Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
30092
3002 i�0uur IE 3002 DRAINAGE STUDY FOR TRACT MAP NO. 30092 COUNY OF RIVERSIDE, CITY OF LA QUINTA CALIFORNIA Prepared for: K. HOVNANIAN FORECAST HOMES, INC. 4240 Jurupa Street Suite 402 Ontario, CA 91761 (909) 937 -3270 Prepared by: Warner engineering CIVIL ENGINEERING / PLANNING / LAND SURVEYING YUCCA VALLEY ♦ PALM DESERT 73 -185 HIGHWAY 111, SUITE A PALM DESERT, CA 92260 (760) 341 -3101 REVISED APRIL 2005 C9662 DS ARED U/ NDER THE SUPERVISION OF: �N D. HOY, R.C.E. 63526 /QPpFE p.01,q N Oq��"�1�2 s y�� w 'O No. C 63526 m c Exp. 9 -30 =2006 cPj, CIVIL ��P q�OF CAUFCP/ /.? e IV DATE �O R��y Ir I- ' /� • DRAINAGE STUDY FOR TRACT MAP NO. 30092 COUNY OF RIVERSIDE, CITY OF LA QUINTA CALIFORNIA Prepared for: K. HOVNANIAN FORECAST HOMES, INC. 4240 Jurupa Street Suite 402 Ontario, CA 91761 (909) 937 -3270 Prepared by: Warner • engineering CIVIL ENGINEERING / PLANNING / LAND SURVEYING YUCCA VALLEY ♦ PALM DESERT 73 -185 HIGHWAY 111, SUITE A PALM DESERT, CA 92260 (760) 341 -3101 REVISED APRIL 2005 Ck62 DS PREPARED-idMDER THE SUPERVISION OF: i D. HOY, R.C.E. 63 a- is QPpFESSI p;N Dq��O(�� s ti� rn w No. C 63526 0{ m Cc m Exp. 9 -30 -2006 `ray CIVIL OF CAIO�� DATE ��_ , r�.' j`,44� it.t��.� ��1 �� {lI� ��W�1� 1 '� la • •. r�z,j7.i "�� � �`� '� a��"fi .��1� • TABLE OF CONTENTS VicinityMap.. ........................................................ Purpose............................................................... Description of Watershed ...... ............................... Methodology ... ............................... Conclusions .......................... ............................... Catch Basin Inlet and Street Flow Modeling.......... Retention Basin Sizing Table . ............................... Sand Filter Sizing Calculations ............................. APPENDICES 1 ................................ ............................... 2 ............................................................... 2 ............................................................... 2 3 -4 ........................... ............................... 5 -19 20 -22 ......................... ............................... 23 -27 • Appendix "A" Precipitation Data Appendix "B" Soil type Data Appendix "C" Development 100 -yr, 1, 3, 6, & 24 -hr Unit Hydrographs Appendix "D" Rational Method Of Onsite Flows EXHIBITS Exhibit "A" - Post - Development Area Drainage Map Exhibit "B" — Area "D" (Off- site)Drainage Map C7 • INDIO 0 �1L0 STATE HIGHWAY 111 C PROJECT SITE 58TH INTERSTATE 10 S� 0 O U lG0 AIRPORT BLVD AVE. I= COA CHEL LA \x"90 VICIN17y MAP (NO SCALE) THOMAS BROTHERS GUIDE D EEDIIEN 2003 PAGE 55 COO • r1 L J PURPOSE: The purpose of this study is to provide hydrologic analysis of the proposed development per Tentative Tract Map No. 30092. The City of La Quinta requires that the proposed development shall mitigate the "worst- case" 100 -year storm event. The results outlined in this study will help establish the design requirements for the site retention basins and catch basins. DESCRIPTION OF WATERSHED: The proposed 38 -acre project site consists of single- family, residential housing units located on the northwest corner of Avenue 58 and Monroe Street in the City of La Quinta. The site is presently vacant and had previously been used for agriculture. It has been graded with a slight fall of 4' from the northwest corner of the property to the southeast corner, the intersection of Avenue 58 and Monroe Street (see Exhibit A). The natural topography of the site and surrounding area shows that storm water historically flows from the northwest to the southeast. There currently exists a tile drainage system for this farmland and the areas to the north of the development. These drainage systems consist of varying sizes of buried pipe (4 %8 "), that had served to intercept irrigation flows when the land was cultivated. The outlet connection is the 14" Avenue 58 West drain line at the southeast corner of the tract boundary. Storm water runoff from the north via Monroe Street and from • the west via 58th Avenue, continues southerly and easterly along those two streets respectively. The property is bounded on the west side by the Imperial irrigation District office complex; on the south by 5$t Avenue; on the east by Monroe Street and to the north by vacant, agricultural land. The land to the north (Area "D ", see Exhibit B), contains 21.9 acres off offsite tributary. This area is a portion of a similar type of proposed development (Tentative Tract Map 31910). It will consist of approximately 132 single - family homes and is currently in the design phase. Presently, Monroe Street and Avenue 58 consist only of asphalt pavement along the property frontage without any other improvements. The proposed on -site improvements will include paved driveways, concrete walkways, patios, landscaped areas and underground utilities. Monroe Street and Avenue 58 will be improved with parkway landscaping, curb, gutter and asphalt paving. METHODOLOGY: Criteria for this study are based on the Hydrology Manual of the Riverside County Flood Control and Water Conservation District (RCFC &WCD). The rational method used to determine flows. The synthetic unit hydrograph method was used to determine flood volumes. The calculations were performed using CIVILDESIGN /CIVILCADD, a computer program developed by Joseph E. Bondadiman and Associates Incorporated, which perform the calculations in accordance with RCFCD &CD _criteria. Culverts and catch basins were sized _ base_d on the criteria found in HYDRAFLOW and FLOWMASTER, programs developed by Haestad Methods. 0 CONCLUSIONS: The proposed development will generate storm water volumes per the table below: The 100 -year, 1 -hour storm event was found to be the "worst- case" storm event for area "A ", "B" and "C ". The onsite retention basins are large enough to contain calculated volumes (see __ Basin- Information_Fo.rms).._The -basin water_depth -at- the- design_storm..e_v_ent is 5' (EL_ =_433.0.) for Area "A" / "B" and 4.8' (EL= 434.86) for Area "C ". Each basin will have the required • freeboard of 1.0' per the City of La Quinta standards. Percolation losses were not considered in the calculation providing for a greater factor of safety. UNIT HYDROGRAPHS FOR AREAS "A" & "B" Retention Basin #1 Unit Hydrographs Unit Hydrographs Onsite Basin Volume (C.F.) Onsite Basin Volume C.F.) Duration (hours) Volume (C.F.) 29,732 Volume (A.F.) 159,244 100 -YR 1 -HR 158,960 100 -YR 3 -HR 3.65 0.59 100 -YR 3 -HR 136,151 117,404 3.12 The 100 -year, 1 -hour storm event was found to be the "worst- case" storm event for area "A ", "B" and "C ". The onsite retention basins are large enough to contain calculated volumes (see __ Basin- Information_Fo.rms).._The -basin water_depth -at- the- design_storm..e_v_ent is 5' (EL_ =_433.0.) for Area "A" / "B" and 4.8' (EL= 434.86) for Area "C ". Each basin will have the required • freeboard of 1.0' per the City of La Quinta standards. Percolation losses were not considered in the calculation providing for a greater factor of safety. UNIT HYDROGRAPHS FOR AREA "C" Retention Basin #2 Unit Hydrographs Unit Hydrographs Onsite Basin Volume (C.F.) Duration (hours) Volume (C.F.) Volume (A.F.) 29,732 100 -YR 1 -HR 28,727 0.67 100 -YR 3 -HR 25,592 0.59 The 100 -year, 1 -hour storm event was found to be the "worst- case" storm event for area "A ", "B" and "C ". The onsite retention basins are large enough to contain calculated volumes (see __ Basin- Information_Fo.rms).._The -basin water_depth -at- the- design_storm..e_v_ent is 5' (EL_ =_433.0.) for Area "A" / "B" and 4.8' (EL= 434.86) for Area "C ". Each basin will have the required • freeboard of 1.0' per the City of La Quinta standards. Percolation losses were not considered in the calculation providing for a greater factor of safety. UNIT HYDROGRAPHS FOR AREA "D" Retention Basin #3 Unit Hydrographs Offsite Basin Volume C.F. Duration (hours) Volume (C.F.) Volume (A.F.) - 100 -YR 1 -HR 113,210 2.60 117,821 100 -YR 3 -HR 117,404 2.70 100 -YR 6 -HR 116,939 2.68 100 -YR 24 -HR 97,574 2.23. The 100 -year, 1 -hour storm event was found to be the "worst- case" storm event for area "A ", "B" and "C ". The onsite retention basins are large enough to contain calculated volumes (see __ Basin- Information_Fo.rms).._The -basin water_depth -at- the- design_storm..e_v_ent is 5' (EL_ =_433.0.) for Area "A" / "B" and 4.8' (EL= 434.86) for Area "C ". Each basin will have the required • freeboard of 1.0' per the City of La Quinta standards. Percolation losses were not considered in the calculation providing for a greater factor of safety. In addition to stormwater runoff Retention Basin #1 will store blow -off water from the adjacent well site in underground storage chambers. These underground chambers are sized to store approximately 10,000 gallons of well water before overflowing into the basin. The offsite tributary area (Area "D "), is calculated to generate 117,404 c.f. of storm water runoff. This volume will be contained in an offsite retention basin just north of the northeast corner of tract 30092 (see Exhibit B). The water depth at the design storm event is 5' (EL= 438.98). The rational method produced the following flows for the development: RATIONAL METHOD 100- r Storm Event Area Designation Size (acres) Flow C.F.S.) Area "A" 17.59 45.62 Area "B" 15.49 38.62 Area "C" 5.62 13.81 The onsite flow in area "A" will be directed to the retention basin via catch basins C -1 and C- 2 (see Exhibit "A "). A calculated flow of 45.62 cubic feet per second will be split between the two combination inlet catch basins (see inlet calculations). Similarly, the on -site flow of 38.62 • cfs in area "B" will be captured by another set of combination inlet catch basins, C -3 and C -4. Each inlet into the retention basins will be connected to a sand filter designed to percolate nuisance water at the required rate of 5 gallons per day per 1000 sq. ft. of landscaped area. Area "C ", the project site frontage, will generate a flow of approximately 13.8 c.f.s. This storm water runoff will be directed via 8" curb and gutter to a curb inlet catch basin on Monroe Street. The storm water will then be directed into the retention basin at the southeast corner of the development. Additional offsite street flow volume will flow through along its historical drainage path. As determined from the street flow models, a combination PUE and Drainage easement will be required beginning at the intersections of Fiori Del Deserto and Pompeii (node N6A) in area "A" and the intersection of Residenza and II Serenata (node N3B) in area "B ". The drainage easements are required to ensure that a sufficient right -of -way width is reserved and is free from any future development that would obstruct or constrict the effective conveyance of the 100 year storm flows. CATCH BASIN SIZING (SUMP CONDITION) •PROJECT: Piazza Serena TRACT /PARCEL 30092 CATCH BASIN # CB #1 & #2 The capacity of a curb - opening inlet in a sag depends on water depth at the curb, the curb opening length, and the height of the curb opening. The inlet operates as a weir to depths equal to the curb opening height and as an orifice at depths greater than 1.4 times the opening height. The weir location for a depressed curb - opening inlet is at the edge of the gutter, and the effective weir length is dependent on the width of the depressed gutter and the length of the curb opening. For the purposes of this worksheet all equations are based on the assumption that: d_ =h Where: h = height of curb - opening inlet (ft) =0.67 (for 6" curb face) =0.83 (for 8" curb face) For catch basins 12 feet in length and smaller: Q = C,,, (L + 1.8W)d 1'S Where: C, = 2.3 L = Curb opening length (ft) W = Lateral width of depression (ft) d =depth at curb measured form the normal cross slope (ft) (i.e.d =TS,) • Solving for L: L=( —1.8W Cwd i.s For catch basins greater than 12 feet in length: Q = 3.087Ld1" Solving for L: Q L - 3.087d1-5 KNOWN: Total Flow 23.00 cfs Divided Flow n Curb Type 6 Cross Slope 0.02 ft/ft Gutter Width 2 ft Gutter Depth 6 in Local Depression Width 4 ft Local Depression Depth 4 in dmax 0.67 Total Intercepted Flow Length Required: LENGTH USED: •Spread Gutter Depth 23.00 cfs 11.03 ft ,12 ft 32.37 ft 1.11 ft e CATCH BASIN SIZING (SUMP CONDITION) •PROJECT: Piazza Serena TRACT /PARCEL 30092 CATCH BASIN # CB #3 & #4 The capacity of a curb - opening inlet in a sag depends on water depth at the curb, the curb opening length, and the height of the curb opening. The inlet operates as a weir to depths equal. to the curb opening height and as an orifice at depths greater than 1.4 times the opening height. The weir location for a depressed curb - opening inlet is at the edge of the gutter, and the effective weir length is dependent on the width of the depressed gutter and the length of the curb opening. For the purposes of this worksheet all equations are based on the assumption that: dm� =h Where: h = height of curb - opening inlet (ft) =0.67 (for 6" curb face) =0.83 (for 8" curb face) For catch basins 12 feet in length and smaller: Q= C,,,(L +1.8W)d1' Where: C„, = 2.3 L = Curb opening length (ft) W = Lateral width of depression (ft) d =depth at curb measured form the normal cross slope (ft) (i.e.d =TS.) • Solving for L: Q L = —1.8W CWdi.s For catch basins greater than 12 feet in length: Q = 3.087Ld1.5 Solving for L: Q L= 3.087d"5 KNOWN: Total Flow 20.00 cfs Divided Flow n Curb Type 6 Cross Slope 0.02 ft/ft Gutter Width 2 ft Gutter Depth 6 in Local Depression Width 4 ft Local Depression Depth 4 in dmm 0.67 Total Intercepted Flow 20.00 cfs Length Required: 8.66 ft LENGTH USED: Off •Spread 33.02 ft Gutter Depth 1.12 ft •CATCH BASIN SIZING (ON GRADE) PROJECT Piazza Serena TRACT /PARCEL 30092 • • CATCH BASIN # FLOW BY #5 These worksheets are based on the following design parameters: 1. Catch basin is assumed to be per Riverside County Std No 300 or RCFCD Std CB10C (i.e. The catch basin has an inclined throat) 2. Curb face is either 6" or 8" Curb and Gutter KNOWN: Q= 9.2 cfs Divided Flow N Flow to Catch Basin 9.2 cfs Sl= 0.005 ft/ft Sx= 0.02 ft/ft n= 0.015 Gutter Characteristics Curb Type 8 in Gutter Width 2 ft Depression 2 in Local Depression Characteristics W= 4 ft Depression 4 in DETERMINE SPREAD: Assumed Qs= Calculated Qs= RESULTS: Length Required: Length (Desired): Capture Efficiency: Gutter Spread: Gutter Depth: Total Intercepted Flow: Total Bypassed Flow: 1.00 )Should be approximately equal 0.07 13.62 ft 14.00 ft 100% 4.98 ft 0.23 ft 9.20 cfs 0.00 cfs 1 of 1 • • CATCH BASIN SIZING (ON GRADE) PROJECT Piazza Serena TRACT /PARCEL 30092 CATCH BASIN # FLOW BY #6 These worksheets are based on the following design parameters: 1. Catch basin is assumed to be per Riverside County Std No 300 or RCFCD Std CB10C (i.e. The catch basin has an inclined throat) 2. Curb face is either 6" or 8" Curb and Gutter KNOWN: Q= 4.66 cfs Divided Flow N Flow to Catch Basin 4.66 cfs Sl= 0.003 ft/ft Sx= 0.02 ft/ft n= 0.015 Gutter Characteristics Curb Type 8 in Gutter Width 2 ft Depression 2 in Local Depression Characteristics W= 4 f Depression 4 in DETERMINE SPREAD: Assumed Qs= Calculated Qs= RESULTS: Length Required: Length (Desired): Capture Efficiency: Gutter Spread: Gutter Depth: Total Intercepted Flow: Total Bypassed Flow: 1.00 )Should be approximately equal 0.17 9.35 ft 10.00 ft 100% 6.52 ft 0.26 ft 4.66 cfs 0.00 cfs 1 of 1 EXCEPT FOR REINFORCING BAR SHOWN ADJACENT TO FRAME, REINFORCE TOP SLAB WITH NO.3 BARS SPACED 6" C -C.- 2^ CLEARANCE (TYP) - BACK OF CURB FRAME 23 3/4" OPENING T T 2„ 2, Qom-, 3 444' rr I lil � illl I -;-t tt tt tl tt t TT F _I +4! - 1- 4- IH-�-� F -I-�1 + PARKWAY COVER & FRAME STD. NO. 312. ANCHOR R.4^ CURB DEPRESSION /- 1 1/2" OR AS NOTED FL--►- �-- FL i-f F-T I 6' -0" MIN. GUTTER --=�G� 4-0" MIN. OPENING \ l GUTTER OPENING TO BE SPECIFIED ON IMPROVEMENT PLAN.\ EXPANSION JOINT SEE jNOTES - STD. 300. EXPANSION JOINT � 1 SEE STD. 330 FOR GUTTER DEPRESSION TYP. SEE STD. NO. 310 FOR DETAIL OPENING NORMALGUTTER FLOWLINE 4" ZZ22 to e- NO. 4 BARS @ 18" C -C -� MIN. 3" EMBEDMENT ' :�I •. CONSTRUCTION JOINT 1 1 112" CLEAR TYPICAL R =3" ; Ir '112" PER 1 . ,,• � • � ,iii, U) T 3' T SECTION A -A of � CATCH BASIN SHALL BE CLASS "A" P.C.C. *TOP OF CATCH BASIN TO BE POURED MONOLITHIC WITH SIDE 6 FT. REVISIONS: -- -- - - - - -- __. -_. APPROVED _ ,° STANDARD OB 21/O1 CHRIS A. VOGT °' 300 CITY ENGINEER RCE 44250 CURB INLET CATCH BASIN NO. 1 SHEET 1 OF 2 • 0 0 m 0 z CD0 F- 0 E- U L� CONNECTION PIPES MAYBE PLACED ANl' PDSITION ARDUND THE WALLS, PROVIDED THEY POINT IN THE PROPER DIRECTION AND THE POSITION IS OTHERWISE CONSISTENT WITH THE IMPROVEMENT PLAN. CURVATURE OF THE LIP AND SIDEWALLS AT GUTTER OPENING SHALL BE FORMED B1' CURVED FORMS AND SHALL NOT BE MADE BY PLASTERING. DMIENSIDNS: T = B" IF H IS B FEET OR LESS. T = B" 1F H IS GREATER THAN 8 FEET AND LESS THAN 20 FEET. H = 3 FEET 6114CHES, UNLESS OTHERWISE SPECIFIED. FLOOR OF BASIN SHALL BE GIVEN A STEE_- TROWELLED FINISH. MANHOLE SHALL BE PLACED AS SHOWN ON STANDARD N0. 300, UNLESS NOTED DIFFERENTLY ON IMPROVEMENT PLANS, OUTLET PIPE SHALL BE TRIMMED TO THE F114AL SHAPE AND LENGTH BEFORE CONCRETE IS POURED. OPENING SHALL BE 4' -0" UNLESS OTHERNSE SPECIFIED. REINFORCING STEEL SHALL BE NO, 3 ROUND DEFORMED BAPS IN TOP SLAB AND NO, 4 BARS AT 18` CENT =—RS IN THE SIDES OF BOX. STEPS: 314 INCH PL41N ROUND GALVANIZED STEEL STEPS (ALHAMBRA FDY. A °320 OR EQUAL) ARE REQUIRED AS FOLLOW`. IF H IS 3.5 FEET OR LESS, NO STEPS ARE REQUIRED. IF H IS MORE THAN 3.5 FEET, AND NOT MORE THAN 5 FEET, INSTALL i STEP is" ABOVE FLOOR OF BASIN. IF H iS MORETHAN 5 FEET, INSTALL STEPS 12 INCHES APART, WTH THE TOP STEP 6 INCHES BELOW THE SURFACE OF THE BASIN. ALL STEPS SHALL BE 4 INCHES FROM THE WALL, EXCEPT THE TOP STEP, WHICH SHALL BE 21 L2 INCHES (CL=AP.) FROM THE WALL, AND ANCHORED NOT LESS THAN 5 INCHES IN THE WALL OF THE BASIN. SURFACE OF ALL EXPOSED CONCRETE IN BASIN SHALL CONFORM IN SLOPE, GRADE, COLOR, FINISH AND SCORING TO EXISTING OR PROPOSED CURB AND WALL ADJACENT TO THE BASIN; CONCRETE SHALL BE CLASS "A" WHEN THE BASIN IS TO BE CONSTRUCTED WITHIN THE LIMITS OF A PROPOSED SIDEWALK OR 15 CONTIGUOUS TO SUCH A SIDEWALK. THE TOP OF THE BASIN SHALL BE POURED MONOLITHIC WITH THE SIDEWALK, USING USING CLASS "A" CONCRETE IN THE SIDEWALKAND THE TOP OF THE CATCH BASIN FINISHED PER SIDEWALK STANDARDS. REVISIONS: APPROVED 08121101- CHRIS A. VOGT CITY ENGINEER RICE 44250 CURB INLET PATCH BASIN NO. f STANDARD 300 SHEET'2 OF 2 Worksheet Worksheet for Circular Channel Project Description Worksheel LINE "A" Flow Element Circular Channel Manning's Formula Method Solve For Discharge Input Data Mannings Coefficient 0.013 0.007500 fUft Slope Depth 2.00 ft Diameter 24 in Results Discharge 19.59 cis Flow Area 3.1 ft2 Wetted Perimeter 6.28 ft Top Width 5.96e -8 ft Critical Depth 1.59 ft Percent Full 100.0 Critical Slope 0.007938 fVft Velocity 6.24 ftls Velocity Head 0.60 ft Specific Energy 2.60 ft Froude Number 1.51e -4 Maximum Dischan 21.07 cfs Discharge Full 19.59 cfs Slope Full 0.007500 ft/ft • Flow Type Subcritical • Project Engineer: MATT PETRONI FlowMaster v6.0 [614d] WARNER ENGINEERING ) 755-1666 Page 1 of 1 unlitled.fm2 09/14/04 04:43:51 PIA ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203 Worksheet Worksheet for Circular Channel Project Description LINE." •Worksheet Flow Element Circular Channel Method Manning's Formula Solve For Full Flow Capacity Input Data Mannings Coefficient 0.012 Slope 0.027000 ft/fl Diameter 15 in Results Depth 1.25 ft Discharge 11.50 cfs Flow Area 1.2 ft2 Wetted Perimeter 3.93 ft Top Width 0.00 ft Critical Depth 1.21 ft Percent Full 100.0 % Critical Slope 0.023723 ft/ft Velocity 9.37 ft/s Velocity Head 1.36 ft Specific Energy 2.61 ft Froude Number 0.00 Maximum Dischart 12.37 cfs Discharge Full 11.50 cfs Slope Full 0.027000 ft/ft Flow Type N/A • Project Engineer: MATT PETRONI Flowlvlaster v6.0 [614d] WARNER ENGINEERING Page 1 of 1 untilled.fm2 G 09I14I04 05:43:22 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -166 Worksheet Worksheet for Circular Channel Project Description Worksheet uNT-77- Flow Element Circular Channel Manning's Formula Method Solve For Full Flow Capacity Input Data Mannings Coefficient 0.013 Slope 0.005000 fl/ft Diameter 24 in Results Depth 2.00 ft Discharge 16.00 cfs Flow Area 3.1 ft' Wetted Perimeter 6.28 ft Top Width 0.00 ft Critical Depth 1.44 ft Percent Full 100.0 % Critical Slope 0.006613 ft/ft Velocity 5.09 ftls Velocity Head 0.40 ft Specific Energy 2.40 ft Froude Number 0.00 Maximum Dischari 17.21 cfs Discharge Full 16.00 cfs • Slope Full 0.005000 ft/ft Flow Type N/A • Project Engineer: MATT PETRONI FlowMaster v6.0 [614d] WARNER ENGINEERING 755.1666 Page 1 of 1 09 /1 e 04 0 09/14/04 05:51:44 PM ©Haesiad Methods, Inc. 37 Brookside Road Waterbury, C7 06708 USA (203 -- C TV! LCA•DD/CIVILDE1I.GIZ Engineering Software, (c) 1999 version 6.0 .A A A STREET FLOW FROM N3A TO NGA -------------------------------------------------------------------- Warner Engineering, Yucca Valley, CA - S/113 596 -------------------------------------------------------------------- ' 1 .Street Flog! Analysis 1,1 UUStrean, (headworics) Elevation 40.100(Ft.) Downstream (outlet_) Elevation 3B.600(Ft.) Runoff /Flow Distance = 2140.000(Ft.) Ma:.:imum flow rate in channels) = 16.440 (CFS) -------------------------------------------------------------- - - - - -- Top of streer seament elevation = 40.100(Ft.) End of street sea_ment elevation = 38.600(Ft.) Length of street segment = 240.000(Ft.) Height or curb above gutter rlowl-ine = 6. 0(IIn.) H21'. dth of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v /hz) = 0.063 Slope from grade break to crown (v /hs) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to oroDerty line = 10.000(Ft.) Slope from curb to property line (v /hzz) - D.D20 Gutter width = 2.000(FL.) Gutter hike from flow nine = 2,000(In.) i;annina's N in gutter = 0.0150 •' D;anning's PI from gutter to grade brea)_ 0.0150 Mannino's P _rom grade break to crown 0.0150 Half street cross section data points: X- coordinate (Ft.) Y- coordinate (Ft.) 0.0000 0.7000 right of way 10.0000 0.5000 too of curb 10.0000 0.0000 flow line 12.O00D 0.1667 gutter end 12.0000 0.1667 grade brea): 28.0000 0.4807 crown Depth of flow = 0.462(Ft.) Average velocity = 2.497(Ft/s) Total flow rate in 1/2 street 8.220(CFS) Streetflow hydraulics: Halfstreet -flow width (curb to croim) = 17.791 (Ft.) Average flow velocity 2.50(Ft /s) Channel including Gutter and area towards property line: Flow Width = 2.000(Ft.) Flow Area 0.79B(Sq.Ft) Velocity = 3.494(Ft/s) Flow Rate 2.789(CFS) Froude No. = 0.9745 Channel from outside edge of gutter towards grade break: Flow Width = 0.000(Ft.) Flow Area 0.000(Sq.Ft) Velocity = 0.000(Ft /s) Flow Rate.= 0.000(CFS) Froude No. = 0.0000 Channel from grade break to crown: Flow Width = 15.790(Ft.) Flow Area 2.493(Sq.Ft) Velocity = 2.178(Ft /s) Flow Rate 5.431(CFS) Froude No. = 0.9660 Total flow is d- in' street = - -__. 1E. y4__0 (CFS_) CSVSLCADUCTVILUE S.G1 )- Engineczina Software, (c) 1559 version, G.0 AREA A STREET FLOW FROM NODE N6A TO N9A -------------------------------------------------------------------- 47arner Engineering, Yucca valley, CA - SIN 598 -------------------------------------------------------------------- °"''' Street Flow Analysis ` , Upstreair, (headworks) Elevation = 38.600(Ft.) Downstream (outlet) Elevation, = 34.800(F't.) Runoff /Flow Distance = 680.000(Ft.) ma,:_imuni flow rate in channel(s) = 36.280(CFS) ------------------------------------------ ----------------- --- - - - - -- Too of street s=egment elevation = 36.600(Ft.) End of street segment elevation = 34.800(Ft.) Length of st_eet segment = 680.000(Ft.) Height of curb above gutter flowline = Width of half street (curb to crown) = 18.000(Ft.) Distance from crovm to crossfall grade break = 16.UOG(Ft.) Slope -from gutter to grade breal: (v /hz) = 0.063 Slope -from grade breal: to crown (v /h7-) = 0.020 Street flow is on (2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slone from curb to property line (v /h_) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N :n gutter = 0.0150 !•fanning' s Ii -rom gutter to grade brea): 0.0150 Manning's N from grade breal: to crown = 0.0150 Half stre et cross section data poin,_s: 'r.- coordinate (Ft.) Y- coordinate (Ft.) 0.0000 0.7000 right of way 10.0000 0.5000 top of curb i0.00G0 0.0000 flow line 12.0000 0.1667 gutter end 12.0000 0.1667 grade break 28.0000 0.4867 crown Depth of flew = 0.621(Ft.) Average velocity = 2.944(Ft/s) Total flow rate in 1/2 st_eet = 18.140(CFS) warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 6.07(Ft.) Streetflow hydraulics: Half street flow width (curb to crown) = 18. ODD (Ft.) Average flow velocity = 2.94(Ft /s) Channel including Gutter and area towards property line: Flow width = 8.073(Ft.) Flow Area = 1.445(Sq.Ft) velocity = 2.187(Ft /s) Flow Rate = 3.160(CFS) Fronde No. = 0.9109 Channel from outside edge of gutter towards grade break: Flow width = 0.000(Ft.) Flow Area = 0.000(Sq.Ft) Velocity = 0.000(Ft /s) Flow Rate = 0.000(CFS) Fronde No. = 0.0000 Channel from grade break to crown: "` - - - - -- ___ __Flow width = 16.000(Ft.) Flow Area = 4.717(Sq.Ft) velocity` 3.-1_7.6- (FtLs) Flow Rate 14.980(CFS) Fronde No. . = 1.0308 'Focal f low ]:0L6 1-1* s_rceL = 3(,._8D(CPS -------------------------------------------------------------------- • • 9 -- CIVILCkDD /CIVILDE°IGP Engineering Software, (c) 3.999 Version 6.0 APMA A STREET FLOW FROM NODE N9A TO C - -1 PM C -2 -------------------------------------------------------------------- Warner Engineering, Yucca Valley, Ch. - S/N 598 ----------- -- -- ---- -- — --------------------------------------------- '•' Street Flow Analysis " " Upstream (headwor)s) Elevation 39.800(Ft.) Downstream (outlet) Elevation 35.000(Ft.) Runoff /Floe! Distance = 160.DDD(Ft.) Ma: :imum flow rate in channel(s) = 92.220(CFS) ------------------------------------ ------------------ -- - - - - -- Too of street segment elevation = 39.800(Ft.) End of street segment elevation = 34.000(Ft.) Length of street segment = 160.000 0 ?t.) Height of curb above gutter tiowline = 6.0(In.) Width of half street_ (curb to crown) = 18.000(Ft.) Distance from crown to cross-Lail grade break = 16.000(Ft Slope from gutter to grade break (v /hc) = D.D63 Slope from grade break to crown (v /hz) = 6.020 Street flow is or, (2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to Property line (v!hz) 0.020 Gutter width = 2.0DO(Ft.) Gutter hike from flowline = 2.000(in.) Manning's N in gutter = 6.0150 Manning's N from gutter to grade break 0.0156 • : Manning's Pl -from grade break to crown 0.0150 Half street cross section data points: ?:- coordinat=e (Ft.) Y- coordinate (Ft.) 0.0000 0.7000 right of way 10.0000 0.5000 top of curb 10.0000 0.0000 flow line 12.0000 D.1667 gutter end 12.0000 0.1667 grade break 28.0000 0.9867 crown Depth of flow= 0.663(Ft.) Average velocity 2.928(Ft /s) Total flow rate in 1/2 street = 21.110(CFS) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. . Distance that curb overflow reaches into property 8.16(Ft.) Street-flow hydraulics: Halfstreet flow width (curb to crown) = 1B.000(Ft.) Average flow velocity = 2.93(Ft /s) Channel including Gutter and area towards property line: Flow Width = 10.157(Ft.) Flow Area 1.825(Sq.Ft) Velocity = 2.055(Ft /s) Flow Rate 3.750(CFS) Froude No. = 0.8593 Channel from outside edge of gutter towards grade break: Flow Width = 0.000(Ft.) Flow Area 0.000.(Sq.Ft) Velocity = 0.000(Ft /s) Flow Fate 0.000(CFS) Froude No. = 0.0000 Channel from grade break to crown: Width 16.000 (Ft. ) Flow Area 5.384 (Sq. Ft) velocity'= — -"3:225(Ft /- s.)_rlow Rate _ 17.360(CFS) _ Froude No. 0.5797 �v�^3 fzn° zaa �n ,�zee� ~ �� ��u/crs� ob- _____---___________________'-_______- 0 0 -- C _I VILCF•.Db /C IV! UES1G11- Engineering Software, (c) 1959 version 6.0 APi B STREET FLOW P_T NODE N3B -------------------------------------------------------------------- Warner Brigineerinq, Yucca Valley, CA - S/N 59£1 -------------------------------------------------------------------- Street Flow Analysis — Upstream (headworhs) Elevation = .3.DDO(Ft.) Downstream (outlet) Elevation = 36.000(Ft.i Runoff /Flow Distance = '_260.000(Ft.) Ma:• :imam flow rate in channel(s) = 9.521(CFS) ----------------------------------------- --- --- ----- -- --- ----- -- - - -- Top of street segment elevation = 43.000(Ft.) End of street segment elevation = 36.000(Ft.) Length of street segment = 1260.0DO(Ft.) Height of curb above gutter flowline = 6.0(in.) Width of half s -reef (curb to crown) = 18.000(Ft.) Distance from croon to crossfall grade brea): = 16.DOO(Ft.) Slope from gutter to grade break (v /hz) = 0.063 Slope from arade break to crown (v /h --) = 0.020 Street flow is on [2) sides) o the street Distance from curb to property line = 10.000(Ft.) Slone =rom curb to property line (v /h_) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's h in gutter = 0.0150 Manning's h from gutter to grade break = 0.0150 �- Manninc's 11 from _grade brea): to crown = 0.0150 Half street cross section data points: Y- coordinate (Ft.) Y-coordinate (Ft.) 0.0000 0.7000 right of wev 10.0000 0.5000 too of curb 10.0000 0.0000 flow line 12.0000 0.1667 gutter end .12 .0000 0.1667 grade breal; 28.0000 0.4867 crown Depth of flow= 0.420(Ft.) Average velocity = 2.092(Ft /s) Total flow rate in 1/2 street = 4.761(CFS) Streetflow hydraulics: Halfstreet flow width (curb to crown) = 14.659(Ft.) Average flow velocity = 2.09(Ft /s) Channel including Gutter and area towards property line: Flow Width = 2.ODO(Ft.) Flow Area = 0.673(Sq.Ft) Velocity = 2.933(Ft/s) Fldw Fate = 1.974(CFS) Froude No. = 0.8912 Channel from outside edge of gutter towards grade break: Flow Width = 0.000(Ft.) Flow Area = 0.000(Sq.Ft) Velocity = 0.000(Ft /s) Flow Fate = 0.000(CFS) Froude No. = 0.0000 Channel from grade breal_ to crown: Flow Width = 12.659(Ft.) Flow Area = 1.6D2(Sq.Ft) velocity = 1.739(Ft /s) Flow Fate = 2 :786(CFS) Froude No. = 0.6612 521 (CF S) Total flow rate -in' "street-= •-- - ---..- 9.. - --- -- ___. -.�._ _`__.._ _ �__ . --- _ CIVILUDb /CIVILDESIGO Engineering Software, (c) 1999 Version 6.0 .A= B STREET FLOW FROM N3B TO N6B -------------------------------------------------------------------- Warner Engineering, Yucca Valley, CE - S/H 59B -------------------------------------------------------------------- -, Street Flow hnalvsis " "' Upstream (headworks) Elevation 36.000(Ft.) Downstream (outler) Elevation 35.100 (Ft .) Runo -ff /Flow Distance = 280.000(Ft.) N,a; :imum flow rate in channel (s) = 14.038(CFS) -------------------------------------------------------------- - - - --- Top of street segment elevation = 36.000(Ft.) End of street segment elevation = 35.100(Ft.) Length of street segment = 2B0.000(Ft.) Height of curb above gutter flowline = 6.0(In.) W,idzh of half street (curb to crown) = 18.OD0(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v /hz) = 0.063 Slope from grade brea): to crown lv /hz) = 0.020 Street flow is on [2) side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope =rom curb to property line (v /hc) 0.020 Gutter width = 2.000(Ft.) Gutter h-:- he from flowline = 2 .000(In.) ?planning's 14 in gutter = 0.0150 manning's N =rom gutter to grade breaL- 0.0150 Manning's N from grade break to crown 0.0150 Half street cross section data points: 1'- coordinate (Ft.) Y- coordinate (Ft.) 0.0000 0.7000 right of way 10.0000 0.5000 top of curb 10.0000 0.0000 -flow line 12.0000 0.1667 gutter end 12.0000 0.1667 grade brea): 28.0000 0.4867 crown Depth of flow = 0.505(Ft.) Average velocity 1.901(Ft /s) Total flow rate in 1/2 street = 7.019(CFS) warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property 0.23(Ft.) Streetflow hydraulics: Halfstreet flaw width (curb to crown) = 18.000(Ft.) Average flow velocity = 1.90(Ft /s) Channel including Gutter and area towards property line: Flow width = 2.235 (Ft .) Flow Area 0.843(Sq.Ft) velocity = 2.4BB(Ft /s) Flow Rate 2.098(CFS) Froude No. = 0.7137 Channel from outside edge of gutter towards grade break: Flow width = 0.000(Ft.) Flow Area 0.000(Sq.Ft) Velocity 0.000(Ft /s) Flow Rate 0.000(CFS) Froude No. = 0.0000 Channel from grade break to crown: ___....,.glow_ Width _ 16.000(Ft.) Flow Area 2.648(Sq.Ft) Velocity 1': "T?8 (Ftdsp— Flow_ Rate_ 4 _921 (CFS)�_ Froude No. 0.7216 9`otal _iow ,-ate in 5 _reer - 1n.G�E =1CP5) • _ lei . 7 CIVILChDD /CIVIL0ES'IGP Engineering Software, (c) 1999 version 6.0 F.F.EA S STREET FLOW FROM NODE N6B TO C -3 AND C -4 -------------------------------------------------------------------- Warner Enoineering, Yucca Valley, CR - S /!t 598 -------------------------------------------------------------------- ,,' Street Flow I:nalysis I- upstrean (headworhs) Elevation 34.6D0(Fr.) Downstream (outlet) Elevation. _ 31. BOO (Fr.) Runoff /Flow Distance = 150.00D(Ft.) Ma::imun, flow rate in channel(s) = 19.190(CFS) ---------------------------------------- ---------------------- - - - - -- Top of street segment elevation = 34.600(Ft.) End of street segment elevation = 33.800(Ft.) Length of street segment = 150.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width, of half street (curb to crown) = 18.000(Ft.) Distance from crowrn to crossfall grade break = 16.000(Ft.) Slone from gutter to grade breal: (v /h=) = 0.063 Slope -from grade breal: to crowm (v /hz) = 0.020 Street flow is on (2) side (s) of the street Distance from curb to Property line = 10.000(Ft.) Slope from curb to property line (v /hc) 0.020 Gutter widtn = 2.000(Ft.) Gutter hike from flowline = 2.000 (in.) Manning's 1, in gutter = D.D150 Manning' s N =rom gutter to grade breal: -= 0.0150 Manning's P front grade breal: to crown - 0.D150 Half street cross section data points: }.- coordinate (Ft.) Y- cooed -hate (Ft.) 0.0000 0.7000 right of wav 10.0000 0.5000 top of curb 10.0000 0.0000 flow line 12.0000 0:1667 gutter end 12.0000 0.1667 grade break 28.0000 0.4867 crowm Depth of flow = 0.514(Ft.) Average velocity 2.483(Ft/s) Total flow rate in 1/2 street = 9.595(CFS) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property 0.70(Ft.) Streetflow hydraulics: Halfstreet flow width (curb to crown) 18.000(Ft.) Average flow velocity = 2.48(Ft /s) Channel including Gutter and area towards property line: Flow Width = 2.700(Ft.) Flow Area 0.666(Sq.Ft) Velocity = 2.985(Ft/s) Flow Rate 2.586(CFS) Froude No. = 0.9287 Channel from outside edge of gutter towards grade break: Flow Width = 0.000(Ft.) Flow: Area 0.000(Sq.Ft) Velocity = 0.000(Ft /s) Flow Rate 0.000(CFS) Froude lad. = 0.0000 Channel from grade breal: to crown: Flow Width = 16.000(Ft.) Flow Area 2.997(Sq.Ft) velocity '- 2- 33.9_iFt /s) Plow Rate = 7.009(CFS) ' Froude No. 0.9522 L _ 2.9.9lCFS) 7`otel ilo�� i� *_e 1U in sLrc° — - - -- o: 9662 B4!5-1,v )o / ION: Area A & B retention (total • BASIN INFORMATION FORM 1 ENTER THE HYDROGRAPH UNIT INTERVAL DURATION (MIN). 2 ENTER TOTAL NUMBER OF BASIN DEPTI- I- VERSUS - OUTFLOW VALUES. 3 ENTER OUTFLOW (CFS) AND STORAGE VOLUME (AF) FOR EACH BASIN DEPTH VALUE IN THE FOLLOWING TABLE. ENTER VALUES IN ORDER OF INCREASING OUTFLOW BASIN DEPTH: 4 ENTER ASSUMED INITIAL DEPTH (FT) OF WATER IIJ DETENTION BASIN. 5 PERCOLATION RATE (INII-IR) 0 • FOND VOLUME DEPTH VS. STORAGE TABLE ENTRY NO. WATER SURFACE BASIN DEPTH CONTOUR AREA BASIN STORAGE VOLUME INCREMENTAL BASIN STORAGE VOLUME ACCUMULATIVE PERCOLATION PATE BASIN OUTFLOW BASiN DEPTH (FT) (FT) (SF) C.F. A.F. C. F. A.F. (CFSISF) (CFS) (FT) 1 28.00 0.00 26424.69 ;.. .:: : . ..::.::; . 0 0 27493 0.6312 2 29.00 1.00 26562.18 27493 0.6312 0.000000 0.0000 1.00 29641 0.6805 3 30.00 2.00 30719.28 :... 57134 1.3116 0.000000 0.0000 2.00 31795 0.7299 4 31.00 3.00 32870.01 88929 20415 0.000000 0.0000 3.00 34002 0.7806 5 i 32.00 4.00 35134.29 ;_.. ;:;., -;. �, ,.. 122931 2.8221 0.000000 0.0000 4.00 36313 0.8336 6 ; 33.00..,:; 5.00 ...,..37491.14.:;,;,., .,�,r k,. „, , „::; ;n ,......::. 159244 3.6557 0.000000 0.0000 5.00 i r ++f I I 100 1 , �;�( {: - �2 �i f 1 IA I-F Wt 1t cJ r� li 9 n 9 V Li �i t_ —L LL z_ G •� w < W d U) < d J OD D 03 v o < = D z > U O LO O _S d O N w? 7 O Of z C G w o � w p�/ .LL z -J D O C d D O [0 <Z)wW z Q W d > J W O 3: <, w > f- W O m .. wu< ate � D _ — ? Q Z W _ ! -Cf) �- -D- z <U) 3:za Dm000 3w L L Z d 0 C O < Q m - a<12 ,LL <z pp'� . ' Y.i.. (Ofw _WOE" Z Z O i LL I-- = PD< pzQZZw� > J J w O 2 z z= << -5ODO _ W F- �JZ U1� 0 � ,- 0 >U)QS C i O V) L, w w w w w U z z zw U z w Z Z Z w Z W W w w D Z w a .- N M V N Wt 1t cJ r� li 9 n 9 V Li �i t_ —L Z O U) < d Q v o ,! . LO O L) Z N O LL it r� C� Q Wt 1t cJ r� li 9 n 9 V Li �i t_ —L Z O o m Z Q U a C 'V N cG Cl v I O it C� Q L [0 Wt 1t cJ r� li 9 n 9 V Li �i t_ —L F- C:) (I Cl v I O it < w L N N N M v � D -7 _ tfj G G O a O V) L, LL O Z O F- LL O O G O G O O d W U1 O O O J E-- O d o o G C, a 0 a 0 U � o C) C; 0 0� U O O G O 112 w w O M co to -•,1 W LL O m m I- CD < N C LD >O 0 0 0 0 W < J W l J co N U) C) U- .. Lo N N � N 0 M 0 �Wj f— _zd �� �; N N G W d < (-D co 0 0 2 M LO t- F- J L M Lr) U O<< Z Cf) U w d ^ Z L.?. In ... LrJ`�. o yw L! z U CT) LD m Lo 0) ti rn _ t' -, m N 5 O 0 w W m o ::. M LD z C .. ";. C .' c ... Ln. U Z = ~ °o �Q LL o o° Ca o Q W - 0 r N M c [0 D W � U w < O o 0 o o O F- LL LL. N . . ..,: LCY �O M Z z W Wt 1t cJ r� li 9 n 9 V Li �i t_ —L v I9 r (I 'n II it N N ii M®�C � Q N < a ° o O U m N O m LL ('7 C N m m C O C m m m m ,l LL LO z O z cr) U1 � w Lr < U1 J w m < o m < T z V >UO O � T o 's W z -cL U-U D -- zo�� z - O 0 J W O O E7 < Q > z LL ww If : w 0 m z ❑ W _j W < O O < W LL w m O —. IL O <_ E-- u,w ° rf a te z O z w m ❑ = Cl) c Z<m'Sz� G ❑ O U, w ^ Z -J <Q� NO U LL < Z O w C5 C.0 (Lji�z W O:E --�� (rl r?w02z _ Oz O z <L5ODO -J7 W U) �-� O >0 < � qtr (If Sw�O ww w C, u1U zzzw zw Z U , W < w w w❑ w a O c- N M V L.0 � Q N < a ° o O U m N O m LL ('7 C N m m C O C m m m m ,l �r y L! C• L'v ry+ J Z v N- IsL" ter', r-� z U1 � O o m � < V � T o -cL U-U D -- oi - - Z -_- 0 _Z C17 .._ 0 m �r y L! C• L'v ry+ J Z v N- IsL" ter', r-� U1 � k- r- 0 O G G oi C! 0 < w .._ 0 CV C7 -,T C] m ❑ ? O J (rl O G O O O O O O U , W < LL rJ O O C, G O G O O CLI � -�• O U z O i- LL O O G p G G O G O O W QJ f-- p G C LL p O O O O U G U O O O w a W G CD m CD J N _1 W LL ° 0) 1— O O > < o? M rn > O O c N LU J C7 b (.) N < Cl) (� M C:7 m CJ co I— z< b° m N co CO o Cn L7 r M O co f �. U < � � m W -y L) - :- Lr) co — \O / f J LL Lp :....1 > f<- ' - . O .: O O� O z Cn w Z n. uw Er Lu W z U CO C) N Ln m Ci O p < ,--, L7 .. on LO rn: .- M r LO r--. O< r N - N z � D- LL I < W v C-) o N co m ❑ LU Lli LL F° o- p ° ° G H Cn N M d � .. — O z w �r y L! C• L'v ry+ J Z v N- IsL" ter', r-� 1� oi 1 0 I arneu engineering r,ML ENGIW=MNG I PLANNING I LAND SURV DlNG ----------- -0- (70(11 3 1 1 7245 .109ilull L-111)e ill 92294 Yucca Yucca cillift) ,,l pj)(Jljt:: (760 365-7638 Fa,:: (360) 365-2146 Cf,LCUV,TED S�' DATE D/,,TE CHrcj.-'F[j BY ---� sc/+LE j'p ICI 4-') >r- j'p ICI 4-') - • • I ---------- tri Jill itlf` = � ko N) aj C Jill itlf` = � ko N) 4 W Developix, �1-1 J-j C (- i • 3a Ave.m:ie '7-',E-" L Morj-roe Str.cet La Coul.-.Itvt Califoril'i r Cr uj �-4 C. 0 U Pr4 Cr) Sandy Silt: B 1.0 W 11, IA L ""Indy, slightly clayey 5 5/10111 95 lU 5,17 1, 0 110 ........... ------- jr IiiI n8nom Clayey Silt: Brown, sandy jo (. Sand: Brown, SP Ji .5!6/10 slicTlItly silr,,!: finE Qr-�lin-d I -.5 --- I Tom! Denth = 21.5' rl Pecovered EaMDIC No Bedrock No Groundv.,ater 25 30. 4 45 _ l ! Note: The stratification lines represent the approximate 55 boundaries between the soil types• the transitions me), be gradual. 'Based on the material passing the 3 -in. (75 -mmi sieve. ed field sample contained cobbles or boulders. OF bath„ add `Witt, cooales or boulders, or both' to group name. 'Gravels with 5 to 12;^ fines reautre dual symbols: GVe -GIJ) well- gradeo gravel will' silt Gw -GC welt - graded gravel wilt clay GP-Gtvl poorly graded gravel with silt GP -GC poorly graded aravel witn clay rGands with 5 to 1 _ ,, fines raouira dual symbols: SVISW,, web - graded sano wim sil: SW-SC we))- graded sano with clay SP -SW� poorly graded sand with silt SP -SC poorly graded sand with clay Cu = Gco /G,( CL = (C"r OIL 06L It soil contains _ 1$So sand, add "with sand" to group name. It If fines classify as CL -10L, use dual symbol GC -GIJ, or SC -SfV,. Hl-.' fines are organic, ada "with organic fines" to croup name. 11f soil contains = 1- 5. crave! add "Witt-, gravel" to oroup name. J If Anerbere limit pio: in hatched area, soil is a CL -IAL, silty clay. L li soil contains_ 15 tc 29% plus Wc. 20L, add "with sand" or "with gravel," whichever is predominant. - If soil contains = 30 % plus Igo. 200, predoml- nantiy sand, add "sandy" to group name. M111f soil contains _ 30% plus IVG. 200, pre6omi- nanuy gravel, add "gravelly" to group name. PI _ _' and plots on o• above "A" line. o PI < 4 or plots beiov; "A" line. °P) plots on or aOOV< ",-" line. PI plots belov.• "A" line. Figure4 -1GIa) tired! -c.:, :lit ClitI ,if lcaurIt 5}'',(1:11: Ir.- I \rotes O Soil C11:.t.ific 1iuri Chart L 40 G� cla), classifications and silt v classifications. T 30 (2) The U -Line represents Y Gm:: r, u,. h!. :,rannu, i,lnl t, byrnhou. aim Gr(,ul, IJ;,n,ls ilslntl _;,bnrw,l ;, ll ^nr• 6u,ul, for natural soils (empirically 10 determined), SynA,nl unnq, Wrnnrl COkIJSi Gravr:l: Clean G,hvTI!. i -„ and GVd Vv0'- CtIao,1V gl nvvl, GRAIIJLr, SC14i IJu,n lh;: i Cdt',., rd Lesf. teal, S'6. fillet ' 4 andlnl L 3' GI hrn,rt � fll i,(I,:(I (JI hVUli soil fraction finer than 0.42 mm.) IIACM llml, UP,, u,alsl ilw.ala GrilvelL wIU, r-u,e: I-1nv!. cl „',silt at I✓L. trr IJtP GIV Silt ,, cn rwei r.,. .r. ve IdL 206 Idiau,hv oo WL 4 Wlnfl- tilill, 1_ ";,. flu:! r-n LIily al. C.. (n Ch GC ten ZUL slrvl :,u:vl Land: ,lush al,(JL L m,d 1 :_ (, c SVN Vvidi- (lihowt ,nl,r) 50 " „ rn n,rer ut Lesc Mall 5 S,. iwe!.' 4,. L im(Ow ' L, Sr' honrh, rlrarh:u trarllbn Sand£ wit), r,nc-:. Hirt L-:. Lla Lsily an 10! C,i' 10H S1,/, silly `at'[16”, IJL A sinvi- Mare ihal, 1:' 'i+. fine' f' rl(te. classify a, CL GI CH SC ClayL•y hP Gill I()C'•11.1 AWc- GRAINEL Sin:. an(i Clay, inorganic P; . 7 and plot, on of above "f." CL Leal, clay,,.e.n( 'J SOILS Llpuni Ilmn tes, Ime•' 50 :� m more roan 5(. ' 4 of ;lose L,eiotu "P "" hne P' ' 1 1✓IL SIItI = -�!•1 �- -r pas, file NO orgarm L14uid bm I – after, ``D4 � Garlic cis }� •c n'' 206 sieve _civet, 6.75 LioutOlimit –not dried _rLl Orpana sit ?'•`''•''L Silt, and clays inorganic PI plots on Of above "F” line CH rat clay ^•c - ^- Liquid limn 50 or P! plots belo% "f,' hne IVJH Elastic siR1 -• ^+ mor( organic L,qu,d limit – over. dries GH Grganic ciayr�•L• ^I•t' Liquid limit – not aned Grgam —' —c silt,;•, -'",,, HIGHLY ORGA1112 SOILS Primarily organic maner, clan' in color, and organic odor PT Peat 'Based on the material passing the 3 -in. (75 -mmi sieve. ed field sample contained cobbles or boulders. OF bath„ add `Witt, cooales or boulders, or both' to group name. 'Gravels with 5 to 12;^ fines reautre dual symbols: GVe -GIJ) well- gradeo gravel will' silt Gw -GC welt - graded gravel wilt clay GP-Gtvl poorly graded gravel with silt GP -GC poorly graded aravel witn clay rGands with 5 to 1 _ ,, fines raouira dual symbols: SVISW,, web - graded sano wim sil: SW-SC we))- graded sano with clay SP -SW� poorly graded sand with silt SP -SC poorly graded sand with clay Cu = Gco /G,( CL = (C"r OIL 06L It soil contains _ 1$So sand, add "with sand" to group name. It If fines classify as CL -10L, use dual symbol GC -GIJ, or SC -SfV,. Hl-.' fines are organic, ada "with organic fines" to croup name. 11f soil contains = 1- 5. crave! add "Witt-, gravel" to oroup name. J If Anerbere limit pio: in hatched area, soil is a CL -IAL, silty clay. L li soil contains_ 15 tc 29% plus Wc. 20L, add "with sand" or "with gravel," whichever is predominant. - If soil contains = 30 % plus Igo. 200, predoml- nantiy sand, add "sandy" to group name. M111f soil contains _ 30% plus IVG. 200, pre6omi- nanuy gravel, add "gravelly" to group name. PI _ _' and plots on o• above "A" line. o PI < 4 or plots beiov; "A" line. °P) plots on or aOOV< ",-" line. PI plots belov.• "A" line. 6G I \rotes O ('I J The A -Line separates L 40 G� cla), classifications and silt v classifications. T 30 (2) The U -Line represents Y I+ Z11 an approximate upper limit 5 20 D_ MH or OH of LL and PI combinations for natural soils (empirically 10 determined), g 0 0 10 16 20 30 40 5D GO 70 80 90 100 11 Liquid limit, LL Figure 4 -16(b) Plasticity chart for classification of fine - grained soils and fine - grained fraction of coarse - grained soils. (Test results relate to soil fraction finer than 0.42 mm.) _ . 112 i �fl • • IrrJ U :rJ UI J VI d w 20 w 10 IL r. CCU UL_ T 1Or'J C_ �_J F F I 1JE CG1-,i1{,E o ICr Z -u 7 -� U 20 L W IG d o F I W E CG f, P"S ^— 1 .A , r �- 5 I L I I ::) .-, f ." a r U_S S T ,,c. N D f; R D Borinc, 4 a.. >. 10`' 1_, �. r.� D ,-. P, D S I E v E c----- -- (�' CI �1 I- (1 r✓I �) J ri - -, - f1 �i �, Ci 0 C T 1 I —� I I I �- -- •r I I / ' I 5 I %• 1 1 o ICr Z -u 7 -� U 20 L W IG d o F I W E CG f, P"S ^— 1 .A , r �- 5 I L I I ::) .-, f ." a r U_S S T ,,c. N D f; R D Borinc, 4 a.. >. 10`' ri I, 1 o ICr Z -u 7 -� U 20 L W IG d o F I W E CG f, P"S ^— 1 .A , r �- 5 I L I I ::) .-, f ." a r U_S S T ,,c. N D f; R D Borinc, 4 a.. >. 10`' I, 1 I, / ' I i § � r nQ Q r''�.r= tTIGLE SIDE, t.',trS 5lodden Englneedng • A -PPEj�TIDIX n JR A. X.P. oi, TIS" A� 'Hop j U . 1- r X 'SAfq jP1 • I J-1'. Q), Ap rvf - f A. E IT J Y 7 .7 7 1 t4d _09 fl. xT wt 1 77 z, 1l.Ccln�rtii Y; A -n + 1T-r 5�y tv .,4u fi L_, Fy "T" 2r 111 j7 11 It L - jQq l. A - - . ` c s , - - '% . lo;1 - .. . . . I L - 1 5 G j�x T�L: - I'dX71 ic . I, WDIA 0 A)4,'., S E OH i, �.40 19t, 5E i,; J' c tl .3 0 -T;�j 17J 11`� TJ3 -9, L z , IF I C� RIVE FLOOD CONTROL c0UNTY RIVERSIDE A N D cj �VA710N DISTRICT --w-ATER-CONSEF. n w j 2-YEAR i-HOUR T11- ION PRECIPITAT r',c — „off, , ..t. ,t•� +' 1 � • • ' 1,,��'�,`.,yty Y,�,:� °.•, .�''i '4' •'i � .. /,1. .. /�I�' -'jl�- -. a11.)�', i, _ -...1 1�,1��1 .�•t.�A.,IEr� '.!'• �:.� /:_�r�� '.- " t • '!v� • / '` 1 ; � •.�, .. t 1. iJ(1lIJ+ ,:F \ly\,I It- i1il+..._. .f'' _b .!. -• ,. • ..t- _._ ' / _ _ „- .1 1. , la .. .,F,. 1, e,. ' tnt. tit, 4.IA nc• �roHly' -.Ir' � ,(r.� ';, %•:,. - .,+• -� - l , �� t �"�, v.. � yt . :, rn, ,� r iT1� c `^' ; ~Lal!v..; ,=.�:3 ', t�' .: ✓,,,.y.e.t >. . ", 1 E �:. -^�'t' ,�. r.1 :' -' '' - :, }� :- +i'f,'•�;`"`- „�';";:.� 111 4NJ f ,,� „o• -��= ,� �5 !lam ��. - 11 y1r , 1 FF ' 1 S;.r �i, =1i.n ,,� rr��•;�.. �1 1 _ 'fi . /� - ' - -' � +� �'r'-q: ._ 1�.n1 �” _ '. ;1 � s��r , rF-� '..�r- �. :, �'. �i4cn_.� if, `. c',� �}••,, - ', 1` a C t,•.omk'. r •i nt -i>�. 'Si -� •�i %' _ � "� ,` "_w r,J �.- �'S�•,s ..'y 7 ,. t� b ,JG PL 1 F� � '` �' : �l$ - �ri�. t. �.; � S �,tm• ���e.+ll�,., 4 is t,s: l � M'. ,: Nan _ ,V, -.� -.. .1. � t „3.-' -�. . -. "•r ' -+TS+_ :` r 4,r t ,`' 1. :A(7% Yi. y Y �_ a - 1 ..i ,��rt �•-, 158. l ,.,�� • ..- 1..3,i;Te�,U.+ '�.: 5 `� i'� ":r,;.. �:yj,' �'l._ ,:T,;��_v _ - - w^.it� j� :,:`a:Se3T`':t �. ± aG�iVSe ,[ t•,.i. 1' `:. ^ >�� ' :1i6+r` s t �(� lw•'. yr' - - - ..Y'':,. � i1 .,rs t _ .{ .. �51 �1 _ ��I• t � �G_1' t[...c•.::r; _ ,r•.'..1.: � �'• - � fit. ,� i - -. ' -�1 y �.S . .:. a,��_. -'.". mitt. r�°'�. , ��i, P �=i. w IT WA it .� .0 It '� •�: - 'moo` .ft 1, :7t }y �'- � _ - .�- �-J.1� � :1L F `,- -_ _ i "r,;� 1- k✓ ,�• _G • ',.. � _n ,:� r' qa, il•„_ _- Ji :�';•S,✓ �. . ,�;.,j' _ -.�, .i��� �� t,:a•m''J�'..� :x� o:. �v _ 11 y,: _ . -.. j �` _ r'I t � -�,.v. L, ' .C� � T . `}��'�• y�"'�.._.Yry;;J -.�;.: � , *,,:ts t' 1. \�_ :. ..�� 'yyirp,v -_ 3 1 V x,K +` ''717+- .N�'F {' -; -f.- "- "R •r,_1: }\v.:�,` _ ;'.t f - U \� ,�y-_. � .C.. '"T. :''3 '�1' — �•( { ±a•�lt- % -. < ... 1'. _ t.l - sa; pr Apt 'l •,L ate` .l l� •�, � 3F � i •- �1. ,� ,_ .,�F� . � ���� ' ✓.�' •1 \, '�E; ^•�- ��Jr,,ria'�.��-: �':., �, -.. ..- ` ' �_ ..,:�• � =; •','�J• -5� "' -„turn '•„ttY �c- - nJ N _ R�iam� of- .. incl. rci4.:': -�, V.> - ?Cj"\�.k°�t i1 <a.ri�'�:r^il �1� ta„ .. t, •�. - { ' '1' •5• " �:' � r NL`ii.NV O _ �r: '�,,r,...+�,x: � Y.r'f'. �.s[,w��, +.P APx��e 2j '. - `�irS:,.- 2!_ %'� -': : +• T '`st +',iJ`°"°; y(,PgftSN �Irn'. HOU _1 ��F,+.uY ^`a '1. .. /,.• i., -� -•,-:' I, ,q �,o .�- ,h11 r �;MV., f, ,•� ,�,. 'b- {,f - ,µ,»• .. •J..p- •._,:,.. r.l,. I .t.;' :�:I � -r�� � I rv`� H .1 ...1. f' .�.\ :tom ^X,y � �..�`''••_Gi ',+ -H �`�X�'f_� _.- i�C �Q /. µ � �•�I,� ppS�Rlt C.kp rt {r• - -_� C�vi i, 1 :5.1 _,+U.'. �� �'F.. ,j y t _ .I ."'Y�.:L . , U..c.. 1,_ .1 � 1_ - -.`.. .`r. S--''.�'i�_r': —�•;. ,..� "�'�j, 1: '�'1 i�'''. tom.: ,,.r.! �- �[., Nt,'nx'1,4r`.4_i ,rx .f -� :. ,• .�en-a'1, _ r'.1'i i ;,'r �r -•�.;'.- �Ilyltt, rr.t �•"j_,: � -' -.I -run, v.u.rr „• -- `r� �� all.. _ -- --... ...-..__i h. .. M�'A,olleir�p+.:.- - 'Ir - -.✓ .I •,Inlv,,, :Lt ” - : I . - :. T I S °... -�' _ -- -- .'1 I'•" _ -{ .Ib' 1, ,I 1 r. � \r✓ •nnk - - ! rv) Q Iw IJ - -'- 4 N �` . crll A IJ C �.:..Y�I�.,Ji�..r- .^ _ .- .� h •_ -rr-.r �'^� ' '—. -� „ .., , ". , , ;:,i, u• -� '•{•'.Y=1' '`.tl`•a !,` 'I'. - .IC' a.x,_ nH.r. �r lrr�7�)_F�.�'SnIq �H, R)JA yi'1 •r r[771u j'I��1t114,I1 , y, :''.r �,i:a '•{ 'mJ '' .., I` 1 , —'1' -- :''n ; rre.,.•,�i-,u „I.o. T2-fJ _ 4, Nam lip � _ ' . �;:it't I'W ! , t - I' .. .. i 1'.. ,. r •f !_G .� -HI' -u �': I I:. I praA. F.6�Fj(*'.i�lrlc AHDIM_'r. MOUf_Jr.MNII ''� .wrnAJ, r^'L• •I, rr - 11. ..- . L r ., { O ` 'I:�:., r _ _�_.. - ..J' h r'hrl LI . - `� \ _. __� --ri - - -�� —, -nC58N')r rJr11, N_. _t��� - in _ ' -- -- -_._ —_ )5'. ,: � -i' =� 1`L. Wit! '.,f•, � _� r ' •i -::�__ :)`- <g,- 3r::�as •.a•� _.._. "_ !Li. - T'i,..,,'I, i1 .� :; -:fr'' -: .I �,' -'_ r., -F .T --•, :_ _ Ir - _ ,ate .�-.r. .Plot... .. - 1 1` ITF .. J. t fr - I _ J - � r •r j ` IJ 1,� _. :IO,F,rr el'/ _ - tl '� J � I �2�' - Hi F, e:., F h �— ..'- ::'`ll, - .•;.L. �.:!r- �!:r : r —f —A' 6e:muo.IDune:_ : I J' 1 <J _ _ � "' 1 : T /l'. _ �.I _'J �H,M'N!i:_- 4 '- t". ` ^\ _ ,,11 .1�:• .. _ r 11 ''rte ' r& I _ _ _ _ •" -� 41N1.�' - - � �ffi. -_ - 'ly � t,,: li�f'_ om a °° .r - l.Lc' �l+ar._� �) II ��•`..r. - "..�s -•J� -- � - -_ I� _Y;.- _ psi + = - �„ ornellc �I�}, �it�'. I' _ t 1 r, rf3'r - r.. ,: {. 'Il -'.t I_ ,,.'r .r.as,,,c ewnAn ".., !.r• 'a, ;,;i' �. _ _ . '. it +rart•,1N°” _ } ! _� � •q� 1.- ) '1.: �r -._ 1 _.L ,- � _: �: ; �-�. � 1 � ': r.u. 'T : IY _d�; �:= - _ '�4 �, � � � • _ _ .I>Z:r'; -' I; n.n_:. I HI ) ' I �}� C :� ln%/JIrJ.,c_� xl^ - ' 1• J: - !' -� S�;j., l�T.. ::.1CI'".:: r'F..r's:^'. \'r • 6:,J.,. N:µIL;•;F•P ar.c! E _ _ a. _ . %IN ! - ..?. _ r' _ :It f �:�'''•. _ -- s 1 ''� i, r .:L,. -'.T i. -III ' M ♦P-''r :� _ L\ .. :1 h. Tnum., L ,. ! � ;s.•ta,wLL�.^ _ �.';:,:' n, �,`��r ,' ��',. i�Fiy - UHHtSM «Fl 3 ,QUO i ._�=1: l._ -• .-_,' - '' _, :; ��f /fiE7UlA1N 5�Ar1. qii� 1 .:,;I ': ` l - .l�E � «!i:n« 'E5 t t\�`r -o) r `ilnii� a41.^ ' ' EstAVAlaw I = .'lp rt cwi« J _ 1'. ; ,,,R, - _' j'.L :t�- �. .- _'.- '�( -._ ,. _ '+�'''.1 'ter• __ - 1 'n;. �, ' =1 .. _ .__�_X,� ::\_. p`y., - nl "'� %� - _�°°':• _ �L.m nrAHr u+Ea - , tA'IUYt ✓. I ' 1 ' 1 ; - x'L I I '! rlr _. .✓-ti --'� - ':a'- ,. %,._- _ _ --i', - aJ _'tJ F :�� {'1 , _.I, - 1'J. ._•^'- +hCtiCHVAi1Dly �:. _ ! �n .) ..) I L. s m..:.. 97 .: plr�f110 __I. L r 11 ./ h - 1 - ,.I �! _ -� ��•�H1 .col � /n `.e�•' - �•: ^. -f .' "`; ^_ �� _ 1 )I Iml JI t ��' �! ,_ ,.., n,,,ll l .'J'; A -, E I' .��"- _� -S - - _ _��.�;'� �t''- �j,: �- :Yr "--'s . -' ' •1.. _+ .. '� •.1 I' n I / ^.ANIIILI'N In PI^h, JGIM1�I I(llua _ � 1'_�,:r" .5� C - � -__J.. t �I-.': - T :. I: -- _ �+_ —_�h 1 _ _ _ N- ✓ - 14 ^..'q'.. _ �I .I - �1 .f4 pl ,A VAr1O1. r �•.-. 1 _ ,nn �I1 '_:� - ;.(=ll • may.. � r r,,,• , , p.:_ _B ,tl... rli= �HlvLmavL,a p V _ -- luy, ,� •,� 1' 171• - �� '•' lhl"^ ^. ., 1,1 . Ed I �" �'ri _.1.2" ' �'` � E COUNTY FLOOD CONTROL ,. yr sl col. Y RIVERSIDE 1.� °�:>A ,IE " ,• _ �j. ,.,:L —c – = ?:_N - TION— DISTRICT -- .— dSERVA- – �• WATER- -COP 2 -YEA I P I TAT I 0 N _ :.,, ; � _r ' � _ _ ai . : , .. __._ �L I' •'. - -- r. � �''- '�.= ,.r�_`' -'_� .d _. a ... r, «o �1{ � ^. •CttrEL•.NL' _ -.r. �. _ :L j:�_ -:. �.I�,- � _.: �{--- �J,Cp�� IILU t •vr..,._ I 1 C ''' .' :!' . -L 1... ''' I I I I —I� _ _.._ _.i '�� _. i -. __I F t ' LI rrrL�"' }_:'`.(�'�•i'r.:11 • r:: {, : `_ ;t .. .. .,, 1 {; •,lt*. .......... J C El / I -1 1, cr.•va1,., .1:. .i,. I , �' - 1� 1 , - Jr .•,�.�411gy' �. •. ,.•A �' . •1' { TI'•. %�T) IJ fj '(..I;i i'4 u I fJl `C1 P: j.) IJ,:'[ NIT Ij•fwr n�,;l iv!1° �: IJ�, y' r.4" a,a• ugln., 1,,. -..E:• I -^'t!' -:I .1` Ja�aJr"'1,. •I .I • .,i' , .'I ,F'{ •'�, a,r.. 4(4 '... 7r lfT:ff7 'S4N .I RI•kFJ:d .• .:5.: _ - - H��ri lr.ln,� i:nll� fJ>K u11++' .t;�t,, .:,.�- -: it � F�:I: ,� r, j''.. - ,.:: < -• ::, ys _ .,.•�;'` f--',: ,�oHnNf3lnDrat JliN1�1�, .:Iy; Y:� �j 1 — � - ---- :: ;+K.'- �y_•.. I t�f -�.7; t.�__ '�',.�'_ ll� lln�•,rn� „- ,,L.,.wn:,,n,,,, +I �`v \i: �'. _ ' %` , r...- T 2 S- ,�Ipx_ ` I I L{ o-1 nay . JH illw -r%i'i � ; '� ld.i• _ t II I tr � 'J,n.„ I�:J Sol n c'1 r' , f '`.I .:_� r � �'. •a _ ' 'i �. ;-I : _ _ r. • .1 , ".•f:,,np : 1:1, 1 _. _ _ % .,I rI ,( 1..:.,, . -- '��� ; ` ,.I �] ^J a YII' r jIL`- '-`L' , ' ..�. T � i�, �� �„ , - -__ =mot i_- -� FL 1 L.:� . � P. • r ' �; ��+ ,,/ iz --;1 ' S -� • +'12 - I i IL ,.��tLy �i - LT'°��, 3S T _ r -. �',�- -�.�. __.�•..LaJ I�h,ii. c,. e.. ,.. �� 1 �[, I k:u_,: � �1��'�` _����� _�' f�:'� ��� 4, �`T-? % II.JI. .aAhN &nGW. _IliYti - FEb _ Imo' .. (—1 - �'`_ } ".� �'. .tt_ - T � � _ � . -fy , ••nw,,...e 1�'1'rf�„vr _ .. ,�: _ - t �.. }: ,. se3� , �'.. _ 11•. _ ry = I _ 1 - �f ( .:_.{ ..:'�� s- r•'•dJrt _ .f' ... . f - . _.1.: " ? �'`z ✓ �L�. rTT.. -1 - ��!v�l •. {..j� iu;,Ci .+Uiw 'rig .•n L.��r••` _ ��} _ - '� _ -�` - _ � '-I 'e'. t.]LD J n:7 fir? ��. t_,l.J :��:.. ... ! %.. "rd [” � �� _ . L ^ ",•Y ''_ � _ ._.c. �, �.tm, I �.�j�-�"' --•T - aihtmar� __ r �, �' V, d:o '�:� �� t ,� - t • _ - _ � u - .'r. t���.. -- - ?.',,:'n�_. �� .G.iL. .tr'�aee �_ '•r.;r _ 4 ��. -''� �'� 1 _ _ -- i 1• I, 7`� . - :.Y` *.: ':,!:.J•'I'i !JI.: :e I. r( �,- - __�%;i •M1 - _ .! _ ,, . MJ, {T1AC YfT:Jt - FA.S' li- achcllc '�C;• ,i -� .`t:. •1 . \ �r�y rrt''j� '.utn,..u, {I+r.. - .;,�- : ?.'« ?rJCni'W!'- It' -r:-� ,•1 :n - 1 ' 1' <:• - - !.,':c` 't-- '� �� u \ \7 rre" raw 1' r• .S" = °', i '' ( u�j ``; I� - ' -�-: - Ci;t�_ .:.� .0' °♦; �c:: ' is - �:j _ v- it 1'- 1� - - .. 1 t B• t'.- �`�fj`'F °r'?.; "•'P ty' •.."^��" `�t,, .•: i5• - r - � ,r:i,. _ _'. -_'1 .,''` _ .::t�-,,: li a 7 I' 1`*^ - - . - i'- � �'� - 1•resz�� r _ - -_ -��v,:. r r.. _ .1 p �J . , .m,r.. .(1 j �I`'` =` F. 5`0''"0 - - - - - _ '�1-- '. .�"'- _ � � -:1 • -• ;AU qri t '.w ,i:IW: ` _'�;j _ _ '::: � L - caHezoa onr:� Q• j �. _ _ - __._ 1'Sd - I( +T. `'� - � =) i•�y. -.`.IN[Yf. _ .,1:,�: -,» _ :, ,+I,,.,: zs I' 4•.\ jj r - i �'�_' -,NCI' -- J ,fI_i� 1•J.!.; 7�",.:. _ _- .� ..r!.:,.✓Sla,i...'_ ��; - � _.� CAI(IIYt♦ M9YnIat - 1 - - -°•'1 ! I 1�, �'�.^ , -. '•- "r," 9 I 'r _. _ - Mommki W i me j ,r [ ji1�,�'� ••��//��uu � _��c:.v' .:- IAn Pl11J[ Cl. T 7 .1 r, \�yll UTA I�J ` -' ,l� -�_�`�� �1 " "•�'N,ZOI/r1 S,Sir _ -�� .Lem `�,,� I.,1^. •)J._ - - 7 t' 7 ' �..1 °_ _!h: Si.HVI. i ,N'�v .. t. ,,.. -.• 1 i _ }•Ceti �5 b?35'?t S j. ..r-i'1 . - _ll_ ,..II �i`°"�.d; AI ,`�',� �'(::c4_ .-. _ - .' -, ; _• -. noy _'vi,'` _ _ -•.� ..,4... - -1.,r.'t� ._ - � l;:_ �.1, Y_rJ V, j_„�. , .L� :_2 1 `` -;-,. may: -•S �.ti !�-`•�l u.s '.: `:�•� .[,oTr•.�. ^.' ,I :�: Im\ I -,�; _�• f.J v411 1• - -,. ) .."'- tom`' --�'�_ .g'� �.{,. J.b u11nA4 J'L n_'�•,_ T_�� ..I � IFF,A -_-. L- w. �� '1.:. � I � r h 7) '�` ---'- -`' t mo - - _M_ r r. .t, I:/"J, -. _.. _._'-,- I-,•�•_ .;� �, t. �'I >. - :aow_ :.b>r ^} '•T % +..,flt: :^ _ _ _ �:'i.` .1-- -,T -- - ` +i I 1 y h �l _ � _ _.1 ., r, „YJ,^ •_' .. •' ''.. < �,'.' �1- °,�,r: P REL NA rralaz -:. :au • t ' - , _. I `Jv'' 11 rrtl" !\. lal vA11 liar I. Ld , "' - r -rT1�: . \;.V !?r--'!'' 1- '•:.'R gHl.•CR_ VLICf, 'I- ,_ ,,.�.:;,_� '�I „�, �._. + -•� ?} f-�., RIVERSIDE COUNTY FLOOD CONTROL ! r ' _ •1 WATER CONSERVATION DISTRICT — — `I \ 'Ill_ �y — �','� --` '•J, • : �'�-' ,:^ �...1. °. _ _.�`! -ti.1 _.-'. —YEAR 3 —HOUR �'-� a�l •. — - ,•� .,' _ ,f I = y I �;.:.� - .:�,;:n�. PRECIPITATION 2� °_`”, I�d� ;e :. rya ` , _ :. \ .�., `. a.'I::_._ ' I, � - f- ��:•.:;: ., _•; : , ,, ' -•r1' _� `�''! '6S�Y1/.NL r�„Y.1, (, -�.:'_ C�. -�. �J- .'_-_= J;:_ry�,` `�l' - _ = - _ ; "k 4 E U+r �4� �a3 .,= I 4�11'MrY .• I '.' _.i l ,vu.v a, r' J -_- .. -�- en u�b e, ._ __- _ _ _... - ,,, is No,+rfp : ^- i✓.1':�� i `f• .. _:;;;1..-�! � .. �.�':.�h:.:+:nrr'v.:vl. , � _ _ - .' 'i � � � - 1�' ..'(I Pa 11 WI' 1' :, '41. "v'` .', I I 1 � •.1 -. _ ,��- ! la .jy 1 I'Cl I`, % L : :;�:. ". h,J� �.r. :tf• .I �I� -rj-� � '• I - ' - - -. .. .. I I, L1.1, Ilv ' .O. wvl Ir.l,ni i:nur _ . ,rl'+`Fi ,:r ..' 1Tt"' = }'' „•1;. ; - � ._ � :.r )';' h:� °' ;.pl, ' 7 .:u :. r- . ,.y _ c -+: I} i,_` I, ,.•� '.�_ar� - ., ,a • - jriuoNayl ilrv�nNlSpx '•r.l''t;J'- A) _ -- -...__ —.Y�. Y.......... .. - lip wi ;J.`�T — _— �- --_- ;uoh _ 1 - , ` , rh.:..o.:.d, r „�.rc' . i_'1' . ,,T-;'T, .._' Ti `''•lc': v — - c.. _ I _ : -;': : I .: •' '�.. .: - ,I. is ,.G u h: ' _ � - - _ - - _ - y; :ate 7 ., '- r _. ? .;R[. _ :�^- �:�- -• Lrf.` nq-1� _— - _ r 4 Th ice. - - 1- 1i. �T , _ '--li: i:J .. �: r. �.�sa+�• -. .�;.`�!'.. _ - :\ �e�I -oin� Ge M.,..i '�s�J� -_ _ _ - _ _ _ I M °- II �,� ��. - - ')I.� .K9:i:IL - :JtINi.,14': •.K.:�:N;i.:l : ' � � ' T�A I A L • f C T - r; 1 (- _ i �” : i Y j r*ba?r: I' I �'' = ' ', _ �' ' t , ;, - I . _ '�`_ .— L•,. I r } ; � ::r,,..is �,.1 i F H:vi. ?,,- • 0.` __7 11 r - ,:. uco!r+o'I"' / r \,a - - nei�aro - _, I,::' � I- *-I cF,:_ _��� � •_ �-- -��.., -, 3q ' I _ - „f� ���- 7�:i Glnn. j ,L..f•:;;:.._:� .7::- - _ _•c ]' a -1AI .__ _l It:. „- '°,,.i,a.;�;a= -- '��.��i �._.liwln''-',i- uDCr.'i 3i� .�r.;; .a✓', :.,,� ?�- —_ �' '�L, <R,_C _ :.q - � -7� kj � :J a'Y r:` �-,, IIIU �J'_� _ �I'- ir•T .:t� Z'_ I !,�v IU�J - i ��y.l ,m, �,�.- .1 -I- II J L•l�, S_�- ���S�I.•: ,IY�i� � - -_ f r►�Iso - ��b1�fr,7m�AA`,0. I '� ►'I..• 197„ 7 J - `' I '.:/ 1 ` • N , ' 1 ' _ < - _,:° _ _ .:)..•• GQl'i.orriia 1._ ;y. /I:I jI - -- 1�____ _ '!. .1 r• ,n,r!c�uy_ �':gi. -.- - '�_ ' 1 � I I Tn .. ,_ :tip:: •+. .,Ir ho J low - tl .4 . 1 -- y "�.+r „ '�Y Ial +Ihr�lU y=er, Al '+' Y� \ _' _. �_ 1 .i 1 v mil" T i +�C� t �..0 � � D'• r- l T -� '-:• ..' �, ,CHI 11 • ;: "7�' ^' - `. '1 7(,PRL MARTav A T5 :fLl .•'' ✓'.I �:J _ �f _ I-. `'y.� �l :x-G -_ {fir__ a:- ,�-•'l: !h ,y.:�.. -I �J � �_ i_�` - I ....rte -.J.5 I '-J, .�' - - �•, ,j '!Y: __I'- d : _ -� �� : I: I, (�' - - _ L: r•. _ _ _:n.. 'ti_" _ `;,� � {. _ - .,j.`= �� -`'.p �{.�..W� �c,._'c _P (��I+L•r „��, Ic r:l rr ,1, - �.Q r' _ ,+ _ ” r'Y, f,...,,1�� _ .h.. R_i TL.. '• _ a.r` II',' :o,lll' i, I RIVERSIDE COUNTY FLOOD C014TROL A. c:ny D - -�'' WATER CONSERVATION DISTRICT ( _ _ 1 100 -YEAP 6 HOUR ...... PRECIPITATION •�h•�, �s, °' � \J� .tut' °Lar,G ,r:AI�_ :J_ _ _ _ __.1 =� {1 -:1- �''�' ^s� �— � j .-cG , � i= r:.�.� - I...h.r -. ✓ s r. R: 'E R6E �7E F,'BE R ]�< _.. ... _ _ _ _ r , • TIS .K. I I' J. `!y .. i".ri- y,;'1•; I,. - -�+ I. *, !'J 7; I 'ICf11V c i iJl ; f '... .. fr,t '- I. .�•:.: - ,i� �i: "1tTlJ•SnM�y`�', - - �I G4 '- '^- % t:�:'^'7 C ,f-::.,t _,., ...VJ' - 1 Mr �• ,n:l I,:eln IT" ky4utral -- .1�n: 1 ' ~ •� �_J a lu.. - j.: 'n�' J: ' ] ,,. .�.: y,(�N:;C✓�RfJll' .tQUalG,NVS O - - I. _ ._+ : ,. . . Unjr, 1 -1Pc� d, r - !. - l G..� - i ` %� - T 2 -� ncsb`rvt�rpl: : , 't:'- r i '- --,j-- -i' -- •.:., ,.., '' _ �'�; .kr�+ h: -car• F 3S `eh•'y. et - - r 1: - �.i = Nnsetc of - - � - 1 - = -- �� - _ ��,- — - _ _ _ _ •' ._ r- - FT' `�'i WRI c "1:' . ' ��_ ---- -� �•: 'rl -: �} - ��' -'' -' � � •h�.�! -J ^j, S.i [. "-cry .! - 11 � �- 1,iQ,— •� r� '� ±- :,j _ - 1T� -.�.Y� 1;�.'r11 _ �l� -!� '1:(..4:1V•.:r lRat _ ! r.f -•.' .�1� _ :•.`1,j.:iT+�.. :'• � '� ,��.::i.�r'i' 7, _ 'i e;• �l?J -1 '�� - - "'s.�i` 'I ,�; _ L. - j,__I T -'6 ,I {o Res.. 1 - .I , ��' \'rl'. - 'i.- t_ -_il '� 'il l �. ' -��,i' - .�- •�/ �'h•�'X 'J,' i Iil ! ' `` \: "'. �• - 1 , - : -1, _ 1r .� �':._'�._ - -wJ "Mli e .•JV AIA' - _ i � '� j haoic 1n_ti:.v-' � _ (': - =s il.,_t � u�' ar,:. .�•.�� � � ; {., :'.,R��araiyaiv, 1 J i. r loch811c (� ,:Y ,.,. �,. - '. �.,: 'tL.L- '•'('- _ is Mr +yro •rt.,:r`'�ticv _ ,.'�•= - :ixs, � iJ.• - `�1: •7"64 -'..i �,;� , Q 1. .,' �- \_.uri: ' � +u - - `t� �T' ,r7�F~` ✓v.� - -- i mr.:rmn J , c.uoul..:, '".�, _ Ln,J.7x,'t•14 .. :..�•',,,: � ..1 •'V� .I ' ry �LP: -t.. _ �.I 1 �': �r I n, 1 Rv Tn '-,' 1 .. .w Llw+- �- --'•:. h � _ _ .- ,, --! .� - � �-aµyo- q� ' �'.:.: ,CaP 630,i` jC,H4Yf,� mnal.J ..., _. ._ •�`� _�! •i c.__ �1 ;J; -'? '�-'Jr JJ' •s+a� .�vum���.�i��_.0 :1. =_LJ:- IL.%.� �cAd t,oanLs r. rtr,rr+: 3r1 0� I g i1 �`J 1 r, �kid-L c'�1rea? ➢, } niR h .., �,- _ JI. I I ---1- - , w •�• LSC NVJ•, CJJU� �_'1 .-•�%• :r •R Ef '• "..1 JI i 9 +'• ` , J 15 Kr.l - - -- ') jy t- ,_.i - r� !1,-f ; i L A� U 1� -q fit ..._. I %tw S [�y�,,•,, �c,N 17'S L 7 allifl�rnia, .�_ -e •rTl -��_„ ^ '.^.4H11„l} lr. i,lA r \.f:!.l� -/11. - '1- !- ' _- � _ - ,• � '-"' v7'��` � f: °T- '.'I� ,'I� "' n:� I .I.�- 1 h �• -. :.. i r ,f ° Lf�_ ✓-�'_ 1. 'I d!a °lam" �bua.tiu _ - - °L' -J7_�i l_:'�� _ I h� 'I. -I^ - ., 1. _ _ fl'_ _.�.,: �+'�:5, :!s'��' - •�.-�'I.: '17l)HRCS ' ->•!C: L: ! !1 d- n - - rl i .�, NA,: (\ „i,y,'•' __ - ' 3-�J 't -- iy�. c• .. '' :; ” : :•- ."�- -d... � RD�RI \'C�. ,G RtVE.RSIDE —CCU �I. -- \x . ',l•, J t T_Y FL.00D COr'TROL � - - �•,.;. WATER CONSERVATION DISTRICT 2 -YEAR 24-HOUR HOUR r'f ° I y - - - �J .' CLPYCLFHI, Y: -.: /;. %Y•d(- 1 : • ' ` ' ,: }. }..�' P R E C I P I TAT ! O N f. Rr,� ! . .. iR6E . - iR,�'E : � ,•_ ,�I, n C, ..I 7 u — --- - -. -- ".� A - �:..JI'•'-f f) '�1 E All 1 } r "L' 1� .v uakal ?P e..+,1{.: �'; I 1 �! �1 :: :,,.F„•1.,w.. F n ��` I .. -'^��''.kr_:Y; :r::i -,' rar• '' r' �, _. -._. -___ _ -�' ' _ - LJ .- I 1 }, /i r. -F I. .i a,Fe,:: _. PT-t -L xI 16 1..vM' �� . ,. ^,: r.�� � 'rs • .`r'>.'a,�„S +2,�., rNl,�/ r ��'• •'L- ,�-++� , ! orr(i 1�'r �' TY -�I.� � _ ' ,..t r �.'! ,g�' I � - -mil. "� - '"r':_ F1. ;'� `:• - ,L.aS•tt�, ., -- ., �.. •NOw,i.n. Ti � .�i _ 1�"'1"' . ,rr9 � �'-'c ' i . � �F,_.1 ' 1 . = t .,1'''1_x,- . -;', � ., _ 1 `•�* _ �, - a ' rGr'�N6rvnPfullr ;l,n;,:r 'r = —_ �. _ i,• _ r��^��!'•- f' . `� - u'. I.- • -I -� S _ - _, AWE : It trlrUh. }JY.1' _ 3c�,�. "Y c •: J t VVV fl-- �. F` -.,,. v�d��eF, .�, wvc ,;•' =.'�Y{ .,L- .7r- '�='�,:Y - un• \�. - -r f _r':�1'.1' -r:✓ r, I i =.t. " �. ..:.iM:.f,'_f �- _••� _ i- 'i rr sir = - t I ! {\ ..' - r•h„ti: _ 1 __ .� y, .. ;l"'c ' i of - 7 , `�'T �.r-, • �--"' r t v a, :,; - - .l _ - J 'Al I - . •':�,. �':'- _ '„;,:a _j:• —;rte �___ 'rn '.,I J) ✓•�.,dn += 1`•,` _ __�!;1Tl�f✓`. y. . _ ^ �{ b„r`o ^;hung:_ I. �1- _ �- -__ - 1, �.��k. +.c,� 1 t _ nY \W. ae _ _oim Ge,.r �..1 � , i `}t ;_•,'1c, - a I r5F 7 l ocn Falc I 1' •�'� -i ._ Vi - - ' s:-I: - __ -. `�•�. ::c � - �.1 .� rc � � t roPt II � I i nl b `:c_I [ Vim• —u,,,�rrM ~� Ilrn:r r � '� ,� � 7 31 _ - ,� -� ; J1 t,•xs;� 1 _1 -::.. _ ,1 i1 . ":��. �- +� -/-. - �.:1��'ar•..�- _ 1 J Ir:• 'cln•. .. �T �r9rJ ��'�. _. I ,n.,ma� \;i. 1, I� \� �';', •.; _:: :';� µ'_- _ -;1 7, � boo It ❑c.: _ ? - _ ' \- a' 1 .a�, .. -TIC -V.1J4 �= _IV.''; a ..b:.:. acs -•J, ° Ait ' . fl..k, liM1'sr.Nj'�•_i;OEF m�fF1 �F•� rr,, pp'� aim:.:_.. - �•[A •, _. _ - a111FY1'� '' -, �.�• .J•'. 1.a -- - -�, 'l; ! \.._w\ .__ J, i •`•. v1-=�. }l�l�-- .-�'�• I - }..:Isd>n4a 19,7.; - -, i 9 :a �sF.-.;, ,•' %- e..I'— i;fllUor!n is , , a, j rv•` 1 I1... yr r 'r f 1 -a �1, _ ::r Lr`f. —1 :- _ el ,dn.,J 1 ,.� - '��_ __ �r•�: C;9` -ter r=-: _ •cvgn �- `.(%l.Y° ltin.', _ `.;,' ' n,ttaAc. +' .y :�y'':r:�alu,__ „}nl__• .., i_ p rx '5.,,.. ry +.�Z•.. -,::.. _ ',00RCS�nf _ �••i .1l .yI 1� 7�F� PTICn� f '_ \ _ u" Q Wit. .tJ':,•_�. _ �, GWI � �P '=(: J., I 1- .'.Lu- 1 7 • },' - 6i- -R11'C fl1lLC' - _ rs2 y.r,.li , r i ~� /� LINTY FLOOD CONTROL �r I ID CO } 1 $' .� _, !I I ,�• r _— RI.\_ERSE - -- -- r_= `— i — 1 '' l� + •.Y'�R a� i r^�� t:SEP\�P.TION DISTRICT WATER CO -' �EA 24 H ITATIO N PREC4P TQR i�Na'.�'•:61_J =_ -'j 1��.' CiiJEI_`Nur`�` ,_ .,,t.i ._. .._•- ,..- .:try' V T ul -T 7-T Vd... rf' IF. IT A.: Id '7k 4 73 Jp; II II .t -o- 7-71 2, -71 qj J 7j Ln S 4 . if 'n 5 1 1 t ar .w i' _ ".2'' �.. 1.17^ I _ °/ _ i,• - ri I t CY) I-V 41 V, PV - A, m LU rn 7- U) -J to n o 7- zz tl (T) -u Tz, < it �O 7. m - 0 L F T C) t MC 0 0 0 0 c L SD 7 14. APPENDIX "B" SOIL TYPE DATA 0 40 INk.ry A;;— i!(r.. GbA 40' R J• .. ... ........ . -Wj � 1j: fk 21. —�h-j m SE1 -P Sh: Alp, igg'S 540 cl IT .5 -Uz arz, 7 G eA GbA . .. . ..... . -M—lg %N� w , IM M S - I. MWPZF N i it • III — a i.z x� .w-c =y :�t_ �'_,'r— 'r�^ �'St „u`�I� (J_ .r� . ” - _ L,. � !h-� c�.�, 1� y ��� I� �" V try _ -- Mp 72 GbA 44 i;m -"" c: GA 2 4 E, Ant 1 ITF- GfA It, 17 A1 I I I I I I . . . . .6 25 -:ylk M4, 33'37'30" T111550i1 survey • tiu I_LS. Agr c OW 1*6. Departn1r, ,encips P111H 101 -1 .I ------------ I_' -__ aa� -a4r - - gaaladd y 09.E -- - - - -- ---------- I - aaQ -aar 1- ---- 1aalnddy - ()g,:, -------------------------- ---------- - - - - - < - --- aaQ -aar --- 1naladdy 09 < --- --- - - - - -- ---- --- - --- - -- 09 < - - - ;o�f1d - 1aaladdy ---- - - - - -- 09< -- -- - - - -- -------- - - - - -- IQ' 09< 0'9< O E-0' i 0-9< 0'9 -o,E 0*9< ---- - - - - -- Oo ------ - - - - -- ------- - - ----- 09< - --ate -nsf - --- -inaiadd 0 Z; ' 0 `--- - -- - -- - - - -< --- --- -- -----Il 'jl� ----aa� -aar - - -raaladdy Q S-0 "c :OIpU� ------ - ----- -- ----- - -- - --- Q'9< - - -- N < ------ - - - - -- ---- - -- - -- -- 0 g< ,a[gaddra OZ-9 - ---- -- - -- -- ------ --- - -- -- --- - ---- -- Qg< ---- oaf -aap - - Zaaladdy 09-- ---- -- - - - - -- - ------- - - - - -- 09< - ----- - - - --- -------- ------ ---------- 1w< I ------------ I-------------- ----- - - - - -I 09 < I ------------ I --------- - - - - - I Q�9< o'g< Q 9< 0'9< 09. 0'9< --.--- - - - - - -- - ------ aaog I-- ------ ----- -I -auo�j I--- ---- ---- - I --- --- -- - - --- ------------ -------------- ---- --aaopi ------------ -------------- ------- aa0�{ --- --- - -- - -- ---- ---- -- - --- --- -- -aao.q ------ - - - - -- -------- - - - - -- - -- ,� ------ - - - - -- -------- - - - - -- -------- ; ---- aarl -aar - --- �auq,t•a,1 -- �anorseaa0 ---dam rdy --- --9no{ S1a,1 - --!aaneal.fi - --- -- - - -- -- ------ -- - -- --- ---- - -;UOK ------------ ------ -- -- ---- - ----- ^ >ao\L ------ - - -- -- - --- -- --- - --- - aaoh ----- - - - ---- --- --- -- - - -- -- - --- -aaot{ ------ - - - - -- -------- - - - - -- ----- -aaarl --- --- -- - --- ------- - ---- -- ---- -- -71 H - - -- -- -aaonj _____ __ ____ __ _____ __ __ ___ ._____a00� ------------ I -------------- I ------ aaa{,{ I ut 1,1 aeanpl'rrll �l'}�Ia� ;nl•}uoy�r p,uI rl•}dar7 urarruy�{ rtrn•I,unc1 ,iananhal,{ �:Ino19 lariw,tiu dn,n � a1 acyo{ pnx rcu,rn lrnS :yprj ral,rm ((21 7urpould olpd[I ( tr.t} } 1a�,:a1.3 :aeraeu enc {} :;sal ,,.rraw loqur,ts ar {,L .'par. {Z;1arf Prtr. 'p -zq,, I :j1i:r„ r. stul:r} i. {:ms p,rrr spn'lu,,is }o stcur drlatrap .:of 1xal ?a; u_taa,.u.) r: -luu sr .un:}raf ar{1 ,a1rm!pu! ,Lt;rta au fa nin s:��•rcF•r�r� l .c,r�•nrrc •(YCa•n �a,r�� —' [ sz�I'•>•,L LL •rlMitO1f't11VJ ',S..L;'(1100 SM113, L1Pi 11nd dofa1no po-a Q 11udslaowmnsduluy :sluammnsdulol, wgir"1 H-- --- --- -- -----Il 'jl� ---------- - - - -sl 'd} :OIpU� '11nd punt paI� nq � - ------11nd lauadcaj ID :lava' m ••pnd pawl paRln`J Q ------- Ind {nuadul{ ' I JwI Q--------------- - - -I -M Q --- ------- -- -- ----y:,l {nuadm{ :admnp pua g1!d lannlo $------ Y19'vp9 , V, 9 H ''•1'9'89`J'b9�'r'8'9 :untop� Q/y ------- -------- - - - -�j slaannl� :qluanaa.,nit a H ---- --- ---- -- -- -- y' J - --- --- 'ad]'•,d_ :allayaeo� a '3-D uD'ao - 'ao-j :a {jamo�{ano� -- --- ----- -3w (a J �unua,l saa!srnJ y '81J':)4D'3PD'3PO :sallsly� v ----------------- :PD :07111Fo Y----------------- 0qJ :�aauntl ua(n� ._______--- _____ -Q P.. :ao�n0 -- ---- -- --- ---•--�) •d9 eald .,,ournl V Fj : Prinipnq ut 1,1 aeanpl'rrll �l'}�Ia� ;nl•}uoy�r p,uI rl•}dar7 urarruy�{ rtrn•I,unc1 ,iananhal,{ �:Ino19 lariw,tiu dn,n � a1 acyo{ pnx rcu,rn lrnS :yprj ral,rm ((21 7urpould olpd[I ( tr.t} } 1a�,:a1.3 :aeraeu enc {} :;sal ,,.rraw loqur,ts ar {,L .'par. {Z;1arf Prtr. 'p -zq,, I :j1i:r„ r. stul:r} i. {:ms p,rrr spn'lu,,is }o stcur drlatrap .:of 1xal ?a; u_taa,.u.) r: -luu sr .un:}raf ar{1 ,a1rm!pu! ,Lt;rta au fa nin s:��•rcF•r�r� l .c,r�•nrrc •(YCa•n �a,r�� —' [ sz�I'•>•,L LL •rlMitO1f't11VJ ',S..L;'(1100 SM113, L1Pi • • • RUIJOFF IltDE)' NUMBEFS OF HYDROLOGIC SOIL -COVER CDLPLEXEE FOR ?�ErVICUS AII1.S -AMC II Cover Type (�) QualitJ7 of Soil Group A C D Cover (2) NATURkL COVERS - [B6 Barren 78 91 93 (Rockland, eroded and graded land) Chaparrel, Broadleaf Poor 53 70 80 e5 (Manzonita, ceanothus and scrub oak) Fair 40 63 75 el Good 31 57 71 78 aiaparrel, Narrowlea.f Poor 71 82 88 91 (Crianise and redshank) Fair 55 72 81 86 Grass, P_nnual or Perennial Poor 67 78 86 89 Fair 50 69 79 84 Good 3B 61 74 80 Meadows or Cienegas Poor 63 77 85 Be (P.reas with seasonally high water table, Fair 51 70 80 84 i principal vegetation is sod forming grass) Good 30 58 72 78 Ooer_ Brush Poor 6.2 76 84 88 (Soft wood shrubs - buc);wheat, sage, etc.) Fair 46 66 77 63 Good 41 63 75 81 i Woodland Poor 45 66 77 83 (Coniferous or broadleaf trees predoirlinate. Fair 36 60 73 79 Canopy density is at least 50 percent) Good 28 55 70 77 Woodland, Grass Poor 57 73 62 86 (Coniferous or broadleaf trees with canopy Fair 44 65 77 82 density from 20 to 50 percent) Good 33 58 72 79 URBAN COVERS - Residential or Commercial Landscaping Good 32 56 69 75 (Lawn, shrubs, etc. ) Turf Poor 58 74 83 87 (Irrigated and mowed grass) Fair 44 65 77 82 Good 33 58 72 79 AGRICULTURAL COVERS - Fallow 76 85 90 92 (Land plowed but not tilled or seeded) R C F C a LTATj C D RUNOFF INDEX NUMBERS FOR . HYDROLOGY J�AANUAL PERVIOUS AREA 4 • ACT_UA.L IMPERVIOUS COVER IRecommended Value Land Use (1) Range- Percent For Average Conditions - percent Natural or Agriculture 1 0 - 10 I 0 Single Family Residential: (3 40,000.5. F. (1 Acre) Lots 10 - 25 20 20,000 S. F. (-, Acre) Lots 30 - 45 40 7,200 - 10,000 S. F. Lots 45 - 55 50 Multiple Family Residential: Condominiums 45 - 70 65 Apartments 65 - 90 80 Mobile Home Park 60 - 85 75 Commercial, Dovrnto4*r I 80 -100 I 90 Business or Industrial f1 Notes: 1. Land use should be based on ultimate development of the watershed. Long range master plans for the County .a-rid incorporated ci ti es should be reviewed to insure reasonable land use assumptions. 2. Recommended values are based on average conditions which may not apply to a particular study area. The percentage impervious may vary greatly even on comparable sized lots due to differences in dwelling size, improvements, etc. Landscape practices should also be considered as it is common_ in some areas to use ornamental grav- els underlain by impervious plastic materials in place of lawns and shrubs. A field investigation of a study area should always be made, and a review of aerial photos, where available may assist in estimat- ing the percentage of impervious cover in developed areas. 3. For typical horse ranch subdivisions increase impervious area 5 per- cent over the values recommended in the table above. R C F C a BCD HYDRDLOGY J \AANUAL IMPERVIOUS COVER FOR DEVELOPED AREAS • • U 1 -P P ENTDIX `CU DEVELOPATENT 100 -Y 3 61,N-IIR UNIT 11-YDROG T .S 40- AREA A & B 100 —yR, 1 —HR STORK EVENT L Ia y d o g r a p h A n a l y s i s U gpghr. yri ( ) CIVILC1 r, /CIVILDESIGI.1, 1989 - 1999' Vern -on 6.0 � Study date 0"1/ "'7/04 File: 966 -ps. B1100.DU� =.==t+=- t-+tt tt+= tt+++ i-++ tt+t- F++ 4.- TTT== + ±++a.t = +t- �"- i- t+-*�r + + +i• +t =- --- -- - --i� --t- r e Court Synthetic Unit Hydrology Method P.ive --' d � v 1 dare - April 19'ie RCFC u W P CD ;anua_ S 1� 598 Warner Engineering, 'yucca valley, CR - / Englisi, (in. -lh) input Units Used English F:ainfall Data ( nches) input Values Used English Units used in ou =put format TTM 30092 APsrR A L B --------------------------------- - - - - -- -0.053 So. ''g - -• Area = 3.80(c.) _ Urainag- � A 180U.00(Ft•) Length along longest watercourse = 200.00(Ft -- Length along longest v;acercourse measured nc cenu old - 0.341 Mi I watercourse 0.036 Mi. Length along to centrgid = Length along longest watercourse measured _Terence in elevat- or - 9.10(Ft.) SloT)e along tiaacercoursa - uve_age manning Is = 0.013 Lag time = 0.036 Hr. .19 Min. Lao time ^- 0.55 Min. 250 of lag time = 0 g6 min- Unit of lag time _ Unit time = 5.00 Min. Duration of storm 1 Hou, 0.00(CFS) User Entered Base Flop! _ YEAR. Area rainfall data oeighting W21 Area(Ac.)[ll Rain0.50 n)[2) 16.90 33 . BO 100 YEAR Area rainfall data: Rainfall(In)[2) Weighting[1 *21 Area(Ac.)[1) - 54.08 33.80 _.u0 STORM EVE14T (YEAR) = 100.00 D.SDO(In) Area Averaged 2 -]ear Rainfall = Area Averaged 100 -Year Fainfall 1.600(In) averaged) 1.600(In) Point rain (area 9° 97 � Areal adjustment factor = 1.600(In) — Adjusted- -aver age_p.o.inc ra n_ -- — Sub -Area Data: Area (Ac.) F.unoz Index . Imper "Ous 7:rea averaged mean soil loss (F) fir,/Hr) = 0.304 Minimum so_1 lose raze ((In /lir)) = D.15 =' (for 24 hou± storm duration) Soil low loss rate (decimal) = 0.650 Slope of intensity- duration curve for a 1 hour storm = 0.5800 -------------------------------------------- ---------- - - - - -- .800 56.00 0.950 U n i t H y d r o g r a p h TozaL r -rEa Entered = 3,:. d(i (AC. j DESERT S-Curve P.1: F.1 1nfi1. Ra_e lmpenlious Adj. Infil. Rate Area`•:. r Unit Hydrograph Da--a kMC2 PAC-1-21 (lr. /Hr) (DEC. it --------------------------------------------------------------------- Unit time period Time % of lao L•istributior) Unit Sc.0 56. [, 0.511 0. 45D 0, 304 1. 000 0. 304 Graph E (CFS) Sum (F) = 0.304 7:rea averaged mean soil loss (F) fir,/Hr) = 0.304 Minimum so_1 lose raze ((In /lir)) = D.15 =' (for 24 hou± storm duration) Soil low loss rate (decimal) = 0.650 Slope of intensity- duration curve for a 1 hour storm = 0.5800 -------------------------------------------- ---------- - - - - -- U n i t H y d r o g r a p h -------------------------------------------------------------------- DESERT S-Curve Unit Hydrograph Da--a --------------------------------------------------------------------- Unit time period Time % of lao L•istributior) Unit Hydrograph (hrs) Graph E (CFS) --------------------------------------------------------------------- 1 0.063 228.354 46.91"7 15.982 2 0.167 456.708 43.541 14.832, 3 0.250 685.062 7.398 2.520 4 0.333 913.415 2.145 0.731 ----------------------------------------------------------------------- Sum = 100.000 Sum= 34.064 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Ma -': I Low (In /Hr) 1 0.06 3.60 0.691 0.304 - -- 0.39 2 0.17 4.20 0.806 0.304 0.50 . D. 4.4 0 0.645 0.304 ___ 0.54 q 0.33 4.60 0.683 0.304 - -- 0.56 5 0.42 5.00 0.960 0.304 --- 0.66 6 0.50 5.60 1.075 0.304 - -- 0.77 1 0.58 6.4D 1.22B 0.304 - -- 0.92 8 0.67 6.10 1.555 0.304 - -- 1.25 9 0.15 13.10 2.514 0.304 - -- 2.Z1 10 0.63 34.50 6.622 0.304 - -- 6.32 11 0.92 6.70 1.286 0.304 - -- 0.98 12 1.00 3.60 0.729 0.304 - -- 0.43 Sum = 100.0 Sum = 15.5 Flood volume = Effective rainfall 1.30(In) times area 33.8(Ac.) /[(In) /(Ft.)] = 3.6(Rc.Ft) Total soil loss = 0.30(In) Total soil loss = 0.856(HC.Ft) Total rainfall = 1.60(in) Flood volume = 156960.4 Cubic Feet Total soil loss = 37289.9 Cubic Feet ' -------------------------------------------------------------------- Pea): flow rate of this hydrograph = 137.658(CFS) -------------------------------------------------------------------- -++' F++++++++' F++++ + + +-F + + + + ++.... +-'T + +i- + + + +i... ....++i}++++++t+..1,- 1- E 0 U R S T 0 R M i R u n o f f H y d r o g r a p h -------------------------------------------------------------------- Hydrograph in 5 Minute intervals ((CFS)) -------------------------------------------------------------------- Time(h+m) Volume Ac. Ft Q(CFS) 0 50.0 100.0 150.0 200.0 - ----------------------------------------------------------------------- --0+ -5_ -_0.09. _6 6.19 VQ I I I I D +10 0.1375 _ • 0-15 0. ^551 17.07 I VQ - --- 0+20 0.3848 16.83 I QV I I I I 0 +25 0.5281 20.81 ) qV ) I I I p ;.30 0.6936 I ! 1 C, v ! I ! __:.93. 1 ! C' VI I 0;35 6.8877 .8.30 1 ! q I v I I 0,40 1 13u6 36.1.4 I v ! 1 � x 56.80 1 ! G +i 1 :.458 137.66 I V I I ! v i < 0+ 5 1 < 1 — ?744 115.55 I ! . 0 =,4_, a 36 9'- I I I 1T J 6348 ! vl i +1G x.6471 i.79 C I 1 i;15 ------------------------ 3.649^— 0.33 C ---------------- �j C] PStiEA A & B 100 —YR, 3 —HR STORM EVENT V r, i t r1 y d r o g r a p h A n a l y s _. _ Conyrighr (c) CIVILCADD /CIVILDESIG19, 1985 - 1595, Version 6.0 5'tudv Gale 07/27/09 File: 966__ 17-_REA7z.B3100.ouz +++ ++ +r + + +T+.....- {- +++ +i-+ ++ ++++i-. . + i- + +-I-i- ++ +r+ + + + ++r + + ++ +..+ + + +i- + ++- I -+ + +++ --------------------------_----------_------ ---------------------- - - - - -- Riverside County Synt);etic Unit Hydrology Method P.CFC & WCD Manual date - April 1976 Warner Engineering, Yucca Vallev, CA - SIN 598 --------------------------------------------------------------------- English (in -lb) Input Units Used English Rainfall Data (Inches) Input values Used English Units used in output format --------------------------------------------------------------------- TTM 30092 AP.EA A E B -------------------------------------------------------------------- Drainage Area = 33.80(Ac.) = 0.053 sq. Mi. Length along longest watercourse = 18DO.DO(Ft.) Length along longest watercourse measured to centroid = 200.00(Ft.) Length along longest watercourse = 0.3 4 _1 lei: Length along longest watercourse measurer_ to centroid = 0.036 PZ. Difference in elevation = 9.70 (Ft .) Slope along waIercourse = 26. 4533 Ft. /Mi, Average Manning's 'N' = 0.015 Lag time = O.D36 Hr. Lag time = 2.19 Min. 25% of lag time = 0.55 Min. 90€ of lag time = 0.66 Min. Unit time = 5.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Area(Ac.)[1] Rain_all(ln)[2] Weighting[1 *2] 33.80 0.70 23.66 100 YEAR Area rainfall data: Area (Ac.)[II Rainfal2(In)[2] Weighting[1 *2] 33.80 2.00 67.60 . STORM, EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall = 0.700(In) Area Averaged 100 -Year Rainfall = 2.0D0(In) Point rain (area averaged) = 2.000(in) Areal adjustment factor = 99.99 % Ad�u "s'ted-average -point— rain.. - =._...?.•.000 (In) Sub-Area Data: Area(Ac.) Runoff inde,: Impervious % 33.800 5C. 0C) D. 450 Total F.zea 33.80 (Ac. ) Ri R1 117 - -il. Rate lnl)JErvious Adj. 1nf11 . Ra'.:E Areal: F AMC2 F1NC -2 (In /Hr) (Dec. 1c) (Ir, /Hr) (Dec.) (In /Hr) 56.0 56.0 0.511, 0.450 0.304 1.000 0.304 Sum IP) = 0.304 Area averaged mean soil loss (F) (lr, /Hr) Minimum soil loss rate ((Ir, /Hr)) = 0.1S.' (for 24 hour storm duration) Soil --------------------------------------------------------------------- lov1 loss rate (decimal) = G.850 U r . i t H y d r o g r a ri 'r: DESERT S -Curve -------------------------------------------------------------------- Unit Hydrograpn Data --------------------------------------------------------------------- Unit time Time % of lag Distribution. Unit Hydrograph _period (hrs) Graph i (CFS) --------------------------------------------------------------------- 1 0.083 228.354 46.917 15.982 2 0.167 456.708 43.541 24.832 3 0.250 685.062 7.398 - 1.1120 4 0.333 913.415 2.145 0.731 ----------------------------------------------------------------------- Sum = 100.000 Sum= 34.0'64 Unit Time Pa --tern Storm. Rain Loss rate (In. /Hr) Effective (Hr.) Percent (In /Hr) Max ) Lom (In /Hr) 1 0.08 1.30 0.312 0.304 - -- 0.01 2 0.17 1.30 0.312 0.304 - -- 0.01 " O.Z5 1.10 6.264 0.304 0.224 0.04 4 0.33 1.50 0.360 0.304 - -- 0.06 . 5 Q.4_' 1.50 0.360 0.304 0.06 6 0.50 1.80 0.432 0.304 0.13 7 0.58 1.50 0.360 C.3D4 - -- 0.06 6 0.67 1.80 G.432 0.304 - -- 0.13 9 0.75 1.8D 0.432 0.304, - -- 0.13 10 0.83 1.50 0.360 0.304 - -- 0.06 11 0.92 1.60 0.384 0.304 - -- 0.08 12 1.00 1.80 0.432 0.304 --- 0.13 13 1.DB 2.20 0.528 0.304 - -- 0.22 14 1.17 2.20 0.528 0.304 - -- 0.22 15 1.25 2.20 0.528 0.304 --- 0.22 16 1.33 2.00 0.480 0.304 - -- 0.16 17 1.42 2.60 0.624 0.304 - -- 0.32 18 1.50 2.10 0.648 0.304 - -- 0.34 29 1.58 2.40 0.576 0.304 - -- 0.27 20 1.67 2.10 0.648 0.304 - -- 0.34 - ^1 1.75 3.30 D.792 0.304 - - -. 0.99 22 1.83 3.10 0.744 0.304 - -- 0.44 23 1.92 2.90 0.696 0.304 - -- 0.39 24 2.00 3.00 0.720 0.304 - -- 0.42 25 2.06 3.10 0.744 0.304 - -- 0.44 26 -.17 4.20 1.008 0.304 - -- 0.70 27 2.25 5.00 1.200 0.304 - -- 0.90 28 2.33 3.50 0.B4D 0.304 - -- 0.54 29 2.42 6.80 1.6321 0.304 --- 1.33 30 2.50 1.30 1.752 0.304 - -- 1.45 31 2.58 8.20 1.968 0.304 - -- 1.66 32 2.67 5.90 1.416 0.304 - -- 1.11 33 2.75 2.00 D.4B0 0.304 - -- 0.18 34 2.83 1.60 0.432 0.304 - -- 0.13 35 2.92 1.80 0.432 0.304 - -- 0.13 3.6--_3-.-00 0:60- ._....- --._D -144 0.304 0.122 0.02 Sum = 100.0 -- -- - -- -Sum �- _ 13. 3 -- Flood volume = Effective rainfall l.il(In) - - times area 33.8(Ac.) /((In) /(Ft.)7 = 3.1(Ac.Ft) Total soil. lus, ~ o 8 9(1 r) roc^z scil loss ~ 507 (Ac. rc� zut^z rainfall ~ z (10 (1n) Flood volume = I36I5I.7 Cubic Feet Total ooil J.(jss ~ zuyzuu.0 Cubic Feet ___________________________________ pea): czo° rate of n'urum-rapu ~ 51 uzo(cFS) ___________________________________ ++++++++++~*++~+++++++++++-++++++~++'+++++++ +~*~++++++++++~++++++ �- xuoc oroca x000f f axdzooz^nu ____________________________________ xvuzuncapx in s Minute iotezn^z, ((cra)> ____________________________________ rime(u+m) Volume AC-Ft _____________________________________ O<cFs/ u 15.0 su.o 4s.0 su.o D+ s o 0000 0.13 o | | | | u~zu o uozo o cs o o+zs 0.0079 0.77 o | | | } o+zu o.nzez z 51 nQ | | | | u+z� 0,0309 1 .as vu | } | | o+so 0.03z9 3, os v n | | | | n�ss 0.0724 �.yo vo | | | | o+^u 0.0948 a m |Vu | | | | o+^s n 1213 «.zo |vn | | | | 0+50 0.1453 11.16 1vo ! | | | o+su 0.z627 -2.53 |nv z+ o 0.2866 | o | | | | s u.zcao -1.7-9 | vo | 1,10 0 .21762 1--e } vO | | ! | z+o 0.3283 7.56 | vO | | | | 1+20 0.37:6 6 .6-7 > D | \ | \ 2+25 0.4338 u.^o 1 O { z+so u.=1086 10.86 \ vo | | | | z+z� o�moc 10.39 / o" | } | | pr 1+40 0.6534 zo.o^ | ov | ' 1-45 o.mou za.o^ 0 ! | | z+so u.om« z5.s4, | Q 1+55 0�9528 14-n | 0 v | | | c+ o 1 .o*m zs.sz | O| r | | | z+ s 1.1487 14.52 | o| » ) | | z+m 1.2804 1e.12 | | o v | | | 2+15 1.4607 26�18 ! ! n» | | | 2+20 1.6257 23.96 | | o v | | z+uu z.u^su 31.96 | | |o v | | 2+30 �.2548 w.o* | | | v Q| | 2+35 z.15117 51.83 i | | | r 0 | z+^o 2.9360 47.09 | | | |o » 1 2+45 3.0052 24.57 { | o ( | « i z+sn 3.0650 6.613 | o | | ) v} c+:s 3.1008 5.20 | o | | | v| s+ o 3.1194 z.m !o | | | v\ s+ 5 3 � 12«f 0.74 o | | | »| s+zo ».zcss 0.15 o | { | »| s+zs 3.1256 0.02 o ! > | v AREA C 100 —YR, 1 -HR STORM EVENT U n t H y d r o g r- a p h A r, a l y _ s Copyright (c) CIVILCADD /CIVILDESIGH, 1585 - 1555, Versial'f 6.0 Srudy date 07/30/09 File: 9662areac1100.out '1' i'YY }=-} } } } }....... TT . TT}} } }i-.TT....'..I..T'i'........} T. T.. T.. Y T T.. T T }.;- }.}. } }} --- -- - - - - - - - - -- - -- - - - - - -- - -- - -- -- - - - - - - - - - - - - - -------------------------- Riverside County Synthetic Unit Hvdrology Method P,CFC L WCD Manual date - April 1578 Warner Engineering, Yucca valley, CA - S /N. 598 ------------------------------------------------- English (in -lb) Input Units Used English Rainfall Data (Inches) -Input Values Used English Units used in output format --- ---------------- --- ------ ----- -- --------------- ------ TTM 30042 A.RE1- C ------------------------------------------------------- Drainage Area = 6.00(Ac.) = 0.005 sq. Mi. Length along longest watercourse = 1450.00(Ft.) Length along longest watercourse measured to centro_d = Length along longest watercourse 0.275 Vii. Length along longest watercourse measured to cantroid = Difference in elevation = 6.50(Ft.) Slope along watercourse = 30. 551/ Ft. /P-?.. Average Manning's 'N' = 0.015 Lag time = 0.059 Hr. Lag time = 3.21 Min. 25% of lag time = 0.80 Min. 40€ of lag time = 1.28 Min. Unit time 5.00 Min. Duration of storm = 1 Hour(s) User Entered Base Flow = 0.00(CFS) 2 YEAR. Area rainfall data: krea(Ac.)[lj Rainfall(in)[2) Weighting[1 *2] 6.00 0.50 3.00 100 YEAR Area rainfall data: Area (Ac.)11) Rainfall(In)123 Weighting[1 *2] 6.00 1.60 5.60 STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall 0.500(In) Area Averaged 100 -Year Rainfall 1.600(In) 710.00(Ft.) 0.139 Mi. Point rain (area averaged) = 1.600(In) " Areal- adjustmen.t_fa.ct- o.r-.:--_.95: 55 i Adjusted average point rain 1.60D(In) -`` ----- - -- - - - - -- __ - --y - -4 -' ` Sub -Area Data: Area (Ac .) Runoff Inae>: Impervious 4 G. 000 5 .00 0.500 Total Area Entered = 6.GO (AC .) i:1 R1 Infil. irate Impervious 7tdj . lnfil. irate krea%. r kmc-,, 71.40 (In /Hr( (Dec. ii (In /Hr) (Dec.i (I r, /Hr) 56.0 56.0 0.511 0.500 0.281 1.000 0.3e1 Sum (F) = 0. ='81 Area averaged mean soil loss (F) (In /Hr) = 0.281 Minimum soil loss rate ((In /Hr)) = 0.140 (fo 24 hour sL"orn, duration) 5011 low loss raLe (6eclmal) = O.250 Slope of intensity - duration curve for a 1 hour storm = 0.5800 --------------------------------------- --------------- - - - - -- U n i t H y d r o g r a p h DESERT S -Curve -------------------------------------------------------------------- Unit HVdrograph Data --------------------------------------------------------------------- Unit time pe_iod Time of lag Distribution Unit Hydrograph (hrs) Graph % (CFS) --------------------------------------------------------------------- 1 0.083 155.650 33.040 1.998 2 0.167 311.3C1 48.595 2.938 3 0.250 466.981 11.542 0.698 4 0.333 6'_ -2.601 4.369 0.264 5 0.417 778.252 1.846 0.112 6 0.500 533.90' 0.608 0.037 Sum = 100.000 Sum= 6.047 ----------------------------------------------------------------------- Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective • (Hr.) Percent (In /Hr) Mar: I Low (In /Hr) 1 0.08 3.60 0.691 0.'81 -- 0.41 2 0.17 4.20 0.806 0.281 - -- 0.53 0.25 4.40 0.845 0.281 - -- 0.56 4 G.33 4.60 0.883 0.221 - -- 0.60 5 0.42 5.00 0.960 0.281 - -- 0.68 6 0.50 5.60 1.075 0.281 - -- 0.75 7 0.58 6.40 1.229 0.281 - -- 0.95 8 0.'07 8.10 1.555 0.281 - -- 1.27 9 0.75 13.10 2.515 0.281 - -- 2.23 10 0.83 34.50 6.624 0.281 - -- 6.34 11 0.92 6.70 1.386 0.281 - -- 1.01 12 1.00 3.80 0.730 0.281 - -- 0.45 Sun = 100.0 Sum = 15.E Flood volume = Effective rainfall 1.32(In) times area 6.0(Ac.) /((In)/(Ft.)I = 0.7(Ac.Ft) Total soil loss = 0.26(In) Total soil loss = 0.140(Ac.Ft) Total rainfall = 1.00(In) Flood volume = 28727.2 Cubic Feet Total soil loss = 6118.9 Cubic Feet -------------------------------------------------------------------- Pea): flow rate of this hydrograph = 22.669(CFS) -------------------------------------------------------------------- 1- H 0 U R S T O P. N R u n o f f H y d r o g r a p h -------------------------------------------------------------------- Hydrograph in 5 Minute intervals ((CFS)) -- _ - Time (h +m) volume Nc`F� - C(CFS) -0- -- _7....5.______ 15.0 22.5 30.0 0+ 5 0.0056 0.E7- VQ ( ( I I 0 +10 0.0212 -. 2 6 I V Q I I I 0+15 U. (1416 .. 96 I' I I (, ; 2 0 U.0G45 3.34 I \7 I 0;25 0.050) . �7) I nv I ( v I I I 0 ;.3D 0.1152 4.`� I r, VI I I cl. J,. 6.16 U +40 0.155E U ;n S . U. 2565 5.18 c, ,JG U. 400) 20. 5U I I I 0 T5J 0 . 556 , 65 . t I C. 14. G 0.61BG 5.05 1 I I 1 ;. U. 64 G1 3.95 1 Q I I 14-10 U. 6556 1. 3 IC I I 1 +1 5 0.6588 0.46 c, I I 1 +20 0. 6594 0.09 Q I --------------------- U '6555 - - 0.02 - - -- Q ------- --- - - - - -- • • AREA C 1O0 -YR, 3 -HR STORM =WT U n i t li y d r o g _ a p h k. r a 1 y s i Copyrignt (c) CIVILCJ:DF, /CIVILDESIGN, 1989 - 1999 Version 6.0 Study date [r7 /s0 /D9 File: 566_areac3100.out r+ r- rr-!' r+=+ r+ i... .........r.- r-:-i-++ +".r +t +i-T r +r= +i-+++— +-+ ++rr-'r+i .ri }r......4-+ ------------------------------------------------------------------ - - - - -- R.iverEide County Synthetic Unit Hydrology Method RC-,C G WCD Manual date - Anrii 1978 Warner Engineering, Yucca Valley, CA - SIP 598 --------------------------------------------------------------------- English (in -lb) Input Units Used English Rainfall Data (Inches) Input Value=_ Used English UnitE used in output format --------------------------------------------------------------------- TT), 30092 AREA C -------------------------------------------------------------------- Drainage Area = 6.DO(Ac.) = 0.009 sq. Mi. 0 Length along longest watercourse = 1950.00(Ft.) Length along longest watercourse measured to centroid = 710.00(Ft.) Length along longest watercourse = 0.275 Mi. Length along longest watercourse measured to centroid = 0.13: Mi. Difference in elevation = 8.50(Ft.) Slooe along watercourse = 30.9517 Ft. /Mi. Average Planning's 'N' = 0.015 Lag time = D.059 Hr. Lag time = 3.21 Min. 25€ of lag time = 0.80 Min. 90% of lag time = 1.26 Min. Unit time = 5.00 Min. Duration of storm = 3 Hourls) User Entered Base Flow = 0.00(CFS) 2 YEAR Area rain-fall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1'2] 6.O0 0.70 9.20 100 YEAR Area rainfall data: ArealAc.)[1] RainfalllIn)[2) Weighting[1+2) 6.00 2.00 12.00 STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall = 0.700(In) Area Averaged 100 -Year Rainfall = 2.000(In) Point rain (area averaged) = 2.000(In) --___Areal _ Areal adjustment factor = 100.00 � - -' Adjusted— average_point rain =� 2_000(In ) Sub -Area Data: Area (Ac.) Runoff Index: Impervious � P.rea averaged mean soil loss (F) (In /Hr-) = 0. ='E1 m-Lnimum soil ions rate ((In /Hr)) = 6. 140 Ifor 24 hour: szornt dura+iion) Soil low toss raLE (decimal) = 0.650 ------------------------------------------ --------------------- --- - -- 6.Off; 56.00 0.500 r e g r a p h Total Prea Entered = 6.Ui,(F:c.1 DESERT S -Curve -------------------------------------------------------------------- Unit Hydrograph P.I P.I Infi.l.. Fare Imrervious .d'j. lnfil. Rat E krEa'i. P time period Time E of PJAC2 ANC-2' (In /Hri ( Dec . °r.; (ln /Hr ) (Dec. ) f1n !Hy ) 5C.0 56.0 0.5]7 0.500 0.2, 61 1.000 D.2 E1 --------------------------------------------------------------------- 1 O.OE3 155.65D 33.040 Sum !F) = 0.281 P.rea averaged mean soil loss (F) (In /Hr-) = 0. ='E1 m-Lnimum soil ions rate ((In /Hr)) = 6. 140 Ifor 24 hour: szornt dura+iion) Soil low toss raLE (decimal) = 0.650 ------------------------------------------ --------------------- --- - -- U r, i t H y d r e g r a p h DESERT S -Curve -------------------------------------------------------------------- Unit Hydrograph Data --------------------------------------------------------------------- Unit time period Time E of lag Di s t r i-bu r i on Unit Hydrograph (hrs) Graph i (CFS) --------------------------------------------------------------------- 1 O.OE3 155.65D 33.040 1.998 2 0.167 311.3D1 48.595 2.93E 3 0.250 466.951 11.542 0.69E 4 0.333 622.601 4.369 0.264 5 0.417 178.252 !,846 0.112 6 0.500 933.902 0.608 0.037 ----------------------------------------------------------------------- Sum = 100.000 Sum= 6.047 Unit Time Pattern Storm Fain Loss ratE(In. /Hr) Effective (Hr.) Percent (in /Hr) ?:a %: ! Low (ln /Hr) 1 0.08 1.30 0.312 0.281 ___ 0 . 0 -11 2 0.17 1.30 0.312 0.381 - -- 0.03 0.25 i.10 0..'64 0.281 0.224 0.04 4 0.23 1.50 0.360 0.281 - -- 0.0E 5 0.42 1.50 0.360 0.261 - -- 0.08 6 0.50 i.80 0.432 0.281 - -- 0.15 7 0.5B 1.50 0.360 0.281 - -- 0.08 8 0.667 1.80 0.432 0.281 --- 0.15 9 0.75 1.80 0.432 0.281 - -- 0.15 10 0.63 1.50 0.360 0.281 - -- 0.08 11 0.92 1.60 0.384 0.281 - -- 0.10 12 1.00 1.80 0.432 0.281 - -- 0.15 13 1.08 2.20 0.528 0.281 - -- 0.25 14 1.17 2.20 0.52B 0.281 - -- 0.25 15 1.25 2.20 0.528 0.261 - -- 0.25 16 1.33 2.00 0.480 0.281 - -- 0.20 11 1.42 2.660 0.624 0.281 - -- D.34 18 1.50 2.70 0.646 0.2B1 - -- 0.37 19 1.58 2.40 0.576 0.281 - -- 0.30 20 1.67 2.70 0.648 0.281 - -- 0.37 21 1.75 3.30 0.792 0.281 - -- 0.51 22 1.83 3.10 0.744 0.281 - -- 0.46 • 23 1.92 2.90 0.696 0.281 - -- 0.42 24 2.00 3.00 0.720 0.281 - -- 0.44 • 25. 2.08 3.10 0.744 0.281 --- 0.46 26 2.17 4.20 1.008 0.281 - -- 0.73 27 2.25 5.00 1.200 0.281 --- 0.92 28 2.33 3.50 0.840 0.281 - -- 0.56 29 2.42 6.80 1.632 0.2_81 - -- 1.35 30 2.50 7.30 1.'752 0.281' - -- 1.47 31 2.58 B.20 1.968 0.261 - -- 1.69 32 2.67 5.90 1.416 0.281 - -- 1.14 - -- - -- - _ 33 2.75 ^.DD 0.480 0.261 - -- 0.20 - -- - - 34 -- -- 2..83`...__ _l:- BO------ D..9- 3?._. 0�_B1 - -- 2 0. 15 35 2.92 I. BD D. 432 0.281 - - - - --- --- - -- - Q.15 -. -.- -.- . _� 36 3.00 0.6D 0.144 0.281 0.122 0.02 _ -- -- Sum = 100.0 Sum 14.1 � � / rzuod volume ~ ccf*cr-ive 1.) fall z mpn� times aF�a 6.0 /xc. `/| /zm/'r���> ~ o�6 (71c-rz} zuc^.1 svu lc'�_s ~ o 82 p:) Total soil io�s~ u. 4z2, kc, Fr. / Total r^in�^u ~ oo/zo/ Flood volume 25502.6 Cubic Feet Tor-al so-:. -1 1uss ~ Cubic Feet _____________________________________ p*ali flow rate of This nvuzupzaph ~ 6.9za'crs/ ----------------------------------^-- a-eoua srocm nuouf f ' xxuzunr &.n» _______________________________________ ovuzunzapu in s eiinute -intervals ( (crs)) ________________________________________ T-Jme(u+m) vulum^ xc.Ft 0(cru) u z. z z .o 7.5 zu o _______________________________________ o+ : 0.0004 o�o» o | | | | 0 oozs o 1 S o | | | ! o-- zs o�oozo u�zo o | ! | | u+zo n. nom 0.30 vu ! | | | o+zu D. D09 Az V o+so 0.0120 0.60 v o | ( | | u+zs 0.0167 0.66 |vn | | | | 0+40 0. 0214 0.67 |«o | | | ! o+m 0.02 72 0.85 |n O | | | ) u+m 0. 0324 0,75 | O o+�s 0.0365 0. 60 | o | z~ o 0. 04i5 0.12 | O | | | ! -1+ 5 u.o^m 1.05 } »u ! | | | 1+10 0 .0581 1 �s7 | v O | | | | z+ill 0.0681 1.45 | »O | | | | z+zn 0.0776 1.36 1 O | | | { � � �-e� n 000� � � 5o / o | | | | z+3o o. 10 is 1.98 / vQ | | | | - 1+35 o.zisn z oo | u | | | | z+^o 0.1-193 1 so | o« | | | | � 1+*5 o. 2 4o o *5 i o| 1+5u 0.1653 z nz | |o | | | 1+55 o'zxm z.sy / o v z+ o o.eozo 2. 61 | o v z+ s o.zzos 2.70 | o » | ! | 2+10 0.2434 3.30 | | o » | } | z+zs 0.2742 ^.*o | | o« / | | 242 0.3053 4 .sz | | o v | | z+zs 0. 3424 5.25 ! ! o v } / u+zo 0.3941 �,o4 | | | v o | z+ss 0,4555 6.92 | / | |v o i z+*u 0.5155 8,71 | | | | n» | 2+*5 0.5532 5.17 | | |o | » | 2+50 0.5693 z.s* | o| | | v | z-1us 0.5791 z.m | o | | | v| � n+ u 0.5848 0.93 | o | } | n| s+ s 0. 586? n. 27 |D | | / q s+zu o. 5m3 u�ua n | | | »| 3+15 u, 5m5 0.03 o | | ( vi s+cu 0.5875 0.01 n | | | m a+zs 0.5075 0.00 o | | | V � � / AREA D 100 -YR, 1 -HR STORM EVENT qv d ,. o g 1 a ), h } r, a U r: _. - Copy' -'ighr (c) CIVILCA.CD /CIVILDESIGN, 1985 - 1999, Vers'0l'! 6.0 Study date 07/31/09 File: 9662aread1100.out _, r�-- +- +-- ± ±- +i + +t =i.+. =+Ti-+++ ='�.. =}+___ T ±_______= +- -I-- __ ---- ---F -F Piverside County Synthetic Unit Hydrology method RC_F•C b WCU Manual date - April 1976 Warner Engineering, Yucca Va'ley, CA - S/N 598 English (in-lb) Input Units Used English Rainfall Data (inches) input Values Used English Units used in output format ----------------------- TTj9 30D92 AP.EA D --------------------------------------- U ---'L Sq. N; area - ?I.90(Ac.) _ Drainage - - course 1545.00 (Ft.) 500.UG(Ft. Length along longest ware= ntroid = • Length longest watercourse measured to ce_ g- alone on 0,293 M—J watercourse 0.095 p''; Length alona longest measured to centroid = Length along longest watercoUrse 6.00(Ft.) Difference_ ;r: elevation. ne Ft. /r1- r- r 2U.5U Slope along wate_roL_s- 0.060 Average Manning's 'td' Lag time = 0.206 Hr.. Lag time = 12.96 Min. 25% of lag time 3.11 Min. 9 98 Min. 90% of lag time 5 00 Min. Unit time = Duration of storm = 1 Hour (s)0.00(CFS) User Entered Base Flow = 2 YEAR Area rainfall data: Weighting[1 �2] 50 Area (Ac .)111 Rain0. n)[2] 10.95 21.90 0.5D 100 YEAR Area rainfall data: Weighting [1'2] Area (Ac .)[11 F.ain1a n)(2] 35.09 31.90 1.660 0 STORM EVENT (!'EAR) = 100.00 0. 2 -Year Rainfall 500(In) Area Averaged 1.600(In) Area Averaged 100 -Year Rainfall = 1.600(in) point rain (area averaged) -99 98 - - -_- _A,_e.al_ adjustment factor = Adjusted average poi nti Sub -Area Data: Runoff Index Impervious I:rea(Ac•) Slope of intensity -du*- ration curve for a 1 iou *_' storm = 0.5800 -------------------------------------- ---------------- - - -- -- _1.900 86.00 0.000 H y d r o g r a p h Total Area EntEred = = 1.90(Ac.l DESERT S -Curve F,1 P.l lnfil. Ratc lmoervious Adj. Infil. Rate Area;, P P.1,7C2 AMC -2 (In/Hr) t Dec .`6 (In /Hr) (Dec.) (1n /Hr) lag Distribution Unit 86.0 86.0 0.176 0.000 0.176 1..000 0.176 Graph �. (CFS) Sure (F) = 0.176 40.134 Area averaged mean soil loss (F) (In /Hrj = 0.176 0.610 2 Minimun soil loss rate ((lr, /Hr)j = 0.088 16.086 33.550 (for 24 hour storm duration) 0.250 120.401 30.496 6.731 Soil low loss raLE (Decimal) = 0.900 0.333 160.535 Slope of intensity -du*- ration curve for a 1 iou *_' storm = 0.5800 -------------------------------------- ---------------- - - -- -- sum Flood volume = Effective rainfall 1.42(in) times area 21.9(AC.)/((In) /(Ft -H = 2.6(Ac.Ft) Total soil loss = 0.18(ln) --- _ --- --- Total_s oil _ loss - 0.320(Ac.Ft) Total rainfall 1.607('In') _.._ - -_ Flood volume = 113210.3 Cubic Feet Total soil loss = 13 959.7 Cubic Feet ---------------------------- ------------------------ - - - --- U n i t H y d r o g r a p h DESERT S -Curve -------------------------------------------------------------------- Unit Hydrograph Data --------------------------------------------------------------------- Unit time Time � of lag Distribution Unit Hydrograph (hrs) _period Graph �. (CFS) --------------------------------------------------------------------- 1 0.083 40.134 2.763 0.610 2 0.167 80.267 16.086 33.550 3 0.250 120.401 30.496 6.731 4 0.333 160.535 16.411 3.622 5 0.417 200.669 9.147 2.D19 6 0.500 240.602 6.056 1.337 1 0.583 260.936 4.361 0.963 6 0.667 3^- -1.070 3.346 D.738 9 0.750 361.203 2.421 0.534 10 0.833 401.337 1.976 0.436 11 0.917 441.471 1.562 D.345 . 12 1.000 481.603 1.265 0.279 13 1.083 521.738 1.004 0. - 14 1.167 561.872 0.742 0.164 15 1.250 602.006 0.481 0.106 16 1.333 042.139 0.445 0.098 17 1.417 682.273 0.462 0.106 18 1.50D 7 22.407 0.446 0.098 19 1.583 762.541 0.273 0.060 20 1.667 802.674 0.235 0.052 ----------------------------------------------------------------------- sum = 100.000 Sum= 22.071 Unit Time Pattern Storm Fain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) N,ax, i Low (In /Hr) 1 0.06 3.60 0.691 0.176 --- 0.52 2 0.17 4.20 0.806 0.176 - -- 0.63 3 0.25 4.40 0.845 0.176 --- 0.67 4 0.33 4.60 0.883 0.176 - -- 0.71 5 0.42 5.00 0.960 0.176 - -- 0.78 6 0.56 5.60 1.075 0.176 - -- 0.90 7 0.58 6.40 1.229 0.176 - -- 1.05 8 0.67 8.10 1.555 0.176 - -- 1.38 9 0.75 13.10 2.515 0.176 - -- 2.34 10 D.83 34.50 6.623 0.176 - -- 6.45 ll 0.92 6.70 1.286 0.176 - -- 1.11 12 1.00 3.80 0.729 0.176 - -- 0.55 = 100 0 Sum = 17.1 sum Flood volume = Effective rainfall 1.42(in) times area 21.9(AC.)/((In) /(Ft -H = 2.6(Ac.Ft) Total soil loss = 0.18(ln) --- _ --- --- Total_s oil _ loss - 0.320(Ac.Ft) Total rainfall 1.607('In') _.._ - -_ Flood volume = 113210.3 Cubic Feet Total soil loss = 13 959.7 Cubic Feet ---------------------------- ------------------------ - - - --- es^l: --Flou zace of tuj.e nvuz^omnh ~ oe u4o<cFu/ ___________________________________ ~~++*~+~~~~*+++~+++~~~+~++-~_~+~~~++~+++~~+^~+++++++~�~~++°+++++~ ~- z - noox �11 Ga* Runoff 1-1116zuoz»nx ______________________________________ xxumnrapx Jn I minute intervals ((crC)) _____________________________________ Tu"u<u+m/ volume Ac.rc n/cco/ o z�.o »s o '70 .0 ______________________________________ o+ 5 0,0022 0.31 o | | | 1 o+zu 0.0174 c. --'z vo | | | | 0+11, ».o590 a z21 v o | | | | u~zo u. lzm 8.92 |v o | | | | o+us 0 .1956 10.82 ! v o | | | | o+so 0.2816 12 .49 | v u | | | | o+ss 0. 3806 z^ 37 | v o | | | | o+oo 0. 4962 16.79 | v n} | ! | 0+45 0. 6380 20.59 | V | | | 0+50 0.8443 29.95 1 | v o | | | o+=. 1.1u69 49.75 | | » | } | �+ o 1.6i98 uz.o » | o | �+ s 1.9112 42 .31 ! ) | o «| | z+zo 2 .zuus 27 .49 1 ( o | / « | 1+15 2 .27-136 17.8a | o | | « | �+co 2.3107 12 .65 | o I | | v } 1+25 z.z�e 9.52 ! o 1+30 2 .425o 7.18 | o | | | » | 1+35 2.4650 5,71 ( Q | | | » | 1+40 z.^yoz w.uz | V } | ! » | z+os z, 5209 3. 60 / n | | | » | 1+50 z.s«oz 2.81 |o ! i | «i z-sS c. '15 4 9 2.13 0 | | | v| z+ u 5«»7 �.5o o | / | n! s 5749 z.z« o v| 2+10 2.3833 1,22 n | | | v| u+zs z.snos 1.02 0 | ! | v| z+zo z. 5 93 0.68 O i | | v| 2- 25 z.seoz u.«o Q | ! | v| z+ao 2 syao o�oy n \ ! | v| z+ss e. 5990 0.03 o | | | «| AREA D . 100 —YR, 3 —HR STORM EVENT 0 n i t Il y d r o g r& r h A. n a l y Copyright (c) CIVILCADD /CIVILDESIGu, 1589 - 1999, Versiot: 6.0 Study date 07/31/04 ?File: 9662'aread�100. our ............ }Y......4.+ ++4-+_" ++ '++ F+F 4... T... TT T'F ti-'I'.........i.. T... . ;_++++++++-i ------------------------------------------------------------------ - - - - -- kiverside County Synthetic Unit Hydrology Method RCFC L WCD Manual date - ADril 1978 Warner Engineering, Yucca Valley, CA - S/N 598 --------------------------------------------------------------------- English (in -lb) Input Units Used English Rainfall Data (Inches) input Values Used English Units used in outpL't format --------------------------------------------------------------------- TTM 30092 AP.EA D -------------------------------------------------------------------- Drainage Area = 21.90(Ac.) = 0.034 Sq. Mi. Length along longest watercourse = 1545.00 (Ft .) •: Length along longest watercourse measured to centroid = 500.00(Ft.) Length along longest watercourse = 0.'_93 rL,. Length along longest watercourse measured to centroid = 0.095 mi. Difference in elevation = 6.00(Ft.) Slope along watercourse = 20.5049 Ft./Ili- Average Manning's 'I.' = 0.060 Lag time = 0.206 Hr. Lag time = 12.46 Min. 25% of lag time = 3.11 Min. 40% of lag time = 4.9E Min. Unit time = 5.00 Min. Duration of storm = 3 Dour (s) User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Area (Ac.)(1) Rainfall(In)(2] Weighting[1 *2] 21.90 0.70 15.33 100 YEAR Area rainfall data: Area (Ac.)[1) Rainfall(In)[2) Weighting[1 42] 21.90 2.D0 93.60 STORM EVENT (YEAR) = .100.00 Area Averaged 2 -Year Rainfall = 0.700(In) Area Averaged 100 -Year Rainfall = 2.000(In) Point rain (area averaged) 2.000(In) adjustment factor 99.99 Adjusted average point-- rain - 2...00.0(In) Sub -Area Data: Area(Ac.) Runoff Index: Impervious % P.rea averaged mean soil doss (r) (In /Hr) = D.176 Minimum soil loss rare ((ln /Hr)i = 0.088 (for 24 hour storm duration) Soil lob: loss rate (decimal) = 0.900 -------------------------------------------- ------------------- - - - - -- Oil .900 6c.U0 0.000 y 6- o g_ a p h TOtc3 Area Cnte* -ed = 21..90 (RC .) DESERT EI R.I Infil. Fate ImIDLYvious Adj. Infil.. Irate P.rea'c r ANC -2 AMC-' (in /Hr) IDec.4.) (In /Hr) (Dec.) (In /Hr) time period Time � 86.0 86.0 D.i?E 0.6DO [1.376 1.000 6.176 (hrs) Sum (r) = 0.176 P.rea averaged mean soil doss (r) (In /Hr) = D.176 Minimum soil loss rare ((ln /Hr)i = 0.088 (for 24 hour storm duration) Soil lob: loss rate (decimal) = 0.900 -------------------------------------------- ------------------- - - - - -- U n i t H y 6- o g_ a p h DESERT S -Curve -------------------------------------------------------------------- Unit Hvdrogrant, Data --------------------------------------------------------------------- Unit time period Time � of lag Distribution Unit Hydrograph (hrs) Graph % (Cr5) --------------------------------------------------------------------- 1 0.063 40.134 2.763 0.6i0 2 0.167 60.267 16.OB6 3.550 3 0.25D 12D.401 30.496 6.73 -, 4 0.333 160.535 16.411 3.622 5 0.417 200.669 9.147 2.019 6 0.500 240.802 6.05B 1.337 7 0.563 280.935 4.361 0.963 8 0.667 321.070 3.346 0.738 9 0.750 361.203 2.421 0.534 10 0.833 401.337 1.576 0.436 ii 0.911 441.471 1.562 0.34.5 12 1.DD0 481.605 1,265 0• -'79 i3 1.083 521.738 1.004 0.722 �'. i4 1.167 5 61. 872 0.742 0.164 15 1.250 60 ^_.006 0.481 0.106 . _ 16 1.333 642.139 0.445 0.098 17 1.417 68-71.273 0.482 0.106 18 1.500 722.407 0.446 D.D98 19 1.583 762.541 0.273 0.060 20 1.667 802.E74 0.235 0.052 ----------------------------------------------------------------------- Sum = i00.000 Sum= 22.071 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max I Low IIn /Hr) 1 0.06 1.30 0.312 0.176 --- 0.14 2 0.17 1.30 0.312 0.176 - -- 0.14 3 0.25 1.10 0.264 0.176 - -- 0.09 j 4 0.33 1.50 0.360 0.176 - -- 0.18 5 0.42 1.50 0.360 0.176 - -- 0.18 6 0.50 !.BD 0.432 0.176 - -- 0.26 7 0.5B 1.50 0.360 0.176 - -- 0.18 1 8 0.67 1.80 0.432 0.176 - -- 0.26 9 0.75 1.80 0.432 0.176 - -- 0.26 10 0.83 1.50 0.360 0.176 - -- 0.18 11 0.92 1.60 0.384 0.176 - -- 0.21 12 1.00 1.80 0.932 0.176 - -- 0.26 13 1.08 2.20 0.528 0.176 - -- 0.35 14 1.17 2.20 0.526 0.176 - -- 0.35 15 1.25 2.20 0.528 0.176 - -- 0.35 16 1.33 2.00 0.980 0.176 - -- 0.30 17 1.42 2.60 0.624 0.176 - -- 0.45 18 1.50 2.7D 0.696 0.176 - -- 0.47 581 2.40 0.576 0.17E - -- 0.40 20 1.67 2.70. ` - 0. 698- _ - 0--176 0.97 21 1.75 3,30 0.79'_ _ 0.176 _ ' - - _0_._62 22 1.63 3.10 0.744 0.176 - -- 0.57 23 1.92 2.90 0.696 0.176 - -- 0.52 4 OD 3.00 0.720 0 . 3"? G - -- 0 54 rip 3.]0 '74 4 0.176 - - - ri El7 2 2- .37 4 008 6.776 D . e: 27 2.25 11.00 1.2011 0. 1,76 - - - I 2B 3-� 1 3. " 0 0 . P 4 0 0.276 0.66 .42 11.60 1 C3 =' 0.1.76 - -- I . 46 30 -.50 1.75 - 0. i7c i . 58 1.966 0.276 1.75 _'.67 .90 1.41C 6 - -- 1 . -2 4 7 ".00 0.480 0.176 --- 0 .30 34 2.83 1.80 0 . 4 32 0.176 - - - D 2 G 35 2.92 2 . 80 0.432 0.1116 - 0. %6 36 3.00 0. 60 0.144 0.176 0.130 0.01 Sunk = 100.0 Sum 7 Flood vole = Effective -rainfall 1.48(In) times area 21 , 9 (AC ) / I (in) / (Ft 2.7(Ac,rt) Total soil loss = 0.52(In) Total soil loss = 0.954(Ac.Ft) Total rainfall = 2.00(In) Flood volume = 117404.6 Cubic Feet Total Soil loss = 41574.2 Cubic Feet -------------------------------------------------------------------- peal: flow raze of this 'hydrograph = 29.104(CFS) -------------------------------------------------------------------- .......... +-, .............. I . . . . . . . ......... 3- H 0 0 R S T 0 P. M R n n o f -f 14 y d r o g r a p h -------------------------------------------------------------------- Hydrogiaph in .5 minute -intervals ((CFS)) -------------------------------------------------------------------- T-Jme(h+m) Volume Ac.-Ft C) (CVS) 0 7.5 15.0 22.5 30.0 ----------------------------------------------------------------------- 0-- 0.0006 0.08 Q I 0.0045 0.57 Q ()+15 0.0145 1.46 VQ C) 0 0.0272 1.64 V C) 0-'25 0.0419 2.13 V Q 0,30 0.0614 2.63 V Q 0-"15 D.Oe50 3.43 IV Q 0+40 0.1120 3.93 IV Q 0+45 0.1404 4.12 I V Q I 0450 0.1717 4.56 I V Q I 0+55 0.2036 4.62 1 V Q I 1-1 0 0.2341 4,44 1 V Q I 1+ 5 0.2665 4.70 I V 0 1 1+10 0.3037 5.40 I V 0 1 1+15 0.3468 6.25 1 V 0 1 1+20 0,3929 6.69 I V Q I 1+25 0.4403 6.89 I V Qi 1+30 0.4905 7.28 I V Q1 1+35 0.5474 8.26 I V IQ 1+40 0.6076 8.74 I VIQ 1+45 0.6695 8.99 I VIO 1+50 0.7361 9.95 I V Q 1+55 0.8140 12.03 I I V 0 2+ 0 0.8915 11.26 1 I V Q 2+ 5 0.9693 11.29 1 I VQ 2+10 1.0499 11-72 1 I 0 2+15 1.1398 13.06 I I VQ I 2+20 1.2465 15,49 J 1 V Q 21+25 1.3641 17.07 I I V Q 2+30 1.4940 I8.86 I I I V Q I 2+35 1.6611 24.26 I I I V 1 Q 2+40 1.8553 28.21 I I I V I Q I 2 +45 2.0558 29-10 I i I V Q I 2+55 3+ 0 2.3384 9.4276 16.94 12.96 J I Q I I V I 3 +. 5 2.4966 10.02 I I Q 1 1 V I 3+10 2.5449 7.02 1 Q1 1 1 V 1 • 34.15 _ . 5E01 5.11 r, I 1 II I I 3+2 0 3.6068 3.87 I n I 34 .2 5 S.G27G 3.01 I C, I + 3 3U ^_.6438 2. 36 1 4 I 35 _.6565 1.84 1 C, I 34.40 2.6663 1.42 IQ I I 3 +n., _ . 6739 1. 11 1 3+50 _.6801 0.90 10 I I 3 +5 � 6851 0.7� 0 I I n+ U 2.6891 D. 56 C' I 44. 5 _'.6919 0.40 n I 9 +1U 2.6536 0.25 0 I 44.15 2.6545 0.14 0 I I 4 +20 2.6949 0.06 0 4 +25 3.6951 0.03 0 4 +30 2.655"2 0.01 0 1 4 +35 ------------------------------- 2.6952 0.00 0 I - - - - - -- v I v I v I vl vl vl of vl vI vl v v� vl vl vI vI v AREA D 1D0 —YR, 6 —HR STORM EVENT 0 n a c H y d r G g r a p h A r1 a 1 y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 1999, VerE or, 6.0 study date 0-?!3!/D4 File: 9662aread6100.out t + +•F T ...............i- +i-t.. . =i-- .++i-Ti- +-r....-rt-i-........ t t + + + +i- + ++i........ . ------------------------------------------------------------------ - - - - -- Riverside County Synthetic Unit Hydrology Method RCFC G WCD Manual date - Aoril 1978 Warner Engineering, Yucca Valley, CA - S /tl 698 --------------------------------------------------------------------- English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format ------- ------------------------- - - - - -- ------------------------------ TTM 30092 AREA D -------------------------------------------------------------------- Drainage Area = 21.90(Ac.) = 0.039 Sq. Mi. Length along longest waterccurse = 1545.00(Ft.) • Length along longest watercourse measured to cent*_-oid = 500.00(Ft.) Length along longest watercourse = 0.293 Mi. Length, along longest watercourse measured to centroid = 0.095 Mi. Differ=ence in elevation = 6.00(F`_.) Slope along watercourse = 20.50 4 9 Ft. /M?. Average Manning's 'N' = 0.060 Lag time = D.2D8 Hr. Lag time = 12.96 Min. 25% of lag time = 3.11 Min. 40% of lag time = 9.9B ?tin. Unit time = 5.00 Min. Duration of storm = 6 Hour(s) User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Area (Ac.)[1) Rainfall(In)[2] Weighting[1 *2] _ ^1.90 0.80 17.52 100 YEAR Area rainfall data: Area (Ac.)[1] Rainfall (In) [23 Weighting[1 42] 21.90 2.50 59.75 STORM EVENT (YEAR) = 100.)0 Area Averaged 2 -Year Rainfall = 0.800(In) Area Averaged 100 -Year Rainfall = 2.500(In) Point rain (area averaged) = 2.500(In) ----- �_ -,_._. -, --Areal adjustment factor = 99.99 % -- - - -- -- -- Adjusted Sub -Area Data: _`---- -- - °---- -- ----- -- - - -•�. -- •---- --- -_- Area (Ac.) Runoff Index. Impervious � 2_1.90G B6. 00 0. CrOO 0 Total Area Entered = 21.90 (Ac .) %I P.I lnfi2. Rate lmoervious Adj. 1nfi1. Rate kreaS. r AMC2 AMC -2 (In /H_') ;Dec. 1.) (1n /Hr) iDec. i (In /Hr) B6.0 66.0 0.176 6.000 (J .:.76 1.00'0 0.376 Suer (F) = 0.176 Rrea averaged mean soil loss (F) (In /I +.r) = G. 1.76 Minimum soil loss rate ((In /1-1r)j = 0.088 (for 24 hour' sLOrm duration) Soil low --------------------------------------------------------------------- loss rate (decimal) = 0.900 U n i t H v d r o g r a p h DESERT S -Curve -------------------------------------------------------------------- Unit H_vdrograph Data --------------------------------------------------------------------- Unit time period Time % of lag Distribution Unit Hydrograpn (hrs) Graph % (CFS) --------------------------------------------------------------------- 1 0.083 40.134 2.763 0.610 2 0.167 80.267 16.086 3.550 3 0.250 120.401 30.496 6.731 4 G.333 160.535 16.411 3.622 5 0.'417 200.669 9.147 2.019 6 0.500 240.802 6.058 1.337 7 0.583 280.936 4.361 0.9663 6 0.667 321.070 3.346 0.738 9 0.750 361.203 2.421 0.534 10 0.833 401.337 1.916 0.436 11 0.917 441.471 1.562 0.345 12 1.000 481.605 1.265 0.275 13 1.083 59-1.738 1.004 0.222 • 34 1.167 561.872 0.742 0.164 15 1.250 602.006 0.4B1 0.106 16 1.333 642.139 0.445 0.098 17 1.617 682.173 0.482 0.106 18 1.500 722.407 0.446 0.096 19 1.583 762.541 0.273 0.060 20 1.667 802.6674 0.235 0.052 ----------------------------------------------------------------------- Sum = 100.000 Sum= 22.071 Unit Time Pattern Storm Pain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max ( Low (In /Hr) 1 0.06 0.50 0.150 0.176 0.135 0.01 2 0.17 0.60 0.180 0.176 - -- 0.00 3 0.25 0.60 0.180 0.176 - -- 0.00 4 0.33 0.60 0.160 0.176 - -- 0.00 5 0.42 0.60 0.180 0.176 - -- 0.00 6.... 0.50 0.70 0.210 0.116 - -- 0.03 7 0.58 D.70 0.210 " 0.'116 - -- 0.03 B 0.67 0.70 0.210 0.176 - -- 0.03 9 0.75 0.70 0.210 0.176 - -- 0.03 10 0.B3 0.70 0.210 0.176 - -- 0.03 11 0.92 0.70 0.210 0.176 - -- 0.03 12 1.00 0.50 0.240 D. 1.76 - -- 0.06 13 1.06 0.80 0.240 0.176 - -- 0.06 14 1.17 O.BO 0.240 0.176 - -- 0.06 15 1.25 O.BO 0.240 0.176 - -- 0.06 16 1.33 0.80 0.240 0.176 - -- 0.06 17 1.42 0.80 0.240 0.176 - -- 0.06 16 1.50 0.80 0.240 0.176 - -- 0.06 0.240 0.176 - -- 0.06 20 1.67 0.80 0.240'- - 0.- 1�6 - -- - -- - - -- ._0_._0_6 - - " -�- 21 1.75 0.80 0.240 0.176 0.06 • 22 1.83 0.60 D.240 0.17E _ -- 0.06 23 1.92 0.60 0.240 0.176 - -- 0.06 S4 2.00 0. 90 U.270 0.176 0 3 OB 0.80 0. 26 2.17 0.90 0.270 0. 176 D . 09 0.90 0.270 0 . 3. - - - 0.09 P, 0.90 0. ^_70 0.376 --- 0.U9 19 2.42 0. 90 0._'70 0.176 - -- D . D9 30 0 D.90 0.176 G.09 33 58 0.90 0.276 0.176 U•09 3 3.67 0.90 0.27[1 G . 2-)6 - -- D . 05 .71 1.00 0.300 0.176 0 . 12 34 2.83 1.00 0.300 0.176 - -- 0 . 12 35 2.92 1.06 0 . -11 0 0 0.176 - -- 0. 12 36 3.00 1.00 0.1100 0.116 - -- 0 . 17 37 3.08 1.00 0.300 0. 176 0.12 38 3.17 1.10 0 . -' 3 0 0.1176 - 0.15 39 3.25 1.10 0 . 330 0.136 - -- 0 . i 40 3.33 1.10 G . � 3 ri 0.17E 0.15 41 3.42 1.20 0.360 0.176 --- 0 . is 4- 3. 50 1.30 0.390 0.176 - -- 0.21 43 3.58 1.40 0.420 0.176 --- D . 2 4 44 3.67 1.40 ri . 42 0 0,176 - -- 0 . 2 4 4= 3.75 1.50 0. 650 0.176 - -- 0 . 27 46 3.83 i . 30 0.450 0.176 - -- 0 . 27 47 3.92 1.60 0.480 0.176 - -- 0.30 48 41 . DD 1.60 0.480 0.176 - -- 0.30 49 4.08 1.70 0.1110 0.176 - -- 0.33 50 4.17 1.80 0.540 0.176 - -- 0.36 4.25 1.90 0.570 0.176 --- 0.39 2 ^.33 2.00 0.600 0.176 - -- 0. 42 53 4.42 2.10 0.630 0.176 - -- 0 4 5 54 4,30 2.10 U. 630 0.176 - -- ri 4 5 55 4.58 2.20 0.660 0.176 - -- D. 46 36 4.67 2.30 0.690 0.1176 --- 0.51 4.75 2.40 0.720 0.176 - -- 0.54 58 4.83 2.40 0.720 0.176 - - - 0.54 39 4.92 ='.50 D. 7 50 0.176 - -- 0.57 60 5.00 ".60 0.760 0.176 - -- 0.60 61 5.06 3.10 0.930 0.176 - -- 0.75 62 5.17 3.60 1.D80 0 . I 7 6 --- 0.90 63 5.25 3.90 1.170 0.176 - -- 0.99 64 5.33 4.20 1.260 0.176 - -- i . 08 65 5.42 4.7D 1.410 0.176 --- 1.23 66 5.50 5.60 1.680 0.176 - -- 1.50 67 5.58 1.90 0.570 0.176 0.39 68 5.67 0.90 0.270 0.176 - -- 0.09 69 5.75 0.60 0.180 0.176 --- 0.00 70 5.83 0.50 0.150 0.176 0.135 0.01 71 5.92 0.30 0.090 0.176 0.081 0.01 2 6.00 0.20 0.060 0.176 0.054 0.01 Sum = 100.0 Sum = 17.7 Flood volume = Effective rainfall 1.47(In) times area 21.9(hc.)/HIn)/(Ft.)1 = 2.7(AC.Ft) Total soil loss = 1.031ln) Total soil loss = 1.878(Ac.Ft) Total rainfall = 2.50(1n) Flood volume = 116939.9 Cubic Feet Total Soil loss = 81787.6 Cubic Feet -------------------------------------------------------------------- Peak flow rate of this hydrograpb = 23.479(CFS) ----------------------------------------------------------------- ............................ .......................................... 6 - H 0 U R S T 0 R M R u n o f f H y d r o g r a p h -------------------------------------------------------------------- Bydrograph in 5 minute intervals ((CFS)) Time(h+n) ------------------------------------------- --Q(CFS) --0 ----------------------------------------------------------------- D+ -Volume 5 -Ac.Ft. 0.0001 D.01 Q 0+10 0.0004 0.06 Q 0 +11_. 0.0613 0.12 r, I I I I 0 +20 O.00 0 . i i I I U;!'S G . OU 6 6 0.05 09 Q 0 Di 30 0.0034 0.11. Q I I U +35 0.0049 0.22 Q I I I I 0+40 D. o(n6 0. 4_. Q I I I I 0+45 U.U114 0.3 oi5D D. 0155 D.59 Q I I I I U +55 G.D192 D.63 Q I I I I l+ D 0.024_`. 0.68 Q I I I I 14 5 0.0 01 0.81 vQ I I I I 1 +10 0.0,72 1.03 vQ 1 +15 0.0451 1.15 VQ 1 +20 0.0535 1.22 vC, I I I 1+25 G.UG22 1.27 v I I ( I 1430 0.0712 1.30 10 I ! I 1 1 +35 O.OB04 1.3-- 1Q I I ( I 1 +40 0.0697 1.35 IQ I I I I 1 +45 0.0991 1.37 1Q I I I I 1 +50 O.iO86 1.36 IQ 1 +55 0.1182 1.39 (Q I I I I 2+ 0 0.1279 1.42 IQ I I I I 2+ 5 0.1363 1.51 I Q I I I 1 2 +1D 0.1496 1.63 1 C 2.15 0.1609 1.65 1 Q 2 +20 0.1733 1.80 1 Q 2 +25 D.1864 1.89 I Q I I I I 2 +30 0.1998 1.95 1 Q I I I I 2+35 0.2134 1.98 1 QV I I I I 2 +40 0.2272 2.00 I QV I I I I 2.45 0.2412 2.D4 I Qv I I I I 2 +50 0. ^561 2.16 1 QV I I 1 I 2+55 0.2725 2.37 1 QV I I I I 3+ 0 0.2896 2.49 I Q11 I I I 3+ 5 0.3072 2.56 1 QV I I I ! 3 +10 0.3353 2.62 1 QV I I I ! _. 3 +15 6.3443 3.76 1 Q V I I ! ! 3 +20 0.3649 2.99 1 Q V I I I I 3 +25 0.3865 3.13 1 QV I I 1 I 3 +30 0.4095 3.34 1 Q v I I I I 3 +35 0.4350 3.72_ 1 Q V 3 +40 0.4638 4.17 J QV 1 3 +45 D.4954 4.59 I QV I 3 +50 0.5293 4.93 4 Qv I I I I 3 +55 0.5658 5.29 1 QV I I I I 4+ 0 0.6044 5.61 i Q V) 4+ 5 0.6456 5.97 i Q VI 1 I I 4+10 0.6890 6.31 I Q v I I I 4+15 0.7356 6.77 I QV I 1 I • 4 +20 0.7859 7.30 I QIV I I I 4 +25 0.8402 7.87 I Q V I I I 4+30 0.8984 8.45 1 IQ V I I 1 4 +35 0.9600 8.95 I IQ V I I 1 4+.40 1.0246 9.37 I I Q V I I I 4+45 1. o927 9.90 1 I Q .v I I I 4 +50 1.1647 10.46 I I Q v I I I 4 +55 1.2402 10.95 I I Q V I I I 5+ 0 1.3185 11.37 ( I Q v I I 5+ 5 1.4009 11.97 I I Q V I I 5 +10 1.4907 13.04 I I Q I V I I 5 +15 1.5934 14.92 1 I QI v I I 5 +2D 1.7107 17.03 I I 1 Q v I i 5 +25 1.8417 19.02 I ( I Q v I i 5 +30 1.9881 21.26 1 ( I QVI I 5 +35 2.149B 23.48 1 ( I 1 Q I 5 +40 2.3036 22.33 1 1 I Q v i 4101 15. 47 I I Q I v I 5 +50 2. 4803 TD719 -I-- - - _I_�Q. I 5 +55 2 .5289 7.05 I Q I I "-- _V --I -- 6+ 0 2.5651 5.26 I Q 1 I I v l 6+ 5 2 .5929 4.03 I Q I I I v I • I v I 6;10 2.61.42 3.10 I Q I i I VI 6 +15 3.630E 2.41 C. + 20 2.6438 1.88 I C, 6 +25 .'.659D 1.4E 6 +30 2.6619 1.15 6-135 2.6680 0.89 6x.90 2. 6727 D. 69 Q I I V 6 +45 2.6766 0.56 I I , 6+50 3.6797 0.46 C1 I I I VI 6 +55 2.6820 0.34 Q I I I VI 7+ 0 2.6835 0.2j I 7 5 2.6643 0.11 Q I I VI 7 +10 2.6895 0.03 Q I VI 7 ; 1., 2.6645 0.01 Q I i ( VI 7 +20 2.6645 0.00 I 7 +25 2.6846 0.00 I I 7 +30 2.6846 0.00 I 7 +35 -------------------------------- 2.6B46 0.00 4 - - - - -- __ -- • AREA D 100 -YR, 24 -HR STORM EVENT U n i t H y d r d g r a p h A n a l y s i s Copyright (c) CIILCADD /CIVILDESIGDI, 1989 - 1999' Version 6.0 h '.7 Study date 07/31/09 File. 9662aread29].DU.out - + = + -- - - - --- .. + + =} +. +... t + + =. t +.. t. +t _. _ = + + +i. t.++= .i. + ++++i - - - - - - - . Riverside County Synthetic Unit Hvdrology Method RCFC L wCD Manual date - April 1978 Warner Engineering, Yucca Valley, CP. - S/N 598 English (in -lb) Input Units Used English Rainfall Data (inches) Input Values Used English Units used in output format TTM 30092 AREA D --------------------------------- ----- -Oc so -03- -M =. Drainage Area 21.90(Ac.) - Length along longest watercourse = 1595.00(Ft.) 500.00(Ft.) Length along longest watercourse measured ^9, c1'1ntroid = 1. Length along longest watercourse = centroid = 0.095 Mi. Length along long °st watercourse measured o t 6.00(Ft.) D; erence in elevation. _ ?0.5099 Ft. /Mi. Slope along watercourse Average Manning's 'N' = 0.060 Lag time = 0.200 Hr. Lag time = 12.96 Min. 25% of lag time = 3.11 Min. 90% of lag time = 9.98 Min. Unit time = 5.00 Min. Duration of storm = 29 Hour (5) User Entered Base Flow = 2 YEAR Area rainfall data: Rainfall(In)[2] Weighting[1;2] Area(Ac.)[1] 1,10 29.09 21.90 100 YEAR Area rainfall data: Rainfall(ln)[2) Weighting[1 *2] Area(Ac.)[1] 3 50 76.65 21.90 STORM EVENT (YEAR) = 100.00 100(ln) . Area Averaged 2 -Year Rainfall = 13,500(In) Area Averaged 100 -Year Rainfall = Point rain (area averaged) 3.500(In) 100.00 � Preal adjustment factor = 3.500(In) — rage point rain - - - --- -- - - - - -- - -- • Sub -Area Data: Prea(Ac.) Runoff Index Impervious % 21.900 86.00 10'0 OSO'O b8Z "0 950'0 EI'0 00'7- b7- TO '0 OSO'z'O 950'0 EI'O Z6'T EZ TO '0 OSO'O L8 L8Z '0 950'0 £T'0 £8'I ZZ . -' - -` -- - 7-60'0 OT'O SC'I TZ 00'0 8£0'0 687-0 7-60'0- 0T 0-- ' -`L9=Z - OZ - - -- 00'0 BEO'0 06Z "0 Z60 "0 OT'0 85'T 61 00'0 8£0'0 16Z "0 Z60'0 0l "0 09'1 ST 00'0 8E0 "0 Z6Z'0 Z60'0 01'0 Z6"T LI 00'0 8£0 "0 E6Z'0 Z60 "0 OT'O EE'1 91 00 "0 8E0 "0 S6Z'0 Z60'0 OI'O SZ'I ST 00'0 8£0'0 96Z'Q Z6Q'0 OI "0 LI'I bT 00'0 820'0 L6Z'0 (60'0 OT 'O 80'I £T I0 "0 050'0 867-'0 950 "0 El'0 00'l ZT 10'0 050'0 667-'0 990'0 El'O Z6'0 IT TO'0 OSO'O TOE,0 950'0 ET'0 Ea'0 OT 00 "0 8£0 0 ZO£'O Zb0'0 Ol "0 SL'O 6 00 "O 8'£0''0 HE '0 Z60'0 OT'O L9'0 8 00'0 BE0'0 b0E'0 Zb0'0 Ol'O 85'0 L 00'0 8EO'O 9OE'0 Z60'O OT'O OS'O 9 00'0 620 "O 90£'0 Z60'O OT'O Zb'O S 00'0 BE0 "0 SOE'0 Z60'0 OT'O EE'O 6 00 "0 SZO'0 60£'0 8ZO'0 LO'0 SZ "0 E 00'0 9ZO'0 Oil '0 820'0 CO'0 LT'0 Z OQ "0 SZO'O IT£"0 BZO'O LO'O 80'0 I (aH /uI) Mor I X2N (zH /uI) }uao -L-ad ('aH) antToa; ;g (zH /'Uj)atez sso2 uieg ='04S uaaq?ed aurr'L 4tu0 ----------------------------------------------------------------------- ILO'ZZ =UMS 000'001 = 'uT1S ZSO "O SE('0 bL9 "Z08 L99'I OZ 090'0 ELZ'0 I6S "Z9L £a9 "l 5T 860'0 966 "0 L06'ZZL OOS'T 81 9OT'O Z86'O ELZ'Z99 LTb'l LI. 860'0 9b6'0 6ET'(69 EEE'I 9T 90T'0 186 "O 900'ZO9 OSZ'l S b9 T'0 ZbL'O U8'T9S L9l'l 5I ZZZ'o 600'1 cEL'1ZS Ea0'l ET 6LZ'0 9917'1 909'Tab 000'T Zl S6E'0' 7-99 -T TLb'T66 LI6 "0 IT 926'0 9L6'I LEE "106 EEa'O OT bES'0 lzb'Z £07-'19£ OSLO 5 8EL'O 9-Uz OLO'TZE L99'0 8 E96'0 19£'6 9E6'08Z EBS'O L LEE'I GS0'9 Z08'0b71 005'0 9 610'E L61'6 699 "OOZ LIb'0 S Z"9"- TL] 91 SC9 O9L ECE 0 6 TEL'S 966`0£ T06 "OZI OSZ'0 E oqs'•- 980'91 L9Z'08 L9I'0 Z OT9'O E9L'7 bCT'Ob Ea0'o T --------------------------------------------------------------------- (530) % t4dea0 (sail) gdea50anr(H 4tu0 uoTangra -.sz0 Bel ;o a; army potaad -3w-r-4 7.un --------------------------------------------------------------------- egeQ gdea6oapAH gvia -------------------------------------------------------------------- anan0 -s 1'd353Q g d e a 6 0 a p A H a T u 0 --------------------------------------------------------------------- 905'0 = (leutToap) azea 3s01 MOT TIoS (u0T?eznp maoas tnoy bZ a0 ;) 380'0 = ((= H /uI)) a ?ea ssoT TTos IunwzuTVI 9LI'O = (- 1H /Ul) (J) ssoT [zos ueam pahetane eaz7 9LL "O = r31 guns 9LI'O 000'1 9LC'O 000 "0 7LT'0 0'98 0'99 ('t;•0aQ) (IH /1111 7, - :1Fw 1 -1:)Wit J eaz t aZeH 112tH PK snotnzaduil a1e,l ' I? ;uI C "d I'S oi105'T', = paza;u"j eaaY Te1oy ZO'0 69T'0 601'0 Z8i'0 EVO Z6'L S6 ZO'0 69 1' 0 OTZ'O ZST'0 Eb"O £8'L 66 ZO'O TST'O ITZ'0 891'0 06'0 SL "L E6 Z0= 0-- __.,,T,ST_0 ZTZ'0 89 T'0 Ob'0 L9 "L Z6 ZO' 0 1ST' O £TZ' ZO'0 6£T'0 6TZ'O 6ST'O LE'O OS'L 06 ZO'0 6ET'0 SIZ'O bST'O LE'0 Z6'L 68 ZO'0 6ET'O 9TZ'O bST'O LE'O ££'L 88 TO'O 9ZT'0 LTZ'O O K 'O EE'O SZ'L LB TO'O 9ZT'0 BTZ "O O6T "0 E£'0 LT 'L 98 TO'0 9ZT'0 61Z'O OK*0 EE '0 80'L 58 TO'O 9ZT'0 0Z11 '0 OK 'O EE'0 00'L 58 TO'O 9ZT'0 IZZ'O OK "o EE'0 Z6'9 £8 IO'O 9ZT'O ZZZ'0 Obi'0 EE'0 E8'9 78 10'0 9ZT "0 EZZ "O O K 'O E£'0 SL'9 18 10'0 9ZT'0 bZZ'O OK '0 EE'0 L9'9 08 10'0 9ZI'0 SZZ'0 OK 'O EE'0 BS'9 6L 10'0 ETT'0 9ZZ'0 9ZI'O GE "0 09'9 8L 10'0 Ell LZZ'O 9ZT'0 OE'O Z6'9 LL 10'0 Ell 8ZZ'0 9ZI "0 OE'0 ££'9 9L I0 "O £11'0 6ZZ'O 9ZT'o OE'0 SZ "9 SL 10'0 ETI'O 0£Z'O 9ZT'O OE'0 LT'9 6L 10'0 ETT'0 T£Z'O 9ZT,o 0£'0 80'9 EL 10"0 TOT'O Z£Z'0 ZTI'O LZ'0 00'9 ZL TO'O TOT'O EEZ "O ZTT'0 LZ'O Z6'S IL 10 "0 TOT'O 6£Z "O ZTI'O LZ'O E8'S OL 10'0 TOT'O SEZ'0 ZTI'O LZ'O SL'S 69 I0'0 TOT'O 9£Z "O ZTT'O LZ'O L9'9 89 TO'0 TOT'0 L£Z'O ZTT'O LZ'O 85'S L9 i0'O 880'0 8£1'0 960'0 EZ'O OS "S 99 10'0 880'0 6EZ'0 860'0 EZ'O Zb'S 99 10'0 .880'0 ObZ'o 860'0 Ec. 10'0 9LO'O TbZ'o 680'0 OZ'O SZ'S 1-9 TO'0 9LO'O Z5Z'0 680'0 OZ'O LT'S Z9 TO'0 9LO'O £6Z'O 680'0 OZ'o 80'S 19 10'0 TOT'0 bbZ'0 1Ti'O LZ'O 00'S 09 10'0 TOT '0 S610 ZTT'0 L7'0 Z6'6 6S 10'O TOi'0 9h7,'O ZTi'O LZ'O 1-8 "6 8S TO'O 880'0 86Z'o 860'0 EZ'O SL' LS TO'O 880'0 661'0 860'0 EZ'O L9'S 9S TO, .9 880'0 OSZ'0 860'0 EZ'O 85'15 SS 10'0 880'0 ISZ "O 860,0 EZ'o 09'6 b 10"0 B80'O ZSZ'O 850'0 EZ'0 Zb'i ES TO'O 880'0 ESZ'0 860'0 EZ'O EE'5 ZS 10'0 9LO'O 691'0 680'0 OZ'0 9Z'6 IS 10'0 9LO'O SSZ'0 680 "0 OZ'O LT'b OS 10'0 9LO "O 95Z'O 680'0 OZ'O 80'6 66 10'0 9LO'O LSZ'0 680'0 OZ'O Oo'S 86 10'0 9LO'0 8S6'0 680'0 OZ'O Z6'E L6 10"0 9L0'() 651'0 580'0 OZ'0 E8'E 96 TO'O £9O"o T3Z'O OLO'0 LI'O SL'E S6 10'0 E90'0 Z97'0 OLO'0 LI'O L9'E 56 10'0 E90'0 E97'0 OLO'O LT 'O 89'E 1-5 TO'O E90'0 59Z'o OLO'O LT '0 OS'E D TO'O £30'0 S9Z'O OLO'O LT'0 Z5'E I 10'0 E90'0 33 %0 OLO'O LI'O £1-'Z 0 I0'0 £90'0 0ZZ'O OLO'o LT'O 5 -'Z 51- IO'O E90'0 89.'0 OLO.O LT'0 LT 'E BF TO'0 1-90'0 69 7'0 OLO'O Li'0 80'Z LE io'o E90'0 TL-1-0 OLO'O LI'0 00'1- 9E I0'0 E90.0 %LE'O OLO'0 LT'O 15'- SE I0'0 E90'0 ',LZ'O OLO'0 LT'() 1-8'? 51- 10'0 E30'o bL71'0 OLO'o LI'O SL'- 6z I0'0 E3O'o S v'0 OLO'0 LC'o 1-9'- ZE 10'0 1-90'0 3L, -.9 OLO'O LI'() BS i1- 10'0 O5O'O LL1'O 950'0 ZI'0 OS'1 OF I0'0 0500 9r_ -'o 9500 El, 0. IO'0 OSo'O 08:0 9S0'0 EI'o 10'0 050 o T8 -'0 Mo'0 ET'o S ='- L • TO f) OSO'o Z8 '0 9S0'o ET'o LIT, 91 LO'0 O50'O 1-8:') 950'0 1-1'0 90'1 LI'0 - -- L'l '0 ZZE'0 LL'O £3'E- 991 LI'O - -- B6Uo ZZE'0 LL'O SL' El 991 LI'0 - -- 661'0 ZZ£'0 WO L9'ET 691 - . -Li`'0 0 -- LL'O 85'Et E9T EE '0 - -- OST "0 9L5'0 EI-- t os -EI Z9i------ - - - --- - -- Z£'0 - -- I9I'0 9L6'0 ET "i Zb "ET 191 Z£'0 - -- Z91'0 9L5'0 ET,I £E'ET 091 ZE'0 - -- £SI'O 9L6'0 EI "I SZ "ET 691 ZE'0 - -- 651.0 9L6"0 £I'I LT 'ET 851 _E'0 - -- 651'0 9L6'0 ET'I 80'Et LST SZ'0 - -- S9T'0 906'0 L6'0 00'EI 951 9Z'0 - -- 9ST'0 906'0 L6 "0 7-6 "_1 991 SZ'0 - -- LST'0 906'0 L6'O E8 -IT 691 C17 - -- L91'0 Z6E'0 E6'0 SL'ZT EST EZ'0 - -- 851.0 7-6£'0 E6 "0 L9'ZI ZST EZ,O - -- 651'0 Z6E "0 E6 "0 8S "ZT IST OZ "O - -- 09 1' 0 69£'0 LF 0 OS'ZT OST OZ'0 - -- 191'0 69E'0 L9'0 Zb'_1 661 OZ "0 - -- T9 T'0 59£'0 LB '0 EE "ZI 8h1 61.0 - -- Z91'0 OS£'0 EV O SZ "ZT L5T 6T'O - -- E9T "0 OSE'0 EB'0 LI'ZT 961 6T'0 - -- 591'0 OSE'O Es,0 80 Z Sbl 60 "0 - -- 591'0 ZSZ'0 09.0 00•ZT W 60.0 - -- 991'0 ZSZ'O 09 "0 Z6'11 E5I 60'0 - -- 991'0 ZSZ'0 09'0 E8'TT Z6I LO '0 - -- L91'0 BEZ'0 LS'O GL IT UT LO "0 - -- 891.0 8£1.0 L9"0 L9'11 061 LO'O - -- 691.0 8£7-'0 LS "O 85'11 6£T OT'O - -- OLT'0 997-'0 £9'0 OS'II SET pip - -- ILI'0 997- .0 E9'0 Zb'II LET 60.0 - -- ILT'O 99z,o E9'0 E£'11 9ET 60,0 - -- ZLT'0 997- "n E9 "0 SZ'II SET 60.0 - -- ELI '0 9O Z'0 E9'0 L1'T1 6E- 60.0 - -- bLT'0 99 Z•0 E9'0 80' IT SET SLT'0 087-'0 L9 "0 00'TT H! OT'O - -- 9LT "0 087-.0 L9'0 Z6 01 UT • OI'O - -- LL- "0 08Z'0 L9'0 23 OT OU OT'p - -- LLT'0 O8Z'0 L9'0 SL 'OT 66ZT OT '0 - -- 8Li'0 OBZ•O L9'0 L9'OT 9 c 01'0 - -- 6L-'0 08_'0 L9 "0 SS '01 LZI EO "0 - -- 08-'0 OT_'0 OS "0 OS•OT 97-- CO ,O - -- 181'0 OT7-'0 OS "0 ZV OT SZI EO'0 - -- Z8i'0 OI_'0 OS•O EE'0I bZT EO "O - -- £81'0 OTZ'0 OS'O 57- "0I EZL EO'O - -- 681'0 OT Z'0 OS'o LI'OT ZZT £O'O - -- 581'0 OTZ'0 09'0 80'OI -ZT ZT'O - -- S31'0 80£'0 EL'O 00.01 ON Zi'O - -- 98-'O 80E'0 EL '0 Z66'6 5TI Z 1 O - -- L91'0 80£'0 EL'O E3'6 81T LI'O - -- 8810 656'0 OL'O SL'6 LIT OT p - -- 681'0 h5Z'0 OL'O L9'6 91i OT '0 - -- 06-'0 65=0 OL'O 89'66 SIT 60'0 - -- 161'0 081.0 L9'0 OS '6 5iT 50,() - -- 7-51 0 086'0 L9'O Zb'6 EiI 50'0 - -- E6i'o 08Z'O L9'0 EE'S 7-11 LO'O - -- 651'9 991.0 E9'0 SZ "5 III LO,O - -- G61,0 99:•0 E9'0 L1'6 0i- LO A - -- 96-L '0 997'0 E?'O 80'6 601 60'0 - -- 96I'O 8E•', "o LS'0 00'6 801 60'0 - -- L51'O 8E 0 LSO 76'8 LOT 951'0 8£'0 LS'O E8'8 901 0'O - -- 551'0 b:_'0 S'O SL'A Go O'O - -- 0'8 b0C TO '0 6 -_'0 ES'a 85"8 1101 O_ n1 :'O QS,o OS'9 %OI i0'O - -- EO.'0 OI:'O OS'o 5'9 COI 10'0 - -- 60,:'0 OI7- "O Os 'p IE,B 601 10'0 - -- SOZ'n Ot='9 os'o S_ "8 55 00,0 - -- 90 'O oT"o OS'n L1'8 85 Op,p - -- LO:'0 OC;'O OS'o 80'8 L6 :0'o h9T'O BO 'O oBC'O 6'O QO'9 96 i I al s Cl ,-1 nl C 11 c 1 Ca C J CI CA rl rl r1 G o o m s a M M v ar v` r1 r1 rl rl ri O a O o O O r1 r1 , -1 I -1 r, r, n rl ri r1 ri rr r .-/ rl r1 r+ .-1 O o G o O o O O C) ri rl r{ o O O n Ci CA C I C I C J C I C l C l C 1 CJ IV C I C11 CJ CJ N ri .-i ri 1-1 r1 r-1 , -1 rl rl 0 0 0 0 0 0 0 CD 0 0 0 C) 0 0 0 CD 0 0 0 0 0 0 0 0 0 0 0 0 O' 0 0 0 0 0 CD 0 C) 0 0 0 0 0 0 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '. . . . . . . . . . . . O .� IJ J O O J O O O 0 0 J O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 0 0 0 0 i 0 0 0 1 1 O O O g G o m m m m co m M Ol M CC) M M M M M O O 0 0 O O O O O m m m In In IJl m m m O 0 O m m Co I I 1 1 1 1 1 1 I 1 I I I I 1 I I 1 I 1 1 I 1 I I I In In In In In In M M M M M M l0 l0 10 l0 1D ID ID 10 l0 If) In In In In 171 In If) 11l M M M CJ N N M M M In In Ifl M M M I I I I I I I I I I I I I I I I I I I I I I I 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I I I I I I I I I I I I I I I I I I I I I I 1 1 1 1 0 0 0 0 0 O O 17 O CD O g O G C7 0 0 0 O O O O O O O O O O O O O O O O 0 O 0 0 0 CD 0 0 0 0 0 F- V ul O S O1 m r- O \17 In v v' M N N rl O O al Co m r l0 Io Ill M M N r1 .-I O O) IT, m m r� r` I I In In ct' v' M M C4 rl C-1 O O m m CO m ID ID a In v v M •a .. c• c v ,'l ,T) M M M I� Cl M M M f`1 M M Cl M c1l C•1 c'J f l t`I N CJ N C.1 CJ N N CJ f•.t N rl rl . rl rl N . rl rJ r1 . rl C-J rl C-1 ri ri C-1 O O O O O O O O O O O O O ,-+ r1 rl r ti C-1 r1 ri rl rl r-1 rl rl N N ri rl r1 rl rl C-1 rl rl 1 rl rl rl ,-1 rl , -1 rl rl ri rl rl ri r1 N rl rl rl rl rl r-1 rl ri C-I rl rl r� ri M r1 ri H C-1 rl r1 N ri Ci rl rl C-1 0 O O C) O J J O O O O O O J O 0 0 0 0 0 0 ID 17 O O G O O O C7 O O O G O O G O O G O O O O O O O O O O O O O O O O O O O O O O O O O G O G O 17 O C•1 C:1 ill m Ill v D v v' c' c' J O O Iil 17 O N N CJ ID O O 10 Iil 10 ID lil 10 O 10 O \O N N N N N C11 0 0 0 0 0 0 0 0 0 IO ID IO l0 q ID ID IO ID N CJ N m m m N N N ID LD IO N N N i 1 N r c� li `.0 `il •� IO Iil u'1 ul M M Cl M C.i C.1 C.1 \il Iil IO l0 10 ID If) n Ifl LP lP In c' d` v' w V` v` 1 r 1, c CD CD c C) 0 If) Ill In In ul Ifl 111 CD ul m v` v` N N N m C' v' In CD ILn) 0 M r'1 M Cl Cl `1 ,'l ,'l ,`1 M ."1 Cl M M 11 Cl M C•l C1 M C•1 I1I CI CA N CSI 0 0 0 0 O O O O O O G O O O O O O O O O O g 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 O J J O J O I] C) c O J O O I'D C) O O J O O G O O O 0 0 0 0 0 C) 0 0 0 0 0 0 0 0 O O O O O O O O O O O O O O O O O O O O G G O O O O O cc O g 0 r r- J O O r r- f r c- I- I'1 M M O O O C- Cl M M M Cl M Cl Cl M M M M O O O O O O r- 1� I� 1� 1 r c� !� f� m M M M M M M M M O O O r r r- O O O M M: M O O D r- r- a1 In D1 as m a1 m m m co O7 m m m m r f- [� LL7 ID ID 10 10 lD r-I .-i rl rf rl r1 .--1 -1 rl C-1 rl r1 rl rt r-1 ri rl rl rl N r1 N .-I N r-1 r1 r1 rl C-1 r•1 rl r1 r1 O O O N C-f CH r1 r11 r-I -1 r1 N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ., . . . . 0 J J J O J J O O O J O O O O O O O O O J O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O G O 0 0 0 0 0 0 O: 0 0 0 0 i CJ CD J7 r ul ,'1 CJ O a:, t• ul Cl N O m r- ul M hl O m 1- In M N O m r^ In M N O m t� In M CI O m 1' In M N O m In M N O m l- In M N O m n ul M N O m r- In M N O m (' In m O J n C.) 01 v' ul Ill lV t` N m O O C-1 C.1 M v' Ill In 10 r- m Ol O O r1 N rl v' ICI In lO M1 m m O O ,-I N M a 111 ,fl lO r, m m O O rl CJ M y ul Ill IO r m m O O N N M c ul Ill lil r- ,'1 - ,• �+' v' c v v �r v' ul ul u"1 In ul ul ul ul ul ul ul ul lJ lD ID 1. 10 lD 1D 41 lil IO IIJ I, r m m m m m m m m m m a: m al m m m m Ol m m Ol 17) ,-� ,-1 rl r-1 n ,-, rr n C-V rl rl N fy ri rl rl rr rl N rl rl rl ,-I rl rl r1 C-1 rl r1 rl ri ri rl rl rl rl rl rl , -1 rl rl rl r1 r1 ri r1 rl r-1 N N ri rl rl rl rl rf N r-i rl C-1 N N ri N H rl rl rl rl N rl t` O:r al O n C 1 M y ul Ia r y al J r w M 03 ul Iil r� Co al O m N M v' I(1 m C` m 171 O C-1 N M v.. t` m m O rl N M. In l0 r m al O r1 CJ M P In UJ r m m O (n N M c N m r In ,0 J ,.] Ll (� t` r� r r r r` - 1` r m al O] a] m 0] m m m m m m a1 Ol 171 m m 171 m m O O O O O O O O O O C-1 rl rl r 1 rl ri C-1 rl r1 r1 N CJ C•1 N n1 CJ C•1 N N CJ M M M c 1 M M M Cpl ri N r-i N rl ri rl ri N rti r1 rl N r1 r1 rl r1 rI rI rl ri rl rl N C•I CI C,I CI CI nl N N C.1 N N CJ nl CJ CJ N N N C•1 N CJ CJ N CJ CJ C.I N N N C-I CJ N N CJ N N N f 23L' 15.63 0 (0 0.028 0.10. 0.0 ='`_. D 00 '40 2 19.92 2, 0 0 0 U.07 0. 07 0.028 0 0 -', B 0.].02 Cl 1021 0 D 5 0 011� 0.00 0.00 241 20.08 0.16 0.042 0. 102 0.038 0.00 20.11 0. io 0. G 4 2 0.101 0.038 0. DO 243 _'0.25 0. io D.042 W 0.038 0 . DD 44 20.33 G.1.0 D . c4- 0 100 0 . 0I 0 , 0 0 245 20.4_ 0.10 0.042 C1. 100 0.038 0. 00 246 20.50 0.10 0.042 0. 099 0.038 G.00 47 26.5E 0. io 0 . 0 4 -" 0.099 D.038 0 . 1) 0 248 20.67 0. io 0.042 0.099 0.038 0.00 249 20.75 0. 10 0.042 0.098 0 . 0 11 8 0.00 250 20.83 D.07 0.028 0.098 D. 025 0 . 00 2'51 2 0 . 9 ' 0.07 0.028 0.097 0.0211 D.00 21.00 0.07 0.028 0. 0 91 0.025 0.00 253 21.08 0.10 0.042 0.093 0.038 0.00 254 21.17 D. I D 0.042 0.096 0.038 D.00 21.25 0.10 0.042 0.096 0.038 0.00 256 21.33 0.07 0.028 0.095 0 . 0 2 5 0.00 2 �57 21,42 0.07 0.026 0,095 0.025 0.00 258 21.50 0.07 0.028 0.095 1). D25 0. DO 259 2 1 . 5 8 0.10 0.042 0.094 0.036 0.00 260 21.67 0.10 0.042 0.094 0.036 0.00 261 21.75 0.10 D . D i 21 D. D911 0.03E 0.00 262 21.83 0.07 0.028 0.093 0.025 0.00 263 21.92 0.03 0.028 0.093 0.025 0.00 264 22.00 0.01 0.028 0.093 0.025 0.00 265 22.08 0.10 0.042 D. 092 0.038 0 . DO 366 _2.17 0.i0 0.042 0.092 0.038 0.00 267 22.25 0.10 0.042 0.092 0.038 0.00 266 22.33 0.07 D.028 0.0092 0.025 0.00 269 22.42 0.07 0.028 0.091 D.025 0.00 270 22.50 0.07 0.028 0.091 0.025 0.00 171 '2.56 0.O7 0.028 0.091 0.025 0 . 00 272 ^'.67 1, DI 0.026 1,091 1,025 11,00 '. 273 22 . 75 0.07 0.026 0.090 0.025 0.00 2_74 ^2.83 0.07 0.028 0.090 0.025 0.00 275 29-92 0.07 0.028 0.090 0.025 0.00 276 2 3 . DO 0.07 0.028 0.090 D . 02 5 0.00 ,77 -3.06 0.07 0.026 0.089 0.025 0.00 376 23.17 0.07 0.026 0.089 0.025 0,00 2) 19 23.25 0.07 0.028 0.089 0.025 0.00 280 23.33 G.07 0.028 0.089 D. 025 0.00 281 23.42 0.07 0.028 0.089 0.025 0.00 282 23.50 0.03 0.028 O.DBB 0.025 0.00 283 23.58 0.07 0.028 O.OBB 0.025 0.00 284 23.67 0.07 0.028 0.088 0.025 0. DO 285 23.75 0.07 0.028 0.088 0.025 0.00 266 23.83 0.03 0.028 0.088 0.025 0.00 287 23.92 0.07 0.028 0.068 0-025 0.00 2BB 24.00 0.07 0.028 0,088. 0.025 0.00 Sum = 100.0 Sum = 14.7 Flood volume = Effective rainfall 1.23(In) times area 21. 9 (Ac. ) i [ (In) /(Ft.)) = 2.2(Ac.Ft) Total sail loss = .-2.27(In) Total soil loss = 4.14'7(Ac.Ft) Total rainfall = 3.50(In) Flood volume = 97574.7 Cubic Feet Total soil loss = 180652.9 Cubic Feet -------------------------- ---------------------------- Peak flow ------------ rate of this hydrograph = 6.772(CFS) -------------------------------------------------------------------- .................................................................... 24 - B 0 U R S T 0 R M P. u n o f f H y d r o g r a p h -------------------------------------------------------------------- ------flydrogra.ph-in--5-- minute intervals ( (CFS) Time(h+m) ------------------------------------------------------------------------ ----------------------------------------------- VOIUME Ac.Ft Q (CFS) 0 2.5 7 -------------------- 5.0 7.5 10.0 0+ S 0. 0000 0.00 n 0 +10 0. 000 1 0. 01 Q I I ( I 0+15 (1 .0003 0.03 C, I I I 0 +20 0.0006 6.04 Q I I I I U+ 0.0009 G.05 Q I I I I U +_i0 0.00) 9 0.07 C, G +35 0. Ooi9 0.07 0 +40 D.U04 D.08 0 +45 0. 0030 0.0E U +SD 0.0036 0.08 U +55 0.0042 0.09 Q I I I I l+ 0 0.0049 0.10 Q ( I I ! 1+ 5 0.0057 0.11 Q I I 1 1 +16 0.0064 0.11 Ci 1 1 1 1 1 +15 0.001 0.10 Q 1 +20 0.0078 U.1D Q I I I I 1 +25 0.0084 0.10 Q I I 1 I i +3U 0.0091 0.09 Q I I I 1 1 +35 0.0097 0.09 Q I I I I 1 +4D 0.0104 0.09 Q 1 +45 U.ODD 0.09 Q ( I 1 +50 0.0117 0.09 Q 1 +55 0.0124 0.10 Q 2+ 0 0.0131 0.11 Q I I 2+ 5 0.0139 0.11 Q I I 2 +10 0.0147 0.12 Q I I I I 2 +15 0.0155 0.12 Q 2 +20 0.0163 0.12 Q 1 I I I 2 +25 0.0172 0.12 Q I 1 I I 2 +30 0.0180 0.12 Q I I 2 +35 0.018E 0.12 Q I I 2 +40 0.0197 0.13 Q I I I I 2 +45 0.0207 0.14 Q I I ! I ? -50 0.0216 0.14 Q ( I I I 2 +55 0.0227 0.15 Q •; 3+ 0 0.0237 0.15 Q 3+ 5 0.0247 0.15 Q I I I 3 +10 0.0251 0.15 Q I I I I 3 -15 0.0268 0.15 Q I I ! I 3 +20 0.0278 0.15 Q I I I I 3 +25 0.0289 0.15 Q I I I I 3 +30 0.0299 0.15 Q I 1 3 +35 0.0310 0.15 Q I I I I 3 +40 0.0321 0.15 Q I I 3 +45 0.0331 0.15 Q I I I I 3 +50 0.0342 0.15 Q 3 +55 D.0353 0.16 Q I I I I 4+ 0 0.0365 0.17 Q ( I I I 4+ 5 0.0377 0.17 Q I I I I 4 +10 0.0389 0.18 Q 1 I I I 4 +15 0.0401 0.18 Q I I I I 4 +20 0.0414 0.18 Q I 1 I I 4 +25 0.0427 0.19 Q 4 +30 0.0440 0.20 Q I I I I 4 +35 0.045'4 0.20 Q I I I I 4 +40 0.0469 0.21 Q I I 4 +45 0.0483 0.21 Q I I 4 +50 0.0498 0.21 Q I I I I 4 +55 0.0513 0.22 Q I I 5+ D 0.0528 0.23 Q I I 1 5+ 5 0.0544 0.23 Q I I I I 5 +10 0.056D 0.23 Q 5 +15 0.0574 0.21 QV 5 +20 0.0588 0.20 Qv I I I I 5 +25 0.0602 0.20 QV ! I I I 5 +30 0.0617 0.21 QV 1 I I I - O.D631 0.21 QV I I I I 5 +40 - -- - 0.0696- " 0.22 -Qv I I I - -- -- 5 +45 0.0662 0.23 Qv I - I "'�- -. - -I- - - - -- -_ -- - -- 5+50 0.0678 0.24 QV I I I I -- -- 5 +55 0.0695 0.24 QV • ALPP NTDIX— ccI» ojs�-SITE FLOWS 100 -YR STORM EVENT Riverside County Rational Hydrology Program CIVILCADD /CIVILDESIGH Engineering Software, (c) 1985 - 2001 Version 6.4 Rational HydrCic,gy Study Date: 05/08/04 File :9662AREAA.out ------------------------------------------------------------------------ TTM 9003 =' AREA A 5 -8 -04 -------------------------------------=---------- *' Hydrology Study Control Information English (in -lb) Units used in input data file Warner Engineering, Yucca Valley, CA - S/N 598 Rational Method Hydrology Program based on Riverside County Flood Control v Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 Standard intensity- duration curves data (Plate D -4.i) For the [ Cathedral City ] area used. 10 year storm 10 minute intensity = 2.770(In /Hr) 10 year storm 60 minute intensity = 0.980(In /Hr) 100 year storm 10 minute intensity = 4.520(In /Hr) 100 _near storm 60 minute intensity = 1.600(In /Hr) Storm event year = 100.0 calculated rainfall intensity data: 1 hour intensity = 1.600(In /Hr) Slope of duration curve = 0.3800 ......... I +++ L_....1.. ...f... .+-,,++++-, ....... ............ . I IT �_' +++ Process -from Point /Station 1.000 to Point /Station 2.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 200.000(Ft.) Top (of initial a_-ea) elevation = 43.9D0(Ft.) Bottom (of initial area) elevation = 43.000(Ft.) Difference in elevation = 0.900(Ft.) Slope = 0.00450 s(percent)= 0.45 TC = k(0.420) *[(length ^3) /(elevation change)) -0.2 Initial area time of concentration = 10.304 min. Rainfall intensity = 4.445(ln /Hr) for a 100.0 year storm SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.797 Decimal fraction soil group A = 0.000 Decimal fraction soil group S = 1.000 Decimal fraction soil group C = 0.00D Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.600; Impervious fraction = 0.400 Initial subarea runoff = 0.992(CFS) Total initial stream area = 0.280(Ac.) Pervious area fraction = 0.600 ............. .{ j. "i• f i-1 �'1"T i"�"�"{..�"f'- T'�'�'.T i..F i.'�' i•.{'.{`.}. T i.. .'i"'{'-{.'j. i'i'i. Y l.. ..+'...1.''..{... ....i. . Process from Point /Station 2.000 to Point /Station_-_____ 3`000 * *" STREET FLOW TRAVEL TIME i SUBAPrA FLOW ADDITION * * ** - T . TTTT T.I.T TTTTTTTTTTT . T . � TT'T TTT IT.� Tt�T.1. T':'•TT .•TTTITT�.Y +T�T�.T1T �.T TT Process from Point/SLat1(]r + 2.000 to Point /St ation 3.000 * * ** CONFLUENCE OF MINOR STREAMS * " Along Main Stream number: 1 in normal stream number 1 Stream flow area = 3.560(Ac.) Runoff from this stream = 10.101(CFS) Time of concentration = 15.03 min. Rainfall intensity = 3.572(In, /Hr) ++++_.1.. "l... 11 ...}T.t..{.T."1' T. .. ..}. ..'.('. ...{.-f..'.1..{.....{.... i.....{..{'. ... ... .T. ............ ...i.. Process from Point /Station 4.000 to Point /Station 5.000 * * *y INITIAL AREA EVALUATION * * ** Initial area flow distance = 150.000(Ft.) Top (of initial area) elevation = 43.000(Ft.) Bottom (of initial area) elevation = 42.200(Ft.) Difference in elevation = 0.800(Ft.) Slope = 0.00533 s(percent)= 0.53 TC = ):(0.420)'[(length ^3) /(elevation change)) ^D.2 Initial area time of concentration = 6.677 min. Rainfall intensity = 4.647(In /Hr) for a 100.0 year storm SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.804 Decimal fraction soil group A = 0.000 -' `-- -- _ Decimal fraction soil group B = 1.000 Decimal- frac- ti.on_ soil group C = 0.000 Decimal fraction soil RI index: for soil(AMC 2) = 56.00 Pervious area fraction = 0.600; Impervious fraction = 0.400 Top of street segment elevation = 43.UDU(Ft.) End of street Segment elevation. = 40.100(Pt.) . Length of street segment 540.000(Ft.) He gri t G_ cu z above gut teI f1 DWI I* TI& = 6.G (In.) Width Of half street (curb" tG crown) = 16.001(Ft.) Distance from croon) to cro5°_fall grade breal: = 16.000(FL.) Slope fr.oru guttre, .:o grade br.eai: (v /i',a) = D,063 Slope. from grade Urea): to crown (v /hc) = 0.020 Street flow is orl (_') Fide(s) of the street Distance from curb to prooerta line = 10. ODD (Fr .) Slope from curb to property line (v /nr) = O.020 Gutter width = 2.000(Ft.) Gutter hike front flowline = _'.U00 (In . ) N,anning's N in gutter = 0.0150 Manning's 1.1 from gutter to grade break = 0.0150 Mannino's N from grade brea): to crown = 0.0150 Estimated mean flow rate at midpoint of street = 6.802(CFS) Depth of flow = 0.384(Ft.), Average velocity = 1.906(Ft /s) Streetflow hvdraulics at midpoint of street travel: Halfstreet flow width = 12.876(Ft.) Flow velocity = 1.91(Ft /s) Travel time = 4.72 min. TC = 17.0.E rain. Adding area flow to street SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.778 Decimal fraction soil aroun A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index: for soil (AMC ?) = 56.00 Pervious area fraction = 0.600; Impervious fraction = 0.400 Rainfall intensity = 3.572(In /Hr) for a 100.0 year storm Subarea runoff = 9.105(CFS) for 3.280 (Ac .) Total runoff = 10.101(CFS) Total area = 3.560(Ac Street -low at end of street = 10.101(CFS) Hall street_ flow at end of street = 5.050(CFS) Depth or flow = 0.42 °(Ft.), Average velocity = = .095(Ft /s) Flow width (from curb towards crown)= 15.113(Ft.) T . TTTT T.I.T TTTTTTTTTTT . T . � TT'T TTT IT.� Tt�T.1. T':'•TT .•TTTITT�.Y +T�T�.T1T �.T TT Process from Point/SLat1(]r + 2.000 to Point /St ation 3.000 * * ** CONFLUENCE OF MINOR STREAMS * " Along Main Stream number: 1 in normal stream number 1 Stream flow area = 3.560(Ac.) Runoff from this stream = 10.101(CFS) Time of concentration = 15.03 min. Rainfall intensity = 3.572(In, /Hr) ++++_.1.. "l... 11 ...}T.t..{.T."1' T. .. ..}. ..'.('. ...{.-f..'.1..{.....{.... i.....{..{'. ... ... .T. ............ ...i.. Process from Point /Station 4.000 to Point /Station 5.000 * * *y INITIAL AREA EVALUATION * * ** Initial area flow distance = 150.000(Ft.) Top (of initial area) elevation = 43.000(Ft.) Bottom (of initial area) elevation = 42.200(Ft.) Difference in elevation = 0.800(Ft.) Slope = 0.00533 s(percent)= 0.53 TC = ):(0.420)'[(length ^3) /(elevation change)) ^D.2 Initial area time of concentration = 6.677 min. Rainfall intensity = 4.647(In /Hr) for a 100.0 year storm SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.804 Decimal fraction soil group A = 0.000 -' `-- -- _ Decimal fraction soil group B = 1.000 Decimal- frac- ti.on_ soil group C = 0.000 Decimal fraction soil RI index: for soil(AMC 2) = 56.00 Pervious area fraction = 0.600; Impervious fraction = 0.400 Initial subarea runoff = 1.05 _-(C M Total ir:itial streant area 0._'70 (Ac .) PerYiGUE area traction = 0.600 i- vi�+ i��- tr4y- tri- i-+ i- ri�i• �- r+- i�- •i-�-i� +Y-i�-Fi- �.d-- i-- -i --f. i. } }-!. i-t +i-rir� -r i•�-r rti•+ i�- i - + -i-r �-r -0-r�-i -Tfi P):L_ess _roll Point /Station 000 LO Point /Station .,.000 S ?'FrET FLO4i TA?.VGL TIME wURAF 7 rLO6, P.DDITION Top of street segment elevation = 42.2n0(Ft.) End of street segment elevation = 40.1.00(Ft.) Length of street segment = 400.000(Ft -) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade breah (v /hz) = 0.063 Slope from grade breai: to crown. (v/h_) = 0.020 Street flow is on f 2 side O of the street Distance from curb to property line = 10.O00 (Fr .) Slope from curt, to property line (v /nz) = D.020 Gutter width = 2.000(Ft, .) Gutter hike from flowline = 2.000(In.) manning's 1d in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade breai: to crown = 0.0150 Estimated mean flow rate at midooint of street = 4.209(CFS) Depth of flow = 0.336(Ft.), Average velocity = 1.688(Ft /s) St_*eet"flow hydraulics at midpoint of street travel: Halfstreet flow width = 10.582(Ft.) Flow velocity 1.69(Ft /s) Travel time = 3.95 min. TC 12.83 min. Adding area flow to street SINGLE FA *'TLY (1/ Acre Lot) Runoff Coefficient 0.786 Decimal fraction soil grout L = 0.000 Decimal fraction soil group E = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 R? inde_: for soil (AMC ') = 56.00 Pervious area fraction 0.600; Impervious -fraction 0.400 Rainfall intensity 3.915(IP /Hr) for a 100.0 year storm Subarea runoff 4.965(CFS) for 1.620(Ac.) Total runoff = 6.037(CFS) Total area 1.850(kc.) Street flow at end of street = 6.037(CFS) Half street flow at end of street 3.019(CFS) Depth of flow = 0.373(Ft.), Average velocity = 1.837(Ft/s) Flow width (from curb towards crown)= 12.316(Ft.) ....i-t't" .......1.i.T'I. ++_,. ....... +' F' F''"' F' I'....' F' ....'F...." .................-I . Process from Point /Station 5.000 to Point /Station 3.000 CONFLUENCE OF MINOR STREAMS ' * ** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.690(AC.) Runoff from this stream 6.037(CFS) Time of concentration 12.B3 min. Rainfall intensity = 3.915(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 10.101 15.03 3.572 2 6.037 12.83 3.915 -- — _ Largest stream flow has longer time of concentration ---- 101- 1.0 1._t_ sum of Ob - 6.037 * 0.51^ 5.508 Qp 15.608 -- - Total of 2 str'r_ -ams to confluence: Flow rates k,efore confluence point: 10.101 6.037 7,rc& of streams before conflnence: -1.890 RE: sUI of confluence: Total flow race = 1`..E. 08(CFS� Time of concentration = 15.0''7 min. Effective st]:ean: area after confluence = 5.450(Ac.) ++--.4 'Y T Y T' .... —I ++++-i........"f T......... .... .T }+-++......'....... i'-' ++�4 Process fron, Point /Station 3.000 to Point /Station. 6.0UG STREET FLOW TP,-VEL TIME + SUBRE?, FLOW ADDITION Tor, of street segment elevation = 40.100(Ft.) End of street segment elevation = 38.600(Ft.) Length of street segment = 240.000(Ft.) Height of curb above gutter flowline = 6.0 (IT ,) (Width- of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade brea): = 16.000(Ft.) Slope from gutter to grade brea): (v /h =) = 0.063 Slone from grade brea): to crown (v /hz) = 0.020 Street flow is on [2) side(s) of the street Distance from curb to ProAerty line = 10.000 (Pt.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000 (In .) Manning's N -Jr, gutter = 0.0150 Manning's V from glitter to grade break = 0.0150 l,anning's W from grade break_ to crown = 0.0150 Estimated mean flow rate at midooint of street = 16.O67(CFS) Depth of flow = 0.479(Ft.), Average velocity = 2.453(Ft /s) S= reetflow hvdraulics at m_dooint of street travel: HaIrstreet flora width = 17.631(Ft.) Flow velocity = 2.48(Ft /s) Travel time = 1.61 m_n. TC 16.64 min. Adding area flow to street SINGLE FAMULY (1 /2 Acre Lot) Runoff Coefficient = 0.7-12 Decimal fraction soli! group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil gro�sp D = 0.000 RI index: for soil(AMC 2) = 56.00 Pervious area _fraction = 0.600; Impervious -fraction = 0.400 Rainfall intensity = 3.367(In /Hr) for a 100.0 year storm Subarea runoff = 0.E32(CFS) for 0.320(Ac.) Total runoff = 16.440(CFS) Total area = 5.770(Ac.) Street flow at end of street = 16.440(CFS) Half street flow at end of street = 8.220(CFS) Depth of flow = 0.482( ?t.), Average velocity = 2.497(Ft /5) Flom width (from curb towards crown)= 17.79!(Ft.) Process from Point /Station 3.000 to Point /Station 6.000 *'"' CONFLUENCE OF MINOR STREAMS ''' +'' Along Main Stream number: 1 in normal stream number 1 Stream flow area = 5.770(AC.) Runoff from this stream = 16.440(CFS) Time of concentration = 16.64 min. Rainfall intensity = 3.367(In /Hr) Process from Point /Station ' -7- 000— to-- Point/Station '' INITIP.L AREA EVALUATION initial area flow dis.:ancc = 246.000(Ft•) Top (of inlUial arca) elevat:zor, = S3, .ID0(Ft.i Bottom (Gf initial area)- elevation 41 = 41.2UG(Fi.) Difference ir, elevation = I.900 (FL .) Slope = 0.0075_ s (Tje'- Cent :) = 0.79 TC = i. (0.4_0)' ((length' ) % fEleVa'- 1.Gi ", change) )' 0.2 Initial area %imE of conceP.tration = S,.900 min. Rainfall. intensllsy = 4. 5O (1n /)Ir) for a 106.0 year storm SINGLE FAMILY (1/2' ),.crE Lot) Runoff Coefficient: = 0.795 Decimal fraction soil group h = O.UDD Decimal fracr_ior� soil group E = 1-ODD Decimal fractior, soil group C = D.000 Decimal frac_ion soil group D = 0.000 P.I i n d e z for soil(Al]C 2) = 56.00 Pervious area fraction = 0.600; Impervious Zraction = 6.400 Initial subarea runoff = 1.527(CFs) Total initial strcam area = 0.420(Ac.) . Pervious area fraction. = 0.600 TT } }•= T , + }TT . T{'TT } + ++TTTTT T-L } + } + } + } } } + } }TTT . + }.j.T } + } } } + } } }T . T } +} + } } +} Process from Point /Station B.DDG to Point /Station 6.000 I'll STREET FLOW TRAVEL TI1'4Z + SUBAREA FLOW ADDITION * * *' T}}+}}T .}++}}+++}+}} i'+}+} + } + } + }-}. } } } }-}--{- } + } } } } }-}- }} j. + } }.}11 }.f...} + } } }i- } } }+ - - -- Process from Point /Station 8.000 to Point /Station 6.000 CONFLUENCE- OF._MINOR STREAMS * *'* - - Along Main Stream number: 1 in normal stream number 2 -` -' "' -- -- - --- -� Stream floe, area Top of Street Segment elevation = 41.200(Ft.) End of street segment elevation = 38.600(Ft.) Length of street segment = 52D.ODOIFt.) Height of curb above gutter flowline = Width of half, street (curb to crown) = lB.000(FL.) Distance =rom Cr04n to crossfall grade break = 16.00D(Ft.) Slope -from gut el- t0 grade break ( -,7 /n=) = O.D63 Slope from grade break to g own (v/hz) = 0.020 Street flow is on (2) side s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property 1?nE (v /nZ) ° 0.020 Gutter width, = 2.000(Ft.) Gutte? hike from flow,! ine = 2.000(In.) Manning's N in gutter = 0.DI50 Manning's N from nutter to grade brea): = 0.0150 Manning's N iron grade n_eah to Crown = 0.0150 Estimated mean glow rate at midpoint of street = 7.997(CFS) Depth of flow = 0.406(Ft.), Average velocitV = 1.928(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 13.956(Ft.) Flow velocity = 1.93(Ft /s) Travel time = 4.50 min. TC = 14.40 min. Adding area flow to street SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.780 Decimal fraction soil group A = 0.000 Decimal fraction soil group S = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.600; Impervious fraction = 0.400 Rainfall intensity = 3.662(in /Hr) for a 100.0 year storm Subarea runoff = 10.166(CFS) for 3.560(Ac.) Total runoff = 11.692(CFS) Total area = 3.980(Ac.) Street flow at end of street = 11.692(CFS) Half street flow at end of street = 5.846(CFS) Depth of flow = 0.45'_(Ft•), Average velocity = 2.112(Ft /s) Flow width (from curb towards crown)= 16.251(Ft.) T}}+}}T .}++}}+++}+}} i'+}+} + } + } + }-}. } } } }-}--{- } + } } } } }-}- }} j. + } }.}11 }.f...} + } } }i- } } }+ - - -- Process from Point /Station 8.000 to Point /Station 6.000 CONFLUENCE- OF._MINOR STREAMS * *'* - - Along Main Stream number: 1 in normal stream number 2 -` -' "' -- -- - --- -� Stream floe, area Runof;: troer this stream _ iI.65 :lCFSi TimE of concentration = J14. min. Rainfal ?. intensity = 66_.ln /Hri Summary of stream data: S.r-am Flow r.aCE Tr )rainfall Intensity NC,. (CF„( Imir,) (1;, /Hri ] 16.440 ].6.64 s6? 11.69-1 14.40 3. GOL Largest stream flow has longer time of concentration 4p = 16,440 -t s um of nb la,'Ib 11.69_• - 0.919 = 10.751 t,P = 27.191 Total of 2, streams to confluence: Flow races before confluence _point: 16.440 11.69 Frea of streams before confluence: 5.770 3.980 Results of confluence: TGtal -flow rate = 27.191(CFS) Mime of con= entration = 16.638 m n. Effective stream area after confluence = 9.750 (Ac .) "�- T� -TTy • T . . --•f TT'I'YT� -�T�T . TYTTT Y= }=- -I-�.T TTY'- {--('Y'I'N -1"T �'�'�'TTT�TT� -�T . T'Z-•�-TT �-Y-f' Process from Point /Station 6.000 to Point /Station 9.000 , ++-+ STREET FLOW. TPZVEL TIME = SIISAP—r7: FLOW ADDITION >+» TOG or street segment elevation = 36.600(Ft.) End of street segment elevation = 34.800(Ft.) Length of street segment = 660.000(Ft.) Height of curb above gu =ter flowline Width or half street (curb to Groom) = 18.000(Ft.) Distance from crown. to cross fall grade br =_a): = 16.000(Ft.) Slope from gutter to grade break (v /hz) = 0.063 Slope from grade break to crow -n. fv /hz) = 0.020 Street flop: is on (21 side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v /h_) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 32.741(CFS) Depth of flow = 0.602(Ft.), Average velocity = 2.672(Ft /s) Warning: depth of floc; exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 5.09(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.000(Ft.) Flow velocity = ^.B7(Ft /s) Travel time = 3.95 miD. TC = 20.58 min. Adding area flow to street SINGLE FAMILY (112 Acre Lot) Runoff Coefficient = 0.759 Decimal fraction Soil group P. = 0.000 Decimal fraction soil group E = 1.000 Decimal fraction soil group C = 0.000 " Decimal fraction soil group D'= 0.000 RI indes: for soil(AMC 2) = 56.00 Pervious area fraction = 0.600; Impervious fraction = 0.400 Rainfall intensity = 2.976(In /Hr) for a 100.0 year storm Subarea-- r- unof.f_= _ B.994 (CFS) for 3. 980 (Ac. ) Total runoff = 36.1F57( "CFS') -- - - - - --- Total_, area = 13.730 (Ac. ) . Street flow at end of street = 36.185(CFS) Half street flow at ent of street = 18. 092 (CFS ) De"oth of flow = 0.621(Ft.), ?.verage velocity = 2.942(Pt Warning: denti, of flow Lzceeds top of. curb Note: derj,.:i-, o flow e.:ceeds for of street crown,. Distance hat curb- overflow.' reaches into property = 6.Dc (Pt .j r'low wid-ch (from curb towards crown)= 18.000(Ft.l i Ti-t +-r i'i'i-'i- i- i•i -i-i +i- }i-i•i-ri- i -i-i-i -V i-i•i i-i i•� -t i'T Ti i =i•-'r+,'i"+•F+i-rt}i-i-;•i-+++i-i-i....TTi- Process fron, Point /Station 6.0DO *_c, Point / Statior) 9.000 CONFLUENCE OF MINOP. STP.EAMS ", Along Main Stream number: 7 in normal stream number 1 Stream flow area = 13.730(Ac.) Runoff from this stream = 36.165(CFS) Time of concentrarion = 20.5E min. Rainfall intensity = 2'.976(In /Hr) --++++} i'+- YT+-+TTY T-+-- + + + + + + +-- + + + +TYT- +-- +Y+ +i- - + } +T Process from Point /Station 10.000 to Point /Station i1.000 ' *'t Il ?ITIAL AREA EVALUATION —, ........ ---+++i-++ i•+-+--+ i--+ +-T++- + + + +i- + +-- + +.i.1.... ++ - -r i+} }+ + + + + + + + + +- Process from Point /Station 11.000 to Point /Station 9.000 *' ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 36.100(Ft.) End of street segment elevation = 34.800(Ft.) Length of street segment = IBD.000(Ft.) Height of curb above gutter fiowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to cross-tall grade break = 16.000(Ft.) Slope from gutter to grade break (v /h -) = 0.063 Slope from grade brea): to crown (v /hz) = 0.020 Street flow is on [2) side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade brea): = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.452(CFS) Depth of flow = 0.329(Ft.), Average velocity = 1.934(Ft/s) Streetflow hydraulics at midpoint of street travel: _� Halfstreet flow width = 10.122(Ft.) KYO` velocity —=- — 1- ._9.3.(.rt /s) • Travel time = 1.55 min. �TC -- Addino area flow to street SINGLE FAMILY (1/2 Acre Lot) initial area flow distance = 150.000(Ft.) Tot, (of initial area) elevation = 37,300(Ft Bottom (of initial area) elevation = 36.100(Ft.) Difference in elevation = 1.200(Ft.) Slone = O.DDODO sIoercent)= 0.80 TC = ).(U .420) *[( length" .) /(elevation change)) "0.2 Initial area time of concentration = 8.186 min. P.ainfall intensity = 5.080(in /Hr) for a 100.0 vear storm SINGLE FRI9ILY (1/2 Acre Lot) Runoff Coefficient = 0.808 Decimal raction soil group A = 0.0D0 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 P.I index. for soi i ( AIM C 2 56.00 Pervious area fraction = 0.600; Imnervious fraction = 0.400 Iritial subarea runoff = 1.108(CFS) Total initial stream area = 0.270(Ac.) Pervious area fraction = 0.600 ........ ---+++i-++ i•+-+--+ i--+ +-T++- + + + +i- + +-- + +.i.1.... ++ - -r i+} }+ + + + + + + + + +- Process from Point /Station 11.000 to Point /Station 9.000 *' ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 36.100(Ft.) End of street segment elevation = 34.800(Ft.) Length of street segment = IBD.000(Ft.) Height of curb above gutter fiowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to cross-tall grade break = 16.000(Ft.) Slope from gutter to grade break (v /h -) = 0.063 Slope from grade brea): to crown (v /hz) = 0.020 Street flow is on [2) side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade brea): = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.452(CFS) Depth of flow = 0.329(Ft.), Average velocity = 1.934(Ft/s) Streetflow hydraulics at midpoint of street travel: _� Halfstreet flow width = 10.122(Ft.) KYO` velocity —=- — 1- ._9.3.(.rt /s) • Travel time = 1.55 min. �TC -- Addino area flow to street SINGLE FAMILY (1/2 Acre Lot) Runoff Coefflc].ent = 0.800 Decimal fraction Soil group A = G.000 Decimal. fraction soil. grout B = 1..000 DOCiIDa1 fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 Fa irides: for soil (AdNC 2) - 6, 00 Pervious area traction = 0.600; impervious fraction = 0.400 P.alnfail. intensity = 4.594(in /Hri for a 1.00.0 year storm Subarc-a runoff = 5.988(CFS) for 1.630(Ac.) Total runoff = 7.096(CFS) Total area = 1.900(Ac.1 Street flow a1' end of street = ).096(CFS) Half street flow at end of street = 3.548(CFS) Depth of flow = 0.373(_rt.), Average velocity = 2, .155 (Ft /si Flow width (front curb towards crown)= 12.327(Ft.) TTY+ Y+-+ Y++-+' T...TT............ T'+'+} TYTT..1"........ +TT...TT....}. j- +T +'{'T ++ Process from Point /Station 11.000 to Point /Station 5.000 j CONFLUENCE OF MINOR STP.EFNIS I'** Along Xain Stream number: 1 in normal stream number 2 Stream flow area = 1.900(Ac.) Runoff fron. this stream = 7.096(CFS) Time of concentration = 9.74 min. Rainfall intens_ty = 4.554(In /Hr) Summary of stream data Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) i 36.185 20.58 2. °.76 2 7.096 5.74 4.594 Largest stream flow has longer time of concentration • Qp = 36.185 + sum of Qb Id /Ib 7.096 T 0.646 = 4.597 QT, = 40.782 Total of _ streams to confluence: Flog rates before confluence _point: 36.185 7.096 Area of streams before confluence: 13.730 1.900 Results of confluence: Total flow rate = 40.782(CFS) Time of concentration = 20.584 min. Effective stream area after confluence = 15.630(Ac.) ++ 1J.. T......1+. �-- 1+ 1+. �+ 11. F- 1.}+ 1.'. 11. + +} +,} + +'r. + +"r.. + +1 } }.... I. +'r' + + + + + +'r' +'}'..... process from Point /Station 9.000 to Point /Station 10.000 '' * ** STREET FLOW TRAVEL TIME + SUBAREA FLO4; ADDITIDV * * ** Top of street segment elevation = 34.800(Ft.) End of street segment elevation = 34.000(Ft.), Length of street segment = 16D.00D(Ft.) .. Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 1b.000(Ft.) Slope from gutter to grade break (v /hz) = 0.063 Slope from grade break to crown (v /h--) = 0.020 Street flow is on [2) side s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v /hz) = 0.020 _ Gutter width = 2.000(Ft.) Gutter hike from flor:line = 2.000(In.) Manning gutter to N Manning's [a from gutter to grade Manning's N from grade brea): to crown = 0.015D Estimated mean flow rate at midpoint of street = 41.551(CFS) De;:-rh of flow = 0.660(FL.), AVciziCIL VelOcit), _ _.Ji7(FL /sj Darning: depi:)} of floc! e--:Ceed!: Eor of Curb NoLe: de r,th of flobl exceeds toy. of street' crown. — Distance uhaL curb overflow reaches into property - ).99 f1t,.; - ' StreEtflow hydraulics at m.dpcint of street' travel: Halfstreet flow widtl', I6.000(Ft.) Flow VEl.ocit \, _ -1. 9c' (1''T - /s) Travel time = 0.91 mfr. TC 31.50 min. Adding area flow tG Street SINGLE FAf nl ' (1/2 Acre Lot) Runoff Coefficient = 0.757 Decimal fraction, soil group t. = 0. DOO Decimal fraction soil group E = 1.DOO Decimal fraction soil group C = D. DOD Decimal fraction, soil group D = 0.000 RI index: for soil (P1JC 2 ) = 56.00 Pervious area fraction. 0.600; Impervious fraction 0.900 Rainfall intensity 2,.90s(In /Hr) for a 100.0 vea'_' stern, Subarea runoff 1.296(CFS) for 0.590(Ac.) Total rung %_' = 42.077(CFS) Total area 16.220(Ac.) Street flow at end of street = 42.077(CFS) Half street flow at end of street 2I.039(CFS) Depth of flow 0.662 (Ft .,, Average Velocity 2.926(Ft/s) Warning: depth of flow e }:ceeds too of curb Note: depth of flow exceeds too of Street Crawn. Distance t'r,at curb overfloY! reaches into property f;. 12 (Ft. ) Flow width width (from curb towards crown)= 16.000(Ft.) +' i ' + +T+ + + + + + + + ++ + +T + + + + + ++ + + + + + ++ Process from Point /Station 9.000 to Point /Station 10.000 *r ** CONFLUENCE OF MINOR STaFnngS *r >* Along Main StrEam nulitoe_: 1 in normal s -ream number 1 Stream flow area = 16.220 (AC .) Runoff from this stream 42.077(CFS) Time of concentration 21.50 min. Rainfall intensity = - . go? (In /Hr) TTTT.TTT TLTTT + +T YY. .. .. TLTT+ �TTTTTT++ YTT .. ++ +YTT.TTTYTYTTTTYT ++TYT +T+ Process from Point /Station 11.000 to Point /Station 12.000 r °r> I1,1ITIAL AREA EVkLUATION >, *r Initial area flow distance 0.270( Ft. ) Top (of initial area) elevation = 36.000(Ft.) Bottom (of initial area) elevation 35.2D0(Ft.) Difference in elevation = O.B00(Ft.) Slope = 2.96296 s(percent)= 296..30 TC = 1:(0.420)r[(lengtb ^3) /(elevation change) ] ^0.2 Warning: TC computed to be less than 5 min.; program is assuming the time of concentration is 5 minutes. Initial area time of concentration 5.000 min. Rainfall intensity = 6.762(In /Hr) for a 100.0 year storm SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.828 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil 4roup C = '0.000 Decimal fraction soil group D = 0.000 RI index for soil(AmC 2) = 56.00 Pervious area Fraction 0.600; Impervious fraction 0.400 Initial subarea runoff = 1.511(CFS) Total initial stream area 0.270(Ac.) Pervious area fraction = 0.600 Process from Point /Station 12'- 00'0—to- Point. /.Station 10.000 *' STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** TTT .T.T.TY,TTTT,TT +T + + +TTTT�TY.T. TYTTTT�TYTYTTTYYTTTT YJ'�T�TYTTTTTTTT Process from Point / Statior• 121.0D0 to Point /Station 10.000 T >TT CONFLUENCE OF MINOR STPXAVIS ''+++ Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.370(Ac.) Runoff from this stream = 6.3681CFS) Time of concentration = 6.84 min. Rainfall intensity = 5.639(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 42.077 21.50 2.502 2 6.568 6.84 5.635 Largest stream flow has longer time of concentration Qp = 42.077 + sum of Qb Ia /Ib 6.56E 0._`115 = 3.380 gp = 45.457 Total of 2 streams to confluence: Flow rates before confluence point: 42.077 6.568 of streams before confluence: -" - -- - - -- 16- .220 1 .370 Results of confluence: -- -_- -_ -_ -_ - -- . - -` -- Total flow rate = 45.457(CFS) Time or concentration = 21.498 min. Tor+ of ..Lrecz segment elevatzion = 35.200 f Ft. j End of °treer segnient clevatior, = �4.DDD(Ft.) Length of streer Segruent _'DD.DUGO't:.) Height of curt above qut;:er flowlinE = C.0 (in .i widrr, of nel street (curb to crnwr,) = 1B.000 (Ft . ) Distance front crown to crossfall grade breal: = 16.000(Ft.) Elope from gutter LO q,-ade breal: (v /lit) = 0.063 "'opE irom a_rade brea): to crown Iv /ii=) = 0.0_0 Street flow is or: 121) sida(s) of the street Distance from curb tc property line = 10.000(Ft.) Slope from curb Co property ilne (v /nz) = 0.0 ='0 Gutter wider = 2.000(FT.) Gutter hike front flowline = 2.000(In.) hannina's N in gutter = D.D150 4lanning's H from glitter to grade brEa): = 0.0150 Manning's U front grade break to crown = 0.0150 Estimazed mean flow rate at midpoint of Street = 4.586(CFS) Depth of flow = 0.340(Ft.) Average velocity = 1.613(Ft /s) Streetfiow hydraulics at micnoint O' street travel: Half-street flow width = 16..671(Ft.i Flow velocity = 1.81(Ft /s) Travel time = 1.84 min. TC = 6.64 min. Adding a' "Ea 110w to Street SINGLE FII'ILY (1/2 Acre Lot) Runoff Coefficient = 0.815 Decimal Traction soil group A = 0.000 Decimal fraction soil group E = 1.000 DecimEl fraction soil group C = 0.000 Decimal fraction soil group L = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area _fraction = 0.600; Impervious traction = 0.400 Rainfall intensity = .639(1n /Hr) for a 100.0 year storm Subarea runoff = 5.05'(CFS) for 1.200(Ac.) Total runoff = 6.568(CFS) Total area = 1.370(Ac.) Street `loll at end of street = 6.568(CFS) Half street flow at end of = 3.284(CFS) Depth of flow = 0.375(Ft.), Average velocity = 1 972(Ft /s) -. Flow width (rrom cu--b towards crown)= 12.406(Ft.) TTT .T.T.TY,TTTT,TT +T + + +TTTT�TY.T. TYTTTT�TYTYTTTYYTTTT YJ'�T�TYTTTTTTTT Process from Point / Statior• 121.0D0 to Point /Station 10.000 T >TT CONFLUENCE OF MINOR STPXAVIS ''+++ Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.370(Ac.) Runoff from this stream = 6.3681CFS) Time of concentration = 6.84 min. Rainfall intensity = 5.639(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 42.077 21.50 2.502 2 6.568 6.84 5.635 Largest stream flow has longer time of concentration Qp = 42.077 + sum of Qb Ia /Ib 6.56E 0._`115 = 3.380 gp = 45.457 Total of 2 streams to confluence: Flow rates before confluence point: 42.077 6.568 of streams before confluence: -" - -- - - -- 16- .220 1 .370 Results of confluence: -- -_- -_ -_ -_ - -- . - -` -- Total flow rate = 45.457(CFS) Time or concentration = 21.498 min. f '7 . 590 (Ac. E ffeC- i v[ Sr-j:E:anl E!2:C-a a- Cor"luc End c—f C:ompuj:atirjn5, Lc.zaj Study area (Ac • T'r,c- fcllov!irlg figures may � (jf salitc area. be used fcji- a unit hydrograpi'l stud, - p.rea ave2:agcd pervious area fracEion(71P) Area averaged P.] index-: nuirnel: = 56.6 • r o fz LivF_side Counr-y kational. Hydrology Progran, CIVILCADD /CIVILDESIGR E:nginecring Software, (c) 1989 - 2001 Ver =_ion 6.4 Rational. Hydrology Study DatE: 07/29/04 Fi.le:9c6 ^-AP.EAL. 0I11: ------------------------------------------------------------------------ TTM 30092 AREA. L ------------------------------------------------------------------------ I, -i-y ** Hydrology Study Control Information, English (in -lb) Units used in input data file ------------------------------------------------------------------------ Wa_ner Engineering, Yucca Valley, CA - S/N 598 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Rive -side County Flood Control & Water Conservation District 1976 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 Standard intensitv - duration curves data (Plate D -4.1) For the [ Cathedral City ] area used. 10 vear storm 10 minute intensity = 2.770(In/Hr) 10 year storm 60 minute intensity = 0.980(In /Hr) 100 year storm 10 minute intensity = 4.520(In /Hr) 100 year storm 60 minute intensity = 1.600(In /Hr) Storm event year = 10.0 Calculated rainfall intensity data 1 hour intensity = 0.980(In /Hr) Slope of intensity duration curve = 0.5800 TTTTTTTTTTTTTT.++ T�+ T�TT= YTT?' t" T+ TTTTTTTTTTT .TTTTTT�T + +T +- �TTTTTTTTT Process from Point /Station 1.000 to Point /Station. 2.000 r._ °* INITI }1, AP.EA EVALUATION * * ** Initial area flow distance = 180.000(Ft.) Top (of initial area) elevation = 44.300(Ft.) Bottom (of initial area) elevation = 43.000(Ft.) Difference in elevation = 1.300(Ft.) Slope = 0.00722 s( percent)= 0.72 TC = 1:(0.4.2.2 -0) *((length ^3) /(elevation change)) ^0.2 Initial area time of concentration = 8.987 min. Rainfall intensity = 2.947(In /Hr) for a 10.0 year storm SINGLE FASILY (1/2 Acre Lot) Runoff Coefficient = 0.756 Decimal fraction soil group A = 0.000 Decimal fraction soil group E = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI inde>: for soil (AMC 2) = 56.00 Pervious area fraction = 0.600; Impervious fraction = 0.400 Initial subarea runoff = 0.894(CFS) Total initial stream area = 0.400(AC.) Pervious area fraction = 0.600 Ty. t. T.T..i...1T.i......{.i...{.T j.i....-+.. .i...{.-{.i--{.. ...} .j.'..{."'..{..{..1...(--j--i- T .....j.. .. .I..+. .-{.. T.{..... - - -- Process from Point /Station 2.000 to Point /Station 3.000 STP.Er-T`FLOW--TRAVEL T -IME_ +_SUBAREA FLOW ADDITION * *'* • Top of street segment elevation = 43.000(Ft.) End of street segment elevation = 36.000(Ft.) �TTT.TTT'}'TTTTTTYTT YIT.TT�T �TTT.TT.ITTTTTTTTTT TIT TTT.TTTTTTT T'+'TTTTT�++ Process from Point /Station _.000 to Point /Station 3.000 °... CONFLUENCE OF MINOR STREAMS ' * +' Along Main Stream number: 1 in normal stream number 1 Stream flow area = 6.370(Ac.) Runoff from this stream = 9.521(CFS) Time of concentration = 19.41 min. Rainfall intensity = 1.13B6(In /Hr) ..... + 1.. t... f, ... ...}. j... .I +_T3.._1.T } }= ........................... 1-1 ............. Process from Point /Station 4.000 to Point /Station 5.000 '**4' INITIP.L AREA EVALUATION * * ** Initial area flow distance = 200.000(Ft.) Too (of initial area) elevation = 39.700(Ft.) Bottom (of initial area) elevation = 38.900(Ft.) Difference in elevation = 0.800(Ft.) Slope = 0.00400 s(percent)= 0.40 TC = 1,( 0 .4__ 10)1'[(length ^3)!(elevation change)) ^0.2 Initial area time of concentration = 10.550 min. Rainfall intensity = 2.686(In;Hr) for a 10.0 year storm SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.748 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 • Pervious area fraction = 0.600; Impervious fraction - Initial subarea runoff = 0.7D4(CFS) Total initial stream area = 0.350(Ac.) Length of street. segment = 1260.0 0 0 (Ft.) ]'lelglit Of curt• a))ove Butte, _10141ine 6.0 (ln. ) Width of half street (curb tG _ cl:own) (100 ("t. Distance from Crown LG cross fall grade breed: �C'G.DGG(Ft.) SJ1.U)+- from gut't'er to grade brea): (v /h_) = S'1.uic from grade b1:Eai: to crown (v /i1c) = 0. D20 .,treed .l.G4: _.., ol'i (^] side ls') of the street Distance from curb to properu y line = 0.506 (Ft.j S1GpE from curC, tG prone--r;+ Line (v /nc) = O.D20 Gutter" width = _.000 (Pt .) Gutter hike fr'oiii flowllne = 2.00D (Iri. ) Manning's. N in gutter = 0.0150 Manning's N from gutter to grade breal: = 0.0150 Manning's N from grade breal: to crown = 0.0150 Estimated mean flow rate at midpoint. of street = B.126(CFS) Depth of flow = 0.402 (Ft .), Average Velocity = _.014 (Ft /s) StrP_etflow hydraulics at mir-point of street travel: HalfsLreet flo47 width = 13.750(Ft.) Flow velGCity = 2.01(Ft /s) Travel time = 10.43 min. TC = 19.41 min. Adding area flow to street SINGLE FPS +L L-' (1/2 Acre Lot; Runoff Coefficient = 0.707 Decimal fra -ion soil group ' -. = 0.000 Decimal fraction soil group E = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index: for soil(P.MC 2) = 56.00 Pervious area fraction = 0.600; Impervious fraction = 0.400 Rainfall intensity = 1.886(In /Hr) for a 10.0 year storm Subarea runoff = S.627(CFS) for 6.470(Ac.) Total runof_T = 9.521(CFS) Total area = 6.670(Ac Street flow at end o_- street = 9.521(CFS) Half street --low at end of street = 4.761(CFS) Depth of flow = 0.420(Ft.), Average velocity = 2.092(Ft/s) • F1041 Width (from curb towards crown)= 14._59( =L.) �TTT.TTT'}'TTTTTTYTT YIT.TT�T �TTT.TT.ITTTTTTTTTT TIT TTT.TTTTTTT T'+'TTTTT�++ Process from Point /Station _.000 to Point /Station 3.000 °... CONFLUENCE OF MINOR STREAMS ' * +' Along Main Stream number: 1 in normal stream number 1 Stream flow area = 6.370(Ac.) Runoff from this stream = 9.521(CFS) Time of concentration = 19.41 min. Rainfall intensity = 1.13B6(In /Hr) ..... + 1.. t... f, ... ...}. j... .I +_T3.._1.T } }= ........................... 1-1 ............. Process from Point /Station 4.000 to Point /Station 5.000 '**4' INITIP.L AREA EVALUATION * * ** Initial area flow distance = 200.000(Ft.) Too (of initial area) elevation = 39.700(Ft.) Bottom (of initial area) elevation = 38.900(Ft.) Difference in elevation = 0.800(Ft.) Slope = 0.00400 s(percent)= 0.40 TC = 1,( 0 .4__ 10)1'[(length ^3)!(elevation change)) ^0.2 Initial area time of concentration = 10.550 min. Rainfall intensity = 2.686(In;Hr) for a 10.0 year storm SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.748 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 • Pervious area fraction = 0.600; Impervious fraction - Initial subarea runoff = 0.7D4(CFS) Total initial stream area = 0.350(Ac.) PE:: \r;.ous are& ;raCL]),C,n = G.6C10 _- +. -+ i. +.i-1.q..l.+ +++- +i '+++++++- i++++++ i. i. i. i._.++4-++ ++i- + + ++ + +++ - + +++ ++ +i' ++ + +r+ +i Process. from, POl11L /CLaLloii ,,.000 Lo holnt /Sca',.:ion 3.D0 0 2TP.EET FLOW TF -P.VEL TIME SU6AREF1 FLOW ADDITION ' —' Top of street segment E1,evaL -i61'i = _'IC .900(F't.) End of si:rec-L se0_menL elevation = 36.000(Ft.) Length of street segment 440.000(FL.) Height of turn above gutter flowline = C.0 (In .j Width of half street (curli to crown) = 18.000(Ft.) Distance from crown Lc• crossfall grade breai: = 16.000(Ft.) S1oPc from gutter- -cc, grade break (v /h::) = (i .063 Slope from grade break to crown ry /hc) = 0.020 greet flow is on (2) side(s) or the street Distance from curb to property line = 0.5O0(Ft.) Slope from Curd to property line Iv /h--) 0.020 GULLET width = = '.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's 14 in gutter = 0.0150 Manning's N from gurtef to grade breah 0.0150 1 ,11anning's N from aradE breai: to crown 0.0150 Estimated mean floor rate at midpoint of street = 3.578(CFS) Depth of flow = 0.314(Ft.), Average velocity = I.7761Ft /s) Streetflow hvdraulic- at midpoint of street travel: Halfstreet flow width = 9.384(Ft.) Flow velocity 1.78(Ft /s) Travel time = 4.13 min. TC 15.68 min.. Adding area flow to street SINGLEFkh__TLY (1/2 Acrc Lot) Runoff Coefficient 0.727 Decimal fraction. soil croup A = 0.000 Decimal fraction soil croup B = 1.D00 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 F,I index, for soil (AMC 2) = 56. DD Pervious area -- fraction = 0.600; impervious fraction 0.400 Rainfall intens_ti' 2.216(In /Hr) for a 10.0 year storm Subarea rung--- = 4.609(CFS) for 2.660(34, c.) Total runoff = 5.313(CFS) Total area 2.21G(2-c.) Street flow at end of street = 5.313(CFS) Half street flow at end of street 2.656(CFS) Depth of flow = 0.349(Ft.), Average velocity = 1.945(Ft /s) Flow width (from curb towards crown)= 11.133(Ft.) + + +i'i" F++ + +':' +i' + + +i" + +i.....{-T++-{'.. {'+ + +++ +T'I'T... ...I ++++-, ... " 1-''.- +T +"F' + + +..I.... Process from Point /Station 5.000 to Point /Station 3.000 x * *' CONFLUENCE OF MINOR STREAMS * * *' Along Main Stream number: 1 in normal stream number ? Stream flow area = 1.210(Ac.) Runoff from this stream 5.313(CFS) Time of concentration i4. 68 min. Rainfall intensity = 2.218(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) _ 1 9.521 19.41 1.886 2 5.313 14.66 2.'1'8 Largest stream flow has longer time of concentration dip = 9.521 + sum of - - - -_ -- pb Ia /Ib • gp 14.038 - - -- Total of 2 streams to confluence: • Fl GI? rates before confluence krea C" strEzatlls before con f3. a en c C-: 6.870 x.210 Results of confluence-: TOL'a] flow Tate = II.03 Ell ;CFS) Tiiw-- o' ^ -on Cen L'ra =ion = I . 434 Ef `ectl.ye stream area afLe?: �-onfluencL- 10.080(AC.) ++'.++ ++:. + + ++++, +++++'.+++- ++++ + + + + +i- +r+ +i-+ + ++ ++ ++++++i•++++++-r++++++i- Process _roni Point /star ion 000 to Point /Sr_aa:i.ori C. 000 ' "'" STREET FL0W TPPVGL TIDE + SUHkiBk FLOVI ADDITION Top of street segment elevation = 36. DOD (Ft.) End of street segment elevation. = 25.100(Fr.) Length of street segment = 290.000(Ft.) Height of curb above gutter flowline = 6.0(In.) V?idth of half street (curb to crown) = 18.000(Ft'.) Distance iron, crown to crossfall grade brea): = 1G.000 (Ft ,) Slope from onttEr Lo grade brea): (v/hz) = 0.063 year storm Slope from grade brea): to crown (v /h_) = 0.020 Street flow is on (2( side(5) of the street 11.230(Ac.) Distance from curb to property line = 0.500(Ft.) Slone from curb to Droperty line (v /hz) = 0.020 Gutter width = 2.000(Ft.) /s) Gutter hike from flowline = 2.000(in.) Manning's N in gutter = 0.0150 Manning's h =rom gutter to grade brea): = 0.0150 1.00(Ft.} Manning Is h from grade break to crovm = 0.0150 Estimated mean flow rate at m dpoint of street = 14.639(CFS) Depth of *_low 0.515(Ft.), Average veloc -t\ = 1.913(Ft /s) V7arning: depth oT_ flow e:•:ceeds too of curb )Dore: deoth of floe: e>:ceeds top of street crown. Distance that curb overflow _'caCneS Into DroDerrN, 0. 74(Ft.) Street•_° °low hvdraulics at TTddooinL of street travel: Halfstreet flow width = 1�.000(Ft.) Flot•: velociry 1.91(Ft 1s) Travel time = 2.53 min. TC 21.94 min. ':odinq area -flow to street STNGL- FA!,ILY II /2 ..c_e Lot) P.nnnrr rnpf�irian� = fI FqP Decimal fraction soil group P. = 0.000 Decimal -fraction soil group H = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2)• = 56.00 Pervious area fraction, = 0.600; impervious -fraction = 0.400 Rainfall intensity 1.756(In /Hr) for a 10.0 year storm Subarea runoff 1.41D(CFS) for 1.150(yc.) Total runoff = 15.449(CFS) Total area 11.230(Ac.) Street flow at end of street = 15.449(CFS) Half street flow at end of street 7.724(CFS) Depth of flow = 0.520(Ft.), Average velocity 1.944(Ft /s) Warning: depth of flow exceeds top of curb Dote: depth of flora exceeds top of street crown. Distance that curb overflow reaches into property = 1.00(Ft.} Flow width (from curb towards crown)= 18.000(Ft.) +t++++++t++• F.+++++++++++-++ 4.+ ++ +r+t + + + +++ + ++t +++t++-Ftt+t .•i-++++ ++t i- } +t. Process from Point /Station 3.000 to Point /Station 6.000 * *'* CONFLUE14CE OF MINOR STREAMS * * ** klong Main Stream number: 1 in normal stream number Stream flow area = 11.230(AC.) Runoff from this stream = 15.449(CFS) Time of— eoncent.rati,on_ = -_ ?1.94 min. Rainfall intensity 1.7561In /Hr)— `— - - - -- - .- ..- .- ----- -�- - -- — y — _ • ++ - - ++ +,-i 4; ''_ + +i- i• +T,- r- i-i. -.;. -... +y. -. -.r ++4 -i.-. + +T-i- ++ + + + + ++ ++ +++ Process from I-oint / "ration 7.CI 0 to PC, i.ntiStatior! 2.000 IIIITIAL A.REr. E` hi.U- .TI01A 1n_.1:i.al area ".low di _-lance = 200.000.(Pt.) Tots (of ini.t t1 area) elevation = 32.400(Ft.) bC,'rtom )of znitzal area) elevator, = 37.SOO(rr,) Difference in cleva_ior, = 0.900(P't.) Siopc = 0.00450 s(percent)= 0.45 TC = 1:(0.4 -'0)'')(lengtn'3) /(elevation c);ange))''0.3 Initial area time of concentration = 10.304 min. Rainfall intensity = 2.723(In /Hr) for a 10.0 year storm SINGLE FkMILY (1 /=' I,crc Lot) Runoff Coefficient = 0.750 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction s0 i3 group C = 0.000 Decimal fraction soil group D = 0.000 F.1 inde;: fo*_ soil (AMC 2) = 56. 00 Pervious area fl-action 0.6DD; Im_ervious fraction = D.400 Initial subarea runoff 0.715(CFS) Total initial stream area 0.350 (Ac .) Pervious area fraction = 0.600 ++++++-+ TT' fY- T'.-'rT'FT }T +- ++ , T Process `rom Point /Station B.DDO to Point /Station G. GOD ' - >r STREET FLOW TRAVEL TI_IE - SUBP.PZA FLOW ADDITION ° », Top of s-cree*_ segment elevation = 37.500(Ft.) End of street segment elevation = 35.100(Ft.) Length of street segment = 4120.000(Ft.) Height of curb above_ gutter flowline = 6.0(In.) Width of half street (curb to croir_r,) = 18.000(Ft.) Distance from crown to cross fall grade break = 16.000(Ft Slope from gutter to grade break (v /hz) = O.OG3 Slope from grad= break to crown (v /hz) = D.020 Street flow is on. (2j side (s) of the street Distance from curb to property line = 0.500(Ft.) Slope from curb to property line (v /h_) = 0.020 Glitter width = = '.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.312(Ft.), Average velocity= 1 Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.290(Ft.) Flow velocity 1.65(Ft;s) Travel time = 4.25 min. TC 14.56 min. Adding area flow to street SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.727 Decimal fraction soil group A = 0.000 Decimal fraction soil group E = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.600; Impervious fraction Rainfall intensity 2.228(In /Hr) for a 10.0 Subarea runoff = 4.035(CFS) for 2.490(Ac.) Total runoff = 4.750(CFS) Total area = Street flow at end of street = 4.750(CFS) Half street flow at end of street 2.375(CFS) Depth of flow 0.34G (Ft .), Average velocity = 1 Flow t:,idth Ifrom curb towards crown) = 10.943 frt. ) 3.257(CFS) 643(Ft /s) = 0.400 year storm 2.840(AC.) 794(Ft /s) • 1_ _.1.y ..F.,.1....FT I T T 1 } + }+ + +'F T T4........ +': i• T. I.+. V.. I.+" I.....;...1..... .:..I. +'I.}.{'....':...'I..{... Process from Point /Station 8.000 to Point /Station 6.00D " ' ° CONFLUENCE: OF 1,111,10P STREAMS ' "' • ]-.tong Main S-Ycani numrex 1 ir: normal stream number, _ Stream floe, area = ' . 1:40 (AC. ) P.unciff from this straam 4.750(CFS) Time of concentration 14.56 min. lainfall inienei.ty = _._26(lr: /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. ICFS) (m;n) (In /Hr) 1 15.44: 21.94 1.756 4.750 14.56 228 Largest stream flow has longer time of concentration Cio = 15.449 + sum of 01 Ia /IY 4.750 0.188 3.744 CiP = 19.193 Total of 2 streams to confluence: Flow rates before confluence _point: 15.445 4.750 Area of streams before confluence: 11. 230 2.840 Results of confluence: Total Slow rate = 19.193(CFS) Time of concentration = 21.941 min. Effective stream area afte_ confluence .....} }TTT' .+ +-'. Process from Point /Station 8.000 to Point /Station 6.000 CDNFLUENCE OF MINOP. STP.E -kMS Along Main Stream number: 1 in normal stream number 1 Stream floc, area = 14.070 (AC. ) Runoff_ from this stream 19.193(CFS) Time of concentration 21.94 min.. Rainfall intensity = 1.736(in /Hr) }+++-.1 1'}}TTT..... }T...- ' -T}TTT T +T } -+ ++-, +........ T..1 � }... t T- } } } }T +++-1 +++ Process from Point /Station 9.000 to Point /Station 10.000 r > ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 150.000(Ft.) Top (of initial area) elevation 36.000(Ft.) Bottom (of initial area) elevation 35.600(Ft.) Difference in elevation = 0.400(Ft.) Slope = 0.00 ^_67 s(percent)= 0.27 TC = h (0.420) *[(length "3) /(elevation change) ] ^0.2 Initial area time of concentration = 10.197 min. Rainfall intensity = 2.739(In /Hr) for a 10.0 year storm SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.751 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.600; Impervious fraction 0.4D0 Initial subarea runoff = 0.596(CFS) Total initial stream area 0.250(Ac.) Pervious area fraction = 0.600 -` —` .. I.. I. T-+++++;++ ++++} +- .{'i'i. +'y.'I'}T-F } + + +"I-...' - +-+- : +- +- +++... ......... +i' } + +-I'} +T }.V-. • Process from Point /Station 10.0D0 to Point /Station o - -- '''' *' STREET PLOW TRAVEL TIKE + SUBAREA FL062 ADDITION " *" Top oP street segnu_nC Elevari.a; = s5.6110(Pt.) End OF sL'L'EeL SEChI,e llt ElEVataor: _ 35. 1. 00(Ft .1 Length of streer segmcnt = !SO.000(Ft.) He_ght of curr., above gutter flOwline = 6•?1di:h of f,i:l_ street (curb tc crown) = 18.000(F'r. ) D2S1'aoce front crown tc. c?:ossfall grade brea): = • i6. 000 (Fr. ) Slope from out'ter tb grade bi'L&1: (v /)'i_) = 0.06_', Slope From grace orea): ro Crown (:' /n l = 0.02" 0 3r r eer flow 1`_ on (?1 s1 Fie fs; of rnE _, tr eEr Distance from curb to property line = 0.500(Ft.) Slope front curt. T_C property line (v /hz) = 0.0 °D Gut *_Er width = - .000(F;:.) Gutter hike from flowline = 2.000 (In .) l,anning's 1. in gutter = 0.01511 l,anning's N from gu:re'. ro grade breal: = 0.0150 manning Is N from grade brea): tc crown = 0.015D Estimated mean flow race at rr dpoint of street = 1.75E(CFS) Depth of flow = 0.280(Ft.), Average velocity = 1.232(Fr-/s) Stree*_flo+•.+ hvdraulics at rridpoinr of street gavel: Halfstreet flow width = 7.661(Ft.) Flow velocity = 1.23(Ft /s) Travel _ime = 1.76 min. TC = 11.96 min. Adding area flow to street S114GLE FP1,IL" (1/2 Acre Lot) Runoff Coefficient = D.740 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(ANC 2) = 56.00 Pervious area fraction = 0.600; Imper-,rious fraction = 0.400 Rainfall inters_ =it_v = _.498(In /Hr) for a 10.0 year storm Subarea runoff = 2.090(CFS) for 1.130(Ac.) Total runoff = 2.686(CFS) Total area = 1.420(Ac Street floc! at End of street = 2.686 (CFS) •; Half street flow at End of street = 1.343(CFS) DeJtn of flow = 0.313(rr.), AVeragE VelOCrty = 1.351(rr /s) Flow width (from curb towards croi.m)= 9.312(Ft.) } }} } }} T }TT _T. }1.`+. }�. �. }.t•. }}}}TY} }T }� } }_ T -YT T T }.T }} }.�..Y1 YT � } }Tl} } }T } } } } - }L} }T Process from Point /Station 10.000 to Point /Station 6.000 * "' CONFLUENCE OF MINOR STF.EAMS " ** Along main Srrealr number: 1 in normal stream number 2 Stream flow area = 1.420(Ac.) Runoff from this stream = 2.686(CFS) Time of concentration = 11.96 min. Rainfall intensity = 9_.498(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CPS) (min) (In /Hr) 1 19.193 ^1.94 1.756 2 2.6B6 11.96 2.498 Largest stream -low has longer time of concentration Qp = 19.193 + sum of Qb Ia /Ib 2.686 0.703 = 1.889 Qp = 21.062 Total of 2 streams to confluence: Flow rates before confluence point: 19.193 2.686 before confluence: --- Results of confluence: Total floc! rate = 21.062(CFS) Tirl,c-. of concenuaLiUr: 44(, (A. C - Effeclive si:YeaIll E12:ra of LET- confluericc- -C O'� . 4 9 End of cOmPu-LF't'Ons, 'a' study al:ea The fcllcj\,!-irig figurc-S TTIBY of Ehe same 6�ea - be used for a un-ii: 'IiydrcigyaP'-' krea a-yeraged pervious a'E:a flact'ol-1 (P-TI) = D. 6(jCi P,ea ave2:agad P.I incler nurnhe2: = D 6 • loo '(?- P.i.verside County Rational Hydrology P*_oyran • CIVILCADD /CIPILDECIGN Engineering "o%tware,(c) 1589 - ='001 Verslor, 6.4 Pationa? Hydrology StuJy Date: 07/25/04, File :9662ARU.E .out ------------------------------------------------------------------------ TTM :005' Ar'.E)- B • 1 1 - 1 9111 Hydrology Study Control Information English (in -lb). Units used ir, input data file ------------------------------------------------------------------------ Warner Engineering, Yucca Valley, CA - S /Id 598 ------------------------------------------------------------------------ Ra- -ional Method Hydrology Program based on Riverside Countv Flood Control c Water Conservation District 157E hydrology manual S7orrri event (vear) = 100.00 Antecedent Moisture Condition = 2 Standard intensity- duration curves data (Plate D -4.1) For the ( Ca_hedral City ) area used. SUBAREA 10 year storm 10 minute intensity = 2.770(In /Hr) 10 year storm 60 minute intensity = 0.98D(In /Hr) 100 vear storm 10 minute intensity = 4.5_90(In /Hr) 100 year storm 60 minute . intensity = 1.600 (In /Hr) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.600(In /Hr) Slone of intensity duration curve = 0.5800 Process from Point /Station 1.000 to Point /Station -.000 INITIAL APMA EVALUATION "x* Initial area flow distance = 180.000(Ft•) Top (of initial area) elevation = 44.300(Ft.) Bottom (of initial area) elevation 43.000(Ft.) Difference in elevation = 1.300(Ft.) Slope = 0.00722 s(percent)= 0.72 TC = ) :(0.420) *[(length ^3) /(elevation change)) "0.2 Initial area time of concentration = 6.987 min. Rainfall intensity = 4.812(In /Hr) for a 100.0 year storm SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.803 Decimal fraction soil group A = 0.000 Decimal fraction soil group E = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index: for soil(AMC 2) = 56.00 Pervious area fraction = 0..600; Impervious fraction 0.400 Initial subarea runoff = 1.547(CFS) Total initial stream area 0.400(Ac.) Pervious area fraction = 0.600 . ......i"+++ "'i"{'i'i"{'-}"`"+ +i' i'+"{' q . . . ."{ ...T -F".. .... T.-f" i".-{"f"j"}'+"{"+"L'{"..... 1... T_{"j-. ... Process from Point /Station 2.000 to Point /Station 3.000 11111111' - -- - -- - - - - -- . STREET -LLOta TRAVEL TIME + SUBAREA FLOW ADDITION Top of street segment elevation = 43.000(Ft.) • End of street segment elevation 36.000(Ft.) • • l,enjZ :h Cl_ s,:reee sE4ment 1260.0D01Ft.) Hei -gh" of cur L' aboVE gutter '_'lowl.ine = 6.0 (In .) Width of half. street (curb to crown) = 18.000(Pt.) Distance horn crown to crossfall grade- oreak = 26. ODD (F: SlorJf from gutter to grade brea): (V,'hZ'j = 0.063 Elope fron, grade break to crown IV /)',si = 0.020 SLrfEt flow i-, on (2] side(5) of the �LrEEt Distance -_yon, curb to property line = 0.506(PI:.) 51017E floor CuT) to property line (v /n.) 0.020 Gutter' width = 2 .00 CI(Ft.) GurtEr hilhc fron flowline = 21 .000 fin.) Manning's N in gutter = 0.0150 Manning's N front qutter to grade break = 0.0150 Manning's N from grade brea). to crown 0.015D Estimated mean flow rate dt nidpoin_ of street = Depth of flow = 0.469(Ft.), Average Velocity = _ S'tree_flow hydraulics at midpoint of street travel: H =lfstreet flows width = 17.118(Ft.) Flow vclocity 2.30(Ft /s) Travel riME = 5.13 min. TC 16.12 min. Adding area flow to street SINGLE FA1qILY (1/2 Acrc Lot) Runoff Coefficient = 0.767 Decimal fraction soil group A = 0.000 Decimal fraction soil group E = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index: for soil (APIC 2) = 56.00 Pervious area fraction = 0 -600; Impervious --raction Rainfall intensity_ = 3.204(In /Hr) for a 100.0 Subarea runoff 1 898;CFS) or 6.410(Ac.) Total runoff 17.445(CFS) Total area = Street floe; at end of scree= = 17.445 (CFS) Half street :low at end of street 8.722(CFS) Depth of =low = 0.497(Ft.), Average velocity = 2 Nc_e: death of -flow exceeds too of street crown. Flow width (from curb towaris crown)= 18.000(Ft.) 14.054(CFS) 299(Ft /s) 0.4D0 year storm 6.870(Ac.) 456(Ft /s) Process from Point /Station 2.OD0 to Point /Stct10n 3.000 -r,* CONFLUENCE OF LUNOR STR.EA1gS * * ** Along Main Stream number: ) in normal stream number 1 Stream flow! area = 6.670(Ac.) Runoff from this stream 17.445(CFS) Time of concentration _B.12 min. Rainfall intensity = 3.204(In /Hr) - r.rri.....r + +l ++t-i- }i-- ...I +t =i- +- f- = +i-r- rtyr-f' + +-1.. it -F+i--F-!-TY-I'-I-... I - }.- }..r_L�. Process from Point /Station 4.000 to Point /Station 5.DDD * * *' INITIAL AREA EVALUATIJN * * ** Initial area *_'low distance = 200.00D(Ft.) Top (of initial area) elevation = 39.700(Ft.) Bottom (of initial area) elevation 38.900(Ft.) Difference in elevation = 0.800(Ft.) Slope = 0.00400 s(percent)= 0.40 TC = 1:(D.420)'[(length "3) /(elevation change) ] ^0.2 Initial area time of concentration = 10.550 min. Rainfall intensity = 4.385(In /Hr) for a 100.0 year storm SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.796 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 fraction -soil group D = 0.000 -- . '-- --------------. — RI index: for soil(NIC 2) 56.00 Pervious area fraction = 0.600; Impervious fraction. 0.400 Initial subarea runoff = 1.221(CFS) To-,.a3 intia? ....ream area = 0.350 (Ac .j PE:Yv ous arc-a iracEjor! = G. 601, • i..l.t r.,. r •'r i- i.- ?- i- r- �i�i�+i- i�i���r-i -r i=�-ri -:'i-r ����i - +ri�r i�- F• ri --'r-i�-I�i�i- +i-i•-i�i-i�i-•F i, i. i-- F+4 +i��-i�;.r i- i T_'rocess from Point-/S-cat-ion 5.(100 to 1'oinL /Station x.000 STRECT FLOW TA?VL], TIME : _".UbAI;EA FLOW .DDITIOrj "'" Top of street segment elevaL =ors = 3E.900(FE.) End of street segment elevator: = 36.000(Ft.) Length of s.reer segment = 440.000(Ft.) Height of curb above gutter f-lowllne = ii. 0( in. ) Wid:11 of hal-f street (curb to crown) = 18.000 (Ft. ) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from guEEer ro grade nreai: (v;hz) = 0.0E3 Slope from grade b-real: Lo crown (v /hz) = 0.020 Street Slow is on [2] side(s) of the street Distance from curb to properly line = 0.500(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hi):e from flowline = 2.000(1n.) Manning's 11 in gutter = 0.01.50 Mannino's 11 from aurLer to grade breal: = 0.0150 Mannina's P from grade breEh to crown = 0.0150 Estimated mean flow rate at midpoint of street = 6.212(CFS) Depth Of flow = 0.364, (Ft.), Average velocity = 2.017(Ft /s) SLreeISSow nvdraulics at midpoint of street travel: Halfstreet flow width = i1,88E(Ft.) Flow velocity = 2.02(Ft /s; Travel time = - ,. 04 min. TC = 14.19 min. Adding area flow to street SINGLE F11?ILY (1/2 Acre Lot) Runoff Coefficient = 0.781 Decimal T- racLion soil group .' -. = 0.000 Decimal fraction soil group 1- = 1.000 Decimal fraction soil orouP C = 0.000 Decimal fraction soil grout, D = 0.000 • P.I index for so4 1(AMC '_) = 56.00 Pervious area rractiop = D.6DD; Imnervious = racoon- = 0.400 Rainfall intensity = .,.6,93(in /Hr) for a 100.0 near storm Subarea runoff = 8.245(CFS) fo -r 2.660(Ac.) Total runoff = 9.467(CFS) Total area = 3.210(Ac.) Street flow at end of street = 9.467 (CFS) Half street flow at end of street = 4.733 (CPS) Depth of flow. = 0.409(Ft.), Average velocity = 2.229(Ft /s) Flow width (from curb towards crown)= 14.130(Ft.) .{...+.L +,+..+.1 i.-+.1 ........T..f...4- +++++++-.-- .+)..).++++.- '++.,.......I... 4...TTY ^TT -,++ Process from Point /Station 5.000 to Point /Station 3.000 r .., COIJFLUE14CE OF MINOR STREP1vS `**+ Along Main Stream number: 1 in normal stream number 2 Stream flog! area = 3.210(yc.) Runoff from this stream = 9.467(CFS) Time of concentration = 14.19 min. Rainfall intensity = 3.693(In /Hr) Summary of stream data: Stream Flog rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 17.445 18.12 3.204 - 9.467 14.19 3.693 Largest stream flow has longer time of concentration Qp 17.445 + sum of • 9.467 0.868 = 8.213 - -- - -- - -- -- -- -- — -- - - - - -- — — -- - - - - -- QP = ''5.656 __- _._- -- -- (- H /uI)9T0 "£ - = CiTSta uT TTPiuTed �.. --- - - - - -- - - - 'uTUt iT "OZ = uor?ezzuaouoo ;o awry l S3J) L6Z' 8'Z'- -'- =-- wea_Tis_s.ru� _wo;ri_ i?oun3 - (' ea -e MOT; U112a-aS I zaaumu tuEa -qs 1122111aOU UT I : sagtunu weasaS UTRW 6uo17 -- SWVadLS UORIN 30 dOPla(l I3(200 f =cf 000'9 uoTgegS /quTOd 04 000'£ uoTgPgS /quTod wosi SSaZ)osd .l..t. _1_...{_ }'t..4'.{..F.i'.t'.+"•Y'}'t . }T T.t.'t_.- h.{._t. T...{. .l..l..t..t..t_.t..t...F.l..t, } 1i...t..t..F..}..1. ....L ._t- .............. ('g3)000'8L = (uMOSO spseMOq gano utoai) ugprra MoI3 ('13)OL'S = ,t,_-ado -d oquT sac)oeaz Mo -s -ano gacto 4242 aZ)uPgsTO •uMoxD gaaags io doq spaaoxa no Ti ;o ggdap :agoPj gzno io doi saaao:ca MOT! 10 ggdap :burusey (s /g3)9C6'Z = ,CiTooTan 36esan2 g3)6T9'0 = MOT; so ugdaO (S30)5bL'6I = gaaagS ao pua qe MoI, gaasgs ileg (S30)L6Z'8Z = gaaags ;o pua ie MoTv iaa3lS ('aK)0£Z'TT ease IPIoy (S30)L6Z "8Z = isouns Tegoy ('OK)OgT'L -03 (S30)5£9'Z = i30Qn_T e@220 (IS m-ogs seart O.00T e soz (- H /uI)9T0'£ _ A gTsuaquT LT2 ;uT2d 006'0 = uoTtoeaa snoTa -admi :009.0 = uoTgoe = ea-e snol.'uad 00'95 = (Z 0W- lL)TTOS 103 xapuT Id 000.0 = Q dnozb TTOs uoTioes; TPwToaQ 000'0 = 0 dnozb TTos uoTgJP7L3 1Pw ?oa(7 000 -T = a dnozb TTOS uoraZ)e -i 1PwTJaO 000.0 = a dno -b TTOS aot}oeli TemTozo 19L "0 = 1aaTOT;iaoO _iOUnd {20'7 azoz Z /T) K'IIriR3 3'i9PiIS 1aa21S 01 MOT? eaaP OUTpAs uTui TT'OZ = 31 u u 762 '1 = am?a TaAe -y (S /= 3)c6'Z = , \aTDOTG M0T3 ('13)000 '8I = u.gpTM MOTU' irislsiTeH :Ta��PSq -oasts _o iu-odp -u ae so- ineap,w moT_?aa -_S • ( g3)1L ; = igaado -d oquT sauOeaa r,o-tizaro gano _euq 3ou2gsTQ umo .a gaar•,s =O dOz spaao::a MOT_ io agdap : aiotl gano =o doh MO T3 io ggdap : bliTU_ieM (s /Zd)c£6•; = niTooTan a6zsaa; t'i3)909'0 = maj io u2da0 (S3011-ZI LZ = iaaa_s 10 aurodpTtu qP a_es MoT_ up sw paaewTgs3 OcTO O = umoaD oil :[Pala apesb mo-i i4 s, bu -putie q DS LO' 0 -aggnb mozi ,[ s, 6u7uuv6j oSTO'0 = asagnb uT p[ s,6uruuetd auTTMOT= wosi 3:(Tu sa2ln9 ('= �)O00'Z = giPTra �qn9 oZo'o = ( =u /A) auTl ,K_aadcad oT o -no 7uos; adoTS (•23)009•0 _ auTT ,ii- adoad, oa g -ro -uo -i aOuPas -,n aaaags 7ui io (s)3cTs (Z) u0 sr Mori aaa -;S O-O.O = (zv /n) UMOZO Oq :(2333 at?e -b woaz 36013 (au /nj :(2334 apesb 0q saa2n6 tuo-i E=TS ('13)000'9T = :[e3 2a apesb TT e solo Oa QMOZ7 most aouelsTrJ ('g3)o00'8T = (Umoao oa qsn)) aaaaas 1714 io ygPTM ( uI)O g = auTTraoT, 33q?nb anoae gsno io iu6c-oH ('g3)000'o5Z = auatubas aaa2S 10 U1bu32 !'a3)OOI'S£ = UOT12na1a luambaS :19asaS io pu ('131000'4 = uoT13n3Ta ,u7wbas 1a7zas iO doy moniGa f MO fd `13-dVEMS } 3[dIy ' ZAVCIL m0q:i L.aZ'dL5 000'9 uoT_P3S /auTOd 0q OOO "� uoTlegS /quTod tuo.TZ ssaoo; ..7...L.t.1..r.1.. .. .. ..}.1 . tYl.` j.t r 1.L }== .= }.•.1.L11.L.L.�.1 }1.F. }.L} ('JV)09Q'0'C = aouan'riuoo -a,ie ea e nte3als 3e.caoaT,ia -uTat .'L 9L - ❑OTg UO3 yo OI;" oL8 "7 �011an 11140.0 3 -7i�g ;711Pa.i1S i'7 ?�.. "j • L'94'S ;6b'Ci : 1u-.od - )ouar1T..un:j a:oi 3�.I sa ,P i M4) [•1 :a:a.tanT.=croO 71 ,me3zas ;o [@IO.L • Pro--ess froiit 7.000 ro !,C,:Ln4_,/Sta,-_,:Lon 8.000 area flow distance 200. DOO (T'I- . ) (3f E. _" area) e I C- V 2.or, 3 8 . 4 Ob (r" BoEUM (of ifii.tiEl area) CIE-Val:j.011 3 7 . 5 0 0 T" Difference in e 1 C v a L i D I -, = 0 . 900 (Fr, . ) Slope = 0,004,50 s (T.'ercent) = 0.45 TC = h (0 - 4 20) 1 1 (lengr h '- 3) / ( el eva . ioi rhange )]''G - 2 initial area time of concenrza-clon = 10.304 min. Rainfall intensity = 4.445(lr!/Hr) for a 100 SIPGLE Fk),41LY 11/2' Acre Lott Runoff-, Coe--f-IciEnt = 0.797 Decimal fraction soil group A = D. ODD Decimal fraction soil group 8 = 1.000 Decimal fraction soil group C = 0.000 Decimal fr acr.-Jon soil group D = 0.000 Ri indez for soil (AMC 2 56.00 Pervious area fraction 0.600; Impervious Initial Subarea runoff 1.240(CFS) Total iniria) srrEan, area 0. 350 (Ac DUE area Irac-, ion = 0.600 year storm fraction = 0.00 ++++-- ++++-, Process from Point /Station 8.000 to Point/Station 6.000 +—, STREET FLOW TP—,.VEL TI1C SUBAREA FLOW ADDITION' " Tor, of szrect segment elevalLior, = 3-7.500(Fc.) End of street segment elevation = 35.100(71E.) Length of street seament, = 420.000(Ft-) Heiaht of curb above gU7te-, flowl-inc = 0 Width of half street (curb to crown) = 18.D00(Ft.) Distance from crown to crossfall grade brca): = 116.000(Ft.) • Slope from gutter to grade breal: (-,;/1,z) = 0.063 Slope from grade breal: to zroiwrn (vlh--) = 0.020 Street flow is on [211 side (s) of the street Distance from curb to o-roperty tine - 0.500(Ft.) Slope from curb to nroverzv line (v /hz) = 0.020 Gutter width = 2 000(Fr.) Gutter hike from flowl-inE = 2.DOD(ln.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's 14 from grade brea): to crown = 0.0150 Estimated mean -flow rate at midpoint of street = 5.651(CFS) Depth of flow = 0.362(Ft.), Average velocity = 1.868(Ft/s) Stree-cf-low hydraulics-at midpoint or street travel: Halfstreet flow width = 11. 773 (Ft. Flow velocity = .1.81(Ft,'s) Travel time = 3,75 min. TC 14.05 min. Adding area -low to street SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.761 Decimal fraction soil group A = 0.000 Decimal -fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56-00 Pervious area fraction 0.600; impervious fraction 0.400 Rainfall intensity 3.713(in/Hr) for a 100.0 year storm Subarea runoff 7.223(CFS) for 2.490(Ac.) Total runoff = 8.463(CFS) Total area 2. 84 0 (Ac. Street flow at end of street = 6.4631(CFS) Half street flow at end cf street 4.231(CFS) Depth of flow 0.405(Ft.), Average velocity 2,056(F-L/s) • ++++-, .................. I _1 + ...... +++-, ....................... • Process front !oint,'Stati.on 8.000 to Point /S'Lation 6.00(1 "' CO!IFLUENCL OF PiIHOP. S'TREN:5 '''''' Along Pair, SrrEall, number: 1 Jr, normal stream number _ StrEank flow 6tE:6 .84 C, (Ac. } Runoff iron th?s stream E'.4C (CFS) Time of concert Lration 14.05 min. Rainfall. in Len =ity .7'_3(ln!Hr) Sunuoar.y of stir -an data: SL"ream Flow rate TC Rainfall Intensity No. (CFS) (min) (In!Hr) 1 26., °7 _ 8.4E3 Largest stream CI> _ 2B.21,17 Qb 8.463 Qp 35.17: 20.i1 3.016 14.05 3.713 low has longer time of concentration sum of Ia /Ib 0.812 6.675 Total of _ streams to confluence: Flow rates before confluence point: 26.''57 6.463 Area of streams before confluence: 11.230 2.640 Results of confluence: Total _low rate = 35.172(CFS) Tim=_ of concentration = 20.107 min. Effective stream area after confluence 14.070(Ac.) TTT TT ITT T + T11 Process from Point /Station 8.000 to Point /Slat-ion 6.000 *,,> CONFLUENCE OF MINOR STREFNS * * ** Along slain Stream number: 1 in normal stream number 1 Stream flow area = 1= _�.070(Ac.) Runoff from this stream 15.172)(C FS) Time of concentration 20.11 min. Rainfall intensity = - .016(In /Hr) ......................... i....+"T'Y'f...+ -.. {..............1 - 1....1.. ..I l...i' 1 Process from Point /Station 5.000 to Point /Station 10.000 * * *° INITIP.L AREA EVALUATION * * ** Initial area flow distance = 150.000(Ft.) Too (of initial area) elevation = 36.000(Ft.) Bottom (of initial area) elevation = 35.600(Ft.) Difference in elevation = 0.400(Ft.) Slope = 0.00267 s(percent)= 0.27 TC = ):(0.420) *[(length ^3) /(elevation change)) ^0.2 Initial area time of concentration = 10.197 min. Fainfall intensity = 4.472(In;P.r) for a 100.0 year storm SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.798 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.600; Impervious fraction 0.400 Initial subarea runoff = 1.034(CFS) Total initial stream area = 0.290(Ac.) Pervious area fraction = 0.600 +++ —.11_.!_1........- 1..{..}' r i"F.. T- : T....-}..F......I "F.......I....I._.I'.V.... ._. ....... Process from Point /Station 10.000 to Point /Station 6.000 C • nc Tarnlmu :iapuT id pa6eiaA2 eaz { eal-, 004'0 = (�iKl'ioT�oea= eaze snoT�zad p@ be ant i ?a. e antes ac.t o „pnss t.(de .6ozpnu 4 Lcjn ? 'Co' oasn a { Cetu sa tnb'�z 6uT1�oTT�3 ac {y i2 t,onns Tezo? 'sctots2lnciuroo jo pu7 • ('ow) 56 ST p ?aan 11123I1s 3AT1JaT }a ST = aouan1, vo0 a >. -t -M LO ?'0, = uotl2i'?uaz)uoo _sa autty (S:I�14 %90�_ = a12I r�oT3 T ? ?o•L I C) -(� hiverside County Hydrology Progran, CIV1LCADD/C3V1-1UZZ1Gj9 Engirjce -r-Jrjg Software, (c) 1989 - 2003 Version 6.4 Rational Hydrology Study Date: 07,129/04 File : 96621AREAC . out ------------------------------------------------------------------------ TT1,(j 30092 AREA C ------------------------------------------------------------------------ , i 4 '4 , Hydrology Study Control Information English tin. -lb) Units used in input data file ------------------------------------------------------------------------ Warner Engineering, 'Yucca Valley, CA - S/N 59B ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control. . water Conservation District 1978 hydrology manual Storm event 1year) = 10.00 Antecedent Moisture Condition = 2 Standard intensity - duration curves data (1312te D-41.1) For the ( Cathedral City ) area used. 10 year storm 10 minute -intensity = 10 year storm 60 minute -intensity = 0.980(in/Pr) 100 year storm 1D minute intensity = 4.52D(In/Hr) 100 year storm. 60 minute intensity = 1. 600 (In/Hr) Storm event year = 10.0 Calculated rainfall intensity- data: 1 hour intensity = 0.980(In/Hr) Slone of intensity duration curve = 0.5800 +++� .......... Process 1.101D Point /Station- 1.000 to Point /Station -.DOD *',* INITIAL AREA EVPLUATION **r- initial area ---low distance = 150.000(Ft.) Top (of initial area) elevation = 42.B00(Ft.) Bottom (of initial area) elevation 42.200(Ft.) Difference in elevation = 0.600(Ft.) Slope 0.00400 s(pErcent)= 0.40 TC (0. 410) * f (length"3) / (elevation change) ) ^0. 2 Initial area time of conc2ntration = 9.403 min. Rainfall intensity = 2.871(in/Hr) for a 10.0 year storm SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.756 Decimal fraction soil grcup A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for so-il(AMC 2) = 56.00 Pervious area fraction = 0.600; Impervious fraction 0.400 Initial subarea runoff = 0.607(CFS) Total initial stream area 0.280(Ac.) Pervious area fraction = 0.600 ......... I . f1..;.. . . . . . . . . . . . . . . * . T. ..{...1. . . 11 . . i..1. . . . . . . 11111.;....{.. . . . . . . . . . i..+. . —7- Process from Point/Station 2.000 to Point/Station 3.000 Too of street segment elevation = 42.200(Ft.) End of street segment elevation = 39,400(Ft.) Length of szrect segment = 380,000(Ft.) Height of curli above gilt "ter r).owline _ 6.0(In.) V]ld':n U1 half Street D?.starlce iron; Crown to crossfall grade breal: 16.000(FZ.t dope from gutter to g="adc Drca): (v /nz) = 0.063 Slope `_row grade brc-al: to crown (v /hz) = 0.020 ✓�tr'EEr T_]Aa.' 2L or, (-) ..7dEls) of tnE street Distance front curl tc, property 11ne = 0.500(FZ.) Slope from Curl tc, property line (v /h-_) = 0.O20 Gutter widti", = 2.D00(Pt.) Gutter hiLe Iron, flowlinE _ _•.000 (In. ) Manning'_ N in gutter = O.0150 Manning'_ N fron gutter to grade brea): = 0.0150 Manning's N from grade brea): to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.801(CFS) Depth of floe; = 0.248(7t.), Average velocity = 1.824(Ft/s) Streetflow hvdraulics at midpoint of t_" "aVEl: Haifstreet flow width = 6.081(Ft.) Flow velocity = 1.81(Fz /s) Travel time = `<:.57 min. TC = 11.98 min. Adding area flow to street SINGLE FP.11IZLY (1/2 Acre Lot) Runoff Coefficient = 0.740 Decimal fraction soil group A = 0.000 Decimal fraction soil group E = 1.000 Decimal fraction soil group C = 0.000 Decimal fractior. group D = 0.000 RI index for soil(AMC 2i = 56.00 Pervious area fraction = O.600; impiarvious f1actioP = 0.400 Rainfall "intensity = 2.495(In /Hr) for F 10.0 year storm Subarea runoff = 2.032(C7S) for 1.100(Ac.) Total runoff = 2.640(CFS) Total area = 1.380(hc.) Street flow at end of street = 2.640(CFS) Hal: street flow at end of street_ = 1.32D(CFS) Depth of flow = 0.275(Ft.), Average velocity = I.957(Ft /s) Flow width (from curb towards crown)= 7.40= '(Ft.) TTTT_1�.TT7.T_T� _.�T. ITT _l.fT +'7_.��.T-i'TTTl-}'i.r'1.T TTT- �YTTTTT_}.T1TT.�S T�.T TTTT -. +4- TT Process from Point /Station 3.000 to Po nt /Station 4.000 *r * STRErT FLOW TR2VEL TIME. - SUB IR✓A FLO --W ADDITION *, ** Top of street segment elevation = 39.400(Ft.) End of street segment elevation = 35.300(Ft.) Length of street segment = 1100.000(Ft.) Height of curb above gutter flowline = 8.0(1n.) Width of half street (curb to crown) = 43.000(Ft.) Distance from crown to crossfall grade break = 41.000(Ft.) Slope from gutter to grade break (v /hz) = 0.063 Slope from grade brea): to crown (v /hz) = 0.020 Street flora is on (1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade breai: to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.744(CFS) Depth of flow = 0.444(Ft.), Average velocity = 1.797(Ft /s) Streetflow hvdraulics at midpoint of street travel: Halfstreet flow width = 15.854(Ft.) Floc, velocity = 1.80(Ft /s) Travel time = 10.20 min. TC = 22.18 min. Adding area flow to street SINGLE FP.MILY (1/2 Acre Lot) - - - - - -- Runoff Coefficient = 0.697 Decimal'frac� ion— sot]: - groan —A- = _0...000__________ • Decimal fraction soil group E = 1.000 -- Decimal fraction soil group C = 0.000 Decimal -fraction soil group D = O.ODO R] inde:: for soi Pervious area it R a i n _F a 111 -i ri I: e I I s; Subarea rulloff. Tol-al runoff Si:'_'Eet: flow: at C Mal f sty & 'flew rjel:-th of flow Flow wid-L:*n (fron, (Po,)c 2, c "_-Lori 0.6J0; impervious fraction Y 1.745,"2n./Hr _-103: a 10.0 P ! CFE; ) for 2, .206 (P.C. 5.318(CPS) q,oTal area d c,'- strect. = 5.318(CFS) B?; end cf srre_t = - 0.458(Fr.) , Average velocity I Curb towards crownj= 1c.590(pt.) 0.400 year storm 8 4, 7 ( Pt / s ) 4-++++�+4-+++ i . . . . . . . . . v+4-++++�. +4 . . . . . . . . . . . . 4. . . . . . . .+ +Y.. . . . . ++++ Process from Point /Station 3.000 to Point/Station 4.000 ... i CONFLUENCE OF MINOR STREAMS ""' !-,.long Main StrEam number: I in normal stream number 1 Si:rEam flow area = 3.580(kc.) Runoff from this s_zeam 3.318(CFS) Time of concentration _x.18 min. Rainfall intensity = 1.745(In/Hr) + _+_ - ++ +_++++- . . . . .' + +T1 - +"1 . . . . . . . . . . . Process from Poinz/Station 5.0D0 zo Point/Station 6.000 , INITIAL A.REP. EVkLOA.TIO'Li Initial area --flow dis--ance = TOID (of initial- a--ea) Elevation 39.200(Ft.) Bottom (of initial area) elevation 36.700(Ft.) D-i-f-ference in elevation = 0.5DO(F--) Slope = 0.00276 s(perCent)= 0.26 TC = 1: (0. 4 20) + ( (length' 3) / % elevat --ion change) D - 2 Initial area time of concentration = 10.880 min. -Rainfall intensity 2.638(In/Hr) for a 10.0 year storm SINGLE 7AM-11Y Acre Lo7) Ru-nof-1. Coefficient eri: = O.'74? Decimal fraction soil group A = 0-000 Dec:Lmal fraction soil- group B = 1.000 Decimal f-ract-ion soil group C = 0.000 Decimal fraction soi! group ri = 0.000 RI inde), for soil (AMC 2) = 56. DO Pervious area fraction = 0.600; imoervious fraction 0.400 initial subarea runoff = 0.551(CFS) Total initial stream area = 0.280(Ac.) Pervious area fraction = 0.600 ........................... + + +-:'i .................... + + " ........ 1+ Process from Point/Station 6.000 to Point/Station 4.000 *+*+ STREET FLOW TR.)�VEL TIME + SUBAREA FLOW ADDITION Top of street segment elevation = 38.700(Ft.) End of street segment elevation = 35,300(Ft.) Length of street segment = 1140.000(Ft.) Height of curb above gutter flowline = .8.0(7n.) Width of half street (cu---b to crown) = 36.000(Ft.) Distance from crown to crossfall grade break = 34.000(Ft.) Slope from gutter to grade brea): (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on fl] side(s) 'of the street Distance from curb to property line = 12. DOO (Ft. Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000 (In.) Manning's N in gutter = 0.0150 Manning's 1\1 from gutter to grade break = 0.0150 Manning's N, from grade break to crown = 0A150 Estimated _mean -floor —rate 2.285(crs) Depth of flok, 0.373(Ft.), Average Velocity Street-f-low hydraulics at midpoint of street travel: Halfstreet flow %,;-idrh = 12.337(Fr.) T + + +T ++ + + +++++ ++ + + +T+++ + +T + + -, + + ++. +. + +TT + +TTi'+ + + + + ++ + ++T + +� + + +i'}' Process from Point /Station 6.000 to Point /Station 4.000 i- -- C0117LUENCE OF MINOR STREAKS ' °" AAlong Plain Stream numbe_r . 1 in normal stream number 2 Stream flow area = - .040(Ac.) Runoff from this stream = 2.547(CFS) Time of concentration = 241.59 min. Rainfall intensity = 1.644 (in /Hr) summary of stream data: Rdir?fal-1 Intensity a Strem Flow rate TC (In /Hr) No. I ^FS) (min) 1 5.316 22.16 1.745 2 _2.547 24.59 1.644 Largest stream flov; has longer or shorter Lime oL concentration QL = 5.316 + sum of Qa Tb /Ta 2.547 0.902 = 2. = 296 Qp = 7.615 Total of 2 streams to confluence: Flow rates before confluence point: 5.316 2.547 Area of streams before confluence: 3.560 2.040 Results of confluence: Total flow rate = 7.615(CFS) Time of concentration = 22.160 min. . 620 (Ac.) Effective stream area after confluence = 5 5.62 (Ac.) End of computations, total study area = The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.600 Area averaged RI index number = 56.0 • Flow velocity = 1.35(FL /s) - 1s.71 min. TC = ?y.59 min. Travel LimE - A.gding area flow tU Street • SINGLE FkIIIILY (lit Acre Lot) T:unoff Coefficient Le•_'_nla 1. ZI:aCL'l Ori so- 1 group A = 0.000 DEC1111a1 f1'aCL'IDTI sell grout' F• = 1 000 Decimal fraction sUi_I. group C = 0.000 Decimal fT_ac *_ion soil group L = 0.000 P.1 index. for. Soil (ANC 2) = 56.00 = 0.900 Pervious area fraction = 0.600; Impervious fraction. 10.0 year storm Frainfall intensity = 1.644(In /Hr) for a Subarea runoff = 1.9961CFS) for 1,760 (Ac .) 2.040(7,c-) Total runoff = 2.547(CFS) Total area = Street flow at end of street = 2.547(CCS) _ 2.5471CFS) Hail sLrEeL flow dt end UT_ stl- -EEL ° 4�'`'(Ft /s) Depth of Llov!= 0.365(Ft.:, Average veloCitV = -- Flow width (from curb towards crown)= 12.903(Ft.) T + + +T ++ + + +++++ ++ + + +T+++ + +T + + -, + + ++. +. + +TT + +TTi'+ + + + + ++ + ++T + +� + + +i'}' Process from Point /Station 6.000 to Point /Station 4.000 i- -- C0117LUENCE OF MINOR STREAKS ' °" AAlong Plain Stream numbe_r . 1 in normal stream number 2 Stream flow area = - .040(Ac.) Runoff from this stream = 2.547(CFS) Time of concentration = 241.59 min. Rainfall intensity = 1.644 (in /Hr) summary of stream data: Rdir?fal-1 Intensity a Strem Flow rate TC (In /Hr) No. I ^FS) (min) 1 5.316 22.16 1.745 2 _2.547 24.59 1.644 Largest stream flov; has longer or shorter Lime oL concentration QL = 5.316 + sum of Qa Tb /Ta 2.547 0.902 = 2. = 296 Qp = 7.615 Total of 2 streams to confluence: Flow rates before confluence point: 5.316 2.547 Area of streams before confluence: 3.560 2.040 Results of confluence: Total flow rate = 7.615(CFS) Time of concentration = 22.160 min. . 620 (Ac.) Effective stream area after confluence = 5 5.62 (Ac.) End of computations, total study area = The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.600 Area averaged RI index number = 56.0 • JOD�� • Iiverside County Rational Hydrology nrogrant CTVILCADD /CIVILDESIGN Engineering Software, (c) ]yE9 - 200) version L.4 T ?2t_Oficl Hydrology Study Date: 0W'219/04 Tile:466_'r.REAC.out ---------------------------------------------- -------------------------- TTI✓ 31)092 ARUE C ------------------------------------------------------------------------ " Hydrology Study Control Informarion °" " " " ' English (in -lb) Units used in input data file ------------------------------------------------------------------------ Warner Engineering, Yucca valley, C1. - S/N 59E ------------------------------------------------------------------------ kational Method Hydrology zrogram based on Riverside County Flood Control L Water Conservation District 197E hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 Standard intensity - duration curves data -(Plate D-4.1) For the [ Cathedral C1t-v ) 2rEa used. 10 vear storm 10 minute intensity = 2.770(In /Hr) 10 vear storm 60 minute intensity = 0.980(In /2ir) 100 vear storm 10 minute intensity = 4,520(In /Y_r) 100 year storm 60 minute intensity = 1.600(In /Hr) Storm event vear = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.600:In /Hr) • Slope of intensity duration curve = 0.5800 Process from Point / Staticn 1.000 to Point /Station 2.000 **** 7NTTIAL AREA EVALUATION +. >x Initial area flow distance = 150.000(Ft.) Top (of initial area) elevation = 42.800(Ft.) Bottom (of initial area) elevation = 42.200(Ft.) Difference in elevation = 0.600(Ft.) Slope = 0.00400 s(percent)= 0.40 TC = k(0.420) +I(length ^3) /(elevation change) ) "0.2 Initial area time of concentration = 9.403 min. Rainfall intensity = 4.688(In/Hr) for a 100.0 year storm SINGLE FAMILY (1 /2 Acre Lot) Runoff Coefficient = 0.601 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 56.00 Pervious area fraction = 0.600; Impervious fraction = 0.400 Initial subarea runoff = 1.052(CFS)' Total initial stream araa = 0.280(Ac.) Pervious area fraction = 0.600 +++-,. Process from Point /Station 2.000 to Point /Station 3.000 +'- STBEET rLOW "TPL'VEL— TIPiE- +_SUBAP.ER,FLOW ADDITION_ "* - `- - - -- ^4'- 1� -- • Top of street segment elevation = 42.200(Ft.) End of street segment elevation = 39.400(Ft.) T TTi' TTTTTTTTTTT�TT ,TTTTT,T�T�v.ITT }TTTTTTTTTTi •TTY- "1-T�TT- TT�TYTi'T T'LT Process from Point /Station 3.000 to Point /Station. _'.000 .... STREET FLOW TRAVEL TIME + SUBAREA FLOW ADOT_TIOP tts> Top of street segment elevation, = 39.400(Ft.) Length Gf strccc segrncnt = 280.000(Ft.i End of street segment elevation = 35.300(Ft.) • Height: Gi: curl, aixwe gutter _Towline c.0(In_i 6Jidt'n of half street (curb to C'own) it7.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Dis i:ance `roni crown rc, c_'oOQ_ -all grad:- brear = ,6-000(Ft.) Width of half street (curb to crov..,n) = 43.000(Ft.) Elope from gutter L'G grade break (v /i-,_) = 0.06 Slope from gutter to grade break (v /hz) = D.D63 "lolie front grade br"ec): rG cr-wr) (v /hz) = Slope from grade break to crown (v /hz) = 0.020 1: 2: eet flow 1'. or, (.'J zJ.dE- Is) of t11e S::-,- eel: Distance from curb to property line = 12.O00(Ft.) Distance from curl" to property line = 6.500(Ft.) Slope from curb to property line ( -,, /hz) = 0.020 Slope froID curb Lc, propern, line ( %, /h=) = D.D20 Gutter hiLe from flowline = 2.000(In.) Gurtcr_ width = 2. DDD (Fr. ) Manning's N in gutter = 0.0150 Glitter hi Le from flowline = _'. DDD (1n. ) Manning's N from grade break to crown = 0.0150 1,1anning's P7 in gutter = D.D150 Estimated mean flow rate at midpoint of street = 8.343(CFS) banning'.. P Izom' gutter r grade brea): = D.0150 /s) Streetflow hydraulics at midpoint of street travel: Planning's P from grade break to crown = D.0150 Halfstreet flow width = 19.799(Ft.) Estimated mean flow rate at midpoint of street = --.116(CFS) Travel time = 6.89 min. TC = 20.60 min. Depth of flow = 0.287(Ft.:, Average velocity = -'. D27 (Ft /s) ST_reetflow hydraulics dt midpGln.L of street travel.: Runoff Coefficient = 0.759 Halfstreer floc, width = 8.015(Ft.) DecYma'1 —ff °a ction_soil_gr�up A = 0.000 Flow Velocity _ --- 031 (Ft /s) Decimal fraction soil group C = 0.000 Travel time = 2.30 min. TC = 11.71 min. Decimal fraction soil group D = 0.000 Adding area flow tG street SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.751 Decimal fraction soil group A = 0.000 Decimal fraction soil group E = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2'') = 56.00 Pervious area 'fraction = 0.600; Impervious fraction = 0.400 Rainfall intensity = 4.128(In /Hr) for a 100.0 year storm Subarea runoff = 3.591(CFS) for 1.100(Ac.) Total runoff. = 4, .643(CFS) TO area Street Slow at end Of street = 4.643(CFS) Half street flow at end of StreeT = 1.321(CFS) DeDtn of Slow = O.119(Ft.)� Average velocity = '.?13(F /s) Flow width (from curb towards crown)= 9,G02(Ft.) T TTi' TTTTTTTTTTT�TT ,TTTTT,T�T�v.ITT }TTTTTTTTTTi •TTY- "1-T�TT- TT�TYTi'T T'LT Process from Point /Station 3.000 to Point /Station. _'.000 .... STREET FLOW TRAVEL TIME + SUBAREA FLOW ADOT_TIOP tts> Top of street segment elevation, = 39.400(Ft.) End of street segment elevation = 35.300(Ft.) Length of street segment = 1100.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crov..,n) = 43.000(Ft.) Distance from crown to crossfall grade brea): = 41.O00(Ft.) Slope from gutter to grade break (v /hz) = D.D63 Slope from grade break to crown (v /hz) = 0.020 Street flow is on (1) side(s) of the street Distance from curb to property line = 12.O00(Ft.) Slope from curb to property line ( -,, /hz) = 0.020 Gutter width = 2.O00(Ft.) Gutter hiLe from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 8.343(CFS) Depth of flow = 0.523(Ft.), Average velocity = 2.062(Ft /s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 19.799(Ft.) Flow velocity = 2.06(Ft /s) Travel time = 6.89 min. TC = 20.60 min. Adding area flow to street SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.759 DecYma'1 —ff °a ction_soil_gr�up A = 0.000 Decimal fraction soil group--E —=I Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 . . . . . . . . . . . . . . TT . . T + } + + }}- ++ Process from Point /Sta tion 5.000 to Poin-,/Station 6.000 —, INITIAL AREk EVALUATIOP E7 index: `02: soil (Amc 2) = 56.00 PerviouS 61:La lmfcrvious fraction P.ciniall intensity 2.971;(11', /Hr) f C, 2: 5 100.0 year scorri, Sunarea runoff 4.969iCF-I1 for 2 , 2 0 0 (.A c 'I Total runoff. 5. C12, (CrS ) Total area 3j.5110(Ac.) S-,:xcec I'low at crid of s----reez = 9.612(CFS) Half s,-i:eet f* L - -- at end v{' sureeL 5. 61'-, (CFE) low Depth of flow = Average VelCI-Cily = " - !��, ( Ft. s r1ow width (froji, curt, towaris crown)= -10.919(F't.) Runoff Coefficient = 0.794 • Process from Point /Station 3.000 co Point /Station 4.000 "11 COMF ELUENCE OF MINOP. STP.EkMS Along Main Stream number: I in normal stxcam number 1 Stream flow area = P.Urjc)--,f from this Sr-rearn 9 . 612 (CrS) Time of concentrazion 20.60 min. Rainfall intensity = 21.975(1n/Hr) . . . . . . . . . . . . . . TT . . T + } + + }}- ++ Process from Point /Sta tion 5.000 to Poin-,/Station 6.000 —, INITIAL AREk EVALUATIOP . . . -,.+-, -+_1 . . . . . . . . I + . I . . . . . . . . . I . . . . . . .. . I -, +-' -, ++++++++++++-' +++++ -.+++-,. + -,+ Process from Point/Station 6.000 to Point/Station 4.000 *++* STREET FLOW TRAVEL TIME + SUBAREA FLOW KDDITION Top of street segment elevation = 38.700(Ft.) End of street segment elevation = 35.3D0(-Pt.) Length of street segment = 1140-000(Ft.) Height of curb above gu--ter flowline = 8.0(in.) Width of half street (c--irb to crown) = 36.000(Pt.) Distance from crown to crossfall grade break = 34.000(Ft.) Slope from gutter to grade break (v/h--) = 0.063 Slope from grade break to crown (,,,/hz) = 0.020 Street flow is on (13 side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (-v/hz) = O.D2D Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(ln.) Manning's iq in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated-mean—flow -,ra e at midpoint of street 3.969(CPS) Depth of flow 0. 435 (Ft. T,- Streetf-low hydraulics at D of Street travel: Halfstreet flow width = 25.4118 (Ft. ) Initial area flow distance = 180.000(Ft') Top (of initial area) elevation = 39.200(Ft.) Bottom (of- initial area) elevation = 36.700(Ft.) Difference in elevation = 0.500(Ft.) Slope = 0.00-276 s(percent)= 0.28 TC = 1:(0.420)'t (Iength`3) /(elevation change) 1 `0-2 iriz-iEl area time of con-.:an-crat-ion = 10.880 rrLn. Rainfall intensity = 4.307(In/Hr) for E 100.0 year storm SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.794 • Decimal fraction soil group A = D. DOD Decimal fraction soil group E = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 56.00 Pervious area fraction = 0.600; Impervious fraction 0.4100 initial- subarea runoff = 0.958(C--,S) Total initial stream ares 0.28D(Ac.) Pervious area fraction = 0.60D . . . -,.+-, -+_1 . . . . . . . . I + . I . . . . . . . . . I . . . . . . .. . I -, +-' -, ++++++++++++-' +++++ -.+++-,. + -,+ Process from Point/Station 6.000 to Point/Station 4.000 *++* STREET FLOW TRAVEL TIME + SUBAREA FLOW KDDITION Top of street segment elevation = 38.700(Ft.) End of street segment elevation = 35.3D0(-Pt.) Length of street segment = 1140-000(Ft.) Height of curb above gu--ter flowline = 8.0(in.) Width of half street (c--irb to crown) = 36.000(Pt.) Distance from crown to crossfall grade break = 34.000(Ft.) Slope from gutter to grade break (v/h--) = 0.063 Slope from grade break to crown (,,,/hz) = 0.020 Street flow is on (13 side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (-v/hz) = O.D2D Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(ln.) Manning's iq in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated-mean—flow -,ra e at midpoint of street 3.969(CPS) Depth of flow 0. 435 (Ft. T,- Streetf-low hydraulics at D of Street travel: Halfstreet flow width = 25.4118 (Ft. ) low veloct = 1..58(Ft /sl Travel tme m_n. i TC = .89 nun. • Adding area IlOW -L "G 2:rz Lot") et S .IWGLE J -. FAI,1L'; (i; "' :.re punGfr_ CGErLl -lent 0.75' Decimal Isar_ ion soil. group P. = O.000 Uecimai. fraction Safi group b = 1.UUD Decimal fractior, So`1 group C = 0.OD0 Decimal fractior: soil group D = O.000 P.I index fGr 5C, ]. (P1HC 2 ) = 56. UO Pervious area fraction = 0.600; Impervious fraction = r sto 79E(ln /Hr) for e lOG.0 year storm Fair.fall intensity = -' i 160(Ac.) subarea runoff = 3.707(CFSj for 2.040(Ac (rr.S) Total area = Total runoff = 665 4.6E5(CFS) Street f1o�: at end of str` -et = <.665(CFE) Half street_ flow at end of street_ = t,694- (Ft /s) Depth of floe: = O.S56(FL.), Average velocity = F10w wid-ch (from curb towards crown)= 16.463(Ft.) +y._T__.TT.'T�Tr T - TTT- "FT-i'T TT- 'r'�'T............ TT + ++ ..T +r"F +Y...I.. ..... T T Tom' Process Iron: Point /Station STOOD to Point; Stati on 9.00 +— CONFLUENCE OF NI1,10P. STREP1IS Llong Main Stream number: 1 in normal stream number - Stream f10W area = 2.040(Ac.) Runoff from this Stream = 9.665(CFS) Time of concentration = 22.89 min. Rainfall intensity = 2.798(In/Rr) Summary of stream data: TC Rainfall Intensity Stream F1 p4: rate= (In /Hr) Vo. (C °S) (min) i 9.Ei2 20.60 2.975 ^.. ?.798 .. 2 9.665 - 89 La_r4 °St StrEdrfi f:1 pti+ has lOIIger Or SllOrter ti3ne o-£ concentration Qp = 9.612 + sum Or Qa Tb /Ta 9 ob ' 0.500 , Qp = 13.809 Total of 2 streams to confluence: Flow rates before confluence point: 9.612 4.665 Area of streams before confluence: 3.580 2.040 Results of confluence: Total flocs• rate = 13.809(CFS) Time of concentration = 20.596 m n. 5. 62 0 (Ac .) Effective stream area after confluence = 5.62 (Ac.) End of computations, total study area = The following figures may be used for a unit hydrograph s�udy of the same area. Area averaged pervious area fraction(Ap) = 0.600 Area averaged RI index: number = 56.0 40 • •T C, 6; G 64 - 6-12 0 6 +15 r:; 20 6; 5 6;30 6;. 6 +45 6 +5G 6 +55 7; U 7+ 5 i;1G 7- 1 +20 7'25 7;30 7 +35 7 +4U 7 +45 7 +50 7 +55 B+ 0 B+ 5 8 +10 8 +15 B +20 6 +25 8 +30 B +35 8 +4D 8 +45 6+50 8 +55 9+ 0 9i 5 9 +10 9 +15 9 +20 9 +25 9 +30 9 +35 9 +4D 9 +45 9 +50 9 +55 10+ 0 10+ 5 10 +10 10 +15 10 +20 10 +25 10 +30 10 +35 10 +40 10 +45 10 +50 10 +55 114- 0 11+ 5 11 +10 11 +15 11 +20 11 +25 11 +30 ll* 35- 11+40 114.45 11 +50 L'. 0711 0.24 QV O.G728 0.24 QV I 6.0745 0.25 QV I 0.0763 0.26 IC, i 0.078: 0.27 IQ I O.DBOU 0.27 ICS I 0.0819 0.27 6.0637 0.27 IQ I D. 0857 O. -.B ![ ! 0.0877 0.29 (C I 0.GB97 0.30 IQ I 0.0918 0.30 IQ. ! 0.0939 0.30 IQ I 0.0959 0.30 IQ I ().098D 0.31) !Q 1 0.1001 0.31 IQ i 0.1023 0.31 IQ I ().1044 0.31 IQ 1 0.1066 0.32 IQ I 0.1085 0.33 IQ I D.1112 0.34 !Ci 0.1136 0.35 1 Q I 0.1161 0.36 1 Q I 0.i186 0.37 IQV I 0.1212 0.36 1 Q I 0.1236 0.38 1 Q I 0.1260 D.33 1 Q 1 0.1276 0.23 Q V 1 0.1290 0.19 Q V I 0._302 0.18 Q V I 0.1314 0.17 Q V i 0.1326 0.19 Q V I 0.1343 0.24 Q V I 0.1367 U.35 1 Q I 0.1396 0.42 1 Q I 0.1431 0.51 1 Q I 0.1473 G.64 1 Q I 0.1526 0.74 1 Q I 0.1586 0.90 I VQ 1 0.1666 1.13 1 V Q I 0.1754 1.28 1 V Q I 0.1832 1.42 1 V Q I .0. 1960 1.58 1 V Q I 0.2077 1.69 1 V Q I 0.2202 1.62 1 V Q I 0.2338 1.97 1 V Q I 0.2482 2.08 1 V Q 1 0.2634 2.21 1 V Q 1 0.2796 2.36 1 v QI 0.2961 2.40 1 V QI 0.3107 2.12 1 V Q I 0.3211 1.52 I VQ 1 0.3294 1.20 1 QV 1 0.3366 1.05 I Q V I 0.3431 0.95 I Q V I 0.3495 0.93 1 Q V I 0.3574 1.14 1 Q V I 0.3683 1.58 1 Q 1 0.3808 1.82 1 VQ 1 0.3942 1.95 1 Q 1 0.4082 2.04 I VQ I 0.4227 2.10 I VQ 1 0.4371 2.10 I VQ I 0.4513 2.06 I Q 1 0.4654 2.05 1 Q 1 0.4795 2.05 I Q I 0.4937 2.06 I Q I 0 5079- 2_ D61_ QV i 0.5215 1.98 1 Q vi -- ' 0.5340 1.81 ! Q VI 0.5459 1.73 I Q VI v v v v I v v v v v v v v v v VI vi VI VI vi VI I VI VI VI vi VI VI VI VI VI VI VI vi VI VI VI VI VI v I VI v I v I v I v I v I v I v I v I v I v I v I v I v I VI VI v I v I v I v I v I v I v I _.1'_+44 - C. 3. S Q I 1 i55 2.1954 D 15 Q 16+ U 1964 0.34 Q 18, 5 1973 0.13 0 3.6-i 10 2, .1982 C) 13 C. P, ,15 _.3 °91 0.13 0 E 21 1999 D Q 3, 8 + S _.=00 1 R '. 3, G 18 +35 _.2035 0.1 1b +40 2 2 (13 4 G.12 0 16,-45 2, 2, 0 4 1 0.11 Q 18,50 2.2048 0 . i () Q 12-55 -,C"t 0.10 C) 19i. 0 : . _'061 0. 08 0 15+ 5 2' . -1066 G.08 C, 19+10 2.%071 0 OB Q 19+15 2.2077 0.09 c 19+20 :'.'_084 0.09 cl 19+25 21 21 0 9 0 0.10 0 191.30 2.2093 C) ii Q 15 +35 _.2105 D 2 --1 Q 19+40 2.2113 0.21 Q 19-45 _.2120 0. i 0 Q 15+50 _.2126 o.io Q 19+55 2.2133 0.09 Q 20+ 0 2.2136 0.08 Q 20+ 5 3.2143 0.08 Q 20+10 3.2149 0.08 Q 20-15 -1.2154 20+20 2 . 216D 0.09 Q) 20+_'5 2 . 2 16 6 0.09 Q 30+30 _.2173 0.09 Q 20+35 2.2179 0.09 Q 20+40 21 . 218 5 0.09 ci 20 +45 3.2192 0.09 Q • '10+50 2 .219 8 G.09 Q 20+55 2.2204 6.09 Q ?,?Dg 0.08 Q _. ^_214 0. 07 Q 21+10 2' . 2 2 19 0.07 Q 2i +15 2 . 2 ^25 0.06 Q 21 +20 2231 0.09 Q 21+25 2.2236 O.OB Q 12+30 _'.2242 0.07 Q 22+35 2.2246 0,07 Q 31+40 ^.2252 0.07 Q 11+45 2.2257 0.08 Q 21+50 3.2263 0.06 Q 21+55 2.2269 0.08 Q "2+ 0 3.2274 0.07 Q 22+ 5 ?279 0.07 Q 22+10 3._284 0.07 Q 22 +15 2.2289 0.08 Q 21+20 2 .2295 0.08 0 20+25 2.2301 0.08 Q 22+30 2.2306 0.07 Q 22+35 2.2310 0.07 Q 22+40 3.2315 0.07 Q 22+45 2.2320 0.07 Q 2+50 2.2324 0.06 Q 12+55 2.2328 0.06 0 23+ 0 2.2333 0.06 Q 23+ 5 2.2337 0.06 Q 23+10 2.2342 0.06 Q 23+15 2.2346 0.06 Q 3+20 2.2350 0.06 Q 3 57 -2-23-5 0. 0 6 • 23 +30 23+35 2 . 2 3 5 9 2.2363 0.06 0.06 Q Q 2340 2.2367 0.06 Q v v v v I v v v v v v v v v v VI vi VI VI vi VI I VI VI VI vi VI VI VI VI VI VI VI vi VI VI VI VI VI v I VI v I v I v I v I v I v I v I v I v I v I v I v I v I VI VI v I v I v I v I v I v I v I 3 4-4 _.2376 06 C, 2 3 +55 2 _'380 D.06 C, 4; 0 2 2384 0 . 06 • 2 .2388 0.06 C) 24+10 _352 0.05 Q 9 +15 _.3 9 4 0.03 C-1 24; 20 2.2396 0.02 C, 24 +25 2' 2 3 9 7 0 0 244-30 '.2397 0.03 0 24 +35 2 .2398 0.01 0 24+40 2.2399 0.01 C) 24 +45 2.2395 D.01 0 24 +50 2.2399 0. DO Q _'4 +55 2 . 2 3 9 9 0.00 0 I i I N7 25+ 0 2.2400 0.00 Q I I N7 254- 5 2.2400 0.00 C, I I I VI 25+10 2.2400 0.00 Q I I I VI 5+15 2.2400 0.00 Q VI 25+20 2.2400 0.00 0 VI 25+25 2.2400 0.00 Q I I I vi 25 +30 2.2400 0.00 Q I I I VI 25+35 ----------------------------------------------------------------------- 2.2400 0. DO 0 I I I v I • • v V O r x x A W n A 4 x, g 00 O t S ^— x C X U J J U J J .�I A 'V �u p A J P m it wD ID J x m A 1 c a a S % u N W • • DRAINAGE MAP TTM IJ0092 X u u 0 0 o�z 0 a ry AIAD/SOIY .,. STREET HWY. ra n n n'l r^- 11,11,11W -Zv - S 'J A 1 zi c � a �c AIAD/SOIY .,. STREET n n n'l r^- 11,11,11W -Zv - S 'J A 1