Loading...
2011-496Tw4f 4 4Qur«tw P.O. Box 1504 LA QUINTA, CA 92247-1504 78-495 CALLE TAMPICO LA QUINTA, CA 92247-1504 December 28, 2011 Roberto Radi & Qimin Wang 54175 Avenida Herrera La Quinta, CA 92253 Re: GRANT DEED Formalizing Parcel Merger No. -2011-496 Dear Ms. Wang and Mr. Radi: OFFICE OF THE CITY CLERK (760) 777-7103 FAX (760) 777-7107 Enclosed is the original recorded Grant Deed formalizing Parcel Merger for APNs 774-213-019 and 020 for your records [recorded 12/16/2011 DOC# 2011-05570741. Should you have any questions, please contact Ed Wimmer, Principal Engineer at (760) 777-7088. Sincerely, Susan Maysels Deputy City Clerk Enclosure RECORDING REQUESTED BY AND WHEN RECORDED MAIL TO: Veronica J. Montecino, City Clerk City of La Quinta P. 0. Box 1504 La Quinta CA 92247-1504 APN: 774-213-019, 020 M {. ��AA L 465 426 PCOR NCOR SMF HCHItRAoaL CJ T: CTY' Exempt recording fee pursuant to i ACKNOWLEDGMENT State of California County of K 1 4'�►�,! ) On �n� Z,��/ before me, )(:C��� �!-�®� �'C (insert name and title of the officer) personally appeared who proved to, me.on_,the; basis, of satisfactory evidence.to be the perso& whose name/are subscribed to the within instrument and acknowledged to me thane/they executed tate same in -htWher/their authorized capacity ies , and that by I;Wher7their signatur4s on the instrument the person GS. the entity upon behalf of which the persorr(s) acted, executed the instrument. I certify under PENALTY OF PERJURY under the laws of the State of California that the foregoing paragraph is true and correct. :_ulluup Ip111pautplpppppppWpplUUppulplWplpppppppp�4 = BETH SCHULER WITNESS my hand and offici seal. = COMM. #1862935 i _ Notary Public - California c Riverside County = Ml�r Comm. Exi pyres Se. 24p a51. Ip IutppWllllplp ppp Signature (Seal) EXHIBIT A CERTIFICATE OF PARCEL MERGER NO. 2011-496 Existing Parcels Record Owners Assessors Parcel Numbers Roberto Rodi and Qimin Wang 774-213-019 Roberto Radi and Qimin Wang 774-213-020 t Lego[ Description of Merged Parcels PARCEL "A" Lots 8 and 9, in Block 283 of Santo Cormelito at Valle Lo Quinto, Unit No. 26 in the City of Lo Quinto, County of Riverside, State of California, as shown by mop on file in Mop Book 20, Page 50 of Official Records of said County. Q ,of ESS /0,� NRY c� 46'4 d 1- 3 EXHIBIT B CERTIFICATE OF PARCEL MERGER N0. 2011-496 AN NORTH 5' PUE o o b o ,n C) Z 5' PUE S89'58"E 100' LOT 8 BLOCK 283 S.C.V.L.Q. UNIT NO. 26 APN 774-213-019 5,000 SF 589'58"E 100'' ,g g LOT 9 1a BLOCK 283 S.C.V.L.Q. UNIT NO. 26 APN 774-213-020 5,000 SF S89'58"E 100' Q�pFESS/p � �<) ' RYGO I 14 — ��9 CALLS MADRID lF CF CAL �F� LEGEND SCALE IN FEET - -- -- - LOT LINE TO BE REMOVED BY THIS MERGER 40 0 40 80 EXISTING LOT LINE TO REMAIN S.C.V.L.Q. SANTA CARMELITA AT VALLE LA QUINTA DEPARTMENT USE ONLY Record Owner _ Address Map Prepared By Address Area/District _ This Certificate of Parcel Merger No. ---------- is hereby approved. By Title Dote o W � o CD LAJ Q W t I 0 C, 0 CDZ o C) z W 30' Q S89'58"E 100' Q�pFESS/p � �<) ' RYGO I 14 — ��9 CALLS MADRID lF CF CAL �F� LEGEND SCALE IN FEET - -- -- - LOT LINE TO BE REMOVED BY THIS MERGER 40 0 40 80 EXISTING LOT LINE TO REMAIN S.C.V.L.Q. SANTA CARMELITA AT VALLE LA QUINTA DEPARTMENT USE ONLY Record Owner _ Address Map Prepared By Address Area/District _ This Certificate of Parcel Merger No. ---------- is hereby approved. By Title Dote a �' ty of.La Quinta Building 8t Safety. Division P.O. Box 1504, 78-495 Calle Tampico La Quinta, CA 92253 - (760) 777-7012 Building' Permit Application and Tracking Sheet Permit # Project Address: 54 t71 Owner's Name: A. P. Number: _ Address:` Legal Description: City, ST, Zip: ZA 62" ,n d Contractor:k4e—,QwX TQ V (o Telephone: ID — / f Address: 67411 14-1 L Project Description: City, ST, Zip: 6, J 1,V iA 6\5L' Telephone: `1 (o p J (a 3 % : :.w a• a>:; gvg,,x J < KJQ�\p u Vl State Lic. # 3.1 City Lie. #; Arch., Engr., Designer: RPZ�1 E. G V , Address:i aa eak Ameo 5baf lo2C— City, ST, Zip. CAp 22 Telephone: 7 _ g �;.>�;a . c� State Lie. #:<,s; w.< ;%x�<�i / �` So � &.crn 4 Construction Type: an ' Project type (circle one): New Add'nter Repai Demo Name of Contact Person: Sq. Ft.: # Stories: 2 # Units: Telephone # of Contact Person: Estimated Value of Project. 0 APPLICANT: DO NOT WRITE BELOW THIS LINE # Submittal Req'd Reed TRACKING PERMIT FEES Plan Sets 3 Plan Check submitted 1 Item Amount Structural Calcs. a Reviewed, ready for corrections IZ 14 1 d Pian Check Deposit Truss Cates. Called Contact Person Pian Check Balance. Title 24 Calcs. a Plans picked up Construction Flood plain plan y Plans resubmitted 1 Mechanical Grading plan 20° Review, ready for correct'ionsli sue Electrical Subcontactor List Called Contact Person Plumbing Grant Deed Plans picked up S.M.1. H.O.A. Approval Plans resubmitted Grading IN HOUSE:- 3W Review, ready for corrections issue Developer Impact Fee Planning Approval Called Contact Person A.I.P.P. Pub. Wks. Appr Date of permit issue School Fees Total Permit Fees I I� 28 �- � ���- �•�- i�/�a /Z�I Z �� Tlihf 4 4 a" P.O. Box 1504 78-495 CALLS TAMPICO LA QUINTA, CALIFORNIA 92253 To: Greg Butler, Building & Safety Director From: Les Johnson, Planning -Director Permit #: 11-1274 BUILDING & SAFETY DEPARTMENT (760)777-7012 FAX (760) 777-701'1 To PD: January 13, 2012 Due Date: January 20, 2012 Status: 2nd Building Plans Approval (This is an approval to issue a Building Permit) The Planning Department has reviewed the Building Plans for the following project: Description: Cove Remodel — Balcony Address or General Location Applicant Contact: 54-175 Avenida Herrera The Planning Department finds that: Robert Radi (310) 383-4315 ❑ ...these Building Plans do not require Planning Department approval. vZ ...these Building Plans are approved by the Planning Department. ❑ ...these Building Plans require corrections. Please forward a copy of the attached corrections to the applicant. When the corrections are made please return them to the Planning Department for review. Les John§4n, Director -Planning 11Z ate received City of La wn!—(] Planning DV_ aftr 9 t 71-780 San Jacinto Dr, Ste. E2, Rancho Mirage, Ca. 92270 ph, (7.60) 8348860 fax (760) 834-8861 Letter of Transmittal To: City of La Quinta Today's Date: 78-495 Calle Tampico City Due Date La Quinta, CA 92253 Project Address: Attn: Kay Plan Check #: Submittal: ❑ 1St ® 2nd ❑ 3rd 1-20-12 1-20-12 54-175 Ave. Herrera 11-1274 ❑ 4t' ❑ 5t' ❑ Other: We are forwarding: ® By Messenger ❑ By Mail (Fed Ex or UPS) ❑ Your Pickup Includes: # Of Descriptions: Includes: # Of Descriptions: Copies: Copies: , ❑. Structural Plans ® 1 Revised Structural Plans ❑ Struct. Calcs ® 1 Addendum Struct. Calcs ❑ Truss Calculations ❑ Revised Truss Calcs ❑ Soils Report ❑ Revised Soils Report 1 Structural Comment List ❑ Approved Structural Plans ® 1 Redlined Structural Calcs ❑ Approved Truss Calcs ® 1 Redlined Structural Pians ❑ Approved Structural Calcs ❑ Redlined Truss Calcs ❑ Approved'Soils Report ❑ Redlined 'Soils Reports ❑ Other: Comments: Structural content is approvable: (.y Structural plan check his =1 Hi. IN IE 11 IV I This Material Sent for: JAN 23 2012 ❑ Your Files ® Per Your Request ❑ Your Review ❑ Approval By ❑ Checking ❑ At the request of: Other: ❑ By: John W. Thompson Rancho Mirage Office: ® # (760) 834-8860 Other. ❑ 78080 Calle Amigo, Suite 102 La Quinta, CA 92253 Structural Calculation For Radi Residence At 54-175 Avenida Herrera La Quinta, CA. 11ye Of Proiect: Residential Remodeling f PvU v 28 ZO11 Date: November 14, 2011 Design by: Reza Asgharpour, P.E. JN: 111063 phone: (760)771-9993 Fax: (760)771-9998 Cell: (760)808-9146 tt'its 11-Mv CITY OF LA QUINTA BUILDING & SAFETY DEPT. APPROVED FOR CONSTRUCTION DATE 111114611013Y \45i CLIENT: Pad r ?esi rnce SHEET: SUBJECT: PeMoAlrr)j RA Structural Engineering JOB NO: I\\o 6 3 DESIGN BY: �,� Reza Asgharpour, P.E. DATE: 10/261 11 DESIGN LOADS Roof Loads - Sloaed Clay Tile 15 psf. Framing 2.5 psf. sheathing (1/2" CDx) 1.5 psf Ceiling 2.5 psf. insulation 1.5 psf. Misc. 4.0 psf Total Dead Load 25 psf. Total live Load 20 psf Total Roof Load 45 psf. Floor Loads Framing 3.5 psf. sheathing (3/4" Plywd) 2.5 psf Ceiling Cc, "Pe t 2.5 psf. Ceiling J Wpsf. Misc. 3.5 psf Total Dead Load 1-7 .2rpsf. Total live Load 40 psf Total Floor Load 67 psf. Exterior Wall 7/8" Stucco 10.0 psf. Drywall 2.5 psf Studs 1.0 psf. Misc. 1.0 psf. Total Wall Weight 15.0 psf. Roof Loads - Flat Roofing 6.0 psf. Framing 2.5 psf. sheathing (1/2" cox) 1.5 psf Ceiling 2.5 psf. insulation 1.5 psf. Misc. 6.0 psf Total Dead Load 20 psf. Total live Load 20 psf Total Roof Load 40 psf. Deck Loads Framing 3.5 psf. sheathing (3/4" Plywd) 2.5 psf Ceiling 2.5 psf. Lt. Wt. Conc. 15 psf. Flooring Tile 10 psf Misc. 3.5 psf Total Dead Load 37 psf. Total live Load 60 psf Total Load 97 psf. Interior Wall Insulation 1.0 psf. Drywall 5.0 psf Studs 1.0 psf. Misc. 1.0 psf. Total Wall Weight 10.0 psf. EO CLIENT: Radt, Sil - L', I "F: SUBJECT: RA Structural Engineering !JOB NO: 111063 DESIGN BY: p DMT.: i o, 2-611 a(n101 113, -- (2c psi �< I I" / y, 3')= .2-53 p 410, � I Z" ) + (2 5 pfd , X 3. 5) .,1- ( I �pf g E>M*2. (2o psz�,i) p L 6,10. (2 0 pff +(25W Al") +( 15i0ftx2/) := too PZF, (^Jl - t, � ( z 0 r -7f . x I/ � =. 2- p L -F. 6m *3 - �_ (37 PSS � � 21, 2. wl-t. PSS) �2720 PLF- gm,4-- Z/. - I 0 ,�;i RA Structural Engineering 78080 Calle Amigo, Suite #102 La Quinta, CA. 92253 (760)771-9993 Description : RJ#1 Title: Radi Residence Dsgnr: Reza Asgharpour, P.E. Project Desc,: Remodeling Project Notes: Job # 111063 Printed: 9 NOV 2011, MENERCALC Data Fitm\radi resident INC. 1983-2011. Build:6.11.4.5. Ver.6. _ Material Properties Calculations per NDS 2005, IBC 2009, CBC 2010, ASCE 7-05 Analysis Method: Allowable Stress Design Fb - Tension 900.0 psi E: Modulus of Elasticity Load Combination 2006 IBC & ASCE 7-05 Fb - Compr 900.0 psi Ebend- xx 1,600.Oksi Load Combination Fc - Prll 1,350.0 psi Eminbend - xx 580.0 ksi Wood Species : Douglas Fir - Larch Fc - Perp 625.0 psi 0.211 : 1 Wood Grade : No.2 Fv 180.0 psi 2-2x8 fb : Actual = Ft 575.0 psi Density 32.210pcf Beam Bracing : Beam is Fully Braced against lateral -torsion buckling 1,242.00psi Repetitive Member Stress Increase D(0.037) L(0.06) Span = 12.0 ft i Appfied Loads' Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Uniform Load: D = 0.0370, L = 0.060, Tributary Width =1.0 ft, (Roof) Load Combination IVESJGN`So"RY Maximum Bending Stress Ratio = 0.6741 Maximum Shear Stress Ratio = 0.211 : 1 Section used for this span 2-2x8 Section used for this span 2-2x8 fb : Actual = 837.21 psi fv : Actual = 37.94 psi FB: Allowable = 1,242.00psi Fv : Allowable = 180.00 psi Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span = 6.000ft Location of maximum on span = 0.000 ft Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.185 in Ratio = 777 0.087 Max Upward L+Lr+S Deflection 0.000 in Ratio = 0 <360 1.000 Max Downward Total Deflection 0.314 in Ratio = 458 1,242.00 Max Upward Total Deflection 0.000 in Ratio = 0 <240 +D+L+H 3'Maximum Forces & Stresses.f-or Load Combinations Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C FN C r C m C t Mactual ft) -design Fb-allow Vactual tv-design Fv-allow +0 1.200 1.150 1.000 1.000 Length =12.0 It 1 0.277 0.087 1.000 1.200 1.150 1.000 1.000 0.75 344.08 1,242.00 0.23 15.59 180.00 +D+L+H 1.200 1.150 1.000 1.000 Length =12.0 ft 1 0.674 0.211 1.000 1.200 1.150 1.000 1.000 1.83 837.21 1,242.00 0.55 37.94 180.00 +0+0.750Lr+0.750L+H 1.200 1.150 1.000 1.000 Length =12.0 ft 1 0.575 0.180 1.000 1.200 1.150 1.000 1.000 1.56 713.93 1,242.00 0.47 32.35 180.00 +0+0.750L+0.750S+H 1.200 1.150 1.000 1.000 Length =12.0 ft 1 0.575 0.180 1.000 1.200 1.150 1.000 1.000 1.56 713.93 1,242.00 0.47 32.35 180.00 +0+0.750Lr+0.750L+0.750W+H 1.200 1.150 1.000 1.000 Length =12.0 It 1 0.575 0.180 1.000 1.200 1.150 1.000 1.000 1.56 713.93 1,242.00 0.47 32.35 180.00 1.200 1.150 1.000 1.000 WD+0+0.750L+0.750S+0.750W+H Length =12.0 It 1 0.575 0.180 1.000 1.200 1.150 1.000 1.000 1.56 713.93 1,242.00 0.47 32.35 180.00 +40.750Lr+0.75OL40.5250E+H 1.200 1.150 1.000 1.000 Length =12.0 ft 1 0.575 0.180 1.000 1.200 1.150 1.000 1.000 1.56 713.93 1,242.00 0.47 32.35 180.00 O RA Structural Engineering Title: Radi Residence Job # 111063 78080 Calle Amigo, Suite #102 Dsgnr: Reza Asgharpour, P.E. La Quinta, CA. 92253 Project Desc.: Remodeling (760)771-9993 Project Notes : eam, r Description : RJ#1 :. File: Printed: 9 NOV 2011, 9:19AM da FilesVadi residence.e6 Build:6.11.4.5, Ver.6.1IA,5. Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C F/V C r C m C t Mactual fb-design Fb-allow Vactual tvdesign Fvallow +0+0.750L+0.750S+0.5250E+H 1.200 1.150 1.000 1.000 Length =12.0 ft 1 0.575 0.180 1.000 1.200 1.150 1.000 1.000 1.56 713.93 1,242.00 0.47 32.35 180.00 Overall Maximum Deflections - Unfactored Loads Load Combination Span Max. ' " Def! Location in Span Load Combination Max. "+" Defl Location in Span D+L 1 0.3143 6.060 0.0000 0.000 P1(W4i Reactions - Unfactored Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 0.611 0.611 D Only 0.251 0.251 L Only 0.360 0.360 D+L 0.611 0.611 • 9 • • Reza PROJECT: Ffc; ioist#2 - LL PAGE: o- CLIENT: Aadi Residence DESIGN BY: R.A. Laharciour JOB NO.: '111omDATE 10/262011 (i REVIEW BY : R.A. T DATA & DESIGN SUMMARY Wt (lbs/11) AVAILABLE MINIMUM Douglas Fir -Larch SIZES r SPAN L_) y 8w " i ft 2 x 8 No. 2 2 x 8 No. 1 2 x 8 Structural LOAD DL =: 37 psf, (w/o self Wt) AVAILABLE MINIMUM TJI SIZES LOAD / SNOW LL =, 60 psf 117/8" TJI/L65 117/8" TJI/L90 117/8" TJI/H90 r SPACING S = • 16 : in o.c. AVAILABLE MINIMUM SSI SIZES 471014 FACTOR Cb = 1 (NDS Tab. 2.3.2) 117/8" SSI 32MX 11 718" SSI 42MX 117/8" SSI 43L :TITIVE FACTO C l = . 1.15 ? (NDS 4.3.9. For DSA, 1.0) 10 .ECTION LIMIT OF LIVE LOAD d LL = L /,360 ( L / 360. 0.3 in ) .ECTION LIMIT OF LONG-TERM LOAD d t.e(Duo.33LL) = L /'480 t (L / 480 , 0.2 in ) ECTION LIMIT OF TOTAL LOAD d (DL -LL) = L / 240 ; ( L 1240, 0.4 in ) ANALYSIS JOIST PROPERTIES & ALLOWABLE MOMENT & SHEAR 9.. un a r n..m.. Cir -1 -h / ACn Q. -1 -, T,h C eel Deep (in) Wt (lbs/11) M (ft4bs) indu V (Ibs) EI x 10e (in= -lbs) 4 1.00 344 630 9 6 2.00 738 990 33 8 2.OD 1183 1310 76 10 3.00 1767 1670 158 12 4.00 2375 2030 285 9. Cln.M.rnl nn m.. CirJ amh /ACn C..nnlomontc Tch C Anl Deep (in) Wt (Ibs/ft) M (ft -lbs) (CFinduded)(in=4bs) V (Ibs) EI x le 4 1.00 574 630 10 6 2.00 1225 990 40 8 2.00 1975 1310 91 10 3.00 2942 1670 188 12 1 4.00 1 3958 1 2030 1 338 T lin CC I fmm Tn, iN A 1MI n n S1 Deep (in) Wt (lbs/ft) M (ft-Ibs) V (Ibs) EI x le in'4bs 117/8 3.30 6750 1925 450 14 3.60 8030 2125 666 16 3.90 9210 2330 913 18 4.20 10380 2535 1205 20 4.40 11540 2740 1545 22 4.70 12690 2935 1934 24 5.00 13830 3060 2374 26 5.30 14960 2900 2868 28 5.50 16085 2900 3417 30 1 5.80 1 17205 1 2900 1 4025 T.1111 4e I fmm Tn,ciniet 4 1 nR9 n nn 51 Deep (in) Wt (lbs/ft) M (Nbs) V (Ibs) EI x 10e int-Ibs 1178 4.20 9605 1925 621 14 4.50 11430 2125 913 16 4.70 13115 2330 1246 18 5.00 14785 2535 1635 20 5.30 16435 2740 2085 22 5.60 18075 2935 2597 24 5.80 19700 3060 3172 26 6.10 21315 2900 3814 28 6.40 22915 2900 4525 30 1 6.60 1 24510 1 2900 1 5306 TJI/140fi f From Tnleinist & 1nR9 - 51 Deep (in) Wt (lbs/ft) M (ft-Ibs) V (Ibs) EI x 108 int-Ibs 117/8 4.60 10960 1925 687 14 4.90 13090 2125 1015 16 5.20 15065 2330 1389 18 5.40 17010 2535 1827 20 5.70 18945 2740 2331 22 6.00 20855 2935 2904 24 6.30 22755 3060 3549 26 6.50 24645 29W 4266 28 6.80 26520 2900 5059 30 1 7.10 28380 1 2900 1 5930 1. Mn 1 nn M.. Cl._I amh If- W-4R.em v1.% Deep (in) Wt (lbs/ft) M (ft-Ibs) include V (lbs) EI x 10e (in 24bs) 4 1.00 383 630 9 6 2.00 819 990 35 8 2.00 1314 1305 81 10 3.00 1961 1665 168 12 4.00 2637 2025 303 Where: 1. ASD Supplements, Tab. 5.4a is from American Wood Council, 2001. 2. Assume that the joist top is fully lateral supported by diaphragm. (CL = 1.0) 3. WoodBeam.xfs is at www.engineering-intemational.corn CCI 11- I f__ Irr cat' -COM - S A Cl Deep (in) Wt (lbs/ft) M (ft-Ibs) V (Ibs) EI x 108 in24bs C x 10e ins-Ibs 117/8 3.10 5391 2115 460 9.39 14 3.30 6570 2330 667 10.99 16 3.60 7684 2530 900 12.50 18 3.90 8800 2735 1170 14.02 20 4.10 9918 2935 1478 15.55 22 4.40 11038 3135 1824 17.08 24 4.70 12159 3335 2211 18.62 26 5.00 13279 3540 2638 20.15 28 5.20 14401 3740 3106 21.68 30 1 5.50 1 15524 3940 1 3616 1 23.21 CCI A9YY I fmm Irl` OCr:_SRtll .m n S A Al Deep (in) Wt (lbs/ft) M (R-Ibs) V (Ibs) EI x le ins-Ibs C x 108 W4bs 1178 3.80 7592 2060 637 9.54 14 4.10 9274 2350 924 11.15 16 4.30 10863 2620 1246 12.68 18 4.60 12456 2895 1617 14.22 20 4.90 14051 3165 2040 15.77 22 5.10 15649 3440 2514 17.32 24 5.40 17248 3710 3042 18.87 26 5.70 18849 3985 3622 20.42 28 6.00 20450 4255 4257 21.97 30 1 6.20 1 22052 1 4530 1 4948 1 23.53 CCI AL I fmm Irr DCr-hAn4 - C A Al Deep (in) Wt (lbs/ft) M (ft4bs) V (Ibs) EI x 108 int-Ibs C x 10e in24s 11 78 4.60 9789 2080 707 6.81 14 4.90 12081 2260 1031 7.91 16 5.20 14251 2425 1394 8.97 18 5.40 16269 2590 1944 10.05 20 5.70 18419 2755 2454 11.13 22 5.90 20573 2920 3026 12.21 24 6.20 22730 3090 3661 13.30 26 6.40 24889 3255 4358 14.39 28 6.70 27050 3420 5119 15.47 30 1 7.00 29212 3585 1 5944 1 16.56 0 • i• I7 7� C�....w,rnl M,.nlnn Cli_I nMA Deep (in) M (ft-Ibs) V (Ibs) ALL ALT AD -L CHECK Deep (in) (conVd) DESIGN EQUATIONS ALL in in in 4 907 WL 2 M = 8CnC, 0.74 V _ w/_ 2CoC, _ SwLa A"`` N.G. 6 914 457 0.18 0.27 0.30 N.G. 384F1 8 914 457 0.08 0.12 22.5wL' 2.26wL' o.k. 0.02 10 921 460 0.04 0.06 + F_/ d x 10' ( from Trusjoist # 1062, page 21) 0.03 12 1 928 464 1 0.02 _ 5w[,' + _e ( from ICC PFC-5803, page 2) 1 o.k. 0.03 o.k. 16 927 463 384EI C 0.03 o.k. 16 925 462 0.01 0.02 CHECK JOIST CAPACITIES & DEFLECTIONS o.k. 18 929 464 0.01 0.02 2x No. 2 Douglas Fir -Larch o.k. 18 2x No. 1 Douglas Fir -Larch 463 0.01 0.02 0.02 Deep (in) M (ft -lbs) V (Ibs) ALL ALT AD.L CHECK Deep (in) M (ft -lbs) V (Ibs) ALL ALT AO -L CHECK o.k. 22 932 in in in 0.02 o.k. 22 930 in in in 0.01 4 907 453 0.82 1.18 1.33 N.G. 4 907 453 0.82 1.18 1.33 N.G. 6 914 457 0.22 0.33 0.37 N.G. 6 914 457 0.21 0.31 0.35 N.G. 8 914 457 0.10 0.14 0.16 o.k. 8 914 457 0.09 0.13 0.15 o.k. 10 921 460 0.05 0.07 0.08 o.k. 10 921 460 0.04 0.06 0.07 o.k. 12 928 464 0.03 0.04 0.04 o.k. 12 928 464 0.02 0.04 0.04 o.k. 7� C�....w,rnl M,.nlnn Cli_I nMA Deep (in) M (ft-Ibs) V (Ibs) ALL ALT AD -L CHECK Deep (in) M (ft-Ibs) V (Ibs) ALL in in in 4 907 453 0.74 1.06 1.20 N.G. 6 914 457 0.18 0.27 0.30 N.G. 461 8 914 457 0.08 0.12 0.13 o.k. 0.02 10 921 460 0.04 0.06 0.06 o.k. 0.03 12 1 928 464 1 0.02 1 0.03 0.04 1 o.k. 0.03 Deep (in) M (ft-Ibs) V (Ibs) ALL ALT AD -L CHECK Deep (in) M (ft-Ibs) V (Ibs) ALL ALT AD,L CHECK in in in in in in 117/8 923 461 0.03 0.04 0.04 o.k. 117/8 921 461 0.02 0.03 0.04 o.k. 14 925 462 0.02 0.03 0.03 o.k. 14 923 461 0.02 0.02 0.03 o.k. 16 927 463 0.02 0.02 0.03 o.k. 16 925 462 0.01 0.02 0.02 o.k. 18 929 464 0.01 0.02 0.02 o.k. 18 927 463 0.01 0.02 0.02 o.k. 20 930 465 0.01 0.02 0.02 o.k. 20 928 464 0.01 0.01 0.01 o.k. 22 932 466 0.01 0.01 0.02 o.k. 22 930 465 0.01 0.01 0.01 o.k. 24 934 467 0.01 0.01 0.01 o.k. 24 932 466 0.01 0.01 0.01 o.k. 26 937 468 0.01 0.01 0.01 o.k. 26 934 467 0.01 0.01 0.01 o.k. 28 938 469 0.01 0.01 0.01 o.k. 28 936 468 0.01 0.01 0.01 o.k. 30 1 940 1 470 1 0.01 1 0.01 1 0.01 o.k. 30 1 938 1 469 1 0.00 1 0.01 0.01 o.k. TJUL90 SS142MX Deep (in) M (ft-Ibs) V (Ibs) ALL ALT AD,L CHECK Deep (in) M (ft-Ibs) V (Ibs) ALL ALT AD -L CHECK in in in in in in 117/8 929 464 0.02 0.03 0.04 o.k. 117/8 926 463 0.02 0.03 0.03 o.k. 14 931 466 0.02 0.02 0.03 o.k. 14 928 464 0.01 0.02 0.02 OX is 932 466 0.01 0.02 0.02 o.k. 16 930 465 0.01 0.02 0.02 o.k. 18 934 467 0.01 0.02 0.02 o.k. 18 932 466 0.01 0.01 0.01 o.k. 20 937 468 0.01 0.01 0.02 o.k. 20 934 467 0.01 0.01 0.01 o.k. 22 939 469 0.01 0.01 0.01 o.k. 22 935 468 0.01 0.01 0.01 o.k. 24 940 470 0.01 0.01 0.01 o.k. 24 937 469 0.01 0.01 0.01 o.k. 26 942 471 0.01 0.01 0.01 o.k. 26 939 470 0.01 0.01 0.01 o.k. 28 944 472 0.01 0.01 0.01 o.k. 28 941 471 0.00 0.01 0.01 OX 30 1 946 1 473 1 0.01 1 0.01 1 0.01 OIL 30 1 943 1 471 1 0.00 1 0.01 1 0.01 1 o.k. TJUH90 SS143L Deep (in) M (ft-Ibs) V (Ibs) ALL ALT AD -L CHECK Deep (in) M (ft-Ibs) V (Ibs) ALL ALT AD -L CHECK in in in in in in 117/8 932 486 0.02 0.03 0.03 o.k. 117/8 932 466 0.02 0.03 0.03 o.k. 14 934 467 0.02 0.02 0.03 o.k. 14 934 467 0.01 0.02 0.03 o.k. 16 936 468 0.01 0.02 0.02 o.k. 16 936 468 0.01 0.02 0.02 o.k. 18 937 469 0.01 0.02 0.02 o.k. 18 937 469 0.01 0.02 0.02 o.k. 20 939 470 0.01 0.01 0.02 o.k. 20 939 470 0.01 0.01 0.01 o.k. 22 941 471 0.01 0.01 0.01 o.k. 22 941 470 0.01 0.01 0.01 o.k. 24 944 472 0.01 0.01 0.01o.k. 24 943 471 0.01 0.01 0.01 o.k. 26 945 472 0.01 0.01 0.01 0.1L 26 944 472 0.01 0.01 0.01 o.k. 28 947 474 0.01 0.01 0.01 o.k. 28 946 473 0.01 0.01 0.01 o.k. 30 949 475 0.01 0.01 0.01 o.k. 30 948 474 0.00 0.01 0.01 o.k. A s � 0 Reza PROJECT: Joistp3 Y j PAGE: CLIENT: ;Radi Residence DESIGN BY: R.A.` Asharpour JOB NO.: ;111063 (DATE: /10/262011 REVIEW BY: R.A INPUT DATA & DESIGN SUMMARY Wt (Ibs/ft) AVAILABLE MINIMUM Douglas Fir -Larch SIZES JOIST SPAN L =; _ 20'' ;ft 2 x 12 No. 2 2 x 12 No. 1 2 x 12 Structural DEAD LOAD DL = 20 1 psf, (w/o self Wt) AVAILABLE MINIMUM TJI SIZES LIVE LOAD / SNOW LL = 40 ) psf 117/8" TJUL65 117/8" TJI/L90 117/8" TJI/H90 JOIST SPACING S = I 8 I in o.c. AVAILABLE MINIMUM SSI SIZES DURATION FACTOR Cb = f 1 (NDS Tab. 2.3.2) 117/8" SSI 32MX 117/8" SSI 42MX 11718" SSI 43L REPETITIVE FACTO Cr = { 1.15 _ ; (NDS 4.3.9. For DSA, 1.0) DEFLECTION LIMIT OF LIVE LOAD d LL = L /4360 u� ( L / 360, 0.7 in) DEFLECTION LIMIT OF LONG-TERM LOAD d 1.5(DI-+0.33LL) = L / i480 - ( L 1480, 0.5 in ) DEFLECTION LIMIT OF TOTAL LOAD d(DI.LL) = L /`240 : ( L / 240, 1.0 in) ANALYSIS JOIST PROPERTIES & ALLOWABLE MOMENT & SHEAR 2. N. 2. nmol.. 01,1 arch / ASA SS mnlomnnfn Tch S "I. 1v Nn 4 r% -..Inn Cl -I e...w r6-- 1-nra.n -1 Deep (in) Wt (Ibs/ft) M (ftabs) included V (IDS) EI x 101 (in24bs) 4 1.00 344 630 9 6 2.00 738 990 33 8 2.00 1183 1310 76 10 3.00 1767 1670 158 12 1 4.00 1 2375 2030 1 285 1. Ctn.nf.Irnl M..nlun 0-1 n..,h /ACn C. rr.nlc.nuMc Teh C As1 Deep (in) Wt (Ibs/ft) M (ft -lbs) included) V (IDS) EI x 101 (in24bs) 4 1.00 574 630 10 6 2.00 1225 990 40 8 2.00 1975 1310 91 10 3.00 2942 1670 188 12 1 4.00 1 3958 1 2030 1 338 T.IIn eR / /rn.n Tn.ninie. a lm .... S1 Deep (in) Wt (Ibstlt) M (ft -lbs) V (IDs) EI x 101 in24bs 117/8 3.30 6750 1925 450 14 3.60 8030 2125 666 16 3.90 9210 2330 913 18 4.20 10380 2535 1205 20 4.40 11540 2740 1545 22 4.70 12690 2935 1934 24 5.00 13830 3060 2374 26 5.30 14960 2900 2868 28 5.50 16085 2900 3417 30 1 5.80 1 17205 1 2900 1 4025 Deep (in) Wt 0A) M (ft -lbs) V (Ibs) EI x 101 In2•Ibs 117/8 4.20 9605 1925 821 14 4.50 11430 2125 913 16 4.70 13115 2330 1246 16 5.00 14785 2535 1635 20 5.30 16435 2740 2085 22 5.60 18075 2935 2597 24 5.80 19700 3060 3172 26 6.10 21315 2900 3814 28 6.40 22915 2900 4525 30 1 6.60 1 24510 2900 1 5306 T-11/NPA ! fmm T-inkt a 1 nR2 n - 51 Deep (in) Wt (Ibs/ft) M (ft -lbs) V (IDS) EI x 101 int-Ibs 117/8 4.60 10960 1925 687 14 4.90 13090 2125 1015 16 5.20 15065 2330 1389 18 5.40 17010 2535 1827 20 5.70 18945 2740 2331 22 6.00 20855 2935 2904 24 6.30 22755 3060 3549 26 6.50 24645 2900 4266 28 6.80 26520 2900 5059 30 1 7.10 28380 2900 1 5930 Deep (in) Wt (Ibs/ft) M (ft -lbs) V (IDS) include EI x 101 (ins-Ibs) 4 1.00 383 630 9 6 2.00 819 990 35 8 2.00 1314 1305 81 10 3.00 1961 1665 168 12 4.00 2637 2025 303 Where: 1. ASD Supplements, Tab. 5.4a is from American Wood Council, 2001. 2. Assume that the joist top is fully lateral supported by diaphragm. (CL = 1.0) 3. WoodBeam.xls is at www.engineering-intemational.com Deep (in) Wt (lbs/ft) M (114bs) V (IDS) EI x 101 inkibs(in24bs) C x 10° 117/8 3.10 5391 2115 460 9.39 14 3.30 6570 2330 667 10.99 16 3.60 7684 2530 900 12.50 18 3.90 8800 2735 1170 14.02 20 4.10 9918 2935 1478 15.55 22 4.40 11038 3135 .1824 17.08 24 4.70 12159 3335 2211 18.62 26 5.00 13279 3540 26W 20.15 28 5.20 14401 3740 3106 21.68 30 1 5.50 15524 3940 1 3616 1 23.21 CCI A1YY /- Irr orr_CCm n n C 9 c Deep (in) WI (IbrM) M (ft-Ibs) V (IDS) EI x 101 Ing-Ibs C x 101 in= -IDs 117/8 3.80 7592 2060 637 9.54 14 4.10 9274 2350 924 11.15 16 4.30 10863 2620 1246 12.68 18 4.60 12456 2895 1617 14.22 20 4.90 14051 3165 2040 15.77 22 5.10 15649 3440 2514 17.32 24 5.40 17248 3710 3042 18.87 26 5.70 18849 3985 3622 20.42 28 6.00 20450 4255 4257 21.97 30 1 6.20 1 22052 4530 I 4948 1 23.53 CCI All / f-- Irr DC!`_CCn1 n e C P C1 Deep (in) WI (Ibs/ft) M (ft -lbs) V (IDS) EI x 101 (in24bs) C x 101 in=-Ibs 117/8 4.60 9789 2080 707 6.81 14 4.90 12081 2260 1031 7.91 16 5.20 14251 2425 1394 8.97 18 5.40 16269 2590 1944 10.05 20 5.70 18419 2755 2454 11.13 22 5.90 20573 2920 3026 12.21 24 6.20 22730 3090 3661 13.30 26 6.40 24889 3255 4358 14.39 28 6.70 27050 3420 5119 15.47 30 1 7.00 1 29212 3585 1 5944 1 16.56 0 • 0 (cont'd) DESIGN EQUATIONS WL V= WL 5w/,' M= 8C.C, Aor�t = 2CnC, 384F_/ 22.5wL' + 2.26wL x Ar" FJ d x 16' (from Trusjoist # 1062, page 21) _ SwL° + wLx ( from ICC PFC-5803, page 2) �"' 384EI C CHECK JOIST CAPACITIES & DEFLECTIONS 2x No. 2 Douglas Fir -Larch M (ft-Ibs) V (Ibs) ALL in ALT in AD.L in 2x No. 1 Douglas Fir -Larch 4 1783 357 9.60 Deep (in) M (ft -lbs) V (lbs) ALL ALT 365 CHECK Deep (in) M (ft -lbs) V (Ibs) ALL ALT AD -L CHECK 1.43 1.66 N.G. in in 7�Uin 0.51 0.72 0.82 N.G. in in in4 1 0.28 0.42 1783 357 10.67 13.88 379 N.G. 4 1783 357 10.67 13.88 16.40 N.G. 6 1826 365 2.91 3.95 . N.G. 6 1826 365 2.74 3.72 4.32 N.G. 8 1826 365 1.26 1.71 1.99 N.G. 8 1826 365 1.19 1.61 1.87 N.G. 10 1870 374 0.61 0.86 0.98 N.G. 10 1870 374 0.57 0.81 0.92 N.G. 12 1913 383 0.34 0.50 0.56 o.k. 12 1913 383 0.32 0.47 0.52 o.k. .1.. CM.rN.rol M..nlne Ci._I ur�nl. Deep (in) M (ft-Ibs) V (Ibs) ALL in ALT in AD.L in CHECK 4 1783 357 9.60 12.49 14.76 N.G. 6 1826 365 2.40 3.26 3.78 N.G. 8 1826 365 1.05 1.43 1.66 N.G. 10 1870 374 0.51 0.72 0.82 N.G. 12 1913 1 383 1 0.28 0.42 1 0.47 o.k. Deep (in) M (ft-Ibs) V (Ibs) ALL ALT AO.L CHECK Deep (in) M (ft-Ibs) V (Ibs) ALL ALT AD.L CHECK in in in in in in 117/8 1883 377 0.23 0.33 0.38 o.k. 117/8 1874 375 0.22 0.32 0.36 o.k. 14 1896 379 0.16 0.23 0.26 o.k. 14 1863 377 0.16 0.22 0.25 o.k. 16 1909 382 0.12 0.18 0.20 o.k. 16 1896 379 0.12 0.17 0.19 o.k. 18 1922 384 0.09 0.14 0.15 o.k. 18 1909 382 0.09 0.13 0.15 o.k. 20 1930 386 0.07 0.11 0.12 o.k. 20 1917 383 0.07 0.11 0.12 o.k. 22 1943 389 0.06 0.09 0.10 o.k. 22 1930 386 0.06 0.09 0.10 o.k. 24 1957 391 0.05 0.08 0.09 o.k. 24 1943 389 0.05 0.08 0.08 o.k. 26 1970 394 0.04 0.07 0.07 o.k. 26 1957 391 0.04 0.07 0.07 o.k. 28 1978 396 0.04 0.06 0.06 o.k. 28 1965 393 0.04 0.06 0.06 o.k. 30 1 1991 1 398 1 0.03 1 0.05 1 0.05 o.k. 30 1 1978 1 396 1 0.03 1 0.05 0.05 1 o.k. TJUL90 SSI 42MX Deep (in) M (ft-Ibs) V (Ibs) ALL ALT AO,L CHECK Deep (in) M (ft-Ibs) V (Ibs) ALL ALT AD -L CHECK in in in in in in 117/8 1922 384 0.17 0.26 0.29 o.k. 117/8 1904 381 0.16 0.24 0.27 o.k. 14 1935 387 0.12 0.18 0.20 o.k. 14 1917 383 0.12 0.17 0.19 o.k. 16 1943 389 0.09 0.14 0.15 o.k. 16 1926 385 0.09 0.13 0.14 o.k. 18 1957 391 0.07 0.11 0.12 o.k. 18 1939 388 0.07 0.10 0.11 o.k. 20 1970 394 0.06 0.09 0.10 o.k. 20 1952 390 0.06 0.08 0.09 o.k. 22 1983 397 0.05 0.07 0.08 o.k. 22 1961 392 0.05 0.07 0.08 o.k. 24 1991 398 0.04 0.06 0.07 o.k 24 1974 395 0.04 0.06 0.07 o.k. 26 2004 401 0.03 0.05 0.06 o.k. 26 1987 397 0.03 0.05 0.06 o.k. 28 2017 403 0.03 0.05 0.05 o.k. 282000 400 0.03 0.04 0.05 o.k. 30 1 2026 1 405 1 0.03 1 0.04 1 0.05 1 o.k. 30 2009 1 402 1 0.02 1 0.04 1 0.04 1 o.k. TJUH90 SS143L Deep (in) M (ft-Ibs) V (Ibs) ALL ALT AD,L CHECK Deep (in) M (ft-Ibs) V (Ibs) ALL ALT AD -L CHECK in in in in in in 117/8 1939 388 0.16 0.24 0.27 o.k. 117/8 1939 388 0.15 0.23 0.26 o.k. 14 1952 390 0.11 0.17 0.19 o.k. 14 1952 390 0.11 0.17 0.18 o.k. 16 1965 393 0.08 0.13 0.14 o.k. 16 1965 393 0.08 0.13 0.14 o.k. 18 1974 395 0.07 0.10 0.11 o.k. 18 1974 395 0.06 0.10 0.11 o.k. 20 1987 397 0.05 0.08 0.09 o.k. 20 1987 397 0.05 0.08 0.09 o.k. 22 2000 400 0.04 0.07 0.08 o.k. 22 1996 399 0.04 0.07 0.07 o.k. 24 2013 403 0.04 0.06 0.06 o.k. 24 2009 402 0.04 0.06 0.06 o.k. 26 2022 404 0.03 0.05 0.06 o.k. 26 2017 403 0.03 0.05 0.05 o.k. 28 2035 407 0.03 0.04 0.05 o.k. 28 2030 406 0.03 0.04 0.05 o.k. • • r\ L --A � 0 � 0 � 0 Tr r%­.I.n 01-1 nmh Deep (in) M (ft -lbs) V (lbs) ALL LLT LD.L CHECK Deep (in) M (ft -lbs) V (lbs) (cont'd) DESIGN EQUATIONS in in 117/8 1802 4 1726 493 4.61 5.87 7.00 M= wl 8CnC, 6 _ WL V 2C,,C, 499 5wL' Lnw.-384E/ 1.50 1.77 N.G. 507 8 1747 499 0.51 0.66 0.78 N.G. 0.11 10 1768 505 0.25 22.5wL' 2.26wL' 0.38 o.k. 0.12 12 1 1790 1 511 1 0.14 1 0.19 1 0.21 + nT 1= EI d x l0' ( from Trusjoist # 1062, page 21) 0.1L 16 1787 511 0.07 + CL2 esv = (from ICC PFC-5803, page 2) o.k. 16 1781 509 0.06 0.08 384L� E/ o.k. 18 1794 513 0.05 0.07 0.08 o.k. 18 1787 CHECK JOIST CAPACITIES & DEFLECTIONS 0.05 0.07 0.08 o.k. 20 1798 514 0.04 2: No. Z Dou las Fir -Larch 0.07 o.k. 20 1792 2x No. 1, Dou las Fir -Larch 0.04 0.05 0.06 o.k. Deep (in) M (ft -lbs) V (lbs) ALL LLT LD.L CHECK Deep (in) M (ft -lbs) V Obs) ALL LLT LD -L CHECK 24 1811 517 in in in O.A. 24 1804 516 in in in o.k. 4 1726 493 5.12 6.52 7.78 N.G. 4 1726 493 5.12 6.52 7.78 N.G. 6 1747 499 1.40 1.82 2.15 N.G. 6 1747 499 1.32 1.71 2.03 N.G. 8 1747 499 0.61 0.79 0.93 N.G. 8 1747 499 0.57 0.74 0.88 N.G. 10 1768 505 0.29 0.39 0.45 N.G. 10 1768 505 0.27 0.36 0.43 N.G. 12 1790 511 0.16 0.22 0.25 o.k. 1 12 1790 511 0.15 0.21 0.24 o.k. Tr r%­.I.n 01-1 nmh Deep (in) M (ft -lbs) V (lbs) ALL LLT LD.L CHECK Deep (in) M (ft -lbs) V (lbs) ALL in in in 117/8 1802 4 1726 493 4.61 5.87 7.00 N.G. 6 1747 499 1.15 1.50 1.77 N.G. 507 8 1747 499 0.51 0.66 0.78 N.G. 0.11 10 1768 505 0.25 0.33 0.38 o.k. 0.12 12 1 1790 1 511 1 0.14 1 0.19 1 0.21 1 o.k. 0.13 Deep (in) M (ft -lbs) V (lbs) ALL ALT I LD•L CHECK Deep (in) M (ft -lbs) V (lbs) ALL LLT LD -L CHECK 117/8 1802 515 in in in o.k. 117/8 1802 515 in in in o.k. 117/8 1775 507 0.12 0.16 0.19 o.k. 117/8 1770 506 0.11 0.15 0.18 o.k. 14 1781 509 0.09 0.12 0.13 o.k. 14 1775 507 0.08 0.11 0.13 0.1L 16 1787 511 0.07 0.09 0.10 o.k. 16 1781 509 0.06 0.08 0.10 o.k. 18 1794 513 0.05 0.07 0.08 o.k. 18 1787 511 0.05 0.07 0.08 o.k. 20 1798 514 0.04 0.06 0.07 o.k. 20 1792 512 0.04 0.05 0.06 o.k. 22 1804 516 0.03 0.05 0.05 o.k. 22 1798 514 0.03 0.04 0.05 o.k. 24 1811 517 0.03 0.04 0.05 O.A. 24 1804 516 0.03 0.04 0.04 o.k. 26 1817 519 0.03 0.04 0.04 0.k. 26 1811 517 0.02 0.03 0.04 o.k. 28 1822 520 0.02 0.03 0.04 O.A. 28 1815 519 0.02 0.03 0.03 o.k. 30 1 1828 1 522 1 0.02 1 0.03 1 0.03 O.A. 30 1822 1 520 0.02 1 0.03 0.03 o.k. TJUL90 SS142MX Deep (in) M (ft -lbs) V (lbs) ALL ALT LD -L CHECK Deep (in) M (ft -lbs) V (lbs) ALL ALT LD.L CHECK in in in in in in 117/8 1794 513 0.09 0.13 0.15 o.k. 117/8 1785 510 0.09 0.12 0.13 o.k. 14 1800 514 0.07 0.09 0.11 o.k. 14 1792 512 0.06 0.08 0.10 o.k. 16 1804 516 0.05 0.07 0.08 o.k. 16 1796 513 0.05 0.06 0.07 o.k. 18 1811 517 0.04 0.06 0.07 o.k. 18 1802 515 0.04 0.05 0.06 o.k. 20 1817 $19 0.03 0.05 0.05 o.k. 20 1809 517 0.03 0.04 0.05 o.k. 22 1824 521 0.03 0.04 0.05 o.k. 22 1813 518 0.03 0.04 0.04 o.k. 24 1828 522 0.02 0.03 0.04 o.k. 24 1819 520 0.02 0.03 0.03 o.k. 26 1834 524 0.02 0.03 0.03 o.k. 26 1 1826 522 0.02 0.03 0.03 o.k. 28 1841 526 0.02 0.03 0.03 o.k. 28 1832 523 0.02 0.02 0.03 o.k. Deep (in) M (ft -lbs) V (lbs) ALL in LLT in LD -L in CHECK Deep (in) M (ft -lbs) V (lbs) ALL in ALT in LD*L in CHECK 117/8 1802 515 0.09 0.12 0.14 o.k. 117/8 1802 515 0.08 0.11 0.13 o.k. 14 1809 517 0.06 0.09 0.10 o.k. 14 1809 517 0.06 0.08 0.10 o.k. 16 1815 519 0.05 0.07 0.08 o.k. 16 1815 519 0.05 0.07 0.08 o.k. 18 1819 520 0.04 0.05 0.06 o.k. 18 1819 520 0.04 0.05 0.06 o.k. 20 1826 522 0.03 0.04 0.05 0.1L 20 1826 522 0.03 0.04 0.05 o.k. 22 1832 523 0.03 0.04 0.04 o.k 22 1830 523 0.03 0.04 0.04 o.k. 24 1839 525 0.02 0.03 0.04 o.k. 24 1836 525 0.02 0.03 0.04 o.k. 26 1843 527 0.02 0.03 0.03 o.k. 26 1841 526 0.02 0.03 0.03 o.k. 28 1649 528 0.02 0.03 0.03 o.k. 28 1847 528 0.02 0.02 0.03 o.k. 30 1856 530 0.02 0.02 0.03 o.k. 30 1853 530 0.02 0.02 0.03 e.k_ • • .7 Reza PROJECT: ;BM#i<' �r r"_ PAGE: CLIENT: Radi Residence -v DESIGN BY: .R.A As har Dur JOB NO.: (911063 "t:: DATE. !1&2&2_1_1 REVIEW BY: A.A. Wood Bearri.Desian Baae'on'NDS 2005;11 - •. ' ,, INPUT DATA & DESIGN SUMMARY MEMBER SIZE MEMBER SPAN UNIFORMLY DISTRIBUTED DEAD LOAD UNIFORMLY DISTRIBUTED LIVE LOAD CONCENTRATED DEAD LOADS (0 for no concentrated load) LIMIT OF LIVE LOAD LIMIT OF LONG-TERM _4, x6 i No. 2, Douglas Fir -Larch L=r wo = .3 ft .253 lbs / ft WL= 120 ( lbs/ft PD1 = 0 'lbs 31 psi < F, [Satisfactory] Code L, _ '0 ft PD2 =' 0 ilbs L2= 0 jft L _ I Poll 1 L 1P02 1 WL ECK BENDING AND SHEAR CAPACITIES fb = MMax / Sx = 289 Nb Duration Factor, Cr, Condition 31 psi < F, [Satisfactory] Code Designation A (L, Max) = 0.00 1 0.90 Dead Load Id L = L /;360 Camber => 0.01 inch d Kcr D . L = L /240 THE BEAM DESIGN IS ADEQUATE. Does member have continuous lateral support by top diaphragm ? (1= yes, 0= no) 0 No 1.25 1.00 1.00 1.00 1.00 1.30 1.00 1.00 1.00 ECK BENDING AND SHEAR CAPACITIES fb = MMax / Sx = 289 Code Duration Factor, Cr, Condition 31 psi < F, [Satisfactory] Code Designation A (L, Max) = 0.00 1 0.90 Dead Load Where K., = 1.50 1 Select Structural, Douglas Fir -Larch 2 1.00 Occupancy Live Load 2 No. 1, Douglas Fir -Larch 3 1.15 Snow Load 3 No. 2, Douglas Fir -Larch 4 1.25 Construction Load 4 Select Structural, Southern Pine 5 1.60 Wind/Earthquake Load 5 No. 1, Southern Pine 6 2.00 Impact Load 6 No. 2, Southern Pine Choice => 4 Construction Load Choice => 3 ANALYSIS DETERMINE REACTIONS, MOMENT, SHEAR wselfm = 4 lbs / ft RLe11 = 0.57 kips RR;9ht = 0.57 kips VMax = 0.39 kips, at 5.5 inch from left end MM. = 0.42 ft -kips, at 1.50 ft from left end DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES b = 3.50 in E'min = 580 ksi E = E,= 1600 ksi Fb = 1462.5 psi d = 5.50 in FbE = 20903 psi Fb = 900 psi F = FbE / Fe = 14.29 A = 19.3 int I = 49 in F„ = 180 psi Fe = 1,457 psi S. = 17.6 in3 Ra = 5.770 < 50 E' = 1,600 ksi F� = 225 psi /E = 6.2 (ft, Tab 3.3.3 footnote 1) CD CM Ct Ci CL CF Cv C, Cr 1.25 1.00 1.00 1.00 1.00 1.30 1.00 1.00 1.00 ECK BENDING AND SHEAR CAPACITIES fb = MMax / Sx = 289 psi < Fb = 1457 psi [Satisfactory] fv' = 1.5 VMax / A = 31 psi < F, [Satisfactory] ECK DEFLECTIONS A (L, Max) = 0.00 in, at 1.500 ft from left end, < d L = L / 360 [Satisfactory] d (K« D + L. Max) = 0.01 in, at 1.500 ft from left end < d Ka D • L = L / 240 [Satisfactory] Where K., = 1.50 , (NDS 3.5.2) rERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) A (1.5D. Ma)q = 0.01 in, at 1.500 ft from left end 0 • ECK THE BEAM CAPACITY WITH AXIAL LOAD AL LOAD F = '°2'; ti kips ALLOWABLE COMPRESSIVE STRESS IS Fc' = Fc Co CP CF = 2317 psi Where Fc = 1350 psi CD = 1.60 CF = 1.30 (Lumber only) CP = (1+F) / 2c - [(1+F) / 2c)2 - F / c]0.5 = Fc* = Fc Co CF = 2808 psi Le = Ke L = 1.0 L = 36 in b 3.5 in SF = slenderness ratio = 10.3 < FcE = 0.822 E'mi, / SF' = 4506 psi E'min = 580 ksi F = FoE / Fc" = 1.605 C = 0.8 ACTUAL COMPRESSIVE STRESS IS f, = F / A = 104 psi < Fc' THE ALLOWABLE FLEXURAL STRESS IS Fo = 1865 psi, [ for CD = 1.6 THE ACTUAL FLEXURAL STRESS IS fb = (M + Fe) / S = 685 psi < CHECK COMBINED STRESS [NDS 2005 Sec. 3.9.2, (fo / F.' )2+ fb / [F; (1 - f. / F.E)] = . 0.378 1 1 v v F F 0.825 50 [Satisfies NDS 2005 Sec. 3.7.1.4] [Satisfactory] Fo [Satisfactory] < 1 [Satisfactory] • • • Reza ,. PROJECT: BM#2 PAGE: As har �U r CLIENT: �Radi Residence DESIGN BY: R.A P JOB NO.: '111063 f-DATE.110/26/2011 REVIEW BY: R.A. Wood Beam Desian-Base on;NDS 2005?_ _ 1 INPUT DATA & DESIGN SUMMARY MEMBER SIZE MEMBER SPAN UNIFORMLY DISTRIBUTED DEAD LOAD UNIFORMLY DISTRIBUTED LIVE LOAD CONCENTRATED DEAD LOADS (0 for no concentrated load) (DEFLECTION LIMIT OF LIVE LOAD DEFLECTION LIMIT OF LONG-TERM 4_x_6____ No. 2, Douglas Fir -Larch L = 6.5 It wo = 100 lbs/ft WL=l 20 i lbs/ft POI = x . 0 lbs L1 = 0 ft PD2 = 0 `'. lbs L2 = 0 ft L II PD,1 11 �� 1PD2 1 WL 1 0.90 WD 2 1.00 Occupancy Live Load 3 1.15 Snow Load 4 1.25 Id L = L /;360 Camber => 0.08 inch dKorD.L=L/'240 - Does member have continuous lateral support by top diaphragm ? (1= yes, 0= no) 0 No Code Duration Factor, Cn Condition 1 0.90 Dead Load 2 1.00 Occupancy Live Load 3 1.15 Snow Load 4 1.25 Construction Load 5 1.60 Wind/Earthquake Load 6 2.00 Impact Load Choice => 4 Construction Load %LYSIS rERMINE REACTIONS, MOMENT, SHEAR wsellM = 4 lbs/ft RLeft = 0.40 kips VMex = 0.35 kips, at 5.5 inch from left end DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES b = 3.50 in E'mi„ = 580 ksi d = 5.50 in FbE = 10792 psi A = 19.3. int I = 49 in° SK = 17.6 in3 R8 = 8.031 < 50 lE = 12.0 (ft, Tab 3.3.3 footnote 1) CD CM Ct Ci CL CF 1.25 1.00 1.00 1.00 0.99 1.30 CHECK BENDING AND SHEAR CAPACITIES fb = MMax / Sx = 446 psi < Fb = fv = 1.5 VMax / A = 27 psi < CHECK DEFLECTIONS dtL, Mao = 0.01 in, at 3.250 It from left end, Id (Ku D . L, Ma4 = 0.09 in, at 3.250 It from left end Where Kar = 1.50 , (NDS 3.5.2) DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) Id (1.5D. Max) = 0.08 in, at 3.250 ft from left end THE BEAM DESIGN IS ADEQUATE. Cv C, Cr 1.00 1.00 1.00 1451 psi FY (Satisfactory] [Satisfactory] d L = L / 360 [Satisfactory] Id Ker D . L = L / 240 [Satisfactory] 001 Code Designation 1 Select Structural, Douglas Fir -Larch 2 No. 1, Douglas Fir -Larch 3 No. 2, Douglas Fir -Larch 4 Select Structural, Southern Pine 5 No. 1, Southern Pine 6 No. 2, Southern Pine Choice => 3 RRigm = 0.40 kips MM. = 0.66 ft -kips, at 3.25 It from left end E = E, = 1600 ksi Fb = 1462.5 psi Fb = 900 psi F = FbE / Fb. = 7.38 F„ = 180 psi Fe = 1,451 psi E' = 1,600 ksi Fv' = 225 psi Cv C, Cr 1.00 1.00 1.00 1451 psi FY (Satisfactory] [Satisfactory] d L = L / 360 [Satisfactory] Id Ker D . L = L / 240 [Satisfactory] 001 • • [7 IECK THE BEAM CAPACITY WITH AXIAL LOAD AL LOAD F = 2 ; kips ALLOWABLE COMPRESSIVE STRESS IS F,' = Fc Co CP CF = 880 psi Where FI = 1350 psi Co = 1.60 CF = 1.30 (Lumber only) CP = (1+F) / 2c - [(1+F) / 2c)z - F / clo.s = F, = FI CD CF = 2808 psi LB = Ka L = 1.0 L = 78 in b = 3.5 in SF = slenderness ratio = 22.3 < FIE = 0.822 E'mi„ / SF2 = 960 psi E'min = 580 ksi F =FIE / F,* = 0.342 C = 0.8 ACTUAL COMPRESSIVE STRESS IS fI = F / A = 104 psi < Fc' ALLOWABLE FLEXURAL STRESS IS Fb = 1858 psi, [ for Co = 1.6 : ACTUAL FLEXURAL STRESS IS fb = (M + Fe) / S = 843 psi < :CK COMBINED STRESS [NDS 2005 Sec. 3.9.2; (fI / F.')2 + fb / [F�,' (1 - fI / FIE)] = 0.523 1 1 FT-FTl F F f 0.313 50 [Satisfies NDS 2005 Sec. 3.7.1.4) [Satisfactory] Fe [Satisfactory] < 1 [Satisfactory] a C, • Reza PROJECT: 'BMOKi PAGE: CLIENT: ,Radi Reslden_ce DESIGN BY: `R.A As har Dur JOB NO.: X111063 "." DATE 110/26/2011 REVIEW BY: R.A. Wnne1'Rea'am�lleitiinn R��c"a"`nniNf'1S9AA5"`;�` .`:>f INPUT DATA & DESIGN SUMMARY L MEMBER SIZE dLB 5.118 x13 1/ix' jGIuIam 24F -1.8E MEMBER SPAN L X11.5 Ift UNIFORMLY DISTRIBUTED DEAD LOAD WD = 444 �'i Itis / It UNIFORMLY DISTRIBUTED LIVE LOAD wL =j 720 1 lbs / It CONCENTRATED DEAD LOADS PD, _ : 0 i . i Ibs (0 for no concentrated load) L, =1 0 . I ft PD2 = 0 i Itis 2 1.00 Occupancy Live Load L2 = _, ,0, d ft DEFLECTION LIMIT OF LIVE LOAD Id = L /1360 i DEFLECTION LIMIT OF LONG-TERM dKcrD+L = L /1,240,N ; Does member have continuous lateral support by top diaphragm ? L Pot 11 L pp 'U2 WL "b 1 0.90 Dead Load Camber => 0.14 inch THE BEAM DESIGN IS ADEQUATE. (1= yes, 0= no) 0 No Code Duration Factor. Cr, Condition 1 0.90 Dead Load 2 1.00 Occupancy Live Load 3 1.15 Snow Load 4 1.25 Construction Load 5 1.60 Wind/Earthquake Load 6 2.00 impact Load Choice => 2 Occupancy Live Load ANALYSIS DETERMINE REACTIONS, MOMENT, SHEAR wsa,1,,,,, = 16 lbs / ft RLafi = 6.79 kips RRight = 6.79 kips VMax = 5.46 kips, at 13.5 inch from left end MM. = 19.51 ft -kips, at 5.75 ft from left end DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES b = 5.13 in E'min = 930 ksi E = E, = 1800 ksi Fb = 2400 psi d = 13.50 in FbE = 8180 psi Fb = 2,400 psi F = FbE / Fb' = 3.41 A = 69.2 int I = 1,051 in° Fv = 265 psi Fe = 2,353 psi Sx = 155.7 in3 RB = 11.680 <50 E' = 1,800 ksi Fv' = 265 psi lE = 22.1 (ft, Tab 3.3.3 footnote 1) CD CM C1 Ci CL 1.00 1.00 1.00 1.00 0.98 CHECK BENDING AND SHEAR CAPACITIES fb = MMax / Sx = 1504 psi < f, = 1.5 VMax / A = 118 psi CHECK DEFLECTIONS CF Cv Cc C, 1.00 1.00 1.00 1.00 Fb = 2353 psi < Fv' [Satisfactory] A (L, Max) = 0.15 in, at 5.750 It from left end, < d (Ku D + L. Max) = 0.29 in, at 5.750 It from left end < Where Ku = 1.50 , (NDS 3.5.2) DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) d (1.51). Max) = 0.14 in, at 5.750 It from left end [Satisfactory] d L = L / 360 [Satisfactory] d Krr D + L = L / 240 [Satisfactory] 0 • • ECK THE BEAM CAPACITY WITH AXIAL LOAD AL LOAD F = i kips : ALLOWABLE COMPRESSIVE STRESS IS F,' = F, Co CP CF = 893 psi Where Fc = 1600 psi Co = 1.60 CF = 1.00 (Lumber only) CP = (1+F) / 2c - 1(1+F) / 2c)'- F / c]o.s = Fc = F, Co CF = 2560 psi I, = KB L = 1.01- = 138 in b = 5.125 in SF =slenderness ratio = 26.9 < F,E = 0.822 E'mm / SF2 = 941 psi E'min = 830 ksi F = FcE / Fj = 0.368 C = 0.9 ACTUAL COMPRESSIVE STRESS IS f, = F / A = 29 psi < F,' THE ALLOWABLE FLEXURAL STRESS IS Fp = 3764 psi, [ for CD = 1.6 ] THE ACTUAL FLEXURAL STRESS IS fp = (M + Fe) / S = 1570 psi < Fp CHECK COMBINED STRESS [NDS 2005 Sec. 3.9.2],. &/F.' )2+fe/[Fp 0-f./F.)] = 0.431 1 1 FT-IFT v F F 0.349 50 [Satisfies NDS 2005 Sec. 3.7.1.41 [Satisfactory] [Satisfactory] < 1 [Satisfactory] E • 1 • I* Reza PROJECT: ;BM#4 (Existing)" ` ' ' ` PAGE As har Dur CLIENT : 4Radi Residence DESIGN BY: >R.A 9 p JOB NO.: k111663' t DATE: t10/26/2011 REVIEW BY: R.A. . INPUT DATA & DESIGN SUMMARY MEMBER SIZE MEMBER SPAN UNIFORMLY DISTRIBUTED DEAD LOAD UNIFORMLY DISTRIBUTED LIVE LOAD CONCENTRATED DEAD LOADS (0 for no concentrated load) (DEFLECTION LIMIT OF LIVE LOAD DEFLECTION LIMIT OF LONG-TERM No. 2, Douglas Fir -Larch L=; 6:5 ;ft wD = y 290 Ibs / ft wL = 280- lbs / ft PD, =i 0; lbs L,=1 . 0 ft P112 =' 0 , lbs L2= 0 ,ft L PD1� 1 L 1PD2 11 WL Code Duration Factor, Cr, Condition W0 �� Designation 1 0.90 Dead Load 1 Select Structural, Douglas Fir -Larch 2 1.00 Occupancy Live Load 2 dL = L /360. Camber=> 0.03 inch r d Ka D.L= L/s240 THE BEAM DESIGN IS ADEQUATE. Does member have continuous lateral support by top diaphragm ? (1= yes, 0= no) 0 No Code Duration Factor, Cr, Condition Code Designation 1 0.90 Dead Load 1 Select Structural, Douglas Fir -Larch 2 1.00 Occupancy Live Load 2 No. 1, Douglas Fir -Larch 3 1.15 Snow Load 3 No. 2, Douglas Fir -Larch 4 1.25 Construction Load 4 Select Structural, Southern Pine 5 1.60 Wind/Earthquake Load 5 No. 1, Southern Pine 6 2.00 Impact Load 6 No. 2, Southern Pine Choice => 2 Occupancy Live Load Choice => 3 ALYSIS TERMINE REACTIONS, MOMENT, SHEAR wseirwt = 9 lbs / ft RLeft = 1.88 kips RRigttt = 1.88 kips VMax = 1.34 kips, at 11.25 inch from left end MMex = 3.06 ft -kips, at 3.25 ft from left end TERMINE SECTION PROPERTIES& ALLOWABLE STRESSES b = 3.50 in E'mi„ = 580 ksi E= E,= 1600 ksi Fb = 990 psi d = 11.25 in FbE = 4717 psi Fb = 900 psi F = FbE / Fp = 4.76 A = 39.4 int I = 415 in° F„ = 180 psi Fb' = 977 psi Sx = 73.8 in3 Ra = 12.148 < 50 E' = 1,600 ksi F„ = 180 psi /Em 13.4 (ft, Tab 3.3.3 footnote 1) CD CM Ct Ci CL CF Cv C° Cr 1.00 1.00 1.00 1.00 0.99 1.10 1.00 1.00 1.00 ECK BENDING AND SHEAR CAPACITIES fb = MMax / SX = 497 psi < Fb = 977 psi [Satisfactory] f,'= 1.5 VMax / A = 51 psi < F, [Satisfactory] ECK DEFLECTIONS A (L, Max) = 0.02 in, at 3.250 ft from left end, < d L = L / 360 [Satisfactory] d (Ker D. L. Max) = 0.04 in, at 3.250 ft from left end < d Ka D. L = L / 240 [Satisfactory] Where Ku = 1.50 , (NDS 3.5.2) rERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) A (1.50, Max) = 0.03 in, at 3.250 ft from left end (a • • IECK THE BEAM CAPACITY WITH AXIAL LOAD IAL LOAD F = —'2,,L'kips E ALLOWABLE COMPRESSIVE STRESS IS F,' = F, Co CP CF = 862 psi Where Fc = 1350 psi Co = 1.60 CF = 1.10 (Lumber only) CP = (1+F) / 2c - [(1+F) / 2c)2 - F / c]0.5 Fj = Fc Co CF = 2376 psi Le = KB L = 1.0 L = 78 in b = 3.5 in SF = slenderness ratio = 22.3 < For = 0.822 E',,n / SF = 960 psi E'min = 580 ksi F = FcE / Fc' = 0.404 C = 0.8 E ACTUAL COMPRESSIVE STRESS IS f, = F / A = 51 psi < F� FFTT TT -FT -T-1 F F 0.363 50 [Satisfies NDS 2005 Sec. 3.7.1.4] [Satisfactory] THE ALLOWABLE FLEXURAL STRESS IS Fs = 1564 psi, [ for Co = 1.6 ] THE ACTUAL FLEXURAL STRESS IS fb = (M + Fe) / S = 591 psi < • Fb [Satisfactory] CHECK COMBINED STRESS [NDS 2005 Sec. 3.9.2] (f. / F.' )2 + fb / [Fp 0 - f. / F.E)] = 0.403 < 1 [Satisfactory] E • • • Reza PROJECT: iBM#5__7_7_"� PAGE: 1 CLIENT : Radi Residence,DESIGN BY: 'R.A- ACJ har Dur JOBNO.: 111.1U63 - t`DAT�E 10/26/2011 ) REVIEW BY: R:A Wnne1 Rn�m°.t9ncinn R�cn:nn WI1C 9AAS''", _ INPUT DATA & DESIGN SUMMARY MEMBER SIZE MEMBER SPAN UNIFORMLY DISTRIBUTED DEAD LOAD UNIFORMLY DISTRIBUTED LIVE LOAD CONCENTRATED DEAD LOADS (0 for no concentrated load) DEFLECTION LIMIT OF LIVE LOAD DEFLECTION LIMIT OF LONG-TERM 4_X.6 0 No No. 2, Douglas Fir -Larch Ift LD. 3 0.90 WD= 180. 1 lbs/ft wL = f � 280. lbs/ft Po, = t 0 ! lbs L, =y 0 ;ft PD2 = 0 lbs L2=i 0 it L 0 No Code Duration Factor, CD Condition L 0.90 yII PD, 1 1 2 PD2 WL 3 1.15 wo 4 1.25 Construction Load 5 1.60 Wind/Earthquake Load 6 2.00 Impact Load Choice dL = L /,360 i Camber => 0.01 inch A Kcr D . L = L 1,240_ Does member have continuous lateral support by top diaphragm ? (1= yes, 0= no) 0 No Code Duration Factor, CD Condition 1 0.90 Dead Load 2 1.00 Occupancy Live Load 3 1.15 Snow load 4 1.25 Construction Load 5 1.60 Wind/Earthquake Load 6 2.00 Impact Load Choice => 2 Occupancy Live Load ANALYSIS DETERMINE REACTIONS, MOMENT, SHEAR wseff „H = 4 lbs / It RLea = 0.70 kips VMax = 0.48 kips, at 5.5 inch from left end MINE SECTION PROPERTIES& ALLOWABLE STRESSES b = 3.50 in Emir, = 580 ksi d = 5.50 in FbE = 20903 psi A = 19.3 int I = 49 in" SX = 17.6 in3 RB = 5.770 < 50 1E= 6.2 (ft, Tab 3.3.3 footnote 1) CD CM Cr Ci CL CF 1.00 1.00 1.00 1.00 1.00 1.30 CHECK BENDING AND SHEAR CAPACITIES fb = MMax / SX = 355 psi < Fb = f„ = 1.5 VMex / A = 38 psi < CHECK DEFLECTIONS 5 A (L, Man) = 0.01 in, at 1.500 ft from left end, Id (Kcr D . L, Max) = 0.01 in, at 1.500 It from left end Where Kcr = 1.50 , (NDS 3.5.2) DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) Id (1.5D, Ms) = 0.01 in, at 1.500 It from left end THE BEAM DESIGN IS ADEQUATE. Code Designation 1 Select Structural, Douglas Fir -Larch 2 No. 1, Douglas Fir -Larch 3 No. 2, Douglas Fir -Larch 4 Select Structural, Southern Pine 5 No. 1, Southern Pine 6 No. 2, Southern Pine Choice => 3 RRight = 0.70 kips MMa = 0.52 ft -kips, at 1.50 ft from left end E = Ex = 1600 ksi Fb = 1170 psi Fb = 900 psi F = FbE / Fb. = 17.87 F„ = 180 psi Fe = 1,167 psi E' = 1,600 ksi F,; = 180 psi C„ CD Cr 1.00 1.00 1.00 1167 psi F, [Satisfactory] [Satisfactory] AL=L/360 [Satisfactory] Id Ku o . L = L / 240 [Satisfactory] • L` • CHECK THE BEAM CAPACITY WITH AXIAL LOAD AXIAL LOAD F 27-2 kips THE ALLOWABLE COMPRESSIVE STRESS IS F,' = F, Co CP CF = 2317 psi Where Fc = 1350 psi Co = 1.60 CF = 1.30 (Lumber only) CP = (1+F) / 2c - [(1+F) / 2C)2 - F / c[o.s = Fc' = Fc Co CF = 2808 psi I, = K8 L = 1.0 L = 36 in b = 3.5 in SF = slenderness ratio = 10.3 < FIE = 0.822 E'm�n / SF' = 4506 psi E'min = 580 ksi F = FIE IF,* = 1.605 C = 0.8 THE ACTUAL COMPRESSIVE STRESS IS fc = F / A = 104 psi < Fc' : ALLOWABLE FLEXURAL STRESS IS Fo = 1866 psi, [ for CD = 1.6 : ACTUAL FLEXURAL STRESS IS fb = (M + Fe) / S = 752 psi < :CK COMBINED STRESS (NDS 2005 Sec. 3.9.2] (fc / Fa )Z + fb / [Fb' (1 - fc / FIE)] = 0.414 v v F F r 0.825 50 [Satisfies NDS 2005 Sec. 3.7.1.41 [Satisfactory] F; [Satisfactory] < 1 [Satisfactory] m CLIENT: Radi /215t'�e noe SUBJECT: T-emoMi,,3 RA Structural EngineerLng I JOB NO: I t (o b3 DESIGN BY: 2 A. I DA'T'E: Io/26/ 11 .Bi'''t# 6 C-'D,LP.5fX g��}C25P5494 �=IQ�8 , 2 • • • • El Reza PROJECT: .6M#6 PAGE. Y CLIENT: 'Radi Residence DESIGN BY: R.A As har Our JOB NO.: }111063 - DATE:Z10/26/2011 REVIEW BY : R.A. Wood Beam Desian Base on. -NDS 2005::;.':`bs INPUT DATA & DESIGN SUMMARY MEMBER SIZE MEMBER SPAN UNIFORMLY DISTRIBUTED DEAD LOAD UNIFORMLY DISTRIBUTED LIVE LOAD CONCENTRATED DEAD LOADS (0 for no concentrated load) ON LIMIT OF LIVE LOAD ON LIMIT OF LONG-TERM ',No. 2, Douglas Fir -Larch L=1 3.5 ft WD = ,�, .248- lbs/ft wL =; •240 lbs/ft PD1 =', 'A lbs L1= 0 'ft PD2 =; 0 ; lbs L2=! 0 1ft L Poi 0 No jPoz 11 WL 1 FTTTn "b 2 1.00 Occupancy Live Load 3 1.15 Snow Load 4 1.25 16L=L/360 Camber=> 0.02 inch 14111D+L=L/4240 Does member have continuous lateral support by top diaphragm ? (1= yes, 0= no) 0 No Code Duration Factor, Cn Condition 1 0.90 Dead Load 2 1.00 Occupancy Live Load 3 1.15 Snow Load 4 1.25 Construction Load 5 1.60 Wind/Earthquake Load 6 2.00 Impact Load Choice => 2 Occupancy Live Load 1%LYSIS No. 2, Southern Pine (ERMINE REACTIONS, MOMENT, SHEAR wsejfwt = 4 lbs / ft RLeft = 0.86 kips VMax = 0.64 kips, at 5.5 inch from left end DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES b = 3.50 in E'mi„ = 580 ksi d = 5.50 in FbE = 18246 psi A = 19.3 int 1 = 49 in Sx = 17.6 in 3 Re = 8.176 < 50 /.E= 7.1 (ft, Tab 3.3.3 footnote 1) Cc) CM C, Ci CL CF 1.00 1.00 1.00 1.00 1.00 1.30 CHECK BENDING AND SHEAR CAPACITIES fb = MMax / S. = 513 psi < Fb = f, = 1.5 VMax / A = 50 psi < CHECK DEFLECTIONS No. 1, Douglas Fir -Larch A (L, Max) = 0.01 in, at 1.750 ft from left end, d(Ker o+L. Max) = 0.03 in, at 1.750 ft from left end Where K, = 1.50 , (NDS 3.5.2) DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) d (1.61D. Max) = 0.02 in, at 1.750 ft from left end THE BEAM DESIGN IS ADEQUATE. Cv C, C, 1.00 1.00 1.00 1166 psi F„ [Satisfactory] [Satisfactory] d L = L / 360 [Satisfactory] d Kcr D+ L = L/ 240 [Satisfactory] 9 Code Designation 1 Select Structural, Douglas Fir -Larch 2 No. 1, Douglas Fir -Larch 3 No. 2, Douglas Fir -Larch 4 Select Structural, Southern Pine 5 No. 1, Southern Pine 6 No. 2, Southern Pine Choice => 3 RRiaht = 0.86 kips MM. = 0.75 ft -kips, at 1.75 It from left end E = Ex = 1600 ksi Fb = 1170 psi Fb = 900 psi F = FbE / Fb" = 15.59 F„ = 180 psi Fe = 1,166 psi E' = 1,600 ksi F,; = 180 psi Cv C, C, 1.00 1.00 1.00 1166 psi F„ [Satisfactory] [Satisfactory] d L = L / 360 [Satisfactory] d Kcr D+ L = L/ 240 [Satisfactory] 9 • • 0 CHECK THE BEAM CAPACITY WITH AXIAL LOAD AXIAL LOAD F = -j kips THE ALLOWABLE COMPRESSIVE STRESS IS F,' = F, CD CP CF = 2091 psi Where Fc = 1350 psi CD = 1.60 CF = 1.30 (Lumber only) CP = (1+F) / 2c - [(1+F) / 2c)2 - F / c]o" = Fc" = F, Co CF = 2808 psi Le = Ke L = 1.0 L = 42 in b = 3.5 in SF = slenderness ratio = 12.0 < F,2 = 0.822 E',,,, / SF 2 = 3311 psi E'm;n = 580 ksi F = FcE / Fc* = 1.179 C = 0.8 THE ACTUAL COMPRESSIVE STRESS IS f, = F / A = 104 psi < Fc' E ALLOWABLE FLEXURAL STRESS IS Fp = 1866 psi, [ for CD = 1.6 E ACTUAL FLEXURAL STRESS IS fb = (M + Fe) / S = 909 psi < ECK COMBINED STRESS [NDS 2005 Sec. 3.9.2] (fc / F.' )2 + % / [Fp (1 - fc / FcE)] = 0.506 1 1 F d 4 F 0.745 50 [Satisfies NDS 2005 Sec. 3.7.1.41 [Satisfactory] Fb' [Satisfactory] < 1 [Satisfactory] KI 10 Reza PROJECT: Maximum•Load.For 2.s $. Pad;Footin 1500 s PAGE: As har CLIENT: c, = DESIGN BY: R.A. 9 p our JOB NO.: DATE: REVIEW BY: R.A. INPUT DATA LONGITUDINAL TRANSVERSE tJ DESIGN SUMMARY COLUMN WIDTH c, = 0 in FOOTING WIDTH COLUMN DEPTH R = 0 in FOOTING LENGTH BASE PLATE WIDTH b, = 4 in FOOTING THICKNESS BASE PLATE DEPTH b2 = 14 in LONGITUDINAL REINF. FOOTING CONCRETE STRENGTH fc' = 2.5 ksi TRANSVERSE REINF REBAR YIELD STRESS fy = 40 ksi 0.019 AXIAL DEAD LOAD POL = 2.5 k AXIAL LIVE LOAD PLL = 2.5 k LATERAL LOAD (O=WIND, 1=SEISMIC) = 1 Seismic,SD SEISMIC AXIAL LOAD PLAT = 0 k, SO SURCHARGE qs = 0 ksf SOIL WEIGHT ws = 0.11! kcf FOOTING EMBEDMENT DEPTH DI = 2 ft FOOTING THICKNESS T = 12 in ALLOW SOIL PRESSURE Oa = 1`.5 ksf FOOTING WIDTH B = :2 ft FOOTING LENGTH L = 2 ft BOTTOM REINFORCING # 4 THE PAD DESIGN IS ADEQUATE. ALYSIS IIGN LOADS (IBC SEC. 1605.3.2 & ACI 318-05 SEC.9.2.1) B = 2.00 ft L = 2.00 ft T = 12 in 3 # 4 @ 9 in o.c. 3 # 4 @ 9 in o.c. ._- ; M ^ , M . POS' E 1: DL + LLP = 5 kips 1.2 DL + 1.6 LL Pu = E2: DL+LL+E/1.4 P = 5 kips 1.2 DL + 1.0 LL + 1.0 E Pu = E3: 0.9 DL+E/1.4 P = 2 kips 0.9 DL+1.0E Pu = CK SOIL BEARING CAPACITY (ACI 318-05 SEC. 15.2.2) !, CASE 1 CASE 2 CASE 3 q,ifAX BL + cls + (0. 15 - 11,$)T= 1.29 ksf. 1.29 ksf, 0.60 ksf q MAX < k Q a . [Satisfactory] where k = 1 for gravity loads. 4/3 for lateral loads. IGN FOR FLEXURE (ACI 318.05 SEC. 15 a.2. 10.2, 10.3.5, 10.5.4, 7.12.2, 12.2. & 12.5) 0.85 lc 1- I - 1/'� . 0.8513 ` `""l�/A' 0.00187. 4 1 v` fl: euI Pun- - • d 3P� 7 kips 6 kips 2 kips 0 LONGITUDINAL TRANSVERSE tJ 8.75 8.50 b 24 24 q u.max 1.75 1.75 Mu 1.47 1.47 P 0.000 0.000 Pmin 0.000 0.000 As 0.07 0.08 RegD 1 # 4 1 # 4 Max. Spacing 18 in o.c. 18 in o.c. USE 3 # 4 @ gin o.c. 3 # 4 @ 9 in o.c. Pmax 0.019 0.019 Check p ' Pmax (Satisfactory] (Satisfactory) 7 kips 6 kips 2 kips 0 • • FLEXURE SHEAR (ACI 318-05 SEC.9.3.2.3, 15.5.2, 11.1.3.1. & 11.3) 01 ' n = 20bd f �. PUNCHING SHEAR (ACI 318-05 SEC.15.5.2, 11.12.1.2, 11.12.6, & 13.5.3.2) 0I`n=(2+Y)0f,.4P = 54.98 kips where m = 0.75 (ACI 318.05, Section 9.3.2.3 ) (i� = ratio of long side to short side of concentrated load = 1.00 bo = c,+c2+bt+b2+4d = 42.5 in Ap = by d = 366.6 in' Y = MIN(2 , 4 / 0c, 40 d / bp) = 2.0 r I 1(h, (LLL 11 p q V „ [Satisfactory) 1`u- Pu. Max I- B/ ( 2 +d it ',� +d (J= 5.63 kis < [ ►Y] 0 (cont'd) LONGITUDINAL TRANSVERSE V. 0.66 0.73 p 0.75 0.75 OVA 15.8 15.3 Check V. < [Satisfactory] [Satisfactory] PUNCHING SHEAR (ACI 318-05 SEC.15.5.2, 11.12.1.2, 11.12.6, & 13.5.3.2) 0I`n=(2+Y)0f,.4P = 54.98 kips where m = 0.75 (ACI 318.05, Section 9.3.2.3 ) (i� = ratio of long side to short side of concentrated load = 1.00 bo = c,+c2+bt+b2+4d = 42.5 in Ap = by d = 366.6 in' Y = MIN(2 , 4 / 0c, 40 d / bp) = 2.0 r I 1(h, (LLL 11 p q V „ [Satisfactory) 1`u- Pu. Max I- B/ ( 2 +d it ',� +d (J= 5.63 kis < [ ►Y] 0 (cont'd) • � 0 I * Reza As har OUr g p PROJECT: CLIENT: JOB NO.: Max. toad For,2:5 sq,ft. Pad'Footing (1500psf) :: DATE: d PAGE: DESIGN BY: R.A. REVIEW BY: R.A. ' 8.50 b 30 INPUT DATA q u•max 2.02 2.02 DESIGN SUMMARY 3.43 3.43 COLUMN WIDTH C, = 0 in FOOTING WIDTH B = 2.50 It COLUMN DEPTH C2 = 0 in FOOTING LENGTH L = 2.50 It BASE PLATE WIDTH b, = 4 in FOOTING THICKNESS T = 12 in BASE PLATE DEPTH b2 = 4 in LONGITUDINAL REINF. 3 # 4 @ 12 in o.c FOOTING CONCRETE STRENGTH fc' = 2.5 ksi TRANSVERSE REINF. 3 # 4 @ 12 in o.c. REBAR YIELD STRESS fy = 40• ksi AXIAL DEAD LOAD Poi = 4.5 k AXIAL LIVE LOAD Psi = 4.5 k LATERAL LOAD (O=WIND. 1=SEISMIC) = 1 Seismic,SD_7�� Y ' SEISMIC AXIAL LOAD PuAi = 0 k. SD G SURCHARGE qg = 0 ksf SOIL WEIGHT WS = 0.11 kCf FOOTING EMBEDMENT DEPTH Of = 2 ft FOOTING THICKNESS T = 12 in ALLOW SOIL PRESSURE 0a = I.S.ksf FOOTING WIDTH B = 2:5 It FOOTING LENGTH L = 2.5 It r' BOTTOM REINFORCING # 4 THE PAD DESIGN IS ADEQUATE. ANALYSIS DESIGN LOADS (IBC SEC.1605.3.2 & ACI 318-05 SEC.9.2.1) CASE 1: DL + LL P = 9 kips 1.2 DL + 1.6 LL Pu = 13 kips CASE 2: DL + LL + E / 1.4 P = 9 kips 1.2 DL + 1.0 LL + 1.0 E Pu = 10 kips CASE 3: 0.9 DL + E / 1.4 P = 4 kips 0.9 OL + 1.0 E Pu = 4 kips CK SOIL BEARING CAPACITY (ACI 318-05 SEC. 15.2.2) P CASE 1 CASE 2 CASE 3 �7niAa _ R7 t y c t (0.1 S — 1p,.) T - 1.48 ksf. 148 ksf. 0.69 ksf q MAX < k O a , (Satisfactory] Wrtere k = 1 for gravity loads. 4/3 for lateral loads. IGN FOR FLEXURE (ACI 318-05 SEC. 15.4.2, 10.2, 10.3.5, 10.5.4, 7.12.2. 12.2. & 12.5) _ �'1 rr O.83f, I— I 0.383hd.7. — O.SSIt iC cii T 4 � Oa fv.n— j cu+G1 Pun=dlh\,' 0.0018— . —pJ l d 3 07 LONGITUDINAL TRANSVERSE d 8.75 8.50 b 30 30 q u•max 2.02 2.02 Mu 3.43 3.43 P 0.000 0.001 pmin 0.001 0.001 AS 0.17 0.18 RegD 1 # 4 1 # 4 Max. Spacing 18 in o.c. 18 in o.c. USE 3 # 4 @ 12 in o.c. 3 # 4 @ 12 in o.c. Amax 0.019 0.019 Check porod < pmax (Satisfactory) (Satisfactory) 07 FLEXURE SHEAR (ACI 318-05 SEC.9.3.2.3. 15.5.2, 11.1.3.1, & 11.3) ov,r = 20hd _j�, PUNCHING SHEAR (ACI 318-05 SEC. 15.5.2, 11.12.1.2,- 11.12.6. & 13.5.3.2) OI,'n=(2+v)O%�.1n = 54.98 kips where 0 = 0.75 (ACI 318-05, Section 9.3.2.3) Its = ratio of long side to Short side of concentrated load = 1.00 bo = cl + c2 + b, + b2 + 4d = 42.5 in Ap = bo d = 366.6 in - y = MIN(2 , 4 / fie, 40 d / ba) = 2.0 I' I — I (b' +" + d) b. t �' + d 11.02 kips < 0 V [Satisfactory) a = f',,. mai BL \ 2 )( 2 , = n I ry] • r � U (cont'd) LONGITUDINAL TRANSVERSE V„ 2.21 2.31 m 0.75 0.75 Wn 19.7 19.1 Check V„ < OV„ [Satisfactory] [Satisfactory] PUNCHING SHEAR (ACI 318-05 SEC. 15.5.2, 11.12.1.2,- 11.12.6. & 13.5.3.2) OI,'n=(2+v)O%�.1n = 54.98 kips where 0 = 0.75 (ACI 318-05, Section 9.3.2.3) Its = ratio of long side to Short side of concentrated load = 1.00 bo = cl + c2 + b, + b2 + 4d = 42.5 in Ap = bo d = 366.6 in - y = MIN(2 , 4 / fie, 40 d / ba) = 2.0 I' I — I (b' +" + d) b. t �' + d 11.02 kips < 0 V [Satisfactory) a = f',,. mai BL \ 2 )( 2 , = n I ry] • r � U (cont'd) C] • Cl [AsReza PROJECT: Max. Coad°For 3:0,s -q. fL,Pad FooUng_(1500psf) PAGE: COLUMN WIDTH harnOur 9 p CLIENT : JOB NO.: DATE: DESIGN BY: REVIEW BY: R.A. R.A. INPUT DATA LONGITUDINAL TRANSVERSE d COLUMN WIDTH c, = 0 in COLUMN DEPTH P2 = 0 in BASE PLATE WIDTH b, = -4 in BASE PLATE DEPTH b2 = 4 in FOOTING CONCRETE STRENGTH f,' = 2.5 ksi REBAR YIELD STRESS fy = 40 ksi AXIAL DEAD LOAD P'L = 6.5 k AXIAL LIVE LOAD PLL = 6.5 k LATERAL LOAD (O=WIND, 1=SEISMIC) = 1 Seismic,SD SEISMIC AXIAL LOAD PLAT = 0 k. SD SURCHARGE qs = 0 ksf SOIL WEIGHT ws = 0.11 kcf FOOTING EMBEDMENT DEPTH Df = 2 ft FOOTING THICKNESS T = 12 in ALLOW SOIL PRESSURE oa = 1.5 ksf FOOTING WIDTH B = 3 ft FOOTING LENGTH L = 3 ft BOTTOM REINFORCING # 4 THE PAD DESIGN IS ADEQUATE. ANALYSIS DESIGN LOADS (IBC SEC. 1605.3.2 & ACI 318-05 SEC.9.2.1) CASE 1: DL + LL P = 13 kips CASE 2: DL + LL + E / 1.4 P = 13 kips CASE 3: 0.9 DL + E 11.4 P = 6 kips CK SOIL BEARING CAPACITY (ACI 318.05 SEC.15.2.2) DESIGN SUMMARY FOOTING WIDTH FOOTING LENGTH FOOTING THICKNESS LONGITUDINAL REINF. TRANSVERSE REINF 1.2 DL+1.6LL 1.2 DL+LOLL-1.0E 0.9 DL + 1.0 E B = 3.00 ft L = 3.00 ft T = 12 in 3 # 4 @ 15 in ox 3 # 4 @ 15 in o.c. 1 c ;S Pu = 18 kips Pu = 14 kips Pu = 6 kips CASE 1 CASE 2 CASE 3 BL + q, + (U. 15 — ,,:,j T = 1.48 kSf. 1.48 ksf. 0.69 ksf q MAX < k 0, . [Satisfactory] where k = 1 for gravity loads, 4/3 for lateral loads. IGN FOR FLEXURE (ACI 318-05 SEC.15.4.2, 10.2, 10.3.5, 10.5.4. 7.12.2, 12.2, & 12.5) 0.851i,fc• e„ 1 0.383h�/� %,. P,r,u = — 1lLY(o.0018 1 3 P1 f LONGITUDINAL TRANSVERSE d 8.75 8.50 b 36 36 q u,max 2.02 2.02 Mu 6.09 6.09 P 0.001 0.001 Amin 0.001 0.001 As 0.31 0.32 RegD 2 # 4 2 # 4 Max. Spacing 18 in o.c. 18 in o.c. USE 3 # 4 @ 15 in o.c. 3 # 4 @ 15 in o.c. Amax 0.019 0.019 Check ppmd c pax [Satisfactory] [Satisfactory] r1 0 FLEXURE SHEAR (ACI 318-05 SEC.9.3.2.3. 15.5.2, 11.1.3.1. 8 11.3) 01'/t=2ohd f�, PUNCHING SHEAR (ACI 318-05 SEC. 15.5.2. 11.12.1.2. 11.12.6. & 13.5.3.2) 01',=2+.y)0 ,%c•.4p = 54.98 kips where m = 0.75 (ACI 318-05, Section 9.3.2.3) 13, = ratio of long side to short side of concentrated load = 1.00 bo = c1+c2+b1+b2+4d = 42.5 in Ap = 130 d = 366.6 in' y = MIN(2 . 4 / Oc, 40 d / b0) = 2.0 b'+c, b * c:. [Satisfactory) I'u=/'a.mas�i`Bj 7 +d.l� �dJJ= 16.61 'kips < 4Vn 03 (cont'd) LONGITUDINAL TRANSVERSE V„ 4.17 4.30 0 0.75 0.75 Wn 23.6 23.0 Check V„ < Wn [Satisfactory] [Satisfactory] PUNCHING SHEAR (ACI 318-05 SEC. 15.5.2. 11.12.1.2. 11.12.6. & 13.5.3.2) 01',=2+.y)0 ,%c•.4p = 54.98 kips where m = 0.75 (ACI 318-05, Section 9.3.2.3) 13, = ratio of long side to short side of concentrated load = 1.00 bo = c1+c2+b1+b2+4d = 42.5 in Ap = 130 d = 366.6 in' y = MIN(2 . 4 / Oc, 40 d / b0) = 2.0 b'+c, b * c:. [Satisfactory) I'u=/'a.mas�i`Bj 7 +d.l� �dJJ= 16.61 'kips < 4Vn 03 (cont'd) • • Cl Reza PROJECT: Max' Load For 3.5 sq. ft. Pad Footing (15OOpsf) PAGE: A5 har OUr CLIENT: DESIGN BY: R.A. 9 p JOB NO.: ; DATE: REVIEW BY: R.A. Pne�.iFeetPne�D�ie""n�B9AAd.�eClF31S.AS . . INPUT DATA COLUMN WIDTH c, = 10 in COLUMN DEPTH c, _ '0 in BASE PLATE WIDTH b, = 4 in BASE PLATE DEPTH b2 = 4 in FOOTING CONCRETE STRENGTH fc' = 2.5 ksi REBAR YIELD STRESS fy = 40 ksi AXIAL DEAD LOAD Pc, = 6.5 k AXIAL LIVE LOAD PLL = 8.5 k LATERAL LOAD (O=W(ND. 1=SEISMIC) = T Seismic.SD SEISMIC AXIAL LOAD Pyr = 0 k. SO SURCHARGE qg = 0 ksf SOIL WEIGHT wa = 0.11 kcf FOOTING EMBEDMENT DEPTH Of = 2 ft FOOTING THICKNESS T = 12 in ALLOW SOIL PRESSURE Qa = 1:5 ksf FOOTING WIDTH B = 3;5 ft FOOTING LENGTH L = 3:5 ft BOTTOM REINFORCING # 4 THE PAD DESIGN IS ADEQUATE. ANALYSIS DESIGN LOADS (IBC SEC.1605.3.2 & ACI 318-05 SEC.9.2.1) CASE 1: DL + LL P - 17 kips CASE 2: DL + LL + E / 1.4 P = 17 kips CASE 3: 0.9 DL + E / 1.4 P - 8 kips CK SOIL BEARING CAPACITY (ACI 318.05 SEC. 15.2.2) DESIGN SUMMARY FOOTING WIDTH FOOTING LENGTH FOOTING THICKNESS LONGITUDINAL REINF. TRANSVERSE REINF. 1.2 DL+1.6LL 1.2 DL+LOLL+1,0E 0.9 DL + 1.0 E B = 3.50 ft L = 3.50 ft T = 12 in 4 # 4 @ 12 in o.c. 4 # 4 @ 12 in o.c. 1.94 1.94 Mu 9.44 9.44 P 0.001 0.001 Pmm 0.001 0.001 Pu = 24 kips Pu = 19 kips Pu = 8 kips CASE 1 CASE 2 CASE 3 pares = BL + q � + (0. 15 - It -07,= 1.43 ksf, 1.43 ksf, 0.66 ksf q MAX < k O s . (Satisfactory) where k = 1 for gravity loads, 4/3 for lateral loads. IGN FOR FLEXURE (ACI 318-05 SEC. 15.4.2. 10.2. 10.3.5. 10.5.4. 7.12.2, 12.2. & 12.5) pucv = 0.85(i�•!c +'rt 2 - 1/G1r((Lfl(IIR I 1! /t, rt,/ /,rrc' l d3/iii 0 LONGITUDINAL TRANSVERSE d 8.75 8.50 b 42 42 q u.max 1.94 1.94 Mu 9.44 9.44 P 0.001 0.001 Pmm 0.001 0.001 As 0.48 0.50 RegD 3 # 4 3 # 4 Max. Spacing 18 in o.c. 18 in o.c. USE 4 # 4 @ 12 in o.c. 4 # 4 @ 12 in o.c. Pmax 0.019 0.019 Check pprod < Pmax (Satisfactory] (Satisfactory] 0 FLEXURE SHEAR (ACI 318-05 SEC.9.3.2.3, 15.5.2, 11.1.3.1. & 11.3) Or, _ 20nd ,r,. PUNCHING SHEAR (ACI 318-05 SEC. 15.5.2. 11.12.1.2, 11.12.6, & 13.5.3.2) 01'n2+Y�� .%�..4P = 54.98 kips where = 0.75 (ACI 318-05. Section 9.3.2.3) (t� = ratio of long side to short side of concentrated load = 1.00 bo = c, + c2 + bl + b2 + 4d = 42.5 in AID = bo d = 366.6 in' y =( MIN(2 . 4 / (3c. 40 d / bp) = 2.0 I "u = Pu. ma,[ I BL I h�' c } d 1(b,' c: } d)] = 22.28 kips < 0 V „ [Satisfactory] • (cont'd) LONGITUDINAL TRANSVERSE V, 6.38 6.52 0 0.75 0.75 oV„ 27.6 26.8 Check V. < 0V„ (Satisfactory) [Satisfactory] PUNCHING SHEAR (ACI 318-05 SEC. 15.5.2. 11.12.1.2, 11.12.6, & 13.5.3.2) 01'n2+Y�� .%�..4P = 54.98 kips where = 0.75 (ACI 318-05. Section 9.3.2.3) (t� = ratio of long side to short side of concentrated load = 1.00 bo = c, + c2 + bl + b2 + 4d = 42.5 in AID = bo d = 366.6 in' y =( MIN(2 . 4 / (3c. 40 d / bp) = 2.0 I "u = Pu. ma,[ I BL I h�' c } d 1(b,' c: } d)] = 22.28 kips < 0 V „ [Satisfactory] • (cont'd) :7 • 7 Reza PROJECT: Max. -load For,4;0 sq;A.°Pad Footing (1500psf) PAGE DESIGN SUMMARY As har„„Our g M CLIENT: JOB NO.: DATE: DESIGN BY: REVIEW BY: R.A. R.A. INPUT DATA LONGITUDINAL TRANSVERSE d DESIGN SUMMARY 8.50 b COLUMN WIDTH c, = 0 in FOOTING WIDTH B = 4.00 ft COLUMN DEPTH CZ = 10 in FOOTING LENGTH L = 4.00 ft BASE PLATE WIDTH b, = 4 in FOOTING THICKNESS T = 12 in BASE PLATE DEPTH b2 = 4 in LONGITUDINAL REINF. 4 # 4 @ 14 in O.C. FOOTING CONCRETE STRENGTH fc' = 2.5 ksi TRANSVERSE REINF 4 # 4 @ 14 in ox REBAR YIELD STRESS fy = 40 ksi AXIAL DEAD LOAD Poi = 11.5 k 1 AXIAL LIVE LOAD P« = 11.5 k LATERAL LOAD (O=WIND, 1=SEISMIC) = 1 Seismic.SD SEISMIC AXIAL LOAD PLAT = '0 k, SO C SURCHARGE qb = 0' ksf __. �:•r-: - _, SOIL WEIGHT ws = 0,11 kcf of �� r` FOOTING EMBEDMENT DEPTH Of = 2 ft FOOTING THICKNESS T = 12 in r _ ALLOW SOIL PRESSURE FOOTING WIDTH Cla = B = 1:5 4 ksf ft FOOTING LENGTH L = 4 ft �j"` BOTTOM REINFORCING # 4 ” - I31 THE PAD DESIGN IS ADEQUATE. .YSIS N LOADS (IBC SEC. 1605.3.2 8 ACI 318-05 SEC.9.2.1) 1: DL + LLP = 23 kips 2: DL + LL + E / 1.4 P = 23 kips 3: 0.9 DL+E/1.4 P = 10 kips CK SOIL BEARING CAPACITY (ACI 318-05 SEC. 15.2.2) 1.2 DL+1.6LL 1.2 OL+LOLL+1.0E 0.9 OL + 1.0 E Pu = 32 kips Pu = 25 kips Pu = 10 kips CASE 1 CASE 2 CASE 3 v. B' +q+(0.15—T�,,)7'= 1.48 ksf. 1.48 ksf. 0.69 kSf q mAx < k O a , (Satisfactory] where k = 1 for gravity loads, 4/3 for lateral loads. IGN FOR FLEXURE (ACI 318-05 SEC. 15.4.2. 10.2. 10.3.5, 10.5.4. 7.12.2. 12.2, & 12.5) Al U.85,% . I - I - 0.383hdlr'.f . _ O.SS�,f� e„ T 4 � i PmAxu f � i �! * r ! Pun = :1'111%, 0.0018 — l f„ i d 3Pl LONGITUDINAL TRANSVERSE d 8.75 8.50 b 48 48 q u.max 2.01 2.01 Mu 14.79 14.79 p 0.001 0.001 pmin 0.002 0.002 As 0.76 0.78 RegD 4 # 4 4 # 4 Max. Spacing 18 in o.c. 18 in o.c. USE 4 # 4 @ 14 in o.c. 4 # 4 @ 14 in o.c. Amax 0.019 0.019 Check pond < pmax [Satisfactory) [Satisfactory] i • FLEXURE SHEAR (ACI 318-05 SEC. 9.3.2.3.15.5.2. 11.1.3.1, & 11.3) m►,,n = 20hd fC (CHECK PUNCHING SHEAR (ACI 318-05 SEC.15.5.2, 11A2.1.2,11.12.6, & 13.5.3.2) Of -n=(?+ v)oj�.AP 54.98 kips where 4 = 0.75 (ACI 318-05, Section 9.3.2.3 ) ii, = ratio of long side to short side of concentrated load = 1.00 bo = c,+c2+bt+b2+4d = 42.5 in Ap = bo d = 366.6 int y r =// MIN(2 , .4 / (3c , 40 d /1bo) = 2.0 I' =P I I_ I I b'+n+d+C'+d Il= 30.62 kips < d V [Satisfactory] Vu — u. max l J B/. 2- J 51 9 (cont'd) LONGITUDINAL TRANSVERSE V„ 9.56 9.73 0.75 0.75 Wn 31.5 30.6 Check V. < Wn [Satisfactory] [Satisfactory] (CHECK PUNCHING SHEAR (ACI 318-05 SEC.15.5.2, 11A2.1.2,11.12.6, & 13.5.3.2) Of -n=(?+ v)oj�.AP 54.98 kips where 4 = 0.75 (ACI 318-05, Section 9.3.2.3 ) ii, = ratio of long side to short side of concentrated load = 1.00 bo = c,+c2+bt+b2+4d = 42.5 in Ap = bo d = 366.6 int y r =// MIN(2 , .4 / (3c , 40 d /1bo) = 2.0 I' =P I I_ I I b'+n+d+C'+d Il= 30.62 kips < d V [Satisfactory] Vu — u. max l J B/. 2- J 51 9 (cont'd) ice) AOJ (E)4x6 (E)4x8 7) W6 HDR HDR HDR lJ .. v �'7 A S 2 X (E) 2x8 s e 16• v v t rFJ 9 (E)4x HDR (E)4x HDR ote,: s1►ewr W►o,.l� or. G�t:� C�..�, r�d�t'�r� �.,ar t.o#troll lob- �c-rt:F� lhtl,cfbr,ee,q�.cT'{"- 0 GARAGE/WORKSHOP FRAMING PLAN SCALE: I"=1 —0" 35 c C L1 ENT' Ra�� SUBJECT: elm o kt;�> RA Structural Engineering ! DESIGN BY: pc Ld4 4k G-oat� Ahc�.�S;S F ►iUoYl<s�aP i3�ol�. SIIEI F: .I0I3 NO: Mo63 ! DATE 1012-6! it 0 C DNX op as� x 244 1 20 �5�s� x'°5 x ?� X 2� (�S�S�n Z x 20 ��5 x aux 22�) _ -7I rv,;"I_ � 0 o Y'/.Z=13io Qb F. /3lo16 0 w44 Go vle.(PL (,�S6 sxV, Fore %(,< � 0 • Reza PROJECT: Wind Load"\� rk-S� oP) PAGE: CLIENT: �Radi Residence DESIGN BY: R.A.' Anharpour JOB NO.: t11106.3 DATE: 10/26/11 REVIEW BY: 1R.A. INPUT DATA Exposure category (e, C or D) Importance factor, pg 77, (0.87, 1.0 or 1.15) Basic wind speed (IBC Tab 1609.3.1V3,$) Topographic factor (Sec.6.5.7.2, pg 26 a 45) Building height to eave Building height to ridge Building length Building width Effective area of components DESIGN SUMMARY Max horizontal force normal to building length, L, face Max horizontal force normal to building length, B, face Max total horizontal torsional load -d7 i I = 1.00 • Category II V = 90 mph Kr= 1 Flat L t he =1 11 ift hr = 11 jft L = 20 ft B = 24 �ft A=t„_20_.ift2 2.62 kips 3.08 kips 9.26 ft -kips _ .ri RQ kine ANALYSIS Velocity pressure qh = 0.00256 Ke Kt Kd V21 = 14.98 psf where: qh = velocity pressure at mean roof height, h. (Eq. 6-15, page 27) Kh = velocity pressure exposure coefficient evaluated at height, h, (Tab. 6-3, Case i,pg 79) = 0.85 Kd = wind directionality factor. (Tab. 6-4, for building, page 80) = 0.85 h = mean roof height = 11.00 It < 60 It, [Satisfactory] < Min (L, B), [Satisfactory] Man pressures for MWFRS p = qh [(G Cpr )-(G CPI )] where: p = pressure in appropriate zone. (Eq. 6-18, page 28). Amin = 10 psf (Sec. 6.1.4.1 & 6.1.4.2) G Cp T = product of gust effect factor and external pressure coefficient, see table below. (Fig. 6-10, page 53 & 54) G Cp I = product of gust effect factor and internal pressure coefficient. (Fig. 6-5, Enclosed Building, page 47) 0.18 or -0.18 a =width of edge strips, Fig 6-10, note 9, page 54, MAX[ MIN(0.1 B, 0.4h), 0.046,31 = 3.00 ft Nat Praaauraa rnaft Raai� 1 nad r`aaaa Net Pressures (psf), Torsional Load Cases Roof an le 6 = 0.00 Roof angle 6 = 0.00 G Cp T Net Pressure with G Cp l Net Pressure with Surface (*GCpI) (-GCp I) (+GCpI) (-GCpI ) 1 0.40 3.30 8.69 0.40 3.30 8.69 2 -0.69 -13.03 -7.64 -0.69 -13.03 -7.64 3 -0.37 -8.24 -2.85 -0.37 -8.24 -2.85 4 -0.29 -7.04 -1.65 -0.29 -7.04 -1.65 1E 0.61 6.44 11.84 0.61 6.44 11.84 2E -1.07 -18.73 -13.33 -1.07 -18.73 -13.33 3E -0.53 -10.64 -5.24 -0.53 -10.64 -5.24 4E -0.43 -9.14 -3.75 -0.43 -9.14 -3.75 5 -0.45 -9.44 -4.05 -0.45 -9.44 -4.05 6 1 -0.45 1 -9.44 1 -4.05 1 -0.45 1 -9.44 1 4.05 Net Pressures (psf), Torsional Load Cases 3E 3 2E 2 *CORNER ZONE 2/3 BOUNDARY 3E 3 3T 3 2E 2 ST 2T 4 \_ 6 i� 6 4 \_4T 2E 2 2i 6 4 3E 4T I' 6 4E 6 4E-4E�_ 4E--_ 6 1T lT S 1 51 5 1 5 1E / REFERENCE CORNER IE RE1E REFERENCE CORNER 1E REFERENCE CORNERYRND DIRECTION WIND DIRECTION ° WIND DIRECTION ° WIND DIRECTION Transverse Direction Longitudinal Direction Transverse Direction Longitudinal Direction Basic Load Cases Torsional Load Cases 0 Roof an gle 9 = 0.00 G cp, Net Pressure with Surface (+GCpI) (-GCp i ) 1T 0.40 0.82 2.17 2T -0.69 -3.26 -1.91 3T -0.37 -2.06 -0.71 4T -0.29 -1.76 -0.41 Roof an gle 0 = 0.00 G Cp r Net Pressure Witt) Surface (+GCpI)(-GCp i ) 1T 0.40 0.82 2.17 2T -0.69 -3.26 -1.91 3T -0.37 -2.06 -0.71 4T -0.29 -1.76 -0.41 3E 3 2E 2 *CORNER ZONE 2/3 BOUNDARY 3E 3 3T 3 2E 2 ST 2T 4 \_ 6 i� 6 4 \_4T 2E 2 2i 6 4 3E 4T I' 6 4E 6 4E-4E�_ 4E--_ 6 1T lT S 1 51 5 1 5 1E / REFERENCE CORNER IE RE1E REFERENCE CORNER 1E REFERENCE CORNERYRND DIRECTION WIND DIRECTION ° WIND DIRECTION ° WIND DIRECTION Transverse Direction Longitudinal Direction Transverse Direction Longitudinal Direction Basic Load Cases Torsional Load Cases 0 .7 • • Basic Load Cases In Transverse Direction Torsional Load Cases in Transverse Direction Basic Load Cases in Longitudinal Direction Area Pressure k with Surface (it') (+GCp i) (-GCp i ) 1 154 0.51 1.34 2 168 -2.19 -1.28 3 168 -1.38 -0.48 4 154 -1.08 -0.25 1 E 66 0.43 0.78 2E 72 -1.35 -0.96 3E 72 -0.77 -0.38 4E 66 -0.60 -0.25 £ Horiz. 2.62 2.62 3.08 Vert. -5.69 -3.10 Min. wind Horiz. 2.20 2.20 Sec. 6.1.4.1 Vert. -4.80 -4.80 Torsional Load Cases in Transverse Direction Basic Load Cases in Longitudinal Direction Surface Area Pressure k with Surface (ft') (+GCp t) (-GCp i ) 1 198 0.65 1.72 2 180 -2.35 -1.38 3 180 -1.48 -0.51 4 198 -1.39 -0.33 1E 66 0.43 0.78 2E 60 -1.12 -0.80 3E 60 -0.64 -0.31 4E 66 -0.60 -0.25 72 Horiz. 3.08 3.08 L' Vert. -5.59 -3.00 Min. wind Horiz. 2.64 2.64 Sec. 6.1.4.1 Vert. -4.80 -4.80 Surface Area Pressure k with Torsion ft -k (+GCp i) (-GCp i) (+GCp i) (-GCp i ) (-GC p i) (ft)- 1 44 0.15 0.38 1 1 2 48 -0.63 -0.37 0 0 3 48 -0.40 -0.14 0 0 4 44 -0.31 -0.07 1 0 1E 66 0.43 0.78 3 5 2E 72 -1.35 -0.96 0 0 3E 72 -0.77 -0.38 0 0 4E 66 -0.60 -0.25 4 2 1T 110 0.09 0.24 0 -1 2T 120 -0.39 -0.23 0 0 3T 120 -0.25 -0.09 0 0 4T 110 -0.19 -0.05 -1 1 0 Total Horiz. Torsional Load, MT 7 7 Torsional Load Cases in Lon itudinal Direction Design pressures for components and cladding p = qhl (G Cp) - (G Cpl)] where: p= pressure on component. (Eq. 6-22, pg 28) s Z°° IS s Pmin = 10.00 psf (Sec. 6.1.4.2, pg 21) G CP = external pressure coefficient. walls see table below. (Fig. 6-11, page 55-58) Roof w<t- 3r2y3 3t2� z 3i-2- 3 J 2t33 Roof a-2° Area Pressure k with Torsion ft -k Surface (ft?) (+GCp i ) (-GC p i) (+GCp i) (-GCpi) p ) 1 66 0.22 0.57 1 2 2 120 -1.56 -0.92 0 0 3 120 -0.99 -0.34 0 0 4 66 -0.46 -0.11 1 0 1 E 66 0.43 0.78 4 7 2E 60 -1.12 -0.80 0 0 3E 60 -0.64 -0.31 0 0 4E 66 -0.60 -0.25 5 2 1T 132 0.11 0.29 -1 -2 2T 180 -0.59 -0.34 0 0 3T 180 -0.37 -0.13 0 0 4T 132 -0.23 -0.05 -1 0 Total Horiz. Torsional Load, MT 9.3 9.3 Design pressures for components and cladding p = qhl (G Cp) - (G Cpl)] where: p= pressure on component. (Eq. 6-22, pg 28) s Z°° IS s Pmin = 10.00 psf (Sec. 6.1.4.2, pg 21) G CP = external pressure coefficient. walls see table below. (Fig. 6-11, page 55-58) Roof w<t- 3r2y3 3t2� z 3i-2- 3 J 2t33 Roof a-2° (Walls reduced 10 %, Fig. 6-11A note 5.) Comp. & Cladding IZone Pressure ( Pat) Effective Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 3 Area (ft') GC GC GC GC GC GC GC GC GCv GC Com . 20 1 0.27 1 -0.97 f 0.27 1 -1.59 1 0.27 1 -2.29 1 0.85 1 -0.94 1 0.85 1 -1.16 (Walls reduced 10 %, Fig. 6-11A note 5.) Comp. & Cladding IZone Pressure ( Pat) 1 Zone 2 Zone 3 Zone 4 Zone 5 Positive Negat]" Postuve Na ve Positive Neemwe Positive Neginive Posid" I Ne attve 10.00 -17.23 10.00 -26.51 10.00 -36.98 15.46 -16.81 15.46 1 -20.14 M 11/8/11 Converting Addresses to/from Latitude/Longitude/Altitude in One Step (Geo... Converting Addresses to/from Latitude/Longitude/Altitude in One Step • Stephen P. Morse, San Francisco Batch-Mode.:(Forward);Batch Mode-(Re�ersey , _B_atch-Mode{Altitude), Q - Mm/sec _to .Decimal ij Computing Distances: Frequently Asked Questions] My -Other Webpages � 9 address 54175 Avenida Herrera latitude city La Quinta longitude state CA. above values must be in decimal zip 92253 with minus signsfor south and west country United States -DetelTrtine Address � reset petermine_LaULon. ; Get_Altitudes;; reset - E' Access geocoder.us / geocoder.ca (takes a relatively long tune) from Ilatitude 71longitude altitude decimal 33.655059 1-116.310061 decimal 1133.6590204037071 deg -min -sec 33° 39' 18.2124" -116° 18'36.2196' -116° 16'46.6395" from -inc I latitude longitude al itude decimal 1133.6590204037071 -116.279622072062 33.654962 deg -min -sec 33° 39' 32.4735" -116° 16'46.6395" 54175 AVENIDA HERRERA La Quinta CA from Ilatitude 711ongitude Ialtitude decimal 33.654962 -116.309830 deg -min -sec 33° 39' 17.8632" -116° 18' 35.388' 54175 Avenida Herrera, La Quinta, California 92253 from 11atitude 711ongitude Ialtitude decimal 33.65490336 -116.30978873 deg -min -sec 33° 39' 17.6521' -116° 18' 35.2394' e.orgfjca[latlon.php t4ws1/1 oc� Conterminous 48 States •2005 ASCE 7 Standard Latitude = 33.655059 Longitude = -116.310061 Spectral Response Accelerations Ss and S1 Ss and S1 = Mapped Spectral Acceleration Values Site Class B - Fa = 1.0 ,Fv = 1.0 Data are based on a 0.01 deg grid spacing Period Sa - (sec) (g) 0.2 1.500 (Ss, Site Class B) 1.0 0.600 (S1, Site Class B) Conterminous 48 States 2005 ASCE 7 Standard Latitude = 33.655059 Longitude = -116.310061 Spectral Response Accelerations SMs and SM1 SMs = Fa x Ss and SM1 = Fv x S1 Site Class D - Fa = 1.0 ,Fv = 1.5 Period Sa (sec) (g) 0.2 1.500 (SMs, Site Class D) 1.0 0.900 (SM1, Site Class D) Conterminous 48 States 2005 ASCE 7 Standard Latitude = 33.655059 Longitude = -116.310061 Design Spectral Response Accelerations SDs and SD1 SDs =2/3xSMs and SD1 =2/3xSM1 Site Class D - Fa = 1.0 ,Fv = 1.5 Period Sa (sec) (g) 0.2 1.000 (SDs, Site Class D) 1.0 0.600 (SD1, Site Class D) Reza PROJECT: A - Seismic Load �CWVY� S��- PAGE: CLIENT: iRadi Residence_ Y DESIGN BY: A.A. Sg arpou i JOB NO.: t1l 1063 • ` - DATE # REVIEW BY: IR.A. One Storv-SeismicAnalvsis Based -on IBC°06,/ CO. '07 Determine Base Shear (Derived from ASCE 7-05 Sec. 12.8) V= MAX{ MIN ISD11/(RT) , SDS I/R] , 0.01 , 0.5S11IR)W = MAX(MIN[ 0.97W , 0.15W ] , 0.01W , 0.05W) 0.15 W, (SD) [(for S, z 0.6 g only) 0.11 W, (ASD) = 0.79 kips Where SDS = 1 (ASCE 7-05 Sec 11.4.4) SD1 = 0.6 ; (ASCE 7-05 Sec 11.4.4) Si = 0:6 (ASCE 7-05 Sec 11.4. 1) R= i 6.5 . (ASCE 7-05 Tab 12.2-1) I = 1 (IBC 06 Tab 1604.5 & ASCE 7-05 Tab 11.5-1) Ct = 1 0.02 (ASCE 7-05 Tab 12.8-2) hn = 8.0 ft X= 0.75 (ASCE 7-05 Tab 12.8-2) T = Ct (hn)x = 0.095 sec, (ASCE 7-05 Sec 12.8.2.1) Iculate Vertical Distribution of Forces & Allowable Elastic Drift (ASCE 7-05, Sec 12.8.3 & 12.8.6) Level WX hX hxk Wxhxk Fx , ASD (12.8-11) ke,allowable, ASD Roof [ 72 .8. i 8.0 58 0.8 (0. 11 WX) 0.3 7.2 ' 58 0.8 Where k = 1 for T <= 0.5 j8xe,a11owable, ASD = Aa 1/ (1.4 Cd), (ASCE 7-05 Sec 12.8.6) k = 0.5 T + 0.75 for T @ (0.5 , 2.5) Cd = l µ4 �+ ',(ASCE 7-05 Tab 12.2-1) k = 2 for T >= 2.5 i Aa = l 0.02 ; hsx, (ASCE 7-05 Tab 12.12-1) Diaphragm Forces (ASCE 7-05, Sec 12.10.1.1) Level WX EWx Fx EFx Fpx , ASD, (12.10-1) Roof 7.2 7.2 0.8 0.8 1.0 ( 6.13 wx ) 7.2 0.8 Where Fmin = 0.2 SDS I WX / 1.5 , ASD Finax = 0.4 SDS I Wx / 1.5 , ASD C] C� Reza PROJECT: ¢Shear Wall #1��W4YK'3�dp,---- PAGE: CLIENT: Radi Residence-Workshop_Bldg, DESIGN BY: JR.A. As har Dur JOB NO.: 111063 DATE: f0/26l20t1 REVIEW BY: IR.A. Shear.:Wa111Desian►Based;on'IBC'0641!CBC 074/INDS'.05- T DATA _ AL FORCE ON DIAPHRAGM: vasa, WIND = I ^ 291 � plf for wind vale. SEISMIC — # 240 pB,for seismic TY LOADS ON THE ROOF: WDA = 20 # plf,for dead load W, = i 20 plf,for live load 4 SIONS: LW= 4.5 ,ft, h = 8 Ift L = I 4.5 it, hp= L_ GRADE (0 or 1) = t____1 <= Sheathing and Single -Floor JM NOMINAL PANEL THICKNESS = 3/8 in ON NAIL SIZE ( 0=6d, 1=8d, 2=10d) = 1 8d FIC GRAVITY OF FRAMING MEMBERS 0.5 ! _ STUD SECTION 1_�pcs,b = 4_jin, h SPECIES (1 = DFL, 2 = SP) I 1 DOUGLAS FIR -LARCH GRADE ( 1, 2, 3, 4, 5, or 6)4 No. 2 (OPTION (1=ground level, 2=upper level) T `ground level shear wall ISUMMARY BLOCKED 3/8 SHEATHING WITH 8d COMMON NAILS ® 4 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 36 in O.C. it L Min. Penetration in Min. Thickness in 1 w Sheathing and Single -Floor 8d 1 1/2 3/8 220 1 32 1 410 1 530 SIMPSON F T, V. V. ho h T. Lw HOLD-DOWN FORCES: TL = 2.19 k , TR = 2.19 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 4" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.41 in YSIS MAX SHEAR WALL DIMENSION RATIO L / B = 1.8 < 3.5 (Satisfactory] MINE REQUIRED CAPACITY vb = 291 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 4 in) THF SHFAR CAPACITIFS PFR IRC Tahla 93nR d 1 Panel Grade Common Nail Min. Penetration in Min. Thickness in Blocked Nail Spacing Boundary & All Edges 6 1 4 1 3 1 2 Sheathing and Single -Floor 8d 1 1/2 3/8 220 1 32 1 410 1 530 Note: The indicated shear numbers have reduced by specific gravity factor per lBc note a. JE DRAG STRUT FORCE: F = (L -LW) MAX( vd a. WIND, 00vda SEISMIC) = 0.00 k 4E MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 36 in O.C. THF Hr11 n-DnWN FARCFS- (00 = 1 ) (Sec. 1633.2.6) EDGE STUD CAPACITY Pmax = 1.69 kips, (this value should include upper level DOWNWARD loads if applicable) Fd = 1350 psi CD = 1.60 Cp = 0.24 A = 12.25 int E= 1600 ksi CF = 1.15 F, = 596 psi > fC _ (Satisfactory] 138 psi VWa Wall Seismic Overturning Resisting Safety Net Uplift Holddown (PIO at mid -story lbs Moments ft -lbs Moments ft -lbs Factors (III S) SIMPSON SEISMIC 240 65 8932 Left 932 0.9 TL = 1 1799 ,y Right 832 0.9 TR = 1799 Where: vb = 291 plf, , ASD Lw = 5 ft E = 1.7E+06 psi (ASCE 7.05 12 y0� 8 ft G = 9.0E+04 psi Cd = 4 I = 1 I = 0.221 in en = Left 932 2/3 T = da = 0.15 in WIND 281 10476 Aa = 0.02 ha. Ri t 932 2/3 TR = E (ASCE 7-05 Tab 12.12-1) EDGE STUD CAPACITY Pmax = 1.69 kips, (this value should include upper level DOWNWARD loads if applicable) Fd = 1350 psi CD = 1.60 Cp = 0.24 A = 12.25 int E= 1600 ksi CF = 1.15 F, = 596 psi > fC _ (Satisfactory] 138 psi (TL & TR values should include upper level UPLIFT forces if applies ECK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) 3 8vnh vbh hd a A — A&namg + OS&ar + AN.,/ slip + AC/.,a sprlre slip — + + 0.75hea + = 0.414 in, ASD EAL, Gt Lw Sxe,allowable, ASD = 0.343 in Where: vb = 291 plf, , ASD Lw = 5 ft E = 1.7E+06 psi (ASCE 7.05 12 A = 16.50 in` h = 8 ft G = 9.0E+04 psi Cd = 4 I = 1 I = 0.221 in en = 0.003 in da = 0.15 in (ASCE 7-05 Tab 12.2-1 & Tab 11 Aa = 0.02 ha. (ASCE 7-05 Tab 12.12-1) EDGE STUD CAPACITY Pmax = 1.69 kips, (this value should include upper level DOWNWARD loads if applicable) Fd = 1350 psi CD = 1.60 Cp = 0.24 A = 12.25 int E= 1600 ksi CF = 1.15 F, = 596 psi > fC _ (Satisfactory] 138 psi RA Structural Engineering 78080 Calle Amigo, Suite #102 La Quinta, CA. 92253 (760)771-9993 Nood C_ olumn ` KW -06005737 Description : 46 Cantilever Post For Reinforce Existing Parapet At Garage Roof Title: Radi Residence Dsgnr: Reza Asgharpour, P.E. Project Desc.: Remodeling Project Notes: Job # 111063 Printed: 9 NOV 2011, 9:24AM Data FilesVadi residence.ec6 1. BNId:6.11.4.5. Ver.6.11.4.5' General Information Maximum Axial + Bending Calculations per 2005 NDS, IBC 2009, CBC 2010, ASCE 7-05 Analysis Method: Allowable Stress Design Load Combination Wood Section Name 4x6 End Fixities Top Free, Bottom Fixed Location Wood Grading/Manuf. Graded Lumber Overall Column Height 3.750 ft Wood Member Type Sawn ( Used for non -slender calculations) PASS Exact Width 3.50 in Allowable Stress Modification Factors Wood Species Douglas Fir - Larch PASS Exact Depth 5.50 in Cf or Cv for Bending 1.30 Wood Grade No.2 0.6712 Area 19.250 in^2 Cf or Cv for Compression 1.10 Fb -Tension 750 psi Fv p 170 psi p Ix 48.526 in^4 Cf or Cv for Tension 1.30 Fb - Compr 750 psi Ft 475 psi ly 19.651 in44 Cm: Wet Use Factor 1.0 Fc - Prll 700 psi Density 32.21 pcf Ct : Temperature Factor 1.0 Fc - Perp 625 psi 3.750 ft Cfu : Flat Use Factor 1.0 E : Modulus of Elasticity ... x -x Bending y -y Bending Axial Kf : Built-up columns 1.0 NDS 15.3.2 Basic 1300 1300 1300 ksi Use Cr: Repetitive ? Yes (n glb only) Minimum 470 470 Brace condition for deflection (buckling) along columns: Load Combination 2006 IBC & ASCE 7-05 PASS X -X (width) axis: Unbraced Lengths for X -X Axis buckling: K = 2.1 0.05730 PASS Y -Y (depth) axis :Unbraced Length for Y -Y Axis buckling = 3.75 ft, K = 2.1 Applied Loads 0.6712 Service loads entered. Load Factors will be applied for calculations. Column self weight included :16.147 lbs * Dead Load Factor 0.05730 BENDING LOADS ... 3.750 ft +D+0.750L+0.750S+0.5250E+H Lat. Point Load at 3.750 ft creating My -Y, L = 0.250 k PASS DESIGN SUMMARY 0.05730 PASS Wending & Shear Check Results Maximum Reactions - Unfactored PASS Max. Axial+Bending Stress Ratio = 0.8949 :1 Maximum SERVICE Lateral Load Reactions . . Load Combination +D+L+H Top along Y -Y 0.0 k Bottom along Y -Y 0.0 k Governing NDS Fonnla Comp + Myy, NDS Eq. 3.9-3 Top along X -X 0.0 k Bottom along X -X 0.250 k Location of max.above base 0.0 It Maximum SERVICE Load Lateral Deflections... At maximum location values are ... @ Top Along Y -Y 0.0 in at 0.0 ft above base Applied Axial 0.01615k for load combination : n/a Applied Mx Applied My 0.0 k -ft -0.9375 k -ft Along X -X 0.2958 in at 3.750 ft above base Fc: Allowable 428.20 psi for load combination : L Only y Other Factors used to calculate allowable stresses ... PASS Maximum Shear Stress Ratio = 0.07639:1 Bendina Compression Tension Load Combination +D+L+H Cf or Cv : Size based factors 1.300 1.100 Location of max.above base 3.750 It Applied Design Shear 12.987 psi Allowable Shear 170.0 psi Load Combination Results Maximum Axial + Bending Stress Ratios Maximum Shear Ratios Load Combination Stress Ratio Status Location Stress Ratio Status Location +D+L+H 0.8949 PASS 0.0 It 0.07639 PASS 3.750 ft +0+0.750Lr+0.750L+H 0.6712 PASS 0.0 It 0.05730 PASS 3.750 It +D+0.750L+0.750S+H 0.6712 PASS 0.0 It 0.05730 PASS 3.750 ft +0+0,750Lr+0.750Li0.750W+H 0.6712 PASS 0.0 ft 0.05730 PASS 3.750 ft +D+0.750L+0.750S+0.750W+H 0.6712 PASS 0.0 It 0.05730 PASS 3.750 ft +D+0.750Lr+0.750L+0.5250E+H 0.6712 PASS 0.0 ft 0.05730 PASS 3.750 ft +D+0.750L+0.750S+0.5250E+H 0.6712 PASS 0.0 ft 0.05730 PASS 3.750 ft Maximum Reactions - Unfactored Note: Only non -zero reactions are listed. X -X Axis Reaction Y -Y Axis Reaction Axial Reaction Load Combination @ Base @ Top @ Base @ Top @ Base L Only 0.250 k k k D+L 0.250 k k 0.016 k RA Structural Engineering Title: Radi Residence Job # 111063 78080 Calle Amigo, Suite #102 Dsgnr: Reza Asgharpour, P.E. La Quinta, CA. 92253 Project Desc.: Remodeling (760)771-9993 Project Notes : itle Block Line 6 Printed: 9 Nov 2011, 9:24AM ood Column ; t} =a ' File: C:tUsersUsandyslDocumentslENERCALC Data Fleskadi residence.ec6 :. ". "xs>: s'. .., .a �•: 3. _ .JENERCALC,INC.19832011; Buitd:6.t1.4.S,Ver.6.]1.4.5; KW -06005737 Licensee: RA STRUCTURAL ENGINEERING Description : 4x6 Cantilever Post For Reinforce Existing Parapet At Garage Roof Maximum Deflections for Load Combinations • Unfactored Loads Load Combination Max. X -X Deflection Distance Max. Y -Y Deflection Distance L Only 0.2958 in 3.750 It 0.000 in 0.000 ft D+L 0.2928 in 3.725 ft 0.000 in 0.000 ft Sketches' r M -v Loads 19 r] 44 3.50m Loads are total entered value. Arrows do not reflect absolute direction. a • 9 X14, _(ELS 3 —, A ui lil II ill II IIII ------------ ------- --------------------- T-- — - — - - — - — - — - — - — - — (D 2 e le, ----------- I - — - — - — - — - — --- - — - — - — - — - — - — - — - — --- - - — - — - — - — - — - td-------------------- i------------------- ----------- ---- I (F')4xl2 HDR -- --- ------ ------ v------ ------ -- ---- • ,J&*c,. 1ST FLOOR FRAMINGPLAN Q1 oro c.'.i&5,-5 NqV�K SCALE: I"=l'-O" 12 6 T NJx N ww !� - - - - - - - - - - - - - - - - - - - - - -- --- -------------------------- (E) 4x HDR (E> 4X6 HM cu x X cu 12 BH ID 4x1 • ,J&*c,. 1ST FLOOR FRAMINGPLAN Q1 oro c.'.i&5,-5 NqV�K SCALE: I"=l'-O" 12 6 • • 0 a kc. 36 OtAl Floor ! I 1 I ! I 1 ! ! ! I I ! ! ! DR 4x6 DSR 4x8 xI l l l l l l l 1 1 1 1 1 ch 311 I I 1 I I I I I 1 1 1 1 I I I I I! 1 1 1 1 I I I 1 1 1! 1 V1 I ! I ! I I EXISTINGI ENGIN EREDTRUSSILN It e4' ! ! I ! ! I ! ! 1 ! ! I I_ ! I a � I I I I I t ► I W v I�I I I I I 1 1 i I I ! N� (E) 4�8 HDR i i i j 4E> 4x8LHDR 1 i � sw�► �E) it 1 S W�� 9 2ND FLOOR FRAMING PLAN SCALE: I"=1'-0" Node ; rpt o r�o cl+p,�gas o�n p►o,p�'+YG�m u z 3 h r, CLIENT: ?C'Gl4i�2eS�i er�2 _.._ SI-11.".FT: SUBJECT: �eh�0 °gip`":� RA Structural Engineering .1013 NO: ((/®6 j ESIGN BY:,C,+ DATF.: Poia6/r1 �a#�rwl Lb�t� Ah.cr�� s;5 : SeIS1^� C. Lb 0', `MU"^ �d�. 2hdtrDa � pia�jt'IGgy+ti ®! x36�} t Q 5 �o $ x2) +(taes� xZ iyn i l Mair 6«3` Z d 5e. 5 c t"ad :FivdY, D'& -010m J Wx _ (go �S� x 3 b� x 5, iI • �etSwiZ Boat% ; {MUin L�ld� . 15� F(aoi', D,'a�G�✓PQM } t' .JJ W e 3-7 p s �Y'< W(=r 1832CO S2S$1^r1! G L P" X W� . 4o G18o - L �6 X 9 CLIENT: Rcldi P-60knCeSHEFT: SUBJECT: ReMo���►� ; RA Structural Engineering 1 .(oB No: (It 063 )~SIGN BY:%2. A — Se, (5yvM; c Lco a r jo yo m � (3-1 ps� y, 3 6h"r G/att oh GYJ L�r2 © Z riooY : IV /,JO C,�-O 8 el:� CY\ U 6�oy bh. FYI ���Z 2 Z a 0 rleaY rda-%( /���� ��n¢�S . (6 o 2 x I/2 6 LA -71 X open+� sem; c Go reY�. -3 sear = 3 51-t t _ 5� ,�{► go 23. 5' —li1�i•dou.�' ChS+�.Yir`� O,�C J IniC��vy' GYPsu� rda-%( /���� ��n¢�S . -find aQSo �Aere is not- O1 YeW open+� or 4is stae Ta J4 CLIENT-: Rad% l�s�a�•.tSt SHEFT: SUBJECT: 2emou�?� n� RA Structural Engineering 1 ,,UB NO: << 0 63 DESIGN BY: 7Z,�' J^ DA'1'1-.:1 OJ26/�I_ .hisms�r Goveyy,- t!'1 x 1/2-t7 �.y��3� 6� aY = - - = Iq IAb � 1go Qb� (cidi 5l, co s ! " 3 2� I -T rt �� n -ProdZ t�-,r PG YA Xk\ s�r�esv_ 320 b i G r►'�l �' n e 2r �'1'o01- SeismiC- Govern = (6 o2 x I) t (6y -7y x 1/, = 3 5yt 21 x.8.5+5.�+�+3.5, �y•5 < 180 e6 { 1-7Ie IS hot &h Y� opth',,. p`(\ t1,,S 5ik of CA` 6cst"" S�Y rav ci Ty (k &� i S a( tivak I CLIENT: Race P2eSti Wce j SIfI.:f:= [': v I SUBJECT: 2eMo o(el" n ? RA Structural Eno eercnQ ! SOB No: I I !o 63 �ESIGN BY: DATE -- -D tL'6 / 5�ta.6 +n G Vl' j Q ;' Q 2'j f- too Y- cn -5 6Snn•tc- G�Vei►n = (�az /Z � -�- �6k �`1 x /z � = 3 5'� l ,� � L = l L4.6,+ 1,2=26 - 5 35� 13 LA fib/ Url h�W optv���� O h kI^I S S; 4 ( CLIENT: Ro,di ree.Siothc- ' RA Structural En ineerin� + sHEEI SUBJECT: gemockby,%`� ! ! JOB NO: J1\063 ' '" DA'l't-,.: 10 l 2 6/ t �ESIGN BY: 2. A _ , S ear Or G © i't /40 CI o- °,p_ S O v-, oY'��'^ol,� S f f ,'AV cl ��.e.r�Y w�.Gt n h G � ►�. �t rie � I S� �l oo r � � .�..� C s w � 5 � LodA Y, WI.Y4 (00d C1/�1 670` w►nok vex« 67o5 16 I a�� 6705 X559 g'2- Skew 6�t Ty(- 13 use Sew P Si�euy Gia.,l� mto �r�a Qin O tS�F(ooY ;W+Z (S li✓"6, W�AJ Govlc.r^ =(I 53 o x 1/Z, + 67o 5 = 7y 70 4 c�z'4' ��,� Ty use .sig P ft 51 I CLIENT: Rai &51 " � '. ' SI1[.;[ SUBJECT: RA Structural Engineering JOB NO: M b6 3 ESIGN BY: IQ,A, S�.eaY woloh GYJ tib O iso F�oar w�hd Entad = 153o x I/2 : 765,IL = 6 .s _ 765 _ d �s� sh�r ��►1� ��e �� 6' ,56r Poll Wn a6d LII' e O (Sw :g/ 5csm► i Load 47o 6 Qb 1 wird Loyd = 7270 -}-3876 112 J = 5570 b L.12�-I�� 23� w; G o ane vn = 55 76 Lo = 5Y = 55-70 5�2�i Z �6 t�S� SY Pa'•� Ti� L��' S�ZnY (..J&tc OK GYId L'� � 15� FlooY D �SW 765 Q b X65 �6 �.=G si�e�Y — _ 12 /. UsE s Y P 64 -ry p e � 0 ! CLIEN'C: Ra't4s nGe SUBJECT: Zer� o de (i,) RA Structural En�lneerin� I JOB NO: 1 I o 6 3 �ESIGN BY: 2 A ; DATF�.: 10/2-6/11 5 A w;f-\d Cavern = 5 5 7 o 16 s�eA►�.= 557 � � 253 fib/ k az USE Skov'PovA -ryf2L. C, C] Reza PROJECT Wind L aad'(h4ainBIdr,,Ii Fioor Diaphragm A}, PAGE CLIENT .Radi Residence DESIGN BY RA Asgharpour JOB NO-: X111063 DATE0/26L11 REVIEW BY INPUT DATA Exposure category (e, C or D) Roof an le 6 = 0.00 C G Cpf Importance factor, pg 77, (0.87, 1.0 or 1.15) 1 } 1:00 )Category II Basic wind speed (IBC Tab 1609.3.1 Vas) V = (-GCp t) i mph Topographic factor (Sec.6.5.7.2, pg 26 & 45) {3{.85 K, = f 1 Flat t Building height to eave he = 15 • ; ft Building height to ridge hr = ( 15 ) ft Building length L 22 1 I Building width B = y 8 � ft Effective area of components A = L 20 _j ft2 DESIGN SUMMARY Max horizontal force normal to building length, L, face Max horizontal force normal to building length, B, face Max total horizontal torsional load ANALYSIS Velocitv Dressure 3.46 kips 1.53 kips 10.68 ft -kips 2-15 kion qh = 0.00256 Kh Kt Ka V21 = 13.36 psf where: qh = velocity pressure at mean roof height, h. (Eq. 6-15, page 27) Kh = velocity pressure exposure coefficient evaluated at height, h, (Tab. 6-3, Case 1,pg 79) = 0.85 KD = wind directionality factor. (Tab. 64, for building, page 80) = 0.85 h = mean roof height = 15.00 ft < 60 It, [Satisfactory) Design pressures for MWFRS p = qh [(G Cpf )-(G Cpl )] where: p = pressure in appropriate zone. (Eq. 6-18, page 28). pmi„ = 10 psf (Sec. 6.1.4.1 & 6.1.4.2) G Cpf = product of gust effect factor and external pressure coefficient, see table below. (Fig. 6-10, page 53 & 54) G Cp I = product of gust effect factor and internal pressure coefficient.(Fig. 6-5, Enclosed Building, page 47) 0.18 or -0.18 a = width of edge strips, Fig 6-10, note 9, page 54, MAX[ MIN(0.1 B, 0.4h), 0.04B,3] = 3.00 ft Net Pressures Ipso. Basic Load Cases 3E 3 2 2E 4E�_ D 5 i REFERENCE CORNER Ic ° bWIND DIRECTION 3 2E 2 3 2 ZONE 2/3 BOUNDARY 4E___ 5 t 1£ REFERENCE CORNER ° WIND DIRECTION Transverse Direction Longitudinal Direction Basic Load Cases Net Pressures (psf). Torsional Load Cases Roof an le 6 = 0.00 Roof an le 9 = 0.00 G Cpf Net Pressure with G CD T Net Pressure with Surface (+GCp,) (-GCp t) (+GCp t) (-GCp I ) 1 0.40 2.94 7.75 0.40 2.94 7.75 2 -0.69 -11.63 -6.82 -0.69 -11.63 -6.82 3 -0.37 -7.35 -2.54 -0.37. -7.35 -2.54 4 -0.29 -6.28 -1.47 -0.29 -6.28 -1.47 1 E 0.61 5.75 10.56 0.61 5.75 10.56 2E -1.07 -16.70 -11.89 -1.07 -16.70 -11.89 3E -0.53 -9.49 -4.68 -0.53 -9.49 -4.68 4E -0.43 -8.15 -3.34 -0.43 -8.15 -3.34 5 -0.45 -8.42 -3.61 -0.45 -8.42 -3.61 6 1 -0.45 1 -8.42 1 -3.61 1 -0.45 1 -8.42 1 -3.61 3E 3 2 2E 4E�_ D 5 i REFERENCE CORNER Ic ° bWIND DIRECTION 3 2E 2 3 2 ZONE 2/3 BOUNDARY 4E___ 5 t 1£ REFERENCE CORNER ° WIND DIRECTION Transverse Direction Longitudinal Direction Basic Load Cases Net Pressures (psf). Torsional Load Cases 3E 3 3T 2T �_0 2E2 6 4E 4 8 5 IT i REFERENCE CORNER IE ° WIND DIRECTION 3 2E 2 3T 3E2T 4 4T r/6 4E-_ e IT 5 IE t REFERENCE CORNER ° WIND DIRECTION Transverse Direction Longitudinal Direction Torsional Load Cases Roof an Ile 9 = 0.00 G Cpf Net Pressure with Surface (+GCD t) (-GCp I ) 1T 0.40 0.73 1.94 2T -0.69 -2.91 -1.70 3T -0.37 -1.84 -0.63 4T 1 -0.29 1 -1.57 -0.37 Roof an Ile 0 = 0.00 G Cpf Net Pressure with Surface +GC vl) (-GC (- pf) pi) 1T 0.40 0.73 1.94 2T -0.69 -2.91 -1.70 3T -0.37 -1.84 -0.63 4T -0.29 1 -1.57 -0.37 3E 3 3T 2T �_0 2E2 6 4E 4 8 5 IT i REFERENCE CORNER IE ° WIND DIRECTION 3 2E 2 3T 3E2T 4 4T r/6 4E-_ e IT 5 IE t REFERENCE CORNER ° WIND DIRECTION Transverse Direction Longitudinal Direction Torsional Load Cases 0 • r �J Basic Load Cases in Transverse Direction Tnminnal Lead Casal In Transvarsa riiractinn Basic Load Cases In Lonaitudinal Direction Area Pressure k with SurfaceArea (ft) (+GCp J (-GCp j) 1 240 0.71 1.86 2 64 -0.74 -0.44 3 64 -0.47 -0.16 4 240 -1.51 -0.35 1 E 90 0.52 0.95 2E 24 -0.40 -0.29 3E 24 -0.23 -0.11 4E 90 -0.73 -0.30 £ Horiz. 3.46 3.46 1.53 Vert. -1.84 -1.00 Min. wind Horiz. 3.30 3.30 Sec. 6.1.4.1 Vert. -1.76 -1.76 Tnminnal Lead Casal In Transvarsa riiractinn Basic Load Cases In Lonaitudinal Direction Tnminnal 1 nad 1 nQa%Q in i nnnitudinai niraetinn Area Pressure k with Surface (ft) (+GCp;) (-GCp i ) 1 30 0.09 0.23 2 22 -0.26 -0.15 3 22 -0.16 -0.06 4 30 -0.19 -0.04 1E 90 0.52 0.95 2E 66 -1.10 -0.78 3E 66 -0.63 -0.31 4E 90 -0.73 -0.30 8 Horiz. 1.53 1.53 z Vert. -2.15 -1.30 Min. wind Horiz. 1.20 1.20 Sec. 6.1.4.1 Vert. -1.76 -1.76 Tnminnal 1 nad 1 nQa%Q in i nnnitudinai niraetinn Area Pressure k with Torsion ft -k Surface (ft) (+GCP i) (-GCp t) (+GCP i) (-GCP t ) 1 75 0.22 0.58 1 2 2 20 -0.23 -0.14 0 0 3 20 -0.15 -0.05 0 0 4 75 -0.47 -0.11 2 0 1E 90 0.52 0.95 4 8 2E 24 -0.40 -0.29 0 0 3E 24 -0.23 -0.11 0 0 4E 90 -0.73 -0.30 6 2 1T 165 0.12 0.32 -1 -2 2T 44 -0.13 -0.07 0 0 3T 44 -0.08 -0.03 0 0 4T 165 -0.26 1 -0.06 -1 0 Total Horiz. Torsional Load, MT 11 11 Tnminnal 1 nad 1 nQa%Q in i nnnitudinai niraetinn Design Pressures for components and cladding } r _ _ = y } } r2_4 } s P-4 } P = qh[ (G Cp) - (G Cpi)] s i g where: p = pressure on component. (Eq. 6-22, pg 28) ?° ' s s 1°^° " 21 - 12 2: - 1- -1 - 12 Pmin = 10.00 psf (Sec. 6.1.4.2, pg 21) ° ~ G Cp = external pressure coefficient. walls } 2 see table below. (Fig. 6-11, page 55-58) Roof e.7- Roof o» - Effective Zone t Zone 2 _ Zone 3 Zone 4 Zone 5 Area Ife) P - GC, GC, - GC, GCP - GCP GCP - GCP GC,,- GCP Comp. 20 0.27 -0.97 0.27 -1.59 0.27 -2.29 0.85 -0.94 0.85 -1.16 (Walls reduced 10%, Fig. 6-11A note 5.) Comp. & Cladding Pressure Area Pressure k with Torsion ft -k Surface (0) (+GCP;) (-GCp i) (+GCP i) (-GCP i ) 1 -30 -0.09 -0.23 0 0 2 -44 0.51 0.30 0 0 3 -44 0.32 0.11 0 0 4 -30 0.19 0.04 0 0 1 E 90 0.52 0.95 1 1 2E 66 -1.10 -0.78 0 0 3E 66 -0.63 -0.31 0 0 4E 90 -0.73 -0.30 1 0 1T 60 0.04 0.12 0 0 2T 22 -0.06 -0.04 0 0 3T 22 -0.04 -0.01 0 0 4T 60 1 -0.09 -0.02 0 0 Total Horiz. Torsional Load, Mt 1.3 1.3 Design Pressures for components and cladding } r _ _ = y } } r2_4 } s P-4 } P = qh[ (G Cp) - (G Cpi)] s i g where: p = pressure on component. (Eq. 6-22, pg 28) ?° ' s s 1°^° " 21 - 12 2: - 1- -1 - 12 Pmin = 10.00 psf (Sec. 6.1.4.2, pg 21) ° ~ G Cp = external pressure coefficient. walls } 2 see table below. (Fig. 6-11, page 55-58) Roof e.7- Roof o» - Effective Zone t Zone 2 _ Zone 3 Zone 4 Zone 5 Area Ife) P - GC, GC, - GC, GCP - GCP GCP - GCP GC,,- GCP Comp. 20 0.27 -0.97 0.27 -1.59 0.27 -2.29 0.85 -0.94 0.85 -1.16 (Walls reduced 10%, Fig. 6-11A note 5.) Comp. & Cladding Pressure Zone t Zone 2 Zone 3 Zone 4 Zone 5 Positive N tivo Positive Ne twe Positive Posdive Ne ve Posldvo Na Advo ( W ) 10.00 -15.37 10.00 -23.64 10.00 -32.98 13.79 -15.00 13.79 -17.96 0 • C, • Reza PROJECT: Wnd L`bad (Main"Bldg. 2nd Floor) p+aF kr�o.�O PAGE: CLIENT: Radi Residence _ _ DESIGN BY: R.A. Asgharpour JOB NO.: 1111063 "-67 13 J REVIEW BY: R.A. INPUT DATA Roof an le e = 16.99 Exposure category (8, C or D) Net Pressure with C' Net Pressure Importance factor, pg 77, (0.87, 1.0 or 1.15) 1 = 1.00 {Category II (+GCpi) Basic wind speed (IBC Tab 1609.3.1 Vys) V = . 85 i mph 4.33 9.14 0.40 Topographic factor (Sec.6.5.7.2, pg 26 & 45) KD = 1 Flat t -11.63 -6.82 Building height to eave he = 8 ) it 3 -0.46 Building height to ridge hr = 13.5 it Building length L = 40 ft Building width B = 36 i ft Effective area of components A = -, ,_20. -,' ft2 DESIGN SUMMARY Max horizontal force normal to building length, L, face Max horizontal force normal to building length, B, face Max total horizontal torsional load ANALYSIS Veloclty Dressure 5.40 kips 3.87 kips 20.44 ft -kips IS; 5l kinc qh = 0.00256 Kh Ke Kd V21 = 13.36 psf where: qh = velocity pressure at mean roof height, h. (Eq. 6-15, page 27) Kh = velocity pressure exposure coefficient evaluated at height, h, (Tab. 6-3, Case t,pg 79) = 0.85 Kd = wind directionality factor. (Tab. 6-4, for building, page 80) = 0.85 h = mean roof height = 10.75 it < 60 ft, (Satisfactory) < Min (L, B), [Satisfactory] Design Pressures for MWFRS p = qh [(G Cpf )-(G Cpi )) where: p = pressure in appropriate zone. (Eq. 6-18, page 28). pm;,, = 10 psf (Sec. 6.1.4.1 & 6.1.4.2) G Cp t = product of gust effect factor and external pressure coefficient, see table below. (Fig. 6-10, page 53 & 54) G Cpi = product of gust effect factor and internal pressure coefficient, (Fig. 6-5, Enclosed Building, page 47) 0.18 or -0.18 a= width of edge strips, Fig 6-10, note 9, page 54, MAX[ MIN(0.1 B, 0.4h), 0.046,31 = 3.60 ft Net PreAnures Imf - Rasic Laad Canan Net Pressures (psf), Torsional Load Cases Roof an le e = 16.99 Roof an lee = 0.00 G Cp r Net Pressure with G CP T Net Pressure with Surface (+GCpi) (-GCpi) (+GCpi) (-GCpi ) 1 0.50 4.33 9.14 0.40 2.94 7.75 2 -0.69 -11.63 -6.82 -0.69 -11.63 -6.82 3 -0.46 -8.52 -3.71 -0.37 -7.35 -2.54 4 -0.40 -7.78 -2.97 -0.29 -0.28 -1.47 1E 0.76 7.78 12.59 0.61 5.75 10.56 2E -1.07 -16.70 -11.89 -1.07 -16.70 -11.89 3E -0.66 -11.20 -6.39 -0.53 -9.49 -4.68 4E -0.60 -10.39 -5.58 -0.43 -8.15 -3.34 5 -0.45 -8.42 -3.61 -0.45 -8.42 -3.61 6 1 -0.45 1 -8.42 1 -3.61 1 -0.45 1 -8.42 1 -3.61 Net Pressures (psf), Torsional Load Cases SE } 2 2E 2 } 2E 2 } 2 ZONE 2/3 BOUNDARY }E } ST } 2E 3T 2r 3E 2t 3 5 4 2E 2 6 4 4T .I/ 6 4E 0 4E-_ 4E�� 4E-_ 0 5 1 5 1 5 1 17 5 IE i 1T REFERENCE CORNER IE IE REFERENCE CORNER IE REFERENCE CORNER REFERENCE CORNER ° "'WIND DIRECTION ° b WIND OIRECRON ° pWIND DIREC17ON ° *"WIND DIRECTION Transverse Direction Longitudinal Direction Transverse Direction Longitudinal Direction Basic Load Cases Torsional Load Cases 0 Roof an We e = 16.99 G C r ° Net Pressure with . Surface (+GCpi) (-GCpi) 1T 0.50 1.08 2.28 2T -0.69 -2.91 -1.70 3T -0.46 -2.13 -0.93 4T 1 -0.40 1 -1.94 -0.74 Roof an ile 6 = 0.00 G C t ° Net Pressure with Surface (+GCpi) (-GCpi ) 1T 0.40 0.73 1.94 2T -0.69 -2.91 -1.70 3T -0.37 -1.84 -0.63 4T -0.29 1 -1.57 -0.37 SE } 2 2E 2 } 2E 2 } 2 ZONE 2/3 BOUNDARY }E } ST } 2E 3T 2r 3E 2t 3 5 4 2E 2 6 4 4T .I/ 6 4E 0 4E-_ 4E�� 4E-_ 0 5 1 5 1 5 1 17 5 IE i 1T REFERENCE CORNER IE IE REFERENCE CORNER IE REFERENCE CORNER REFERENCE CORNER ° "'WIND DIRECTION ° b WIND OIRECRON ° pWIND DIREC17ON ° *"WIND DIRECTION Transverse Direction Longitudinal Direction Transverse Direction Longitudinal Direction Basic Load Cases Torsional Load Cases 0 • • • Basic Load Cases in Transverse Direction Torsional Load Cases In Transverse Direction Basic Load Cases in Lontaitudinal Direction Area Pressure k with Surface (ft')) (+GC DI) - (GC Pl) 1 262 1.14 2.40 2 617 -7.18 -4.21 3 617 -5.26 -2:29 4 2.62 -2.04 -0.78 1 E 58 0.45 0.72 2E 136 -2.26 -1.61 3E 136 -1.52 -0.87 4E 58 -0.60 -0.32 -0.22 Horiz. 3.45 3.45 £ Vert. -15.51 -8.59 Min. wind Horiz. 5.40 5.40 Sec. 6.1.4.1 Vert. -14.40 -14.40 Torsional Load Cases In Transverse Direction Basic Load Cases in Lontaitudinal Direction Torsional Load Cases In Longitudinal Direction Area Pressure k with Surface (fe) (+GCD i) ' (-GCD i ) 1 321 0.95 2.49 2 602 -7.00 -4.10 3 602 -4.43 -1.53 4 321 -2.02 -0.47 1E 66 0.38 0.69 2E 151 -2.52 -1.79 3E 151 -1.43 -0.70 4E 66 -0.53 -0.22 2E Horiz. 3.87 3.87 £ Vert. -14.70 -7.77 Min. wind Horiz. 3.87 3.87 Sec. 6.1.4.1 Vert. -14.40 -14.40 Torsional Load Cases In Longitudinal Direction Effective Area (fve) Pressure k with Torsion ft -k SurfaceArea (ft2) (+GCD i) (-GCD I) (+GCD I) (-GCD i ) 1 102 0.44 0.94 4 8 2 241 -2.80 -1.64 -7 -4 3 241 -2.05 -0.89 5 2 4 102 -0.80 -0.30 7 2 IE 58 0.45 0.72 7 12 2E 136 -2.26 -1.61 -11 -8 3E 136 -1.52 -0.87 7 4 4E 58 -0.60 -0.32 10 5 1T 160 0.17 0.37 -2 -4 2T 376 -1.09 -0.64 3 2 3T 376 -0.80 -0.35 -2 -1 4T 1 160 -0.31 -0.12 -3 -1 Total Horiz. Torsional Load, MT 18 18 Torsional Load Cases In Longitudinal Direction Desian pressures for components and cladding p = qhl (G CP) - (G Cpt)l 5 I 5 where: p = pressure on component. (Eq. 6-22, pg 28) �"O' 15 Pmin = 10.00 psf (Sec. 6.1.4.2, pg'21) G CD = external pressure coefficient. walls see table below. (Fig. 6-11, page 55-58) 3 I I I I 21 1x I I Roof e•+- Roof a»- Effective Area (fve) Pressure k with Torsion ft -k SurfaceArea (fe) (+GCD i) (-GCD I) (+GC I) (-GCD I ) 1 128 0.38 0.99 2 5 2 452 -5.25 -3.08 15 9 3 452 -3.32 -1.15 -10 -3 4 128 -0.80 -0.19 4 1 1 E 66 0.38 0.69 5 10 2E 151 -2.52 -1.79 7 5 3E 151 -1.43 -0.70 -4 -2 4E 66 -0.53 -0.22 8 3 1T 194 0.14 0.37 -1 -3 2T 602 -1.75 -1.03 -10 -6 3T 602 -1.11 -0.38 6 2 4T 194 -0.30 1 -0.07 -3 1 Total Horiz. Torsional Load, MT 20.4 20.4 Desian pressures for components and cladding p = qhl (G CP) - (G Cpt)l 5 I 5 where: p = pressure on component. (Eq. 6-22, pg 28) �"O' 15 Pmin = 10.00 psf (Sec. 6.1.4.2, pg'21) G CD = external pressure coefficient. walls see table below. (Fig. 6-11, page 55-58) 3 I I I I 21 1x I I Roof e•+- Roof a»- Comp. & Cladding Pressure ( Psf) Effective Area (fve) Zone 1 Zone 2 Zone 3 GC - GCp GC - GCp GC - GCp Zone 4 Zone 5 GC - GCp GC - GC Com . 20 0.44 -0.87 0.44 -1.55 0.44 -2.42 0.95 -1.05 1 0.95 1 -1.29 Comp. & Cladding Pressure ( Psf) I Zone 1 I Zone 2 1 Zone 3 1 Zone 4 Zone 5 PO.- ftgau. Positive NOWMW PosldVe 111.9afi. Positive Ne ve Positive Negative 10.00 -14.03 10.00 -23.11 10.00 -34.74 15.06 -16.39 15.06 1 -19.69 • • Reza PROJECT 1Nirid Load_(Mam Bidg:'1sE Ftooc) t�' 6 phYa r+' 0131 PAGE: As har Our CLIENT lRadi Residence DESIGN BY R.A. 9 P JOB NO.: 111063 DATE: 110/26/11 1 REVIEW BY: R.A. . INPUT DATA Exposure category a C or 0) Importance factor, pg 77, (0.87, 1.0 or 1.15) Basic wind speed (18C Tab 1609.3.1 Vas) Topographic factor (Sec.6.5.7.2, pg 26 a 45) Building height to eave Building height to ridge Building length Building width Effective area of components DESIGN SUMMARY Max horizontal force normal to building length, L, face Max horizontal force normal to building length, B, face Max total horizontal torsional load ANALYSIS Velocitv Pressure 1 = ,1.00 Category I I V = 85 mph Kp = r I' R Flat L x he =� 19" ft h, h, _ 19 ' ft L = 40 It B = 36' ; ft A = Lj_, 2Q ft2 8.01 kips = 7.27 kips = 42.73 ft -kips = 11; 'AQ kine qh = 0.00256 Kh K�t Ka V21 = 13.99 psf where: qh = velocity pressure at mean roof height, h. (Eq. 6-15, page 27) Kh = velocity pressure exposure coefficient evaluated at height, h, (Tab. 6-3, Case 1,pg 79) = 0.89 Ka = wind directionality, factor. (Tab. 6-4, for building, page 80) = 0.85 h = mean roof height = 19.00 ft < 60 ft, [Satisfactory] < Min (L, B), [Satisfactoryl Design pressures for MWFRS p = qh [(G Cpr )-(G Cpi )l where: p = pressure in appropriate zone. (Eq. 6-18, page 28). pmi„ = 10 psf (Sec. 6.1.4.1 & 6.1.4.2) G Cp r = product of gust effect factor and external pressure coefficient, see table below. (Fig. 6-10, page 53 8 54) G Cpi = product of gust effect factor and internal pressure coefficient. (Fig. 6-5, Enclosed Building, page 47) 0.18 or -0.18 a = width of edge strips, Fig 6-10, note 9, page 54, MAX[ MIN(0.1B, 0.4h), 0.0413,31 = 3.60 ft Not Prassuras rnsfi. Rasic Lead Canna Net Pressures (osf). Torsional Load Cases Roof an le 0 = 0.00 Roof an le 9 = 0.00 G Cp, Net Pressure with G C° r Net Pressure with Surface (+GCp i) (-GC i) (+GCp i) (-GCp i ) 1 0.40 3.08 8.12 0.40 3.08 8.12 2 -0.69 -12.17 -7.14 -0.69 -12.17 -7.14 3 -0.37 -7.70 -2.66 -0.37 -7.70 -2.66 4 -0.29 -6.58 -1.54 -0.29 -6.58 -1.54 1E 0.61 6.02 11.05 0.61 6.02 11.05 2E -1.07 -17.49 -12.45 -1.07 -17.49 -12.45 3E -0.53 -9.93 -4.90 -0.53 -9.93 -4.90 4E -0.43 -8.54 -3.50 -0.43 -8.54 -3.50 5 -0.45 -8.82 -3.78 -0.45 -8.82 -3.78 6 1 -0.45 1 -8.82 1 -3.78 1 -0.45 1 -8.82 1 -3.78 Net Pressures (osf). Torsional Load Cases JE 3 2E 2 3 2E 2 3 2 ZONE 2/3 BOUNDARY 3E 3 3T } 2E 2 31 27 4E `\� 6 s `-6 4 __4T 2E 2 2T 6 4`=4T '/6 �4E- 4E- - 4E-_ 6 5 1 5 I 5 I IT 5 I 1T IE REFERENCE CORNER IE 1E REFERENCE CORNER IE REFERENCE CORNER REFERENCE CORNER •WIND DIRECTION WIND DIRECTION *"WIND DIRECTION WIND DIRECTION Transverse Direction Longitudinal Direction Transverse Direction Longitudinal Direction Basic Load Cases Torsional Load Cases 0�8 Roof an lie 8 = 0.00 G Cp r Net Pressure with Surface +GC( Pi) GC (" Di) IT 0.40 0.77 2.03 2T -0.69 -3.04 -1.78 3T -0.37 -1.92 -0.66 4T -0.29 -1.64 -0.38 Roof an lie 9 = 0.00 G Cpr Net Pressure with Surface (+GCp i) (-GCp; ) IT 0.40 0.77 2.03 2T -0.69 -3.04 -1.78 3T -0.37 -1.92 -0.66 4T -0.29 -1.64 -0.38 JE 3 2E 2 3 2E 2 3 2 ZONE 2/3 BOUNDARY 3E 3 3T } 2E 2 31 27 4E `\� 6 s `-6 4 __4T 2E 2 2T 6 4`=4T '/6 �4E- 4E- - 4E-_ 6 5 1 5 I 5 I IT 5 I 1T IE REFERENCE CORNER IE 1E REFERENCE CORNER IE REFERENCE CORNER REFERENCE CORNER •WIND DIRECTION WIND DIRECTION *"WIND DIRECTION WIND DIRECTION Transverse Direction Longitudinal Direction Transverse Direction Longitudinal Direction Basic Load Cases Torsional Load Cases 0�8 • L� • Basic Load Cases in Transverse Direction Torsional Load Cases In Transverse Direction Basic Load Cases In Longitudinal Direction Area Pressure k with Surface (ft') (+GCP I ) (-GCP i ) 1 623 1.92 5.06 2 590 -7.19 -4.21 3 590 -4.54 -1.57 4 623 -4.10 -0.96 1E 137 0.82 1.51 2E 130 -2.27 -1.61 3E 130 -1.29 -0.63 4E 137 -1.17 -0.48 £ Horiz. 8.01 8.01 7.27 Vert. -15.28 -8.03 Min. wind Horiz. 7.60 7.60 Sec. 6.1.4.1 Vert. -14.40 -14.40 Torsional Load Cases In Transverse Direction Basic Load Cases In Longitudinal Direction Torsional Load Cases in Lonqitudinal Direction Area Pressure k with Surface (t) (+GCp I) (-GCp i ) 1 547 1.68 4.44 2 576 -7.01 -4.11 3 576 -4.43 -1.53 4 547 -3.60 -0.84 1 E 137 0.82 1.51 2E 144 -2.52 -1.79 3E 144 -1.43 -0.71 4E 137 -1.17 -0.48 2E Horiz. 7.27 7.27 Z Vert. -15.39 -8.14 Min. wind Horiz. 6.84 6.84 Sec. 6.1.4.1 Vert. -14.40 -14.40 Torsional Load Cases in Lonqitudinal Direction Area Pressure k with Torsion ft -k SurfaceArea (ft') (+GCP I) (-GCP I) (+GCP I) (-GCP I ) 1 243 0.75 1.97 6 16 2 230 -2.80 -1.64 0 0 3 230 -1.77 -0.61 0 0 4 243 -1.60 -0.37 13 3 1E 137 0.82 1.51 13 25 2E 130 -2.27 -1.61 0 0 3E 130 -1.29 -0.63 0 0 4E 137 -1.17 -0.48 19 8 1T 380 0.29 0.77 -3 -8 2T 360 -1.10 -0.64 0 0 3T •360 -0.69 -0.24 0 0 4T 380 -0.62 -0.15 -6 -1 Total Horiz. Torsional Load, M7 43 i 43 Torsional Load Cases in Lonqitudinal Direction Desian pressures for components and cladding p = qhl (G CP) - (G Cpl)] 5 1 5 where: p = pressure on component. (Eq. 6-22, pg 28) Amin = 10.00 psf (Sec. 6.1.4.2, pg 21) G Cp = external pressure coefficient. walls see table below. (Fig. 6-11, page 55-58) Roof u.,• Roof o- , - Effective Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Areaa(ftz) GCP GCp GCp -GCP GCP -GCP GCP -GCp GCP -GCP Comp. 20 1 0.27 1 -0.97 0.27 -1.59 0.27 -2.29 0.85 -0.94 0.85 -1.16 (Wails reduced 10 %. Fig. 6-11A note 5.) Comp. & Cladding Pressure ( psf) Area Pressure k with Torsion ft -k Surface (e) (+GCP I) (-GCP I) (+GCP I) (-GCP I ) 1 205 0.63 1.67 3 9 2 432 -5.26 -3.08 0 0 3 432 -3.32 -1.15 0 0 4 205 -1.35 -0.32 7 2 1 E 137 0.82 1.51 12 22 2E 144 -2.52 -1.79 0 0 3E 144 -1.43 -0.71 0 0 4E 137 -1.17 -0.48 17 7 IT 342 0.26 0.69 -2 -6 2T 576 -1.75 -1.03 0 0 3T 576 -1.11 -0.38 0 0 4T 1 342 -0.56 -0.13 1 -5 -1 Total Horiz. Torsional Load, MT 131.9 31.9 Desian pressures for components and cladding p = qhl (G CP) - (G Cpl)] 5 1 5 where: p = pressure on component. (Eq. 6-22, pg 28) Amin = 10.00 psf (Sec. 6.1.4.2, pg 21) G Cp = external pressure coefficient. walls see table below. (Fig. 6-11, page 55-58) Roof u.,• Roof o- , - Effective Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Areaa(ftz) GCP GCp GCp -GCP GCP -GCP GCP -GCp GCP -GCP Comp. 20 1 0.27 1 -0.97 0.27 -1.59 0.27 -2.29 0.85 -0.94 0.85 -1.16 (Wails reduced 10 %. Fig. 6-11A note 5.) Comp. & Cladding Pressure ( psf) Zone 1 I Zone 2 Zone 3 Zone 4 Zone 5 Positive NegatNe Positive Negative PoslWe Negtwe Posn1V9 146001va Positiv0 Ne EtivB 10.00 -16.09 10.00 -24.76 10.00 -34.54 14.44 -15.70 14.44 -18.81 • is • Reza PROJECT Wind Load,(Matn Bldg. Diaphragm B) ---7 PAGE F , 7 As har Our CLIENT Radi ResidencC DESIGN BY R A 9 p JOB NO.. :111063 DATE . m10l26/11' REVIEW BY R.A' #a INPUT DATA Exposure category (B, C or D) A C Importance factor, pg 77, (0.87, 1.0 or 1.15) 1 =T 1.00 Category II Basic wind speed (IBC Tab 1609.3.1V3s) V =) 85 mph Topographic factor (Sec.6.5.7.2, pg 26 8 45) K, _; 1 t Flat =F Building height to eave he 17 It Building height to ridge hr = 22.5 ' ft Building length L = 40 Ift Building width B = 36 i ft Effective area of components A =! ,_20:_ -0.69 ,- it' DESIGN SUMMARY Max horizontal force normal to building length, L, face Max horizontal force normal to building length, B, face Max total horizontal torsional load ANALYSIS Veioclty Dressure 9.00 kips 7.57 kips 45.69 ft -kips iA AA kine qh = 0.00256 Kh Kd Ka V21 = 14.11 psf where: qh = velocity pressure at mean roof height, h. (Eq. 6-15, page 27) Kh = velocity pressure exposure coefficient evaluated at height, h, (Tab. 63, Case t,pg 79) = 0.90 Kd = wind directionality, factor. (Tab. 6-4, for building, page 80) = 0.85 h = mean roof height = 19.75 It < 60 ft, [Satisfactory] < Min (L, B), [Satisfactory] Design Pressures for MWFRS p = qh [(G Cp, )-(G Cp, )] where: p = pressure in appropriate zone. (Eq. 6-18, page 28). Pmin = 10 psf (Sec. 6.1.4.1 & 6.1.4.2) G Cp, = product of gust effect factor and external pressure coefficient, see table below. (Fig. 6-10, page 53 & 54) G Cp, = product of gust effect factor and internal pressure coefficient. (Fig. 6-5, Enclosed Building, page 47) 0.18 or -0.18 a =width of edge strips, Fig 6-10, note 9, page 54, MAX[ MIN(0.1 B, 0.4h), 0.046,3] = 3.60 ft Mat PraaAuran tnAfi RaAIM I nart rates JE 3 2 2E 4E�- 6 5 REFERENCE CORNER IE QWIND DIRECTION *C.ORNE.R ZONE 2/3 BOUNDARY s� 6 4E - 5I IE RE WwD DIRECTION Net Pressures (psf), Torsional Load Cases Roof an le 8 = 16.99 Roof an le 9 = 0.00 G C°, Net Pressure with G CD r Net Pressure with Surface (+GC i) (-GCp i) (+GCp i) (-GCp ) 1 0.50 4.57 9.65 0.40 3.10 8.18 2 -0.69 -12.28 -7.20 -0.69 -12.28 -7.20 3 -0.46 -9.00 -3.92 -0.37 -7.76 -2.68 4 -0.40 -8.21 -3.13 -0.29 -6.63 -1.55 1E 0.76 8.21 13.29 0.61 6.07 11.15 2E -1.07 -17.64 -12.56 -1.07 -17.64 -12.56 3E -0.66 -11.82 -0.74 -0.53 -10.02 -4.94 4E -0.60 -10.98 -5.90 -0.43 -8.61 -3.53 5 -0.45 -8.89 -3.81 -0.45 -8.89 -3.81 6 1 -0.45 1 -8.89 1 -3.81 1 -0.45 1 -8.89 1 -3.81 JE 3 2 2E 4E�- 6 5 REFERENCE CORNER IE QWIND DIRECTION *C.ORNE.R ZONE 2/3 BOUNDARY s� 6 4E - 5I IE RE WwD DIRECTION Net Pressures (psf), Torsional Load Cases 3E } 3T 2i 4 \_4T 2E 2 6 4E�' 6 5 IT E I REFERENCE CORNER WIND DIRECTION } 2E 2 3T 3 21 4 41' �6 4E�� 6 IT 5 IE t REFERENCE CORNER c QWND DIRECTION Transverse Direction Longitudinal Direction Transverse Direction Longitudinal Direction Basic Load Cases Torsional Load Cases 060 Roof an le 6 = 16.99 G C°, Net Pressure with Surface (+GCp i) (-GCp j) 1T 0.50 1.14 2.41 2T -0.69 -3.07 -1.80 3T -0.46 -2.25 -0.98 4T 1 -0.40 -2.05 -0.78 Roof angle 6 = 0.00 G Cp, Net Pressure with Surface (+GCp I) (-GCp i ) IT 0.40 0.78 2.05 2T -0.69 -3.07 -1.80 3T -0.37 -1.94 -0.67 4T 1 -0.29 -1.66 -0.39 3E } 3T 2i 4 \_4T 2E 2 6 4E�' 6 5 IT E I REFERENCE CORNER WIND DIRECTION } 2E 2 3T 3 21 4 41' �6 4E�� 6 IT 5 IE t REFERENCE CORNER c QWND DIRECTION Transverse Direction Longitudinal Direction Transverse Direction Longitudinal Direction Basic Load Cases Torsional Load Cases 060 11 • • Basic Load Cases In Transverse Direction Torsional Load Cases in Transverse Direction Basic Load Cases in Longitudinal Direction Area Pressure k with Surface (ft2) (+GCP I) (-GCP I) 1 558 2.55 5.38 2 617 -7.58 -4.44 3 617 -5.56 -2.42 4 558 -4.58 -1.75 1E 122 1.00 1.63 2E 136 -2.39 -1.70 3E 136 -1.60 -0.91 4E 122 -1.34 -0.72 3E Horiz. 8.65 8.65 E Vert. -16.38 -9.07 Min. wind Horiz. 9.00 9.00 Sec. 6.1.4.1 Vert. -14.40 -14.40 Torsional Load Cases in Transverse Direction Basic Load Cases in Longitudinal Direction Torsional Load Cases in Longitudinal Direction Area Pressure k with Surface ye) (+GCP I) (-GCP i ) 1 581 1.80 4.75 2 602 -7.39 -4.33 3 602 -4.67 -1.61 4 581 -3.85 -0.90 1 E 130 0.79 1.45 2E 151 -2.66 -1.89 3E 151 -1.51 -0.74 4E 130 -1.12 -0.46 3E Horiz. 7.57 7.57 4 Vert. -15.52 -8.21 Min. wind Horiz. 7.11 7.11 Sec. 6.1.4.1 Vert. -14.40 -14.40 Torsional Load Cases in Longitudinal Direction Area Pressure k with Torsion ft -k Surface (ftz) (+GCP I) (-GCP I) (+GCP I) (-GCP; ) 1 218 0.99 2.10 8 17 2 241 -2.96 -1.73 -7 -4 3 241 -2.17 -0.94 5 2 4 218 -1.79 -0.68 15 6 1E 122 1.00 1.63 16 27 2E 136 -2.39 -1.70 -11 -8 3E 136 -1.60 -0.91 8 4 4E 122 -1.34 -0.72 22 12 1T 340 0.39 0.82 4 -8 2T 376 -1.16 -0.68 3 2 3T 376 -0.85 -0.37 -2 -1 4T 340 -0.70 -0.27 -7 -3 Total Horiz. Torsional Load, MT 46 1 46 Torsional Load Cases in Longitudinal Direction Design pressures for components and cladding p = qhl (G Cpl - (G Cpt)I s I s where: p = pressure on component. (Eq. 6-22, pg 28) Pmin = 10.00 psf (Sec. 6.1.4.2, pg 21) G Cp = external pressure coefficient. Wolls see table below. (Fig. 6-11, page 5558) 3 z z a I I I I 21 I2 I 1 Roof °-t- Roof o - Area Pressure k with Torsion ft -k Surface (fe) (+GCp i) (-GCp I) (+GCP;) (-GCp I ) 1 225 0.70 1.84 4 10 2 452 -5.55 -3.25 16 9. 3 452 -3.51 -1.21 -10 -4 4 225 -1.49 -0.35 8 2 1E 130 0.79 1.45 11 21 2E 151 -2.66 -1.89 8 6 3E 151 -1.51 -0.74 -4 -2 4E 130 -1.12 -0.46 16 7 1T 356 0.28 0.73 -2 -6 2T 602 -1.85 -1.08 -11 -6 3T 602 -1.17 -0.40 7 2 4T 356 -0.59 -0.14 -5 -1 Total Horiz. Torsional Load, MT 36.8 36.8 Design pressures for components and cladding p = qhl (G Cpl - (G Cpt)I s I s where: p = pressure on component. (Eq. 6-22, pg 28) Pmin = 10.00 psf (Sec. 6.1.4.2, pg 21) G Cp = external pressure coefficient. Wolls see table below. (Fig. 6-11, page 5558) 3 z z a I I I I 21 I2 I 1 Roof °-t- Roof o - Comp. S Cladding Pressure ( Psf) Effective[_ Area (fts) Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 GC GC GC GCp I GCp GCp GC - GCp GC - GC Camp. 1 20 1 0.44 1 -0.87 1 0.44 1 -1.55 1 0.44 1 -2.42 0.95 -1.05 1 0.95 -1.29 Comp. S Cladding Pressure ( Psf) Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Positive Ne " Poah7ro N '" PoslH. I. Posnive Ive PosltWe Ne tWO 10.00 -14.81 10.00 -24.40 10.00 -36.68 15.90 1 -17.31 L.15.90 1 -20.79 0,61 Reza PROJECT : Seismic Load (Main Bldg. 1st FloorDiaphragm.A) PAGE: CLIENT: Radi Residence _ DESIGN BY: 'R.A. sg ha rpou i JOB NO.: X11.1063 , - 'REVIEW BY: R.A. One Story Seismic_Anilysis-;Based on IBC 064 CBC 07 rmine Base Shear (Derived from ASCE 7-05 Sec. 12.8) V= MAX( MIN ISDI I/(RT) , SDS I/Rj 0.01 0.5S1I/R)W = MAX{ MIN[ 0.97W , 0.15W) , 0.01W 0.05W}7A 0.15 W, (SD) (for S, z 0.6 g only) 0.11 W, (ASD) = 1080.44_ kips Where SDS = �1 + (ASCE 7-05 Sec 11.4.4) SDI = 0.6 (ASCE 7-05 Sec 11.4.4.) SI = 0.6 E (ASCE 7-05 Sec 11.4. 1) R = 6.5 (ASCE 7-05 Tab 12.2-1) I = 1" (IBC 06 Tab 1604.5 & ASCE 7-05 Tab 11.5-1) Ct = 0.02. ; (ASCE 7-05 Tab 12.8-2) hn = 8.0 ft X = 0.75 (ASCE 7-05 Tab 12.8-2) T = Ct (hn)x = 0.095 sec, (ASCE 7-05 Sec 12.8.2.1) late Vertical Distribution of Forces & Allowable Elastic Drift (ASCE 7-05, Sec 12.8.3 & 12.8.6) Level Wx hx hxk Wxhxk Fx , ASD (12.8-11) ke,allowable, ASD Roof F-7663-27-877 8.0 78656 1080.4 I o.11 wx I 0.3 9832.0 78656 1080.4 Where k = 1 for T <= 0.5 sxe,allowable, ASD = Da I / (1.4 Cd), (ASCE 7-05 Sec 12.8.6) k = 0.5 T + 0.75 for T @ (0.5 , 2.5) Cd = } '7 ---;,(ASCE 7-05 Tab 12.2-1) k = 2 for T >= 2.5 ' Aa= 0.02 E hsx, (ASCE 7-05 Tab 12.12-1) Diaphragm Forces (ASCE 7-05, Sec 12.10.1.1) Level Wx EWx Fx EFx Fpx , ASD, (12.10-1) Roof 9832.0 9832.0 1080.4 1080.4 1310.9 ( 0.13 Wx ) 9832.0 1080.4 Where Fmin = 0.2 SDS I Wx / 1.5 , ASD Finax = 0.4 SDS I Wx / 1.5. ASD • Reza PROJECT: `Seismic Load (Main,Bldg. Diaphragm 8) a PAGE: - 6gharpoui CLIENT: !Radi Residence w DESIGN BY: R.A. JOB NO.: _,111063.. DATE: # REVIEW BY: R.A. Two Story Seismic Anaivsis Based on 'IBC ,06 / CBC 07 line Base Shear (Derived from ASCE 7-05 Sec. 12.8) V= MAX{ MIN ISDI I/(RT) , SDS I/R] , 0.01 , 0.5S11/R)W = MAX{MIN[ 0.55W , 0.15W ] , 0.01W , 0.05W ) J = 0.15 W, (SD) (for S, Z 0.6 g only) 0.11 W, (ASD) = 9283.52 kips Where SDS = 1 ~ ' (ASCE 7-05 Sec 11.4.4) SDI = 0.6 1(ASCE 7-05 Sec 11.4.4) SI = 0.6. (ASCE 7-05 Sec 11.4. 1) R= 6.5 ' (ASCE 7-05 Tab 12.2-1) I = 1 (IBC 06 Tab 1604.5 & ASCE 7-05 Tab 11.5-1) Ct = 0.02 + (ASCE 7-05 Tab 12.8-2) hn = 17.0 ft X = 0.75 (ASCE 7-05 Tab 12.8-2) T = Ct(hn)x = 0.167 sec, (ASCE 7-05 Sec 12.8.2.1) Calculate Vertical Distribution of Forces & Allowable Elastic Drift (ASCE 7-05, Sec 12.8.3 & 12.8.6) Level Wx hx hxk Wxhxk Fx , ASD (12.8-11) ke,allowable, ASD Roof _� 44000 17. 17.0 748000 6478.6 (0.15M) 0.4 } 84480.0 9283.5 2ND 40480 8 8.0 323840 2804.9 (0.07M) 0.3 84480.0 1071840 9283.5 Where k = 1 for T <= 0.5 Ike,allowable, ASD = Aa I / (1.4 Cd), (ASCE 7-05 Sec 12.8.6) k = 0.5 T + 0.75 for T @ (0.5 , 2.5) Cd = 4 . ,(ASCE 7-05 Tab 12.2-1) k = 2 for T >= 2.5 Aa = 0.02 ' hsx, (ASCE 7-05 Tab 12.12-1) Diaphragm Forces (ASCE 7-05, Sec 12.10.1.1) Level Wx EWx Fx EFx Fpx , ASD, (12.10-1) Roof 44000.0 44000.0 6478.6 6478.6 6478.6 ( 0.15 Wx 2ND 40480.0 84480.0 2804.9 9283.5 5397.3 ( 0.13 Wx ) 84480.0 9283.5 Where Fmin = 0.2 SDS I Wx / 1.5 , ASD Finax = 0.4 SDS I Wx / 1.5 , ASD C� 9 Reza PROJECT: Seismic Coad (Main Bldg .Diaphragm C) PAGE: CLIENT : 'Radi Residence . DESIGN BY: R.A. sg harpou JOB NO.: '1111063 DATE I REVIEW BY: R.A. ITwo Story_ Seismic,Analysis.Based on IBC 06 / CBC 07 . _ I Determine Base Shear (Derived from ASCE 7-05 Sec. 12.8) V= MAX{ MIN [SDI I/(RT) , SDS I/R] , 0.01 , 0.5S11/R)W = MAX{ MIN[ 0.55W , 0.15W 1, 0.01W , 0.05W) 0.15 W, (SD) (for S1 2: 0.6 g only) 0.11 W, (ASD) = 1127.47 kips r ---n Where SDS = ' 1 (ASCE 7-05 Sec 11.4.4) SDI = 0.6 (ASCE 7-05 Sec 11.4.4) S1 = 0.6 (ASCE 7-05 Sec 11.4. 1) R= 6.5' (ASCE 7-05 Tab 12.2-1) f I = 3 1 I(IBC06Tabl6O4.5&ASCE7-05Tabll.5-1) Ct = 0.02 ASCE 7-05 Tab 12.8-2) �a( hn = 17.0 ft X = 0.75 (ASCE 7-05 Tab 12.8-2) T = Ct (hn)x = 0.167 sec, (ASCE 7-05 Sec 12.8.2.1) Iculate Vertical Distribution of Forces & Allowable Elastic Drift (ASCE 7-05, Sec 12.8.3 & 12.8.6) Level Wx hx hxk Wxhxk Fx , ASD (12.8-11) Roof 3606 1~ 7 17.0 61200 602.7 ( 0.17 Wx ) 2ND 6660 8' : 8.0 53280 524.7 ( 0.08 Wx ) 10260.0 114480 Where k = 1 for T <= 0.5 k = 0.5T+0.75 for T @ (0.5, 2.5) k = 2 for T>=2.5 Diaphragm Forces (ASCE 7-05, Sec 12.10.1.1) Level Wx EWx Fx EFx Roof 3600.0 3600.0 602.7 602.7 2ND 6660.0 10260.0 524.7 1127.5 10260.0 1127.5 Where Fmin = 0.2 SDS I Wx / 1.5 , ASD Finax = 0.4 SDS I Wx / 1.5 , ASD 1127.5 ke,allowable, ASD 0.4 0.3 ke,allowable, ASD = Aa l/ (1.4 Cd), (ASCE 7-05 Sec 12.8.6) Cd = ',(ASCE 7-05 Tab 12.2-1) 0 =' 0.02 I h ASCE 7-05 Tab 12.12-1 Aa t sx ( ) Fpx , ASD, (12.10-1) 602.7 (0.17Wx) 888.0 (0.13Wx) �61 • • • Reza PROJECT: SW#2 (On Grid Line 3, 2nd Floor) - PAGE: AsOamour CLIENT : iRadi Residence DESIGN BY: f R.A. f plf,for dead load JOB NO.: (111063 F__DATE )on6ao11! REVIEW BY: R.A. T DATA !AL FORCE ON DIAPHRAGM: vdia, WIND = ; . 230 i pN,for wind vena, SE,Smlc =1 270 { plf,for seismic TY LOADS ON THE ROOF: WDA = 500 f plf,for dead load Wu =; 400 ptf,for live load ISIONS: Lw= '12 ;ft, h = f1 8 ift L = 12 ft, hb= t _ 0 lft GRADE ( 0 or 1) _ 1 <= Sheathing and Single -Floor JM NOMINAL PANEL THICKNESS = 3/8 in ON NAIL SIZE ( 0=6d, 1=8d, 2=10d) i 1 :8d FIC GRAVITY OF FRAMING MEMBERS l 0.5 t = 0.221 in e„ = STUD SECTION -2 % ,•pcs,b= da = 0.15 in }in, h = ' 4, in _2_ SPECIES (1 =DFL, 2 = SP) 1^' DOUGLAS FIR -LARCH GRADE ( 1, 2, 3, 4, 5, or b) _ 4w ,;No. 2 f OPTION ( 1=ground level, 2=upper level) 2 upper level shear wall SUMMARY BLOCKED 3/8 SHEATHING WITH 8d COMMON NAILS 4 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, SILL PLATE ATTACHMENT 16d AT 6" O.C. THE SHEAR WALL DESIGN IS ADEQUATE. HOLD-DOWN FORCES: TL= 0.00 k , TR = 0.00 k (HOLD-DOWN NOT REQUIRED) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 2 - 2" x 4" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: IA= 0.23 in YSIS : MAX SHEAR WALL DIMENSION RATIO L / B = 0.7 < 3.5 T _ l [Satisfactory] MINE REQUIRED CAPACITY vb = 270 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 4 in) THF CFIFAR rAPArITIFA PFR IRr Tahla Sana d 1 Panel Grade L Min. Penetration in Min. Thickness in Blocked Nail Spacing Boundary & All Edges w Sheathing and Single -Floor 8d 1 1/2 1 3/8 FTI ,pro f� T, V. 230 hp h T. THE SHEAR WALL DESIGN IS ADEQUATE. HOLD-DOWN FORCES: TL= 0.00 k , TR = 0.00 k (HOLD-DOWN NOT REQUIRED) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 2 - 2" x 4" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: IA= 0.23 in YSIS : MAX SHEAR WALL DIMENSION RATIO L / B = 0.7 < 3.5 T _ l [Satisfactory] MINE REQUIRED CAPACITY vb = 270 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 4 in) THF CFIFAR rAPArITIFA PFR IRr Tahla Sana d 1 Panel Grade Common Nail Min. Penetration in Min. Thickness in Blocked Nail Spacing Boundary & All Edges 6 4 1 3 2 Sheathing and Single -Floor 8d 1 1/2 1 3/8 220 320 1 410 1 530 Note: The Indicated shear numbers have reduced by specific gravity factor per Ilit: note a. 4E DRAG STRUT FORCE: F = (L -LW) MAX(vma, WIND, Oovdla, SEISMIC) = 0.00 k 4E FLOOR SILL PLATE ATTACHMENT (NDS 2005, Table 11 Q & Table 11 L) SILL PLATE ATTACHMENT 16d AT 6" O.C. THF Hni n-nf1WN FARCFS• (f10 = 1 ) (Sec. 1633.2.6) EDGE STUD CAPACITY Pma„ = 3.73 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1350 psi CD = 1.60 Cp = 0.24 A = 10.5 in' E = 1600 ksi CF= 1.15 F,= 596 psi > fd = 355 psi [Satisfactory] vdla (plo Wall Seismic at mid -story lbs Overturning Moments ft -lbs Resisting Safety Net Uplift Moments ft -lbs Factors(III bs Holddown SIMPSON SEISMIC 270 154 26534 Left 40608 0.9 TL = 0 ,pro Right 40608 0.9 TR = 0 WIND 230 22080 Left 40608 2/3 TL = 0 G� Right 40608 2/3 TR = 0 EDGE STUD CAPACITY Pma„ = 3.73 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1350 psi CD = 1.60 Cp = 0.24 A = 10.5 in' E = 1600 ksi CF= 1.15 F,= 596 psi > fd = 355 psi [Satisfactory] (TL & TR values should include upper level UPLIFT forces if applic ECK SHEAR WALL DEFLECTION: (IBC; Section 2305.3.2) gVDh' vah hd. b A — A&-.ji g +Aslrar+ ANw wip+ Ocmnl spice 311P= + +0.75hen + = 0.228 in, Aso < EAL w w - e,allowable, aso - 0.343 in Where: vb = 270 plf, , ASD Lw = 12 ft E = 1.7E+06 psi [Satisfactory] (ASCE 7-05 12 A = 16.50 in` h = 8 ft G = 9.0E+04 psi Cd = 4 1= 1 t = 0.221 in e„ = 0.003 in da = 0.15 in (ASCE 7-05 Tab 12.2-1 & Tab 11 Ad = 0.02 ham, (ASCE 7-05 Tab 12.12-1) EDGE STUD CAPACITY Pma„ = 3.73 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1350 psi CD = 1.60 Cp = 0.24 A = 10.5 in' E = 1600 ksi CF= 1.15 F,= 596 psi > fd = 355 psi [Satisfactory] • • Reza PROJECT: .SW45 ((jn Grid Line 2, 1st Floor) PAGE: As har Dur CLIENT: JOB NO.: iRadi Residence_ X111063 - _ DATE: ;10/2612011, DESIGN BY: IR.A. REVIEW BY: IR.A. Shear Wall�Desian Based on1BC 06'/,CBC:07 / NDS 05 ' I Wog = INPUT DATA LATERAL FORCE ON DIAPHRAGM: Vdia, vnND = 559 ptf,for wind ha vdla, SEISMIC = 500 plf,for seismic GRAVITY LOADS ON THE ROOF: Wog = 650 pff,for dead load Right 12852 0.9 TR = 2123 W, = 400 pH,for live load DIMENSIONS: Lw = 6 'ft, h= 8 ft L = 6 ft, hp= 0 ft PANEL GRADE (0 or 1) = 1 <= Sheathing and Single -Floor MINIMUM NOMINAL PANEL THICKNESS = 15/32 in COMMON NAIL SIZE (0=6d, 1=8d, 2=10d) 2 10d SPECIFIC GRAVITY OF FRAMING MEMBERS 0.5 (ASCE 7-05 Tab 12.12-1) EDGE STUD SECTION 1 PCs, b = 4 in, h = 4 in SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH GRADE ( 1, 2, 3, 4, 5, or 6) 4 No. 2 f OPTION ( 1=ground level, 2=upper level) . 1 ground level shear wall SUMMARY BLOCKED 15/32 SHEATHING WITH 10d COMMON NAILS @ 3 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS ® 18 in O.C. L w Common Nail Min. Penetration in V. � � --------------------------- f� F T, ha 6 1 4 3 2 h 10d Ta 1 15/32 , Lw L HOLD-DOWN FORCES: TL = 3.04 k , TR = 3.04 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 4" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.45 in ANALYSIS CHECK MAX SHEAR WALL DIMENSION RATIO L / B = 1.3 < 3.5 [Satisfactory] DETERMINE REQUIRED CAPACITY vb = 559 plt, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 3 in) TNF CWFAR r:ADACITIFC DFR IRC T.W. 93nR d 1 Panel Grade Common Nail Min. Penetration in Min. Thickness in Blocked Nail Spacing Boundary & All Edges 6 1 4 3 2 Sheathing and Single -Floor 10d 1 5/8 1 15/32 1 310 1 460 600 770 NOW: the mdlcaled Shear numbers nave reauced by Specinc gravity Tactor per a5t,; note a. DETERMINE DRAG STRUT FORCE: F = (L -Lw) MAX( vdla, WINO. OOvd a. SEISMIC) = 0.00 k ( 00 = 1 ) (Sec. 1633.2.6) DETERMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab. 11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS ® 18 in O.C. THE Hnt n-nnWN Fr1RCFS- EDGE STUD CAPACITY Pmax = 4.41 kips, (this value should include upper level DOWNWARD loads if applicable) Fe = 1350 psi Co = 1.60 CP = 0.24 A = 12.25 int E= 1600 ksi CF = 1.15 Fc = 596 psi > fb = 360 psi [Satisfactory] 6 vdu (plo Wall Seismic at mid-st0 Ibs Overtuming Moments ft -lbs Resisting Safety Net Uplift Moments ft -lbs Factors lbs) Holddown SIMPSON SEISMIC 500 77 24307 Left 12852 0.9 T = 2123 y0�' Right 12852 0.9 TR = 2123 WIND 559 26832 Left 12852 2/3 T = 3044 161 Q 1 Right 12852 2/3 TR = 3044 EDGE STUD CAPACITY Pmax = 4.41 kips, (this value should include upper level DOWNWARD loads if applicable) Fe = 1350 psi Co = 1.60 CP = 0.24 A = 12.25 int E= 1600 ksi CF = 1.15 Fc = 596 psi > fb = 360 psi [Satisfactory] 6 (TL & TR values should include upper level UPLIFT forces if applicable) :CK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) 8v,h' vbh hdp +OSAdar + ANai! slip + OCW d splxr .dip — + + 0.75hei + = 0.448 In, ASD EALw Gt Lw 6xe,allowable,ASD= 0.343 in Where: vb = 559 plf, , ASD Lw = 6 ft E = 1.7E+06 psi (ASCE 7-05 12.8.6) A = 16.50 in` h = 8 ft G = 9.0E+04 psi Cd = 4 1 = 1 t = 0.298 in e„ = 0.011 in da = 0.15 in (ASCE 7-05 Tab 12.2-1 & Tab 11.5-1) = 0.02 ha (ASCE 7-05 Tab 12.12-1) EDGE STUD CAPACITY Pmax = 4.41 kips, (this value should include upper level DOWNWARD loads if applicable) Fe = 1350 psi Co = 1.60 CP = 0.24 A = 12.25 int E= 1600 ksi CF = 1.15 Fc = 596 psi > fb = 360 psi [Satisfactory] 6 • 0 Reza PROJECT : it%A f '(On Grid Line 3 `1st Floor) PAGE CLIENT : �Radi Residence DESIGN BY: IR As har our JOB NO.: (11.1063-F_DATE�10n6n0111 REVIEW BY: R.A:- Shear.Wall .DesianIBased: on, IBC 061 CBC 071 NDS 05 1 T DATA _ IAL FORCE ON DIAPHRAGM: Vd1a, WIND = 311 1 pB,for wind vdla, SEISMIC = 270 ` plf,for seismic TY LOADS ON THE ROOF: wDL = 650 pB,for dead load wLL = 400 plf,for live load ISIONS: L. 24.Ift, h = '.8 ft V. hp h Ta Gt Lw Ri t 205632 0.9 T = 0 GRADE (0 or 1) = 1,_j Sheathing and Single -Floor JM NOMINAL PANEL THICKNESS_3187 in ON NAIL SIZE ( 0=6d, 1=8d, 2=10d) 1. I 8 FIC GRAVITY OF FRAMING MEMBERS 0.5" 1 STUD SECTION Res, b = 4 j in , h = L�_6_ in SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH GRADE ( 1, 2, 3, 4, 5, or 6) 4 No. 2 (OPTION ( 1=ground level, 2=upper level) �1_ jground level shear wall SUMMARY BLOCKED 3/8 SHEATHING WITH 8d COMMON NAILS 4 in O.C. BOUNDARY $ ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 34 in O.C. L LW THE SHEAR WALL DESIGN IS ADEQUATE. HOLD-DOWN FORCES: TL = 0.00 k , TR = 0.00 k (HOLD-DOWN NOT REQUIRED) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 6" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.20 in PSIS MAX SHEAR WALL DIMENSION RATIO L / B = 0.33.5 � ! [Satisfactory] MINE REQUIRED CAPACITY vb = 311 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 4 in) THF SHFAR rAPAr.1TIFS PFR IRr Tahta 71171R A I Panel Grade Common Nail L I Min. Thickness in Blocked Nail Spacing I Boundary & All Edges le w 1 112 3/8 1 220 1 320 1 410 1 530 Moments ft -lbs Moments ftdbs Factors lbs SIMPSON ----_----------------- F T, V. V. hp h Ta L LW THE SHEAR WALL DESIGN IS ADEQUATE. HOLD-DOWN FORCES: TL = 0.00 k , TR = 0.00 k (HOLD-DOWN NOT REQUIRED) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 6" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.20 in PSIS MAX SHEAR WALL DIMENSION RATIO L / B = 0.33.5 � ! [Satisfactory] MINE REQUIRED CAPACITY vb = 311 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 4 in) THF SHFAR rAPAr.1TIFS PFR IRr Tahta 71171R A I Panel Grade Common Nail Min. Penetration in I Min. Thickness in Blocked Nail Spacing I Boundary & All Edges 6 1 4 1 3 2 Sheathing and Single -Floor 8d 1 112 3/8 1 220 1 320 1 410 1 530 Note: The indicated shear numbers have reduced by specific gravity factor per IBG note a. 4E DRAG STRUT FORCE: F = (L -L„.) MAX( vdla, WIND, noVdla. SEISMIC) = 0.00 k (DETERMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) 518 In DIA. x 10 In LONG ANCHOR BOLTS ® 34 in O.C. TME HnI n-nnWN FARCF9- (CIO = 1 ) (Sec. 1633.2.6) EDGE STUD CAPACITY PRS = 7.37 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1350 psi CD = 1.60 Cp = 0.54 A = 19.25 int E= 1600 ksi CF = 1.10 Fc* = 1272 psi > fc = 383 [Satisfactory] psi � vdM Wall Selsmic Overturning Resisting Safety Net Uplift Holddown (PIO at mid -story lbs Moments ft -lbs Moments ftdbs Factors lbs SIMPSON SEISMIC 270 307 53069 Lefl 205632 0.9 T = 0 Gt Lw Ri t 205632 0.9 T = 0 Where: vb = 311 ptf , ASD L„. = 24 ft E = 1.7E+06 psi [Satisfactory] (ASCE 7-05 12 y0y WIND 311 Cd = 4 I= 1 59712 Left 205632 2/3 T = 0 da = 0.15 in Right 205632 2/3 T = 0 Aa = 0.02 h. Q�p`t EDGE STUD CAPACITY PRS = 7.37 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1350 psi CD = 1.60 Cp = 0.54 A = 19.25 int E= 1600 ksi CF = 1.10 Fc* = 1272 psi > fc = 383 [Satisfactory] psi � (TL & TR values should include upper level UPLIFT forces if applic ECK SHEAR WALL DEFLECTION: ( IBC Section 2305,3.2) 8ynh3 vbh hdo A = A&„*,lg +Oskar+ ANwi snip+ Achoid splice Sup = + +0.75he„+ = 0.202 in, ASD < EALw Gt Lw $fce,allowable, aso = 0.343 in Where: vb = 311 ptf , ASD L„. = 24 ft E = 1.7E+06 psi [Satisfactory] (ASCE 7-05 12 A = 16.50 in` h = 8 it G = 9.0E+04 psi Cd = 4 I= 1 I= 0.221 in e„ = 0.004 in da = 0.15 in (ASCE 7-05 Tab 12.2-1 & Tab 11 Aa = 0.02 h. (ASCE 7-05 Tab 12.12-1) EDGE STUD CAPACITY PRS = 7.37 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1350 psi CD = 1.60 Cp = 0.54 A = 19.25 int E= 1600 ksi CF = 1.10 Fc* = 1272 psi > fc = 383 [Satisfactory] psi � • • 0 Reza PROJECT: 8W#7 (On Griddi a 4, 1st F166_ j -� PAGE: _ CLIENT: lRadi Residence DESIGN BY : 'R.A. As hal Our JOB NO.: 4;111063 � DATE~00n6/20111 REVIEW BY: 1R.A. Shear.Wall1DesifawBased on IBC 061 CBC 071 NDS 05 1 T DATA AL FORCE ON DIAPHRAGM: Vdia, WIND = 128 f pff,for wind ' 1 w Vdia. SEISMIC = 110 0f for seismic TY LOADS ON THE ROOF: wDL = 80 plf,for dead load WLL = 80 pB,for live load -� v� hp SIONS: Lw= 1� 6-� .ft, h = 8 it �F� L = 1 . 6 7ft, ho= i._0.. ;ft GRADE (0 or 1)= i_M1 <= Sheathing and Single -Floor h JM NOMINAL PANEL THICKNESS = 1 3/8 in ON NAIL SIZE (0=6d, 1=8d, 2=10d) 1 8d FIC GRAVITY OF FRAMING MEMBERS 0.5— STUD SECTION t -1 b = 4 in. h = 6 in ~ v° SPECIES (1 = DFL, 2 = SP) 1-7 DOUGLAS FIR -LARCH GRADE (1, 2, 3, 4, 5, or 6) 4 j No. 2-_ Lw (OPTION ( 1=ground level, 2=upper level) 1- _ } ground level shear wall THE SHEAR WALL DESIGN IS ADEQUATE. SUMMARY BLOCKED 3/8 SHEATHING WITH 8d COMMON NAILS Q 6 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS ® 48 in O.C. HOLD-DOWN FORCES: TL = 0.74 k , TR = 0.74 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 6" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: o = 0.26 in .YSIS _ MAX SHEAR WALL DIMENSION RATIO L / B = 1.3 < 3.5 � [Satisfactory] MINE REQUIRED CAPACITY vb = 128 pit, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 6 in) THF RHFAR CAPACITIFS PER IRC Tahle 23nR.4.1 Panel Grade Common Nail Min.Min. Penetration in Thickness in Blocked Nail Spacing Boundary & All Edges 6 1 4 1 3 1 2 Sheathing and Single -Floor 8d 1 1/2 1 3/8 1 220 1 320 1 410 1 530 Note: I ne Incicated shear numbers Have reduced by Specitic gravity Tactor per Itm; note a. JE DRAG STRUT FORCE: F = (L -Lw) MAX( Vdia. ww), f2OVdla SEISMIC ) - 0.00 k JE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) 5/8 In DIA. x 10 in LONG ANCHOR BOLTS ® 48 in O.C. THE HOLD-DOWN FORCES- ( Seo = 1 ) (Sec. 1633.2.6) EDGE STUD CAPACITY Pmax = 0.97 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1350 psi CD = 1.60 Cp = 0.54 A = 19.25 in' E= 1600 ksi CF = 1.10 F,= 1272 psi > % = 50 psi [Satisfactory] 6D vd,a Wall Seismic Overturning Resisting Safety Net Uplift I Holddown (plo at mid -story Ibs) ,h+0.75hei+hdn° Moments ft -lbs Factors 01bs SIMPSON SEISMIC 110 77 5587 Left 2592 0.9 TL = 542 ry Right 2592 0.9 T R= 542 Where: vb = 128 pit, ASD Lw = 6 It E = 1.7E+06 psi [Satisfactory] (ASCE 7-05 12.8.6) C_� 8 ft G = 9.0E+04 psi Cd = 4 1 = 1 I = 0.221 in en = Left 2592 2/3 T = 736 p`t WIND 128 8144 Aa = 0.02 h. Right 2592 1 2/3 T = 736 (ASCE 7-05 Tab 12.12-1) Q� EDGE STUD CAPACITY Pmax = 0.97 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1350 psi CD = 1.60 Cp = 0.54 A = 19.25 in' E= 1600 ksi CF = 1.10 F,= 1272 psi > % = 50 psi [Satisfactory] 6D (TL & TR values should include upper level UPLIFT forces if applicable) .CK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) 3 ,h+0.75hei+hdn° 0—A&,d.,+OSMar+ANwslip +OCh„dspl.aip=EAL = 0.260 in, ASD < + w Gt w - 6xe,al10wable, ASD = 0.343 in Where: vb = 128 pit, ASD Lw = 6 It E = 1.7E+06 psi [Satisfactory] (ASCE 7-05 12.8.6) A = 16.50 in` h = 8 ft G = 9.0E+04 psi Cd = 4 1 = 1 I = 0.221 in en = 0.001 in da = 0.15 in ,(ASCE 7-05 Tab 12.2-1 & Tab 11.5-1) Aa = 0.02 h. (ASCE 7-05 Tab 12.12-1) EDGE STUD CAPACITY Pmax = 0.97 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1350 psi CD = 1.60 Cp = 0.54 A = 19.25 in' E= 1600 ksi CF = 1.10 F,= 1272 psi > % = 50 psi [Satisfactory] 6D 0 • • Reza PROJECT : sSW48_(6n Grid Line a, 1st FloorF y PAGE: ' Asgharpour CLIENT : `Radi Residence JOB NO.: 111063 ��DATE ioaaao11: DESIGN BY : REVIEW BY: 1R.A. iR.A. INPUT DATA LATERAL FORCE ON DIAPHRAGM: vd)a. WIND = 242 ; plf,for wind vena, seismic =1 220 f plf,for seismic GRAVITY LOADS ON THE ROOF: Wog = t 150 4, pttfor dead load WLL = 20 i plf,for live load DIMENSIONS: Lw = 12 ;ft. h = i 8 ft L = 12 ft, hp= 0 �ft PANEL GRADE (0 or 1) _ + _1 <= Sheathing and Single -Floor MINIMUM NOMINAL PANEL THICKNESS = u3/8+ i in COMMON NAIL SIZE (0=6d, 1=8d, 2=10d) 1 18d SPECIFIC GRAVITY OF FRAMING MEMBERS {� 0.5 ,y EDGE STUD SECTION ~�1.. ' pcs, b = + 4 _ I in , h = _- 4 lin SPECIES (1 = DFL, 2 = SP) 1 ? DOUGLAS FIR -LARCH GRADE ( 1, 2, 3, 4, 5, or 6) �__ 4, _ No. 2 - (SaUsfactory] (ASCE 7-05 12.8.6) STORY OPTION (1=ground level, 2=upper level) _ 1 !ground level shear wall DESIGN SUMMARY BLOCKED 3/8 SHEATHING WITH 8d COMMON NAILS 4 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 44 in O.C. TO Lw THE SHEAR WALL DESIGN IS ADEQUATE. HOLD-DOWN FORCES: TL = 1.08 k , TR = 1.08 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 4" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: 0 = 0.21 in YSIS : MAX SHEAR WALL DIMENSION RATIO LIB = 0.7 < 3.5 . J[Satisfactory] MINE REQUIRED CAPACITY vb = 242 pit ( 1 Side Diaphragm Required, the Max. Nail Spacing = 4 in) TNF SHEAR r`APACITIFC PFR IRC T.N. 93nR d 1 Panel Grade w Min. Penetration in FT11111 11 111 6 4 1 3 2 M F V. 1, hp h TO Lw THE SHEAR WALL DESIGN IS ADEQUATE. HOLD-DOWN FORCES: TL = 1.08 k , TR = 1.08 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 4" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: 0 = 0.21 in YSIS : MAX SHEAR WALL DIMENSION RATIO LIB = 0.7 < 3.5 . J[Satisfactory] MINE REQUIRED CAPACITY vb = 242 pit ( 1 Side Diaphragm Required, the Max. Nail Spacing = 4 in) TNF SHEAR r`APACITIFC PFR IRC T.N. 93nR d 1 Panel Grade Common Nail Min. Penetration in Min. Thickness in Blocked Nail Spacing I Boundary & All Edges 6 4 1 3 2 Sheathing and Single -Floor 8d 1112 1 3/8 1 220 1 320 1 410 530 Note: The indicates shear numbers nave reduced Dy specmc gravity racwr per itsC; note a. JE DRAG STRUT FORCE: F = (L -L,,,) MAX(vow wiND, novdi. sasMIC) = 0.00 k VE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005. Tab. `11 E) 518 in DIA. x 10 in LONG ANCHOR BOLTS @ 44 in O.C. TUC unl n_nnwnl cnoccc ( i10 = 1 ) (Seo. 1633.2.6) EDGE STUD CAPACITY Pmax = 2.15 kips, (this value should include upper level DOWNWARD loads if applicable) F� = 1350 psi Co = 1.60 Cp = 0.24 A = 12.25 int E= 1600 ksi CF = 1.15 Fc' = 596 psi > % = 175 psi [Satisfactory] 0 vdu Wall Seismic Overturning Resisting Safety Net Uplift Holddown I at mid -story lbs Moments ft -lbs Moments ft -lbs Factors (III S) SIMPSON SEISMIC 220 154 21734 Left 15408 0.9 TL = 656 ,y Right 15408 0.9 TR = 656 Where: vb = 242 plf, , ASD Lw = 12 ft E = 1.7E+06 psi (SaUsfactory] (ASCE 7-05 12.8.6) C_ WIND 242 Cd = 4 1= 1 23232 Left 15408 213 T L = 1080 da = 0.15 in Right 15408 2/3 Tg = 1080 Da = 0.02 h. Q�p`ti EDGE STUD CAPACITY Pmax = 2.15 kips, (this value should include upper level DOWNWARD loads if applicable) F� = 1350 psi Co = 1.60 Cp = 0.24 A = 12.25 int E= 1600 ksi CF = 1.15 Fc' = 596 psi > % = 175 psi [Satisfactory] 0 (TL & TR values should include upper level UPLIFT forces if applicable) _CK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) 3 8Vbh vbh hd° — OBcid6+g +OSlrar'+ ONcd slip+ "'d splim slip — + +0.75hei + = 0,211 in, ASD < EAG», Gt Lw 8xe,auoweWe, aso = 0.343 in Where: vb = 242 plf, , ASD Lw = 12 ft E = 1.7E+06 psi (SaUsfactory] (ASCE 7-05 12.8.6) A = 16.50 in` h = 8 ft G = 9.0E+04 psi Cd = 4 1= 1 t = 0.221 in e„ = 0.002 in da = 0.15 in (ASCE 7-05 Tab 12.2-1 & Tab 11.5-1) Da = 0.02 h. (ASCE 7-05 Tab 12.12-1) EDGE STUD CAPACITY Pmax = 2.15 kips, (this value should include upper level DOWNWARD loads if applicable) F� = 1350 psi Co = 1.60 Cp = 0.24 A = 12.25 int E= 1600 ksi CF = 1.15 Fc' = 596 psi > % = 175 psi [Satisfactory] 0 0 • • Reza PROJECT: Gnd Line b, 1st Floor) CLIENT: 'Radi Residence iharpour JOB NO.: il11063 i--DATE-7j& T DATA AL FORCE ON DIAPHRAGM: Vdia, WtNp = ( 128 1 plf,for wind vdia, sElsmic 100 plf,for seismic _ TY LOADS ON THE ROOF: wDL - . 20 pN,for dead load = 20 plf,for live load WL BIONS: Lw= 6 1ft, h = I 8 ft L= 8 ft, h- 0 ft GRADE (0 or 1) _ Sheathing_ and Single -Floor �1�<= JM NOMINAL PANEL THICKNESS = i 3/ ; in ON NAIL SIZE ( 0=6d, 1=8d, 2=10d) 1 j8d FIC GRAVITY OF FRAMING MEMBERS 0:5 ? STUD SECTION t_.._.I_ prs, b = 4 in , h = i _4 �lin SPECIES (1 = DFL, 2 = SP) I 1 DOUGLAS FIR -LARCH GRADE ( 1, 2, 3, 4, 5, or 6) 4_j No. 2 Cd = 4 1= 1 ( OPTION (1=ground level, 2=upper level) L_ 1,_ _,ground level shear wall SUMMARY BLOCKED 3/8 SHEATHING WITH 8d COMMON NAIL$ @ 6 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. PAGE: DESIGN BY: JR.A. REVIEW BY: R.A, 4 Lw THE SHEAR WALL DESIGN IS ADEQUATE. HOLD-DOWN FORCES: TL = 0.86 k , TR = 0.86 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 4" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.26 in YSIS MAX SHEAR WALL DIMENSION RATIO L ! B = 1.3 < 3.5 i [Satisfactory] MINE REQUIRED CAPACITY vb = 128 pH, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 6 in) TNF AWPAR r.APArJTIFS PFR Mr. Tnhlo 93nR d i Panel Grade L Min. Penetration in Min. Thickness in Blocked Nail Spacing Boundary & All Edges w Sheathing and Single -Floor 8d 1 1/2 1 3/8 FTI SIMPSON F T, Vft Ve hp h T. 4 Lw THE SHEAR WALL DESIGN IS ADEQUATE. HOLD-DOWN FORCES: TL = 0.86 k , TR = 0.86 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 4" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.26 in YSIS MAX SHEAR WALL DIMENSION RATIO L ! B = 1.3 < 3.5 i [Satisfactory] MINE REQUIRED CAPACITY vb = 128 pH, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 6 in) TNF AWPAR r.APArJTIFS PFR Mr. Tnhlo 93nR d i Panel Grade Common Nail Min. Penetration in Min. Thickness in Blocked Nail Spacing Boundary & All Edges 6 4 1 3 1 2 Sheathing and Single -Floor 8d 1 1/2 1 3/8 220 320 1 410 1 530 Note: The indicated shear numbers have reduced by specific gravity factor per IBC note a. DRAG STRUT FORCE: F = (L -Lw) MAX( vdm, wND. Oovdia. sElsM(c ) = (DETERMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab, 11E) 518 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. THE HOLD-DOWN FORCES: 0.00 k (00 = 1 ) (Sec. 1633.2.6) EDGE STUD CAPACITY Pmax = 0.85 kips, (this value should include upper level DOWNWARD loads if applicable) FD = 1350 psi Co = 1.60 Cp = 0.24 A = 12.25 int E = 1600 ksi CF = 1.15 F�* = 596 psi > % = [Satisfactory] 89 psi 700 vdia Wall Seismic Overturning Resisting Safety Net Uplift Holddown (plo at mid -story Ibs Moments ft -lbs Moments ft -lbs Factors (III S) SIMPSON SEISMIC 100 77 5107 Left 1512 0.9 TL = 624 15 Right 1512 0.9 TR = 624 Where: vb = 128 plf , ASD L, = 6 If E = 1.7E+06 psi [Satisfactory] (ASCE 7-05 12 cle 8 If G = 9.0E+04 psi Cd = 4 1= 1 t = 0.221 in e„ = Left 1512 2/3 T = 856 p`t WIND 128 6144 Aa = 0.02 h. Right 1512 2/3 TR = 856 (ASCE 7-05 Tab 12.12-1) QZ EDGE STUD CAPACITY Pmax = 0.85 kips, (this value should include upper level DOWNWARD loads if applicable) FD = 1350 psi Co = 1.60 Cp = 0.24 A = 12.25 int E = 1600 ksi CF = 1.15 F�* = 596 psi > % = [Satisfactory] 89 psi 700 (TL & TR values should include upper level UPLIFT forces if appiic =CK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) 3 d. = OB wig + Ashear + ON d slip + OChord aptire .dlp = EA,h', + ,h + 0.75hei + = 0.260 in, ASD < L. sxe,allowable, AM = 0.343 in Where: vb = 128 plf , ASD L, = 6 If E = 1.7E+06 psi [Satisfactory] (ASCE 7-05 12 A = 16.50 in` h = 8 If G = 9.0E+04 psi Cd = 4 1= 1 t = 0.221 in e„ = 0.001 in da = 0.15 in (ASCE 7-05 Tab 12.2-1 & Tab 11 Aa = 0.02 h. (ASCE 7-05 Tab 12.12-1) EDGE STUD CAPACITY Pmax = 0.85 kips, (this value should include upper level DOWNWARD loads if applicable) FD = 1350 psi Co = 1.60 Cp = 0.24 A = 12.25 int E = 1600 ksi CF = 1.15 F�* = 596 psi > % = [Satisfactory] 89 psi 700 rI • Reza PROJECT : fSW#10'(On Grid_L'ine 'lifF160 )_ PAGE: CLIENT: 'Radi Residence DESIGN BY: ; R.A. Asaharpour JOB NO.: 1111063 F- DATE7`1o/26/2011 REVIEW BY: fR.A. UT DATA :RAL FORCE ON DIAPHRAGM: vdia, WIND = . 253 ( ptf,for wind vdle, SEISMIC = ` 220 1 pH,for seismic VITY LOADS ON THE ROOF: wpL = 150 plffor dead load wLL = 20 pN,for live load :NSIONS: Lw = 10 ft, h= 8 r ft L = 10 ft, h,= L 0� ift EL GRADE (0 or 1) = , _ 1 _ '<= Sheathing and Single -Floor MUM NOMINAL PANEL THICKNESS = 3/8 in IMON NAIL SIZE (0=6d, 1=8d, 2=10d) 1 8d 'IFIC GRAVITY OF FRAMING MEMBERS 0.5 E STUD SECTION _ 1�' pcs, b = _ 4_� in , h = _4 in SPECIES (1 = DFL, 2 = SP) i 1 �; DOUGLAS FIR -LARCH GRADE ( 1, 2, 3, 4, 5, or 6)_ 4_ �No. 2 RY OPTION ( 1=ground level, 2=upper level) L _ 1 _ `ground level shear wall SUMMARY BLOCKED 3/8 SHEATHING WITH 8d COMMON NAILS 4 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS ® 42 in O.C. THE SHEAR WALL DESIGN IS ADEQUATE. HOLD-DOWN FORCES: TL = 1.31 k , TR = 1.31 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 4" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.24 in IALYSIS ECK MAX SHEAR WALL DIMENSION RATIO L / B = 0.8 < 3.5 _ [Satisfactory] TERMINE REQUIRED CAPACITY ve = 253 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 4 in ) THF SHFAR r:APAr rrIFS PFR IRr. Tahla >3nR d 1 Panel Grade w Min. Penetration in Min. Thickness in Blocked Nail Spacing I Boundary & All Edges f� T, V. h, h Ta THE SHEAR WALL DESIGN IS ADEQUATE. HOLD-DOWN FORCES: TL = 1.31 k , TR = 1.31 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 4" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.24 in IALYSIS ECK MAX SHEAR WALL DIMENSION RATIO L / B = 0.8 < 3.5 _ [Satisfactory] TERMINE REQUIRED CAPACITY ve = 253 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 4 in ) THF SHFAR r:APAr rrIFS PFR IRr. Tahla >3nR d 1 Panel Grade Common Nail Min. Penetration in Min. Thickness in Blocked Nail Spacing I Boundary & All Edges 6 1 4 1 3 1 2 Sheathing and Single -Floor 8d 11/2 3/8 1 220 1 320 1 410 1 530 Note: T he indicated shear numbers nave reduced by Specnic gravity Tactor per ICC; note a. iE DRAG STRUT FORCE: F = (L -Lw) MAX(vdaa, wiNo. nova a. sEisMic) = 0.00 k VE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS ® 42 in O.C. TMG MAI n_IIAWAI CARr:FC• (Do = 1 ) (Sec. 1633.2.6) EDGE STUD CAPACITY Pmax = 2.06 kips, (this value should include upper level DOWNWARD loads if applicable) Fd = 1350 psi CD= 1.60 Cp = 0.24 A = 12.25 in' E = 1600 ksi CF = 1.15 Fc = 596 psi > fd = 168 psi [Satisfactory] T' vdu Wall Seismic Overturning Resisting Safety Net Uplift Holddown 1 at mid -story lbs Moments ft -lbs Moments ft -lbs Factors (III S) SIMPSON SEISMIC 220 128 18112 Left 10700 0.9 T = 848 ,5 Right 10700 0.9 TR = 848 Where: vo = 253 plf, , ASD Lw = 10 ft E = 1.7E+06 psi [Satisfactory] (ASCE 7-05 12.8.6) �Oh WIND 253 Cd = 4 1 = 1 20240 left 10700 2/3 TL = r 1311 da = 0.15 in Right 10700 1 2/3 TR = 1311 Aa = 0.02 hu Q�p`ti EDGE STUD CAPACITY Pmax = 2.06 kips, (this value should include upper level DOWNWARD loads if applicable) Fd = 1350 psi CD= 1.60 Cp = 0.24 A = 12.25 in' E = 1600 ksi CF = 1.15 Fc = 596 psi > fd = 168 psi [Satisfactory] T' (T,, & TR values should include upper level UPLIFT forces if applicable) ECK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) 8vnh3+ Vbh+0.75he„+had° A=Aee,wmg+As&.,+Arvaasrp+Ocmdspaa ao= = 0.238 in, ASD < EAL, Gt Lw Sxe,allowable,nso= 0.343 in Where: vo = 253 plf, , ASD Lw = 10 ft E = 1.7E+06 psi [Satisfactory] (ASCE 7-05 12.8.6) A = 16.50 in` h = 8 ft G = 9.0E+04 psi Cd = 4 1 = 1 t = 0.221 in e„ = 0.002 in da = 0.15 in (ASCE 7-05 Tab 12.2-1 & Tab 11.5-1) Aa = 0.02 hu (ASCE 7-05 Tab 12.12-1) EDGE STUD CAPACITY Pmax = 2.06 kips, (this value should include upper level DOWNWARD loads if applicable) Fd = 1350 psi CD= 1.60 Cp = 0.24 A = 12.25 in' E = 1600 ksi CF = 1.15 Fc = 596 psi > fd = 168 psi [Satisfactory] T' (2)(L -k Wc"CL ot 6X"Yiof) Page 1 of Anchor Calculations Anchor Selector (Version 4.5.1..0). Job Name: Datefrime : 5/20/2011 11:43:46 AM 1) Input Calculation Method : ACI 318 Appendix D For Cracked Concrete Code: AC) 318-08 Calculation Type: Analysis a) Layout Anchor: 5/8" SET -XP Number of Anchors: 1 Steel Grade: A307 GR. C Embedment Depth: 10 in Built-up Grout Pads: No r..., c n c y; Cyj IIANCHOR •Nua IS POSITIVE FOR TENSION AND NEGATIVE FOR COMPRESSION. + INDICATES CENTER OF TRE ANCHOR Anchor Layout Dimensions cx1 : 1.75 in cx2 : 10.25 in cyl : 60 in cy2 : 60 in b) Base Material Concrete: Normal weight fc : 2500.0 psi • Cracked Concrete: Yes` c V : 1.00 Condition : B tension and shear OF : 1381.3 about:blank 5/20/2011 VuaY MuY ♦Nua bY2 MUX by Vuax bx1 bx2 IIANCHOR •Nua IS POSITIVE FOR TENSION AND NEGATIVE FOR COMPRESSION. + INDICATES CENTER OF TRE ANCHOR Anchor Layout Dimensions cx1 : 1.75 in cx2 : 10.25 in cyl : 60 in cy2 : 60 in b) Base Material Concrete: Normal weight fc : 2500.0 psi • Cracked Concrete: Yes` c V : 1.00 Condition : B tension and shear OF : 1381.3 about:blank 5/20/2011 Thickness, ha : 18 in Supplementary edge reinforcement: No Hole Condition : Dry Concrete Inspection: Continuous Temperature Range : 1 (Maximum 110 OF short term and 75 OF long term temp.) c) Factored Loads Load factor source: ACI 318 Appendix C Nua : 1850 Ib Vuay : 0 Ib Muy : 0 Ib*ft ex: 0in ey:0in Moderate/high seismic risk or intermediate/high design category: Yes Anchor w/ sustained tension : No Anchors only resist wind and/or seismic loads : Yes Apply entire shear load at front row for breakout : No d) Anchor Parameters From [F-SAS-CSAS2009]: Anchor Model = SETXP da = 0.625 in Category = 1 het ` 10 in hmin ` 13.125 in cac = 30 in cmin = 1.75 in smin = 3 in Ductile = Yes 2) Tension Force on Each Individual Anchor Anchor #1 Nual = 1850.00 Ib Sum of Anchor Tension ENua = 1850.00 Ib e'Nx = 0.00 in e'Ny=0.00 in 3) Shear Force on Each Individual Anchor Resultant shear forces in each anchor: Anchor #1 Vual = 0.00 Ib (Vualx = 0.00 lb, Vualy = 0.00 Ib ) • Sum of Anchor Shear EVuax = 0.00 Ib, EVuay = 0.00 Ib e'Vx=0.00 in Page 2 of 8 psi Vuax : 0 Ib MUX: 0 Ib*ft about:blank 5/20/2011 rage -)uio e'Vy=0.00 in • 4) Steel Strength of Anchor in Tension [Sec. D.5.1] Nsa = nAse futa [Eq. D-3] Number of anchors acting in tension, n = 1 Nsa = 13110 Ib (for a single anchor) [F-SAS-CSAS2009] = 0.80 [D.4.5] ONsa = 10488.00 Ib (for a single anchor) 5) Concrete Breakout Strength of Anchor in Tension [Sec. D.5.2] Ncb = ANc'ANco4ed,N'I'c,N4cp,NNb [Eq. D-4] Number of influencing edges = 2 hef = 10 in ANco = 900.00 int [Eq. D-6] ANC = 360.00 int Smallest edge distance, ca,min = 1.75 in 'Ped,N = 0.7350 [Eq. D-10 or D-11] Note: Cracking shall be controlled per D.5.2.6 Tc,N = 1.0000 [Sec. D.5.2.6] `1'cp,N = 1.0000 [Eq. D-12 or D-13] Nb = kck q f, C heft .5 = 26879.36 Ib [Eq. D-7] kc = 17 [Sec. D.5.2.6] Ncb = 7902.53 Ib [Eq. D-41 0 = 0.75 [D.4.5] 05eis = 0.75 ON = 4445.17 Ib (for a single anchor) 6) Adhesive Strength of Anchor in Tension [Sec. D.5.3 (AC308 Sec.3.3)] Tk,cr = 718 psi [F-SAS-CSAS2009] kcr = 17 [F-SAS-CSAS2009] hef (unadjusted) = 10 in Nao = Tk,crn dahef = 14097.90 Ib [Eq. D -16f] Tk;uncr = 2263.00 psi for use in (Eq. D -16d] scr,Na = min[20 da � (Tk,uncr 1450) , 3hef] = 15.616 in [Eq. D -16d] 7y about: blank 5/20/2011 Page 4 of 8 ccr,Na — Scr,Na/2 = 7.808 in [Eq. D -16e] Na = ANa/ANao`l'ed,NaTp,NaNao [Eq. D -16a] ANao = 243.86 int [Eq. D -16c] ANa = 149.26 int Smallest edge distance, ca,min = 1.75 in `l'ed,Na = min[0.7+0.3ca,min/ccr,Na , 1.01 = 0.7672 [Eq. D -16m] Tp,Na = 1.0000 [Sec. D.5.3.14] Na = 6620.37 Ib [Eq. D -16a] 0 = 0.75 [F-SAS-CSAS2009] Oseis = 0.75 ONa = 3723.96 Ib (for a single anchor) 7) Side Face Blowout of Anchor in Tension [Sec. D.5.4] Concrete side face blowout strength is only calculated for headed anchors in tension close to an edge, cal < 0.4hef. Not applicable in this case. 8) Steel Strength of Anchor in Shear [Sec D.6.1] Vsa = 7865.00 Ib (for a single anchor) Veq;-- Vsaay.seis [AC308 Eq. 11-271 ay.seis =O.71 [F-SAS-CSAS2009] Veq = 5584.15 Ib = 0.75 [D.4.5] Veq = 4188.11 Ib (for a single anchor) 9) Concrete Breakout Strength of Anchor in Shear [Sec D.6.2] Case 1: Anchor checked against total shear load In x -direction... Vcbx = Avcx/Avcox`Ved,V`l'c,V`l'h,V Vbx [Eq. D-21] Cal = 10.25 in Avcx = 472.78 int Avcox = 472.78 int [Eq. D-23] `i'ed,v = 1.0000 [Eq. D-27 or D-28] . `l'c,v = 1.0000 [Sec. D.6.2.7] `ph,V = 4 (1.5cal / ha) = 1.0000 [Sec. D.6.2.81 about:blankc 0 5/20/2011 Page S of 8 Vbx = 7(le/ da )0.2. da),� f c(cal)1.5 [Eq. D-24] • Ie=5.00 in Vbx = 13762.96 Ib Vcbx = 13762.96 Ib [Eq. D-21] ¢� = 0.75 �seis = 0.75 Vcbx = 7741.67 Ib (for a single anchor) In y -direction... Vcby = Avcy/Avcoy`1'ed,V4'c,V`l'h,V Vby [Eq. D-211 Cal = 12.00 in (adjusted for edges -per D.6.2.4) Avcy = 216.00 in Avcoy = 648.00 in2 [Eq. D-23] Ted,V = 0.7292 [Eq. D-27 or D-28] `Pc,v = 1.0000 [Sec. D.6.2.7] `l'h,v = � (1.5cal / ha) = 1.0000 [Sec. D.6.2.81 Vby = 7(le/ da )0.2. dakf c(cal)l.5 [Eq. D7241 1e-5.00 in Vby = 17434.04 Ib Vcby = 4237.44 Ib [Eq. D-21] = 0.75 �seis = 0.75 Vcby = 2383.56 lb (for a single anchor) Case 2: This case does not apply to single anchor layout Case 3: Anchor checked for parallel to edge condition Check anchors at cxl edge Vcbx = Avcx/Avcox4'ed,V Vc,V4'h,V Vbx [Eq. D-21] Cal = 1.75 in Avcx = 13.78 in2 Avcox = 13.78 in2 [Eq. D-23] `Ped,v = 1.0000 [Sec. D.6.2.1(c)] • `l'c,v = 1.0000 [Sec. D.6.2.7] about:blank 5/20/2011 Page 6 of 8 4'h,v = 1 (1.5ca1 / ha) = 1.0000 [Sec. D.6.2.8] • Vbx = 7(le/ da )0,24 daa'4 fc(ca1)1.5 [Eq. D-24] le = 5.00 in Vbx = 970.92 Ib Vcbx = 970.92 Ib [Eq. D-21 ] Vcby = 2 * Vcbx [Sec. D.6.2.1 (c)] Vcby = 1941.84 Ib 0 = 0.75 �seis = 0.75 OVcby = 1092.28 Ib (for a single anchor) Check anchors at cy1 edge Vcby = Avcy/Avcoy`1'ed,V`1'c,V`1'h,V Vby [Eq. D-21] Cal = 12.00 in (adjusted for edges per D.6.2.4) Avcy = 216.00 in2 IvcOy = 648.00 in2 [Eq. D-231 `f ed,v = 1.0000 [Sec. D.6,2.1 (c)] `Fc,v = 1.0000 [Sec. D.6.2.7] `Fh,V = 4 (1.5ca1 / ha) = 1.0000 [Sec. D.6.2.8] Vby = 7(le/ da )0.2 , J dad` � f c(ca1) 1 .5 [Eq. D-241 le = 5.00 in Vby;-- 17434.04 Ib Vcby = 5811.35 Ib [Eq. D-21] Vcbx = 2 * Vcby [Sec. D.6.2.1(c)] Vcbx = 11622.69 Ib 0 = 0.75 Oseis = 0.75 OVcbx = 6537.76 Ib (for a single anchor) Check anchors at c,2 edge Vcbx = Avcx/Avcox`1'ed,V`1'c,V`1''h,V Vbx [Eq. D-21] Cal = 10.25 in Avcx = 472.78 in2 %7 about:btank 5/20/2011 Page 7 of 8 Avcox = 472.78 in2.[Eq. D-23] • `1'ed,V = 1.0000 [Eq. D-27 or D-28] [Sec. D.6.2.1 (01 `1'c,v = 1.0000 [Sec. D.6.2.7] `Ph,V = 4 (1±5cal / ha) = 1.0000 [Sec. D.6.2.8] Vbx = 7(le/ da )0.24 dad' 4 f c(cal )l .5 [Eq. D-24] le = 5.00 in Vbx = 13762.96 Ib Vcbx = 13762.96 Ib [Eq. D-21 ] Vcby = 2 * Vcbx [Sec. D.6.2.1(c)] Vcby = 27525.92 Ib 0 = 0.75 �seis = 0.75 OVcby = 15483.33 lb (for a single. anchor) Check anchors at cy2 edge Vcby = ' vcVAvcoy`1'ed,V` C,v`1'h,V Vby [Eq. D-21 ] • cal = 12.00 in (adjusted for edges per D.6.2.4) Agcy = 216.00 in2 A„cOy = 648.00 in2 [Eq. D-23] `1'ed,v = 1.0000 [Sec. D.6.2.1(c)] qlc,v - 1.0000 [Sec. D.6.2.7] Th,V = 4 (1.5cal / ha) = 1.0000 [Sec. D.6.2.81 Vby = 7(le/da )0.24 da�,4 fc(cal)1.5 [Eq.'D-24] le = 5.00 in Vby = 17434.04 lb Vcby = 5811.35 Ib [Eq. D-21] Vcbx = 2 * Vcby [Sec. D.6.2.1(c)] Vcbx'= 11622.69 Ib � = 0.75 Oseis = 0.75 OVcbx = 6537.76 Ib (for a single anchor) . 10) Concrete Pryout Strength of Anchor in Shear [Sec. D.6.3] 078 about:blank 5/20/2011 VCP = min[kcpNa1kcpNcb] [Eq. D -30a] kcp = 2 [Sec. D.6.3.2] Na = 6620.37 Ib (from Section (6) of calculations) Ncb = 7902.53 Ib (from Section (5) of calculations) Vcp = 13240.74 Ib = 0.75 [D.4.5] �seis = 0.75 Vcp = 7447.92 Ib (for a single anchor) 11) Check Demand/Capacity Ratios [Sec. D.7] Note: Ratios have been divided by 0.5 factor for brittle failure. Tension - Steel : 0.1764 - Breakout: 0.8324 - Adhesive : 0.9936 - Sideface Blowout: N/A Shear - Steel : 0.0000 - Breakout (case 1) : 0.0000 • - Breakout (case 2) : N/A - Breakout (case 3) : 0.0000 - Pryout : 0.0000 V.Max(0) <= 0.2 and T.Max(0.99) <= 1.0 [Sec D.7.1] Interaction check: PASS Use 5/8" diameter A307 GR. C SET -XP anchor(s) with 10 in. embedment 0 vage zs of ?s °79 about:blank 5/20/2011 Page 1 of 2 Anchor Calculations Anchor Selector (Version 4.5.1.0) Job Name: Date/Time : 5/20/2011 11:43:46 AM Calculation Sumrnapl - ACI 318 Appendix 0 For Cracked Concrete per ACI 318-08 Anchor Anchor I Steel * of Anchors I Embedment Depth (in) Category 5/8" SET -XP IA307 GR. C 11 10 1 Concrete Concrete Cracked pc(psi) 1Fc.v Normal weight lYes 12500.0 11.00 0 0 1 Yes Condition Thickness (in) Suppl. Edge Reinforcement B tension and shear 18 No Hole Condition Inspection Temp. Range _ DryConcrete Continuous 1 Factored Loads Nua (Ib) Vuax (lb) Vuay (lb) Mux (lb -ft) Muy (lb -ft) 1850 10 10 10 10 ex (in) ey (in) jMqd/high seismic jAnchor./ sustained tension Anchor only resists 1wind/seis loads Apply entire shear @ front row 0 0 1 Yes INo 1yes. INo Individual Anchor Tension Loads N uat (Ib) 1850.00 e.Nx0n) e,Ny(in) 0.00 10.00 Individual Anchor Shear Loads V ual (lb) 0.00 e.vx(in) elv,(in) 0.00 10.00 Tension Strengths Steel (m = 0.80 ) Nsa(lb) 0143a(lb) Nua0b) N ua /mNsa 13110 110488.00 11850.00 10.1764 Concrete Breakout (0 = 0.75 , (Pseis = 0.75 ) Neb(lb) mNb(lb) Nua(lb) Nua /kDNcb 7902.53 14445.17 11850.00 10.4162 Adhesive (m = 0.75 , mseis = 0.75 ) Na(lb) mNa(Ib) Nua(lb) Nua /mNa 6620.37 13723.96 11850.00 10.4968 • about:blank 0 5/20/2011 Side -Face Blowout does not apply Shear Strengths Steel ((D = 0.75 , ccv.seis = 0.71 ) Veq(lb) mVeQ(lb) Vua(Ib) V ua /kDVeq 5584.15 14188.11 10.00 10.0000 Concrete Breakout (case 1) (m = 0.75 , Oseis = 0.75 ) Vcbx(lb) mVcbx(lb) Vuax(lb) Vuax /mVcbx 13762.96 7741.67 10.00 10.0000 VcbY(Ib) 4)V.Y(lb) I Vuay(lb) I Vuay /4)Vcby Vua /4)Vcb 4237.44 2383.56 10.00 10.0000 10.0000 Concrete Breakout (case 2) does not apply to single anchor layout Concrete Breakout (case 3) (m = 0.75 . (Dseis = 0.75 ) cx1 edge V,Y(lb) I mV.Y(lb) I Vuay(lb) I VuaY /4,VcbY 1941.84 1092.28 10.00 10.0000 cy1 edge Vcbx(Ib) kDVcbx(Ib) Vuax(Ib) Vuax /mVcbx 11622.69 6537.76 10.00 10.0000 cx2 edge Vcby(lb) . OVcby(lb) Vuay(Ib) VuaY 10VcbY 27525.92115483.3310.00' 0.0000 cy2 edge Vcbx(Ib) mVcbx(Ib) Vuax(Ib) Vuax /4)Vcbx Vua /4)Veb 11622.69 6537.76 0.00 10.0000 10.0000 Pryout ((D = 0.75. Oseis = 0.75 ) Vcp(Ib) mVcp(lb) Vuax(Ib) Vuax /mVcp 13240.74 17447.92 10 10.0000 licp(Ib) OVcp(lb) Vuay(Ib) Vuay /kDVcp Vua /kDVcp 13240.74 17447.92 10 10.0000 10.0000 Note: Ratios have been divided by 0.5 factor for brittle failure. Interaction check V.Max(0) - 0.2 and T.Max(0.99) - 1.0 [Sec D.7.1] Interaction check: PASS Use 5/8" diameter A307 GR. C SET -XP anchor(s) with 10 in. embedment �1 about:blank 5/20/2011