12-0147 (AR)P.O. BOX 1504 VOICE (760) 777-7012
78-495 CALLE TAMPICO FAX (760) 777-7011
LA QUINTA, CALIFORNIA 92253 BUILDING &.SAFETY DEPARTMENT. INSPECTIONS (760) 777-7153
BUILDING PERMIT
Date: 4/17/12
CApplication'Numbeii I2-00000147 Owner.
Property -Address: 52100- AVENIDA' VILLA RW REAL ESTATE, INC.
APN: 773-234-006-17 000000- 52700 AVENIDA ALVARADO
Application description: ADDITION RESIDENTIAL LA QUINTA, 'CA 92253 %n1
Property Zoning: COVE RESIDENTIAL
Application valuation: 10000
APR 18 2012
— Contractor:
Applicant:' Architect or Engineer: HUITRON CONSTRUCTION
50427 RIGO COURT CITY opL.AQUINTA
COACHELLA, CA 92236 FINANCE DEPT.
a I 1A1" (760) 398-3227
I\I{X Lic.. Nq. c 92619.0 ,
VVV �1 v
----------------------------------------------------
LICENSED CONTRACTO 'S DECLARATION _ WORKER'S COMPENSATION DECLARATION
hereby affirm under penalty of peri ry hat I am licensed under visions of Chapter 9 (commencing with hereby affirm under penalty of perjury one of the following declarations:
Section 7000) of Division 3 of the B si ss and rofessionals C , and y License is in full force and effect. _ I have and will.maintain a certificate of consent to"self-insure for workers' compensation, as provided
License Class: B Lice s No.: 26190 for by Section 3700 of the Labor Code, for the performance of the work for which this permit is
n r issued.
Date>(/Contractori _ I have -and will maintain workers' compensation insurance, as required by Section 3700 of the Labor
Code, for the performance of the work for which this permit is issued. My workers' compensation
OWNER -BUILDER DECLARATION - _ insurance. carrier and policy number are: ..
" I hereby affirm under penalty of p rjury that I am exempt from the Contractor's State License Law for the Carrier STATE FUND A Policy Number 0013718-2011
following reason (Sec. 7031 .5, Business and Professions Code: Any city or county that requires a permit to, _ I certify that, in the. perfor a e of theworkfor which this ermit is 'sued, I shall not employ any
- construct; alter, improve, demolish, or repair any structure, prior to -its -issuance, also requires the applicant for -the - -- - -- 'person"in any manner to become subject to thew kers' co pensation laws of California, - _- - -
permit to file a signed statement that he or she is licensed pursuant to the provisions of the Contractor's State - and agree that, if, I sho Id come subject to the wor ' coJ�provesionsof SectionLicense Law (Chapter 9 (commencing with Section 7000) of Division 3 -of the Business and Professions Code) or - 3700 of the Labor Cc , hall fort ithcomply ole
that he or she is exempt therefrom.and the basis for the alleged exemption. Any violation of Section 7031.5 by _- e -
any applicant for a permit subjects the applicant to a civil penalty of not more than five hundred dollars ($500).: t Dat - �) `Applicant: -
Ll
. (_ 1 I, as owner of the property, or my employees with wages as their sole compensation, will do the work, and ' ' �" - - '-'
the structure is not intended or offered for sale (Sec. 7044, Business and Professions Code: The WARNING: FAILURE TO SECURE RS' COMPENSATION OVERAGE IS UNLAWFUL, AND SHALL
Contractors' State License Law does not apply to an owner of property who builds or improves thereon, C SUBJECT AN EMPLOYER TO CRI INAL PENALTIES AND CIVIL FINES UP TO ONE HUNDRED THOUSAND. - - and who does the work himself or herself through his or her own employees, provided that the - DOLLARS ($100,000). IN ADDITION TO THE COST OF COMPENSATION, DAMAGES AS PROVIDED FOR IN
improvements are not intended or offered for sale. If, however, the building or improvement is sold within SECTION 3706 OF THE LABOR CODE, INTEREST, AND ATTORNEY'S FEES.
one year of completion, the owner -builder will have the burden of proving that he or she did not build or _
improve for the purpose of sale.). - APPLICANT ACKNOWLEDGEMENT
(_ 1 I, as owner of the property, am exclusively contracting with licensed contractors to construct the project (Sec. IMPORTANT Application is hereby made to the Director of Building and Safety for a permit subject to the
7044„ Business and Professions Code: The Contractors' State License Law does not apply to an owner of conditions and restrictions set forth on this application. - -
gr9wrtY who builds or imgroyes thereon, and who contracts for the cwiecw with a csntractgr(s) licensed 1, Each Persgn won whsle behalf this agglicatign is made, each aerson at whgse request and for
pursuant to the Contractors' State License Law.). _ _ - whose benefit work -is performedunderor pursuant to any permit issued as a result of this application,
(_) I am exempt under Sec. , BAP.C. for this reason the owner, and the applicant, each agrees to, and shall defend, indemnify and hold harmless the City
of La Quinta, its officers, agents and employees for any act or omissionrelated to the work being
. performed under or following issuance of this permit.
.Date: Owner: - 2. Any permit issued as a result, of this application becomes null and void if work is not commenced
- within 180 days from date of issuance of such p rmit, or cessation of w6for80will subjectCONSTRUCTION LENDING AGENCY permit to cancellation.I hereby affirm under penalty of perjury that there is a construction lending agency for the performance of the I certify that I have read this application and state that th a ve infor ion is correcly with all
workfor which this permit is issued (Sec. 3097, Civ. C.). ' ' city and county. ordinances and state laws relating to bui i g construe n, and herebntatives
of this/,county to enter upon upon the above-mentioned prop fo inspec n purposes. -
Lender's Name: _ _ - 1 7-/ �1 - -LO A.7
-
1^ Date.. ature (Applicant or Age
Lender's Address: - -
LQPERMIT ' -
APplication.Number .12-00000147
----- Structure Information' 108SF ADDITION/VB/RES-3/CLASS A-FR
[ENG)_-----
Other struct info.. . . . . CODE EDITION 2010
# BEDROOMS
1.00; .
FLOOD ZONE no
1ST FLOOR-SQUARE FOOTAGE'
-----------------------------------------------------------------------------
108..00
Permit _, ., BUILDING PERMIT
_
Additional desc - .
Permit Fee ii7.00 Plan Check Fee
76.05
Issue Date Valuation
10000
Expiration Date— 10/14/12
_ Qty Unit,Charge Per
Extension
BASE•FEE
45.00
8.00 9.0000 THOU ,BLDG 2,001-25,-000
72.00
Permit ELECT,r ADD/ALT/REM
Additional desc .
Permit Fee . . 18.78 Plan Check Fee
4.7.0
Issue Date . . . . Valuation
0.
" Expiration Date 10/14/12
Qty Unit Charge Per
Extension
BASE 'FEE
15.00
108.00 .0350 ..ELEC NEW RES - 1' OR 2 FAMILY
3.78
Permit MECHANICAL .
Additional desc.._ _
Permit Fee . . . . 19.50 Plan Check Fee
4.88
Issue Date Valuation
0
Expiration Date 10/14/12
Qty Unit Charge Per
Extension
BASE FEE".
15.00
1.00 4.5000 EA MECH VENT,INST/ DUCT ALT
4.50
Special Notes and Comments
108SF ADDITION AND REMODEL AT (2) REAR
BE6ROOMS/VB/RES-3/CLASS A [ENGINEERED]
TIIIO RDRMIT DODO 140T INCLUDE ALTrr,.ATION `
' TO EXISTING FRAMING OR MEP THROUGHOUT
REST OF THE DWELLING. 2010 CALIFORNIA
BUILDING CODE.
April 16, 2012 9:46:48 AM AORTEGA
APPlication'Number
. . . .
12-_00000147'
--------------------------------------------------------------
Other Fees . .
.
BLDG STDS ADMIN (SB1473)
1.00
ENERGY REVIEW FEE"
7:61
STRONG MOTION (SMI):- RES
."1.00
Fee summary
Charged
Paid Credited
---- - - - - -- --
Due
-- - - - - - - - - - - - - - --
Permit Fee Total
---- - - - - --
', 155.2"8
.00 .00
155.28
Plan Check Total
.85.6.3
.00 .00
85.63
Other Fee. Total
9.61
.00 .00
9.61.
Grand Total"
250.52
.00 .00
250.52.
- LQPERMIT ..
-
Bin. # �...
�It}/. Of :. is7i1ldlo
Bulldlgg 8r Safety Division .. .
. •P.0 -Box 1.504,78-495 Calle Tampico ..
La.Quirita, CA 92253 - (760) 777-7012
Building Permit Application and Tracking Sheet
Permit # n
�� `
Project Address: s
Owner's Name:.
A. P. Number.
Address:
Legal Description:
City, ST, Zip:
Contractor: iJS11M.lac
Telephone: 01 -
Address:
Address:
Project Description:
Arl
City, ST, Zip: I �2��
Telephone: p L s� Qq Wa?
�i`rl Al 1•'
Gl < lJ�� `.
a*-.,
State Lic. # : j b
City Lie'. #;
Arch., Engr., Designer.
(r, VP
Address:�\
P'\� -1&kno l
City., ST, Zip:
Telephoner
-
....... .. w »%u
Construction Type:. Occupancy: � UY�tnfi
State Lic. #:f
Project type (circle one): New d'u Alter Repair Demo
Name of Contact Person:
Sq. Ft.: 0
# Stories:
# Units:
Telephone # of Contact Person:
Estimated Value of Project:
APPLICANT: DO NOT WRITE BELOW THIS UNE
tl
Submittal
Req'd'Rec'd
TRACKNG PERMIT FEES
Plan Sets
a
Plan Check submitted * Amount
Structural Cales.
Reviewed, ready for corrections Plan Cheri+ Deposit. .
Truss C21cs.
Called Contact Person Plan Checti Balance
Title 14 Coles.
Pians picked up
' Construction
Flood plain plan
Plans resubmitted.. Mechatdca!
Grading plan
2°" Review, ready for correcti tissue Electrical
Subcontactor List
Called Contact Person Plumbing
Grant Deed
Plans picked up S.M.I.
H.O A Approval
Plans resubmitted Grading
IN HOUSE:-
'"' Review; ready for correcdo'nsPissue Developer IinpactFee
Planning Approval.
Called Contact Person I.P.P.
Pub. Wks. Appr
Date of permit issue
School Fees
Total Permit Fees
02117 yL2 -''fj�dXO�-. _*A,// --;-
W,
Off,I STS,
CERTIFICATE OF'COMPLIANCE'
Desert Sands Unified School District
. x 47950 Dune Palms Road �', Q BERMUDA DUNES "t-"
Cn RANCHO MIRAGE
` Date 4/17/12 , La Quinta, CA 92253 INDIAN WELLS
.ti, ' _ PALM DESERT ,y
$INQUINTA
DIO515 v> L
No. 31255 (760) 771
. �yQINDlO yr�
Owner RW Real Estate APN # 773-234-006_ ' r
Address '- Jurisdiction La Qu'inta
City Zip Permit #`
Tract #' s No. of Units 1
Type r Residential Addition '
• Lot # No. Street S.F. Lot # No. Street S.F.
Unit 1 52100 Avenida Villa 108 Unit 6
Unit 2 - - Unit 7 a'
Unit 3 Unit 8
Unit 4 Unit 9
Unit 5 f. Unit 10 I'` • i
- • 4 •t
Comments . 4
At the present time, the Desert Sands Unified School District does not collect fees on garages/carports, covered patioshnralkways, residential additions under
500 square feet, detached accessory structures (spaces that do not contain facilities for living, sleeping, cooking, eating or sanitation) or replacement mobile
homes. It has been determined that the. above-named owner is exempt from paying school fees at this time due to the fdlowing reason:
r , •' Residential Addition 500 Sq Fret or Less
EXEMPT
This ceitifies that school facility fees imposed pursuant to *R ,
Education Code Section 17620 and Government Code 65995 Et Seq.
in the amount of $0.00. X 108., S.F. or $0.00 have been paid for the property listed above and that
building permits and/or Certificates of Occupancy for this square footage in this proposed project may now be issued.
Fees Paid By Exempt- Gustavo. Huitron Check No.
Name on the check Telephone 760-451-9960 "
# Funding Exempt
BY Dr. Sharon P. McGehee
Superintendent
Fee collected /exe p Y h McGilvlrey _ Payment Recd'
QverNnder
Signature
NOTICE: Pursuant to Gove medLe Section 020(d 1), this will serve to notify you that the 90-day.approval period in which you may protest the fees
or other payment identified above will begin to run fro a date on which the. building or installation permit for this project-4s issued, or from the date on
which those amounts are paid to the District(s) or to another public entity authorized to collect them on the District('s) behalf, whichever is earlier.
NOTICE: This Document NOT VALID"without embossed seal .
Embossed Original - Building Department Applicant Copy - Applicant/Receipt Copy - Accounting
I.' r a
BUILDING ENERGY ANALYSIS REPORT
PROJECT:
Joey Arsanto Res. Remodel/Addition
52100 Avenita Villa APN# 773234006
La Quinta, CA 92253
Project Designer:
Angel Gerardo p
52935 Avenita Mendoza
La Quinta, CA 92253
760-333-6374
Report Prepared by:
Gina Rose -Starkey
EQS, Inc.
42335 Washington St. #F-330
Palm Desert, CA 92211
MAK G.0 LJIL
Date: BY:
3/21 /2011
The EnergyPro computer program has been used to perform the calculations summarized in this compliance report. This program has approval and is
authorized by the California Energy Commission for use with both the Residential and. Nonresidential 2008 Building Energy Efficiency Standards.
This program developed by EnergySoft, LLC — www.energysoft.com.
Ener Pro 5.1 by Ener Sok User Number: 5862 RunCode: 2011-03-21 71 6:37:21 /D:
t
v
PERFORMANCE CERTIFICATE: Residential Part 1 of 5
CF -1 R
Project Name
Joey Arsanto Res. Remodel/Addition
Building Type m Single Family ❑ Addition Alone
❑ Multi Family ® Existing+ Addition/Alteration
Date
3/21/2011
Project Address
52100 Avenita Villa APN# 773234006 La
California Energy Climate Zone
CA Climate Zone 15
Total Cond. Floor Area
1,356
Addition
108
# of Stories
1
FIELD INSPECTION ENERGY CHECKLIST
❑ Yes ❑ No HERS Measures -- If Yes, A CF -4R must be provided per Part 2 of 5 of this form.
El Yes ❑ No Special Features -- If Yes, see Part 2 of 5 of this form for details.
INSULATION Area Special
Construction Type Cavity (ft) Features see Part 2 of 5 Status
Wall Wood Framed R-15 898 Existing
Slab Unheated Slab -on -Grade None 1,248 Perim = 128' Existing
Roof Wood Framed Attic R-19 1,248 Existing
Wall Wood Framed R-15 184 New
Slab Unheated Slab -on -Grade None 108 Perim = 24' New
Roof Wood Framed Attic R-19 108 New
FENESTRATION U- Exterior
Orientation Area(ft) Factor SHGC Overhang Sidefins Shades Status
Rear (E) 69.3 0.500 0.45 none none Bug Screen New
Right (S) 28.5 0.710 0.60 none none Bug Screen Existing
Front (W) 44.0 0.710 0.60 none none Bug Screen Existing
HVAC SYSTEMS
Ot . Heating Min. Eff Cooling Min. Eff Thermostat Status
1 Central Furnace 80% AFUE Split Air Conditioner 12.0 SEER Setback Existing
HVAC DISTRIBUTION Duct
Location Heating Cooling Duct Location R -Value Status
HVAC System Ducted Ducted Attic, Ceiling Ins, vented 4.2 Existing
WATER HEATING
Ot . Type Gallons Min. Eff Distribution Status
Ener Pro 5.1 by Ener Soft User Number- 5862 RunCode: 2011-03-21T16:37:2 ID:
Page 3 of 10
PERFORMANCE CERTIFICATE: Residential (Part 2 of 5) CF -1_R
Project Name
Joey Arsanto Res. Remodel/Addition
Building Type ® Single Family ❑ Addition Alone
❑ Multi Family ® Existing+ Add ition..Alteration
Date
3/21/2011
SPECIAL FEATURES INSPECTION CHECKLIST
The enforcement agency should pay special attention to the items specified in this checklist. These items require special written
justification and documentation, and special verification to be used with the performance approach. The enforcement agency
determines the adequacy of the justification, and may reject a building or design that otherwise complies based on the adequacy of
the special justification and documentation submitted.
HIGH MASS Design - Verify Thermal Mass: 804.0 ft2 Exposed Slab Floor, 3.500" thick at Exisitng House
HIGH MASS Design - Verify Thermal Mass: 444.0 ft2 Covered Slab Floor, 3.500" thick at Exisitng House
HIGH MASS Design - Verify Thermal Mass: 108.0 ft2 Covered Slab Floor, 3.500" thick at Addition
HERS REQUIRED VERIFICATION
Items in this section require field testing and/or verification by a certified HERS Rater. The inspector must receive a
completed CF -4R form for each of the measures listed below for final to be given.
EnerqvPro 5.1 by Ener Soft User Number: 5862 RunCode: 2011-03-21T16:37:2 ID: Page 4 of 10
PERFORMANCE CERTIFICATE: Residential Part 3 of 5 CF -1 R
Project Name
Building Type m Single Family ❑ Addition Alone
Date
Joey Arsanto Res. Remodel/Addition
❑ Multi Family 10 Existing+ Add itio•-i/Alteration
1312112011
ANNUAL ENERGY USE SUMMARY
Standard Proposed Margin
TDV kBtu/ft2- r
Space Heating 6.80 4.17 2.63
Space Cooling 133.54 121.56 11.98
Fans 29.75 26.95 2.80
Domestic Hot Water 21.70 21.70 0.00
Pumps 0.00 0.00 0.00
Totals 191.79 174.38 17.41
Percent Better Than Standard: 9.1%
BUILDING COMPLIES - NO HERS VERIFICATION REQUIRED
Fenestration
Building Front Orientation: (t9 270 deg Ext. Walls/Roof Wall Area Area
Number of Dwelling Units: 1.00 (W) 320 - 44
Fuel Available at Site: Natural Gas (N) ?88 0
Raised Floor Area: 0 (E) 320 69
Slab on Grade Area: 1,356 (S) 296 29
Average Ceiling Height: 8.0 Roof 1,356 0
Fenestration Average U -Factor. 0.61 TOTAL: 142
Average SHGC: 0.53 Fenestration/CFA Ratio: 10.5
REMARKS
STATEMENT OF COMPLIANCE
This certificate of compliance lists the building features and specifications needed
to comply with Title 24, Parts 1 the Administrative Regulations and Part 6 the
Efficiency Standards of the California Code of Regulations.
The documentation author hereby certifies that the documentation is accurate and complete.
Documentation Author
an EQS, Inc.
Com '
P Y
Address 42335 Washington St. #F-330 Name Gina Rose -Starkey 3/21/2011
City/State/ZipCity/State/Zip Palm Desert, CA 92211 Phone 760-218-3350 Signed Date
The individual with overall design responsibility hereby certifies that the proposed building design represented in this set
of construction documents is consistent with the other compliance forms and worksheets, with the specifications, and
with any other calculations submitted with this"permit application, and recognizes that compliance using duct design,
duct sealing, verification of refrigerant charge, insulation installation quality, and building envelope sealing require
installer testing and certification and field verification by an approved HERS rater.
Designer or Owner (per Business & Professions Code),
Company Angel Gerardo
Address 52935 Avenita Mendoza Name Angel Gerardo
City/State/Zip La Quinta, CA 92253 Phone 760-333-6374 Signed License # Date
Ener Pro 5.1 by Ener Soft User Number: 5862 RunCode: 2011-03-21 T16:37:2 ID: Page 5 of 10
CERTIFICATE OF COMPLIANCE: Residential .
• ' (Part 4 of 5) CF -1 R
Project Name
Joey Arsanto Res. Remodel/Addition
Building Type m Single Family '❑ Addition Alone
❑ Multi Family m Existing+ Addition/Alteration
Date
3/21/2011
OPAQUE SURFACE DETAILS
"
Surface IU
Type I Area
Insulation .
Factor Cavit Exterior Frame Interior Frame Azm Tilt 1 Status
Joint Appendix
- 4 Location/Comments
Wall
64
0.095 R-15
.0 90 Removec 4.3.1 A4
Exisitng House
Wall
192
0.095 R-15
0 90 Existing
4.3.1-A4
Exisitng House
Wall
163
0.095 R-15
90 90 Existing
4.3.1-A4
Exisitng House
Wall
.268
0.095 R-15
180 90 Existing
4.3.1-A4
Exisitng House
Wall
276
0.095 R-15
270 90 Existing
4.3.1-A4'
Exisitng House
Slab.
804
0.730 None
0 180 Existing
4.4.7-A1
Exisilng House
Slab
444 ' 0.730 None
0 180 Existing
4.4.7-A1
Exisitng House
Roof
1,248
0.048 R-19
0 0 Existing
4.2.1-A16
Exisitng House
Wall
96
0.095 R-15
0 90 New
14.3.1-A4
Addition
Wall
88
0.095 R-15
90 90 New
4.3.1-A4
Addition
Slab
108
0.730 None
0 180 New
4.4.7-A 1
Addition
Roof
108
0.048 R-19
0 . 0 New
4.2.1-A16
Addition
t
FENESTRATION SURFACE DETAILS
_ID
Type
Area U -Factor SHGC
'Azm Status t Glazing Type
Location/Comments "
1
Window
40.0 0.710 NFRC 0.60 NFRC 0 Removed Existing -
Exisitng House _ 4
2
Window
53.3 0.710 NFRC 0.60 NFRC 90 Removed Existing,
-
Exisitng House
3
Window
20.0 0.500 NFRC 0.45 NFRC 90 New Minimum
Exisitng House "
4
Window
13.3 0.500 NFRC 0.45 NFRC 90 New Minimum
Exisitng House
5
Window
13.8 0.710 NFRC 0.60 NFRC 90 Removed Existing
Exisitng House
6
Window
20.0 0.500 NFRC . 0.45 NFRC 90 New Minimum
Exisitng House
7
Window
4.5 0.710 NFRC 0.60 NFRC 180 Existing Existing
Exisitng House
8
Window
6.0 0.710 NFRC 0.60 NFRC 180 Existing Existing
Exisitng House
9
Window
18.0 0.710 NFRC 0.60 NFRC 180 Existing Existing
Exisitng House
10
Window
20.0 0.710 NFRC 0.60 NFRC 270 Existing Existing
Exisitng House r_
11
Window
24.0 0.710 NFRC 0.60 NFRC 270 Existing Existing
Exisitng House
12
Window
16.0 0.500 NFRC 0.45 NFRC 90 New Minimum
Addition
(1) Ll -Factor Type: 116-A = Default Table from Standards, NFRC = Labeled Value
2 SHGC Type:' 116-B = Default Table from Standards, NFRC = Labeled Value
EXTERIOR SHADING DETAILS
ID
Window
Exterior Shade Type "SHGC H t Wd
Ove hang '
Len H t LExt RExt
Left Fin
Dist Len
Right Fin
H t Dist Len H- t
1
Bug Screen
0.76 3.0 8.0 2.0 0.1 2.0 2.0
2
Bug Screen
0.76
3
Bug Screen
0.76
y
4
Bug Screen
0.76
5
Bug Screen
0.76
_
6
Bug Screen
-0.76
7
Bug Screen
0.76
8
Bug Screen
0.76
-
9
Bug Screen
0.76
,-
10
Bug Screen
0.76
11
Bug Screen
0.76
12
Bug Screen
0.76
Ener
Pro 5.1 by Ene Soft. User Number. 5862
RunCode: 2011-03-21T16:37:2
ID:
Page 6 of 10
CERTIFICATE OF COMPLIANCE: Residential . (Part 5 of 5) CF -1 R
Project Name
Joey Arsanto Res. Remodel/Addition
Building Type m Single Family ❑ Addition Alone
❑ Multi Family m Existing+ Additicn/Alteration
Date
3/21/2011
BUILDING ZONE INFORMATION
System Name Zone Name
Floor Area
New Existing Altered Removed Volume Year Built
HVAC System Exisitng House
1,248 9,984 1980
Addition
108 864
Totals 1 1081 1,2481 01 )
HVAC SYSTEMS
System Name Qty. Heating Type
Min. Eff. Cooling Type Min. Eff. The: mostat Type Status
HVAC System 1 Central Furnace
80% AFUE Split Air Conditioner 12.0 SEER Setback Existing
HVAC DISTRIBUTION
System Name Heating
Duct Ducts
Cooling Duct Location R -Value Tested? Status
HVAC System Ducted
Ducted Attic, Ceiling Ins, vented 4.2 ❑ Existing
t ❑
WATER HEATING SYSTEMS
S stem Name
Qty-
Type
Distribution
Rated
Input
Btuh
Tank
Cap.
al
Energy
Factor
or RE
Standby
Loss or
Piot
Ext.
Tank
Insul. R-
Value
Status
Default Gas Prior to 1999
1
Small Gas
Point of Use
28,000
50
0.53
n!a
n/a
Existing
MULTI -FAMILY WATER
HEATING DETAILS
HYDRONIC
HEATING
SYSTEM
PIPING
Control
E(ft)
2
E
w
Hot Water Piping Length
o
:1.� '76
aPipe
—
System Name
Length
Pipe
Diameter
Insul.
Thick.
Q .
HP
Plenum Outside Buried
❑
❑
❑
❑
❑
❑
01
❑
❑
1
❑
EnerqyPro 5.1 by Ener Soft User Number: 5862
RunCode: 2011-03-21T16:37:2 ID: Pae 7 o 10
MANDATORY MEASURES SUMMARY: Residential Pae 1 of 3), MF -1 R
Project Name -
Date
Joey Arsanto Res. Remodel/Addition
3/21/2611 -
NOTE: Low-rise residential buildings subject to the Standards must comply with all applicable mandatory measures listed, regardless of
the compliance approach used. More stringent energy measures listed on the Certificate of Compliance (CF -1 R, CF -1 R -ADD, or CF -
•1 R -ALT Form) shall supersede the items marked with an asterisk (*) below. This Mandatory Measures Sumnary shall be incorporated
into the permit documents, and the applicable features shall be considered by all parties as minimum compo -lent performance
specifications whether they are shown elsewhere in the documents or in this summary. Submit all applicable sections of the MF -1 R
Form with plans.
Building Envelope Measures:
116(a)l: Doors and windows between conditioned and unconditioned spaces are manufactured to limit air Leakage.
§116(a)4: Fenestration products (except field -fabricated windows) have a label listing the certified U -Factor, certified Solar Heat Gain
Coefficient SHGC , and infiltration that meets the requirements of §10-111(a).
117: Exterior doors and windows are weather-stripped; all, joints and penetrations are caulked and sealed. -
118 (a): Insulationspecified or installed meets Standards for Insulating Material. Indicate type and include on CF -6R Form.
§118(i): The thermal emittance and solar reflectance values of the cool roofing material meets the requirements of §118(1) when the '
installation of a Cool Roof is specified on the CF -1 R Form.'
,*§l 50 a : Minimum R-19 insulation in wood -frame ceiling orequivalent LI -factor.
§156(b): Loose fill insulation shall conform with manufacturer's installed design labeled R -Value.
*§150(c): Minimum R-13 insulation in wood -frame wall orequivalent U -factor.
*§1 50 d : Minimum R-13 insulation in raised wood -frame floor orequivalent U -factor. `
150(f): Air retarding wrap is tested, labeled, and installed according to ASTM E1677-95 2000 when specified on the CF -1 R Form:
150 : Mandatory Vapor barrier installed in Climate Zones 14 or 16.
§150(1): Water absorption rate for slab edge insulation material alone without facings is no greater than 0.30ro; water vapor permeance,
rate is no greater than 2.0perm/inch and shall be protected from physical damage and UV light deterioration.
Fireplaces, Decorative Gas Appliances and Gas Log Measures:
150 e 1 A: Masonry or factory -built fireplaces have a closable metal or glass door covering the entire openi,,ig of the firebox. -
§150(e)1 B: Masonry or factory -built fireplaces have a combustion outside air intake, which is at least six square inches in area and is,
equipped with a with a readily accessible, operable, and tight -fitting damper and or a combustion -air control device.
§150(e)2: Continuous burning pilot lights and the use of indoor air for cooling a firebox jacket, when that indoor air is vented to the
outside of the building, are prohibited. "
Space Conditioning, Water Heating and Plumbing System Measures: -
§110-§113: HVAC equipment, water heaters, showerheads, faucets and all other -regulated appliances are certified by the Energy.,
Commission. -
§113(c)5: Water heating recirculation loops serving multiple dwelling units and High -Rise residential occupancies meet the air release
valve, backflow prevention;'pump isolation valve, and recirculation loop connection requirements of §113(c).5.
§115: Continuously burning pilot lights are prohibited for natural gas: fan -type central furnaces, household cooking appliances "
(appliances with an electrical supply voltage connection with pilot lights that consume less than 150 Btu/hr are exempt), and pool and
spa heaters. y
150(h): Heating and/o� cooling loads are calculated in accordance with ASHRAE, SMACNA or ACCA.
§150(i): Heating s stems are equibped with thermostats that meet the setback requirements of Section 112.,c).
§1500)1 A: Storage gas water heaters rated with an Energy Factor no greater than the federal minimal stancard are externally wrapped .
with insulation having an installed thermal resistance of R-12 or greater..
§1,500)1 B: Unfired storage tanks, such as storage tanks or backup tanks for solar water -heating system, or ether indirect hot water
tanks have R-12 external insulation or R-16 internal insulation where the internal insulation R -value is indicated on the exterior of the
tank. "
§1500)2: First 5 feet of hot and cold water pipes closest to water heater tank, non -recirculating systems, and entire length of ' ' • ,
recirculating sections of hot water pipes are insulated per Standards Table 150-B. `
§1500)2: Cooling system piping (suction, chilled water, or brine lines),and piping insulated between heating source and indirect hot
water tank shall be insulated to Table 150-B and Equation 150-A.
§1500)2: Pipe insulation for steam hydronic heating systems or hot water systems >15 psi, meets the requirements of Standards Table
123-A. .
§150(j)3A: Insulation is protected from damage, inc I luding that due to sunlight, moisture, equipment maintenance, and wind.
§1500)3A: Insulation for chilled water piping and refrigerant suction lines includes a vapor retardant or is enclosed entirely in
'conditioned space.
150 4: Solar water -heating systems and/or collectors are certified by . the Solar Rating and Certification Corporation. _ " •' • 9
EnergyPro 5.1 by Ene'rgysoft User Number: 5862 RunCode:
2011-03-21716:37:21 ID: Page 8 of 10 _ % ♦
' 0" .
MANDATORY MEASURES SUMMARY: Residential (Page 2 of 3 MF -1 R
Project Name
Date
Joey Arsanto Res. Remodel/Addition
3/21/2011
§150(m)1: All air -distribution system ducts and plenums installed, are sealed and insulated to meet the requirements of CMC Sections
601, 602, 603, 604, 605 and Standard 6-5; supply -air and return -air ducts and plenums are insulated to a minimum installed level of R-
4.2 or enclosed entirely in conditioned space. Openings shall be sealed with mastic, tape or other duct -closure system that meets the
applicable requirements of UL 181, UL 181A, or UL 181 B or aerosol sealant that meets the requirements of UL 723. If mastic or tape is
used to seal openings reater than 1/4 inch, the combination of mastic and either mesh or tape shall be used
§150(m)1: Building cavities, support platforms for air handlers, and plenums defined or constructed with materials other than sealed
sheet metal, duct board or flexible duct shall not be used for conveying conditioned air. Building cavities and support platforms may
contain ducts. Ducts installed in cavities and support platforms shall not be compressed to cause reductions in the cross-sectional area
of the ducts.
§150(m)2D: Joints and seams of duct systems and their components shall not be sealed with cloth back rubber adhesive duct tapes
unless such tape is used in combination with mastic and draw bands.
150(m)7: Exhaust fans stems have back draft or automatic dampers.
§150(m)8: Gravity ventilating systems serving conditioned space have either automatic or readily accessible, manually operated
dampers.
§150(m)9: Insulation shall be protected from damage, including that due to sunlight, moisture, equipment maintenance, and wind.
Cellular foam insulation shall be protected as above or painted with a coating that is water retardant and provides shielding from solar
radiation that can cause degradation of the material.
150 m 10: Flexible ducts cannot have porous inner cores.
§150(o): All dwelling units shall meet the requirements of ANSI/ASHRAE Standard 62.2-2007 Ventilation and Acceptable Indoor Air
Quality in Low -Rise Residential Buildings. Window operation is not a permissible method of providing the Whole Building Ventilation
required in Section 4 of that Standard.
Pool and Spa Heating Systems and Equipment Measures:
§114(a): Any pool or spa heating system shall be certified to have: a thermal efficiency that complies with the Appliance Efficiency
Regulations; an on-off switch mounted outside of the heater; a permanent weatherproof plate or card with operating instructions; and
shall not use electric resistance heating ora pilot light.
§114(b)1: Any pool or spa heating equipment shall be installed with at least 36" of pipe between filter and heater, or dedicated suction
and return lines, or built-up connections for future solar heating.
114(b)2: Outdoor pools ors as that have a heat pump or gas heater shall have a cover.
§114(b)3: Pools shall have directional inlets that adequately mix the pool water, and a time switch that will allow all pumps to be set or
programmed to run only during off-peak electric demand periods.
150 : Residential pool systems orequipment meet the pump sizing, flow rate, piping, filters, and valve requirements of §150
Residential Lighting Measures:
§150(k)1: High efficacy luminaires or LED Light Engine with Integral Heat Sink has an efficacy that is no lower than the efficacies
contained in Table 150-C and is not a low eff icacy luminaire asspecified by §150 k 2.
150(k)3: The wattage of permanently installed luminaires shall be determined asspecified by §130(d).
§150(k)4: Ballasts for fluorescent lamps rated 13 Watts or greater shall be electronic and shall have an output frequency no less than
20 kHz.
§150(k)5: Permanently installed night lights and night lights integral to a permanently installed luminaire or exhaust fan shall contain
only high efficacy lamps meeting the minimum efficacies contained in Table 150-C and shall not contain a line -voltage socket or line -
voltage lamp holder; OR shall be rated to consume no more than five watts of power as determined by §130(d), and shall not contain a
medium screw -base socket.
150(k)6: Lighting integral to exhaust fans, in rooms other than kitchens, shall meet the applicable requirements of §150(k).
150(k)7: All switching devices and controls shall meet the requirements of §150(k)7.
§150(k)8:. A minimum of 50 percent of the total rated wattage of permanently installed lighting in kitchens shall be high efficacy.
EXCEPTION: Up to 50 watts for dwelling units less than or equal to 2,500 ft2 or 100 watts for dwelling units larger than 2,500 ft2 may be
exempt from the 50% high efficacy requirement when: all low efficacy luminaires in the kitchen are controlled by a manual on occupant
sensor, dimmer, energy management system (EMCS), or a multi -scene programmable control system; and all permanently installed
luminaries in garages, laundry rooms, closets greater than 70 square feet, and utility rooms are high efficacy and controlled by a
manual -on occupant sensor.
§150(k)9: Permanently installed lighting that is internal to cabinets shall use no more than 20 watts of power per linear foot of
illuminated cabinet.
EnergyPro 5.1 by EnergySoft User Number: 5862 RunCode: 2011-03-21716:37:21 ID: Page 9 of 10
MANDATORY MEASURES SUMMARY: Residential (Page 3 :)f 3 MF -1 R
,Project Name
Date
Joey Arsanto Res. Remodel/Addition
1312112011
§150(k)l0: Permanently installed luminaires in bathrooms, attached and detached garages, laundry rooms, closets and utility rooms _
shall be high efficacy.
EXCEPTION 1: Permanently installed low efficacy luminaires shall be allowed provided that they are controlled by a manual -on
occupant sensor certified to comply with the applicable requirements of §119.
EXCEPTION 2: Permanently installed low efficacy luminaires in closets less than 70 square feet are not required to be controlled by a
manual -on occupancy sensor.
§150(k)l 1: Permanently installed luminaires located in rooms or areas other than in kitchens, bathrooms, gasages, laundry rooms,.
closets, and utility rooms shall be high efficacy luimnaires. EXCEPTION 1: Permanently installed low efficac} luminaires shall be
allowed provided they are controlled by either a dimmer switch that complies with the applicable requirement3 of §119, or by a manual -
on occupant sensor that complies with the applicable requirements of §119. EXCEPTION 2: Lighting in detached storage building less
than 1000 square feet located on a residential site is not required to comply with §150 k 11.
§150(k)12: Luminaires recessed into insulated ceilings shall be listed for zero clearance insulation contact (IC) by Underwriters
Laboratories or other nationally recognized testing/rating laboratory; and have a label that certifies the lumiuraire is airtight with air
leakage less then 2.0 CFM at 75 Pascals when tested in accordance with ASTM E283; and be sealed with a gasket or caulk between
the luminaire housing and ceiling.
§150(k)l3: Luminaires providing outdoor lighting, including lighting for private patios in low-rise residential bi,nldings with four or more
dwelling units, entrances, balconies, and porches, which are permanently mounted to a residential building ar to other buildings on the
same lot shall be high efficacy. EXCEPTION 1: Permanently installed outdoor low efficacy luminaires shall be allowed provided that
they are controlled by a manual on/off switch, a motion sensor not having an override or bypass switch that cisables the motion sensor,
and one of the following controls: a photocontrol not having an override or bypass switch that disables the photocontrol; OR an
astronomical time clock not having an override or bypass switch that disables the astronomical time clock; OR an energy management
control system (EMCS) not having an override or bypass switch that allows the luminaire to be always on EXCEPTION 2: Outdoor
luminaires used to comply with Exceptionl to §150(k)l3 may be controlled by a temporary override switch w-iich bypasses the motion
sensing function provided that the motion sensor is automatically reactivated within six hours. EXCEPTION•: Permanently installed
luminaires in or around swimming pool, water features, or other location subject to Article 680 of the Californa Electric Code need not
be high efficacy luminaires.
§150(k)14: Internally illuminated address signs shall comply with Section 148; OR not contain a screw -base socket, and consume no
more than five watts of power as determined according to §130(d).
§150(k)15: Lighting for parking lots and carports with a total of for 8 or more vehicles per site shall comply with the applicable
requirements in Sections 130, 132, 134, and 147. Lighting for parking garages for 8 or more vehicles shall comply with the applicable
requirements of Sections 130, 131, 134, and 146.
§150(k)16: Permanently installed lighting in the enclosed, non -dwelling spaces of low-rise residential buildings with four or more
dwelling units shall be high efficacy luminaires. EXCEPTION: Permanently installed low efficacy luminaires _dhall be allowed provided
that they are controlled by an occupant sensors certified to comply with the applicable requirements of 113.
EnergyPro 5.1 by EnergySoft User Number: 5862 RunCode: 2011-03-21 T16:37:21 ID: Page 10 of 10
RrA-TC-'�'fAMJ
i
78080 Calle Amigo, Suite 102 phone: (760)771-9993
La Quinta, CA 92253 Fax: (.760)771-9998
Cell: 1-760)808-9146
41 _ Structural Calculation ,
For RW Real Estate Inc.
At 52100 Avenida Villa
La • Quinta, CA.
Type Of Project: Residential
Addition+Remodeling
Designer: Angel Gerardo FEB 17 2012
.. By
*,
�oFESS/0
GH
0
. W
C-
X
X 'NO.C67613 m
EXP. O i
4
OFC\.\F�
4.
Date: February 11, 2012 CITY O QUINTA x
Design by: Reza Asgharpour, P.E. BUILDING & SAFETY DEPT.
- JN: 120218
APPROVED
FOR CONSTRUCTION ;
- - � DATE %1 BY
>•
y i
[SL-
IENT: �W Rra Esta tpCBJECT: !tem ^ -M'" tAa�d i�io�^
DESIGN BY: 2 A
SHEET:
RA Structural Engineering JOB No: a 20 2.1
g
DATE: 2_I 1-\ 2
DESIGN LOADS
Roof Loads - Sloped
Roof Loads - Flat
Clay Tile : ID
Wpsf.
Roofing
6.0 psf.
Framing
2.5 psf.
Framing
2.5 psf.
sheathing (1(2° CDx)
1.5 psf,
sheathing .(1/2'! CDx)
1.5 psf.
Ceiling
2.5 psf.
Ceiling
2.5 psf.
insulation
1.5 psf.
insulation
1.5 psf.
Misc. 9.0
4-('psf
Misc.
-6�psf
Total Dead Load: a-0
,2rpsf.
Total Dead Load
16 .29-psf.
Total live Load
20 psf .
Total live Load
20 psf
Total Roof Load 40
*Y psf.
Total Roof Load
36 A& psf. .
k
Floor Loads
r
Deck Loads.
,
.Framing
3.5 psf.
Framing
3.5 psf.
sheathing (3/4° Piywd)
2.5 psf
sheathing (3/4° Plywd)
2.5 psf
Ceiling
2.5 psf.
Ceiling
2.5 psf:.
Lt. Wt. Conc./ Flooring Tile
15 psf.
Lt. Wt. Conc.
15 psf.
Misc.
3.5 psf
Flooring Tile
10 psf
Total Dead Load
27 psf.
Misc.
3.5 psf
Total live Load
40 ,psf
Total Dead Load
37 psf.
Total Floor Load
67 psf.
Total live Load
60 psf,
Total Load.
97 psf. w
+ Exterior Wall
Interior Wal
7/8" Stucco
10.0 psf.
Insulation
1.0 psf..,.
Drywall
2.5 psf
Drywall
5.0 psf
Studs
1.0 psf.
Studs r
1.0 psf.
Misc.
1.0 psf.
Misc.
1.0 psf.
Total Wall Weight
15.0 psf.
Total Wall Weight r
10.0 psf.
.
r
1
•� Viz^ "t �. .f
}
Reza PROJECT RJ #3„` s PAGE
CLIENT RW Real Estate Inc. " DESIGN BY tR Az
it
AS har Our JOB NO. : x120218" .DATE )211/2012 '.. +r REVIEW BY. SR:A:.;
Wood Joist D6si"n Based'omNDS'05 / NDS 01,:ICC,PFC:;4-354-$ P.,FC-5803`",;'. " °�t:
INPd17 DATA & DESIGN SUMMARY AVAILABLE MINIMUM Douglas.Fir-Larch SIZES
JOIST SPAN [. _ .12 ft 2 x 8 No. 2 2 x 8 No. 1 2 x 8 Structural i
DEAD LOAD D1. = 16 psf, (w/o self Wt) AVAILABLE MINIMUM TJI SIZES
LIVE LOAD / SNOW, 1X= 20 psf 1117/8" TJI/L65 1.1 7/8" TJI/L90 1117/8" TJI/H90
JOIST SPACING S = 16 in o.c. AVAILABLE MINIMUM SSI SIZES
DURATION FACTOR l; p.= ' `,1.25 f. (NDS Tab. 2.3.2) 117/8" SSI 32MX 11 7/8" SSI 42MX 117/8" SSI 43L
REPETITIVE FACTO Cr = 1.15 (NDS 4.3.9. For DSA, 1.0)
DEFLECTION LIMIT OF LIVE LOAD d LL = L / 360. (L / 360, 0.4 in )
DEFLECTION LIMIT OF LONG-TERM LOAD d t.s(0L+0.33Lu = L / •480 „ (L / 480 , 0.3 in )
DEFLECTION LIMIT OF TOTAL LOAD 4(OL.LL) = L /'240 ( L 1240, 0.6 in )
ANALYSIS
JOIST PROPERTIES & ALLOWABLE MOMENT & SHEAR
2x No. 2 Dou las Fir -Larch ASD Supplements, Tab. 5.4a 2x No. 1 Dou las Fir -Larch from WoodBeam.xis
v.
.. t
2x Structural Dou las Fir -Larch ASD Supplements. Tab. 5.4a
r
Where:
1. ASD Supplements, Tab. 5.4a is from American V/ood Council, 2001. -
2. Assume that the joist top is fully lateral supported by diaphragm. (CL =
3. WoodBeam.xis is at www.engineering-international.com
TJIIL65 from Trus'oist Of 1062, page 5 SSI 32MX from ICC PFC-5803, e 5 8 6
TJI/L90 from Trus'oist # 1062, a e 5 SSI 42MX (from ICC PFC-5803, pane 5 & 6
Deep (in) Wt (Ibs/fl) M (ft -lbs) V (lbs) EI x 10° '
r
r
T.1111,190 (from Trus'oist # 1062, pane 5 SSI 43L from ICC PFC-5603 e 5 & 6
Deep (in) Wt (Ibslfl) M (fl -lbs) V (lbs) EI x 10°
' (CP included) (in-lbs)
(in' -lbs)
Deep (in)
1,0)
Wt ((lbs/ft)
M (fl -lbs)
CF inUuded)
V (lbs)
EI x 10°
"(in2-lbs)
4 -
1.00
344
630 _
9
6
2.00
738
990
33
8
2.00
1183
1310
76
10
3.00
1767
1670
158 '
12
4.00
2375
2030
285 '
Deep (in)
1,0)
Wt ((lbs/ft)
M (fl -lbs)
CF inUuded)
V (lbs)
EI x 10°
"(in2-lbs)
4
1.00
574
630
10
6
2.00
1225
990
40
8
2.00.
1975
1310
91
10
3.00
2942
1670
188
12
4.00
3958
2030
338
Deep (in)
Wt (Ibs/fl)
M (fl -lbs)
V (lbs)
EI x 101
in2-lbs
117/8
3.30
6750
1925
450
14
3.60
8030
2125
666
16
3.90
9210
2330
913
18
4.20
10380
2535
1205 '
20
4.40
11540
2740
1545
22
-4.70
12690
2935
1934
• 24
5.00
13830
3060
2374
26
5.30 -
14960
2900.
2868
28
5.50..
16085
2900
3417
30
'5.80 t s
17205
2900
4025
Deep (in)
,Wt (lbs/fl)
M (fl -lbs)
V (lbs)
_Ln' -lbs
11 7/8
4.20
9605
1925
621
14
4.50•
11430
2125
913
16
4.70
13115
2330
1246
16
5.00
14785
2535
1635
20
5.30
16435
2740
2085
22
5.60
18075
2935
2597
24
5.80
19700
3060
3172
26
6.10
21315
2900
3814
28
6.40
22915
2900
4525
30
6.60
24510
2900
5306
Deep (in)
,Wt (lbs/fl)
M (fl -lbs)
V (lbs)
EI x 10°
(in2-lbs)
4
1.00
383
630
14
4:90
13090
2125
1015
16
5.20
15065
.2330
1389
18
.5.40
17010
2535
1827
20
5.70
18945
2740
2331
22 �
6.00
20855
2935
2904
24
6.30
22755
3060
3549
26
6.50
24645
2900
4266
28
X211
26520
2900
5059
13279
3540
2638
20.15
28
Deep (in) Wt (lbs/ft) M (ft -lbs) V (lbs) E' x 10°
Wt (lbs/ft))
M (fl -lbs)
( included)
Ei x 10°
n2 -lbs
(in2-lbs)
4
1.00
383
630
9
6
2.00
819
990
35
8
2.00
1314 _
1305
81
10
3.00 ,
1961
1665
'168
12
4.00
2637>-
2025
303
Deep (in)
Wt (lbs/ft))
M (fl -lbs)
V (lbs)
Ei x 10°
n2 -lbs
C x 10°
(W -lbs)
117/8
3.10
5391
2115
460
9.39
14
3.30
6570
2330
667
10.99
16
3:60
7684
2530
'900
12.50
18
3.90
8800
2735
A170
14.02
20
4.10
9918
2935
11478
15.55
22
4.40
11038 -
3135
A 824
17.08
24
4.70
12159
3335
X211
18.62
26
5.00
13279
3540
2638
20.15
28
5.20
14401
3740
3106
21.68 '
30
5.50
15524
3940.
3616
23.21
Deep (in)
Wt (lbs/ft)
M (fl -lbs)
V (lbs)
axle
n2 -lbs
C x 10°
in2-lbs
11 7/8
3.80
7592 �
2060
637
9.54
t4
4.10
9274 `
2350
924
11.15
t6
a.3o
10863
2820
1246
12.68
t8,
4.60
t2a58
2895
1617
14.22
20
4.90
14051.
3165
2040
15.77
22
5.10
15649
.3440
2514
.17.32
24
� 5.40
17248
3710
3042
18.87
26
5.70
18849
3985
3622
20.42
28
6.00
20450.
4255
x257
21.97
30
6:20
22052
4530
4948
23.53.
Deep (in)
Wt (Ibs/R)
M (ft -lbs)
V (lbs)
axle
C x 10°.
,j
•
9
Deep (in)
M (ft-Ibs)
V (Ibs)
ALL
in
ALT
in
I AD*L
in
CHECK
(cont'd)
DESIGN EQUATIONS
205-
1.24
2.18
2.29
N.G.
6
626
WL2
M =
RCdC_',
_ w/,
V
1uFr" 384/:/
0.58
N.G.
1 `
626
209
0.14
2CuC.
0.26
o.k.
10
639
213
0.07
22.54,/.' 2.260/,'
A,„ = +
( from Trusjoist # 1062, , page 21)
o.k.
12
1 651
217
0.04
a
h7 d x 10'
o.k.
o.k.
14
646
215
0.02
0.05
0.05
o.k.
14
642
214
0.02
0.04
0.04
+ 1v�
( from ICC PFC-5803, page 2)
650
217.
0.02
0.04
0.04
o.k.
Acv =5111L
384E/ C
646
215
0.02
0.03
0.03
o.k.
18
CHECK JOIST CAPACITIES & DEFLECTIONS
218
0.02
0.03
0.03
o.k.
18
2x No: 2 Douglas Fir -Larch
217
2x No. 1 Dou as Fir -Larch
0.03
0.03
o.k.
20
Deep (in)
M (ft -lbs)
V (Ibs)
ALL
ALT
AD -L
CHECK
Deep (in)
M (ft-Ibs)
V (Ibs)
ALL
ALT
AD -L
CHECK
4
614
205
in
1.38
in
2.42
in
2.54
N.G.
4
614
205
in
1.38
in
2.42
in
2.54
N.G.
6
626
209
0.38
- 0.68
0.71-
N.G.
6
626
209
0.36
0.64
0.67
N.G.
8>
626
209
0.16
0.30
0.31
o.k.
8
10
626
639
209
213
0.15
0.07
0.28
D.14
0.29
0.14
o.k
o.k.
i0
12
639
651
213
217
0.08
0.04
0.15
0.08
0.15.
0.09
o.k.
o.k.
12
651
217
-
0.04
0.08
0.08
o.k.
674
225
0.01
0.01
0.01
o.k.
30
670
2x Structural Douglas Fir -Larch
0.01
201
0.01
o.k.
-
Deep (in)
Deep (in)
M (ft-Ibs)
V (Ibs)
ALL
in
ALT
in
I AD*L
in
CHECK
4
614
205-
1.24
2.18
2.29
N.G.
6
626
209
0.31
0.56
0.58
N.G.
1 `
626
209
0.14
• 0.25
0.26
o.k.
10
639
213
0.07
0.12
0.13
o.k.
12
1 651
217
0.04
0.07
0.07
o.k.
•
s
M (ft-Ibs)
V (Ibs)
ALL
ALT
AD -L
CHECK
Deep (in)
TJI/LBS SSI 32MX
Deep (in)
M (ft-Ibs)
V (Ibs)
ALL
ALT
AD -L
CHECK
Deep (in)
M (ft-Ibs)
V (Ibs)
ALL
ALT
AD -L
CHECK
in
in
in
in
in
in
117/8
642
214
0.03
0.07
0.07
o.k.
11718
640
213
0.03
0.06
0.06
o.k.
14
646
215
0.02
0.05
0.05
o.k.
14
642
214
0.02
0.04
0.04
o.k.
:t6
650
217.
0.02
0.04
0.04
o.k.
16
646
215
0.02
0.03
0.03
o.k.
18
654
218
0.02
0.03
0.03
o.k.
18
650
217
0.01
0.03
0.03
o.k.
20
656
219
0.01
0.02
0.02
o.k.
20
652
217
0.01
0.02
0.02
o.k.
22
660
220
0.010.02
0.02
o.k.
22
656
219
0.01
0.02
0.02
o.k.
24
664
221
0.01
0.02
0.02
o.k.
24
660
220
0.01
0.02
0.02
o.k.
26
667
222
0.01
0.02
0.02
o.k.
26
664
221
0.01
0.01
0.01
o.k.
28
670
223
0.01
0.01
0.01
o.k.
28
666
222
0.01
0.01
0.01.
o.k. -
30
674
225
0.01
0.01
0.01
o.k.
30
670
223 1
0.01
201
0.01
o.k.
TJI/L90 SSI42MX
Deep (in)
M (ft-Ibs)
V (Ibs)
ALL
ALT
AD -L
CHECK
Deep (in)
M (ft-Ibs)
V (Ibs)
ALL
-ALT
ADSL
CHECK
in
in
in
in
in
in
11718
654
218
0.03
0.05
0.05 -
o.k.
11 7/8
649
216
0.02
3.05
0.05
o.k.
14
657
219
0.02
0.04
0.04
o.k.
14
652
217
0.02
3.03
0.03
o.k._
16
660
220
0.02
0.03
0.03
o.k.
16
655
218
0.01
3.03
0.03
o.k:
18
664
221
0.01
0.02
0.02
o.k.
18
659
220 •
0.01
x.02
0.02-
o.k.'
20
667
222
0.01
0.02
0.02
o.k.
20
662
221
0.01
7.02
0.02
o.k.
22
671
224
0:01
0.02
0.02
o.k.
22
665
222
0.01
202
0.02
o.k.
24
674
225
0.01
0.02
0.02
o.k.
24
669
223 -
0.01
3.01
0.01
o.k..
677.
226
0.01
0.01
0.01
o.k.
26
672
224
0.01
7.01
0.01
o.k.
.28-
28
681
227
0.01
0.01
0.01
o.k.
28
676
225
0.01
0.01
0.01
o.k.
30
684
228
0.01
0.01
0.01
0.1L
30
679
1 226
1 0.00
1 0.01
1 0.01
1 o.k.
TJI/H90 SS143L
Deep (in)
M (ft-Ibs)
V (Ibs)
ALL
ALT
AWL
CHECK
Deep (in)
M (ft-Ibs)
V (Ibs)
ALL
ALT
AWL
CHECK
in
in
in
in
in
in
11718
659
220
0.03
0.05
0.05
o.k.
117/8
659
220
0.02
0.05
0.05
o.k.
14
662
221
0.02
0.04
0.04
o.k.
14
662
221
0.02
J.04
0.04
o.k.
16
666
222•
0.01
0.03
0.03
0.k.
16.
666
222
0.01
3.03
0.03
o.k..
f8
669
223
0.01
0.02
0.02 '
o.k.
18
669
223
0.01
7.02
0.02
o.k. .
20
672
224
0.01
0.02
0.02
o.k.
20
672
224
0.01
0.02
0.02
o.k.
22
676
225
0.01
0.02
0.02
o.k.
22
675
225
0.01
202
0.02
o.k.
24
680
227
0.01
0.01
0.01
o.k.
24
679
226 '
0.01
101
0.01
o.k.
26
682
227
0.01
0.01
0.01
o.k.
26
681
227
0.01
201
0.01
o.k.
28
686
229
0.01
0.01
0.01
o.k.
28
.685
228
0.01
101
0.01
o.k.
30
1 690
230
0.00
0.01
0.01
o.k.
30
689
230
0.00
7.01
0.01
o.k.
c:
•
Reza PROJECT: BM#1 , PAGE i
char �Ur
CLIENT: ,RW Real Estate nc ) DESIGN BY :R.A a
JOB NO.: :120218DATE: !2/11/2012 REVIEW BY: A.k.
INPUT DATA & DESIGN SUMMARY
y L,
�z
MEMBER SIZE 4z.6
No, 2, Douglas Fir -Larch I
MEMBER SPAN L= 5;5
ft
P°i+ ;P°r
P.,
UNIFORMLY DISTRIBUTED DEAD LOAD WD = 150
lbs/ft
1
UNIFORMLY DISTRIBUTED LIVE LOAD WL = 150
lbs/ft
W`
CONCENTRATED DEAD LOADS PD1 = 0'
lbs
WD
(0 for no concentrated load) L, = 0
ft
11
PD2 = 0
lbs
T
L2 = 0
ft
DEFLECTION LIMIT OF LIVE LOAD dL = L / 360
Camber => 0.06 inch
DEFLECTION LIMIT OF LONG-TERM dKcrp. L = L / 240
THE BEAM
DESIGN IS ADEQUATE.
Does member have continuous lateral support by top diaphragm ?
(1= yes, 0= no) 0 No
Code Duration Factor, C� Condition
Code
Designation
1 0.90 Dead Load
1
Select Structural, Douglas Fir -Larch
2 1.00 Occupancy Live Load
2
No. 1, Douglas Fir -Larch
3 1.15 Snow Load
3
No. 2, Douglas Fir -Larch
4 1.25 Construction Load
4
Select Structural, Southern Pine
5 1.60 Wind/Earthquake Load
5
No. 1, Southern Pine
6 2.00 Impact toad
6
No. 2, Southern Pine
Choice => 4 Construction Load
Choice
=> 3
ANALYSIS
DETERMINE REACTIONS, MOMENT, SHEAR
`Nsei1 w1 = 4 lbs / ft RLefl = 0.84 kips
RRfgm =
0.84 kips
VMex = 0.70 kips, at 5.5 inch from left end
MMax =
1.15
ft -kips, at 2.75 ft from left end
DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES
b = 3.50 in E'min = 580 ksi
E = Ex =
1600
ksi Fb = 1462.5 psi
d = 5.50 in FbE = 12493 psi
Fb =
900
psi F = FbE / F; = 8.54
A = 19.3 int I 49 in 4_
F� =
180
psi '- Fe = 1,453 psi
Sx = 17.6 in Rs = 7.464 < 50
E' =
1,600
ksi F„ = 225 psi
/E= 10.3 (ft, Tab 3.3.3 footnote 1)
CD CM C1 C, CL CF Cv
Cc
Cr
1.25 1,00 1.00 1.00 0.99 1.30 1.00
1.00
1.00
CHECK BENDING AND SHEAR CAPACITIES
fb = MMax / Sx = 782 psi < Fb = 1453
psi
[Satisfactory]
f, = 1.5 Vmax / A = 54 psi < F,
[Satisfactory]
CHECK DEFLECTIONS
A (L, Max) = 0.04 in, at 2.750 ft from left end,
<
d L = L 1360 [Satisfactory]
d(KcrD+L. Max) = 0.10 in, at 2.750 ft from left end
<
d KcrD. L ='L / 240 [Satisfactory]
Where K�, = 1.50 , (NDS 3.5.2)
DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT)
d (1.0. Max) = 0.06 in, at 2.750 ft from left end.
CHECK THE BEAM CAPACITY WITH AXIAL LOAD -
AXIAL LOAD F = 2 -kips
THE ALLOWABLE COMPRESSIVE STRESS IS
F,' =•Fb Co CP CF = 1173 psi a ;
Where F, = 1350 psi F
Co = 1.60f—
CF = 1.30 (Lumber only)
CP = (1+F) / 2c - [(1+F) / 2c)2 - F / c]os = 0.418
F, = Fc Co CF = 2808 psi
Le = KeL = 1.0L.= 66 in
b = 3.5 in ^
SF =slenderness ratio = 18.9 < 50 [Satisfies NDS 2005 Sec. 3.7.1.41
F z _ -0.822 E'm,, / SF = 1341 psi,
E'min = 580 ksi
F F,E / Fc' = 0.477
' c - 0.8
THE ACTUAL COMPRESSIVE STRESS IS
fb = F / A = 104 psi < Fc' - [Satisfactory] a
THE ALLOWABLE FLEXURAL STRESS IS
Fb' = 1860 psi, [ for CD = 1.6-
HE
.6 HE ACTUAL FLEXURAL STRESS IS
fb = (M + Fe) / S = 1179 psi < ;Fb [Satisfactory] ^
CHECK COMBINED STRESS [NDS 2005 Sec. 3.9.2].
(fb / Fc )2 + % / [Fe (1 - fb / F.E)] = 0.695 < 'l [Satisfactory]
ti
-T
• *.
y
Reza PROJECT : :BM#2``r + -
° ; PAGE
t'•t'
CLIENT : rRW Real Estate Inc �,_ � . t ,;" !: DESIGN BY R.A
ACJ harpour JOB NO.: 1.120248". .j DATE: 2/11/2012, REVIEW BY: sR.A��
Wood-,Beam.Dest n'Base';on°NM2005r''�
INPUT DATA & DESIGN SUMMARY
L,
MEMBER SIZE 4:x 8;. ' No. 2, Douglas Fir -Larch _1� Lz
MEMBER SPAN L= 5"5", it
i I Po; I i P02
UNIFORMLY DISTRIBUTED DEAD LOAD wo = 330 :; lbs / ft
1
W�
UNIFORMLY DISTRIBUTED LIVE LOAD WL = °, 300 , lbs/ft
_
CONCENTRATED DEAD LOADS Pot = 0: lbs
�.
WD
(0 for no concentrated load) L, = 0 .' it
Pot = 0,'!' ' lbs r
L2 = 0 • ft
J)EFLECTION LIMIT OF LIVE LOAD d L = L / 360 `
Camber => 0.06 inch
DEFLECTION LIMIT OF LONG-TERM dKvD-L' U'240
THE BEAM DESIGN IS ADEQUATE.
Does member have continuous lateral support by top diaphragm ?
(1= Yes, 0= no) 0 No
_
Code Duration Factor, Cr, Condition
Code
Designation
' 1 0.90 Dead Load
1
Select Structural, Douglas fir -Larch
2 1.00 , t Occupancy Live Load
2
No. 1, Douglas Fir -Larch
3 1.15 , Snow Load .3
No. 2, Douglas Fir -Larch
4 1.25 Construction Load
4
Select Structural, Southern Pine
5 1.60 Wind/Earthquake Load
5
No. 1, Southern Pine
6 2.00 Impact Load
6
No. 2, Southern Pine
Choice => 4 Construction Load
Choice
=> 3
ANALYSIS
bETERMINE REACTIONS, MOMENT, SHEAR
'
wseif wt = 5 lbs / ft - RLef, = 1.75 kips
RRight
1.75 kips
VMax = 1.36 < kips, at 7.25 inch from left end MMax =
2.40
ft -kips, at 2.75 it from left end
DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES
r ,
b = 3.50 in E'R,i„ = 580 ksi E = Ex=
.1600
ksi Fb = 11462.5 psi
d = 7.25 in FbE = 9093 psi Fb =
900
psi F = FbE / Fb = 6.22
A = 25.4' int I = 111 in . F, =
180
psi Fe = 1,449 psi
Sx = 30.7 in Rg= 6.749 <50 E' =
1,600
ksi F, = 225 psi
/E= 10.8 (ft, Tab 3.3.3 footnote 1)
{� ,
CD CM Ct Ci CL CF Cv Cc'
Cr
1.25 1.00 1.00 1.00 0.99 1.30 •1.00 _ 1.00
1.00
CHECK BENDING AND SHEAR CAPACITIES
fb = MMX / Sx = 940 psi < Fb=1 1449 psi
[Satisfactory]
f,'= 1.5 VMax / A = 81 psi < Fv - [Satisfactory]
I
CHECK DEFLECTIONS
- d <
(L, Max) = 0.03 in, at 2.750 ft from left end,
d /
L = L 360 [Satisfactory]
d (Kcr D - L, Max) _ 0.09 in, at 2.750 ft from left end <
1
d k,r 1) • u = L/240 [Satisfactory]
t
Where K_ _ 1.50 (NDS 3.5.2)
`
r
DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT)
d (1.51). Max) = 0.06 in, at 2.750 ft from left end '
CHECK THE BEAM CAPACITY WITH AXIAL LOAD
AXIAL LOAD F = 2, 'kips
1
THE ALLOWABLE COMPRESSIVE STRESS IS
FITT1 I
+!
Fr = F, CD CP CF = .1173 psi
Where F, = 1350 psi
F F
Co = 1.60
—
CF = 1.30 (Lumber only)
Cp = (1+F) /.2c - [(1+F) / 2c)2 - F / c]°-5
0.418
Fc* = Fe Co CF = 2808 psi
Le = K8 L = 1.0 L = 66 in
b = 3.5 in
SF = slenderness ratio = 18.9 <
50 [Satisfies NDS 2005 Sec. 3.7.1.4]
FcE = 0.822 E'min / SF2 = 1341 psi
E'min = 580 ksi
F = FcE / Fc* = 0.477
C = 0.8
THE ACTUAL COMPRESSIVE STRESS IS
fc = F / A 79 psi < Fc'
[Satisfactory]
THE ALLOWABLE FLEXURAL STRESS IS
Fp . = 1854 psi, [ for Co = 1.6 ]
THE ACTUAL FLEXURAL STRESS IS
- f, _ (M + Fe) / S = 1169 psi < Fp
[Satisfactory]
CHECK COMBINED STRESS [NDS 2005 Sec. 3.9.21
(f, / F� )2 + % / [Fo (1 - f, / FoE)] = 0.674 <
1 [Satisfactory]
onverting Addresses to/from Latitude/Longitude/Altitude in One Ste...., ` http://stevemorse.org/jcal/latIon.php
Converting Addresses to/from Latitude/Longitude/Altitude in One
, . • � :. ,, � -- • .. - Step ' ,. 'p • � � �.
• 4 ��� -T _
' Stephen P. Morse, San FranciscojI.
Ba Mode;(Forward 'Batch Mode,(R&e�r,s" Ba tch Mode (A t de)� 9/Min Sec to-
`mputin >QistancFequentl Asked Qtaest�ons rM Other Webpages "
" •.. 9 1 y .µthy
Access geocoder.us'/ geocoder.ca (takes a relatively long time)
.
• J ,+ •� �r" . ,• "' r, -�' '
it '.T: .
address
52100 Avenida villa
!
latitude
city r
La. Quinta
longitude
StateCA•
-G
I ' above values must be in decimal ,
i
zip
92253+
from !latitude longitude_ altitudes
with minus signs for south and west
`United
country � . "
States
4etermtne Address nese
Determine
���..
Lat/Lon :Get Altitudes
i.
reser'
.
Access geocoder.us'/ geocoder.ca (takes a relatively long time)
.
• J ,+ •� �r" . ,• "' r, -�' '
it '.T: .
from goo lei latitude ;longitude_) aliitude'
F
• '
decimal 1133.669855 -116.305104��
' '.
deg -min -sec 33° 40' 11.478"1-116° 18' 18.3744"I
-G
.:
from !latitude longitude_ altitudes
'
use
dect_al_ 33.65_90204037071 =116.279622072062
m
deg-min-sec' 33° 39' 32.4735"�� -116-16-46
- I __
"' '' •' _ 52100 AVENIDA VILLA La Quinta CA
,
from hoo latitlzde_ i longitude altitude;
`decimal
_ay _I
- 33.669989 -116.305381
,A
_
deg -min -sect' 33° 40' 11.9604"j-1 160 18' 19.3716"111
;
52100 Avenida_ Villa, La Quinta, California 92253
�
Data presented here comes from the following websites:
og ogle. (all addresses)
' ,eocoder.ca. (US and Canadian addresses only)
•geocoder.us. (US addresses only)
,gpsvisualizer. (for altitudes)
" locatienet. (European addresses only) • •
' '
€',
I of 1 r�'` r '
2/11/2012 3:11 PM
Conterminous 48 States
• 2005 ASCE 7 Standard
Latitude = 33.669855
Loi'igitude = -116.305104
Spectral Response Accelerations Ss and S1
Ss and S1 = Mapped Spectral Acceleration Values
Site Class B - Fa = 1.0 ,Fv = 1.0
Data are based on a 0.01 deg grid spacing
Period Sa
(sec) (9)
0.2 1.500 (Ss, Site Class B)
1.0 0.600 (S1, Site Class B)
Conterminous 48 States
2005 ASCE 7 Standard
Latitude = 33.669855
Lorfgitude = -116.305104
Spectral Response Accelerations SMs and SM1
SMs = Fa x Ss and SM1 = Fv x S1
• Site Class D - Fa = 1.0 ,Fv = 1.5
Period Sa
(sec) (g)
0.2 1.500 (SMs, Site Class D)
1.0 0.900 (SM1, Site Class D)
Conterminous 48 States
2005 ASCE 7 Standard
Latitude = 33.669855
Longitude = -116.305104
Design Spectral Response Accelerations SDs and SD1
SDs = 2/3 x SMs and SD1 = 2/3 x SM1
Site,Class D - Fa = 1.0 ,Fv = 1.5
Period Sa
(sec) (9)
0.2 1.000 (SDs, Site Class D)
• 1.0 0.600 (SD1, Site Class D)
1�
Reza
PROJECT : ,Seismic Load,(Dlaphragm A) PAGE:
z �, 5' E DESIGN BY : R A.:-
CLIENT: RWsReal Estate Inc t t : , �_ ,i 1 ,,w.
sg harpou JOB NO.: X120218 a. sa:r DATE . 2411/2012{ REVIEW BY: lR A 4 , , ;�v
OneSto •.:;Seismic Anal ss Based on_IBC'.064/ CBC' 07,.E �,�?>>r
Determine Base Shear (Derived from ASCE 7-05 Sec. 12.8)
V=MAX{ MIN ISDjI/(RT) ', SDSI/R] 0.01 0.5S,I/R}W ,
= MAX{ MIN[.0.97W., 0.15W ] ,, 0.01W 0.05W}
-
= 0.15 W, (SD) (for S1 >- 0.6 g -"only)
= 0.11 W, (ASD) = 0.86 kips
Where SDs = k r..k,1 r (ASCE 7-05 Sec 11.4:4)
• t '
SD1 = s 0.6 �, (ASCE 7-05 Sec 11.4.4) ,t
S� 0'6 (ASCE 7-05 Sec 11.4.1)" 4
F
'R = r y , 6:5 (ASCE 7-05 Tab
(IBC 06 Tab 1604.5 & ASCE 7-05 Tab 11.5-1)
_ t ,
i r FCt = . ' 0:02 ' (ASCE 7-05 Tab 12.8-2)
,.
x = " 0.75 -(ASCE 7-05 Tab 12.8-2) • -
" .T = Ct (hn)x 0.095 sec, (ASCE .7-05 Sec 12.8.2.1)
• ,•: i - .
'^
IC
alculate Vertical Distribution of Forces& Allowable Elastic Drift (ASCE 7-05, Sec 12.8.3 &12.8.6) ,
4
Level Wx hx hxk Wxhxk FX , ASD (12.,8-11)
, Sxe,auowatile, ASD
Roof 8.0 63 0.9 ( 0.11 wx) 0'.3
- 63 0-9-
7.8 cti y
}• Where k = 1 ,. for T <_ 0.5 , (sxe,allowable, ASD = Da 1 / (1.4 Cd), (ASCE 7-05 Sec 12.8.6)
k = 0.5 T + 0:75 for T @ (0.5 , 2.5) Cd (AS,.E 7-05 Tab 12.2-1)
k += 2 for T. 2.5 {. a • -#j sx, • )
>= O �• 0 02 ~' h iASCE 7-05 Tab 12:12-1
- y 4a - i
Calculate Diaphragm Forces (ASCE 7-05, Sec 12.10.1:1)
Level WX EW-- FX EFX Fpx.,-ASD, (12.10-1)
Roof - 7.8 ' 7.8 0.9 0.9- 1.0 ( 0.13 Wx )
x`7.8 0.9 :_ »
• Where Fmin = 0.2 SDSI Wx / 1.5 ,'ASD
' Finax = 0.4 SDS I Wx / 1.5 , ASD x
Reza'6 R:v�
�PROJECT: ,Seigffii6;L-oad(Diaotiri§m;B);.A'FAGE:3s ie:
'
CLIENT: ,fRW Real Estate=lnc DESIGV BY : R A
a a�
sgharpoui JOB NO.: 120218`P. _ '. r{; '' DATE 12/11/2012 REVIEW BY : ,R A
One';$tory Seismic Analysis Based on"IBC` Ofi>I:GBG-07� �3 ' ``:,.'
Determine Base Shear (Derived from ASCE 7-05 Sec. 12.8)
'V= MAX( MIN ISD1I/(RT) , SDSI/R] 0.01;,-0.5S1I/R
K
'--.MAX{ MIN[ 0.97W 0.15W J , 0-01W 0.05W)
_ .0.15 W, (SD)' • J(for S1.>: 0.6 g..only) .
0.11 W, (ASD) = 2.37 :kips ,
Where SDs (ASCE 7-05 Sec 11.4.4)`
SD1 =. OK6' t,: (ASCE 7-05 Sec 11,AA) .
S1 = ' 0,6-,- +' (ASCE 7-05 Sec 11:4.1) '
R = a 65 �'J,(ASCE 7-05 Tab 12.2-1)
=�`1 s (IBC 06'Tab 1604.5 & ASCE 7-05 Tab 11.5-1)Ni�.
(ASCE 7-05 Tab 12.8-2) s
" hn = 8.0, ft,
0:75 *(ASCE 7-05 Tab 12.8-2)
T Ct (hn)x = 0.095 sec, (ASCE 7-05 Sec 12:8:2.1)' ,* +
alcu late Vertical Distribution of Forces & Allowable Elastic Drift (ASCE 7-05, Sec 12;8.3 & 12.8.3)
Level ' WX ., hx hxk Wxhxk FX , ASD (12.8-11) sxe,allowable, ASD
Roof 197 216" � '�`8: - } , 8.0 173 2.4 ( o.11 wx) 0.3
21.6 173 • 2.4 F
Where k 1 for T <= 0.5 sxe,allowable, ASD = Aa 1/ (1.4 Cd), (ASCE 7-05 Sec 12.8.6)
k = ; 0.5 T + 0.75 + ` for T'@ (0.5 , 2.5) Cd = �4 ' ,(ASCE 7-05 Tab 12.2-1)
- -:
k 2 for T >=.,2.5
Aa - 0 02`` hsx, (ASCE 7-05 Tab 12.12-1)
Calculate Diaphragm Forces (ASCE 7-05, Sec 12.10.1'.1)
Level Wx EWx Fx EFx, r. Fox ASD, (1210-1)'
Roof 21.6 21.6 2.4 2.4- _ 2.9 (c.13 Wx )
21.6 2.4 4
Where+ Fmin'= 0.2 SDS I Wx / 1.5 , ASD
• ` Finax = 0.4 SDs I Wx / 1.5 , ASD -
N 1
.� Reza PROJECT Wtrid Loatl (Diaphragm A) PAGE
CLIENT RW 12ea1 State Inc• " * '"' '' ,'t," DESIGN BY :
AsgharpoUr JOB NO.. d120218x ri =` ) DATE. i'02/.11/12 REVIEW BY :
Wind AitaIj Wis,fdr. LoW'r(se Building, Based -on ASC 9 10 5. 1,IBC 2006;1
r INPUT:DATA
Exposure category (13; C or D) 4.0 1
Importance factor, pg 77, (0.87, 1.0 or 1.15) ; , 1 = 1.00 :,?Ti, Category II i
Basic wind speed (IBC Tab 1609.3.1V3S) 1 V =w"1 X85a mph,•.
Topographic factor (sec s.5.7.2, pg 26 8 45) ' Kr a -A +j� Flat
r., Building height to eave _ ' he =, 9 ft
,
Building height to ridge hr j , 9 "�' ft ,. 4 r
• 'Building length ;{,' L str32T TER h 6';.
Building width ' B 1 ,125,fft r ,-
} Effective area of components %+ -_ -20 k_Y
DESIGN SUMMARY ,
Max horizontal force normal to building length, L, face { ` `` = Fv 2.91 kips
Max horizontal force normal to building length, B, face_ 1.29 kips 4.
Max total horizontal torsional load.+12.49 ft kips
Max total upward force • • 4.49 kips
ANALYSIS w: • + ,>,4.
'Velocity Pressure - f .4
i qh =`0.00256 Kh K_,Kd VZ I = .. 13.36 psf , -c' '
where: qh = velocity pressure at mean roof height, h. (Eq. 6-15, page 27) , •
Kh = velocity pressure exposure coefficient evaluated at height, h, (Tab. 6.3, Case t,pg 79) .- _ _ 0.85
+ Ka = wind directionality factor. (Tab. 6-4, for building, page 80) ,` t� ' . `K ' 0.85
9.00 ' ft
h = mean roof height 1 �)
r
<60 ft, [Satisfactory] ' ' •4.
§ , < Min (L, B), [Satisfactory] , 4'
Design pressures for MWFRS
p 7- qh [(G C°, )-(G C°i
where:: p = pressure in appropriate zone. (Eq. 6-18, page 28). Amin = 10 ' psf (Sec. 6.1.4.E 8 6.1.4.2)
.' G C°T = product of gust effect factor and extemal'pressure coefficient, see table below. (Fig. 6-10, page 53 & 54) `
G C° i = product of gust effect factor and internal pressure coefficient. (Fig. 6-5, Enclosed Building, page 47) �1
a . _ • 0.18 or -0.18 y 3
' , ry a = width of edge strips, Fig 6-10, note 9 page 54, MAX[ MIN(0.113, 0.4h), 0.046,31 _ w 3.00 ,ft
.� Net Pressures(psf):Basic Load Cases .. +. Net Pressures s , Torsional Load Cases,
�..
a at~'
A 'N
` ,I
r;
1
i
}E •} 2E 2 r } 2E 2 } 2 ZONE 2/3 BOUNDARY }E } •'.. }T 2T !: _ }F } 2` 2 }T . 2T -
i• _
6 .. 4'_ ' /6 OE 4\`dT 2E 2 r6 4 `T /6
4E 4E-
T
1T F I •.
5 1 6 S - IE I°" 5 e IE -
REFERENCE CORNER IE " .REFERENCE CORNER IE REFERENCE CORNER - REFERENCE co
vnND DIRECTION 1 4 , WIND DIRECRON b
� ° � WIND DIRECTION � •" 'MND DIRECTION
Transverse Direction `K * e' Longitudinal: Direction Transverse Direction Longitudinal Direction
Basic Load Cases J ` �' Torsional Load Cases ,
' Roof an le A = 0.00 Roof an le 0 0.00
.Surf
"4
Roof an
• C C0
Net Pressure with
G
Net Pressure with
ace
(+GCP I)
, (-GG° 1) .
`
(+GC° t) (-GC i) CD r
1
0.40
2.94 7.75 0.40
2.94
7.75
2
. -0.69 '
-11.63 -0.82 -0.69
-11.63
-6.82..
3
-0.37
-7.35 -2.54' ' -0.37
-7.35
-2.54 �•
4
-0.29 `•`-
, -6.28 -1.47 -0.29
-6.28
-1.47
1E'
0.61
5.75: , 10.56 0.61
5.75
10.56
2E
-1.07-16.70
,-11.89 -1.07
-16.70
-11.89
3E
-0.53 ;
-9.49 -4.68 -0.53
• -9.49
-4.68
�� 4E
-0:43 '
-8.15 -3.34 -0.43.
-8.15
-3.34
' 5
-0.45
-8.42 • -3.61 -0.45
-8.42
-3.61
6
-0.45
-8.42 -3.61 -0.45
- -8.42
-3.61
"4
Roof an
lee = 0.00
Net Pressure
with
Surface
1T
0.40
0.7:3 '
1.94
2T
,-0.69
-2.91
-1.70
3T
-0.37
-1.814
-0.63
4T
-0.29
-1.�
-0.37
•
Roof an
le 8 = 0.00
_ •'
Net Pressure wfth'
Surface •
1T
.0:40
0.73
1.94'
2T
-0.69.
-2.9'1
-1.70
3T -
-0.37
-1.84
-0.63
4T -
-0.29
' -1..5'7
-0.37
"4
Basic Load Cases in Transverse Direction Basic Load Cases in Longitudinal Direction
r
Torsional Load Cases in Transverse Direction.
t
Design pressures for components and cladding �_ •* JrZy J- 37P T'
P= Ohl (G CP) - (G Cpl)]
Zq„°y �5 9�I
1Ono4 ZI - IZ 2:- 1- -1- 12
where: p =pressure on component. (Eq: 6-22, pg 28) ° �
I I Iti Iti ti l l
Pmin = 10.00 psf (Sec. 6.1.4.2, pg 21)
G CP =external pressure coefficient. walls
see table below. (Fig. 6-11; page 55-58) Roof 0.7' - Roof .Ip,-
Effective Zone 1 Zone 2 Zone 3 Zone 4 Zone 5
Area (ft) GC, GC GC GC GC - GC GC GC ' GC GCP
Comp.. 20 0.27 -0.97 0.27 -1.59 0.27 -2.29 0.85 -0.54 0.85 1.16
(Walls reduced 10'%, Fig. 6-11A note 5.)
Comp. & Cladding Zone 1 Zone 2 Zone 3 Zone 4 Zone 5
Pressure Positive ti,. PosnNe No tive Positive tive Positive -" Positive Negative
( psf ) 10.00 -15.37 10.00 -23.64 10.00 -32.98 13.79 -15DO 13.79 -17.96 ,
Area Pressure k with
Surface
(ft2) (-GC,i) (-GCP i )
1 234 0.69 1.81
2 163 -1.89 -1.11
3 163 -1'.19 -0.41
•- 4 234 -1.47 -0.34
1 E 54 0.31 0.57
2E 38, 0.63 0.45
3E 38 , -0.36 -0.18
4E 54 -0.44 -0.18
i• Horiz. 2.91 2.91
Vert. • , -4.07 -2.14
Min. wind Horiz. 2.88 2:88
Sec. 6.1.4.1 Vert
Torsional Load Cases in Lon itudinal Direction
Area Pressure k witY, Torsion ft -k
Surface +GC +GC � GC
(ft) ( Pi) (-GC; i) ( PI) (" Pi)
1 2 0.01 0.0� 0 0
2 8 -0.09 -0.0'i 0 0
3 - - 8 -0.06 -0.03 0 0
4 2 -0.01 0.00 0 0
1 E 54 0.31 0.5' 1 2
2E 96 -1.60 -1.14 0 0
3E 96-0.91 -0.45 0 0
4E 54 -0.44 -0.13 1 1
1T 56 0.04 0.11 0 0
2T 104 -0.30 -0.13 0 0
3T 104 -0.19 -O.m 0 0
4T 56 -0.09 -0.012 0 0
Total Horiz. Torsional Load, MT 2.0 2.0
I
Area
Pressure
k with
Surface
(�)
(*GCP i)
(-GCP i )
1
59
0.17
0.45
2
104
-1.21
-0.71
3
104
-0.76
-0.26
4
59
-0.37
-0.09
1 E
54
0.31
.0.57
2E
96
-1.60
-1.14
3E
96
-0.91
� ' -0.45
4E
54
-0.44
-0.18
2E
� Horiz.
1.29
1.29
£
Vert.
-4.49
-2.56
Min. vrind
Horiz.
1.13
1:13
.
-4.00
-4.00
Area
Pressure
k with
Surface
(�)
(*GCP i)
(-GCP i )
1
59
0.17
0.45
2
104
-1.21
-0.71
3
104
-0.76
-0.26
4
59
-0.37
-0.09
1 E
54
0.31
.0.57
2E
96
-1.60
-1.14
3E
96
-0.91
� ' -0.45
4E
54
-0.44
-0.18
2E
� Horiz.
1.29
1.29
£
Vert.
-4.49
-2.56
Min. vrind
Horiz.
1.13
1:13
Sec. 6.1.4.1
Vert.
-4.00
-4.00
Area
Pressure k with
Torsion ft -k
Surface
(n2>
(+GCP;)
(-GCP;)
(+GCP;)
(-GCP; )
1 "
90
0.26
0.70
2
5
7
63
-0.73
-0.43.
0
0
3
63
-0.46
-0.16
0
0
4
90
-0.57
-0.13
4
1
1 E
54
0.31
0.57
4
7
2E
38
-0.63 •
-0.45
0
0
3E
38
-0.36
-0.18
0
0
4E
54
-0.44
-0.18
6
2
1T
144
0.11
0.28
-1
-2
2T
100
-0.29
-0.17
0
0
3T
100
-0.18
-0.06
0
0
4T
144
-0.23
-0.05
-2
0
Total Horiz. Torsional Load, MT
12
12
PAGE:
Reza F'11'71_1�729.
PROJECT: W 6 -CO -a- biii�_hri_g "I V
CLIENT: ;RW DESIGN se.
01, REVIEW BY:
Asgharpour JOB NO.: DATE.: 02/11/1
Wit
INPUT DATA
Exposure category (B, C or D)
Importance fa
ctor, pg 77, (0.87, 1.0 or 1. 15) 1':00 -r. Category II
Basic wind speed (IBC Tab 1609.3.IV3s)- V -'-'85,x,-,mphj,
Topographic factor (Sec.6.5.7.2, pg 26 & 45) Flat
Buildingh
height to save I e A
Building height to ridge hr tvft
Building length L ,'�.,�!40 -i
',ft B
Building width 4 24,' ft
Effective area of components I NA ft22.
DESIGN SUMMARY - -
Max horizontal force normal to building length, L, face 4.60 kips
Max horizontal force normal to building length, B, face 2.41 kips
0 . I 7- ' - -18.43 ft -kips
Max total horizontal torsional load
Max total upward force -10.19 kips
4
ANALYSIS
Velocity pressure
qh = 0.00256,Kh K, K, V' 1 13.36 psf
where: 'qh = velocity pressure at mean roof height, - h. (Eq. 6'15. page 27)
Kh = velocity pressure exposure posure coefficient evaluated at height, h, (Tab. 6-3, Case l,pg 79) 0.85
Ka = wind directionality. factor.. (Tab. 64, for building, page 80) = 0.85
h = mean roof height rt 9.76'
< 60 ft, [Satisfactory]
-c Min (IL, B), [Satisfactory]
Design pressures for MWFRS;
p = qh [(G Cpf )-(G Cpl )]
-18,•page 28). 10 psf (Sec. 6.1.4.1 & 6.1.4.2)
where: p 7pressure in appropriate zone. (Eq. 6 Prnin
G Cp I =product of gust effect factor and extemal pressure coefficient. see table below. (Fig. 6-10, page 53 & 54)
G Cp i = Oro'duct of gust effect factor and internal pressure coefficient. (Fig. 6-5, Enclosed Building, page 47)
I . , . - . I - .
0.18 or -0.18 1 1 , "a' - I
a =width of edge strips, Fig 6-10, note 9, page 54, MAX[ MIN(0.113,0.4h) 0.048,3] 3.00 ft
Not Pressures (psf), Basic Load Cases Not Pressures (psf), Torsional Load Cases
Roof a gle 0 = 16.26 Roof angle 0 0.00 Roof angle 0 = 16.26
Surfa�e Net Pressure vAth . Net Pressure Wth 4, Surface - NetlPressure with,
G CP f G C t '� .1 GCpf (+GC :) (-GCpi)
(+GCpi) (-GCp 1) P ' (+GCpi)l (-GCpi) PI
7.75 1T 1.06 2.26
0.50 4.24 9.05 0.40 '2.94, 1
.2 -0.69 -11.63 .-6.82 -0.69 �11.63 -6.82. 2T 11' -0.69 -2.91 -1.70
3 -0.45 ..-8.45. -3.64 -0.37 -7.35 -2.54 3T -0.45 -2.11 -0.91,
4 -0.40. --7.69 -2.87 -0.29 -6.28 -1.47 4T -0.40 -1.92 .0.72
1E .0.75 7.65 12.46 0.61 5.75 10.56 Roof an lee = 0.00
.-2E,,, -1.07 -16.70 -11.89, -1-.07 -16.70 -11.89 Surface G-Cp Nag Pressure with
=(+GC-=p,)(-Gc
3E -0.65, -11.09 -6.28 -0.53 r -9-49 -4.68 DO,
4E -0.59 -10.26 . -5.45 -0.43 -8.15 -3. �4 0.7
1 T 0.40 3 .1.94
0
,5- -0.45, -8.42 -3.61 -0.45 -8.42 -3.61 2T -0.69 -2.31' -1;7
6, -0.45' -8.42 -3.61 -0.45 -8.42 -3.61 3T -0.37 -1.34 -0.63
4T -0.29 -1.57 -0.37. j
4
3E 2 3 2E 2 3 ZONE 2/J BOUNDARY 0 3 2 3t
21
6
4TJ IE �
2E 2 3E 3, 2T 3
h 5
3T
Co.
3E 2 4T
6 4 2E __6
4-, 4
4E i.
4E 4
4E�, 0 E
17
IT
5 - .1
CORNER IE
REFERENCE COIN IE REFERENCE CORNER REFERENCE CORNER REFERENCE COE74ER
'ON VVIND DIRECTION
1-,YAND DIRECTION WIND DIRECTION WIND DIRECT]
Direction
Transverse Direction Longitudinal Direction Transver4e DireOi6�- Longitudinal
Basic Load Cases Torsional Load Cases
j,
0.50
•
•
0.50
•
0
•
Basic Load Cases in Transverse Direction Basic Load Cases in Lon itudinal Direction
r
-r
Torsional Load Cases in Transverse Direction Torsional Load Cases In Lon itudinal Direction .
M
J
Design pressures for components and cladding 3 3 _ -? y 3 3, _, 3-' r-+ 3
p = 4h[ (G CP) - (G CPI)] s ' s i i
where: p =pressure on component. (Eq. 6-22, pg 28) s s' ; ; s iii`
Amin = 10.00 psf (See. 6.1.4.2, pg 21) 1 1 1 1 , 1 1
G CP =external pressure coefficient Walls
see table below. (Fig. 6-11, page 55-58) Roof ` o.,• Roof °>r
r
Com
t
Area Pressure k with
Surface
(ft2) (+GCP I) (-GCP I )
1 272 1.15 2.46
2 425 -4.94 -2.90
3 425 -3.59 -1.55
4 272 -2.09 -0.78
1E _ 48 0.37 0.60
2E 75 -1.25 -0.89
3E 75 -0.47
4E • ' 48 -0.49 -0.26
Horiz. 3.61 3.61
" Vert. -10.19 -5.58
Min. wind Horiz. 4.60 .4.60
Sec. 6A.4.1 Vert.
Comp. 8 Cladding
PreSSUre
( psf)
Area
Pressure k with
Surface
W)
(+GCP i)
(-GCP i )
1
181
0.53
1.40
2
375
-4.36
. -2.56
3
375
-2.76
-0.95
4
181 .
-1.14
-0.27
1 E
53
0.31
0.56
2E
125
-2.09
-1.49
3E
125
-1.19
-0.58
4E
53
-0.43
-0.18
Z
Horiz.
2.41 -
2.41
-0.89
Vert.
-9.97
-5.36.
Min. wind
HOn2.
2.34
2.34
Sec. s.t.a.t
Vert.
-9.60
-9.60
Comp. 8 Cladding
PreSSUre
( psf)
Area
Pressure k with
Surface
W)
(+GCP i)
(-GCP i )
1
181
0.53
1.40
2
375
-4.36
. -2.56
3
375
-2.76
-0.95
4
181 .
-1.14
-0.27
1 E
53
0.31
0.56
2E
125
-2.09
-1.49
3E
125
-1.19
-0.58
4E
53
-0.43
-0.18
Z
Horiz.
2.41 -
2.41
-0.89
Vert.
-9.97
-5.36.
Min. wind
HOn2.
2.34
2.34
Sec. s.t.a.t
Vert.
-9.60
-9.60
Comp. 8 Cladding
PreSSUre
( psf)
Area
Pressure k with
Torsion ft -k
Surface
W)
(+GCP i)
("GCP I)
(+GCP i)
("GCP 1 )
1
112
0.48
1.01
4
9
2
175
-2.03
-1.19
-5
-3
3
175' -
-1.48
-0.64
4
2
4
112
=0.86
-0.32
7
3
1E
48
0.37
0.60
6
10
- 2E
75
-1.25
-0.89
-6
-4
3E
75- ,
-0,83
-0.47
4
2
4E
48
-0.49
-0.26
8
4
1T
160
0.17
0.36
-2
-4
2T
250
-0.73
-0.43
2
1
3T
250
-0.53
-0.23
-1 •
-1
4T
.160
-0.31
-0.11
-3
-1
Total Horiz. Torsional Load, MT
18
18
Comp. 8 Cladding
PreSSUre
( psf)
Area
Pressure k vriti
Torsion ft -k
Surface
(ft?)
(+GCP i) (-GG. i)
(+GCP i)
(-GCP i )
1
64
0.19 � 0.4.3
1
1
2
250
-2.91 -1.791 '
8
5
3
250
-1.84 -0.0
-5
' -2
4
64
-0.40 -0.0
1
0
1 E .
53
0.31 0.5�
3
5
2E
125
_
-2.09 =1.49
6
4
3E
125
-1.19 -0.58
-3
-2
4E
53
-0.43 -0.18
4
2
1 T
117
0.09 0.23
0
. -1
2T
375
-1.09 -O.E4
-6
-4
3T
375
-0.69 -0.�4
4 -
t
4T
117
-0.18 -0.04
-1
0
Total Horiz. Torsional Load, MT
10.1 •
10.1.
Comp. 8 Cladding
PreSSUre
( psf)
Effective
Area (ftp)
Zone 1
Zone 2
Zone 4
Zone 3
Zone 4
Zone 5
GC - GC GC
- GC GC - GC GC - GG
GC
- GC
20
0.44 -0.87.
0.44
-1.55
0.44
-2.42
0.95. -1.05
0.95
-1.29
Comp. 8 Cladding
PreSSUre
( psf)
Zone 1
Zone 2
Zone 3
Zone 4
Zone 5 '
Posftiva N alive Positive No rive _ PosFtive ve PoaiUve ive
Positive
Ne Uve
10.00 -14.03 10.00 -23.11 10.00 -34.74 15.06. -1639
15.06
-19.69
Rea( Est�ifie the ? SHEET: j
i CLIENT..: R.W RA Structural Engineering �
% 1,SUBJECT': atmoAl'"J +Ada�Ff�or• JOB NO: 120 21$ {
ESIGN BY: I2. �• , DATE'.:
L o f•tV�.Q
(I opS x
33 x 7836
b
(16 p5 x -3 3 x
x
qoo b �w•,.. _ ►21 o Q b r
.{s•T• 9 °
o F�,,,T, 2 g 10 -� f
Ilk Y;
�1pI0n1(Ggrn FBI y ,.
--'-
P6 psi
y0 x -
Fw.L.= 24106 s y
-y.6°�� - }
CLIENT: R -RA Structural Engineercngy
5013 No: 12 2
SUBJECT- �e¢n►o
�%h�-f- Add�fr� I.
GPESIGN BY: A. -- • DA'CL : -Il —�Z
e(xY Vnta ®V11 GYM( ;V.4t
he
/10 chin S
U
945 Qb
F.
S• �C�� CA%dl`^ o v 1,4, e 1 n 1 T 1 6 1
•
•
Reza • PROJECT: Shea�Wall#1-., z PAGE
CLIENT: RReal Estate'Inc - DE
W SIGN BY �R.A$gilaPpOUl' JOB NO.: 8120218 2/vi2olz; REVIEW BY . R:A
INPUT DATA rr - L T •
LATERAL FORCE ON DIAPHRAGM: vdia. WIND = y, :182 ptf for wind
W
vdia, SEISMIC = •]]]]]] 150 ' pif,for seismic
GRAVITY LOADS ON THE ROOF: WDA ="4,20.,.f? pif,for dead load
V. hp
WLI. = } ":,-i30� s plf,for live load -
DIMENSIONS: Lw = 8 " s ft , h = 8 ft �F —
ft
PANEL GRADE (0 or 1) Q1.µ tJ <= Sheathing and Single -Floor L h
MINIMUM NOMINAL PANEL THICKNESS'` rs3/8' .. in
COMMON NAIL SIZE (0=6d, 1=8d, 2=10d) ,.:''1 ' `: 8d
SPECIFIC GRAVITY OF FRAMING MEMBERS ' , .0.5 �- -�- -.--
EDGE STUD SECTION �2 '. pcs, b = 2 .. in , h = 44. ; j in T v° Tw
SPECIES (1 = DFL, 2 = SP) S s1 ,,"i DOUGLAS FIR -LARCH
GRADE (1, 2, 3, 4, 5, or 6) ri 4;' No. 2 Lw r '�
-
STORY OPTION ( 1=ground level, 2=upper level) ^b.; ground level shear wall
THE SHEAR WALL DESIGN IS ADEQUATE.
DESIGN SUMMARY
BLOCKED 3/8 SHEATHING WITH 8d COMMON NAILS '
@ 6 in O.C. BOUNDARY & ALL EDGES 112 in O.C. FIELD,
5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C.
HOLD-DOWN FORCES: TL = 1.23 k TR = 1.23 k (USE PHD2-SIpS3 SIMPSON HOLD-DOWN)
DRAG STRUT FORCES: F = 0.00 k
EDGE STUD: 2 - 2" x4" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT.
SHEAR WALL DEFLECTION: A = 0.24 in
ANALYSIS i
CHECK MAX SHEAR WALL DIMENSION RATIO L-/ B = 1.0[Sattsfactory]
r
DETERMINE REQUIRED CAPACITY vb = 182 plf, ( 1 Side Diaphragm Required, the Max. Wail Spacing = 6 in)
TUC CUCAD r`ADAr`ITICC DCD IDr T�hln TQM: A 1
Panel Grade
Min. Min.
Common Penetration Thickness
Nail (in) (in)
Blocked Nail Spacing -
Boundary & All Edges
6 1 4 3 2
Sheathing and Single -Floor
8d 11/2 3/8
220 1 320 1 410 1 530
Note: The indicated shear numbers have reduced by specitic gravity tactor per Itis note a.
DETERMINE DRAG STRUT FORCE: F = (L -Lw) MAX(vd,a, WIND. Pevdia,SEISMIC) = 0.00 k
DETERMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E)
5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C.
TUC Uni rl_rlrMAIAI Cr1Df GC•
(Sec. 1633.2.6)
..t
vdia
Wall Seismic
Overturning
Resisting - Safety Net Uplift
Holddown
(PIO
at mid -std Ibs
Moments ft -lbs
'Moments ft -lbs Factors (III S)
SIMPSON
SEISMIC
150
102
10010
Left 2688 0.9 - = 949
g`5
y0
Right 2688 0.9 - = 949
WIND
182
,� E = 1.7E+06 psi
11648
Left 2688 2/3 -1 1232
p`T
Qd'
Right 2688 2/3 —R = 1232
..t
- (TL & TR values snouio InGUce upper level UYUr I. forces It appIICar
=CK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2)
gp I_ s
Vhh
Vnh hd°
'
A — AH w.g +Asim,+ Am,,r slip+ Act.li ,#itt .Jip —
+
+0.75hei+
= C243 in, ASD <
EAL,,.
Gt Lt,•
Sxe,allowable,Aso= 0.343. 'in
Where: vb = 182 plf, , ASD Lw =
8 ft
,� E = 1.7E+06 psi
[Satisfactory] (ASCE 7-05 12.E
A = 16.50 in` h =
8 ft
G = 9.0E+04 psi
Cd = 4 1 = 1
I = 0.221 in en =
0.003 in
da = 0.15 in
(ASCE 7-05 Tab 12.2-1 8 Tab 11.5
Da = 0.02 ha
(ASCE 7-05 Tab 12.12-1)
=CK EDGE STUD CAPACITY
Pmax = 1.19 kips, (this value should include upper level DOWNWARD loads if applicable)
Fc = 1350 psi CD= 1.60
Cp = 0.24
A=. 10.5 int ,
E= 1600 ksi CF= 1.15
F,= 596 psi
> fc = 114 - psi
[Satisfactory] J
..t
a
_ J n
.4 ;� -1
,Reza ; PROJECT iShear,Wall#2' ``� ` PAGE
n }� 72/Oi2l
DESIGN BY•CLIENT Asqharpou r", JOB NO.: ,120218: DATE: ` REVIEW BY
ShealrkWaII Desi "n Ba'sed,on`;IBC:1116,5k CBC07 C;NDS''05t
Vdia
Min.
r
i
L
, INPUT DATA ;� r
"LATERAL _w 129 "t" If,forwind r r
Thickness Boundary. & All Edges
FORCE ON DIAPHRAGM: V t
' dia. WIND -e,:•. ,i '} P , -.`
At
W r
+Vdia. SEISMIC —1'•`,120 ',; plf,for seismic i� ° .
-
1 1/2
3/8 220 320 1 .410 530
GRAVITY LOADS ON THE ROOF: ' wog_ 120 Y t plf,for dead load a
CO
_
Right 2300 0.9 - = 597
V„ I
by
5xe,anowable, aso = t ; 0.343 in � }
ti ,� t � .
•• •- :• WLL= ,�150,7,.,pif,forliveload-*
y0
-----------------
• -
----- ---
'• [Satisfactory] (ASCE 7 05 t 2.8.6)
-
..
DIMENSIONS: l al5 .=ft, h - � .?�8 r ft g`
y
F
"Cd = , 4 •, ', = 1
.i
Z: a. 't = 0.221
`
lft 'h ft Al.
., 0.15 .=y in
.,(ASCE 7-05 Tab 12.2-1 & Tab 11.5-1)
r r
i`e" •
y .''
,PANEL GRADE (0 6r,, <= Sheathing and Single -Floor
1),k"1 r1
«;
"
h
MINIMUM NOMINAL PANEL THICKNESS = , 3/8{.*i in
(ASCE 7-05 Tab 12.12-1) ~
COMMON NAIL SIZE (0=6d, 1=8d, 2=10d) ^'} r1 a -+w 8d'
CHECK EDGE STUD CAPACITY
SPECIFIC GRAVITY OF FRAMING MEMBERS 6.5 _ : .rJ.
:
-
—'I
applicable)
EDGE STUD SECTION ^,2 �?pCs,b = !2 in, h'_ ~ 4; In
-
, T
V, -�
, . .
T,
SPECIES 1y=DFL, 2 = SP 11f i DOUGLAS FIR -LARCH
( ) i
a ,
•10.5 in -�
,
.
CF = 1.15 -
GRADE ( 1, 2, 3, 4,5; or 6) 'z q' No 2
j6,
_
f
STORY OPTION( 1= round level, 2=- uPPer level) S,,'177' -ground level shear wall' -f,
[Satisfactory: d
THE SHEAR WALL
:)ESIGN'IS ADEQUATE.
DESIGN SUMMARY'
•`
BLOCKED 3/8 SHEATHING WITH 8d COMMON NAILS s• wr
. Kt i
S' K ,' : ,ti ` y$
@ 6 in O.C. BOUNDARY & ALL EDGES / 12 In O.C. FIELD,.
5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. t ", _
+• t`
E "
HOLD-DOWN FORCES: v TL _ 0.73 k I TR = 0.73 k.-
(USE PHD2-SDS3
SIMPSON HOLD-DOWN)
DRAG STRUT FORCES: r F = 0.00 'k ,
,�.
EDGE STUD: , '2 - 2" x 4" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT.
z,
' SHEAR WALL DEFLECTION: A = 0.30 in
ANALYSIS','
CHECK MAX SHEAR WALL DIMENSION RATIO ' ;� L/ 6 _ . 1.6< i3 5 [Satisfactory]
DETERMINE REQUIRED CAPACITY - Vb = ,. 129 plf, ., ( 1 Side Diaphragm Required, the Max.
Nail Spacing = l q 6 in) T
THE SHEAR CAPACITIES PER IBC Table 2306.4.1
'..� .
` . Note: The indicated shear numbers have reduced by specific gravity factor per IBC note a. • `'
DETERMINE DRAG STRUT FORCE:, F = (L -Lw) MAX( vd,a• wwD,'Oo�du, si sm,c) _ * 0.00 + k (fk" _, ; 5 1 }') (Sec. 1633.2_.6)
DETERMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab. 11 E)' ' ti`• r' ',� 3+
5/8 in DIA. z 10 in LONG ANCHOR BOLTS @ 48 in O.C.
THE HOLD-DOWN FORCES:
N
Vdia
Min.
Min. Blocked Nail Spacing,: `
Panel Grade
Common
Pc6eirailion
Thickness Boundary. & All Edges
at mid -Story lbs
Nail ..
in(iii)
6 4 1 3 2 '
Sheathing and Single -Floor
8d
1 1/2
3/8 220 320 1 .410 530
'..� .
` . Note: The indicated shear numbers have reduced by specific gravity factor per IBC note a. • `'
DETERMINE DRAG STRUT FORCE:, F = (L -Lw) MAX( vd,a• wwD,'Oo�du, si sm,c) _ * 0.00 + k (fk" _, ; 5 1 }') (Sec. 1633.2_.6)
DETERMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab. 11 E)' ' ti`• r' ',� 3+
5/8 in DIA. z 10 in LONG ANCHOR BOLTS @ 48 in O.C.
THE HOLD-DOWN FORCES:
N
Vdia
, Wall Seismic'
Overturn ng _
, Resi8ting Safety Net Uplift
HOIDeovm
pl
at mid -Story lbs
Moments ft -lbs
Moments ft -lbs)' Factors (Ibs)
SIMPSON
SEISMIC
'120
; 84 t ,
5056
Left 2300 0.9 - = 597
CO
_
Right 2300 0.9 - = 597
EAS„ Gt
'�,�
5xe,anowable, aso = t ; 0.343 in � }
- Where• ..t vb = 129
y0
WIND
�'-
r, 129 '
'• [Satisfactory] (ASCE 7 05 t 2.8.6)
_ 5160
hft 2300 t' 2/3 - = 725
p1
Q�
Right .2300 2/3 -R = 725
"Cd = , 4 •, ', = 1
.i
Z: a. 't = 0.221
`
0.001 in v "• da =
., 0.15 .=y in
(TL & TR values snoulo mcluae ipper level urur I TorCeS IT appucaDIe)
CHECK SHEAR WALL DEFLECTION ( IBC Section 2305 3.2)
i,
gv h'
n e i
h+0.75he;+
hr
d�
*<,•
4.=AP,d„+x+Anrrar•+On,;T.,ir,+Ocr.,di.'PI,�••
d'�/1,
+v
_ .
0301 in, ASD „ .
• ,. .•, ^ t ,�
a " i' _
EAS„ Gt
'�,�
5xe,anowable, aso = t ; 0.343 in � }
- Where• ..t vb = 129
plf, , ASD 'r` L„, =
5 ft ' - E =
1.7E+06 psi .
'• [Satisfactory] (ASCE 7 05 t 2.8.6)
A = 16.50
in h =
.M
8 ft y', G=
9.0E+04- psi
"Cd = , 4 •, ', = 1
.i
Z: a. 't = 0.221
in _ ! ea =
0.001 in v "• da =
., 0.15 .=y in
.,(ASCE 7-05 Tab 12.2-1 & Tab 11.5-1)
r r
i`e" •
y .''
f
�
_ i }
Aa-• r0.02 ha, �• a .
(ASCE 7-05 Tab 12.12-1) ~
CHECK EDGE STUD CAPACITY
Pmax = h0.99' , kips, (this value should include upper
level DOWNWARD loads if
applicable)
.. Fa = :1350 • Psi
Co = 1.60.
CP = 0.24
r; ,� u
�+' •A=
a ,
•10.5 in -�
_
E I' 1600 ksi _'
.
CF = 1.15 -
F, 596'
psi ' >
„ - f� 95 psi �+K
,
F.} I
[Satisfactory: d
Y
t Reza PROJECT She #
ar 1Nall 3f" �k""�;"`. `�; PAGE �7'
` DESIGN BY
CLIENT .. tRW Real Estate.nc•h,F� '� t•d�•,
As h a r our ` JOB NO.: 6120218 t .. ; ' bATE z/t /2012 REVIEW BY : [R:Q
Shear Wall' -Desi � n.Baseif on'IBC:06(_CBC'07/,NDS 05.x,��~�
r
INPUT DATA
6 1 4 1 3 2
LATERAL FORCE ON DIAPHRAGM: vdia, wlNo = 231 r� plf,for wind
w '
` Vdia. SEISMIC plf,for seismic -
11
at mid -story Ibs)
EROOF: Wp� = 330 pH,for dead load '
GRAVITY LOADS ON'THE ,
ft -lbs . Factors (III S)
V``
hp
p
+
WILL = rt' 360 pH,for live load ,
k- '1zXft
0.257 in, A$D c
V
--' ----------
-- `'
F
5S
_
Right 12608 0.9 IR = 233
DIMENSIONS: Lw= } 8"#rft, h 8
-.200
102
13210
�O
x
L `w18 `,,t# ft , ho = w' O .*.-ft a
8 ' ft
G = 9.0E+04 psi
C,, = 4 I = 1'
Left12608 2/3 TL = 797
0.002 in
PANEL GRADE (0 or 1) �'''y'1 :' <= Sheathing and Single -Floor
231
<.
-
h
y
MINIMUM NOMINAL PANEL THICKNESS = 3/8 in
'
(ASCE 7-05 Tab 12.12-1)
COMMON NAIL SIZE (0=6d, 1=8d, 2=10d) , ; 1"u`''8d
. 'E.
R
,;p ...
.
CHECK EDGE STUD_ CAPACITY �' 1
r
SPECIFIC GRAVITY OF FRAMING MEMBERS; 0 5 ;rte '
,{,
—r —� e —
v
Pmax 2.28 kips, (this value should include upper level DOWNWARD loads if applicable)
•
EDGE STUD SECTION pcs, b = A,;, 2 :"„[ in, h in '.
T,
Cp = « 0.24 r
Tp
SPECIES (1 = DFL, 2 = SP)" 1DOUGLAS FIR -LARCH )
'
fd = '217 psi
GRADE (1, 2, 3, 4, 5, or 6)4 ,No. 2
,
Lw r _
STORY OPTION (1=ground level, 2 -upper level) 1k A ground level shear wall
2
t t THE SHEAR WALL DESIGN IS ADEQUATE.
DESIGN SUMMARY
BLOCKED 3/8 SHEATHING WITH 8d COMMON NAILS
@ 4 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD,
5/8 in DIA'x 10 in LONG ANCHOR BOLTS @'46 in 0.C.
HOLD-DOWN FORCES: TL = 0.80 k', TR =I 0.80 k
' . , (USE PHD2-SCS3 SIMPSON HOLD-DOWN)
DRAG STRUT FORCES: - F= 0.00 k
_
EDGE STUD: 2-2” x 4" ' DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT.
-
SHEAR WALL DEFLECTION: A _ 0.26 in
K
ANALYSIS - r
CHECK MAX SHEAR WALL DIMENSION RATIO L / B• = , 1.0 < ,3':5�Eq [Satisfactory) *,
DETERMINE REQUIRED CAPACITY - vb = 231 plf. ( 1 Side Diaphragm Required, the Max. Nail Spacing = 4 in)
THE SHEAR CAPACITIES PER IBC Table 2306.4.1
•r
t
- ,
Panel Grade Common
f Nail
Min. Min.
Penetration Thickness
(in) (in) -
111
Blocked Nail Spacing
Boundary & All Edges .
6 1 4 1 3 2
Sheathing and Single -Floor 8d
112 3/8
220 320 410 530
Note: The indicated shear numbers have reduced by specific gravity factor per IBC note a t
DETERMINE DRAG STRUT FORCE: F. _ (L -Lw) N=( vdia, WIND, Oovdia, SEISMIC) - f 0.00 k (STC = 1 ) (Sec. 1633.2.6)
DETERMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) + -
5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 46 in O.C.
F
THE HOLD-DOWN FORCES'
vdia + Wall Seismic Overturning Resisti
- -
, a
111,:1Uuu u1j1ja laud vr,.rr r yr ayN,w�,a.r
ng Safety Net Uplift
;•Moments
Holddown
If)
at mid -story Ibs)
Moments ft -lbs)
ft -lbs . Factors (III S)
SIMPSON
Note: The indicated shear numbers have reduced by specific gravity factor per IBC note a t
DETERMINE DRAG STRUT FORCE: F. _ (L -Lw) N=( vdia, WIND, Oovdia, SEISMIC) - f 0.00 k (STC = 1 ) (Sec. 1633.2.6)
DETERMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) + -
5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 46 in O.C.
F
THE HOLD-DOWN FORCES'
vdia + Wall Seismic Overturning Resisti
- -
(I L 6 1 R Vd'UC' b"UUlu
111,:1Uuu u1j1ja laud vr,.rr r yr ayN,w�,a.r
ng Safety Net Uplift
;•Moments
Holddown
If)
at mid -story Ibs)
Moments ft -lbs)
ft -lbs . Factors (III S)
SIMPSON
— 0/J:rdinx•+ASlxnr+ONnilrslip+OClnrt/•s'plicc�,Jlj� —
+
_
+0.75hen+
0.257 in, A$D c
V
Left 12608 - 0.9 , Tr = 233
5S
_
Right 12608 0.9 IR = 233
SEISMIC
-.200
102
13210
�O
A = 16.50 inh =
8 ' ft
G = 9.0E+04 psi
C,, = 4 I = 1'
Left12608 2/3 TL = 797
0.002 in
WIND
231
<.
-
14784
Right 12608. 213 TR=• 797
Q
X
(I L 6 1 R Vd'UC' b"UUlu
111,:1Uuu u1j1ja laud vr,.rr r yr ayN,w�,a.r
CHECK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2)
p 3
8y,h
vvh hdn
yr
.1
— 0/J:rdinx•+ASlxnr+ONnilrslip+OClnrt/•s'plicc�,Jlj� —
+
_
+0.75hen+
0.257 in, A$D c
V
EAL,,,
Gt , ' L",
Sxe,allowable, nsD =- 0.343 in
Where: •„:' v, =' 231l plf , ASD Lw =
8 It
R E _ 1.7E+06 psi _
[SaUsfactoryj '(ASCE 7-05 12.8.6)
`
A = 16.50 inh =
8 ' ft
G = 9.0E+04 psi
C,, = 4 I = 1'
t t =' 0.221 in ea =
0.002 in
da = 0.15: , in
(ASCE 7-05 Tab 12.2-1 & Tab 11.5-1)
.0.02-. h.
'
(ASCE 7-05 Tab 12.12-1)
CHECK EDGE STUD_ CAPACITY �' 1
! ' k' R
`•-;�
Pmax 2.28 kips, (this value should include upper level DOWNWARD loads if applicable)
5
` F, — _ 1350 psi . CD= ' 1.60 {
Cp = « 0.24 r
x•
A = 10.5 int `
E = 1600 ksi CF = 1.15 '
F, 596 psi f >
fd = '217 psi
- r 1
i• [SatisfactorA
X
ST�CA V•1aQL OZ 6x"Yior) Page'] of
Anchor Calculations
•
+ 1 - Anchor $elQptor (VerSigh
,. ,
Job Name: :Datefrime : 5/20/2011 11:43:46 AM
1),Input
Calculation Method : ACI 318 Appendix D For Cracked Concrete
Code: ACI 318-08 t
Calculation Type: Analysis
a) Layout
Anchor: 5/8" SET-XP Number of Anchors : 1
Steel Grade: A307 GR.Embedment Depth : 10 in '
,
.0
Built-up GroutPads;: No
' ••
l'
P _ CX1 CXZ -
Vuay
C yt
MUy
,
♦Nua
by2
•.:
by1 Vuax
•
bx1 bx2
-
C y 1
1ANCHOR
'Nus IS POSITIVE FOR TENSION AND NEGATIVE FOR
COMPRESSION. '
INDICATES CENTER OF THE ANCHOR
'
Anchor Layout Dimensions
cx1 : 1.75 in
cx2 : 10.25.in J
-
cyi . 60 in
cy2 :,60 in
i
y
b) Base Material
Concrete: Normal weight •
fc : 2500.0 psi.
'
+-f -
Cracked Concrete': Yes -
_ ` c v : 1.00
Condition : B tension and shear
OF p 1381.3
aboutrblank " .
5/20/2011
Page 2 of 8
Psi
Thickness, ha: 18 in
Supplementary edge reinforcement: No
Hole Condition : Dry Concrete
Inspection : Continuous
Temperature Range : 1 (Maximum 110 IF short term and 75 OF long term
temp.)
c) Factored Loads
Load factor source : ACI 318 Appendix C
Nua 1850 Ib"
Vuax 0l
Vuay `U Ib
MUX: 0 Ib*ft
Muy : 0 Ib*ft
ex : 0 in
ey:0in
Moderate/high seismic risk or intermediate/high design category : Yes
Anchor w/ sustained tension : No
Anchors only resist wind and/or seismic loads : Yes
Apply entire shear load at front row for breakout : No
d) Anchor Parameters
From [F-SAS-CSAS2009]
Anchor Model = SETXP da = 0.625 in
Category = 1 hef = 10 in
hmin 13.125 in cac = 30 in
cmin = 1.75 in smin = 3 in
Ductile = Yes
2) Tertsion Force on Each: Individual Anchor
Anchor #1 Nuat - 1850.00 Ib
Sum of Anchor Tension ENua = 1850.00 Ib
elNx = 0.00 in
e'Ny =:-0.00 in
3) Shear Force on Each Individual Anchor
Resujtant shear forces in each anchor:
" Anchor #1 Vua� = 0.00 Ib (Vua1x = 0.00 Ib , Vua1y = 0.00 Ib )
Sum of Anchor Shear EVuax = 0.00 Ib, 'EVuay = 0.00 Ib .
e' VX =0.00 in
about:btank
5/20/2011
S
'
F r
Page 3 of 8
e'Vy=0.00 in
•4)
Steel Strength of Anchor in Tension [Sec. D.5.1]
N = nA f [Eq. D-3) . r '
sa se uta
,
Number of anchors acting in tension, n = 1
Nsa = 13110 Ib (for a single anchor) [F-SAS-CSAS2009]
-
= 0.80 [D.4.5]
ONsa = 10488.00 Ib (for a single anchor)
5) Concrete Breakout Strength of Anchor in Tension [Sec. D.5.2]
Ncb =ANC/ANco`Ped,NTc Nwcp NNb'[Eq. D-4]
Number of influencing edges = 2
hef = 10 in
ANco:= 900..00 int [Eq. D-6]
. '
ANc = 360.00 int
Smallest edge distance, ca,min = 1.75 in
14jed,N-= 0.7350 [Eq:-D-10 or D-1.1] -
Note: Cracking shall be controlled per D.5.2.6
•Tc
,N = 1.0000 [Sec. D.5.2.6]
TCPfN = 1.0000 [Eq. D-12 or, b-131
N= IF k� f' h .5 = 26879.36 Ib E D-7 u
kc = 17 [Sec. D.5.2.6]
Ncb = 7902.53 Ib [Eq. D-4]'
= 0.75 [DA.5] G
'
�seis -0.75 _
ONcb = 4445.17 Ib (for a single anchor),
x
6) Adhesive Strength of Anchor in Tension [Sec.0.6.3'(AC308,Sec.3.3)]
-
jk �� =-718 psi [F-SAS-CSAS2009]
V kcr = 17 [F-SAS-CSAS2009] A .
hef (unadjusted) = 10 in
Nao =: !ck,�rn dahef = 14097.90 Ib [Eq. D-16f] '
Tk,uncr - 2263.00 psi for use in [Eq. D-16d] V�•;
•
scr,Na = min[20 d a � (Tk,unc � 1450) , 3hof J = 15.616 in [Eq. D-16d]
,
about:blank
5/20/2011
{
•
Page 4 of 8
ccr,Na = scr,Na/2 = 7.808 in [Eq. D-16e]
• Na = ANa/ANao`Ped,NaTp,NaNao [Eq. D-16a]
ANao = 243.86 int [Eq. D-16c]
ANa = 149.26 int
Smallest edge distance, ca,min =.1.75 in
`Ped,Na = min[0.7+0.3ca,min/ccr,Na 1.0],= 0.7672 [Eq. D-16m]
`Pp,Na 1.0000 [Sec. D.5.3.14]
Na = 6620.37 Ib [Eq. D-16a]
= 0.75 [F=SAS-CSAS2009]
�seis = 0.75
�Na.= 3723.96 lb'(for a single anchor)
7) Side Face Blowout of Anchor in Tension [Sec. D.5.4]
Concrete side face blowout strength is only calculated for headed anchors in tension close to
an edge, Cal < 0.4hef. Not applicable in this case.
8) Steel Strength of Anchor in Shear [Sec D.6.1]
Vsa =:7865.00 Ib (for a single anchor)
Veq = Vsaay.seis [AC308 Eq. 11-27]
ay.seis = 0.71 [F-SAS-CSAS2009]
Veq = 5584.15 Ib
0.75 [D.4.5]
Veq = 4188.11 Ib (for a single anchor)
9) Concrete Breakout Strength of Anchor in Shear [Sec D.6.21
Case.1: Anchor checked against total shear load
In x-direction...
Vcbx;_ Avc)Avcox`i'ed,V`l'c,V`I'h,V Vbx [Eq. D-21]
cal =10.25 in
Avcx =_472.78 int
Avcox = 472.78 int [Eq. D-23]
Ted,V.= 1.0000 [Eq. D-27 or D-28]
Tc V = 1.0000 [Sec. D.6.2.71
`I'h-= (1.5ca� / ha) = 1.0000 [Sec. D.6.2.8j
25
about:blank 5/20/2011
Page 5 of 8
Vbz =-7(le/ da )0.2 � daX � f c(cal)1.5 [Eq. D-24]
le=5.00 in
Vbx = 13762.96 Ib
Vcbx = 13762.96 Ib [Eq. D-21]
0:75
�seis ` 0.75
Wcbx = 7741.67 Ib (for a single anchor)
In y -direction...
Vcby Avcy/Avcoy`1'ed V` C v` h V Vby [Eq. D-21
Cal = 12.00 in (adjusted for edges per D.6.2.4)
Avcy = 216.00 int
Avcoy;
= 648.00 in2 [Eq. D-23]
Ted,v =0.7292 [Eq: D-27 or D-28]
TC,V =,1.0000 [Sec. D.6.2.7]
Th,V-= (1.5cal / ha) = 1.0000 [Sec. D.6.2.8]
Vby 7(le/ da )0.2 J dad' J f c(cal)1.5 [Eq. D-24]
Ie = 5.00 in
Vby = 17434.04 lb
Vcby -=-4237.44 Ib [Eq. b-21]
= 0.75
�seis = 0.75
Wcby = 2383.56 Ib (for a single anchor)
Case '2: This case does not apply to single anchor layout
Case 3: Anchor checked for parallel to edge condition
Check anchors at cX1 edge
Vcbx:= Avcx/Avcox`fed,V`1'c,v`I'h,V Vbx [Eq. D-21]
Cal = 1.75 in
Avcx = 13.78 int
-1378 2 E D23
Avcox - m [ q- - ]
`Pea v 1.0000 [Sec. D.6.2.1(c)]
Tc,v = 1.0000 [Sec. D.6.2.71
�6
about:blank 5/20/2011
Page 6of8
q'h _ (1.5ca1 / ha) = 1.0000 [Sec. D.6.2.81
Vbx. _ 7(le/ da )0 2 J dak, fc(ca1)1.5 [Eq. D-24]
le = 5.00 in
Vbx = 970.92 Ib
Vcbx,= 970.92 Ib [Eq. D-211
Vcby" = 2 * Vcbx [Seca" D.6.2.1(c)]
Vcby = 1941.84 Ib
= 0.75
�seis = 0.75
Vcby = 1092.28 Ib (for a single anchor)
Check anchors at cy1 edge
Vcby - Avcy/Avcoy4'ed V`a'c V`l'h V Vby [Eq. D-21 ]
cal = 12.00 in (adjusted for edges per D.6.2.4)
Avcy =_216.00 int
Avcoy = 648.00 int [Eq. D-23]
ed,V = 1.0000 [Sec. D.6.2.1 (c)]
•
IPC'v = 1.0000 [Sec. D.6.2.7]
Th.V (1.5cal / ha) = 1.0000 [Sec. D.6.2.8]
Vby = 7(le/ da )0.2 J daX 4 f c(ca1)1.5 [Eq. D-24]
le = 5.00 in
Vby =;17434.04 Ib
Vcby 5811.35 Ib [Eq. D-21]
Vcbx = 2 ' Vcby [Sec. D.6.2.1(c)]
Vcbx 11622.69 Ib
=0.75
�seis = 0.75
Vcbx = 6537.76 Ib (for a single anchor)
Check anchors at cx2 edge
Vcbx = Avcx/Avcox`Ped,V`t'c,VYh,V Vbx [Eq. D-21J
Cal =10.25 in
Avcx = 472.78 int
about:blank 5/20/2011
Page 7 of 8.-
-
Avcox ' 472.78 in2 [Eq. D-23] ;
.. .
.
4'ed v = 1.0000 [Eq. D-27 or D-28] [Sec. D.6.2.1(c)]
Tc,v = 1.0000 [Sec. D.6.2.7]
RPh _ (1.5ca1 / ha) = 1.0000 [Sec. D.6.2.8]
Vbx = 7(le/ da )0.21 dad' q ' f c(cal)1.5 [Eq. D-24]
4 ,.
le = 5.00 in
A
Vbx = 13762.96 Ib -
Vcbx = 13762.96 Ib [Eq. D-21]
r
V-2.* V
Cby cbx [Sec. D.6.2.1(c)]
Vcby = 27525.92 Ib .
.
_ .0.75
Oseis =.0.75 r
Vcby — 15483.33 lb (for a single anchor)
Check anchors at cy2 edge l
_
Vcby = Avcy/Avcoy`Ped` Vc V` h V Vby [Eq. D-21]
-
Cal =12.00 in (adjusted for edges per D.6.2.4)
•
Avcy = 216.00 in2
Avcoy = 648.00 in2 [Eq. D-23] h.
fed v _ 1.0000 [Sec. D.6.2.1(c)]
,
c,V = 1.0000 [Sec. `D.6.2.7]
iPh,V = (1.5ca1 / ha) = 1.0000 [Sec. D.6.2.8)
VbY - 7,(e/,da )0.2 dak f c(ca1)1.5 [Eq. D44]
1e=5.00 in 4
Vby = 17434.04 Ib
Vcby, = 5811.35 lb [Eq.'D-21]
Vcbx = 2 * Vcby [Sec. D.6.2.1(c)]
Vcbx 11622.69 Ib
= 0.75
.�seis = 0.75 -
�Vcbx = 6537.76 lb (for a single anchor)
.
10) Concrete Pryout Strength of Anchor in Shear [Sec. D.6.3]
`
about:blanl: z
5/20/2011 .
Page 8 of x
r
Vcp='min[kcpNa,kcpNcb]. [Eq. D -30a]
kcp .= 2 [Sec. D.6.3.2]
Na = 6620.37 Ib (from Section (6) of calculations)
Ncb = 7902.53 Ib (from Section (5) of calculations)
VCP = 13240.74 Ib
_.0.75 [D.4.5]
Oseis = 0.75
�Vcp = 7447.92 Ib (for a single anchor)
11) Check Demand/Capacity Ratios [Sec. D.7]
Note: Ratios have been divided by 0.5 factor for brittle failure.
Tension
- Steep : 0.1764
- Breakout: 0.8324
- Adhesive : 0.9936
- Sideface Blowout: N/A
Shear
- Steel: 0.0000
- Breakout (case 1) : 0.0000
•
- Breakout (case 2) ; N/A
- Breakout (case 3) . 0.0000
- Pryout : 0.0000
V.Maic(0) <= 0.2 and T.Max(0.99) <= 1.0 [Sec D.7.1]
Interaction check: PASS
Use 5/8" diameter A307 GR. C SET-XP,anchor(s) with 10 in. embedmenit
i
about:blank
5/20/2011
- � �'2�eN sTUd Ww(�l �t Efe►'ror tir✓� 5/g� (jplf) Pagel oft .
Anchor Calculations
••Anchor Selector (Version 4.5.1.0)
Job Name: �. Daterrime : 5/20/2011 11:43:46 AM
Calcdfation Summary - ACI 318 Appendix D For Craeked Concrete per ACI 318
Anchor
Anchor Steel # of Anchors I Embedment Depth (in) ICategory
5/8" SET -XP I A307 GR. C 11 110 1
Concrete
Concrete
Cracked
pe(psi) 4'c.v
Normal weight
IYes
12500.0 1.00
0
ff
I Yes
Condition
Thickness (in)
Suppl. Edge Reinforcement
B tension and shear
18
No
Hole Coodition
Inspection
Temp. Range
Dry Concrete
Continuous
1
Factored Loads
Nua (lb) Vuax (lb) Vuay (lb) Mux (Ib -ft) Muy (Ib -ft)
1850 0 0 0 0
ex
(in)"
e -
(in)
Mod/high
seismic
Anchor w/ sustained
tension
Anchor only resists
wind/seis loads
Apply entire shear
@ front row
0
ff
I Yes
lNo
I Yes
INo
Individual Anchor Tension Loads
N,,81 (lb)
•
1850.00
r
0.00 0.00
_ Y t
Individual Anchor Shear Loads
V uat (lb)
1
0.00
t .
e'vx(in) IVvy(in)
0.00 0.00
Tension Strengths
Steel (m = 0.80) r.
,
' Nsa(Ib) -bNsa(Ib) Nua(Ib)
N ua /kbNsa
r
1
13110 10488.00 11850.00
10.1764
'
Concrete Breakout (kh = 0.75 , (Pseis = 0.75) + ,
Ncb(lb) (PN,(Ib) Nua(lb)
Nua /4)Ncb
-
7902.53 14445.17 11850.00
10:4162
Adhesive (m = 0.75 , cb = 0.75 )
seis
Na(Ib) _ mNa(Ib) Nua(ib)
Nva /'DNa
F:
6620.37 13723.96 11850.00
Id.4968
about:blanh
5/20/2011 , ;
Page 2 of 2
Side-Face Blowout does not apply
Shear Strengths
Steel (4) = 0.75 , r4v seis = 0.71 )
a
Veq(lb) mVeq(lb) Vua(Ib) V ea /kDVeq
5584.15 14188.11 10.00 0.0000
Concrete Breakout (case 1) (m = 0.75 , mseis = 0.75 )
Vcbx(lb) OVcbx(Ib) Vuax(Ib) Vuax /4)Vcbx
_ ..
13762.96 7741.67 10.00 10.0000
1r
VC,(lb)mVcbY(Ib) Vuay(lb) Vuay /kDVcbY Vua /a)Veb
,
4237.44 2383.56 10.00 10.0000 0.0000
ConcreW Breakout (case 2) does not apply to single anchor layout
Concrete Breakout (case 3) ((= 0.75 , mseis = 0.75 )
cx1 edge
Veby(lb) kDVcby(lb) Vuay(lb) VuaY /4)VcbY
1941.84 1092.28 10.00 10.0000
`
Cy,edge-
Vcbx(Ib) (DVcbx(Ib) Vuiax(Ib) Vuax /kDVcbx
g
11622.69 6537.76 10.00 10.0000
cx2 edge
V,Y(lb) kDVcby(lb) Vuay(lb) Vuay /mVcby
27525.92 15483.33 0.00 10.0000
cy2 edge e
Vcbx(Ib) I kDVcbx(Ib) Vuax(lb) Vuax / DVcbx Vua /kDVcb
,
111622.6916537 6 0.00 10.0000 0.0000
.�
Pryout (kD = 0.75. mseis = 0.75 )
'f.
VCP(lb)OVc,(Ib) Vuax(Ib) Vuax /(DVcp
13240.74 17447.92 10 10.0000
,
VO(lb) q)Vcp(lb) Vuay(Ib) I Vuay /kDVcp Vua /4)V CID
! .
13240.74 17447.92 10 10.0000 10.0000
. -
w
Note: ROUos have been divided by 0.5 factor for brittle failure.
Interaction check
V.Max(0) <= 0.2 and T•Max(0.99) <= 1.0 [Sec D.7.11
Interaction check: PASS
Use 5/8" diameter A307 GR.,C SET-XP anchor(s) with 10 in. embedment
r
I
�
about:btank " '
.5/20/2011 ,