclusions and recommendations for foundation design and site preparation. This report completes
our original scope of services as outlined in our proposal dated April 18, 2003.
We appreciate the opportunity to provide service to you on this project. If you have any questions
regarding this report, please contact the undersigned.
Respectfully submitted,
SLADDEN ENGINEERING
Brett L. Anddrso�i m�
Principal Engineer
- E
SER/pc
I
Copies: 4/Monroe Dates, LLC
2 /Cal Vada Surveying
M
GEOTECHNICAL INVESTIGATION
PROPOSED 30-ACRE RESIDENTIAL DEVELOPMENT
APN 764-270-015 & 764-286-014
MONROE.9TREET AND AVENUE 61
LA QUINTA, CALIFORNIA.
May 21, 2003
TABLE OF CONTENTS
INTRODUCTION........... ------- ........ ........................................... ..................................... 1
SCOPEOF WORK ...... : .................................................................. 1 ........................................... 1
PROJECT DESCRIPTION ........... : .........................................
......---------- ..............I.........:....-
GEOLOGY AND SEISMICITY ......................................................................... :- .................... 2)
SUBSURFACE CONDITIONS ..................................................................................................
LIQUEFACTION ...... -------- *** .............. .....................
CONCLUSIONS AND RECOMMENDATIONS .......................................................... ..........
FoundationDesign ............................................... : .............................................................. . 4
Settlements ......... : ...........................................................
............................. .............. ........... 4
Lateral Design .... 7 .............................. ............. ..... .. 5
.................................................... .....
Retaining Walls .................... ......... ......................... I .....................
...................... ........... 5
Expansive,Soils ...... ................................................................................................. ......... 1. 5
ConcreteSlabs-on-Grade ..................... I ........................... m .................................................... 5
SolubleSulfates ...................... .................. ..... . . . ... : ........................................................... - 5
Tentative Pavement Design .................... .... .. ....... ...................................... - ......... 5
Shrinkage and Subsidence ......................... I .................. : ............ ......................................... 6
GeneralSite Grading ........................... .......................... 7 ............ ........................................ 6
1. Site Clearing ....................... ..................................... -* ....... ........................................ 6
2. Preparation of Building and Foundation Areas ....................................................... 6
3. Placement of Compacted Fill.....:..... ............. 6
4. Preparation of Slab and Pavement Areas... ................... ........................................ 7
5. Testing and Inspectioln ... * ........................................................................................... 7
GENERAL.................................................................................................................. ................ 7
REFERENCES.............................................. ............................................................................. 8
APPENDIX A - Site Plan and Boring Logs
Field Exploration
APPENDIX B - Laboratory Testing
Laboratory Test Results
APPENDIX C. -. 1997 UBC Seismic Design Criteria
4
May 21, 2003 1- Project No. 514-3166
03-05-321
INTRODUCTION
This report presents the results of our Geotechnical Investigation performed in order to provide
recommendations for site preparation and to assist in the design and construction of the foundations
for the proposed residential structures. The site of the proposed 30-acre residential subdivision is
located west of Monroe Street approximately midway between Avenue 60 and Avenue 62 in the City
of La Quinta, California_ The preliminary plans indicate that the proposed project includes a 10 acre
parcel (APN 764-280-014) and a 20 acre parcel (APN 764-270-015). The site is located within a
newly annexed area of the City of La Quinta. The associated site improvements will include paved
roadways, concrete driveways, walkways and patios, underground utilities, and landscape areas.
.. SCOPE OF WORK
The purpose of our investigation was to determine certain engineering characteristics of the near
surface soils on the site in order to develop recommendations for foundation design and site
preparation. Our investigation included field exploration, laboratory testing, literature review,
engineering analysis and the preparation of this report. Evaluation of hazardous materials or other
environmental concerns was not within the scope of services provided. Our investigation was
performed in accordance with contemporary geotechnical engineering principles and practice. We
make no other warranty, either express or implied.
PROJECT DESCRIPTION
The' site of the proposed 30-acre residential subdivision is located west of Monroe Street
approximately midway between Avenue 60 and Avenue 62 in the City of La Quinta, California. It is
our understanding that the project will consist of single-family residences along with various
associated site improvements.. It is our understanding that the proposed residences will be of
relatively lightweight wood-frame construction and will be supported by conventional shallow spread
footings and concrete slabs on grade. The associated site improvements will include paved roadways,
concrete walkways, patios, driveways, landscape areas and various underground utilities.
The majority of the subject properties are presently occupied by date groves in various phases of use.
The date trees throughout the southern 10-acre parcel are presently in production and appear well
maintained. The date trees within the northern parcel are partially in production and some of the
trees have been removed from the central portion of the property. Monroe Street forms the eastern
edge of the site and is paved. The Trilogy at La Quinta development forms the northern, western
and southern site boundaries. The subject site and surrounding properties are fairly level
throughout as a result of previous agricultural use. Scattered debris was observed on the ground
surface throughout the subject site. Overhead and underground utilities exist within the subject
properties and along to'the nearby street; Irrigation pipes exist along the property boundaries and
also traverse the site.
Based upon our previous experience with lightweight residential structures, we expect that isolated
column loads will be less than 20 kips and wall loading will be less than to 2.0 kips per linear foot.
Grading is expected to include minor cuts and fills to match the nearby elevations and to construct
slightly elevated building pads to accommodate site drainage. This does not include removal and
recompaction of the bearing soils within the building areas. If the anticipated foundation loading or
site grading varies substantially from that assumed the recommendations included in this . report
should be reevaluated.
.Gnddvn Rna;rivorino
May 21, 2003 -2- 'Project No. 544-3166
03- 05-321
GEOLOGY AND SEISMICITY
The project site is located within the southwestern Coachella Valley that is part of the broader
Salton Trough geomorphic province. The Salton Trough is a northwest trend'ng depression that
extends from the Gulf of California to the Banning Pass_ Structurally the Salton Trough is
dominated by several northwest trending faults, most notable of which is the San Andreas system.
A relatively thick sequence of sedimentary rocks have been deposited in the Coachella Valley portion
of the Salton Trough from Miocene to present times. These sediments are predominately terrestrial
in nature with some lacustrian and minor marine deposits. The mountains surrounding the
Coachella Valley are composed primarily of Precambrian metamorphic and Mesozoic granitic rock_ .
The Coachella Valley is situated in one of the more seismically active areas of California. The San
Andreas fault zone is considered capable. of generating a maximum credible earthquake of
magnitude 8.0 and due to its proximity to the project site (approximately 13.7 kilometers) should be
considered the design fault for the project.
Seismic activity along the nearby faults continues to affect the area and the Coachella Valley is
'considered one of the more seismically active regions in California. A computer program and
pertinent geologic literature were utilized to compile data related to earthquake fault zones in the
region and previous seismic activity that may have affected the site_ E-Q. Fault Version 3.00 (Blake)
provides a compilation of data related to earthquake faults in the region_ 'The program searches
available databases and provides both distances to causitive faults and the corresponding
accelerations that may be experienced on the site due to earthquake activity along these.faults. The
attenuation relationship utilized for this project was based upon Joyner & Boore (1987) attenuation
curves. The information generated was utilized in our liquefaction evaluation
The site is not located in any Earthquake Fault zones as designated by the State but is mapped in
Riverside County's Liquefaction Zone and Ground' Shaking Hazard Zone IV. Several significant
seismic events have occurred within the Coachella Valley during the past 50 years. The events
include Desert Hot Springs - 1948 (6.5 Magnitude), Palm Springs - 1986 (5.9 Magnitude); Desert Hot
Springs - 1992 (6.1 Magnitude), Landers - '1992 (7.5 Magnitude) and Big Bear - 1992 (6.6
Magnitude).
SUBSURFACE CONDITIONS
The soils underlying the site consist primarily of silty sands, sandy silts and clayey silts. As is
typical for the area,. the silty sand, sandy silt and clayey silt layers are inconsistently interbedded
and vary in thickness. Silty sands were the most prominent'soils within our exploratory borings but
numerous prominent sandy silt and clayey silt layers were also encountered.
The sandy silts and silty sands encountered near the existing ground surface appeared somewhat
loose. Sampler penetration resistance (as measured by field blowcounts) indicates that in-place
density generally increases with depth. Relatively undisturbed, samples indicated dry density
varying from 83 to 117 pounds per cubic foot. The site soils were dry near the surface in most of our
borings but several sandy silt and clayey silt layers were found to have high moisture content_
Measured moisture content varied from 1 to 35 percent.
Laboratory testing indicates that the surface soil's within the upper 5 feet consist primarily of a
somewhat inconsistent . mixture of silty sands and sandy silts. . Expansion testing indicates an
expansion index of 0 for the near surface silty sands that are classified as "very low" expansion
category soils in accordance with Table 18-I -B of the 1997 Uniform Building Code.
May 21, 2003 ICp( %'� �'' ' Project No. 544-3166
03- 05-321
Groundwater was encountered minimum depths of approximately 32 to 38 feet below existing grade
Groundwater should not be a factor in a ion esian or cNT
LIQUEFACTION
Liquefaction occurs with sudden loss of soil strength due to rapid increases in pore pressures within
cohesionless soils as a result of repeated cyclic loading during seismic events. Several conditions
must be present for liquefaction to occur including; the presence of relatively shallow groundwater,
generally loose soils conditions, the susceptibility of soils to liquefaction based upon grain-size
characteristics and the generation of significant and repeated seismically induced ground
accelerations. Liquefaction affects primarily loose, uniform'grained cohesionless sands with low
relative densities-
In the case of this project site, several of the factors required for liquefaction to occur are present. As
previously indicated, groundwater was encountered at a depths ranging from approximately 16 t
within the southeastern portion of the site to over 30 feet within the northwestern portion of the site.
Several relatively uniform grained sand and silty san�Zayers were encountered within our borings.
The site is located near prominent active fault systems.
Due to the presence of groundwater; 'the potential for liquefaction affecting the site was further
evaluated. Several silty sand layers encountered near and below the present groundwater surface
appear susceptible to liquefaction based upon grain-size characteristics. Liquefaction potential
within these silty sand layers was evaluated using methods presented by H.B. Seed in 1985 and
subsequently d presented within Special Publication 117. The calculated safety factors
are included ' Appendix A. ur analyses suggest that isolated silty sand layers encountered within
our borings are ne si
- dered too dense to be susceptible to liquefaction. /-
CONCLUSIONS AND RECOMMENDATIONS
Based upon our field investigation and laboratory testing, it is our opinion that the proposed
residential development is feasible from a soil mechanic's standpoint provided that the
recommendations included in this report are considered in building foundation design. and site
preparation. Due to the somewhat loose condition of the surface soils and the potential for seismic.
settlements, remedial grading is recommended for the building areas. We recommend that remedial
grading within the proposed building areas include the overexcavation and recompaction of the
primary foundation bearing soils. Specific recommendations for site preparation are presented in
the Site Grading section of this report.
Based upon the generally dense condition of the majority of the sand layers, and the presence of
prominent layers of non-liquefiable silts and clays, it is our opinion that the - potential for liquefaction
affecting the site is negligible. The remedial grading recommended for building areas will result in
the construction of a uniform compacted soil mat beneath all footings. In our opinion, liquefaction
related mitigation measures in addition to the site grading and foundation design recommendations
included in this report should not be necessary.
The site is located in one of the more seismically active areas in California. Design professionals
should be aware of the site setting and the potential for earthquake activity during the anticipated
life of the structure should be'acknowledged. The accelerations that may be experienced on the site
(as previously discussed) should be considered in design. The seismic provisions included in the
Uniform Building Code for Seismic Zone 4 should be considered the minimum design criteria.
Pertinent 1997 UBC Seismic Design Criteria is summarized in Appendix C.
May 21, 2003 ,� Project No_ 544-3166
/ 03- 05-321
Caving did occur within our boring and the potential for caving should be expected within deeper
excavations_ All excavations should be constructed in accordance with the normal CalOSHA
excavation criteria. On the basis of our observations of the materials encountered, we anticipate
• that the near surface sandy silts.and silty sands will be classified by CaIOSHA as Type B or C. Soil
conditions should be verified in the field by a "Competent person" employed by the Contractor.
The near surface soils encountered during our investigation -%vere found to be non-expansive.
Laboratory testing indicated an Expansion Index of 0 for the near surface silty sands that
corresponds with the "very low" expansion category in accordance with UBC Table 18-1-B.
The following recommendations present more detailed design criteria that have been developed on
the basis of our field and laboratory investigation. The recommendations are based upon non -
expansive soils criteria.
Foundation Design= The results of our investigation indicate, that either conventional
shallow continuous footings or isolated pad footings that are supported upon properly
compacted soils may be expected to provide adequate support for the proposed structure
foundations. Building pad grading should be performed as described in the Site Grading
Section of this report to provide for uniform and firm bearing conditions for the structure
foundations.
Footings should extend at least 12 inches beneath lowest adjacent grade. Isolated square or
rectangular footings should be at least 2 feet square and continuous footings should be at
least 12 inches wide. Continuous footings may be designed using an allowable bearing value
of 1500 pounds per square foot (psf) and isolated pad footings may be designed using an
allowable bearing pressure of 1800 psf. The allowable bearing pressures are applicable to
dead and frequently applied live loads. The allowable bearing pressures may be increased by
1/3 to resist wind and seismic loading. Care should be taken to see that bearing or subgrade
soils are not allowed to become saturated from the ponding of rainwater or irrigation.
Drainage from the building area should be rapid and complete.
The recommendations provided in the preceding paragraph are based on the assumption that
all footings will be supported upon properly compacted engineered fill soils. All grading
should tie performed under the testing and inspection of the Soils Engineer or his
representative. Prior to the placement of concrete, we recommend that the footing
excavations be inspected in order to verify that they extend into compacted soil and are free
of loose and disturbed materials.
Settlements= Settlements resulting. from the anticipated foundation loads should be minimal
provided. that the recommendations included in this report are considered in foundation
design and construction. The estimated ultimate settlements are calculated to be
approximately one inch when using . the recommended bearing values. The potential for
liquefaction related seismic settlements of less than 2 inches should be acknowledged. As a
practical matter, differential settlements between footings can be assumed as one-half of the
total settlement.
Lateral Design :• Resistance to lateral loads can be provided by a combination of friction
acting at the base of the slabs or foundations and passive earth pressure along the sides of
the foundations. A coefficient of friction of 0.40 between soil and concrete may be used with
consideration_ to dead load forces only. A passive earth pressure of 250 pounds per square
foot, per foot of depth; may be used for the sides of footings that are poured against properly
compacted native or approved non-expansive import soils. Passive earth pressure should be
ignored within the upper 1 foot except where confined (such as beneath a floor slab)..
May 21, 2003 -5- Project No. 544-3166
03-05 -321
Retaining Walls= Retaining walls may be necessary to accomplish the proposed construction.
Lateral pressures for use in retaining wall design can be estimated using an equivalent fluid
weight of 40 pcflor lever free-draining native backfill conditions. For walls that are to be
restrained at the top, the equivalent fluid weight should be increased to 60 pcf for level free-
draining native backfill conditions. Backdrains should be provided for the full height of the
walls.
Expansive Soils= Due to the prominence of "very low" , expansion category soils near the
surface, the expansion potential of the foundation bearing soils should not be a controlling
factor in foundation or floor slab design. Expansion potential should be reevaluated
subsequent to grading.
Concrete Slabs- on-Grade= All surfaces to receive concrete slabs-on -grade should be underlain
by a minimum compacted non-expansive fill thickness of 24 inches, placed as described in the.
Site Grading Section of this report. Where slabs . are to receive moisture sensitive floor
coverings or where dampness of the floor slab is not desired, we recommend the use of an
appropriate vapor barrier or an adequate capillary break. Vapor barriers should be
protected by sand in order to reduce the possibility of puncture and to aid in obtaining
uniform concrete curing.
Reinforcement of slabs-on-grade in order to resist expansive soil pressures should not be
necessary. However, reinforcement will have a beneficial effect in containing cracking due to
concrete shrinkage. Temperature and shrinkage related cracking should be anticipated in
all concrete slabs- on-grade. Slab reinforcement and the spacing of control joints should be
determined by the. Structural Engineer.
Soluble Sulfates= The soluble sulfate concentrations of the surface soils were determined to
be 132 parts per million (ppm), which is generally considered noncorrosive with respect to
concrete. The use of Type V cement and specialized sulfate resistant concrete mix designs
should not be necessary. Sulfate testing should be performed subsequent to grading and
final concrete mix designs should be selected accordingly. Soluble sulfate content should be
reevaluated after rough grading.
Tentative Pavement Design = All paving should be underlain by a minimum compacted fill
thickness of 12 inches (excluding aggregate base). This may be performed as described in the
Site Grading Section of this report-
R-Value testing was not conducted during our investigation but based upon the silty nature
of the surface soils, an R-Value of approximately 50 appears appropriate for preliminary
pavement design. The following preliminary pavement sections are based upon a design R-
Value of 50.
On-site. roadways subjected to auto and light truck traffic (Traffic Index = 5.5)
Use 3.0 inches of asphalt on 4.5 inches of Class 2 base material
Aggregate base'should conform to the requirements for Class 2 Aggregate base in Section 26
of CalTrans Standard Specifications, January 1992. Asphaltic concrete should conform to
Section 39 of the CalTrans Standard Specifications. The recommended sections should be
provided with a uniformly compacted subgrade and precise control of thickness and
elevations during placement.
cl,..,,.,_.. r1_:..___:_
May 21, 2003 -6- Project No. 544 -3166
03- 05-321
Pavement and slab designs are tentative and should be confirmed at the completion of site
grading when the subgrade soils are in- place. This will include sampling and testing of the
actual subgrade soils and an analysis based upon the specific traffic information
Shrinkage and Subsidence: Volumetric shrinkage of the material that is excavated and
replaced as controlled compacted fill should be anticipated. We estimate that this shrinkage
could vary from 20 to, 30 percent. Subsidence of the surfaces that are scarified and
compacted should be between 0.1 and 0.3 tenths of a foot. This will vary depending upon the
type of equipment used, the moisture content of the soil at the time of grading and the actual
degree of compaction attained. These values for shrinkage and subsidence are exclusive of
losses that will occur due to the stripping of the organic material from the site and the
removal of oversize material.
General Site Grading = All grading should be performed in accordance with the grading
ordinance of the City of La Quinta, California. The following recommendations have been
developed on the basis of our field and laboratory testing and are intended to' provide a
uniform compacted mat of soil beneath the building slabs and foundations.
Site Clearing: Proper site clearing will be very important. Any existing vegetation;
palm trees, roots, slabs, foundations, abandoned underground utilities or irrigation
lines should be removed from the proposed building areas and the resulting
excavations should be properly backfilled. Soils that are disturbed during site
clearing should be removed and replaced as controlled compacted fill under the
direction of the Soils Engineer.
2.. Preparation of Building and Foundation Areas= In order to provide adequate and
uniform bearing conditions, we recommend overexcavation throughout the proposed
building areas. The building areas should "be overexcavated to a depth of at least 3
feet below existing grade or 3 feet below the bottom of the footings, whichever is
deeper. The exposed soils should then be scarified to a depth of 1 foot, moisture
conditioned and recompacted to at least 90 percent relative compaction. The
excavated material may then be replaced as engineered fill material as recommended
below. Additional removals may be necessary in the vicinity of major palm tree root
bulbs.
3. Placement of Compacted Fill: Within the building pad areas, fill materials should be
spread in thin lifts, and compacted at near optimum moisture content to a minimum
of 90 percent relative compaction.
Imported fill material shall have an Expansion Index not exceeding 20. Because
some of the near surface soils may be wet when excavated, some drying or
stabilization should be expected in the areas of deeper foundations. Stabilization
may be accomplished utilizing crushed rock and if necessary geotextile fabric. The
wet soils removed during excavation should be dried back to near optimum moisture
content or mixed with dry soils prior to placement as engineered fill material. The
bottom of the excavations should be stable and unyielding prior to fill placement.
The contractor shall notify, the Soils Engineer at least 48 hours in advance 'of
importing soils in order to provide sufficient time for the evaluation of proposed
import materials. The contractor shall be responsible for delivering material to the
site that complies with the project specifications. Approval by the Soils Engineer will
be based upon material delivered to the site and not the preliminary evaluation of
import sources.
May 21, 2003 7 Project No. 544 -3166
03- 05-321
Our observations of the materials encountered during our investigation indicate that
compaction within the native soils will be most readily obtained by means of heavy
rubber tired equipment and /or sheepsfoot compactors. A uniform and near optimum
moisture content should be maintained during fill placement and compaction.
4. Preparation of Slab and Paving Areas = All surfaces to receive asphalt concrete
paving or exterior concrete slabs-on-grade, should be underlain by a minimum
compacted fill thickness of 12 inches. This may be accomplished by a combination of
overexcavation, scarification and recompaction of the surface, and replacement of the
excavated material as controlled compacted fill. Compaction of the slab and
pavement areas should be to a minimum of 90 percent relative compaction.
5. Testing and Inspection= During grading tests and observations should be performed .
by the Soils Engineer or his representative in order to verify that the grading is being
performed in accordance with the project specifications. Field density testing shall
be performed in accordance with applicable ASTM test standards.'
The minimum acceptable degree of compaction shall be 90 percent of the maximum
dry density as obtained by the ASTM D1557 -91 test method. Where testing indicates
insufficient density, additional compactive effort shall be, applied until retesting
indicates satisfactory compaction.
GENERAL
The findings and recommendations presented in this report are based upon an interpolation of the
soil conditions between boring locations and extrapolation of these conditions throughout the
proposed building area. Should conditions encountered during grading appear different than those
indicated in this report, this office should be notified.
This report is considered to be applicable for use by Monroe Dates, LLC and Cal Veda Surveying Inca
for the specific site and project described herein. The use of this report by other parties or for other
projects is not authorized. The recommendations of this report are contingent upon monitoring of
the grading operations by 'a representative of Sladden Engineering.' All recommendations are
considered to be tentative pending our review of the grading operations and additional testing, if
indicated. If others are employed to perform any soil testing, this office should be notified prior to
such testing in order to.coordinate any required site visits by our representative and to assure
indemnification of Sladden Engineering.
We recommend that a pre-job conference be held on the site prior to the initiation of site grading.
The purpose of this meeting will be to assure a complete understanding of the recommendations
presented in this report as they apply to the actual grading performed.
c•r,..ra,... c..,.:......_:..,.
' May 21, 2003 -8- Project No. 544-3166
03-05-321
REFERENCES
ASCE Journal of Geotechnical Engineering Division, April 1974.
Boore, Joyner and Fumal (1994) Estimation of Response Spectra and Peak Accelerations from North
American Earthquakes, U. S. Geological Survey, Open File Reports 94-127 and 93-509.
Finn, W. E. Liam, (1996) Evaluation of Liquefaction Potential for Different Earthquake Magnitudes
and Site Conditions, National Center for Earthquake Engineering Research Committee.
Joyner and Boore, (1988) Measurements, Characterization and Prediction ofStrong Ground Motion,
ASCE Journal of Geotechnical Engineering, Special Publication No. 20.
Lee & Albaisa (1974) "Earthquake Induced Settlements in Saturated Sands'.
Seed and Idriss (1982) Ground Motions and Soil Liquefaction During Earthquakes, Earthquake
Engineering Research Institute Monograph.
Seed, Tokimatsu, Harder and Chung, (1985), Influence ofSPT Procedures in Soil. Liquefaction
Resistance Evaluations, ASCE Journal of Geotechnical Engineering, Volume 111, No. 12,
December.
Rogers, Thomas H., Geologic Nlap of California, Santa Ana Map Sheet.
Riverside County, 1984, Seismic Safety Element of the Riverside County General Plan
�I
Sladden Engineerine
s .2o-1 .�utaog
ue[d al'S
V XIC NHddd
APPENDIX A.
FIELD EXPLORATION
For our field investigation, 9 exploratory torings were excavated on May 7 and May 9, 2003, using 9
truck mounted hollow stem auger rig (Mobile B-61) in the approximate locations indicated on the site
plan included in this appendix. Continuous log of the materials encountered were prepared on the
site by a representative of Sladden Engineering. Boring logs are included in this appendix.
Representative undisturbed samples were obtained within our boring by driving a thin-walled steel
penetration sampler (California split spoon sampler) or a' Standard Penetration Test (SPT) sampler
with a 140 -pound hammer dropping °approximately 30 inches (ASTM D1586). The number of blows
required to drive the samplers 18 inches was recorded (generally in 6 inch increments). Blowcounts
are indicated on the boring log.
The California . samplers are 3.0 inches in diameter, carrying brass sample rings having inner
diameters of 2.5 inches. The standard penetration samplers are 2.0 inches in diameter with an inner
diameter of 1.5 inches. Undisturbed samples were. removed from the sampler and placed in moisture
sealed containers in order to preserve the natural soil moisture content. Bulk samples were obtained
from the excavation spoils and samples were then transported to our laboratory for further
observations and testing.
3-D TopoQuad] Copyright 0 1999 Del_orme Yarmouth, ME 04096 Source Data: IISCS 1000 A Scale. 1 :25,000 Detail: 13-0 Datum: WGW
Vicinity Map
North Proposed 30 -Acre Residential Development
Monroe Street & Avenue 61
No Scale La Quinta., California
Sladden Engineering
Project Number: 544 -3166 1 Date: 5 -22
r.
28
2
6
t
7i --
h
2
:
•S
o
,
2
1 _ S--'R J
_`_�
E 5 mm:ng Pool
5
'.
33
34
VC
l
6
s:
..
-T•
rnP
is !'
t
P�
TORRES
)MARTINET,
ti
] }691E
4
M 50
- Torres 1SOO
!t
.INJ?I.A'N
`ESER�'AT[ON
Toro Cem
y
S '�^
TORR
3-D TopoQuad] Copyright 0 1999 Del_orme Yarmouth, ME 04096 Source Data: IISCS 1000 A Scale. 1 :25,000 Detail: 13-0 Datum: WGW
Vicinity Map
North Proposed 30 -Acre Residential Development
Monroe Street & Avenue 61
No Scale La Quinta., California
Sladden Engineering
Project Number: 544 -3166 1 Date: 5 -22
'Jtt:r�
X 10 . --9
- f6
feet S114 :: Mill, �—
,t 5 ,�� O
3 • --1
- i�ki'l1S
r
North Approximate Boring Locations,
No Scale
Boring Location Map
Proposed 30 -Acre Residential Development
Monroe Street & Avenue 61
La Quinta, California
Sladden Engineering
Proiect Number: 544 -3166 1 Date: 5 -22 -03
Total Depth = 51.5'
_
Recovered Sample
Note: The stratification lines
No Bedrock
55
m Standard Penetration
Sample
represent the approximate
boundaries between the soil types;
P
the transitions may be gradual.
a
1
Ll
Proposed. 10 -Acre Residential Development
S.W.C. Monroe Street & Avenue 61 / A.P.N. 764- 280 -014 / La Quinta, California
Date: 5 -9 -03 Borin No. 2 Job No ^544 -;1 56
CU
3
>>
>
> Z
o
°
DESCRIPTION
°>
L.
=
REMARKS
E
�-
cn
U
0
q
u)
D
o
o U
0
Silty Sand: Brown,,
SM
-
fine grained
5
11/17/25
103
6
17% passing #200 '
'O
6/11/20
Sand: Brown, slightly silty,
SP /S
109
10
16% passing #200
-
fine grained with interbedded
silty clay layers
s
15/18/25
Silh Sand: Brown,
SM
108
-
16 °«, passing #200
fine Lrained
I
20
Silty Clay: Brown with CL
15/20/20
interbedded silt sand layers
23
65% passing #200
Total Depth = 21.5'
-
® Recovered Sample
No [bedrock
® Disturbed Sample
No. Groundwater
2s
30
35
40
45
50
_
Note: 1•he stratification lines
55
represent the approximate
boundaries between the soil ty pes;
the transitions may be gradual.
r- - Proposed 10 -Acre Residential Development •
S.W.C. Monroe Street &Avenue 61 ! A.P.N: 764- 280 -014 ! La Quints, California ' . -
Date: 5 =9 -03 Borin No. 3 Job No.: 544 -3166 ?
o
�
DES.CRi?PTION '~
RL�NARKS',•
.. c,
.sa
3
a.
•
t
Sandy Silt: Bro\'vn, -.
I ML
slightly clayey
�
5h /7
Silty Brown with .
y Y� �
CL
88
o -
86/ passing 9200
.
.interbedded silty sand layers
, ` ••,t
"0
4/516
Clayey Silt: Brown,
•ML
89
2
3.
-
°
70% passing #200 ..
'
slightly sandy
.'
is
5/; /6
Silty•Clav: Bro\v%n, I CL
T 90 .
;3
- --
96% passing 9200
' ZO
-,
Sand: Brown, slightly silty, ASP; SM
-
10/11/20
dine to medium grained
117
5
- --
13% passing #200 -
_
t.
Total DeptFi = 21.5'
-.4
, `
-Recovered Sample
No.Bedrock
No Groundwater_
.35
Note: The stratification lines
ss
. ' •
represent the approicimate
• -
boundaries between the soil types;
•
_
the transitions may be gradual_
Proposed 10 -Acre Residential Development
S.W.C. Monroe Street & Avenue 61 / A.P.N. 764- 280 -014 / La Quinta, California
Date: 5 -9 -03 Boring No. 4 Job No.: 544 -3166
o
°
DESCRI'TION
>
o
REMARKS
L
U
0
Sand: Brown, slightly silty,
SP /SM
i
fine to meditun grained
5
_
10/15/20
Sand: Brown,
SP
98.
3
- --
o
/o 6 passing X200 '
-
fine to medium grained
10
1511.5/15
Clayey Silt: Brown with
ML
99
15
SI° passing 4200
-
silty fine grained sand layers
15
1010/15
101
19 -
75% passing -200
-
Silty Sand: Brown, fine grained
SM
20
8/10/20
with interbedded clay silt layers
1 1 1
9
- --
31 % passing #200
-
Total Depth = 21,5'
-
- Recovered Sample
,
No Bedrock
No Groundwater
25
30
35
'
40
_
45
50
_
Note: The stratification lines
55
represent the approximate
boundaries between the soil types;
the transitions may be gradual.
'
Total Depth = 21.5
® Recovered Sample
No Bedrock
No Groundwater
25
30
.35
40
45
50
Note: The stratification lines
55
represent the approximate
boundaries between the soil types;
the transitions may be gradual.
Proposed 20 -Acre Residential Development
N.W.C. Monroe Street & Avenue 61 / A.P.N. 764 - 270 -015 / La Quinfa, California
Date: 5 -9 -03 Borin No. 6 Job No.: 544 -3166
DESCRIPTION
o
c
REMARKS
c
o.
E'
" ^
x E.
aya,
A
rn
V
00
o
C/)
Z) °-
o
oO
o U
I
o
Sand: Brown,
SP /SM
_
slightly silty, fine grained.
5
10/12/18
"
"
101
5
- --
9% passing 4200
io
Clayey Silt: Brown,
ML
5 /6/10
slightly sandy
94
25
-
71 °o passing #200
I
15
6/6/1
0
Silty Clay Brown
CL
S_ ;
1 passing o �_ 00
2o
Silty Clay: Brown with
CL
8/10/15
interbedded silty sand layers
90
28
70 °.'o passing 9200
Total Depth = 21.5'
-
Recovered Sample
No Bedrock
-
No Groundwater
25
30
35
i
40
45
50
-
Note: The stratification lines
55
represent the approximate
M
boundaries between the soil ty pes;
the transitions may be gradual.
-
Total Depth = 21.5'
Recovered Sample
No Bedrock
-
No Groundwater
25
30
35
-
40
45
50
_
Note: The stratification lines
55
represent the approximate
boundaries between the soil ty pes;
the transitions may be gradual.
Proposed 20 -Acre Residential Development
N.W.C. Monroe Street & Avenue 61 / A.P.N. 764 - 270 -015 / La Quinta, California
Date: 5 -9 -03 Borin No. 8 Job No.: 544 -3166
'
Y
CJ
C
y
°
DESCRIPTION
o
a
REMARKS
ate-
DE�
0
o U
o
Sandy. Silt: Brown, clayey
ML
5
10/13/26
Silty.Sand: Brown,
SM
100
2
- --
25% passing #200
-
fine.grained
10
15/22/18
Sand: Brown,
SP /SM,
107'
2
10% passing #200
-
_
slightly silty, fine grained
I
i
i5
i
IS /�� /t0
Saiid: Brown, slightly silt_•.
ASP /SM
I I?
12 °.o passing #200
-
fine to ntediuni grained
20
8 /10/1;
Sandy Sili: Brown, clayey
Ml
90
15.
-
68% passing #200
Total Depth = 21.5'
® Recovered Sample
No Bedrock
No Groundwater
.25
30
35
_
a
40
45
50
_
Note: The. stratification lines -
55
represent the approximate
boundaries between the soil types;
the transitions may be gradual.
- I I I I I I I I I I I Total•Dermh = 21.5 1
Proposed 20 -Acre Residential Development
N.W.C. Monroe Street & Avenue 61 / A.P.N. 764 - 270 -015 / La Quinta, California
Date: 5 -9 -03 Borine No. 10 Job No.: 544 -3166
c
3.
v
L
c
v O
o
•�°
DESCRIPTION
n .
L
•�
REMARKS
U
C1
vo
°
o
o U
°
Clayey Silt: Brown with silty
ML
-
fine grained sand layers
s
7/10/20
88
13
66° passing #200
_
Lp
10
8/10/10
Silty Sand: Brown,
SM
93
7
- --
30% passing #200
-
very silty, fine grained
1s
N7!8!10
( Silty Clay: Brown
CL
I 91
II
I
32
( - --
91° passing' =?00
20'
10 /10 /I5
Silty Sand: Brown.
SM
7
20% passing .#200
-
fine grained
25
_
5/5/10
Silt Clay: Brown
CL
29
-__
89 / passing 9200
30
2/3/6
Silty Clay: Brown with fine
CL
- --
31
- --
87% passing #200
grained sand layer 4" thick
35
3/5/10 .
- --
29
- --
85% passing #200
_
Groundwater) 38'
40
5/5/7
Clayey Silt: Brown with silty
ML
_ --
29
- --
61% passing #200
-
fine grained sand layers
45
_
5/8/12
Silty Sand: Brown,
SM
- --
23
passing #200
29% a
_
fine grained
so
Sand: Brown,
SP
15/2025
fine to medium grained
- --
17
---
7% passing #200
-
Total Depth = 51.5'
-
_
Recovered Sample
Note: The stratification lines
No Bedrock
55
m Standard Penetration
represent the approximate
boundaries between
Sample
the soil types;
the transitions may be gradual:
APPENDIX B
Laboratory Testing
Laboratory Test Results
APPENDIX B
LABORATORY TESTING
Representative bulk and relatively undisturbed soil samples were obtained in the field and returned
to our laboratory for additional observations and testing. 'Laboratory testing was generally
performed in two phases. The first phase 8onsisted of testing in order to determine the compaction of
the existing natural soil and the general engineering classifications of the soils underlying the site.
This testing was performed in order to estimate the engineering characteristics of the soil. and to
serve as a basis for selecting samples for the second phase of testing. The second phase consisted of
soil mechanics testing. This testing including consolidation, shear strength and expansion testing
was performed in order to provide a means of developing specific design recommendations based on
the mechanical properties of the soil.
CLASSIFICATION AND COMPACTION TESTING
Unit Weight and Moisture Content Determinations= Each undisturbed sample was weighed and
measured in order to determine its unit weight. A small portion of each sample was then subjected
to testing in order to determine its moisture content. This was used in order to determine the dry
density of the soil in its natural condition. The results of this testing are shown on the Boring Logs.
Maximum Density - Optimum Moisture Determinations Representative soil types were selected for
maximum density determinations. This testing was performed in accordance with the ASTM
Standard D1557-91, Test Method A. The results of this testing are presented graphically in this
appendix. The maximum densities are compared to the field densities of the soil in order to
determine the existing relative compaction to the soil. This is shown on the Boring Log,' and is useful
in estimating the strength and compressibility of the soil.
Classification Testing= Soil samples were selected for classification testing. This testing consists of
mechanical grain size analyses and Atterberg Limits determinations. These provide information for
developing classifications for the soil .in accordance with the Unified Classification System. This
classification system categorizes the soil into groups having similar engineering characteristics. The
results of this.testing are very useful in detecting variations in the soils and in selecting samples for
further testing.
SOIL MECHANIC'S TESTING
Direct Shear Testing: One bulk sample was selected .for Direct Shear Testing.. This testing
measures the shear strength of the soil under various normal pressures and is used in developing
parameters for foundation design and lateral design. Testing was performed using recompacted test
specimens, which were saturated prior to testing. Testing was performed using a strain controlled
test apparatus with normal pressures ranging from 800 to 2300 pounds per square foot.
Expansion Testing: One bulk sample was selected for Expansion testing. Expansion testing was
performed in accordance with the UBC Standard 18-2. This testing consists of remolding 4-inch
diameter by 1-inch thick test specimens to a moisture content and dry density corresponding to
approximately 50 percent saturation. The samples are subjected to a surcharge of 144 pounds per
square foot and allowed to reach equilibrium. At that point the specimens are inundated with
distilled water. The linear expansion is then measured until complete.
Consolidation Testing= Four relatively undisturbed samples were selected for consolidation .testing.
For this testing one-inch thick test specimens are subjected to vertical loads varying from 575 psf to
11520 psf applied progressively. The consolidation at each load increment was recorded prior to
placement of each subsequent load. The specimens were saturated at the 575 psf or 720 psf load
increment.
Maximum Density /Optimum Moisture
May 12, 2003
ASTM D -1 557 A
Rammer Type: Manual
ASTM D698/D 1557
Project Nurgber:
544 -3166
Project Name:
Ave. 61 & Monroe
Lab ID Number:
130
Sample Location:
Bulk 1 @ 0 -5'
Description:.
Silty Fine Sand
Maximum Density:
109 pef
Optimum Moisture
13.5%
L
Sieve Size % Retained
0
3/4"
3/8"
#4 #DIV /0!
May 12, 2003
ASTM D -1 557 A
Rammer Type: Manual
145
140
135
130
125
�►
A
120
L
0
11s
110
105
100.-
May 12, 2003
ASTM D -1 557 A
Rammer Type: Manual
0 5 10 15 20 25
Moisture Content, %
�►
< ----- Zero Air Voids Lines, =,Ipm
MEE.��1�
ME
wh
0 5 10 15 20 25
Moisture Content, %
Maximum Density /Optimum Moisture
ASTM D698/D1557
Project Number: , 544 -3166 May 12, 2003•
Project Name:. Ave. 61 & Monroe ASTM D -1557 A
Lab ID Number: Ranu»er Type: Manual
Sample Location: Bulk 10 @ 0 -5'
Description: Silty Fine Sand
Maximum Density: 112 pef
Optimum Moisture 13%
Sieve.Size % Retained.
3/4"
3/8"
#4. #DIV /0!
Zero Air'
mmmm me's
BMW
MMIIMS=��=M
MM
,oids Lines,
mmw
�m
20 25
01...1.7..- T' °-'• ----.: .. ._
M 1, 1-41111 INS
�
Zero Air'
mmmm me's
BMW
MMIIMS=��=M
MM
,oids Lines,
mmw
�m
20 25
01...1.7..- T' °-'• ----.: .. ._
One Dimensional Consolidation
ASTM D2435 & D5333
Job Number: 544 -3166 May 13, 2003
Job Name: 'Ave. 61 &'Monroe Initial Dry Density, pcf: 104.0.
Sample ID: Boring 1 @ 5' Initial Moisture, %: 2
Soil Description: Silty Sand Initial Void Ratio: 0.603
Specific Gravity: 2.67
% Change in Height VS Normal Presssure Diagram
--0 Before Saturation —6 After Saturation
- 9= Rebound —f- Hydro Consolidation
I ,
0
r
-1
-2
-3
-4
-5
-6
-7
-8
-9
-10
s�t�s
0.0
1.0
2.0
3.0 4.0
5.0
6.0
70
One Dimensional Consolidation.
ASTM D2435 & D5333
Job Number: 541 -3166 May 13, 2003
Job Name: Ave. 61 & Monroe Initial Dry Density, pcf- 99.3
Sample ID: Boring 1 @ 10 Initial Moisture; %: 6
Soil Description: Silty Sand Initial Void Ratio: 0.679
Specific Gravity: 2.67
Hydrocollapse: 0.1 % @ 0.720 ksf
% Change in Height vs Normal Presssure Diagram'
i �-- Before Saturation —6 After Saturation
) Rebound —f —Hydro Consolidation
0
-1
-2
-3
-4
-5
-6
-7
-8
-9
-10
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
One Dimensional Consolidation
ASTM D2435 & D5333
Job Number: 544 -3166
Job Name: Ave. 61 & Monroe
Sample ID: Boring 10 @ 5
Soil Description: Sandy Silt
May 13, 2003
Initial Dry Density, pcf- 82.7
Initial Moisture, %: 13
Initial Void Ratio: 1.015
Specific Gravity: 2.67
Hydrocollapse: 0.6% @ 0.575 ksf
% Change in Height vs Normal Presssure Diagram
—0 Before Saturation — A
A .After Saturation
--) Rebound — _ — �— Hydro Consolidation
0
-2
-3
-4
-5
-6
-7
-8
-9
-10
0.0 0.5
1.0 1.5 2.0 2.5 3.0. 3.5 4.0 4.5 5.0
One Dimensional Consolidation
ASTM D2435 & D5333
Job Number: 544 -3166
Job Name: Ave. 61 & Monroe
Sample ID: Boring 10 @ 10
Soil Description: Silty Sand
1
0
-2
-3
-4
-5
-6
-7
-8
-9
-10
% Change in Height vs Normal Presssure Diagram
—0 Before Saturation - A After Saturation
—) Rebound Hydro Consolidation
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 .5.0
May 13, 2003
Initial Dry Density, pcf:
93.7
Initial Moisture, %:
.7
Initial Void Ratio:
0.780
' Specific Gravity:
2.67
% Change in Height vs Normal Presssure Diagram
—0 Before Saturation - A After Saturation
—) Rebound Hydro Consolidation
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 .5.0
May 13, 2003
Gradation
ASTM C117 & C1.36. .
" Project Number:
544 -3166
Project Name:
Ave. 61 & Monroe
Sample ID:
Bulk 1 @ 0 -5`
Sieve
Sieve
Percent
Size, in
Size, mm
Passing
1 "
25.4
1.00
3/41"
19.1
100
1/T'
12.7
100
3/8"
9.53
100
#4
4.75
100
#8
2.36
100
#16
1.18
100
#30
0.60
100
#50
0.30
89
#100
0.15
45
#200
0.074
17
May 13, 2003
100.0
10.0 1.0 0.1
Sieve Size, mm
0.0
0.0
Il'llddr�lh
NI
Mull
N
I
i
nii
m
•'
nP
�I
C
I�
N'
men
No
mmiiiiilm�illill§E
Ilium
H IM
11M
ONE
100.0
10.0 1.0 0.1
Sieve Size, mm
0.0
0.0
Expansion Index
' ASTM D 4829/UBC 29 -2
Job Number: 544 =3166 Date: 5/13/03
Job Name:. Ave. 61 & Monroe Tech: Jake
Lab ID:.
Sample ID: Bulk 1 @ 0 -5'
Soil Description: Silty Sand
Wt of Soil + Ring:
545.0
Weight of Ring:
179.0
Wt of Wet Soil:
366.0
Percent Moisture:
13%
Wet Density, pcf:
110.9.
Dry Denstiy, pcf:
98.1
1% Saturation: 49.0
Expansion Rack #
Date/Time
5/15/03
9:00 A.M.
Initial Reading
0.500
Final Reading
0.500
Expansion Index
(Final = Initial) x 1000
EI
0
Sladden Engineering
Revised 12/10/02
ANAHEIM TEST LABORATORY
3008 S. ORANGE AVENUE
SANTA ANA, CALIFORNIA 92707
PHONE (714) 549 -7267
M
To: SLADDEN ENGINEERING:.
6782 STANTON AVE. SUITE A
BUENA PARK, CA.90621
:ORM 02
ATTN: BRETT /DAVE
PROJECT #544 -3'166
H =1 @ 0 -5'
ANALYTICAL REPORT
CORROSION SERIES
SUMMARY OF DATA
N
DATE: 5/16/03
RO.No. Chain of Custody
Shipper No.
Lob. No. A-3187
Specification:.
Material: SOIL
pH_ SOLUBLE SULFATES. SOLUBLE CHLORIDES MIN. RESISTIVITY
per Ca. 417 per Ca. 422. per Ca: 64.3
ppm ppm ohm -cm
6.5 132 297 1,621
0
• • ./A /
d m
May 21, 2003 -14- Project No. 544 -3166
03-05-321
1997 UNIFORM BUILDING CODE SEISMIC DESIGN INFORMATION
The International Conference of Building Officials 1997 Uniform Building Code contains substantial
revisions and additions to the earthquake engineering section in Chapter.16. Concepts contained in
the code that will be relevant to construction of the proposed structures are summarized below.
Ground shaking is expected to be the primary hazard most likely to affect the site, based upon
proximity to significant faults capable of generating large earthquakes_ Major fault zones considered
to be most likely to create strong ground shaking at the site are listed below.
Fault Zone
Approximate Distance
From Site
Fault Type
(1997 UBC)
San Andreas
13.7 km
A
San Jacinto
26.9 km
A
Based on our field observations land understanding of local geologic conditions, the"soil profile type
Judged applicable to this site is SD, generally described as stiff or dense soil. The site is located
within UBC Seismic Zone 4. The following table presents additional coefficients and factors relevant
to seismic mitigation for new construction upon adoption-of the 1997 code.
�I
Near-Source Near-Source
Seismic
Seismic
Seismic
Acceleration
Velocity
.Coefficient
Coefficient
Source
Factor, Na
Factor, N,
C,
C,
San Andreas
1.0
1.05
0.44Na
0.64N,
San Jacinto
1.0
1.0
0.44Na
0.64N,
Liquefaction Analysis
6
i Boring No.:11
Job.name:
I Proposed 30 -Acre Res. Development
Job No.:'
544 -3166
.. _... - -- .......
;Monroe Street & Avenue 61
1
!La Quinta, California
Water @1lo.
! amaX= 10
_. _...., .
-
-- ._.....'
{.... ... ..
_. . _ .........
........ ...... ;..
.
...
_.._ ...
_...
...........
a .
Sand
.........
i..
j..
Corrected
`:....
... ... _
silt
_.— ........
-- ..._.......�
wcoun s
CSRE
...
F. S.
or clay;
Depth(ft.) ; Soil Dens.
i Sigma(0) 1 Sigma(0)bar! Tons /ft ^2 Cr, I
N
N,
tau,/Sigma(0)effe6tivel
. CSRL
CSRUCSRE:
(Symbol)
1575
1263
0.632 1258 1
35
44.0
0.98:
0.261
1.00
3.8
sand
.___.15.0 .._........_10
.20.0
_._. _..__....
.._ ....�.....
_....._.. 105
2100......,...
- - -- ....,..
------._.._...........---...._.._..
1476
_ ..............._
.......!....._..._;..__...,....
0.738 ! 1.164
.........._........_....- - --- -- .,._..
19
22.1
0.96:
_......
0.292 '
...
' N/A"
.....,
N /A'
_ ...
clay
__..._... _.. ..
105
.._.... - --.
2625
- -.
1689
...... _1
0.845 1.088 '
.._.._.._�_....- f -...- -' _.t..__......._.
15 . -.
16.3
0.94
........................
0.312
N /A'
N /A"
_
clay
30.0
105
3150
1 2
! 0.951 1 025.
24 -
24.6
0.92
0.326 !
N /A"
N /A"
silt
35.0
105
3675
2115
1.058 0.972.
15
14.6
0.89 ;
0.331
N /A"
N /A'
_
silt
40.0
105
4200
2328
1.164 0.927
83
76.9
0.85
0.328
1.00
3.0
sand
45.0
'1* O'5
4725
2541
1.271 0.887
59
52.3
0.82 -
0.326
1.00
3.1
sand
50.0
105
! 5250.
2754
1.377 0.852
48
40.9
0.77
0.314 1
1.00
3.2
sand
_._
_._..- _..___....._�.....
i. ..........
:.
!
N /A' =Silts &Clays are considered non liquefiable
6
,
,
- r [ a •y
f .
T • :. "
F Y .
, A ?
; •
'. 1
+
`
� � W
a' _
'ir • L
Y
r
* �
'
Liquefaction Analysis
CA
t -Y
Boring No�;10 i Job name: IPro osed 30 -Acre Res. Development
P
Job No.: 1544 -3166
fMonroe Street& Avenue 61
-
ILa Quinta, California
e
'
_
I
and
Ssilt
,
'
ted
Blowcoun_
-
;Approx.
.:
I is
CSR_ E
-
F.S.
or clay;
I........
De th(ft. I Soil Dens. I Si ma(0) Si ma(0)bar Tons /ft ^2 CN N
p ) g g I
�I' N, rd tau,/Si
y
_...__ _._ _... -
ma 0 effective;
9 O 1 CSRL I CSRUCSRE'
-
(Symbol)
m
15.0 105 • 1575 .: .1.263
0.632 1.258 10.8
13.G'» =;0.98
0.26
N/ ''
clay
20.0 105 2100'',. • 1476
" ' 0.738 1.164 '' 25
29.1 -0.96
'0.292 '
N /A'
sand
.25.0 105 ,2625 1689
0.845 1.088° "` 15 .
16.3 ' 0.94
0.312
N/A*
N/A �,
c ay
30.0 105. 3150 - 1902
0.951 1:025 9
9.2 0:92.
0.326
N /A'
clay
35.0 105 ' 3675 2115
0.972 15
1.058 " "
14.6 0.89 ;
0.331
N /A'.
clay
40.0 105• '4200 2328
1.164 0.927 12
11.1 0.85:
0.328
N/A*
silt -
45.0 105 4725 ! 2541
i 1.271 0.887 20
17.7 0.82 '
0.326
1. 00
sand
50.0 ' 105 5250 2754
1.377 0.852 45
38.3 0.77 `
0.314
1.00
•sand
7non-Iiiquefiable
1
:
N/A* =Silts &Clays are cn liqueriable
=Silts ...._. i
-
' "Blow counts "N" converted based on correlation between California Sampler and Standard Penetration Sampler.
i
,
+ k
*. E Q F .i L T
* Version 3.00
DETERMINISTIC ESTIMATION OF
PEAK ACCELERATION FROM DIGITIZED FAULTS
JOB NUMBER: 544 -3166
DATE: 05 -16 -2003
JOB NAME: Avenue 61 & Monroe Street
Ta Quinta, California
CALCULATION .:li';E: Test Rv:: = .r,alysis
FAULT- DAT?. -. _ _ 'NAM; CD..`sG-LTE. DAT
SITE COORDINr:_:"S:
SITE LATITUDE: 33.6064
SITE LONGITUDE: '116.2357
SEARCH RADIUS: 100 mi
ATTENUATION RELATION: 5) Boore et al.
(1997) Horiz. - SOIL (310)
UNCERTAINTY (M= Median; .S= Sigma): M
Number of Sigmas: 0.0
DISTANCE MEASURE: cd_2drp
-SCOND: 0
Basement Depth: 5.00 km Campbell
SSR: Campbell SHR:
COMPUTE PEAK HORIZONTAL ACCELERATION
FAULT -DATA FILE USED: CDMGFLTE.DAT
MINIMUM DEPTH VALUE (km): 0.0
--------- - - - - --
EQFAULT SUMMARY
--------- - - - - --
-----------------------------
"cTERMINISTIC SITE: PARAMETERS
----------------------- - - - - --
Page 1
-------------------------------------------------------------------------------
I
(ESTIMATED MAX. EARTHQUAKE EVENT
I
APPROXIMATE I
------------------
- ------------
ABBREVIATED. I
DISTANCE I
MAXIMUM I
PEAK
(EST. SITE
FAULT NAME I
mi
.(km) IEARTHQUAKEI
SITE
(INTENSITY
i
I
MAG.(Mw) .I
ACCEL. g
IMOC.MERC.
SAN ANDREAS - Coachella' 1•
8,.5(
13.7)1
7.1 1
0.281
1 IX
SAN ANDREAS - Southern 1
8.5(
13.7)1
7.4 1
0.329
1 IX
SAN JACINTO-ANZA !
16.7(
26.911
7,2
0.183
1 VI==
SAN JACINTO- COYOTE CREEK
18.3;
29.5)1
6.8 •.
0.138
BURNT MTN. ;
24.8'
39.9);
6'.4
0.089
__
EUREKA PEAK i
25..6.;
'i_2)i
c.4 !•
0.087
i --
SAN ANDREAS - San Bernarc.':!._ !
26. C-
°)
0.138
SAN JACIN` 0- - BORPEG0
28.2;
- _ . 4 ) !
6. 6
-
BRAWLEY SETSMIC ZONE 1
35.4;
50.9)1
6.4 I
0.068
'J_
EARTHQUAKE VALLEY 1
35.5(
57.1)1
6.5 1
0.071
i VT
PINTO MOUNTAIN 1
37.4(
60.2)1
7.0 1
0.089
1 VI?.
EMERSON So.- COPPER MTN. 1
38.2(
61.4) 1
6.9 1
0.083
! VIT
PISGAH - BULLION MTN. - MESQUITE_ LK 1
39.0(
62.8) 1
7.1 I
0.091
I V;I
ELSINORE- JULIAN• I
39.7(-
63.,9)1
7.1 1
0.090
VT_I
LANDERS 1.
39.8(
64.1)1
7.3 1
0.099
i VIT
SAN JACINTO -SAN JACINTO VALLEY 1
40.3(
64.8) 1
6.9 1
0.080
I V =I.
ELMORE RANCH 1
42.3(
68.0)1
6.6 .1
0.066
1 VI
NORTH FRONTAL FAULT ZONE (East; 1
44.8(
72.1) 1
6.7 1
0.080
1 VII
ELSINORE- COYOTE MOUNTAIN 1
44.9(
72.3)1
6.8 1
0.070
VI
SUPERSTITION MTN. (San Jacinto; 1
46.0(
74.1)1
6.6 1
0.061
1 VI
SUPERSTITION HILLS (San Jacinto)(
47.0(
75.6)1
6.6 1
0.060
1 VI
ELSINORE- TEMECULA 1
47.5(.
76.4)1.
6.8 1
0.067
1 VI
JOHNSON VALLEY (Northern) 1
50.6(
81.5) 1
6.7 1
0.060
1 VI
CALICO - HIDALGO 1
51.9(
83.6) 1
7.1 1
0.073.
1 VII.
NORTH FRONTAL FAULT ZONE (West) 1
56.5(
91.0)1
7.0. 1
0.079
1 VII.
LENWOOD- LOCKHART -OLD WOMAN SPRGSI
56.5(
91.0)!
7.3 1
0.076
1 VIi
IMPERIAL 1
61.4(
98.8)1
7.0 i
0.061
1 Vi
ELSINORE -GLEN IVY 1
64.1(
103.111
6.8 !
0.053
1 VI
HELENDALE - S. LOCKHARDT 1
64.2(
103.3) 1
7.1 1
0.062
! VI
LAGUNA SALADA 1
64.2(
103.3)i
7.0 1
0.059
I VI
SAN JACINTO -SAN BERNARDINO 1
64.2(
103.4) 1
6.7 I
0.050
1 VI
CLEGHORN i
72.7(
117.0)1
6.5 1
0.041
1 V
ROSE CANYON 1
74.8(
120.3)1
6.9 1
0.049
1 VI
NEWPORT- INGLEWOOD (Offshore) 1
75.4(
121.3) 1
6.9 1
0.049
1 VI
CHINO- CENTRAL AVE. (Elsinore) 1
78.2(
125.8) 1
6.7 1
0.052
1 VI
CUCAMONGA 1
79.7(
128.3)1
7.0 1
0.060
1 V.I
WHITTIER 1
82.5(
132.7)1
6.8 1
0.043
1 VI
SAN ANDREAS -.Mojave 1
89.0(
143.2)1
7.1 1
0.048
1 VI
SAN ANDREAS - 1857 Rupture 1
89.0(
143.2)1
7.8 1
0.069
1 VI
CORONADO BANK 1
89.4(
14379)1
.7.4 1
0.056
1 VI
-----------------------------
DETERMINISTIC SITE PARAi�,; -.TERS
-----------------------------
Page 2
------------------------------------------------=
----------------------------
- -
I
IES - iIHATED MAX.
EARTHQUAKE
EVENT
APPROXIMATE .1 -------------------------------
ABBREVIATED I
DISTANCE I M:iXIMUM I
PEAK
JEST. SITE
FAULT NAME I
mi
(km) JEARTHQUAKEJ
SITE
(INTENSITY
I
I MAG.(Mw) I ACCEL.
9
JMOD.MERC.
SAN JOSE 1
90.7(
146.0.)1 6.5 I
0.042
1 VI
SIERRA MADRE 1
93.6(
150.7)1 7.0 1
0.053
1 VI
ELYSIAN PARK'THRUST. J
95.0(.152.9)1
6..7
0:045
1 VI
GRAVEL HILLS - HARPER LAKE 1
95.9(
154.3) 1 6.9
0.041
I V
NEWPORT- INGLEWOOD (L.A:Basin) 1
97.2(
156.4)1 6.9 1
0.040
1 V
-END OF SEARCH- 45 Fz�.ULTS FOUND
idITHIN
THE SPEC =TTED SEARCH
RADIUS.
THE, SAN' �NDREAS - Coac^ella FAULT IS CLO-. =S= TO THE SIT -E.
IT IS AE3OUT• 3.5 MILES ;13.7 km) AWA• .
SITE F.CCn-= RATION: 0. =;_
v�
1100'
1000
900
800
700
DO
500
400
300
200
i[iIl]
CALIFORNIA FAULT MAP
Avenue 61 & Monroe Street / La Quinta, CA
0
-100
-400 -300 -200 -100 0 100 200 300 400 500 600
STRIKE -SLIP FAULTS
5) Boore et al. (1997) Horiz. - SOIL (3 10)
M =5 M =6 M =7 M =8
1
-4
o .1
nL`
W
W
U
U .
Q
.01
.001
1 10 100
Distance (adist] (km)
DIP -SLIP FAULTS,
5) Booi-e et al_ (1997) . Horiz. - SOIL (310) .
M =5 M =6 M =7 M =8
.001
.1
A
10 100
Distance [adistl (km)
n
`•�
0
c�
L
a)
a�
U
U
i
BLIND- THRUST FAULTS
5) Boore et al. (1997) Horiz. -SOIL (310)
® a
M =5 M=6 M =7 M =8
i
.1
.01
.001
1 10 100
Distance [adist] (km)
: MAXIMUM EARTHQUAKES
Avenue 6.1 &. Monroe Street / La Quinta, CA
0
c�
^L`
W
U
U
a
1
.01
001
.1 1 10 100
Distance (mi)
3
EARTHQUAKE MAGNITUDES & DISTANCES
Avenue 61 & Monroe Street / La Quinta, CA
7.75
7.50
7.25
a)
7.00
0
c�
6..75
6.50
.1 1 10 100
Distance (mi)
Sladden Engineering
6782 Stanton Ave., Suite A, Buena Park, CA 90621 (714) 523 -0952 Fax (714)'523-1369
39 -725 Garand Ln., Suite G, Palm Desert, CA 92211 (760) 772 -3893 Fax (760) 772 -3895 ,
May 27, 2003 Project No. 544-3166
03-05 -329
Monroe Dates, -LLC
1387 Ambassador Way
Salt.Lake City, Utah 84108
Attention: Mr. Craig A. Knight .
Project: Proposed 30-Acre Residential Development
APN 764-270-015 & 746- 280-014
Monroe and Avenue 61
La Quinta, California
Subject= Percolation Testing for Stormwater Retention
Ref= Geotechnical Investigation prepared by Sladden Engineering dated May 21,
2003, Project No. 544-3166, Report No. 03-05 -321. .
As requested, we have performed percolation/infiltration testing on the subject site in order
to determine the infiltration potential of the surface soils. The percolation rates determined '
should be useful in assessing stormwater retention needs. It is our understanding that on-
site stormwater. retention will be required. It is proposed to collect the stormwater runoff
within several shallow retention basins. infiltration testing was performed within shallow
test holes excavated'in various locations on the site.
Percolation testing was performed on May 13, 2003. Testing involved filling th test holes
with water and recording t e ro 7the r rface withtime. Measuremen s were
recorded in variable time increments upon 7in ration rates.
Tests results are. summarized below:
Test Hole No.
. Rate
(inches/hour)
A
9.0
B
18.0
C
15.0
D
15.0
E
12.0 .
F
4.0
G
6.0
V-% 1
UScc�
i
:y
May 27, 2003 -2- Project No. 544-3166
03- 05-329
It should be noted that the infiltration rates determined are ultimate rates based upon field
test results. An appropriate safety factor should be applied to account for subsoil
inconsistencies and potential silting of the percolating soils. The safety. factor should be
determined with consideration to other factors in the stormwater retention system design
(particularly stormwater volume estimates) and the safety factors associated with those
design components_
We appreciate the opportunity to provide service to you on this project. If you have questions
regarding this letter or the test results included, please contact the undersigned.
Respectfully submitted,
SLADDEN ENGINEERING
PROFESS/0�`
ANpF Fyc
Brett L. Anderson m N
Principal Engineer No• C 453889
Exp. 9/30106
Letter /pc sT�r� CNIL �P
)F CAUFCF
Copies = 211Monroe Dates, LLC
2 /Cal Vada Surveying
t ILI iN 1 A: 1 1 .. 1 t-li, IA- k--" J
IN r1-HF .CITY OF L.A.
ivt
QU I N -F A
..
SLo,,,, occ,... v 0,5-
,.r
APPRowrO i7.7E PERCOLATZoN G "�`o`^
7-S-s7-_ LocA 7-ZONs
K ..
. a
e�
HYZR0L.ac,Y,�3 f- tyvRAuucs.srLwY fa`
MADISON CL�t'� (Cb-xbhC)VcZ)
p CC I WI
D.
APR 1' 2 2007
GTY OF
COMMUNITY DEVEWAPMENT
DEPARTMENT
10 -Year and 100 -Year Storm
Rational Method Analysis
for
East of Madison, LLC
80 -955 Avenue 52
La Quinta, CA 92253
prepared by:
Lim!NConsultants, Inc.
7595 Irvine Center Drive, Suite 130
Irvine, CA 92618
949.453.0111
t4 der the supervision o f
Jeremy Patapoff, P.E.
pate prepared.
April H, 2007
e 63 94 1a
D�
��e��
b96* s
vtloo
4�
I. INTRODUCTION
The purpose of this report is to present the hydrology (rational method) and hydraulic (WSPG)
analysis for the 10 -year and 100 -year storm water discharge for the proposed Madison Club
Clubhouse development, Tentative Tract 34969. The Madison Club is located in the City of La
Quinta and is bound by Madison Street, Avenue 54, Avenue 52, and Monroe Street. The
proposed development will consist of approximately 470 acres divided into three (3) major
project phases; Phase 1, Phase 2 and Villas.
This report is specific to the proposed "Storm Drain Improvements for Madison Club Clubhouse"
only and represents the report covering the handling of storm water for the Clubhouse watershed
boundary. In this report the following will be addressed: sizing of the private residential area
drain connections, sizing of the natural drainage channel catch basins, sizing of the residential
storm drain lines and sizing of the natural drainage channel adjacent to each side of the private
streets within the above mentioned boundary.
The first report (Vol. I) titled "Hydrology Report - Madison Club 100 -Year Storm Volume and
Storage Analysis" was submitted with the "Mass Grading and Perimeter Wall Plans" and
addressed the necessary storage volume to retain all off -site and on -site runoff generated by the
largest 100 -year 24 -hour event based on the Synthetic Unit Hydrograph method within the golf
lakes and established the 100 -year water surface elevations. The second report (Vol. II) titled
"Hydrology and Hydraulics Study for Madison Club Golf' accompanied the "Storm Drain Back -
Bone Improvement Plans for Madison Club Golf Course" and addressed the sizing of the
backbone storm drain system within the golf course. The third set of reports (Vol. IIIA & IIIB)
titled "Storm Drain Improvements for Madison Club Phase 1" and "Storm Drain Improvements
for Madison Club Phase 2" addressed the sizing of the private residential area drain connections,
sizing of the residential storm drain lines, sizing of the natural drainage channels and drainage
channel catch basins throughout the two phases of the Madison Club.
Madison Club (on -site) and its perimeter streets (off -site) are hydrologically isolated. All runoff
within the project and the portion of the perimeter streets adjacent to the project are to be stored
on -site. Within the site there are seven (7) lakes and two (2) low points. Although each
watershed drains to a lake or low point within the golf course only four (4) of the seven (7) lake
features serves as the project's ultimate storage devices. Each watershed area drains by way of
"backbone" storm drains through the golf course to these four lakes. From these four (4) lakes
the water is discharged to on -site dry wells (infiltration systems). These dry wells are intended to
remove water from the site over time and are not considered part of the routing analysis. The
reports titled "Hydrology Report - Madison Club 100 -Year Storm Volume and Storage Analysis"
(Vol.. I) and "Hydrology and Hydraulics Study for Madison Club Golf' (Vol. II) provide the
analysis for the storage and routing mentioned.
In this report the watershed boundary areas were modeled according to the Riverside County
Flood Control and Water Conservation District's (RCFC &WCD) Hydrology Manual. Watershed
sub areas were created to represent catch basin collection areas within each watershed. The peak
100 -year runoff within a sub area is intended to flow towards a series of catch basins located at
low points within the natural drainage channels, then transferred to the storm drain pipelines and
finally to their respective storage basins (lakes) via the golf course storm drain backbone system.
The peak storm flow discharge rates for the sub -areas were calculated with integrated rational
method /unit hydrograph method hydrology software, authored by Advanced Engineering
Software (AES), Version 2001, based on the (RCFC &WCD) 1978 Hydrology Manual. The
software was used to estimate the peak runoffs generated by a 10 -year and a 100 -year frequency
design storm. Storm drain facilities were then designed to accommodate these peak runoff rates.
1 Due to confluencing of multiple streams the peak runoff at the end of each system may not equal
the sum of all the individual sub area runoff values. This happens because confluencing accounts
for the time of concentration for each merging stream.
Every initial area started with a typical 1 -acre lot and the distance to drain the lot via side yard
swales to the main swale adjacent to the residential streets. For the street section of flow the
natural drainage swale was estimated using a 6 -inch curb height, 5 -foot wide gutter width and a
' friction factor of n= 0.015. The actual drainage swale is 12 -feet wide, 1.67 -feet at the. low points
and has a n= 0.035. Therefore the street section used in the rational analysis of this report is
producing conservative Q's. The additional areas and pipe travel times followed normal rational
' method convention.
Hydraulic pipe flow calculations for the storm drain facilities were performed using Water
Surface Pressure Gradient (WSPG) software, establishing a hydraulic grade like for each facility.
WSPG software, authorized by CIVILDESIGN Corporation, is based upon the Manning equation
for conduit and channel flow, incorporating principles of continuity and conservation of energy.
1 The non - confluenced runoff values were used when sizing the pipe.
Natural channel flow capacities were calculated using AES software for V- drains, drainage
channel catch basins were analyzed based on the grate inlet capacity in sump conditions
' nomograph from the USDOT Drainage of Highway Pavements Manual and private area drain
connections were analyzed using a 10 -year storm and Manning's equation.
III. STORM WATER RUNOFF ANALYSIS
Natural Drainage Swales and Storm Drain Pipe
Instead of curb and gutter the Madison Club residential streets rely on 12 -foot wide natural
drainage swales on both sides of the street. These swales follow the same design criteria as
grading with side slopes ranging from 2- percent to 3:1 maximum at the low points. In addition
the Conditions of Approval require maintaining a minimum grade of 1- percent and the ability to
retain a maximum depth of 6- inches of storm water in the 10 -year event and /or one (1) travel lane
during the 100 -year storm event. To achieve this three (3) design devices were employed. First
the swales were saw - toothed to achieve the 1- percent minimum and create frequent low points.
Second, within these low points 24 -inch round catch basins were placed within the channel to
capture the flow for Q 100 and transfer it to the storm drain line. Finally, each lot is provided with
a 10 -inch private area drain connection to the main storm drain line.
The capacity of the swale alone at the low points with 1.67 -feet of depth is 36.8cfs. Because of
' the frequent placement of inlets there are no conditions where the street/swale Q100 exceeds 15
cfs. Therefore all flow is contained within the swale and the Conditions of Approval are met.
See Technical Appendix "Natural Drainage Swale Analysis" for calculations of these conditions.
Beneath the swales storm drain pipes will be constructed connecting the residential system to the
backbone system with the golf course. Depending on the condition either HDPE or RCP pipe
was used. When the system crosses under pavement RCP is used. In all other conditions HPDE
pipe was specified.
2
r
Drainage Channel Catch Basin Sizing
At all Swale low points manholes with round grated covers were placed to intercept the runoff.
Two (2) types, either ADS or City of La Quinta Standard 314, were used depending on the
condition. If the manhole connected to a section of HDPE pipe an ADS 24 -inch manhole basin
with an iron grated cover was used. If the manhole connected to a RCP pipe a standard manhole
with grated cover was used. Based on the low point conditions of the swale established in the
section above a 24 -inch diameter grated inlet with 1.5 -feet of head and 50% clogging can accept
9.5 cfs.
Private Area Drain Connections
Each residential lot is provided with a private area drain connection to the storm drain system
under the drainage swale. The connection was sized to handle a 10 -year storm and a portion of
the 100 -year storm. The remainder of the runoff from a 100 -year storm will flow to the natural
drainage Swale by way of 0.5- percent minimum side yard swales. Based on the average depth of
the storm drain mainline under the swale a minimum 1- percent slope can be maintain on the
private area drain systems. Given a 10 -inch pipe the Q is 2.5 cfs based on the Manning's
equation. Initial rational method analysis for a 1 -acre lot with 250 -feet of 0.5- percent side yard
swale provides a Q100 of 3 cfs and a Q 10 of 1.7 cfs. Therefore in a 100 -year storm 0.5 cfs will
flow from the lot to the natural drainage swale. See Technical Appendix for calculations of these
conditions.
When applying runoff to the natural drainage swale for the rational method analysis all flow from
the residential lots was assumed to run off (private area drain system failure). This made the Q's
in the swale /street extremely conservative since some of the flow will undoubtedly go directly to
the storm drain line via the private area drain system. In addition when sizing the pipes all area
drain runoff was applied to the nearest upstream catch basin to be more conservative. Hence the
Q100 at that catch basin (node) is a combination of the Q100 in the Swale and in the pipe.
Clubhouse Area Drainage
The Clubhouse lot is a two- tiered area with buildings, hardscape and landscape. Surface area
drains have been placed in the planting areas to capture run off from the roof drains, the
hardscape and the planting areas themselves. The run off from the upper tier has been connected
to the storm drain system #I I H. The run off to the lower tier has been connected to Lake "F" per
the mass grading hydrology zone. Based on the capacity of 6" surface area drains to be 0.19 cfs,
including 50% clogging, the maximum area draining to one surface area drain was approximately
2150 sf. There were a total of 61 surface area drains used.
The parking lot and tennis court area drains to one (1) curb opening catch basin which then enters
storm drain system #1113. Additionally, there are two (2) curb opening catch basin in the Phase 1
Storm Drain system which captures a portion of Meriwether Way. They are CB #9 and CB# 10.
The two catch basins in Meriwether Way are in a sump condition and accept a 100 -year runoff of
1.5 cfs each. Based on this information the width was designed as 4 -feet.
IV. STORM DRAIN HYDRAULICS
The hydraulic analysis was performed utilizing WSPG software to establish the designed pipe
line sizes for all mainlines and laterals to convey water from each respective sub -area to the
storage basins (lakes). A HGL was initially created for each backbone storm drain using the 100-
' year water surface elevation from the synthetic unit hydrograph analysis of each respective
storage basin (lake) and estimated runoff values based on preliminary rational method analysis
3
for the sub -areas contributing to the backbone line. The HGL's in this report were created using
the same data as above but include the residential storm drain lines and a detailed rational method
analysis for each sub -area. The HGL for each pipe is reflected in the storm drain plans plotted
along the design profile of each storm drain. The backbone portion of the design profile was
omitted in these plans to eliminate redundancy with the "Storm Drain Back -Bone Improvement
Plans for Madison Club Golf Course ". The output reports for each storm drain line can be found
in the Technical Appendix for reference.
Note: All supporting documentation is located in the Technical Appendix of this report for
reference.
V. BIBLIOGRAPHY
1. Riverside County Flood Control and Water Conservation District Hydrology Manual
(April 1978).
2. Hydrology Report Madison Club 100 -Year Storm Volume and Storage Analysis (March
29, 2005).
3. Hydrology and Hydraulics Study for Madison Club (Golf Course Storm Drain Backbone)
(June 22, 2005).
s
-1
e
�.
�,
��
��
a,
;,
,�
��,
�� ,
,.
.
.
.,�
,�
t
sisl- ��sN�w�ois
1
4
1
1
1
1
1
1
1
sisl- ��sN�w�ois
FLOW PROCESS FROM NODE 1.00 TO-NODE Z'OO IS CODE � 21
--,-------------
-------------�----------------------------------------------
�
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
~====--~-~---====~~��=~===~�~~===��==
��
ASSUMED INITIAL SUBAREA UNIFORM �
Page 1
.
` LNllO.TXT
RATIONAL PROGRAM BASED ON
RIVERSIDE COUNTY FLOOD CONTROL 8 WATER CONSERVATION DISTRICT
(R[FC&WCD} I978 HYDROLOGY MANUAL
(c) copyright 1982-2004 Advanced Engineering software (aes)
{Rational Tabling Version 6'OD}
Release Data: 01/0I/2004 License ID 1566
`
Analysis 'prepared by:
R[E[onsultants, Inc'
' 7595 Irvine [enter Drive. suite 130
Irvine, CA 92618
--
(949) 453-011l �
'
oES[RrPTInN*OF STUDY
� MadisonClub I0-yr
*
se, Line l
�
--
� 2/9/07 �
*
****-^^---***^+-*-^- ******--^��a�****»�*+
FILE NAME: LNI10'DAT
-~
TIME/DATE OF STUDY: I6:37 02/09/2007
--------------------------------------- -_----------------------_------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
-----------------------------------------------------------------------------
-p�� *SPECIFIED ' -T--'P-'-IZ`(-'~] --'--
�
SPECIFIED PERCENT OF ( FOR FRICTION SLOPE
0'95
lO-YB\K STORM 10-MINUTE INTENSITY(IN[H/HOUR} = 2'830
I0-YEAR STORM 60-MINUTE� INTENSITY(IN[A/H0UR) = 1'000
100-YEAR STORM I0-MINUTE INTENSITY IN[H HOUK = 4.520
IOU-YEAR STORM 60-MINUTE INTENSITY(IN[H/HOUR} = 1-600
SLOPE OF I0-YEAR INTENSITY-DURATION CURVE 0.5805893
SLOPE OF 100-YEAR INTENSITY-DURATION CURVE 0.5796024
COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT = 10'00 1-H0UR INTENSITY(IN[H/HOUR} l'UlO
.SLOPE OF INTENSITY DURATION CURVE = 0.5806
R[F[&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO R[F[&W[D HYDROLOGY MANUAL
AND IGNORE OTHER CONFLUENCE .COMBINATIONS FOR DOWNSTREAM ANALYSES
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLO� MODEL*
HALF- CROWN TO STREET-[ROS3FALL: [UK8 GUT-TER-GEOMETRIES':
MANNING
WIDTH [R0S5FALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE
FACTOR
NO. (FT) {FT} SIDE-/ SIDE/ WAY (FT) {FT} (FT) (FT)
(n)
l 30'0 20'0 0.018/0.018/0.020 0'67 2'00 O'O]l] 0.167
0'0I50
2 I9.0 14'0 0'020/0'100/0'050 0'50 5'00 0'0100 0'010
0'0I50
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
l' Relative FlOW-De/th = l'UO FEET
as [Maximum Allowable street Flow Depth] - (Top-of-Curb)
2' [Depth]*(Velocity) Constraint = 6'0 {FT-FT/S).
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE`*
FLOW PROCESS FROM NODE 1.00 TO-NODE Z'OO IS CODE � 21
--,-------------
-------------�----------------------------------------------
�
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
~====--~-~---====~~��=~===~�~~===��==
��
ASSUMED INITIAL SUBAREA UNIFORM �
Page 1
I ''. `
1
r
1
I I
� I
1
LN110.TXT
DEVELOPMENT IS SINGLE FAMILY(1 -ACRE LOTS)
TC = K*[(LENGTH**3) /(ELEVATION CHANGE)]"*.2
INITIAL SUBAREA FLOW- LENGTH(FEET) = 390.00
UPSTREAM ELEVATION(FEET) = 996.00
DOWNSTREAM.ELEVATION(FEET) = 992.00
ELEVATION DIFFERENCE(FEET) = 4.00
TC = 0.469•[( 390.00•=3)/( 4.00)] * *•.2 = 12.755.
10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.482
SINGLE- FAMILY(1 -ACRE LOT) RUNOFF COEFFICIENT = .6863'
SOIL CLASSIFICATION IS "B"
SUBAREA RUNOFF(CFS) = 1.36
TOTAL AREA(ACRES) = 0.80 . TOTAL RUNOFF(CFS) = 1.36
FLOW PROCESS FROM NODE 3.00.TO NODE 2.00 IS CODE = 81
--------------------- ------------------- - ---------- - ------ ------------------ -
» »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««<
-10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.482
SINGLE- FAMILY(1 -ACRE LOT) RUNOFF COEFFICIENT = .6863
SOIL CLASSIFICATION IS "B"
SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOFF(CFS) 1.19
TOTAL AREA(ACRES). = 1.50 TOTAL RUNOFF(CFS) = 2.55
TC(MIN.-) = 12.75
FLOW PROCESS FROM NODE 2.00 TO NODE 4.00 IS CODE = 62
------------------------------------------------=------------------- - - - - --
» » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «<
» »>( STREET TABLE SECTION # 2 USED)««<
-- -------------------------------------------------------------------------
UPSTREAM ELEVATION(FEET).= 992.00 DOWNSTREAM ELEVATION(FEET) = 987.80
STREET LENGTH(FEET) = 400.00 CURB HEIGHT(INCHES)
STREET HALFWIDTH(FEET) = 19.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 14.00
INSIDE STREET CROSSFALL(DECIMAL) = 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.100
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
STREET PARKWAY CROSSFALL(DECIMAL) .= 0.050
Manning'S FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150
Manning'S FRICTION FACTOR for Back -of -Walk Flow Section =. 0.0200
*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.88
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.21
HALFSTREET FLOOD WIDTH(FEET) = 14.32.
AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.60
PRODUCT OF DEPTH &VELOCITY(FT*FT /SEC.) = 0.54
STREET FLOW TRAVEL TIME(MIN.) = 2.57 TC(MIN.) = 15.32
10 YEAR RAINFALL INTENSITY(INCH /HOUR) = .2.231
SINGLE- FAMILY(1 -ACRE LOT) RUNOFF COEFFICIENT = ..6699
SOIL CLASSIFICATION IS "B"
SUBAREA AREA(ACRES). 3.10 SUBAREA RUNOFF(CFS) = 4.63.
TOTAL AREA(ACRES) 4.60 PEAK FLOW RATE(CFS) = 7.19
END OF'SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) =.0.25 HALFSTREET FLOOD WIDTH(FEET) 16.35
�. FLOW VELOCITY(FEET /SEC.) =. 2.88 DEPTH*VELOCITY(FT *•FT /SEC.) = 0.71
-LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.00 = 790.00 FEET.
Page 2
LN110.TXT
FLOW PROCESS FROM NODE 5.00 TO NODE. 4.00 IS CODE = 81
----------------------------------------------------------------------------
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «<
-------------------=-------------------------=-----=------------------------
----------------------------------------------------------------------------
10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.231
SINGLE- FAMILY(1 -ACRE LOT) RUNOFF COEFFICIENT = .6699
SOIL CLASSIFICATION IS "B ".
.SUBAREA AREA(ACRES) = 2.20 SUBAREA RUNOFF(CFS) _ .3.29
TOTAL AREA(ACRES) = 6.80 TOTAL RUNOFF(CFS) = 10.48
TC(MIN.) = 15.32
FLOW PROCESS FROM NODE 4..00 TO NODE 8.00 IS.CODE = 31
----------------------- --------------------- =-------------------------------
»»>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< .
»» >USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW)««<
---------------------=---------------------------------------=--------------
----------------------------------------------------------------------------
ELEVATION DATA: UPSTREAM(FEET) 981.60 DOWNSTREAM(FEET) = 979.50
FLOW LENGTH(FEET) = 210.00 MANNING'S N = 0..013
DEPTH OF FLOW IN 21.0 INCH PIPE IS 12.7 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 6.90
ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES 1
PIPE- FLOW(CFS) = 10.48
PIPE TRAVEL TIME(MIN.)• = 0.51 TC(MIN.) = 15.83
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 8.00 = 1000.00 FEET.
FLOW PROCESS FROM NODE .8.00 TO NODE 8.00 IS CODE = 1
---=------------------------------------------------------------------------
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «<
-----------------------------------------------=----------------------------
----------------------------------------------------------------------------
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 15.83
RAINFALL INTENSITY(INCH /HR) = 2.19
TOTAL STREAM AREA(ACRES) = 6.80
PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.48
FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 21
--------------------------------------------------------=-------------------
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «<
-------------------=--------------------------------------------------------
----------------------------------------------------------------------------
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS CONDOMINIUM
TC = K*[(LENGTH * *3) /(ELEVATION CHANGE)]**.2
INITIAL SUBAREA FLOW- LENGTH(FEET) = 43.0.00
UPSTREAM ELEVATION(FEET) =. 997.10
DOWNSTREAM ELEVATION(FEET) = 992.75
ELEVATION DIFFERENCE(FEET) = 4.35
TC = 0.359 *[( 430.00 *.*3)/(. 4.35)1 * *.2 = 10.179
10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.829
CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .8149
SOIL CLASSIFICATION IS "B"
SUBAREA RUNOFF(CFS) = 4.61
TOTAL AREA(ACRES) = 2.00 TOTAL RUNOFF(CFS) = 4.61
FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 62
>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»» >( STREET TABLE SECTION # 1 USED) ««<
3 -
Page
LN110.TXT
' UPSTREAM ELEVATION(FEET) = '992.75 DOWNSTREAM ELEVATION(FEET) = 987.20
STREET LENGTH(FEET) = 430.00 CURB HEIGHT(INCHES) = 8.0
STREET HALFWIDTH(FEET) = 30.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
INSIDE STREET CROSSFALL(DECIMAL) = 0.018
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
'
STREET PARKWAY CROSSFALL(DECIMAL) 0.020
Manning 's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150
Manning's FRICTION FACTOR for Back -of -Walk F1oW Section = 0.0200
'
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 7.30
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.44
'. HALFSTREET FLOOD WIDTH(FEET) = 15.51
AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.12
PRODUCT OF DEPTH &VELOCITY(FT°FT /SEC.) = 1.37
STREET FLOW TRAVEL TIME(MIN.) = 2.30 TC(MIN.) = 12.48
10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.514
' SINGLE- FAMILY(1 -ACRE LOT) RUNOFF COEFFICIENT = .6882
SOIL CLASSIFICATION IS "B"
SUBAREA AREA(ACRES) = 3.10 SUBAREA RUNOFF(CFS) _ 5.36
TOTAL AREA(ACRES) = 5.10 PEAK FLOW RATE(CFS) = 9.97
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.48 HALFSTREET FLOOD WIDTH(FEET) = 17.62
FLOW.VELOCITY(FEET /SEC.) = 3.36 DEPTH*VELOCITY(FT*FT /SEC.) = 1.60
LONGEST FLOWPATH FROM NODE. 6.00 TO NODE 8.00 = 860.00 FEET.
FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 1
t ---------------------------------------------------------------------
»» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<
» »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES «« <'
----------------------------------------------------------------------------
----------------------------------------------------------------------------
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2.ARE:
TIME OF CONCENTRATION(MIN.) = 12.48
RAINFALL INTENSITY(INCH /HR) = 2.51
TOTAL STREAM AREA(ACRES) = 5.10
PEAK FLOW RATE(CFS) AT CONFLUENCE 9.97
° CONFLUENCE DATA
t STREAM RUNOFF TC INTENSITY AREA
NUMBER (CFS) (MIN.) (INCH /HOUR) (ACRE)
1 10.48 15.83 2.189- 6.80
2 9.97 12.48 2.514 5.10
' -WARNING**********************************
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
ON THE RCFC &WCD FORMULA OF PLATE D -1 AS DEFAULT VALUE. THIS FORMULA
. ^WILL ^NOT ^NECESSARILY ^RESULT ^IN^THE MAXIMUM VALUE ^OF ^ PEAK ^FLOW. ^^ ^
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
PEAK
FLOW RATE TABLE
STREAM
RUNOFF TC
INTENSITY
NUMBER
1.
(CFS). (MIN.)
18.23 12.48
(INCH /HOUR)
2.514
Page, 4
LN110.TXT
2 19.16 15.83 2.189
COMPUTED CONFLUENCE'ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS).= 19.16 TC(MIN.) = 15.83
TOTAL AREA(ACRES) = 11.90
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 8.00 = 1000.00 FEET.
FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 21
-------------------------------=-------------------------------------- - - - - --
»»> RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««<
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS CONDOMINIUM
' TC = K*[(LENGTH *3) /(ELEVATION CHANGE)] * *.2
-INITIAL SUBAREA FLOW- LENGTH(FEET) = 430.00
UPSTREAM ELEVATION(FEET) = 988.40
' DOWNSTREAM ELEVATION(FEET) = 980.40
ELEVATION DIFFERENCE(FEET) = 8.00
TC = 0.359•[( 430.00**3) /( 8.00)1 **.2 9.012
10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.036
CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .8192
SOIL CLASSIFICATION IS "B"
SUBAREA RUNOFF(CFS) = 1.74
TOTAL AREA(ACRES) = 0.70 TOTAL RUNOFF(CFS) = 1.74
FLOW PROCESS FROM NODE 11.00 TO NODE 10.00 IS CODE = 81
----------------------------------------------------------------------------
-- »» >ADDITION -OF- SUBAREA -TO_ MAINLINE - PEAK - FLOW < < < < < ---- - - - - -- --- - - - - --
10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.036
CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .8192
SOIL CLASSIFICATION IS "B"
SUBAREA AREA(ACRES) = 2.60 SUBAREA RUNOFF(CFS) = 6.47
TOTAL AREA(ACRES) .= 3.30 TOTAL RUNOFF(CFS) = 8.21
TC(MIN.) = 9.01
END OF STUDY SUMMARY:
______________ ________
TOTAL AREA(ACRES) 3.30 TC(MIN.) = 9.01
PEAK FLOW RATE(CFS) = 8.21
----------=-------------=--------========================== -==== ------------
END OF RATIONAL METHOD ANALYSIS
R
r
� I
Page 5
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
l. Relative Flm*-Depth = 1.00 FEET '
^ as imum Allowable "treet Flow Depth) op-of-curb)
2^ {Depth}^{Velocity} [onstraint = 6'0 {FT*FT/S}
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE'* �
FLOW PROCESS FROM NODE .1.00 TO NODE 3'00 IS CODE 21
�------------------- �--�-------------------------------------------------------
>>>>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<<<
' ASSUMED INITIAL SUBAREA-UNIFORM
Page I .'
' '
` LNl'TXT `
'
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON
RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT
. (R[F[&W[D) 1978 HYDROLOGY MANUAL
[c] Copyright 1982-2004 Advanced Engineering Software (aes)
(Rational Tabling Version 6.OD)
~-
Release Date: 01/01/2004 License ID I566
` Analysis prepared by:-
' R[E Consultants, Inc'
.7595-Irvine Center Drive, Suite 130
' Irvine, [A 92618
[949] 453-0I1I
DESCRIPTION OF STUDY
^ Madison Club 100-yr
clubhouse, Line l
*
*
+ 2/9/07
+
�N
FILENAME' ' LN1DAT
' '
TIME/DATE OF STUDY: I6:35 02/09/2007
�
�
�@
------------------------------------------ 7---------------------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
-- U
------�-------------------------------------------------------------------
USER-SPECIFIED STORM EVENT(YEAR) ~ 100'00
SPECIFIED MINIMUM PIPE SIZE(INCH) 18'00
�N
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE
10-YEAR STORM 10-MINUTE INTENSITY{IN[H ' HOUQ] 2.030
= 0.95
10-YEAR STORM 00-MINUTE INTENSITY(IN[HHOUR) -1.000
100-YEAR STORM 10'-MINUTE INTEwSITY(Iw[* HOUK) ~ 4'520
I00-YEAR STORM 00-MINUTE INTENSITY(IN[H/HOUK] I'600
SLOPE OF 10-YEAR .INTENSITY-DURATION CURVE 0'5805893
SLOPE OF 100-YEAR INTENSITY-DURATION CURVE ~ 0'5796024
`
COMPUTED RAINFALL INTENSITY DATA:
�0
STORM EVENT - I00.00 l-HOUR IwTENSITY(IN[H/H0UR) 1'600
SLOPE OF INTENSITY DURATION CURVE = 0.5798
R[FC&N[D HYDROLOGY MANUAL-"C"-VALUES USED FOR RATIONAL METHOD
NOTE: COMPUTE CONFLU ENCE VALUES ACCORDING T0 R[FC&W[D HYDROLOGY MANUAL
AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR D0WNSTREAM ANALYSES
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFL0W AND STKEETFL0W MODEL*
�N
HALF- CROWN TO STREET-[K0SSF4LL: CURB GUTTER-GEOMETRIES:
MANNING
WIDTH [ROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE
FACTOR
NO' (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) [FT] (FT)
=--- =-=���==�=����=�= -��~�= -==== ====~= ~==~~
l 30.0 20'0 0.018/0.018/0.020 0.67 2'00 0'03I3 0'167
(n)
====~==
0.0150
|
2 19.0 14'0 0.020/0'100/0'050 0.50 5.00 0'0100 0.0I0
0'0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
l. Relative Flm*-Depth = 1.00 FEET '
^ as imum Allowable "treet Flow Depth) op-of-curb)
2^ {Depth}^{Velocity} [onstraint = 6'0 {FT*FT/S}
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE'* �
FLOW PROCESS FROM NODE .1.00 TO NODE 3'00 IS CODE 21
�------------------- �--�-------------------------------------------------------
>>>>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<<<
' ASSUMED INITIAL SUBAREA-UNIFORM
Page I .'
' '
LNI.TXT
.DEVELOPMENT IS SINGLE FAMILY(1 -ACRE LOTS)
TC = K*[(LENGTH *3) /(ELEVATION CHAN6E)]*=.2
INITIAL SUBAREA FLOW- LENGTH(FEET) = 390.00
UPSTREAM ELEVATION(FEET) = 996.00
DOWNSTREAM ELEVATION(FEET) = 992.00
.ELEVATION DIFFERENCE(FEET) = . 4.00
TC = 0.469*[( 390.00='*3)/( 4.00)] "*.2 = 12.755
100 YEAR RAINFALL INTENSITY(INCH /HOUR) =' 3.925
SINGLE- FAMILY(1 -ACRE LOT) RUNOFF COEFFICIENT = .7483 .
SOIL CLASSIFICATION IS "B"
SUBAREA RUNOFF(CFS) = 2.35
TOTAL AREA(ACRES),= 0.80 TOTAL RUNOFF(CFS) = 2.35
FLOW .PROCESS FROM NODE 3.00 TO NODE 2.00 IS CODE = 81
-------------- ----------------------------------------------------------------
» » >ADDITION OF SUBAREA TO.MAINLINE PEAK FLOW« «<
----------------------------------------------------------------------------
----------------------------------------------------------------------------
100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.925
SINGLE- FAMILY(1 -ACRE LOT) RUNOFF COEFFICIENT = .7483
SOIL CLASSIFICATION IS "B"
SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOFF(CFS) = 2.06
TOTAL AREA(ACRES) = 1.50 TOTAL RUNOFF(CFS) = 4.41
TC(MIN.) = 12.75
FLOW PROCESS FROM NODE 2.00 TO NODE 4.00 IS CODE= 62
------------------------------------ - ------------------------------------ ---
» » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA ««<
»»>( STREET TABLE SECTION # 2 USED) « « <.
---------------------=------------------------------------------------------
----------------------------------------------------------------------------
UPSTREAM ELEVATION(FEET) = 992.00 DOWNSTREAM ELEVATION(FEET) = 987.80
STREET LENGTH(FEET) = 400.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 19.00
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 14.00
INSIDE STREET CROSSFALL(DECIMAL) = 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.100
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
STREET PARKWAY CROSSFALL(DECIMAL) 0.050
Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150
Manning's FRICTION FACTOR for Back -of -Walk FIOw Section = 0.0200
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 8.50
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.27
HALFSTREET FLOOD WIDTH(FEET) = 17.33
AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.00
PRODUCT OF DEPTH &VELOCITY(FT*FT /SEC.) = 0.80
STREET FLOW TRAVEL TIME(MIN.) = 2.22 TC(MIN.) = 14.97
100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.577
SINGLE- FAMILY(1 -ACRE LOT) RUNOFF COEFFICIENT = .7369
SOIL CLASSIFICATION IS "B" t
SUBAREA AREA(ACRES) 3.10 SUBAREA RUNOFF(CFS) 8.17
TOTAL AREA(ACRES),= 4.60 PEAK'FLOW RATE(CFS) = 12.58
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = 19.00
FLOW VELOCITY(FEET /SEC.) = 3.21 DEPTH*VELOCITY(FT *FT /SEC.) 0.96
LONGEST FLOWPATH FROM -NODE 1.00 TO NODE 4.00 = 790.00 FEET.
g
LNI.TXT
FLOW PROCESS FROM NODE 5.00 TO NODE 4.00 IS CODE = 81
----------------------------------------------- =------ - ---------------------
»» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «<
-------------=--------------------------------------7-----------------------
100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.577
SINGLE- FAMILY(1 -ACRE LOT) RUNOFF COEFFICIENT = .7369.
SOIL CLASSIFICATION IS "B ".
SUBAREA AREA(ACRES) = 2.20 SUBAREA RUNOFF(CFS) = 5.80
TOTAL AREA(ACRES) = 6.80 TOTAL RUNOFF(CFS) = 18.38
TC(MIN.) 14.97
FLOW PROCESS FROM NODE 4.00 TO NODE 8.00 IS CODE = 31
----------------- 7 -------- ------------- 7 --------- =-= ------------------------
» »>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««<
» »>USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW)««<
----------------------------------------------------------------------------
ELEVATION DATA: UPSTREAM(FEET) = 981.60 DOWNSTREAM(FEET) = 979.50
FLOW LENGTH(FEET) = 210.00 MANNING'S N 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.7 INCHES
PIPE -FLOW VELOCITY(FEET /SEC.) = 7.85
ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
PIPE- FLOW(CFS) = 18.38
PIPE TRAVEL TIME(MIN.) = 0.45 TC(MIN.) 15.42
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 8.00 =-.1000.00 FEET.
FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 1
---------------------- 7 -----------------------------------------------------
»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «<
----------------------------------------------------------------------------
----------------------------------------------------------------------------
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES.USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 15.42
RAINFALL• INTENSITY(INCH /HR) = 3.52
TOTAL STREAM AREA(ACRES) = 6.80
PEAK FLOW RATE(CFS) AT CONFLUENCE = 18.38
^^FLOW, PROCESS,FROMJNODE^ ^^6.00 ^TO ^ NODE ^ 7.00 IS CODE _ „21 ^ ^^ ^
------------------------------------ - ---------------------------------------
» »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««<
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS CONDOMINIUM
TC = K*[(LENGTH" *3) /(ELEVATION CHANGE)] * *.2
INITIAL SUBAREA FLOW- LENGTH(FEET) = 430.00
UPSTREAM ELEVATION(FEET) = 997.10
DOWNSTREAM ELEVATION(FEET) = 992.75
ELEVATION DIFFERENCE(FEET) = 4.35
TC = 0.359*[( 430.00* *"3) /( 4.35)]**.2 = 10.179
100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.474
CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .8402
SOIL CLASSIFICATION IS "B"
SUBAREA RUNOFF(CFS) = 7.52
TOTAL AREA(ACRES)•= 2.00 TOTAL RUNOFF(CFS) _. 7.52
-- FLOW - PROCESS - FROM - NODE 0 TO NODE 8.00 IS CODE 62
-_ - - -- 7.0-- -_ - - -- -- - _-- ---- - - - -_-
»»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««<
»»>(STREET TABLE SECTION # 1 USED) « «<
' Page 3
UPSTREAM ELEVATION(FEET) = 992
STREET LENGTH(FEET) = 430.00
STREET HALFWIDTH(FEET) = 30.00
LNI.TXT.
75 DOWNSTREAM ELEVATION(FEET) = 987.20
CURB HEIGHT(INCHES) = 8.0
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 20.00
INSIDE STREET CROSSFALL(DECIMAL) = 0.018
OUTSIDE STREET CROSSFALL(DECIMAL) = 0.018
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1
STREET PARKWAY CROSSFALL(DECIMAL) = 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150.
Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200
"TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 12.22
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) - 0.50
HALFSTREET FLOOD WIDTH(FEET) = 19.10
AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.54
PRODUCT OF DEPTH &VELOCITY(FT =•FT /SEC.) = 1.78
STREET FLOW TRAVEL TIME(MIN.) = 2.02 TC(MIN.) = 12.20
100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.027
SINGLE- FAMILY(1 -ACRE LOT) RUNOFF COEFFICIENT = .7514
SOIL CLASSIFICATION IS 11611
SUBAREA AREA(ACRES) = 3.10 SUBAREA RUNOFF(CFS) = 9.38
TOTAL AREA(ACRES) .= 5.10 PEAK FLOW RATE(CFS) = 16.90
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH(FEET) = 0.55 HALFSTREET FLOOD WIDTH(FEET) = 21.76
FLOW VELOCITY(FEET /SEC.) = 3.82 DEPTH *VELOCITY(FT =•FT /SEC.) = 2.11
�I ^ ^LONGEST ^FLOWPATH;FROM ^ NODE
^ ^^ ^ ^6^00 TO ^ NODE
^ ^^ ^^ 8^00 ^ =^ ^^860;00 ^ FEET.
^ ^^
FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 1
---------------------------------------------------------------------
>>> >>DESIGNATE .INDEPENDENT STREAM FOR CONFLUENCE « «<
» » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES« «<
----------------------------------------------------------------------------
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) = 12.20
RAINFALL INTENSITY(INCH /HR) = 4.03
TOTAL STREAM AREA(ACRES) = 5.10
PEAK FLOW RATE(CFS) AT CONFLUENCE = 16.90
CONFLUENCE DATA * .
STREAM RUNOFF TC INTENSITY AREA
NUMBER (CFS) (MIN.) (INCH /HOUR) (ACRE)
1 18.38 15.42 3.517 6.80
2 16.90 12.20 4.027 5.10
.. ��.. ����..:: �::; �• �• :;��..�;��-�: ;::�•� ;..��•�..��- WARNING.';.. �: �- ��- �:..:; ��• �-.. �: �-.. �• �• �- �:� :..........................
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
ON THE RCFC &WCD FORMULA OF PLATE D -1 AS DEFAULT VALUE. THIS FORMULA
WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
FLOW RATE TABLE *
RUNOFF TC
(CFS) (MIN.)
31.44 .12.20
INTENSITY
(INCH /HOUR)
4.027
Page 4
** PEAK
STREAM
NUMBER
1
FLOW RATE TABLE *
RUNOFF TC
(CFS) (MIN.)
31.44 .12.20
INTENSITY
(INCH /HOUR)
4.027
Page 4
LNI.TXT
2 33.13 15.42 3.517
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 33.13 TC(MIN.) = 15.42
TOTAL AREA(ACRES) = 11.90
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 8.00 = 1000.00 FEET.
FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 21
.. ---------------- -------------- - ------------ - ---------------------------------
»»>RATIONAL.METHOD INITIAL SUBAREA ANALYSIS« «<
----------------------------------------------------------------------------
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS CONDOMINIUM
TC = K*[(LENGTH **3) /(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW- LENGTH(FEET) = 430.00
UPSTREAM ELEVATION(FEET) = 988.40
DOWNSTREAM ELEVATION(FEET) = .980.40
ELEVATION DIFFERENCE(FEET) = 8.00
TC = 0.359•[( 430.00**3)/(' 8.00)1 **.2 = 9.012
100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.801
CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .8436
SOIL CLASSIFICATION IS "B"
SUBAREA RUNOFF(CFS) = 2.84
TOTAL AREA(ACRES). _ .0.70 TOTAL RUNOFF(CFS) = 2.84
FLOW PROCESS FROM NODE 11.00 TO NODE 10.00 IS CODE = 81
------------------------- ---------------------------------------------------
»»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<
------------ ----------
---------------------=----=----------------------------
----------------------------------------------------------------------------
100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.801
CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .8436
SOIL CLASSIFICATION IS "B"
SUBAREA AREA(ACRES) _ 2.60 SUBAREA RUNOFF(CFS) = 10.53
TOTAL AREA(ACRES) = 3.30 TOTAL RUNOFF(CFS) = 13.37
TC(MIN.) = 9.01
---------------
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 3.30 TC(MIN.) = 9.01
PEAK FLOW RATE(CFS) _ .13.37
----------------------------------------------------------------------------
----------------------------------------------------------------------------
END OF RATIONAL METHOD ANALYSIS
0
line11bclub.OUT
0 FILE: linellBC.lub.WSW W S P G W- CIVILDESIGN Version 14.06 PAGE 1
Program Package Serial Number: 1735
WATER SURFACE PROFILE LISTING Date: 3- 5-2007 Time: 3:2:13
Madsion club 100 -yr
Phase 1, Line llb
12/13/05
' is fr irfi f; it fr fr it it irfi it f: fr itA *ir itfr h4ilr frrtAAfr *hit it mfr fr A•fi dof:isi'.:'.;f:kf: fr fr f:hfr ir'.r ie fr f:-!e frrt irfri fr fritrt hie fr it ir{r'.r'.rfrfr ir{r fr A fe frA4biri 4fe it{r it it it fr{<ir{r fr h ithft6fiir it i<i fr irf fr f<irfr ie fr {r frir it {r it it fr fr
I invert I Depth I water I Q I Vel vel I Ener y I Super CriticallFlow To ►Hei ht /IBase Wt1 NO wth
Station I Elev I (FT) 1 Elev I (CFS) I (FPS) Head I Grd.El.1 EIeV I Depth I Widtp
h joiag -FTIOr I.D.1 ZL IPrs /Pip
L /Elem " ICh slope I I I I SF Ave[ HF ISE DpthIFroude NlNorm DP I "N" I X -Fall1 ZR IType Ch
fif:{rf:4rt:4 it ir!'.:{; irrtfr hie it fr lfr:k fr4Ait k'.:lhi:f: it it i:f: it ft!{:tir k itk �'.r'.: Ifr f:4f:'.:{rQ lit frs`i;{rrt:h lAf::kkf:f::4frrtli: it ir{;�ir:T litfr it it ir{r� {r lit ftir{r it it ir{:!f<{r it it it f; irlfr it fr it it {r fr lfrtfe it it Ifr'.r {: ir'r fc fr
I I I I I I I I I I I I I
1995.310 972.650 3.350 976.000 13.37 4.26 .28 976.28 .00 1.32 .00 2.000 .000 .00 1 .0
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I-
31.310 .0099 ..0035 .11 3.35 .00 1.11 .013 .00 .00 PIPE
I I I I I I I I I I I I 1
2026.620 972.960 3.149 976.109 13.37 4.26 .28 976.39 .00 1.32 .00 2.000 .000 .00 1 .0
71- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -!- -I- I-
JUNCT STR .0780 .0028 .01 3.15 :00 .013 .00 .00 PIPE
I I I I I I I I I I I I I
2031.620 973.350 2.955 976.305 10.53 3.35 .17 976.48 .00 1.16 .00 2.000 .000 .00 1 .0
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1-
12.070 .0773 .0022 .03 2.96 .00 .55 .013 .00 .00 PIPE
2043.690 974.283 2.049 976.332 10.53 3.35 .17 976.51 .00 1.16 .00 2.000 .000 .00 1 .0
HYDRAULIC JUMP
I I I I I I I I I I I I I
2043.690 974.283 .616 974.899 10.53 12.80 2.55 977.44 .00 1.16 1.85 2.000 .000 .00 1 .0
3.699 .0773 .0494 .18 .62 3.38 .55 .013 .00 .00 PIPE
I I l l I l I I I I I I I
2047.389 974.569 .627 975.196 10.53 12.51 2.43 977.63 .00 1.16 1.86 2.000 .000 .00 1 .0
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1-
6.119 .0773 .0448 .27 .63 3.27 .55 .013 .00 .00 PIPE
I I I I I I I I I I I I I •
2053.508 975.042 .649 975.691 10.53 11.93 2.21 977.90 .00 1.16 1.87 2.000 .000 .00 1 .0
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1-
4.674 .0773 .0393 .18 .6S 3.06 .55 .013 .00 .00 PIPE
I I I I I I I I I I I I I
2058.182 975.404 .672 976.075 10.53 11.37 2.01 .978.08 .00 1.16 1.89 2.000 .000 .00 1 .0
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1-
3.698 .0773 .0344 .13 .67 2.86 .55 .013 .00 .00 PIPE
I I I I 1 I I I 1 I I I I
2061.880 975.690 .695 976.385 10.53 10.84 1.83 978.21 .00 1.16 1.90 2.000 .000 .00 1 .0
-I- -I- -I- -l- -I- -I- -l- -I- -I- -I- -I- -I- -I- 1-
2.992 .0773 .0301 .09 70 2.68 .55 .013 .00 .00 PIPE
0 FILE: linellBClub.wsW W S P G W- CIVILDESIGN version 14.06 PAGE 2
Program Package Serial Number: 1735
Madsion club 100 -yr
WATER SURFACE PROFILE LISTING Date: 3- 5 -2007 Time: 3: 2:13
•
Phase 1, Line llb
12/13/05
. fr',r it fr is it fr it fr f: fr fr is {rf :irf: {r it fete it fr{; fr fr! r{: irf:{: frf; fr{: frf: tf: {:frf:fr'.:f :t:�{r: "rf;fr {rfr {; fr it f:'.;fr:Yf:f:frf: ir�fifrt f: {r fr fr'.rfr{r{:f: it fr fr{:{ r it f;'.:t:fri•{r tr ir{rfr{r it f:irf: fr fr fr it fete fr iri it it ir': 4 it fr fr {e {r it it {r fr ir'.: 's f: fr fr f:
I Invert I Depth I water I Q I Vel vel I Ener Yy I Supper ICritical(Flow ToplHei ht /IBase wtI INO wth
station _1_ 1 Elev I (FT) I Elev I (CFS) I (FPS) Head I Gr _I_ _I d.El.I Elev I Depth I width IDia9 -FTlor I.D.I ZL IPrs /Pip
L /Elem lCh Slope I I 1 I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fall) ZR IType ch
irfr'.rrtirf:irk'.e (hir'.rfr'.rfrfirit I rtfrirf;k'.rf;ir I frf:iriririrf: {rfr I hir'.:ieirf;4irf: I f:i:friritirir 1 f:'.:iririr'.rfr I'.;irkir•.rfeirfe'.r 1 ir{:friririrf: I f<fefr',rirfrf:ir I irfrit{ri frfrrt I fr{:frit,Yfr{r I irirf:frfrfir 1 frirfri k I f;frf:at:4Rir
I I I I I I l I I I I I !
2064.872 975.921 .720 976.641 10.53 10.34 1.66 978.30 .00 1.16 1.92 2.000 .000 .00 1 .0
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1-
2.458 .0773 0264 .06 .72 2.50 .55 .013 .00 .00 PIPE
I I I I I I I I I I I I I
2067.330 976.111 .746 976.857 10.53 9.86 1.51 978.37 .00 1.16 1.93 2.000 .000 .00 1 .0
Page 1
Page 2
linellbclub.OUT
-I-
2.036
-I-
.0773
-I-
-I- -I-
-I-
-I-
.0232
-I-
.05
-1-
.75
-I-
2.34
.55
-I- -I-
.013
-I-
.00
.00
1-
PIPE
2069.366
I I
976.269
.773
I I I
977.042 10.53
9.40
I
1.37
978.41
I I
.00
I
1.16
1.95
I
2.000
I I
.000
.00
I
1 .0
1.698
.0773
.0203
.03
.77
2.18
.55
.013
.00
.00
PIPE
2071.065
I I
976.400
.801
I I I
977.201 10.53
8.96
I
1.25
978.45
I I
.00
I
1.16
1.96
I
2.000
I I
.000
.00
I
1 .0
-I-
1.415
-I-
.0773
-I-
-I- -I-
-I-
-I-
.0178
-I-
.03
-I-
.80
-I-
2.04
.55
-I- -I-
.013
-I-
.00
.00
1-
PIPE
2072.480
I I
976.510
.830
I I I
977.339 10.53
8.54
I
1.13
978.47
I I
.00
I
1.16
1.97
I
2.000
I I
.000
.00
I
1 .0
-I-
1.177
-I-
.0773
-I-
-I- -I-
-I-
-I-
.0157
-I-
.02
-I-
.83
-I-
1.90
.55
-I- -I-
.013
-I-
.00
.00
1-
PIPE
2073.657
I I
976.601
.860
1 1 I
977.461 10.53
8.15
I
1.03
978.49
I I
.00
I
1.16
1.98
I
2.000
I I
.000
.00
1
1 .0
-I-
.974
-I-
.0773
-I-
-I- -I-
-I-
-I-
.0138
-I-
.01
-I-
.86
-I-
1.78
.55
-I- -I-
.013
-I-
.00
.00
1-
PIPE
2074.630
I I
976.676
.892
I I I
977.568 10.53
7.77
I
.94
978.50
I I
.00
I
1.16
1.99
I
2.000
I I
.000
.00
I
1 .0
-I-
.797
-I-
.0773
-I-
-I- -i-
-1-
-I-
.0121
-I-
.01
-i-
.89
-I-
1.66
.55
-1- -I-
.013
-I-
.00
.00
1-
PIPE
2075.427
I I
976.737
.925
I I I
977.663 10.53
7.41
I
.85
978.51
I I
.00
I
1.16
1.99
I
2.000
I I
.000
.00
I
1 .0
-i-
.641
-I-
.0773
-I-
-I- -I-
-I-
-I-
.0106
-I-
.01
-I-
.93
-I-
1.55
.55
-I- -I-
.013
-I-
.00
.00
1-
PIPE
2076.068
I I
976.787
.960
I I I
977.747 10.53
7.06
I
.77
978.52
I I
.00
I
1.16
2.00
I
2.000
I I
.000
.00
I
1 .0
-I-
.500
-i-
.0773
-I-
-I- -i-
-I-
-I-
.0094
-I-
.00
-I-
96
-I-
1.44
.55
-I- -I-
.013
-I-
.00
.00
1-
PIPE
0 FILE: line11BClub.wsw
W S P
G W- CIVILDESIGN Version 14.06
PAGE 3
Program Package Serial
Number:
1735
WATER
SURFACE PROFILE
LISTING
Date: 3-
5 -2007
Time:
3: 2:13
Madsion Club 100 -yr
Phase 1, Line 11b
12/13/05
rt{ri:'. :'.:'.:fr i�ir'.:'.: is is irAf; Y: C: i:'.:
i:'.: ir! r':f:'. ri:::f r'.:'.:'. rd:f ri:{ rf: i:':'.:f:'.:{ rf:'• r'.:'. ri: ?ri:f:
i;'.:f rf r':
i�bf �i:f r'.:'. rf:'. rir
::{rs4{:i : {r ^k::+k'.rf:f:f:t:
it it irfr it i�4 k{rfr
trir{r'.r'.:f:f:f : ir'.r it ir{r {r it i:fr'.r is frAir fr it
}ir is '.: it
f: {r it f: bfr it f:
I invert I
Depth
i water I Q I
vel
vel I
Energyy
I Supper ICriticallFloW
ToplHeight /IBase
Wtl
INO wth
Station
I Elev I
(FT) I
Elev I (CFS) 1
(FPS)
Head I
Grd.El.I
Elev I
Depth I
width
IDia. -FTIor
I.D.1
ZL
IPrs /Pip
L /Elem
ICh Slope I
I I I
SF Avel
_1
HF
_
ISE DpthlFroude
NINOrm
Dp
I ..N"
I X -Fall)
ZR
_I
IType Ch
'.: f: f; '.: '.: {r'.: '.: '.:
..i: fr it is it !: f; f;
': {rh is ., f: {r fr
f: {r f: f: is f: '.r',r fr .. frir :t is .: tr fr'r
f: 'r'r': '-':
'.'•'. {r'; it fr kir
is {r is '.: f: fr ..
.r fr {r is '.: fr
., fr {: {r f: kf;
frtr *ir af: irfr fr'.r trfrdfr it
it irfr f <{r f: it
it it it irtr
f: i; f; {r it frir
2076.568
I 1
976.826
.997
I 1 1
977.822 10.53
6.73
1
.70
978.53
1 1
.00
I
1.16
2.00
I
2.000
I I
.000
.00
I
1 .0
-I-
.373
-I-
.0773
-I-
-I- -I-
-I-
-I-
.0082
-I-
.00
-I-
1.00
-I-
1.34
-I-
.55
-I-
.013
-I-
.00
.00
I-
PIPE
2076.941
I I
976.855
1.035
I I I
977.889 10.53
6.42
I
.64
978.53
I I
.00
I
1.16
2.00
I
2.000
I I
.000
.00
I
1 .0
-I-
.258
-I-
.0773
-I-
-I- -I-
-I-
-I-
.0073
-I-
.00
-I-
1.03
-I-
1.25
-1-
.55
-I-
.013
-I-
.00
.00
1-
PIPE
2077.199
I I
976.875
1.075
I I I
977.949 10.53
6.12
I
.58
978.53
I I
.00
I
1.16
1.99
I
2.000
I I
.000
.00
I
1 .0
-I-
.151
-I-
.0773
-I-
-I- -I-
-I-
-I-
.0064
-I-
.00
-I-
1.07
-I-
1.16
-I-
.55
-I-
.013
-I-
.00
.00
1-
PIPE
2077.350
l I
976.886
1.117
I I I
978.003 10.53
5.84
I
.53
978.53
I I
.00
I
1.16
1.99
I
2.000
I I
.000
.00
I
1 .0
-I-
.050
-I-
.0773
-I-
-I- -I-
-I-
-I-
.0057
-I-
.00
-I-
1.12
-I-
1.08
-I-
.55
-I-
.013
-I-
.00
.00
1-
PIPE
2077.400
I I
976.890
1.163
I I I
978.05
I
I I
I
I
I I
I
Page 2
�; �r ter: r rrr r � r� •�� � �r►; � r� � wi � �r � rr
linellcclub.OUT
0 FILE: linellcclub.WSw W S P G W- CIVILDESIGN Version 14.06 PAGE 1
Program Package Serial Number: 173S
WATER SURFACE PROFILE LISTING Date: 3- 5 -2007 Time: 4:45: 3
Madison Club 100 -yr
Phase 1, Line llc
12/13/05
k'.:ktr t:itt:'.:ir irk kie'.r it kirk k'.: •.:k'.r is '.: t:irk•.:i:ir•.r it fra ieirk ktr it it it k frk tr i;kktr is it it t:drt:i: ktr tr f; tek irkkhkir k it itkl: irkhhkkkkhit ktr k irh trhhkirkikkktk irh kfrhh4kirtr irhhf itk i<fi ki: kkk *hirtrk
I Invert I Depth I Water I Q I vel vel I Ener yY 1 supper ICriticallFlow To IHei ht /IBase wt INO wth
Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El. p I Elev I Depth I Width Dia9 -FTIor I.D.I ZL 1Prs /Pip
L /Elem ICh slope I I I I SF Avel HF ISE D thlFroude N`Norm Dp 1 "N" I X -Fa111 ZR IType Ch
'.:kkktrk'.: '.:k �: tr •.r irkkkk• ktt: •-'rkk' .,kkir .: ': k•r t: kktrk': k'r tr': +. +•k •:kkt: kfitk., ., tr •rk kir t: '-..kk t.. ., is kirk kkkkki<kk kkirkkkkk kkkkkfrk kirk it *kie kk{irk kkkkkkk
p I I I I I I
I I I I I I I I I I I I I
3003.480 973.530 2.690 976.220 2.84 1.61 .04 976.26 .00 .64 .00 1.500 .000 .00 1 .0
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1-
28.987 .0418 .0007 .02 2.69 .00 .37 .013 .00 .00 PIPE
I I I I I I I I I I I I I
3032.467 974.741 1.500 976.241 2.84 1.61 .04 976.28 .00 .64 .00 1.500 .000 .00 1 .0
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1-
3.262 .0418 .0007 .00 1.50 .00 .37 .013 .00 .00 PIPE
I I I I I I I I I I I I I
3035.729 974.877 1.361 976.238 2.84 1.69 .04 976.28 .00 .64 .87 1.500 .000 .00 1 .0
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -1- -I- -I- 1-
.301 .0418 .0006 .00 1.36 .21 .37 .013 .00 .00 PIPE
I I I I I I I I I I I I I
3036.030 974.890 1.348 976.238 2.84 1.70 .04 976.28 .00 .64 .91 1.500 .000 .00 1 .0
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I-
]UNCT STR .7485 .0004 .00 1.35 .22 .013 .00 .00 PIPE
I I I I I I I I l I I I I
3036.070 974.920 1.369 976.289 1.42 .84 .01 976.30 .00 .45 .85 1.500 .000 .00 1 .0
-I- -I- -1- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I-
1.994 .0411 .0002 .00 1.37 .10 .26 .013 .00 .00 PIPE
I I I I I I I I I I I I I
3038.064 975.002 1.287 976.288 1.42 .88 .01 976.30 .00 .45 1.05 1.500 .000 .00 1 .0
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1-
1.621 .0411 .0002 .00 1.29 .13 .26 .013 .00 .00 PIPE
I I I I I I I I I I I I I
3039.685 975.068 1.219 976.287 1.42 .92 .01 976.30 .00 .45 1.17 1.500 .000 .00 1 .0
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1-
1.408 .0411 .0002 .00 1.22 .14 .26 .013 .00 .00 PIPE
I I I I I I I I I I I I I
3041.093 975.126 1.160 976.286 1.42 .97 .01 976.30 .00 .45 1.26 1.500 .000 .00 1 .0
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1-
1.261 .0411 .0002 .00 1.16 .16 .26 .013 .00 .00 PIPE
I I I I I I I I I I I I I
3042.354 975.178 1.107 .976.285 1.42 1.02 .02 976.30 .00 .45 1.32 1.500 .000 .00 1 .0
-I- -I- -I- -i- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1-
1.146 .0411 .0002 .00 1.11 " .17 .26 .013 .00 .00 PIPE
0 FILE: linellcclub.WSW W S P G W- CIVILDESIGN version 14.06 PAGE 2
Program Package Serial Number: 1735
WATER SURFACE PROFILE LISTING Date: 3- 5 -2007 Time: 4:45: 3
Madison Club 100 -yr
Phase 1, Line llc
12/13/05
kki:kktr trk it irk k'.r'.: trk kkkkkkir itkkkirk k'.r irkkkkkk•.:kkkkkk'.:k'.rkkkktc is it ir'.e'.rk•.ei:f : kir t:kkkkirkkkirk kk•.rkkkkir•.:ir'.;k•.: kirkkkkkkktrk kk sit irkkkir i:.,Akkktrk irk'.rk'.rk f;kkkkkkk
Invert I Depth I water I Q I vel vel I Energyy I Super ICriticallFlow ToplHeight /IBase wtI INO wth
Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.El.I Elev I Depth I width IDia. -FTIor I.D.1 ZL IPrs /Pip
-I- -I- - - -I- -I- -I- -I- -I- -I- -I- -I_ -1- -1
L /Elem ICh Slope I I I SF Ave1 HF ISE DpthlFroUde NlNOrm Dp I "N'r 1 X -Fd111 ZR [Type Ch
irkkkir irk k•.r I kkkkkkkkk I kkt: trkkt: t: I kkkkkir i; kt: I kktr is to k f: t: •.r I irkkkkkk 1 is irk it f: t :k I trkfikkkkkir I kkkkkkk I kkkkki irk I kkkkkkkk I kir irkkkk I trkkf kkfr 1 ktrk kir 1*******
I I I I I I I I I I I I I
3043.S00 975.225 1.059 976.284 1.42 1.07 .02 976.30 .00 .45 1.37 1.500 .000 .00 1 .0
1.055 .0411 .0003 .00 1.06 .19 .26 .013 .00 .00 PIPE
I I I I I I I I I I I 1 1
3044.555 975.269 1.014 976.282 1.42 1.12 ..02 976.30 .00 .45 1.40 1.500 .000 .00 1 .0
Page 1
r �r r�r, r rr rr� .rr err rr rr r� rr �r rs rr it rr r rr
linellcclub.OUT
.975
.0411
.0003
.00
1.01
.21
.26
.013
.00
.00
PIPE
3045.530
I I
975.309
I
.972
976.281
I
1.42
I
1.17
I
.02
I
976.30
.00
I I
.45
1.43
I
1.500
I I
.000
.00
I
1
.0
-I-
.907
-I-
.0411
-I-
-I-
-I-
-I-
-I-
.0003
-I-
.00
-I-
.97
-I-
.22
-I-
.26
-I-
.013
-I-
.00
.00
1-
PIPE
3046.438
I I
975.346
I
.933
976.279
I
1.42
I
1.23
I
.02
I
976.30
.00
f I
.45
1.45
1
1.500
I I
.000
.00
I
1
.0
-I-
.844
-I-
.0411
-I-
-I-
-I-
-I-
-I-
.0004
-I-
.00
-I-
.93
-I-
.24
-I-
.26
-I-
.013
-I-
.00
.00
1-
PIPE
3047.282
I I
975.381
.896
I
976.277
I
1.42
I
1.29
I
.03
I
976.30
.00
I I
.45
1.47
I
1.500
I I
.000
.00
I
1
.0
.790
.0411
.0004
.00
.90
.26
.26
.013
.00
.00
PIPE
3048.072
I I
975.413
.862
I
976.27S
I
1.42
I
1.3S
I
.03
I
976.30
.00
I I
.45
1.48
I
1.500
I I
.000
.00
I
1
.0
-I-
.741
-I-
.0411
-I-
-I-
-I-
-I-
-I-
.0005
-I-
.00
-I-
.86
-I-
.28
-I-
.26
-I-
.013
-I-
.00
.00
1-
PIPE
3048.813
I I
975.443
.829
I
976.272
I
1.42
I
1.42
1
.03
I
976.30
.00
I I
AS
1.49
I
1.500
I I
.000
.00
I
1
.0
-I-
.693
-I-
.0411
-I-
-I-
-I-
-I-
-I-
.0006
-I-
.00
-I-
.83
-I-
.30
-I-
.26
-I-
.013
-I-
.00
.00
1-
PIPE
3049.506
I I
975.472
.798
I
976.270
I
1.42
I
1.49
I
.03
I
976.30
.00
I I
.45
1.50
I
1.500
I I
.000
.00
I
1
.0
.647
.0411
.0006
.00
.80
.33
.26
.013
.00
.00
1-
PIPE
3050.153
I !
975.498
.768
I
976.266
I
1.42
I
1.56
I
.04
I
976.30
.00
I I
.45
1.50
I
1.500
I I
.000
.00
I
1
.0
-I-
.608
-I-
.0411
-I-
-I-
-I-
-I-
-I-
.0007
-I-
.00
-I-
.77
-I-
.35
-I-
.26
-I-
.013
-I-
.00
.00
1-
PIPE
0 FILE: linellcclub.WSW
W S
P G W-
CIVILDESIGN Version
14.06
PAGE
3
Program
Package Serial
Number: 1735
WATER
SURFACE
PROFILE LISTING
Date: 3-
S -2007 Time:
4:45:
3
Madison Club
100 -yr
Phase 1, Line llc
12/13/05
k'.rki: irk is it iekk'.: kkkkkitkkir? rkkkirkkkkkkkkkkk
?r�.ki:'.:k'.rkk ?:?:
?: ?rk?r'.: it ic'.:k?r?: in it ?ri:i:k'.;
kirkkkk ?rk;;
ickkkkk
'.rkkkkkkkkkkkkkkkkkkkkkkkkkkk
kkitkkkkkkkkir
kkkki: kir it
Invert I
Depth
I water
I Q
I vel
vel I
Energyy 1
Super
ICriticallFlOw
ToplHeight
/!Base
wtl
INO wth
Station
I Elev I
(FT)
I Elev
I (CFS)
I (FPS)
Head I
Grd.E1.i
Elev
I Depth
width width
IDia. -FTIor I.D.1
ZL
IPrs /Pip
-I-
L /Elem
-I-
ICh slope I
-I-
-I-
I
-I-
I
-I-
I
-I-
SF Avel
-I-
HF ISE
-I-
DpthlFroude
_I
NINOrm
-I-
Dp
-I-
I "N..
-I-
I X-Fa111
ZR
-I
IType
Ch
ki: t: is kic ?: is tr
I kic it i:kkkkk 1 ki:
is is ?: fr irk
1 ?; ?c ?:kir irk it ?c
I is it is kir it f<ir ?:
1?r is it ?r ?sic is
I k ?: it is is it it 1
kkkt: k?: it it it I k'.r
it irkkk
I itkkkkkir it 1
itk it irkkkit
I kir ir'.r it irk
I itkkkkirk 1 kiekitk
I t;kkir it it is
3050.761
I I
975.523
.740
I
976.263
I
1.42
I
1.64
I
.04
I
976.30
.00
I I
.45
1.50
I
1.500
I I
.000
.00
I
1
.0
-I-
.565
-I-
.0411
-I-
-I-
-I-
-I-
-I-
.0008
-I-
.00
-I-
.74
-I-
.38
-I-
.26
-I-
.013
-I-
.00
.00
1-
PIPE
3051.326
I
975.547 I
.713
I 976.259
I
1.42
I
1.72
I
.05
I
976.31
.00
I I
.45
1.50
I
1.500
I I
.000
.00
I
1
.0
.468
.0411
.0009
.00
.71
.41
.26
.013
.00
.00
PIPE
3051.794
I I
975.566
.687
I
976.253
I
1.42
I
1.80
I
.05
I
976.30
.00
I I
.45
1.49
I
1.500
I I
.000
.00
I
1
.0
HYDRAULIC
JUMP
3051.794
I I
975.566
.269
I
975.835
I
1.42
I
6.60
I
.68
I
976.S1
.00
I I
.45
1.15
I
1.500
I I
.000
.00
I
1
1-
.0
-I-
4.915
-I-
.0411
-I-
-I-
-I-
-I-
-I-
.0348
-I-
.17
-I-
.27
-I-
2.69
-I-
.26
-I-
.013
-I-
.00
.00
PIPE
3056.709
I I
975.768
.278
I
976.046
I
1.42
I
6.29
1
.61
I
976.66
.00
I I
.45
1.17
I
1.500
I I
.000
.00
I
1
I-
.0
-I-
4.338
-I-
.0411
-I-
-I-
-I-
-I-
-I-
.0304
-I-
.13
-I-
.28
-I-
2.52
-I-
.26
-I-
.013
-I-
.00
.00
PIPE
3061.048
I I
975.946
.288
I
976.234
I
1.42
I
6.00
I
.56
I
976.79
.00
I I
.45
1.18
I
1.500
I I
.000
.00
I
1
1-
.0
-I-
2.824
-I-
.0411
-I-
-I-
-I-
-I-
-I-
.0265
-i-
.07
-I-
.29
-I-
2.36
-I-
.26
-I-
.013
-I-
.00
.00
PIPE
Page 2
Page 3
linellcclub.OUT
I
3063.872
I
976.062
I
.297
I
976.359 1.42
I I
5.72 .51
976.87
I
.00
I I
.45
1.20
1.500
.000
.00
1
.0
2.016
.0411
.0232
.0S
.30
2.21
.26
.013
.00
.00
PIPE
I
306S.888
I
976.145
I
.307
I
976.452 1.42
I I
SAS .46
976.91
I
.00
I I
.45
1.21
I
1.500
I I
.000
.00
I
1
.0
-I-
1.S17
-I-
.0411
-I-
-I- -I-
-I- -I-
.0203
-I-
.03
-I-
.31
-I-
2.07
.26
-I- -I-
.013
-I-
.00
.00
I-
PIPE
I
3067.404
I
976.207
I
.318
I
976.525 1.42
I I
5.20 .42
976.94
I
.00
I I
.45
1.23
I
1.500
I I
.000
.00
I
1
.0
-I-
1.170
-I-
.0411
-I-
-I- -I-
-I- -I-
.0177
-I-
.02
-I-
32
-1-
1.94
.26
-I- -I-
.013
-I-
.00
.00
I-
PIPE
0 FILE: linellcclub.wSw
W S
P G W- CIVILDESIGN Version 14.06
PAGE
4
Program Package serial
Number: 1735
WATER SURFACE PROFILE LISTING
Date: 3-
5 -2007
Time:
4:45:
3
Madison
club 100 -yr
Phase 1, Line llc
12/13/05
ickkkit?:'.:? ci:?: irkki:'. ri< kkkkk?:
ki: kirkkkkiriekiririrkkkkk:` kirkkirkkkk?
rk'.: k? rkkkkkk?: kirkkkkkkkkkkirkkkir'.:
trkkkkkkkikkkfrk�kkk
#ickkkkfrkkkirkir�kkkkkickkk
kirkirkkkir
Invert I
Depth I
water I Q
I Vel Vel I
Energyy
I SuL�
IcriticalIFlOW
TOplHeight /IBase
Wt1
INO Wth
Station I
Elev I
(FT) I
Elev I (CFS)
I (FPS) Head I
Grd.EI.I
Elev
I Depth I
Width
width
IDia. -FTIor
I.D.I
ZL
IPrs /Pip
L /Elem Ich
slope I
I
I
I SF Ave1
HF
ISE DpthIFroude
_I
NINorm
Dp
I "Nr
I X -Fa111
ZR
IType
ch
kkk'.: '.: •.rk k ?: I
kit is f: ':'.rk isk I it it it irk ?; isk I
kk'.r it is kf: i:k I is f< ?: '.: i; irk tc ?r
I'.r'.: iskk'.r is I f; k'.rk it is is I kirk fe ?:kkitk
I ie ?e it tr it is is
I kis it it irk irk I kit
is irkkkir I irkkkir it ?:
I kkit is fr kir I
i:kic ick
I it it it it irkk
I
3068.575
I
976.255
I
.329
I
976.584 1.42
I I
4.96 .38
976.97
I
.00
I I
.45
1.24
I
1.500
I I
.000
.00
I
1
.0
.917
.0411
.0155
.01
.33
1.82
.26
.013
.00
.00
PIPE
I
3069.492
I
976.293
I
.340
I
976.633 1.42
I I
4.73 .35
976.98
I
.00
I I
.45
1.26
I
1.500
I I
.000
.00
I
1
.0
.724
.0411
.0135
.01
.34
1.70
.26
.013
.00
.00
1-
PIPE
I
3070.216
I
976.323
I
.351
I
976.674 1.42
I I
4.51 .32
976.99
I
.00
I I
.45
1.27
I
1.500
I I
.000
.00
I
1
.0
-I-
.570
-I-
.0411
-I-
-I- -I-
-I- -I-
.0118
-I-
.01
-I-
.35
-I-
1.59
.26
-1- 71-
.013
-1-
.00
.00
1-
PIPE
I
3070.786
I
976.346
i
.363
I
976.709 1.42
I I
4.30 .29
977.00
I
.00
I I
.45
1.29
I
1.500
I I
.000
.00
I
1
.0
-I-
.441
-I-
.0411
-I-
-I- -I-
-I- -I-
.0103
-i-
.00
-I-
.36
-I-
1.49
.26
-I- -I-
.013
-I-
.00
.00
1-
PIPE
I
3071.227
I
976.364
I
.376
I
976.740 1.42
I I
4.10 .26
977.00
I
.00
I I
.45
1.30
I
1.500
I I
.000
.00
I
1
.0
-I-
.334
-I-
.0411
-I-
-I- -I-
-I- -I-
.0090
-I-
.00
-I-
.38
-I-
1.40
.26
-I- -I-
.013
-I-
.00
.00
1-
PIPE
{
3071.561
I
976.378
I
.389
I
976.767 1.42
I I
3.91 .24
977.00
I
.00
I I
.45
1.31
I
1.500
I I
.000
.00
I
1
.0
-I-
.245
-I-
.0411
-I-
-I- -I-
-I- -I-
.0079
-I-
.00
-I-
.39
-I-
1.31
.26
-I- -I-
.013
-I-
.00
.00
1-
PIPE
I
3071.806
I
976.388
I
.402
I
976.790 1.42
I I
3.72 .22
977.01
I
.00
I I
.45
1.33
I
1.500
I I
.000
.00
I
1
.0
.166
.0411
.0069
.00
.40
1.23
.26
.013
.00
.00
PIPE
I
3071.973
I
976.395
I
.416
I
976.811 1.42
I I
3.55 .20
977.01
I
.00
I I
.45
1.34
I
1.500
I I
.000
.00
I
1
.0
-I-
.094
-I-
.0411
-I-
-I- -I-
-I- -I-
.0061
-I-
.00
-I-
.42
-I-
1.15
.26
-I- -I-
.013
-I-
.00
.00
1-
PIPE
I
3072.067
I
976.399
I
.431
I
976.829 1.42
I I
3.39 .18
977.01
I
.00
I I
.45
1.36
I
1.500
I I
.000
.00
I
1
.0
.033
.0411
.0053
.00
.43
1.07
.26
.013
.00
.00
PIPE
0 FILE: linellcclub.WSW
W S
P G W- CIVILDESIGN Version 14.06
PAGE
5
Program Package Serial
Number: 1735
WATER SURFACE PROFILE LISTING
Date: 3-
5 -2007 Time:
4:45:
3
Madison Club 100 -yr
Phase 1, Line 11c
12/13/05
Page 3
r� rr rr rr rr r ar r !r � r �r �r �r r■i �r rig r rr
linelicclub.OUT
irttirtt Firttttfr irttttttttttttttti: t: irt* ttfrt t'.rttttt tf; tir tr�ttirttt'.rt tttttttttirttttttr irtxtttttrttirtttttttttttttttttirtttttttttttttttttt tttttttt
I Invert I Depth I water I Q I vel vel. I Energy I Super ICriticallFlow ToplHeight /laase wt1 INO wth
Station I Elev I (FT) I Elev (CFS) I (FPS) Head I Grd.E1.I Elev I Depth 1 width Dla. -FTIor I.D.1 ZL 1Prs /Pip
L /Elem tt Ich 44444 Slope itt I tirtttttt I I SF Avel HF ISE DpthlFroude NINorm Dp -� "N" I X -Fa111 ttZR trtt IType Ch
ttittttt 1 is L I I tttttitttt 1 444444 #tt I'.: tt:tt'.r it I ittttttt I ttttttttt 1 4444444 I tttttttt I tttttttt 1 4444444 I tttrtttt I I it it tri it it tr
I I, I I I I I I I I I• !I
3072.100 976.400 .447 976.847 1.42 3.22 .16 977.01 .00 .45 1.37 1.500 .000 .00 1 .0
0
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I-
Page 4
r� r► �r
�r
rr
r rr r M r r r r
linelldclub.OUT
0 FILE: linelldclub.Wsw
W S
P G W-
CIVILDESIGN Version 14.06
PAGE 1
Program Package Serial
Number: 1735
WATER
SURFACE
PROFILE LISTING
Date: 3-
5 -2007
Time:
4:48:41
Madison
club 100 -yr
Phase
1, Line 11d
12/13/05
kir ?rkt:':k ?:?; it irk ?:kkirkirkfrirk iskktrkkkkkkkkkk`
k? rkkkkkkkkkkkt
; ?;t:ki:i:'.:t
:ir?:kkkkkk�ktrk
kt <kkirk
ktr irkkk?:ir?:
it it irkkkkkkkkkkkkitkkkk : : ?:kkkkkkkkkkkkkkir
kick trk ki;k
I invert I
Depth I
Water I Q
I vel
vel I
EnergyY
1 super
ICriticallFlow
ToplHeight /IBase
wt1
INO wth
station
I Elev I
(FT) I
Elev I (CFS)
I (FPS)
Head I
Grd.El.l
Elev
I Depth
I Width
IDia. -FTIor
I.D.1
ZL
IPrs /Pip
L /Elem
ICh Slope I
I
I
I -I
SF Avel
HF
ISE DpthlFroude
NlNorm
DP
I "N"
I X -Fall1
ZR
IType Ch
kir ?:kkkki; it
! kkkkk'.rkkk I
kir irkkkkk I
kkkk?: ki: it it {irk ?: i; ?rk ki: •.r
1 irk k'.rk?r it
I ? :'.r'.; i;k?: it I
it irkkk?r it ?r it
I irkkirk?r ?<
I kir ?; it i;kkk
I kirk it it ?r it ?r
I kir it k Y it ?r
I irkkkkkk I
ie ?r kir it
1 ?r ?r it it it irk
4001.060
I I
974.890
I
1.370
I
976.260 .1.42
I
.84
I
.01
976.27
I
.00
I
.45
I
.84
I
1.500
I I
.000
.00
I
1 .0
1.955
.0420
.0002
.00
1.37
.10
.26
.013
.00
.00
PIPE
4003.015
I I
974.972
i
1.287
I
976.259 1.42
i
.88
I
.01
976.27
I
.00
I
.45
I
1.05
I
1.500
I I
.000
.00
I
1 .0
-I-
1.592
-I-
:0420
-I-
-I- -I-
-I-
-I-
.0002
-I-
.00
-I-
1.29
-I-
.12
-I-
.26
-I-
.013
-I-
.00
.00
1-
PIPE
4004.606
I I
975.039
I
1.220
I
976.258 1.42
I
.92
I
.01
976.27
I
.00
I
.45
I
1.17
I
1.500
I I
.000
.00
I
1 .0
1.381
.0420
.0002
.00
1.22
.14
.26
.013
.00
.00
PIPE
4005.988
I I
975.097
I
1.161
I
976.257 1.42
I
.97
I
.01
976.27
I
.00
I
.45
I
1.26
I
1.500
I I
.000
.00
I
1 .0
-I-
1.235
-I-
.0420
-I-
-I- -I-
-I-
-I-
.0002
-I-
.00
-I-
1.16
-I-
.16
-I-
.26
-I-
.013
-I-
.00
.00
I-
PIPE
4007.222
I I
975.149
I
1.108
I
976.256 1.42
I
1.02
I
.02
976.27
I
.00
I
.45
1
1.32
I
1.500
I I
.000
.00
I
1 .0
1.122
.0420
.0002
.00
1.11
.17
.26
.013
.00
.00
PIPE
4008.344
I I
975.196
I
1.059
I
976.255 1.42
I
1.06
I
.02
976.27
I
.00
I
.45
I
1.37
I
1.500
I I
.000
.00
I
1 .0
-I-
1.032
-I-
.0420
-I-
-I- -I-
-I-
-I-
.0003
-I-
.00
-I-
1.06
-I-
.19
-I-
.26
-I-
.013
-I-
.00
.00
1-
PIPE
4009.377
I I
975.239
I
1.014
I
976.253 1.42
I
1.12
I
.02
976.27
I
.00
I
.45
I
1.40
I
1.500
I I
.000
.00
I
1 .0
-I-
.955
-I-
.0420
-I-
-I- -I-
-I-
-I-
.0003
-I-
.00
-I-
1.01
-I-
.21
-I-
.26
-I-
.013
-I-
.00
.00
1-
PIPE
4010.331
I I
975.279
I
.973
I
976.252 1.42
I
1.17
I
.02
976.27
I
.00
I
.45
I
1.43
I
1.500
I I
.000
.00
I
1 .0
-I-
.888
-I-
.0420
-I-
-I- -I-
-I-
-I-
.0003
-I-
.00
-I-
.97
-I-
.22
-I-
.26
-I-
.013
-I-
.00
.00
1-
PIPE
4011.220
I I
975.316
!
.934
I
976.250 1.42
I
1.23
I
.02
976.27
I
.00
I
.45
I
1.45
I
1.500
I I
.000
.00
I
1 .0
-I-
.829
-I-
.0420
-I-
-I- -I-
-I-
-I-
.0004
-I-
.00
-I-
93
-I-
.24
-I-
.26
-I-
.013
-I-
.00
.00
1-
PIPE
0 FILE: linelldclub.WSw
W S
P G W-
CIVILDESIGN version 14.06
PAGE 2
Program Package Serial
Number: 1735
WATER
SURFACE
PROFILE LISTING
Date: 3-
5 -2007
Time:
4:48:41
Madison
Club 100 -yr
Phase
1, Line lld
12/13/05
•.rk it irirkkkir itkki:k'rkkkkkkirk irk k'.ekkir
?rkkkirk kkkir is irkkkkkkirkkkkkfr
irkkkkkkkkir
irkkkkkkirkkk?
r? rkkkkkkkkkkkkkkkirkkkkkkkkkkkki
:kkkirkkkkir it
it k?; it it
i:k kir it ?rkk
I invert I
Depth I
water I Q
I vel
Vel I
EnergyY
1 Super
IcriticallFlow
ToplHeight /IBase
Wtl
INO wth
Station
I Elev I
(FT) 1
Elev I (CFS)
1 (FPS)
Head I
Grd.E1.I
Elev
I Depth
I width
IDia.-FTIor
I.D.1
ZL
IPrs /Pip
L /Elem
ICh Slope I
I
I
I
SF Avel
Hp
_1_
ISE DpthlFroude
_I_
N{NOrm Dp
I "N"
I X -Fall{
ZR
IType Ch
kk ?: ?rkkkkk
I irkkkkirkkk I
kkkkkkkk 1'.ckkkk
?rk kk I kkk'.: '.: '.r it ?r ?r
1 kkk ?rk k{r
I kkkki: k'.r I
kkkkkkkkir
I kkkkkkk
I'.rkkk'.rkkk
I kkkkkk'.: '.r
I kkkkkirk
I hkkkkkk I
ktr is ?rk
I kkkki: it ?r
4012.049
I I
975.351
I
.897
I
976.248 1.42
I
1.29
I
.03
976.27
.00
I
.45
I
1.47
I
1.500
I I!
.000
.00
I
1 .0
-I-
.774
-I-
.0420
-I-
-I- -I-
-I-
-I-
.0004
-I-
.00
-I-
.90
-I-
.26
-I-
.26
-I-
.013
-I-
.00
.00
1-
PIPE
4012.822
I
975.384
I I
.862
I
976.246 1.42
I
1.35
I
.03
976.27
I
.00
I
.45
I
1.48
I
1.500
I 1
.000
.00
1
1 .0
Page 1
r r r.
r
r■ir
r r r� +� �r
r� � �s r r
r��
linelldclub.OUT
-I-
.725
-I-
.0420
-I-
-I-
-1-
-I-
-I-
.0005
-I-
.00
-I-
.86
-I-
.28
-I-
.26
-I-
.013
-I-
.00
.00
I-
PIPE
I
4013.547
I
975.414
.829
I I
976.243
I
1.42
1.42
I
.03
I
976.27
.00
I
.45
I
1.49
I
1.500
I I
.000
.00
I
1
.0
.678
.0420
.0006
.00
.83
.30
.26
.013
.00
.00
PIPE
I
4014.226
I
975.442
.798
I I
976.240
I
1.42
1.49
I
.03
I
976.27
.00
I
.45
I
1.50
I
1.500
I I
.000
.00
I
1
.0
-I-
.636
-I-
.0420
-I-
-I-
-I-
-I-
-I-
.0006
-I-
.00
-I-
.80
-I-
.33
-I-
.26
-I-
.013
-I-
.00
.00
1-
PIPE
I
4014.862
I
975.469
.768
I I
976.237
I
1.42
1.56
I
.04
I
976.28
.00
I
.45
I
1.50
I
1.500
I I
.000
.00
I
1
.0
-I-
.592
-I-
.0420
-I-
-I-
-I-
-I-
-I-
.0007
-I-
.00
-I-
.77
-I-
.35
-I-
.26
-I-
.013
-I-
.00
.00
1-
PIPE
I
4015.454
I
975.494
.740
I I
976.234
I
1.42
1.63
I
.04
I
976.28
.00
I
.45
I
1.50
I
1.500
I I
.000
.00
I
1
.0
.555
.0420
.0008
.00
.74
.38
.26
.013
.00
.00
PIPE
.
I
4016.009
I
975.517
.713
I I
976.230
I
1.42
1.71
I
.05
I
976.28
.00
I
.45
I
1.50
I
1.500
I I
.000
.00
I
1
.0
-I-
.378
-I-
.0420
-I-
-I-
-I-
-I-
-I-
.0009
-I-
.00
-I-
.71
-I-
.41
-I-
.26
-I-
.013
-I-
.00
.00
1-
PIPE
4016.388
975.533
.687
976.220
1.42
1.80
.05
976.27
.00
.45
1.49
1.500
.000
.00
1
.0
HYDRAULIC JUMP
I
4016.388
I
975.533
.269
I I
975.802
I
1.42
6.60
I
.68
I
976.48
.00
I
.45
I
1.15
I
1.500
I I
.000
.00
I
1
.0
-I-
6.064
-I-
.0420
-I-
-I-
-I-
-I-
-I-
.0348
-I-
.21
-I-
27
-I-
2.69
-I-
.26
-I-
.013
-I-
.00
.00
1-
PIPE
0 FILE: linelldclub.WSw
W S P
G W- CIVILDESIGN Version 14.06
PAGE
3
Program
Package Serial Number: 1735
WATER
SURFACE PROFILE LISTING
Date: 3-
5 -2007
Time:
4:48:41
Madison Club 100
-yr
Phase 1, Line
lld
12/13/05
;:t:':'. r ;:;:'.:;:i:; :':;:
+:';f:i:;:;ri: ism'.;;:;;;;;:;:
ir': i:'. r! r;:'.: ir;:;: t:;:'.;'.:;
r'.: ir! ri: Y:;:;:'.:;:;:;:'.:;:'. r;:;:'.:
i:;:+.:'.:!;+,: �'.:;:;:;: i:;:':;:;: ;:'.:'.:;;iri:k':'.:�;:;r;r;
:i; trir i:;:;:Q'.;�- ;;fr;:i;:;;;ra`•l: R;: T:h A•i ;:;r;; ;:;: ;:'.: ;: ;r
i:;: i; is 'e;<ir f;
I
Invert I
Depth
I water I
Q I
Vel
Vel I
EnergyY 1 Super
ICriticallFlOW
TOplHeight/
Base wtl
INO wth
Station I
Elev I
(FT)
1 Elev I
(CFS) I
(FPS)
Head I
Grd.El.I Elev
I Depth
width width
IDia. -FTIor
I.D.1
ZL
IPrs /Pip
-I- -I-
L /Elem ICh Slope I
-I-
-I-
I I
-I-
I
-i-
-I-
SF Avel
-I-
HF ISE
-I-
D p thlFroude
_I
NINOrm
-I-
Dp
-I-
I "N"
-I-
I X -Fall)
ZR
-I
IType
Ch
;: e ::: :: :::::: :: :: 1;:;:
A;::: ;: ;: ;:;; 1
:: r. �::: - .•;:;:.:
I ;: ;:;:;:;;,�;:;: ;: I
A •; •: ;» •: ;: ;: ;: ;: I ;:;:
;:;:;:;:;: 1;:..
;:;:;: ;: ;: I ;:;:;:
a;: ;; -: �;: l ;: ;:;:
r ;:;:
I ;: �;:;:;: ;: ;:::
1;:;:;:,� � � :,;:
1 �;:;: ;:;:;:;:
I ;: �;:;:;:;: � I
�;: a:;:;:
I ;: �;:;: ,t;: r.
I
4022.451
I
975.788
.278
I I
976.066
I
1.42
6.29
I
.61
I
976.68
.00
I
.45
I
1.17
I
1.500
I I
.000
.00
I
1
.0
-I-
4.010
-I-
.0420
-I-
-I-
-I-
-I-
-I-
.0304
-I-
.12
-I-
.28
-I-
2.52
-I-
.26
-I-
.013
-I-
.00
.00
1-
PIPE
I
4026.461
I
975.956
.288
I I
976.243
I
1.42
6.00
i
.56
I
976.80
.00
I
.45
I
1.18
I
1.500
I I
.000
.00
I
1
.0
-I-
2.664
-I-
.0420
-I-
-I-
-1-
-I-
-I-
.0265
-I-
.07
-I-
.29
-I-
2.36
-I-
.26
-I-
.013
-I-
.00
.00
1-
PIPE
I
4029.125
I
976.068
.297
I I
976.365
I
1.42
5.72
I
.51
I
976.87
.00
I
.45
I
1.20
I
1.500
I I
.000
.00
I
1
.0
-I-
1.921
-I-
.0420
-I-
-I-
-I-
-I-
-I-
.0232
-I-
.04
-I-
.30
-I-
2.21
-I-
.26
-I-
.013
-I-
.00
.00
1-
PIPE
I
4031.046
I
976.148
.307
I I
976.456
I
1.42
5.45
I
.46
I
976.92
.00
I
.45
I
1.21
I
1.500
I I
.000
.00
I
1
.0
1.455
.0420
.0203
.03
.31
2.07
.26
.013
.00
.00
PIPE
I
4032.501
I
976.209
.318
I I
976.527
I
1.42
5.20
I
.42
I
976.95
.00
I
.45
I
1.23
I I
1.500
I
.000
.00
I
1
.0
-I-
1.128
-I-
.0420
-I-
-I-
-I-
-I-
-I-
.0177
-I-
.02
-I-
.32
-I-
1.94
-I-
.26
-I-
.013
-I-
.00
.00
1-
PIPE
I
4033.629
I
976.257
.329
I I
976.585
I
1.42
4.96
I
.38
I
976.97
.00
I
.45
I
1.24
I I
1.500
I
.000
.00
I
1
.0
-I-
.887
-I-
.0420
-I-
-I-
-I-
-I-
-I-
.0155
-I-
.01
-I-
.33
-I-
1.82
-I-
26
-I-
.013
-I-
.00
.00
1-
PIPE
Page 2
M MW M M M r ter.. IM M M M m m'� M M M i M
Page 3
linelldclub.OUT
4034.516
I I
976.294
I
.340
976.634
I I
1.42
4.73
I
.35
I
976.98
00
I
.45
I
1.26
I
1.500
I I
.000
.00
I
1
.0
-I-
.701
-I-
.0420
-I-
-I-
-I-
-I-
-I-
.0135
-I-
.01
-I-
.34
-I-
1.70
-I-
.26
-I-
.013
-I-
.00
.00
1-
PIPE
4035.218
I I
976.323
I
.351
976.675
I I
1.42
4.51
I
.32
I
976.99
.00
I
.45
I
1.27
I
1.500
I I
.000
.00
I
1
.0
-I-
S53
-I-
.0420
-I-
-I-
-I-
-I-
-I-
.0118
-I-
.01
-I-
.35
-I-
1.59
-I-
.26
-I-
.013
-I-
.00
.00
I-
PIPE
4035.771
I I
976.346
I
.363
976.710
I I
1.42
4.30
I
.29
I
977.00
.00
I
.45
I
1.29
I
1.500
I I
.000
.00
I
1
.0
-I-
.429
-I-
.0420
-I-
-I-
-I-
-I-
-I-
.0103
-I-
.00
-I-
.36
-I-
1.49
-I-
.26
-I-
.013
-I-
.00
.00
1-
PIPE
0 FILE: linelldclub.wsw
W S P
G W -
CIVILDESIGN
version
14.06
PAGE
4
Program
Package serial
Number: 1735
WATER
SURFACE PROFILE LISTING
Date: 3-
5 -2007
Time:
4:48:41
Madison
Club
100 -yr
Phase 1, Line
lld
12/13/05
fr fr fr f: fr f; fr t'.: it tr �'.: it f: '.r is is fr it fr'.:
i it f: f: fr it fr
rt is fr it it it i• f: t ::r
fr fr f: f; f; t :",: f; is 3
f; � fr f; :: fr f: 'r f; fr f: '.: '.r f: f: fr t� f: f: f: '.r'.r f: f: f: '.;
'.r fr f; f.• fr'::: s4',r f: fr f: fr s k fr fr it it it fr at ir'.:
{r fr f: it fr fr it fr f: tr t it fr f: f: fr'.r
tr'.r it it fr
it ir'<f: it it f; f;
I Invert I
Depth I
water
I Q I
vel
vel I
Energyy 1
supper
ICriticallFlow
ToplHeight
/IBase
wtI
INO Wth
Station
I Elev I
(FT) I
Elev
I (CFS) I
(FPS)
Head I
Grd.El.I
Elev
I Depth
I width
1Dia. -FTIor
I.D.1
ZL
1Prs /Pip
L /Elem
ICh slope I
I
I I
SF Avel
HF ISE
DpthlFroude
NINorm Dp
I "N°
I X -Fa111
ZR
_I
IType
Ch
fr k'.: '.: fr f: fr f: fr
fr .. .. k'r i•'r': ffr'.r'r ., ': .. it
1fr as ....I. .a.; I'•
.. tr f•ir f: it h'r it
fr f: ': ': it .. '.': ., .
I .. �._. -•I..
.....I
;r'..•f..�'r'r
fr it :4 i -h,i:fr it fr .. 'rk'r i<..
I ' � I
fr
i•fe f: it
tf:fr:44fr f<
fc f: fr fr it it irrt
f: f•ir iti f: :Y
:4 irA it is i<fs
I I
'r f f: fr it
fttrit it irrt f<
I
4036.200
I I
976.364
I
.376
976.740
I I
1.42
4.10
I
.26
I
977.00
.00
I
.45
I
1.30
I
1.500
I I
.000
.00
I
1
.0
-I-
.325
-I-
.0420
-I-
-I-
-I-
-I-
-I-
.0090
-I-
.00
-I-
.38
-I-
.1.40
-I-
.26
-I-
.013
-I-
.00
.00
1-
PIPE
4036.525
I I
976.378
I
.389
976.767•
I I
1.42
3.91
I
.24
I
977.00
.00
I
.45
I
1.31
I
1.500
I I
.000
.00
I
1
.0
-I-
.239
-I-
.0420
-I-
-I-
-I-
-I-
-I-
0079
-I-
.00
-I-
.39
-I-
1.31
-I-
.26
-I-
.013
-I-
.00
.00
I-
PIPE
4036.764
I I
976.388
I
.402
976.790
I I
1.42
3.72
I
.22
I
977.01
.00
I
.45
I
1.33
I
1.500
I I
.000
.00
1
.0
-I-
.162
-I-
.0420
-I-
-1-
-I-
-I-
-I-
.0069
-I-
.00
-I-
.40
-I-
1.23
-I-
.26
-I-
.013
-I-
.00
.00
1-
PIPE
4036.926
I I
976.395
I
.416
976.811
I I
1.42
3.55
I
.20
I
977.01
.00
I
.45
I
1.34
I
1.500
I I
.000
.00
I
1
.0
-I-
.092
-I-
.0420
-I-
-I-
-I-
-I-
-I-
.0061
-I-
.00
-I-
.42
-I-
1.15
-I-
.26
-I-
.013
-I-
.00
.00
1-
PIPE
4037.018
I I
976.399
I
.431
976.829
I I
1.42
3.39
I
.18
I
977.01
.00
I
.45
I 1.36
I
1.500
I I
.000
.00
I
1
.0
-I-
.032
-I-
.0420
-I-
-I-
-I-
-I-
-I-
.0053
-I-
.00
-I-
.43
-I-
1.07
-I-
.26
-I-
.013
-I-
.00
I
.00
1-
PIPE
I
4037.050
I
I 976.400
I
.447
-I-
976.847
-I-
I I
1.42
-I-
3.22
-I-
I
.16
-I-
I
977.01
-I-
.00
-I-
I I
.45
-I-
1.37
-I-
I
1.500
-I-
I
.000
-I-
.00
1
I-
.0
-I-
0
-I-
Page 3
line11hclub.OUT
0 FILE: LINEIIHCLUB.WSW
W S
P'G W -
CIVILDESIGN Version 14.06
PAGE . 1
Program
Package Serial Number:
1735
WATER
SURFACE
PROFILE LISTING
Date: 4-
9 -2007
Time:
3:20:21
Madison Club
100 -yr
Phase 1, Liine 11h
12/13/05
I Invert I
Depth
1 water
I Q
I Vel
vel I
Energyy
1 Super
ICriticallFloW
ToplHeight /IBase
wtl
INO wth
Station
I Elev I
(FT)
I Elev
1 (CFS)
I (FPS)
Head I
Grd.E1.I
Elev
I Depth
I width
IDia. -FTIor
I.D.1
ZL
.IPrs /Pip
L /Elem
ICh Slope I
I
I
I
SF Avel
HF
ISE DpthlFroude
NINorm
Dp
I "N"
I X -Fall)
ZR
IType Ch
8000.770
I I
980.070
4.830
1
984.900
I
16.90
I
5.38
I
.45
985.35
I
.00
I
1.48
I
.00
I
2.000
I I
.000
.00
I
1 .0
-I-
246.740
-I-
.0100-
-1-
-I-
-I-
-I-
-I-
.0048
-I-
1.17
-I-
.00
-I-
.00
1.22
-I- -I-
.012
-I-
.00
.00
1-
PIPE
8247.510
I I
982.540
3.570
I
986.110
I
16.90
I
5.38
I
.45
986.56
I
.00
I
1.48
I
.00
I
2.000
I I
.000
.00
I
1 .0
]UNCT STR
.0094
.0028
.02
.00
.00
.012
.00
.00
PIPE
8252.840
I
982.590
4.256
I
986.846
I
7.52
I
2.39
I
.09
986.94
I
.00
I
.97
I
.00
I
2.000
I
I .000
.00
I
1 .0
-I-
176.780
-I-
.0100
-I-
-I-
-I-
-I-
-I-
.0009
-I-
.17
-I-
.00
-I-
.00
-I-
.76
-I-
.012
-I-
.00
.00
1-
PIPE
8429.620
-I-
984.360
-I-
2.663
-I-
987.023
-I-
7.52
-I-
2.39
-I-
.09
-I-
987.11
-I-
.00
.97
.00
2.000
000
.00
1 .0
o
-I-
-I-
-I-
-I-
-I-
I-
Page 1
r
S NISi�d H�1��
t
1
1
1
1
i
1
1
o�
1
1
1
1
1
1
1
1
1
1
I ' .: I.
i i
I I
I I
� I
1
8.0 INTERCEPTION CAPACITY OF INLETS IN SAG LOCATIONS
Inlets in sag locations operate as weirs under low head
conditions and as orifices at greater depths. Orifice flow
begins at depths dependent on the grate size, the curb opening
height, or the slot width of the inlet, as the case may be. At
depths between those at which weir flow definitely prevails and
those at.which orifice flow prevails, flow is in a transition
stage. At these depths, control is ill— defined and flow may
fluctuate between weir and orifice control. Design procedures
adopted for this Circular are based on a conservative approach to
estimating the .capacity of inlets in sump locations.
The efficiency of inlets in passing.debris is critical in
sag locations because all runoff which enters the sag must be
passed through the inlet. Total or partial clogging of inlets in
these locations can result in hazardous ponded conditions. Grate
inlets alone.are not recommended for use in sag locations because
of the tendencies of grates to become clogged. Combination
inlets or curb— opening inlets are recommended for use in these
locations.
- 8.1 Grate Inlets
A grate inlet in a sag location operates as a weir to depths
dependent on the bar configuration and size of.the grate and as
an orifice at greater depths. Grates of larger dimension and
grates with more open area, i.e., with less space occupied by
lateral and longitudinal bars, will operate as weirs to greater
depths than smaller grates or grates.with less open area.
The capacity of grate inlets operating as weirs i's:
Qi' = CwPdl.5 (17)
where: P = perimeter of the grate in ft (m) disregarding bars
and the side against the curb
Cw 3.0 (1.66 for SI)
The capacity of a grate inlet operating as an orifice is:
Qi = CoA(2gd)0.5 (18)
where: Co = orifice coefficient
= 0.67
A = clean opening area of the grate, ft 2 (m2)
g = 32.16 ft /s2 (9.80 m /s2)
MW
Ir
� ��� � 3 . I sr � � � ►�k LET T:�:,d�- r'ra. -�..� �S Ar4 C�P E F I
t0
6
S
4
3
. 2
�.
67
' � I
t '
� 0.8
g 0.6
e
Os
0.4
0.3
0.2
2 3 4 S 6 8 10 20 30 40 SO 60 80 100
0l3CHAW8@ Q (FT 3/3)
CHART 11. Grate inlet capacity in sump conditions.
CoA (z5j,,) Fo-M-Oc-A 1& 1 01'4 PIP -
71
e- 4 A7�
GRATE 0PEl`,lING
P-1-7/8-4 0.8
Reticuline 0.8
Curved vane 0.35
30* tilt-bar 0.34
- Tested
WANWEPA
,10,0
1 PVAV
CURB
2 3 4 S 6 8 10 20 30 40 SO 60 80 100
0l3CHAW8@ Q (FT 3/3)
CHART 11. Grate inlet capacity in sump conditions.
CoA (z5j,,) Fo-M-Oc-A 1& 1 01'4 PIP -
71
e- 4 A7�
II
0
NOLLO--*,9NN0l,j .,
32tb' 31�f/�21d
1
1
1
7
1
NOLLO--*,9NN0l,j .,
32tb' 31�f/�21d
i
1
1
1
1
1
1
1
1
1
1
1
1
i
i
1
Madison club Residential Area Drain connection
10" HDPE
6/6/05
Manning Pipe Cal cul
Given Input Data:
shape ...................
solving for ...........
Diameter.........1 ..............
Depth..........................
slope ...
Manning's n .....................
computed Results:
Flowrate........................
Area..........................
wetted Area ............ . ..... ...
wetted Perimeter ................
ator
circular
Flowrate
0.8330 ft
0.8000 ft
0.0100 ft /ft
0.0120
2.5399 Us
0.5450 ft2
0.5378 ft2
2.2831 ft
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON
RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT
' (RCFC &WCD) 1978 HYDROLOGY MANUAL
(c) Copyright 1982 -2004 Advanced Engineering Software (aes)
(Rational Tabling version 6.OD)
Release Date: 01/01/2004 License ID 1566.
Analysis prepared by:
RCE Consultants, Inc.
one ]enner Street, Suite 200
Irvine, CA'92618
s (949) 453 -0111
-- ° - ° - -° -_ °---° °- -° _ -= DESCRIPTION OF STUDY
Madison Club 10 -yr
Typical Residential Runoff
6/6/05
FILE NAME: RES- 10.DAT
TIME /DATE OF STUDY: 15:01 06/06/2005.
---------------------------------7------------------------------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
----------------------------------------------------------------------------
USER SPECIFIED STORM EVENT(YEAR) = 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
10 -YEAR STORM 10- MINUTE INTENSITY(INCH /HOUR) = 2.830
10 -YEAR STORM 60- MINUTE INT.ENSITY(INCH /HOUR) = 1.000
100 -YEAR STORM 10-MINUTE INTENSITY(INCH /HOUR).= 4.520
100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.600
SLOPE OF 10 -YEAR INTENSITY - DURATION CURVE = 0.5805893
SLOPE OF 100 -YEAR INTENSITY- DURATION CURVE = 0.5796024
COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT = 70.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.010
SLOPE OF INTENSITY DURATION CURVE = 0.5806
RCFC&WCD HYDROLOGY MANUAL "C "- VALUES USED FOR RATIONAL METHOD
NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
=USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL'
HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER- GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150
2 19.0 14.0 0.020/0.100/0.050 0.50 5.00 0.0100 0.010 0.0150
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
1. Relative FLOW -Depth = 1.00 FEET
as (maximum Allowable street Flow Depth) - (Top -of -Curb)
2. (Depth).* (velocity) Constraint = 6.0 (FT=FT /s)
=SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.=
FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21
------------------ ----------------------------------------------------------
»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «<
- - ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS SINGLE FAMILY(1 -ACRE LOTS)
TC = K= [(LENGTH =3) /(ELEVATION CHANGE)] = °.2
INITIAL SUBAREA FLOW- LENGTH(FEET) = 250.00
UPSTREAM ELEVATION(FEET) = 100.00
DOWNSTREAM ELEVATION(FEET) = 98.75
ELEVATION DIFFERENCE(FEET) = 1.25
TC = 0.469 °[( 250.00 *`3) /( 1.25)1°' °.2 12.326
•10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.531
SINGLE- FAMILY(1 -ACRE LOT) RUNOFF COEFFICIENT = .6893
SOIL CLASSIFICATION IS "B"
SUBAREA RUNOFF(CFS) = 1.74
TOTAL AREA(ACRES) = 1.00 TOTAL RUNOFF(CFS) = 1.74
--------------------------------------------------------------
-----------
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 1.00 TC(MIN.) = 12.33
PEAK FLOW RATE(CFS) = 1.74
END OF RATIONAL METHOD ANALYSIS
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON
RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT
(RCFC &WCD) 1978 HYDROLOGY MANUAL
(c) copyright 1982 -2004 Advanced Engineering software (aes)
(Rational Tabling version 6.OD)
Release Date: 01/01/2004 License ID 1566
1 Analysis. prepared by:
RCE Consultants, Inc.
One J enner Street, suite 200
Irvine, CA 92618
(949) 453 -0111
DESCRIPTION OF STUDY
• Madison Club 100 -yr
• Typical Residential Runoff
-- 6/6/05
FILE NAME: RES- 100.DAT
'TIME /DATE OF STUDY: 14:59 06/06/2005
------------------------------------------
- -USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
------------------------------------------------------------------------
USER SPECIFIED STORM EVENT(YEAR) = 100.00
SPECIFIED MINIMUM.PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
10 -YEAR STORM 10- MINUTE INTENSITY(INCH /HOUR) = 2.830
10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.000
100 -YEAR STORM 10- MINUTE INTENSITY(INCH /HOUR) = 4.520
100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.600
SLOPE OF 10 -YEAR INTENSITY - DURATION CURVE = 0.5805893
SLOPE OF 100 -YEAR INTENSITY- DURATION CURVE = 0.5796024
COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.600
SLOPE OF INTENSITY DURATION CURVE = 0.5796
RCFC&WCD HYDROLOGY MANUAL "C "- VALUES USED FOR RATIONAL METHOD
NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC &!JCD HYDROLOGY MANUAL
AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
=USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL=
HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER- GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
___ _ _____ _________________ _ _ _ _ __ _ _ _ __ _ _ _ _ __ _____ ______
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150
2 19.0 14.0 0.020 /0.100/0.050 0.50 5.00 0.0100 0.010 0.0150
GLOBAL STREET FLOW -DEPTH CONSTRAINTS:
,• 1. Relative Flow -Depth = 1.00 FEET
as (Maximum Allowable street Flow Depth) - (Top -of -Curb)
2. (Depth) = (velocity) Constraint = .6.0 (FT=FT /s)
=SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY.PIPE.
^- FLOW ^PROCESS ^ FROM ^NODE 1.00 -TO ^NODE2.00- IS^ CODE -= y21 -^ - _ --
----------------------------------------------------------------------------
--»»>RATIONAL- METHOD- INITIALSUBAP.EA- ANALYSIS « « <__ _________ _ _ _ _ __
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS SINGLE FAMILY(1 -ACRE LOTS)
TC = K= [(LENGTH= =3) /(ELEVATION CHANGE)]` °.2
INITIAL SUBAREA FLOW- LENGTH(FEET) = 250.00
UPSTREAM ELEVATION(FEET) = 100.00
DOWNSTREAM ELEVATION(FEET). = . 98.75
ELEVATION DIFFERENCE(FEET) = 1.25
TC = 0.469=[( 250.00= 3)/( 1.25)] = *.2 = 12.326
100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.004
SINGLE- FAMILY(1 -ACRE LOT) RUNOFF COEFFICIENT = .7507
SOIL CLASSIFICATION IS "B"
SUBAREA RUNOFF(CFS),= 3.01
TOTAL AREA(ACRES) = 1.00 TOTAL RUNOFF(CFS) = 3.01
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 1.00 TC(MIN.) = 12.33
PEAK FLOW RATE(CFS) = 3.01
END OF RATIONAL METHOD ANALYSIS
aom�.l�nmoo �ais�nr�
9£' 1 -0 DiV Id
dVVJ dno8!D sms 01!DOIOH H
0009 1333 0 jpp���(IrrN�� \�{(g / \f le 0 GiGsL��G1�(1 I
NOUVNEAs30 dno89 s3ios v
AavoNnOG dnoes s-uos
aN3a31
13.52'30 (THOUSAND PALM -H.E.I 8 g
'D A D
32�J I. 'J g 3 al Y• .36 •3l -\ �1 322 ^ 33B
rr: •':: ..� , ; F C:'. li `"k :-':_ / IX3TRI'_'F♦ A jr D —7—
uN0A0.T I_.�- i t `�• ...
��'2 ,• ✓ti cc.l ': .I '. _" ,+,..f 'al. ``'Z. `l a rl 0•`-i ,4 0. . \g•,' •a,�' °...'"•'..
:,'b,' i ,`1 !`'U• i.'I, 5 - -� . r ^� cam' L,. .j l l i
'yF�++ _.'� ^v;;'.., t'.t, -`� T ,'li.. :' '•� °97; :' r ;•I �i'•^^- e Z �"' `;> :) - " G-A ' 5 -t., _i3 •a' ;S
's1�1. ( /.', Lt:':,' ..�`:'- ;_':.s_, _.- ,�._�•.•'��.e .r ` ° ° �`:iI I ,yj" �•.
fi�:�;:.7. '�• ":7 'Ifs^ -.- !I', =•' Ijl; i;l ./q�((��'- }`•�./3 - ,•',.' ••I y /� ` .'f= a.: "_._
• I 1 t ii Si,��f Lr: !•CJ,j ^) (I�q r,:., { ! ,' Il �I O ��,:� - •'•l °! 14 ` : r - I: ..
ar ,r l� < :, - ?., _':•-, ;SiE '; 1� 1� `a{'''rt�
Ir
`"1. «� '%• I3 � ":.),� -;,j� �, ^ "� )'•` 6 1 � ;,a _,_,ice °.f.
, e : bI °"° „NL ?� �.� A_t:Irr, (Q -`d t'•I '�, r'J.:i -`.�"� 11 -,� � !/ - I i °
'\ \ •�- .- ....1'_•— : ' �f � l�rvf.lw � �.i ./•'',l V2,
t•6� �j l—�':� \'.�" ;I: '`_} i L ; r 'f �1 J .' L-..y I
13 ; :.1 101- <.
• r `� yf 1,..- 11 y f 1. +;�"`r.. I'.:,5:
22 23 19
60 21.
• • -;�: -- , 1 � � �� ��� fir' .��5 L
.:` I— [� off• --_. •_ •'-� �I ,''��. `'t'� -�'' �T y
�,•• .. '— :lit.; °' "`trst ��`i :r'�`�..
29
20 -- 274 26 25 30
L ..7
'O \\ I , , • �: • > r,uv fn.l I -1 n` -,lY• "0.1i• • L _
J.
�I ` ' j� °fie `0 '•. •� *` •:` °:..�.� .
° E
\:,, /•
\ 1 \ •a 3'14 - . - x'33 - \.
l' A- �L L E Y
9 10 i \\ 11 I .72• I.-- 7 ' •�` ��`, P: .. j9
13•/5'
LEGEND HYDROLOGIC SOILS GROUP MtAP
SOILS GROUP BOUNDARY
A SOILS GROUP DESIGNATION FOR
R C F c a W C D _ MYOMA
iHYD,mL OEV 11ANUAL 0 FEET 5000
PLATE C -1,37
WI -0 2M,11-3
3!DVN.M flHONVJ
�
Ij ] �I mod ji
1
1
1
1
1
1
1
1
1
J
1
1
1
>I
1
a ,
,
ivnNvli\r Ago ioz1GAH
0Oig Ojoz
N011 ;sw dnoaE) silos v
bU v"M09 dno8o silos
GN.3J3°I
1
1
1
1
1
1
1
1
1
J
1
1
1
>I
1
a ,
I
i
..^( ' �
t
L'
i
i
1�1
r
+` ?
� _
t
T' . - ^mss'.
1 V
I "
.�'
1
� L.
j'
I
9
RUNOFF INDEX NUMBERS OF HYDROLOGIC SOIL -COVER COMPLEXES FOR PERVIOUS AREAS -AMC II
Cover Type (3) Quality of Soil Group
Cover (2)1 A I B I C F D
78 186 191 ( 93
Poor
53
70
NATURAL COVERS -
85
Barren
40
(Rockland, eroded and graded land)
75
Chaparrel, Broadleaf
Good
(Manzonita, ceanothus and scrub oak)
57
.Chaparrel, Narrowleaf
78
(Chamise and redshank)
71
Grass, Annual or Perennial
88
Meadows or Cienegas
Good ..
(Areas with seasonally high water table,
72
principal vegetation-is sod forming grass)
Door
Open Brush
84
(Soft wood shrubs - buckwheat*, sage, etc.)
Fair
46 66
77
Woodland
Good IAl
(Coniferous or broadleaf trees predominate.
175
Canopy density is at least 50 percent)
Poor �45
Woodland, Grass
83
(Coniferous or broadleaf trees with canopy
36 60
73
density from 20 to 50 percent)
Good
URBAN COVERS -
70
77
Poor
Residential or Commercial Landscaping
82
(Lawn, shrubs, etc.)
Fair
Turf
77
(Irrigated and mowed grass)
AGRICULTURAL COVERS
Good 133
Fallow
t
(Land - plowed but not tilled or seeded)
78 186 191 ( 93
Poor
53
70
80
85
Fair
40
63
75
81
Good
31
57
71
78
Poor
71
82
88
91
Fair 155 172 181186
Poor
67 78
86
89
Fair.
50 69
79
84
Good
38 61
74
80
Poor
63 77
85
88
Fair
51 70
80
84
Good ..
30 58
72
'78
Door
62 76
84
88
Fair
46 66
77
83
Good IAl
K3
175
181'
Poor �45
66 177
83
Fair
36 60
73
79
Good
28 55
70
77
Poor
57 73
82
66
Fair
44 65
77
82
Good 133
58
72
79
Good 132 1566 169 175
Poor 58 114 1113 1111
Fair 44 65 77 82
Good 133 58 72 79
76 185 190 192
F U P C D RUNOFF INDEX. NUMBERS
FOR
PERVIO S AREAS
PLATE E-6.1 0.0 2)
A
RUNOFF INDEX NUMBERS OF HYDROLOGIC SOIL -COVER COMPLEXES FOR PERVIOUS AREAS -AMC II
Cover Type•(3)
Quality of Soil Group
Cover (2 ) A B I C D
PERVIOUS ARCS
PLATE E °6.1(2of 2)
AGRICULTURAL COVERS (cont.) -
Legumes, Close Seeded
Poor
66
77
85
89
(Alfalfa, sweetclover, timothy -,' etc.)
Good
58
72
81
85
Orchards, Deciduous
See
Note
4
(Apples, apricots, pears, walnuts, etc.)
Orchards; Evergreen
Poor
57
73
82
86
(Citrus, avocados, etc.)
Fair
44
65
77
82
Good
33
58
72
79
Pasture, Drylznd
Poor
67
78
86
89
(Annual grasses)
Fair
50
69
79
84
Good
38
61
74
80
Pasture, Irrigated
Poor
58
74
83
87
(Legumes and perennial grass).
Fair
44
65
77
62
Good
33.
58
72
79
Row Crops
Poor
72
81
88
91
'
- (Field crops - tomatoes, sugar beets, etc.)
Good
67
78
85
89
Small Grain
Poor
165
176 184
188
'
(Wheat, oats, barley, etc.)
Good
�63
75
83
87
1
a �
1
Vinevard
See
Note 4
Notes:
1. all runoff index (RI) numbers are for antecedent
Moisture Condition
(AMC) Ii.
2. 'Quality of cover definitions:
Poor - Heavily grazed or regularly burned areas.
Less than
50 per-'
cent of the ground surface is protected by
plant coved or brush
and tree canopy.
Fair - Moderate cover with 50 percent to 75 percent
of the ground sur-
face protected.
Good -Heavy or dense cover with more 'than 75 percent of
the
ground
surface protected,
3. See Plate C-2 for a detailed description of cover
types.
4. Use runoff index numbers based on ground cover type. See
discussion
under "Cover Type Descriptions" on Plate C -2.
5. Reference Bibliography item 17,
_
RUNOFF
MEX
E as .a
NUMBERS
HybROLOGY MANUAL
FOR
PERVIOUS ARCS
PLATE E °6.1(2of 2)
1
1
1
1
1
1
1
II
ACTUAL IMPERVIOUS COVER
Recommended Value
Land Use (1) Range- Percent For Average
Conditions -Percent (2
Natural or Agriculture 0 e 10 0
Single Family Residential: (3)
40,000 S. F. (1 Acre) Lots 10 - 25 20
20,000 S. F. (Z� Acre) Lots 30 - 45 40
7,200 - 10,000 S. F. Lots 45 - 55 50
Multiple Family Residential:
Condominiums 45 - 70 65
Apartments 65 - 90 80
Mobile !come Park 60 - 85 75
o t
CommTarciai, uo n'LO at 80 `°i00 90
Business or industrial
Notes:
1. Land use should be based on ultimate development of the watershedo
Long range master plans for the County and incorporated cities
should be reviewed to insure reasonable Land use assumptions,
2. Recommended values are based on average conditions which may not
apply to a particular study area. The percentage impervious may
vaxy greatly even on comparable sized lots clue to differences in
dwelling size, improvements, etc. Landscape practices should also
be considered as it is common in some areas to use ornamental grav-
els underlain by impervious plastic materials in place of lae..ms and
shrubs. A field investigation of a study area should always be made,
and a review of aerial photos, where available may assist in estimat-
ing the percentage of impervious cover in developed areas.
3. For typical. horse ranch subdiLpisions increase impervious area 5 per-
cent over the values recommended in the table above.
°
IMPERVIOUS COVER
t'1YDRO 9GY IMANJAL FOR
DEVELOPED AREAS
PLATE E °6.3
Ei7
a
\/IrINITV A/IAP
33B
PAD =995.0
LINE "10A" /
/ I
A{y.1
( I' + l A
\
{
{
I { ;
LEGEND:
WATERSHED BOUNDARY
... WATERSHED BOUNDARY SUB -AREA
WATERSHED BOUNDARY INITIAL SUB —AREA
K*X*_X WATERSHED DESIGNATOR
V., �-X WATERSHED AREA
XX XXX.X NODE NUMBER / ELEVATION
0XKXy) XXX.X INV —XX NODE NUMBER / ELEVATION / INVERT ELEVATION
Q,o=x.x,X.x SUBAREA RUNOFF cfs , PEAK FLOW cfs
Q1oO=X.X,X.X SUBAREA RUNOFF cfs , PEAK FLOW cfs
�)) GOLF HOLE
_ P 5.5
AD =98 ,
7 52B
PAD- -985.8 , +1�
dl A-
51 B
�. / ! i7 �� �, �9B r =- PAD= 987'.5
X� f �/ — �, j �` PAD =991.0
,
/ 50B
y
PA 9 0 -
t fr
\
/J
\ t _
„ �fz
.997.1 \ __
6
1 ri
,
4
u
Y
-
,'" \, TQ
. r �
S /Z X
✓
\ i <� ✓F `
Al
j�
I 1
y J
-
\
r �
,t
_ - -
i
i
(
i
:,7 J GRAPHIC SCALE
80 0 40 80 160
320 1
( IN FEET )
1 inch = 80 ft.
7595 Irvine Center Dr.
C46559 Suite 130
P.E. Irvine, Co. 92618
RICHARD L. CLARK Phone: 949.453.0111
EXP.- 6/30/07 Fax: 949.453.0411
mConsultants, Inc
STAMP
w 9��m
N0. C46559
S)" *EXP. 6- 30 -07*
CIVI ��
gTfpFCAl1
CITY OF LA QUINTA
DRAWING NAME:
MDC- HYD -SD -CH
HYDROLOGY MAP
MADISON CLUB CLUBHOUSE
PLAN SHEET
TRACT MAP N0. 34969
PORTIONS OF SECTION 10, T.6.S., R.7.E., S.B.M.
PROJECT No.
0001 MDC
SHEET 1 OF 1
DESIGNED BY:S.W.
CHECKED BY: T.B.
SCALE:
1 " = 80"
FILE No.
0502
REVISIONS
DATE
NO.
DRAWN BY: S.W.
DATE: 04/09/07
0
d-
O
6
L LI
F-
F-
0
J
Q
Qi
V
L
CL
Q)
E
a>
0
L
Q
I_
ai
c
O
co
i
0
0
0
N
O
n
0
u
Q
TO RETENTlluN BASIN
= o
1.4 Ac SUBAREA �gREAGE ° V)
w
w
O
LLJ
7'
2.5,
'Hx8'W DBL. R
7M01 .._...._._
I f ' " �� �' �Z �" I �
I ""- - \\ �
fit
T,0 L QUINTA
EVA U. ON CHANNEL
TO EXISTING -
13 U — -- I
N
AVENIDA LA FONDA
AvE_ �A FONUN
54" RCP CALLE
10' 18"
1 g" 18
7' 7'
City of La Quinta
l�/1LLL 60" RCP J11 V nLVn
24" S= 0.0052 __ 7' 8
100' 50' 0' 100' 200'
GRAPHIC: SCALE
Note: For reduced sized pr�nts, original scale is in inches
W
--- CALLE
B -3__
3.1 Ac _ --
<� EXISTING SAND FILTER
EXISTING RETENTION B ' t( �W
CALLE
B-2 EXISTING SAND FILTER
5.1 Ac EXISTING LEACH FIELD
f II 4 4.0 Ac
■
rRETE TION BASIN
'C'
��:
CALLE-
0" RCP /
=0.001
Downtown Drainage Study �
Hydrology Map "*%
P S 0 M A S
DATE: 12 -04 -07 REVISED ON:
JOB No:1LAQ010102
SHEET 1 OF 1
E
0
3
v
O
0
r
/
z
c�
LU
w
0
z
w
/
N
O
O
O
Q
J
/
m
M
n
<i-
00
O
n
O
0
Q)
0
a
LEGEND / HYDROLOGIC DATA
STORM FREQUENCY: 10 YEARS
TOTAL DRAINAGE STUDY AREA: 74 Acres w
w
DRAINAGE AREA BOUNDARY o
=
o
> D
DRAINAGE SUB —AREA BOUNDARY N
N
Iz
T_ FLOW DIRECTIONAL ARROW
EXISTING STORM DRAIN
Y DRY WELL
0 G
GRATE INLET
_ ,
, CATCH BASIN / WIDTH
w �
� SOIL GROUP(S): A & B
C/1) S
SANDY LOAM, LOAMY SAND AND FINE SAND
w
LAN D_USE.. PES[DEI_TIAL-- &-- C.OM.MERCI -AL —_.__.
Q1010 YEAR STORM FLOW
Tc TIMOF CONCENTRATION
B -18 SUBAREA
w
w
w
O
LLJ
7'
2.5,
'Hx8'W DBL. R
7M01 .._...._._
I f ' " �� �' �Z �" I �
I ""- - \\ �
fit
T,0 L QUINTA
EVA U. ON CHANNEL
TO EXISTING -
13 U — -- I
N
AVENIDA LA FONDA
AvE_ �A FONUN
54" RCP CALLE
10' 18"
1 g" 18
7' 7'
City of La Quinta
l�/1LLL 60" RCP J11 V nLVn
24" S= 0.0052 __ 7' 8
100' 50' 0' 100' 200'
GRAPHIC: SCALE
Note: For reduced sized pr�nts, original scale is in inches
W
--- CALLE
B -3__
3.1 Ac _ --
<� EXISTING SAND FILTER
EXISTING RETENTION B ' t( �W
CALLE
B-2 EXISTING SAND FILTER
5.1 Ac EXISTING LEACH FIELD
f II 4 4.0 Ac
■
rRETE TION BASIN
'C'
��:
CALLE-
0" RCP /
=0.001
Downtown Drainage Study �
Hydrology Map "*%
P S 0 M A S
DATE: 12 -04 -07 REVISED ON:
JOB No:1LAQ010102
SHEET 1 OF 1
E
0
3
v
O
0
r
/
z
c�
LU
w
0
z
w
/
N
O
O
O
Q
J
/
m
M
n
<i-
00
O
n
O
0
Q)
0
a