Loading...
23292232- q2- -50 IE 232- q2- ®� ®' J.F. Davidson Associates, Inc. ®� ;7 A v ® ENGINEERING PLANNING SURVEYING ARCHITECTURE LANDSCAPE ARCHITECTURE 1 ;1: I"0 1_ HYDROLOGIC /HYDRAULIC RESPONSE TO PLAN CHECK COMMENTS TRACT 23292 W.O. 8006004 -10 Prepared by J.F. DAVIDSON ASSOCIATES, INC. September 13, 1989 S E P 2,7 1989 BSI CONSULTANTS, INC. RANCHO MIRAGE 3880 Lemon Street, Suite 300 1091 -D S. Mt. Vernon Avenue P.O. Box 12817' 27349 Jefferson, Suite 115 P.O. Box 493 Colton, CA 92324 Palm Desert, CA 92255 P.O. Box 340 Riverside, CA 92502 (714) 825 -1082 (619) 346 -5691 Rancho California, CA 92390 (714) 686 -0844 FAX 714 - 825 -9583 FAX 619- 340 -0529 (714) 676 -7710 FAX 714 - 686 -5954 FAX 714 - 699 -1981 Aiz :• -:: ;. -,,g"° � �n"d:r _.� f lam`} aJm*t�:,,'nn t� gyro- •i;r�, - 'z,, ;, - c � < ` , y,�c 1.0 Offsite Hydrology 2.0. La Quinta School Storm Drain 3.0 Park Avenue Retention Basin Analysis • 4.0 Appendix Ic w.0. 800.6004 -10 1.0 OFFSITE HYDROLOGY TO TRACT 23292 The purpose of this study is twofold: 1) to determine the existing 100 -year offsite runoff. concentrating at the intersection of Tampico and Rondo for interim conditions, and 2) to propose adequate facilities which will protect the tract from this runoff. • The 100 -year flow was calculated by the Ratiorral.Method per the RCFCD's Hydrology Manual.* The contributory watershed was delineated on 1975 topo maps.and verified with the City of La Quinta prior to the analysis. Since there are no existing improved streets (with curb and gutter) in this watershed, travel.times were computed assuming a lined trapezoidal channel (Plate D -9.2 per RCFCD's Hydrology. Manual) as the main conveyance system. This assumption was also verified with the-city. I! The results indicate a total runoff of 293,.5 cfs concentrating at the intersection of Tampico and Rondo. A field investigation to the project site revealed three swales, in the vicinity of Rondo between-Avenidas La Jarita and La.Torres, which drain in a easterly direction to the WA golf course. According to the Hydrology Map, these facilities can intercept 49.7 cfs from subareas 113 through 2C, thereby decreasing the total offsite runoff to approximately 250 cfs. This value was accepted by the City of La Quinta in a meeting on Sept. 13, 1989. A triangular shaped asphalt ditch adjacent to Rondo (on the east) is proposed to convey this offsite runoff and protect this proposed development for the interim condition (see Cross Section A- A,.Street Improvement Plans Sheet 5 of 10). An earth berm along the easterly side of this ditch will provide additional protection. At street station 76 +00.00, the ditch will make a 90- degree bend to the east and transition to the grass lined trapezoidal section. Rocks will be placed on the channel slopes in this.bend area to reduce the threat of scour. The Bureau of Reclamation's "Computing Degradation and Local Scour" was used as a guideline to determine the amount of protection. The maximum capacity of this facility (see section B- B,.Street Improvement Plans, Sheet 5 of 10) is 355 cfs (for a 2.3 foot .depth). This channel will be graded to daylight in the golf course. At the present intreme flood condition for the 100 -year, Tampico is assumed to carry all flood water (250 cfs) into Rondo and the adjacent existing golf course via an earth . landscaped swale just south of Tampico on Rondo. 'r r IE • The surrounding is flat and without direct channel flood control conditions other than Tampico is assumed to be the low improvement for the area in future development. As development progresses, the present Q100 (intreme) will be reduced due to on -site retention for those areas which are now considered undeveloped with potential runoff. Therefore, the present Q100 will be reduced due to future development. However, the present Q10 cannot be contained within the T.C. of new construction. And the Q100 cannot be contained within the present right -of -way of Tampico. But the difference in elevation between 100 -year water surface elevation and the only existing house pad (earth), per exhibit "H", is 2 foot freeboard for a water depth of 1.0' (Q100). 17�M% 6- ZSO �►° - /� 3 = 1.5,3.3 ifs * All 10 -year calculations were based on the relationship: ,Q(10)= Q(100)/1.63 10 I* • 1.0 OFFSITE HYDROLOGY TO W.O: 8006004 -10 M104:3a The purpose of this study is twofold: 1) o determine the existing 100 -year offsite runoff. . concent ating at the intersection of Tampico and .Rondo four - interim onditionss %and 2). to propose adequate facilities which %will pro ec the d:ract from this runoff.' � P The 100 -year flow was calculated by RCFCD's Hydrology Ma ual� he delineated on 1975 to o maps and Quinta prior to t improved streets (w times were computed D -9.2 per RCFCD's i system. This a9pum e analysis. th curb and gut assuming a li _Hydrolo y Ma Lon was 'also v t e atiog'al Method per the con -trrAb utbry watershed was veri,�..4ed' with the City of La SiL e. there are no existing er) i this watershed, travel ned trapezoidal channel (Plate ua as the main conveyance e ified with the city. The results ` ndic 'ate a tot�X r uno f of 293.5 cfs concentrating at the intersection o+f Tampico ad Rondo. A field investigation to the project. site revealed t re swales; in the vicinity of Rondo between Avenidas \La. Jars a and La Torres, which drain in a easterly direction:) to the golf course. According to 'the Hydrology Map, these facilities can intercept 49.7 cfs from subareas 1B. through 2C!,` thereby decreasing the total offsite runoff to approximately 250 cfs. This value was accepted by the City of La Quinta in a meeting on Sept'. 13, 1989. A triangular shaped asphalt ditch adjacent to Rondo (on the east) is proposed * All 10 -year calculations were based. .on the relationship: Q(10)= Q(100)/l..63 to convey this offsite. runoff nd protect this' proposed a ��. development for the interim Condit' n e.(see Cross Section A -A, Street Improvemdnt(-�1 ns S� eet i5' o 1: V. An earth berm along the easterly side o t!htis itchA wiltl� pro %ide additional protection. n At street station 76 +0 ..00,�\the '4A h will make a 90- degree bend to the east aJd �tra sitioXd.�'bn to the grass lined trapezoidal section. \� ..Rocks lwiLl b place the channel slopes in this bend area to reduce tlhe teat b/f.'scour. The Bureau of Reclamation's "Computing \egra ation acid Local Scour" was used as a guideline- to determine the amoun/ Off protection. The maximum capacity of thi-s facility \('s fs�ection B -B, Street Improvement Plans, Sheet 5 of 10) is 355 cfs (for,a 2.3 foot depth). This channel will be graded to daylight in the golf course. C,1 wA T l 'U` 1I � C] • • 2.0 STORM DRAIN (LA QUINTA SCHOOL) The subject tract proposes an additional catch basin at the sump in 50th Ave. (south side). This basin is designed to intercept only the contributory runoff on the south side of the street and convey it by an 18 -inch lateral to the existing catch basin on the north side of 50th Ave. A hydrologic /hydraulic analysis-was performed to determine whether the additional runoff would adversely impact the storm drain. Employing the RCFCD's Rational Method, the total 100 -year runoff at the sump was calculated at 11.2 cfs (5.6 cfs per half street). The original plans /calculations provided by Chuck Haver of Robert Bein, William Frost, and Associates, indicated that their upstream catch basin had been designed to intercept 11.0 cfs: Based on this information, the proposed lateral to the existing storm drain will not generate any negative hydraulic impacts. • 3.0 PARKAVENUE RETENTION BASIN ANALYSIS t The RCFCD's Unit Hydrograph Computer Program was employed in this analysis. One of the program's restrictions -. is a minimum drainage area of 10 acres. Since the contributory drainage on Park Ave. is 3.9_ acres,. the results of the computer program (based on the 10 acreage) were multiplied by a factor of 0.39. The total required volume is approximately 0.5 acre —feet. According to the dimensions of the basin (depicted on Sheet 6 of 9), a minimum two foot depth would be required.* • C7 .0 *Volume = [(150)(100) +(138)(88)] 2/43,560 =0.63 AC 0 EXHIBIT A i• D i 4.0 APPENDIX Offsite Hydrology Subarea Map Rational Method Calculations - Offsite Runoff Proposed Trapezoidal Earth Channel Original Calculations for the La Quinta School Storm Drain E Rational Hydrology - Runoff on 50th Ave. F Unit Hydrograpyh /Retention Analysis Basin Adjacent to Park Ave. G Runoff /Velocity Calculations at Outlet on 50th Ave. H Hydraulic Analysis - Tampico (west of Rondo) � 40 F- -1 3 R C FC a W C D HYDROLOGY 1\ilANUAL RATIONAL METHOD CALCULATION FORM PROJECT �At,)DPAf )<Z6 =fir Z3��-Z� FREQUENCY 100 —���� Sheet No. I of Lheets Calculated by DATE Checked by - -- -- — nerF - -- DRAINAGE AREA Soil , Ek Development A Acres I Z lin/hr. C A Q CFS E Q CFS SLOPE SE ION v qPS L FT. T RAIN. E T REMARKS 5 r SAS 3,.5� .�u5 13•�f l J �d rti,rl4 L) G 13, vv ?� r Iq r Q -q,• 1 • ?�0 9..1 Z A �ti lo,o z,�� ►�t 11�`i � ? a ,� I 3_0 . 5 �l) Z , Q •Z 13,3 2.6 f t v tiD �� 2. J .'�7 S" I D, �" - `-^ , C{ I r ')iq -'q5,-, Z , 30 0 / L ► ��r z_ S�L s, Zi s� _ _ _ _ 0/u 4-33 2 "+'A ,,-+I s Lk3 Z�,�s . SP, ,o pY a 2 Z Z L t �� E S cc, S `U 33 d -�� �,` _ _ BA 6F X04) fr.�o 3� �� IZ. Z,2(0 .J1� 1b o° - 2 S5 3, ,! l �N� 36,E T1 lo' /A 2. s8 , 3o u ti� D q" Z, q00 S. q Pik Z3,,S o 16A A Lu iv 33..1 2,0 Z , 3 Z41 Ohl, , U ���- v�2 -9,z v � z v Lr,� _ s s / 2 I, sus C o. -1, e 1-73 . i'34 1 S6iL- C 14,s � 4 P)!�c L4 — y4tNFf+l —L —rk,�tENsl- --y E2 P/41 D- Z E SEl / ko T rwa /� /atG D -9• Z- A � '�R = R C F C 81 W C D ]HYDROLOGY J\/JANUAL RATIONAL METHOD CALCULATION FORM PROJECT ,�1� /T� y,�.oi�G &3o!'? FREQUENCY Sheet No.? —of Sheets Calculated by -F% 6i�4 Q _ AT E Checked by --- - - - --- - DX E DRAINAGE AREA Soil Ik Development A Acres I In/hr. C C Q C FS i Q C FS SLOPE SECTION v FPS L FT. T PAIN. E T REMARKS L„v,� . �. .3 �? A s. S, `F 3.`5 �v� "' i �,7 �S,U J' Z f�a av ,►;) 4- -Z %��� '{�/� G�`� 1f,5 %; I T 14� -- rha; 34• t LItiF .. Z 6 0 �s,p /-1 S, F .) 3,5d .703 15 . D 7 14 �- zo., z 6-r P = J 9. r . :C:- 03 = ,J2 A L �l 3 3 . �N� 14=Y � �v Z 10. 3..z . �8 i s � /, e oo I � � 30 4 - 4_ A �� �o L -95Z Z;z . � 3�• V 71.q C I u sT V7 s • PROJECT R C F C& W C D 'HYDROLOGY (MANUAL RATIONAL METHOD CALCULATION FORM FREQUENCY Sheet No.3 of Sheets Calculated DATE Checked by DRAINAGE S Soli E A A I I C C- o o Q E E Q S SLOPE S SECTION v v L L T T E E.'T R REMARKS _, S.A I Z. 5 5 r F, $ $,1 3 3, S K r r 71 2 2 `f,o Z /3.0 A A, � r 14. c_._ Z 4, U o ova r rk-f / z O O 1, `T 3 r A V A.D 2 2,19 . .3 - -7 � r l l 171 (� G. . �/ r r. , , 3 /� A /� - -7 Z Z /U r r � � ! !! 11 G r/, R C F C 81 W C D HYDROLOGY NIANUAL RATIONAL METHOD CALCULATION FORM sheet Na. of sheets PROJECT��v �' S UiLO 23Z.7Z— Calculated by 1!9�_��? �1��% "—��� - - -- - - -- — BaTE FREQUENCY -- Checked by - AREA Development rAM 5 PROJEC R C FC Ek W C D HYDROLOGY NIANUAL RATIONAL METHOD CALCULATION FORM FREQUENCY 0. Sheet No. f of -!Sheets Calculated by//q h_'_0/ DATE Checked by •- - - - -- DATE - -- DRAINAGE AREA Soil ag Development immom a REMARKS = ® I ' ®®� SM lu EXHIBIT C, r. CAPACITY OF TRAPEZOIDAL CHANNEL PER KING'S TABLE 7 -11 Q = K b '3 s 1/-u n Q =.250 cfs b = 15' • s = 0.00.5 z = 3:1 n = 0.030 K =0.07 ; D/d = .15(15) = 2.25 ; DESIGN FOR 2.5' MAXIMUM CAPACITY AT 2.5 FEET DEEP: A = 15 (2.5) +(2.5) (3) (2.5) = 56.3 P = 2 [ (2.5) +(7.5)Z ]��Z +15 = 30.8 N = 0.030 Q (MAX) = 355 cfs > Q (100) ACTUAL AREA AT 2.3 FEET = 50.4 SQUARE FEET V= Q/A 250/50.4 = 4.9 fps . :,.,., JEXHIBI.T Q ' LIST OF ABBREVIATIONS •--------------------- V 1, FL 1, D I AND HG 1 REFER TO DOWNSTREAM END V 2, FL 2, D 2 AND HG 2. REFER TO UPSTREAM END X - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HG INTERSECTS SOFFIT IN SEAL CONDITION X(N) - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY EITHER DRAWDOWN OR BACKWATER X(J) - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE F(J) - THE COMPUTED FORCE AT THE HYDRAULIC JUMP D(BJ) - DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE) D(AJ) - DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE) SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART HJ INDICATES THAT FLOW CHANGES FROM SUPERCRITICAL TO SUBCRITICAL THROUGH A HYDRAULIC JUMP HJU INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE HJD INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE 10 0 J ' CT : LA DUINTA K -5 SCHOOL IOYR DATE -------------------------------------------------------------------------- - - - - -- -------- - - - - -- INPUT DATA .LISTING CD L2 MAX D ADJ A LENGTH FL 1 8 1 2 2 29.8 29.8 168.00 .39.10 2 3 20.2 20.2 405.00 . 40.28 2 . 4 11.0 11.0 370.00 41.90 2 5 11.2 9.6 40.00 40.53 2 . 6 9.2 9.2 112.00 42.15 2 7 '. 8.7 8.7 110.00 43.43 2 8 7.8 7.8 112.00 44.53 �9 7.3 7.3 140.00 45.09 2 10 .5 .6' 90.00 43.85 2 11 .9 .9 90.00 44.95 2 12 .5 .5 235.00 46.60 2 13 .5 .5 65.00 45.51 FL 2 40.28 41.90 43.37 42.00 43.43 44.53 45.09 45.79 46.80 46.60 48.00 47.70 CTL /TN 39.15 0.00 0.00 47.40 47.00 0.00 0.00 0.00 49.30 49.00 0.00 50.20 49..90 D N S KJ KE 24. 31. 3 0.00 0.00 24. 0.' 3 0.00. 0.00 24. 0. 1 0.00 0.00 15.. ' 0. 1 0.00 0.00 18. 0. 3 0.00. 0.00 18. 0. 3 0.00 0.00 18. 0. 3 0.00 0.00 18. 0. 1 0.00 0.00 B. 0. 1 0.00 0.00 8. 0. 3 0.00 0.00 8. 0. 1 0.00 0.00 8. 0. 1 0.00 0.00 KM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 LC L1 0 L4 Al A3 -- -- -- -- - -- - -- 1 3 5 0 0.' 60, 0 4 6 0 0. 90. 0 0 0 0 0: 0. 3 0 0 0 0. 0. 4 7 10 0 0. 90. 0 B 11 0 0. 90. 0 9 13 0 0. 90. 0 0 0 0 0. 0. 7 0 0 0 0. 0. B 0 0 0 0. 0. 0 0 0 0 0. 0. 9 0 0 0 0. 0. A4 J N 0. 0.00 .013 0. 0.00 .011 0. 0.00 .013 0. 0.00 .013 0. 0.00 .013 0.. 0.00 .013 0. 0.00 .013 0. 0.00 .013 0. 0.00 .013 0. 0.00 .013 0. 0.00 .013 0. 0.00 .013 PROJECT : LA GUINTA K -5 SCHOOL 10YR DATE ------------------------------------------------------------------------------------------------------------------------- STORM DRAIN ANALYSIS RESULTS ---------------------------- LINE D D N DN DC FLOW SF -FULL V 1 Y-2 FL 1 FL 2 HG I HG 2 D 1 D 2 TN TN NO (CFS) (IN) (IN) (FT). (FT) .TYPE (FT /FT) (FPS) (FPS) (FT) (FT) CALC CALC (FT) (FT) CALC CK 1 HYDRAULIC GRADE LINE CONTROL = 39.15 2 293 24 31 1.53 1.60 PART .00547 7.6 7.2 39.10 40.28 40.63 41.BB 1.53 1.60 0.00 0.00 X = 0.00 X(N) = 154.02 3 20.2 24 0 2.00 1.61 .FULL .00797 6.4 6.4 40.28 41.90. 42.28 45.51 2.00 3.61 0.00 0.00 4 11.0 24 0 1.32 1.19 FULL .00236 3.5 3.5 41.90 43.37 46.42 47.29 4.52 3.92 47.48 47.40 3 HYDRAULIC GRADE LINE CONTROL = 42.08 5 11.2 15 0 .93 1.21 FULL .03006 9.1 9.1 40.53 42.00 42.08 43.29 1.55 1.29 44.58 47.00 4 HYDRAULIC GRADE LINE CONTROL = 45.97 6 9.2 18 -0 1.03 1.17 FULL .00.767 5.2 5.2 42.15 43.43 45.97 46.82 3.B.2 3.39 040 0.00 7 8.7 18 0 1.04 1.14 FULL ..00686 4.9 4.9 43.43 44.53 46.91 47.67 . 3.48 3.14 0.00 0.00 9. 7.3 18 0 1 :21 1.05 FULL .00 4.1 4.1 45.09 45.79 48.51 49.1.42 3.39 49.45 44.30 7 HYDRAULIC GRADE LINE..CONTROL.= 46.87 10 .5 8 0 .22 .33 SEAL .00171 1.4 2.9 4335 46.80 4631 47.13 3.02 .33 47.26 49.00 HJ X = 75.71 X(N) = 0.00 X(J) = 81.42 F(Jl = .08 D(BJ) _ .23 D(AJ) _ .45 8 HYDRAULIC GRADE LINE CONTROL = -47.74 11 .9 B 0 .35 ...45 FULL .00555 2.6 2.b 44.95 46.60 47.74 48.24 2.79 1.b4 0.00 0.00 • .5 8 0 .35 .33 FULL .001711 1.4 1.4 46.60' 48.00 48.38 48.79 1.78 .79 , 48.82 50.20 9 HYDRAULIC GRADE LINE CONTROL = 48.47 13 .5 8 -0 .21 .33 FULL .00171 1.4 1.4 45.51 47.70 48.41 48:58 2.96 .88 , 4B.61 49.90 STORM DRAIN ANALYSIS RESULTS ---------------------- - - - - -- Q b D DC SF-FULL V 1 V FL 1 F G H 2 D D TM Tl( LINE D N FLOW F LL 2 L 2 H 1 G l 2 NO (CFS) (IN) (1N) (FT) (FT) TYPE (FT /FT) (FPS) (FPS) (FT) (FT) CALC CALC (FT) (FT) CALC CK - - -- - - -- - - -- - - -- - - -- - - -- - - -- - - - - - -- - - - -- - - - -- = - - - -- - - - - -- - - - - -- - - - - -- - - - -- - - - -- - - - - -- - - - - -- • I Al ti �9 ut Ol ` 6 0 �6- o a �.• 0 L "PROJECT : LA QUINTA.K -5 SCHOOL IOYR DATE : ---------------------------------------------------------------------------------------------------------------=------------- i INPUT DATA LISTING CD 11 MAX Q 8 1 2 2 29.8 2 3 20.2 .2 4 11.0 2 5 11.2 2 6 9.2 2 7 8.7 2' 8 7.8 2 9 7.3 ADJ Q 29.8 20.1 11,, 0 9.6 9.2 8.7 7.8 . 7.3 LENGTH FL I 348.00 36.30 405.00 40.28 370.00 41.90 40.00 40.53 112.00 42.15 110.00 43.43 111.00 44.53 140.00 45.09 FL 2 40.28 41.90 43.37 42.00 43.43 44.53 45.09 45.79 CTL /T11 36.33 0.00 0.00 47.40 47.00 0.00 0.00 0.00 49.30 D a S KJ . KE 30. 0. 3 0.00 0.00 24.' .0. 3 0.00 0.00 24. 0. 1 0.00, 0.00 15. 0. 1 0.00 0.00 18. 0. 3 0.00 0.00 18. 0. 3 0.00 0.00 18. 0. 3 0.00 0.00 18. 0. 1 0.00 0.00 KM LC 11. L3 L4. Al A3 0.00 1 3 5 0 0. 60. 0.00 0 4 6 0 0. 90. 0.00 0 0 . 0. 0 0. 0. 0.00 3 0 0 0 0. 0. 0.00 4 7 10 0 0. 90. 0.00 0 8 11 0 0. 90. 0.00 0 9- 13 0 . 0. 90. 0.00 0 0 0 0 0. 0. A4 J N 0. 0.00 .013 0. 0.00 .013 0. 0.00. '.013 0. 0:00 .013 0. 0.00 .013 0. 0.00 .013 0. 0.00 .013 0. 0.00 .013 2 0 .5 .6 90.00. 43.B5 46.80 49.00 8. 0. 1 0.00. 0.00 0.00 7 . 0 0 0 0. 0. 0. 0.00 .013 2 1 .9 .9 90.00 '44.95 46.60 0..00. 8. 0. 3 0.00 0.00. 0.00 8 0 0 0 0. .0. '0. 0.00 .013 2 12 �.5 .5 235.00 46.60 48.00 50.20 B. 0. 1 0.00 0.00 0.00 0 0 -0 0 0. 0. 0. 0.00 .013 2 13 .5 .5 65.00 45.51 47.70 49.90 8. 0. 1 0.00 0.00 0.00 9 0 0 0 '0. 0. .0. 0.00 .013 0 PROJECT : LA QUINTA K -5 SCHOOL IOYR DATE ---------------------------------------------------------------------------------------------------------------------------- STORM DRAIN ANALYSIS RESULTS ---------------------- - - - - -- LINE 9 D N ON DC FLOW SF -FULL V 1 -V 2 FL I FL 2 HG 1 HG 2 O 1 D 2 TN TW NO (CFS) (IN) (IN) IFTI . IFT) TYPE (FT /FT) (FPS) (FPS) (FT) (FT) CALC CALC (FT) (FT) CALC CK 1 HYDRAULIC GRADE LINE CONTROL = 36.33 . 2 29.8 30 0 1.51 1.86 .PART .00528 9.6 7.6 36.30 40.28 37.81 42.14 1.51 1.86 0.00 0.00 X = 0.00 X(N) = 194.47 3 20.2 '24 0 2.00 1.61 FULL .00197. .6.4 6.4 40.28 41.90 42.66 45.89 2.3B 3.99 0.00 0.00 4 11.0 24 0 1.32 1.19 FULL .00236 . 3.5 3.5 41.90 . 43.37 46.80 47.67 4.90 4.30 .47.86 47.40 3 HYDRAULIC GRADE LINE CONTROL 42.40 5 11.2 15 0 .93 1.21 FULL .03006 9.1 9.1 40.53 42.00 42.40 43.60 1.87 1.60 44.90 47.00 4 HYDRAULIC GRADE LINE CONTROL = 46.35 6 9.2 18 0 1.03 1.17 FULL .00767 5.2 5.2 42.15 43.43 46.35 47.20 4.20 3.77 0.00 0.00 8.7 18 0 1.04 1.14 FULL .00686 4.9 4.9 43.43 44.53 47.29 48.05 336 3.52 0.00 0.00 1 8 7.8 18 0 1.50 1.08 FULL .00551 4.4 4.4 44.53 45.09 48.20 ' 4B.B1 3.67. 3.72 • 0.00 0.00 7 HYDRAULIC GRADE LINE'CONTROL 41.25 .10 .5 8 0 .22. :33 SEAL .00171. 1.4 1.5 . 43.85 46.80 '47.25 47.40 3.40 .60 47.43 49.00 X = 87.94 X(N) = 0.00 B HYDRAULIC GRADE LINE CONTROL = 48.12 11 .9 8 0 .35 .45 FULL .00555 2.b 2.6 44.95 46.60 48.12 48.62 3.17 2.02 0.00 0.00 12 .5 8 0 .35 .33 FULL .00171 1.4 1.4. 46.60 48.00 4B. 76 49.17 2.16 1.17 49.20 50.20 9 HYDRAULIC GRADE LINE CONTROL = 4B.B5 13 .5 8 0 .21 .33- FULL .00171 1.4 1.4 45.51 47.70 .4B.85. 4B.96 3.34 1.26 48.99 49.90 STORM DRAIN ANALYSIS RESULTS ---------------------- - - - - -- LINE O D W DN.. DC FLOW SF -FULL V I V 2 FL I FL 2 HG 1 HG 2 D 1 D 2 TW TW NO (CFS) (IN) (IN) (FT) (FTV TYPE (FT /FT) (FPS) (FPS) (FT) (FT) CALC CALC (FT) (FT) CALC JK LIST OF ABBREVIATIONS ON 1, FL 1, D 1 AND HG 1 REFER TO DOWNSTREAM END V 29 FL 2, D 2 AND HG 2 REFER TO UPSTREAM END X - DISTANCE,IN..FEET FROM DOWNSTREAM END TO POINT WHERE HG INTERSECTS SOFFIT IN.SEAL CONDITION X(N) - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY,EITHER DRANDOWN OR BACKWATER XlJ) - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE . F(J) - THE COMPUTED FORCE AT THE HYDRAULIC JUMP D(BJ) - DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE) D(AJ) - DEPTH OF WATER AFTER THE HYDRAULIC.JUMP (DOWNSTREAM SIDE) SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART HJ INDICATES THAT FLOW CHANGES FROM SUPERCRITICAL TO SUBCRITICAL THROUGH A HYDRAULIC JUMP HJU INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE HJD INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE ILI • Ll STORM.DRAIN LINE.CARD BY -DATE �_BS_ SHEET NO. 1 OF _(O JOB NO..�OG'030/ DESCRIPTION _ � �c/�r1�1_ LINE NO.' 1 = MAXIMUM Q (cfs) 2 = ADJUSTED Q (cfs) ' 3 = LINE LENGTH 418- -- 2_1. 1V - 4 = ELEVATION DOWNSTREAM = 3 G•30 5 = ELEVATION UPSTREAM = 40•Z$ b = CONTROL OR T.W. - Q 7 = DIAMETER (in) DOWNSTREAM 8 = WIDTH (in) _ ELEVATION q =. STRUCTURE TYPE b = l0 = JUN. LOSS COEF. (KJ) = 0 11 = ENT. LOSS COEF. (KE) _ 2 LINE NO. 1 = MAXIMUM Q (cfs). 2 = ADJUSTED Q (cfs) 3 = LINE LENGTH __40:5 4 = ELEVATION DOWNSTREAM _ 5 = ELEVATION UPSTREAM = 4/,90 b = CONTROL OR T.W.. - 0 7 = DIAMETER -(in) = LINE NUMBER (L3) 2 8 WIDTH (in) - O - STRUCTURE TYPE.. (Al) _ 10 = JUN. LOSS COEF. (KJ) = (A3) = -r 1 l = ENT. LOSS COEF.: (KE) = O 12.= MINOR LOSS COEF. (KM) _ 13 = CONTROL LINE NO. CONFLUENCE A ANGLE ( 14 = LINE NUMBER (L1) = 3 15 = LINE NUMBER (L3) = S lb = LINE NUMBER'(L4) _ d 17 = CONFLUENCE ANGLE (Al) _ = D 18 = CONFLUENCE ANGLE (A3) = to O' '19 = CONFLUENCE ANGLE (A4)-= O 20 = JUNCTION LENGTH (ft) _ 21 = MANNING' S N = �3 12 - •MINOR LOSS COEF. (KM) _ _0 13 = CONTROL LINE NO. 14 = LINE NUMBER (L1) _ 15 = LINE NUMBER (L3) ib = L LINE NUMBER ( (L4) _ _ 17 = C CONFLUENCE A ANGLE ( (Al) = O O 18 = C CONFLUENCE A ANGLE ( (A3) 19 = C CONFLUENCE A ANGLE ( (A4) = d d 20 = = JUNCTION LENGTH.(ft) = = D D 21 = = MANN I NG' S N N ' STORM DRAIN, LINE CARD. =1 = SHEET. 2 OF BY ---- - - - - -- DATE S NO. - - - - -- - - -- JOB NO. DESCRIPTION LINE NO. MINOR LOSS COEF. 1 = MAXIMUM 'Q (cfs) _ / ✓� /�__j 2 = ADJUSTED Q (cfs) _ Al = LINE LENGTH = .370 _ 4.= ELEVATION DOWNSTREAM LINE NUMBER (L3) 5 = ELEVATION UPSTREAM 16 = 6 = CONTROL OR T.W. _ 47.40 7 = DIAMETER (in)' 8 = WIDTH (in) = LINE NUMBER (L4) 9 = STRUCTURE TYPE 18 10 = JUN. LOSS COEF. (KJ ) _ 11 =,ENT. LOSS COEF. (KE) (A4) = LINE NO. _� _____ = JUNCTION LENGTH 1 = MAXIMUM Q (cfs-) 21 . 2 = ADJUSTED Q (cfs) Q 3 = LINE LENGTH = _ 4-0 4 = ELEVATION DOWNSTREAM = JUNCTION LENGTH 5 = ELEVATION UPSTREAM = _4Z. OD _ 6 = CONTROL-OR T.W. _ 47OO _ 7 = DIAMETER ( i n ) 8 = WIDTH ( i n ) STRUCTURE TYPE _ 10 = JUN. LOSS COEF. (KJ) _ 11 = ENT. LOSS COEF. (KE) = 12 = MINOR LOSS COEF. (KM) = 13 = CONTROL.LINE NO. = 14 = LINE NUMBER (L1) = 0 15 = LINE NUMBER (L3) _ 16 = LINE NUMBER (L4)'. = a 17 = CONFLUENCE ANGLE '(A1) = Q 16 = LINE NUMBER (L4) = 18 = CONFLUENCE ANGLE (A,')) = 19 = CONFLUENCE ANGLE (A4) = 0 20 = JUNCTION LENGTH (ft) _ 21 = MANNING' S N (A4.) = Q 12* = MINOR LOSS COEF. (KM) _ 13 = CONTROL LINE NO. _. 14 = LINE NUMBER (L1) _ 0 15 = LINE NUMBER (L3) Q 16 = LINE NUMBER (L4) = 17 = CONFLUENCE ANGLE (Al) _ 18 = CONFLUENCE ANGLE'(A3) = 19 = CONFLUENCE ANGLE (A4.) = Q 20 = JUNCTION LENGTH (ft) _ 21 = MANNING' S.. N c STORM DRAIN LINE CARD ' BY DATE 5--/ -e SHEET NO. __3 OF 4 JOB N0. DESCRIPTION _________________ ___ __ _ ___ LINE NO. 1 = MAXIMUM Q .(cfs) _. _�Y? 12.= MINOR LOSS COEF. (KM) 2 = ADJUSTED Q (cf s). 13 = CONTROL LINE N0. 3 = LINE LENGTH = �� Z 14 = LINE NUMBER (L1) - 4 = ELEVATION DOWNSTREAM = _ ?�s ' 15 = LINE NUMBER (L3) _ _ 164 5— ELEVATION UPSTREAM = - 43.43_ 16 = LINE NUMBER (L4) 6— CONTROL OR T.W. _ 17 = CONFLUENCE ANGLE (Al) _ 7 = DIAMETER (in) _. �B 18 = CONFLUENCE ANGLE (A3) 8 = WIDTH (in) 19 = CONFLUENCE ANGLE (A4) = U 9 STRUCTURE TYPE _ 3 ___ 270 = JUNCTION LENGTH (ft) �1>0 = JUN. LOSS COEF. (KJ.) _ 2 1 = MANNING 'S N _ 4�.3 11 = , ENT. LOSS COEF. (KE) LINE N0. 1 = MAXIMUM Q (cfs) = _8.7 12 =. MINOR LOSS COEF. ' (KM) 2 = ADJUSTED Q . (cf s ) _ e- . 13 = CONTROL LINE NO. _ __ Q ____ 3 = LINE LENGTH 14 = LINE NUMBER (L1) 4 = ELEVATION DOWNSTREAM = _ ¢3�'¢ -3 15 = LINE NUMBER (L3) '(L4) Q 5 = ELEVATION .UPSTREAM = 'S2 16 = LINE NUMBER _ 6 = CONTROL OR T.W. - d 17 = CONFLUENCE ANGLE (Al) = Q 7 = DIAMETER ( i n ) = . _ �B 18 = CONFLUENCE ANGLE ( A„3 ) 8 = WIDTH (in) = 19 = CONFLUENCE ANGLE (A4) _ - STRUCTURE TYPE _ 2U = .JUNCTION LENGTH (ft) _ 10 = JUN. LOSS COEF. (KJ) _ 21 = MANNING'S N 11 = ENT. LOSS COEF. ( KE ) STORM DRAIN LINE CARD BY ~�' DATE SHEET N0. OF JOB NO. ,306 -a,go/ -DESCRIPTION LINE NO. 8 1 = MAXIMUM 0 (cfs) = 7, .0 2 = ADJUSTED 0 (c f s ) _ _ 7• ___ 3 = LINE LENGTH = _ 112 4 =. ELEVATION DOWNSTREAM = _ ¢¢• 53 5 = ELEVATION UPSTREAM = ¢SG9 6 = CONTROL OR T.W. = d 7 = DIAMETER ( i n ) _ 16' 8 = WIDTH (in) _ 0____ 8 = WIDTH (in) = 3 9 = STRUCTURE TYPE _ = STRUCTURE TYPE 0 _ 1� = JUN. LOSS COEF. (KJ) = 11 = ENT. LOSS COEF. (KE) = G LINE NO. (KM) = 1 = MAXIMUM 0 (cfs) _ 7.3�___ 2 = ADJUSTED 0 (cfs) = 73 3 = LINE LENGTH = Al D 4 = ELEVATION DOWNSTREAM - 5 = ELEVATION UPSTREAM = '¢S•7 9 6 = CONTROL OR T.W. .70 7 = DIAMETER (in) - �B 8 = WIDTH (in) = 0 9Dc 18 = CONFLUENCE ANGLE = STRUCTURE TYPE 19 10 = JUN. LOSS COEF. (KJ) 11 = ENT. LOSS COEF. (KE) (ft) _ 12 = .MINOR LOSS COEF. (KM) = d 13 = CONTROL LINE NO. = d 14 = LINE NUMBER (L1) _ 15 = LINE NUMBER (L3) - 16 = LINE NUMBER (L4) _ 17 = CONFLUENCE ANGLE (Al) _ 17 = CONFLUENCE ANGLE (Al) _ 9Dc 18 = CONFLUENCE ANGLE (A3) = 19 = CONFLUENCE ANGLE (A4) = 20 = JUNCTION LENGTH (ft) _ 21 = MANNING' S N = 6/3 12 = MINOR LOSS. COEF. . (KM) 13 = CONTROL LINE NO. 14 = LINE NUMBER (L1) _ 15 = LINE NUMBER (L3) - 16 = LINE NUMBER (L4) - 17 = CONFLUENCE ANGLE (Al) _ 18 = CONFLUENCE ANGLE (A3) = 19 = CONFLUENCE ANGLE (A4) = 20 = JUNCTION LENGTH-(+t). = 21 = MANNING' S N = %I STORM DRAIN LINE CARD BY __ ----- . DATE .� /z5'S // __ SHEET' N0. S _ OF �O JOB NO. 3o6-OFOI DESCRIPTION LINE NO. MINOR LOSS COEF. 1 = MAXIMUM G (cfs). 13 = 2 = ADJUSTED O (cf s) = 4,• ____ 3 LINE LENGTH = 90 4 = ELEVATION DOWNSTREAM LINE NUMBER (L3) 5 = ELEVATION UPSTREAM = _ 46,80 = LINE NUMBER (L4) _ ol 6 .= CONTROL OR T.W. _ 7 = DIAMETER (in) _ CONFLUENCE ANGLE 8 = WIDTH (in) = O 9 = STRUCTURE TYPE 0. 18 = CONFLUENCE ANGLE Q 11 = JUN. LOSS COEF. (KJ) = = CONFLUENCE ANGLE 1.1 = , ENT. LOSS COEF. (KE) 20 = JUNCTION LENGTH NO. LINE = MANNING' S N 1 = MAXIMUM 0 (cfs) 2 = ADJUSTED Q (cf s) 3 = LINE LENGTH 4 = ELEVATION DOWNSTREAM 5 = ELEVATION UPSTREAM 6 _ CONTROL OR T.W. 7 = DIAMETER (in) _ 8 8 = WIDTH J i n) _ ____ = STRUCTURE TYPE 10 = JUN. LOSS COEF. (KJ) _ ,11 = ENT. LOSS COEF. (KE) _ 12 = MINOR LOSS COEF. (KM) = Q 13 = CONTROL LINE N0. 14 = LINE NUMBER (L1) _ 15 = LINE NUMBER (L3) = Q 16 = LINE NUMBER (L4) _ ol 1.6 = LINE NUMBER (L4) _ 18 = CONFLUENCE ANGLE (A3) _ 17 = CONFLUENCE ANGLE (Al) _ 0. 18 = CONFLUENCE ANGLE (A3) _ 19 = CONFLUENCE ANGLE (A4) = 0 20 = JUNCTION LENGTH (ft) 21 = MANNING' S N 12 MINOR LOSS COEF. (KM) 13 = CONTROL LINE NO. 14 = LINE NUMBER (L1) 15 = LINE NUMBER (L3) _ 16 = LINE NUMBER (L4) _ ol 17 = CONFLUENCE ANGLE (Al) _ 18 = CONFLUENCE ANGLE (A3) _ 19 = CONFLUENCE ANGLE (A4) 0. 2'0 = JUNCTION LENGTH (ft) _ 21 = MANNING' S N STORM DRAIN LINE CARD aY ______ DATE S �'8S SHEET NO. ---- - - - - -- - - - - -- OF ----- JOB NO. DESCRIPTION La LINE NO. 1 = MAXIMUM 0 (cfs) _ _ �• s�_ 12 = MINOR LOSS COEF.. (KM) = 4 14 = LINE NUMBER (L1) = O 15 = LINE NUMBER (L3) 2 = ADJUSTED 9 (cfs) _ � S/ 13 = CONTROL LINE N0. 0 17 = 3 = LINE LENGTH = _ 14 = LINE NUMBER (L1) _ 0 4 = ELEVATION DOWNSTREAM = _46_4 _ 15 = LINE NUMBER (L3) = 0 5. = ELEVATION UPSTREAM = _48_00 16 = LINE NUMBER ( L4 ) = a 6 = CONTROL OR T.W. = -o'zo _ 17 = CONFLUENCE ANGLE (Al) = O 7 = DIAMETER (in) _ _ 8_ 18 = CONFLUENCE ANGLE (A3) = O 8 = WIDTH (in) _ � 19. = CONFLUENCE ANGLE (A4) _ 9 = .STRUCTURE TYPE _ ____ 20 = JUNCTION LENGTH (ft) _ 0 _ _ = JUN. LOSS COEF. (KJ ) _ 21 = MANNING' S N 11 = ENT. LOSS COEF. (KE) = O LINE NO. 1 = MAXIMUM 0 (cfs) 2 = ADJUSTED 9 (cfs) O. $� - -- 3 = LINE LENGTH 4 = ELEVATION DOWNSTREAM 5 = ELEVATION UPSTREAM = _ 47,70 6 = CONTROL OR T.W. 7 = DIAMETER (in) = 8 8 = WIDTH (in) _ = STRUCTURE TYPE 10 = JUN. LOSS COEF. (KJ) 11 = ENT. LOSS COEF. (KE) _ 12 = MINOR LOSS COEF. (KM) 13 = CONTROL LINE NO. 14 = LINE NUMBER (L1) = O 15 = LINE NUMBER (L3) _ 0 16 = LINE NUMBER (L4) _ 0 17 = CONFLUENCE ANGLE (Al) = 0 18 = CONFLUENCE ANGLE (A3) _ 0 19 = CONFLUENCE ANGLE (A4) _ 0 20 = JUNCTION LENGTH (ft) .= 0 21 = MANNING' S N _ 0. D %3 _ 0 EXH IT E R C F C 8& W C D HYDROLOGY JMANUAL // RATIONAL METHOD CALCULATION FORM PROJECT LA•nvD4A PIL �S0�A uE A7- STAII 23_f_ 0 FREQUENCY �00 Sheet No.--Lr of —Sheets Calculated b / i,� < G• `! // y - - - - -- -- --BATE.- -- Checked by �------ -- — nerc --- DRAINAGE AREA Soil 1k Development AU Acres I In /hr. z A Q C FS E Q C FS SLOPE SECTION v FPS L FT. T MIN. £ T REMARKS L o'b t 7th b fwE 0 4 Z`f " t •. � �; � / T / L K =�•� C= 514 I Z, —( _3+vU� U_ — 0�$ 3���s Z, f Z� / 17- Z ,r2 p A43 I �, 174'70 U!F p 0Z 1 : Z+ lx,/7A _ J. 1 zt;m`6 — 7,340oi A 19 EE 2 D• 3 3,q ,g�� Z,� �-Ar Z _TA ,-51A- -' Es ,i tt co p , �. EXHIBIT F U N I T- H Y D R 0 G R A P H A N A L Y S I S `• ACCORDING TO RIVERSIDE COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT (RCFC &WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982 -88 Advanced.Engineering Software (des) Ver. 2.OA Release Date: 8/07/88 Serial# DE1742 Especially prepared for: J. F. DAVIDSON * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * LANDMARK * RET BASIN - -PARK AVE * ACTUAL AREA =3.9 AC /PROGRAM USES 10AC. MIN. /FPG-- 9 -5 -89. TIME /DATE OF STUDY: 09:27 5- SEP -89 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** WATERCOURSE LENGTH = 2818.000 FEET LENGTH FROM CONCENTRATION POINT TO CENTROID = 1409.000 FEET ELEVATION VARIATION ALONG WATERCOURSE = 11.840 FEET MANNING'S FRICTION FACTOR ALONG WATERCOURSE = 0.015 WATERSHED AREA = 10.000 ACRES .UNIT HYDROGRAPH TIME UNIT = .5.000 MINUTES DESERT .S-GRAPH SELECTED UNIFORM MEAN SOIL- LOSS(INCH /HOUR) = 0.050 • LOW SOIL -LOSS RATE PERCENT(DECIMAL) = 0.900 BASEFLOW = 0.000 CFS /SQUARE -MILE USER - ENTERED RAINFALL = 1.60 INCHES RCFC &WCD 1 -Hour Storm (SLOPE OF INTENSITY - DURATION CURVE = 0.58) SELECTED WATERCOURSE "LAG" TIME = 0.095 HOURS UNIT INTERVAL PERCENTAGE OF LAG -TIME = 87.479 HYDROGRAPH BASEFLOW = 0.000 CFS RCFC &WCD AREA ADJUSTMENT FACTOR(PLATE E -5.8) = 1.0000 * * *> NOTE:'RATIO OF (AREA IN SQUARE FEET) / (WATERCOURSE LENGTH -SQUARED) IS NOT BETWEEN (.10) AND (1.0) UNIT HYDROGRAPH DETERMINATION ---------------------------------------------------------------------------- INTERVAL "S" GRAPH UNIT HYDROGRAPH NUMBER MEAN VALUES ORDINATES(CFS) --------------- -------------- -------------------------------------------- 13.122 - 2 61.561 58.581 3 80.429 22.819 4 88.881 10.221 5 93.526 5.619 6 96.374 3.444 7 . 97.959 1.917 8 98.973 1.226 9 99.674 0.848 +.. inn nnn n 'tQd. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** UNIT UNIT UNIT EFFECTIVE PERIOD RAINFALL SOIL -LOSS RAINFALL (NUMBER) ---------------------------------------------------------------------------- (INCHES) (INCHES) (INCHES) 1 0.0580 0.0042 0.0539 2 0.0620 0.0042 0., 0578 3 0.0667 0.0042 0.0626 4 0.0751 0.0042 0.0710 5 0.0802 0.0042 0.0760 6 0.0936 0.0042 0.0895 7 0.1139 0.0042 0.1097 8 0.1274 0.0042 0.1232 9 0.2093 0.0042 0.2051 10 0.5446 0.0042 0.5404 11 0.1038 0.0042 0.0996 12 0.0655 0.0042 0.0613 TOTAL STORM RAINFALL(INCHES) = 1.60 TOTAL SOIL- LOSS(INCHES) = 0.05 TOTAL EFFECTIVE RAINFALL(INCHES) = 1.55 --------------------------------- - - - - -- TOTAL SOIL -LOSS VOLUME(ACRE- FEET) = TOTAL STORM RUNOFF VOLUME(ACRE -FEET) _ ---------=--- r------------ - - /--------- - - -- � .J QL L"-0'-H G i IAC IDAG ---------------------------------- 0.0417 - - -_ - -- 1_2910 * =- 0_503 /A 0144, - .0- RCFC &WCD 1 -HOUR STORM RUNOFF HYDROGRAPH HYDROGRAPH IN FIVE - MINUTE INTERVALS(CFS) ---------------------------------------------------------------------------- INTERVAL# ---------------------------------------------------------------------------- VOLUME(AF) Q.(CFS) 0. 12.5 25.0 37.5 50.0 1 0.0059 0.85 Q 2 0.0339 4.07 .V Q 3 0.0726 5.61 V Q 4. 0.1184 6.66 V Q 5 0.1714 7.68 VQ 6 0.2309 8.64 QV 7 0.3004 10.09 QV. 8 0.3830 11.99 Q.V >9 0.4849 14.80 .Q V 10 0.6610 25.57 Q 11 0.9393 40.41 V. Q 12 1.0953 22.66 Q V 13 1.1875 13.38 Q V 14 1.2332 6.64 Q V . 15 1:2588 3.72 Q V. 16 1.2734 2.12 .Q V. 17 1.2823 1.29 .Q V. 18 1.2876 0.78 Q V. 19 1.2902 0.37 Q V. 20 1.2908 0.09 Q V. 21. • 1.2910 0.02 Q V ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** Ul EXHIBI G -R C FC a W C D HYDROLOGY !MANUAL RATIONAL METHOD CALCULATION FORM PROJECT, 232- 1- 5 ' w, ST 7 % t ;Z0) FREQUENCY i Sheet No._ of _Sheets Calculated by ATE/ 1� Checked by •- - --- - ne7'-c DRAINAGE AREA Development . • •- • Pim mmmw MUM mmmm - -_ —_ J.F. Davidson Associates, Inc. ENGINEERING PLANNING SURVEYING ARCHITECTURE LANDSCAPE ARCHITECTURE 0 73 -080 EL PASEO, SUITE 106 PALM DESERT, CA 92260 :--(619) 346 -5691 - FAX 619- 340 -0529 v �..: N l _ V ` 4j e r) Ills !v ` �. !y AD N a� Lf ZZ N N r � �- '4 �. 0 :o N. r C 4 r c � N y N � b � o � C in v �i o t o� Z 0 �0(�) s. m m .u, O .. r' U `J 0 :o N. r C 4 r c � N y N � b � o � C in v �i o t o� Z 0 �0(�) s. m m • SURVEYOF—L262 t:K%'"7- 47u5-G F-v FOR LAA-'OAA#4(2-C SURVEY PARTY -�ALX-* C I; J.F. Davidson Associates, Inc. ENGINEERING PLANNING SURVEYING AnCHIIECTURE LANDSCAPE ARCHITECTU PA 1) A-40 F.B. W.O. No. 000 ('0 Date REF. A.M. LO /4 /e, Ilk N R, 1.7 R, N c e 16- 4t' F N 7, (zS 7; 75 -150 SI-IERYL DRIVE PALM DESERT, CA 92P60 (619 J.F. Davidson Associates, Inc. F.B. [INGINE'UHING ARCIATICCIURE P[ANNjrjG SURVEYING LANDSCAPC AFiCHl*rECiuj* SURVEYOF 12P t:,(Ns-r VP,5—G r-ok AO LLE0. I.ANOM,421L �oo(opvs�. FOR W.O. No. Date • SURVEY PA RTY ':5ALr- k 0 1_9 E: Ce r-.)4 A 4 0 5v REF. A.M. 12 13 14 CALVE RONDO NOTE COA116T OF celea /1+00 ma swwe-e- O-C ,^/Cw 0, P4eROA,140- SVr -T OP A.C. 0/- /0 (A-'.VAoo'e,-,eO.&-r) 'SO" 0 J '_3 i \ 9--, 6-6-.-O�c Ci �7- "I:%- tl.' 7 =7- . . . ........ i It .• 2. t !- - tZ-'- _. .. .. .... 12 13 14 CALVE RONDO NOTE COA116T OF celea /1+00 ma swwe-e- O-C ,^/Cw 0, P4eROA,140- SVr -T OP A.C. 0/- /0 (A-'.VAoo'e,-,eO.&-r) 'SO" 0 J '_3 i \ 9--, 6-6-.-O�c 51EAE 2 PAF,41MOOF SWALE SWV ko WE AER( oAlrw. swr 0.— ZWr4 13 rA - 7-0-60 OradC -tO 0--4;17 160'.t Ci It 51EAE 2 PAF,41MOOF SWALE SWV ko WE AER( oAlrw. swr 0.— ZWr4 13 rA - 7-0-60 OradC -tO 0--4;17 160'.t 12 0 . A COA1677 OF C4/,4W PER 1011/0. svr 5 10' /0 Wig `a /1+00 M 7rA lMlT ) -Z 4foVAI- N� A-4 M 1. .51(- 31- 10 Or wh M- M§ jr `a /1+00 M 7rA lMlT ) -Z 4foVAI- N� ........... "XII '45 W;o g �D k,7 i! 7, jr ........... "XII '45 W;o g �D k,7 i! 7, Al AM A, 'A 7 JkA W�. wo lY r �mv Ri v A nxi, A, 4 19 to) 1 go I t I Ali PZ W -4 '4,e -n Pro, ,�-M - A, 4- T,1 Ai -Ju 5, CJ 13 1E X -J, 4; 41 1 pv J—F A --R -.4 r vi"VY A Ai Al 4 ­�?AWA INi 4 jj 4L S. -,n Vy f W A. - , ly A ri -.1 vii IJ gas RM A4 0­ AP )01 A, IF 'X-4- All v fv CA Air, is A Y­' i02,z w /V 2, ,J rti Ivrl z1:1i VIA 0) r) z-, oil z PIS ca A ca Y*41 90 -Ali A 2 AV -4 : LJ-;I _. -- - — - H 0 a) �u 0 z ri c z M A� r T;� �oi c) r) C) Ck- LO 0 0 , 3 C7- :3 0 I-It U-70 MAM w1i MW lilt lilt N ry J, z rii 0 ri 0 do n 0 C-_ C) r) m �4 U-70 MAM w1i MW ryl 14 lilt lilt N ry J, z rii 0 ri 0 do n 0 C-_ C) r) m m -1 >- ryl M I 2: ;rj 7i -r M 0 C) 0 1 F- rq -n :Ai uli �< im z rn M > Ln ryl 14 0 -14. A oii . Ir Ok 6 P Tit, �J "'li" UM2 ;n 15N, U 4�1 E ;2- -47 Rh :W Ali "A 4 4 �n- 2, Ali lw� MIRRRM Offia R;'. 11M t "'y F-g ;s S"' RN Z 11- ME &11- 0 4 0 lny�- 'b 0 In —­= 1 7- ­,--��4,411 �p -4r Air 7 t4 "W*i :4", 4�i W; A4 Ak 40, th- 0, A, -7 no Wil- 12�1... ji�­ -t 2 k'i eve ens cf) r, Vrii�, I ti �R AIX k: 'e., 1j, tit 413 e4e lot vp, lax iii ILI 4f 4L AI t. f Ire 14 4. 1171 iy zv :If Cl -4P C' 4N Aj I AA ILI) 1j, 0 v* 7AS Tj Ire L 7A otri AM I ,r4 LE MA IC L loo"Ali ILI low 40 14 4 o41 oZr LA cu (D Lm 0) A-tee - T* . . --- I v � , 4e lilt lilt ry J, z rii 0 ri 0 do C) (Q I too) :Ai uli Ln CO 0 PO z rri 0 -14. A oii . Ir Ok 6 P Tit, �J "'li" UM2 ;n 15N, U 4�1 E ;2- -47 Rh :W Ali "A 4 4 �n- 2, Ali lw� MIRRRM Offia R;'. 11M t "'y F-g ;s S"' RN Z 11- ME &11- 0 4 0 lny�- 'b 0 In —­= 1 7- ­,--��4,411 �p -4r Air 7 t4 "W*i :4", 4�i W; A4 Ak 40, th- 0, A, -7 no Wil- 12�1... ji�­ -t 2 k'i eve ens cf) r, Vrii�, I ti �R AIX k: 'e., 1j, tit 413 e4e lot vp, lax iii ILI 4f 4L AI t. f Ire 14 4. 1171 iy zv :If Cl -4P C' 4N Aj I AA ILI) 1j, 0 v* 7AS Tj Ire L 7A otri AM I ,r4 LE MA IC L loo"Ali ILI low 40 14 4 o41 oZr LA cu (D Lm 0) A-tee - T* . . --- I v � , 4e lilt lilt J, z j� 0 (Q 0 -14. A oii . Ir Ok 6 P Tit, �J "'li" UM2 ;n 15N, U 4�1 E ;2- -47 Rh :W Ali "A 4 4 �n- 2, Ali lw� MIRRRM Offia R;'. 11M t "'y F-g ;s S"' RN Z 11- ME &11- 0 4 0 lny�- 'b 0 In —­= 1 7- ­,--��4,411 �p -4r Air 7 t4 "W*i :4", 4�i W; A4 Ak 40, th- 0, A, -7 no Wil- 12�1... ji�­ -t 2 k'i eve ens cf) r, Vrii�, I ti �R AIX k: 'e., 1j, tit 413 e4e lot vp, lax iii ILI 4f 4L AI t. f Ire 14 4. 1171 iy zv :If Cl -4P C' 4N Aj I AA ILI) 1j, 0 v* 7AS Tj Ire L 7A otri AM I ,r4 LE MA IC L loo"Ali ILI low 40 14 4 o41 oZr LA cu (D Lm 0) A-tee - T* . . --- I v � , 4e