Loading...
12-0147 (AR)P.O. BOX 1504 VOICE (760) 777-7012 78-495 CALLE TAMPICO FAX (760) 777-7011 LA QUINTA, CALIFORNIA 92253 BUILDING &.SAFETY DEPARTMENT. INSPECTIONS (760) 777-7153 BUILDING PERMIT Date: 4/17/12 CApplication'Numbeii I2-00000147 Owner. Property -Address: 52100- AVENIDA' VILLA RW REAL ESTATE, INC. APN: 773-234-006-17 000000- 52700 AVENIDA ALVARADO Application description: ADDITION RESIDENTIAL LA QUINTA, 'CA 92253 %n1 Property Zoning: COVE RESIDENTIAL Application valuation: 10000 APR 18 2012 — Contractor: Applicant:' Architect or Engineer: HUITRON CONSTRUCTION 50427 RIGO COURT CITY opL.AQUINTA COACHELLA, CA 92236 FINANCE DEPT. a I 1A1" (760) 398-3227 I\I{X Lic.. Nq. c 92619.0 , VVV �1 v ---------------------------------------------------- LICENSED CONTRACTO 'S DECLARATION _ WORKER'S COMPENSATION DECLARATION hereby affirm under penalty of peri ry hat I am licensed under visions of Chapter 9 (commencing with hereby affirm under penalty of perjury one of the following declarations: Section 7000) of Division 3 of the B si ss and rofessionals C , and y License is in full force and effect. _ I have and will.maintain a certificate of consent to"self-insure for workers' compensation, as provided License Class: B Lice s No.: 26190 for by Section 3700 of the Labor Code, for the performance of the work for which this permit is n r issued. Date>(/Contractori _ I have -and will maintain workers' compensation insurance, as required by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued. My workers' compensation OWNER -BUILDER DECLARATION - _ insurance. carrier and policy number are: .. " I hereby affirm under penalty of p rjury that I am exempt from the Contractor's State License Law for the Carrier STATE FUND A Policy Number 0013718-2011 following reason (Sec. 7031 .5, Business and Professions Code: Any city or county that requires a permit to, _ I certify that, in the. perfor a e of theworkfor which this ermit is 'sued, I shall not employ any - construct; alter, improve, demolish, or repair any structure, prior to -its -issuance, also requires the applicant for -the - -- - -- 'person"in any manner to become subject to thew kers' co pensation laws of California, - _- - - permit to file a signed statement that he or she is licensed pursuant to the provisions of the Contractor's State - and agree that, if, I sho Id come subject to the wor ' coJ�provesionsof SectionLicense Law (Chapter 9 (commencing with Section 7000) of Division 3 -of the Business and Professions Code) or - 3700 of the Labor Cc , hall fort ithcomply ole that he or she is exempt therefrom.and the basis for the alleged exemption. Any violation of Section 7031.5 by _- e - any applicant for a permit subjects the applicant to a civil penalty of not more than five hundred dollars ($500).: t Dat - �) `Applicant: - Ll . (_ 1 I, as owner of the property, or my employees with wages as their sole compensation, will do the work, and ' ' �" - - '-' the structure is not intended or offered for sale (Sec. 7044, Business and Professions Code: The WARNING: FAILURE TO SECURE RS' COMPENSATION OVERAGE IS UNLAWFUL, AND SHALL Contractors' State License Law does not apply to an owner of property who builds or improves thereon, C SUBJECT AN EMPLOYER TO CRI INAL PENALTIES AND CIVIL FINES UP TO ONE HUNDRED THOUSAND. - - and who does the work himself or herself through his or her own employees, provided that the - DOLLARS ($100,000). IN ADDITION TO THE COST OF COMPENSATION, DAMAGES AS PROVIDED FOR IN improvements are not intended or offered for sale. If, however, the building or improvement is sold within SECTION 3706 OF THE LABOR CODE, INTEREST, AND ATTORNEY'S FEES. one year of completion, the owner -builder will have the burden of proving that he or she did not build or _ improve for the purpose of sale.). - APPLICANT ACKNOWLEDGEMENT (_ 1 I, as owner of the property, am exclusively contracting with licensed contractors to construct the project (Sec. IMPORTANT Application is hereby made to the Director of Building and Safety for a permit subject to the 7044„ Business and Professions Code: The Contractors' State License Law does not apply to an owner of conditions and restrictions set forth on this application. - - gr9wrtY who builds or imgroyes thereon, and who contracts for the cwiecw with a csntractgr(s) licensed 1, Each Persgn won whsle behalf this agglicatign is made, each aerson at whgse request and for pursuant to the Contractors' State License Law.). _ _ - whose benefit work -is performedunderor pursuant to any permit issued as a result of this application, (_) I am exempt under Sec. , BAP.C. for this reason the owner, and the applicant, each agrees to, and shall defend, indemnify and hold harmless the City of La Quinta, its officers, agents and employees for any act or omissionrelated to the work being . performed under or following issuance of this permit. .Date: Owner: - 2. Any permit issued as a result, of this application becomes null and void if work is not commenced - within 180 days from date of issuance of such p rmit, or cessation of w6for80will subjectCONSTRUCTION LENDING AGENCY permit to cancellation.I hereby affirm under penalty of perjury that there is a construction lending agency for the performance of the I certify that I have read this application and state that th a ve infor ion is correcly with all workfor which this permit is issued (Sec. 3097, Civ. C.). ' ' city and county. ordinances and state laws relating to bui i g construe n, and herebntatives of this/,county to enter upon upon the above-mentioned prop fo inspec n purposes. - Lender's Name: _ _ - 1 7-/ �1 - -LO A.7 - 1^ Date.. ature (Applicant or Age Lender's Address: - - LQPERMIT ' - APplication.Number .12-00000147 ----- Structure Information' 108SF ADDITION/VB/RES-3/CLASS A-FR [ENG)_----- Other struct info.. . . . . CODE EDITION 2010 # BEDROOMS 1.00; . FLOOD ZONE no 1ST FLOOR-SQUARE FOOTAGE' ----------------------------------------------------------------------------- 108..00 Permit _, ., BUILDING PERMIT _ Additional desc - . Permit Fee ii7.00 Plan Check Fee 76.05 Issue Date Valuation 10000 Expiration Date— 10/14/12 _ Qty Unit,Charge Per Extension BASE•FEE 45.00 8.00 9.0000 THOU ,BLDG 2,001-25,-000 72.00 Permit ELECT,r ADD/ALT/REM Additional desc . Permit Fee . . 18.78 Plan Check Fee 4.7.0 Issue Date . . . . Valuation 0. " Expiration Date 10/14/12 Qty Unit Charge Per Extension BASE 'FEE 15.00 108.00 .0350 ..ELEC NEW RES - 1' OR 2 FAMILY 3.78 Permit MECHANICAL . Additional desc.._ _ Permit Fee . . . . 19.50 Plan Check Fee 4.88 Issue Date Valuation 0 Expiration Date 10/14/12 Qty Unit Charge Per Extension BASE FEE". 15.00 1.00 4.5000 EA MECH VENT,INST/ DUCT ALT 4.50 Special Notes and Comments 108SF ADDITION AND REMODEL AT (2) REAR BE6ROOMS/VB/RES-3/CLASS A [ENGINEERED] TIIIO RDRMIT DODO 140T INCLUDE ALTrr,.ATION ` ' TO EXISTING FRAMING OR MEP THROUGHOUT REST OF THE DWELLING. 2010 CALIFORNIA BUILDING CODE. April 16, 2012 9:46:48 AM AORTEGA APPlication'Number . . . . 12-_00000147' -------------------------------------------------------------- Other Fees . . . BLDG STDS ADMIN (SB1473) 1.00 ENERGY REVIEW FEE" 7:61 STRONG MOTION (SMI):- RES ."1.00 Fee summary Charged Paid Credited ---- - - - - -- -- Due -- - - - - - - - - - - - - - -- Permit Fee Total ---- - - - - -- ', 155.2"8 .00 .00 155.28 Plan Check Total .85.6.3 .00 .00 85.63 Other Fee. Total 9.61 .00 .00 9.61. Grand Total" 250.52 .00 .00 250.52. - LQPERMIT .. - Bin. # �... �It}/. Of :. is7i1ldlo Bulldlgg 8r Safety Division .. . . •P.0 -Box 1.504,78-495 Calle Tampico .. La.Quirita, CA 92253 - (760) 777-7012 Building Permit Application and Tracking Sheet Permit # n �� ` Project Address: s Owner's Name:. A. P. Number. Address: Legal Description: City, ST, Zip: Contractor: iJS11M.lac Telephone: 01 - Address: Address: Project Description: Arl City, ST, Zip: I �2�� Telephone: p L s� Qq Wa? �i`rl Al 1•' Gl < lJ�� `. a*-., State Lic. # : j b City Lie'. #; Arch., Engr., Designer. (r, VP Address:�\ P'\� -1&kno l City., ST, Zip: Telephoner - ....... .. w »%u Construction Type:. Occupancy: � UY�tnfi State Lic. #:f Project type (circle one): New d'u Alter Repair Demo Name of Contact Person: Sq. Ft.: 0 # Stories: # Units: Telephone # of Contact Person: Estimated Value of Project: APPLICANT: DO NOT WRITE BELOW THIS UNE tl Submittal Req'd'Rec'd TRACKNG PERMIT FEES Plan Sets a Plan Check submitted * Amount Structural Cales. Reviewed, ready for corrections Plan Cheri+ Deposit. . Truss C21cs. Called Contact Person Plan Checti Balance Title 14 Coles. Pians picked up ' Construction Flood plain plan Plans resubmitted.. Mechatdca! Grading plan 2°" Review, ready for correcti tissue Electrical Subcontactor List Called Contact Person Plumbing Grant Deed Plans picked up S.M.I. H.O A Approval Plans resubmitted Grading IN HOUSE:- '"' Review; ready for correcdo'nsPissue Developer IinpactFee Planning Approval. Called Contact Person I.P.P. Pub. Wks. Appr Date of permit issue School Fees Total Permit Fees 02117 yL2 -''fj�dXO�-. _*A,// --;- W, Off,I STS, CERTIFICATE OF'COMPLIANCE' Desert Sands Unified School District . x 47950 Dune Palms Road �', Q BERMUDA DUNES "t-" Cn RANCHO MIRAGE ` Date 4/17/12 , La Quinta, CA 92253 INDIAN WELLS .ti, ' _ PALM DESERT ,y $INQUINTA DIO515 v> L No. 31255 (760) 771 . �yQINDlO yr� Owner RW Real Estate APN # 773-234-006_ ' r Address '- Jurisdiction La Qu'inta City Zip Permit #` Tract #' s No. of Units 1 Type r Residential Addition ' • Lot # No. Street S.F. Lot # No. Street S.F. Unit 1 52100 Avenida Villa 108 Unit 6 Unit 2 - - Unit 7 a' Unit 3 Unit 8 Unit 4 Unit 9 Unit 5 f. Unit 10 I'` • i - • 4 •t Comments . 4 At the present time, the Desert Sands Unified School District does not collect fees on garages/carports, covered patioshnralkways, residential additions under 500 square feet, detached accessory structures (spaces that do not contain facilities for living, sleeping, cooking, eating or sanitation) or replacement mobile homes. It has been determined that the. above-named owner is exempt from paying school fees at this time due to the fdlowing reason: r , •' Residential Addition 500 Sq Fret or Less EXEMPT This ceitifies that school facility fees imposed pursuant to *R , Education Code Section 17620 and Government Code 65995 Et Seq. in the amount of $0.00. X 108., S.F. or $0.00 have been paid for the property listed above and that building permits and/or Certificates of Occupancy for this square footage in this proposed project may now be issued. Fees Paid By Exempt- Gustavo. Huitron Check No. Name on the check Telephone 760-451-9960 " # Funding Exempt BY Dr. Sharon P. McGehee Superintendent Fee collected /exe p Y h McGilvlrey _ Payment Recd' QverNnder Signature NOTICE: Pursuant to Gove medLe Section 020(d 1), this will serve to notify you that the 90-day.approval period in which you may protest the fees or other payment identified above will begin to run fro a date on which the. building or installation permit for this project-4s issued, or from the date on which those amounts are paid to the District(s) or to another public entity authorized to collect them on the District('s) behalf, whichever is earlier. NOTICE: This Document NOT VALID"without embossed seal . Embossed Original - Building Department Applicant Copy - Applicant/Receipt Copy - Accounting I.' r a BUILDING ENERGY ANALYSIS REPORT PROJECT: Joey Arsanto Res. Remodel/Addition 52100 Avenita Villa APN# 773234006 La Quinta, CA 92253 Project Designer: Angel Gerardo p 52935 Avenita Mendoza La Quinta, CA 92253 760-333-6374 Report Prepared by: Gina Rose -Starkey EQS, Inc. 42335 Washington St. #F-330 Palm Desert, CA 92211 MAK G.0 LJIL Date: BY: 3/21 /2011 The EnergyPro computer program has been used to perform the calculations summarized in this compliance report. This program has approval and is authorized by the California Energy Commission for use with both the Residential and. Nonresidential 2008 Building Energy Efficiency Standards. This program developed by EnergySoft, LLC — www.energysoft.com. Ener Pro 5.1 by Ener Sok User Number: 5862 RunCode: 2011-03-21 71 6:37:21 /D: t v PERFORMANCE CERTIFICATE: Residential Part 1 of 5 CF -1 R Project Name Joey Arsanto Res. Remodel/Addition Building Type m Single Family ❑ Addition Alone ❑ Multi Family ® Existing+ Addition/Alteration Date 3/21/2011 Project Address 52100 Avenita Villa APN# 773234006 La California Energy Climate Zone CA Climate Zone 15 Total Cond. Floor Area 1,356 Addition 108 # of Stories 1 FIELD INSPECTION ENERGY CHECKLIST ❑ Yes ❑ No HERS Measures -- If Yes, A CF -4R must be provided per Part 2 of 5 of this form. El Yes ❑ No Special Features -- If Yes, see Part 2 of 5 of this form for details. INSULATION Area Special Construction Type Cavity (ft) Features see Part 2 of 5 Status Wall Wood Framed R-15 898 Existing Slab Unheated Slab -on -Grade None 1,248 Perim = 128' Existing Roof Wood Framed Attic R-19 1,248 Existing Wall Wood Framed R-15 184 New Slab Unheated Slab -on -Grade None 108 Perim = 24' New Roof Wood Framed Attic R-19 108 New FENESTRATION U- Exterior Orientation Area(ft) Factor SHGC Overhang Sidefins Shades Status Rear (E) 69.3 0.500 0.45 none none Bug Screen New Right (S) 28.5 0.710 0.60 none none Bug Screen Existing Front (W) 44.0 0.710 0.60 none none Bug Screen Existing HVAC SYSTEMS Ot . Heating Min. Eff Cooling Min. Eff Thermostat Status 1 Central Furnace 80% AFUE Split Air Conditioner 12.0 SEER Setback Existing HVAC DISTRIBUTION Duct Location Heating Cooling Duct Location R -Value Status HVAC System Ducted Ducted Attic, Ceiling Ins, vented 4.2 Existing WATER HEATING Ot . Type Gallons Min. Eff Distribution Status Ener Pro 5.1 by Ener Soft User Number- 5862 RunCode: 2011-03-21T16:37:2 ID: Page 3 of 10 PERFORMANCE CERTIFICATE: Residential (Part 2 of 5) CF -1_R Project Name Joey Arsanto Res. Remodel/Addition Building Type ® Single Family ❑ Addition Alone ❑ Multi Family ® Existing+ Add ition..Alteration Date 3/21/2011 SPECIAL FEATURES INSPECTION CHECKLIST The enforcement agency should pay special attention to the items specified in this checklist. These items require special written justification and documentation, and special verification to be used with the performance approach. The enforcement agency determines the adequacy of the justification, and may reject a building or design that otherwise complies based on the adequacy of the special justification and documentation submitted. HIGH MASS Design - Verify Thermal Mass: 804.0 ft2 Exposed Slab Floor, 3.500" thick at Exisitng House HIGH MASS Design - Verify Thermal Mass: 444.0 ft2 Covered Slab Floor, 3.500" thick at Exisitng House HIGH MASS Design - Verify Thermal Mass: 108.0 ft2 Covered Slab Floor, 3.500" thick at Addition HERS REQUIRED VERIFICATION Items in this section require field testing and/or verification by a certified HERS Rater. The inspector must receive a completed CF -4R form for each of the measures listed below for final to be given. EnerqvPro 5.1 by Ener Soft User Number: 5862 RunCode: 2011-03-21T16:37:2 ID: Page 4 of 10 PERFORMANCE CERTIFICATE: Residential Part 3 of 5 CF -1 R Project Name Building Type m Single Family ❑ Addition Alone Date Joey Arsanto Res. Remodel/Addition ❑ Multi Family 10 Existing+ Add itio•-i/Alteration 1312112011 ANNUAL ENERGY USE SUMMARY Standard Proposed Margin TDV kBtu/ft2- r Space Heating 6.80 4.17 2.63 Space Cooling 133.54 121.56 11.98 Fans 29.75 26.95 2.80 Domestic Hot Water 21.70 21.70 0.00 Pumps 0.00 0.00 0.00 Totals 191.79 174.38 17.41 Percent Better Than Standard: 9.1% BUILDING COMPLIES - NO HERS VERIFICATION REQUIRED Fenestration Building Front Orientation: (t9 270 deg Ext. Walls/Roof Wall Area Area Number of Dwelling Units: 1.00 (W) 320 - 44 Fuel Available at Site: Natural Gas (N) ?88 0 Raised Floor Area: 0 (E) 320 69 Slab on Grade Area: 1,356 (S) 296 29 Average Ceiling Height: 8.0 Roof 1,356 0 Fenestration Average U -Factor. 0.61 TOTAL: 142 Average SHGC: 0.53 Fenestration/CFA Ratio: 10.5 REMARKS STATEMENT OF COMPLIANCE This certificate of compliance lists the building features and specifications needed to comply with Title 24, Parts 1 the Administrative Regulations and Part 6 the Efficiency Standards of the California Code of Regulations. The documentation author hereby certifies that the documentation is accurate and complete. Documentation Author an EQS, Inc. Com ' P Y Address 42335 Washington St. #F-330 Name Gina Rose -Starkey 3/21/2011 City/State/ZipCity/State/Zip Palm Desert, CA 92211 Phone 760-218-3350 Signed Date The individual with overall design responsibility hereby certifies that the proposed building design represented in this set of construction documents is consistent with the other compliance forms and worksheets, with the specifications, and with any other calculations submitted with this"permit application, and recognizes that compliance using duct design, duct sealing, verification of refrigerant charge, insulation installation quality, and building envelope sealing require installer testing and certification and field verification by an approved HERS rater. Designer or Owner (per Business & Professions Code), Company Angel Gerardo Address 52935 Avenita Mendoza Name Angel Gerardo City/State/Zip La Quinta, CA 92253 Phone 760-333-6374 Signed License # Date Ener Pro 5.1 by Ener Soft User Number: 5862 RunCode: 2011-03-21 T16:37:2 ID: Page 5 of 10 CERTIFICATE OF COMPLIANCE: Residential . • ' (Part 4 of 5) CF -1 R Project Name Joey Arsanto Res. Remodel/Addition Building Type m Single Family '❑ Addition Alone ❑ Multi Family m Existing+ Addition/Alteration Date 3/21/2011 OPAQUE SURFACE DETAILS " Surface IU Type I Area Insulation . Factor Cavit Exterior Frame Interior Frame Azm Tilt 1 Status Joint Appendix - 4 Location/Comments Wall 64 0.095 R-15 .0 90 Removec 4.3.1 A4 Exisitng House Wall 192 0.095 R-15 0 90 Existing 4.3.1-A4 Exisitng House Wall 163 0.095 R-15 90 90 Existing 4.3.1-A4 Exisitng House Wall .268 0.095 R-15 180 90 Existing 4.3.1-A4 Exisitng House Wall 276 0.095 R-15 270 90 Existing 4.3.1-A4' Exisitng House Slab. 804 0.730 None 0 180 Existing 4.4.7-A1 Exisilng House Slab 444 ' 0.730 None 0 180 Existing 4.4.7-A1 Exisitng House Roof 1,248 0.048 R-19 0 0 Existing 4.2.1-A16 Exisitng House Wall 96 0.095 R-15 0 90 New 14.3.1-A4 Addition Wall 88 0.095 R-15 90 90 New 4.3.1-A4 Addition Slab 108 0.730 None 0 180 New 4.4.7-A 1 Addition Roof 108 0.048 R-19 0 . 0 New 4.2.1-A16 Addition t FENESTRATION SURFACE DETAILS _ID Type Area U -Factor SHGC 'Azm Status t Glazing Type Location/Comments " 1 Window 40.0 0.710 NFRC 0.60 NFRC 0 Removed Existing - Exisitng House _ 4 2 Window 53.3 0.710 NFRC 0.60 NFRC 90 Removed Existing, - Exisitng House 3 Window 20.0 0.500 NFRC 0.45 NFRC 90 New Minimum Exisitng House " 4 Window 13.3 0.500 NFRC 0.45 NFRC 90 New Minimum Exisitng House 5 Window 13.8 0.710 NFRC 0.60 NFRC 90 Removed Existing Exisitng House 6 Window 20.0 0.500 NFRC . 0.45 NFRC 90 New Minimum Exisitng House 7 Window 4.5 0.710 NFRC 0.60 NFRC 180 Existing Existing Exisitng House 8 Window 6.0 0.710 NFRC 0.60 NFRC 180 Existing Existing Exisitng House 9 Window 18.0 0.710 NFRC 0.60 NFRC 180 Existing Existing Exisitng House 10 Window 20.0 0.710 NFRC 0.60 NFRC 270 Existing Existing Exisitng House r_ 11 Window 24.0 0.710 NFRC 0.60 NFRC 270 Existing Existing Exisitng House 12 Window 16.0 0.500 NFRC 0.45 NFRC 90 New Minimum Addition (1) Ll -Factor Type: 116-A = Default Table from Standards, NFRC = Labeled Value 2 SHGC Type:' 116-B = Default Table from Standards, NFRC = Labeled Value EXTERIOR SHADING DETAILS ID Window Exterior Shade Type "SHGC H t Wd Ove hang ' Len H t LExt RExt Left Fin Dist Len Right Fin H t Dist Len H- t 1 Bug Screen 0.76 3.0 8.0 2.0 0.1 2.0 2.0 2 Bug Screen 0.76 3 Bug Screen 0.76 y 4 Bug Screen 0.76 5 Bug Screen 0.76 _ 6 Bug Screen -0.76 7 Bug Screen 0.76 8 Bug Screen 0.76 - 9 Bug Screen 0.76 ,- 10 Bug Screen 0.76 11 Bug Screen 0.76 12 Bug Screen 0.76 Ener Pro 5.1 by Ene Soft. User Number. 5862 RunCode: 2011-03-21T16:37:2 ID: Page 6 of 10 CERTIFICATE OF COMPLIANCE: Residential . (Part 5 of 5) CF -1 R Project Name Joey Arsanto Res. Remodel/Addition Building Type m Single Family ❑ Addition Alone ❑ Multi Family m Existing+ Additicn/Alteration Date 3/21/2011 BUILDING ZONE INFORMATION System Name Zone Name Floor Area New Existing Altered Removed Volume Year Built HVAC System Exisitng House 1,248 9,984 1980 Addition 108 864 Totals 1 1081 1,2481 01 ) HVAC SYSTEMS System Name Qty. Heating Type Min. Eff. Cooling Type Min. Eff. The: mostat Type Status HVAC System 1 Central Furnace 80% AFUE Split Air Conditioner 12.0 SEER Setback Existing HVAC DISTRIBUTION System Name Heating Duct Ducts Cooling Duct Location R -Value Tested? Status HVAC System Ducted Ducted Attic, Ceiling Ins, vented 4.2 ❑ Existing t ❑ WATER HEATING SYSTEMS S stem Name Qty- Type Distribution Rated Input Btuh Tank Cap. al Energy Factor or RE Standby Loss or Piot Ext. Tank Insul. R- Value Status Default Gas Prior to 1999 1 Small Gas Point of Use 28,000 50 0.53 n!a n/a Existing MULTI -FAMILY WATER HEATING DETAILS HYDRONIC HEATING SYSTEM PIPING Control E(ft) 2 E w Hot Water Piping Length o :1.� '76 aPipe — System Name Length Pipe Diameter Insul. Thick. Q . HP Plenum Outside Buried ❑ ❑ ❑ ❑ ❑ ❑ 01 ❑ ❑ 1 ❑ EnerqyPro 5.1 by Ener Soft User Number: 5862 RunCode: 2011-03-21T16:37:2 ID: Pae 7 o 10 MANDATORY MEASURES SUMMARY: Residential Pae 1 of 3), MF -1 R Project Name - Date Joey Arsanto Res. Remodel/Addition 3/21/2611 - NOTE: Low-rise residential buildings subject to the Standards must comply with all applicable mandatory measures listed, regardless of the compliance approach used. More stringent energy measures listed on the Certificate of Compliance (CF -1 R, CF -1 R -ADD, or CF - •1 R -ALT Form) shall supersede the items marked with an asterisk (*) below. This Mandatory Measures Sumnary shall be incorporated into the permit documents, and the applicable features shall be considered by all parties as minimum compo -lent performance specifications whether they are shown elsewhere in the documents or in this summary. Submit all applicable sections of the MF -1 R Form with plans. Building Envelope Measures: 116(a)l: Doors and windows between conditioned and unconditioned spaces are manufactured to limit air Leakage. §116(a)4: Fenestration products (except field -fabricated windows) have a label listing the certified U -Factor, certified Solar Heat Gain Coefficient SHGC , and infiltration that meets the requirements of §10-111(a). 117: Exterior doors and windows are weather-stripped; all, joints and penetrations are caulked and sealed. - 118 (a): Insulationspecified or installed meets Standards for Insulating Material. Indicate type and include on CF -6R Form. §118(i): The thermal emittance and solar reflectance values of the cool roofing material meets the requirements of §118(1) when the ' installation of a Cool Roof is specified on the CF -1 R Form.' ,*§l 50 a : Minimum R-19 insulation in wood -frame ceiling orequivalent LI -factor. §156(b): Loose fill insulation shall conform with manufacturer's installed design labeled R -Value. *§150(c): Minimum R-13 insulation in wood -frame wall orequivalent U -factor. *§1 50 d : Minimum R-13 insulation in raised wood -frame floor orequivalent U -factor. ` 150(f): Air retarding wrap is tested, labeled, and installed according to ASTM E1677-95 2000 when specified on the CF -1 R Form: 150 : Mandatory Vapor barrier installed in Climate Zones 14 or 16. §150(1): Water absorption rate for slab edge insulation material alone without facings is no greater than 0.30ro; water vapor permeance, rate is no greater than 2.0perm/inch and shall be protected from physical damage and UV light deterioration. Fireplaces, Decorative Gas Appliances and Gas Log Measures: 150 e 1 A: Masonry or factory -built fireplaces have a closable metal or glass door covering the entire openi,,ig of the firebox. - §150(e)1 B: Masonry or factory -built fireplaces have a combustion outside air intake, which is at least six square inches in area and is, equipped with a with a readily accessible, operable, and tight -fitting damper and or a combustion -air control device. §150(e)2: Continuous burning pilot lights and the use of indoor air for cooling a firebox jacket, when that indoor air is vented to the outside of the building, are prohibited. " Space Conditioning, Water Heating and Plumbing System Measures: - §110-§113: HVAC equipment, water heaters, showerheads, faucets and all other -regulated appliances are certified by the Energy., Commission. - §113(c)5: Water heating recirculation loops serving multiple dwelling units and High -Rise residential occupancies meet the air release valve, backflow prevention;'pump isolation valve, and recirculation loop connection requirements of §113(c).5. §115: Continuously burning pilot lights are prohibited for natural gas: fan -type central furnaces, household cooking appliances " (appliances with an electrical supply voltage connection with pilot lights that consume less than 150 Btu/hr are exempt), and pool and spa heaters. y 150(h): Heating and/o� cooling loads are calculated in accordance with ASHRAE, SMACNA or ACCA. §150(i): Heating s stems are equibped with thermostats that meet the setback requirements of Section 112.,c). §1500)1 A: Storage gas water heaters rated with an Energy Factor no greater than the federal minimal stancard are externally wrapped . with insulation having an installed thermal resistance of R-12 or greater.. §1,500)1 B: Unfired storage tanks, such as storage tanks or backup tanks for solar water -heating system, or ether indirect hot water tanks have R-12 external insulation or R-16 internal insulation where the internal insulation R -value is indicated on the exterior of the tank. " §1500)2: First 5 feet of hot and cold water pipes closest to water heater tank, non -recirculating systems, and entire length of ' ' • , recirculating sections of hot water pipes are insulated per Standards Table 150-B. ` §1500)2: Cooling system piping (suction, chilled water, or brine lines),and piping insulated between heating source and indirect hot water tank shall be insulated to Table 150-B and Equation 150-A. §1500)2: Pipe insulation for steam hydronic heating systems or hot water systems >15 psi, meets the requirements of Standards Table 123-A. . §150(j)3A: Insulation is protected from damage, inc I luding that due to sunlight, moisture, equipment maintenance, and wind. §1500)3A: Insulation for chilled water piping and refrigerant suction lines includes a vapor retardant or is enclosed entirely in 'conditioned space. 150 4: Solar water -heating systems and/or collectors are certified by . the Solar Rating and Certification Corporation. _ " •' • 9 EnergyPro 5.1 by Ene'rgysoft User Number: 5862 RunCode: 2011-03-21716:37:21 ID: Page 8 of 10 _ % ♦ ' 0" . MANDATORY MEASURES SUMMARY: Residential (Page 2 of 3 MF -1 R Project Name Date Joey Arsanto Res. Remodel/Addition 3/21/2011 §150(m)1: All air -distribution system ducts and plenums installed, are sealed and insulated to meet the requirements of CMC Sections 601, 602, 603, 604, 605 and Standard 6-5; supply -air and return -air ducts and plenums are insulated to a minimum installed level of R- 4.2 or enclosed entirely in conditioned space. Openings shall be sealed with mastic, tape or other duct -closure system that meets the applicable requirements of UL 181, UL 181A, or UL 181 B or aerosol sealant that meets the requirements of UL 723. If mastic or tape is used to seal openings reater than 1/4 inch, the combination of mastic and either mesh or tape shall be used §150(m)1: Building cavities, support platforms for air handlers, and plenums defined or constructed with materials other than sealed sheet metal, duct board or flexible duct shall not be used for conveying conditioned air. Building cavities and support platforms may contain ducts. Ducts installed in cavities and support platforms shall not be compressed to cause reductions in the cross-sectional area of the ducts. §150(m)2D: Joints and seams of duct systems and their components shall not be sealed with cloth back rubber adhesive duct tapes unless such tape is used in combination with mastic and draw bands. 150(m)7: Exhaust fans stems have back draft or automatic dampers. §150(m)8: Gravity ventilating systems serving conditioned space have either automatic or readily accessible, manually operated dampers. §150(m)9: Insulation shall be protected from damage, including that due to sunlight, moisture, equipment maintenance, and wind. Cellular foam insulation shall be protected as above or painted with a coating that is water retardant and provides shielding from solar radiation that can cause degradation of the material. 150 m 10: Flexible ducts cannot have porous inner cores. §150(o): All dwelling units shall meet the requirements of ANSI/ASHRAE Standard 62.2-2007 Ventilation and Acceptable Indoor Air Quality in Low -Rise Residential Buildings. Window operation is not a permissible method of providing the Whole Building Ventilation required in Section 4 of that Standard. Pool and Spa Heating Systems and Equipment Measures: §114(a): Any pool or spa heating system shall be certified to have: a thermal efficiency that complies with the Appliance Efficiency Regulations; an on-off switch mounted outside of the heater; a permanent weatherproof plate or card with operating instructions; and shall not use electric resistance heating ora pilot light. §114(b)1: Any pool or spa heating equipment shall be installed with at least 36" of pipe between filter and heater, or dedicated suction and return lines, or built-up connections for future solar heating. 114(b)2: Outdoor pools ors as that have a heat pump or gas heater shall have a cover. §114(b)3: Pools shall have directional inlets that adequately mix the pool water, and a time switch that will allow all pumps to be set or programmed to run only during off-peak electric demand periods. 150 : Residential pool systems orequipment meet the pump sizing, flow rate, piping, filters, and valve requirements of §150 Residential Lighting Measures: §150(k)1: High efficacy luminaires or LED Light Engine with Integral Heat Sink has an efficacy that is no lower than the efficacies contained in Table 150-C and is not a low eff icacy luminaire asspecified by §150 k 2. 150(k)3: The wattage of permanently installed luminaires shall be determined asspecified by §130(d). §150(k)4: Ballasts for fluorescent lamps rated 13 Watts or greater shall be electronic and shall have an output frequency no less than 20 kHz. §150(k)5: Permanently installed night lights and night lights integral to a permanently installed luminaire or exhaust fan shall contain only high efficacy lamps meeting the minimum efficacies contained in Table 150-C and shall not contain a line -voltage socket or line - voltage lamp holder; OR shall be rated to consume no more than five watts of power as determined by §130(d), and shall not contain a medium screw -base socket. 150(k)6: Lighting integral to exhaust fans, in rooms other than kitchens, shall meet the applicable requirements of §150(k). 150(k)7: All switching devices and controls shall meet the requirements of §150(k)7. §150(k)8:. A minimum of 50 percent of the total rated wattage of permanently installed lighting in kitchens shall be high efficacy. EXCEPTION: Up to 50 watts for dwelling units less than or equal to 2,500 ft2 or 100 watts for dwelling units larger than 2,500 ft2 may be exempt from the 50% high efficacy requirement when: all low efficacy luminaires in the kitchen are controlled by a manual on occupant sensor, dimmer, energy management system (EMCS), or a multi -scene programmable control system; and all permanently installed luminaries in garages, laundry rooms, closets greater than 70 square feet, and utility rooms are high efficacy and controlled by a manual -on occupant sensor. §150(k)9: Permanently installed lighting that is internal to cabinets shall use no more than 20 watts of power per linear foot of illuminated cabinet. EnergyPro 5.1 by EnergySoft User Number: 5862 RunCode: 2011-03-21716:37:21 ID: Page 9 of 10 MANDATORY MEASURES SUMMARY: Residential (Page 3 :)f 3 MF -1 R ,Project Name Date Joey Arsanto Res. Remodel/Addition 1312112011 §150(k)l0: Permanently installed luminaires in bathrooms, attached and detached garages, laundry rooms, closets and utility rooms _ shall be high efficacy. EXCEPTION 1: Permanently installed low efficacy luminaires shall be allowed provided that they are controlled by a manual -on occupant sensor certified to comply with the applicable requirements of §119. EXCEPTION 2: Permanently installed low efficacy luminaires in closets less than 70 square feet are not required to be controlled by a manual -on occupancy sensor. §150(k)l 1: Permanently installed luminaires located in rooms or areas other than in kitchens, bathrooms, gasages, laundry rooms,. closets, and utility rooms shall be high efficacy luimnaires. EXCEPTION 1: Permanently installed low efficac} luminaires shall be allowed provided they are controlled by either a dimmer switch that complies with the applicable requirement3 of §119, or by a manual - on occupant sensor that complies with the applicable requirements of §119. EXCEPTION 2: Lighting in detached storage building less than 1000 square feet located on a residential site is not required to comply with §150 k 11. §150(k)12: Luminaires recessed into insulated ceilings shall be listed for zero clearance insulation contact (IC) by Underwriters Laboratories or other nationally recognized testing/rating laboratory; and have a label that certifies the lumiuraire is airtight with air leakage less then 2.0 CFM at 75 Pascals when tested in accordance with ASTM E283; and be sealed with a gasket or caulk between the luminaire housing and ceiling. §150(k)l3: Luminaires providing outdoor lighting, including lighting for private patios in low-rise residential bi,nldings with four or more dwelling units, entrances, balconies, and porches, which are permanently mounted to a residential building ar to other buildings on the same lot shall be high efficacy. EXCEPTION 1: Permanently installed outdoor low efficacy luminaires shall be allowed provided that they are controlled by a manual on/off switch, a motion sensor not having an override or bypass switch that cisables the motion sensor, and one of the following controls: a photocontrol not having an override or bypass switch that disables the photocontrol; OR an astronomical time clock not having an override or bypass switch that disables the astronomical time clock; OR an energy management control system (EMCS) not having an override or bypass switch that allows the luminaire to be always on EXCEPTION 2: Outdoor luminaires used to comply with Exceptionl to §150(k)l3 may be controlled by a temporary override switch w-iich bypasses the motion sensing function provided that the motion sensor is automatically reactivated within six hours. EXCEPTION•: Permanently installed luminaires in or around swimming pool, water features, or other location subject to Article 680 of the Californa Electric Code need not be high efficacy luminaires. §150(k)14: Internally illuminated address signs shall comply with Section 148; OR not contain a screw -base socket, and consume no more than five watts of power as determined according to §130(d). §150(k)15: Lighting for parking lots and carports with a total of for 8 or more vehicles per site shall comply with the applicable requirements in Sections 130, 132, 134, and 147. Lighting for parking garages for 8 or more vehicles shall comply with the applicable requirements of Sections 130, 131, 134, and 146. §150(k)16: Permanently installed lighting in the enclosed, non -dwelling spaces of low-rise residential buildings with four or more dwelling units shall be high efficacy luminaires. EXCEPTION: Permanently installed low efficacy luminaires _dhall be allowed provided that they are controlled by an occupant sensors certified to comply with the applicable requirements of 113. EnergyPro 5.1 by EnergySoft User Number: 5862 RunCode: 2011-03-21 T16:37:21 ID: Page 10 of 10 RrA-TC-'�'fAMJ i 78080 Calle Amigo, Suite 102 phone: (760)771-9993 La Quinta, CA 92253 Fax: (.760)771-9998 Cell: 1-760)808-9146 41 _ Structural Calculation , For RW Real Estate Inc. At 52100 Avenida Villa La • Quinta, CA. Type Of Project: Residential Addition+Remodeling Designer: Angel Gerardo FEB 17 2012 .. By *, �oFESS/0 GH 0 . W C- X X 'NO.C67613 m EXP. O i 4 OFC\.\F� 4. Date: February 11, 2012 CITY O QUINTA x Design by: Reza Asgharpour, P.E. BUILDING & SAFETY DEPT. - JN: 120218 APPROVED FOR CONSTRUCTION ; - - � DATE %1 BY >• y i [SL- IENT: �W Rra Esta tpCBJECT: !tem ^ -M'" tAa�d i�io�^ DESIGN BY: 2 A SHEET: RA Structural Engineering JOB No: a 20 2.1 g DATE: 2_I 1-\ 2 DESIGN LOADS Roof Loads - Sloped Roof Loads - Flat Clay Tile : ID Wpsf. Roofing 6.0 psf. Framing 2.5 psf. Framing 2.5 psf. sheathing (1(2° CDx) 1.5 psf, sheathing .(1/2'! CDx) 1.5 psf. Ceiling 2.5 psf. Ceiling 2.5 psf. insulation 1.5 psf. insulation 1.5 psf. Misc. 9.0 4-('psf Misc. -6�psf Total Dead Load: a-0 ,2rpsf. Total Dead Load 16 .29-psf. Total live Load 20 psf . Total live Load 20 psf Total Roof Load 40 *Y psf. Total Roof Load 36 A& psf. . k Floor Loads r Deck Loads. , .Framing 3.5 psf. Framing 3.5 psf. sheathing (3/4° Piywd) 2.5 psf sheathing (3/4° Plywd) 2.5 psf Ceiling 2.5 psf. Ceiling 2.5 psf:. Lt. Wt. Conc./ Flooring Tile 15 psf. Lt. Wt. Conc. 15 psf. Misc. 3.5 psf Flooring Tile 10 psf Total Dead Load 27 psf. Misc. 3.5 psf Total live Load 40 ,psf Total Dead Load 37 psf. Total Floor Load 67 psf. Total live Load 60 psf, Total Load. 97 psf. w + Exterior Wall Interior Wal 7/8" Stucco 10.0 psf. Insulation 1.0 psf..,. Drywall 2.5 psf Drywall 5.0 psf Studs 1.0 psf. Studs r 1.0 psf. Misc. 1.0 psf. Misc. 1.0 psf. Total Wall Weight 15.0 psf. Total Wall Weight r 10.0 psf. . r 1 •� Viz^ "t �. .f } Reza PROJECT RJ #3„` s PAGE CLIENT RW Real Estate Inc. " DESIGN BY tR Az it AS har Our JOB NO. : x120218" .DATE )211/2012 '.. +r REVIEW BY. SR:A:.; Wood Joist D6si"n Based'omNDS'05 / NDS 01,:ICC,PFC:;4-354-$ P.,FC-5803`",;'. " °�t: INPd17 DATA & DESIGN SUMMARY AVAILABLE MINIMUM Douglas.Fir-Larch SIZES JOIST SPAN [. _ .12 ft 2 x 8 No. 2 2 x 8 No. 1 2 x 8 Structural i DEAD LOAD D1. = 16 psf, (w/o self Wt) AVAILABLE MINIMUM TJI SIZES LIVE LOAD / SNOW, 1X= 20 psf 1117/8" TJI/L65 1.1 7/8" TJI/L90 1117/8" TJI/H90 JOIST SPACING S = 16 in o.c. AVAILABLE MINIMUM SSI SIZES DURATION FACTOR l; p.= ' `,1.25 f. (NDS Tab. 2.3.2) 117/8" SSI 32MX 11 7/8" SSI 42MX 117/8" SSI 43L REPETITIVE FACTO Cr = 1.15 (NDS 4.3.9. For DSA, 1.0) DEFLECTION LIMIT OF LIVE LOAD d LL = L / 360. (L / 360, 0.4 in ) DEFLECTION LIMIT OF LONG-TERM LOAD d t.s(0L+0.33Lu = L / •480 „ (L / 480 , 0.3 in ) DEFLECTION LIMIT OF TOTAL LOAD 4(OL.LL) = L /'240 ( L 1240, 0.6 in ) ANALYSIS JOIST PROPERTIES & ALLOWABLE MOMENT & SHEAR 2x No. 2 Dou las Fir -Larch ASD Supplements, Tab. 5.4a 2x No. 1 Dou las Fir -Larch from WoodBeam.xis v. .. t 2x Structural Dou las Fir -Larch ASD Supplements. Tab. 5.4a r Where: 1. ASD Supplements, Tab. 5.4a is from American V/ood Council, 2001. - 2. Assume that the joist top is fully lateral supported by diaphragm. (CL = 3. WoodBeam.xis is at www.engineering-international.com TJIIL65 from Trus'oist Of 1062, page 5 SSI 32MX from ICC PFC-5803, e 5 8 6 TJI/L90 from Trus'oist # 1062, a e 5 SSI 42MX (from ICC PFC-5803, pane 5 & 6 Deep (in) Wt (Ibs/fl) M (ft -lbs) V (lbs) EI x 10° ' r r T.1111,190 (from Trus'oist # 1062, pane 5 SSI 43L from ICC PFC-5603 e 5 & 6 Deep (in) Wt (Ibslfl) M (fl -lbs) V (lbs) EI x 10° ' (CP included) (in-lbs) (in' -lbs) Deep (in) 1,0) Wt ((lbs/ft) M (fl -lbs) CF inUuded) V (lbs) EI x 10° "(in2-lbs) 4 - 1.00 344 630 _ 9 6 2.00 738 990 33 8 2.00 1183 1310 76 10 3.00 1767 1670 158 ' 12 4.00 2375 2030 285 ' Deep (in) 1,0) Wt ((lbs/ft) M (fl -lbs) CF inUuded) V (lbs) EI x 10° "(in2-lbs) 4 1.00 574 630 10 6 2.00 1225 990 40 8 2.00. 1975 1310 91 10 3.00 2942 1670 188 12 4.00 3958 2030 338 Deep (in) Wt (Ibs/fl) M (fl -lbs) V (lbs) EI x 101 in2-lbs 117/8 3.30 6750 1925 450 14 3.60 8030 2125 666 16 3.90 9210 2330 913 18 4.20 10380 2535 1205 ' 20 4.40 11540 2740 1545 22 -4.70 12690 2935 1934 • 24 5.00 13830 3060 2374 26 5.30 - 14960 2900. 2868 28 5.50.. 16085 2900 3417 30 '5.80 t s 17205 2900 4025 Deep (in) ,Wt (lbs/fl) M (fl -lbs) V (lbs) _Ln' -lbs 11 7/8 4.20 9605 1925 621 14 4.50• 11430 2125 913 16 4.70 13115 2330 1246 16 5.00 14785 2535 1635 20 5.30 16435 2740 2085 22 5.60 18075 2935 2597 24 5.80 19700 3060 3172 26 6.10 21315 2900 3814 28 6.40 22915 2900 4525 30 6.60 24510 2900 5306 Deep (in) ,Wt (lbs/fl) M (fl -lbs) V (lbs) EI x 10° (in2-lbs) 4 1.00 383 630 14 4:90 13090 2125 1015 16 5.20 15065 .2330 1389 18 .5.40 17010 2535 1827 20 5.70 18945 2740 2331 22 � 6.00 20855 2935 2904 24 6.30 22755 3060 3549 26 6.50 24645 2900 4266 28 X211 26520 2900 5059 13279 3540 2638 20.15 28 Deep (in) Wt (lbs/ft) M (ft -lbs) V (lbs) E' x 10° Wt (lbs/ft)) M (fl -lbs) ( included) Ei x 10° n2 -lbs (in2-lbs) 4 1.00 383 630 9 6 2.00 819 990 35 8 2.00 1314 _ 1305 81 10 3.00 , 1961 1665 '168 12 4.00 2637>- 2025 303 Deep (in) Wt (lbs/ft)) M (fl -lbs) V (lbs) Ei x 10° n2 -lbs C x 10° (W -lbs) 117/8 3.10 5391 2115 460 9.39 14 3.30 6570 2330 667 10.99 16 3:60 7684 2530 '900 12.50 18 3.90 8800 2735 A170 14.02 20 4.10 9918 2935 11478 15.55 22 4.40 11038 - 3135 A 824 17.08 24 4.70 12159 3335 X211 18.62 26 5.00 13279 3540 2638 20.15 28 5.20 14401 3740 3106 21.68 ' 30 5.50 15524 3940. 3616 23.21 Deep (in) Wt (lbs/ft) M (fl -lbs) V (lbs) axle n2 -lbs C x 10° in2-lbs 11 7/8 3.80 7592 � 2060 637 9.54 t4 4.10 9274 ` 2350 924 11.15 t6 a.3o 10863 2820 1246 12.68 t8, 4.60 t2a58 2895 1617 14.22 20 4.90 14051. 3165 2040 15.77 22 5.10 15649 .3440 2514 .17.32 24 � 5.40 17248 3710 3042 18.87 26 5.70 18849 3985 3622 20.42 28 6.00 20450. 4255 x257 21.97 30 6:20 22052 4530 4948 23.53. Deep (in) Wt (Ibs/R) M (ft -lbs) V (lbs) axle C x 10°. ,j • 9 Deep (in) M (ft-Ibs) V (Ibs) ALL in ALT in I AD*L in CHECK (cont'd) DESIGN EQUATIONS 205- 1.24 2.18 2.29 N.G. 6 626 WL2 M = RCdC_', _ w/, V 1uFr" 384/:/ 0.58 N.G. 1 ` 626 209 0.14 2CuC. 0.26 o.k. 10 639 213 0.07 22.54,/.' 2.260/,' A,„ = + ( from Trusjoist # 1062, , page 21) o.k. 12 1 651 217 0.04 a h7 d x 10' o.k. o.k. 14 646 215 0.02 0.05 0.05 o.k. 14 642 214 0.02 0.04 0.04 + 1v� ( from ICC PFC-5803, page 2) 650 217. 0.02 0.04 0.04 o.k. Acv =5111L 384E/ C 646 215 0.02 0.03 0.03 o.k. 18 CHECK JOIST CAPACITIES & DEFLECTIONS 218 0.02 0.03 0.03 o.k. 18 2x No: 2 Douglas Fir -Larch 217 2x No. 1 Dou as Fir -Larch 0.03 0.03 o.k. 20 Deep (in) M (ft -lbs) V (Ibs) ALL ALT AD -L CHECK Deep (in) M (ft-Ibs) V (Ibs) ALL ALT AD -L CHECK 4 614 205 in 1.38 in 2.42 in 2.54 N.G. 4 614 205 in 1.38 in 2.42 in 2.54 N.G. 6 626 209 0.38 - 0.68 0.71- N.G. 6 626 209 0.36 0.64 0.67 N.G. 8> 626 209 0.16 0.30 0.31 o.k. 8 10 626 639 209 213 0.15 0.07 0.28 D.14 0.29 0.14 o.k o.k. i0 12 639 651 213 217 0.08 0.04 0.15 0.08 0.15. 0.09 o.k. o.k. 12 651 217 - 0.04 0.08 0.08 o.k. 674 225 0.01 0.01 0.01 o.k. 30 670 2x Structural Douglas Fir -Larch 0.01 201 0.01 o.k. - Deep (in) Deep (in) M (ft-Ibs) V (Ibs) ALL in ALT in I AD*L in CHECK 4 614 205- 1.24 2.18 2.29 N.G. 6 626 209 0.31 0.56 0.58 N.G. 1 ` 626 209 0.14 • 0.25 0.26 o.k. 10 639 213 0.07 0.12 0.13 o.k. 12 1 651 217 0.04 0.07 0.07 o.k. • s M (ft-Ibs) V (Ibs) ALL ALT AD -L CHECK Deep (in) TJI/LBS SSI 32MX Deep (in) M (ft-Ibs) V (Ibs) ALL ALT AD -L CHECK Deep (in) M (ft-Ibs) V (Ibs) ALL ALT AD -L CHECK in in in in in in 117/8 642 214 0.03 0.07 0.07 o.k. 11718 640 213 0.03 0.06 0.06 o.k. 14 646 215 0.02 0.05 0.05 o.k. 14 642 214 0.02 0.04 0.04 o.k. :t6 650 217. 0.02 0.04 0.04 o.k. 16 646 215 0.02 0.03 0.03 o.k. 18 654 218 0.02 0.03 0.03 o.k. 18 650 217 0.01 0.03 0.03 o.k. 20 656 219 0.01 0.02 0.02 o.k. 20 652 217 0.01 0.02 0.02 o.k. 22 660 220 0.010.02 0.02 o.k. 22 656 219 0.01 0.02 0.02 o.k. 24 664 221 0.01 0.02 0.02 o.k. 24 660 220 0.01 0.02 0.02 o.k. 26 667 222 0.01 0.02 0.02 o.k. 26 664 221 0.01 0.01 0.01 o.k. 28 670 223 0.01 0.01 0.01 o.k. 28 666 222 0.01 0.01 0.01. o.k. - 30 674 225 0.01 0.01 0.01 o.k. 30 670 223 1 0.01 201 0.01 o.k. TJI/L90 SSI42MX Deep (in) M (ft-Ibs) V (Ibs) ALL ALT AD -L CHECK Deep (in) M (ft-Ibs) V (Ibs) ALL -ALT ADSL CHECK in in in in in in 11718 654 218 0.03 0.05 0.05 - o.k. 11 7/8 649 216 0.02 3.05 0.05 o.k. 14 657 219 0.02 0.04 0.04 o.k. 14 652 217 0.02 3.03 0.03 o.k._ 16 660 220 0.02 0.03 0.03 o.k. 16 655 218 0.01 3.03 0.03 o.k: 18 664 221 0.01 0.02 0.02 o.k. 18 659 220 • 0.01 x.02 0.02- o.k.' 20 667 222 0.01 0.02 0.02 o.k. 20 662 221 0.01 7.02 0.02 o.k. 22 671 224 0:01 0.02 0.02 o.k. 22 665 222 0.01 202 0.02 o.k. 24 674 225 0.01 0.02 0.02 o.k. 24 669 223 - 0.01 3.01 0.01 o.k.. 677. 226 0.01 0.01 0.01 o.k. 26 672 224 0.01 7.01 0.01 o.k. .28- 28 681 227 0.01 0.01 0.01 o.k. 28 676 225 0.01 0.01 0.01 o.k. 30 684 228 0.01 0.01 0.01 0.1L 30 679 1 226 1 0.00 1 0.01 1 0.01 1 o.k. TJI/H90 SS143L Deep (in) M (ft-Ibs) V (Ibs) ALL ALT AWL CHECK Deep (in) M (ft-Ibs) V (Ibs) ALL ALT AWL CHECK in in in in in in 11718 659 220 0.03 0.05 0.05 o.k. 117/8 659 220 0.02 0.05 0.05 o.k. 14 662 221 0.02 0.04 0.04 o.k. 14 662 221 0.02 J.04 0.04 o.k. 16 666 222• 0.01 0.03 0.03 0.k. 16. 666 222 0.01 3.03 0.03 o.k.. f8 669 223 0.01 0.02 0.02 ' o.k. 18 669 223 0.01 7.02 0.02 o.k. . 20 672 224 0.01 0.02 0.02 o.k. 20 672 224 0.01 0.02 0.02 o.k. 22 676 225 0.01 0.02 0.02 o.k. 22 675 225 0.01 202 0.02 o.k. 24 680 227 0.01 0.01 0.01 o.k. 24 679 226 ' 0.01 101 0.01 o.k. 26 682 227 0.01 0.01 0.01 o.k. 26 681 227 0.01 201 0.01 o.k. 28 686 229 0.01 0.01 0.01 o.k. 28 .685 228 0.01 101 0.01 o.k. 30 1 690 230 0.00 0.01 0.01 o.k. 30 689 230 0.00 7.01 0.01 o.k. c: • Reza PROJECT: BM#1 , PAGE i char �Ur CLIENT: ,RW Real Estate nc ) DESIGN BY :R.A a JOB NO.: :120218DATE: !2/11/2012 REVIEW BY: A.k. INPUT DATA & DESIGN SUMMARY y L, �z MEMBER SIZE 4z.6 No, 2, Douglas Fir -Larch I MEMBER SPAN L= 5;5 ft P°i+ ;P°r P., UNIFORMLY DISTRIBUTED DEAD LOAD WD = 150 lbs/ft 1 UNIFORMLY DISTRIBUTED LIVE LOAD WL = 150 lbs/ft W` CONCENTRATED DEAD LOADS PD1 = 0' lbs WD (0 for no concentrated load) L, = 0 ft 11 PD2 = 0 lbs T L2 = 0 ft DEFLECTION LIMIT OF LIVE LOAD dL = L / 360 Camber => 0.06 inch DEFLECTION LIMIT OF LONG-TERM dKcrp. L = L / 240 THE BEAM DESIGN IS ADEQUATE. Does member have continuous lateral support by top diaphragm ? (1= yes, 0= no) 0 No Code Duration Factor, C� Condition Code Designation 1 0.90 Dead Load 1 Select Structural, Douglas Fir -Larch 2 1.00 Occupancy Live Load 2 No. 1, Douglas Fir -Larch 3 1.15 Snow Load 3 No. 2, Douglas Fir -Larch 4 1.25 Construction Load 4 Select Structural, Southern Pine 5 1.60 Wind/Earthquake Load 5 No. 1, Southern Pine 6 2.00 Impact toad 6 No. 2, Southern Pine Choice => 4 Construction Load Choice => 3 ANALYSIS DETERMINE REACTIONS, MOMENT, SHEAR `Nsei1 w1 = 4 lbs / ft RLefl = 0.84 kips RRfgm = 0.84 kips VMex = 0.70 kips, at 5.5 inch from left end MMax = 1.15 ft -kips, at 2.75 ft from left end DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES b = 3.50 in E'min = 580 ksi E = Ex = 1600 ksi Fb = 1462.5 psi d = 5.50 in FbE = 12493 psi Fb = 900 psi F = FbE / F; = 8.54 A = 19.3 int I 49 in 4_ F� = 180 psi '- Fe = 1,453 psi Sx = 17.6 in Rs = 7.464 < 50 E' = 1,600 ksi F„ = 225 psi /E= 10.3 (ft, Tab 3.3.3 footnote 1) CD CM C1 C, CL CF Cv Cc Cr 1.25 1,00 1.00 1.00 0.99 1.30 1.00 1.00 1.00 CHECK BENDING AND SHEAR CAPACITIES fb = MMax / Sx = 782 psi < Fb = 1453 psi [Satisfactory] f, = 1.5 Vmax / A = 54 psi < F, [Satisfactory] CHECK DEFLECTIONS A (L, Max) = 0.04 in, at 2.750 ft from left end, < d L = L 1360 [Satisfactory] d(KcrD+L. Max) = 0.10 in, at 2.750 ft from left end < d KcrD. L ='L / 240 [Satisfactory] Where K�, = 1.50 , (NDS 3.5.2) DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) d (1.0. Max) = 0.06 in, at 2.750 ft from left end. CHECK THE BEAM CAPACITY WITH AXIAL LOAD - AXIAL LOAD F = 2 -kips THE ALLOWABLE COMPRESSIVE STRESS IS F,' =•Fb Co CP CF = 1173 psi a ; Where F, = 1350 psi F Co = 1.60f— CF = 1.30 (Lumber only) CP = (1+F) / 2c - [(1+F) / 2c)2 - F / c]os = 0.418 F, = Fc Co CF = 2808 psi Le = KeL = 1.0L.= 66 in b = 3.5 in ^ SF =slenderness ratio = 18.9 < 50 [Satisfies NDS 2005 Sec. 3.7.1.41 F z _ -0.822 E'm,, / SF = 1341 psi, E'min = 580 ksi F F,E / Fc' = 0.477 ' c - 0.8 THE ACTUAL COMPRESSIVE STRESS IS fb = F / A = 104 psi < Fc' - [Satisfactory] a THE ALLOWABLE FLEXURAL STRESS IS Fb' = 1860 psi, [ for CD = 1.6- HE .6 HE ACTUAL FLEXURAL STRESS IS fb = (M + Fe) / S = 1179 psi < ;Fb [Satisfactory] ^ CHECK COMBINED STRESS [NDS 2005 Sec. 3.9.2]. (fb / Fc )2 + % / [Fe (1 - fb / F.E)] = 0.695 < 'l [Satisfactory] ti -T • *. y Reza PROJECT : :BM#2``r + - ° ; PAGE t'•t' CLIENT : rRW Real Estate Inc �,_ � . t ,;" !: DESIGN BY R.A ACJ harpour JOB NO.: 1.120248". .j DATE: 2/11/2012, REVIEW BY: sR.A�� Wood-,Beam.Dest n'Base';on°NM2005r''� INPUT DATA & DESIGN SUMMARY L, MEMBER SIZE 4:x 8;. ' No. 2, Douglas Fir -Larch _1� Lz MEMBER SPAN L= 5"5", it i I Po; I i P02 UNIFORMLY DISTRIBUTED DEAD LOAD wo = 330 :; lbs / ft 1 W� UNIFORMLY DISTRIBUTED LIVE LOAD WL = °, 300 , lbs/ft _ CONCENTRATED DEAD LOADS Pot = 0: lbs �. WD (0 for no concentrated load) L, = 0 .' it Pot = 0,'!' ' lbs r L2 = 0 • ft J)EFLECTION LIMIT OF LIVE LOAD d L = L / 360 ` Camber => 0.06 inch DEFLECTION LIMIT OF LONG-TERM dKvD-L' U'240 THE BEAM DESIGN IS ADEQUATE. Does member have continuous lateral support by top diaphragm ? (1= Yes, 0= no) 0 No _ Code Duration Factor, Cr, Condition Code Designation ' 1 0.90 Dead Load 1 Select Structural, Douglas fir -Larch 2 1.00 , t Occupancy Live Load 2 No. 1, Douglas Fir -Larch 3 1.15 , Snow Load .3 No. 2, Douglas Fir -Larch 4 1.25 Construction Load 4 Select Structural, Southern Pine 5 1.60 Wind/Earthquake Load 5 No. 1, Southern Pine 6 2.00 Impact Load 6 No. 2, Southern Pine Choice => 4 Construction Load Choice => 3 ANALYSIS bETERMINE REACTIONS, MOMENT, SHEAR ' wseif wt = 5 lbs / ft - RLef, = 1.75 kips RRight 1.75 kips VMax = 1.36 < kips, at 7.25 inch from left end MMax = 2.40 ft -kips, at 2.75 it from left end DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES r , b = 3.50 in E'R,i„ = 580 ksi E = Ex= .1600 ksi Fb = 11462.5 psi d = 7.25 in FbE = 9093 psi Fb = 900 psi F = FbE / Fb = 6.22 A = 25.4' int I = 111 in . F, = 180 psi Fe = 1,449 psi Sx = 30.7 in Rg= 6.749 <50 E' = 1,600 ksi F, = 225 psi /E= 10.8 (ft, Tab 3.3.3 footnote 1) {� , CD CM Ct Ci CL CF Cv Cc' Cr 1.25 1.00 1.00 1.00 0.99 1.30 •1.00 _ 1.00 1.00 CHECK BENDING AND SHEAR CAPACITIES fb = MMX / Sx = 940 psi < Fb=1 1449 psi [Satisfactory] f,'= 1.5 VMax / A = 81 psi < Fv - [Satisfactory] I CHECK DEFLECTIONS - d < (L, Max) = 0.03 in, at 2.750 ft from left end, d / L = L 360 [Satisfactory] d (Kcr D - L, Max) _ 0.09 in, at 2.750 ft from left end < 1 d k,r 1) • u = L/240 [Satisfactory] t Where K_ _ 1.50 (NDS 3.5.2) ` r DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) d (1.51). Max) = 0.06 in, at 2.750 ft from left end ' CHECK THE BEAM CAPACITY WITH AXIAL LOAD AXIAL LOAD F = 2, 'kips 1 THE ALLOWABLE COMPRESSIVE STRESS IS FITT1 I +! Fr = F, CD CP CF = .1173 psi Where F, = 1350 psi F F Co = 1.60 — CF = 1.30 (Lumber only) Cp = (1+F) /.2c - [(1+F) / 2c)2 - F / c]°-5 0.418 Fc* = Fe Co CF = 2808 psi Le = K8 L = 1.0 L = 66 in b = 3.5 in SF = slenderness ratio = 18.9 < 50 [Satisfies NDS 2005 Sec. 3.7.1.4] FcE = 0.822 E'min / SF2 = 1341 psi E'min = 580 ksi F = FcE / Fc* = 0.477 C = 0.8 THE ACTUAL COMPRESSIVE STRESS IS fc = F / A 79 psi < Fc' [Satisfactory] THE ALLOWABLE FLEXURAL STRESS IS Fp . = 1854 psi, [ for Co = 1.6 ] THE ACTUAL FLEXURAL STRESS IS - f, _ (M + Fe) / S = 1169 psi < Fp [Satisfactory] CHECK COMBINED STRESS [NDS 2005 Sec. 3.9.21 (f, / F� )2 + % / [Fo (1 - f, / FoE)] = 0.674 < 1 [Satisfactory] onverting Addresses to/from Latitude/Longitude/Altitude in One Ste...., ` http://stevemorse.org/jcal/latIon.php Converting Addresses to/from Latitude/Longitude/Altitude in One , . • � :. ,, � -- • .. - Step ' ,. 'p • � � �. • 4 ��� -T _ ' Stephen P. Morse, San FranciscojI. Ba Mode;(Forward 'Batch Mode,(R&e�r,s" Ba tch Mode (A t de)� 9/Min Sec to- `mputin >QistancFequentl Asked Qtaest�ons rM Other Webpages " " •.. 9 1 y .µthy Access geocoder.us'/ geocoder.ca (takes a relatively long time) . • J ,+ •� �r" . ,• "' r, -�' ' it '.T: . address 52100 Avenida villa ! latitude city r La. Quinta longitude StateCA• -G I ' above values must be in decimal , i zip 92253+ from !latitude longitude_ altitudes with minus signs for south and west `United country � . " States 4etermtne Address nese Determine ���.. Lat/Lon :Get Altitudes i. reser' . Access geocoder.us'/ geocoder.ca (takes a relatively long time) . • J ,+ •� �r" . ,• "' r, -�' ' it '.T: . from goo lei latitude ;longitude_) aliitude' F • ' decimal 1133.669855 -116.305104�� ' '. deg -min -sec 33° 40' 11.478"1-116° 18' 18.3744"I -G .: from !latitude longitude_ altitudes ' use dect_al_ 33.65_90204037071 =116.279622072062 m deg-min-sec' 33° 39' 32.4735"�� -116-16-46 - I __ "' '' •' _ 52100 AVENIDA VILLA La Quinta CA , from hoo latitlzde_ i longitude altitude; `decimal _ay _I - 33.669989 -116.305381 ,A _ deg -min -sect' 33° 40' 11.9604"j-1 160 18' 19.3716"111 ; 52100 Avenida_ Villa, La Quinta, California 92253 � Data presented here comes from the following websites: og ogle. (all addresses) ' ,eocoder.ca. (US and Canadian addresses only) •geocoder.us. (US addresses only) ,gpsvisualizer. (for altitudes) " locatienet. (European addresses only) • • ' ' €', I of 1 r�'` r ' 2/11/2012 3:11 PM Conterminous 48 States • 2005 ASCE 7 Standard Latitude = 33.669855 Loi'igitude = -116.305104 Spectral Response Accelerations Ss and S1 Ss and S1 = Mapped Spectral Acceleration Values Site Class B - Fa = 1.0 ,Fv = 1.0 Data are based on a 0.01 deg grid spacing Period Sa (sec) (9) 0.2 1.500 (Ss, Site Class B) 1.0 0.600 (S1, Site Class B) Conterminous 48 States 2005 ASCE 7 Standard Latitude = 33.669855 Lorfgitude = -116.305104 Spectral Response Accelerations SMs and SM1 SMs = Fa x Ss and SM1 = Fv x S1 • Site Class D - Fa = 1.0 ,Fv = 1.5 Period Sa (sec) (g) 0.2 1.500 (SMs, Site Class D) 1.0 0.900 (SM1, Site Class D) Conterminous 48 States 2005 ASCE 7 Standard Latitude = 33.669855 Longitude = -116.305104 Design Spectral Response Accelerations SDs and SD1 SDs = 2/3 x SMs and SD1 = 2/3 x SM1 Site,Class D - Fa = 1.0 ,Fv = 1.5 Period Sa (sec) (9) 0.2 1.000 (SDs, Site Class D) • 1.0 0.600 (SD1, Site Class D) 1� Reza PROJECT : ,Seismic Load,(Dlaphragm A) PAGE: z �, 5' E DESIGN BY : R A.:- CLIENT: RWsReal Estate Inc t t : , �_ ,i 1 ,,w. sg harpou JOB NO.: X120218 a. sa:r DATE . 2411/2012{ REVIEW BY: lR A 4 , , ;�v OneSto •.:;Seismic Anal ss Based on_IBC'.064/ CBC' 07,.E �,�?>>r Determine Base Shear (Derived from ASCE 7-05 Sec. 12.8) V=MAX{ MIN ISDjI/(RT) ', SDSI/R] 0.01 0.5S,I/R}W , = MAX{ MIN[.0.97W., 0.15W ] ,, 0.01W 0.05W} - = 0.15 W, (SD) (for S1 >- 0.6 g -"only) = 0.11 W, (ASD) = 0.86 kips Where SDs = k r..k,1 r (ASCE 7-05 Sec 11.4:4) • t ' SD1 = s 0.6 �, (ASCE 7-05 Sec 11.4.4) ,t S� 0'6 (ASCE 7-05 Sec 11.4.1)" 4 F 'R = r y , 6:5 (ASCE 7-05 Tab (IBC 06 Tab 1604.5 & ASCE 7-05 Tab 11.5-1) _ t , i r FCt = . ' 0:02 ' (ASCE 7-05 Tab 12.8-2) ,. x = " 0.75 -(ASCE 7-05 Tab 12.8-2) • - " .T = Ct (hn)x 0.095 sec, (ASCE .7-05 Sec 12.8.2.1) • ,•: i - . '^ IC alculate Vertical Distribution of Forces& Allowable Elastic Drift (ASCE 7-05, Sec 12.8.3 &12.8.6) , 4 Level Wx hx hxk Wxhxk FX , ASD (12.,8-11) , Sxe,auowatile, ASD Roof 8.0 63 0.9 ( 0.11 wx) 0'.3 - 63 0-9- 7.8 cti y }• Where k = 1 ,. for T <_ 0.5 , (sxe,allowable, ASD = Da 1 / (1.4 Cd), (ASCE 7-05 Sec 12.8.6) k = 0.5 T + 0:75 for T @ (0.5 , 2.5) Cd (AS,.E 7-05 Tab 12.2-1) k += 2 for T. 2.5 {. a • -#j sx, • ) >= O �• 0 02 ~' h iASCE 7-05 Tab 12:12-1 - y 4a - i Calculate Diaphragm Forces (ASCE 7-05, Sec 12.10.1:1) Level WX EW-- FX EFX Fpx.,-ASD, (12.10-1) Roof - 7.8 ' 7.8 0.9 0.9- 1.0 ( 0.13 Wx ) x`7.8 0.9 :_ » • Where Fmin = 0.2 SDSI Wx / 1.5 ,'ASD ' Finax = 0.4 SDS I Wx / 1.5 , ASD x Reza'6 R:v� �PROJECT: ,Seigffii6;L-oad(Diaotiri§m;B);.A'FAGE:3s ie: ' CLIENT: ,fRW Real Estate=lnc DESIGV BY : R A a a� sgharpoui JOB NO.: 120218`P. _ '. r{; '' DATE 12/11/2012 REVIEW BY : ,R A One';$tory Seismic Analysis Based on"IBC` Ofi>I:GBG-07� �3 ' ``:,.' Determine Base Shear (Derived from ASCE 7-05 Sec. 12.8) 'V= MAX( MIN ISD1I/(RT) , SDSI/R] 0.01;,-0.5S1I/R K '--.MAX{ MIN[ 0.97W 0.15W J , 0-01W 0.05W) _ .0.15 W, (SD)' • J(for S1.>: 0.6 g..only) . 0.11 W, (ASD) = 2.37 :kips , Where SDs (ASCE 7-05 Sec 11.4.4)` SD1 =. OK6' t,: (ASCE 7-05 Sec 11,AA) . S1 = ' 0,6-,- +' (ASCE 7-05 Sec 11:4.1) ' R = a 65 �'J,(ASCE 7-05 Tab 12.2-1) =�`1 s (IBC 06'Tab 1604.5 & ASCE 7-05 Tab 11.5-1)Ni�. (ASCE 7-05 Tab 12.8-2) s " hn = 8.0, ft, 0:75 *(ASCE 7-05 Tab 12.8-2) T Ct (hn)x = 0.095 sec, (ASCE 7-05 Sec 12:8:2.1)' ,* + alcu late Vertical Distribution of Forces & Allowable Elastic Drift (ASCE 7-05, Sec 12;8.3 & 12.8.3) Level ' WX ., hx hxk Wxhxk FX , ASD (12.8-11) sxe,allowable, ASD Roof 197 216" � '�`8: - } , 8.0 173 2.4 ( o.11 wx) 0.3 21.6 173 • 2.4 F Where k 1 for T <= 0.5 sxe,allowable, ASD = Aa 1/ (1.4 Cd), (ASCE 7-05 Sec 12.8.6) k = ; 0.5 T + 0.75 + ` for T'@ (0.5 , 2.5) Cd = �4 ' ,(ASCE 7-05 Tab 12.2-1) - -: k 2 for T >=.,2.5 Aa - 0 02`` hsx, (ASCE 7-05 Tab 12.12-1) Calculate Diaphragm Forces (ASCE 7-05, Sec 12.10.1'.1) Level Wx EWx Fx EFx, r. Fox ASD, (1210-1)' Roof 21.6 21.6 2.4 2.4- _ 2.9 (c.13 Wx ) 21.6 2.4 4 Where+ Fmin'= 0.2 SDS I Wx / 1.5 , ASD • ` Finax = 0.4 SDs I Wx / 1.5 , ASD - N 1 .� Reza PROJECT Wtrid Loatl (Diaphragm A) PAGE CLIENT RW 12ea1 State Inc• " * '"' '' ,'t," DESIGN BY : AsgharpoUr JOB NO.. d120218x ri =` ) DATE. i'02/.11/12 REVIEW BY : Wind AitaIj Wis,fdr. LoW'r(se Building, Based -on ASC 9 10 5. 1,IBC 2006;1 r INPUT:DATA Exposure category (13; C or D) 4.0 1 Importance factor, pg 77, (0.87, 1.0 or 1.15) ; , 1 = 1.00 :,?Ti, Category II i Basic wind speed (IBC Tab 1609.3.1V3S) 1 V =w"1 X85a mph,•. Topographic factor (sec s.5.7.2, pg 26 8 45) ' Kr a -A +j� Flat r., Building height to eave _ ' he =, 9 ft , Building height to ridge hr j , 9 "�' ft ,. 4 r • 'Building length ;{,' L str32T TER h 6';. Building width ' B 1 ,125,fft r ,- } Effective area of components %+ -_ -20 k_Y DESIGN SUMMARY , Max horizontal force normal to building length, L, face { ` `` = Fv 2.91 kips Max horizontal force normal to building length, B, face_ 1.29 kips 4. Max total horizontal torsional load.+12.49 ft kips Max total upward force • • 4.49 kips ANALYSIS w: • + ,>,4. 'Velocity Pressure - f .4 i qh =`0.00256 Kh K_,Kd VZ I = .. 13.36 psf , -c' ' where: qh = velocity pressure at mean roof height, h. (Eq. 6-15, page 27) , • Kh = velocity pressure exposure coefficient evaluated at height, h, (Tab. 6.3, Case t,pg 79) .- _ _ 0.85 + Ka = wind directionality factor. (Tab. 6-4, for building, page 80) ,` t� ' . `K ' 0.85 9.00 ' ft h = mean roof height 1 �) r <60 ft, [Satisfactory] ' ' •4. § , < Min (L, B), [Satisfactory] , 4' Design pressures for MWFRS p 7- qh [(G C°, )-(G C°i where:: p = pressure in appropriate zone. (Eq. 6-18, page 28). Amin = 10 ' psf (Sec. 6.1.4.E 8 6.1.4.2) .' G C°T = product of gust effect factor and extemal'pressure coefficient, see table below. (Fig. 6-10, page 53 & 54) ` G C° i = product of gust effect factor and internal pressure coefficient. (Fig. 6-5, Enclosed Building, page 47) �1 a . _ • 0.18 or -0.18 y 3 ' , ry a = width of edge strips, Fig 6-10, note 9 page 54, MAX[ MIN(0.113, 0.4h), 0.046,31 _ w 3.00 ,ft .� Net Pressures(psf):Basic Load Cases .. +. Net Pressures s , Torsional Load Cases, �.. a at~' A 'N ` ,I r; 1 i }E •} 2E 2 r } 2E 2 } 2 ZONE 2/3 BOUNDARY }E } •'.. }T 2T !: _ }F } 2` 2 }T . 2T - i• _ 6 .. 4'_ ' /6 OE 4\`dT 2E 2 r6 4 `T /6 4E 4E- T 1T F I •. 5 1 6 S - IE I°" 5 e IE - REFERENCE CORNER IE " .REFERENCE CORNER IE REFERENCE CORNER - REFERENCE co vnND DIRECTION 1 4 , WIND DIRECRON b � ° � WIND DIRECTION � •" 'MND DIRECTION Transverse Direction `K * e' Longitudinal: Direction Transverse Direction Longitudinal Direction Basic Load Cases J ` �' Torsional Load Cases , ' Roof an le A = 0.00 Roof an le 0 0.00 .Surf "4 Roof an • C C0 Net Pressure with G Net Pressure with ace (+GCP I) , (-GG° 1) . ` (+GC° t) (-GC i) CD r 1 0.40 2.94 7.75 0.40 2.94 7.75 2 . -0.69 ' -11.63 -0.82 -0.69 -11.63 -6.82.. 3 -0.37 -7.35 -2.54' ' -0.37 -7.35 -2.54 �• 4 -0.29 `•`- , -6.28 -1.47 -0.29 -6.28 -1.47 1E' 0.61 5.75: , 10.56 0.61 5.75 10.56 2E -1.07-16.70 ,-11.89 -1.07 -16.70 -11.89 3E -0.53 ; -9.49 -4.68 -0.53 • -9.49 -4.68 �� 4E -0:43 ' -8.15 -3.34 -0.43. -8.15 -3.34 ' 5 -0.45 -8.42 • -3.61 -0.45 -8.42 -3.61 6 -0.45 -8.42 -3.61 -0.45 - -8.42 -3.61 "4 Roof an lee = 0.00 Net Pressure with Surface 1T 0.40 0.7:3 ' 1.94 2T ,-0.69 -2.91 -1.70 3T -0.37 -1.814 -0.63 4T -0.29 -1.� -0.37 • Roof an le 8 = 0.00 _ •' Net Pressure wfth' Surface • 1T .0:40 0.73 1.94' 2T -0.69. -2.9'1 -1.70 3T - -0.37 -1.84 -0.63 4T - -0.29 ' -1..5'7 -0.37 "4 Basic Load Cases in Transverse Direction Basic Load Cases in Longitudinal Direction r Torsional Load Cases in Transverse Direction. t Design pressures for components and cladding �_ •* JrZy J- 37P T' P= Ohl (G CP) - (G Cpl)] Zq„°y �5 9�I 1Ono4 ZI - IZ 2:- 1- -1- 12 where: p =pressure on component. (Eq: 6-22, pg 28) ° � I I Iti Iti ti l l Pmin = 10.00 psf (Sec. 6.1.4.2, pg 21) G CP =external pressure coefficient. walls see table below. (Fig. 6-11; page 55-58) Roof 0.7' - Roof .Ip,- Effective Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Area (ft) GC, GC GC GC GC - GC GC GC ' GC GCP Comp.. 20 0.27 -0.97 0.27 -1.59 0.27 -2.29 0.85 -0.54 0.85 1.16 (Walls reduced 10'%, Fig. 6-11A note 5.) Comp. & Cladding Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Pressure Positive ti,. PosnNe No tive Positive tive Positive -" Positive Negative ( psf ) 10.00 -15.37 10.00 -23.64 10.00 -32.98 13.79 -15DO 13.79 -17.96 , Area Pressure k with Surface (ft2) (-GC,i) (-GCP i ) 1 234 0.69 1.81 2 163 -1.89 -1.11 3 163 -1'.19 -0.41 •- 4 234 -1.47 -0.34 1 E 54 0.31 0.57 2E 38, 0.63 0.45 3E 38 , -0.36 -0.18 4E 54 -0.44 -0.18 i• Horiz. 2.91 2.91 Vert. • , -4.07 -2.14 Min. wind Horiz. 2.88 2:88 Sec. 6.1.4.1 Vert Torsional Load Cases in Lon itudinal Direction Area Pressure k witY, Torsion ft -k Surface +GC +GC � GC (ft) ( Pi) (-GC; i) ( PI) (" Pi) 1 2 0.01 0.0� 0 0 2 8 -0.09 -0.0'i 0 0 3 - - 8 -0.06 -0.03 0 0 4 2 -0.01 0.00 0 0 1 E 54 0.31 0.5' 1 2 2E 96 -1.60 -1.14 0 0 3E 96-0.91 -0.45 0 0 4E 54 -0.44 -0.13 1 1 1T 56 0.04 0.11 0 0 2T 104 -0.30 -0.13 0 0 3T 104 -0.19 -O.m 0 0 4T 56 -0.09 -0.012 0 0 Total Horiz. Torsional Load, MT 2.0 2.0 I Area Pressure k with Surface (�) (*GCP i) (-GCP i ) 1 59 0.17 0.45 2 104 -1.21 -0.71 3 104 -0.76 -0.26 4 59 -0.37 -0.09 1 E 54 0.31 .0.57 2E 96 -1.60 -1.14 3E 96 -0.91 � ' -0.45 4E 54 -0.44 -0.18 2E � Horiz. 1.29 1.29 £ Vert. -4.49 -2.56 Min. vrind Horiz. 1.13 1:13 . -4.00 -4.00 Area Pressure k with Surface (�) (*GCP i) (-GCP i ) 1 59 0.17 0.45 2 104 -1.21 -0.71 3 104 -0.76 -0.26 4 59 -0.37 -0.09 1 E 54 0.31 .0.57 2E 96 -1.60 -1.14 3E 96 -0.91 � ' -0.45 4E 54 -0.44 -0.18 2E � Horiz. 1.29 1.29 £ Vert. -4.49 -2.56 Min. vrind Horiz. 1.13 1:13 Sec. 6.1.4.1 Vert. -4.00 -4.00 Area Pressure k with Torsion ft -k Surface (n2> (+GCP;) (-GCP;) (+GCP;) (-GCP; ) 1 " 90 0.26 0.70 2 5 7 63 -0.73 -0.43. 0 0 3 63 -0.46 -0.16 0 0 4 90 -0.57 -0.13 4 1 1 E 54 0.31 0.57 4 7 2E 38 -0.63 • -0.45 0 0 3E 38 -0.36 -0.18 0 0 4E 54 -0.44 -0.18 6 2 1T 144 0.11 0.28 -1 -2 2T 100 -0.29 -0.17 0 0 3T 100 -0.18 -0.06 0 0 4T 144 -0.23 -0.05 -2 0 Total Horiz. Torsional Load, MT 12 12 PAGE: Reza F'11'71_1�729. PROJECT: W 6 -CO -a- biii�_hri_g "I V CLIENT: ;RW DESIGN se. 01, REVIEW BY: Asgharpour JOB NO.: DATE.: 02/11/1 Wit INPUT DATA Exposure category (B, C or D) Importance fa ctor, pg 77, (0.87, 1.0 or 1. 15) 1':00 -r. Category II Basic wind speed (IBC Tab 1609.3.IV3s)- V -'-'85,x,-,mphj, Topographic factor (Sec.6.5.7.2, pg 26 & 45) Flat Buildingh height to save I e A Building height to ridge hr tvft Building length L ,'�.,�!40 -i ',ft B Building width 4 24,' ft Effective area of components I NA ft22. DESIGN SUMMARY - - Max horizontal force normal to building length, L, face 4.60 kips Max horizontal force normal to building length, B, face 2.41 kips 0 . I 7- ' - -18.43 ft -kips Max total horizontal torsional load Max total upward force -10.19 kips 4 ANALYSIS Velocity pressure qh = 0.00256,Kh K, K, V' 1 13.36 psf where: 'qh = velocity pressure at mean roof height, - h. (Eq. 6'15. page 27) Kh = velocity pressure exposure posure coefficient evaluated at height, h, (Tab. 6-3, Case l,pg 79) 0.85 Ka = wind directionality. factor.. (Tab. 64, for building, page 80) = 0.85 h = mean roof height rt 9.76' < 60 ft, [Satisfactory] -c Min (IL, B), [Satisfactory] Design pressures for MWFRS; p = qh [(G Cpf )-(G Cpl )] -18,•page 28). 10 psf (Sec. 6.1.4.1 & 6.1.4.2) where: p 7pressure in appropriate zone. (Eq. 6 Prnin G Cp I =product of gust effect factor and extemal pressure coefficient. see table below. (Fig. 6-10, page 53 & 54) G Cp i = Oro'duct of gust effect factor and internal pressure coefficient. (Fig. 6-5, Enclosed Building, page 47) I . , . - . I - . 0.18 or -0.18 1 1 , "a' - I a =width of edge strips, Fig 6-10, note 9, page 54, MAX[ MIN(0.113,0.4h) 0.048,3] 3.00 ft Not Pressures (psf), Basic Load Cases Not Pressures (psf), Torsional Load Cases Roof a gle 0 = 16.26 Roof angle 0 0.00 Roof angle 0 = 16.26 Surfa�e Net Pressure vAth . Net Pressure Wth 4, Surface - NetlPressure with, G CP f G C t '� .1 GCpf (+GC :) (-GCpi) (+GCpi) (-GCp 1) P ' (+GCpi)l (-GCpi) PI 7.75 1T 1.06 2.26 0.50 4.24 9.05 0.40 '2.94, 1 .2 -0.69 -11.63 .-6.82 -0.69 �11.63 -6.82. 2T 11' -0.69 -2.91 -1.70 3 -0.45 ..-8.45. -3.64 -0.37 -7.35 -2.54 3T -0.45 -2.11 -0.91, 4 -0.40. --7.69 -2.87 -0.29 -6.28 -1.47 4T -0.40 -1.92 .0.72 1E .0.75 7.65 12.46 0.61 5.75 10.56 Roof an lee = 0.00 .-2E,,, -1.07 -16.70 -11.89, -1-.07 -16.70 -11.89 Surface G-Cp Nag Pressure with =(+GC-=p,)(-Gc 3E -0.65, -11.09 -6.28 -0.53 r -9-49 -4.68 DO, 4E -0.59 -10.26 . -5.45 -0.43 -8.15 -3. �4 0.7 1 T 0.40 3 .1.94 0 ,5- -0.45, -8.42 -3.61 -0.45 -8.42 -3.61 2T -0.69 -2.31' -1;7 6, -0.45' -8.42 -3.61 -0.45 -8.42 -3.61 3T -0.37 -1.34 -0.63 4T -0.29 -1.57 -0.37. j 4 3E 2 3 2E 2 3 ZONE 2/J BOUNDARY 0 3 2 3t 21 6 4TJ IE � 2E 2 3E 3, 2T 3 h 5 3T Co. 3E 2 4T 6 4 2E __6 4-, 4 4E i. 4E 4 4E�, 0 E 17 IT 5 - .1 CORNER IE REFERENCE COIN IE REFERENCE CORNER REFERENCE CORNER REFERENCE COE74ER 'ON VVIND DIRECTION 1-,YAND DIRECTION WIND DIRECTION WIND DIRECT] Direction Transverse Direction Longitudinal Direction Transver4e DireOi6�- Longitudinal Basic Load Cases Torsional Load Cases j, 0.50 • • 0.50 • 0 • Basic Load Cases in Transverse Direction Basic Load Cases in Lon itudinal Direction r -r Torsional Load Cases in Transverse Direction Torsional Load Cases In Lon itudinal Direction . M J Design pressures for components and cladding 3 3 _ -? y 3 3, _, 3-' r-+ 3 p = 4h[ (G CP) - (G CPI)] s ' s i i where: p =pressure on component. (Eq. 6-22, pg 28) s s' ; ; s iii` Amin = 10.00 psf (See. 6.1.4.2, pg 21) 1 1 1 1 , 1 1 G CP =external pressure coefficient Walls see table below. (Fig. 6-11, page 55-58) Roof ` o.,• Roof °>r r Com t Area Pressure k with Surface (ft2) (+GCP I) (-GCP I ) 1 272 1.15 2.46 2 425 -4.94 -2.90 3 425 -3.59 -1.55 4 272 -2.09 -0.78 1E _ 48 0.37 0.60 2E 75 -1.25 -0.89 3E 75 -0.47 4E • ' 48 -0.49 -0.26 Horiz. 3.61 3.61 " Vert. -10.19 -5.58 Min. wind Horiz. 4.60 .4.60 Sec. 6A.4.1 Vert. Comp. 8 Cladding PreSSUre ( psf) Area Pressure k with Surface W) (+GCP i) (-GCP i ) 1 181 0.53 1.40 2 375 -4.36 . -2.56 3 375 -2.76 -0.95 4 181 . -1.14 -0.27 1 E 53 0.31 0.56 2E 125 -2.09 -1.49 3E 125 -1.19 -0.58 4E 53 -0.43 -0.18 Z Horiz. 2.41 - 2.41 -0.89 Vert. -9.97 -5.36. Min. wind HOn2. 2.34 2.34 Sec. s.t.a.t Vert. -9.60 -9.60 Comp. 8 Cladding PreSSUre ( psf) Area Pressure k with Surface W) (+GCP i) (-GCP i ) 1 181 0.53 1.40 2 375 -4.36 . -2.56 3 375 -2.76 -0.95 4 181 . -1.14 -0.27 1 E 53 0.31 0.56 2E 125 -2.09 -1.49 3E 125 -1.19 -0.58 4E 53 -0.43 -0.18 Z Horiz. 2.41 - 2.41 -0.89 Vert. -9.97 -5.36. Min. wind HOn2. 2.34 2.34 Sec. s.t.a.t Vert. -9.60 -9.60 Comp. 8 Cladding PreSSUre ( psf) Area Pressure k with Torsion ft -k Surface W) (+GCP i) ("GCP I) (+GCP i) ("GCP 1 ) 1 112 0.48 1.01 4 9 2 175 -2.03 -1.19 -5 -3 3 175' - -1.48 -0.64 4 2 4 112 =0.86 -0.32 7 3 1E 48 0.37 0.60 6 10 - 2E 75 -1.25 -0.89 -6 -4 3E 75- , -0,83 -0.47 4 2 4E 48 -0.49 -0.26 8 4 1T 160 0.17 0.36 -2 -4 2T 250 -0.73 -0.43 2 1 3T 250 -0.53 -0.23 -1 • -1 4T .160 -0.31 -0.11 -3 -1 Total Horiz. Torsional Load, MT 18 18 Comp. 8 Cladding PreSSUre ( psf) Area Pressure k vriti Torsion ft -k Surface (ft?) (+GCP i) (-GG. i) (+GCP i) (-GCP i ) 1 64 0.19 � 0.4.3 1 1 2 250 -2.91 -1.791 ' 8 5 3 250 -1.84 -0.0 -5 ' -2 4 64 -0.40 -0.0 1 0 1 E . 53 0.31 0.5� 3 5 2E 125 _ -2.09 =1.49 6 4 3E 125 -1.19 -0.58 -3 -2 4E 53 -0.43 -0.18 4 2 1 T 117 0.09 0.23 0 . -1 2T 375 -1.09 -O.E4 -6 -4 3T 375 -0.69 -0.�4 4 - t 4T 117 -0.18 -0.04 -1 0 Total Horiz. Torsional Load, MT 10.1 • 10.1. Comp. 8 Cladding PreSSUre ( psf) Effective Area (ftp) Zone 1 Zone 2 Zone 4 Zone 3 Zone 4 Zone 5 GC - GC GC - GC GC - GC GC - GG GC - GC 20 0.44 -0.87. 0.44 -1.55 0.44 -2.42 0.95. -1.05 0.95 -1.29 Comp. 8 Cladding PreSSUre ( psf) Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 ' Posftiva N alive Positive No rive _ PosFtive ve PoaiUve ive Positive Ne Uve 10.00 -14.03 10.00 -23.11 10.00 -34.74 15.06. -1639 15.06 -19.69 Rea( Est�ifie the ? SHEET: j i CLIENT..: R.W RA Structural Engineering � % 1,SUBJECT': atmoAl'"J +Ada�Ff�or• JOB NO: 120 21$ { ESIGN BY: I2. �• , DATE'.: L o f•tV�.Q (I opS x 33 x 7836 b (16 p5 x -3 3 x x qoo b �w•,.. _ ►21 o Q b r .{s•T• 9 ° o F�,,,T, 2 g 10 -� f Ilk Y; �1pI0n1(Ggrn FBI y ,. --'- P6 psi y0 x - Fw.L.= 24106 s y -y.6°�� - } CLIENT: R -RA Structural Engineercngy 5013 No: 12 2 SUBJECT- �e¢n►o �%h�-f- Add�fr� I. GPESIGN BY: A. -- • DA'CL : -Il —�Z e(xY Vnta ®V11 GYM( ;V.4t he /10 chin S U 945 Qb F. S• �C�� CA%dl`^ o v 1,4, e 1 n 1 T 1 6 1 • • Reza • PROJECT: Shea�Wall#1-., z PAGE CLIENT: RReal Estate'Inc - DE W SIGN BY �R.A$gilaPpOUl' JOB NO.: 8120218 2/vi2olz; REVIEW BY . R:A INPUT DATA rr - L T • LATERAL FORCE ON DIAPHRAGM: vdia. WIND = y, :182 ptf for wind W vdia, SEISMIC = •]]]]]] 150 ' pif,for seismic GRAVITY LOADS ON THE ROOF: WDA ="4,20.,.f? pif,for dead load V. hp WLI. = } ":,-i30� s plf,for live load - DIMENSIONS: Lw = 8 " s ft , h = 8 ft �F — ft PANEL GRADE (0 or 1) Q1.µ tJ <= Sheathing and Single -Floor L h MINIMUM NOMINAL PANEL THICKNESS'` rs3/8' .. in COMMON NAIL SIZE (0=6d, 1=8d, 2=10d) ,.:''1 ' `: 8d SPECIFIC GRAVITY OF FRAMING MEMBERS ' , .0.5 �- -�- -.-- EDGE STUD SECTION �2 '. pcs, b = 2 .. in , h = 44. ; j in T v° Tw SPECIES (1 = DFL, 2 = SP) S s1 ,,"i DOUGLAS FIR -LARCH GRADE (1, 2, 3, 4, 5, or 6) ri 4;' No. 2 Lw r '� - STORY OPTION ( 1=ground level, 2=upper level) ^b.; ground level shear wall THE SHEAR WALL DESIGN IS ADEQUATE. DESIGN SUMMARY BLOCKED 3/8 SHEATHING WITH 8d COMMON NAILS ' @ 6 in O.C. BOUNDARY & ALL EDGES 112 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. HOLD-DOWN FORCES: TL = 1.23 k TR = 1.23 k (USE PHD2-SIpS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 2 - 2" x4" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.24 in ANALYSIS i CHECK MAX SHEAR WALL DIMENSION RATIO L-/ B = 1.0[Sattsfactory] r DETERMINE REQUIRED CAPACITY vb = 182 plf, ( 1 Side Diaphragm Required, the Max. Wail Spacing = 6 in) TUC CUCAD r`ADAr`ITICC DCD IDr T�hln TQM: A 1 Panel Grade Min. Min. Common Penetration Thickness Nail (in) (in) Blocked Nail Spacing - Boundary & All Edges 6 1 4 3 2 Sheathing and Single -Floor 8d 11/2 3/8 220 1 320 1 410 1 530 Note: The indicated shear numbers have reduced by specitic gravity tactor per Itis note a. DETERMINE DRAG STRUT FORCE: F = (L -Lw) MAX(vd,a, WIND. Pevdia,SEISMIC) = 0.00 k DETERMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. TUC Uni rl_rlrMAIAI Cr1Df GC• (Sec. 1633.2.6) ..t vdia Wall Seismic Overturning Resisting - Safety Net Uplift Holddown (PIO at mid -std Ibs Moments ft -lbs 'Moments ft -lbs Factors (III S) SIMPSON SEISMIC 150 102 10010 Left 2688 0.9 - = 949 g`5 y0 Right 2688 0.9 - = 949 WIND 182 ,� E = 1.7E+06 psi 11648 Left 2688 2/3 -1 1232 p`T Qd' Right 2688 2/3 —R = 1232 ..t - (TL & TR values snouio InGUce upper level UYUr I. forces It appIICar =CK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) gp I_ s Vhh Vnh hd° ' A — AH w.g +Asim,+ Am,,r slip+ Act.li ,#itt .Jip — + +0.75hei+ = C243 in, ASD < EAL,,. Gt Lt,• Sxe,allowable,Aso= 0.343. 'in Where: vb = 182 plf, , ASD Lw = 8 ft ,� E = 1.7E+06 psi [Satisfactory] (ASCE 7-05 12.E A = 16.50 in` h = 8 ft G = 9.0E+04 psi Cd = 4 1 = 1 I = 0.221 in en = 0.003 in da = 0.15 in (ASCE 7-05 Tab 12.2-1 8 Tab 11.5 Da = 0.02 ha (ASCE 7-05 Tab 12.12-1) =CK EDGE STUD CAPACITY Pmax = 1.19 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1350 psi CD= 1.60 Cp = 0.24 A=. 10.5 int , E= 1600 ksi CF= 1.15 F,= 596 psi > fc = 114 - psi [Satisfactory] J ..t a _ J n .4 ;� -1 ,Reza ; PROJECT iShear,Wall#2' ``� ` PAGE n }� 72/Oi2l DESIGN BY•CLIENT Asqharpou r", JOB NO.: ,120218: DATE: ` REVIEW BY ShealrkWaII Desi "n Ba'sed,on`;IBC:1116,5k CBC07 C;NDS''05t Vdia Min. r i L , INPUT DATA ;� r "LATERAL _w 129 "t" If,forwind r r Thickness Boundary. & All Edges FORCE ON DIAPHRAGM: V t ' dia. WIND -e,:•. ,i '} P , -.` At W r +Vdia. SEISMIC —1'•`,120 ',; plf,for seismic i� ° . - 1 1/2 3/8 220 320 1 .410 530 GRAVITY LOADS ON THE ROOF: ' wog_ 120 Y t plf,for dead load a CO _ Right 2300 0.9 - = 597 V„ I by 5xe,anowable, aso = t ; 0.343 in � } ti ,� t � . •• •- :• WLL= ,�150,7,.,pif,forliveload-* y0 ----------------- • - ----- --- '• [Satisfactory] (ASCE 7 05 t 2.8.6) - .. DIMENSIONS: l al5 .=ft, h - � .?�8 r ft g` y F "Cd = , 4 •, ', = 1 .i Z: a. 't = 0.221 ` lft 'h ft Al. ., 0.15 .=y in .,(ASCE 7-05 Tab 12.2-1 & Tab 11.5-1) r r i`e" • y .'' ,PANEL GRADE (0 6r,, <= Sheathing and Single -Floor 1),k"1 r1 «; " h MINIMUM NOMINAL PANEL THICKNESS = , 3/8{.*i in (ASCE 7-05 Tab 12.12-1) ~ COMMON NAIL SIZE (0=6d, 1=8d, 2=10d) ^'} r1 a -+w 8d' CHECK EDGE STUD CAPACITY SPECIFIC GRAVITY OF FRAMING MEMBERS 6.5 _ : .rJ. : - —'I applicable) EDGE STUD SECTION ^,2 �?pCs,b = !2 in, h'_ ~ 4; In - , T V, -� , . . T, SPECIES 1y=DFL, 2 = SP 11f i DOUGLAS FIR -LARCH ( ) i a , •10.5 in -� , . CF = 1.15 - GRADE ( 1, 2, 3, 4,5; or 6) 'z q' No 2 j6, _ f STORY OPTION( 1= round level, 2=- uPPer level) S,,'177' -ground level shear wall' -f, [Satisfactory: d THE SHEAR WALL :)ESIGN'IS ADEQUATE. DESIGN SUMMARY' •` BLOCKED 3/8 SHEATHING WITH 8d COMMON NAILS s• wr . Kt i S' K ,' : ,ti ` y$ @ 6 in O.C. BOUNDARY & ALL EDGES / 12 In O.C. FIELD,. 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. t ", _ +• t` E " HOLD-DOWN FORCES: v TL _ 0.73 k I TR = 0.73 k.- (USE PHD2-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: r F = 0.00 'k , ,�. EDGE STUD: , '2 - 2" x 4" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. z, ' SHEAR WALL DEFLECTION: A = 0.30 in ANALYSIS',' CHECK MAX SHEAR WALL DIMENSION RATIO ' ;� L/ 6 _ . 1.6< i3 5 [Satisfactory] DETERMINE REQUIRED CAPACITY - Vb = ,. 129 plf, ., ( 1 Side Diaphragm Required, the Max. Nail Spacing = l q 6 in) T THE SHEAR CAPACITIES PER IBC Table 2306.4.1 '..� . ` . Note: The indicated shear numbers have reduced by specific gravity factor per IBC note a. • `' DETERMINE DRAG STRUT FORCE:, F = (L -Lw) MAX( vd,a• wwD,'Oo�du, si sm,c) _ * 0.00 + k (fk" _, ; 5 1 }') (Sec. 1633.2_.6) DETERMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab. 11 E)' ' ti`• r' ',� 3+ 5/8 in DIA. z 10 in LONG ANCHOR BOLTS @ 48 in O.C. THE HOLD-DOWN FORCES: N Vdia Min. Min. Blocked Nail Spacing,: ` Panel Grade Common Pc6eirailion Thickness Boundary. & All Edges at mid -Story lbs Nail .. in(iii) 6 4 1 3 2 ' Sheathing and Single -Floor 8d 1 1/2 3/8 220 320 1 .410 530 '..� . ` . Note: The indicated shear numbers have reduced by specific gravity factor per IBC note a. • `' DETERMINE DRAG STRUT FORCE:, F = (L -Lw) MAX( vd,a• wwD,'Oo�du, si sm,c) _ * 0.00 + k (fk" _, ; 5 1 }') (Sec. 1633.2_.6) DETERMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab. 11 E)' ' ti`• r' ',� 3+ 5/8 in DIA. z 10 in LONG ANCHOR BOLTS @ 48 in O.C. THE HOLD-DOWN FORCES: N Vdia , Wall Seismic' Overturn ng _ , Resi8ting Safety Net Uplift HOIDeovm pl at mid -Story lbs Moments ft -lbs Moments ft -lbs)' Factors (Ibs) SIMPSON SEISMIC '120 ; 84 t , 5056 Left 2300 0.9 - = 597 CO _ Right 2300 0.9 - = 597 EAS„ Gt '�,� 5xe,anowable, aso = t ; 0.343 in � } - Where• ..t vb = 129 y0 WIND �'- r, 129 ' '• [Satisfactory] (ASCE 7 05 t 2.8.6) _ 5160 hft 2300 t' 2/3 - = 725 p1 Q� Right .2300 2/3 -R = 725 "Cd = , 4 •, ', = 1 .i Z: a. 't = 0.221 ` 0.001 in v "• da = ., 0.15 .=y in (TL & TR values snoulo mcluae ipper level urur I TorCeS IT appucaDIe) CHECK SHEAR WALL DEFLECTION ( IBC Section 2305 3.2) i, gv h' n e i h+0.75he;+ hr d� *<,• 4.=AP,d„+x+Anrrar•+On,;T.,ir,+Ocr.,di.'PI,�•• d'�/1, +v _ . 0301 in, ASD „ . • ,. .•, ^ t ,� a " i' _ EAS„ Gt '�,� 5xe,anowable, aso = t ; 0.343 in � } - Where• ..t vb = 129 plf, , ASD 'r` L„, = 5 ft ' - E = 1.7E+06 psi . '• [Satisfactory] (ASCE 7 05 t 2.8.6) A = 16.50 in h = .M 8 ft y', G= 9.0E+04- psi "Cd = , 4 •, ', = 1 .i Z: a. 't = 0.221 in _ ! ea = 0.001 in v "• da = ., 0.15 .=y in .,(ASCE 7-05 Tab 12.2-1 & Tab 11.5-1) r r i`e" • y .'' f � _ i } Aa-• r0.02 ha, �• a . (ASCE 7-05 Tab 12.12-1) ~ CHECK EDGE STUD CAPACITY Pmax = h0.99' , kips, (this value should include upper level DOWNWARD loads if applicable) .. Fa = :1350 • Psi Co = 1.60. CP = 0.24 r; ,� u �+' •A= a , •10.5 in -� _ E I' 1600 ksi _' . CF = 1.15 - F, 596' psi ' > „ - f� 95 psi �+K , F.} I [Satisfactory: d Y t Reza PROJECT She # ar 1Nall 3f" �k""�;"`. `�; PAGE �7' ` DESIGN BY CLIENT .. tRW Real Estate.nc•h,F� '� t•d�•, As h a r our ` JOB NO.: 6120218 t .. ; ' bATE z/t /2012 REVIEW BY : [R:Q Shear Wall' -Desi � n.Baseif on'IBC:06(_CBC'07/,NDS 05.x,��~� r INPUT DATA 6 1 4 1 3 2 LATERAL FORCE ON DIAPHRAGM: vdia, wlNo = 231 r� plf,for wind w ' ` Vdia. SEISMIC plf,for seismic - 11 at mid -story Ibs) EROOF: Wp� = 330 pH,for dead load ' GRAVITY LOADS ON'THE , ft -lbs . Factors (III S) V`` hp p + WILL = rt' 360 pH,for live load , k- '1zXft 0.257 in, A$D c V --' ---------- -- `' F 5S _ Right 12608 0.9 IR = 233 DIMENSIONS: Lw= } 8"#rft, h 8 -.200 102 13210 �O x L `w18 `,,t# ft , ho = w' O .*.-ft a 8 ' ft G = 9.0E+04 psi C,, = 4 I = 1' Left12608 2/3 TL = 797 0.002 in PANEL GRADE (0 or 1) �'''y'1 :' <= Sheathing and Single -Floor 231 <. - h y MINIMUM NOMINAL PANEL THICKNESS = 3/8 in ' (ASCE 7-05 Tab 12.12-1) COMMON NAIL SIZE (0=6d, 1=8d, 2=10d) , ; 1"u`''8d . 'E. R ,;p ... . CHECK EDGE STUD_ CAPACITY �' 1 r SPECIFIC GRAVITY OF FRAMING MEMBERS; 0 5 ;rte ' ,{, —r —� e — v Pmax 2.28 kips, (this value should include upper level DOWNWARD loads if applicable) • EDGE STUD SECTION pcs, b = A,;, 2 :"„[ in, h in '. T, Cp = « 0.24 r Tp SPECIES (1 = DFL, 2 = SP)" 1DOUGLAS FIR -LARCH ) ' fd = '217 psi GRADE (1, 2, 3, 4, 5, or 6)4 ,No. 2 , Lw r _ STORY OPTION (1=ground level, 2 -upper level) 1k A ground level shear wall 2 t t THE SHEAR WALL DESIGN IS ADEQUATE. DESIGN SUMMARY BLOCKED 3/8 SHEATHING WITH 8d COMMON NAILS @ 4 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA'x 10 in LONG ANCHOR BOLTS @'46 in 0.C. HOLD-DOWN FORCES: TL = 0.80 k', TR =I 0.80 k ' . , (USE PHD2-SCS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: - F= 0.00 k _ EDGE STUD: 2-2” x 4" ' DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. - SHEAR WALL DEFLECTION: A _ 0.26 in K ANALYSIS - r CHECK MAX SHEAR WALL DIMENSION RATIO L / B• = , 1.0 < ,3':5�Eq [Satisfactory) *, DETERMINE REQUIRED CAPACITY - vb = 231 plf. ( 1 Side Diaphragm Required, the Max. Nail Spacing = 4 in) THE SHEAR CAPACITIES PER IBC Table 2306.4.1 •r t - , Panel Grade Common f Nail Min. Min. Penetration Thickness (in) (in) - 111 Blocked Nail Spacing Boundary & All Edges . 6 1 4 1 3 2 Sheathing and Single -Floor 8d 112 3/8 220 320 410 530 Note: The indicated shear numbers have reduced by specific gravity factor per IBC note a t DETERMINE DRAG STRUT FORCE: F. _ (L -Lw) N=( vdia, WIND, Oovdia, SEISMIC) - f 0.00 k (STC = 1 ) (Sec. 1633.2.6) DETERMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) + - 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 46 in O.C. F THE HOLD-DOWN FORCES' vdia + Wall Seismic Overturning Resisti - - , a 111,:1Uuu u1j1ja laud vr,.rr r yr ayN,w�,a.r ng Safety Net Uplift ;•Moments Holddown If) at mid -story Ibs) Moments ft -lbs) ft -lbs . Factors (III S) SIMPSON Note: The indicated shear numbers have reduced by specific gravity factor per IBC note a t DETERMINE DRAG STRUT FORCE: F. _ (L -Lw) N=( vdia, WIND, Oovdia, SEISMIC) - f 0.00 k (STC = 1 ) (Sec. 1633.2.6) DETERMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) + - 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 46 in O.C. F THE HOLD-DOWN FORCES' vdia + Wall Seismic Overturning Resisti - - (I L 6 1 R Vd'UC' b"UUlu 111,:1Uuu u1j1ja laud vr,.rr r yr ayN,w�,a.r ng Safety Net Uplift ;•Moments Holddown If) at mid -story Ibs) Moments ft -lbs) ft -lbs . Factors (III S) SIMPSON — 0/J:rdinx•+ASlxnr+ONnilrslip+OClnrt/•s'plicc�,Jlj� — + _ +0.75hen+ 0.257 in, A$D c V Left 12608 - 0.9 , Tr = 233 5S _ Right 12608 0.9 IR = 233 SEISMIC -.200 102 13210 �O A = 16.50 inh = 8 ' ft G = 9.0E+04 psi C,, = 4 I = 1' Left12608 2/3 TL = 797 0.002 in WIND 231 <. - 14784 Right 12608. 213 TR=• 797 Q X (I L 6 1 R Vd'UC' b"UUlu 111,:1Uuu u1j1ja laud vr,.rr r yr ayN,w�,a.r CHECK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) p 3 8y,h vvh hdn yr .1 — 0/J:rdinx•+ASlxnr+ONnilrslip+OClnrt/•s'plicc�,Jlj� — + _ +0.75hen+ 0.257 in, A$D c V EAL,,, Gt , ' L", Sxe,allowable, nsD =- 0.343 in Where: •„:' v, =' 231l plf , ASD Lw = 8 It R E _ 1.7E+06 psi _ [SaUsfactoryj '(ASCE 7-05 12.8.6) ` A = 16.50 inh = 8 ' ft G = 9.0E+04 psi C,, = 4 I = 1' t t =' 0.221 in ea = 0.002 in da = 0.15: , in (ASCE 7-05 Tab 12.2-1 & Tab 11.5-1) .0.02-. h. ' (ASCE 7-05 Tab 12.12-1) CHECK EDGE STUD_ CAPACITY �' 1 ! ' k' R `•-;� Pmax 2.28 kips, (this value should include upper level DOWNWARD loads if applicable) 5 ` F, — _ 1350 psi . CD= ' 1.60 { Cp = « 0.24 r x• A = 10.5 int ` E = 1600 ksi CF = 1.15 ' F, 596 psi f > fd = '217 psi - r 1 i• [SatisfactorA X ST�CA V•1aQL OZ 6x"Yior) Page'] of Anchor Calculations • + 1 - Anchor $elQptor (VerSigh ,. , Job Name: :Datefrime : 5/20/2011 11:43:46 AM 1),Input Calculation Method : ACI 318 Appendix D For Cracked Concrete Code: ACI 318-08 t Calculation Type: Analysis a) Layout Anchor: 5/8" SET-XP Number of Anchors : 1 Steel Grade: A307 GR.Embedment Depth : 10 in ' , .0 Built-up GroutPads;: No ' •• l' P _ CX1 CXZ - Vuay C yt MUy , ♦Nua by2 •.: by1 Vuax • bx1 bx2 - C y 1 1ANCHOR 'Nus IS POSITIVE FOR TENSION AND NEGATIVE FOR COMPRESSION. ' INDICATES CENTER OF THE ANCHOR ' Anchor Layout Dimensions cx1 : 1.75 in cx2 : 10.25.in J - cyi . 60 in cy2 :,60 in i y b) Base Material Concrete: Normal weight • fc : 2500.0 psi. ' +-f - Cracked Concrete': Yes - _ ` c v : 1.00 Condition : B tension and shear OF p 1381.3 aboutrblank " . 5/20/2011 Page 2 of 8 Psi Thickness, ha: 18 in Supplementary edge reinforcement: No Hole Condition : Dry Concrete Inspection : Continuous Temperature Range : 1 (Maximum 110 IF short term and 75 OF long term temp.) c) Factored Loads Load factor source : ACI 318 Appendix C Nua 1850 Ib" Vuax 0l Vuay `U Ib MUX: 0 Ib*ft Muy : 0 Ib*ft ex : 0 in ey:0in Moderate/high seismic risk or intermediate/high design category : Yes Anchor w/ sustained tension : No Anchors only resist wind and/or seismic loads : Yes Apply entire shear load at front row for breakout : No d) Anchor Parameters From [F-SAS-CSAS2009] Anchor Model = SETXP da = 0.625 in Category = 1 hef = 10 in hmin 13.125 in cac = 30 in cmin = 1.75 in smin = 3 in Ductile = Yes 2) Tertsion Force on Each: Individual Anchor Anchor #1 Nuat - 1850.00 Ib Sum of Anchor Tension ENua = 1850.00 Ib elNx = 0.00 in e'Ny =:-0.00 in 3) Shear Force on Each Individual Anchor Resujtant shear forces in each anchor: " Anchor #1 Vua� = 0.00 Ib (Vua1x = 0.00 Ib , Vua1y = 0.00 Ib ) Sum of Anchor Shear EVuax = 0.00 Ib, 'EVuay = 0.00 Ib . e' VX =0.00 in about:btank 5/20/2011 S ' F r Page 3 of 8 e'Vy=0.00 in •4) Steel Strength of Anchor in Tension [Sec. D.5.1] N = nA f [Eq. D-3) . r ' sa se uta , Number of anchors acting in tension, n = 1 Nsa = 13110 Ib (for a single anchor) [F-SAS-CSAS2009] - = 0.80 [D.4.5] ONsa = 10488.00 Ib (for a single anchor) 5) Concrete Breakout Strength of Anchor in Tension [Sec. D.5.2] Ncb =ANC/ANco`Ped,NTc Nwcp NNb'[Eq. D-4] Number of influencing edges = 2 hef = 10 in ANco:= 900..00 int [Eq. D-6] . ' ANc = 360.00 int Smallest edge distance, ca,min = 1.75 in 14jed,N-= 0.7350 [Eq:-D-10 or D-1.1] - Note: Cracking shall be controlled per D.5.2.6 •Tc ,N = 1.0000 [Sec. D.5.2.6] TCPfN = 1.0000 [Eq. D-12 or, b-131 N= IF k� f' h .5 = 26879.36 Ib E D-7 u kc = 17 [Sec. D.5.2.6] Ncb = 7902.53 Ib [Eq. D-4]' = 0.75 [DA.5] G ' �seis -0.75 _ ONcb = 4445.17 Ib (for a single anchor), x 6) Adhesive Strength of Anchor in Tension [Sec.0.6.3'(AC308,Sec.3.3)] - jk �� =-718 psi [F-SAS-CSAS2009] V kcr = 17 [F-SAS-CSAS2009] A . hef (unadjusted) = 10 in Nao =: !ck,�rn dahef = 14097.90 Ib [Eq. D-16f] ' Tk,uncr - 2263.00 psi for use in [Eq. D-16d] V�•; • scr,Na = min[20 d a � (Tk,unc � 1450) , 3hof J = 15.616 in [Eq. D-16d] , about:blank 5/20/2011 { • Page 4 of 8 ccr,Na = scr,Na/2 = 7.808 in [Eq. D-16e] • Na = ANa/ANao`Ped,NaTp,NaNao [Eq. D-16a] ANao = 243.86 int [Eq. D-16c] ANa = 149.26 int Smallest edge distance, ca,min =.1.75 in `Ped,Na = min[0.7+0.3ca,min/ccr,Na 1.0],= 0.7672 [Eq. D-16m] `Pp,Na 1.0000 [Sec. D.5.3.14] Na = 6620.37 Ib [Eq. D-16a] = 0.75 [F=SAS-CSAS2009] �seis = 0.75 �Na.= 3723.96 lb'(for a single anchor) 7) Side Face Blowout of Anchor in Tension [Sec. D.5.4] Concrete side face blowout strength is only calculated for headed anchors in tension close to an edge, Cal < 0.4hef. Not applicable in this case. 8) Steel Strength of Anchor in Shear [Sec D.6.1] Vsa =:7865.00 Ib (for a single anchor) Veq = Vsaay.seis [AC308 Eq. 11-27] ay.seis = 0.71 [F-SAS-CSAS2009] Veq = 5584.15 Ib 0.75 [D.4.5] Veq = 4188.11 Ib (for a single anchor) 9) Concrete Breakout Strength of Anchor in Shear [Sec D.6.21 Case.1: Anchor checked against total shear load In x-direction... Vcbx;_ Avc)Avcox`i'ed,V`l'c,V`I'h,V Vbx [Eq. D-21] cal =10.25 in Avcx =_472.78 int Avcox = 472.78 int [Eq. D-23] Ted,V.= 1.0000 [Eq. D-27 or D-28] Tc V = 1.0000 [Sec. D.6.2.71 `I'h-= (1.5ca� / ha) = 1.0000 [Sec. D.6.2.8j 25 about:blank 5/20/2011 Page 5 of 8 Vbz =-7(le/ da )0.2 � daX � f c(cal)1.5 [Eq. D-24] le=5.00 in Vbx = 13762.96 Ib Vcbx = 13762.96 Ib [Eq. D-21] 0:75 �seis ` 0.75 Wcbx = 7741.67 Ib (for a single anchor) In y -direction... Vcby Avcy/Avcoy`1'ed V` C v` h V Vby [Eq. D-21 Cal = 12.00 in (adjusted for edges per D.6.2.4) Avcy = 216.00 int Avcoy; = 648.00 in2 [Eq. D-23] Ted,v =0.7292 [Eq: D-27 or D-28] TC,V =,1.0000 [Sec. D.6.2.7] Th,V-= (1.5cal / ha) = 1.0000 [Sec. D.6.2.8] Vby 7(le/ da )0.2 J dad' J f c(cal)1.5 [Eq. D-24] Ie = 5.00 in Vby = 17434.04 lb Vcby -=-4237.44 Ib [Eq. b-21] = 0.75 �seis = 0.75 Wcby = 2383.56 Ib (for a single anchor) Case '2: This case does not apply to single anchor layout Case 3: Anchor checked for parallel to edge condition Check anchors at cX1 edge Vcbx:= Avcx/Avcox`fed,V`1'c,v`I'h,V Vbx [Eq. D-21] Cal = 1.75 in Avcx = 13.78 int -1378 2 E D23 Avcox - m [ q- - ] `Pea v 1.0000 [Sec. D.6.2.1(c)] Tc,v = 1.0000 [Sec. D.6.2.71 �6 about:blank 5/20/2011 Page 6of8 q'h _ (1.5ca1 / ha) = 1.0000 [Sec. D.6.2.81 Vbx. _ 7(le/ da )0 2 J dak, fc(ca1)1.5 [Eq. D-24] le = 5.00 in Vbx = 970.92 Ib Vcbx,= 970.92 Ib [Eq. D-211 Vcby" = 2 * Vcbx [Seca" D.6.2.1(c)] Vcby = 1941.84 Ib = 0.75 �seis = 0.75 Vcby = 1092.28 Ib (for a single anchor) Check anchors at cy1 edge Vcby - Avcy/Avcoy4'ed V`a'c V`l'h V Vby [Eq. D-21 ] cal = 12.00 in (adjusted for edges per D.6.2.4) Avcy =_216.00 int Avcoy = 648.00 int [Eq. D-23] ed,V = 1.0000 [Sec. D.6.2.1 (c)] • IPC'v = 1.0000 [Sec. D.6.2.7] Th.V (1.5cal / ha) = 1.0000 [Sec. D.6.2.8] Vby = 7(le/ da )0.2 J daX 4 f c(ca1)1.5 [Eq. D-24] le = 5.00 in Vby =;17434.04 Ib Vcby 5811.35 Ib [Eq. D-21] Vcbx = 2 ' Vcby [Sec. D.6.2.1(c)] Vcbx 11622.69 Ib =0.75 �seis = 0.75 Vcbx = 6537.76 Ib (for a single anchor) Check anchors at cx2 edge Vcbx = Avcx/Avcox`Ped,V`t'c,VYh,V Vbx [Eq. D-21J Cal =10.25 in Avcx = 472.78 int about:blank 5/20/2011 Page 7 of 8.- - Avcox ' 472.78 in2 [Eq. D-23] ; .. . . 4'ed v = 1.0000 [Eq. D-27 or D-28] [Sec. D.6.2.1(c)] Tc,v = 1.0000 [Sec. D.6.2.7] RPh _ (1.5ca1 / ha) = 1.0000 [Sec. D.6.2.8] Vbx = 7(le/ da )0.21 dad' q ' f c(cal)1.5 [Eq. D-24] 4 ,. le = 5.00 in A Vbx = 13762.96 Ib - Vcbx = 13762.96 Ib [Eq. D-21] r V-2.* V Cby cbx [Sec. D.6.2.1(c)] Vcby = 27525.92 Ib . . _ .0.75 Oseis =.0.75 r Vcby — 15483.33 lb (for a single anchor) Check anchors at cy2 edge l _ Vcby = Avcy/Avcoy`Ped` Vc V` h V Vby [Eq. D-21] - Cal =12.00 in (adjusted for edges per D.6.2.4) • Avcy = 216.00 in2 Avcoy = 648.00 in2 [Eq. D-23] h. fed v _ 1.0000 [Sec. D.6.2.1(c)] , c,V = 1.0000 [Sec. `D.6.2.7] iPh,V = (1.5ca1 / ha) = 1.0000 [Sec. D.6.2.8) VbY - 7,(e/,da )0.2 dak f c(ca1)1.5 [Eq. D44] 1e=5.00 in 4 Vby = 17434.04 Ib Vcby, = 5811.35 lb [Eq.'D-21] Vcbx = 2 * Vcby [Sec. D.6.2.1(c)] Vcbx 11622.69 Ib = 0.75 .�seis = 0.75 - �Vcbx = 6537.76 lb (for a single anchor) . 10) Concrete Pryout Strength of Anchor in Shear [Sec. D.6.3] ` about:blanl: z 5/20/2011 . Page 8 of x r Vcp='min[kcpNa,kcpNcb]. [Eq. D -30a] kcp .= 2 [Sec. D.6.3.2] Na = 6620.37 Ib (from Section (6) of calculations) Ncb = 7902.53 Ib (from Section (5) of calculations) VCP = 13240.74 Ib _.0.75 [D.4.5] Oseis = 0.75 �Vcp = 7447.92 Ib (for a single anchor) 11) Check Demand/Capacity Ratios [Sec. D.7] Note: Ratios have been divided by 0.5 factor for brittle failure. Tension - Steep : 0.1764 - Breakout: 0.8324 - Adhesive : 0.9936 - Sideface Blowout: N/A Shear - Steel: 0.0000 - Breakout (case 1) : 0.0000 • - Breakout (case 2) ; N/A - Breakout (case 3) . 0.0000 - Pryout : 0.0000 V.Maic(0) <= 0.2 and T.Max(0.99) <= 1.0 [Sec D.7.1] Interaction check: PASS Use 5/8" diameter A307 GR. C SET-XP,anchor(s) with 10 in. embedmenit i about:blank 5/20/2011 - � �'2�eN sTUd Ww(�l �t Efe►'ror tir✓� 5/g� (jplf) Pagel oft . Anchor Calculations ••Anchor Selector (Version 4.5.1.0) Job Name: �. Daterrime : 5/20/2011 11:43:46 AM Calcdfation Summary - ACI 318 Appendix D For Craeked Concrete per ACI 318 Anchor Anchor Steel # of Anchors I Embedment Depth (in) ICategory 5/8" SET -XP I A307 GR. C 11 110 1 Concrete Concrete Cracked pe(psi) 4'c.v Normal weight IYes 12500.0 1.00 0 ff I Yes Condition Thickness (in) Suppl. Edge Reinforcement B tension and shear 18 No Hole Coodition Inspection Temp. Range Dry Concrete Continuous 1 Factored Loads Nua (lb) Vuax (lb) Vuay (lb) Mux (Ib -ft) Muy (Ib -ft) 1850 0 0 0 0 ex (in)" e - (in) Mod/high seismic Anchor w/ sustained tension Anchor only resists wind/seis loads Apply entire shear @ front row 0 ff I Yes lNo I Yes INo Individual Anchor Tension Loads N,,81 (lb) • 1850.00 r 0.00 0.00 _ Y t Individual Anchor Shear Loads V uat (lb) 1 0.00 t . e'vx(in) IVvy(in) 0.00 0.00 Tension Strengths Steel (m = 0.80) r. , ' Nsa(Ib) -bNsa(Ib) Nua(Ib) N ua /kbNsa r 1 13110 10488.00 11850.00 10.1764 ' Concrete Breakout (kh = 0.75 , (Pseis = 0.75) + , Ncb(lb) (PN,(Ib) Nua(lb) Nua /4)Ncb - 7902.53 14445.17 11850.00 10:4162 Adhesive (m = 0.75 , cb = 0.75 ) seis Na(Ib) _ mNa(Ib) Nua(ib) Nva /'DNa F: 6620.37 13723.96 11850.00 Id.4968 about:blanh 5/20/2011 , ; Page 2 of 2 Side-Face Blowout does not apply Shear Strengths Steel (4) = 0.75 , r4v seis = 0.71 ) a Veq(lb) mVeq(lb) Vua(Ib) V ea /kDVeq 5584.15 14188.11 10.00 0.0000 Concrete Breakout (case 1) (m = 0.75 , mseis = 0.75 ) Vcbx(lb) OVcbx(Ib) Vuax(Ib) Vuax /4)Vcbx _ .. 13762.96 7741.67 10.00 10.0000 1r VC,(lb)mVcbY(Ib) Vuay(lb) Vuay /kDVcbY Vua /a)Veb , 4237.44 2383.56 10.00 10.0000 0.0000 ConcreW Breakout (case 2) does not apply to single anchor layout Concrete Breakout (case 3) ((= 0.75 , mseis = 0.75 ) cx1 edge Veby(lb) kDVcby(lb) Vuay(lb) VuaY /4)VcbY 1941.84 1092.28 10.00 10.0000 ` Cy,edge- Vcbx(Ib) (DVcbx(Ib) Vuiax(Ib) Vuax /kDVcbx g 11622.69 6537.76 10.00 10.0000 cx2 edge V,Y(lb) kDVcby(lb) Vuay(lb) Vuay /mVcby 27525.92 15483.33 0.00 10.0000 cy2 edge e Vcbx(Ib) I kDVcbx(Ib) Vuax(lb) Vuax / DVcbx Vua /kDVcb , 111622.6916537 6 0.00 10.0000 0.0000 .� Pryout (kD = 0.75. mseis = 0.75 ) 'f. VCP(lb)OVc,(Ib) Vuax(Ib) Vuax /(DVcp 13240.74 17447.92 10 10.0000 , VO(lb) q)Vcp(lb) Vuay(Ib) I Vuay /kDVcp Vua /4)V CID ! . 13240.74 17447.92 10 10.0000 10.0000 . - w Note: ROUos have been divided by 0.5 factor for brittle failure. Interaction check V.Max(0) <= 0.2 and T•Max(0.99) <= 1.0 [Sec D.7.11 Interaction check: PASS Use 5/8" diameter A307 GR.,C SET-XP anchor(s) with 10 in. embedment r I � about:btank " ' .5/20/2011 ,