Loading...
SDP 04-814HYDROLOGY STUDY REPORT FOR LA QUINTA BUSINESS CENTER SDP 2004 -814 43576 Washington street, La Quinta, CA i 'DE$g (F- A -SO KNaG✓iJ .76rte --ryZUST �� f �� ' i _ Z n Date: July, 2005 _ r C P By: FOMOTOR ENGINEERING 225 S Civic Drive, Suite 1 -5 Palm Springs, Ca. 92262 Office (760) 323 -1.842 Fax: (760) 323 -1742 t ,�w TABLE OF CONTENTS Summary Project Description Purpose Analysis and Design Methodology Proposed Stormwater Management Plan Retention System Sizing Stormdrain Pipe System Design Sizing Catch Basins Appendix 1 - Stormwater Runoff Volume Computation Unit Hydrograph — Developed Condition Summary 100 year — 3 hour 100 year — 6 hour 100 year — 24 hour Underground retention field design Appendix 2 — Sizing Stromdrain Pipe System Rational Method — Drainage Calculations Rational Method — Developed Condition Summary Q100 calculations Hydrology Grade Line — Pipe sizing calculations Hydraflow Output Catch Basin Sizing Calculations EXHIBIT 1 - ONSITE UNDEVELOPED CONDITION EXHIBIT 2 - ONSITE DEVELOPED CONDITION LAQUINTA BUSINESS CENTER Preliminary Hydrology Study April, 2005 Project Description: The proposed 2 acre commercial development project site is located approximately 960 feet on the northeast side of Fred Waring Drive and Washington Street intersection in the City of La Quinta, California. The site was previously developed as a medical office use. The original structure was removed years ago, only the asphalt of the parking remains in place. The site is currently vacant with desert land, with undulating terrain and minimal vegetation as configuration. Existing onsite stormwater runoff is directed towards the Washington street. Purpose: The purpose of this study is: • to provide hydrologic calculations to accommodate design storms up to the 100 year frequency and 24 -hour event; and • to design facilities and methods for flood protection for the on site and off site runoff. Analysis and Design Methodology: The hydrology study was performed under the guidelines of the Riverside Country Flood Control and Water Control District (RCFCD) Hydrology Manual. The Rational Method was used to calculate peak runoff rates, and the Synthetic Unit Hydrograph was used to calculate runoff volumes as prescribed by the Riverside County Flood Control and Water Conservation Hydrology Manual. Computer programs were used for: • Hydrology (CivilCADD /Civil Design Engineering Software) • Hydraulics (Hydraflow, Storm Sewers). Proposed Stormwater Management Plan: The proposed project site involves two parcels, to be developed with a two -story general office building with a parking lot. The layout of the proposed site will have underground retention storm field system. The onsite and offsite runoff from a particular storm event will be conveyed to the underground storm water retention facilities through catch basins and storm drainage pipe network. The design of the development will not cause any increase in flood boundaries, levels or frequencies in any area outside the development. Moreover, the existing drainage conditions outside of project boundaries will not affect project area study. (See offsite Washington street profile). W:\Jobs2005 \La Quinta Business Center \HYDROLOGY\REPORT\HYDROLOGY REPORT.doc Retention System Sizing: The proposed underground retention system is designed to contain the 100 year storm event, due to the development. The 100 year and 2 year frequencies storm runoff Hydrographs, peak flow rates and runoff volumes were computed for 2.2 acres draining to the proposed retention system. The total drainage area of 2.2 acre includes project's area and public street to the centerline. Assuming soil percolation rate of 2in /hr (per the city CoA and percolation test results) , the total volume to be d on the proposed the retention system was calculated (refer Appendix for calculation) to be .33 A e -ft.-, Gu�QfG -�j3 C�c�l►�Z- Fll.��'! a1'f/h/ 9� LdCOKC U , 57M9C -r-f- The-layout of the proposed underground retention facility to store required capacity with different single trap units is provided by the manufacturer. Maintenance of the retention system is recommended per the manufacturer procedure and specification (refer to the appendix) and city standard and requirements. Two feet diameter access opening as suggested by the manufacturer are provided for maintenance at two location. Storm Drain Pipe System: Rational Method was utilized to determine the 100 year peak discharge (Q,00) for sizing pipe. Hydrology Grade Line was used to verify the storm drain system as a pressure system, the starting hydraulic grade assumed to be at the top of the storm trap unit. See Sizing Storm drain Pipe System See Developed condition and Storm Drain System Maps Sizing Catch Basins: Los Angeles County Flood Control District Design Manual was used for catch basin sizing. Results Catch Basin: Q W V_ Description D cfs Ft ft CB #1 2.45 4.0 3.5 _ ................ ;CURB OPENING 4" GUTTER DEPRESSION . _..........................._.._.._... ..._............._.........._.. CB #2 3.34 4.0 3.5 CURB OPENING 4" GUTTER DEPRESSION CB #3 1.66 4.0 3.5 ;CURB OPENING 4" GUTTER DEPRESSION CB#4 1.95 4.0 3.5 CURB OPENING 4" GUTTER DEPRESSION See Catch Basin Sizing Calculations. W:Uobs2005 \La Quinta Business Center \HYDROLOGY\REPORT\HYDROLOGY REPORT.doc APPENDIX 1 STORMWATER RUNOFF VOLUME COMPUTATION FOR RETENTION FACILITY W:\Jobs2005\La Quinta Business Center \HYDROLOGY\REPORT\HYDROLOGY REPORT.doc LA QUINTA BUSINESS CENTER • LA QUINTA DRAINAGE STUDY 100 YEAR CONDITION = DEVELOPED 3 HOUR LOT AREA = 95469 sqft 2.20 ac Watercourse Length = 332 ft Lca (length from centroide) = 127 ft ' HIGH POINT ELEVATION = 148.5 0.39 LOW POINT ELEVATION = 143.25 EFFECTIVE RAINFALL (in) DIFFERENCE = 5.25 ft S- graphs: VALLEY CURVE TOTAL RAINFALL (in) HYDROLOGY SOIL GROUP A 2.75 URBAN COVER COMMERCIAL GOOD FOR DEVELOPED IMPERVIOUS AREA COEFFICIENT 3.71 Al = 90% PROJECT IMPERVIOUS AREA ANTECEDENT MOISTURE CONDITION AMC II - ESTIMATION OF INFILTRATION RATES Runoff Index RI = 32 Plate D -5.5 RCFC &WCD Hydrology Manual INTENSITY DURATION CURVES LA QUINTA 2 year 3 hour 0.70 " Plate a -5.1 RCFC &WCD Hydrology Manual , 100 year 3 hour 2.20 " Plate E -5.2 RCFC &WCD Hydrology Manual 2 year 6 hour 1.20 " Plate E -5.3 RCFC &WCD Hydrology Manual 100 year 6 hour 2.75 " Plate E -5.4 RCFC &WCD Hydrology Manual 2 year 24 hour 1.60 " Plate E -5.5 RCFC &WCD Hydrology Manual 100 year 24 hour 4.50 " Plate E -5.6 RCFC &WCD Hydrology Manual RESULTS STORM EVENT 100 YEAR DURATION 3 HOUR 6 HOUR 124 HOUR FLOOD VOLUME (cu. Ft.) (Ac. Ft) 15,058.1 17,059.3 24,924.5 0.35 0.39 0.57 EFFECTIVE RAINFALL (in) 1.89 2.14 3.12 TOTAL RAINFALL (in) 2.20 2.75 4.50 PEAK FLOW RATE (CFS) 4.45 3.71 1.16 CALCULATION FOR NUMBER OF UNITS REQUIRED TO RETAIN STORMWATER RUNOFF Manufacturer — STORMTRAP Catego NGLETRAP Hei t= ' V%L%jti enk n�q;rrfa�� Width = 6' Length = 14' Capacity per unit = 451.5 cu.ft Percolation rate = 2 in /hr (see percolation test report performed by sladden engineering) Width of bedding per unit = 6' Percolation Volume for 3hr rainfall Vp 6x (2/12) x 3 = 3 cu.ft/ft Percolation Volume for 6hr rainfall Vp 6 x (2/12) x 6 = 6cu.ft/ft Percolation Volume for 24hr rainfall Vp 6x (2/12) x 24 = 24 cu.ft/ft Total Volume V3hr = (451.5/14) + 3= 35.25 cu.ft/ft Total Volume V6hr = (451.5/14) + 6= 38.25 cu.ft/ft Total Volume V24hr = (451.5/14) + 24 = 56:25 cu.ft/ft Considering 100 yr 3hr rainfall Minimum length of retention system Lm;,, = 15058 cu.ft / 35.25 cu.ft/ft = 427.2 ft Considering 100 yr 6hr rainfall Minimum length of retention system L,,,i„ = 17059 cu.ft / 38.25 cu.ft/ft = 446 ft Considering 100 yr 24hr rainfall Minimum length of retention system Lm;,, = 24925 cu.ft / 56.25 cu.ft/ft = 443.1 ft 100 yr 6hr rainfall generated the maximum length and hence used as the total length (446 ft) required for the retention system. RETENTION SYSTEM COMPONENTS Total tributary Area = 2.2 Acre Required retention system length = 446 ft Total capacity of the system = (451.5/14)x446 = 14,383.5 cu.ft = 0.33 Acre -ft A layout of the system to retain the required capacity using different components is provided by the manufacturer and is attached. Sladden Engineering 6782 Stanton Ave., Suite A, Buena Paris, CA 90621 (714) 523 -0952 Fax (714) 523 -1369 39 -725 Garand Ln., Sulte G, Palm Desert, CA 92211 (760) 772 -3893 Fax (760) 772 -3895 June 17, 2005 L•ntin Family Trust 17407 Calisa Street Encino, California 9131.6 Attention: Mr. Jack Entin Project: APN 609- 070 -028 and 609- 070 -029 Washington*Street north of Fred Waring Drive La Quinta, California Subject: Infiltration /Percolation Testing for Stormwater Retention Project No. 544 -5423 05 -06 -596 As requested, we have performed percolation/infiltration testing on the subject site in order to determine the infiltration potential of the surface soils. The percolation rates determined should be useful in assessing stormwater retention needs. It is our understanding that on -site stormwater retention will be required. It is proposed to collect the stormwater runoff within subsurface percolation chambers. Infiltration testing was performed within shallow test holes excavated in the areas of several of the proposed retention basins. Percolation testing was performed on June 20, 2005. Testing involved filling the test holes with water and recording the drop in the water surface with time. Measurements were recorded in increments of 1.0 minutes. "tests results are summarized below: Rate Test Hole No. (incbes/'hour) A 10 B 12 - It should be noted. that the infiltration rates determined are ultimate.rates based upon field test results. An appropriate safety.factor should be applied to account for subsoil inconsistencies and potential silting of the percolating soils, The safety (actor should be determined with consideration to other factors in the stormwater retention system design (particularly stormwater volume estimates) and the safety factors associated with those design components. Z d 9Z60Z1Z089 . :I l 500Z £Z NU MI) 181S10 W1Vd N30aV1S W08J June 17, 2005 -2- Project No. 544 -5423 05 -06 -596 We appreciate the opportunity to provide service to you on this project. If you have questions regarding this letter or the data included, please contact the undersigned. Respectfully submitted, SLADDEN ENGI,NEEERING w ¢ No. C 6427G Mogan R. Wright Exp. 6/30/07 Project Engineer sT�T CIVIL, Foy= CncI�'�� . Lettcr /pc Copies:. 4/ Entin Family Trust £ d 9Z601LZ089 '0NM: l l '1S /SZ: l l 500Z £Z NAr (AH1) 18IS30 W]Vd N300V1S W003 P.030X.782 -MORRIS IL 87- STORMTRAP • WWW:STORMTRAP CUM PRECAST CONCRETE MODULAR STORM WATER DETENTION ` MAINTENANCE PROCEDURE 1. THE FOLLOWING PROCEDURES ARE FOR THE MAINTENANCE OF . STORMTRAP AS SUGGESTED BY STORMTRAP, LLC. ALL REGULATIONS SET BY GOVERNING BODIES RETAIN PRESESIDENCE OVER THE SUBSEQUENT INSTRUCTIONS. 2. STORMTRAP SHOULD BE MAINTAINED REGULARLY. FREQUENCY OF CLEANING WILL VARY DUE TO SITE CONDITIONS AND STORAGE CAPACITY. MAINTENANCE IS REQUIRED EVERY 3 TO 5 YEARS OR WHEN SEDIMENT OCCUPIES MORE THAN ONE -THIRD OF THE SYSTEM'S VOLUME. INSPECTIONS SHOULD BE PART OF STANDARD OPERATING PROCEDURE. 3'. DO NOT ENTER STORMTRAP UNLESS PROPERLY TRAINED, EQUIPPED, AND QUALIFIED TO ENTER A CONFINED SPACE AS IDENTIFIED BY LOCAL OCCUPATIONAL SAFETY AND HEALTH REGULATIONS. 4. MAINTENANCE IS PERFORMED USING A VACUUM TRUCK. REMOVE COVER FROM UNIT AT GRADE AND LOWER HOSE INTO SUMP PIT. VACUUM TRUCKS ARE ABLE TO REMOVE MATERIAL FROM A MAXIMUM DISTANCE OF THIRTY -TWO FEET BELOW GRADE. SEDIMENT MAY BE FLUSHED TOWARD THE SUMP PIT TO PROVIDE A MORE THOROUGH REMOVAL. A //VLF %�`��� =� GET THE PRECAST ADVANTAGE! 001JBLErAMP n TM - 0RRISOX 0450 ,• A10RP.15. IL 600.50 1 _87- STOPMTRAP PRECAST CONCRETE MODULAR STORM, WATER DETENTION ENGINEER INFORMATION: y FOMOTOR ENGINEERING A LA QU I NTA BUSINESS CENTER LA QUINTA, CA SHEET INDEX PAGE DESCRIPTION REV. 1 TITLE SHEET 1 2 SINGLE TRAP INSTALLATION SPECIFICATIONS / 2.1 SINGLE TRAP INSTALLATION SPECIFICATIONS 1 2.2 SINGLE TRAP INSTALLATION SPECIFICATIONS 1 3 LAYOUT DETAIL COLE HERRON 4 STANDARD- S'b' SINGLETRAP TYPE 1 5 STANDARD - S`9' SINGLETRAP TYPE II 1 E STANDARD- 5'9' SINGLETRAP TYPE III 1 7 STANDARD- S' -0' SINGLETRAP TYPE 1 e STANDARD- 5' -0' SINGLETRAP TYPE 1 JOB SITE INFORMATION DESCRIPTION JOB NAME: BUSINESS CENTER JOB ADDRESS: LA OUINTA. CA ENGINEERING CO: FOMOTOR ENGINEERING CONTACT NAME: OM GHARTY CONTACT PHONE: 780423.1842 CONTACT FAX: 78 23-1742 STORMTRAPSUPPUER: STORMTRAP CONTACT NAME: COLE HERRON CONTACT PHONE: 815941x883 CONTACT FAX: 815x15 -1100 WATER STORAGE RE09: 14,383.50 CUBIC FEET WATER STORAGE PROV: 14,998.00 CUBIC FEET UNIT HEADROOM: V-0' SINGLETRAP UNIT QUANTITY: 41 UNITS -41 TOTAL PIECES 225 S CIVIC DR PALM SPRINGS, CA 92262 Phone: 760- 323 -1842 Fax: 760.323 -1742 PROJECT INFORMATION: LA OUINTA BUSINESS CENTER LA OUINTA, CA CH- 1033 -CA-05 CURRENT ISSUE DATE: 07/05/05 APPROVED BY: I I ISSUED FOR: PRELIMINARY REV.: DATE: DESC. BY: SSUED FOR 1 o2 /osros pgELIMINARY CH SCALE: NTS SHEET TITLE: COVER SHEET SHEET NUMBER: STORMTRAP INSTALLATION SPECIFICATION 1. STORMTRAP MODULES SHALL BE MANUFACTURED ACCORDING TO SHOP DRAWINGS APPROVED BY THE INSTALLING CONTRACTOR AND ENGINEER. THE SHOP DRAWINGS SHALL INDICATE STILE AND LOCATION OF ROOF OPENINGS AND INLET/ OUTLET PIPE OPENINGS. 2. STORMTRAP SHALL BE INSTALLED IN ACCORDANCE WITH ASTM 0801 410. - STANDARD PRACTICE FOR INSTALLATION OF UNDERGROUND PRECAST CONCRETE UTILITY STRUCTURES. THE FOLLOWING ADDITIONS AND/OR EXCEPTIONS SHALL APPLY: A SPECIFICATIONS ON THE ENGINEERS DRAWINGS SHALL TAKE PRECEDENT. B. STORMTRAP MODULES SHALL BE PLACED ON LEVEL FOOTINGS (SEE DETAIL 'Al WITH A 0' 41' OVERHANG ON ALL SIDES THAT SHALL BE POURED IN A PLACE BY INSTALLING CONTRACTOR. C. THE STORMTRAP MODULES SHALL BE PLACED SUCH THAT THE MAXIMUM SPACE BETWEEN ADJACENT MODULES DOES NOT EXCEED 3/4'. IF THE SPACE EXCEEDS 3l4% THE MODULES SHALL BE RESET WITH APPROPRIATE ADJUSTMENT MADE TO LINE AND GRADE TO BRING THE SPACE INTO SPECIFICA TION. D. THE PERIMETER HORIZONTAL JOINT OF THE STORMTRAP MODULES SHALL BE SEALED TO THE FOOTINGS WITH PREFORMED MASTIC JOINT SEALER ACCORDING TO ASTM C801-00. BA AND 8.12. E ALL EXTERIOR JOINTS BETWEEN ADJACENT STORMTRAP MODULES SHALL BE SEALED WITH 1' -0' EXTERNAL SEALING BANDS CONFORMING TO ASTM C89140 AND SMALL BE 1' -0' RUBBER BUM SEALANT AS APPROVED BY STORMTRAP. THE JOINT WRAP BUM EXTERIOR WRAP SHALL BE INSTALLED ACCORDING TO THE FOLLOWING INSTALLATION INSTRUCTIONS: 1. USE A BRUSH OR WET CLOTH TO THOROUGHLY CLEAN THE OUTSIDE SURFACE AT THE POINT WHERE THE JOINT WRAP IS TO BE APPLIED. 2. A RELEASE PAPER PROTECTS THE BUM SEALANT SIDE OF THE JOINT WRAP. WRAP THE BUTYL TAPE (BUM SIDE DOWN) AROUND THE STRUCTURE, REMOVING THE RELEASE PAPER AS YOU GO. PRESS THE JOINT WRAP FIRMLY AGAINST THE STORMTRAP MODULE SURFACE WHEN APPLYING. F. THE FILL PLACED AROUND THE STORMTRAP UNITS MUST BE DEPOSITED ON BOTH SIDES AT THE SAME TIME AND TO APPROXIMATELY THE SAME ELEVATION. AT NO TIME SHALL THE FILL BEHIND ONE SIDE WALL BE MORE THAN 2'-0' HIGHER THAN THE FILL ON THE OPPOSITE SIDE CARE SHALL BE TAKEN TO PREVENT ANY WEDGING ACTON AGAINST THE STRUCTURE. AND ALL SLOPES BOUNDING OR WITHIN THE AREA TO BE BACK FILLED MUST BE STEPPED OR SERRATED TO PREVENT WEDGE ACTION. (REFERENCE ARTICLE 802.101.O.O.T. S.S.R.BF.) CARE SHALL ALSO BE TAKEN AS NOT TO DISRUPT THE JOINT WRAP FROM THE JOINT DURING THE BACK FILL PROCESS. STORMTRAP SPECIFICATION t. CONCRETE 6.000 P.S.i. Q 28 DAYS. Ss:at: ENTRAINED AIR. 4' MAX. SLUMP. 2. REBAR: ASTM "IS GRADE 50. 3. DESIGN CRITERIA: A ASTM 0858 B. LOADING PER ASTM 0857, INCLUDING: 1. TOTAL COVER: MIN. 6' MAX. 3-0' 2. CONCRETE CHAMBER DESIGNED FOR AASHTO HS-20 WHEEL LOAD B APPUCA13LE IMPACT. 3. VERTICAL 8 LATERAL SOIL PRESSURES DETERMINED USING GROUNDWATER AT T -0- BELOW GRADE - REINFORCING COVER PER AG 318. 1' -0' O-U JIINULCIMMr DETAIL "B" JOINT TAPE INSTALLATION c p' P.O. BOX 762 MORRIS, IL 6045D 1- 87STORAIIRAP ENGINEER INFORMATION: FOMOTOR ENGINEERING 225 S CIVIC OR PALM SPRINGS, CA 92262 = 148.02 Phone: 760 - 323.1842 Fax: 760 - 323.1742 PROJECT INFORMATION: LA QUINTA BUSINESS CENTER LA QUINTA, CA CHA D33 -CA -05 CURRENT ISSUE DATE: 140.35 07/05/05 APPROVED BY: ISSUED FOR: PRELIMINARY REV.: DATE: DESC. BY: TOP OF FOOTING q5 x CONT. CLR. 1' 3" #4@12'O.C. HE CLR. DETAIL "A" STORM TRAP FOOTING NOTES: 1. 4.000 P.4.1. Q 28 DAYS, S % -0% ENTRAINED AIR. 4' MAX. SLUMP. 2. NET ALLOWABLE SOIL PRESSURE GREATER THAN OR EOUAL TO 1.500 PSF. - 3 . SOIL CONDITIONS TO BE VERIFIED ON SITE BY OTHERS. 4, 4,000 0 4 J. MUST BE REACHED BEFORE STORMTRAP UNITS CAN BE INSTALLED. I v pl—I I PRELIMINARY I " SCALE: NTS SHEET TITLE: SINGLE TRAP INSTALLATION SPECIFICATIONS SHEET NUMBER: RECOMMENDED PIPE /RISER SPECIFICATION 1. CONNECTING PIPES SHALL BE I N WITH A 1• -0' CONCRETE COLLAR. AND A CONCRETE CRADLE FOR AT LEAST ONE PIPE LENGTH. AS SHOWN. A STRUCTURAL GRADE CONCRETE • OR GROUT WITH A MINIMUM 2a DAY COMPRESSIVE STRENGTH OF 3000 p.s.i. SHALL BE USED. 2. THE ANNULAR SPACE BETWEEN THE PIPE AND THE HOLE SHALL BE FILLED WITH NONSHRINK GROUT. RECOMMENDED INSTALLATION INSTRUCTIONS 1. CLEAN AND LIGHTLY LUBRICATE ALL OF PIPE TO BE INSETED INTO STORMiRAP. 2. IF PIPE IS CUT. CARE SHOULD BE TAKEN TO ALLOW NO SHARP EDGES. BEVEL AND LUBRICATE LEAD END OF PIPE. 3. CENTER PIPE AND INSERT. WALL OF GROUT DETAIL IICII CONNECTION DETAIL (NOT TO SCALE) SEE DETAIL \—AGGREGATE (FOUNDATION V INVERT OF PIPE THE INVERT OF VDATION PIPE CONNECTION NON-SHRINK GROUT RISER DETAIL 0 P.O. BOX 782 MORRIS. IL 6D450 1.87- STORMTRAP ENGINEER INFORMATION: FOMOTOR ENGINEERING 225 S CIVIC DR PALM SPRINGS, CA 92262 Phone: 76D- 323.1842 Fax: 760 - 323 -1742 PROJECT INFORMATION: LA QUINTA BUSINESS CENTER LA QUINTA. CA CH- 1033 -CA -05 ' CURRENT ISSUE DATE: 07/05/05 APPROVED BY: ISSUED FOR: PRELIMINARY REV.: DATE: DESC. BY: ISSUED FOR CH 1 �1asNS PRELIMINARY SCALE: NTS SHEET TITLE: RECOMMENDED SINGLE TRAP INSTALLATION SPECIFICATIONS SHEET NUMBER: I RECOMMENDED ACCESS OPENING SPECIFICATION 1. ATYPIC ACCESS OPENING FOR THE STORMTRAP SYSTEM RANGES FROM 2'-0' TO T -0' IN DIAMETER. HOWEVER. STORMTRAP IS CAPABLE OF HAVING OPENINGS LARGER THAN T -0' IN DIAMETER. 2. PLASTIC COASTED STEEL STEPS PRODUCED BY M.A. INDUSTRIES PART BPS3-PFC (SEE DETAIL TO THE RIGHT) ARE TO BE PLACED INSIDE ANY UNIT WHERE DEEMED NECESSARY. THE HIGHEST STEP IN THE UNIT IS TO BE PLACED A DISTANCE OF 1'0' FROM THE INSIDE EDGE OF THE STORMTRAP UNITS. ALL ENSUING STEPS SHALL BE PLACE WITH A MINIMUM DISTANCE OFI'<' BETWEEN THEM. STEPS MAYBE MOVED OR ALTERED TO AVOID OPENINGS OR OTHER IRREGULARITIES IN THE UNIT. 3. STORMTRAP UFTING INSERTS MAY BE RELOCATED TO COINCIDE WITH THE ACCESS OPENING OR THE CENTER OF GRAVITY OF THE UNIT AS NEEDED. 4. STORMTRAP ACCESS OPENINGS MAY NOT INTERFERE WITH WITH INLET AND /OR OUTLET OPENINGS. S. STORMTRAP ACCESS OPENINGS MAY NOT EXCEED A DISTANCE OF 50'0' INSETWEEN WITHOUT A CONSECUTIVE CORRESPONDING ACCESS OPENING. RECOMMENDED PIPE OPENING SPECIFICATION 1. MINIMUM EDGE DISTANCE FOR AN OPENING ON THE OUTSIDE WALL SHALL BE NO LESS THAN V -0'. 2. MINIMUM DISTANCE FROM THE BASE OF THE ROOF SLAB SHALL BE NO LESS THAN 1.0. 3. ALL OPENINGS MUST RETAIN AT LEAST 1' -0' OF CLEARANCE IN ALL DIRECTIONS FROM THE EDGE OF THE STORMTRAP UNITS. 4. OPENING SIZE SHALL NOT EXCEED 020' OR 1' 41' LESS THEN THE INSIDE HEIGHT OF THE UNIT. EXAMPLE: 3'0' UNIT MAXIMUM OPENING = 0l' -0'. 5. OPENINGS ARE NOT LIMITED TO THE ABOVE PARAMETERS BUT ARE RECOMMENDED. ANY OPENING NEEDED THAT DOES NOT FIT THE CRITERIA SHALL BE BROUGHT TO THE ATTENTION OF STORMTRAP FOR REVIEW. �.II r -0• MIN. r— MI =_ -- - - - - -- I MIN. I I 2' -0' TO 3' -0' ACCESS I OPENING I op 8 10' I I L - ------ - - - - -- II- -II 5' T PLAN VIEW r == = L - - -- - - - - -- I F� I I �1 I I B• T ELEVATION VIEW I MIN. I I I I I I I I I PIPE OPENING I SEE NOTE #4 I MIN. OUTSIDE WALL MEETS: OPSS 1351.08.02 BNO ASTM C- 478 -95e ASTM 64101 -e5b �--- 1'-4• --{ ASTMA -615 AASHTO M-108 1 3/18' STAIR DETAIL I II SIDE VIEW P.O. BOX 762 MORRIS. IL 40� 50 I$7- STORMTRAP ENGINEER INFORMATION: FOMOTOR ENGINEERING '225 S CIVIC DR PALM SPRINGS, CA 92262 Phone: 766323.1842 Fax: 760 - 323 -1742 PROJECT INFORMATION: LA QUINTA BUSINESS CENTER LA QUINTA, CA CH- 1033 -CA -05 CURRENT ISSUE DATE: 07/05/05 APPROVED BY: ISSUED FOR: PRELIMINARY REV.: DATE: DESC. BY: ISSUED FOR CH 7 T /osrvs PRELIMINARY SCALE: NTS SHEET TITLE: RECOMMENDED SINGLE TRAP INSTALLATION SPECIFICATIONS SHEET NUMBER: BILL OF MATERIALS OTY. PARTNO. DESCRIPTION 18 TYPE 1 5`-0' SINGLETRAP 3/4' 4B' -2 it II TYPE B TYPE (1 5' -0' SINGLETRAP II 11 TYPE II B TYPE III S' -0' SINGLETRAP II II TYPE III 3 TYPE IV S -0' SINGLETRAP II 11 TYPE IV 2 TYPE V 5' -0' SINGLETRAP II O II TYPE V 14 JOINT JOINT TAPE -14.5 N TAPE PER ROLL 7 JOINT JOINT WRAP -1S0' WRAP PER ROLL I 018' PIPE INV = 140.00 02' -0' ROOF OPENING (n'P) X72' PE IP- INV = 141 PE NOTES; 1. DIMENSION OFSTORMTRAP SYSTEM ALLOW FOR A 3/4• GAP BETWEEN EACH UNIT. 2. ALL DIMENSIONS TO BE VERIFIED IN THE FIELD BY OTHERS. l CONCRETE SLAB 0-8* OW) r SEE SHEET asI~, IV m m m III v 41'3 3/4' 4B' -2 it II I I I 1 II 11 I I I I II II I I I I II 11 1 { 1 1 1 II O II I I I III N V III III III IV B' -10 3/4' 012' PIPE m12' PIPE INV = 141.50 INV = 141.50 SW-3* 14'-0 3/4' 70'-3 3/4' LAYOUT DETAIL 0 P.O. BOX 782 A40P.RIS. IL 60450 1- 87- STORMTRAP T ENGINEER INFORMATION: 1 FOMOTOR ENGINEERING • 225 S CIVIC OR PALM SPRINGS. CA 92262 Phone: 760 -323 -1842 Fax: 760- 323 -1742 PROJECT INFORMATION: LA OUINTA BUSINESS CENTER LA OUINTA, CA CK1033 -CA -05 CURRENT ISSUE DATE: 07/05/05 APPROVED BY: ISSUED FOR: PRELIMINARY REV.: DATE: DESC. BY: 5' -0' SINGLETRAP UNITS 14,998.00 C.F. OF STORAGE SEE SHEET 2 FOR INSTALLATION SPECIFICATIONS QISSUED FOR H o>lasms pgEUMINARV SCALE: NTS SHEET TITLE: LAYOUT DETAIL SHEET NUMBER: I I I I 1 I ®---- - - - - -I I ---- T- 7----------------. 1-- r------- 1- 1---------------- -r —� -- 2, I 14' jl I PLAN VIEW ELEVATION VIEW O P.O. BOX 782 MORRIS. IL 60450 1 A7- STOP.MTRA P ENGINEER INFORMATION: FOMOTOR ENGINEERING 225 S CIVIC DR PALM SPRINGS. CA 92262 Phone: 760.323 -1842 Fax: 760- 323.1742 PROJECT INFORMATION: LA QUINTA BUSINESS CENTER LA QUINTA. CA CK1033-CA-05 CURRENT ISSUE DATE: 07/05/05 APPROVED BY: ISSUED FOR: PRELIMINARY REV,: DATE: DESC. BY: e• ISSUED FOR 1 0//0.5/05 PRELIMINARY CH SCALE: NTS 5' -0• SHEET TITLE: 5' STANDARD 5-0" SINGLETRAP TYPEI SHEET NUMBER: �5• 04 SIDE VIEW TYPE I UNITS UNIT CUBIC WEIGHT HEIGHT STORAGE (Ibs.) (in.) (C.F.) 60 451.5 13555 O P.O. BOX 782 MORRIS. IL 60450 1 A7- STOP.MTRA P ENGINEER INFORMATION: FOMOTOR ENGINEERING 225 S CIVIC DR PALM SPRINGS. CA 92262 Phone: 760.323 -1842 Fax: 760- 323.1742 PROJECT INFORMATION: LA QUINTA BUSINESS CENTER LA QUINTA. CA CK1033-CA-05 CURRENT ISSUE DATE: 07/05/05 APPROVED BY: ISSUED FOR: PRELIMINARY REV,: DATE: DESC. BY: e• ISSUED FOR 1 0//0.5/05 PRELIMINARY CH SCALE: NTS 5' -0• SHEET TITLE: 5' STANDARD 5-0" SINGLETRAP TYPEI SHEET NUMBER: �5• 04 SIDE VIEW _ o p- P.O. PDX 782 MORRIS. IL 60450 1.87- AOP.MIP.AP ENGINEER INFORMATION: I ® ® - FOMOTOR ENGINEERING 1 - 225 S CIVIC DR PALM SPRINGS. CA 92262 Phone: 760-323 -1842 Fax: 760 - 323.1742 I I PROJECT INFORMATION: I I 1 LA OUINTA I e'10• I BUSINESS CENTER I 1 LA QUINTA. CA 1 CK1033 -CA -05 I I CURRENT ISSUE DATE: ® ® 07/05/05 I I L -7I — 1---------------- -r —r -- APPROVED BY: 1' S, 1 ISSUED FOR: % 1 PRELIMINARY PLAN VIEW- REV.: DATE: DESC. BY: 8' r-------------------------- I I I Q ISSUED FOR 1 I 0] /0.5/05 PRELIMINARY CH I SCALE: I SA 1 S, MS 1 I SHEET TITLE: I STANDARD 6 -0" SINGLETRAP I I TYPE II I SHEET NUMBER: ELEVATION VIEW SIDE VIEW 05 TYPE II UNITS UNIT CUBIC WEIGHT HEIGHT STORAGE Qbs.) 60 213 8665 ---------------------------------------------------------- Qa --- T- 7------------- - - -1 -- -------- 7- 1----------------- r -Ir-- ,• 5' 2' 5'�{ 14' PLAN VIEW If If B' --------------- --------------------------- ------------------ S$' S' ELEVATION VIEW I--- SIDE VIEW 0 P.O. BOX 782 MOP.RIS, IL 60450 1.87- STORMTP.AP ENGINEER INFORMATION: FOMOTOR ENGINEERING 225 S CIVIC DR PALM SPRINGS. CA 92262 Phone: 760323 -1842 Fax: 760323.1742 PROJECT INFORMATION: LA QUINTA BUSINESS CENTER LA QUINTA. CA CK1033-CA-05 CURRENT ISSUE DATE: 07/05/05 APPROVED BY: ISSUED FOR: PRELIMINARY REV.: DATE: DESC. BY: Q ISSUED FOR 1 .1/D5/0.5 PRELIMINARY H SCALE: Nis SHEET TITLE: STANDARD 6-0" SINGLETRAP TYPE III SHEET NUMBER: TYPE III UNITS UNIT CUBIC WEIGHT HEIGHT STORAGE (Ibs.) (in.) (C.F.) 60 435 16025 I--- SIDE VIEW 0 P.O. BOX 782 MOP.RIS, IL 60450 1.87- STORMTP.AP ENGINEER INFORMATION: FOMOTOR ENGINEERING 225 S CIVIC DR PALM SPRINGS. CA 92262 Phone: 760323 -1842 Fax: 760323.1742 PROJECT INFORMATION: LA QUINTA BUSINESS CENTER LA QUINTA. CA CK1033-CA-05 CURRENT ISSUE DATE: 07/05/05 APPROVED BY: ISSUED FOR: PRELIMINARY REV.: DATE: DESC. BY: Q ISSUED FOR 1 .1/D5/0.5 PRELIMINARY H SCALE: Nis SHEET TITLE: STANDARD 6-0" SINGLETRAP TYPE III SHEET NUMBER: r-------------------------- I I I I I I I I I ea o• I I I - 1 I I I 9 I L -7I— ---------------- -I —� -- 1 T PLAN VIEW B• r------------=------------- I I I 1 I 1 I 1 I S 1 I I I I i I I ELEVATION VIEW INSIDE WALL 6' s �- SIDE VIEW a P.O. BOX 782 MORRIS. IL 60450 1.87- STORIATRAP ENGINEER INFORMATION: FOMOTOR ENGINEERING 225 S CIVIC OR PALM SPRINGS, CA 92262 Phone: 760 - 323.1842 Fax: 760. 323.1742 PROJECT INFORMATION: LA QUINTA BUSINESS CENTER LA QUINTA, CA CK1033 -CA-05 CURRENT ISSUE DATE: 07/05/05 APPROVED BY: ISSUED FOR: PRELIMINARY REV.: DATE: DESC. BY: QISSUED FOR 0)/05!05 ISSUED FOR CH SCALE: NTS SHEET TITLE: STANDARD 6 -0" SINGLETRAP TYPE IV SHEET NUMBER: TYPE IV UNITS UNIT CUBIC HT WEIGHT HEIGHT STORAGE (in.) (C.F.) 60 204.5 9920 6' s �- SIDE VIEW a P.O. BOX 782 MORRIS. IL 60450 1.87- STORIATRAP ENGINEER INFORMATION: FOMOTOR ENGINEERING 225 S CIVIC OR PALM SPRINGS, CA 92262 Phone: 760 - 323.1842 Fax: 760. 323.1742 PROJECT INFORMATION: LA QUINTA BUSINESS CENTER LA QUINTA, CA CK1033 -CA-05 CURRENT ISSUE DATE: 07/05/05 APPROVED BY: ISSUED FOR: PRELIMINARY REV.: DATE: DESC. BY: QISSUED FOR 0)/05!05 ISSUED FOR CH SCALE: NTS SHEET TITLE: STANDARD 6 -0" SINGLETRAP TYPE IV SHEET NUMBER: T r -1— ---------------- -� —L -- I I I I I I I I 1 I I I e' -1o• 1 I 1 1 I I I I. L-------------------- - - - - -- PLAN VIEW T If B' Ir-------------------------- I I I I I ; I I 1 I 1 S 1 � I I I I I I I I I I I I I I I I ' I I I I ELEVATION VIEW OUTSIDE WALL �S 8 S r SIDE VIEW P.O. BOX 782 InORRIS. IL 60450 1 A7- 57ORMTRAP ENGINEER INFORMATION: FOMOTOR ENGINEERING 225 S CIVIC DR PALM SPRINGS, CA 92262 Phone: 760323.1642 Fez: 760323 -1742 PROJECT INFORMATION: LA OUINTA BUSINESS CENTER LA OUINTA. CA CK1033 -CA -05 CURRENT ISSUE DATE: 07/05/05 APPROVED BY: ISSUED FOR: PRELIMINARY REV.: DATE: DESC. BY: QISSUED FOR 1 0�10.5/as PRELIMINARY CH SCALE: NTS SHEET TITLE: STANDARD 5' -0" SINGLETRAP TYPE V SHEET NUMBER: TYPE V UNITS UNIT CUBIC WEIGHT HEIGHT STORAGE Qbs.) (n,) (C.F.) 60 204.5 9920 �S 8 S r SIDE VIEW P.O. BOX 782 InORRIS. IL 60450 1 A7- 57ORMTRAP ENGINEER INFORMATION: FOMOTOR ENGINEERING 225 S CIVIC DR PALM SPRINGS, CA 92262 Phone: 760323.1642 Fez: 760323 -1742 PROJECT INFORMATION: LA OUINTA BUSINESS CENTER LA OUINTA. CA CK1033 -CA -05 CURRENT ISSUE DATE: 07/05/05 APPROVED BY: ISSUED FOR: PRELIMINARY REV.: DATE: DESC. BY: QISSUED FOR 1 0�10.5/as PRELIMINARY CH SCALE: NTS SHEET TITLE: STANDARD 5' -0" SINGLETRAP TYPE V SHEET NUMBER: J, . II — — — — — — — -- — — ---- -- — — — — — ---- LP FL 1 �3 .95 11 NIN PROPOSED RW it % PL 55.0 1 411 "-L Liu 3 8-� L=385 FT .............. . . ............ 1153.6 —5, Lca=167 FT tIENTROID,... a. cu (U 1 72.0' 21 LI? cu T a al J L3 E3 C F 144, 8 L w I HI T 01 T 1/18 c u roR ------ I---------- - - - - -- C3 6m a Lo p' 40 80 120 SILE 1" io. EXHIBIT -1" U NDEVEL OPED CONDITION J, . Mi. LQBC100YR3HR3100.out U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, version 7.0 Study date 06/24/05 File: lgbc100yr3hr3100.out +++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ------------------------------------------------------------------ - - - - -- Riverside County synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 4004 --------------------------------------------------------------------- English (in -lb) Input units Used English Rainfall Data (Inches) Input values used English units used in output format - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - LAQUINTA BUSINESS CENTER 100YR 3HR STORM UNIT HYDROGRAPH METHOD -------------------------------------------------------------------- Drainage Area = 2.20(AC.) = 0.003 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 2.20(Ac.) 0.003 Sq. Length along longest watercourse = 332.00(Ft.) Length along longest watercourse measured to centroid = 127.00(Ft.) Length along longest watercourse = 0.063 Mi. Length along longest watercourse measured to centroid = 0.024 Mi. Difference in elevation = 5.25(Ft.) Slope along watercourse = 83.4940 Ft. /Mi. Average Manning's 'N' = 0.015 Lag time = 0.013 Hr. Lag time = 0.79 Min. 25% of lag time = 0.20 Min. 40% of lag time = 0.32 Min. Unit time = 5.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1 *2] 2.20 0.70 1.54 100 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1 *2] 2.20 2.20 4.84 STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall = 0.700(In) Area Averaged 100 -Year Rainfall = 2.200(In) Point rain (area Areal adjustment Adjusted average sub -Area Data: Area(AC.) averaged) = 2.200(In) factor = 100.00 point rain = 2.200(In) Runoff Index Impervious Page 1 LQBC100YR3HR3100.out 2.200 32.00 0.900 Total Area Entered = 2.20(AC.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -3 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 32.0 52.0 0.552 0.900 0.105 1.000 0.105 Sum (F) = 0.105 Area averaged mean soil loss (F) (In /Hr) = 0.105 Minimum soil loss rate ((In /Hr)) = 0.052 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.180 --------------------------------------------------------------- - - - - -- U n i t H y d r o g r a p h VALLEY S -Curve y Page 2 unit Hydrograph Data --------------------------------------------------------------------- unit time period Time % of lag Distribution unit Hydrograph (hrs) Graph % (CFS) --------------------------------------------------------------------- 1 0.083 632.928 76.430 1.695 2 0.167 1265.857 23.570 0.523 ----------------------------------------------------------------------- Sum = 100.000 Sum= 2.217 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.08 1.30 0.343 0.105 - -- 0.24 2 0.17 1.30 0.343 0.105 - -- 0.24 3 0.25 1.10 0.290 0.105 - -- 0.19 4 0.33 1.50 0.396 0.105 - -- 0.29 5 0.42 1.50 0.396 0.105 - -- 0.29 6 0.50 1.80 0.475 0.105 - -- 0.37 7 0.58 1.50 0.396 0.105 - -- 0.29 8 0.67 1.80 0.475 0.105 - -- 0.37 9 0.75 1.80 0.475 0.105 - -- 0.37 10 0.83 1.50 0.396 0.105 - -- 0.29 11 0.92 1.60 0.422 0.105 - -- 0.32 12 1.00 1.80 0.475 0.105 - -- 0.37 13 1.08 2.20 0.581 0.105 - -- 0.48 14 1.17 2.20 0.581 0.105 - -- 0.48 15 1.25 2.20 0.581 0.105 - -- 0.48 16 1.33 2.00 0.528 0.105 - -- 0.42 17 1.42 2.60 0.686 0.105 - -- 0.58 18 1.50 2.70 0.713 0.105 - -- 0.61 19 1.58 2.40 0.634 0.105 - -- 0.53 20 1.67 2.70 0.713 0.105 - -- 0.61 21 1.75 3.30 0.871 0.105 - -- 0.77 '22 1.83 3.10 0.818 0.105 - -- 0.71 23 1.92 2.90 0.766 0.105 - -- 0.66 24 2.00 3.00 0.792 0.105 - -- 0.69 25 2.08 3.10 0.818 0.105 - -- 0.71 26 2.17 4.20 1.109 0.105 - -- 1.00 27 2.25 5.00 1.320 0.105 - -- 1.22 28 2.33 3.50 0.924 0.105 - -- 0.82 29 2.42 6.80 1.795 0.105 - -- 1.69 30 2.50 7.30 1.927 0.105 - -- 1.82 31 2.58 8.20 2..165 0.105 - -- 2.06 32 2.67 5.90 1.558 0.105 - -- 1.45 33 2.75 2.00 0.528 0.105 - -- 0.42 34 2.83 1.80 0.475 0.105 - -- 0.37 35 '2.92 1.80 0.475 0.105 - -- 0.37 36 3.00 0.60 0.158 0.105 - -- 0.05 Sum = 100.0 Sum = 22.6 Flood volume = Effective rainfall 1.89(In) times area 2.2(AC.) /[(In) /(Ft.)1 = 0.3(AC.Ft) Total soil loss = 0.31(In). y Page 2 LQBC100YR3HR3100.out Total soil loss = 0.058(AC.Ft) Total rainfall = 2.20(In) Flood volume = 15058.1 Cubic Feet Total soil loss = 2510.9 Cubic Feet Peak flow rate of this hydrograph = 4.445(CFS) --------------------------------------------- - - - - -- +++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 3 - H O U R S T 0 R M Runoff Hyd-rograph --------7 ----------------------------------------------------------- Hydrograph in 5 Minute intervals ((CFS)) ----------------------------- Time(h+m) volume AC.Ft Q(CFS) - -------------------------------------- 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+ 5 0.0028. 0.40 vQ 0 +10 0.0064 0.53 v Q 0 +15 0.0095 0.44 IQ I I I I 0 +20 0.0135 0.59 IvQ I I I 0 +25 0.0180 0.65 I Q I I I 0 +30 0.0233 0.78 I vQ I 0 +35 0.0281 0.69 I Qv 0 +40 0.0334 0.78 I Q I I 0 +45 0.0391 0.82 I Qv 0 +50 0.0438 0.69 I Q v I I I I 0 +55 0.0486 0.69 I Q v I I I 1+ 0 0.0541 0.79 I Q v 1+ 5 0.0610 1.00 I Q v 1 +10 0.0682 1.06 I Q v I I I I 1 +15 0.0755 1.06 I Q v 1 +20 0.0822 0.97 I Q VI I I I 1 +25 0.0905 1.21 I - Q v 1 +30 0.0997 1.33 1 Q iv 1 +35 0.1080 1.21 I Q I v I I 1 +40 0.1170 1.31 I Q I v 1 +45 0.1282 1.62 I Q I v 1 +50 0.1393 1.61 I Q I v 1 +55 0.1496 1.49 1 Q I v I I I 2+ 0 0.1600 1.51 I Q I v 12+ 5 0.1708 1.57 I Q I VI 2 +10 0.1851 2.08 I Q I Iv 2 +15 0.2029 2.59 I Q I v 2 +20 0.2168 2.02 I Q I I v 2 +25 0.2395 3.29 I I Q I v 2 +30 0.2669 3.97 I I Q I v 2 +35 0.2975 4.45 I I Q I I v 2 +40 0.3219 3.54 I I Q I I v 2 +45 0.3320 1.48 I Q I I I v 2 +50 0.3379 0.85 1 Q I I I VI 2 +55 0.3435 0.82 1 Q I I I VI 3+ 0 0.3455 0.28 IQ I I I VI 3+ 5 ----------------------------------------------------------------- 0.3457 0.03 Q I I I - - - - v -- Page 3 Ml. LQBUSINESSCENTER6100.out U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 06/24/05 File: LQBUSINESSCENTER6100.out +++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ------------------------------------------------------------------- - - - - -- Riverside County Synthetic unit Hydrology Method RCFC & wCD Manual date - April 1978 Program License Serial Number 4004 --------------------------------------------------------------------- English (in -lb) Input units Used English Rainfall Data (Inches) Input values used English units used in output format --------------------------------------------------------------------- LA QUINTA BUSINESS CENTER UNIT HYDROGRAPH METHOD 100 YR 6HR STORM -------------------------------------------------------------------- Drainage Area = 2.20(AC.) = 0.003 sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 2.20(AC.) = 0.003 Sq. Length along longest watercourse = 332.00(Ft.) Length along longest watercourse measured to centroid = Length along longest watercourse = 0.063 Mi. Length along longest watercourse measured to centroid = Difference in elevation = 5.25(Ft.) Slope along watercourse = 83.4940 Ft. /Mi. Average manning's 'N' = 0.015 Lag time = 0.013 Hr. Lag time = 0.79 Min. 25% of lag time = 0.20 Min. 40% of lag time = 0.32 Min. unit time = 5.00 Min. Duration of storm = 6 Hour(s) user Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(in)[2] weighting[1 *2] 2.20 1.20 2.64 100 YEAR Area rainfall data: Area(Ac.)[11 Rai nfal I (In) [21 weighting[1 *2] 2.20 2.75 6.05 STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall = 1.200(In) Area Averaged 100 -Year Rainfall = 2.750(In) Paint rain (area averaged) = 2.750(In) Areal adjustment factor = 100.00 Adjusted average point rain = 2.750(In) Sub -Area Data: Area(AC.) Runoff Index Impervious Page 1 127.00(Ft.) 0.024 Mi. LQBUSINESSCENTER6100.out 2.200 32.00 0.900 Total Area Entered = 2.20(AC.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -3 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 32.0 52.0 0.552 0.900 0.105 1.000 0.105 Sum (F) = 0.105 Area averaged mean soil loss (F) (In /Hr) = 0.105 Minimum soil loss rate ((In /Hr)) = 0.052 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.180 --------------------------------------------------------------- - - - - -- U n i t H y d r o g r a p h VALLEY S -Curve Unit Hydrograph Data --------------------------------------------------------------------- Unit time period Time % of lag Distribution Unit Hydrograph (hrs) Graph % (CFS) --------------------------------------------------------------------- 1 0.083 632.928 76.430 1.695 2 0.167 1265.857 23.570 0.523 ----------------------------------------------------------------------- Sum = 100.000 Sum= 2.217 Unit Time Pattern storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.08 0.50 0.165 0.105 - -- 0.06 2 0.17 0.60 0.198 0.105 - -- 0.09 3 0.25 0.60 0.198 0.105 - -- 0.09 4 0.33 0.60 0.198 0.105 - -- 0.09 5 0.42 0.60 0.198 0.105 - -- 0.09 6 0.50 0.70 0.231 0.105 - -- 0.13 7 0.58 0.70 0.231 0.105 - -- 0.13 8 0.67 0.70 0.231 0.105 - -- 0.13 9 0.75 0.70 0.231 0.105 - -- 0.13 10 0.83 0.70 0.231 0.105 --- 0.13 11 0.92 0.70 0.231 0.105 - -- 0.13 12 1.00 0.80 0.264 0.105 - -- 0.16 13 1.08 0.80 0.264 0.105 - -- 0.16 14 1.17 0.80 0.264 0.105 - -- 0.16 15 1.25 0.80 0.264 0.105 - -- 0.16 16 1.33 0.80 0.264 0.105 - -- 0.16 17 1.42 0.80 0.264 0.105. - -- 0.16 18 1.50 0.80 0.264 0.105 - -- 0.16 19 1.58 0.80 0.264 0.105 - -- 0.16 20 1.67 0.80 0.264 0.105 - -- 0.16 21 1.75 0.80 0.264 0.105 - -- 0.16 22 1.83 0.80 0.264 0.105 - -- 0.16 23 1.92 0.80 0.264 0.105 - -- 0.16 24 2.00 0.90 0.297 0.105 - -- 0.19 25 2.08 0.80 0.264 0.105 - -- 0.16 26 2.17 0.90 0.297 0.105 - -- 0.19 27 2.25 0.90 0.297 0.105 - -- 0.19 28 2.33 0.90 0.297 0.105 - -- 0.19 29 2.42 0.90 0.297 0.105 - -- 0.19 30 2.50 0.90 0.297 0.105 - -- 0.19 31 2.58 0.90 0.297 0.105 - -- 0.19 32 2.67 0.90 0.297 0.105 - -- 0.19 33 2.75 1.00 0.330 0.105 - -- 0.23 34 2.83 1.00 0.330 0.105 - -- 0.23 35 2.92 1.00 0.330 0.105 - -- 0.23 36 3.00 1.00 0.330 0.105 - -- 0.23 37 3.08 1.00 0.330 0.105 - -- 0.23 38 3.17 1.10 0.363 0.105 - -- 0.26 39 3.25 1.10 0.363 0.105 - -- 0.26 40 3.33 1.10 0.363 0.105 - -- 0.26 Page 2 -------------------------------------------------------------------- Peak flow rate of this hydrograph = 3.712(CFS) -------------------------------------------------------------------- +++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 6 - H O U R S T O R M R u n o f f H y d r o g r a p h ---------=----------=----------------------------------------------- Hydrograph in 5 Minute intervals ((CFS)) --------------------------------------- Time(h+m) volume-AC.Ft Q(CFS) 0 2.5 0+ 5 0.0007 0.10 LQBUSINESSCENTER6100.out 41 3.42 1.20 0.396 0.105 - -- 0.29 42 3.50 1.30 0.429 0.105 - -- 0.32 43 3.58 1.40 0.462 0.105 - -- 0.36 44 3.67 1.40 0.462 0.105 - -- 0.36 45 3.75 1.50 0.495 0.105 - -- 0.39 46 3.83 1.50 0:495 0.105 - -- 0.39 47 3.92 1.60 0.528 0.105 - -- 0.42 48 4.00 1.60 0.528 0.105 - -- 0.42 49 4.08 1.70 0.561 0.105 - -- 0.46 50 4.17 1.80 0.594 0.105 - -- 0.49 51 4.25 1.90 0.627 0.105 - -- 0.52 52 4.33 2.00 0.660 0.105 - -- 0.56 53 4.42 2.10 0.693 0.105 - -- 0.59 54. 4.50 2.10 0.693 0.105 - -- 0.59 55 4.58 2.20 0.726 0.105 - -- 0.62 56 4.67 2.30 0.759 0.105 - -- 0.65 57 4.75 2.40 0.792 0.105 - -- 0.69 58 4.83 2.40 0.792 0.105 - -- 0.69 59 4.92 2.50 0.825 0.105 - -- 0.72 60 5.00 2.60 0.858 0.105 - -- 0.75 61 5.08 3.10 1.023 0.105 - -- 0.92 62 5.17 3.60 1.188 0.105 - -- 1.08 63 5.25 3.90 1.287 0.105 - -- 1.18 64 5.33 4.20 1.386 0.105 - -- 1.28 65, "5.42 4.70 1.551 0.105 - -- 1.45 66 5.50 5.60 1.848 0.105 - -- 1.74 67 5.58 1.90 0.627 0.105 - -- 0.52 68 5.67 0.90 0.297 0.105 - -- 0.19 69 5.75 0.60 0.198 0.105 - -- 0.09 70 5.83 0.50 0.165 0.105 - -- 0.06 71 5.92 0.30 0.099 0.105 0.018 0.08 72 6.00 0.20 0.066 0.105 0.012' 0.05 Sum = 100.0 Sum = 25.6 Flood volume = Effective rainfall 2.14(In) times area 2.2(AC.) /[(In) /(Ft.)] = 0.4(AC.Ft) Total soil loss = 0.61(In) Total soil loss = 0.113(AC.Ft) Total rainfall = 2.75(In) Flood volume = 17059.3 Cubic Feet Total soil loss = 4902.1 Cubic Feet -------------------------------------------------------------------- Peak flow rate of this hydrograph = 3.712(CFS) -------------------------------------------------------------------- +++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 6 - H O U R S T O R M R u n o f f H y d r o g r a p h ---------=----------=----------------------------------------------- Hydrograph in 5 Minute intervals ((CFS)) --------------------------------------- Time(h+m) volume-AC.Ft Q(CFS) 0 2.5 0+ 5 0.0007 0.10 Q I 0 +10 0.0020 0.19 Q 0 +15 0.0034 0.21 Q 0 +20 0.0049 0.21 Q 0 +25 0.0063 0.21 Q 0 +30 0.0081 0.26 vQ 0 +35 0.0100 0.28 IQ I 0 +40 0.0119 0.28 IQ I 0 +45 0.0139 0.28 IQ 0 +50 0.0158 0.28 IQ i 0 +55 0.0177 0.28 IQ 1+ 0 0.0200 0.34 IQv I 1+ 5 0.0225 0.35 IQv I 1 +10 0.0249 0.35 IQv I 1 +15 0.0273 0.35 IQv I 1 +20 0.0298 0.35 IQ v I 1 +25 0.0322 0.35 IQ v I 1 +30 0.0346 0.35 IQ v I Page 3 ---------------------- 5.0 7.5 10.0 ------------------- I { I I I I I I I I I I I I I I I I I I I i I I I I I I I I I I I I I I LQBUSINESSCENTER6100.out 1 +35 0.0371 0.35 IQ V I 1 +40 0.0395 0.35 IQ V 1 +45 .0.0419. 0.35 IQ v I I I 1 +50 0.0444 0.35. IQ v I 1 +55 0.0468 0.35 IQ v 2+ 0 0.0496 0.41 IQ v I I I 2+ 5 0.0522 0.37 IQ v I I 2 +10 0.0550 0.41 IQ v I I 2 +15 0.0579 0.43 IQ V 2 +20 0.0609 0.43 IQ V 2 +25 0.0638 0.43 IQ v 2 +30 0.0667 0.43 IQ V 2 +35 0.0697 0.43 IQ V I I I 2 +40 0.0726 0.43 IQ V I 2 +45 0.0759 0.48 IQ V I I I 2 +50 0.0794 0.50 IQ v I 2 +55 0.0828 0.50 IQ V I 3+ 0 0.0862 0.50 IQ V I I 3 +'5 0.0897 0.50 IQ VI I I 3 +10 0.0935 0.56 I Q VI I I 3 +15` 0.0975 0.57 I Q VI 3 +20 0.1014 0.57 I Q v 3 +25 0.1057 0.63 I Q V 3 +30 0.1106 0.70 I Q IV I I 3 +35 0.1159 0.78 1 Q IV I 3 +40 0.1214 0.79 I Q I V I I 3 +45 0.1272 0.85 I Q I v I I 3 +50 0.1332 0.87 I Q I v I 3 +55 0.1395 0.92 Q I v I I 4+ 0 0.1460 0.94 I Q I V 4+ 5 0.1528 0.99 I Q I V 4 +10 0.1602 1.07 I Q I V 4 +15 0.1680 1.14 I Q I V 4 +20 0.1764 1.21 I Q I v I I 4 +25 0.1853 1.29 I Q I v 4 +30 0.1943 1.30 I. Q I VI 4 +35 0.2036 1.36 I Q I V I 4 +40 0.2135 1.43 I Q I IV 4 +45 0.2239 1.51 I Q I I V 4 +50 0.2344 1.52 I Q I I V 4 +55 0.2453 1.58 I Q I I V 5+ 0 0.2567 1.65 I Q I I V I 5+ 5 0.2701 1.95 I Q I I v 5 +10 0.2860 2.32 I QI I VI 5 +15 0.3037 2.57 I Q I IV 5 +20 0.3230 2.79 I IQ. I I V 5 +25 0.3445 3.12 I I Q I I V 5 +30 0.3700 3.71 I I Q I I 5 +35 0.3824 1.80 I Q I I I 5 +40 0.3865 0.60 I Q I 5 +45 0.3883 0.26 IQ 5 +50 0.3893 0.15 Q I I I 5 +55 0.3905 0.17 Q I I I 6+ 0 0.3914 0.13 Q I I I 6+ 5 0.3916 0.03 ----------------------------------------------- Q I ------------------- - - - - -- Page 4 VI VI VI VI VI v1 V • Mi. LQBC100YR24HR24100.out U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 06/24/05 File: LQBC100YR24HR24100.out +++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ---------=-------------------------------------------------------- - - - - -- Riverside County Synthetic unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 4004 --------------------------------------------------------------------- English (in -lb) Input units used English Rainfall Data (Inches) Input values used English units used in output format --------------------------------------------------------------------- LQ BUSINESS CENTER 100YR 24HR STORM UNIT HYDROGRAPH METHOD -------------------------------------7------------------------------ Drainage Area = 2.20(AC.) = 0.003 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 2.20(AC.) _ Length along longest watercourse = 332.00(Ft.) Length along longest watercourse measured to centroid = Length along longest watercourse = 0.063 Mi. Length along longest watercourse measured to centroid = Difference in elevation = 5.25(Ft.) Slope along watercourse = 83.4940 Ft. /Mi. Average Manning's 'N' = 0.015 Lag time = 0.013 Hr. Lag time = 0.79 Min. 25% of lag time = 0.20 Min. 409% of lag time = 0.32 Min. unit time = 5.00 Min. Duration of storm = 24 Hour(s) user Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Area(AC.)[1] Rai nf al I (In) [21 Weighting[1*2] 2.20 1.60 3.52 100 YEAR Area.rainfall data: Area (AC.)[11 Rai nfal 1 (In) [21 Weighting[1*2] 2.20 4.50 9.90 STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall = 1.600(In) Area Averaged 100 -Year Rainfall = 4.500(In) Point rain (area Areal adjustment Adjusted average sub -Area Data: Area(AC.) averaged) = 4.500(In) factor = 100.00 point rain = 4.500(In) Runoff Index Impervious Page 1 127.00(Ft.) 0.024 Mi. 0.003 Sq. LQBC100YR24HR24100.out 2.200 32.00 0.900 Total Area Entered = 2.20(AC.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -3 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 32.0 52.0 0.552 0.900 0.105 1.000 0.105 % (CFS) . --------------------------------------------------------------------- Sum (F) = 0.105 Area averaged mean soil loss (F) (In /Hr) = 0.105 1265.857 Minimum soil loss rate ((In /Hr)) = 0.052 (for 24 hour storm duration) Unit Time Pattern Soil --------------------------------------------------------------- low loss rate'(decimal) = 0.180 - - - - -- u n i t H y d r o g r a p h VALLEY S -Curve -------------------------------------------------------------------- unit Hydrograph Data --------------------------------------------------------------------- Unit time period Time % of lag Distribution unit Hydrograph (hrs) Graph % (CFS) . --------------------------------------------------------------------- 1 0.083 632.928 76.430 1.695 2 0.167 1265.857 23.570 0.523 --------------------------------------------------------------------- Sum = 100.000 Sum= 2.217 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.08 0.07 0.036 0.186 0.006 0.03 2 0.17 0.07 0.036 0.185 0.006 0.03 3 0.25 0.07 0.036 0.184 0.006. 0.03 4 0.33 0.10 0.054 0.184 0.010 0.04 5 0.42 0.10 0.054' 0.183 0.010 0.04 6 0.50 0.10 0.054 0.182 0.010 0.04 7 0.58 0.10 0.054 0.181 0.010 0.04 8 0.67 0.10 0.054 0.181 0.010 0.04 9 0.75 0.10 0.054 0.180 0.010 0.04 10 0.83 0.13_ 0.072 0.179 0.013 0.06 11 0.92 0.13 0.072 0.179 0.013 0.06 12 1.00 0.13 0.072 0.178 0.013 0.06 13 1.08 0.10 0.054 0.177 0.010 0.04 14 1.17 0.10 0.054 0.177 0.010 0.04 15 1.25 0.10 0.054 0.176 0.010 0.04 16 1.33 0.10 0.054 0.175 0.010 0.04 17 1.42 0.10 0.054 0.174 0.010 0.04 18 1.50 0.10 0.054 0.174 0.010 0.04 19 1.58 0.10 0.054 0.173 0.010 0.04 20 1.67 0.10 0.054 0.172 0.010 0.04 21 1.75 0.10 0.054 0.172 0.010 0.04 22 1.83 0.13 0.072 0.171 0.013 0.06 23 1.92 0.13 0.072 0.170 0.013 0.06 24 2.00 0.13 0.072 0.170 0.013 0.06 25 2.08 0.13 0.072 0.169 0.013 0.06 26 2.17 0.13 0.072 0.168 0.013 0.06 27 2.25 0.13 0.072 0.168 0.013 0.06 28 2.33 0.13 0.072 0.167 0.013 0.06 29 2.42 0.13 0.072 0.166 0.013 0.06 30 2.50 0.13 0.072 0.166 0.013 0.06 31 2.58 0.17 0.090 0.165 0.016 0.07 32 2.67 0.17 0.090 0.164 0.016 0.07 33 2.75 0.17 0.090 0.163 0.016 0.07 34 2.83 0.17 0.090 0.163 0.016 0.07 35 2.92 0.17 0.090 0.162 0.016 0.07 36 3.00 0.17 0.090 0.161 0.016 0.07 37. 3.08 0.17 0.090 0.161 0.016 0.07 38 3.17 0.17 0.090 0.160 0.016 0.07 39 3.25 0.17 0.090 0.159 0.016 0.07 40 3.33 0.17 0.090 0.159 0.016 0.07 Page 2 LQBC100YR24HR24100.out 41 3.42 0.17 0.090 0.158 0.016 0.07 42 3.50 0.17 0.090 0.157 0.016 0.07 43 3.58 0.17 0.090 0.157 0.016 0.07 44 3.67 0.17 0.090 0.156 0.016 0.07 45 3.75 0.17 0.090 0.156 0.016 0.07 46 3.83 0.20 0.108 0.155 0.019 0.09 47 3.92 0.20 0.108 0.154 0.019 0.09 48 4.00 0.20 0.108 0.154 0.019 0.09 49 4.08 0.20 0.108 0.153 0.019 0.09 50 4.17 0.20 0.108 0.152 0.019 0.09 51 4.25 0.20 0.108 0.152 0.019 0.09 52 4.33 0.23 0.126 0.151 0.023 0.10 53 4.42 0.23 0.126 0.150 0.023 0.10 54 4.50 0.23 0.126 0.150 0.023 0.10 55 4.58 0.23 0.126 0.149 0.023 0.10 56 4.67 0.23 0.126 0.148 0.023 0.10 57 4.75 0.23 0.126 0.148 0.023 0.10 .58 4.83 0.27 0.144 0.147 0.026 0.12 59 4.92 0.27 0.144 0.146 0.026 0.12 60 5.00 0.27 0.144 0.146 0.026 0.12 61 5.08 0.20 0.108 0.145 0.019 0.09 62 5.17 0.20 0.108 0.145 0.019 0.09 63 5.25 0.20 0.108 0.144 0.019 0.09 64 5.33 0.23 0.126 0.143 0.023 0.10 65 5.42 0.23 0.126 0.143 0.023 0.10 66 5.50 0.23 0.126 0.142 0.023 0.10 67 5.58 0.27 0.144 0.141 - -- 0.00 68 5.67 0.27 0.144 0.141 - -- 0.00 69 5.75 0.27 0.144 0.140 - -- 0.00 70 5.83 0.27 0.144 0.140 - -- 0.00 71 5.92 0.27 0.144 0.139 - -- 0.01 72 -6.00 0.27 0.144 0.138 - -- 0.01 73 6.08 0.30 0.162 0.138 - -- 0.02 74 6.17 0.30 0.162 0.137 - -- 0.02 75 6.25 0.30 0.162 0.137 - -- 0.03 76 6.33 0.30 0.162 0.136 - -- 0.03 77 6.42 0.30 0.162 0.135 - -- 0.03 78 6.50 0.30 0.162 0.135 - -- 0.03 79 6.58 0.33 0.180 0.134 - -- 0.05 80 6.67 0.33 0.180 0.133 - -- 0.05 81 6.75 0.33 0.180 0.133 - -- 0.05 82 6.83 0.33 0.180 0.132 - -- 0.05 83 6.92 0.33 0.180 0.132 - -- 0.05 84 7:00 0.33 0.180 0.131 - -- 0.05 85 7.08 0.33 0.180 0.130 - -- 0.05 86 7.17 0.33 0.180 0.130 - -- 0.05 87 7.25 0.33 0.180 0.129 - -- 0.05 88 7.33 0.37 0.198 0.129 - -- 0.07 89 7.42 0.37 0.198 0.128 - -- 0.07 90 7.50 0.37 0.198 0.128 - -- 0.07 91 7.58 0.40 0.216 0.127 - -- 0.09 92 7.67 0.40 0.216 0.126 - -- 0.09 93 7.75 0.40 0.216 0.126 - -- 0.09 94 7.83 0.43 0.234 0.125 - -- 0.11 95 7.92 0.43 0.234 0.125 - -- 0.11 96 8.00 0.43 0.234 0.124 - -- 0.11 97 8.08 0.50 0.270• 0.123 - -- 0.15 98 8.17 0.50 0.270 0.123 - -- 0.15 99 8.25 0.50 0.270 0.122 - -- 0.15 100 8.33 0.50 0.270 0.122 - -- 0.15 101 8.42 0.50 0.270 0.121 - -- 0.15 102 8.50 0.50 0.270 0.121 - -- 0.15 103 8.58 0.53 0.288 0.120 - -- 0.17 104 8.67 0.53 0.288 0.119 - -- 0.17 105 8.75 0.53 0.288 0.119 - -- 0.17 106 8.83 0.57 0.306 0.118 - -- 0.19 107 8.92 0.57 0.306 0.118 - -- 0.19 108 9.00 0.57 0.306 0.117 - -- 0.19 109 9.08 0.63 0.342 0.117 - -- 0.23 110 9.17 0.63 0.342 0.116 - -- 0.23 Page 3 LQBC100YR24HR24100.out '111 9.25 0.63 0.342 0.116 - -- 0.23 112 9.33 0.67 0.360 0.115 - -- 0.24 113 9.42 0.67 0.360 0.114 - -- 0.25 114 9.50 0.67 0.360 0.114 - -- 0.25 115 9.58 0.70 0.37.8 0.113 - -- 0.26 116 9.67 0.70 0.378 0.113 - -- 0.27 117 9.75 0.70 0.378 0.112 - -- 0.27 118 9.83 0.73 0.396 0.112 - -- 0.28 119 9.92 0.73 0.396 0.111 - -- 0.28 120 10.00 0.73 0.396 0.111 - -- 0.29 121 10.08 0.50 0.270 0.110 - -- 0.16 122 10.17 0.50 0.270 0.110 - -- 0.16 123 10.25 0.50 0.270 0.109 - -- 0.16 124 10.33 0.50 0.270 0.109 - -- 0.16 125 10.42 0.50 0.270 0.108 - -- 0.16 126 10.50 0.50 0.270 0.107 - -- 0.16 127 10.58 0.67 0.360 0.107 - -- 0.25 128 10.67 0.67 0.360 0.106 - -- 0.25 129 10.75 0.67 0.360 0.106 - -- 0.25 130 10.83 0.67 0.360 0.105 - -- 0.25 131 10.92 0.67 0.360 0.105 - -- 0.26 132 11.00 0.67 0.360 0.104 - -- 0.26 133 11.08 0.63 0.342 0.104 - -- 0.24 134 11.17 0.63 0.342 0.103 - -- 0.24 135 11.25 0.63 0.342 0.103 - -- 0.24 136 11.33 0.63 0.342 0.102 - -- 0.24 137 11.42 0.63 0.342 0.102 - -- 0.24 138 11.50 0.63 0.342 0.101 - -- 0.24 139 11.58 0.57 0.306 0.101 - -- 0.21 140 11.67 0.57 0.306 0.100 - -- 0.21 141 11.75 0.57 0.306 0.100 - -- 0.21 142 11.83 0.60 0.324 0.099 - -- 0.22 143 11.92 0.60 0.324 0.099 - -- 0.23 144 12.00 0.60 0.324 0.098 - -- 0.23 145 12.08 0.83 0.450 0.098 - -- 0.35 146 12.17 0.83 0.450 0.097 - -- 0.35 147 12.25 0.83 0.450 0.097 - -- 0.35 148 12.33 0.87 0.468 0.096 - -- 0.37 149 12.42 0.87 0.468 0.096 - -- 0.37 150 12.50 0.87 0.468 0.095 - -- 0.37 151 12.58 0.93 0.504 0.095 - -- 0.41 152 12.67 0.93 0.504 0.094 - -- 0.41 153 12.75 0.93 0.504 0.094 - -- 0.41 154 12.83 0.97 0.522 0.093 - -- 0.43 155 12.92 0.97 0.522 0.093 - -- 0.43 156 13.00 0.97 0.522 0.093 - -- 0.43 157 13.08 1.13 0.612 0.092 - -- 0..52 158 13.17 1.13 0.612 0.092 - -- 0.52 159 13.25 1.13 0.612 0.091 - -- 0.52 160 13.33 1.13 0.612 0.091 - -- 0.52 161 13.42 1.13 0.612 0.090 - -- 0.52 162 13.50 1.13 0.612 0.090 - -- 0.52 163 13.58 0.77 0.414 0.089 - -- 0:32 164 13.67 0.77 0.414 0.089 - -- 0.33 165 13.75 0.77 0.414 0.088 - -- 0.33 166 13.83 0.77 0.414 0.088 - -- 0.33 167 13.92 0.77 0.414 0.088 - -- 0.33 168 14.00 0.77 0.414 0.087 - -- 0.33 169 14.08 0.90 0.486 0.087 - -- 0.40 170 14.17 0.90 0.486 0.086 - -- 0.40 171 14.25 0.90 0.486 0.086 - -- 0.40 172 14.33 0.87 0.468 0.085 - -- 0.38 173 14.42 0.87 0.468 0.085 - -- 0.38 174 14.50 0.87 0.468 0.084 - -- 0.38 175 14.58 0.87 0.468 0.084 - -- 0.38 176 14.67 0.87 0.468 0.084 - -- 0.38 177 14.75 0.87 0.468 0.083 - -- 0.38 178 14.83 0.83 0.450 0.083 - -- 0.37 179 14.92 0.83 0.450 0.082 - -- 0.37 180 15.00 0.83 0.450 0.082 - -- 0.37 - Page 4 LQBC100YR24HR24100.out 181 15.08 0.80 0.432 0.081 - -- 0.35 182 15.17 0.80 0.432 0.081 - -- 0.35 183 15.25 0.80 0.432 0.081 - -- 0.35 184 15.33 0.77 0.414 0.080 - -- 0.33 185 15.42 0.77 0.414 0.080 - -- 0.33 186 15.50 0.77 0.414 0.079 - -- 0.33 187 15.58 0.63 0.342 0.079 - -- 0.26 188 15.67 0.63 0.342 0.079 - -- 0.26 189 15.75 0.63 0.342 0.078 - -- 0.26 190 15.83 0.63 0.342 0.078 - -- 0.26 191 15.92 .0.63 0.342 0.077 - -- 0.26 192 16.00 0.63 0.342 0.077 - -- 0.27 193 16.08 0.13 0.072 0.077 0.013 0.06 194 16.17 0.13 0.072 0.076 0.013 0.06 195 16.25 0.13 0.072 0.076 0.013 0.06 196 16.33 '0.13 0.072 0.075 0.013 0.06 197 16.42 0.13 0.072 0.075 0.013 0.06 198 16.50 0.13 0.072 0.075 0.013 0.06 199 16.58 0.10 0.054 0.074 0.010 0.04 200 16.67 0.10 0.054 0.074 0.010 0.04 201 16.75 0.10 0.054 0.074• 0.010 0.04 202 16.83 0.10 0.054 0.073 0.010 0.04 203 16.92 0.10 0.054 0.073 0.010 0.04 204 17.00 0.10 0.054 0.072 0.010 0.04 205 17.08 0.17 0.090 0.072 - -- 0.02 206 17.17 0.17 0.090 0.072 - -- 0.02 207 17.25 0.17 0.090 0.071 - -- 0.02 208 17.33 0.17 0.090 0.071 - -- 0.02 209 17.42 0.17 0.090 0.071 - -- 0.02 210 17.50 0.17 0.090 0.070 - -- 0.02 211 17.58 0.17 0.090 0.070 - -- 0.02 212 17.67 0.17 0.090 0.070 - -- 0.02 213 17.75 0.17 0.090 0.069 - -- 0.02 214 17.83 0.13 0.072 0.069 - -- 0.00 215 17.92 0.13 0.072 0.069 - - -. 0.00 216 18.00 0.13 0.072 0.068 - -- 0.00 217 18.08 0.13 0.072 0.068 - -- 0.00 .218 18.17 0.13 0.072 0.067 - -- 0.00 219 18.25 0.13 0.072 0.067 - -- 0.00 220 18.33 0.13 0.072 0.067 - -- 0.01 221 18.42 0.13 0.072 0.067 - -- 0.01 222 18.50 0.13 0.072 0.066 - -- 0.01 223 18.58 0.10 0.054 0.066 0.010 0.04 224 18.67 0.10 0.054 0.066 0.010 0.04 225 .18.75 0.10 0.054 0.065 0.010 0.04 -226 18.83 0.07 0.036 0.065 0.006 0.03 227 18.92 0.07 0.036 0.0.65 0.006 0.03 228 19.00 0.07 0.036 0.064 0.006 0.03 229 19.08 0.10 0.054 0.064 0.010 0.04 230 19.17 0.10 0.054 0.064 0.010 0.04 231 19.25 0.10 0.054 0.063 0.010 0'.04 232 19.33 0.13 0.072 0.063 - -- 0.01 233 19.42 0.13 0.072 0.063 - -- 0.01 234 19.50 0.13 0.072 0.063 - -- 0.01 235 19.58 0.10 0.054 0.062 0.010 0.04 236 19.67 0.10 0.054 0.062 0.010 0.04 237 19.75 0.10 0.054 0.062 0.010 0.04 238 19.83 0.07 0.036 0.061 0.006 0.03 239 19.92 0.07 0.036 0.061 0.006 0.03 240 20.00 0.07 0.036 0.061 0.006 0.03 241 20.08 0.10 0.054 0.061 0.010 0.04 242 20.17 0.10 0.054 0.060 0.010 0.04 243 20.25 0.10 0.054 0.060 0.010 0.04 244 20.33 0.10 0.054 0.060 0.010 0.04 245 20.42 0.10 .0.054 0.060 0.010 0.04 246 20.50 0.10 0.054 0.059 0.010 0.04 247 20.58 0.10 0.054 0.059 0.010 0.04 248 20.67 0.10 0.054 0.059 0.010 0.04 249 20.75 0.10 0.054 0.059 0.010 0.04 250 20.83 0.07 0.036 0.058 0.006 0.03 Page 5 -------------------------------------------------------------------- Peak flow rate of this hydrograph = 1.158(CFS) -------------------------------------------------------------------- +++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 24 - H O U R S T O R M R u n o f f H y d r o g r a p h -------------------------------------------------------------- - - - - -- Hydrograph in 5 Minute intervals ((CFS)) -------------------------------------------------------------------- Time(h+m) volume AC.Ft Q(CFS) LQBC100YR24HR24100.out ----------------------------------------------------------------------- 0+ 5 251 20.92 0.07 0.036 0.058 0.006 0.03 252 21.00 0.07 0.036 0.058 0.006 0.03 253 21.08 0.10 0.054 0.058 0.010 0.04 254 21.17 0.10 0.054 0.057 0.010 0.04 255 21.25 0.10 0.054 0.057 0.010 0.04 256 21.33 0.07 0.036 0.057 0.006 0.03 257 21.42 0.07 0.036 0.057 0.006 0.03 258 21.50 0.07 0.036 0.057 0.006 0.03 259 21.58 0.10 0.054 0.056 0.010 0.04 260 21.67 0.10 0.054 0.056 0.010 0.04 261 21.75 0.10 0.054 0.056 0.010 0.04 262 21.83 0.07 0.036 0.056 0.006 0.03 263 21.92 0.07 0.036 0.056 0.006 0.03 264 22.00 0.07 0.036 0.055 0.006 0.03 265- 22.08 0.10 0.054 0.055 0.010 0.04 266 22.17 0.10 0.054 0.055 0.010 0.04 267 22.25 0.10 0.054 0.055 0.010 0.04 268 22.33 0.07 0.036 0.055 0.006 0.03 269 22.42 0.07 0.036 0.054 0.006 0.03 270 22.50 0.07 0.036 0.054 0.006 0.03 271 22.58 0.07 0.036 0.054 0.006 0.03 272 22.67 0.07 0.036 0.054 0.006 0.03 273 22.75 0.07 0.036 0.054 0.006 0.03 274 22.83 0.07 0.036 0.054 0.006 0.03 275 22.92 0.07 0.036 0.054 0.006 0.03 276 23.00 0.07 0.036 0.053 0.006 0.03 277 23.08 0.07 0.036 0.053 0.006 0.03 278 23.17 0.07 0.036 0.053 0.006 0.03 279 23.25 0.07 0.036 0.053 0.006 0.03 280 23.33 0.07 0.036 0.053 0.006 0.03 281 23.42 0.07 0.036 0.053 0.006 0.03 282 23.50 0.07 0.036 0.053 0.006 0.03 283 23.58 0.07 0.036 0.053 0.006 0.03 284 23.67 0.07 0.036 0.053 0.006 0.03 285 23.75 0.07 0.036 0.053 0.006 0.03 286 23.83 0.07 0.036 0.052 0.006 0.03 287 23.92 0.07 0.036 0.052 0.006 0.03 288 24.00 0.07 0.036 0.052 0.006 0.03 Sum = 100.0 Sum = 37.5 Flood volume = Effective rainfall 3.12(In) times area 2.2(AC.) /[(In) /(Ft.)] = 0.6(AC.Ft) Total soil loss = 1.38(In) Total soil loss = 0.253(Ac.Ft) Total rainfall = 4.50(In) Flood volume = 24924.5 Cubic Feet Total soil loss = '11012.4 Cubic Feet -------------------------------------------------------------------- Peak flow rate of this hydrograph = 1.158(CFS) -------------------------------------------------------------------- +++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 24 - H O U R S T O R M R u n o f f H y d r o g r a p h -------------------------------------------------------------- - - - - -- Hydrograph in 5 Minute intervals ((CFS)) -------------------------------------------------------------------- Time(h+m) volume AC.Ft Q(CFS) 0 2.5 5.0 7.5 . 10.0 ----------------------------------------------------------------------- 0+ 5 0.0003 0.05 Q I l 0 +10 0.0008 0.07 Q 0 +15 0.0012 0.07 Q 0 +20 0.0019 0.09 Q 0 +25 0.0025 0.10 Q 0 +30 0.0032 0.10 Q 0 +35 0.0039 0.10 Q I 0 +40 0.0046 0.10 Q 0 +45 0.0053 0.10 Q 0 +50 0.0061 0.12 Q I I 0 +55 0.0070 0.13 Q I I I I 1+ 0 0.0079 0.13 Q I I I I Page 6 1+ 5 0.0086 0.11 1 +10 0.0093 0.10 1 +15 0.0100 0.10 1 +20 0.0107 0.10 1 +25 0.0113 0.10 1 +30 0.0120 0.10 1 +35 0.0127 0.10 1 +40 0.0134 0.10 1 +45 0.0140 0.10 1 +50 0.0149 0.12 1 +55 0.0158 0.13 2+ 0 0.0167 0.13 2+ 5 0.0176 0.13 2 +10 0.0185 0.13 2 +15 0.0194 0.13 2 +20 0.0203 0.13 2 +25 0.0212 0.13 2 +30 0.0221 0.13 2 +35 0.0232 0.16 2 +40 0.0243 0.16 2 +45 0.0254 0.16 2 +50 0.0266 0.16 2 +55 0.0277 0.16 3+ 0 0.0288 0.16 3+ 5 0.0300 0.16 3 +10 0.0311 0.16 3 +15 0.0322 0.16 3 +20 0.0333 0.16 3 +25 0.0345 0.16 3 +30 0.0356 0.16 3 +35 0.0367 0.16 3 +40 0.0378 0.16 3 +45 0.0390 0.16 3 +50 0.0403 0.19 3 +55 0.0416 0.20 4+ 0 0.0430 0.20 4+ 5 0.0443 0.20 4 +10 0.0457 0.20 4 +15 0.0470 0.20 4 +20 0.0486 0.22 4 +25 0.0501 0.23 4 +30 0.0517 0.23 4 +35 0.0533 0.23 4 +40 0.0549 0.23 4 +45 0.0565 0.23 4 +50 0.0582 0.25 4 +55 0.0600 0.26 5+ 0 0.0618 0.26 5+ 5 0.0633 0.21 5 +10 0.0646 0.20 5 +15 0.0660 0.20 5 +20 0.0675 0.22 5 +25 0.0691 0.23 5 +30 0.0707 0.23 5 +35 0.0711 0.06 5 +40 0.0711 0.01 5 +45 0.0712 0.01 5 +50 0.0712 0.01 5 +55 0.0713 0.01 6+ 0 0.0714 0.01 6+ 5 0.0717 0.04 6 +10 0.0721 0.05 6 +15 0.0725 0.06 6 +20 0.0729 0.06 6 +25 0.0733 0.06 6 +30 0.0737 0.06 6 +35 0.0743 0.09 6 +40 0.0750 0.10 6 +45 0.0757 0.10 6 +50 0.0765 0.11 LQBC100YR, Q Q Q Q Q Q Q Q Q Qv Qv Qv Qv Qv Qv Qv Qv Qv Qv Qv Qv Qv Qv Qv Qv Qv Qv Qv Qv Q v Qv Qv Qv Qv Qv Q v Q v Q v Q v Q v Q v Q v Q v Q v Q v IQ v IQ v IQ v Q v Q v Q v Q v Q v Q v Q v Q v Q v Q v Q v 0 v v v v v v v v v v v 4HR24100 . c Page 7 ►ut Page 8 R LQBC100YR24HR24100.out 6 +55 0.0772 0.11 Q V 7+ 0 0.0779 0:11 Q V 7+ 5 0.0787 0.11 Q V 7 +10 0.0795 0.11 Q V 7 +15 0.0802 0.11 Q V 7 +20 0.0812 0.14 Q V 7 +25 0.0823 0.15 Q V 7 +30 0.0834 0.16 Q V I 7 +35 0.0847 0.19 Q V 7 +40 0.0860 0.20 Q V I 7 +45 0.0874 0.20 Q V I I 7 +50 0.0890 0.23 Q V 7 +55 0.0907 0.24 Q V 8+ 0 0.0923 0.24 Q V 8+ 5 0.0945 0.31 IQ V I 8 +10 0.0967 0.33 IQ V I 8 +15 0.0990 0.33 IQ V I 8 +20 0.1012 0.33 IQ V I I 8 +25 0.1035 0.33 IQ V I I 8 +30 0.1058 0.33 IQ V I 8 +35 0.1083 0.36 IQ V I I 8 +40 0.1108 0.37 IQ V I 8 +45 0.1134 0.37 IQ V I 8 +50 0.1162 0.41 IQ V I I 8 +55 0.1191 0.42 IQ V I 9+ 0 0.1220 0.42 IQ V I I 9+ 5 0.1253 0.48 IQ V I I 9 +10 0.1287 0.50 I Q V I 9 +15 0.1322 0.50 I Q VI I 9 +20 0.1359 0.53 I Q VI 9 +25 0.1396 0.54 I Q VI 9 +30 0.1434 0.55 I Q V I 9 +35 0.1474 0.58 I Q V I 9 +40 0.1514 0.59 I Q V I 9 +45 0.1555 0.59 I Q V I 9 +50 0.1597 0.62 I Q IV I 9 +55 0.1641 0.63 I Q IV I 10+ 0 0.1684 0.63 I Q IV I 10+ 5 0.1713 0.42 IQ IV I 10 +10 0.1738 0.36 IQ I V 10 +15 0.1762 0.36 IQ I V 10 +20 0.1787 0.36 IQ I V 10 +25 0.1812 0.36 IQ I V 10 +30 0.1837 0.36 IQ I V I 10 +35 0.1872 0.51 I Q I V I 10 +40 0.1911 0.56. I Q I V 10 +45 0.1950 0.56 I Q I V I 10 +50 0.1988 0.56 I Q I V 10 +55 0.2027 0.57 I Q I V 11+ 0 0.2066 0.57 I Q I V I 11+ 5 0.2103 0.54 I Q I V 11 +10 0.2140 0.53 I Q I V I 11 +15 0.2176 0.53 I Q I V I 11 +20 0.2213 0.53 I Q I V I 11 +25 0.2250 0.53 I Q I V I 11 +30 0.2286 0.53 I Q I V 11 +35 0.2319 0.47 IQ I V I 11 +40 0.2350 0.46 IQ I V 11 +45 0.2382 0.46 IQ I V 11 +50 0.2416 0.49 IQ I V 1 11 +55 0.2450 0.50 IQ I V 12+ 0 0.2484 0.50 I Q ( V 12+ 5 0.2534 0.72 I Q I V 12 +10 0.2588 0.78 I Q I V 12 +15 0.2641 0.78 I Q I V 12 +20 0.2698 0.81 I Q I V I 12 +25 0.2754 0.83 I Q I VI 12 +30 0.2811 0.83 I Q I VI 12 +35 0.2873 0.89 I Q I V 12 +40 0.2935 0.91 1 Q I V Page 8 R LQBC100YR24HR24100.out 12 +45 0.2998 0.91 I Q I V 12 +50 0.3063 0.94 I Q I IV 12 +55 0.3128 0.95 I Q I IV 13+ 0 0.3194 0.95 ( Q I I V 13+ 5 0.3270 1.11 I Q I I V 13 +10 0.3349 1.15 ( Q I I V 13 +15 0.3429 1.16 I Q I I V 13 +20 0.3508 1.16 I Q I I V 13 +25 0.3588 1.16 I Q I I V I 13 +30 0.3668 1.16 I Q I I v 13 +35 0.3725 0.82 I Q I I V 13 +40 0.3774 0.72 I Q I I V 13 +45 0.3824 0.72 I Q I I V 13 +50 0.3874 0.72 I Q I I V 13 +55 0.3924 0.72 I Q I I V 14+ 0 '0.3974 0.73 I Q I I V 14+ 5 0.4032 0.85 I Q I I V 14 +10 0.4093 0.89 I Q I I V 14 +15 0.4154 0.89 I Q I I VI 14 +20 0.4213 0.86 I Q I I vi 14 +.25 0.4272 0.85 I Q I I VI 14 +30 0.4330 0.85 I Q I I V 14 +35 0.4389 0.85 `I Q I I V 14 +40 0.4448 0.85 I Q I I IV 14 +45 0.4507 0.85 I Q I I IV 14 +50 0.4563 0.82 I Q I I IV 14 +55 0.4620 0.82 I Q I I I V 15+ 0 0.4676 0.82 I Q I I I V 15+ 5 0.4730 0.79 I Q I I I V 15 +10 0.4784 0.78 I Q I I I V 15 +15 0.4837 0.78 I Q I I I V 15 +20 0.4889 0.75 I Q I I I V 15 +25 0.4940 0.74 I Q I I I V 15 +30 0.4991 0.74 I Q I I I V 15 +35 0.5034 0.62 I Q I I I V 15 +40 0.5074 0.58 I Q I I I V 15 +45. 0.5114 0.59 I Q I I I V 15 +50 - 0.5155 0.59 I Q I I I V 15 +55 0.5195 0.59 I Q I I ( V 16+ 0 0.5236 0.59 I Q I I I V 16+ 5 0.5252 0.24 Q I I I V 16 +10 0.5261 0.13 Q I I I V 16 +15 0.5270 0.13 Q I I I V 16 +20 0.5279 0.13 Q I I I V 16 +25 0.5288 0.13 Q I I I V 16 +30 0.5297 0.13 Q I I. I V 16 +35 0.5304 0.11 Q I I' I V 16 +40 0.5311 0.10 Q I I I V 16 +45 0.5318 0.10 Q I I I V 16 +50 0.5325 0.10 Q I I I V 16 +55 0.5331 0.10 Q I I I V 17+ 0 0.5338 0.10 Q I I I V 17+ 5 0.5342 0.05 Q I I I V 17 +10 0.5345 0.04 Q I I I V 17 +15 0.5348 0.04 Q I I I V 17 +20 0.5350 0.04 Q I I I V 17 +25 0.5353 0.04 Q I I I V 17 +30 0.5356 0.04 Q I' I I V •17 +35 0.5359 0.04 Q I I I V 17 +40 0.5363 0.05 Q I I I V 17 +45 0.5366 0.05 Q I I I V 17 +50 0.5367 0.02 Q I I I V 17 +55 0.5367 0.01 Q I I I V 18+ 0 0.5368 0.01 Q I I I V 18+ 5 0.5369 0.01 Q I I I V 18 +10 0.5369 0.01 Q I I I V 18 +15 0.5370 0.01 Q I I I V 18 +20 0.5371 0.01 Q I I I V 18 +25 0.5372 0.01 Q I I I V 18 +30 0.5372 0.01 Q I I I V Page 9 R 18 +35 0.5378 0.08 ( 18 +40 0.5385 0.10 ( 18 +45 0.5391 ' 0.10 18 +50 0.5396 0.07. ( 18 +55 0.5401 0.07 ( 19+ 0 0.5405 0.07 ( 19 +'5 0.5412 0.09 ( 19 +10 0.5418 0.10 ( 19 +15 0.5425 0.10 ( 19 +20 0.5428 0.04 ( 19 +25 0.5429 0.02 ( 19 +30 0.5431 0.02 ( 19 +35 0.5436 0.08 ( 19 +40 0.5443 0.10 ( 19 +45 0.5450 0.10 ( 19 +50 0.5455 0.07 ( 19 +55 0.5459 0.07 ( 20+ 0 0.5464 0.07 ( 20+ 5 0.5470 0.09 ( 20 +10 0.5477 0.10 ( 20 +15 0.5484 0.10 ( 20 +20 0.5490 0.10 ( 20 +25 0.5497 0.10 ( 20 +30 0.5504 0.10 ( 20 +35 0.5511 0.10 ( 20 +40. 0.5517 0.10 ( 20 +45 0.5524 0.10 ( 20 +50 0.5529 0.07 ( 20 +55 0.5534 '0.07 ( 21+ 0 0.5538 0.07 ( 21+ 5 0.5544 0.09 ( '21 +10 0.5551 0.10 ( 21 +15 0.5558 0.10 ( 21 +20 0.5563 0.07 ( 21 +25 0.5567 0.07 ( 21 +30 0.5572 0.07 ( 21 +35 0.5578 0.09 i 21 +40 0.5585 0.10 i 21 +45 0.5592 0.10 i 21 +50 0.5597 0.07 i 21 +55 0.5601 0.07 22+ 0 0.5606 0.07 i 22+ 5 0.5612 0.09 i 22 +10 0.5619 0.10 i 22 +15 0.5626 0.10 1 22 +20 0.5631 0.07 i 22 +25 0.5635 0.07 i 22 +30 0.5640 0.07 i 22 +35 0.5644 0.07 i 22 +40 0.5649 0.07 i 22 +45, 0.5653 0.07 i 22 +50 0.5658 0.07 i 22 +55 0.5662 0.07 i 23+ 0 0.5667 0.07 i 23+ 5 0.5671 0.07 i 23 +10 0.5676 0.07 23 +15 0.5680 0.07 23 +20 0.5685 0.07 i 23 +25 0.5689 0.07 23 +30 0.5694 0.07 23 +35 0.5698 0.07 23 +40 0:5703 0.07 23 +45 0.5707 0.07 23 +50 0.5712 0.07 23 +55 0.5716 0.07 24+ 0 0.5721 0.07 24+ 5 --------------------------- 0.5722 0.02 - - - - -- LQBC100YR24HR24100.out I I I v I I I v ! I I I v ! I I I v ! I I I v ! I I I v ! I I I v I I I v I t I t I t I t I t I I I I I I I I I I I I I v 2 2 I I I I I I 2 I I I 2 I I I 2 I I I 2 I I I 2 I I I 2 I I I 2 I I I 2 I I I -------------------------------- - - - - -- Page 10 I I i I I I I I vi vj vI vj vI vi vI vI vj vj vI vI vI vI vl vl vj vj vl VI VI VI vI vi vj vj vi vI vj vi VI vi vi vi VI VI vi vi VI v vi v v r 9 APPENDIX 2 STORMDRAIN PIPE SYSTEM Ir W:\Jobs2005\La Quinta Business Center\HYDROLOGY\REPORT \HYDROLOGY REPORT.doc RATIONAL METHOD W:Vobs2005\L:a Quinta Business Center\HYDROLOGY\REPORT \HYDROLOGY REPORT.doc 1 r1'tR r ?.t^ v ' s*, .s , -2 r a r;�`!s;! W: \Jobs2005 \La Ouinta Business Center \HYDR0L0GY \EXH1B1T2.dwg 7/10/2005 3 :54 :49 PM PDT —�D - ------ — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — -- rn p Ih p m ; D D WASHINGTON STREET i D I I , ° �m o —► aNO� I �i Z u 4,1 , I _ I I� - '- - D ' i IN A U '}M1��ill+il�1.�'$i1rr�•�'A • I il'il. ''�� low 00 )N o � � a a m D r y D O � _ o N °a ate_ W I• V %liY�ii',I �V ob m l I � as O _ as MIT, i m co � I ' ,.r o v. o —► aNO� I �i Z u 4,1 , I _ I I� - '- - D ' i IN A U '}M1��ill+il�1.�'$i1rr�•�'A • I il'il. ''�� low 00 )N o � � a a Q O Com °a ate_ W oa V %liY�ii',I 0o t� I ob m l o m I � as O as MIT, i A' I I Z I °a oa oa 0o t� I ob m l o m I rn;y as na as A' co E3 13 ' ,.r o _. " ... ... Riverside County Rational Hydrology Program CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2004 Version 7.0 Rational Hydrology Study Date: 07/01/05 File:LQBCAREAl.out ------------------------------------------------------------------------ RATIONAL METHOD AREA 1 ------------------------------------------------------------------------ ********* Hydrology Study Control Information * * * * * * * * ** English (in -lb) Units used in input data file Program License Serial Number 4004 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 3 2 year, 1 hour precipitation = 0.400(In.) 100 year, 1 hour precipitation = 1.600(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.600(In /Hr) Slope of intensity duration curve = 0.5900 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1.000 to Point /Station 2.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 227.000(Ft.) Top (of initial area) elevation = 144.710(Ft.) Bottom (of initial area) elevation = 143.550(Ft.) Difference in elevation = 1.160(Ft.) Slope = 0.00511 s(percent)= 0.51 TC = k(0.300) *[(length^3) /(elevation change)]^0.2 Initial area time of concentration = 7.548 min. Rainfall intensity = 5.436(In /Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.883 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 2.449(CFS) Total initial stream area = 0.510(Ac.) Pervious area fraction = 0.100 End of computations, total study area = 0.51 (Ac.) ti€ f The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.100 Area averaged RI index number = 32.0 A •c Riverside County Rational Hydrology Program CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2004 Version 7.0 Rational Hydrology Study Date: 07/01/05 File:LQBCAREA2.out ------------------------------------------------------------------------ RATIONAL METHOD AREA 2 -----------------------------------------------7------------------------ ********* Hydrology Study Control Information * * * * * * * * ** English (in -lb) Units used in input data file Program License Serial Number 4004 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 3 2 year, 1 hour precipitation = 0.400(In.) 100 year, 1 hour precipitation = 1.600(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.600(In /Hr) Slope of intensity duration curve = 0.5900 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1.000 to Point /Station 2.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 282.000(Ft.) Top (of initial area) elevation = 149.920(Ft.) Bottom (of initial area) elevation = 143.250(Ft.) Difference in elevation = 6.670(Ft.) Slope = 0.02365 s(percent) =. 2.37 TC = k(0.300) * [ (length'3) / (elevation change)) "0.2 Initial area time of concentration = 6.060 min. Rainfall intensity = 6.189(In /Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.885 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 3.341(CFS) Total initial stream area = 0.610(Ac.) Pervious area fraction = 0.100 End of computations, total study area = 0.61 (Ac.) The following figures may a be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.100 Area averaged RI index number = 32.0 • r ` Riverside County Rational Hydrology Program CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2004 Version 7.0 Rational Hydrology Study Date: 07/01/05 File:LQBCAREA3.out ------------------------------------------------------------------------ RATIONAL METHOD AREA 3, ------------------------------------------------------------------------ ********* Hydrology Study Control Information * * * * * * * * ** English (in -lb) Units used in input data file Program License Serial Number 4004 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 3 2 year, 1 hour precipitation = 0.400(In.) 100 year, 1 hour precipitation = 1.600(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.600(In /Hr) Slope of intensity duration curve = 0.5900 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1.000 to Point /Station 2.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 242.000(Ft.) Top (of initial are elevation = 150.300(Ft.) Bottom (of initial area) elevation = 145.720(Ft.) Difference in elevation = 4.580(Ft.) Slope = 0.01893 s(percent)= 1.89 TC = k(0.300) *[(length'3) /(elevation change))"0.2 Initial area time of concentration = 5.960 min. Rainfall intensity = 6.249(In /Hr) for a 100.0 year storm COMMERCIAL subarea type , Runoff Coefficient = 0.885 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 1.660(CFS) Total initial stream area = 0.300(Ac.) Pervious area fraction = 0.100 End of computations, total study area = 0.30 (Ac.) The following figures may v [ be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.100 Area averaged RI index number = 32.0 Riverside County Rational Hydrology Program CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2004 Version 7.0 Rational Hydrology Study Date: 07/01/05 File:LQBCAREA4.out ------------------------------------------------------------------------ RATIONAL METHOD AREA 4 ------------------------------------------------------------------------ ********* Hydrology Study Control Information * * * * * * * * ** English (in -lb) Units used in input data file Program License Serial Number 4004 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 3 2 year, 1 hour precipitation = 0.400(In.) 100 year, 1 hour precipitation = 1.600(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.600(In /Hr) Slope of intensity duration curve = 0.5900 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1.000 to Point /Station 2.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 184.000(Ft.) Top (of initial area) elevation = 150.300(Ft.) Bottom (of initial area) elevation = 147.200(Ft.) Difference in elevation = 3.100(Ft.) Slope = 0.01685 s(percent)= 1.68 TC = k(0.300) *[(length"3) /(elevation change))"0.2 Initial area time of concentration = 5.467 min. Rainfall intensity = 6.576(In /Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.886 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 1.631(CFS) Total initial stream area = 0.280(Ac.) Pervious area fraction = 0.100 End of computations, total study area = 0.28 (Ac.) The following figures may i be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.100 Area averaged RI index number = 32.0 A Riverside County Rational Hydrology Program CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2004 Version 7.0 Rational Hydrology Study Date: 07/01/05 File:LQBCAREA5.out ------------------------------------------------------------------------ RATIONAL METHOD AREA 5 ------------------------------------------------------------------------ ********* Hydrology Study Control Information * * * * * * * * ** English (in -lb) Units used in input data file Program License Serial Number 4004 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 3 2 year, 1 hour precipitation = 0.400(In.) 100 year, 1 hour precipitation = 1.600(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.600(In /Hr) Slope of intensity duration curve = 0.5900 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1.000 to Point /Station 2.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 50.000(Ft.) Top (of initial area) elevation = 151.000(Ft.) Bottom (of initial area) elevation = 149.000(Ft.) Difference in elevation = 2'.000(Ft.) Slope = 0.04000 s(percent)= 4.00 TC = k(0.300) *[(length^3) /(elevation change))'0.2 Warning: TC computed to be less than 5 min.; program time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. Rainfall intensity = 6.932(In /Hr) for a 100.0 COMMERCIAL subarea type Runoff Coefficient = 0.886 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction Initial subarea runoff = 0.492(CFS) Total initial stream area = 0.080(Ac.) Pervious area fraction = 0.100 is assuming the year storm = 0.900 End of computations, total study area = 0.08 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.100 Area averaged RI index number = 32.0 Riverside County Rational Hydrology Program CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2004 Version 7.0 Rational Hydrology Study Date: 07/01/05 File:LQBCAREA6.out ------------------------------------------------------------------------ RATIONAL METHOD AREA 6 -------------------------------------------------7---------------------- ********* Hydrology Study Control Information * * * * * * * * ** English (in -lb) Units used in input data file Program License Serial Number 4004 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 3 2 year, 1 hour precipitation = 0.400(In.) 100 year, 1 hour precipitation = 1.600(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.600(In /Hr) Slope of intensity duration curve = 0.5900 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1.000 to Point /Station 2.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 40.000(Ft.) Top (of initial area) elevation = 151.000(Ft.) Bottom (of initial area) elevation = 150.000(Ft.) Difference in elevation = 1.000(Ft.) Slope = 0.02500 s(percent)= 2.50 TC = k(0.300) *[(length"3) /(elevation change)]^0.2 Warning: TC computed to be less than 5 min.; program is assuming the time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. Rainfall intensity = 6.932(In /Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.886 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 0.492(CFS) Total initial stream area = 0.080(Ac.) Pervious area fraction = 0.100 End of computations, total study area = 0.08 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.100 Area averaged RI index number = 32.0 t Riverside County Rational Hydrology Program CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2004 Version 7.0 Rational Hydrology Study Date: 07/01/05 File:LQBCAREA7.out ------------------------------------------------------------------------ RATIONAL METHOD AREA 7 ------------------------------------------------------------------------ ********* Hydrology Study Control Information * * * * * * * * ** English (in -lb) Units used in input data file Program License Serial Number 4004 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 3 2 year, 1 hour precipitation = 0.400(In.) 100 year, 1 hour precipitation = 1.600(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.600(In /Hr) Slope of intensity duration curve = 0.5900 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1.000 to Point /Station 2.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 38.000(Ft.) Top (of initial area) elevation = 151.000(Ft.) Bottom (of initial area) elevation = 149.400(Ft.) Difference in elevation = 1.600(Ft.) Slope = 0.04211 s(percent)= 4.21 TC = k(0.300) *[(length"3) /(elevation change))"0.2 Warning: TC computed to be less than 5 min.; program is assuming the time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. Rainfall intensity = 6.932(In /Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.886 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 .Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 0.369(CFS) Total initial stream area = 0.060(Ac.) Pervious area fraction = 0.100 End of computations, total study area = 0.06 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.100 Area averaged RI index number = 32.0 Riverside County Rational Hydrology Program CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2004 Version 7.0 Rational Hydrology Study Date: 07/01/05 File:LQBCAREA8.out ------------------------------------------------------------------ - - - - -- RATIONAL METHOD AREA 8 ------------------------------------------------------------------------ ********* Hydrology Study Control Information * * * * * * * * ** English (in -lb) Units used in input data file Program License Serial Number 4004 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 3 2 year, 1 hour precipitation = 0.400(In.) 100 year, 1 hour precipitation = 1.600(In Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.600(In /Hr) Slope of intensity duration curve = 0.5900 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1.000 to Point /Station 2.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 52.300(Ft.) Top (of initial area) elevation = 151.000(Ft.) Bottom (of initial area) elevation = 147.300(Ft.) Difference in elevation = 3.700(Ft.) Slope = 0.07075 s(percent)= 7.07 TC = k(0.300) *[(length^3) /(elevation change))"0.2 Warning: TC computed to be less than 5 min.; program is assuming the time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. Rainfall intensity = 6.932(In/Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.886 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 0.492(CFS) Total initial stream area = 0.080(Ac.) Pervious area fraction = 0.100 End of computations, total study area = 0.08 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.100 Area averaged RI index number = 32.0 Riverside County Rational Hydrology Program CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2004 Version 7.0 Rational Hydrology Study Date: 07/01/05 File:LQBCAREA9.out ------------------------------------------------------------------------ RATIONAL METHOD AREA 9 ------------------------------------------------------------------------ ********* Hydrology Study Control Information * * * * * * * * ** English (in -lb) Units used in input data file Program License Serial Number 4004 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 3 2 year, 1 hour precipitation = 0.400(In.) 100 year, 1 hour precipitation = 1.600(In Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.600(In /Hr) Slope of intensity duration curve = 0.5900 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1.000 to Point /Station 2.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 43.300(Ft.) Top (of initial area) elevation = 151.000(Ft.) Bottom (of initial area) elevation = 147.300(Ft.) Difference in elevation = 3.700(Ft.) Slope = 0.08545 s(percent)= 8.55 TC = k(0.300) *[(lengthA3) /(elevation change) ]A0.2 Warning: TC computed to be less than 5 min.; program is assuming the time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. Rainfall intensity = 6.932(In /Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.886 Decimal fraction soil group A = 1.000 Decimal .fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 0.676(CFS) Total initial stream area = 0.110(Ac.) Pervious area fraction = 0.100 End of computations, total study area = 0.11 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.100 Area averaged RI index number = 32.0 Riverside County Rational Hydrology Program CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2004 Version 7.0 Rational Hydrology Study Date: 07/01/05 File:LQBCAREA10.out ------------------------------------------------------------------ - - - - -- RATIONAL METHOD AREA 10 ------------------------------------------------------------------------ ********* Hydrology Study Control Information * * * * * * * * ** English (in -lb) Units used in input data file Program License Serial Number 4004 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 3 2 year, 1 hour precipitation = 0.400(In.) 100 year, 1 hour precipitation = 1.600(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.600(In /Hr) Slope of intensity duration curve = 0.5900 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1.000 to Point /Station 2.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 20.000(Ft.) Top (of initial area) elevation = 150.500(Ft.) Bottom (of initial area) elevation = 150.000(Ft.) Difference in elevation = 0.500(Ft.) Slope = 0.02500 s(percent)= 2.50 TC = k(0.300) *[(length"3) /(elevation change)]'0.2 Warning: TC computed to be less than 5 min.; program is assuming the time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. Rainfall intensity = 6.932(In /Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.886 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 0.492(CFS) Total initial stream area = 0.080(Ac.) Pervious area fraction = 0.100 End of computations, total study area = 0.08 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.100 Area averaged RI index number = 32.0 0 HYDRAULIC GRADE LINE W:\Jobs2005\La Quinta Business Center \HYDROLOGY\REPORT\HYDROLOGY REPORT.doc Hydraflow Plan View Outfall 1 2 . 3 4 10 6 7 18 Project file: LINE1.stm No. Lines: 10 07 -10 -2005 Hydraflow Storm Sewers 2003 Storm Sewer Summary Report Page 1 Line Line ID Flow Line Line Invert Invert Line HGL HGL Minor Dns No. rate size length EL Dn EL Up slope down up loss line (cfs) (in) (ft) (ft) (ft) N (ft) (ft) (ft) No. 1 1.84 12 c 13.0 141.50 141.80 2.308 143.68* 143.71- 0.06 End 2 1.84 12 c 36.0 141.80 142.63 2.306 143.77* 143.86* 0.06 1 3 1.84 12 c 39.0 142.63 143.53 2.308 143.92 144.11 0.18 2 4 1.35 12 c 44.0 143.53 144.54 2.295 144.29 145.03 0.09 3 5 1.35 12 c 56.0 144.56 145.85 2.304 145.12 146.34 0.24 4 6 0.86 6 C 58.0 145.85 147.18 2.293 146.58 147.66 0.15 5 7 0.37 6 C 43.0 147.18 148.17 2.302 147.81 148.48 0.10 6 8 0.37 6 c 14.0 148.17 148.49 2.286 148.58 148.80 0.13 7 9 0.49 6 C 4.0 143.70 144.46 19.000 144.29 144.82 0.13 3 10 0.49 6 C 19.0 144.46 148.07 19.000 144.94 148.43 0.17 9 Project File: LINE1.stm Number of lines: 10 Run Date: 07 -10 -2005 NOTES: c = circular; e = elliptical; b = box; Return period = 100 Yrs.; * Indicates surcharge condition. Hydrallow Storm Sewers 2003 Hydraulic Grade Line Computations Page 1 Line Size Q Downstream Len Upstream Check JL Minor coeff loss Invert HGL Depth Area Vel Vel EGL Sf Invert HGL Depth Area Vel Vel EGL Sf Ave Enrgy elev elev head elev elev elev head elev Sf loss (in) (cfs) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) N (ft) (ft) (ft) (ft) (sgft) (ft/s) (ft) (ft) N N (ft) (K) (ft) 1 12 1.84 141.50 143.68 1.00 0.79 2.34 0.09 143.77 0.228 13.0 141.80 143.71 1.00 0.79 2.34 0.09 143.79 0.227 0.228 0.030 0.75 0.06 2 12 1.84 141.80 143.77 1.00 0.79 2.34 0.09 143.86 0.228 36.0 142.63 143.86 1.00 0.79 2.34 0.09 143.94 0.227 0.228 0.082 0.75 0.06 3 12 1.84 142.63 143.92 1.00 0.79 2.34 0.09 144.00 0.228 39.0 143.53 144.11 0.58 ** 0.47 3.93 0.24 144.35 0.574 0.401 n/a 0.75 0.18 4 12 1.35 143.53 144.29 0.76 0.64 2.12 0.07 144.36 0.145 44.0 144.54 145.03 0.49 ** 0.39 3.50 0.19 145.22 0.515 0.330 n/a 0.45 0.09 5 12 1.35 144.56 145.12 0.56 0.45 2.99 0.14 145.26 0.340 56.0 145.85 146.34 0.49 ** 0.39 3.50 0.19 146.53 0.515 0.427 n/a 1.25 0.24 6 6 0.86 145.85 146.58 0.50 0.20 4.38 0.30 146.88 2.005 58.0 147.18 147.66 0.48 0.19 4.45 0.31 147.97 1.739 1.872 1.086 0.50 0.15 7 6 0.37 147.18 147.81 0.50 0.20 1.88 0.06 147.87 0.371 43.0 148.17 148.48 0.31** 0.13 2.91 0.13 148.61 0.752 0.562 n/a 0.75 0.10 8 6 0.37 148.17 148.58 0.41 0.17 2.16 0.07 148.65 0.375 14.0 148.49 148.80 0.31 ** 0.13 2.91 0.13 148.93 0.752 0.564 n/a 1.00 0.13 9 6 0.49 143.70 144.29 0.50 0.20 2.50 0.10 144.38 0.651 4.0 144.46 144.82 0.36 ** 0.15 3.28 0.17 144.98 0.891 0.771 n/a 0.75 0.13 10 6 0.49 144.46 144.94 0.48 0.19 2.53 0.10 145.04 0.568 19.0 148.07 148.43 0.36 ** 0.15 3.28 0.17 148.59 0.891 0.730 n/a 1.00 0.17 Project File: LINE1.stm Number of lines: 10 Run Date: 07 -10 -2005 NOTES: * Normal depth assumed., ** Critical depth assumed. Hydraflow Storm Sewers 2003 Storm Sewer Profile Elev. (ft) 163.0( 158.00 153.00 148.00 143.00 138.00 0 25 50 75 100 125 150 175 200 225 250 275 300 325 Reach (ft) Proj. file: LINE1.stm Hydraflow Storm Sewers 2003 Storm Sewer Profile Elev. (ft) 163.00 158.00 153.00 148.00 143.00 138.00 0 10 20 30 40 50 60 70 80 90 100 110 120 Reach (ft) Hydraflow Storm Sewers 2003 Hydraflow Plan View flirtfall Project file: LINE2.strn No. Lines: 8 07 -10 -2005 Hydraflow Storm Sewers 2003 Storm Sewer Summary Report Page 1 Line Line ID Flow Line Line Invert Invert Line HGL HGL Minor Dns No. rate size length EL Dn EL Up slope down up loss line (cfs) (in) (ft) (ft) (ft) N (ft) (ft) (ft) No. 1 2.80 12 c 174.0 141.50 142.54 0.598 143.68' 144.60' 0.15 End 21. 1.63 12 c 7.0 142.54 142.58 0.572 144.75' 144.76' 0.05 1 3 1.63 12 c 29.0 142.58 143.33 2.586 144.81 144.86* 0.05 2 4 1.63 12 c 38.5 143.33 144.33 2.597 144.91 144.91 0.18 3 5 1.17 12 c 58.0 142.54 143.84 2.241 144.75 144.79 0.03 1 6 1.17 12 c 26.0 143.84 144.42 2.231 144.82 144.88 0.08 5 7 1.17 12 c 35.0 144.42 145.20 2.229 144.96 145.66 0.12 6 8 0.49 6 c 60.0 145.20 145.80 1.000 145.78 146.16 0.16 7 Project File: LINE2.stm Number of lines: 8 Run Date: 07 -10 -2005 NOTES: c = circular; e = elliptical; b = box; Return period = 100 Yrs.; . Indicates surcharge condition. Hydraflow Storm Sewers 2003 Hydraulic Grade Line Computations Page 1 Line Size Q Downstream Len Upstream Check JL Minor coeff loss Invert HGL Depth Area Vel Vel EGL Sf Invert HGL Depth Area Vel Vel EGL Sf Ave Enrgy elev elev head elev elev elev head elev Sf loss (in) (cfs) (ft) (ft) (ft) (sgft) (ft/s) (ft) (ft) N (ft) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) N N (ft) (K) (ft) 1 12 2.80 141.50 143.68 1.00 0.79 3.57 0.20 143.88 0.527 174 142.54 144.60 1.00 0.79 3.57 0.20 144.79 0.527 0.527 0.917 0.75 0.15 2 12 1.63 142.54 144.75 1.00 0.79 2.08 0.07 144.81 0.179 7.0 142.58 144.76 1.00 0.79 2.08 0.07 144.82 0.179 0.179 0.012 0.75 0.05 3 12 1.63 142.58 144.81 1.00 0.79 2.08 0.07 144.87 0.179 29.0 143.33 144.86 1.00 0.79 2.08 0.07 144.93 0.179 0.179 0.052 0.75 0.05 4 12 1.63 143.33 144.91 1.00 0.79 2.08 0.07 144.98 0.179 38.5 144.33 144.91 0.58 0.47 3.44 0.18 145.10 0.437 0.308 0.118 1.00 0.18 5 12 1.17 142.54 144.75 1.00 0.79 1.49 0.03 144.78 0.092 58.0 143.84 144.79 0.95 0.77 1.51 0.04 144.83 0.080 0.086 0.050 0.75 0.03 6 12 1.17 143.84 144.82 0.98 0.78 1.50 0.03 144.86 0.082 26.0 144.42 144.88 0.46" 0.35 3.33 0.17 145.05 0.495 0.289 n/a 0.45 0.08 7 12 1.17 144.42 144.96 0.54 0.43 2.73 0.12 145.07 0.291 35.0 145.20 145.66 0.46'" 0.35 3.33 0.17 145.83 0.495 0.393 n/a 0.70 0.12 8 6 0.49 145.20 145.78 0.50 0.20 2.50 0.10 145.88 0.651 60.0 145.80 146.16 0.36 0.15 3.20 0.16 146.32 0.837 0.744 0.447 1.00 0.16 Project File: LINE2.stm Number of lines: 8 Run Date: 07 -10 -2005 NOTES: ' Normal depth assumed., " Critical depth assumed. Hydraflow Storm Sewers 2003 Storm Sewer Profile Elev. (ft) 158.00 154.00 150.00 146.00 142.00 138.00 0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 Reach (ft) r3l-; AI-. 1 IAIC'f -4.- Hydraflow Storm Sewers 2003 Storm Sewer Profile Elev. (ft) 158.00 154.00 150.00 146.00 142.00 138.00 1 0 25 50 75 100 125 150 175 200 225 250 Reach (ft) Proj. file: LINE2.stm Hydraflow Storm Sewers 2003 Hydraflow Plan View 3 2 1 Outfall 4 Project file: LINE3.stm No., Lines: 4 07 -10 -2005 Hydraflow Storm Sewers 2003 Storm Sewer Summary Report Page 1 Line Line ID Flow Line Line Invert Invert Line HGL HGL Minor Dns No. rate size length EL Dn EL Up slope down up loss line (cfs) (in) (ft) (ft) (ft) N (ft) (ft) (ft) No. 1 5.79 18 c 24.0 140.00 140.12 0.500 143.68* 143.74* 0.13 End 2 3.34 18 c 8.0 140.12 140.16 0.500 143.87* 143.87* 0.04 1 3 3.34 18 c 19.0 140.16 140.33 0.895 143.92* 143.93* 0.06 2 4 2.45 1 12 c 30.0 140.37 140.82 1.500 143.87* 143.99* 0.15 1 Project File: LINE3.stm Number of lines: 4 Run Date: 07 -10 -2005 NOTES: c = circular; e = elliptical; b = box; Return period = 100 Yrs.; * Indicates surcharge condition. Hydrailow Storm Sewers 2003 Hydraulic Grade Line Computations Page 1 Line Size Q Downstream Len Upstream Check JL Minor coeff loss Invert HGL Depth Area Vel Vel EGL Sf Invert HGL Depth Area Vel Vel EGL Sf Ave Enrgy elev elev head elev elev elev head elev Sf loss (in) (cfs) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) N (ft) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) N N (ft) (K) (ft) 1 18 5.79 140.00 143.68 1.50 1.77 3.28 0.17 143.85 0.259 24.0 140.12 143.74 1.50 1.77 3.28 0.17 143.91 0.259 0.259 0.062 0.75 0.13 2 18 3.34 140.12 143.87 1.50 1.77 1.89 0.06 143.92 0.086 8.0 140.16 143.87 1.50 1.77 1.89 0.06 143.93 0.086 0.086 0.007 0.75 0.04 3 18 3.34 140.16 143.92 1.50 1.77 1.89 0.06 143.97 0.086 19.0 140.33 143.93 1.50 1.77 1.89 0.06 143.99 0.086 0.086 0.016 1.00 0.06 4 12 2.45 140.37 143.87 1.00 0.79 3.12 0.15 144.02 0.403 30.0 140.82 143.99 1.00 0.79 3.12 0.15 144.14 0.403 0.403 0.121 1.00 0.15 Project File: LINE3.stm Number of lines: 4 Run Date: 07 -10 -2005 NOTES: ' Normal depth assumed., " Critical depth assumed. , Hydraflow Storm Sewers 2003 Storm Sewer Profile Elev. (ft) 153.00 150.00 147.00 144.00 141.00 W41192 rte.__. rn_. I Tern _i -_ • 0 10 20 30 40 50 .60 70 80 90 100 Reach (ft) Hydraflow Storm Sewers 2003 Storm Sewer Profile Elev. (ft) 153.00 150.00 147.00 144.00 141.00 138.00 Prni files- I INF3 ctm • 0 10 20 30 40 50 60 70 80 90 100 Reach (ft) Hydraflow Storm Sewers 2003 Hydraflow Plan View W Outfall 2 Project file: LINE4.stm No. Lines: 2 07 -10 -2005 HydraFlow Storm Sewers 2003 Storm Sewer Summary Report Page 1 Line Line ID Flow Line Line Invert Invert Line HGL HGL Minor Dns No. rate size length EL Dn EL Up slope down up loss line (cfs) (in) (ft) (ft) (ft) N (ft) (ft) (ft) No. 1 1.66 12 c 5.0 141.50 141.66 3.200 143.68* 143.69* 0.03 End 2 1.66 12 c 40.0 141.66 142.94 3.200 143.72 143.79 0.08 1 Project File: LINE4.stm Number of lines: 2 Run Date: 07 -10 -2005 NOTES: c = circular; e = elliptical; b = box; Return period = 100 Yrs.; * Indicates surcharge condition. Hydraflow Storm Sewers 2003 Hydraulic Grade Line Computations Page 1 Line Size Q Downstream Len Upstream Check JL Minor coeff loss Invert HGL Depth Area Vel Vel EGL Sf Invert HGL Depth Area Vel Vel EGL Sf Ave Enrgy elev elev head elev elev elev head elev Sf loss (in) (cfs) (ft) (ft) (ft) (sgft) (ft/s) (ft) (ft) N (ft) (ft) (ft) (ft) (sgft) (ft/s) (ft) (ft) N N (ft) (K) (ft) 1 12 1.66 141.50 143.68 1.00 0.79 2.11 0.07 143.75 0.185 5.0 141.66 143.69 1.00 0.79 2.11 0.07 143.76 0.185 0.185 0.009 0.45 0.03 2 12 1.66 141.66 143.72 1.00 0.79 2.11 0.07 143.79 0.217 40.0 142.94 143.79 0.85 0.71 2.34 0.08 143.87 0.205 0.211 0.084 1.00 0.08 Project File: LINE4.stm Number of lines: 2 Run Date: 07 -10 -2005 NOTES: * Normal depth assumed., " Critical depth assumed. HydraFlow Storm Sewers 2003 Storm Sewer Profile Elev. (ft) 154.00 151.00 148.00 145.00 142.00 139.00 Proj. file: LINE4.stm 0 10 20 30 40 50 60 70 80 90 100 Reach (ft) Hydraflow Storm Sewers 2003 �� cl CATCH BASIN CALCULATIONS Curb opening width calculation: Q = 4.3 A x Dos from Los Angeles County Flood Control District A = area of opening (W x 0.656) W = length (feet) of catch basin opening D = depth (feet) of flow above normal gutter W = 4' (city standard) Q = 4.3x4.0x0.656x(0.67)0-s = 8.9 cfs > all individual flows into the catch basin Therefore recommended width for all the four curb opening catch basin = 4.0' Depth of Catch basin Vdepth = C.F +1.2 (v2 /2g) +pipe dia +0.5 (free board) from LACFCD Catch basin # 1 Q,00 = 2.45 cfs Pipe diameter =1.0' Vdepth = 0.67 +1.2(6.042 /2g) +1.0 +0.5 = 2.74 Adopt Vdepth = 3.5' Catch basin # 2 Q 10 = 3.34 cfs Pipe diameter--1.5' Vdepth = 0.67 +1.2(5.52 /2g) +1.5 +0.5 = 3.2 Adopt Vdepth = 3.5' W:\Jobs2005\La Quinta Business Center \HYDROLOGY\REPORT\HYDROLOGY REPORT.doc c Catch basin # 3 Q,00 = 1.66 cfs Pipe diameter =1.0' Vdepth= 0.5 +1.2(7.222/2g) +1.0 +0.5 = 3.0 Adopt Vdepth = 3.5' Catch basin # 4 Q,00 = 1.95 cfs Pipe diameter =1.0' Vdepth= 0.5 +1.2(7.02/2g) +1.0 +0.5 = 2.9 Adopt Vdepth = 3.5' W:\Jobs2005\La Quinta Business Center\HYDROLOGY\REPORT\HYDROLOGY REPORT.doc 't SOILS INVESTIGATION Proposed Office Building Development 43576 Washington Street LaQuinta, California M iL SOILS INVESTIGATION Proposed Office Building Development 43576 Washington Street LaQuinta, California M SOILS INVESTIGATION Proposed Office Building Development 43576 Washington Street LaQuinta, California Prepared For: Mr. Daniel Entin 17407 Califa Street Encino, California 91316 Project Number 11813 -04 December 20, 2004 r K SOILS INVESTIGATION Proposed Office Building Development 43576 Washington Street LaQuinta, California Prepared For: Mr. Daniel Entin 17407 Califa Street Encino, California 91316 Project Number 11813 -04 December 20, 2004 NorCal Engineering Soils and Geotechnical Consultants 10641 Humbolt Street Los Alamitos, CA 90720 (562) 799 -9469 Fax (562) 799 -9459 December 20, 2004 Mr. Daniel Entin 17407 Califa Street Encino, California 91316 Project Number 11813 -04 RE: SOILS INVESTIGATION - Proposed Office Building Development — Located at 43576 Washington Street, in the City of LaQuinta, California Dear Mr. Entin: Pursuant to your request, this firm has performed a Geotechnichal Engineering Investigation for the above referenced project in accordance with your authorization. The purpose of this investigation is to evaluate the geotechnical conditions of the subject site and to provide recommendations for the proposed project. This geotechnical engineering report presents the findings of our study along with conclusions and recommendations for development. 1.0 STRUCTURAL CONSIDERATIONS 1.1 Project Description The purpose of the investigation was to explore the subsurface conditions and to provide preliminary geotechnical engineering design parameters for evaluation of the site with respect to the proposed development. This geotechnical engineering report presents the findings of our study along with engineering analysis and recommendations for the proposed project. It is proposed to construct a two -story office development consisting of 23,760 square feet on the approximately +1.6 acre parcel. It is anticipated that other improvements will consist of asphalt paved parking /driveway circulation areas and landscaping. December 20, 2004 Page 2 2.0 SITE DESCRIPTION Project Number 11813 -04 2.1 Location: The property is located within a commercial area situated easterly of Washington Street and northerly of Fred Waring in the City of La Quinta. Existing Improvements: The property is currently undeveloped and recently contained a medical facility which has been demolished. Asphaltic concrete from the previous development is located throughout the property. 2.2 Vegetation: Very minor vegetation was noted. 3.0 FIELD INVESTIGATION 3.1 Site Exploration The investigation consisted of the placement of 5 subsurface test excavations by an extended -backhoe to a maximum depth of 12 feet placed strategically in proposed areas of development. Heavy caving limited the depths of our excavations. The explorations were visually classified and logged by a field engineer with locations of the subsurface explorations shown on the attached Site Plan. The exploratory excavations revealed the existing earth materials to consist of a compacted fill soils and sandy alluvium. A detailed description of the subsurface conditions are listed on the excavation logs in Appendix A. These soils are described as follows: Surficial Fill: Surfical fill soils generally classifying as slightly silty SAND with gravel, asphaltic concrete and other debris were encountered across the site to a depth of 1 to 1 Y2 feet. These soils were noted to be medium dense and damp. Natural: An undisturbed alluvium soil was encountered consisting predominately of a light brown, very slightly silty fine to medium grained SAND. These soils were noted to be medium dense and dry to damp. NorCal Engineering ?I December 20, 2004 ` Page 3 Project Number 11813 -04 The overall engineering characteristics of the earth material were relatively uniform with each trench. 3.2 Groundwater No groundwater was encountered to the depth of our trench excavations 4.0 LABORATORY TESTS Relatively undisturbed samples of the subsurface soils were obtained to perform laboratory testing and analysis for direct shear, consolidation tests, and to determine in -place moisture /densities. These undisturbed samples consisted of one inch rings with an inside diameter of 2.5 inches. Bulk bag samples were obtained in the upper soils for expansion index tests, maximum density tests and chemical tests. All test results are included in Appendix B, unless noted otherwise. 4.1 Field moisture content (ASTM:D 2216) and the dry density of the ring samples were determined in the laboratory. This data is listed on the logs of explorations. 4.2 Maximum density tests (ASTM: D- 1557 -00) were performed on typical samples of the upper soils. Results of these tests are shown on Table I. 4.3 Expansion index tests in accordance with the Uniform Building Code Standard No. 18 -2 were performed on remolded samples of the upper soils to determine the expansive characteristics and to provide any necessary recommendations for reinforcement of the slabs -on -grade and the foundations. Results of these tests are provided on Table IL NorCal Engineering December 20, 2004 Project Number 11813 -04 Page 4 `1 4.4 Direct shear tests (ASTM: D -3080) were performed on undisturbed and disturbed samples of the subsurface soils. These tests were performed to 1 determine parameters for the calculation of the safe bearing capacity. The test is performed under saturated conditions at loads of 500 lbs. /s ft., 1,000 p q' Ibs. /sq.ft., and 2,000 lbs. /sq.ft. with results shown on Plate A. { 4.5 Consolidation tests (ASTM: D -2435) were performed on undisturbed samples to determine the differential and total settlement which may be anticipated based upon the proposed loads. Water was added to the samples at a i surcharge of one KSF and the settlement curves are plotted on Plate B. 4.6 Soluble sulfate, pH, Resistivity and Chloride tests to determine potential corrosive effects of soils on concrete and metal structures were performed in the laboratory. Test results are discussed later in this report and are included on the attached Tables 111. 5.0 SEISMICITY EVALUATION There are no known active or potentially active faults trending toward or through the site. The proposed development lies outside of any Alquist Priolo Special Studies Zone and the potential for damage due to direct fault rupture is considered remote. The site is located in an area of high regional seismicity and a maximum horizontal ground acceleration of 0.46g may occur from a Magnitude 7.4 earthquake along the San Andreas fault zone, which is located approximately 8 kilometers away. Ground shaking originating from earthquakes along other active faults in the region is expected to induce lower horizontal accelerations due to smaller anticipated earthquakes and /or greater distances to other faults. NorCal Engineering December 20, 2004 Page 5 Project Number 11813 -04 The following earthquake design parameters are based upon the 1997 Uniform Building Code (UBC) for a Seismic Zone 4 with a Z factor of 0.40 and a Soil Profile Type of Se, a stiff soil profile. 1997 UBC Seismic Design Parameters Distance from Site (San Andreas Fault) ................ 8 km Seismic Source Type ......... ............................... A Seismic Coefficient = Ca (Table 16- Q) .................. (0.44)Na Seismic Coefficient = C„ (Table 16- R) .................... (0.64)N„ Near - Source Factor Na (Table 16- S) ..................... 1.08 Near - Source Factor N„ (Table 16- T) ..................... 1.32 6.0 LIQUEFACTION The site is expected to experience ground shaking and earthquake activity that is typical of Southern California area. It is during severe ground shaking that loose, granular soils below the groundwater table can liquefy. Our analysis indicates the potential for liquefaction at this site is considered to be very low due to the groundwater depth in excess of 200 feet within the vicinity area. Thus, the design of the proposed construction in conformance with the latest Building Code provisions for earthquake design is expected to provide mitigation of ground shaking hazards that are typical to Southern California. 7.0 CONCLUSIONS AND RECOMMENDATIONS Based upon our evaluations, the proposed development is acceptable from a geotechnical engineering standpoint. By following the recommendations and guidelines set forth in our report, the structures will be safe from excessive settlements under the anticipated design loadings and conditions. The proposed development shall meet all requirements of the City /County Building Ordinance and will not impose any adverse effect on existing adjacent structures. NorCal Engineering ` December 20, 2004 Page 6 Project Number 11813 -04 It is recommended that site inspections be performed by a representative of this firm during all grading and construction of the development to verify the findings and recommendations documented in this report. Any unusual conditions which may be encountered in the course of the project development may require the need for additional study and revised recommendations 7.1 Site Grading Recommendations It is recommended that site inspections be performed by a representative of this firm during all grading and construction of the development to verify the findings and recommendations documented irn this report. Any unusual conditions which may be encountered in the course of the project development may require the need for additional study and revised recommendations. Any vegetation shall be removed and hauled from proposed grading areas prior to the start of grading operations. Any removed soils may be reutilized as compacted fill once any deleterious material or oversized materials (in excess of eight inches) is removed. All grading operations shall be performed in accordance with the attached "Specifications for Placement of Compacted Fiff. 7. 1.1 . Removal and Recompaction Recommendations All building areas shall be excavated to a depth to provide a two feet thick compacted fill blanket beneath the proposed foundation including floor slab areas. All pavement areas will require the recompaction of the upper one foot of subgrade soils. Once excavation bottoms have been approved to the proper depth, the exposed surface shall be scarified to a depth of 12 inches, brought to the proper moisture content and compacted to a minimum of 90% of the laboratory standard prior to placement of any additional compacted fill soils. This fill shall extend a minimum of five horizontal feet or to the depth of vertical overexcavation, whichever is greater, beyond the outside edge of the perimeter foundation. NorCal Engineering uec;e1r1ue1 /-v, /-uu'E+ Project Number 11813 -04 Page 7 A diligent search shall be conducted during grading operations in an effort to uncover any underground structures, irrigation or utility lines. If found, these structures and lines shall be either removed or properly abandoned prior to the proposed construction. Care should be taken to provide or maintain adequate lateral support for all adjacent improvements and structures at all times during the grading operations and construction phase. Adequate drainage away from the structures, pavement and slopes should be provided at all times. Fluvial and aeolian erosion may effect the site during and after construction and it may be necessary to install wind breaks to limit windblown sediment. 7.2 Shrinkage and Subsidence Results of our in -place density tests reveal that the soil shrinkage will be on the order of 12 to 18% for the fill soils, due to excavation and recompaction, based upon the assumption that the fill is compacted to 92% of maximum dry density per ASTM standards. Subsidence should be 0.1 feet due to earthwork operations. The volume change does not include any allowance for vegetation or organic stripping, removal of subsurface improvements or topographic approximations. Although these values are only approximate, they represent our best estimate of lost yardage which will likely occur during grading. If more accurate shrinkage and subsidence factors are needed, it is recommended that field testing using the actual equipment and grading techniques should be conducted. December 20, 2004 Page 8 Project Number 11813 -04 7.3 Temporary Excavations Based upon the cohesionless subsurface soils, there is a potential for construction problems involving caving of site excavations. Temporary unsurcharged excavations in the existing site materials less than 3 feet high may be made at a vertical gradient. Temporary unsurcharged excavations from 3 to 5 feet high may be trimmed at a 1 to 1 (horizontal to vertical) gradient. In areas where excavations are greater than 5 feet and /or adjacent to existing structures; shoring, or flatter excavations will be required. No surcharge loads should be allowed within a horizontal distance measured from the top of the excavation slope, equal to the depth of the excavation. 7.4 Foundation Design All foundations may be designed utilizing an allowable soil bearing capacity of 2,000 psf for an embedded depth of 18 inches into approved compacted fill soils. Allowable increases of 200 psf per one foot of additional footing width and 200 psf for each additional six inches of footing depth may be used. The maximum allowable bearing will be 3,000 psf. A soil bearing capacity of 1,000 psf shall be utilized in foundation design where overexcavation beneath and outside foundation cannot be performed due to adjacent structures or property line conditions. A one third increase may be used when considering short term loading and seismic forces. Isolated foundations may be reinforced at the discretion of the discretion of the project structural engineer. 7.5 Settlement Analysis Resultant pressure curves for the consolidation tests are shown on Plate B. 9 Computations utilizing these curves and the recommended soil bearing capacities reveal that the foundations will experience settlements on the order of 3/4 inch and differential settlements of less than 1/4 inch. NorCal Engineering December 20, 2004 Page 9 7.6 Lateral Resistance Project Number 11813 -04 The following values may be utilized in resisting lateral loads imposed on the structure. Requirements of the current Uniform Building Code should be adhered to when the coefficient of friction and passive pressures are combined. Coefficient of Friction - 0.40 Equivalent Passive Fluid Pressure = 250 lbs. /cu.ft. Maximum Passive Pressure = 2,500 lbs. /cu.ft. The passive pressure recommendations are valid only for compacted fill soils and /or competent native soils. 7.7 Retaining Wall Design Parameters Active earth pressures against retaining walls will be equal to the pressures developed by the following fluid densities. These values are for granular free draining backfill material placed adjacent to the walls at various ground slopes above the walls. Surface Slope of Retained Materials Equivalent Fluid (Horizontal to Vertical) Density (lb. /cu.ft.) Level 30 5 to 1 35 4 to 1 38 3 to 1 40 2 to 1 45 Any applicable short-term construction surcharges and seismic forces should be added to the above lateral pressure values. A backfill zone of non- expansive material shall consist of a wedge beginning a minimum of one horizontal foot from the base of the wall extending upward at an inclination of no less than 1/4 to 1 (horizontal to vertical). All walls shall be waterproofed as needed and protected from hydrostatic pressure by a reliable permanent subdrain system. NorCal Engineering December 20, 2004 Project Number 11813 -04 - - ; Page 10 t 7.8 Stab Design All concrete floor slabs shall be a minimum of four inches in thickness and may be placed on approved subgrade soils. The project Structural Engineering should review all proposed loads to be imposed for further recommendations regarding slab thickness and steel reinforcement. Two inches of approved F sand over a vapor barrier shall be utilized beneath floor slabs which would be sensitive to the infiltration of moisture'. This membrane should be placed beneath the sand layer and not directly beneath the concrete due 'to the - possibility of curling of the slab. All concrete slab areas to receive floor ' coverings should be moisture tested to meet all manufacturer requirements • prior to placement. 7.9 Corrosion Design Criteria ' Representative samples of the surficial soils, typical of the subgrade soils r expected to be encountered within foundation excavations and underground - ; utilities were tested for corrosion potential. • The minimum resistivity value z ' obtained for the samples tested is representative of an environment that may be mildly corrosive to' metals. The soil pH value was considered mildly acidic = ' and may have a significant effect on soil corrosivity. Consideration should be t given to corrosion protection systems for buried metal such as protective coatings, wrappings or the use of PVC where permitted by local building codes. In addition, test results revealed negligible sulfate concentrations. Therefore, ' no special cement foundations are deemed necessary and a Type II cement ti may be utilized for building foundations at this time. Additional sulfate tests shall be performed at the completion of rough grading to assure that these soils ' f _ are consistent with the recommendations stated in this design. Corrosion test results may be found on the attached Table 111. - NorCal Engineering ' ' ..' �"T, c.?t? r _ v ,.F y, � �'� . +`s'�x } .�a �' +L ,�` { , i!ittu�" �$i- .�,.i . *�` . t-a �� 9•� T't k k..#e '"*-r d :�i. "�,. '�y� �;• , '� , ,,.,4.� .. ;�'—yn � '�.�`j"�'t',iy- #f�i'r"+.s+Tf ��fr�'raa�+� Ct�� �w `+��'� r�('� -'�` s} 4i.Ss�+�si�k��"S��f.� r ,� 3' ' ,. . - '-• .. j.. ♦ n. l r - , i >a ,t .s � , ".; s is :..a•,� �t.+���i,5�•�� eCs; �' i...- ! "�- ,wi�G.. ..... ••.M' #t,.. ..- .....FS.w.a.ra••' -�i .f....s. .,,..rw . � w..s ..a..- .v..�.r.IL.,_�lss..= vac -rYm. a'. aa• t�wti+ Fir.1.'.aa+.e:,�:Ya:___3.._. -.- - '•a'�ws.�..1a....,. :. �+- ..�= �L..�a. -i-•6 December 20, 2004 Project Number 11813 -04 . ( Page 11 4� 8.0 CLOSURE The recommendations and conclusions contained in this report are based upon the soil conditions uncovered in our test excavations. No warranty of the soil condition between our excavations is implied. NorCal Engineering should be notified for possible further recommendations if unexpected to unfavorable conditions are encountered during construction phase. It is the responsibility of the owner to ensure that all information within this report is submitted to the Architect and appropriate Engineers for the project. This firm should have the opportunity to review the final plans (72 hours required) to verify that all our recommendations are incorporated. This report and all conclusions are subject to the review of the controlling authorities for the project. A preconstruction conference should be held between the developer, general contractor, grading contractor, city inspector, architect, and geotechnical engineer to clarify any questions relating to the grading operations and subsequent construction. Our .representative should be present during the grading operations and construction phase to certify that such recommendations are complied within the field. This geotechnical investigation has been conducted in a manner consistent with the level of care and skill exercised by members of our profession currently practicing under similar conditions in the Southern California area. No other warranty, expressed or implied is made. NorCal Engineering „ December 20, 2004 Project Number 11813 -04 -� Page 12 , We appreciate this opportunity to be of service to If have any further you. you questions, please do not hesitate to contact the undersigned. ~ Respectfully'submitted, 'r , NORCAL ENGINEERI QROFESS�oN ,. F �Y - cc r Keith D. Tucker . * E"p' �tisuoa * Troy D. Norrell Project Engineer s� c��rfcr+N���. P President - q�FOF f R.G.E. 841 CAUFOP`� TV ' NorCal Engineering - '."'F � "�Y b.: � 1C r � .� - _ ' i f _.: � : J,,. 4 � irti) -!, .v, -+: n V` •Y,{ - , Y4 f .-y �N`, iY.; lj `•: p,.F �, t,R _i€ 4" "� �' -''taw ...'s•' +'fii'+'"Y fy. £ �� };7•. `'h6 e i•� > •`' . v:3.r- x4 'r.- ` -”. �ti t x ; - �" J�x �• Sf� g1' - � • r � .�.i Y.., {,, ''. -� _ ��. F r — ._... .w r _M_•..._. ,Pr t- r�.� 4'1f r- s C < �t. ....._ _'t_Wz. .u'..o.a.:;. r:•a, �e.rt ...n iS. t��,_ ud s a ,r.5 December 20, 2004 Project Number 11813 -04 Page 13 . . SPECIFICATIONS FOR PLACEMENT OF COMPACTED FILL Preparation Any existing low density soils and /or saturated soils shall be removed to competent natural soil under the inspection of the Soils Engineering Firm. After the exposed surface has been cleansed of debris and /or vegetation, it shall be scarified until it is uniform in consistency, brought to the proper moisture content and compacted to a minimum of 90% relative compaction (in accordance with ASTM: D- 1557 -00). In any area where a transition between fill and native soil or between bedrock and soil are encountered, additional excavation beneath foundations and slabs will be necessary in order to provide uniform support and avoid differential settlement of the structure. Material For Fill The on -site soils or approved import soils may be utilized for the compacted fill provided they are free of any deleterious materials and shall not contain any rocks, brick, asphaltic concrete, concrete or other hard materials greater than eight inches in maximum dimensions. Any import soil must be approved by the Soils Engineering firm a minimum of 24 hours prior to importation of site. Placement of Compacted Fill Soils The approved fill soils shall be placed in layers not excess of six inches in thickness. Each lift shall be uniform in thickness and thoroughly blended. The fill soils shall be brought to within 15% of the optimum moisture content, unless otherwise specified by the Soils Engineering firm. Each lift shall be compacted to a minimum of 90% relative compaction (in accordance with ASTM: D- 1557 -00) and approved prior to the placement of the next layer of soil. Compaction tests shall be obtained at the discretion of the Soils Engineering firm but to a minimum of one test for every 500 cubic yards placed and /or for every 2 feet of compacted fill placed. The minimum relative compaction shall be obtained in accordance with accepted methods in the construction industry. The final grade of the structural areas shall be in a dense and smooth condition prior to placement of slabs -on -grade or pavement areas. No fill soils shall be placed, spread or compacted during unfavorable weather conditions. When the grading is interrupted by heavy rains, compaction operations shall not be resumed until approved by the Soils Engineering firm. NorCal Engineering December 20, 2004 Project Number 11813 -04 Page 14 Grading Observations The controlling governmental agencies should be notified prior to commencement of any grading operations. This firm recommends that the grading operations be conducted under the observation of a Soils Engineering firm as deemed necessary. A 24 hour notice must be provided to this firm prior to the time of our initial inspection. Observation shall include the clearing and grubbing operations to assure that all unsuitable materials have been properly removed; approve the exposed subgrade in areas to receive fill and in areas where excavation has resulted in the desired finished grade and designate areas of overexcavation; and perform field compaction tests to determine relative compaction achieved during fill placement. In addition, all foundation excavations shall be observed by the Soils Engineering firm to confirm that appropriate bearing materials are present at the design grades and recommend any modifications to construct footings. NorCal Engineering NorCal Engineering SOILS AND GEOTECHNICAL CONSULTANTS LOCATION OF FIELD EXPLORATIONS ENTIN PROJECT j g 3-04 DATE DEM BER December 20, 2004 ` . Project Number 11813 -04 s Page 15, .. k * _ • -!� , icy • _ - • ' . ., _ List of Appendices �> (in order of appearance) Appendix A - Log of Excavations Log of Test Excavations TE -1 through T -5 , Appendix B - Laboratory Tests x .a.. " : • ' Table I - Maximum Dry Density Table II — Expansion Index Tests # Table III — Corrosion Tests . M Plate A - Direct Shear Plate B - Consolidation ; NorCal' Engineerin ' _ Y �` _- � `_; �r.-.� .:� >:... s r i r NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS orCal Engineering UNIFIED SOIL CLASSIFICATION SYSTEM MAJOR DIVISION GRAPHIC LETTER TYPICAL DESCRIPTIONS SVMRni CVMR(ll 0 <z? GW WELL—GRADED GRAVELS, GRAVEL. �<> SAND MIXTURES, LITTLE OR NO FINES GRAVEL CLEAN GRAVELS AND (LITTLE OR NO GRAVELLY FINES) SOILS * GP POORLY — GRADED GRAVELS, * GRAVEL —SAND MIXTURES, LITTLE COARSE F OR NO FINES GRAINED SOILS MORE THAN GRAVELS GM SILTY GRAVELS, GRAVEL— SAND - 50% OF WITH FINES SILT MIXTURES COARSE FRACTION (APPRECIABLE RETAINED ON AMOUNT OF GC CLAYEY GRAVELS, GRAVEL —SAND- NO. 4 SIEVE FINES) j�fal CLAY MIXTURES ■ti ■ti. ■r ■.✓• ■.r WELL — GRADED SANDS, GRAVELLY SAND CLEAN SAND ;ti';L': SW SANDS, LITTLE OR NO FINES AND (LITTLE OR NO MORE THAN SANDY FINES) POORLY— GRADED SANDS, GRAVEL - 50% OF SOILS SP LY SANDS, LITTLE OR NO FINES MATERIAL IS LARGER THAN NO. MORE THAN SM SILTY SANDS, SAND —SILT 200 SIEVE 50% OF SANDS WITH MIXTURES SIZE COARSE FINE FRACTION (APPRECIABLE PASSING ON AMOUNT OF SC CLAYEY SANDS, SAND —CLAY NO.4 SIEVE FINES) MIXTURES INORGANIC SILTS AND VERY FINE ML SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY INORGANIC CLAYS OF LOW TO FINE SILTS LIQUID LIMIT CL MEDIUM PLASTICITY, GRAVELLY GRAINED AND I FCS THAN RO CLAYS, SANDY CLAYS, SILTY SOILS CLAYS CLAYS. LEAN CLAYS ORGANIC SILTS AND ORGANIC _ _ OL SILTY CLAYS OF LOW PLASTICITY INORGANIC SILTS, MICACEOUS OR MH DIATOMACEOUS FINE SAND OR MORE THAN SILTY SOILS ' 50 %, OF MATERIAL IS i5MALLER SILTS LIQUID LIMIT CH INORGANIC CLAYS OF HIGH THAN NO, AND GREATER THAN PLASTICITY, FAT CLAYS 200 SIEVE CLAYS 50 rr rr r SIZE rr'rr'r ORGANIC CLAYS OF MEDIUM TO rfr OH HIGH PLASTICITY, ORGANIC SILTS PEAT, HUMUS, SWAMP SOILS WITH HIGHLY ORGANIC SOILS PT HIGH ORGANIC CONTENTS NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS orCal Engineering UNIFIED SOIL CLASSIFICATION SYSTEM KEY: Indicates 2.5 -inch Inside Diameter. Ring Sample. ® Indicates 2 -inch OD Split Spoon Sample (SPT). Indicates Shelby Tube Sample. Indicates No Recovery. Indicates SPT with 140# Hammer 30 in. Drop. [� Indicates Bulk Sample. Indicates Small Bag Sample. Indicates Non - Standard m Indicates Core Run. COMPONENT PROPORTIONS COMPONENT DEFINITIONS COMPONENT SIZE RANGE Boulders Larger than 12 in Cobbles 3 in to 12 in Gravel 3 in to No 4 (4.5mm ) Coarse gravel 3 in to 314 in Fine gravel 314 in to No 4 (4.5mm ) Sand No. 4 (4.5mm) to No. 200 ( 0.074mm ) Coarse sand No. 4 (4.5 mm) to No. 10 (2.0 mm ) Medium sand No. 10 ( 2.0 mm ) to No. 40 ( 0.42 mm ) Fine sand No. 40 ( 0.42 mm ) to No. 200 ( 0.074 mm ) Silt and Clav Smaller than No. 200 ( 0.074 mm DESCRIPTIVE TERMS RANGE OF PROPORTION Trace 1 -5% Few 5-10% Little 10-20% Some 20-35% And 35-50% MOISTURE CONTENT DRY Absence of moisture, dusty, Density dry to the touch. DAMP Some perceptible Approximate moisture; below optimum MOIST No visible water; near optimum moisture content WFT Visible free water, usually Very Soft soil is below water table. RELATIVE DENSITY OR CONSISTENCY VERSUS SPT N -VALUE COHESIONLESS SOILS COHESIVE SOILS Density N ( blows /ft) Consistency N (blows /ft) Approximate Undrained Shear 0 to 4 Very Soft 0 to 2 Strength (psf) < 250 Very Loose Loose 4 to 10 Soft 2 to 4 250-500 Medium Dense 10 to 30 Medium Stiff 4 to 8 500-1000 Dense 30 to 50 stiff 8 to 15 1000-2000 Very Dense over 50 Very Stiff 15 to 30 2000-4000 Hard over 30 > 4000 NorCal Engineering Log of Test Excavation TE -1 Project Daniel Entin /La Quinta Date of Drilling: 12/13/04 Groundwater Depth: None Encountered Drilling Method: Extension Backhoe Hammer Weight: Drop: )epth Samples Laborato = y feet) Geotechnical Description oh. o9Y s a o yv o - c U c o Surface Elevation Not Measured LL SURFICIAL FILL SOILS Silty SAND with gravel - Medium dense, moist - - 0.8 103.6 NATURAL SOILS Slightly silty fine to medium grained SAND with occasional gravel - Medium dense, dry _ 5 Heavy caving - ■ 1.7 103.1 ■ 2.3 104.6 -10 - = ■ 3.1 105.2 Boring completed at depth of 12' -15 -20 -25 -30 -35 NorCal Engineering Project No. 11813 -04 ' Log of Test Excavation TE -2 i. Project Daniel Entin /La Quinta Date of Drilling: 12/13/04 Groundwater Depth: None Encountered Drilling Method: Extension Backhoe Hammer Weight: Drop: epth Samples Laborato „ 4 �,_ � N (feet) Geotechnical Description _ Loh gy ° ~ o C w o ° � U) c a W: ' 0 Surface Elevation Not Measured v p - SURFICIAL FILL SOILS Silty SAND with gravel - = - \Medium dense, moist - - _ 2.0 102.9 NATURAL SOILS Slightly silty fine to medium grained SAND with occasional gravel 5 Medium dense, dry Heavy caving - ■ 2.3 103.4 Boring completed at depth of 8' 10 ,i S sJ 15 �r, a 5 0 a NorCal Engineering Project No. 11813 -04 2 Now. T M'I'�.`.sS.�r*.,31',`+ Log of Test Excavation TE -3 Project Daniel Entin /La Quinta Date of Drilling: 12/13/04 Groundwater Depth: None Encountered Drilling Method: Extension Backhoe Hammer Weight: Drop: A Depth Samples aborato d ; a c� D i' (feet) Geotechnical Description loh- gy o o pNa °'° 0 Surface Elevation Not Measured c°� a —. ice" SURFICIAL FILL SOILS - - Silty SAND with gravel - - ��Medium dense, moist f - - 0.9 101.8 _ NATURAL SOILS Slightly silty fine to medium grained SAND with occasional gravel - 5 Medium dense, dry Heavy caving r� - ■ 2.6 104.3 f Boring completed at depth of 9' 10 fl t� 't 15 s� 20 �i 25 -30 35 NorCal Engineering Project No. 11813 -04 s - r - Now. T M'I'�.`.sS.�r*.,31',`+ Log of Test Excavation TE-4 'Project Daniel Entin /La Quinta Date of Drilling: 12/13104 Groundwater Depth: None Encountered Drilling Method: Extension Backhoe Hammer Weight: Drop: Depth Samples Laborato d 3 4) o � W (feet) Geotechnical Description Lith- ologY ~ ° ° Lh v ° 0 c na co 0 Surface Elevation Not Measured °D v C1 SURFICIAL FILL SOILS Silty SAND with gravel and large pieces of asphaltic concrete - Medium dense, moist - - ■ 5.2 104.8 _ NATURAL SOILS Slightly silty fine to medium grained SAND with occasional gravel - ...Medium dense, damp to 2' then dry 5 Boring completed at depth of 4' 10 t I 15 3 } s 3 1 20 25 -30 35 r. NorCal Engineering Project No. 11813 -04 4 Log of Test Excavation TE -5 10 15 20 p 25 30 35 Project No. NorCal Engineering 1 1181, 5 Project Daniel Entin /La Quinta Date of Drilling: 12/13/04 Groundwater Depth: None Encountered Drilling Method: Extension Backhoe Hammer Weight: Drop: Depth am ples Laborato { (feet) Geotechnical Description Lith- °' 3 c w o �C- ology CL 0 = o a 0 Surface Elevation Not Measured i- m 0 o" o.- LL SURFICIAL FILL SOILS - " Silty SAND with gravel _ _ 0.9 \,Medium dense, moist A - NATURAL SOILS - • Slightly silty fine to medium grained SAND with occasional gravel - ,.Medium dense, dry % 5 Boring completed at depth of 4' 10 15 20 p 25 30 35 Project No. NorCal Engineering 1 1181, 5 December 20, 2004 Page 17 z r . r Appendix B NorCal Engineering Project Number 11813 -04 } ti �i i` ' S f Appendix B NorCal Engineering Project Number 11813 -04 " December 20, 2004 Page 18 TABLE I MAXIMUM DENSITY TESTS (ASTM: D1557 -00) Project Number 11813 -04 Optimum Sample Classification Moisture B1 @ 1-4' Slightly silty fine to medium grained SAND 9.0 TABLE II EXPANSION INDEX TESTS (U.B.C.18 -2) Sample Classification B1 @ 1-4' Slightly silty fine to medium grained SAND Maximum Dry Densi 118.0 Expansion Index 00 TABLE III CORROSION TESTS Sample pH Electrical Resistivity (ohm -cm) Sulfate ( %) Chloride (ppm) Composite 0 -3' 6.9 1,240 .069 108 NorCal Engineering 2500- 2000- H 1500- N N W F- N Q N 1000 - 500- 0 0 (R) I I I I 1 1 500. 1000 1500 2000 2500 3000 NORMAL STRESS (PSF) SYMBOL BORING NUMBER DEPTH (FEET) (DEGREES C (PSF) DRY DENSITY (PCF) MOISTURE CONTENT (x) X 1 A. 25 103: 6 0.8 O 1 2.0 _29 33 125 108.9 _ 9.4 0 3 3.0 35 50 109.1 9.2 I j j (R) I I I I 1 1 500. 1000 1500 2000 2500 3000 NORMAL STRESS (PSF) SYMBOL BORING NUMBER DEPTH (FEET) (DEGREES C (PSF) DRY DENSITY (PCF) MOISTURE CONTENT (x) X 1 2.0 25 103: 6 0.8 O 1 2.0 _29 33 125 108.9 _ 9.4 0 3 3.0 35 50 109.1 9.2 NOTE: TESTS PERFORMED ON SATURATED SAMPLES UNLESS SHOWN BELOW. (FM) FIELD MOISTURE TESTS PERFORMED ON UNDISTURBED SAMPLES UNLESS SHOWN BELOW. (R) SAMPLES REMOLDED AT 90% OF MAXIMUM DRY DENSITY NorCal Engineering SOILS AND GEOTECHNICAL CONSULTANTS PROJECT 11813 -04 DATE DIRECT SHEAR TEST RESULTS Plate A /:" r3 '2 0 2 z 0 .. 4 N W c a 0 U 6 8 10 0.1 0.5 1.0 5 10 20 40 NORMAL PRESSURE (KSF) COMPRESSION (FM) FIELD MOISTURE - NO WATER ADDED — — — REBOUND (R) SAMPLE REMOLDED AT 90% OF MAXIMUM DRY DENSITY NorCal Engineering SOILS AND GEOTECHNiCAL CONSULTANTS CONSOLIDATION TEST RESULTS Plate B PROJECT 11813 -04 DATE BORING DEPTH DRY MOISTURE LIQUID PLASTICITY SYMBOL NUMBER (FEET) DENSITY CONTENT LIMIT NOTE: HATER ADDED AT NORMAL PRESSURE AT 1.0 KSF (PCF) M (x) ( %) X 1 5 103.1 1.7 O 1 8 104.6 2.3 0 1 10 105.2 3.1 ._.r.— ...._— ._.....�__— •I -:___ : I _ —.��r _....._. i.I .. ... ......._ � _ _r .._ —• -__— tea.. ... ... _.. _• ._ I � 1 I I : BORING DEPTH DRY MOISTURE LIQUID PLASTICITY SYMBOL NUMBER (FEET) DENSITY CONTENT LIMIT INDEX (PCF) M (x) ( %) X 1 5 103.1 1.7 O 1 8 104.6 2.3 0 1 10 105.2 3.1