30138os
IE
3ai��
HYDROLOGY AND RETENTION
CALCULATIONS
TRACT NO. 30138
La Quinta, California
Prepared- by:
W & W DESIGN DEVELOPMENT, INC.
79-440 CORPORATE CENTER DRIVE, SUITE 107
LA QUINTA, CA 92253
Lloyd W. Watson
R.C.E. 26662
Expires 3 -31 -08
May 18, 2006
� � ���,v ��i • `,:j` ;+tea.
� e���;t# �, .
y 4`t` �
:i�°�- .f
�;�, � .
TRACT 30138
HYDROLOGY & RETENTION CALCULATIONS
INDEX
1
Summary of Report
2
Intensity - Duration Curves Data
3
Time of Concentration
4
Runoff Coefficient Curves
5
Rainfall Patterns in Percent
6 &7
10 -Year Hydrology Calculation
8 &9
100 -Year Hydrology Calculation
10 -14
Pipe Hydraulic Calculation.
15 -16
Size Catch Basins
17 -22
Hydrographs for 3 Year, 6 Year and 100 Year Storms
23 -25
Retention Basin Capacity & Water Surface Calculations
26 -28
Sand Filter Calculations
29
Overflow Map
30
Street Capacity Calculations
31 -32
Soils Report - Percolation Rates
SITE DESCRIPTION
This site is a 14.79 acre nursery in the City of La Quinta located within the
Southeast Quarter of Section 4, Township 6 South, Range 7 East, San
Bernardino Meridian. The proposed tract consists of 47 single family residential
lots with private streets and gates. The site lies southeasterly of the All American
Canal and is bounded by the canal on the North. Two large diameter irrigation
mains bisect the tract and due to their shallow cover, no storm drain lines can
serve the property North of these mains. The property on the East is being
developed as a single. family development and the property on the West is a
nursery. The crossing of Avenue 52 at the canal creates a natural high point in
the road. As a result, the street drains to the East. Avenue 52 has recently been
reconstructed by the Hideaway Country Club development on the South side of
Avenue 52, eliminating the natural low point to the East of the project. This
raises the road bed approximately 1.5 feet fronting the tract. This creates
difficulty providing an emergency overflow for excess storm water flow from this
development.
PURPOSE OF THIS STUDY:
The purpose of this study is to provide calculations to prove that adequate
storage has been provided for the worst case 100 -year storm and that the storm
drain system is capable of conducting the 100 year storm to the retention basins.
A percolation rate of 2- inches per hour is used for the storage and a percolation
test is provided as part of this study.
The retention basin maximum ponding elevation is 15.76 in Basin No. 1. The
maximum depth is 4.96 feet. The storm water at all catch basins is contained in
the street section. A maximum ponding elevation of 18.62 allows the storm water
emergency overflow to escape. All building pads in the development are a
minimum of one foot above this ponding elevation.
Retention basin No. 2 at the North east end of the tract, ponds to a maximum
elevation of 16.23. The maximum depth is 4.23 feet. This basin is necessary to
maintain the relationship to the adjacent tract. It abuts a retention basin that has
been constructed on that tract. These basins are necessary due to grading
constraints caused by the existing irrigation mains bisecting the tract. As
mentioned previously, these large diameter pipes do not allow for gravity mains
to cross at reasonable depths.
' Retention Basin No. 3 on Lot D near the Southeast end of the tract, ponds to a
maximum elevation of 17.52. No nuisance water is generated in this basin due to
landscape setback along Avenue 52, therefore no sand filter is needed. No
' calculations have been provided for this basin in that the total area of runoff is
only 0.25 acres. 0.10 acres of this total is retention basin.
J
m
r
rTI
v
Ak-
N
O
01
� n
0
D 0
cv
r
■
RAINFALL INTENSITY- INCHES PER HOUR
CATHEDRAL CITY
Z
VALLEY
i
CORONA
rn
DESERT
HOT SPRINGS
n
- YILDOyAR
URATION
FREQUENCY
DURATION
FREQUENCY
DURATION
FREQUENCY
DURATION
FREQUENCY
DURATION
FREQUENCY
INUTES
MINUTES
rq
D
MINUTES
p
MINUTES
I
10
0
D
10
100
l0
100
]0
0
n
�
YEAR !
YEAR
0
YEAR
YEAR
Z
YEAR
■
RAINFALL INTENSITY- INCHES PER HOUR
CATHEDRAL CITY
CHERRY
VALLEY
CORONA
DESERT
HOT SPRINGS
ELSiNORE
- YILDOyAR
URATION
FREQUENCY
DURATION
FREQUENCY
DURATION
FREQUENCY
DURATION
FREQUENCY
DURATION
FREQUENCY
INUTES
MINUTES
MINUTES
MINUTES
MINUTES
10
100
10
100
l0
100
]0
100
10
100
YEAR !
YEAR
YEAR
YEAR
YEAR
YEAR
YEAR
YEAR
YEAR
YEAR
5
4.14
6.T6
5
3.65
5.49
5
3.10
4.78
5
4.39
6.76
5
3.23
4.94
6
3.73
6.08
6
3.30
4.97
6 '.
2.84
4.38
6
3.95
6.08
6
2.96
4.53
7
3.411
5.56
7
3.03
4.56
7 _
2.64
4.07
7
3.62
5.56
7
2.75
4.21
6
3.15
S.1S
8
2.82
4.24
8'
2.47
3.81
8
3.35
5.15
8
2.58
3.95
9
2.95
4.81
9
2.64
3.97
9
2.34
3.60.
9
3.13
4.81
9
2.44
3.73
10
2.77 1
4.52•
10
2.49
3.75
10
2.22
3.43
10
2.94
4.52
10
2.32
3.54
31
2.62
4.28
11
2.36
3.56
11
2.12
3:27
11
2.78
4.28
11
2.21
3.39
12
2.44.
4.07
12
2.25
3.39
12
2.04
3.14:
12
2.61s
4.07
12
2.12
3.25
13
2.38
3.•88
13
2.16
3.25
13
1.96
3.02
13
2.53
3.88
13
2.04
3.13
14
2.28
3.72
14
2.OT
3.12
14
1.89
2.92
14
2.42
3.72
14
1.97
3.02
IS
2.19:
3.58
15
1.99
3.00
15
1.83
2.82
15
2.32
3.58
15
1.91
2.92
16
2.11
3.44
16
1.92
2.90
16
1.77
2.73
16
2.24
3.44
16
1.85
2.83
i 17
2.04
3.32
17
1.86
2.80
17
1.72
2.66
17
2.16
3.32
17
1.80
2.75
18
1.97
3.22
i8
1.80
2.71
18
1.68
2.58
18
2.09
3.22
18
1.75
2.67
19
i
1.91
3.12
19
1.75
2.64
19
1.63
2.52
19
2.03
•3.12
19
1.70
2.60
4 20
1.85
3.03
20
1.70
2.56
20
1.59
2.46
20
1.97
3.03
20
1.66
2.54
22
1.75
2.86
22
1.61
2.43
22
1.52
2.35
22
1.86
2.86
22
1.59
2.43
24
1.67
2.72
24
1.54
2.32
24
1.46
2.25
24
1.77
2.72
24
1.52
2.33
26
1.59
2.60
26
1.47
2.22
26
1.40
2.17.
26
1.69
2.60
26
1.46
2.24
28
1.52
2.49
28
1.41
2.13
28
1.36
2.09
28
1.62
2.49
28
1.41
2.16
1 30
1.46
2.39
30
1.36
2.05
30
1.31
2.02
30
•1.55
2.39
30
1.37
2.09
1 32
1.41
2.30
32
1.31
1.98
32
1.27
I.96
32
1.50
2.30
32
1.33
2.03
34
1.36
2.22
34
1.27
1.91
34
1.23
1.90
34
1.45
2.22
34
1.29
1.97
36
1.32
2.15
36
1.23
1.85
36
1.20
1.85
36
1.40
2.15
- 36
1.25
1.92
I 38
1.28
2.09
38
1.20
1.80
38
1.17
1:81
38
1.36
2.09
38
1.22
1.87
40
1.24
2.02
40
1.16 .1.75
40
1.14
1.76
40
1.32
2.02
40
1.19
1.82
45
1.16
1.89
45
1.09
1.64
45
1.06
1.66
45
1.23
1.89
45
1.13
1.72
50
1.09
1.78
50
1.03
1.45
SO
1.03
1.58
50
1.16
1.78
50
1.07
1.64
55
1.03
1:68
55.
.99
1.47
55
.98
1.51
55
1.09
1.68
55
1.02
1.56
60
.98
1.60
60
.93
1.40
60
.94
1.-45
60
1.04
1.60
60
.98
1.50
65
.94
1.53
65
.89
1.34
65
.90
1.40
65
.99
1.53
65
.94
1.44
TO
.90
1.46
70
as
1.29
70
.87
1.35
TO
.95
1:46
TO
.91
1.39
75
.86
1.41
TS
..82
1.24
75
.84
1.30
75
.91
1.41
75
.88
1.35
80
.83
1.35
80
.T9
1.20
80
.82
1.26
80
.88
1.35
BO
.85
1.31
85
.90
1.31
85
.77
1.16
85
.80
1.23
85
as
1.31
85.
.63 ;.
1.27
SLOPE
- .550
SLOPE '=
.550
SLOPE
..480
SLOPE
= .580
SLOPE
.480
W
N
4
LIMITATIONS:
TC1 .
I. Maximum
length
__100
2. Maxirmith
1000
—90'
Undeveloped
Undeveloped
-
—900
—80
H
800
Undeveloped
700
—
60
Poor Cover --
° _
2
30Q
6r 00
50
(1/4 Acre)-
0
0
E
Cdihmdrcial_
1UV
0
—500
8
60 0
QL6
35
40
30
o
06
400 c
30
20
350
25
6
K Ai
...m
E-
20
_-250
x:
-
15
2-00
—14
112
2
113
II
150
9
E
P
6
4
LIMITATIONS:
I. Maximum
length
=1000
2. Maxirmith
area = 10 Acres
Undeveloped
Undeveloped
-
1,0
H
Undeveloped
Sac)
400
Poor Cover --
° _
2
30Q
-2
(1/4 Acre)-
200
0
E
Cdihmdrcial_
1UV
0
4U
8
60 0
50
E
40
30
o
06
20
6
K Ai
...m
Undeveloped.
Good Cover
2
Undeveloped
Undeveloped
-
1,0
r Cover
Undeveloped
.5
.4
Poor Cover --
° _
2
Single Family
>
(1/4 Acre)-
-50
Cdihmdrcial_
4U
RC_FC &I WCD
HYDF?oLoGy 1\11.ANUAL
I I
.KEY
L---H --TG - K - T C'
TC
5---1
6
ri
a
CD
8 ;Q. E
az
910
E
O
12
16 -Z
17 E
t8 c
12
20--
O
25—
C
0
30.-
EXAMPLE: E (D
(1) L =550 , H =5.0, K = Single Family 35-.:--
Development , Tc 12-6 min.
_
(2) L =550'1 H =5.0', K = Comm
Development - -'-' ercial 401
_.____...,Tq=9, 7.fnjn..
Reference: Bibliog.roohy item No. 35.
TIME OF CONCENTRATION
FOR INITIAL SUB-AREA
PLATE D-3
a
■%
r
m
M
1
tD
i
v
RAINFALL PATTERNS IN PERCENT
L
3-HOUR.. b1oKM -HOUR- STORM I 24 -HOUR STORM
`-
�Y
^
TINE
PERIOD
1
5 -NIN
PERIOD
1.3
!0 -MIN
PERI00
2.6
IS -MIN
PERIOD
3.1
30 -MIN
PER100
B.5
TINE
PEaI00
5 -NIN
PERIOD
10 -MIN
PERt00
IS -MiN
PERTOD
30 -MIN
PERIOD
LINE
PERIOD
5 -MIN
PERIOD
TIME
PER100
15 -MIN
PERIOD
30 -NIN
PERIOD
60 -NIN
PERIOO
1 .5 1.1 1.1 3.6
♦9 1.1
1 .2 .5
1.2
` J
2
1.3
1.1
2.6
3.3
♦.8
5.1
10.0
13.9
2
.6
1.2.
1.9
♦.3
50
1.8
2
.3
.7
l.3
v
3
♦
1.5
3.]
♦.9
17.♦
3
♦
.6
.6
1.]
1.♦
2.l
2.2
♦.B
i. 9
51
52
1.9
2.0
3
t
.3
,♦
.6
.7
1.8
2.1
`
5
1.5
3.3
6.6
29.9
5
.6
1.♦
2•♦
5.3
53
2.1'
S
.3
.8
2.B
�7
6
l.B
3.4
7.3
20.3
6
.7
1.5
2.♦
5.8
51
2.1
6
.3
1.0
2.9
l.5
♦.♦
B.♦
7
.7
1.6
2.♦
6.8
55'
2.2
7
.3
1.0
3.8
B
1.8
4.2
7.0
B
.7
1.6
2.5
9.0
56
2.3
B
.♦
1.1
♦.6-
9
I.8
5.3
12.3
9
.7
1.6'
2.6
11.6
57
2.4
9
.♦
1.3
6.3
10
1.5
5.1
17.6
10
.7
1.6
2.7
14.1
5B
2.4
10
.♦
1.5
8.2
Il
1.6
6.♦
16.1
11
.7
1.6
2.8
25:1
59
2.5
11
.S
1.3
1.0
12
1.8
5.9
4.2
12
.8
1.1
3.0
♦•♦
60
2.5
12
.5
1.6
1.3
13
2.2
1.3
13
.B
1.7
3.2
61
3.l
13
.5
1.6
IO.B
14 .
2.2
B.5
14
.8
1.8
3.6
62
3.6
1♦
.5
^c.0
11.♦
15
2.2
1 ♦.1
IS
:8
1.6
♦.3
63
3.9
15
.5
2.1
10.♦
16
2.0
1 ♦.1
16
.8
1.8
♦.1
6♦
2
16
.6
2.5
B.S
IT
2.6
3.8
lT
.B
2.0
5.♦
6s
♦ 7
IT
.6
3.0
1.4
1 8
2.1
2.4
18
.8
2.0'
6.2
66
5.6
1B
.7
3.3
1.9
19
2.4
19
.8
2.1
6.9
67
1.9
19
.7
7.9
1.3
20
2.7
20
.8
2.2
7.5-
68
,9
20
.8
4 .3
1.2
21
3.3
21
.8
2.5
10.6
69
.6
21
.6
3.0
1.1
22
3.1
22
.8
2.8
1i.5
70
,5
22
.1
4 .0
1.0
23
2.9
23
.8
3.0
3.♦
7l
.3
23
.8
3.8
.9
24
3.0
24
.9
3.2
1.0
72
.2
24
.8
3.5
.6
25
3.1
25
.8
3.5
25
.9
5.1
26
♦•2
26
.9
3.9
-
26
.9
5.1
27
5.0
- 27
.9
i.2
27
1.0
6.B
28
3.5
28
. 9
4.S
28
1.0
t.6 _
29
6.8
29
.9
♦.8
29
1.0
5.3
T
30
7.3
30
.9
S.l
30
1.1
5.1
il!
31
8.2
31
.9
6.7
31
1.2
♦.7
D
32
5.9
32
.9
B.1
32
1.3
3.8
37
2.0
33
1.0-
10.3
33
I.5
.8
Z
34
1.8
34
1.0
2.8
34
1.5
.6
Z
75
I.8
35
.1.0
1.1
35
1.6
1.0
D
36
.6
36
1.0
.5
36
1.7
.9
37
1.6
37
38
1.9
2 0
.8
5
r
1.1
-v r
t.t
m
1.1 .
n
1.2
D
1 .3 '
43
I.♦
♦♦
1.♦
Z m
1.5 '
♦6
1.5
♦7
1 6
Z
1.6'i
38
1.1
39
t.t
♦0
1.1 .
♦1
1.2
42
1 .3 '
43
I.♦
♦♦
1.♦
♦5
1.5 '
♦6
1.5
♦7
1 6
♦8
1.6'i
NOTES:
I. 3 and 6 -hour patterns based on the Indio.area thunderstorm of September 24,1939.
2. 24 -hour patterns based on the general storm of March 2 a 3,1938.
3
t
♦
♦
♦
♦
9 2.1
.7
0 2.2
.5
1 1.5
.6
2 1.5
.5
3 2.0
.5
♦ 2.0
S
5 1.9
.5
6 1.9
♦
7 1.1
B 1.6
TIME 15 -MIN
PER100 •PERIOD
FICK i& VC D HYDROLOGY kJANUAL
RATIONAL METHW CALCULATION FORM
PROJECT 74447' Alf-.3013,5
FREQUENCY1 110:4e4v 6AP"'v
Ch,ecked. bv
Shool;No,-L of 32Sh'"Is
DRAINAGE
AREA
soil a
Development
A:
Acres
I
Ih /Iw
C:
AQ
CF's
s Qi
OFS
SLOK
SIVION
v
FPSi
L
'FT.
T
MIN..
E:Y
REMARKS
A -/p 04'ff 7
A -$0
1#74
7134..667.
2,Q"
-g
-so
0,57
2,70
671
t.0
/o,5
1-.2
ml
A -go
Of Z
Z-73
16173
0116
Z;
.1
E e.g.
5--eo
Ia.
f.w
1(161.
/1
//,I
Tti ko z.
F to
A
t
I. 0,6 *5
A -so
2 .4
,4
0 �
:1
14 L f,
0,12,!
53
3
r 0,
4 OB q3
610,58
&67.
2,o
fo eS. -*3
i A -50
480'
0,7
he I I"f 4 #z 4 f
.01
0.7
.4 r
w
;4
61.
07)
R C F 11%; ' W C 0 HYDROLOGY MANUAL
RATIONAL ;METHOD: CALCULATION FORM
PROJECT 7-ycal AP 30138
FREQUEOICY1
Waisted! by
th,acked' bv
of 2LSh'sols
DRAINAGE
R
AEA
•
;BREHM
,
REMARKS
M
off, 13 Fri -
®����
��ram��
mmmm
mmmm
mmmm
mmm
mmm
mmm
mmmm
mmm
mm
®
®����
®®®�►�
4ADiotir Q
m
.Z
*1
R C FC & WC D HymOLOGY MANUAL
RATIONAL METHOD. CALCULATION FORM
PROJECT _ Te,4c7' /✓" SO/38
FREQUENCY1 !00 V441, 61veof
Sheet No, 8 of 2-1-Sheets
Colculeted. by -„ P 17 ZVt_ --
Cheeked bv ----------- Rr * - --
DRAINAGE s
soil a A
A I
I C
C A
A 0 1
1 G S
SECTION v
v >
>_ T
T E
E T
REMARKS
A io. ex- A
A - 5o /
/,2G 3
3.85 ,
,7!/ 3
3,45 I
!3 2 J
J,,A.t ee,? 1.7 5 4Ll= 2,8-f'
I i
i !
a D C,B A
A - 5o 0
0.57 1
14,4o ,
,727 /
/,8 i
l0.5 �
�i�(%ir¢=i L =zg'0 3
3 45 4
io,sx /
/8s l
4
` ,
C o C�. B. `' A
A - 5o o
of 4
4 #
#710 3
3.5 `
1. '
'?d"41.Avq 1 =9V/ &q 3,8'
, 1
D �o C,15'0 �o. A
A-50 0
0-4z ,
,45 ,
,728 /
/. 4 �
�►a rt w � � (��' � .
4.7c& 3
3,5 -
--o x /
/ •
•7C
!
o C! 8. -0 -
-,5-0 /
/06 4
4,01
!l,4 '
' n, At Arta, 1 =36o A$4:
I
� I
I i
F 40 I
A - So 0
0,9� ,
, ,
,vl� 2
2
,6 Lp 0,13 �5 A
A —50 6
6,52 4
4.30 ,
,723 l
l,lo ,
a, A
A.t6r l= 3sg Q�= 7,
.2c 2
2,7 _
,o� a
,2 �
�5
f
0,5-
i
14 2.P A
A - 5o 0
0,/2 5
546 .
.750 1
15 0
C'
�s
d�
7
?3
RCFC l&; ,'WG D HYDRO LQGY MANUAL
RATIONAL. ;METHOD, CALCULATION FORM
PROJECT )V-2 38
FREQUENCY1
Shat fiNo...f.." of &Sh*eets
CoAculated! bi..—.0—
Ckocked' by
'fA 040tl 0
7
� q ,
•
14 ya,
rau
' ! Try 24 D . HDf �. _,oil
a E 1�
!w V= 7�,4 = 2.14
cm
fL'�.5� -
'
_ tk
! ! _
1G:L3 a . a. G
N .G.
- -�
•
i L-- _G4,ic, 116tt.0 , .�_ _.. �.. - Qr.��K �QCd_�d: e�s_� ►... P!(ae4a Clt;'sAt
I
'____ —� : -- CDv_�nPu 1— = -���,• 64TwQ�1�!
' - =
��
_ _. __._. _. ,___ _.. _ _.__._ ._._ _.1f_ " � Z•�� fps t�v •
z
S _ , neo7il�
AL
N�. V.L. � �urw��a�n .0 = ..9N.S.C�,�3 /as;ti •{- �-aSt- � �- 23.1' ✓_ =' .... ..•--- ._•.__ .. . - - -. _
tz,TL -t , 04- 4� D...1.2.
,
•
6 a %wtd A ��av►�,�-ioH N= `� � _ L° ,B .�?l.._ �- ._;.. _,.. _. {_,. � -- -- � -
1 - _
O1 A N pf' � s._ n.. _ ._ -.D 1.1_
OV_ -7
I
r i FI (,LCD )cT'�Z ,� #- 1 231 l ✓_
-177 1
I j !
j J •
,
{
�- �Ga±N► .u�c�± __.1�,.(�a.....•..b�a.�G�_.- J4���:o,n
tit -
,
pp � #
#
'!_ivy
77 ,
' i j , � d-1.�• �.,� C. �.' �I, W � ode l� JG�, �• � (.I S } ��Z3 1.}-t/.6 , , 1 � � � ;
,
- .__ ; _ ! _� - _.. ___. �_ ..... _ _boacvc _ ►:34Y- 1G.�q - _- 0,3r___ —w - -- - -•-
•
r
' _ T2 Acc,7- 30138
1
JfA' 0 C-64 to
(e-" Tr 1-" DIA 14 -PPE
AI 2.573 Le 2q,
(�&Lg 4A"b 4v + L Si 1.2ske,
bu Rde C-0, 8z (vic,
I
11
11
CS" Pik Agpe oil
vq�. 141 4:p 0.16' ...
Vq 3-
Do 301/1
r 16-so:
vA
4-1 4.1 c h 9,(o e. UP
!Y
vy,
b. L. Q -4C.T. t'Z = Neal A- tIe S0'4 Wvo + 14, (OIL. 6? 1 6T.
I 1AS +
W(7- L. @ JCT,
N= 30138 °_.. ' �. -1
i
a15 4f; �Ar-k tt�t,6 ' Met. -tA t L-A'M t'
CJ�2 ji -
- LZ
s
QIA to
I
s- -
oorl
o ..
1,486r
2.3 I
i !
i (r. I, Q C-5: N= 0 _ 4.uLGG gat 4- L) SI +
i
16,7 4, ♦ 25,40 • �o►�i, /1,23. O'..I�Ot _ �_: �_ .. __.. ... .._ - -
' ISIS 10
4, .C,
,.old
i -. 1_ ! _ 5�_ �l ► ¢8 (o - , by 1;0
y
Faaboctrc
I I
TV- A Ur PJS 3 0
14-1 Aeautlir'-,;,
C
3
4.SJt.44-oc-k =S-ScAe. Tr-j 14"'DIA HoFe r1r,011
t �3= A�oo- 2--1 1 0-
YVI
14
4-(*60. 06 0-010) "23)(0, I I
tv u 14 zr F. L C 5
Free 6m,-J II—.ZS — 1&.5$. 6.4-7 1
-- -' _ _ - _ —Q;�+ ,= 4-D
r
1.58
u 4 dt 14
F✓u bmv c4 = 11.14 - IG-11 0,55�
I , ,
._ ..I- ' i-- • - - -�. f. '. I }y day ILL° lLt�a��auad .- f
-A li c4lcl 6a.s wN , rQ iV% �uou odw oo� �j5st�w+Eei_ i
Po.hd'a C,*�Vrb All c 6i. ba'iot;lov Wtod °
cA
�. ' ,I ' ! _ i � LI�b...;- iCd.L6.- � �Tk �Q�i , .. - _.t.� oPLK•�✓� A..t� __ I •
_`_. �a6w+..1�., ` _ .Q �naC� �a�i.� ,��_..... wid�t+; evil.
3.0
4.
I
4' I
4-w
f i
414 2- OL
. Lr
� I 1
• i i 4
I
I ! i
i.o!�
T75 .
!.0
Cf
S . K de .7
Af-
Qmi r D
t, / 00,
,p8
�• 25 .04
./
12
PROJECT:
ILOCATION:
CLIENT:
PAGE 17 OF
TRACT 30138 JOB NO:
BY: DEL BOYER
DATE: 05/10/06
FLOW IN OFFSITE STORM DRAIN TO RETENTION
HYDROGRAPH AREA # 1 IN TENTATIVE TRACT NO. 30138
'USE RCFCD HYDROLOGY MANUAL PLATE E -5.9 FOR RAINFALL PATTERN.
PLATE E -5.6 INDICATES 100 -YEAR 24 -HOUR PRECIPITATION = 4.5" SOIL TYPE "A"
� I
1
(2)
(3)
INCL.
NET
'(1)
PERIOD RAINFALL
Q
VOL.
PREY. STOR. PERC.
CUM. STOR.
(HOUR) % INS. (PER HR)
C C.F.S.
(C. F.)
(C.F.) (C. F.)
(C.F.)
� I
1
1.2
0.054
0.461
0.303
1,092
1,092
0
1,092
2
1.3
0.058
0.463
0.327
1,178
2,271
379
1,892
3
1.8
0.081
0.467
0.461
1,660
3,552
593
2,959
4
2.1
0.094
0:469
0.537
1,935
4,894
817
4,077
5
2.8
0.126
0.472
0.725
2,610
6,686
1,116
5,570
6
2.9
0.130
0.473
0.750
2,698
8,269
1,371
6,898
7
3.8
0.171
0.480
1.001
3,602
10,500
1,653
8,847
8
4.6
0.207
0.487
1.229
4,424
13,271
1,767
11,504
9
6.3
0.284
0.497
1.721
6,194
17,698
1,886
15,812
10
8.2
0.369
0.508
2.285
8,226
24,038
2,059
21,979
11
7.0
0.315
0.501
1.924
6,926
28,905
2,192
26,713
12
7.3
0.328
0.503
2.011
7,240
33,953
2,317
31,636
13
10.8
0.486
0.520
3.081
11,090
42,726
2,476
40,250
14
11.4
0.513
0.525
3.283
11,819
52,069
2,674
49,395
15
10.4
0.468
0.520
2.967
10,680:
60,075
2,863
57,212_
16
8.5
0.382
0.508
2.366
8,516
65,728
2,942
62,786
17
1.4
0.063
0.464
0.356
1,283
64,069
2,942.
61,127
18
1.9
0.086
0.468
0.491
1,766.
62,893.
2,930
59,963
19
1.3
0.058
0.463
0.327
1,178
61,141'
2,888
58,253
20
1.2
0.054
0.461
0.303
1,092
59,346
2,846
56,500
21
1.1
0.050
0.461
0181
1,012
57,511-
2,802-
54,709:,
22
1.0
0.045
0.460
0.252
908
55,618
2,758.
52,860
23
0.9-
0.040'
0.459
0.224
806
53,665
2,700
50,965
24
0.8
0.038.
0.458
0.212
764
51,729
2,666
49,063-
(1) RAINFALL = % OF TOTAL PERCIPITATION
I' (2) Q= RAINFALL x C x A
(INS. PER HOUR)
(3)V= Qx3600= c.f. /HR
1(4 . ) PERC RATE = 2 " /HR = 0167'/HR
II G:/Administration/COST ESTIMATES /HYDROGRAPH.wb3
A = 12.19
C = COEFF. FOR 50GL. SGL FAM
'PROJECT:
LOCATION:
CLIENT:
PAGE 18 OF 32
TRACT 30138 JOB NO:
BY: DEL BOYER
DATE: 05/10/06
FLOW IN OFFSITE STORM DRAIN TO RETENTION -
HYDROGRAPH AREA # 1 IN TENTATIVE TRACT NO. 30138
'USE RCFCD HYDROLOGY MANUAL PLATE E -5.9 FOR RAINFALL PATTERN.
PLATE E -5.6 INDICATES 100 -YEAR 6 -HOUR PRECIPITATION = 2.75" SOIL TYPE "A"
'(1)
PERIOD
(HOUR)
RAINFALL
% INS. (PER 1/4 HR)
C
(2)
Q
C.F.S.
(3)
VOL.
(C.F.)
INCL.
PREY. STOR.
(C.F.)
PERC.
(C. F.)
NET
CUM. STOR.
(C.F.)
1
1.2
0.047
0.461
0.264
951
951
0
951
2
1.3
0.052
0.488
0.309
1,114
2,064
86
1,978
3
1.8
0.058
0.490
0.346
1,247
3,226
135
3,091
'
4
2.1
0.061
0:492
0.366
1,317
4,408
184
4,224
5
2.8
0.066
0.496
0.399
1,437
5,660
236
5,424
6
2.9
0.066
0.496
0.399
1,437
6,861
286
6,575
7
3.8
0.066
0.496
0.399
1,437
8,011
335
7,676
'
8
4.6
0.069
0.498
0.419
1,508
9,184'
414
8,770,
9
6.3
0.072
0.499
0.438
1,577
10,347
422
9,925
10
8.2
0.074
0.500
0.451
1,624
11,549
430
11,119
11
7.0
0.077
0.502
0.471
1,696.
12,815
439
12,376
12
7.3
0.082
0.504
0.504-
1,814
14,190
448
13,742
13
10.8
0.088
0.506
0.543
1,954
15,696
458
15,238
14
11.4
0.099
0.510
0.615
2,216
17,453'
470
16,983
15
10.4
0.118
0.518
0.745
2,682.
19,666
485
.. 19,181 -.
16
8.5
0.129
0.526
0.827
2,978.
22,159
502
21,657
17
1.4
0.148
0.532
0.960
3,455.
25,112•
522•
24,590
18
1.9
0.170
0.543
1.125
4,051
28,641
546
28,095
19
1.3
0.190
0.550
1.274
4,586
32,681'
574`
32,107
20
1.2
0.206
0.557
1.399
5,035
37,142
594
36,548
'
21
1.1
0.292
0.585
2.082.
7,496.
44,044.
625.:
43,419 -
22
1.0
0.399
0.618
3.006
10,821
54,240
681
53,559
23
0.9
0.094
0.508
0.582
2,096
55,655
690
54,965
'
24
0.8.
0.028
0.472.
0.161
580
55,545
689
54,856
' (1) RAINFALL = % OF TOTAL PERCIPITATION
A =
12.19
(2) Q = RAINFALL x C x A
C =
COEFF. FOR 50GL.
SGL FAM
'
(INS. PER HOUR)
(3)V= Qx3600=
c.f. /HR
t(4)
"
PERC
RATE = 2 /HR = 0167'/HR
!Administration /COST ESTIMATES /HYDROGRAPH.wb3
SUBJECT: TRACT 30138 PAGE 19 OF 32
PROJECT: JOB NO:
LOCATION: BY: DEL BOYER
CLIENT: DATE: 05/10/06
'FLOW IN OFFSITE STORM DRAIN TO RETENTION
HYDROGRAPH AREA #1 IN TENTATIVE TRACT NO. 30138
'USE RCFCD HYDROLOGY MANUAL PLATE E -5.9 FOR RAINFALL PATTERN.
PLATE E -5.2 INDICATES 100 -YEAR 3 -HOUR PRECIPITATION = 2.2" SOIL. TYPE "A"
(1)
(2)
(3)
INCL.
NET
RAINFALL
Q
VOL.
PREY, STOR. PERC.
CUM. STOR.
'PERIOD
(15min) % INS. (PER HR)
C C.F.S.
(C.F.)
(C.F.) (C. F.)
(C.F.)
1
3.7
0.081
0.502
0.496
1,784
1,784
0
1,784
t 2
4.8
0.106
0.513
0.663
2,386
4,171
174
3,997
3
5.1
0.112
0.516
0.704
2,536
6,533
273
6,260
4
4.9
0.108
0.515
0.678
2,441
8,701
363
8,338
5
6.6
0.145
0.531
0.939
3,379
11,717
431
11,286
'
6
7.3
0.161
0.538
1.056
3,801
15,087
454
14,633
7
8.4
0.185
0.548
1.236
4,449
19,082
481
18,601
8
9.0
0.198
0.551
1.330
4,788
23,388
510
22,878
'
9
12.3
0.271
0.572
1.890
6,803
29,681
553
29,128
10
17.6
0.387
0.615
2.901
10,445'
39,572'
605
38,967
11
16.1
0.354
0.603
2.602
9,368`
48,335
646
47,689
i' 12
4.2
0.092
0.508
0.570
2,051 _
49,740
655
49,085
(1) RAINFALL = % OF TOTAL PERCIPITATION A = 12.19 ACRE
SOIL TYPE "A"
(2) Q= RAINFALL x C x A
(INS. PER HOUR) C = COEFF. FOR 50 GAL -SGL FAM
'(3) V = Q x 3600 = c.f. / HR
' (4) PERC RATE = 2.0 /HOUR =.167'/HOUR
'' G: /Administration /COST ESTIMATES /HYDROGRAPH3 SAMPLE.wb3
'
(2)
SUBJECT:
INCL.
PROJECT:
PERIOD RAINFALL
LOCATION:
CLIENT:
TRACT 30138
PAGE 20
JOB NO:
BY: DEL BOYER
DATE: 05/10/06
FLOW IN OFFSITE STORM DRAIN TO RETENTION
' HYDROGRAPH AREA # 2 IN TENTATIVE TRACT NO. 30138
32
USE RCFCD HYDROLOGY MANUAL PLATE E -5.9 FOR RAINFALL PATTERN.
' PLATE E -5.6 INDICATES 100 -YEAR 24 -HOUR PRECIPITATION = 4.5" SOIL TYPE "A"
(1)
(2)
(3)
INCL.
NET
PERIOD RAINFALL
Q
VOL.
PREV. STOR.
PERC. CUM. STOR.
(HOUR) % INS. (PER HR)
C C.F.S.
(C. F.)
. (C. F.)
(C.F.) (C. F.)
I I
!Administration /COST ESTIMATES /HYDROGRAPH.wb3
1
1.2
0.054.
0.461
0.077
278
278
0
278
2
1.3
0.058
0.463
0.083
300
578
96
482
3
1.8
0.081
0.467
0.117
422
904
151
753
4
2.1
0.094
0:469
0.137
492
1,245
207
1,038
'
5
2.8
0.126
0.472
0.184
664
1,701
284
1,417
6
2.9
0.130
0.473
0.191
686
2,104
408
1,696
7
3.8
0.171
0.480
0.254
916
2,612
430
2,182
'
8
4.6
0.207
0.487
0.313
1,125
3,307'
459:
2,84&
9
6.3
0.284
0.497
0.438
1,575
4,423:
506
3,917
10
8.2
0.369
0.508
0.581
' 2,092
6,009:
578'
5,431.
11
7.0
0.315
0.501
0.489.
1,761.
7,192'.
633
6,559.
'
12
7.3
0.328:
0.503.:
0.511
1,841
8,400'
688:
7,712:
13
10.8
0.486
0.520
0.781
2,820:
10,533:::
786.
9,747:
14
11.4
0.513
0.525
0.835
3,006
12,752:
887.
11,865;.
15
10.4
0.468'
0.5201
0.754.
2,716:
14,581:..
976..= ..,....
.. 13,605:. = -.• -..-
16
8.5
0.382'
0.508 -.
0.602.
2,166:
15,771.
1,036-1.
14,73&, ; .
17
1.4
0.063
0.464
0.091
326
15,061,
1,0011. _
14,060'.,.,
'
18
1.9
0.086:
0.468
0.125:
449.
14,509.
973'
13,536;
19
1.3
0.058:
0.463:
0.081
300'
13,836!"
939'
12,897`
20
1.2
0.054
0.461
0.077
278
13,175`
906
12,269-
21
1.1
0.050
0.461
0.071
257.
12,526., ..
877 -.
11,649 -..
t
22
1.0
0.045
0.460
0.064
231
11,880
847
11,033
23
0.9
0.040`
0.459
0.057
205
11,238-
818
10,420
24
0.8
0.038
0.458
0.054
194
10,614
789
9,825
'
(1) RAINFALL
= % OF TOTAL PERCIPITATION
A =
11
(2) Q =
RAINFALL x C x A
C =
COEFF. FOR
50GL. SGL
FAM
(INS. PER HOUR)
(3)V=
Qx3600= c.f. /HR
,(4)
"
PERC RATE = 2 /HR = 0167'/HR
I I
!Administration /COST ESTIMATES /HYDROGRAPH.wb3
' SUBJECT:
PROJECT:
'LOCATION:
CLIENT:
TRACT 30138
PAGE 21
JOB NO:
BY: DEL BOYER
DATE: 05/10/06
FLOW IN OFFSITE STORM DRAIN. TO RETENTION
' HYDROGRAPH AREA # 2 IN TENTATIVE TRACT N.O. 30138
'USE RCFCD HYDROLOGY MANUAL PLATE E -5.9 FOR RAINFALL PATTERN.
PLATE E -5.6 INDICATES 100 -YEAR 6 -HOUR PRECIPITATION = 2.75" SOIL TYPE "A"
'
(2)
(3)
INCL.
NET
'(1)
PERIOD RAINFALL
Q
VOL.
PREV. STOR.
PERC. CUM. STOR.
(HOUR) % INS. (PER 1/4 HR) C
C.F.S.
(C.F.)
(C.F.)
(C.F.) (C.F.)
'
1
1'.2
0.047
0.461
0.067
242
242
0
2
1.3
0.052
0.488
0.079
283
525
22
3
1.8
0.058
0.490
0.088
317
820
35
4
2.1
0.061
0.492
0.093
335
1,120
48
'
5
2.8
0.066
0.496
0.101
365
1,437
61
6
2.9
0.066
0.496
0.101
365
1,742
73
7
3.8
0.066
0.496
0.101
365
2,034
101
t8
4.6
0.069
0.498
0.107
383
2,317
104
9
6.3
0.072
0.499
0.111
401
2,614
110
10
8.2
0.074
0.500
0.115
413
2,916
113
'
11
7.0
0.077
0.502
0.120
431
3,235
116
12
7.3
0.082
0.504
0.128_
461
3,580..
120
13
10.8
0.088
0.506
.0.138
497
3,957
124
14
11.4
0.099
0.510
0.157
563
4,396'
129
'
15
10.4
0.118
0.518
0.189
682
4,950.
135.
16
8.5
0.129
0.526
0.210
757
5,572
142
17
1.4.
0.148
0.532
0.244
879
6,309•
151.
'
18
1.9
0.170
0.543
0.286
1,030
7,188
161
19
1.3
0.190
0.550
0.324
1,166
8,193'
172
20
1.2
0.206
0.557
0.356
1,281
9,301.
185
21
1.1
0.292
0.585
0.530
1,906.
11,023.,
205-
'
22
1.0
0.399
0.618
0.764
2,752
13,570
234
23
0.9
0.094
0.508'
0.148
533
13,869
238
' 24 0.8 0.028. 0.472 0.041 147 13,778 237
'0) RAINFALL = % OF TOTAL PERCIPITATION A =
(2) Q= RAINFALL x C x A C=
' (INS. PER HOUR)
(3)V= Qx3600= c.f. /HR
'(4) PERC RATE = 2 " /HR = 0167'/HR
II
/Administration /COST ESTIMATES /HYDROGRAPH.wb3
3.1
242
503
785
1,072
1,376
1,669
1,933
2,213`
2,504
2,803.
3,119
3,460-
3,833
4,267
4,815_;... ..
5,430
6,158.
7,027
8,021,
9,116
10,818:.,
13,336. _
13,631
13,541
COEFF. FOR 50GL. SGL FAM
SUBJECT: TRACT 30138 PAGE 22 OF 32
PROJECT: JOB NO:
LOCATION: BY: DEL BOYER
CLIENT: DATE: 05/10/06
FLOW IN OFFSITE STORM DRAIN TO RETENTION
HYDROGRAPH - AREA # 2 IN TENTATIVE TRACT NO. 30138
USE RCFCD HYDROLOGY MANUAL PLATE E -5.9 FOR RAINFALL PATTERN.
PLATE E -5.2 INDICATES 100 -YEAR 3 -HOUR PRECIPITATION = 2.2" SOIL TYPE "A"
'
1
()
2
()
(3 )
INCL.
NET
RAINFALL
Q
VOL.
PREV. STOR.
PERC.
CUM. STOR.
'PERIOD
(15 min)_
%
INS. (PER HR)
C
C.F.S.
(C.F.)
(C.F.)
(C.F.)
(C.F.)
1
3.7
0.081
0.502
0.126
454
454
0
454
2
4.8
0.106
0.513
0.169
607
1,061
36
1,025
3
5.1
0.112
0.516
0.179
645
1,670
57
1,613
4
4.9
0.108
0.515
0.172
621
2,233
72
2,161
5
6.6
0.145
0.531
0.239
859
3,021
112
2,909
' 6
7.3
0.161
0.538
0.269
967
3,875
121
3,754
7
8.4
0.185
0.548
0.314
1,131
4,886
132
4,754
8
9.0
0.198
0.551
0.338
1,218
5,971
144
5,827
9
12.3
0.271
0.572
0.481
1,730
7,557
162
7,395
'
10
17.6
0.387
0.615
0.738
2,656
10,051
191
9,860
11
16.1
0.354
0.603
0.662
2,382
12,242
216
12,026
_ .12
4.2
0.092
0.508
0.145
522
12,548
219
12,329
II (1) RAINFALL= % OF TOTAL PERCIPITATION A = 3.1 ACRE
I' (2) Q= RAINFALL x C x A
(INS. PER HOUR)
'(3)V= Q.x3600= c.f. /HR
(4) PERC RATE = 2.0 /HOUR =.167'/HOUR
II
C = COEFF. FOR 50 GAL -SGL FAM
ir: /Administration /COST ESTIMATES /HYDROGRAPH3 SAMPLEM133
3A,i
Ak
C -LC- v
AiLc -A
vol-UH -c-
COL A,- (I On? _
_
-. _PE2
'G2 ►a
lipgo 5F
13-0
2432 SF
2 p5 �'�' : _'
_ 4-oco Rs
15.0
144- -5p, F.-
B48a
54�5& 4F
I 'L�o.:
X04 3'
_ 1234
` .C'?64b, N A.
SF
X1053} �__
1�73'3�-- ' - - ~ --
,
Ai2o
(11:41 S,F
..10,
_t
IL
+
'
i
u
11. - -1 -
11
2fo� 3z
MARQUIS LANE - WEST
■ SANDFILTER SIZING CALCULATIONS
Calculation #1 Determines how many standard size sandfilters are needed'.
No.* of Sandfilters = 21 homes _ 40 homes / sandfilter
` Round all fractions up to the nearest whole number
I .
54.N4 FILTER, REQ'0
Each sandfilter has 48 sf of filter surface (ie 6'x 8'); assume the incoming nuisance water will
' percolate through the sand at the rate of 4' '16 inches per hour. The sandfitter must be sized to
handle the "surge inflow rate" of 0.458 cf /house /hour, which is based on the assumption that, on
average, each house releases 12 gallons in a 3.5 hour "surge" period. Therefore, each sandfilter
is capable of handling 18.4 cf /hour. As a result, each,sandfilter can handle the nuisance water
released by 40 homes (18.4/0.458 =40)..
Calculation #2 - Determines how long the leach line must be.
2
Leach Line Length* = homes. x 1.9 If/home (sandy soil)
" In feet to be divided evenly,between the number of sandfilters
5 Leach Line Length* = 2 homes x 3:8 If/home (silty soil)
` In feet to be divided evenly between the number of sandfilters
-79.$ LF MIN Fj0., PROVIDED
The critical aspect in sizing the leach line length is related to its ability to maintain a sustained`
percolation rate (ie 24-7 -365) in saturated soil, therefore,.forthe purposes of this calculation, itig
:. assumed that the sustained percolation rate in saturated soil is 0.25 in/hr .(Note: if the soil, is ;silty."
more than 5% by weight passing the 200 sieve, the percolation rate shall be reduced to 0.125
Whr). The leach line arch provides 2.8 sf of percolation surface per lineal foot of leach line.
length. If the average nuisance water discharge per house in the neighborhood is 20 gallons per
day that means each house must have 5.35 sf of.percolabon area in the leach field to percolate
its 24-hr nuisance water discharge. Therefore, the leach line length must be 1.9 If/home.
APPROVED STAROARU
013` 21 Ol
GHR1hS, A. VOGT Ti�- Oda
r ,,
CITY EtdGiN
!!! 370
t. AcFF' 44250 SAND FILTER
SHEET 6': OF 7 µ
z
?t
i
.y
2113-11.
N AA RQuiS LANE - NO R,T4
SANDFILTER SIZING CALCULATIONS
Calculation #1 Determines how many standard size sandfilters are needed.
No.* of Sandfilters = 9 homes _ 40 homes / sandfilter
* Round all fractions up to the nearest whole number
SANDFILT6-j;?_ RE'4 (jj1 e—r
Each sandfilter has 48 sf of filter surface (ie 6' x 8'); assume the incoming nuisance water will
percolate through the sand at the rate of:4 fi pch s- per ..hqur.. The sandfilter must be sized to
handle the "surge inflow rate" of 0.458 cf/house /hour, which is based on the assumption that, on
average, each house releases 12 gallons in a 3.5 hour "surge" period. Therefore, each sandfilter
is capable of handling 18.4 cf/hour. As a result, each,sandfilter can handle the nuisance water
released by 40 homes (18.4/0.458 =40).
Calculation #2 - Determines how long the leach line must be.
Leach Line Length* = T:.hornes x' T- 91f1home (sandy soil)
In feet to be divide: e'ye01l ..b6veeri tile° number of sandfilters
Leach Line Length* = 9 .'h'o'me's- x 3:8 If /home (silty sail)
In feet to be divided evenly between "the number of sandfilters
34.2. I_F: KAIN 35 l,f pRavte�g
The critical aspect in sizing the leach line length is related to.its ability to maintain a sustained
percolation rate Cie 24-7 -365) in saturated soil, therefgre,.forthe. purposes of this calculation, it is
assumed that the sustained percolation rate in saturated'soili§ 025 in/hr.(Note: if the soil is silty;:
more than 5% by weight passing the 200 sieve, t1i &-percOlation rate shall be reduced to. 0.125
in/hr). The leach line arch provides 2.8 sf of percolation surface per lineal foot of leach line
length. If the average nuisance water discharge per house in the neighborhood is 20 gallons per
day that means each house must have.5;35 sf percolatioA.area in the leach field to percolate
its 24-hr nuisance water discharge. There fore,'the leach [in' ne length must be 1.9 If/home.
APPROVED STANOARQ
OB 21 O1 _
CHRIS. A. VOGT r�
CITY' ENGINEER �%.
RCE 44250 SAND FILTER
SHEET ffli. OF' 7
28/32
MARQUE SSA LaNE
SANDFILTER SIZING CALCULATIONS
Calculation #1 Determines how many standard size sandfilters are needed.
No.* of Sandfilters = 17 homes -- 40 homes /san It
dfi er
Round all fractions up to the nearest whole number.
I SAND FIL.TE P, REC4' ID
Each sandfilter has 48 sf of filter surface (ie 6' x 8); assume the incoming nuisance water will
percolate through the sand at the rate of 4.6 inches per hour. The sandfitter must be sized to
handle the "surge inflow rate" of 0.458 cf /house/hour, which is based on the assumption that, on
average, each house releases 12 gallons in a 3.5 hour "surge" period. Therefore, each sandfilter
is capable of handling 18.4 cf /hour. As a result, each,sandfilter can handle the nuisance water
released by 40. homes (18.4/0.458 =40).
Calculation #2 - Determines how long the leach line must be.
Leach Line Length* = homes x 1.9 If /home (sandy soil)
In feet to be divided even ly.between the number of sandfilters
Leach Line Length* _ 17 homes x -18 If /home (silty soil)
' In feet to be divided evenly between the number of sandfilters
LF M %N G5 ct= .9(Z0V%DE0
The critical aspect in sizing the leach line length is related to its ability to maintain a sustained
percolation rate (e 24 -7 -365) in saturated soil, therefore, for the purposes of this calculation, itis.
assumed that the sustained percolation rate in saturated soil is 0.25 in/hr.(Note: if the soil'is silty-,
more than 5% by weight passing the 200 sieve, the percolation rate shall be reduced to 0:125'° .�• ...
in/hr). The leach line arch provides 2.8 sf of percolation surface per lineal foot of leach line
length. If the average nuisance water discharge per house in the neighborhood is 20 gallons per
day that means each house must have 5.35 sf of percolation area in the leach field to percolate
its 24-hr nuisance water discharge. Therefore, the leach line length must be 1.9 If /home.
APPROVED
CHRIS A. VOGT
CITY: ENGINEER
ICE 4 250
r��7 t
SAND FILTER
STANDARD
37.0
SHEET fft OF 7
a�
ul
n
D
r
m
II
O
O
m
T
T
m
0
z
07
7
,re
�a
4.
CITY OF II`4DIO
50TH AVENUE
52ND AVENUE
... -.
2113
0 n
°- 0 0
Z -n-
Lon —
p m
C
z m O
D
TOACT NO. 30(:36
5NEfT.GAPAUTY CALCUL*Ti0XJe7
I
Rw
i
?C n � u ✓o I u ��t�ed �d T.C. A 3 ,° I'
R ALFA 2
I p WRBF.CH '
15,09 0. 030 ' >�
A D D R W j-
� D p D D D D •� � V �
o, 0,33 � uw
I
R :.Y7 = �. s3
0, 30 +0,03
A rill
To I YoIea mo, = 3.50 V0jLlfr7e
_ 1Na �ilr� Pare ev►¢ I"dr
i
1 Q: +O LIP b 0. 514 ±2.00-7:+ 1,6,001+,03D
1 -- LJ
w P -' 3,5� ►f8�
i 1a,5�
= �`�'�t�o 1o7) ,
n ;alp
2,ic� fps _
1
0= VA (o,45 cis
No Qloo occurs, on a y Iz 11Y2Ql 41,t f ex and ,,? a,48 c4 me cap
� 1� 6fYddf j6
1 ►¢p G , T ra�ov� qll 5-Ire-&46 Lui ",.w ✓4e_- will Garr Q
y �
1-
q
Sladden Engineering
8782 Stanton Ave., Suite A, Buena Park, CA 90621 (714) 523 -0952 Fax (714) 523 -1369
39 -725 Garand Ln., Suite G, Palm Desert, CA 92211 (760) 772 -3803 Fax (760) 772 -3895
August 30, 2004
Project No. 544 -2097
04 -08 -599
Alpine Real Property Equity Croup, Inc.
41 -800 Washington Street, #13105 -220
Bermuda Dunes, California 92203
Attention. Mr. Bob Davis
Project: Proposed Residential Development .
Avenue 52 — Tract 30138
La Quinta, California
i;
' Subject. Infiltration Testing for Stormwater Retention
As requested, we have performed infiltration testing on the subject site in order to determine the
' percolation potential of the surface soils. The percolation /infiltration rates determined should'be
useful in assessing stormwater retention needs. It. is our' understanding that onsite
stormwater /nuisance water retention is required. It (s proposed to collect runoff within shallow
' retention basins.
Infiltration testing was performed within test holes excavated to the expected: depths of the
' retention basins. Infiltration testing was performed on August 1.6, 2004. Test resul
summarized below, ts are
Test Location Percolation Rate
A 8 inches /hour
B 7.5 inches /hour
1
It should be noted that the infiltration rates determined by testing are ultimate rates based upon
Short duration field test results in the specific test locations. An appropriate safety factor should
be applied prior to use in design to account for- potential subsoil inconsistencies, possible
compaction related to site grading, and potential silting of the percolating soils. The safety factor
' should be determined with consideration to other factors in the stormwater retention system
design, (particularly stormwater volume estimates) and the safety factors associated with those
design components.
� i
011y (3(lli
1 U.Un WIvA hi)nnN1r i,wvj
31! 32':
August 30, 2004
-2-
Project No. 544 -2097
04 -08 -599
If there are any questions regarding this memo, please contact the undersigned.
Respectfully submitted,
SLADDEN ENGINEERING �•
o � -�:o. , -• .,; :,;rye ,
ANUF�
M
Brett L. Anderso w Exp. 913=6 M
Principal Engineer *)
Perc /pc
Copies - 2 /Alpine Real property Equity Group, Jnc.-
1 /AMC Civil Design
Sladdeto E1r[�inecriec,
I UIOI/1 iilv:l ulnnu,n. W. AU i
3232