Loading...
10-0229 (PAT)P.O. BOX 1504 78-495 CALLE TAMPICO LA QUINTA, CALIFORNIA 92253 Application Number: 10-00000229 Property Address: 50450 WOODMERE APN: 776-040-010- - - Application description: PATIO COVER - RESIDENTIAL Property Zoning: LOW DENSITY RESIDENTIAL Application valuation: 69000 BUILDING & SAFETY DEPARTMENT BUILDING PERMIT Owner: PIONEER REAL PROPERTY 15335 VALLEY BLVD FONTANA, CA 92335 Contractor: Applicant: / Architect or Engineer: 'WE COOL AIR CONDITION 78005 WILDCAT DRIVE S PALM DESERT, CA 92211 (760)772-0280 Lic. No.: 896425 LICENSED CONTRACTOR'S DECLARATION I hereby affirm under penalty of perjury that I am licensed under provisions of Chapter 9 (commencing with Section 7000) of Division 3 of the Business and Professionals Code, and my License is in full force and effect. License Class: B C20 [ License No.: 896425 Datey-Zy-',��Contractor: OWNER -BUILDER DECLARATION 1 hereby affirm under penalty of perjury that I am exempt from the Contractor's State License Law for the following reason (Sec. 7031 .5, Business and Professions Code: Any city or county that requires a permit to construct, alter, improve, demolish, or repair any structure, prior to its issuance, also requires the applicant for the permit to file a signed statement that he or she is licensed pursuant to the provisions of the Contractor's State License Law (Chapter 9 (commencing with Section 7000) of Division 3 of the Business and Professions Code) or that he or she is exempt therefrom and the basis for the alleged exemption. Any violation of Section 7031.5 by any applicant for a permit subjects the applicant to a civil penalty of not more than five hundred dollars ($500).: (_ 1 I, as owner of the property, or my employees with wages as their sole compensation, will do the work, and the structure is not intended or offered for sale (Sec. 7044, Business and Professions Code: The Contractors' State License Law does not apply to an owner of property who builds or improves thereon, and who does the work himself or herself through his or her own employees, provided that the improvements are not intended or offered for sale. If, however, the building or improvement is sold within one year of completion, the owner -builder will have the burden of proving that he or she did not build or improve for the purpose of sale.). (_ I I, as owner of the property, am exclusively contracting with licensed contractors to construct the project (Sec. 7044, Business and Professions Code: The Contractors' State License Law does not apply to an owner of property who builds or improves thereon, and who contracts for the projects with a contractor(s) licensed pursuant to the Contractors' State License Law.). (_ 1 I am exempt under Sec. , B.&P.C. for this reason Date: Owner: CONSTRUCTION LENDING AGENCY I hereby affirm under penalty of perjury that there is a construction lending agency for the performance of the work for which this permit is issued (Sec. 3097, Civ. C.). Lender's Name: _ Lender's Address: LQPERMIT VOICE (760) 777-7012 FAX (760) 777-7011 INSPECTIONS (760) 777-7153 Date: 4/28/10 H 0 �R 2' 8 2t0 . UI OlA CITY OF LA WORKER'S COMPENSATION DECLARATION I hereby affirm under penalty of perjury one of the following declarations: I have and will maintain a certificate of consent to self -insure for workers' compensation, as provided for by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued. _ I have and will maintain workers' compensation insurance, as required by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued. My workers' compensation insurance carrier and policy number are: Carrier EXEMPT Policy Number EXEMPT I certify that, in the performance of the work for which this permit is issued, I shall not employ any person in any manner so as to become subject to the workers' compensation laws of California, and agree that, if I should become subject to the workers' compensation provisions of Section 3700 of the Labor Code`I shall forthwith comply with those provisions. Date.� Applicant:- WARNING: -FAILURE TO SECURE WORKERS' COMPENSATION COVERAGE IS UNLAWFUL, AND SHALL SUBJECT AN EMPLOYER TO CRIMINAL PENALTIES AND CIVIL FINES UP TO ONE HUNDRED THOUSAND DOLLARS ($100,000). IN ADDITION TO THE COST OF COMPENSATION, DAMAGES AS PROVIDED FOR IN SECTION 3706 OF THE LABOR CODE, INTEREST, AND ATTORNEY'S FEES. APPLICANT ACKNOWLEDGEMENT IMPORTANT Application is hereby made to the Director of Building and Safety for a permit subject to the conditions and restrictions set forth on this application. 1 . Each person upon whose behalf this application is made, each person at whose request and for whose benefit work is performed under or pursuant to any permit issued as a result of this application, the owner, and the applicant, each agrees to, and shall defend, indemnify and hold harmless the City of La Quinta, its officers, agents and employees for any act or omission related to the work being performed under or following issuance of this permit. 2. Any permit issued as a result of this application becomes null and void if work is not commenced within 180 days from date of issuance of such permit, or cessation of work for 180 days will subject permit to cancellation. I certify that I have read this application and state that the above information is correct. I agree to comply with all city and county ordinances and state laws relating to building construction, and hereby authorize representatives of this county to enter upon the above-mentioned property for inspection purpos - --Date : `f- Z'� L I Signature (Applicant or Agent l: ��l Application Number . . . . . 10-00000229 Permit . . . ELEC-MISCELLANEOUS Additional desc . Permit Fee . . . . 25.50 Plan Check Fee 6.38 Issue Date . . . . Valuation . . . . 0 Expiration Date . . 10/25/10 Qty Unit Charge Per Extension BASE FEE 15.00 14.00 .7500 PER ELEC DEVICE/FIXTURE 1ST 20 ---------------------------------------------------------------------------- 10.50 Permit . . . PATIO COVER PERMIT - _ Additional desc ... _ _ .. .. . . --- . Permit Fee . . . . 500.00 Plan Check Fee 325.00 Issue Date . . . . Valuation . . . . 69000 Expiration Date 10/25/10 Qty Unit Charge Per Extension BASE FEE 414.50 19.00 4.5000 THOU BLDG 50,001-100,000 85.50 ---------------------------------------------------------------------------- Special Notes and Comments 1175 S.F. ADDITION TO EXISTING COVERED PATIO AT REAR PER ENGINEERED PLANS. PERMIT COVERS ELECTRICAL LIGHTING AND STONE VENEER. 2007 CODES/2008 ENERGY. ---------------------------------------------------------------------------- Other Fees . . . . . . . . . BLDG STDS ADMIN (SB1473) 3.00 STRONG MOTION (SMI) - RES 6.90 Fee summary Charged Paid Credited ---------- Due ----------------------------------------------- Permit Fee Total 525.50 .00 .00 525.50 Plan Check Total 331.38 .00 .00 331.38 Other Fee Total 9.90 .00 .00 9.90 Grand Total 866.78 .00 .00 866.78 LQPERMIT '' Monarch Management Group 00- z; A DIVISION OF THE MANAGEMENT TRUST THE ESTANCIAS AT RANCHO LA Q UINTA HOMEOWNERS ASSOCIATION March 12, 2009 Pioneer Real Property Attn: Elaine Henry 15335 Valley Blvd Fontana, CA 92335 Sent Via US First Class Mail Re: Architectural Application 50-450 Woodmere Dear Paul and Annie Klein: The Architectural Committee/Board of Directors of The Estancias Homeowners Associc-tion has reviewed your architectural application for the installation of an awning in the back of your home. Because the application was approved in June of 2009 and there are no additions _o the application, this approval of the application is still valid and construction is permitted to begin. Also enclosed, please find Appendix VI - Architectural Notice of Completion. Please complete and submit the Notice of Completion to Monarch Management upon completion of these improvementE. Thank you for your patience and understanding during this approval process. If you have any questions, please contact me at (760) 776-5100 extension 344. Sincerely, On behalf of the Estancias at Rancho La Quinta Architectural Committee/Board of Directors, . U v ' � n ,' GU�Ir✓Zf �I Leslee Williams, CCAM Assistant Association Manager cc: Board of Directors Unit File 39755 Berkey Drive, Sute A, Palm Desert, California 92211 CONNECTING PEOPLE TO THE PROMISE PH: 760.776.5100 FAX:760.776.5111 www.monarchmanagerrent.com Page 1 of 1 Greg Butler From: RICK MORRIS [morrisam1 @hotmail.com] Sent: Tuesday, March 16, 2010 3:12 PM To: Greg Butler Subject: Wetzel Remodel 50-450 Woodmere LQ Cal. 92253 City of La Quinta, Building and Safety Division. Sirs, Please utilize this email from Rick Morris of A&M Const,as a letter of record ... A&M Const is no longer involved in any compacity with the above mentioned Remodel project.Located at 50450 Wood mere, LQ, Ca I. Thank you very much ...... Rick..am Hotmail is redefining busy with tools for the New Busy. Get more from your inbox. Si n u __now. yG6 J19PIAcd.1164 Nuv►eEleS oq-0533 (R�Sn1�At� A��To►,1� 09 -08o [ AWA 1 Eac�� 3r►1I o 3/17/2010 LJME. July 15, 2009 WALLING & McCALLUM / LTD ARCHITECTURE • PLANNING • ENGINEERING 45-790 CLUB DRIVE INDIAN WELLS, CA 92210 (760) 360-0250 City of La Quinta Department of Building and Safety Post Office Box 1504 La Quinta, CA 92253 Re: Wetzel Residence 50450 Woodmere La Quinta, CA 92253 Gentlemen, WALLINGARCHCAOL-MM FAX (760) 360-086 I have reviewed the truss calculations, and have found them to be in compliance with the drawings. Yours truly, John G. Walling, A.I.A. JGW/jls WETZEL POOL CANOPY 50-450 Woodmere, La Quinta, CA Structural Calculations PREPARED BY WALLING & McCALLUM LIMITED 45-190 Club Drive, Indian Wells, CA RECEIVIED BY.- CITY Y: CITY OF LA QUINTA BUILDING & SAFETY DEPT. APPROVED FOR CONSTRUCTION DATEL 2D10 BY '_�" - MAR 19 2010 a opf Lcirt- cWTtc4t_ LSSD �U�-�►-7G (�uLE�� 4ro$ GE (3t.9o)z GO LL/M- ---IDSA Lt TL 1=AC X02 Fc 2025 ' + c I + 0.220 = 0.7 Gro 2 c ^ (2.) 0.9 2 GP = - (L-- — � Q. 215 2c zc G AD,IuS'l��J ASO COMPfLE55cat� VtaLU� 1 fiC = fic (Cc)(Crn)(Ci:)CC-.r)(Cp)CC'L) = 1350�(,5������,�'��G'2t5'�L'� 933 F5L p = c (A) = 4-53 (G. 25) = 35 9 16 24"o/c, w = 3 2 9 _ ) .7 95 011 I r-" OIC MMX w = I � 33 �e 2acyJ�� a < F-t't� - �r� 1 I ` o " �(()�J 2) t (- 4.5� /5.5 = 23 • I s v t SELL t, cr r��t 13 o" WrRp�-t2 , c = 01 8 . (4'- O F�c = 625 Fs� 1-7: O" [(1 C12 1-7 - 4.51/5-5 YaE ASo draw Co ctrl=ss loi..► � - O 11 ct,) r 1 C., /(ct/l rS cv�cC,, = IBJ JPO �1'��(�/1.���1)�(� _. L�`z•`� )j�jC cWTtc4t_ LSSD �U�-�►-7G (�uLE�� 4ro$ GE (3t.9o)z GO LL/M- ---IDSA Lt TL 1=AC X02 Fc 2025 ' + c I + 0.220 = 0.7 Gro 2 c ^ (2.) 0.9 2 GP = - (L-- — � Q. 215 2c zc G AD,IuS'l��J ASO COMPfLE55cat� VtaLU� 1 fiC = fic (Cc)(Crn)(Ci:)CC-.r)(Cp)CC'L) = 1350�(,5������,�'��G'2t5'�L'� 933 F5L p = c (A) = 4-53 (G. 25) = 35 9 16 24"o/c, w = 3 2 9 _ ) .7 95 011 I r-" OIC MMX w = I � 33 ��O,i( LO,� t ►moi � DtL�.G�L�J�/) S w3=AsC�1�lY��= w2- A-5 615,5/2) 4-6- 07, .s'', 173 S5 17 w, 4-5 13.25 2a.o' =70 5 C�1) 3 � 14r 2�2a 3c�7 uj4 7es'�/► X12 -er 7.25 3� r '54,5 ala 7og'9� iii wa=(gsJz� = 214" w,=yoh wa= 214+ 360 = 574"�� 3y 2ri2 253 is8 1,6 15rS' 5�/+z 1,4 5Vy x t a. PL 15.5' w= 45(I�/Z�=3�o; 2= 2917 k 517 x14 1?L. rZ= �., ZG3 a 24z L3� S = 115 w, .5/Z) ` 551 ` W �= 55i -+ Gy5 (2J ..SiL� = J ci'J5 "` ,SFo 45S 27 7 �_ �.3o8py3 6X12 V��i ZEl- POOL C,dN Of�"G ��T4ti1GS $2 = 3397 e �'� �2sDC 3 675 2.E7 bb = 49SS p5T 15 y- I C = 210 50o 1�4 p 5 462, P57 - '4bX16 240 FT -e-- 22%- v 5.0 C2?5 `j cao �s� ►.ate-�c `moo lSoc� V!;7 = 33oe F'sr to�ti� - 14.0 �Ti 22SX 2.G� = 601 tt-G sQ J --r.. 15�cQ WE�"ZEL Description : B1 Material Properties 0.5731 Calculations per IBC 2006, CBC 2007, 2005 NDS Analysis Method: Allowable Stress Design Fb - Tension 2,400.0 psi E: Modulus of Elasticity 2,400.00psi Load Combination 20061BC&ASCE7-05 Fb -Compr 2,400.0 psi Ebend-xx 1,800.Oksi 930.Oksi Span # 1, Fc - Pill 1,650.0 psi Eminbend - xx 0.537 in Wood Species : DF/DF Fc - Perp Fv 650.0 psi 265.0 psi Ebend- yy Eminbend - yy 1,600.0 ksi 830.Oksi Wood Grade :24F - V8 Ft 1,100.0 psi Density 32.210 pcf Beam Bracing : Beam is Fully Braced against lateral -torsion buckling ... ... ..... .... FSApphed Loads ���� Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads - /'_''Load for Span Number 1 c J Uniform Load: D = 0.0250, Lr = 0,020 k/ft, Extent = 0.0 =» 13.250 ft, Tributary Width =1.0 ft Varying Uniform Load: D(S,E) = 0.2210->0.0550, Lr(S,E) = 0.1730->0.0430 k/ft, Extent =13.250 ->> 33.250 ft, Tributary Width =1.0 ft .�.,.,,,_xii:....,.� -,._- . ing`..-._..... �_...----- ___.__.... Maximum Bending Stress Ratio = 0.5731 .Section used for this span 5.25x18.0 fb : Actual - = 1,376.33psi FB: Allowable = 2,400.00psi Load Combination +D+Lr+H Location of maximum on span = 17.852ft Span # where maximum occurs = Span # 1, Maximum Deflection 1 ' 0.573 0.206 32.52 Max Downward L+Lr+S Deflection = 0.537 in Max Upward L+Lr+S Deflection = 0.000 in Live Load Deflection Ratio = 743 Max Downward Total Deflection = . 1.349 in Max Upward Total Deflection = 0.000 in Total Deflection Ratio= _.................:.............................................. 295 _................. _... _...... Maximum Shear Stress Ratio Section used for this span fv :-Actual Fv : Allowable Load Combination Location of maximum on span Span .# where maximum occurs 0.206 :1 5.25x18.0 54.62 psi = 265.00 psi +D+Lr+H 31.911 ft = Span # 1 MarxS.ismr�iu?�,am-��io�=ce'5,:�' sm7- �rooFwd10 +m:e bo, m"� atton�s ..• Load Combination. Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length - Span# M V Mactual fb-design ' Fb-allow Vactual tv-design Fvallow +D Length = 33.250 ft 1 0.344 0.124 19.51 825.65 2,400.00 2.07 32.88 265:00 +D+L+H Length = 33.250 ft 1 0.344 0.124 19.51 825.65 2,400.00 2.07 32.88 265.00 +D+Lr+H Length = 33.250 ft 1 ' 0.573 0.206 32.52 1,376.33 2,400.00 3.44 54.62 265.00 +M:750Lr+0.750L+H Length = 33.250 ft 1 0.516 0.186 29.26 1,238.66 2,400.00 3.10 49.18 265.00 isjst w r.' f' Y X+i2 jM1'SM` 0eflecttonsU,nfactoredL,oads �_�(OverallyMaximurn Load Combination ; Span Max. ° Dell Location in Span Load Combination Max. °+" Dell Location in Span D+L+Lr+S 1 1.3494 17.183 0.0000 0.000 File C lDocumenls and Set6ngs1PC31My DOcuments\ENERGALCbata Files\wetzel pool canopy and closeLec6 ,.-.:sEhERCALC,INC.19832008,Ver:6.020, N:68682 Description : B1 L•"", " M xa mumVertical Reactions Unfactored:>G i,.Maxlmum Deflections for;Load,Combinations :Unfactored cad CA Load Combination Support 1 Support 2 Load Combination Span Max. Downward Defl Location in Span Max. Upward Defl Location in Span D Only 1 0.8126 17.183 1 0.5368 17.183 0.0000 0.0000 0.000 0.000 Lr Only Lr+L+S 1 0.5368 17.183 0.0000 0.000 D+L+Lr+S 1 1.3494 17.183 0.0000 0.000 .A .* - "y- ,• z & . x••ri: -s Support notation : Far left is #1 :;MazlmumVerticalReactlons Unfactored �:Q p� E Only Support 8 Load Combination Support Reaction H Only Support 1, (D+L+Lr+S) L•"", " M xa mumVertical Reactions Unfactored:>G Support notation :Far left is #1 Load Combination Support 1 Support 2 Overall MAXimum 2.605 3.614 D Only 1.613 2.181 Lr Only 0.992 1.433 L Only S Only Lr+L+S 0.992 1.433 W Only E Only H Only D+L+Lr+S 2.605 3.614 33 17 ami 8 E BEAM--» L U) c w ai 3.12 6.47 9.82 13.17 16.51 19.86 Z3.Z1 25 Distance (ft) ® +D ■ +D+L+H ■ +D+Lr+H ■ +D+0.750Lr+0.750L+H -Z.7 ' 3.12 6.47 9.82 13.17 16.51 19.86 23.21 26.56 29.90 33.25 Distance (ft) ® +D ■ +D+L+H ■ +D+Lr+H ■ +D+0.750Lr+0.750L+H BEAM->> -0.7 -1.0 . _ -1.4 3.12 6.47 9.82 13.17 16.51 19.86 23.21 26.56 29.90 Distance (ft) ® Overall MAXimum Envelope ■ D Only ■ Lr Only 0 L Only R S Only 0 Lr+L+S 0 W Only 0 E Cnly 0 H Only ■ D+L+Lr+S 33.25 Filei C;1Documents an a mPgs y cumen ood'Beam .Design Description : B2 D(2.24) kr(1.59) ------------------- 5.125x16.5 LOadS Calculations per IBC 2006, CBC 2007, 2005 NDS Material Properties Service loads entered. Load Factors will be applied for calculations. Applied Analysis Method: Allowable Stress Design Fb - Tension Fb -Compr 2,400.0 psi 2,400.0 psi' E: Modulus of Elasticity Ebend-xx 1,800.Oksi Load Combination 20061BC&ASCE7-05 Fc - Prll 1,650.0 psi Eminbend - xx 930.Oksi Fc - Perp 650.0 psi Ebend- yy 1,600.Oksi Wood Species : DF/DF Fv 265.0 psi Eminbend - yy 830.Oksi Wood Grade :24F - V8 Ft 1,100.0 psi Density 32.210pcf Beam Bracing : Beam bracing is defined as a set spacing over all spans 0.256: 1 iMaximum Bending Stress Ratio Unpraced:Lengths' :_; 0.6091 Maximum Shear Stress Ratio = First Brace starts at ft from Left -Most support 5.125x16.5 Section used for this span Regular spacing of lateral supports on length of beam = 2.0 ft 5.125x16.5 67.83 psi fb : Actual = . 1,430.57 psi D(2.24) kr(1.59) ------------------- 5.125x16.5 LOadS Service loads entered. Load Factors will be applied for calculations. Applied Load for Span Number 1 Uniform Load : D = 0.3970, Lr = 0.3120 k/ft, Extent = 7.750 ->> 11.750 ft, Tributary Width =1.0 ft Point Load: D = 2.240, Lr -1.590 k oP 11.750 ft ::DESIGN SUMMARY 0.256: 1 iMaximum Bending Stress Ratio 0.6091 Maximum Shear Stress Ratio = Section used for this span 5.125x16.5 Section used for this span - 5.125x16.5 67.83 psi fb : Actual = . 1,430.57 psi N :Actual - 265.00 psi FB: Allowable = 2,348.16psi Fv : Allowable = Load Combination +D+Lr+H Load Combination - *D*Lr+H 11.859 ft Location of maximum on span = 11.732ft Location of maximum on span _ Span # 1 Span # where maximum occurs = Span # 1 Spar. # where maximum occurs - ;Maximum Deflection Max Downward L+Lr+S Deflection = 0.194 in Max Upward L+Lr+S Deflection = 0.000 in Live Load Deflection Ratio = 1172 Max Downward Total Deflection = 0.456 in Max Upward Total Deflection = 0.000 in Total Deflection Ratio = 499 -,-,Mail mum;Forces-& Stresses for Load Combinations Max Stress Ratios Summary of Moment Values Summary of Shear Values Load Combination Span # M V _ Mactual _ fb-design Fb-allow Vactual fv-design Fv-allow Segment Length +p Length =1.9128 ft 1 0.068 0.109 3.11 160.67 2,348.16 1.63 1.63 28.88 265.00 28.88 265.00 Length = 2.0403 It 1 0.141 0.109 6.43 9.76 332.06 • 2,348.16 503.44 2,348.16 1.63 28.88 265.00 Length = 2.0403 It 1 1 0.214 0.283 0.109 0.109 12.86 663.86 2,348.16 1.63 28.88 265.00 Length =1.9128 ft Length = 2.0403 It 1 0.335 0.109 15.23 786.09 2,348.16 1.57 28.88 265.00 39.03 265.00 Length = 2.0403 It 1 0.351 0.147 15.95 823.08 2,348.16 2.20 2.20 39.03 265.00 Length =1.9128 ft 1 0.351 0.147 15.95 15.95 823.08 2,348.16 823.08 2,348.16 2.20 39.03 265.00 Length = 2.0403 ft 1 1 0.351 0.351 0.147 0.147 15.95 •' 823.08 2,348.16 2.20 39.03 265.00 Length = 2.0403 ft Length =1.0201 It 1 0.351 0.147 15.95 823.08 2,348.16 2.20 39.03 265.00 Load Combination Span Max. Downward Defl Location in Span Max. Upward Defl Location in Span File: C:1Documents and Seitings\PC31My DocumentslENERCALCData Fileslweliel pool.canopy and closeLec6 tNOOCi B@1111 DeSltjllENERCALC, 9.946 0.0000 0.000 Lr Only 1 0.1944 9.946 INC. '19832008,Ver.6.0.20, N:68682 Lr+L+S 1 0.1944 9.946 0.0000 0.000 D+L+Lr+S 1 0.4563 9.946 0.0000 0.000 Description : B2 Support notation : Far len is #1 Support & Load Combination Support Reaction Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V Mactual fb- design Fb-allow Vactual tv-design Fv-allow 40+L+H Length =1.9128 ft 1 0.068 0.109 3.11 160.67 2,348.16 1.63 28.88 265.00 Length = 2.0403 It 1 0.141 0.109 6.43 332.06 2,348.16 1.63 28.88 265.00 Length = 2.0403 ft 1 0.214 0.109 9.76 503.44 2,348.16 1.63 28.88 265.00 Length =1.9128 ft 1 0.283 0.109 12.86 663.86 2,348.16 1.63 28.88 265.00 Length = 2.0403 ft 1 0.335 0.109 15.23 786.09 2,348.16 1.57 28.88 265.00 Length = 2.0403 ft 1 0.351 0.147 15.95 823.08 2,348.16 2.20 39.03 265.00 Length =1.9128 ft 1 0.351 0.147 15.95 823.08 2,348.16 2.20 39.03 265.00 Length = 2.0403 ft 1 0.351 0.147 15.95 823.08 2,348.16 2.20 39.03 265.00 Length = 2.0403 ft 1 0.351 0.147 15.95 823.08 2,348.16 2.20 39.03 265.00 Length =1.0201 ft 1 0.351 0.147 15.95 823,08 2,348.16 2.20 39.03 265.00 +D+Lr+H -Length =1.9128 ft 1 0.119 0.190 5.44 280.53 2,348.16 2.84 50.41 265.00 Length = 2.0403 ft 1 0.247 0.190 11.24 579.75 2,348.16 2.84 50.41 265.00 Length = 2.0403 it 1 0.374 0.190 17.03 878.98 2,348.16 2.84 50.41 265.00 Length =1.9128 ft 1 0.494 0.190 22.46 1,159.06 2,348.16 2.84 50.41 265.00 Length = 2.0403 ft 1 0.584 0.190 26.56 1,370.49 2,348.16 2.73 50.41 265.00 Length = 2.0403 ft 1 0.609 0.256 27.72 1,430.57 2,348.16 3.82 67.83 265.00 Length =1.9128 ft 1 0.609 0.256 27.72 1,430.57 2,348.16 3.82 67.83 265.00 Length = 2.0403 It 1 0.609 0.256 27.72 1,430.57 2,348.16 3.82 67.83 265.00 Length = 2.0403 ft 1 0.609 0.256 27.72 1,430.57 2,348.16 3.82 67.83 265.00 Length =1.0201 ft 1 0.609 0.256 27.72 - 1,430.57 2,348.16 3.82 67.83 265.00 +D+0.750Lr+0.750L+H Length =1.9128 ft 1 0.107 0.170 4.86 250.56 2,348.16 2.54 45.03 265.00 Length = 2.0403 ft 1 0.221 0.170 10.03 517.83 2,348.16 2.54 45.03 265.00 Length = 2.0403 It 1 0.334 0.170 15.21 785.10 2,348.16 2.54 45.03 265.00 Length =1.9128 ft 1 0.441 0.170 20.06 1,035.26 2,348.16 2.54 45.03 265.00 Length = 2.0403 ft 1 0.521 0.170 23.73 1,224.39 2,348.16 2.44 45.03 265.00 Length = 2.0403 ft 1 0.545 0.229 24.78 1,278.69 2,348.16 3.42 60.63 265.00 Length =1.9128 It 1 0.545 0.229 24.78 1,278.69 2,348.16 3.42 60.63 ' 265.00 Length = 2.0403 ft 1 0.545 0.229 24.78 1,278.69 2,348.16 3.42 60.63 265.00 Length = 2.0403 It 1 0.545 0.229 24.78 1,278.69 2,348.16 3.42 60.63 265.00 Length =1.0201 ft 1 0.545 0.229 2478 1,278.69 2,348.16 3.42 60.63 265.00 Overall Maximum Deflections - Unfactored Loads Load Combination Span Max. " " Defl Location in Span Load Combination Max. "+" Defl Location in Span D+L+Lr+S 1 0.4563 9.946 0.0000 0.000 Maximum Deflections for Load Combinations - Unfactored Loads Load Combination Span Max. Downward Defl Location in Span Max. Upward Defl Location in Span D Only 1 0.2619 9.946 0.0000 0.000 Lr Only 1 0.1944 9.946 0.0000 0.000 Lr+L+S 1 0.1944 9.946 0.0000 0.000 D+L+Lr+S 1 0.4563 9.946 0.0000 0.000 Maximum Vertical Reactions - Unfactored Support notation : Far len is #1 Support & Load Combination Support Reaction Support 1, (D+L+Lr+S) 2.842 k Maximum Vertical Reactions - Unfactored Support notation: Far left is # i Load Combination Support 1 Support 2 Overall MAXimum 2.842 3.824 D Only 1.628 2.200 Lr Only 1.214 1.624 L Only S Only Lr+L+S 1.214 1.624 W Only E Only H Only D+L+Lr+S 2.842 3.824 � � f ..VVood`Beam. Design Description: B2 28 w 21 14 C 7 a) E BEAM- » 2: 1.79 File: CADocuments and Data Rleslwetzel pool canopy and closeLec6 , CALC, INC. 19832008, Ver. 6.0,20, N:68682 3.9 2.2 Y L BEAM ->> v -1.2 t U) -2.9 BEAM->> -0.12 Tr -0.23 -035 -0.47 1.79 3.70 5.61 • 7.52 . 9.44 11.35 13.26 15.17 17.09 19.00 Distance (ft) O Overall MAXimum Envelope ■ D Only ■ Lr Only ■ L Only 0 S Only 13 Lr+L+S M W Only © E Only ■ H Only ■ D+L+Lr+S 3.70 5.61 7.52 9.44 11.35 13.26 15.17 17.09 19.00 Distance (ft) M +D ■ +D+L+H ■ +D+Lr+H ■ +D+0.750Lr+0.750L+H 1.79 3.70 5.61 7.52 9.44 11.35 13.26 Distance (ft) ® +D ■ +D+L+H ■ +D+Lr+H ■ +D+0.750Lr+0.750L+H 17.09 19.00 Description : B3 Material Properties 0.103 in Calculations per IBC 2006, CBC 2007,'2005 NDS Analysis Method: Allowable Stress Design Fb - Tension 2,900.0 psi E: Modulus of Elasticity Load Combination 20061BC&ASCE7-05 Fb - Compr 2,900.0 psi Ebend- xx 2,000.Oksi . 769 ........... Fc - Prll 2,900.0 psi Eminbend - xx 2,000.0 ksi Wood Species ; it-evel Truss Joist Fc - Perp 750.0 psi Wood Grade : Parallam PSL 2.0E Fv 290.0 psi - 0.270: 1 Section used for this span 5.25x16.0 Ft 2,025.0 psi Density 32.210pcf Beam Bracing : Beam is Fully Braced against lateral -torsion buckling 78.30 psi FB: Allowable = 2,900.00psi 15.50 ft Maximum Deflection Max Downward L+Lr+S Deflection = 0.103 in Max Upward L+Lr+S Deflection = Sh"� `ss. a 3 - �- v ter• z�� ^u'sc,� t a ,n a t•L y - fi a�, App.Iled,Loads„� ak„, • K, .. Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads 0.242 in Max Upward Total Deflection = .Load for Span Number 1 Total Deflection Ratio = ..... ...... ........... ....... ....... ......................... ................. ....... ............... _............ .... _ ... .... ..... ..__........ .... .... _... ...... ...... 769 ........... Uniform Load : D = 0.2020, Lr = 0.1580 kfft, Extent = 0.0 ->> 1.50 ft, Tributary Width =1.0 ft 44.79 Varyinq Uniform Load : D(S,E) = 0.3970-4.3210, Lr(S,E) = 0.3120->0.2530 k/ft, Extent =1.50 ->> 15.50 ft, Tributary Width =1.0 ft +D+I-+H ��ESIGN°5(1MIYIARY��* � ���� ��� $* �� � S � • - i.ro.�.:.x;..�c,..,.,<....a.��,. .,x..,=,.w.w F -;•w:.-; .z.<.,,,.. .N ..., ._.,nw...u..w.TS-._..._.._.._.__...._..----.....__..__._........._....___.___..___._._..._.....---....__._ Maximum Bending Stress Ratio = 0.367.1 ._.._..__. ._.__...._ _..._._.....- Maximum Shear Stress Ratio = - 0.270: 1 Section used for this span 5.25x16.0 Section used for this span 5.25x16:0 fb : Actual = 1,063.41 psi fv : Actual = 78.30 psi FB: Allowable = 2,900.00psi Fv : Allowable = 290.00 psi Load Combination +D+Lr+H Load Combination +D+Lr+H i Location of maximum on span = 7.594ft Location of maximum on span = 0.000ft Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection = 0.103 in Max Upward L+Lr+S Deflection = 0.000 in Live Load Deflection Ratio = 1799 Max Downward Total Deflection, = 0.242 in Max Upward Total Deflection = 0.000 in Total Deflection Ratio = ..... ...... ........... ....... ....... ......................... ................. ....... ............... _............ .... _ ... .... ..... ..__........ .... .... _... ...... ...... 769 ........... .......... ...... ............... ...... .... .........._...... _........_.............................__.... _..................._..._..._._..............._.._................................... Mazmum Forces:;&AStre�sses foriLoad,Comtitnatioii's Load Combination I _ Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V Mactual fb-design Fb-allow Vactual fv-design _ Fv-allow +D Length =15.50 It 1 0.210 0.154 11.36 608.47 2,900.00 2.51 44.79 290.00 +D+I-+H Length =15.50 It 1 0.210 0.154 11.36 608.47 2,900.00 2.51 44.79 290.00 40+Lr+H Length =15.50 It 1 0.367 0.270 19.85 1,063.41 2,900.00 4.38 78.30 290.00 40+0.750Lr+0.75bL+H Length =15.50 It 1 0.327 0.241 17.73 949.68 2,900.00 3.92 69.92 290.00 y0verall Maxrlvmurn,t)eflectlons, ;Unfactored�Loads ;5,, ,Y•;r�;�,�_;, Load Combination Span Max. " " Defl Location in Span Load Combination Max. "+" Dell Location in Span D+L+Lr+S 1 0.2416 7.802 0.0000 0.000 � � f " >� 4 S p "r atgf a a File C Pomme& and Setbngs1PC31My DocumenWENERCALC Data Reslwetzel pool canopy and closet.%6 ENERCALC INC: 19832008, Ver..6.0,20., N:68682 Description : B3 xMammum Defectionsfor;Load Com l inatiom.,Unfactored Loads u Load Combination Span Max. Downward Defl Location in Span Max. Upward Defl Location in Span D Only 1 0.1382 7.802 0.0000 0.000 Lr Only 1 0.1034 7.802 0.0000 0.000 Lr+L+S 1 0.1034 7.802 0.0000 0.000 D+L+Lr+S 1 0.2416 7.802 0.0000 0.000 rl MaO i111t9,F rtical Reactlohs'- Unfactored t•'.. .. ,' Support notation : Far left is 41 Support & Load Combination Support Reaction Support 1, (D+L+Lr+S) 4.858 k Maximum Reactions'- Unfactored "' y< Support notation :Far left is i ;Vertical ,;; �' Load Combination Support 1 Support 2 Overall MAXimum 4.858 4.955 D Only 2.784 2.836 Lr Only 2.074 2.118 L Only S Only Lr+L+S 2.074 2.118 W Only E Only H Only D+L+Lr+S 4.858 4.955 20 w ;15 , j 10 5 E BEAM->> 1.46 3.02 4.58 6.14 7.70 9.26 10.82 12.38 13.94 15.50 Distance (ft) 0 +D ■ +D+L+H ■ +D+Lr+H ■ +D+0.750Lr+0.750L+H Y 1.46 3.02 4.58 6.14 7.70 9.26 10.82 1238 13.94 15.50 Distance (ft) ® +D ■ +D+L+H ■ +D+Lr+H ■ +D+0.750Lr+0.750L+H BEAM->> -0.06 CZ -0.12 • a -0.18 D -0.25 1.46 3.02 4.58 6.14 7.70 9.26 10.82 1238 13.94 15.50 Distance (ft) 2 Overall MAXimum Envelope 0 D Only ■ Lr Only 9 L Only 0 5 Only 8 Lr+L+S 0 W Only 0 E Only ■ H Only 0 D+L+Lr+S Description :. B4 Material Properties Calculations per IBC 2006, CBC 2007, 2005 NDS Analysis Method: Allowable Stress Design Fb - Tension 2,900.0 psi E: Modulus of Elasticity Load Combination 20061BC&ASCE7-05 Fb - Compr 2,900.0 psi Ebend- xx 2,000.Oksi 50.75 psi Fc - Prll 2,900.0 psi Emiabend - xx 2,000.Oksi Wood Species ; iLevel Truss Joist Fc - Perp 750.0 psi 7.698ft Wood Grade : Parallam PSL 2.0E Fv 290.0 psi Span # where maximum occurs = Span # 1 Ft 2,025.0 psi Density 32.210pcf Beam Bracing : Beam bracing is defined as a set spacing over all spans Length =1.9765 ft 1 r �Unbraced�Lengths �,��� �;. �����.�:�: • 4.99 348.83 ,, First Brace starts at ft from Left -Most support 1,26 29.45 290.00 Regular spacing of lateral supports on length of beam = 2.0 ft D 0.202 L 0.158 0.150' 0,102 6.20 433.68 2,900.00 0.83 29.45 290,00 Length =1.9765 ft ;a N�" ivv v d y ,"3 Y Yd' Li€ l���ttt,s'%;i'K �`"'i A-.," -e. k''.ti a YEi• ,v''�".v.`j . £'�!:', YN'ry mi a.•,. v.x..hii-7-'1'R` i.w 'Y, y�;fr w, 'i ii �'"H Tr .vy... 7 'k �aYr t . 1. s t �.y R-sw "X j�s �.rY :n 1:�" '�iv'P...r'}w?..�+ ,n,.`h'�.: fx �l s istx •s, f.£.i ,., 1_yr.a r"xF yFe..,z -�•e i M"+L. %nJr 1a +' G ", "TiY ', .E'c 458.99 2,900.00 0,40 5.25x14.0 290.00 Length = 2.0805 ft J 0.158 0.102 6.56 458.99 2,900.00 0.49 29.45 15.50 ft Length =1.9765 ft ` .......... ......_... ...... .............. _.._._..... __._......,..... ... ..... ...... ...... .... .._............._ .. ...... ........... ....... .... ... .... �APPtledt, oads��k* u"L ...... Service loads .. _. . entered. Load Factors will be applied for calculations. pp Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load: D = 0.2020,' Lr = 0.1580 ksf, Tributary Width =1.0 ft Maximum Bending Stress Ratio = Section used for this span fb : Actual = FB: Allowable = Load Combination Location of maximum on span _ Span # where maximum occurs = Maximum Deflection Max Downward L+Lr+S Deflection = Max Upward L+Lr+S Deflection = Live Load Deflection Ratio = Max Downward Total Deflection = Max Upward Total Deflection = Total Deflection Ratio = ......... ----...... 0.2731 _........... _._...___....._.......____............_..__....__ Maximum Shear Stress Ratio = 0.175 : 1 5.25x14.0 Section used for this span 5.25x14.0 790.98psi fv : Actual = 50.75 psi 2,900.00psi . Fv : Allowable = 290.00 psi +D+Lr+H Load Combination +D+Lr+H 7.698ft Location of maximum on span = 14.356 ft Span # 1 Span # where maximum occurs = Span # 1 0.086 in 0.000 in 2153 0.206 in 0.000 in 903 Load Combination Segment Length Span # Max Stress Ratios M V Summary of Moment Values Mactual fb-design Fb-allow Vactual Summary of Shear Values fv-design Fv-allow +D Length =1.9765 ft 1 0.070 0.102 2.92 204.27 2,900.00 1.44 29.45 290.00 Length =1.9765 ft 1 -0.120 0.102 4.99 348.83 2,900.00 1,26 29.45 290.00 Length =1.9765 It 1 0.150' 0,102 6.20 433.68 2,900.00 0.83 29.45 290,00 Length =1.9765 ft 1 0.158 0.102 6.56 458.99 2,900.00 0,40 29.45 290.00 Length = 2.0805 ft 1 0.158 0.102 6.56 458.99 2,900.00 0.49 29.45 290.00 Length =1.9765 ft 1 0.158 0.102 6.56 458.99 2,900.00 0.92 29.45 290.00 Length =1.9765 ft 1 0.158 0.102 6.56 458.99 2,900.00 1.35 29.45 290.00 Length =1.5604 ft 1 0.158 0.102 6.56 458.99 2,900.00 1.44 29.45 290.00 +D+L+H , ti �V� 4;,i, F a Kf�, File.zC 1Documents and Set6ngsTG3Wy DocumentsTNERCALC Data Fileslwetzel"pool canopy and closetem food Beam.Design� r�.,, yJr, . a 1 a.. 4. ',`a . �. ,. ENERCALC,INC.19D2008rVer:6.0;20 N:68682 Description : B4 Load Combination Span Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V Mactual fb-design Fb-allow Vactual tv-design Fv-allow Length = 1.9765 ft 1 0.070 0.102 2.92 204.27 2,900.00 1.44 29.45 290.00 Length =1.9765 ft 1 0.120 0.102 4.99 348.83 2,900.00 1.26 29.45 290.00 Length =1.9765 ft 1 0.150 0.102 6.20 433.68 2,900.00 0.83 29.45 290.00 Length =1.9765 ft 1 0.158 0.102 6.56 458.99 2,900.00 0.40 29.45 290.00 Length = 2.0805 ft 1 0.158 0.102 6.56 458.99 2,900.00 0.49 29.45 290.00 Length =1.9765 ft 1 0.158 0.102 6.56 458.99 2,900.00 0.92 29.45 290.00 Length =1.9765 ft 1 0.158 0.102 6.56 458.99 2,900.00 1.35 29.45 290.00 Length =1.5604 ft 1 0.158 0.102 6.56 458.99 2,900.00 1.44 29.45 290.00 +D+Lr+H Length =1.9765 ft 1 0.121 0.175 5.03 352.02 2,900.00 2.49 50.75 290.00 Length =1.9765 ft 1 0.207 0.175 8.59 601.15 2,900.00 2.17 50.75 290.00 Length =1.9765 ft 1 0.258 0.175 10.68 747.37 2,900.00 1.43 50.75 290.00 Length =1.9765 ft 1 0.273 0.175 11.30 790.98 2,900.00 0.69 50.75 290.00 Length = 2.0805 ft 1 0.273 0.175 11.30 790.98 2,900.00 0.84 50.75 290.00 Length =1.9765 ft 1 0.273 0.175 11.30 790.98 2,900.00 1.59 50.75 290.00 Length =1.9765 ft 1 0.273 0.175 11.30 790.98 2,900.00 2.33 50.75 290.00 Length =1.5604 ft 1 0.273 0.175 11.30 790.98 2,900.00 2.49 50.75 290.00 +D+0.750Lr+0.750L+H Length =1.9765 ft 1 0.109 0.157 4.50 315.09 • 2,900.00 2.23 45.42 290.00 Length =1.9765 ft 1 0.186 0.157 7.69 538.07 2,900.00 1.95 45.42 290.00 Length =1.9765 ft 1 0.231 0.157 9.56 668.95 2,900.00 1.28 45.42 290.00 Length =1.9765 ft 1 0.244 0.157 10.12 707.99 2,900.00 0.61 45.42 290.00 Length = 2.0805 ft 1 0.244 0.157 10.12 707.99 2,900.00 0.75 45.42 290.00 Length =1.9765 ft 1 0.244 0.157 10.12 707.99 2,900.00 1.42 45.42 290.00 Length = 1.9765 ft 1 0.244 0.157 10.12 707.99 2,900.00 2.09 45.42 290.00 Length=1.5604 ft 1 0.244 0.157 10.12 707.99 2,900.00 2.23 45.42 290.00 y dv-..i;-•_--v!-,-�R•reir«sR •. _..•,y. ,ywy�.-.x.. ;.Overall;Maximum Deflections =`Unfactored •.,s.r�:e-zr. _.. .+r-_r,+e x •-�shta hx Loads f;< Load Combination Span Max."-* Defl Location in Span Load Combination Max.'+° Def! Location in Span ons G,"I inations ; Unfactored Loads.`t.. Load Combination Span Max. Downward Def] Location in Span Max. Upward Defl Location in Span D Only 1 0.1194 7.802 0.0000 0.000 Lr Only 1 0.0864 7.802 0.0000 0.000 Lr+L+S 1 0.0864 7.802 0.0000 0.000 D+L+Lr+S 1 0.2058 7.802 0.0000 0.000 . ffa uNi_V '� x'" '"'°""° s Maxtmum,Uertical'Reacttons =Unfactored J" ' `� �':}, Support notation : Far left is #1 Support & Load Combination Support Reaction onsk' Unfactored''`r ,34 Support notation : Far left is #1 Load Combination Support 1 Support 2 Overall MAXimum 2.917 2.917 D Only 1.693 1.693 Lr Only 1.225 1.225 L Only S Only Lr+L+S 1.225 1.225 W Only E Only H Only D+L+Lr+S 2.917 2.917 ,Wootl Beam Description : B4 12 rt - 9 v 6 a-+ 0)3 a) E BEAM->> 3.0 1.5 Y BEAM-->> v INC: 1983.2008, Ver. 6.0.20; 1:46 3.02 4.58 6.14 7.70 9.26 10.82 12.38 13.94 15.50 Distance (ft) 0 +D IN +D+L+H ■ +D+Lr+H ■ +D+0.750Lr+0.750L+H L v -1.5 -3.0 1:46 3.02 4.58 6.14 7.70. 9.26 10.82 12.38 13.94 15.50 Distance (ft) O +D ■ +D+L+H ■ +D+Lr+H ■ +D+0.750Lr+0.750L+H BEAM-->> -0.05 ' -0.16 - -0.21 ,. 1.46 3.02 4.58 6.14 7.70 9.26 10.82 12.38 13.94 15.50 Distance (ft) 0 Overall MAXimum Envelope ■ D Only ■ Lr Only 0 L Only ® 5 Only ® Lr+L+S ® W Only ® E Only ■ H Only ■ D+L+Lr+S I Description : B5 Max Stress Ratios M V Summary of Moment Values Mactual • fb-design Fb-allow Vactual Material Properties 1 Calculations per IBC 2006, CBC 2007, 2005 NDS Analysis Method: Allowable Stress Design Fb -Tension 2900 psi E: Modufus of Elasticity Load Combination 20061BC&ASCE7-05 Fb - Compr 2900 psi Ebend- xx 2000ksi 0.170 Fc - Prll 2900 psi Eminbend - xx 2000 ksi Wood Species : iLevel Truss Joist Fc - Perp 750 psi 290.00 Wood Grade : Parallam PSL 2.0E Fv 290 psi 8.74 611.49 Ft 2025 psi Density 32.21 pcf Beam Bracing : Beam bracing is defined as a.set spacing over all spans 1 0.223 }� S•k' <i"X'yf.�'I'L � �'TF�� ?^.:�ii} �95�F��P ��. � E4 �h y 9.25 647.17 2,900.00 First Brace starts at 0.0 ft from Left -Most support Regular spacing of lateral supports on length of beam =.2.0 ft F i 15.50 ft • j 1 rry Service loads entered. Load Factors will be applied for calculations. Load for Span Number 1 Uniform Load : D = 0.3080, Lr = 0.2420 k/ t, Tributary Width = 1.0 ft Maximum Bending Stress Ratio = Section used for this span fb : Actual = FB: Allowable = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward L+Lr+S Deflection = Max Upward L+Lr+S Deflection = Live Load Deflection Ratio = Max Downward Total Deflection = Max Upward Total Deflection = Total Deflection Ratio = Load Combination Segment Length +D Length =1.9765 ft Length =1.9765 ft Length =1.9765 ft Length = 1.9765 ft Length = 2.0805 ft Length =1.9765 ft Length =1.9765 ft Length =1.5604 ft +D+L+H Length =1.9765 ft Length = 1.9765 ft 0.398 1 5.25x14.0 1,155.67 psi 2,900.00 psi +D+Lr+H 7.698ft Span # 1 0.132 in 0.000 in 1405 0.301 in 0.000 in 618 Maximum Shear Stress Ratio Section used for this span fv : Actual Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs ]avian G = 0.256 :1 5.25x14.0 74.15 psi 290.00 psi +D+Lr+H 14.356 ft = Span # 1 Span # Max Stress Ratios M V Summary of Moment Values Mactual • fb-design Fb-allow Vactual Summary of Shear Values tv-design Fv-allow 1 0.099 0.143 4.12 288.02 2,900.00 2.03 41.52 290.00 1 0.170 0.143 7.03 491.85 2,900.00 1.78 41.52 290.00 1 0,211 0.143 8.74 611.49 2,900.00 1.17 41:52 290.00 1 0.223 0.143 9.25 647.17 2,900.00 0.56 41.52 290.00 1 0.223 0.143 9.25 647.17 2,900.00 0.69 41.52 290.00 1 0.223 0.143 9.25 647.17 2,900.00 1.30 41.52 290.00 1 0.223 0.143 9.25 647.17 2,900.00 1.91 41.52 290.00 1 0.223 0.143 9.25 647.17 2,900.00 2.03 41.52 290.00 1 0.099 0.143 4.12 288.02 2,900.00 2.03 41.52 290.00 1 0.170 0.143 7.03 491.85 2,900.00 1.78 41.52 290.00 Beam Desi n ys. Description : 65 nents and SetUngsTCWy DocumentslENERCALC Data RlWwet el pool canopy and ENERCALC, INC. 1983.2008, Ver: 6,02 Load Combination Support 1 Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V Mactual fb-design Fb-allow Vactual fv-design Fv-allow Length =1.9765 ft 1 0.211 0.143 8.74 611.49 2,900.00 1.17 41.52 290.00 Length =1.9765 ft 1 0.223 0.143 9.25 647.17 2,900.00 0.56 41.52 290.00 Length = 2.0805 ft 1 0.223 0.143 9.25 647.17 2,900.00 0.69 41.52 290.00 Length =1.9765 ft 1 0.223 0.143 9.25 647.17 2,900.00 1.30 41.52 290.00 Length =1,9765 ft 1 0.223 0.143 9.25 647.17 2,900.00 1.91 41.52 290.00 Length =1.5604 ft 1 0.223 0.143 9.25 647.17 2,900.00 2.03 41.52 290.00 +D+Lr+H Length =1.9765 ft 1 0.177 0.256 7.35 514.32 2,900.00 3.63 74.15 290.00 Length =1.9765 ft 1 0.303 0.256 12.55 878.31 2,900.00 3.18 74.15 290.00 Length =1.9765 It 1 0.377 0.256 15.61 1,091.95 2,900.00 2.09 74.15 290.00 Length =1.9765 It 1 0.399 0.256 16.52 1,155.67 2,900.00 1.00 74.15 290.00 Length = 2.0805 ft 1 0.399 0.256 16.52 1,155.67 2,900.00 1.23 74.15 290.00 Length =1.9765 ft 1 0.399 0.256 16.52 1,155.67 2,900.00 2.32 74.15 290.00 Length =1.9765 ft 1 0.399 0.256 16.52 1,155.67 2,900.00 3.40 74.15 290.00 Length =1.5604 ft 1 0.399 0.256 16.52 1,155.67 2,900.00 3.63 74.15 290.00 +0+0.750Lr+0.750L+H Length =1.9765 ft 1 0.158 0.228 6.54 457.75 2,900.00 3.23 65.99 290.00 Length =1.9765 ft 1 0.270 0.228 11.17 781.69 2,900.00 2.83 65.99 290.00 Length =1.9765 ft 1 0.335 0.228 13.89 971.84 2,900.00 1.86 65.99 290.00 Length =1.9765 ft 1 0.355 0.228 14.70 1,028.55 2,900.00 0.89 65.99 290.00 Length = 2.0805 ft 1 0.355 0.228 14.70 1,028.55 2,900.00 1.09 65.99 290.00 Length =1.9765 ft 1 0.355 0.228 14.70 1,028.55 2,900.00 2.06 65.99 290.00 Length =1.9765 It 1 0.355 0.228 14.70 1,028.55 2,900.00 3.03 65.99 290.00 Length =1.5604 ft 1 0.355 0.228 14.70 1,028.55 2,900.00 3.23 65.99 290.00 4.__ryp6+1.�..«n_ w+.'Mn!].'r. Y,;_:"ri ,r•+e<� �_..M,, Overall Maximum Deflections _Unfactored'.Loads .-,w.i .. vnrr ^-.�1,5 ••/y�vp, �,,:xe�. ���.��<,•:' , Load Combination Span Max. "-' Def! Location in Span Load Combination Max. '+" Defl Location in Span D+L+Lr+S 1 0.3007 7.802 0.0000 0.000 . ,Maximum Deflections for Load Comb inatlons .- Unfactored Loads "`�" Load Combination Span Max. Downward Defl Location in Span Max. Upward Defl Location in Span D Only 1 0.1684 7.802 0.0000 0.000 Lr Only 1 0.1323 7.802 0.0000 0.000 Lr+L+S 1 0.1323 7.802 0.0000 0.000 D+L+Lr+S 1 0.3007 7.802 0.0000 0.000 Mazimum:Ve'rtical flOns 11nfaCtored � z' Support notation : Far left is #1 Re ca Support &Load Combination Support Reaction Support notation: Far left is #1 Load Combination Support 1 Support 2 Overall MAXimum 4.263 4.263 D Only 2.387 2.387 Lr Only 1.876 1.876 L Only S Only Lr+L+S 1.876 1.876 W only E Only H Only D+L+Lr+S 4.263 4.263 Description : B5 17 el ­ 13 V 8 C C:4 w . o BEAM--» 1.46 3.02 4.58 6.14 7.70 9.26 10.82 1238 13.94 15.50 Distance (ft) 0 +D ■ +D+L+H 0 +D+Lr+H ■ +D+0.750Lr+0.750L+H 4:3 2.2' Y BEAM-» L -2.2 -43- 1.46 3.02 4.58 6.14 7.70 9.26 10.82 1238 13.94 15.50 Distance (ft) 0 +D ■ +D+L+H ■ +D+Lr+H 0 +D+0.750Lr+0.750L+H BEAM->> -0.08 _ -0.23 8 6.14 7.70 9.26 10.82 1238 13:94 15.50 1.46 3.02 4.5 Distance .(ft) • A Overall MAXimum Envelope ■ D Only 0 Lr Only 0 L Only 0 S Only 0 Lr+L+S M W Only 0 E Only ■ H Only ■ D+L+Lr+S I Description : 136 Material Properties Maximum Shear Stress Ratio = Calculations per IBC 2006, CBC 2007, 2005 NDS Analysis Method: Allowable Stress Design Fb - Tension 2900 psi E: Modulus of Elasticity Load Combination 2O061BC&ASCE7-05 Fb - Compr 2900 psi Ebend- xx 2OOOksi 290.00 psi Fc - Prll 2900 psi Eminbend - xx 2OOOksi Wood Species : iLevel Truss Joist Fc - Perp 750 psi Span # 1 Wood Grade : Parallam PSL 2.0E Fv 290 psi 49.25 290.00 Ft 2025 psi Density 32.21 pcf Beam Bracing : Beam bracing is defined as a set spacing over all spans 2,900.00 0.92 49.25 290.00 0.296 0.170 First Brace starts at 0.0 ft from Left -Most support Regular spacing of lateral supports on length of beam = 2.0 ft 15.0 ftft appileaL"Odds�;NMI 5zy',; Service loads entered. Load Factors will be applied for calculations. 'Load for Span Number 1 Uniform Load : D = 0.3080, Lr = 0.2420 k/ft, Extent = 0.0 ->> 8.0 ft, Tributary Width =1.0 ft Uniform Load: D = 0.580, Lr = 0.4550 k/ft, Extent = 8.0 ->> 15.0 ft, Tributary Width =1.0 ft aximum Bending Stress Ratio = Section used for this span f o : Actual = FB: Allowable = Load Combination Location of maximum on span = Span # where maximum occurs = 3ximum Deflection ]pciiin. r, 0.528 1 Maximum Shear Stress Ratio = 0.393: 1 5.25x14.0 Section used for this span 5.25x14.0 1,529.95psi fv, : Actual = 113.91 psi 2,9OO.00psi Fv : Allowable = 290.00 psi +D+Lr+H Load Combination +D+Lr+H 8.456ft Location of maximum on span = 13.893 ft Span # 1 Span # where maximum occurs = Span # 1 Max Downward L+Lr+S Deflection = 0.162 in Max Upward L+Lr+S Deflection = 0.000 in Live Load Deflection Ratio = 1112 Max Downward Total Deflection = 0.368 in Max Upward Total Deflection = 0.000 in Total Deflection Ratio = 489 Maximum Forces & Stresses,for�Load,Combmations Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V Mactual fb-design Fb-allow Vactual fv-design Fv-allow Length =1.9128 ft Length = 2.0134 ft Length = 2.0134 ft Length = 2.0134 ft Length = 2.0134 ft Length = 2.0134 ft Length = 2.0134 It Length =1.0067 ft +D+L+H Length =1.9128 It 0.114. 0.170 4.70 329.20 2,900.00 2.41 49.25 290.00 0.204 0.170 8.44 590.54 2,900.00 2.17 49.25 290.00 0.264 0.170 10.93 764.52 2,900.00 1.55 49.25 290.00 0.293 0.170 12.16 851.14 2,900.00 0.92 49.25 290.00 0.296 0.170 12.25 857.16 2,900.00 0.85 49.25 290.00 0.296 0.170 12.25 857.16 2,900.00 2.02 49.25 290.00 0.296 0.220 12.25 857.16 2,900.00 3.13 63.83 290.00 0.296 0.220 12.25 857.16 2,900.00 3.13 63.83 290.00 0.114 0.170 4.70 329.20. 2,900.00 2.41 49.25 290.00 C 1Documents and SetUngMPC31My DocumentslENERCALC Data Fileslwetzel pool canopy add closeLec6. w t-, :ENERCALC, INC.':1983-2008,Ver 6:0.20,:>N:66682 Description : B6 Load Combination Max Stress Ratios Summary of Moment Values 7.752 Summary of Shear Values Segment Length Span # M V Mactual fb-design Fb-allow Vactual tv-design Fvallow Length = 2.0134 ft 1 0.204 0.170 8.44 590.54 2,900.00 2.17 4925 290.00 Length = 2.0134 ft 1 0.264 0.170 10.93 764.52 2,900.00 1.55 49.25 290.00 Length = 2.0134 ft 1 0.293 0.170 12.16 851.14 2,900.00 0.92 49.25 290.OD Length = 2.0134 ft 1 0.296 0.170 12.25 857.16 2,900.00 0.85 49.25 290.00 Length = 2.0134 ft 1 0.296 0.170 12.25 857.16 2,900.00 2.02 49.25 290.00 Length = 2.0134 ft 1 0.296 0.220 12.25 857.16 2,900.00 3.13 63.83 290.00 Length =1.0067 ft 1 0.296 0.220 12.25 857.16 2,900.00 3.13 63.83 290.00 +D+Lr+H D+L+Lr+S 4.917 6.728 Length =1.9128 It 1 0.203 0.303 8.40 587.70 2,900.00 4.31 87.92 290.00 Length = 2.0134 ft 1 0.364 0.303 15.07 1,054.22 2,900.00 3.87 87.92 290.00 Length = 2.0134 ft 1 0.471 0.303 19.50' 1,364.73 2,900.00 2.76 87.92 290.00 Length = 2.0134 ft 1 0.524 0.303 21.71 1,519.24 2,900.00 1.65 87.92 290.00 Length = 2.0134 ft 1 0.528 0.303 21.87 1,529.95 2,900.00 1.52 87.92 290.00 Length = 2.0134 ft 1 0.528 0.303 21.87 1,529.95 2,900.00 3.60 87.92 290.00 Length = 2.0134 ft 1 0.528 0.393 21.87 1,529.95 2,900.00 5.58 113.91 290.00 Length =1.0067 ft 1 0.528 0.393 21.87 1,529.95 2,900.00 5.58 113.91 290.00 +D+0.750Lr+0.750L+H Length =1.9128 ft 1 0.180 0.270 7.48 523.07 2,900.00 3.83 78.25 290.00 Length = 2.0134 ft 1 0.324 0.270 13.41 938.30 2,900.00 3.44 78.25 290.00 Length = 2.0134 ft 1 0.419 0.270 17.36 1,214.68 2,900.00 2.45 78.25 290.00 Length = 2.0134 ft 1 0.466 0.270 19.33 1,352.21 2,900.00 1.47 78.25 290.00 Length = 2.0134 ft 1 0.470 0.270 19.46 1,361.75 2,900.00 1.35 78.25 290.00 Length = 2.0134 It 1 0.470 0.270 19.46 1,361.75 2,900.00 3.21 78.25 290.00 Length = 2.0134 It 1 0.470 0.350 19.46 1,361.75 2,900.00 4.97 101.39 290.00 Length=1.0067 ft 1 0.470 0.350 19.46 1,361.75 2,900.00 4.97 101.39 290.00 Load Combination Span Max. "2 Defl Location in Span Load Combination Max. "+" Defl Location in Span D+L+Lr+S 1 0.3678 7.752 0.0000 0.000 �.r2:S1;4i.-+d'."Y£Y'-.•Y9,4^:"'9AP"+e.X5k4r"" Maximum Deflections forLoad Combinations, Unfactored Loads Load Combination Span Max. Downward Defl Location in Span Max. Upward Defl Location in Span D Only 1 0.2061 7.752 0.0000 0.000 Lr Only 1 0.1617 7.752 0.0000 0.000 Lr+L+S 1 0.1617 7.752 0.0000 0.000 D+L+Lr+S 1 0.3678 7.752 0.0000 0.000 + Maximum _Vertical Reac ions = Unfactored'4-,� 4Q,:{ Support notation :Far left is «1 Support & Load Combination Support Reaction Support 1, (D+L+Lr+S) 4.917 k -._ "`rum,- '""`'_'e -c -ti ns'-' _ nf6c.�` re '� ' �"r' .Maximum .Vertical Reactions =. Unfactored�� � .. �z Support notation: Far left is #1 PP Load Combination Support 1 Support 2 Overall MAXimum 4.917 6.728 D Only 2.754 3.770 Lr Only 2.163 2.958 L Only S Only Lr+L+S 2.163 2.958 W Only E Only H Only D+L+Lr+S 4.917 6.728 Description : B6 ISI w 17 li 41 .0 6 w E BEAM->> 7 et - 4 Y L BEAD» t -2 L 5 1.41 2.92 4.43 5.94 7.45 8.96 10.47 11.98 13.49 Distance (ft) M +D ■ +D+L+H ■ +D+Lr+H 0 +D+0.750Lr+0.750L+H 15.00 1.41 2.92 4.43 5.94 7.45 8.96. 10.47 11.98 13.49 15.00 Distance (ft) +D ■ +D+L+H 0 +D+Lr+H 0 +D+0.750Lr+0.750L+H BEAM->> c -0.19 -0.28 r _ -038 ' 1.41 2.92 4.43 5.94 7.45 8.96 10.47 11.98 13.49 15.00 Distance (ft) 0 Overall MAXimum Envelope ■ D Only 0 Lr Only 0 L Only 0 S Only 11 Lr+L+S M W Only 0 E Only ■ H Only ■ D+L+Lr+S 0 Description : B7 Material Properties Calculations per IBC 2006, CBC 2007, 2005 NDS Analysis Method: Allowable Stress Design Fb - Tension 1,350.0 psi E: Modu,fus of Elasticity 1,600.0 ksi Load Combination 20061BC&ASCE7-05 Fb - Compr Fc - Prll 1,350.0 psi 925.0 psi Ebend- xx Eminbend - xx 580.0 ksi Wood Species : DouglasFir-Larch Fc - Perp Fv 625.0 psi 170.0 psi Wood Grade : No.1 Ft 675.0 psi Density 32.210pcf Beam Bracing : Beam bracing is defined as a set spacing over all spans • y nb^^',,.'ca�?'sc' Ucacecll.engtls,;,>� s >,i �FSIGNfSUMMAR.>^ ;z�-----.._....--.....-----...- ..._...._._._._._....__.._...._._.....__.._... __ ._. First Brace starts at 0.0 ft from Left -Most support r ±Maximum Bending Stress Ratio = Regular spacing of lateral supports on length of beam = 2.0 ft D(0.277) Lr(0 2131 Maximum Shear Stress Ratio 13.50 . y ' x Service loads entered. Load Factors will be applied for calculations. Mgt Load for Span Number 1 Uniform Load : D = 0.2770, Lr = 0.2130 ktft, Tributary Width =1.0 ft �FSIGNfSUMMAR.>^ ;z�-----.._....--.....-----...- ..._...._._._._._....__.._...._._.....__.._... __ ._. ............ -- r ±Maximum Bending Stress Ratio = 0.8181 Maximum Shear Stress Ratio = 0.399 :1 Section used for this span 6x12 Section used for this span 6x12 fb : Actual = 1,104.91 psi fv : Actual = 67.91 psi FB: Allowable = 1,350.00psi Fv : Allowable = 170.00 psi Load Combination +D+Lr+H Load Combination +D+Lr+H 0.000ft Location of maximum on span = 6.705ft Location of maximum on span = Span # where maximum occurs = Span# 1 Span # where maximum occurs = Span # 1 !Maximum Deflection Max Downward L+Lr+S Deflection = 0.144 in Max Upward L+Lr+S Deflection = 0.000 in Live Load Deflection Ratio = 1122 Max Downward Total Deflection 0.332 in Max Upward Total Deflection = 0.000 in Total Deflection Ratio = 488 Maximum�Forces•8r�Stresses for Goad{Cgmbinafrons Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values . Segment Length Span # M V Mactual fb-design Fb-allow. vactual fv- design Fv-allow +p Length =1.9933 ft 1 0.233 0.226 3.18 314.45 1,350.00 1.62 38.39 170.00 Length =1.9933 ft 1 0.385 0.226 5.25 519.95 1,350.00 1.32 38.39 170.00 Length =1.9933 ft 1 0.457 0.226 6.23 616.51 1,350.00 0.77 , 38.39 170.00 Length =1.9933 it 1 0.463 0.226 6.31 624.61 1,350.00 0.34 38.39 170.00 Length =1.9933 It 1 0.463 0.226 6.31 624.61 1,350.00 0.89 38.39 170.00 Length =1.9933 ft 1 0.463 0.226 6.31 624.61 1,350.00 1.44 38.39 170.00 Length =1.5403 It 1 0.463 0.226 6.31 624.61 1,350.00 1.62 38.39 170.00 +D+ -+H Length =1.9933 ft 1 0.233 0.226 3.18 314.45 1,350.00 1.62. 38.39 170.00 Length =1.9933 ft 1 0.385 0.226 5.25 519.95. 1,350.00 1.32 38.39 170.00 Length =1.9933 ft 1 0.457 0.226 6.23 616.51 1,350.00 0.77 38.39 170.00 nts and Settings1PC3Wy DocumentskENE Description : B7 Ver: 6.0.20, Load Combination Location in Span Max Stress Ratios Summary of Moment Values D Only 1 '0.1876 Summary of Shear Values , Segment Length Span # M V Tactual fb-design Fb-allow Vactual fv-design Fv-allow Length =1.9933 ft 1 0.463 0.226 6.31 624.61 1,350.00 .0.34 38.39 170.00 Length =1,9933 ft 1 0.463 0.226 6.31 624.61 1,350.00 0.89 38.39 170.00 Length =1.9933 ft 1 0.463 0.226 6.31 624.61 1,350.00 1.44 38.39 170.00 Length =1.5403 ft 1 0.463 0.226 6.31 624.61 1,350.00 1.62 38.39 170.00 +D+Lr+H Length =1.9933 ft 1 0.412 0.399 5.62 556.24 1,350.00 2.86 67.91 170.00 Length =1.9933 ft 1 0.681 0.399 9.29 919.77 1,350.00 2.33 67.91 170.00 Length =1.9933 ft 1 0.808 0.399 11.02 1,090.58 1,350.00 1.35 67.91 170.00 Length =1.9933 ft 1 0.818 0.399 11.16 1,104.91 1,350.00 0.60 67.91 170.00 Length =1.9933 It 1 0.818 0.399 11.16 1,104.91 1,350.00 1.58 67.91 170.00 Length =1.9933 It 1 0.818 0.399 11.16 1,104.91 1,350.00 2.55 67.91 170.00 Length =1.5403 ft 1 0.818 0.399 11.16 1,104.91 1,350.00 2.86 67.91 170.00 +D+0.750Lr+0.750L+H Length =1.9933 ft 1 0.367 0.356 5.01 495.79 1,350.00 2.55 60.53 170.00 Length =1.9933 ft 1 0.607 0.356 8.28 819.81 1,350.00 2.08 60.53 170.00 Length =1.9933 ft 1 0.720 0.356 9.82 972.06 1,350.00 1.21 60.53 170.00 Length =1.9933 ft 1 0.730 0.356 9.95 984.84 1,350.00 0.53 60.53 170.00 Length =1.9933 ft 1 0.730 0.356 9.95 984.84 1,350.00 1.40 60.53 170.00 Length =1.9933 ft 1 0.730 0.356 9.95 984.84 1,350.00 2.28 60.53 170.00 Length =1.5403 ft 1 0.730 0.356 9.95 984.84 1,350.00 2.55 60.53 170.00 iQyerall Maximum Deflections Un factore`d_Loads. �r Load Combination Span Max. ' " Defl Location in Span Load Combination Max. "+' Defl Location in Span Load Combination Span Max. Downward Defl Location in Span Max. Upward Defl Location in Span D Only 1 '0.1876 6.795 0.0000 0.000 Lr Only 1 0.1443 6.795 0.0000 0.000 Lr+L+S 1 0.1443 6.795 .0.0000 0.000 D+L+Lr+S 1 0.3319 6.795 0.0000 0.000 l -Reactions : Unfactored;`,-; ?.4,,s F`s- Support notation : Far left is #1 Support & Load Combination Support Reaction H Only -(,�-... ..rte Y` -.4n- -�'�^. '. � ,Ci2 cal Reactions = Unfactored fj Support notation : Far left is #1 Load Combination Support 1 Support 2 Overall MAXimum 3.308 3.308 D Only 1.870 1.870 Lr Only 1.438 1.438 L Only S Only Lr+L+S 1.438 1.438 W Only E Only H Only D+L+Lr+S 3.308 3.308 it 9 w - 6 3 0 BEAM->> MINOR IN ME 1.27 2.63 3.99 5.35 6.70 8.06 9.42 10.78 12.14 Distance (ft) 0 +D ■ +D+L+H 0 +D+Lr+H ■ +D+0.750Lr+0.750L+H 13.50 Wootl Beam Description : B7 3.4 !r-- 1.7 BEAM --- >> L -1.7 w -3.4 File: C:1Documents and Setlings1PCIMy DocumentslENERCALC Data 1 g n ENERCAL( 1.27 2.63 3.99 535 6.70 8.06 9.42 10.78 12.14 13.50 Distance (ft) ® +D ■ +D+L+H ■ +D+Lr+H ■ +D+0.750Lr+0.750L+H BEAM-->> -0.08 S -0.17 -0.25 -034 .1.27 2.63 3.99 535 6.70 8.06 9.42 10.78 12.14 13.50 Distance (ft) 0 Overall MAXinnunn Envelope ■ D Only ■ Lr Only ■ L Only 0 S Only Q Lr+L+S 0 W Only ■ E Only ■ H Only ■ D+L+Lr+S Description Wetzel pool canopy and addition /closed < ,ax'xY;t'1„ qa+ S ..r .✓+f..YY;"AkiKN.i?+Z.' h�!`Y 5'�C'.. 9' 2 ; Anal lcal Values ;„ 3,� ? Calculations per IBC 2006 &ASCE 7-05 V: Basic Wind Speed per Sect 6.5.4 & Figure 1 85.0 mph Values based on wind speed are interpolated between tablular values. Roof Slope Angle 0 to 5 degrees Occupancy per Table 1-1 II All Buildings and other structures except those listed as Category I, III, and IV Importance Factor per Sect. 6.5.5, & Table 6-1 1.00 Exposure Category per 6.5.6.3, .4 & .5 Exposure B Mean Roof height 19.0 ft Lambda : per Figure 6.2, Pg 40 1.00 Effective Wind Area of Component & Cladding 10.0 ft^2 Net design pressure from table 1609.9.2.1(2)&(3,1 interpolated by area Roof pitch for cladding pressure 0 to 7 degrees User specified minimum design pressure 10.0 psf Topographic Factor Kzt per 6.5.7.2. 1.00 DesignAnd Pressures; Minimum Additional Load Case per 6.4.2.1.1 =10 PSF on entire vertical plane Horizontal Pressures . , . Zone: A = 11.50 psf Zone: C = 10.00 psf 11,5X-1 .3 = 15 Zone: B = -10.00 psf Zone: D = -10.00 psf Vertical Pressures ... Zone: E = -13.80 psf Zone: G = -10.00 psf Zone: F = -10.00 psf Zone: H = -10.00 psf 15.1 h 112) _ (oma G Overhangs ... 19.3 1.3 = 2 5 • I Zone: Eoh = -19.30 psf Zone: Goh = -15.10 psf Compone Minimum Additional Load Case per 6.4.2.1.1=10 PSF on entire vertical plane Design Wind Pressure = LambdaImportance' Table 1609.6.2.1(2) & (3) Pressures Roof Zone I: Positive : -10.000 psf Negative: 0.000 psf Roof Zone 2: Positive : -10.000 psf Negative: 0.000 psf Roof Zone 3: Positive : -10.000 psf Negative: 0.000 psf Wall Zone 4: Positive : -10.000 psf Negative: 0.000 psf Wall Zone 5: Positive: -10.000 psf Negative : 0.000 psf Roof Overhang Zone 2: -10.000 psf Roof Overhang Zone 3: -10.000 psf 11 Description: -None- Calculations per IBC 2006 & ASCE 7-05 Occupancy . ategory?, ti Occupancy Category of Building or Other Structure: "I" : Buildings and other structures that represent a low hazard to human life in the ACSE 7-05, Page 3, Table 1-1 event of failure. Occupancy Importance Factor = 1 ACSE 7-05, Page 116, Table 11.5-1 ;-v'Ground Mottgn; ilsmgUSGS Databaseyalues .`. ASCE 7-05 9.4.1.1 Max. Ground Motions, 5% Damping: Longitude = 116.284 deg West SS = 1.5 91 0.2 sec response Latitude = 33.682 deg North S1 - 0.6 g, 1.0 sec response Location: LA QUINTA, CA 92253 >�;�rte:'Ciass Site Coeff;=and'Design Category �. .:..�. Site Classification "D" :Shear Wave Velocity 600 to 1,200 fUsec = D ASCE 7-05 Table 20.3-1 Site Coefficients Fa & Fv Fa = 1.00 (using straight-line interpolation from table values) Fv = 1.50 Maximum Considered Eartquake Acceleration S MS = Fa `Ss = 1.500 NOTE! See ASCE 7-05 for all applicable footnotes. S M1 = Fv ` S1 = 0.900 Design Spectral Acceleration . S DS S MS 213 = 1.000 ; l etiundaricysFFaCtOr s x4 *� ; :: ` ��� x s. a:.'. S D1= S M1` 213 = 0.600 Seismic Design Category = D ( SDS is most severe) ASCE 7-05 Table 11.4-1 & 11.4-2 ASCE 7-05 Table 11.4-3 ASCE 7-05 Table 11.4-4 ASCE 7-05 Table 11.6-1 - "` ASCE 7-05 Table 12.2-1 �„�,{1ZeststtngtiSystem ��4 �,�;,,�� ,;� ry ) Basic Seismic Force Resisting System.. Bearing Wall Systems Light -framed walls sheathed wlwood structural panels rated for shear resistance or steel sheets. Response Modification Coefficient ° R " = 6.50 Building height Limits: System Overstrength Factor " Wo " = 3.00 Category "A & B" Limit: No Limit Deflection Amplification Factor " Cd ° = 4.00 Category "C" Limit: No Limit Category "D° Limit: Limit = 65 NOTE! See ASCE 7-05 for all applicable footnotes. Category V Limit: Limit = 65 Category "F" Limit: Limit = 65 ; l etiundaricysFFaCtOr s x4 *� ; :: ` ��� x s. a:.'. ASCE 7-05 Section 12.3.4 Seismic Design Categoryof D, E, or F therefore Redundancy Factor" p ° =1.3 ;'"` ' ' l�a�e�al�olce'Procedure ��.:. ASCE 7-05 Section 12.8 �...:F> z>;wH � ��, .�•,. Equivalent Lateral Force Procedure The "Equivalent Lateral Force Procedure" is being used according to the provisions of ASCE 7-0512.8 x ¢" "k �' 'Yr w ? • x r' ;�.�etermtne,�Buildmg�Penod ��r , ,> ;,: Calculated Period Entered ' Ta " : User Specified Building Period : 0.50 sec "TL" : Long -period transition period per ASCE 7-05 Maps 22-15 > 22-20 8.000 sec '2sL�"�" s_,�Response Coefficlenf �,;,_` ASCE 7-05 Section 12.8.1.1 S DS Short Period Design Spectral Response = 1.000 From Eq. 12.8-2, Preliminary Cs = 0.154 " R " : Response Modification Factor = 6.50 From Eq. 12.8-3 & 12.8-4, Cs need not exceed = 0.185 " I' : Occupancy Importance Factor = 1 From Eq. 12.8-5 & 12.8.6, Cs not be less than = 0.046 Cs : Seismic Response Coefficient = S Dd (Rll) ` 0.70 = 0.1077 Base Shear;, soh k > Calculated for Allowable Stress Design Load Combinations ASCE 7-05 Section 12.8.3 etsmlc F , Cs = 0.1077 from 12.8.1.1 W ( see Sum Wi below) = 0.00 k Vertical Distribution of Seismic Forces Seismic Base Shear V = Cs `W = 0.00 k " k" : hx exponent based on Ta = 1.00 Table of building Weights by Floor level.. Level # Wi : Weight Hi: Height (Wi' Hi) "k Cvx Fx=Cvx ` V Sum Story Shear Sum Story Moment Y WM LTD. PROJECT: Wetzel Addition PAGE: CLIENT: DESIGN BY: JOB NO.: SW1 DATE: REVIEW BY: PUT DATA TERAL FORCE ON DIAPHRAGM: vdia, WIND = 130 ptf,for Wind vdia, SEISMIC = 74 . pif,for seismic CAVITY LOADS ON THE ROOF: WDA _ :50 plf,for dead load Wi = vm - -- - - ---`a plf,for live load MENSIONS: Lw = 11 ft , h = 10 ft L = 11 ft, hp= 2 ft tNEL GRADE (0 or 1) = 1 <= Sheathing and Single -Floor NIMUM NOMINAL PANEL THICKNESS = 15/32 in )MMON NAIL SIZE (0=6d, 1=8d, 2=10d) 2 . 10d 'ECIFIC GRAVITY OF FRAMING MEMBERS 0.5 �O`t )GE STUD SECTION l.. . pcs, b = 4 in, h = 6. in SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH GRADE ( 1, 2, 3, 4, 5, or 6) 3 No. 1 rORY OPTION ( 1=ground level, 2=upper level) 1 ground level shear wall DESIGN SUMMARY BLOCKED 15/32 SHEATHING WITH 10d COMMON NAILS @ 6 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. Lw I THE SHEAR WALL DESIGN IS ADEQUATE. HOLD-DOWN FORCES: TL _. 0.76 k , TR = 0.76 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 6" DOUGLAS FIR -LARCH No. 1, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: t1 = 0.20 in' ANALYSIS CHECK MAX SHEAR WALL DIMENSION RATIO L / B = 0.9 < .3!5-::; - ` :: [Satisfactory] DETERMINE REQUIRED CAPACITY vb = 130 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 6 in) Panel Grade L Min. Penetration (in) Min. Thickness (in) W 1 6 1 4 3 1 2 Sheathing and Single -Floor =----- vm - -- - - ---`a h, 1 310 1 460 .7 -`s-- 1 770 0.195 in, ASD Left 1 8833 0.9 TL = 1 133 01b Right 8833 0.9 TR = 133 h 74 V. 9407 �Q T, 10 ft Ta Lw I THE SHEAR WALL DESIGN IS ADEQUATE. HOLD-DOWN FORCES: TL _. 0.76 k , TR = 0.76 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 6" DOUGLAS FIR -LARCH No. 1, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: t1 = 0.20 in' ANALYSIS CHECK MAX SHEAR WALL DIMENSION RATIO L / B = 0.9 < .3!5-::; - ` :: [Satisfactory] DETERMINE REQUIRED CAPACITY vb = 130 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 6 in) Panel Grade Common Nail Min. Penetration (in) Min. Thickness (in) Blocked Nail Spacing Boundary & All Edges 1 6 1 4 3 1 2 Sheathing and Single -Floor 10d 15/8 15/32 1 310 1 460 1 600 1 770 Note: The inalcatea snear nuni nave ieuuceu oy bticud W.— .y j_ �,� 4• JE DRAG STRUT FORCE: F = (L -Lw) MAX( vdia. WIND- 910Vdia, SEISMIC) = 0.00 k (no = 1 ) (Sec. 1633.2.6) JE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. 1 ht 1'1VLu-uwvry rvr«+w. Wall Seismic Overturning Resisting Safety Net Uplift Holddown vdia (plf) at mid -story (lbs) Moments (ft -lbs) Moments (ft -lbs) Factors (lbs) SIMPSON _ A = A& ding +Asir., + ONdil slip + Acm d splice slit' — +Vbh+0.75hen+ = 0.195 in, ASD Left 1 8833 0.9 TL = 1 133 01b Right 8833 0.9 TR = 133 SEISMIC 74 211 9407 �Q A = 16.50 in` h = 10 ft G = 9.0E+04 psi Cd = 4 1 = 1 Left 8833 2/3 TL = 765 �O`t WIND 130 14300 Q Right 8833 2/3 TR = 765 EDGE STUD CAPACITY Pmax = 1.40 kips, (this value should include upper level DOWNWARD loads if applicable) F� = 1500 psi CD = 1.60 Cp = 0.36 A = 19.25 in' E= 1700 ksi CF = 1.10 Fc = 961 psi > fc = 73 psi [Satisfactory] t iia iR CHECK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) s 8Vbh do _ A = A& ding +Asir., + ONdil slip + Acm d splice slit' — +Vbh+0.75hen+ = 0.195 in, ASD EAL,, Gt- bxe,allowable, ASD = 0.429 in Where: vb = 130 plf, , ASD Lv„ = 11 ft E = 1.7E+06 psi [Satisfactory] (ASCE 7-05 12.8.1 A = 16.50 in` h = 10 ft G = 9.0E+04 psi Cd = 4 1 = 1 t = 0.298 in ea = 0.001 in da = 0.15 in (ASCE 7-05 Tab 12.2-1 & Tab 11.5 - pa = 0.02 h. (ASCE 7-05 Tab 12.12-1) EDGE STUD CAPACITY Pmax = 1.40 kips, (this value should include upper level DOWNWARD loads if applicable) F� = 1500 psi CD = 1.60 Cp = 0.36 A = 19.25 in' E= 1700 ksi CF = 1.10 Fc = 961 psi > fc = 73 psi [Satisfactory] MWL PROJECT::Wetzel. PAGE: CLIENT :DESIGN BY: JOB NO.: 1,SW13 DATE: REVIEW BY: INPUT DATA WALL LENGTH WALL HEIGHT WALL THICKNESS FOOTING LENGTH CITING WIDTH OTING THICKNESS OTING EMBEDMENT DEPTH LOWABLE SOIL PRESSURE AD LOAD AT TOP WALL FE LOAD AT TOP WALL �P LOAD LOCATION kLL SELF WEIGHT TERAL LOAD TYPE (0--wind,l=seismic) ISMIC LOADS AT TOP (E/1.4, ASD) 0: Lw = 1.5 . ft - -F u h = 10 ft t = .. r:4 in L - 4 : ft Pw h L, ='` :, :1.25 ft B ='. 2:56-r ft 1 T =. .: 31:. in PF D = 2:08 ft D_\_0 qa = _ >. 9.5 ksf Pr,DL = .. Q,263 kips Pr,LL = ..0.21 kips lo ol L1 Lw- a = . .0.75 ft L Pw =; ' 0.24 kips .1 seismic F = . 0.525 kips THE FOOTING DESIGN IS ADEQUATE. M = 0 ft -kips CONCRETE STRENGTH fc2.5 ksi REBAR YIELD STRESS fy = . 60 ksi TOP BARS, LONGITUDINAL 2 # 5.. BOTTOM BARS, LONGITUDINAL 5; ". # - 5. BOTTOM BARS, TRANSVERSE # 3 @ .24 , in o.c. ANALYSIS CHECK OVERTURNING FACTOR (IBC 06 1605.2.1, 1801.2.1, & ASCE 7-05 12.13.4) F = MR' Mo = 1.37 > 1.4 x 0.75 10.9 for seismic Where Pf = 3.835733 kips (footing self weight) Mo = F (h + D) + M = 6 ft -kips (overturning moment) MR = (Pr.DL) (Li + a) + Pf (0.5 L) + Pw (Lj + 0.5Lw) = 9 SOIL CAPACITY (ALLOWABLE STRESS DESIGN) Ps = 2.645333 kips (soil weight in footing size) P = (Pr,DL + Pr,LL) + Pw + (Pf - Ps) = 1.90 kips (total vertical net load) MR = (Pr,DL + Pr, LL) (Li + a) + Pf (0.5 L) + Pw (Li + 0.5Lw) = 9 e = 0.5 L- (MR - rMo) / P = l 0.55 ft (eccentricity from middle of footing) PI 1+ L I 111 iii , for e< L L q"Ax BL 6 2P for e > L 0.34 ksf - 3B(0.5L-e)' 6 Where e = 0.55 ft, < (L / 6) FOOTING CAPACITY (STRENGTH DESIGN) Mu,R = 1.2 [Pr,DL (Li + a) + Pf (0.5 L) + Pw (LI + 0.5Lw)) + 0.5 Pr, LL(Li + a) _ M„ ,o = 1.4 [F(h + D) + MI = 9 ft -kips Pu = 1.2 (Pr,DL + Pf + Pw) + 0.5 Pr, LL = 5 kips ea = 0.5L - (MU,R - MU,o) / PU = 1.67 ft C 6e„ 1 P. 1+ L J L for e„< 9u,War = BL 6 = 4.21 ksi 2P,.L for e„ > 6 <== Not Required [Satisfactory] ft -kips (resisting moment without live load) ft -kips (resisting moment with live load) < 4/3qa [Satisfactory) 11 ft -kips 0 qu,nax Pu,w [P�f� Location Mu,max d (in) PregD PprovD Vu,max ¢Vc = 2 � b d (f� )o.s Top Longitudinal -1 ft -k 27.69 (cont'd) BENDING MOMENT & SHEAR AT EACH FOOTING SECTION 6 kips 72 kips Bottom Longitudinal 4 ft -k 27.69 0.0018 Section 0 1/10 L 2/10 L 3/10 L 4110 L 5/10 L 6/10 L 7/10 L 8/10 L 9/10 L L Xu (ft) 0 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00 Pu.W (klf) 0.0 0.0 0.0 0.0 13.1 0.5 -12.2 0.0 0.0 0.0 0.0 Mu,W (ft -k) 0 0 0 0 -1 -5 -8 -9 -10 -10 -10 Vu.w (kips) 0 0 0 0 -7 •9 -7 -1 -1 -1 -1 Pu,t(ksf) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 Mu.t(ft-k) 0 0 0 -1 -1 -2 -3 -5 -6 -7 -9 Vu,t (kips) 0 0 -1 . -1 -2 -2 -3 -3 -4 -4 -5 qv (ksf) -4.2 -2.5 -0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Mu,y (ft -k) 0 1 3 5 7 9 11 13 15 17 20 Vu,q (kips) 0 3 5 5 5 5 5 5 5 5 5 £ Mu (ft -k) 0 1 2 4 4 2 0 -1 0 0 0 £ Vu (kips) 0 3 4 4 -3 -6' 6 4 2 DM 0 -2 5 'Mill- 0 OV -5 -10 p5f 0.8` (1-� Where P= P min = 0.0018 {1-`0.383bd2f ✓ y, 0.85fljC 45U ip� _ = 0.0129 (Satisfactory] .f y Eu+Et Location Mu,max d (in) PregD PprovD Vu,max ¢Vc = 2 � b d (f� )o.s Top Longitudinal -1 ft -k 27.69 0.0000 0.0007 6 kips 72 kips Bottom Longitudinal 4 ft -k 27.69 0.0018 0.0018 6 kips 72 kips Bottom Transverse 0 ft -k / ft 27.19 0.0000 0.0000 1 kips / ft 28 kips / ft -4 1 1 0 0 Location Mu,max d (in) PregD PprovD Vu,max ¢Vc = 2 � b d (f� )o.s Top Longitudinal -1 ft -k 27.69 0.0000 0.0007 6 kips 72 kips Bottom Longitudinal 4 ft -k 27.69 0.0018 0.0018 6 kips 72 kips Bottom Transverse 0 ft -k / ft 27.19 0.0000 0.0000 1 kips / ft 28 kips / ft WML PROJECT: Wetzel PAGE: CLIENT: DESIGN BY: JOB NO.: 'SW4 DATE: REVIEW BY: n-i^n,t%f _Qhonr Wail Racpri nn ACI 318-05' INPUT DATA WALL LENGTH WALL HEIGHT WALL THICKNESS FOOTING LENGTH FOOTING WIDTH FOOTING THICKNESS FOOTING, EMBEDMENT DEPTH ALLOWABLE SOIL PRESSURE DEAD LOAD AT TOP WALL LIVE LOAD AT TOP WALL TOP LOAD LOCATION WALL SELF WEIGHT LATERAL LOAD TYPE (0=wind,1=seismic) SEISMIC LOADS AT TOP (E/1.4, ASD) RETE STRENGTH kR YIELD STRESS BARS, LONGITUDINAL rOM BARS, LONGITUDINAL rOM BARS, TRANSVERSE L.N, = 1.5 It h =. 1D It t = 4 in L = '. 5.5. It L1 = 2 ft h B = 2.56 . It T = 31 in D 2.08 ` It qa = .1.5 ksf D Pr,DL 0.268 kips = Pr,LL = 0.23' kips ' a = 0.75 It %L - L Pw = 15.6 kips 1 seismic F = 1.211 kips THE FOOTING DESIGN IS ADEQUATE. M = .0 ft -kips fi = 2.'5 ksi fy = 00 ksi 2,. # 5. .. 5 # 5 # 3 @ 24 '. in o.c. < _= Not Required Pr ANALYSIS CHECK OVERTURNING FACTOR (IBC 06 1605.2.1, 1801.2.1, & ASCE 7-05 12.13.4) F =MR/ Mo = 3.98 > 1.4 x 0.75 / 0.9 for seismic Where Pf = 5.274133 kips (footing self weight) Mc = F (h + D) + M = 15 ft -kips (overturning moment) MR = (Pr,DL) (1-1 + a) + Pf (0.5 L) + Pw (1-1 + 0.51-w) = 58 SOIL CAPACITY (ALLOWABLE STRESS DESIGN) Pa = 3.637333 kips (soil weight in footing size) P = (Pr,DL + Pr LL) + Pw + (Pf - Ps) = 17.75 kips (total vertical net load) MR = (Pr,DL + Pr, LL) (1-1 + a) + Pf (0.5 L) + Pw (1-1 + 0.51-w) = 59 e = 0.5 L- (MR - (Mo) / P = l 0.26 ft (eccentricity from middle of footing) PI 1+ Le I L l J/, for e<_- 4eNAX = BL 6 - 1.62 ksf 2P for e> L 3B(O.SL-e)' 6 Where e = 0.26 ft, < (L / 6) FOOTING CAPACITY (STRENGTH DESIGN) MU,R = 1.2 [Pr,DL (L1 + a) + Pf (0.5 L) + Pw (1-1 + 0.51-w)] + 0.5 Pr, LL(L1 + a) _ MU.0 = 1.4 [F(h + D) + M] = 20 ft -kips Pu = 1.2 (Pr,DL + Pf + Pw) + 0.5 Pr LL = 26 kips eu=0.51--(Mua-M(u,o)/Pu= 0.80 It Pull+6e„1 \ L JJL for e„ < - 9 MA = BL 6 = 3.40 ksf 2P L 3B(0.5L -e„ )' for eu > 6 [Satisfactory] ft -kips (resisting moment without live load) ft -kips (resisting moment with live load) < 4/3qa [Satisfactory] 70 ft -kips 0 qu'mo n �-Xu-/ Pu W ft M. 0.383bd2 f c P min 0.0018 Mu,max d (in) PregD PprovD Vu,max �Vo = 2 0 b d (f� )o.s Top Longitudinal 0 ft -k 27.69 (cont'd) BENDING MOMENT & SHEAR AT EACH FOOTING SECTION 15 kips 72 kips Bottom Longitudinal 14 ft -k 27.69 0.0018 Section 0 1/10 L 2/10 L 3110 L 4/10 L 5/10 L 6/10 L 7/10 L 8/10 L 9/10 L L Xu (ft) 0 0.55 1.10 1.65 2.20 2.75 3.30 3.85 4.40 4.95 5.50 Pu,W (klf) 0.0 0.0 0.0 0.0 52.8 12.8 -27.3 0.0 0.0 0.0 0.0 Mu,(ft-k) 0 0 0 0 -1 -14 -30 -42 -52 -63 -73 Vuv+(kips) 0 0 0 0 -12 -30 -26 -19 -19 -19 -19 Pu,i (ksf) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 Mu,f (ft -k) 0 0 -1 -2 -3 -4 -6 -9 -11 -14 -17 Vui(kips) 0 -1 -1 -2 -3 -3 -4 -4 -5 -6 -6 9u (ksf) -3.4 -3.1 -2.8 -2.4 -2.1 -1.8 -1.5 -1.2 -0.9 -0.5 -0.2 Mu,q (ft 77 91 Vu,y (kips) 0 5 9 12 16 18 21 23 24 25 26 £ Mu (ft -k) 0 1 4 9 14 10 2 0 0 0 0 £ Vu (kips) 0 4 7 10 1 -15 -9 -1 0 0 0 20 15 10 - 5 - 13M-._ -5 20 10 0 k OV -10 -20 0.85E 1- 1- Where P = = fy 0.85QifC su PMAx - = 0.0129 [Satisfactory] f y Cu+Et Location Mu,max d (in) PregD PprovD Vu,max �Vo = 2 0 b d (f� )o.s Top Longitudinal 0 ft -k 27.69 0.0000 0.0007 15 kips 72 kips Bottom Longitudinal 14 ft -k 27.69 0.0018 0.0018 15 kips 72 kips Bottom Transverse 1 ft -k / ft 27.19 0.0000 0.0000 2 kips / ft 28 kips / -k) 0 1 5 11 18 28 39 50 63 77 91 Vu,y (kips) 0 5 9 12 16 18 21 23 24 25 26 £ Mu (ft -k) 0 1 4 9 14 10 2 0 0 0 0 £ Vu (kips) 0 4 7 10 1 -15 -9 -1 0 0 0 Location Mu,max d (in) PregD PprovD Vu,max �Vo = 2 0 b d (f� )o.s Top Longitudinal 0 ft -k 27.69 0.0000 0.0007 15 kips 72 kips Bottom Longitudinal 14 ft -k 27.69 0.0018 0.0018 15 kips 72 kips Bottom Transverse 1 ft -k / ft 27.19 0.0000 0.0000 2 kips / ft 28 kips / WM L PROJECT: Wetzel PAGE: CLIENT: DESIGN BY: JOB NO.: !SW5 DATE: REVIEW BY: Fontina Design of Shear Wall Based on ACI 318-05 INPUT DATA WALL LENGTH WALL HEIGHT WALL.THICKNESS FOOTING LENGTH DOTING WIDTH TOTING THICKNESS TOTING EMBEDMENT DEPTH LOWABLE SOIL PRESSURE :AD LOAD AT TOP WALL /E LOAD AT TOP WALL IP LOAD LOCATION 4LL SELF WEIGHT TERAL LOAD TYPE (0=wind,l=seismic) :ISMIC LOADS AT TOP (E/1.4, ASD) P,^ Lw = 1.5... ft fy = 60. ksi -ate h = 10 ft F # 3 @ .24., in o.c. ANALYSIS t = .4 in F =MR/ Mo = 5.49 M Where Pf = 4.3152 L = 4.5 ft MR = (Pr,DL) (Li + a) + Pf (0.5 L) + Pw (1-1 + 0.51-0 = 45 Pw 1.5 - ft h B = 2.56 ft T= 31 in p D = 2.08 ft f _ D qa = 1.5 ksf �0 Pr,DL = Pr,LL = 0.287 0.23 kips kips I- / L 1 i Lw i a = 0.75 ft �' L i Pw = .15.6 kips .1 seismic F = 0.686 kips THE FOOTING DESIGN IS ADEQUATE. M = 0 ft -kips CONCRETE STRENGTH f� _. 2.5 ksi REBAR YIELD STRESS fy = 60. ksi TOP BARS, LONGITUDINAL 2 # .5 BOTTOM BARS, LONGITUDINAL 5 # _5 ' BOTTOM BARS, TRANSVERSE # 3 @ .24., in o.c. ANALYSIS CHECK OVERTURNING FACTOR (IBC 06 1605.2.1, 1801.2.1, & ASCE 7-05 12.13.4) F =MR/ Mo = 5.49 > 1.4 x 0.75 / 0.9 for seismic Where Pf = 4.3152 kips (footing self weight) Mo = F (h + D) + M = 8 ft -kips (overturning moment) MR = (Pr,DL) (Li + a) + Pf (0.5 L) + Pw (1-1 + 0.51-0 = 45 SOIL CAPACITY (ALLOWABLE STRESS DESIGN) Ps = 2.976 kips (soil weight in footing size) P = (Pr,DL + Pr LL) + Pw + (Pf - PO = 17.46 kips (total vertical net load) MR = (Pr.DL + Pr, LL) (Li + a) + Pf (0.5 L) + Pw (Li + 0.51-w) = 46 e = 0.5 L- (MR - rMO) / P = l 0.09 ft (eccentricity from middle of footing) PI 1+ L I L BL iii \\l for e S 6 9MAX 2P for e> L = 1.70 ksf 3B(0.5L-e)' 6 Where e= 0.09 ft, < (L / 6) FOOTING CAPACITY (STRENGTH DESIGN) Mu,R = 1.2 [Pr DL (1-1 + a) + Pf (0.5 L) + Pw (1-1 + 0.51-j + 0.5 Pr, LL(LI + a) _ Mu,o = 1.4 [F(h + D) + M] = 12 ft -kips PU = 1.2 (Pr,DL + Pf + Pw) + 0.5 Pr, LL = 24 kips e„=0.51--(MU,R-Mu,o)/Pu= 0.48 ft 6e„ P. 1+ L L .for e., < - q..MA . = BL 6 = 3.46 ksf 2p.. ,for e., > L 3B(0.5L-e„)' 6 <_= Not Required < == Not Required [Satisfactory] ft -kips (resisting moment withcut live load) ft -kips (resisting moment with live load) < 4/3ga [Satisfactory] 55 ft -kips 0 qu,mox Pu,w [JT'� b N U I N U Section IVIVIVIGIY I" 0 onGnn 1/10 L n. .-��... 2/10 L ��...- 3/10 L --- .-• 4/10 L 5/10 L 6/10 L 7/10 L 8/10 L 9/10 L L Xu (ft) 0 0.45 0.90 1.35 1.80 2.25 2.70 3.15 3.60 4.05 4.50 Pu,N, (klf) 0.0 0.0 0.0 0.0 31.3 12.8 -5.8 0.0 0.0 0.0 0.0 MuN,(ft-k) 0 0 0 0 -2 -9 -20 -29 -37 -46 -55 Vu,W (kips) 0 0 0 0 -11 -21 -23 -19 -19 -19 -19 Pu.f (ksf) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4. 0.4 0.4 0.4 Mu(ft -k) 0 0 0 -1 2 -3 4 -6 -7 -9 -12 ,f Vu.f(kips) 0 -1 -1 -2 -2 -3 -3 -4 -4 -5 -5 9u (ksf) -3.5 -3.2 -2.9 -2.7 -2.4 -2.1 -1.8 -1.6 -1.3, -1.0 -0.8 Mu,q (ft -k) 0 1 3 7 13 20 27 36 45 56 66 Vu,q (kips) 0 4 7 11 13 16 18 20 22 23 24 E Mu (ft -k) 0 1 3 6 9 7 3 1 1 0 0 E Vu (kips) 0 3 6 1 9 1 0 -8 -8 -3 -1 -1 0 10 5 0 10 0 -10 Ju 13V Location Mu,max d (in) PregD PprovD Vu,max �Vc = 2 m b d (f�)O" Top Longitudinal 0 ft -k 27.69 0.0000 0.0000 9 kips 1 72 kips 1 Bottom Longitudinal 9 ft -k 27.69 0.0018 0.0018 9 kips 72 kips Bottom Transverse 1 ft -k / ft 27.19 0.0000 0.0000 2 kips / ft 28 kips / ft l�i U 0.85f, 1- 1-0.383bdlf�, 0.0018 Where �p = C p min fy 0.85,6,f C su PMnx = = 0.0129 [Satisfactory] fy --u+Et (cont'd) WML PROJECT: Wetzel PAGE: ' CLIENT: DESIGN BY: JOB NO.: SWM DATE: REVIEW BY: Fnntinn npcinn of Shear Wall Based on ACI 3.18-05 INPUT DATA WALL LENGTH WALL HEIGHT WALL THICKNESS FOOTING LENGTH FOOTING WIDTH FOOTING THICKNESS FOOTING EMBEDMENT DEPTH ALLOWABLE SOIL PRESSURE DEAD LOAD AT TOP WALL LIVE LOAD AT TOP WALL TOP LOAD LOCATION WALL SELF WEIGHT LATERAL LOAD TYPE (0=wind,I=seismic) SEISMIC LOADS AT TOP (E/1.4, ASD) Lw = .1.75. ft h = 15 ft t = 4 in L = 4.75 It L, = 1.5 ft h B = 2.56, It T 31 in D = 2.08 ft D qa =.: 1.5 ksf D Pr,DL = : 0:5 kips Pr,LL = 0:4. kips ' a=.: 0 ft Pw=, 0.42: kips 1 seismic F = 0.543 kips THE FOOTING DESIGN IS ADEQUATE. M = 0 ft -kips CONCRETE STRENGTH fc'2.5 ksi REBAR YIELD STRESS fy 60. ` ksi TOP BARS, LONGITUDINAL 2 # 5 BOTTOM BARS, LONGITUDINAL 5 # 5 BOTTOM BARS, TRANSVERSE # 3 @ 24 in o.c. < _= Not Required ANALYSIS CHECK OVERTURNING FACTOR (IBC 06 1605.2.1, 1801.2.1, & ASCE 7-0512.13.4) F =MR/ Mo = 1.35 > 1.4 x 0.75 / 0.9 for seismic Where Pf = 4.554933 kips (footing self weight) Mo = F (h + D) + M = 9 ft -kips (overturning moment) MR = (Pr,DL) (Li + a) + Pt (0.5 L) + Pw (L, + 0.5L,) = 13 CHECK SOIL CAPACITY (ALLOWABLE STRESS DESIGN) Ps = 3.141333 kips (soil weight in footing size) P = (Pr,DL + Pr,LL) + Pw + (Pf - Ps) = 2,73 kips (total vertical net load) MR = (Pr,DL + Pr, LL) (LI + a) + Pf (0.5 L) + Pw (Li + 0.5Lw) = 13 e = 0.5 L- (MR - /Mo) / P = l 0.95 ft (eccentricity from middle of footing) PI 1+ L) L l BL iJ , for e � 6 geMer = 2P for e>L = 0.50. kst - 3B(0.5L-e)' 6 Where e = 0.95 ft, > (L / 6) CHECK FOOTING CAPACITY (STRENGTH DESIGN) MU.R = 1.2 [Pr,DL (Li + a) + Pf (0.5 L) + Pw (LI + 0.5Lw)] + 0.5 Pr, LL(L, + a) _ MU10 = 1.4 [F(h + D) + M] = 13 ft -kips Pu = 1.2 (Pr,DL + Pf + Pw) + 0.5 Pr. LL = 7 kips e„ = 0.5L - (Mu,R - Mu,o) / Pu = 2.02 It 6e„ L L for e„ < - q„ "Ay = BL 6 = 4.98 ksf 2P.,L for e„ > Pr L [Satisfactory] ft -kips (resisting moment without live load) ft -kips (resisting moment with live load) < 4/3qa [Satisfactory] 15 ft -kips 0 (cont'd) G "NORAEwT It SHEAR AT EACH FOOTING SECTION Section 0 1/10 L 2/10 L 3/10 L 4/10 L 5/10 L 6/10 L 7/10 L 8/10 L 9/10 L L Xu (ft) 0 0.48 0.95 1.43 1.90 2.38 2.85 3.33 3.80 4.28 4.75 Pu,W (klf) 0.0 0.0 0.0 0.0 15.3 0.7 -13.8 0.0 0.0 0.0 0.0 Mu,w (ft -k) 0 0 0 0 -2 -7 -13 -15 -16 -16 -17 Vu,W (kips) 0 0 0 0 -9 -12 -9 -1 -1 -1 -1 Pu,f (ksf) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 Mu,f (ft -k) 0 0 -1 -1 -2 -3 -5 -6 -8 -11 -13 Vu,f(kips) 0 -1 -1 -2 -2 -3 -3 -4 -4 -5 -5 qu (ksf) -5.0 -2.8 -0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Mu q (ft -k) 0 1 4 7 10 14 17 20 23 27 30 Vu,q (kips) 0 5 7 7 7 7 7 7 7 7 7 E Mu (ft -k) 0. 1 4 6 7 3 0 -1 -1 0 0 E Vu (kips) 0 1 4 6 5 -4 1 -8 1 -6 1 2 1 1 0 10 5 0 -5 10 0 -10 13M 17V Location Mu,max d (in) PregD PPMVD Vu,max �Ve = 2 m b d (fc')o.s Top Longitudinal -1 ft -k 27.69 0.0000 0.0007 8 kips 72 kips Bottom Longitudinal 7 ft -k 27.69 0.0018 0.0018 8 kips 72 kips Bottom Transverse 0 ft -k / ft 27.19 0.0000 0.0000 1 kips / ft 28 kips / ft Mu 0.85f, 1- 1- 0.3836dz f` Where P = Pmn = 0.0018 .f y 0.85,8,fc eu PMnx = 0.0129 [Satisfactory] .f y Eu+et WML T DATA LENGTH HEIGHT THICKNESS NG LENGTH PROJECT: Wetzel CLIENT JOB NO.: ISW6'1 DATE: FOOTING WIDTH FOOTING THICKNESS FOOTING EMBEDMENT DEPTH ALLOWABLE SOIL PRESSURE DEAD LOAD AT TOP WALL LIVE LOAD AT TOP WALL TOP LOAD LOCATION WALL SELF WEIGHT LATERAL LOAD TYPE (0--wind,l=seismic) SEISMIC LOADS AT TOP (E11.4, ASD) Lw = 2.33 ft PAGE: DESIGN BY: REVIEW BY: 7: h= 15. .ft t= 4".in L = 6.33 ft L1 = 2., - ft B = 2:56 ft T= 31 in D =. `2.08 ft qa = 1.5 ksf Pr,DL = '0-5 kips Pr,LL = 0.4 kips a =`:1:165 ft PW = '; 0:559 - kips 1;. seismic F = .::0.887 . kips M =. p <, ft -kips CONCRETE STRENGTH f� = 2.5: ksi REBAR YIELD STRESS fy =:,' ;60 ksi TOP BARS, LONGITUDINAL 2.: # 5 BOTTOM BARS, LONGITUDINAL 5 # 5 BOTTOM BARS, TRANSVERSE # 3 ' @ 24 ` . in o.c. ANALYSIS CHECK OVERTURNING FACTOR (IBC 06 1605.2.1, 1801.2.1, & ASCE 7-05 12.13.4) F =MR/ Mc = 1.49 > 1.4 x 0.75 / 0.9 for seismic Where Pf = 6.070048 kips (footing self weight) Mo = F (h + D) + M = 15 ft -kips (overturning moment) MR = (Pr,ol-) (1-1 + a) + Pf (0.5 L) + PW (L1 + 0.5Lw) = 23 CHECK SOIL CAPACITY (ALLOWABLE STRESS DESIGN) Ps = 4.18624 kips (soil weight in footing size) P = (Pr,DL + Pr,LL) + Pw + (Pf - Pa) = 3.34 kips (total vertical net load) MR = (Pr,DL + Pr. LL) (L1 + a) + Pf (0.5 L) + Pw (1-1 + 0.51-w) = 24 e = 0.5 L- (MR - /MO) / P = l 0.57 it (eccentricity from middle of footing) PI 1+ L JL for e< gMAX = BL 6 - 0.32 ksf 2P for e > L - 3B(0.5L-e)' 6 Where e = 0.57 ft, < (L / 6) CHECK FOOTING CAPACITY (STRENGTH DESIGN) MU.R = 1.2 [Pr,DL (L1 + a) + Pf (0.5 L) + Pw (L1 + 0.51-w)] + 0.5 Pr, LL(L1 + a) _ Mqo = 1.4 [F(h + D) + M] = 21 ft -kips Pu = 1.2 (Pr,DL + Pf + PW) + 0.5 Pr, LL = 9 kips eu = 0.51-- (Mu,R - M(u,o) / Pu = 2.42 It ` L J for e„ <- L- q„Mnr = BL 6 = 3.07 ksf 2P„L „ ) 3B(0.5L - e' ,for e., > 6 THE FOOTING DESIGN IS ADEQUATE. < _= Not Required [Satisfactory] ft -kips (resisting moment without live load) ft -kips (resisting moment with live load) < 4/3qa [Satisfactory] 28 ft -kips 0 qu,Mok Location Top Longitudinal Bottom Longitudinal Bottom Transverse 0.85f', Mu,max -2 ft -k 9 ft -k 0 ft-kft d (in) 27.690.0000 27.69 27.19 PregD 0.0018 0.0000 TPprovDax kips kips kips / ft �Vo2 mb d (f�)o.s 72 kips 72 kips ips / ft 28 kips/ft- (cont'd) BENDING MOMENT & SHEAR AT EACH FOOTING SECTION Section 0 1/10 L 2110 L 3110 L 4/10 L 5/10 L 6/10 L 7/10 L 8/10 L 9110 L L Xu (ft) 0 0.63 1.27 1.90 2.53 3.17 3.80 4.43 5.06 5.70 6.33 Pu(klf) 0.0 0.0 0.0 0.0 13.4 0.6 -12.1 0.0 0.0 0.0 0.0 ,w Mu w (ft -k) 0 0 0 0 -3 -11 -19 -23 -24 -25 -26 Vu 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 Mu,f (ft -k) ,w 0 -1 -2 -4 -6 -8 -11 -15 -19 -23 Vur(kips) 0 -1 -1 -2 -3 -4 -4 -5 -6 qu (ksf) -3.1 -2.2 -1.3 -0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Mu q (ft -k) 0 1 5 10 16 21 27 32 38 43 49 Vu,q (kips) 0 4 7 8 9 9 9 9 9 9 9 E Mu (ft -k) 0 1 4 8 9 4 -1 -2 -1 0 0 E Vu (kips) 0 4 6 6 -4 -9 -6 2 1 1 0 10 5 II 0 _ OM -5 10 0V -10 -20 0.85 f 1- 1- Mu � 0.383bd2 f � P min = o.00le Where P= f r 0.85/3. f c su = 0.0129 [Satisfactory] PMAX = .f y Eu+Et Location Top Longitudinal Bottom Longitudinal Bottom Transverse 0.85f', Mu,max -2 ft -k 9 ft -k 0 ft-kft d (in) 27.690.0000 27.69 27.19 PregD 0.0018 0.0000 TPprovDax kips kips kips / ft �Vo2 mb d (f�)o.s 72 kips 72 kips ips / ft 28 kips/ft- (kips) 0 0 0 0 -10 -14 -11 -1 -1 -1 -1 Pu,f(ksf) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 Mu,f (ft -k) 0 0 -1 -2 -4 -6 -8 -11 -15 -19 -23 Vur(kips) 0 -1 -1 -2 -3 -4 -4 -5 -6 qu (ksf) -3.1 -2.2 -1.3 -0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Mu q (ft -k) 0 1 5 10 16 21 27 32 38 43 49 Vu,q (kips) 0 4 7 8 9 9 9 9 9 9 9 E Mu (ft -k) 0 1 4 8 9 4 -1 -2 -1 0 0 E Vu (kips) 0 4 6 6 -4 -9 -6 2 1 1 0 Location Top Longitudinal Bottom Longitudinal Bottom Transverse 0.85f', Mu,max -2 ft -k 9 ft -k 0 ft-kft d (in) 27.690.0000 27.69 27.19 PregD 0.0018 0.0000 TPprovDax kips kips kips / ft �Vo2 mb d (f�)o.s 72 kips 72 kips ips / ft 28 kips/ft- WML T DATA LENGTH HEIGHT THICKNESS NG LENGTH PROJECT: Wetzel PAGE CLIENT: , DESIGN BY: JOB NO.: `SW7DATE: REVIEW BY : FOOTING WIDTH FOOTING THICKNESS FOOTING EMBEDMENT DEPTH ALLOWABLE SOIL PRESSURE DEAD LOAD AT TOP WALL LIVE LOAD AT TOP WALL TOP LOAD LOCATION WALL SELF WEIGHT LATERAL LOAD TYPE (0--wind,l=seismic) SEISMIC LOADS AT TOP (E11.4, ASD) CONCRETE STRENGTH REBAR YIELD STRESS TOP BARS, LONGITUDINAL BOTTOM BARS, LONGITUDINAL BOTTOM BARS, TRANSVERSE Lw =', 2 . ft h = : ,,.. .16... ft t _ 4.' in L 5 it L, 1.5' . ft B = 2.56 ft T = .31 in D =,` '2.08 ft qa = 2:5 ksf Pr DL = .. 0 '.. kips Pr,LL = 0 kips Pw = 0.512.: kips seismic F =..0.614 kips M 0.r:':' ft -kips 2 # 5. 5 ;t # 5 ,. Pr y D. 1 TF � M 1 Pw' h Pp D LI Lw ANALYSIS CHECK OVERTURNING FACTOR (IBC 06 1605.2.1, 1801.2.1, & ASCE 7-0512.13.4) F = MR / Mo = 1.20 > 1.4 x 0.75 / 0.9 for seismic Where Pf = 4.794667 kips (footing selfweight) Mo = F (h + D) + M = 11 ft -kips (overturning moment) MR = (Pr,DL) (Li + a) + Pf (0.5 L) + Pw (1-1 + 0.5Lw) = 13 CHECK SOIL CAPACITY (ALLOWABLE STRESS DESIGN) Ps = 3.306667 kips (soil weight in footing size) P = (Pr,DL + Pr,LL) + Pw + (Pf - Ps) = 2.00 kips (total vertical net load) MR = (Pr,DL + Pr, LL) (1-1 + a) + Pf (0.5 L) + Pw (L, + 0.51-w) = 13 e = 0.5 L - (MR - /MO) / P = l 1.42 ft (eccentricity from middle of footing) PI 1+ L JL _ BL for e< 6 gMAX - 0.48 ksf 2P for e> L _ 3B(0.5L-e)' 6 Where e = 1.42 ft, > (L / 6) CHECK FOOTING CAPACITY (STRENGTH DESIGN) Mu,R = 1.2 IPr.DL (Li + a) + Pf (0.5 L) + Pw (Li + 0.5Lw)] + 0.5 Pr. LL(Li + a) _ Mu,o = 1.4 [F(h + D) + M] = 16 ft -kips P. = 1.2 (Pr DL + Pf + Pw) + 0.5 Pr, LL = 6 kips e„ = 0.51-- (MU.R - M(u,o) / Pu = 2.44 ft P.,I 1+6e„1 \ L J > .for e„ 5 L q.,WAX = BL 6 = 27.91 ksf 2P„L for e„ > 6 3B(0.5L - e„) ' L THE FOOTING DESIGN IS ADEQUATE. c == Not Required [Satisfactory] ft -kips (resisting moment without live load) ft -kips (resisting moment with live load) < 4/3qa [Satisfactory] 16 ft -kips 0 4u,mox P., Location Mu,max d (in) (�regD PprovD Vu,max �Vc = 2 � b d (f�)os ' Top Longitudinal -1 ft -k 27.69 (cont'd) BENDING MOMENT & SHEAR AT EACH FOOTING SECTION 8 kips 72 kips Bottom Longitudinal 8 ft -k 27.69 0.0018 Section 0 1/10 L 2/10 L 3/10 L 4/10 L 5/10 L 6/10 L 7/10 L 8/10 L 9/10 L L Xu (ft) 0 0.50 1'.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 Pu.W (klf) 0.0 0.0 0.0 23.6 12.0 0.3 -11.3 -23.0 0.0 0.0 0.0 Mu,W (ft -k) 0 0 0 0 -2 -8 -13 -16 -16 -17 -17 Vu(kips) 0 0 0 0 -9 -12 -9 -1 -1 -1 -1 .w Pu,t (ksf) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 Mut(ft-k) 0 0 -1 -1 -2 •4 -5 -7 -9 -12 '-14 Vu,t (kips) 0 -1 -1 -2 -2 -3 -3 -4 -5 -5 -6 qu (ksf) -27.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Mu,q (ft -k) 0 3 6 8 12 16 19 22 25 26 31 Vu.q (kips) 0 6 6 6 6 6 6 6 6 6 6 £ Mu (ft -k) 0 3 5 6 8 4 0 -1 -1 0 0 £ Vu -6 2 1 1 0 10 5 0 _ OM -5 10 0 ®V -10 0.85f', 1- 1-0.3 M. 'I l 2 f' Where P = P min = 0.0018 . fy 0.85/.3, f C su Pnux = = 0.0129 [Satisfactory] f y CU+Et Location Mu,max d (in) (�regD PprovD Vu,max �Vc = 2 � b d (f�)os ' Top Longitudinal -1 ft -k 27.69 0.0000 0.0007 8 kips 72 kips Bottom Longitudinal 8 ft -k 27.69 0.0018 0.0018 8 kips 72 kips Bottom Transverse 0 ft -k / ft 27.18 0.0000 0.0000 1 kips / ft 28 kips/ ft (kips) 0 6 5 5 -5 -8 -6 2 1 1 0 Location Mu,max d (in) (�regD PprovD Vu,max �Vc = 2 � b d (f�)os ' Top Longitudinal -1 ft -k 27.69 0.0000 0.0007 8 kips 72 kips Bottom Longitudinal 8 ft -k 27.69 0.0018 0.0018 8 kips 72 kips Bottom Transverse 0 ft -k / ft 27.18 0.0000 0.0000 1 kips / ft 28 kips/ ft WML PROJECT: `Wetzel PAGE: CLIENT: DESIGN BY: JOB NO.: :SWC DATE: REVIEW BY: r...,+:.,.. n---- --f,Chnnr W%11Racnrl nn A(:1 31R418; INPUT DATA WALL LENGTH WALL HEIGHT WALL THICKNESS FOOTING LENGTH FOOTING WIDTH FOOTING THICKNESS FOOTING EMBEDMENT DEPTH ALLOWABLE SOIL PRESSURE DEAD LOAD AT TOP WALL LIVE LOAD AT TOP WALL TOP LOAD LOCATION WALL SELF WEIGHT LATERAL LOAD TYPE (0=wind,l=seismic) SEISMIC LOADS AT TOP (E/1.4, ASD) P,. Lw = 2 ft h = 10. ' ft F t = .4in L= 4.,. ft Pw L1 = 1 '" ft h B = 2.56 ft T= 31 in I Pf D = : ,2.08 . ft - qa = 1.5 . ksf Pr,DL = 1.852 kips Pr,LL = ' ':1.456 -. kips L 1 L w - a =.. 0 ft L Pw = .: 0.364 : kips 1.:: seismic F =.":`0.525 :j'kips THE FOOTING DESIGN IS ADEQUATE. M = ' 0 ft -kips CONCRETE STRENGTH fc- _ . -2.5. ! . ksi REBAR YIELD STRESS fy 60 ksi TOP BARS, LONGITUDINAL 2' # :5'_ BOTTOM BARS, LONGITUDINAL S # 5 BOTTOM BARS, TRANSVERSE # 3 _ @ ..24 in o.c. ANALYSIS CHECK OVERTURNING FACTOR (IBC 06 1605.2.1, 1801.2.1, & ASCE 7-05 12.13.4) F =MR/ Ma = 1.62 > 1.4 x 0.75 / 0.9 for seismic Where Pf = 3.835733 kips (footing self weight) Mo = F (h + D) + M = 6 ft -kips (overturning moment) MR = (Pr,DL) (Li + a) + Pf (0.5 L) + Pw (L1 + 0.51-w) = 10 SOIL CAPACITY (ALLOWABLE STRESS DESIGN) Ps = 2.645333 kips (soil weight in footing size) P = (Pr,DL + Pr,LL) + Pw + (Pt - Ps) = 4.88 kips (total vertical net load) MR = (Pr,DL + Pr, LL) (1-1 + a) + Pf (0.5 L) + Pw (L1 + 0.5Lw) = 12 e = 0.5 L- (MR - /MO) / P = l 0.89 ft (eccentricity from middle of footing) PI 1+ L I = for e< L q"AX BL 6 2P for e> L _ 1.15 ksf 3B(O.SL-e)' 6 Where e = 0.89 ft, > (L / 6) FOOTING CAPACITY (STRENGTH DESIGN) MU,R = 1.2 [Pr,DL (1-1 + a) + Pf (0.5 L) + Pw (L1 + 0.51-j + 0.5 Pr, LL(L1 + a) _ MU10 = 1.4 [F(h + D) + M) = 9 ft -kips Pu = 1.2 (Pr,DL + Pf + Pw) + 0.5 Pr LL = 8 kips eu = 0.51-- (MU,R - Mu.o) / Pu = 1.48 ft P 1+6e., L . .for e.:r. L q, .MAX = BL 6 = 3.98 ksf 2P,for e., > 3B(0.5L - e„) ' 6 < _= Not Required [Satisfactory] ft -kips (resisting moment without live load) ft -kips (resisting moment with live load) < 4/3qa [Satisfactory] 13 ft -kips 0 qu,nux Pu w M Mu,max d (in) PregD (�provD Vu,max �Vc = 2 � b d (f�)o.s Top Longitudinal -1 ft -k 27.69 (cont'd) BENDING MOMENT & SHEAR AT EACH FOOTING SECTION 72 kips Bottom Longitudinal 4 ft -k 27.69 0.0018 0.0018 Section 0 1/10 L 2/10 L 3/10 L 4/10 L 5/10 L 6/10 L 7/10 L 8/10 L 9/10 L L Xu (ft) 0 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00 Pu,W (klf) 0.0 0.0 0.0 15.9 6.8 1.7 -5.4 -12.5 0.0 0.0 0.0 Mu,W (ft-k) 0 0 0 0 -3 -7 -11 -14 -16 -17 -19 Vu,W (kips) 0 0 0 -4 -8 -11 -10 -6 -3 3 -3 Pu,f (ksf) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 Mu,f (ft-k) 0 0 0 -1 -1 -2 -3 -5 -6 -7 -9 Vu,{(kips) 0 0 -1 -1 -2 -2 -3 -3 -4 -4 -5 qu (ksf) -4.0 M„,q (ft -k) 0 1 3 5 9 12 15 18 21 25 28 Vu,q (kips) 0 4 6 8 8 8 8 8 8 8 6 E Mu (ft -k) 0 1 2 4 4 3 1 -1 0 0 0 £ Vu (kips) 0 3 5 3 -2 -5 -5 -1 1 0 0 6 4 2 - _ 0 OM -2 10 5 0 OV -5 -10 p O.85f� 1- 1- u O.383bdZf� Where P = P min = 0.0018 fy 0.85,3. f Pn�ax = = 0.0129 [Satisfactory] fy 6u+�t Location Mu,max d (in) PregD (�provD Vu,max �Vc = 2 � b d (f�)o.s Top Longitudinal -1 ft -k 27.69 0.0000 0.0007 5 kips 72 kips Bottom Longitudinal 4 ft -k 27.69 0.0018 0.0018 5 kips 72 kips Bottom Transverse 0 ft -k / ft 27.19 0.0000 0.0000 1 kips / ft 26 kips / ft -3.0 -2.0 -0.9 0.0 0.0 0.0 0.0 0.0 O.0 0.0 M„,q (ft -k) 0 1 3 5 9 12 15 18 21 25 28 Vu,q (kips) 0 4 6 8 8 8 8 8 8 8 6 E Mu (ft -k) 0 1 2 4 4 3 1 -1 0 0 0 £ Vu (kips) 0 3 5 3 -2 -5 -5 -1 1 0 0 Location Mu,max d (in) PregD (�provD Vu,max �Vc = 2 � b d (f�)o.s Top Longitudinal -1 ft -k 27.69 0.0000 0.0007 5 kips 72 kips Bottom Longitudinal 4 ft -k 27.69 0.0018 0.0018 5 kips 72 kips Bottom Transverse 0 ft -k / ft 27.19 0.0000 0.0000 1 kips / ft 26 kips / ft WML PROJECT: Wetzel PAGE: CLIENT: ' DESIGN BY: JOB NO.: .SWD DATE: REVIEW BY: Pnnfinn nacinn of Shear Wall Based on;ACI 318-05` . INPUT DATA WALL LENGTH WALL HEIGHT WALL THICKNESS FOOTING LENGTH FOOTING WIDTH FOOTING THICKNESS FOOTING EMBEDMENT DEPTH ALLOWABLE SOIL PRESSURE DEAD LOAD AT TOP WALL LIVE LOAD AT TOP WALL TOP LOAD LOCATION WALL SELF WEIGHT LATERAL LOAD TYPE (O--vind,l=seismic) SEISMIC LOADS AT TOP (E/1.4, ASD) Pr ... Lw= -. " 2 _ft . to _ u h = 10 ft _ F t = 4 in L = 4 fth I Pw L1= 1 ft I11 B = 2.56 It T= 31 . in Pf D = 2.08 It D qa = 1.5 . ksf Pr,DL = Pr,LL = . 2.754 2.163 kips kips - L 1 i L w - a=: -0.5 It L PW =' 0.384 kips 1 ' . seismic F= 0.656.. kips THE FOOTING DESIGN IS ADEQUATE. M = . - 0. -' : ft -kips CONCRETE STRENGTH fc'2:5 ksi REBAR YIELD STRESS fy=. :.'-60 ; ksi TOP BARS, LONGITUDINAL 2 # 5 BOTTOM BARS, LONGITUDINAL 5 # 5 . BOTTOM BARS, TRANSVERSE # 3 @ 24 in o.c. ANALYSIS CHECK OVERTURNING FACTOR (IBC 06 1605.2.1, 1801.2.1, & ASCE 7-05 12.13.4) F =MR/ Mo = 1.59 > 1.4 x 0.75 / 0.9 for seismic Where Pf = 3.835733 kips (footing self weight) Mo = F (h + D) + M = 8 ft -kips (overturning moment) MR = (Pr,DL) (L1 + a) + Pf (0.5 L) + Pw (L1 + 0.5LW) = ' 13 SOIL CAPACITY (ALLOWABLE STRESS DESIGN) PS = 2.645333 kips (soil weight in footing size) P = (Pr,DL + Pr LL) + Pw + (Pf - PS) = 6.49 kips (total vertical net load) MR = (Pr',DL + Pr, LL) (1-1 + a) + Pf (0.5 L) + Pw (1-1 + 0.51-w) = 16 e = 0.5 L - (MR - /MO) / P = l 0.78 ft (eccentricity from middle of footing) PI 1+ L I l iii , for e< L_ L gmAy = BL 6 2P for e> z' 1.39 ksf - 3B(0.5L-e)' 6 Where e = 0.78 It, > (L / 6) K FOOTING CAPACITY (STRENGTH DESIGN) Mu,R = 1.2 [Pr,DL (L1 + a) + Pf (0.5 L) + Pw (1-1 + 0.51-w)] + 0.5 Pr. LL(L1 + a) _ M,,,o = 1.4 [F(h + D) + M] = 11 ft -kips Pu = 1.2 (Pr DL + Pf + Pw) + 0.5 Pr, LL = 9 kips e„ = 0.51-- (Mu,R - Mu,o) / Pu = 1.41 It L for e„ < L q„MAX = BL 6 = 4.14 ksf 2 P,,for e„ > 6 3B(O.SL - e.) , „)' < == Not Required [Satisfactory] ft -kips (resisting moment without live load) ft -kips (resisting moment with five load) < 4/3qa [Satisfactory] 17 ft -kips 0 q u,na x Pu,w Location 0.85E Mu,max d (in) PregD PprovD Vu,max �Vc = 2 � b d (f�)°'S Top Longitudinal -1 ft -k 27.69 (cont'd) BENDING MOMENT & SHEAR AT EACH FOOTING SECTION 6 kips 72 kips Bottom Longitudinal 5 ft -k 27.69 0.0018 Section 0 1/10 L 2/10 L 3/10 L 4/10 L 5/10 L 6/10 L 7/10 L 8/10 L 9/10 L L Xu (ft) 0 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00 Pu.W (klf) 0.0 0.0 0.0 18.4 10.4 2.4 -5.5 -13.5 0.0 0.0 0.0 Mu,W (ft -k) 0 0 0 0 -3 -8 -13 -17 -19 -21 -23 Vu,w (kips) 0 0 0 4 -10 -12 -12 -8 -5 -5 -5 Pu,t(ksf) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 Mu,r (ft -k) 0 0 0 -1 -1 -2 -3 -5 -6 -7 .-9 -5 qu (ksf) -4.1 -3.2 -2.3 -1.4 -0.4 0.0 0.0 0.0 0.0 0.0 0.0 Mu,y (ft -k) 0 1 3 6 10 13 17 21 25 28 32 Vu,q (kips) 0 4 7 8 9 9 9 9 9 9 9 E Mu (ft -k) 0 1 3 5 5 3 1 -1 0 0 0 £ Vu (kips) 0 3 6 3 -2 -5 -5 -2 1 0 0 6 4 1 s' 0 Elm -2 10 5 0 13V -5 -10 1- ] - M. 0.383bd 2 f Where P = P min = 0.0018 f Y 0.85/3, f C 8u PUAX = = 0.0129 [Satisfactory] .f y �u+Et Location 0.85E Mu,max d (in) PregD PprovD Vu,max �Vc = 2 � b d (f�)°'S Top Longitudinal -1 ft -k 27.69 0.0000 0.0007 6 kips 72 kips Bottom Longitudinal 5 ft -k 27.69 0.0018 0.0018 6 kips 72 kips Bottom Transverse 1 ft -k / ft 27.19 0.0000 0.0000 1 kips / ft 28 kips / ft Vu,f(kips) 0 0 -1 -1 -2 -2 -3 -3 -4 -4 -5 qu (ksf) -4.1 -3.2 -2.3 -1.4 -0.4 0.0 0.0 0.0 0.0 0.0 0.0 Mu,y (ft -k) 0 1 3 6 10 13 17 21 25 28 32 Vu,q (kips) 0 4 7 8 9 9 9 9 9 9 9 E Mu (ft -k) 0 1 3 5 5 3 1 -1 0 0 0 £ Vu (kips) 0 3 6 3 -2 -5 -5 -2 1 0 0 Location 0.85E Mu,max d (in) PregD PprovD Vu,max �Vc = 2 � b d (f�)°'S Top Longitudinal -1 ft -k 27.69 0.0000 0.0007 6 kips 72 kips Bottom Longitudinal 5 ft -k 27.69 0.0018 0.0018 6 kips 72 kips Bottom Transverse 1 ft -k / ft 27.19 0.0000 0.0000 1 kips / ft 28 kips / ft WM L PROJECT: Wetzel PAGE: CLIENT :DESIGN BY: JOB NO.: •SWE'DATE: REVIEW BY: rnrktinn. naQinn of ShPar Wall Based on ACI 318.05 INPUT DATA WALL LENGTH WALL HEIGHT WALL THICKNESS FOOTING LENGTH FOOTING WIDTH FOOTING THICKNESS FOOTING EMBEDMENT DEPTH ALLOWABLE SOIL PRESSURE DEAD LOAD AT TOP WALL LIVE LOAD AT TOP WALL TOP LOAD LOCATION WALL SELF WEIGHT LATERAL LOAD TYPE (0tivind,1=seismic) SEISMIC LOADS AT TOP (E/1.4, ASD) Lw = 2.67 ft Pr h = 15 It F t = 4 in I L = 4.67 It L1 = 1 ft h B = -2.56 It T = 31 in D =' 2.08.. ft- qa = 1.5. ' ksf D Pr,DL = 4.021 . kips Pr,LL = 3.16 kips L t a = 0.5; :. ft yy P,=' 0.641 : kips 1 seismic L F = . 0.274 . kips THE FOOTING DESIGN IS ADEQUATE. M 0 .. ft -kips CONCRETE STRENGTH f� 2:5 ksi REBAR YIELD STRESS fy = 60ksi TOP BARS, LONGITUDINAL 2-. ' # 5 BOTTOM BARS, LONGITUDINAL $ # 5 BOTTOM BARS, TRANSVERSE # 3 @ 24 in o.c. <_= Not Required ANALYSIS CHECK OVERTURNING FACTOR (IBC 06 1605.2.1, 1801.2.1, & ASCE 7-05 12.13.4) F = MR / Ma = 3.84 > 1.4 x 0.75 / 0.9 for seismic Where Pf = 4.478219 kips (footing self weight) Mo = F (h + D) + M = 5 ft -kips (overturning moment) MR = (Pr.DL) (L1 + a) + Pf (0.5 L) + Pw (1-1 + 0.51-w) = 18 CHECK SOIL CAPACITY (ALLOWABLE STRESS DESIGN) PS = 3.088427 kips (soil weight in footing size) P = (Pr,DL + Pr,LL) + Pw + (Pf - Ps) = 9.21 kips (total vertical net load) MR = (Pr,DL + Pr, LL) (1-1 + a) + Pf (0.5 L) + Pw (1-1 + 0.51-w) = 23 • e = 0.5 L - (MR - (Mo) / P = \ 0.38 ft (eccentricity from middle of footing) PI 1+ L J L 6 l 9naax = BL for e << 6 2P for e > L _ 1.14 kst 3B(0.5L - e)' 6 Where e= 0.38 ft, < (L / 6) CHECK FOOTING CAPACITY (STRENGTH DESIGN) MU.R = 1.2 IP,,DL (L1 + a) + Pf (0.5 L) + Pw (1-1 + 0.51-j] + 0.5 Pr, LL(Lt + a) _ Mu,o = 1.4 [F(h + D) + M] = 7 ft -kips Pu = 1.2 (Pr,DL + Pf + Pw) + 0.5 Pr. LL = 13 kips eu = 0.51-- (MU,R - Mu,o) / Pu = 0.95 ft e C 6„ L . .for e„ < L q„,MAX = BL 6 = 2.36 ksf 2P" L ") 3B(0.5L -e' for e" > 6 [Satisfactory] ft -kips (resisting moment without live load) ft -kips (resisting moment with live load) < 413ga [Satisfactory] 24 ft -kips N 4u,max Mu Mu,max d (in) PreaD PprovD Vu,max �Vc = 2 � b d (f� )o.s Top Longitudinal 0 ft -k 27.69 (cont'd) BENDING MOMENT & SHEAR AT EACH FOOTING SECTION 4 kips 72 kips Bottom Longitudinal 3 ft -k 27.69 0.0018 Section 0 1/10 L 2/10 L 3/10 L 4/10 L 5/10 L 6/10 L 7/10 L 8/10 L 9/10 L L Xu (ft) 0 0.47 0.93 1.40 1.87 2.34 2.80 3.27 3.74 4.20 4.67 Pu,W (klf) 0.0 0.0 0.0 9.7 6.2 2.7 -0.8 -4.3 0.0 0.0 0.0 Mu w (ft-k) 0 0 0 -1 -4 -8 -13 -18 -22 -25 , -29 Vu w (kips) 0 0 0 -4 -8 -10 -11 -10 -7 -7 -7 Pu,t(ksf) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 Mui(ft-k) 0 0 -1 -1 -2 -3 -5 -6 -8 -10 -13 Vu,t(kips) 0 -1 -1 -2 -2 -3 -3 -4 -4 -5 -5 qu (ksf) -2.4 -2.1 -1.8 -1.6 -1.3 -1.0 -0.6 -0.5 -0.2 0.0 0.0 Mu.q (ft-k) 0 1 2 5 9 13 18 24 29 35 41 Vu,q 12 13 13 £ Mu (ft -k) 0 1 2 3 3 2 1 0 0 0 0 E Vu (kips) 0 2 4 1 -2 -3 -3 -1 1 1 0 4 2 0 - - OM -2 5 0 ©V -5 0.85f� ]- 1- 0.383bdzf Where P = P min = 0.0018 fy 0.85f3,fc Eu P�ttx = = 0.0129 [Satisfactory] .f y Eu+Et Location Mu,max d (in) PreaD PprovD Vu,max �Vc = 2 � b d (f� )o.s Top Longitudinal 0 ft -k 27.69 0.0000 0.0007 4 kips 72 kips Bottom Longitudinal 3 ft -k 27.69 0.0018 0.0018 4 kips 72 kips Bottom Transverse 1 ft -k (ft 27.19 0.0000 0.0000 1 kips / ft 28 kips / ft (kips) 0 3 5 7 9 10 11 12 12 13 13 £ Mu (ft -k) 0 1 2 3 3 2 1 0 0 0 0 E Vu (kips) 0 2 4 1 -2 -3 -3 -1 1 1 0 Location Mu,max d (in) PreaD PprovD Vu,max �Vc = 2 � b d (f� )o.s Top Longitudinal 0 ft -k 27.69 0.0000 0.0007 4 kips 72 kips Bottom Longitudinal 3 ft -k 27.69 0.0018 0.0018 4 kips 72 kips Bottom Transverse 1 ft -k (ft 27.19 0.0000 0.0000 1 kips / ft 28 kips / ft WM L PROJECT: .Wetzel PAGE: CLIENT: DESIGN BY: JOB NO.. ,SWF DATE: REVIEW BY: . Footing Desian'of:Shear. Wall Based on AGI 318-05 _'y i INPUT DATA WALLLENGTH WALL HEIGHT WALL THICKNESS FOOTING LENGTH FOOTING WIDTH FOOTING THICKNESS FOOTING EMBEDMENT DEPTH ALLOWABLE SOIL PRESSURE DEAD LOAD AT TOP WALL LIVE LOAD AT TOP WALL TOP LOAD LOCATION WALL SELF WEIGHT LATERAL LOAD TYPE (0=wind,I=seismic) SEISMIC LOADS AT TOP (E11.4, ASD) P, Lw = X2.33 ft i- _ u h = 15 ft F 1 t = 4 in T i M L = 4.33 ft Pw L, = 1 ft h 1 B =. 2.56 ft 1 T = 31 in I- PF D = ' . 2.08 ft qa =; 1.5 : ksf D Pr,DL = Pr,LL = ` `2.721 2:137 - kips kips L 1 L w a=: 1..83ft L Pw = . 0.659 ' kips 1 seismic F = -0.887 kips THE FOOTING DESIGN IS ADEQUATE. M = .. 0 ft -kips CRETE STRENGTH fc' = `i .2:5 ksi 4R YIELD STRESS fy = i '.60 ksi BARS, LONGITUDINAL -2 : # 5 rOM BARS, LONGITUDINAL 5:. `' # 5 rOM BARS, TRANSVERSE # 3 @ 24 in o.c. kLYSIS CK OVERTURNING FACTOR (IBC 06 1605.2.1, 1801.2.1, & ASCE 7-05 12.13.4) F =MR/ Ma = 1.18 > 1.4 x 0.75 / 0.9 for seismic Where Pf = 4.152181 kips (footing self weight) Mo = F (h + D) + M = 15 ft -kips (overturning moment) MR = (Pr,DL) (L, + a) + Pf (0.5 L) + Pw (L, + 0.51_w) = 18 SOIL CAPACITY (ALLOWABLE STRESS DESIGN) Ps = 2.863573 kips (soil weight in footing size) P = (Pf,DL + Pr,LL) + Pw + (Pf - Ps) = 6.71 kips (total vertical net load) MR = (Pr,DL + Pr, LIQ (L, + a) + Pf (0.5 L) + Pw (L, + 0.5Lw) = 24 e = 0.5 L- (MR - /Mo) / P = l 0.85 ft (eccentricity from middle of footing) PI 1+ L) L __ l BL . .for e< 6 gmAX 2P L = 1.33 ksf for e>- 3B(0.5L-e)' 6 Where a= 0.85 ft, > (L / 6) FOOTING CAPACITY (STRENGTH DESIGN) Ma,R = 1.2 IPr,0L (L, + a) + Pf (0.5 L) + Pw (1-1 + 0.51-w)) + 0.5 Pr, LL(L, + a) _ Mu,o = 1.4 [F(h + D) + M) = 21 ft -kips Pu = 1.2 (Pr,DL + Pf + Pw) + 0.5 Pr, LL = 10 kips ea = 0.5L - (Mu,R - Mu,o) / Pu = 1.84 ft P. 1+_6e,, L for e„ 5 L q,,,,NAX = BL 6 = 7.89 ksf 2P„L for e„ > 6 < = Not Required [Satisfactory] ft -kips (resisting moment without live load) ft -kips (resisting moment with live load) < 4/3ga [Satisfactory] 25 ft -kips 0 qu,nax Pu W (cont'd) BENDING MOMENT & SHEAR AT EACH FOOTING SECTION Section 0 1/10 L 2/10 L 3/10 L 4/10 L 5/10 L 6/10 L 7/10 L 8/10 L 9/10 L L Xu (ft) 0 0.43 0.87 1.30 1.73 2.17 2.60 3.03 3.46 3.90 4.33 Pu,W (klf) 0.0 0.0 0.0 17.2 9.7 2.1 -5.4 -12.9 0.0 0.0 0.0 Mu,W (ft -k) 0 0 0 -1 -5 -11 -17 -22 -25 -27 -29 Vu,W (kips) 0 0 0 -6 -12 -14 -14 -10 -5 -5 -5 Puf(ksf) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 Mu,f (ft -k) 0 0 0 -1 -2 -3 -4 -5 -7 -9 -11 Vu,f (kips) 0 0 -1 -1 -2 -2 -3 -3 -4 4 -5 qu (ksf) -7.9 4.4 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Mu.q (ft -k) 0 2 5 10 14 18 23 27 31 36 40 Vu.q (kips) 0 7 10 10 10 10 10 10 10 10 10 E Mu (ft -k) 0 2 5 8 7 5 2 0 0 0 0 E Vu (kips) 0 6 9 3 -4 -7 -7 -3 1 0 0 10 5 0 -5 10 0 -10 13M 13V Location Mu,max d (in) PregD PprovD Vu,max OV. = 2 0 b d (f.,)0.5 Top Longitudinal 0 ft -k 27.69 0.0000 0.0007 9 kips 72 kips Bottom Longitudinal 8 ft -k 27.69 0.0018 0.0018 9 kips 72 kips Bottom Transverse 1 ft -k / ft 27.19 0.0000 0.0000 1 kips / ft 28 kips / ft 0.85f.I- i- M. z Where 0.383bd f P = l (' P min = 0.0018 J y 0.85/3, f C eu P� _ = 0.0129 [Satisfactory] f y Eu+Et SW 3 Sw4 sw 5 5w6 .31Z,� 1 ��(��� 3 331-%Sfj� 3Ei(3)k33���235 rw=3l'(G•75�19,5/2) ^to59 F,�,5/ = 322'` = �' �. r r� 21 -� 7.2 (esu ,, L i q, 5/z -N ` X43 , (21/v -j 52S I^, a /�� S t' ai= 1211 =3-7.,ZI Fs �5(19.5/,� �G3(l9•s/i� -1C5O� �S'�3 t3 L =614 2.1 �3) LTPA �s< i 24/21 6 8 6 I /x) / �G7 p 25 x 14,j C. 1 �t � .A r�'fNs �2��t1�.�ool(1 5721S.UC►•35*/,i W5=�25x17.5]O,11(I.�.,i=rw*11 5TA G G='>3"�, Ga 2 °J (b)L tP 1560 13 5 '� 3 3a' 18,0' Il.n��'o 21.c9' 3.0 13.5 M o N gyV7 , , / 3 525/G�o �'r' 14 ) In In i 1 r ...... 5 Sr/It$1O � 3� 3�'•' 33 'L%',}' SW -•Ql � rh ' u t(i i � 3 .-.F = (06 '1(� ! aQ¢/Z 2'7L1 -/W L _ 2:74-, ^j -------r--------- '• -- , - - m o SWC ��-7O�17,5/z.�-Ftp + >;=279 •` I Nc It o' `U M i lop -t; w 3�� 6 u o - = cJ i 1 n '�"• / I , ` , / 02 2 CZ (17 �(4 3 I WD I—,I , w s i , , /78 I, O P� l ) e m 4_ M 2E .5 ,. � � y O , / C', G l � .r / cl Li imoi-/-`� [Ecl 75�!`�/i� a �� - ao 3 �5 r w u 1 17 ��49 U 11 Q , C �- �) L --7f-4- �o l d Qxn �4 9 r, a �12Gtlo I r - - - - - - - - - - - -, 'Cil ! 7 2-1)(7) I O y----------,--------- / ( - 525 i • I � x I i I ++ 1 <in -1 , c 1 o r� 0 D�