SDP 04-814HYDROLOGY STUDY REPORT
FOR
LA QUINTA BUSINESS CENTER
SDP 2004 -814
43576 Washington street, La Quinta, CA
i
'DE$g (F-
A -SO KNaG✓iJ .76rte
--ryZUST �� f
�� '
i _
Z
n
Date: July, 2005 _
r C
P
By:
FOMOTOR ENGINEERING
225 S Civic Drive, Suite 1 -5
Palm Springs, Ca. 92262
Office (760) 323 -1.842 Fax: (760) 323 -1742
t
,�w
TABLE OF CONTENTS
Summary
Project Description
Purpose
Analysis and Design Methodology
Proposed Stormwater Management Plan
Retention System Sizing
Stormdrain Pipe System Design
Sizing Catch Basins
Appendix 1 - Stormwater Runoff Volume Computation
Unit Hydrograph — Developed Condition Summary
100 year — 3 hour
100 year — 6 hour
100 year — 24 hour
Underground retention field design
Appendix 2 — Sizing Stromdrain Pipe System
Rational Method — Drainage Calculations
Rational Method — Developed Condition Summary
Q100 calculations
Hydrology Grade Line — Pipe sizing calculations
Hydraflow Output
Catch Basin Sizing Calculations
EXHIBIT 1 - ONSITE UNDEVELOPED CONDITION
EXHIBIT 2 - ONSITE DEVELOPED CONDITION
LAQUINTA BUSINESS CENTER
Preliminary Hydrology Study
April, 2005
Project Description:
The proposed 2 acre commercial development project site is located approximately 960 feet on the
northeast side of Fred Waring Drive and Washington Street intersection in the City of La Quinta,
California. The site was previously developed as a medical office use. The original structure was
removed years ago, only the asphalt of the parking remains in place. The site is currently vacant with
desert land, with undulating terrain and minimal vegetation as configuration. Existing onsite stormwater
runoff is directed towards the Washington street.
Purpose:
The purpose of this study is:
• to provide hydrologic calculations to accommodate design storms up to the 100 year
frequency and 24 -hour event; and
• to design facilities and methods for flood protection for the on site and off site runoff.
Analysis and Design Methodology:
The hydrology study was performed under the guidelines of the Riverside Country Flood Control and
Water Control District (RCFCD) Hydrology Manual.
The Rational Method was used to calculate peak runoff rates, and the Synthetic Unit Hydrograph was
used to calculate runoff volumes as prescribed by the Riverside County Flood Control and Water
Conservation Hydrology Manual.
Computer programs were used for:
• Hydrology (CivilCADD /Civil Design Engineering Software)
• Hydraulics (Hydraflow, Storm Sewers).
Proposed Stormwater Management Plan:
The proposed project site involves two parcels, to be developed with a two -story general office building
with a parking lot.
The layout of the proposed site will have underground retention storm field system. The onsite and
offsite runoff from a particular storm event will be conveyed to the underground storm water retention
facilities through catch basins and storm drainage pipe network.
The design of the development will not cause any increase in flood boundaries, levels or frequencies in
any area outside the development. Moreover, the existing drainage conditions outside of project
boundaries will not affect project area study. (See offsite Washington street profile).
W:\Jobs2005 \La Quinta Business Center \HYDROLOGY\REPORT\HYDROLOGY REPORT.doc
Retention System Sizing:
The proposed underground retention system is designed to contain the 100 year storm event, due to the
development. The 100 year and 2 year frequencies storm runoff Hydrographs, peak flow rates and
runoff volumes were computed for 2.2 acres draining to the proposed retention system.
The total drainage area of 2.2 acre includes project's area and public street to the centerline.
Assuming soil percolation rate of 2in /hr (per the city CoA and percolation test results) , the total volume
to be
d on the proposed the retention system was calculated (refer Appendix for calculation) to
be .33 A e -ft.-, Gu�QfG -�j3 C�c�l►�Z- Fll.��'! a1'f/h/ 9� LdCOKC U , 57M9C -r-f-
The-layout of the proposed underground retention facility to store required capacity with different single
trap units is provided by the manufacturer.
Maintenance of the retention system is recommended per the manufacturer procedure and
specification (refer to the appendix) and city standard and requirements. Two feet diameter access
opening as suggested by the manufacturer are provided for maintenance at two location.
Storm Drain Pipe System:
Rational Method was utilized to determine the 100 year peak discharge (Q,00) for sizing pipe.
Hydrology Grade Line was used to verify the storm drain system as a pressure system, the starting
hydraulic grade assumed to be at the top of the storm trap unit.
See Sizing Storm drain Pipe System
See Developed condition and Storm Drain System Maps
Sizing Catch Basins:
Los Angeles County Flood Control District Design Manual was used for catch basin sizing.
Results
Catch Basin: Q W V_ Description
D cfs Ft ft
CB #1
2.45
4.0
3.5
_ ................
;CURB OPENING 4" GUTTER DEPRESSION
. _..........................._.._.._... ..._............._.........._..
CB #2
3.34
4.0
3.5
CURB OPENING 4" GUTTER DEPRESSION
CB #3
1.66
4.0
3.5
;CURB OPENING 4" GUTTER DEPRESSION
CB#4
1.95
4.0
3.5
CURB OPENING 4" GUTTER DEPRESSION
See Catch Basin Sizing Calculations.
W:Uobs2005 \La Quinta Business Center \HYDROLOGY\REPORT\HYDROLOGY REPORT.doc
APPENDIX 1
STORMWATER RUNOFF VOLUME COMPUTATION
FOR RETENTION FACILITY
W:\Jobs2005\La Quinta Business Center \HYDROLOGY\REPORT\HYDROLOGY REPORT.doc
LA QUINTA BUSINESS CENTER
• LA QUINTA
DRAINAGE STUDY
100 YEAR
CONDITION = DEVELOPED
3 HOUR
LOT AREA = 95469 sqft
2.20 ac
Watercourse Length = 332
ft
Lca (length from centroide) = 127
ft
'
HIGH POINT ELEVATION = 148.5
0.39
LOW POINT ELEVATION = 143.25
EFFECTIVE RAINFALL (in)
DIFFERENCE = 5.25
ft
S- graphs: VALLEY CURVE
TOTAL RAINFALL (in)
HYDROLOGY SOIL GROUP A
2.75
URBAN COVER COMMERCIAL
GOOD FOR DEVELOPED
IMPERVIOUS AREA COEFFICIENT
3.71
Al = 90% PROJECT
IMPERVIOUS AREA
ANTECEDENT MOISTURE CONDITION
AMC II
- ESTIMATION OF INFILTRATION RATES
Runoff Index RI =
32 Plate D -5.5 RCFC &WCD Hydrology Manual
INTENSITY DURATION CURVES
LA QUINTA
2 year 3 hour 0.70 "
Plate a -5.1 RCFC &WCD Hydrology Manual ,
100 year 3 hour 2.20 "
Plate E -5.2 RCFC &WCD Hydrology Manual
2 year 6 hour 1.20 "
Plate E -5.3 RCFC &WCD Hydrology Manual
100 year 6 hour 2.75 "
Plate E -5.4 RCFC &WCD Hydrology Manual
2 year 24 hour 1.60 "
Plate E -5.5 RCFC &WCD Hydrology Manual
100 year 24 hour 4.50 "
Plate E -5.6 RCFC &WCD Hydrology Manual
RESULTS
STORM EVENT
100 YEAR
DURATION
3 HOUR
6 HOUR
124 HOUR
FLOOD VOLUME (cu. Ft.)
(Ac. Ft)
15,058.1
17,059.3
24,924.5
0.35
0.39
0.57
EFFECTIVE RAINFALL (in)
1.89
2.14
3.12
TOTAL RAINFALL (in)
2.20
2.75
4.50
PEAK FLOW RATE (CFS)
4.45
3.71
1.16
CALCULATION FOR NUMBER OF UNITS REQUIRED TO RETAIN STORMWATER
RUNOFF
Manufacturer — STORMTRAP
Catego NGLETRAP
Hei t= ' V%L%jti enk n�q;rrfa��
Width = 6'
Length = 14'
Capacity per unit = 451.5 cu.ft
Percolation rate = 2 in /hr (see percolation test report performed by sladden engineering)
Width of bedding per unit = 6'
Percolation Volume for 3hr rainfall Vp 6x (2/12) x 3 = 3 cu.ft/ft
Percolation Volume for 6hr rainfall Vp 6 x (2/12) x 6 = 6cu.ft/ft
Percolation Volume for 24hr rainfall Vp 6x (2/12) x 24 = 24 cu.ft/ft
Total Volume V3hr = (451.5/14) + 3= 35.25 cu.ft/ft
Total Volume V6hr = (451.5/14) + 6= 38.25 cu.ft/ft
Total Volume V24hr = (451.5/14) + 24 = 56:25 cu.ft/ft
Considering 100 yr 3hr rainfall
Minimum length of retention system Lm;,, = 15058 cu.ft / 35.25 cu.ft/ft = 427.2 ft
Considering 100 yr 6hr rainfall
Minimum length of retention system L,,,i„ = 17059 cu.ft / 38.25 cu.ft/ft = 446 ft
Considering 100 yr 24hr rainfall
Minimum length of retention system Lm;,, = 24925 cu.ft / 56.25 cu.ft/ft = 443.1 ft
100 yr 6hr rainfall generated the maximum length and hence used as the total length (446
ft) required for the retention system.
RETENTION SYSTEM COMPONENTS
Total tributary Area = 2.2 Acre
Required retention system length = 446 ft
Total capacity of the system = (451.5/14)x446 = 14,383.5 cu.ft = 0.33 Acre -ft
A layout of the system to retain the required capacity using different components is provided by
the manufacturer and is attached.
Sladden Engineering
6782 Stanton Ave., Suite A, Buena Paris, CA 90621 (714) 523 -0952 Fax (714) 523 -1369
39 -725 Garand Ln., Sulte G, Palm Desert, CA 92211 (760) 772 -3893 Fax (760) 772 -3895
June 17, 2005
L•ntin Family Trust
17407 Calisa Street
Encino, California 9131.6
Attention: Mr. Jack Entin
Project: APN 609- 070 -028 and 609- 070 -029
Washington*Street north of Fred Waring Drive
La Quinta, California
Subject: Infiltration /Percolation Testing for Stormwater Retention
Project No. 544 -5423
05 -06 -596
As requested, we have performed percolation/infiltration testing on the subject site in order to
determine the infiltration potential of the surface soils. The percolation rates determined should
be useful in assessing stormwater retention needs. It is our understanding that on -site
stormwater retention will be required. It is proposed to collect the stormwater runoff within
subsurface percolation chambers. Infiltration testing was performed within shallow test holes
excavated in the areas of several of the proposed retention basins.
Percolation testing was performed on June 20, 2005. Testing involved filling the test holes with
water and recording the drop in the water surface with time. Measurements were recorded in
increments of 1.0 minutes.
"tests results are summarized below:
Rate
Test Hole No. (incbes/'hour)
A 10
B 12 -
It should be noted. that the infiltration rates determined are ultimate.rates based upon field test
results. An appropriate safety.factor should be applied to account for subsoil inconsistencies and
potential silting of the percolating soils, The safety (actor should be determined with
consideration to other factors in the stormwater retention system design (particularly stormwater
volume estimates) and the safety factors associated with those design components.
Z d 9Z60Z1Z089 . :I l 500Z £Z NU MI) 181S10 W1Vd N30aV1S W08J
June 17, 2005 -2- Project No. 544 -5423
05 -06 -596
We appreciate the opportunity to provide service to you on this project. If you have questions
regarding this letter or the data included, please contact the undersigned.
Respectfully submitted,
SLADDEN ENGI,NEEERING
w
¢
No. C 6427G
Mogan R. Wright Exp. 6/30/07
Project Engineer sT�T CIVIL,
Foy= CncI�'�� .
Lettcr /pc
Copies:. 4/ Entin Family Trust
£ d 9Z601LZ089 '0NM: l l '1S /SZ: l l 500Z £Z NAr (AH1)
18IS30 W]Vd N300V1S W003
P.030X.782 -MORRIS IL 87- STORMTRAP • WWW:STORMTRAP CUM
PRECAST CONCRETE MODULAR STORM WATER DETENTION
` MAINTENANCE PROCEDURE
1. THE FOLLOWING PROCEDURES ARE FOR THE MAINTENANCE OF .
STORMTRAP AS SUGGESTED BY STORMTRAP, LLC. ALL REGULATIONS SET BY
GOVERNING BODIES RETAIN PRESESIDENCE OVER THE SUBSEQUENT
INSTRUCTIONS.
2. STORMTRAP SHOULD BE MAINTAINED REGULARLY. FREQUENCY OF
CLEANING WILL VARY DUE TO SITE CONDITIONS AND STORAGE CAPACITY.
MAINTENANCE IS REQUIRED EVERY 3 TO 5 YEARS OR WHEN SEDIMENT
OCCUPIES MORE THAN ONE -THIRD OF THE SYSTEM'S VOLUME. INSPECTIONS
SHOULD BE PART OF STANDARD OPERATING PROCEDURE.
3'. DO NOT ENTER STORMTRAP UNLESS PROPERLY TRAINED, EQUIPPED, AND
QUALIFIED TO ENTER A CONFINED SPACE AS IDENTIFIED BY LOCAL
OCCUPATIONAL SAFETY AND HEALTH REGULATIONS.
4. MAINTENANCE IS PERFORMED USING A VACUUM TRUCK. REMOVE COVER
FROM UNIT AT GRADE AND LOWER HOSE INTO SUMP PIT. VACUUM TRUCKS ARE
ABLE TO REMOVE MATERIAL FROM A MAXIMUM DISTANCE OF THIRTY -TWO
FEET BELOW GRADE. SEDIMENT MAY BE FLUSHED TOWARD THE SUMP PIT TO
PROVIDE A MORE THOROUGH REMOVAL.
A
//VLF %�`��� =� GET THE PRECAST ADVANTAGE! 001JBLErAMP
n
TM - 0RRISOX 0450 ,•
A10RP.15. IL 600.50
1 _87- STOPMTRAP
PRECAST CONCRETE MODULAR STORM, WATER DETENTION ENGINEER INFORMATION:
y FOMOTOR ENGINEERING
A
LA QU I NTA
BUSINESS CENTER
LA QUINTA, CA
SHEET INDEX
PAGE
DESCRIPTION
REV.
1
TITLE SHEET
1
2
SINGLE TRAP INSTALLATION SPECIFICATIONS
/
2.1
SINGLE TRAP INSTALLATION SPECIFICATIONS
1
2.2
SINGLE TRAP INSTALLATION SPECIFICATIONS
1
3
LAYOUT DETAIL
COLE HERRON
4
STANDARD- S'b' SINGLETRAP TYPE
1
5
STANDARD - S`9' SINGLETRAP TYPE II
1
E
STANDARD- 5'9' SINGLETRAP TYPE III
1
7
STANDARD- S' -0' SINGLETRAP TYPE
1
e
STANDARD- 5' -0' SINGLETRAP TYPE
1
JOB SITE INFORMATION
DESCRIPTION
JOB NAME:
BUSINESS CENTER
JOB ADDRESS:
LA OUINTA. CA
ENGINEERING CO:
FOMOTOR ENGINEERING
CONTACT NAME:
OM GHARTY
CONTACT PHONE:
780423.1842
CONTACT FAX:
78 23-1742
STORMTRAPSUPPUER:
STORMTRAP
CONTACT NAME:
COLE HERRON
CONTACT PHONE:
815941x883
CONTACT FAX:
815x15 -1100
WATER STORAGE RE09:
14,383.50 CUBIC FEET
WATER STORAGE PROV:
14,998.00 CUBIC FEET
UNIT HEADROOM:
V-0' SINGLETRAP
UNIT QUANTITY:
41 UNITS -41 TOTAL PIECES
225 S CIVIC DR
PALM SPRINGS, CA 92262
Phone: 760- 323 -1842
Fax: 760.323 -1742
PROJECT INFORMATION:
LA OUINTA
BUSINESS CENTER
LA OUINTA, CA
CH- 1033 -CA-05
CURRENT ISSUE DATE:
07/05/05
APPROVED BY:
I I
ISSUED FOR:
PRELIMINARY
REV.: DATE: DESC. BY:
SSUED FOR
1 o2 /osros pgELIMINARY CH
SCALE:
NTS
SHEET TITLE:
COVER SHEET
SHEET NUMBER:
STORMTRAP INSTALLATION SPECIFICATION
1. STORMTRAP MODULES SHALL BE MANUFACTURED ACCORDING TO SHOP DRAWINGS
APPROVED BY THE INSTALLING CONTRACTOR AND ENGINEER. THE SHOP
DRAWINGS SHALL INDICATE STILE AND LOCATION OF ROOF OPENINGS AND INLET/
OUTLET PIPE OPENINGS.
2. STORMTRAP SHALL BE INSTALLED IN ACCORDANCE WITH ASTM 0801 410. -
STANDARD PRACTICE FOR INSTALLATION OF UNDERGROUND PRECAST
CONCRETE UTILITY STRUCTURES. THE FOLLOWING ADDITIONS AND/OR EXCEPTIONS
SHALL APPLY:
A SPECIFICATIONS ON THE ENGINEERS DRAWINGS SHALL TAKE PRECEDENT.
B. STORMTRAP MODULES SHALL BE PLACED ON LEVEL FOOTINGS (SEE DETAIL 'Al
WITH A 0' 41' OVERHANG ON ALL SIDES THAT SHALL BE POURED IN A PLACE BY
INSTALLING CONTRACTOR.
C. THE STORMTRAP MODULES SHALL BE PLACED SUCH THAT THE MAXIMUM
SPACE BETWEEN ADJACENT MODULES DOES NOT EXCEED 3/4'. IF
THE SPACE EXCEEDS 3l4% THE MODULES SHALL BE RESET WITH
APPROPRIATE ADJUSTMENT MADE TO LINE AND GRADE TO BRING THE
SPACE INTO SPECIFICA TION.
D. THE PERIMETER HORIZONTAL JOINT OF THE STORMTRAP MODULES
SHALL BE SEALED TO THE FOOTINGS WITH PREFORMED MASTIC JOINT
SEALER ACCORDING TO ASTM C801-00. BA AND 8.12.
E ALL EXTERIOR JOINTS BETWEEN ADJACENT STORMTRAP MODULES SHALL BE
SEALED WITH 1' -0' EXTERNAL SEALING BANDS CONFORMING TO ASTM C89140
AND SMALL BE 1' -0' RUBBER BUM SEALANT AS APPROVED BY STORMTRAP.
THE JOINT WRAP BUM EXTERIOR WRAP SHALL BE INSTALLED ACCORDING
TO THE FOLLOWING INSTALLATION INSTRUCTIONS:
1. USE A BRUSH OR WET CLOTH TO THOROUGHLY CLEAN THE
OUTSIDE SURFACE AT THE POINT WHERE THE JOINT WRAP IS
TO BE APPLIED.
2. A RELEASE PAPER PROTECTS THE BUM SEALANT SIDE OF THE
JOINT WRAP. WRAP THE BUTYL TAPE (BUM SIDE DOWN) AROUND
THE STRUCTURE, REMOVING THE RELEASE PAPER AS YOU GO.
PRESS THE JOINT WRAP FIRMLY AGAINST THE STORMTRAP
MODULE SURFACE WHEN APPLYING.
F. THE FILL PLACED AROUND THE STORMTRAP UNITS MUST BE
DEPOSITED ON BOTH SIDES AT THE SAME TIME AND TO APPROXIMATELY
THE SAME ELEVATION. AT NO TIME SHALL THE FILL BEHIND ONE SIDE WALL BE
MORE THAN 2'-0' HIGHER THAN THE FILL ON THE OPPOSITE SIDE CARE SHALL
BE TAKEN TO PREVENT ANY WEDGING ACTON AGAINST THE STRUCTURE.
AND ALL SLOPES BOUNDING OR WITHIN THE AREA TO BE BACK FILLED MUST BE
STEPPED OR SERRATED TO PREVENT WEDGE ACTION. (REFERENCE ARTICLE
802.101.O.O.T. S.S.R.BF.) CARE SHALL ALSO BE TAKEN AS NOT TO DISRUPT
THE JOINT WRAP FROM THE JOINT DURING THE BACK FILL PROCESS.
STORMTRAP SPECIFICATION
t. CONCRETE 6.000 P.S.i. Q 28 DAYS. Ss:at: ENTRAINED AIR. 4' MAX. SLUMP.
2. REBAR: ASTM "IS GRADE 50.
3. DESIGN CRITERIA:
A ASTM 0858
B. LOADING PER ASTM 0857, INCLUDING:
1. TOTAL COVER: MIN. 6' MAX. 3-0'
2. CONCRETE CHAMBER DESIGNED FOR AASHTO HS-20 WHEEL LOAD
B APPUCA13LE IMPACT.
3. VERTICAL 8 LATERAL SOIL PRESSURES DETERMINED USING
GROUNDWATER AT T -0- BELOW GRADE
- REINFORCING COVER PER AG 318.
1' -0'
O-U JIINULCIMMr
DETAIL "B"
JOINT TAPE INSTALLATION
c p'
P.O. BOX 762
MORRIS, IL 6045D
1- 87STORAIIRAP
ENGINEER INFORMATION:
FOMOTOR ENGINEERING
225 S CIVIC OR
PALM SPRINGS, CA 92262
= 148.02 Phone: 760 - 323.1842
Fax: 760 - 323.1742
PROJECT INFORMATION:
LA QUINTA
BUSINESS CENTER
LA QUINTA, CA
CHA D33 -CA -05
CURRENT ISSUE DATE:
140.35 07/05/05
APPROVED BY:
ISSUED FOR:
PRELIMINARY
REV.: DATE: DESC. BY:
TOP OF FOOTING q5 x CONT.
CLR.
1'
3" #4@12'O.C.
HE CLR.
DETAIL "A"
STORM TRAP FOOTING
NOTES:
1. 4.000 P.4.1. Q 28 DAYS, S % -0%
ENTRAINED AIR. 4' MAX. SLUMP.
2. NET ALLOWABLE SOIL PRESSURE
GREATER THAN OR EOUAL TO 1.500 PSF. -
3 . SOIL CONDITIONS TO BE VERIFIED ON SITE
BY OTHERS.
4, 4,000 0 4 J. MUST BE REACHED BEFORE
STORMTRAP UNITS CAN BE INSTALLED.
I v pl—I I PRELIMINARY I "
SCALE:
NTS
SHEET TITLE:
SINGLE TRAP
INSTALLATION
SPECIFICATIONS
SHEET NUMBER:
RECOMMENDED
PIPE /RISER SPECIFICATION
1. CONNECTING PIPES SHALL BE I N WITH A 1• -0' CONCRETE COLLAR. AND A CONCRETE
CRADLE FOR AT LEAST ONE PIPE LENGTH. AS SHOWN. A STRUCTURAL GRADE CONCRETE
• OR GROUT WITH A MINIMUM 2a DAY COMPRESSIVE STRENGTH OF 3000 p.s.i. SHALL BE USED.
2. THE ANNULAR SPACE BETWEEN THE PIPE AND THE HOLE SHALL BE FILLED WITH
NONSHRINK GROUT.
RECOMMENDED
INSTALLATION INSTRUCTIONS
1. CLEAN AND LIGHTLY LUBRICATE ALL OF PIPE TO BE INSETED INTO STORMiRAP.
2. IF PIPE IS CUT. CARE SHOULD BE TAKEN TO ALLOW NO SHARP EDGES. BEVEL AND
LUBRICATE LEAD END OF PIPE.
3. CENTER PIPE AND INSERT.
WALL OF
GROUT
DETAIL IICII
CONNECTION DETAIL
(NOT TO SCALE)
SEE DETAIL
\—AGGREGATE
(FOUNDATION
V INVERT OF PIPE
THE INVERT OF
VDATION
PIPE CONNECTION
NON-SHRINK
GROUT
RISER DETAIL
0
P.O. BOX 782
MORRIS. IL 6D450
1.87- STORMTRAP
ENGINEER INFORMATION:
FOMOTOR ENGINEERING
225 S CIVIC DR
PALM SPRINGS, CA 92262
Phone: 76D- 323.1842
Fax: 760 - 323 -1742
PROJECT INFORMATION:
LA QUINTA
BUSINESS CENTER
LA QUINTA. CA
CH- 1033 -CA -05
' CURRENT ISSUE DATE:
07/05/05
APPROVED BY:
ISSUED FOR:
PRELIMINARY
REV.: DATE: DESC. BY:
ISSUED FOR CH
1 �1asNS PRELIMINARY
SCALE:
NTS
SHEET TITLE:
RECOMMENDED
SINGLE TRAP
INSTALLATION
SPECIFICATIONS
SHEET NUMBER:
I
RECOMMENDED
ACCESS OPENING SPECIFICATION
1. ATYPIC ACCESS OPENING FOR THE STORMTRAP SYSTEM RANGES FROM 2'-0'
TO T -0' IN DIAMETER. HOWEVER. STORMTRAP IS CAPABLE OF HAVING OPENINGS
LARGER THAN T -0' IN DIAMETER.
2. PLASTIC COASTED STEEL STEPS PRODUCED BY M.A. INDUSTRIES PART BPS3-PFC
(SEE DETAIL TO THE RIGHT) ARE TO BE PLACED INSIDE ANY UNIT WHERE DEEMED
NECESSARY. THE HIGHEST STEP IN THE UNIT IS TO BE PLACED A DISTANCE OF 1'0'
FROM THE INSIDE EDGE OF THE STORMTRAP UNITS. ALL ENSUING STEPS SHALL
BE PLACE WITH A MINIMUM DISTANCE OFI'<' BETWEEN THEM. STEPS MAYBE
MOVED OR ALTERED TO AVOID OPENINGS OR OTHER IRREGULARITIES IN THE UNIT.
3. STORMTRAP UFTING INSERTS MAY BE RELOCATED TO COINCIDE WITH THE ACCESS
OPENING OR THE CENTER OF GRAVITY OF THE UNIT AS NEEDED.
4. STORMTRAP ACCESS OPENINGS MAY NOT INTERFERE WITH WITH INLET AND /OR OUTLET
OPENINGS.
S. STORMTRAP ACCESS OPENINGS MAY NOT EXCEED A DISTANCE OF 50'0' INSETWEEN
WITHOUT A CONSECUTIVE CORRESPONDING ACCESS OPENING.
RECOMMENDED
PIPE OPENING SPECIFICATION
1. MINIMUM EDGE DISTANCE FOR AN OPENING ON THE OUTSIDE WALL SHALL BE NO LESS
THAN V -0'.
2. MINIMUM DISTANCE FROM THE BASE OF THE ROOF SLAB SHALL BE NO LESS THAN 1.0.
3. ALL OPENINGS MUST RETAIN AT LEAST 1' -0' OF CLEARANCE IN ALL DIRECTIONS
FROM THE EDGE OF THE STORMTRAP UNITS.
4. OPENING SIZE SHALL NOT EXCEED 020' OR 1' 41' LESS THEN THE INSIDE HEIGHT OF THE
UNIT. EXAMPLE: 3'0' UNIT MAXIMUM OPENING = 0l' -0'.
5. OPENINGS ARE NOT LIMITED TO THE ABOVE PARAMETERS BUT ARE RECOMMENDED.
ANY OPENING NEEDED THAT DOES NOT FIT THE CRITERIA SHALL BE BROUGHT TO THE
ATTENTION OF STORMTRAP FOR REVIEW.
�.II r -0•
MIN.
r— MI =_ -- - - - - --
I
MIN. I
I 2' -0' TO 3' -0'
ACCESS
I OPENING
I op
8 10'
I
I
L - ------ - - - - -- II- -II
5'
T
PLAN VIEW
r == = L - - -- - - - - --
I
F�
I
I
�1
I
I
B•
T
ELEVATION VIEW
I MIN.
I
I
I
I
I
I
I
I
I
PIPE OPENING I
SEE NOTE #4 I
MIN.
OUTSIDE WALL
MEETS:
OPSS 1351.08.02
BNO
ASTM C- 478 -95e
ASTM 64101 -e5b
�--- 1'-4• --{ ASTMA -615
AASHTO M-108
1 3/18'
STAIR DETAIL
I II SIDE VIEW
P.O. BOX 762
MORRIS. IL 40� 50
I$7- STORMTRAP
ENGINEER INFORMATION:
FOMOTOR ENGINEERING
'225 S CIVIC DR
PALM SPRINGS, CA 92262
Phone: 766323.1842
Fax: 760 - 323 -1742
PROJECT INFORMATION:
LA QUINTA
BUSINESS CENTER
LA QUINTA, CA
CH- 1033 -CA -05
CURRENT ISSUE DATE:
07/05/05
APPROVED BY:
ISSUED FOR:
PRELIMINARY
REV.: DATE: DESC. BY:
ISSUED FOR CH
7 T /osrvs PRELIMINARY
SCALE:
NTS
SHEET TITLE:
RECOMMENDED
SINGLE TRAP
INSTALLATION
SPECIFICATIONS
SHEET NUMBER:
BILL OF MATERIALS
OTY.
PARTNO.
DESCRIPTION
18
TYPE 1
5`-0' SINGLETRAP
3/4'
4B' -2 it
II
TYPE
B
TYPE (1
5' -0' SINGLETRAP
II
11
TYPE II
B
TYPE III
S' -0' SINGLETRAP
II
II
TYPE III
3
TYPE IV
S -0' SINGLETRAP
II
11
TYPE IV
2
TYPE V
5' -0' SINGLETRAP
II
O
II
TYPE V
14
JOINT
JOINT TAPE -14.5
N
TAPE
PER ROLL
7
JOINT
JOINT WRAP -1S0'
WRAP
PER ROLL
I
018' PIPE
INV = 140.00
02' -0' ROOF
OPENING
(n'P)
X72' PE
IP-
INV = 141 PE
NOTES;
1. DIMENSION OFSTORMTRAP SYSTEM
ALLOW FOR A 3/4• GAP BETWEEN EACH UNIT.
2. ALL DIMENSIONS TO BE VERIFIED
IN THE FIELD BY OTHERS.
l
CONCRETE SLAB
0-8* OW)
r SEE SHEET
asI~,
IV
m
m
m
III
v
41'3
3/4'
4B' -2 it
II
I
I
I
1
II
11
I
I
I
I
II
II
I
I
I
I
II
11
1
{
1
1
1
II
O
II
I
I
I
III
N
V
III
III
III
IV
B' -10 3/4'
012' PIPE m12' PIPE
INV = 141.50 INV = 141.50
SW-3* 14'-0 3/4'
70'-3 3/4'
LAYOUT DETAIL
0
P.O. BOX 782
A40P.RIS. IL 60450
1- 87- STORMTRAP
T ENGINEER INFORMATION:
1 FOMOTOR ENGINEERING
• 225 S CIVIC OR
PALM SPRINGS. CA 92262
Phone: 760 -323 -1842
Fax: 760- 323 -1742
PROJECT INFORMATION:
LA OUINTA
BUSINESS CENTER
LA OUINTA, CA
CK1033 -CA -05
CURRENT ISSUE DATE:
07/05/05
APPROVED BY:
ISSUED FOR:
PRELIMINARY
REV.: DATE: DESC. BY:
5' -0' SINGLETRAP UNITS
14,998.00 C.F. OF STORAGE
SEE SHEET 2 FOR INSTALLATION
SPECIFICATIONS
QISSUED FOR H
o>lasms pgEUMINARV
SCALE:
NTS
SHEET TITLE:
LAYOUT DETAIL
SHEET NUMBER:
I I I I 1 I ®---- - - - - -I I
---- T- 7----------------. 1-- r------- 1- 1---------------- -r —� --
2,
I 14' jl I
PLAN VIEW
ELEVATION VIEW
O
P.O. BOX 782
MORRIS. IL 60450
1 A7- STOP.MTRA P
ENGINEER INFORMATION:
FOMOTOR ENGINEERING
225 S CIVIC DR
PALM SPRINGS. CA 92262
Phone: 760.323 -1842
Fax: 760- 323.1742
PROJECT INFORMATION:
LA QUINTA
BUSINESS CENTER
LA QUINTA. CA
CK1033-CA-05
CURRENT ISSUE DATE:
07/05/05
APPROVED BY:
ISSUED FOR:
PRELIMINARY
REV,: DATE: DESC. BY:
e•
ISSUED FOR
1 0//0.5/05 PRELIMINARY CH
SCALE:
NTS
5' -0• SHEET TITLE:
5'
STANDARD
5-0" SINGLETRAP
TYPEI
SHEET NUMBER:
�5• 04
SIDE VIEW
TYPE I UNITS
UNIT
CUBIC
WEIGHT
HEIGHT
STORAGE
(Ibs.)
(in.)
(C.F.)
60
451.5
13555
O
P.O. BOX 782
MORRIS. IL 60450
1 A7- STOP.MTRA P
ENGINEER INFORMATION:
FOMOTOR ENGINEERING
225 S CIVIC DR
PALM SPRINGS. CA 92262
Phone: 760.323 -1842
Fax: 760- 323.1742
PROJECT INFORMATION:
LA QUINTA
BUSINESS CENTER
LA QUINTA. CA
CK1033-CA-05
CURRENT ISSUE DATE:
07/05/05
APPROVED BY:
ISSUED FOR:
PRELIMINARY
REV,: DATE: DESC. BY:
e•
ISSUED FOR
1 0//0.5/05 PRELIMINARY CH
SCALE:
NTS
5' -0• SHEET TITLE:
5'
STANDARD
5-0" SINGLETRAP
TYPEI
SHEET NUMBER:
�5• 04
SIDE VIEW
_ o p-
P.O. PDX 782
MORRIS. IL 60450
1.87- AOP.MIP.AP
ENGINEER INFORMATION:
I
® ® - FOMOTOR ENGINEERING
1 - 225 S CIVIC DR
PALM SPRINGS. CA 92262
Phone: 760-323 -1842
Fax: 760 - 323.1742
I
I PROJECT INFORMATION:
I
I
1 LA OUINTA
I e'10•
I BUSINESS CENTER
I
1 LA QUINTA. CA
1 CK1033 -CA -05
I
I CURRENT ISSUE DATE:
® ® 07/05/05
I
I
L -7I — 1---------------- -r —r -- APPROVED BY:
1' S, 1 ISSUED FOR:
% 1 PRELIMINARY
PLAN VIEW- REV.: DATE: DESC. BY:
8'
r--------------------------
I
I
I
Q ISSUED FOR
1 I 0] /0.5/05 PRELIMINARY CH
I SCALE:
I SA
1 S, MS
1
I
SHEET TITLE:
I
STANDARD
6 -0" SINGLETRAP
I
I TYPE II
I
SHEET NUMBER:
ELEVATION VIEW SIDE VIEW 05
TYPE II UNITS
UNIT CUBIC WEIGHT
HEIGHT
STORAGE
Qbs.)
60
213
8665
----------------------------------------------------------
Qa
--- T- 7------------- - - -1 -- -------- 7- 1----------------- r -Ir--
,• 5' 2' 5'�{
14'
PLAN VIEW
If If B'
--------------- --------------------------- ------------------
S$'
S'
ELEVATION VIEW
I---
SIDE VIEW
0
P.O. BOX 782
MOP.RIS, IL 60450
1.87- STORMTP.AP
ENGINEER INFORMATION:
FOMOTOR ENGINEERING
225 S CIVIC DR
PALM SPRINGS. CA 92262
Phone: 760323 -1842
Fax: 760323.1742
PROJECT INFORMATION:
LA QUINTA
BUSINESS CENTER
LA QUINTA. CA
CK1033-CA-05
CURRENT ISSUE DATE:
07/05/05
APPROVED BY:
ISSUED FOR:
PRELIMINARY
REV.: DATE: DESC. BY:
Q ISSUED FOR
1 .1/D5/0.5 PRELIMINARY H
SCALE:
Nis
SHEET TITLE:
STANDARD
6-0" SINGLETRAP
TYPE III
SHEET NUMBER:
TYPE III UNITS
UNIT
CUBIC
WEIGHT
HEIGHT
STORAGE
(Ibs.)
(in.)
(C.F.)
60
435
16025
I---
SIDE VIEW
0
P.O. BOX 782
MOP.RIS, IL 60450
1.87- STORMTP.AP
ENGINEER INFORMATION:
FOMOTOR ENGINEERING
225 S CIVIC DR
PALM SPRINGS. CA 92262
Phone: 760323 -1842
Fax: 760323.1742
PROJECT INFORMATION:
LA QUINTA
BUSINESS CENTER
LA QUINTA. CA
CK1033-CA-05
CURRENT ISSUE DATE:
07/05/05
APPROVED BY:
ISSUED FOR:
PRELIMINARY
REV.: DATE: DESC. BY:
Q ISSUED FOR
1 .1/D5/0.5 PRELIMINARY H
SCALE:
Nis
SHEET TITLE:
STANDARD
6-0" SINGLETRAP
TYPE III
SHEET NUMBER:
r--------------------------
I
I
I
I
I
I
I
I
I ea o•
I
I
I -
1
I
I
I
9 I
L -7I— ---------------- -I —� --
1 T
PLAN VIEW
B•
r------------=-------------
I
I
I
1
I
1
I
1
I S
1
I
I
I
I
i
I
I
ELEVATION VIEW
INSIDE WALL
6' s �-
SIDE VIEW
a
P.O. BOX 782
MORRIS. IL 60450
1.87- STORIATRAP
ENGINEER INFORMATION:
FOMOTOR ENGINEERING
225 S CIVIC OR
PALM SPRINGS, CA 92262
Phone: 760 - 323.1842
Fax: 760. 323.1742
PROJECT INFORMATION:
LA QUINTA
BUSINESS CENTER
LA QUINTA, CA
CK1033 -CA-05
CURRENT ISSUE DATE:
07/05/05
APPROVED BY:
ISSUED FOR:
PRELIMINARY
REV.: DATE: DESC. BY:
QISSUED FOR
0)/05!05 ISSUED FOR CH
SCALE:
NTS
SHEET TITLE:
STANDARD
6 -0" SINGLETRAP
TYPE IV
SHEET NUMBER:
TYPE IV UNITS
UNIT
CUBIC
HT
WEIGHT
HEIGHT
STORAGE
(in.)
(C.F.)
60
204.5
9920
6' s �-
SIDE VIEW
a
P.O. BOX 782
MORRIS. IL 60450
1.87- STORIATRAP
ENGINEER INFORMATION:
FOMOTOR ENGINEERING
225 S CIVIC OR
PALM SPRINGS, CA 92262
Phone: 760 - 323.1842
Fax: 760. 323.1742
PROJECT INFORMATION:
LA QUINTA
BUSINESS CENTER
LA QUINTA, CA
CK1033 -CA-05
CURRENT ISSUE DATE:
07/05/05
APPROVED BY:
ISSUED FOR:
PRELIMINARY
REV.: DATE: DESC. BY:
QISSUED FOR
0)/05!05 ISSUED FOR CH
SCALE:
NTS
SHEET TITLE:
STANDARD
6 -0" SINGLETRAP
TYPE IV
SHEET NUMBER:
T
r -1— ---------------- -� —L --
I
I
I
I
I
I
I
I
1
I
I
I e' -1o•
1
I
1
1
I
I
I
I.
L-------------------- - - - - --
PLAN VIEW
T If B'
Ir--------------------------
I
I
I
I
I ; I
I
1 I 1 S
1 � I
I I
I I I
I I I
I I I
I I I
I ' I
I I I
ELEVATION VIEW
OUTSIDE WALL
�S 8 S
r
SIDE VIEW
P.O. BOX 782
InORRIS. IL 60450
1 A7- 57ORMTRAP
ENGINEER INFORMATION:
FOMOTOR ENGINEERING
225 S CIVIC DR
PALM SPRINGS, CA 92262
Phone: 760323.1642
Fez: 760323 -1742
PROJECT INFORMATION:
LA OUINTA
BUSINESS CENTER
LA OUINTA. CA
CK1033 -CA -05
CURRENT ISSUE DATE:
07/05/05
APPROVED BY:
ISSUED FOR:
PRELIMINARY
REV.: DATE: DESC. BY:
QISSUED FOR
1 0�10.5/as PRELIMINARY CH
SCALE:
NTS
SHEET TITLE:
STANDARD
5' -0" SINGLETRAP
TYPE V
SHEET NUMBER:
TYPE V UNITS
UNIT
CUBIC
WEIGHT
HEIGHT
STORAGE
Qbs.)
(n,)
(C.F.)
60
204.5
9920
�S 8 S
r
SIDE VIEW
P.O. BOX 782
InORRIS. IL 60450
1 A7- 57ORMTRAP
ENGINEER INFORMATION:
FOMOTOR ENGINEERING
225 S CIVIC DR
PALM SPRINGS, CA 92262
Phone: 760323.1642
Fez: 760323 -1742
PROJECT INFORMATION:
LA OUINTA
BUSINESS CENTER
LA OUINTA. CA
CK1033 -CA -05
CURRENT ISSUE DATE:
07/05/05
APPROVED BY:
ISSUED FOR:
PRELIMINARY
REV.: DATE: DESC. BY:
QISSUED FOR
1 0�10.5/as PRELIMINARY CH
SCALE:
NTS
SHEET TITLE:
STANDARD
5' -0" SINGLETRAP
TYPE V
SHEET NUMBER:
J, .
II
— — — — — — — -- — — ---- -- — — — — — ----
LP
FL 1 �3 .95
11 NIN
PROPOSED RW
it
%
PL
55.0 1
411
"-L
Liu
3 8-�
L=385 FT
.............. . . ............ 1153.6
—5,
Lca=167 FT
tIENTROID,...
a.
cu
(U
1 72.0'
21
LI?
cu
T
a
al
J
L3
E3
C
F 144,
8
L
w
I HI
T
01 T
1/18
c
u
roR
------ I---------- - - - - --
C3
6m
a
Lo p'
40 80 120
SILE 1" io.
EXHIBIT -1" U NDEVEL OPED CONDITION
J, .
Mi.
LQBC100YR3HR3100.out
U n i t H y d r o g r a p h A n a l y s i s
Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, version 7.0
Study date 06/24/05 File: lgbc100yr3hr3100.out
+++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
------------------------------------------------------------------ - - - - --
Riverside County synthetic Unit Hydrology Method
RCFC & WCD Manual date - April 1978
Program License Serial Number 4004
---------------------------------------------------------------------
English (in -lb) Input units Used
English Rainfall Data (Inches) Input values used
English units used in output format
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
LAQUINTA BUSINESS CENTER
100YR 3HR STORM
UNIT HYDROGRAPH METHOD
--------------------------------------------------------------------
Drainage Area = 2.20(AC.) = 0.003 Sq. Mi.
Drainage Area for Depth -Area Areal Adjustment = 2.20(Ac.) 0.003 Sq.
Length along longest watercourse = 332.00(Ft.)
Length along longest watercourse measured to centroid = 127.00(Ft.)
Length along longest watercourse = 0.063 Mi.
Length along longest watercourse measured to centroid = 0.024 Mi.
Difference in elevation = 5.25(Ft.)
Slope along watercourse = 83.4940 Ft. /Mi.
Average Manning's 'N' = 0.015
Lag time = 0.013 Hr.
Lag time = 0.79 Min.
25% of lag time = 0.20 Min.
40% of lag time = 0.32 Min.
Unit time = 5.00 Min.
Duration of storm = 3 Hour(s)
User Entered Base Flow = 0.00(CFS)
2 YEAR Area rainfall data:
Area(Ac.)[1] Rainfall(In)[2] Weighting[1 *2]
2.20 0.70 1.54
100 YEAR Area rainfall data:
Area(Ac.)[1] Rainfall(In)[2] Weighting[1 *2]
2.20 2.20 4.84
STORM EVENT (YEAR) = 100.00
Area Averaged 2 -Year Rainfall = 0.700(In)
Area Averaged 100 -Year Rainfall = 2.200(In)
Point rain (area
Areal adjustment
Adjusted average
sub -Area Data:
Area(AC.)
averaged) = 2.200(In)
factor = 100.00
point rain = 2.200(In)
Runoff Index Impervious
Page 1
LQBC100YR3HR3100.out
2.200 32.00 0.900
Total Area Entered = 2.20(AC.)
RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F
AMC2 AMC -3 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr)
32.0 52.0 0.552 0.900 0.105 1.000 0.105
Sum (F) = 0.105
Area averaged mean soil loss (F) (In /Hr) = 0.105
Minimum soil loss rate ((In /Hr)) = 0.052
(for 24 hour storm duration)
Soil low loss rate (decimal) = 0.180
--------------------------------------------------------------- - - - - --
U n i t H y d r o g r a p h
VALLEY S -Curve
y Page 2
unit Hydrograph Data
---------------------------------------------------------------------
unit time period Time % of
lag Distribution
unit Hydrograph
(hrs)
Graph %
(CFS)
---------------------------------------------------------------------
1
0.083
632.928
76.430
1.695
2
0.167
1265.857
23.570
0.523
-----------------------------------------------------------------------
Sum = 100.000 Sum=
2.217
Unit
Time
Pattern
Storm Rain
Loss rate(In. /Hr)
Effective
(Hr.)
Percent
(In /Hr)
Max Low
(In /Hr)
1
0.08
1.30
0.343
0.105 - --
0.24
2
0.17
1.30
0.343
0.105 - --
0.24
3
0.25
1.10
0.290
0.105 - --
0.19
4
0.33
1.50
0.396
0.105 - --
0.29
5
0.42
1.50
0.396
0.105 - --
0.29
6
0.50
1.80
0.475
0.105 - --
0.37
7
0.58
1.50
0.396
0.105 - --
0.29
8
0.67
1.80
0.475
0.105 - --
0.37
9
0.75
1.80
0.475
0.105 - --
0.37
10
0.83
1.50
0.396
0.105 - --
0.29
11
0.92
1.60
0.422
0.105 - --
0.32
12
1.00
1.80
0.475
0.105 - --
0.37
13
1.08
2.20
0.581
0.105 - --
0.48
14
1.17
2.20
0.581
0.105 - --
0.48
15
1.25
2.20
0.581
0.105 - --
0.48
16
1.33
2.00
0.528
0.105 - --
0.42
17
1.42
2.60
0.686
0.105 - --
0.58
18
1.50
2.70
0.713
0.105 - --
0.61
19
1.58
2.40
0.634
0.105 - --
0.53
20
1.67
2.70
0.713
0.105 - --
0.61
21
1.75
3.30
0.871
0.105 - --
0.77
'22
1.83
3.10
0.818
0.105 - --
0.71
23
1.92
2.90
0.766
0.105 - --
0.66
24
2.00
3.00
0.792
0.105 - --
0.69
25
2.08
3.10
0.818
0.105 - --
0.71
26
2.17
4.20
1.109
0.105 - --
1.00
27
2.25
5.00
1.320
0.105 - --
1.22
28
2.33
3.50
0.924
0.105 - --
0.82
29
2.42
6.80
1.795
0.105 - --
1.69
30
2.50
7.30
1.927
0.105 - --
1.82
31
2.58
8.20
2..165
0.105 - --
2.06
32
2.67
5.90
1.558
0.105 - --
1.45
33
2.75
2.00
0.528
0.105 - --
0.42
34
2.83
1.80
0.475
0.105 - --
0.37
35
'2.92
1.80
0.475
0.105 - --
0.37
36
3.00
0.60
0.158
0.105 - --
0.05
Sum =
100.0
Sum = 22.6
Flood
volume =
Effective rainfall 1.89(In)
times area
2.2(AC.) /[(In) /(Ft.)1 =
0.3(AC.Ft)
Total
soil loss
= 0.31(In).
y Page 2
LQBC100YR3HR3100.out
Total soil loss = 0.058(AC.Ft)
Total rainfall = 2.20(In)
Flood volume = 15058.1 Cubic Feet
Total soil loss = 2510.9 Cubic Feet
Peak flow rate of this hydrograph = 4.445(CFS)
--------------------------------------------- - - - - --
+++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
3 - H
O U R S T 0 R M
Runoff
Hyd-rograph
--------7
-----------------------------------------------------------
Hydrograph in
5 Minute intervals ((CFS))
-----------------------------
Time(h+m)
volume AC.Ft
Q(CFS)
- --------------------------------------
0 2.5 5.0 7.5
10.0
-----------------------------------------------------------------------
0+ 5
0.0028.
0.40
vQ
0 +10
0.0064
0.53
v Q
0 +15
0.0095
0.44
IQ I
I
I
I
0 +20
0.0135
0.59
IvQ I
I
I
0 +25
0.0180
0.65
I Q I
I
I
0 +30
0.0233
0.78
I vQ I
0 +35
0.0281
0.69
I Qv
0 +40
0.0334
0.78
I Q I
I
0 +45
0.0391
0.82
I Qv
0 +50
0.0438
0.69
I Q v
I I
I
I
0 +55
0.0486
0.69
I Q v
I
I
I
1+ 0
0.0541
0.79
I Q v
1+ 5
0.0610
1.00
I Q v
1 +10
0.0682
1.06
I Q v
I
I
I
I
1 +15
0.0755
1.06
I Q v
1 +20
0.0822
0.97
I Q VI
I
I
I
1 +25
0.0905
1.21
I - Q v
1 +30
0.0997
1.33
1 Q
iv
1 +35
0.1080
1.21
I Q
I v
I
I
1 +40
0.1170
1.31
I Q
I v
1 +45
0.1282
1.62
I Q
I v
1 +50
0.1393
1.61
I Q
I v
1 +55
0.1496
1.49
1 Q
I v
I
I
I
2+ 0
0.1600
1.51
I Q
I v
12+ 5
0.1708
1.57
I Q
I VI
2 +10
0.1851
2.08
I Q
I
Iv
2 +15
0.2029
2.59
I Q
I v
2 +20
0.2168
2.02
I Q
I
I v
2 +25
0.2395
3.29
I
I Q
I v
2 +30
0.2669
3.97
I
I Q
I v
2 +35
0.2975
4.45
I
I Q
I I v
2 +40
0.3219
3.54
I
I Q
I I
v
2 +45
0.3320
1.48
I Q
I
I I
v
2 +50
0.3379
0.85
1 Q
I
I I
VI
2 +55
0.3435
0.82
1 Q
I
I I
VI
3+ 0
0.3455
0.28
IQ
I
I I
VI
3+ 5
-----------------------------------------------------------------
0.3457
0.03
Q
I
I I
- - - -
v
--
Page 3
Ml.
LQBUSINESSCENTER6100.out
U n i t H y d r o g r a p h A n a l y s i s
Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0
Study date 06/24/05 File: LQBUSINESSCENTER6100.out
+++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
------------------------------------------------------------------- - - - - --
Riverside County Synthetic unit Hydrology Method
RCFC & wCD Manual date - April 1978
Program License Serial Number 4004
---------------------------------------------------------------------
English (in -lb) Input units Used
English Rainfall Data (Inches) Input values used
English units used in output format
---------------------------------------------------------------------
LA QUINTA BUSINESS CENTER
UNIT HYDROGRAPH METHOD
100 YR 6HR STORM
--------------------------------------------------------------------
Drainage Area = 2.20(AC.) = 0.003 sq. Mi.
Drainage Area for Depth -Area Areal Adjustment = 2.20(AC.) = 0.003 Sq.
Length along longest watercourse = 332.00(Ft.)
Length along longest watercourse measured to centroid =
Length along longest watercourse = 0.063 Mi.
Length along longest watercourse measured to centroid =
Difference in elevation = 5.25(Ft.)
Slope along watercourse = 83.4940 Ft. /Mi.
Average manning's 'N' = 0.015
Lag time = 0.013 Hr.
Lag time = 0.79 Min.
25% of lag time = 0.20 Min.
40% of lag time = 0.32 Min.
unit time = 5.00 Min.
Duration of storm = 6 Hour(s)
user Entered Base Flow = 0.00(CFS)
2 YEAR Area rainfall data:
Area(Ac.)[1] Rainfall(in)[2] weighting[1 *2]
2.20 1.20 2.64
100 YEAR Area rainfall data:
Area(Ac.)[11 Rai nfal I (In) [21 weighting[1 *2]
2.20 2.75 6.05
STORM EVENT (YEAR) = 100.00
Area Averaged 2 -Year Rainfall = 1.200(In)
Area Averaged 100 -Year Rainfall = 2.750(In)
Paint rain (area averaged) = 2.750(In)
Areal adjustment factor = 100.00
Adjusted average point rain = 2.750(In)
Sub -Area Data:
Area(AC.) Runoff Index Impervious
Page 1
127.00(Ft.)
0.024 Mi.
LQBUSINESSCENTER6100.out
2.200 32.00 0.900
Total Area Entered = 2.20(AC.)
RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F
AMC2 AMC -3 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr)
32.0 52.0 0.552 0.900 0.105 1.000 0.105
Sum (F) = 0.105
Area averaged mean soil loss (F) (In /Hr) = 0.105
Minimum soil loss rate ((In /Hr)) = 0.052
(for 24 hour storm duration)
Soil low loss rate (decimal) = 0.180
--------------------------------------------------------------- - - - - --
U n i t H y d r o g r a p h
VALLEY S -Curve
Unit Hydrograph Data
---------------------------------------------------------------------
Unit
time period
Time % of
lag Distribution Unit
Hydrograph
(hrs)
Graph %
(CFS)
---------------------------------------------------------------------
1 0.083
632.928
76.430
1.695
2 0.167
1265.857
23.570
0.523
-----------------------------------------------------------------------
Sum = 100.000 Sum=
2.217
Unit
Time
Pattern
storm Rain
Loss rate(In. /Hr)
Effective
(Hr.)
Percent
(In /Hr)
Max Low
(In /Hr)
1
0.08
0.50
0.165
0.105 - --
0.06
2
0.17
0.60
0.198
0.105 - --
0.09
3
0.25
0.60
0.198
0.105 - --
0.09
4
0.33
0.60
0.198
0.105 - --
0.09
5
0.42
0.60
0.198
0.105 - --
0.09
6
0.50
0.70
0.231
0.105 - --
0.13
7
0.58
0.70
0.231
0.105 - --
0.13
8
0.67
0.70
0.231
0.105 - --
0.13
9
0.75
0.70
0.231
0.105 - --
0.13
10
0.83
0.70
0.231
0.105 ---
0.13
11
0.92
0.70
0.231
0.105 - --
0.13
12
1.00
0.80
0.264
0.105 - --
0.16
13
1.08
0.80
0.264
0.105 - --
0.16
14
1.17
0.80
0.264
0.105 - --
0.16
15
1.25
0.80
0.264
0.105 - --
0.16
16
1.33
0.80
0.264
0.105 - --
0.16
17
1.42
0.80
0.264
0.105. - --
0.16
18
1.50
0.80
0.264
0.105 - --
0.16
19
1.58
0.80
0.264
0.105 - --
0.16
20
1.67
0.80
0.264
0.105 - --
0.16
21
1.75
0.80
0.264
0.105 - --
0.16
22
1.83
0.80
0.264
0.105 - --
0.16
23
1.92
0.80
0.264
0.105 - --
0.16
24
2.00
0.90
0.297
0.105 - --
0.19
25
2.08
0.80
0.264
0.105 - --
0.16
26
2.17
0.90
0.297
0.105 - --
0.19
27
2.25
0.90
0.297
0.105 - --
0.19
28
2.33
0.90
0.297
0.105 - --
0.19
29
2.42
0.90
0.297
0.105 - --
0.19
30
2.50
0.90
0.297
0.105 - --
0.19
31
2.58
0.90
0.297
0.105 - --
0.19
32
2.67
0.90
0.297
0.105 - --
0.19
33
2.75
1.00
0.330
0.105 - --
0.23
34
2.83
1.00
0.330
0.105 - --
0.23
35
2.92
1.00
0.330
0.105 - --
0.23
36
3.00
1.00
0.330
0.105 - --
0.23
37
3.08
1.00
0.330
0.105 - --
0.23
38
3.17
1.10
0.363
0.105 - --
0.26
39
3.25
1.10
0.363
0.105 - --
0.26
40
3.33
1.10
0.363
0.105 - --
0.26
Page 2
--------------------------------------------------------------------
Peak flow rate of this hydrograph = 3.712(CFS)
--------------------------------------------------------------------
+++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
6 - H O U R S T O R M
R u n o f f H y d r o g r a p h
---------=----------=-----------------------------------------------
Hydrograph in 5 Minute intervals ((CFS))
---------------------------------------
Time(h+m) volume-AC.Ft Q(CFS) 0 2.5
0+ 5
0.0007
0.10
LQBUSINESSCENTER6100.out
41
3.42
1.20
0.396
0.105 - --
0.29
42
3.50
1.30
0.429
0.105 - --
0.32
43
3.58
1.40
0.462
0.105 - --
0.36
44
3.67
1.40
0.462
0.105 - --
0.36
45
3.75
1.50
0.495
0.105 - --
0.39
46
3.83
1.50
0:495
0.105 - --
0.39
47
3.92
1.60
0.528
0.105 - --
0.42
48
4.00
1.60
0.528
0.105 - --
0.42
49
4.08
1.70
0.561
0.105 - --
0.46
50
4.17
1.80
0.594
0.105 - --
0.49
51
4.25
1.90
0.627
0.105 - --
0.52
52
4.33
2.00
0.660
0.105 - --
0.56
53
4.42
2.10
0.693
0.105 - --
0.59
54.
4.50
2.10
0.693
0.105 - --
0.59
55
4.58
2.20
0.726
0.105 - --
0.62
56
4.67
2.30
0.759
0.105 - --
0.65
57
4.75
2.40
0.792
0.105 - --
0.69
58
4.83
2.40
0.792
0.105 - --
0.69
59
4.92
2.50
0.825
0.105 - --
0.72
60
5.00
2.60
0.858
0.105 - --
0.75
61
5.08
3.10
1.023
0.105 - --
0.92
62
5.17
3.60
1.188
0.105 - --
1.08
63
5.25
3.90
1.287
0.105 - --
1.18
64
5.33
4.20
1.386
0.105 - --
1.28
65,
"5.42
4.70
1.551
0.105 - --
1.45
66
5.50
5.60
1.848
0.105 - --
1.74
67
5.58
1.90
0.627
0.105 - --
0.52
68
5.67
0.90
0.297
0.105 - --
0.19
69
5.75
0.60
0.198
0.105 - --
0.09
70
5.83
0.50
0.165
0.105 - --
0.06
71
5.92
0.30
0.099
0.105 0.018
0.08
72
6.00
0.20
0.066
0.105 0.012'
0.05
Sum =
100.0
Sum =
25.6
Flood
volume =
Effective rainfall 2.14(In)
times
area
2.2(AC.) /[(In) /(Ft.)] = 0.4(AC.Ft)
Total
soil loss
= 0.61(In)
Total
soil loss
= 0.113(AC.Ft)
Total
rainfall
= 2.75(In)
Flood
volume =
17059.3 Cubic Feet
Total
soil loss
= 4902.1
Cubic Feet
--------------------------------------------------------------------
Peak flow rate of this hydrograph = 3.712(CFS)
--------------------------------------------------------------------
+++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
6 - H O U R S T O R M
R u n o f f H y d r o g r a p h
---------=----------=-----------------------------------------------
Hydrograph in 5 Minute intervals ((CFS))
---------------------------------------
Time(h+m) volume-AC.Ft Q(CFS) 0 2.5
0+ 5
0.0007
0.10
Q I
0 +10
0.0020
0.19
Q
0 +15
0.0034
0.21
Q
0 +20
0.0049
0.21
Q
0 +25
0.0063
0.21
Q
0 +30
0.0081
0.26
vQ
0 +35
0.0100
0.28
IQ
I
0 +40
0.0119
0.28
IQ
I
0 +45
0.0139
0.28
IQ
0 +50
0.0158
0.28
IQ
i
0 +55
0.0177
0.28
IQ
1+ 0
0.0200
0.34
IQv
I
1+ 5
0.0225
0.35
IQv
I
1 +10
0.0249
0.35
IQv
I
1 +15
0.0273
0.35
IQv
I
1 +20
0.0298
0.35
IQ v
I
1 +25
0.0322
0.35
IQ v
I
1 +30
0.0346
0.35
IQ v
I
Page 3
----------------------
5.0 7.5 10.0
-------------------
I {
I I
I I
I I
I I
I I
I I
I I
I I
I I
I i
I I
I I
I I
I I
I I
I I
I I
LQBUSINESSCENTER6100.out
1 +35 0.0371 0.35 IQ
V I
1 +40 0.0395 0.35 IQ
V
1 +45 .0.0419. 0.35 IQ
v I I
I
1 +50 0.0444 0.35. IQ
v I
1 +55 0.0468 0.35 IQ
v
2+ 0 0.0496 0.41 IQ
v I I
I
2+ 5 0.0522 0.37 IQ
v I I
2 +10 0.0550 0.41 IQ
v I I
2 +15 0.0579 0.43 IQ
V
2 +20 0.0609 0.43
IQ V
2 +25 0.0638 0.43
IQ v
2 +30 0.0667 0.43
IQ V
2 +35 0.0697 0.43
IQ V I I
I
2 +40 0.0726 0.43
IQ V I
2 +45 0.0759 0.48
IQ V I I
I
2 +50 0.0794 0.50
IQ v I
2 +55 0.0828 0.50
IQ V I
3+ 0 0.0862 0.50
IQ V I I
3 +'5 0.0897 0.50
IQ VI I
I
3 +10 0.0935 0.56
I Q VI I
I
3 +15` 0.0975 0.57
I Q VI
3 +20 0.1014 0.57
I Q v
3 +25 0.1057 0.63
I Q V
3 +30 0.1106 0.70
I Q IV I
I
3 +35 0.1159 0.78
1 Q IV I
3 +40 0.1214 0.79
I Q I V I
I
3 +45 0.1272 0.85
I Q I v I
I
3 +50 0.1332 0.87
I Q I v I
3 +55 0.1395 0.92
Q I v I
I
4+ 0 0.1460 0.94
I Q I V
4+ 5 0.1528 0.99
I Q I V
4 +10 0.1602 1.07
I Q I V
4 +15 0.1680 1.14
I Q I V
4 +20 0.1764 1.21
I Q I v I
I
4 +25 0.1853 1.29
I Q I v
4 +30 0.1943 1.30
I. Q I VI
4 +35 0.2036 1.36
I Q I V
I
4 +40 0.2135 1.43
I Q I IV
4 +45 0.2239 1.51
I Q I I V
4 +50 0.2344 1.52
I Q I I V
4 +55 0.2453 1.58
I Q I I V
5+ 0 0.2567 1.65
I Q I I V
I
5+ 5 0.2701 1.95
I Q I I v
5 +10 0.2860 2.32
I QI I VI
5 +15 0.3037 2.57
I Q I
IV
5 +20 0.3230 2.79
I IQ. I
I V
5 +25 0.3445 3.12
I I Q I
I V
5 +30 0.3700 3.71
I I Q I
I
5 +35 0.3824 1.80
I Q I I
I
5 +40 0.3865 0.60
I Q I
5 +45 0.3883 0.26
IQ
5 +50 0.3893 0.15
Q I I
I
5 +55 0.3905 0.17
Q I I
I
6+ 0 0.3914 0.13
Q I I
I
6+ 5 0.3916 0.03
-----------------------------------------------
Q I
-------------------
- - - - --
Page 4
VI
VI
VI
VI
VI
v1
V
•
Mi.
LQBC100YR24HR24100.out
U n i t H y d r o g r a p h A n a l y s i s
Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0
Study date 06/24/05 File: LQBC100YR24HR24100.out
+++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
---------=-------------------------------------------------------- - - - - --
Riverside County Synthetic unit Hydrology Method
RCFC & WCD Manual date - April 1978
Program License Serial Number 4004
---------------------------------------------------------------------
English (in -lb) Input units used
English Rainfall Data (Inches) Input values used
English units used in output format
---------------------------------------------------------------------
LQ BUSINESS CENTER
100YR 24HR STORM
UNIT HYDROGRAPH METHOD
-------------------------------------7------------------------------
Drainage Area = 2.20(AC.) = 0.003 Sq. Mi.
Drainage Area for Depth -Area Areal Adjustment = 2.20(AC.) _
Length along longest watercourse = 332.00(Ft.)
Length along longest watercourse measured to centroid =
Length along longest watercourse = 0.063 Mi.
Length along longest watercourse measured to centroid =
Difference in elevation = 5.25(Ft.)
Slope along watercourse = 83.4940 Ft. /Mi.
Average Manning's 'N' = 0.015
Lag time = 0.013 Hr.
Lag time = 0.79 Min.
25% of lag time = 0.20 Min.
409% of lag time = 0.32 Min.
unit time = 5.00 Min.
Duration of storm = 24 Hour(s)
user Entered Base Flow = 0.00(CFS)
2 YEAR Area rainfall data:
Area(AC.)[1] Rai nf al I (In) [21 Weighting[1*2]
2.20 1.60 3.52
100 YEAR Area.rainfall data:
Area (AC.)[11 Rai nfal 1 (In) [21 Weighting[1*2]
2.20 4.50 9.90
STORM EVENT (YEAR) = 100.00
Area Averaged 2 -Year Rainfall = 1.600(In)
Area Averaged 100 -Year Rainfall = 4.500(In)
Point rain (area
Areal adjustment
Adjusted average
sub -Area Data:
Area(AC.)
averaged) = 4.500(In)
factor = 100.00
point rain = 4.500(In)
Runoff Index Impervious
Page 1
127.00(Ft.)
0.024 Mi.
0.003 Sq.
LQBC100YR24HR24100.out
2.200 32.00 0.900
Total Area Entered = 2.20(AC.)
RI
RI Infil. Rate
Impervious
Adj. Infil. Rate Area%
F
AMC2
AMC -3
(In /Hr)
(Dec. %)
(In /Hr) (Dec.)
(In /Hr)
32.0
52.0
0.552
0.900
0.105 1.000
0.105
%
(CFS) .
---------------------------------------------------------------------
Sum (F) =
0.105
Area
averaged
mean soil
loss (F)
(In /Hr) = 0.105
1265.857
Minimum soil
loss rate
((In /Hr))
= 0.052
(for
24 hour
storm duration)
Unit
Time
Pattern
Soil
---------------------------------------------------------------
low loss
rate'(decimal)
=
0.180
- - - - --
u n i t H y d r o g r a p h
VALLEY S -Curve
--------------------------------------------------------------------
unit Hydrograph Data
---------------------------------------------------------------------
Unit
time period
Time % of
lag Distribution
unit Hydrograph
(hrs)
Graph
%
(CFS) .
---------------------------------------------------------------------
1 0.083
632.928
76.430
1.695
2 0.167
1265.857
23.570
0.523
---------------------------------------------------------------------
Sum = 100.000 Sum=
2.217
Unit
Time
Pattern
Storm Rain
Loss rate(In. /Hr)
Effective
(Hr.)
Percent
(In /Hr)
Max
Low
(In /Hr)
1
0.08
0.07
0.036
0.186
0.006
0.03
2
0.17
0.07
0.036
0.185
0.006
0.03
3
0.25
0.07
0.036
0.184
0.006.
0.03
4
0.33
0.10
0.054
0.184
0.010
0.04
5
0.42
0.10
0.054'
0.183
0.010
0.04
6
0.50
0.10
0.054
0.182
0.010
0.04
7
0.58
0.10
0.054
0.181
0.010
0.04
8
0.67
0.10
0.054
0.181
0.010
0.04
9
0.75
0.10
0.054
0.180
0.010
0.04
10
0.83
0.13_
0.072
0.179
0.013
0.06
11
0.92
0.13
0.072
0.179
0.013
0.06
12
1.00
0.13
0.072
0.178
0.013
0.06
13
1.08
0.10
0.054
0.177
0.010
0.04
14
1.17
0.10
0.054
0.177
0.010
0.04
15
1.25
0.10
0.054
0.176
0.010
0.04
16
1.33
0.10
0.054
0.175
0.010
0.04
17
1.42
0.10
0.054
0.174
0.010
0.04
18
1.50
0.10
0.054
0.174
0.010
0.04
19
1.58
0.10
0.054
0.173
0.010
0.04
20
1.67
0.10
0.054
0.172
0.010
0.04
21
1.75
0.10
0.054
0.172
0.010
0.04
22
1.83
0.13
0.072
0.171
0.013
0.06
23
1.92
0.13
0.072
0.170
0.013
0.06
24
2.00
0.13
0.072
0.170
0.013
0.06
25
2.08
0.13
0.072
0.169
0.013
0.06
26
2.17
0.13
0.072
0.168
0.013
0.06
27
2.25
0.13
0.072
0.168
0.013
0.06
28
2.33
0.13
0.072
0.167
0.013
0.06
29
2.42
0.13
0.072
0.166
0.013
0.06
30
2.50
0.13
0.072
0.166
0.013
0.06
31
2.58
0.17
0.090
0.165
0.016
0.07
32
2.67
0.17
0.090
0.164
0.016
0.07
33
2.75
0.17
0.090
0.163
0.016
0.07
34
2.83
0.17
0.090
0.163
0.016
0.07
35
2.92
0.17
0.090
0.162
0.016
0.07
36
3.00
0.17
0.090
0.161
0.016
0.07
37.
3.08
0.17
0.090
0.161
0.016
0.07
38
3.17
0.17
0.090
0.160
0.016
0.07
39
3.25
0.17
0.090
0.159
0.016
0.07
40
3.33
0.17
0.090
0.159
0.016
0.07
Page 2
LQBC100YR24HR24100.out
41
3.42
0.17
0.090
0.158
0.016
0.07
42
3.50
0.17
0.090
0.157
0.016
0.07
43
3.58
0.17
0.090
0.157
0.016
0.07
44
3.67
0.17
0.090
0.156
0.016
0.07
45
3.75
0.17
0.090
0.156
0.016
0.07
46
3.83
0.20
0.108
0.155
0.019
0.09
47
3.92
0.20
0.108
0.154
0.019
0.09
48
4.00
0.20
0.108
0.154
0.019
0.09
49
4.08
0.20
0.108
0.153
0.019
0.09
50
4.17
0.20
0.108
0.152
0.019
0.09
51
4.25
0.20
0.108
0.152
0.019
0.09
52
4.33
0.23
0.126
0.151
0.023
0.10
53
4.42
0.23
0.126
0.150
0.023
0.10
54
4.50
0.23
0.126
0.150
0.023
0.10
55
4.58
0.23
0.126
0.149
0.023
0.10
56
4.67
0.23
0.126
0.148
0.023
0.10
57
4.75
0.23
0.126
0.148
0.023
0.10
.58
4.83
0.27
0.144
0.147
0.026
0.12
59
4.92
0.27
0.144
0.146
0.026
0.12
60
5.00
0.27
0.144
0.146
0.026
0.12
61
5.08
0.20
0.108
0.145
0.019
0.09
62
5.17
0.20
0.108
0.145
0.019
0.09
63
5.25
0.20
0.108
0.144
0.019
0.09
64
5.33
0.23
0.126
0.143
0.023
0.10
65
5.42
0.23
0.126
0.143
0.023
0.10
66
5.50
0.23
0.126
0.142
0.023
0.10
67
5.58
0.27
0.144
0.141
- --
0.00
68
5.67
0.27
0.144
0.141
- --
0.00
69
5.75
0.27
0.144
0.140
- --
0.00
70
5.83
0.27
0.144
0.140
- --
0.00
71
5.92
0.27
0.144
0.139
- --
0.01
72
-6.00
0.27
0.144
0.138
- --
0.01
73
6.08
0.30
0.162
0.138
- --
0.02
74
6.17
0.30
0.162
0.137
- --
0.02
75
6.25
0.30
0.162
0.137
- --
0.03
76
6.33
0.30
0.162
0.136
- --
0.03
77
6.42
0.30
0.162
0.135
- --
0.03
78
6.50
0.30
0.162
0.135
- --
0.03
79
6.58
0.33
0.180
0.134
- --
0.05
80
6.67
0.33
0.180
0.133
- --
0.05
81
6.75
0.33
0.180
0.133
- --
0.05
82
6.83
0.33
0.180
0.132
- --
0.05
83
6.92
0.33
0.180
0.132
- --
0.05
84
7:00
0.33
0.180
0.131
- --
0.05
85
7.08
0.33
0.180
0.130
- --
0.05
86
7.17
0.33
0.180
0.130
- --
0.05
87
7.25
0.33
0.180
0.129
- --
0.05
88
7.33
0.37
0.198
0.129
- --
0.07
89
7.42
0.37
0.198
0.128
- --
0.07
90
7.50
0.37
0.198
0.128
- --
0.07
91
7.58
0.40
0.216
0.127
- --
0.09
92
7.67
0.40
0.216
0.126
- --
0.09
93
7.75
0.40
0.216
0.126
- --
0.09
94
7.83
0.43
0.234
0.125
- --
0.11
95
7.92
0.43
0.234
0.125
- --
0.11
96
8.00
0.43
0.234
0.124
- --
0.11
97
8.08
0.50
0.270•
0.123
- --
0.15
98
8.17
0.50
0.270
0.123
- --
0.15
99
8.25
0.50
0.270
0.122
- --
0.15
100
8.33
0.50
0.270
0.122
- --
0.15
101
8.42
0.50
0.270
0.121
- --
0.15
102
8.50
0.50
0.270
0.121
- --
0.15
103
8.58
0.53
0.288
0.120
- --
0.17
104
8.67
0.53
0.288
0.119
- --
0.17
105
8.75
0.53
0.288
0.119
- --
0.17
106
8.83
0.57
0.306
0.118
- --
0.19
107
8.92
0.57
0.306
0.118
- --
0.19
108
9.00
0.57
0.306
0.117
- --
0.19
109
9.08
0.63
0.342
0.117
- --
0.23
110
9.17
0.63
0.342
0.116
- --
0.23
Page 3
LQBC100YR24HR24100.out
'111
9.25
0.63
0.342
0.116 - --
0.23
112
9.33
0.67
0.360
0.115 - --
0.24
113
9.42
0.67
0.360
0.114 - --
0.25
114
9.50
0.67
0.360
0.114 - --
0.25
115
9.58
0.70
0.37.8
0.113 - --
0.26
116
9.67
0.70
0.378
0.113 - --
0.27
117
9.75
0.70
0.378
0.112 - --
0.27
118
9.83
0.73
0.396
0.112 - --
0.28
119
9.92
0.73
0.396
0.111 - --
0.28
120
10.00
0.73
0.396
0.111 - --
0.29
121
10.08
0.50
0.270
0.110 - --
0.16
122
10.17
0.50
0.270
0.110 - --
0.16
123
10.25
0.50
0.270
0.109 - --
0.16
124
10.33
0.50
0.270
0.109 - --
0.16
125
10.42
0.50
0.270
0.108 - --
0.16
126
10.50
0.50
0.270
0.107 - --
0.16
127
10.58
0.67
0.360
0.107 - --
0.25
128
10.67
0.67
0.360
0.106 - --
0.25
129
10.75
0.67
0.360
0.106 - --
0.25
130
10.83
0.67
0.360
0.105 - --
0.25
131
10.92
0.67
0.360
0.105 - --
0.26
132
11.00
0.67
0.360
0.104 - --
0.26
133
11.08
0.63
0.342
0.104 - --
0.24
134
11.17
0.63
0.342
0.103 - --
0.24
135
11.25
0.63
0.342
0.103 - --
0.24
136
11.33
0.63
0.342
0.102 - --
0.24
137
11.42
0.63
0.342
0.102 - --
0.24
138
11.50
0.63
0.342
0.101 - --
0.24
139
11.58
0.57
0.306
0.101 - --
0.21
140
11.67
0.57
0.306
0.100 - --
0.21
141
11.75
0.57
0.306
0.100 - --
0.21
142
11.83
0.60
0.324
0.099 - --
0.22
143
11.92
0.60
0.324
0.099 - --
0.23
144
12.00
0.60
0.324
0.098 - --
0.23
145
12.08
0.83
0.450
0.098 - --
0.35
146
12.17
0.83
0.450
0.097 - --
0.35
147
12.25
0.83
0.450
0.097 - --
0.35
148
12.33
0.87
0.468
0.096 - --
0.37
149
12.42
0.87
0.468
0.096 - --
0.37
150
12.50
0.87
0.468
0.095 - --
0.37
151
12.58
0.93
0.504
0.095 - --
0.41
152
12.67
0.93
0.504
0.094 - --
0.41
153
12.75
0.93
0.504
0.094 - --
0.41
154
12.83
0.97
0.522
0.093 - --
0.43
155
12.92
0.97
0.522
0.093 - --
0.43
156
13.00
0.97
0.522
0.093 - --
0.43
157
13.08
1.13
0.612
0.092 - --
0..52
158
13.17
1.13
0.612
0.092 - --
0.52
159
13.25
1.13
0.612
0.091 - --
0.52
160
13.33
1.13
0.612
0.091 - --
0.52
161
13.42
1.13
0.612
0.090 - --
0.52
162
13.50
1.13
0.612
0.090 - --
0.52
163
13.58
0.77
0.414
0.089 - --
0:32
164
13.67
0.77
0.414
0.089 - --
0.33
165
13.75
0.77
0.414
0.088 - --
0.33
166
13.83
0.77
0.414
0.088 - --
0.33
167
13.92
0.77
0.414
0.088 - --
0.33
168
14.00
0.77
0.414
0.087 - --
0.33
169
14.08
0.90
0.486
0.087 - --
0.40
170
14.17
0.90
0.486
0.086 - --
0.40
171
14.25
0.90
0.486
0.086 - --
0.40
172
14.33
0.87
0.468
0.085 - --
0.38
173
14.42
0.87
0.468
0.085 - --
0.38
174
14.50
0.87
0.468
0.084 - --
0.38
175
14.58
0.87
0.468
0.084 - --
0.38
176
14.67
0.87
0.468
0.084 - --
0.38
177
14.75
0.87
0.468
0.083 - --
0.38
178
14.83
0.83
0.450
0.083 - --
0.37
179
14.92
0.83
0.450
0.082 - --
0.37
180
15.00
0.83
0.450
0.082 - --
0.37
-
Page 4
LQBC100YR24HR24100.out
181
15.08
0.80
0.432
0.081
- --
0.35
182
15.17
0.80
0.432
0.081
- --
0.35
183
15.25
0.80
0.432
0.081
- --
0.35
184
15.33
0.77
0.414
0.080
- --
0.33
185
15.42
0.77
0.414
0.080
- --
0.33
186
15.50
0.77
0.414
0.079
- --
0.33
187
15.58
0.63
0.342
0.079
- --
0.26
188
15.67
0.63
0.342
0.079
- --
0.26
189
15.75
0.63
0.342
0.078
- --
0.26
190
15.83
0.63
0.342
0.078
- --
0.26
191
15.92
.0.63
0.342
0.077
- --
0.26
192
16.00
0.63
0.342
0.077
- --
0.27
193
16.08
0.13
0.072
0.077
0.013
0.06
194
16.17
0.13
0.072
0.076
0.013
0.06
195
16.25
0.13
0.072
0.076
0.013
0.06
196
16.33
'0.13
0.072
0.075
0.013
0.06
197
16.42
0.13
0.072
0.075
0.013
0.06
198
16.50
0.13
0.072
0.075
0.013
0.06
199
16.58
0.10
0.054
0.074
0.010
0.04
200
16.67
0.10
0.054
0.074
0.010
0.04
201
16.75
0.10
0.054
0.074•
0.010
0.04
202
16.83
0.10
0.054
0.073
0.010
0.04
203
16.92
0.10
0.054
0.073
0.010
0.04
204
17.00
0.10
0.054
0.072
0.010
0.04
205
17.08
0.17
0.090
0.072
- --
0.02
206
17.17
0.17
0.090
0.072
- --
0.02
207
17.25
0.17
0.090
0.071
- --
0.02
208
17.33
0.17
0.090
0.071
- --
0.02
209
17.42
0.17
0.090
0.071
- --
0.02
210
17.50
0.17
0.090
0.070
- --
0.02
211
17.58
0.17
0.090
0.070
- --
0.02
212
17.67
0.17
0.090
0.070
- --
0.02
213
17.75
0.17
0.090
0.069
- --
0.02
214
17.83
0.13
0.072
0.069
- --
0.00
215
17.92
0.13
0.072
0.069
- - -.
0.00
216
18.00
0.13
0.072
0.068
- --
0.00
217
18.08
0.13
0.072
0.068
- --
0.00
.218
18.17
0.13
0.072
0.067
- --
0.00
219
18.25
0.13
0.072
0.067
- --
0.00
220
18.33
0.13
0.072
0.067
- --
0.01
221
18.42
0.13
0.072
0.067
- --
0.01
222
18.50
0.13
0.072
0.066
- --
0.01
223
18.58
0.10
0.054
0.066
0.010
0.04
224
18.67
0.10
0.054
0.066
0.010
0.04
225
.18.75
0.10
0.054
0.065
0.010
0.04
-226
18.83
0.07
0.036
0.065
0.006
0.03
227
18.92
0.07
0.036
0.0.65
0.006
0.03
228
19.00
0.07
0.036
0.064
0.006
0.03
229
19.08
0.10
0.054
0.064
0.010
0.04
230
19.17
0.10
0.054
0.064
0.010
0.04
231
19.25
0.10
0.054
0.063
0.010
0'.04
232
19.33
0.13
0.072
0.063
- --
0.01
233
19.42
0.13
0.072
0.063
- --
0.01
234
19.50
0.13
0.072
0.063
- --
0.01
235
19.58
0.10
0.054
0.062
0.010
0.04
236
19.67
0.10
0.054
0.062
0.010
0.04
237
19.75
0.10
0.054
0.062
0.010
0.04
238
19.83
0.07
0.036
0.061
0.006
0.03
239
19.92
0.07
0.036
0.061
0.006
0.03
240
20.00
0.07
0.036
0.061
0.006
0.03
241
20.08
0.10
0.054
0.061
0.010
0.04
242
20.17
0.10
0.054
0.060
0.010
0.04
243
20.25
0.10
0.054
0.060
0.010
0.04
244
20.33
0.10
0.054
0.060
0.010
0.04
245
20.42
0.10
.0.054
0.060
0.010
0.04
246
20.50
0.10
0.054
0.059
0.010
0.04
247
20.58
0.10
0.054
0.059
0.010
0.04
248
20.67
0.10
0.054
0.059
0.010
0.04
249
20.75
0.10
0.054
0.059
0.010
0.04
250
20.83
0.07
0.036
0.058
0.006
0.03
Page 5
--------------------------------------------------------------------
Peak flow rate of this hydrograph = 1.158(CFS)
--------------------------------------------------------------------
+++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
24 - H O U R S T O R M
R u n o f f H y d r o g r a p h
-------------------------------------------------------------- - - - - --
Hydrograph in 5 Minute intervals ((CFS))
--------------------------------------------------------------------
Time(h+m)
volume AC.Ft
Q(CFS)
LQBC100YR24HR24100.out
-----------------------------------------------------------------------
0+ 5
251
20.92
0.07
0.036
0.058
0.006
0.03
252
21.00
0.07
0.036
0.058
0.006
0.03
253
21.08
0.10
0.054
0.058
0.010
0.04
254
21.17
0.10
0.054
0.057
0.010
0.04
255
21.25
0.10
0.054
0.057
0.010
0.04
256
21.33
0.07
0.036
0.057
0.006
0.03
257
21.42
0.07
0.036
0.057
0.006
0.03
258
21.50
0.07
0.036
0.057
0.006
0.03
259
21.58
0.10
0.054
0.056
0.010
0.04
260
21.67
0.10
0.054
0.056
0.010
0.04
261
21.75
0.10
0.054
0.056
0.010
0.04
262
21.83
0.07
0.036
0.056
0.006
0.03
263
21.92
0.07
0.036
0.056
0.006
0.03
264
22.00
0.07
0.036
0.055
0.006
0.03
265-
22.08
0.10
0.054
0.055
0.010
0.04
266
22.17
0.10
0.054
0.055
0.010
0.04
267
22.25
0.10
0.054
0.055
0.010
0.04
268
22.33
0.07
0.036
0.055
0.006
0.03
269
22.42
0.07
0.036
0.054
0.006
0.03
270
22.50
0.07
0.036
0.054
0.006
0.03
271
22.58
0.07
0.036
0.054
0.006
0.03
272
22.67
0.07
0.036
0.054
0.006
0.03
273
22.75
0.07
0.036
0.054
0.006
0.03
274
22.83
0.07
0.036
0.054
0.006
0.03
275
22.92
0.07
0.036
0.054
0.006
0.03
276
23.00
0.07
0.036
0.053
0.006
0.03
277
23.08
0.07
0.036
0.053
0.006
0.03
278
23.17
0.07
0.036
0.053
0.006
0.03
279
23.25
0.07
0.036
0.053
0.006
0.03
280
23.33
0.07
0.036
0.053
0.006
0.03
281
23.42
0.07
0.036
0.053
0.006
0.03
282
23.50
0.07
0.036
0.053
0.006
0.03
283
23.58
0.07
0.036
0.053
0.006
0.03
284
23.67
0.07
0.036
0.053
0.006
0.03
285
23.75
0.07
0.036
0.053
0.006
0.03
286
23.83
0.07
0.036
0.052
0.006
0.03
287
23.92
0.07
0.036
0.052
0.006
0.03
288
24.00
0.07
0.036
0.052
0.006
0.03
Sum =
100.0
Sum
= 37.5
Flood
volume =
Effective rainfall
3.12(In)
times
area
2.2(AC.) /[(In) /(Ft.)] =
0.6(AC.Ft)
Total
soil loss
= 1.38(In)
Total
soil loss
= 0.253(Ac.Ft)
Total
rainfall
= 4.50(In)
Flood
volume =
24924.5 Cubic Feet
Total
soil loss
= '11012.4
Cubic
Feet
--------------------------------------------------------------------
Peak flow rate of this hydrograph = 1.158(CFS)
--------------------------------------------------------------------
+++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
24 - H O U R S T O R M
R u n o f f H y d r o g r a p h
-------------------------------------------------------------- - - - - --
Hydrograph in 5 Minute intervals ((CFS))
--------------------------------------------------------------------
Time(h+m)
volume AC.Ft
Q(CFS)
0 2.5 5.0 7.5 . 10.0
-----------------------------------------------------------------------
0+ 5
0.0003
0.05
Q I
l
0 +10
0.0008
0.07
Q
0 +15
0.0012
0.07
Q
0 +20
0.0019
0.09
Q
0 +25
0.0025
0.10
Q
0 +30
0.0032
0.10
Q
0 +35
0.0039
0.10
Q
I
0 +40
0.0046
0.10
Q
0 +45
0.0053
0.10
Q
0 +50
0.0061
0.12
Q
I
I
0 +55
0.0070
0.13
Q
I
I
I
I
1+ 0
0.0079
0.13
Q
I
I
I
I
Page 6
1+ 5
0.0086
0.11
1 +10
0.0093
0.10
1 +15
0.0100
0.10
1 +20
0.0107
0.10
1 +25
0.0113
0.10
1 +30
0.0120
0.10
1 +35
0.0127
0.10
1 +40
0.0134
0.10
1 +45
0.0140
0.10
1 +50
0.0149
0.12
1 +55
0.0158
0.13
2+ 0
0.0167
0.13
2+ 5
0.0176
0.13
2 +10
0.0185
0.13
2 +15
0.0194
0.13
2 +20
0.0203
0.13
2 +25
0.0212
0.13
2 +30
0.0221
0.13
2 +35
0.0232
0.16
2 +40
0.0243
0.16
2 +45
0.0254
0.16
2 +50
0.0266
0.16
2 +55
0.0277
0.16
3+ 0
0.0288
0.16
3+ 5
0.0300
0.16
3 +10
0.0311
0.16
3 +15
0.0322
0.16
3 +20
0.0333
0.16
3 +25
0.0345
0.16
3 +30
0.0356
0.16
3 +35
0.0367
0.16
3 +40
0.0378
0.16
3 +45
0.0390
0.16
3 +50
0.0403
0.19
3 +55
0.0416
0.20
4+ 0
0.0430
0.20
4+ 5
0.0443
0.20
4 +10
0.0457
0.20
4 +15
0.0470
0.20
4 +20
0.0486
0.22
4 +25
0.0501
0.23
4 +30
0.0517
0.23
4 +35
0.0533
0.23
4 +40
0.0549
0.23
4 +45
0.0565
0.23
4 +50
0.0582
0.25
4 +55
0.0600
0.26
5+ 0
0.0618
0.26
5+ 5
0.0633
0.21
5 +10
0.0646
0.20
5 +15
0.0660
0.20
5 +20
0.0675
0.22
5 +25
0.0691
0.23
5 +30
0.0707
0.23
5 +35
0.0711
0.06
5 +40
0.0711
0.01
5 +45
0.0712
0.01
5 +50
0.0712
0.01
5 +55
0.0713
0.01
6+ 0
0.0714
0.01
6+ 5
0.0717
0.04
6 +10
0.0721
0.05
6 +15
0.0725
0.06
6 +20
0.0729
0.06
6 +25
0.0733
0.06
6 +30
0.0737
0.06
6 +35
0.0743
0.09
6 +40
0.0750
0.10
6 +45
0.0757
0.10
6 +50
0.0765
0.11
LQBC100YR,
Q
Q
Q
Q
Q
Q
Q
Q
Q
Qv
Qv
Qv
Qv
Qv
Qv
Qv
Qv
Qv
Qv
Qv
Qv
Qv
Qv
Qv
Qv
Qv
Qv
Qv
Qv
Q v
Qv
Qv
Qv
Qv
Qv
Q v
Q v
Q v
Q v
Q v
Q v
Q v
Q v
Q v
Q v
IQ v
IQ v
IQ v
Q v
Q v
Q v
Q v
Q v
Q v
Q v
Q v
Q v
Q v
Q v
0 v
v
v
v
v
v
v
v
v
v
v
4HR24100 . c
Page 7
►ut
Page 8
R
LQBC100YR24HR24100.out
6 +55
0.0772
0.11
Q
V
7+ 0
0.0779
0:11
Q
V
7+ 5
0.0787
0.11
Q
V
7 +10
0.0795
0.11
Q
V
7 +15
0.0802
0.11
Q
V
7 +20
0.0812
0.14
Q
V
7 +25
0.0823
0.15
Q
V
7 +30
0.0834
0.16
Q
V
I
7 +35
0.0847
0.19
Q
V
7 +40
0.0860
0.20
Q
V I
7 +45
0.0874
0.20
Q
V I
I
7 +50
0.0890
0.23
Q
V
7 +55
0.0907
0.24
Q
V
8+ 0
0.0923
0.24
Q
V
8+ 5
0.0945
0.31
IQ
V I
8 +10
0.0967
0.33
IQ
V I
8 +15
0.0990
0.33
IQ
V I
8 +20
0.1012
0.33
IQ
V I
I
8 +25
0.1035
0.33
IQ
V I
I
8 +30
0.1058
0.33
IQ
V I
8 +35
0.1083
0.36
IQ
V I
I
8 +40
0.1108
0.37
IQ
V I
8 +45
0.1134
0.37
IQ
V I
8 +50
0.1162
0.41
IQ
V I
I
8 +55
0.1191
0.42
IQ
V I
9+ 0
0.1220
0.42
IQ
V I
I
9+ 5
0.1253
0.48
IQ
V I
I
9 +10
0.1287
0.50
I Q
V I
9 +15
0.1322
0.50
I Q
VI
I
9 +20
0.1359
0.53
I Q
VI
9 +25
0.1396
0.54
I Q
VI
9 +30
0.1434
0.55
I Q
V
I
9 +35
0.1474
0.58
I Q
V
I
9 +40
0.1514
0.59
I Q
V
I
9 +45
0.1555
0.59
I Q
V
I
9 +50
0.1597
0.62
I Q
IV
I
9 +55
0.1641
0.63
I Q
IV
I
10+ 0
0.1684
0.63
I Q
IV
I
10+ 5
0.1713
0.42
IQ
IV
I
10 +10
0.1738
0.36
IQ
I V
10 +15
0.1762
0.36
IQ
I V
10 +20
0.1787
0.36
IQ
I V
10 +25
0.1812
0.36
IQ
I V
10 +30
0.1837
0.36
IQ
I V
I
10 +35
0.1872
0.51
I Q
I V
I
10 +40
0.1911
0.56.
I Q
I V
10 +45
0.1950
0.56
I Q
I V
I
10 +50
0.1988
0.56
I Q
I V
10 +55
0.2027
0.57
I Q
I V
11+ 0
0.2066
0.57
I Q
I V
I
11+ 5
0.2103
0.54
I Q
I V
11 +10
0.2140
0.53
I Q
I V
I
11 +15
0.2176
0.53
I Q
I V I
11 +20
0.2213
0.53
I Q
I V I
11 +25
0.2250
0.53
I Q
I V I
11 +30
0.2286
0.53
I Q
I V
11 +35
0.2319
0.47
IQ
I V I
11 +40
0.2350
0.46
IQ
I V
11 +45
0.2382
0.46
IQ
I V
11 +50
0.2416
0.49
IQ
I V 1
11 +55
0.2450
0.50
IQ
I V
12+ 0
0.2484
0.50
I Q
( V
12+ 5
0.2534
0.72
I Q
I V
12 +10
0.2588
0.78
I Q
I V
12 +15
0.2641
0.78
I Q
I V
12 +20
0.2698
0.81
I Q
I V I
12 +25
0.2754
0.83
I Q
I VI
12 +30
0.2811
0.83
I Q
I VI
12 +35
0.2873
0.89
I Q
I V
12 +40
0.2935
0.91
1 Q
I V
Page 8
R
LQBC100YR24HR24100.out
12 +45
0.2998
0.91
I
Q
I
V
12 +50
0.3063
0.94
I
Q
I
IV
12 +55
0.3128
0.95
I
Q
I
IV
13+ 0
0.3194
0.95
(
Q
I
I V
13+ 5
0.3270
1.11
I
Q
I
I V
13 +10
0.3349
1.15
(
Q
I
I V
13 +15
0.3429
1.16
I
Q
I
I V
13 +20
0.3508
1.16
I
Q
I
I V
13 +25
0.3588
1.16
I
Q
I
I
V I
13 +30
0.3668
1.16
I
Q
I
I
v
13 +35
0.3725
0.82
I
Q
I
I
V
13 +40
0.3774
0.72
I
Q
I
I
V
13 +45
0.3824
0.72
I
Q
I
I
V
13 +50
0.3874
0.72
I
Q
I
I
V
13 +55
0.3924
0.72
I
Q
I
I
V
14+ 0
'0.3974
0.73
I
Q
I
I
V
14+ 5
0.4032
0.85
I
Q
I
I
V
14 +10
0.4093
0.89
I
Q
I
I
V
14 +15
0.4154
0.89
I
Q
I
I
VI
14 +20
0.4213
0.86
I
Q
I
I
vi
14 +.25
0.4272
0.85
I
Q
I
I
VI
14 +30
0.4330
0.85
I
Q
I
I
V
14 +35
0.4389
0.85
`I
Q
I
I
V
14 +40
0.4448
0.85
I
Q
I
I
IV
14 +45
0.4507
0.85
I
Q
I
I
IV
14 +50
0.4563
0.82
I
Q
I
I
IV
14 +55
0.4620
0.82
I
Q
I
I
I V
15+ 0
0.4676
0.82
I
Q
I
I
I V
15+ 5
0.4730
0.79
I
Q
I
I
I
V
15 +10
0.4784
0.78
I
Q
I
I
I
V
15 +15
0.4837
0.78
I
Q
I
I
I
V
15 +20
0.4889
0.75
I
Q
I
I
I
V
15 +25
0.4940
0.74
I
Q
I
I
I
V
15 +30
0.4991
0.74
I
Q
I
I
I
V
15 +35
0.5034
0.62
I
Q
I
I
I
V
15 +40
0.5074
0.58
I
Q
I
I
I
V
15 +45.
0.5114
0.59
I
Q
I
I
I
V
15 +50 -
0.5155
0.59
I
Q
I
I
I
V
15 +55
0.5195
0.59
I
Q
I
I
(
V
16+ 0
0.5236
0.59
I
Q
I
I
I
V
16+ 5
0.5252
0.24
Q
I
I
I
V
16 +10
0.5261
0.13
Q
I
I
I
V
16 +15
0.5270
0.13
Q
I
I
I
V
16 +20
0.5279
0.13
Q
I
I
I
V
16 +25
0.5288
0.13
Q
I
I
I
V
16 +30
0.5297
0.13
Q
I
I.
I
V
16 +35
0.5304
0.11
Q
I
I'
I
V
16 +40
0.5311
0.10
Q
I
I
I
V
16 +45
0.5318
0.10
Q
I
I
I
V
16 +50
0.5325
0.10
Q
I
I
I
V
16 +55
0.5331
0.10
Q
I
I
I
V
17+ 0
0.5338
0.10
Q
I
I
I
V
17+ 5
0.5342
0.05
Q
I
I
I
V
17 +10
0.5345
0.04
Q
I
I
I
V
17 +15
0.5348
0.04
Q
I
I
I
V
17 +20
0.5350
0.04
Q
I
I
I
V
17 +25
0.5353
0.04
Q
I
I
I
V
17 +30
0.5356
0.04
Q
I'
I
I
V
•17 +35
0.5359
0.04
Q
I
I
I
V
17 +40
0.5363
0.05
Q
I
I
I
V
17 +45
0.5366
0.05
Q
I
I
I
V
17 +50
0.5367
0.02
Q
I
I
I
V
17 +55
0.5367
0.01
Q
I
I
I
V
18+ 0
0.5368
0.01
Q
I
I
I
V
18+ 5
0.5369
0.01
Q
I
I
I
V
18 +10
0.5369
0.01
Q
I
I
I
V
18 +15
0.5370
0.01
Q
I
I
I
V
18 +20
0.5371
0.01
Q
I
I
I
V
18 +25
0.5372
0.01
Q
I
I
I
V
18 +30
0.5372
0.01
Q
I
I
I
V
Page
9
R
18 +35
0.5378
0.08 (
18 +40
0.5385
0.10 (
18 +45
0.5391 '
0.10
18 +50
0.5396
0.07. (
18 +55
0.5401
0.07 (
19+ 0
0.5405
0.07 (
19 +'5
0.5412
0.09 (
19 +10
0.5418
0.10 (
19 +15
0.5425
0.10 (
19 +20
0.5428
0.04 (
19 +25
0.5429
0.02 (
19 +30
0.5431
0.02 (
19 +35
0.5436
0.08 (
19 +40
0.5443
0.10 (
19 +45
0.5450
0.10 (
19 +50
0.5455
0.07 (
19 +55
0.5459
0.07 (
20+ 0
0.5464
0.07 (
20+ 5
0.5470
0.09 (
20 +10
0.5477
0.10 (
20 +15
0.5484
0.10 (
20 +20
0.5490
0.10 (
20 +25
0.5497
0.10 (
20 +30
0.5504
0.10 (
20 +35
0.5511
0.10 (
20 +40.
0.5517
0.10 (
20 +45
0.5524
0.10 (
20 +50
0.5529
0.07 (
20 +55
0.5534
'0.07 (
21+ 0
0.5538
0.07 (
21+ 5
0.5544
0.09 (
'21 +10
0.5551
0.10 (
21 +15
0.5558
0.10 (
21 +20
0.5563
0.07 (
21 +25
0.5567
0.07 (
21 +30
0.5572
0.07 (
21 +35
0.5578
0.09 i
21 +40
0.5585
0.10 i
21 +45
0.5592
0.10 i
21 +50
0.5597
0.07 i
21 +55
0.5601
0.07
22+ 0
0.5606
0.07 i
22+ 5
0.5612
0.09 i
22 +10
0.5619
0.10 i
22 +15
0.5626
0.10 1
22 +20
0.5631
0.07 i
22 +25
0.5635
0.07 i
22 +30
0.5640
0.07 i
22 +35
0.5644
0.07 i
22 +40
0.5649
0.07 i
22 +45,
0.5653
0.07 i
22 +50
0.5658
0.07 i
22 +55
0.5662
0.07 i
23+ 0
0.5667
0.07 i
23+ 5
0.5671
0.07 i
23 +10
0.5676
0.07
23 +15
0.5680
0.07
23 +20
0.5685
0.07 i
23 +25
0.5689
0.07
23 +30
0.5694
0.07
23 +35
0.5698
0.07
23 +40
0:5703
0.07
23 +45
0.5707
0.07
23 +50
0.5712
0.07
23 +55
0.5716
0.07
24+ 0
0.5721
0.07
24+ 5
---------------------------
0.5722
0.02
- - - - --
LQBC100YR24HR24100.out
I
I
I
v
I
I
I
v
! I
I
I
v
! I
I
I
v
! I
I
I
v
! I
I
I
v
! I
I
I
v
I
I
I
v
I
t I
t I
t I
t I
t I
I
I
I
I
I
I
I
I
I
I
I
I
v
2
2
I
I
I
I
I
I
2
I
I
I
2
I
I
I
2
I
I
I
2
I
I
I
2
I
I
I
2
I
I
I
2
I
I
I
2
I
I
I
--------------------------------
- - - - --
Page 10
I
I
i
I
I
I
I
I
vi
vj
vI
vj
vI
vi
vI
vI
vj
vj
vI
vI
vI
vI
vl
vl
vj
vj
vl
VI
VI
VI
vI
vi
vj
vj
vi
vI
vj
vi
VI
vi
vi
vi
VI
VI
vi
vi
VI
v
vi
v
v
r
9
APPENDIX 2
STORMDRAIN PIPE SYSTEM
Ir
W:\Jobs2005\La Quinta Business Center\HYDROLOGY\REPORT \HYDROLOGY REPORT.doc
RATIONAL METHOD
W:Vobs2005\L:a Quinta Business Center\HYDROLOGY\REPORT \HYDROLOGY REPORT.doc
1 r1'tR r ?.t^ v ' s*, .s , -2 r a r;�`!s;!
W: \Jobs2005 \La Ouinta Business Center \HYDR0L0GY \EXH1B1T2.dwg 7/10/2005 3 :54 :49 PM PDT
—�D - ------ — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — --
rn p
Ih
p m ;
D D
WASHINGTON STREET i
D
I
I ,
°
�m
o
—►
aNO� I �i
Z u 4,1
,
I _ I
I�
- '- -
D '
i
IN
A U
'}M1��ill+il�1.�'$i1rr�•�'A • I il'il. ''�� low
00 )N
o
�
�
a
a
m
D
r
y
D
O
�
_
o
N
°a
ate_
W
I•
V %liY�ii',I
�V
ob m l
I
�
as
O _
as
MIT, i
m
co
�
I
'
,.r o
v.
o
—►
aNO� I �i
Z u 4,1
,
I _ I
I�
- '- -
D '
i
IN
A U
'}M1��ill+il�1.�'$i1rr�•�'A • I il'il. ''�� low
00 )N
o
�
�
a
a
Q
O
Com
°a
ate_
W
oa
V %liY�ii',I
0o t� I
ob m l
o m I
�
as
O
as
MIT, i
A'
I
I
Z I
°a
oa
oa
0o t� I
ob m l
o m I
rn;y
as
na
as
A'
co
E3
13
'
,.r o
_.
" ... ...
Riverside County Rational Hydrology Program
CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2004 Version 7.0
Rational Hydrology Study Date: 07/01/05 File:LQBCAREAl.out
------------------------------------------------------------------------
RATIONAL METHOD
AREA 1
------------------------------------------------------------------------
********* Hydrology Study Control Information * * * * * * * * **
English (in -lb) Units used in input data file
Program License Serial Number 4004
------------------------------------------------------------------------
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
Storm event (year) = 100.00 Antecedent Moisture Condition = 3
2 year, 1 hour precipitation = 0.400(In.)
100 year, 1 hour precipitation = 1.600(In.)
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1.600(In /Hr)
Slope of intensity duration curve = 0.5900
+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 1.000 to Point /Station 2.000
* * ** INITIAL AREA EVALUATION * * **
Initial area flow distance = 227.000(Ft.)
Top (of initial area) elevation = 144.710(Ft.)
Bottom (of initial area) elevation = 143.550(Ft.)
Difference in elevation = 1.160(Ft.)
Slope = 0.00511 s(percent)= 0.51
TC = k(0.300) *[(length^3) /(elevation change)]^0.2
Initial area time of concentration = 7.548 min.
Rainfall intensity = 5.436(In /Hr) for a 100.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.883
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 3) = 52.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Initial subarea runoff = 2.449(CFS)
Total initial stream area = 0.510(Ac.)
Pervious area fraction = 0.100
End of computations, total study area = 0.51 (Ac.)
ti€ f
The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.100
Area averaged RI index number = 32.0
A
•c
Riverside County Rational Hydrology Program
CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2004 Version 7.0
Rational Hydrology Study Date: 07/01/05 File:LQBCAREA2.out
------------------------------------------------------------------------
RATIONAL METHOD
AREA 2
-----------------------------------------------7------------------------
********* Hydrology Study Control Information * * * * * * * * **
English (in -lb) Units used in input data file
Program License Serial Number 4004
------------------------------------------------------------------------
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
Storm event (year) = 100.00 Antecedent Moisture Condition = 3
2 year, 1 hour precipitation = 0.400(In.)
100 year, 1 hour precipitation = 1.600(In.)
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1.600(In /Hr)
Slope of intensity duration curve = 0.5900
+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 1.000 to Point /Station 2.000
* * ** INITIAL AREA EVALUATION * * **
Initial area flow distance = 282.000(Ft.)
Top (of initial area) elevation = 149.920(Ft.)
Bottom (of initial area) elevation = 143.250(Ft.)
Difference in elevation = 6.670(Ft.)
Slope = 0.02365 s(percent) =. 2.37
TC = k(0.300) * [ (length'3) / (elevation change)) "0.2
Initial area time of concentration = 6.060 min.
Rainfall intensity = 6.189(In /Hr) for a 100.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.885
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 3) = 52.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Initial subarea runoff = 3.341(CFS)
Total initial stream area = 0.610(Ac.)
Pervious area fraction = 0.100
End of computations, total study area = 0.61 (Ac.)
The following figures may
a
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.100
Area averaged RI index number = 32.0
•
r `
Riverside County Rational Hydrology Program
CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2004 Version 7.0
Rational Hydrology Study Date: 07/01/05 File:LQBCAREA3.out
------------------------------------------------------------------------
RATIONAL METHOD
AREA 3,
------------------------------------------------------------------------
********* Hydrology Study Control Information * * * * * * * * **
English (in -lb) Units used in input data file
Program License Serial Number 4004
------------------------------------------------------------------------
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
Storm event (year) = 100.00 Antecedent Moisture Condition = 3
2 year, 1 hour precipitation = 0.400(In.)
100 year, 1 hour precipitation = 1.600(In.)
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1.600(In /Hr)
Slope of intensity duration curve = 0.5900
+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 1.000 to Point /Station 2.000
* * ** INITIAL AREA EVALUATION * * **
Initial area flow distance = 242.000(Ft.)
Top (of initial are elevation = 150.300(Ft.)
Bottom (of initial area) elevation = 145.720(Ft.)
Difference in elevation = 4.580(Ft.)
Slope = 0.01893 s(percent)= 1.89
TC = k(0.300) *[(length'3) /(elevation change))"0.2
Initial area time of concentration = 5.960 min.
Rainfall intensity = 6.249(In /Hr) for a 100.0 year storm
COMMERCIAL subarea type ,
Runoff Coefficient = 0.885
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 3) = 52.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Initial subarea runoff = 1.660(CFS)
Total initial stream area = 0.300(Ac.)
Pervious area fraction = 0.100
End of computations, total study area = 0.30 (Ac.)
The following figures may
v [
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.100
Area averaged RI index number = 32.0
Riverside County Rational Hydrology Program
CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2004 Version 7.0
Rational Hydrology Study Date: 07/01/05 File:LQBCAREA4.out
------------------------------------------------------------------------
RATIONAL METHOD
AREA 4
------------------------------------------------------------------------
********* Hydrology Study Control Information * * * * * * * * **
English (in -lb) Units used in input data file
Program License Serial Number 4004
------------------------------------------------------------------------
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
Storm event (year) = 100.00 Antecedent Moisture Condition = 3
2 year, 1 hour precipitation = 0.400(In.)
100 year, 1 hour precipitation = 1.600(In.)
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1.600(In /Hr)
Slope of intensity duration curve = 0.5900
+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 1.000 to Point /Station 2.000
* * ** INITIAL AREA EVALUATION * * **
Initial area flow distance = 184.000(Ft.)
Top (of initial area) elevation = 150.300(Ft.)
Bottom (of initial area) elevation = 147.200(Ft.)
Difference in elevation = 3.100(Ft.)
Slope = 0.01685 s(percent)= 1.68
TC = k(0.300) *[(length"3) /(elevation change))"0.2
Initial area time of concentration = 5.467 min.
Rainfall intensity = 6.576(In /Hr) for a 100.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.886
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 3) = 52.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Initial subarea runoff = 1.631(CFS)
Total initial stream area = 0.280(Ac.)
Pervious area fraction = 0.100
End of computations, total study area = 0.28 (Ac.)
The following figures may
i
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.100
Area averaged RI index number = 32.0
A
Riverside County Rational Hydrology Program
CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2004 Version 7.0
Rational Hydrology Study Date: 07/01/05 File:LQBCAREA5.out
------------------------------------------------------------------------
RATIONAL METHOD
AREA 5
------------------------------------------------------------------------
********* Hydrology Study Control Information * * * * * * * * **
English (in -lb) Units used in input data file
Program License Serial Number 4004
------------------------------------------------------------------------
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
Storm event (year) = 100.00 Antecedent Moisture Condition = 3
2 year, 1 hour precipitation = 0.400(In.)
100 year, 1 hour precipitation = 1.600(In.)
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1.600(In /Hr)
Slope of intensity duration curve = 0.5900
+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 1.000 to Point /Station 2.000
* * ** INITIAL AREA EVALUATION * * **
Initial area flow distance = 50.000(Ft.)
Top (of initial area) elevation = 151.000(Ft.)
Bottom (of initial area) elevation = 149.000(Ft.)
Difference in elevation = 2'.000(Ft.)
Slope = 0.04000 s(percent)= 4.00
TC = k(0.300) *[(length^3) /(elevation change))'0.2
Warning: TC computed to be less than 5 min.; program
time of concentration is 5 minutes.
Initial area time of concentration = 5.000 min.
Rainfall intensity = 6.932(In /Hr) for a 100.0
COMMERCIAL subarea type
Runoff Coefficient = 0.886
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 3) = 52.00
Pervious area fraction = 0.100; Impervious fraction
Initial subarea runoff = 0.492(CFS)
Total initial stream area = 0.080(Ac.)
Pervious area fraction = 0.100
is assuming the
year storm
= 0.900
End of computations, total study area = 0.08 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.100
Area averaged RI index number = 32.0
Riverside County Rational Hydrology Program
CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2004 Version 7.0
Rational Hydrology Study Date: 07/01/05 File:LQBCAREA6.out
------------------------------------------------------------------------
RATIONAL METHOD
AREA 6
-------------------------------------------------7----------------------
********* Hydrology Study Control Information * * * * * * * * **
English (in -lb) Units used in input data file
Program License Serial Number 4004
------------------------------------------------------------------------
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
Storm event (year) = 100.00 Antecedent Moisture Condition = 3
2 year, 1 hour precipitation = 0.400(In.)
100 year, 1 hour precipitation = 1.600(In.)
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1.600(In /Hr)
Slope of intensity duration curve = 0.5900
+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 1.000 to Point /Station 2.000
* * ** INITIAL AREA EVALUATION * * **
Initial area flow distance = 40.000(Ft.)
Top (of initial area) elevation = 151.000(Ft.)
Bottom (of initial area) elevation = 150.000(Ft.)
Difference in elevation = 1.000(Ft.)
Slope = 0.02500 s(percent)= 2.50
TC = k(0.300) *[(length"3) /(elevation change)]^0.2
Warning: TC computed to be less than 5 min.; program is assuming the
time of concentration is 5 minutes.
Initial area time of concentration = 5.000 min.
Rainfall intensity = 6.932(In /Hr) for a 100.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.886
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 3) = 52.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Initial subarea runoff = 0.492(CFS)
Total initial stream area = 0.080(Ac.)
Pervious area fraction = 0.100
End of computations, total study area = 0.08 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.100
Area averaged RI index number = 32.0
t
Riverside County Rational Hydrology Program
CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2004 Version 7.0
Rational Hydrology Study Date: 07/01/05 File:LQBCAREA7.out
------------------------------------------------------------------------
RATIONAL METHOD
AREA 7
------------------------------------------------------------------------
********* Hydrology Study Control Information * * * * * * * * **
English (in -lb) Units used in input data file
Program License Serial Number 4004
------------------------------------------------------------------------
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
Storm event (year) = 100.00 Antecedent Moisture Condition = 3
2 year, 1 hour precipitation = 0.400(In.)
100 year, 1 hour precipitation = 1.600(In.)
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1.600(In /Hr)
Slope of intensity duration curve = 0.5900
+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 1.000 to Point /Station 2.000
* * ** INITIAL AREA EVALUATION * * **
Initial area flow distance = 38.000(Ft.)
Top (of initial area) elevation = 151.000(Ft.)
Bottom (of initial area) elevation = 149.400(Ft.)
Difference in elevation = 1.600(Ft.)
Slope = 0.04211 s(percent)= 4.21
TC = k(0.300) *[(length"3) /(elevation change))"0.2
Warning: TC computed to be less than 5 min.; program is assuming the
time of concentration is 5 minutes.
Initial area time of concentration = 5.000 min.
Rainfall intensity = 6.932(In /Hr) for a 100.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.886
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 3) = 52.00
.Pervious area fraction = 0.100; Impervious fraction = 0.900
Initial subarea runoff = 0.369(CFS)
Total initial stream area = 0.060(Ac.)
Pervious area fraction = 0.100
End of computations, total study area = 0.06 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.100
Area averaged RI index number = 32.0
Riverside County Rational Hydrology Program
CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2004 Version 7.0
Rational Hydrology Study Date: 07/01/05 File:LQBCAREA8.out
------------------------------------------------------------------ - - - - --
RATIONAL METHOD
AREA 8
------------------------------------------------------------------------
********* Hydrology Study Control Information * * * * * * * * **
English (in -lb) Units used in input data file
Program License Serial Number 4004
------------------------------------------------------------------------
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
Storm event (year) = 100.00 Antecedent Moisture Condition = 3
2 year, 1 hour precipitation = 0.400(In.)
100 year, 1 hour precipitation = 1.600(In
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1.600(In /Hr)
Slope of intensity duration curve = 0.5900
+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 1.000 to Point /Station 2.000
* * ** INITIAL AREA EVALUATION * * **
Initial area flow distance = 52.300(Ft.)
Top (of initial area) elevation = 151.000(Ft.)
Bottom (of initial area) elevation = 147.300(Ft.)
Difference in elevation = 3.700(Ft.)
Slope = 0.07075 s(percent)= 7.07
TC = k(0.300) *[(length^3) /(elevation change))"0.2
Warning: TC computed to be less than 5 min.; program is assuming the
time of concentration is 5 minutes.
Initial area time of concentration = 5.000 min.
Rainfall intensity = 6.932(In/Hr) for a 100.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.886
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 3) = 52.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Initial subarea runoff = 0.492(CFS)
Total initial stream area = 0.080(Ac.)
Pervious area fraction = 0.100
End of computations, total study area = 0.08 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.100
Area averaged RI index number = 32.0
Riverside County Rational Hydrology Program
CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2004 Version 7.0
Rational Hydrology Study Date: 07/01/05 File:LQBCAREA9.out
------------------------------------------------------------------------
RATIONAL METHOD
AREA 9
------------------------------------------------------------------------
********* Hydrology Study Control Information * * * * * * * * **
English (in -lb) Units used in input data file
Program License Serial Number 4004
------------------------------------------------------------------------
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
Storm event (year) = 100.00 Antecedent Moisture Condition = 3
2 year, 1 hour precipitation = 0.400(In.)
100 year, 1 hour precipitation = 1.600(In
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1.600(In /Hr)
Slope of intensity duration curve = 0.5900
+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 1.000 to Point /Station 2.000
* * ** INITIAL AREA EVALUATION * * **
Initial area flow distance = 43.300(Ft.)
Top (of initial area) elevation = 151.000(Ft.)
Bottom (of initial area) elevation = 147.300(Ft.)
Difference in elevation = 3.700(Ft.)
Slope = 0.08545 s(percent)= 8.55
TC = k(0.300) *[(lengthA3) /(elevation change) ]A0.2
Warning: TC computed to be less than 5 min.; program is assuming the
time of concentration is 5 minutes.
Initial area time of concentration = 5.000 min.
Rainfall intensity = 6.932(In /Hr) for a 100.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.886
Decimal fraction soil group A = 1.000
Decimal .fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 3) = 52.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Initial subarea runoff = 0.676(CFS)
Total initial stream area = 0.110(Ac.)
Pervious area fraction = 0.100
End of computations, total study area = 0.11 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.100
Area averaged RI index number = 32.0
Riverside County Rational Hydrology Program
CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2004 Version 7.0
Rational Hydrology Study Date: 07/01/05 File:LQBCAREA10.out
------------------------------------------------------------------ - - - - --
RATIONAL METHOD
AREA 10
------------------------------------------------------------------------
********* Hydrology Study Control Information * * * * * * * * **
English (in -lb) Units used in input data file
Program License Serial Number 4004
------------------------------------------------------------------------
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
Storm event (year) = 100.00 Antecedent Moisture Condition = 3
2 year, 1 hour precipitation = 0.400(In.)
100 year, 1 hour precipitation = 1.600(In.)
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1.600(In /Hr)
Slope of intensity duration curve = 0.5900
+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++
Process from Point /Station 1.000 to Point /Station 2.000
* * ** INITIAL AREA EVALUATION * * **
Initial area flow distance = 20.000(Ft.)
Top (of initial area) elevation = 150.500(Ft.)
Bottom (of initial area) elevation = 150.000(Ft.)
Difference in elevation = 0.500(Ft.)
Slope = 0.02500 s(percent)= 2.50
TC = k(0.300) *[(length"3) /(elevation change)]'0.2
Warning: TC computed to be less than 5 min.; program is assuming the
time of concentration is 5 minutes.
Initial area time of concentration = 5.000 min.
Rainfall intensity = 6.932(In /Hr) for a 100.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.886
Decimal fraction soil group A = 1.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 3) = 52.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Initial subarea runoff = 0.492(CFS)
Total initial stream area = 0.080(Ac.)
Pervious area fraction = 0.100
End of computations, total study area = 0.08 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.100
Area averaged RI index number = 32.0
0
HYDRAULIC GRADE LINE
W:\Jobs2005\La Quinta Business Center \HYDROLOGY\REPORT\HYDROLOGY REPORT.doc
Hydraflow Plan View
Outfall
1
2 .
3 4
10
6
7
18
Project file: LINE1.stm No. Lines: 10 07 -10 -2005
Hydraflow Storm Sewers 2003
Storm Sewer Summary Report
Page 1
Line
Line ID
Flow
Line
Line
Invert
Invert
Line
HGL
HGL
Minor
Dns
No.
rate
size
length
EL Dn
EL Up
slope
down
up
loss
line
(cfs)
(in)
(ft)
(ft)
(ft)
N
(ft)
(ft)
(ft)
No.
1
1.84
12 c
13.0
141.50
141.80
2.308
143.68*
143.71-
0.06
End
2
1.84
12 c
36.0
141.80
142.63
2.306
143.77*
143.86*
0.06
1
3
1.84
12 c
39.0
142.63
143.53
2.308
143.92
144.11
0.18
2
4
1.35
12 c
44.0
143.53
144.54
2.295
144.29
145.03
0.09
3
5
1.35
12 c
56.0
144.56
145.85
2.304
145.12
146.34
0.24
4
6
0.86
6 C
58.0
145.85
147.18
2.293
146.58
147.66
0.15
5
7
0.37
6 C
43.0
147.18
148.17
2.302
147.81
148.48
0.10
6
8
0.37
6 c
14.0
148.17
148.49
2.286
148.58
148.80
0.13
7
9
0.49
6 C
4.0
143.70
144.46
19.000
144.29
144.82
0.13
3
10
0.49
6 C
19.0
144.46
148.07
19.000
144.94
148.43
0.17
9
Project File: LINE1.stm
Number of lines: 10
Run Date: 07 -10 -2005
NOTES: c = circular; e = elliptical; b = box; Return period = 100 Yrs.; * Indicates surcharge condition.
Hydrallow Storm Sewers 2003
Hydraulic Grade Line Computations
Page 1
Line
Size
Q
Downstream
Len
Upstream
Check
JL
Minor
coeff
loss
Invert
HGL
Depth
Area
Vel
Vel
EGL
Sf
Invert
HGL
Depth
Area
Vel
Vel
EGL
Sf
Ave
Enrgy
elev
elev
head
elev
elev
elev
head
elev
Sf
loss
(in)
(cfs)
(ft)
(ft)
(ft)
(sqft)
(ft/s)
(ft)
(ft)
N
(ft)
(ft)
(ft)
(ft)
(sgft)
(ft/s)
(ft)
(ft)
N
N
(ft)
(K)
(ft)
1
12
1.84
141.50
143.68
1.00
0.79
2.34
0.09
143.77
0.228
13.0
141.80
143.71
1.00
0.79
2.34
0.09
143.79
0.227
0.228
0.030
0.75
0.06
2
12
1.84
141.80
143.77
1.00
0.79
2.34
0.09
143.86
0.228
36.0
142.63
143.86
1.00
0.79
2.34
0.09
143.94
0.227
0.228
0.082
0.75
0.06
3
12
1.84
142.63
143.92
1.00
0.79
2.34
0.09
144.00
0.228
39.0
143.53
144.11
0.58 **
0.47
3.93
0.24
144.35
0.574
0.401
n/a
0.75
0.18
4
12
1.35
143.53
144.29
0.76
0.64
2.12
0.07
144.36
0.145
44.0
144.54
145.03
0.49 **
0.39
3.50
0.19
145.22
0.515
0.330
n/a
0.45
0.09
5
12
1.35
144.56
145.12
0.56
0.45
2.99
0.14
145.26
0.340
56.0
145.85
146.34
0.49 **
0.39
3.50
0.19
146.53
0.515
0.427
n/a
1.25
0.24
6
6
0.86
145.85
146.58
0.50
0.20
4.38
0.30
146.88
2.005
58.0
147.18
147.66
0.48
0.19
4.45
0.31
147.97
1.739
1.872
1.086
0.50
0.15
7
6
0.37
147.18
147.81
0.50
0.20
1.88
0.06
147.87
0.371
43.0
148.17
148.48
0.31**
0.13
2.91
0.13
148.61
0.752
0.562
n/a
0.75
0.10
8
6
0.37
148.17
148.58
0.41
0.17
2.16
0.07
148.65
0.375
14.0
148.49
148.80
0.31 **
0.13
2.91
0.13
148.93
0.752
0.564
n/a
1.00
0.13
9
6
0.49
143.70
144.29
0.50
0.20
2.50
0.10
144.38
0.651
4.0
144.46
144.82
0.36 **
0.15
3.28
0.17
144.98
0.891
0.771
n/a
0.75
0.13
10
6
0.49
144.46
144.94
0.48
0.19
2.53
0.10
145.04
0.568
19.0
148.07
148.43
0.36 **
0.15
3.28
0.17
148.59
0.891
0.730
n/a
1.00
0.17
Project File: LINE1.stm
Number of lines: 10
Run Date: 07 -10 -2005
NOTES: * Normal depth assumed., ** Critical depth assumed.
Hydraflow Storm Sewers 2003
Storm Sewer Profile
Elev. (ft)
163.0(
158.00
153.00
148.00
143.00
138.00
0 25 50 75 100 125 150 175 200 225 250 275 300 325
Reach (ft)
Proj. file: LINE1.stm
Hydraflow Storm Sewers 2003
Storm Sewer Profile
Elev. (ft)
163.00
158.00
153.00
148.00
143.00
138.00
0
10 20 30 40 50 60 70 80 90 100 110 120
Reach (ft)
Hydraflow Storm Sewers 2003
Hydraflow Plan View
flirtfall
Project file: LINE2.strn No. Lines: 8 07 -10 -2005
Hydraflow Storm Sewers 2003
Storm Sewer Summary Report
Page 1
Line
Line ID
Flow
Line
Line
Invert
Invert
Line
HGL
HGL
Minor
Dns
No.
rate
size
length
EL Dn
EL Up
slope
down
up
loss
line
(cfs)
(in)
(ft)
(ft)
(ft)
N
(ft)
(ft)
(ft)
No.
1
2.80
12 c
174.0
141.50
142.54
0.598
143.68'
144.60'
0.15
End
21.
1.63
12 c
7.0
142.54
142.58
0.572
144.75'
144.76'
0.05
1
3
1.63
12 c
29.0
142.58
143.33
2.586
144.81
144.86*
0.05
2
4
1.63
12 c
38.5
143.33
144.33
2.597
144.91
144.91
0.18
3
5
1.17
12 c
58.0
142.54
143.84
2.241
144.75
144.79
0.03
1
6
1.17
12 c
26.0
143.84
144.42
2.231
144.82
144.88
0.08
5
7
1.17
12 c
35.0
144.42
145.20
2.229
144.96
145.66
0.12
6
8
0.49
6 c
60.0
145.20
145.80
1.000
145.78
146.16
0.16
7
Project File: LINE2.stm
Number of lines: 8
Run Date: 07 -10 -2005
NOTES: c = circular; e = elliptical; b = box; Return period = 100 Yrs.; . Indicates surcharge condition.
Hydraflow Storm Sewers 2003
Hydraulic Grade Line Computations
Page 1
Line
Size
Q
Downstream
Len
Upstream
Check
JL
Minor
coeff
loss
Invert
HGL
Depth
Area
Vel
Vel
EGL
Sf
Invert
HGL
Depth
Area
Vel
Vel
EGL
Sf
Ave
Enrgy
elev
elev
head
elev
elev
elev
head
elev
Sf
loss
(in)
(cfs)
(ft)
(ft)
(ft)
(sgft)
(ft/s)
(ft)
(ft)
N
(ft)
(ft)
(ft)
(ft)
(sqft)
(ft/s)
(ft)
(ft)
N
N
(ft)
(K)
(ft)
1
12
2.80
141.50
143.68
1.00
0.79
3.57
0.20
143.88
0.527
174
142.54
144.60
1.00
0.79
3.57
0.20
144.79
0.527
0.527
0.917
0.75
0.15
2
12
1.63
142.54
144.75
1.00
0.79
2.08
0.07
144.81
0.179
7.0
142.58
144.76
1.00
0.79
2.08
0.07
144.82
0.179
0.179
0.012
0.75
0.05
3
12
1.63
142.58
144.81
1.00
0.79
2.08
0.07
144.87
0.179
29.0
143.33
144.86
1.00
0.79
2.08
0.07
144.93
0.179
0.179
0.052
0.75
0.05
4
12
1.63
143.33
144.91
1.00
0.79
2.08
0.07
144.98
0.179
38.5
144.33
144.91
0.58
0.47
3.44
0.18
145.10
0.437
0.308
0.118
1.00
0.18
5
12
1.17
142.54
144.75
1.00
0.79
1.49
0.03
144.78
0.092
58.0
143.84
144.79
0.95
0.77
1.51
0.04
144.83
0.080
0.086
0.050
0.75
0.03
6
12
1.17
143.84
144.82
0.98
0.78
1.50
0.03
144.86
0.082
26.0
144.42
144.88
0.46"
0.35
3.33
0.17
145.05
0.495
0.289
n/a
0.45
0.08
7
12
1.17
144.42
144.96
0.54
0.43
2.73
0.12
145.07
0.291
35.0
145.20
145.66
0.46'"
0.35
3.33
0.17
145.83
0.495
0.393
n/a
0.70
0.12
8
6
0.49
145.20
145.78
0.50
0.20
2.50
0.10
145.88
0.651
60.0
145.80
146.16
0.36
0.15
3.20
0.16
146.32
0.837
0.744
0.447
1.00
0.16
Project File: LINE2.stm
Number of lines: 8
Run Date: 07 -10 -2005
NOTES: ' Normal depth assumed., " Critical depth assumed.
Hydraflow Storm Sewers 2003
Storm Sewer Profile
Elev. (ft)
158.00
154.00
150.00
146.00
142.00
138.00
0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375
Reach (ft)
r3l-; AI-. 1 IAIC'f -4.-
Hydraflow Storm Sewers 2003
Storm Sewer Profile
Elev. (ft)
158.00
154.00
150.00
146.00
142.00
138.00 1
0
25 50 75 100 125 150 175 200 225 250
Reach (ft)
Proj. file: LINE2.stm
Hydraflow Storm Sewers 2003
Hydraflow Plan View
3
2 1 Outfall
4
Project file: LINE3.stm No., Lines: 4 07 -10 -2005
Hydraflow Storm Sewers 2003
Storm Sewer Summary Report
Page 1
Line
Line ID
Flow
Line
Line
Invert
Invert
Line
HGL
HGL
Minor
Dns
No.
rate
size
length
EL Dn
EL Up
slope
down
up
loss
line
(cfs)
(in)
(ft)
(ft)
(ft)
N
(ft)
(ft)
(ft)
No.
1
5.79
18 c
24.0
140.00
140.12
0.500
143.68*
143.74*
0.13
End
2
3.34
18 c
8.0
140.12
140.16
0.500
143.87*
143.87*
0.04
1
3
3.34
18 c
19.0
140.16
140.33
0.895
143.92*
143.93*
0.06
2
4
2.45
1
12 c
30.0
140.37
140.82
1.500
143.87*
143.99*
0.15
1
Project File: LINE3.stm
Number of lines: 4
Run Date: 07 -10 -2005
NOTES: c = circular; e = elliptical; b = box; Return period = 100 Yrs.; * Indicates surcharge condition.
Hydrailow Storm Sewers 2003
Hydraulic Grade Line Computations
Page 1
Line
Size
Q
Downstream
Len
Upstream
Check
JL
Minor
coeff
loss
Invert
HGL
Depth
Area
Vel
Vel
EGL
Sf
Invert
HGL
Depth
Area
Vel
Vel
EGL
Sf
Ave
Enrgy
elev
elev
head
elev
elev
elev
head
elev
Sf
loss
(in)
(cfs)
(ft)
(ft)
(ft)
(sqft)
(ft/s)
(ft)
(ft)
N
(ft)
(ft)
(ft)
(ft)
(sqft)
(ft/s)
(ft)
(ft)
N
N
(ft)
(K)
(ft)
1
18
5.79
140.00
143.68
1.50
1.77
3.28
0.17
143.85
0.259
24.0
140.12
143.74
1.50
1.77
3.28
0.17
143.91
0.259
0.259
0.062
0.75
0.13
2
18
3.34
140.12
143.87
1.50
1.77
1.89
0.06
143.92
0.086
8.0
140.16
143.87
1.50
1.77
1.89
0.06
143.93
0.086
0.086
0.007
0.75
0.04
3
18
3.34
140.16
143.92
1.50
1.77
1.89
0.06
143.97
0.086
19.0
140.33
143.93
1.50
1.77
1.89
0.06
143.99
0.086
0.086
0.016
1.00
0.06
4
12
2.45
140.37
143.87
1.00
0.79
3.12
0.15
144.02
0.403
30.0
140.82
143.99
1.00
0.79
3.12
0.15
144.14
0.403
0.403
0.121
1.00
0.15
Project File: LINE3.stm
Number of lines: 4
Run Date: 07 -10 -2005
NOTES: ' Normal depth assumed., " Critical depth assumed. ,
Hydraflow Storm Sewers 2003
Storm Sewer Profile
Elev. (ft)
153.00
150.00
147.00
144.00
141.00
W41192
rte.__. rn_. I Tern _i -_ •
0 10 20 30 40 50 .60 70 80 90 100
Reach (ft)
Hydraflow Storm Sewers 2003
Storm Sewer Profile
Elev. (ft)
153.00
150.00
147.00
144.00
141.00
138.00
Prni files- I INF3 ctm •
0 10 20 30 40 50 60 70 80 90 100
Reach (ft)
Hydraflow Storm Sewers 2003
Hydraflow Plan View
W
Outfall
2
Project file: LINE4.stm No. Lines: 2 07 -10 -2005
HydraFlow Storm Sewers 2003
Storm Sewer Summary Report
Page 1
Line
Line ID
Flow
Line
Line
Invert
Invert
Line
HGL
HGL
Minor
Dns
No.
rate
size
length
EL Dn
EL Up
slope
down
up
loss
line
(cfs)
(in)
(ft)
(ft)
(ft)
N
(ft)
(ft)
(ft)
No.
1
1.66
12 c
5.0
141.50
141.66
3.200
143.68*
143.69*
0.03
End
2
1.66
12 c
40.0
141.66
142.94
3.200
143.72
143.79
0.08
1
Project File: LINE4.stm
Number of lines: 2
Run Date: 07 -10 -2005
NOTES: c = circular; e = elliptical; b = box; Return period = 100 Yrs.; * Indicates surcharge condition.
Hydraflow Storm Sewers 2003
Hydraulic Grade Line Computations
Page 1
Line
Size
Q
Downstream
Len
Upstream
Check
JL
Minor
coeff
loss
Invert
HGL
Depth
Area
Vel
Vel
EGL
Sf
Invert
HGL
Depth
Area
Vel
Vel
EGL
Sf
Ave
Enrgy
elev
elev
head
elev
elev
elev
head
elev
Sf
loss
(in)
(cfs)
(ft)
(ft)
(ft)
(sgft)
(ft/s)
(ft)
(ft)
N
(ft)
(ft)
(ft)
(ft)
(sgft)
(ft/s)
(ft)
(ft)
N
N
(ft)
(K)
(ft)
1
12
1.66
141.50
143.68
1.00
0.79
2.11
0.07
143.75
0.185
5.0
141.66
143.69
1.00
0.79
2.11
0.07
143.76
0.185
0.185
0.009
0.45
0.03
2
12
1.66
141.66
143.72
1.00
0.79
2.11
0.07
143.79
0.217
40.0
142.94
143.79
0.85
0.71
2.34
0.08
143.87
0.205
0.211
0.084
1.00
0.08
Project File: LINE4.stm
Number of lines: 2
Run Date: 07 -10 -2005
NOTES: * Normal depth assumed., " Critical depth assumed.
HydraFlow Storm Sewers 2003
Storm Sewer Profile
Elev. (ft)
154.00
151.00
148.00
145.00
142.00
139.00
Proj. file: LINE4.stm
0 10 20 30 40 50 60 70 80 90 100
Reach (ft)
Hydraflow Storm Sewers 2003
�� cl
CATCH BASIN CALCULATIONS
Curb opening width calculation:
Q = 4.3 A x Dos from Los Angeles County Flood Control District
A = area of opening (W x 0.656)
W = length (feet) of catch basin opening
D = depth (feet) of flow above normal gutter
W = 4' (city standard)
Q = 4.3x4.0x0.656x(0.67)0-s = 8.9 cfs > all individual flows into the catch basin
Therefore recommended width for all the four curb opening catch basin = 4.0'
Depth of Catch basin
Vdepth = C.F +1.2 (v2 /2g) +pipe dia +0.5 (free board) from LACFCD
Catch basin # 1
Q,00 = 2.45 cfs
Pipe diameter =1.0'
Vdepth = 0.67 +1.2(6.042 /2g) +1.0 +0.5 = 2.74
Adopt Vdepth = 3.5'
Catch basin # 2
Q 10 = 3.34 cfs
Pipe diameter--1.5'
Vdepth = 0.67 +1.2(5.52 /2g) +1.5 +0.5 = 3.2
Adopt Vdepth = 3.5'
W:\Jobs2005\La Quinta Business Center \HYDROLOGY\REPORT\HYDROLOGY REPORT.doc
c
Catch basin # 3
Q,00 = 1.66 cfs
Pipe diameter =1.0'
Vdepth= 0.5 +1.2(7.222/2g) +1.0 +0.5 = 3.0
Adopt Vdepth = 3.5'
Catch basin # 4
Q,00 = 1.95 cfs
Pipe diameter =1.0'
Vdepth= 0.5 +1.2(7.02/2g) +1.0 +0.5 = 2.9
Adopt Vdepth = 3.5'
W:\Jobs2005\La Quinta Business Center\HYDROLOGY\REPORT\HYDROLOGY REPORT.doc
't
SOILS INVESTIGATION
Proposed Office Building Development
43576 Washington Street
LaQuinta, California
M
iL
SOILS INVESTIGATION
Proposed Office Building Development
43576 Washington Street
LaQuinta, California
M
SOILS INVESTIGATION
Proposed Office Building Development
43576 Washington Street
LaQuinta, California
Prepared For:
Mr. Daniel Entin
17407 Califa Street
Encino, California 91316
Project Number 11813 -04
December 20, 2004
r
K
SOILS INVESTIGATION
Proposed Office Building Development
43576 Washington Street
LaQuinta, California
Prepared For:
Mr. Daniel Entin
17407 Califa Street
Encino, California 91316
Project Number 11813 -04
December 20, 2004
NorCal Engineering
Soils and Geotechnical Consultants
10641 Humbolt Street Los Alamitos, CA 90720
(562) 799 -9469 Fax (562) 799 -9459
December 20, 2004
Mr. Daniel Entin
17407 Califa Street
Encino, California 91316
Project Number 11813 -04
RE: SOILS INVESTIGATION - Proposed Office Building Development —
Located at 43576 Washington Street, in the City of LaQuinta, California
Dear Mr. Entin:
Pursuant to your request, this firm has performed a Geotechnichal Engineering
Investigation for the above referenced project in accordance with your authorization.
The purpose of this investigation is to evaluate the geotechnical conditions of the
subject site and to provide recommendations for the proposed project. This
geotechnical engineering report presents the findings of our study along with
conclusions and recommendations for development.
1.0 STRUCTURAL CONSIDERATIONS
1.1 Project Description
The purpose of the investigation was to explore the subsurface conditions and
to provide preliminary geotechnical engineering design parameters for
evaluation of the site with respect to the proposed development. This
geotechnical engineering report presents the findings of our study along with
engineering analysis and recommendations for the proposed project. It is
proposed to construct a two -story office development consisting of 23,760
square feet on the approximately +1.6 acre parcel.
It is anticipated that other improvements will consist of asphalt paved
parking /driveway circulation areas and landscaping.
December 20, 2004
Page 2
2.0 SITE DESCRIPTION
Project Number 11813 -04
2.1 Location: The property is located within a commercial area situated easterly
of Washington Street and northerly of Fred Waring in the City of La Quinta.
Existing Improvements: The property is currently undeveloped and recently
contained a medical facility which has been demolished. Asphaltic concrete
from the previous development is located throughout the property.
2.2 Vegetation: Very minor vegetation was noted.
3.0 FIELD INVESTIGATION
3.1 Site Exploration
The investigation consisted of the placement of 5 subsurface test excavations
by an extended -backhoe to a maximum depth of 12 feet placed strategically in
proposed areas of development. Heavy caving limited the depths of our
excavations. The explorations were visually classified and logged by a field
engineer with locations of the subsurface explorations shown on the attached
Site Plan. The exploratory excavations revealed the existing earth materials to
consist of a compacted fill soils and sandy alluvium.
A detailed description of the subsurface conditions are listed on the excavation
logs in Appendix A. These soils are described as follows:
Surficial Fill: Surfical fill soils generally classifying as slightly silty SAND with
gravel, asphaltic concrete and other debris were encountered across the site to
a depth of 1 to 1 Y2 feet. These soils were noted to be medium dense and
damp.
Natural: An undisturbed alluvium soil was encountered consisting
predominately of a light brown, very slightly silty fine to medium grained SAND.
These soils were noted to be medium dense and dry to damp.
NorCal Engineering
?I
December 20, 2004
` Page 3
Project Number 11813 -04
The overall engineering characteristics of the earth material were relatively
uniform with each trench.
3.2 Groundwater
No groundwater was encountered to the depth of our trench excavations
4.0 LABORATORY TESTS
Relatively undisturbed samples of the subsurface soils were obtained to
perform laboratory testing and analysis for direct shear, consolidation tests,
and to determine in -place moisture /densities. These undisturbed samples
consisted of one inch rings with an inside diameter of 2.5 inches. Bulk bag
samples were obtained in the upper soils for expansion index tests, maximum
density tests and chemical tests. All test results are included in Appendix B,
unless noted otherwise.
4.1 Field moisture content (ASTM:D 2216) and the dry density of the ring
samples were determined in the laboratory. This data is listed on the logs of
explorations.
4.2 Maximum density tests (ASTM: D- 1557 -00) were performed on typical
samples of the upper soils. Results of these tests are shown on Table I.
4.3 Expansion index tests in accordance with the Uniform Building Code
Standard No. 18 -2 were performed on remolded samples of the upper soils to
determine the expansive characteristics and to provide any necessary
recommendations for reinforcement of the slabs -on -grade and the foundations.
Results of these tests are provided on Table IL
NorCal Engineering
December 20, 2004 Project Number 11813 -04
Page 4
`1 4.4 Direct shear tests (ASTM: D -3080) were performed on undisturbed and
disturbed samples of the subsurface soils. These tests were performed to
1 determine parameters for the calculation of the safe bearing capacity. The test
is performed under saturated conditions at loads of 500 lbs. /s ft., 1,000
p q'
Ibs. /sq.ft., and 2,000 lbs. /sq.ft. with results shown on Plate A.
{ 4.5 Consolidation tests (ASTM: D -2435) were performed on undisturbed samples
to determine the differential and total settlement which may be anticipated
based upon the proposed loads. Water was added to the samples at a
i surcharge of one KSF and the settlement curves are plotted on Plate B.
4.6 Soluble sulfate, pH, Resistivity and Chloride tests to determine potential
corrosive effects of soils on concrete and metal structures were performed in
the laboratory. Test results are discussed later in this report and are included
on the attached Tables 111.
5.0 SEISMICITY EVALUATION
There are no known active or potentially active faults trending toward or
through the site. The proposed development lies outside of any Alquist Priolo
Special Studies Zone and the potential for damage due to direct fault rupture is
considered remote. The site is located in an area of high regional seismicity
and a maximum horizontal ground acceleration of 0.46g may occur from a
Magnitude 7.4 earthquake along the San Andreas fault zone, which is located
approximately 8 kilometers away. Ground shaking originating from
earthquakes along other active faults in the region is expected to induce lower
horizontal accelerations due to smaller anticipated earthquakes and /or greater
distances to other faults.
NorCal Engineering
December 20, 2004
Page 5
Project Number 11813 -04
The following earthquake design parameters are based upon the 1997 Uniform
Building Code (UBC) for a Seismic Zone 4 with a Z factor of 0.40 and a Soil
Profile Type of Se, a stiff soil profile.
1997 UBC Seismic Design Parameters
Distance from Site (San Andreas Fault) ................
8 km
Seismic Source Type ......... ...............................
A
Seismic Coefficient = Ca (Table 16- Q) ..................
(0.44)Na
Seismic Coefficient = C„ (Table 16- R) ....................
(0.64)N„
Near - Source Factor Na (Table 16- S) .....................
1.08
Near - Source Factor N„ (Table 16- T) .....................
1.32
6.0 LIQUEFACTION
The site is expected to experience ground shaking and earthquake activity that
is typical of Southern California area. It is during severe ground shaking that
loose, granular soils below the groundwater table can liquefy. Our analysis
indicates the potential for liquefaction at this site is considered to be very low
due to the groundwater depth in excess of 200 feet within the vicinity area.
Thus, the design of the proposed construction in conformance with the latest
Building Code provisions for earthquake design is expected to provide
mitigation of ground shaking hazards that are typical to Southern California.
7.0 CONCLUSIONS AND RECOMMENDATIONS
Based upon our evaluations, the proposed development is acceptable from a
geotechnical engineering standpoint. By following the recommendations and
guidelines set forth in our report, the structures will be safe from excessive
settlements under the anticipated design loadings and conditions. The
proposed development shall meet all requirements of the City /County Building
Ordinance and will not impose any adverse effect on existing adjacent
structures.
NorCal Engineering
` December 20, 2004
Page 6
Project Number 11813 -04
It is recommended that site inspections be performed by a representative of
this firm during all grading and construction of the development to verify the
findings and recommendations documented in this report. Any unusual
conditions which may be encountered in the course of the project development
may require the need for additional study and revised recommendations
7.1 Site Grading Recommendations
It is recommended that site inspections be performed by a representative of
this firm during all grading and construction of the development to verify the
findings and recommendations documented irn this report. Any unusual
conditions which may be encountered in the course of the project development
may require the need for additional study and revised recommendations.
Any vegetation shall be removed and hauled from proposed grading areas prior
to the start of grading operations. Any removed soils may be reutilized as
compacted fill once any deleterious material or oversized materials (in excess
of eight inches) is removed. All grading operations shall be performed in
accordance with the attached "Specifications for Placement of Compacted Fiff.
7. 1.1 . Removal and Recompaction Recommendations
All building areas shall be excavated to a depth to provide a two feet thick
compacted fill blanket beneath the proposed foundation including floor slab
areas. All pavement areas will require the recompaction of the upper one foot
of subgrade soils. Once excavation bottoms have been approved to the proper
depth, the exposed surface shall be scarified to a depth of 12 inches, brought
to the proper moisture content and compacted to a minimum of 90% of the
laboratory standard prior to placement of any additional compacted fill soils.
This fill shall extend a minimum of five horizontal feet or to the depth of vertical
overexcavation, whichever is greater, beyond the outside edge of the perimeter
foundation.
NorCal Engineering
uec;e1r1ue1 /-v, /-uu'E+ Project Number 11813 -04
Page 7
A diligent search shall be conducted during grading operations in an effort to
uncover any underground structures, irrigation or utility lines. If found, these
structures and lines shall be either removed or properly abandoned prior to the
proposed construction. Care should be taken to provide or maintain adequate
lateral support for all adjacent improvements and structures at all times during
the grading operations and construction phase. Adequate drainage away from
the structures, pavement and slopes should be provided at all times.
Fluvial and aeolian erosion may effect the site during and after construction
and it may be necessary to install wind breaks to limit windblown sediment.
7.2 Shrinkage and Subsidence
Results of our in -place density tests reveal that the soil shrinkage will be on the
order of 12 to 18% for the fill soils, due to excavation and recompaction, based
upon the assumption that the fill is compacted to 92% of maximum dry density
per ASTM standards. Subsidence should be 0.1 feet due to earthwork
operations.
The volume change does not include any allowance for vegetation or organic
stripping, removal of subsurface improvements or topographic approximations.
Although these values are only approximate, they represent our best estimate
of lost yardage which will likely occur during grading. If more accurate
shrinkage and subsidence factors are needed, it is recommended that field
testing using the actual equipment and grading techniques should be
conducted.
December 20, 2004
Page 8
Project Number 11813 -04
7.3 Temporary Excavations
Based upon the cohesionless subsurface soils, there is a potential for
construction problems involving caving of site excavations. Temporary
unsurcharged excavations in the existing site materials less than 3 feet high
may be made at a vertical gradient. Temporary unsurcharged excavations
from 3 to 5 feet high may be trimmed at a 1 to 1 (horizontal to vertical) gradient.
In areas where excavations are greater than 5 feet and /or adjacent to existing
structures; shoring, or flatter excavations will be required. No surcharge loads
should be allowed within a horizontal distance measured from the top of the
excavation slope, equal to the depth of the excavation.
7.4 Foundation Design
All foundations may be designed utilizing an allowable soil bearing capacity of
2,000 psf for an embedded depth of 18 inches into approved compacted fill
soils. Allowable increases of 200 psf per one foot of additional footing width
and 200 psf for each additional six inches of footing depth may be used. The
maximum allowable bearing will be 3,000 psf. A soil bearing capacity of 1,000
psf shall be utilized in foundation design where overexcavation beneath and
outside foundation cannot be performed due to adjacent structures or property
line conditions. A one third increase may be used when considering short term
loading and seismic forces. Isolated foundations may be reinforced at the
discretion of the discretion of the project structural engineer.
7.5 Settlement Analysis
Resultant pressure curves for the consolidation tests are shown on Plate B.
9
Computations utilizing these curves and the recommended soil bearing
capacities reveal that the foundations will experience settlements on the order
of 3/4 inch and differential settlements of less than 1/4 inch.
NorCal Engineering
December 20, 2004
Page 9
7.6 Lateral Resistance
Project Number 11813 -04
The following values may be utilized in resisting lateral loads imposed on the
structure. Requirements of the current Uniform Building Code should be
adhered to when the coefficient of friction and passive pressures are
combined.
Coefficient of Friction - 0.40
Equivalent Passive Fluid Pressure = 250 lbs. /cu.ft.
Maximum Passive Pressure = 2,500 lbs. /cu.ft.
The passive pressure recommendations are valid only for compacted fill soils
and /or competent native soils.
7.7 Retaining Wall Design Parameters
Active earth pressures against retaining walls will be equal to the pressures
developed by the following fluid densities. These values are for granular free
draining backfill material placed adjacent to the walls at various ground
slopes above the walls.
Surface Slope of Retained Materials Equivalent Fluid
(Horizontal to Vertical) Density (lb. /cu.ft.)
Level 30
5 to 1 35
4 to 1 38
3 to 1 40
2 to 1 45
Any applicable short-term construction surcharges and seismic forces should
be added to the above lateral pressure values. A backfill zone of non-
expansive material shall consist of a wedge beginning a minimum of one
horizontal foot from the base of the wall extending upward at an inclination of
no less than 1/4 to 1 (horizontal to vertical). All walls shall be waterproofed as
needed and protected from hydrostatic pressure by a reliable permanent
subdrain system.
NorCal Engineering
December 20, 2004 Project Number 11813 -04
- - ; Page 10
t 7.8 Stab Design
All concrete floor slabs shall be a minimum of four inches in thickness and may
be placed on approved subgrade soils. The project Structural Engineering
should review all proposed loads to be imposed for further recommendations
regarding slab thickness and steel reinforcement. Two inches of approved
F
sand over a vapor barrier shall be utilized beneath floor slabs which would be
sensitive to the infiltration of moisture'. This membrane should be placed
beneath the sand layer and not directly beneath the concrete due 'to the
- possibility of curling of the slab. All concrete slab areas to receive floor '
coverings should be moisture tested to meet all manufacturer requirements
• prior to placement.
7.9 Corrosion Design Criteria '
Representative samples of the surficial soils, typical of the subgrade soils
r
expected to be encountered within foundation excavations and underground
- ; utilities were tested for corrosion potential. • The minimum resistivity value z '
obtained for the samples tested is representative of an environment that may
be mildly corrosive to' metals. The soil pH value was considered mildly acidic = '
and may have a significant effect on soil corrosivity. Consideration should be
t given to corrosion protection systems for buried metal such as protective
coatings, wrappings or the use of PVC where permitted by local building codes.
In addition, test results revealed negligible sulfate concentrations. Therefore,
' no special cement foundations are deemed necessary and a Type II cement ti
may be utilized for building foundations at this time. Additional sulfate tests
shall be performed at the completion of rough grading to assure that these soils '
f _ are consistent with the recommendations stated in this design. Corrosion test
results may be found on the attached Table 111.
- NorCal Engineering '
' ..' �"T, c.?t? r _ v ,.F y, � �'� . +`s'�x } .�a �' +L ,�` { , i!ittu�" �$i- .�,.i . *�` . t-a �� 9•� T't k k..#e '"*-r d
:�i. "�,. '�y� �;• , '� , ,,.,4.� .. ;�'—yn � '�.�`j"�'t',iy- #f�i'r"+.s+Tf ��fr�'raa�+� Ct�� �w `+��'� r�('� -'�` s} 4i.Ss�+�si�k��"S��f.�
r ,� 3' ' ,. . - '-• .. j.. ♦ n. l r - , i >a ,t .s � , ".; s is :..a•,� �t.+���i,5�•�� eCs; �'
i...- ! "�- ,wi�G.. ..... ••.M' #t,.. ..- .....FS.w.a.ra••' -�i .f....s. .,,..rw . � w..s ..a..- .v..�.r.IL.,_�lss..= vac -rYm. a'. aa• t�wti+ Fir.1.'.aa+.e:,�:Ya:___3.._. -.- - '•a'�ws.�..1a....,. :. �+- ..�= �L..�a. -i-•6
December 20, 2004 Project Number 11813 -04
. ( Page 11
4� 8.0 CLOSURE
The recommendations and conclusions contained in this report are based upon
the soil conditions uncovered in our test excavations. No warranty of the soil
condition between our excavations is implied. NorCal Engineering should be
notified for possible further recommendations if unexpected to unfavorable
conditions are encountered during construction phase. It is the responsibility of
the owner to ensure that all information within this report is submitted to the
Architect and appropriate Engineers for the project.
This firm should have the opportunity to review the final plans (72 hours
required) to verify that all our recommendations are incorporated. This report
and all conclusions are subject to the review of the controlling authorities for
the project.
A preconstruction conference should be held between the developer, general
contractor, grading contractor, city inspector, architect, and geotechnical
engineer to clarify any questions relating to the grading operations and
subsequent construction. Our .representative should be present during the
grading operations and construction phase to certify that such
recommendations are complied within the field.
This geotechnical investigation has been conducted in a manner consistent
with the level of care and skill exercised by members of our profession
currently practicing under similar conditions in the Southern California area. No
other warranty, expressed or implied is made.
NorCal Engineering
„
December 20, 2004
Project Number 11813 -04
-�
Page 12 ,
We appreciate this
opportunity to be of service to If have any further
you. you
questions, please do not hesitate to contact the undersigned.
~
Respectfully'submitted, 'r
,
NORCAL ENGINEERI
QROFESS�oN ,.
F
�Y -
cc r
Keith D. Tucker .
* E"p' �tisuoa * Troy D. Norrell
Project Engineer
s� c��rfcr+N���. P President -
q�FOF
f
R.G.E. 841
CAUFOP`�
TV
'
NorCal Engineering -
'."'F � "�Y b.: �
1C r
� .� - _ ' i f _.: � : J,,. 4 � irti) -!, .v, -+: n V` •Y,{ - , Y4 f .-y �N`, iY.; lj `•:
p,.F �, t,R _i€ 4" "� �' -''taw ...'s•' +'fii'+'"Y
fy.
£ �� };7•. `'h6
e i•� >
•`' . v:3.r-
x4 'r.- ` -”. �ti t x ; - �" J�x �• Sf� g1' - � • r �
.�.i Y.., {,, ''. -�
_
��.
F r
— ._... .w r _M_•..._.
,Pr t- r�.� 4'1f r- s C < �t.
....._ _'t_Wz. .u'..o.a.:;. r:•a, �e.rt ...n iS. t��,_ ud s a ,r.5
December 20, 2004 Project Number 11813 -04
Page 13
. . SPECIFICATIONS FOR PLACEMENT OF COMPACTED FILL
Preparation
Any existing low density soils and /or saturated soils shall be removed to competent
natural soil under the inspection of the Soils Engineering Firm. After the exposed
surface has been cleansed of debris and /or vegetation, it shall be scarified until it is
uniform in consistency, brought to the proper moisture content and compacted to a
minimum of 90% relative compaction (in accordance with ASTM: D- 1557 -00).
In any area where a transition between fill and native soil or between bedrock and
soil are encountered, additional excavation beneath foundations and slabs will be
necessary in order to provide uniform support and avoid differential settlement of the
structure.
Material For Fill
The on -site soils or approved import soils may be utilized for the compacted fill
provided they are free of any deleterious materials and shall not contain any rocks,
brick, asphaltic concrete, concrete or other hard materials greater than eight inches
in maximum dimensions. Any import soil must be approved by the Soils
Engineering firm a minimum of 24 hours prior to importation of site.
Placement of Compacted Fill Soils
The approved fill soils shall be placed in layers not excess of six inches in thickness.
Each lift shall be uniform in thickness and thoroughly blended. The fill soils shall be
brought to within 15% of the optimum moisture content, unless otherwise specified
by the Soils Engineering firm. Each lift shall be compacted to a minimum of 90%
relative compaction (in accordance with ASTM: D- 1557 -00) and approved prior to
the placement of the next layer of soil. Compaction tests shall be obtained at the
discretion of the Soils Engineering firm but to a minimum of one test for every 500
cubic yards placed and /or for every 2 feet of compacted fill placed.
The minimum relative compaction shall be obtained in accordance with accepted
methods in the construction industry. The final grade of the structural areas shall be
in a dense and smooth condition prior to placement of slabs -on -grade or pavement
areas. No fill soils shall be placed, spread or compacted during unfavorable
weather conditions. When the grading is interrupted by heavy rains, compaction
operations shall not be resumed until approved by the Soils Engineering firm.
NorCal Engineering
December 20, 2004 Project Number 11813 -04
Page 14
Grading Observations
The controlling governmental agencies should be notified prior to commencement of
any grading operations. This firm recommends that the grading operations be
conducted under the observation of a Soils Engineering firm as deemed necessary.
A 24 hour notice must be provided to this firm prior to the time of our initial
inspection.
Observation shall include the clearing and grubbing operations to assure that all
unsuitable materials have been properly removed; approve the exposed subgrade in
areas to receive fill and in areas where excavation has resulted in the desired
finished grade and designate areas of overexcavation; and perform field compaction
tests to determine relative compaction achieved during fill placement. In addition, all
foundation excavations shall be observed by the Soils Engineering firm to confirm
that appropriate bearing materials are present at the design grades and recommend
any modifications to construct footings.
NorCal Engineering
NorCal Engineering
SOILS AND GEOTECHNICAL CONSULTANTS LOCATION OF FIELD EXPLORATIONS
ENTIN
PROJECT j g 3-04 DATE DEM BER
December 20, 2004
` . Project Number 11813 -04
s Page 15, ..
k *
_
•
-!�
, icy •
_ - • ' .
., _
List of Appendices �>
(in order of appearance)
Appendix A - Log of Excavations
Log of Test Excavations TE -1 through T -5
,
Appendix B - Laboratory Tests
x .a..
"
:
• ' Table I - Maximum Dry Density
Table II — Expansion Index Tests
#
Table III — Corrosion Tests
. M
Plate A - Direct Shear
Plate B - Consolidation
;
NorCal' Engineerin '
_
Y
�` _-
� `_;
�r.-.� .:� >:...
s
r
i
r
NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS
orCal Engineering
UNIFIED SOIL CLASSIFICATION SYSTEM
MAJOR DIVISION
GRAPHIC
LETTER
TYPICAL DESCRIPTIONS
SVMRni
CVMR(ll
0 <z?
GW
WELL—GRADED GRAVELS, GRAVEL.
�<>
SAND MIXTURES, LITTLE OR NO FINES
GRAVEL
CLEAN GRAVELS
AND
(LITTLE OR NO
GRAVELLY
FINES)
SOILS
*
GP
POORLY — GRADED GRAVELS,
*
GRAVEL —SAND MIXTURES, LITTLE
COARSE
F
OR NO FINES
GRAINED
SOILS
MORE THAN
GRAVELS
GM
SILTY GRAVELS, GRAVEL— SAND -
50% OF
WITH FINES
SILT MIXTURES
COARSE
FRACTION
(APPRECIABLE
RETAINED ON
AMOUNT OF
GC
CLAYEY GRAVELS, GRAVEL —SAND-
NO. 4 SIEVE
FINES)
j�fal
CLAY MIXTURES
■ti ■ti.
■r ■.✓• ■.r
WELL — GRADED SANDS, GRAVELLY
SAND
CLEAN SAND
;ti';L':
SW
SANDS, LITTLE OR NO FINES
AND
(LITTLE OR NO
MORE THAN
SANDY
FINES)
POORLY— GRADED SANDS, GRAVEL -
50% OF
SOILS
SP
LY SANDS, LITTLE OR NO FINES
MATERIAL
IS LARGER
THAN NO.
MORE THAN
SM
SILTY SANDS, SAND —SILT
200 SIEVE
50% OF
SANDS WITH
MIXTURES
SIZE
COARSE
FINE
FRACTION
(APPRECIABLE
PASSING ON
AMOUNT OF
SC
CLAYEY SANDS, SAND —CLAY
NO.4 SIEVE
FINES)
MIXTURES
INORGANIC SILTS AND VERY FINE
ML
SANDS, ROCK FLOUR, SILTY OR
CLAYEY FINE SANDS OR CLAYEY
SILTS WITH SLIGHT PLASTICITY
INORGANIC CLAYS OF LOW TO
FINE
SILTS
LIQUID LIMIT
CL
MEDIUM PLASTICITY, GRAVELLY
GRAINED
AND
I FCS THAN RO
CLAYS, SANDY CLAYS, SILTY
SOILS
CLAYS
CLAYS. LEAN CLAYS
ORGANIC SILTS AND ORGANIC
_ _
OL
SILTY CLAYS OF LOW PLASTICITY
INORGANIC SILTS, MICACEOUS OR
MH
DIATOMACEOUS FINE SAND OR
MORE THAN
SILTY SOILS '
50 %, OF
MATERIAL
IS i5MALLER
SILTS
LIQUID LIMIT
CH
INORGANIC CLAYS OF HIGH
THAN NO,
AND
GREATER THAN
PLASTICITY, FAT CLAYS
200 SIEVE
CLAYS
50
rr rr r
SIZE
rr'rr'r
ORGANIC CLAYS OF MEDIUM TO
rfr
OH
HIGH PLASTICITY, ORGANIC SILTS
PEAT, HUMUS, SWAMP SOILS WITH
HIGHLY ORGANIC SOILS
PT
HIGH ORGANIC CONTENTS
NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS
orCal Engineering
UNIFIED SOIL CLASSIFICATION SYSTEM
KEY:
Indicates 2.5 -inch Inside Diameter. Ring Sample.
® Indicates 2 -inch OD Split Spoon Sample (SPT).
Indicates Shelby Tube Sample.
Indicates No Recovery.
Indicates SPT with 140# Hammer 30 in. Drop.
[� Indicates Bulk Sample.
Indicates Small Bag Sample.
Indicates Non - Standard
m Indicates Core Run. COMPONENT PROPORTIONS
COMPONENT DEFINITIONS
COMPONENT
SIZE RANGE
Boulders
Larger than 12 in
Cobbles
3 in to 12 in
Gravel
3 in to No 4 (4.5mm )
Coarse gravel
3 in to 314 in
Fine gravel
314 in to No 4 (4.5mm )
Sand
No. 4 (4.5mm) to No. 200 ( 0.074mm )
Coarse sand
No. 4 (4.5 mm) to No. 10 (2.0 mm )
Medium sand
No. 10 ( 2.0 mm ) to No. 40 ( 0.42 mm )
Fine sand
No. 40 ( 0.42 mm ) to No. 200 ( 0.074 mm )
Silt and Clav
Smaller than No. 200 ( 0.074 mm
DESCRIPTIVE TERMS
RANGE OF PROPORTION
Trace
1 -5%
Few
5-10%
Little
10-20%
Some
20-35%
And
35-50%
MOISTURE CONTENT
DRY
Absence of moisture, dusty,
Density
dry to the touch.
DAMP
Some perceptible
Approximate
moisture; below optimum
MOIST
No visible water; near optimum
moisture content
WFT
Visible free water, usually
Very Soft
soil is below water table.
RELATIVE DENSITY OR CONSISTENCY VERSUS SPT N -VALUE
COHESIONLESS SOILS
COHESIVE SOILS
Density
N ( blows /ft)
Consistency
N (blows /ft)
Approximate
Undrained Shear
0 to 4
Very Soft
0 to 2
Strength (psf)
< 250
Very Loose
Loose
4 to 10
Soft
2 to 4
250-500
Medium Dense
10 to 30
Medium Stiff
4 to 8
500-1000
Dense
30 to 50
stiff
8 to 15
1000-2000
Very Dense
over 50
Very Stiff
15 to 30
2000-4000
Hard
over 30
> 4000
NorCal Engineering
Log of Test Excavation TE -1
Project Daniel Entin /La Quinta
Date of Drilling: 12/13/04 Groundwater Depth: None Encountered
Drilling Method: Extension Backhoe
Hammer Weight: Drop:
)epth
Samples
Laborato
=
y
feet)
Geotechnical Description
oh.
o9Y
s a
o
yv
o
- c U
c o
Surface Elevation Not Measured
LL
SURFICIAL FILL SOILS
Silty SAND with gravel
-
Medium dense, moist
-
-
0.8
103.6
NATURAL SOILS
Slightly silty fine to medium grained SAND with occasional gravel
-
Medium dense, dry
_
5
Heavy caving
-
■
1.7
103.1
■
2.3
104.6
-10
-
=
■
3.1
105.2
Boring completed at depth of 12'
-15
-20
-25
-30
-35
NorCal Engineering
Project No.
11813 -04
'
Log of Test Excavation TE -2
i. Project Daniel Entin /La Quinta
Date of Drilling: 12/13/04 Groundwater Depth: None Encountered
Drilling Method: Extension Backhoe
Hammer Weight: Drop:
epth
Samples
Laborato
„
4
�,_
�
N
(feet)
Geotechnical Description
_
Loh
gy
°
~
o C
w o
°
� U)
c a
W:
'
0 Surface Elevation Not Measured
v
p
-
SURFICIAL FILL SOILS
Silty SAND with gravel
-
= -
\Medium dense, moist
-
-
_
2.0
102.9
NATURAL SOILS
Slightly silty fine to medium grained SAND with occasional gravel
5
Medium dense, dry
Heavy caving
-
■
2.3
103.4
Boring completed at depth of 8'
10
,i
S
sJ
15
�r, a
5
0
a
NorCal Engineering
Project No.
11813 -04
2
Now. T M'I'�.`.sS.�r*.,31',`+
Log of Test Excavation TE -3
Project Daniel Entin /La Quinta
Date of Drilling: 12/13/04 Groundwater Depth: None Encountered
Drilling Method: Extension Backhoe
Hammer Weight: Drop:
A
Depth
Samples
aborato
d
;
a
c�
D
i'
(feet)
Geotechnical Description
loh-
gy
o
o
pNa
°'°
0 Surface Elevation Not Measured
c°�
a —.
ice"
SURFICIAL FILL SOILS
-
-
Silty SAND with gravel
-
-
��Medium dense, moist
f
-
-
0.9
101.8
_
NATURAL SOILS
Slightly silty fine to medium grained SAND with occasional gravel
-
5
Medium dense, dry
Heavy caving
r�
-
■
2.6
104.3
f
Boring completed at depth of 9'
10
fl
t�
't
15
s�
20
�i
25
-30
35
NorCal Engineering
Project No.
11813 -04
s
- r -
Now. T M'I'�.`.sS.�r*.,31',`+
Log of Test Excavation TE-4
'Project Daniel Entin /La Quinta
Date of Drilling: 12/13104 Groundwater Depth: None Encountered
Drilling Method: Extension Backhoe
Hammer Weight: Drop:
Depth
Samples
Laborato
d
3
4) o
�
W
(feet)
Geotechnical Description
Lith-
ologY
~
° °
Lh v
°
0 c na
co
0 Surface Elevation Not Measured
°D v
C1
SURFICIAL FILL SOILS
Silty SAND with gravel and large pieces of asphaltic concrete
-
Medium dense, moist
-
-
■
5.2
104.8
_
NATURAL SOILS
Slightly silty fine to medium grained SAND with occasional gravel
-
...Medium dense, damp to 2' then dry
5
Boring completed at depth of 4'
10
t
I
15
3
}
s
3
1 20
25
-30
35
r.
NorCal Engineering
Project No.
11813 -04
4
Log of Test Excavation TE -5
10
15
20 p
25
30
35
Project No.
NorCal Engineering 1 1181, 5
Project Daniel Entin /La Quinta
Date of Drilling: 12/13/04
Groundwater Depth: None Encountered
Drilling Method: Extension Backhoe
Hammer Weight:
Drop:
Depth
am ples
Laborato
{
(feet)
Geotechnical Description
Lith-
°'
3 c
w o
�C-
ology
CL
0 =
o a
0 Surface Elevation Not Measured
i-
m 0
o"
o.-
LL
SURFICIAL FILL SOILS
-
"
Silty SAND with gravel
_ _
0.9
\,Medium dense, moist A
-
NATURAL SOILS
-
•
Slightly silty fine to medium grained SAND with occasional gravel
-
,.Medium dense, dry %
5
Boring completed at depth of 4'
10
15
20 p
25
30
35
Project No.
NorCal Engineering 1 1181, 5
December 20, 2004
Page 17
z
r .
r
Appendix B
NorCal Engineering
Project Number 11813 -04
}
ti
�i
i`
' S
f
Appendix B
NorCal Engineering
Project Number 11813 -04
" December 20, 2004
Page 18
TABLE I
MAXIMUM DENSITY TESTS
(ASTM: D1557 -00)
Project Number 11813 -04
Optimum
Sample Classification Moisture
B1 @ 1-4' Slightly silty fine to medium grained SAND 9.0
TABLE II
EXPANSION INDEX TESTS
(U.B.C.18 -2)
Sample Classification
B1 @ 1-4' Slightly silty fine to medium grained SAND
Maximum Dry
Densi
118.0
Expansion
Index
00
TABLE III
CORROSION TESTS
Sample pH Electrical Resistivity (ohm -cm) Sulfate ( %) Chloride (ppm)
Composite 0 -3' 6.9 1,240 .069 108
NorCal Engineering
2500-
2000-
H 1500-
N
N
W
F-
N
Q
N 1000 -
500-
0
0
(R)
I I I I 1 1
500. 1000 1500 2000 2500 3000
NORMAL STRESS (PSF)
SYMBOL
BORING
NUMBER
DEPTH
(FEET)
(DEGREES
C
(PSF)
DRY
DENSITY
(PCF)
MOISTURE
CONTENT
(x)
X
1
A.
25
103: 6
0.8
O
1
2.0
_29
33
125
108.9
_
9.4
0
3
3.0
35
50
109.1
9.2
I
j
j
(R)
I I I I 1 1
500. 1000 1500 2000 2500 3000
NORMAL STRESS (PSF)
SYMBOL
BORING
NUMBER
DEPTH
(FEET)
(DEGREES
C
(PSF)
DRY
DENSITY
(PCF)
MOISTURE
CONTENT
(x)
X
1
2.0
25
103: 6
0.8
O
1
2.0
_29
33
125
108.9
_
9.4
0
3
3.0
35
50
109.1
9.2
NOTE: TESTS PERFORMED ON SATURATED SAMPLES UNLESS SHOWN BELOW.
(FM) FIELD MOISTURE
TESTS PERFORMED ON UNDISTURBED SAMPLES UNLESS SHOWN BELOW.
(R) SAMPLES REMOLDED AT 90% OF MAXIMUM DRY DENSITY
NorCal Engineering
SOILS AND GEOTECHNICAL CONSULTANTS
PROJECT 11813 -04 DATE
DIRECT SHEAR TEST RESULTS
Plate A
/:"
r3
'2
0
2
z
0
.. 4
N
W
c
a
0
U
6
8
10
0.1 0.5 1.0 5 10 20 40
NORMAL PRESSURE (KSF)
COMPRESSION (FM) FIELD MOISTURE - NO WATER ADDED
— — — REBOUND (R) SAMPLE REMOLDED AT 90% OF MAXIMUM DRY DENSITY
NorCal Engineering
SOILS AND GEOTECHNiCAL CONSULTANTS CONSOLIDATION TEST RESULTS
Plate B
PROJECT 11813 -04 DATE
BORING
DEPTH
DRY
MOISTURE
LIQUID
PLASTICITY
SYMBOL
NUMBER
(FEET)
DENSITY
CONTENT
LIMIT
NOTE: HATER ADDED AT NORMAL
PRESSURE AT 1.0 KSF
(PCF)
M
(x)
( %)
X
1
5
103.1
1.7
O
1
8
104.6
2.3
0
1
10
105.2
3.1
._.r.—
...._— ._.....�__—
•I
-:___
:
I
_ —.��r _....._.
i.I
.. ... ......._
�
_ _r .._ —• -__—
tea..
... ...
_.. _•
._
I
�
1
I
I
:
BORING
DEPTH
DRY
MOISTURE
LIQUID
PLASTICITY
SYMBOL
NUMBER
(FEET)
DENSITY
CONTENT
LIMIT
INDEX
(PCF)
M
(x)
( %)
X
1
5
103.1
1.7
O
1
8
104.6
2.3
0
1
10
105.2
3.1