Loading...
32117 Quarry Draft�j211I ��I III 11111111111 IIII 27 IE ........ IE HYDROLOGY, HYDRAULICS AND DRAINAGE CONCEPT STUDY FOR QUARRY RANCH GOLF COURSE AND DEVELOPMENT PROJECT TENTATIVE TRACT MAP NO. 30651 LA QUINTA, RIVERSIDE COUNTY, CALIFORNIA DRAFT July 2002 Prepared for: Quarry Ranch, LLC 1 Quarry Lane La Quinta, CA 92253 Prepared by: Tettemer and Associates, Inc. A Division of The Keith Companies Tett emer S, Associates _consulting engineer s 1 1 1 1 1 1 '1 i HYDROLOGY, HYDRAULICS AND DRAINAGE CONCEPT STUDY FOR QUARRY RANCH GOLF COURSE AND DEVELOPMENT PROJECT TENTATIVE TRACT MAP NO. 30651 LA QUINTA, RIVERSIDE COUNTY, CALIFORNIA July 2002 Prepared for: Quarry Ranch, LLC 1 Quarry Lane La Quinta, CA 92253 Prepared by: Tettemer and Associates; Inc. A Division of The Keith Companies 07nzioz ��`�� --_--~~~�~~�v^wNTENTS 1. ------` .,,.,.,..,...-........,-,...-.,...,.....~� 1.1 SCOPE OF STUDY AND LOCATION --...-.-...-..�......-.......— 1.2 PURPOSE ......................... 2. -HYDROLOGY '^``^~``^`^^^^^^^^^^^^~^^^^^^` 2.1 PREVIOUS DIES''''''�'�'�'''�'''�'''�''�'�''����'''�''''�� 2.2 HYDROLOGIC CRITERIA �....�..�...�.....�'..��........��......... 2.3 HYDROLOGY METHODOL ------''—''-'--''''--'-'''''''' 2.4 RESULTS ''—''''''''—''''—''--''`'-'`''-- 2.5 HYDROLOGY '—'''--''—~''''''--''------'''--''''—' 3. TATION�..^......,.....,........, 4. AULICS.,..�..,....,..,..,..,.......,.. 4.1 STORAGE . -4.2 4 ---- ----'--'—'-'''—''-'''''''''-' 4'3 HYDRAULIC ANALYSIS FOR IL CANYON DIKE''''''..'''..`.. 5. CONCLUSIONS ^~~^^^^^^^^^^^^^^^^^^^^``^` 6. F— '--ES.........,.,....,.,.-........,...... ...........^.^..,._.^.......,....,.^....,...,,9 FIGUREl-....---...�.''�.—'''''---''—'''''''''''''''''''--''�'''' �� I ���S �^^^^``^^�`^^```^�`^^^^^^^`^`^ .......'.. ^~~^^^``^^^^^^^^^^^^^^^`^^^^-^`^~10 ePPEND1XA HYDRAULIC ANALYSIS _...�.��...�.�-...-'.....-'....— ANALYSIS ......�...--..�....-'.....�.. eu^1E��1JIX(� \�S}�L]8 T�TK]�l�o.2 CALCULATION .�...'... APPENDIX D DIKE No. 2 STAGE-STORAGE CALCULATION ...... 1• INTRODUCTION I.I. Scope of Study y a nd Location 1 This report presents the results of a hydrologic, hydraulic and drainage concept study performed for the proposed Quarry Ranch Golf Course and Development Project, Tentative Tract Map No. 30651 (Project). The project consists of 1 construction of a golf course and 28 custom homes development on a 75 -acre site within the City of La Quinta. The project site is bounded by Avenue 58 on the north, future Jefferson Street extension on the east, undeveloped land on the south, and Tom Fazio Lane South on the west, in T6S, R7E. The Quarry At La Quinta golf course and residential development is located on the west side of the Project. The Project is situated on the easterly slopes of the Santa Rosa Mountains, among a natural drainage course. A flood control levee known as Dike No. 2 is located on the northeast side of the Project. Another flood control levee (hereinafter called Devil Canyon Dike) is located approximately 4,000 feet upstream of the Project. This levee intercepts flows in Devil Canyon and diverts them toward Dike No. 4, preventing the Devil Canyon watershed flows from entering the drainage area tributary to Dike No. 2. Devil Canyon Dike is acting as a southerly drainage boundary for the drainage area directly tributary to the Project. See Figure 1 Watershed Map. 1.2. Purpose The Project is subject to storm flows from off -site and on -site drainage areas. A portion of the Project site, consisting of lot Nos. 1 through 10, 27 and 28, is located within the flood storage area for Dike No. 2. The purpose of this study is to: • Establish the 100 -year and Standard Project Flood (SPF) peak flow discharges and volumes for the off -site drainage area tributary to the Project site; • Evaluate the hydrologic condition of the site with and without Devil Canyon overflow (with and without the Devil Canyon Dike in place); • Determine the impact of the Project to storage capacity of Dike No. 2 during a SPF* event with and without Devil Canyon Dike in place; • Establish the minimum pad elevation for residential lots located within the flood storage area of Dike No. 2; • Develop a drainage conveyance system to intercept and divert the off - site flood flows during a100 -year storm event; and • Determine velocities and scour condition behind Devil Canyon Dike during a SPF storm event. KM 10197\doc\KV_Quntry Ra=h Dminage Concept study I. 2• `HYDROLOGY 2.1. Previous Studies Dike Nos..2 and 4 are part of a flood control levee system that provides flood protection for Coachella Valley from the Standard Project Flood (SPF) runoff from drainage watersheds of the eastern slopes of the Santa Rosa Mountains. Dike No. 2 begins in the northwest, from the hills southwest of Lake Cahuilla, �. and extends southeasterly to the lulls of Devil Canyon, east of the future Jefferson Street extension. Two natural drainage areas (Subareas D/E and K), ' and the over flow from the Quarry At La Quinta are directly tributary to Dike No. 2 during a SPF storm event. Six natural drainage areas are tributary to the I Quarry At La Quinta. The proposed project is located within the drainage ' subarea K, one of the two natural drainage courses tributary to Dike No.. 2. The southerly boundary of subarea Area K is Devil Canyon Dike. Several hydrologic studies have been previously performed for the tributary to Dike No. 2. They include the Keith Companies' hydrol__ _ o dad hydraulic analysis for the u � - ____.___ Q arty At La Quinta_Project completed.in 1998 (TKC Analysis .The analysis was reviewed and approved by the District in i99 . The analysis provided SPF discharges for the watershed tributary to Dike No. 2 and also established the maximum water surface elevation behind ' Dike No. 2 during a SPF event. The TKC Analysis used September ' "Indio Storm," with a total rainfall of 6.45- inches occurring in n 6 hours, for SPF analysis. 2.2. Hydrologic Criteria The SPF event was used for evaluating the impact of the project to the storage capacity of Dike No. 2 and for the establishing the minimum pad elevation for t...' lot Nos. 1 through 10, 27 and 28. The unbulked SPF storm event was used for sizing the drainage ditch south of the Project and the drainage conveyance crossing the footprint of future Jefferson Street extension. KU I0I97kd0c\MV_Qu=y, Ranch Drainage Concept Study G 2.3. Hydrology Methodology The hydrology study performed for the Project examined the watersheds tributary to the natural wash conveyances described above. The study used the Synthetic Unit Hydrograph procedure as defined in the Riverside County Flood Control and Water Conservation District Hydroloa an Manual) in conjunction with rainfall intensity and distrib tion inform Iron logy established by the U.S. Army Corps of Engineers, Los Angeles District (Corps) to compute the 100 -year peak flow rates. The underlying hydrologic Parameters applicable to the Project area are summarized in Table 1 below. CIVILD Riverside County Unit Hydrograph Program was used to perform the Synthetic Unit Hydrograph computations. 2.4. Off -site Hydrology Results The results of hydrologic data contained in TKC Analysis for drainage areas A, B, C, D/E, F, H, I and K were - utilized to evaluate the impact of the project to the storage behind Dike No. 2. A hydrology study was performed to determine 100 -year and SPF peak discharges and flood volumes for the drainage area (Area K2) tributary to Devil Canyon Dike. This analysis was performed to evaluate the drainage condition if Devil Canyon Dike does not function and overflow from the Devil Canyon Watershed flows into the Dike No. 2 .watershed. The drainage boundary for the watershed was delineated. -using the 1" =200' scale topo map prepared by TKC in 2001. A field investigation was performed to examine the site and to confirm the drainage are boundary. The SPF flood volume for Area K2 was added to the total SPF flood volume tributary to Dike No. 2 and compared with the available storage at Dike No.2. The 100 -year peak discharge for Area K2 was also added to 100 -year discharges for subarea K to examine the adequacy of the proposed drainage ditch located behind the south side of the Project, to convey the off -site flows. Table 1 below shows the hydrolo c parameters The results of the hydrologic analysis and the re results of the TKC n alysis are tabulated in Table 2 below. Figure 1 shows the watershed subarea ' designations, node numbers, and watercourses: Appendix B contains the hydrologic calculations. 1 M1101971doc\MV_Qaatry Ranch Drainage Concept Study 1 3 Table 1 Hydrologic Parameters for 100--Year and SPF Events t Table 2 Results of Hydrology Study Drainage Area Drainage 100 -Year 1,338.0 Area (ac) Peak Flow 228.7 33.7 (cfs) K 375.2 — K plus Devil 846.7 932 Canyon Dike 9,663:7 278.8 Watershed (Area K2) D/E 67.0 — D/E and K 442.2 — D/E, K plus Devil 913.7 — Canyon Dike Watershed (Area KZ) A, B, C, F, H and I 2,005.0 — 2.5 On -Site Hydrology 3PF Peak glow (cfs) 1 SPF Volume (ac -ft) 194.6 Dike No. 2 Storage Capacity (ac -ft) — 1,338.0 321.5 — 228.7 33.7 — 1,258.2, 228.3 183.3 1,566.7 355.1 281.6 5,651.4 9,663:7 278.8 The runoff generated from within the Project site will be conveyed through an on -site drainage system. The system will collect flows from the streets through catch basins and convey them into the golf course. The storage area within ,the golf course will have sufficient capacity to store the entire 100 -year flood flows. Emergency secondary overflow will be c6nstructed between lot Nos. 4 and 5 and between lot Nos. 10 and 11. RU I0197\doc\MV_Qua,ry Rauch Drainage Concept Study 4 3. SEDIMENTATION The sediment production study was performed for the drainage area tributary to Devil Canyon Dike using the Corps' Debris Method dated February 1992 and updated in February 2000. The results of the sediment production study are tabulated below. Table 3 Results of Sediment Production Analysis U.S. Army Corps of Engineers, Los Angeles District's'Debris Method Steam Name SPF Sediment Production Cubic Yards /Acre -feet Devil Canyon Dike 17,207.6/ 10.6 Watershed Based on the results of the Sediment Yield analysis, 10.6 acre -feet was added to SPF volume for Devil Canyon Dike watershed. 4. HYDRAULICS The following provides a description of the hydraulic analyses performed to determine the effect of the Project on the basin storage capacity of Dike No.2 and to size the drainage system to handle off -site flows south of the Project. A hydraulic analysis was also performed to determine the potential for scour of the southerly side of the Boundary Levee. 4.1. Storage Capacity of Dike No. 2 and Dike Minimum Pad Elevation A stage- storage calculation was performed for Dike No. 2 for the project in place condition. The stage- storage information contained in TKC Analysis was used for the existing condition. The Dike has a net storage capacity of 738 acre -feet at elevation 30 feet for the existing condition. With project in place, the storage capacity of Dike No. 2 will be increased to 817 acre -feet. The increase in volume is mainly due to lowering the existing ground within the Project for the construction of the golf course. The maximum water surface elevation including debris loading with the project in place and with no overflow from Devil Canyon Dike will remain at 24.54 feet. The maximum water surface elevation with overflow from the Devil Canyon Dike Watershed, including 10.6 acre -feet of debris loading and 2 -inch percolation, is 26.88 feet. The results of the analysis showed that the project will not have an adverse impact to the basin storage capacity of Dike No. 2. The minimum pad elevation for lot Nos. 27 and 28 is set at 27.00 feet, approximately 2.46 feet M11019?Ndoc\MV_Quatry Ranch Drainage Concept Study 5 Notes: (1) SPF volume includes 14.7 ac -ft of debris loading (see TKC Analysis) from, areas A, B, for the post - project condition. (2) SPF volume includes 10.6 ac -ft. additional debris from Devil Canyon Dike Watershed (see Table 5 below). 4.2. Off -site Drainage System The off -site flows tributary to the project are from Drainage Area K. Without the Project in place (existing condition) storm flows from this area travel northerly toward the Project site and an stored behind Dike No. 2. The total off -site drainage area is approximately 375 acres with a SPF peak discharge rate of 1,075 cfs. The southerly boundary of this drainage area is the Devil Canyon Dike. The drainage area tributary to Project will increase to 846 acres if Devil Canyon Dike is not in place. The SPF and 100 -year peak discharges for this scenario are 1,338 cfs and 932 cfs, respectively. i• A hydraulic analysis was performed using normal depth calculations to size the required drainage system for handling off -site SPF peak flow of 1,338 cfs assuming that Devil Canyon Dike is not in place. The off -site drainages stem consist of the construction of a floodwall along the southerly boundary of the Project to intercept flows and an earthen drainage ditch along the toe of the floodwall to convey flows easterly towards Dike No. 2 and through the future Jefferson Street. A trapezoidal channel will convey flows .within the footprint M1IOt97\doc\MV_Quatry Ranch Drainage Concept Study 6 above the SPF maximum water surface elevation with no over flow from the Devil Canyon Dike Watershed and 0.2 feet above SPF level with overflow from Devil Canyon Dike Watershed. Table 4 below provides storage information for Dike No. 2. Table 4 ' Dike No. 2 Storage Information SPF Volume Available Storage at Elevation 30 1 ( ) .(1) acre -ft (.) Drainage Area (acre -ft.) Without With Project Project D/E, K, Overflow from 476.8 Quarry At La Quinta 58.6 137.9 D/E, K; Overflow from 590.3 Quarry At La Quinta and Devil Canyon Dike Watershed (2) Notes: (1) SPF volume includes 14.7 ac -ft of debris loading (see TKC Analysis) from, areas A, B, for the post - project condition. (2) SPF volume includes 10.6 ac -ft. additional debris from Devil Canyon Dike Watershed (see Table 5 below). 4.2. Off -site Drainage System The off -site flows tributary to the project are from Drainage Area K. Without the Project in place (existing condition) storm flows from this area travel northerly toward the Project site and an stored behind Dike No. 2. The total off -site drainage area is approximately 375 acres with a SPF peak discharge rate of 1,075 cfs. The southerly boundary of this drainage area is the Devil Canyon Dike. The drainage area tributary to Project will increase to 846 acres if Devil Canyon Dike is not in place. The SPF and 100 -year peak discharges for this scenario are 1,338 cfs and 932 cfs, respectively. i• A hydraulic analysis was performed using normal depth calculations to size the required drainage system for handling off -site SPF peak flow of 1,338 cfs assuming that Devil Canyon Dike is not in place. The off -site drainages stem consist of the construction of a floodwall along the southerly boundary of the Project to intercept flows and an earthen drainage ditch along the toe of the floodwall to convey flows easterly towards Dike No. 2 and through the future Jefferson Street. A trapezoidal channel will convey flows .within the footprint M1IOt97\doc\MV_Quatry Ranch Drainage Concept Study 6 1 I� i �r c of the future Jefferson Street. The trapezoidal channel will be removed-and replaced with an underground culvert as a part of the future Jefferson Street improvements. A riprap energy dissipater structure will be constructed downstream of the trapezoidal channel to prevent erosion. The sizes and hydraulic characteristics of the drainage system for the off -site flows are listed in table 5 below. Channel Type Earthen Ditch with flood wall Earthen Ditch with flood wall Trapezoidal Channel Table 5 Hydraulic Characteristics of Off -site Drainage System Location Base Flow Slopes Width Depth (ft/ft) (ft.) (ft.) South west 21.00 4.60 side of project South side of project Within Future Jefferson Road right of wav 42.00 7.70 20.00 5.40 Side SPF Velocity Slopes Discharge (fps) . (ft/ft) Capacity (cfs) 22% 270 6.00 18.5% 1,330 8.34 2:1 1,338 8.22 The minimum pad elevation for the lots located on the south side of the project (lots 17 through 25) will be set at least 1.5 feet above the water surface elevation in the proposed drainage ditch behind the flood wall. 4.3. Hydraulic Analysis For Devil Canyon Dike A hydraulic analysis was performed for the area adjacent to Devil Canyon Dike for the 100 -year and SPF flows generated from the tributary drainage area within Devil Canyon Watershed. The U.S. Army Corps of Engineers Hydrologic Engineering Center River Analysis System (HEC -RAS) model was used for this analysis. Cross sections for the HEC -RAS model were taken along the entire length of the Devil Canyon Dike. The results of this analysis are summarized in Appendix A. The results of the analysis show that the SPF velocities along the southerly t side of the levee are non - erosive, ranging from 4.84 feet per second (fps) to 6.57 fps. l..' K \110197\doe\MV_Quarry Ranh Drainage Concept Study 7 5• -CONCLUSIONS Based on the results of analyses performed,the following conclusions are made. • The proposed project will not adversely impact the storage capacity of Dike No. 2 during a SPF event and will provide more storage capacity for basin behind Dike No. 2 as compared with'the existing condition; • The elevation of the pads for the lots located within the Dike No. 2 storage area will be set above SPF peak stage assuming Devil Canyon Dike is not in place; • The off -site storm flows and sediment, generated from the drainage area south of project, will be conveyed by a drainage system into the Dike No. 2 Basin; • On -site flows will be stored-within the project site; • The SPF flows conveyed along the southerly side of the existing levee, upstream of the drainage area south the proposed Project (Devil Canyon Dike), are not erosive and erosion protection of the side slopes of the dike is not required. K111019Td0c�MV_Quarry Ranch Dramage Concept Smdy 8 1 6. FIGURES Figure 1 Watershed Map K1110197\doc1MV_Quatry Ranch Drainage Concept Study 9 I 1 7. 11 APPENDICES APPENDIX A APPENDIX B APPENDIX C APPENDIX D HYDRAULIC ANALYSIS HYDROLOGIC ANALYSIS WSEL BEHIND DIKE No. 2 CALCULATION DIKE No. 2 STAGE-STORAGE CALCULATION Kkl 10197\dOCXW—Quarry Ranch Drainage Concept Study 10 APPENDIX A HYDRAULIC ANALYSIS • Proposed Drainage V -Ditch Analysis — FlowMaster Calculation • Existing Devil Canyon Wash (South of Area K) Capacity Analysis - FlowMaster Calculation Existing Channel (Along Existing Berm, South of Area K) Capacity Analysis - HEC -RAS Analysis •0 Proposed Drainage V -Ditch Analysis — F1owMaster Calculation Projec Rep ®r# The Keith Companies Ia Date: Qi- �p Z �p�) - Project:_ R Job No: 6 y Z Re: By: J,,1 Contact: Phone: PRo. q uA RR r Rl W 12�t�rc�r -E ►�3 I�/' 0 DK"—� 6 '> ►T CH SccT, a,.J S SLopE katt ff" , ►8.5% �2,p� S °I T� oC 4 e. F '�T IJA-T r s�_ i-rT G cLP) dOcAT 0^l i 1338 a To In LJ i T, it -Quarry 'Ranch V,ditch Alternative Worksheet for Triangular-Channel Project Description Worksheet Triangular Channel - 1 Flow. Element Triangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.030 Slope 0.006000 fUft Left Side Slope 4.55 H : V Right Side Slope 0.00 H : V Discharge . 270.00 cis Results Depth 4.55 It Flow Area 47.1 ft2 Wetted Perimeter 25.74 it Top Width 20.69 ft Critical Depth 3.88 ft Critical Slope 0.014067 ft/ft Velocity 5.74 ft/s Velocity Head 0.51 it Specific Energy 5.06 ft Froude Number 0.67 Flow Type Subcriticai c:\haestad\fmw \projectl.fm2 JOHN TETTEMER AND ASSOCIATES LTD Project Engineer: MIS I 07/02/02 08:28:26 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury , CT 06708 USA (203) 755 -1666 FlowMaster v6.1 [6140] Page 1 of 1 Mannings Coefficient 0.030 Slope 0.006000 ft/ft Depth Quarry Ranch V -ditch Alternative (Q =1338 cfs) Right Side Slope ' Discharge Worksheet-for Triangular Channel Results Project Description Left Side Slope 5.41 H : V Worksheet SPF 8 to C Wetted Perimeter Flow Element Triangular Channel 41.68 ft Method Manning's Formula Critical Slope Solve For Left Side Slope 8.34 ft /s Velocity Head Input Data Specific Energy Mannings Coefficient 0.030 Slope 0.006000 ft/ft Depth 7.70 ft Right Side Slope 0.00 H : V Discharge 1,338.00 cfs Results Left Side Slope 5.41 H : V Flow Area 160.5 ft? Wetted Perimeter . 50.09 ft Top Width 41.68 ft Critical Depth 6.86 ft Critical Slope 0.011110 ft/ft Velocity 8.34 ft /s Velocity Head 1.08 ft Specific Energy 8.78 ft Froude Number 0.75 Flow Type Subcritical c t f ..:,c: \... \profiles\a_chu .000 \desktop\spf_a_k_btoc.fm2 JOHN TETTEMER AND ASSOCIATES LTD Project Engineer: MIS 07/10/02 11:28:29 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA FlowMaster v6.1 [ 1 of (203) 755 -1666 1 Page 1 of 1 1 0.035 ' 0.006500 ft (ft Left Side Slope 'Quarry:Ranch Trapezoidal Alternative (Q =-1338 cfs) Right Side Slope 2.00 H : V Worksheet'for Trapezoidal Channel ,. Project Description Worksheet Trapezoidal Alt Flow Element Trapezoidal Channel Method Manning's Formula Flow Area Solve For Channel Depth 4.3,77 ft Input Data 41.26 ft Critical Depth 4.44 ft Critical Slope Mannings Coefficient 0.035 Slope 0.006500 ft (ft Left Side Slope 2.00 H : V Right Side Slope 2.00 H : V Bottom Width 20.00 ft Discharge 1,338.00 cfs Results Depth 5.32 ft Flow Area 162.8 ft2 Wetted Perimeter 4.3,77 ft Top Width 41.26 ft Critical Depth 4.44 ft Critical Slope 0.012766 ft/ft Velocity 8.22 ft/s Velocity Head 1.05 It Specific Energy 6.37 ft Froude Number 0.73 Flow Type Subcritical k:\ .. \hydrology \flow master\gr�trap_chan.fm2 JOHN TETTEMEA AND ASSOCIATES LTD Project Engineer: MIS 07/12/02 01:54:44 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA 203 755 -1666 FlowMaster v6.1 [1 of 1 � � Page 1 of 1 Cross `.Section Cross .Section -for Trapezoidal Channel Project Description Worksheet Trapezoidal Alt Flow Element Trapezoidal Channel Method Manning's Formula Solve For Channel Depth Section Data Mannings Coefficient 0.035 Slope 0.006500 ft/ft Depth 5.32 ft Left Side Slope 2.00 H : V Right Side Slope 2.00 H : V Bottom Width 20.00 ft Discharge 1,338.00 cfs 0.00 ft 1.68 "(F-13), I 5.32 ft 7 / V :1 N H:1 NITS k :\ ..\hydrology \flow master \gr_ptrap_chan.fm2 JOHN TETTEMER AND ASSOCIATES LTD Project Engineer: MIS 07/12/02 01:54:55 PM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA FlowMaster v6.1 (614x] (203) 755 -1666 Page 1 of 1 • Existing Devil Canyon Wash (South of Area K) Capacity Analysis - F1owMaster Calculation 1 w Existing Devil Canyon Wash (South of Area K) Capacity Analysis - F1owMaster Calculation t t t t Quarry'Ranch Area ,K Worksheet for Irregular Channel Project Description Mannings Coefficient Worksheet X- Section Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data Flow Area Slope 0.049180 tVft Water Surface Elevation 250.00 ft Options Current Roughness Method Improved Lotter's Method Open Channel Weighting Method Improved Lotter's Method Closed Channel Weighting Method Horton's Method Results } ,c: \winnt \profiles\a_chu.000 \desktop \laquinta.fm2 JOHN TETTEMER AND ASSOCIATES LTD Project Engineer: MIS 07/09/02 09:00:10 AM p 1 Haestad Methods, Inc: 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 FlowMaster v6.1 [ of 1 • Page 1 of 1 Mannings Coefficient 0.038 Elevation Range 230.00 to 260.00 Discharge 149,986.05 cfs Flow Area 3,225.0 ft2 Wetted Perimeter 259.66 ft Top Width 255.00 ft Actual Depth 20.00 ft r Critical Elevation 255.63 ft Critical Slope 0.010834 ft/ft Velocity 46.51 fUs Velocity Head 33.51 ft Specific Energy 283.61 ft Froude Number 2.31 e• { Flow Type Supercritical Roughness Segments f Start End Mannings Station Station -0 +30 16 +00 Coefficient 0.038 } Natural Channel Points Station Elevation (ft) (ft) -0 +30 1 +20 260.00 260.00 6 +00 250.00 6 +60 250.00 11 +55 250.00 11+80 240.00 12 +30 230.00 13 +75 14+10 240.00 250.00 15 +65 250.00 16 +00 250.00 } ,c: \winnt \profiles\a_chu.000 \desktop \laquinta.fm2 JOHN TETTEMER AND ASSOCIATES LTD Project Engineer: MIS 07/09/02 09:00:10 AM p 1 Haestad Methods, Inc: 37 Brookside Road Waterbury, CT 06708 USA (203) 755 -1666 FlowMaster v6.1 [ of 1 • Page 1 of 1 Cr.oss'Section Cross :Section -for Irregular,Channel Project Description Worksheet X- Section Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Mannings Coefficient 0.038 Slope 0.049180 ft/ft Water Surface Elevation 250.00 ft Elevation Range 230.00 to 260.00 Discharge 149,986.05 cfs 260.00 255.00 250.00 245.00 240.00 235.00 230.00 -2 4 e-t-vu 4 +UU 6 +00 8 +00 10 +00 12 +00 14 +00 16 +00 VA 0.0N H:1 NTS i' i 1 i c: \winnt \profiles \a_chu.000 \desktop \laquinta.fm2 JOHN TETTEMER AND ASSOCIATES LTD Project Engineer: MIS E.., 07/09/02 09:00:28 AM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA FlowMaster v6.1 (614o) (203 755 -1666 Page 1 of 1 fl r� 1 r s. . i f.� I� t 'E r.. • Existing Channel (Along Existing Berm, South of Area K) Capacity Analysis - BEC -RAS Analysis 1 • Existing Channel (Along Existing Berm, South of Area K) Capacity Analysis - BEC -RAS Analysis 1. 1 .1 1 i t QR_burm.rep HEC -RAS Version 3.0.1 Mar 2001 U.S. Army Corp of Engineers Hydrologic Engineering Center 609 Second Street, Suite D Davis, California 95616 -4687 (916) 756 -1104 X X XXXXXX XXXX XXXX XX XXXX X X X X X X X X X X X X X X X X X X X XXXXXXX XXXX X XXX ' XXXX XXXXXX X X X X X X XXXX X X X X X X X X X X X X X X X XXXXXX XXXX X X X X XXXXX PROJECT DATA Project Title: Burm - Quarry Ranch Project File : QR_burm.prj Run Date and Time: 7/10/02 1:37:27 PM Project in English units PLAN DATA Plan Title: Plan 01 Plan File : C: \HEC \RAS \QR_burm.p01 Geometry Title: Existing Burm Geometry File C: \HEC \RAS \QR_burm.g01 Flow Title 100Yr and SPF Flow File C: \HEC \RAS \QR_burm.f02 Plan Summary Information: Number of: Cross Sections = 7 Mulitple Openings = 0 Culverts - 0 Inline Weirs - 0 Bridges 0 - Computational Information Water surface calculation tolerance = 0.003 Critical depth calculaton tolerance = 0.003 Maximum number of interations = 20 Maximum difference tolerance = 0.1 Flow tolerance factor = 0.001 Computation Options Critical depth computed only where necessary Conveyance Calculation Method: At breaks in n values only Friction Slope Method: Average Conveyance Computational Flow Regime:. Mixed Flow FLOW DATA Flow Title: 100Yr and SPF Flow File : C: \HEC \RAS \QR_burm.f02 Flow Data (cfs) River Reach RS 100 YR Flow Quarry River 1 7 519 Boundary Conditions Page 1 SPF 745 1 1 1 1 1 1 1 1 1 1 '1 ,1 1 '1 1 River Reach Profile QR— burm.rep Quarry River 1 100 YR Flow GEOMETRY DATA Geometry Title; Existing Burm Geometry File : C: \HEC \RAS \QR_burm.g01 CROSS SECTION RIVER: Quarry River REACH: 1 RS: 7 INPUT Description: Station Elevation Data num= 10 Sta Elev Sta Elev Sta Elev Sta Elev -150 242.5 -140 245 -130 245 -110 242.5 -80 240 -10 240 70 240 215 242.5 Manning's n Values num= 3 Sta n.Val -150 Sta n Val Sta n Val .038 . -130 .038 310 .038 Bank Sta: Left Right Lengths: Left Channel Right -130 310 320 300 270 CROSS SECTION RIVER: Quarry River REACH: 1 RS: 6 INPUT Description: Station Elevation Data num= 7 Sta Elev -152.5 232.5 Sta -145 Elev Sta Elev Sta 180 232.5 315 235 235 -130 230 -75 Manning's n Values num= 3 Sta n Val -152.5 .038 Sta -145 n Val Sta n Val .038 315 .038 Bank Sta: Left Right Lengths: Left Channel Right -145 315 320 300 240 CROSS SECTION RIVER: Quarry River REACH: 1 RS: 5 INPUT Description: Station Elevation Data num= 8 Sta Elev -120 221.3 Sta -110 Elev Sta Elev 240 225 340 225 227.5 -95 460 230 1 110 10 Manning's n Values num= 3 Sta n Val -120 Sta n Val Sta n Val .038 -110 .038 240 .038 Bank Sta: Left Right' Lengths: Left Channel Right -110 240 310 300 300 CROSS SECTION RIVER: Quarry River REACH: 1 RS: 4 INPUT Description: Station Elevation Data num= 7 Sta Elev -127.5 212.5 Sta Elev Sta Elev Sta 250 215 -120 370 215 217.5 -40 210 95 Manning's n Values num= 3 Page 2 Upstream Critical Sta Elev -90 240 310 245 Coeff Contr. Expan. .1 .3 Elev Sta Elev 230 110 230 Coeff Contr. Expan. .1 .3 Elev Sta Elev 220 165 222.5 Coeff Contr. Expan. .1 .3 Elev Sta Elev 210 140 212.5 Downstream Critical Sta n Val Sta n Val Sta n Val QR hurm.rep -127.5 .038 . -120 .038 250 .038 Bank Sta: Left Right Lengths: Left Channel Right -120 250 350 350 350 CROSS SECTION RIVER: Quarry River REACH` 1 RS: 3 INPUT Description: Station Elevation Data num= 7 Sta Elev Sta Elev Sta Elev Sta -105 201.3 -100 202.5 -90 202.5 -75 170 202.5 530 205 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val -105 .038 -90 .038 170 .038 Bank Sta: Left Right Lengths: Left Channel Right -90 170 310 300 330 CROSS SECTION RIVER: Quarry River REACH: 1 RS: 2 INPUT Description: Station Elevation Data num= '7 Sta Elev Sta Elev Sta Elev Sta -95. 191.2 -90 192.5 -80 192.5 -65 380 192.5 425 195 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val -95 .038 -80 .038 380 .038 Bank Sta: Left Right Lengths: Left Channel Right -80 380 200 200 210 CROSS SECTION RIVER: Quarry River REACH: 1 RS: 1 INPUT Description: Station Elevation Data num= 8 Sta Elev Sta E1 Coeff Contr. Expan. .1 .3 Elev Sta Elev 200 120 200 Coeff Contr. Expen. .1 .3 Elev Sta Elev 190 145 190 Coeff Contr. Expan, .1 .3 -130 185 -110 ev 186.2 Sta -95 Elev Sta Elev Sta Elev 225 185 255 187.5 330 185 187.5 -85 182.5 95 182.5 Manning's n-Values 300 num= 3 3 350 350 Sta -130 n Val Sta n Val Sta n Val 1 i 200 .038 -110 .038 255 .038 0 0 Bank Sta: Left Right Lengths: Left Channel Right -110 255 0 Coeff Contr. Expan. 0 0 .1 .3 SUMMARY OF REACH LENGTHS River.: Quarry River Reach River Sta. Left Channel Right 1 1 6 320 300 270 1 5 320 300 240 1 4 310 300 300 1 3 350 350 350 1 310 300 330 1 i 200 200 210 0 0 0 Page 3 QR_burm.rep SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS River: Quarry River Reach River Sta. Contr. Expan . 1 1 6 .1 .3 1 5 .1 .3 1 4 .1 .3 1 3 .1 .3 1 2 .1 .3 .3 1 .3 ERRORS WARNINGS AND NOTES Errors Warnings and Notes for Plan : Plan 01 River: Quarry River Reach: 1 RS: 7 Profile: 100 YR Flow Warning:The energy equation could not be balanced within the specified number of iterations. The pr ogram used critical depth for the water surface and continued on with the calculations. Warning:The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross sect ion. This may indicate the need for additional cross sections. Warning:During the standard step iterations, when the assumed water surface was set equal 1 depth, the calculated water surface came back below critical depth. ritical answer. The This indicates that there is not validlsubc Program defaulted to critical depth. River: Quarry River Reach: 1 RS: 7 Warning:The ever Profile: SPF gy equation could not be balanced within the specified number of iterations. The pr ogram used critical depth for the water surface and continued on with the calculations. Warning:The This may i energy loss was greater than 1.0 ft (0.3 m). between the current and ion. This may indicate previous cross sect the need for additional cross sections. Warning:During the standard step iterations, when the assumed water surface was set equal to critica 1 depth, the calculated water surface came back below critical depth ritical answer. The . This indicates that there is not a valid subc program defaulted to critical depth. River: Quarry River Reach: 1 RS: a Profile: 100 YR Flow Warning:The ener te loss was greater than 1.0 ft ion. This may indica (0.3 m). between the current and previous cross sect the need for additional cross sections. River: Quarry River Reach: 1 RS: 6 Warning:The conveyance ratio (upstream Profile: SPF conveyance divided by downstream conveyance) is less then 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The energy loss was greater than 1.0 'ft (0.3 m). between the current and previous cross sect ion. This may indicate the need for additional cross sections. River: Quarry River Reach: 1 Warning:The energy a RS: 5 Profile: 100 YR Flow quation could not be balanced within the specified number of iterations. The pr o4ram used critical depth for the water surface and continued on with the calculations. Warning: The energy loss was greater than 1.0 ft (0.3 m) . between the current and previous cross sect ion. This may indicate the need for additional cross sections. Warning:During the standard step iterations, when the assumed water surface was set equal to critica 1 depth, the calculated water surface came back below critical depth. This ritical answer. The indicates that there is not a valid subs program defaulted to critical depth. River: Quarry River Reach: 1 RS: 5 Warning:The ener Profile: SPF gY equation could not be balanced within the specified number of iterations. The pr °gram used critical depth for the water surface and continued on with the'calculations. Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross sect Page 4 ' ion. This may indicate QR_burm.rep the need for additional cross sections. Warning:During the standard step iterations, when the assumed water surface was 1 depth, the calculated set e to water surface came back below critical depth. This indicates that there ritical answer. The goal critics is-not a valid subc program defaulted to critical depth. River: Quarry River Reach: 1 RS: 4 Profile: 100 YR Flow Warning:The energy loss was.greater than 1.0 ft (0.3 m). between the current and ion. This may indicate previous the need for additional cross sections. cross sect ' River: Quarry River Reach: 1 RS: 4 Profile: SPF Warning:The energy loss was greater than 1.0 ft (0.3 m). between the current and ion. This may indicate the need for additional cross sections. r: Quarr Rive River 'Reach: previous cross sect 1 RS: 3 Profile: 100 YR Flow Warning:The energy equation could not be balanced within the specified number of ogram used critical depth iterations. The for the water surface an d continued on with the calculations. Warning :The energy loss was pr i greater than 1.0 ft (0.3 m). between the current and ion. This may'indicate previous the need for additional cross sections. cross sect ' Warning:During the standard step iterations, when the assumed water surface 1 depth, the calculated was set equal to critica water surface came back below critical depth. This indicates that there ritical answer. The is ' program defaulted to critical depth. River: not a valid subc Quarry River Reach: 1 RS: 3 Profile: SPF Warning:The energy equation could not be balanced within the specified number of ogram used critical depth iterations. for the water surface and continued on with the calculations. Warning: The -The pr energy loss was greater than 1.0 ft (0.3 m) . between the current and ion. This may indicate previous the need for additional cross sections. cross sect Warning:During the standard step iterations, when -the assumed 'water surface 1 depth, the calculated was set equal to critics water surface came back below critical depth. This'indicates that there ritical answer. The is not a valid subc Program defaulted to critical depth. River: Quarry River t� Reach: 1 RS: 2 Profile: 100 YR Flow Warning:The energy loss was greater than 1.0 ft (0.3 m) . between the current and ion. This may indicate previous the need for additional cross sections. River: Quarry River cross sect Reach: 1 RS: 2 Profile: SPF Warning:The conveyance ratio (upstream conveyance or greater than 1.4. divided by downstream conveyance) is less than 0.7 This may indicate the need for additional cross sections. Warning:The energy loss was greater than 1.0 ft (0.3 m). between the current and ion. This may indicate previous ?' the need for additional cross sections. River: Quarry River cross sect Reach: 1 RS: 1 Profile: 100 YR Flow Warning:The energy loss was greater than 1.0 ft (0.3 m). between the current and ion. This may indicate previous { the need for additional cross sections. River: Quarry River cross sect Reach: 1 RS: 1 Profile: SPF Warning:The energy loss was greater than 1.0 ft (0.3 m). between the current and ion. This may indicate previous the need for additional cross sections. cross sect i f Page 5 HEC-RAS Plan:. Plan 01 River: Quarry River Reach: 1 118.87 203.20 1.01 . ... ......... 1.01 9, 519 00 230 00 ............. 745 00 230001 230.44 230.531 23 0.521 230.661 230.801 O.o 1.30 231.03 0.051779 5.69 131.02 1.40 519.00 220.01 220.57 220.57 220.86 0.025905 4.25 121.99 219.37 91 /45.00 220.00 220.73 220.73 221.08 0.023965 4.77 6.21 223.24 1.01 1.00 519.00 210.00 x Eau' JTREN . . . . . 145.00 3 210,74 211.12 0.041600 5.61 1.29 . .210.00 210.77 210.94 2, 113.41 161.05 1.38 200.00 9 P� F;, 745.00 200.00 .200.59 200.59 200.88 0.025630 4.31 120.35 210.44 1.00 ....... 200.75 200.75 201.12 0.023774 4.83 154.11 214.57 1.01 519.00 190.00 745.00 190.47 190.55 190.82 0.045733 4.74 109.56 e56.93 1.28 z�- a 190.00 190.56 190.69 191.04 0.050805 5.57 133.75 266.18 1.38 519.00 - fl6 10.1 83.40 0.030606 4.53 114.60 S 1.09 745.001 182.501 183.24 183.27 183.63 0.. 5.02 148.521 221.441 1.08 Burm - Quarry Ranch Plan: Plan 01 Geom: Existing Burm Flow: 100Yr and SPF 1 240 Legend EG SPF f EG 100 YR Flow Crit SPF 230 i` WS SPF Crit 100 YR Flow i.. WS 100 YR Flow Ground 220 c (D 210 W �,.. 200 190 0 500 1000 1500' Main Channel Distance (ft) 0 Burm - Quarry Ranch Plan: Plan 01 Geom: Existing Burm Flow: 100Yr and SPF River = Quarry River Reach = 1 RS = 7 245 I .038 Legend EG SPF EG 100 YR Flow WS SPF 244 .... _ ...... --- - + - -- — Crit SPF WS 100 YR Flow Crit 100 YR Flow Ground i Bank Sta 243 c 0 CO m W 242 241 x- 240 -200 100 0 100 200 300 '400 Station (ft) 0 3 Burm - Quarry Ranch ' Plan: Plan 01 Geom: Existing Burm Flow: 100Yr and SPF River = Quarry River Reach = 1 RS = 5 230 Ip � 038 .038 - 3 Legend 8 +_ EG SPF EG 100 YR Flow WS SPF 228 Crit SPF WS 100 YR Flow Crit 100 YR Flow Ground Bank Sta 226 c 0 Ca a� w 224 222 220 -200 -100 0 100 200 300 400 500 Station (ft) 3 4 Burm - Quarry Ranch Plan: Plan 01 Geom: Existing Burm Flow: 100Yr and SPF River = Quarry River Reach = 1 RS = 4 218 p� 038 .038 --- 3 Legend 8 ......... .. .....& ._.._........ EG SPF EG 100 YR Flow Crit SPF WS SPF 216 Grit 100 YR Flow WS 100 YR Flow Ground i Bank Sta C 214 a� W 212 210-1 -200 -100 0 100 200 300 400 Station (ft) 4 5 Burm - Quarry Ranch Plan: Plan 01 (?eom: Existing Burm Flow: 100Yr and SPF River = Quarry River Reach = 1 RS=3 .038- 205 01- .038 3 Legend 8 A .... .......... EG SPF EG 100 YR Flow WS SPF 204- Crit SPF WS 100 YR Flow Crit 100 YR Flow Ground Bank St, 203 C .0 W 202 201- ......... . ..... %4 200 . . . . . . . . -200 -100 0 100 260 300 460 560 600 Station (ft) 5 6 Burm - Quarry Ranch Plan: Plan 01 Georn: Existing Burm Flow: 100Yr and SPF River = Quarry River Reach = 1 RS = 2 195 10 .038 + 038 3 8 Legend EG SPF EG 00 YR Flow ----------- A-- Crit SPF 194 WS SPF Crit 100 YR Flow WS 100 YR Flow ---- It- Ground Bank Sta 193 C 0 a) W 192 191 19) -100 0 .100 260 300 460 500 Station (ft) 6 7 Burm - Quarry Ranch Plan: Plan 01 Georn: Existing Burm Flow: IOOYr and SPF River = Quarry River' Reach = I RS 188 I 0 .038 038 3 8 Legend .. . .............. E, SPF EG 100 YR Flow 187 Crit SPF WS SPF ---- -4 — Crilt 100 YR Flow WS 100 YR Flow 186 Ground Bank Sta 0 185 W 184 ...... .. . .. 183- .................................................................................................. 1821 1 -200 -100 0 100 260 300 400 Station (ft) 7 - rojectReport Date: 7 h o A2O o h Project: a 6a r�°•ea�r��i } Lc� C•?yi,�q Re: Prn -rnFP Contact: 6urrr _ The Keith Companies Job No: 1A q f BY: !i \3 1F r, Phone: S P F S+o r rr, Tot QI Area from Hem 1i K2 = gddcd Kg re a = �-7 1 .5 6 ac�-C S ,Bp ' Ki `}7 i . 5 a c�crcS 1338cfS g,`E� .78 ao,f�s � QKz i00 ur 3+c)rr -n 6 • _74 p v Qcf�S Qloo = 13 2 CAS C, un + %>��clrogrq��Il� r2 = added Kara = 't 7.1 . 5 Q a cre s goo (� g3Z_C -�.5 _ $�fo .�7a CTCr�d 301 E - 3/02 I APPENDIX -B HYDROLOGIC ANALYSIS c , • Areas K and K2 SPF (Standard Project Flood) Analysis ' - LAPRE1 and BEC-1 Model ' - Areas K and K2 100-Year Unit Hydrograph Analysis Civild Program • Areas D, E, K, and K2 SPF Flood Routing Analysis -Ci.vild Program • Areas K and K2 Debris Yield Calculation r . �t 1 , c , APPENDIX B HYDROLOGIC ANALYSIS °• Areas and K2 SPF (Standard Project Flood) Analysis - LAPREI and DEC -1 Model • Areas K and K2 100 -Year Unit Hydrograph- Analysis - Civild Program • Areas D, E, K, and K2 SPF Flood Routing Analysis - Civild Program • Areas K and K2 Debris'Yield Calculation � I � I Areas K and K2 SPF (Standard Project Flood) Analysis ' - LAPRE1 and HEC -1 Model 1 1 1 1 I l 'FREE TETTEMER & ASSOCIATES QUARRY RANCH AT LA QUINTA, CA HYDROGRAPH FOR AREAS K AND K2 •. r w •,r • ,r * ,e w , r w,r, r,r * w t r *... r,r * w * * r rr ,r PROPOSED CONDITION ANALYSIS . « w*, tw, t* rxr, rrw •rr,e +,t>t,►r'r,rr. * * *,r * *tr* SPF STORM RETURN FREQUENCY f" Filename: K_SPF.I /0 AGRAM !LIST 5,11JUL02,0000,300 iREAK ' 1.323 3,1.323,6.45,0,3 0 0.32 0 3.25,1.58,448.68,0.038,9,0 ' 2 i' 1 i f f1c I j' f t l' i. 6 i t I............... . ............... # * # # # #* k FLOOD HYDROGRAPH PACKAGE (NEC -1) FEBRUARY 1981 REVISED 01 JUN 88 * RUN DATE 07/11/2002 TIME 11:48 :48'* * k#**#*# # * # * # * * # * # # # # * # * # * # * # * # * **# * * #* X X XXXXXXX XXXXX x x x x x x XX x x x x x xxxxxxx xxxx x xxxxx x x x x x x x x x x x x x x xxxxxxx xxxxx xxx # # * U.S. ARMY CORPS OF ENGINEERS * THE HYDROLOGIC ENGINEERING CENTER * 609 SECOND STREET * DAVIS, CALIFORNIA 95616 # # (916) 551 -1748 * # THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC -1 KNOWN AS HEC1 (JAN 73), HEC1GS, HECIDB, AND HECIKW. THE DEFINITIONS OF VARIABLES - RTIMP- AND - RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF - AMSKK- ON RM -CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE.STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM LINE �* FREE * ** 1 2 ' 3 4 5 6 7 '8 10 0 NOLIST * ** r t ' i [r' z z. I� E i I_ h HEC -1 INPUT ID....... I ....... 2 ....... 3 ....... 4 ....... 5 ........ 6 ....... 7 ....... 8 ....... 9 ...... 10 ID TETTEMER & ASSOCIATES ID QUARRY RANCH AT LA QUINTA, CA ID HYDROGRAPH FOR AREAS K AND Q ID + + + + ++ + * + + + + + + + + + + + * + + + + + * + + + + +* ID PROPOSED CONDITION ANALYSIS ID + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ID ID SPF STORM RETURN FREQUENCY ID ID Filename: K SPF.I /0 *DIAGRAM PAGE 1 wwwwwwwwww www *wwwww,rrwwwwwwwwwwwwwwwwwww w FLOOD HYDROGRAPH PACKAGE (HEC -1) ' FEBRUARY 1981 REVISED 01 JUN 88 'RUN DATE 07/11/2002 TIME 11:48:48 ******** * * *ww * *wwwwwwwwwwwwwww *wwwww,ew 12 10 ' IT A 1 TETTEMER & ASSOCIATES QUARRY RANCH AT LA- QUINTA, CA HYDROGRAPH FOR AREAS K AND K2 twwwwwwwwwwwwwwwwwwwwwwwwww ,►wwww PROPOSED CONDITION ANALYSIS SPF STORM RETURN FREQUENCY Filename: K SPF.1 /0 OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE HYDROGRAPH TIME DATA NMIN 5 MINUTES IN COMPUTATION INTERVAL IDATE 11JUL 2 STARTING DATE ITIME 0000 STARTING TIME NQ NDDATE 300 12JUL 2 NUMBER OF HYDROGRAPH ORDINATES NDTIME 0055 ENDING DATE ENDING TIME ICENT 19 CENTURY MARK COMPUTATION INTERVAL .08 HOURS TOTAL TIME BASE 24.92 HOURS ENGLISH UNITS DRAINAGE AREA PRECIPITATION DEPTH LENGTH, ELEVATION FLOW STORAGE VOLUME SURFACE AREA TEMPERATURE SQUARE MILES INCHES FEET CUBIC FEET PER SECOND ACRE -FEET ACRES DEGREES FAHRENHEIT w w * U.S. ARMY CORPS OF ENGINEERS * THE HYDROLOGIC ENGINEERING CENTER * 609 SECOND STREET w * DAVIS, CALIFORNIA 95616 w * (916) 551 -1748 w w * }. ' www *ww www www www www www www www www www www www *ww www www * *w www www www www ww w www www www www www www www www www www k s1 f t * * * * * * *ww *wwww � * w KK * AREAK w * OUTPUT CONTROL VARIABLES IPRNT 2 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE SUBBASIN RUNOFF DATA SUBBASIN CHARACTERISTICS TAREA 1.32 SUBBASIN AREA PRECIPITATION DATA STORM 6.45 BASIN TOTAL PRECIPITATION INCREMENTAL PRECIPITATION PATTERN .23 .23 .39 .39 .39 .46 .46 .54 .62 .46 .46 .46 .54 .46 .39 .46 ..62 .70 .70 .70 .62- .62 .62 .62 77 .77 .77 .77 .85 .85 ' 93 1.39 1.01 1.47 1.01 1.39 1.01 1.47 1.01 1.08 1.08 1.16 1.16 1.32 1.78 1.78 1.78 1.78 1,55 1.70 1.70 1.63 1.63 1.70 ' 2.17 2.17 2.17 2.09 2.09 1.70 1. 1.70 1.70 1.94 .46 .15 1.001 1 .93 .77 .62 25 LU UNIFORM LOSS RATE STRTL .00 INITIAL LOSS ' CNSTL .32 UNIFORM LOSS RATE RTIMP .00 PERCENT IMPERVIOUS AREA 25 UI INPUT UNITGRAPH, 50 ORDINATES, VOLUME = 1.00 ' 178.0 340.0 291.0 291.0 513.0 242.0 925.0 223: 0 1603.0 1196.0 905,0 666.0 504.0 399.0 100.0 89.0 88.0 75.0 198.0 75.0 169.0 146.0 130.0 122.0 107.0 28.1 28.1 28.1 28.1 28.1 67.0 50.0 50.0 50,0 45.0 16,0 16.0 16.0 16.0 16.0 28.1 28.1 16.6 16.0 16.0 1 16.0 16.0 16.0 16.0 13.2 www wx* ww* wxx************** w******* wwxwwwwwwxwwrwwxxwwxwwx wxwwxwxxwwxxxwxxwwxxwwxwwwwwwxxwwwwxwxxwwwwwwxwxwxwx * * *w * * * * * * * * * * *xxwxwwwx HYDROGRAPH AT STATION AREAK . xxwwxwwwwwwwrxwwxwr wxwxwwwwwrwwxxwwwxwwww* wwwwww** wxrxwxwxx*** wwxwxwwwx* xwwwwwxw*** w** wxwxwxwwxwwwwrxwxww * * * * * * * * * * * * *w * *xxxxwxwx ' DA MON HRMN' ORD RAIN LOSS EXCESS COMP Q * 11 JUL 0000 1 DA MON HRMN ORD RAIN LOSS EXCESS COMP 0 11 JUL 0005 2 .00 ,02 .00 .02 .00 pp 0. 0. * 11 JUL 1230 151 .00 ,00 00 ' 11 JUL 0010 3 ,02 ,02 .pp 0. * 11 JUL 1235 152 .00 .00 0• 0. 11 JUL 0015 4 .03 .03 .01 t, ' 11 JUL 1240 153 .00 .00 •00 ,00 0' 11 JUL 0020 5 .03 .03 .pt 3' * 11 JUL 1245 154 .00 ,Op ,pp 0 i 11 JUL 0025 6 .03 ,03 _01 5• * 11 JUL 1250 155 .00 .00 .00 0' 11 JUL 0030 7 ,04 .03 ,01 12, x 11 JUL 1255 156 .00 .00 .00 p, ' 11 JUL 0035 8 .04 .03 ,01 23 * 11 JUL 1300 157 ,00 ,pp p 11 JUL 0040 9 .04 ,03 .01 ' 33' * 11 JUL 1305 158 .00 .00 _pp 0 11 JUL 0045 11 10 ,03 03 01 42' ' 11 JUL 1310 159 .00 .00 .00 ,00 0' JUL 0050 11 04 p3 01 56. * 11 JUL 1315 160 .00 ,pp pp 0' 11 JUL 0055 12 05 .03 .02 66. x 11 JUL 1320 161 .00 .00 .00 0. 11 JUL 0100 'JUL 13 .05 ,03 .02 74, * 11 JUL 1325 162 .00 .00 0. 11 0105 14 .04 .03 .01 79. * 11 JUL 1330 163 .00 .00 .00 0' F 11 JUL 0110 15 .04 .03 01 92. * 11 JUL 1335 164 .00 ,00 ,00 pp 0' 11 JUL 0115 16 04 .03 108. * 11 JUL 1340 165 .00 pp pp 0• 11 JUL 0120 17. ,05 .03 .02 120. * 11 JUL 1345 166 .00 .00 0. 11 JUL 0125 18 ,05 .03 02 11 JUL 1350 167 .00 .00 .00 a 11 JUL 0130 19 .05 .03 .02 123. * 11 JUL 1355 168 ,00 ,pp ,pp 0. 11 JUL 0135 20 05 ,03 .02 131. * 11 JUL 1400 169 .00 .00 .pp p' 11 JUL 0140 21 05 .03 .02 146. w 11 JUL 1405 170 .00 .00 .00 0. 11 JUL 0145 22 ,05 ,03 02 165. * 11 JUL 1410 171 .00 .00 ,00 p t1 JUL 0150 23 ,06 .03 03 180' ' 11 JUL 1415 172 .00 .00 00 0. 11 JUL 0155 24 .06 ,03 .03 793' * 11 JUL 1420 173 .00 .00 ,0p 0' 11 JUL 0200 25 .06 .03 .03 204. * 11 JUL 1425 174 .00 •00 .00 0. 11 JUL 0205 26 .06 .03 .04 218. 11 JUL 1430 175 .00 .00 0• 11 JUL 0210 27 .06 .03 .04 236. * 11 JUL 1435 176 ,00 ,00 ,Op 0. 11 JUL 0215 28 .06 .03 .04 252' * 11 JUL 1440 177 .00 .00 p. 11 JUL 0220 29 06 .03 .04 268. * 11 JUL 1445 178 .00 00 ,pp 00 0' is ' 11 JUL 0225 30 ,07 ,03 .04 287, x 11 JUL 1450 179 00 .00 ,00 p, 11 JUL 0230 31 •07 ,03 .04 11 JUL 1455 180 .00 .00 ,p0 p T1 JUL 0235 32 .08 .03 ,p5 319. * 11 JUL 1500 181 .00 .00 0 P 11 JUL 0240 33 .08 .03 .06 337 * 11 JUL 1505 182 .00 .00 .00 pp 0' 11 JUL 0245 34 08 03 .06 359. * 11 JUL 1510 183 ,00 . 0. ' 11 JUL 0250 35 '06 383' * 11 JUL 1515 184 .00 .00 0' 11 JUL 0255 36 ,08' ,03 .06 410. x 11 JUL 1520 185 .00 .00 ,0p p, p 11 JUL 0300 37 ,09 .03 Ob 439 * 11 JUL 1525 186 .00 .00 .00 .00 p, 11 JUL 0305 38 .09 .03 .06 461. * 11' JUL 1530 187 .00 .00 ,pp p 11 JUL 0310 39 ,10 ,03 •07 482 * 11 JUL 1535 188 00 pp pp p 11 JUL 0315 40 10 . .03 .07 503. * 11 JUL 1540 189 .00 .00 .00 p, 11 JUL 0320 41 .11 ,03 08 11 JUL 1545 190 .00 .00 .00 0, 11 JUL 0325 42 ,12 ,03 p9 558: * 11 JUL 1550 191 .00 .00 ,00 0. 11 JUL 0330 43 .12 .03 .10 591. * 11 JUL 1555 192 .00 .00 ,pp 0. 11 JUL 0335 44 .12 .03 ,09 626 * 11 JUL 1600 193 .00 ,00 ,00 0 11 JUL 0340 45 .12 .03 .10 671. * 11 JUL 1605 194 .00 .00 .00 0. 11 JUL 0345 46 .13 .03 .10 715. * 11 JUL 1610 195 .00 .00 .00 0' y , 11 JUL 0350 1T JUL 0355 47 48 .14 •14 .03 .12 756. * 71 JUL 11 JUL 1615 1620 196 197 ,00 .00 ,pp •00 0. 11 JUL 0400 ,03 .12 790 * 11 JUL .00 .00 0' 49 .14 _03 .11 * 1625 198 .00 .00 ,pp 0. 11 JUL 0405 50 .14 .03 .11 870. 11 JUL 1630 199 .00 ,pp pp 11 JUL 0410 51 .14 .03 .12 914. * 11 JUL 1635 200 .00 .00 .00 0. ' 11 JUL 0415 52 .15 ,03 .12 948 * 11 JUL 1640 201 .00 .00 ,Op p j 11 JUL 1645 202 .00 .00 .00 p, 11 JUL 0420 53 11 .15 .03 .12 971. JUL 0425 54 11 .15 .03 .12 996 * 11 JUL 1650 203 .00 .00 .00 0. JUL 0430 55 11 .15 .03 ,12 1025 * 11 JUL 1655 204 ,00 .00 00 0. JUL 0435 56 11 .15 .03 .12 1055. * 11 JUL 1700 205 ,00 .00 .00 0. JUL 0440 57 .15 .03 .12 1079 * 11 JUL 1705 206 ,00 ;00 00 0' 11 JUL 0445 58 .14 .03 .12 1098. 11 JUL 1710 207 .00 pp 0. 11 JUL 0450 59 .14 .03 .12 1112. * 11 JUL 1715 208 ,00 _00 .00 0, 11 JUL 0455 60 11 .14 .03 .12 1122. * 11 JUL 1720 209 ,00 •00 .00 0. JUL 0500 61 .16 .03 .13 1132. * 11 JUL 1725' 210 ,00 •00 .00 0. 11 JUL 0505 62 .18 .03 .15 1141. 11 JUL 1730 211 ,00 00 .00 0. 11 JUL 0510 63 .18 .03 .15 1158. * 11 JUL 1735 212 ,00 _00 0. 11 JUL 0515 64 ,18 .03 15 1188 * 11 JUL 1740 213 .00 .00 .00 0. 11 JUL 0520 65 11 .17 .03 .15 * 11 JUL 1745 214 .00 .00 .00 0, JUL 0525 66 .17 .03 .15 1295. 11 JUL 1750 215 ,00 .00 .00 0. 11 JUL 0530 67 .14 .03 .12 1330. * 11 JUL 1755 216 .00 .00 0. 11 JUL 0535 68 11 OS .03 .06 1338. * 11 JUL 1800 217 00 _00 .00 .00 0. JUL 0540 69 11 .08 .03 .05 1319. * 11 JUL 1805 218 ,00 00 •00 0. JUL 0545 70 .06 .03 .04 11 JUL 1810 219 ,00 •00 .00 0. 11 JUL 0550 71 .05 .03 ,02 1164. * 11 JUL 1815 220 ,00 •00 0. 11 JUL 0555 72 11 .04 .03 .01 1024. * 11 JUL 1820 221 .00 .00 .00 0. JUL 0600 73 11 .01 900. * 11 JUL 1825 222 .00 .00 .00 0. JUL 0605 74 .00 .00 .00 11 JUL 1830 223 .00 .00 0. 11 JUL 0610 75 11 .00 .00 .00 677. * 11 JUL 1835 224 .00 ,00 •00 .00 0. JUL 0615 76 11 .00 _00 .00 11 JUL 1840 225 .00 ,00 .00 0. JUL 0620 77 11 00 .00 00 .. 492 * 11 JUL 1845 226 ,00 .00 .00 0. JUL 0625 78 11 .00 .00 .00 425. * 11 JUL 1850 227 ,p0 .00 .00 Q,' JUL 0630 79 11 ,00 ,00 ,00 372 * 11 JUL 1855 228 .00 .00 .00 0' JUL 0635 80 11 .00 •00 .00 329. * 11 JUL 1900 229 ;.00 ,00 .00 0. JUL 0640 81 11 00 11 JUL 1905 230 ,pp pp 00 0. JUL 0645 82 11 .00 .00 .00 262. * 11 JUL 1910 231 .00 ,pp .00 0. JUL 0650 83 11 .00 .00 .00 236 * 11 JUL 1915 232 ,00 ,00 .00 0. JUL 0655 84 11 .00 .00 .00 214 * 11 JUL 1920 233 .00 .00 .00 0. JUL 0700 85 11 .00 .00 194 * 11 JUL 1925 234 ,00 .00 .00 0. JUL 0705 86 11 ,00 .00 176• "' 11 JUL 1930 235 ,00 •00 0. JUL 0710 87 11 ,00 .00 .00 160. * 11 JUL 1935 236 .00 .00 i00 0. JUL 0715 88 11 ,00 .00 '00 146. * 11 JUL 1940 237 ,00 ,pp .00 0 JUL 0720 89 11 ,00 .00 .00 11 JUL 1945 238 .00 .00 .00 0. JUL 0725 90 11 ,00 .00 121. * 11 JUL 1950 239 ,00 .00 00 0. JUL 0730 91 11 p0 pp .DO 110 * 11 JUL 1955 240 ,00 pp 00 0. JUL 0735 92 11 .00 .00 .00 99• * 11 JUL 2000 241 ,00 .00 .00 0' JUL 0740 93 11 ,00 .00 00 90. * 11 JUL 2005 242 .00 00 .00 0. JUL 0745 94 .00 •00 .00 82. * 11 JUL 2010 243 .00 .00 00 11 JUL 0750 95 .00 .00 74' * 11 JUL 2015 244 ,p0 . 0. 11 JUL 0755 96 11 ,00 .00 .00 61. * 11 JUL 2020 245 .00 ,00 •00 .00 .00 0 0. JUL 0800 97 11 ,00 0p .00 61• * 11 JUL 2025 246 .00 •00 .00 0 JUL 0805 98 11 •00 00 57' * 11 JUL 2030 247 .00 .00 .00 0. JUL 0810 99 11 ,00 .pp .00 52. * 11 JUL 2035 248 .00 .00 .00 0, JUL 0815 100 11 .00 .00 .00 48. * 11 JUL 2040 249 ,00 .00 .00 0 JUL 0820 101 11 ,00 .00 _00 43' * 11 JUL 2045 250 .00 .00 .00 0. JUL 0825 102 11 .00 •pp •00 39' * 11 JUL 2050 251 ,00 .00 .00 0. JUL 0830 103 11 ,0p .00 .00 36. * 11 JUL 2055 252 .00 ,pp .00 0. JUL 0835 104 11 ,00 .00 .00 32' * 11 JUL 2100 253 .00 .00 .00 0. JUL 0840 105 11 .00 .00 .00 30. * 11 JUL 2105 254 •,00 ,00 •00 0 JUL 0845 106 11 ,00 .00 .00 27' * 11 JUL 2110 255 .00 .00 .00 0. JUL 0850 107 11 ,00 .00 .00 25' * 11 JUL 2115 256 ,p0 •pp .00 0' JUL 0855 108 11 .00 ,00 .00 23' * 11 JUL 2120 257 .00 00 .00 0 JUL 0900 109 11 Op pp 00 21' * 11 JUL 2125 258 .00 pp 00 0. JUL 0905 110 11 ,0p .pp 19' * 11 JUL 2130 259 .00 •00 .00 0 JUL 0910 111 11 ,00 pp .00 16' * 11 JUL 2135 260 .00 .00 ' .00 0. JUL 0915 112 11 .00 .pp .00 14' * 11 JUL 2140 261 ,00 •00 .00 p JUL 0920 113 11 .00 .pp .00 12. * 11 JUL 2145 262 .00 .00 .00 0 JUL 0925 .114 11 .00 •00 .00 9• * 11 JUL 2150 263 .00 .00 .00 0. JUL 0930 115 11 ,00 _00 00 7' * 11 JUL 2155 264 .00 .00 .00 0. JUL 0935 116 11 ,00 .pp 00 4. * 11 JUL 2200 265 .00 ,00 00 0 JUL 0940 117 11 .00 .00 .00 3' * 11 JUL 2205 266 ,00 .00 .00 0. JUL 0945 118 11 ,00 _00 .00 2' * 11 JUL 2210 267 •00 00 ,00 0. JUL 0950 119 11 ,00 .pp .00 1' * 11 JUL 2215 268 .00 00 .00 0 JUL 0955 120 11 ,00 _pp . 00 1' * 11 JUL 2220 269 .00 .00 .00 0. JUL 1000 121 11 ,00 .00 .00 0. * 11 JUL 2225 270 .00 .00 .00 0 JUL 1005 122 11 ,00 ,pp 00 0. * 11 JUL 2230 271 .00 .00 .00 0. JUL 1010 123 11 ,00 •00 .00_ 0. * 11 JUL 2235 272 ,00 _00 .00 0. JUL 1015 124 11 .00 .00 .00 0. * 11 JUL 2240 273 •00 .00 .00 0. JUL 1020 125 11 ,00 .00 .00 0. * 11 JUL 2245 274 ,00 .00 .00 0. JUL 1025 126 11 ,00 _pp 00 0. * 11 JUL 2250 275 .00 00 .00 0. JUL 1030 127 11 .00 •pp .00 0. * 11 JUL 2255 276 .00 ,pp 0. JUL 1035 128 11 ,00 .00 00 0. * 11 JUL 2300 277 ,00 00 .00 0. JUL 1040 129 ,00 _pp 00 0. * 11 JUL 2305 278 ,00 pp 0. 11 JUL 1045 130 ,00 .00 00 0. * 11 JUL 2310 279 ,00 pp .00 00 0. 11 JUL 1050 131 ,00 ,00 00 0. * 11 JUL 2315 280 .00 •00 0. 11 JUL 1055 .132 .00 ,00 .00 0• * 11 JUL 2320 281 .00 .00 ,00 0. 11 JUL 2325 282 ,00 _00 .00 0. ' 11 JUL 1100 133 .00 .00 .00 0. x 11 11 JUL 1105 134 ,pp .00 .00 0. 11 JUL * 2330 283 .00 .00 .00 0 11 JUL 1110 135 ,00 .00 .00 0. 11 JUL * 2335 284 .00 .00 .00 0. ' 11 JUL 1115 136 .00 .00 .00 0. 11 JUL * 2340 285 0 11 JUL 1120 137 ,pp •00 .00 0. 11 JUL * 2345 286 .00 .00 .00 0' 11 JUL 1125 138 ,00 _00 .00 0. 11 JUL w 2350 287 .00 .00 .00 0 11 JUL 1130 139 .00 .00 .00 0. 11 JUL x 2355 288 .00 .00 .00 _ 0. JUL 1135 140 -00 .00 .00 p, 12 JUL x 0000 289 .00 .00 .00 0. ' 11 11 JUL 1140 141 .00 .00 .00 0 * 12. JUL 0005 290 .00 .00 .00 0. 11 JUL 1145 142 pp pp 0' 12 JUL * 0010 291 ,00 00 00 0 11 JUL 1150 143 .00 ,00 :�� 0. 12 JUL * 0015 292 .00 .00 .00 0. 11 JUL 1155 144 ,00 .pp .00 0. 12 JUL * 0020 293 .00 .00 ,00 0, ' 11 JUL 1200 145 00 .00 .00 0. 12 JUL * 0025 294 ,00 0. 11 JUL 1205 146 ,Op .pp .00 0' 12 JUL * 0030 295 ,00 ,00 -00 0 11 JUL 1210 147 ,0p ,00 .00 0. 12 JUL * 0035 296 .00 .00 .00 0. 11 JUL 1215 148 .00 ,00 0. 12 JUL * 0040 297 .00 .00 .00 0. 11 JUL 1220 149 .00 .00 .00 0, 12 JUL * 0045 298 ,00 .00 00 0. ' JUL 1225 150 .00 .00 .00 0• 12 JUL * 0050 299 ,00 .Op .00' 0. kxwxwwwxwwwwwwwwxwwwxww; wwwwwxwwwwwwi. wwwwwxwxwwxwwwwwwwwwwwwwwwwwwwwxwxwwwwwwwxwwwwxxwwxwwxwwxw 12 JUL w 0055 300 .00 .00 .00 0. ,rxwwwwwwwwwwwwwwwwxwwwwxwwxwww TOTAL RAINFALL = 6.45, TOTAL LOSS = 1.89,'TOTAL EXCESS = 4.56 AK FLOW TIME r `(CFS) (HR) MAXIMUM AVERAGE FLOW 1338. 5.58 (CFS) 6 -HR 621. 24 -HR 72 -HR 24.92 -HR (INCHES) 4.367 162. 4.556 156. 4.556 156, (AC -FT) 308. 321. 321. 4 2 3211. . ,1 CUMULATIVE AREA = 1.32 SQ MI ?1 F F ' E s } 71 RUNOFF SUMMARY ' FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, 'AREA IN SQUARE MILES PEAK RAGE OPERATION STATION FLOW TIME PEAK OF A6EHOUR FLOW24 —H URXIMUM72 —HOUR HYDROGRAPH AT AREAK 1338. 5.58 621, 162• 156. NORMAL END OF HEC -1 * ** r i i, t c r . i t t.' F' f, d I }3 BASIN MAXIMUM TIME OF AREA STAGE MAX STAGE 1.32 Areas K and K2 100 -Year Unit Hydrograph Analysis - Civild Program Areas K and K2 100 -Year Unit Hydrograph Analysis - Civild Program 1 II 1 1 1 Keh6100.out ' U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 1998, Version 5.1 Study date 07/10/02 File: keh6100.out 1 +++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ --------------- ----- ---------------- Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 The Keith Companies, Costa Mesa, CA - SIN 708 ---------- -------- - - - - -- _______ ----------------------------- English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format --------- - - - - -- ____________ Quarry Ranch, La Quinta, Ca - - -- 100 Year Proposed Condition Revised Area K ! ----------------------------- - - -- Drainage Area = 846.78(Ac.) = 1.323 Sq. Mi---------------- j' Length along longest watercourse = 17182.90(Ft.) Length along longest watercourse measured to centroid = 8342.70(Ft.) Length along longest watercourse = Length along longest watercourse measured to4centroid = Difference in elevation = 1460.00(Ft.) 1.580 Mi. Slope along watercourse = 448.6321 Ft. /Mi. Average Manning's 'N' = 0.038 Lag time = 0.533 Hr. ! Lag time = 31.95 Min. 25% of lag time = 7.99 Min. 40% of lag.time = 12.78 Min. Unit time = 5.00 Min. Duration of storm = 6 Hour(s) ' i User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: ` Area(Ac.)[1] Rainfall(In)(2] Weighting[1 *2] 846.78 1.20 1016.14 100 YEAR Area rainfall data: ' Area(Ac.)(1] Rainfall(In)(2] Weighting(1 *2] 846.78 3.00 2540.34 ( STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall = 1.200(In) Area Averaged 100 -Year Rainfall = 3.000(In) Point rain (area averaged) = 3.000(In) ( Areal adjustment factor = 99.71 % s' Adjusted average point rain = 2.991(In) Sub -Area Data: Area(AC.) Runoff Index Impervious % 337.700 93.00 0.300 ? [• 37.500 78.00 0.100 471.580 93.00 0.300 Total Area Entered = 846.78(Ac.) ' RI RI Infil. Rate Impervious Adj. .Infil. Rate Area$ F Page 1 s U n i t H y d r o g r a p h DESERT S -Curve ------------------- Unit Hydrograph Data ------- - - - - -- Unit (hrs) time period ------------------------ Time % of lag ' AMC2 AMC -2' (In /Hr) (Dec. %) Keh6100.out (In /Hr) --------------------------------------------------------------- Graph % 93.0 93.0 78.0 78.0 0.091 0.300 0.066 (Dec.) 0.399 (In /Hr) 0.026 ' 91.0 93.0 0 .268 0.100 0.091 0.300 0.244 0.044 0.011 3 0.250 46.943 0.066 0.557 0.037 0.333 Area averaged mean soil loss (F) (In /Hr) = 0.074 Sum (F) 0.074 78.239 Minimum soil (for 24 hour loss rate ((In /Hr)) storm duration) = 0.037 0.500 93.886 :. Soil low loss rate (decimal) = 0.900 -------------------------- 109.534 - - - - -- U n i t H y d r o g r a p h DESERT S -Curve Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective Page 2 ------------------- Unit Hydrograph Data ------- - - - - -- Unit (hrs) time period ------------------------ Time % of lag ' Distribution -- -- ----__ Unit Hydrograph --------------------------------------------------------------- Graph % (CFS) 1 0.083 15.648 ------------------------------- 0.714 ____ 2 0.167 31.295 2.331 6.092 3 0.250 46.943 3.908 19.890 4 0.333 62.591 6.689 33.349 5 0.417 78.239 12'907 57.088 6 0.500 93.886 13.940 110.145 7 0.583 109.534 10.258 118.960 8 0.667 125.182 7.581 87.541 9 0.750 140.830 5.454 64.697 10 0.833 156.477 4.332 46.541 11 0.917 172.125 3.051 36.965 12 1.000 187.773 3.051 31.589 13 1.083 203.421 2.682 26.035 14 1.167 219.068 22'889 15 1.250 234.716 1.993 1.993 19.095 16 1.333 250.364 1.717 17.009 17 1.417 266.012 1.480 14.652 18 1.500 261.659 1.480 13.584 19 1.583 297.307 1.293 12.626 20 1.667 312.955 1.145 11.035 21 1.750 328.603 0.942 9.768 22 1.833 344.250 0.895 8.038 23 1.917 359.898 0.851 7.636 24 2.000 375.546 0.760 7.264 25 2.083 391.194 0.718 6.482 26 2.167 406.841 0.674 .124 27 2.250 422.489 0.557 5 5.748 28 2.333 438.137 0.532 4.752 2.9 2.417 453.785 0.528 4.540 30 2.500 469.432 0.443 4.509 31 2.583 485.080 0.407 3.779 32 2.667 500.728 0.407 3.472 33 2.750 516.375 0.339 3.471 34 2.833 532.023 0.282 2.889 35 2.917. 547.671 0.282 2.404 36 3.000 563.319 0.158 2.404 '37 3.083 578.966 0.158 2.017 38 3.167 594.614 0.156 1.347 39 3.250 610.262 0.163 1.335 40 3.333 625.910 0.186 1.393 41 3.417 641.557 0.188 1.587 42 3.500 657.205 0.188 1.602 43 3.583 672.853 0.188 1.602 44 3.667 688.501 0.188 1.602 45 3.750 704.148 0.185 1.602 46 3.833 719.796 0.122 1.575 47 3.917 735.444 0.098 1.042 48 4.000 751.092 0.098 0.835 49 4.083 766.739 0.098 0.835 50 4.167 782.387 0.132 0.835 -- -Sum = -- 100.000 Sum= --------------- 1.125 853.395 ------- - - - - -- Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective Page 2 1 142.9478 844.62 4 +40 72.2541 444.72 702.62 4 +45 75.4670 466.52 6+ 5 4 +50 78.8205 486.94 ' 4 +55 82.3142 507.28 477.26 5+ 0 85.9561 528.81 6 +15 5+ 5 89.7558 551.72 Q 5 +10 93.7268 576.58 ' 5 +15 97.9018 606:22 6 +25 5 +20 102.3392 644.31 I Q IQ 5 +25 107.1434 697.57 257.03 5 +30 112.4273 767.22 ' 5 +35 5 +40 118.1947 124.3298 837.42 890.82 5 +45 130.7134 926.90 201.07 5 +50 137.1309 931 82 j L ;' Keh6100.out VQ V Q V QI V Q VIQ VI Q V Q IV Q V Q V Q V V V Q 'Q Q VI Q 5 +55 142.9478 844.62 6+ 0 147.7867 702.62 6+ 5 151.7599 576.90 Q 6 +10 155.0468 477.26 Q 6 +15 157.8158 402.06 I Q 6 +20 160.1768 342,62 I 0 6 +25 162.2061 294.66 I Q IQ 6 +30 163.9763 257.03 Q 6 +35 165.5322 225.92 QI 6 +40 166.9170 201.07 6 +45 168.1547 179.72 I QQ 6 +50 169.2705 162.01 I Q 6 +55 170.2765 146.07 Q 7+ 0 171.1802 131.21 I Q 7+ 5 171.9936 118.11 Q 7 +10 172.7279 106.62 ` Q I 7 +15 173.4000 97.59 I Q 7 +20 174..0149 89.29 Q I 7 +25 174.5756 81.41 I Q 7 +30 175.0884 74.46 I! Q 7 +35 175.5560 67.88 Q 7 +40 175.9795 61.50 I Q 7 +45 176.3674 56.32 Q 7 +50 176.7222 51.51 Q IQ 7 +55 177.0421 46.46 I 8+ 0 177.3325 42.17 8+ 5 177.5958 38.23 IQ Q 8 +10 177.8305 34.08 IQ 8 +15 178.0405 30.48 IQ 8 +20 178.2310 27.66 IQ 8 +25 178.4021 24.86 Q 8 +30 178.5565 22.41 Q 8 +35 178.7013 21.03 Q 8 +40 178.8393 20.04 Q 8 +45 178.9708 19.09 Q 8 +50 179.0934 17.79 Q 8 +55 179.2054 16.27 Q 9+ 0 179.3064 14.66 Q 9+ 5 179.3953 12.92 Q 9 +10 179.4715 11.05 Q 9 +15 179.5325 8.86 Q 9 +20 179.5816 7.14 Q 9 +25 179.6216 5.80 Q 9 +30 179.6527 4.52 Q 9 +35 179.6746 .3.19 Q 9 +40 179.6825 1.14 Q 9 +45 179.6861 0.52 Q I 9 +50 179.6880 0.28 Q 9 +55 179.6891 0.15 Q I I! J 10+ 0 179.6894 0.04 Q I I 1 10+ 5 179.6894 0.01 --- Q --- ---- ----------- ------ - - - - -- Page 5 V v0 Q QIoo;K +KZ V V V V V V V V V V V V V V V V V V IV V V I V VIV VIV VI V V V V V I V V V V V V V V V V V V V V V V to Areas D, E, K, and K2 SPF Flood Routing Analysis - Civild Program Dek2.out FLOOD HYDROGRAPH ROUTING PROGRAM Copyright (c) CIVILCADD /CIVILDESIGN, 1989 -'1998 Study date: 07/11/02 ------------------------------- - - - - -- QUARRY RANCH AT LA QUINTA, CA AREAS D, E, K, K2 ROUTED THROUGH DIKE N0. 2 SPF, PROPOSED CONDITION ---------------------------- ------ 1111 -- --=------------------ The Keith Companies, Costa Mesa, CA - SIN 708 ----------- - - - - -- _________ -- - - - - -- 1111 -- _______ ------------=--- * * * * * * * * * ** * * * ***x *x* HYDROGRAPH INFORMATION * *x* ****x* * * * * ** *** *xx From study /file name: areaK.rte => AmAS k- k,-1 5F"F (SPA LAME II HEC- Hydrograph Information * * * * * * * * *x * *xxxxxxxxxxxx L From manual input hydrograph 6t4+Ft4+) ******* ***** ** *** * * * * * ** ** * *HYDROGRAPH DATA **** * ** * * * * * * * * * * * * * * * ****.;* Number of intervals = 121 Time interval = 5.0 (Min.) Maximum /Peak flow rate = 1338.000 (CFS) Total volume = 321.494 (Ac.Ft) Status of hydrographs being held in storage Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Peak (CFS) 0..000 0.000 0.000 0.000 0.000 Vol (Ac.Ft) 0.000 0.00'0 0.000 0.000 0.000 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 13.000 to Point /Station * * ** ADD /COMBINE /RECOVER HYDROGRAPHS * * ** 12.000 * * * * * * * * * * * * * * * * * ** ** HYDROGRAPH INFORMATION *** ** * **xxx *xx * *x *xx ** From study /file name: areade.rte Areas D+ E /5YF * * *xx* *xx *x * **x *** ** **** DE6100. om-� ' HYDROGRAPH INFORMATION x *x** * *x *xx**x ** *x **r**x From TK'C i -1-6 Manual Input Hydrograpgh `O Vet// +++++++++++++++++++++++++++++++++++++ ►'e�or�) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ P R I N T O F S T O R M -u no f f H y d r o g r a p h -------- - - - - -- ------------------- ---------------- Hydrograph in 5 Minute intervals (CFS) ----------------------- - - - - -- _______ ------------------ Time(h+m) Add q(CFS) Tot. p - ----- 1566--- 4 391.7 783.4 ---------------------=-- 1111 1175.1 1566.'8 0+ 5 -- 1.0500 1.05 Q ----------- - - - - -- 1111 -- - -- - - - 1111 -� 0+10 8.3106 .8.31 Q 0 +15 16.0200 17.02 Q 0 +20 20.0400 23.04 Q 0 +25 22.1600 27.16 Q 0 +30 23.7800 35.78 Q 0 +35 26.4000 49.40 0 +40 28.5300 61.53 qQ 0 +45 29.6300 71.63 qQ 0 +50 30.3400 86.34 q Q 0 +55 30.1900 96,.79 q Q 1+ 0 31.3900 105.39 q Q 1+ 5 33.3900 112.39 q Q I l 1 +10 35.0800 127.08 q Q I 1 +15 35.7900 143.79 q Q i II 1 +20 36.1900 156.19 q Q 1 +25 36.4700 156.47 q Q 1 +30 36.6700 159.67 q Q 1 +35 36.8200 167.82 q Q Page 1 1 +40 36.9000 182.90 q Q 1 +45 36.9700 201.97 q Q 1 +50 37.0000 217.00 q Q 1 +55 37.0400 230.04 q Q 2+ 0 37.3300 241.33 q Q 2+ 5 38.8100 256.81 q Q 2 +10 38.8200 274.82 q Q 2 +15 39.6900 291.69 Iq Q 2 +20 40.8900 308.89 Iq Q 2 +25 41.3900 328.39 q Q 2 +30 41.6800 344.68 q Q 2 +35 41.8800 360.88 Q 2 +40 42.0100 379.01 (q q Q 2 +45 42.3600 401.36 Iq 2 +50 44.1400 427.14 q 2 +55 45.6600 455.66 q 3+ 0� 46.3200 485.32 q 3+ 5 46.7100 507.71 q 3 +10 47.2200 529.22 q 3 +15 49.1200 552.12 q 3 +20 50.7000 580.70 q 3 +25 51.6700 609.67 q 3 +30 54.0700 645.07 q 3 +35 57.7800 683.78 Iq 3 +40 61.7700 732.77 Iq 3 +45 64.6400 779.64 3 +50 67.6900 823.69 Iq q 3 +55 70.2500 860.25 q 4+ 0 73.1500 901.15 q 4+ 5 75.6400 945.64 q 4 +10 78.7800 992.78 q 4 +15 82.9500 1030.95 q 4 +20 87.5000 1058.50 q 4 +25 92.2800 1088.28 q 4 +30 96.9600 1121.96 q i 4 +35 100.2600 1155.26 q 4 +40 103.8700 1182.87 q 4 +45 108.3500 1206.35 I q 4 +50 112.8900 1224.89 q 4 +55 116.1000 1238.10 q 5+ 0 119.6700 1251.67 q 5 +'S 125.1500 1266.15 q 5 +10 137.8000 1295.80 q 5 +15 155.9200 1343.92 I q 5 +20 173.2400 1412.24 q 5 +25 189.6500 1484.65 I q 5 +30 210.2600 1540.26 q 5 +35 228.7700 q 5 +40 182.7100 _1566.77 1501.71 q 5 +45 120.5900 1388.59 q 5 +50 83.6400 1247.64 q 5 +55 61.4700 1085.47 q i 6+ 0 44.7200 944.72 q 6+ 5 31.7800 815.78 q 6 +10 21.5900 698.59 q 6 +15 .14.5000 593.50 q 6 +20 9.9600 501.96 q i 6 +25 7.1800 432.18 q 6 +30 5.0400 377.04 q QI 6 +35 3.0800 332.08 q Q 6 +40 1.2900 294.29 q Q 6 +45 0.6600 262.66 q Q 6 +50 0.3800 236.38 q Q 6 +55 0.2100 214.21 q Q 7+ 0 0.0900 194.09 q Q 7+ 5 0.0300 176.03 q Q 7 +10 0.0000 160.00 q Q 7 +15 0.0000 146.00 q Q 7 +20 0.0000 133.00 q Q 7 +25 0.0000 121.00 q Q 7 +30 0.0000 110.00 q Q 7 +35 0.0000 99.00 q Q 7 +40 0.0000 90.00 q Q 7 +45 0.0000 82.00 q Q Dek2.out i i i Q Q iQQ i Q Q Q Q Q 4 Q. QI I 4 4 Q Q Q I G I Q 4 Q Q Q Q Q Q Q Q� Q IQ Q � QQ I Q 4 Q Q� S 4 Q Page 2 4 Q m Q Ktk2� i ' Process from Point /Station 12.000 to Point /Station * * ** RETARDING BASIN ROUTING * * ** 14.000 =�' DI ^- t "Q. �4�51 vl {Gross VOI VIVNe '1 User entry of depth - outflow- storage data ----------- - - - - -- --------- - - - - ---------------------- Total number of inflow hydrograph intervals = ________ 121 Hydrograph time unit = 5.000 (Min.) 7 +50 0.0000 74.00 qQ I Dek2.out = 0.00(Ft.) 7 +55 0.0000 67.00 qQ ------------- ---------------------------------- 0.00 (Ft.) 8+ 0 0.0000 61.00 qQ = 0.00 8+ 5 0.0000 57.00 qQ basin outflow 8 +10 0.0000 52.00 qQ Depth vs. 8 +15 0.0000 48.00 qQ Storage 8 +20 8 +25 0.0000 0.0000 43.00 qQ 39.00 Q (Ac.Ft) ------------------------ B +30 0.0000 36.00 Q 0.000 6.000 8 +35 0.0000 32.00 Q --------------- - 0.000 8 +40 0.0000 30.00 Q 20.429 8 +45 0.0000 27.00 Q 61.930 8 +50 0.0000 25.00 Q 75.000 8 +55 0.0000 23.00 Q 14.000 16.000 9+ 0 0.0000 21.00 Q 125.434 9+ 5 0.0000 19.00 Q 181.667 9 +10 0.0000 16.00 Q 313.110 9 +15 010000 14.00 Q 381.000 9 +20 0.0000 12.00 Q r 9 +25 9 +30 9 +35 0.0000 0.0000 9.00 Q 7.00 Q 3 0.0000 4.00 Q 9 +40 0.0000 3.00 Q 9 +45 0.0000 2.00 Q 9 +50 0.0000 1.00 Q 9 +55 0.0000 1.00 Q 10+ 0 0.0000 0.00 Q 10+ 5 ------------------------------------------------ 0.0000 0.00 * xxxxxx _ *x *xxxxx + + +x+ +xx +x + * *HYDROGRAPH DATA * *xxxx +x +xx + +x + + + +x + + +x + + +x+ Number of intervals = 121 Time interval = 5.0 (Min.) Maximum /Peak flow-rate = 1566.770 (CFS) Total volume = 355.155 (Ac.Ft) Status of hydrographs being held in storage Peak (CFS) Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 0.000 0.000 0.000 0.000 0.000 Vol (Ac.Ft) 0.000 0.000 + x+ xx+** 0.000 xx++ x+ xx+ xx+ x+ x +xx +xx +x +x +x + } -------------------------------------- + + + * *xxxxx + + +x + + ++ *;000 : +. +x0 *000+ ----=------------------- - - - - -- i ' Process from Point /Station 12.000 to Point /Station * * ** RETARDING BASIN ROUTING * * ** 14.000 =�' DI ^- t "Q. �4�51 vl {Gross VOI VIVNe '1 User entry of depth - outflow- storage data ----------- - - - - -- --------- - - - - ---------------------- Total number of inflow hydrograph intervals = ________ 121 Hydrograph time unit = 5.000 (Min.) Initial depth in storage basin = 0.00(Ft.) Initial ------------- basin depth = ------------- ---------------------------------- 0.00 (Ft.) - -- Initial basin storage = 0.00 (Ac.Ft) Initial basin outflow = 0.00 (CFS) Depth vs. ------------------- Storage and - -- ________________ __ Depth vs. Discharge data: Basin Depth Storage Outflow (S- 0*dt /2) (S +O dt /2) (Ft.) (Ac.Ft) ------------------------ (CFS) (Ac.Ft) (Ac.Ft) 0.000 6.000 0.000 0.000 --------------- - 0.000 8.000 20.500 28.700 20.670 - 28.920 20.429 20.571 10.000 61.400 61.930 28.600 61.187 28.800 12.000 75.000 75.630 74.740 61.613 75.260 14.000 16.000 125.000 126.020 124.566 125.434 18.000 182.300 244.800 183.820 246.880 181.667 182.933 20.000 310.500 313.110 243.950 309.422 245.650 22.000 381.000 380.370 379.690 311.578 382.310 Page 3 z' Ferco, TKC re for +) 24.000 459.800 448.130 458.257 Dek2. 4out 61 461.343 26.000 546.200 515.890 ------------------- 544.424 547.976 Hydrograph ------------- Detention Basin Routing ----------------------------------- ------------ Graph values: ------ 'I'= --------- unit inflow; ----------- 'O'= outflow at time shown Time Inflow Outflow Storage --- ___________ -- - - - - -- (Hours) (CFS) 1.05 (CFS) 0.00 (Ac.Ft) .0 391.7 783.39 1175.08 1566.77 Depth 0.083 (Ft) 0.167 8.31 0.04 0.004 0.036 O O i I 0.00 0.250 17.02 0.12 0.122 0 I I 0.01 0.333 23.04 0.26 0.259 O I 0.04 0.417 27.16 0.43 0.429 O ( I 0.08 0.500 35.78 0.65 0.642 O I 0.13 0.583 49.40 0:94 0.930 OI I 0.19 0.667 61.53 1.32 1.305 OI I I 0.27 0.750 71.63 1.77 1.753 OI I 0.38 0.833 ,86.34 2.30 2.282 pI 0.51 0.917 96.79 2.92 2.895 OI 0.67 1.000 105.39 3.60 3.569 0 I 0.85 1.083 112.39 4.33 4.292 0 I I i 1.04 1.167 127.08 5.13 5.084 0 I I 1.26 1.250 143.79 6.03 5.978 p I i 1.49 1.333 156.19 7.02 6.966 0 I I 1.75 1.417 156.47 8.06 7.991 O I 2.04 1.500 159.67 9.10 9.020 0 I 2.34 1.583 167.82 10.17 10.082 0 I I 2.64 1.667 182.90 11.31 11.215 0 I I 2.95 1.750 201.97 12.56 12.459 O I 3.28 1.833 217.00 13.92 13.810 O I I 3.65 1.917 230.04 15.38 15.249 0 I I 4.04 2.000 241.33 16.90 16.761 O I 4.46 2.083 256.81 18.51 18.354 O I 4.91 I 2.167 274.82 20.22 20.051 O I i i 5.37 2.250 291.69 22.03 21.857 O I I I 5.87 2.333 308.89 23.96 23.766. O I i I. 6.33 2.417 328.39 25.99 25.789 0 I I I 6.80 21500 344.68 28.14 27.920 O I I 2.583 '360.88 30.38 30.148 O I I I 7.81 2.667 379.01 32.73 32.479 O I i 8.09 2.750 401.36 35.21 34.932 O I i I 8.23 2.833 427.14 37.84 37.534 O I I I 8.38 2.917 455.66 40.63 40.303 O I I I' 8.54 3.000 485.32 43.61 43.253 O I 8.71 3.083 507.71 46.75 46.362 O I I 8.89 3.167 529.22 50.02 49.599 IO I I I 9.08 3.250 552.12 53.42 52.967 I 9.28 3.333 580.70 56.97 56.487 IO 0 I 9.48 3.417 609.67 60.70 60.181 IO 9.70 3.500 645.07 64.62 64.071 I I 9.93 3.583 683.78 68.77 68.187 0 i0 I 10.39 3.667 732.77 73.19 72.576 0 II I i 11.00 3.750 779.64 77.91 77.264 0 i I 11.64 3.833 823.69 82.92 82.231 IO I I 12.09 3.917 860.25 88.17 87.441 IO I II I 12.29 4.000 901.15 93.65 92.880 p 12.50 4.083 945.64 99.39 98,575 I 0 III I 12.72 4.167 992.78 105.41 104.545 O I 12.94 4.250 1030.95 111.67 110.766 I O I I 13.18 4.333 1058.50 118.13 117.170 0 I I I 13.43 4.417 1088.28 124.74 123.726 ' O I I I 13.69 4.500 1121.96 131.52 130.454 I I I 13.95 4.583 1155.26 138.49 137.366 0 I i I 14.19 4.667 1182.87 145.63 144.439 0 I 14.43 4.750 1206.35 152.89 151.639 O 1 i I 14.68 4.833 1224.89 160.25 158.932 I 0 14.93 4.917 1238.10 167.66 166.285 p I I II 15.18 5.000 1251.67 175.12 173.678 I 0 I II I 15.44 5.083 1266.15 182.63 181.116 I ( I I 15.70 5.167 1295.80 190.23 188.654 p ii I I 15.96 5.250 1343.92 198.05 196.407 I p I! i 16.20 5.333 1412.24 206.22 204.506 I 0 I I I I ( 16.45 I I I 16.71 Page 4 S/ -,orAA e_ Ca 5.417 1484.65 214.83 T(( - Dek2.out 5.500 1540.26 223.81 221.937 p 0 I I I 16.98 5.583 1566.77 233.02 231.063 0 I I 17'27 5.667 1501.71 242.03 239.994 0 .. I 17.56 5.750 1388.59 250.36 248.251 0 I 17.85 5.833 1247.64 257.75 -255.579 0 I 18.11 5.917 1085.47 264.03 261.817 I 0 I I 18.33 6.000 944.72 269.23 266.972 p I I I 18.52 6.083 815.78 273.46 271.165 I l I 18.67 6:167 698.59 276.80 274.485 0 I 18.80 6.250 593.50 279.36 277.019 I O I I I I I 6.333 501.96 281.22 278.861 0 I I 18.98 6.417 432.18 282.50 280.137 O I 19.04 6.500 377.04 283.35 280.975 0 I I 19.08 6.583 332.08 283.84 281.463 pI I 19.10 6.667 294.29 284.04 281.665 01 19.12 6.750 262.66 284.00 0 19.12 6.833 236.38 283.77 281.390 10 19.12 6.917 214.21 283.36 280.989 10 19.11 7.000 194.09 282.81 280.445 I p 19.10 7.083 176.03 282.14 279.774 I 0 19.09 7.167 160.00 281.35 278.991 I 0 I i 19.06 7.250 146.00 280.46 278.110 I p 19.04 7.333 133.00 279.48 277.143 I 0 I 19.01 7.417 12]..00 278.43 276.096 I 0 i 18.98 7.500 110.00. 277.30 274.978 I 0 18.95 7.583 99.00 276.11 273.792 I 0 18.92 7.667 90.00 274.85 272.546 I 0 18.88 7.750 82.00 273.54 271.249 I 0 18.84 7.833 74.00 272.19 269.907 I 0 I 18.81 7.917 67.00 270.79 268.523 I 0 I 18.76 8.000 61.00 269.36 267.104 I 0 18.72 8.083 57.00 267.91 265.660 I p I I 18.68 8.167 52.00 266.43 264.195 0 18.64 8.250 48.00 264.93 262.710 I 0 18.59 8.333 43.00 263.42 261.204 I I i 18.55 8.417 39.00 261.88 259.677 I .0 0 18.50 8.500 36.00 260.33 258.137 I 0 I 18.45 8.583 32.00 258.76 256.584 I O 18.41 8.667 30.00 257.18 255.021 I 0 18.36 8.750 27.00 255.60 253.451 I 0 18.31 8.833 25.00 254.01 251.876 I 0 18.26 8.917 23.00 252.42 250.297 I 0 I 18.22 9.000 21.00 250.83 248.716 I 0 I 18.17 9.083 19.00 249.23 247.131 I 0 18.12 9.167 16.00 247.63 245.541 I p 18.07 9.250 14.00 246.02 243.944 I 0 I I 18.02 9.333 12 .00 244.40 242.345 I O 17.97 9.417 9.00 242.78 240.740 I 0 I 17.92 9.500 7.00 241.16 239.128 I 0 17.87 9.583 4.00 239.53 237.511 I 0 I 17.82 9.667 3.00 237.89 235.891 I 0 17.77 9.750 2.00 236.26 234.276 I O 17.71 9.833 1.00 234.64 232.664 I O I I 17.66 9.917 1.00 233.02 231.061 I 0 17.61 10.000 0.00 231.41 229.465 I 0 17.56 10.083 0.00 229.81 227.877 I 0 ! 17.51 10.167 0.00 228.21 226.300 I O I I 17.46 10.250 0.00 226.63 224.733 I 0 17.41 10'.333 0.00 225.06 223.178 I O I 17.36 10.417 0.00 223.51 221.633 I O I I 17.31 10.500 0.00 221.96 220.099 I O i 17.26 10.583 0.00 220.42 218.576 I O 10.667 0.00 218.89 217.063 I O 17.16 10.750 0.00 217.38 215.561 I O 17.11 10.833 0.00 215.87 214.069 I 0 I 17.06 10.917 0:00 214.38 212.587 I O •17.02 11.000 0.00 212.89 211.116 I 0 16.97 11.083 0.00 211.42 209.655 I 0 I I 16.92 11.167 0.00 209.96 208.204 I 0 16.88 11.250 0.00 208.50 206.763 I O I 16.83 11.333 0.00 207.06 205.332 I 0 I 16.78 11.417 0.00 205.62 203.911 I 0 16.74 11.500 0.00 204.20 202.500 I O 16.69 16.65 Page 5 11.583 0.00 202.79 201.098 I 0 Dek2.out 11.667 0.00 201.38 199.706 I 0 I 16.60 11.750 0.00 199.99 198.324 2 0 i I 16.56 11.833 0.00 198.60 196.952 I O 16.51 11.917 0.00 197.23 195.589 I p I i 16.47 12.000 0.00 195.86 194.235 I 0 16.43 12.083 0.00 194.51 192.891 I O 12.167 00 19316 0.. 191.556 I O I I I 16.34 12.250 0.00 191.82 190.230 I O ( 16.30 12.333 0.00 190.49 188.914 I 0 I 16.25 12.417 0.00 189.17 187.606 I '0 16.21 12.500 0.00 187.86 186.308 I O 16.17 12.583 0.00 186.56 185.019 I O I 16.13 12.667 0.00 185.27 183.738 I O 16.09 12.750 0.00 183.99 182.467 I 0 16.05 12.833 0.00 182.71 181.204 I 0 I 16.01 12.917 0.00 181.45 179.950 I O 15.96 13.000 0.00 180.19 178.705 I O I 13.083 0.00 178.95 177.468 I O I I 15.87 13.167 0.00 177.71 176.240 I 0 I 15.83 13.250 0.00 176.48 115.020 2 O 15.79 13.333 0.00 175.25 173.809 I O I 15.75 13.417 0.00 174.04 172.606 I O I I I 15.70 13.500 0.00 172.84 171.412 I O I 15.66 13.583 0.00 171.64 170.225 2 O I I 15.62 13.667 0.00 170.45 169.047 I 0 15.58 13.750 0.00 169.27 167.878 I 0 I I 15.54 13.833 0.00 168.10 166.716 I O 15.50 13.917 0.00 166.94 165.562 I O I I 15.46 14.000 0.00 165.78 164.416 I O I 15.42 14.083 0.00 164.63 163.279 I 0 I I 15.38 14.167 0.00 163.49 162.149 I 0 I 15.34 14.250 0.00 162.36 161.027 I 0 I I I 15.30 14.333 0.00 161.24 159.912 I O 15.26 14.417 0.00 160.12 158.806 I O I 15.22 14.500 0.00 159.01 157.707 2 O i 15.18 14.583 0.00 157.91 156.615 2 0 i I 14.667 0.00 156.82 155.532 I O I I 15.10 14.750 0.00 155.73 154.455 I O I 15.07 14.833 0.00 154.65 153.387 I 0 i I 15.03 14.917 0.00' 153.58 152.325 I O I 14.99 15.000 0.00 152.52 151.271 I 0 I I 14.95 15.083 0.00 151.46 150.224 I 0 I I! 14.92 15.167 0.00 150.42 149.185 I O I I 14.88 15.250 0.00 149.37 148.152 I 0 I I 14.84 15.333 0.00 148.34 147.127 I O I! 14.81 15.417 0.00 147.31 146.109 I 0 I i 14.77 15.500 0.00 146.29 145.098 I 0 I I 14.74 15.583 0.00 145.28 144.094 I O I 14.70 15.667 0.00 144.27 143.097 I O I ! 14.67 15.750 0.00 143.28 142.107 I O I i 14.63 15.833 0.00 142.28 141917 .123 I O 14.60 0.00 141 15..30 140.147 I 0 I I 14.56 16.000 0.00 140.32 139.177 I O I 14.53 16.083 0.00 139.35 138.214 2 O I 14.49 16.167 0.00 138.38 137.258 I O I 14.46 16.250 0.00 137.43 136.308 I 0 I I 14.43 16.333 0.00 136.48 135.365 I O t I 14.39 16.417 0.00 135.53 134.428 I O I 14.36 16.500 0.00 134.59 133.498 2 0 I 14.33 16.583 0.00 133.66 132.574 I O I 14.30 16.667 0.00 13.2.73 131.657 I O I 14.26 16.750 0.00 131.82 130.746 I O I i I I 14.23 16.833 0.00 130.90 129.841 I O I 14.20 16.917 0.00 130.00 128.943 I O I I 14.17 17.000 0.00 129.10 128.051 I 0 I i 14.14 17.083 0.00 128.20 127.164 I 0 I i 14.11 17.167 0.00 127.32 126.285 I o I I I 17.250 0.00 126.43 125.411 I 0 I I 14.04 17.333 0.00 125.56 124.543 I 0 I I 14.01 17.417 0.00 124.69 123.681 I O I` 13.98 17.500 0.00 123.83 122.826 I O 17.583 0.00 122.97 121.976 I O I I 13.91 17.667 0.00 122.12 121.132 I O I I I 13.88 I I 13.85 Page 6 17.750 0.00 121.28 120.294 I 0 Dek2.out 17.833 0.00 120.44 119.461 I O i I 13.81 17.917 0.00 119.60 118.635 I O 13.78 18.000 0.00 118.78 117.814 I 0 13.75' 18.083 0.00 117.96 116.999 I O 13.71 18.167 0.00 117.14 116.189 I 0 I 13.68 18.250 0.00 116.33 115.385 I O I 13.65 18.333 0.00 115.53 114.587 I 0 ( I 13.62 18.417 0.00 114.73 113.794 I 0 18.500 0.00 113.93 113.006 I 0 13.55 18.583 0.00 113.14 112.224 I O 13.52 18.667 0.00 112.36 111.448 I O I 13.49 I 18.750 0.00 111.58 110.677 I O 13.46 18.833 0.00 110.81 109.911• I O 13.43 18.917 0.00 110.05 109.150 I 0 I 19.000 0.00 109.29 108.395 I O i i 13.30 19.083 0.00 108.53 107.645 I 0 13.34 19.167 0.00 107.78 106.900 I 0 I 13.31 19.250 0.00 107.03 106.160 I O I 13.28 19.333 0.00 106.29 105.426 I O I 13.25 19.417 0.00 105.56 104.696 I O I` 13.22 19.500 0.00 104.83 103.972 I 0 I I 13.19 19.583 0.00 104.10 103.252 I O 13.16 19.667 0.00 103.38 102.538 I 0 I 13.13 I 19.750 0.00 102.67 101.828 I 0 13.10 19.833 0.00 101.96 101.124 I 0 I I 13.07 19.917 0.00 101.25 100.424 I 0 13.04 20.000 0.00 100.55 99.729 I 0 13.02 20.083 0.00 99.86 99.039 I 0 12.99 20.167 0.00 99.17 98.354 I 0 12.96 20.250 0.00 98.48 97.673 I 0 I 12.93 20.333 0.00 97.80 96.997 IO I 12.91 20.417 0.00 97.12 96.326 IO 12.88 20.500 0.00 96.45 95.659 IO 12.85 20.583 0.00 95.78 94.997 IO 12.83 20.667 0.00 95.12 94.340 IO i 12.80 I 20.750 0.00 94.46 93.687 IO 12.77 20.833 0.00 93.81 93.039 IO 12.75 20.917 0.00 93.16 92.395 IO i 12.72 21.000 0.00 92.52 91.756 IO 12.70 21.083 0.00 91.88 91.121 IO 12.67 21.167 0.00 91.24 90.490 IO 12.64 21.250 0.00 90.61 89.864 IO 12.62 21.333 0.00 89.98 89.242 IO I 12.59 21.417 0.00 89.36 88.624 IO I 12.57 21.500 0.00 88.74 88.011 IO I 12.54 21.583 0.00 88.13 87.402 IO I 12.52 21.667 0.00 87.52 86.797 IO I I 12.50 21.750 0.00 86.91 86.197 IO 12.47 21.833 0.00 86.31 85.600 IO I I 12.45 21.917 0.00 85.72 85.008 IO 12.42 22.000 0.00 85.12 84.419 IO 12.40 22.083 0.00 84.53 83.835 IO 12.38 22.167 0.00 83.95 83.255 IO 12.35 22.250 0.00 83.37 82.679 IO 12.33 22.333 0.00. 82.79 82.107 IO 12.31 22.417 0.00 82.22 81.538 IO ! I 12.28 22.500 0.00 81.65 80.974 IO I 12.26 22.583 0.00 81.09 80.414 IO 12.24 22.667 0.00 80.53 79.857 IO i 12.22 22.750 0.00 79.97 79.305 IO I I 12.19' 22.833 0.00 79.41 78.756 IO I 12.17 22.917 0.00 78.87 78.211 IO I I 12.15 23.000 0.00 78.32 77.669, IO 12.13 23.083 0.00 77.78 77.132 IO I 12.11 23.167 0.00 77.24 76.598 IO I i 12.09 23.250 0.00 76.71 76.068 IO 12.06 23.333 0.00 76.18 75.541 IO I 12.04 23.417' 0.00 75.65 75.019 IO' 12.02 23.500 0.00 75.13 74.499 IO i i 12.00 23.583 0.00 74.61 73.984 IO 11.93 23.667 0.00 74.09 73.472 IO 11.85 23.750 0.00 73.58 72.963 IO 23.833 0.00 73.07 72.458 IO i i 11.70 11.63 Page 7 17.750 0.00 121.28 120.294 I 0 Dek2.out 17.833 0.00 120.44 119.461 I O I 13.81 17.917 0.00 119.60 118.635 I O 18.000 0.00 118.78 117.814 I 0 I 13.75 18.083 0.00 117.96 116.999 I 0 13.71 18.167 0.00 117.14 116.189 I O I 13.68 18.250 0.00 116.33 115.385 10 I 18.333 0.00 115.53 114.587 I O i i i 13.62 18.417 0.00 114.73 113.794 I O 13.58 18.500 0.00 113.93 113.006 I 0 I 18.583 0.00 113.14 112.224 I O I 13.52 18.667 0.00 112.36 111.448 I O 18.750 0.00 111.58 110.677 I O 13.46 18.833 0.00 110.81. 109.911 I 0 13.43 18.917 0.00 110.05 109.150 I O 13.40 19.000' 0.00 109.29 108.395 I 0 I I I 13.37 19.083 0.00 108.53 107.645 I O 13.34 19.167 0.00 107.78 106.900 I 0 13.31 19.250 0.00 107.03 106.160 I 0 I 13.28 19.333 0.00 106.29 105.426 I 0 I 13.25 19.417 0.00 105.56 104.696 I O I 13.22 19.500 0.00 104.83 103.972 I O 13.19 19.583 0.00 104.10 103.252 I 0 I 13.16 19.667 0.00 103.38 102.538 I O 13.13 19.750 0.00 102.67 101.828 I O I I! 13.10 19.833 0.00 101.96 101.124 I 0 I 13.07 19.917 0.00 101.25 100.424 I O I I 13.04 20.000 0.00 100.55 99.729 I 0 13.02 20.083 0.00 99.86 99.039 I 0 12.99 20.167 0.00 99.17 98.354 I 0 i 12.96 20.250 0.00 98.48 97.673 I 0 12.93 20.333 0.00 97.80 96.997 IO I 12.91 20.417 0.00 97.12 96.326 IO 12.88 20.500 0.00 96.45 95.659 IO 12.85 20.583 0.00 95.78 94.997 IO 12.83 20.667 0.00 95.12 94.340 IO I 12.80 20.750 0.00 94.46 93.687 IO 12.77 20.833 0.00 93.81 93.039 IO 12.75 20.917 0.00 93.16 92.395 IO I 12.72 21.000 0.00 92.52 91.756 IO I 12.70 21.083 0.00 91.88 91.121 IO ( 12.67 21.167 0.00 91.24 90.490 IO I 12.64 21.250 0.00 90.61 89.864 IO I 12.62 21.333 0.00 89.98 89.242 IO I 12.59 21.417 0.00 89.36 88.624 IO I 12.57 21.500 0.00 88.74 88:011 IO I 12.54 21.583 0.00 88.13 87.402 IO 12.52 21.667 0.00 87.52 86.797 IO 12.50 21.750 0.00 86.91 86.197 IO 12:47 21.833 0.00 86.31 85.600 IO 12.45 21.917 0.00 85.72 85.008 IO 12.42 22.000 0.00 85.12 84.419 IO 12.40 22.083 0.00 84.53 83.835 IO 12.38 22.167 0.00 83.95 83.255 IO 12.35 22.250 0.00 83.37 82.679 IO 12.33 22.333 0.00 82.79 82.107 IO 12.31 22.417 ' 0.00 82.22 81.538 IO 12.28 22.500 0.00 81.65 80.974 10 12.26 22.583 0.00 81.09 80.414 IO 12'24 22.667 0.00 80.53 79.857 IO I ! ! 12.22 22.750 0.00 79.97 79.305 IO I I 12.19 22.833 0.00 79.41 78.756 IO 12.17 22.917 0.00 78.87 78.211 IO I 12.15 23.000 .0.00 78.32 77.669, IO 12.13 23.083 0.00 77.78 77.132 IO I i i 12.11 23.167 0.00 77.24 76.598 IO 23.250 0.00 76.71 76.068 IO I I 12.06 23.333 0.00 76.18 75.541 IO 12.04 23.417 0.00 75.65 75.019 IO 12.02 23.500 0.00 75.13 74.499 IO 23.583 0.00 74.61 73.984 IO 11.93 23.667 0.00 74.09 73.472 IO 11.85 23.750 0.00 73.58 72.963 lo I i 11.78 23.833 0.00 73.07 72.458 IO 11.70 11.63 Page 7 23.917 0.00 72.56 71.957 IO Dek2.out 24.000 0.00 72.06 71.459 IO I 11.55 24.083 0.00 71.56' 70.964 IO I 11.48 24.167 0.00 71.07 70.473 IO I I! 11.41 24.250 0.00 70.58 69.985 IO I 11.33 24.333 0.00 70.09 69.501 IO 11.26 24.417 0.00 69.61 69.020 IO I I 11.19 24.500 0.00 69.12 68.542 IO I 11.12 24.583 . 0.00 68.65 68.068 IO 11.05 24.667 0:00 68.17 67.597 IO I I 10.98 24.750 0.00 67.70 67.129 IO 10.91 24.833 0.00 67.23 66.664 IO 10.84 24.917 0.00 66.77 66.203 IO I I 10.77 25.000 0.00 66.31 65.744 IO 10.71 25.083 0.00 65.85 65.289 IO i I I 10.64 25.167 0.00 65.39 64.837 IO I 10.57 25.250 0.00 64.94 64.389 IO i ! I 10.51 25.333 '0.00 64.49 63.943 IO I I 10.44 25.417 0.00 64.05 63.500 IO I 10.37 25.500 0.00 63.60 63.061 IO I 10.31 25.583 0.00 63.16 62.624 IO 10.24 25.667 0.00 62.73 62.191 IO 10.18 25.750 0.00 62.29 61.760 IO .10.12 25.833 0.00 61.86 61.333 IO 10.05 25.917 0.00 61.43 60.908 IO 10.00 26.000 0.00 61.01 60.486 IO 9.97 26.083 0.00 60.59 60.068 IO I 9.94 26.167 0.00 60.17 59.652 IO 9.92 26.250 0.00 59.75 59.239 IO I 9'89 26.333 0.00 59.33 58.829 IO 9'87 26.417 0.00 58.92 58.422 IO 9'84 26.500 0.00 58.52 58.017 IO I 9.82 26.583 0.00 58.11 57.616 IO 9'79 26.667 0.00 57.71 57.217 IO 9'77 26.750 0.00 57.31 56.821 IO I 9.74 26.833 0.00 56.91 56.427 IO 9.72 26.917 0.00 56.52 56.037 IO I 9.70 27.000 0.00 56.12 55.649 IO I 9.67 27.083 0.00 55.74 55.264 IO 9.65 27.167 0.00 55.35 54.881 IO I 9.62 27.250 0.00 54.97 54.501 IO 9.60 27.333 0.00 54.59 54.124 Io I 9.58 27.417 0.00 54.21 53.750 IO 9.55 27.500 0.00 53.83 53.377 IO I I 9.53 27.583 0.00 53.46 53.008 IO I 9.51 27.667 0.00 53.09 52.641 IO 9.49 27.750 0.00 52.72 52.277 IO I 9.46 27.833 0.00 52.36 51.915 IO 9.44 27.917 0.00 51.99 51.556 Io 9.42 28.000 0.00 51.63 51.199 IO 9'40 28.083 0.00 51.27 50.844 IO 9'38 28.167 0.00 50.92 50.493 IO 9.35 28.250 0.00 50.57 50.143 IO 9.33 28.333 0.00 50.22 49.796 IO 9.31 28.417 0.00 49.87 49.451 IO 9'29 28.500 0.00 49.52 49.109 IO I 9'27 28.583 0.00 49.18 48,769 IO 9.25 28.667 0.00 48.84 48.432 O I 9.23 28.750 0.00 48.50 48.097 O 9.21 28.833 0.00 48.16' 47.764. 0 I 9.19 28.917 0.00 47.83 47.433 0 9.17 29.000 0.00 47.50 47.105 0 9.15 29.083 0.00 47.17 46.779 0 I 9.13 29.167 0.00 46.84 46.455 0 I 9.11 29.250 0.00 46.52 46.134 0 I I 9.09 29.333 . 0.00 46.20 45.814 0 9.07 29.417 0.00 45.88 45.497 0 I 9.05 29.500 0.00 45.56 45.182 O. i 9.03 29.583 0.00 45.24 44.870 O I i 9.01 29.667 0.00 44.93 44.559 O 8.99 29.750 0.00. 44.62 44.251 0 I I 8'97 29.833 0.00 44.31 43.945 0 I 8.95 29.917 0.00 44.00 43.641 0 I i 8.93 30.000 0.00 43.70 43.339 O I 8.90 Page 8 30.083 0.00 43.39 43.039 0 Dek2.out 30.167 0.00 43.09 42.741 0 I I I I 8.88 30.250 0.00 42.80 42.445 '0 I ! 8.86 30.333 0.00 42.50 42.151 0 I I I 8.84 30.417 0.00 42.20 41.860 0 I 8.82 30.500 0.00 41.91 41.570 O I I 8.80 30.583 0.00 41.62 41.282 0 I 30.667 0.00 41.33 40.997 0 I 8.77 30.750 0.00 41.05 40.713 O 8.75 30.833 0.00 40.76 40.431 O I I 8.73 30.917 0.00 40.48 40.152 O I I 31.000 0.00 40.20 39.874 0 I I 8.70 31.083 0.00 39.92 39.598 0 I I 8.68 31.167 0.00 39.64 39.324 O I 8.67 31.250 0.00 39.37 39.052 0 8.65 31.333 0.00 39.10 38.782 0 i 8.63 31.417 0.00 38.83 38.513 0 I I 8.62 31.500 0.00. 38.56 38.247 O I 8.60 31.583 0.00 38.29 37.982 0 I I 8.58 31.667 0.00 38.02 37.719 O I I I 8.57 31.750 0.00 37.76 37.458 O 8.55 31.833 0.00 37.50 37.199 0 I I I I 31.917 0.00 37.24 36.942 O 8.52 32.000 0.00 36.98 36.686 0 f 8.50 I 32.083 0.00 36.73 36.432 0 I 8.49 32.167 0.00 36.47 36.180 O I I 8.47 32.250 0.00 36.22 35.930 0 8.46 32.333 0.00 35.97 35.681 0 I 8.44 32.417 0.00 35.72 35.435 O I 8.43 I 32.500 0.00 35,47 35.189 0 8.41 32.583 0.00 35.23 34.946 O I 8.40 32.667 0.00 34.98 34.704 O 8.38 I 32.750 0.00 34.74 34.464 O 8.37 32.833 0.00 34.50 34.226 O I 8.35 32.917 0.00 34.26 33.989 0 8.34 I 33.000 0.00 34.02 33.754 0 i 8.32 33.083 0.00 33.79 33.520 0 I 8.31 33.167 0.00 33.55 33.289 O 8.29 33.250 0.00 33.32 33.058 0 i 8.28 33.333 0.00 33.09 32.830 O I 8.27 33.417 0.00 . 32.86 32.602 O I 8.25 33.500 0,00 32.63 32.377 O I 8.24 I 33.583 0.00 32.41 32.153 0 I 8.22 33.667 0.00 32.18 31.931 0 I 8.21 33.750 0.00 31.96 31.710 O I 8.20 33.833 0.00 31.74 31.490 0 I 8.18 33.917 0.00 31.52 31.273 0 I 8.17 34.000 0.00 31.30 31.056 0 I 8.16 34.083 0.00 31.08 30.841. 0 i 8.14 34.167 0.00 30.87 30.628 0 I 8.13 34.250 0.00 30.65 30.416 0 8.12 34.333 0.00 30.44 30.206 0 I 8.10 34.417 0.00 30.23 29.997 0 I I 8.09 34.500 0.00 30.02 29.790 O I 8.08 34.583 0.00 29.81 29.583 O ( 8.07 I 34.667 0.00 29.61 29.379 O I I 8.05 I 34.750 0.00 29.40 29.176 0 I I 8.04 34.833 0.00 29.20 28.974 0 8.03 I 34.917 0.00 28.99 28.774 0 8.02 35.000 0.00 28.79 28.575 0 I 8.00 35.083 0.00 28.59 28.377 0 I i 7.97 35.167 0.00 28.40 28.181 O I 7.92 35.250 0.00 28.20 27.986 O i I I 7.87 35.333 0.00 28.01 27 792 0 I 7.83 I 35.417 0.00 27.81 27.600 0 I I 7.78 I 35.500 0.00 27. 27.409 O 62 I 7.73 35.583 0.00 27.43 '27.220 0 I I 7.69 35.667 0.00 27.24 27.031 0 i i I 7.64 35.750 0.00 27.05 26.844 0 I f 7.59 35.833 0.00 26.87 26.659 O I I I 7.55 35.917 0.00 26.68 26.474 0 I I I 7.50 36.000 0.00 26.50 26.291 O I I ( I 7.46 36.083 0.00 26.31 26.109 0 36.167 0.00 26.13 '25.929 0 I I I I 7.37 I I 7.32 Page 9 36.250 0.00 25.95 25.749 O Dek2.out 36.333 0.00 25.77 25.571 0 I 7,28 I 36.417 0.00 25.59 25.394 0 ! 7.24 36.500 0.00 25.42 25.219 O i I i I 7.19 36.583 0.00 25.24 25.044 O I 7.15 36.667 0.00 25.07. 24.871 0 7.11 36.750 0.00 24.89 24.699 0 I 7.07 I 36.833 0.00 24.72 24.528 0 7.02 36.917 0.00 24.55 24.358 0 I 6.98 37.000 0.00 .24.38 24.190 0 I i 6.94 37.083 0.00 24.21 24.023 0 6.90 37.167 0.00 24.05 23.856 O I 6.86 37.250 0.00 23.88 23.691 O 6.82 37.333 0.00 23.72 23.527 0 I 6.78 37.417 0.00 23.55 23.365 O I 6.74 37.500 0.00 23.39 23.203 0 6.70 37.583 0.00 23.23 23.042 0 i 6.66 37.667 0.00 •23.07 22.883 O I 6.62 37.750 0.00 22.91 22.725 0 I 6.58 37.833 0.00 22.75 22.568 O I I 6.54 37,917 0.00 22.59 22.411 O I 6.50 38.000 0.00 22.44 22.256 0 6.47 38.083 0.00 22.28 22.102 O 6.43 38.167 0.00 22.13 21.949, O 6.39 38.250 0.00 21.98 21.798 '0 6.35 38.333 0.00 21.82 21.647 O 6.32 38.417 0.00 21.67 21.497 0 I 6.28 38.500 0.00 21.52 21.348 0 6.24 38.583 0.00 21.37 21.200 O ! 6.21 38.667 0.00 21.23 21.054 O 1 6.17 38.750 0.00 21.08 20.908 O 6.14 38.833 0.00 20.93 20.763 O 6.10 38.917 0.00 20.79 20.620 O 6.06 39.000 0.00 20.65 20,477 O I I 6.03 39.083 0.00 20.50 20.335 O 5.99 39.167 0.00 20.36 20.195 O 5.95 39.250 0.00 20.22 20.055 O 5.91 i 39.333 0.00 20.08 19.916 O 5.87 39.417 0.00 19.94 19,778 O 5.83 39.500 0.00 19.80 19.641 O I 5.79 39.583 0.00 19.67 19.505 0 I 5.75 39.667 0.00 19.53 19.370 O 5.71 39.750 0.00 19.40' 19.236 O I 5.67 39.833 0.00 19.26 19.103 O I 5.63 39.917 0.00 19.13 18.971 0 f I 5.59 40.000 0.00 19.00 18.840 O I I 5.55 40.083 0.00 18.86 18.709 O I I 5.51 40.167 0.00 18.73 18.580 O 5.48 40.250 0.00 18.60 18.451 O I 5.44 40.333 0.00 18.48 18.324 O 5.40 40.417 0.00 18.35 18.197 O 5.36 40.500 0.00 18.22 18.071 O I 5.33 40.583 0.00 18.09 17.946 O 5.29 40.667 0.00 17.97 17,822 O I 5.25 40.750 0.00 17.85 17.698 0 5.22 40.833 0.00 17.72 17.576 O i 5.18' 40.917 0.00 17.60 17.454 O I I 5.14 41.000 0.00 17.48 17.334 O I 5.11 41.083 0.00 17.3'6 17.214 O 5.07 41.167 0.00 17.24 17.094 O I 5.04 41.250 0.00 17.12 16.976 O 5.00 41.333 0.00 17.00 16.859 O I I i I 4.97 41.417 0.00 16.88 16.742 O 4.93 41.500 0.00 16.76 16.626 O I I. ! 4.90 41.583 0.00 16.65 16.511 O I I 4.87 41.667 0.00 16.53 16.397 O I 4.83 41.750 0.00 16.42 16.283 O I I 4.80 41.833 0.00' 16.30 16.171 O I 41.917 0.00 16.19 16.059 O I I i 4.73 42.000 0.00 16.08 15.948 O I 4.70 42.083 0.00 15.97 15.837 O I I 4.67 42.167 ' 0.00 15.86 15.728 0 I I 4.64 42.250 0.00 15.75 15.619 O I 4.60 42.333 0.00 15.64 15.511 O I 4.54 Page 10 42.417 0.00 15.53 15.403 O Dek2.out I 42.500 0.00 15.42 15.297 O i 4.51 42:583 0.00 15.32 15.191 0 I 4.48 42.667 0.00 15.21 15.086 0 I I 4.45 42.750 0.00 15.11 14.981 0 I 4.42 42.833 0.00 15.00 14.878 O I I I 42.917 0.00 14.90 14.775 O I I 4.35 43.000 0.00 14.79 14.673 0 I 4.32 43.083 0.00 14.69 14.571 0 i I 4.29 43.167 0.00 14.59 14.470 0 i I 4.26 43.250 0.00 14.49 14.370 0 I I 4.24 43.333 0.00 14.39 14.271 0 I I 4.21 i 43.417 0.00 14.29 14.172 O I 4.18 43.500 0.00 14.19 14.074 0 I I 4.15 43.583 0.00 14.09 13.976 0 I I 4.12 43.667 0.00 13.99 13.880 O 4.09 43.750 0.00 13.90 13.784 0 I 4.06 43.833 0.00 13.80 13.688 0 I 4.03 '43.917 0.00 13.71 13.594 0 4.01 44.000 0.00 13.61 13.499 0 3.98 44.083 0.00 13.52 13.406 O 3.95 44.167 0.00 13.42 13.313 O 3'92 44.250 0.00 13.33 13.221 0 3.90 44.333 0.00 13.24 13.130 0 3'87 44.417 0'.00 13.15 13.039 0 3.84 44.500 0.00 13.06 12.949 0 3'82 44.583 0.00 12.97 12.859 0 I 3.79 44.667 0.00 12.88 12.770 O 3.76 44.750 0.00 12.79 12.682 0 ( I 3.74 44.833 0.00 12.70 12.594 0 3.71 44.917 0.00 12.61 12.507 O I I 3.69 45.000 0.00 12.52 12.420 0 3.66 45.083 0.00 12.44 12.334 0 3.64 45.167 0.00 12.35 12.249 0 3.61 45.250 0.00 12:26 12.164 0 3.59 5 4.333 0.00 12.18 12.080 O I 3.56 45.417 0.00 12.10 11.996 O I 3.54 45.500 0.00 12.01 11.913 O I 3.51 45.583 0.00 11.93 11.831 0 ( I 3.49 45.667 0.00 11.85 11.749 O I 3.46 45.750 0.00 11.76 11.668 O I 3.44 45.833 0.00 11.68 11.587 O I I 3.41 45.917 0.00 11.60 11.507 O I 46.000 0.00 11.52 11.427 0 I 3.37 46.083 0.00 11.44 11.348 0 3.34 46.167 0.00' 11.36 11.270 O 3.32 46.250 0.00 11.28 11.192 O I 3.30 46.333 0.00 11.21 11.114 O I 3'28 46.417 0.00 11.13 11.037 O 3.25 46.500 0.00 11.05 10.961 0 I 3.23 46.583 0.00 10.98 10.885 0 I 3.21 46.667 0.00 10.90 10.810 0 I 3.19 46.750 0.00 10.82 10.735 0 I 3.16 46.833 0.00 10.75 10.661 O 3.14 46.917 0.00 10.67 10.587 0 3.12 47.000 0.00 10.60 10.513 O 3.10 47.083 0.00 10.53 10.441 0 I 3.08 47.167 0.00 10.45 10.368 O I 3.06 47.250 0.00 10.38 10.297 0 3.03 47:333 0.00. 10.31 10.225 O II I 3.'01 47.417 0.00 10.24 10.155 O I I 2:99 47.500 0.00 10.17 10.084 O ( I 47.583 0.00 10.10 10.015 0 I 2.95 47.667 0.00 10.03 9.945 O I I 2.93 47.750 0.00 9.96 9.877 O I I 2.91 47.833 0.00 9.89 9.808 0 I I I 2.89 47.917 0.00 9.82 9.740 0 I I I 2.87 48.000 0.00 9.75, 9.673 O I ! 2.85 48.083 0.00 9.69 9.606 O I 2.83 48.167 0.00 9.62 9.540 0 i 2.81 48.250 0.00 9.55 9,473 O I I 2 79 48.333 0.00 9.49 9.408 0 I I I 2'77 48.417 0.00 9.42 9.343 O I 2.75 48.500 0.00 9.36 9.278 0 i I 2.73 I 2.72 Page 11 48.583 0.00 9.29 9.214 0 Dek2.out I 48.667 ' 0.00 9.23 9.150 0 I 2.70 I 48.750 0.00 9.16 9,087 p i 2.68 48.833 0.00 9.10 9.024 0 I 2.66 48.917 0.00 9.04 8.962 0 I I 2..64 49.000 0.00 8.97 8.900 0 2.62 49.083 0.00 8.91 8.838 0 2.60 49.167 0.00 8.85 8.777 0 I 2.59 49.250 0.00 8.79 8.716 0 I 49.333 0.00 8.73 8.656 0 I 2.55 49.417 0.00 8.67 8.596 0 I 2.53 49.500 0.00 8.61 8.536 O 2.52 49.583 0.00 8.55 8.477 0 49.667 0.00 8.49 8.419 0 I 2.48 49.750 0.00 8:43 8.360 0' 2.46 49.833 0.00 8.37 8.303 0 I I 2.45 49.917 0.00 8.31 8.245 0 ( I 2.43 50.000 0.00 8.26 8.188 0 I 2.41 50.083 0.00 8.20 8.131 0 I 2.40 50.167 0.00 8.14 8.075 0 2.38 50.250 0.00 8.09 8.019 0 I 2.36 50.333 0.00 8.03 7.964 0 2.35 50.417 0.00 7.97 7,909 p I 2.33 50.500 0.00 7.92 7.854 0 I 2.31 50.583 0.00 7.86 7.800 0 I 2.30 i 50.667 0.00 7.81 7.746 O 2'28 50.750 0.00 7.76 7.692 0 2'27 50.833 0.00 7.70 7.639 0 2.25 50.917 0.00 7.65 7.586 0 2.24 51.000 0.00 7.60 7.533 0 I 2,22 51.083 0.00 7.54 7.481 p 2.20 51.167 0.00 7.49 7,429 p 2.19 51.250 0.00 7.44 7.378 0 2.17' 51.333 0.00 7.39 7.327 0 2.16 51.417 0.00 7.34 7.276 0 I 2.14 51.500 0.00 7.29 7.226 0 2.13 51.583 0.00 7.24 7.176 0 I 2.11 51.667 0.00 7.19 7.126 O I I I 2.10 51.750 0.00 7.14 7.077 O I 2.09 51.833 0.00 7.09 7.028 0 I 2.07 51.917 0.00 7.04 6.979 p I 2.06 52.000 0.00 6.99 6.931 0 2.04 52.083 0.00 6.94 6.883 O I 2.03 52.167 0.00 6.89 6.835 0 2.01 52.250 0.00 6.84 6.788 0 �' 2.00 52.333 0.00 6.80 6.741 0 52.417 0.00 6.75 6.695 O 1.97 52.500 0.00 6.70 6.648 0 1.96 52.583 0.00 6.66 6.602 0 I 1.95 52.667 0.00 6.61 6.556 0 1.93 52.750 0.00 6.57 6.511 O 1'92 52.833 0.00 6.52 6.466 O I 52.917 0.00 6.47 6.421 0 i 1.89 53.000 0.00 6:43 6.377 O 1.88 53.083 0.00 6.39 6.333 0 Ij 1.87 53.167 0.00 6.34 6,289 p I 1.85 53.250 0.00 6.30 6.245 O I 53.333 0.00 6.25 6.202 0 1.83 53.417 0.00 6.21 6.159 O I 1.82 53.500 0.00 6.17 6.117 0 1.80 53.583 0.00 6.12 6.074 O I I 1.79 53.667 0.00 6.08 6.032 0 1'78 53.750 0.00 6.04 5.991 0 1.77 53.833 0.00 6.00 5.949 O i 1.75 53.917 0.00 5.96 5.908 O I i 1.74 54.000 0.00 5.92 5.867 O ( 54.083 0.00 5.87 5.826 O I 1.72 54.167 0.00 5.83 5.786 0 1.71 54.250 0.00 5.79 5.746 0 I 1.69 54.333 0.00 5.75 5.706 0 54.417 0.00 5.71 5.667 O I I I 1.6 7 54.500 0.00 5.67 5.628 O i 1.66 54.583 0.00 5.63 5.589 O I I 1.65 54.667 0.00 5.60 5.550 0 I 1.64 1.62 Page 12 54.750 0.00 5.56 5.512 O Dek2.out 54.833 0.00 5.52 5.473 O 54.917 0.00 5.48 5.436 O I i 1.60 55.000 0.00 5.44 5.398 O 1.59 55.083 0.00 5.41 5:361 O I 1.58 55.167 0.00 5.37 5.323 O I 55.250 0.00 5.33 5.287 O 1.56 55.333 0.00 5.29 5.250 0 I 1.55 55.417 0.00 5.26 5.214 O i 1.54 55.500 0.00 5.22 5.178 O I 1.53 55.563 0.00 5.18 5.142 O 1.52 55.667 0.00 5.15 5.106 0 ! 1.50 55.750 0.00 5.11 5.071 O I I 1.49 55.833 0.00 5.08 5.036 O 1.48 55.917 0.00 5.04 5.001 O I I i 1.47 56.000 0.00 5.01 4.966 O 1.46 56.083 0.00 4.97 4.932 O I 1.45 56.167 0.00 4.94 4.898 0 I 1.44 56.250 0.00 4.90 4.864 O 1.43 56.333 0.00 4.87. 4.830 0 I I 1.42 56.417 0.00 4.84 4.797 0 1.41 56.500 0.00 4.80 4.764 O I 1.40 56.583 0.00 4.77 4.731 O I 1.39 56.667 0.00 4.74 4.698 O 1.38 56.750 0.00 4.70 4.665 O I ! 1.38 56.833 0.00 4.67 4.633 O I 1.37 56.917 0.00 4.64 4.601 O 1.36 57.000 0.00 4.61 4.569 O I I 1.35 57.083 0.00 4.58 4.538 O I 1.34 57.167 0.00 4.54 4.506 O I 1.33 57.250 0.00 4.51 4.475 0 I 1.32 57.333 0.00 4.48 4.444 O ` 1.31 57.417 0.00 4.45 4.413 O I 1.30 57.500 0.00 4.42 4.383 O 1.29 57.583 0.00 4.39 4.352 0 1.27 '57.667 0.00 4.36 4.322 0 57.750 0.00 4.33 4.292 O 1.27 57.833 0.00 4.30 4.263 0 1.26 ( 57.917 0.00 4.27 4.233 O I 1.25 .58.000 0.00 4.24 4.204 0 1.24 58.083 0.00 4.21 4.175 O I 1.23 58.167 0.00 4.18 4.146 O I 1.22 58.250 0.00 4.15 4.117 O I 1.21 58.333 0.00 4.12 4.089 0 I I 58.417 0.00 4.09 4.060 0 I 58.500 0.00 4.07 4.032 O 1.19 58.583 0.00 4.04 4.004 0 1.18 58.667 0.00 4.01 3.977 O 1.17 58.750 0.00 3.98 3.949 O i 1.16 58.833 0.00 3.95 3.922 O 1.16 58.917 0.00 3.93 3.895 O I 59.000 0.00 3.90 3.868 O 1.14 59.083 0.00 3.87 3.841 0 1.13 59.167 0.00 3.85 3.814 O i I 1.12 59.250 0.00 3.82 3.788 O 1.12 59.333 0.00 3.79 3.762 0 59.417 0.00 3.77 3.736 O 1.10 59.500 0.00 3.74 3.710 0 1.09 59.583 0.00 3.71 3.684 0 1.09 59.667 0.00 3.69 3.659 0 1.08 59.750 0.00 3.66 3.634 0 I 1.07 59.833 0.00 3.64 3.608 O I 1.06 59.917 0.00 3.61 3.583 O I I! ! 1.06 60.000 0.00 3.59 3.559 O I I 1.05 60.083 0.00 3.56 3.534 O I I I 60.167 0.00 3.54 3.510 O I 1.03 60.250 0.00 3.51' 3.485 0 I 1.03 60.333 0.00 3.49 3.461 O i i 1.02 60.417 0.00 3.47 3.437 0 I 1.01 60.500 0.00 3.44 3.413 O 1.01 60.583 0.00 3.42 3.390 O 1.00 60.667 0.00 3.39 3.366 O I 60.750 0.00 3.37 3.343 0 0.99 60.833 0.00 3.35 3.320 O I I 0.98 0.97 Page 13 60.917 0.00 3.32 3.297 0 Dek2.out 61.000 0.00 3.30 3.274 0 0.96 61.083 0.00 3.28 3.251 0 0.96 61.167 0.00 3.26 3.229 0 61.250 0.00 3.23 3.207 0 0.95 61.333 0.00 3.21 3.184 0 I 0.94 61.417 0.00 3.19 3.162 0 I 0.93 61.500 0.00 3.17 3.140 O I 0.93 61.583 0.00 3.14 3.119 O 0.92 61.667 0.00 3.12 3.097 0 i 0.91 61.750 0.00 3.10 3.076 O 0.91 61.833 0.00 3.08 3.054 0 I I 0.90 I 61.917 0.00 3.06 3.033 0 0.89 0 62.00 0.00 3.04 3.012 0 I 0.89. 62.083 0.00 3.02 2.991 0 I 0.88 62.167 0.00 3.00 2.971 0 i 0.88 62.250 0.00 2.97 2.950 0 I 0.87 62.333 0.00 2.95 2.930 0 0.86 62.417 0.00 2.93 2.910 O I I 0.86 62.500 0.00 2.91 2,889 O I 0.85 62.583 0.00 2.89 2.869 0 0.85 62.667 0.00 2.87 2.850 O I 0.84 62.750 0.00 2.85 2.830 0 I 0.83 62.833 0.00 2.83 2.810 0 0.83 62.917 0.00 2.81 2.791 O 0.82 63.000 0.00 2.79 2.771 0 I 0.82 63.083 0.00 2.78 2.752 p 0.81 63.167 0.00 2.76 2.733 O I 0.81 63.250 0.00 2.74 2.714 O I 0.80 63.333 0.00 2.72 2.696 O 0.79 63.417 0.00 2.70 2.677 0 I 0.79 63.500 0.00 2.68 2.658 0 I 0.78 63.583 0.00 2.66 2.640 O 0.78 63.667 0.00 2.64 2,622 p I I 0.77 63.750 0.00 2.63 2.604 O I 0.77 63.833 0.00 2.61 2.586 O I i 0.76 63.917 0.00 2.59 2.568 0 I I 0.76 64.000 0.00 2.57 2.550 0 I 0.75 64.083 0.00 2.55 2.532 0 ' 0.75 64.167 0.00 2.54 2.515 O 64.250 0.00 2.52 2.497 O 0.74 64.333 0.00 2.50 2.480 0 I 0.73 64.417 0.00 2.48 2.463 O 0.73 64.500 0.00 2.47 2.446 O 0.72 64.583 0.00 2.45 2,429 p I 0.72 64.667 0.00 2.43 2.412 O 0.71 64.750 0.00 2.42 2.395 O 0.71 64.833 0.00 2.40 2,379 p I 0.70 64.917 0.00 2.38 2.362 0 0.70 65.000 0.00 2.37 2.346 O I 0.69 65.083 0.00 2.35 2.330 0 0.69 65.167 0.00 2.33 2.314 0 I 0.68 65.250 0.00 2.32 2,298 p 0.68 65.333 0.00 2.30 2,282 O I I 0.67 65.417 0.00 2.28 2.266 O I 0.67 65.500 0.00 2.27 2.250 O I 0.66 65.583 0.00 2.25 2.235 O I I 0.66 65.667 0.00 2.24 2.219 O I I 65.750 0.00 2.22 2.204 O I 65.833 0.00 2.21 2.189 O. I 0.65 65.917 0.00 2.19 2.173 0 66.000 0.00 2.18 .2.158 0 � 0.64 66.083 0.00 2.16 2.144 O I 0.63 66.167 0.00 2.15 2.129 O 0.63 66.250 0.00 2.13 2.114 0 I I 0.62 66.333 0.00 2.12 2.099 O I 0.62 66.417 0.00 2.10 2.085 0 ` 66.500 0.00 2.09 2.070 0 0.61 66.583 0.00 .2.07 2.056 O 0.61 66.667 0.00 2.06 2.042 0 0.60 66.750 0.00 2.04 2.028 0 66.833 0.00 2.03 2.014 0 I 0.59 66..917 0.00. 2.02 2.000 O I 0.59 67'. 000 2.00 1.986 O I 0.59 0.59 I 0.58 Page 14 67.083 0.00 1.99 1.972 0 I Dek2.out 67.167 0.00 1.97 1.958 0 67.250 0.00 1.96 1.945 0 0.58 67..333 0.00 1.95 1.931 O 0.57 67.417 0.00 1.93 1.918 0 0.57 67.500 0.00 1.92 1.905 O 0.56 67.583 0.00 1.91 1.892 0 0.56 67.667 0.00 1.89 1.879 0 0.55 67.750 0.00 1.88 1.866 O 0.55 67.833 0.00 1.87 1.853 0 I 0.55 67.917 0.00 1.86 1.840 0 0.54 68.000 0.00 1.84 1.827 0. i 0.54 68.083 0.00 1.83 1.814 0 0.53 68.167 0.00 1.82 1.802 0 0.53 68.250 0.00 1.80 1.789 0 0.53 68.333 0.00 1.79 1.777 0 I I 0.52 68.417 0.00 1.78 1.765 O I I 0.52 68.500 0.00 • 1.77 1.753 0 0.52 68.583 0.00 1.75 1.740 O 0.51 68.667 0.00 1.74 1.728 O 0.51 68.750 0.00 1.73 1.716 0 0.51 68.833 0.00 1.72 1.705 O 0.50 68.917 0.00 1.71 1.693 0 0.50 69.000 0.00 1.69 1.681 0 0.50 69.083 0.00 1.68 1.669 'O 0.49 69.167 0.00 1.67 1.658 0 0.49 69.250 0.00 1.66 1.646 0 0.49 69.333 0.00 1.65 1.635 0 0.48 69.417 0.00 1.64 1.624 O 0.48 69..500 0.00 1.63 1.612 0 0.48 69.583 0.00 1.61 1.601 0 0'47 69.667 0.00 1.60 1.590 O 0'47 69.750 0.00 1.59 1.579 0 0.47 69.833 0.00 1.58 1.568 O I I 0.46 69.917 0.00 1.57 1.557 0 0.46 70.000 0.00 1.56 1.547 O I 0.46 70.083 0.00 1.55 1.536 O 0.45 70.167 0.00 1.54 1.525 0 I! 0.45 70.250 0.00 1.53 1.515 O 70.333 0.00 1.52 1.504 0 0.44 70.417 0.00 1.51 1.494 0 0.44' 70.500 0.00 1.50 1.483 O 0.44 70.583 0.00 1.49 1.473 0 i 0.43 70.667 0.00 1.48 1.463 0 0.43 70.750 0.00 1.46 1.453 O 0.43 70.833 0.00 1.45 1.443 0 I 0.43 70.917 0.00 1.44 1.433 0 0.42 71.000 0.00 1.43 1.423 0 I 0.42 71.083 0.00 1.42 1.413 0 0.42 71.167 0.00 1.41 1.403 0 0.41 71.250 0.00 1.41 1.394 0 0.41 71.333 0.00 1.40 1.384 O I I 0.41 71.417 0.00 1.39 1.374 0 f 0.41 71.500 0.00 1.38 1.365 O 0.40 71.583 0.00 1.37 1.355 O ! 0.40 71.667 0.00 1.36 1.346 O I 0.40• 71.750 0.00 1.35 1.337 O 0.39 71.833 0.00 1.34 1.327 O I I I 0.39 71.917 0.00 1.33 1:318 O 0.39 72.000 0.00 1.32 1.309 O I If 0.39 72.083 0.00 1.31 1.300 O I I 0'38 72.167 0.00 1.30 1.291 O I i 0.38 72.250 0.00 1.29 1.282 O 0 72.333 .00 1.28 1.273 O I 4 I 0.38 72.417 0.00 1.27 1.265 O 0.37 72.500 0.00 1.27 1.256 O I I I 0.37 72.583 0.00 1.26 1.247 O I ' 72.667 0.00 1.25 1.238 0 I 0.36 72.750 0.00 1.24 1.230 O 0.36 72.833 0.00 1.23 1.221 O I 0.36 72.917 0.00 1.22 1.213 O 73.000 0.00 1.21 1.205 O i 0.35 73.083 0.00 1.21 1.196 O f 0.35 73.167 0.00 1.20 1.188 O I I 0.35 I 0.35 Page 15 J t 1 73.250 0.00 1.19 1.180 0 Dek2.out 73.333 0.00 1.18 1.172 0 I I I 0.35 73:417 0.00 1.17 1.163 O 0.34 73.500 0.00 1.16 1.155 O I 0.34 73.583 0.00 1.16 1.147 O i 0.34 73.667 0.00 1.15 1.139 0 0.34 73.750 0.00 1.14 1.132 0 0.33 73.833 0.00 1.13 1.124 O 73.917 0.00 0.33 0.33 1.13 1.116 O 74.000 0.00 1.12 1.108 O I 0.33 74.083 0.00 1.11 1.101 0 0.32 74.167 0.00 1.10 1.093 O I 0.32 0.32 74.250 0.00 1.09 1.085 0 0.32 74.333 0.00' 1.09 1.078 0 I 74.417 0.00 1.08 1.070 O 0.32 74.500 0.00 1.07 1.063 0 i 0.31 74.583 0.00 1.06 1.056 O i 0.31 74.667 0.00 1.06 1.048 0 0.31 '74.750 0.00 1.05 1.041 O 0.31 74.833 0.00 1.04 O 0.30 f .1.034 74.917 0.00 1.04 1.027 0 ' 75.000 0.00 1.03 1.020 O 0.30 0.30 0.30 75.083 0.00 1.02 1.013 0 I 0.30 75.167 0.00 1.01 1.006 0 75.250 0.00 1.01 0.999 O 0.29 75.333 0.00 1.00 0.992 0 I 0.29 ' 75.417 0.00 0.99 0.985 O i 0.29 75:500 0.00 0.99 0.978 O 29 75.583 0.00 0.98 0.971 O I 0 29 !. 75.667 0.00 0.97 0.965 O ` 0 28 75.750 0.00 0.97 0.958 O 0.28 75.833 0.00 0.96 0.951 O 0 28 75.917 0.00 0.95 0.945 O 0.28 76.000 0.00 0.95 0.938 O 0.28 # 76.083 0.00 0.94 0.932 O 0.27 76.167 0.00 0.93 0.925 O 76.250 0.00 0.93 I 0.27 0.27 0.919 O 76.333 0.00 0.92 0.912 O I 0 27 76.417 0.00 0.91 0.906 O Ij 0.27 76.500 0.00 0.91 0.900 O 76.583 0.00 0.90 0.894 0 I i 0.27 0.26 76.667 0.00 0.89 0.887 0 0.26 76.750 0.00 0.89 0.881 O I 0.26 r 76.833 0.00 0.88 0.875 O 0.26 76.917 0.00 0.88 0.869 0 I 0.26 77.000 0.00 0.87 0.863 O 0.25 77.083 0.00 0.86 0.857 O 0.25 77.167 0.00 0.86 0.851 O 0.25 77.250 0.00 0.85 0.845 O 0.25 77.333 0.00 0.85 0.839 O 0.25 ' 77.417 0.00 0.84 0.834 0 I I 0.25 77.500 0.00 0.83 0.828 0 0 24 77.583 0.00 0.83 0.822 O 0.24 f 77.667 0.00 0.82 0.816 O 0.24 77.750 0.00 0.82 0.811 o 0.24 77.833 0.00 0.81 0.805 o 0.24 77.917 0.00 0.81 0.80 0 0 0.24 78.000 0.00 0.80 0.794 O ( 78.083 0.00 0.80 0.789 0 I I I 0.23 0.23 78.167 0.00. 0.79 023 0.783 0 78.250 0.00 0.78 0.778 0 0:.23 78.333 0.00 0.78 0.772 O ( 0.23 j 78.417 0.00 0.77 0.767 O 0.23 78.500 0.00 0.77 0.762 O I 0.22 78.583 0.00 0.76 0.756 0 I I 78.667 0.00 0.76 0.751 0 I i 0.22 78.750 0.00 0.75 0.746 0 0.22 78.833 0.00 0.75 0.741 0 I I 0.22 78.917 0.00 0.74 0.736 0 I 0.22 {, 79.000 0.00 0.74 0.731 0 I I 79.083 0.00 0.73 0.726 O 11 0.21 I 79.167 0.00 0.73 0.721 0 I 0.21 79.250 0.00 0.72 0.716 0 79.333 0.00 0.72 0.711 0 I 0.21 0.21 Page 16 S' ' 79.417 0.00 0.71 0.706 0 � Dek2.out 79.500 0.00 0.71 0.701 0 0.21 79.583 0.00 0.70 0.696 O I 0.21 79.667 0.00 0.70 0.691 0 0.20 79.750 0.00 0.69 0.686 O I 0.20 79.833 0.00 0.69 0:682 0 0.20 79.917 0.00 0.68 0.677 O 0.20 ' 80.000 0.00 0.68 0.672 0 80.083 0.00 0.67 i I 0.20 0.20 0.668 0 80.167 0.00 0.67 0.663 O I I 0.20 80.250 0.00 0.66 0.658 0 0.19 80.333 0.00 0.66 0.654 0 80.417 0.00 0.65 0.649 0 I I 0.19 0.19 80.500 0.00 0.65 0.645 O 0.19 80.583 0.00 0.65 0.640 O 0.19 80.667 0.00 0.64 0.636 0 0.19 80.750 0.00 0.64 0.631 0 I 0.19 80.833 0.00 0.63 0.627 0 I 0.18 80.917 0.00 0.63 0.623 0 0.18 81.000 0.00 0.62 0.618 0 0.18 ( 81.083 0.00 0.62 0.614 0 0.18 81.167 0.00 0.61 0.610 O 81.250 0.00 0.61 I 0.18 0.18 0.606 0 81.333 0.00 0.61 0.601 0 0.18 81.417 0.00 0.60 0.597 O I 0.18 81.500 0.00 0.60 0.593 0 0.17 81.583 0.00 0.59 0.589 O 0.17 81.667 0.00 0.59 0.585 0 I 0.17 81.750 0.00 0.59 0.581 0 0.17 81.833 0.00 0.58 0.577 0 0.17 81.917 0.00 0.58 0.573 O 0.17 82.000 0.00 0.57 0.569 0 0.17 82.083 0.00 0.57 0.565 0 0.17 82.167 0.00 0.57 0.561 0 I I 0.17 E 82.250 0.00 0.56 0.557 0 I I 0.16 82.333 0.00 0.56 0.553 O 0.16 82.417 0.00• 0.55 0.550 0 i 0.16 82.500 0.00 0.55 0.546 0 0.16 82.583 0.00 0.55 0.542 0 0.16 82.667 0.00 0.54 0.538 0 82.750 0.00 0.54 0.535 0 I 0.16 0.16 82.833 0.00 0.54 0.531 0 0.16 82.917 0.00 0.53 0.527 0 0.16 83.000 0.00 0.53 0.523 O 0.15 83.083 0.00 0.52 0.520 0 0.15 83.167 0.00 0.52 0.516 0 0.15 83.250 0.00 0.52 0.513 O 0.15 83.333 0.00 0.51 0.509 O 0.15 i 83.417 0.00 0.51 0.506 0 0.15 83: 500 0.00 0.51 0.502 O 0.15 83.583 0.00 0.50 0.499 0 0.15 83.667 0.00 0.50 0.495 O 0.15 83.750 0.00 0.50 0.492 O 0.14 83.833 0.00 0.49 0.488 O I I 0.14 83.917 0.00 0.49 0:485 0 0.14 84.000 0.00 0.49 0.482 0. I 0.14 84.083 0.00 0.48 0.478 0 0.14 84.167 0.00 0.48 0.475 0 0.14 1 84.250 0.00 0.48 0.472 0.14 .0 i 84.333 0.00 0.47 0.468 0 0.14 84.417 0.00 0.47 0.465 O I 0.14 84.500 0.00 0.47 0.462 O I I 0.14 84.583 0.00 0.46, 0.459 0 I 0.14 84.667 0.00 0.46 0.456 O I jl I 0.13 84.750 0.00 0.46 0.452 0 I 0.13 84.833 0.00 0.45 O I 0.13 .0.449 84.917 0.00 0.45 0.446 0 0.13 85.000 0.00 0.45 0.443 O 0.13 85.083 0.00 0.44 0.440 O 0.13 85.167 0.00 0.44 0.437 0 0.13 85.250 0.00 0.44 0.434 0 I 0.13 85.333 0.00 0.43 0.431 0 0.13 I 85.417 0.00 0.43 0.428 0 85.500 0.00 0.43 0.425 0 0.13 0.13 0..12 Page 17 ' D Dek2.out 85.583 0.00 0.43 0.422 0 ( i 0.12 85.667 0.00 0.42 0.419 O ( i I I 0 0.12 ( 0 0.12 85.833 0.00 0.42 0.413 0 I I ( ( 0 0.12 85.917 0.00 0.41 0.411 0 86.000 0.00 0.41 0.408 0 ( ( ( I 0.12 86.083 0.00 0.41 0.405 0 0 I 0 0.12 ' 86.167 0.00 0.41 0.402 0 I i 0.12 86.250 0.00 0.40 0.399 0 0 i 0 0.12 86.333 0.00 0.40 0.397 O I 0.12 I I I 0 0.12 86.500 0.00 0.39 0.391 0 I I 0 0.11 86.667 0.00 0.39 0.386 O I I 0 0.11 86.750 0.00 0.39 0.383 0 I I I 0.11 86.833 0.00 0.38 0.380 O ( I 0 ( 0 0.11 86.917 0.00 0.38 0.378 0 0 0.11 87.000 0.00 0.38 0.375 0 ( ( I I 0 0.11 87.083 0.00 0.38 0.373 O I 0.11 87.167 0.00 0.37 0.370 0 0 I I I 0 0.11 87.250 0.00 0.37 0.367 O 0 ( 0 0.11 87.417 0.00 0.37 0.3.62 0 I 0.11 87.500 0.00 0.36 0.360 0 0 I 0 0.11 87.583 0.00 0.36 0.357 O 0 0.10 87.667 0.00 0.36 0.355 0 0 �. 0 0.10 87.833 0.00 0.35 0.350 O I 0.10 87.917 0.00 0.35 0.348 O I I 0 I 0 0.10 i 88.000 0.00 0.35 0.345 O I 0.10 88.083 0.00 0.35 0.343 O 0 Ij 0 0.10 88.167 0.00 0.34 0.340 O 0 0.10 88.250 0.00 0.34 0.338 O 0 0.10 88.333 0.00 0.34 0.336 O I 0.10 88.417 0.00 0.34 0.333 O 0 I 0 0.10 88.500 0.00 0.33 0.331 O I 0.10 ' 88.583 0.00 0.33 0.329 O 0 I 0 0.10 88.667 0.00 0.33 0.326 0 ( ( I 0.10 F 88.750 0.00 0.33 0.324 O ( ( 0 I 0 88.833 0.00 0.32 0.322 0 ( ( I I 0.09 89:-000 0.00 0.32 0.318 O 0 0.09 89.083 0.00 0.32 0.315 O I I 0.09 89.167 0.00 0.32 0.313 O 4 4 0.09 89.250 0.00 0.31 0.311 O I 0.09 89.333 0.00 0.31 0.309 O 0 I 0 89.417 0.00 0.31 0.307 •O ( ( 0.09 89.500 0.00 0.31 0.305 O ( ( 0.09 89.583 0.00 0.30 0.302 O ( ( 0.09 89.667 0.00 0.30 0.300 O ( ( 8 89.750 0.00 0.30 0 I I I 0 0.09 89.833 0.00 0.30 0.296 O ( ( I I 0.09 89.917 0.00 0.30 0.294 O I 0.09 r 90.000 0.00 0.29 0.292 O ` I 0 ` 0.09 90.083' 0.00 0.29 0.290 O I I 0.08 90.167 0.00 0.29 0.288 0 0 0.08 90.250 0.00 0.29 0.286 O ( ( I I 0 0.08 90.333 0.00 0.29 0.284 O 0 0.08 90.500 0.00 0.28 0.280 O O 90.583 0.00 0.28 0.278 O ( ( 0 0.08 90.667 0.00 0.28 0.276 0 I 0.08 90.750 0.00 0.28 0.274 O 0 I I I 0 0.08 t 90.833 0.00 0.27 0.273 O I !� 90.917 0.00 0.27 0.271 O 0 I ( ( ( ( 91.000 0.00 0.27 0.269 O ( ( 0 0.08 91.083 0.00 0.27 0.267 O ( ( 0 0.08 91.167 0.00 0.27 0.265 0 0 0.08 P 91.250 0.00 0.27 0.263 O 0 0.08 i� 0 I 0.08 91.417 0.00 0.26 0.260 O I Dek2.out 91.750 0.00 0.25 0.252 O ( 0.07 91.833 0.00 0.25 0.251 0 0.07 91.917 0.00 0.25 0.249 0 0.07 92.000 0.00 0.25 0.247 O 0.07 92.083 0.00 0.25 0.246 0 0.07 92.167 0.00 0.25 0.244 0 0.07 92.250 0.00 0.24 0.242 O 0.07 92.333 0.00 0.24 0.241 O 0.07 92.417 0.00 0.24 0.239 0 0.07 92.500 0.00 0.24 0.237 O 92.583 0.00 0.24 0.236 0 I 0.07 92.667 0.00 0.24 0.234 O 0.07 92.750 0.00 0.23 0.232 0 I 0.07 92.833 0.00 0.23 0.231 0 I 0.07 92.917 0.00 0.23 0.229 0 I 0.07 93.000 0.00 0.23 0.228 O I 0.07 93.083 0.00 0.23 0.226 O 0.07 93.167 0.00 0.23 0.224 O Ij 0.07 93.250 0.00 0.22 0.223 O 0.07 93.333 0.00 0.22 0.221 O I 0.06 93.417 0.00 0.22 0.220 0 0.06 93.500 0.00 0.22 0.218 O I 0.06 93.583 0.00 0.22 0.217 0 0.06 93.667 0.00 0.22 0.215 O I 0.06 93.750 0.00 0.22 0.214 O I 0.06 93.833 0.00 0.21 0.212' O I 0.06 93.917 0.00 0.21 0.211 O I I 0.06 94.000 0.00 0.21 0.209 O 0.06 94.083 0.00 0.21 0.208 O 0.06 94.167 0.00 0.21 0.206 O 0.06 94.250 0.00 0.21 0.205 O 94.333 0.00 0.21 0.204 0 0.06 94.417 0.00 0.20 0.202 O 0.06 94.500 0.00 0.20 0.201 0 0.06 94.583 0.00 0.20 0.199 0 0.06 94.667 0.00 0.20 0.198 O 0.06 94.750 0.00 0.20 0.197 O 0.06 94.833 0.00 0.20 0.195 0 I I 0.06 94.917 0.00 0.20 0.194 0 I 0.06 95.000 0.00 0.19 0.193 0 I 0.06 95.083 0.00 0.19 0.191 0 0.06 95.167 '0.00 0.19 0.190 0 I 0.06 95.250 0.00 0.19 0.189 O I 0.06 95.333 0.00 0.19 0.187 0 I 0.06 95.417 0.00 0.19 0.186 0 0.05 95.500 0.00 0.19 0.185 0 i 0.05 95.583 0.00 0.18 0.183 0 ( 0.05 95.667 0.00 0.18 0.182 0 I I 0.05 95.750 0.00 0.18 0.181 0 0.05 95.833 0.00 0.18 0.180 0 0.05 95.917 0.00 0.18 0.178 0 0.05 96.000 0.00 0.18 0.177 O 0.05 96.083 0.00 0.18 0.176 0 0.05 96.167 0.00 0.18 0.175 0 0.05 96.250 0.00 0.17 0.174 0 0.05 96.333 0.00 0.17 0.172 0 0.05 96.417 0.00 0.17 0.171 0 0.05 96.500 0.00 0.17 0.170 0 0.05 96.583 0.00 0.17 0.169' 0 0.05 96.667 0.00 0.17 0.168 0 0.05 96.750 0.00 0.17 0.166 0 0.05 96.833 0.00 0.17 0.165 0 I 0.05 96.917 0.00 0.17 0.164 O 0.05 97.000, 0.00 0.16 0.163 0 97.083 0.00 0.15 0.162 0 i i I 97.167 0.00 0.16 0.161 O. 0.05 97.250 0.00 0.16 0.160 O I 0.05 97.333 0.00 0.16 0.159 0 97.417 0.00 0.16 0.157 0 0.05 97.500 0.00 0.16 0.156 0 0.05 97.583 0.00 0.16 0.155 0 0.05 97.667 0.00 0.16 0.154 O 0.05 0.05 97.750 0.00 0.15 0.153 O I 97.833 0.00 0.15 0:152 0 ilj 0.04 Page 19 Remaining water in basin = 0.10 (Ac.Ft) HYDROGRAPH DATA * * * * * * * * * * * * * * * * * ** * * ** * * * ** Number of intervals = 1236 Time interval = 5.0 (Min.) Maximum /Peak flow rate = 284.042 (CFS) Total volume = 355.056 (Ac.Ft) Status of hydrographs being held in storage Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Page 20 Dek2.out 97.917 0.00 0.15 0.I51 O 0:04 98.000 0.00 0.15 0.150 O 0.04 98.083 0.00 0.15 0.149 O 98.167 0.00 0.15 0.148 O fl I 98.250 0.00 0.15 0.147 O f 0.04 98.333 0.00 0.15 0.146 O 98.417 0.00 0.15 0.145 O 0.04 98.500 0.00 0.15 0.144 O 0.04 '98.583 0.00 0.14 0.143 O 98.667 0.00 0.14 0.142 O 0.04 98.750 0.00 0.14 0.141 O I 0.04 98.833 0.00 0.14 0.140 O I ( 0.04 98.917 0.00 0.14 0.139 O 0.04 99.000 0.00 .0.14 0.138 0 0.04 99.083 0.00 0.14 0.137 O 0.04 99.167 0.00 0.14 0.136 0 0.04 99.250 0.00 0.14 0.135 O 0.04 99.333 0.00 0.14 0.134 O I 0.04 99.417 0.00 0.13 .0. 133 O 0.04 99.500 0.00 0.13 0.132 O I 0.04 99.583 0.00 0.13 0.131 0 0.04 99.667 0.00 0.13 0:131 O I 0.04 99.750 0.00 0.13 0.130 O 0.04 99.833 0.00 0.13 0.129 O 0.04 99.917 0.00 0.13 0.128 O 0.04 100.000 0.00 0.13 0.127 O 0.04 100.083 0.00 0.13 0.126 O 0.04 100.167 0.00 0.13 0.125 O 0.04 100.250 0.00 0.13 0.124 O 0.04 100.333 0.00 0.12 0.123 O I 0.04 100.417 0.00 0.12 0.123 O 0.04 100.500 0.00 0.12 0.122 O 0.04 . 100.583 0.00 0.12 0.121 O I 0.04 100.667 0.00 0.12 0.120 O 0.04 100.750 0.00 0.12 0.119 0 I 0.03 100.833 0.00 0.12 0.118 O ( I 0.03 100.917 0.00 0.12 0.118 O 101.000 0.00 0.12 0.117 O I 0.03 101.083 0.00 0.12 0.116 O I 0.03 101.167 0.00 0:12 0.115 0 I 0.03 101:250 0.00 0.12 0.114 0 I I 0.03 101.333 0.00 0.11 0.114 O I 101.417 0.00 0.11 0.113 O I I 0.03 101.500 0.00 0.11 0.112 0 I 0.03 101.583 0.00 0.11 0.111 O �. 0.03 101.667 0.00 0.11 0.111 0 0.03 101.750 0.00 0.11 0.110 0 0.03 101.833 0.00 0.11 0.109 0 0.03 101.917 0.00 0.11 0.108 0 0.03 102.000 0.00 0.11 0.107 0 0.03 102.083 0.00 0.11 0.107 O I 0.03 102.167 0.00 0.11 0.106 O 0.03 102.250 0.00 0.11 0.105 0 ( 0.03 102.333 0.00 0.11 0.105 0 0.03 102.417 0.00 0.10 0.104 O I 0.03 102.500 0.00 0.10 0.103 O I 102.583 0.00 0.10 0.102 0 0.03 102.667 0.00 0.10 0.102 O JO. 03 102.750 0.00 0.10 0.101 0 I 102.833 0.00. 0.10 0.100 O I I 0.03 102.917 0.00 0.10 0.100 O I 103.000 0.00 0.10 0.099 O 0.03 Remaining water in basin = 0.10 (Ac.Ft) HYDROGRAPH DATA * * * * * * * * * * * * * * * * * ** * * ** * * * ** Number of intervals = 1236 Time interval = 5.0 (Min.) Maximum /Peak flow rate = 284.042 (CFS) Total volume = 355.056 (Ac.Ft) Status of hydrographs being held in storage Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Page 20 i Q E { Dek2 ..out Peak (CFS) 0.000 0.000 0.000 0.000 0.000 Vol (Ac.Ft) 0.000 0.000 0.000 0.000 0.000 Page 21 W t { 1 1� f f 9 T f r k� :• 'Areas K and K2 Debris Yield Calculation 1 i 1 .• Areas K and KZ Debris Yield Calculation Quarry Ranch, La Quinta, CA Areas K and K2 Debris Yield Calculation SPF (Standard Project Flood) Event Source: Los Angeles District U.S. Army Corps of Engineers Method for Prediction of Debris Yield, revised August. 1992. Given: Maximum 1 -Hour Precipitation, P = Drainage Area, A = Relief Ration, RR = Non - Dimensional Fire Factor, FF= Peak Runoff = Unit Peak Runoff, Q = Adjustment- Transposition Factor, A -F = 2.25 (in.) (From SPF Mass Curve, Fig. 4, USACE, 1979) 846.78 (ac.) 448.68 (ft/mi.) (Slope of the Watershed) 6.50 (Figure 2, Page 31) 1,338.00 (cfs) 1,011.27 (ft3 /s /mi.2) 0.60 (Technique 4, Appendix B) Equation: For watersheds of 0.1 mi.2 to 3 mi.2 in area (Equation 1, Page 30): LOG Dy = 0.65 (LOG P* 100) + 0.62 .(LOG HR) + 0.18 (LOG A) + 0.12 (FF); Dy = Unit Debris Yield (yd 3 /mi.2) Debris Yield = (A -F) (Dy) Solve: LOG Dy = 4.4801 Dy = 30,207.73 (yd.' /mi.`) Debris Yield = 23,980.60 (yd.') 14.86 (ac -ft) 0 110197 \calc\hydrology \K_debris.xls 7/11/02 i r . r t 6 ' APPENDIX C WSEL (Water Surface Elevation) BEHIND DIRE NO.2 CALCULATION APPENDIX C WSEL (Water Surface Elevation) BEHIND DIKE NO.2 CALCULATION t Quarry Ranch At La Quinta, CA WSEL (Water Surface Elevation) Behind Dike No. 2 Calculation SPF (Standard Project Flood) Event Reference: The Quarry At La Quinta, Hydrology & Hydraulics Calculations, Prepared by Keith Engineering, Inc., July 15, 1998. 1. Volume of Outflow from Quarry Basin (from Areas A, B, C, F, H, and 1) = 278.83 (ac -ft) (From TT2.out file, Part III of TKC July 1998 report) 2. Volume of Stored Hydrograph from Areas D, E, K, and K2 to Dike No. 2 Basin = 281.67 (ac -ft) (See DEK2.out file in Appendix B of this report) 3. Debris Volume from Areas D and E = 0.22 (ac -ft) (From Debris Calculation, Part III of TKC July 1998 report) 4. Debris Volume from Areas K and K2 = 14.86 (ac -ft) (see Debris Yield Calc. In Appendix B of this report) 5. Excess Debris Volume from Basins A and B = 14.70 (ac -ft) (From Debris Calculation, Part III of TKC July 1998 report) Total 590.28 (ac -ft) WESL Behind Dike No. 2 26.88 (ft) (From Storage. Capacity At Dike No. 2 Table, Part IV of TKC July 1998 report) 0 1 lot 97 \calc\hydrology \wsel _ dk2.xls 7/11/02 APPENDIX D DIKE NO. .2 STAGE-STORAGE- CALCULATION (UP TO ELEVATION 30 FT) CI 1 .1 �L� t t 1 fl n 1 APPENDIX D DIKE NO. .2 STAGE- STORAGE CALCULATION (UP TO ELEVATION 30 FT) Quarry Ranch, La Quinta, CA . Stage- Storage Analysis Behind Dike No. 2 (Up to Elevation 30 ft) For Both Existing and Proposed Conditions F,xistin¢ Condition ELEVATION DEPTH AREA AVG. AREA VOLUME CUMULATIVE VOLUME (ft) (ft) (ft2) (ac) (ac -ft) (ac -ft) 10 0.00 15 5.0 0.00 0.00 0.00 0.00 20 5.0 0.00 0.00 0.00 0.00 25 5.0 227 314.89 2.61 13.05 13.05 30 5.0 567,956.48 9.131 45.641 58.69 ID- ­-A r -A.t.- ELEVATION DEPTH AREA AVG. AREA VOLUME CUMULATIVE VOLUME (ft) (ft) (ft2) (ac) (ac -ft) (ac -ft) 10 49,665.95 15 5.0 81,427.24 1.50 7.52 7.52 20 5.0 152,300.83 2.68' 13.41 20.94 25 5.0 487,548.57 7.34 36.72 57.66 30 5.0 1 911,104.301 16.05 80.271 137.93 k:\ 110185\ calc\hydrology \sta- stor_dk2.xls 7/12/02 ■ —•..•� It 1w EGIEND s UBARJEA DESIGNATION 628 '-WATERSHED AREA (ACRES) Ik WAWRSHED BOUNDARY - --- ---- ------------- SUBAREA BOUNDARY 5 memo rx2qki-,. �ffl- WATERCOURSE.. 1-11-14101,11. PROJECT BOUNDARY, • .� ® ® ,t y ! Me q=wJ11ff", , wil M M., ..... . . . . . .Vol 111 WI jo a& Avg G Apo V. h. r. ry :go 4MV 11F A t ILI Lis DATI 07/02 Sao August 16, 2005 The Keith Companies TICC PAUL GOBLE City of La Quinta 78 -495 Calle Tampico La Quinta, CA 92247 -1504 Re: The Quarry Ranch Rough Grading & Storm Drainage Plans, TM 32117 Dear Mr. Goble, This letter is in response to your plan check comments on the rough grading plans for the above referenced project that would require a recalculation of the catch basin inlet capacities to account for 50% clogging. The Keith Companies hope that this response will explain our position more clearly and show why this latest city requirement is unnecessary. We have re- examined the approved "Quarry Ranch Hydrology and Hydraulics Report for Rough Grading ", dated June 18`" 2003. The type of inlets specified (Nyloplast, 2'x 3'inlets w/high flow vanes) will capture storm water flows at the 6" curb height per the manufacturer's capacity chart (see attached). A 50% clogging factor was not used in calculating the inlet capacities because of the flow -by condition. While it is common practice to account for some clogging and, thus, a reduction in the capacity for inlets in sag locations, a reduction of interception capacity for basins constructed on grade is not required because partial clogging in these areas "...rarely causes major problems" (see HEC -12 attachment). In this case, Quarry Ranch Road has been designed to capture most of the storm flows at each basin; some water will pass to be captured by the next inlet. Ultimately, all of the water on the street will be directed into the golf course retention areas via the inlets and pipe next to lots 4 and 5. A sufficient secondary overflow path has been designed that will protect the existing homes and pads from being flooded. The hydrology and hydraulics study confirms the design concept, the report and plans were approved by the city and the improvements have been constructed onsite. TKC believes that this development will not generate excessive amounts of debris that would significantly lower the efficiency of the existing flow -by storm drain system. TKC believes that the existing storm drain system is already adequate and that revised calculations are unnecessary. The most common types of street debris that is present within the Quarry Ranch private development is silty sand, grass clippings and small tree leaves and/or seedlings, all of which will be passed through the inlets and/or be washed down the street during a storm event. To this date, TKC has not been notified by the developer or anyone else for that matter, of any problems concerning the drainage of Quarry Ranch Road despite the heavy rains the valley has experienced lately. TKC believes that the storm drain design is sufficient, that it meets city requirements and is reflective of standard engineering practice for street and storm drain design. We request that the Public Works Department review the approved hydrology and hydraulics report for a better understanding of our design and remove the requirement to re- calculate inlet capacities to account for 50% clogging of CB -9 & CB -10. 712- (of I,- A� CLOQA-z- 1�; Lr ©c-7 1 Palm Desert Division 73 -733 Fred Waring Drive p`\ Suite 100 P� ) Palm Desert / California 92260 -2590 T. 760.346.9844 F: 760.346.9368 www.keithco.com 1 , ' HYDROLOGY, HYDRAULICS AND DRAINAGE CONCEPT STUDY ' FOR QUARRY RANCH GOLF COURSE AND DEVELOPMENT PROJECT TENTATIVE TRACT MAP NO. 30651 ' LA QUINTA, RIVERSIDE COUNTY, CALIFORNIA ' Revised December 2002 ' Prepared for: Quarry Ranch, LLC 1 Quarry Lane ' La Quinta, CA 92253 Prepared by: ' Tettemer and Associates A Division of The Keith Companies, Inc. ®. Tettemer &Associates ._consult'ing engineers 1 i 1 HYDROLOGY, HYDRAULICS AND DRAINAGE CONCEPT STUDY FOR QUARRY RANCH GOLF COURSE AND' DEVELOPMENT PROJECT TENTATIVE TRACT MAP NO. 30651 LA QUINTA, RIVERSIDE COUNTY, CALIFORNIA Revised December 2002 Prepared for: Quarry Ranch, LLC 1 Quarry Lane La Quinta, CA 92253 Prepared by: Tettemer and Associates A Division of The Keith Companies, Inc. R\11019TdocVv4V_ QuarryRattchDrrainageConceptStudy _rev. 123102 03M6105 TABLE OF CONTENTS 1. INTRODUCTION ................................................................................. ..............................1 1.1. SCOPE OF STUDY AND LOCATION ............................................... ..............................1 1.2. PURPOSE ..................................................................................... ..............................1 2. HYDROLOGY ..................................................................................... ............................... 2 2.1. PREVIOUS STUDIES ..................................................................... ..............................2 2.2. HYDROLOGIC CRITERIA .............................................................. ..............................2 2.3. HYDROLOGY ANALYSIS ............................................................. ..............................3 2.4. ON -SITE HYDROLOGY ................................................................ ..............................5 3. SEDWENTATION .............................................................................. ..............................6 3.1. SEDIMENT YIELD ........................................................................ ..............................6 3.2 BULKING FACTOR ...........................................:........................... ..............................7 4. HYDRAULICS ..................................................................................... ..............................7 4.1. STORAGE CAPACITY OF DIKE NO.2 AND DIKE MINIMUM PAD ELEVATION .............7 4.2. DRAINAGE SYSTEM FOR OFF -SITE FLOWS ................................. .............................10 4.3. HYDRAULIC ANALYSIS FOR EXISTING DRAINAGE CULVERTS AT THE QUARRY SUBDIVISION............................................................................. .............................11 4.4. MODIFICATION TO GUADALUPE DIKE ....................................... .............................12 5. CONCLUSIONS .................................................................................. .............................14 6. FIGURES ............................................................................................. .............................15 7. APPENDICES ...................................................................................... .............................16 0:\ 40337 \4033709\subs \tette=r\Green Propeny\Doc\doc\MV_Quarry Ranch Drainage Concept Study_rev.123102.doc 1 1 n INTRODUCTION 1.1. Scope of Study and Location This report presents the results of a hydrologic, hydraulic and drainage concept study performed for the proposed Quarry Ranch Golf Course and Development Project, Tentative Tract Map No. 30651 (Project). The project consists of construction of a golf course and development of 28 custom homes on a 75- acre site within the City of La Quinta. The project site is bounded by Avenue 58 on the north, future Jefferson Street extension on the east, undeveloped land on the south, and Tom Fazio Lane South on the west, in T6S, R7E. The Quarry At La Quinta Golf Course And Residential Development (The Quarry Subdivision) is located on the west side of the Project (See Figure 1 Location Map). D:\ 40337 \4033709\subs \tettemer\Green Property\Doc\doc\MV_Quarry Ranch Drainage Concept Study_rev.123102.doc The Project is situated on the easterly slopes of the Santa Rosa Mountains, among a natural drainage course. A flood control levee known as Dike No. 2 is located on the northeast side of the Project. Another flood control levee ' known as Guadalupe Creek Diversion Dike (Guadalupe Dike) is located approximately 4,000 feet south of the Project. This levee intercepts flows in Devil Canyon and diverts them toward Dike No. 4, preventing the Devil Canyon watershed flows from entering the drainage area tributary to Dike No. 2. Guadalupe Dike is acting as a southerly drainage boundary for the drainage area directly tributary to the Project (See Figure 2 Watershed Map). 1.2. Purpose The Project is subject to storm flows from off -site and on -site drainage areas. A portion of the Project site, consisting of lot Nos. 1 through 28,29 and 30, is located within the flood storage area for Dike No. 2 (See Figure 3). The ' purpose of this study is to: 0 Establish the 100 -year and Standard Project Flood (SPF) peak flow discharges and volumes for the off -site drainage area tributary to the ' Project site; ' 0 Determine the impact of the Project to storage capacity of Dike No. 2 during a SPF event with Guadalupe Dike in place; 1 • Establish the minimum pad elevation for residential lots located within the flood storage area of Dike No. 2; D:\ 40337 \4033709\subs \tettemer\Green Property\Doc\doc\MV_Quarry Ranch Drainage Concept Study_rev.123102.doc 1 1 Develop a drainage conveyance system to intercept and divert the off - site flood flows from the drainage area on the south side of the project during a100 -year storm event; Evaluate the condition of Guadalupe Dike and provide a design for modifications of the Dike to assure no overtopping would occur during a major storm event; and • Evaluate the flow capacity of the existing culverts located in The ' Quarry Subdivision adjacent to proposed Lot Nos. 26 and 27, and establish maximum 100 -year water surface elevation upstream and downstream of the culverts. 2. HYDROLOGY 2.2. Hydrologic Criteria The SPF event was used for evaluating the impact of the project to the storage capacity of Dike No. 2 and for the establishing the minimum pad elevation for lot Nos. 1 through 11, 28, 29 and 30. Detailed discussion for evaluating the storage capacity behind Dike No. 2 is included in Section 4.1. 0:\ 40337 \4033709\subs \tettemer\Gmcn Property\Doc\doc\MV_Quarry Ranch Drainage Concept Study_rev.123102.doc 2 2.1. Previous Studies Dike Nos. 2 and 4 are part of a flood control levee system that provides flood protection for Coachella Valley from the SPF runoff from drainage watersheds ' of the eastern slopes of the Santa Rosa Mountains. Dike No. 2 begins at the mountains on the northwest of the project southwest of Lake Cahuilla, and extends southeasterly to the hills of Devil Canyon, east of the future Jefferson `Street ' extension. Six on -site and off -site drainage areas are tributary to the Quarry Subdivision (subareas A, B, C, F, H, and I). - Two natural drainage areas (Subareas D/E and K), and the over flow from the Quarry Subdivision are directly tributary to Dike No. 2. The only offsite drainage area directly tributary to the proposed project is subarea K, one of the two natural drainage courses tributary to Dike No. 2. The southerly boundary of subarea K is ' Guadalupe Dike (See Figure 2 Hydrology Map). Several hydrologic studies have been previously performed for the watershed t tributary to Dike No. 2. They include the Keith Companies' hydrology and hydraulic analysis for the Quarry Subdivision Project completed in 1998 (TKC Analysis). The analysis was reviewed and approved by the Coachella Valley ' Water District (District) in 1998. The analysis provided SPF discharges for the watershed tributary to Dike No. 2 and also established the maximum water surface elevation behind Dike No. 2 during a SPF event. The TKC Analysis used September 24, 1939 "Indio Storm," with a total rainfall of 6.45- inches ' occurring in 6 hours, for the SPF analysis. 2.2. Hydrologic Criteria The SPF event was used for evaluating the impact of the project to the storage capacity of Dike No. 2 and for the establishing the minimum pad elevation for lot Nos. 1 through 11, 28, 29 and 30. Detailed discussion for evaluating the storage capacity behind Dike No. 2 is included in Section 4.1. 0:\ 40337 \4033709\subs \tettemer\Gmcn Property\Doc\doc\MV_Quarry Ranch Drainage Concept Study_rev.123102.doc 2 1 1 1 1 2.3 The 100 -year flow discharge was used for sizing the drainage ditch south of the Project. Detailed discussion for 100 -year flow analysis is included in Section 2.3. The 100 -year flow discharges published in 1998 TKC Analysis were used for evaluating existing culverts in the Quarry Subdivision. A detailed description for the hydraulic analysis is included in Section 4.4. Hydrology Analysis Drainage boundaries for the watersheds tributary to the Quarry Subdivision and to Dike No. 2 were delineated and shown on the hydrology map included in 1998 TKC analysis. This hydrology map was modified to include drainage boundary to Guadalupe Dike and also to show the limits of the project (See Figure 2). The hydrology study performed for Areas "K" and "K2" used the Synthetic Unit Hydrograph procedure as defined in the Riverside County Flood Control and Water Conservation District (RCFC & WCD) Hydrology Manual (Hydrology Manual). Rainfall data for the 100 -year storm was obtained from National Oceanic and Atmospheric Administration (NOAA) Atlas No. 2, Volume XI- California, 1973. September 24, 1939 "Indio Storm" with a total rainfall of 6.45" occurring in 6 hours was used for SPF analysis. CIVILD Riverside County Unit Hydrograph Program was used to perform the Synthetic Unit Hydrograph computations. The Desert S- Graphs was selected based on guidelines described in Section E of the RCFC & WCD Hydrology Manual. The Precipitation Intensity Pattern was developed based on the procedure described in Section B, Pages B -3 through B -4 of the RCFC &WCD Hydrology Manual. Tabulation of rainfall patterns is given on Plate E -5.9 of the Hydrology Manual for use with the Synthetic Unit Hydrograph method. Plate E -5.9 of the Hydrology Manual tabulates rainfall patterns in percent for 3 -, 6 -, and 24 -hour storms in 5 -, 10 -, 30 -, and 60- minute unit time periods. This procedure is built -in to the CIVILD program. The rainfall patterns from the Hydrology Manual were used in development of 6 -hour flood hydrographs for the Project. The surface cover for the watersheds is Barren cover. Plate E -6.1 of the Hydrology Manual was used for runoff index. The Infiltration Rates were extrapolated from Plate E -6.2 using computed Runoff Indexes and for AMC 11 (Antecedent Moisture Condition) for 100 -year and AMC III for SPF event. The hydrologic characteristics of drainage areas "K" and "K2" are summarized in Table 1 below: 0:\ 40337 \4033709\subs\tettetner\Green PropertykD0c\dccU9V_Quarry Ranch Drainage Concept Study_rev.123102.doc 3 Table 1 Hydrologic Characteristics for 100 -Year Storm and SPF Events Subare a Drainage Area Weighted Runoff Index Weighted % Impervious Weighted Infiltration 6 -Hour Rainfall (Z) Slope (ft/mi) Lag Time Rate (In) (Hr) (In/Hr) (ac) (s -mi) 100 - r I SPF 100-yr SPF K 375.2 0.586 91.5 0.28 0.084 0.036 3.00 6.45 1 272.1 0.334 K plus K2 846.8 .1.32 92.3 0.29 0.074 0.031 3.00 6.45 448.6 0.533 Notes: 1) RCFC & WCD Hydrology Manual, Plate E -6.1 (809.3 ac. of Barren cover type with soil Type D, R1 =93; 37.50 ac., RI =78). 2) NOAA, Atlas 2, V.XI Cal. 1973. 3) Figure 2 used for computing slope. 4) Lag (hrs.) =24n [L.Lca/51/2].38. n =The Mannings "n" value= 0.038. L--Length of longest watercourse in miles; 3.25 miles. Lca= Length along longest watercourse, measured upstream to a point opposite the centroid of the area in mile; 1.58 miles. S--Overall slope of longest watercourse between headwaters & collection point (ft/mile). The results of the hydrologic analysis and the results of the TKC Analysis are tabulated in Table 2 below. Figure 1 attached, shows the watershed subarea designations, node numbers, and watercourses. Appendix B contains the hydrologic calculations. 0: \40337 \4033709\subs\tettemer \Green Property\Doc\doc\MV_Quarry Ranch Drainage Concept Study_rev.123102.doc 4 Table 2 Results of Hydrology Study Drainage Area Drainage 100 -Year Peak SPF Peak Flow. SPF Volume Peak Outflow ' Area (ac) Flow (cfs) (Inflow) (cfs) (ac -ft) (cfs) K 375.2 474.7 1075.5 194.6 _ K plus Guadalupe Dike 846.8 931.8 2,113.5 440.8 golf course will have sufficient capacity to store the entire on -site 100 -year or Watershed (Area K2) SPF flood flows. The on -site SPF. volume is estimated to be 38.90 ac -ft based on the on -site area of 75 acres on a pro -rate basis of drainage area K (75 acres x 194 ac- ft/375.2 ac.). The estimated on -site SPF volume of 38.90 ac. -ft. is DB 67.0 228.7 33.7 _ D/E and.K 442.2 _ 1,258.2 228.3 _ D/E, K plus Guadalupe . 913.8 _ 2,223.5 474.5 Dike Watershed (Area K2) without Percolation D/E, K, with 2" per hour 442.2 _ 1,258.2 185.78 177.65 Percolation (2 Overflow from The _ 278.33 Quarry(l) _ _ ' Note: 1) Values taken from TKC Hydrology Analysis for the Quarry At La Quinta, 1998 2) See' Table 4 in Section 4 for Percalation Data ' 2.4. On -Site Hydrology Y gY ' The on -site runoff generated from the residential pads within the Project site will be conveyed through an on -site drainage system into the proposed golf course: The system will collect flows from the streets through catch basins and ' convey them into the golf course. The proposed golf course grading will create an additional storage capacity 82.5 ac =ft at elevation of 30 feet as compared with the existing condition (See Table 5', Section.4.1). The proposed golf course will have sufficient capacity to store the entire on -site 100 -year or SPF flood flows. The on -site SPF. volume is estimated to be 38.90 ac -ft based on the on -site area of 75 acres on a pro -rate basis of drainage area K (75 acres x 194 ac- ft/375.2 ac.). The estimated on -site SPF volume of 38.90 ac. -ft. is less than the 82.5 ac. -ft. of the additional storage capacity created with the golf course grading. An emergency secondary overflow will be constructed between Lot Nos. 4 and 5 and between Lot Nos. 10 and 11: The overflow system will convey. an on -site SPF peak discharge of 214.89 cfs (75 ac x 1075.5 cfs /375.2 ac). The widths of the open space areas between t Lots 4 and 5 is forty (40) feet and between Lots 10 and 11 is fifty (50) feet: The depth of water at the overflow system during a SPF event would be 0.93' ([214.89 cfs /2.65 x 90']0.67). � I 0: W0337 \40337091subs \teuemer\Green Propeny\Doc\doc\MV_Quarry Ranch Drainage Concept Study_rcv,123102.doc 5 3. SEDIMENTATION 3.1. Sediment Yield The sediment production study was performed for the subareas K and K2 using the US Army Corps of Engineers Debris Method dated February 1992 and updated in February 2000. The equation for debris yield computation is as follows: Unit Debris Yield =(A -T) (Dy) LOG Dy =0.88 (LOG Q) + 0.48 (LOG RR) + 0.06 (LOG A) + 0.22 (FF) Where: A -T = Adjustment — Transportation Factor; Dy = Unit Debris Yield (yd3 /mi2); Q = Unit Peak Runoff (cfs /mi2); RR = Relief Ratio (ft/mi); A = Drainage Area (ac); and FF = Non - Dimensional Fire Factor. SPF discharges used for the analysis are shown on Table 3 below. A fire factor of 3.0 and a relief ratio of 448.68 were used. An adjustment - Transportation Factor of 1.0 was used. The results of the sediment production study are tabulated below. Detailed debris yield calculations are included in Appendix E. Table 3 Results of Sediment Production Analysis U.S. Army Corps of Engineers, Los Angeles District's Debris Method Subarea Drainage RR. FF Peak Unit A -T Debris Yield Area (ft/mi) SPF Peak Factor (ac) Runoff Runoff (ac -ft) (yds) (cfs) (cfs /mil) K 375.2 272.1 3.0 1,075.5 1,834.50 1.0 2.64 4,264.8 K and 846.8 448.7 T 3.0 1,338.0 1901103 1.0 9.42 159195.3 K2 D and 67.0 - - 228.7 2,184.6 - 0.22 358 E(l) H 365.0 - - .1,014.4 1,778.7.1 7.37 11,899 Notes: (1) SPF Sediment Volume per TKC 1998 report. O:b10377\4033709\i.bs \ tettemer\Green Property\Doc\doclMV_Quarry Ranch Drainage Concept Study_rev. 127102.doc 6 1 The debris yield of 7,284.7 yds /mi2 for Area, and 20,864 yds /mi2 for Area H and H -1 were used for the computation (See Table 4 below). Bulking factors (Fb) of 1.06 for Area K/K2, 1.17 for Area H and H -1 were computed and ' applied to the peak discharges. 4. HYDRAULICS The following hydraulic analyses were performed for the project: • Capacity Analysis to determine the effect of the Project on the basin storage of Dike No.2; 1 HEC -RAS Models to size the drainage ditch along the south side of project to handle off -site flows; and ' • HEC -RAS and WSPG Model to determine the adequacy of existing culverts at the Quarry Subdivision. ' Based on the results of the Sediment Yield analysis, 2.86 acre -feet (2.64 =0.22) was deducted from the stage- storage capacity of Dike No. 2 to allocate for sediment loading from areas K and D/E. ' hydrographs of areas D/E, K and overflow from the Quarry Subdivision 3.2 Bulking Factor ' A bulking factor analysis was performed for use in the hydraulic analysis of the drainage ditch along the south side of the Project and for Lines H and H1 in accordance with the procedures specified in the Hydrology Manual Section F, ' Page F -5. The peak bulking rate is related to debris production volume by assigning the maximum observed bulking factor of 2 to the maximum observed single storm debris production rate of 120,000 cubic yards for a one - square mile area. The peak rate bulking factor would then be expressed by: Fb =1 +[D /120,000] where: ' D= Design storm debris production rate for the study watershed The debris yield of 7,284.7 yds /mi2 for Area, and 20,864 yds /mi2 for Area H and H -1 were used for the computation (See Table 4 below). Bulking factors (Fb) of 1.06 for Area K/K2, 1.17 for Area H and H -1 were computed and ' applied to the peak discharges. 4. HYDRAULICS The following hydraulic analyses were performed for the project: • Capacity Analysis to determine the effect of the Project on the basin storage of Dike No.2; 1 HEC -RAS Models to size the drainage ditch along the south side of project to handle off -site flows; and ' • HEC -RAS and WSPG Model to determine the adequacy of existing culverts at the Quarry Subdivision. ' 4.1. Storage Capacity of Dike No. 2 and Dike Minimum Pad Elevation The effect of the proposed project to the storage capacity of Dike No. 2 was evaluated by performing a flood routing analysis by combining SPF flood ' hydrographs of areas D/E, K and overflow from the Quarry Subdivision Project. This analysis assumed that the Guadalupe Dike is in place (See Table ' 2 above for summary of hydrograph data). A percolation rate of 2 inches per hour, as used in the TKC 1998 Analysis, included was in the flood I 0:W 0337 \4033709\subs \tetteni rAGreen Pro rt \Doddoc\MV u pe y _Q arry Ranch Drainage Concept Study_rev.123102.doc routing analysis. The percolation rate data used as stage - discharge table in the flood routing model is included in Table 4 below. In order to maintain this percolation rate, the area behind Dike No. 2 will.need to be maintained in accordance with the CVWD requirements. Table 4 Percolation Data for Percolation Rate of 2" Per Hour Elevation(ft) Net (ac) Area 2" Outflow (cfs) 0 0 0 2 1.00 2.02 4 2.00 4.03 6 10.25 20.67 8 14.34 28.92 10 30.71 61.93 12 37.50 75.63 14 62.49 126.02 16 91.15 183.82 18 122.42 246.88 20 155.26 313.11 22 188.61 380.37 24 222.21 $ 448.13 26 255.81 515.89 Note: (1) Data from TKC analysis The Stage- Storage table used in the flood routing model is included in Table 5. The Stage - Storage table considered the gross storage with the proposed project in place and a deduction 2.86 ac -ft for debris loading from drainage areas K and D/E. 0:\ 40337 k4073709\subi \tettemer\Green Property\Doc\doc\MV_Quwy Ranch Drainage Concept Study_rev.123102.doc 8 �I 1 1 1 Table 5 Summary of Stage- Storage Calculation Elevation Gross Existing Condition Storage(l) Gross Storage with Proposed Quarry Ranch Development in Place Net Storage with 2.86 ac -ft Debris Loading from Areas D/E, K 0 0.0 0.00 0.00 6 1 20.5 20.88 18.02 8 28.7. 30.22 27.36 10 61.4 64.82 61.96 12 75.0 80.99 78.13 14 125.0 134.07 .131.21 16 182.3 195.16 192.30 18 244.8 262.70 259.84 20 310.5 334.73 331.87 22 381.0 413.21 410.35 24 459.8 501.98 499.12 26 546.2 600.27 597.41 30 742.0 824.54 821.68 Ranch development in place. The results of the analysis showed that the project will not have an adverse impact to the basin storage capacity of Dike No. 2. The minimum pad ' elevation for lot Nos. 27 and 28 is set at 27.25 feet, approximately 3.14 feet above the SPF maximum water surface elevation with no over flow from the Devil Canyon Dike Watershed. See Appendix A for flood routing analysis and ' Appendix B for storage analysis. D:\40337\4033709\subs\tettemer \Green Property \Doc \doc\MV_Quarry Ranch Drainage Concept Study_rev.123102.doc 9 Notes 111 Data from TKC Analysis, Section IV. ' (2) The results of flood routing analysis showed a total flood volume of 185.78 ac -ft (Table 2, Section 2.3) for areas D/E and K considering 2" per hour percolation and debris loading. A 278.83 ac -ft of overflow from existing Quarry Subdivision (per TKC 1998 report) was added to the 185.78 ac -ft total adjusted SPF flood volume of areas D/E and K for a total flood volume of 464.61 ac -ft. This volume corresponds to elevation 24.11 as the maximum water surface elevation behind Dike No. 2 for a SPF flood event with the propose Quarry Ranch development in place. The results of the analysis showed that the project will not have an adverse impact to the basin storage capacity of Dike No. 2. The minimum pad ' elevation for lot Nos. 27 and 28 is set at 27.25 feet, approximately 3.14 feet above the SPF maximum water surface elevation with no over flow from the Devil Canyon Dike Watershed. See Appendix A for flood routing analysis and ' Appendix B for storage analysis. D:\40337\4033709\subs\tettemer \Green Property \Doc \doc\MV_Quarry Ranch Drainage Concept Study_rev.123102.doc 9 f, 11 1 1 � I 1 LI 1 4.2. Drainage System for Off -Site Flows The off -site flows tributary to the project are from drainage area K. Without the Project in place (existing condition) storm flows from this area travel northerly and store behind Dike No. 2. The total off -site drainage area is approximately 375 acres with a SPF peak discharge rate of 1,075 cfs. The southerly boundary of this drainage area is the Guadalupe.Dike. We understand that the Guadalupe Dike is not a FEMA- Certified Dike, however, modifications of this levee will be made to assure.no overtopping during a SPF event. For the purpose of sizing the drainage ditch this study we assumed that the Guadalupe Dike was not in place. The drainage area tributary to Project will increase to 846 acres assuming Guadalupe Dike is not in place. The SPF and 100 -year peak discharges for this scenario are 2,113 cfs and 932 cfs, respectively. (See Table 2 above) A hydraulic analysis was performed using the HEC -RAS computer program to size the required drainage system for handling off -site bulked 100 -year peak flow of 988 cfs (932 cfs x1.06) assuming that Guadalupe Dike is not in place. The off -site drainage system consist of the construction of a floodwall along the southerly boundary of the Project to intercept flows and an earthen drainage ditch along the toe of the floodwall to convey flows easterly towards Dike No. 2 and through the future Jefferson Street. Normal depth was used as the upstream and downstream boundary conditions for the HEC -RAS Model. The Mannings "n" value of 0.030 for natural earthen and 0.035 for riprap were used. A summary of the HEC -RAS result is listed in Table 6 below (See Appendix C for HEC -RAS calculations). The construction plan for the floodwall and drainage ditch is included in Appendix G. The structural design for the floodwall with typical floodwall structural sections are included in Appendix H. The minimum pad elevation for the lots located on the south side of the project (lots 17 through 25) will be protected with a berm/floodwall with at least 3 feet of freeboard above the 100 -year water surface elevation of the proposed drainage ditch along the flood wall. ' 0:\40337\4033709\subsltettemer\Gmen Property\Doc4loc\MV— Quarry Ranch Drainage Concept Study_rev.123102.doc 10 Table 6 Hydraulic Characteristics of Off -site Drainage System River Sta (ft) 100 YR W.S. Elev (ft) Channel Invert (ft) 100 YR Depth of Flow (ft) 100 YR Chnl Vel (ft/s) Berm /Floodwall Elev (ft) 100 YR Freebrd (ft) SPF W.S. Elev (ft) SPF Freebrd (ft) 30+81.00 79.54 78.00 1.54 6.46 82.54 3' 79.91 1 29 +76.00 76.54 75.00 1.54 6.46 81.00 4.46 76.92 4.08 28 +71.00 73.54 72.00 1.54 6.46 78.00 4.46 73.92 4.08 28 +01.00 71.54 70.00 1.54 6.46 75.00 3.46 71.92 3.08 27 +31.00 69.48 68.00 1.48 6.37 75.00 5.52 70.22 4.78 26 +61.00 67.42 66.00 1.42 6.29 75.00 7.58 68.09 6.91 26 +26.00 66.54 65.00 1.54 4.57 75.00 8.46 66.75 8.25 25 +68.00 65.27 64.00 1.27 5.60 75.00 9.73 65.59 9.41 25 +09.00 64.48 63.00 1.48 4.40 69.50 5.02 65.13 4.37 24+44.00 64.48 62.00 2.48 2.61 68.50 4.02 65.13 3.37 23 +79.00 64.38 61.50 2.88 2.75 67.83 3.45 65.02 2.81 23 +14.00 63.74 61.00 2.74 5.74 67.17 3.43 64.29 2.88 22 +14.00 62.25 60.00 2.25 7.99 67.17 4.92 63.14 4.03 21 +14.00 62.47 59.00 147 3.63 66.50 4.03 63.35 3.15 20 +14.00 61.01 58.00 3.01 8.59 65.83 4.82 61.74 4.09 19 +64.00 60.55 57.50 3.05 8.46 65.17 4.62 61.43 3.74 19 +14.00 60.21 57.00 3.21 7.95 65.00 4.79 61.26 3.74 18 +14.00 59.98 56.00 3.98 6.01 64.30 4.32 61.13 3.17 17 +14.00 59.92 55.00 4.92 4.54 63.83 3.91 61.08 2.75 16 +14.00 58.18 54.00 4.18 9.96 62.50 4.32 59.10 3.40 15 +14.00 57.62 53.00 4.62 7.47 61.83 4.21 59.02 2.81 14 +64.00 57.47 52.50 4.97 7.25 61.17 3.70 58.83 2.34 14 +14.00 56.15 52.00 4.15 10.62 59.83 3.68 57.32 2.51 13 +14.00 54.57 51.00 3.57 9.67 58.50 3.93 55.38 3.12 12 +14.00 53.84 50.00 3.84 8.04 57.30 3.46 54.53 2.77 11 +14.00 52.04 49.00 3.04 6.10 55.40 3.36 52.39 3.01 10 +64.00 50.22 48.50 1.72 6.48 54.00 3.78 50.57 3.43 4.3. Hydraulic Analysis for Existing Drainage Culverts at the Quarry Subdivision ' Lot Nos. 26 and 27 for the proposed Quarry Ranch project are located on the south side of the existing Quarry Subdivision adjacent to two existing drainage 0:W03 3 714 03 3 7 09\subsltettemer \Green Property\Doc\doc\MV -Quarry Ranch Drainage Concept Study_rev.123102.doc 1 1 t 1 11 1 t 1 culverts known as lines H and H1. A hydraulic analysis was performed to determine the capacity of lines H and H1 and compute the maximum water surface elevation at the upstream end of each line during a 100 -year flood event. Line H is 10' wide by 5' high box culvert located beneath Tom Fazio Lane South. The culvert receives flows from off -site drainage subarea H and drains it into the Quarry Golf Course. The 100 -year clear water flow from subarea H tributary to line H is 484 cfs (TKC 1998 Report). The 100 -year bulked discharge of 566.3 cfs using a bulked factor of 1.17 (See Section 3.2) was used for the hydraulic analysis. A 12' long by 16' wide inlet structure with a trash rack is constructed upstream of the box culvert. Line H1 is 30" pipe located beneath Tom Fazio Lane South. The culvert receives flows from off -site drainage subarea Hl. Line H1 and H confluence at a bubbler structure downstream of Tom Fazio Lane within the existing golf course. The 100 -year clear water flow from subarea H1 tributary to line H1 is 26.4 cfs (TKC 1998 Report). The 100 -year bulked discharge of 30.9 cfs was used for the hydraulic analysis. A field survey was performed by TKC for both lines H and H1 and Tom and their surrounding area. The horizontal alignments of lines H and H1 are shown on Figure XX Two WSPG models were developed, one for line H and one for line H1 using the field survey information and the flows rates as stated above. A starting water surface elevation of 30' (maximum possible water level within the Quarry Subdivision) was assumed at the downstream end of each pipe with the existing golf course for both models. A Manning's "n" value of 0.013 was used for both box and pipe culverts. A clogging factor of XX% was assumed for the trash rack upstream the box culvert. The result of the WSPG indicated a water surface elevation of 48.01 at the upstream end of the box culvert for line H and an elevation of 49.93 at the upstream end of line H1 (See Appendix D). The finished grade elevation of Tom Fazio Lane above line H is 57.3 and above line H1 is 55.6. 4.4. Modification to Guadalupe Dike ' Guadalupe Creek Diversion Dikes were constructed by the Bureau of Reclamation in 1968. The purpose of the dikes is to direct flood flows from Devil Canyon into Dike No. 4. Dike No. 1 (referred to as Guadalupe Dike in ' this report) is approximately 2,580' long and prevents overflow from Devil Canyon into Dike No. 2. This dike acts as the southerly boundary of drainage subarea K. The Dike is 14' wide at the crest and has 1.5H: 1V, upstream and ' downstream side slopes. A 24" thick layer of riprap with 6" thick sand and gravel bedding has been constructed on the upstream side of the dike. The riprap and sand and gravel bedding have been keyed 4' below existing ground. 0:\ 4033741033709\subsUettemeAGreen Property\Doc\doc\MV_Quarry Ranch Drainage Concept Study_rev.123102.doc 12 1 1 .J No geotechnical investigation or report for the dike has been found. An access ramp was found on both upstream and downstream sides of the Dike approximately 600 feet from the most westerly side of the dike. A field investigation of the dike revealed that the dike is in relatively good condition. In order to eliminate the potential for any overflow on the Dike due to the configuration of the existing access ramp on the upstream side of the Dike (northeasterly direction), the ramp will be removed and a new ramp will be constructed on the upstream side of the Dike. The configuration of the new ramp will eliminate the potential for overtopping of the dike. A plan view of the proposed modification is included in Appendix I. ' The results of HEC -RAS hydraulic analysis performed for the SPF flows drainage area K, from showed that the SPF velocities along the southerly side of the levee are non - erosive, ranging from 4.84 feet per second (fps) to 6.57 ' fps. A summary of the results of this analysis is included in Table 7. t 1 ii 1 I� 0:\40337\4033709\subs \tettem \Green Property\Dcc\doc\MV_Quarry Ranch Drainage Concept Study—rev. 123102.doc 13 5. CONCLUSIONS Based on the results of analyses performed, the following conclusions are made. • The proposed project will not adversely impact the storage capacity of Dike No. 2 during a SPF event and will provide more storage capacity for basin behind Dike No. 2 as compared with the existing condition; • The elevation of the pads for the lots located within the Dike No. 2 storage area will be set one foot above SPF and 3 feet above 100 -year peak stage assuming Guadalupe Dike is in place; • The proposed development lots will be protected from the off -site storm flows generated from the drainage area south of project, by construction of a drainage ditch and a flood wall/berm to intercept and convey flows into the Dike No. 2 Basin; • On -site flows will be stored within the project site; and • The existing access ramp on the upstream side of Guadalupe Dike will be modified to prevent potential overtopping during major flood events. O:\40337\4033709\subs\tettc=r \Green Property\Doc\doc\MV_Quarry Ranch Drainage Concept Study_rev.123102.doc 14 6. FIGURES FIGURE 1 WATERSHED MAP 0:\ 40337 \4033709\subs\tettemv\Green Property\DM\doc\MV _Quarry Ranch Drainage Concept Study—rev. 123102.doc 15 7. APPENDICES APPENDIX A HYDROLOGIC ANALYSIS APPENDIX B STORAGE ANALYSIS OF DIKE NO.2 APPENDIX C CHANNEL AND FLOOD WALL HEC -RAS CALCULATIONS APPENDIX D WSPG HYDRAULIC ANALYSIS FOR EXISTING DRAINAGE CULVERTS AT THE QUARRY DEVELOPMENT APPENDIX E SEDIMENT YIELD ANALYSIS APPENDIX F BULKING FACTOR ANALYSIS APPENDIX G CHANNEL AND FLOOD WALL PLAN AND PROFILE CONSTRUCTION PLAN APPENDIX H FLOOD WALL STRUCTURAL CALCULATIONS WITH TYPICAL SECTIONS APPENDIX I GUADALUPE DIKE ACCESS RAMP REPLACMENT CONSTRUCTION PLAN 0:40337k1033709\tubs\tettemer \Green Property\Doc\doc\MV _Quarry Ranch Drainage Concept Study_rev.123102.doc 16 1 1 1 1 IO:\ 40337 \4033709\subs\tettemer\Green Property\Doc\doc\MV_Quarry Ranch Drainage Concept Study_rev.123102.doc 17 a COACHELLA VALLEY WATER DISTRICT COACHELLA, CALIFORNIA FLOOD STUDIES FOR EAST AND WEST DIKES IN COACHELLA VALLEY AREA Prepared By BECHTEL CORPORATION SAN FRANCISCO OCTOBER 1991 c y- B Introduction The. objective of this flood study was to evaluate if the East and West Dikes could adequately contain the Standard Project Flood (SPF) runoff from their respective drainage areas. The Standard Project Storm (SPS) used in this study was defined by the U. S. Army Corps of Engineers to be the storm which occurred on September 24, 1939 in the Coachella Valley area. It is commonly known as the "Indio Storm ", with a total rainfall of 6.45 inches occurring in 6 hours (USCE, 1979). The drainage areas for the East and West - Dikes: are delineated on..Figures 1 and 2 respectively. The East Dike was built to provide flood protection to the expensive, concrete -lined section of the Coachella Branch of the All- American Canal (Coachella Canal). Its drainage area consists of parts of the southern slopes of Little San Bernardino Mountains, Cottonwood Mountains, Joshua Tree National Monument, and Shaver Valley. The East Dike system comprises of two major dikes. One is Dike No. 1 stretching from Mortmar near the Riverside - Imperial County line to just east of Interstate Highway 10 (I -10), and the other is Dike No. 2 which stretches from I -10 to a point about seven miles northeast of Indio. The drainage area for West Dikes iscovered by the, eastern slopes of the Santa Rosa Mountains to the southwest of the city of La Quints. Two main dikes, as well,-as a number ofd smaller dikes protect the valley from storm runoffs from this drainage area. One main dike is Dike No. 4, stretching from the mountains,. south -east of Toro Canyon, north - westward to the hills west of Avenue 60. The other is Dike No. 2, located- northwest of Dike No. 4; which.. bridges the; gap. between the two hills west of Avenue 58 . Three small levees to the west contain the storage behind dike No. 4"'. 1 Two hydrologic studies have previously been performed for the East and West Dike areas. The East Dike watershed was studied by the U. S. Bureau of Reclamation (USBR, 1947) as part of the feasibility study for the East Dike. In that study, storms of various return periods were analyzed. The maximum probable storm for this area was estimated to be 5.53 inches. The,. West Dike watershed was previously studied by Bechtel (1970) for the preliminary design and cost estimate of the West Dike. In that study, the standard Project Flood (SPF) was developed using the same September 24, 1939 "Indio Storm ". However, the total rainfall over a 6-hour period was assumed to be 6.17 inches, instead of the 6.45 inches which the Corps of Engineers revised in 1973 (USCE,1979). The computer program HEC -1, "Flood Hydrograph Package ",'developed by the U. S. Army Corps of Engineers (1981) was used in the flood study. Each drainage area of a dike was sub - divided into a number of smaller basins. These smaller sub - basins together with the storage provided by the dike were treated as a separate hydrologic unit, and were simulated in a separate HEC -1 run. Interstate 10 traverses a number of basins in the East Dike drainage area. The HEC -1 simulations in this study disregarded the impact of potential flow - control structures, such -as the highway culverts, in these areas. In addition, the impact of the dike protecting the Colorado River Aqueduct was also not considered in the simulation. The, purpose of excluding the highway culverts and Aqueduct dikes from the simulation in the East Dike drainage area was to simplify the analysis. The 4 omission of these structures does not affect the computed volume• of storm runoff, which is the main objective of this analysis. The effect of these flow - control structures is to increase the basin retention time and reduce the peak runoff rate. Therefore, the computed hydrographs from the East Dike area are conservative in terms of peak runoff rates. If, at a later date, it is desirable to simulate the actual hydrograph from this watershed, these flow control structures will have to be included. For,the West Dike drainage area, no obvious flow control structures exist. There are three outlets (wasteways) which would drain the water stored behind the East Dike system into the Salton Sea. A brief description of these wasteways is provided in the report prepared by the Coachella Valley County Water District (1967) and their locations are shown in Figure 1. For the West Dike system, the Avenue 64' Evacuation Channel provides release from the storage behind Dike No. ­I_ The iPo location of this evacuation channel is shown in both Figures 1 ­a­rdF2. The SPF o ' inflow volumes to each dike reach were developed without considering these outlets. However, the potential of the SPF flood overtopping the dike was evaluated with and without the outlets in operation. Hydrologic Characteristics The East Dike watershed covers a total area of 396.6 square miles (see Fig. 1). Dike No. 1 has a total length of about 17.4 miles and a reported capacity of about 18,000 acre -feet; Dike No. 2 has a total length of about 9.1 miles and a reported capacity of 21,000 acre -feet (USBR, 1947). Tlie West Dike watershed covers a total area of about 31.3 square miles (see Fig. 2). - Dike No. 4 has a total length of about 3.5 miles and. a reported capacity of about 5500 _ acre -feet; Dike No. 2 has a total length of 0.9 miles and an estimated capacity of about 1150 acre -feet (Bechtel, 1970). (,'\-O C:) (CE-) 21 3 -L"'rU The boundaries of the watershed area for the East Dike, as sub - divided into smaller basins, are shown on Figure 1. Dike No. 1 was divided into two reaches (B and C), while Dike No. 2 was analyzed as a single reach (A). Figure 2, shows the boundaries of the individual watershed areas for the West Dike system. The dike storage volumes reported in previous studies were checked using USGS 7.5- minute quadrangle topographic maps�Por each re—HE -in the East Dike system, constant dike top and bottom elevations were estimated based on point 0 0 :�( tom% elevation data and contour lines shown on the USGS maps. A planimeter was used to determine the area enclosed by the dike and the contour lines. Since the contours are shown at 40 -foot intervals on the maps and the dike is only approximately 25 ft high, interpolations and certain assumptions had to be made. To match the dike storage volumes with the values reported in the previous study (USBR, 1947), a flat bottom had to be assumed to exist at the toe of the dike. The width of this flat strip was 350 ft for dike reach A, 330 ft for dike reach'B, and 45 ft for dike reach C. Anew survey- would be required to determihe. the actual water storage potential behind.-the dikes. Nevertheless, lacking any confirmed data, the same storage volumes ' reported in the USBR study (1947) were used in this analysis. For the-West Dike system, there were no point elevation data shown on the maps. Also, the previous Bechtel (1970) study provided only a storage volume for Dike No. 4: For the purpose of the analysis, the dikes were assumed to be 30 feet high, same a§ for the East Dikes, and the toe of the dikes was at sea level (based on contour lines). A 50 -foot wide flat area was assumed to exist immediately upstream of each dike, at, the toe elevation. The impoundment area at the top-of -dike elevation was , r determined- using the same procedure as was used for the East Dikes. The computed storage volume for Dike No. 4 was in close agreement with the value reported in the previous study. The computed volume for Dike No. 2 could not be checked 4 against the previous study. A gravel pit of significant storage volume exists upstream of Dike No. 2. The contribution of this gravel pit was not included in the storage volume used for Dike No. 2. Precipitation data, and unit hydrograph determination were based on the study by the U. S. Army Corps of Engineers (1979) for the White Water River Basin. The Standard Project Storm was the 6 -hour storm occurred on September, 24, 1939, with a total rainfall amount of 6.45 inches., The intensity - duration and depth -area curves for this storm are shown on Figure 3 (Curve 8). For each hydrologic unit (dike reach and upstream basins), the total area of the basins was computed and the depth -area curve used to determine the total rainfall depth. Rainfall distribution during this storm was as shown on Figure 4. The unit hydrograph for each basin was based on a lag: time computed from the empirical relationship shown on Figure 5, and the average S -graph shown on Figure 6. A mean basin roughness 'n" value of 0.035 was. used in the computation of lag times for all basins. Basin loss rates were. weighted average values determined based on the percentages of mountainous and alluvial fan areas in each basin. The loss rates used for' mountainous and alluvial fan areas were 0.2 and 1.0 inches /hour, respectively. Table 1 summarizes the input data that characterize each basin, and Table 2 shows the characteristics of each dike reach, and identifies its upstream drainage basins. Study Results The results from the HEC -1 analysis of each Dike reach are shown in Table 3. The combined hydrograph from each set of sub - basins comprised the total flood inflow to the storage at each dike reach. k, As mentioned earlier, the simulation of the SPF in the East Dike drainage area excluded the flow - control structures along I -10 and the dike protecting the Colorado River Aqueduct. This means that the peak runoff rates reported in Table 3 would be higher than those that would actually occur. For this reason, the computed hydrographs for the East Dike watershed are not presented in this report. However, the SPF volumes shown in Table 3 are not affected by the exclusion of these flow control features. The computed SPF volumes for the East Dike system range from about 1,200 acre -feet (AF) for Area 3b, to 17,700 AF for Area 6. For, the West Dike area, computed SPF volumes for Basins 1, 2 and 3 have similar values, ranging from 1,900 to 2,300 AF.; while the runoff volume from Area 4 is about 850 AF. Figure 7 shows the computed hydrograph for the sub - basins in the West Dike area. The peak SPF flows for Areas 1, 2, and 3 are between 9,500 to 10,000` cfs, while for Area 4, it is about 5,000 cfs; The results in Table 3 show thatrOike No. 2 in the West Dike area, and Dike Reach A in the East Dike system can adequately contain the runoff resulting from the SPF; while the other dikes are potentially inadequate to contain the SPF runoffs from their respective areas. Total SPF runoff into Dike No. 2 in the West area was about 850 AF which was about 300 AF less than the estimated available storage space. Given the fact that the volume of the gravel pit upstream of Dike No. 2 was neglected, the available storage upstream -of this dike is more than adequate to contain the runoff from the Standard Project Flood in this area. Dike Reach A in the East system had a total SPF runoff volume of approximately 18,300 AF which was 2,700 AF less than the available storage. This results suggests that the SPF can be stored behind Dike Reach A without overtopping the Dike. The fact that Wasteway. No. 3 (Figure 1) can pass the stored water to Whitewater River gives an added safety margin to the dike. 0 For Dike Reach B, the estimated SPF runoff volume was about 11,200 AF, exceeding the available storage by 4600 AF. As shown in Figure 1, Wasteway No. 2 can release the stored water at a maximum rate of 3000 cfs (CVWD, 1967). At this maximum rate it would take 18.5 hours to pass the 4,600 AF excess volume. This result suggests that Dike Reach B probably would not have enough capacity to contain the SPF. For Dike Reach C, the total SPF runoff was approximately 22,100 AF, about 10,700 AF more than the available storage behind the dike. Although Wasteway No. 1 can release part of the excess water, at its maximum discharge rate of 3000 cfs, it would take more than 40 hours to pass the total excess volume. Hence, Dike Ila v� Reach C would not be able to contain the SPF either. For Dike No.4 in. the West Dike system, the total SPF runoff volume was 1.10 approximately 6,400 AF, about 600 AF more than the available storage. The Avenue 64 Evacuation Channel provides partial release at a maximum rate of 400 cfs. At this rate it would take more than 18 hours to pass the excess inflow.- Table 4 shows a rcomparisonr.of. the results of this study and those of previous studies: In general, both.the SPF peaks and total runoff volumes are larger than values reported in the previous studies. The only exception is basin 1 in the East Dike area for which a significantly smaller peak runoff rate and a slightly smaller runoff volume was computed in this study. Two parameters are responsible for the difference in runoff between this study and the previous studies. First is the total precipitation depth used in this study, which was 6.45 inches at the center- of the storm (for a one square mile area). This is 1.12 inches more than the Probable Maximum Storm used for the East Dike area in the USBR study (USBR 1947), and 0:28, inches- more than the Standard Project Storm used for the West Dike area in the previous Bechtel study (Bechtel 1970). Based on the depth -area curve used (Fig. 3, curve 8), the total storm precipitation for basins in 7 P the East Dike area varied between 4.00 inches for the watershed of Dike Reach C, to 5.4 inches for the smaller watershed of Dike Reach B, with an overall area weighted average of 4.45 inches for the whole East Dike area. The corresponding values used in the previous study were not reported (USBR 1947). For the West Dike area, total precipitation over the basins of Dike No. 4 (basins 1,2, and 3) was 6.00 inches, and that over. Dike No. 2 was 6.45 inches, with an area weighted average value of 6.05 inches. In the previous Bechtel study (Bechtel 1970), total precipitations varied between 5.19 inches for Devil Canyon (Basin No. 3), to 5.87 inches for Dike No. 2 (basin No. 4), with an area weighted average value of 5.39 inches. Therefore, total rainfall in this study was 0.66 inches more than the value used in the previous study. Part of this discrepency was caused by the different depth -area reduction relationships used in these studies. The second parameter responsible for the difference in runoff was the. nagnitude: of basiri' loss rates used. In this study,, total precipitation losses for the East drainage area was 2.02 inches. Total losses for the previous study could not be computed since the distribution of rainfall for each basin was not provided (USBR 1947). The difference between the total precipitation and total losses determines the total basin runoff. For the East area total excess rainfall computed in this study was 2.43 inches which resulted in a total of 51,500 AF of runoff. This is about 5% more than the previous study which computed 2.32 inches of rainfall excess resulting in a total of 49,040. AF of runoff. For the West drainage area, total losses computed in this study were 1.77 inches, which are 0..69 inches less than the losses computed in the previous study (Bechtel 1970). This is probably because of the smaller area of alluvial fan in each basin estimated here. In this study, . For the West area total excess rainfall was 4.28 inches which resulted in a total of 7,150 AF of runoff. This is about 45% more than the previous study which computed 2.93 inches of rainfall excess resulting in a total of 4,890 AF of runoff. Conclusions A flood study was conducted to determine the adequacy of the East and West Dike systems in containing the SPF runoffs. Provided that the dike storage volumes used in this study are accurate, the results show that Dike No. 2 in the West Dike system, and Dike Reach A in the East Dike are adequate to contain the SPF runoff from their respective watersheds. For all other dike reaches analyzed, the storage volumes behind the dikes are potentially not adequate to contain the SPF runoff. ''Flood routing studies will be required to determine if the existing dike outlet works are sufficient to pass the SPF's without overtopping the dikes. A survey would also be 3 required to determine the existing storage characteristics behind: the dikes. References 1. Bechtel Incorporated, 1970, "Engineering Report on Preliminary Design and Cost Estimate for Flood Control Works for the La Quinta Area," Coachella Valley County Water District, Coachella , CA. 2. Coachella Valley County Water District, 1967, "Whitewater River Basin ", Coachella Valley, California, April 1967. 3. U. S. Bureau of Reclamation, 1947, "A Report on the Engineering Feasibility, The Total Estimate Cost, and the Allocation and Probable Replacement of These Costs of the Distribution System and Flood Control Works," Coachella Valley Division, All- American Canal Project. 4. U. S. Army Corps of Engineers, 1981, "HEC -1 Flood Hydrograph Package' Users Manual," The Hydrologic Engineering Center, Davis, CA. 5. U. S. Army Corps of Engineers, 1979, "Whitewater River Basin Feasibility Report for Flood Control and Allied Purposes, San Bernardino and Riverside Counties, CA, Appendix 1, Hydrology," U. S. Army Engineer District, Los Angeles. 10 TABLE 1: Hydrologic Characteristics of the Basins WEST 1 1.26 7.08 .8.34 0.32 6.0 798. 0.63 Dike 4 2 1.08 8.07 9.15 0.30, 6:0 866 0.81 3 1.56 • 8.60 10:16 0.32 6.0 472 1.02 4 0.89 2.78 3.67 0.40 6.5 549 0.37 Dike 2 TABLE 2: Characteristics of Assumed Dike Reaches Bottom Elev. Top Elev.. Length Storage Basins Dike Reach (ft) (ft) (mi) (AF) EAST A 50 80 9.1 21,000 1 +2+3a B 40 70 7.6 6,600 3b + 4 C 40 70 9.8 11,350 5+6+7 WEST' Dike 4 0 3.0 3.5 5,80 1+ 2+3- ..Si.Cn A' ' •.. - . v Dike 2 0 30 0.9 1,15 4 ' � 11 Avg. Loss Total Lag AREA (m Rate Rain Slope Time Dike Area Basin Alluv. Mount. Total in hr in ft mi hr Reach EAST 1 4.2 5.0 9.2 0.56 4.8 446 0.56 A ` 2 16.0 58.0 74.0 0.37 4.8 286 2.04 3a 10.0 27.8 37.8 0.41 4.8 267 1.70 3b 2.2 5.0 7:2 0.44 5.4 406 0.82 B 4 9.8 42.2 52.0 0.35 5.4 280 1.32 5 ' 3.8 17.2 21.0 0.34 4.0 193 0.98 C 6 65.4 118.6 184.0 0.48 4.0 165 3.27 7 0.0 11.4 11.4 0.20 4.0 337 0.84 WEST 1 1.26 7.08 .8.34 0.32 6.0 798. 0.63 Dike 4 2 1.08 8.07 9.15 0.30, 6:0 866 0.81 3 1.56 • 8.60 10:16 0.32 6.0 472 1.02 4 0.89 2.78 3.67 0.40 6.5 549 0.37 Dike 2 TABLE 2: Characteristics of Assumed Dike Reaches Bottom Elev. Top Elev.. Length Storage Basins Dike Reach (ft) (ft) (mi) (AF) EAST A 50 80 9.1 21,000 1 +2+3a B 40 70 7.6 6,600 3b + 4 C 40 70 9.8 11,350 5+6+7 WEST' Dike 4 0 3.0 3.5 5,80 1+ 2+3- ..Si.Cn A' ' •.. - . v Dike 2 0 30 0.9 1,15 4 ' � 11 TABLE 3: Summary of HEC -1 Results .............. Combined Dike Area Peak Flow Runoff Available *Storage Basin mi?l cfs Volume(AF) Storage(AF) Deficit (AF)- EAST DIKE 9.15 9,900 2,100 - 1 9.2 6,900 1,100 - 2 74.0 39,100 11,600 - 3a 37.8 21,000 5;600 - .............. Combined Dike Reach A 121.0 61,800 18,300 21,000 0 EAST DIKE 9.15 9,900 2,100 - 3b 7.2 6,200 1,200 - 4 52.0 39,900 9,900 ............... Combined Dike 27.7 29,200 ., 6,400 `' 5,800 600 Reach B 59.2 45,400 11,200 6,600 4,600 EAST DIKE 3.67 5,000 .850 - 5 21.0 12,400 2,600 - 6 184.0 48,800 17,700 - 7 7.6 8,100 1,800 - Combined Dike Reach C 212.6 ............................. 52,900 ............................... 22,100 11;400 10,700 WEST DIKE 1 ° ' ° 8.34 9,500 1,900. - 2 r �' 9.15 9,900 2,100 - 3 10.16 10,000 2,300 - Combined ,Dike No. 4 27.7 29,200 ., 6,400 `' 5,800 600 WEST DIKE 3.67 5,000 .850 - Dike. No. 2 3.67 5,000 850 1,150- 0 *Storage Deficit = Runoff Volume - Available Storage 12 TABLE 4: Comparison with Previous Studies THIS STUDY PREVIOUS STUDY Total* Peak Runoff Total Peak Runoff Area Rain Flow Losses Excess Volume Rain Flow Losses Excess Volume Basin (Mi2) (in) (cfs) (in) (in) (AF) (in) (cfs) (in) (in) (AF) EAST 553 1 92 4.80 6,900 256 224 1,100 - 12,900 - 3.14 1,540 2 74.0 4.80 39,100 1.86 2.94 11,600 - 36,000 - 284 11,200 '3a 37.8 4.80 21,000 2.02 2.78 5,600 - - - - - 3b 72 5.40 6,200 2.19 321 1,200 - - - - - 3a +3b 45.0 - - - - 6,800 , - 29,000 - 3.00 7,200 4 52.0 5.40 39,900 1.82 358 9,900 - 21,000 - 224 6,200 5 21.0 4.00 12,400 1.67 1.81 t 2,600 - 16,000 - 357 4,000 6 184.0 4.00 48,800 2.19 233 17,700 - 45,000 - 1.69 16,600 7 11.4 4.00 8,100 1.09 291 1,800 - 11,000 - 3.78 2,300 TOTAL 396.6 4.45+ 2.02 2.43 51,500 232 49,040 WEST 1 8.34 6.00 9,500.x...:173 ,,,, 427 . ti: , .: 1;900= ` 524 ++ 6,460 2.60.. ..2.64 ,... 1,170 ` 2 9.1.5 6.00' 9,900. 1.70 430 2,100 .l 556,.. 8,460 2.16 3.40 ` 1;690 3 10:16= `'" `6:00 10,000 1.76 424 2,300 "" 5.19, 8;150 228 291 1,590 4 3.67 6.45 5,000 211 434 850 5.87 3,610 3.63 224 440 TOTAL 3132 .6.05+ 1.77 428 7,150 539+ 2.46 293 4,890. * Standard Project Storm * * Maximum Probable Storm Rainfall for 1 Square Mil + Area Weighted Average Value ++ Standard Project Storm 1 13 Y . i :i - — .n,$``�1 ,`i : 'i - - - ' - Q _�o -_r `f - _. �6 _ _ - - J_ . - � '., y r - = - �_. �- - m Z : - .__ . - •, ` _ _ - �/ - - - t: J . o ..J :- � -� :ir-: _ �� '4\ c.: _ ri -'r � , l .-L Pr r_. pr l.� _�. y J= . ., ° .- c I _, - r : � i( • 1 - +� - - r - , %r f. '°-�� ',O � •F - _ r fi = te O _ r'S . ° � '' , 1 a /_ � / _ , �- �-� 87 � ' p i , _._ -.,_ � d . 1 . . • s . �� . 7 - -/, C�, r - _ c : ,.'� - . : -i (I J . ,\. - . r' � i _/%'� .y •nl - 1 °b' /'r. /I \ . '1 \ � r )}- - _ I �ti— . � ' �' , r � � � � '! '- %�� I � . r , ` i •� _ ♦ _ , � � � - _ '' •— ` 0 1 r r � J` �1 .s �- � ✓ A_ /�n ,; '(I _ � 6I' . - _ qS/ _: I I - � J , C -7 - V °_ %� ! . :f :r-: .� � , - � iJ ' - ., . � _ ( II ( -t "l : :;•. ;� ; L l ( rf � 1B :.• 1� . � . I�. � � � N- . \ . : t .0 - '�' I '. - - �\ i. --r '/1/:� C.�'M ''. l � _ l M�I � ` o: ' •. : me� t ,a __ 2 �I o - : . . o , r J I I I j .�)I I •�-. i _ . ' S - - ^ c- = L.- - .-_ • N io- - _ ' ` �- f �a l- � '. -a N� '- �" -- - - H•.-_ _�__': f- -) ; � : .•:_ e- � __ _ _ 4 �o`- } '- - _s c � j_ ' `. �. ,^ " _ ' . oo r '� � ! r� ✓_ , ff - . -; \ -,: / i . _ ti_ . • i - � ''� 1_ E _ � 'I a - ' N. E, -� � - _- : ) ".. _ . • 1 � ,� L _ • �_ - _ :. � l � :.! �E. �'R_ 3 _ � � � y _— OD 3000 0 » 3 i 10 FEET RONETERS CON70UR INTERVAL ONES REPRESENT 40 80 FEET � - r _ _ ' S � j - �, • ♦. - y ^ _ - ^ 1 _ >4 rf'_ ' .✓° : _ . C J . . • " � A ° Z. o NATIONAL FOOT CON70UR$ GYODE7IC N 'i DATUM OF 1929 17 m -asin 3 102 3aStn 2 9. 2 7. Basin 7 Mi r INA /Z sin ` 8.3 Dike M 0. 2 Z Old. srpr- C y O�_/_ A0_ � C� 'M�- � E �� .L.,� �. Lo / i A O =4- Dike No. o I: . 117, . 7 _ _ [ F • : � _ - ! ° J ' i J N . - - 9')" iii' �.`! � ,;.\'R. - \ -� r1:3'� "� , ; y fc � " - rn ... :lJ •I^ „ Figure 2: West Dike Drafnge Area IN,, Prim Pro Ram ME ANN IIII�� ! � ' , � �i � I�' r� Ima wm�Aqm O poa-.- Yi HE" I Ip. 4. 'A J Pi% /TT '7 -cc EXPLANATION T. .0 rq 7. Vdl Watershed boundary lk. ji . ..... T U A R E j East dike 7 -T N A 41� -J. J. T 0 N Lj Nq N /.T .71' Graphic Seato M Feel Q J 0 2000 4000 6000 f-T 2100_ I w J. h'), r v -A.- ' 11 � I - _ '­-_.'___L._l -.- %!�J' 0 S rl; - - -------- J J- 777 V. .4 V V ."i 1'. • BA5. N 4 7 J R.N�IF r -4 :-j N". i. ­44 Rv:, 7's d. 'b or. m IL Dv Y BASIN 6 '4 401'. "o ST M W A L L A .... ...... x ? 5 • BAS r-j yl 12 z. fl 4 - �P th 2— S. .... .. ION C f4NE P. z N?i i 'YA.;, N et : , BECHTEL J z A SAN FRANCISCO 412 -FOR EAST AND WEST FLOOD STUDIES An— -DIKE SYSTEMS IN COACHELLA VALLEY AREA 1:' L _Z�)' Al - f P, \ p, :Tf EAST DIKE DRAINAGE AREA z. f jag Ya Ma _EA FIGURE 1 n � i Ip. 4. 'A J Pi% /TT '7 -cc EXPLANATION T. .0 rq 7. Vdl Watershed boundary lk. ji . ..... T U A R E j East dike 7 -T N A 41� -J. J. T 0 N Lj Nq N /.T .71' Graphic Seato M Feel Q J 0 2000 4000 6000 f-T 2100_ I w J. h'), r v -A.- ' 11 � I - _ '­-_.'___L._l -.- %!�J' 0 S rl; - - -------- J J- 777 V. .4 V V ."i 1'. • BA5. N 4 7 J R.N�IF r -4 :-j N". i. ­44 Rv:, 7's d. 'b or. m IL Dv Y BASIN 6 '4 401'. "o ST M W A L L A .... ...... x ? 5 • BAS r-j yl 12 z. fl 4 - �P th 2— S. .... .. ION C f4NE P. z N?i i 'YA.;, N et : , BECHTEL J z A SAN FRANCISCO 412 -FOR EAST AND WEST FLOOD STUDIES An— -DIKE SYSTEMS IN COACHELLA VALLEY AREA 1:' L _Z�)' Al - f P, \ p, :Tf EAST DIKE DRAINAGE AREA z. f jag Ya Ma _EA FIGURE 1 I. . O W a w U Z Z 2 _O 1- H a U w cr a w U Z Z Z O F-- a w tr a. w C� Q tr W a 2 I 1.0 1 .8 CURVE 1 PRECIPITATION STA NUMBER NAME I 2 SUNNY HILLS RANCH 8612 TOPANGA CANYON RANGER STATNON 3 AVALON 4 SQUIRREL INN 5 SIERRA MADRE — CARTER 6 GARRET WINERY 7 SANTA BARBARA (FIRE STA. # :3) A I.AI n n I r% a . — -- — _ TORM DURATION NUMBER LOCATION 8P98 7677 FULLERTON, CALIF. TOPANGA CANYON 7P I 0 CALIF. AVALON, CALIF. , 8612 SQUIRREL INN, CALIF. 79133B SIERRA MADRE, - CALIF. — CUCAMONGA, CALIF. — SANTA BARBARA, CALIF 9P13 I INDIO CALIF. , ►,,,VV I CJ ` 11 4 6 8 10 -_ _- LIP111on rµrf AREA IN SQUARE MILES °i 80 100 200 300 400 DATE Q v M 87.14 1941 FEB. 20,1941 3 15 OCT.21,1941 IMAR-3-4,194,1 .1 30 JULY 18,1922 3 0 1 0 SEPT.29,1946 1 10 FEB. 4, 1958 6 O. ! SEPT 24.193S K E R N OBARSror •—�• -- -- -- *LOS ANGELES SAN SANTA BARBAR y BERNARDINO VENTURA. T RANGE CANYON OVICTORVILLE RANGER STA. � fl VENTURA , f /--- SIERRA MADRE-CARTER BURBANK 0 �� NIRREL INN O �BERNAR0tN0 LOS AN.q LES ---0o �'r V SIDE LANG BEACH OFULLERTON IN�DIO o SUNNY HILLS RANCH SANTA ,A A SRANGE RIVERSIDE SA NICOLAS I. ll�bA jl ' - - - SANTA CATALINA I. SAN (SAN CLEMENTE I. DIEGO \v\ SAN DIEGO VICINITY MAP 20 0 20 40 - so so SCALE MILES DRAINAGE AREA WHITEWATER RIVER BASIN, CALIFORNIA FEASIBILITY STUDIES FOR FLOOD CONTROL AND ALLIED PURPOSES INTENSITY - DURATION AND DEPTH -AREA RELATIONSHIPS LOCAL STORMS IN SOUTHERN CALIFORNIA Figure 3 after U S Army Corps of Engineers, 1979 ` - SAN GABRIEL RIVER AT SAN GABRIEL DAM Z • WEST FORK SAN GABRIEL RIVER AT COGSWELL DAM i SANTA 'ANITA CREEK AT SANTA ANITA DAM SAN DIMAS CREEK AT SAN DIMAS DAM 3. EATON WASH AT EATON WASH DAM SAN ANTONIO CREEK NEAR CLAREMONT 7. SANTA. CLARA RIVER NEAR SAUGUS TEMECULA CREEK AT PAUBA CANYON A SANTA MARGARITA RIVER NEAR FALLBROOK /Q SANTA MARGARITA RIVER AT YSIDORA //• LIVE OAK CREEK AT LIVE OAK DAM TUJUNGA CREEK AT BIG TUJUNGA DAM /.S EAST FULLERTON CREEK AT FULLERTON DAM 14 LOS ANGELES RIVER AT SEPULVEDA. DAM /A PMCOIMA WASH AT PACOIMA DAM /6. ALHAMBRA WASH ABOVE SHORT STREET 17. BROADWAY DRAIN ABOVE RAYMOND- DIKE /A BALLONA CREEK AT SAWTELLE BLVD. /9• SAN JOSE CREEK AT WORKMAN MILL ROAD BRIDGE cn . 0 O = la O Q J Q. CIA 0.3 a2 0.1 .0 A^ CONTRIBUTING A AREA S0. MI. 162.0 40.4 10.8 16.2 9.5 16.9 355.0 168.0 645.0 740.0 2.3 81.4 3.1 1 52.0 27.8 14.0 2.5 88'6 81.3 L MILES 23,2 9.3 5.8 8 „6 7.3 5,y 36.0 26.0 46.0 61.2 2.9 15,1' 3.2 19.0 15.0 9:5 3.4 11.8 23.7 _ Lc MILES 11,6 4.2 2.3 4.8 4.4 3, O 15.8 11.3 22.0 34.3 1.5 7.3 1.7 9.0 8.0 4.6 1.7 5.6 9.1 S LAG HOURS 3.3 1.6 I.I I. S. 1.3 1.2 5.6 3.7 7.3 9.5 .8 2.5 .6 3. S 2.4 .6 .28 1.2 2.4 ESTIMATED w 0.050 .050 050 .050 .050 .055 .050 .050 .055 ,055 ,070 050 ,035 •050 .050 .015 .015 .020 .030 _GUIDE FOR ESTIMATING BASIN FACTORM) F DRAINAGE AREA HAS COMPARATIVELY UNIFORM SLOPES AND SURFACE CHARACTERISTICS SUCH THAT CHANNELIZATION DOES NOT OCCUR, GROUND COVER Sl18STANT1Al GROWTH CONSISTS OF CULTIVATED CROPS OR CACTI, OR SIMILAR VEGETATION. NO DRAINAGE IMPROVEMENTS' EX 3TS� IN THE AREA. S- D.OSO: AND NARROW, CANYONSS THROUGH RUGGED, WATERCOURSES RIDGES MEANDER AROUND SHARP BENDS, OVER LARGE BOULDERS, AND CONSIDERABLE DEBRIS OBSTRUCTION. THE GROUND COVER, EXCLUDING SMALL AREAS OF ROCK OUTCROPS, INCLUDES MANY TREES AND CONSIDERABLE UNDERBRUSH. NO DRAINAGE IMPROVEMENTS EXIST IN THE AREA, R-0. 30: - DRAINAGE AREA IS GENERALLY ROLLING, WITH ROUNDED RIDGES AND MODERATE SIDE SLOPES. WATERCOURSES MEANDER IN FAIRLY STRAIGHT, UNIMPROVED CHANNELS WITH SOME BOULDERS AND LODGED DEBRIS. GROUND COVER INCLUDES SCATTERED BRUSH AND GRASSES. NO DRAINAGE IMPROVEMENTS EXIST IN THE AREA. R_QOIS; WITH MOST WATERCOURSES EITHER IRIMPROVED54 ALONGE PAVEDEs SLOP STREETS. GROUND COVER CONSISTS OF SOME GRASSES WITH APPRECIABLE AREAS DEVELOPED TO THE EXTENT THAT A LARGE PERCENTAGE OF THE AREA IS IMPERVIOUS. TERMINOLOGY FT/MI. 350 45p 690 440 600 1 ,017 140 150 105 85 700 290 140 14 5 315 85 10o 64 75 cv _14i 40 50 100 L • L ca • S L : LENGTH OF LONGEST WATERCOURSE. Lea= LENGTH ALONG LONGEST WATERCOURSE, MEASURED UPSTREAM.TO POINT OPPOSITE CENTER OF AREA. S =OVER -ALL SLOPE OF LONGEST WATERCOURSE BETWEEN HEADWATER AND COLLECTION POINT. LAG= ELAPSED TIME FROM BEGINNING OF UNIT PRECIPITATION TO INSTANT THAT SUMMATION HYDROGRAPH REACHES 50% OF ULTIMATE DISCHARGE. W =VISUALLY ESTIMATED MEAN OF THE n (MANNING'S FORMULA) VALUES OF ALL THE CHANNELS WITHIN AN AREA. NOTE: TO OBTAIN THE LAG (IN HOURS) FOR ANY AREA, MULTIPLY THE LAG OBTAINED FROM THE CURVE BY: 0.050 OR 2011 35000. 30000. 25000. c� T v 20000... 1 O 1- 15000. 10000. 5000. 0. .0 FIGURE 7: COCHELLA ,VALLEY -COUNTY WATER DISTRICT' SPF HYDROGRAPHS FOR WEST DIKE 2.0 4.0 .6.0 -8.0 10.0 TIME -- hours 12.0 I IN THE CITY OF IA QUINTA AND THE COUNTY OF RIVERSIDE, STATE OF CALIFORNIA JEIFFRaSON S rn]EE TZP 1F:;' A T T CM Ar = if l[:)p T nr` — -- - -- -- ...— ._.— ._.— ,,,,.. wrw w"w aww aw+w av-tw a+ov zp+W j0+00 a1400 32+00 73+00 34+00 36+00 30400 37400 ism 70+00 40+00 41400 PROFILE PLAN VIEW Y P MUDY LOCATb WdMTY MAP NOT m rAr WLY R/w E'LY R)W TiPC& M ST. WLY ELY R/MI 17 2f 14' 21' 1J POW. 2 VAM IEGY01 2 um AM. EARMOM EMMATE RAW FILL- 41.000 Cy. RAW CUT: 5,523 C.Y. SCALE f•200' 0 50 10D 2w law The Keith Companies mmc «- ....+.i a s M& w opt. d EM p" "-a" DAM AM 17. 2000 A Yr i AF ,',tea •�., k� '€'u:i } °sr� sAI.I f '4' iz �•1 ti a ' tS ' 4iK r_ r s . 4 � ��,. � .tea Pa .k "f } •♦ �• . 3 "+ tar 1{ � ��.1 \• � :, � , 7�f.',n.,,.:. hj Y..rtrgt!_ t�.l : �`'237t' 1''�i��1•!�' I W. t' !! fix` •.n S.a •> r y7i =�f -� -v 4 of ) y? • 5 i'' •a t -Sx Y {�• �+S� a i• r iai� '� � "r"7n ,4 .a ar •� , �� ... M1 t 'SSri t r' kti 't F A �"• "F �ya�3�• � i1. {�• ^i` 3 X71 -. pt ..ems' � ���" �' � ., .i.• / _ .. 1 �� � "�«•• �x o.P tar t 1 - I \��4� '� - i• /J,( ' = , �e' `��,1'p •''iw �"� ,s - e,, t � �� �, rte', xr 5: ,,� r .t � �-� k .:f � i/� +.. t` ti �i_1 r'C'y, -, Y.:; 1c t a �•s �' t �: 3/ ,ie i+ r .� g -y. j � s r- +��`2�✓f , � t • �r. � ^t 1 ' ,err ' ,� AV w � t K.It; ♦+ lf: •"`�.i P1i^ '� _ ., •1 ry. 'S ( I.A� • ! . ^ I E��'�', L` itt j _•'' �_'4ty nC tip, r.. -lr' a,; •� _-'r •.y, +y�oy i � ^4� �0,�,� Irv: � �v�f• ,�I t •f'' � r� , •�' .i t' . r� • � _ „f jr ,� � •. y �wy� , j... ,,•rij- (• ". �„ ,� • ••, tr , .`�„C"+ = +.�- "one.. 1 • ' , 1 •'P; T,'? •��' ' Y 4 'ate. Y Vim• �i; .I l {1 ,r. �'�` .lr��� ?�.�1 '•h { 1l -c.,t• . ..�'� {, T t- ,"^' rl -�•t Sr ��. t;� } t{ ,a, 't.�iA`> � a• �� 1 �Y'a f'% �` •,,�'d'�i, "i �'Y �, .v kt� �,` r` fir;; �� �• �"►�J'�r•,-e ��l '•a t'�i. •• S � �v, Y �� �{ t� -. �'. r i � � k haw :n r � ; ':i' •,¢ ^�ri rte •�. .;l.d �'F, + 1r..1� �+ .. ;+.�y4a �t.t—�y ^� . _�r ik �• r �r+ «�.� r� , r / .r �T +. 'r .1 t p r,'R v t t +� t i . t.• � '�•' '� � •+y�:.- \ * 'R ��dV �+,f.C,�t•( •,r }'M. ��yr•.., lr�.:• %l: 1 � +'�• ?, >'.'��°alt .��rt *,. ,.t�'b��.:� � .,t • �• i N. �`��-�;'yX '+ y rf�•v-- .4'.',�•r,, r, 1! ''�� � i � �t1u��a t� /' ;7;• +' r'� �'"��� � r, Pi ,f, t. • t i� � ' f °�'t T ,� •b � T v t�+1' .��a s !� it T1 _~'G•i�f(! r ...w +�f i . ":: , . 1 - _ � - °i' l/(� � +r v ' ', � ��I '' % it /S ''� � � is r. ri ., _ � � � � . '.�'�''!>,. tsar , ,/� ?,�� + "t ei ' �+ �`l .'# � 1 � � � ��� �• . 4• j�A•t r "{ `i �. r i' •��' �'�. '�� ',�,i .. •,.�'.__ .. .J� ' •�' ��� /, L i �+ � 11 'v "' {'`t�1 ? � � �l � � " a 1� �� Y� r I Apt tv ....................... loll !M 41!1 No Yf , Al. Yti NOVA -k WWI lip Af r. ter i.v WO SIM, oft'-; wit! 401 J., WE's fir fr"F QMI 71 r0m M "Oft; 4f ti O 40P 3a - ,c>R a atir }.t• �.i l`',�C + ri tt }t I s K`! h i !.{ r. x {.,; y� -F 4 i�`�t•,, i' P• ' �l to, a` i ,�,��t ` •l'�4 [R `hY � t� 1111 'r���t i, Y i ��1 +�, ^�� S '�, � f }�4 �i i 1�� 'i'�' � �'G(� 'F!9 4 .�• Y1��+7, J 4 ���'7.�ti. \.: '4 s•i '!t 5,�,�}-t [V"�` yt� ��{ �_� Ttti` r•�",•1 �.'rr `� ylf��lt(} L�S�'��e s �` Y;�r.��.� �� � 'yam 1 i W ,a ': u,r.• ,1 .� +`' � � � .��i .tom•} tNf }:� s�L ' r F -: .a :`- '�'S•a�: F . �1 `.S 3�•++ �'� ,,, �:� ,� fig. t • r a � ,�• � � � • ,'��� �`:., i,,�` t ��•4�y1'ti��`i� 1•j� � �• .:�:t .4� ' i '!!� -4; ,�``.,... .�� "'`�tY "j`- - u'!+' ���Yi�. '; '_ � � t %•' tt � "i, .iii .i � 1 °. t .�'Y,.x'r" j�,; 4 ! � � :�: 4 efts ++ ,1 t �q�'� i : �, ♦,<�4s s , "� `� {fit [� .s },i t �. � :� }y�. • �i 7'� �" • _ a. 'K: r,i,..l. 1��' k',ti h� ,,`t "�,�'•.t �+f;7;t+: t '.;+.. - as .. r. 3 ;p' `t p { ` �+ <'� .•" `" . njlj_t {'; -� t}; �; i � F of • {�i s. t r ,� •d,''�" �a It IKA pMf•; .. .` Y Tl .` ; t = t t7 y .+..; =t;. ' }Nld f 'P''f~�'• y p yM1 ��y� >f. y.. ,�.y�l T• 4• L• ��wit ��l - •4. tf :�� � •i ,� r �1. , a :,� ti.: y •:�,�•�55,,- 7 ) n i ��j2ji: � }f � }! Ili,.�� � E - ���k '` x.� kts" 1 ».'� � . *''��. tK.•, a+ .�Y.` FR. �� "�.. (i, i�. I�,.L }1(lt t ty �, tl {C 'aJ .. ��A'1 'r5 A. ��_ �r'v S� "slF i� °�j � t •.A i ,� i �ty f tll �,..._J.s. -.,�wd �, � .a.:' `t�y.,,A ;y`.� ,�:: .^+ IN y � w�!' �; { t ppC;��tld •l. n f�i(( + ��- ( 4 ' F f f;� � 1. +� ! Ti`� � �''� � �'�(. x #. l-1 •`tic : %_.K ii,.P' l r r3 s i ,ri': • }.. , p nQ�lt .Yr, y Y, i- y i �. ,s �' �i . f •ii�� ,�• , �� s .5 ` ',t�yt, .. �fJ .� 'FP•[C -,T, �• Pr S ( - %--k vy!'t � �° �ap',t .,, � � 4 t` �' � ij rf • � � 7 • • � tii � .' "' ,'� r `'�.k X11 , k , • [ r l •Rrc,- •'�t .w ". �, i„ ,t is • � v yr I ._� ii r �h', f•, �1' - �.S - 3rr •pia'f -F `.r T•f • r • ,.�P '�: ' },�`.�f �wr, _. ♦ ,s � c•�f �. ,i� s..�, t• L�1' fl� -:ij t. � }" f ���,r,t +w fk :tt j�ry.- "f nit'r•?[V P t�' , -el Y. -�P • 'w'� .� #tYj 1 •. vil��}.r +��.�•�yd���, � �y. f �� 3. ,.. i � ;t to st W, top f • a � • t' elf" '1t •y`�1r�d - . -y'r� f•' -!�j `��1 - �' . �� "� L .. Ki,! '.v i ,,T� ) �.. r.! . ,✓ Y •T.•" �., �[r� r �t .� �T•'t+�,'s /�,tY °'•�'F•t .n;•�T�k� s if' ;t y^ 4��I` s� �� ':} �. s G' Z �a� � r � � S�� �' s. •a ,��•��q,� �t {�� t � rAl $� 1 •F� tti � � Y� '•�•( - - !` NN .f •r { R 1n .{ t air � 4 :! 34 1 £. 7'� i `r' � ;i tit fyi r r. TLtt ti J '• }'yR..i � 1 �� "+ [''"fir �/. 4 � � �st %A^�,{/•, ,it• �• 1 "fa- �i �y1 � { � tl�• �' '! _ i"+.. �.�� f 0.},r �� i,!,�` `�c "� '.,�At.y (. s vs r 1. 't _ r �•.1 i a {I �( 1'�'j< ' d °� ' t. � � [ }� `7i? 'r�,� K _ `G,'i`� `�,i `, ..�' t y�, Y o•• ^. ,�: t �� y � x i t�,l � � .M � {t411 1*�3k { p �" � i • C + {rid] ♦� •� ♦4 j J � 14ijfl�i.. l�. "r i., i ''.1 }f ,• .: - 7 n., -+ , . \' nj ww.rJ M1 `f� ��d � i � \LY4 • (� i� L.) — — _ _ - _ .1 4`�i :, 1t .�• '�' ` - 1 V ,� } at .rte .. { .' i .i'^.7 ' y . i ,./ yF A'c It i t r :i'�' r ♦ r S It _ Y4 el /, �';j � y ,�y ��t�� Fit � - .1 i '� . -. � ' f � ' � � i 1 � i' f '." ' � •' a,_ r..'�•1 'ry t, i�.y.� `.. ♦ `i . 4 r • . • •' r `'��jr . y. /•� t fY�_ } .. ji" .. � ., • `ts ri + +(3 `:` •• , - .,....il•� f .� •�. \it .- ;+,'L. 1 % Y �`�.k . -..1 s ;• af" �7 ♦ -� , 1 i �b?c'�j ,�� F ♦_ ,t�. r, *'� -t / j,�,,:', 1 ��z�a,°'w'- ... .ty{ .. ' ��•�'v~• � 'may •5��'tj ,�s/'' • "+f.t !iy�' `�" - \�ti `,jy�� ,w � � � 1 , �f, � �Lil► r• � .' t`, 1... 'Li ., xi fiT.st •• f � � � �'fr;' �. � rl { t• r• I ' i �,� "r• i �` ii� S. �ff�t �T� �• ' �� ly'i . i'`-+Gy' F � '" h� • r ,/ .r .. � • 1 }} • � � �,�'t_,c J '�' "`,��'±['•.f ,i, r�'rG :. .��•��/r -r� .. t _� �'•r `y - �, ���x# �`t.� ,ta .� f 4T`G.t. -.,..i rI; •y •/ ' kA�iH' }, 7 11 ,Or �t p°'sl.: + 1 �,♦ IL rrrr��•••. ^•r•+.- +T� . t � � 7 �k a ��*•- �;cPrrd+?" {Fr. ;.fir + r��� � `�; ' - •.' - � +fir 'r rt � a r tit ` Jr � f, �t1 .• � r,. +Y ... i �." . � � �* w 7"•! .� � T , . • �'i. _ .. • 8>.r' , , n' r r ! , • � ,1 a h � d'• � . I �''� ,k • , � � swamp. IV 1. �� "�• al,• i }.�%, :i, a .J ��« . 1 � itC '•,j. 1Y/ ti i..ti•..� s�r'� ..r' � �l � ',' }�•�•* .;.w.'ji i ': { •}, 4} { 'it %�+ if i` •• {t- , f t :� �'1. {•Z.i 14, �� ! t ` •rr..j ; �' t� • �'Y' f "5{ 1 1 }. i `� {S i .r 4,t; +�,/••'ii.' 'r. Ar ♦-.." .� If �'�� a. ;+, . _ �. _ ' � - J � � tit '} 3 i t!} . ♦ `t ,r„ ',fit •`� %ra ` � �.se• J"' `'^. . Ii #ter.. �' /r if• . 1., �� � r f. � �i }� •..•1 fi' 1..•f �.'f.• , .+r_ -_ -� 1` VM..i x . -%T7 r of 0% 42 . ; �'; .Yip... '' FFF ,Y �i .. tT71f��+�.rf _ i.7. � �( r.�./rF � �l . 1. T? 171 �{ i r Syr � `tLiSi t1Le• r•- •,� IN-1�� yy � i 11 ' IIS. y t� i t 'f F f. ± FL • rr�} Imo! � h .a . rJ • I, ,� �•r ,� :�. s• � ar i7 F _ ' .♦ J y it . t f 'IA' y • A _ NA 41 -may pq A 5• 'Y , - lz' • '4i �% ��' � �2�'S I J'''am.` + i S jt'' • ..w! r Via* __••+ it J w .1 i - fy1 � ' ! ,G +n r , :�..- __.. -.� � '+�._ a .k� ,}•A � 1+ .1 p�0 t `f •t J R y e r ti •?tY. .{ y.. )e. _ �Y #f /+3 4 .� ""„,S�HY �� � '{ 'Cs 1 r'S'..t �� r r y t i ..:.tii�• e{ � ' � ?n`� €vd' � itf+ • - S- � *• ' , t { ' ,. `� j {:± � {'� 1`C � a i���� t �,. -1 � 'tar; t � � � ' e � c,r ','^^ � �e� ` -t � �� "Lr�Jt,r�;� �7�s�{r ��. 5•�° �k. �° t4 f., �� a ♦ a i.JJ 1 \ �',� � } X, ti + 1 'ear � � f }y� f i � y'��a 1 4 'c t' a r 4if t i r ���.���{ �4 �.,• �y r ' r �;.+ ' `Va, �F':•�;` 7s.,+ J�q�� st , �,� _ _ ,k r. J • t._, r1 -j� ih11 1•.i ± �++ ' l,• J �,Ef, , r �a �•r J1111 � ." r ll-; rr Oc v'�!`� �, ,r(Y . _ t .. ! > t: ♦ ! "� / . of 4 i °t� � ; Y y - I• •i y� ,� /{•. yy " N 1i� 1� r,� + �� -,',l� � � �.7 �ypsi / � r . �w' '� ' ':r�.a+;' Ffi {� y , s '. sf �' � e r �' . � +/i y SNP �.�� ii � • 'la�;.yy/``` `�•' �fT •^ yam• r. re p' a r .ii � -�'IL �� / ♦r n�lj��� `.rF�y _ � ^ J _ Y • l:'V .f t r. iii) ', i,\ �' t AV"L � '�• 1 . - a fit e�`� d' •T`Y f , .� I x�' . �Y L :t"y '� ?F• 1� 1 Y .'� �, ic L ~t1 `; �i.s • 14 •!� rt at /ti �. 1 1�J s .,. v:.m yA J� � %' •�`.i'.�.'a�y. '�.t ` r I!�I - � •. by4 r - .Oi- :-.,�. . �:_•- ��.F'= "fir � - 'I ',.+ �. �- 'at:;/ � `► ",�' �'�'. 3•. � •, *� ''}t om ♦,�f• ,• `�F� i;< t �. ,; ' -., {i �3 ,�. rV •ond I,i�. i � _ , �. . � 'Yr.L r*[ ^ti. IT ♦ r t .� - >, � - a �i1 •. ,.. � �� �; /ate. �•..: �'r = �A'lt•� alt i 1,�,)� Jf. �. Sri. �,r, 7t ?' �,��"i �til t rat •t • i{ t.. , i •~^ + rt a _ �.• •� ,':' . ,- . �.. ■ ` AL- x°t 1..'L +•� 1 f .fiy , r .,;,�d, +x - v,� ,,,air �h•� l a. ; -!.<t� �� - �� � . ' = {� .ttt �� tip f � ''1��� �,, ° � ` .� .:�. x� � , J; ,III � ,' 'l`{' : - t. , r( �., ,.. er4. n+r �: rw jet i yYr{'•.f.'.t , l° �t �? . aA ; �, :•'-Y' � �, k 1�w }e• . Y tt .� #� tJ�r.�3�,. i:1.� ,i.'u;, .•,�,{:1 ..v k's 'K, J. � r, -•N d � � -• r N ♦'t i (' � ") . d+ ' a� � � ,• s � ' r1 • .�, t� ,6,%�•' r1►' � � �'. - �� �.., �s'1 vi �tttr�l� �„{:�a':. � 7 ,�„. f , `i " t-• ) `•�' ^3 " -�,' • •.J, ... _ _ ;a.- v b`,,,,.7,�w.i,V � z �'?Z� • 'fir Y?'^y j •/. {�" y. Vl • 7*— T ; v s SQL' ^ 't {f' *1. .*C •.! :1t Liu 7 age •l� 4•j M � _- t.. y.�.�.. ,'.�Dr • ii�jr• 1 , : s ,tg, Z r . y • ' -� A r 1, .-+" r �ttey �l���L��r�3� ��,'^ +� � r� •t _ ''"- ',� 1 � -�+1�' i- ••� fie• .fir ±!� r •� �� { ✓ pV y ��; -�..•,.F-�' ,, it �, y1 «'"�,. � �'_- � ,. rSx f�1.f*7fV'�;. -)� rj�tilt;. _�,.�� 4�`,'�• l, r-i ,A q.. "f 41" r .�'di ` X.2 " 3r lat., I 5 3m 0 I, F21- -Ilk N I ��_ ° ,*tj � .��,k,� r>+ � par ;�r�� � ,�i+ y • � •n r��`"7"�` '`r�#y� �- ��,;,*>.r �4'�� ' -�. � `' `4. `Nr! <� ' i";�r � 1 ' Y` �, � SCI '� t Z � r - � . `_'.\ [ ` 1�. .,. � �j ` / �:�,:: *� fry.. . -�• a i z � • ;i "' ,r �'��.�R ' t'�� 'a• , :/ � ,� `- "Ct., .1`ti t>rty�j . ' a' o t �� t, t � �"=,f11'< '�r�° Vii• 'ti�i, =�� �., t tf*< ° �t °i -tr, e- r > • s ✓+'l t �i"f�,�,;j °�'a � % �� `;r���'`�a} °; � ilai � ..y :r/ "�' . f '�:�x' 7�'S �{,� ��• ci"q, ',at ♦1r `,s EX,ly- �.��j±� f}I, y�+��Y,��jlt� � 't�y • #• �� Tyr - _¢, � r7 J% �},,��1� yy�.1.�1 x._tT�•�:y'i' �+[ t�,,.� '�•��T;yr /. �v.�• 4r*x } , � ,ter. 1. .l:�P1 ti / ♦ =t`# l��f "'#"(, ; �1�/r rrt�U {y'•, 1'�� %l ti' /f�,.1 l: '. !+", �( 'Y'' •'�i; a0. • �A '}" ��y {�• 'i ix {•, - '1 i �.,; w.. ,'. L�. ,�' \ i� ' r, .�t `Sl ',S�c� <•t t ) �}hl. )f �r �{'�'1 " ��y� ,r �� ,fit' = r`. "";4� y' i ,r'�i'4 *•''� /r7.✓'l+r li}"�/1�'/ YiI �f,, �.7 i vj, , Rh.- „i � w -3T.�r t„t y'i+. ♦a r wl .yii.�..* -" + r.. . � � t� '� �i 1 .Zw w 3 �.... ✓j� �5 `43'V >>•'w!• y.?C, 1 �� ' L �� �iL • , :y, `.F_^ � is}z� �j1t� `y � i''`f?f' E4�P ;/j +1 !!�!�'i.� '`g �.:r�t' f , fi r � . .i � � ' n.. fl' ,M1� ✓.. N '�r�^'.T�<jl.7T��,` "` ^ ft ��Y } �. Ar �Y=�^""''t``��w.' � 4 ,��� %e- .:;~'f .. • � j� ,i+]yy+{{���rte �'!'4 it r° �, �t•' �--'.�� �%�`s' ti �' ts' � ' ►, � `: ° x' '� �• <�.�:�'/,y��, �iYS= .`+st ;i. . -wig � �r i�i. ^ '„ ffi.—, �' -tiT; � t� jy +tom,. �. ` { { l►.+ 1 •✓ y/ k /,c Ytlf •jYf tht.� J e .� 'yy �; F 9, 1.; �:.y. ' .'':yam .F ���'R4d A"U�.r' x� �� 'v,•.. `�•`,.` j �� �e� �Y .i �l�J, � �Y` e ,',tea lL� i "° ♦ 4..1 F T xx:3" Ale ��'� '" .r� :5 �, .+i + ( y I Jt. i F &,. �! ��,4• ,y1 +a Ow }�` • +� ,,�, X r.. Lam-,. ...lei; •�.�, •,,,✓'' Tt'- •r'Ii�/ •, f� /, r t.,TA�• t a f t ■� . � . ; j�^ -�y� ., :, �r 4 �T j %'iii � °f � i A4 � +�". �? �i� � �.�2.�a,.t�. '�' _•�"'� � li IIf '�: �,fj. yi'•! w/'� 4�., {i . -!t � ^���,yi t�''� .� �� ��•' 'S y �.a •i A ��, , i 1 �Ir y +�+'t .�}�},.t��•."y iii jI. +P F .' �3 T!'• fx �. , � �f{,n 1� u� ��� '",�F�� � 1 ,'� •,f �jwy� "�'� •�'`,? •'. .Y :►` �r El =, ' ` ,.j;+ i n r, +y t s u L't .. t �4 fy. ' �r/ ",:.max i 'ir'.i � / f 'x +!' ! � � •'j f'i 4 ryF * .7 jk :.. «�YJ Jt,,1'', 1, �i /` 'fr ±a �v �� a ' 1 rr�� d�A: !!'i' - ,�y`'�J�(' :�qu1. s % r y i' ,•i ',� � 'td �y7F���� r ✓1yt t '`';r � i f�f� ♦ � • «�-ili. �� J y� + ;� ��i � a r� �r"'s !" 'f �: �• +� 1 1" �.�p•.� •t;j Y�.,,�1tt,,, i.• ',' 1 i.' ` 4` •+� ,'r1�'�t� y �' �+ :4; �.y� (�,frR • ,�. « '�.s'` . liR� , ♦�t x ••• t 'J'' A •r'• '� r .,Y. •�s � .�T x: `� !'fit..! "Ali •i•x /i%x x_. i�. '{r•t ...,� �(.r`.\; PACIFIC ADVANCED CIVIL ENGINEERING, INC. 17520 Newhope Street, Suite 200 ■ Fountain Valley, California 92708 • 714.481.7300 ■ Fax: 714.481.7299 TRANSMITTAL DATE: 9/23/05 JOB/ OVERHEAD NO.: 8041 E ATTENTION: Paul Goble City of La Quinta PO Box 1504 78 -495 Calle Tampico La Quinta, CA 92253 -1504 PHONE: (760) 777 -7087 FAX: (760) 777 -7155 ` SUBJECT: Green Valley Property Hydrology Reports — Copies of References b FROM: Mark E. Krebs, P.E. TRANSMITTED: These are transmitted for your use. Should you have any questions, or require additional information, please do not hesitate to contact us. APPROVAL: (sign re Required) SENT VIA: Federal Express COPY TO: Accounting File Tom Cullinan, Lowe Enterprises (without enclosures) John Criste, Terranova (without enclosures) B 519 EXHIBIT WATwE4RSHjtw"0" MAPm `el r � _ it PROJECT IN THE CITY OF LA WUINTA � --- , - WATERCOURSE 1111.11111111II1. PROJECT BOUNDARY NODE NUMBER MAP PREPARED UNDER SUPERVISION OF /• f � J DAVID L.W. SHEN R.C.E. NO. 044374 �r 0 - , -p ,.7 SEAL (Ij r T 11 0 / tG no P n 2 { � - . .�-- �,• %•-•� � \, \ \\ \` � �.�// / / \�, -`- • , :.: %�/ ; �� .�:/ // __� I � X3:2 �'` 1 l i G00. 'AI r is ,J J�OOO ' /r o ...._ ;; �,..., . • - .... �� - we 8 8000 j H - 9515 , • �`- .. /`\ ``.. "`\.. \ +� � i - � /ti /� �� • -" •.,lam ±: r � 1 / t r , ,�-- -�.. %/ � �\ / /' I • i ( -: / it _._. _ � � t • 1�. �L -�of �.- �\ L � >o • I' , rj,.'. -� 'l 'r j + i '\ ��` Qom• -�_�- , { '� � <T �-'� _i l r `,�. .� ..) , \ \ , \ \ 4 \J 1 "�'� .�•�� � _ ^ �i i � /•--•^'_. - .'.. ", � ( � � lam_ `'i �� — \� . \�- � \ t 1 \ \ / �/ r ✓' / -. \ �_. ^..i �-% rte_. .__ __ -._,i- � � \ 1 t Z \ 3A c • 441 :,. .. `€ �" ................ ..................•..........:G It t .21 .LAKE 1CAI-Ii_.IILLA VY �w' /nlrrl�j�l �`L n p o -) ik° � vEINUE 0ti vi e \\ 3 0^ 2 adel� :,{ 28 frPit x i 7 s. .t ake ahuil t u , ;, Q •-- �I= t It 1 ,t � 1 Par Count li ;l ® 111 •':\ . � �/ i(aTO -_., Y> ' ® ! = • i,}- �.- fit: •. r r 9 ' -13.7 14, __� 00 ° 21. - 7, 50 LCA= 4450 t 42 5 I '���- i ( i, •+ � it f� ,, { �L = W, 550. rc, / 1 \ _ . 400 IJ • • 1 s • �.. , / /��. , : ' i//! i i ' .� '. \. ,\ , /1 !.,\ \.. ;,����.../ -,.,, ice` I / ,f /�, ' - / /�f�( /,_� /J �� C'•� \ \!—_-:.��, •t ; % ! :�•; �, \.... .. \..�_.�/- / /_/ J S : Sri/ \.�•�... '�� / '/ v r \ . v j • r, i '•�. y` L `Sri• ..� +' _.i ! ^'!'�• •• -� ...J� /" r: i t � i // � 'Sy Rl \ '• "�CJ� %. r,•. _;\ ' .\ \�• \�'`,, .• X3rd. 9�''` :� 1_ , 1 Xi ,../'11 r.� -) l • \_ .�` I I� IJ 7 `��:��_ �` IF \, , \ /'�..1 =- ^..\` \ \�l ./ / , SEE EXHIMT 'C FO L f �� / "I OCAL INLIJ HYDROLOGY MAP l �Uf (' ��, \�,`' SEE EXHIBIT 'D' F OtVS!'fE HYDROLOGY MAP :. \\ \'.\ 1'; C {�