35088iwuma�
__
IE
3.5oss
P.O. Box 1504
LA QUINTA, CALIFORNIA 92247 -1504 PUBLIC WORKS DEPARTMENT
78 -495 CALLE TAMPICO (760) 777 -7075
LA QUINTA, CALIFORNIA 92253 FAX (760) 777 -7155
SUBJECT: ' PCN 08261 MAYER VILLA CAPRI PARCEL MAP 35088 PRELIMINARY
HYDROLOGY REPORT
DATE: December 5, 2008
INSTRUCTIONS TO APPLICANT:
1) Please provide a written response to each comment on the following pages or in
green line on the redlined plans.
2) Please revise originals and reprint Plans and /or Calculations as necessary for
corrections.
3) Please return all red - marked Plans, Back -Up Documents, Specifications,
Calculations or Reports with the resubmittal.
4) Please assure that each sheet of the resubmitted Plans and the title, cover or signature
sheet of the Documents, Specifications, Calculations or Reports include the
preparer's name and telephone number and are wet - signed and stamped by the -
licensed preparer as prescribed by California Business and Professions Code Section
5536 (Architects) and Section 6735 (Civil Engineers). Resubmittals will not be accepted
with signatures missing.
5) Please return this list, your written responses, and all documents listed above with your
resubmittal.
REQUESTED PUBLIC WORKS CORRECTIONS (1st Round Check to Planning):
The preliminary MSA hydrology report, dated October 5, 2006 is approvable for entitlement
purposes, but additional engineering definition is required prior to plan submittal to Public
Works for 1St round plan check following entitlement.
Underground retention volumes are approved at 3.78 acre -ft for Drainage Area "A" and at
3.35 acre -ft for Drainage Area "B ". Above ground retention volumes are approved at 0.26
acre -ft for Drainage Area "A" and at 0.79 acre -ft for Drainage Area "B ". Total retention for
the project has been established by the FOR to equal 8.18 acre -ft for the 29.21 acre project
tributary area.
The FOR should clarify all retention basin volumes in the preliminary report and recheck
the precipitation and low loss value assumptions per City Hydrological Engineering Bulletin
#06 -16 guidance.
Grading and storm drain invert elevations, storm drain inlet locations and other basic
design storm drain parameters should be established and reviewed with Public Works Staff
prior to 1St round plan check following entitlement. These specific design parameters have
not been provided to Public Works to date.
Sincerely,
Timothy R. Jonasson, P.E.
Public Works Director/ City Engineer
PRELIMIIVi4RY HYDF�OLOG.Y REPORT
For Property Located
In a portion of Section 18, T5S., R7E., SBM
La Quinta, California
OCT 1 8 2006
Parcel Map 35088
October 5, 2006
Prepared for:
Mayer Corporation
660 Newport Center Drive
Newport Beach, CA 92660
JN 1685
CITY OF LA QUINTA
COMMUNITY DEVELOPMFN
DEPARTMENT
MSA CONSULTING, INC.
MAI MRO, SMITH & ASSOCIATES, INC.
PLmNma ■ C rim Emmmm ao ■ LAxu SuRvEymo
34200 BOB Hop$ DRM 0 RANCHO MUAaE ■ CA 92270
T mmHoNB (760) 320 -9811 ■ FAx (760) 323 -7893
0
t t �
0
• Project Description
The project, PM 35088, is located on the northeast corner of Fred Waring Drive and
Washington Street in the city of La Quinta, California, and consists of a 29.2 acre
commercial site (see Vicinity Map).
Existing Conditions
Flood Rate Map: The project area is covered by FIRM Panel No. 060245 2260 D,
revised November 20, 1996, which shows that the project area lies within Zone C,
indicating the area is subject to minimal flooding (see FEMA map).
On -Site: The site is relatively flat and slopes gradually toward the northeast with
storm runoff generally characterized as sheet flow.
Off -Site: The site is surrounded by existing development which prevents off -site
storm runoff from entering the project site.
Flood Control Requirements
The drainage from this project site falls under the jurisdiction of the City of La Quinta.
The project design shall provide for the capture and storage of all storm runoff
generated on -site in a 100 -year storm.
Proposed Hydrology and Flood Control Improvements
Storm runoff will be conveyed via swales or catch basins to above ground and below
ground retention basins, as shown on the attached Hydrology Map. The size and
• configuration of the basins will be sufficient to store the entirety of the 100 -year storm
runoff volume.
Run -Off Analysis
The Synthetic Unit Hydrograph, Shortcut Method, as prescribed in the RCFC &WCD
Hydrology Manual, was used to determine the runoff volumes created from the
proposed improvements in a 100 -year storm event. The 3 -hour, 6 -hour and 24 -hour
storms were analyzed, with the 24 -hour storm producing the maximum runoff. The
data used in the Synthetic Unit Hydrograph calculations are as follows:
Soil Group: A, AMC -II
Runoff I dex_Nunib 32 (U an- Commercial, Good Cover)
filtration Rate (FP): 0.74 in /hr
Impervious Area (A;): 90% G U 1
Constant Loss Rate (F): 0.74[1 - 0.9(0.90] = 0.14 in /hr
Low Loss Rate: 0.9 — (0.8 x 0.90) = 0.18 in /hr
Storm Frequency:
Total Adjusted Rainfall
i L�5�
100 -Year
24 -Hour: 4.1 inches Ly
6 -Hour: 2.5 inches
3 -Hour: 2.0 inches _ Z o
•
Results and Conclusions
The Synthetic Unit Hydrograph analysis yielded the following values of effective rain
for the project site:
24 -Hour 6 -Hour 3 -Hour
3.36" 2.09" 1.71"
The corresponding 100 -year storm runoff volumes for the 24 -hour rainfall were then
calculated for the project as follows:
24 -Hour: Drainage Area A: 14.42 ac x 3.36 in / 12 in /ft = 4.04 ac -ft
Drainage Area B: 14.79 ac x 3.36 in 112 in /ft = 4.14 ac -ft
Total runoff = 8.18 ac -ft
The Synthetic Unit Hydrograph Hydrology Map illustrates the storm runoff volume of
the tributary areas and the storage capacities of the proposed retention basins. As
the map indicates, the capacities of the retention basins and underground storage
are sufficient to store the entirety of the 100 -year storm volumes of their
corresponding tributary areas. It is therefore concluded that the proposed
development of the Mayer Corporation meets the hydrologic requirements set forth
by the City of La Quinta.
•
•
•
•
0
VICINITY MAP
3
•
PALM DESEPYT I BERMUDA DUNS
HOVLEY LANE I AVENUE 42
•
PALM ROYALE
FRED WARING DRIVE DRIVE
NDM WELLS I LA CUWTA
VICINITY MAP
N.T.S.
•
OR/VE
Jim
4
LJ
• SYNTHETIC UNIT HYDROGRAPH
SHORTCUT METHOD
CALCULATIONS
0
•
•
r:
R C F C& W C D
MVF2)Q @1L @@V
��Q6
"SHORTCUT METHOD"
SYNTHETIC UNIT HYDROGRAPH METHOD
Unit Hydrograph and Effective Rain
Calculation Form
Project
1685 Mayer Corporation
Sheet
By RRR Date
Checked Date
[1] CONCENTRATION POINT - --
[3] DRAINAGE AREA -ACRES 1.000
[5] UNIT TIME - MINUTES 30
[7] UNIT TIME - PERCENT OF LAG (100'[5]1[6]) --
[9] STORM FREQUENCY & DURATION 100 -YR, 24 -HR
[11] VARIABLE LOSS RATE (AVG)•INCHES /HOUR - --
13 CONSTANT LOSS RATE - INCHES /HOUR 0.14
[2] AREA DESIGNATION
[4] ULTIMATE DISCHARGE - CFS- HRSIIN (645'[3]) - --
[6] LAG TIME - MINUTES �.�,
[8] S -CURVE _.
[10] TOTAL ADJUSTED STORM RAIN- INCHES 4.1
[12] MINIMUM LOSS RATE (FOR VAR. LOSS) -[NVC
14 LOW LOSS RATE - PERCENT - .,3 �jc g
UNIT HYDROGRAPH
EFFECTIVE RAIN' S M�
� 0\(
-HYDROGRAPH
[15]
UNIT
TIME
PERIOD
M
[16]
TIME
PERCENT
OF LAG
[7]'[15]
[17]
CUMULATIVE
AVERAGE
PERCENT OF
ULTIMATE
DISCHARGE
(S- GRAPH)
[16]
DISTRIB
GRAPH
PERCENT
[17]m- [17]m -1
[17]
UNIT
HYDROGRAPH
CFS- HRS /IN
4 • 18
100.000
[20]
PATTERN
PERCENT
(PL E -5.9)
[21]
STORM
RAIN
IN /HR
601`101[201
100[5]
[22]
LOSS
RATE
IN /HR
S 23]
FFECTIVE
RAIN
IN /HR
[21] -[22]
[24]
FLOW
CFS
MAX
LOW
1
0.5
0.041
1 0.140
0.007
1 0.034
0.034
2
0.7
0.057
0.140
0.010
0.047
0.047
3
0.6
0.049
0.140
0.009
0.040
0.041
4
0.7
0.057
0.140
0.010
0.047
0.047
5
0.8
0.066
0.140
0.012
0.054
0.054
6
1.0
0.082
0.140
0.015
0.067
0.068
7
1.0
0.082
0.140
0.015
0.067
0.068
8
1.1
0.090
0.140
0.016
0.074
0.075
9
1.3
0.107
0.140
0.019
0.087
0.088
10
1.5
0.123
0.140
0.022
0.101
0.102
11
1.3
0.107
0.140
0.019
0.087
0.088
12
1.6
0.131
0.140
0.024
0.108
0.108
13
1.8
0.148
0.140
0.027
0.121
0.122
14
2.0
0.164
0.140
0.030
0.134
0.136
15
2.1
0.172
0.140
0.031
0.141.
0.142
16
2.5
0.205
0.140
0.037
0.168
0.170
17
3.0
0.246
0.140
0.044
0.202
0.203
18
3.3
0.271
0.140
0.049
0.222
0.224
19
3.9
0.320
0.140
0.058
0.262
0.264
20
4.3
0.353
0.140
0.063
0.289
0.292
21
3.0
0.246
0.140
0.044
0.202
0.203
22
4.0
0.328
0.140
0.059
0.269
0.271
23
3.8
0.312
0.140
0.056
0.256
0.258
24
3.5
0.287
0.140
0.052
0.235
0.237
25
5.1
0.418
0.140
0.075
0.343
0.346
26
5.7
0.467
0.140
0.084
0.383
0.386
27
6.8
0.558
0.140
0.100
0.457
0.461
28
4.6
0.377
0.140
0.066
0.309
0.312
29
5.3
0.435
0.140
0.078
0.356
0.359
30
5.1
0.418
0.140
0.075
0.343
0.346
31
4.7
0.385
0.140
0.069
0.316
0.319
32
3.8
0.312
0.140
0.056
0.256
0.258
33
0.8
0.066
0.140
0.012
0.054
0.054
34
0.6
0.049
0.140
0.009
0.040
0.041
35
1.0
0.082
0.140
0.015
0.067
0.068
36
0.9
0.074
0.140
0.013
0.061
0.061
37
0.8
0.066
0.140
0.012
0.054
0.054
38
0.5
0.041
0.140
0.007
0.034
0.034
39
0.7
0.057
0.140
0.010
0.047
0.047
40
0.5
0.041
0.140
0.007
0.034
0.034
41
1
0.6
0.049
0.140
0.009
0.040
0.041
42
1
0.5
0.041
0.140
0.007
0.034
0.034
43
0.5
0.041
0.140
0.007
0.034
0.034
44
0.5
0.041
0.140
0.007
0.034
0.034
45
0.5
0.041
0.140
0.007
0.034
0.034
46
0.4
0.033
0.140
0.006
0.027
0.027
47
0.4
0.033
0.140
0.006 1
0.027
0.027
48
0.4
0.033
0.140
0.006
0.027
0.027
TOTALS
1
100.0
6.724
6.780
EFFECTIVE RAIN = 3.362 INCHES
6:)
0
•
R C F C& W C D
12
D3V & @V
G MURL
"SHORTCUT METHOD"
SYNTHETIC UNIT HYDROGRAPH METHOD
Unit Hydrograph and Effective Rain
Calculation Form
Project
1685 Mayer Corporation
Sheet
By RR R Date
Checked Date
[1] CONCENTRATION POINT --
[3] DRAINAGE AREA -ACRES 1.000
15] UNIT TIME - MINUTES 10
17) UNIT TIME - PERCENT OF LAG (100- [5]1[6]) - --
[9] STORM FREQUENCY & DURATION 100 -YR, 6 -HR
[11] VARIABLE LOSS RATE (AVG)- INCHES /HOUR - --
13 CONSTANT LOSS RATE- INCHES /HOUR 0.14
[2] AREA DESIGNATION
[4] ULTIMATE DISCHARGE - CFS - HRS /IN (645 -[3]) - --
[6] LAG TIME - MINUTES ...
[8] S -CURVE - --
[10] TOTAL ADJUSTED STORM RAIN- INCHES 2,5
[12] MINIMUM LOSS RATE (FOR VAR. LOSS) -IN /HR ...
14 LOW LOSS RATE- PERCENT 18
UNIT HYDROGRAPH
EFFECTIVE RAIN
FLOOD
HYDROGRAPH
1151
UNIT
TIME
PERIOD
M
[16]
TIME
PERCENT
OF LAG
[7]'[15]
[17]
CUMULATIVE
AVERAGE
PERCENT OF
ULTIMATE
DISCHARGE
(S- GRAPH)
[16]
DISTRIB
GRAPH
PERCENT
[17]m- [17]m -1
[17]
UNIT
HYDROGRAPH
CFS - HRS /IN
4f 1 "x181
100.000
[20]
PATTERN
PERCENT
(PL E -5.9)
[21]
STORM
RAIN
IN /HR
601r 01[201
100[5]
[22]
LOSS
RATE
IN /HR
[23]
EFFECTIVE
RAIN
IN /HR
[21] -[22]
[24]
FLOW
CFS
MAX
LOW
1
1.1
0.165
0.140
0.030
1 0.135
0.136
2
1.2
0.180
0.140
0.032
0.148
0.149
3
1.3
0.195
0.140
0.035
0.160
0.161
4
1.4
0.210
0.140
0.038
0.172
0.174
5
1.4
0.210
0.140
0.038
0.172
0.174
6
1.5
0.225
0.140
0.041
0.185
0.186
7
1.6
0.240
0.140
0.043
0.197
0.198
8
1.6
0.240
0.140
0.043
0.197
0.198
9
1.6
0.240
0.140
0.043
0.197
0.198
10
1.6
0.240
0.140
0.043
0.197
0.198
11
1.6
0.240
0.140
0.043
0.197
0.198
12
1.7
0.255
0.140
0.046
0.209
0.211
13
1.7
0.255
0.140
0.046
0.209
0.211
14
1.8
0.270
0.140
0.049
0.221
0.223
15
1.8
0.270
0.140
0.049
0.221
0.223
16
1.8
0.270
0.140
0.049
0.221
0.223
17
2.0
0.300
0.140
0.054
0.246
0.248
18
2.0
0.300
0.140
0.054
0.246
0.248
19
2.1
0.315
0.140
0.057
0.258
0.260
20
2.2
0.330
0.140
0.059
0.271
0.273
21
2.5
0.375
0.140
0.068
0.308
0.310
22
2.8
0.420
0.140
0.076
0.344
0.347
23
3.0
0.450
0.140
0.081
0.369
0.372
24
3.2
0.480
0.140
0.086
0.394
0.397
25
3.5
0.525
0.140
0.095
0.431
0.434
26
3.9
0.585
0.140
0.105
0.480
0.484
27
4.2
0.630
0.140
0.113
0.517
0.521
28
4.5
0.675
0.140
0.122
0.554
0.558
29
4.8
0.720
0.140
0.130
0.590
0.595
30
5.1
0.765
0.140
0.138
0.627
0.633
31
6.7
1.005
0.140
0.181
0.865
0.872
32
8.1
1.215
0.140
0.219
1.075
1.084
33
10.3
1.545
0.140
0.278
1.405
1.417
34
2.8
0.420
0.140
0.076
0.344
0.347
35
1.1
0.165
0.140
0.030
0.135
0.136
36
0.5
0.075
0.140
0.014
0.062
0.062
TOTALS
100.0
12.558
12.662
EFFECTIVE RAIN = 2.093 INCHES
Ll
•
0
R C F C& W C D
pwpQ @1 @ @V
MMULM
"SHORTCUT METHOD"
SYNTHETIC UNIT HYDROGRAPH METHOD
Unit Hydrograph and Effective Rain
Calculation Form
Project
1685 Mayer Corporation
Sheet
By RRR Date
Checked Date
[11 CONCENTRATION POINT --
[3] DRAINAGE AREA -ACRES 1.000
15] UNIT TIME - MINUTES 5
[7] UNIT TIME - PERCENT OF LAG (100•[5]1[6]) -
[9] STORM FREQUENCY & DURATION 100 -YR, 3 -HR
[11] VARIABLE LOSS RATE (AVG). INCHES /HOUR -
[131 CONSTANT LOSS RATE- INCHES /HOUR 0.14
[2] AREA DESIGNATION
[4] ULTIMATE DISCHARGE - CFS- HRS /IN (645•[3]) -
[6] LAG TIME - MINUTES _
[8] S -CURVE - --
[10] TOTAL ADJUSTED STORM RAIN- INCHES 2
[12] MINIMUM LOSS RATE (FOR VAR. LOSS) -IN /HR ...
14 LOW LOSS RATE- PERCENT 18
UNIT HYDROGRAPH
EFFECTIVE RAIN
FLOOD
HYDROGRAPH
[15]
UNIT
TIME
PERIOD
M
[16]
TIME
PERCENT
OF LAG
[7]•[151
[17]
CUMULATIVE
AVERAGE
PERCENT OF
ULTIMATE
DISCHARGE
(S- GRAPH)
[16)
DISTRIB
GRAPH
PERCENT
[17]m- [17]m -1
[17]
UNIT
HYDROGRAPH
CFS- HRS/IN
1`41.1181
100.000
[20]
PATTERN
PERCENT
(PL E -5.9)
[21]
STORM
RAIN
IN /HR
601`101[201
100[5]
[22]
LOSS
RATE
IN /HR
[23]
EFFECTIVE
RAIN
IN /HR
[21] -[22]
[241
FLOW
CFS
MAX
LOW
1
1.3
0.312
0.140
0.056
0.256
0.258
2
1.3
0.312
0.140
0.056
0.256
0.258
3
1.1
0.264
0.140
0.048
0.216
0.218
4
1.5
0.360
0.140
0.065
0.295
0.298
5
1.5
0.360
0.140
0.065
0.295
0.298
6
1.8
0.432
0.140
0.078
0.354
0.357
7
1.5
0.360
0.140
0.065
1 0.295
0.298
8
1.8
0.432
0.140
0.078
0.354
0.357
9
1.8
0.432
0.140
0.078
0.354
0.357
10
1.5
0.360
0.140
0.065
0.295
0.298
11
1.6
0.384
0.140
0.069
0.315
0.318
12
1.8
0.432
0.140
0.078
0.354
0.357
13
2.2
0.528
0.140
0.095
0.433
0.437
14
2.2
0.528
0.140
0.095
0.433
0.437
15
2.2 1
0.528
0.140
0.095
0.433
0.437
16
2.0
0.480
0.140
0.086
0.394
0.397
17
2.6
0.624
0.140
0.112
0.512
0.516
18
2.7
0.648
0.140
0.117
0.531
0.536
19
2.4
0.576
0.140
0.104
0.472
0.476
20
2.7
0.648
0.140
0.117
0.531
0.536
21
3.3
0.792
0.140
0.143
0.652
0.657
22
3.1
0.744
0.140
0.134
1 0.610
0.615
23
2.9
0.696
0.140
0.125
0.571
0.575
24
3.0
0.720
0.140
0.130
0.590
0.595
25
3.1
0.744
0.140
0.134
0.610
0.615
26
4.2
1.008
0.140
0.181
0.868
0.875
27
5.0
1.200
0.140
0.216
1.060
1.069
28
3.5
0.840
0.140
0.151
0.700
0.706
29
6.8 1
1.632
0.140
0.294
1.492
1.504
30
7.3
1.752
0.140
0.315
1.612
1.625
31
8.2
1.968
0.140
0.354
1.828
1.843
32
5.9
1.416
0.140
0.255
1.276
1.287
33
2.0
0.480
0.140
0.086
0.394
0.397
34
1.8
0.432
0.140
0.078
0.354
0.357
35
1.8
0.432
0.140
0.078
0.354
0.357
36
0.6
0.144
0.140
0.026
0.118
0.119
TOTALS
100.0
20.469
20.640
EFFECTIVE RAIN = 1.706 INCHES
•
0
RCFC AND WCD REFERENCE PLATES
c:
INSTRUCTIONS FOR SYNTHETIC UNIT HYL)ROGRAPH
METHOD HYDROLOGY CALCULATIONS
A. Synthetic Unit Hydrograph Development
1. On a USGS topographic quandrangle sheet or other map of suit-
able scale, outline the proposed drainage system and outline the
area or subareas tributary to it.
2. From the map of the drainage system, determine the following basin
physical factors and enter them on Sheet 1 of Plate E -2.1.
A = Drainage area - square miles
L = Length of longest watercourse - miles
Lca = Length along the longest watercourse, measured
upstream to a point opposite the centroid of
the area - miles -
H = Difference in elevation between the concentration
point a.Td the most remote point-of the basin -feet
S = Overall slope of longest watercourse between
headwaters and concentration point - feet per
mile (S = H/L)
3. Determine lag time using Plate E -3 or the following expression
(See Sheet 1 of Plate E -2.1):
Lag (hours) = 24n [L_Lca](.38)
S �t
where:
n = The visually estimated mean of the n (Mannings
formula) values of all collection streams and
channels within the watershed.
4. Select a unit time period. To adequately define the unit hydro -
graph the unit time period should be about 25- percent of lag
time, and never more than 40- percent of lag time. For ease of
calculation, the unit time should match the times for which .pre-
cipitation patterns are available (Plate E -5.9). Also see Sheet
1 of Plate E -2.1.
5. Utilizing the S -graph applicable to the drainage basin (Plates
E -4.1 through E -4.4), determine the average percentage of the
ultimate discharge for each unit period. In reading-the percentage
of discharge from the S- graph, the average ordinate over the t-ime
RCFC fk WCD
] YDROLO Y J\/JA NUAL
ENO ATC C_1 1 to _Z r%
1
4. For 3 and 6 -hour c'.srat:.on storms assume the weighted average loss
rate is a constant defining the maximum loss rate for each unit
time period. For 24 -hour storms use the variable loss rate
function below to compute the maximum loss rate for each unit
time period:
1.55
FT'(inches/hour) = C (24-(T /60)) + Fm
where:
C = (F - Fm) /54
F = Adjusted loss rate - inches/hour (as previously
defined)
T = Time from beginning of storm - minutes
Fm = Minimum value on loss rate curve - inches/hour
(typically 50 to 75- percent of F)
The time "T" used should be from the start of the storm to the
middle of each unit time period, i.e., for a unit time of 3Q-
minutes the maximum loss rate would be computed for T=15-min-
utes for period one, T=45- minutes for period two, etc. Enter
the maximum loss rates (constant or variable) on Column 22 of
Plate E -2.2.
5. Compute the low loss rate for .each unit time period where the
maximum loss rate exceeds the rainfall rate for that period.
The low loss rate should normally be 80 to 90- percent times
the rainfall rate. See Column 22 of Plate E -2.2.
6. Compute the effective rainfall rate for each unit time period
by subtracting the loss rate from the rainfall rate. See
Column 23 of Plate E -2.2. Be sure to use the low loss rate
where the maximum lgss rate exceeds unit period intensity.
7. Compute the flood hydrograph using one of the following two
methods. Do not use the simplified method until the long form
method is thoroughly understood:
(a) Long form method (use Plate E -2.3):
(1) Multiply the effective rainfall rate for the first
unit time period times each synthetic unit hydrograph
value to determine the flood hydrograph which would
result from that rainfall increment.
(2) Repeat the above process for each suceeding effective
rainfall value, advancing the resultant flood hvdrographs
one unit time period for each cycle.
HYDROLOGY 1\/JANUAL
02 ATC C_1 1 12 -4 r
•
•
m. -�.,
EXAMPLE OF SIMPLIFIED METHOD
OF FLOOD HYDROGRAPH COMPUTATION
9
Flood
7
Hydrograph
9
7
[23]
�24]
7
7
Effective
Flaw
17
Rain
cfs
14
In /Hr
17
[2.1� — [22]
Separate Sheet
21
Plate E -2.2
24
26
.13
10
31
.21
54
38
.23
145
45
.22
254
50
.35
343
64
.40
430
Unit Graph Values
85
.48
545
Listed in Reverse
109
.53
680
The position of the unit
Order
158
.77
827
graph values on the sep-
257
1.17
1037
arate sheet in this exam -
479
1.06
1344
ple gives the value of
515
.17
1615
1188 cfs in column C 4]
288
1579
,
To get all of the values
78
118
for the flood hydrograph
758
the separate sheet must
513
moved from the top to the
382
bottom of column [23] .
300
Start with 78 adjacent
241
to .13 and finish with 9
202
adjacent to .17. The
172
flood hydrograph ordin-
145
ate for any position of
124
the separate sheet is
107
the sum of the products
94
of all adjacent unit
80
graph and effective rain
67
values. The computed
58
flow value is entered
48
opposite the bottom unit
36
graph value (78 in this
32
case) for any position
30
of the separate sheet.
27
20
it
2
R C F C ai
W C D
SYNTHETIC UNIT
HYDROL DrBY
1\AANUAL
HYDROGRAPH METHOD
INSTRUCTIONS
m. -�.,
INSTRUCIMNS FOR SHORT CUT SYNTHETIC
HYDROGRAPH HYDROLOGY CALCULATIONS
1. Determine drainage area and lag time. Use Steps A -1 through A -3
on Plate E -1.1.
2. Determine that the area is suitable for development of a Short Cut
hydrograph, i.e., the area is no more than 100 to 200 -acres in size,
and lag time is less than 7 to 8- minutes.
3. Select a suitable unit time equal to from 100 to 200 - percent of
lag. Normally, 5 to 10- minutes for 3 and 6 -hour storms, and 15-
minutes for 24 -hour storms will be adequate.
4. Compute effective rainfall rates using steps B -1 through B -6 on
Plate E -1.1.
5. Compute flood hydrograph ordinates for each unit time period by
multiplying the effective rainfall rate_ (inches per hour) times
the drainage area in acres. The resultant values are discharge
in cfs.
6. The three hour storm peak discharge should normally compare well
with rational peaks. If adjustments are necessary, use a shorter
unit time period to raise the peak, and a longer unit time period
to lower them.
RCFC & WCD
HYDROLOGY 1\11ANJAL
PLATE E-1.2
0
•
•
RUNOFF INDEX NUMBERS OF HYDROLOGIC SOIL -COVER COMPLEXES FOR PERVIOUS AREAS -AMC II
Cover Type (3)
Quality of
Cover (2)
Soil Group
A
B
C
D
NATURAL COVERS -
Barren
78
86
91
93
(Rockland, eroded and graded land)
Chaparrel, Broadleaf
Poor
53
70
80
85
(Manzonita, ceanothus and scrub oak)
Fair
40
63
75
81
Good
31
57
71
78
Chaparrel, Narrowleaf
Poor
71
82
88
91
(Chamise and redshank)
Fair
55
72
81
86
Grass, Annual or Perennial
Poor
67
78
86
89
Fair
50
69
79
84
Good
38
61
74
80
Meadows or Cienegas
Poor
63
77
85
88
(Areas with seasonally high water table,
Fair
51
70
80
84
principal vegetation is sod forming grass)
Good
30
58
72
78
Open Brush
Poor
62
76
84
88
(Soft wood shrubs - buckwheat, sage, etc.)
Fair
46
66
77
83
Good
41
63
75
81
Woodland
Poor
45
66
77
83
(Coniferous or broadleaf trees predominate.
Fair
36
60
73
79
Canopy density is at least 50 percent)
Good
28
55
70
77
Woodland, Grass
Poor
57
73
82
86
(Coniferous or broadleaf trees with canopy
Fair
44
65
77
82
density from 20 to 50 percent)
Good
33
58
72
79
URBAN COVERS -
56
69
75
Residential or Commercial Landscaping
Good
32
(Lawn, shrubs, etc.)
74
83
87
Turf
Poor
58
(Irrigated and mowed grass)
Fair
44
65
77
82
Good
33
58
72
79
AGRICULTURAL COVERS -
Fallow
76
85
90
92
(Land plowed but not tilled or seeded)
R C F C a W C D RUNOFF INDEX NUMBERS
HYDROLOGY MANUAL FOR
PERVIOUS AREAS
PLATE E -6.1 0 of 2)
•
•
C
RUNOFF INDEX NUMBERS OF HYDROLOGIC SOIL -COVER COMPLEXES FOR PERVIOUS AREAS -AMC II
Quality of
Soil Group
Cover Type (3)
Cover (2)
A
B
C
D
AGRICULTURAL COVERS (cont.) -
Legumes, Close Seeded
Poor
66
77 85
89
(Alfalfa, sweetclover, timothy, etc.)
Good
58
72 81
85
Orchards, Deciduous
See
Not 4
(Apples, apricots, pears, walnuts, etc.)
Orchards, Evergreen
Poor
57
73 82
86
(Citrus, avocados, etc.)
Fair
44
65 77
82
Good
33
58 72
79
Pasture, Dryland
Poor
67
78 86
89
(Annual grasses)
Fair
50
69 79
84
Good
38
61 74
80
Pasture, Irrigated
Poor
58
74 83
87
(Legumes and perennial grass)
Fair
44
65 77
82
Good
33
58 72
79
Row Crops
Poor
72
81 88
91
(Field crops - tomatoes, sugar beets, etc.)
Good
67
78 85
89
Small Grain
Poor
65
76 84
88
(Wheat, oats, barley, etc.)
Good
63
75 83
87
Vineyard
See
Note 4
Notes:
1. All runoff index (RI) numbers are for Antecedent
Moisture Condition
(AMC) II.
2. Quality of cover definitions:
Poor - Heavily grazed or regularly burned areas. Less than
50 per-
cent of the ground surface is protected by plant cover
or brush
and tree canopy.
Fair - Moderate cover with 50 percent to
75 percent of the ground
sur-
face protected.
Good -Heavy or dense cover with more than 75 percent of
the
ground
surface protected.
3. See Plate C -2 for a detailed description
of cover types.
4. Use runoff index numbers based on ground
cover type. See discussion
under "Cover Type Descriptions" on Plate
C -2.
5. Reference Bibliography item 17.
R C F C& W C D RUNOFF INDEX
NUMBERS
r�YDRGLOGY MANUAL
FOR
PERVIOUS
AREAS
PLATE E -6.1 (2of 2)
•
•
0
ACTUAL IMPERVIOUS COVER
Recommended Value
Land Use (1) Range- Percent For Average
Conditions- Percent(2
Natural or Agriculture 0 - 10 0
Single Family Residential: (3)
40,000 S. F. (1 Acre) Lots 10 - 25 20
20,000 S. F. (31 Acre) Lots 30 - 45 40
7,200 - 10,000 S. F. Lots 45 - 55 50
Multiple Family Residential:
Condominiums 45 - 70 65
Apartments 65 - 90 80
Mobile Home Park 60 - 85 75
Commercial, Downtown 80 -100 90
Business or Industrial
Notes:
1. Land use should be based on ultimate development of the watershed.
Long range master plans for the County and incorporated cities
should be reviewed to insure reasonable land use assumptions.
2. Recommended values are based on average conditions which may not
apply to a particular study area. The percentage impervious may
vary greatly even on comparable sized lots due to differences in
dwelling size, improvements, etc. Landscape practices should also
be considered as it is common in some areas to use ornamental grav-
els underlain by impervious plastic materials in place of lawns and
shrubs. A field investigation of a study area should always be made,
and a review of aerial photos, where available may assist in estimat-
ing the percentage of impervious cover in developed areas.
3. For typical horse ranch subdivisions increase impervious area 5 per-
cent over the values recommended in the table above.
RCFC a WCD
HYDROLOGY MANUAL
IMPERVIOUS COVER
FOR
DEVELOPED AREAS
PLATE E-6.3
•
• RETENTION BASIN
VOLUME CALCULATIONS
0
•
•
•
(f�
RETENTION BASIN VOLUME CALCULATIONS NISSIH (r
�F.ow C-"v rvD
BASIN A
BASIN B
DEPTH
VOLUME
CUM. VOL.
ELEVATION
AREA (SF)
AREA (AC)
(FT)
(AC -FT)
(AC-FT)
134.3
3,886.12
0.089
0.26
134.0
3,641 :72 :'...::
:.. ':0.084 '.' ; :
0.3
0.03
' :0.23
133.0
2,859.12
0.066
1,0
0.08. ...
0.15
. :.. ... .....
132.0.
...... ....... ...
2,169.25 ..
, . .
0.050
1.0
0.06
, ..:0.09
131.0
1,572.15
0.036
1.0
0.04
0.05
130.0 :.
. 1,067.35.. :: `
: 0.025
1.0
0.03
.::: ., .. ... .
0.02 .
119.0 . ;
:. '.;.4,073.95
0.094
0.7
0.02
0.00
129.3
768.67
0.018
0.00
BASIN B
DEPTH
VOLUME
CUM. VOL.
ELEVATION
AREA (SF)
AREA (AC)
(FT)
(AC -FT)
(AC -FT)
124.0
10,029.30
0.230
0.79
....
,123:0...
8;646:98..:
..
-0.199
:: 1.0
0.21
.::0.58
122.0
7,361.80
0.169
.1..0
0.18
0.40
121.0. ' :; ' :.;':
' :`6,172.1,4 ::.:.:
'::'0.142
1.0
0.1.6.
.; 0.24 ::
120.0
5,076.70
0.117
0.11
1.0
0.11
119.0 . ;
:. '.;.4,073.95
0.094
0.00
•
C
FEMA MAP
I I
s,
ll-- L�0 \
i� -- -- —�r _ J u� . `, ,�
APPROXIMATE SCALE IN FEET
2000 0 2000
ZONE C
NATIONAL FLOOD INSURANCE PROGRAM
II
SITE
FIRM
l
FLOOD INSURANCE RATE MAP
RIVERSIDE COUNTY,
CALIFORNIA
(UNINCORPORATED AREAS)
u�. MILES AVENUE _
- - - --
ZONE A
ZONE C "= « •- RZ.. �;�'
PANEL INDEX F R F 36000T PRINTED)
ZONE C
WES7INARD`' � �� HO:'•
City of Indian Wells
COMMUNITY-PANEL NUMBER
AREA NOT INCLUDED
060245 2260 D
MAP REVISED:
NOVEMBER 20, 1996
City of
Man))
UQuinta
Federal Emergency Management Agency
AREA NOT
This Is an official copy of a potion of the abode referenced flood map. It
was extracted using F-MIT on -Line. This map does not reflect changes
INCLUDED
-
'
or amendments which may have been made subsequent to the date on the
title dock. For the latest product information about National Flood Insurance
Program flood maps check the FEMA Flood Map Store at www.msc.fema.gov
•
:7
SOIL SURVEY MAP
•
SHEET NO. ii
RIVERSIDE COUNTY, CALIFORNIA, COACHEI
(LA QUINTA QUADRANGLE)
9N
. cn . j
Tn
MOD
-;M D..
W!k
Tca
MOB
��verside
County,
C
•a '\ QI'}f r. ,�':i �i j���Y�'���'r'�I }I }. i . "i 'n-'J }G/ i�3j �t,S�
'{•�nJ�I, VFj ,Fy / ��� x�. • ` 3\ # tit ,r -yx
! E 1�� � y ♦ "�i''-
t ! /�;l .,� �• /,%r \l e, .� :.4i t uuk- s r �. s� .n_""F"� -�'�v
rL9`rf�__i��"._y�d�� r. :y r S�{�" -•� .6'y`°'th.�� 'L,rY+'a' �2.,�.n�..:: -������
�'TU' �..J' �t` ;ir.r �+a; %�'. �h, -' �� �i ®' �..i! y. F� �t r ., •,;,Fj- •yRy' �' 1
I S {'{
�• a �, �' yr r :, ice: ''q .,�-. • y t� s � .. t� :.
/ r j' ' °�rv��1• , ,'i �� i ,` �y�•et "sue / rd. f �'` I
s `,'faT. .�,.
r':5. 0 �4�G•q�i,}'" r."%' "�'�'..::r�j. v.l�.. .,. •>y:�' �..y1' -c., � \'•�: :�},���;
„�:. ' �'. •��� � _ _ .,- the ";.;; $°• :': -, rE:;. � �
' ', !fir �`;,,: � �•_ , '' �
V-1 '
s �r P R �" �rr � �1✓": � `ts 'i�a. �.-� �F° r �,�,'Rr..r �S�C �,3�, }{ih � � _
-. 1 r�.. Wes,'' -, ai
< � +.P -"£�- •% Z � .��
se
ORIN9 r -
,tS �� ±,��ti`"" .q��l" ... h. Yt' f cy' ' �'"�..? r; ' . •„ Y' �k s 'Y�}L- �c�.�'��* ������"r'�
1
•
•
•
?8 SOIL SURVEY
TABLE 12. Soil and water features— Continued
' This mapping unit is made up of two or more dominant kinds of soil. See mapping unit description for the composition and
behavior of the whole mapping unit.
parent; and the months of the year that the water
table commonly is high. Only saturated zones above a
depth of 5 or 6 feet are indicated.
Information about the seasonal high water table
helps in assessing the need for specially designed
foundations, the need for specific kinds of drainage
systems, and the need for footing drains to insure dry
basements. Such information is also needed to decide
whether or not construction of basements is feasible
and to determine how septic tank absorption fields and
other underground installations will function. Also, a
seasonal high water table affects ease of excavation.
Depth to bedrock is shown for all soils that are
underlain by bedrock at a depth of 5 to 6 feet or less.
For many soils, the limited depth to bedrock is a part
of the definition of the soil series. The depths shown
are based on measurements made in many soil borings
and on other observations during the mapping of the
soils. The kind of bedrock and its hardness as related
to ease of excavation is also shown. Rippable bedrock
can be excavated with a single -tooth ripping attach-
ment on a 200 - horsepower tractor, but hard bedrock
generally requires blasting.
Formation, Morphology, and
Classification of the Soils
This section contains descriptions of the major fac-
tors of soil formation as they occur in the Coachella
Valley Area, a summary of significant morphological
characteristics of the soils of the Area, an "explanation
of the current system of classifying soils'by categories
broader than the series, and a table showing the clas-
Hydro -
Flooding
High water table
Bedrock
Soil name and
logic
Frequency
Duration
Months
Depth
Kind
Months
Depth
Hardness
map symbol
group
Ft
la
MvO
Ma 13, MaD --------- --
A
None - - - - --
None - - -- --
-- ---- -- --- - --
-------- - - - ---
-- --- - - - - - --
------ -- -- --
>6.0
1.5 -5.0
- -- -- -- - - -- --
Apparent - - - --
----- - -- - ---
Jan - Dec - - --
>60
>60
---- -- ----
---- --- - --
c 0 ----------- - - - - --
Niland:
NaB-- --- ----- - - - - - -,
C
None - -- - --
---- --- - - --- --
--- --- - - - - --
>6.0
------ --- - - - --
-- --- - - --- --
>60
NbB-----------------
C
None - - - - --
-------- - - - - --
-- ---- -- - - --
1.5 -5.0
Apparent - - - --
Jan- Dec - - --
>60
- --- - - - ---
---- - - - ---
Dmstott:
OmD---------- - -----
C
None - - - - --
-- --- -- - - - - - --
------ - - - - --
>8.0
--------------------------
4-20
Rippable.
O rl:
Omstott part - - -- - -.
Rock
C
None -- -- --
-- ---- -- - -- ---
----- --- - - --
>6.0
---- -- -- --- - --
- -- --- - - - - --
4-20
Rippable.
outcrop part.
Etiverwash:
RA.
lock outcrop:
RO.
RTi:
Rock outcrop part.
Lithic
Torripsamments part.
D
None - - - - --
-------- -- - - --
---------------
------ - - - - --
1 -10
Hard.
lubble land:
RU.
Talton:
Sa, Sb---- ---- - -- -- --
D
None - - - - --
------ ---- -------
-- - --- ---
2.0 -5.0
Apparent-- ---
Jan- Dec- - --
>60
--- -- -- ---
;oboba:
SOD, SpE-- ---- - - - - --
A
None - - - - --
---- ---- - - - - --
------ -- - - --
>6.0
--- -- --- - - - - --
----- - - - - --
>60
---- - - - - --
Corriorthents:
TO 1:
Torriorthents part.
Rock outcrop part.
..uiun a:
TpE, TrC, TsB- - - - - --
A
None - -
-- --- -- - - -- --
- -- --- -- - - --
>6.0
----- - -- - -- --
------ - - - - --
>60
---- - - -- --
' This mapping unit is made up of two or more dominant kinds of soil. See mapping unit description for the composition and
behavior of the whole mapping unit.
parent; and the months of the year that the water
table commonly is high. Only saturated zones above a
depth of 5 or 6 feet are indicated.
Information about the seasonal high water table
helps in assessing the need for specially designed
foundations, the need for specific kinds of drainage
systems, and the need for footing drains to insure dry
basements. Such information is also needed to decide
whether or not construction of basements is feasible
and to determine how septic tank absorption fields and
other underground installations will function. Also, a
seasonal high water table affects ease of excavation.
Depth to bedrock is shown for all soils that are
underlain by bedrock at a depth of 5 to 6 feet or less.
For many soils, the limited depth to bedrock is a part
of the definition of the soil series. The depths shown
are based on measurements made in many soil borings
and on other observations during the mapping of the
soils. The kind of bedrock and its hardness as related
to ease of excavation is also shown. Rippable bedrock
can be excavated with a single -tooth ripping attach-
ment on a 200 - horsepower tractor, but hard bedrock
generally requires blasting.
Formation, Morphology, and
Classification of the Soils
This section contains descriptions of the major fac-
tors of soil formation as they occur in the Coachella
Valley Area, a summary of significant morphological
characteristics of the soils of the Area, an "explanation
of the current system of classifying soils'by categories
broader than the series, and a table showing the clas-
•
RCFC &WCD
HYDROLOGY MANUAL
REFERENCE PLATES
�'' - ;�•=� ����� �� -�--� x.>, � �.� :�riy �" ` { ,.{fiC.E'�, i- _- r*:R °�f • `� r� C R•gE �'I•'
Q.r,.� s `- r����4r''.•t a��" - � ��'`�; -C I.'. 1 , c � � .�� �'�' i � � I �� x,.o " ' '-,,, 7 -
t ?.s' s r? a f �'�.;� v 'ti,� ,-�' .lz T rt c r �„` •r3_1! �I• _ r .. 1_ � I ._ . �- --- �,
.,.;, fx r J ' ..! - i.,•a,,�,- z Y .���,,� � t h.' t,� r�,�"'� r. t ° Eh�N.Web -- ! .L.�:� 4.11_ _._ _.�.�.:��....:.._..- ,.�,�..� �.
�Jy J!`a ° ,�r � 5v'',a k�� rf, a .�. t ^��" � ILV! r _s 3: ,�1 ,liu •Tt s F �_
,. -��-• r. �"... 4 � ' . � 7.�'� 1 �- ^�,t+sts � .Tj.. c ! ? y _ .. k.�x� �ir:•�- - -_ - - - - - -'L - - F - - f,�p�
'Hein- `-,7r ;1 •e.6j ;`
1 �$ �"" f.> 51.11 j '� ✓ Ci�: -7N {•.J4 / LJ�VT- f, Y�'= �• ,�- ,� I fe ,! t1: {�.g. ..
S;Ei - t t-�ty. -� •tl4 .,' vr� ` 2 Y y..VdLV "' li:..y ;.: � •..._.A I. COJIt_., �L:. :-,4! he
}}= ,Tr:m •. =� -'r �'>�.'' S ,�� ���' �' '.?'= 5�{4'"�.v;�;.S.tild.'.'l. f ::� ��if.;': �1.... �c..�...' -T .. rtF �:f. _ iAr7^ ,
.Y Yag1 i �ti� '��:.. �Ccl�/ �!. ;; ^'^:. 1:: ♦, ca iL.7:`l' .J.
x.e� r F,.�.,•:.s ; .�E:,x ;�- ;.STM,- ��:����t�.. ..'�N ,. cu:`�4:- _ -- = 'c> -;_:`; .-1� •.<!� •�f_ �'� Td.
�'''� ..�5�".Y+' �••�e �6�.� .;5„ : /r-- e� ^c.;::-A ..,SV. •g5?CY�':�: �' _ ':e..;, °L _:�> '.���.. _ 1yr.',_e..� ..\.. __.;r`�
r.. - _ ' '��° • �` ' �`'. � ... - ;: r. � - -'v,- - _ ' ��° .' r >:: ?r"• icily •'� , i
'�. - �:i.2 ='� _ <.a,- �,1 - - .:fear. i `Q �� . �•�E'', \'4,! .(V•� �`f.�0 t\\1.A t'. �Nl %O''N' ^j}'!{' NN /$.lit!�i -e:�„
/`- ^ 'q _' -• } � � ! '> � p� �. "'. / � '-�� :JjyK-A � „3-„ . 3 %:.1.`:,q� RM': '.i F
..«si - 5,~ .�.f - '�'$ 5fsc o- '�s *'• y -u is `1'�'�i�c�__.r -` i ' "`^-: j. �r < •\',
' 4 i• •�• Xw•' : "` .[` IY .3 C �':i'J'a�:io .=!} ,. _4, "�� C\ _ + - �., ? - '� SAN BEN NAffO'NEi..
..! N �'�+r3y3, r 1 -" ,.0 '�.7/- .1, •H d'v.ii y: n�,�� S71_6 g• ?�'L Y,Y,�,_�. -rte• i-. \ten- .__�i,. ,j: NIVEB�-lb..E
"i `•; - i-. y -t=,S� .:{.... r �.rs ..a . /i jj' v-T' y2 - �_w°�::� �*'� s �y ..` a -':f✓� .,L ' : Y
ern r�r, �,. 1, •. 3 .>ti; � !• 'tom:'.`. y , `,�::.,-..:,
�•�•`_���� ` .� ,.� � :<`:: - six -y;`Cr y 'w., it�ev.� -<
>�; ySu1 n et.'.• '- r '`p!+ '' ``Y~ `+'two.,,
.r � .•. 4` r\ cs f s-"G i� - - � ,5f,�5:,'ti ..,''11..:� I :i �.: - ' l '''
- NN:T. F 'ti+N+••car'. ^rr - - D � ''�r�'.''.�b ?� �- �� t. v,.ar:, � '.ti, a. I. �'�iW?•= ::ertpS'iom,ue. >.•
-
��rA -1 I T29:
r
� f 11yy {1v!`.t ; - i 'L� s�1 J1 r s .•�`....�.,� � sp v, � y .(. _..? � �� . �� . 3. .y "�'\ . 1
' E ti • 3._ � .,1 .e,, >•jr-r.3AN,EOi�. I I = C ;� 5 � t c Y` ' ',:` \ ' /:' : �,.. ,
_ � r _ - r 1 Nag r a*2q•7'1�af_�•4/- 1 t ���'°?'' - ,j ,.. *�� t .� •/. ..�-•'i `i
< t l a,rf 1 k t s f .+ .:! Y : . �, .,._'f • . L ' t" i:=�I • ,r- 1 Ir`
'�'� 1.t -.r . •.4 - e�eJ13t A x d 6 � ri ��c!� u � `-�.�� 12� ��' +� �:.I.,,yy�� � :J� � - . �' � •e_''�. ,ire" , t 5
u..r r 1 `7. /. tL i °a�� et F,w•;'^ T.i„ yt 4.,- ��*.�' ./� . "�
�. � '�,..tt,� S.r -Ft-II �'YW+ nht Pf t. -� W>f 5 1JYn Rn:rt �,.. � •�,f'�j -..��" �/ \� '� .
k < �,�•,e�C `-: iii Y�- ,F,,,,�•. -,'ey � �+ ,�. pyr�,r` J ..J I n Tom' -' 1 ..Z', -? - :,rt �•-� e' f �`1�•
btr '.7� \` ."' S" � ��'i'.nd \. 6�^! �, � � y��• � , t }" 1 `l 'V/ y ! ., ; , . � t a 1 I!J
� _ �„ N��o� . P n 1 !'^fir � \ e � 'Sy i`:•r'Y '`t. � M � 1 �.� -y :." 'aJ.,. ? . t °'"�. � - - �. y'ucL \
�1 1 .;.kr -�� .ice .�I::'.,LIr.. >`?.'� � "� ° f�;w �'•;�. r�?.,.. ._Ie..�:•,� ls.:i. :.i' �'t.f �'.' �' '°�.'��.�` `�` '?�jri- ,�.'�l.' >` .sr�.cr
_ {�. r h \..� .� r , 8 ... . ;?. - Tt: . - t�::: f , } ..� �1`. 1sZJy � rU Z � , r.: 1• 3+�.�� ,% ( l
\ . �� �•�'0�?�, .r^. `' ,ter � r t ��,. < -C� ���t;� :�•,€a'.:}. `� � F v Vii7F ?N C". °> � �•,`�• '`'�' "' �r".f , ' �"' .!* � i;T' ' - :�57t ���k .
\ /�-:.. T f :'•y r �•,- ' c. ;• ` rr �`�aSxh'. x . ,. i �'�'�h �• stkrr i:: � _ �� ,s, • ' � � �'�, V LF "� r.
.. i1. � - � � '.• �vt% �µr 1`n'�r�' -. xT� �� -r(- it! `�• (C' Mir- . <...:.•'�:` �y.�.' {-/.
WT
�'l,T: ..•N ._ \ ...,Sr YYamunef 1.f -=\ \l 1"� , • � ��1. /..
.T.: S r �� i�Kd(Ia�s:� � � � - •tea_ -�(� ea G1 � r '^ i(
:,m�/tw •l� �'�•.'t�� `1���rV•. a.( �t ,y;,,. �- f�L�,. �y�,,i>,�'.�4�:. �1. �_, �,� a�+rr \V � �tn>rrt. ! V+ ��' dio ` : t •c•^�
t
y ' Si•f"� T v_rttT ,.n. _ I �, t ; I
5^ �.z
,-.,: >� �\ t4.'iJ.• :.' i : \F.Y. .:!\�y�(j 1 . -4 _ � . ND �ES �" `�. G'...
na
' '4a `�"V` r tc5V>bt-{eAf. fi .t ( r `;'�. ,.mpA� .�'•':. `':.
(
' -1 .S i• 8 E & \ A R'�t\•� -k'�ci iI ��' d . �L-;S.�.P`' 'a `.�`, � t r" , �c� S ti� r
_ .`i:y �' h �,,,Y �.l,r j1:,c.` �. i•y {c�..7 v if .fi,c^' \y �1'+' • c ...�� '
•k I•-
htEO :tlO+ to T"-C. `. (.•1_ *•-. •r�� ,I 'i •'• `.1e: �Mn�1 r•
l.fj:��']_...•„
WRi?Cw 4 &CAN `. N (. IOU$
fgrN I'n �. Rv 4. �' `-~` •.f J.)•.,`'y. I t Y,. �..o. \ I %.•' f. 3`'f • 'r.T Cne =o
• -- - 1 '?'Y ,4
_ I °� A��}ei:Ny?,�a,A_ �'' y„�1!?b =i .J -�R✓�: �:�';1,� '•j' {'i •s.. ;,a:>i.'- ,.+i:::� ^::�:':' i•• N6iN cs` t ;� n
'1 *� �•.8-���'!ff n;'L: ..•.,., = tr..l�+�`�, ^.. ._.� �f.�y.r�, _` •�1'::;fri�':'y _ -_ - -ti.
., (j` TJC�,4E8A :r ?' - - •i xR •': ' l Mn
WpWrr _.•!}:c"!rte_•'' •> ; 1 i TORR65
•'-r;,(- - ,; ��yf .�:+L. �" °�- ~iKSEXVAF' tXi �. •.- _ ..'�--`' .t -e0 ! „1.y..�ti C.�AR71N
..r, i ys� f �`';' `4y1. 1 ���f^:..":�;:::�..,'`.''.: T'`�- �•`• `j• /.Ny�•.� �J�� /� . <. -7iJ'
! .: r, I -- -'�- - - '�`�Re`vf�w ` " I - -' -- �"� .\ . +� .. _ r s �'�' f ��},- i`ac. ^a �J_,... ���yy•�. ti '�' �.± p ,
r' ^ -•, undo, �`".': ?. .:t::k >^ - - i- s, YY� `1G:} +�� "�97\ ".' _ I'
•`';r:�.ss�� s.lw _ _ ?n.,'r -:q'' =t "i!_._. 'f;:- +.....:_. `+•% •. {' --' •r.
il. :i•fC%'I' CA11U:C ,NOIA W7'fn�f.,, `h.. ' \'•�pr �'�� : ,. "'. ��'4 .. I 1
- -- tc-a!` 7•-- - rr.,`S.._- - y �- «. .:: ,::.,.•nc• >'a '= 14G.- '•' *,y.,' _ _ -, .._�:: ,� -r.J:;
ice- I _ �•, ; ;. =*:c _. �•�.. !._ :1,.,..:
fri / `• :-{'. � .'+�• �..er; .� ' _. ::5:.,c�dc ... - .`.R,,. �.,,,'.;;r+�?�c._ -::. �, . ;�..oRRES +{A :T-. '!�
�`:�•- ^- is -%Y.. � _1 .=eti ..
�`• C<,m ,YCN` �. �t- 'a _ �'..I � _.'k: ,1- . �'aE. - .. �� paa�: z_.,. .;;; . w7''�:y. •::�: °,`� _ f
:=e. .. ",� •'gii4ty. S\ 'tsr` "v, .��'• •.�� i = 'Y`•s�'�`�� "�+TSS�?_'. ans. Z- ^L s .
��•. , RNf '�f:OU V•I!'•'�'� 'Z ', - !.'1', -�.� - RNER
..... v.n•r. :d = -
`'' RIVERSIDE COUNTY FLOOD CONTROL
WATER CONSERVATION DISTRICT
+` 1 `3~:' �.._ .`" `•°� . , . J ` . q -" IOG -YEAR 3-HOUR
PRECIPITATION
- '�.:q }' . . ..' •� �roREST - -: �r�- '�,•,V �<�. '..r.c `; 1,,:!� ^< -',a =r •` . -''_ 1 'O>
.S:
_�•; r :•y^ J., _'f' �c1�...�= -�-i-F :; r i. ,'+ ,.r I•. �.:,'y:.:,..rti:.. c; '::z..:;. ..
- E
7
f—ifl.' f,
'j,
M:
7
ER
. 4L.
. . . . . . . . . . . . . .
v
VV
7 T
7,
4,
Ay
Y t-` .. ;Y >. -X u i <V, — 1` t - „4ti ` ?, __ M nk;
Ni
Mlll�
eVP
s
ti
y'� • tic •t r 7�
-MF
Mu
t
rf I1't4'
N-
X_
T."
I i A R
71 .
Z-4- %;R_
4
TV f3*1
RR
. ......... idi
cl
10
CAHLJIW;
. . . . . . . .....
Q,
vAT
T
"�7/Yv 1`'' A
rL
RIVERSIDE COUNTY FLOOD CONTROL
A N D
A
w, WATER CONSERVATION DISTRICT
lit—
'A
c.
—YEAR— 6—HOUR
100
Ila PRECIPITATION
RZE -K4 W, 4L
SAN IN
17' IWA
se
INDIAN
OW y
RIVERSIDE COUNTY FLOOD CONTROL
WATER CONSERVATION DISTRICT
PRECIPITATION
efofiEsr
---
LIN
17' IWA
se
INDIAN
OW y
RIVERSIDE COUNTY FLOOD CONTROL
WATER CONSERVATION DISTRICT
PRECIPITATION
efofiEsr
---
0
•
•
SYNTHETIC UNIT HYDROGRAPH
HYDROLOGY MAP
•
•
SYNTHETIC UNIT HYDROGRAPH
HYDROLOGY MAP
0
II
_ t
t law Y)\
`�5;. 'r- «-...:::. w f - _^-.._..\ ` .y1 •� } �.
v
I
, - .._,....— ...._.._..._..... -� �,,,,. -,..a� ��- _- «. -.�..- - _— ..._.+' ✓' f. ,JS..- wrr+w,N-J J-y � �` ! � �". i. ." ✓'" vueV- tw,J✓\
I
147 ''\\ . C,
11 �' � %' °,� o
/ �'� .�If`j � � n ._-! ��, ! 1 jj .,-�" ��'_ ,r 4`i yr, ----� •.,� ,� � t
5 IL 4 J i o i�^�
J.
V ,
YP v
(y l .
ry
IN
J\ t /- - -. Jf(j '^.....jr I..� �✓' �,,.,..^' -' i�� j � +/yy
ol
qq�\ � �`'• `'� �..�. >,� _' ..._.✓"°- _.�"". —�./ I � \ �
f^„ 'ti. s �'\ {..:-""� /-� � ,rte � .✓
v._.
IN,
lip C:7
Li
Hill
r
,
y
i
t� 24
J
� Y
0
Q
IX
%.. \WSEioo \1 Z. QO
L
U A-0, E "'AR
14.j79--, - - -kGR
2
:r
, Nos '0
\ —
y
,
a
}
r• �.
e J -
r^
-- d -
v
0
,.^ a _.--
cl
C 1 lug i �
2. 2,70 3. Zo �(� ZS
,la
m
m
PALM DESERT
HOVLEY LANE
R
11�
Z
0
0
Z
x
Q
CALLE LAS BRISAS /
FRED WARING DRIVE
INDIAN WELLS
BEFILMA DUNES
AVENUE 42
PALM ROYALE
DRIVE
LA OUINTA
VICINITY MAP
N.T.S.
O R'C
0, 80' 160'. 240° 320'
SCALE 1"=80'
RAINAGE AREA "A"
AREA
RUNOFF
ZCIAL
14.42
4.04
AC —FT
TOTAL
4.04
AC —FT
TENTION STORAGE
ON BASIN CAPACITY 5 DEEP
0.26
AC —FT
WATER SURFACE ELEVATION = 134.30
ON BASIN BOTTOM ELEVATION =
129.30
ROUND STORAGE CAPACITY
3.78
AC —FT
1RAINAGE AREA "B"
AREA
RUNOFF
RCIAL
14.79
4.14
AC —FT
TOTAL
4.14
AC —FT
JENTION STORAGE
ON BASIN CAPACITY 5 DEEP
0.79
AC —FT
WATER SURFACE ELEVATION = 124.00
ION BASIN BOTTOM ELEVATION =
119.00
ROUND STORAGE CAPACITY
3.35
AC —FT
LEGEND
DRAINAGE DIRECTION
TRIBUTARY DRAINAGE AREA BOUNDARY
PROPOSED STORM DRAIN
UNDERGROUND RETENTION STORAGE
L., !l 1 V- V V I Lw w %a
MSA CONSULTING INC DESIGN BY
EAK CITY OF LA QUINTA, CALIFORNIA
MAnqmRo, Smm & AssocrAm ING DRAWN BY SYNTHETIC UNIT HYDROGRAPH
PuNmm ■ Qm Emummmo ■ LA m SmvEymo EAK HYDROLOGY MAP
34200 13oB Hope DRm ■ RANcAo Mao$ ■ CA 92270 CHECK BY PARCEL MAP NO. 35088
Ta><smom (760); 320 -9811 ■ FAx (760) 323 -7893 RRR