Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
25865
T 11111111 11111111 -10 -12 -14 -16 -18 L-li =D -10 -11c -12 iW N CA Qn 0-) ---j 00 C-0 ELEMENT NUMBER CONSTRUCTION INCREMENT 6 ELEMENT NUMBER CONSTRUCTION INCREMENT 4z 5 c, 0 Nl 'Ail C (J L. V E R I SYISTEMS 1,\410MENIT, SHEAR ANIL) THRUST DIAGRAM S PE C I A L cl y G F A E SNIT N --F '�`2 RENO --- NEVADA I 3 2 0 . u LiJ LLJ U 0 U 15 30 45 60 75 90 105 111 121 127 136 141 150 159 168 173 182 191 196 14 29 44 59 74 89 104 110 120 126 135 140 149 158 167 172 181 190 195 13 28 43 58 73 88 103 109 119 125 12 27 42 57 72 87 102 108 118 1 G 7 17/1 181 188 193 M 7 107 H 122 II 26 41 56 71 86 101 106 116 - - 10 ti 25 40 55 70 85 100 32 9 24 39 54 69 84 99 166 173 8 23 38 53 68 83 98 227 2111 7 22 37 52 67 82 97 68 82 6 21 36 51 66 81 96 10 5 20 35 50 65 80 95 240 254 4 19 34 49 64 79 94 115 312 3 18 33 48 63 78 93 114 326 2 17 32 47 62 77 92 113 1 16 31 46 61 76 91 112 325 134 139 148 157 166 171 138 147 156 165 170 133 146 155 164- 169 1*37 132 131 145 130 M 129 143 180 189 194 I ' 79 188 193 178 187 192 OPO x NODAL POINTS 154 153 152 163 162 177 186 176 175 200 185 199 184 198 128 142 151 160 174 183 APPLIED LOAD - C.1.- 6 197 112 5 G' 70 8 /1 98 112 20 25 33 138 1/15 IZ19 156 1 '6 3 1 G 7 17/1 181 188 193 M 106 214 228 212 256 270 281 298, 41 55 69 85 97 111 119 24 32 137 1/14 148 155 162 166 173 180 25 192 100 105 • 213 227 2111 255 269 283 26 71 40 54 68 82 96 110 118 23 10.7 136 143 10 IL 179 186 191' 99 28 12 2 2 240 254 268 28Z 206 212 222 237 252 267 282 297 312 327 17 205211 221 236 251 266 281 296 311 326 178 -- 18 5 ---_ 1�t— Q �r )03 211 225, 2011210 220 235 250 265 280 295 310 325 267 281 295 209 219 234 249 264 279 �294 ",30 9 — 324 " 208 2 201 218 108 107 207217 217 233 248 263 278 293 308 323 23" 247 262 277 292 307 322,:,, 38 231 246 261 276 291 306- 32[. 266 280 294 37 51 65 79 93 237 251 265 230245 260 275 290 305 64 78 92 236 229244 259 274 289 304, 319 .06 228243 258 273 288 303 .318' ----227242 257 —,--2-72 --------- L-28. 302,6z-., .: 31 216 226241 256 271 286 301 318 49 63 215 225240 255 270 285 300 315 214 224239 254 269 284 299 314 21 E: , 213 223238 253 268 283 298 313. 112 5 G' 70 8 /1 98 112 20 25 33 138 1/15 IZ19 156 1 '6 3 1 G 7 17/1 181 188 193 M 106 214 228 212 256 270 281 298, 41 55 69 85 97 111 119 24 32 137 1/14 148 155 162 166 173 180 187 192 100 105 • 213 227 2111 255 269 283 71 40 54 68 82 96 110 118 23 _3 1 136 143 10 IL 179 186 191' 99 �04 12 2 2 240 254 268 28Z 109 17 22 3 1 9 1112 1/16 153 160 164 171 178 -- 18 5 ---_ 1�t— Q �r )03 211 225, 59 53 67 81 95 239 253 267 281 295 I_ I 2 108 107 . 931 22. 38 52 66 80 9/1 238 252 266 280 294 37 51 65 79 93 237 251 265 279 36 50 64 78 92 236 250 264 278 292 .06 0 10 x 35 49 63 77 91 1 D5 MESH E�.EME�ITJ 21 235 249 263 277 .291 34 .48 62 76 90 1D4 2 e.20, 219'. 18 234 1 248 262 276 290 33 47 61 75. 89 1D3 233 247 261 275 289 32 46 60 74 881 232 246 260 274 288 31 45 1 59 73 87 ► 1 115 128 I 1111 152 159 170 177 184 196 209 T 7 231 245 259 273 287 30 44 58 72 86 IDO 114 127 1110 151 158 169 176 183 195 208 T16 230 214. 258 272 286 29 143 57 71 85 99 113 126 139 150 157 168 175 182 194 207 't'. 115 229 213 257 271 285 PURPLE # = INSITU SOIL CON / CUB VERT BROWN # =FOUNDATIONS ORANGE u = BACKFILL SOIL GREEN COVI.--.R MESH LAYOUT FOR FINITE E�Ei���EI�JT ANALYSIS' ISPECIAL- ASS-[F---.-cJME---N'T #2 CITY OF RENO NEVADA I CLF_✓CN LA 47ulA%7-11 Czv7k�2- �s$LrS C'A I IuNAL_ � '.i`HOD HYDROLOGY C:f1I° PU rER P' �AAM BASED ON' RIVERSIDE COUi rY FLOOD CONTROL &WATER CU; YRRVATION DISTRICT (RCFCaWCD) 1978 HYDROLOGY NANUAL (A Copyright 1982-91 Advanced Engineering Software Wes) Ver. 5.9D Release Dc, e: . r5 /09, 91. Serial #961•- Analysis prepared key. HALL & FOREMAN, INC 3602 INLAND EMPIRE BLVD., SUITE C -320 ONTARIO, CA 91764. (710941-3570 DESC:RIPT:lON OF STUDY " 0 -100 HYDROLOGY FOR ONE ELEVEN LA OUINTA CENTER FILE: 0189H100.0UT J.N. 4189 FILE NAME: 0188H100.DAT TIME/DATE OF STUDY: 10:16 3/ 7/1992 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ------------------------------------------------- _---------------------- - - - - -- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .95 2 -YEAR, 1 -HOUR PRECIPITATION(INCH) = .500 100 -YEAR, 1 -HOUR PRECIPITATION(INCH) = 1.650 - COMPUTED RAINFALL. INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.6500 SLOPE OF INTENSI'T'Y DURATION CURVE = .5900 SPECIFIED CONSTANT RUNOFF COEFFICIENT = 867 NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC &WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES FLOW PROCESS FROM NODE 16.00 TO NODE 17.00 IS CODE = 21 -----_-------------------------------------------------------------------------- )) MATIONAL_ METHOD INITIAL SUBAREA ANALYSIS<<<<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL_ TC m V C ( LENGTH'" W / (EL_EVATION CHANGE) ] " . 2 INITIAL SUBAREA FLOW - LENGTH = 1000.00 UPSTREAM ELEVATION = 81.00 DOWNSTREAM ELEVATION = 75100 ELEVATION DIFFERENCE = 6.00 TC = .303 4( 1000.00 "SM 6.00)1 " ".2 = 13.365 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.002 "USER SPECIFIED(GLOB,4L): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8670 SUBAREA RUNOFF(CFS) = 8.19 TOTAL AREA(ACRES) = 2.36 TOTAL RUNOFF'"(CFS) = 8.19 FLOW PROCESS FROM NODE >> >) COMPUTE STREETFLOW UPSTREAM ELEVATION = STREET LENGTH(FEET) = 17.00 TO NODE 18.00 IS CODE = 6 TRAVELTIME THRU SUBAREA<<<<< 75.00 DOWNSTREAM ELEVATION = 72.00 590.00 CURB HEIGTH(INCHES) _ 8. DISTANCE FROM CROWN C:ROSSFALL GRADEBREAK 00 INTERIOR STREET CROSOFALL ( DECIMAL ) = . 020 -� OUTSIDE STREET CROSSFALL(.DECIMAL) _. .0201 SPECIFIED NUMBER OF AALFSTREETS CARRYING RUNOFF = 1 * *TRAVE LTIME COMPUTED USING MEAN FLOW(CFS) = 10,12 STREETFLOW MODEL. RESULTS: STREET FLOWDEPTH(FEET) = .56 HALFSTREET FLOODWIDTH(FEE_r) = A'V'ERAGE FLOW VELOCITY(FEET /SEC PRODUCT OF DEPTH&VELOCITY = STREETFLOW TRAVELTIME.(MIN) = 0.18 20.28 1.33 TC(MIN) 2.35 - 17.55 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.008 USER SPECIFIED(GLOBAL): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8670 SUBAREA AREA(ACRES) = 1.30 SUBAREA RUNOFF(CFS) 3.84 SUMMED AREA(ACRES) = 3.66 TOTAL_ RUNOFF(CFS) = 12.03 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .58 HALFSTREET FLOODWIDTH(FEET) = 21.22 FLOW VELOCTTY(FEET /SEC.) = 2.56 DEPTH *VELOCITY = 1.49 FLOW PROCESS FROM NODE 17.00 TO NODE 18.00 IS CODE = 1 ---------------------------------------------------------------- > >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE << <<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 17.55 RAINFALL INTENSITY(INCH /HR) = 3.41 TOTAL STREAM AREA(ACRES) = 3.66 PEAK FLOW RATE(CFS) AT CONFLUENCE = 12.03 FLOW PROCESS FROM NODE 19.00 TO NODE 20.00 IS CODE = 21 ------------------------------------------------------------------------------ >> > > >RATIONAL METHOD INITIAL SUBAREA ANALYSIS< << << ASSUMED INITIAL_ SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K *C(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW - LENGTH = 1000.00 UPSTREAM ELEVATION = 79.00 DOWNSTREAM ELEVATION = 73.80 ELEVATION DIFFERENCE = 5.20 TC = .303 *C( 1000.00 * *3) /( 5.20)] * *.2 = 13.753 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.935 *USER SPECIFIED(GLOSAL): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8670 SUBAREA RUNOFF(CFS) = 6.65 TOTAL AREA(ACRES) = 1.95 TOTAL RUNOFF(CFS) = 6.65 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * A * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 20.00 TO NODE 18.00 IS CODE = 6 >>> > >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< UPSTREAM ELEVATION = 73.90 DOWNSTREAM ELEVATION = 72.00 STREET LENGTH(FEET) _ a15.00 CURB HEIGTH(INCHES) = 8. DISTANCE FROM CROWD / D CROSSFALL GRADE BREAK = .00 INTERIOR STREET CROSSFALL_(DECIMAL) = .020 OUTSIDE STREET CROSSFALL(DECIMAL) = 02fJ SPECIFIED NUMBER OF HALF';�.TREETS CARRYING RUNOFF - 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 7.97 STREETFLOW MODEL_ RESULTS: STREET FLOWDEPTH(FEET) = .53 HALFSTREET FLOODWI:DTH(FEET) = 18.41. AVERAGE FLOW VELOCITY(FEET /SEC.) = PRODUCT OF DEPTH &'VELOCITY = 1.1.7 STREETFLOW TRAVELTIME(MIN) = 3.10 TC(MT.N) 2.23 - 16.86 100.00 YEAR RAINFALL. INTENSITY ( INCH/ HOUR ) = 3.490 `USER SPECIFIED(GLOBAL): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8670 SUBAREA AREA(ACRES) _ .87 SUBAREA RUNOFF(CFS) = 2.63 SUMMED AREA(ACRES) = 2.82 TOTAL RUNOFF(CFS) = 9.29 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .55 HAL_FSTREET FLOODWIDTH(FEET) = 19.34 FLOW VELOCITY(FEET /SEC.) = 2.36 DEPTH *VELOCITY = 1.29 FLOW PROCESS FROM NODE 20.00 TO NODE 18.00 IS CODE = 1 ----------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < < < << > > > > >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES << < << ----------------------------------------------------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 16.86 RAINFALL INTENSITY(INCH /HR) = 3.49 TOTAL STREAM AREA(ACRES) = 2.82 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.29 ** CONFLUENCE DATA ** STREAM RUNOFF To INTENSITY AREA NUMBER (CFS) (MIN.) (INCH /HOUR) (ACRE) 1 12.03 17.55 3.408 3.66 2 9.29 16.86 3.490 2.82 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC &WCD FORMULA OF PLATE D -1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF To NUMBER (CFS) (MIN.) 1 20.84 16.86 2 21.10 17.55 COMPUTED CONFLUENCE ESTIMATES PEAK FLOW RATE(CFS) = 21. TOTAL AREA(ACRES) = 6.48 INTENSITY (INCH /HOUR) 3.490 3. 408 ARE AS FOLLOWS: 10 Tc(MIN.) = 17.55 > > > > > COMPUTE-: PIPEFL TRAVEL-TIME THRU SUBAREA < < >0 >>USING COMPUTER =- ESTIMATED PIPESIZE (NON - PRESSURE FLOW)(<<<< DEPTH OF FLOW IN 27.0 INCH PIPE IS 18.0 ]:f+CHE`:s PIPEFLOW VELOCITY(FEET /SEC.) = 7.5 UPSTREAM NODE ELEVATION = 72.00 DOWNSTREAM NODE ELEVATION = 70.50 FLOWLENG`i'H(FEET) = 190.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 21.10 TRAVEL TIME(MIN.) = .12 TC(MIN.) = 17.97 FLOW PROCESS FROM NODE 18.00 TO NODE 3.00 IS CODE = 1 --------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE << <<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 17.97 RAINFALL INTENSITY(INCH /HR) = 3.36 TOTAL_ STREAM AREA(ACRES) = 6.48 PEAK FLOW RATE(CFS) AT CONFLUENCE = 21.10 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21 ----------------------------------------------------------------------------- >>>> >RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 885.00 UPSTREAM ELEVATION = 79.50 DOWNSTREAM ELEVATION = 70.50 ELEVATION DIFFERENCE = 9.00 TC = .303 *[( 885.00 * *3) /( 9.00)] * *.2 = 11.453 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR).= 4.384 *USER SPECIFIED(GLOSAL): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8670 SUBAREA RUNOFF(CFS) = 28.54 TOTAL AREA(ACRES) = 7.51 TOTAL RUNOFF(CFS) = 28.54 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 3 ----------------------------------------------------------------------------- >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA << < << > > > > >USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW)<< < << DEPTH OF FLOW IN 27.0 INCH PIPE IS 20.9 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 8.6 UPSTREAM NODE ELEVATION = 70.50 DOWNSTREAM NODE ELEVATION = 68.60 FLOWLENGTH(FEET) = 190.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 28.54 TRAVEL_ TIME(MIN.) = .37 TC(MIN.) = 11.82 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 1 TOTAL. NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 TIME OF CONCENTRATIONVIN. ) = 11 . 8.2 RAINFALL INTENSITY ( INCH /HR) = 1.30 TOTAL STREAM AREA ( ACRE`.' ) = 7.51. PEAK FLOW RATE(CFS) AT CONFLUENCE = 28.54 ARE FLOW PROCESS FROM NODE 8.00 TO NODE 3.00 IS CODE = 21 > >> > >RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< < << ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC: = K *[(LENGTH * *3) /(ELEVATION CHANGE)3 ** 2 INITIAL SUBAREA FLOW- LENGTH = 220.00 UPSTREAM ELEVATION = 73.10 DOWNSTREAM ELEVATION = 70.50 ELEVATION DIFFERENCE = 2.60 TC = .303 *[( 220.00 * *3) /( 2.60)] * *.2 = 6.369 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 6.197 *USER SPECIFIED(GLOBAL): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8670 SUBAREA RUNOFF(CFS) = 10.64 TOTAL AREA(ACRES) = 1.98 TOTAL RUNOFF(CFS) = 10.64 FLOW PROCESS FROM NODE 8.00 TO NODE 3.00 IS CODE = 1 ----------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< > > > > >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES << <<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 6.37 RAINFALL INTENSITY(INCH /HR) = 6.20 TOTAL STREAM AREA(ACRES) = 1.98 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.64' ** CONFLUENCE DATA ** STREAM RUNOFF To INTENSITY AREA NUMBER (CFS) (MIN.) (INCH /HOUR) (ACRE) 1 21.10 17.97 3.361 6.48 2 28.54 11.82 4.303 7.51 3 10.64 6.37 6.197 1.98 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC &WCD FORMULA OF PLATE D -1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. * * * * * * W. *• * * * * * * * * � * * * * * y: * Y: Yc yc * �t )k Y: * * * * �[ * * * �: * y:* * * � y: * y; * * * * * y: * W. * * * y: * * is �t * is �t * it * * * * RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF To INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 33.50 6.37 6.197 2 49.81 11.82 4.303 3 09.16 17.97 3.361 PEAK FLOW RATE(CFS) 49.81 TO MIZ ) = .82 TOTAL. AREA ( ACRES ) = 15.97 Y:Y:Y:Y:XY:XXXX * *Yc X:I'Y: Y:X YCXXY: Y:XX W.XXXXY: Y: Y: W,X Y: Y: W,Y;:t:r *:kX Y: Y: Y: Y; Y:X X: \X Y:XY:XY:X Y:XY; Y: W.XXXXY: k. Y: iXX *Y:X FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 3 > > > >> COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA <<< << >> > > >USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW)<<<<< DEPTH OF FLOW IN 33.0 INCH PIPE IS 26.8 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 9.7 UPSTREAM NODE ELEVATION = 70.50 DOWNSTREAM NODE ELEVATION = 69.50 FLOWLENGTH(FEET) = 105.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 09.81 TRAVEL_ TIME(MIN.) = .18 TC(MIN.) = 12.00 FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 1 ------------------------------------------------- 7 -------------------------- > >> > >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE( < <<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 12.00 RAINFALL INTENSITY(INCH /HR) = 4.26 TOTAL STREAM AREA(ACRES) = 15.97 PEAK FLOW RATE(CFS) AT CONFLUENCE = 49.81 FLOW PROCESS FROM NODE 9.00-TO NODE 4.00 IS CODE = 21 ------------ - --------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS< < < << ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 310.00 UPSTREAM ELEVATION = 73.90 DOWNSTREAM ELEVATION = 71.30 ELEVATION DIFFERENCE = 2.60 TC = .303 *[( 310.00 * *30( 2.60)] * *.2 = 7.824 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.489 *USER SPECIFIED(GLOBAL): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8670 SUBAREA RUNOFF(CFS) = 7.61 TOTAL AREA(ACRES) = 1.60 TOTAL RUNOFF(CFS) = 7.61 FLOW PROCESS FROM NODE 9.00 TO NODE 4.00 IS CODE = 1 ----------------------------------------------------------------------------- > > >> >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE << < << > >>>>AND COMPUTE VARIOUS CONFL.UENCED STREAM VALUES << <<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 7.82 RAINFALL INTENSITY(INCH /HR) = 5.49 TOTAL STREAM AREA(ACRES) = 1.60 * *, CONFLUENCE DATA STREAM RUNOFF Tc INTENSITY AQ`EA NUMBER (CFS) (MIN.) (INCH /HOUR) iACRE) 1 49.81 12.00 &.264 15.97 2 7.61 7.82 5.489 1.60 IN TH S COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON TKI RCFC &WCCD FORMULA OF PLATE D -1 AS DEFAULT VALUE, THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW_ *x: x:��: *x: *X *fix: x: x: *x: x: ;e ;l•x; *x: *i: isx: k*: V**' isisisx; x:x:W.� *x: *�x;x:iX * *:t�x:'Y. *:e x: ��i: :k * *x: is *� *x; x:� *wx;* RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc NUMBER (CFS) (MIN.) 1 40.08 7.82 2 55.72 12.00 COMPUTED CONFLUENCE ESTIMATES WEAK FLOW RATE(CFS) = 55. TOTAL AREA(ACRES) = 17.57 INTENSITY (INCH /HOUR) 5.489 1.264 ARE AS FOLLOWS: 72 `1"c(MIN. ) = 12.00 FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 3 ----------------- - - - -_- --------------------_--------------------------------- >>> > >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >> M USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW)<< <<< DEPTH OF FLOW IN 33.0 INCH PIPE IS 24.3 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 11.9 UPSTREAM NODE ELEVATION = 71.30 DOWNSTREAM NODE ELEVATION = 68.00 FLOWLENGTH(FEET) = 225.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 55.72 TRAVEL TIME(MIN.) = .32 TC(MIN.) = 12.32 FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 1 ----------- --------------------------- -------------------------------------- > >>> >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < < < << TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 12.32 RAINFALL INTENSITY(INCH %HR) = 4.20 TOTAL STREAM AREA(ACRES) = 17.57 PEAK FLOW RATE(CFS) AT CONFLUENCE = 55.72 FLOW PROCESS FROM NODE 10.00 TO NODE 5.00 IS CODE = 21 -------------------------_.-------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<< << ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K *[( LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 300.00 ELEVATION DIFFERENC 3.00 TC = .303 *[( 300.OU * *3)/( 3.,00) * *.2 = i.455 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.648 *USER SPECIFIED(GLOBAL): COMMERCIAL_ DEVELOPMENT RUNOFF COEFFICIENT = .8670 SUBAREA RUNOFF(CFS) = 7.88 TOTAL_ AREA(ACRES) = 1.61 TOTAL RUNOFF(CFS) = 7.88 FLOW PROCESS FROM NODE 10.00 TO NODE 5.00 IS CODE = 1 > > > >>DESI:GNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< > > > >>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 7.45 RAINFALL INTENSITY(INCH /HR) = 5.65 TOTAL STREAM AREA(ACRES) = 1.61 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.88 ** CONFLUENCE DATA ** STREAM RUNOFF To INTENSITY AREA NUMBER (CFS) (MIN.) (INCH /HOUR) (ACRE) 1 55.72 12.32 4.200 17.57 2 7.88 7.45 5.648 1.61 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC &WCD FORMULA OF PLATE D -1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF To INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 41.61 7.45 5.648 2 61.58 12.32 4.200 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 61.58 Tc(MIN.) = 12.32 TOTAL AREA(ACRES) = 19.18 FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 3 ----------------------------------------------------------------------------- >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA < < < << > > > >>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) << <<< DEPTH OF FLOW IN 36.0 INCH PIPE IS 27.4 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 10.7 UPSTREAM NODE ELEVATION = 71.00 DOWNSTREAM NODE ELEVATION = 69.70 FLOWLENGTH(FEET) = 125.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 61.58 TRAVEL TIME(MIN.) _ .20 TC(MIN.) = 12.51 > > > > >DESIGNATE INDERENDENT STREAM FOR CONFLUENC&,<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 12.51 RAINFALL INTEN: =:ITY ( INCH /HR) = 4.161 TOTAL STREAM AREA(ACRES) 19.15 PEAK FLOW RATE(CFS) AT CONFLUENCE. = 61.58 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * v_ * v * * * * * * * * * * * * * * * * *** * * * * * * * * * * FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 21 -----------------------------------------_------_------------------------------ >0 0 RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<< << ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC == K *[(LENGTH "O V ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 400.00 UPSTREAM ELEVATION = 75.00 DOWNSTREAM ELEVATION = 71.00 ELEVATION DIFFERENCE = 4.00 TC = ,303 *[( 400.00 * *3) /( 4.00)] * *.2 = 8.364 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5,277 *USER SPECIFIED(GLOBAL): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8670 SUBAREA RUNOFF(CFS) = 18.57 TOTAL AREA(ACRES) = 4.06 TOTAL RUNOFF(CFS) = 18.57 FLOW PROCESS FROM NODE 12.00 TO NODE 6.00 IS CODE 3 --------------------------------------------_._------------------------------- >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA < < < << > >> > >USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW)<< < << DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.9 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 7.9 UPSTREAM NODE ELEVATION = 71.00 DOWNSTREAM NODE ELEVATION = 69.00 FLOWLENGTH(FEET) = 200.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 20.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 18.57 TRAVEL TIME(MIN.) = .42 TC(MIN.) = 8.79 FLOW PROCESS FROM NODE 12.00 TO NODE 6.00 IS CODE = 1 > > >> >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <<<<< > > > > >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES << < << TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.79 RAINFALL INTENSITY(INCH /HR) = 5.13 TOTAL STREAM AREA(ACRES) = 4.06 PEAK FLOW RATE(CFS) AT CONFLUENCE = 18.57 ** CONFLUENCE DATA ** STREAM RUNOFF To INTENSITY AREA NUMBER (CFS) (MIN.) (INCH /HOUR) (ACRE) 1 61.58 12.51 4.161 19.18 ** *A * *A *** WARNING * * * * * **:: IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC &WCD FORMULA OF PLATE D -1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. RAINFALL_ INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA, USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc NUMBER (CFS) (MIN.) 1 61.83 8.79 2 76.66 12.51 COMPUTED CONFLUENCE ESTIMATES PEAK FLOW RATE(CFS) = 76. TOTAL AREA(ACRES) = 23.24. INTENSITY (INCH /HOUR) 5.125 4.161 ARE AS FOLLOWS: 66 TOMIN. ) = 12.51 FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 3 ----------------------------------------------------- 7 ---------------------- > > > > >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA << <<< > > > > >USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW)<<<<< DEPTH OF FLOW IN 39.0 INCH PIPE IS 30.4 INCHES PIPEFLOW VELOCITY(FEET /SEC.) = 11.0 UPSTREAM NODE ELEVATION = 73.00 DOWNSTREAM NODE ELEVATION = 70.20 FLOWLENGTH(FEET) = 280.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 76.66 TRAVEL TIME(MIN.) _ .42 TC(MIN.) = 12.93 FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < < < << TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 12.93 RAINFAL..L INTENSITY(INCH /HR) = 4.08 TOTAL STREAM AREA(ACRES) = 23.24. PEAK FLOW RATE(CFS) AT CONFLUENCE = 76.66 FLOW PROCESS FROM NODE 13.00 TO NODE 7.00 IS CODE = 21 ------------------------------------------------------------------------------ > > > > >RATIONAL METHOD INITIAL SUBAREA ANALYSIS << < << ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 300.00 UPSTREAM ELEVATION = 73.50 DOWNSTREAM ELEVATION = 71.70 ELEVATION DIFFERENCE = 1.80 TC = .303 *[( 300.00 * *3) /( 1.80)] * *.2 = 8.257 100.00 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.317 *USER SPECIFIED(GLOBAL): TOTAL AREA(ACRES) = 2.10 TOTAL RUNOFF(CF`. = 9.68 FLOW PROCESS FROM NODE 13.00 TO NODE . 7.00 IS CODE - 7. >>> > >DESIGNATE INDEPENDENT" STREAM FOR CONFLUENCE<<<<< W M AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<< <<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ,ARE: TIME OF CONCENTRATION(MIN.) = 8.26. RAINFALL INTENSITY(INCH/HR) = 5.32 TOTAL STREAM AREA(ACRES) = 2.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.68 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH /HOUR) (ACRE) 1 76.66 12.93 4.080 23.24 2 9.68 8.26 5.317 2.10 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC &WCD FORMULA OF PLATE D -1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF To NUMBER (CFS) (MIN.) 1 58.62 8.26 2 84.09 12.93 COMPUTED CONFLUENCE ESTIMATES PEAK FLOW RATE(CFS) = 84. TOTAL AREA(ACRES) = 25.34 INTENSITY (INCH /HOUR) 5.317 4.080 ARE AS FOLLOWS: D9 TKMIN. ) = 12.93 l' * � Y: * * * * Y: Y; Jk r: * * Y: * * * * * * Y: * * Y: ri• Jk * * * * Y: Yc * * Y: * Y: Y, t t Y: � * Y: Y: * Y: * * * * Y: * Y: * * Y: Y: Y: * * * * * Y: * �: * Y: * * Y; )l• Yc :t FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 21 --_-----------------------------------------------------------------------_----- >> > > >RATIONAL METHOD .INITIAL SUBAREA ANALYSIS < << << ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL_ TC = W N LENGTH * *3) /(ELEVATION CHANGE),] * *.2 INITIAL SUBAREA FLOW - LENGTH = 1000.00 UPSTREAM ELEVATION = 79.50 DOWNSTREAM ELEVATION = 72.00 ELEVATION DIFFERENCE = 7.50 TC = .303 *[( 1000.00 * *3) /( 7.50)] * *.2 = 12.781 100.00 YEAR RAINFALL INT'ENSITY(INCH /HOUR) = 4.109 *USER SPECIFIED(GLOBAL): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8670 SUBAREA RUNOFF(CFS) = 16.67 TOTAL AREA(ACRES) = 4.68 TOTAL RUNOFF(CFS) = 16.67 ' �y:* s� ; * * * * * * *x;x:Y:Y: *X * *�kY;��:kY; .�l• *l: Y: �l•Y; Y. Y' *.��Y *ik l:X *;r;r�l• *� * *Y;Y:Y:Y: *yc* * *�t *YC Y: Y: �t �t �k �t * *�t *�X * * * *Y; FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 21 ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH * *3) /(ELEVATION CHANGEA'.2 INITIAL SUBAREA FLOW - LENGTH = 400.00 UPSTREAM ELEVATION = 75.00 DOWNSTREAM ELEVATION = 72.50 ELEVATION DIFFERENCE = 2.50 TC = .303 *[( 400.00" *3) /( 2.50)] * *.2 = 9.188 100.00 YEAR RAINFALL INTENSIT'Y(INCH /HOUR) = 4.992 *USER SPECIFIED(GLOBAL): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8670 SUBAREA RUNOFF(CFS) = 8.83 TOTAL AREA(ACRES) = 2.00 TOTAL RUNOFF(CFS) = 8.83 END OF STUDY SUMMARY: PEAK FLOW RATE(CFS) = 8.83 T& MIN.) = 9.19 TOTAL AREA(ACRES) = 2.04 END OF RATIONAL METHOD ANALYSIS / J, /Z 8 9 2 b 75 7 S 6 ",i1" - 5 y i v as .3 PP i r, n �' t fp a ��... tom+ 3 .� ' , •4 .0 i z .23 q o .25 V /5 O/ _JS N1 T Loco/ Ocior�sso� (�! '2 -30- TABLE L B,.reoa o/ P�.ibf� ,Pc6ds �c�cprnoh !o� Coa�c:�f;• ci �a�b .0"wroa,7 TN•0 nosh, C.C. open,: ,79 i/.'/e!s of /ow C. B. # 1 CURB OPENING (SUMP) Given: (a) Discharge CFS (b) Curb type "A-2" "D" 4" Rolled G" }}044ed ,r Solution:_ H (depth at opening) _ ��°i inches h (height of opening) _ g niches Ii /h From Chart: Q /ft. of opening 1' "7 CFS L required ft. U S L L= ft 6 9 CjI CAR�yO�Ek TO �f3 z C. B. CURB' OPENING (SUMP) Given: / (a) Discharge CFS (b) Curb type "A -2" ''D" 4" Rolled G" 1 r Solution: H (depth at opening) inches; h (height of opening) _ inches N /h From Chart: Q /ft, of opening 22 CFS L required = 1 S / 2.2 ft. U S L L = B.o ft, Given: C. B. # -3 CURB OPENING (SUMP) (a) Discharge cl /00 = 7 6f CrS (b) Curb type "A-2" "D" 4" Rolled FbbotuFd- Solution: H (depth at opening) _ 10 inches h (height of opening) _ niches H/h From Chart: Q /ft, of opening CFS L required = 7.61 / 2,2r ft. l� U S E L 300 C d .d a N _W t BUREAU OF PUBLIC ROADS p1YIS10N TWO WASK, D.C.; id 8 i P < 2 (c, b) A-6 OW I !! I I !! 11 I I I I ! 1! 1 � 1 1 t i I •t I' +I t MV I ww M. I tttl 1 I I I I I I mc t t t i t 1 t HEAPS UIP TO 1 L4* CU&Lr 41 MfjlE3 1 1 1 111 1 1 I y HEADS 40k I I.�.Ian .VEl& t1ES i I I I CAPACITY OF CRATE INLET IN SUMP WATER PONDED ON. GRATE . Given: C. B. # &12 471 N (SUMP) (a) Discharge /00 = '79 CPS (b) �� _ C.6. MO. S 6 - -A.C. FC.D) Solution: H (depth at opening) = AREA OFGRArING r AM"j` 7915, inches �� h (height of opening) - inches �:: l ., H/h = / . P. 2C2.9s Y-2,1 = to. f4 F. From Chart: FeR Hale Q/P = 2.e CF�IF P,;„ 7.112-S =2.8 C 10.14 F Q /ft, of opening = CFS L required - / = ft, l� U S L L = it. VSO C.8 No. S (L,A •C. F,C. D) W'FM ONE `4ZAr/tv6 � C. B. # 5 G.R4rrNC- (SUMP) Given: (a) Discharge q.6 CFS (b) Curb type "A-2" "D" 4" Rolled G" Rolled 3, 44 < S. 86 sF 6.6 4 < ia. 14 14'rH ONE- �sP -A-r-I U6- Sri K0. 2 Solution: H (depth at opening) _ inches h (height of opening) = niches H /h From Chart: Q /ft. of opening CFS L required l� U S L L= ft. ft. Given: C. B. # CURB' OPENING (SUMP) (a) Discharge C,Z 100 = 10 i CrS (b) Curb type "A-2" " .'D" 4" Rolled G" Solution: H (depth at opening) _ IO inches; h (height of opening) a 8 inches H /h = to / 8 1.26 __j From Chart: Q /ft. of opening = 2 2 S CFS L rcquircd 10. L / 2,25 = 4.5 USE L= s. o ft, R;C, R;D. Ste. NO. 300 0 ft. C. B. # CURW OPENING (SUMP) Given: (a) Discharge C,Z !OO = 19,8 CI'S (b) Curb type "A-2" "D" 4" Rolled G" Solution: H (depth at opening) _ PD inches h (height of opening) = g i»ches S'Ll From Chart: Q /ft, of opening 2125 CFS L required 8 8 / 2.25 = 3. 9 ft. USE L= 40 it, USE R M STD NO. 3 00 c Given: C. B. # 8 CURB' OPENING (SUMP) (a) Discharge C,Z !DD CFS (b) Curb type "A -2" "D" 4" Rolled G" 1 Solution: _ H (depth at opening) _ ID inches; h (height of opening) _ $ inches H /h From Chart: Q /ft. of opening 2•2s CFS L required - 16. % / 2.2- = 7,4 ft. t� U S L L ft. USE QC R.9 SrD. No. 300 Given: C. B. # 9 CURB OPENING (SUMP) (a) Discharge C1' loo = 21, z CFS (b) Curb type "A -2" "D" 4" Rolled G" Rolled Solution: H (depth at opening) _ inches h (height of opening) = 10 inches I.2 From Cliart: Q /ft. of opening = 3. D CFS L required 021, 2 / 3.0 = 7.4 ft. USE L= S•p ft. USE r?CJ2D SrD• No. 300 PRESSURE PIV: IFl_OW HYDRAULICS COMPUTER ,;OGRAM PACKAGE (Reference: LACFD, LACRD, & Oc'EMA HYDRAULICS CRITERTON) (C) COpyri gnt 1982-90 Advanced Engineering Software ,are Wes) Ver. 4.aB Release Date: 1/20/91 Serial 4 9188 Analysis prepared by: HALL & FOREMAN, INC. 3602 INLAND EMPIRE BLVD., SUITE C -320 ONTARIO, CA 91764 (714)901 -3570 DESCRIPTION OF STUDY' LINE "A'' J.N. 4188 LA QUINTA FILE: 4188LA.OUT FILE NAME: 4188LA.DAT TIME /DATE OF STUDY: 15:15 3/ 9/1992 NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = .00 FLOWLINE ELEVATION = 56.60 PIPE DIAMETER(INCH) = 36.00 PIPE FLOW(CFS) = 84.10 ASSUMED DOWNSTREAM CONTROL HGL = 59.600 NODE .00 : HGL= < 59.600 >;EGL = < 61.798 >;FLOWLINE = < 56.600> PRESSURE FLOW PROCESS FROM NODE .00 TO NODE 78.14 IS CODE = 1 UPSTREAM NODE 78.14 ELEVATION = 58.01 ------------------------------------------------------------------------_--_- CALCULATE PRESSURE FLOW FRICTION LOSSES(L.ACFCD): PIPE FLOW = 84.10 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 78.14 FEET MANNINGS N = .01000 SF= (Q /K) * *2 = (( 84.10)/( 867.078)) * *2 = .0094075 HF =L *SF = ( 78.14) *( .0094075) = .735 NODE 78.14 HGL= < 60.335 >;EGL = < 62.533 >;FLOWLINE = < 58.010> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL_ LOST PRESSURE HEAD USING SOFFIT CONTROL = 67 NODE 78.14 . HGL= < 61.010 >;EGL = < 63.208 >;FL..OWLINE = < 58.010> PRESSURE FLOW PROCESS FROM NODE 78.14 TO NODE 81.14 IS CODE = 5 UPSTREAM NODE 81.14 ELEVATION = 58.02 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 76.7 36.00 7.069 10.851 30.000 1.828 2 84..1 36.00 7.069 11.898 -- 2.198 3 .0 .00 .000 .000 .000 - 4 .0 .00 .000 .000 .000 - 5 7.4 = = =05 EQUALS BASIN INPUT = == JUNCTION FORMULAE USED: UPSTREAM MANNINGS N = .01000 DOWNSTREAM MANNINGS N .01000 UPSTREAM FRICTION `:;LOPE _ .00782 DOWNSTREAM FRICTION SLOPE = .00901. AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00862 .:JUNCTION LENGTH(FEET) = 3.00 FRICTION LOSS = 026 ENTRANCE LOSSES = 440 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 1.229+ 1.828- 2.198 +( .026) +( .440) = 1.325 NODE 81.14 . HGL= < 62.705);EGL= < 64.533 >;FLOWLINE= < 58.020> PRESSURE: FLOW PROCESS FROM NODE 81.14. TO NODE 263.51 IS CODE UPSTREAM NODE 263.51 ELEVATION = 58.38 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 76.70 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 182.37 FEET MANNINGS N = .01000 SF= (Q /K) * *2 = (( 76.70)/( 867.078)) * *2 = .0078248 HF =L *SF = ( 182.37) *( .0078248) = 1.427 NODE 263.51 : HGL= < 64.132 >;EGL = < 65.960 >;FLOWLINE = < 58.380> PRESSURE FLOW PROCESS FROM NODE 263.51 TO NODE 266.79 IS CODE = 2 UPSTREAM NODE 266.79 ELEVATION = 58.39 CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD): PIPE FLOW = 76.70 CFS PIPE DIAMETER = 36.00 INCHES PRESSURE FLOW AREA = 7.069 SQUARE FEET FLOW VELOCITY = 10.85 FEET PER SECOND VELOCITY HEAD = 1.828' HMN = .05 *(VELOCITY HEAD) _ .05 *( 1.828) _ .091 NODE 266.79 : HGL= < 64.223 >;EGL = < 66.052 >;FLOWLINE = < 58.390> PRESSURE FLOW PROCESS FROM NODE 266.79 TO NODE 352.50 IS CODE = 1 UPSTREAM NODE 352.50 ELEVATION = 58.57 ---------------------------------------------- -------------------- __-- - - - - -- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 76.70 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 85.71 FEET MANNINGS N = .01000 SF= (Q /K) * *2 = (( 76.70)/( 867.078)) * *2 = .0078248 HF =L *SF = ( 85.70*( .0078248) _ .671 NODE 352.50 : HGL= < 64.894 >;EGL = < 66.722 >;FLOWLINE = < 58.570> PRESSURE FLOW PROCESS FROM NODE 352.50 TO NODE 357.17 IS CODE = 5 UPSTREAM NODE 357.17 ELEVATION = 58.58 ----------------------------------------------------- - - - - -- ------------- - - - - -- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 61.6 36.00 7.069 8.715 .000 1.179 2 76.7 36.00 7.069 10.851 - -- 1.828 3 15.1 18.00 1.767 8.545 45.000. - 4 .0 .00 .000 .000 .000 - 5 .0= = =05 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=( 02* V2- 01* V1* COS(DEL-TA1)- Q3 *V3 *COS(DELTA3)- UPSTREAM M/-'J4NING`, I\ 0 10 0 0 DOWNSTREAM MANNINGS .v = .01000 UPSTREAM FRICTION :SLOPE = .00505 DOWNSTREAM FRICTION SLOPE _ .00782 AVERAGED FRICTION SLOPE IN JUNCTION JUNCTION LENGTH(FEET) = a.67 ASSUMED AS .00644 FRICTION LOSS = .0 ?0 ENTRANCE LOSSES = .000 JUNCTION LOSSES = DY +HVI -H'V2+ (FR I:CT I:ON LO`>S) + ( ENTRANCE LOSSES) JUNCTION LOSSES = .897+ 1.179- 1.828 +( .030) +( .000) = .278 NODE 357.17 : HGL= < 65. 82.1. > EGL= < 67. 001 > ; FL._OWLINE= < 58.580> PRESSURE FLOW PROCESS FROM NODE, 357.17 TO NODE 380.00 IS CODE = 3 UPSTREAM NODE 380.00 ELEVATION = 58.63 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): PIPE FLOW- 61.60 CFS PIPE DIAMETER = 36.00 INCHES CENTRAL_ ANGLE = 29.060 DEGREES PIPE LENGTH = 22.83 FEET MANNINGS N = .01000 PRESSURE FLOW AREA = 7.069 SQUARE FEET FLOW VELOCITY = 8.71 FEET PER SECOND VELOCITY HEAD = 1.179 BEND COEFFICIENT(KS) = 1421 HB =KB *(VELOCITY HEAD) _ ( .142) *( 1.179) = .168 PIPE CONVEYANCE FACTOR = 867.078 FRICTION SLOPE(SF) _ .0050471 FRICTION LOSSES = L *SF" _ ( 22.83)*( .0050071) = .115 NODE 380.00 : HGL= < 66.104 >;EGL = < 67.283>;FLOWLINE= < 58.630> PRESSURE FLOW PROCESS FROM NODE 380.00 TO NODE 412.88 IS CODE = 3 UPSTREAM NODE 412.88 ELEVATION = 59.42 ------------------------------------------------------------------------------- CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(QCEMA): PIPE FLOW = 61.60 CPS PIPE DIAMETER = 36.00 INCHES CENTRAL ANGLE = 41.860 DEGREES PIPE LENGTH = 32.88 FEET MANNINGS N = .01000 PRESSURE FLOW AREA = 7.069 SQUARE FEET FLOW VELOCITY = 8.71 FEET PER SECOND VELOCITY HEAD = 1.179 BEND COEFFICIENT(KB) _ .1705 HBnKB *(VELOCITY HEAD) _ ( .170) *( 1.179) = .201 PIPE CONVEYANCE FACTOR = 867.078 FRICTION SLOPE(SF) _ .0050471 FRICTION LOSSES = L *SF = ( 32.88) *( .0050471) = .166 NODE 412.88 : HGL= < 66.471 >;EGL = < 67.650 >;FLOWLINE = < 59.420> PRESSURE FLOW PROCESS FROM NODE 412.88 TO NODE 478.87 IS CODE = 1 UPSTREAM NODE 478.87 ELEVATION = 61.01 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 61.60 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 65.99 FEET MANNINGS N = .01000 SFa(Q /K) * *2 = (( 61.60)/( 867.078)) * *2 = .0050471 HF=L *SF = ( 65.99) *( .0050471) = .333 NODE 478.87 : HGL= < 66.804 >;EGL = < 67.983 >;F.LOWLINE = < 61.010> PRESSURE FLOW PROCESS FROM NODE 478.87 TO NODE 482.16 IS CODE = 5 UPSTREAM NODE 482.16 ELEVATION = 61.09 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV _z r� J 4 .0 .1.10 5 5.9===05 EQUALS .000 0(:10 ;cicl .000 .000 .000 BASIN INPUT = == LACF"'CD AND O EMA PRESSURE FLOW jUNCT ION FORMULAE USED: DYE( 02* V2-- 01*V1 `COS(DELTAI)- O3 *VS "COS(DELTAS)- 04*'Va *COS CDELTAa)) / ((A1 +A2) * 16.1 ) UPSTREAM MANNINGS N = .01000 DOWNSTREAM MANNINGS N = .01000 UPSTREAM FRICTION SLOPE = .00413 DOWNSTREAM FRICTION SLOPE _ .00505 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00459 JUNCTION LENGTH(FEET) _ 3.29 FRICTION LOSS = .015 ENTRANCE LOSSES = .236 JUNCTION LOSSES = DY +HVI -HV2+(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = .514+ .964- 1.179 +( .015) +( .236) _ .550 NODE 482.16 : HGL= < 67. 569> ; E:;.L= C 68. 533> ; FL..OWLINE= < 61.090> PRESSURE FLOW PROCESS FROM NODE 482.16 TO NODE 724.96 IS CODE = 1 UPSTREAM NODE 724.96 ELEVATION = 61.58 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 55.70 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 242.80 FEET MANNINGS N = .01000 SF= (Q /K) * *2 = (( 55.70)/( 867.078))' *2 = .0041266 HF =L *SF = ( 242.80) *( .0041266) = 1.002 NODE 724.96 : HGL= < 68.571 >;EGL = < 69.535 >;FLOWLINE = < 61.580> PRESSURE FLOW PROCESS FROM NODE 724.96 TO NODE 727.96 IS CODE = 5 UPSTREAM NODE 727.96 ELEVATION = 61.59 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 49.8 36.00 7.069 7.045 .000 .771 2 55.7 36.00 7.069 7.880 -- .964 3 .0 .00 .000 .000 .000 - 4 .0 .00 .000 .000 .000 - 5 5.9 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY =(02 *V2- 01 *'VI COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = .01000 DOWNSTREAM MANNINGS N = .01000 UPSTREAM FRICTION SLOPE _ .00330 DOWNSTREAM FRICTION SLOPE _ .00413 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00371 JUNCTION LENGTH(FEET) = 3.00 FRICTION LOSS = .011 ENTRANCE LOSSES = .193 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = .387+ .771- .964. +( .011) +( .193) _ .397 NODE 727.96 : HGL= < 69.162>;EGL= < 69.932 >;FLOWLINE = < 61.590> PRESSURE FLOW PROCESS FROM NODE 727.96 TO NODE 832.25 IS CODE = 1 UPSTREAM NODE 832.25 ELEVATION = 61.80 PIPE LENGTH = 1 29 FEE! MANNINGS N = 11000 SF =(0 /K) * *2 = (( 49.80)/( 867.078)) * *2 = -0032987 HF =L *SF = ( 10&.29)*( .00329S7) = .3a4 NODE 832.25 : HGL= < 6 +. 506> ; EGL= < 70. 276> ; FLOWLINE= < 61.800> PRESSURE FLOW PROCESS FROM NODE 832.25 TO NODE 835.25 IS CODE: = 5 UPSTREAM NODE 835.25 ELEVATION = 61.84 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE. DIAMETER AREA VELOCITY DELTA HV 1 28.5 36.00 7.069 4.032 17.210 .252 2 09.8 36.00 7.069 7.045 -- .771 3 11.6 24.00 3.142 3.692 69.320 - 4 .0 .00 .000 .000 .000 - 5 9.7 = = =05 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE_ FLOW JUNCTION FORMULAE USED: DY=(02*V2-01*V1*CO`W(DELTAI)-03*V3*COS(DELTA3)-- 04*V4- COS(DELTAS)) /((A1 +A2)y16.1) UPSTREAM MANNINGS N = .01000 DOWNSTREAM MANNINGS N = .01000 UPSTREAM FRICTION SLOPE _ .00108 DOWNSTREAM FRICTION SLOPE = .00330 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00219 JUNCTION LENGTH(FEET) = 3.00 FRICTION LOSS = .007 ENTRANCE LOSSES = .154 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = .993+ .252- .771 +( .007) +( .154) = .635 NODE 835.25 : HGL= < 70.659 >;EGL = < 70.912 >;FLOWLINE= < 61.840> PRESSURE FLOW PROCESS FROM NODE 835.25 TO NODE 1011.92 IS CODE = 1 UPSTREAM NODE 1011.92 ELEVATION = 64.17 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 28.50 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 176.67 FEET MANNINGS N = .01000 SF =(Q /K) * *2 = (( 28.50)/( 867.078)) * *2 = .0010804 HF =L *SF = ( 176.67) *( .0010804) = .191. NODE 1011.92 : HGL= < 70.850 >;EGL = < 71.102>;FLOWLINE= < 64.170> PRESSURE FLOW PROCESS FROM NODE 1011.92 TO NODE 1011.92 IS CODE = 8 UPSTREAM NODE 1011.92 ELEVATION = 64.17 ----------------- - ---------------------------------------------------------- CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS) = 28.50 PIPE DIAMETER(INCH) = 36.00 PRESSURE FLOW VELOCITY HEAD = .252 CATCH BASIN ENERGY LOSS = .2 *(VELOCITY HEAD) = .2 *( .252) - .050 NODE 1011.92 : HGL= < 71.153 >;EGL= < 71.153 >;FLOWLINE = < 64.170> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM PRESSURE PIK=- -FLOW HYDRAULICS COMPUTER !&OGRAM PACKAGE (Reference: L_ACFD,LACRD,& OCEMA HYDRAULICS CRITERION) Copyright 1982-90 Advanced Engineering Software (aes,l Ver. 4.4B Release Date: 1/20/91 Serial # 9188 Analysis prepared by: HALL & FOREMAN, INC. 3602 INLAND EMPIRE BLVD., SUITE. C -320 ONTARIO., CA 91764 (714)941 -3570 e* ear *xv er kxr ex e k k�: e k DESCRIPTION OF STUDY LINE "B'' .7. N. 4188 LA QUINTA FILE: 4188LB.OUT Yc YC Yc is Y�Yt �k Y�YC YC Yc Yc yc� *ic icy *�k YC:kY: ak Yt y: * * * * * * *�: ;k �l•:k ;k ;k YC Yc ��k YC �;k* * � * *�� * * *+;* �: :k� *YC �k �:� * * *y: is * ** FILE NAME: 4188LB.DAT TIME/DATE OF STUDY: 15:21 3/ 9/1992 NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = .00 FLOWLINE ELEVATION = 62.30 PIPE DIAMETER(INCH) = 24.00 PIPE FLOW(CFS) = 21.10 ASSUMED DOWNSTREAM CONTROL HGL = 70.660 NODE .00 : HGL= < 70.660 >;EGL = < 71.360>;FLOWLINE= < 62.300> PRESSURE FLOW PROCESS FROM NODE .00 TO NODE 30.00 IS CODE = 1 UPSTREAM NODE 30.00 ELEVATION = 62.36 ----------------------------------------------------------------- - - - -._ - - - - - -- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 21.10 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 30.00 FEET MANNINGS N = .01000 SF= (Q /K) * *2 = (( 21.10)/( 294.091)) * *2 = .0051476 HF =L *SF = ( 30.00) *( .0051476) = .154 NODE 30.00 : HGL= < 70.814 >;EGL = < 71.515 >;FLOWLINE = < 62.360> PRESSURE FLOW PROCESS FROM NODE 30.00 TO NODE 160.00 IS CODE 1 UPSTREAM NODE 160.00 ELEVATION = 67.12 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 21.10 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 130.00 FEET MANNINGS N = .01000 SF= (Q /K) * *2 = (( 21.10)/( 294.091)) * *2 = .0051476 HF =L *SF = ( 130.00) *( 0051476) = .669 NODE 160.00 : HGL= < 71.484 >;EGL = < 72.184 >;FLOWL.INE = < 67.120> PRESSURE FLOW PROCESS FROM NODE 160.00 TO NODE 183.88 IS CODE = 1 UPSTREAM NODE 183.88 ELEVATION = 68.00 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): r� SF =(0/0 `2 - I. .1.. 1 -lJ I ( 2' 6., /24)) *2 = 086999 HF =L *SF = ( 23. tics) ( .0086991) = .20a- NODE 18:.88 : HGl_= < 71.691 >;EGL= < 72.392>;FL...OWLINE= < 68.000) PRESSURE FLOW PROCESS FROM NODE 18:3.88 TO NODE 183.28 IS CODE = 8 UPSTREAM NODE 183.88 ELEVAT" ON = 68.00 CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS) = 21.10 PIPE DIAMETER (INCH) = 24.00 PRESSURE FLOW VELOCITY HEAD = .700 CATCH SASIN ENERGY LOSS = .2 *(VELOCITY HEAD) = .2 *( .700) — .110 NODE 183.88 : HGL= < 72.53:2 >;EGL= < 72.532 >;FLOWLINE = < 68.000} END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM PRESSURE PIFu-- FL..OW HYDRAULICS COMPUTER n-OGRAM PACKAGE. (References LACED , LACED , & OCE:MA HYDRAULICS CRITERION) (c) Copyright 1982 --90 Advanced Engineering Software (aes) Ver. 4.4B Release Date: 1/20/91 Serial. #t 9188 Analysis prepared by: HALL._ & FOREMAN, INC. 3602 INLAND EMPIRE BLVD., SUITE C -320 ONTARIO, CA 91764 (714)941 -3570 DESCRIPTION OF STUDY * LINE "C" J.N. 4188 LA QUINTA * FILE: 4188LC.OUT FILE NAME: 4.188LC. DAT TIME /DATE OF STUDY: 15 :26 3/ 9/1992 NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND QCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = .00 FLOWLINE ELEVATION = 59.32 PIPE DIAMETER(INCH) = 18.00 PIPE FLOW(CFS) = 18.60 ASSUMED DOWNSTREAM CONTROL HGL = 65.820 NODE .00 : HGL= < 65.820 >;EGL = < 67.540 >;FLOWLINE = < 59.320> PRESSURE FLOW PROCESS FROM NODE .00 TO NODE 30.00 IS CODE = 1 UPSTREAM NODE 30.00 ELEVATION = 59.38 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LQSSES(LACFCD): PIPE FLOW = 18.60 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 30.00 FEET MANNINGS N = .01000 SF= (Q /K) * *2 = (( 18.60)/( 136.556)) * *2 = .0185525 HF =L *SF = ( 30.00) *( .0185525) = .557 NODE 30.00 : HGL= < 66.377 >;EGL = < 68.097 >;FLOWL.INE = < 59.380> PRESSURE FLOW PROCESS.FROM NODE 30.00 TO NODE 153.19 IS CODE = 1 UPSTREAM NODE 153.19 ELEVATION = 60.69 CALCULATE PRESSURE FLOW FRICTION LQSSES(LACFCD): PIPE FLOW = 18.60 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 123.19 FEET MANNINGS N = .01000 SF= (Q /K) * *2 = (( 18.60)/( 136.556)) * *2 = .0185525 HF =L *SF = ( 123.19) *( .0185525) = 2.285 NODE 153.19 : HGL= < 68.662>;EGL= < 70.382 >;FLOWLINE = < 64.690> PRESSURE FLOW PROCESS FROM NODE 153.19 TO NODE 188.53 IS CODE = 3 UPSTREAM NODE 188.53 ELEVATION = 66.22 CALCULATE PRESSURE FLOW PIPE -BEND LOSSES(OCEMA): t,IPE✓ l_LNG I H 36 FEE I I`1ANN. NGS N J1UDCi PRESSURE FLOW AREA = 1.767 SQUARE:_ FEET FLOW VELOCITY = 10.53 FEET PER SECOND VELOCITY HEAD = 1 -720 BEND COEFFICIENT(KB) _ .1768 HB= KB *(VELOC.IiY HEAD) - ( .1 %7) ( 1.720) - .094 PIPE CONVEYANCE FACTOR = 136.556 FRICTION SLOPE(SF) _ .0185525 FRICTION LOSSES = E *SF = ( 35.304 .0105525) = .656 NODE 188.53 . HGL= < 69.622 >;EGL = < 71.342 >;FLOWLINE = < 66.220> PRESSURE FLOW PROCESS FROM NODE 188.53 TO (NODE 195.10 IS CODE = 1 UPSTREAM NODE 195.10 ELEVATION = 66.50 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 18.60 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 6.57 FEET MANNINGS N = .01000 SF= (0 /,K) * *2 = (( 18.60)/( 136.556)) * *2 = .018552.5 HF =L *SF = ( 6.57) *( .0185525) = .122 NODE 195.10 : HGL= < 69.744 >;EGL. = < 71.464 >;FLOWLINE = < 66.500> PRESSURE FLOW PROCESS FROM NODE 195.10 TO.NODE 195.10 IS CODE = 8 UPSTREAM NODE 195.10 ELEVATION = 66.50 -- - - - - -- -------------------_-----------------------------------------------_- CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS) = 18.60 PIPE DIAMETER(INCH) = 18.00 PRESSURE FLOW VELOCITY HEAD = 1.720 CATCH BASIN ENERGY LOSS = .2 *(VELOCITY HEAD) = .2 *( 1.720) _ .344 NODE 195.10 : HGL= < 71.808 >;EGL= < 71.808 >;FLOWLINE = < 66.500> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM PRESSURE PIRn -FLOW HYDRAULICS COMPUTER t mOGRAM PACKAGE (Reference: LACFD, LACRD, & OCEMA HYDRAULICS CRITERION) (A Copyright 1982-90 Advanced Engineering Software ( r'9es ) Ver. 4.48 Release Cage.: 1/20/91 Serial # : +188 Analysis prepared by: HALL_ & FOREMAN, INC. 3602 INLAND EMPIRE BLVD., SUITES C -320 ONTARIO, CA 91764. (714)941-3570 DESCRIPTION OF STUDY LINE D * J.N. 4188 LA QUINTA FILE: 4188LD.OUT FILE NAME: 0188LD.DAT TIME /DATE OF STUDY: 15:28 3/ 9/1992 NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = .00 FLOWLINE ELEVATION = 58.18 PIPE DIAMETER(INCH) = 18.00 PIPE FLOW(CFS) = 16.70 ASSUMED DOWNSTREAM CONTROL HGL = 59.680 NODE .00 : HGL= < 59.680 >;EGL = < 61.067 >;FLOWLINE = < 58.180> PRESSURE FLOW PROCESS FROM NODE .00 TO NODE 68.71 IS CODE = 1 UPSTREAM NODE 68.71 ELEVATION = 67.54 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 16.70 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 68.71 FEET MANNINGS N = .01000 SF= (Q /K) * *2 = (( 16.70)/( 136.556)) * *2 = .0119558 HF =L *SF = ( 68.71) *( .0109558) = 1.028 NODE 68.71 HGL= < 60.708>;EGL_= < 62.094>;FLOWLINE= < 67.540> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGl_ LOST PRESSURE HEAD USING SOFFIT CONTROL_ = 8.33 NODE 68,71 : HGL= < 69.040>;EGL= < 70.427 >;FLOWLINE = < 67.540> PRESSURE FLOW PROCESS FROM NODE 68.71 TO NODE 68.71 IS CODE = 8 UPSTREAM NODE 68.71 ELEVATION = 67.54 CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS) = 16.70 PIPE DIAMETER(INCH) = 18.00 PRESSURE FLOW VELOCITY HEAD = 1.387 CATCH BASIN ENERGY LOSS = .2 *(VELOCITY HEAD) _ .2 *( 1.387) _ .277 NODE 68.71 : HGL= < 70.704>;EGL= < 70.704 >;FLOWLINE = < 67.540> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM PRESSURE P10FLOW HYDRAULICS COMPUTER P -OGRAM PACKAGE (Reference: LAC:FD,LACRD,& OC.EMA HYDRAULICS CRITERION) n (c) Copyright 1,.`�;�,:�,/ - -9 CJ Advanced Engineering Software (ae::, Ver_ 4.48 Release Date: 1/20/91 Serial N 918 Analysis prepared by, HALL & FOREMAN, INC. 3602 INLAND EMPIRE BLVD., SUITE C -320 ONTARIO, LA 91764 ( 714) 9G I - -35 70 DESCRIPTION OF STUDY LINE E J.N. 4188 LA OUINTA FILE: 4188LE.OUT FILE NAME: 41881LE..DAT TIME /DATE OF STUDY: 15 :37 3/ 9/1992 NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST -� -- CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = .00 FLOWLINE ELEVATION = 56.03 PIPE DIAMETER(INCH) = 18.00 PIPE FLOW(CFS) = 8.80 ASSUMED DOWNSTREAM CONTROL HGL = 57.530 NODE .00 HGL= < 57.530 >;EGL = < 57.915>;FLQWLINE= < 56.030> PRESSURE FLOW PROCESS FROM NODE .00 TO NODE 78.14 IS CODE = 1 UPSTREAM NODE 78.14 ELEVATION = 67.75 • ---------------------------------------- - - - - -- --------------- - - - -- CALCULATE PRESSURE FLOW FRICTION L.OSSES(LACFCD): • PIPE FLOW = 8.80 CFS PIPE DIAMETER = 18.00 INCHES. PIPE LENGTH = 78.14 FEET MANNINGS N = .01000 SF= (Q /K) * *2 = (( 8.80)/( 136.556)) * *2 = .0041528 HF =L *SF = ( 78.14)'`( .0041528) = .325 NODE 78.14 HGL= < 57.854>;EGL= < 58.240 >;FLOWLINE = < 67.750) ------------------------------------------------------------------------------ PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 11.00 NODE 78.14 : HGL= < 69.250 >;EGL = < 69.635 >;FLOWLINE = < 67.750> PRESSURE FLOW PROCESS FROM NODE 78.14 TO NODE 78.14 IS CODE = 8 UPSTREAM NODE 78.14 ELEVATION = 67.75 CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS) = 8.80 PIPE DIAMETER(INCH) = 18.00 PRESSURE FLOW VELOCITY HEAD = .385 CATCH BASIN ENERGY LOSS = .24 VELOCITY HEAD) = .2 *( .385) _ .077 NODE 78.14 : HGL= < 69.712 >;EGL= < 69.712>;FLOWLINE= < 67.750> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM D6 81.0 • HP v .. .. .... ... . ............. .. ............... • ............. .......... . . ........ ............ . ............ .......... .... .......... ................... .. ................... .............. .. .......... ... ........... .. ..... . ............ ......... ....... 6 A —Aw to A� S 15 0) .0 14 StiOp 4%100 0, ,..0 .4c, TO -110I MII aD fib, 1�hjj AA 21 N06 41, 40 4 - 22 CP -P I CP LA L-885' 7.51 AC �M�011D' � pq C�!/B� I `., �Ilgll @��III� ��2 � � � C I • ....... ..... 4,0 7 .............. ...................... ......... ...... ...... .......... 73 4b. 0 ,0 ~' -ate d ,� S 1 72 `, ......... .......... .......... 7 —72 .17 ............... Nf. ................. 0 2 --4 *j L-220" AC 10 Ab, > I> CH Rk j q 0 4* 1.5 1 4 I ly SCALE: 1"=100 INI WE L- 10b 1.60 A A 6 0 HA D D rose 10 rn, • L- 0' 1.61 A so op 73 d PA ✓OR 1 ' .0 S/Yops Pj 0 c Cf71.0 oil I P,46 L=400' 4-06 AC 9 p /lops 0 4- 71,7 B-3 10 WAS 'ITY OF LA 0 INTA HYDROLO . GY MAP PARCEL MAP NO. 25865 ONE ELEVEN LA QUINTA CENTER LA QUINTA, CALIFORNIA u VICINITY N.T.S. L/1, v-jv EXISTING -1v1A T T.B.O. 10 .? #%ops PAD ................ 20 >j 4,0 PAD 10 71.7 V-N (70,8) %ops PAD 71.7 far IN, .. . .......... ............ 75-0 A 6q � �, ... ... . .... . . ........... ...... . ......... .......... ........... ............... ill .. :: `\ `� \ a ...................... . ........... h .............. .... . .. . ........ .... ..... .. ......... . . ......... . . .................. 71 ................ j .0 lop �:..:: d 72 0� ............. ... i ......... ....... . ........................ ........... .. . ........ . .. ... ... ........ .......... 7 (7j. C-3 DA ::.: .. . ........ ........ . 75.0 .......... . . ....... ..... ....... . . .... qo 4.0) ........... ............ . ............ . ......... ................ .... . ..... .... . .......... ........... • 6-0) ............. 4w ............. It, ......... . ...... . ...... .. ..... .:. .. ....... ...... .......... . ...... ... ............... •0 .......... . ...... ....................... .......... . . 'o ................................ 'o ................................... m; ...... . ..... Y ......... (77. ....... ... . ........................ T4 .................... I 11 / 11 Till I -41 ------------------ ........... ....... ... ........... : .......... ........... ................ ............ :r,....;` : : : ............... .... . ............ ............. ............. ............... ................. II INN % 'INS ii I i i 00 l ' \ \ � 11 NN, 11 c IN > z INS kx ..... ...... .... ...... ............ ............. N . . . ......... ........... .62.3 N V > . ............... .... . .. ... .. ...... 7 19 W., x ir . .. ....... ... . ...... ...... yi. i...... . ... • \ .....v .......... ......... ... . ... ...... `� 7 .. .... V. ...... \ IL A 70*5 R 45 0 T .05 L 5/71 " C' V, 4 li INS CONSTRUCTION NOTES CONST, 18- CPP (CORRUGATED POLYETHYLENE PIPE) 2 CONST. 24* CPP 3 CONST. 24' RCP 4 CONST. 36* CPP IN \ \\ 5 CONST, CATCH BASIN PER RCRD STD, NO. 300 (SEE PLAN FOR LENGTH) - - 6 CONST, CATCH BASIN NO, 5 PER LACFCD SM. NO. 2—D164/W ONE. --'-6RxrE. 7 CONST. CATCH BASIN NO. 5A PER LACFCD S. Nt . NO. 2-0195/W 0 . QKATE. 8 CONST. JUNCTION STRUCTURE NO 2 PER RU N0. ID STD. .. / , NSA, % . .......... ... . . .......... ... ......... ... ................ ...... ....... .. ......... ........... ............ w ................e...1 t-Az INS11.11-45,00' ............ . .......... . _1 8 64' ........... . . . . . . . ... 35 ........ . . . ............. 112;:� .... . ......... ....... . ......... .... ................. ....... ... ........ 4. .......... . ..... ..... ...... ..... . ..... ...