Loading...
32751-------------- 31 Hydrology Hydraulics Report Tentative Tract 32751 MDS 62602 SW Corner of Jefferson & Pomelo City of La Quinta, State of California February 2007 Prepared For: Citrus El Dorado LLC aka Craftsmen Homes . 1157 North Red Gum St Anaheim, California 92806 r Prepared By: MDS Consulting John W. Cavin C 16802 78 -90o Avenue 47, Suite 208, La Quinta, CA 92253 (760)'7'71 -4013 Resub — February 2007 Resub — January 2007 Resub - December 2006 Resub - October 2006 Sub - Mav 2006 • Paul Goble 4, Subject: PCN 06050 CITRUS EL DORADO (CRAFTSMAN HOMES) TRACT 32751 ROUGH GRADING Due Date: Tuesday, March 20, 2007 Status: Completed Percent Complete: 100% Date. Completed:. Tuesday, March 20, 2007 Total Work: 0 hours Actual Work: 0 hours Owner: Jesse Jimenez Requested By: Jesse Jimenez 04/03/2006 RECEIVED PLAN CHECK ITEM SENT TO NRO CONSULTANTS AS PER PAULS REQUEST FOR PLAN CHECK SERVICES (JGJ) 04/26/2006 RECEIVED PLAN CHECK COMMENTS FROM NRO SENT TO TONY FOR HIS REVIEW(JGJ) 4/27/06 - Tony started a plan check and got the following: Project Info. Comments to the City Staff Project.— 8 acres + 29 offsite acres (TM 24890 + 2000ft Jefferson) drains into this area. Hydro calc uses 37 acres. Hydrology Report 1. Appendix B, provide a summary of the inlet sizing summary as shown on the attached. Can not tell if HEC -22 was used for the sizing of the Inlets. 2. Project Narrative and Sheet 2 indicate that a percolation rate of 2 in /hr was used in the calculation of the retention basin sizing. However, the percolation test results for the proposed east retention basin indicates a 0.3 in /hr result was found, so the 2 in /hr rate is not valid. The city request that a 0 in /hr percolation rate be used for the retention basin sizing or submit geotechnical borings showing a representative soil layer that is representative of the test results found in the infiltration test. 3. City obtains 3 year storm governs with no percolation allowed. City Storm volume -- 187,601 cuft or 4.31 acre -ft. Note the pervious area was estimated at 1.2 acres and constant loss — 0.27. It was noted by the city that the designer obtains a volume greater than this number, so only results of the volume are required. 4. Syn Unit hydro info, the soil constant loss rates used 0.41 and this is too high. Calc shows 0.27. Explain and show backup data. 5. Provide Q10 results for Onsite Street Curb to Curb. Also, provide Q10 results for Jefferson Street (1 lane clear without hydroplanning). 6. Provide calculation with cross sections showing the volume of the retention basins and based off of average end formula or equivalent. 7. Any hydraulic calculations where not plan checked because incomplete data such as values of : n, S, Sw, Sx, Ts, Talll, Eo, Q, Qb, Qi, Lt, h is not found. See attached example plan check checklist on sheets 3, 4, and 5. Note, this may be accomplished on the Storm Drain Plan. Rough Grading Plan 1. Sheet 2, where is the bleed line stated in the COA item 42, see attached. Provide storm drain plans with next r.g. submittal. 2. Sheet 2, any wall surrounding the retention basin must be approved by the CDD & PW. Plans are inconsistent with respect to walls. 3. Sheet 2 or 1 in the index map, show the emergency storm flow route (see,COA item 50). NOI is also asking for explanation of the route. 4. Sheet 1, index map, make the index map clearer, and provide the flow route and if offsite flows exist provide a "recorded drainage release letter ". 5. Sheet 2, show the existing drywells. 6. Sheet 2, provide elevation data of the retention basins (HSE, Bttom, etc) 7. All sheets, need City engineer sign block, go to the following link: <http://www.la- quinta.org/publicworks/tractl/z onlinelibrary /designguidance.htm> 8. Sheet 1, index map, and all sheets pertanent, provide the adjacent Tract Map No's. 9. Sheet 1, Grading Notes, provide geotect report showing backup info for the proposed overexcavation depts. 10. Sheet 1, index map, provide Q's and storm flow direction arrows (onsite and offsite). 11. Sheet 2, provide a cross section for project and Jefferson Street showing pertanent information defined in the COA item 8.A 12. Sheet 1, or any other sheet, provide a Typical Lot Grading Detail. 13. Sheet 2, indicate the PUE is this dimension. 14. Sheet 2, the cross section of A -A shows a wall, on plan view the elevations are required to be shown at all reflection points TW, Tftg, FS1, and FS2. 15. Sheet 2, near lot4 and 27, provide elev of the vert curve at 50ft intervals. 16. Sheet 3, provide grades around the culdesac. 17. Sheet 2, section E -E, provide min 12" high by minimum 4ft long berm. This shows 3ft. 18. Comment for Engineer and Paul Goble, CC &R may need to be modified to reflect Storm Drain near north side of project. See Paul Goble for text. 4/27/06 - Tony finished plan check and gave to Paul 4/28/2006 - Paul reviewed and annotated 1st round check from NRO/Tony. Redlines to Jesse /Ed for return to EOR. Citv considers initial plan submittal incomplete. 05/01/2006 SENT FAXED NOTICE TO MDS FOR PICK UP (JGJ) 07/06/2006 RECEIVED PLAN CHECK COMMENTS FROM NRO SENT TO TONY FOR HIS REVIEW (JGJ) 7/12/06 - Tony started a 2nd round (1 st full check) plan review and got the following: Hydrology /Rough Grading 1. Appendix E does not contain the drainage area.map exhibits. 2. Tony finds that the basins have not been adequately determined for their volume. Request developer to provide cross sections of the basins to determine Max Volume and high water. line. City finds the following issues with the profiles of the basin Basin No. 2 Wrought Iron fence shows a max watersurface of 26ft (see SW corner of basin). Combined Volume of Basin 1 and 2 is about 130,000 cuft. The 3 hr 100 year storm produces 184,000 cuft. City finds that with a 2 " /hr perc there is still 39,000 cuft of overflow occuring (Perc rate calculation is in question with controlling storm being 3 hr). Engineer must resubmit backup raw data showing no overflow. Note though, it is found that the city will not allow any percolation at this time until engineer gets special city approval. 3. The soils report indicates that the soils in the project have been found to obtain an infiltration rate less than 2 " /hr especially within native material. After reviewing the results, this plan checker request that percolation rate of 0 " /hr be used on this project. 4. Special city approval of the walls surrounding the retention basin and the engineer not designing the basin according to Eng Bulletin 97 -03 (Basin Slopes) 5. Plan checking regarding hydraulics are postponed until the above comments have been addressed. Plan check stopped until above have been addressed and accepted by the city. Special approvals are required. Additionally please address all of NRO's redlines found on the 2nd plan check. 7/12/06 - Tony finished plan review and gave to Paul. 7/17/2006 Paul reviewed and annotated 2nd round plans following NRO and Tony review and comment. Percolation, effective retention basin volumes and overflow elevation is not fully understood by City. Native soil percolation test shows silt with ineffective percolation. Check volumes of retention basin capacity are not matching with City value of approximately 130,000 cu ft and a storm volume of 184,000 cu ft, giving an incremental capacity need of 54,000 cu ft or 39,000 cu ft even with assumed percolation. MDS may wish to consider providing a mass grading plan given unresolved issues with rough grading and hydrology. Applicant has reported import of soil and placement on site bottom without grading plan - grading is stopped pending resolution of rough grading issues -stockpile of soil is still allowable. Various PM10 plan items have also been discussed with applicant on 7/17/2006. Redlines to Jesse /Ed for return to EOR. 10/4/2006 - Paul forwarded mass grading mylar to Ed/Tim for signature with request to review for various exceptions requested by developer as follows. High priority project, developer anxious to commence importation of soils. 1. Exception to EB 97 -03 and COA - retention basin 2 slope is shown in landscape setback. Perimeter wall is at ROW line. See Sheet 2. 2. Exceptions to various City standards and COA is also sought by developer - rough hydrology is not approvable and retention requirements (no percolation assumed) is short by 2.1 acre -ft. Option 2A - Correct inadequate percolation tests (2 separate tests have failed percolation standards) using overexcavation and import of blow sand. Option 2B - Allow for split percolation testing wherein any basin area with acceptable percolation is allowed the 2" percolation factor but the adjacent basin would be set for zero percolation. Basins would be interconnected for additional percolation gain. Option 2C - Allow for off -site retention in golf course using a 24 inch storm drain connection. Golf course approval would be required. Option 2D - Allow for poor percolation testing results to be enhanced by use of drywells. 10/13/2006 - Paul received direction from City Engineer as follows: 1) Split percolation assumption is allowable - 2" percolation as proven from Earth Systems head testing) is allowable only for Lot D. No percolation allowable for Lot C in hydrology calculations and assumptions. 2) Callout of 1 MaxWell Plus drywell for each basin (Lot D and Lot C) is requested with removal of sand filters in project design. Equilizer pipe between Lot C & D is not allowed to reduce drywell location to be exclusive to Lot D. City also notes that retention basin Lot C in landscape setback is still not approved by Planning 11/14/2006 RECEIVED PLAN CHECK COMMENTS FROM NRO SENT TO TONY FOR HIS REVIEW (JGJ) 11/16/06 - Tony started the plan review and got the following: Past standing comments dealt with hydrology issues. The hydrology report was not provided in this submittal so past plan check comments are not possible. Tony will check past comments when hydro is submitted with the plans in next submittal. 11/16/06 - Tony forwarded plans to Paul to forward to FOR due to wall revisions. 11/21/2006 - Paul reviewed and annotated 3rd .round redlines. Maxwell drywell at Lot C not shown per 10/13/2006 request. Freeboard requirements not met. WS100 elevations are not consistent between rough grade and storm drain plan sets. Perimeter wall should be realigned. Planning approval still needed for atypical retaining walls at retention basin perimeter. Revised hydrology report should be resubmitted. City requests particular attention and confirmation of 1 ft. and 0.5 ft freeboard requirements per EB 97 -03 and the storm drain checklist. Rough grading plans do not match storm drain plans and do not match C.O.A. following 3rd round submittal. Submit 4th round plans directly to NRO for check. Additional plan check fees may apply for this project. Redlines to Jesse /Ed for return to MDS. 11/22/2006 SENT FAXED NOTICE TO MDS FOR PICK UP (JGJ) 1/08/2007 RECEIVED PLAN CHECK COMMENTS FROM NRO SENT TO TONY FOR HIS REVIEW (JGJ) 1/10/07 -Tony started a 4th round plan review and got the following: 1. Sheet 2, remove the elev of 22 found in the retention basin. Apparent old data contours. 2. Sheet 2, show the elevations of the WSE100 at the retention basins. Also, provide the exact bottom depth of the retention basin. 3. Sheet'2 and 3, the'elevations for perimeter lots are showing grades with differences greater than 1ft. This doesn't meet COA item 36, see attached. 4. Hydro Report „Show the volumes of the retention basins and provide calculations showing the retention basin with the percolation. Also, report is not clear on usage of RI 56 or 69. If 69 not used, then grading plans shall obtain notes with granular sand import and backfill must be used. 24 hour storm run result is shown in hydrology report, but not backup data. 5. Sheet 1 only, past plan check comment about landscape setback approval, Planning Commission approved the walls. Provide CDD sign block on sheet .1 upper right corner. 1/10/07 - Tony finished and gave to Paul. 1/11/07 - Tony took back task from Paul after determining new quatities of the retention basin (EOR did not provide). Lot D and C (perc allowed for 3yr — 200 cuft, @ele 25 Tot Capacity = 143,000 cult, @ ele 26 Cap — 183,000, @ ele 27 Cap -- 219,500) The Shortcut Method produces a Required Capacity Vol of 250,835 cult. Freeboard elevation and 100 year surface conditions not met. 1/11/07 - Tony returned task back to Paul. 1/12/2007 - Paul reviewed and annotated 4th round check and discussed same with NRO. Hydrology report is not approved. Freeboard is not obtained (second request item). Deep retention basin 8 ft terrace not provided per - Engineering Bulletin. Planning Director and PW Director approval needed for retaining walls compliant (second request item). Planning is requesting an additional section and landscaping concept for retaining wall. Please submit to Stan Sawa. FOR to resubmit plan back to NRO for 5th round check, following hydrology report rework, redesign which j provides appropriate freeboard and Director approvals of retaining wall concept in retention basins. Redlines to Jesse /Ed for return to EOR.. 1/16/07 RECEIVED PLAN CHECK ITEM FROM ED /PAUL. GEORGE PRINE SIGNED TRANSMITTAL AT COUNTER (CK). 02/06/2007 RECEIVED PLAN CHECK ITEM FROM NRO WITH COMMENTS SENT TO TONY FOR HIS REVIEW (JGJ) 2/7/07 - Tony started a 5th plan review and got the following: 1. FOR should sign the Hydrology /Hydraulic Report - third request item. 2. Technical hydrology issues follow: a. Append A, provide sub area call outs on Unit Hydrograph which relate to sub areas on a map. b. Revise Table - Tab 3 - provide minimum (calculated) required vertical openings in the curb inlets for clarity. C. RI assumption does not match soil conditions at site - RI assumed to be 56 (Type B) but mass grading only restricts Type D soil. Local import and native soils are assumed to be Type C soil which requires an RI of 69. City discussed same with NRO and obtained NRO concurrence with this redline. See prior redline 1/10/2007 and mass grading redlines dated 9/25/2006. Rerun hydrology or provide qualifed geotech letter stating trib areas are RI 56. (Third Request) d. Provide basin volume calculation using standard trapezoidal calculations. e. Engineering Bulletin freeboard is not followed - please provide - WSE100 = 27.13 ft, Catch Basin FL = 27.70 ft. (Third Request) 3. Sheet 1, callout volume of the retention basins on the rough grading and storm drain plan. FOR stated the difference in elevations from past comment 3 was taken care of by an approved Substantial Conformance. FOR seeking final wall approval. FOR writes that an Earth System letter of approval for Mass Grading is submitted; howvever it is not with this submittal. 2/7/07 - Tony finished and gave to Paul 2/8/2007 - Paul reviewed 5th round plan check and discussed status with NRO. Hydrology is still not approvable at RI appears improper and freeboard is inadequate. These issues were identified in Sept/Oct 2006 and still remain with plan. NRO will not approve project. Redlines to Jesse /Ed for return to EOR. FOR to correct and resubmit to NRO for final check. 02/28/2007 RECEIVED PLAN CHECK ITEM COMMENTS FROM NRO SENT TO PAUL FOR HIS REVIEW (JGJ) 03/01/2007 - Paul reviewed 6th round submittal. Submittal is approved by NRO. Fill RI values were confirmed by Februrary 21, 2007 report by Earth Systems to be 69. FOR adjusted other offsite RI values (Al, A2, A3, B2 and 134) previously submitted and approved to compensate for required volume increase utilizing new intepretation of Soil Conservation Map as justification. Mylars are requested per NRO recommendation. Redlines to Jesse /Ed for return to EOR. Freeboard per street plan FL = 27.70 and WS100 at retention basin = 27.05 equal to 0.65 ft. FOR to check perimeter wall footing encroachment to confirm permission or provide offset footing as applicable. 03/01/2007 SENT FAXED NOTICE TO MDS FOR PICK UP (JGJ) 03/06/2007 RECEIVED PLAN CHECK ITEM SENT TO TONY FOR HIS REVIEW (JGJ) 3/6/07 - Tony started a plan review and got the following: 1. Flow line at local depression and water surface at retention basin still not 1ft difference. Actuall about 0.65 ft 2. CDD needs to sign mylar. 3. Clear distances between the roadway and drop in the walls is only 10 feet. According to AASHTO Guidline, Clear Dist = 10 but increase for curve of rad 300ft is 1.5 x, so Clear dist = 15ft. Note, mountable wedge curb was also found. However, non public street, speed unknown, verticle curb can stop vehicle when speed less than 25 mph, etc. 4. Sheet 3, the section callout drawn near Pomelo, F -F, is not found. Section F -F also refers to Jefferson Street. 5. Sheet 3, past comment on PL in middle of wall was performed by leaving line in middle of wall but removing PL. Comment not fully addressed. FOR will not address - states resolve at wall permit level. 3/6/07 - Tony finished plan review and gave to Paul. 3/8/2007 - Paul discussed mylar with Tim. Tim signed mylar. Mylar to Planning for signature. Return to Paul for final processing. Approval letter for sub conformance #4 to be generated following planning approval of mylars. 3/12/2007 - Planning has declined to sign rough grading mylars. Per Planning Memo dated March 12, 2007 - "The Conditions of Approval for the tract required a Noise Attenuation study. That study has been prepared and requires noise attentuation walls substantially higher than the existing walls. The grading plans note the existing walls to remain. This is not correct. This plan needs to reflect the required sound wall requirements." Paul forwarded mylars to Jesse /Ed for correction by MDS to comply with Noise Attenuation study recommendations. 03/13/2007 SENT FAXED NOTICE TO MDS FOR PICK UP (JGJ) 03/15/2007 - Paul forwarded mylars with additional wall comments and annotations to Planning for signature... Return to Paul for final processing. Approval letter for sub conformance #4 to be generated following planning approval of mylars. 03/20/2007 - Paul reviewed mylars with Ed and annotated minor note change for PW and CDD Director approvals for perimeter wall design. Mylars to Jesse to scan along with storm drain and street plans. Paul forwarded information to Brian for draft of approval letter for sub conformance #4. 03/20/2007 SCAN NED /EMAI LED/ARCH IVED AS PSN 07044 (JGJ) ,• E N G I WE E R S S U R V E Y O R S From: Chris Bergh, George E. Prine, Jr., John W. Cavin To: Edward J. Wimmer, PE City of La Quinta Development Services Principal Engineer Re: TTM 32751, Citrus El Dorado LLC, MDS 62602. Reply / Explanations to COLQ comments Hydrology Report / Storm Drain Plan Check No. 5 Comment No. 1 FOR must sign report. Done - Most Municipalities prefer signature on Approved Copy only. Comment No. 2a. Provide Subarea table relating Exhibit 2 areas to Sub -area data on Unit Hydrograph. Done - See Revised Tab 3, Summary 3 table Comment No. 2b. Tab 3, Summary 8 — Provide minimum vertical inlet opening for required inflow. What does the checker really want here ?? • The standard curb opening height at the 4 -inch deep depression is 8.8 inches measured along the curb batter, or 8.3 inches measured perpendicular to the invert inside the sloping inlet opening. (See the attached COLQ Std 310 adjusted to scale 1 in = 4 in.). • These dimensions do not vary, so stating them on the drawings is superfluous as long as the required flow is less than the inlet capacity. See Tab 3, Summary 8. Additional capacity, if required, would be obtained by lengthening the inlet, not by changing the height. The height would remain at 8.3 inches. • The standard vertical curb height is 6 inches for all CB in this project per COLQ Std 201. • The standard vertical curb depression is 4 inches for all CB in this project per COLQ Std 330 Case C. The COLQ has instructed that only 4 inch depressions be used at this time. • Therefore, the standard vertical curb height at the depression is 10 inches for all CB. (6in + 4in). • The required Q100 inlet capacity and maximum inlet capacity with ponding to Top of Curb at each CB have been included in the report through the last 4 reviews, since May 2006. (SeeTab 3, Summary 8 & 8A.). The capacity at TC is more than 150% of the maximum required capacity. Stanley C. Morse 78 -900 Avenue 47 VOICE: 760. 771.4013 Gary W. Dokich Suite 208 FAX: 760-77 -4073 J.R. "Skip "Schultz Lo Quinto, CA 92253 EMAIL: mdsloquinto @mdsconsulting.net CONSULTING �n4 Q a ti bm h� ,• E N G I WE E R S S U R V E Y O R S From: Chris Bergh, George E. Prine, Jr., John W. Cavin To: Edward J. Wimmer, PE City of La Quinta Development Services Principal Engineer Re: TTM 32751, Citrus El Dorado LLC, MDS 62602. Reply / Explanations to COLQ comments Hydrology Report / Storm Drain Plan Check No. 5 Comment No. 1 FOR must sign report. Done - Most Municipalities prefer signature on Approved Copy only. Comment No. 2a. Provide Subarea table relating Exhibit 2 areas to Sub -area data on Unit Hydrograph. Done - See Revised Tab 3, Summary 3 table Comment No. 2b. Tab 3, Summary 8 — Provide minimum vertical inlet opening for required inflow. What does the checker really want here ?? • The standard curb opening height at the 4 -inch deep depression is 8.8 inches measured along the curb batter, or 8.3 inches measured perpendicular to the invert inside the sloping inlet opening. (See the attached COLQ Std 310 adjusted to scale 1 in = 4 in.). • These dimensions do not vary, so stating them on the drawings is superfluous as long as the required flow is less than the inlet capacity. See Tab 3, Summary 8. Additional capacity, if required, would be obtained by lengthening the inlet, not by changing the height. The height would remain at 8.3 inches. • The standard vertical curb height is 6 inches for all CB in this project per COLQ Std 201. • The standard vertical curb depression is 4 inches for all CB in this project per COLQ Std 330 Case C. The COLQ has instructed that only 4 inch depressions be used at this time. • Therefore, the standard vertical curb height at the depression is 10 inches for all CB. (6in + 4in). • The required Q100 inlet capacity and maximum inlet capacity with ponding to Top of Curb at each CB have been included in the report through the last 4 reviews, since May 2006. (SeeTab 3, Summary 8 & 8A.). The capacity at TC is more than 150% of the maximum required capacity. Stanley C. Morse 78 -900 Avenue 47 VOICE: 760. 771.4013 Gary W. Dokich Suite 208 FAX: 760-77 -4073 J.R. "Skip "Schultz Lo Quinto, CA 92253 EMAIL: mdsloquinto @mdsconsulting.net • • HEC22 is a valuable' reference for design of Drainage facilities. However, it is basically a comprehensive, 478 page, 2001 restatement of the design principals set forth in Engineering Texts and Municipal Design Manuals in use for more than 40 years. It is reasonable to use HEC22 as an additional resource along with the Texts and Manuals and design aids already in use, when HEC22 offers additional detail or information not in previous material. • It is not reasonable for design professionals to be required to prove that the methods of design used and acceptable for many years now conform to some new restatement of old standards. The checker should determine if the design is actually deficient and inform the Engineer of the history and specifics of any problem so it is clear what action is needed. • For more than 30 years, the author has used the Bureau of Public Roads Nomograph 1073.03 to determine the capacity of CB inlets at low points because the accuracy is identical to calculation of the weir equation, and it is easier and faster to use than computer input. (See Tab 11, Reference material) • This nomograph is a graphical solution of the same weir equation used in the FHWA HEC22 publication, page 4 -62, Equation 4 -28. (See summary 8). Comment No. 2c Justify use of Soil Group `B', RI 56, instead of SG `C', 8169, or SG `D'. COLQ assumes SG `C'. • The Soil Conservation Service Soil Survey Map has been the primary source of HSG information since the inception of use of the Riverside County Flood Control Manual in 1978. Use of this source should not require any justification. Deviation from this historic reference should require justification. • The SCS Soil Survey map clearly shows that there are no HSG C or D soils within miles of the • site. All surrounding soils are designated A or B. (See Tab 11, Reference, Soil Survey Map excerpt) • The Soil Conservation Service Soil Survey Map indicates the onsite soils are designated GbA, and Ip. Table 12 of the Soil Survey Manual indicates these are Hydrologic Soil Group (HSG) B. (See Tab 11, Reference Material) • The soils in the existing offsite developments to the north, west, and east that drain into the project Retention Basins appear to be at or near original grade and are designated GbA, MaB and MaD. Table 12 designates the former soil as HSG B, and the latter two as HSG A. • Additional soil analysis has been ordered to determine the actual analysis of the fill material being used onsite. The Hydrology and flood routing has been recalculated assuming the onsite fill is an HSG type C soil. • The COLQ must share with MDS any data that indicates the SCS Survey is incorrect. We rely on the best information that we are aware of, and the SCS Survey has been the best source of this data, and should constitute adequate proof of the accuracy of our assumptions. • If the COLQ is ignoring the historic SCS data and is establishing a new design criteria, all design professionals must be informed and furnished with the new criteria and its justification. • It is irresponsible for the COLQ to promulgate design criteria different from the historic data without furnishing the required new criteria to all affected design professionals along with the justification for the change. • M CONSULTING D S • • HEC22 is a valuable' reference for design of Drainage facilities. However, it is basically a comprehensive, 478 page, 2001 restatement of the design principals set forth in Engineering Texts and Municipal Design Manuals in use for more than 40 years. It is reasonable to use HEC22 as an additional resource along with the Texts and Manuals and design aids already in use, when HEC22 offers additional detail or information not in previous material. • It is not reasonable for design professionals to be required to prove that the methods of design used and acceptable for many years now conform to some new restatement of old standards. The checker should determine if the design is actually deficient and inform the Engineer of the history and specifics of any problem so it is clear what action is needed. • For more than 30 years, the author has used the Bureau of Public Roads Nomograph 1073.03 to determine the capacity of CB inlets at low points because the accuracy is identical to calculation of the weir equation, and it is easier and faster to use than computer input. (See Tab 11, Reference material) • This nomograph is a graphical solution of the same weir equation used in the FHWA HEC22 publication, page 4 -62, Equation 4 -28. (See summary 8). Comment No. 2c Justify use of Soil Group `B', RI 56, instead of SG `C', 8169, or SG `D'. COLQ assumes SG `C'. • The Soil Conservation Service Soil Survey Map has been the primary source of HSG information since the inception of use of the Riverside County Flood Control Manual in 1978. Use of this source should not require any justification. Deviation from this historic reference should require justification. • The SCS Soil Survey map clearly shows that there are no HSG C or D soils within miles of the • site. All surrounding soils are designated A or B. (See Tab 11, Reference, Soil Survey Map excerpt) • The Soil Conservation Service Soil Survey Map indicates the onsite soils are designated GbA, and Ip. Table 12 of the Soil Survey Manual indicates these are Hydrologic Soil Group (HSG) B. (See Tab 11, Reference Material) • The soils in the existing offsite developments to the north, west, and east that drain into the project Retention Basins appear to be at or near original grade and are designated GbA, MaB and MaD. Table 12 designates the former soil as HSG B, and the latter two as HSG A. • Additional soil analysis has been ordered to determine the actual analysis of the fill material being used onsite. The Hydrology and flood routing has been recalculated assuming the onsite fill is an HSG type C soil. • The COLQ must share with MDS any data that indicates the SCS Survey is incorrect. We rely on the best information that we are aware of, and the SCS Survey has been the best source of this data, and should constitute adequate proof of the accuracy of our assumptions. • If the COLQ is ignoring the historic SCS data and is establishing a new design criteria, all design professionals must be informed and furnished with the new criteria and its justification. • It is irresponsible for the COLQ to promulgate design criteria different from the historic data without furnishing the required new criteria to all affected design professionals along with the justification for the change. • • Comment No. 2d. Use trapezoidal end area calculations for retention basin volumes instead of contour end areas. • This comment keeps recurring on this project and others. It indicates a lack of understanding by the checker of the basics of volume calculation. This checker must be educated or should not be commenting on the design of experienced professionals. The checker should not be commenting on the method of calculation used unless he can demonstrate that it is incorrect or inaccurate. Design Professionals are required to produce and take responsibility for designs that are accurate, economical, buildable, and understandable, using procedures commonly used in the industry. Unless the design is defective in some demonstrable way, the checker should not request changes in design or procedure of design unless the checker is willing to assume responsibility for the revised design. • The FOR signs the plans and is legally responsible for the design. That design should not be changed unless there is a demonstrable problem with it. The professional judgment of the FOR should take precedence over the checkers preference or lack of understanding. • Trapezoidal, vertical section end area calculations are acceptable if calculating a road or ditch with uniform and consistent sections, or a complex section that could not be accurately described using contours. This method will not work accurately with the free form shapes commonly found in Retention Basins. Dozens of vertical sections would be needed to approximate the accuracy of the contour method, and would still be less accurate. • The calculations in this report use the average end area method. The difference is the end areas used are horizontal instead of vertical, are one foot apart, and are measured instead of calculated. • Accurately CADD drafting the contours of the retention basins, accurately measuring the area of • each contour with CADD, and entering the area data in the average end area tables in Tab 3, Summary 5A and 5B for calculation of the basin volumes produces the most accurate volume calculations possible. Generally, less than a dozen sections are needed, and the accuracy cannot be duplicated by any other method. • The contour method also makes it quick, easy and accurate to raise or lower the bottom of Retention Basins and adjust volume calculations to achieve volume and water surface requirements by adding, subtracting, and/or modifying only one or two bottom sections. This adjustment is usually required several times during the design process to fine -tune the basin configurations. Vertical sections would require modification of every section to make this adjustment. Comment No. 2e. Provide 1.0 freeboard from normal gutter flow line to ws100 in the CBs • The minimum freeboard from the WS100 in the retention basin to the lowest normal street flow line at CB # 5 & 6 is 0.98 feet. (See Tab 3, Summary 8A, column 14). • For the following reasons, MDS requests that this 0.98 ft minimum freeboard be accepted as adequate to satisfy the 1.0 ft COLQ requirement: • The 1 ft freeboard requirement is an arbitrarily chosen limit. Municipalities in other areas use requirements from zero ft to 1 ft from gutter flow line to ws100 in the CB. Some even allow CB water surface as high as TC for the 100 yr storm. • The outer edge of the curb depression is always the location of critical depth flow control for CB inlets under weir control. The flow entering the inlet opening is supercritical, and free falls over the inner lip of the inlet if the water surface in the CB is at or below the inlet lip. • • Therefore, the water surface in the CB needs to be only at or below the depressed gutter flow line for gutter flows to freely enter the CB inlet. (Zero Freeboard). Greater freeboard does not increase the inlet capacity, nor the capacity of the downstream pipes. 3 • • nment No. 3. • Done Call out Retention Basin Volumes on Sheet 1 of RG and SD Plans. Misc. Comment. Include Earth Systems Mass Grading Soils analysis letter in report. • Done The above are replies and explanations to comments submitted by the COLQ after MDS was informed by NOR that the plans were approvable. There should be no further issues preventing approval of this project. MDS requests immediate approval of: • Substantial Conformance Request No. 4 • The Hydrology Report - February 2007 submittal • The Rough Grading Plans. • The Street Improvement Plans • The Storm Drain Improvement Plans cc: Tim Jonasson, PE, Public Works Director / City Engineer Paul Goble, PE, Senior Engineer Anthony Colarossi, PE, Assistant Engineer Noel Owsley, PE, NOR Engineering 4 r . , p4dl.i.; : q. ;tA, AI Ip,Ny 1 R S A•.e �1/ E N G I N E E R S I S U R V E Y O R S December 19, 2006 Memo: To City of La Quinta Public Works Department Re: TTM 32752, Citrus Eldorado Plan Check No. 3 PCN 06050, Rough Grading Plans Grading within the retention basin area has been adjusted to accommodate the relocation of the existing Jefferson Street wall to the west line of Lot LB TR 24889, landscape lot, across the retention basin area and also across the rear of lots 8 to 15. The grading within the basin areas has also been adjusted allow for 1 -foot of free board during the 100 - year storm and the nearest street flow -line. The walls within the retention basins were addressed via the landscape plan review at the ALRC meeting in late October, see attached Landscape Preliminary Planting Plan, indicating the wall section, and formally approved via Planning Commission action at their meeting of November 14, 2006. PCN 06111, Street Improvement Plans No substantial changes were made to these plans other than addressing red marks on the plans and ccordinating these plans with the Rough Grading and Storm Drain Plans. PCN 06112, Storm Drain Improvement Plans Adjustments to the plans were made to coordinate with the aforementioned Jefferson Street wall relocation in the retention basin area, and to accommodate the 1 -foot free board requirement. The retention basin walls as shown, - substantially meet the approved landscape plan concept for the basin walls as discussed above. .Stanley C. Morse 78 -.900 Avenue 47 VOICE: 760.771 -4013 Gary W. Dokikh Suite 208 FAX: 760. 771.4073 J.R. "Skip" Schultz La Ouinto, CA 92253 EMAIL: mdsloquinta ®mdsconsulting.net �A Earth; Systemi- Southwest January_13,,. 2006_ ReysedJanuary 24, 2006 Craftsmen Homes 1157 North Red Gum Street Anaheim, .California 92806 Attention: Mr. Scott Shaddix Subject: Geotechnical Engineering Report Update with Supplemental Recommendations Project: Citrus Country Club — Tract 32751 Approximately 9 Acres La Quinta, California � 4'cx" � � 79 -811 B Country Club Drive Bermuda Dunes, CA 92203 (760) 345 -1588 (800) 924 -7015 FAX (760) 345 -7315 File No.: 10271 -03 06- 01 -73OR ` References: 1. Buena Engineers, Inc., Soils Engineering Report, File No. 16006-P2, Document No.: 86 -02 -271, dated February 25, 1986. 2. Buena Engineers, Inc., Rough Grading Report, File No.: 16006 -P1, Document No.: 96 -07 -223, dated July 17, 1986. 3. -Buena Engineers, Inc., Final Report of Testing and Observation Performed during Grading, File No.: 16006 -P1, Document No.: 90 -04 -789, dated April 23, 1990. 4. Sladden Engineering, Geotechnical Update, Project No. 544 75896, Document No. 05 -11 -1100, dated November 17, 2005. Dear Mr. Shaddix: As requested, we have reviewed the referenced documents for the purpose of updating the soils report and providing supplemental recommendations. This review included. a reconnaissance of the site. We understand that you intend to develop the site with 29 single -story single - family homes. Current Site Conditions Field reconnaissance of the project site was performed on December 9, 2005 to observe current site conditions. The site consists of approximately 9 acres of undeveloped land dominated by an excavation approximately 14 feet deep. We understand that the excavation was historically used as a borrow area for the adjacent development and was intended to be developed as a golf fairway. Significant stockpiles of yard waste, asphalt, concrete rubble, sod rolls, and dirt were observed on the site, especially concentrated on the floor and rim of the south end of the excavation. The area surrounding the excavation is covered by a dense growth of weeds and brush. Numerous palm trees are present primarily on Lots 8 through 22, and are aligned in rows, indicative of the L/ =14P 0 I, 't January 13, 2006 2 File No.: 10271 -03 Revised January 24, 2006 06- 01 -73OR site's previous use as a date and citrus grove. An existing golf cart tunnel that is to be abandoned was observed in the southeast portion of the site. Supplemental Remedial Grading Recommendations A representative of Earth Systems Southwest (ESSW) should observe site clearing; grading, and the bottoms of excavations before placing fill.. Local variations in soil conditions may warrant increasing the depth of recompaction and over - excavation. Clearing and Grubbing: At the start of site grading, existing vegetation, trees, large roots, pavements, foundations, non - engineered fill, construction debris, trash, and abandoned underground utilities should be removed from the proposed building, structural, and pavement areas. The surface should be stripped of organic growth and removed from the construction area. Areas disturbed during demolition and clearing should be properly backfilled and compacted as described below. Dust control should also be implemented during construction. Site grading should be in strict compliance with the requirements of the South Coast Air Quality Management District (SCAQMD). Building Pad Preparation (Lots 9 -15): Because of the presence of significant amounts of deleterious materials and the non - uniform and under - compacted nature of the site soils, we recommend remedial grading of soils in the proposed building areas_ The existing surface-soils, within the building pad and foundation areas should be over- excavated to a minimum of feet +' below existing grade or a minimum of 3 feet below the footing level (whichever is lower). The over - excavation should extend for 5 feet beyond the outer edge of exterior footings. The bottom of the sub - excavation should be scarified, moisture conditioned, and recompacted to at least 90% relative compaction (ASTM D 1557) for an additional depth of 1 foot. Building Pad Preparation (Lots 1 -8 and 16-2 : Because of the significant difference in elevation between the bottom of the existing borrow pit excavation and the proposed finish pad grades (up to,14 feet), additional! over - excavation will be required to help reduce differential settlement resulting from transitional fill thicknesses. Additional over - excavation and recompaction should be performed such that the differential thicknes&of compacted fills beneath proposed structures should not exceed 50 0-W of the thickest engineered fill layer. Proper keying and benching procedures should be maintained during grading operations. Tunnel Abandonment: We understand that an existing cart path tunnel that passes beneath Jefferson Street near.the.southeast corner of the site is to be abandoned. The_cavity,of the tunnel may be_ filled or left.empty_at the discretion of the City of La Quinta. The head wall at the entrance of the tunnel may be completely or partially removed prior to sealing off the entrance of the tunnel. If theca wall }is partially removed, the top potion of the wall should b veered a sufficient amount to allow a minimum of three feet of engineered fill soil placed above it. The demolished portions of the concrete wall should be removed from the site unless the building official allows for proper burial within deep engineered fills. EARTH SYSTEMS SOUTHWEST 7 .January 13, 2006 3 File No.: 10271 -03 Revised January 24, 2006 06- 01 -730R If a wall is used to seal off the tunnel entrance, it should be designed to retain the backfill without introducing undue lateral stresses on the roadway. The area surrounding the head wall should then be filled with engineered fill as described below. Auxiliary Structures Subgrade Preparation: Auxiliary structures such as garden or retaining walls should have the foundation subgrade prepared similar to the building pad recommendations .given above. _The lateral extent of the over - excavation needs to extend only -2 feet beyond-the i face of the footing. Subgrade Preparation: In areas to receive -fill, pavements, or hardscape, the subgrade should be scarified, moisture conditioned, and ' compacted to at least 90% relative compaction (ASTM D 1557) for a depth of 1 foot below finished subgrades. Compaction should be verified by testing. Engineered Fill Soils: The native soil is suitable for use as engineered fill and utility trench backfill, provided it is free of significant organic or deleterious matter. _The native soil should be placed in maximum' lifts (loose) and compacted to at least 90 %` relative compaction _ . (ASTM D 1557) near its- O'pti'mum moisture content. Compaction should be verified by testing. Rocks larger than 6 inches in greatest dimension should be removed from fill or backfill material. 4 Imported fill soils (if needed) should be non - expansive, granular soils meeting the _ !,_USGS. classifications of SM,_ SP -SM, or SW -SM with a maximum_ rock size of 3 inches and 5-to 35 _passing the No. 200'sieve. The geotechnical engineer should evaluate the import fill soils before hauling to the site. However, because of the potential variations within the borrow source, import soil will not be prequalified by ESSW. The imported fill should be placed in lifts no greater than-8'inches in loose thickness and compacted to at least 90%o relative compaction (ASTM D 1557) near optimum moisture content. Shrinkage: The shrinkage factor for earthwork is expected to range from_10. to.25_percent for the upper excavated or scarified site soils. This estimate is based on compactive effort to achieve an average relative compaction of,about 92 %; and may vary with, contractor methods. r Subsidence is estimated to range from _0.1 to 0.2 feet. Losses from site clearing and removal of existing site improvements may affect earthwork quantity calculations and should be considered. Slabs -on -Grade Vapor Retarder: In areas of moisture sensitive floor coverings, an appropriate vapor retarder should be installed to reduce moisture transmission from the subgrade soil to the slab. For these areas, an impenneable membrane (10 -mil thickness) should underlie the floor slabs. The membrane should be covered with 2 - inches-of sand to help protect it during construction and to aid in concrete curing. The sand should be lightly moistened just before placing the concrete. Low -slump concrete should be used to help reduce the potential for concrete shrinkage. The effectiveness of the membrane is dependent upon its quality, the method of overlapping, its protection during construction, and the successful sealing of the membrane around utility lines. EARTH SYSTEMS SOUTHWEST January 13, 2006 4 File No.: 10271 -03 Revised January 24, 2006 06- 01-7303 Closing Except as modified in this report, it is our opinion that the referenced documents are applicable to the proposed development. We make no representation as to the accuracy of the dimensions, measurements, calculations, or any portion of the design. This report is issued with the understanding that the owner or the owner's representative has the responsibility to bring the information and recommendations contained herein to the attention of the architect and engineers for the project so that they are incorporated into the plans and specifications for the project. The owner or the owner's representative also has the responsibility to take the necessary steps to see that the general contractor and all subcontractors follow such recommendations. It is further understood that the owner or the owner's representative is responsible for submittal of this report to the appropriate governing agencies. Earth Systems Southwest (ESSW) has .striven to provide our services in accordance with generally accepted geotechnical engineering practices in this locality at.this time. No warranty or guarantee is express or implied. This report was prepared for the exclusive use of the Client and the Client's authorized agents. ESSW should be provided the opportunity for a general review of final design and specifications in order that earthwork and foundation recommendations may be properly interpreted and implemented in the design and specifications. If ESSW is not accorded the privilege of making this recommended review, we can assume no responsibility for misinterpretation of our recommendations. This report is. based on the assumption that an' adequate program of client consultation, construction monitoring, and testing will be performed during the final design and construction phases to check compliance with these recommendations. Maintaining ESSW as the geotechnical consultant from beginning to end of the project will provide continuity of services. The geotechnical engineering firm providing tests and observations shall assume the responsibility of Geotechnical Engineer of Record. EARTH SYSTEMS SOUTHWEST - i January 13, 2006 Revised January 24, 2006 5 File No.: 10271 -03 06- 01 -73OR Should you have any questions concerning our report, please give us a call and we will be pleased to assist you. Sincerely, OFESSI EARTH SYS ST < G), w CE 38234 m Q EXP. 03/3 t /Qa M Craig S. it CE 38234 s��r cnn%- FOF CAL-%F SER/csh/reh Attachment: Figure 1 — Site Location Map Distribution: 4 /Craftsmen Homes 1 /RC File 2 /BD File EARTH SYSTEMS SOUTHWEST ,. .. ...,....:.. � 7' 6i; :. s 7.� ♦ (Pdus na.rter..o 4r 1 ❑ c•...- p`•• A i.i� n'r :'-e'i i'otva taste Ic'.•t C\ ' V(�. J }v.;,,.....•,r:,,;!.•1^ V � ' .rr• -' t::; s:r.;:.::: ::.:• a o�w` .i v,: r, ., t'•v.r �+.., r4• i;rYt.t�.: F.: Ilsri i?rr..f..::::::::�:,:�:iiti •..• • 1. sr r.P•r , ((��jj tlr - •••,1::•.,...i,f r1taY >tt )e.. ;aa�����i�srrq } eai� ilit: IFxs1 pr., %2 -• `.— .�.•:il'll• 0,/ _ _'•a(e Y >rr. a �i�aara t• r. s.t d �! '•••' \. �). :';% r'/ �', •' _ ",t frr'.'r la irr eY >arYY4 - -� ra:Ptno ) =: n•v0) ,� • - —�' #tae r4f hf: ,41 G \, 1. tr .?ar r•`a, «.`tl ea ^r,nxa L . . test,: fF curt 1 29i • I-•, {, : { a•rTri n. iod.' »yaf Ill Yrt i +- +i''• 9fyY� .: BM 61 L.: �l�• rFd ,2 *alrarrsa L�$ :0 a • _ .•rrr .r•Yfs• rt ••�ltr.t s• • vs, F iF0I11( t ^.; {, 4a•j�Yrr », tr Its wtr aasf �ifii al• s� •1 Sp Is • V r:`a '•.� •�- fYS: :., - Tf81 r r G;a -r ;r, r.<..:r aa•r r•o �jc.• l • t > w.l a.y x.: II" 11 ^i II IE ''6, •• •'••- f PF1fR - "9f1 �F - •1 � arr Paers "Y.rn tfY •II 1 IF• Yai lrat .. p••\ 1^ _ j:: .`.... fi�a•'t r:: �' "• 11,e P)rte•,�ailll• .ra :Ir: =- r•..+e r >Y Lin Ib _ r�',.;P "'•t '• IIfJ��� I �I 1I � ti•,ra AYPr.II�ar4♦ r•ri 6trs.•__ 4 n .'hd sr F•eP `J '1�, ' _ r'� •- v'ar `_.��/ Ili•:�ra_? II _]• ,• ta'r •. -aYr:a lets :r>1.., :- i =�l9w ,,1 : t: rrre e�N)•a .rifyFPrratltanw ,. j•4 4 I' ,Trailer Park.'' ab >a en «rnw.•egl !t °'i... V IF :7• wto.• ii ss- rNOrv:w!•���na w.tt to ll'jj�E1 a, i:f:yi�lfi. f. r•t «!1 +') rtx -reP. •. t" id +a tr Ft %1. .:. ..,'.1 i Ipp +tv••t v•fO >cw «r rr.at lPEilc:ix <K } ?::; ?;_: ? IEW )3�f lrP •.....; ,,sc. '., rt >: .. 'i)►) ,II' II) >•w ar ;erg • IiW z -_ ^ /. .9. . +t rr trt i,.aar.tQ iw• t' -- ar .1. cs Y, y, .. Trailer --. rk t•e•r.• •.n n�. t sarr.Yfq / ? SIEtu r, '.�^ -✓ S 1 "•r :, ell' aa.rtPergr•;I it b y^ :` "J I f'siP Y e*Fit II I 3 IE _.,. `a.> ' _ I_((_ NUE' "sstP.• I 11 4B AVE _ If .. '- ,.Ar • rr rr ll .. I•n`vi.,1 P4 . - t { •, _. «i >: iN�ll ...r.a_U saia q e>•Y r ar II c . .. .1 iq rt. i a�ar+r II 1',: itr• +14 1F We).1.. i:ps )•;a : O: , o va : >rt" II :aa• i as *r,a 4sa II WBII • J? i ••, a5i .1 b Q•I n : ') i II ytrxr�Y ii a WF 1 0 U F m n ♦r =��;� ;` p::::•- !44 .. .......... •:V %� :: ''•,O tr.FSi:r9aneerra. tF��• !tlFi'1.;,i: '. I Ni. fr•k rr•.a ?aaasis:,F:_iFii'•:;l - r. ,, tnr I ` �' �•f 'rPtF »YiiRteaS:r.: '.. 1. .. li .. .., \: "'_•. Ilt Ilrr�.ara. n�tfl it 1 11 �) ,rP 1 U r Ps. ..ir• i.i•F1 •;yt;i;' j •I �; _ `Ici7 O ENUE 33 oWf'll�J .. 1 �^ �'. : � ._.. ..aaYCSta�Fr >Y<.rr.a•: t - I(' " "Y t *e_ «�. \� \JJn rr•rY� f+'Pa y �i�:�•;•: ••> it�t ee YFr r: t ... -... /`\ III errksraraY) rte.. rhr>errr;Ej ?c1:11!i;; ; ?- •,�•iv':�� r<'Sa..YD►r�' e: 0•'• l� ats n <�.arnY ,tnrsFVe: +' / Q •2h Pt wr.ei Par4r .. rrvtr II °`-=i ?=�==- . ?� k�ii i:`i /v'- t•,t :• ib }I.tt {f-rOYYrratO t•r 11F1lffa•. •• trr. -... ra.• a•f,. r i :II,!•e lrrr er•t• 'irts;Ysif l l i O 0 •Y•tl(J'Y't^ tt!Y4 aiiM.�\ rliR Rt4 Y• ,Pa }`tE '�� ::� v••aa'..:f J r -t 1r \• !Lr-k, ♦r.• /• -eta: !•a .I a .. t'- s19a, r : • % /Wiliefr' /aF� 1•;r o -,� V ±.ra <�%'tr ��•^ es // aat. Fl.iri.a o, ,J)aY •'••. �, ((��A. .. r � .per «eva H'iP••rPS•4. 1 1 Il y` t '�.,; t, \. a.`� •y,.�:% \_'� O / > M p a t t r x . IIl�jN %S- O e VI t yi;t � \\ < n'a :at [) , ♦tyaa a� II >''!;. .e /. _ >7a :' -•'-.• It r)tDa• ht ♦ >!II't %• {S IF Yi •a4r felt ..... •tILYrla• «tor ... vp '\:• a tarn. es pt!• / r. •, tt )a ., II ... Yt ^ ....} ..r .:t ?.t$S :rP,lll) ar ♦a),r,.r; �. i'rlf,ttr >, r•,C�II ? .rr:; :.a, n ,'� -� .'lk 'll iPf pa a.)irri.Ir: ,.r•..I, tiyq. �all,�/o•+ !kd .II /j •n at•: )r IM< U j� j,a •;rl al ,tYr•a:'rantp 7Yf ,•, �•� •nrt t••: art••II /i / II 'aw0(' e.• -`'. \)\.: •.r >9t a: araaa t41ae4hrr)t•Rar tv • - a,Aar7 �•;trl arFll/ ,r> �, ) ll i! BO _nr,sagF Yrr)ra,wye \ irt>a•x G•11 34',a.a / AVENUE'I )tr >lli+ 1 Il iearrr ila) p.74,:.e t:r.li :.Ig i'vsr {�T«r rr •.rte.-- IIs1_c .._._ : -.. -. .:, _.- .. \' --� —_ F /i;/J aaSa a ] sPt a ', t t r.l re+ na +• t t t��,\ t, •. WBll,ap a ) lla tgocrsr 'MYa Pxa re+a ' rret a � • n ;;, er ! 11..1` � �•a— `,1V,T ✓�/ lrs / nut ra ,I .a bt (,a) naa} ♦ �• to r r rib! / 4w - OY11ai UrY. 2 P`�t' II a L r9 l r��/ 1 tier rn r "SIT )v+rat, Q • ,ie IR yr r�F'I r lr r' :trr (.aF• oee >r.a •arl ) ,r5 <a r.' E�.T',:; >f .;Yr 0% :t.. `Ilxs• .xY no• : I,1�•'J {I •� 1urroarft^ }rr r x u We�%`� /� pp � \:,ia}My.,rr. ••,il ttr L t W• ,U r.�..., ar, r� 4 O ; e ae>:i ' rn.64 t1 ,'x1 ; , -r rr rBx)Ura ildl ^•,t .(1•:air .:J _ «*r t:vla lr! > =.:� '✓ �� la, \A'+ -� �. ,n •toe F,r II>a>.ntif: .•, ly _ ? ='I .y ./ •t>•., � exit+ <a; an�±i••t,l- )• _ rY r, < +e Is> 1 r �� •e• Il'a' L:;e: ra Ul ..,, =eve= > Is. •f xe .a a,i a� " «,. «, ''e•., ar ... alts I . 1>s r !i (A -. t:•f +,99} 1F •a { M.).{t Jl�ex a �� ..: _.,. ~''w>[r �iT5 �•- 1 a.aa a ir: 11 f a,l,ar xv• @aD 11 f ar)! 5wF Elf) O '� rr_.•t.•4,t c y r ,) •,t _= aa�:•= _. {f'f aw.kn a1Pe M, its llr rfl t r ., '.Fr •. r.r 1.• ... n ra.. ' -f /Q�'Y' a.. �•I r ^.). ILJI �IIII"`v""'C .40- I ..art x. luat ll- :ht s•;. ♦ a- Ir.. na S.ye d.eJ>c -T j •. a Jr ar •aalkla 4.lY }af Yt! III? �. • ! a ,. n:r H•9P, .r,ti :1,. !t+ .! 4J tl ♦ a .>4 •t r.l a. 1 rta 7 a 1� ] � : tl a artsr> 1�♦: I _ wa•• t r.,t Yx• •,r•e »aot .>.-; ..>... i «, II alli.ti raa :re<i +..II,:• -',!p Y.r , •e aY, r, r. F•r la • w. T + ,,,1 � at l., .� a4a. • }J,F t'+1': r..r /airVM1 �']1 �•'. sl rlrl it sP WB�A ►• -w -sll nvst eater! n'1 t ll 1 v,iv,l. ,) •t •. 419aT tY!?ut a n111 tktl •rF J< -!FIe t -1 r! •F) / a t 1 • _fast) «..ql •tl , • a ♦ n r••'o.! i!/ ! 'b (f" 1 ) 1 r> *n.F! rolf r r *f •!;•a• �yc_ 1�, - i, r- .iiaAtir aq r :o<tll t `f,p`1 t •e, 9.a Pr +t P r.t„ O ZPe•r "Ili2, F - • ,�,) ♦ n •1 /_` 1, ya,lvl ^r•r )•115rY ±; ,>l; ? •1, ,a. I ..taaf l✓ • • al rr.• >r r... • •<d>,atl �� \•.alt ,111 «}Ilil, .tlr "lpi sr.).a y;lt Y r•)il Ill Y r'..i 1 >I.Or)la5! aYedral,•.f J ne• ,� er} ri 11 19. f'xie t l'ha•: ,.Fa :t. :er r.YO<F FSdI r1•,'a•r. i11t 4Fa TAI, «~ >1. .51. (.v �i>ii.11 is .. ..,.. Ya..: i� sa.�!1<a�*rt .a4 e,YPaa n>V eat'•aa9 tle <ar. F. }t'n'l �lY,rll rx, ^'4 .>!>2rAir5♦Il vas •)ca .r it n l.a >,- •1>vrrr v• .>bsiYr.a.11pa•r••'^ "lire :,. tlpat.,, a :aaa n - +:gyp rn r'r i_e_,' -rrl1 rf0 f ;r� -. ,.. - _ -____ rl't;ri >5M1r : YF/ YM.•. Y• 1IL < ?i'tlfi+•P.!fl "ya,�ng =�S =oxa •..:. _r____ _ - _ __) : O •tt )'e • r o etas rtrr ra atr }f.flr!.Itrt..iasa•.e • *ntw ..os: to i�, ^c? +4i.ea._„r � - -_ i - `- 'r «sa l II •V>rr 2tJ S>1 a- -f i.•a atlt, 1llj>Rrh ,. �^i llw.ri •a!Ar.aa. as er •,..a 'Y+nwt .J r'i �$ sl ..tart rtma t +iS -t.n ^gypp 1•.••�. �• }A alr•x >Ya «!> P e' —7 .,. YI •:r•rKi)>•5 r<S Yay.F- Al,ll.t i),.la ea'a �r l� -- I.. >;�rc; is 'r, c'f �t 1)'.11 •GP� ! �r,}(� nil +Y+ � r +•r•w>a'i ltl.nt a.•s >dtv a).11 I1.'. w•'ti�i•t "t 1'1''•• ,.n <�;.•:�>ar. ... _ " ^' J � '.tars t'.i nr P. r �Ir et n ta, rr.. .)cold 'Y• < � I �It, M• .��\ �oa�9 'tea ljili -li .,a 15 Stlll rte rf'l .a� 1bY..:�fa s•� ..•F tiO • \� r ^�1 s h, .a \ II • < tlti JL's�.l..a. ,...a r a.cs.. r.:. 'o`.ai .Aavr. ••eti !7 8 :ii lj•i'i )f�� 1" 8 ",.Well,.��•...a; ......AVENUE-- ,�1 ----- -'iir� �.+5./{;.r I it 1 14 t.• F +tw (1 IlaYl trTr _ M it Pr •r r o aal.: _ rr rt:i 1 ��`� 1 II 'r ►Y r sr .y tra< �/ Ilr +i fare aah:'< nr� 0 5 }.. 20: an •.Ya•a..:.s. ��V �... � II��! I sraalcr atN. �/ �s r' 11.. \ ,l/ ! �.:..... r.� .� it 4.It+nJ i' a }e.l • n I r.:".TIC::: :e:u •tlrr',r>rerx, t)y ., •rsl PU(TIpO ;. ,_:: ^,. ":�.:: '. <.ta •.ar r:. ♦..r G/ ... f ;::. a �, -. Reference: www.terraserver- usa.com Figure 1 Site Location Map Tract 32751, Citrus Country Club Jefferson Street & Avenue 52 Scale: 1" = 2,000' La Quinta California N 1— Earth Systems 0 2,000' 4 0 ' O Southwest 00 01/24/06 File No.: 10271 -03 09:',12 ;'2006 16:02 7603457315 CRAFTSML-N HOMES 1157 NORTH RED GUM STREET ANAHEIM; CALIFORNIA 92806 REPORT OF INFILTRATION TESTING FOR STORM WATER DISPOSAL TRACT 32751 CITRUS COUNTRY CLUB JEFFERSON STREET AND AVENUE 52 LA QUNTA, CALIFORNIA August 31, 2006 ® 2006 Earth Systems Southwest Unauthorized use or copying of thi3 documcnt is strictly prohibited without the express written consent of Earth Systems Southwest. File No.: 10271 -02 06 -08 -846 PAGE 02/15 7r 09/12/2006 16:02 7603457315 PlGE 03!15 Earth Systems Southwest 79 -811B County Club Drivc Bermuda Dunes, CA 92203 (760) 345 -1588 (800) 924 -7015 FAX ( 760) 345 -7315 August 31, 2006 ,File No.: 10271 -02 06 -OS -846 Craftsmen Homes 1157 North Red Gum Street Anaheim, California 92806 Attention: Mr. Scott Shaddix Subject: Report of Infiltration Testing for Storm Water .l0isposal Project: Tract 32751 Citrus Country Club Jefferson Street and Avenue 52 La Quinta, California ' Dcar Mr. Shaddix: It is our pleasure to present this report of infiltration testib.g prepared for the proposed storm water disposal at Tract 32751, Citrus Country Club. The site.is located between Jefferson Street and Avenue 52 in the City of La Quinta, Riverside County, California: The site location is shown on Figure I in Appendix A. We understand that there will be two Maxwell drywe.11 systems to be built in the site for storm water disposal. This .report presents our findings and recommendations for the storm water disposal. This report should stand as a whole and no part of the report should be excerpted or used to exclusion of any other part. This report completes our scope of services in accordance with our agreement, dated August 16, 2006. Other services that may be required, such as a plan review, are additional services and will be billed according to the Fee Schedule in effect at the time services are provided. Unless requested in writing, the client is responsible for distributing this report to the appropriate governing agency or other members of the design team. Field Exploration Two exploratory borings were drilled to a depth of about 40 feet below the existing ground surface to observe the soil profile. The borings were drilled on August 21, 2006 using 8 4nch outside diameter hollow -stem augers, powered by a CME 55 truck - mounted drilling rig. Samples were obtained within the borings using a Standard Penetration (SPT) sampler. Perforated PVC pipe was set in the boreholes to allow for stabilized groundwater measurements and was abandoned afterwards. The boring locations are shown on the boring location map, Figure 2, in Appendix A. The locations shown are approximate, established by pacing and sighting from existing topographic features. obtainnt " w3tMn the test- - bonngs -using a St--Venetration (SPT) sampler (ASTM .D 1586) and a Modified California (MC) ring sampler (ASTM D 3550 with shoe similar to ASTM D 1586)" The SPT sampler has a 2 -inch outside diameter and a. 1:38 -inch inside diameter. The MC sampler has a 3 -inch outside diameter and a 2:37 -inch inside diameter. The 09/12/2006 16:02 7603457315 PAGE 04/15 August 31, 2006 -2- File No.: 10271 -02 06 -08 -846 samples were obtained by driving the sampler with a 140 -pound automatic hammer, dropping 30 inches in general accordance with ASTM D 1586. Recovered soil samples were sealed in containers and .returned to the laboratory. Bulk samples were also obtained from auger cuttings, representing a mixture of soils encountered at the depths noted. The final logs of the borings represent our interpretation of the contents of the field logs and review of the samples obtained during the subsurface investigation. The. final logs are included in Appendix A of this report. The stratification_ lines represent the approximate boundaries ..between soil types, although the transitions may be gradational. Laboratory Testing Samples were reviewed along with field logs to select those that would be analyzed .further. Those selected for laboratory testing include soils that would be exposed and used during grading and those deemed to be within'the influence of the proposed structure. Test results are presented in tabular form in Appendix A of this report. The tests were conducted in general accordance with the procedures of the American Society for Testing and Materials (ASTM) or other standardized methods as referenced below. Our testing program consisted of the following: ➢ Particle Size Analysis to classify and evaluate soil composition. Soil Conditions The field exploration indicates that site soils consist generally of poorly graded sand with silt and silty sand (Unified Soil Classification System symbols SP -SM and SM) of medium dense to dense nature. A silty layer was found at about 15 to 18 feet deep in Boring B -2. The boring logs provided in Appendix A include detailed descriptions of the soils encountered. Groundwater Free groundwater was not encountered in the borings during exploration. The depth to groundwater in. the area is believed to be greater than 50 feet. Groundwater levels may fluctuate with precipitation, irrigation, drainage, regional pumping from wells, and site grading. Groundwater should not be a factor in design or construction at this site. Geologic Setting The project site is located approximately 30 feet above mean sea level. in the central part of the Coachella Valley. The sediments within this portion of the valley consist of fine- to coarse - grained sands with interbedded clays and silts of alluvial (water -laid) origin. The depth to crystalline - basement rock beneath the site is estimated to be in excess of 2000 feet (Envicom, I976).. Infiltration Tests Two infiltration tests were performed at-the site on August 22 and 23, 2006 for the proposed storm water disposal as shown on Figure 2. The tests were conducted within 8 -inch diameter augered boreh.oles made to depths ranging from 36 to 38.3 feet below existing ground surface. A EARTH SYSTEMS SOUTHWF.,ST 09/12/2006 16:02 7603457315 PAGE 05/15' August 31, 2006 -3- File No.: 10271 -02 06 -08 -846 3'/a -inch outside diameter perforated pipe was set in the borehole. The pipe was surrounded full - length with' /a -inch gravel. . Clean water was injected at a relatively constant rate until a stabilized head of water was established. ..Based on the US Bureau of Reclamation methodology for a constant bead, pump -in test, the following hydraulic conductivity rates were obtained. Test Bottom of Hole Hydraulic Conductivity LD feet) al/sf /da I -1 West . 36.0 = 3,8 I-2-East 38.3 z 4.3 The designer of the retention basin should decide on whether an appropriate factor of safety should be applied to these reported infiltration rates. Infiltration. may be significantly less than the values given over time because of siltation and development of a film from road oils ,from paved streets entering the system. A silt and oil trap placed at influent points may be considered to reduce the potential for reduction in the infiltration rates of soils. Maintenance of '.the retention/distributi.on system is crucial if no factor of safety is applied. In addition, the governing agency may, at their discretion, establish a maximum infiltration rate. We appreciate the opportunity to provide our professional services. Please contact our office if there are any questions or comments concerning this report or its recom.::e ndations. Respectfully submitted, EARTH SYSTEMS SOUTHWEST Hongbin .Huo, Ph.D. Project Engineer Letter/hh/csh/rch Distribution: 3 /Craftsmen Homes 1 /RC File 2BD File Reviewed by Q4pe�0 G SSy��°l�, / CE 38234 m Craig S. Hi E"�' 03/31/07 CE 38234 s� ChAL ��OF CAO F:ARTII SYSTEMS SOUTHWEST 09!12 %2006 16:02 r'60345i315 PAGE 06/15 APPENDIX A Figure 1 — Site Location Map Figure 2 — Percolation and Boring Location Map Terms and Symbols used on Boring Logs Soil Classification System Logs of Bori ^gs Laboratory Test Results Infiltration Test Results EARTH SYSTEMS SOUTHWEST 0 0 O T N tr'1 O 0 0 N r M O O h N r M O O 7 0 wy M O O 0 m N r yo -- o 'r N ar 9 P7 ny by /11 %'Lbbb lb: b1 116 °17'15 "W 566000 rb0:�457315 !16016'30 "W 567000 116'15'45 "W 568000 PAGE 07/15 Ilr,'ls'a "w 569000 A o O + O II WPII �. N l"5 O Q. 0 m N h y r O O O h N r n r x' T O 0 0 N N P_ n o? O C P N h p ^1 566000 567000 569000 569000 116 °161311 "W 116'1545 "W 115°15'0 "W 0 500 1,000 2,000 3,000 4,000 5,000 FQOI Figure 1 Site Location Map LEGEND Tract 32751, Citrus Country Club Jefferson Street & Avenue 52 Basil Boundary La Quinta, Riverside County, California Earth Systems 3outhwast g nciciclwc. Vvvvvv.iCrPaJCrvei -us a.co fl I 0 &/31/G6 i Pile No iu271 02 � Xt S•` '1•':r � i �, °` ,`��� �' � .: -•" �.rdit! ., III I ,n� .�:p'. � -- �d ^ti, .rl: ry ' 'Y ) '�`t! � >.. — L:II'Im•.� .�Ij 11 LL,. ...•:. _ _ �y'I, :, II •, Wit; ,I I L I '�',.rt.. i'. _••4,i �, "+•nT _.���r, -. ^)'..:�:..'r:4e: '�: J' '��` I � �- i�:tY- -1.. � '��t�.l':., f . A � t:,i. ... r• : ~' Y, y,F; : , ..., �'�1.� :.:: r' .t'. ,,: �_��') - .��- ' -=i[I� rls�rs!r,f:7,�����_�'�S 4'�': �st:?�.r• �s,�•_,. 1 }�,..l4' _ rimy 1 ',• - � rf r�li 1 S�I �`Y . � �. "T,.� �•t�, �'•� °r'r n .�.r.,,_j ?' - `.r : ii'I,j' i .wll ,`•a' -ii - ;fi••9I•I,�' �a� l � 6 ••,a' :,. f�9`.•y <. ' J' .r ,:,r.,,,,• :�,, � .9 � •, � � -� f - ' ,tip -•.- prr�.i ,r .t:- ��.1� -i ��'- - =�' aT. ^ -'- .:.n. �. 'r.-r�- _..,,�1 �- _•.:ysr�_' _�.:'� =•_,. :,1•. -:.:u ti r��'.� � 'rte ^ 1 •I -_ y` I.I `��. �. i; �'^ �' , �";,, ' �N .. a.i'�� "`. ^a"!� �. -. ra- � •'� ,•i ,r ��� � !�� j' � ,;r-I'j rf • ,:r f, � lA'�i �, �i; "�3; r')'" o�'•.r. "" ^ •4 -•j}'. _., 'y ":';`b. t �'`' :! J' {;'f �°�...I� t�'�1 r �',. +}t�..',•,�V s'i�rj-, ,� _ �- � �''l�f�YJ�'r�{, ,. 11�.,',r •I I �S11�,,,,'• �'II T .r`�; �•_ � � - + �L - � •:r -.." '' - - -: �1 I�-y �; +, . •�D7:`''�P- it I�.` ;.�' .b� �- - - -iM1'- - -- -, 1 ji •1,y'i '::1 ..�, Jl iftiY�•�� I• % 01�, l' 1 �i�' il�r _. - . _ - .. -,.�, ,...• �ro 1" 'X94.• 1 p �, - - 1'2%1006 16:02 7603457315 DESCRIPTIVE SOIL CLASSIFICATION PAGE 09/15 Soil classification is based on ASTM Designations D 2487 and D 2488 (Unified Soil Classification System). Information on each borin! -iog is a compilation of subsurface conditions obtained from the field as well as from laboratory testing of selected samples. Th Indicated boundaries between strata on the boring logs are approximate only and may be transitional SOIL GRAIN SIZE U.S. STANDARD SIEVE i 2" 3" 3/4" 4 10 40 200 BOULDERS COBBLES COARSE I FINE I COAR71 MEO UM I FINE I SILT CLAY 305 76.2 19.1 4.76 2.00 0.42 0.074 0.002 SOIL GRAIN SIZE IN MILLIMETERS RELATIVE DENS1' Very Loose •N =011 Loose N =5 -10 Medium Dense N =11 -30 Dense N =31 -50 Very Dense N >50 rY OF GRANU RD =0 -30 RD =30-50 RD =50-70 RD =70-90 RD =90 -100 LAR SOILS (GRAVELS, SANDS, AND NON - PLASTIC SILTS) Easily push a 112 -inch reinforcing rod by hand ..Push a 1/2 -inch reinforcing rod by hand Easily drive a 1/2 -inch reinforcing rod with hammer Drive a 1/2 -inch reinforcing rod 1 foot with difficulty by a hammer Drive a 112 -inch reinforcing rod a few inches with hammer 'N =Blows per foot in the Standard Penetration Test at 660% theoretical energy. For the 3 -inch diameter Wodified California sampler. 140 -pound weight, multiply the blow count by 0.63 (about 2/3) to estimate N- If automatic hammer is used, multiply a factor of 1.3 to 1.5 to estimate N. RD= Relative Density ( %). C =Undrained shear strength (cohesion). CONSISTENCY OF COHESIVE SOILS (CLAY OR CLAYEY SOILS) Very Soft -N =0 -1 'C =0 -250 psf Squeezes between fingers Soft N =2 -4 C= 250 -500 psf Easily molded by finger pressure Medium Stiff N =5 -8 C= 500 -1000 psf Molded by strong finger pressure Stiff N =9 -15 C =1000 -2000 psf Dented by strong ringer pressure Very Stiff N =16 -30 C =2000 -4000 psf Dented slightly by finger pressure Hard N >30 C >4000 Dented slightly by a pencil point or thumbnail. MOISTURE DENSITY Moisture Condition: An observational term; dry, damp. moist, wet, saturated. Moisture Content: The weight of water in a sample divided by the weight of dry soil In the soil sample expressed as a percentage. Dry Density: The pounds of dry soil in a cubic foot, MOISTURE CONDITION RELATIVE PROPORTIONS Dry ............... : ..... Absence of moisture, dusty, dry to the touch Trace ............. minor amount ( <5 %) Damp ...... ..........Slight indication of moisture with /some...... significant amount Moist .................. Color change with short period of air exposure-(granular soil) modifier /and..,sufficlent amount to Below optimum moisture content (cohesive soil) influence material behavior Wet ................... High degree of saturation by visual and touch (granular soil) (Typically >30 %) Above optimum moisture content (cohesive soil) Saturated .......... Free surface water LOG KEY SYMBOLS PLASTICITY ' Bulk, Bag or Grab Sample DESCRIPTION FIELD TEST Nonplastic A 1/8 in. (3 -mm) thread cannot be rolled Standard Penetration at any moisture content. Lt Split Spoon Sampler Low The thread . can barely be rolled. u (2" outside diameter) Medium The thread is easy to roll and not much 1 time is required to reach the plastic limit. Modified California ampler High The thread can be rerolled several times (3" outside a diameter) ter) after reaching the plastic limit. No .Recovery GROUNDWATER LEVEL Water Level (measured or after drilling) _ Terms and Symbois used on Boring Logs Water Level (during drilling) ( Earth Systems ��% Southwest 09/12/2006 16:02 7603457315 Poorly- graded gravels, gravel -sand GRAVELS GRAINED SOILS coarse fraction I- PAGE 10'15 �Cta,t1 o� i No. -A o > 12% FINES GRAPHIC LETTER Clayey gravels, gravel- sand -clay MAJOR DIVISIONS mixtures SYMBOL SYMBOL TYPICAL DESCRIPTIONS little or no fines SP Poorly- graded sands, gravelly • r r r r . • •' . sands, little or no fines Well- graded gravels gravel -sand CLEAN .•.�.�.� GW mixtures, little or no fines Inorganic clays of low to medium GRAVELS CL plasticity, gravelly clays, sandy 1 < 5% FINES `i ::�''r''• i i i i i i GRAVELAND GRAVELLY SOILS COARSE More than 50% of Poorly- graded gravels, gravel -sand GRAVELS GRAINED SOILS coarse fraction I- FINES �Cta,t1 o� i No. -A o > 12% FINES Isieve GC SAND AND CLEAN SAND SANDY SOILS (Little or no fines)t <. 5% More than 50% of material is JEW than No. 200 sieve size More than 50% of coarse fraction assin No, 4 sieve FINE - GRAINED SOILS SILTS AND CLAYS 50% or more of GIF Poorly- graded gravels, gravel -sand Clayey sands, sand -clay mixtures mixtures, Little or no tines GM Silty gravels, gravel -sand -silt (appreciable mixtures GC Clayey gravels, gravel- sand -clay mixtures SW 'Well - graded sands, gravelly sands, little or no fines SP Poorly- graded sands, gravelly sands, little or no fines SAND WITH FINE SC Clayey sands, sand -clay mixtures SM Silty sands, sand -silt mixtures (appreciable Inorganic silts and very fine sands, amount or nnes) > 12% LIQUID LIMIT LESS THAN 50 material is smpij.�)r LIQUID LIMIT than No. 200 GREATER sieve size THAN 50 HIGHLY ORGANIC SOILS VARIOUS SOILS AND MAN MADE MATERIALS MAN MADE MATERIALS Fill Materials.., `J Asphalt end' concrete Soil Classification System Earth Systems Southwest, SC Clayey sands, sand -clay mixtures Inorganic silts and very fine sands, ML rock flour, silty low clayey fine sands or clayey silts with slight plasticity Inorganic clays of low to medium _ CL plasticity, gravelly clays, sandy clays, silty clays, lean clays i i i i i i i i OL Organic silts and organic silty clays of low plasticity Inorganic silty, micaceous, or MH diatomaceous fine sand or silty soils CH Inorganic clays of high plasticity, fat clays OH Organic clays of medium to high plasticity, organic silts nr r�r yy y�y PT Peat, humus, swamp soils with yy yyy high organic contents Fill Materials.., `J Asphalt end' concrete Soil Classification System Earth Systems Southwest, U'd/ 12/ 2UUb lb: 02 7503457315 Earths Svstems Southwest Boring No: B -1 Project amc: Tract 32751. Jefferson St. &: Avenue 52, La Quinta, CA File Number: 10271 -02 Boring Location: See figure 2 Sample PAGE 11/15 79811 D CoumtTy Chub Drive, Bermuda Dunes. CA 97203 Phone (760) 345 =1588. Faux (760) 345 -7315 Drilling Date: August 21. 2006 Drilling Method: 8" Hollow Stem Auger Drill Type: CME 55 Auto Hammer Logged By: Dirk Wiggins Types Penetration a Description of Units 0 a Resistance E U q c ,= u Note: The stratification lines shown represent the o approximate boundary between soil and /or rock types rn v U and the transition may be gradational. Pageloft Graphic Tend Blow Count Dry. Dcnsiry by/ 121/'!01Jb 16:02 7603457315 PAGE 121/15 r2h Syst®ea01s 1 111F Southwest - -` '.`w � � 793I I Colmry Chub Drive, Ijcmmidn Dunes, CA 92203 Phone (760) 345 -1583, 1'nx (76D)345.7,115 Boring No- B -2 I i Drilling Date: August 21, 2006 Pro,iect Name: Tract 32751. Jefferson St. & ,avenue 52. La Quinta. CA Drilling (Method: S" Hollow Stem Auger File Number: 10271 -02 Drill Type: CME 55 Auto Hammer Boring Localism; See Figure 2 Logged By: Dirk Wiggins 1 SampFRcsistancc Y v Type Description of iJnitse ' c .= y Notc; Thc stratification Iincs shown represent the >. rn o approximate boundary between soil and /or mck type, Graphic Trend O U and the transition may be gradational. glow Count Dry Density I- 5f`1 SILTY SAND: moderate to pale yellowish brown, medium dense, dry, silty, fine to medium grained, T4.6,11 It graded roadway surface _ J ' I pale yellowish brown, very fine to Fine grained t 10 GRAB ,I 15 4.10.15 ML I. ri 20 I GRAB TIA SM 25 7. 13,20 : 5 P -,S' M 30 GRAN SM 35 6,9,11 : -::i 5P -SM :j 40 GRAS SM 45 L 50 moderate brown ISANDY SILT: pale yellowish brown, medium dense, dry SILTY SAND: moderate brown, medium densc dry, silty, fine to medium grained, loose graded roadway surface SAND WITH SILT: pale ycllowish brown, dense, damp, silty, fine to medium grained, silty sand lenses SILTY SAND: moderate brown, dense, damp, very fine to fine grained, silt lenses SAND WITH SILT:- pale yellowish brown, medium densc, dry to damp, fine to medium grained SILTY SAND: moderate yellowish brown, dense, damp, fine grained Total Depth 41.5 feet No Groundwater Encountered 3" Diameter PVC 40' Pcrfcirated Pipe; 3/4" Gravel by; 'Lbbb 1b: b1 ibb3457? 091-"121/2006 16:02 PROJECT: FILE NO: BORING: 7603457315 PAGE 14/15 PERCOLATION TEST RESULTS FOR SEEPAGE PIT OR DRY WELL Citrus Country Club, Tract 32751, 1-a Quinta 10271 -02 Date: 8/22/2006 Note, this hole used almost 900 gallons, water supply valve full open both locations 1 -1 West Depth: 36.0A Borehole Dia: 0.67 feet Pipe Stickup: Gravel /Perf to: Gravel Factor: 0 - 0.0 36.0 'ft 1 - 0.46 3/4 inch gravel EARTH SYSTENTS'SOUTHWEST F L(avg) Qc0rr= Q'G G tf t. Total Initial Final Fall Average F /t'D'9/L(avg it Reading Initial Final Time Depth of Water Water In Water Wetted Percolation No. Time Time Interval Hole Level Level Level Length Rate mpi 180/0 /111111\ /111111\ "Min, /A_II1.\ /41 -lil.\ f." i I IfC rt' aiiaf /da rn i' 1 11;56 12 ;12 16 36.0 - 0.0 8.0 - ' 0 31.0 - 0 23.00 36.00 6.6 27 a 2 12:21 12:34 13 35.5 - 0.0 7.0 - 0 31.0 - 0 24.00 36.00 8.5 21 IL 3 1 14:55 1 15:05 10 33.5 - 0 -0 1 8.5 - 0 25.9 - 0 17,40 36.00 8.0 23 4 15:10 15 :20 F43.2 - 0.0 6.3 - 0. 25.2 - 0 18.90 36.00 8.7 21 A it -91=1 iC -RG n n EARTH SYSTENTS'SOUTHWEST 9 IC a EARTH SYSTENTS'SOUTHWEST 09/12/2006 16:02 7603457315 I PAGE 15/15 PERCOLAT ION TEST RESULTS FOR SEEPAGE PIT OR DRY WELL PROJECT: Citrus Country Club, Tract 32751, La Quinta FILE NO: 10271 -02 Date: 8/23/2006 Note, this hole used almost 800 gallons new battery installed in meter at test 7 BORING: 1- 2 East . Depth: 36.3 ft Borehole Dia: 0.67 feet Pipe Stickup: I Gravel /Pert to:1 Gravel Factor. 0 - 0.0 1 38.0 ft - 0.46 3/4 inch gravel with 40 fee' Reading No. 5 Initial Time (mini tf Time lrnlnl t Total Time Depth of Interval Hole (min) (ft-in 1 Initial Water Level !ft -in 1 Final Water Level /A in 1 F Fall in Water Level /H\ L(avg) Qcorr = 0"G Average F /t'D`9/L(av9 Wetted Percolation Length Rate Ia / •� i /Sf�WC Pit mpi 180/Q �i;, ^i� 1 08:22 1 08:32 10 38.0 - 0.0 1 6.4 - 0 29.5 - 0 23.10 38.00 10.1 18 2 08:36 08:43 I ' 7 35.5 - 0.0 8.2 - 0 1 24.0 - 0 15,80 38.00 9.8 ?8 3 11;12 11:22 10 34.5 - 0.0 8.0 - 0 1 21.7 - 0 13.70 38.00 6.0 30 4 11:26 11:36 10 34.3 - 0.0 8.0 - 0 19.7 - 0 11.70 38.00 5.1 35 IL 5 11:38 11:49 10 34.2 - 0.0 3.0 - 0 20,1 - 0 12.10 38.00 5.3 34 IF;::F..4 5 12:05 10 34.0 - 0.0 8.0 - 0 20.0 - 0 12.00 38.00 5.2 34 7 6 12:56 10. 32.0 - 0.0 8.0 - 0 19,2 - 0 11.20 38.00 4.9 37 8 13:01 13:11 10 32.0 - 0.0 80 - 0 18.8 - 0 10.80 38.00 4,7 38 9 13 :15 13:25 10 31.5 - 0.0 8.0 - 0 17.8 - 0 9.80 38.00 4,3 42 i EA.RTR SYSTEMS SOUTHWEST r ) Earth Systems - � 7-V "`w Southwest 79 -811B Country Club Drive Indio, CA 92203 (760) 345 -1588 (800) 924 -7015 FAX (760) 345 -7315 September 20, 2006 ' File No.: 10271 -02 MDS Consultants c /o. Craftsmen Homes 1157 North Red Gum Street Anaheim, California.92806 Attention: Mr. George Prine Project: Tract 32751 Citrus Country Club Jefferson Street & Avenue 52 Subject: Additional Infiltration Testing for Retention Basin Design Dear Mr. Prine: This letter presents preliminary findings of the infiltration testing conducted on September 18, 2006. The purpose of the testing was to determine the appropriate infiltration rates to be used in the design of the stormwater retention basins planned for portions of Tract 32751 of Citrus Country Club in the City of La Quinta, Riverside County, California. Two infiltration tests were made in the vicinity of the proposed retention basins. The locations of the tests .will be shown on a figure attached to the final report, to follow. The tests were conducted within 8 -inch diameter, augered boreholes made to depths of approximately six (6) and twelve (12) feet below existing ground surface. A 3'/4 -inch outside diameter perforated pipe was set in each borehole. Each pipe is surrounded with 3/4 inch gravel around the pipe full length. Water was injected at a relatively constant rate until a stabilized head of water was established. Based on the US Bureau of Reclamation methodology for a constant head, pump -in test, the following hydraulic conductivity rates were obtained. Test Bottom of Hole Water Head Flow Rate Hydraulic Conductivity (k) ID feet feet m in/hr al/sf/da I -3 West 6.00 2.8 1.09 3.9- ' 58.3 ' I -4 East 12.00 3.5 0.30 0.8 1 11.5 The designer of the dry well should decide on an appropriate factor of safety to apply to these reported infiltration rates. Infiltration may be significantly less than the values given over time because of siltation and development of a film from road oils from paved streets. A silt and oil trap placed at influent points may be considered to reduce the potential for reduction in the infiltration rates of soils. �.r. September 20, 2006 2 File No.: 10271 -02 We appreciate this opportunity to provide our professional services. Should any questions or comments arise; please contact our office at (760)345 -1588. Respectfully submitted, Joseph E. McKinney, GP, PG Project Geologist/Geophysicist EARTH SYSTEMS SOUTHWEST V A DTLT cvcTCTdc Ol1T TTLTT A 7L' CT �j Earth Systems Southwest � 79 -811B Country Club Drive Bermuda Dunes, CA 92203 (760) 345 -1588 (800) 924 -7015 FAX (760) 345 =7315 November 4, 2005 Craftsmen Homes 1157 North Red Gum Street Anaheim, California 82806 Attention: Mr. Scott Shaddix Subject: Infiltration Testing for Retention Basin Design Project: Proposed Storm Water Retention Basins Tract 32751, Citrus Country Club Jefferson Street and Avenue 52 La Quinta, California . Dear Mr. Shaddix: File No.: 10271 -02 05 -11 -748 This report presents the findings of infiltrometer testing conducted for the proposed stormwater retention basins located in the City of La Quinta, Riverside County, California. The purpose of the testing was to determine the appropriate infiltration rate to be used in design of the storm water retention basins. The retention basins are to be located at the north end of the project site, immediately north of the proposed cart path. Infiltrometer Testing We conducted two open, double -ring infiltrometer tests on October 19, 2005, in general accordance with ASTM D3385 at, the proposed locations for the storm water retention basins. The test locations were surveyed by the client, and the site for Test #2 was excavated by the client. Test # 1 was conducted at the surface . in the area of the proposed "west" basin.. Test #2 was performed at a depth of approximately 6 feet below existing grade in the area of the proposed "east" basin. Both tests were,conducted at the approximate bottoms of the proposed basins. An outer steel ring (24 -inch diameter) and an inner steel ring (12 -inch diameter) were driven about 4 to 6 inches into the soil. The purpose of the outer ring is to create a hydraulic barrier so that the recorded drop in water level of the inner ring measures the vertical infiltration without lateral spreading. Both rings were filled with water to a depth of about 6 inches and maintained with a float control valve or periodic refilling. Successive readings of infiltration flow were made over 15 to 60 minute periods until a stabilized flow was recorded. A plot of infiltration rates over time is presented on the attached test results. The infiltration rate measured is presented in the following Table 1 in metric and equivalent English units. November 4, 2005 -2- Table 1— Infiltration Test Results File No.: 10271 -02 05 -11 -748 Test Location cm/hr in/hr al /sf/da Test #1 (West) 18.5 7.3 109 Test #2 East 0.7 0.3 4 Design Infiltration Rate The designer of the storm water retention basins should decide on an appropriate factor of safety to apply to reported infiltration rates. Infiltration of storm water through the bottom of the basin may be significantly less than the values given over time because of siltation of the basin bottom and development of a film from road oils from paved streets. Maintenance of the retention basin is crucial if no ' factor of safety is applied. Maintenance may include periodic scarifying of the basin bottom to open soil pores clogged by siltation, oils, or vegetation growth. A silt and oil . trap placed at influent points may be considered to reduce the potential for reduction in the infiltration rate of soils. Soil .Conditions The USDA Soil Conservation Service maps the upper 60 inches of soil for this area as Gilman (ML) with expected moderate conditions for soil percolation. The field exploration indicates that site soils in the vicinity of Test #1 (West) consist primarily of fine sand (Unified Soil Classification System symbol SM). This soil did not appear to be native; it had been re- worked, was loosely compacted, and may have been imported. Soils in the vicinity of Test #2 (East) consisted of silty fine sand (SM/ML) and appeared to be undisturbed. This finer, more compacted soil is most likely the reason for the slower infiltration rates observed in Test #2. We ' appreciate this opportunity to provide our professional services. Should . you have any questions or comments, please contact our office at (760) 345 -1588. Respectfully submitted, Letter /jem/csh/reh Distribution: 2 /Craftsmen Homes 1 /RC File 2 /BD File avl�iu Craig S. Hill CE 38234 4 EARTH SYSTEMS SOUTHWEST CE 38234 IS EXP.3/31/07 4 �l I• I• • Hydrology Hydraulics Report Tentative Tract 32751 MDS 62602 SW Corner of Jefferson & Pomelo City of La Quinta, State of California Resub — February 2007 Resub — January 2007 Resub - December 2006 Resub - October 20o6 Sub - May 2oo6 February 2007 Prepared For: Citrus El Dorado LLC aka Craftsmen Homes 1157 North Red Gum St Anaheim, California 92806 Prepared By: MDS Consulting John W. Cavin C 16802 78 -goo Avenue 47, Suite 208, La Quinta, CA 92253 (760) 771 -4013 0. Hydrology Hydraulics Report Tentative Tract 32751 MDS 62602 City of La Quinta, State of California M O R S E 78 -900 Avenue 47 D Suite 208 M Lo Quinlo, CA 92253 D 0 K I C H Voice: 760 - 771 -4013 FAX: 760 — 771— 4073 S C H U L T Z mdsloquinto@r dsconsulting.net P L A N N E R S E N G I N E E R S S U R V E Y O R S Stanley C. korse R. C. E. 20596 Expires 9/30/07 Resub: February 2007 Resub: January 2007 Resub: December 2006 Resub: October 2006 Sub: May 2006 VHS/ * No. 20,596 r o* Exp. 9 -30 -07 ,9 L'ilVlL •,. �,� ti� Mds 62602 2/20/2007 Tract 32751 Hydrology & Hydraulics Report February 2007 Table of Contents Title Sheets Table of Contents Tab Project Maps & Photos Tab 1 Project Narrative Tab 2 Summary of Results Tab 3 1. Design Criteria 2. Design Storm Point Precipitation Table (COLA) 3. Drainage Area List 4 Retention Basin Control Elevations 5 Retention Basin Layout -1 ft Contours and areas 5A Retention Basin # 1 (west) — Available /Required Storage 5B Retention Basin # 2 (east) — Available /Required Storage 6. Comparative Storm Storage 7. Street Capacity Table 8. Catch Basin Capacity Table 8A Catch Basin Data Table 9. Nuisance Water Disposal System Capacity Table Appendices: Appendix A: Retention Basin 1 and 2 Hydrology Unit & Flood Routing Hydrographs Tab 4 (100yr —3, 6, & 24hr Design Storms) A -1 Unit Hydrographs — Basins 1 & 2 Tab 4 A -2 Flood Hydrographs — Basins 1 & 2 Tab 5 Appendix B: Rational Method Hydrology Tab 6 (100yr /1 hr Design Storm) B -1 Street Tab 6 • B -2 Catch Basin / Inlets Tab 7 B -3 Storm Drain Hydrology Tab 8 B-4 Storm Drain / Hydraulic Grade Lines +Tab 9 Mds 62602 (continued) Contents — Tract .-1275i 2/20/2007 4 Appendix C: Nuisance Water Disposal System Tab 10 Summary and Sketches Design Calculation Table Appendix D: Design Reference Documents Tab 11 1. Conditions of Approval (COA)- Drainage COLQ 2. Geotech & Percolation test reports Earth Systems 3. Point Precipitation Storm Volume Table (All storms) 4. SCS Soil Map, & Hydrologic Soil Group Table 12 USDA -SCS 5. Time of Concentration Nomograph- Initial Subarea (Plate D -3) 6. Rational Rainfall Intensity Table 10yr & 100 yr (Plate D -4.1) 7. Rainfall Patterns —% of Design Storm Total Volume (Plate E -5.9) 8. Rational Runoff Index Numbers (Plates D -5.5 &5:6) 9. Runoff Coefficient Curves (Soil Groups A, B & C, AMC II) (Plate D -5.2, 5.7) 10. Curb Inlet Capacity Street Low Pt (Sag) (BPR #1073.03) 11. Misc Documents •Appendix E: Hydrology Map Exhibits Tab 12 Exhibit is Predevelopment Topography & Drainage Map Exhibit 2: Onsite & Offsite Hydrology & Drainage Area Map Exhibit 3: Post- Development Drainage System Project Maps and • Photographs Craftsmen Homes Tentative Tract 32751 0 Tab 1 Of 1 0 .!> CW 40 . I TerraServer Image Courtesy of the USGS Page 1 of 1 Send To Printer Back To TerraServer Change to 11x17 Print Size Show Grid Lines Change to Landscape do 0` 1200M 0' '200yd Image courtesy of the U.S. Geological Survey • © 2004 Microsoft Corporation. Terms of Use Privacy Statement file://G: \62602 \Hydrology - Hydraulics Report\ CH- Jan07Rev- HydrolReprtPercO- 2 \RCH- FebRev -... 2/21/2007 Tab 2 Project Narrative Craftsmen Homes Tentative Tract 32751 • Mds 62602 2/21/2007 Hydrology and Hydraulic Design Report Project Narrative Tract 32751 - City Of La Quinta Location (West Side of Jefferson, South of Pomelo, south of Ave 50) Purpose This report identifies the drainage design criteria used, and describes the design of the project drainage and Retention system. The analysis identifies the 100 -year storm runoff rates and volumes generated within the areas tributary to Tract 32751, to be used in the design of the onsite street, inlets, drainage pipes, and retention basins. Existing Site Description The site measures approximately 1300 by 310 feet, consisting of approximately 8.4 gross acres. It is located adjacent to the west side of Jefferson St, and the south side of Pomelo St, within the City of La Quinta, County of Riverside, California. It is bounded on the west by vacant residential lots of Tract 24890, and on the south by a portion of a Golf Course. The site occupies some of the lowest ground in the vicinity, and is currently used as an undeveloped drainage collection / retention basin. Proposed Proiect Description Tract 32751 is a project by Craftsmen Homes to develop 29 single - family residential lots and associated improvements on the site. Site development includes full improvement of all onsite areas, connection of the onsite street to Mandarina St at the southwest corner of the site, extension of the existing Tract 24890 storm drain system through the site, and retention of drainage from the 8.4 acre site and 29 offsite acres contained within existing Tract 24890 and Jefferson St. (37.4 total acres —See Tab 3, Summary 3). Development also includes 4 -foot retaining walls surrounding both retention basins; filling, sealing and abandonment of the existing golf cart path tunnel under Jefferson St.; and preservation of the historic overflow location and elevation at the south end of the site. Existing Drainage Patterns 2800 feet of area along the north boundary of existing Tract 24890, and 2000 ft along Jefferson St, (29 acres total), presently drains through the existing offsite streets and storm drain pipes to an existing drywell at the north end of the site, which then overflows at elevation 27.0 into the site. This drainage presently collects in a large depressed area on the site and percolates into the ground. (See Exhibit 1 for the predevelopment topography.) The historical drainage relief for this tributary area flows into the golf course and Mandarina St at the south end of the site at approximately elevation 29.1 Proposed Drainage Patterns The proposed drainage system for Tract 32751 is designed to preserve the existing offsite storm drain system, remove the existing drywell, connect to the existing system, and extend the system through Tract 32751 to two proposed connected retention basins located near the south end of the site. The required capacity of the storm drain extension includes 55.4 cfs from the entire 29 -acre • offsite area and an additional 11.2 cfs from Tract 32751. Mds 62602 2/21/2007 •It is necessary to use 54 -inch pipe in the proposed storm drain to flatten the slope of the HGL and provide freeboard in the existing catch basins in Mandarina Street at the upstream end! of the existing storm drain system. The designated overflow from the onsite drainage system and retention basins will be southwest from the east retention basin thru an 18 inch pipe and outfall catch basin (CB# 7) to Mandarina St at elevation 28.79 (down slope end of the gutter depression). The overflow will then flow south in Mandarina to existing catch basins flowing west into the existing golf course retention basin / lake at elevation 27.4. The historic drainage relief at elevation 29.1 is preserved as a secondary designated overflow through the golf course at the south end of the site. A drainage swale is provided from retention basin 2 to the overflow point at the south tract boundary. The pad elevations of all adjacent Tract 24890 lots and proposed Tract 32751 lots are elevation 30.1 or higher, (1 foot or more above the 28.79 and 29.1 overflow elevations, as required by the COLA. (See Tab 3, Summary 4). All onsite storm drainage is conveyed by surface flow in the street to curb inlets. It is then combined with the offsite flows in the storm drain and conveyed to a grated distribution box in the bottom of retention basin 1. Large storm flows rise through the top grate of this box, spread over the bottom of the retention basins, and percolate into the bottom and sides of each basin, although only the west basin is being relied on for percolation. A 24 -inch culvert interconnects the two basins through CB 5 & 6 to equalize the water surface and storage in both basins. Small Nuisance water flows are disposed of in the Nuisance Water Disposal System (NWDS). (See • discussion to follow). The existing wall along the north and east property lines will remain. Masonry privacy walls will be constructed along the remaining two sides. These walls will insure that all drainage will be contained within the site. Proposed Drainage System Design Methods The basins and grading are designed for the maximum water surface at historic and designated overflow elevations to be 1 foot or more below the pad elevation of the lowest buildings within the tributary area. , The Riverside County Synthetic Unit Hydrograph Method is used to determine the storm runoff volumes for the potential design storms. A Flood Routing program is used to determine the net required retention basin storage for each potential design storm after deduction of percolation from the west basin. The on -site soil percolation rate was tested in September 2006 for the basin areas. These tests indicate percolation rates of 0.8 to 3.8 inches / hr. (See enclosed Appendix D, Tab 10, Earth Systems Report File 10271 -02). Based on this percolation test report, the COLQ requires that the percolation rate shall be 2 in /hr in the west basin and zero in the east basin. The maximum depth of water storage required in the proposed Retention Basins is 8.55 feet for the 100 year, 3 hour design storm. (See Tab 3, Summary 6, and Tab 5, Appendix A -2) The total onsite and offsite drainage areas for the retention basins are evaluated for the runoff from • 100 -yr storms of 3, 6, and 24 -hour duration. The storm yielding the largest required storage volume is designated the design storm for the Basins (See Tab 3, Summary 6, and Tabs 4 & 5, Appendix A.). 2 Mds 62602 2/21!2007 It is necessary to design the basins with 4 -foot tall perimeter retaining walls to provide the necessary storage capacity below the required maximum water surface at elevation 27.03. (Actual ws100 is 27.05.) The City Engineer has approved this concept. 318,700 cubic feet of storage is provided before overflow starts at elevation 28.79. This is 28 % larger than the 249,380 cf of storage required for the 3 hr design storm. (See Tab 3, Summary 6). The maximum water depth in the basins has been evaluated and conforms to the criteria contained in COLA Engineering Bulletins 97 -03 section 6, and 06 -16. (See Tab 3, Summary 6). The CivilCadd / CivilDesign computer program by AES is recommended by the COLA and RCFCD. This program is used in calculating the required and actual capacity of each street, inlet, pipe, and drainage structure using the Rational Method hydrology procedure outlined in the Riverside County Flood Control District Hydrology Manual. (See Tab 6, & 7, Appendix B,). The AES Engineering Water Surface Profile Design program is used to calculate the Hydraulic Grade Line (HGL) for each pipe system at maximum 1 hr /100 yr flow. (See Tab 8, Appendix B -3). Per COLQ requirements, HGL calculations begin at the water surface elevation in the Retention Basins. at the time of peak 100 yr storm inflow (elev 25.39), not at the time of peak storage, (elev 27.05), after the pipe flow has tapered off and ended. This conforms to the actual behavior of storm runoff in the drainage / retention system. The 3 hr. storm is the controlling design storm for this project. The peak inflow in the storm drain pipe occurs at 2.7 hours after the start of the storm. The peak water surface elevation in the retention basin occurs 1 hour later, at 3.7 hours after the start of the storm. (See Tab 3, Summary 6) Peak flow HGL should never be required to begin at peak pool elevation for the following reason: • It is not possible for peak inflow to occur at peak storage using normal Hydrologic theory. This would require a second 100yr, storm to occur immediately after the end of the first 100 yr, storm. The total volume of two consecutive 100 yr storms exceeds the volume of a 1000 yr storm. (See Tab 11, References, NOAA Atlas 14, Point Precipitation Frequency Estimates) Nuisance Water Disposal Nuisance water is defined as silt and contaminant - carrying runoff from landscape irrigation, and the debris and contaminants flushed from pavement surfaces during the first minutes of storm runoff. All storm drainage from the onsite and offsite areas is collected in the streets and storm drain piping, and flows to the junction box in the bottom of retention basin 1. Large storm flows rise through the top grate of this box, spread over the bottom of the retention basins, and percolate into the bottom and sides of each basin. A lateral pipe connects the two basins through catch basins 5 and 6 to equalize the water surface and storage. Nuisance water flows smaller than the capacity of the NWDS will follow the same path, but will flow from the distribution box through 6 inch diameter pipes to the NWDS, to be clarified and percolated into the ground. The NWDS is designed per COLA requirement EB -#06 -16, section. 8, to collect nuisance water from hard surface and landscaped areas, remove debris and floating contaminants using the Maxwell II System pre - clarifier and percolation drywell system. The clarified nuisance flows are percolated deep into the ground by a perforated well casing that is part of the Maxwell system. (See attached Tab 3, Summary 9). A nuisance water disposal system is also provided in Basin # 2, for the small amount of runoff from • CB# 7 and the return drainage from CB# 7 to the east basin after the overflow pipe and CB are flooded during a large storm. 3 • Summary of Results Tab 3 1. Design Criteria 2. Design Storms Precipitation Table 3. Drainage Area Table 4. Retention Basin Control Elevations 5. Retention Basins -1 ft Contours & Areas 5A & 5B. Retention Basin Storm Storage and Flows 6. Comparative Storm Storage 7. Street Capacity Table 8. Catch Basin Capacity Table 8A. Catch Basin Data Table 9. Nuisance Water Disposal System Craftsmen Homes Tentative Tract 32751 • • MDS 62602 Summary 1- Design Criteria Tentative Tract 32751 Design Criteria Hydrology and Drainage Facilities Last Revised 12/17/2006 Excerpted from City of La Quinta (COLQ) design standards, plan check lists, and Engineering Bulletins. RETENTION BASINS • Storm Point Precipitation Frequency Estimate data are provided by the City of La Quinta for calculation of the 3, 6, and 24 hour, 100 -year storm runoff volumes (See summary 2). NOAA Atlas 14 data as provided on the NOAA website are not acceptable to the COLQ. • Retention Basins shall be sized for the storm requiring the largest basin storage volume (The Design Storm). The 100 year 24 hour storm is the Design Storm for Tract 32751. • The design Percolation rate shall conform to the percolation test report, but shall not exceed 2 in/hr. (See Geotechnical Engineer Percolation Test Report in Appendix D). The City Engineer has approved use of 2- in/hr perc rate for the West Basin (1), and zero perc for the East Basin (2). (See memo in reference Tab 10.) • Storm runoff and percolation Safety Factors are not required. • The combined retention basins shall percolate the entire 100 -year design storm in 120 hours after the end of the storm. •, • Maximum design water surface in a Retention Basin shall be 1.0 foot or more below the lowest normal street gutter flow line and 1.0 ft below the lowest pad elevation in the Drainage area. • Basin side slopes shall be 3 to 1 or flatter. • Water depth in any basin in a gated residential development shall conform to COLQ EB 97 -03 section 6. • A Secondary overflow route to the existing / historic drainage outlet shall be shown for each basin. Secondary Overflow shall occur only in storms larger than the controlling 100 year storm • Publicly maintained Basins shall not be fenced or walled. Privately maintained basins may be fenced/walled. • Basins shall be visible from the residential streets for security reasons. • Retention basins are not allowed in Public Street parkway or landscaping areas. • A 12 ft wide maintenance access ramp shall be provided for each basin. Maximum ramp slope is 15 %. NUISANCE WATER / LOW FLOW DISPOSAL SYSTEMS • Nuisance Water Disposal Systems shall be designed per COLQ Draft Engineering Bulletin on Hydrology Report Criteria. • A Maxwell H Debris Interception and percolation system shall be provided to dispose of nuisance water. Capacity of the system shall be 5 gph per 1000 sf of landscaped/pervious area in the drainage area • Sand filters may not be used in the project area • Percolation chambers shall not be used in the project area • MDS 62602 Last Revised 121172006 STREETS • Streets, drainage inlets and pipes shall be designed for the Riverside County Rational Method 1 hour, 100 year storm. • The 10 -year storm street flow water surface shall not exceed the top of street curb. • The 1.00 year storm street flow water surface shall not extend outside the street right of way with both the street and storm drain system flowing at capacity. (Street ponding may exceed Top of Curb.) • Tract 32751 drainage facilities are designed to ensure that the 100 year storm water surface does not exceed the onsite street top of curb. The 10 -year storm water surface in Major streets shall leave one lane in each direction not flooded. • There are no major street improvements in Tract 32751, only one onsite street. • The maximum 100 -year water surface shall be 1.0 foot or more below the lowest pad elevation. • The maximum Secondary Overflow water surface shall be 1.0 foot or more below the lowest pad elevation. • Street flow velocity shall be 2.5 fps minimum and 6 fps maximum. • Minimum street gutter longitudinal slope shall be 0.5 %. • Street surface roughness factor for storm flow computations shall be: n = 0.02 for local streets and n = 0.015 for major streets. MAIN LINE STORM DRAIN, CURB INLETS, and LATERAL PIPES • Minimum storm drain pipe size in Public Right of Way is 18 inches, with 6 inch minimum diameter changes. • Minimum pipe slope is 0.3. %. • Maximum storm drain manhole access spacing shall be 300 feet. • Storm drain Hydraulic Grade Line elevation calculations for the Rational Method 100 year / 1 hour storm peak flow may begin at the water surface elevation in the Retention Basin at the time of the peak flow in the storm drain / peak inflow to the Basin. (See Tab 3' , Summary 6). • Storm drain Hydraulic Grade Line elevation calculations for the 100 year / 1 hour storm are based on the Time of concentration, rainfall Intensity, and resultant peak flow in each pipe reach as determined by and adjusted for confluence Tc differences by the Riverside County Rational Method Hydrology Method. • Drainage inlets (catch basins) and their lateral pipes shall be designed for the Rational Method 100 year, storm flow for the Time of Concentration and rainfall Intensity at the individual inlet, not for the main line Tc &I. •_ NOTE: Storm Drain design flow downstream of junction points will be less than the sum of the upstream main line and lateral design flows due to differences in Tc and rainfall Intensity of the inflows at the junction. • All street inlets shall be curb opening without grates • Inlets shall be placed at low points (sump). Maximum spacing shall be 1200 feet. The 100 yr design storm water surface in curb inlets shall be 1.0 foot below the normal gutter flow line at the inlet. • Curb depressions shall be 4 inch at all inlets. • Sump inlets shall be sized for complete interception of the 100 -year design storm street flows. • The Secondary overflow outfall route and elevation shall be determined for all sump locations, with at least 1.0 ft of freeboard between the overflow water surface and any building pad. • The Historic overflow is maintained at elevation 29+- into the golf course at the south end of Tract 32751. • The proposed overflow from Tract 32751 is at elevation 28.79 from the east retention basin, through CB# 7 to Mandarina Dr. This design controls the overflow within pipes and streets and avoids erosion damage to the golf course. L' • MDS 62602 14- Feb-07 Sum ry 2 - Storm Preci.p lm itatian Volumes Tract 32751 Latitude: 33.68134, Longitude: - 116.26991 Storm Volurnes - mIn.fall Total during storm Per COLA . Per NOAA Atlas 14 - 2005 Recurrance 2 Year 100 Year 2 Year 10 Year 100 Year Storm Duration (inch) inch inch inch inch 1 Hour 0.50 2.10 0.42 0.89 1.97 3 Hour .0.70 2.70 0.65 1.28 2.55 6 Hour 1.00 3.20. 0.87 1.66 3.08 24 Hour 1.60 4.25 1.14 2.20 4.02 (:used in:UnitHydro.graph Calculations) Comparison Only - Not used • • i MU-5 5260Z b-Ul Summary 3 - Drainage Area- Hydrologic Soil Group - Runoff Index - Onsite Fill, C j Tract 32751 Hydrologic Soil Groups A& B' per.Soil Conservation Service & C Onsite.Fill - Riper Riverside County Hydror Manual . Drain Area A- Offsite West Drain Area B4Offsite ME Drainage Area. C" Onsite HSG Existing Storm ram west Impry RI ID Area Frac Ac I SD DA Area Ac HSG7 Existing torm ran 2 East) Impry RI ID Area Frac Ac SD DA Area Ac ropose nsite orm rain xtension HSG Impry RI ID Area SD DA Frac Ac Area Ac A A A B B B 0.50 0.50 0.50 0.50 0.30 0.80 0.30 32 32 32 56 74 56 58 •A1- Initial 0.400 A2 •6.750 A3 2.410 A4 0.616 A5 1.375 A6 1.046 1 A7 1.157 . CB 1 & 21 SDI 9.560: ' 4.194 13.754 B A B A 0.70 56 B1 1.837 0.70 32 62 2.020 SD 2 0.70 56 63, 1.837 0.70 32 64. 1.102.1 SD 2A SD 2 1 thru B 3.857 1 1 2.939 6.796 `l C I 1 0.50 1 69 1 C1 t 1.816 C I 1 0.50 1 69 C2 N 1.791 1 I CB 1 &2 1 1 ISubtotal SDI - Onsite & Off 'te 1 C 1 0.50 69 C3 1.142 1 C 1 0.50 69 C4 .1.142 1 I CB 3 &4 ► as n - -Onsite site . 3.607 32.586 2.284 34.870 1 C 1 0.50 69 1 C5 0.693 B i 0.80 56 A8 NN 3.220 1 C i 0.50 69 C6 0.613 B 0.30 58 A9 1.878 1 CB 4 &5 1.306 B 1 0.50 56 A10 0.279 1 B 1 0.05 58 7- 13asin, 0.537 B i 0.50 56 All 1.970 l C 1 0.05 72 8 -Basin 0.682 B 0.30 58 Al2 0.448 SD 1A 7.795 Basins 1 &2 1.219 SD 1 21.549 % Hydrologic Soil Group. Rl Summary. Total Onsite 8.416 B 0.30 58 A13 •0.634 •0.634 input in unit HYCIrOgraph Total rainage- rea ,� 37.395 SD MA 1 thru l3d 6.796 HSG Im v I RI Area Location Use ) 0 )Q ✓� 0 9 9 9 `f 1 otal Offsite 728.979 A 0.70 32 3.122 • Offsite SULsc A 0.50 32 9.560 Offsite SFam B 0.80 56 4.266 Offsite PrkLot B 0.70 56 3.674 Offsite SULsc B 0.50 56 2.865 Offsite SFam B 0.30 58 4.117 Offsite Park B 0.30 1 74 1.375 Offsite WellSite Total site 28.979 .77.49% C 0.50 69 7.197 Onsite ISFam C 0.05 72 0.682 Onsite Basin B 0.06 58 0.537 Onsite Basin Total Onsite 8.416 22.51% Total 37.395 100.00% • 0 0 MDS 62602 4- a -07 Summary 4' -- Control Elevations Tract 32751 Retention Basinss 1 &:2 = ,Control Elevations Item Source Elev Lowest Lot elevation Lot No 26 30.10 Historic Drainage Relief Elevation To GolfCourse & Mandarina St 29.1+/ - Designated Overflow @ CB# 7 - East Basin to Mandarina to GolfCourse Retention St. Sta 10 +44 28:79 Max WS in existing Golf Course Retention Basin west of Mandarina - Tr 24890 H drol Map 27.4+1 - Lowest Curb Inlet TC - cb 5 & 6 St Station 15 +40 53 • ( :' ws100 with 1 0;{ft freeboard' in Lowest Curb inlets - #58z6 = y k (1.0 ft below normal gutter CB 5&6),' Basin ws100 Peak Storage! r Used m Basin" apacity. design. See Fld Rte data / Summary 6 27.0.5 Retention Basin - Wall / top of slope intersection elevation See SD Design drawing sht 4 26.00 Toe of slope elevation See SD Design drawing sht 4 19.00 Low Point - Top of Grate Elevation See SD Design drawing sht 4 18.50 Water depth at Wall (ws100 - 26.00) 1.05 Water depth at Toe of sloe (wsl00 - 19.00) 8.05 Basin ws., @:,Peak Inflow 3hr storm. = See Sum ma r ... '.HGLstartng Elev. See Summary 6 25:39 Basin ws @ 1/2 control wsl00 @ Peak Storage- 3 hr storm One -half max water depth 22.78 O) � n I� OT D (0 .6 AC.) \ (28,79 .F.) WEST BASIN; I `� 29 = 1201 SF = 0.4178 AC. 28 = ,18047 SF = 0.4143 AC. 27 1 17887 SF = 0.4106 AC. 26 = 17722 SF = 0.4068 AC/ /25 = 16042 SF = 0.3F4AC. 6. 24 = 14208 SF = 0.3C. 23 = 12476 SF = 0. 22 = 10767 SF = 9.1471 AC. 21 = 9140 SF 7,/0.2098 AC. 20 = 7702 SV= 0.1768 AC. 1 64355 F = 18.75 0.1477 AC. �24V SF = 0.0555 AC. VOLUME ®,WS100= ,OVERFLOW= 103,680 CF VOLUME @ 123,120 I o _ +0 EAST BASIN 29 = 24084 SF = 0.5529 AC. EAST BASIN 28 =. 23864 SF = 0.5478 AC. LO C 27 = 23605 SF = 0.5419 AC. (0.79 AC.) 26 = 23307 SF = 0.5351 AC. (34,45 S.F.) 25 = 21495 SF = 0.4935 AC. 24 = 19572 SF = 0.4493 AC. 23 = 17732 SF = 0.4070 AC. 22 = 15969 SF = 0.3666 AC. 21 = 14286 SF = 0.3279 AC. 20 = 12678 SF = 0.2910 AC. 19 = 8852 SF = 0.2032 AC. 18.75 = 2283 SF = 0.0524 AC. VOLUME ® WS100= 145,480 CF VOLUME ® OVERFLOW= 185,070 CF 0o II 6 - - ►� TOTAL STORAGE BOTH BASINS oU ® WS100= 249,380 CF �- @ OVERFLOW= 318,700 CF SEE SUMMARY 5A & 5B FOR VOLUME CALCS \ jh SUMMARY 5 CSI I I I BASINS REVISED 12 -11 -06 • . • .2007 MDS 62602 1 1 14- Feb -07 Summary 5A - Retention Basin - Available & Required. Storage. Tract 32751 Retention Basins 1 & 2 - Connected Retention Basin, I - West - 2 in /hr Perc - Wall elev 25 to 29:67 Elev Area AvgArea h Vol Cum Vol Depth PercArea Perc Control (so (sf) (ft) cf \ ft) Available Storage (ft) (sf) (cfs) Elev (cf) I (ZFt ) I (2in /hr) 2 " /hr Perc - West Basin Only, 29.0 118,201 1 1137,441 3.1552 10.50 18,201 0.843 18,124 1.0 18,124 123,123 .2.8265 10.29 28.79° Overflow, CB #7 28.0 18,047 119,317 2.7391 9.50 18,047 0.836 17,967 1.0 17,967 102;248 2.3473 8.55 27.06 Cntrl ws100 -3hr 27.0 17,887 101,350 2.3267 8.50 17,887 0.828 17,805 1.0 17,805 26.0 17,722 83,545 1.9179 7.50 17,722 0.820- 16,882 1.0 16,882 .;' 71247 1.6815 6.89 25:39;.: ws Peak inflow 25.0 .16,042 1 66,663 1.5304 6.50 16,042 0.743. 15,125 1.0 15,125 24.0 114,208 51,538 1.1831 5.50 14,208 1 0:658 13,342 1.0 13,342 23.0 .12,476 38,196 1 0.8769 4.50 12,476 0.5.78- 11,622 1.0 11,622 : ;35;581 1 :0.8168 4.28 22191.C1 ws 1'/2 ws100 22.0 .10;767 26,575 0.6101 3.50 10,767 .0,498 9,954 1.0 9,954 21.0 9,140. 16,621 0.3816 2.50 9,140 0.42.3 8,421 1.0 8,421 20.0 7,702. 8,200 0.1882 1.50 7,702 7,069 1.0 7,069 19.0 ` 6,435. 1,132 0.0260 0.50 6,435 0.298 3,318 0.25 829 18.75 , 2,417 _ 302 0.0069 0.25 2,417 0.1.12' 1,209 0.25 302 18.5 200: 0 0.0000 0.00 200 0:009. 7x:18:50)°° ' Top of:Grate 0 0 0 MDS 62602 14- Feb -07 Summary. 5B,, -; Retention Basin Storage -Available & Required Storage Tract 32751 Retention Basins 1 & 2 - Connected Retention Basin 2 - East - Zero Perc in east basin only Totals. - Basins 1 & 2 - Wall 25 to 29.67 Elev Area AvgArea h Vol East Cum Vol PercArea Perc I CombPercl Depth I Storage - Tot Cum Vol Control (sf) (sf) (ft) (cf \ ft) (cf) (AcFt) (so (cfs) (cfs) (ft) Available Required Elev Descrip (Oin /hr) (Oin /hr E) (2in /hr W) (cn (AcFQ (AcFt) Use Bold Data in Flood Route Calc 29.0 24,084 1 190,108 4.3643 24,084 0 1 0.843 10.50 327,548 7.5195 23,974 1.0 23,974 185,073 4.2487 1 10.29 318;707 7.3165 28.79. Overflow CB #7 28.0 23,864 166,134 3.8139 23,864 0 0.836 9.50 285,450 6.5530 23,735 1.0 23,735 143,586 3.2963 8.550, 249;381' 5.7250 5.725 " 27.05 Cntrl ws100 -3hr 27.0 23,605 142,399 3.2690 23,605 0 0.828 8.50 243,749 5.5957 23,456 1.0 23,456 26.0 23,307 118,943 2.7306 23,307 0 0.820 7.50 202,488 4.6485 22,401 1.0 22,401 105;278 2.4169 6,89: 178,525, 4.0984 1 25.39 ws Peak inflow 25.0 21,495 96,542 2.2163 21,495 0 0.743 6.50 163,205 3.7467 20,534 1.0 20,534 24.0 1 19,572 76,009 1.7449 19,572 0 0.658 5.50 127,547 2.9281 23.0 18,652 1.0 18,652 0 17,732 57,357 1.3167 17,732 0.578 4.50 95,553 2.1936 16,851 1 1.0 16,851 53,565 1.2297. 4:28 ` 89,146 2.0465 22.78 ws 1/2 ws100 22.0 15,969 1 40,506 0.9299 15,969 0 0.498 3.50 67,081 1.5400 15,128 1 1.0 15,128 21.0 14,286 1 25,379 0.5826 14,286 0 0.423 2.50 42,000 0.9642 13,482 1.0 13,482 20.0 12,678 11,897 0.2731 12,678 0 0.357 1.50 20,097 0.4614 10,765 1.0 10,765 19.0 8,852 1,132 0.0260 8,852 0 0.298 0.50 2,263 0.0520 4,526 0.25 1,132 18.75 2,283 1 285 0.0066 2,283 0 0.112 0.25 588 0.0135 1,142 1 0.25 1 285 18.5 200 1 1 1 0 0.0000 200 0 0.009 0.00 0 1 0.0000 1 18.50 Top of Grate . ' • 0 0 14- Feb -07 Summary 6 -- Comparative Storm Storage Tract 32751 Retenton.,Basi:n 1 & 2_. ,C:onnected -Storm Stora a Data �,:, .: :. Comparative „Design Storm Data - Perc 2 "11hrWest Basin (1), 0'7hr East-Basim 2) Storm .. Max 100 yr:lnflow ax ws100 Storage , _� ,Y,'� ; Time to Empty Duratn Time Q Storg Depth WS /HGL Time Pk Perc Storage Depth WS100 Total PostStrm (hr) (hr) (cfs) (AcFt) (ft) Elev (hr) (cfs) (AcFt) (cf) (ft) Elev (hr) (hr) Max120 hr 3 r 2.67 72.02 4.098 6 89, ± 25:39: ; 3 67 ,, _0,'83 .;;,. 5.725 249,381 8 56 . ?r'27. 05.;;;< 124.25 121.25 6 5.50 48.46 3.801 6.56 25.06 6.50 0.82 5.182 225,728 8.06 26.56 120.5 114.50 24 13.5 12.13 2.732 5.23 23.73 22.5 0.80 4. 19 192,492 7.24 25.74 126.5 102.50 � �; ... eneral G S.tora .e,Desi °n C riteria, elev(ft) 'AcFt cf Ac in /hr Tributary Area 37.40 Basin (1) West Storage and Perc rate 27.05 2.347 102,248 3.90 Basin (2) East Storage and Perc rate 27.05 3.296 143,586 0.80 Max Design Perc Rate- per COLA } 2:00,,� ,�.;Basi'n 1 Only Storage; at Designated Overflow Elevation'': =R .- 28:79"t' , *,;7:317 318,707 127 8 %;r"of'�WS100 storage rWS 100 required Storage, -100 yr / 3 he Storm Controls' x_;27 05:',r; 5:725 249,381 100 %, Extra Storage - between,WS 100 & designated 'overflow 1.74 1.592 69,326 Retention, Basin Depth Controls = ;;See.COLQ EB -97 =03 section 6; Tract 32751 is a Gated Community with private security Retention Basin Total Lot size 45,520 (sf) Max allowable depth 11.00 (ft) Actual maximum water depth 8.55 (ft) Maximum allowable length /width ratio 6 to 1 Actual length /width ratio (Basin 1, West) 2.5 to 1 • 0-- MDS 62602 14- Feb -07 ` 7 5_ S�treye �apa�cirt : t Tract 32751 Mayor Street-7- - None in this. Pro�rejct O�ns�te Street - Wec�n e Curb Full St Flows St Slope 0.5% Water Level to Depth Width Q Cap Veloc (ft) (ft) : (cfs) (fps) S UP <R.egrd Q10'0 X42 ;jY+' 36 39.0 Top Curb 0.50 14.58 1.83 St Crown 0.48 38.0 12.52 1.73 Bk 10 ft PUE 0.70 59.0 41.82 2.35 6 in Wedge Curb, 36 ft cf /cf, 39 ft RW /RW, 59 ft PUE /PUE, Min St slope = 0.5 %, n = 0.020 (per City) • MDS 62602 14- Feb -07 SUMMa:rY .8 Catch Basin capacity, . < Tract 32751 _Low Pornt (Sa9). Catch Basin_C,apacit, . - -- CB Capacity - Weir inlet with water surface at Top of Curb L =4ft cfs /LF cfs Max Required Capacity 1.5 6.01 .;(Sde; ,.Ratio al hydtd- C61' &2) FHWA HEC22, pg 4 -62, Eq 4 -28 1 2.3 1 9.1 d =0.5ft, W =4ft, L =4ft, BPR nomograph 1073.03 (See Tab 11) 2.3 9.2 H =10in, h= 8.8in, a =4in, FHWA Weir formula, EQ 4 -28, Q= 2.3(L- 1.8W)d ^1.5 Residential Street = 36 ft cf /cf, 6 in Vert curb, 4 in depressions Curb Inlet opening Height = 8.8 inches in 10 in cf @ inlet [7 0 v 0 0 z 0 co 1/4 " 114" R. / 8 3j8y CUT REINFORCING STEEL TO CLEAR FACE PLATE 518" ' r 660 :: .. 21/2" 4112'• \ jr 240 m H y'r % [-' 1 114" I LulQ � 0 1 1/8" HOLE IN PLATE ADJUSTING NUTS TO BE TIGHTENED AND �I . p SECURED IN PLACE WHEN STEEL PLATE Gam_ ER FLO Q� / I 3 ANGLE IS IN PROPER POSITION. �. R =1" MIN. r J 2 +I 4 12" 0 STIRRUP, WELD AS SHOWN r = NOTES: 3" R. r O FACE PLATE 5115' X 10" ROLLED PLATE - - ► �.' (ASTM A36) FORMED AS SHOWN (ALHAMBRA FOUNDRY NO. A -3911 OR EQUIVALENT) & EXTEND LENGTH OF BOX FACEPLATE ANCHORAGE 12" 0 STEEL ANCHOR 42 "0 .C. (MAX.) PLACE AS SHOWN. PROTECTION BAR PLAIN ROUND STEEL BAR 1" DIA SHALL BE INSTALLED WHEN ' NORMAL CURB HEIGHT IS GREATER THAN -.r r •; ,; 6". BAR SHALL BE EMBEDDED 5" AT EACH END. 44 SUPPORT BAR 1" DIA. X 22" LONG WITH T SQUARE HEAD AND HEX NUT, BEND AS. SHOWN. SPACING SHALL NOT EXCEED 4 FEET. O5 ALL EXPOSED METAL PARTS SHALL BE GALVANIZED. U cc REVISIONS: •� APPROVED 08/21/01 CHRIS A. VOGT CITY ENGINEER RCE 44250 STANDARD n �I -y 4 310 CURB SUPPORT DETAIL SHEET 1 OF 1 • 0 0 ---r-'7-Feb-07 Summary 8A - Catch" Basin: List Tract 32751 SD Line CB # Type Length Depth Tc Q10 Q100 ` Qcap TC MaxRBws100 SD HGL100 CB ws100 FreeBoard Outlet Pipe (ft) (ft) (min) (cfs) (cfs) (cfs) (elev) (elev) (elev) (elev) TC /RBws100 I TC /CBws100 OutletDia Inv Vel W H ( ") (RetBasin) (1.5 ft Min) (in) (elev) (f s) 1 1 Sag 4.0 1 9.18 12.03 3.7 6.01 9.1 28.64 27.05 26.26 26.62 1.59 2.02 18 19.46 3.40 1 2 Sag 4.0 4.50 12.031 3.7 6.01 9.1 28.64 27.05 26.26 26.62 1.59 2.02 18 24.141 3.40 1 3 Sag 4.0 4.00 12.041 2.3 184 9.1 28.64 27.05 25.84 25.98 1.59 2.66 18 18.441 2.17 1 4 Sag 4.0 1.70 12.04 2.3 3.84 9.1 28.64 27.05 25.84 25.98 1.59 2.66 18 24.14 2.17 1 5 Sag 4.0 8.11 9.95 2.2 3.62 9.1 28.53 27.05 25.70 25.70 1.48 2.83 24 18.29 1.15 1 6 Sag 4.0 6.70 9.95 2.2 , 3.62. 9.1 28.53 27.05 25.86 25.86 1.48 2.67 24 18.39 1.15 Conectr 1 5&6 1 13.5 hr 890 97o 28.531 27.05 25.39 na na 24 18.50 2.77 Ovrflo 7 Outlet 4.0 4.0 21.5 hr • '.4;35 4.4 29.34 28.79 28.79 28.79 na 18 25.34 2.46 cap ca ce using ;.P9 , °. 4 4 - cap = ; ". _ In',. =. ins ee', .ummary Curb Inlets 8. their Lateralsare.Designed for Q100 based'orkhe Tc & Intensity at.the Inlet; not for• the lar 'er Tc 8i I for the.intersected. main drain Basin Connector Qmax occurs at peak inflow of the design storm. Overflow Tc occurs at the end of the design storm inflow. Connector Qmax is half of 'the average Basin design inflow Overflow Q100 is assumed 1 /4of the-peak inflow (arbitrarily chosen) Connector size based on ;Amax' @.HGL`slope = 0:0015 ft/ft.:. Overflow; capacity' baseihon pipe_size @ HGLslope= 0,0016 ft/ft 0 0) Tab 4 Appendix A Retention Basin -Unit Hvdrograph and Flood Routin' Basin 1 & 2 3 hr 1100 yr design storm 6 hr / 100 yr design storm 24 hr / 100 yr design storm Craftsmen Homes Tentative Tract 32751 0 C Appends A -1 Retention Basin Hydrology Unit Hydrogra-phs Basin I & 2 3 hr / 100 yr design storm .6 hr / 100 yr design storm 24 hr/ 100 yr design storm Craftsmen Homes Tentative Tract 32751 Tab 4 U n. i t H y .d r o g: r. a P Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 02/15/07 File: 62602B123hruh3100.out +++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 4082 English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format --------------------------------------------------------------------- Tract 32751 Md662602: 3. hr; / „100 yr Citrus,,`Pro.ject - O:ffsi'te `/ Orisite, - Unit Hydroaraph Hydrol, Soil`- Gp - A` B, and C on- site _ �a .. 1 File 62602B123hruhHSGABConsite --------------------- - - ------------------------------------ Drainage Area = .40(Ac.� = 0.058 Sq. Mi. Drainage Area for Dept —Area Areal Adjustment = 37.40(Ac.) = 0.058 Sq. Mi. Length along longest watercourse = 3800.00(Ft.) Length along longest watercourse measured to centroid = 1750.00(Ft.) Length along longest watercourse = 0.720 Mi. Length along longest watercourse measured to centroid = 0.331 Mi. Difference in elevation = 7- 80(Ft.) Slope along watercourse = 10.8379 Ft. /Mi. Average Manning's 'N' = 0.015 Lag time = 0.133 Hr. Lag time = 7.97 Min. 250 of lag time = 1.99 Min. 400 of lag time = 3.19 Min. Unit, 'ti.me',. 5':00 Min Duration; -of storm 3 Hours) STQRM•EVENT (YEAR) 1,00 -00- 100 YEAR Area rainfall data: Area(Ac.) [1] Rainfall(In) [2] Weighting[1 *2] 37.40 2.70 100.98 Area Averaged 2 -Year Rainfall = 0.700(In) Area Averaged 100 -Year Rainfall = 2.700(In) Point rain (area averaged) = 2.700(In) Areal adjustment factor = 99.98 % Adjusted average point rain = 2.700(In) SuYi Area : Datd:Z Area(Ac.) Runoff Index Impervious o 3.122• 32.00 0.700 &Zo3 1 —9.560-4 32 . 00 0 . 500 A-() E}2I 4.266 56.00 -,:0.800 3.674 56.00 0.700 2.865 56.00 x;0.500 4.117 58.00 x,0.300 1.375 74.00 v 0. 300 • 7 . 197• 69.00, 0.500 • 0 .682 72.00 '�- 0.050 �- 0.542 58.00 ---!0.050-- Total Area Entered = 37.40(Ac.) RI RI . Infil. Rate Impervious Adj. Infil. Rate °Area%.' F AMC2 AMC -2 (In /Hr) (Dec o) (In /Hr) (Dec.). (In /Hr) • 32.0 32.0 0.742 0.700 0.275 0.083 0.023 32.0 32.0 0.742 0.500 0.408 0.256 0.104 56.0 56.0 0.511 0.800 0.143 0.114 0.016 56.0 56.0 0.511 0.700 0.189 0.098 0.019 56.0 56.0 0.511. 0.500 0.281 0.077 0.022 58.0 58.0 0.490 0.300 0.358 0.110 0.039 74.0 74.0 0.315 0.300 0.230 0.037 0.008 69.0 69.0 0.373 0.500 0.205 0.192 0.039 72.0 72.0 0.338 0.050 0.323 0.018 0.006 58.0 58.0 0.490 0.050 0.468 0.014 0.007 Sum (F) = 0.284 Area averaged mean soil loss (F) (In /Hr) = 0.284 Minimum soil loss rate ((In /Hr)) = 0.142 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.450 -------------------------------------------------_-------------------- U n i, t.::H�Y d r o g.r a~p h VALLEY S -Curve -------------------------------------------------------------------- Unit Hydrograph Data --------------------------------------------------------------------- Unit time period Time a of lag Distribution Unit Hydrograph (hrs) Graph o (CFS) • --------------------------------------------------------------------- 1 0.083 62.760 8.853 3.337 2 0.167 125.521 35.849 13.512 3 0.250 188.281 25.650 9.668 4 0.333 251.041 9.869 3.720 5 0.417 313.802 5.922 2.232 6 0.500 376.562 3.978 1.499 7 0.583 439.322 2.781 1.048 8 0.667 502.083 2.017 0.760 9 0.750 564.843 1.610 0.607 10 0.833 627.603 1.179 0.444 11 0.917 690.364 0.866 0.326 12 1.000 753.124 0.644 0.243 13 1.083 815.885 0.783 0.295 Sum = 100.000 Sum= 37:692 ----------------------------------------------------------------------- Unit Time Pattern Storm' Rain 'Loss rate (In-.• /Hr) ' Effective (Hr.) Percent (In /Hr) .. Max Low (In /Hr)l 1 0.08 1.30 0.421 0.284 - -- 0.14 2 0.17 1.30 0.421 0.284 - -- 0.14 3 0.25 1.10 0.356 0.284 - -- 0.07 4 0.33 1.50 0.486 0.284 - -- 0.20 5 0.42 1.50 0.486 0.284 - -- 0.20 6 0.50 1.80 0.583 0.284 - -- 0.30 7 0.58 1.50 0.486 0.284 - -- 0.20 • 8 0.67 1.80 0.583 0.284 - -- 0.30 9 0.75 1.80 0.583 0.284 0.30 10 0.83 1.50 0.486 0.284 - -- 0.20 11 0.92 1.60 0.518 0.284 - -- 0.23 Unit .Timer Pattern Storm Rain, Loss., 'rate,(In - %Hr) Bffecti`e 12 Hr.) 1.00 z Percent - 1.80 (In /Hr) 0.583 Max , Low 0.284 (In /Hr) 0.30 13 1.08 2.20 0.713 0.284 - -- 0.43 14 1.17 2.20 0.713 0.284 - -- 0.43 15 1.25 2.20 0.713 0.284 - -- 0.43 16 1.33 2.00 0.648 0.284 - -- 0.36 17 1.42 2.60 0.842 0.284 - -- 0.56 18 1.50 2.70 0.875 0.284 - -- 0.59 19 1.58 2.40 0.777 0.284 - -- 0.49 20 1.67 2.70 0.875 0.284 - -- 0.59 21 1.75 3.30 1.069 0.284 - -- 0.79 22 1.83 3.10 1.004 0.284 - -- 0.72 23 1.92 2.90 0.939 0.284 - -- 0.66 24 2.00 3.00 0.972 0.284 - -- 0.69 25 2.08 3.10 1.004 0.284 - -- 0.72 26 2.17 4.20 1.361 0.284 - -- 1.08 27 2.25 5.00 1.620 0.284 - -- 1.34 28 2.33 3.50 1.134 0.284 - -- 0.85 29 2.42 6.80 2.203 0.284 - -- 1.92 30 2.50 7.30 2.365 0.284 - -- 2.08 31 2.58 8.20 2.656 0.284 - -- 2.37 32 2.67 5.90 1.911 0.284 - -- 1.63 33 2.75 2.00 0.648 0.284 --- 0.36 34 2.83 1.80 0.583 0.284 - -- 0.30 35 2.92 1.80 0.583 0.284 - -- 0.30 36 3.00 0.60 0.194 0.284 0.087 0.11 • Sum = 100.0 Sum = 22.4 Flood volume = Effective rainfall 1.87(In) times area 37.4(Ac.) /[(In) /(Ft.)] 5.8(Ac.Ft) Total soil loss = 0.83(In) S'Z13 Total soil loss = 2.601(Ac.Ft) Total rainfall = 2.70(In) Flood volume = 253198.9 Cubic Feet Total soil loss = 113298.6 Cubic Feet Peak flow rate of this hydrograph = 71.676(CFS) +++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 3. -.. H O U R S T-::0 R..M -------------------------------------------------------------------- R u n o f. f H: y d.:r 0:, pa p_,'h Hydrograph in 5 Minute intervals ((CFS)) ------------------------------------------------------------------- Time (h +m)_ Voltune Ac Ft, Q (`CF$} 0 2U 0 ' J 40.6 60 0 80 q; ----------------------------------------------------------------------- 0+ 5 0.0032 0.46 Q 0 +10 0.0191 2.32 VQ 0 +15 0.0428 3.43 VQ 0 +20 0.0669 3.50 VQ 0 +25 0.1008 4.93 V Q 0 +30 0.1454 6.48 IV Q • 0 +35 0 +40 0.2002 0.2566 7.95 IV Q 8.19 IV Q 0 +45 0.3195 9.14 V Q 0 +50 0.3867 9.76 I V Q Tme.(h +m)•`' Volume Pic Ft : Q (CFS) 0 ` _„ 20 _0_ _ .:.�. n40 =:�0 . _�r��s_�6�����- ���z..� .,8'•0,0 • 0 +55 0.4484 8.95 VQ • 1+ 0 0.5098 8.92 I VQ 1+ 5 0.5812 10.37 I V Q 1 +10 0.6691 12.77 I V Q 1 +15 0.7674 14.26 I V Q 1 +20 0.8686 14.70 I V .Q 1 +25 0.9709 14.86 I VQ 1 +30 1.0896 17.23 I VQ 1 +35 1.2214 19.14 I VQI I I I 1 +40 1.3536 19.19 I QI I I I 1 +45 1.4966 20.77 I Q I I 1 +50 1.6627 24.11 I IVQ I I 1 +55 1.8370 25.31 I I Q I I 2+ 0 2.0086 24.91 I I QV I I 2+ 5 2.1822 25.22 I I Q V I I 2 +10 2.3694 27.18 I I Q V I I 2 +15 2.5989 33.33 I I QV I I 2 +20 2.8668 38.89 I I QI I 2 +25 3.1417 39.92 I I QIV I 2 +30 3.5003 52.07 I I I V Q i 2 +35 3.9475 64.93 V I Q .. h ':f.e:...'.:'..' ;..- •.:.4: tt.:: -:: . i::.;, :- - _ :r3F'-_<a. iif,'. _P.. - Ytr'.�- r {"�e1':i 'ki3" ,:� .+i%''J:" •'�: - F. 2 +45 4.8755 63.06 I I I IQ V I 2 +50 5.1613 41.51 I I Q I V 2 +55 5.3514 27.60 I I Q I I V • 3+ 0 5.4983 21.34 I Q I I V I 3+ 5 5.6033 15.24 I Q I I I V I 3 +10 5.6715 9.91 I Q I I I VI 3 +15 5.7179 6.73 I Q I I I VI 3 +20 5.7504 4.72 I Q I I I VI 3 +25 5.7744 3.49 IQ I I I VI 3 +30 5.7910 2.41 IQ I I I VI 3 +35 5.8021 1.61 Q I I I VI 3 +40 5.8080 0.86 Q I I I VI 3 +45 5.8103 0.33 Q I I I VI 3 +50 5.8116 0.20 Q I I I VI 3 +55 5.8124 0.11 Q I I ( V1 • iT n> t H y d r o g r a p h A n :'a 1 y Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 02/16/07 File: 62602B126hruh6100.out Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 4082 English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format --------------------------------------------------------------------- Tract 32:752 ,KIDS., 62602: 6 hr/100 yr Citrus Project. - Offste %:Onste` Unit.-- Hydrograph Bottom 18.5 Hydrol'So l'Gp A,B:Offsate C Ons to File 62602B126hruhHSGABC Drainage Area = 37.40(Ac.) = 0.058 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 37.40(Ac Length along longest watercourse = 3800.00(Ft.) Length along longest watercourse measured to centroid = Length along longest watercourse = 0.720 Mi. Length along longest watercourse measured to centroid = Difference in elevation = 7.80(Ft.) Slope along watercourse = 10.8379 Ft. /Mi. = 0.058 Sq. Mi. 1750.00(Ft.) 0.331 Mi. Average Manning's 'N' = 0.015 Lag time = 0.133 Hr. •; Lag time = 7.97 Min. 250 of lag time = 1.99 Min. 400 of lag time = 3.19 Min. Unit time 10 ".0"O Min. Duration of storm 6 Hours) STORM - :EVENT, (YEAR) = 100..00 User Entered Base Flow = 0.00(CFS) 100 YEAR Area rainfall data: Area (Ac. ) [1] Rainfall (In) [2] Weighting [1 *2] 37.40 3.20 119.68 Area Averaged 2 -Year Rainfall = 1.000(In) Area Averaged 100 -Year Rainfall = 3.200(In) Point rain (area averaged) = 3.200(In) Areal adjustment factor = 99.99 % Adjusted average point rain = 3.200(In) ;Sub= Area Da_taz Areay(Ac.)Y Runoff Index Impervious 3.122 32.00 0.700 9.560 32.00 0.500 4.266 56.00 0.800 3.674 56.00 0.700 2.865 56.00 0.500 4.117 58.00 0.300 1.375 74.00 0.300 • 7.197 69.00 0.500 0.682 72.00 0.050 0.542 58.00 0.050 Total Area Entered = 37.40(Ac.) = 0.058 Sq. Mi. 1750.00(Ft.) 0.331 Mi. • c: • RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2 (In /Hr) (Dec.%) (In /Hr) (Dec.) (In /Hr) 32.0 32.0 0.742 0.700 0.275 0.083 0.023 32.0 32.0 0.742 0.500 0.408 0.256 0.104 56.0 56.0 0.511 0.800 0.143 0.114 0.016 56.0 56.0 0.511 0.700 0.189 0.098 0.019 56.0 56.0 0.511 0.500 0.281 0.077 0.022 58.0 58.0 0.490 0.300 0.358 0.110 0.039 74.0 74.0 0.315 0.300 0.230 0.037 0.008 69.0 69.0 0.373 0.500 0.205 0.192 0.039 72.0 72.0 0.338 0.050 0.323 0.018 0.006 58.0 58.0 0.490 0.050 0.468 0.014 0.007 Sum (F) = 0.284 Area averaged mean soil loss (F) (In /Hr) = 0.284 Minimum soil loss rate ((In /Hr)) = 0.142 (for 24 hour storm duration) Soil low loss.rate (decimal) = 0.450, (45% of actual rainfall when rainfall is less than the - - - minimum soil loss rate) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - U n i t H y - - - - - - - - - - - - - - - - - - d r o g r a p - - - - - - - - - - - - - - - - - - h VALLEY S -Curve -------------------------------------------------------------------- Unit'Hydrograph Data --------------------------------------------------------------------- Unit time period Time o of lag Distribution Unit Hydrograph (hrs) ---- -------------------- - - - - Graph o -- - ---------------------------- (CFS) 1 0.167 125.521 26.777 10.093 2 0.333 251.041 48.509 18.284 3 0.500 376.562 12.846 4.842 4 0.667 502.083 5.778 2.178 5 0.833 627.603 3.208 1.209 6 1.000 753.124 1.777 0.670 7 1.167 878.645 1.104 0.416 Sum = 100.000 Sum= 37.692 ----------------------------------------------------------------------- Unit Time Pattern Storm Rain Loss rate.(In. /Hr) Effective (Hr.) Percent (In /Hr) Max I Low (In /Hr) 1 0.17 1.10 0.211 0.284 0.095(LowLoss)0.12 (NOTE) 2 0.33 1.20 0.230 0.284 0.104 0.13 3 0.50 1.30 0.250 0.284 0.112 0.14 4 0.67 1.40 0.269 0.284 0.121 0.15 5 0.83 1.40 0.269 0.284 0.121 0.15 6 1.00 1.50 0.288 0.284 - -- 0.00 7 1.17 1.60 0.307 0.284 - -- 0.02 8 1.33 1.60 0.307 0.284 - -- 0.02 9 1.50 1.60 0.307 0.284 - -- 0.02 10 1.67 1.60 0.307 0.284 - -- 0.02 11 1.83 1.60 0.307 0.284 - -- 0.02 12 2.00 1.70 0.326 0.284 - -- 0.04 13 2.17 1.70 0.326 0.284 - -- 0.04 14 2.33 1.80 0.346 0.284 - -- 0.06 15 2.50 1.80 0.346 0.284 - -- 0.06 16 2.67 1.80 0.346 0.284 - -- 0.06 Unit Time Pattern Storm.Rain Loss rate(In. /Hr) Effective • (Hr. ) Percent (In /Hr) Max Low= .: (In /Hr)' 17 2.83 2.00 0.384 0.284 0.10 18 3.00 2.00 0.384 0.284 - -- 0.10 19 3.17 2.10 0.403 0.284 - -- 0.12 20 3.33 2.20 0.422 0.284 - -- 0.14 21 3.50 2.50 0.480 0.284 - -- 0.20 22 3.67 2.80 0.538 0.284 - -- 0.25 23 3.83 3.00 0.576 0.284 - -- 0.29 24 4.00 3.20 0.614 0.284 - -- 0.33 25 4.17 3.50 0.672 0.284 - -- 0.39 26 4.33 3.90 0.749 0.284 - -- 0.47 27 4.50 4.20 0.806 0.284 - -- 0.52 28 4.67 4.50 0.864 0.284 - -- 0.58 29 4.83 4.80 0.921 0.284 - -- 0.64 30 5.00 5.10 0.979 0.284 - -- 0.70 31 5.17 6.70 1.286 0.284 - -- 1.00 32 5.33 8.10 1.555 0.284 - -- 1.27 33 5.50 10.30 1.977 0.284 - -- 1.69 34 5.67 2.80 0.538 0.284 - -- 0.25 35 5.83 1.10 0.211 0.284 0.095 0.12 36 6.00 0.50 0.096 0.284 0.043 0.05 Sum = 100.0 Sum = 10.3 Flood volume = Effective rainfall 1.71(In) times area 37.4(Ac.) /[(In) /(Ft.)) = 5.3(Ac.Ft) Total soil loss = 1.49(In) S,``� • Total soil loss = 4.632(Ac.Ft) Total rainfall = 3.20(In) Flood volume = 232632.7 Cubic Feet Total soil loss = 201749.9 Cubic Feet Peak flow rate of this hydrograph = 48.112(CFS) +++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 6- H ;O U R S. T O R M R u n o f f H.y d r o g r a p h Hydrograph in 10 Minute intervals ((CFS)) Time(h ----------------------------------------------------------------------- --------------------------------------------------------------_-_----- +m) Volume Ac.Ft Q(CFS)0 12.5 25.0 37.5 5.0. 0' 0+10 0.0162 1.17 Q 0 +20 0.0630 3.40 V Q 0 +30 0.1218 4.27 V Q 0 +40 0.1889 4.87 IV Q 0 +50 0.2616 5.28 IV Q 1+ 0 0.3166 3.99 I VQ 1 +10 0.3394 1.65 IQV 1 +20 0.3578 1.33 IQV 1 +30 0.3733 1.13 Q V 1 +40 0.3871 1.00 Q V 1 +50 0.3998 0.93 Q V • 2+ 0 2 +10 0.4146 0.4344 1.07 Q V 1.43 IQ V 2 +20 0.4580 1.72 IQ V I 2 +30 0.4871 2.11 IQ V I 2 +40 0.5178 2.23 IQ V I 2 +50 0.5546 2.67 Q V 3+ 0 0.6015 3.40 I Q V 3 +10 0.6538 3.80 QV 3 +20 0.7149 4.43 I Q V 3 +30 0.7907 5.51 QV 3 +40 0.8913 7.30 QV 3 +50 1.0167 9.10 Q 4+ 0 1.1632 10.63 Q 4 +10 1.3329 12.32 QI 4 +20 1.5331 14.53 I Q 4 +30 1.7672 16.99 I I Q 4 +40 2.0319 19.22 I I Q 4 +50 2.3269 21.41 I I Q 5+ 0 2.6520 23.60 I I QVI 5 +10 3.0419 28.31 I I I Q 5 +20 3.5541 37.18 1 I 1 V Oi 5 +40 4.8146 43.40 1 1 1 I Q V 5 +50 5.0727 18.74 I I Q I I V 6+ 0 5.2115 10.08 I Q I I I VI 6 +10 5.2859 5.40 I Q I I I VI 6 +20 5.3201 2.48 IQ I I I VI 6 +30 5.3356 1.13 Q I I I VI 6 +40 5.3391 0.25 Q I I I VI 6 +50 5.3402 0.08 Q V L U n i t: H `y d r `o g 'r a p h,: A n ;a 1' °y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 02/21/07 File: 62602B1224hruh24100.out +++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 4082 English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format --------------------------------------------------------------------- Trad 32751. Mds 626.02 - 24 hr / V10 "O yr Citrus ,Off e ­ / ' Ons_ite, Unit HydrograpY Bottomr- "18 .`�5' HSG °A, B, j & C - onsite. Fill, File 62602B1224hruhHSGABC ~ -------------------------------------------------------------- - - - - -- = 0.058 Sq. Mi. 1750.00(Ft.) 0.331 Mi. Drainage Area = 37.40(Ac.) = 0.058 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 37.40(Ac Length along longest watercourse = 3800.00(Ft.) Length along longest watercourse measured to centroid = Length along longest watercourse = 0.720 Mi. Length along longest watercourse measured to centroid = Difference in elevation = 7.80(Ft.) Slope along watercourse = 10.8379 Ft. /Mi. Average Manning's 'N' = 0.015 Lag time = 0.133 Hr. Lag time = 7.97 Min. 25% of lag time = 1.99 Min., 400 of lag time = 3.19 Min. Unit: time.: =:` - X15:00 Mimi Duration'of storm = 24 Hour(sJti 100 YEAR Area rainfall data: Area(Ac.) [1] Rainfall(In) [2] Weighting[1 *2] 37.40 4.25 158.95 STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall = 1.600(In) Area Averaged 100 -Year Rainfall = 4.250(In) Point rain (area averaged) = 4.250(In) Areal adjustment factor = 99.99 % Adjusted average point rain = 4.250(In) 'Sub. -Area: ;Data : Area(Ac.) Runoff Index Impervious % 3.122 32.00 0.700 9.560 32.00 0.500 4.266 56.00 0.800 3.674 56.00 0.700 2.865 56.00 0.500 4.117 58.00 0.300 • 1.375 74.00 7.197 69.00 0.300 0.500 0.682 72.00 0.500 0.542 58.00 0.500 Total Area Entered = 37.40(Ac.) = 0.058 Sq. Mi. 1750.00(Ft.) 0.331 Mi. RI RI Infil. Rate Impervious Adj. Infil. AMC2 • AMC -2 (In /Hr) (Dec. o) (In /Hr) 32.0 32.0 0.742 0.700 0.275 32.0 32.0 0.742 0.500 0.408 56.0 56.0 0.511 .0.800 0.143 56.0. 56.0 0.511 0.700 0.189 56.0 56.0 0.511 0.500 0.281 58.0 58.0 0.490 ?0.300 0.358 74.0 74.0 0.315 0.300 0.230 69.0 69.0 0.373 0.500 0.205 72.0 72.0 0.338 6.500 0.186 58.0 58.0 0.490 0.500 0.270 • Rate Area; (Dec.) -0.083 0.256 0.114 0.098 0.077 0.110 0.037 0.192 0.018 0. 014 Sum (F) Area averaged mean soil loss (F) (In /Hr) = 0.278 Minimum soil loss rate ((In /Hr)) = 0.139 (for 24 hour storm duration) Soil low loss rate (decimal) = 0 500 F (In /Hr) 0.023 0.104 0.016 0.019 0.022 0.039 0.008 0.039 0.003 - 0.278 --------------------------- - - - - -- ------------------------------ U= y d r- o g, r.:a p; 1 VALLEY S -Curve -------------------------------------------------------------------- Una Hydrograph:: Data --------------------------------------------------------------- - - - - -- Unit time period Time o of lag Distribution Unit Hydrograph (hrs) Graph o (CFS) 1 0.250 188.281 41.302 15.568 2 0.500 376.562 44.193 16.657 3 0.750 564.843 9.288 3.501 4 1.000 753.124 3.716 1.401 5 1.250 941.405 1.500 0.566 Sum = 100.000 Sum= 37.692 ----------------------------------------------------------------------- Utnit,Time Pattern Storm Rain ;.Loss rate fl, n /Hr) Effective (Hr.) Percent (In /Hr) , Max Low (In/Hr)- 1 0.25 0.20 0.034 0.491 0.017 0.02 2 0.50 0.30 0.051 0.486 0.025 0.03 3 0.75 0.30 0.051 0.480 0.025 0.03 4 1.00 0.40 0.068 0.474 0.034 0.03 5 1.25 0.30 0.051 0.469 0.025 0.03 6 1.50 0.30 0.051 0.463 0.025 0.03 7 1.75 0.30 0.051 0.458 0.025 0.03 8 2.00 0.40 0.068 0.452 0.034 0.03 9 2.25 0.40 0.068 0.447 0.034 0.03 10 2.50 0.40 0.068 0.441 0.034 0.03 11 2.75 0.50 0.085 0.436 0.042 0.04 12 3.00 0.50 0.085 0.430 0.042 0.04 13 3.25 0.50 0.085 0.425 0.042 0.04 14 3.50 0.50 0.085 0.420 0.042 0.04 15 3.75 0.50 0.085 0.415 0.042 0.04 16 4.00 0.60 0.102 0.409 0.051 0.05 17 4.25 0.60 0.102 0.404 0.051 0.05 18 4.50 0.70 0.119 0.399 0.059 0.06 19 4.75 0.70 0.119 0.394 0.059 0.06 • Unit ;Time Pattern z (Hr w) Percent Storm Rain, (,In /_Hr_) `Loss{ rate -(In /.Hr)Effecty Max Low, y0.389 20 � 5.00 0.80 0.136 0.068 0.07 21 5.25 0.60 0.102 0.384 0.051 0.05 22 5.50 0.70 0.119 0.379 0.059 0.06 23 5.75 0.80 0.136 0.374 0.068 0.07 24 6.00 0.80 0.136 0.369 0.068 0.07 25 6.25 0.90 0.153 0.364 0.076 0.08 26 6.50 0.90 0.153 0.359 0.076 0.08 27 6.75 1.00 0.170 0.354 0.085 0.08 28 7.00 1.00 0.170 0.350 0.085 0.08 29 7.25 1.00 0.170 0.345 0.085 0.08 30 7.50 1.10 0.187 0.340 0.093 0.09 31 7.75 1.20 0.204 0.335 0.102 0.10 32 8.00 1.30 0.221 0.331 0.110 0.11 33 8.25 1.50 0.255 0.326 0.127 0.13 34 8.50 1.50 0.255 0.322 0.127 0.13 35 8.75 1.60 0.272 0.317 0.136 0.14 36 9.00 1.70 0.289 0.313 0.144 0.14 37 9.25 1.90 0.323 0.308 - -- 0.01 38 9.50 2.00 0.340 0.304 - -- 0.04 39 9.75 2.10 0.357 0.300 - -- 0.06 40 10.00 2.20 0.374 0.295 - -- 0.08 41 10.25 1.50 0.255 0.291 0.127 0.13 42 10.50 1.50 0.255 0.287 0.127 0.13 43 10.75 2.00 0.340 0.283 - -- 0.06 44 11.00 2.00 0.340 0.278 - -- 0.06 45 11.25 1.90 0.323 0.274 - -- 0.05 46 11.50 1.90 0.323 0.270 - -- 0.05 47 11.75 1.70 0.289 0.266 - -- 0.02 48 12.00 1.80 0.306 0.262 - -- 0.04 49 12.25 2.50 0.425 0.258 - -- 0.17 50 12.50 2.60 0.442 0.255 - -- 0.19 51 12.75 2.80 0.476 0.251 - -- 0.23 52 13.00 2.90 0.493 0.247 - -- 0.25 53 13.25 3.40 0.578 0.243 - -- 0.33 54 13.50 3.40 0.578 0.240 - -- 0.34 55 13.75 2.30 0.391 0.236 - -- 0.16 56 14.00 2.30 0.391 0.232 - -- 0.16 57 14.25 2.70 0.459 0.229 - -- 0.23 58 14.50 2.60 0.442 0.225 - -- 0.22 59 14.75 2.60 0.442 0.222 - -- 0.22 60 15.00 2.50 0.425 0.218 - -- 0.21 61 15.25 2.40 0.408 0.215 - -- 0.19 62 15.50 2.30 0.391 0.212 - -- 0.18 63 15.75 1.90 0.323 0.209 - -- 0.11 64 16.00 1.90 0.323 0.205 - -- 0.12 65 16.25 0.40 0.068 0.202 0.034 0.03 66 16.50 0.40 0.068 0.199 0.034 0.03 67, 16.75 0.30 0.051 0.196 0.025 0.03 • 68 17.00 0.30 0.051 0.193 0.025 0.03 69 17.25 0.50 0.085 0.190 0.042 0.04 70 17.50 0.50 0.085 0.187 0.042 0.04 71 17.75 0.50 0.085 0.185 0.042 0.04 Unit Time Pattern Storm -kain In. /Hr) -'Effective (Hr-) Percent (In /Hr)' ,�. lMax � Lo_ w 72 18.00 0.40 0.068 0.182 0.034 0.03 73 18.25 0.40 0.068 0.179 0.034 0.03 74 18.50 0.40 0.068 0.177 0.034 0.03 75 18.75 0.30 0.051 0.174 0.025 0.03 76 19.00 0.20 0.034 0.172 0.017 0.02 77 19.25 0.30 0.051 0.169 0.025 0.03 78 19.50 0.40 0.068 0.167 0.034 0.03 79 19.75 0.30 0.051 0.165 0.025 0.03 80 20.00 0.20 0.034 0.162 0.017 0.02 81 20.25 0.30 0.051 0.160 0.025 0.03 82 20.50 0.30 0.051 0.158 0.025 0.03 83 20.75 0.30 0.051 0.156 0.025 0.03 84 21.00 0.20 0.034 0.154 0.017 0.02 85 21.25 0.30 0.051 0.152 0.025 0.03 86 21.50 0.20 0.034 0.151 0.017 0.02 87 21.75 0.30 0.051 0.149 0.025 0.03 88 22.00 0.20 0.034 0.147 0.017 0.02 89 22.25 0.30 0.051 0.146 0.025 0.03 90 22.50 0.20 0.034 0.145 0.017 0.02 91 22.75 0.20 0.034 0.143 0.017 0.02 92 23.00 0.20 0.034 0.142 0.017 0.02 93 23.25 0.20 0.034 0.141 0.017 0.02 94 23.50 0.20 0.034 0.140 0.017 0.02 95 96 23.75 24.00 0.20 0.20 0.034 0.034 0.140 0.139 0.017 0.017 0.02 0.02 Sum = 100.0 Sum = 7.1 Flood volume = Effective rainfall 1.78(In) times area 37.4(Ac.) /[(In) /(Ft.)] _ 5.5(Ac.Ft) Total soil loss = 2.47(In) S Sq Total soil loss = 7.704(Ac.Ft) Total rainfall = 4.25(In) Flood volume = 241372.3 Cubic Feet Total soil loss = -335574.0 Cubic Feet Peak flow rate of this hydrograph = 12.133(CFS) +++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 24 - H. O U 'R S T, 0 'R M R .0 n o f f :. H "y -d,.r o`;:g. r a, p, h -------------------------------------------------------------------- Hydrograph in 15 Minute intervals ((CFS)) Time ----------------------------------------------------------------------- -------------------------------------------------------------------- (h +m) Volume Ac . Ft Q.(CFS) "0. 5 .0. ;. 10.0 15.-0 20.0 0+15 0.0055 0.26 Q 0 +30 0.0195 0.68 VQ 0 +45 0.0377 0.88 VQ 1+ 0 0.0598 1.07 V Q 1 +15 0.0825 1.10 V Q 1 +30 1 +45 0.1030 0.1231 0.99 VQ 0.97 VQ 2+ 0 0.1458 1.10 VQ 2 +15 0.1713 1.24 IVQ 2 +30 0.1975 1.27 IVQ ^ 2+45 0.2266 1.41 I.VQ - 3+15 0.2915 1.59 VQ 3+30 0.3245 1.60 VQ 3+45 0.3576 1.60 VQ 4+15 0.4323 1.88 Q 4+30 0.4744 2.04 VQ 4+45 0.5197 2.19 VQ 5+15 0.6149 2.25 Q 5+30 0.6589 2.13 Q 5+45 0.7076 2.36 QV 6+15 0.8148 2.68 Q 6+30 0.8733 2.83 QV 6+45 0.9353 3.00 Q 7+15 1.0664 3.19 QV 7+45 1.2098 3.61 QV 8+15 1.3809 4.36 QVI 8+30 1.4779 4.69 QV =+1= 1.7562 3.36 ^� 12+30 2.5115 5.91 IQ V I 12+45 2.6621 7.29 1 Q VI 13+15 3.0538 10.46 13+45 3.5049 9.70 Q1 V I 14+45 4,1375 8,16 Q VI __+__ _.____ ...~ / u | , I5+30 4.6099 7.16 | O I \/ | 15+45 4.7309 5.86 | |O | | \/ \ • 16+ 0 4 8291 4.75 QI V 16 +15 4.8963 3.25 Q I I V 16 +30 4.9329 1.77 I Q I d 16 +45 4.9600 1.31 I Q I I V 17+ 0 4.9818 1.06 I Q I I I V 17 +15 5.0075 1.24 I Q I V 17 +30 5.0388 1.51 I Q I I I V 17 +45 5.0712 1.57 I Q I I I V 18+ 0 5.1014 1.46 I Q I V 18 +15 5.1288 1.33 I Q I I V 18 +30 5.1556 1.30 I Q I I V 18 +45 5.1795 1.15 I Q I V 19+ 0 5.1976 0.88 IQ I I I V 19 +15 5.2149 0.84 IQ I I I V 19 +30 5.2370 1.07 I Q I I I V 19 +45 5.2595 1.09 I Q ( ( I V 20+ 0 5.2772 0.85 IQ I I I V 20 +15 5.2943 0.83 IQ I I I V 20 +30 5.3137 0.94 IQ I I I V 20 +45 5.3333 0.95 IQ ( I I V 21+ 0 5.3503 0.82 IQ I I I V 21 +15 5.3673 0.82 IQ I I I V 21 +30 5.3838 0.80 IQ v 21 +45 5.4005 0.81 IQ I I I V • 22+ 0 22 +15 5.4169 5.4336 0.79 0.81 IQ I I Q I I I VI I VI 22 +30 5.4500 0.79 Q I I I VI 22 +45 5.4640 0.68 Q I I I VI 23+ 0 5.4775 0.65 Q I I I VI 23 +15 5.4908 0.65 Q i I I VI 23 +30 5.5041 0.64 Q I I I VI 23 +45 5.5173 0.64 Q I I I VI 24+ 0 5.5306 0.64 IQ I I I VI 24 +15 5.5383 0.38 Q I I I VI 24 +30 5.5403 0.09 Q ( I I VI 24 +45 5.5409 0.03. Q V1 • 10, • • Appendi*x A -2 Retention Basin Hydrology Flood Hydrographs. Basin 1. & 2 3 hr / 100 yr design storm 6 hr / 100 yr design storm 24 hr / 100 yr design storm Craftsmen Homes Tentative Tract 3275 Tab 5 FLOOD HYDROGRAPH F ROIITING {PROGRAM! x...... Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004 Study date: 02/15/07 --------------------------------------------------------------- - - - - -- File62602B123hrF1dHSGABC Program License Serial Number 4082 From study /file name: 62602B123hruh3100.rte Number of intervals = 48 Time interval = 5.0 (Min.) Maximum /Peak flow �rate 7= 71.676 (CFS) Total volume = �r 5.813 (Ac.Ft) +++ + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ++ +++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 3800.000 to Point /Station 0.000 ** * tRETARDING A_SINROUTING* User entry of depth - outflow- storage data Total number of inflow hydrograph intervals = 48 Hydrograph time unit = 5.000 (Min.) Initial depth in storage basin = 0.00(Ft.) Initial basin depth = 0.00 (Ft.) Initial basin storage = 0.00 (Ac.Ft) Initial basin outflow = 0.00 (CFS) Depth vs Storage and Depth vs,., Dis h499Je �daryta Basin Depth Storage Outflow (S- O *dt /2) (S +O *dt/2) (Ft.) (Ac.Ft) (CFS) (Ac.Ft) (Ac.Ft) -------------------------------------------------------------------- E 0.000 0.000 0.000 0.000 0.000 0.250 0.014 0.112 0.014 0.014 0.500 10.052 0.298 0.051 0.053 1.500 0.461 0.357 0.460 0.462 2.500 0.964 0.423 0.963 0.965 3.500 1.540 0.498 1.538 1.542 4.500 2.194 0.578 2.192 2.196 5.500 2.928 0.658 2.926 2.930 6.500 3.747 0.743 3.744 3.750 '7.500 4.649 0.820 4.646 4.652 8.500 5.596 0.828 5.593 5.599 9.500 6.559 0.836 6.556 6.562 10.500 6.975 0.843 6.972 6.978 • • -------------------------------------------------------------------- -------------t------------------------------------------------------- 71 '6.8 • H drograph Detention Basi.n^Routing� :: 4 102 O __ I Graph values: 'I'= unit inflow; 'O'= outflow at time shown 0.81 4.561 --------------------------------------------------------------------- Tme Inflow: Outflow :Storage 0.82 4.915 F 7.78 (Hours) (CFS)_. (CFS) '.,:. (Ac .Ft) 0 17.9.`:. ` 3`5.84 53, 76> 7,1 68 3.000 0.083 0.46 0.01 0.002 O I I I I 0.03 0.83 0.167 2.32 0.09 0.011 OI I I I ( 0.19 O I I I I I 0.250 3.43 0.19 0.030 OI I I I I 0.35 3.333 0.333 3.50 0.30 0.052 OI I ( I I 0.50 0.83 0.417 4.93 0.30 0.079 O I I I I I 0.57 OI I I I I 0.500 6.48 0.31 0.116 O I I I I I 0.66 • 0.583 7.95 0.31 0.163 O I I I I I 0.77 0.83 0.667 8.19 0.32 0.217 O I I I I I 0.90 O I I I I 0.750 9.14 0.33 0.274 O I I ( I I 1.04 4.000 0.833 9.76 0.34 0.337 O I I I I I 1.20 0.917 8.95 0.35 0.399 O I I I I I 1.35 1.000 8.92 0.36 0.458 O I I I I I 1.49 1.083 10.37 0.37 0.522 O I I I I I 1.62 1.167 12.77 0.38 0.599 O I I I I I 1.77 1.250 14.26 0.39 0.690 O I I I I I 1.95 1.333 14.70 0.40 0.787 O I I I I I 2.15 1.417 14.86 0.41 0.886 O I I I I I 2.34 1.500 17.23 0.43 0.993 O II I I I 2.55 1.583 19.14 0.44 1.116 O I I I I 2.76 • 1.667 19.19 0.46 1.245 O I I I I 2.99 1.750 20.77 0.48 1.379 O II I I I 3.22 1.833 24.11 0.50 1.530 O I I I I I 3.48 1.917 25.31 0.52 1.697 O I I I I I 3.74 2.000 24.91 0.54 1.866 O ( I I I I 4.00 2.083 25.22 0.56 2.035 O I I I I I 4.26 2.167 27.18 0.58 2.211 O I I I ( I 4.52 2.250 33.33 0.60 2.416 O I I I I I 4.80 2.333 38.89 0.63 2.660 O I II I I 5.14 2.417 39.92 0.66 2.927 O I II I I 5.50 2.500 52.07 0.69 3.239 O I I II I 5.88 2.583 64.93 0.73 3.637 O I 6.37 2:. 6 67 71 '6.8 • 0 77 :: 4 102 O __ I I; ` . `, , ? y 6:• $9 2.750 63.06 0.81 4.561 O I I I I I 7.40 2.833 41.51 0.82 4.915 O I I I I I 7.78 2.917 27.60 0.82 5.148 O I I I I I 8.03 3.000 21.34 0.83 5.311 O II I I I 8.20 3.083 15.24 0.83 5.431 O I I I ( I 8.33 3.167 9.91 0.83 5.512 O I I I I I 8.41 3.250 6.73 0.83 5.563 O I I I I I 8.47 3.333 4.72 0.83 5.597 O I I I I I 8.50 3.417 3.49 0.83 5.620 OI I I I I 8.52 3.500 2.41 0.83 5.634 OI I I I I 8.54 3.583 1.61 0.83 5.642 O 8.55 • 3.667 0.:86 0.:83 x 5.. 645 'O 3.750 0.33 0.83 5.644 O I I I I 8.55 3.833 0.20 0.83 5.640 O I I I I 8.55 3.917 0.11 0.83 5.635 O I I I I 8.54 4.000 0.03 0.83 5.630 0 8.54 4.083 0.00 0.83 5.624 O I I I I 8:53 • 4.167 4.250 0.00 0.00 0.83 0.83 5.619 5.613 0 I I 0 I I I I 8.52 I I 8.52 4.333 0.00 0.83 5.607 0 I I I I 8.51 4.417 0.00 0.83 5.601 0 I I I. I 8.51 4.500 0.00 0.83 5.596 O I I I I 8.50 4.583 0.00 0.83 5.590 0 I I I I 8.49 4.667 0.00 0.83 5.584 0 I I I I 8.49 4.750 0.00 0.83 5.579 0 I I I I 8.48 4.833 0.00 0.83 5.573 0 I I I I 8.48 4.917 0.00 0.83 5.567 O I I I I 8.47 5.000 0.00 0.83 5.562 O I I I ( 8.46 5.083 0.00 0.83 5.556 O ( I I I 8.46 5.167 0.00 0.83 5.550 0 I I I I 8.45 5.250 0.00 0.83 5.544 O ( I I I 8.45 5.333 0.00 0.83 5.539 0 I I I I 8.44 5.417 0.00 0.83 5.533 0 I ( I I 8.43 5.500 0.00 0.83 5.527 0 I I I I 8.43 5.583 0.00 0.83 5.522 0 I I I I 8.42 5.667 0.00 0.83 5.516 O ( I I I 8.42 5.750 0.00 0.83 5.510 0 I I I I 8.41 5.833 0.00 0.83 5.505 O I I I I 8.40 5.917 0.00 0.83 5.499 O I I I I 8.40 6.000 .0.00 0.83 5.493 0 I I I I 8.39 6.083 0.00 0.83 5.487 O I I I I 8.39 6.167 •0.00 0.83 5.482 0 I I I I 8.38 6.250 0.00 0.83 5.476 0 I I I I 8.37 • 6.333 0.00 0.83 5.470 0 I I I I 8.37 6.417 0.00 0.83 5.465 0 I I I I 8.36 6.500 0.00 0.83 5.459 O I I I I 8.36 6.583 0.00 0.83 5.453 O I I I I 8.35 6.667 0.00 0.83 5.448 0 I I I I 8.34 6.750 0.00 0.83 5.442 O I I I ( 8.34 6.833 0.00 0.83 5.436 0 I I I ( 8.33 6.917 0.00 0.83 5.430 0 I I I I 8.33 7.000 0.00 0.83 5.425 O I I I I. 8.32 7.083 0.00 0.83 5.419 O I I I I 8.31 7.167 0.00 0.83 5.413 0 I I I I: 8.31 7.250 0.00 0.83 5.408 0 I I I I 8.30 7.333 0.00 0.83 5.402 O I I I I 8.30 7.417 0.00 0.83 5.396 0 I I I I 8.29 7.500 0.00 0.83 5.391 0 I I I I 8.28 7.583 0.00 0.83 5.385 O I I I I 8.28 7.667 0.00 0.83 5.379 O I I I I 8.27 7.750 0.00 0.83 5.374 0 I I I I 8.27 7.833 0.00 0.83 5.368 0 I I I I 8.26 7.917 0.00 0.83 5.362 O ( I I I 8.25 8.000 0.00 0.83 5.357 O I I ( I 8.25 8.083 0.00 0.83 5.351 0 I I I I 8.24 8.167 0.00 0.83 5.345 0 I I I I 8.24 8.250 0.00 0.83 5.339 0 I I I I 8.23 • 8.333 0.00 0.83 5.334 O I I I I 8.22 8.417 0.00 0.83 5.328 0 I I I I 8.22 8.500 0.00 0.83 5.322 0 I I I I 8.21 8.583 0.00 0.83 5.317 0 I, I I I 8.21 8.667 0.00 0.83 5.311 0 I I I I 8.20 8.750 0.00 0.83 5.305 O 8.19 8.833 0.00 0.83 5.300 O I I I I 8.19 • 8.917 0.00 0.83 5.294 O I I I I 8.18 9.000 0.00 0.83 5.288 O I I I I 8.18 9.083 0.00 0.83 5.283 O I I I I 8.17 9.167 0.00 0.83 5.277 O I I I I 8.16 9.250 0.00 0.83 5.271 O I I I I 8.16 9.333 0.00 0.83 5.266 O ( I I I 8.15 9.417 0.00 0.83 5.260 O I I I I 8.15 9.500 0.00 0.83 5.254 O I I I I 8.14 9.583 0.00 0.83 5.248 O I I I I 8.13 9.667 0.00 0.83 5.243 O I I I I 8.13 9.750 0.00 0.82 5.237 O I I I I 8.12 9.833 0.00 0.82 5.231 O I I I I 8.12 9.917 0.00 0.82 5.226 O I I I I 8.11 10.000 0.00 0.82 5.220 O I I I I 8.10 10.083 0.00 0.82 5.214 O I I I I 8.10 10.167 0.00 0.82 5.209 O I I I I 8.09 10.250 0.00 0.82 5.203 O I I I I 8.09 10.333 0.00 0.82. 5.197 O I I I I 8.08 10.417 0.00 0.82 5.192 O I I I I 8.07 10.500 0.00 0.82 5.186 O I I I I 8.07 10.583 0.00" 0.82 5.180 O I I I I 8.06 10.667 0.00 0.82 5.175 O I I I I 8.06 10.750 0.00 0.82 5.169 O I I I I 8.05 10.833 0.00 0.82 5.163 O I I I I 8.04 10.917 0.00 0.82 5.158 O I I I I 8.04 J 11.000 0.00 0.82 5.152 O I I I I 8.03 11.083 0.00 0.82 5.146 O I I I I 8.03 11.167 0.00 0.82 5.141 O I I I I 8.02 11.250 0.00 0.82 5.135 O I I I I 8.01 11.333 0.00 0.82 5.129 O I I I I 8.01 11.417 0.00 0.82 5.124 O I I I I 8.00 11.500 0.00 0.82 5.118 O I I I I 8.00 11.583 0.00 0.82 5.112 O I I I I 7.99 11.667 0.00 0.82 5.107 O I I I I 7.98 11.750 0.00 0.82 5.101 O I I I I 7.98 11.833 0.00 0.82 5.095 O I I I I 7.97 11.917 0.00 0.82 5.090 O I I I I 7.97 12.000 0.00 0.82 5.084 O I I I I 7.96 12.083 0.00 0.82 5.078 O I ( I I 7.95 12.167 0.00 0.82 5.072 O I I I I 7,95 12.250 0.00 0.82 5.067 O I I I I 7.94 12.333 0.00 0.82 5.061 O I I I I 7.94 12.417 0.00 0.82 5.055 O I I I I 7.93 12.500 0.00 0.82 5.050 O I I I I 7.92 12.583 0.00 0.82 5.044 O I I I I 7.92 12.667 0.00 0.82 5.038 O I I I I 7.91 12.750 0.00 0.82 5.033 O I I I I 7.91 12.833 0.00 0.82 5.027 O I I I I 7.90 12.917 0.00 0.82 5.021 O I I I I 7.89 • 13.000 0.00 0.82 5.016 O I I I I 7.89 13.083 0.00 0.82 5.010 O I I I I 7.88 13.167 0.00 0.82 5.004 O I ( I I 7.88 13.250 0.00 0.82 4.999 O I I I I 7.87 13.333 0.00 0.82 4.993 0 I I I I 7.86 13.417 0.00 0.82 4.987 O I I I 7.86 13.500 0.00 0.82 4.982 O 7.85 13.583 0.00 0.82 4.976 O 7.85 13.667 0.00 0.82 4.970 O 7.84 13.750 0.00 0.82 4.965 O 7.83 13.833 .0.00 0.82 4.959 O I I 7.83 13.917 0.00 0.82 4.953 O I 7.82 14.000 0.00 0.82 4.948 O 7.82 14.083 0.00 0.82 4.942 O I 7.81 14.167 0.00 0.82 4.936 O 7.80 14.250 0.00 0.82 4.931 O I I ( 7.80 14.333 0.00 0.82 4.925 O 7,.79 14.417 0.00 0.82 4.919 O I I I 7.79 14.500 0'.00 0.82 4.914 O I I I 7.78 14.583 0.00 0.82 4.908 O I I 7.77 14.667 0.00 0.82 4.902 O 7.77 14.750 0.00 0.82 4.897 O I 7.76 14.833 0.00 0.82 4.891 O I I 7.76 14.917 0.00 0.82 4.885 O 7.75 15.000 0.00 0.82 4.880 O I 7.74 15.083 0.00 0.82 4.874 O I 7.74 15.167 0.00 0.82 4.869 O I I I 7.73 15.250 0.00 0.82 4.863 O I 7.73 15.333 0.00 0.82 4.857 O I I 7.72 15.417 0.00 0.82 4.852 O I I 7.71 15.500 0.00 0.82 4.846 O I I' 7.71 15.583 0.00 0.82 4.840 O I 7.70 15.667 0.00 0.82 4.835 O I 7.70 15.750 0.00 0.82 4.829 O I 7.69 15.833 0.00 0.82 4.823 O 7.68 15.917 0.00 0.82 4.818 O I I 7.68 16.000 0.00 0.82 4.812 O 7.67 16.083 0.00 0.82 4.806 O I 7.67 16.167 0.00 0.82 4.801 O I I 7.66 16.250 0.00 0.82 4.795 O I I 7.65 16.333 0.00 0.82 4.789 O I I I I 7.65 16.417 0.00 0.82 4.784 O I I I 7.64 16.500 0.00 0.82 4.778 O I I I 7.64 16.583 0.00 0.82 4.772 O ( I 7.63 16.667 0.00 0.82 4.767 O 7.62 16.750 0.00 0.82 4.761 O I I 7.62 16.833 0.00 0.82 4.755 O 7.61 16.917 0.00 0.82 4.750 O I 7.61 17.000 0.00 0.82 4.744 O I 7.60 17.083 0.00 0.82 4.738 O I I I 7.59 17.167 0.00 0.82 4.733 O I I 7.59 17.250 0.00 0.82 4.727 O I I 7.58 17.333 0.00 0.82 4.721 O ( I 7.58 17.417 0.00 0.82 4.716 O I I ( I 7.57 17.500 0.00 0.82 4.710 O I I 7.56 17.583 17.667 0.00 0.00 0.82 0.82 4.705 4.699 O ( I O I 7.56 I 7.55 17.750 0.00 0.82 4.693 O I I 7.55 17.833 0.00 0.82 4.688 O I 7.54 17.917 0.00 0.82 4.682 O I I I I 7.53 18.000 0.00 0.82 4.676 0 I I I 7.53 18.083 0.00 0.82 4.671 0 7.52 0.00 0.82 4.665 O 7.52 •18.167 18.250 0:00 0.82 4.659 0 I I I 7.51 18.333 0.00 0.82 4.654 O I 7.50 18.417 0.00 0.82 4.648 0 I I 7.50 18.500 0.00 0.82 4.642 0 I I 7.49 18.583 0.00 0.82 4.637 0 I 7.49 18.667 0.00 0.82 4.631 O 7.48 18.750 0.00 0.82 4.625 0 I I 7.47 18.833 0.00 0.82 4.620 0 ( I 7.47 18.917 0.00 0.82 4.614 0 I I 7.46 19.000 0.00 0.82 4.609 0 I 7.46 19.083 0.00 0.82 4.603 0 I I 7.45 19.167 0.00 0.82 4.597 O I I 7.44 19.250 0.00 0.82 4.592 0 I 7.44 19.333 0.00 0.81 4.586 0 I I I 7.43 19.417 0.00 0.81 4.580 0 I I 7.42 19.500 0.00 0.81 4.575 0 I I 7.42 19.583 0.00 0.81 4.569 0 I I I 7.41 19.667 0.00 0.81 4.564 0 7.41 19.750 0.00 0.81 4.558 0 I I 7.40 19.833 0.00 0.81 4.552 0 I �, 7.39 19.917 0.00 0.81 4.547 O I 7.39 20.000 0.00 0.81 4.541 0 I I 7.38 20.083 0.00 0.81 4.536 0 7.37 20.167 0.00 0.81 4.530 O I ( 7.37 •20.250 0.00 0.81 4.525 0 I I I 7.36 20.333 0.00 0.81 4.519 0 I I 7.36 20.417 0.00 0.81 4.513 O I ( 7.35 20.500 0.00 0.81 4.508 O I 7.34 20.583 0.00 0.81 4.502 0 I I 7.34 20.667 0.00 0.81 4.497 0 I 7.33 20.750 0.00 0.81 4.491 0 I 7.33 20.833 0.00 0.81 4.486 0 7.32 20.917 0.00 0.81 4.480 0 I I I 7.31 21.000 0.00 0.81 4.475 O I 7.31 21.083 0.00 0.80 4.469 O 7.30 21.167 0.00 0.80 4.463 0 I I I 7.29 21.250 0.00 0.80 4.458 0 I I I I 7.29 21.333 0.00 0.80 4.452 0 I 7,2.8 21.417 0.00 0.80 4.447 0 I I I 7.28 21.500 0.00 0.80 4.441 0 I 7.27 21.583 0.00 0.80 4.436 0 7.26 21.667 0.00 0.80 4.430 0 I 7.26 21.750 0.00 0.80 4.425 0 I I I I 7.25 21.833 0.00 0.80 4.419 0 7.25 21.917 0.00 0.80 4.414 O ( 7.24 22.000 0.00 0.80 4.408 O I 7,23 22.083 0.00 0.80 4.403 O I I 7.23 22.167 0.00 0.80 4.397 0 I I I 7.22 0.00 0.80 4.392 0 I I I 7.21 •22.250 22.333 0.00 0.80 4.386 0 I I 7,21 22.417 0.00 0.80 4.381 0 I I 7,20 22.500 0.00 0.80 4.375 O I I I I 7,20 22.583 0.00 0.80 4.370 O I I 7,19 22.667 0.00 0.80 4.364 0 I I I ( 7.18 22.750 0.00 0.80 4.359 O I 7.18 0.00 0.79 4.353 O I 7.17 •22.833 22.917 0.00 0.79 4.348 O 7.17 23.000 0.00 0.79 4.342 O I I I 7.16 23.083 0.00 0.79 4.337 O 7.15 23.167 0.00 0.79 4.331 O 7.15 23.250 0.00 0.79 4.326 O 7.14 23.333 0.00 0.79 4.321 O I 7.14 23.417 0.00 0.79 4.315 O I I 7.13 23.500 0.00 0.79 4.310 O 7.12 23.583 0.00 0.79 4.304 O ( I I 7.12 23.667 0.00 0.79 4.299 O I 7.11 23.750 0.00 0.79 4.293 O 7.11 23.833 0.00 0.79 4.288 O 7.10 23.917 0.00 0.79 4.282 O I 7.09 24.000 0.00 0.79 4.277 O 7.09 24.083 0.00 0.79 4.272 O I 7.08 24.167 0.00 0.79 4.26.6 O 7.08 24.250 0.00 0.79 4.261 O I 7.07 24.333 0.00 0.79 4.255 O I 7.06 24.417 0.00 0.79 4.250 O I I 7.06 24.500 0.00 0.79 4.245 O I I I 7.05 24.583 0.00 0.79 4.239 O 7.05 24.667 0.00 0.78 4.234 O I 7.04 24.750 0.00 0.78 4.228 O I 7.03 24.833 0.00 0.78 4.223 O I 7.03 24.917 0.00 0.78 4.218 O I ( 7.02 25.000 0.00 0.78 4.212 O I I 7.02 25.083 0.00 0.78 4.207 O I I 7.01 25.167 0.00. 0.78 4.201 O I I I I 7.00 25.250 0.00 0.78 4.196 O I 7.00 25.333 0.00 0.78 4.191 O I 6.99 25.417 0.00 0.78 4.185 O I 6.99 25.500 0.00 0.78 4.180 O 6.98 25.583 0.00 0.78 4.174 O I I I I 6.97 25.667 0.00 0.78 4.169 O I I 6.97 25.750 0.00 0.78 4.164 O I 6.96 25.833 0.00 0.78 4.158 O I �, 6.96 25.917 0.00 0.78 4.153 O I I 6.95 26.000 0.00 0.78 4.148 O I 6.94 26.083 0.00 0.78 4.142 O I 6.94 26.167 0.00 0.78 4.137 O 6.93 26.250 0.00 0.78 4.132 O I I I 6.93 26.333 0.00 0.78 4.126 O I ( 6.92 26.417 0.00 0.77 4.121 O I I 6.91 26.500 0.00 0.77 4.116 O I ( 6:91 26.583 0.00 0.77 4.110 O I 6.90 26.667 0.00 0.77 4.105 O I 6.90 26.750 0.00 0.77 4.100 O I I 6.89 26.833 0.00 0.77 4.094 O I I 6.89 0.00 0.77 4.089 O ( 6.88 •26.917 27.000 0.00 0.77 4.084 O I I; 6.87 27.083 0.00 0.77 4.078 O I I I I 6.87 27.167 0.00 0.77 4.073 O I I 6.86 27.250 0.00 0.77 4.068 O I I 6.86 27.333 0.00 0.77 4.062 0 6.85 27.417 0.00 0.77 4.057 O I 6.84 •27.500 27.583 0.00 0.00 0.77 0.77 4.052 4.047 O O 6.84 I 6.83 27.667 0.00 0..77 4.041 O I 6.83 27.750 0.00 0.77 4.036 O I 6,82 27.833 0.00 0.77 4.031 O I 6.81 27.917 0.00 0.77 4.025 O I I 6.81 28.000 0.00 0.77 4.020 O I 6.80 28.083 0.00 0.77 4.015 O I I I ( 6.80 28.167 0.00 0.77 4.010 O I I 6,79 28.250 0.00 0.76 4.004 O I 6.79 28.333 0.00 0.76 3.999 O 6.78 28.417 0.00 0.76 3.994 O I 6.77 28.500 0.00 0.76 3.988 O I I I 6,77 28.583 0.00 0.76 3.983 O I �. 6.76 28.667 0.00 0.76 3.978 O I 6.76 28.750 0.00 0.76 3.973 O I 6.75 28.833 0.00 0.76 3.967 O I 6.74 28.9.17 0.00 0.76 3.962 O I I I 6.74 29.000 0.00 0.76 3.957 O 6.73 29.083 0.00 0.76 3.952 O 6.73 29.167 0.00 0.76 3.947 O I 6.72 29.250 0.00 0.76 3.941 O I 6.72 29.333 0.00 0.76 3.936 O 6.71 29.417 0.00 0.76 3.931 O I I I I 6.70 29.500 0.00 0.76 3.926 O 6.70 0.00 0.76 3.920 O 6.69 •29.583 29.667 0.00 0.76 3.915 O I I 6.69 29.750 0.00 0.76 3.910 O I I I 6.68 29.833 0.00 0.76 3.905 O I 6 -67 29.917 0.00 0.76 3.900 O I I 6.67 30.000 0.00 0.76 3.894 O I 6.66 30.083 0.00 0.76 3.889 O ( I 6.66 30.167 0.00 0.75 3.884 O I I I 6.65 30.250 0.00 0.75 3.879 O I I I �, 6.65 30.333 0.00 0.75 3.874 O I I 6.64 30.417 0.00 0.75 ...3.868 O ( 6.63 30.500 0.00 0.75 3.863 O 6.63 30.583 0.00 0.75 3.858 O 6.62 30.667 0.00 0.75 3.853 O 6.62 30.750 0.00 0.75 3.848 O I 6.61 30.833 0.00 0.75 3.842 O I 6.61 30.917 0.00 0.75 3.837 O I I I 6.60 31.000 0.00 0.75 3.832 O I I 6.59 31.083 0.00 0.75 3.827 O I I 6.59 31.167 0.00 0.75 3.822 O I I 6.58 31.250 0.00 0.75 3.817 O I 6.58 31.333 0.00 0.75 3.811 O 6.57 31.417 0.00 0.75 3.806 O I 6.57 31.500 0.00 0.75 3.801 O I ( I 6.56 31.583 0.00 0.75 3.796 O 6.55 •31.667 0.00 0.75 3.791 O I I I I 6.55 31.750 0.00 0.75 3.786 O I I 6.54 31.833 0.00 0.75 3.781 O I I I 6.54 31.917 0.00 0.75 3.775 O I 6.53 32.000 0.00 0.74 3.770 0 6.53 32.083 0.00 0.74 3.765 O I I I 6.52 0.00 0.74 3.760 O 6.51 •32.167 32.250 0.00 0.74 3.755 O 6.51 32.333 0.00 0.74 3.750 O 6.50 32.417 0.00 0.74 3.745 O 6.50 32.500 0.00 0.74 3.740 O 6.49 32.583 0.00 0.74 3.734 O I I 6.48 32.667 0.00 0.74 3.729 O 6.48 32.750 0.00 0.74 3.724 O I 6.47 32.833 0.00 0.74 3.719 O I 6.47 32.917 0.00 0.74 3.714 O I 6.46 33.000 0.00 0.74 3.709 O I I ( 6.45 33.083 0.00 0.74 3.704 O I 6.45 33.167 0.00 0.74 3.699 O I 6.44 33.250 0.00 0.74 3.694 O I I 6.43 33.333 0.00 0.74 3.689 O I 6.43 33.417 0.00 0.74 3.684 O I 6.42 33.500 0.00 0.74 3.679 O I 6.42 33.583 0.00 0.74 3.673 O I 6.41 33.667 0.00 0.73 3.668 O 6.40 33.750 0.00 0.73 3.663 O I I I 6.40 33.833 0.00 0.73 3.658 O I I I 6.39 33.917 0.00 0.73 3.653 O 6.39 34.000 0.00 0.73 3.648 O I 6.38 34.083 0.00 0.73 3.643 O 6.37 34.167 0.00 0.73 3.638 O 6.37 34.250 0.00 0.73 3.633 O 6.36 34.333 0.00 0.73 3.628 O 6.35 34.417 0.00 0.73 3.623 O I 6.35 34.500 0.00 0.73 3.618 O 6.34 34.583 0.00 0.73 3.613 O I I 6.34 34.667 0.00 0.73 3.608 O I 6.33 34.750 0.00 0.73 3.603 O 6.32 34.833 0.00 0.73 3.598 O I I 6.32 34.917 0.00 0.73 3.593 O I I 6.31 35.000 0.00 0.73 3.588 O 6.31 35.083 0.00 0.73 3.583 O I I I 6.30 35.167 0.00 0.73 3.578 O ( 6.29 35.250 0.00 0.72 3.573 O 6.29 35.333 0.00 0.72 3.568 O I 6.28 35.417 0.00 0.72 3.563 O I I I 6.28 35.500 0.00 0.72 3.558 O I 6.27 35.583 0.00 0.72 3.553 O I 6.26 35.667 0.00 0.72 3.548 O I 6.26 35.750 0.00 0.72 3.543 O I 6.25 35.833 0.00 0.72 3.538 O ( I 6.24 35.917 0.00 0.72 3.533 O I I 6.24 36.000 0.00 0.72 3.528 O ( 6.23 36.083 0.00 0.72 3.523 O I 6.23 36.167 0.00 0.72 3.518 O I 6.22 • 36.250 36.333 0.00 0.00 0.72 0.72 3.513 3.508 O I O 6.21 6.21 36.417 0.00 0.72 3.503 O I 6.20 36.500 0.00 0.72 3.498 O I 6.20 36.583 0.00 0.72 3.493 O I I 6.19 36.667 0.00 0.72 3.489 0 6.18 36.750 0.00 0.72 3.484 O 6.18 0.00 0.72 3.479 O 6.17 •36.833 36.917 0.00 0.71 3.474 O I I I 6.17 37.000 0.00 0.71 3.469 O 6.16 37.083 0.00 0.71 3.464 O I I I `6.15 37.167 0.00 0.71 3.459 O 6.15 37.250 0.00 0.71 3.454 O I I I 6.14 37.333 0.00 0.71 3.449 O I I 6.14 37.417 0.00 0.71 3.444. O I I I I 6.13 37.500 0.00 0.71 3.439 O ( 6.12 37.583 0.00 0.71 3.434 O I I 6.12 37.667 0.00 0.71 3.430 O I 6.11 37.750 0.00 0.71 3.425 O I I I 6.11 37.833 0.00 0.71 3.420 O I 6.10 37.917 0.00 0.71 3.415 O 6.09 38.000 0.00 0.71 3.410 O I I I 6.09 38.083 0.00 0.71 3.405 O I 6.08 38.167 0.00 0.71 3.400 O I I 6.08 38.250 0.00 0.71 3.395 O I 6.07 38.333 0.00 0.71 3.391 O I I 6.06 38.417 0.00 0.71 3.386 O 6.06 38.500 0.00 0.70 3.381 O I I I 6.05 38.583 0.00 0.70 3.376 O I 6.05 38.667 0.00 0.70 3.371 O 6.04 38.750 0.00 0.70 3.366 O I 6.04 38.833 0.00 0.70 3.361 O ( 6.03 38.917 0.00 0.70 3.357 O I I 6.02 39.000 0.00 0.70 3.352 O I 6.02 39.083 0.00 0.70 3.347 O I ( 6.01 39.167 0.00 0.70 3.342 O 6.01 39.250 0.00 0.70 3.337 O 6.00 39.333 0.00 0.70 3.332 O I 5,99 39.417 0.00 0.70 3.328 O I I 5.99 39.500 0.00 0.70 3.323 O ( I I 5.98 39.583 0.00 0.70 3.318 O I I I 5.98 39.667 0.00 0.70 3.313 O I 5.97 39.750 0.00 0.70 3.308 O I 5.96 39.833 0.00 0.70 3.304 O 5.96 39.917 0.00 0.70 3.299 O 5.95 40.000 0.00 0.70 3.294 O ( 5.95 40.083 0.00 0.70 3.289 O I 5.94 40.167 0.00 0.69 3.284 ^._ O I 5.94 40.250 0.00 0.69 3.280 O I 5.93 40.333 0.00 0.69. 3.275 O I 5.92 40.417 0.00 0.69 3.270 O I I 5.92 40.500 0.00 0.69 3.265 O ) 5.91 40.583 0.00 0.69 3.261 O I I 5.91 40..667 0.00 0.69 3.256 O I 5.90 40.750 0.00 0.69 3.251 O 5.89 40.833 0.00 0.69 3.246 O I ( 5.89 • 40.917 41.000 0.00 0.00 0.69 0.69 3.241 3.237 O I ( O I I 5.88 I I 5,88 41.083 0.00 0.69 3.23.2 O I I 5.87 41.167 0.00 0.69 3.227 O I I I 5,87 41.250 0.00 0.69 3.222 O 5.86 41.333 0.00 0.69 3.218 0 5.85 41.417 0.00 0.69 3.213 O 5.85 0.00 0.69 3.208 O ( I I I 5.84 i41.500 41.583 0.00 0.69 3.204 O I I I I 5.84 41.667 0.00 0.69 3.199 O I I I I 5.83 41.750 0.00 0.69 3.194 O I I I I 5.82 41.833 0.00 0.69 3.189 O I I I ( 5.82 41.917 0.00 0.68 3.185 O I I I I 5.81 42.000 0.00 0.68 3.180 O I I I I 5.81 42.083 0.00 0.68 3.175 O I I I I 5.80 42.167 0.00 0.68 3.171 O I I i I 5.80 42.250 0.00 0.68 3.166 O I I I I 5.79 42.333 0.00 0.68 3.161 O I I I I 5.78 42.417 0.00 0.68 3.156 O I I I I 5.78 42.500 0.00 0.68 3.152 O I I I I 5.77 42.583 0.00 0.68 3.147 O I I I I 5.77 42.667 0.00 0.68 3.142 O I I I I 5.76 42.750 0.00 0.68 3.138 O I I ( I 5.76 42.833 0.00 0.68 3.133 O I I I I 5.75 42.917 0.00 0.68 3.128 O I ( I I 5.74 43.000 0.00 0.68 3.124 O I I i I 5.74 43.083 0.00 0.68 3.119 O I I I I 5.73 43.167 0.00 0.68 3.114 O I I I I 5.73 43.250 0.00 0.68 3.110 O I I ( I 5.72 43.333 0.00 0.68 3.105 O I I I I 5.72 43.417 0.00 0.68 3.100 O I I I I 5.71 43.500 0.00 0.68 3.096 O I I i I 5.70 43.583 0.00 0.67 3.091 O I I I I 5.70 43.667 0.00 0.67 3.086 O I I I I 5.69 43.750 0.00 0.67 3.082 O I I I I 5.69 43.833 0.00 0.67 3.077 O I I I I 5.68 43.917 0.00 0.67 3.072 O I I I I 5.68 44.000 0.00 0.67 3.068 O I I I I 5.67 44.083 0.00 0.67 3.063 O I I I I 5.67 44.167 0.00 0.67 3.059 O I I I I' 5.66 44.250 0.00 0.67 3.054 O I I I I 5.65 44.333 0.00 0.67 3.049 O I I I I. 5.65 44.417 0.00 0.67 3.045 O I I ( I 5.64 44.500 0.00 0.67 3.040 O I I I I 5.64 44.583 0.00 0.67 3.035 O I I I I 5.63 44.667 0.00 0.67 3.031 O I I I I 5.63 44.750 0.00 0.67 3.026 O I I I I 5.62 44.833 0.00 0.67 3.022 O I I I I 5.61 44.917 0.00 0.67 3.017 O I I I I' 5.61 ,45.000 0.00 .0.67 3.012 O I I I I 5.60 45.083 0.00 0.67 3.008 O I I I I 5.60 45.167 0.00 0.67 3.003 O I I I I 5.59 45.250 0.00 0.67 2.999 O I I I I 5.59 45.333 0.00 0.66 2.994 O I I I I 5.58 45.417 0.00 0.66 2.990 O I I I I 5.58 45.500 0.00 0.66 2.985 O I I I I 5.57 •45.583 45.667 0.00 0.00 0.66 0.66 2.980 2.976 O I I O I I I I 5.56 I I 5.56 45.750 0.00 0.66 2.971 O I I I I 5.55 45.833 0.00 0.66 2.967 O I I I I 5.55 45.917 0.00 0.66 2.962 O I I I I. 5.54 46..000 0.00 0.66 2.958 0 5.54 46.083 0.00 0.66 2.953 O 5.53 46.167 0.00 0.66 2.949 O I 5.53 46.250 0.00 0.66 2.944 O ( 5.52 46.333 0.00 0.66 2.939 O 5.51 46.417 0.00 0.66 2.935 O 5.51 46.500 0.00 0.66 2.930 O I 5.50 46.583 0.00 0.66 2.926 O 5.50 46.667 0.00 0.66 2.921 O 5.49 46.750 0.00 0.66 2.917 O I I I 5.48 46.833 0.00 0.66 2.912 O I 5.48 46.917 0.00 0.66 2.908 O I I 5.47 47.000 0.00 0.66 2.903 O 5.47 47.083 0.00 0.65 2.899 O I 5.46 47.167 0.00 0.65 2.894 O I 5.45 47.250 0.00 0.65 2.890 O I 5.45 47.333 0.00 0.65 2.885 O 5.44 47.417 0.00 0.65 2.881 O I 5.44 47.500 0.00 0.65 2.876. O I ( 5.43 47.583 0.00 0.65 2.872 O I 5.42 47.667 .0.00 0.65 2.867 O I I I 5.42 47.750 0.00 0.65 2.863 O I I 5.41 47.833 0.00 0.65 2.858 O I 5.40 47.917 0.00 0.65 2.854 O I I 5.40 48.000 0.00 0.65 2.849 O 5.39 48.083 0.00 0.65 2.845 O ( 5.39 48.167 0.00 0.65 2.840 O I 5.38 48.250 0.00 0.65 2.836 O I 5.37 i 48.333 0.00 0.65 2.831 O 5.37 48.417 0.00 0.65 2.827 O I 5.36 48.500 0.00 0.65 2.823 O 5.36 48.583 0.00 0.65 2.818 O I I I ( 5.35 48.667 0.00 0.65 2.814 O ( 5.34 48.750 0.00 0.65 2.809 O I I 5.34 48.833 0.00 0.64 2.805 O I 5.33 48.917 0.00 0.64 2.800 O I 5.33 49.000 0.00 0.64 2.796 O I I 5.32 49.083 0.00 0.64 2.791 O I I 5.31 49.167 0.00 0.64 2.787 O 5.31 49.250 0.00 0.64 2.783 O I I 5.30 49.333 0.00 0.64 2.778 O 5.30 49.417 0.00 0.64 2.774 O I I I I 5.29 49.500 0.00 0.64 2.769 O I I ( 5.28 49.583 0.00 0.64 2.765 O 5.28 49.667 .0.00 0.64 2.761 O I I 5.27 49.750 0•.00 0.64 2.756 O �. I 5.27 49.833 0.00 0.64 2.752 O I I I I 5.26 49.917 0.00 0.64 2.747 O I I I �. 5.25 50.000 0.00 0.64 2.743 O 5.25 50.083 0.00 0.64 2.739 O 5.24 50.167 0.00 0.64 2.734 O 5.24 50.250 0.00 0.64 2.730 O 5.23 50.333 0.00 0.64 2.725 O I I 5.22 50.417 0.00 0.64 2.721 O I I I I 5.22 50.500 0.00 0.63 2.717 O 5.21 50.583 0.00 0.63 2.712 O I 5.21 50.667 0.00 0.63 2.708 0 5.20 50.750 0.00 0.63 2.704 O ( 5.19 0.00 0.63 2.699 O 5.19 •50.833 50.917 0.00 0.63 2.695 O 5.18 51.000 0.00 0.63 2.690 O 5.18 51.083 0.00 0.63 2.686 O 5.17 51.167 0.00 0.63 2.682 O I 5.16 51.250 0.00 0.63 2.677 O I 5.16 51.333 0.00 0.63 2.673 O I 5.15 51.417 0.00 0.63 2.669 O 5.15 51.500 0.00 0.63 2.664 O 5.14 51.583 0.00 0.63 2.660 O 5.13 51.667 0.00 0.63 2.656 O I I I 5.13 51.750 0.00 0.63 2.651 O I I 5.12 51.833 0.00 0.63 2.647 O ( I I I 5.12 51.917 0.00 0.63 2.643 O I 5.11 52.000 0.00 0.63 2.638 O I I I 5.11 52.083 0.00 0.63 2.634 O 5.10 52.167 0.00 0.63 2.630 O I I 5.09 52.250 0.00 0.63 2.626 O 5.09 52.333 0.00 0.62 2.621 O ( I I 5.08 52.417 0.00 0.62 2.617 O 5.08 52.500 0.00 0.62 2.613 O I 5.07 52.583 0.00 0.62 2.608 O ( I 5.06 52.667 0.00 0.62 2.604 O ( 5.06 52.750 0.00 0.62 2.600 O 5.05 0.00 0.62 2.595 O 5.05 •52.833 52.917 0.00 0.62 2.591 O 5.04 53.000 0.00 0.62 2.587 O I ( 5.04 53.083 0.00 0.62 2.583 O 5.03 53.167 0.00 0.62 2.578 O I 5.02 53.250 0.00 0.62 2.574 O ( 5.02 53.333 0.00 0.62 2.570 O I I 5.01 53.417 0.00 0.62 2.566 O 5.01 53.500 0.00 0.62 2.561 O 5.00 53.583 0.00 0.62 2.557 O I 4.99 53.667 0.00 0.62 2.553 O I I 4.99 53.750 0.00 0.62 2.549 O 4.98 53.833 0.00 0.62 2.544 O I 4.98 53.917 0.00 0.62 2.540 O I I I 4.97 54.000 0.00 0.62 2.536 O 4.97 54.083 0.00 0.61 2.532 O I 4.96 54.167 0.00 0.61 2.527 O 4.95 54.250 0.00 0.61 2.523 O I I 4.95 54.333 0.00 0.61 2.519 O 4.94 54.417 0.00 ' 0.61 2.515 O 4.94 54.500 .0.00 0.61 2.510 O I 4.93 54.583 0.00 0.61 2.506 O 4.93 54.667 0.00 0.61 2.502 O 4.92 54.750 0.00 0.61 2.498 O I I I I 4.91 54.833 0.00 0.61 2.494 O 4.91 54.917 0.00 0.61 2.489 O 4.90 55.000 0.00 0.61 2.485 O 4.90 55.083 0.00 0.61 2.481 O I I 4.89 55.167 0.00 0.61 2.477 O I I 4.89 55.250 0.00 0.61 2.473 O 4.88 55.333 0.00 0.61 2.468 0 I I 4.87 55.417 0.00 0.61 2.464 0 4.87 0.00 0.61 2.460 0 4.86 •55.500 55.583 0.00 0.61 2.456 0 I 4.86 55.667 0.00 0.61 2.452 0 I I 4.85 55.750 0.00 0.61 2.448 O I 4.85 55.833 0.00 0.61 2.443 0 I 4.84 55.917 0.00 0.60 2.439 O I I 4:83 56.000 0.00 0.60 2.435 O ( 4.83 56.083 0.00 0.60 2.431 0 I 4.82 56.167 0.00 0.60 2.427 0 I 4.82 56.250 0.00 0.60 2.423 0 I 4.81 56.333 0.00 0.60 2.418 0 I 4.81 56.417 0.00 0.60 2.414 O I I I 4.80 56.500 0.00 0.60 2.410 0 I 4.79 56.583 0.00 0.60 2.406 O I 4.79 56.667 0.00 0.60 2.402 O I I 4.78 56.750 0.00 0.60 2.398 0 I I 4.78 56.833 0.00 0.60 2.394 0 I I 4.77 56.917 0.00 0.60 2.389 O I I I 4.77 57.000 0.00 0.60 2.385 O I I 4.76 57.083 0.00 0.60 2.381 O I 4.76 57.167 0.00 0.60 2.377 0 4.75 57.250 0.00 0.60 2.373 0 I I 4.74 57.333 0.00 0.60 2.369 0 4.74 57.417 0.00 0.60 2.365 0 I I 4.73 57.500 0.00 0.60 2.361 0 I I I 4.73 57.583 0.00 0.60 2.357 O I 4.72 57.667 0.00 0.60 2.352 0 ( I I I 4.72 57.750 0.00 0.59 2.348 0 I I I I 4.71 57.833 0.00 0.59 2.344 O I I 4.70 57.917 0.00 0.59 2.340 0 ( I 4.70 58.000 0.00 0.59 2.336 0 I 4.69 58.083 0.00 0.59 2.332 O I 4.69 58.167 0.00 0.59 2.328 O I I I 4.68 58.250 0.00 0.59 2.324 O I I I 4.68 58.333 0.00 0.59 2.320 O ( 4.67 58.417 0.00 0.59 2.316 O I ( I I 4.67 58.500 0.00 0.59 2.312 O I I I 4.66 58.583 0.00 0.59 2.308 O I I 4.65 58.667 0.00 0.59 2.303 0 I ( 4.65 58.750 0.00 0.59 2.299 0 I 4.64 58.833 0.00 0.59 2.295 O 4.64 58.917 0.00 0.59 2.291 O I I 4.63 59.000 0.00 0.59 2.287 0 I 4.63 59.OB3 0.00 0.59 2.283 0 I ( 4.62 59.167 0.00 0.59 2.279 O I I I 4.62 59.250 0.00 0.59 2.275 O I 4.61 59.333 0.00 0.59 2.271 0 I 4.60 59.417 0.00 0.59 2.267 O 4.60 59.500 0.00 0.59 2.263 O I 4.59 59.583 0.00 0.59 2.259 O I I 4.59 •59.667 0.00 0.58 2.255 O 4.58 59.750 0.00 0.58 2.251 0 I ( 4.58 59.833 0.00 0.58 2.247 O I I I 4.57 59.917 0.00 0.58 2.243 O I I I I 4.57 60.000 0.00 0.58 2.239 0 I I 4.56 60.083 0.00 0.58 2.235 0 4.56 0.00 0.58 2.231 0 4.55 •60.167 60.250 0.00 0.58 2.227 0 I 4.54 60.333 0.00 0.58 2.223 0 I I I 4.54 60.417 0.00 0.58 2.219 O ( 4.53 60.500 0.00 0.58 2.215 0 4.53 60.583 0.00 0.58 2.211 0 I I 4.52 60.667 0.00 0.58 2.207 0 4.52 60.750 0.00 0.58 2.203 O I 4.51 60.833 0.00 0.58 2.199 0 4.51 60.917 0.00 0.58 2.195 0 I 4.50 61.000 0.00 0.58 2.191 0 I 4.50 61.083 0.00 0.58 2.187 0 4.49 61.167 0.00 0.58 2.183 O I I I I 4.48 61.250 0.00 0.58 2.179 0 4.48 61.333 0.00 0.58 2.175 O 4.47 61.417 0.00 0.58 2.171 O I I I I 4.46 61.500 0.00 0.57 2.167 0 4.46 61.583 0.00 0.57 2.163 0 I I 4.45 61.667 0.00 0.57 2.159 0 4.45 61.750 0.00 0.57 2.155 0 I 4.44 61.833 0.00 0.57 2.151 O I I 4.43 61.917 0.00 0.57 2.147 0 4.43 62.000 0.00 0.57 2.143 O I I I 4.42 62.083 0.00 0.57 2.139 O 4.42 62.167 0.00 0.57 2.136 0 4.41 •62.250 0.00 0.57 2.132 O I I I I 4.40 62.333 0.00 0.57 2.128 0 4.40 62.417 0.00 0.57 2.124 0 I I 4.39 62.500 0.00 0.57 2.120 0 I I 4.39 62.583 0.00 0.57 2.116 O I 4.38 62.667 0•.00 0.57 2.112 0 ( I 4.37 62.750 0.00 0.57 2.108 0 4.37 62.833 0.00 0.57 2.104 O I I I ( 4.36 62.917 0.00 0.57 2.100 0 �. 4.36 63.000 0.00 0.57 2.096 0 I �. 4.35 63.083 0.00 0.57 2.092 O I I I 4.34 63.167 0.00 0.57 2.089 O I I 4.34 63.250 0.00 0.56 2.085 O I 4.33 63.333 0.00 0.56 2.081 0 ( ( I 4.33 63.417 0.00 0.56 2.077 O I I I 4.32 63.500 0.00 0.56 2.073 0 I I 4.32 63.583 0.00 0.56 2.069 O I 4.31 63.667 0.00 0.56 2.065 O I I 4.30 63..750 0.00 0.56 .2.061 0 I I 4.30 63.833 0.00 0.56 2.058 0 I I I 4.29 63.917 0.00 0.56 2.054 O I 4,29 64.000 0.00 0.56 2.050 O I 4.28 64.083 0.00 0.56 2.046 O I I I 4.27 64.167 0.00 0.56 2.042 O I I I 4.27 •64.250 64.333 0.00 0.00 0.56 0.56 2.038 2.034 0 I O I I 4.26 4.26 64.417 0.00 0.56 2.031 O I I 4.25 64.500 0.00 0.56 2.027 O I I I 4.24 64.583 0.00 0.56 2.023 0 4.24 64.667 0.00 0.56 2.019 0 4.23 64.750 0.00 0.56 2.015 O 4.23 0.00 0.56 2.011 O I 4.22 •64.833 64.917 0.00 0.56 2.008 O I 4.21 65.000 0.00 0.55 2.004 O 4.21 65.083 0.00 0.55 2.000 O I 4.20 65.167 0.00 0.55 1.996 O I 4.20 65.250 0.00 0.55 1.992 O I I I 4.19 65.333 0.00 0.55 1.988 O I I 4.19 65.417 0.00 0.55 1.985 O 4.18 65.500 0.00 0.55 1.981 O I I 4.17 65.583 0.00 0.55 1.977 O 4.17 65.667 0.00 0.55 1.973 O 4.16 65.750 0.00 0.55 1.969 O 4.16 65.833 0.00 0.55 1.966 O I I 4.15 65.917 0.00 0.55 1.962 O I I 4.15 66.000 0.00 0.55 1.958 O I I I 4.14 66.083 0.00 0.55 1.954 O I I 4.13 66.167 0.00 0.55 1.951 O 4.13 66.250 0.00 0.55 1.947 O I I 4.12 66.333 0.00 0.55 1.943 O 4.12 66.417 0.00 0.55 1.939 O I ( 4.11 66.500 0.00 0.55 1.935 O I I I 4.10 66.583 0.00 0.55 1.932 O I I I 4.10 66.667 0.00 0.55 1.928 O 4.09 66.750 0.00 0.54 1.924 O I I, 4.09 66.833 0.00 0.54 1.920 O I I 4.08 •66.917 0.00 0.54 .1.917 O 4.08 67.000 0.00 0.54 1.913 O I 4.07 67.083 0.00 0.54 1.909 O I 4.06 67.167 0.00 0.54 1.905 O ( 4.06 67.250 0.00 0.54 1.902 O I 4.05 67.333 0.00 0.54 1.898 O I 4.05 67.417 0.00 0.54 1.894 O I 4.04 67.500 0.00 0.54 1.891 O 4.04 67.583 0.00 0.54 1.887 O I I I I 4.03 67.667 0.00 0.54 1.883 O I I 4.02 67.750 0.00 0.54 1.879 O I I 4.02 67.833 0.00 0.54 1.876 O 4.01 67.917 0.00 0.54 1.872 O I 4.01 68.000 0.00 0.54 1.868 O 4.00 68.083 0.00 0.54 1.865 O I I 4.00 68.167 0.00 0.54 1.861 O ( 3.99 68.250 0.00 0.54 1.857 O I I 3.98 68.333 0.00 0.54 1.853 O I I 3.98 68.4.17 0.00 0.54 1.850 O. I I 3.97 68.500 0.00 0.54 1.846 O I I 3,97 68.583 0.00 0.53 1.842 O ( I I I 3.96 68.667 0.00 0.53 1.839 O I I 3,96 68.750 0.00 0.53 1.835 O I I 3.95 68.833 0.00 0.53 1.831 O 3.95 0.00 0.53 1.828 O I 3.94 •68.917 69.000 0.00 0.53 1.824 O ( 3.93 69.083 0.00 0.53 1.820 O 3.93 69.167 0.00 0.53 1.817 O 3.92 69.250 0.00 0.53 1.813 O I I I I 3.92 69.333 0.00 0.53 1.809 0 3.91 69.417 0.00 0.53 1.806 O 3.91 0.00 0.53 1.802 O I 3.90 •69.500 69.583 0.00 0.53 1.798 O 3.90 69.667 0.00 0.53 1.795 O I 3.89 69.750 0.00 0.53 1.791 O I 3.88' 69.833 0.00 0.53 1.787 0 I 3.88 69.917 0.00 0.53 1.784 O I I I I 3.87 70.000 0.00 0.53 1.780 0 3.87 70.083 0.00 0.53 1.777 O I 3.86 70.167 0.00 0.53 1:773 O ( ( 3:86 70.250 0.00 0.53 1.769 O I I I 3.85 70.333 0.00 0.53 1.766 O ( I 3.85 70.417 0.00 0.53 1.762 O I 3.84 70.500 0.00 0.52 1.758 O I I 3.83 70.583 0.00 0.52 1.755 O I ( 3.83 70.667 0.00 0.52 1.751 O I 3.82 70.750 0.0.0 0.52 1.748 O I I I 3.82 70.833 0.00 0.52 1.744 O 3.81 70.917 0.00 0.52 1.740 O I I 3.81 71.000 0.00 0.52 1.737 O I 3.80 71.083 0.00 0..52 1.733 O 3.80 71.167 0.00 0.52 1.730 O I I 3.79 71.250 0.00 0.52 1.726 O I ( I 3.78 71.333 0.00 0.52 1.722 O I I 3.78 71.417 0.00 0.52 1.719 O I I I 3.77 71.500 0.00 0.52 1.715 O I 3.77 •71.583 0.00 0.52 1.712 O I 3.76 71.667 0.00 0.52 1.708 O I 3.76 71.750 0.00 0.52 1.705 O I I I 3.75 71.833 0.00 0.52 1.701 0 I I 3.75 71.917 0.00 0.52 1.697 0 I I 3.74 72.000 0.00 0.52 1.694 O I I 3.74 72.083 0.00 0.52 1.690 O I I I 3.73 72.167 0.00 0.52 1.687 O I I 3.72 72.250 0.00 0.52 1.683 O ( 3.72 72.333 0.00 0.52 1.680 O 3.71 72.417 0.00 0.51. 1.676 O I 3.71 72.500 0.00 0.51 1.673 O 1 3.70 72.583 0.00 0.51 1.669 O 3.70 72.667 0.00 0.51 1.666 0 I 3.69 72.750 0.00 0.51 1.662 O I 3.69 72.833 0.00 0.51 1.658 O 3.68 72.917 0.00 0.51 1.655 O I I I 3.68 73.000 0.00 0.51 1.651 O I 3.67 73.083 0.00 0.51 1.648 O I 3.66 73.167 0.00 0.51 1.644 0 3.66 73.250 0.00 0.51 1.641 0 ( I I 3.65 73.333 0.00 0.51 1.637 O I I 3.65 73.417 0.00 0.51 1.634 O I L 3.64 73.500 0.00 0.51 1.630 O I ( 3.64 •73.583 73.667 0.00 0.00 0.51 0.51 1.627 1.623 O I 0 I I 3.63 I 3.63 73.750 0.00 0.51 1.620 O 3.62 73.833 0..00 0.51 1.616 0 3.62 73.917 0.00 0.51 1.613 O I 3.61 74.000 0.00 0.51 1.609 0 ( 3.61 74.083 0.00 0.51 1.606 O I 3.60 0.00 0.51 1.602 O 3.60 •74.167 74.250 0.00 0.51 1.599 O I I 3.59 74.333 0.00 0.50 1.595 O I I 3.58 74.417 0.00 0.50 1.592 O I I I 3.58 74.500 0.00 0.50 1.588 O I 3.57 74.583 0.00 0.50 1.585 O I 3.57 74.667 0.00 0.50 1.582 O I 3.56 74.750 0.00 0.50 1.578 O I I 3.56 74.833 0.00 0.50 1.575 O I I 3.55 74.917 0.00 0.50 1.571 O I I 3.55 75.000 0.00 0.50 1.568 O I 3.54 75.083 0.00 0.50 1.564 O I I I 3.54 75.167 0.00 0.50 1.561 O ( I 3.53 75.250 0.00 0.50 1.557 O ( 3.53 75.333 0.00 0.50 1.554 O I. 3.52 75.417 0.00 0.50 1.550 O I I 3.52 75.500 0.00 0.50 1.547 O I 3.51 75.583 0.00 0.50 1.544 O I I I 3.51 75.667 0.00 0.50 1.540 O I 3.50 75.750 0.00 0.50 1.537 O I I I 3.49 75.833 0.00 0.50 1.533 O I I I 3.49 75.917 0.00 0.50 1.530 O ( 3.48 76.000 0.00 0.50 1.526 O I I I 3.48 76.083 0.00 0.50 1.523 O I 3.47 76.167 0.00 0.50 1.520 O 3.46 76.250 0.00 0.49 1.516 O 3.46 76.333 0.00 0.49 1.513 O 3.45 76.417 0.00 0.49 1.509 O I I 3.45 76.500 0.00 0.49 1.506 O I I I 3.44 76.583 0.00 0.49 1.503 O I I ( 3.44 `76.667 0.00 0.49 1.499 O I 3.43 76.750 0.00 0.49 1.496 O I I I 3.42 76.833 0.00 0.49 1.492 O I ( 3.42 76.917 0.00 0.49 1.489 O 3.41 77.000 0.00 0.49 1.486 O I I 3.41 77.083 0.00 0.49 1.482 O I 3.40 77.167 0.00 0.49 1.479 O I I 3.39 77.250 0.00 0.49 1.476 O I ( 3.39 77.333 0.00 0.49 1.472 O I 3.38 77.417 0.00 0.49 1.469 O I 3.38 77.500 0.00 0.49 1.465 O I 3.37 77.583 0.00 0.49 1.462 O I 3.36 77.667 0.00 0.49 1.459 O I 3.36 77.750 0.00 0.49 1.455 O I I 3.35 77.833 0.00 0.49 1.452 O I I 3.35 77.917 0.00 0.49 1.449 O I I 3.34 78.000 0.00 0.49 1.445 O I 3.34 78.083 0..00 0.49 1.442 O I 3.33 78.167 0.00 0.48 1.439 O 3.32 78.250 0.00 0.48 1.435 O I I I 3.32 • 78.333 0.00 0.48 1.432 O I I 3.31 78.417 0.00 0.48 1.429 O I I I 3.31 78.500 0.00 0.48 1.425 O ( 3.30 78.583 0.00 0.48 1.422 O 3.30 78.667 0.00 0.48 1.419 0 I I ( I 3.29 78.750 0.00 0.48 1.415 O 3.28 78.833 0.00 0.48 1.412 O I I 3.28 78.917 0.00 0.48 1.409 0 I I I 3.27 79.000 0.00 0.48 1.405 O I 3.27 79.083 0.00 0.48 1.402 0 ( I I 3.26 79.167 0.00 0.48 1.399 0 I I 3.25 79.250 0.00 0.48 1.395 0 I I 3.25 79.333 0.00 0.48 1.392 O 3.24 79.417 0.00 0.48 1.389 0 3.24 79.500 0.00 0.48 1.386 O I 3.23 79.583 0.00 0.48 1.382 O I 3.23 79.667 0.00 0.48 1.379 O 3.22 79.750 0.00 0.48 1.376 O I 3.21 79.833 0.00 0.48 1.372 0 3.21 79.917 0.00 0.48 1.369 O I 3.20 80.000 0.00 0.48 1.366 O 3.20 80.083 0.00 0.47 1.363 0 I 3.19 80.167 0.00 0.47 1.359 O I 3.19 80.250 0.00 0.47 1.356 O I I I 3.18 80.333 0.00 0.47 1.353 O I 3.18 80.417 0.00 0.47 1.350 O 3.17 80.500 0.00 0.47 1.346 O 3.16 80.583 0.00 0.47 1.343 0 I 3.16 80.667 0.00 0.47 1.340 O I I 3.15 80.750 0.00 0.47 1.337 O I I I 3.15 80.833 0.00 0.47 1.333 O I 3.14 80.917 0.00 0.47 1.330 O I 3.14 81.000 0.00 0.47 1.327 O I I I .3.13 81.083 0.00 0.47 1.324 O 3.12 81.167 0.00 0.47 1.320 O I I I 3.12 81.250 0.00 0.47 1.317 O I I 3.'11 81.333 0.00 0.47 1.314 O I I I 3.11 81.417 0.00 0.47 1.311 O I I I 3.10 81.500 0.00 0.47 1.307 O 3.10 81.583 0.00 0.47 1.304 O 3.09 .81.667 0.00 0.47 1.301. O I 3.09 81.750 0.00 0.47 1.298 O 3.08 81.833 0.00 0.47 1.295 O I ( I I 3.07 81.917 0.00 0.47 1.291 O I 3.07 82.000 0.00 0.47 1.288 O 3.06 82.083 0.00 0.46 1.285 O I I I 3.06 82.167 0.00 0.46 1.282 O 3.05 82.250 0.00 0.46 1.279 O I ( 3.05 82.333 0.00 0.46 1.275 O I 3.04 82.417 0.00 0.46 1.272 O. I I I 3.04 82.500 0.00 0.46 1.269 O 3.03 82.583 0.00 0.46 1.266 0 I I 3.02 82.667 0.00 0.46 1.263 O I 3.02 82.750 0.0.0 0.46 1.259 O I I I 3.01 82.833 0.00 0.46 1.256 O I 3.01 •82.917 83.000 0.00 0.00 0.46 0.46 1.253 1.250 O 0 3.00 3.00 83.083 0.00 0.46 1.247 0 I I 2,99 83.167 0.00 0.46 1.244 O I I 2.99 83.250 0.00 0.46 1.240 O I I I I 2.98 83.333 0.00 0.46 1.237 0 I I 2,97 83.417 0.00 0.46 1.234 O 2.97 0.00 0.46 1.231 O 2.96 •83.500 83.583 0.00 0.46 1.228 O I 2.96 83.667 0.00 0.46 1.225 O I 2.95 83.750 0.00 0.46 1.222 O 2.95 83.833 0.00 0.46 1.218 O I 2.94 83.917 0.00 0.46 1.215 O I I 2.94 84.000 0.00 0.46 1.212 O 2.93 84.083 0.00 0.45 1.209 O I 2.93 84.167 0.00 0.45 1.206 O ( I 2.92 84.250 0.00 0.45 1.203 O I 2.91 84.333 0.00 0.45 1.200 O ( I 2.91 84.417 0.00 0.45 1.196 O I I I' 2.90 84.500 0.00 0.45 1.193 O I 2.90 84.583 0.00 0.45 1.190 O I 2.89 84.667 0.00 0.45 1.187 O I I I 2.89 84.750 0.00 0.45 1.184 O I I 2.88 84.833 0.00 0:.4.5 1.181 O 2.88 84.917 0.00 0.45 1.178 O I 2.87 85.000 0.00 0.45.' 1.175 O I I I 2.87 85.083 0.00 0.45 1.172 O 2.86 85.167 0.00 0.45 1.168 O I I I 2.86 85.250 0.00 0.45 1.165 O I I �, 2.85 85.333 0:00 0.45 1.162 O I I 2.84 85.417 0.00 0.45 1.159 O 2.84 85.500 0.00 0.45 1.156 O I I I 2.83 85.583 0.00 0.45 1.153 O 2.83 85.667 0.00 0.45 1.150 .0 I I 2.82 85.750 0.00 0.45 1.147 O I 2.82 85.833 0.00 0.45 1.144 O I I 2.81 85.917 0.00 0.45 1.141 O I I 2.81 86.000 0.00 0.45 1.138 O I 2.80 86.083 0.00 0.45 1.135 O I I I 2.80 86.167 0.00 0.44 1.132 O I ( 2.79 86.250 0.00 0.44 1.128 O I 2.79 86.333 0.00 0.44 1.125 O I I I 2.78 86.417 0.00 0.44 1.122 O I 2.77 86.500 0.00 0.44 1.119 O I I I 2.77 86.583 0.00 0.44 1.116 O I I 2.76 86.667 0.00 0.44 1..113 O ( I I 2.76 86.750 0.00 0.44 1.110 O I I 2.75 86.833 0.00 0.44 1.107 O I I I 2.75 86.917 0.00 0.44 1.104 O I I 2.74 87.000 0.00 0.44 1.101 O 2.74 87.083 0.00 0.44 1.098 O I I I 2.73 87.167 0.00 0.44 1.095 O I 2.73 87.250 0.00 0.44 1.092 O I 2.72 87.333 0.00 0.44 1.089 O I I I 2.72 87.417 0.00 0.44 1.086 O I I I 2.71 87.500 0.00 0.44 1.083 O I I I 2.71 •87.583 87.667 0.00 0.00 0.44 0.44 1.080 1.077 O I I O I I I 2.70 I 2.70 87.750 0.00 0.44 1.074 O I I 2.69 87.833 0.00 0.44 1.071 O I 2.69 87.917 0.00 0.44 1.068 O I 2.68 88.000 0.00 0.44 1.065 0 I I 2.67 88.083 0.00 0.44 1.062 O I I I 2.67 0.00 0.44 1.059 O 2.66 .88.167 88.250 0.00 0.43 1.056 O I I 2.66 88.333 0.00 0.43 1.053 O 2.65 88.417 0.00 0.43 1.050 O ( 2.65 88.500 0.00 0.43 1.047 O I 2.64 88.583 0.00 0.43 1.044 O I 2.,64 88.667 0.00 0.43 1.041 O I 2.63 88.750 0.00 0.43 1.038 O I I 2.63 88.833 0.00 0.43 1.035 O 2.62 88.917 0.00 0.43 1.032 O I 2.62 89.000 0.00 0.43 1.029 O ) 2.61 89.083 0.00 0.43 1.026 O I 2.61 89.167 0.00 0.43 1.023 O I 2.60 89.250 0.00 0.43 1.020 O 2.60 89.333 0.00 0.43 1.017 O 2.59 89.417 0.00 0.43 1.014 O I 2.59 89.500 0.00 0.43 1.011 O 2.58 89.583 0.00 0.43 1.008 O 2.58 89.667 0.00 0.43 1.005 O I 2..57 89.750 0.00 0.43 1.002 O I I 2.57 89.833 0.00 0.43 0.999 O I 2.56 89.917 0.00 0.43 0.996 O ( 2.56 90.000 0.00 0.43 0.993 0. I 2.55 90.083 0.00 0.43 0.991 O I I ( 2.55 90.167 0.00 0.43 0.988 O I 2.54 90.250 0.00 0.43 0.985 O I 2.54 90.333 0.00 0.43 0.982 O I 2.53 90.417 0.00 0.42 0.979 O I I 2.53 90.500 0.00 0.42 0.976 O I 2.52 90.583 0.00 0.42 0.973 O I 2.52 90.667 0.00 0.42 0.970 O 2.51 90.750 0.00 0.42 0.967 O 2.51 90.833 0.00 0.42 0.964 O 2.50 90.917 0.00 0.42 0.961 O I I I 2.49 91.000 0.00 0.42 0.958 O I 2.49 91.083 0.00 0.42 0.955 O I ( ( 2.48 91.167 0.00 0.42 0.953 O ( 2.48 91.250 0.00 0.42 0.950 0 2.47 91.333 0.00 0.42 0.947 O 2.47 91.417 0.00 0.42 0.944 O I I ( 2.46 91.500 0.00 0.42 0.941 O I I I 2.45 91.583 0.00 0.42 0.938 O I 2.45 91.667 0.00 0.42 0.935 O I 2.44 91.750 0.00 0.42 0.932 O 2.44 91.833 0.00 0.42 0.929 O 2.43 91.917 0.00 0.42 0.927 O I I I 2.43 92.000 0.00 0.42 0.924 O 2.42 92.083 0.00 0.42 0.921 O I 2.41 92.167 0.00 0.42 0.918 O I I 2.41 • 92.250 92.333 0.00 0.00 0.42 0.42 0.915 0.912 O O I ( 2.40 2.40 92.417 0.00 0.42 0.909 O I I 2.39 92.500 0.00 0.42 0.906 O ( 2.39 92.583 0.00 0.42 0.904 O ( I 2.38 92.667 0.00 0.41 0.901 0 I I 2.37 92.750 0.00 0.41 0.898 O I 2.37 0.00 0.41 0.895 O 2.36 •92.833 92.917 0.00 0.41 0.892 O I 2.36 93.000 0.00 0.41 0.889 O 2.35 93.083 0.00 0.41 0.886 O 2.35 93.167 0.00 0.41 0.884 O 2.34 93.250 0.00 0.41 0.881 O 2.33 93.333 0.00 0.41 0.878 O 2.33 93.417 0.00 0.41 0.875 O 2.32 93.500 0.00 0.41 0.872 O I I I 2.32 93.583 0.00 0.41 0.869 O I 2.31 93.667 0.00 0.41 0.867 O I 2.31 93.750 0.00 0.41 0.864. O I 2.30 93.833 0.00 0.41 0.861 O ( 2.30 93.917 0.00 0.41 0.858 O 2.29 94.000 0.00 0.41 0.855 O I I 2.28 94.083 0.00 0.41 0.853 O I 2.28 94.167 0.00 0.41 0.850 O I 2.27 94.250 0.00 0.41 0.847 O I 2.27 94.333 0.00 0.41 0.844 O 2.26 94.417 0.00 0.41 0.841 O I I 2.26 94.500 0.00 0.41 0.839 O I I 2.25 94.583 0.00 0.41 0.836 O I I 2.25 94.667 0.00 0.41 0.833 O I 2.24 94.750 0.00 0.41 0.830 O ( I 2.23 94.833 0.00 0.41 0.827 O 2.23 94.917 0.00 0.40 0.825 O '.22 95.000 0.00 0.40 0.822 O I I, 2.22 95.083 0.00 0.40 0.819 O I 2.21 95.167 0.00 0.40 0.816 O I I 2.21 95.250 0.00 0.40 0.813 O I I 2.20 95.333 0.00 0.40 0.811 O I I I 2.20 95.417 0.00 0.40 0.808 O I I 2.19 95.500 0.00 0.40 0.805 O I 2.18 95.583 0.00 0.40 0.802 O I I 2.18 .95.667 0.00 0.40 0.800 O 2.17 95.750 0.00 0.40 0.797 O I 2.17 95.833 0.00 0.40 0.794 O 2.16 9.5.917 0.00 0.40 0.791 O I I 2.16 96.000 0.00 0.40 0.789 O 2.15 96.083 0.00 0.40 0.786 O I 2.15 96.167 0.00 0.40 0.783 O I 2.14 96.250 0.00 0.40 0.780 O 2.13 96.333 0.00 0.40 0.778 O ( I I 2.13 .96.417 0.00 0.40 0.775 O 2.12 96.500 0.00 0.40 0.772 O I ( 2.12 96.583 0.00 0.40 0.769 O I I 2.11 96.667 0.00 0.40 0.767 O I 2.11 96.750 0.00 0.40 0.764 O 2.10 96.833 0.00 0.40 0.761 O I .2.10 0.00 0.40 0.758 O I I 2.09 •96.917 97.000 0.00 0.40 0.756 O I I 2.09 97.083 0.00 0.40 0.753 O 2.08 97.167 0.00 0.39 0.750 O I I 2.07 97.250 0.00 0.39 0.748 O I 2.07 97.333 0.00 0.39 0.745 0 I I 2.06 97.417 0.00 0.39 0.742 O 2.06 97.500 0.00 0.39 0.739 O ( ( 2.05 97.583 0.00 0.39 0.737 O I I I 2.05 97.667 0.00 0.39 0.734 O ( 2.04 97.750 0.00 0.39 0.731 O 2.04 97.833 0.00 0.39 0.729 O 2.03 97.917 0.00 0.39 0.726 O I 2.03 98.000 0.00 0.39 0.723 O 2.02 98.083 0.00 0.39 0.720 O I I 2.02 98.167 0.00 0.39 0.718 O I I 2.01 98.250 0.00 0.39 0.715 O I 2.01 98.333 0.00 0.39 0.712 O 2.00 98.417 0.00 0.39 0.710 O I 1.99 98.500 0.00 0.39 0.707 O I 1.99 98.583 0.00 0.39 0.704 O 1.98 98.667 0.00 0.39 0.702 O 1.98 98.750 0.00 0.39 0.699 O I I 1.97 98.833 0.00 0.39 0.696 O I ( 1.97 98.917 0.00 0.39 0.694 O I 1.96 99.000 0.00 0.39 0.691 O I 1.96 99.083 0.00 0.39 0.688 O I I 1.95 99.167 0.00 0.39 0.686 O I ( 1.95 .99.250 0.00 0.39 0.683 O 1.94 99.333 0.00 0.39 0.680 O I I 1.94 99.417 0.00 0.39 0.678 O I I 1.93 99.500 0.00 0.39 0.675 O I I 1.93 99.583 0.00 0.38 0.672 O I I 1.92 99.667 0.00 0.38 0.670 O I ( 1.91 99.750 0.00 0.38 0.667 O I I I 1.91 99.833 0.00 0.38 0.664 O I I 1.90 99.917 0.00 0.38 0.662 O 1.90 100.000 0.00 0.38 0.659 O I I 1.89 100.083 0.00 0.38 0.657 O I 1.89 100.167 0.00 0.38 0.654 O I I ( 1.88 100.250 0.00 0.38 0.651 O I 1.88 100.333 0.00 0.38 0.649 O I 1.87 100.417 0.00 0.38 0.646 O I I I 1.87 100.500 0.00 0.38 0.643 O �, 1.86 100.583 0.00 0.38 0.641 O I 1.86 100.667 0.00 0.38 0.638 O ( ( I 1.85 100.750 0.00 0.38 0.636 O I I 1.85 100.833 0.00 0.38 0.633 O I 1.84 100.917 0.00 0.38 0.630 O I 1.84 101.000 0.00 0.38 0.628 O I 1.83 101.083 0.00 0.38 0.625 O I 1.83 101.167 0.00 0.38 0.622 O I 1.82 101.250 0.00 0.38 0.620 O I I, 1.82 101.333 0.00 0.38 0.617 O I ( 1.81 101.417 0.00 0.38 0.615 O I 1.81 101.500 0.00 0.38 0.612 O I I 1.80 •101.583 101.667 0.00 0.00 0.38 0.38 0.609 0.607 O I O I I 1.80 1.79 101.750 0.00 0.38 0.604 O 1,78 101.833 0.00 0.38 0.602 O 1.78 101.917 0.00 0.38 0.599 O ( ( 1.77 102.000 0.00 0.37 0.597 0 1.77 102.083 0.00 0.37 0.594 O I 1.76 0.00 0.37 0.591 O 1.76 •102.167 102.250 0.00 0.37 0.589 O ( 1.75 102.333 0.00 0.37 0.586 O I I 1.75 102.417 0.00 0.37 0.584 O 1.74 102.500 0.00 0.37 0.581 O I I 1.74 102.583 0.00 0.37 0.579 O 1.73 102.667 0.00 0.37 0.576 O I I I 1.73 102.750 0.00 0.37 0.573 O I I 1.72 102.833 0.00 0.37 0.571 O 1.72 102.917 0.00 0.37 0.568 O I I I I 1.71 103.000 0.00 0.37 0.566 O 1.71 103.083 0.00 0.37 0.563 O I I I 1.70 103.167 0.00 0.37 0.561 O I 1.70 103.250 0.00 0.37 0.558 O I 1.69 103.333 0.00 0.37 0.556 O I 1.69 103.417 0.00 0.37 0.553 O I 1.68 103.500 0.00 0.37 0.550 O I 1.68 103.583 0.00 0.37 0.548 O 1.67 103.667 0.00 0.37 0.545 O I I I 1.67 103.750 0.00 0.37 0.543 O I 1.66 103.833 0.00 0.37 0.540 O I I I 1.66 103.917 0.00 0.37 0.538 O 1.65 104.000 0.00 0.37 0.535 O I 1.65 104.083 0.00 0.37 0.533 O I I 1.64 104.167 0.00 0.37 0.530 O 1.64 104.250 0.00 0.37 0.528 O ( I 1.63 104.333 0.00 0.37 0.525 O I �, 1.63 104.417 0.00 0.37 0.523 O I 1.62 104.500 0.00 0.36 0.520 O I 1.62 104.583 0.00 0.36 0.518 O I 1.61 104.667 0.00 0.36 0.515 O I I I I 1.61 104.750 0.00 0.36 0.513 O I I 1.60 104.833 0.00 0.36 0.510 O I 1.60 104.917 0.00 0.36 0.508 O I 1.59 105.000 0.00 0.36 0.505 O I I 1.59 105.083 0.00 0.36 0.503 O I 1.58 105.167 0.00 0.36 0.500 O I I I 1.58 105.250 0.00 0.36 0.498 O I 1.57 105.333 0.00 0.36 0.495 O ( 1.57 105.417 0.00 0.36 0.493 O I 1.56 105.500 0.00 0.36 0.490 O 1.56 105.583 0.00 0.36 0.488 O I 1.55 105.667 0.00 0.36 0.485 O I 1.55 105.750 0.00 0.36 0.483 O 1.54 105.833 0.00 0.36 0.480 O I ( 1.54 105.917 0.00 0.36 0.478 O I I 1.53 106.000 0.00 0.36 0.475 O 1.53 106.083 0.00 0.36 0.473 O 1.52 106.167 0.00 0.36 0.470 O I 1.52 • 106.250 •106.333 0.00 0.00 0.36 0.36 0.468 0.465 O O ( 1.51 I 1.51 106.417 0.00 0.36 0.463 O 1.50 106.500 0.00 0.36 0.460 O I 1.50 106.583 0.00 0.36 0.458 O I I ( I 1.49 106.667 0.00 0.36 0.456 0 I I 1.49 106.750 0.00 0.36 0.453 0 1.48 106.833 0.00 0.36 0.451 O I I 1.47 106.917 0.00 0.36 0.448 0 I 1.47 107.000 0.00 0.35 0.446 O I 1.46 107.083 0.00 0.35 0.443 0 I 1.46 107.167 0.00 0.35 0.441 O I 1.45 107.250 0.00 0.35 0.438 0 1.44 107.333 0.00 0.35 0.436 O 1.44 107.417 0.00 0.35 0.434 0 I I I 1.43 107.500 0.00 0.35 0.431 0 I I I 1.43 107.583 0.00 0.35 0.429 O I 1.42 107.667 0.00 0.35 0.426 0 I 1.42 107.750 0.00 0.35 0.424 O I I I I 1.41 107.833 0.00 0.35 0.421 O I 1.40 107.917 0.00 0.35 0.419 0 I I I 1.40 108.000 0:00 0.35 0.417 O 1.39 108.083 0.00 0.35 0.414 0 I 1.39 108.167 0.00 0.35 0.412 O I 1.38 108.250 0.00 0.35 0.409 O I I 1.37 108.333 0.00 0.35 0.407 0 I I I 1.37 108.417 0.00 0.35 0.405 0 1.36 108.500 0.00 0.35 0.402 O 1.36 108.583 0.00 0.35 0.400 0 1.35 108.667 0.00 0.35 0.397 0 I 1.34 108.750 0.00 0.35 0.395 O I I 1.34 108.833 0.00 0.35 0.393 O I I 1.33 108.917 0.00 0.35 0.390 0 I 1.33 109.000 0.00 0.35 0.388 0 I 1.32 109.083 0.00 0.35 0.385 O I I 1.32 109.167 0.00 0.35 0.383 0 I I 1.31 109.250 0.00 0.35 0.381 0 I 1.30 109.333 0.00 0.35 0.378 O I I 1.30 109.417 0.00 0.34 0.376 O 1.29 109.500 0.00 0.34 0.374 0 I I 1.29 109.583 0.00 0.34 0.371 0 I I ( I 1.28 109.667 0.00 0.34 0.369 O ( I 1.27 109.750 0.00 0.34 0.366 O I 1.27 109.833 0.00 0.34 0.364 0 I I 1.26 109.917 0.00 0.34 0.362 0 I I 1.26 110.000 0.00 0.34 0.359 0 I 1.25 110.083 0.00 0.34 0.357 0 I I I 1.25 110.167 0.00 0.34 0.355 O I 1.24 110.250 0.00 0.34 0.352 0 1.23 110.333 0.00 0.34 0.350 0 I I 1.23 110.417 0.00 0.34 0.348 0 I I I 1.22 110.500 0.00 0:34 0.345 0 I I 1.22 110.583 0.00 0.34 0.343 O I I 1.21 110.667 0.00 0.34 0.341 O 1.21 110.750 0.00 0.34 0.3.38 O I I 1.20 110.833 0.00 0.34 0.336 0 I 1.19 110.917 0.00 0.34 0.334 0 ( 1.19 111.000 0.00 0.34 0.331 0 ( 1.18 111.083 0.00 0.34 0.329 0 I I I 1.18 111.167 0.00 0.34 0.327 0 I I 1.17 111.250 0.00 0.34 0.324 O I I I 1.17 111.333 0.00 0.34 0.322 0 I 1.16 111.417 0.00 0.34 0.320 O I 1.15 0.00 0.34 0.317 O 1.15 •111.500 111.583 0.00 0.34 0.315 0' I I 1.14 111.667 0.00 0.34 0.313 O I 1.14 111.750 0.00 0.34 0.310 O I I I 1.13 111.833 0.00 0.33 0.308 O I 1.13 111.917 0.00 0.33 0.306 O I I I 1.12 112.000 0.00 0.33 0.303 O I 1.11 112.083 0.00 0.33 0.301 O I I 1.11 112.167 0.00 0.33 0.299 O ( 1.10 112.250 0.00 0.33 0.297 O I 1.10 112.333 0.00 0.33 0.294 O 1.09 112.417 0.00 0.33 0.292 O I I 1.09 112.500 0.00 0.33 0.290 O I 1.08 112.583 0.00 0.33 0.287 O I I I 1.08 112.667 0.00 0.33 0.285 O I I ( 1.07 112.750 0.00 0.33 0.283 O ( I 1.06 112.833 0.00 0.33 0.281 O 1.06 112.917 0.00 0.33 0.278 O I 1.05 113.000 0.00 0.33 0.276 O 1.05 113.083 0.00 0.33 0.274 O I I I 1.04 113.167 0.00 0.33 0.271 O 1.04 113.250 0.00 0.33 0.269 O 1.03 113.333 0.00 0.33 0.267 O I I I 1.03 113.417 0.00 0.33 0.265 O I ( I 1.02 113.500 0.00 0.33 0.262 O 1.01 •113.583 0.00 0.33 0.260 O I I I 1.01 113.667 0.00 0.33 0.258 O 1.00 113.750 0.00 0.33 0.256 O 1.00 113.833 0.00 0.33 0.253 O I I 0.99 113.917 0.00 0.33 0.251 O I 0.99 114.000 0.00 0.33 0.249 O ( 0.98 114.083 0.00 0.33 0.247 O I 0.98 114.167 0.00 0.33 0.244 O I 0.97 114.250 0.00 0.33 0.242 O I I 0.96 114.333 0.00 0.33 0.240 O 0.96 114.417 0.00 0.32 0.238 O ( ( ( 0.95 114.500 0.00 .0.32 0.235 O I 0.95 114.583 0.00 0.32 0.233 O I 0.94 114.667 0.00 0.32 0.231 O I I I I 0.94 114.750 0.00 0.32 0.229 O I ( I 0.93 114.833 0.00 0.32 0.226 O 0.93 114.917 0.00 0.32 0.224 O 0.92 115.000 0.00 0.32 0.222 O I I I I 0.92 115.083 .0.00 0.32 0.220 O 0.91 115.167 0.00 0.32 0.218 O ( 0.90' 115.250 0.00 0.32 0.215 O I ( 0.90 115.333 0.00 0.32 0.213 O I I I 0.89 115.417 0.00 0.32 0.211 O I I I I 0.89 115.500 0.00 0.32 0.209 O I I 0.88 115.583 0.00 0.32 0.207 O I I 0.88 115.667 0.00 0.32 0.204 O I ( I 0.87 115.750 0.00 0.32 0.202 O I I ( 0.87 115.833 0.00 0.32 0.200 O I I I 0.86 115.917 0.00 0.32 0.198 O I I 0.86 116.000 0.00 0.32 0.196 0 0.85 116.083 0.00 0.32 0.193 O 0.85 0.00 0.32 0.191 O ( 0.84 •116.167 116.250 0.00 0.32 0.189 O I I I 0.83 116.333 0.00 0.32 0.187 0 ( 0.83 116.417 0.00 0.32 0.185 O I 0.82 116.500 0.00 0.32 0.182 0 ( 0.82 116.583 0.00 0.32 0.180 0 I I 0.81 116.667 0.00 0.32 0.178 0 0.81 116.750 0.00 0.32 0.176 O I 0.80 116.833 0.00 0.32 0.174 0 0.80 116.917 0.00 0.32 0.172 O I I 0.79 117.000 0.00 0.31 0.169 0 ( 0.79 117.083 0.00 0.31 0.167 O I 0.78 117.167 0.00 0.31 0.165 O I I 0.78 117.250 0.00 0.31 0.163 0 I I 0.77 117.333 0.00 0.31 0.161 O I 0.77 117.417 0.00 0.31 0.159 0 I I I 0.76 117.500 0.00 0.31 0.156 .0 I 0.76 117.583 0.00 0.31 0.154 O I 0.75 117.667 0.00 0.31 0.152 0 0.74 117.750 0.00 0.31 0.150 0 I I 0.74 117.833 0.00 0.31 0.148 O I I I 0.73 117.917 0.00 0.31 0.146 0 I 0.73 118.000 0.00 0.31 0.143 0 I 0.72 118.083 0.00 0.31 0.141 O I 0.72 118.167 0.00 0.31 0.139 0 0.71 •118.250 0.00 0.31 0.137 0 I I 0.71 118.333 0.00 0.31 0.135 O I 0.70 118.417 0..00 0.31 0.133 0 I 0.70 118.500 0.00 0.31 0.131 0 ( I ( 0.69 118.583 0.00 0.31 0.129 O 0.69 118.667 0.00 0.31 0.126 O I 0.68 118.750 0.00 0.31 0.124 O 0.68 118.833 0.00 0.31 0.122 0 ( I 0.67 118.917 0.00 0.31 0.120 0 I I 0.67 119.000 0.00 0.31 0.118 O 0.66 119.083 0.00 0.31 0.116 O 0.66 119.167 0.00 0.31 0.114 O I I I 0.65 119.250 0.00 0.31 0.112 0 I I 0.65 119.333 0.00 0.31 0.109 0 I I 0.64 119.417 0.00 0.31 0.107 O ( 0.64 119.500 0.00 0.31 0.105 0 0.63 119.583 0.00 0.31 0.103 O 0.63 119.667 0.00 0.31 0.101 O. I 0.62 119.750 0.00 0.30 0.099 0 0.61 119.833 0.00 0.30 0.097 0 0.61 119'.917 0.00 0.30 0.095 O I 0.60 120.000 0.00 0.30 0.093 O I 0.60 120.083 0.00 0.30 0.091 O I I I 0.59 120.167 0.00 0.30 0.088 O I 0.59 120.250 0.00 0.30 0.086 0 0.58 •120.333 0.00 0.30 0.084 0 0.58 120.417 0.00 0.30 0.082 O 0.57 120.500 0.00 0.30 0.080 O I 0.57 120.583 0.00 0.30 0.078 O I I 0.56 120.667 0.00 0.30 0.076 0 0.56 Tune: Inflow Outflow Storage Depth ,.:(CFS) :,, (C.FS) -(Ac Ft) 0 < 1,7 9.. 35.84 53.76_ wl_ •,(Hours) 120.750 0.00 0.30 0.074 O 0.55 120.833 0.00 0.30 0.072 O I 0.55 120.917 0.00 0.30 0.070 O 0.54 121.000 0.00 0.30 0.068 O I I I 0.54 121.083 0.00 0.30 0.066 O 0.53 121.167 0.00 0.30 0.064 O I 0.53 121.250 0.00 0.30 0.061 O I 0.52 121.333 0.00 0:30 0.059 O I I 0.52 121.417 0.00 0.30 0.057 O I I 0.51 121.500 0.00 0.30 0.055 O I I 0.51 121.583 0.00 0.30 0.053 O 0.50 121.667 0.00 0.29 0.051 O I I 0.49 121.750 0.00 0.28 0.049 O I 0.48 121.833 0.00 0.28 0.047 O I I I 0.47 121.917 0.00 0.27 0.045 O I I I 0.46 122.000 0.00 0.26 0.044 O ( I 0.45 122.083 0.00 0.25 0.042 O I 0.43 122.167 0.00 0.24 0.040 O I 0.42 122.250 0.00 0.23 0.039 O I 0.41 122.333 0.00 0.22 0.037 O I 0.40 122.417 0.00 0.22 0.035 O I 0.39 122.500 0.00 0.21 0.034 0 0.38 122.583 0.00 0.20 0.033 O 0.37 .122.667 0.00 0.20 0.031 O I 0.36 122.750 0.00 0.19 0.030 O 0.35 122.833 0.00 0.18 0.029 O 0.35 122.917 0.00 0.18 0.027 O I I I 0.34 123.000 0.00 0.17 0.026 O 0.33 123.083 0.00 0.17 0.025 O 0.32 123.167 0.00 0.16 0.024 O I 0.32 123.250 0.00 0.16 0.023 O ( I 0.31 123.333 0.00 0.15 0.022 O I 0.30 123.417 0.00 0.14 0.021 O I I 0.29 123.500 0.00 0.14 0.020 O 0.29 123.583 0.00 0.14 0.019 O I ( 0.28 123.667 0.00 0.13 0.018 O I 0.28 123.750 0.00 0.13 0.017 O I I 0.27 123.833 0.00 0.12 0.016 O I I 0.26 123.917 0.00 0.12 0.015 O ( 0.26 124.000 0.00 0.11 0.015 O I 0.25 124.083 0.00 0.11 0.014 O 0.25 124.167 0.00 0.10 0.013 O 0.23 124.250 0::0'0 ,. 04110." Remaining water in basin = 0.01.(Ac.Ft) �k.*OUTFLOW ... ..<<., .. /:PERCOLATION'HYDROGRAPH a ..•_ � ,.,.ti.�. rF ,�r, DATA * * * * * * * * * * * * ** Number of intervals = 1491 Time interval = 5.0 (Min.) Maximum /Peak flow rate = 0.828 (CFS) • Total volume = 5.801 (Ac.Ft) OF 40 �PRGGM Copyright (C) CIVILCADD /CIVILDESIGN, 1989 - 2004 Study date: 02/16/07 --------------------------------------------------------------- - - - - -- File 62602B126hrF1dl8.5HSGABC Program License Serial Number 4082 -------------------------------------------------------------------- a a m �F s id 4 c t z a- sr a s xq �f a 3 yrr v+3t r *,* * * * * * *s* HYDROG , R�A�PHISNF� ,ORMA,TIN•a�`� *��k� *� �� * *� *� *' From study /file name: 62602B126hruh6100.rte WIN Number of intervals = 42 Time interval = 10.0 (Min.) Maximum /Peak flow rate = 48.112 (CFS) Total volume = '-15.341 (Ac.Ft) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 3800.000 to Point /Station 0.000 *y *�z* RsET � ING` BA IS NROUTING *�* User entry of depth - outflow- storage data Total number of inflow hydrograph intervals = 42 Hydrograph time unit = 10.000 (Min.)' • Initial depth in storage basin = 0.00(Ft.) Initial basin depth = 0.00 (Ft.) Initial basin storage = 0.00 (Ac.Ft) Initial basin outflow = 0.00 (CFS) D'eptY ors;: Stor�agEe andi }Depth 'vs.w Di._scharge; 'CL. Basin Basin Depth Storage Outflow (S- O *dt /2) (S +O *dt /2) (Ft.) (Ac.Ft) (CFS) (Ac.Ft) (Ac.Ft) j --------------------------------------------------------------------- 0.000 0.000 0.000 0.000 0.000 i 0.250 0.014 0.112 0.013 0.015 0.500 0.052 0.298 0.050 0.054 1.500 0.461 0.357 0.459 0.463 2.500 0.964 0.423 0.961 0.967 3.500 1.540 0.498 1.537 1.543 1 4.500 2.194 0.578 2.190 2.198 5.500 2.928 0.658 2.923 2.933 6.500 3.747 0.743 3.742 3.752 7.500 4.649 0.820 4.643 4.655 8.500 5.596 0.828 5.590 5.602 9.500' 6.559 0.836 6.553 6.565 10.500 6.975 0.843 6.969 6.981 r� V --------- - - - - *arograph Detention BaSin Routing -- - - -- - -- - - -- -- -- -- - -- - - - - -- -- -- Time :.. InfT:ow Outflow; -< -•.:- Storage •. �-- ;; Depth MOU "rs) (CF. (CFS)' , (Ac Ft) 0 12 0 ', , 24.,06 ' 36.08 48 11': (Ft'. )s 0.167 1.17 0.06 0.008 O I I I I 0.14 0.333 3.40 0.23 0.037 O I I I I I 0.40 0.500 4.27 0.30 0.086 O I I I I I 0.58 0.667 4.87 0.31 0.145 O I I I I I 0.73 0.833 5.28 0.32 0.211 O I I I I I 0.89 1.000 3.99 0.33 0.270 O I I I I I 1.03 1.167 1.65 0.33 0.304 OI I I I I 1.12 1.333 1.33 0.34 0.320 O I I I I 1.16 1.500 1.13 0.34 0.333 O I I I I 1.19 1.667 1.00 0.34 0.343 O I I I I 1.21 1.833 0.93 0.34 0.351 O I I I I 1.23 2.000 1.07 0.34 0.360 O I I I I 1.25 2.167 1.43 0.34 0.373 O I I I ( 1.28 2.333 1.72 0.35 0.390 OI I I I I 1.33 2.500 2.11 0.35 0.411 OI I I I I 1.38 2.667 2.23 0.35 0.436 OI I I I I 1.44 2.833 2.67 0.36 0.465 OI I I I I 1.51 3.000 3.40 0.36 0.502 O I ( I I I 1.58 3.167 3.80 0.37 0.547 O I I I I I 1.67 3.333 4.43 0.38 0.598 O I I I I i 1.77 3.500 5.51 0.38 0.661 O I I I I I 1.90 • 3.667 7.30 0.39 0.744 O I I I I I 2.06 3.833 9.10 0.41 0.852 O I I I I I 2,28 4.000 10.63 0.43 0.982 O II I I I 2.53 4.167 12.32 0.45 1.134 O I I I I 2.80 4.333 14.53 0.47 1.313 O II I I I 3.11 4.500 16.99 0.50 1.523 O I I I I I 3.47 4.667 19.22 0.53 1.766 O I I I I I 3.84 4.833 21.41 0.56 2.038 O I I I I I 4.26 5.000 23.60 0.59 2.340 O I II I I 4.70 5.167 28.31 0.63 2.689 O I I I I I 5.17 5.333 37.18 0.68 3.131, O I 5.75 5.500 '' 48 »11 0 7.4 -3 7:09 O ,` I_�I r I !'6:475 5.667 43.40 0.79 4.329 O I I I I I 7.14 5.833 18.74 0.82 4.745 O I I I I I 7.60 6.000 10.08 0.82 4.933 O I I I I I 7.80 6.167 5.40 0.82 5.028 O I I I I I 7.90 6.333 2.48 0.82 5.071 OI 7.95 '6 00 5_ 1.13 0 8 2 5 .084 J 6.667 0.25 0.82 5.082 O I I I I 7.96 6.833 0.08 0.82 5.073 O I I I I 7.95 7.000 0.02 0.82 5.063 O I I I I 7.94 7.167 0.00 0.82 5.052 O I I I I 7,93 7.333 0.00 0.82 5.040 O ( ( I I 7,91 7.500 0.00 0.82 5.029 O I I I I 7.90 • 7.667 0.00 0.82 5.018 O I I I I 7,89 7.833 0.00 0.82 5.006 O I I I I 7,88 8.000 0.00 0.82 4.995 O I I I I 7.87 8.167 0.00 0.82 4.984 0 I I I I 7.85 8.333 0.00 0.82 4.972 O 7.84 • 8.500 0.00 .0.82 4.961 O I 7.83 8.667 0.00 0.82 4.950 O I I I 7.82 8.833 0.00 0.82 4.938 O 7.81 9.000 0.00 0.82 4.927 O I I I 7.79 9.167 0.00 0.82 4.916 O 7.78 9.333 0.00 0.82 4.904 O 7.77 9.500 0.00 0.82 4.893 O 7.76 9.667 0.00 0.82 4.882 O 7.75 9.833 0.00 0.82 4.870 O I 7.73 10.000 0.00 0.82 4.859 O ) I 7.72 10.167 0.00 0.82 4.848 O I I I 7.71 10.333 0.00 0.82 4.836 O I 7.70 10.500 0.00 0.82 4.825 O I I I 7.69 10.667 0.00 0.82 4.814 O I I 7.67 10.833 0.00 0.82 4.802 O I I I I 7.66 11.000 0.00 0.82 4.791 O I 7.65 11.167 0.00 0..82 4.780 O I I I 7.64 11.333 0.00 0.82 4.768 O I I I I 7.63 11.500 0.00 0.82 4.757 O I I 7.61 11.667 0.00 0.82 4.746 O ( I I 7.60 11.833 0.00 0.82 4.734 O I I 7.59 12.000 0.00 0.82 4.723 O I 7.58 12.167 0.00 0.82 4.712 O I 7.57 12.333 0.00 0.82 4.701 O I 7.55 12.500 0.00 0.82 4.689 O I 7.54 12.667 0.00 0.82 4.678 O I I 7.53 12.833 0.00 0.82 4.667 O I I 7.52 13.000 0.00 0.82 4.655 O I I 7.51 13.167 0.00 0.82 4.644 O I I I I 7.49 13.333 0.00 0.82 4.633 O ( I 7.48 13.500 0.00 0.82 4.622 O I I 7.47 13.667 0.00 0.82 4.610 O I ( 7.46 13.833 0.00 0.82 4.599 O I I 7.44 14.000 0.00 0.81 4.588 O I I 7.43 14.167 0..00 0.81 4.577 O I 7.42 14.333 0.00 0.81 4.565 O ( 7.41 14.500 0.00 0.81 4.554 O I I I 7.39 14.667 0.00 0.81 4.543 O I I 7.38 14.833 0.00 0.81 4.532 O I 7.37 15.000 0.00 0.81 4.521 O I 7.36 15.167 0.00 0.81 4.510 O I I 7.35 15.333 0.00 0.81 4.498 O I I I 7.33 15.500 0.00 0.81 4.487 O I I I 7.32 15.667 0.00 0.81 4.476 O I 7.31 15.833 0.00 0.80 4.465 O I 7.30 16.000 0.00 0.80 4.454 O I I 7.28 16.167 0.00 0.80 4.443 O I I I 7.27 16.333 0.00 0.80 4.432 O I I 7.26 16.500 0.00 0.80 4.421 O 7.25 •16.667 0.00 0.80 4.410 O ( 7.23 16.833 0.00 0.80 4.399 O I I I 7.22 17.000 0.00 0.80 4.388 O 7.21 17.167 0.00 0.80 4.377 0 I I I I 7.20 17.333 0.00 0.80 4.366 O ( I I 7.19 17.500 0.00 0.79 4.355 0 ( 7.17 17.667 0.00 0.79 4.344 O ( I 7.16 17.833 0.00 0.79 4.333 O I I 7.15 18.000 0.00 0.79 4.322 O I 7.14 18.167 0.00 0.79 4.311 O I 7.13 18.333 0.00 0.79 4.300 0 I 7.11 18.500 0.00 0.79 4.290 O 7.10 18.667 0.00 0.79 4.279 O I I 7.09 18.833 0.00 0.79 4.268 0 7.08 19.000. 0.00 0.79 4.257 O I 7.07 19.167 0.00 0.79 4.246 O I I 7.05 19.333 0.00 0.78 4.235 O 7.04 19.500 0.00 0.78 4.225 O I I 7.03 19.667 0.00 0.78 4.214 0 I I ( 7.02 19.833 0.00 0.78 4.203 O I 7.01 20.000 0.00 0.78 4.192 O I I 6.99 20.167 0.00 0.78 4.181 O 6.98 20.333 0.00 0.78 4.171 O 6.97 20.500 0.00 0.78 4.160 O I 6.96 20.667 0.00 0.78 4.149 O I ( 6.95 20.833 0.00 0.78 4.139 O 6.93 21.000 0.00 0.78 4.128 O I I 6.92 21.167 0.00 0.77 4.117 O I I I 6.91 21.333 0.00 0.77 4.107 O I 6.90 0.00 0.77 4.096 0 I I 6.89 •21.500 21.667 0.00 0.77 4.085 O I I 6.88 21.833 0.00 0.77 4.075 O ( 6.86 22.000 0.00 0.77 4.064 0 I I 6.85 22.167 0.00 0.77 4.053 0 I I I I 6.84 22.333 0.00 0.77 4.043 O 6.83 22.500 0.00 0.77 4.032 O 6.82 22.667 0.00 0.77 4.022 O 6.80 22.833 0.00 0.77 4.011 O I 6.79 23.000 0.00 0.76 4.001 O I I I 6.78 23.167 0.00 0.76 3.990 O I I 6.77 23.333 0.00 0.76 3.980 O 6.76 23.500 0.00 0.76 3.969 0 I 6.75 23.667 0.00 0.76 3.959 O I ( 6.73 23.833 0.00 0.76 3.948 O I I I 6.72 24.000 0.00 0.76 3.938 0 ( I I 6.71 24.167 0.00 0.76 3.927 O I I 6.70 24.333 0.00 0.76 3.917 0 I I 6.69 24.500 0.00 '0.76 3.906 O 6.68 24.667 0.00 0.76 3.896 O I 6.67 24.833 0.00 0.75 3.886 O I I 6.65 25.000 0.00 0.75 3.875 O I 6.64 25.167 0.00 0.75 3.865 0 I 6.63 25.333 0.00 0.75 3.854 0 I 6.62 25.500 0.00 0.75 3.844 0 6.61 0.00 0.75 3.834 O 6.60 •25.667 25.833 0.00 0.75 3.823 O 6.58 26.000 0.00 0.75 3.813 O 6.57 26.167 0.00 0.75 3.803 0 6.56 0.00 0.75 3.792 O I I 6.55 •26.333 26.500 0.00 0.75 3.782 O I 6.54 26.667 0.00 0.75 3.772 O I I 6.53 26.833 0.00 0.74 3.762 O I I 6.52 27.000 0.00 0.74 3.751 O 6.50 27.167 0.00 0.74 3.741 O 6.49 27.333 0.010 0.74 3.731 O 6.48 27.500 0.00 0.74 3.721 O I 6.47 27.667 0.00 0.74 3.711 O I 6.46 27.833 0.00 0.74 3.700 O 6.44 28.000 0.00 0.74 3.690 O I 6.43 28.167 0.00 0.74 3.680 O I I 6.42 28.333 0.00 0.74 3.670 O I I 6.41 28.500 0.00 0.73 3.660 O ( I 6.39 28.667 0.00 0.73 3.650 O 6.38 28.833 0.00 0.73 3.640 O 6.37 29.000 0.00 0.73 3.630 O 6.36 29.167 0.00 0.73 3.619 O I ( 6.34 29.333 0.00 0.73 3.609 O I 6.33 29.500 0.00 0.73 3.599. O I 6.32 29.667 0.00 0.73 3.589 O I I 6.31 29.833 0.00 0.73 3.579 O 6.30 30.000 0.00 0.72 3.569 .0 I 6.28 30.167 0.00 0.72 3.559 O I I 6.27 30.333 0.00 0.72 3.549 O 6.26 0.00 0.72 3.540 O I 6.25 •30.500 30.667 0.00 0.72 3.530 O 6.23 30.833 0.00 0.72 3.520 O I I I 6.22 31.000 0.00 0.72 3.510 O 6.21 31.167 0.00 0.72 3.500 O I I I 6.20 31.333 0.00 0.72 3.490 O I 6.19 31.500 0.00 0.72 3.480 O I I 6.17 31.667 0.00 0.71 3.470 O I I 6.16 31.833 0.00 0.71 3.460 O I I 6.15 32.000 0.00 0.71 3.451 O I 6.14 32.167 0.00 0.71 3.441 O I ( 6.13 32.333 0.00 0.71 3.431 O I I I 6.11 32.500 0.00 0.71 3.421 O I I I 6.10 32.667 0.00 0.71 3.412 O I I 6.09 32.833 0.00 0.71 3.402 O 6.08 33.000 0.00 0.71 3.392 O. I 6.07 33.167 0.00 0.71 3.382 O 6.05 33.333 0.00 0.70 3.373 O ( I 6.04 33.500 0.00 0.70 3.363 O 6.03 33.667 0.00 0.70 3.353 O 6.02 33.833 0.00 0.70 3.344 O I I I 6.01 34.000 0.00 0.70 3.334 O 6.00 34.167 0.00 0.70 3.324 O I I 5.98 34.333 0.00 0.70 3.315 O 5.97 34.500 0.00 0.70 3.305 O 5.96 •34.667 0.00 0.70 3.295 O 5.95 34.833 0.00 0.70 3.286 O 5.94 35.000 0.00 0.69 3.276 O I I 5.93 35.167 0.00 0.69 3.267 0 I I 5.91 35.333 0.00 0.69 3.257 O 5.90 35.500 0.00 0.69 3.248 O I 5.89 i 35.667 0.00 0.69 3.238 O ( ( I I 5.88 35.833 0.00 0.69 3.229 O I 5.87 36.000 0.00 0.69 3.219 O 5.86 36.167 0.00 0.69 3.210 O 5.84 36.333 0.00 0.69 3.200 O I 5.83 36.500 0.00 0.69 3.191 O 5.82 36.667 0.00 0.68 3.181 O I I 5.81 36.833 0.00 0.68 3.172 O I ( I 5.80 37.000 0.00 0.68 3.163 O I I I 5.79 37.167 0.00 0.68 3.153 O I I I I 5.77 37.333 0.00 0.68 3.144 O I 5.76 37.500 0.00 0.68 3.134 O I 5.75 37.667 0.00 0.68 3.125 O I I 5.74 37.833 0.00 0.68 3.116 O I I I 5.73 38.000 0.00 0.68 3.106 O I 5.72 38.167 0.00 0.68 3.097 O 5.71 38.333 0.00 0.67 3.088 O I 5.70 38.500 0.00 0.67 3.079 O 5.68 38.667 0.00 0.67 3.069 O 5.67 38.833 0.00 0.67 3.060 O ( 5.66 39.000 0.00 0.67 3.051 O 5.65 39.167 0.00 0.67 3.042 O I 5.64 39.333 0.00 0.67 3.032 O I 5.63 0.00 0.67 3.023 O 5.62 •39.500 39.667 0.00 0.67 3.014 O 5.60 39.833 0.00 0.67 3.005 O I 5.59 40.000 0.00 0.67 2.996 O I 5.58 40.167 0.00 0.66 2.986 O I I 5.57 40.333 0.00 0.66 2.977 O I 5.56 40.500 0.00 0.66 2.968 O 5.55 40.667 0.00 0.66 2.959 O ( 5.54 40.833 0.00 0.66 2.950 O 5.53 41.000 0.00 0.66 2.941 O I 5.52 41.167 0.00 0.66 2.932 O I I 5.50 41.333 0.00 0.66 2.923 O I I 5.49 41.500 0.00 0.66 2.914 O I I 5.48 41.667 0.00 0.66 2.905 O ( 5.47 41.833 0.00 0.65 2.896 O I 5.46 42.000 0.00 0.65 2.887 O I ( 5.44 42.167 0.00 0.65 2.878 O I I 5.43 42.333 0.00 0.65 2.869 O ( I 5.42 42.500 0.00 0.65 2.860 O ( 5.41 42.667 0.00 0.65 2.851 O I 5.39 42.833 0.00 0.65 2.842 O I 5.38 43.000 0.00 0.65 2.833 O I 5.37 43.167 0.00 0.65 2.824 O I I 5.36 43.333 0.00 0.65 2.815 O I 5.35 43.500 0.00 0.64 2.806 O I 5.33 43.667 0.00 0.64 2.797 O I I I I 5.32 43.833 0.00 0.64 2.788 O I 5.31 44.000 0.00 0.64 2.780 O 5.30 44.167 0.00 0.64 2.771 0 I I I 5.29 44.333 0.00 0.64 2.762 O 5.27 44.500 0.00 0.64 2.753 O I I 5.26 44.667 0.00 0.64 2.744 O I 5.25 44.833 0.00 0.64 2.735 O 5.24 45.000 0.00 0.64 2.727 O I 5.23 45.167 0.00 0.64 2.718 O I I 5.21 45.333 0.00 0.63 2.709 O I 5.20 45.500 0.00 0.63 2.700 O I I 5.19 45.667 0.00 0.63 2.692 O 5.18 45.833 0.00 0.63 2.683 O I I 5.17 46.000 0.00 0.63 2.674 O I 5.15 46.167 0.00 0.63 2.666 O 5.14 46.333 0.00 0.63 2.657 O 5.13. 46.500 0.00 0.63 2.648 O I 5.12 46.667 0.00 0.63 2.640 O I 5.11 46.833 0.00 0.63 2.631 O I 5.10 47.000 0.00 0.62 2.623 O 5.08 47.167 0.00 0.62 2.614 O I I 5.07 47.333 0.00 0.62 2.605 O I I 5.06 47.500 0.00 0.62 2.597 O I 5.05 47.667 0.00 0.62 2.588 O I I 5.04 47.833 0.00 0.62 2.580 O I 5.03 48.000 0.00 0.62 2.571 O I 5.01 48.167 0.00 0.62 2.563 O I I I 5.00 48.333 0.00 0.62 2.554 O I 4.99 48.500 0.00 0.62 2.546 O I 4.98 • 48.667 0.00 0.62 2.537 O I I ( 4.97 48.833 0.00 0.61 2.529 O I 4.96 49.000 0.00 0.61 2.520 O I I 4.94 49.167 0.00 0.61 2.512 O I 4.93 49.333 0.00 0.61 2.503 O I 4.92 49.500 0.00 0.61 2.495 O I 4.91 49.667 0.00 0.61 2.486 O I 4.90 49.833 0.00 0.61 2.478 O I 4.89 50.000 0.00 0.61 2.470 O 4.88 50.167 0.00 0.61 2.461 O I I 4.86 50.333 0.00 0.61 2.453 O 4.85 50.500 0.00 0.61 2.445 O ( I 4.84 50.667 0.00 0.60 2.436 O 4.83 50.833 0.00 0.60 2.428 O I 4.82 51.000 0.00 0.60 2.420 O I I 4.81 51.167 0.00 0.60 2.411 O I ( 4.80 51.333 0.00 0.60 2.403 O I 4.78 51.500 0.00 0.60 2.395 O I 4.77 51.667 0.00 0.60 2.387 O I 4.76 51.833 0.00 0.60 2.378 O 4.75 52.000 0.00 0.60 2.370 O I 4.74 52.167 0.00 0.60 2.362 O I I I 4.73 52.333 0.00 0.60 2.354 O 4.72 52.500 0.00 0.59 2.345 O I 4.71 52.667 0.00 0.59 2.337 O ( I I I 4.70 is 52.833 0.00 0.59 2.329 O I I I 4.68 53.000 0.00 0.59 2.321 O I 4.67 53.167 0.00 0.59 2.313 0 4.66 53.333 0.00 0.59 2.305 O I I 4.65 •.53.500 0.00 0.59 2.297 O 4.64 53.667 0.00 0.59 2.288 O I I 4.63 53.833 0.00 0.59 2.280 0 I 4.62 54.000 0.00 0.59 2.272 0 I 4.61 54.167 0.00 0.59 2.264 O I I_ I I 4.60 54.333 0.00 0.58 2.256 0 4.58 54.500 0.00 0.58 2.248 0 I 4.57 54.667 0.00 0.58 2.240 0 I I I 4.56 54.833 0.00 0.58 2.232 O I ( 4.55 55.000 0.00 0.58 2.224 O I 4.54 55.167 0.00 0.58 2.216 0 I I I I 4.53 55.333 0.00 0.58 2.208 0 I 4.52 55.500 0..00 0.58 2.200 O I 4.51 55.667 0.00 0.58 2.192 0 I I 4.50 55.833 0.00 0.58 2.184 0 I 4.48 56.000 0.00 0.58 2.176 O I 4.47 56.167 0.00 0.57 2.168 0 I 4.46 56.333 0.00 0.57 2.160 0 I I 4.45 56.500 0.00 0.57 2.152 O I 4.44 56.667 0.00 0.57 2.145 O 4.42 56.833 0.00 0.57 2.137 0 I 4.41 57.000 0.00 0.57 2.129 0 ( 4.40 57.167 0.00 0.57 2.121 O I I I 4.39 57.333 0.00 0.57 2.113 0 ( I 4.38 •57.500 57.667 0.00 0.00 0.57 0.57 2.105 2.098 O 0 I I 4.36 I 4.35 57.833 0.00 0.57 2.090 O I I I 4.34 58.000 0.00 0.56 2.082 O 4.33 58.167 0.00 0.56 2.074 O 4..32 58.333 0.00 0.56 2.066 O I 4.30 58.500 0.00 0.56 2.059 0 I 4.29 58.667 0.00 0.56 2.051 O I I I 4.28 58.833 0.00 0.56 2.043 0 I I I 4.27 59.000 0.00 0.56 2.036 0 I 4.26 59.167 0.00 0.56 2.028 0 I ( I 4.25 59.333 0.00 0.56 2.020 0 4.23 59.500 0.00 0.56 2.013 0 I 4.22 59.667 0.00 0.55 2.005 O 4.21 59.833 0.00 0.55 1.997 O 4.20 60.000 0.00 0.55 1.990 O I ( 4.19 60.167 0.00 0.55 1.982 O I I 4.18 60.333 0.00 0.55 1.974 0 I I I 4.16 60.500 0.00 0.55 1.967 0 4.15 60.667 0.00 0.55 1.959 O 4.14 60.833 0.00 0.55 1.952 O I I I 4.13 61.000 0.00 0.55 1.944 0 4.12 61.167 0.00 0.55 1.937 0 ( 4.11 61.333 0.00 0.55 1.929 O ( 4.09 61.500 0.00 0.54 1.922 O I I 4.08 0.00 0.54 1.914 O I 4.07 •61.667 61.833 0.00 0.54 1.907 O I 4.06 62.000 0.00 0.54 1.899 O ( I 4.05 62.167 0.00 0.54 1.892 0 4.04 62.333 0.00 0.54 1.884 O 4.03 62.500 0.00 0.54 1.877 O I .4.02 62.667 0.00 0.54 1.869 O 4.00 62.833 0.00 0.54 1.862 O I I I 3.99 63.000 0.00 0.54 1.855 O (. 3.98 63.167 0.00 0.54 1.847 O I I I 3.97, •63.333 0.00 0.53 1.840 O ( 3.96 63.500 0.00 0.53 1.832 O I I I 3.95 63.667 0.00 0.53 1.825 O 3.94 63.833 0.00 0.53 1.818, O I I 3.92 64.000 0.00 0.53 1.810 O I 3.91 64.167 0.00 0.53 1.803 O ( I 3.90 64.333 0.00 0.53 1.796 O I I 3.89 64.500 0.00 0.53 1.789 O I 3.88 64.667 0.00 0.53 1.781 0 I I 3.87 64.833 0.00 0.53 1.774 O I 3.86 65.000 0.00 0.53 1.767 O I I 3.85 65.167 0.00 0.52 1.760 O I 3.84 65.333 0.00 0.52 1.752 O I I. I 3,82 65.500 0.00 0.52 1.745 O �. I 3.81 65.667 0.00 0.52 1.738 O I 3.80 65.833 0.00 0.52 1.731 O I 3,79 66.000 0.00 0.52 1.724 O I I 3,78 66.167 0.00 0.52 1.716 O 3.77 66.333 0.00 0.52 1.709 O I 3.76 66.500 66.667 0.00 0.00 0.52 0.52 1.702 1.695 O I I O I ( I 3.75 I 3.74 66.833 0.00 0.52 1.688 O I 3.73 67.000 0.00 0.52 1.681 O I I 3.72 67.167 0.00 0.51 1.674 O 3.70 67.333 0.00 0.51 1.667 O I 3.69 67.500 0.00 0.51 1.660 O 3.68 67.667 0.00 0.51 1.652 O I 3.67 67.833 0.00 0.51 1.645 O I I 3.66 68.000 0.00 0.51 1.638 O I 3.65 68.167 0.00 0.51 1.631 O I I 3.64 68.333 0.00 0.51 1.624 O ( I I I 3.63 68.500 0.00 0.51 1.617 O 3.62 68.667 0.00 0.51 1 -610 O I I 3.61 68.833 0.00 0.51 1.603 O I 3.60 69.000 0.00 0.50 1.596 O I I 3.59 69.167 0.00 0.50 1.590 O I 3.58 69.333 0.00 0.50 1.583 O I 3.57 69.500 0.00 0.50 1.576 O 3.55 69.667 0.00 0.50 1.569 O ( I 3.54 69.833 0.00 0.50 1.562 O I I I 3.53 70.000 0.00 0.50 1.555 O I I I I 3.52 70.167 0.00 0.50 1.548 O I 3.51 70.333 0.00 0.50 1.541 O I 3.50 70.500 0.00 0.50 1.534 O I 3.49 0.00 0.50 1.528 O I I I 3.48 i70.667 70.833 0.00 0.50 1.521 O I 3.47 71.000 0.00 0.49 1.514 O I I I I 3.45 71.167 0.00 0.49 1.507 0 I I I I 3.44 71.333 0.00 0.49 1.500 0 3.43 71.500 0.00 0.49 1.493 0 I 3.42 71.667 0.00 0.49 1.487 0 I 3.41 71.833 0.00 0.49 1.480 O I I I ( 3.40 72.000 0.00 0.49 1.473 0 3.38 72.167 0.00 0.49 1.466 O 3.37 72.333 0.00 0.49 1.460 O I 3.36 72.500 0.00 0.49 1.453 0 I I I 3.35 72.667 0.00 0.49 1.446 O I I 3.34 72.833 0.00 0.48 1.440 O I 3.33 73.000 0.00 0.48 1.433 0 ( 3.31 73.167 0.00 0.48 1.426 O I 3.30 73.333 0.00 0.48 1.420 O I 3.29 73.500 0.00 0.48 1.413 0 I 3.28 73.667 0.00 0.48 1.406 0 I I I 3.27 73.833 0.00 0.48 1.400 0 I 3.26 74.000 0.00 0.48 1.393 0 I I 3.25 74.167 0.00 0.48 1.387 0 3.23 74.333 0.00 0.48 1.380 0 I 3.22 74.500 0.00 0.48 1.373 0 I 3.21 74.667 0.00 0.48 1.367 O 3.20 74.833 0.00 0.47 1.360 0 ( 3.19 75.000 0.00 0.47 1.354 0 I I I 3.18 75.167 0.00 0.47 1.347 O I I 3.17 75.333 0.00 0.47 1.341 0 I 3.15 75.500 0.00 0.47 1.334 O I I 3.14 75.667 0.00 0.47 1.328 0 I I 3.13 75.833 0.00 0.47 1.321 0 3.12 76.000 0.00 0.47 1.315 0 I 3.11 76.167 0.00 0.47 1.308 0 I 3.10 76.333 0.00 0.47 1.302 O I 3.09 76.500 .0.00 0.47 1.296 0 I I I ( 3.08 76.667 0.00 0.47 1.289 O I I 3.06 76.833 0.00 0.46 1.283 O 3.05 77.000 0.00 0.46 1.276 0 I 3.04 77.167 0.00 0.46 1.270 0 I I 3.03 77.333 0.00 0.46 1.264 0 I 3.02 77.500 0.00 0.46 1.257 0 I 3.01 77.667 0.00 0.46 1.251 0 3.00 77.833 0.00 0.46 1.245 0 I I 2.99 78.000 0.00 0.46 1.238 0 I I ( I 2.98 78.167 0.00 0.46 1.232 0 I I I 2.97 78.333 0.00 0.46 1.226 0 I I 2.95 78.500 0.00 .0.46 1.219 O I I I 2.94 78.667 0.00 0.46 1.213 0 I 2.93 78.833 0.00 0.45 1.207 0 I I 2.92 79.000 0.00 0.45 1.201 O I I I 2.91 79.167 0.00 0.45 1.194 0 2.90 79.333 0.00 0.45 1.188 O I I I 2.89 79.500 0.00 0.45 1.182 O ( I I I 2.88 0.00 0.45 1.176 O I I I I 2.87 •79.667 79.833 0.00 0.45 1.169 0 I I I 2.86 80.000 0.00 0.45 1.163 0 I I 2.85 80.167 0.00 0.45 1.157 0 I 2.84 80.333 0.00 0.45 1.151 O I I 2.82 80.500 0.00 0.45 1.145 O 2.81 80.667 0.00 0.45 1.139 O I 2.80 80.833 0.00 0.44 1.132 O 2.79 81.000 0.00 0.44 1.126 O I 2,78 81.167 0.00 0.44 1.120 O 2.77 81.333 0.00 0.44 1.114 O I 2.76 81.500 0.00 0.44 1.108 O I I I 2,75 81.667 0.00 0.44 1.102 O 2.74 81.833 0.00 0.44 1.096 O I 2.73 82.000 0.00 0.44 1.090 O 2,72 82.167 0.00 0.44 1.084 O I I 2.71 82.333 0.00 0.44 1.078 O I I I 2.70 82.500 0.00 0.44 1.072 O I 2.69 82.667 0.00 0.44 1.066 O I 2.68 82.833 0.00 0.44 1.060 O ( I I 2,67 83.000 0.00 0.43 1.054 O 2.66 83.167 0.00 0.43 1.048 O I 2.65 83.333 0.00 0.43 1.042 O ( I 2.63 83.500 0.00 0.43 1.036 O 2,62 83.667 0.00 0.43 1.030 O I 2.61 83.833 0.00 0.43 1.024 O I I 2.60 84.000 0.00 0.43 1.018 O 2.59 84.167 0.00 0.43 1.012 O I I 2,58 84.333 0.00 0.43 1.006 O I I 2,57 0.00 0.43 1.000 O ( 2.56 •84.500 84.667 0.00 0.43 0.994 O I ( 2.55 ' 84.833 0.00 0.43 0.988 O I 2.54 85.000 0.00 0.43 0.983 O ( 2.53 85.167 0.00 0.42 0.977 O I I I 2.52 85.333 0.00 0.42 0.971 O I 2.51 85.500 0.00 0.42 0.965 O I I I I 2.50 85.667 0.00 0.42 0.959 O I 2.49 85.833 0.00 0.42 0.953 O 2.48 86.000 0.00 0.42 0.948 O I I 2,47 86.167 0.00 0.42 0.942 O I ( 2..46 86.333 0.00 0.42 0.936 O I 2.44 86.500 0.00 0.42 0.930 O ( I 2.43 86.667 0.00 0.42 0.925 O I 2.42 86.833 0.00 0.42 0.919 O I I 2.41 87.000 0.00 0.42 0.913 O I I 2.40 87.167 0.00 0.42 0.907 O I 2.39 87.333 0.00 0.41 0.902 O ( 2,38 87.500 0.00 0.41 0.896 O I 2.36 87.667 0.00 0.41 0.890 0' I I 2.35 87.833 0.00 0.41 0.885 O 2.34 88.000 0.00 0.41 0.879 O I I 2.33 88.167 0.00 0.41 0.873 O 2,32 88.333 0.00 0.41 0.868 O 2.31 88.500 0.00 0.41 0.862 O I 2.30 •88.667 0.00 0.41 0.856 O ( 2,29 88.833 0.00 0.41 0.851 O I 2,27 89.000 0.00 0.41 0.845 O 2,26 89.167 0.00 0.41 0.839 0 I 2,25 89.333 0.00 0.41 0.834 O 2.24 •89.,500 0.00 0.41 0.828 O 2.23 89.667 0.00 0.40 0.823 O I I 2.22 89.833 0.00 0.40 0.817 O I I I 2,21 90.000 0.00 0.40 0.812 O ( 2.20 90.167 0.00 0.40 0.806 O I 2.19 90.333 0.00 0.40 0.800 O I I 2.17 90.500 0.00 0.40 0.795 O 2.16 90.667 0.00 0.40 0.789 O I 2.15 90.833 0.00 0.40 0.784 O I I ( 2.14 91.000 0.00 0.40 0.778 O I 2.13 91.167 0.00 0.40 0.773 O I I 2.12 91.333 0.00 0.40 0.767 O 2.11 91.500 0.00 0.40 0.762 O I I 2.10 91.667 0.00 0.40 0.756 O I ( 2,09 91.833 0.00 0.40 0.751 O 2.08 92.000 0.00 0.39 0.746 O I I 2.07 92.167 0.00 0.39 0.740 O 2.06 92.333 0.00 0.39 0.735 O 2.04 92.500 0.00 0.39 0.729 O I 2.03 92.667 0.00 0.39 0:724 O ( I I 2.02 92.833 0.00 0.39 0.719 O 2.01 93.000 0.00 0.39 0.713 O ( 2.00 93.167 0.00 0.39 0.708 O ( I 1.99 93.333 0.00 0.39 0.702 O I 1.98 •93.500 93.667 0.00 0.00 0.39 0.39 0.697 0.692 O I O I 1.97 1.96 93.833 0.00 0.39 0.686 O ( I 1.95 94.000 0.00 0.39 0.681 O 1.94 94.167 0.00 0.39 0.676 O I 1.93 94.333 0.00 0.38 0.671 O I I 1.92 94.500 0.00 0.38 0.665 O I 1.91 94.667 0.00 0.38 0.660 O I ( I 1.90 94.833 0.00 0.38 0.655 O I 1.89 95.000 0.00 0.38 0.649 O I 1.87 95.167 0.00 0.38 0.644 O 1.86 95.333 0.00 0.38 0.639 O 1.85 95.500 0.00 0.38 0.634 O I 1.84 95.667 0.00 0.38 0.628 O I I 1.83 95.833 0.00 0.38 0.623 O I 1.82 96.000 0.00 0.38 0.618 O I I 1.81 96.167 0.00 0.38 0.613 O I 1.80 96.333 0.00 0.38 0.608 O I I .1.79 96.500 0.00 0.38 0.602 O I I I 1.78 96.667 0.00 0.37 0.597 O I I I 1,77 96.833 0.00 0.37 0.592 O I I I 1.76 97.000 0.00 0.37 0.587 O ( I I 1.75 97.167 0.00 0.37 0.582 O I 1.74 97.333 0.00 0.37 0.577 O I I I 1.73 97.500 0.00 0.37 0.572 O 1.72 0.00 0.37 0.566 O I I ( I 1.71 •97.667 97.833 0.00 0.37 0.561 O I I 1.70 98.000 0.00 0.37 0.556 O 1.69 98.167 0.00 0.37 0.551 0 I I I 1.68 98.333 0.00 0.37 0.546 O 1.67 98.500 0.00 0.37 0.541 O I I I 1.66 98.667 0.00 0.37 0.536 O I 1.65 98.833 0.00 0.37 0.531 O 1.64 99.000 0.00 0.37 0.526 O 1.63 99.167 0.00 0.36 0.521. O I I 1.62 99.333 0.00 0.36 0.516 O ( 1.61 99.500 0.00 0.36 0.511 O I 1.60 99.667 0.00 0.36 0.506 O 1.59 99.833 0.00 0.36 0.501 O I .1.58 100.000 0.00 0.36 0.496 O ( I 1.57 100.167 0.00 0.36 0.491 O ( 1.56 100.333 0.00 0.36 0.486 O 1.55 100.500 0.00 0.36 0.481 O I 1.54 100.667 0.00 0.36 0.476 O I I 1.53 100.833 0.00 0.36 0.471 O I I 1.52 101.000 0.00 0.36 0.466 O I 1.51 101.167 0.00 0.36 0.461 O I 1.50 101.333 0.00 0.36 0.456 O 1.49 101.500 0.00 0.36 0.451 O I 1.48 101.667 0.00 0.35 0.447 O 1.46 101.833 0.00 0.35 0.442 O I I I 1.45 102.000 0.00 0.35 0.437 O I I I 1.44 102.167 0.00 0.35 0.432 O ( 1.43 102.333 0.00 0.35 0.427 O I 1.42 102.500 0.00 0.35 0.422 O I I 1.41 • 102.667 0.00 0.35 0.417 O I I 1.39 102.833 0.00 0.35 0.413 O I 1.38 103.000 0.00 0.35 0.408 O I 1.37 103.167 0.00 0.35 0.403 O 1.36 103.333 0.00 0.35 0.398 O I 1.35 103.500 0.00 0.35 0.393 O I 1.33 103.667 0.00 0.35 0.389 O I 1.32 103.833 0.00 0.35 0.384 O 1.31 104.000 0.00 0.35 0.379 O I 1.30 104.167 0.00 0.34 0.374 O I I I I 1.29 104.333 0.00 0.34 0.370 O ( 1.28 104.500 0.00 0.34 0.365 O 1.26 104.667 0.00 0.34 0.360 O I I 1.25 104.833 0.00 0.34 0.355 O I I I 1.24 105.000 0.00 0.34 0.351 O I I I I 1.23 105.167 0.00 0.34 0.346 O I 1.22 105.333 0.00 0.34 0.341 O 1.21 105.5.00 0.00 0.34 0.337 O 1.20 105.667 0.00 0.34 0.332 O I I I 1.18 105.833 0.00 0.34 0.327 O 1.17 106.000 0.00 0.34 0.323 O I I 1.16 106.167 0.00 0.34 0.318 O I 1.15 106.333 0.00 0.34 0.313 O I 1.14 106.500 0.00 0.34 0.309 O I I 1.13 0.00 0.33 0.304 O I I I 1.12 •106.667 106.833 0.00 0.33 0.300 O 1.11 107.000 0.00 0.33 0.295 O 1.09 107.167 0.00 0.33 0.290 0 1.08 107.333 0.00 0.33 0.286 0 I I I I 1.07 •107.500. 0.00 0.33 0.281 O I I I I 1.06 107.667 0.00 0.33 0.277 0 I I I I 1.05 107.833 0.00 0.33 0.272 O I I I I 1.04 108.000 0.00 0.33 0.268 0 I I I ( 1.03 108.167 0.00 0.33 0.263 O I I I I 1.02 108.333 0.00 0.33 0.259 0 I I I I 1.01 108.500 0.00 0.33 0.254 O ( ( I I 0.99 108.667 0.00 0.33 0.250 0 I I I I 0.98 108.833 0.00 0.33 0.245 O I ( I I 0.97 109.000 0.00 0.33 0.241 0 I I I I 0.96 109.167 0.00 0.32 0.236 0 I I I I 0.95 109.333 0.00 0.32 0.232 0 I I I I 0.94 109.500 0.00 0.32 0.227 O I I I I 0.93 109.667 0.00 0.32 0.223 0 I I I I 0.92 109.833 0.00 0.32 0.218 O I I I I 0.91 110.000 0.00 0.32 0.214 0 I I I I 0.90 110.167 0.00 0.32' 0.209 O I I I I 0.88 110.333 0.00 0.32 0.205 O I I I I 0.87 110.500 0.00 0.32 0.201 O I I I I 0.86 110.667 0.00 0.32 0.196 0 I I I I 0.85 110.833 0.00 0.32 0.192 O I I I I 0.84 111.000 0.00 0.32 0.187 0 I I I ( 0.83 111.167 0.00 0.32 0.183 O I I I I 0.82 111.333 0.00 0.32 0.179 O I I I I 0.81 111.500 0.00 0.32 0.174 O I I I I 0.80 111.667 0.00 0.32 0.170 O I I I I 0.79 111.833 0.00 0.31 0.166 0 I I I I 0.78 112.000 0.00 0.31 0.161 O I I I I 0.77 112.167 0.00 0.31 0.157 O I I I I 0.76 112.333 0.00 0.31 0.153 O I I I I 0.75 112.500 0.00 0.31 0.148 0 I I I I 0.74 112.667 0.00 0.31 0.144 O ( I I I 0.73 112.833 0.00 0.31 0.140 O I I I I 0.71 113.000 0.00 0.31 0.136 O I I I I 0.70 113.167 0.00 0.31 0.131 O I I I I 0.69 113.333 0.00 0.31 0.127 O I I I I 0.68 113.500 0.00 0.31 0.123 0 I I I I 0.67 113.667 0.00 0.31 0.119 O I I I I 0.66 113.833 0.00 0.31 0.114 O I I I I 0.65 114.000 0.00 0.31 0.110 O I I I I 0.64 114.167 0.00 0.31 0.106 O I I I I 0.63 114.333 0.00 0.31 0.102 O I I I I 0.62 114.500 0.00 0.30 0.097 0 I I ( 1 0.61 114.667 0:00 0.30 0.093 O I I I I 0.60 114.833 0.00 0.30 0.089 0 I I I I 0.59 115.000 0.00 0.30 0.085 0 I i I I 0.58 115.167 0.00 0.30 0.081 O I I I I 0.57 115.333 0.00 0.30 0.077 O I I I I 0.56 115.500 0.00 0.30 0.072 0 I I I ( 0.55 •115.667 0.00 0.30 0.068 O I I I I 0.54 115.833 0.00 0.30 0.064 O I I I I 0.53 116.000 0.00 0.30 0.060 0 I I I I 0.52 116.167 0.00 0.30 0.056 0 0.51 Time • ::(Hours)', 116.333 116.500 116.667 116.833 117.000 117.167 117.333 117.500 117.667 117.833 118.000 118.167 118.333 118.500 118.667 118.833 L • Inflow_` Outflow (CFS)' (CFS)'. 0.00 0.30 0.00 0.28 0.00 0.26 0.00 0.24 0.00 0.23 0.00 0.21 0.00 0.20 0.00 0.19 0.00 0.17 0.00 0.16 0.00 0.15 0.00 0.14 0.00 0.13 0.00 0.12 0.00 0.12 0.00 0.11 Storage (Ac Ft) 0 0.052 O 0.048 O 0.044 O 0.041 O 0.037 O 0.034 O 0.032 O 0.029 O 0.027 O 0.024 O 0.022 O 0.020 O 0.018 O 0.016 O 0.015 O 0.013 O -Depth 24.06 36 08 48­11 (Ft) 0.50 0.47 0.45 0.43 0.40 0.38 0.37 0.35 0.33 0.32 0.30 0.29 0.28 0.27 0.25 0.24 1119.000 0.00 0.09 0.012 O .1 ,.0:21 Remaining water in basin = 0.01 (Ac.Ft) * * * * ** *OUTFLOW / PERCOLATION HYDROGRAPH Number of intervals = 714 Time interval = 10.0 (Min.) Maximum /Peak flow rate = 0.824 (CFS) Total volume = 5.329 (Ac.Ft) DATA* * *: *:* *: *; a�^,yv �.� -?vim �.L�.a�va,�:�-eaassa.•aawta"�i bawd,•, j' �a ,•r��=.vi�•.a:��.a�a�a�`.�'�y�l Copyright (c) CIVILCADD /CIVILDESIGN, 1989 2004 Study date: 02/21/07 --------------------------------------------------------------- - - - - -- File 62602B1224hrF1dHSGABC -------------------------------------------------------------------- Program License Serial Number 4082 -------------------------------------------------------------------- *a *� *�' *� *� *� *�* From study /file name: 62602B1224hruh24100.rte Number of intervals = 100 Time interval = 15.0 (Min.) Maximum /Peak flow rate = 12.133 (CFS) Total .volume = '--5.541 (Ac.Ft) . ++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +.+ Process from Point /Station 3800.000 to Point /Station 0.000 �trtt: rr- +'r..�•. r 'ncx, a -- yc,•.,,�+a.�-�ur- �.rs+. -,.h.. �C„�T.eimx�Y,rnarr * * * RETARDING BAS I- "DOW W�NG * * *�* User entry of depth - outflow- storage data Total number of inflow hydrograph intervals = 100 Hydrograph time unit 15.000 (Min.) � " "s�'s;'a°:.f.`.�'t' � ` i°.'�`r`'$'C`^$�`�;.'•4"•�:'^: i'�`�: m" a. �`.- �a� •- �^�''��'�'"�ro'z;+'°�"+�a. <J a.a.�r��i�e l+y Dept °h °us 7 �SetoraQe�•�andDeDtsh= rY•S�,'• AD- i�sc�har Fey t �a�t"'at'�• q.Ya�khs'�^;"�'. ��ar`r��.� --r a;��!�x;s?`�`??�w �.r. ...�wr_`.�� �:.$�,-;`:��:a."�;��s;!z� :cis- s�.-rr- ,�.s��..�e_%��st� _. i.•,.•_ku Basin Depth Storage Outflow (S- O *dt /2) (S +O *dt /2) (Ft.) (Ac.Ft) (CFS) (Ac.Ft) (Ac.Ft) =--------------------------------------------------------------------- 0.000 0.000 0:000 0.000 0.000 0.250 0.014 0.112 0.013 0.015 0.500 •0.052 0.298 .0.049 0.055 1.500 0.461 0.357 0.457 0.465 2.500 0.964 0.423 0.960 0.968 3.500 1.540 0.498 1.535 1.545 4.500 2.194 0.578 2.188 2.200 5.500 2.928 0.658 2.921 2.935 6.500 3.747 0.743 3.739 3.755 7.500 4.649 0.820 4:641 4.657 8.500 5.596 0.828 5.587 5.605 9.500 6.559 0.836 6.550 6.568 10.500 6.975 0.843 6.966 6.984 -------------------------------------=------------------------ - - - - -- 11 0 Hydrograph'.Detent°ion Basin Routing • --------------------------------------------------------------------- Graph values: 'I'= unit inflow; 'O'= outflow at time shown ----------_-----------------------------_------------------------------ Time Inflow' Outflow.': Storage Depth (Hours) (CFS) - (CFS) (Ac Ft_) 0 _ � 3 0 6..07 9 10 ~ � _..__.�I ,. 12 13 _..0.05 0.2500.26 0.02 0.003 O i....__ i I .. 0.500 0.68 0.09 0.011 OI I 0.20 0.750 0.88 0.16 0.025 O I 0.32 1.000 1.07 0.24 0.041 O I I I I 0.43 1.250 1.10 0.30 0.057 O I 0.51 1.500 0.99 0.30 0.073 O I I I I 0.55 1.750 0.97 0.30 0.087 O I I I 0.59 2.000 1.10 0.31 0.102 O I I ( 0.62 2.250 1.24 0.31 0.120 O I I I 0.67 2.500 1.27 0.31 0.139 O I 0.71 2.750 1.41 0.31 0.160 O I I I I 0.77 3.000 1.56 0.32 0.185 O I I 0.82 3.250 1.59' 0.32 0.210 O I I 0.89 3.500 1.60 0.32 0.237 O I I 0.95 3.750 1.60 0.33 0.263 O I I 1.02 4.000 1.74 0.33 0.291 O I I I 1.08 4.250 1.88 0.34 0.321 O I I 1.16 4.500 2.04 0.34 0.354 O I I 1.24 4.750 2.19 0.35 0.391 O I I 1.33 • 5.000 2.36 0.35 0.431 O I I 1.43 5.250 2.25 0.36 0.471 O I I I 1.52 5.500 2.13 0.36 0.509 O I I 1.60 5.750 2.36 0.37 0.548 O I I I 1.67 6.000 2.51 0.37 0.590 O I 1.76 6.250 2.68 0.38 0.636 10 I1 1 1.85 6.500 2.83 0.39 0.685 10 I1 I 1.95 6.750 3.00 0.39 0.737 10 I1 I I 2.05 7.000 3.15 0.40 0.793 10 I I 2.16 7.250 3.19 0.41 0.850 10 I I 2.27 7.500 3.33 0.42 0.909 10 I I 2.39 7.750 3.61 0.42 0.972 IO 1I 1 I 2.51 8.000 3.92 0.43 1.041 10 I I I 2.63 8.250 4.36 0.44 1.117 10 I I I 2.77 8.500 4.69 0.45 1.201 10 I I I I 2.91 8.750 4.90 0.47 1.291 10 I I 3.07 9.000 5.20 0.48 1.386 10 I 3.23 9.250 3.36 0.49 1.464 10 I 3.37 9.500 1.58 0.49 1.505 10 I 1 I 3.44 9.750 1.83 0.50 1.530 10 I 1 3.48 10.000 2.41 0.50 1.564 IO I 1 I 3.54 10.250 3.56 0.51 1.615 10 II I 3.61 10.500 4.49 0.52 1.687 10 1 I I 3.73 10.750 3.61 0.52 1.760 IO 1I I I 3.84 2.58 0.53 1.813 10 I 1 I 3.92 •11.000 11.250 2.23 0.54 1.852 10 I 1 3.98 11.500 2.00 0.54 1.885 10 I I ( I 4.03 11.750 1.52 0.54 1.910 10 I 1 4.07 12.000 1.34 0.55 1.928 10 I 1 4.09 Time:. Iiif low" • Outf low Storage Depth • (Hours) ;(CFS): `"; (CFS) .. (AO--,.'F t) 0 :3 0_ 6.:07,, 9.'10 12.250 3.50 0.55 1.967 IO II I I 12.500 5.91 0.56 2.053 IO I II I I 4.28 12.750 7.29 0.58 2.177 IO I I I I I 4.47 13.000 8.50 0.59 2.328 IO I I I I I 4.68 13.250 10.46 0.61 2.512 10 1 1 1 I 1 4.93 13:500 0..64 2".%73,2' 5:23 13.750 9.70 0.66 2.944 IO I I II I 5.52 14.000 6.85 0.68 3.101 IO I I I I I 5.71 14.250 7.44 0.69 3.235 IO I I I I I 5.87 14.500 8.18 0.71 3.382 IO I I I I i 6.05 14.750 8.16 0.72 3.536 IO I I I I I 6.24 15.000 8.06 0.74 3.688 IO I I I I I 6.43 15.250 7.65 0.75 3.835 IO I I I I I 6.60 15.500 7.16 0.76 3.972 I O I I I I I 6.75 15.750 5.86 0.77 4.091 I O I II I I 6.88 16.000 4.75 0.78 4:185 I O I I I I I 6.99 16.250 3.25 0.79 4.251 I O I I I I 7.06 16.500 1.77 0.79 4.287 I O I I I I I 7.10 16.750 1.31 0.79 4.302 I OI I I I I 7.12 17.000 1.06 0.79 4.310 I O I I I I 7.12 17.250 1.24 0.79 4.318 I OI I I I I 7.13 17.500 1.51 0.79 4.330 I OI I I I I 7.15 17.750 1.57 0.79 4.345 I O I I I I I 7.16 •18.000 1.46 0.80 4.360 I OI I ( I I 7.18 18.250 1.33 0.80 4.373 10I I I I I 7.19 18.500 1.30 0.80 4.383 I OI I I I I 7.21 18.750 1.15 0.80 4.392 10I I I I ( 7.22 19.000 0.88 0.80 4.397 I O I I I I 7.22 19.250 0.84 0.80 4.398 I O I I I I 7.22 19.500 1.07 0.80 4.401 I O I I I I 7.23 19.750 1.09 0.80 4.407 I O I I I I 7.23 20.000 0.85 0.80 4.410 10 I I I I 7.24 20.250 0.83 0.80 4.411 I O I I I I 7.24 20.500 0.94 0.80 4.413 ( O I I I I 7.24 20.750 0.95 0.80 4.416 0 ( ( I I 7.24 21 000 0 : 82 0'. 80 4 :'418 I I r I • I I_ J ? • 2 =4 21.250 0.82 0.80 4.418 I O I I I I 7.24 21.500 0.80 0.80 4.418 I O I I I I 7.24 21.750 0.81 0.80 4.418 I O I I I I 7.24 22.000 0.79 0.80 4.418 I O I I I I 7.24 22.250 0.81 0.80 4.418 I O I I I I 7.24 22.500 0.79 0.80 4.419 I O I I I I 7.24 22.750 0.68 0.80 4.417 IIO I I I I 7.24 23.000 0.65 0.80 4.414 IIO I I I I 7.24 23.250 0.65 0.80 4.411 IIO I I I I 7,24 23.500 0.64 0.80 4.408 IIO I I I I 7.23 23.750 0.64 0.80 4.405 IIO I I I I 7.23 0.64 0.80 4.402 IIO ( I I I 7.23 •24.000 24.250 0.38 0.80 4.396 I O I I I I 7.22 24.500 0.09 0.80 4.384 I O I I I I 7.21 24.750 0.03 0.80 4.369 I O I I I I 7,19 25.000 0.01 0.79 4.353 I 0 I I I I 7,17 -R.� ..., tie.au.,., .,;. n.. wnc. ...._.�..,e�3'.i�..e.�i:..:ew:. ,+y r+ ��. ,�. aryEa �.�.- .?rf�. .d°.. ..3�•_`"�� K,.L- a��._.. -.. _..r�,.;�2 �.t.�.:,.s:_� 25.250 0.00 0.79 4.336 I O 7.15 25.500 0.00 0.79 4.320 I O 7.14 25.750 0.00 0.79 4.304 I O I ( 7.12 26.0.00 0.00 0.79 4.287 I O I 7.10 26.250 0.00 0.79 4.271 I O I I 7.08 26.500 0.00 0.79 4.255 I O I 7.06 26.750 0.00 0.78 4.239 I O I I 7.05 27.000 0.00 0.78 4.222 I O I 7.03 27.250 0.00 0.78 4.206 I O I 7.01 27.500 0.00 0.78 4.190 I O I I 6.99 27.750 0.00 0.78 4.174 I O I 6.97 28.000 0.00 0.78 4.158 I O I 6.96 28.250 0.00 0.78 4.142 I O I I I 6.94 28.500 0.00 0.78 4.126 I O 6.92 28.750 0.00 0.77 4.110 I O I I I I 6.90 29.000 0.00 0.77 4.094 I O I I 6.88 29.250 0.00 0.77 4.078 I O I 6.87 29.500 0.00 0.77 4.062 I O I I I 6.85 29.750 0.00 0.77 4.046 I O I 6.83 30.000 0.00 0.77 4.030 I O I 6.81 30.250 0.00 0.77 4.014 I O 6.80 30.500 0.00 0.76 3.999 I O I I 6.78 30.750 0.00 0.76 3.983. I O 6.76 •31.000 31.250 0.00 0.00 0.76 0.76 3.967 3.951 I O I O ( I 6.74 ( 6.73 31.500 0.00 0.76 3.936 I O 6.71 31.750 0.00 0.76 3.920 IO ( 6.69 32.000 0.00 0.76 3.904 IO I 6.67 32.250 0.00 0.76 3.889. IO I 6.66 32.500 0.00 0.75 3.873 IO I I 6.64 32.750 0.00 0.75 3.857 IO 6.62 33.000 0.00 0.75 3.842 IO I 6.61 33.250 0.00 0.75 3.826 IO ( I I 6.59 33.500 0.00 0.75 3.811 IO I I 6.57 33.750 0.00 0.75 3.796 IO I I I 6.55 34.000 0.00 0.75 3.780 IO I I ( 6.54 34.250 0.00 0.74 3.765 IO I ( I 6.52 34.500 0.00 0.74 3.749 IO I 6.50 34.750 0.00 0.74 3.734 IO I 6.48 35.000 0.00 0.74 3.719 IO 6.47 35.250 0.00 0.74 3.703 IO I ( I 6.45 35.500 0.00 0.74 3.688 IO ( I I 6.43 35.750 0..00 0.74 3.673 IO �. I I 6.41 36.000 0.00 0.73 3.658 IO 6.39 36.250 0.00 0.73 3.643 IO I I I 6.37 36.500 0.00 0.73 3.628 IO 6.35 36.750 0.00 0.73 3.612 IO I I 6.34 37.000 0.00 0.73 3.597 IO 6.32 0.00 0.73 3.582 IO 6.30 •37.250 37.500 0.00 0.72 3.567 IO I I I 6.28 37.750 0.00 0.72 3.552 IO I I 6.26 38.000 0.00 0.72 3.538 IO I I 6.24 38.250 38.500 0.00 0.00 0.72 0.72 3.523 3.508 IO I IO I I 6.23 I I 6.21 38.750 0.00 0.72 3.493 IO 6.19 39.000 0.00 0.72 3.478 IO I I I I 6.17 39.250 0.00 0.71 3.463 IO I 6.15 39.500 0.00 0.71 3.449 IO I I I 6.14 39.750 0.00 0.71 3.434 IO I 6.12 40.000 0.00 0.71 3.419 IO I 6.10 40.250 0.00 0.71 3.405 IO I 6.08 40.500 0.00 0.71 3.390 IO I 6.06 40.750 0.00 0.70 3.376 IO I 6.05 41.000 0.00 0.70 3.361 IO I 6.03 41.250 0.00 0.70 3.346 IO I I 6.01 41.500 0.00 0.70 3.332 IO I 5.99 41.750 0.00 0.70 3.318 IO I 5.98 42.000 0.00 0.70 3.303 IO I 5.96 42.250 0.00 0.70 3.289 IO I I 5.94 42.500 0.00 0.69 3.274 IO I I I 5.92 42.750 0.00 0.69 3.260 IO I I 5.91 43.000 0.00 0.69 .3.246 IO I I 5.89 43.250 0.00 0.69 3.232 IO ( I I I 5.87 43.500 0.00 0.69 3.217 IO I 5.85 43.750 0.00 0:69^ 3.203 IO I 5.84 44.000 0.00 0.69 3.189 IO I I I 5.82 44.250 0.00 0.68 3.175 IO 5.80 44.500 0.00 0.68 3.161 IO 5.78 44.750 0.00 0.68 3.147 IO I 5.77 45.000 0.00 0.68 3.133 IO I I 5.75 45.250 0.00 0.68 3.119 IO I I I 5.73 45.500 0.00 0.68 3.105 IO I 5.72 45.750 0.00 0.67 3.091 IO I I I I 5.70 46.000 0.00 0.67 3.077 IO 5.68 46.250 0.00 0.67 3.063 IO 5.66 46.500 0.00 0.67 3.049 IO I 5.65 46.750 0.00 0.67 3.035 IO I I I I 5.63 47.000 0.00 0.67 3.021 IO I I I 5.61 47.250 0.00 0.67 3.007 IO 5.60 47.500 0.00 0.66 2.994 IO I 5.58 47.750 0.00 0.66 2.980 IO 5.56 48.000 0.00 0.66 2.966 IO I I 5.55 48.250 0.00 0.66 2.953 IO I I I 5.53 48.500 0.00 0.66 2.939 IO I I 5.51 48.750 0.00 0.66 2.925 IO 5.50 49.000 0.00 0.66 2.912 IO I 5.48 49.250 0.00 0.65 2.898 IO I I I I 5.46 49.5.00 0.00 0.65 2.885 IO I I I I 5.44 49.750 0.00 0.65 2.871 IO I 5.42 50.000 0.00 0.65 2.858 IO ( 5.40 50.250 0.00 0.65 2.844 IO I 5.39 50.500 0.00 0.65 2.831 IO 5.37 50.750 0.00 0.65 2.818 IO I I I I 5.35 51.000 0.00 0.64 2.804 IO I I I 5.33 51.250 0.00 0.64 2.791 IO I I 5.31 51.500 0.00 0.64 2.778 IO ( 5.30 51.750 52.000 0.00 0.00 0.64 0.64 2.765 2.751 IO IO I ( 5.28 I 5.26 52.250 0.00 0.64 2.738 IO I 5.24 52.500 0.00 0.64 2.725 IO I I 5.22 52.750 0.00 0.63 2.712 IO I I 5.21 53.000 0.00 0.63 2.699 IO 5.19 53.250 0.00 0.63 2.686 IO I I I 5.17 53.500 0.00 0.63 2.673 IO I I I 5.15 53.750 0.00 0.63 2.660 IO I I 5.13 54.000 0.00 0.63 2.647 IO I I I 5.12 54.250 0.00 0.63 2.634 IO I 5.10 54.500 0.00 0.62 2.621 IO I I 5.08 54.750 0.00 0.62 2.608 IO I 5.06 55.000 0.00 0.62 2.595 IO 5.05 55.250 0.00 0.62 2.582 IO I 5.03 55.500 0.00 0.62 2.569 IO ( 5.01 55.750 0.00 0.62 2.557 IO I I I 4,99 56.000 0.00 0.62 2.544 IO I I 4,98 56.250 0.00 0.61 2.531 IO I I 4.96 56.500 0.00 0.61 2.519 IO 4.94 56.750 0.00 0.61 2.506 IO 4.92 57.000 0.00 0.61 2.493 IO ( 4.91 57.250 0.00 0.61 2.481 IO I I I 4,89 57.500 0.00 0.61 2.468 IO I I 4,87 57.750 0.00 0.61 2.455 IO I 4.86 58.000 0.00 0.61 2.443 IO I 4.84 58.250 0.00 0.60 2.430 IO I I I 4.82 58.500 0.00 0.60 2.418 IO 4.81 58.750 0.00 0.60 2.406 IO I I 4,79 59.000 0.00 0.60 2.393 IO 4,77 59.250 0.00 0.60 2.381 IO I 4.75 59.500 0.00 0.60 2.368 IO I I I 4.74 59.750 0.00 0.60 2.356 IO I I I 4,72 60.000 0.00 0.59 2.344 IO I I 4.70 60.250 0.00 0.59 2.332 IO I 4.69 60.500 0.00 0.59 2.319 IO I ( I 4.67 60'.750 0.00 0.59 2.307 IO I 4.65 61.000 0.00 0.59 2.295 IO I ( 4.64 61.250 0.00 0.59 2.283 IO I 4.62 61.500 0.00 0.59 2.271 IO I I 4.60 61.750 0.00 0.59 2.259 IO I I 4.59 62.000 0.00 0.58 2.246 IO 4.57 62.250 0.00 0.58 2.234 IO ( 4.56 62.500 0.00 0.58 2.222 IO I I 4.54 62.750 0.00 0.58 2.210 IO I 4.52 63.000 0.00 0.58 2.198 IO I I 4.51 63.250 0.00 0.58 2.187 IO 4.49 63.500 0.00 0.58 2.175 IO I 4.47 63.750 0.00 0.57 2.163 IO I I I 4.45 64.000 0.00 0.57 2.151 IO 4.43 •64.250 0.00 0.57 2.139 IO 4.42 64.500 0.00 0.57 2.127 IO I I 4.40 64.750 0.00 0.57 2.116 IO I 4,38 65.000 0.00 0.57 2.104 IO I I 4.36 •65.250 65.500 0.00 0.00 0.57 0.56 2.092 2.080 IO IO I I 4.34 4.33 65.750 0.00 0.56 2.069 IO ( I 4.31 66.000 0.00 0.56 2.057 IO I I 4.29 66.250 0.00 0.56 2.046 IO 4.27 66.500 0.00 0.56 2.034 IO 4.26 66.750 0.00 0.56 2.023 IO I 4.24 67.000 0.00 0.56 2.011 IO I 4.22 67.250 0.00 0.55 2.00.0 IO 4.20 67.500 0.00 0.55 1.988 IO ( I 4.19 67.750 0.00 0.55 1.977 IO I 4.17 68.000 0.00 0.55 1.965 IO I 4.15 68.250 0.00 0.55 1.954 IO 4.13 68.500 0.00 0.55 1.943 IO I 4.12 68.750 0.00 0.55 1.931 IO 4.10 69.000 0.00 0.54 1.920 IO I I I 4.08 69.250 0.00 0.54 1.909 IO I 4.06 69.500 0.00 0.54 1.898 IO I 4.05 69.750 0.00 0.54 1.886 IO I 4.03 70.000 0.00 0.54 1.875 IO I 4.01 70.250 0.00 0.54 1.864 IO 4.00 70.500 0.00 0.54 1.853 IO I I 3.98 70.750 0.00 0.53 1..842 IO I I 3.96 71.000 0.00 0.53 1.831 IO ( I 3.94 71.250 0.00 0.53 1.820 IO 3.93 0.00 0.53 1.809 IO 3.91 •71.500 71.750 0.00 0.53 1.798 IO ( I I 3.89 72.000 0.00 0.53 1.787 IO 3.88 72.250 0.00 0.53 1.776 IO I 3.86 72.500 0.00 0.53 1.765 IO 3.84 72.750 0.00 0.52 1.755 IO 3.83 73.000 0.00 0.52 1.744 IO 3.81 73.250 0.00 0.52 1.733 IO I I 3.79 73.500 0.00 0.52 1.722 IO I I I I 3.78 73.750 0.00 0.52 1.711 IO 3.76 74.000 0.00 0:52 1.701 IO I 3.75 74.250 0.00 0.52 1.690 IO I I I I 3.73 74.500 0.00 0.52 1.679 IO I 3.71 74.750 0.00 0.51 1.669 IO ( 3.70 75.000 0.00 0.51 1.658 IO 3.68 75.250 0.00 0.51 1.648 IO I I I 3.66 75.500 0.00 0.51 1.637 IO I I 3.65 75.750 0.00 0.51 1.626 IO 3.63 76.000 0.00 0.51 1.616 IO ( 3.62 76.250 0.00 0.51 1.606 IO I 3.60 76.500 0.00 0.50 1.595 IO I I I I 3.58 76.750 0.00 0.50 1.585 IO I 3.57 77.000 0.00 0.50 1.574 IO I I 3.55 77.250 0.00 0.50 1.564 IO 3.54 77.500 0.00 0.50 1.554 IO ( 3.52 •77.750 0.00 0.50 1.543 IO 3.51 78.000 0.00 0.50 1.533 IO I I 3.49 78.250 0.00 0.50 1.523 IO I 3.47 78.500 0.00 0.49 1.513 IO I I I I 3.45 78.750 0.00 0.49 1.502 IO 3.43 79.000 0.00 0.49 1.492 IO 3.42 79.250 0.00 0.49 1.482 IO I 3.40 79.500 0.00 0.49 1.472 IO I I 3.38 79.750 0.00 0.49 1.462 IO I 3.36 80.000 0.00 0.49 1.452 IO I I 3.35 80.250 0.00 0.49 1.442 IO I I I 3.33 80.500 0.00 0.48 1.432 IO I I 3.31 80.750 0.00 0.48 1.422 IO I 3.29 81.000 0.00 0.48 1.412 IO I 3.28 81.250 0.00 0.48 1.402 IO 3.26 81.500 0.00 0.48 1.392 IO I 3.24 81.750 0.00 0.48 1.382 IO I I 3.23 82.000 0.00 0.48 1.372 IO I 3.21 82.250 0.00 0.47 1.362 IO I I 3.19 82.500 0.00 0.47 1.353 IO ( 3.17 82.750 0.00 0.47 1.343 IO 3.16 83.000 0.00 0.47 1.333`. IO I 3.14 83.250 0.00 0.47 1.323 IO I 3.12 83.500 0.00 0.47 1.314 IO I I I 3.11 83.750 0.00 0.47 1.304 IO 3.09 84.000 0.00 0.47 1.294 IO 3.07 84.250 0.00 0.46 1.285 IO 3.06 84.500 0.00 0.46 1.275 IO I I 3.04 84.750 0.00 0.46 1.266 IO ( 3.02 0.00 0.46 1.256 IO I 3.01 •85.000 85.250 0.00 0.46 1.246 IO I I I I 2.99 85.500 0.00 0.46 1.237 IO I I 2.97 85.750 0.00 0.46 1.228 IO I ( 2.96 86.000 0.00 0.46 1.218 IO I I I I 2.94 86.250 0.00 0.45 1.209 IO I I 2.92 86.500 0.00 0.45 1.199 IO I I I 2.91 86.750 0.00 0.45 1.190 IO 2.89 87.000 0.00 0.45 1.181 IO I 2.88 87.250 0.00 0.45 1.171 IO I I 2.86 87.500 0.00 0.45 1.162 IO I I I I 2.84 87.750 0.00 0.45 1.153 IO I 2.83 88.000 0.00 0.45 1.144 IO ( 2.81 88.250 0.00 0.45 1.134 IO I I I 2.80 88.500 0.00 0.44 1.125 IO I I ( I 2.78 88.750 0.00 0.44 1.116 IO I I 2.76 89.000 0.00 0.44 1.107 IO I I I 2.75 89.250 0.00 0.44 1.098 IO 2.73 89.500 0.00 0.44 .1.089 IO ( I I 2.7.2 89.750 0.00 0.44 1.080 IO ( ( I I 2.70 90.000 0.00 0.44 1.071 IO I ( I 2.68 90.250 0.00 0.44 1.062 IO I 2.67 90.500 0.00 0.43 1.053 IO I I 2.65 90.750 0.00 0.43 1.044 IO 2.64 91.000 0.00 0.43 1.035 IO I I I I 2.62 • 91.250 0.00 0.43 1.026 IO I 2.61 91.500 0.00 0.43 1.017 IO I 2.59 91.750 0.00 0.43 1.008 IO I 2.58 92.000 0.00 0.43 0.999 IO 2.56 0.00 0.43 0.990 IO I I I I 2.55 •92.250 92.500 0.00 ..0.43 0.981 IO I I I I 2.53 92.750 0.00 0.42 0.973 IO I I I I 2.52 93.000 0.00 0.42 0.964 IO I I I I 2.50 93.250 0.00 0.42 0.955 IO I I I I 2.48 93.500 0.00 0.42 0.947 IO I I I I 2.47 93.750 0.00 0.42 0.938 IO I I I. I 2.45 94.000 0.00 0.42 0.929 IO I I I I 2.43 94.250 0.00 0.42 0.921 IO I I I I 2.41 94.500 0.00 0.42 0.912 IO I I I I 2.40 94.750 0.00 0.42 0.903 IO I I I I 2.38 95.000 0.00 0.41 0.895 IO I I I I 2.36 95.250 0.00 0.41 0.886 IO I I I I 2.35 95.500 0.00 0.41 0.878 IO I I I I 2.33 95.750 0.00 0.41 0.869 IO I I I I 2.31 96.000 0.00 0.41 0.861 IO I I I I 2.29 96.250 0.00 0.41 0.852 IO I I I I 2.28 96.500 0.00 0.41 0.844 IO I I I I 2.26 96.750 0.00 0.41 0.835 IO I I I I 2.24 97.000 0.00 0.41 0.827 IO I I I I 2.23 97.250 0.00 0.40 0.819 IO I I I I 2.21 97.500 0.00 0.40 0.810 IO I I I I 2.19 97.750 0.00 0.40 0.802 IO I I I I 2.18 98.000 0.00 0.40 0.794 IO I I I I 2.16 98.250 0.00 0.40 0.786 IO I I I I 2.15 0.00 0.40 0.777 IO I I I I 2.13 •98.500 98.750 0.00 .0.40 0.769 IO I I ( I 2.11 f 99.000 0.00 0.40 0.761 IO I I I I 2.10 99.250 0.00 0.40 0.753 IO I I I I 2.08 99.500 0.00 0.39 0.745 IO I I I I 2.06 99.750 0.00 0.39 0.736 IO I I I I 2.05 100.000 0.00 0.39 0.728 IO I I I I 2.03 100.250 0.00 0.39 0.720 IO I I I I 2,02 100.500 0.00 0.39 0.712 IO I I I I 2.00 100.750 0.00 0.39 0.704 IO I I I I 1.98 101.000 0.00 0.39 0.696 IO I I I I 1.97 101.250 0.00 0.39 0.688 IO I I I I 1.95 101.500 0.00 0.39 0.680 IO I I I I 1.94 101.750 0.00 0.38 0.672 IO I I I I 1.92 102.000 0.00 0.38 0.664 IO I I I I 1.90 102.250 0.00 0.38 0.656 IO I I I I 1.89 102.500 0.0.0 0.38 0.648 IO I I I I 1.87 102.750 0.00 0.38 0:640 IO I I I I 1.86 103.000 0.00 0.38 0.633 IO I I I ( 1.84 103.250 0.00 0.38 0.625 O I I I I 1.83 103.500 0.00 0.38 0.617 O I I I I 1.81 103.750 0.00 0.38 0.609 O I I I I 1.79 104.000 0.00 0.38 0.601 O I I I I 1.78 104.250 0.00 0.37 0.594 O ( I I I 1.76 104.500 0.00 0.37 0.586 O I I I I 1.75 •104.750 0.00 0.37 0.578 O I I I I 1.73 105.000 0.00 0.37 0.571 O I I I I 1.72 105.250 0.00 0.37 0.563 O I I I I 1.70 105.500 0.00 0.37 0.555 0 I I I I 1.69 105.750 0.00 0.37 0.548 O I I 1.67 .106.000 0.00 0.37 0.540 O ) 1.66 106.250 0.00 0.37 0.532 O I I I 1.64 106.500 0.00 0.37 0.525 O I 1.63 106.750 0.00 0.36 0.517 O 1.61 107.000 0.00 0.36 0.510 O I I 1.60 107.250 0.00 0.36 0.502 O ( ( 1.58 107.500 0.00 0.36 0.495 O I 1.57 107.750 0.00 0.36. 0.487 O I I 1.55 108.000 0.00 0.36 0.480. O I 1.54 108.250 0.00 0.36 0.473 O I I 1.52 108.500 0.00 0.36 0.465 O I 1.51 108.750 0.00 0.36 0.458 O I 1.49 109.000 0.00 0.36 0.450 O I 1.47 109.250 0.00 0.35 0.443 O 1.46 109.500 0.00 0.35 0.436 O I 1.44 109.750 0.00 0.35 0.429 O I I I I 1.42 110.000 0:00 0.35 0.421 O I ( 1.40 110.250 0.00 0.35 0.414 O 1.39 110.500 0.00 0.35 0.407 O I I I 1.37 110.7.50 0.00 0.35 0.400 O I I I 1.35 111.000 0.00 0.35 0.392 O 1.33 111.250 0.00 0.35 0.385 O 1.31 111.500 0.00 0.35 0.378 O 1.30 111.750 0.00 0.34 0.371 O I I I 1.28 • 112.000 112.250 0.00 0.00 0.34 0.34 0.364 0.357 O I I O ( 1.26 I 1.25 112.500 0.00 0.34 0.350 O I I 1.23 112.750 0.00 0.34 0.343 O I 1.21 113.000 0.00 0.34 0.336 O I I I 1.19 113.250 0.00 0.34 0.329 O I 1.18 113.500 0.00 0.34 0.322 O ( 1.16 113.750 0.00 0.34 0.315 O 1.14 114.000 0.00 0.33 0.308 O I 1.13 114.250 0.00 0.33 0.301 O 1.11 114.500 0.00 0.33 0.294 O I 1.09 114.750 0.00 0.33 0.287 O 1.08 115.000 0.00 0.33 0.280 O 1.06 115.250 0.00 0.33 0.274 O I 1.04 115.500 0.00 0.33 0.267 O I 1.02 115.750 0.00 0.33 0.260 O I I I 1.01 116.000 0.00 0.33 0.253 O 0.99 116.250 0.00 0.33 0.246 O 0.98 116.500 0.00 0.33 0 -.240 O I 0.96 116.750 0.00 0.32 0.233 O I I I 0.94 117.000 0.00 0.32 0.226 O I 0.93 117.250 0.00 0.32 0.220 O ( 0.91 117.500 0.00 0.32 0.213 O 0.89 117.750 0.00 0.32 0.206 O 0.88 118.000 0.00 0.32 0.200 O I ( I I 0.86 0.00 0.32 0.193 O 0.85 •118.250 118.500 0.00 0.32 0.187 O I I I 0.83 118.750 0.00 0.32 0.180 O I I I I 0.81 119.000 0.00 0.32 0.173 0 0.80 Remaining water in basin = 0.01 (Ac.Ft) Number of intervals = 506 Time interval = 15.0 (Min.) Maximum /Peak flow rate = 0.800 (CFS) Total volume = 5.531 (Ac.Ft) • 119.250 0.00 0.31 0.167 O I I I I 0.78 •119.500 0.00 0.31 0.160 O I I I I 0.77 119.750 0.00 0.31 0.154 O I I I I 0.75 120.000 0.00 0.31 0.148 O I I I I 0.73 120.250 0.00 0.31 0.141 O I I I I 0.72 120.500 0.00 0.31 0.135 O I I I I 0.70 120.750 0.00 0.31 0.128 O I I ( I 0.69 121.000 0.00 0.31 0.122 O I I I I 0.67 121.250 0.00 0.31 0.116 O I I I I 0.66 121.500 0.00 0.31 0.109 O I I I I 0.64 121.750 0.00 0.31 0.103 O I I I I 0.62 122.00.0 0.00 0.30 0.097 O I I I I 0.61 122.250 0.00 0.30 0.090 O I I I I 0.59 122.500 0.00 0.30 0.084 O I I I I 0.58 122.750 0.00 0.30 0.078 O I I I I 0.56 123.000 0.00 0.30 0.072' O I I I ( 0.55 123.250 0.00 0.30 0.065 O I I I I 0.53 123.500 0.00 0.30 0.059 O I I I I 0.52 123.750 0.00 0.30 0.053 O I I I I 0.50 124.000 0.00 0.27 0.047 O I I I I 0.47 124.250 0.00 0.25 0.042 O I I 0 I 0.43 124.500 0.00 0.22 0.037 O I I I I 0.40 124.750 0.00 0.20 0.032 O I I I I 0.37 125.000 0.00 0.18 0.029 O I I I I 0.35 125.250 0.00 0.17 0.025 O I I I I 0.32 0.00 0.15 0.022 O I I I I 0.30 •125.500 125.750 0.00 0.14 0.019 O I I I I 0.28 126.000 0.00 0.12 0.016 O I I ( I 0.26 126.250 0.00 0.11 0.014 O 0.24 Remaining water in basin = 0.01 (Ac.Ft) Number of intervals = 506 Time interval = 15.0 (Min.) Maximum /Peak flow rate = 0.800 (CFS) Total volume = 5.531 (Ac.Ft) • FLOOD HYDROGRAPH.ROUTING.PROGRAM •Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004 Study date: 02/21/07 --------------------------------------------------------------------- Tract 32751 - Mds6260Z 24 hr /100 yr Flood Routing - Basin 1&2. - Bo.ttom.18.5:- V100 = 4.25 in Walls 25 to 29.67 _ __ -- File 62602B1224hrF1dHSGABC \ ------------------------------------------------ --------------- -- Program License Serial Number 4082 P --------------------------------------------- - - - - -- - -u - - -- HYDROGR_APH INFORMATION * * * * * * ** From study /file name: 62602B1224hruh24r00.rte * *. *_ * * * * * * * * * *HYDROGRAPH .DATA * * * *. * * * * * * * * * * *� Number of intervals = 100 Time interval = 15.0 (Min.) Maximum /Peak flow rate = 12.133 (CFS) Total volume = 5.541 (Ac.Ft) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 3800.000 to Point /Station 0.000 * * ** RETARDING I BASIN ROUTINO-' * * ** User entry of depth- outflow- storage data Total number of inflow hydrograph intervals = 100 • Hydrograph time unit = 15.000 (Min.) tt Depth vsr.= .Storage,.and:.Depth 7VS4, 'D1scharge aata.i� Basin Depth Storage Outflow (S- O *dt /2) (S +O *dt /2) (Ft.) (Ac.Ft) (CFS) (Ac.Ft) (Ac.Ft) --------------------------------------------------------------------- 0.000 0.000 0.000 0.000 0.000 0.250 0.014 0.112 0.013 0.015 0.500 0.052 0.298 0.049 0.055 1.500 0.461 0.357 0.457 0.465 2.500 0.964 0.423 0.960 0.968 3.500 1.540 0.498 1.535 1.545 4.500 2:194 0.578 2.188 2.200 5.500 2.928 0.658 2.921 2.935 6.500 3.747 0.743 3.739 3.755 7.500 4.649 0.820 4.641 4.657 8.500 5.596 0.828 5.587 5.605 9.500 6.559 0.836 6.550 6.568 10.500 6.975 0.843 6.966 6.984 17� aaj�:as vwJ a�crr�sa���L��.�;V raa- a.avaa a.i:c.r v -a sa��, >sav,,�cc�a. aaayy Graph values: 'I'= unit inflow; 'O'= outflow at time shown --------------------------------------------------------------- - - - - -- 0.250 0.26 0.02 0.003 O 0.05 0.500 0.68 0.09 0.011 OI I 0.20 0.750 0.88 0.16 0.025 O I I 0.32 1.000 1.07 0.24 0.041 O I I 0.43 1.250 1.10 0.30 0.057 O I I I 0.51 1.500 0.99 0.30 0.073 O I I 0.55 1.750 0.97 0.30 0.087 O I I 0.59 2.000 1.10 0.31 0.102 O I I I 0.62 2.250 1.24 0.31 0.120 O I 0.67 2.500 1.27 0.31 0.139 O I I I I 0.71 2.750 1.41 0.31 0.160 O I I I I I 0.77 3.000 1.56 0.32 0.185 O I 0.82 3.250 1.59 0.32 0.210 O I I 0.89 3.500 1.60 0.32 0.237 O I 0.95 3.750 1.60 0.33 0.263 O I I 1.02 4.000 1.74 0.33 0.291 O I I 1.08 4.250 1.88 0.34 0.321 O I ( 1.16 4.500 2.04 0.34 0.354 O I I I 1.24 4.750 2.19 0.35 0.391 O I I I I I 1.33 5.000 2.36 0.35 0.431 O I I I 1.43 5.250 2.25 0.36 0.471 O I ( I 1.52 5.500 2.13 0.36 0.509 O I I I I 1.60 5.750 2.36 0.37 0.548 O I I I I I 1.67 6.000 2.51 0.37 0.590 O I 1.76 6.250 2.68 0.38 0.636 IO Il 1.85 6.500 2.83 0.39 0.685 10 Il 1.95 6.750 3.00 0.39 0.737 10 II I 2.05 7.000 3.15 0.40 0.793 10 I I 2.16 7.250 3.19 0.41 0.850 IO I I I 2.27 7.500 3.33 0.42 0.909 10 I I I I 2.39 7.750 3.61 0.42 0.972 10 II I I 2.51 8.000 3.92 0.43 1.041 10 I I 2.63 8.250 4.36 0.44 1.117 10 1 I I 2.77 8.500 4.69 0.45 1.201 10 I 2.91 8.750 4.90 0.47 1.291 10 I I 3.07 9.000 5.20 0.48 1.386 10 I I I I I 3.23 9.250 3.36 0.49 1.464 10 I I 3.37 9.500 1.58 0.49 1.505 10 I 3.44 9.750 1.83 0.50 1.530 10 I 1 3.48 10.000 2.41 0.50 1.564 IO I 1 I I 3.54 10.250 3.56 0.51 1.615 10 II I I 3.61 10.500 4.49 0.52 1.687 10 1 I I 3.73 10.750 3.61 0.52 1.760 10 II 3.84 11.000 2.58 0.53 1.813 10 I 1 3.92 •11.250 2.23 0.54 1.852 10 I 1 3.98 11.500 2.00 0.54 1.885 10 I 1 4.03 11.750 1.52 0.54 1.910 IO I 1 4.07 12.000 1.34 0.55 1.928 10 I 1 4.09 Time', 'Inflow'' Outflow , Storage" Dept (CFS)' _. (CFS). m.. , (Ac . Ft) 0 _ _ ... 3 0..: °- T6.: 07 9.10 _ y_ 12 13,_ (Fa:• )'; . 12.250 3.50 0.55 1.967 IO II I I . _. _... I 4.15 12.500 5.91 0.56 2.053 IO I II I I 4.28 12.750 7.29 0.58 2.177 IO I I I I I 4.47 13.000 8.50 0.59 2.328 IO I I I I I 4.68 13.250 10.46 0.61 2.512 10 1 4.93 13 .500 12 :13: 0, 2 7.32:. 13.750 9.70 0.66 2.944 IO I I II I 5.52 14.000 6.85 0.68 3.101 IO I I I I I 5.71 14.250 7.44 0.69 3.235 IO I I I I I 5,87 14.500 8.18 0.71 3.382 IO I I I I I 6.05 14.750 8.16 0.72 3.536 IO ( I I I I 6.24 15.000 8.06 0.74 3.688 IO I I I I I 6.43 15.250 7.65 0.75 3.835 IO I I I I I 6.60 15.500 7.16 0.76 3.972 I O I I I I I 6.75 15.750 5.86 0.77 4.091 I O I II I I 6,88 16.000 4.75 0.78 4.185 I O I I I I I 6.99 16.250 3.25 0.79 4.251 I O I I I I 7.06 16.500 1.77 0.79 4.287 I O I I I I I 7.10 16.750 1.31 0.79 4.302 I OI I I I I 7,12 17.000 1.06 0.79 4.310 I O I ( I ( 7.12 17.250 1.24 0.79 4.318 I OI I I I I 7.13 17.500 1.51 0.79 4.330 I OI I I I I 7.15 17.750 1.57 0.79 4.345 I O I I I I I 7.16 18.000 1.46 0.80 4.360 I OI I I I I 7,18 18.250 1.33 0.80 4.373 I OI I ( I ( 7,19 18.500 1.30 0.80 4.383 I OI I I I I 7,21 18.750 1.15 0.80 4.392 10I I I I I 7,22 19.000 0.88 0.80 4.397 I O I I I I 7,22 19.250 0.84 0.80 4.398 I O I I I I 7,22 19.500 1.07 0.80 4.401 I O I I I I 7,23 19.750 1.09 0.80 4.407 I O I I I I 7,23 20.000 0.85 0.80 4.410 I O I I I I 7.24 20.250 0.83 0.80 4.411 I O I I I I 7,24 20.500 0.94 0.80 4.413 I O I I I I 7,24 20.750 0.95 0.80 4.416 10 I I I I 7,24 21.000 0..82 0.. :80; :.. 21.250 0.82 0.80 4.418 I O I I I I 7,24 21.500 0.80 0.80 4.418 I O I I I I 7.24 21.750 0.81 0.80 4.418 I O I ( I I 7,24 22.000 0.79 0.80 4.418 I O I I I I 7,24 22.250 0.81 0.80 4.418 I O I I I I 7,24 22.500 0.79 0.80 4.419 I O I I I I 7,24 22.750 0.68 0.80 4.417 IIO I I I I 7,24 23.000 0.65 0.80 4.414 IIO I I I I 7.24 23.250 0.65 0.80 4.411 IIO I I I I 7,24 23.500 0.64 0.80 4.408 IIO I I I I 7.23 23.750 0.64 0.80 4.405 IIO I I I I 7,23 24.000 24.250 0.64 0.38 0.80 0.80 4.402 4.396 IIO I O I I I I I I I 7,23 I 7,22 24.500 0.09 0.80 4.384 I O I I I I 7,21 24.750 0.03 0.80 4.369 I O I I I I 7.19 25.000 0.01 0.79 4.353 I 0 I I I I 7,17 • T-. Ame Hours (' } ..... , Lnflow Outflow Storage Depth )' . (CFSr) _.. A'c Ft:i -- ` ;, 3�Dx,�%�v " 5;� (iCFS 9� 10, 1.213 Eft. 25.250 0.00 0.79 4.336 I O I 7.15 25.500 0.00 0.79 4.320 I O I I I 7.14 25.750 0.00 0.79 4.304 I O I 7.12 26.000 0.00 0.79 4.287 I O 7.10 26.250 0.00 0.79 4.271 I O I I 7.08 26.500 0.00 0.79 4.255 I O 7.06 26.750 0.00 0.78 4.239 I O I I 7.05 27.000 0.00 0.78 4.222 I O 7.03 27.250 0.00 0.78 4.206 I O I I 7.01 27.500 0.00 0.78 4.190 I O I 6.99 27.750 0.00 0.78 4.174 I O ( 6.97 28.000 0.00 0.78 4.158 I O �. I 6.96 28.250 0.00 0.78 4.142 I O I 6.94 28.500 0.00 0.78 4.126 I O I 6.92 28.750 0.00 0.77 4.110 I O I I I 6.90 29.000 0.00 0.77 4.094 I O I 6.88 29.250 0.00 0.77 4.078 I O I 6.87 29.500 0.00 0.77 4.062 I O 6.85 29.750 0.00 0.77 4.046 I O I I I 6.83 30.000 0.00 0.77 4.030 I O 6.81 30.250 0.00 0.77 4.014 I O 6.80 30.500 0.00 0.76 3.999 I O I I 6.78 30.750 0.00 0.76 3.983 I O I 6.76 •31.000 31.250 0.00 0.00 0.76 0.76 3.967 3.951 I O I O I 6.74 ( 6.73 31.500 0.00 0.76 3.936 I O I 6.71 31.750 0.00 0.76 3.920 IO 6.69 32.000 0.00 0.:76 3.904 IO 6.67 32.250 0.00 0.76 3.889 IO ( 6.66 32.500 0.00 0.75 3.873 IO 6.64 32.750 0.00 0.75 3.857 IO I 6.62 33.000 0.00 0.75 3.842 IO I 6.61 33.250 0.00 0.75 3.826 IO I 6.59 33.500 0.00 0.75 3.811 IO 6.57 33.750 0.00 0.75 3.796 IO 6.55 34.000 0.00 0.75 3.780 IO I I 6.5.4 34.250 0.00 0.74 3.765 IO I I I 6.52 34.500 0.00 0.74 3.749 IO I I I 6.50 34.750 0.00 0.74 3.734 IO 6.48 35.000 0.00 0.74 3.719 IO 6.47 35.250 0.00 0.74 3.703 IO 6.45 35.500 0.00 0.74. 3.688 IO I 6.43 35.750 0.00 0.74 3.673 IO I I 6.41 36.000 0.00 0.73 3.658 IO I I 6.39 36.250 0.00 0.73 3.643 IO I I I 6.37 36.500 0.00 0.73 3.628 IO I 6.35 36.750 0.00 0.73 3.612 IO 6.34 37.000 0.00 0.73 3.597 IO I I I 6.32 37.250 0.00 0.73 3.582 IO ( I I 6.30 • 37.500 0.00 0.72 3.567 IO 6.28 37.750 0.00 0.72 3.552 IO ( I 6.26 38.000 0.00 0.72 3.538 IO I 6.24 38.250 0.00 0.72 3.523 IO 6.23 •38..500 0.00 0.72 3.508 IO ( 6.21 38.750 0.00 0.72 3.493 IO I I I 6.19 39.000 0.00 0.72 3.478 IO I I I I 6.17 39.250 0.00 0.71 3.463 IO 6.15 39.500 0.00 0:71 3.449 IO I I 6.14 39.750 0.00 0.71 3.434 IO I 6.12 40.000 0.00 0.71 3.419 IO I I 6.10 40.250 0.00 0.71 3.405 IO ( ( 6.08 40.500 0.00 0.71 3.390 IO 6.06 40.750 0.00 0.70 3.376 IO I I I 6.05 41.000 0.00 0.70 3.361 IO 6.03 41.250 0.00 0.70 3.346 IO I I 6.01 41.500 0.00 0.70 3.332 IO I I .5.99 41.750 0.00 0.70 3.318 IO ( 5.98 42.000 0.00 0.70 3.303 IO I I I 5.96 42.250 0.00 0.70 3.289 IO I 5.94 42.500 0.00 0.69 3.274 IO 5.92 42.750 0.00 0.69 3.260 IO ( I I 5.91 43.000 0.00 0.69 3.246 IO I 5.89 43.250 0.00 0.69 3.232 IO I I 5.87 43.500 0.00 0.69 3.217 IO. 5.85 43.750 0.00 0.69 3.203 IO I I 5.84 44.000 0.00 0.69 3.189 IO I 5.82 44.250 0.00 0.68 3.175 IO 5.80 •44.500 44.750 0.00 0.00 0.68 0.68 3.161 3.147 IO IO I I 5,78 I I 5,77 45.000 0.00 0.68 3.133 IO I I I I 5.75 45.250 0.00 0.68 3.119 IO I I 5.73 45.500 0.00 0.68 3.105 IO 5.72 45.750 0.00 0.67 3.091 IO I I I 5.70 46.000 0.00 0.67 3.077 IO 5.68 46.250 0.00 0.67 3.063 IO I 5.66 46.500 0.00 0.67 3.049 IO I 5.65 46.750 0.00 0.67 3.035 IO I 5.63 47.000 0.00 0.67 3.021 IO 5.61 47.250 0.00 0.67 3.007 IO ( ( I I 5.60 47.500 0.00 0.66 2.994 IO I I 5.58 47.750 0.00 0.66 2.980 IO I 5.56 48.000 0.00 0.66 2.966 IO ( I 5.55 48.250 0.00 0.66 2.953 IO I I 5.53 48.500 0.00 0.66 2.939 IO 5.51 48.750 0.00 0.66 2.925 IO 5.50 49.000 0.00 0.66 2.912 IO I I 5.48 49.250 0.00 0.65 2.898 IO I 5.46 49.500 0.00 0.65 2.885 IO I 5.44 49.750 0.00 0.65 2.871 IO I I 5.42 50.000 0.00 0.65 2.858 IO I 5.40 50.250 0.00 0.65 2.844 IO I 5.39 50.500 0.00 0.65 2.831 IO I I I 5,37 0.00 0.65 2.818 IO I I 5.35 •50.750 51.000 0.00 0.64 2.804 IO 5.33 51.250 0.00 0.64 2.791 IO 5.31 51.500 0.00 0.64 2.778 IO I 5.30 0.00 0.64 2.765 IO I I I I 5.28 •51.750 52.000 0.00 0.64 .2.751 IO I I I I 5.26 52.250 0.00 0.64 2.738 IO I I I I 5.24 52.500 0.00 0.64 2.725 IO I I I ( 5.22 52.750 0.00 0.63 2.712 IO I I I I 5.21 53.000 0.00 0.63 2.699 IO I I I I 5.19 53.250 0.00 0.63 2.686 IO I I. I I 5.17 53.500 0.00 0.63 2.673 IO I I I I 5.15 53.750 0.00 0.63 2.660 IO I I I I 5.13 54.000 0.00 0.63 2.647 IO I I I I 5.12 54.250 0.00 0.63 2.634 IO I I I I 5.10 54.500 0.00 0.62 2.621 IO I I I I 5.08 .54.750 0.00 0.62 2.608 IO I I I I 5.06 55.000 0.00 0.62 2.595 IO I I I I 5.05 55.250 0.00 0.62 2.582 IO I I I I 5.03 55.500 0.00 0.62 2.569 IO I I I I 5.01 55.750 0.00 0.62 2.557 IO I I I I 4.99 56.000 0.00 0.62 2.544 IO ( I I I 4.98 56.250 0.00 0.61 2.53.1 IO I I I I 4.96 56.500 0.00 0.61 2.519 IO I I I I 4.94 56.750 0.00 0.61 2.506 IO I I I I 4.92 57.000 0.00 0.61 2.493 IO I I I I 4.91 57.250 0.00 0.61 2.481 IO I I I I 4.89 57.500 0.00 0.61 2.468 IO I I I I 4.87 57.750 0.00 0.61 2.455 IO I I I I 4.86 0.00 0.61 2.443 IO I I I I 4.84 •58.000 58.250 0.00 0.60 2.430 IO I I I ( 4.82 58.500 0.00 0.60 2.418 IO I I ( I 4.81 58.750 0.00 0.60 2.406 IO I I I I. 4.79 59.000 0.00 0.60 2.393 IO I I I I 4.77 59.250 0.00 0.60 2.381 IO I I I I 4.75 59.500 0.00 0.60 2.368 IO I I I I 4.74 59.750 0.00 0.60 2.356 IO I I I I 4.72 60.000 0.00 0.59 2.344 IO I I I I 4.70 60.250 0.00 0.59 2.332 IO I I I I 4.69 60.500 0.00 0.59 2.319 IO I ( I I 4.67 60.750 0.00 0.59 2.307 IO I ( I I 4.65 61.000 0.00 0.59 2.295 IO I I I I 4.'64 61.250 0.00 0.59 2.283 IO ( I I I 4.62 61.500 0.00 0.59 2.271 IO I I I I 4.60 61.750 0.00 0.59 2.259 IO I I I I 4.59 62.000 0.00 0.58 2.246 IO I I I I 4.57 62.250 0.00 0.58 2.234 IO I I I I 4.56 62.500 0.00 0.58 2.222 IO I I I I 4.54 62.750 0.00 0.58 2.210 IO I I I I 4.52 63.000 0.00 0.58 2.198 IO I I I I 4.51 63.250 0.00 0.58 2.187 IO I I I I 4.49 63.500 0.00 0.58 2.175 IO I I I I 4.47 63.750 0.00 0.57 2.163 IO I I I I 4.45 64.000 0.00 0.57 2.151 IO I I I I 4.43 64.250 0.00 0.57 2.139 IO I I I I 4.42 64.500 0.00 0.57 2.127 IO I I I I 4.40 64.750 0.00 0.57 2.116 IO I I I I 4.38 65.000 0.00 0.57 2.104 IO I I I I 4.36 65.250 0.00 0.57 2.092 IO ( I 4.34 •65.500 0.00 0.56 2.080 IO 4.33 65.750 0.00 0.56 2.069 IO I 4.31 66.000 0.00 0.56 2.057 IO 4.29 66.250 0.00 0.56 2.046 IO I 4.27 66.500 0.00 0.56 2.034 IO 4.26 66.750 0.00 0.56 2.023 IO I 4.24 67.000 0.00 0.56 2.011 IO 4.22 6.7.250 0.00 0.55 2.000 IO I 4.20 67.500 0.00 0.55 1.988 IO 4.19 67.750 0.00 0.55 1.977 IO I I I I 4.17 68.000 0.00 0.55 1.965 IO 4.15 68.250 0.00 0.55 1.954 IO 4.13 68.500 0.00 0.55 1.943 IO I I I 4.12 68.750 0.00 0.55 1.931 IO 4.10 69.000 0.00 0.54 1.920 IO ( I I 4.08 69.250 0.00 0.54 1.909 IO I 4.06 69.500 0.00 0.54 1.898 IO 4.05 69.750 0.00 0.54 1.886 IO I I I 4.03 70.000 0.00 0.54 1.875 IO I I 4.01 70.250 0.00 0.54 1.864 IO I 4.00 70.500 0.00 0.54 1.853 IO I I 3.98 70.750 0.00 0.53 1.842 IO I 3.96 71.000 0.00 0.53 1.831 IO ( I 3.94 71.250 0.00 0.53 1.820 IO 3.93 •71.500 71.750 0.00 0.00 0.53 0.53 1.809 1.798 IO I IO I I I I 3.91 I I 3.89 72.000 0.00 0.53 1.787 IO ( 3.88 72.250 0.00 0.53 1.776 IO I 3.86 72.500 0.00 0.53 1.765 IO 3.84 72.750 0.00 0.52 1.755 IO I 3.83 73.000 0.00 0.52 1.744 IO 3.81 73.250 0.00 0.52 1.733 IO I 3.79 73.500 0.00 0.52 1.722 IO I I 3.78 73.750 0.00 0.52 1.711 IO I I I I 3.76 74.0.00 0.00 0.52 1.701 IO I I I I 3.75 74.250 0.00 0.52 1.690 IO I 3.73 74.500 0.00 0.52 1.679 IO ( I I 3.71 74.750 0.00 0.51 1.669 IO 3.70 .75.000 0.00 0.51 1.658 IO 3.68 75.250 0.00 0.51 1.648 IO I I I 3.66 75.500 0.00 0.51 1.637 IO I 3.65 75.750 0.00 0.51 1.626 IO I 3.63 76.000 0.00 0.51 1.616 IO 3.62 76.250 0.00 0.51 1.606 IO I I 3.60 76.500 0.00 0.50 1.595 IO I 3.58 76.750 0.00 0.50 1.585 IO I 3.57 77.000 0.00 0.50 1.574 IO I 3.55 77.250 0.00 0.50 1.564 IO I 3.54 77.500 0.00 0.50 1.554 IO I 3.52 0.00 0.50 1.543 IO I I I 3.51 •77.750 78.000 0.00 0.50 1.533 IO I ( 3.49 78.250 0.00 0.50 1.523 IO I I 3.47 78.500 0.00 0.49 1.513 IO 3.45 78.750 0.00 0.49 1.502 IO 3.43 79.000 0.00 0.49 1.492 IO 3.42 79.250 0.00 0.49 1.482 IO 3.40 79.500 0.00 0.49 1.472 IO I 3.38. 79.750 0.00 0.49 1.462 IO I 3.36 80.000 0.00 0.49 1.452 IO 3.35 80.250 0.00 0.49 1.442 IO 3.33 80.500 0.00 0.48 1.432 IO 3.31 80.750 0.00 0.48 1.422 IO 3.29 81.000 0.00 0.48 1.412 IO I 3.28 81.250 0.00 0.48 1.402 IO I 3.26 81.500 0.00 0.48 1.392 IO I I 3.24 81.750 0.00 0.48 1.382 IO I I 3.23 82.000 0.00 0.48 1.372 IO I 3.21 82.250 0.00 0.47 1.362 IO 3.19 82.500 0.00 0.47 1.353 IO I I 3.17 82.750 0.00 0.47 1.343 IO I ( 3.16 83.000 0.00 0.47 1.333 IO I 3.14 83.250 0.00 0.47 1.323 IO 3.12 83.500 0.00 0.47 1.314 IO I 3.11 83.750 0.00 0.47 1.304 IO 3.09 84.000 0.00 0.47 1.294 IO 3.07 84.250 0.00 0.46 1.285 IO I. 3.06 84.500 0.00 0.46 1.275 IO I I 3.04 84.750 0.00 0.46 1.266 IO 3.02 85.000 0.00 0.46 1.256 IO 3.01 85.250 0.00 0.46 1.246 IO I I I 2.99 85.500 0.00 0.46 1.237 IO I I 2.97 85.750 0.00 0.46 1.228 IO 2.96 86.000 0.00 0.46 1.218 IO I ( I 2.94 86.250 0.00 0.45 1.209 IO I 2.92 86.500 0.00 0.45 1.199 IO 2.91 86.750 0.00 0.45 1.190 IO I 2.89 87.000 0.00 0.45 1.181 IO I I 2.88 87.250 0.00 0.45 1.171 IO I I I I 2.86 87.500 0.00 0.45 1.162 IO I I 2.84 87.750 0.00 0.45 1.153 IO I 2.83 88.000 0.00 0.45 1.144 IO 2.81 88.250 0.00 0.45 1.134 IO I 2.80 88.500 0.00 0.44 1.125 IO I I 2.78 88.750 0.00 0.44 1.116 IO ( I I I 2.76 89.000 0.00 0.44 1.107 IO I I I 2.75 89.250 0.00 0.44 1.098 IO I 2.73 89.500 0.00 0.44 1.089 IO I I 2.72 89.750 0.00 0.44 1.080 IO I I I 2.70 90.000 0.00 0.44 1.071 IO I I I 2.68 90.250 0.00 0.44 1.062 IO 2.67 90.500 0.00 0.43 1.053 IO ( I I 2.65 90.750 0.00 0.43 1.044 IO I ( 2.64 91.000 0.00 0.43 1.035 IO I I I 2.62 91.250 0.00 0.43 1.026 IO I 2.61 91.500 0.00 0.43 1.017 IO I 2.59 91.750 0.00 0.43 1.008 IO I I I 2.58 92.000 0.00 0.43 0.999 IO 2.56 92.250 0.00 0.43 0.990 IO 2.55 •92.500 0.00 0.43 0.981 IO ( I 2.53 92.750 0.00 0.42 0.973 IO 2.52 93.000 0.00 0.42 0.964 IO 2.50 93.250 0.00 0.42 0.955 IO I I I I 2.48 93.500 0..00 0.42 0.947 IO ( ( 2.47 93.750 0.00 0.42 0.938 IO I 2.45 94.000 0.00 0.42 0.929 IO I I 2.43 94.250 0.00 0..42' 0.921 IO I I I 2.41 94.500 0.00 0.42 0.912 IO 2.40 •94.750 0.00 0.42 0.903 IO I I 2.38 95.000 0.00 0.41 0.895 IO I 2.36 95.250 0.00 0.41 0.886 IO I 2.35 95.500 0:00 0.41 0.878 IO I 2.33 95.750 0.00 0.41 0.869 IO I 2.31 96.000 0.00 0.41 0.861 IO I 2.29 96.250 0.00 0.41 0.852 IO ( I 2.28 96.500 0.00 0.41 0.844 IO I 2.26 96.750 0.00 0.41 0.835 IO I I 2.24 97.000 0.00 0.41 0.827 IO 2.23 97.250 0.00 0.40 0.819 IO 2.21 97.500 0.00 0.40 0.810 IO I 2.19 97.750 0.00 0.40 0.802 IO 2.18 98.000 0.00 0.40 0.794 IO I I I 2.16 98.250 0.00 0.40 0.786 IO I I I 2.15 0.00 0.40 0.777 IO 2.13 •98.500 98.750 0.00 0.40 0.769 IO I I 2.11 99.000 0.00 0.40 0.761 IO I I I 2.10 99..250 0.00 0.40 0.753 IO ( I I 2.08 99.500 0.00 0.39 0.745 IO I I 2.06 99.750 0.00 0.39 0.736 IO I I 2.05 100.000 0.00 0.39 0.728 IO 2.03 100.250 0.00 0.39 0.720 IO I 2.02 100.500 0.00 0.39 0.712 IO I I I I 2.00 100.750 0.00 0.39 0.704 IO I I I 1.98 101.000 0.00 0.39 0.696 IO 1.97 101.250 0.00 0.39 0.688 IO 1.95 101.500 0.00 0.39 0.680 IO I I 1.94 101.750 0.00 0.38 0.672 IO I 1.92 102.000 0.00 0.38 0.664 IO 1.90 102.250 0.00 0.38 0.656 IO I I 1.89 102.500 0.00 0.38 0.648 IO I 1.87 102.750 0.00 0.38 0.640 IO I I 1.86 103.000 0.00. 0.38 0.633 IO ( I 1.84 103.250 0.00 0.38' 0.625 O I I 1.83 103.500 0.00 0.38 0.617 O I I I I 1:81 103.750 0.00 0.38 0.609 O I 1.79 104.000 0.00 0.38 0.601 O ( 1.78 104.250 0.00 0.37 0.594 O I 1.76 104.500 0.00 0.37 0.586 O I ( 1.75 •104.750 0.00 0.37 0.578 O I 1.73 105.000 0.00 0.37 0.571 O 1.72 105.250 0.00 0.37 0.563 O I I 1.70 105.500 0.00 0.37 0.555 0 1.69 105.750 0.00 0.37 0.548 O 1.67 •106.000 0.00 0.37 0.540 O 1.66 106.250 0.00 0.37 0.532 O 1.64 106.500 0.00 0.37 0.525 O I I 1.63 106.750 0.00 0.36 0.517 O 1.61 107.000 0.00 0.36 0.510 O. I I 1.60 107.250 0.00 0.36 0.502 O 1.58 107.500 0.00 0.36 0.495 O I I 1.57 107.750 0.00 0.36 0.487 O 1.55 108.000 0.00 0.36 0.480 O I 1.54 108.250 0.00 0.36 0.473 O 1.52 108.500 0.00 0.36 0.465 O I 1.51 108.750 0.00 0.36 0.458 O 1.49 109.000 0.00 0.36 0.450 O I 1.47 109.250 0.00 0.35 0.443 O I 1.46 109.500 0.00 0.35 0.436 O I I 1.44 109.750 0.00 0.35 0.429 O ( ( 1.42 110.000 0.00 0.35 0.421 O 1.40 110.250 0.00 0.35 0.414 O I I 1.39 110.500 0.00 0.35 0.407 O 1.37 110.750 0.00 0.35 0.400 O I I 1.35 111.000 0.00 0.35 0.392 O 1.33 111.250 0.00 0.35 0.385 O I 1.31 111.500 0.00 0.35 0.378 O ( I I 1.30 111.750 0.00 0.34 0.371 O 1.28 0.00 0.34 0.364 O 1.26 •112.000 112.250 0.00 0.34 0.357 O I I 1.25 112.500 0.00 0.34 0.350 O 1.23 112.750 0.00 0.34 0.343 O 1.21 113.000 0.00 0.34 0.336 O I I I I 1.19 113.250 0.00 0.34 0.329 O 1.18 113.500 0.00 0.34 0.322 O I I 1.16 113.750 0.00 0.34 0.315 O I I 1.14 114.000 0.00 0.33 0.308 O I I I I 1.13 114.250 0.00 0.33 0.301 O 1.11 114.500 0.00 0.33 0.294 O 1.09 114.750 0.00 0.33 0.287 O I 1.08 115.000 0.00 0.33 0.280 O 1.06 115.256 0.00 0.33 0.274 O 1.04 115.500 0.00 0.33 0.267 O 1.02 115.750 0.00 0.33 0.260 O I 1.01 116.000 0.00 0.33 0.253 O I 0.99 116.250 0.00 0.33 0.246 O .0.98 116.500 0.00 0.33 0.240 O 0.96 116.750 0.00 0.32 0.233 O 0.94 117.000 0.00 0.32 0.226 O 0.93 117.250 0.00 0.32 0.220 O 0.91 117.500 0.00 0.32 0.213 O I I 0,89 117.750 0.00 0.32 0.206 O I I 0,88 118.000 0.00 0.32 0.200 O 0.86 118.250 0.00 0.32 0.193 O I 0.85 118.500 0.00 0.32 0.187 O 0.83 118.750 0.00 0.32 0.180 O 0.81 119.000 0.00 0.32 0.173 0 I I 0.80 • 119.250 0.00 0.31 0.167 O I 0.78 •119.500 0.00 0.31 0.160 O I 0.77 119.750 0.00 0.31 0.154 O I 0.75 120.000 0.00 0.31 0.148 O I I 0.73 120.250 0.00 0.31 0.141 O I 0.72 120.500 0.00 0.31 0.135 O I 0.70 120.750 0.00 0.31 0.128 O I 0.69 121.000 0.00 0.31 0.122 O I 0.67 121.250 0.00 0.31 0.116 O 0.66 121.500 0.00 0.31 0.109 O 0.64 121.750 0.00 0.31 0.103 O ( I I 0.62 122.000 0.00 0.30 0.097 O 0.61 122.250 0.00 0.30 0.090 O I 0.59 122.500 0.00 0.30 0.084 O 0.58 122.750 0.00 0.30 0.078 O 0.56 123.000 0.00 0.30 0.072 O I ( I 0.55 123.250 0.00 0.30 0.065 O 0.53 123.500 0.00 0.30 0.059 O I 0.52 123.750 0.00 0.30 0.053 O I 0.50 124.000 0.00 0.27 0.047 O 0.47 124.250 0.00 0.25 0.042 O I ( I 0.43 124.500 0.00 0.22 0.037 O I 0.40 124.750 0.00 0.20 0.032 O 0.37 125.000 0.00 0.18 0.029 O I I I 0.35 125.250 0.00 0.17 0.025 O I I 0.32 0.00 0.15 0.022 O 0.30 •125.500 125.750 0.00 0.14 0.019 O I I 0,28 126.000 0.00 0.12 0.016 O I 0.26 126.250 0.00 0.11 0.014 O 0.24 126.500. 0.00 : `0.09 . - 0:012 0. :. �_ '0.21' Remaining water in basin = 0.01 (Ac.Ft) HYDROGRAPH. DATA* * * * * * * * * * * ** Number of intervals = 506 Time interval = 15.0 (Min.) Maximum /Peak flow rate = 0.800 (CFS) Total volume = 5.531 (Ac.Ft) **************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** • Tab 6 • Appendix B Rational Method HvdroloQv a 131 Streets B2 Catch Basin / Inlets B3 Storm Drain Hydrology B4 Hydraulic Grade Line Craftsmen Homes Tentative Tract 32751 • • Tab 6 Appendix B:t Rational Method Hydrology • Streets Craftsmen Homes 0 Tentative Tract 32751 CIVILCADD /CIVILDESIGN Engineering Software, (c) 2004 Version 7.0 F-6 Y;:' r,, '1. ,r t7 `' .xr•. `^z:,, Cs�k 3•:s.� 'P�cnT� ,�F��r �i�i °nr '�.� i yf + © j14 C 3 a 9 _:E'Kr.1fsj��r F�tE%f — — — — — — — — — — — — — — — — — — — — — — — — — Upstream (headworks) Downstream (outlet) Runoff /Flow Distance Maximum flow rate in — — — — — — — — — — — — — — — — — — — — — — — — — — — — — C K101,21,111 . _ Elevation = 100.500(Ft.) 3levation = 100.000(Ft.) 100.000(Ft.) channel(s) = 20.000(CFS) --------------------------------------------------------------------- Depth of flow = 0.288(Ft.) top width Average velocity = 1.115(Ft /s) flow Total flow rate in 1/2 street = 1.000(CFS) flow area = ---------------------------------------------.-------------------- Point number 'X' coordinate 'Y' coordinate 1 0.00 0.70 2 10.00 0.50 3 10.20 0.50 4 11.42 0.08 5 11.50 0.00 6 12.92 0.12 7 13.00 0.15 8 29.50 0.48$ 9 29.50 0.70 Manning's 'N' friction ----------------------------------------------------------- factor = 0.020 - - - - -- 'Sub- Channel flow = 1.000(CFS) ' flow top width = 9.097(Ft.) wetted perimeter = 9.177(Ft-.) velocity= 1.115(Ft /s) ' area = 0.897 (Sq.Ft) Froude number = 0.626 „Upstream point elevation = 100.500(Ft.) Downstream point elevation = 100.000(Ft.) Flow length = 100.000(Ft.) Irregular channel normal.depth above invert elev. _ Average velocity of channel(s) = 1.115(Ft /s) Sub- Channel No. 1 Critical depth = 0.253(Ft.) 0.288(Ft.) ' Critical flow top width 7.229(Ft.) ' Critical flow velocity= 1.643_(Ft /s) ' Critical flow area = 0.609(Sq.Ft) • ++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ I ` 3Y �'�ra..���Fry. fi> by ��a � 3+1+ ��r�, ^xa.+±"' —yi a'P �r "F °,n'.� }�- ^Au -x�'W< ,.�z'cz Z+, ^i �•. ,s F -tJ �° �1. �a�`.. �e�� .."_Y��Ll:/��.,��'.,���i��,� — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — Sub - Channel flow = 2.000(CFS) flow top width = 12.236(Ft.) wetted perimeter '= 12.327(Ft.) velocity= 1.3O7(Ft /s) ' area = 1.530(Sq.Ft) Froude number = 0.652 Depth of flow = 0.348(Ft.) Average velocity = 1.307(Ft /s) Total irregular channel flow = 2.000(CFS) Irregular channel normal depth above invert elev. = 0.348(Ft.) Average velocity of channel(s) = 1.307(Ft /s) Sub- Channel No..1 Critical depth = 0.307(Ft.) ' Critical flow top width = 10.070(Ft.) ' Critical flow velocity= 1.863(Ft /s) ' Critical flow area = 1.073(Sq.Ft) ++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ----------------------------------------------------------------- Sub- Channel flow = 3.000(CFS) flow top width = 14.435(Ft.) wetted perimeter = 14.533(Ft.) velocity= 1.439(Ft/s) ' area = 2.084(Sq.Ft) Froude number = 0.668 Depth of flow = 0.389(Ft.) Average velocity = 1.439(Ft /s) Total irregular channel flow 3.000(CFS) Irregular channel normal depth above invert elev. = 0.389(Ft.) Average velocity of channel(s) = 1.439(Ft/s) oSub- Channel No. 1 Critical depth = 0.346(Ft.) Critical flow top width = 12.137(Ft.) ' Critical flow velocity= 1.991.(Ft /s) Critical flow area = 1.507(Sq.Ft) ++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ------------------------=---------------------------------------- Sub- Channel flow = 4.000(CFS) F ' flow top width 16.193(Ft.) ' wetted perimeter = 16.296(Ft.) ' velocity= 1.543(Ft /s) area = 2.593(Sq.Ft) ' Froude number = 0.679 Depth of flow = 0.422(Ft.) Average velocity = 1.543(Ft /s) Total irregular channel flow = 4.000(CFS) Irregular channel normal depth above invert elev. = 0.422(Ft.) Average velocity of channel(s) = 1.543(Ft /s) Sub - Channel No. 1 Critical depth = 0.375(Ft.) Critical flow top width = 13.687(Ft.) ' Critical flow velocity= 2.122(Ft/s) Critical flow area = 1.885(Sq.Ft) ++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Sub - Channel flow = 5.000(CFS) flow top width = 17.684(Ft.) ' wetted perimeter = 17.793(Ft.) ' velocity= 1.628(Ft /s) area = 3.070(Sq.Ft) ' Froude number = 0.689 Depth of flow = 0.451(Ft.) Average velocity = 1.628(Ft/s) Total irregular channel flow = 5.000(CFS) Irregular channel normal depth above invert elev. = 0.451(Ft.) Average velocity of channel(s) = 1.628(Ft /s) Sub- Channel No. 1 Critical depth = 0.402(Ft.) ` Critical flow top width = 15.134(Ft.) Critical flow velocity= 2.194(Ft /s) ' Critical flow area = 2.279(Sq.Ft) • • ++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ (P.41 ca 42M. ---------------------------------------------------------.-------- ;Sub- Channel flow = 6.000(CFS) ' flow top width = 18.994(Ft.) wetted perimeter = 19.107(Ft.) ' velocity= 1.702(Ft /s) area = 3.524(Sq.Ft) ' Froude number = 0.696 Depth of flow = 0.475 (Ft. ) Average velocity = 1.702-(Ft /s) Total irregular channel flow = 6.000(CFS). Irregular channel normal depth above invert elev. = 0.475(Ft.)- Average velocity of channel(s) = 1.702(Ft /s) Sub - Channel No. 1 Critical depth =. 0.426(Ft.) ' Critical flow top width = 16.373(Ft.) '. Critical flow velocity= 2.265(Ft/s) ' Critical flow area = 2.649(Sq.Ft) +++++++++++++ +++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Sub- Channel flow = 7.000(CFS) ' flow top width = 19.284(Ft.) wetted perimeter = 19.414(Ft.) velocity= 1.799(Ft /s) ' area = 3.891(Sq.Ft) Froude number = 0.706 Depth of flow = 0.494(Ft.) Average velocity = 1.799(Ft /s) Total irregular channel flow = 7.000(CFS) Irregular channel normal depth above invert elev. = 0.494(Ft.) Average velocity of channel(s) = 1.799(Ft /s) Sub - Channel No. 1 Critical depth 0.445(Ft.) Critical flow top width = 17.407(Ft.) Critical flow velocity= 2,350(Ft /s) Critical flow area = 2.978(Sq.Ft) • ++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ "f��"E,r,,,Y'F -•irti ,�- �!S `."' `rrt�l�'�,t `^�.. t• 1 <C'.S -r Y �I.9 �-i. .� �; .� :�r��,o E. �. ;�.-.y t 11���Cj���Fv���•` N� t ��' ��?a,_�" `�`�i1'�-T �o � � ���xl'e4�yU.- 't y,• t, t 'n�'' -3 � r wt ... T s . _ L. _ - :f_•N..y.:ES. �.� SS'ii ._ ;e.,..o ? . � _. — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — Sub- Channel.flow = 8.000(CFS) flow top width = 20.257(Ft.) ' wetted perimeter = 20.409(Ft.) ' velocity 1 . 860 (Ft /s) ' area = 4.300(Sq.Ft) Froude number = 0.712 Depth of flow = 0.515(Ft.) Average velocity = 1.860(Ft /s) ,Total irregular channel flow = 8.000(CFS) Irregular channel normal depth above invert elev., 0.515(Ft.) ,Average velocity of channel(s) = 1.860(Ft /s) Sub - Channel No. 1 Critical depth = 0.465(Ft.) ' Critical flow top width = 18.440(Ft.) Critical flow velocity= 2.403(Ft /s) ' Critical flow area = 3.329(Sq.Ft) ++.+++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ------------------------------------------.----------------------- :Sub- Channel flow = 9.000(CFS) flow top width = 21.229(Ft.) ' wetted perimeter = 21.401(Ft.) ' velocity= 1.913(Ft /s) area = 4.704(Sq.Ft) Froude number = 0.716 Depth of flow = 0.535(Ft.) Average velocity = 1.913(Ft /s) Total irregular channel flow = 9.000(CFS) Irregular channel normal depth above invert elev. = 0.535(Ft.) .Average velocity of channel(s) = 1.913(Ft /s) Sub- Channel No. 1 Critical depth = 0.480(Ft.) ' Critical flow top width = 19.243(Ft.) ' Critical flow velocity= 2.484(Ft/s) Critical flow area = 3.623(Sq.Ft) e ++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ -- .+ <x } #� g.SYJ rz'i��'�fn�*r`k� x��''Lf��!?7�1'L1:l�ilY� ----------------------------------------------------------------- Sub- Channel flow = 10.000(CFS) flow top width = 22.134(Ft.) wetted perimeter = 22.324(Ft.) velocity= 1.962(Ft /s) area = 5.096(Sq.Ft) Froude number = 0.721 Depth of flow = 0 .553 (Ft . ) Average velocity = 1.962(Ft /s) Total irregular channel flow = 10.000(CFS) Irregular channel normal depth above invert elev. = 0.553(Ft.) Average velocity of channel(s) = 1.962(Ft /s) Sub - Channel No. 1 Critical depth = 0.496(Ft.) ' Critical flow top width = 19.289(Ft.) Critical flow velocity= 2.548(Ft/s) Critical flow area = 3.924(Sq.Ft) ++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Depth of flow = 0.570 (Ft. ) Average velocity = 2.008(Ft /s) Total flow rate in 1/2 street = 11.000(CFS) i Sub - Channel flow = 11.000(CFS) ' flow top width = 22.982(Ft.) wetted perimeter = 23.189(Ft.) velocity= 2.008(Ft /s) area = 5.479(Sq.Ft) Froude number = 0.725 Depth of flow 0 . 570 (Ft . ) Average velocity = 2.008(Ft /s) Total irregular channel flow = 11.000(CFS) Irregular channel normal depth above invert elev. = 0.570(Ft.) Average velocity of channel(s) = 2.008(Ft /s) Sub- Channel No. 1 Critical depth = 0.512(Ft.) ' Critical flow top width = 20.086(Ft.) ' Critical flow velocity= 2.600(Ft /s) ' ' ' Critical flow area = 4.231(Sq.Ft) � .. ... OW) • ++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ k'---v - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Sub. - Channel flow = 12.000 (CFS) flow top width = 23.781(Ft.) ' wetted perimeter = 24.005(Ft.) velocity= 2.050(Ft /s) ' area = 5.853(Sq.Ft) Froude number = 0.728 ;Depth of flow = 0.586(Ft.) Average velocity = 2.050(Ft /s) Total irregular channel flow = 12.000(CFS) Irregular channel normal depth above invert elev. = 0.586(Ft.) Average velocity of channel(s) = 2.050(Ft /s) Sub - Channel No. 1 Critical depth = 0.527(Ft.) Critical flow top width = 20.867(Ft.) Critical flow velocity= 2.637(Ft/s) Critical flow area = 4.551(Sq.Ft) ++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ----------------------------------------------------------------- Sub - Channel flow = 13.000(CFS) ' flow top width = 24.540(Ft.) ' wetted perimeter = 24.779(Ft.) velocity= 2.090(Ft /s) area = 6.219(Sq.Ft) ' Froude number = 0.732 Depth of flow = 0.601(Ft.) Average velocity = 2.090(Ft /s) Total irregular channel flow 13.000(CFS) Irregular channel normal depth above invert elev. = 0.601(Ft.) .Average velocity of channels) = 2.090(Ft /s) Sub - Channel No. 1 Critical depth = 0.539(Ft.) ' Critical flow top width = 21.453(Ft.) ' Critical flow velocity= 2.709(Ft /s) Critical flow area = 4.799(Sq.Ft) ............... ............ ....................................... �.i Sub - Channel flow = 14.000(CFS) ' flow top width = 25.261(Ft.) ' wetted perimeter = 25.515(Ft.) ' velocity= 2.128(Ft /s) ' area = 6.578(Sq.Ft)' ' Froude number = 0.735 Depth of flow = 0.615(Ft.) Average velocity = 2.128(Ft/s) Total irregular channel flow = 14.000(CFS) Irregular channel normal depth above invert elev. = 0.615(Ft.) Average velocity of channel(s) = 2.128(Ft /s) Sub - Channel No. 1 Critical depth = 0.555(Ft.) ' Critical flow top width = 22.234(Ft.) Critical flow velocity= 2.723(Ft/s) ' Critical flow area = 5.141(Sq.Ft) ++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ----------------------------------------------------------------- Sub- Channel flow = 15.000(CFS) ' flow top width = 25.950(Ft.) ' wetted perimeter = 26.218(Ft.) velocity= 2.164(Ft /s) ' area = 6.931(Sq.Ft) ' Froude number = 0.738 Depth of flow = 0.629(Ft.) Average velocity = 2.164(Ft /s) Total irregular channel flow = 15.000(CFS) Irregular channel normal depth above invert'elev. = 0..629(Ft.) Average velocity of channel(s) = 2.164(Ft /s) Sub - Channel No. 1 Critical depth = 0.566(Ft.) Critical flow top width = 22.820(Ft.) Critical flow velocity= 2.775(Ft/s) ' ' ' Critical flow area = 5.405(Sq.Ft) +++++++++±++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 4 �y{,.�T =�` t fi A 8 %��.:i �J / M � -� '��j. �`}_�' �'�`t1 ��`� !� /3•!V % : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Sub- Channel flow = 16.000(CFS) flow top width = 26.611(Ft.) ' wetted perimeter = 26.892(Ft.) ' velocity= 2.198(Ft /s) ' area = 7.278(Sq.Ft) ' Froude number = 0.741 Depth of flow = 0.642(Ft.) Average velocity = 2.198(Ft /s) Total irregular channel flow = 16.000(CFS) Irregular. channel normal depth above invert elev. = 0.642(Ft.) Average velocity of channel(s) = 2.198(Ft /s) Sub- Channel No. 1 Critical depth = 0.578(Ft.) Critical flow top width = 23.406(Ft.) Critical flow velocity= 2.819(Ft /s) ' Critical flow area = 5.676(Sq.Ft) ++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ -------------------- Sub- Channel flow = 17.000(CFS) ' flow top width = 27.246(Ft.) ' wetted perimeter = 27.539(Ft.) velocity= 2.231(Ft /s) area = 7.620(Sq.Ft) Froude number = 0.743 .Depth of flow 0.655(Ft.) Average velocity = 2.231(Ft/s) Total irregular channel flow = 17.000(CFS) Irregular channel normal depth above.invert elev. = 0.655(Ft.) Average velocity of channel(s) = 2.231(Ft /s) .Sub - Channel No. 1 Critical depth = 0.594(Ft.) ' Critical flow top width = 24.188(Ft.) ' Critical flow velocity= 2.811(Ft /s) ' ' ' Critical flow area = 6.047(Sq.Ft) • • ............................................... ................ + ++ �p h°S!' � � ;y° " = i+ .y � -e ;+x��"±�rrr'i^M�4�g, •R yti'Tr''.vw3' �'�'�'� v' ��I 21 �. -r+ 1 •r r� +.� 4_ >r -t. IM -------------------- - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Sub - Channel flow = 18.000(CFS) flow top width = 27.857(Ft.) ' wetted perimeter = 2,8.163(Ft.) ' velocity= 2.262(Ft/s) ' area = 7.957(Sq.Ft) ' Froude number = 0.746 Depth -of flow = 0 . 667 (Ft . ) Average velocity = 2.262(Ft/s) Total irregular channel flow = 18.000(CFS) Irregular channel normal depth above invert elev. = 0.667(Ft.) .Average velocity of channel(s) = 2.262(Ft/s) Sub - Channel No. 1 Critical depth = 0.602(Ft.) ' Critical flow top width 24.578(Ft.) ' Critical flow velocity= 2.886(Ft/s) ' Critical flow area = 6.238(Sq.Ft) +++++++++++++++++++++++++++...... + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ----------------------------------------------------------------- Sub- Channel flow = 19.0.00(CFS) ' flow top width 28.447(Ft.) ' wetted perimeter = 28.765(Ft.) ' velocity= 2.292(Ft/s) ' area = 8.289 (Sq.Ft) Froude number = 0.748 Depth of flow = 0.679(Ft.) Average velocity = 2.292(Ft/s) Total irregular channel flow = 19.000(CFS) Irregular channel normal depth above. invert elev. = 0.679(Ft.) Average velocity of channel (s) = 2..292 (Ft /s) Sub - Channel No. 1 Critical depth = 0.613(Ft.) ' Critical flow top width = 25.164(Ft.) ' Critical flow velocity= 2.910(Ft /s) ' Critical flow area = 6.529(Sq.Ft) ++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ © �� tom% - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Sub- Channel flow = 20.000(CFS) flow top width = 29.017(Ft.) ' wetted perimeter = 29.347(Ft.) ' velocity= 2.321(Ft /s) ' area = 8.617(Sq.Ft) ' Froude number = 0.751 Depth of flow = 0.690(Ft.) Average velocity = 2.321(Ft /s) Total irregular channel flow = 20.000(CFS) Irregular channel normal depth above invert elev. = 0..690(Ft.) Average velocity of channel(s) = 2.321(Ft/s) Sub - Channel No. 1 Critical depth = 0.625(Ft.) Critical flow top width = 25.750(Ft.) Critical flow velocity= 2.929(Ft/s) Critical flow area = 6.828(Sq.Ft) I Appendix B2 Rational Method Hydrology 0 Catch Basin /Inlet Craftsmen Homes Tentative Tract 3275 0 Tab 7 • -- CIVILCADD /CIVILDESIGN Engineering Software, (c) 2004 Version 7.0 NOTE 2/3 of flow approaches CB from north, , 1/3 from south. St capacity not exceeded. ----------------------------=--------------------------------------- Program License Serial Number 4082 -------------------------------------------------------------------- * ** Street Flow +Inlet Analysis * ** Upstream (headworks) Elevation = 100.100(Ft.) Downstream (outlet) Elevation = 100.000(Ft.) Runoff /Flow Distance = 50.000(Ft.) Maximum dep.th(HGL) of flow at headworks = 0.500(Ft.). --------------------------=----------------------------------------- Top of street segment elevation = 100.100(Ft.) End of street segment elevation = 100.000(Ft.) Length of street segment = 50.000(Ft.) ,r`Width_of halfw� street (curb toy crown)�;����``14' OOtO�(�F;t) Distance from crown to crossfall grade break = 0.500(Ft.) • Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [2] side (s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v /hz) = 0.025 Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0200 Manning's N from grade break to crown = 0.0200 Half street cross section data points: X- coordinate (Ft.) Y- coordinate (Ft.) 0.0000 0.7500 right of way 10.0000 0.5000 top of curb 10.0000 0.0000 flow line 12.0000 0.1667 gutter end 23.5000 0.3967 grade break 24.0000 0.4067 crown Note: depth of flow exceeds top of street crown. -� _ a� , tr�eetf3sl.owhydra�ulics 4 Halfstreet flow width (curb to crown) = 14.000(Ft.) Average flow velocity = 1.31(Ft /s) • Channel including Gutter and area towards property line: Flow Width = 2.000(Ft.) Flow Area = 0.833(Sq.Ft) • Velocity = 1.959(Ft /s) Flow Rate = Froude No. = 0.5348 Channel from outside edge of gutter towards grade Flow Width = 11.500(Ft.) Flow Area = Velocity = 1.110(Ft /s) Flow Rate = Froude No. = 0.4186 Channel from grade break to crown: Flow Width = 0.500(Ft.) Flow Area = Velocity = 0.652(Ft /s) Flow Rate = Froude No. = 0.3665 Total flow rate in street before inlet = CURB INLET TYPE STREET DRAIN, Opening Height Street Inlet Calculations: Street flow in street inlet depression = Gutter depression depth = 4.000(In.) Gutter depression width = 4.000(Ft.) Depth of flow = 0.739(Ft.) Average velocity = 1.332(Ft /s) 1.633(CFS) break: 2.511(Sq.Ft) 2.7 "87 (CFS) 0.049(Sq.Ft) 0.032(CFS) 8.903(CFS) 8.300 (In.) 8.903(CFS) Street flow half width at start of inlet = 14.000(Ft.) Flow rate in gutter section of street = Qw = 3.526(CFS) Given inlet length L = 4.000(Ft.) Ratio of frontal flow to total flow = EO = 0.7921 • Street slope is .less. than 0.5% , Depth of flow indicates an orifice flow condition exists for an opening height of 8.30(In.) Using equation Qi = .67hL(2gd0)A.5 Half street cross section data points through curb inlet: X- coordinate (Ft.) Y- coordinate (Ft.) 0.0000 1.0833 right of way 10.0000 0.8333 top of curb 10.0000 0.0000 flow line 14.0000 0.5000 gutter /depression end 23.5000 0.6900 grade break 24.0000 0.7000 crown `" i Note s, Street „inlets <capacityi�s greater than exstingflown, ;street Remaining flow in street below inlets = 0.000(CFS) Zero flow remaining in street Total flow rate in street = 0.000(CFS) -------------------------------------------------------------- - - - - -- is Ai, '_ "Ide ::County,. Rational :Hydrology Program CIVILCADD /CIVILDESIGN Engineering Software,(c) ^1989 - 2005 Version 7.1 Rational Hydrology Study Date: 02/16/07 File:62602CB12HSGC.out ------------------------------------------------------------------------ Tract 3275:1" VMS 6260:2 CB'= 1 &2Inlet Flow, from north and_South -St Capacity no Exceeded Soil Gp ,c _. __._ .. File 62602CB12Soi1C ------------------------------------------------------------------------ * * * * * ** Hydrology Study Control Information English (in -lb) Units used in input data file Program License Serial Number 4082 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 Standard intensity- duration curves data (Plate D -4.1) For the [ Cathedral City ] area used. 10 year storm 10 minute intensity = 2.770(In /Hr) 10 year storm 60 minute intensity = 0.980(In /Hr) 100 year storm 10 minute intensity = 4.520(In /Hr) 100 year storm 60 minute intensity = 1.600(In /Hr) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.600(In /Hr) Slope of intensity duration curve = 0.5800 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 0.000(Ft.) to Point /Station 210.000(Ft.) INITIAL. AREA. -EVALUAT;IO_] Initial area flow distance = 210.000(Ft.) Top (of initial area) elevation = 32.200(Ft.) Bottom (of initial area) elevation = 30.780(Ft.) Difference in elevation = 1.420(Ft.) Slope = 0.00676 s(percent)= 0.68 TC = k(0.390) *[(length^3) /(elevation change)]"0.2 Initial area time of concentration = 8.994 min. Rainfall intensity = 4.810(In /Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.850 Decimal fraction soil group.0 _ 1.000 RI index for soil(AMC 2) =69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.785(CFS) Total initial stream area = 0.192(Ac.) Pervious area fraction = 0.500 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ • Process from Point /Station 210.000(Ft.) to Point /Station 480.000(Ft • * * 'FL'OTnI T_ ' V7.p TIME + ; SUBAREA FLOW �ADDITI�O ' *k* * Top of street segment elevation = 30.780(Ft.) End of street segment elevation = 28.140(Ft.) Length of street segment = 270.000(Ft.). Height of curb above gutter flowline = 6.0(In.) Width. of half street (curb to crown) = 19.000(Ft.) Distance from crown to crossfall grade break = 0.500(Ft.) Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side (s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v /hz) = 0.025 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0200 Manning's N from grade break to crown = 0.0200 Estimated mean flow rate at midpoint of street = 2.635(CFS) Depth of flow = 0.353(Ft.), Average velocity = 1.876(Ft /s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.304(Ft.) Flow velocity = 1.88(Ft /s) Travel time = 2.40 min. TC = 11.39 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) • Runoff Coefficient = 0.844 Decimal fraction soil group C = 1.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 4.194(In /Hr) for a 100.0 year storm Subarea runoff = 3.627(CFS) for 1.025(Ac.) • ±++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 170.000(Ft.) to Point /Station 480.000(Ft.) * ** *� SUBA2FA�rtF }LOW;` ADD'I�TION * *1 1* SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.844 Decimal fraction soil group o 'r l 000 RI index fors soili(AMCr 2' 69� 0`0, Pervious area fraction = 0.500; Impervious fraction = 0.500 Time of concentration = 11.39 min. The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 69.0 Riverside, rCounty Rati4onya�l- �z�Hyd�ro�l�o�gyr' Program CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2005 Version 7.1 RataonalH-,ydroogy1 Study Date: 02/16/07 File:62602CB34rh.out ------------------------------------------------------------------------ •'J English (in-lb) Units used in input data file Program License Serial Number 4082 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 Standard intensity- duration curves data (Plate D -4.1) For the [ Cathedral City ] area used. 10 year storm 10 minute intensity = 2.770(In /Hr) 10 year storm 60 minute intensity = 0.980(In /Hr) 100 year storm 10 minute intensity = 4.520(In /Hr) 100 year storm 60 minute intensity = 1.600(In /Hr) Storm event year = 100.0 Cal�cu'lated_ ra h - TTI , ate",nsity data' 1 t`hour >int;ensX 'y x 1 6OO tIn /�Hr) Slope of intensity duration curve = 0.5800 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 0 000(Ft ) to Point /Station 155.000(Ft.) ...FL �T.,i.a.. ..,,,� .3'i. _«,- ..,.a•�„ b0..- .iw�;'F:�"-s,. r �r..o..:c�.:%.- e,y...`�33 9.....,d,.cfr ar.d,e... �, .X.. . ,.. x Initial area flow distance = 155.000(Ft.) Top (of initial area) elevation = 30.800(Ft.) Bottom (of initial area) elevation = 29.360(Ft.) Difference in elevation = 1.440(Ft.) Slope = 0.00929 s(percent)= 0.93 TC = k(0.390) *[(length ^3) /(elevation change)]"0.2 Initial area time of concentration = 7.475 min. Rainfall intensity = 5.355(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.855 Decimal f- ract>ion 'soil _`group::C- RI rdex 69J'U'0: Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.426(CFS) Total initial stream area = 0.093(Ac.) Pervious area fraction = 0.500 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 155.000(Ft.) to Point /Station 410.000(Ft.) *� *� *h *� STREETS ��FLOW'' QTR` AVEL�T�IME��+ ��SUBA :REA�*�FLOWADDITIO��N� *w� *�* '` ......�.S:, F.1 C' .I '. � Y___vu.- 1L iu. .:..'Z- ilSQ'+c✓r- .e '_ . l.,..:iL 'e -i.r. _f3� ti.Y'._.c1tin..k.u�Z .`W� -. . ._�Si3L.. :. ,A __.. .- .. :. Top of street segment elevation = 29.370(Ft.) End of street segment elevation = 28.630(Ft.) is Length of street segment = 255.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 0.500(Ft.) Slope from gutter to grade break (v /hz) = 0.020 i • Slope from grade break to crown (v /hz) = 0.020 Street flow is on . [1] side (s) of the street Distance from curb to property line - 0.500(Ft.) Slope from curb to property line (v /hz) = 0.025 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0200 Manning's N from grade break to crown = 0.0200 Estimated mean flow rate at midpoint of street = 1.171(CFS) Depth of flow = 0.334(Ft.), Average velocity = 0.978(Ft /s) Streetflow hydraulics at midpoint of street travel: HAlfstreet flow width = 10.346(Ft.) Flow velocity = 0.98(Ft /s) Travel time = 4.35 min. TC = 11.82 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.843 Decimal "'fraciti. ?on-�soil group C` wl 000 �� %� RI index for, soil;(AMC,2)�' x"69 500 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 4.105(In /Hr) for a 100.0 year storm Subarea runoff = 1.588(CFS) for 0.459(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 410.000(Ft.) to Point /Station 414.000(Ft.) *��* *a *�SUBPREAFLOWADDITr +IOONv u *. * *;* SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.843 Dercima5l 'fracti °on �so:i`�1 Fgr -oup �C �1 <000 RI ,index forsoil(AMC2)�6 ?9 00 _ -. .. , c. - rv. _. .. .Ji ...++f , .l YF.- Iq >-.. .. i,-. +nYZ -•. Pervious area fraction = 0.500; Impervious fraction = 0.500 Time of concentration = 11.82 min. Rainfall intensity = 4.105(In /Hr) for a 100.0 year storm Subarea runoff = 2.031(CFS) for 0.587(Ac.) End of computations, total study area = 1.14 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 69.0 �.Y i 'a= o:i-�F:;_i'1 -�i- ". �z. >� �� "��r�i33r"i�".,`.w;.,N•3y�� Riverside' CountyR`aati�ona�lHydrolcogyz Program • CIVILCADD /CIVILDESIGN Engineering Software,-(c) 1989 - 2005 Version 7.1 Rational Hydrology Study Date: 02/16/07 Fil'e:62602CB56Rh.out ------------------------------------------------------------------------ File 62602CB56HSGC ------------------------------------------------------------------------ * *y * * *� * **� *:,, English (in -lb) Units used in input data file Program License Serial Number 4082 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 Standard intensity- duration curves data (Plate D -4.1) For the [ Cathedral City ] area used. 10 year storm 10 minute intensity = 2.770(In /Hr) 10 year storm 60 minute intensity = .0.980(In /Hr) 100 year storm 10 minute intensity = 4.520(In /Hr) 100 year storm 60 minute intensity = 1.600(In /Hr) Storm event year = 100.0 Calculated rainfall intensity data: • 1 hour intensity = 1.600(In /Hr) Slope of intensity duration curve = 0.5800 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 0.000(Ft.) to Point /Station 165.000(Ft.) *'* °* INITIAL {AREA EVAIUATION Initial area flow distance = 165.000(Ft.) Top (of initial area) elevation = 30.500(Ft.) Bottom (of initial area) elevation = 29.080(Ft.) Difference in elevation = 1.420(Ft.) Slope = 0.00861 s(percent)= 0.86 TC = k(0.390) * [ (length'3) / (elevation change) ] X0.2 Initial area time of concentration = 7.782 min. Rainfall intensity = 5.231(In /Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.854 Dec_,imal ffract�on:_soil�group,C�� 1 OO�U; RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.442(CFS) Total initial stream area = 0.099(Ac.) Pervious area fraction = 0.500 • • +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 165.000(Ft.) to Point /Station 315.000(Ft.) E' e': �' ��", t, 3�•`_`.*_.'-'._. �.-- r.=:_<°., �,_.° �= ?�*=•*: r�nsrr�- x! x"" ':2_"",�'_a".�'��."�_�7�eeeR,.- r = """"�""."'� ��' "'i�^= 't'_;��s`-= t^�'y,�^ „�^�!x Top of street segment elevation = 29.250(Ft.) End of street segment elevation = 28.440(Ft.) Length of street segment = 150.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 0.500(Ft.) Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side (s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v /hz) = 0.025 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0200 Manning's N from grade break to crown = 0.0200 Estimated mean flow rate at midpoint of street = 1.007(CFS) Depth of flow = 0.294(Ft.), Average velocity = 1.213(Ft /s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.387(Ft.) Flow velocity = 1.21(Ft /s) Travel time = 2.06 min. TC = 9.84 min. SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.848 Decimal "f =acto`n ysoil'r group Cr1' „000 •^� �RI��index�'�for soi'1�(AMC�,2)a`� ��� ,, 69�`�O.Ot Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 4.565(In /Hr) for a 100.0 year storm Subarea runoff = 1.200(CFS) for 0.310(Ac.) T, :}fu ” 1.56.42 (CRS) :Tot'a1, area G 0`'40'9 (Ac.) Street flow at end of street = 1.642(CFS) alf:.;str -ee't :f3ow -dt, ei d:.o:f ,s;tre:ea; _; :.1:.642 :(Flow at North -�Sd of CB# r5= &6) Depth of Blow = 0 336 (Ft ) Averagexsvelocity 1 �t3424(Ftt /s) Flow width (from ourb towards crown) `l0u'f4'j73(Ft a)- ++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + +..... + + + + + + + + + ++ Process from Point /Station 315.000(Ft.) to Point /Station 319.000(Ft.) * *r, ?SUBAREA FL'`OW' P;DDITIONe:, * * *4, SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.848 Decimal fractions sail groupC Y alp 00:0: ter. _} a a_ x'RI�,.index for soil ( ;AMC x 2F)� � � '-�= 69 hOOr Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall nterisi,ty,_ 4 `Subarea runoy, fft v 0 -968`x ( 5yF6:S5a ) I °fo/Hr j ,. fr ' �1i ;00 wq t- o io (Ac Total` rurio.f.f !'2.6.10`(.CF$)• `Total'`3ar -ea. _ {''Y O 1659 (Ac) End -::.of computatons;:, t'o "ta1F sandy;.= °area` The following figures may be used for a unit hydrograph study Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 69.0 • Appendix Bg Rational Method Hydrology Storm Drain Craftsmen Homes Tentative Tract 32751 Tab 8 CIVILCBDD/CIVILDE8IGN Engineering Software,(c) 1989 - 2005 Version 7.1 Date: 02/16/07 F1le:62602RuStSD.out ------------------------------------------------------------------------ -File 63602RuSt8D8oilC -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Program License Serial Number 4083 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District I978 hydrology manual Storm event (year) ~ 100.00 Antecedent Moisture Condition ~ 2 Standard intensity-duration curves data (Plate D-4.1) For the [ Cathedral City ] area used. IO year storm lO minute intensity ~ 2.770<Io/Br> IO year storm SU minute intensity ~ 0'980(Iu/Br) .100 year storm lO minute intensity ~ 4'520(Iu/Bz) 'I00 year storm 60 minute intensity ~ 1'600(Io/Br) Storm event year ~ 100.0 Calculated rainfall intensity data: I boor intensity ~ 1.600(In/Br) Slope of intensity duration curve ~ 0.5800 �..................................................................... grooaoo from Point/Station 360'000<Ft Initial area flow distance ~ 26O.UOO(Ft') Top (of initial area) elevation ~ 40.000<Ft'> Bottom (of initial area) elevation ~ 37'900(Ft.) Difference in elevation ~ 2.100(Ft.) Slope ~ 0.00808 a(peroeot)~ 0.81 ' TC ~ k(0.480)^[(Ieogth^3)/<elevatioo clzaoge>1°0.2 Initial area time of concentration ~ 11.635 min. Rainfall inteoaitl, ~ 4.143(Io/Br) for a I00'0 year storm SINGLE FAMILY (l Acre Lot) Runoff Coefficient ~ 0'608 RI index for soil(AMC 2) Pervious area fraction ~ 0'800/ Impervious fraction ~ 0'300 Initial subarea runoff ~ 1'007(CF3) Total initial stream area ~ 0.400(Auz.) Pervious area fraction ~ 0'800 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/ Station 260.000( Ft.) to Point/Station .> 'T.-RA z Top of street segment elevation ~ 37.900<Ft.> End of street segment elevation ~ 31'400(Ft') Length of street segment ~ 1500'080(Ft') Height of curb above gutter fIowlioe = 6'0<Io'> Width of half street (curb to crown) ~ 16.000 (Ft. ) Distance from crown to or000faII grade break ~ 0'500 (Ft. ) Slope from gutter to grade break (`//ho) ~ 0'020 Slope from grade break to crown <v/bo> ~ 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line ~ 1.500<Ft'> Slope from curb to property Iioa (v/bo) ~ 0'025 Gutter width ~ 2.000 (Ft. ) Gutter bike from flowIioe ~ 3'000(Io.) Mazuniog'o 0 in gutter ~ 0.0I50 Maouiog'o N from gutter to grade break = 0'0150 y0aooiog'a 0 from grade break to crown ~ 0.0I50 Estimated mean flow rate at midpoint of street ~ 7'503(CFS) Depth of flow ~ 0.407(Ft.), Average velocity = 1.798(Ft/o) StzeettIow hydraulics at midpoint of street travel: BaIfatreet flow width ~ 13 .399 <Ft. > Flow velocity ~ 1'80(Ft/a) Travel time ~ 13.91 min. TC ~ 25'54 min. Adding area flow to street SINGLE FAMILY <1/4 Acre Lot) Runoff Coefficient ~ 0.723 K � Decimal fraction soil group _A ~ Decimal fraction soil group 8 ~ 0.500E IlZ index for aoiI(AMC 2) � ~ 44' Pervious area fraction ~ 0'500/ oz 0.500 Rainfall intensity 2'626 (Zu/Br) .O year storm Subarea runoff 13'820(CFS) for .> Total runoff ~ 13 . 827 (CFS) Total a�rea ~- °--~--' 7 ' I5O (Ao' ) Street flow at eocl of street ~ 13 '827 <CFS> Half street flow at and of street ~ 6.913 (CFS) Depth of flow = 0'477 (Ft' ) ' Average velocity ~ 3'176 <Ft/o> Note: claptb of flow exceeds top of street crown. Flow width (from curb towards crown)~ I6.000 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1760.000(Ft.) to Point/Station 1770.000<Ft'> ' SINGLE FAMILY <I/4 Acre Lot) Runoff Coefficient ~ 0.772 . Decimal fraction soil group � BI index for soil (AMC 2> ~ -9;-7IU--- Pervious area fraction ~ 0.500/ Impervious f action 0'500 Time of concentration ~ 25.54 min. Rainfall intensity ~ 2.626 <Izz/8r> for '0 year storm Subarea runoff ~ 4.OD3 (CFS) for .. . > � Total runoff ~ I8.710<CFS> Total area.= ---- 9'560(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1770.000(Ft.) to Point /Station 2020.000(Ft.) • * * ** STREET FLOW TRAVEL TIME + SUBAREA_FLOW-ADDITION * * ** Top of street segment elevation = 31.400(Ft.) End of street segment elevation = 30.360(Ft.) Length of street segment. = 250.000(Ft.) .Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown). = 16.000(Ft.) Distance from crown to crossfall grade break = 0.500(Ft.) Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [2] side (s) of the street Distance from curb to property line = 1.500(Ft.) Slope from curb to property line (v /hz) 0.025 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0200 Manning's N from.gutter to grade break = 0.0200 Manning's N from grade break to crown = 0.0200 Estimated mean flow rate at midpoint of street = 19.313(CFS) Depth of flow 0.550(Ft.), Average velocity = 1.996(Ft /s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 2.00(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 16.000(Ft.) ` Flow velocity = 2.00(Ft /s) Travel time = 2.09 min. TC = 27.63 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.767" Decimal fraction soil group B = 1.000 RI index for soil(AMC 2) 56.00 Pervious area fraction = 0.500; Imperviou fraction = 0.500 Rainfall intensity = 2.509(In /Hr) for 100.0 year storm Subarea runoff = 1 . 18 6 ( CFS ) for <0 . 616 (A Total runoff = L9.896 -(- CFS -)i Total area = 10.176 (Ac. ) Street flow at end of street`= 19:896 (CFS) Half street flow at end of street 9.948(CFS) Depth of flow = 0.555(Ft.), Average velocity = 2.019(Ft /s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 2.20(Ft.) Flow width (from curb towards crown)= 16.000(Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 2020.000(Ft.) to Point /Station 2024.000(Ft.) • * * ** SUBAREA FLOW ADDITION * * ** SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.688 Decimal fraction soil group B = 1.000 d RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Time of concentration = 27.63 min. Rainfall intensity = 2.509(I3.,i/Hr) fo�,ab_�0.0 year storm Subarea runoff = 6. 175 (CFS) for 1 3 JS78 (Ac. ) Total runoff = 26.071(CFS) Total area = 13.754(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 2024.000(Ft.) to Point /Station 2334.•000(Ft.) * * ** PIPEFLOW TRAVEL TIME (User specified size) * * ** Upstream point /station elevation = 22.440(Ft.) Downstream point /station elevation = 21.200(Ft.) Pipe length = 310.00(Ft.) Manning's N = 0.013 .No. of pipes = 1 Required pipe flow = 26.071(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 26.071(CFS) Normal flow depth in pipe = 24.75(In.) Flow top width inside pipe = 22.80(In.) Critical Depth = 20.88(In.) Pipe flow velocity = 6.02(Ft /s) Travel time through pipe = 0.86 min. • Time of concentration (TC) = 28.49 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 2334.000(Ft.) to Point /Station 2338.000(Ft.) * * ** SUBAREA FLOW ADDITION * * ** SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.766 Q O Decimal fraction soil group B = 1.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Time of concentration = 28.49 min. Rainfall.intensity = 2.465(In /Hr) fcr a -100.0 year storm Subarea runoff = 14.712'(CFS) for �777�95. (Ac . ) Total runoff = 40.783 -(CFS) Total area = 21.549(Ac.) ++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +. Process from Point /Station 2338.000(Ft.) to Point /Station 2430.000(Ft.) * * ** PIPEFLOW TRAVEL TIME - (.User specified size) * * ** Upstream point /station elevation = 20.680(Ft.) Downstream point /station elevation = 20.490(Ft.) Pipe length = 92.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 40E783(,CFS) Given pipe size = 36.00(In.) NOTE: The approximate HGL above the pipe invert is 0.929(Ft.) at the'headworks Pipe friction loss = 0.344(Ft.) Minor friction loss = 0:775(Ft.)K- factor = 1.50 • Pipe flow velocity = 5.77(Ft /s) Travel time through pipe = 0.27 min. Time of concentration (TC) = 28.75 min. F_ +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 2430.000(Ft.) to Point /Station 2668.000(Ft.) • * * ** PIPEFLOW TRAVEL TIME (User specified size) * * ** Upstream point /station elevation = 20.490(Ft.) Downstream point /station elevation = 20.000(Ft.) Pipe length = 238.00(Ft.) Manning's N.= 0.013 No. of pipes = 1 Required pipe flow Given pipe size = 36.00(In.) NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade line above the pipe invert is 1.175(Ft.) at the headworks or inlet of the pipe(s) Pipe friction loss = 0.890(Ft.) Minor friction loss = 0.775(Ft.)K- factor = 1.50 Pipe flow velocity = 5.77(Ft /s) Travel time through pipe = 0.69 min. Time of concentration (TC) = 29.44 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 2668.000(Ft.) to Point /Station 2672.000(Ft.) * * ** SUBAREA FLOW ADDITION * * ** SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.682 Decimal fraction soil group B = 1.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Time of concentration = 29.44 min. Rainfall intensity = 2.418(In /Hr) for- -. 100.0 year storm Subarea runoff = 1.046 () for 0.634(Ac.) Total runoff = 41.829(CFS) Total area = _ 22.183 A\.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + ++ + + + + + + + + ++ Process from Point /Station 2672.000(Ft.) to Point /Station 2747.000(Ft.) * * ** PIPBFLOW TRAVEL TIME (User specified size) * * ** Begin Proposed Pipe Upstream point /station elevation = 20.000(Ft.) Downstream point /station elevation = 19.830(Ft.) Pipe length = 75.00 (Ft . ) Manning' s N = 0_._0.13 E No. of pipes = 1 Required pipe flow = , 41_.829j(CFS) Given pipe size = 42.00(In.) Calculated individual pipe flow = 41.829(CFS) Normal flow depth in pipe = 30.38(In.) Flow top width inside pipe— 37.58(In.) Critical Depth = 24.18(In.) Pipe flow velocity = 5.61(Ft %s) Travel time through pipe = 0.22 min. Time of concentration (TC) = 29.66 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 2747.000(Ft.) to Point /Station 2750.000(Ft.) • * * ** SUBAREA FLOW ADDITION * ** *Exist Line 2 APARTMENT subarea type Runoff Coefficient = 0.830 Decimal fraction soil group A = 0.400 Decimal fraction soil group B = 0.600 RI index for soil(AMC 2) = 46.40 Pervious area fraction = 0.200; Impervious fraction = 0.800 Time of concentration = 29.66 min. Rainfall intensity = 2.407(In /Hr) for a 100.0 year storm Subarea runoff = 13.5767(�CFS) for 6.796(Ac.) Total runoff = 55.40- 5 "(C a FS) Total are = 28.979(Ac.)' +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 2750.000(Ft.) to Point /Station 3115.000(Ft.) * * ** PIPEFLOW TRAVEL TIME (User specified. size) ** ** Upstream point /station elevation = 19.830(Ft.) Downstream point /station elevation = 18.700(Ft.) Pipe length = 365.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 55.405(CFS) Given pipe size = 54.00(In.) Calculated individual pipe flow = L 55.405(CFS) Normal flow depth in pipe = 27.19(In.)— - -l`' Flow top width inside pipe = 54.00(In.) Critical Depth = 25.90(In.) • Pipe flow velocity = 6.90(Ft /s) Travel time through pipe = 0.88 min. Time of concentration (TC) = 30.55 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 3115.000(Ft.) to Point /Station 3120.000(Ft.) * * ** SUBAREA FLOW ADDITION * * * *CB 1 &2 SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.809 C l Decimal fraction soil group C = 1.000 C RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Time of concentration = 30.55 min. Rainfall intensity = 2_._367 (In /Hr) for a 100.0 year storm Subarea runoff 6.908 (CFS) for , 3.607, Ac . ) Total runoff = 62.312(CFS) Total area =_� 32.586(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station . 3120.000(Ft.) to Point /Station 3465.000(Ft.) * ** PIPEFLOW TRAVEL TIME (User specified size) * * ** Upstream point /station elevation = 18.700(Ft.) Downstream point /station elevation = 17.600(Ft.) Pipe length = 345.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 62.312(CFS)-✓ Calculated individual pipe flow = 62.312(CFS) Normal flow depth in pipe = 28.92(In.) Given pipe size = 54.00(In.) Flow top width inside pipe = 53.86(In.) Critical Depth = 27.55(In.) • Pipe flow velocity = 7.18(Ft /s) Travel time through pipe = 0.80 min. Time of concentration (TC) = 31.35 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ .Process from Point /Station 3465.000(Ft.) to Point /Station 3469.000(Ft.) • * * ** SUBAREA FLOW ADDITION * * * *CB 3 &4 SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.808 Decimal fraction soil group C = 1.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction 0.500; Impervious fraction = 0.500 Time of concentration = 31.35 min. C Rainfall intensity = 2 332 (In /Hr) for a 1.0 -0 0 year storm Subarea runoff �4:303(CFS) for �,284(Ac.) Total runoff = 66.615-(CFS) Total area 34.870(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 3469.000(Ft.) to Point /Station 3769.000(Ft.) * * ** PIPEFLOW TRAVEL TIME (User specified size)- * * ** Upstream point /station elevation = 17.600(Ft.) Downstream point /station elevation = 16.800(Ft.) Pipe,length = 300.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 66.615(CFS) Given pipe size 54.00(In.) Calculated individual pipe -flow 66.615(CFS) Normal flow depth in pipe = 31.92(In.) Flow top width inside pipe = 53.10(In.) Critical Depth = 28.52(In.) Pipe flow velocity = 6.81(Ft /s) Travel time through pipe = 0.73 min. • Time of concentration (TC) = 32.•08 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + +.... .. + + + + + + + + + + + + + + ++ Process from Point /Station 3769.000(Ft.) to Point /Station 3773.000(Ft.) * * ** SUBAREA FLOWADDITION * * * *CB 5 &6 @ DB in Ret 1 CONDOMINIUM subarea type Runoff Coefficient = 0.835 C ,� Decimal fraction soil group C = 1.000 �' C RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Time of concentration = 32.08' min. Rainfall intensity 2.301(In /Hr) for a 100.0 year storm Subarea runoff = 2.509(CFS) for i1.306(ic.) Total runoff 69.'124(CFS) Total area 36- 176 Ac.) End of computations, total study area = 36.18 The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.476 Area averaged RI index number = 54.3 'v • Appendix B4 Hydraulic Grade Lines Storm Drain Craftsmen Homes Tentative Tract 32751 0.- Tab 9 2088.000 'os 'on o'oa 'oo 'uoo 'no � � \ Tt t� Invert Depth ��£�� � n=l n=l Energy super critical Flnw rop /|aawa Wt| |mp Station ' Elev ' (FT) ' �~ ' ' T�@o) ' ����/ Head I ord'Ez'I olav I Depth I Width 141' I or z'o'I zu Inrw L/Elem ICu Slope I I or Ino opthIrrpuue m!morm pp I "m" I X-Fazlj xo Ir»p 1000.000 12.000 6� '01 2s'*0 'oo 1'61 s'oo r'000 e'000 'oo o -- 'os 1000.000 12.000 13.390 25.390 66.62 4'19 '27 os'os 'oo o'so 'oo 'oou -�- 'oo z �- 300.000 '0151 '0011 's* 'oo 'oo z'*z .013 'oo � 'oo nzp � 1300.000 16.S30 9.249 25.7,39 66 .62 *'19 '27 26'05 'oo o'su 'oo 4'500 'ono 'no z j;P .01 9'zs 'oo .o�s 'oo 'oo nze .0033 .0011 1306'000 zs'ssn s'op 61 �2:�12 a'yo 'u* oa'oo 'oo o'sn 'no o'soo 'noo 'oo � 334'000 'ooso ' 0010 ' 34 9' 30 ' oo 2' 46 ' ozs ' on ' oo nze 1640'000 17'550 o'sso oo'zoo su'so s'yo 'o* oo'eo 'on 2.30 'oo e'suo 'noo 'ou z 'nooy 'oz o'as .nn '013 'oo 'ou PIP -' — -�- - a'*o '19 os'«s 'ou u'zs 'uo e'sno '000 'on z ss«'000 '0030 'onon 'oo o'ro 'oo o'oe .013 'on 'on ezp 000n'ono zn'ssn 7'919 us'ses 55'42 s'*o '1e 26'74 'oo 2'16 'no *'son 'uno 'oo 1 '0o13 'oz 'oo 'oo '013 'on 'ou ezn 2005.000 19.630 6.953 '-|- 4'35 'us us'on 'no 2'01 'oo - I-- I- 'oon -I- 'uo 1 �- I- -I- -I- 7o.00n '000s 76.000 -I- - I- -I- -I- -I- ' oozr ' zs -I- 6' 95 'I- ' oo 2' 4e ' nza ' oo 1 ' oo zn 1 e ooez'000 zy'aoo 6'8e4 2e'714 *z'oe 4'35 'on 27'01 'oo 2'01 'oo a'soo 'oo» 'o» 1 '0257 'nnor 'uo 6'89 'oo '013 'oo 'on nze 2088.000 'os 'on o'oa 'oo 'uoo 'no � � \ SD1 HGL...Soil C Onsite Invert Depth Water Q Vel Vel Energy I Super ICriticallFlow ToplHeight/ Base WtI INo Station I Elev (FT) Elev I (CRS) (FPS)• Head Grd.El.� Elev Depth Width IDa:- ;FT;�or I.D. ZL IPrs L /Elem ICh Slope I I (HGL). I SF Avel HP SSE DpthIFroude NINorm Dp I "N" I X -Fall ZR ITyp ** w***** rIr*t*•*, r* rI*#**• rrrl* wr, rr* r** Irrw*****+ I•* r** ssI**"*** s* Iw, r«**, tr** I• rt, rr• rI•**** r** I* •,r• *w * *I•r *w *•rIw * * *r « *I *,► : *• I,r•w 2081.000 19.820 6.894 26.714 41.84 4.35 .29 27.01 .00 2.01 .00 3.500 .000 .00 1 JUNCT STR .0257 .0027 .02 6.89 .00 .013 .00 .00 PIP End Propose',d Stbrm;'`Dran / B:eg> ri' Exz sting 36 'inch::. S, 2088.000 20.000 6.534 26.534 40.79 5.77 .52 27.05 .00 2.08 .00 3.000 .000 .00 1 238.000 .0021 .0037 .89 6.53 .00 3.00 .013 .00 .00 PIP 2326.000 20.490 6.935 27.425 40.79 5.77 .52 27.94 .00 2.08 .00 3.000 .000 .00 1 JUNCT STR .0050 .0031 .01 6.93 .00 .014 .00 .00 PIP 2330.000 20.510 7.324 27.834 26.08 3.69 .21 28.05 .00 1.65 .00 3.000 .000 .00 1 88.000 .0019 .0015 .13 7.32 .00 2.20 .013 .00 .00 PIP 2418.000 20.680 7.289 27.969 26.08 3.69 .21 28.18 .00 1.65 .00 3.000 .000 .00 1 TRANS STR .1300 .0028 .01 .00 .00 .013 .00 .00 PIP 2422.000 21.200 6.598 27.798 26.08 5.31 .44 28.24 .00 1.74 .00 2.500 .000 .00 1 306.000 .0041 .0040 1.24 6.60 .00 2.05 .013 .00 .00 PIP 2728.000 22.440 6.595 29.035 26.08 5.31 .44 29.47 .00 1.74 .00 2.500 .000 .00 1 JUNCT STR .7830 .0032 .02 .00 .00 .013 .00 .00 PIP 2733.000 26.355 3.063 29.418 19.90 4.05 .26 29.67 .00 1.51 .00 2.500 .000 .00 1 50.000 .0013 .0024 .12 3.06 .00 2.50 .013 .00 .00 PIP 2783.000 26.420 3.115 29.535 19.90 4.05 .26 29.79 .00 1.51 .00 2.500 .000 .00 1 ALL ' <ENTRANCE ,. @, ";Last ,CB C',jWest ~End „,of SD sn Maridariia $t 2783.000 26.420 3.476 2 9,.:$9'6 19.90 .97 .01 29.91 .00 .74 6.00 6.000 6.000 .00 0 FILE: 62602CB12Lat.WSW W S P G W - CIVILDESIGN Version 14.06 PAGE Program Package Serial Number: 1790 WATER SLTRFACEM "PROF=ILE LISTING Date: 2 -16 -2007 Time: 4:21 .fi T ra ctj 3275r1�ti22MDS�6�26t02 Curb. l '.y �x t` st r s � WliF.L B••;'r' . � N � LY a6n kY� � l i�c� k � G. f r f vd 'Y et r)i l r''e+.°'v '4a ad °e i1 ne a•:c . Hy7u77W 1G3CJ J }o&P � r C Onste 0 yr Pea ' 1 H,� ..I1n0le , 7L.- : �. )ty w: i(,.K r' , .:= �5f.._ '... .':. . l ' T .. . . ,,... l L45#� arkC 4�:e�3A� mnw!' X . - . 4`.' «�12� ' G'.SI. eG E. File 62602CB12Lat r, t*, t****, t*#•••*:•**•*•, twr*, t*:•**t rr*«** r•, r**•** r•t* wr•**•, r, r*** tr« srrrrtr***t.**, r•** r, r•• r, rr,► r:• rwrw•, t, t :•w• *,t *•r• *rrt•,r,tr *,rr *,t,t r•,r,t Invert Depth Water Q Vel Vel Energy I Super ICriticalIFlow ToplHeight/ Base Wtl INo Station I Elev (FT) Elev (CFS) (FPS) Head I Grd.El.I Elev I Depth I Width IDia. -FTIor I.D.1 ZL jPrs L /Elem ICh Slope I SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X -Fall ZR ITyp **t** rs, r* Ir** ar•**• I, rrrrr, tr* I• trr** trrlw** rr* rrrl••,►, r, rr, rl*, tr*•** I• r, t, rr•** wI* r,► rr• aI• rr* wrr• Ir* •• *•r :Itrr *tf•I,r,tw• * *rIr *t,rr Ir *w 1000.000 17.550 8.720 2;6;::2 =T;0 6.48 .41 .00 26.27 .00 .71 .00 4.500 .000 .00 0 AL`L'd ` EXfI,T 54 x hDi�a= Main iS 1000.000 17.550 8.721 26.271 6.48 3.67 .21 26.48 .00 .98 .00 1.500 .000 .00 1 24.000 .2746 .0038 .09 8.72 .00 .35 .013 .00 .00 PIP 1024.000 24.140 2.253 26.393 6.48 3.67 .21 26.60 .00 .98 .00 1.500 .000 .00 1 WALL ENTRANCE I 1 1 1024.000 24.140 2.5561' '?6 6 9�6 1 6.48 .64 .01 26.70 .00 .48 4.00 4.000 4.000 .00 0 CBS >.TC'`elke��%+ ^2864 - Freeboard = TC -WS = 1.94 • 0 .0 FILE: 62602CB34Lat.WSW W S P G W - CIVILDESIGN Version 14.06 PAGE Program Package Serial Number: 1790 WATrERSURFACE PROFILE ,LISTING Date: 2 -16 -2007 Time: 4:35 Tract 32751 rMdsr 62602, CB 34 Lat yHSGFCtOh61te .r Invert Depth Water Q Vel Vel I Energy Super ICriticallFlow ToplHeight/ Base Wtj INo Station I Elev (FT) Elev (yCF3 ?_)s (FPS?), Head Grd. El . Elev Depth Width ;� D *a ":: =•FAT or I . D. ZL Prs L /Elem ICh Slope I 3F Ave HF ISE DpthIFroude NINorm Dp "N" X -Fall ZR ITyp * *• * * * * ** I *t,r * *,► * ** I * *,► *r * ** I ,rrtr *s,r *r I ,r *,► * *,rrrtr I *tr *r ** I :rrw• *ir I «wr+. * *r *,► I r *,r * *r,► I rn,r * #s.r,r I ,►,r * * * *r* I *frw *r,► I r *,r *r *: I r * * *,r I w,e,r 1000.000 18.030 7.820 25 ='♦8'5;q 4.04 .25 00 25.85 .00 .56 .00 4.500 .000 .00 0 WALL EXIT 1000.000 18.030 7.820 25.850 4.04 2.29 .08 25.93 .00 .77 .00 1.500 .000 .00 1 24.000 .2546 .0015 .04 7.82 .00 .28 .013 .00 .00 PIP 1024.000 24.140 1.746 25.886 4.04 2.29 .08 25.97 .00 .77 .00 1.500 .000 .00 1 WALL ENTRANCE 1024.000 F .. ,... 24.140 1.861 2;6?`Q;1 4.04 .56 .00 26.01 .00 .36 4.00 4.000 4.000 .00 0 FILE: 62602CB56Lat.WSW W S P G W- CIVILDESIGN Version 14.06 Program Package Serial Number: 1790 WATER' A-7 xP,ROF�IRI�E4` LISTING Date: 2 -16 -2007 Time: 6:33 Tract 32751 - Mds 62602 - CB 56 Lateral CB inflow at Tc = 9.8 min, plus Equalizing flow at Tc= 2.7 hours PAGE Invert I Depth I Water 1 Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight /IBase Wtl INo Station I Elev 1 (FT) I Elev I (CPS) I (FPS) Head I Grd.E1.1 Elev I Depth I Width IDia. -FTIor I.D.1 ZL IPrs L /Elem ICh Slope I I I I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fa111 ZR ITyp *,►w,rw,r,rw* I ,rr *wrr,r,r* I r,t * *r,►rr I * * *• *tsr• I *rr,rr,t,e *s I : : :tw,rr I rr,► # * *• I *r•,rr•wr• I• * *r * ** 1• ♦ *r *•,rr I r•,►,rr,tr• I *r *,rrr• I •rrrrrt I r *• ** I ,►tw 1000.000 I I I I 14.500 10.890 EINMY 13.92 I .21 I .00 I 25.39 .00 I .59 I 6.00 I 6.400 I I 6.000 .00 I 0 WALL. EXIT RetentionBa'sin� #,1 1000.000 . 14.500 10.891 25.391 13.92 4.43 .30 25.70 .00 1.34 .00 2.000 .000 .00 1 41.000 .0666 .0038 .16 10.89 .00 .66 .013 I .00 I .00 PIP I 1041.000 I I I I I 17.230 8.316 25.546 13.92 4.43 I .30 I 25.85 .00 I 1.34 I .00 I 2.000 .000 .00 1 JNCT S.TR 025_U; >=CB# 5 .0031 .01 8.32 .00 .013 .00 .00 PIP I I I I I I I I 1045.000 I I I I I 17.330 8.436 2;5:?'76;, 11.31 3.60 .20 25.97 .00 1.21 .00 2.000 .000 .00 1 30.000 .0193 .0025 .07 8.44 .00 .83 .013 I .00 I .00 PIP I 1075.000 I I I I I 17.910 7.931 25.841 11.31 3.60 I .20 I 26.04 .00 I I 1.21 .00 I 2.000 .000 .00 1 I_ �' �,,CT STR 6250; 4CB #�6 .0020 .01 7.93 .00 .013 I .00 I .00 PIP I 1079.000 I I I I I 18.010 8.003 2`6j013 8.70 2.77 I .12 I 26.13 .00 I i 1.05 _I- .00 I 2.000 -I- -I- .000 -I- .00 1 1- -I- 16.000 -I- -I- -I- -I- .0200 -I- -I- .0015 -I- .02 -I- 8.00 .00 .71 .013 .00 .00 PIP 1095.000 I 18.330 I 7.706 26.036 8.70 2.77 .12 26.16 .00 1.05 .00 2.000 .000 .00 1 WALL ENTRANCE S�Retenti�onBas�in� 2 1095.000 18.330 7.883 6ef2;7 ^3 8.70 .37 .00 26.21 .00 .65 3.00 2.000 3.000 .00 0 utlet' Struct t1,01"T 10 Tab 10 • 11 Appendix C Nuisance Water Disposal System Summary and Sketches Design Calculations Craftsmen Homes 0 Tentative Tract 32751 DRAFT E=NQ1NE.E.RtNG BULLETIN OR:.'CTfY' APPfF6YfLT:'II€i?A '..:-i CAP T6. BE .covo yy , / POt R kWITTED'nBRC !. G3RRt1GATED5LYiTiEp .ii�P'.F•.`g',i>th -�-it Q�! 11 t:C• 3i;'' �i�° NU :.:PfY.= OB'::Y!$#i''?AI:YE�aiER •' ` KNI77Ep..fJiBRiC 'sc�CK rtEk FlY= sa0- t�s -002o) ;/ OR CTII' 1+PPROY'�. F.7JUWALM StuPFpRT 'BRt EDRfiiD 92 GJI:'SiEEL �: CORRUGATED HDP. PIPE 8' D.IA:- ICORL -�' N DART' N0. •DW-- PLI -08) -OR CITY APP40V Dr eoUMA€:EKT. A +' C0NCROE SLURRY- (3. SAM) - "'. CORRUGATED .�:ATTED HDP PIPE 8.' DV,- �HA_ CDP PART NO, PFl- 08'M7T! POLYESTER 'KNiiT0 FABRIC. SOCK PART R0: F1- 800-- 08- 0020). Oil CITY APPROVED EDWA SUS. • -�, :. STORM DRAM p1pr ` a7AT- M.PRECAST UMM 4$' ID 54" OD C IN HOLE AND ALIGN o' r <' SECi7M.S TO AAXIMIX StOPDiG SURFACE. ' u rN. b'' DRIi,6 SKAFT pb \' ROCk - CLEAR. WASHED. Sim BEPMM4N '3/4° AND _2, TO BEST. COMPLEMENT SOIL ,�ti COND13 t25. -x':: N ;FWER FABRIC PER SE0. 88 -t.Q3 . cA STD::51*EG . SFKL BE' USED USED O. ti fEN.::THE._W"ED. ROCK AND �� �Oa' o�,jOO..a '`• / iG l-ir YU ELL QHT— AML - . urs 10-57W MAX� Oft T`0 y rC�H. SH!!! 1 BE k.dministrati've .Services Division\Website Updates \Public Works\DRAFT F.B - Hydrology Report With Preliminary Ira-ufic Report Criteria for Storm Drain Systems.dpc MDS 62602 17 20- Dec -06 $;�Immary 9 " " -- Ni isan -e,,, t D' "' al I�p Sy t�ri� }r '(NW� ®S) f'' ��;0 r 11 l ', j r Tract 32751 tddIVD � equir�i �6riW- Dryinr�ll per C ®L � t ,.° 01p tail' - c ee Tab 9, AEI? C)` Required capacity -. 5 gpd per 1000 sf of pervious surface 5 gpd / 1000 sf Total Onsite /offsite Tributary Area (Excluding Retention Basin Area). 36.2 Ac Total Onsite/offsite pervious % - (see Tab 4, App Al - Sub -area data) 48.70% Total Onsite/offsite pervious area - 0.487 x 36.2 Ac - 17.63 Ac` Percolation test rate - West Basin - (see Tab 10, App D) 58 gpd /sf Required Percolation capacity - (17.63 x 43560/1000)x5 - 3840 gpd Required drywell sidewall area - - 3840 gpd / 58gpdpsf - 66.2 sf Available sidewall - Minimum depth COLA drywell- 10ft x 3.1416 x 7.- 220 sf Available percolation capacity per each COLA drywell- 220 x 58- 129755 .gpd 0 Tab 11 Appendix D Design Reference Documents Conditions of Approval - Drainage Geotechnical and Percolation Test Reports Point Precipitation Storm Volumes SCS Soil Classification Map /Hydrologic Soil Group • Time of Concentration Initial Lion Nomograph - Imiial Sub -Area Rational Rainfall Intensity Table -- io yr & ioo yr Rainfall Patterns - % of Design Storm- Total Volume Rational Runoff Index Numbers Runoff Coefficient Curve - (Soil Group B, AMC II) Street Capacity Nomograph Curb Inlet Capacity Nomograph - Street Low Point Reinforced Concrete Pipe - D -Load Table Miscellaneous Documents Craftsmen Homes Tentative Tract 32751 40 CITY COUNCIL RESOLUTION NO. 2004- CONDITIONS OF APPROVAL - RECOMMENDED TENT:ATIVE•TRACT MAP 32751 - GROVE PARTNER LQ; LLC: • jANUARY 4, 2005 backslope. (i.e. the slopeliat the. back of the landscape lot) which shall not exceed 2.:.1 .if. fully °planted with ground cover. The maximum slope in the:Jirst six (6) feet adjacent to the curb shall not' exceed 4:1 when the nearest edge of sidewalk is within six feet (6')..of the curb, otherwise the maximum slope within.the right of way shall not exceed 3:1. All unpaved' parkway areas adjacent to the curb shall be'depressed • one and one -half inches (1.5) in the first eighteen inches (18 ") behind -the curb. 35. Building pad elevations on the rough grading plan submitted for City Engineer's approval shall conform with pad.. elevations shown on. the tentative map, unless the pad elevations have. other requirements imposed elsewhere in these Conditions of Approval. .36. Building. pad elevations of perimeter. lots. shall not differ by more that one .foot higher.from the building pads in. adjacent developments.. 37. The applicant shall minimize the differences in ' elevation .between the adjoining. properties and the lots within this development. _ I. Where: compliance. within the. above stated limits is impractical, the City may consider .alternati.ves that area shown to minimize safety concerns, maintenance difficulties and neighboring -owner dissatisfaction with the grade differential. 38. Prior to any site grading or r.egradiing that-will raise or lower any portion of the site by more than plus or minus three •tenths of a foot from the elevations shown on the: .approved -Tentative: Tract Map,. the applicant shall submit the .proposed grading changes to the City- Staff for a substantial conformance finding review. 39. Prior to the issuance of:.a building permit for any building. lot, the applicant shall provide a lot pad certification stamped and signed * by a qualified engineer engi or surveyor. Each pad certification shall list the pad elevation as shown on the approved grading plan, the actual.-pad elevation and the difference between the two, if any. Such pad certification shall also .list. the relative compaction of the. pad soil: The data shall be organized:. by lot .number., and listed cumulatively if submitted. at different times. DRAINAGE (• 40. Stormwater handling shall conform with the approved hydrology and drainage report , for The Citrus DeveloprOent. .The applicant or design professional shall submit a revised hydrfilogy :and d'r* ainage.. report to address off -site drainage. PAReports - CC \01 -04 705 \Grove Partners LQ, LLC \TTM 32751 CC COA.doc CITY COUNCIL RESOLUTION NO. 2004- CONDITIONS OF APPROVAL - RECOMMENDED r TENTATIVE TRACT MAP 32751 L GROVE PARTNER LQ- JANUARY 4, 2005 LLC displaced by this development and the .adequacy of the proposed under drainage system. uisance wa er shall be retained onsite and d' ground underground disposed o= via an percolation improvement approved b Additionally, the. applicant shall redesign the proposed r tendon basins Engineer. off site storm water.that is current) handled b the existing g r to accept y y g etention basin. 41. The applicant shall revise proposed retention basins of Section 13.24.120 (Drainage), LQMC, Engineering Bulletin No. 97 Provisions specifically, storn" water falling on site during the 100-.year storm shall a More within the development, unless otherwise a be retained Additionally, the 100 year stormwater shall be per ed by the `C.ity Engineer. right of way. The tributary drainage area shall exten ,,to theteen the interior street Public .streets. The design storm shall be either the 3 hour �. terlin -e_of adjacent event 'O `the g at`e'st= total =r -u o f , 6 hour_or _24_hour 42. The applicant shall redesign Lot C and D - retent' line between Lot C and D.to .handle overflow from Lot Gins to provide fora _bleed 43. In design of retention facilities, the -maxi percolation per hour. The percolation rate will be-,consideretl tb be zeroeun� all be two inches Provides- site specific data indicating otherwise. ess `the applic t 44. 45. 46: Nuisance. water shall be retained on site. In residential developments, water shall. be disposed of in .a :trickling sand filter and I pments, nuisance system approved oy the City Engineer. each field or equivalent y 9 The sand filter and lead designed to contain nuisance Water-surges h field shall be fro rri landscape area and offsite, street nuisance water. Flow from adjacent w residential unit, for retention area percolation by separate infiltration system .a well sites shall be designed Engineer. The sand: filter design °shall e-b per La Quints Sta pproved by the City equivalent of 137.2 ndard 370 with the abovementioned nuisance pwater requi elne ed per sand filter to accept feet of leach line Per Ft the . Leach line require►n!erits are 1.1_08 P 9.Ph of flow. The. j shall be designed to a�ccomm da e¢�� (through underground piping and /or retention 'facilpitirg'ng and -bl.owoff water adjacent well sites granted or 'dedicated to the I' es) from any on or requirement for development of this property. °Cal water utility as a WA No f nce e_o.r w -all shall be constructed aroun by the Community .Develo d any retention basin unless approved pment Director and the City Engineer. _ For on -site comrrion�tention basins, retention Engineering. Bulletin�97.031 depth shall be according and side slopes shall not .:exceed 3:1' and sf�all P:IReports - CC101 -'04- 051Grove Partners LQ, LLCITTM 32751 CC COA.doc to (;18 CITY - COUNCIL RESOLUTION NO. 2Q04- CONDITIONS OF APPROVAL - RECO� MENDED TENTATIVE TRACT MAP.32751 - 6110V PARTNER Ld LLC • JANUARY. 4, 2005 planted with maintenance free ground cover. 47. • Stormwater may not be. retained in landscaped parkways or landsca ed se lots. .Only incidental storm .water P setback (precipitat.ion which .directly. falls onto the setback) � will be permitted to be retained in fhe..landscape setback areas. The perimeter setback and parkway areas in the street right -of -way shall be shaped with berms and mounds; pursuaht to 8ection•9:100.040(13j(7), LQMC. The' design of the development shall not cause . any increase in flood levels -or frequencies in any area outside'the' development. boundaries, 49. The development shall !be' graded to .permit storm flow in exces capacity to flow out of;the development through a designated ove fj W retention the ` historic- drainage relief. route:. and into 50. Storm drainage historically. received from adjoining property-shall be receive j retained or passed through, into the historic downstream drainage relief route and `UTILITIES F. 51. The applicant shall comply with the provisions of Section LQMC. 13.24.110. (Utilities), 152. Th.e applicant.shall obta,ln the :approval of the City Engineer for -the Iodation of all utility lines within any right -of -way,. and all. above - ground utility structures including, .but not limited to, traffic signal cabinets, electric vaults, water valves and .telephone. stands, to ensure optimum placement for practical and aesthetic purposes. Underground utilities ''Hall be installed prior to overlying hardscape. For installation, of utilities in existing improved 'streets, the applicant shall comply with trench restoration requirements maintained, or required by the City Engineer. The applicant shall proyide certified reports. of utility tr all ench f compaction approval by the City Engineer. P or STREET AND TRAFFIC IMPROVEMENTS 54. The applicant shall comply with the provisions ' of Sections 13.24.0 Improvements), 13.24.070 (Street Design - Generally) & 13.24:100 (Access eSs For Individual Properties And Devela ment), or . P LQMC for public streets; and Section 13.24.080 (Street Design.- Private Streets), where private streets are proposed. :55. The applicant shall construct the following street improvements to conform with P: \Reports - CC \01 -04 -05 \Grove Partners LQ, LLC \TTM 32751 CC COA.doc 1 7 nn (� l.! CITY COUNCIL RESOLUTION NO. 2004-' CONDITIONS OF APPROVAL - RECOMMENDED TENTATIVE TRACT MAP 32751 — GROVE PARTNER :LQ, -LLC • JANUARY 4, 2005 the General Plan. A. PRIVATE STREETS t) Lot A except for except. for. the entry. drive - .Construe . wide travel width improvements measured t full-' 36400t flow fine where -the residential streets are double loald d:ilne to gutter 2) Lot A (Entry. Drive!) — At. a. Mini'mum;; there shall: be at paved roadway at the .entry drive aril at the proposed frnedia '20:f eet, of 3) The location of .driveWpys Of corner lots shall not be,: Foe the curb return and away °from alai i6tersection -when , ®sated within . I?. ble. C. PRIVATE CUL DE SACS �) Shall be constructed• acoording to -the lay -out s' Map,*' ap with 38 -foot curb radius or :greater at the ho W*11:dn''the bulb similar to 'the layout shown on the rough.grading p'lan.. •' D.• EMERGENCY ACCESS . �) The applicant shall design the emergency. access of Mai akillia With decorative concret fferson Street e, pavers dr other paverent structure es approved. by the City Engineer and th'e Fire Department. 56. The' applicant shall design street procedure for 20 -year life pavement sections. -using CaMans' design pavement, and the site- specific data -far, soil strength . and anticipated traffic loading (including construction traffic . sections shall:: be .as- follows: ) Minirburn structural Residential or, the approved equivalents .of.alternate materials: 57• The applicant shall submit current mix t time of construction) for. base, asphalt tin designs than two The submittal shall include test results fora years old et the and Portland cement .concrete'. procedure. For mix designs over six months. old, suns used in the mix design (less than six months old at the time of constrLi�cti bmittal shall. include recent results confirming -that.design gradations. can be'achiev -a on) .aggregate gradation test The applicant shall not schedule' `construction operations u current production. approved. ntml . mix .designs are P :\Reports QC101- 04- 05\Grove Partners LQ, LLCITTM 3275 n 1 CC COA.doc• r Aoktatth.Skstems `� :. Southwest 79 -811B Country Club Drive . Indio; CA 92203 (760)345 -1588 • (800)924 -7015 FAX (760) 345 -7315 .:September 20, 2006, File .No:: 10271 -02 MDS Consultants C/o Craftsmen Homes 1157 North Red Gum Street Anaheim; California 92.806 Attention: Mr. George Prine Project: Tract 32751 Citrus Country Club Jefferson Street .& Avenue 52 .Subject:. Additional Infiltration Testing for Retention Basin Design Dear Mr..Pnne: . This letter presents preliminary findings of the infiltration testing conducted on September 18, 2006. The purpose of the testing was .to determine the appropriate infiltration rates to: be used in the design of the stormwater retention basins planned for portions of Tract 32751 of Citrus . Country Club in the City.of La Qiiinta,. Riverside County; California. Two infiltration tests were made in the vicinity of the proposed retention basins. The locations of the tests will be shown on. a figure attached to the final report, to follow. The e ep t sts were conducted.-. within' 8 -inch diameter, augered boreholes. made to depths of approximately six ..(6) and twelve (12).feet below existing ground surface. A 3'/4 -inch outside diameter perforated pipe was set in each borehole. Each pipe is surrounded with. 3 /4 inch .gravel around the pipe -full : length. . Water was injected at a relatively constant rate until a stabilized:head of water: was established. Based on the US Bureau of ' Reclamation methodology for a constant head; pump -in test, the following. hydraulic conductivity rates were obtained. Test . Bottom of Hole Water Head Flow Rate Hydraulic.. Conductivity ID . feet feet m al/sf/day I =3 West 6.00 2.8' 3.9 583 - I -4 East. 12.00 3.5 0:30. 0:8 11 :5 The designer -of the dry well :should .decide on an appropriate factor. of safety to apply�to these reported infiltration rates. ,Infiltration .may, be significantly. less. than the values given over. time. because of siltation and -de *elopment -of a fiIm from road oils from- paved •streets. .A- silt and--oil :.trap placed at influent points may. be considered to reduce. the..potentiat for, reduction: in the infiltration rates of soils September 20, 2006 2 File No.: 10271 =02 'U7/ L ZCIOb: 113 r1 L: .bt7.3 y: 131� .- .. .. f MVL V APPENDIX A Figure 1:— Site Location Map . ' Figure .2 — Percolatiori' and Boring.. Location' Map . Terms and used` on Boring Logs Soil Classification. System •' Logs of Borings . �' Laboratory Test Results. Wiltration Test Results Mangum EARTH SYSTEMS SOUTHWEST I r7'. .. 11611 'IS..�,..., !16 °1.311 566000 ., w .. rin / }•rr�w. . 0 558000 . 567000. ' ::: -:,569000 O ..' • 1� 0 1• '� 0'. 1 13 •:.• 11 I... 0 wall -Well 49.. 00- b 1 O -k •__• �' 4 - i �' 5' +`Wetar :`I- m° . o — . •• 1 ems\ . -1,i1— p.�!� -- -•- °_- , f3, ' .... z In � O 3e pD � AVENI! 1 � ✓ 4 .DO Ij Ga� ? . rN I_ r •ri r isi An ■ .Well Ji - -- = =• ;,. _..AVCNUE _ I S Jv J / • S . /� Cz CO .0 `I i v . 566000 5670D0 568000' 569000. 116117757w 1 /(,° /ball "W 116 °1345 "W 0 : 500 1,000 2;000 3,000 4,000 FBOI . Fiigu.re 'I Site Location Map. LEGEND Tract 32751, Citrus Country Club Jefferson Street. & Avenue 52 .Basin Boundary La' Qtlirlta,:.R'iverside County,.-California sarth Systems 9outhv■reset Reference: wNw.terraserver- usaxom 08/31106 File Mo.:. 10271-02 w7rj ', "dyyG� ;h- 17� � }� '1�1. , t ;�.`t ,T �p �y . � 1 : • ,alr�„ - . `4 IJgr ,� - •. .. - 1 ,�`.: i, '' J�IQ �' _rf. :SJCi C•IW , {i�i � ,, I`�1% !i r ... ,'�F J•���'- i �j �'i`�•.h 11• .l:i. t.. Y _ • •;l / ���y.�yl���• Y� !� i I�I •{.- ,tl l l •..�,5�,,^ •� , •'p .I.�,' •.,— • t °`23i•Y\ • �'1 �� '. �'(±i i.r -,. � I. ��'�.. ,!� , ! s i C • ' 1� � . �,I���• ...C,.. 6. 0�•.. �� �;�� rl1't; ''I..'�('�� -, r 1 'r4,;�• ^c, �,'s'r, .•_..+ is ' ,' r; - • .' ,;' � 7.i 1 , A� V, �- .�.�':�: �i�ll... l'1,:'•!' � . �. � -i,- ., �,p�... : �I�,,.c�:•rM. r:'. :• �'h Oe .� .� 1 ,d.: '1' II'•' - � It ', rv,• •:P••, III ..•. .�:•.:.LLi j 'f �' I .••F • 7,j �� ''{Y'• .• �.i .., 'lilt cy i j 'art, ,a. . , ' .. ..:;; ?'•: '•• „ :•i .t�'^''•'•�.. � l 111111 ,. e, ! ( � .rt.•• +':i'G �' ?�;e^ ;.r: Ir: as lt;. �:h "s �' 7I I J' ' ib� • ". �' i• ..� .i Rc-..— •'!c".:'. i-_•� ?I�i }{ '�• 'p�,,;r :fir ',11.., •- �`..Y.r• �,y:.�it.' '.���:u��2 �� ar,,.. �- - - r -�,�• __ I ..�._ � � (�'1'.�,r;' a,�•„II 1 •, � w :If:'•.•' la•. . •q� .... � � � ' ..c t� 11� � ..,rj'I�rvl..r�':f1; ll,'�ll,.._ a1. � �3.�.1ar�7,.l x , •' "�. ��• J'• ^•:Y;y \ter .�C�y�y�'1•. -� 'I �F! l--r .. _ `` �q•N a. -'„fir, =L.+ r- ',,� -:II , •n q. . .�% lei: r, ti'l � \ !�� 1 • • 7 .: -:• , .: .... .. � .�'rcY t, ... ' ��rJ- = fir+- ° =�'r �_ ;: °L� -� °• '-- -. _.. - -.----- • — ----" - is • ` 'G' 4 jw -,rT.i ; �,� �,•�,a� !,,ya:• wi•. °. ,� ,��' > Y� j''i�`ll !,i .`i' : " Qt,.y�•y - I .. 1•- wil , ET � � ` . ` S :��. Otis *t � ,- ... !•� [E300LDERS COBBLES :.COARSE. GRAVEL.:. :. SAND' . . - SILT .. CLy1Y FINE COARSE IVIEOIUM FINE r v.Z l y. i 4.f10 z.uu v.4` . U.0 l4 0..002 SOIL GRAIN SIZE IN.MiLLIMETERS RELATIVE DENSITY OF GRANULAR SOILS (GRAVELS, SANDS, AND NON- PLASTIC.SILTS) Very Loose 'N =0-4 RD =0 -30 Easily push a 1/2 -inch reinforcing.rod by hand Loose N =5 -10 RD =30-50 Push a .12,inch reinforcing rod by hand . Medium Dense N =11 -30 RD---50-70 Easily drive a 1/2 =inch reinforcing rod with hammer Dense N =31 750 RD =70-90 Drive a 1/2 -inch. reinforcing rodl foot with. difficulty by'a hammer Very Dense N>501 RQ =90 -10.0 Drive a 1 /24hch.reinforcing rod afieW inches with harnmer 'N = Blows per foot in .lh.e Standard.Penetratiori Test- at 60% theoretical. energy: For the 3 -inch. diameter Modified California sampler. '140 -pound weight,. multiply the blow count by 0.63 (about 2/3) to estimate N- If automatic hammer is used; multiply. a.factor of 1.3 to 1.5to estimate N. RD =Relative Density ( %). C= Un.drained shear strength (cohesion): MOISTURE CONDITION Dry...., ............. ...-Absence of.moisture; dusty, dry'to the touch Damp .......:........Slight indicatlon of moisture. MoisL ................Color change• with short period of eir'exposure. (granular soil) Below optimum moisture content .(cohesive soil) Wet ....................High degree.of.saturadon-by visual. and touch (granular soil) Above optimum moisture content (cohesive soil) Saturated ........... Free surface water PLASTICITY DESCRIPTION FIELD TEST CONSISTENCY'OF COHESIVE SOILS (CLAY OR CLAYEY SOILS) Very SO ft* 'I: =O -1 "C =0;250 p4f Squeezes between fingers. Soft N =24 C= 250 -500 psf Easily molded by finger pressure Medium Stiff N =5-8 G. 500 =1000. psf. Molded by:strong finger pressure Stiff N =9 =15 C =1000 -2000 psf Dented by strong finger pressure Very Stiff N= 16 -30. C =2.000 -4000. psf Dented slightly by finger pressure Hard N >30 C >4000 Dented: slightly by a pencil point or thumbnail after reaching the plastic- limit. MOISTURE DENSITY Moisture Condition: An observational term; dry,: damp, moist, wet, saturated.:. . Moisture Content: . The weight of water in a sample divided by.the weight of dry soil-ln the soil sample Water Level (during drilling) expressed as a percentage. Dry Density: The pounds of dry soil in a cubic foot. MOISTURE CONDITION Dry...., ............. ...-Absence of.moisture; dusty, dry'to the touch Damp .......:........Slight indicatlon of moisture. MoisL ................Color change• with short period of eir'exposure. (granular soil) Below optimum moisture content .(cohesive soil) Wet ....................High degree.of.saturadon-by visual. and touch (granular soil) Above optimum moisture content (cohesive soil) Saturated ........... Free surface water PLASTICITY DESCRIPTION FIELD TEST Nonplastic A 1/8 in. (3 -mm) thread cannot be roiled Low at any moisture content. Standard Penetration The thread can barely be rolled. Medium., The thread is easy to roll and not much (2" outside diameter) time is required to reach the plastic limit. High The thread can be rerolled several times (3" outside diameter) after reaching the plastic- limit. GROUNDWATER LEVEL Water Laver (measured or after drilling) Water Level (during drilling) .RELATIVE PROPORTIONS Trace. ; ....... "...minor.aniount ( <5 %) with/som e...... significant .amount modifier /and— sufficlenl amount to' influence material behavior (Typically >30 %). Terms_ and Symbols used on:EScring Logs s. gaiii'th syste ' s, M Southwest LOG KEY SYMBOLS. Bulk, Bag or Grab. Sample Standard Penetration Split Spoon.Sampler (2" outside diameter) Modifled . Califomie Sampler (3" outside diameter) No Recovery Terms_ and Symbols used on:EScring Logs s. gaiii'th syste ' s, M Southwest . . -:'v �:'t;u•�c.ivo- SOUL . vo UJ Y:l e 1'1 :J.' - ... - •: .:. .',., - SOILS LESS THAN 50 - - CL ML ' rock flour, silty. low clayey fine sands t'AU11- : J. U/.1 b MAJOR DIVISIONS SXiU1B�L or clayey silts with slight plasticity TYPICAL DESCR�I?TIONS PIIIIIIIL111I I - . 'SYIUIBUL - • OL Organic silts and organic silty ''' " •' •' Well- graded gravels; gl^avel -send clays of low plasticity. CLEAN ': ';'; '...:'..•.. GW mixtures, little or no fines . GRAVELS Inorganic silty,. mleaceous: or MH diatomaceous fine sand or' 50% or more of GRAVEI..AND "' "' r' a••,.••.......... , Y.r.�.;�.r.;�.;i.:1: GP Poor1 laded rav%is; gravel�send Y-9 9 �' % / /� GRAVELLY Inorganic Clays of high plasticity, fat. • • • ••.•.• .• THAN 50 mixtures. Little or.no.fines 3.01LS . OH Organic clays of medium to high plasticity, organic silts dy� yrr yr'y _ !SM Silty gravels, gravePsand•silt COARSE More. than 50% of. GRAVELS Al high organic contents . VARIOUS SOILS AND MAN MADE MATERIALS mixtures '. GRAINED SOILS coarse fraction WITH FINES Fill. Materials. reta(ped on No. 4 > 12% FINES sieve GC Clayey gravels, gravel- sand =clay mixtures . SW Well- graded sands; gravelly sands, SAND AND. CLEAN SAND. little or no fines SANDY SOILS (Little or no fines) :::z, s : •:: -•s t• More then: 50% of 5% ' ; ` ... '.. "'' ' ' `" " SP Poorly- graded sands, gravelly material is jjk= > .> sands,. little or no fines than No: 200 sieve size SAND WITH FINE SM Silty sands, sand- silt-mixtures More than 50% of (appreciable coarse fraction amount of ftnes) assin No: ; sleva 12% �,. SC � Ctaygy sands, sanci•ctay mixtures FINE- GRAINED- LIQUID LIMIT . Inorganic silts and very fine sands, SOILS LESS THAN 50 - - CL ML ' rock flour, silty. low clayey fine sands or clayey silts with slight plasticity FINE- GRAINED- LIQUID LIMIT . Inorganic clays of low to medium SOILS LESS THAN 50 - - CL plasticity, gravelly clays, sandy clays, silty clays, lean..Clays PIIIIIIIL111I I - r► 17 ' i i I 1 I 1 r 1 OL Organic silts and organic silty SILTS AND clays of low plasticity. CLAYS Inorganic silty,. mleaceous: or MH diatomaceous fine sand or' 50% or more of silty soils material Is smpit r than No. 200 LIQUID LIMIT GREATER �' % / /� CH Inorganic Clays of high plasticity, fat. sieve size THAN 50 %� clays OH Organic clays of medium to high plasticity, organic silts dy� yrr yr'y HIGHLY ORGANIC SOILS 'y �y�y y�'y ,Y.rnrr,Y,r yyy PT Peat, humus, swamp soils with . yyyyyyy yy� ,rry .rrr .rdr high organic contents . VARIOUS SOILS AND MAN MADE MATERIALS Fill. Materials. MAN MADE MATERIALS ® Asphalt and concrete Soil classification System Earth Systems '= Southwest - -- S. i7o:� :. �n L oimvy uim urtve, Bcrriivde Dunes, (;(19221).. Phone f760)'343-15 Fea (7G0) 345 7313. . j1eN n St_ Ave Drilling`Date.- ilttgust 2 :1.2006 nue 52, ! a (�uirta CFt: Drilling ilrlethod: 3 ".Hollw Stem Aiigei ` : :10271 -02 on: See Fi rc 2 Drill.Type: .CMI; 55. Auto Hammer L' oggcd By: Dirk Penetrntitin.pf T1nit,tj tance. . h „ . q. a .o.�, Notc. The stratification lines shownrcprescnt thr s/Vy : vi . o : aDPro�imate boundary betweW soil.and /or rock types, Graphic: frond . .. 3 alto U and the transit "on ma be gradational. nal Blow Count Dry. Dcnsity: SM SILTY SAND: moderate brown to pale yellow brown, loose to mediu d ZI 5 m ease, dry SAND V1!ITH SILT: pale yellow brown; medium dense, dry., mostly fine to medium grained _ I SILTY SAND: moderate brown, medium dense, dry,. mostly fine to medium grained SAND WITH SILT: pale yellow brown, medium dcnse; dry; mostly fine to medium. grained SILTY SAND: pale yellow brown;. dense to very dense, damp SAND WITH SILTr.pstle to moderate yellow brown, dense. mostly fine grained SILTY SAND: moderate brown, dcnse, damp, mostly fine to medium grained; Total Depth -41 -5 feet No Groundwater Encountered 3" Diameter PVC 35' Perforated Pipe: 3/4" Gravel • 45. 50 Total Depth 41.5 rest No Groundwatcr Encountered. 3" Diamctcr PVC dQ' Perforated. Pipe: 3/4" Gravel . • .. : ., 11%.1 :5 ., b.t:01m. U1u6 Un ve 13crm3Wn Ouiics CA9 �' 220? �o ring. =2., , ..: : Z60 ia5 =I533, Fax (760) 345:7715','. >', :' .No:.,.'B Drilling;. . .August21.; -2006 Project ame:: Traci :32751-: Jeffersonr5[ & Averiue.52. La atnta CA Drilling Methods. 8" Nollow Stcm /l' Q. • File Number: 10271 -02 '.: Boring I oc' t6n:. Scc.IF u- 'rc.2..` gcr Drill T e: CtviE 55 Auto Hammer yp.. Logged Ey: Dirk .Wiggins Sa!npie. :., .... TYne ^' Penetration DejCri. tipn 4f Unlits p Page l .of.t , a.: a Rcsistaricr E y ' . o :o Notc:, Tbc stmtificaiion lines shown rcprCvcnt the . T a (i O.'(Blows/6 ')- y. Z. — approximate boundary. between soil•and /or rock �'o type'' Ciep1»cTrcnd and the transition mfly be gradational, ' Blow Count Dry Density . SiN SILTY SAND: moderate to pale yellowish brown, medium dense, dry, silty, fine to medium grained, loose graded. roadway surface' GRAB . . S. 4,6,1,1 pals yellowish brown, vt ry fins to fine grained ' %,$ . 10 CRAB : modciafa brown l3 15 4.10.15 ML.. SANDY -:UL l. Ic yellowish. brown, medium sM .74% SILTY- SAND:.moderate brown, medium dense, 20 GRAD dry, silty, fine to medium rained loose graded g � g d roadway surface. 25 7 -13,20 SAND WITH SILT: pale yellowish brown, dense, damp, silty, fine to medium rained, silty sand. lenses 27 0 30 GRAN S.M. SILTY SAND: moderate brown, dense, damp, very fine to fine grained, silt lenses . 35 I 6.9.11 SP-Stit SAND .WITH SILT: pale yelJowish brotivn, medium. 1 - dense, d to dam f e t In o D` p, medium grained • 40 GRAB SrVr SILTY SAND:' moderate Yellowish brown, dense, damf ne p, gramed • 45. 50 Total Depth 41.5 rest No Groundwatcr Encountered. 3" Diamctcr PVC dQ' Perforated. Pipe: 3/4" Gravel .. EAR''H SYSTEII'IS SOUTHWEST ' 'U7/ 1L: 4 UU0 ;-L rJL "4I. �. ,.PAGE :.•1 1 5' RCOLAT16N -EST FRESUt:7S FOR SEEPAGE PIT OR DRY WELL . .. • E P R OJ CT: Citrus Coun_try.Club, Tract 32751, Lq Quiiita FILE NQ- . 10271 -02 •: . ' ....' Data:: 8122/2006. :. Note; this hole.t) ed almost 9OQ.gallons' water supply. vary' full :pe.: n.boti..locatlons0 13CJFlIfV ©:. l -1 W€sE brr 38: .. . . aftf: © } '. teef Pipe Sticku : Grave&Pbrf.to: 'Qravel Faetor. . .0': - 0.0 36.0 ft . ... 0.46 - 3/4' inch ravel : F' �(aYgi Qcorr= Q -G .ti_ ' al Final )=a11 lkverag . g Tlme Depth of Water. Water In Water . : Wetted: Percolatmpi ..nal. ine Interval Hole. Level- bevel Level' 'Length Rate 180 /Q 41me min min ft i fi ft ft aUs2:12 16 . '36.0 - ' 0.0 8.0 - 0' 31.0 - 0 00 36.00 6.6 ' 27 :34 13 35.5 - 0.0' . 7.0 = 0 31.0 .. - 0 24.00 36.00 8.5 21 . 14 :55 15:05. 1.0.. 33.5 - 0.0 . 8.5.. - 0 25.9 ' - . 0 ' ..17.40 36.00. 8.0 23 4 [63 15 :10 15 :20 10 33.2 - 0.0 6.3 _ 0 25.2 - 0 18.90 36.00.' 8.7' 21 5 18 :25" 15:35 10. -33.2 = 0.0 17.5 - 0 25.3 : -. 0 7.80: 36..00 3.6 50 15:41 ' : 15:51 10 33.0 - 0 :0 1,163 - 0 0 8.60' 36.00' 4.0 46 �24 7 15`53 16:08 10 33.0 - 0:0 . 14.6. - 0. 0 9 80 36.00 4.5 40. 8. 16:15 16:25. 10- 33.0'-'0.() 66.0 - 0. ' 22.6 = 0 17.60 36.00. 8.1 22 9 16; 30 1640 10' 32.0 - 0_0 15.8 - ' 0'' . 24.0 _ 0 8-20.'. 36-00--- 3.8 : 48 EARTH SYSTEMS SOUTHWEST EA.RTfl SYSTEMS SOUTRWEST 137l1L %'LSObb ' 1'b3112. PfiGE . • 15 %l 5' PERCOIATIO.P! TEST RESULTS FOR.SEEPAGE PIT OR`i)RY WELL . • PROJEC I : Cittus Country Club. Tract 3275'1, La Quinfa . FILE.NO: - 1:0271. -02 Date:: ':'8/23/2006 . Note;'thishole used almost 800 gallons new batteryF installed in.meter:at.tesC:. Pi p Sticku : Gravel /Perf th:j Gravel Factor. 38:0 ft - 0,46 : 3/4 itch ravel-with 40 fear F. L(avg)- Qcon =.p�G ti . Initial. if Final. t Total :. Initial Final .• Time Depth,of Water Water. Fa 'in Avetage Flt'D'9/C(avg Pit Time Time lnteival Hole Level Level: .Wafer ..Wetted Level' Length Percolation Rafe Raf e. mpi. 1 mpi. pRed.ln� min min . _ min ft-in. ft-in: ft-in ft 08:22 08:32 10 380 - 00 6:4 - 0 29:5 0 23.10 38.00' 08:36 08:43 7 35.5 - 0.0 8.2 - ° 0- 24.0' - 0' 15,80 38.00 9,8 3 11:22 10 34,5 -.0.0 8A ' - 0. 21.7 - 0 13.70 38.00 B.O. 30 4 11.:26 11:36 10 : 34.3 - 0.0 B.O. = .0 19.7 - 0 11.70' 38.00' 5:1 35 5 1'1:39 11'A9 10 34'.2:-' 0.0 8.0 - 0 20.1 - 0 12,10: 38,00 5.3 34 6 11:55 1 12 :05 10 34.0 - 0.0 8.0 = 0 20.0 - 0 12.00 .38.00 5.2 34 7 12:46: 1.2:56. 10. 32.0 - 0.0 8.0 - 0 1.9.2 - 0 11:20 38:00. 4:9 37 8 i3:01 1.3:11 10 32.0 - 0.0 8:0 - 0 18.8 - 0 10.80 38.00 4.7 38 9 13:15 13:25 10 31.5 - 0.0 8.0 - 0 17.8 - 0 .9:80 38.00 4,3 42 EA.RTfl SYSTEMS SOUTRWEST 09/12/2006 .16.02.. 60 i4ti /'.,15 9 F CRA TSIv .... �N HO;IVIES ' 1-51-NORTH. RED:OUIV1 STREET..`: f1Nt1HEI1VI; .CALIFO NTA 92806 REPORT OF INFILTRATION TESTING FOR STORM WATER DISPOSAL TRA .CT 32751 CITRUS COUNTRY CLUB:.. JEFFERSON STREET AND AVENUE 52 LA .QUJ. TTA, CALJF0R.NTA I August 31; 2006, ` 6. ® 2006 Eanh Systems Southwest. Unauthorized use or copying of thi3 documcni is 5.trictly.prohibited • without the express written consent of Farth Systems So.uthwcst: File No.: 10271 -02 06 -08 =846 LJ K] August 31; 2006. Craftsmen Ho m"es'. 1157 North Red Gu'm'.Stieet Anaheim, California 92906 Attention: 'Mr. Scott Shaddix Subject: Report of Infiltration Testingf6r Storm Water'DiSposal Project: -Tract 32751 Citrus Cou'tjr n y Club Jeffersoh Streef and Avenue 52 La Quinfa, California Dear Mr. Shaddix: It is: our pleasure to present this. report-of infiltration testing pi�epared for pr the 'proposed. storm wate-z -disposal at Tract, 327-51-, Citrus Country Club.. The site is I ocated.between.J e* ffcrson Street i and Avenue 52 in the City of La Quints,. Riverside. County, California. The site.* location is shown on Figure .1 in Appendix A.- We dersfand -that. there. xwell'd' * e i gu will .0e. two Md.. rYW I systems to be built in the sit' for storm water: di' sposal. This report -presents our findings and recommendations for the storm water disposal. Thi' s report-should stand as -a -whole and rio part of the report: sho* uld be excerpted' or used to exclusion of any.'other part. This- report completes- our scope of services in Accordance w ith-o.uragreement-.dAtedAu&t 16, 20 ' 06. ' Other services that. maybe requiid.d, such As *a plan:review, are additional services and- will be billed- according to the Fee Schedule - in effect at the * time :services are provided. Unless - requested in writing,. the client . is*. responsible for distributing, this report to. the appropriate governing agency or other.me'm-bers of the de'sign team. Fi.eld.'Explo ration Two *exploratory. bori.-n* -w 6 et b 1 ''th existing bund gs were drilled to. a depth of about. 40: fei_ be ow e e ing gro .suiface'-to observe the.. soil.. -profile. borings were drilled on August 21,, 2006. . using 8* inch outside diameter hollo'.W­ -stem. augers, 'powered by a CNE.: 55 trtick-mountid-drilli ng*. rig- Samples. were obWnecL' within .- the 'borings using 'a Standard Penetration (SPT). sampler. Perforated TVC- -pipe. -was. set In the boreholesto allow f6r stabiliz'ed gfoundwiter measurements and was abandoned -afterwards. The boring- locations are shown on the.. boring location- map, Figure 2 in .Appendix A. ' The. locations shown are approxim afe, established :. 15y -pacing and sighting from existing topographic features, Samples were obtained within the. test borings using a Standard Penetration -( . SPT) -sam W ler _. (AST-M D 1.586) .and a Modified- California (NfQ ring 'sampler (A-STM D 3 550 with shoe similar to ASTNI D 1586).-- The. SPT sampler has a 2 -inch outside :diameter and a 1.38-inch inside. diameter. The. MC sampler has a 3-inch outside diameter and a 2.37 -inch inside di am . ' eler. The 0 'UVU .1 V:.,V L..' •'(UVJ YJ l..)1 J:._'.. - - ra'io� uYi August 3:1; 2006:. ... _2_. File No '10271 -02 . samples : were::obtained :by driving the .sampler .tiyiih a 140- o • p and a: utomatic. hammer .clr' ' , o In 3Q in irz. general :accordance with AS.TAI'D.1586.__: ecokezed_saiL sapji - ,eFe = -sea a — — containers :and returlied to. the laboratory:. Bulk'sam Ies were also: obtained frorrm' auger cuttings, R. . " representing a alixture of soils encountered at the depths. noted. The. final .logs. of the borings represent :ow interpretation. of the contents of the field:logs and review of the samples obtained dwing the subsurface investigation. ' The final'logs are included in' Appendix A of this .report. The stratification lines represent the approximate boundaries between soil.types, although the transitions may be gradational. Laboratory. Testing Samples were reviewed.. along . with field .logs t o. select. those that tiyould be analyzed further.. Those seiected'for'laboratory testing include soils that would 'be exposed and used during. grading. and those deemed to be within the influence . of the proposed structure: Test results are presented in tabular form in Appendix A of this report The tests were. conducted. in, -generail accordance with the procedures of the American Society for Testing and Materials . (ASTIvi) or other.. standardized methods as referenced below. Our testing program consisted of.the following: : 9 Particle Size Analysis t0 classify a, CJaluate SAI] CGtupGSitiGri: Soil Conditions' '. • The field exploration .indicates that site soils. consist generally of poorly graded sand with 'silt and. silty .sand: (U. "fig assification System. symbols SP -SM and SM) of medium dense to dense riatur A -s y.laye6r ?ude found at about l5 to.18 feet deep in Boring. B -2. The boring logs provided in Appen ix. Inc detailed.descriptions.ofthe soils encountered. . Groundwater Free groundwater. vas not encountered in the borings during exploration.. The depth to. groundwater in. the. area..is believed to be greatcr.than 50 feet.: Groundwater levels may fluctuate with.. precipitation; irrigation; 'drainage, regional, pumping from wei'ls, and site grading. Groundwater. should not be a factor in design or construction ai ahis site. 'Geologic Seuing: The project. site' is located approximately 30•feet above'mean sea.level in the cents] part of the Coachella Valley_ 'The 'sediments .within. this portion of the valley consist of fine= to: coarse- grained sands with interbedded clays. and silts of alluvial. (water -laid) origin. The depth to -crystalline basement rock beneath the site Is. estimated to: li (En e_. in. excess of 2000:feet.:.. vicom, 1976). ' Infiltration .Tests • Two infiltration tests were performed at the site on Migust 22 and .23; 2006 for th storm' proposed.' rm' water disposal as shown on Figure 2, The tests were conducted' within 8 -inch diameter angered boreholes made to .depths ranging froal 36 to 38.3.feet.bel.ow existing ground surface. A EARTH SYSTEMS SOUTHWF,ST Test ID Bottom of Hole feet Hydraulic,Conductivity. A! sf/da . 1.1 West 36:0 1 72 East 38.3 = 4.3 The designer of the retention basin should .decide on whether an appropriate factor of safety should be .applied to. these reported infiltration rates: Infiltration: maybe sirlificantly less than the values * given over time * because of siltation and development of a: film from road oils from Paved streets. entering the system.:A silt. and oil trap placed at influent poinfs may be considered . to reduce. the potential for reduction in the infiltration rates of soils >. Maintenance of the retenrion/dstributorsystem is crucial if no factor of safety is applied In. addition,. the gov..ernirig agency may; at:thei.r. discretion, esiabl ish .a. maximum. infiltration.rate. We appreciate the .opportunity to. provide our professional services. Please contact .our office if there are any questions or core ments .concemirig this report or its recommendations. RespectfWly submitted, OFESS EARTH SYSTEMS SOUTHWEST Reviewed by CE 38234.. z Exp Hon&n Huo, Ph.D. Craig S. 03/31/07 m Hi Project Engineer CE 38234 `s'� CiVll- y QF Le tter/hh/csh/reh Distribution: . 3 /Craftsmen Homes l /RC-Tile ?MD File FARTII SYSTEMS SOUTHWEST 2 ON 'It s. Ei .61 0 0 "I. Oc", railei Parli;,,' % r A4"t Tr Ile jib 0 cz, 48 AVE.— well LD D r Nt fiE T tt Yltl 6 Lid T 19; 6 Ga k?1'. J, 33-." S• 0 NUE We Ir 11 2 CY n 0 n o4..-46 0 50 E. AVENY$,�2 SO. 15 lot 0.� C) I E) "EN, >l.p¢hva °FL' am,pwh:LwSr L•a•n). <tG.- ...•ar? C• •`n f•Qr~ p::'H 't YY ep.r tr�c` f7 E-K E z 'i iv 15. 1.1 01 YYY 0 rt e I.1 �s A V,� 4 i.p f, C YE, "Zi M, Z_ 't :Z'.I t t T �3 X! 1.7 . ..... . AVENUE 52 17' 3, 1 j Pu X'. -Reference: www.terraserver-usa.com Figure I Site Location Map Tract 32751, Country Club E72 Jefferson Street &Avenue 52 Scale: 1 2,000' La Quinta, California Earth Systems. 0 2,000' 4,000' Southwest 01/24/06 1 File No.: 10271-03 Earth Systems ^� Southwest 79 -811 B Country Club Drive Bermuda Dunes, CA 92203 (760) 345 -1588 (800) 924 -7015 FAX (760) 345 -7315 January 13, 2006 File No:: 10271 -03 Revised January 24, 2006 06- 01 -730R Craftsmen Homes 1157 North Red Gum Street Anaheim, California 92806 Attention: Mr. Scott Shaddix Subject: Geotechnical-Engineering Report Update with Supplemental Recommendations Project: Citrus Country Club —Tract 32751 Approximately 9 Acres La Quinta, California References: L' Buena Engineers, Inc., Soils Engineering Report, File No.: 16006-P2, Document No.: 86 -02 -271, dated February 25, 1986. 2. Buena Engineers, Inc., Rough Grading Report, File No.: 16006 -P1, Document No.: 96 -07 -223, dated July 17, 1986. 3. Buena Engineers, Inc., Final Report of Testing and Observation Performed during Grading, File No.: 16006 -P1, Document No.: 90 -04 -789, dated April 23, 1990. 4. Sladden Engineering, Geotechnical Update, Project No. 544 -5896, Document No. 05 -11 -1100, dated November 17, 2005. Dear Mr. Shaddix: As requested, we have reviewed the referenced documents for the purpose of updating the soils report and providing supplemental recommendations. This review included a reconnaissance of the site. We understand that you intend to develop the site with 29 single -story single - family homes. Current Site Conditions Field reconnaissance of the project site was performed on December 9, 2005 to observe current site conditions. The site consists of approximately 9 acres of undeveloped land dominated by an excavation approximately 14 feet deep. We understand that the excavation was historically used as a borrow area for the adjacent development and was intended to be developed as a golf fairway. Significant stockpiles of yard waste, asphalt, concrete rubble, sod rolls, and dirt were observed on the site, especially concentrated on the floor and rim of the south end of the excavation. The area surrounding the excavation is covered by a dense growth of weeds.and brush. Numerous palm trees are present primarily on Lots 8 through 22, and are aligned in rows, indicative of the 1. January 13, 2006 2 File No.: 10271 -03 Revised January 24, 2006 06- 01 -730R site's previous use as a date and citrus grove. An existing golf cart tunnel that is to be.abandoned was observed in the southeast portion of the site. Supplemental Remedial Grading Recommendations A representafive of Earth Systems Southwest (ESSW) should observe site clearing, grading, and the bottoms of excavations before placing fill. Local variations in soil conditions may warrant increasing the depth of recompaction and over - excavation. Clearing and Grubbing: At the start of site grading, existing vegetation, trees, large roots, pavements,. foundations, non - engineered fill, construction debris, trash, and abandoned underground utilities should be removed from the proposed building, structural, and pavement areas. The surface should be stripped of organic growth and removed from the construction area. Areas disturbed during demolition and clearing should be properly backfilled and compacted as described below. Dust control should also be implemented during construction. Site grading should be in strict compliance with the requirements of the South Coast Air Quality Management District (SCAQMD). Building Pad Preparation Lots 9-15): . Because of the presence of significant amounts of deleterious materials and the non - uniform and under - compacted nature of the site soils, we recommend remedial grading of soils in the proposed building areas. The existing surface soils • within the building pad and foundation areas should be over - excavated to a minimum of 4 feet below existing grade or a minimum of 3 feet below the footing level (whichever is lower). The over - excavation should extend for 5 feet beyond the outer edge of exterior footings. The bottom of the sub - excavation should be scarified, moisture conditioned, and recompacted to at least 90% relative compaction (ASTM D 1557) for an additional depth of 1 foot. Building Pad Preparation (Lots 1 -8 and 16 -29): Because of the significant difference in elevation between the bottom of the existing borrow pit excavation and the proposed finish pad grades (up to 14 feet), additional over - excavation will be required to help reduce differential settlement resulting from transitional fill thicknesses. Additional over - excavation and recompaction should be performed such that the differential thickness of compacted fills beneath proposed structures should not exceed 50% of the thickest engineered fill layer. Proper keying and benching procedures should be maintained during grading operations. Tunnel Abandonment: We understand that an existing cart path tunnel that passes beneath Jefferson Street near the southeast corner of the site is. to be abandoned. The cavity of the tunnel may be filled or left empty at the discretion of the City of La Quinta. The head wall at the entrance of the tunnel may be completely or partially removed prior to sealing off the entrance of the tunnel. If the head wall is partially removed, the top potion of the wall should be lowered a sufficient amount to allow a minimum of three feet of engineered fill soil placed above it. The demolished portions of the concrete wall should be removed from the site unless the building official allows • for proper burial within deep engineered fills. EARTH SYSTEMS SOUTHWEST r. January 13, 2006 3 File.No.: 10271 -03 Revised January 24, 2006 06- 01 -730R :. If a wall is used to seal off the tunnel entrance, it should be designed to retain the backfill without introducing undue lateral stresses on the roadway. The area surrounding the head wall should then be filled with engineered fill as described below. Auxiliary Structures Subgrade Preparation: Auxiliary structures such as garden or retaining walls should have the foundation subgrade prepared similar to the building pad recommendations given above. The lateral extent of the over - excavation needs to extend only 2 feet beyond the face of the footing. Subgrade Preparation: In areas to receive fill, pavements, or hardscape, the subgrade should be scarified, moisture conditioned, and compacted to at least 90% relative compaction (ASTM D 1557) for a depth of 1 foot below finished subgrades. Compaction should be verified by testing. Engineered Fill Soils: The native soil is suitable for use as engineered fill and utility trench backfill, provided it is free of significant organic or deleterious matter. The native soil should be placed in maximum 8 -inch lifts (loose) and compacted to at least 90% relative compaction (ASTM D 1557) near its optimum moisture content. Compaction should be verified by testing. Rocks larger than 6 inches in greatest dimension should be removed from fill or backfill material. Imported fill soils (if needed) should be non - expansive, granular soils meeting the USCS classifications of SM, SP -SM, or SW -SM with a maximum rock size of 3 inches and 5 to 35% passing the No. 200 sieve. The geotechnical engineer should evaluate the import fill soils before hauling to the site. However, because of the potential variations within the borrow source, import soil will not be prequalified by ESSW. The imported fill should be placed in lifts no greater than 8 inches in loose thickness and compacted to at least 90% relative compaction (ASTM D 1557) near optimum moisture content. Shrinkage: The shrinkage factor for earthwork is expected to range from 10 to 25 percent for the upper excavated or scarified site soils. This estimate is based on compactive effort to achieve an average relative compaction of about 92% and may vary with contractor methods. Subsidence is estimated to r ange from 0.1 to 0.2 feet. Losses from site clearing and removal of existing site improvements may affect earthwork quantity calculations and should be considered. Slabs -on -Grade Vapor Retarder: In areas of moisture sensitive floor coverings, an appropriate vapor retarder should be installed to reduce moisture transmission from the subgrade soil to the slab. For these areas, an impermeable membrane (10 -mil thickness) should underlie the floor slabs. The membrane should be covered with 2 inches of sand to help protect it during construction and to aid in concrete curing. The sand should be lightly moistened just before placing the concrete. Low -slump concrete should be used to help reduce the potential for concrete shrinkage. The effectiveness of the membrane is dependent upon its quality, the method of overlapping, its protection during construction, and the successful sealing of the membrane around utility lines. EARTH SYSTEMS SOUTHWEST • January 13, 2006 4 File No.: 10271 -03 Revised January 24, 2006 06- 01 -73OR Closing Except as modified in this report, it is our opinion that the referenced documents are applicable to the proposed development. We make no representation as to the accuracy of the dimensions, measurements, calculations, or any portion of the design.. This report is issued with the understanding that the owner or the owner's representative has the responsibility to bring the information and. recommendations contained herein to the attention of the architect and engineers for the project so that they are incorporated into the plans and specifications for the project. The owner or the owner's representative also has the responsibility to take the necessary steps to see that the general contractor and all subcontractors follow such recommendations. It is further understood that the owner or the owner's representative is responsible for submittal of this report to the appropriate governing agencies. Earth Systems Southwest (ESSW) has striven to provide our services in accordance with generally accepted geotechnical engineering practices in this locality at this time. No warranty or guarantee is express or implied. This report was prepared for the exclusive use of the Client and the Client's authorized agents. ESSW should be provided the opportunity for a general review of final design and specifications in order that earthwork .and foundation recommendations may be properly interpreted and implemented in the design and specifications. If ESSW is not accorded the privilege of making this recommended review, we can assume no responsibility for misinterpretation of our recommendations. This report is based on the assumption that dn* adequate program of client consultation, construction monitoring, and testing will be performed during the final design and construction phases to check compliance with these recommendations. Maintaining ESSW as the geotechnical consultant from beginning to end of the project will provide continuity of services. The geotechnical engineering firm providing tests and observations shall assume the responsibility of Geotechnical Engineer of Record. EARTH SYSTEMS SOUTHWEST January 13, 2006 5 File No.: 10271 -03 Revised January 24, 2006 06- 01 -73OR Should you have any questions concerning our report, please give us a call and we will be pleased to assist you. Sincerely, OFESS/ EARTH SYS ST co 1ti.oL l 2� � �, w CE 38234 m l/ W EXP.03/31/07 'n Craig S. it r CE 38234 m��T cmL FOP SER/csh/reh FOF CAU Attachment: Figure 1— Site Location Map Distribution: 4 /Craftsmen Homes 1/RC File 2/BD File EARTH SYSTEMS SOUTHWEST 'Earth Systems `�, SOUtF1W2St 79 -811B Country Club Drive Bermuda Dunes, CA 92203 (760) 345 -1588 (800) 924 -7015 FAX (760) 345 -7315 November 4, 2005 Craftsmen Homes 1157 North Red Gum Street Anaheim, California 82806 Attention: Mr. Scott Shaddix Subject: Infiltration Testing for Retention Basin Design Project: Proposed Storm Water Retention Basins Tract 32751, Citrus Country Club Jefferson Street and Avenue 52 La Quinta, California ° �f Dear Mr. Shaddix: File No.: 10271 -02 05 -11 -748 This report presents the findings of infiltrometer testing conducted for the proposed stormwater retention basins located in the City of La Quinta, Riverside County, California. The purpose of the testing was to determine the appropriate infiltration rate to be used.in design of the storm water retention basins. -The retention basins are to be located at the north end of the project site, immediately north of the proposed cart path. Infiltrometer Testing We conducted two open, double -ring infiltrometer tests on October 19, 2005, in general accordance with ASTM D3385 at the proposed locations for the storm water retention basins. The test locations were surveyed by -the client, and the site for Test #2 was excavated by the client. Test #1 was conducted at the surface in the area of the proposed "west" basin. Test #2 was performed at a depth of approximately 6 feet below existing grade in the area of the proposed "east" basin. Both tests were conducted at the approximate bottoms of the proposed basins. An outer steel ring (24 -inch diameter) and an inner steel ring (12 -inch diameter) were driven about 4 to 6 inches into the soil. The purpose of the outer ring is to create a hydraulic barrier so that the recorded drop in water level of the inner ring measures the vertical infiltration without lateral spreading. Both rings were filled with water to a depth of about 6 inches and maintained with a float control valve or periodic refilling. Successive readings of infiltration flow were made over 15 to 60 minute periods until a stabilized flow was recorded. A plot of infiltration rates over time is presented on the attached test results. The infiltration rate measured. is presented in the following Table 1 in metric and equivalent English units. • November 4, 2005 -2- File No.:-10271-02 05 -11 -748 Table 1- Infiltration Test Results Test Location cm/hr in/hr al/sf/( Test #1 (West) 18.5 109 Test #2 (East) 0.7 0.3. 4 Design Infiltration Rate The designer of the storm water retention basins should dec; to apply to reported infiltration rates. Infiltration of storm v may be significantly less than the values given over time bey and development of a film from road oils from paved streets is crucial if no factor of 'safety is applied. Maintenance m, basin bottom. to open soil pores clogged by siltation, oils, trap placed at influent points may be considered to reduc infiltration rate of soils. Soil Conditions on an appropriate factor of safety rer through the bottom of the basin use of siltation of the basin bottom Maintenance of the retention basin include periodic scarifying of the vegetation growth. A silt and oil the potential for reduction in the The USDA Soil Conservation Service maps the upper 60 inc es of soil for this area as Gilman (ML) with expected moderate conditions for soil percolatio . The field exploration indicates that site soils in the vicinity of Test #1 (West) consist pri ly of fine sand (Unified Soil Classification System.symbol SM). This soil did not appeal- a native; it had been re- worked, was loosely compacted, and may have been imported. Soi s in the vicinity of Test #2 (East) consisted of silty fine sand .(SM/ML) and appeared to be undisturbed. This finer, more compacted soil is most likely the reason for the slower infiltration rates observed in Test #2. We appreciate this opportunity to provide our professional services. Should you have any questions or comments, please contact our office at (760) 345 -1588. Respectfully submitted, IR FES.S/py EARTH SYSTE SS.. THWEST ���G s. ygl�y % CE 38234 EXP. 3wimi Craig S. Hill ° .roject Geo' s ophysicist CE 38234 `��j� O�y►�� Letter /jem/csh/reh • � CAU'� Distribution: 2/Craftsmen Homes 1/RC File 2/131) File EARTH SYSTEMS SOUTHWEST MDS 62602 14- Feb -07 Summary_2 Stolrlr PreclpitationVolumes Tract 32751 Latitude: 33.68134, Longitude: - 116.26991 Storm Volumes - Rarnfall Totat dur�`ng storm::. Per NOAA Atlas 14 - 2005 Recurrance 2 Year 100 Year 2 Year 10 Year 100 Year Storm Duration inch inch inch (inch) inch 1 Hour 0.50 2.10 0.42 0.89 1.97 3 Hour 0.70 2.70 0.65 1.28 2.55 6 Hour 1.00 3.20 0.87 1.66 3.08 24 Hour 1.60 4.25 1.14 2.20 4.02 (used in - nMt Hydrogrpph Calculations) :: Comparison Only -Not used low Precipitation Frequency Data Server POINT PRECIPITATION` FREQUENCY ESTIMATES %V FROM NOAA ATLAS 14 Min m.� • Confidence Limits California 33.68077 N 116.26964 W 59 feet from "Precipitation- Frequency Atlas of the United States" NOAA Atlas 14, Volume 1, Version 4 G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley NOAA, National Weather Service, Silver Spring, Maryland, 2006 Extracted: Wed Feb 21 2007 Page 1 of 4 Text version of table These precipitation frequency estimates are based on a partial duration series. ARI is the Average Recurrence Interval. Please refer to the documentation for more intormation. NOTE: Formatting forces estimates near zero to appear as zero. . Partial duration based Point Precipitation *Frequency Estimates Version: 4 33.68077 N 116.26964 W 59 ft 1 2 3 4 5 6 7 8 910 20 30 40 50 80 100 140 200 300 500 700 1000 Average Recurrence Interval (years) Wed Feb 21 13:05:07 2007 t• Duration 5 -min + 48 -hr- 10-min s 3 -hr � - 30 -day -x-- - 4 - day �- --- 15 -min -+- r -hr. -.._. 7 -day 9 60 -daU_ - 30 -ruin -a- 12 -hr + 10 -da" + 60 -min -4(-� 24 -hr --e- 20-datj �- file://GA62602 \Hydrol0gy - Hydraulics Report\ CH- Jan07Rev- HydrolReprtPercO- 2 \RCH- FebRev -... 2/21/2007 a Elm M 1 11 ONE 1111 MEN 1 2 3 4 5 6 7 8 910 20 30 40 50 80 100 140 200 300 500 700 1000 Average Recurrence Interval (years) Wed Feb 21 13:05:07 2007 t• Duration 5 -min + 48 -hr- 10-min s 3 -hr � - 30 -day -x-- - 4 - day �- --- 15 -min -+- r -hr. -.._. 7 -day 9 60 -daU_ - 30 -ruin -a- 12 -hr + 10 -da" + 60 -min -4(-� 24 -hr --e- 20-datj �- file://GA62602 \Hydrol0gy - Hydraulics Report\ CH- Jan07Rev- HydrolReprtPercO- 2 \RCH- FebRev -... 2/21/2007 a Calqn Van*ant-., ., Cb D----------- ------ A None - - - - -- -------------- ------ Carrizo: CCC------- --------- A Rare- - - - - -- -------- --------- ----------- Carsi tas CdC, Cd E, C hC, C k B. A None ------ -------------- ----------- CfB------------------ A . None - - -- -- -------------- ----------- darBitas Variant: CmB,-CmE ----------- C None - - - - -- --------------- ----------- Chuckawalla: Co B, Co D, C nC, C n E. B None______ ------------ -------------- -"chOla: WP, A, CpB, CtA ------- B None______ -------------- ----------- "A - - - --- - 7 - - - - - - - - - - B Npne ------ -- 7 ............ ........... Fluvaquents: Pa ------------------- D 'Frequent___ Very 'long _____ j A r - Sep--- Fluvents: Fe__ ------ I ---------- A/D Occasional- Vey ef---- Jan-Dee--- GravPel pits and dumps: G . Imperial: 1eA____ ' ------------ D 11A------------------- D 'Imc". m ferial part_______ D G u lied'land part. IVnal: IUUaferial part - - - - - - - D 1, 11 ed land part. 1�, 1A---------=------ thic To rripaamm ezi ts: L R1. Lithic Torripsamments part. , N Rock 'outcrop part.' • = - - - - - - - one ------ F - - - - - - - - - - - - - - - r- - - - - - - --------------- I None._- _:.;I -------------------------- None-=---- -------- - ---------- None--. --- -------------- ------------- None----- -I------------- -I------ - - - - -- --------------- ------------- >6.0 - - - -- -------- >6.0 ----- 2.04.0 Apparent_____ >6.0 ------------- ------ = - - - -- >6.0 --------------- ----------- >6.0 * ----------- 3.0-5.0 Jan - Dec___ .0.5-2.0 Apparent_____ Jan-J)ec--- >6.0 ----=--- - - - - -- >6.0 3.0-5.0 >6..0 -- =----- - -= - -- ------ - - - - -- 1.0-3.0 Apparent'---- an-Dec.___ >6.0 -------------- ------------- 1 1.-5-5;0 1 -A-pparent___'_._j Jxh-DeP_'___ -------- - - -- -- >6.0 1 --------------- I -------------- one-_ _- ___:________ _____________ __ __ 1 3.0-5.'0 Apparent----- Jan:-Dec---- >60 >60 >60 ----------- >60 6720 Rippable. >60 >60 ---- - - - = -- >60 ---- - - - - -- >60 ---------- >60. ------------ >60 -------- --- - .>60 ----------- >60• >60 -- -- - - - - -- >.60 ---------- >60 - --- - - - - -- >60 ---- - - - - -- > 60 ---------- D I None----* -- --------- >6.0 I----------- --- I----- - - - - -- I 1 =10 True 76"1 IHard.' .- RIVERSIDE COUNTY, CALIFORNIA. -77 TABLE 12.--,-Stn1 and water features sence of an entry indicates the feature is not a concern. See text for descriptions of symbols acid such y P "brief," "perched." The symbol < less than; > than] terms as "rare;". and means means greater Hydroo- Flooding High water table Bedrock Soil name and logic Frequency Duration Months Depth Kind Mont)Lq map symbol group Depth Hardness Ft z% badlind: BA. Borrow pits: BP. Bull Trail: BtE------------------- B None - - - - -• -------- - - - - -- ------ - - - - -- >6.9 --------------- ------------ >60 ----------- -Caen - ............. A None - - - -- - - - - - - -- >60 Calqn Van*ant-., ., Cb D----------- ------ A None - - - - -- -------------- ------ Carrizo: CCC------- --------- A Rare- - - - - -- -------- --------- ----------- Carsi tas CdC, Cd E, C hC, C k B. A None ------ -------------- ----------- CfB------------------ A . None - - -- -- -------------- ----------- darBitas Variant: CmB,-CmE ----------- C None - - - - -- --------------- ----------- Chuckawalla: Co B, Co D, C nC, C n E. B None______ ------------ -------------- -"chOla: WP, A, CpB, CtA ------- B None______ -------------- ----------- "A - - - --- - 7 - - - - - - - - - - B Npne ------ -- 7 ............ ........... Fluvaquents: Pa ------------------- D 'Frequent___ Very 'long _____ j A r - Sep--- Fluvents: Fe__ ------ I ---------- A/D Occasional- Vey ef---- Jan-Dee--- GravPel pits and dumps: G . Imperial: 1eA____ ' ------------ D 11A------------------- D 'Imc". m ferial part_______ D G u lied'land part. IVnal: IUUaferial part - - - - - - - D 1, 11 ed land part. 1�, 1A---------=------ thic To rripaamm ezi ts: L R1. Lithic Torripsamments part. , N Rock 'outcrop part.' • = - - - - - - - one ------ F - - - - - - - - - - - - - - - r- - - - - - - --------------- I None._- _:.;I -------------------------- None-=---- -------- - ---------- None--. --- -------------- ------------- None----- -I------------- -I------ - - - - -- --------------- ------------- >6.0 - - - -- -------- >6.0 ----- 2.04.0 Apparent_____ >6.0 ------------- ------ = - - - -- >6.0 --------------- ----------- >6.0 * ----------- 3.0-5.0 Jan - Dec___ .0.5-2.0 Apparent_____ Jan-J)ec--- >6.0 ----=--- - - - - -- >6.0 3.0-5.0 >6..0 -- =----- - -= - -- ------ - - - - -- 1.0-3.0 Apparent'---- an-Dec.___ >6.0 -------------- ------------- 1 1.-5-5;0 1 -A-pparent___'_._j Jxh-DeP_'___ -------- - - -- -- >6.0 1 --------------- I -------------- one-_ _- ___:________ _____________ __ __ 1 3.0-5.'0 Apparent----- Jan:-Dec---- >60 >60 >60 ----------- >60 6720 Rippable. >60 >60 ---- - - - = -- >60 ---- - - - - -- >60 ---------- >60. ------------ >60 -------- --- - .>60 ----------- >60• >60 -- -- - - - - -- >.60 ---------- >60 - --- - - - - -- >60 ---- - - - - -- > 60 ---------- D I None----* -- --------- >6.0 I----------- --- I----- - - - - -- I 1 =10 True 76"1 IHard.' .- 78 SOIL SURVEY A TABLE 12.— Soil'and water features— Continued Soil' name and map symbol Hydro- logic' group Flooding High water table Bedrock • Frequency Duration Months Depth Kind Months Depth Hardness Ft 1n. Myoma: MaB; MaD--- - - - - -- - A None - -- ----- - - - - -- ------ - - - - -. >6.0 -------------- ------ >60 WB -------------------- A None------ ---- - - - - -- ----- - - - - -- 1.5 -5.0 Apparent - - - -- - - - - -- Jan- Dec - --- >60 -- - - - --- -- ---- - - - - -- Niland:. Na B----------- - - - - -- NbB----------------- . C C None - - - - -- None ------- - -- -------------- - ----- - -_ - -- >6.0 1.5 -5.0 Apparent - - - -- Jan - Dec__ -- >60 >60 ---- - - - - -- Omstott: OmD---------- - - - - -- C None - - - - -- -------- - - - - -- ------------- >6.0 -------- - - - - -- ------ - - - - -- 4-20 Rippable. Orl: Omstott part - -- -- -- Rock outcrop part. C :None__- --- -------- - - - --- ------ - - - - -- - >6.0 - - - - -- - - - - -- ------ - - -- -- 4-20 Rippable. Riverwash: RA. Rock outcrop: RO. RT1: Rock outcrop part. Lithic Torripsamments part. D None _ _ _ _ __ _______ _ ___ ___ -------------- ____________ 1 -10 Hard. Rubble land: RU: �Iton.:. Sat. Sb- ----- --- - - - - -- .: D None_ -- -- ------ - - - - -- 2.0 -5.0 : Apparent - - - -- Jan= Dec - - -- >60 - -- Soboba: . So D,. SpE------ - - - - -- A None - - - - -- - -- --=-- - - - - -- =------ ' - - - -- >6.0 -------- - - - - -- ------ - - - - -- >60 - -- - - - --- Torriorthents: TO 2: Torriorthents part. Rock outcrop part. Tujunga: TpE, TrC, TsB- - - - - -- A None - - - - -- -------- - - - - -- ------ - - - - -- >6.0 uis mapping unit is maae up of two or more dominant. kinds of soil. See mapping unit description for the composition and behavior of the whole mapping unit. parent;- and the months of the year that the water table commonly is high. Only saturated zones above a depth of 5 or 6 feet are indicated. Information about the seasonal' high water table helps in assessing the need for specially designed foundations, the need for specific :kinds. of .drainage systems, and the need: for footing., drains: to insure dry- basements. Such. information is also needed to decide whether or not construction of basements. is feasible and to determine how septic tank absorption fields and other underground installations will function. Also, a seasonal high water table affects ease of excavation. Depth to bedrock is shown for all soils that are underlain by bedrock at a depth of 5 to 6 feet or less. ormany soils, the limited depth to bedrock is a part the definition of the soil series. The depths shown ..re based on measurements made in many soil borings and on -other observations during the mapping of the soils. The kind of bedrock and its hardness as related to-ease of excavation is also shown. Rippable bedrock can be excavated with- a .single -tooth ripping attach- ment on a 200 - horsepower tractor, but hard bedrock generally requires blasting. Formation, Morphology, and Classification of the Soils This section contains descriptions of the major fac- tors of soil formation as they occur in the Coachella Valley Area, a summary of significant morphological characteristics of the soils of the Area, an explanation of the current system of classifying soils by categories broader than the series, and a table showing the clas- -. 4 Reference; Bibliography. .item No. 35. R C:F C B W C D TIME OF CONCENTF .i"JYDROLOOY J\/JANUAL PLATE .D -3 L TC'. LIMITATIONS; - _100. . . 1000 90 M Moximum length ength 1000 TC 2, Maximum area = 10 Acres 5 900 80 Q 800. - 70 c H —:700 —60 . v 500. ., 7­300 6 a d • 200 600 a� a 50 a r` E E 800 V 0 �. , o 0 50 8 n 500 y n 0 a, 0 40 a. v 30 0 > Z. (1) 2 y� 20 9 0 w ° 35 o 3 s 10 400 30 K AI ' s E U° Undeveloped (�) 1 1 w-350 ° 25 Good` Cover 0 '.. 2 I2 "" o 'c Undeveloped- 0 .c L0 E Fair Cover ,a . -- L_ o = . 300 - 20 Z Undeveloped. ` Poor. Cover 0 �2� 1.4 15 , CD ,. o 250. Iv 19 18 17 0 2 Single Family v 50 , 16 c E • 0/4 ' Acre). c, 17 rn 0. 15 14 COMIrlerciol 0 � 18--s 19 C 200 13 (Pav 20 U I2 0, o 25 150 �, 9 KEY ; o 0 E L-�HTc yK yTc 8 30 0. EXAMPLE: CD E 7 (1) L =550; H =5.0; K= Single Fomily.(I /4.Ac:) . ~ 1.100. Development-, To =12.6 min. . 35 (2) L = 550.', H = 5.0',,K -Commercial Developmenfi,..Tc = 9.7 min. 40 5 - -. 4 Reference; Bibliography. .item No. 35. R C:F C B W C D TIME OF CONCENTF .i"JYDROLOOY J\/JANUAL PLATE .D -3 V r m N O v � e9 47 z n r z C-) m ;o Cn U) z � � D D O z . RAINFALL INTENSITY- INCHES. PER HOUR _CCAfT'HEDRALR CI CHERRY VALLEY CORONA DESERT HOT - ELSINORE - WILD04AR DURATION FREQUENCY MINUTES' 10 loo YEAR YEAR 5 3.23 4.94 DURATION MINUTES FREQUENCY. DURATION ••FREQUENCY DURATION FREQUENCY 2:75 4.21 10 100 MINUTES 9 2.44 MINUTES 10 DURATION FREQUENCY 11 2.21 ,J YEAR YEAR 12 YEAR. 100 YEAR 13 10 100 MINUTES 10 100' 5 4.14 '. 6.76 2.92 16 1.85 YEAR YEAR 1.80 YEAR YEAR 6 3.7.3 6.08 5 6 3.65 3.30 5.49' 4.97 5 3.10 4.78 22 1:59 2.43 7" 3.41 5.56 7 3.03 ♦.56 .6 7' 2.84 4.38 6 3.95' 6.08 8 3.15 5.15 8 2.82: 4.24 8 2.64 4.07 7 3.62 5.56 9 2.95 4.81 9 Z.64 3.g7 q 2.47 3.81 e 3.35 5.15 10 2.77 4.52 65 .94 1.44 70 2.34 3.60 9 .3.13 4.81 11 2.62. 4.28 1' I1 2.49 2.36 3.Z5 3.56 10 11 .2.22 3.43 10 2.94 4.52 12 13 ' 2..49 2.38'. 4.07 3.88• 13 2.25 3.39 1.2 2.12 2.04 3:27 3.14 ll1 2.78 4.28 14 2.28 3.72' 14 2.07 3.12 3.02 12' 13 2.65• 2.53 4.07 3.88 13 3.89 2.92 14 2.42 3'.72 15 1'6 2_1-9 2:11 . 3.58 3.44 15 16 1.99 1.92 3. ao 2.90 15 1.83 2.82 15 2.32'. 3.58 1:7 2.04 3.32 37 1.86 2.80 16 1.77 2.73 16 2.2} ' 3.44 18 19 1.97 1.91 3'.22. 3.12 18 1.80 2.71 18 3.72 1..68 2.66 2.58 17 2.16' 3.32 19 1.75 2.71 19 1.63 2.52 18 •19 2.09 3.22 20, 1.85 3..03 20 1.To' 2.56 2.03 3.12' 22 24 1.75 .1.67 2'.86 2.72 22 1.61 . 2.43 ' zo 22' 1.59 1.52 2.46 2.35 20 1.97 3.03 26 1.59 2.60., 24 26 1.54 F. 47' 2.32 2.22 24 1.46 2.25 22 24' 1.86 1.77 2.86 2.72 28 1.52 2.49 28 1.41 2.1'3 28 1.40 2.17 26 .1.6.9 2.60 1.36 2:09 28 1.62 2.49' 30 32 1.46 1.41- 2.39 2.30 32 1:31 1..9d 30 1.31 2.02 30 1.55 2.39 34 36 1.36 1.32 2.22. 2.15 32 1.31 1.91 32 34 1..27 1:23 1.96 1.90 32 1.50 2.30 38 1.28 2:09 36. 38 1.23 1.20 1'.85 I.80 36 1.20 1.85 34 36 3.45 1.40 2.22 2.15 38 1.17 1.81 38 1.36 2'.09 40 45' 1.24 1.16 2.02 1.89 45 1.09 40 1:14 1.76 40 1.32 50 1.09 1.78 SO 1.03 1.64 1.55 e5 50 1.08 1.66 45 1.23 2.02 1,.89 55 60 1.03 .98' 1.58 1.60. 55 .99 1.47 55 1.03 .98 1.58. 1.51 50 1.16 1.78 60 .93 1.40 60 .94' 1.45 55 60 1.09 1.0.4 1.68 65 70 .94 .90 ' 1.53 1.46 65 70 .89 1.34 65 •90 1.40 3.60 . 75 .86 1.4.1 75 .85 .82 1.29 1.24 70 1.35 ..65 70 .99 .95 1.53 1.46 80 85 .B3 1.35 1.31 80 .79 1.20 75 9.0 .84 .82 1.30 1.26 75 .91' 1.41 .80 85 .77 1.16 85 .80 1.23 8o 85 .88' 1.35 .85 1.31 SLOPE _ .580 SLOPE _ .550 SLOPE _ .480 SLOPE _ .580 ELSINORE - WILD04AR DURATION FREQUENCY MINUTES' 10 loo YEAR YEAR 5 3.23 4.94 6 2.96 4:53 7 2:75 4.21 e 2.58 3.95 9 2.44 3.73 10 202 3.54 11 2.21 3.39. 12 2.1.2 3 :25 ' 13 2.04 3.13 14 1.97 3.02 '15 1.9I 2.92 16 1.85 2.83•.' 17 1.80 -2.75' 38 1.75 2.67 19 1470 2.60- 20 1.66 2.54 22 1:59 2.43 24 1.52 . 2.33 26 "1.46 2.24 28 1.41 2.16 30 1.37 2.09 32 1.33 2.03'. 34 1.29 .1.97 36'•. 1.25 1.92 38 1.22 1.87 ,40 1.19 1.82 45' 1:.13 1.72• 50 1.07 1.¢4 55 1.02 1.56 60 .98 1.50, . 65 .94 1.44 70 .91' '. 1.39 75 ..88 •1 .35 80 .85 1.31 85 .83 1.27 SLOPE = .480 'a m M 1 C7 cD l7 RAINFALL PATTERNS IN PERCENT QD 3 -'HOUR STORM. 6 -HOUR. STORM: .TIME 5 -M.IM 30 -MIN 15 -MIN 30 -MIN' TIME 5 -MIN -M 24 -HOUR STORM. Z U) NOTES: �. 3 and 6 -hour patterns based on the Indio area thunderstorm of September 24,1939. 2. 24 -hour patterns based on the genera! storm -of March 2 a 3,1938• 48 1.8 .4 TIME 15 -MLN PER OD PERI00 PERIOD PERIOD PERI00. PEP. I00 PERIOD !0 IN PERI00 15 -MIN PERI00. 70 -MIN PERIOD TIME 5-MIN' TIME 35 =MIN 30 -MIN 60 -MIN 56 . 2.3 1 1.3 2.6 2.6 59 2.6 60 2:3 61 2.4 PERIOD PERI00 PERIOD . PERIOD PERI00 PERI00 65 .4 2 1.3 2.b 3.7 4.8 8.5 10.0 1 2 .5 1. 1 '1.2 1.7 3.6 49 1,7 1 ' .2 73 1'.2 74 7 �' 3 1.1 3.3 5:3 • 13.9 .6 1.3 1.9 4.3 50 3••8 2 .3 .5 .7 1.7 83 .3 4 I1 .5 .3.3 4.9 14 -.4 .Z .6 ' .6 I-W 4 2,1 - '2'. ♦.8 51 'F2 1.9 3 :3 .6 .2 9Z .2 5 3.5 3.3 6.6 29.9 5 .6 1.4 2" 2.♦ 4: 9 5.3 " 0 6 .4 .7 2.1 (- 61.8 7 I.5 1.4 4,4 7.3 8.4 20.3 6 .7 1.5 2.4 '5.854 53 2.1 .2.1 5 .3 .8 Z.8 8 1.8' 4.2 9.0 7 8 •'7 1.6 2:♦ 6.8 55 2.2 6 .3 I.0 2.9- 9 3.8 S.3 12.3 9 •7 1.6 1.6 2.5* 9.0 56 2.3 B '.3 ' 1.1 •. 1.6 10 31 1.5 5.1 '6.4 17..6 !0 .7 .7 1.6 2.6 '2.7 11.6 14.4 57 2.4 '2.4. 9 .4 1.3 6.3 12 l.b 1.8 5.9' 16.1 11.T 1.6 2,8 25.1 58 10 .4 1.9 8.2 13 2.2 7.3 4.2 12 .8 1.7 3.0 4.4' S9 2.5 11 .5 1.3 S.0 14 2.2.8.5 13 .8 1:T . 32 60. 2.6 .12 13 .S ':.S 1.6 7.3. . 1S 2.2 16.1 14 .8 1.8 3.6 .61 3.1 1.8 10.8 16 2..0. 14..1 15. .8 •1.8 4.6 62 3.6 14 15 .5 2.0 31.♦ . 17 2.6 3.8 1'6 17 .e 1.8' ♦,7 63 •.64 3.9 4.2' 16 .5 . .6 2.1 2.5 T4.4 8.5 18 19 2.7 2.4 3B .8 ;e. 2.0 2:0• g,♦ 6.2 .65 '4,7 17 .6 J.0 1:♦ 21 ,2.4 19 .8 2.1 6.9. 66 5.6 18 19 .7 3:3 1.9 . 21 ,2.7 3.3 20 .e. 2.2 7.5 5 6T 1.9 20 .7 3.9 1.3 22 3.1 - 21 .8 2.5. 17 -68 ,9 21 .8 4.3 1.2 27 2.9 22 23 .8 2.8 3.0 14.5 69 70 .6 .S 22 .6 .7 3.A 4.0 3..I 7.0 24 25 3.0 3.1 .24 .8 .9 3.Z 3.4 1.0 7'1 .3 Z3 .8 3.8 .9' 26 ♦.Z 25 �.8 3.5 72 ,2 24 .8 3.S .8 27 5.0 .. 26' .9 3.9 Z5 26 .9 .9 5.1'. 5.7 28 3.5 2B :9 4.5 27 1.0 6.8 �1 N 29 30 6.8 7:3 29 .9 ♦.8 ' •28 1.0 4.6 ?� 3'1 8.2 30 1 3 . $.1 30 1.1 5.3 •✓ 32 5.9. 32 . 9 .9' 6 .9 7 8.1 31 1.2 4.T _ . Z 33 34 2.0. 1.8 33 1.0 10.3 32' 1.3 3.8 . Z 75 1.8 34 3.0 2.8 33. J4 1.5 1.5 .6 D 96 .6 . 6 35 36 1.0 1.0 1.1 .5 35 1.6 .6 1.0 37 I.O. 36 1.7 ..9. .� 36 1.1 3T 38 1.9 2.0. 40 1.1 39. 2.1 .S .7 ��99�•II N 41 42 .1.2 1.3 40 41 2.2 I.9 .5 .6 A V . 42 43 1.5 ..S '.8 J A 44 1 •4 2.0 T♦ 1 • 1 "1 45 1 .5 04 2.0 .5 J. �7 46 47 1.5 49 46 1..9 1.9 .5 ' _j 48 1.6 1 47 2.7 ..4 .4 Z U) NOTES: �. 3 and 6 -hour patterns based on the Indio area thunderstorm of September 24,1939. 2. 24 -hour patterns based on the genera! storm -of March 2 a 3,1938• 48 1.8 .4 TIME 15 -MLN PERI00 PERI00 49 2.5 50 2.6 S2 2.9 53 3.4 54 3..4 55 2.3 56 . 2.3 .. 'ST. 2.7 . SB 2.6 59 2.6 60 2:3 61 2.4 62 2.3 63 3.9 64 1.9 65 .4 66 .4 67 .3 68 .3 69 .5 70 .5 71 .s . 72 .4 73 .♦ 74 75 .3 77 78 :♦ ' 79 .3 Bo .2 B1 .3 82, .3 83 .3 84 .2 as .3 86' .Z 87' :3 88' .Z 89 .3 90 .2 91 .2 9Z .2 93 .2 94 .2 95 ' .2 96 .2 RUNOFF INDEX NUMBERS OFHYDROLOGIC•SOIL -COVER COMPLEXES FOR PERVIOUS AREAS -AMC II. Cover .Type (3) Quality- of Soil Group NATURAL - COVERS Cover (2) A B C D .Barren (Rockland, eroded; and graded land) 78 86 91. 93 Chaparrel, Broadleaf (Manzonita, ceanothus and scrub oak) Poor 53' 70 80 85 Fair 40 63 75 81 Chaparral, Narrowleaf Good 31 . 57 71 78� (Chamise and- redshank) Poor 7.1 82 88 91 Girass,.Annual or Perennial Fair 55 72 81 86 Poor 67 78 86 89 Fair SO. 69 79.. 84' _.. .. Meadows Or.Cienegas Good 38 61 74- .80 (Areas. with seasonally high water. table -t principal Poor Fair 63.77. 85 88 vegetat.ion is sod for. g grass.) 51 70 80 84 Open Brush Good '30 • 58 72 78 (Softwood shrubs - buckwheat, sage, etc-. Poor 62 76 84 88 Fair 46 66 77 83 . Woodland Good 41 63 75 '81 � (Coniferous or broadleaf dleaf trees predominate. Canopy density is: Poor air. 45 36 66 77 B3 . at. least 50 percent) � 60 73 79 Woodland, Grass Good 28 55 70 77 (Coniferous or broadleaf trees with cano Py density from 20 Poor Fair 57 73 82 86 to 50 Percent) 44 65 77 82 URBAN COVERS - Good. 33 58 72 79 Residential.or Commercial Landscaping (Lawn, shrubs.,. etc.) Good 32' .56 69 75.., Turf (Irrigated and mowed grass) Poor 58 74 83 87 Fair 44 65 77 .82 AGRICULTURAL COnRS _ Good 33 : 58 72 79 ' 49'' Fallow (Land plowed but not tilled or seeded) 76 85. .90 92 I �.� C W C► ® RUNOFF INDEX NUMBERS r1YDR ©LOGY- &JANUAL FOR PERVIOUS AREAS PLATE E =6.1 (i of 2) t RUNOFF INDEX 11UMHERS OF: HYDROT.nr_YrR' Cover Type '(3) AGRICULTURAL COVERS (coast.) - �' Legumes, Close Seeded. (Alfalfa, aweetclover, .timothy, etc.) Orchards, Deciduous (Apples, apricots; pears, walnuts, etc.) Orchards, Evergreen (Citrus, avocados, etc.) Pasture, Pryland (Annual'grasses). Pasture, Irrigated .('Legumes. and perennial grass) Row Crops (Field .crops tomatoes, sugar beets,'. etc.) Small' Grain (Wheat, oats, barley, 'etc.) vi . ne yard r , FOR.PERVIO[i5 AREAS_AMC I uality of Soil. Group over (2) Poor 66 77 85 89 Good 58 72 81 85 See Note 4 Poor 57 73 82 86 Fair 44 65 71 82 Good 33. 58 72 7.9 Poor 67 78 86. 89 Fair 50 69 79 84 Good 38 61 74 80 Poor. 58 74 83 87 Fair 44 65. 77 82 Good 33 58 72 79 Poor 72 81' 88 91 Good 67 78 85 89 Poor 65 76 84 88 . Good 63 75' 83. 87 See Note 4. Notes: 1. All runoff index (RI) numt�.ers' are for Antecedent •Moisture Condition 2 •, Quality Of-cover d6 f initiqns : • Poor- Heavily grazed or regularly burned areas. • . cent' of the Less :than: 50 .per- ' ground 6urface-is protected by p ver or brush co and tree canopy. Fair -- Moderate cover.with50'perce face protected. nt.to 75 percent of the ground sur; Good =Heavy or.dense cover with more than 75 p ercent of.the ground surface'protected. 3. See'Plate C -2 for a detailed description of cover typos; 4.. Use runoff index numbers based on-ground cover type. See discussion under "Cover Type Descriptions" on Plate C -2. 5. Reference Bibliography .item 17. i.: R.0 F C � W C C RUNOFF . INDEX -- .__.®.. ' NUMBERS 'r1YDR DLO GY J\iJANUAL FOR PERVIOUS AREAS RLATt E -6.1 (2of 2) 1 � p, 91 cif. li(/1 leer 4tF = 0, . elf fa�o I, F3. = /o 5 . 4 /d 7' 4 Z 5 -6 /.0-- /.2 6ureou of Plu��c �Poor/s . IVQm.07,", X D 03 hlonogrvoh Division Tro Msh O fo Fof c�rrG oreiri g in /efs al /vir a , n• , 6 q •8 ¢ � .7 V r.4 U le,� e� �► s �, 'e x..:08 o - ..25 - -3 C .04 0 .25 Z IK :. /5 D/ '— h 4ur,2j . 1 oco/ Dcc^- rsssio� (n) /.2 6ureou of Plu��c �Poor/s . IVQm.07,", X D 03 hlonogrvoh Division Tro Msh O fo Fof c�rrG oreiri g in /efs al /vir OATH: SofeJ Goad JOCtO/a /8 for. case mi z/ for Casel. _ ��- - • ' •aw �•••• �v..v.iwrs. mweos® Owe sell aao /yes isdlrafes Brea >ar eoiih /Dads Uve /dad - / ti• ?O, S: /6 truth. Where soils having /or cohesive vanes. exist, use Eortti /vod- //O RcJ. (tkrsfgtis forma /o!. D-hods tabula %d for Prajerfion CM&MVI . NOTES. Where cover is greater than /O' and 'W' exceeds /d, use (10) of a) below. (al Case I bedding may be used frith the O -loads shown 07 this sheet for values of - .W—,7ot ercaedlag 1*1 fo/ %ring: 'N"-W for `YQe 4e'or /ess x d/ameter *,'2Z'for O/Pe , V, or /ess fit diameter 1Y'=Z6' for pipe se. of /ias in d/oaAbter Where fiR'exreeds the'CAOVe values, iae' Option No.-/ cs shown an sheaf y,�Z of this sfondaid. (bI Use Opt /oa ft.2 on sheet N4 Z. . t • REVISIONS LO4:AMGELES' COUMTT 3 —1 WE V moor F4.000 C0XTROL OISTRIC'l • =s °' - -ve'1•OADY TABLE FOR` = 56 �.VOO, , DESIGN OF •REINFORCED: CONCR 1-E ,PIPE S�imEt h v wrr .•.w4• DZ13.1•, ` . 12 -54 sHeer I 10/18/2006 .WED.: 8.15 FAQ, 7fi0 777 - 1.155. MY of .L Quints Nib;.` -k X 002/002 CITY PLAN CHECK COMMENTS: .06 /14 /2006.SENT TO NRO FOR PLAN CHECK SERVICES AS PER PAULS . REQUEST JGJ 07106%2006 RECEIVED PLAWCHECK COMMENTS FROM NRO SENT TO TONY`FOR HIS.REVIEW (JGJ) 7/12/06 - Tony starfed -plan review a. A got .the following: Due to special city .approvals required on the Rough' Grading plan, Tony did..' not plan. review.this .plan until special approvals are obtained:. Engineer to address NRO's r.ed.lines on plan check 1. 7112/06 'Tony finished and.gave to Paul: 7/19/2006 - Paul performed partial redline of first. round-' ound- plan .following . rough grading and hydrology review. Wall systems and overflow routes /elevations need further review before.full check. coordinate plan with hydrology corrections - City.approval.of basic hydrology design & . rei46ing wa!P; needs to be.issued before street. and. storm Arain plans:can be f..ufty:checked.. Geotech report sta,tes:.silty.native...soil with low percolation. Recheck-use of. sand >:filters for this condition. 'New percolation testis pending'.. Please reference draft City. hydrology guidelines'for additional information. Redlines to Jesse /Ed for return to George Prine at'MDS. `'`a7120•F2,006••SEN=T••FAXED NOTIGE TO -MDS FOR PICK' UP (JGJ): 10/13/2006 - Paul received direction from'. City- Engineer as follows: :1 ~S..Iit: e'rcbIatiowassum tio.n: is.atl.owab.le.= 2" 'ercol.ation as roven from a ys ems ea testing) is al owab 'e only for. Lot D: No_ percolation allowable for: Lot Gin hydrology calculations and assumptions. 2 Callo.utof 1 MaxWell PI -0s:d eil for`each basin Lot D and Lot C is. requested: with removal of sand.filtes in project design. Equalizer pipe between: Lot C & D -is not alloWed-to reduce drywell: location to be exclusive to Lot D. Redlines to Jesse /Ed for return to MDS. • • Tab 12 Appendix E Mai Exhibits 0)' EXI11Ult 1: Predevelopment Topo & Drainage Map Exhibit 2: Onsite & Offsite Hydrology & Drainage Map Exhibit 3 • . Post- Development Drainage System Craftsmen Homes Tentative Tract 32751 LLJ LLJ cf) z 0 cn z AVE. 50 0 L CD Li Ld 0 > m CK 0 CALLE TAMPICO 0 El SUBJECT w PROPERTY Lij < U� CITRUS GOLF COURSE 0 u w ui uj AVE 52 U- > < m Ld L11 Z: smilm J/ 0) 50 25 0 50 150 0 CU of (E) HWS EL. 27.4 PER TR 24890 HYDROLOGY /111, o-- -- I EXHIBIT 1 TENTATIVE TRACT MAP No. 32751 Onsite Predevelopment Topography & Drainage Map l.-\62602\HYDR0LQGY\EXHIBIT 1 2-21-2007 cn o 0 (-D LLJ LLJ Q AVE. 50 NO R)TH NORTH LLJ 0 C:) M 0 V) 0 CALLE TAMPICO rr_ SUBJFCT LLJ PROPERTY < ?: < CITRUS GOLF COURSE 0 < o Ix ui AVE 52 u- ui 50 25 0 50 150 cn w � ti 5� 101 0 bt ti --- 000 ., - - r EXHIBIT 3 ,TENTATIVE TRACT MAP No. 32751 c 3 Post Development. Drainage system o a u IS, �0 rf i 1` t t .Y 40 7 506f, N 30800 N X_ 3 ti � r 1 r 1 i 3zt t s j i } � r 1 i 7E.2 �Y y ft 1 fjP 1 34.4 33.G 33.5 i I 5 00 600 N t A161, a �f DRAINAGE AREA DESIGNATION - DRAINAGE AREA (ACRES) FLOW DIRECTION HP ♦ HIGH POINT LOW POIN DRAINAGE A - — - �— — — - DRAINAGE AREA SUB— BOUNDAR. t CB ;,CATCH BASIN INLET JS JUNCTION STRUCTURE 30 "n PROPOSED PIPE DIA. . 3 (30) w �l I� 0 NUISANCE WATER DISPOSAL SYSTENA FS ELEVATION,,,,,.' x iE } ME'•.; 1; a A 4 t 4 -MEW rk x r y uy w =Iry 28.5 DRAINAGE AREA DESIGNATION - DRAINAGE AREA (ACRES) FLOW DIRECTION HP ♦ HIGH POINT LOW POIN DRAINAGE A - — - �— — — - DRAINAGE AREA SUB— BOUNDAR. CB ;,CATCH BASIN INLET JS JUNCTION STRUCTURE 30 "n PROPOSED PIPE DIA. . 3 (30) EXISTING PIPE DIA :° 0 NUISANCE WATER DISPOSAL SYSTENA FS ELEVATION,,,,,.' x PLATE E -6.1 .(I of .2) RUNOFF INDEX NUMBERS OF HYDROLOGIC SOIL -COVER COMPLEXES FOR PERVIOUS AREAS -AMC II Cover Type (3) Quality of Soil Group A B ..0 - D Cover (2) NATURAL COVERS - Barren 78 86 91 93 (Rockland; eroded and - graded land) Chaparrel, Broadleaf Poor 53 70 80 85 (Manzonita, ceanothus and scrub oak) Fair 40 63 75 81 Good 31 57 71 78 Chaparrel, Narrowleaf Poor' 71 82 88 91 (Chamise and redshank) Fair 55 .72 81 86 Grass, Annual or Perennial Z`�''t Poor 67 78 86 89 � Fair '50 69 79 84 Good 38 61 '74 80 Meadows or Cienegas Poor '63 77 85 88 (Areas with seasonally high water.table, Fair 51 70 80 84 principal vegetation is sod forming grass) Good 30 58 72 78 Open Brush Poor. 62 76 84 88 .(Soft wood shrubs.'- buckwheat, sage; etc.) Fair 46' 66 77 83 Good 41 63 75 81 Woodland Poor 45 66 77 83 (Coniferous or broadleaf trees predominate. Fair. 36 60 73. 79 Canopy density is at least 50 percent) Good 28 55 70 77. Woodland, Grass Poor 57 73 82. 86 (Coniferous or broadleaf trees with canopy Fair 44 65 77 82 density from 20 to 50 percent) Good 33 58 72. 79 URBAN COVERS - Residential or Commercial Landscaping Good 32 56.. 69 75 (Lawn, shrubs, etc.) Turf Poor 58 74 83 87 (Irrigated and mowed grass) Fair 44 65 77 82 Good- 33 58 72 79 AGRICULTURAL COVERS— Fallow 76. 85 90 92 (Land plowed but not tilled or seeded). (� �. ® RUNOFF INDEX. NUMBERS FOR i-JYDR(7L09Y MANUAL PERVIOUS AREAS PLATE E -6.1 .(I of .2) Page 1 of 1 Main Identity From: "Shelton Stringer" <sstringer @earthsys.com> To: <jcavin @mdsconsulting.net> Sent: Wednesday, September 27, 2006 11:39 AM Attach: GetScript. dynamic_ command= getpdfforprint &displayUtm= true &dynamic =0.pdf Subject:. Citrus -.Soil Hydrologic Group Hi John Based on our local experience in the area, review of soil types and infiltration rates encountered at the project, including finer grained silts (USCS Symbol of ML) of moderate percolation (at least 0.2 in /hour, but generally averaging greater than 0.5 in /hour), and the mapped soil conservation hydrologic groups_(see attachment) for the area that generally agrees with our review of soils and infiltration rates.) the area should be classified as Hydrologic Soil Group We also note that the USDA Soil Survey Manual (chapter 3, page 37) states that because of fhe tiigtily variable nature of soil hydraulic conductivity (on which the hydrologic group is based), a single measured value is an unreliable indicator and an average of several values can be used to place the soil in a particular class. Ragards, Shelton L. Stringer, PE, GE, PG, EG VP / Geotechnical Engineer & Geologist Earth Systems Southwest (760) 345 -1588 Sent by Earth Systems.Mail Server - mail'. earthsys. com fF = 32 71f 2/23/2007 Page 1 of 1 Paul Goble From: NoelO @aol.com Sent: ' Thursday, February 08, 2007 2:20 PM To: Paul Goble Subject: Storm volumes Paul, I didn't have the exact numbers for the Craftsman home project, so I ran some generic numbers. For a 50 acre site this is what I found. All are AMC 2. 3 hr. 6 hr. 24 hr. 177,177 198,953 289,123 RI 32, urban cover, soil type A (base) 201,936 (14 %) 235,202(18%) .316,792(10%) RI 56, urban cover, soil type B 240,131 (36 %) 235,554 (18 %) 371,408 (28 %) RI 69, urban cover, soil type C 311,805 (76 %) 354,463 (78 %) 532,069 (84 %) RI 75, urban cover, soil type D The change from soil type A to D is extreme. Making them enlarge the basin enough to accomodate the additional volume wouldn't appear to work. It would appear that the solution is to have the soils engineer certify that the import material(s) meet the requirements of a typical soil type A. Give me a call and we can discuss this further. Noel 2/26/2007 Earth Systems 1F7� Southwest 79 -811B Country Club Drive Bermuda Dunes, CA 92203 (760) 345 -1588 (800) 924 -7015 FAX (760) 345 -7315 February 21, 2007 Craftsmen Homes 1157 North Red Gum Street Anaheim, California 92806 Attention: Mr. Scott Shaddix Subject: Infiltrometer Testing for Hydrologic Group Classification Project: Tract 32751 Citrus Country Club La Quinta, California Dear Mr. Shaddix: File No.: 10271 -02 07 -02 -791 This report presents the findings of infiltrometer testing conducted at the above project. The purpose of the testing was to evaluate the appropriate hydrologic group classification for storm water runoff design. Infiltrometer Testing We conducted seven open, double -ring infiltrometer tests on February 13 through 15, 2007 at the locations as shown on the attached Figure 1, in general accordance with ASTM D3385. The tests were conducted at the existing grade of the lots. An outer steel ring (24 -inch diameter) and an inner steel ring (12 -inch diameter) were driven about 4 to 6 inches into undisturbed soil. The purpose of the outer ring is to create a hydraulic barrier so that the recorded drop in water level of the inner ring measures the vertical infiltration without lateral spreading. Both rings were filled with water to a depth of about 6 inches and maintained with a float control valve or periodic refilling. Successive readings of infiltration flow were made over 15- to 60- minute periods until a stabilized flow was recorded. Plots of infiltration rates over time are presented on the attached test results. The stabilized infiltration rate is presented in Table 1 below in metric and equivalent English units. Test Location Depth (feet) Stabilized Rate Hydrologic Group cm/hr in/hour I -5 Surface 0.29 0.11 C 1 -6 Surface 0.53 0.21 C 1 -7 Surface 0.22 0.09 C I -8 Surface 0.19 0.07 C I -9 Surface 1.6 0.63 B 1 -10 Surface 0.3 0.12 C I -11 Surface 0.64 0.25 C Table 1: Stabilized Infiltration Rate February 21, 2007 -2- File No.: 10271 -02 07 -02 -791 Hydrologic Group Based on a field review of surface soil types and the infiltration rates measured at the project, the majority (23) of the lots have fine - grained silty soils (Unified Soil Classification System symbol ML) with infiltration rates ranging from 0.07 in/hour to 0.25 in/hour. Based on the USDA Soil Survey Manual, these lots should be classified as Hydrologic Soil Group C (approximately defined by rates greater than 0.06 in/hour and less than 0.6 in/hour). Six lots in the southeast consist of sandier soils (SM) with an infiltration rate of 0.63 in/hour, and may be classified as Hydrologic Soil Group B (approximately defined by rates greater than 0.6 in/hour and less than 6.0 in/hour). These hydrologic groups vary from the mapped USDA (NCRS) Soil Survey maps because the fill imported during grading differs from the pre- existing native soils. Infiltration of storm water through the soil subgrade may vary from the values given from ground cover, siltation of soil pores, and possible film from road oils from paved streets. Limitations and Closing Our findings and recommendations in this report are based on selected points of field testing and the assumption that soil conditions do not vary significantly from those encountered at test locations. Findings of this report are valid as of the issued date of the report. However, changes in the conditions of the property can occur with passage of time, whether they are from natural processes or works of man. This report is issued with the understanding that the owner or the owner's representative has the responsibility to bring the information and recommendations contained herein to the attention of the engineers for the project so that they are incorporated into the plans and specifications for the project. It is further understood that the owner or the owner's representative is responsible for submittal of this report to the appropriate governing agencies. Earth Systems Southwest (ESSW) has striven to provide our services in accordance with generally accepted geotechnical engineering practices in this locality at this time. No warranty or guarantee is express or implied. This report was prepared for the exclusive use of the Client and the Client's authorized agents. We appreciate this opportunity to provide our professional services. Should any questions or comments arise, please contact our office at (760 345 -1588. Respectfully submitted, EARTH SYSTEMS SOUTHWEST Shelton L. Stringer GE 2266, EG 2417 Y?Z E SS /o OON L ST9�`F� rn 2�v�� 2C 2 cn o. 266 X Exp. 6 -30 -08 LPFOF CALF ��\P CH Letter /sls /reh Attachments: Figure 1 — Infiltration Test Location and Hydrologic Soil Group Map Infiltration Test Results (6 sheets) Distribution: 4 /Craftsmen Homes I/RC File; 2/13D File EARTH SYSTEMS SOUTHWEST 116 °16'12 "W nncayc fluff/ vuuyfc GCiful LEGEND 0.2e Infiltration Rate (in /hr) Infiltration Test 02 -2007 Test ID Figure 1: Infiltration Test Location and Hydrologic Soil Group Map Tract 32751, Citrus Country Club Jefferson Street & Avenue 52 La Quinta, Riverside County, California Earth Systems Southwest Y h 00101021 EARTH SYSTEMS SOUTHWEST 1010010111MOR DOUBLE RING INFILTRATION TEST DATA (ASTM D3385) 0 2 3 4 5 6 5 7 1 8 9 1 10 S S 10:25 AM 4:18 PM 39.6 35.0 45.1 Depth 1. E 10:40 AM MR "Constants 30 39.4 134 of Volume Conversions: 0.7 1.2 Tract 32751 Citrus CC S 0 0 0 0 0 0 0 80 00 20 40 Elasped Time (min.) AM 0. D. 1. D. Area Liquid Constant 1PL 1 in/hr = 2.54 cm/hr :PROJECT: JOB NO: 1027 1 -02 E (in.) (in.) (sq cm) (cm) (cc/cm) 5.89 gal/sf/day = 1 cm/hr 268 LOCATION: 1-5 0.5 5.0 Inner Ring 12.4 12.0 730 18 670 Aluminum Tanks ID=1 1.5" 43,8 56:7703C , 317;27019N Outer Ring Infiltration Rate 23.8 23.4 [Flow (cc) 1 1993 x (60 15 min/hr)]/[Area 67077] (sq 411100M cm) x Incr Time (min)] 402 43.2 402 2.2 0.8 (cm/hr): S 11:10 AM 38.2 Test By: D. Wi ins Penetration of ri gs (in.)-. Inner 4 Outer 6 11:40 AM 30 90 37.8 268 41.8 670 Flow R adings 0.7 E 11:40 AM Trial 41.8 Elapsed Time Inner Outer E Liquid Incr. Infiltr. Rate 120 37.2 402 No. 603 Date Time Incr. C 0 Total Reading Flow Reading Flow I Temp Inner Outer M E 1 (min L (min) (cm) (cc) (cm) _(cc) (F) (cm/hr) ( cm /hr) 2,0 S 1 S 2113/07 1010 AM 39.8 41.0 46.0 E 2:16 PM Infiltration Test Results 246 35.5 - E 938 10:25 AM 15 0.5 15 39.6 938 45.1 603 5.1 1.2 38.4 0 2 3 4 5 6 5 7 1 8 9 1 10 S S 10:25 AM 4:18 PM 39.6 35.0 45.1 35.5 6.0 E 10:40 AM 15 30 39.4 134 44.2 603 317 0.7 1.2 0.5 S 0 0 0 0 0 0 0 80 00 20 40 Elasped Time (min.) AM S 39.4 44.2 48.9 45,5 E 10:55 AM 15 45 38.8 402 43.8 268 26801 2.2 0.5 5.0 S 1110-3 10:55 AM Stabilized Infiltration Rate: 0.29 cm/hr = 0.11 in/hr = 4M 1.7 gal/sf/day simimommmvmmo 38.8 43,8 E 11:10 AM 15 60 38.2 402 43.2 402 2.2 0.8 S 11:10 AM 38.2 42.8 E 11:40 AM 30 90 37.8 268 41.8 670 0.7 0.7 E 11:40 AM 37.8 41.8 X 3,0 E 12:10 PM 30 120 37.2 402 40.9 603 1.1 0.6 C 0 S 12:15 PM 36.9 40.8 M E 1:15 PM 60 185 35.9 670 39.9 603 0.9 0,3 2,0 S 1:16 PM 35.9 39.8 E 2:16 PM 60 246 35.5 268 38.4 938 0.4 0.5 S 10001 2:16 PM 35.5 38.4 1,0 E 3:16 PM 60 306 35.3 134 38.0 268 0.2 01 T 3:17 PM 35.3 37.8 E 4:17 PM 60 367 35.0 201 35.6 1474 0.3 0.7_ 0.0 1 S 4:18 PM 35.0 35.5 0 1224 36 48 60 72 84 96 10 12 13 14 E 5:18 PM 60 428 34.5 335 317 1206 0.5 0.6 0 0 0 0 0 0 0 80 00 20 40 Elasped Time (min.) 12 S 5:21 PM 48.9 45,5 E 1 2114/07 8:19 AM 898 1329 44.9 26801 31.8 9181 1 0.2 1110-3 AL Stabilized Infiltration Rate: 0.29 cm/hr = 0.11 in/hr = 4M 1.7 gal/sf/day simimommmvmmo 7 11 1 4 3 10=01101b EARTH SYSTEMS SOUTHWEST 41110010100 DOUBLE RING INFILTRATION TEST DATA (ASTM D3385) PROJECT: Tract 32751 Citrus CC JOB NO: 10271-02 LOCATION: 1-6 lanamm 567697E, 3726933N Conversions: * 1 in/hr = 2.54 cm/hr 5.89 gal/sf/day = 1 cm/hr PVC Tanks ID=1 1.4" Infiltration Rate (cm/hr): [Flow (cc) x (60 min/hr)]/[Area (sq cm) x Incr liriii; j Test B)r. D. Wi ins Depth gs (in.): irmui. I-JUM]. of Volume Constants 0. D. 1. D. Area Liquid Constant (in.) (in.) (sqcm) (cm) -(cc /cmL Inner Ring 12.4 1EO=730 Trial [15 659 Outer Ring 23.8 23.4 1 1993 1 15 1 . Conversions: * 1 in/hr = 2.54 cm/hr 5.89 gal/sf/day = 1 cm/hr PVC Tanks ID=1 1.4" Infiltration Rate (cm/hr): [Flow (cc) x (60 min/hr)]/[Area (sq cm) x Incr liriii; j Test B)r. D. Wi ins Penetration of nn gs (in.): irmui. I-JUM]. Q Flow R adings Trial Elapsed Time Inner Outer Liquid Incr. Infiltr. Rate 00000"00 No. Date Time Incr. Total Reading Flow Reading Flow I Temp Inner Outer (min) (min) (cm) (cc) (cm) (cc) (F) (cm-/hr) (cm/hr) 1 S 2/13/07 10:30 AM 42.5 44.5 Infiltration Test Results E 10A5 AM 15 15 40.2 1515 42.0 1646 8.3 3.3 2 S 10:46 AM 40.1 41.9 9.0 1 1 -4-Inner E 11:01 AM 15 31 38.8 856 401 1185 4.7 2.4 --e-Outer 3 S 11:02 AM 38.8 39.9 E 11:17 AM 15 47 36.9 1251 38.2 1119 6.9 2.2 4 S 11:18 AM 36.8 38.1 7.0 E 11:33 AM 15 63 36.0 527 36.0 1383 2.9 2.8 -c 6 0 5 S 11:40 AM 35.6 35.3 E E E 12:10 PM 30 100 35.4 132 32.2 2041 0.4 2.0 4� 5,0 6 S 12:10 PM 35.4 32.2 Ix E 12:40 PM 30 130 35.0 263 28.9 2173 1 0.7 2.2 C 4.0 - - - - --- - - - - - - 7 S 12A5 PM 34.9 28.6 V E 1 A5 PM 60 195 33.9 659 22.5 4017 0.9 2.0 3.0. 8 S IF 1:45 PM 33.9 22.5 E 2:45 PM 60 255 33.2 461 19.5 1976 0.6 1.0 .0 - 9 S 2:45 PM 33.2 17.5 E 3:45 PM 60 315 32.8 263 16.0 988 0.4 0.5 5 1'0 - 10 S 3:46 PM 32.8 16.0 E 4:46 PM 60 376 32.0 527 14.3 1119 0.7 1 0.6 00 S11z 4:50 PM 66.3 65.8 0 12 24 36 48 60 72 84 96 10 12 13 14 E 2/14/07 9:20 AM 990 1370 58.8 4939 48.5 11392 0.4 0.3- o 0 0 0 0 0 0 0 80 00 20 40 111111111FAM Elasped Time (min.) S E I I Stabilized Infiltration Rate: 0.53 cm /hr = 0.21 in /hr = 3.1 gal/sf/day I M O 1 3 0 O O O O 5 NEW | NOMMEM EARTH SYSTEMS SOUTHWEST DOUBLE RING INFILTRATION TEST DATA (ASTM D3385) Infiltration Rate (cm/hr) Convero�n�� 1in hr=2. 54cm/hr 5.89 gaVof/day=1 cm/hr PVCTnnkm 0=11-4^ [Flow (cc) x (GO min/hr)]/[Area (oq cm) x |norTlme (min)] .... Trial Elapsed Time Liquid Incr. Infiltr. Rate In r Outer Incr. Total Reading Flow Reading Flow Inner Outer No. Date Outer Ring 23.8 Infiltration Rate (cm/hr) Convero�n�� 1in hr=2. 54cm/hr 5.89 gaVof/day=1 cm/hr PVCTnnkm 0=11-4^ [Flow (cc) x (GO min/hr)]/[Area (oq cm) x |norTlme (min)] .... Trial Elapsed Time Liquid Incr. Infiltr. Rate In r Outer Incr. Total Reading Flow Reading Flow Inner Outer No. Date Time Temp 1 S 2114/07 8:45 AM 648 66.0 liffiltration Test Results -*-inner E 915 AM 15 30 51.4 8280 22.9 18817 45.4 37.8 Hl;p E 9�311 AM 16 46 28.4 15137 20.8 1338 77.8 2.5 E 9:47 AM 15 62 24.8 2258 15.2 3513 1Z38 71 60.0 Z E 10:05 AM 15 80 49.8 167 47.8 10036 0.92 20.1 U E 10:35 AM 30 110 498 0 43.2 3011 0.00 3,0 E 11:05 AM 30 140 495 167 37.5 3763 0.46 3.8 19 E 11:45 AM 40 180 48,8 502 35.3 1422 1.03 1 M0 48.0 27.2 Elasped Time (min.) 12 S 2:45 PM E 2/15107 10: 18 AM 1103 1533 610 1338 32.5 19068 0.10 0.5 Stabilized Infiltration Rate: 0.22 cm/hr 0.09 in/hr 1.3 gal/sf/day NEWONOb EARTH SYSTEMS SOUTHWEST -6 DOUBLE RING INFILTRATION TEST DATA (ASTM lilumvmmmmmmr By: D. Wiggins of Volume Constants 0. D. 1. D. Area Liquid ant Constant Cc (in.) (in.) (sq cm ) cm) (Cc/cm) Inner Ring 12.4 12.0 1 730 =5 =F 659 Outer Ring 23.8 23.4 1_1993 1 15 659 Infiltration Rate (cm/hr): [Flow (cc) x (60 min/hr)]/[Area (sq cm) x Incr I ime (mi 9 Test By: D. Wiggins Penetration of nn gs (in.): inner: 4+ uultll. 0 Flow R adings 611MEM Trial Elapsed Time Inner Outer Liquid Incr. Infiltr, Rate No. Date Time Incr. Total Reading Flow Reading Flow Temp Inner Outer (min) (min) (cm) (cc) (Cm) (cc) (F) (cm/hr) (cm / hr) 1 S 2/14/07 9:30 AM I 61.5 60.2 Infiltration Test Results O-ACZ AftA I r, I , , r1r) Q 3Qz; F;f� q 2173 2.2 4.4 MENEM EARTH SYSTEMS SOUTHWEST DOUBLE RING INFILTRATION TEST DATA {AST 10 10 1 0 0 1 1 0 5 1 in /hr = 2.54 cm /hr 5.89 gal /sf /day = 1 cm /hr Black Tubes ID =4" Infiltration Rate (cm /hr): [Flow (cc) x (60 min/hr)]/[Area (sq cm) x Incr Time (min)] Test By: D. iggin s Penetration of nn s (in.): inner. o VULCI. U Flow Readin s Trial Ela sed Time Inner Outer Liquid Incr. Infiltr. Rate FI T Inner Outer 100156mmarm No. Date Time Depth of Volume Constants 0. D. 1. D, Area Liquid Constant in. in.) (sq cm cm cc /cm nner ng 12.4 12.0 7 cm) (cc) Outer Ring 23.8 23.4 1993 1 15 81 1 in /hr = 2.54 cm /hr 5.89 gal /sf /day = 1 cm /hr Black Tubes ID =4" Infiltration Rate (cm /hr): [Flow (cc) x (60 min/hr)]/[Area (sq cm) x Incr Time (min)] Test By: D. iggin s Penetration of nn s (in.): inner. o VULCI. U Flow Readin s Trial Ela sed Time Inner Outer Liquid Incr. Infiltr. Rate FI T Inner Outer 100156mmarm No. Date Time Incr. Total Reading Flow Reading ow emp (min) min (cm) (cc) cm) (cc) (F) (cm /hr) (cm /hr) 1 S 2/14/07 9:10 AM 79.4 81.5 E 9:25 AM 15 15 17.8 4994 8.1 5951 27.4 11.9 30.0 2 S 9:35 AM 80.0 81.3 E 9:50 AM 15 40 20.3 4839 13.3 5509 26.5 11.1 3 S 10:00 AM 51.3 76.2 E 10:15 AM 15 65 48.5 227 65.0 906 1.2 1.8 zs o 4 S 10:15 AM 48.5 65.0 E 10:30 AM 15 80 45.7 227 50.3 1194 1.2 2.4 5 S 10:30 AM 45.7 50.3 -zoo E 11:00 AM 30 110 43.4 185 24.4 2100 0.5 2.1 E 6 S 11:01 AM 51.3 64.0 E 11:20 AM 19 130 46.5 391 40.4 1915 1.7 3.0 1 5 0 0 7 S 11:20 AM 71.9 77.5 E 11:55 AM 35 165 66.8 412 71.6 474 1.0 0.4 c E 8 S 11:55 AM 66.8 71.6 10.0 -- E 12:20 PM 25 190 66.0 62 0.0 5807 0.2 7.0 9 S 12:21 PM 66.0 79.2 E 1:21 PM 60 251 63.5 206 68.1 906 0.3 0.5 6.0 10 S 1:22 PM 63.5 67.8 E 2:22 PM 60 312 48.3 1236 26.7 3336 1.7 1.7 11 S 2:22 PM 48.3 52.1 0.0 E 3:00 PM 38 350 36.2 978 13.3 3140 2.1 2.5 0 12 S 3:05 PM 68.1 72.4 E 2/14/07 4:05 PM 60 415 58.4 783 24.1 3913 1.1 2.0 Stabilized Infiltration Rate: 1.6 cm /hr = 400 0.64 in /hr = 9.6 gal /sf /day Infiltration Test Results 120 240 360 480 Elasped Time (min.) 1 EARTH SYSTEMS SOUTHWEST Flow R adings DOUBLE RING INFILTRATION TEST DATA (ASTM 3 85) Elapsed Time Liquid . Inner 777j58 Date Time incr. GO Reading Flow Reading Flow Temp Inner Conversions: Citrus CC PROJECT: Tract 32751 C Constants O.D. I.D. Area Area Liquid Constant (cm) = 2 54 cm/hr 1 = 2.54 cm/hr 1 in /hr JOB NO: 10271- (cm/hr) (in.) (in.) s cm) (sq cm) q 9:00 AM (cc/cm) 5.89 gal/sf/day = 1 cm/hr 9 g /sf/ Y=lc al da LOCATION.- 1-10 [�ner Ring 12.4 12,0 73 659 Tanks PVC Tanks ID=1 567726E, 3726986N Outer Ring 23.8 23A 19F31 15 65�_, 47.7 4.0 Infiltration Rate (cm/hr): [Flow (cc) x (60 min/hr)]/[Area (sq cm) x Time (min)Ma =MSG I= 0 0 0 5 0 0 0 1 3 Test Trial No. 1 2 3 4 5 6 7 8 9 11111111i 11 W 3 D. Wi ins W Penetration of nn gs (in.): inner: 4 Uutef. D Flow R adings Elapsed Time Liquid Incr, Infiltr. Rate Inner Outer Date Time incr. Total Reading Flow Reading Flow Temp Inner Outer (min) (min cm) (cc) (cm) (cc) (F) (cm/hr) (cm/hr) S 2/15107 9:00 AM 64.0 66.0 E 915 AM 15 15 50.8 8698 63.0 2007 47.7 4.0 S 9:15 AM 50-8 63.0 E 9:30 AM 15 30 49.3 1004 46.2 11039 5.5 22.2 S 9:30 AM 49.3 46.2 E 10:00 AM 30 60 47.8 1004 40.1 4014 2.8 4.0 S 10:00 AM 47.8 40.1 E 10:30 AM 30 90 46.2 1004 34.9 3429 2.8 1 3.4 §_ 10:30 AM 46.2 34.9 E 11:00 AM 30 120 44.7 1004 33.5 920 2.8 0.9 S 11:00 AM 44.7 33.5 E 12:00 PM 60 180 40.4 2843 32.8 502 3.9 0.3 S 12:05 PM 40.4 32.8 E 1:25 PM 80 265 40.1 167 29.0 2509 0.2 0.9 S 1:25 PM 40.1 29.0 E 2:25 PM 60 325 39.6 335 26.0 1924 0.5 1.0 S 2:25 PM 39.6 26.0 E 3:15 PM 50 375 39.4 167 23.4 1756 0.3 1.1 Infiltration Test Results 1.8 gal/sf/day 0 5 O 0 U 1 O EARTH SYSTEMS SOUTHWEST 41 DOUBLE RING INFILTRATION TEST DATA (ASTM PROJECT: Tract 32751C�rms�� JOB NO: 10271-02 LOCATION: 1~11 mNNmNERNmIRM 567705E.372G76GN�� cm/hr Trial No. qmAlmmommmw Date Time Incr. of Volume Flow Conversions: %mmmm Flow Constants 0. D. I D Area Liquid Constant Ow 1 in/hr = 2.54 cm/hr : Inner Rin( S F-1-2--OT730 9�25 AM 15 659 PVC Tanks I D=1 14' 58.2 Outer Rin, 23.4 1_1993 15 659 Infiltration Rate (cm/hr): [Flow (cc) x (60 min/hr)]/[Area (sq cm) x Incr Time (minj)l Penetration ofh | 4 Outer: G 54.3 8495 32.5 16924 34.9 25.5 Elaps d Time Inner - Outer Liquid Incr. Infiltr. Rate No. Date Time Incr. Total Reading Flow Reading Flow Temp Inner Uuter 1 S 2/15/07 9�25 AM 67.2 58.2 Infiltration Test Results E 9:45 AM 20 20 54.3 8495 32.5 16924 34.9 25.5 E 10:05 AM 20 40 42.3 7935 28.8 2469 32.6 3.7 0 Outer E 10-20 AM 10 55 48.0 1482 51.8 659 12.2 ZO E 10:50 AM 30 85 40.1 5202 48.9 1877 14.3 1.9 0 115 X 200 7 S 11:55 AM 399 47.9 120 240 360 II I 4M 41101 Stabilized Infiltration Rate: ITElasped Time (min.) 0.64 cm/hr 0.25 in/hr 4MENNEESM 3.8 Qa|hs0dmy +` Mds 62602 Mass GradinLa Hydrology Design Report Tract 32751 (West Side of Jefferson, South of Pomelo, south of Ave 50) In the City Of La Quinta Purpose 9/27/2006 The purpose of this report is to confirm that the proposed mass graded retention basins will contain the 100 -year design storm (24 hr /100 yr), without overflow to offsite areas, and without the construction of any storm drainage structures. Percolation tests have been performed. Pending receipt of the results, the enclosed analysis assumes zero percolation in the basins. The analysis identifies the 100 -year storm runoff rates and volumes generated within the areas tributary to Tract 32751, and the rough graded, undeveloped site. Information Summary — Mass Grading • Retention Basin Overflow elevation, 24 hr / 100 yr storm water surface elevation and average bottom elevation are 29.1, 28.68, and 21.5 respectively. m Largest storm (24 hr / 100 yr) volume / required retention basin storage is 287,844 cubic feet / 6.608 Acre feet. • Storage provided in the mass graded Retention Basins is 287,844 cubic feet at elevation 28.68. Storage provided in the mass graded Retention Basins is 335,614 cubic feet at the overflow elevation, 29.1 — 117% of the required 100 yr storm volume. Proposed Proiect Description during Mass Grading The site is currently used as a large, undeveloped retention basin for the existing Tract 24890 to the north and west. Mass Grading of subject Tract 32751 consists of filling the existing basin, compacting and shaping the proposed lots and street, and excavating, refilling, and shaping the proposed retention basins at the south end of the site to conform to percolation and storage requirements. The existing Tract 24890 storm drain system ends near the northwest comer of Tract 32751 and overflows at elevation 27.0 from an existing drywell into the undeveloped retention basin on the site. After mass grading, this elevation 27.0 drywell overflow will drain east in a temporary swale along the north tract boundary to the graded street and thence south along the graded street into the newly graded basins. The existing secondary overflow from both-tract- 24-8-90 and tract 3275 -1 is at-the- extreme south end -of tract 32751, flowing into the golf course and Mandarina St at approximately elevation 29.1. This overflow location and. elevation will be preserved during Mass Grading and after construction of improvements. The lowest pad elevation of existing Tract 24890 is 30.9, and the lowest pad elevation of proposed Tract 32751 is 30.5. Both of these mil- 1 -1m+zm pad. elevations are More. than 1 foot above the 29.1 overflow elevation, as required by COLQ. Mds 62602 9/27/2006 Proposed Drainage System Design Methods The Riverside County Synthetic Unit Hydrograph Method is used to determine the storm runoff volumes for the four potential design storms. The total onsite and offsite drainage areas for the retention basins are evaluated for the runoff from 100 -yr storms of 1, 3, 6, and 24 -hour duration. The storm yielding the largest required storage volume (24 hr / 100 yr) is designated the design storm for the Basins. (See attached Unit Hydrograph calculations and Summary 6). Flood Routing calculations are not necessary for this Mass Grading Report since percolation is assumed to be zero. The attached tables summarize the results of the calculations: Summary 2 — Storm Precipitation Volumes for the four study storms Summary 3 — Drainage Area Tabulation During Mass Grading Summary 4 — Graded Retention Basin Control Elevations Summary 5A & 5B — Graded Retention Basin Depth / Storage Volume Calculations Summary 6 — Comparative Design Storm Volume / Storage Requirement Unit Hydrograph Calculations for 1, 3, 6, & 24 hr, 100 yr storms. The on -site soil percolation rate was tested in 2005 for the basin areas. The test was inconclusive, with one very high rate, and one very low rate. Averaging these tests is not acceptable to the COLA. Confirming tests are being performed at elevation 21.0, the proposed bottom of the basins. In the interim, to expedite issuance of the Mass Grading permit and commencement of grading_ the �O ELLS C ��• Y AC -16802 A " �c pF CAt1W. X067 IT �cp�� C6A s�c-.tt� ar -r -• ~ " s...I !�qtjw-Ir_ will CPA. < c c:W I MaD�II CPA._ Well - yr • � I �,- Ma6 , =, � „a: �.1(j .-• 'n+� � 'Y �M +r'. ,t •A _' a. _YK ' . A � 6 . ' , te r E k ' iIx � i � Cf w,}i�Xag 1 �44 i # 1 �r- � c . ' ._ � - a a4,`M"a�,a j T " R e D " - :- � IO �MPay B� Ma h saMa.- "� y G'B . t . . �� r G —a,' 4� s -„yys .D K � . y. _ . ,i-. -•?•."*r - ,_ x __—,r„� � ,, � te_ — y r * , " ' ° s' R^ J" 'r rMi.`. � .i a 1 z . 1 •, , .ae m & . 6 32 2P r w.�g 'h d7 gy 1O au!1 . =� p i M-• ��rf Y � S - M i.na�, � �r B l Z ��-v� � •- .ti�," ' t " ' - � y _ _ r . x 1E� v+' y+I rx ►K k P J : � • c " � � _ p . e � E � T. 5 S. Of NMaD � 50 !•MaD Mau f � ; E MaB jV R— a T. 6 S. GbA Ma6 6` - AVENUE 52 40, PAM Qumia MaB. tdC CP ta FS- !S T RL M a8 wat Ma r CPA q � LL. - ,� _ GbA RIVERSIDE COUNTY, CALIFORNIA TABLE .l2. —Sail and water f eatures [Absence of an entry indicates the feature is not a concern. See text for descriptions of symbols and such terms---as- "r a �- "brief," and "perched." The symbol G means less .than; > means greater than] Hydro- Flooding High water table Bedrock Soil name and logic map symbol group Frequency Duration Months. Depth Bind Months Depth 'Hardness Badland: BA. Borrow pits: B P. Bull Trail: BtE ----------------- I B vajou: CaD----------- - - - - -- A Cajon Variant: . Cb D----------- - - - - -- A Carrizo: CcC----------- - - - - -- A Carsitas• CdC, CdE, ChC, CkB. A Cf6------------ - - - - -- A Carsitas Variant: C m B, C m E___________ C Chuckawalla: . Co B, Co D, C nC, C n E. B Coachella: CPA, CPB, CsA______ B CrA------------------ B Fluvaquents: Fa------------- - - - - -- D Fluvents: Fe------------- - - - - -- .A/D Gilman: G a B, GbA, Gb B, GeA. B GcA, GdA, GfA ------ B Gravel pits and dumps: G P. Imperial: IeA------------ - - - - -- D IfA------------ - - - - -- D ImC 1: Imperial part_ _ _ _ _ _ _ D Gullied land part. imperial: IoC 1: Imperial part_ _ _ _ _ _ _ D Gullied land part. Indio: IPA Is- ---- ----- -- -- -- B Ir, it---------- - - - - -- B Lithic Torripsamments: LR1: Lithic Torrlpsamments part. D RAck outcrop part. None-- - ---------------- ' -- -- - - - - -- � I None - - - - -- -------------- ----------- None - - - -- ------------------------- Rare- - - - - -- ---- ---- - - - - -- ------ - - - --- None------ ---------------------- =-- None------ -------------- - ----------- None ------ ------------ =----------- =- None------ -------- - - - - -- ------ - - - - -- None------ ------=------------------- None------ ---= ---------------------- Frequent___ Very long_____ Apr-Sep ---- Occasional-- Very brief _ _ _ _ Jan- Dec_ _ _ _ Rare- - - - - -- -------- - - - - -- ------ - - - - -- None------ -------------------- - - -- -- None______ None______ None______ None______ None______ None______. >6.0 ---- - - - - -- ------ - - - - -I >60 >6.0 -- ------ - --- -- ------------ . >60 >6.0 --------------------------- >60 ---- - - - - -- >6.0 -------- - - - - -- ------ - = - - -- >60 ---- - - - - -- >6.0 -------- - - - - -- ---- -- - - - - -- >60 ---------- 2.0-4.0 Apparent_____ Jan: Dec_ -__ >60 ---------- >6.0 --------------------------- 6-20 R.ippable. >6.0 -------- - - - - -- ------ - - - - -- >60 - >6.0 -------- - - - - -- --- --- - - - - -- >60 ---- - - - --- 3.0 -5.0 Apparent_____ Jan- Dec____ >60 ---------- 0.5 -2.0 Apparent - -__- Jan - Dec - - -- >60 - _-- - - - - -- >6.0 -------- - -- - -- ------ - - - - -- > — ---- -- - - -- > 6.0 -------- - - - - -- ------ - - - - -- >60 ---- - - - - -- 3.0 =5.0 Apparent_ _ _ _ _ Apr-Oct _ _ _ > 60 -------------- - ----- - - -- -- >6.0 -------- - - - - -- ------ - - - - -- 1.0 -3.0 -------- - - - - -- - ----- - - - - -= >6.0 -------------------------- -----=- - - - - -- - =--- - - - - --- >6. . -------------- ------------ 1 3.0 ------- - - - - -- ------ - - - --- >60 ---- - - - - =- Apparent----- Jan - Dec__ -- >60 ----------- -------- - - - - -- ------ - - - - -- >60 - --- - - - - -- Apparent >60- ------- - - - - -- --- - - - - -- >66 ---- - - - - -- Apparent_____ Jan = Dec_ -__ >60 ---------- tune --- -=- - ------ -- ---- -------------- 1 >� 6.0 I -- ---=- ------ -'--- -- - - - --- I —IU 1 Hard. 1 aO SO'IL SL"itVLi' TABLE 12. —Soil and water features = Continued Hydro- Flooding High water table Soil name and logic map symbol group Frequency, Duration Months Depth Kind Months At Myoma: MaB, MaD ----------- A MC B----------- - - - - -- A Niland: NaB-- --------- - - - - -. C NbB----------- - - - - -- C Omstott: Om D - -- =---- - - - - -- C O rl: Omstott part - - _ _ - _ . C Rock outcrop part. Rive-wash: RA. Rock outcrop: RO. RTI- Rock outcrop part. Lithic Torripsamments part. D Rubble land: RU. Salton: Sa, Sb--------- - - - - -- - D Soboba: So D, SpE____________ A Torriorthents: TO I : Torriorthents part: --- Rock outcrop part. Tujunga: TpE, TrC, TB___.____ A Bedrock Depth I Hardness Its None - - - - 6.0 --------------- - -- -- - - - - -- _ -- >60 ------------- - --- - - - -- - - -------- - - - - -- 1n - - - - -- •-- ----- - - - - -- --- --- - -- - .5 -5.0 Apparent ----- Jan - Dec- - -- >60 None - - - - -- ------- - - - - ----- ---- - - - >6.0 -------- - - - - -- one------ -------- ---- -- - ------ - - ------ - - - - -- >60 .-.pparent - - - -- Jan-Dec - - -- >60 -------------- None - - - -- -------- - - -- -- ------ - - - - -- >6.0 -------------- ------ - - - - -- 4-20 B.ippable. None - - - -- -------- -- - - ---------------- .0 I >6 I I-------------- I------- - - ---I 4-20 *1 RIPPable. one - - - - -- ------- - - - - -- ----- - - - - -- >6.0 ------- - - - - - -- ------ - - - --- 1 -10 Hard. None - - - -- --------------------------- 2.0 -5.0 Apparent - -- - -I Jan - Dec- - -- >60 I- - - - --- i None-- - - - - -. -------- - - - - -- -- ---- - - - - -- >6.0 - .------- - - - - = - I ------ - - - - -- >60 I---- - - - - -- None------ I---------- ---- I------- - - - - -I > 6 .0I -------------- I ------------ I >60I---- - - - - -- 'This mapping unit is made up of two or more dominant kinds of soil. See mapping unit description for the composition and behavior of the whole mapping unit. parent; and the months of the year that the water and on other observations during the mapping of the table commonly is high. Only saturated zones above a soils. The kind of bedrock and its hardness as related depth of 5 or 6 feet are indicated. to ease of excavation js also shown. ItiNpable. bedrock Information about the seasonal high water table can be excavated with a single-tooth ripping pping attach - helps in assessing the need for specially designed ment on a 200 - horsepower tractor, but hard bedrock foundations,--the need for specific kinds of drainage generally requires blasting. systems, and the need for footing drains to insure dry basements. Such. information is also needed to decide - whether - -or not construction of- basements is feasible -F-orrnation; Morphology, tind and to determine how septic tank absorption fields and Classification of the Soils other underground installations will function. Also, a seasonaTTiigTi- water table affects ease of excavation. This.section contains description of the major fac- Depth to. bedrock is shown for all soils that are tors of soil formation as .thev occur in the Coachella underlain by bedrock at a depth of .5 to G feet or less. Valley Area a S*uinitiary of significant morphological For.many soils, the limited depth to bedrock is a part characteristics of the soils .of the Area; an explanation of the definition of the soil series. The depths shown of the current system of classifying soils by categories are based on measurements made in many soil borings: broader than the series, and a table showing the clas- 27-Sep-06 fT Y 1 Tract 32751 Tract 32751 Fm Drain and! Re- tention Basin Tributa Existing : torm Drain 1 (west) ID % Im `ery Area & lJ'se Ac 6 SD Area Ac Existing Storm Drain 2 (Eastt) ID %Impery Area & Use Ac ) SD Area A1- Initial 40 % -1 %2 S 0.400 A2 50 % -1 %4 SF 6.750 A3 50 % -114 S 2.410 A4 65% -Cond 0.616 A5 20 %= SF 1.375 A6 80% -Apt 1.046 A7 40 %- SF 1.157 CB 1 &; / SDI 9.560 4.194 13.754 B1 80% -Apt 1.837 62 80% -Apt 2.0.20 SD 2 B3 800/-Apt 1.837 B4 40 % -1/12F 1.102 SD 2A SD 2- Total Area B 1.816 C2 3.8E 2.93 6.79 1.791 A8 80 % t 3.220 0% -Undv 1.142 C4 C5 A9 20 %, SF 1.878 1.142 0.693 C6 °7 Al I 0.279 A11. Ooo %11 SF 1.970 Al2. 20%-J, SF 1 0.448 SD IIA SD 1 Al �c 0 % -U dv 0.634 Total ; 'rea A SD 212A B1 thru B4 2.418 7.795 21.549 22.183 6,796 a Area � .Dramagl ; „� �q��Impe,rvious`� 0% -Undv 9.050 20 % -1. SF 3.701 40 % -1/2 SF 2.938 50% -114 SF 11.130 65% -Cond 0.616 80 % -A t 9.960 "Toial'Pr�iip t�7 r <' rnv x, 0% -Undv f L 0.537 C8- Basin2 o% -Undv F 0.682 Onsite Storm Drain 3 ID % Impery & Use Area Ac C1 0 %-Undv 1.816 C2 0% -Undv 1.791 C3 0% -Undv 1.142 C4 C5 0% -Undv 0 %-Undv 1.142 0.693 C6 0% -Undv 1 0.613 ®nsite C7- Basin1 0% -Undv f L 0.537 C8- Basin2 o% -Undv F 0.682 Basins 182 7.197 1.219 9/27/2006 Summary 4 -- Control Elevations h I voi Cum Vol Depth Control Tract 32751 MDS 626-02 (sf) (sf) (ft) (cf 1 ft) Available (ft) Elev Retention Basins 1 & 2 - Control Information For Mass Grading (AcFt) Description Area /elev Offsite Tributary Area 118,724 2.73 9.0 29.0 Ac Onsite Drainage Area 8.0 8.42 Ac Lowest Tract 32751 Pad Lot No 26 30.10 Existing & Proposed Overflow Sta 15 +40 Proposed St 29.10 Offsite Tract 24889 Overflow Retention Basin - ws100 1. 17,744. 27,40 Lowest Offsite Tract 24889 Inlet ws100 TC 30.36, GFL 29.86 29.36 Lowest Onsite Tract 32751 Inlet ws100 TC 28.53, GFL 27.70 27,20 Storage Provided @ Overflow 335,614 cf / 7.705 AcFt 29.10 Storage Provided @ ws100 287,844 cf / 6.608 AcFt 28.68 Required Storage - 24 hr / 100 yr storm - Zero Perc 287,844 cf / 6.608 AcFt 28,68 Retention Basin Bottom 1 21.00 Summary 5A - Retention. Basin Storage Retention Basins 1 & 2 - Available & Required Storage Retention Basin 1 - West - Mass Graded Retention Basin -No Walls EIevjRetAreajAvgArea1 h I voi Cum Vol Depth Control LL,VJ/ (sf) (sf) (ft) (cf 1 ft) Available (ft) Elev (cf) (AcFt) 29.01 19,835 30.0 24,278 118,724 2.73 9.0 LL,VJ/ 1 LL,VJI 29.01 19,835 96,668 2.22 8.0 18,790 1 18,790 7.68 28.68 ws100 28 1. 17,744. 77,878 1 1.79 7.0 16,755 1 16,755 27 15,765 1 61,124 1.40 6.0 14,845 1 14,845 26.01 13,924 1 46,279 1.06 5.0 13,054 1 13,054 25.01 12,183 1 33,226 0.76 4.0 11,354 1 11,354 24.0 10;224. ] 21,872 0.50 3.0 9,759 1 9,759 23.0 ..8,994 1 12,113 0.28 . 2.0 - ..- 8,305 1. 8,305 22.0 7,616, 3,808 0.09 1.0 3,808 1 3,808 21.50 Avg Bot 21.0 0 0 0.00 0.0 21.00 Inlet Grate Retention:: ; asin 2 - East - Mass Graded Retention Basin -No Walls s << Y "Tot aL Basins 1 & 2 Elev Area _ AvgArea h Vol Avail Cum Vol Depth Control Storage -Cum Vol (sO (sf) (sf) (ft) (cf 1 ft (cf) (AcFt) (ft) Elev Descrip Available Required (cf) (AcFt) (AcFt) 30.0 29.0 28.0 32,504 28 26 6ci9 ' �... �...,..L 61 -,296 37.90 _; ... 91,564 76,994 44,624 1. 1. 1 91,564 76,994 44,624 319,148 227,584 _`7 �.287,844G 150,591 7.33 5.22 9.0 8.0 _ -_ 291 Ors - Overflow Zero erc y 437,872 X335;614 324,252 .�= �, 10.052 7.444 X1,16 6 {off. 3.46 „68 7.0 _ ws1QU.' m 228,469 608 5.245 T> th6 608 , 27.0 26.0 f "22�;5L3'� � I . _:s :l{ a - 23 566 � 1 23,566 105,967 82,401 2.43 6.0 167,090 3.836 5.0 128,680 2.954 25.0. 21,553 1 21,553 60,848 E1.40 4.0 94,073 2.160 24.0 19,610 1 19,610 0 41,238 0.95 3.0 63,110 1.449 23.0 3..�.� I ., 17,743 1 17,743 23,495 0.54 2.0 35,608 0.817 22.0 ,R:�_._ 15,955 7,541 1. 1. 15,955 7,541 7,541 0 21.0 0.17 0.00 1.0 0.0 - ,Y21`50�u = '21'00 tr �AvgyBo4 -� y Bottom 11,349 0.261 0 0.000 r-- R. M- n nv.� vcouc �Surnrna , " StormStolrag � -� p os Tract 32751. - MDS 62602 f �y� ORIB �R r ar�ln,�1�, &�2.� ��M;ass�Grade"lte� Comparative Design Storm Volumes and Required Storage Storm Peak Inflow 100yr Storms Duratn Time Q Storage Depth WS100 Depth Storage (hr) (hr) (cfs) (Ac Ft) (ft) Elev (ft) (AcFt) (cf) fill 1. 0.92 105.2 2.188 4.04 26.70 5.70 3.570 .155,509 27.49 6.49 4.528 197,240 27.50 6.50 4.539 197,719 3 2.67 57.5 3.441 5.55 8 5.5 417.0 3.58() 5.71 24 13.5 13.2 3.848 6.0128168 7 6g` 6608 f "287,8444 Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 09/15/06 File: 62602B126hruh24100.out +++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 4082 English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format --------------------------------------------------------------- - - - - -- Drainage Area = 37.40(Ac.) Drainage Area for Depth -Area Length along longest watercourse Length along longest watercourse Length along longest watercourse Length along longest watercourse Difference in elevation = 7 Slope along watercourse = 10. Average Manning's 'N' = 0.015 Lag time = 0.133 Hr. Lag time = 7.97 Min. 25% of lag time = 1.99 Min. 40% of lag time = 3.19 Min. Unit time = 30.00 Min. Duration of storm = 24 Hour(s) 0.058 Sq. Mi. Areal Adjustment = 37.40(Ac 3800.00(Ft.) measured to centroid = 0.720 Mi. measured to centroid = .80(Ft.) 8379 Ft. /Mi. User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Area (Ac. ) [1] . Rainfall (In) [2] Weighting [1 *2) 37.40 1.60 59.84 100 YEAR Area rainfall data: Area (Ac.) [1] Rainfall (In) [2] Weighting [1 *2J 37.40 4.50 168.30 STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall = 1.600(In) Area Averaged 100 -Year Rainfall 4.500(In) Point rain (area averaged) = 4.500(In) Areal adjustment factor = 99.99 % Adjusted average point rain = 4.500(In) Area (Ac.) Runoff Index Impervious 9.050 78.00 0.050 3.701 56.00 0.200 .2.938 .56.00 0.400 11.130 56.00 0.500 0.616 56.00 0.650 9.965 56.00 0.800 Total Area Entered = 37.40(Ac.) = 0.058 Sq. Mi. 1750.00(Ft.) 0.331 Mi. RI RI Infil.Rate Impervious Adj.Infil.Rate AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) 78.0 78.0 0.268 0.050 0.256 56.0 56.0 0.511 0.200 0.419 56.0 56.0 0.511 0.400 0.327 56.0 56.0 0.511 0.500 0.281 56.0 56.0 0.511 0.650 0.212 56.0 56.0 0.511 0.800 0.143 Area% F (Dec.) (In /Hr) 0.242 0.062 0.099 0.041 0.079 0.026 0.298 0.084 0.016 0.003 0.266 0.038 Sum (F) = n_2S4 --------------------------------------------------------------------- Unit't dsrg,p kh VALLEY S -Curve -------------------------------------------------------------------- Hni atHydrographDa'ta --------------------------------------------------------------------- Unit time period Time % of lag Distribution Unit Hydrograph (hrs) --------------------------------------------------------------------- Graph % (CFS) 1 0.500 376.562 63.398 23.896 2 1.000 753.124 33.243 12.530 3 1.500 1129.686 3.359 1.266 ----------------------------------------------------------------------- Sum = 100.000 Sum= 37.692 Unit Time Pattern Storm Rain Loss rate(in. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.50 0.50 0.045 0.446 0.018 0.03 2 1.00 0.70 0.063 0.436 0.026 0.04 3 1.50 0.60 0.054 0.426 0.022 0.03 4 2.00 0.70 0.063 0.416 0.026 0.04 5 2.50 0.80 0.072 0.406 0.030 0.04 6 3.00 1.00 0.090 0.396 0.037 0.05 7 3.50 1.00 0.090 0.386 0.037 0.05 8 4.00 1.10 0.099 0.376 0.041 0.06 9 4.50 1.30 0.117 ,0.367 0.048 0.07 10 5.00 1.50 0.135 0.358 0.055 0.08 11 5.50 1.30 0.117 0.348 0.048 0.07 12 6.00 1.60 0.144 0.339 0.059 0.08 13 6.50 1.80 0.162 0.330 0.066 0.10 14 7.00 2.00 0.180 0.322 0.074 0.11 15 7.50 2.10 0.189 0.313 0.077 0.11 16 8.00 2.50 0.225 0.304 0.092 0.13 17 8*. so 3.0-0 9'. 27 0 0 . 29r6 0 . 111 0.1-6 18 9.00 3.30 0.297 0.288 - -- 0.01 19 9.50 3.90 0.351 0.2 80 - -- 0.07 20 10.00 4.30 0.387 0.272 - -- 0.12 21 10.50 3.00 .;,0:270 0.264 - -- 0.01 22 11.00 4.00 0.360 0.256 - -- 0.10 23 11.50 3.80 0.342 0.249 - -- 0.09 24 12.00 3.50 0.315 0.241 - -- 0.07 25 12.50 5.10 0.459 0.234 - -- 0.22 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective Volume Ac.Ft (Hr.) Percent (In /Hr) Max Low (In /Hr) 26 13.00 5.70 0.513 0.227 - -- 0.29 27 13.50 6.80 0.612 0.220 - -- 0.39 28 14.00 4.60 0.414 0.214 - -- 0.20 29 14.50 5.30 0.477 0.207 - -- 0.27 30 15.00 5.10 0.459 0.201 - -- 0.26 31 15.50 4.70 0.423 0.195 - -- 0.23 32 16.00 3.80 0.342 0.189 - -- 0.15 33 16.50 0.80 0.072 0.183 0.030 0.04 34 17.00 0.60 0.054 0.178 0.022 0.03 35 17.50 1.00 0.090 0.172 0.037 0.05 36 18.00 0.90 0.081 0.167 0.033 0.05 37 18.50 0.80 0.072 0.163 0.030 0.04 38 19.00 0.50 0.045 0.158 0.018 0.03 39 19.50 0.70 0.063 0.153 0.026 0.04 40 20.00 0..50 0.045 0.149 0.018 0.03 41 20.50 0.60 0.054 0.145 0.022 0.03 42 21.00 0.50 0.045. 0.142 0.018 0.03 43 21.50 0.50 0.045 0.138 0.018 0.03 44 22.00 0.50 0.045 0.135 0.018 0.03 45 22.50 0.50 0.045 0.133 0.018 0.03 46 23.00 0.40 0.036 0.130 0.015 0.02 47 23.50 0.40 0.036 0.129 0.015 0.02 48 24.00 0.40 0.036 0.127 0.015 0.02 r Sum = 100.0 Sum = 4.2 Flood-volume = Effective rainfall 2.12(In) times area 37.4(Ac.) /[(In) /(Ft.)3 = 6.6(Ac.Ft) Total soil loss = 2.38(In) Total soil loss = 7.416(Ac.Ft) Total rainfall = 4.50(In) Flood volume = 287830.0 Cubic Feet Total soil loss = 323054.3 Cubic Feet -------------------------------------------------------------------- Peak flow ------------------------------------------=------------------------- rate of this hydrograph = 13.225(CFS) +++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ -- - - - - - - - - - - - - - - - - - - - - - - - - Hydrograph in - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 30 Minute intervals ((CFS)) ----------------------=--------------------------------------------- Time(h+m) ----------------------------------------------------------------------- Volume Ac.Ft Q(CFS)0 5.0 10.0 15.0 20.0 0 +30 0.0262 0.63 VQ -1 -+ 0 0:0767 1.22 V Q 1 +30 0.1288 1.26 V Q 2+ 0 0.1840 1.34 VQ 2 +30 0.2469 1.52 IV Q 3+ 0 0.3233 1.85 IV Q 3 +30 0.4055 1.99 I VQ 4+ 0 0.4935 2.13 I V Q 4 +30 0.5947 2.45 I VQ 5+ 0 0.7122 2.84 I VQ Time(h +m) Volume Ac.Ft Q(CFS)0 5.0 10.0 5 +30 0.8252 2.74 I VQ 1 6+ 0 0.9491 3.00 I Q 6 +30 1.0911 3.44 1 Q 7+ 0 1.2500' 3.84 I Q 7 +30 1.4202 4.12 I Q 8+ 0 1.6147 4.71 1 QI 8 +30 1.8466 5.61 I Q 9+ 0 1.9453 2.39 I Q IV 9 +30 2.0289 2.02 1 Q I V 10+ 0 2.1803 3.66 1 Q I V 1 10 +30 2.2498 1.68 I Q I V 11+ 0 2.3614 2.70 1 Q 1 V 11 +30 2.5075 3.54 I Q I V 12+ 0 2.6339 3.06 1 Q I V 12 +30 2:8988 6.41 I I Q V 13+ 0 3.3012 9.74 1 I Q1 13 +3.0'.. m� 1 X1"322 14+ 0 4.2632 10.05 1 1 Q 14 +30 4.6537 9.45 1 I Q 1 15+ 0 5.0586 9.80 1 1 QI 15 +30 5.4315 9.03 1 I Q 16+ 0 5.7142 6.84 I 1 Q 16 +30 5.8473 3.22 I Q 17+ 0 5.9088 1.49 1 Q 17 +30 5.9800 1.72 1 Q I 1 18+ 0 6.0564 1.85 I Q 1 18 +30 6.1259 1.68 1 Q 1 1 19+ 0 6.1766 1.23 1 Q 19 +30 6.2293 1.28 1' Q I 1 20+ 0 6.2762 1.13 1 Q 20 +30 6.3233 1.14 1 Q I 1 21+ 0 6.3675 1.07 1 Q 21 +30 6.4091 1.01 1 Q 22+ 0 6.4505 1.00 1 Q 1 1 22 +30 6.4918 1.00 1 Q 23+ 0 6.5280 0.87 IQ I 1 23 +30 6.5613 0.81 IQ 24+ 0 6.5944 0.80 IQ 1 1 24 +30 6.6066 0.29 0 I I 15.0 20.0 I I V V1 `I V V V I V V 1 V 1 v V V V I V VI VI VI VI VI VI VI 1 V1 Uteri {r t IF H b. ; .a Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 09115106 File: 62602B126hruh1100.out Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 4082 English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format --------------------------------------------------------------- - - - - -- Drainage Area = 37.40(Ac.) = 0.058 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 37.40(Ac.) Length along longest watercourse = 3800.00(Ft.) . Length along longest watercourse measured to centroid = Length along longest watercourse = 0.720 Mi. Length along longest watercourse measured to centroid = Difference in elevation = 7.80(Ft.) Slope along watercourse = 10.8379 Ft.. /Mi. Average Manning's 'N' = 0.015 Lag time = 0.133 Hr. Lag time = 7.97 Min. 250 of lag time = 1.99 Min. 400 of lag time = 3.19 Min. Unit time = 5.00 Min. User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Area (Ac.) [1] Rainfall (In) [2] Weighting [1 *2] 0.00 0.01 0.00 0.00 0.01 0..00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 37.40 0.50 18.70 16 OyFAR- Areas ra:ifl lcra to .�.,� Area (Ac ..) [1] Rainfall (In) [2] Weighting [1 *2] 37.40 1.40 52.36 STORM EVENT (YEAR) = 100.00 Area Averag'e'd 2 -Year Rainfall 0.500(In) Area Averaged 100 -Year Rainfall = 1.400(In) Point rain (area averaged) _ • 1.400(In) Areal adjustment factor = 99.97 % Adjusted average point rain = 1.400(In) = 0.058 Sq. Mi. 1750.00(Ft.) 0.331 Mi. Area (Ac.) 0.083 9.050 8.853 3.701 2 2.938 125.521 11.130 13.512 0.616 0.250. 9.965 Total Area RI RI AMC2 AMC -2 78.0 78.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 Runoff Index 78.00 56.00 56.00 56.00 56.00 56.00 Entered = Infil. Rate (In /Hr) 0.268 0.511 0.511 0.511 0.511 0.511 Impervious % 0.050 0.200 0.400 0.500 0.650 0.800 37.40(Ac.) Impervious (Dec . %) 0.050 0.200 0.400 0.500 0.650 0.800 Adj. Infil. (In /Hr) 0.256 0.419 0.327 0.281 0.212 0.143 Rate Area% (Dec.) 0.242 0.099 0.079 0.298 0.016 0.266 Sum (F) F (In /Hr) 0.062 0.041 0.026 0.084 0.003 0.038 0.254 -- - - - - - - - - - - - - - - - - - - - - - - -=- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- Slope of intensity- duration curve for a 1 hour storm = 0.5800 ---------------------------------------------------------------------- t7� VALLEY S -Curve -------------------------------------------------------------------- u Hydr�9ra�Ph --------------------------------------------------------------------- Unit time period Time % of lag Distribution Unit Hydrograph (hrs) Graph % (CFS) --------------------------------------------------------------- - - - - -- 1 0.083 62.760 8.853 3.337 2 0.167 125.521 35.849 13.512 3 0.250. 188.281 25.650 9.668 4 0.333 251.041 9.869 3.720 5 0.417 313.802 5.922 2.232 6 0.500 376.562 3.978 1.499 7 0.583 439.322 2.781 1.048 8 0.667 502.083 2.017 0.760 9 0.750 564.843 1.610 0.607 10 0.833 627.603 1.179 0.444 11 0.917 690.364 0.866 0.326 12 1.000 753.124 0.644 0.243 _ .... 13- 1 : iT8 3 8-1-5-.'8-8-.5 0-.-7-8-3- Sum = 100.000 Sum= 37.692 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective ------------------------.-------------------------------------------- Time(h+m) ----------------------------------------------------------------------- (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.08 3.60 0.605 0.254 - -- 0.35 2 0.17 4.20 0.705 0.254 - -- 0.45 3 0.25 4.40 0.739 0.254 - -- 0.48 4 0.33 4.60 0.773 0.254 - -- 0.52 5 0.42 5.00 0.840 0.254 - -- 0.59 6 0.50 5.60 0.940 0.254 - -- 0.69 7 0.58 6.40 1.075 0.254 - -- 0.82 .8 0.67 8.10 1.360 0.254 - -- 1.11 9 0.75 13.10 2.200 0.254 - -- 1.95 10 0.83 34.50 5.794 0.254 - -- 5.54 11 0.92 6.70 1.125 0.254 - -- 0.87 12 1.00 3.80 0.638 0.254 - -- 0.38 Sum = 100.0 Sum = 13.7 Flood volume = Effective rainfall 1.15(In) times area 37.4(Ac.) /[(In) /(Ft.)] = 3.6(Ac.Ft) Total soil loss = 0.25(In) Total soil loss = 0.792(Ac.Ft) Total rainfall = 1.40(In) Flood volume = 155495.1 Cubic Feet Total soil loss = 34507.3 Cubic Feet Peak flow rate of this hydrograph = 105.222(CFS) +++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 1+ 0 Hydrograph in 5 Minute intervals ((CFS)) ------------------------.-------------------------------------------- Time(h+m) ----------------------------------------------------------------------- Volume Ac.Ft Q(CFS)0 50.0 100.0 150.0 200.0 0+ 5 0.0081 1.17 Q 0 +10 0.0511 6.24 VQ 0 +15 0.1276 11.11 IVQ 0 +20 0.2237 13.95 Q 0 +25 0.3346 16.11 Q 0 +30 0.4624 18.56 I Q V 0 +35 0.6122 21.74 Q V 0 +40 0.7928 26.23 Q V 0 +45 1.0345 35.09 Q V 0 +50 1._4636 62.31 1Q V �. I 1+ 0 2.7359 79.52 Q I V 1+ 5 3.0292 42.58 Q I I V 1 +10 3.2023 25.13 Q I I I V 1 +15 3.3113 15.83 I Q I I V 3'. 3-8-71 1-!-. (Ti rQ 1 +25 3.4421 7.98 Q V 1 +30 3.4838 6.06 IQ I I I V 1 +35 3.5143 4.43 Q I I I V 1 +40 3.5366 3.23 Q 1 +45 3.5529 2.37 Q I I I VI 1 +50 3.5665 1.97 Q I I I VI 1 +55 3.5689 0.35 Q I VI Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Stu ydate 09/15/0.6 RiI`e_.6:2;6028r12t63zruh310.0 �o tr +++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + ++ + + + + + + + + + + + + + ++ Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 4082 English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format --------------------------------------------------------- .------ - - - - -- Drainage Area = 37.40(Ac.) = 0.058 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 37.40(Ac Length along longest watercourse = 3800.00(Ft.) Length along longest watercourse measured to centroid = .Length along longest watercourse = 0.720 Mi. Length along longest watercourse measured to centroid = Difference in elevation = . 7.80(Ft.) Slope along watercourse = 10.8379 Ft. /Mi. Average Manning's 'N' = 0.015 Lag time = 0.133 Hr. Lag time = 7.97 Min. 25% of lag time = 1.99 Min. 40% of lag time = 3.19 Min. Unit time = 5.00 Min. User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Area (Ac. ) [1] Rainfall (In) [2] Weighting [1 *2] 37.40 0.70 26.18 100 YEAR Area rainfall data: Area (Ac. ) [1] Rainfall (In') [2] Weighting [1 *2] 37.40 2.20 82.28 STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall = 0.700(In) Area Averaged 100 -Year Rainfall 2.200(In) Point rain (area averaged) = 2.200(In) Areal adjustment factor = 99.98 Adjusted average point rain 2.20.0(In) S = << Area�:�Data. Area(Ac.) Runoff Index Impervious 9.050 78.00 0.0.50 3.701 56.00 0.200 2.938 56.00 0.400 11.130 56.00 0.500 0.616 .56.00 0.650 9.965 56.00 0.800 Total Area Entered = 37.40(Ac.) = 0.058 Sq. Mi. 1750.00(Ft.) 0.331 Mi. RI RI Infil. Rate Impervious Adj. Infil. AMC2 AMC -2 (In /Hr) (Dec.%) (In /Hr) 78.0 78.0 0.268 0.050 0.256 56.0 56.0 0.511 0.200 0.419 56.0 56.0 0.511 0.400 0.327 56.0 56.0 0.511 0.500 0.281 56.0 56.0 0.511 0.650 0.212 56.0 56.0 0.511 0.800 0.143 Rate Area% (Dec.) 0.242 0.099 0.079 0.298 0.016 0.266 Sum (F) F (In /Hr) . 0.062 0.041 0.026 0.084 0.003 0.038 0.254 --------------------------------------------------------------------- VALLEY S -Curve -------------------------------------------------------------------- Un `tHydrographD aft ay -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Unit time period Time % of - - - - - - - - - - - - - - - - - - - lag Distribution - - - - - - - - - - - - - - - - - - Unit Hydrograph (hrs) ------------------------------------------------------------ Graph % (CFS) 1 0.083 62.760 8.853 3.337 2 0.167 125.521 35.849 13.512 3 0.250 188.281 25.650 9.668 4 0.333 251.041 9.869 3.720 5 0.417 313.802 5.922 2.232 6 0.500 376.562 3.978 1.499 7 0.583 439.322 2.781 1.048 8 0.667 502.083 2.017 0.760 j 9 0.750 564.843 1.610 0.607 10 0.833 627.603 1.179 0.444 11 0.917 690.364 0.866 0.326 12 1.000 753.124 0.644 0.243 13 1.083 815.885 0.783 0.295 ----------------------------------------------------------------------- Sum = 100.000 Sum= 37.692 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.08 1.30 0.343 0.254 - -- 0.09 2 0.17 1.30 0.343 0.254 - -- 0.09 3 0.25 1.10 0.290 0.254 - -- 0.04 4 0.33 1.50 0.396 0.254 - -- 0.14 5 0.42 1.50 0.396 0.254 - -- 0.14 22_ - - 7 0.58 1.50 0.396 0.254 - -- 0.14 8 0.67 1.80 0.475 •0.254 - -- 0.22 9 0.75 1.80 0.475 0.254 - -- 0.22 0-3 -a G 0-2 4 - - - 0 .111 11 0.92 1.60 0.422 0.254 - -- 0.17 12 1.00 1.80 0.475 0.254 - -- 0.22 13 1.08 2.20 0.581 0.254 - -- 0.33 14 1.17 2.20 0.581 0.254 - -- 0.33 15 1.25 2..20 0.581 0.254 - -- 0.33 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective -------------------------------------------------------------------- Time(h+m) (Hr.) Percent (In /Hr) Max Low (In /Hr) 16 1.33 2.00 0.528 0.254 - -- 0.27 17 1.42 2.60 0.686 0.254 - -- 0.43 18 1.50 2.70 0.713 0.254 - -- 0.46 19 1.58 2.40 0.633 0.254 - -- 0.38 20 1.67 2.70 0.713 0.254 - -- 0.46 21 1.75 3.30 0.871 0.254 - -- 0.62 22 1.83 3.10 0.818 0.254 - -- 0.56 23 1.92 2.90 0.765 0.254 - -- 0.51 24 2.00 3.00 0.792 0.254 - -- 0.54 25 2.08 3.10 0.818 0.254 - -- 0.56 26 2.17 4.20 1.109 0.254 - -- 0.85 27 2.25 5.00 1.320 0.254 - -- 1.07 28 2.33 3.50 0.924 0.254 - -- 0.67 29 2.42 6.80 1.795 0.254 - -- 1.54 30 2.50 7.30 1.927 0.254 - -- 1.67 31 2.58 8.20 2.164 0.254 - -- 1.91 32 2.67 5.90 1.557 0.254 - -- 1.30 33 2.75 2.00 0.528 0.254 - -- 0.27 34 2.83 1.80 0.475 .0.254 - -- 0.22 35 2.92 1.80 0.475 0.254 - -- 0.22 36 3.00 0.60 0.158 0.254 0.065 0.09 Sum = 100.0 Sum = 17.4 Flood volume = Effective rainfall 1.45(In) .times area 37.4(Ac.) /[(In) /(Ft.)] = 4.5(Ac.Ft) Total soil loss = 0.75(In) Total soil loss = 2.327(Ac.Ft) Total rainfall = 2.20(In) Flood volume = 197246.7 Cubic Feet Total soil loss = 101380.8 Cubic Feet -- - -- - -- - -- - - - - - -- - - - - -- - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- Peak� fl'ow�rae''of thshy,.drogr- apti:�57533.(CFSJ -------------------------------------------------------------- +++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ -- - - - - - - - - - - - - - - - - - - - - - - - - Hydrograph in - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5 Minute intervals ((CFS)) -------------------------------------------------------------------- Time(h+m) Volume Ac.Ft Q(CFS)0 15.0 30.0 45.0 60.0 -------------------------=--------------------------------------------- 0+ 5 0.0020 0.30 Q 0 +10 0.0124 1.50 Q 0 +15 0.0274 2.18 VQ 0 +20 0.0423 2.15 VQ 0 +25 0.0648 3.27 V Q 0 +30 0.0957 4.49 V Q 0 +35 0.1347 5.67 IV Q 0 +40 0.1750, 5.85 IV Q 0 +45 0.2205 6.61 IV Q 0 +50 0.2694 7.10 I V Q 0 +55 0.3137' 6.43 V Q 1+ 0 0.3578 6.40 VQ Time(h +m) Volume Ac.Ft Q(CFS)0 15.0 1 Q 30.0 45.0 60.0 l+ 5 0.4101 7.58 I V Q 2 +55 i 1 +10 0.4757 9.53 V Q 16.61 1 +15 0.5497 10.75 I V Q 12.02 I Q I I 1 +20 0.6263 11.11 V Q Q 1 +25 0.7036 11.24 VQ I VI 3 +20 1 +30 0.7944 13.17 VQ 3 +25 4.4981 1 +35 0.8958 14.73 V QI 4.5112 1.90 1 +40 0.9975 14.77 I VQI. 1.27 Q I I 1 +45 1.1080 16.05 VQ Q 1 +50 1.2373 18.78 V Q 3 +50 1 +55 1.3734 19.76 I VI VQ 4.5280 2+ 0 1.5072 19.42 QV 2+ 5 1.6427 19.68 Qv 2 +10 1.7892 21.27 i i QV 2 +15 1.9702 26.29 Q 2 +20 2.1825 30.82 i i VQ 2 +25 2.4005 31.66 IQ 2 +30 2.6867 41.56 V V 2 +35 3.0451 52.04 VQ I Q I 2 +45 3.7892 50.52 i 1 Q 2 +50 4.0162 32.95 I IQ V 2 +55 4.1650 21.62 Q 4.2795 3+ 0 16.61 i IQ I i v 3+ 5 4.3622 12.02 I Q I I I V 3 +10 4.4165 7.88 Q 3 +15 4.4533 5.33 i Q I I I VI 3 +20 4.4790 3.74 I Q I I I VI 3 +25 4.4981 2.77 IQ 3 +30 4.5112 1.90 I I i VI 3 +35 4.5200 1.27 Q I I I VI 3 +40 4.5246 0.68 Q 3 +45 4.5263 0.25 Q i I i VI 3 +50 4.5274 0.15 Q I I I VI 3 +55 4.5280 0.09 Q I I V1 1-zyiws,, F1, S Copyright (c.) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 +++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 4082 English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Drainage Area = 37.40(Ac.) Drainage Area for Depth -Area Length along longest watercourse Length along longest watercourse Length along longest watercourse Length along longest watercourse Difference in elevation = 7 Slope along watercourse = 10. Average Manning's 'N' = 0.015 Lag time = 0.133 Hr. Lag time = 7.97 Min. 25% of lag time = 1.99 Min. 40% of lag time = 3.19 Min. Unit time 10.00 Min. Duration of storm = 6 Hour(s) = 0.058 Sq. Mi. Areal Adjustment = 37.40(Ac.) 3800.00(Ft.) measured to centroid = 0.720 Mi. measured to centroid . 80 (Ft . ) 8379 Ft. /Mi. User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Area (Ac.) (lj Rainfall (In) [2j Weighting [1 *2j 37.40 1.00 37.40 100 YEAR Area rainfall data: Area (Ac.) [1] Rainfall (In) [2j Weighting (1 *2j 37.40 2.75 102.85 STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall 1.000(In) Area Averaged 100 -Year Rainfall = 2.750(In) Point rain (area averaged) = 2.750(In) Areal adjustment factor = 99.99 % Adjusted average point rain = 2.750(In) u d _ ,5......��_e�a�- Da•a Area(Ac.)x Runoff Index Impervious % 9.050 78.00 0.050 3.701 56.00 0.200 11.130. 56.00 0.500 0.616 56.00 0.650 9.965 56.00 0.800 Total Area Entered = 37.40(Ac.) = 0.058 Sq. Mi. 1750.00(Ft.) 0.331 Mi. RI RI Infil. Rate Impervious AMC2 AMC -2 (In /Hr) (Dec . %) 78.0 78.0 0.268 0.050 56.0 56.0 0.511 0.200 56.0 56.0 0.511 0.400 56.0 56.0 0.511 0.500 56.0 56.0 0.511 0.650 56.0 56.0 0.511 .0.800 Adj. Infil. (In /Hr) 0.256 0.419 0.3.27 0.281 0.212 0.143 Rate Area% (Dec.) 0.242 0.099 0.079 0.298 0.016 0.266 Sum (F) F (In /Hr) 0.062 0.041 0.026 0.084 0.003 0.038 n 9Sa --------------------------------------------------------------------- VALLEY S -Curve -------------------------------------------------------------- - - - - -- -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 0.17 1.10 0.181 0.254 0.074 TT 0.11 2 0.33 1.20 0.198 0.254 0.081 0.12 3 0.50 1.30 0.214 0.254 0.088 0.13 4 0.67 1.40 0.231 0.254 0.095 0.14 5 .0.83 1.40 0.231 0.254 0.095 0.14 6 1.00 1.50 0.247 0.254 0.101 0.15 7 1.17 1.60 0.264 0.254 - -- 0.01 8 1.33 1.60 0.264 0.254 - -- 0.01 9 1.50 1.60 0.264 0.254 - -- 0.01 10 1.67 1.60 0.264 0.254 - -- 0.01 11 1.83 1.60 0.264 0.254 - -- 0.01 12 2.00 1.70 0.280 0.254 - -- 0.03 13 2.17 .1.70 0.280 0.254 - -- 0.03 14 2.33 1.80 0.297 0.254 - -- 0.04 15 2.50 1.80 0.297 0.254 - -- 0.04 16 2.67 1.80 0.2 -0 7 0.254 - -- 0.04 17 2.83 2.00 0.330 0.254 - -- 0.08 18 3.00 2.00 0.330 0.254 - -- 0.08. 19 3.17 2.10 0.346 0.254 - -- 0.09. 20 3.33 2.20 0.363 0.254 - -- 0.11 21 3.50 2.50 '0.412 0.254. - -- 0.16 i i ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' -------------------------------------- R u%%o f H y d r o g r a h *------------------------------ Hydrograph in 23 3.83 3'00 0.495 0.254 --- 0.24 24 4.00 3'20 0.528 0.254 --- 0.37 35 4.17 3'50 0.577 0'254 --- 0.32 26 4.33 3.90 0'643 0.254 --- 0.39 27 4.50 4.20 0.693 0'254 --- 0.44 28 4.67 4.50 0.742 0'254 --- 0.49 29 4.83 4'80 0.792 0.254 --- 0.54 30 5'00 5.10 0.841 0'354 --- 0'59 31 5'17 6'70 I'105 0.254 --- 0.85 33 5'33 8.10 1.336 0.254 --- I'08 33 5.50 I0'30 I'699 0'254 --- 1.45 34 5'67 2.80 0.462 0.254 --- 0.21 35 5.83 I'IO 0'I81 0.254 0.074 0.11 36 6'00 0'50 0.082 0.254 0.034,, 0'05 Sum ~ 100'0 Sum ~ 8.7 Flood volume ~ Effective rainfall 1.46(In) times area 37.4(Au')/[(In)/(Ft')] ~ 4.5(Ao.Ft) Total soil I000 ~ 1.29(In) Total soil I000 ~ 4.03I(Ac.Ft) Total rainfall ~ 2.75(In) Flood volume ~ 197723.7 Cubic Feet - Total soil -------------------------------------------------------------------- I000 ~ 175573.8 Cubic Feet -------------------------------------------------------------------- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' -------------------------------------- R u%%o f H y d r o g r a h *------------------------------ Hydrograph in lO Minute intervals ((CFS)> -------------------------------------------------------------------- 0+10 0.0I49 1'08 O 0+20 0'058I 3.14 \/ Q 0+30 0'II23 3'93 \/ O 0+40 0'1741 4.49 IV O / 0+50 0'2412 4.87 VQ l+ D 0'3II6 5'12 T/ Q ( l+lO 0.3668 4.00 Q I+30 0'3885 1'58 |Q T/ 1+30 0'40I7 0'95 � T/ -_ - - V 1+50 0'4I80 0.5I O \/ 2+ 0 0.4261 0.59 O \7 2+I0 0.4377 0.84 0 T7 2+20 0.4526 1.08 Q \/ 2+30 0.4732 1.42 IQ \7 2+40 0.4932 1.52 IQ \7 2+50 U.SI94 1.90 IQ l/ ' 3 + O O 55�� ' 2 53 ' � 0 l7 �+lo n qn-In r n'7 | n 17 i . 3 +20 0.6408 3.42 Q V 3 +30 0.7006 4.34 I Q V 3 +40 0.7816 5.88 Q V 3 +50 0.8840 7.43 Q V 4+ 0 1.0044 8.75 Q V 4 +10 1.1448 10.19 Q V 4 +20 1.3115 12.10 Q V 4 +30 1.5072 14.21 IQ V I 4 +40 1.7293 16.13 I I Q V I 4 +50 1.9774 18.01 I I Q V I 5+ 0 2.2513 19.89 I I Q VI 5 +10 2.5810 23.93 I I QI V 5 +20 3.0157 31.56 I I I QV �5• +30 <i- 357.98 x "rA�'"95 5 +40 4.0882 36.91 i I i QI V 5 +50 4.3070 15.89 I I Q I I V 6+ 0 4.4273 8.73 I Q I I I V 6 +10 4.4919 4.69 I Q I I I V 6 +20 4.5213 2.14 IQ I I I V 6 +30 4.5348 0.98 Q I I I V 6 +40 4.5378 0.22 Q I I I Vi 6 +50 4.5388 0.08 Q I I I VI Page 1 of 1 George. Prine From: Stan Sawa [ssawa @la- quinta.org] Sent: Wednesday, September 27, 2006 1:18 PM To: gprine @mdsconsulting.net Subject: height and setback requirements for Tract 32751 George, See the attached Section 9.50.020 for the setback and height requirements for the lots that backup to Jefferson Street. Stan Sawa Principal Planner City of La Quinta Community Development Department 760 7717064 ph 760 777 1233 fax ssawa@la- quinta.org