23292232- q2-
-50
IE
232- q2-
®� ®' J.F. Davidson Associates, Inc.
®�
;7
A v ® ENGINEERING PLANNING SURVEYING ARCHITECTURE LANDSCAPE ARCHITECTURE
1 ;1:
I"0
1_
HYDROLOGIC /HYDRAULIC
RESPONSE TO PLAN CHECK
COMMENTS
TRACT 23292
W.O. 8006004 -10
Prepared by J.F. DAVIDSON ASSOCIATES, INC.
September 13, 1989
S E P 2,7 1989
BSI CONSULTANTS, INC.
RANCHO MIRAGE
3880 Lemon Street, Suite 300
1091 -D S. Mt. Vernon Avenue
P.O. Box 12817'
27349 Jefferson, Suite 115
P.O. Box 493
Colton, CA 92324
Palm Desert, CA 92255
P.O. Box 340
Riverside, CA 92502
(714) 825 -1082
(619) 346 -5691
Rancho California, CA 92390
(714) 686 -0844
FAX 714 - 825 -9583
FAX 619- 340 -0529
(714) 676 -7710
FAX 714 - 686 -5954
FAX 714 - 699 -1981
Aiz
:• -:: ;. -,,g"° � �n"d:r _.� f lam`} aJm*t�:,,'nn t� gyro- •i;r�, - 'z,, ;, - c � < ` , y,�c
1.0 Offsite Hydrology
2.0. La Quinta School Storm Drain
3.0 Park Avenue Retention Basin Analysis
• 4.0 Appendix
Ic
w.0. 800.6004 -10
1.0 OFFSITE HYDROLOGY TO TRACT 23292
The purpose of this study is twofold: 1) to determine the
existing 100 -year offsite runoff. concentrating at the
intersection of Tampico and Rondo for interim conditions,
and 2) to propose adequate facilities which will protect
the tract from this runoff.
• The 100 -year flow was calculated by the Ratiorral.Method per
the RCFCD's Hydrology Manual.* The contributory watershed
was delineated on 1975 topo maps.and verified with the City
of La Quinta prior to the analysis. Since there are no
existing improved streets (with curb and gutter) in this
watershed, travel.times were computed assuming a lined
trapezoidal channel (Plate D -9.2 per RCFCD's Hydrology.
Manual) as the main conveyance system. This assumption was
also verified with the-city.
I!
The results indicate a total runoff of 293,.5 cfs
concentrating at the intersection of Tampico and Rondo. A
field investigation to the project site revealed three
swales, in the vicinity of Rondo between-Avenidas La Jarita
and La.Torres, which drain in a easterly direction to the
WA
golf course. According to the Hydrology Map, these
facilities can intercept 49.7 cfs from subareas 113 through
2C, thereby decreasing the total offsite runoff to
approximately 250 cfs. This value was accepted by the City
of La Quinta in a meeting on Sept. 13, 1989. A triangular
shaped asphalt ditch adjacent to Rondo (on the east) is
proposed to convey this offsite runoff and protect this
proposed development for the interim condition (see Cross
Section A- A,.Street Improvement Plans Sheet 5 of 10). An
earth berm along the easterly side of this ditch will
provide additional protection.
At street station 76 +00.00, the ditch will make a 90- degree
bend to the east and transition to the grass lined
trapezoidal section. Rocks will be placed on the channel
slopes in this.bend area to reduce the threat of scour.
The Bureau of Reclamation's "Computing Degradation and
Local Scour" was used as a guideline to determine the
amount of protection. The maximum capacity of this
facility (see section B- B,.Street Improvement Plans, Sheet
5 of 10) is 355 cfs (for a 2.3 foot .depth). This channel
will be graded to daylight in the golf course.
At the present intreme flood condition for the 100 -year,
Tampico is assumed to carry all flood water (250 cfs) into
Rondo and the adjacent existing golf course via an earth .
landscaped swale just south of Tampico on Rondo.
'r
r
IE
• The surrounding is flat and without direct channel flood
control conditions other than Tampico is assumed to be the
low improvement for the area in future development. As
development progresses, the present Q100 (intreme) will be
reduced due to on -site retention for those areas which are
now considered undeveloped with potential runoff.
Therefore, the present Q100 will be reduced due to future
development. However, the present Q10 cannot be contained
within the T.C. of new construction. And the Q100 cannot
be contained within the present right -of -way of Tampico.
But the difference in elevation between 100 -year water
surface elevation and the only existing house pad (earth),
per exhibit "H", is 2 foot freeboard for a water depth of
1.0' (Q100).
17�M% 6-
ZSO
�►° - /� 3 = 1.5,3.3 ifs
* All 10 -year calculations were based on the relationship:
,Q(10)= Q(100)/1.63
10
I*
•
1.0 OFFSITE HYDROLOGY TO
W.O: 8006004 -10
M104:3a
The purpose of this study is twofold: 1) o determine the
existing 100 -year offsite runoff. . concent ating at the
intersection of Tampico and .Rondo four - interim onditionss %and 2).
to propose adequate facilities which %will pro ec the d:ract from
this runoff.' � P
The 100 -year flow was calculated by
RCFCD's Hydrology Ma ual� he
delineated on 1975 to o maps and
Quinta prior to t
improved streets (w
times were computed
D -9.2 per RCFCD's
i
system. This a9pum
e analysis.
th curb and gut
assuming a li
_Hydrolo y Ma
Lon was 'also v
t e atiog'al Method per the
con -trrAb utbry watershed was
veri,�..4ed' with the City of La
SiL e. there are no existing
er) i this watershed, travel
ned trapezoidal channel (Plate
ua as the main conveyance
e ified with the city.
The results ` ndic 'ate a tot�X r uno f of 293.5 cfs concentrating at
the intersection o+f Tampico ad Rondo. A field investigation to
the project. site revealed t re swales; in the vicinity of Rondo
between Avenidas \La. Jars a and La Torres, which drain in a
easterly direction:) to the golf course. According to 'the
Hydrology Map, these facilities can intercept 49.7 cfs from
subareas 1B. through 2C!,` thereby decreasing the total offsite
runoff to approximately 250 cfs. This value was accepted by the
City of La Quinta in a meeting on Sept'. 13, 1989. A triangular
shaped asphalt ditch adjacent to Rondo (on the east) is proposed
* All 10 -year calculations were based. .on the relationship:
Q(10)= Q(100)/l..63
to convey this offsite. runoff nd protect this' proposed
a ��.
development for the interim Condit' n e.(see Cross Section A -A,
Street Improvemdnt(-�1 ns S� eet i5' o 1: V. An earth berm along the
easterly side o t!htis itchA wiltl� pro %ide additional protection.
n
At street station 76 +0 ..00,�\the '4A h will make a 90- degree bend
to the east aJd �tra sitioXd.�'bn to the grass lined trapezoidal
section. \� ..Rocks lwiLl b place the channel slopes in this bend
area to reduce tlhe teat b/f.'scour. The Bureau of Reclamation's
"Computing \egra ation acid Local Scour" was used as a guideline-
to determine the amoun/ Off protection. The maximum capacity of
thi-s facility \('s fs�ection B -B, Street Improvement Plans, Sheet 5
of 10) is 355 cfs (for,a 2.3 foot depth). This channel will be
graded to daylight in the golf course.
C,1 wA
T l 'U`
1I �
C]
•
•
2.0 STORM DRAIN (LA QUINTA SCHOOL)
The subject tract proposes an additional catch basin at the sump
in 50th Ave. (south side). This basin is designed to intercept
only the contributory runoff on the south side of the street and
convey it by an 18 -inch lateral to the existing catch basin on
the north side of 50th Ave. A hydrologic /hydraulic analysis-was
performed to determine whether the additional runoff would
adversely impact the storm drain.
Employing the RCFCD's Rational Method, the total 100 -year runoff
at the sump was calculated at 11.2 cfs (5.6 cfs per half street).
The original plans /calculations provided by Chuck Haver of Robert
Bein, William Frost, and Associates, indicated that their
upstream catch basin had been designed to intercept 11.0 cfs:
Based on this information, the proposed lateral to the existing
storm drain will not generate any negative hydraulic impacts.
•
3.0 PARKAVENUE RETENTION BASIN ANALYSIS
t
The RCFCD's Unit Hydrograph Computer Program was employed in this
analysis. One of the program's restrictions -. is a minimum
drainage area of 10 acres. Since the contributory drainage on
Park Ave. is 3.9_ acres,. the results of the computer program
(based on the 10 acreage) were multiplied by a factor of 0.39.
The total required volume is approximately 0.5 acre —feet.
According to the dimensions of the basin (depicted on Sheet 6 of
9), a minimum two foot depth would be required.*
•
C7
.0
*Volume = [(150)(100) +(138)(88)] 2/43,560 =0.63 AC
0
EXHIBIT
A
i•
D
i
4.0 APPENDIX
Offsite Hydrology Subarea Map
Rational Method Calculations - Offsite Runoff
Proposed Trapezoidal Earth Channel
Original Calculations for the La Quinta School Storm
Drain
E Rational Hydrology - Runoff on 50th Ave.
F Unit Hydrograpyh /Retention Analysis Basin Adjacent to
Park Ave.
G Runoff /Velocity Calculations at Outlet on 50th Ave.
H Hydraulic Analysis - Tampico (west of Rondo)
� 40
F- -1
3 R C FC a W C D HYDROLOGY 1\ilANUAL
RATIONAL METHOD CALCULATION FORM
PROJECT �At,)DPAf )<Z6 =fir Z3��-Z�
FREQUENCY 100 —����
Sheet No. I of Lheets
Calculated by
DATE
Checked by - -- -- — nerF - --
DRAINAGE
AREA
Soil , Ek
Development
A
Acres
I Z
lin/hr.
C
A Q
CFS
E Q
CFS
SLOPE
SE ION
v
qPS
L
FT.
T
RAIN.
E T
REMARKS
5 r
SAS
3,.5�
.�u5
13•�f
l J �d
rti,rl4 L)
G
13,
vv ?�
r Iq r
Q -q,•
1 •
?�0
9..1
Z
A �ti
lo,o
z,��
►�t
11�`i
�
? a ,�
I
3_0 .
5 �l)
Z , Q
•Z
13,3
2.6 f
t
v tiD
��
2. J
.'�7 S"
I D,
�"
- `-^
, C{ I
r ')iq
-'q5,-,
Z ,
30 0
/
L ► ��r z_
S�L
s,
Zi
s�
_
_
_
_
0/u
4-33
2 "+'A
,,-+I s
Lk3
Z�,�s
.
SP,
,o pY
a 2
Z
Z
L t �� E
S cc, S
`U
33 d
-�� �,`
_
_
BA
6F X04)
fr.�o 3� ��
IZ.
Z,2(0
.J1�
1b
o°
-
2
S5
3,
,!
l �N�
36,E
T1
lo' /A
2.
s8
, 3o
u ti�
D q"
Z,
q00
S. q
Pik
Z3,,S
o
16A
A Lu iv
33..1
2,0 Z
, 3
Z41
Ohl, , U
���-
v�2
-9,z
v
�
z v
Lr,� _
s
s /
2 I,
sus C
o.
-1, e
1-73
. i'34
1 S6iL- C 14,s � 4
P)!�c L4
— y4tNFf+l —L
—rk,�tENsl- --y
E2
P/41
D-
Z
E SEl
/ ko T
rwa
/� /atG D -9• Z-
A � '�R =
R C F C 81 W C D ]HYDROLOGY J\/JANUAL
RATIONAL METHOD CALCULATION FORM
PROJECT ,�1� /T� y,�.oi�G &3o!'?
FREQUENCY
Sheet No.? —of Sheets
Calculated by -F% 6i�4 Q _
AT E
Checked by --- - - - --- - DX E
DRAINAGE
AREA
Soil Ik
Development
A
Acres
I
In/hr.
C
C Q
C FS
i Q
C FS
SLOPE
SECTION
v
FPS
L
FT.
T
PAIN.
E T
REMARKS
L„v,� . �.
.3 �?
A s.
S, `F
3.`5
�v�
"' i
�,7
�S,U
J'
Z
f�a av ,►;)
4- -Z
%���
'{�/�
G�`�
1f,5
%; I T 14� --
rha;
34• t
LItiF ..
Z 6 0
�s,p
/-1
S, F .)
3,5d
.703
15 . D
7 14 �-
zo., z
6-r
P = J
9. r .
:C:-
03 =
,J2
A L
�l
3 3
.
�N�
14=Y
� �v
Z
10.
3..z
. �8
i s �
/,
e oo I
�
�
30
4
-
4_ A
�� �o
L -95Z
Z;z
. �
3�•
V 71.q C
I
u sT
V7
s •
PROJECT
R C F C& W C D 'HYDROLOGY (MANUAL
RATIONAL METHOD CALCULATION FORM
FREQUENCY
Sheet No.3 of Sheets
Calculated
DATE
Checked by
DRAINAGE S
Soli E A
A I
I C
C- o
o Q E
E Q S
SLOPE S
SECTION v
v L
L T
T E
E.'T R
REMARKS
_, S.A I Z. 5
5 r F, $
$,1 3
3, S K r
r 71 2
2 `f,o Z
/3.0 A
A, � r 14. c_._
Z 4, U o
ova r
rk-f /
z O
O 1,
`T
3 r
A V A.D 2
2,19 .
.3 -
-7 �
r l
l 171 (�
G. .
�/ r
r. , , 3
/� A
/� -
-7 Z
Z /U r
r � � !
!! 11 G
r/,
R C F C 81 W C D HYDROLOGY NIANUAL
RATIONAL METHOD CALCULATION FORM sheet Na. of sheets
PROJECT��v �' S UiLO 23Z.7Z— Calculated by 1!9�_��?
�1��% "—��� - - -- - - -- — BaTE
FREQUENCY --
Checked by -
AREA
Development
rAM
5
PROJEC
R C FC Ek W C D HYDROLOGY NIANUAL
RATIONAL METHOD CALCULATION FORM
FREQUENCY
0.
Sheet No. f of -!Sheets
Calculated by//q h_'_0/
DATE
Checked by •- - - - -- DATE - --
DRAINAGE
AREA
Soil ag
Development immom
a
REMARKS
=
®
I '
®®�
SM
lu
EXHIBIT C, r.
CAPACITY OF TRAPEZOIDAL CHANNEL
PER KING'S TABLE 7 -11
Q = K b '3 s 1/-u
n
Q =.250 cfs
b = 15'
• s = 0.00.5
z = 3:1
n = 0.030
K =0.07 ; D/d = .15(15) = 2.25 ; DESIGN FOR 2.5'
MAXIMUM CAPACITY AT 2.5 FEET DEEP:
A = 15 (2.5) +(2.5) (3) (2.5) = 56.3
P = 2 [ (2.5) +(7.5)Z ]��Z +15 = 30.8
N = 0.030
Q (MAX) = 355 cfs > Q (100)
ACTUAL AREA AT 2.3 FEET = 50.4 SQUARE FEET
V= Q/A 250/50.4 = 4.9 fps
. :,.,., JEXHIBI.T Q '
LIST OF ABBREVIATIONS
•---------------------
V 1, FL 1, D I AND HG 1 REFER TO DOWNSTREAM END
V 2, FL 2, D 2 AND HG 2. REFER TO UPSTREAM END
X - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HG INTERSECTS SOFFIT IN SEAL CONDITION
X(N) - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY EITHER DRAWDOWN OR BACKWATER
X(J) - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE
F(J) - THE COMPUTED FORCE AT THE HYDRAULIC JUMP
D(BJ) - DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE)
D(AJ) - DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE)
SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART
HJ INDICATES THAT FLOW CHANGES FROM SUPERCRITICAL TO SUBCRITICAL THROUGH A HYDRAULIC JUMP
HJU INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE
HJD INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE
10
0
J '
CT : LA DUINTA K -5 SCHOOL IOYR DATE
-------------------------------------------------------------------------- - - - - -- -------- - - - - --
INPUT DATA .LISTING
CD L2 MAX D ADJ A LENGTH FL 1
8 1
2 2 29.8 29.8 168.00 .39.10
2 3 20.2 20.2 405.00 . 40.28
2 . 4 11.0 11.0 370.00 41.90
2 5 11.2 9.6 40.00 40.53
2 . 6 9.2 9.2 112.00 42.15
2 7 '. 8.7 8.7 110.00 43.43
2 8 7.8 7.8 112.00 44.53
�9 7.3 7.3 140.00 45.09
2 10 .5 .6' 90.00 43.85
2 11 .9 .9 90.00 44.95
2 12 .5 .5 235.00 46.60
2 13 .5 .5 65.00 45.51
FL 2
40.28
41.90
43.37
42.00
43.43
44.53
45.09
45.79
46.80
46.60
48.00
47.70
CTL /TN
39.15
0.00
0.00
47.40
47.00
0.00
0.00
0.00
49.30
49.00
0.00
50.20
49..90
D N S KJ KE
24. 31. 3 0.00 0.00
24. 0.' 3 0.00. 0.00
24. 0. 1 0.00 0.00
15.. ' 0. 1 0.00 0.00
18. 0. 3 0.00. 0.00
18. 0. 3 0.00 0.00
18. 0. 3 0.00 0.00
18. 0. 1 0.00 0.00
B. 0. 1 0.00 0.00
8. 0. 3 0.00 0.00
8. 0. 1 0.00 0.00
8. 0. 1 0.00 0.00
KM
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
LC L1 0 L4 Al A3
-- -- -- -- - -- - --
1 3 5 0 0.' 60,
0 4 6 0 0. 90.
0 0 0 0 0: 0.
3 0 0 0 0. 0.
4 7 10 0 0. 90.
0 B 11 0 0. 90.
0 9 13 0 0. 90.
0 0 0 0 0. 0.
7 0 0 0 0. 0.
B 0 0 0 0. 0.
0 0 0 0 0. 0.
9 0 0 0 0. 0.
A4 J N
0. 0.00 .013
0. 0.00 .011
0. 0.00 .013
0. 0.00 .013
0. 0.00 .013
0.. 0.00 .013
0. 0.00 .013
0. 0.00 .013
0. 0.00 .013
0. 0.00 .013
0. 0.00 .013
0. 0.00 .013
PROJECT : LA GUINTA K -5 SCHOOL 10YR DATE
-------------------------------------------------------------------------------------------------------------------------
STORM DRAIN ANALYSIS RESULTS
----------------------------
LINE D D N DN DC FLOW SF -FULL V 1 Y-2 FL 1 FL 2 HG I HG 2 D 1 D 2 TN TN
NO (CFS) (IN) (IN) (FT). (FT) .TYPE (FT /FT) (FPS) (FPS) (FT) (FT) CALC CALC (FT) (FT) CALC CK
1 HYDRAULIC GRADE LINE CONTROL = 39.15
2 293 24 31 1.53 1.60 PART .00547 7.6 7.2 39.10 40.28 40.63 41.BB 1.53 1.60 0.00 0.00
X = 0.00 X(N) = 154.02
3 20.2 24 0 2.00 1.61 .FULL .00797 6.4 6.4 40.28 41.90. 42.28 45.51 2.00 3.61 0.00 0.00
4 11.0 24 0 1.32 1.19 FULL .00236 3.5 3.5 41.90 43.37 46.42 47.29 4.52 3.92 47.48 47.40
3 HYDRAULIC GRADE LINE CONTROL = 42.08
5 11.2 15 0 .93 1.21 FULL .03006 9.1 9.1 40.53 42.00 42.08 43.29 1.55 1.29 44.58 47.00
4 HYDRAULIC GRADE LINE CONTROL = 45.97
6 9.2 18 -0 1.03 1.17 FULL .00.767 5.2 5.2 42.15 43.43 45.97 46.82 3.B.2 3.39 040 0.00
7 8.7 18 0 1.04 1.14 FULL ..00686 4.9 4.9 43.43 44.53 46.91 47.67 . 3.48 3.14 0.00 0.00
9. 7.3 18 0 1 :21 1.05 FULL .00 4.1 4.1 45.09 45.79 48.51 49.1.42 3.39 49.45 44.30
7 HYDRAULIC GRADE LINE..CONTROL.= 46.87
10 .5 8 0 .22 .33 SEAL .00171 1.4 2.9 4335 46.80 4631 47.13 3.02 .33 47.26 49.00 HJ
X = 75.71 X(N) = 0.00 X(J) = 81.42 F(Jl = .08 D(BJ) _ .23 D(AJ) _ .45
8 HYDRAULIC GRADE LINE CONTROL = -47.74
11 .9 B 0 .35 ...45 FULL .00555 2.6 2.b 44.95 46.60 47.74 48.24 2.79 1.b4 0.00 0.00
• .5 8 0 .35 .33 FULL .001711 1.4 1.4 46.60' 48.00 48.38 48.79 1.78 .79 , 48.82 50.20
9 HYDRAULIC GRADE LINE CONTROL = 48.47
13 .5 8 -0 .21 .33 FULL .00171 1.4 1.4 45.51 47.70 48.41 48:58 2.96 .88 , 4B.61 49.90
STORM DRAIN ANALYSIS RESULTS
---------------------- - - - - --
Q b D DC SF-FULL V 1 V FL 1 F G H 2 D D TM Tl(
LINE D N FLOW F LL 2 L 2 H 1 G l 2
NO (CFS) (IN) (1N) (FT) (FT) TYPE (FT /FT) (FPS) (FPS) (FT) (FT) CALC CALC (FT) (FT) CALC CK
- - -- - - -- - - -- - - -- - - -- - - -- - - -- - - - - - -- - - - -- - - - -- = - - - -- - - - - -- - - - - -- - - - - -- - - - -- - - - -- - - - - -- - - - - --
•
I Al
ti
�9
ut
Ol
` 6 0 �6- o a �.•
0
L
"PROJECT : LA QUINTA.K -5 SCHOOL IOYR DATE :
---------------------------------------------------------------------------------------------------------------=-------------
i
INPUT DATA LISTING
CD 11 MAX Q
8 1
2 2 29.8
2 3 20.2
.2 4 11.0
2 5 11.2
2 6 9.2
2 7 8.7
2' 8 7.8
2 9 7.3
ADJ Q
29.8
20.1
11,, 0
9.6
9.2
8.7
7.8
. 7.3
LENGTH FL I
348.00 36.30
405.00 40.28
370.00 41.90
40.00 40.53
112.00 42.15
110.00 43.43
111.00 44.53
140.00 45.09
FL 2
40.28
41.90
43.37
42.00
43.43
44.53
45.09
45.79
CTL /T11
36.33
0.00
0.00
47.40
47.00
0.00
0.00
0.00
49.30
D a S KJ . KE
30. 0. 3 0.00 0.00
24.' .0. 3 0.00 0.00
24. 0. 1 0.00, 0.00
15. 0. 1 0.00 0.00
18. 0. 3 0.00 0.00
18. 0. 3 0.00 0.00
18. 0. 3 0.00 0.00
18. 0. 1 0.00 0.00
KM LC 11. L3 L4. Al A3
0.00 1 3 5 0 0. 60.
0.00 0 4 6 0 0. 90.
0.00 0 0 . 0. 0 0. 0.
0.00 3 0 0 0 0. 0.
0.00 4 7 10 0 0. 90.
0.00 0 8 11 0 0. 90.
0.00 0 9- 13 0 . 0. 90.
0.00 0 0 0 0 0. 0.
A4 J N
0. 0.00 .013
0. 0.00 .013
0. 0.00. '.013
0. 0:00 .013
0. 0.00 .013
0. 0.00 .013
0. 0.00 .013
0. 0.00 .013
2 0 .5 .6 90.00. 43.B5 46.80 49.00 8. 0. 1 0.00. 0.00 0.00 7 . 0 0 0 0. 0. 0. 0.00 .013
2 1 .9 .9 90.00 '44.95 46.60 0..00. 8. 0. 3 0.00 0.00. 0.00 8 0 0 0 0. .0. '0. 0.00 .013
2 12 �.5 .5 235.00 46.60 48.00 50.20 B. 0. 1 0.00 0.00 0.00 0 0 -0 0 0. 0. 0. 0.00 .013
2 13 .5 .5 65.00 45.51 47.70 49.90 8. 0. 1 0.00 0.00 0.00 9 0 0 0 '0. 0. .0. 0.00 .013
0
PROJECT : LA QUINTA K -5 SCHOOL IOYR DATE
----------------------------------------------------------------------------------------------------------------------------
STORM DRAIN ANALYSIS RESULTS
---------------------- - - - - --
LINE 9 D N ON DC FLOW SF -FULL V 1 -V 2 FL I FL 2 HG 1 HG 2 O 1 D 2 TN TW
NO (CFS) (IN) (IN) IFTI . IFT) TYPE (FT /FT) (FPS) (FPS) (FT) (FT) CALC CALC (FT) (FT) CALC CK
1 HYDRAULIC GRADE LINE CONTROL = 36.33 .
2 29.8 30 0 1.51 1.86 .PART .00528 9.6 7.6 36.30 40.28 37.81 42.14 1.51 1.86 0.00 0.00
X = 0.00 X(N) = 194.47
3 20.2 '24 0 2.00 1.61 FULL .00197. .6.4 6.4 40.28 41.90 42.66 45.89 2.3B 3.99 0.00 0.00
4 11.0 24 0 1.32 1.19 FULL .00236 . 3.5 3.5 41.90 . 43.37 46.80 47.67 4.90 4.30 .47.86 47.40
3 HYDRAULIC GRADE LINE CONTROL 42.40
5 11.2 15 0 .93 1.21 FULL .03006 9.1 9.1 40.53 42.00 42.40 43.60 1.87 1.60 44.90 47.00
4 HYDRAULIC GRADE LINE CONTROL = 46.35
6 9.2 18 0 1.03 1.17 FULL .00767 5.2 5.2 42.15 43.43 46.35 47.20 4.20 3.77 0.00 0.00
8.7 18 0 1.04 1.14 FULL .00686 4.9 4.9 43.43 44.53 47.29 48.05 336 3.52 0.00 0.00
1
8 7.8 18 0 1.50 1.08 FULL .00551 4.4 4.4 44.53 45.09 48.20 ' 4B.B1 3.67. 3.72 • 0.00 0.00
7 HYDRAULIC GRADE LINE'CONTROL 41.25
.10 .5 8 0 .22. :33 SEAL .00171. 1.4 1.5 . 43.85 46.80 '47.25 47.40 3.40 .60 47.43 49.00
X = 87.94 X(N) = 0.00
B HYDRAULIC GRADE LINE CONTROL = 48.12
11 .9 8 0 .35 .45 FULL .00555 2.b 2.6 44.95 46.60 48.12 48.62 3.17 2.02 0.00 0.00
12 .5 8 0 .35 .33 FULL .00171 1.4 1.4. 46.60 48.00 4B. 76 49.17 2.16 1.17 49.20 50.20
9 HYDRAULIC GRADE LINE CONTROL = 4B.B5
13 .5 8 0 .21 .33- FULL .00171 1.4 1.4 45.51 47.70 .4B.85. 4B.96 3.34 1.26 48.99 49.90
STORM DRAIN ANALYSIS RESULTS
---------------------- - - - - --
LINE
O
D
W
DN..
DC
FLOW
SF -FULL
V I
V 2
FL I
FL 2
HG 1
HG 2
D 1
D 2
TW TW
NO
(CFS)
(IN)
(IN)
(FT)
(FTV
TYPE
(FT /FT)
(FPS)
(FPS)
(FT)
(FT)
CALC
CALC
(FT)
(FT)
CALC JK
LIST OF ABBREVIATIONS
ON 1, FL 1, D 1 AND HG 1 REFER TO DOWNSTREAM END
V 29 FL 2, D 2 AND HG 2 REFER TO UPSTREAM END
X - DISTANCE,IN..FEET FROM DOWNSTREAM END TO POINT WHERE HG INTERSECTS SOFFIT IN.SEAL CONDITION
X(N) - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY,EITHER DRANDOWN OR BACKWATER
XlJ) - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE .
F(J) - THE COMPUTED FORCE AT THE HYDRAULIC JUMP
D(BJ) - DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE)
D(AJ) - DEPTH OF WATER AFTER THE HYDRAULIC.JUMP (DOWNSTREAM SIDE)
SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART
HJ INDICATES THAT FLOW CHANGES FROM SUPERCRITICAL TO SUBCRITICAL THROUGH A HYDRAULIC JUMP
HJU INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE
HJD INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE
ILI
•
Ll
STORM.DRAIN LINE.CARD
BY -DATE �_BS_ SHEET NO. 1 OF _(O
JOB NO..�OG'030/
DESCRIPTION _ � �c/�r1�1_
LINE NO.'
1 = MAXIMUM Q (cfs)
2 = ADJUSTED Q (cfs) '
3 = LINE LENGTH
418- --
2_1. 1V -
4 = ELEVATION DOWNSTREAM = 3 G•30
5 = ELEVATION UPSTREAM = 40•Z$
b = CONTROL OR T.W. - Q
7 =
DIAMETER (in)
DOWNSTREAM
8 =
WIDTH (in) _
ELEVATION
q =.
STRUCTURE TYPE
b =
l0
= JUN. LOSS COEF. (KJ) =
0
11 =
ENT. LOSS COEF. (KE) _
2
LINE NO.
1 = MAXIMUM Q (cfs).
2 = ADJUSTED Q (cfs)
3 = LINE LENGTH
__40:5
4 =
ELEVATION
DOWNSTREAM
_
5 =
ELEVATION
UPSTREAM =
4/,90
b =
CONTROL OR T.W.. -
0
7 =
DIAMETER -(in)
= LINE NUMBER (L3)
2
8
WIDTH (in)
-
O
-
STRUCTURE
TYPE..
(Al) _
10 =
JUN. LOSS
COEF. (KJ) =
(A3) =
-r 1 l =
ENT. LOSS
COEF.: (KE) =
O
12.=
MINOR LOSS COEF.
(KM)
_
13 =
CONTROL LINE NO.
CONFLUENCE A
ANGLE (
14 =
LINE NUMBER (L1)
=
3
15
= LINE NUMBER (L3)
=
S
lb
= LINE NUMBER'(L4)
_
d
17
= CONFLUENCE ANGLE
(Al) _
= D
18
= CONFLUENCE ANGLE
(A3) =
to O'
'19
= CONFLUENCE ANGLE
(A4)-=
O
20
= JUNCTION LENGTH
(ft) _
21
= MANNING' S N
=
�3
12 - •MINOR LOSS COEF. (KM) _ _0
13 = CONTROL LINE NO.
14 = LINE NUMBER (L1) _
15 = LINE NUMBER (L3)
ib = L
LINE NUMBER (
(L4) _
_
17 = C
CONFLUENCE A
ANGLE (
(Al) = O
O
18 = C
CONFLUENCE A
ANGLE (
(A3)
19 = C
CONFLUENCE A
ANGLE (
(A4) = d
d
20 =
= JUNCTION LENGTH.(ft) =
= D
D
21 =
= MANN I NG' S N
N
' STORM DRAIN, LINE CARD.
=1 = SHEET. 2 OF
BY ---- - - - - -- DATE S NO. - - - - -- - - --
JOB NO. DESCRIPTION
LINE NO.
MINOR LOSS COEF.
1 =
MAXIMUM 'Q (cfs) _
/ ✓� /�__j
2 =
ADJUSTED Q (cfs) _
Al
=
LINE LENGTH =
.370 _
4.=
ELEVATION DOWNSTREAM
LINE NUMBER (L3)
5 =
ELEVATION UPSTREAM
16 =
6 =
CONTROL OR T.W. _
47.40
7 =
DIAMETER (in)'
8 =
WIDTH (in)
= LINE NUMBER (L4)
9 =
STRUCTURE TYPE
18
10 =
JUN. LOSS COEF. (KJ ) _
11 =,ENT.
LOSS COEF. (KE)
(A4) =
LINE
NO. _� _____
= JUNCTION LENGTH
1 =
MAXIMUM Q (cfs-)
21
. 2 =
ADJUSTED Q (cfs)
Q
3 =
LINE LENGTH =
_ 4-0
4 =
ELEVATION DOWNSTREAM
= JUNCTION LENGTH
5 =
ELEVATION UPSTREAM =
_4Z. OD _
6 =
CONTROL-OR T.W. _
47OO _
7 =
DIAMETER ( i n )
8 =
WIDTH ( i n )
STRUCTURE TYPE _
10 =
JUN. LOSS COEF. (KJ) _
11 =
ENT. LOSS COEF. (KE) =
12 =
MINOR LOSS COEF.
(KM) =
13 =
CONTROL.LINE NO.
=
14 =
LINE NUMBER (L1)
=
0
15 =
LINE NUMBER (L3)
_
16 =
LINE NUMBER (L4)'.
=
a
17
= CONFLUENCE ANGLE
'(A1) =
Q
16
= LINE NUMBER (L4)
=
18
= CONFLUENCE ANGLE
(A,')) =
19
= CONFLUENCE ANGLE
(A4) =
0
20
= JUNCTION LENGTH
(ft) _
21
= MANNING' S N
(A4.) =
Q
12*
= MINOR LOSS COEF.
(KM) _
13
= CONTROL LINE NO.
_.
14
= LINE NUMBER (L1)
_
0
15
= LINE NUMBER (L3)
Q
16
= LINE NUMBER (L4)
=
17
= CONFLUENCE ANGLE
(Al) _
18
= CONFLUENCE ANGLE'(A3)
=
19
= CONFLUENCE ANGLE
(A4.) =
Q
20
= JUNCTION LENGTH
(ft) _
21
= MANNING' S.. N
c
STORM DRAIN LINE CARD
'
BY
DATE 5--/ -e SHEET
NO.
__3 OF 4
JOB
N0. DESCRIPTION _________________
___ __ _ ___
LINE NO.
1 =
MAXIMUM Q .(cfs) _.
_�Y?
12.=
MINOR LOSS COEF.
(KM)
2 =
ADJUSTED Q (cf s).
13 =
CONTROL LINE N0.
3 =
LINE LENGTH =
�� Z
14 =
LINE NUMBER (L1)
-
4 =
ELEVATION DOWNSTREAM =
_ ?�s '
15 =
LINE NUMBER (L3)
_
_ 164
5—
ELEVATION UPSTREAM =
- 43.43_
16 =
LINE NUMBER (L4)
6—
CONTROL OR T.W. _
17 =
CONFLUENCE ANGLE
(Al) _
7 =
DIAMETER (in) _.
�B
18 =
CONFLUENCE ANGLE
(A3)
8 =
WIDTH (in)
19 =
CONFLUENCE ANGLE
(A4) =
U
9
STRUCTURE TYPE _
3 ___
270 =
JUNCTION LENGTH
(ft)
�1>0 =
JUN. LOSS COEF. (KJ.) _
2 1 =
MANNING 'S N
_
4�.3
11 =
, ENT. LOSS COEF. (KE)
LINE
N0.
1 =
MAXIMUM Q (cfs) =
_8.7
12 =.
MINOR LOSS COEF.
' (KM)
2 =
ADJUSTED Q . (cf s ) _
e- .
13 =
CONTROL LINE NO.
_
__ Q ____
3 =
LINE LENGTH
14 =
LINE NUMBER (L1)
4 =
ELEVATION DOWNSTREAM =
_ ¢3�'¢ -3
15 =
LINE NUMBER (L3)
'(L4)
Q
5 =
ELEVATION .UPSTREAM =
'S2
16 =
LINE NUMBER
_
6 =
CONTROL OR T.W. -
d
17 =
CONFLUENCE ANGLE
(Al) =
Q
7 =
DIAMETER ( i n ) = .
_ �B
18 =
CONFLUENCE ANGLE
( A„3 )
8 =
WIDTH (in) =
19 =
CONFLUENCE ANGLE
(A4) _
-
STRUCTURE TYPE _
2U =
.JUNCTION LENGTH
(ft) _
10 =
JUN. LOSS COEF. (KJ) _
21 =
MANNING'S N
11 =
ENT. LOSS COEF. ( KE )
STORM DRAIN LINE CARD
BY ~�' DATE SHEET N0. OF
JOB NO. ,306 -a,go/ -DESCRIPTION
LINE NO. 8
1 =
MAXIMUM 0 (cfs) =
7, .0
2 =
ADJUSTED 0 (c f s ) _
_ 7• ___
3 =
LINE LENGTH =
_ 112
4 =.
ELEVATION DOWNSTREAM =
_ ¢¢• 53
5 =
ELEVATION UPSTREAM =
¢SG9
6
= CONTROL OR T.W. =
d
7
= DIAMETER ( i n ) _
16'
8
= WIDTH (in) _
0____
8 =
WIDTH (in) =
3
9
= STRUCTURE TYPE _
=
STRUCTURE TYPE
0 _
1�
= JUN. LOSS COEF. (KJ) =
11 = ENT. LOSS COEF. (KE) = G
LINE
NO.
(KM) =
1 =
MAXIMUM 0 (cfs) _
7.3�___
2 =
ADJUSTED 0 (cfs) =
73
3 =
LINE LENGTH =
Al D
4 =
ELEVATION DOWNSTREAM
-
5 =
ELEVATION UPSTREAM =
'¢S•7 9
6 =
CONTROL OR T.W.
.70
7 =
DIAMETER (in) -
�B
8 =
WIDTH (in) =
0
9Dc
18
= CONFLUENCE ANGLE
=
STRUCTURE TYPE
19
10 =
JUN. LOSS COEF. (KJ)
11 =
ENT. LOSS COEF. (KE)
(ft) _
12 =
.MINOR LOSS COEF.
(KM) =
d
13 =
CONTROL LINE NO.
=
d
14 =
LINE NUMBER (L1)
_
15 =
LINE NUMBER (L3)
-
16 =
LINE NUMBER (L4)
_
17
= CONFLUENCE ANGLE
(Al) _
17
= CONFLUENCE ANGLE
(Al) _
9Dc
18
= CONFLUENCE ANGLE
(A3) =
19
= CONFLUENCE ANGLE
(A4) =
20
= JUNCTION LENGTH
(ft) _
21
= MANNING' S N
=
6/3
12
= MINOR LOSS. COEF.
. (KM)
13
= CONTROL LINE NO.
14
= LINE NUMBER (L1)
_
15
= LINE NUMBER (L3)
-
16
= LINE NUMBER (L4)
-
17
= CONFLUENCE ANGLE
(Al) _
18
= CONFLUENCE ANGLE
(A3) =
19
= CONFLUENCE ANGLE
(A4) =
20
= JUNCTION LENGTH-(+t). =
21
= MANNING' S N
=
%I
STORM DRAIN LINE CARD
BY __ ----- . DATE .� /z5'S //
__ SHEET' N0. S _ OF �O
JOB NO. 3o6-OFOI DESCRIPTION
LINE NO.
MINOR LOSS COEF.
1
= MAXIMUM G (cfs).
13 =
2
= ADJUSTED O (cf s) =
4,• ____
3
LINE LENGTH =
90
4
= ELEVATION DOWNSTREAM
LINE NUMBER (L3)
5
= ELEVATION UPSTREAM =
_ 46,80
= LINE NUMBER (L4)
_
ol
6 .=
CONTROL OR T.W.
_
7
= DIAMETER (in) _
CONFLUENCE ANGLE
8
= WIDTH (in) =
O
9
= STRUCTURE TYPE
0.
18
= CONFLUENCE ANGLE
Q
11
= JUN. LOSS COEF. (KJ) =
= CONFLUENCE ANGLE
1.1
= , ENT. LOSS COEF. (KE)
20
= JUNCTION LENGTH
NO.
LINE
= MANNING' S N
1
= MAXIMUM 0 (cfs)
2
= ADJUSTED Q (cf s)
3
= LINE LENGTH
4
= ELEVATION DOWNSTREAM
5
= ELEVATION UPSTREAM
6
_ CONTROL OR T.W.
7
= DIAMETER (in) _
8
8
= WIDTH J i n) _
____
= STRUCTURE TYPE
10
= JUN. LOSS COEF. (KJ) _
,11
= ENT. LOSS COEF. (KE) _
12 =
MINOR LOSS COEF.
(KM) =
Q
13 =
CONTROL LINE N0.
14 =
LINE NUMBER (L1)
_
15 =
LINE NUMBER (L3)
=
Q
16
= LINE NUMBER (L4)
_
ol
1.6 =
LINE NUMBER (L4)
_
18 =
CONFLUENCE ANGLE
(A3) _
17
= CONFLUENCE ANGLE
(Al) _
0.
18
= CONFLUENCE ANGLE
(A3) _
19
= CONFLUENCE ANGLE
(A4) =
0
20
= JUNCTION LENGTH
(ft)
21
= MANNING' S N
12
MINOR LOSS COEF.
(KM)
13
= CONTROL LINE NO.
14
= LINE NUMBER (L1)
15
= LINE NUMBER (L3)
_
16
= LINE NUMBER (L4)
_
ol
17 =
CONFLUENCE ANGLE
(Al) _
18 =
CONFLUENCE ANGLE
(A3) _
19 =
CONFLUENCE ANGLE
(A4)
0.
2'0 =
JUNCTION LENGTH
(ft) _
21
= MANNING' S N
STORM DRAIN LINE CARD
aY ______ DATE S �'8S SHEET NO.
---- - - - - -- - - - - -- OF -----
JOB NO. DESCRIPTION La
LINE NO.
1
= MAXIMUM 0 (cfs) _
_ �• s�_
12 =
MINOR LOSS COEF..
(KM) =
4
14 =
LINE NUMBER (L1)
= O
15 =
LINE NUMBER (L3)
2
= ADJUSTED 9 (cfs) _
� S/
13 =
CONTROL LINE N0.
0
17 =
3 =
LINE LENGTH =
_
14 =
LINE NUMBER (L1)
_
0
4
= ELEVATION DOWNSTREAM =
_46_4 _
15 =
LINE NUMBER (L3)
=
0
5.
= ELEVATION UPSTREAM =
_48_00
16 =
LINE NUMBER ( L4 )
=
a
6
= CONTROL OR T.W. =
-o'zo _
17
= CONFLUENCE ANGLE
(Al) =
O
7
= DIAMETER (in) _
_ 8_
18
= CONFLUENCE ANGLE
(A3) =
O
8
= WIDTH (in) _
�
19.
= CONFLUENCE ANGLE
(A4) _
9
= .STRUCTURE TYPE _
____
20
= JUNCTION LENGTH
(ft) _
0
_ _
= JUN. LOSS COEF. (KJ ) _
21
= MANNING' S N
11
= ENT. LOSS COEF. (KE) =
O
LINE NO.
1 = MAXIMUM 0 (cfs)
2 = ADJUSTED 9 (cfs)
O. $� - --
3 = LINE LENGTH
4 = ELEVATION DOWNSTREAM
5 = ELEVATION UPSTREAM = _ 47,70
6 = CONTROL OR T.W.
7 = DIAMETER (in) = 8
8 = WIDTH (in) _
= STRUCTURE TYPE
10 = JUN. LOSS COEF. (KJ)
11 = ENT. LOSS COEF. (KE) _
12
= MINOR LOSS COEF.
(KM)
13 =
CONTROL LINE NO.
14 =
LINE NUMBER (L1)
= O
15 =
LINE NUMBER (L3)
_
0
16 =
LINE NUMBER (L4)
_
0
17 =
CONFLUENCE ANGLE
(Al) =
0
18 =
CONFLUENCE ANGLE
(A3) _
0
19 =
CONFLUENCE ANGLE
(A4) _
0
20 =
JUNCTION LENGTH
(ft) .=
0
21 =
MANNING' S N
_ 0. D %3 _
0 EXH IT E
R C F C 8& W C D HYDROLOGY JMANUAL
// RATIONAL METHOD CALCULATION FORM
PROJECT LA•nvD4A PIL �S0�A uE A7- STAII 23_f_ 0
FREQUENCY �00
Sheet No.--Lr of —Sheets
Calculated b / i,� < G• `! //
y - - - - -- -- --BATE.- --
Checked by �------ -- — nerc ---
DRAINAGE
AREA
Soil 1k
Development
AU
Acres
I
In /hr.
z
A Q
C FS
E Q
C FS
SLOPE
SECTION
v
FPS
L
FT.
T
MIN.
£ T
REMARKS
L o'b t 7th b
fwE
0
4 Z`f "
t •.
� �;
� / T / L
K =�•�
C= 514
I Z,
—( _3+vU�
U_ —
0�$
3���s
Z,
f Z�
/ 17-
Z
,r2 p
A43
I
�,
174'70
U!F p
0Z
1 : Z+
lx,/7A _
J. 1
zt;m`6 — 7,340oi
A 19 EE 2
D• 3
3,q
,g��
Z,�
�-Ar
Z
_TA
,-51A- -'
Es ,i tt
co p
,
�. EXHIBIT F
U N I T- H Y D R 0 G R A P H A N A L Y S I S
`• ACCORDING TO RIVERSIDE COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT
(RCFC &WCD) 1978 HYDROLOGY MANUAL
(c) Copyright 1982 -88 Advanced.Engineering Software (des)
Ver. 2.OA Release Date: 8/07/88 Serial# DE1742
Especially prepared for:
J. F. DAVIDSON
* * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
* LANDMARK
* RET BASIN - -PARK AVE
* ACTUAL AREA =3.9 AC /PROGRAM USES 10AC. MIN. /FPG-- 9 -5 -89.
TIME /DATE OF STUDY: 09:27 5- SEP -89
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
WATERCOURSE LENGTH = 2818.000 FEET
LENGTH FROM CONCENTRATION POINT TO CENTROID = 1409.000 FEET
ELEVATION VARIATION ALONG WATERCOURSE = 11.840 FEET
MANNING'S FRICTION FACTOR ALONG WATERCOURSE = 0.015
WATERSHED AREA = 10.000 ACRES
.UNIT HYDROGRAPH TIME UNIT = .5.000 MINUTES
DESERT .S-GRAPH SELECTED
UNIFORM MEAN SOIL- LOSS(INCH /HOUR) = 0.050
• LOW SOIL -LOSS RATE PERCENT(DECIMAL) = 0.900
BASEFLOW = 0.000 CFS /SQUARE -MILE
USER - ENTERED RAINFALL = 1.60 INCHES
RCFC &WCD 1 -Hour Storm
(SLOPE OF INTENSITY - DURATION CURVE = 0.58) SELECTED
WATERCOURSE "LAG" TIME = 0.095 HOURS
UNIT INTERVAL PERCENTAGE OF LAG -TIME = 87.479
HYDROGRAPH BASEFLOW = 0.000 CFS
RCFC &WCD AREA ADJUSTMENT FACTOR(PLATE E -5.8) = 1.0000
* * *> NOTE:'RATIO OF (AREA IN SQUARE FEET) / (WATERCOURSE LENGTH -SQUARED)
IS NOT BETWEEN (.10) AND (1.0)
UNIT HYDROGRAPH DETERMINATION
----------------------------------------------------------------------------
INTERVAL
"S" GRAPH
UNIT HYDROGRAPH
NUMBER
MEAN VALUES
ORDINATES(CFS)
---------------
-------------- --------------------------------------------
13.122
-
2
61.561
58.581
3
80.429
22.819
4
88.881
10.221
5
93.526
5.619
6
96.374
3.444
7
.
97.959
1.917
8
98.973
1.226
9
99.674
0.848
+..
inn nnn
n 'tQd.
********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * **
UNIT
UNIT
UNIT
EFFECTIVE
PERIOD
RAINFALL
SOIL -LOSS
RAINFALL
(NUMBER)
----------------------------------------------------------------------------
(INCHES)
(INCHES)
(INCHES)
1
0.0580
0.0042
0.0539
2
0.0620
0.0042
0., 0578
3
0.0667
0.0042
0.0626
4
0.0751
0.0042
0.0710
5
0.0802
0.0042
0.0760
6
0.0936
0.0042
0.0895
7
0.1139
0.0042
0.1097
8
0.1274
0.0042
0.1232
9
0.2093
0.0042
0.2051
10
0.5446
0.0042
0.5404
11
0.1038
0.0042
0.0996
12
0.0655
0.0042
0.0613
TOTAL STORM RAINFALL(INCHES) = 1.60
TOTAL SOIL- LOSS(INCHES) = 0.05
TOTAL EFFECTIVE RAINFALL(INCHES) = 1.55
--------------------------------- - - - - --
TOTAL SOIL -LOSS VOLUME(ACRE- FEET) =
TOTAL STORM RUNOFF VOLUME(ACRE -FEET) _
---------=--- r------------ - -
/--------- - - --
� .J QL L"-0'-H G i IAC
IDAG
----------------------------------
0.0417
- - -_ - -- 1_2910 * =- 0_503 /A 0144, -
.0-
RCFC &WCD 1 -HOUR STORM RUNOFF HYDROGRAPH
HYDROGRAPH IN FIVE - MINUTE INTERVALS(CFS)
----------------------------------------------------------------------------
INTERVAL#
----------------------------------------------------------------------------
VOLUME(AF)
Q.(CFS)
0.
12.5 25.0
37.5 50.0
1
0.0059
0.85
Q
2
0.0339
4.07
.V Q
3
0.0726
5.61
V Q
4.
0.1184
6.66
V Q
5
0.1714
7.68
VQ
6
0.2309
8.64
QV
7
0.3004
10.09
QV.
8
0.3830
11.99
Q.V
>9
0.4849
14.80
.Q V
10
0.6610
25.57
Q
11
0.9393
40.41
V. Q
12
1.0953
22.66
Q
V
13
1.1875
13.38
Q
V
14
1.2332
6.64
Q
V .
15
1:2588
3.72
Q
V.
16
1.2734
2.12
.Q
V.
17
1.2823
1.29
.Q
V.
18
1.2876
0.78
Q
V.
19
1.2902
0.37
Q
V.
20
1.2908
0.09
Q
V.
21.
•
1.2910
0.02
Q
V
*********************************************
* * * * * * * * * * *
* * * * * * * * * * * * * * * * * * **
Ul
EXHIBI G
-R C FC a W C D HYDROLOGY !MANUAL
RATIONAL METHOD CALCULATION FORM
PROJECT, 232- 1- 5 ' w, ST 7 % t ;Z0)
FREQUENCY
i
Sheet No._ of _Sheets
Calculated by ATE/ 1�
Checked by •- - --- - ne7'-c
DRAINAGE
AREA
Development
.
•
•-
•
Pim
mmmw
MUM
mmmm
- -_ —_ J.F. Davidson Associates, Inc.
ENGINEERING PLANNING SURVEYING ARCHITECTURE LANDSCAPE ARCHITECTURE
0 73 -080 EL PASEO, SUITE 106 PALM DESERT, CA 92260 :--(619) 346 -5691 - FAX 619- 340 -0529
v �..:
N
l _ V
` 4j e r)
Ills
!v `
�. !y AD N
a�
Lf
ZZ
N
N
r �
�- '4 �.
0
:o
N.
r
C 4
r
c �
N
y
N � b
� o
� C
in
v
�i
o
t
o�
Z
0
�0(�)
s.
m
m
.u,
O
..
r'
U `J
0
:o
N.
r
C 4
r
c �
N
y
N � b
� o
� C
in
v
�i
o
t
o�
Z
0
�0(�)
s.
m
m
•
SURVEYOF—L262 t:K%'"7- 47u5-G F-v
FOR LAA-'OAA#4(2-C
SURVEY PARTY -�ALX-* C I;
J.F. Davidson Associates, Inc.
ENGINEERING PLANNING SURVEYING
AnCHIIECTURE LANDSCAPE ARCHITECTU
PA 1)
A-40
F.B.
W.O. No. 000 ('0 Date
REF. A.M.
LO /4 /e,
Ilk
N
R,
1.7
R,
N c
e 16- 4t'
F
N
7,
(zS
7;
75 -150 SI-IERYL DRIVE PALM DESERT, CA 92P60 (619
J.F. Davidson Associates, Inc. F.B.
[INGINE'UHING
ARCIATICCIURE
P[ANNjrjG SURVEYING
LANDSCAPC AFiCHl*rECiuj*
SURVEYOF 12P t:,(Ns-r
VP,5—G r-ok AO
LLE0.
I.ANOM,421L
�oo(opvs�.
FOR
W.O. No.
Date
•
SURVEY PA RTY ':5ALr- k 0 1_9
E: Ce r-.)4 A 4 0 5v
REF.
A.M.
12 13 14
CALVE RONDO
NOTE COA116T OF celea /1+00 ma
swwe-e- O-C ,^/Cw 0,
P4eROA,140- SVr -T OP A.C.
0/- /0 (A-'.VAoo'e,-,eO.&-r) 'SO" 0
J
'_3 i \ 9--, 6-6-.-O�c
Ci
�7-
"I:%- tl.' 7 =7-
. . . ........
i
It
.• 2. t
!- - tZ-'- _.
.. .. ....
12 13 14
CALVE RONDO
NOTE COA116T OF celea /1+00 ma
swwe-e- O-C ,^/Cw 0,
P4eROA,140- SVr -T OP A.C.
0/- /0 (A-'.VAoo'e,-,eO.&-r) 'SO" 0
J
'_3 i \ 9--, 6-6-.-O�c
51EAE 2
PAF,41MOOF SWALE SWV
ko WE AER( oAlrw. swr
0.— ZWr4
13 rA - 7-0-60 OradC -tO 0--4;17 160'.t
Ci
It
51EAE 2
PAF,41MOOF SWALE SWV
ko WE AER( oAlrw. swr
0.— ZWr4
13 rA - 7-0-60 OradC -tO 0--4;17 160'.t
12
0
. A
COA1677 OF C4/,4W
PER 1011/0. svr 5
10'
/0
Wig
`a
/1+00 M
7rA lMlT ) -Z
4foVAI-
N�
A-4 M 1. .51(-
31- 10 Or wh
M- M§
jr
`a
/1+00 M
7rA lMlT ) -Z
4foVAI-
N�
...........
"XII
'45
W;o
g �D
k,7 i!
7,
jr
...........
"XII
'45
W;o
g �D
k,7 i!
7,
Al
AM
A,
'A
7
JkA W�.
wo
lY r
�mv Ri
v
A
nxi,
A,
4
19
to)
1 go I t I Ali
PZ
W -4
'4,e
-n Pro,
,�-M -
A,
4- T,1
Ai
-Ju
5,
CJ
13
1E X -J,
4;
41 1
pv
J—F
A --R
-.4 r
vi"VY A Ai
Al
4
�?AWA INi
4 jj 4L
S.
-,n
Vy
f
W
A.
- , ly
A
ri -.1
vii IJ
gas RM A4
0
AP
)01
A,
IF
'X-4-
All
v
fv
CA
Air,
is
A Y'
i02,z w
/V
2,
,J
rti Ivrl
z1:1i VIA
0) r)
z-, oil z PIS
ca
A
ca
Y*41
90
-Ali
A 2
AV -4
: LJ-;I _. -- - — -
H
0
a)
�u
0
z
ri
c
z
M
A�
r
T;�
�oi
c)
r) C) Ck- LO 0
0 , 3
C7- :3 0
I-It
U-70
MAM
w1i
MW
lilt
lilt
N
ry
J,
z
rii
0
ri
0
do
n 0
C-_
C)
r) m
�4
U-70
MAM
w1i
MW
ryl
14
lilt
lilt
N
ry
J,
z
rii
0
ri
0
do
n 0
C-_
C)
r) m
m -1
>- ryl
M
I
2: ;rj
7i
-r
M
0 C)
0 1
F-
rq -n
:Ai
uli
�< im
z
rn M
>
Ln
ryl
14
0
-14. A oii . Ir Ok
6
P
Tit,
�J "'li"
UM2 ;n 15N,
U 4�1
E
;2-
-47
Rh
:W
Ali
"A
4
4
�n-
2,
Ali
lw�
MIRRRM Offia R;'.
11M t
"'y
F-g ;s
S"'
RN Z
11- ME &11- 0
4
0
lny�- 'b
0
In
—= 1 7- ,--��4,411
�p
-4r Air
7
t4 "W*i
:4",
4�i
W; A4
Ak
40,
th-
0,
A,
-7 no
Wil-
12�1...
ji� -t
2
k'i eve
ens
cf) r,
Vrii�,
I ti
�R
AIX
k: 'e., 1j,
tit
413
e4e
lot
vp, lax iii ILI
4f 4L
AI
t. f
Ire 14 4. 1171 iy
zv :If
Cl
-4P C'
4N
Aj I AA
ILI) 1j,
0
v* 7AS Tj
Ire
L 7A
otri AM
I ,r4
LE
MA IC
L loo"Ali
ILI
low 40
14 4
o41
oZr
LA
cu
(D
Lm 0)
A-tee - T*
. . --- I v � , 4e
lilt
lilt
ry
J,
z
rii
0
ri
0
do
C)
(Q
I
too)
:Ai
uli
Ln
CO
0
PO
z
rri
0
-14. A oii . Ir Ok
6
P
Tit,
�J "'li"
UM2 ;n 15N,
U 4�1
E
;2-
-47
Rh
:W
Ali
"A
4
4
�n-
2,
Ali
lw�
MIRRRM Offia R;'.
11M t
"'y
F-g ;s
S"'
RN Z
11- ME &11- 0
4
0
lny�- 'b
0
In
—= 1 7- ,--��4,411
�p
-4r Air
7
t4 "W*i
:4",
4�i
W; A4
Ak
40,
th-
0,
A,
-7 no
Wil-
12�1...
ji� -t
2
k'i eve
ens
cf) r,
Vrii�,
I ti
�R
AIX
k: 'e., 1j,
tit
413
e4e
lot
vp, lax iii ILI
4f 4L
AI
t. f
Ire 14 4. 1171 iy
zv :If
Cl
-4P C'
4N
Aj I AA
ILI) 1j,
0
v* 7AS Tj
Ire
L 7A
otri AM
I ,r4
LE
MA IC
L loo"Ali
ILI
low 40
14 4
o41
oZr
LA
cu
(D
Lm 0)
A-tee - T*
. . --- I v � , 4e
lilt
lilt
J,
z
j� 0
(Q
0
-14. A oii . Ir Ok
6
P
Tit,
�J "'li"
UM2 ;n 15N,
U 4�1
E
;2-
-47
Rh
:W
Ali
"A
4
4
�n-
2,
Ali
lw�
MIRRRM Offia R;'.
11M t
"'y
F-g ;s
S"'
RN Z
11- ME &11- 0
4
0
lny�- 'b
0
In
—= 1 7- ,--��4,411
�p
-4r Air
7
t4 "W*i
:4",
4�i
W; A4
Ak
40,
th-
0,
A,
-7 no
Wil-
12�1...
ji� -t
2
k'i eve
ens
cf) r,
Vrii�,
I ti
�R
AIX
k: 'e., 1j,
tit
413
e4e
lot
vp, lax iii ILI
4f 4L
AI
t. f
Ire 14 4. 1171 iy
zv :If
Cl
-4P C'
4N
Aj I AA
ILI) 1j,
0
v* 7AS Tj
Ire
L 7A
otri AM
I ,r4
LE
MA IC
L loo"Ali
ILI
low 40
14 4
o41
oZr
LA
cu
(D
Lm 0)
A-tee - T*
. . --- I v � , 4e