Loading...
MUP 2005-689I t P.O. Box 1504 LA QUINTA, CALIFORNIA 92247-1504 78-495 CALLE TAMPICO LA QUINTA, CALIFORNIA 92253 " October 17, 2005 (760) 777-70'00 FAX (760).777-7.10 1 Mr. David Howard Cherokee Homes 73-180 Highway 111 Palm Desert, CA 92260 SUBJECT: MINOR USE PERMIT 2005-689 X45 -W :TA.EST-RELLA ' ` 1 -.Dear Mr. Howard: Your request for approval of Minor Use Permit 2005-689, allowing the construction of a casita addition at 49-045 Vista Estrella in Rancho La Quinta, is hereby approved. You may now contact the Building & Safety Department for your building permit. Enclosed is the approved original Deed. Restriction for -this Minor Use Permit. It must be signed by the owner in front of'a Notary ,Public: The original approved documents are then to be recorded with the County Recorder,. with a recorded copy given to the City -for our files. The Community Development Department will sign the job card when the recorded copy is received, which would provide our clearance to the Building. & Safety Department to issue the building final inspection. Until the recorded copy is received by the Community Development Department, your Minor Use Permit is not complete and a final inspection .will not be conducted -by the Building & Safety Department. Should you have any questions, please call me at (766)'777-'7067. Very truly yours, JAY WUU Assistant Planner Attachments c,&Buildir nd*Safety Department z. . RECORDING REQUESTED'BY: Mr. Larry Higby WHEN RECORDED PLEASE MAIL TO: Mr. David Howard Cherokee Homes 73=180 Highway 111 Palm Desert, CA 92260 i COVENANT AND AGREEMENT RESTRICTING THE USE OF,THE. RESIDENCE AT 49-045 VISTA ESTRELLA, LA QUINTA, CALIFORNIA This Covenant and Agreement are :made and executed. this 171h day- of October by Mr. Larry Higby, as the recorded owner(s) of the property described herein. The City of La Quinta, a Municipal Corporation, is hereby made a party to this Agreement for the purposes set forth below: The undersigned hereby certifies that . he/she is • the property owner of the following described real property in the City of La. Quinta; County of Riverside, State of California: LOT 99, TR29457-1, in the City of La:Quinta, County of Riverside, State of California In consideration. of the City of La Quinta issuing a building permit for certain improvements which will be constructed on said property, the undersigned .does hereby covenant and agree to, and with said City,.to restrict the use of said property as follows: 1. The guest house may not be rented nor sold independent_ of the main single- family residence (Minor Use Permit No. 2005-689); 2. No kitchen or cooking facilities shall be constructed in the guest house per the provisions of Chapter 9.30.030 (RL Zone District) and 9..60.110 (Guest Houses) of the La Quinta Municipal Code; 3.' All on-site facilities are intended for the sole. occupancy of the property owner(s)., guests, and caretakers (i:e., a -maid and/or housekeeper, etc.); and, 4. The guest house shall be used primarily . asp a sleeping facility, and shall be maintained in accordance., with- all zoning and other codes asset forth in the La Quinta Municipal Code, -.as may be amended from time to.time. This Covenant and Agreement shall run with the land and shall be binding upon future owners, their successors; heirs, or assigns, and. ourselves, and shall continue in . effect while said accessory building remains on the real property or unless otherwise released .by the authority of the City of La Quinta. All leases of said dwelling and/or property shall be subject to this` restriction. This Agreement shall be entitled to the remedy of injunctive relief in addition of any remedy in'law or.equity. This Covenant and Agreement and the provisions hereof are irrevocable., except by the written consent of all parties to the agreement; including the City of La Quinta, a Municipal Corporation. The City. shall have the right to enforce each and every provision hereof and the parties agree that the Agreement shall not be. rescinded, revoked, modified, or otherwise amended or changed,. without the expressed' written consent of the City first'being obtained. In the event that the owners, their heirs, assigns or successors in interest, shall fail to perform any obligation hereunder, they hereby agree to pay all .costs and . expenses incurred by the City -of La Quinta in securing performance of such obligation, including attorney's fees. By:. 1. 2. 3. Signatures) Printed Name of all owner(s) Dated: X Dou las R. revelopment Date Community Director City of La Quinta STATE OF CALIFORNIA ) COUNTY OF RIVERSIDE ) ss. CITY. OF LA QUINTA ) On October 18, 2005' before me, Regenia Hensley,.Notary Public, personally appeared DOUGLAS R. EVANS personally known to me to be the person whose name is subscribed to the within instrument- and acknowledged to me that he executed the same in his authorized capacity, and that by. his signature on the instrument the person or the entity upon behalf of which the person acted, executed the instrument. WITNESS my hand and official seal. (Seal) _. . tc(viA'tty. !No I A HENS LEY rots Pubic ry Public 1w"Mide ty •MyC4mm;E fk123'2008 Commission .# 1.521423 Expiration: October 23,-2008- p F ~ � `\ � . • �. a, 9 �� � � _ �.., '- 1 y • .. _. � a, 9 �� @ • . • •.� •2`. � @ @... .��• .�. ; Vi 0 Hanger Schedule Supported Cho Bottom Carried Member Member rd Chord LISP EJOI See Plan —Simpson X JU S24 - LUT24 light square end trusse CG02, C,101 X X Heavy square end trus: HJHC26 corner girder and 1 en( X heavy hanger 2 ply X X X x X X X X X X X This document is only a recommendation. A.C. x Houston does not take responcablity for hanger design or connection. ; Vi 0 0 The A.C. Houston Lumber Company's Truss Warranty Project Name: HIGBY CASITA 0 Date of Delivery: 10 4 05 This document shall be considered an express warranty by The A.C.-Houston Lumber Company for trusses we designed and manufactured for the above -referenced project. This warranty shall supercede all other warranties whether expressed or implied, written or verbal. Warranties: The A.C. Houston Lumber Company herein warrants for a period of ONE YEAR from the date of delivery referenced above, that the manufactured trusses shall be of fair and average quality in the trade and within the description of the contract and the project's documents as produced by the registered professional engineer for the project, hereinafter referred to as the "Engineer -of -Record". This warranty is for truss design and manufacturing only and specifically excludes installation and damage to the trusses when the trusses are out of our immediate control. This ` warranty also specifically excludes work performed by the Engineer -of -Record including, but not limited to, structural design of the structures structural drawings and construction design documents. Upon written notice, The A.C. Houston Lumber Company herein reserves the right to inspect, repair, or replace trusses that are not in conformity to contract documents, the Engineer -of -Record's project documents, improperly designed, or defectively manufactured trusses. All remedies and damages are strictly limited to repair, or ` replacement of the non -conforming truss or trusses. Such replacement or repair necessity shall be determined at the sole discretion of The A.C. Houston Lumber Company. Replacement or repairs shall be performed within a reasonable period of time and The A.C. Houston Lumber Company shall not. be responsible for project delay damages or repair and replacement of other trades' work. This warranty shall be considered void if the truss or,integral truss structure is affected by adverse influences including, but not limited to, moisture, temperature, corrosive chemicals, gases, cuts, damage caused by or contributed to by another trade, improper installation, improper or insubstantial bracing, improper field storage and handling, or additional dead or live loads beyond that stated in the truss engineering attributable to: roof, floor, partitions, mechanical, fire sprinkler systems; attic, storage, wind, snow drift, seismic.or other acts of nature. The foregoing warranties are exclusive, and are in lieu of all other warranties, whether written, oral, or implied, including any warranties regarding the merchantability and fitness for a particular purpose not specified herein. Revised 02-03 0 • fAAN The A.C. Houston Lumber Company "Lumbermen Since 1884" • To: Building department, building designer, and contractor Re: Truss design(s) for the following project(s): Customer: Cherokee Homes Job Name: Higby Casita Tag: IT05-0248 The 12 attached pages contain truss designs for the project referenced above. These truss designs were developed based on information provided to The A.C. Houston Lumber Company. These truss designs have been prepared at The A.C. Houston Lumber Company using MiTek connector plates (code approvals: ESR -1311, 1352) and must be fabricated by The A.C. Houston Lumber Company. Refer to UBC 97, IBC 2000, IBC 2003,-ANSI/TPI 1-2002, WTCA,1-1995, BCSI 1-03, and commentaries and summaries available from WTCA, ICC, ANSI, and TPI for important information about trusses; including scope of responsibilities of various parties. The seal on these drawings indicate acceptance of professional engineering responsibility solely • for the truss component shown under the conditions stated on the truss design. The engineer, who sealed these drawings, has not verified if these drawings are appropriate for a particular building plan. The suitability and use of these components for any particular building is the responsibility of the building designer, per Chapter 2 of ANSI/TPI 1-2002.. • DO NOT CUT, DRILL, NOTCH, MODIFY, OR OTHERWISE DAMAGE ANY TRUSS WITHOUT PRIOR WRITTEN PERMISSION. REFER TO BCSI 1-03 PRIOR TO INSTALLING FOR GENERAL INFORMATION ABOUT HANDLING, INSTALLATION, AND BRACING. DO NOT OVERLOAD TRUSSES WITH LARGE QUANTITIES OF CONSTRUCTION MATERIALS. THESE CONDITIONS MAY RESULT IN INJURY OR LOSS OF LIFE. ANY PARTY WHO DOES SO TAKES FULL RESPONSIBILITY FOR ALL COST INCLUDING INVESTIGATION AND • ENGINEERING DESIGN. ALL BEAMS, HEADERS, AND THEIR CONNECTION ARE BY OTHERS. If you have any questions, contact The A.C. Houston Lumber Company at: 760 347-3692. Cordially, / �O 9ROFESS i �jp/M r eO �ti9 William T. Bolduc, P.E. C3 z * FxP s 020 m N� • VI '949 OFCALIFOR�\P 8 X005 2912 East La Madre Way, North Las Vegas, NV 89081-2628 Telephone: (702) 633-5000 • P.O. Box 337410, North Las Vegas, NV 89033-7410 Fax: (702) 633-4826 www.achoustonlumber.com L 0 0 `J 9 0 0 A� Job ' Truss Truss Type Qty Ply Higby Casita IT05-0248 A01 COMMON 3 1 Job Reference (optional) A.C. Houston, Indio, CA - 92201„ L.V. 6.200 s Mar 5 2005 MiTek Industries, Inc. Fri Aug12 10:23:12 2005 Page 1 4-6-2 8-2-8 11-10-14 16-5-0 4-6-2 3-8-6 3-8-6 4-6-2 Scale = 1:26. Camber = 1/8 i 44 = 3 4.00 12 2x4 2x4 -- 2 W1 4 2 W 1 5 �. 6. 3x6 = 3x8 = 3x6 = 8-2-8 16-5-0 828 828 LOADING (psf) SPACING 2-0-0 CSI DEFL in (loc) I/deft Lid PLATES GRIP TCLL 20.0 Plates Increase 1.25 TC 0.33 Vert(LL) -0.09 5-6 >999 240 MT20 197/144 TCDL 20.0- Lumber Increase 1.25 BC 0.67 Vert(TL) -0.23 5-6 >851 180 BCLL 0.0 Rep Stress Incr YES WB 0.15 Horz(TL) 0.04 5 n/a n/a BCDL 10.0 Code UBC97/ANSI95 (Matrix) Weight: 50 lb LUMBER' BRACING TOP CHORD 2 X 4 SPF No.2 TOP CHORD Sheathed or 4-0-1 oc purlins. BOT CHORD 2 X 4 SPF No.2 BOT CHORD Rigid ceiling directly applied or 8-3-10 oc bracing. ' WEBS 2 X 4 SPF No.2 REACTIONS (Ib/size) 1=806/0-3-8, 5=806/0-3-8 Max Horz 1=-46(load case 6) Max Uplift1=-226(load case.3), 5=226(load case 4) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD, 1-2=-1845/551,2-3=-1378/36813-4=-1378/367,4-5=-1845/551 BOTCHORD 1-6=-500/1707,5-6=-466/1707 WEBS 2-6=-504/276, 3-6=-80/554, 4-6=-504/276 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) This truss has been designed for the wind loads generated by 80 mph winds at 25 ft above ground level, using 8.4 psf top'chord dead load and 4.8 psf bottom chord dead load, in the exterior(2) zone roof zone on an occupancy category II, condition II partially enclosed building, with exposure C ASCE 7-95 per. UBC97/ANSI95 If end verticals or cantilevers exist, they are exposed to wind. If porches exist, they are not exposed to wind. The lumber DOL increase is 1.33, and the plate grip increase is 1.33 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 226 Ib uplift at joint 1 and 226 Ib uplift at joint 5. LOAD CASE(S) Standard PRO FEss70 �O `� C 34X29 m AXP 6%30/07 rn _ - tf1 CIO L qU CFCALIF�R�\P 205 0 0 • 0 0 0 0 0 Job Truss Truss Type Qty Ply Higby Casita IT05-0248' A02 FINK 3 1 Job Reference o tional A.C. Houston, Indio, CA: 92201„ L.V. 6.200 s Mar 5 2005 MiTek Industries, Inc. Fri Aug 12 10:23:12 2005 Page 1 5-2-10 9-7-8 13-0-8 5-2-10 4-4-14 3-5-0, Scale =1:22. 4x4 = Camber- 1/16 i 3 4.00 F12 2x4 II 4 2x4 \\ 2 W 2 1 ' W4 N Cq N 1 6 3x4 = 3x4 = 44 = I 6-8-4 12-6-12 13-04 6-8-4 5-10-8 0-5-12 Plate Offsets X 1:0-1-120-1-8 LOADING (psf) SPACING 2-0.0 CSI DEFL in' (loc) I/defl Ud PLATES GRIP TCLL 20.0 Plates Increase 1.25 TC 0.27 Vert(LL) 0.05 1-6 >999 240 MT20 197/144 TCDL 20.0 Lumber Increase 1.25 BC 0.47 Vert(TL) -0.12 1.-6 >999 180 BCLL 0.0 Rep Stress Incr YES WB 0.24 Horz(TL) 0.02 5 - n/a n/a BCDL, 10.0 Code UBC97/ANSI95 ' (Matrix) Weight: 45 Ib LUMBER BRACING TOP CHORD 2 X 4 SPF No.2 TOP CHORD Sheathed or 4-9-15 oc purlins, except end verticals. BOT CHORD 2 X 4 SPF No.2 BOT CHORD Rigid ceiling directly applied or 9-5-1 oc bracing. WEBS 2 X 4 SPF No.2 REACTIONS (Ib/size) 1=638/0-3-815=638/0-3-8 Max Horz t=7(tbd case 4) . - - Max UpliftTs;190(Vid case 3), 5=-172(load case 3) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 'i-2=-1326/408,2-3=-1028/334,3-4=-96/88,4-5=-147/87 BOT CHORD 1-6=-377/1198, 5-6=-119/501 WEBS 2-6=-425/246, 3-6=-168/627, 3-5=-637/207 . NOTES 1) Unbalanced roof live loads have been considered for this design. 2) This truss has been designed for the wind loads generated by 80 mph winds at 25 ft above ground level, using 8.4 psf top chord dead load and 4.8 psf bottom chord dead load, in the exterior(2) zone roof zone on an occupancy category ll; condition II partially enclosed building, with exposure C ASCE 7-95 per UBC97/ANSI95 If end verticals or cantilevers exist, they are exposed to wind. If porches exist, they are not exposed to wind. The lumber DOL increase is 1.33, and the plate grip increase is 1.33 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 190 Ib uplift at joint 1 and 172 Ib uplift at joint 5. LOAD CASE(S) Standard 1PROFt;SS70 �p w� C3 z 6/3Q p7 OFCALIFOR�\P 6, ?fps • • 0 0 Job Truss Truss Type Oty Ply Higby Casita IT05-0248 A03 FINK 3 ]Job Reference (optional) A.C. Houston, Indio, CA -9220% L.V. 6.200 s Mar 52005 MiTek Industries, Inc. Fri Aug 12 10:23:13 2005 Page 1 5-2-10 9-7-8 14-0-6 19-3-0 . 5-2-10 4-4-14 4-4-14 5-2-10 i Scale = 1:31. Camber= 1/8 i 4x6 = 3 4.00 12 2x4 2x4 2 W 1 4 1 5 I; 4x6'= 7 6 4x6 = 3x4 c' 3x4'= 6-8-4 12-6-12 19-3-0 6-8-4 5-10-8 6-8-4 LOADING (psf) SPACING. ' . 2-0-0 CSI DEFIL in (loc) Vdefl . Ud . PLATES GRIP . TCLL 20.0 Plates Increase 1.25 TC 0.33 , Vert(LL) > 0.10 7 >999 240 MT20 197/144 ' TCDL 20.0 Lumber Increase 1.25 BC 0.68 Vert(TL) -0.20 1-7 >999 180 BCLL 0.0 Rep Stress Incr YES WB 0.13 Horz_ (TL) 0.06 5 n/a n/a BCDL 10.0 Code UBC97/ANSI95 (Matrix) Weight: 60 lb LUMBER BRACING TOP CHORD 2 X 4 SPF No.2 TOP CHORD Sheathed or 3.7-12 oc purlins. BOT CHORD 2 X 4 SPF No.2 BOT CHORD Rigid ceiling directly applied or 7-7-5 oc bracing. WEBS 2 X 4 SPF No.2- t REACTIONS (Ib/size) 1=948/0-3-8, 5=948/0-3-8 Max Horz 1=-54(load case 6) :. Max Upliftl=-266(load case 3), 5=-266(load case 4) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-2247/638, 2-3=-1962/567, 3-4=-1962/568, 4-5=-2247/638 BOT CHORD 1-7=-580/2067, 6-7=-312/1420, 5-6= 541/2067 WEBS 2-7=-405/23813-7=-165/594,3-6=-165/594,4-6=-405/238 NOTES ' 1) Unbalanced roof live loads have been considered for this design. 2) This truss has been designed for the wind loads generated by 80 mph winds at 25 ft above ground level, using 8.4 psf top chord dead load and 4.8 psf bottom chord dead load, in the exterior(?) zone roof zone on an occupancy category ll, condition II partially enclosed building, with exposure C ASCE 7-95 per UBC97/ANSI95 If end verticals or cantilevers exist, they are exposed to wind. If porches exist, they are not exposed to wind. The lumber DOL increase is 1.33, and the plate grip increase is 1.33 3) This truss has been designed fora 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 266 Ib uplift at joint 1 and 266 Ib uplift at joint 5: LOAD CASE(S) Standard QROFESS/ O�L9 \AM t- e0 7n G C 34 z EXP An 61310 ML CALIFOR Ll -0 : . `J Ll 0 0 Job Truss Truss Type QtyPly Higby-Casita IT05*-0248 A04 - COMMON 1 1 Job Reference (optional) A.G. Houston, Indio, CA - 92201,, L.V. 6.200 s Mar 5 2005 MiTek Industries, Inc. Fri Aug 12 10:23:13 2005 Page 1 5-6-0 11-0-0 5-6-0 5-6-0 Scale = 1:17. 48 11 2x4 11 2 2X4 11 3x4 3x4 -- 4.00 F1 2 3x4 53x4 T W-1 T2 T Li .3x6 = 4x 2x4 11 2x4 11 46 . 4' 2x4 11. 3x6 5-6-6 Y 11-0-0 5-6-0 5-6-0 Plate Offsets (X,Y): (1:0 -3 -4,0 -1 -01,[1:0 -9 -4,0 -1 -41,(3:0 -3-4,0-1-01,[3:0-9-4,0-1-41,[6:0-1-12,0-1-0],[8:0-1-12,0-1-01 LOADING (psf) SPACING 2-0-0 CSI DEFIL in . (loc) I/clefl Ud PLATES GRIP TCLL 20.0 Plates Increase 1.25. TC 0.19 Vert(LL) 0.02 1-4 >999 240 MT20 197/144 TCDL 20.0 Lumber Increase 1.25 BC 0.32 Vert(TL) -0.05 3-4 >999 180 BCLL 0.0 Rep Stress Incr YES WB 0.05 Horz(TL) 0.02. 3 n/a n/a. BCDL 10.0 Code UBC97/ANS195 (Matrix) Weight: 41 lb LUMBER BRACING TOP CHORD 2 X 4 SPF No.2 TOP CHORD Sheathed or 6-0-0 oc purlins. SOT CHORD 2 X 4 SPF No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 2 X 4 SPF No.2 OTHERS 2 X 4 SPF No.2 REACTIONS ..(Ib/size) 1=535/0-3-8,3=535/0-3-8 !".Max Horz 1 =29(load case 5) Max Upliftl =- 15.1 (load case 3), 3=-1 51 (load case 4) FORCES .(Ib) = Maximum Cohipression/Maximum Tension TOP CHORD 1-2==1077/291, 2-3=-1077/290 BOT CHORD -4---229/987, 374.=-229/987 .1 WEBS 2-4=0/227 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) This truss has been designed for the wind loads generated by 80 mph winds at 25 It above ground level, using 8.4 psf top chord dead load and 4.8 lost bottom chord dead load, in the exterior(2) zone roof zone on an occupancy category 11, condition 11 partially enclosed building, with exposure C ASCE 7-95 per UBC97/ANS195 If end verticals or cantilevers exist, they are exposed to wind. If porches exist, they are not exposed to wind. The lumber DOL increase is 1.33, and the plate grip increase is 1.3.3 3) Truss.designed for wind loads in the plane of the truss only. For studs 'exposed to wind (normal to the face), see MiTek "Standard Gable End Detail" 4) Gable studs spaced at 1-4-0 oc. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) Provide 'mechanical connection (by others) of truss to bearing plate capable of withstandi.hg 151 lb uplift at joint 1 and 151 lb uplift at joint 3. LOAD CASE(S)Standard V ROFE�sqyo, P�m 7. 4, -Z LIJ G) Z 613 M 0107.. - OPCA 0 0 • 0 K] 0 0 .• 0 Job Truss Truss Type Ory Ply Higby Casita IT05-0248 CG01 MONO TRUSS 2 1 Job Reference o tional A.C. Houston, Indio, CA - 92201„ L.V. 6.200 s Mar 5 2005 MiTek Industries, Inc. Fri Aug 12 10:23:13 2005 Page 1 544 5-4-4 2x4 11 Scale = 1:10. 2 2.83 F12 W1 T1 1, 131 AME 3x6 = 3x4 = 3 2x4 11 5-4-4 5-4-4 Plate Offsets X [1:0-3-7,0-0-91 LOADING (psf) SPACING 2-0-0 CSI, DEFL in (loc) I/deft Ud PLATES GRIP TCLL 20.0 Plates Increase '1.25 TC 0.42 Vert(LL) -0.01 1-3 >999 240 MT20 197/144 TCDL 20.0 Lumber Increase 1.25 BC 0.07 Vert(TL) -0.01 1-3 >999 180 BCLL 0.0 Rep Stress Incr NO WB 0.06 Horz(TL) 0.00 3 Wei n/a BCDL 10.0 Code UBC97/ANSI95 (Matrix) Weight: 17 lb LUMBER BRACING TOP CHORD 2 X 4 SPF No.2 TOP CHORD Sheathed or 5-4-4 oc purlins, except end verticals. BOT CHORD 2 X 6 SPF 165OF 1.5E BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 2 X 4 SPF No.2 REACTIONS (Ib/size) 1=113/0-3-8,3=226/Mechanical Max Horz 1=24(load'case 4) = Max Uplift1=-30(load case 3), 3=-72(load case 3) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-25129,2-3=-181/94 BOTCHORD 1-3=0/23 NOTES 1) This truss has been designed for the wind loads generated by 80 mph winds at 25 ft above ground level, using 8.4 psf top chord dead load and 4.8 psf bottom chord dead load, in the exterior(2) zone roof zone on an occupancy category Il, condition II partially enclosed building, with exposure C ASCE 7-95 per UBC97/ANSI95 If end verticals or cantilevers exist, they are exposed to wind. If porches exist, they are not exposed to wind. The lumber DOL increase is 1.33, and the'plate grip increase is 1.33 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 30 Ib uplift at joint 1 and 72 Ib uplift at joint 3. 4) In the LOAD CASE(S) section, (dads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Regular: Lumber Increase=1.25, Plate Increase=1.25 Trapezoidal Loads (plf) Vert: 1.=0(F=10, B=10) -to -3=-27(F=-3, B=-3), 1=0(F=40, B=40) -to -2=-107(F=-14, B=-14) pROFFss/ ��O 1AM T. 90 07i9 C.3.4 Z. AXP 6/3 p � . 07N C�VtL . CALIFOR�\P �6 2��S n u L� 0 Ll `J 9 0 Job�CG ss Truss Type Ory Ply Higby Casita IT05-0248 02 MONO TRUSS 7 1 Job Reference (optional) A.C. Houston, Indio, CA - 92201„ L.V. 6.200 s Mar 5 2005 MiTek Industries, Inc. Fri Aug 12 10:23:14 2005 Page 1 4-4-8 7-7-10 11-2-4 4-4-8 3-3-2 3-6-10 Scale = 1:18.1 _ . .. 3x4 11 4 5 2.83 12 3x4 3 3x4: W 1 2 1 W3 W2 W5 4 1 ' 61 3x6 = 8 7` g 2x4 11. 3x4_ — 4x4 4-4-8 7-7-10 11-2-4. 4-4-8 3-3-2 3-6-10 Plate Offsets X [1:0-2-12,0-1-81 LOADING (psf) SPACING 2-0-0 CSI DEFL in (loc) Well Ud PLATES GRIP TCLL 20.0 Plates Increase 1.25 TC 0.28 Vert(LL) 0.06 8 >999 240 MT20 197/144 TCDL 20.0 Lumber Increase 1.25 BC 0.49 Vert(TL) -0.10 8 >999 180 BCLL 0.0 Rep Stress Incr NO WB 0.30 Horz(TL) 0.03 6 n/a n/a BCDL 10.0 Code UBC97/ANSI95 (Matrix) Weight: 39 lb LUMBER BRACING TOP CHORD 2 X 4 SPF No.2 TOP CHORD Sheathed or 4-4-7 oc purlins, except end verticals. BOT CHORD 2 X 4 SPF No.2 BOT CHORD Rigid ceiling directly applied or 8-0-8 oc bracing. WEBS 2 X 4 SPF No.2 REACTIONS (Ib/size) 1=492/0-3-8,6=1034/0-3-8 Max Horz 1=168(load case 4) Max Uplift1=-128(load case 3), 6= 370(load case 3) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-.1722/455, 2-3=-1193/317, 3-4=-138/29, 4-5=-11/0, 4=6=-347/193 BOT CHORD ' 1-8=-538/1656;7-8=-538/1656,6-7=-352/1130 WEBS 2-8=0/131, 2-7=-554/195, 3-7=0/412; 3-6=-1215/434 NOTES 1) This truss has been designed for the wind loads generated by 80 mph winds at 25 It above ground level, using 8.4 psf top chord dead load and 4.8 psf bottom chord dead load, in the exterior(2) zone roof zone on an occupancy category Il, condition II partially enclosed building, with exposure C ASCE 7-95 per UBC97/ANSI95 If end verticals or cantilevers exist, they are exposed to wind. If porches exist, they are not exposed to wind. The lumber DOL increase is 1.33, and the plate grip increase is 1.33 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 128 Ib uplift at joint 1 and 370 lb uplift at joint 6. 4) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Regular: Lumber Increase=1.25, Plate Increase=1.25 Trapezoidal Loads (pit) Vert: 1=0(F=40, B=40) -to -4=-218(F=-69, 8=-69), 4=-178(F=-69, 8= -69) -to -5=-184(F=-72, B=-72), 1=0(F=10, QROFFSq B=10) -to -6=-56(F=-18, B=-18) O . AMTeO ti9 6 0�0�:.. CIOL q CAuFOR�\�.... U9 16 ' 20ps 0 0 0 0 0 0 0 Job Truss Truss Type Qty Ply Higby Casita IT05-0248 CG03 MONO TRUSS 4 ,Job Reference (optional) A.C. Houston, Indio, CA - 92201„ L.V. 6.200 s Mar 5 2005 MiTek Industries, Inc. Wed Sep 28.17:18:03 2005 Page 1 4-11-6 9-0-13 4-11-6 4-1-7 gcale = 1:15. 3x4 fl 4 . 3 2.83f12 3x4 2 W1 T1 W3 W2 1 131 NA 3x4 = 6 5 .2x4 II 3x8 = 4-11-6 9-0-13 4-11-6 4-1-7 Plate Offsets X [1:0-0-12,0-1-81 LOADING (psf) ` SPACING 2-0-0 CSI DEFL in (loc) I/defl Ud PLATES GRIP TCLL 20.0 Plates Increase 1.25 TC 0.35 Vert(LL) 0.03 1-6 5999 240 MT20 197/144 TCDL 20.0 Lumber Increase 1.25 BC 0.35- Vert(TL) -0.06 1-6 . >999 180 BCLL 0;0 Rep Stress Incr NO WB 0.26 Horz(fL) 0.01 -5 n/a n/a BCDL 10.0 Cade UBC97/ANSI95 (Matrix) Weight: 28 lb LUMBER BRACING TOP CHORD 2 X 4 SPF No.2 TOP CHORD Sheathed or 5-8-3 oc purlins, except end verticals. BOT CHORD 2 X 4 SPF No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 2 X 4 SPF No.2 REACTIONS (Ib/size) 1=318/0-3-8, 5=676/Mechanical . Max Horz1=102(load case 4) '. Max Uplift -I =-81 (load case 3), 5=-237(load case 3) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-1029/273,2-3=-159/35,3-4=-9/0,3-5=-309/170 BOT CHORD 1-6=-303/985; 5-6=-303/985 WEBS 2-6=0/203, 2-5=-923/323 NOTES 1) This truss has been designed for the wind loads generated by 80 mph winds at 25 It above ground level, using 8.4 psf top chord dead load and 4.8 psf bottom chord dead load, in the exterior(2) zone roof zone on an occupancy category II, condition II partially enclosed building, with exposure C ASCE 7-95 per UBC97/ANSI95 If end verticals or cantilevers exist, they are exposed to wind. If porches exist, they are not exposed to wind. The lumber DOL increase is 1.33, and the plate grip increase is 1.33 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 81 ib uplift at joint 1 and 237 Ib uplift at joint 5. 4) In the LOAD CASE(S) section, loads applied to the face of the truss are rioted as front (F) or back (B). LOAD CASE(S) Standard 1) Regular: Lumber Increase=1.25, Plate Increase=1.25 Trapezoidal Loads (plf) Vert: 1=0(F=40, B=40) -to -3=-176(F=-48, B=-48), 3=-136(F=-48, B= -48) -to -4=-141(F=-51, B=-51), 1=0(F=10, pROFES S/O B=10) -to -5=-45(F=-13, B=-13) ��O 7, \'1Pft4 �7G n G) pas p29 m � N �A�. C%VtL... .. OF CA IF Oct 4, 2005 0 0 • 0 0 0 0 Job Truss Truss Type Qty Ply Higby Casita IT05-0248 CJG01 MONO TRUSS 2 1 Job Reference (optional) A.C. Houston, Indio, CA - 92201„ L.V. 6.200 s Mar 5 2005 MiTek Industries, Inc. Fri Aug 12 10:23:14 2005 Page 1 3-6-7 5-5-12 3-6-7 1-11-5 .'. 2x4 11 Scale = 1:11. 3 2.83 12 3x4 2 W1 Ti 3 2' . 1 131 LJ 3x6 = 3x4 = NA 2x411 5NA 4x4 = 376-7 5-5-12 - 3-6-7 1-11-5 Plate Offsets X Y : (1:0-3-5,0-0-71 LOADING (psf) SPACING 2-0-0. CSI DEFL in floc) Well. 'Ud i PLATES GRIP TCLL 20.0 Plates Increase 1.25 TC 0.09 ' Vert(LL) -0.00 5 >999 240 MT20 197/144 TCDL 20.0 Lumber Increase 1.25 BC 0.06- Vert(TL) -0.0'1,. 5 >999 180 BCLL 0.0 Rep Stress Incr NO WB 0.04 Horz(TL) 0.00 4 n/a n/a BCDL 10.0 Code UBC97/ANSI95 (Matrix) Weight: 20 lb LUMBER BRACING. TOP CHORD 2 X 4 SPF No.2 TOP CHORD Sheathed or 5-5-12 oc purlins, except end verticals. BOT CHORD 2 X 6 SPF 165OF 1.5E BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 2 X 4 SPF No.2 REACTIONS (Ib/size) 1=118/0-3-8,4=237/0-3-8 , Max Horz 1=26(load case 4) Max Upliftl=-31 (load case 3), 4=-76(load case 3)' FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-300/87, 2-3=-22/16, 3-4=-67/32 BOT CHORD 1-5=-76/287, 4-5=-76/287 WEBS -2-5=0/59, 2-4=-312/108 NOTES 1) This truss has been designed for the wind loads generated by 80 mph winds at 25 ft above ground level, using 8.4 psf top chord dead load and 4.8 psf bottom chord dead load, in the exterior(2) zone roof zone on an occupancy category II, condition II partially enclosed building, with exposure C ASCE 7-95 per UBC97/ANSI95 If end verticals or cantilevers exist, they are exposed to wind. If porches exist, they are not exposed to wind. The lumber DOL increase is 1.33, and the plate grip increase is 1.33 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 31 Ib uplift at joint 1 and 76 Ib uplift at joint 4. 4) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Regular: Lumber Increase=1.25, Plate Increase=1:25 Trapezoidal Loads (plf) Vert: 1=0(F=10, B=10) -to -4=-27(F=-4; B=-4), 1=0(F=40, B=40) -to -3= 110(F=-15, B=-15) PROFi;ss/ ON Tq - C 34223 Z m EXP 30/ C/VfL OP X949'CALIF '6OR�\P 2005 Job Truss IT05-0248 EJ02 A.C. Houston, Indio, CA - 92201„ L.V. I Truss Type Oty PIy Higby Casita MONO TRUSS 4 1 Job Reference (optional) 6.200 s Mar 5 2005 MiTek Industries, Inc. Wed Sep 28 17:18:04 2005 Page 3-6-2 6-6-0 3-6-2 2-11-14 2x4 11 Scale =1:1; 2 Camber= 1/16 2x4 II " 6-6-0 6-6-0 . LOADING (psf) SPACING 2-0-0, CSI: DEFIL in (loc) .. I/defl Ud . PLATES GRIP. TCLL' 20.0 Plates Increase 1.25 TC 0.80 Vert(LL) -0.09 1-3 >836 240 MT20 197/144 TCDL 20.0 Lumber Increase 1.25 BC 0.40. Vert(TL) -0.18 1-3 >418 180 BCLL 0.0 Rep Stress lncr YES WB 0.00 Horz(TL) 0.00 3 n/a n/a BCDL 10.0 Code UBC97/ANSI95 (Matrix) Weight: 17 lb LUMBER BRACING TOP CHORD 2 X 4 SPF No.2 TOP CHORD Sheathed or 6-6.0 oc purlins, except end verticals. BOT CHORD 2 X 4 SPF No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. - WEBS 2 X 4 SPF No.2 • REACTIONS' (Ib/size) 1=310/0-3-8, 3=310/Mechanical Max Horz 1=91 (load case 4) Max Upliftl=-91 (load case 3), 3=-105(load case 3) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-65/65,2-3=-248/134 BOTCHORD 1-3=0%43 NOTES 1) This truss has been designed for the wind loads generated by 80 mph winds at 25 ft above ground level, using 8.4 psf top chord dead load and 4.8 psf bottom chord dead load, in the exterior(2) zone roof zone on an occupancy category II, condition II partially enclosed building, C with exposure ASCE 7-95 per UBC97/ANSI95 If end verticals or cantilevers exist, they are exposed to wind. If porches exist, they are not exposed to wind. The lumber DOL increase is 1.33, and the plate grip increase is 1.33 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.' 3) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 91 Ib uplift at joint 1 and 105 Ib uplift at joint 3 LOAD CASE(S) Standard PROFESS�O 1PM 7. e,0�-(• ti9. fi W o . P342e29�. m oio� � �OFCALIF���\P. Oct 4, 2005 0 97 0 0 0 0 0 0 0 Job Truss Truss Type Qty Ply Higby Casita IT05-0248 G01 COMMON 1 2' Job Reference (optional) A.C. Houston, Indio, CA - 92201„ L.V. 6.200 s Mar 5 2005 MiTek Industries, Inc. Wed Sep 28 17:18:04 2005 Page 1 5-5-10 9-7-8 13-9-6 19-3-0 5-5-10 4-1-14 4.1-14 5-5-10 Scale =1:31.1 Building Designer/Engineer of Record must review reactions and 44 = drag note (stating load distributed along the top chord and resisting forces at bottom chord) and design appropriate connections. 3 4.00 12 3x4 3x4 2 4 W2 W2 N 1 5 e3x4=- 3x4 = 4x4 = 8 7 9 6 44 = 2x4 11 3x8 = 2x4 II 5-5-10 9-7-8 13-9-6 19-3-0 5-5-10 4-1-14. 4-1-14 5-5-10 Plate Offsets X[1:0-3-6,0-0-21,[5:0-3-6,0-0-21 LOADING (psf) SPACING 2-0-0 CSI DEFL in (loc) .1/deft Ud PLATES GRIP TCLL 20.0 Plates Increase 1.25. TC 0.25 Vert(LL) 0.05 7 >999 240 MT26 197/144 TCDL 20.0 Lumber Increase 1.25 BC 0.26 Vert(TL) -0.09 6 >999 180 BCLL 0.0 Rep Stress Incr NO WB 0.08 Horz(TL) 0.02 5' n/a n/a BCDL 10.0 Code UBC97/ANS195 (Matrix) Weight: 147 lb LUMBER BRACING TOP CHORD 2 X 4 SPF No.2 TOP CHORD Sheathed or 6-0-0 oc purlins. BOT CHORD 2 X 6 SPF 165OF 1.5E BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 2 X 4 SPF No.2 REACTIONS (Ib/size) 1=978/0-3-8,5=1201/0-3-8 Maio Horz 1=53(load case 14) Max Upliftl=-590(load case 9), 5= 655(load case 12) Max Grav1=1293(load case 8), 5=1516(load case 7) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-3347/1598,.2-3=-2133/901, 3-4=-2134/901, 4-5— 3540/1655 BOT CHORD 1-8=-1516/3057, 7-8=-984/2537, 7-9=-922/2613, 6-9=-1000/2723, 5-6=-1479/3243 WEBS 2-8=0/189, 2-7=-734/304, 3-7=-164f721, 4-7=-936/364, 4-6=-15/295 NOTES 1) 2 -ply truss to be connected together with 0.131 "x3" Nails as follows: Top chords connected as follows: 2 X 4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2 X 6 - 2 rows at 0-9-0 oc: Webs connected as follows: 2 X 4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) This truss has been designed for the wind loads generated by 80 mph winds at 25 ft above ground level, using 8.4 psf top chord dead load and 4.8 psf bottom chord dead load, in the exterior(2) zone roof zone on an occupancy category ll, condition II partially enclosed building, with exposure C ASCE 7-95 per UBC97/ANS195 If end verticals or cantilevers exist, they are exposed to wind. If porches exist, they are riot exposed to wind. The lumber DOL increase is 1.33, and the plate grip increase is 1.33 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.pROFEs 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 590 Ib uplift at joint 1 and 655 Ib uplift at �G� `S�0 7-,9 - ti91 joint 5. 7) This truss has been designed for At \raj\P,.m �/ total drag load of 100 plf. Connect truss to resist drag loads along bottom chord from 0-0-0 to 19-3-0 for 100.0 p �� 7 n 8) Girder carries tie-in span(s): 2-0-0 at 13-0-0 to 6-0-0 at 19-3-0: to 0 ofZ LOAD CASE(S) Standard E p36 3 29 U{0? 1) Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) .. N� .. Vert: 1-3=-80, 3-5=-80, 1-9=-20 9 CNIL IL Trapezoidal VertLoads9' 20(olf5= 113(F=-93) Vert: Oct 4, 2005 0 i 0 0 0 IF, 0 Job Truss Truss Type Qty Ply Higby Casita IT05-0248' HG01 HIP 1 1 Job Reference (optional) A.C. Houston, Indio, CA - 92201„ L.V. 6.200 s Mar 5 2005 MTek Industries, Inc. Fri Aug 12 10:23:15 2005 Page 1 3-10-8 4-1-8 8-0-0 3-10-8 0-3-0 3-10-8 Scale =.1:13. 4x4 4.00 12 W1 T1 T1 .3 1 3x4 = 3x4 = 3x4 = NA 2x4 11 4 3x4 3-10-8 4-1-81 8-0-0 3-10-8 0-3-0 3-10-8 Plate Offsets X[1:0-3-6,0-0-101,3:0-3-6,0-0-10 LOADING(psf) . SPACING 2-0-,0 CSI "' DEFL " in (loc) Vdefl Ud PLATES • GRIP TCLL 20.0 Plates Increase 1.25' TC 0.37 Vert(LL) 0.01 4 >999 240 MT20 197/144 - TCDL 20.0 Lumber Increase 1.25 BC 0.10 Vert(TL) -0.02 4 >999 180 BCLL 0.0 Rep Stress Incr . NO WB 0.04 Horz(TL) 0.00 ' 3 n/a n/a BCDL 10.0 Code UBC97/ANSI95 (Matrix) Weight: 50 lb LUMBER BRACING TOP CHORD 2 X 4 SPF No.2 TOP CHORD Sheathed or 6-0-0 oc purlins: BOT CHORD 2 X 6 SPF 1650F 1.5E BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 2 X 4 SPF No.2 REACTIONS (Ib/size) 1=385/0-3-8, 3=385/0-3-8 Max Horz 1=21(load case 5) Maz Upliftl=-108(load case 3), 3=.108(load case 4)- FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD - 1-2--625/142,2-3=-625/142 BOT CHORD 1-4=-98/556, 3-4=-98/556 WEBS 2-4=0/162 " NOTES 1) Unbalanced roof live loads have been considered for this design. 2) This truss has been designed for the wind loads generated by 80 mph winds at 25 It above ground level, using 8.4 psf top chord dead load and 4.8 psf bottom chord dead load, in the exterior(2) zone roof zone on an occupancy category Il, condition II partially enclosed building, with exposure C ASCE 7-95 per UBC97/ANS195 If end verticals or cantilevers exist, they are exposed to wind. If porches exist, they are not exposed to wind. The lumber DOL increase is 1.33, and the plate grip increase is 1.33. 3) This truss has been designed fora 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) Provide mechanical connection (by others) of truss to bearing plate.capable of withstanding 108 Ib uplift at joint 1 and 108 Ib uplift at " joint 3. LOAD CASES) Standard pROFES S�O R-,AM T e0 ti9 o C.34z. 74 EXP 6j p26� �P ;gUOFCALIFOR� " 9 16 2005 lu 0 0 0 0 0 0 0 Job Truss Truss TypeQty Higby Casita IT05-0248 HG02 HIP 2 r2 Job Reference (optional) A.C. Houston, Indio, CA - 92201„ L.V. 6.200 s Mar 5 2005 MiTek Industries, Inc. Wed Sep 28 17:18:04 2005 Page 1 3-10-14 6-6-0 9-11-0 12-6-2 16-5-0 3-10-14 2-7-2 3-5-0 2-7-2 3-10-14 Building Designer/Engineer of Record must review reactions and Scale =1:26. drag note (stating load distributed along the top chord and resisting Bracing Or Sheathing Camber= 1/16 i forces at bottom chord) and design appropriate connections. 4x8 = 4x4 = 4.00 12 3 4 3x4 3x4 2 5 i W3 W3 cl 1 6 U 131 I6 o 10 9 8 7 o 3x8 = 2x4 II 3x4 = 3x8 = 2x4 II 4x6 = 3-10-14 6-6-0 9-11-0 12-6-2 16-5-0 3-10-14 2-7-2 3-5-0 2-7-2 3-10-14 Plate Offsets X[1:0-1-6,0-0-61,[3:0-5-4,0-2-0],[6:0-3-6,0-0-61 - LOADING (psf) SPACING 2-0-0 CSI DEFL in floc) I/dell L/d "' PLATES GRIP TCLL 20.0 Plates Increase 1.25 TC 0.34 Vert(LL) 0.08 8-9 >999 240 MT20 197/144 TCDL 20.0 Lumber Increase 1.25 BC 0.33 Vert(TL) -0.13 8 >999 180 BCLL 0.0 Rep Stress Incr NO WB 0.09 Horz(TL) 0.03 6 n/a n/a BCDL 10.0 Code UBC97/ANSI95 (Matrix) Weight: 130 lb LUMBER BRACING TOP CHORD 2 X 4 SPF No.2 TOP CHORD Sheathed or 5-3-1 oc purlins, except BOT CHORD 2 X 6 SPF 1650F 1.5E 2-0-0 oc purlins (6-0-0 max.): 3-4. WEBS 2 X 4 SPF No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (Ib/size) 1=1532/0-3-8,6=1532/0-3-8 Max Horz 1=35(load case 14) Max Upliftl=-950(load case 9), 6=-950(load case 12) Max Grav1=1980(load case 8), 6=1980(load case 7) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-5410/2666, 2-3=-4573/2000, 3-4=-4064/1637, 4-5=-4558/1993, 5-6=-5414/2669 BOT CHORD 1-10=-2459/5014, 9-10=-1866/4422, 8-9=-1528/4003, 7-8=-1843/4426, 6-7=-2435/5018 WEBS 2-10=-140/126, 2-9=-239/168, 3-9=-217/805, 3-8=-235/200, 4-8=-265/863, 5-8=-259/179, 5-7=-128/121 NOTES 1) 2 -ply truss to be connected together with 0.131"x3" Nails as follows: Top chords connected as follows: 2 X 4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2 X 6 - 2 rows at 0-9-0 oc. Webs connected as follows: 2 X 4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) This truss has been designed for the wind loads generated by 80 mph winds at 25 It above ground level, using 8.4 psf top chord dead load and 4.8 psf bottom chord dead load, in the exterior(2) zone roof zone on an occupancy category Il, condition II partially enclosed building, With exposure C ASCE 7-95 per UBC97/ANSI95 If end verticals or cantilevers exist, they are exposed to wind. If porches exist, they are not exposed to wind.The lumber DOL increase is 1.33, and the plate grip.increase is 1.33 5) Provide adequate drainage to prevent water ponding. ?P 9Z 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. O O 'L9� 7) 6 e mechanical connection (by others) of truss to bearing plate capable of withstanding 950 Ib uplift at joint 1 and 950 Ib uplift at ,p m T,'9 joint 8) This truss has been designed for total drag loan Connect 5� 7�n �� a of 175 plf. truss to resist drag loads along bottom chord from 0-0-0 to 16-5-0 "Eu for 175.0 plf.' C 34229 9) Girder carries hip end with 6-6-0 end setback. 10) Design assumes 42 (flat orientation) purlins at oc spacing indicated, fastened to truss TC w/ 2-10d nails. m EXP, 6130167 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 542 Ib down and 193 Ib up at �m 9-11-0, and 542 Ib down and 193 Ib up'at 6-6-0 on bottom chord. The design/selection -'f' such connection device(s) is the N� responsibilitybf others. 9� CIVIL LOAD CASE(S) Standard �P c �FCALIFOR� 1) Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Oct 4,"2005 Vert: 1-3=-80, 3-4=-168(F=-87), 4-6=-80,11-9=-20, 8-9=-42(F=-22), 6-8=-20 :ontinued on page 2 Job Truss Truss Type Oty Ply jHigbyCaI0a IT05-0248 HG02 HIP f 2 Job Reference (optional) A.C. Houston, Indio, CA - 92201„ L.V. 6.200 s Mar_ 5 2005 MiTek Industries, Inc. Wed Sep 28 17:18:04 2005 Page 2 LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 9=-5420 8=-542(F) _ _ 0 u L m 0 0 L 0. LZ Job Truss Truss Type Qty Ply Higby Casita IT05-0248 HG03 HIP 1 2 Job Reference (optional) A.C. Houston, Indio, CA - 92201„ L.V. 6.200 s Mar 5 2005 MiTek Industries, Inc. Fri Aug 12 10:23:15 2005 Page 1 4-7-14 8-0-0 11-3-0 13-0-8 4-7-14 3-4-2 3-3-0 1-9-8 Bracing or sheathing - Scale=1:21. 4x8 = 4x4 = 3 4 3x4 a 4.00 12 5 3x4 2 W2 1 W2 1 W W5 W6 W3 N , 77 v N 1 HU 61 4x4 = 3x4 = 9 8 7 2x4 11 3x4 = 3x8 = 2x4 11 4-7-14 8-0-0 11-3-0 13-0-8 4-7-14 3-4-2 3-3-0 1-9-8 Plate Offsets X Y :" 1:0-3-6 0-0-2 [3:0-5-4,0-2-01 LOADING (psf) SPACING 2-0-0 CSI r DEFL in (loc) I/deft L/d PLATES GRIP TCLL 20.0 Plates Increase . 1.25 TC 0.17 Vert(LL) 0.04 9 >999 240 MT20 197/144 -TCDL 20.0 Lumber Increase 1.25 BC 0.19 Vert(TL) -0.06 8-9 . >999 180 BCLL 0.0 Rep Stress Incr NO WB, 0.18 Horz(TL) 0.01 6 n/a n/a' BCDL 10.0 Code UBC97/ANS195 (Matrix) Weight: 116 lb LUMBER BRACING -.2 TOP CHORD 2' X 4 SPF No TOP CHORD Sheathed or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc BOT CHORD 2 X 6 SPF 1650F 1.5E purlins (6-0-0 max.): 3-4. WEBS 2 X 4 SPF No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (Ib/size) 1=1093/0-3-8,6=1743/0-3-8 Max Horz 1= 57(load case 6) Max Uplift1=-371(load case 3), 6=-586(load case 3) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-2768/955, 2-3=-2269/844, 3-4=-1080/466,4-5=-1181/460, 5-6=-1665/588 BOT CHORD 1-9=-843/2569,8-9=-843/2569,7-8=-688/2183,6--7=-13/46 WEBS 2-9=0/137, 2-8=-492/196, 3-8=-338/1179, 3-7=-1449/497, 4-7='211/180, 5-7=-525/1592 NOTES 1) 2 -ply truss to be connected together with 0.131 "x3" Nails as follows: Top chords connected as follows: 2X 4 - 1 row at 0-9-0 oc. ' Bottom chords connected as follows: 2,X 6 - 2 rows at 0-9-0 oc. Webs connected as follows: 2 X 4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front'(F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) This truss has been designed for the wind loads generated by 80 mph winds at 25 ft above ground level, using 8.4 psf top chord dead load and 4.8 psf bottom chord dead load, in the exterior(2) zone roof zone on an occupancy category Il, condition II partially enclosed building, with exposure C ASCE 7-95 per UBC97/ANS195 If end verticals or cantilevers exist, they are exposed to wind. If porches exist, they are not exposed to wind. The lumber DOL increase is'1.33, and the plate grip increase is 1.33 5) Provide adequate drainage to prevent water ponding.. ' 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. ?ROFe,3`870 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 371 Ib uplift at joint 1 and 586 Ib uplift at ��Gp pM 77i joint 6. 8) Girder hip . �� \ 60 9` carries end with 0-0-0 right side setback, 8-0-0 left side setback, and 8-0-0 end setback. 9) Design assumes 4x2 indicated, (flat orientation) purlins at oc spacing fastened to truss TC w/ 2-10d nails. 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 867 Ib down and 308 Ib up at C G) 34229 8-0-0 on bottom chord. The design/ election of such connection device(s) is the responsibility of others. Z P LOAD CASE(S) Standard :. 6 130707 1) Regula'ri-Lumber.lncrease=1.25; Plate Increase=1.25 -� Uniform Loads (plf) y C/VIL. Vert' 1-3= 80 3-4=-194(F=-1 14), 4-5=-194(F— 114), 1-8=-20, 6-8=-49(F=-29), OF \P ConcenVert bLoa87(F)) CALIF�� '9 Ug 16 2 OOS " 9 0 0 0 0 0 0 0 Job Truss Truss Type Qty Ply Higby Casita IT05-0248 HG04 HIP 1 2 Job Reference optional) A.C. Houston, Indio, CA - 92201„ L.V. 6.200 s Mar 5 2005 MiTek Industries, Inc. Fri Aug 12 10:23:15 2005 Page 1 4-7-14 8-0-0 11-3-0 14-7-2 19-3-0 4-7-14 3-4-2 3-3-0 . 3-4-2 4-7-14 Scale = 1:31. Camber= 1/8 i Bracing or sheathing 4x8 = 4x6 = 4.00 F12 _ 3 4 3x4 3x4 2 1 5 W3 W3 to 1 .. 6 I6 o 4x6 = o 10 9 8 7 4x6 = 2x4 11 3x4 = 3x8 = 2x4 11 4-7-14 8-0-0 11-3-0 14-7-2 19-3-0 4-7-14 • 3-4-2 3-3-0 3-4-2 4-7-14 Plate Offsets (X,Y):[1:0-3-6,0-0-21,[3:0-5-4,0-2-01,16:0-3-6,0-0-21 LOADING (psf) SPACING 2-0-0 CSIDEFL in (loc) I/dell Ud - PLATES GRIP TCLL 20.0 Plates Increase 1.25 TC 0.30 Vert(LL) 0.13 8-9 >999 240 MT20 197/144 TCDL, 20.0 Lumber Increase ' 1.25 _ BC 0.37 Vert(TL) -0.21 8-9 >999 180 BCLL 0.0 Rep Stress Incr NO WB 0.13 Horz(TL) 0.05 6 n/a n/a BCDL 10.0 Code UBC97/ANS195 (Matrix) Weight: 154 lb LUMBER BRACING TOP CHORD 2 X 4 SPF No.2 TOP CHORD Sheathed or 5-0-12 oc purlins, except BOT CHORD 2 X 6 SPF 165OF 1.5E 2-0-0 oc purlins (5-5-11 max.): 3-4. W EBS 2 X 4 SPF No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (Ib/size) 1=2042/0-3-6,6=2042/0-3-8 Max Horz 1=-44(load case 6) Max Uplift1=-675(load case 3), 6=-675(load case 4) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-5614/1864, 2-3=-5269/1807, 3-4=-5037/1756; 4-5=-5266/1804, 5-6=-5615/1866 BOTCHORD 1-10= 1743/5267, 9-10=-1743/5267, 8-9=-1 641/5041, 7-8=-1 713/5268, 6-7=-1713/5268 WEBS 2-10=-49/78, 2-9=-328/142, 3-9=-340/1187, 3-8= 113/104, 4-8=-326/1184, 5-8=-333/148, 5-7=-46/75 NOTES 1) 2 -ply truss to be connected together with 0.131'•x3" Nails as follows: Top chords connected as follows: 2 X 4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2 X 6 - 2 rows at 0-9-0 oc. Webs connected as follows: 2 X 4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) This truss has been designed for the wind loads generated by 80 mph winds at 25 ft above ground level, using 8A psf top chord dead load and 4.8 psf bottom chord dead load, in the.exterior(2) zone roof zone on an occupancy category 11, condition 11 partially enclosed building, with exposure C ASCE 7-95 per UBC97/ANS195 If end verticals or cantilevers exist, they are exposed to wind. If porches exist, they are not exposed to wind. The lumber DOL increase is 1.33, and the plate grip increase is 1.33' 5) Provide adequate drainage to prevent water ponding. 6) This truss has been designed fora 10.0 psf bottom chord live load nonconcurrent with any other live loads. pROFEs 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 675 Ib uplift at joint 1 and 675 Ib uplift at AGO `S7O 4/ joint 6. ��F' \ \AM T& B) Girder hip carries end with 8-0-0 end setback. S\ (� 9) Design assumes 4x2 (flat orientation)' purlins at oc spacing indicated, fastened to truss TC w/ 2-10d nails. C9 y / n G) 10) Hanger(s) or other connection device(s) 'shall be provided sufficient to supportconcentrated load(s) 867 Ib down and 308 Ib up at. LLJK C 3 11-3-0, and 867 lb down and 308 Ib up at 8-0=0 on bottom chord.' The design/selection of such connection device(s) is the 4�29 Z responsibility of others..' : XA 613010 _OAD CASE(S) Standard N 1) Regular:•Lumber Increase=1 25, Plate Increase=l 25 C/VIL Uniform Loads Of)' P 194(F=-114), 4-6=-80, 1-9=-20, 8-9=-49(F=-29), 6-8=-20 ' 'q U9 2 CALIF�R�\ lLoad -3=-80(l; Concentrated b)4= 16 Vert: 9=-867(F) 8=-867(F7 . OQJr IL lJ z T w 3 �c,..-'' is rF vcb m3 bob n CI ubi' d C OJ P r<n <3 E v.m mrp0� _ O z O_ m ._+ Vmi Q N O' O _ T '303 J v m m r 70 a 00 Z mr vW 1-4 a� M 3�C O� �a n Z Z� M J Z 0 < A 3v3� m�a°^� 0 3 a J� =0$ ami v ate} o n d F n vci O n g 0 m b nm'^ m E a°i -a o o l �a a � � n v vb, 91 co� 000 a a a o a w= f O } K O S �r�oN �'o"amia nN Xi a 3 a o o2 mom o� 3 � P, ' ° a b H n n a in 0. 3 O m = T O b rn O n m o n a = t�D O a W'z 3 a LA 3 m n 0 n b i m o - m _ 0 0 0 a 0. ;w cv o a=a x o �a 0 n o S o N $N u 3 o a� n ^2� 3�n-� oma• F� F�CZgB` g 0 ao @ ryy���-c�H,f�N r^p o � 3 0 a �3 D a _ � N ��° H O N m d a8aa a n°, m o�^n_ moo'.: q �o a cm -nYo3 `�^tiB:{3 c a m 3W e v m ? 3 o £ 3 2 Z 5}i o m b � Z 0 < A 3v3� m�a°^� 0 3 a J� =0$ ami v ate} o n d F n vci O n g 0 m b nm'^ m E a°i -a o o l �a a � � n v vb, 91 co� 000 a a a o a w= f O } K O S �r�oN �'o"amia nN Xi a 3 a o o2 mom o� 3 � P, ' ° a b H n n a in 0. 3 O m = T O b rn O n m o n a = t�D O a W'z 3 a LA 3 m n 0 n b i m o - m _ 0 0 0 a D 0. ;w cv 0 o �a 0 n o S o N $N u 3 o a� n ^2� 3�n-� oma• F� F�CZgB` nrt' 430, 3n.W3 Vim; =�A K % F a3C ryy���-c�H,f�N r^p o � 3 0 a � ,. °_' D �N0 � N ��° Oeaa�a m d a8aa vio o�^n_ moo'.: q 9p9 cm -nYo3 `�^tiB:{3 a m 3W e x ? 3 o £ 3 2 Z 5}i o m wo c> D 7� OJ. a n iaZ 3,~3' X Hv-1 ID ag m a 'o nm a o a O a m o a a _din -W, � D Q ;w cv 0 o �a 0 n o S Ao QT m O O aQ y N 9Q= < n i p 3 Q :o o. o, � �. r^p o � 3 0 a � ,. °_' D �N0 � N a.oa. a r fill m d o o 0 vio 5. v, moo'.: q ST cm ^J^3= L a n3m e x rt<3 O Z 5}i o m '� a c> D 7� OJ. a n -.u��� V/ a H ID xd 3 m 0 0 a b f Q 3 m J 0 0 0 =r n m Z c V1 N a vurDi N�. r°o mmNO1^ ofD'oOa a 3 o O a am �i 5-M o J a� aro p aR gaJ 3 O 0 p�� m v w p 3 m = D b N a° n 3 o m o0 =° v vO ^ '5 O' a '2ror� p^ ° o S ate' dma O V mmac Q 0 0 o 9 o 0 o S Ao c o a'3 m NTS 3 c b brSa�m' 9Q= b@ � p 3 Q :o o. o, � �. r^p o � 3 0 � m � ,. °_' N �N0 3 u= o a.oa. a r O m d o o 0 vio 5. v, moo'.: q ST cm ^J^3= L m.J bn,O aob� O = 30In A N Z 5}i o m '� a c> D 7� OJ. a n -.u��� V/ O - o n a 0 m b n �o 3 Q Q 0 0 o 9 o 0 o S Ao EM o m _ N o n 03 � °m 1. J O v m b < a � m p N < O 3 u= o ° 02 O m d o o 0 m 3 _ N d O 3 � S I o M r Z 3 a o 3 M 0 0 "° A N Z 5}i o m '� a c> D ry b < a N 0 3 m J I�I�I�I�I�I�mmm�mnmnmnmn N r H ID n p1 a m a m O O a m o z I w -W, � 3 ba o - n b J n CD 3 0 M F LA ° m n Z O m m 7o m D z 0 1p 0 c r m 1 p m � N b VI r CL m C cz N -o a c ^ MQ 0 ° � C-O 2 m m -O p z 2 a �' a ° x v R-' 0 M D N y D O z (A m m w Q Q M o T a a C v m D m w m � a T O " M b (a a -i 0 m vo 4 rQ A 0 0 'C-. J = m 2 a b Q Cc, 0 �m O Nff� C = I M, 3 cpm 0 % �off' g Yn'm m^�3N age A O 'O n �� S �+ m n El v n O b �-�1 ax x Oa, � a o O ° o =n b b D N N . °' o N o N . v a m Q Q 0 0 o 9 o 0 o S m J b m o m _ N o n vn � m O v m b < a v a. 3 N < O 3 u= o m n 0 ? m d o o 0 m 3 _ N d o n 3 � S I o N o ga a o 3 M 0 0 "° a w O o aai a m 5}i o m '� a a 3o m 3 D ry b < a N 0 3 m J I�I�I�I�I�I�mmm�mnmnmnmn b u� d n p1 a m a O a -? w O 0 A n A b $ o _ 0 w p d v w o O wo 0 �• a N a, N my a = 10m .a 00, o a m =m n H a J O D 0 O n A vn 1 m y o 2 r v rt o. -O < O 3 u= o O a b 2 m O s R 1 c o o n 3 0 < O N. mo: d H ^ g a' �5 Z a m m (NJ: a w O 3 J O1 m w 0 0 2' � N m c b u� m 3 N� m a O a -? w o a a m o a o m o N � p3.. ba o - n b J n 3,U aT 5' a�a,O o c v J o b 3 �.o UO v Yi 3 o ^ rn 0 - �^ N J 3 m O ��o�,arn b 'o d m r y m 3 rn 9A Q= a n r a m Z m m 3 o m ?- m O N n O O n � o o Z M �m Z Yb C i v9 - n NoFD 3 � o m a 3 Z m = m m O o R j c 3 O m mmoiOnm �.oR OwoN ado S woo w v o_ m 03 O T 0 3 �o'o,ov A n A b $ o W ow N o A.0 p d v w o O wo 0 �• a N a, N my a = m M .a 00, o a m =m N Ww A M h A �p A N a 3 o a s o r 0 b� 3• s Cl? a or R � Z m O ° �\ Yl IV dl o °- Depth, D —► x � m o N m In a' a a m W tN0 (NJ: N 3 W O1 o-P}fl 0 N D � N T rn 9 v .a v rn v oo v o r M o um, 0 m o a o m 3. 3 2-3 a, 3 p3.. 3 d 3 x 0 3" 0 3 0 3 x 0 o w ° ° m n M n CL m 7o m mr d n 0 c r m m � N b VI r CL m -o a c ^ MQ 0 o Rl a m 3 3 v m M .a 00, o a m =m N Ww A N A �p A N a 3 o a s o r 0 A Cl? a or R � Z 3 x ° �\ Yl IV dl c M Depth, D —► x � m o N m In ° a a m W tN0 (NJ: N O W O1 o-P}fl 0 N ,Z V / N T rn o b o 3 a m 3 3 v m M o, v J3 o a m =m N Ww A N A �p A N A p IV W M om 0 A Cl? N �Rt z C,V m Fx IV c M q q g a o b o 3 a m 3 3 v m M o, v J3 o a m =m n 30. �p _'. H z V m w A W M om A N W A �Rt z n m Fx IV c M q q g a N m In ° a a m W tN0 (NJ: N O W O1 A N (p y N rn 9 v O1 b � m o b o 3 a m 3 3 v m M o, v J3 o a m =m n 30. �p :� o ^ o- { H z a ymj m o n ° o O �Rt z n m 3 H c M q q g a N m In ° a a m N 0 --1 Q x x o- N N a v m a ^ n o o m aaa m p m N rn 9 v O1 b � m b z F a X ° m n M m 7o m 0 m N b VI r m -o a ° A X r z 2 a M a z (A m m m Q Q M o T a a C v w m � � O M w A N < 2 x Q o b o 3 a m 3 3 0, a 0 o, v J3 o a m =m 0 �p :� o ^ o- { J CS m J gm4 ymj m o n O �Rt is O ? ^ m < a = m W,r0 a ON r � mob � X 3 inoc N m o 0 3 n a a m N 0 Awa m to N x x o- N N a v m a ^ n o o m aaa m p m n a m O � a C N b � m Install Web Member Diagonal Bracing. - 6■ Instate el Arriostre Diagonal de Miembros Secundarius ' \. - Q -Temporary web member diagonal bracing acts with the top Web members chord and bottom chord temporary lateral bracing to form - triangulation perpendicular to the plane of the truss and .' t prevents trusses from leaning or dominoing. EI arriostre diagonal temporal de los miembros secundarios; trabajan con los arriostres temporales de la cuerda supe - nor y de la cuerda inferior para formar una triangulacion Diagonal braces perpendicular al plano del truss y evita que los trusses se every 10 truss inclines o caigan como dominos. +' f. 10';15' max. w spaces (20' max.) Same spacing - ' Q Install at about450,on web members (verticals whenever as bottom chord " possible);' locate at or near bottom chord lateral bracing lateral bracing Some chord and web members locations. Repeat at the interval shown. not shown for clarity. Instale a aproximadamente 450 en los miembros secundarius (verticales cuando sea posible) Coloque abajo o'cerca de t las localizaciones de los'arriostres laterales de la cuerda inferior. Repita a los intervalos mostrados. Q Permanent lateral vdeb bracing requirements are specified separately on the Truss Design Drawing: Refer to BCSI=B3 - Summary Sheet - Web Member Permanent Bracing/Web Reinforcement for more information. - r Requerimientos de arriostre permanente lateral de los miembros secundarios son especificados por separado en el dibujo del r disen"o.del truss. vea el Resumen BCSI-83 - Refuerzos y Arriostres de los Miembros Secundarius para mayor informacion. --� Q Mono pitch trusses, deep flat trusses and similar high -end -type trusses require '— temporary lateral and diagonal bracing at the end. 1. Trusses de una sola pendiente, trusses planos profundos y trusses similares con un extremo profundo requieren arriostre temporal, lateral y diagonal en los soportes a el final. 7 Install Bottom Chord Bracing ■; Instate el Arriostre de la Cuerda Inferior Lateral and diagonal bottom chord bracin 'stabilizes the bottom chord lane. Q! 9 9, P Arriostre lateral y; diagonal en la cuerda in estabilizan el plano de la cuerda inferior. Q Install temporary lateral bracing at 15' on' -center maximum. Remove, if desired; after the permanent ceiling diaphragm is Lateral braces in place: 2x4x12' length lapped over Instale los arriostres laterales temporales cads 15 pies Como two trusses. maximo. Quitelos,`si asi to desea, despues que el diafragma ' permanente del cielo raso este colocado. Q Install permanent lateral'bracing at 10' on -center maximum. Specified spacing maybe less; check with the Truss Design' , Drawing and/or the Building Designer.- Instale esigner. Instale los arriostres lat6rales permanentes cads 10 pies Diagonal braces �como.maximo. El espaciamiento especificado puede ser'. every, l0 trussspaces (20' max.) menor;, vea el dibujo del diseno truss o verifique con el 10'-15' max. disen"ador del edificio.. " Some chord and web members 0 Install diagonal bracing at intervals of maximum 20 . not shown for clarity. Instale arriostres diagonales a'intervalos de 20 pies maxmo. O IMPORTANT SAFETY WARNING! 6 -Do-not remove ground bracing until all top chord, bottom chord and web ' bracing is•installed on at least the first five trusses. - 0 ADVERTENCIA IMPORTANTE DE SEGURIDAD , No quite el `arriostre de tierra hasta'que todos los arriostres de la cuerda superior, de la cuerda inferior y de los miembros secundarios este instalada por to menor en los cinco primeros trusses. •11• J •I• • 1 • Calculate Ground Brace Locations 2 ■ Calcule Localizacidn de los Arriostres de Tierra Q Use truss span to determine TCTLB bracing interval of Top Chord ` Temporary. Lateral Braces from table. Use la longitud de tramo para determinar el espaciamiento del arriostre lateral temporal de la cuerda superior en la tabla adjunta.. F • Una.r e• war a'add a emce IT sa• s.c• -sa• e•-ro• r a•<• • as• -o• spay - Q Locate additional TCTLBs.at each change of pitch.- Localice ALTCS. adicionales en cada cambio de inclinacion. Set First Truss and Fasten Seci 3 ■ Coloque el Primer Truss y Coni Truss Span TCTLB Spacing Lon itud de Tramo • Es aciamiento del ALTCS Up to 30' 10' o.c. max. Hasta 30 pies 10 pies maximo 30' to 45' 8' o.c. max.. 30 a 45 pies 8 pies maximo T to 60' _ 6' o.c. max. 45 a 6C ies 6 pies maximo 60' to 80'*4' o.c. max. 60 a 80pies* 4 pies maximo *Consult a Professional Engineer for trusses longer than 60'., *Consulte a un ingeniero para trusses de mas de 60 pies. TCTLB 'r , 10" or greater Truss attachment required at support(s) Q Locate additional TCTLBs over, bearings if the heel height is 10 or greater. - Localice ALTCS adicionales sobre los soportes si la altura del extremo (heel height) es de 10 pulgadas o mas. irely to Ground, Braces �ctelo en Forma Segura a los Arriostn N' l Tmss Span Q Locate a vertical ground brace at each fTCTLB location. Localice tin arriostre de tierraverti' cal en Cada -ALTCS: 1 s de Tierra Q Set first truss or gable end frame and fasten securely to ground brace verticals and to the wall, or as directed by the Building Designer. -Example of first truss installed: Coloque el primer truss y conectelo en forma segura a los arriostres de Cierra verticales• y a la pared, o Como indique el disenador del edificio. Ejemplo del primer truss instalado. ' ' TCTLB ,• TCTLB locations locations TCTLB . locations EXTERIOR GROUND BRACING INTERIOR GROUND BRACINGINTERIOR GROUND BRACING TO WALL ARRIOSTRE DE TIERRA EXTERIOR ARRIOSTRE.DE TIERRA INTERIOR ARRIOSTRE DE,TIERRA INTERIOR A'LA'PARED IMPORTANT SAFETY WARNING! First truss must be attached securely to all ground braces prior to removing the hoisting supports.` © ADVERTENCIA IMPORTANTE DE SEGURIDAD 6 El primer truss debe ser sujeto en forma sequra a todos los arriostres de tierra antes de quitar los soportes de la grua. �TRUSSIINSTALTL!ATION!ANUITEMPQRARYJBRAGINGI 111RUSSiINSTALLATION AND TEMPORARY BRACING Set Next Four Trusses with TCTLB in Line with Ground Bracing 4 ■ Coloque los Siguientes Cuatro Trusses con los ALTCS en Linea con los Arriostres de Tierra Q Attach trusses securely at all bearings, shimming bearings as necessary. Example of first five trusses. Conecte los trusses en forma segura a todos los soportes, rellenando s6lidamente los soportes si fuera necesario. Ejemplo de los cinco primeros trusses. See options below See options below See options below - EXTERIOR GROUND BRACING INTERIOR GROUND BRACING INTERIOR GROUND BRACING TO WALL ARRIOSTRE DE TIERRA EXTERIOR ARRIOSTRE DE TIERRA INTERIOR ARRIOSTRE DE TIERRA INTERIOR A LA PARED Q The three options for installing TCTLB spacer pieces. Las tres opciones para instalar piezas de espaciamiento para ALTCS. Option 1 Top Nailed Spacer Pieces Opci6n' 1 Piezas de espaciamiento davadas arriba 27"+ - z" minimum end distance ' 1 %z pulgadas 22�/z distancia' de extremo 2 nails minima at every. connection 2 clavos en cada conecci6n Option 2 End -Grain Nailed Spacer Pieces Opci6n 2 Piezas de espaciamientos conectadas al extremeo Use 2-16d deformed shank nails minimum 221/z" at each spacer to truss connection. Do not use split Use como minimo 2 spacer pieces.claves largos (16d shank nails) en cada conecci6n No use piezas de de los espaciadores con espaciamiento con el truss. rajaduras. Option 3 Proprietary Metal Bracing Products Opci6n 3 Productos de refuerzo de metal patentado . See manufacturer's specifications.: Uea las especificaciones del fabricante. Do not use split spacer pieces. No use piezas de espaciamiento con rajaduras. • • BRACING MATERIAL AND CONNECTIONS MATERIALES DE ARRIOSTRE Y CONECCIONES 0 Bracing material must be at least 2x4 stress -graded lumber unless specified otherwise by the Building Designer. Material de arriostre debe ser por to menos 2x4 madera graduada por esfuerzo a menos que el disenador indique diferente. Q All bracing and spacing members must be connected with at least the nails shown at right, except for the spacers shown in Step 4, Option 2, which require 16d deformed -shank, ring, barb or screw nails. 10d (0.1280") Todds los arriostres y miembros espaciadores deben ser 12d (0.128x3.25") conectados por to menos con los clavos mostrados a la 16d (0.135x3.5' derecha, con excepci6n de los espaciadores mostrados en el Paso 4, Opci6n 2, que requieren clavos largos 16d (shank nails), anillos, pdas, o tornillos. Q Drive nails flush or use double -headed nails for easiest brace removal. Penetre los clavos al raso o use clavos de dos cabezas para quitar los arriostres mas facilmente. Install Top Chord Diagonal Bracing is ■ Instale Arriostre Diagonal en la-Cuerda Superior r Q Attach diagonal bracing to the first five trusses. Example of diagonal bracing on first five trusses. Coloque arriostre diagonal en los cinco primeros trusses. Ejemplo de arriostre diagonal en los cinco primeros trusses. EXTERIOR GROUND BRACING INTERIOR GROUND BRACING INTERIOR GROUND BRACING TO WALL ARRIOSTRE DE TIERRA EXTERIOR ARRIOSTRE DE TIERRA INTERIOR ARRIOSTRE DE TIERRA INTERIOR A LA PARED Q Or start applying permanent roof sheathing. Example of permanent roof sheathing installed on first five trusses. O empiece el entablado permanente. Ejemplo de entablado permanente instalado en los'cinco primeros trusses. • a ! SY� rr, l ® IMPORTANT SAFETY WARNING! ® • # �� Never release the truss from the hoisting supports until all top chord temporary, • • I lateral braces are installed and bearing attachments are made. >; ® ADVERTENCIA IMPORTANTE DE SEGURIDAD Nunca suelte el truss de los soportes de la gr6a hasty que todos los arriostres laterales de la - cuerda superior esten instalados y el truss este conectado a los soportes. • • Y Q n A m X 0 ma 73 z A 3m, �—► m - 3 ° 3m 1p V. a- ADT 19 �Ll C 'O cD n z 50 rt S Z m m m o3T o fu >� 0 oa v m y A O_O CIJ cD a"'v -0 z CAp7a ton 670 om � n r r 03 A acon0 M w =o o`sv 1 °(D m0 aX 3 �V�f aS n9X ti 0 < 0m q�� n^ y n c< G D —S LO n O c Ll Q 7Ap n W T o O y A 2 z 0 0 Q 0 f P+ Ln (b Ln p ("u n r y to _od 3qo Door ,b 0, x� m o "� C v o A O f+ C\ w a c � A 0 0 to N �+ o U) O O o OA I n �® rt O' o AAz 3 0 O z 0. BZW m n O n (D CD ;c v 1 s 3 Q 0' (D v n0 is n T � �n (D a m 0 0n (D (3D (D 0 - Di a C ,� 0 m m ut u1 m U C (WD (b O CD � O Z (D N Q QJ Ort) cu r=r ZJ lb l) Oj ^ rb (�D (D O ((D rt O to (D rD 3 t3 c ((D rt M � � U), j O N N 0 (D oj N cu Z32 O Q (On n3, � =' -0 a o U) o a° r o n tD 'T - v ? -I to O y rt 3 -Op -0 (D n, (�D 9oi o 3 O (D rt O N (�° n O- (D O tQ O 7 ° 0 to rD O O' (D (OD to �_ O o y °' , t(DD N rt p (D 6 n, Ln c Q O Ln to (D °, D � O ton M Z3 (o to rD rD a� 3 (D O fly (D Qj < �' Q O N (D to rb ° ro ° � v rn Cr °_ (D �' o m n 3 La0- m X z m z a 1. r ..4 Z m 2 v° a Q Q Q Q Q Q V ' v o m y nn, n o N D m y o r- v rn n v z cn y v cn O (A - -I. n. C O tT �n n C C Q ((D O =01, tp n (n O' Q O. CD -Q f -r z Zn rt~ O Q cr rt n v Lo 70 ID 0 Q1 pOj (D (D 7y o O O N n\ (DD Z32 rD o O O Z• 3 � .0 C7 O N (D cD N N vOi tn• r, p O� < 0 m "' toil F hey pr p�j y 02 W p & EL• twit n rt O to IIoi 0 ���_ �: Ftp �Q�(D O G7 ton o o ? Qj vOi c' n c (-D Q. Ili y v� pr, N tOi� O- a) p Q �' -a O: � (D p cr l[j 3 C O O O (D to f G ; (D �' r to (D (D kn 0 t3 3 T cr v c. rt cn 0_ n c -a_ 1°. (D v v n °' Ln y N v rb On Z3 WLo O rt (D O cn O (p (rl 4 ,Or to O (D O I � (D OJ (D 0 II� r�r (D � �► IIi O r� (n rn to N 4 p O (D a tw `� a ~, -z C O c (D n n M tU - rt rrlvi J,, I IIsi to a C O (D n n@ O 3 n (D O N ^ 3 p (13 (D v rD ti �: � c O O O O O n (D 3 Q O O (D (D ^r -0 O' (D (n 0i (D _ N O v v to O O CD 19 C to to 0 mD fba DO o °D ° a Z Z m Z k �O M nntrt v3 a lb ;U C O` En 7 a� v� �3 m G1 '* (A rn ay G3 OZ= lo O Z m� vcrn U.2 rn Zo oN. aCb ZM � n a� CW rm H� no0 Oo Z Z� r JU as C 4 DO Z� mm C �� [1 x a gyp' �' �► Afb It 0 • • (D u�+i M ;a (n - fD Z rt>y ADT 19 �Ll C 'O cD n z 50 rt S Z m m m o3T o fu >� 0 oa v m y A O_O CIJ cD a"'v -0 z CAp7a ton 670 a T n y � n r r p cr A acon0 M w =o o`sv 1 °(D �~� 3 �V�f aS tl < 0m m =� y n cli D —S LO n O c Ll Q x mO o O O l0 •-r 0 Q 0 0' P+ Ln (b Ln p ("u n r y to Amm r LO a) 0, x� m o "� C v o T f+ O ni -+ O a c � O 0 0 0 ,(tnD U) O O to r.l. I n a rt O' O� O z C m n O Q (D CD v . L 3 Q 0' (D Q a is °o 2(� Ln (D tv to m 0 0n (D (3D (D 0 - Di a ,� 0 o Q n rt n c o to n (D v � 0 mD fba DO o °D ° a Z Z m Z k �O M nntrt v3 a lb ;U C O` En 7 a� v� �3 m G1 '* (A rn ay G3 OZ= lo O Z m� vcrn U.2 rn Zo oN. aCb ZM � n a� CW rm H� no0 Oo Z Z� r JU as C 4 DO Z� mm C �� [1 x a gyp' �' �► Afb It 0 • • (D u�+i M ;a (n - fD Z rt>y ADT Mm �Ll C 'O cD n z 50 rt S Z m m m o3T o fu >� 0 oa v m y A to p cD a"'v -0 z CAp7a ton 670 a T n y H S r r p cr A acon0 M w =o n v� C' �~� 3 �V�f fyD m o rn yOcon 3 m =� y n �A p rn a - a o m Z m O Opvmi o v� P+ v � �. �'Ov . O a r y to Amm r (D 0, x� m o "� Q D tj 0 T f+ (n v � a c � O ul O ,(tnD U) X 0 0 0 I v cru o Ln �� N oni O — a- 2 v 3 10 n Ln 0 0 21 O � rt O Q n`n tQ Q. O' � CD p B (D 0 a 3 O rt n � 2 (D cD n Q O O rt n � o � rt x ;- a N — C�a 3 rl Ln m Ln rD p 0 rD n 0 a L -40 0 Ul N� n (DD o d ^. � d LO � fb m n _ n t0 rr �Ll o �� fDFy o Nv (n (n to rD =r rt to p cD _Q (D N 0 O� ton w CD - ; `D p cr (<D� tv N6- n O to co 3 (D - -t pi CU O n a) (b C 0 lLl tT (D O - a 0 O Ln v � �. (D aj to (D 0, �aj n - � ^ Q (p Di ty (n (D 0 C O: O to ,(tnD C O O. n n O Q v (D °o Ln (D 0n (D n rt � rt x ;- a N — C�a 3 rl Ln m Ln rD p 0 rD n 0 a L -40 0 Ul N� n (DD o d ^. � d LO � fb a) 'o n _ n t0 rr DJ C 3 bw oa �'CnDv (n (n to rD =r rt Q(n !y _Q (D ((D - ty' rD 0 (<D� O O O N6- n O to co 3 (D - -t pi O -r�r tT O p � 3 � n y o � Ln v � �. (D aj o ° FD' LO �aj n - � ^ n EU L O �� o ,(tnD (Do o 0 rb ti rt p N < v Zr UDQj 5 to ° o Ln tn Ln O n a ::E 0 - un un o°i 01 tn° rD� n O -2. w W ° n n O n =T v N LO w '�Q o 0 0 0 Ab N O P�� a; a W 0 0 C � �s -a u N 3 CL �► O i H � m = 41 fA 4J N ao m w vLw E O U u o 'Q 3 fA c �a � E O c O CA Ln H v E C7 E Ln 2 r LL 0 0 0 0 c �J f6 `CO Vf E yEuwQ y O c Vf *y ca O m uV� vctn cmc 04 O = .2 N t Y O O i o m C OMS -0 Eo m O O - y U L q� E mu U a ULi ami i �► a�ld0 ZE% v, 4J +L+ O N1 y 0 m LLmU1 40o I n O w y m Om EU .2 ch y N CO c O c N.2 E M 0 4) Oa �OOC�O 3Mc O t6 m O 4 CO E 7 07 y N M+s-+ I" vyi Ew I 3 ul O w a� y Co i 3 c s i O �U O N E. Z E m U. (A cif M 4 0 0 C � �s -a u N 3 CL �► O i H � m = 41 fA 4J N ao m w vLw E O U u o 'Q 3 fA c �a � E O c O CA Ln H v E C7 E Ln 2 r LL 0 0 0 0 c �J f6 `CO Vf E yEuwQ y O c Vf *y ca O m uV� vctn cmc 04 O = .2 N t Y O O i o m C OMS -0 Eo m O O - y U L q� E mu U a ULi ami i �► a�ld0 ZE% v, 4J +L+ O N1 y 0 m LLmU1 40o I n O w y m Om EU .2 ch y N CO c O c N.2 E M 0 4) Oa �OOC�O 3Mc O t6 m O 4 CO E 7 07 y N M+s-+ I" vyi Ew I 3 ul O w a� y Co i 3 c s i O �U O N E. Z E m U. (A cif M JA >- V C 1— O 3 Q1 R Q 2r d7 a 3� L E m L �vCo O .a m t H Z a�nn V a E m¢ a - o o¢ v � j N a) S 'c U 6 a 'aY M h C p � . U � c m �a C i O V E E " o¢-0 S o a - v � C Y n o 0 IfU C O o P .E n-0 a 0 a Uc ooh 00 3 ca a) 8 y ay � a- u E v IV o 1 E C o 0 o 3: 20 tv a C: y C cu �Y 0 0 � C N a @ � m E a�0 a) v N O a) m mY EfO C, � m T c c o ESQ =1 o N ofL x J 1 0 L U w a' W , E W M o U. a �2 O 0 0 <J C � O u °uz z V W . c T w picV1 O.v n 0 O � 3 0 0 v a `$ 4 +� 0�F 42 �� m v O v q'ML NIXp E �° M ,c W Co t H U v v ip 4M - CZ b Qj C7 p ZO k %C U J o o i p,y J R► / i Q ;+�, a) � O o o Q (A4 .c 0 ,� z a •� o C7 Z W o ro o i .oma, o t v U J W > a°) • • C m a) 4 W W c� e U OL -r L LL b Q L a) E c !- a a) ° 4f� 0O CLE N Q (n D aE WO)o Ln �p rd E2��� N W O F- 1►.r' / ro c E o U 4 a) a) N O o �C W O M /w L o ° = Q U �� o o"� c; /04 o m N O �a) CI - N� U -C� �F/m Ln U M a) - ao Cu o k * yQ y > L O O o) G rp O W m '0 �� 1, r6ol r0 ^ O- U ro O O oL �L u > c O O L 0)a) (a > c�6 °oo QLN r0 -O -p ° o @ Q rs V a; O T C CL a) CD Q Ln H �U)o • • • JA >- V C 1— O 3 Q1 R Q 2r d7 a 3� L E m L �vCo O .a m t H Z a�nn V a E m¢ a - o o¢ v � j N a) S 'c U 6 a 'aY M h C p � . U � c m �a C i O V E E " o¢-0 S o a - v � C Y n o 0 IfU C O o P .E n-0 a 0 a Uc ooh 00 3 ca a) 8 y ay � a- u E v IV o 1 E C o 0 o 3: 20 tv a C: y C cu �Y 0 0 � C N a @ � m E a�0 a) v N O a) m mY EfO C, � m T c c o ESQ =1 o N ofL x J 1 0 L U w a' W , E W M o U. a �2 O 0 0 <J C � O u °uz z V W . c T w picV1 O.v n 0 O � 3 0 Q) o CD -;a � =3 v a o r4 0) Ln r) W 3a 09 zN m — Ln N 00 O O C, ((D m cn ° °� n una mn ° f M O (D CD rb cn ° 3 v n �.. r (D m rr 3• �' (b `c Q tOD o n)fD � n Q)z- o F m m N o Q -r3FFd"6 v ° o (D5 rn� ::Z!Ln -a Ln o w (D ° tn (D' 70 rb (D rtm o p �. O p° y n =3(D 3n)° m -< , (D w z O di rn-(- Ln n � i7 C �n o o m sL ro' fl, O 4 Zi o Q w ° 3� ro ° N (D ° r* (b n (D cmi)rb En Ln rt ° O O ° N (D (D (D° � (n am (vDj b rozm @ (n ((D Ln Q n m � o °zi a n (�D-cpD°o _ n N O0 Q ro rroZY i N Q v) (�D N j � ° ro C v (n n ((D M 3 ro N o3c 3 m O3 a Ln vni), CD -0 n X p � 3 °• (D (D L o N• = Z z rte.,. 6 n � 3 o� LO (D o z� cn 0 Cc c o ° m :_rCD m 3 (n (D O v v D GDS' T ou C 3a 09 zN v T �N m !:Ir 0 una mn ou f I � m m m �s m w v n �.. r O(l QU PLATE HERE W -,I - I1 PLATE HERE sir® n ° o �` rt 3 ! J p m cn O O ui O c'i) ro N O :3 �^ rb rD Z m � p ((D n 3 Q r* m c ro rr Uri N �o n Qj n N (D ai : n v � 0 Z3 o� moo- �'o �;3 � �3 m rt C 3 n � Ln ((DD o Qj 3 (n CCD C 6 to O z W �mmm n r,- 3a 09 My s� Z �N m !:Ir �oz m -i una (-D ",�:36 ou f I � m m m �s m w v n �.. r O(l QU PLATE HERE W -,I - I1 • 0 � / f C: El D n r,- Q w LD. D Q) rt tf Q !:Ir °3Iz una (-D ",�:36 N LI) C-li�. r. ro r- Ib W 0, o N. O(l QU oLo Q N ° ° O °' LD. d (D � 0) r�r tf7 ° Eb c) ° crbcro�°pm a r n (D (D �. O c Ln 13O Ln o w (D ° — N �' n, o (n rt rtm o p �. O v (.n C (DD i° p w z O di rn-(- Ln Q) A)' � i7 C �n �- Ul �. (D ®a sL ro' fl, O 4 < a LO. Qr ro ro ° N (D ° (D (b < (D () V 3 O =3 c (D° c Q C r* ° b rozm r) (n (D -fi :I ,-'pro Z3Z3,n � o °zi a ° 3 O Z3 (D mr• Q ro 4 ro p C-,) m ro (D 3 p' 6 n 0 `n o (D T7 (D 0 rb ro ::j" n' O cn (D fl n o' CT � / f C: D❑ C w ■ (D 7 rt 9 -r3 Ln � n 3 U-)0 0 E, (D o n � � 3 v Qj N n n Ln o Q On rb 0d O a O 0 Ln (n = n (D 0 � a ■ M O Da Q 0 , N cr 10 O ( ( U) D oon�� �1°(An v7t:,.v o3 Ln 0) (D Ln f 0 Lo O O t0 O �+O - N d Q' n k vrni o m� o ca. LA o 1,U Cr - < O (D 3 CD m 6 N O 7 O m (D CL Lo (D 4 0 Q p Lo v �. 0. � O 6 vo'Ln Lan=i T VI (rD 0 • 0 .0 � Q ro CU (-a , O ® (='° 0 (D W y � m C ° 33 (ID DJ (moi) kc) =r Z3Z (D (D r=3 CU O n — O C O mD ll� kQ 3 ro fl Di C (D a) QL (D O �bl 00 (D oO 4. fl1 m Q Qr QL M - w n. (D n p) C r=y k ro c g 3 _ o p C, G Ln (D a Ln o m rt 3ZT o n, a o rt rr ro o (D ro `" o CD u, N cron cGL ° (D (D Di rb O n h r, U) �Ln ° (Q r CD - 0 O O rt 1 qD n' -T v (D + m O e Cy (p vii Lo (D �. b T O � 3 Q (D cp O 0 N ■ El D n r,- D w LD. D Q) rt tf r !:Ir (l m una = 3 N LI) C-li�. r. ro r- (DO W 0, o N. W oLo Vl (rD (D Qj v v ro r�r tf7 ° Eb c) ° cu O a r n (D (D �. O c Ln o Ln o a o p �' n, �C3�. (n rt o p 3a v m ° i° p z O z O -I Ln Q) A)' � ((DD �- (b "6 CD O 4 LO. l�D ro ° Q v ° (D (D < (D () �-Q wt ro n � o o ° n, t4D� ro rt m ro 3 p' 6 n 0 `n o 0 rb ro ::j" n' O cn (D fl n o' a � o Q :3 N NM (D v LoIZU 0 rl, o o Ln3 3 ro � 6 O O Ort ro (L (D o T_ �. ' Q - Lo Q a (ED N V) -C3 Ln LT lb rb(D o- Qj rt (D(gyp :z rnr (b 0 ili (D tl) � U rt rt o p- (moo C n ro rr �. 3 Ln �. Lo N � v 3 O Cron v O D❑ C w ■ (D 7 rt 9 -r3 Ln � n 3 U-)0 0 E, (D o n � � 3 v Qj N n n Ln o Q On rb 0d O a O 0 Ln (n = n (D 0 � a ■ M O Da Q 0 , N cr 10 O ( ( U) D oon�� �1°(An v7t:,.v o3 Ln 0) (D Ln f 0 Lo O O t0 O �+O - N d Q' n k vrni o m� o ca. LA o 1,U Cr - < O (D 3 CD m 6 N O 7 O m (D CL Lo (D 4 0 Q p Lo v �. 0. � O 6 vo'Ln Lan=i T VI (rD 0 • 0 .0 � Q ro CU (-a , O ® (='° 0 (D W y � m C ° 33 (ID DJ (moi) kc) =r Z3Z (D (D r=3 CU O n — O C O mD ll� kQ 3 ro fl Di C (D a) QL (D O �bl 00 (D oO 4. fl1 m Q Qr QL M - w n. (D n p) C r=y k ro c g 3 _ o p C, G Ln (D a Ln o m rt 3ZT o n, a o rt rr ro o (D ro `" o CD u, N cron cGL ° (D (D Di rb O n h r, U) �Ln ° (Q r CD - 0 O O rt 1 qD n' -T v (D + m O e Cy (p vii Lo (D �. b T O � 3 Q (D cp O 0 N ■ El q n r n r,- Zr m W (D w LD. Q, (n Z , �%n Q) rt tf cn 0 O (DD (l m una = 3 Ul o * (D r. ro r- 0, o N. O. �. (n n to Vl (rD (D (D 3. ci O Qj v ° v ro r�r tf7 ° � cu O a r n (D (D �. (D 4 a ® o ro 3 U C U U) (n rt rt Om O D❑ C w ■ (D 7 rt 9 -r3 Ln � n 3 U-)0 0 E, (D o n � � 3 v Qj N n n Ln o Q On rb 0d O a O 0 Ln (n = n (D 0 � a ■ M O Da Q 0 , N cr 10 O ( ( U) D oon�� �1°(An v7t:,.v o3 Ln 0) (D Ln f 0 Lo O O t0 O �+O - N d Q' n k vrni o m� o ca. LA o 1,U Cr - < O (D 3 CD m 6 N O 7 O m (D CL Lo (D 4 0 Q p Lo v �. 0. � O 6 vo'Ln Lan=i T VI (rD 0 • 0 .0 � Q ro CU (-a , O ® (='° 0 (D W y � m C ° 33 (ID DJ (moi) kc) =r Z3Z (D (D r=3 CU O n — O C O mD ll� kQ 3 ro fl Di C (D a) QL (D O �bl 00 (D oO 4. fl1 m Q Qr QL M - w n. (D n p) C r=y k ro c g 3 _ o p C, G Ln (D a Ln o m rt 3ZT o n, a o rt rr ro o (D ro `" o CD u, N cron cGL ° (D (D Di rb O n h r, U) �Ln ° (Q r CD - 0 O O rt 1 qD n' -T v (D + m O e Cy (p vii Lo (D �. b T O � 3 Q (D cp O 0 N ■ a c a) a. 1 Ln O N qj a) Q a) -5 i o� � O E O Oi — m a Q) O O Q) M U) Q) M C, u .c E- a) 0-c QJ O Oo C i m O O 0-0 '' E •� O Q) ;� C cn v N a) a) o) L E O O 5 `fQ a, E _ v�v rYoa o �i�000�mo U) 0 -6- E v_ C Q) ��-oSpQ L rd— N O u Ln v -U L i �_ a) a) '� f6 Q) Q) N ` Q) C a) 0) 0) .o v c10 °•�U� ami :E m—LO. o I-iW mmotn Q)toO � _ O0 Q QO) 2Z QAC °' LO 01 N a) C O Q C O N O O in L Q1 L Ec�r°00.61E c`�'niv�in+�o��O E fu E 01� �p a) L vY� )0u)2 �����oon n U O 4' U� . NO a U O 0 0 • 0 V 'O De 0 U O a a") 0 o,a O C--U ��c acr Lnmi v a a= u i w O Orui O O U 1 i a t ru o(1) tzV Q) a c a) a. 1 Ln O N qj a) Q a) -5 i o� � O E O Oi — m a Q) O O Q) M U) Q) M C, u .c E- a) 0-c QJ O Oo C i m O O 0-0 '' E •� O Q) ;� C cn v N a) a) o) L E O O 5 `fQ a, E _ v�v rYoa o �i�000�mo U) 0 -6- E v_ C Q) ��-oSpQ L rd— N O u Ln v -U L i �_ a) a) '� f6 Q) Q) N ` Q) C a) 0) 0) .o v c10 °•�U� ami :E m—LO. o I-iW mmotn Q)toO � _ O0 Q QO) 2Z QAC °' LO 01 N a) C O Q C O N O O in L Q1 L Ec�r°00.61E c`�'niv�in+�o��O E fu E 01� �p a) L vY� )0u)2 �����oon n U O 4' U� . NO a U O 0 0 • 0 V 'O N 4., +=+ f0 s O � ;d p ro a a") 0 o,a O C--U ��c a a= v —� c O O M a 4.1 4.1 v, O L- E L Q! O Ln L Q) c ro ro fp Q)0 i Cr (Q Qp C O Ln U cn O G N �w v v CL.(-- oL� C G Q) Q) (a z aci qj 3 Q) G7 U O N p 4- O C v d C ate- C O U 0 0 0 � v �L- c CLcu � o MMQ 0 0 0 N E a) E V) V) i 0 n a) 0 C � N v � 3 v E YVI U V) is= V H I I i_ _0 ' � Q ro Q n O �o cz � c ro :3 rrj L 0 a Q fo 0 L -6 i E p O i O a o n-- o-16 qj O y fu m cE Q)Q31 ) f) (n � 'a) 4.V Q) _0 Q) M. Q) 3 i QUi v o o � rz Q) NE L v Ln = .0 C: cn L O Ln >� O .L-- C 4CI fo 4.j E o a Oi> U to C EZI V Q 2c L Q) M Q C > •L o0 > o 3 6 v�n�a � O " O O O f6 to Q) Q)Ln •V o Q) Q) a E m .v a L 0 V m to 4O LAO O a� O i N UU Q) C L N a) X- 0)-2 -zj O fp 'v n ;O Q) U U Q v a) o M O ra O O U C 0 F E OL o Ova Oi.a) Z n OL Z > 0 41 > a) L ro fl )a) a Q o a Z O p — ro .� L Q! O Ln C C v O o Ln.0 fn E Q) VI, Ln C fp i 0 C L a) E a) to a; O o ,o E C aci U 0-qz EO°°' v EOlz O y i 7 4 a) IN Q) 0 0 0 0 rOp O v1C � o MMQ iii o -0 Q c Q) m (�■ C d O aC O N E a) E V) V) i 0 n a) 0 C � N v � 3 v E YVI U V) is= V H I I i_ _0 ' � Q ro Q n O �o cz � c ro :3 rrj L 0 a Q fo 0 L -6 i E p O i O a o n-- o-16 qj O y fu m cE Q)Q31 ) f) (n � 'a) 4.V Q) _0 Q) M. Q) 3 i QUi v o o � rz Q) NE L v Ln = .0 C: cn L O Ln >� O .L-- C 4CI fo 4.j E o a Oi> U to C EZI V Q 2c L Q) M Q C > •L o0 > o 3 6 v�n�a � O " O O O f6 to Q) Q)Ln •V o Q) Q) a E m .v a L 0 V m to 4O LAO O a� O i N UU Q) C L N a) X- 0)-2 -zj O fp 'v n ;O Q) U U Q v a) o M O ra O O U C 0 F E OL o Ova Oi.a) Z n OL Z > 0 41 ,O (U ro fl )a) m 4- c O y Q) � cri Q �(n v o Q)n fn C- kn m v1 Q) o W Ln aci U m SA v O O N U m 2Q1 Q) Q. 6 N C d O aC O U (n N W V Q) O a, al as Q� 'n_o Q) 0 Ln °� n 4 -Jo v O a) Q) En 'N -I O Ln Y O i -0vv� x O O O 3��vO.a) a`a)ca Q)41 a)E ri rbc �fQc W ti -C C O J O ro U O O O a W U U i a' i N W (A Q) o 0O ZLn O LLI W W � � x ca W a �o �Q) o a 3a o, o k a d! C v fLO "co � E L c O W a m e � o ° Q O m` (3) Ln � o U � c O NXcn a Q 00 Ln CA W o x °Q� m ,o i N� oC, o Ln W C Q Ul CD o 3:• W m J i Q N U ro ZS Z~ J v Q Ln 0) v ui Z O • c4.1 NLn Ot p i E o a 2U cn v Q m J °`D� v� 2� a Q L E o ru o bo o uo� \� L p0 O o C h O y r -0 Uru v O Q a 011 m W Q m Q v tn i i ¢ Q cv'n X ■ tiuJ N E a) E V) V) i 0 n a) 0 C � N v � 3 v E YVI U V) is= V H I I i_ _0 ' � Q ro Q n O �o cz � c ro :3 rrj L 0 a Q fo 0 L -6 i E p O i O a o n-- o-16 qj O y fu m cE Q)Q31 ) f) (n � 'a) 4.V Q) _0 Q) M. Q) 3 i QUi v o o � rz Q) NE L v Ln = .0 C: cn L O Ln >� O .L-- C 4CI fo 4.j E o a Oi> U to C EZI V Q 2c L Q) M Q C > •L o0 > o 3 6 v�n�a � O " O O O f6 to Q) Q)Ln •V o Q) Q) a E m .v a L 0 V m to 4O LAO O a� O i N UU Q) C L N a) X- 0)-2 -zj O fp 'v n ;O Q) U U Q v a) o M O ra O O U C 0 F E OL o Ova Oi.a) Z n OL Z > 0 41 (U ro fl )a) 4- c O y Q) � cri Ln Q)n fn C- kn m v1 Q) o W Ln aci U m SA v O O N U C Q) in O O 6 O cn C d O aC O U (n N B V Q) O a, al as Q� 'n_o T� 0 Ln v=in n 4 -Jo v p� a) E r� v O Ln Y O qj -0vv� �a t— O O 3��vO.a) a`a)ca a)E . is rbc �fQc ai) cn Q) -C C J O ro U O O O 1 � iFi fi4 .t 1 E a m O Uiu E E o¢� S o Q — v v C Y � 0 0 U C C � O oE 0. a 0 a u c o) a C o L 7 m °) q) O T� 3 v E " l o` C � T o = C E �g oq c � _ Ivo � aj ti C c aj C U m y 0 p � c m a 'E cLo v N O a) Ira Q) Y Eur E2 � m T c c °o o E C O D= _Io v o S m r L 0 0 r' C0NTENT 5 PAGE EXPLANATION OF ENGINEERED R.R,q�NING .;:::................ ...... 2-5 SOLID BLOCKING. BETWEEN TRUSSES..::...:.::.....:........:.......::..........:........ 6 TRUSSES WITH STAPLED NON -STRUCTURAL -GABLE STUDS ......:....... 7-9 STANDARD GABLE END DETAIL....:::.........:........:.:....::.......:......:...:....::...... 10, 11 STANDARD DROP TOP CHORD DETAIL .....::....: ..:....:.............:................. 12 PURLIN GABLE DETAIL .............. .:................... ...:.............. ............................ 13 . FALSE BOTTOM DETAIL ..... ........... :.............. .............................. ................... ..r 14 • CORNER JACK DETAIL .:.: :..........:.:..:..'....:,.:...:..:...:...;:.... . ..............:......... 15, 16 .VALLEY TRUSS DETAIL .............................. :.............. ::.:...:..:...:. .................1.7 INTERIOR BEARING OFFSET DETAIL.:...::::.:.........:..............:..:................18. WEB BRACING RECOMMENDATIONS ...................... :......................... ........... 19 LATERAL AND ALTERNATE BRACE.;DE-TAIL.....:......:...............:................... 20 ' FLOOR TRUSS REPAIR - T.C. DRILLED; CUT OR NOTCHED ...:............:.:. 21 S.NCMA LETTER REGARDING TRUSS .0V.ER.LOADIiVG :::............::............ 22 '. PIG:GYBACK:ATTACHMENT DETAIL'.... ............................ ............................... 23 BEARING BLOCK DETAIL..:..`:........... .. ...... 24 ;. LATERAL BRACING RECOMMEN'DATIO'NS ..,...::...:................... ..... 25 •{ CUSTOMER: NOTES: ' : : DATE SHEE C- wALI TYPE LEGENo 0 AC HOUSTON: L.0..d GESA:t W0A 0Wm JOB NAME; a]RYCINQSR W 5103•dA4S SOALF—" ' LUNIBER'"COMPAiVY.: im.•o]ma smmuvas. ERE9iUN�0A06EANmG-.. ..;;•OF "' Z ii 1, La'ar� A mae Oona lm Vs 98 ]]OI6Ji+1 oU S. ELN: rti�s�i.'IN10Ac WUm • I BErlIS10N5: _ l00 . ETiE9100 NOn"lOAl1 BEiA1NG - • :' q I EAI09 L0s0 SVInG �j Tnn:ll011 n]I"i W0 fu: NOil fi19�1i6 iSmfM.CFud.LLOAIniR[S IDRAWN BY: rur�apNnGS00L�fiuG �nTE910H:vOn."10e0BFa91rcc.— . 1Sp • • 7n� S �� sl� 3�:7 YYs��w'r.l."��,�'��o�,�"L'+ �l';>�� i 7ar� y„ r. r•r3•,.......„.„++L.D.:............:j.....,Ak 1Cn�.. .�.....A:df .A.�:..:..,&..........dF d'�•3 L°.iC. �........SF. A•` S'3§ s a� CWT 1-04 •�%i' �'?'(3•'ii ;t.t�xal.td'1 [ �rratvsz 1css ctcam.:. Ger, Eri ra3�3 ffd x f21.Ct1t 1 u"aRl.t' tae s,i ��«E { Wool nliiY a3�e9rr s�t3 9w o t drP3 CI �,a o tl 3 si K .1 blv, b. si s4kbx�fjl1. ta.�r L+ e°< t �. :� 2 1'�lmistxE.CtrJ �+". P !" f?rri'.+✓r??+,;r4S` tv".:5'r4 lu' 12s.Jns e?t''L...G§J �v iii ise �^z •t4.. IWWatxs� czw'vx: ffir�taf + asza�asr �s.rr�i, cr �e cy C�sa��. Sr�6z:,"a."sltlyi,:°Y�w�3�fi �as���a�•�'�st��s � rv..�^n - 4�, .a• ��f r>.{'�S9 �� rt..x wj �.�wLt;,�ras s .Ga:"aa1 • '- �� °&58 � 2�'�.J�S3 !�•�b�v?Y'int:�.'d��t�.5't'�3,�wb�•�?t�rj!�t..��u`�� :��bS:ix>...�e•Yra•1•i,Z�., ?'���`. � �f3�d'uS;z'; x4�Y"i�k�ityC�•��z'-:tk,Ya�Er`:tx•;trtY:§Yk•E.'L�.k!a-�E.3�a�. #r`� t r�idl£1 Y �•i{.�3�'468J'" �i�G,1•E'i:L Y?.;1d"a2.9I 5.,�'Ess.i�„ :.c� Z�. � 2aru: �. E # ix��� a asp �:crt ro u< •.�°�"�.+'�w.l�:�� yz'�a'sz�sii s?a•Idlim �x1rv�q, r . a- � a a.°•� +°.Si.'°a�t£6�: `iz�`l� L'�+'1. tt �'W�l u'i9'F 1 ✓� �iA•wE:J s••fL�Sa�rr'sl j^WZ�JO QZ°€ k�A°0.�,C:Fr aa�:•`W'�. •i Ct�.'«J/ 1<a'i�'7�f 'w�r��apr�a *�' r ahau�:E laiiG: S, 3• �,;s `..yit+:/ g ' 3 ,�F&-� ��''.•-�aa.m %•;' IkW si�m.asrrp°rs r::.m rpt too t,rV ;*a�a ti �� �} .�•a,;: . #''r�.s,a�ne€ssris"rrsri*RZ�rs;�$.�.�v: S�tYiPLL: ' EL�nr r«i3fs{ •j• se} NOT FQP, RQPU( r!Ql'+I. - • 0, • 0 Job Truss " truss Type t••/ ly DISPLAY IROOF I COMMON 1 I1 I. --1— - -` — 5.000 e Feb 6 2003 NliTec Industries,Inc. Nlon Mar 1 14.26-.3zJ 2�O Page 1 -2-0-0 , 5-4-5 10-2-3 " . 15-70 19-9-13 2^-7-11' 30-0-0 32.0.0 ; I� 2-0-0 S 4 5 4-9-13 4-9-13 4,9-13 4-9-13 5,-5 2.0.0 ' - i 4x4 = - -� .C'' 6.o0 12�� 1x4 II o 3xa !. 5 \ • 7 .3x4 . 4 ` 8 - L 1;(4 / \``` \ 1x4 i REACTIONS hb/size) 2=1.317/6-3-8' 10=131710-3-8 Njex Horz 2=-175(ioad case 5) 2 10 . 3x6 = - to 13 12 3x6 = . 3x8 = 3x6 = 3x8 • ` 10.2-3 19-9-13 30-0-0 ' - , 10-2-3 • -' 9'7-11 - 10-2-3* Plate Offsets V,Y): [2:0-3-0.0-1-41, [10:0-3-0,0-1-41 LOADING (psf) ! i SPACING 2-0-0 i M CSI DEFL in (loc) I/dell P -PLATES GRIP . TCLL 20.0 n .. Plates increase 1.15 TC 0.29 Vert(LLI -0.09 14 >999 M1120 249/190 TCOL 1.0.0 Lumber Increase 1.15 K EC 0.83 Vert(TL) -0.39 12-14 >907 ECLL 0.0:' SCOL 10.0 category 11; exposure C: Rep Stress Incr YES. Code L WB 0.36 Horz(TLI 0.07 ' 10 nla plate.gripDOL =1.33.: SOCA/ANSI95 31'.Provide`mechanical connection (by others) of truss to;bearing plate capable of withstanding 341 Ib 1 st LC LL Min I/deft = 240 Weight: 1 58 Ib LUMEER " • BRACING TOP CHORD 2 X 4 SYP No.2 TOP CHORD Sheathed or 4-2-1 oc purlins. BOT CHORD 2 X 4 SYP No.2 BOT CHORD Rigid ceiling directly applied or 8-6-11 oc bracing. 4� 2 X 4 SYP No.3[� t R t? l REACTIONS hb/size) 2=1.317/6-3-8' 10=131710-3-8 Njex Horz 2=-175(ioad case 5) Max Uplifi2=-341 (load case 41; 10=-341 fload case 5) FORCES (Ib) - First Load Case Only V TOP CHORD 1-2=26, 2-3=-2024, 3-4=-1722, 4-5=1722, 5-6=-1722, 6-7=-1722, 7-8=-1722, 8-9=-1722, 9-10 =-2024, 10-1 1 = 26 BOT CHORD .2-14=1794, 13-14=1140, 12.13=1140, 10-12=1794 - WEBS 5-14=-294, 7-12=-294, 3-14=-288, 6-14=742, 6-.12:-742, 9-12--288 .. ...... - n .. NOTES 1) Unbalanced.roof live loads have been considered for this design. 2) Wind: ASCE 7-98 per BOCA/ANSI95; 90mph; h=25ft; TCOL=5.Opsf; BCDL=5.Opsf; occupancy category 11; exposure C: enclosed;MWFRS gable end zone; cantilever left and right exposed ; end vertical left and right ezposed;Lumber OOL= 1.33 : plate.gripDOL =1.33.: 31'.Provide`mechanical connection (by others) of truss to;bearing plate capable of withstanding 341 Ib uplift at joint 2 and 341 Ib upliftatjo.int"'10. A Curn;.tla'tive.Dirnersigns F_•1 TC, 8C, and WP, Maximum Combined Stress Indides' LOAD CASE(SI Standard 6 P-ne! Length (fete( - irtches • sixteenths) N. Deflections (inch?s1 and Span to Deflection Ratio . C Slope ^, Input Span to Deflect on Ratio D P!ate Size and Orientation,. P N-17eft P(a e Allo�vables (PSI! E Overall Hefoht O Lumber Requirernents F Bearing Location. R Reaciicr, (pounds) G Truss Spar: ;feet - inches -. sit<teenins) S Minimum. Bearing Required i .ehesl 1. Flats Offsets T Maximum Uplift and/x Horizontal Reactic t if Appficab`:e. I Design Loading (PSF; U 0.eraired fvternbe� Sr -acing J Spariing 0. C.. (feet -inches - ;:XteEnths) `•! Mernber Axial forces for Load Case 'I D:.:r6'ion of. Load for Plate an L. racer D sine :V: Notes' •� _ X .Sdditio'naI LoadsiLoad Cases ' �. Job^, .. :Truss •..},. pe.Ply hhTak Wt!b Sim fl5'F.6 SITE `FT Ol ' ; Fi,O1JR •.. 1-i 8raefi3O F . J is TaY5 , ....... ................ ....................... ..,.... ... ........... ............¢...:.....:.......: ............ ......................: " ..... ; ... ...... ..... oh Rn/t!rnr iv nn' {nI) < 6.?oU s 3(ul 2u 20n3 f•ITak Inclusrrlas, Iris. 4' .. ..:.:.:.. un JW _) A .i 1 2f10• Pagr 1- .... t: �:'s....... •._ l:k•G........ ... Ya,9......:..:.. Z -t+9 .-o; n....... -4•..s ...7:.Z'Q...: l-'"4:. f\hG. f. -f'4::. 1;2•ID =•1.0155/582, V-tH,---"-(:2(1/950, t) -V=-1661553 : WESS t-AE=-rntJO, J-;:D=o174g nl-AJ\ -toil or r -x= :^ 20 0, C .ti,='•'37/0, .. '. D•-AT=:_11.73/0. O-AI'rv(I/556, G-APa'-7511%1, C•dd:=0(1/1:19 �( n(F . a.v a rij -• '. A 6 U f ...... ....... ........................................ .......... . :..: i , :. t:k(<... A N........................ - ............. Fir;!:Vd........1..A:.:::::.�":.%'F'::v Lf 0 y.5r i. cxG l:,l' ;.:1.•' - ' 1'~ , f ,•- 1 o , .. is . .." e 5:<t�. :. ,.. ••ri. ... ..:Xv ... ... .. ..... - AM1 p .. t ,2) Adl'plates are M1120 pli;(esunless ol:her:asg IndlCaled. ;g} tills truss requires nate inspeRfon per rhe'Iboch Coun( Method wrian this truss is chosen for qu,71ity a 11 ssure ncr_ tnspan'ion. - lal�' rn 5 ; w cni ml �s. - � 4) Rearing at jclncl;tl.l At-! Consider' parallel to grain Va[ue W9 ANSI/TPI 1-.1995 angle to arain (ormufa. nuIldin9 designer efloaln a > s.....1 R:5 :........10 ........ ......... ...- .7:11-4 ..................... ......... A1'0'I..................M:On: 1M{l0 ... 10 iv'J..... ... ..i 1 t..• AA -0 P.3a.g.y � v .. ... .... ... ......... . i.'• ,PMSG Qfl�,!.S.(art'):],.f)9c�-9,Pd9>}, tri;; J.> . ` LOAD4NQpsf) SPACING`CSL c .. ......4 ........ .0 '--.-ei•:ic [P:O,-e- 'e; f } ... . , iso-l:lj GdgeJ DEFL TCI.L' 413,0 Flateslncrca'se ..1,OG '7r 7GDL :10.9 Lumber lnuea'e in (Iaca I/deft L/d PLA'f'ES s GRIP Oy% \lerc(LL ,3AGAI AF .589 300 ". f•IIf30 tb I?q9119Q a 3•Gp: i' -: BC Bf.:LI^. 13.0 0,98 t7er1(TL)-0-42AE-AF :•382 240 i4112UN. :4v8 Rep. S'[fa55 •Pncr 1' SHnra('IIJ" 80`11- 5'.0 Cda 0.8.'t. _ 0.07 "aq rt7a n/a 18/1113 X178 BOCA(lP[20 a'D2 . (pl6Crix) 1412igia: 10 - LUMBER ' TOP CHORD 4 X 2 S'fP PJ6.7 `BRACING ' . .... ;T.OP CHORD Strntcural',rand 8Q'F CFiORD 4 X : Sl'P N4i i'[xceph s'hz(lruing direcrfy apl7hed or 2-2-0 Oc: 4'X 1 SYP No.3 - purllni-, exttpi' End vcriicaI4.. 140T CtiO[iD ftlgld ceiling <lliecd'y apPlien or fi•(f-0 oc vaicin0, • OTI-IERs 4 X 4 SYP Stud R E'ACTIONS(II7)'s@e) AI.1=957/8AA=206670.3-G, U-359/0-3•8 - 06% UP11ftU<x-100(load ca5e-21 i Max Gm; All -9So`(fond ca5e.5), AA=2066((nacf cash 1.), U=4]t.(idad,:ase 3) FORCES (lb) - blaxfmUrn Campresslon/Iagximum t'enslon I:OP CHORD . U -AL= -365 R T -AL= -36/0 A-13--187910 0 - C--tB/410, C•0=-1(375/0, 11 -fes -B 599/0, . E•F=-7499/0, F -G=-3449/4, G,H=•'1.710/0, H-4=,2684,10, I-.1=-IH4•I; ll, 1-F:=-35212511, - 4(,I - m=0/=-i%G, ht-(1=0jt7•t2; h•0=-37U;12U], O•P=•9%s/11£9, p -Q=.75(1/ 6:1;. Q-11=-759/864, R -S= -770j374, S=r=•zr0, A-e.Pi=-958!0 CBOT CIfORD Aligk-0: 0, Al•Al-0/2936, AHI Al -013355,. AG -A1-0/3355, Ar•-Au1O/3340, AE viFx:O/18.11, AD -AE -O, 1844, AC -ADDU/ 184--1, A8-AGn-1177./0. AA A.6P-1164/0, Z -AA --22 76,10, Y -Z=^1.725/0, X-Y-1065r'S82,'H•X =•1.0155/582, V-tH,---"-(:2(1/950, t) -V=-1661553 : WESS t-AE=-rntJO, J-;:D=o174g nl-AJ\ -toil or r -x= :^ 20 0, C .ti,='•'37/0, .. '. D•-AT=:_11.73/0. O-AI'rv(I/556, G-APa'-7511%1, C•dd:=0(1/1:19 �( n(F . O/J.588.,'K-AA=-1-le8/0,-K-AC=0/J604,J-AC-2060/(1, S.IJ•s-67Ji2G3,-S-V=.261/273; - - ` .7/3 t0, R.: til=.<a4•.l/0, P-VFnO/41.0, O•Ywrl. -• . .. N -Y=0/102;1, P•Y=-591/4 .. l.bi 34, f•t-F=.63510, hl•7..=G/6107, ... NOTES :.. 1) UnWilricad floor live loads have been considered For this (IccL3n: t ,2) Adl'plates are M1120 pli;(esunless ol:her:asg IndlCaled. ;g} tills truss requires nate inspeRfon per rhe'Iboch Coun( Method wrian this truss is chosen for qu,71ity a 11 ssure ncr_ tnspan'ion. - lal�' rn 5 ; w cni ml �s. - � 4) Rearing at jclncl;tl.l At-! Consider' parallel to grain Va[ue W9 ANSI/TPI 1-.1995 angle to arain (ormufa. nuIldin9 designer efloaln _• iN i "�•' ��I•r�'I'{ `~ " verify rapacity of nearing snr(are. S) One P17 USP rnfjnt12Cf6r; rRCOiTlfnende0 le tvinnzr( trot:: ra'bnaYln9t•Jalfs elite.to uplift of jr(sj u:6) De=ign • �r' , `•�-.f.-�- a5stnnes 4x2 (flat oclanta(lonpurllnsatuc5pacicI ld(`aced; fastened 10 Inns Ctr/ 2•'IOd-' ' 71 Rr-commend 2>6 simngbacks, nails.Y7a' fid f on edge, spe� lid at ID -O -U oc antllastttnaa til ea,r• adth 3-'IOd nails,"- Slydn9backs.rd.be WACtled to traits at their ou('ar'endsnr restr:dncd.Uy atnerrnr-+hns�l�h .. - sJ GSU'r141`1, Oo rie:.creet iruss backwe rds, SAMPLE: LOAD GgsE(s)'Standard NOT FOR f RODUMON ....................... ... .:. ... .. .....nF P. L-1 0 iJob Truss ,Truss 1 ype'.. L ply (DISPLAY IFLOOR 1 (FLOOR 1 I1 I _ I Job Reference lopTional) F _ 5b00 s Feb 203 Ibli i ek Industries, Inc. Thu Nlar 1 �' 09:7 7 25003 Page 1 1 x3 II 3X6 FP - 1x3 II E1x3 = 3x4 = 3x3 = 1,3 = 1x3 II "14 II 3x3= 3x3 = 4x4 = 3x3 II 3z4 = 3x3 = 1x3 II 3x3 =. 3x3 = 3x3 = 1:6 = 1 2 - 3 4 5_ 6 7 8 9 _ 10 11 12 i$ 14 ,'. 15 16 17 M " 33 32 31 .,30 29 28 - 27 26 25 24 - 23 2-1. 21 20 19. 3x6 = 3x4 = 3z3 = - 3x3 = 3.1 = _ 3X3 = 4x4 = - 3x6 FP = 3x4 = _ 3x3 = 1.3 11 3x3 = 3x3 = '3x6 = ' 3x6 - I 2-9-0 5-3-0 .6-6-0 7-9-0 9-4-3 11-10.8 14-4-817-0-0 19-7-8 22-1-8 23-6-0 24-9-0 27-3-0 30-0-0 , B 30-0-0 LOADING (psF) �_� -I SPACING 2-0-0 - l Plates L CSI M DEFL in hocl I/deft 0 PLATES GRIP TCLL 40.0 i Increase 1.00. TC •. 0.71 Vert(LL) .-0.18 30-31 >999 M1120 249/190 TCDL 10.0" Lumber Increase 1.00 SC" 0.75 Vert(TL) -0.24 30-31 >829 BCLL - 0.0 Rep Stress Incr YES WB 0.467 Horz(TIJ 0.04 26 n/a N BCOL 5.0 Code SOCA/ANS195 T�. (Matrix) 1st LC LL Min I/defl = 360 Weight; 15S Ib LUMBER BRACING TOP CHORD 4. X 2 SYP No.2 TOP CHORD' Sheathed or 6-0-0 oc purlins, except end verticals. SOT.CHORO 4 X 2 .SYP No.2 . BOT CHORD Rigid ceiling directly applied or 6-0-0 cc bracing. WEBS 4 X 2 SYP No.3 Q REACTIONS (Ib/size) 33 = 774/0-3-8, 19 = 508/0-3-8, 26 = 1978/0-3-8. Max Grav 33=803(load case'2), 19=610(load case 3), 26=1978(load case 1) . ES jib) - First Load Case Only 'U TOP CHORD ' 33-34=-37, 1-34=-37, 19-35=-43; 18-35=-43, 1-2=-2, 2.3=-1353, 3-4=-2099, 4-S=-2186,5-6=-2186,' 6-7=-2186, 7-8=-2186, 8-9=-1264.9-10=63. 10-11 =2035, 11-12=2035, 12-13=467, 13-14=-732, 14-15=-732, 15-16=-951, 16-17=-784, 17-18=-2 BOT CHORD 32-33=826, 31-'32=1859, 30-31=2282, 29-30=2186, 28-29-17S5, 2-7-28=74-1, 26-27=-894, 25-2.6=-1091, 24-25='-1091, 23-24=183, 22-23=732, 21-22=732, 20-21=1032, 19-20=517 WEBS 11-26=-100, 2-33=-1097,'2-32=734,3-32=-704, 3-31 =332, 4-31 =-256, 4-30=-130, 5-30=27, 10-26=-1519, 10-27=1157, 9-27=-1121, 9-28`=725, 8-28=7724, 8-29=546, 6-29=-271, 12-26=-1257, 12.24=867, 13-24=-904, 13-23=747, 14-23=-299, 17=19==685, 17-20=371, 16-20=-346,•16-21 =-113, ' 15-21=298, 15-22=-234 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 cc and fastened to each truss with 3=16d nails. Strongbacks to be .attached to walls at their outer ends or restrained by other means, 3) CAUTION, Do not erect truss backwards. LOAD CASE(S) Standard W A Cumulative Dimensions M Deflections linchesl and Sp,. -in to De"IECTiUn Ratio ...13 Panel'Length tfeet - inches -.sixteenths) N Input Span to Deflecticrl •'natio C Chora.Splice Face Plate Q MiTek Plate Allowab€es (PSI! . D Plata Size and, Oriertatior• P Lumber Recuiremerts. E Truss Depth Q Reaction, !pounds) F Bearing Location R Pfiinimum Bearing Require, finc`es) G Trlss'Span,(feet - inches - sixteenths') S fv axnnu:n Uplift a;d/or Horizontal Reaciirrl if .wptLCable H Design, Loading IPSF! T Re,'Uired Mflmt;f;f bracing .. ' I .C.pcClnfi O.C. (!Bei -IrlC1lt:i s,xieerll'f:y1 .V fvlemtx§r Ax;a: Force5 for Load Case 1 . J Duration of Load `for Plate'and a lber Gesigr: V Notes v Code 4,. Additional Loads load Cases L' TC, BC,`'vVeb Max'mum Combined"Stre59 Indices N 'O N MiTek 1n,dUStrjE$ enc. 7777 GREENBACK LANE -ME SUITE 109 CITRUS HEIGHTS CA 95610 USA i `+ o FAX (916) 676 1909 TELEPHONE (9.16) 676 1900 August 19, 2003 A.C. Houston Truss Company -2912 East Lamadre Way North Las Vegas, NV 89031 RE: Solid blocking between trusses To Whom It May Concern: Solid bloclting provided between trusses usually serves two purposes. First, it is provided 'during the const.rac6on:phase to help position .the truss in place and keep the truss plumb. ( Second, solid blocking is provided in a lateral force resisting system, through proper - nailing to transfer the Horizontal force. If the trusses have been erected in plumb condition, and all the lateral force resisting c elements have been installed to forn-i 'a system, .solid blocking may Ue omitted without causing any problem to the structural system.. Project engineer approval on this issue is required'. If you have arty qllestion.8, please contact me°at 800-772-5351. 1FE R�, . Sincere ,.�% iT . RpFESSrp VG G7 'T1 m . =Exp? /3 ia4-19 ��; .� • Redon. EXP 4�--30-04 Chief Eng , 1025 s, C1VR. " �r Western Divisio ' OF.CAUF ".`.. RY/rd r .. P.O. Box 335009 North Liss Veaas, '1,FV 89033 1 C - j.::.::: .. .....:..:........::�� .... �........... :..� _ , ......................._ ....... 1.8 vember 3, 1999 A.C. Houston Lumber Company 2912 East La Madre Way North Las Vegas, NV 89031 Re: Trusses with.00n-structural gable To NYhom It tMay Concern:'-. This letter is in response to your recent iriq4irj14ei ilXs arson of staples rather, than metal gusset plates that are shown on the truss engineering drawings for non-structural gable studs. The trusses in question must meet all of -the following criteria for this detail to be valid. V. tyUhe trusses must have been designed by this off—ace using UNSI/TPI 1-1995 and UBC -97 criteria .'r° - 0 -­M-with and increase of 25 /� for lumber and plates, ' 24Jf O. C_ spacing, 16 to i _0 PSF top chord live load,' 7. told PSI+ top chord dead load, 7 to 10 PSF bottom chord dead load, design wind speed is ` A75 il1PH maximum,'and be single ply trusses only: ; .The diusses must be structural trusses and be approved by the building desig•rier for the intended '•y�'•� v : ..'.. applieation prior to fabrication All 'parties involved in .the project must accept their :responsibilities and perform their work as specified in Ai`iSI/TPI 1-1995 and WTCA 1-1995. .If,; out -looker notches are to be installed in the top chord of the truss, they must be "addressed specifically in the .truss design .drawiugs_ Out -lookers that extend longer than 12" beyond the end of the gable truss are not allowed. There must be no out -lookers within 24"f7om the end of the truss, or in any top chord overhang. • No plates may be damaged or cut. 4. The trusses must be handled and installed properly in accordance with =-91 criteria. If trusses have been handled improperly, consult professionals before proceeding with installation: All' persons involved in installing 'should read and understand HIB -91 before attempting to handle trusses. It is recommended that the truss installer should consult OSHA if there are . questions about jobsite safety concerning trusses. The fabrication, installation, and handling of Musses is outside the scope of responsibility, of the truss designer. 5. Never sit cr stand on trusses laid flat_ Never stsck.cowtructioa materials on trusses laid flat. Never lift truss using non-structural members as connection points. Trusses are not intended to resist lateral loads perpendicular to the trusses. This is true for all truss members, but is especially true for all non-structural gable studs. They are called "non-structural`' because they are not specifically designed to support loads. The structural member of the cuss are adequate to support all of the loads applied in the plane of the truss. 0 Pfovernber 3, 1999 , . Page - resigner. Tre bur d n2 desiZ.mer should piG'/lde the contactor �i�`� a brac n; plan Gr the building. This plan may be included in tlae.cont;act.documents or may need to be specifically requesred by thz contractor... Refer to WTCA 1-1995.'for' questions regarding scope'.for respensioilit/. T'(PIGAL GABLE END BRACING DETAIL. 7. If the truss design &awin;s specie/ CUNSUIT 9UIl71NC OE SIG VEA FOR SPECIFIC 0117AIL. seismic or wind load had been applied, it is 'applied in directions that are BLOCKING - parallel with the plane of the truss. ROOF S'IEATHIiNG A. Trusses which are exposed to wind. GABLE EMD acting perpendicular to the face of TRUSS.\ I the truss must be br.aced to resist the lateral forces due to wind load T acting on the face -of the truss. The .n building . designer .should perform lateral calculations to determine where braces are required. HIB -91 should be consulted for general guidance with WIND regards to bracing of trusses. Irl OUT OF additional publication entitled Commentary: for Permanent Bracing PLANE of. NI.-tal Plate Connected Wood DIRECTION � j f Trusses" written by John E. Meeks, j A, P.E. -is 'available from WTCA (Wood' �� Truss Council of America). . In this 'LATERAL' / DIAGONAL WIND publication on pages 3 and 9, the BRACE BRACE BY bracing of .gable 'end frames are BUILDING DESIGNER. discussed. It' is recommended that the building designer read this ji L�• publication. Also consult the "tilitelc Standard Gable End Detail" for . additional information. All of these BLOCKING publications specifically recommend a �. detail similar to -the sketch to the right WALL TO GF BLE TRUSS• CONNECTION' �. in many situations. DESIGNED .AND DETAILED B`( BUILDING END WALL DESIGNER. 3. A11 connections must be applied in co.6formance with iUNSI/TYI 1-199 , current accepted NDS, and/or iNES National Evaluation Report(s). 9. The trusses must be fabricated properly with no gaps at stud connections except as allowed. is ..iNSI/TPI 1-1995. If the above conditions are -meet, then (3)-16ga s 2" power driven staples may be substituted for the specifed'metal gusset plates. This connection is intended to hold the .non-structural ;able studs in place during delivery and,instnllation. These studs are intended to provide nailing . surface for drywall and/or sheathing and transfer vertical -loads from sheathing into the truss. 7f th-ese non-structural gable studs must resist lateral loads as noted above in note 6, additional nails.or connections may be required and must be specified by the building designer. dated connections are recommended at all hip over -framing, Dutch hips with setbacks greater hhat.. 2'-01', -all girder trusses, piggybqcl:,' and' valley. trusses. Plated. conriections .are '.also recommended ii any situation where a leder is_to. be "applied to the truss (Ledgers and their... �t connections are by others.) :This letter applies only to ..16" or .24" O.C. spaced. vertical .non- FILENAME: STDGA.B100XB STANDARD ANDAR�D GABLE END DETAIL. PAGE 1 Of 2 DIAGONAL OR L -BRACING 9/5/2002 JAR! r— REFER TO TABLE SHEATHING TO CL,.. 2 — 2X4 NO.2 OR BTR. DF -L 1 1/2" -(BY OTHERS) _BUSS I 4X4 — 1X4 3 1/9" 0P, ?X3 (TYP) �- �` �f� I _24" MAX NOTCH AT1 _' =-3 \6'13" MI H OT ;ONT. 8R ^�II 24" O.C. (MIN.) \_ \ 2X4 LATERAL BRACING .. LEDGE TOP CHORD AS REQUIRED PER NOTCH DETAIL TABLE BELOW 3X Imo, 3x5 = , \ . .VERTICAL STUD y TYPICAL 2x4 L -BRACE NAILED TO 2x4 VERTICALS W/8d NAILS SPACED AT 8" O.C. SFCTIIIN 24:' O.C. II -TYP END WALL LID CEILING, MATERIAL DETAIL A zM LATERAL BRACING NAILING SCHEDULE VERT. HEIGHT LOADING(pso UP TO 7'-0" SPACING 2-0-0 TCLL 50.0 Plates Increase 1.15 .TCDL 10.0 Lumber Increase'1.15 BCLL 0.0 Rep Stress Incr YES BCDI. , 10.0 Code UBC97/ANS195 LUt. _R TOP CHORD 2 X 4 HF 1650F 1.5E BOT CHORD 2-X 4 HF-1650F.1.5E OTHERS 2 X 4 HF - STUD/STD 411 24:' O.C. II -TYP END WALL LID CEILING, MATERIAL DETAIL A zM LATERAL BRACING NAILING SCHEDULE VERT. HEIGHT # OF NAILS AT END UP TO 7'-0" 2 - 16d OVER. 8'-6" 4 - 16d MAXIMUM VERTICAL STUD HEIGHT SPACING OF VERTICALS... WITHOUT BRACE. WITH LATERAL BRACE WITH L -BRACE. '12 INCH G.C. 6-8-0 13.4_0 _9_1_'0 16 INCH O.C. ;4N OTES 1) VERT.. STUDS HAVE BEEN CHECKED FOR 80 MPH WIND, EXP. B, HEIGHT 25 FT 2) CONNECTION BETWEEN BOTTOM CHORD OF GABLE END TRUSS AND WALL TO BE PROVIDED BY PROJECT ENGINEER OR ARCHITECT. 3) FURNISH COPY OF THIS DRAWING TO CONTRACTOR FOR BRACING INSTALLATION. 4) BRACING SHOWN IS FOR INDIVIDUAL TRUSS ONLY: CONSULT BLDG. ARCHITECT OR ENGINEER FOR TEMPORARY AND PERMANENT '.BRACING OF ROOF SYSTEM. 5) DETAIL A (SHOWN ABOVE) APPLIES TO STRUCTURAL GABLE ENDS AND TO GABLE ENDS WITH A MAX. VERT. STUD HEIGHT OF T-6". , TOP CHORD NOTCHING NOTES - 1) THE GABLE MUSTBE FULLY SHEATHED W/RIGID MATERIAL ON ONE FACE BEFORE NOTCHING IF STUDS ARE TO BE SPACED AT 24" O.C. �. ATTACH SCAB (EQUAL OR GREATER TO THE TRUSS T.C.) TO ONE FACE OF THE TOP CHORD WITH 100 NAILS SPACED AT 6'. O.C. IF STUDS ARE SPACED AT 24" O.0 :.AND FACE OF TRUSS IS NOT FULLY SHEATHED. 2) NO LUMBER DEFECTS ALLOWED AT OR ABOUT NOTCHES. 3) LUMBER MUST MEET OR EXCEED VISUAL GRADE #2 LUMBER AFTER NOTCHING. / 4) NO NOTCHING IS PEP,MITTED WITHIN 2X THE OVERHANG LENGTH.. OpR� ` OA/� x? T?. Rs oWinued on page 2 `E�x: C FBF CA. o Crc, 4 44, 2903 STAN DAR.D. GABLE ���D. DETAIL PAGE52 OF�2 4- 10d NAILS MIN. PLYWOOD* SHEATHING TO 2X4 STD. DF-L BLOCK 2- 10d ---•. �' e (T'P) 2X4 BLOCK SIMPSON:A34 I i OR EQUIVALENT ± 45- 2X4 Sil DOR BTR SPACED @ 5'-0" O.C. �. SHALf� BE PROVIDED AT EACH END OF LEDGER i SRAC, . EXCEPT FOR BRACE.EXTENDED STROI BACK INTO E CHORDS & CONNECTED TO CHO S W/ 4- 10d NAILS: ( MAX. ENGTH = 7'-0" GABLE END �. STANDARD TRUSSES SPACED @'24" O.C. NOTES 1) 2X4 N0.2.OR BTR. FOR LEDGER AND STRONGBACK NAILED,TOGETHER WITH 10D NAILS @ 6.'O.C. ..: 2 2X4 .T LEDGER NAILED EACH STUD WITH. 4- 1.0d NAILS.... 3)2X4 STR.ONGBACK TO BE CONNECTED TO EACH VERT. STUD WITH 2- 10d TOENAILS THE 10d NAILS SPECIFIED FOR LEDGER AND STP.ONGBACK' ARE 10d BOX NAILS (0.131'" DIA. X 3.0" LGT) THIS-0ETAIL IS APPLICABLE TO STRUCTURAL GABLE END. IF THE FOLLOWING CONDITIONS ARE MET. • AUG _92003. 1. MAXIMUM HEIGHT OF TRUSS = 8'-6" 2: MAXIMUM PANEL LENGTH ON TOP AND BOT. CHORDS = T-0" 4. THE HORIZONTAL TIE MEMBER AT THE VENT OPENING SHALL BE BRACED @ 4'-0" O.C. NIAX.. +�t'ECR-� 4. PLEASE CONTACT TRUSS ENGINEER IF THERE ARE ANY QUESTIONS.Ty c REDO Y� O. \ .F CA0.: L] S t o Pm all 3 A S t o APRIL 23, 1998 PURLIN GABLE DETAIL ST-HIP01 _ --- --- -- SHaCT 1 GF �CIc (P) 00. I —•--o0 moo MiTeOndustries, Inc, STUD SPACING ON PURLIN GABLE TO BE LESS THAN OR EQUAL TO THE LE6,ST TOP CHORD PURLIN SPACING ON THE GIRDER, OR HIP TRUSS. 5X5 II FIRST COMMON II II AlURUN GABLE —�\ �'.. H04 \ H03 II 3X5 ' ALL PLATES TO BE 2x4 UNLESS OTHERWISE NOTED 3X5 TYPICAL "PURLIN GABLE" 'H0i I �I 3X5 ' ALL PLATES TO BE 2x4 UNLESS OTHERWISE NOTED 3X5 TYPICAL "PURLIN GABLE" 7 Al S TANOARG F.EPAIF FOS',-.DOINr S I -REP 10 A FALSE SOT70M CHORD - —)�--. r —------- Mi'le!IK Ind ,series, Inc. Ct1es erii= _Id, PITO. l� LJLJ _�DEIR BRACE (T(P.) @ 10'- 0- O.C. (MAX.) FOR SINGLE TENSION BOTTOM CII -TORO WHERE RIGID CEILING IS NOT APPLIED DIRECTLY TO THE MAIN TRUSS 60T T ONI CHORD, BRACE AS SPECIFIED FOR BOTTOM CHORD IN. COMPRESSION OR MULTIPLE PLY. MAIN TRUSS. VERTICAL STUOS @ 48" O.C. ATTACHED ' WITH T\/VO - i Od (.148- DIA.. X.3") CONINION WIRE NAILS AT EACH ENO OF VERTICAL. 2X 4 STO. (OR BETTER) SPF, HF, .OF OR SYP VERTICAL WEBS FALSE BOTTOM MAIN TRUSS (S?ACING = 24" O..C.) MAIN TRUSS MANUFACTURED WITHOUT FALSE 190.1 1 ONI CHORD TRUSS SP 4N' 2X, 4 No.2 (OR BETTER) SPF, HF OF, OR SYP BOTTOM CHORD ' lhrot".�..� ` :[� ei"'''?_ry' ., ••rot 4..' t� - ' uvi t ,," NOTES:13 .1: LOADING: ` c G LIVE LOAD DEAD LOAD l ?,. \ E k• i TOP CHORD: (REFER TO'THE MAIN TRUSS DESIGN FOR TOP CHORD LOADING) BOTTOM CHORD: 0 PSF tOP.SF Z RErEP.TO.THE MAIN I ROSS DESIGN FOR LUMBER AND PLATING REQUIREMENTS XfMUM EOTTONI CHORD PITCH - 6112 . :,4.\Ti=1E Et`ID 01$TP.NCE,'EOGE DISTANCE, AND S'PACING.OF NAILS SriALL.BE SUCH, . '. �'� " ,� iV.4RNLYG' Venjy design parametem and RE.iD 1YOTE5 ON THIS t31yD REVERSE SIDE.SEFORE'USE.'- - �®' Deslgnpalid' for use'only with Nl Tek connectors. This design is dosed only upon pdr6merers shown• and is for an indivierual building component io be . • installed:ond loadEti verficafiy. P,pplleability of design,paramefiers and proper Incorporation. of component is responsibility of building designer -not truss j,; -�: . g g ppnrt r,(_iodLtidual web mem ers pnly Additional tPm ctrl to insur a ill Burin co uc'(o is the deli �er:,9racin s4awn i� fo�lator^i c„ may'.- ,,,r •responsibility of'the erector. Additional permanent bracing of the overall struciureis the responsibillh� of the building designer. For general guidance .. regording'ftlbrication. quplify control, storage., delivery, erection and bracing, cgnsulf QSh88 Qudlity Standard, OSd-d9 Bracing Specification, and HIB -91 ,�/ Handling Installing `and Bracing Recommendarion available ham truss Plate Institute. Sd3 D'Onofrio Drive. Matlison. WI 5J714. 11 A! 1 � �� A� Job Truss Truss Type Qty Ply Typical End 1 Comer Jack General Details - All corner jacks and end jacks ALL JACK MONO TRUSS 1 '1 ' meeting requirements listed below. Job Reference (optional) T7 . Duston Lumber Company 5.200 s Sep 30 2003 MiTek Industries, Inc. Fri Mar 19 09:16:01 2004 Page 1 -2-0-0 8-0-0 2-0-0 8-0-0 • 2x4 I I Scale: 3/8"=1' 3 Slope may vary from 3:12 to 8:12 X cad 8-0052 max. At �y May be.ommitted per Note 4. •Q , o 2 t 3 W • 2 InI CI 2 9 U May be supported by girder truss joined . 2x4 = 1 2x4 \\ 4 with Simpson LU24 or USP JL24. . 2x4 11 When end vertical is ommitted note 4 , Alternate plate positioning ( ) Simpson A35, USP MP34, or 3-1 Od toe 8-0.0 Max. . nails (per 1997 NDS) may be used. • Plate Offsets X Y : f2:0-2-0.0-3-21. LOADING (pso SPACING 2-0-0 CSI DEFL in (loc) Vdefl `Ud PLATES GRIP T -°'•: - 20.0 Plates Increase 1.25 TC 0.70 Vert(LL) - -0.20 2-4 >468 360 M1120 185/144 T 14.0 Lumber Increase 1.25 BC 0.44• Vert(TL) 0.45 1 >59 240 B __ 0.0 Rep Stress Incr YES WB 0.00 Horz(TL) 0.00 4 n/a Wei BCDL 8.0 Code IBC2000/ANSI95(Matrix) Weight: 29 lb LUMBER, BRACING TOP CHORD _ 2 X 4 SPF 1650F 1.5E TOP CHORD Sheathed or 6-0-0 oc purlins, except end verticals. BOT CHORD. 2 X 4 SPF 165OF 1.5E -BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS. 2 X 4 HF Stud REACTIONS (Ib/size) 2=497/6-3-8, 4=302/0-3-8 Max Horz 2=177(load case 4) Max Uplift 2=-63(load case.5), 4=-30(load case 5) FORCES . (lb) ; Maximum Compression/Maximum Tension TOP CHORD -1-2=0/78, 2-3=-161/106, 3-4=-240/67 BOT CHORD NOTES 1) Wind: ASCE 7-98; 90mph; h=25ft; TCDL=8.4psf; BCDL=4.8psf; Category 11; Exp B; enclosed; MWFRS.gable end zone: cantilever left and right exposed ; end Vertical left and right exposed; Lumber DOL=1:33 plate grip DOL=1.33. 2) This buss has been designed fora 10.0 psf bottom chord live load nonconcurrent with any other live loads per Table 1607.1 of IBC -00. 3) Proyide mechanical connecfion (by others) of truss to bearing plate capable of withstanding 63 Ib uplift at joint 2 and 30 Ib uplift at joint 4. 4) End yertical may be ommitted on jack trusses less than 7-10-0, provided that bearing is added at JT -3. Connection by others or utilize Simpson A35, USP MP34, or 3-1Od toe nails (per 1997 NDS). LOAD CASE(S) Standard �,INEER:S;... QROFES8/0 * Also'valid for UBC 97 and .IBC 2003 Q� �9j Q�\PM T 80.1 WILLIAM TpBO -0 G) 0 Exp. 12i31ios.` �' W C 3x229 m l w _ . ' -EX P. 6%30/07' \� �CFVI ..a� -' �p cry .. • .: C I VI Mar. 23, CF CA0, - 2004 � .seas ' JOo IN55 INs9 Type ' ty - y T'iPICAL 3-G-0 SETBACK CORNER GIRDER GENERAL DETAIL - ALL CORNER GIRDER TRUSSES ALL CGI MONO TRUSS. l i 1 MEE—i IPTG REQUIREMENTS LISTED (optional) BEL Oj V. ' -e C. Houston Lumber (,amaany, Nenh Las `/egos, it 89031 q-201. Rt s se? i3 _'Ga0 A1eH Industries, Inc. ius bep 13 G9:4r.24 2CG1 ;ge 1 104 :AAA - .. .'.•CJI n-.'.-c :Mx 2-10s SLOPE MAY VARY FROM 2.83112 TO 5.66/12 2x4 II - - - 4 ; L ].54r ]xd SEE NOTE R5: a LL s SUPPORT REQUIRED AT 1 < JT-1 WHEN TRUSS LENGTH ax4= 7 a IS LESS THAN 3-0=0. Ix4 11 3x4 = CONNECTIONS BY OTHERS EXCEPT AS NOTED •,Plate Offsets ((2:0-1-12,0-1-81 -MAXIMUM' . LOADING (psn SPACING .210-0 - CSI OEFL In. (lac) I/deo PLATES GRIP TCLL 20.0 Plates Increase 1.25 TC 0.82 Verl(LL) -0.03 7 • >999 - MII20 185/144 TCOL `15.0 - Lumber Increase 1.25 8C 0.49 Vart(TL) o-16 1-2 ' >232 BCLL 0.0 Rep Stress Incr - NO - •'W8 0.61 Harz(TL) 0.02 B Na SCOL 10.0 Cada UBC97/ANSI95 1st LC LL Min Well = 360 Weight: 41 Ib LUMBER BRACING _ - TOP CHORO 2 X 4 SPF 165OF 1.5E TOP CHORD Sheathed or 6.0-0 ac purtinc,' except and vertlrals: SOT CHORD 2 X 4 SPF 465OF 1.5E 80T CHORO Rigid ceiling directly applied or 10-0-0 oc bracing. • WEBS. ' 2 X 4 HF Stud REACTIONS - (lbhlze) 2=675(0-3-a, 6=926/0.24 Max Hcrz 2=210(Io2d case 4) (. -_'CcS (Ib)'- First Lead Case Only CHORD 1=2=28, 2-3=1041, 3-4=10, 4-5=-8, 4-6=�t52 - 80TCHORO 2-7=10(19,5-7=1a09 WEBS 3-7=143, 3-6=1077 NOTES • (6-4) 1) This truss has been designed for the wind loads generated by e0 mph winds at 25 it above ground level, uiing 15.0 psi top chard dead load and 10.0 psi bottom chard dead load, In the gable and mor zone an an occupancy category 11, condition I enclosed building, with exposure C ASCE 7-95 per USC97/ANSI95 If and verticals or cantilevers exist, they are exposed td wind. If parches exist, they are not exposed to wind. The lumber DOL increase Is 1.33, and the plate grip increase is 1.33 2) This truss has been designed for a 10;0 psi bottom chard live load nonconcun•ent with any other live loads per Table No. 16-8. UBC-97. - 3) Provide mechanical connection (by others) of truss to bearing plate at joint(3) a. 4) This;tivas has been designed with ANSI/T.PI 1-1995 criteria. .. 5) Webs 3-6 and 3-7 may be ammitted when end iac!a are S-M or less In length. 6) All cannecttans must be per 1997 NOS requirements. LOAD CASES) Standard 1). Regular. Lumber Incteese=1.25, Plate Increase=1.25 Undann. Loads (pin Vert 1-2=70.0 Trapezoidal Loads (pIG ' .Vert 2=6.a-toF=-15-3, 2=-4-5-ta-4=.189.4, 4=189.410.5=-194.3.: - T r . X11 AE J No'. Co. . - a I . ' EXE. 613012005 ,I-P. 2a 200T w. r1UTLS r — — MAX.SLOPE/GRADE Fbfi BEVELED—I—I—I-I- 1-FnOV G-E LATERAL SUPPORT FOR TOP CG1,iuou _ _c°uu°H CIiLRDW.ITH_SHEATHINC,(BY OTrlERSJ HOTL.FOHCOHriLCT1011 BOTTO'KI CHORD h. IIIu5SL5THus5Ey (if YALLE'TThU55I(i { `'rl Z{OC WEB LCNGTI1 WITHOUT .BRACE CGu110H 1hu5� -,LEL2- 2'{. 110.2 DF-L —r nl 1'-S. ESIGWITH (]RACE 12'-0'.. 3*-THfS:DESIGI'1 CHECI:ED FOR ]20 H.P-H, oLT11L-"u"OH t' -- N1HD LOAD. } 110.2 DF-L. (DET. D) IY/IL 'ViL LLY 'L >`� HII-I-LII Va LLLY 5C1 I 1 V' 1' -ALL PEATES }.P2 TO 02 H1TEK-20'S THUS— oLTAiGO _ _� S-RE, EL VALLEY TRUSSES FOR PLACEHEIIT I I I _L ! L UH CUrLHc t: TAUS 5; OR, US DET.'A �1+ vALLCY p USE 2-IGd rLLILS, fl TItU55— 11. GIHOEfI 1 Hu51 I rwEuCEHCHLu _ WAX. It() u.r.11. wI1,101 6-FOR C(jIIIIECTINC' VALLEY TRUSSES 70'lldu55w/2 TO C01'L"tOu TRU'SS-;.'.USE`DET.•B' On -C' IOtt1nIL5 1 1 II II 1 I IF TOP CHORD LATERAL BRACING FiEOUIRED..15' LESS THM-I '�PACIHG OF '�� II 11uGE 11 VALLLPY TRIUSSE j2{' OIC.) THEH /`IuYCIVJHOuf.COuu°F N- ADGJTtOAL lr.. f3RACTHG IS REQUIRED. Thua 414 PAI'iTIAt-HOOF LAYOUT B-I.�TER�L BP),CTI'IC SHALL BE NAILED UCTAIL-A -- - -- s1 pt'IN- ]-10 HA[LS: DI TAIL- U t lu 1tl AUG' .� J •LUUJ - IhuSS . 3.5 3.5 2+3 �tS.��h HunRrCA11E CLTP--'-------------------- YU�n .. UE TA IL -C .� II'_0 10w'-0' t �'� .LGcp: 06/801.0trj w : r ClVI IZ 01•T.'S I•LI CL :� �✓ u. z TO 11r l\ s. • �- � 213 Q I —516U. A110U-T VVALLE.Y .TRUSS DETAIL 314 3`{ ]•5 {-O'_IJAY. / 2+3 sEL Ho1CHe.2/ (�L P3 r ' LpI=� NO c ,4­wl 3Li c, I D n. S' 31• 1uc Int-out 111 rimll or OI-,c'r, sdo,n„lion ComeClor H,rJ..,r, Lumb,.-c r,1iTc1< InCIU51rle9, Inc ' I` '�._ (.' ' `.fl._„ � � "' [1� , r. �.., r.... -' pl o. u..,)•`+-a ,u „ L.! 1•x..1 ,r..J..l \ b C:r.`a, r,ao �. n.. J..,.r., l.n V^n, l-�.V 11�tJ�r-tl 441E �' ]I+e.Cold C.mp Or. rI 10 _ _ _ �� � m*w.-- .v�.s ..., ,,,..,� •I t. • . �-,. �Iv., . � t,. J� rn n-.n I.:.. .ar•-tea, o.r.... :.j �.. — It,nclw Confu, ., CA 15670 Q p y ��� �..._ �_.•�.. , �._.... .,�„I” ��_.. _ o �.. y7�{71yJ/g4� x(17 "~~�~ •,�.. J... ., v• /1' `�� .06 ,ISI U;F'h�s C1'�•'0:.., ,r-.. •c.,'n.i�,q m w.+„-.N ,-.v•-�vvl. 1,... rtv+b,(.IM 'J, .. O.-•/. ,R} Y ALLI..i.C[.LL �LL (a 0�J7/lslsl F.Li (f lejUl.e�1S' ` ~ C,�am.r-.,....,.,�wur.:c,,r�7 •...�v• •o-�d ■... C.Plrl,bllC71s12 uR., ^rte., IM 1+x7 )Jn d.J —D,, 11--, PJ.nN 1, 1192 ' ` C.",..r a ,. -c'.,a o ,'-.J ancr�-• . p::._ ,�..o-.q a� I,..y. ..� i.-.. ,,. r - o. ._ c.,f a ee. wl.a'a <,:-.1 n....La d.... ,.. ml...r., �+ �r y1•+• .a CKkAJEFt uEIAEFl . •q P-.. ny' -tl -< I.wl ,..:-.t 0..W ., acq tianuv .,••a on ,., a..+y, 11--, a' l.uJ b.a,l rG r", 1-ruo" liul l•,. .. , , � •^rte-•'• y.. �... m,rJ.... �.. n.�4ln .,.. ��rl+1A5, � � ���(J ulC_.�fr�f Pl � 2 JULY2003 I INTERIOR. SEAP.IN.G OFFSET DETAIL NOV. 13, 2001 I VVc8 BRACING F;ECOMM cfJG,�.I COPyS I S.� _V"•�` X-6P.ACE 6AY SIZE rA • Ll n u C✓�rQ iv k I-ndus'LriC_:s, Inc., - M,".XIMUM VVES FORCE (Ibs.) 24"O.C. 48"O.C. I 72" O.C. BRACING MATERIAL TYPE A I B I C I D SPACING MATERIAL TYPE A I B I C I D SPACING MATERIAL TYPE C I D 3880 w 4600 I 4600 6900 T 1344 4600 I 4600 I 6900 ' 40342 638 3154 I 33942 3942 5919 1344 5914 I 3942 3942 II 3992 5914 2760 3450 .I 3450 � 5175 � 1344 3450. 3450 5175 3 50 5175 2453 30666 T 3066. I 4600 1344 3066 3066 4600 3066 4600 220P 2760 2760 I 4140 3007 2.509 2509 3763 1344 1344 2760 2760 4140 2509 2509 3763 2760 2509 4140 I 3763 * -CONTROLLED BY CONNECTION BRACING MATERIALS GENERAL NOTES 1 X 4 INO, 45 SYP -OR- I X 4 112 SR8 (OF, HF, 5PF) 6 2 X J #3, STO,CONST (SPF, OF, HF, OR SYP) C 2 X 4 1133, STO, CONST (SPF, OF, HF, OR SYP) O 2 X 6.93 OR BETTER (SPF, OF, HF, OR SYP) 1. x -BRACING 15 REOUIREO TO TRANSFER THE CUMUl,4TIVE LATERAL BRACE FORCE INTO THE ROOF ANO/OR CEILING DIAPHRAGM. THE DIAPHRAGM IS TO BE DESIGNED BY A OUALIFIEO PROFESSIONAL. _ 2. THESE CALCULATIONS BASED ON LATERAL BRACE CARRYING 27. OF THE WEB FORCE. MATERIAL MusT BE SAME SIZE AND GRADE OR BETTER. AS THE LATERAL BRACE MATERIAL, AND SHALL BE INSTALLED IN SUCH A MANNER THAT IT INTERSECTS WEB MEMBERS AT APPROX 45 DEGREES AND SHALL BE NAILED AT EACH ENO ANO EACH INTERMEDIATE TRUSS WITH 2-16d COMMON WIRE NAILS. (3-16d NAILS FOR US MATERIAL( 4. CONNECT LATERAL BRACE TO EACH TRUSS WITH TWO 1Gd COMMON "IRE NAILS. (THREE 16d NAILS FOR 2X6 LATERAL BRACES) S. LATERAL BRACE SHOULD BE CONTINUOUS AND SHOULD OVERLAP AT LEAST ONE TRUSS SPACE' FOR CONTINUITY. 6. FOR ADDITIONAL GUIDANCE REGARDING DESIGN ANO INSTALLATION OF BRACING , CONSULT OSB -B9 TEMPORARY BRACING OF METAL PLATE' CONNECTED WOOD TRUSSES AND HIB -91 HANDLING INSTALLING AND BRACING FOR RECOMMENDATIONS FROM TRUSS PLATE INSTmIrE, 583 O.ONOFRIO DRIVE, MADISON, WI. 53719. 7. SEE SEPERATE TRUSS ENGINEERING FOR DESIGN OF WEB MEMBER. 8. THE ISd MAILSSPECIFIED SHOULD BE 3.57 LONG AND 0.162' IN DIAMETER, INACCOROANCE WITH NOS 1991 NOTE: FOR A SPACING OF 9A- O.C. ONLY. MITEK STABILIZER TRUSS BRACING SYSTEMS CAN BE SUBSTITUTED FOR TYPE A. S. C AND 0 BRACING MATERIAL, CROSS BRACING FOR STABILIZER$ ARE TO BE PROVIDED AT 8AY SIZE INDICATED ABOVE. WHERE DIAPHRAGM BRACING IS REQUIRED. AT PITCH BREAKS, STABILIZERS MAY BE REPLACED WITH WOOD BLOCKING. SEE STABILIZER ' TRUSS SRACW G. W STALLATION GUIDE AND PRODUCT SPECIFICATION. /SSIp;\ V. C. V p0 Til V I Uj C 413-JU I nori_ancal Blocking \EXP. D(713D107 MATERIAL L` - (One leg of Y, -bracing shown dashed for drawing clarity. This leg will'require hor¢ontal blocking \._::.. next to the tap and bottom chord so it attaches to the brace Plane:)' ' TRUSS wE9 % MEMBERS -�P =rr� .rnr,�•s.�,�,� _ ,tee-. . v>Ta sou z+=A-c"-'D"- x '��• z• _ � _ _ "^Y�..�'�'-.--�+„i TVARlVING`'• Verily e`sayrt parameters and READ NOTES ON THIS AND REVERSE SIDE BEFORE USE. Design valid, for: use only: with MiTek connectors. This design is based only upon parameters shown, and is for on individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility' of building designer - not truss deslgrie?.'8racingshown Is for lateral support of individual web membets only Additional temporary bracing to insure Stability during construction Is the oresponsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarcingJabrication, gdoflty control, storage, delivery, erection and bracing: consult QST -88 Quality Standard, OSS -89 Bracing Specification, and HIB -91 n Hadling.Installing and Bracing Recommendation available from Truss Plate Institute. 583 O'Onofrio Drive, Madison. WI 53719. '�•�—rya 5.:• - MiTek �m 0 - Lm :7 0 n FLOOR I F01 2-5-4 I� l FLOOR, r GEi IEP 4L DETAIL 6720 T.C. CUT, DRILLED OP, NOTCHED IPI 1ST PANEL A T EITHER END MIN. 6" FROM END OF T.C. MAX. scale=': SPAN AND HEIGHT AS SHOVAIN IN CHART BELOW, NO OTHER E<ISTING DAMAGE TO TRUSS. +� NOT DISTURBED NOT -DISTURBED °rte 4 3 II 4-0-0 1x3 8 3xfi FP= 1' 3 - 4x9 =' 1x3 11 3x4 = 4.7-0 lx] II ADD ON 1x3 II 3x4 = 1x3 11 4z9 I z 3 .i s a 1 o ,. A r, r. ;-, . 1, 4x9 = 4x10 = 3x17.5 M19 FP= 3x4 =7x4 = NIX< LENGTH OF DAMAGE TO BE NO MORE THAN 5" AND PLATES ARE NOT DISTURBED. 4x10 = NIIN. LUVISER SIZE AND GRADE: T.C. = 4X2 SPF 165OF 1.5E B.C.= 4X2 SPF 1650E 1.5E V/EB = 4X2 HF STUD LUMBER T.np CHORD 4 X 2 SPF 165OF 1.5E CHORD 4 X 2 SPF 165OF 1.5E .S 4 X 2 HF Stud REACTIONS (Ib/size) 17=1239/0-3-8, 11=1239/0-3-8 4x9 = 19 MAX LOADING: (PSF) SPACING = 24" O.C. LOAD CASE(S) STANDARD PLATES GRIP L120 185/144 1016 127/82 Weight: 84 Ib BRACING TOP CHORD Sheathed or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 ac bracing. FORCES 0b).- First Load Case Only TOP CHORD 1.7-18=101, 1-18=-101, 11-19=101, 10-19=-101, 1-2=5,2-3=3528,3-4=3528,4-5=-4726, 5-6=-4726,6-7=-4726, 7-8 60T CHORD 16-17=2049, 15-16=4366, 14-15=4366, 13-14=4726, 12-13366, 11-12=2049 is WEBS 9-11=2320,2-17=2M, 9-12=1688', 2-16=1688,8-12=-237,3-16=237,7-12=956,4-16=-956, 7-13=411, 4-14=411, 5 NOTES 1 Thls truss has Bean checked for_unbalanced loading conditions. - 2 All plates, are N120 plates unless athenvlsaJndlcated. 3 This truss has been.dgsigned with ANSIlTPI 1-1995 criteria. 4 Recommend 2e6 strangbacks, on edge, spaced at 10-0-0 on center and fastened to each truss with 3-16d nails. Strongbacks to restrained by other means. LOAD CASE(S) Standard :fi,aiiiili '?i 5;1 :i ii �'lillil:liii L6- 5'—I 5' �MITEK. PLATES NDT DISTURBED NOTCH OR Gen erafRepair Notes: CUT AND REMOVED' OR DRILLED HOLE 6720 This repair is for cutting, drilling or notching T.C. in I" panel at either end as shown, 6" of T.C. at either end and plating must not be disturbed. All other lumber and plates are intact and undisturbed. THIS REPAIR IS FOR FLOOR TRUSSES WITH SPAN AND HEIGHT SPECIFICATIONS AS SHOWN ON ENGINEERING. Truss must be two point B C bearing have webs. from B C (bearing) to T.C. in first aanel. truss Symmetry may vary and chase location must stay within center 1/3 Of truss- see Original truss engineering. Truss may/ have no other existing damage. Shore truss to original geometry prior to repair. Attach 2x4 SPF. 1650F 1.5E add ons as shown nailed to each face of truss w/10d gun nails�(0.131" dia. 13y 3 :Jong),I.row(s) n,3" o.c. chords .and webs. Nails to be'placed with sufficient edge distances and end distances as f6`pre vent splitting of wood members. Attach bracing and -sheathing to repair. Add on to one face -may be . Use. in lieu of add on [o both faces where conditions allow' only one face to be repaired. Do not damage I='t•4 ' a-13=147 '��+ �t ' it-CHAEL A. � EJK 32` 99s7� a1 ed to ,Valls a��elr outer 4 4 raj e QVM 1333'; I .•ifs �... A. %PL IF2a3.'C��3✓�1� v� . Eao.2d-3®/2005 AUG 19 2003" . ;repair.,:. LOADING (ps SPACING 2-0-0 CSI DEFL In (loc) I/deo HEIGHT TCLL 40. Plates Increase 1.00 TC 0.51 Vert LL -0.41 1. >604 TCOL 10.0 Lumber Increase 1.00 BC 0.99 Vert(TL) -0.63 14-16 >394 BCLL 0.0. Rep Stress Incr YES WB' .0.73 Horz(TL) 0.12 11 n/a • BCOL ', 10.0 Code UBC97/ANS195 (Matrix) 1st LC LL titin Ildefl = 360 LUMBER T.np CHORD 4 X 2 SPF 165OF 1.5E CHORD 4 X 2 SPF 165OF 1.5E .S 4 X 2 HF Stud REACTIONS (Ib/size) 17=1239/0-3-8, 11=1239/0-3-8 4x9 = 19 MAX LOADING: (PSF) SPACING = 24" O.C. LOAD CASE(S) STANDARD PLATES GRIP L120 185/144 1016 127/82 Weight: 84 Ib BRACING TOP CHORD Sheathed or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 ac bracing. FORCES 0b).- First Load Case Only TOP CHORD 1.7-18=101, 1-18=-101, 11-19=101, 10-19=-101, 1-2=5,2-3=3528,3-4=3528,4-5=-4726, 5-6=-4726,6-7=-4726, 7-8 60T CHORD 16-17=2049, 15-16=4366, 14-15=4366, 13-14=4726, 12-13366, 11-12=2049 is WEBS 9-11=2320,2-17=2M, 9-12=1688', 2-16=1688,8-12=-237,3-16=237,7-12=956,4-16=-956, 7-13=411, 4-14=411, 5 NOTES 1 Thls truss has Bean checked for_unbalanced loading conditions. - 2 All plates, are N120 plates unless athenvlsaJndlcated. 3 This truss has been.dgsigned with ANSIlTPI 1-1995 criteria. 4 Recommend 2e6 strangbacks, on edge, spaced at 10-0-0 on center and fastened to each truss with 3-16d nails. Strongbacks to restrained by other means. LOAD CASE(S) Standard :fi,aiiiili '?i 5;1 :i ii �'lillil:liii L6- 5'—I 5' �MITEK. PLATES NDT DISTURBED NOTCH OR Gen erafRepair Notes: CUT AND REMOVED' OR DRILLED HOLE 6720 This repair is for cutting, drilling or notching T.C. in I" panel at either end as shown, 6" of T.C. at either end and plating must not be disturbed. All other lumber and plates are intact and undisturbed. THIS REPAIR IS FOR FLOOR TRUSSES WITH SPAN AND HEIGHT SPECIFICATIONS AS SHOWN ON ENGINEERING. Truss must be two point B C bearing have webs. from B C (bearing) to T.C. in first aanel. truss Symmetry may vary and chase location must stay within center 1/3 Of truss- see Original truss engineering. Truss may/ have no other existing damage. Shore truss to original geometry prior to repair. Attach 2x4 SPF. 1650F 1.5E add ons as shown nailed to each face of truss w/10d gun nails�(0.131" dia. 13y 3 :Jong),I.row(s) n,3" o.c. chords .and webs. Nails to be'placed with sufficient edge distances and end distances as f6`pre vent splitting of wood members. Attach bracing and -sheathing to repair. Add on to one face -may be . Use. in lieu of add on [o both faces where conditions allow' only one face to be repaired. Do not damage I='t•4 ' a-13=147 '��+ �t ' it-CHAEL A. � EJK 32` 99s7� a1 ed to ,Valls a��elr outer 4 4 raj e QVM 1333'; I .•ifs �... A. %PL IF2a3.'C��3✓�1� v� . Eao.2d-3®/2005 AUG 19 2003" . ;repair.,:. • ! vedical load at end of truss dxceeds 1000 lbs. and no blocking panel MIN. TRUSS N1AX. TRUSS _exists; vertical blocking (by others) is recommended. HEIGHT HEIGHT ­.. vlechanical, if in the way, is to be relocated to accommodate repair. Do not use below 1-1-0. This'.repair was, designed using a description Of existing conditions as 1-4-0 • 1 5 1� provided by others. 1-6-0 The truss designer performs no field inspection Of trusses. n 2-0-0 2-0-0 a C Do not use above :-0-0. NIA:. ' TRUSS SPAIN 21 -0-0' 26-0-0 O1 SNCMA ASSOCIATION 10/20/00 To Whom It May Concern: Re: Floor and Roof Truss Overloads The members -of the Southern Nevada'Component Manufacturer's Association will NOT warrant any.products that have .been overloaded during construction by "stacking' of gypsum wallboard, plywood or other types of sheathing or.various building materials. The amount of materials that may be supported without overloading is the roof or floor truss design Iive.load. _ Asan example; 20 sheets of material weighing 2 lbs./sq. ft. will total 40 psf, the typical residential floor design•.live load; and the entire floor area may be loaded with stacks of _._ 20 sheets or less. Typical residential floor trusses will support 20 sheets of YY gypsum wallboard, 16 .sheets of 5/8" wallboard or 16 sheets of 3/4". structural sheathing: Typical residential roof trusses will support 10 sheets of 1/z" structural sheathing. Additional materials may be stored if: Y/ The trusses are adequately shored'(prior to "stacking' materials) through. to the slab below. . Shoring is in place before the loading. occurs. Y/ Shoring placed at the bottom chord of the truss will not prevent overloading: v' Shoring is located at the underside of the roof or floor sheathing, or is.located at the underside to the truss top. chord. Care should betaken to avoid crushing of the truss member. Shoring'is properly designed, supported and installed by others.. Repair. of trusses that have been overloaded is not feasible, Trussed that have been .overloaded must be replaced or all warranty is voided. Please refer to each member's proposal and contract for specific warranty provisions: �._..r- SOUTHERN NEVADA COMPONENT MANUFACTURER'S ASSOCIATION �., :.. 4915 N. Berg*Street • North'Las V'egas,.Nevada.89031 22 'j Job Trues. Truce TYPO . DCI10•`:, , ';':!.'. `. Cdr 12uI,k) PIGGYBACK'.. . • PROVIDE ADEQUATE -CONNECTION TO TRANSFER t OUT -OF -PLANE LOADS FROM PIGGYBACK TO tvWt PIGGYBACKTRUSS, REFER TO SEALED TRUSS. ' ENGINEERING DRAWING. FOR PITCHED > 8112 ATTACH A 10 O- LONG 2X4 t12 B.00 12 H.F. OR BTR SCAB TO ONE FACE OF TRUSS WITH 2 -ROWS OF 10d OtAtv10N WIRE I4AILS SPACED AT 6. O.C. BASF -TRUSS, REFER TO SEALED ENGINEERING. ' ❑❑ \/o� �A I VIA tv 11 • 7jd�.p` lMtvCiYlun'1 2X�} CONTINUOUS PURLINS. ATTACH WITH 2-10D B -X8 -X12' CDX PLYWOOD. ATTACHED TO -EACH NILS INTO EACH MEMBER. FOR SPACING REFER FACE WITH 4 -8D -NAILS INTO EACH FACE OF EACH . -TO TOP CHORD BR ACING�R.EQUIREMENT ON MEMBER BASE TRUSS ENGINEERING (48' O.C. tvIAX) —OR- -- ----- •• _ G'X4- 20GA NAIL ON PLATE ATTACHED TO EACH FACE WITH THREE•1-112"• LONG 11 GA NAILS INTO THIS. TRUSS IS DESIGNED TO SUPPORT VERTICAL LOADS AS DETERMINED • EACH FACE OF EACH MEMBER BY OTHERS. VERIFICATION OF LOADING, DEFLECTION LIMITATIONS, —OR- FRAMING METHODS, WIND BRACING OR OTHER LATERAL BRACING 1 -PAIR OF SIMPSON 1 -12.5 -(OR EQUAL), ONE THAT IS ALWAYS REQUIRED, IS RESPONSIBILITY OF THE. PROJECT CONNECTING PURLIN TO PIGGYBACKTRUSS-AND ARCHITECT OR ENGINEER.ADDITIO.NALTEMPORARY AND PERMANENT ONE CONNECTING THE PURLIN TO THE BASE BRACING FOR STABILITY DURING AND AFTER INSTALLATION THAT IS TRUSS (48- O.C. MAXIMUM) ALWAYS RECOMMENDED, IS THE RESPONSIBILITY OF THE PROJECT ' GUSSETS O.C. SPACING AT REQUIREQ PLYWOOD ARCHITECT OR ENGINEER (FOR GENERAL GUIDANCE SEE HIB -91 FROM TPI). TIC WOOD JG FOR BASE TRUSS (An"rnAX•)•BRACIp� nna�yy STANI?ARD PIGGYBACK CQNNECTION DETAII� AUG 1 9 2003 hl . 0.0-1 PIER • o f PLy uJu.3 Gu` �-r 1'I � iJT i �r�c� �a�1rtEER } PG)"r6 HA-/W•i T hb i, !dr UPN Wit LA I� t:/LL ��(��� . ��, t.:���. ; � ,�Iv� s� b EDONG -Yl1.. „. W EXP: 06/30/04. -30-0 C' .CIVIL srq CIVLL i' O,� TF OFC FEB.1, 2000 BEARING. BLOCK DEi,,ML I S T-8LC'r';1 - - Pctge 1 OT i REFER TO INDIVIDUAL TRUSS-DEStGtq " I _ SIZES ',1I0 LUtY13ER GR-.DES _ 000 'IMPORTANT O o0 This detail to be used only +rviih one ply trusses - ' with a O.O.L. lumber increase of 1.15 or higher. Trusses not firdhg these crteria should be examined individually: MI I ek Industries, Inc: )-3-8 ACTUAL BEARING SIZE BOTTOM CHORD SIZE ALLOWABLE BEARING BLOCK & WOOD. BEARING ALLOWABLE LOADS LUMBER REACTION 8EARING BLOCK pp10 NAILING PATTERN GRADE (lb) ALLOWABLE LOADS ALLOWABLE LOAD (Ibl TOTAL EOUIVALENT BEARING LENGTH- SYP 2966 929, 3895 0 -9 2x4 BOTTOM CHORD ROWS OF 3281 855 4136 0 ;S 2 @ J- O.C. 18 TOTAL NAILS) HF 2126 736 2862 0-4-1 1 SPF 2231 726' 2957 0-4-10 SYP 2966 1393 4359 CL-5.2 ' of 3281 .1282 4563 0-4-13' 2x6 BOTTOM CHORD 3 RQ+4VS @ 3. O.C. HF "2126 1104 32310 - 0-5-5 (12. TOTAL NAILS) SPF 2231 1089 3320 0-5-31, SVP 2966 1858 4824 2x8 BOTTOM CHORD OF 3281 1710 4991 0-5-5 0ROWS @ 3- O.C. 6 TOTAL NAILS) HF 2126 1472 3598 0-5-14 SPF 2231 1452 3683 0 5-12 f 0 �\ . Sri' '�s.A•. / —i. ". �K: CASE 2, MINIMUM i. j ":' �n:_`,•;j 1: / / EEL. HEIGHT 1 \ J''.,*, %i^,,IV. t r BRG BLOCK, TO BE SAME �t 2` BLOCz SIZE, GRADE. & SPECIES . AS EXISTING BOTTOM CHORD. t2' BLOCK iti?- '•• .' (�-hy •„e,•• �. \ {1= \a n+r0, 09°� 1(j'rr-fit APPLY'TO ONE FACE OF TRUSS. 0T ES: 1. U.SE LOWER OF TOP PLATE OP. TRUSS WOOD SPECIES. ..THE ENO DISTANCE. EDGE DISTANCE, ANO SPACING OF NAILS SHALL BE SUCH AS TO AVOID UNUSUAL SPLITTING OF THE'N000. :. NAILS OESIGNATEO AP.E 1Od (.131- O(AM. x 37 .t FES 10/1 FOR BEARINGS NOT NEARER THAN 3 TO THE-END OF A MEN18ER (CASE 2); THESE VALUES fv(A,Y BE �tr' \O�.C• I/ V c^ / `/ MULTIPLIED BY A BEARING FACTOR OF 1.10 ni C'46901 1 .LUAD5 EASED UN FULLUV+nNG Fc GAt-. vc! Ju1V f. / * 1 SYP = 565 psi \ �.. OF = 625 psi HF = 405 psi,. SPF 425 psi T} r 'A.LUES. DO MOT INCLUDE tvISR* LUMBER WITH* "E” VALUES cRTHAN 1,900,000 PSI OR NON -DENSE GRADE LUMBER. - ' '"�-rfi= - -.,, -,seat-y�",•'1 - -'�_- - - - _ - - - - ,� 'YA lV3RNING - Verify desigic parameters and READ NOTES ON THIS AND REVERSE SIDE BErORE USE. Design valid for use only with MiTek connectors. This design is based only upon parameters shown. and is for an individual building component tg be insfrjlled and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer- not truss _ designer. Bracing shown is.forlateral support of individual web members only. Additional temporary bracing to insure stability during construction is the .. • responsibility of The erector. Additional permanent bracing of theoverall structure is the responsibility of the building designer. -For general guidance Sedarding fabricatiom quality control, storage. delivery erection and bracing, consult QST -88 Quality Standard, OSB -89 Bracing Specification, and.H1B-91 ® ' Handling Installing and Bracing Recommendation' available from Truss Plate Institute. 583 D'Onofrio Drive. Madison, WI 53719. Mi i i I� k 01 ST- S TR G Sj C K LATERAL BRACING RE'(_-'0N1N1ENDAT1&-.)S /1% U G. ',6, 2Q01 VIBR,a,TlOi\ICOIN/l�/10�.ITO/-'..LL'-��Hi-,LLO�/�/,FP,'-',6/lli\4GSYSTENIS, TO N/IINIMI"-7�c:A 2x6 "STRONGBACK" L�,TERAL SUPPORTS 'SHOU . LD BE LOCA, Trr--D EVERY. 8 TO 10 FEET ALONG A FLOOR TRUSS. STRO'NG'6,-'\CK MAY BE POSITIONED DIRECTLY UNDER THE TOP CHORD OR 7 DIRECTLYABOVE THE BbTTOIVI CHORD. SECURELY FASTEN TO THE TRUSS USING ANY OF THE METHODS ILLUSTRATED BELOW. USE METAL FF-d-NIING ATTACH TO VERTICAL ANCHOR TO ATTACH WES WITH (3) - 1 Od TO TOP CHORD COMMON WIRE 1'11AILS BLOCKING BEHOD THE VERTICAL WEB IS RECOMMENDED WHILE ATTACH TO VERTICAL SCAB WITH (3) - 1 Od COMMON WIRE NAILS ATTACH 2x4 VERTICAL TO FACE OF TRUSS. FASTEN TO TOP AND GOT-TONI CHORD WITH (2) - 1 Od - INSERT SCREW THROUGH OUTSIDE EDGE OF CHORD INTO EDGE OF 5 TPONGSACK (00 NOT USE DRYWALL TYPE S'CRE WS) EXP JUNE 30. 20GI .0. ATTACH TO CHORD WITH TWO 917 x 3 - Uat (vIt 1,5L ANCHOR TO,oTTACH ATTACH TO VERTICAL TO BOTTOM CHOPO WEB WITH (3) -'1 Od COMMON WIRE NAILS ATTACH TO VERTICAL SCAB WITH (3) . 10d COMMON WIRE NAILS INSERT SCREW THROUGH OUTSIDE EDGE OF CHORD INTO EDGE OF STRONGSACK (DO NOT USE QRY1AjALL TYPE. SC*RE\jVS),. 2-.(6 AS ..TRUSSES 4-0-0 REQUIRED (tYPICAL SPLICE) BLOCKING' SIPEWALL 12? QF THE STRONG6ACKS SHOULD EITHER BE SECURED TO ADJACb-.IT PARTITION WALLS OR ALTERNATE "X"-BPI0GING SHOULD BE USED TO TERMINATE THE SCAB T L i rn BRACING MEM6ERS. IF SPLICING IS NECESSARY; USE A. 4'-0" LONG SCA8 Q.: C 46901. ;i) CENTERED OVER THE .SPLICE a.ND JOIN WITH (12) - 1 Od NAILS EQUALLY SPACED. r EXP . -6130/07 .,ALTERNATE METHOD O.F.SPLICING: . 'OQEPL6,P STRONGaACK MEMBERS A MINIMUM OF 4'-0" AND FASTEN' WITH (1'2) - IWCONIMONMIRE NAILSSTAGGEPEO AND EQUALLY SPACED. *"BE:USED ONLY WHEN STRONGEACK IS NOT ALIGNEQ.WITH A VERTICAL) 0 ':`-8TR0NG8'ACX BRACING ALSO SATISFIES:THE L8,TERAL'BRACING REQUIREMENTSFOR THE BOTTOM CHORD OF THE TRUSS. A. .design parameters and READ NOTESS. N BEFORE USE. Ply THIS. '�u - D R--V--RS-- SIDE 'BEFORE vqija. rar -use. only with Mffek connectors. This design is based only upon parameters shown, and is for an individual building component -L . a be Installed •6nd loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer -not truss designer.h Wn e individual d web members ' n y* Add il incorporation temporarybracing to insure' stability during construction is the • ,.s _ ' C'C'ng s 0 c is 'a'Additional 'a ' O'suppo'ta' ' 'v' bracing ' w of . m v r' 0 1 structure 0 a' n b he e for- A i � n I permanent b h em st re s the responsibility of the building designer. For general guidance P. sl ill Bracing ' d tI.-p '__n t -.1 g - 11 r.g-,dng fabrication. quality control, storage, delivery, erection and bracing or, _suit QST -B8 0._"ty Standard. OSB -89 Bracing Specification, and HIB -91 Handling .'Ing 1. g '.c' g available from Truss P'.' e . Institute, r1d .,,In and Bracing b e Te 583 D On Drive. Madison, WI 53719. MiTbk. NMI EmwIffAm mmm!EE 12? QF THE STRONG6ACKS SHOULD EITHER BE SECURED TO ADJACb-.IT PARTITION WALLS OR ALTERNATE "X"-BPI0GING SHOULD BE USED TO TERMINATE THE SCAB T L i rn BRACING MEM6ERS. IF SPLICING IS NECESSARY; USE A. 4'-0" LONG SCA8 Q.: C 46901. ;i) CENTERED OVER THE .SPLICE a.ND JOIN WITH (12) - 1 Od NAILS EQUALLY SPACED. r EXP . -6130/07 .,ALTERNATE METHOD O.F.SPLICING: . 'OQEPL6,P STRONGaACK MEMBERS A MINIMUM OF 4'-0" AND FASTEN' WITH (1'2) - IWCONIMONMIRE NAILSSTAGGEPEO AND EQUALLY SPACED. *"BE:USED ONLY WHEN STRONGEACK IS NOT ALIGNEQ.WITH A VERTICAL) 0 ':`-8TR0NG8'ACX BRACING ALSO SATISFIES:THE L8,TERAL'BRACING REQUIREMENTSFOR THE BOTTOM CHORD OF THE TRUSS. A. .design parameters and READ NOTESS. N BEFORE USE. Ply THIS. '�u - D R--V--RS-- SIDE 'BEFORE vqija. rar -use. only with Mffek connectors. This design is based only upon parameters shown, and is for an individual building component -L . a be Installed •6nd loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer -not truss designer.h Wn e individual d web members ' n y* Add il incorporation temporarybracing to insure' stability during construction is the • ,.s _ ' C'C'ng s 0 c is 'a'Additional 'a ' O'suppo'ta' ' 'v' bracing ' w of . m v r' 0 1 structure 0 a' n b he e for- A i � n I permanent b h em st re s the responsibility of the building designer. For general guidance P. sl ill Bracing ' d tI.-p '__n t -.1 g - 11 r.g-,dng fabrication. quality control, storage, delivery, erection and bracing or, _suit QST -B8 0._"ty Standard. OSB -89 Bracing Specification, and HIB -91 Handling .'Ing 1. g '.c' g available from Truss P'.' e . Institute, r1d .,,In and Bracing b e Te 583 D On Drive. Madison, WI 53719. MiTbk. • TITLE 24 REPORT Title 24 Report for:. Higby Residence La Quinta, Ca Project Designer: ' ' Report Prepared ,By: Joan D. Hacker , CITY Or LA OUINTA Insu-form, Inc. BUILDING & SAFETY D _PT. 41-921 Beacon Hill, Suite APPOVE��. Palm Desert, CA 92211 FOR CONSTRUCN (760) 779-0657 ''"��,, } Da��tlb— Bl _ Job Number: 4 .Date: :. 10/18/2005. The EnergyPro computer program has been used to perform the calculations summarized in this.compliance report. This program has approval and is authorized by the California Energy Commission for use with both the Residential and Nonresidential 2005 Building Energy Efficiency Standards. This program developed by EnergySoft, LLC - www.energysoft.com. . EnergyPro 4.0 by EnergySoft 'Job Number: User Number: 2655 Certificate Of Compliance: Residential (Part 1 of 3) CF -1 R Haby Residence Proj—ecIrTitle I Qlllnta 798 ft2 Existing Floor Area: n/a ft2 10/18/2005 Date B Project Address 798 ft2 Average Ceiling Height: 11.2 ft Building Permit # Inst] -firm Inc Number of Stories: 1 (760) 779-0657 Documentation Author Telephone Plan Check/Date FnProvPro 15 Field Check/Date Compliarfce Method Climate Zone Source Energy Use Standard Proposed Compliance (kBtulsf-yr) Design Design Margin Space Heating 1.73 0.15 1.58 Space Cooling 73.94 67.08 6.87 . Fans 11.18 9.89 1.29 Domestic Hot Water 21.40 19:36 2.04 Pumps 0.00 0.00 0.00 Totals 108.25 _ 96.47 11.78 Percent better than Standard: Building Type: [X—] Single Family ❑ Multi Family Building Front Orientation: Fuel Type: Fenestration: Area: 179 ft 2 Ratio: 22.5% BUILDING ZONE INFORMATION Zone Name ❑ Addition ❑ Existing + Add/Alt (South)180 deg Natural Gas Avg. U: 0.39 Avg. SHGC: 0.37 Total Conditioned Floor Area: 798 ft2 Existing Floor Area: n/a ft2 Raised Floor Area: 0 ft2 Slab on Grade Area: 798 ft2 Average Ceiling Height: 11.2 ft Number of Dwelling Units: 1.00 Number of Stories: 1 # of Floor Area Volume Units OPAQUE SURFACES Insulation Act. Type Frame Area U -Fac. Cay. Cont. Azm. Tilt Wall Wnnd 934 0 074 R_1 Q R-0 0 1 an _9Q nnor None 24 0 500 None R_0 0 180 P Wall Wood 104 0 074 R_1 A R-0 0 97n An r)nnr None 94 n Snn Nona R-0 0 97n An Wall Wood 41a n n74 _gy4 R_0 0 _n A Wall Wood IRS n 07 R-19 R-0.0 590 An Rnof Wnnd 798 n n?5 R -RR R -n 0 n n Zone Type Gains Condition Y / N Status JA IV Reference Thermostat Vent Type Hgt. Area Sethnck— mala Location / Comments EnergyPro 4.0 by EnergySoft User Number: 2655 Job Number: Paae:3 of 12 1 Certificate Of Compliance: Residential (Part 2 of 3) CF -1 R Higby Residence 10/18/2005 Project Title Date FENESTRATION SURFACES Window Hgt. Wd. Overhang Left Fin Right Fin Len. Hgt. LExt. REM. Dist. Len. Hgt. Dist. Len. Hgt. 1 True Cond. Location/ # Type (sf) Area U -Factor' SHGCZ Azm. Tilt Stat. Glazing Type Comments _1 Window Front ($nijth) 9 nn IQO NFRC -= NFRr ln An New Rearm Parifir. Windows P nnors Casita 2 Window Front (South) 12.0 0.390 NFRC 0_37 NFRC 180 90 New Sierra Pacific Windows & Doors Casita 3 Window Front (South) 0.6 0.390 NFRC 0_37 NFRC 180 90 New Sierra Pacific Windows & Doors Casita 4 Window Left (West) 27.5 0.390 NFRC 0_37 NFRC 270 90 New Sierra Pacific Windows & Doors Casita 5 Window Left (West) 64.0 0.390 NFRC 0_37 NFRC 270 '90 New Sierra Pacific Windows & Doors Casita 6 Window Rear (North) 12.5 0.390 NFRC 0_37 NFRC 0 90 New :Sierra Pacific Windows & Doors Casita Z Window Rear (North) 20.0. 0_390 NFRC 0.37 NFRC _� 90 New Sierra Pacific Windows & Doors Casita 8 Window Right (East) 3.0 0.390 NFRC 0.37 NFRC 90 90 New Sierra Pacific Windows & Doors Casita 6 Window Right (East) 24.8 0.390NFRCa 0"37 NFRC 90 90 New Sierra Pacific Windows & Doors Casita _M Window Right (East) 6.0 0.390 NFRC0.37 NFRC 90 90 New , Sierra Pacific Windows & Doors Casita 1. Indicate source either from NFRC or Table 116A. 2. Indicate source either from NFRC or Table 11613. INTERIOR AND EXTERIOR SHADING # Exterior Shade Type SHGC Window Hgt. Wd. Overhang Left Fin Right Fin Len. Hgt. LExt. REM. Dist. Len. Hgt. Dist. Len. Hgt. 1 Bug Screen 0.76 Type (sf) 2 Bug Screen 0.76 Comments Frame Wall, Stucco 3 Bug Screen 0.76 09-A5 New 4 Bug Screen 0.76 0.12 21 0.47 0 5 Bug Screen 0.76 8.0 8.0 10.0 0.1 10.0 10.0 6 Bug Screen 0.76 5.0 2.5 10.0 0.1 10.0 10.0 7 Bug Screen 0.76 0.47 0 09-A5 8 Bug Screen 0.76 9 Bug Screen 0.76 Insulation 10 Bug Screen 0.76 Type Length THERMAL MASS FOR HIGH MASS DESIGN Run Initiation Time: 10/18/05 14:35:28 Run Code: 1129671328 EnergyPro 4.0 by EnergySoft User Number: 2655 Job Number: PageA of 12 Area Thick. Heat Inside Condition Location/ Type (sf) (in.) Cap. Cond. R -Val. JA IV Reference Status Comments Frame Wall, Stucco 234 0.12 21 0.47 0 09-A5 New Casita / Exterior Mass Frame Wall, Stucco 104 0.12 21 0.47 0 09-A5 New Casita / Exterior Mass Frame Wall, Stucco 418 0.12 21 0.47 0 09-A5 New Casita / Exterior Mass Frame Wall, Stucco 186 0.12 21 0.47 0 09-A5 New Casita / Exterior Mass PERIMETER LOSSES Insulation Condition Location/ Type Length R -Val. Location JA IV Reference Status Comments Slab Perimeter 15 None No Insulation 26-A1 New Casita Run Initiation Time: 10/18/05 14:35:28 Run Code: 1129671328 EnergyPro 4.0 by EnergySoft User Number: 2655 Job Number: PageA of 12 Certificate Of Compliance: Residential (Part 3 of 3) CF -1R Higby Residence . 10/18/2005 Project Title Date HVAC SYSTEMS Heating Minimum Cooling Minimum Condition Thermostat Location Type Eff Type Eff ` Status Type Casita Central Furnace 80% AFUE Split Air Conditioner 12.0 SEER New Setback HVAC DISTRIBUTION Duct Duct Condition Ducts Location Heating Cooling Location R -Value Status Tested? Casita Ducted Ducted Outdoors 4.2 New Yes Hydronic Piping pipe Pipe Insul. System Name Length Diameter Thick. WATER HEATING SYSTEMS Ratedl Tank Energy Standbyl Tank Insul. Water Heater # in Input Cap. Condition Factor Loss R -Value System Name Type Distribution • Syst. (Btuthr) (gal) Status or RE 1 (%) Ext. A O SMITH FPSH-50-250 Small Gas No Pipe Insulation 1 46,000 50 New 0.62 n/a n/a Multi -Family Central Water Heating Details Hot Water Pump Hot Water Piping Length (ft) Add 1/2" Control # HP TVDe In Plenum Outside Buried Insulation 1 For small gas storage (rated input <= 75000 Btu/hr), electric resistance and heat pump water heaters, list energy factor. For large gas storage water heaters (rated input > 75000 Btu/hr), list Rated Input, Recovery Efficiency and Standby Loss. For instantaneous gas water heaters, list Rated Input, and Recovery Efficiency. REMARKS COMPLIANCE STATEMENT This certificate of compliance lists the building features and specifications needed to comply with Title 24, Parts 1 and 6 of the California Code of Regulations, and the administrative regulations to implement them. This certificate has been signed by the individual with overall design responsibility. The undersigned recognizes that compliance using duct design, duct sealing, verification of refrigerant charge and TXVs, insulation installation quality, and building envelope sealing require installer testing and certification and field verification by an approved HERS rater. Designer or Owner (per Business & Professions Code) Documentation Author Name: Name: Joan D. Hacker Title/Firm: Title/Firm: Insu-form, Inc. Address: Address: 41-921 Beacon Hill, Suite A Palm Desert, CA 92211 Telephone: Telephone: (760) 779-0657 Lic. #: F), � o� (signature) (date) (sign ure) (date) Enforcement Agency Name: , Title/Firm: Address: f Telephone: (signature/stamp) (date) I EnergyPro 4.0 by EnergySoft User Number: 2655 Joh Numher P-4; of 19 1 Certificate Of Compliance: Residential (Addendum) CF -1 R Rigby Residence 10/18/2005 Project Title Date Special Features and Modeling Assumptions The local enforcement agency should pay special attention to the items specified in this checklist. These items require special written justification and documentation, and special verification to be used with the performance approach. The local enforcement aqency determines the adequacy of the justification, and may reject a building or design that otherwise complies based on the adequacy of the special justification and documentation submitted. Plan I Field HERS Required Verification Items in this section require field testing and/or verification by a certified home energy rater under the supervision of a CEC- approved HERS provider using CEC approved testing and/or verification methods and must be reported on the CF -4R installation certificate. Plan Field The HVAC System "Casita" incorporates HERS verified Duct Leakage. Target leakage is calculated and documented on the CF -4R. EnergyPro 4.0 by EnergySoft User Number: 2655 Job Number: Page:6 of 12 1 M Mandatory Measures Summary: I Residential (Page 1 of 2) MF -1 R NOTE: Low-rise residential buildings subject to the Standards must contain these measures regardless of the compliance approach used. More stringent compliance requirements from the Certificate of Compliance supercedes the items marked with and asterisk (') below. When this checklist is incorporated into the permit documents, the features noted shall be considered by all parties as minimum component performance specifications for the mandatory measures whether they are shown elsewhere in the documents or on this checklist only. DESCRIPTION Instructions: Check or initial applicable boxes when completed or check N/A if not ENFORCE - applicable. NIA DESIGNER MENT Building Envelope Measures . § 150(a): Minimum R-19 in wood ceiling insulation or equivalent U -factor in metal frame ceiling. ❑ ❑X ❑ § 150(b): Loose fill insulation manufacturers labeled R -Value: ❑X ❑ ❑ +§ 150(c): Minimum R-13 wall insulation in wood framed walls or equivalent LI -factor in metal frame walls (does not ❑ ❑X El apply to exterior mass walls). § 150(d): Minimum R-13 raised floor insulation in framed floors or equivalent U -factor. 0 ❑ d❑ § 150(e): Installation of Fireplaces, Decorative Gas Appliances and Gas Logs. 1. Masonry and factory -built fireplaces have: s a. closable metal or glass door covering the entire opening of the firebox ❑ ❑ b. outside air intake with damper and control, flue damper and control ❑X ❑ ❑ 2. No continuous burning ;as pilot lights allowed. 0 El 1:1 § 150(f): Air retarding wrap installed to comply with §151 meets requirements specified in the ACM Residential Manual. Q ❑ ❑ § 150(g): Vapor barriers mandatory in Climate Zones 14 and 16 only. { N Ell, ❑ § 150(1): Slab edge insulation - water absorption rate for the insulation alone without facings no greater than 0.3%, water vapor N ❑ ❑ permeance rate no greater than 2.0 perm/inch. § 118: Insulation specified or installed meets insulation installation quality standards. Indicate type and include ❑ ❑X El CF -6R Form: § 116-17: Fenestration Products, Exterior Doors, and Infiltration/EAltration Controls. + 1. Doors and windows between conditioned and unconditioned spaces designed to limit air leakage. ❑ ❑X ❑ 2., Fenestration products (except field fabricated) have label with certified U -Factor, certified Solar Heat Gain Coefficient ❑ ❑ (SHGC), and infiltration certification. • 3. Exterior doors and windows weatherstripped; all joints and penetrations caulked and sealed. ❑ - ❑X ❑ Space Conditioning, Water Heating and Plumbing System Measures § 110-13: HVAC equipment, water heaters, showerheads and faucets certified by the Energy Commission.,, ❑ ❑x El § 150(h): Heating and/or cooling loads calculated in accordance with ASHRAE, SMACNA or ACCA.' ' , ❑ ❑X ❑ r- § 150(i): Setback thermostat on all applicable heating and/or cooling systems. ❑ ❑X ❑ § 1500): Water system pipe and tank insulation and cooling systems line insulation. 1. Storage gas water heaters rated with an Energy Factor less than 0.58 must be externally wrapped with insulation 0 ❑ ❑ having an installed thermal resistance of R-12 or greater. 2. Back-up tanks for solar systems, unfired storage tanks, or other indirect hot water tanks have R-12 external Q ❑ ❑ insulation or R-16 internal insulation and indicated on the exterior of the tank showing the R -value., 3. The following piping is insulated according to Table 150 -AB or Equation 150-A Insulation Thickness: 1. First 5 feet of hot and cold water pipes closest to water heater tank, non -recirculating systems, and entire ❑X ❑ . ❑ length of recirculating sections of hot water pipes shall be insulated to Table 159B. 2. Cooling system piping, (suction, chilled water, or brine lines), piping insulated between heating source and ❑X ❑ ❑ indirect hot water tank shall be insulated to Table 150-B and Equation 150-A. + 4. Steam hydronic heating systems or hot water systems? 15 psi, meet requirements of Table 123-A. ❑ ❑ 5. Insulation must be protected from damage, including that due to sunlight, moisture, equipment'maintenance, Q ❑ ❑ and wind. 6. Insulation for chilled water piping and refrigerant suction piping includes a vapor retardant or is enclosed + ❑X ❑ ❑ entirely in conditioned space. , 7. Solar water -heating systems/collectors are certified by the Solar Rating and Certification Corporation. ❑X ❑ ❑ EnergyPro 4.0 by EnergySoft User Number: 2655 Job Number: • Page:7 of 12 s Mandatory Measures Summary: Residential (Page 2 of 2) MF -1 R NOTE: Lowrise residential buildings subject to the Standards must contain these measures regardless of the compliance approach used. More stringent • compliance requirements from the Certificate of Compliance supercede the items marked with an asterisk below. When this checklist is incorporated into the permit documents, the features noted shall be considered by all parties as minimum component performance specifications for the mandatory measures whether they are shown elsewhere in the documents or -on this checklist only. DESCRIPTION Instructions: Check or initial applicable boxes when completed or check N/A if not ENFORCE applicable. NIA DESIGNER MENT Space Conditioning, Water Heating and Plumbing System Measures: (continued) § 150(m): Ducts and Fans t 1. All ducts and plenums installed, sealed and insulated to meet the requirements of the CMC Sections 601, 602, 603, 604, ❑ X❑ ❑ 605, and Standard 6-5; supply -air and return -air ducts and plenums are insulated to a minumum installed level of R-4.2 or enclosed entirely in conditioned space. Openings shall be sealed with mastic, tape or other duct -closure system that meets the applicable requirements of UL 181, UL 181A, or UL 181B or aerosol sealant that meets the requirements of UL 723. If mastic or tape is used to seal openings greater than 1/4 inch, the combination of mastic and either mesh or tape shall be used. 2. Building cavities, support platforms for air handlers, and plenums defined or constructed with materials other than X❑ ❑ ❑ sealed sheet metal, duct board or flexible duct shall not be used for conveying conditioned air. Building cavities and support platforms may contain ducts. Ducts installed in cavities and support platforms shall not be compressed to cause reductions in the cross-sectional area of the ducts. 3. Joints and seams of duct systems and their components shall not be sealed with cloth back rubber adhesive ® ❑ ❑ duct tapes unless such tape is used in combination with mastic and draw bands.. 4. Exhaust fan systems have back draft or automatic dampers. . ® ❑ ❑ 5. Gravity ventilating systems serving conditioned space have either automatic or readily accessible, manually operating ® ❑ ❑ dampers. \ 6. Protection of Insulation. Insulation shall be protected from damage, including that due to sunlight, moisture, equipment ® ❑ ❑ • maintenance, and wind.'Cellular foam insulation shall be protected as above or painted with a coating that is water retardant and provides shielding from solar radiation that can cause degradation of the material. 7. Flexible ducts cannot have porous inner cores. , ® ❑ ❑ § 114: Pool and Spa Heating Systems and Equipment 1. A thermal efficiency that complies with the Appliance Efficiency Regulations, on-off switch mounted outside of the Q ❑ ❑ heater, weatherproof operating instructions, no electric resistance heating and no pilot light. 2. System is installed with: ' a. At least 36" of pipe between filter and heater for future solar heating. ®, , ❑ a b. Cover for outdoor pools or outdoor spas.i X❑ ❑ ❑ 3. Pool system has directional inlets and a circulation pump time switch. �_ X❑ ❑ ❑ § 115: Gas fired fan -type central furnaces, pool heaters, spa heaters or household cooking appliances have no continuously ❑ ® ❑ burning pilot light. (Exception: Non -electrical cooking appliances with pilot < 150 Btu/hr) § 118 (i): Cool Roof material meets specified criteriaX❑ ❑ ❑ Lighting Measures § 150(k)1: HIGH EFFICACY LUMINAIRES OTHER THAN OUTDOOR HID contain only high efficacy lamps as outlined in Table ❑ © ❑ 150-C, and do not contain a medium screw base socket (E24/E26). Ballasts for lamps 13 Watts or greater are electric and have an output frequency no less than 20 kHz. § 150(k)l: HIGH EFFICACY LUMINAIRES - OUTDOOR HID: contain only high efficacy lamps as outlined in Table 150-C, ❑ Q ❑ luminaire has factory installed HID ballast. , § 150(k)2: Permanently installed luminaires in kitchens shall be high efficacy luminaires. Up to 50% of the Wattage, as determined ❑ X❑ ❑ in Section 130(c), of permanently installed luminaires in kitchens may be in luminaires that are not high efficacy luminaires, provided that these luminaires are controlled by switches separate from those controlling the high efficacy luminaires. , § 150(k)3: Permanently installed luminaires in bathrooms, garages, laundry rooms, utility rooms shall be high efficacy luminaires. ❑ X❑ ❑ OR are controlled by an occupant sensor(s) ceritfied to comply with Section 119(d). § 150(k)4: Permanently installed luminaires located other than in kichens, bathrooms, garages, laundry rooms, and utility rooms shall be high efficacy luminaires (except closets less than 70 ft) OR are controlled by a dimmer switch OR are❑ X❑ ❑ controlled by an occupant sensor that complies with Section 319(d) that does not tum on automatically or have an always on option. + § 150(k)5: Luminaires that are recessed into insulated ceilings are approved for zero clearance insulation cover (IC) and are X❑ ❑ ❑ certified to ASTM E283 and labeled as air tight (AT) to less than 2.0 CFM at 75 Pascals. § 150(k)6: Luminaires providing outdoor lighting and permanently mounted to a residential building or to other buildings on the X❑ ❑ ❑ same lot shall be high efficacy luminaires (not including lighting around swimming pools/water features or other Article 680 locations) OR are controlled by occupant sensors with integral photo control certified to comply with Section 119(d). § 150(k)7: Lighting for parking lots for 8 or more vehicles shall have lighting that complies with Sections 130, 132, and 147. ❑ ❑ Lighting for parking garages for 8 or more vehicles shall have lighting that complies with Section 130, 131, and 146. § 150(k)8: Permanently installed lighting in the enclosed, non -dwelling spaces of low-rise residential buildings with four or moreX❑ ❑ ❑ dwelling units shall be high efficacy luminaires OR are controlled by occupant sensor(s) certified to comply with Section 119(d). _ EnergyPro 4.0 by EnergySoft User Number: 2655. Job Number: Page:8 of 12 i Residential Kitchen Lighting Worksheet WS -5R Higby Residence 10/18/2005 Project Title Date At least 50% of the total rated wattage of permanently installed luminaires in kitchens must be in luminaires that are high efficacy luminaires as defined in Table 150-0. Luminaires that are not high efficacy must be switched separately. Kitchen Lighting Schedule. Provide the following information for all luminaires to be installed in kitchens. High Efficacy Luminaire Type High Efficacy? Watts Quantity Watts Other Watts (2) 38w Compact Fluorescent 2D Elec Yes -X-1 No 74.0 x 5 = 370 or Yes No x = or Yes No x = or Yes No x = or Yes No x = or Yes No x = or Yes No x = or Yes No x = or Yes No x = or Yes No x = or Yes No x = or Yes No x = or Yes No x = or Yes No x = or Yes No x = or Yes No x = or Yes No x 2 = or Yes No x = or YesNo x = or Yes No x = or Total A:, 370 B: 0 EnergyPro 4.0 by EnergySoft User Number: 2655 Job Numbei: Page:9 of 12 t HVAC SYSTEM HEATING AND COOLING LOADS SUMMARY PROJECT NAME DATE Higby Residence 10/18/2005 SYSTEM NAME FLOOR AREA Casita 798 FNGINFFRING CHFCKS SYSTEM LDAD Number of Systems t Heating System Output per System 51,000 Total Output (Btuh) 51,000 Output (Btuh/sqft) 63.9 Cooling System Output per System 29,400 Total Output (Btuh) 29,400 Total Output (Tons) 2.5 Total Output (Btuh/sqft) 36.8 Total Output (sgft/Ton) 325.7 Air System CFM per System 1,270 Airflow (cfm) 1,270 Airflow (cfm/sqft) 1.59 Airflow (cfm/Ton) 518.4 Outside Air (%) 0.0 Outside Air (cfm/sqft) 0.00 Note: values above oiven at ARI conditions 26.0 OF 310 ;0 Outside Air 0 cfm 69.2 °F 69.2 OF Total Room Loads Return Vented Lighting Return Air Ducts Return Fan Ventilation Supply Fan Supply Air Ducts TOTAL SYSTEM LOAD COIL COOLING PEAK COIL HTG. PEAK CFM Sensible Latent CFM I Sensible 1,324 13,572 1,538 294 11,315 0 1,631 1,044 0 0 0 0 0 0 0 0 0 1,631 1 1,044 16,8331 1 538 F 13,4041 IVAC EQUIPMENT SELECTION kyant 331AAV036065/538ANX030-C 16,279 12,118 51,000 Total Adjusted System Output 16,279 12,118 51,000 (Adjusted for Peak Design Conditions) TIME OF SYSTEM PEAK Aug 2 lorn Jan 12m am Temperatures at Time of Heating Peak) 107.0 °F 107.0 OF Supply Air Ducts Heating Coil Supply Fan , 106.2 OF 1270 cfm ROOMS 70.0 ° F I o,.+-- n:_ n...,a, E I COOLING SYSTEM PSYCHROMETRICS Airstream Temperatures at Time of Cooling Peak 111.0/77.6°F 79.2/69.7°F 67.2/65.7°F 67.2/65.7°F Supply Air Ducts Outside Air ` 0 cfm Cooling Coil Supply Fan 68.4 / 66.0 of 1270 cfm 65.2% R.H. ROOMS 79.2 / 69.7 of 78.0 / 69.3 OF a EnergyPro 4.0 by EnergySoft User Number: 2655 Job Number: Page:10 of 12 a ROOM LOAD SUMMARY PROJECT NAME DATE Higby Residence 10/18/2005 SYSTEM NAME FLOOR AREA Casita 798 ROOM LOAD SUMMARY ROOM COOLING PEAK COIL COOLING PEAK COIL HTG. PEAK ZONE NAME ROOM NAME Mult. CFM SENSIBLE LATENT CFM SENSIBLE LATENT CFM SENSIBLE Casita Casita 1 1 324 13,572 1,538 1,324 13,572 1,538 294 11,315 t• PAGE TOTAL 1 1,324 13,572 11538 294 11,315 TOTAL 1 1,324 13,572 1,538 294 11,315 EnergyPro By EnergySofl User Number: User Job Number: Page: 11 of 12 ENERGY USE AND COST SUMMARY ECON-1 NAME Hiabv Residence 1 10/18/2005 Rate: Fuel Type: Rate: Fuel Type: STANDARD PROPOSED MARGIN Energy Use (kWh) Peak Demand (kW) Cost ($) Energy Use (kWh) Peak Demand (kW) Cost 1,$) Energy Use (kWh) Peak Demand (kW) Cost ($) Jan 15 1 7 1 8 0 Feb 16 2 12 1 4 0 Mar 45 1 36 1 9 0 A r 137 2 118 2 19 0 May 331 3 306 3 25 0 Jun 649 3 584 3 65 0 Jul 768 3 698 3 70 0 Augl 782 3 704 3 78 0 Sep 577 4 526 3 51 0 Oct 278 3 250 3 28 0 Nov 18 11 6 1 11 0 Dec 1 13 1 1 9 1 4 0 Year 3,629 4 1 3,257 3 3731 0 Rate: Fuel Type: The values shown here are based upon the results of an EnergyPro Compliance energy analysis that uses Title 24 profiles as specified in the Residential ACM manual. EnergyPro 4.0 by EnergySoft User Number: 2655 Job Number: Page: 12 of 12 STANDARD PROPOSED MARGIN Energy Use (therms) Peak Demand (kBtu/hr) Cost (0, Energy Use (therms) Peak Demand (kBtu/hr) Cost ($) Energy Use (therms) Peak Demand (kBtu/hr) Cost ($) Jan 19 19 14 8 5 11 Feb 15 17 12 5 3 •11 Mar 16 16 14 4 2 12 Apr 14 4 13 4 1 0 May 14 4 13 3 1 0 Jun 13 3 12 3 1 0 Jul 13 3 12 3 1 0 Aug13 3 11 3 1 0 Sep 12 3 11 3 1 0 Oct 13 3 12 3 1 0 Nov 14 13 -12 7 2 6 Dec 20 19 141 14 1 6 5 Year 177 19 149 14 28 5 Annual Totals Energy Demand Cost Cost/s ft Virtual Rate Electricity 3 257 kWh 3 kW 0 0.00/s ft 0.00/kWh Natural Gas 149 therms 14 kBtu/h $ 0 $ 0.00/s ft $ 0.00/therm , Total $ 01$ 0.00/sgft The values shown here are based upon the results of an EnergyPro Compliance energy analysis that uses Title 24 profiles as specified in the Residential ACM manual. EnergyPro 4.0 by EnergySoft User Number: 2655 Job Number: Page: 12 of 12 RANCHO LN QUIN'IA October 6, 2005.. MASTER ASSOcIAT[ov Higby 49045 Vista Estrella La Quinta, CA 92253 Re: 49045 Vista Estrella- ARC approval Dear Mr. and Mrs. Higby, The Rancho La Quinta Architectural Committee has reviewed and approved your. submittal of 'plans for guest addition with the following conditions: 1) . All work is to be done in accordance'with all applicable requirements of governmental entities, including the City of La Quinta, and in accordance with all Homeowners: Association architectural guidelines and governing documents . 2) That building permit be obtained and furnished to the Association prior to commencement of work When the work has been finished, please fill out and return to me the Notice of Completion. ' The association's architectural consultant will perform a final inspection after receipt of that n i to verify installation according to the approved plan, and then the deposit can be p ssed for a refund.' Sincerely, MaryE. W I e , CCAM,.AMS Community A sociation Manager for The Architectural Committee Rancho La Quinta Master.Association Cc: Architectural Comm- Bob Edwards Construction via Fax. 7%7=1139 vA T �° (� �P�.o20 �i o.®0,0 : o� � z �_0A7 t \j 73-550 ALEssnnIoKo, SUITE 5 • PALM DE ER"r, CA 92260 "-760-346-1161 • FAX760-346-9918 STRUCTURAL. CALCULATIONS JOB- # 05-1201-08 HIGBY CASITA ' 49-045 VISTA ESTRELLA LA QUINTAL CALIFORNIA 92253 CITYOpPREPARED FOR , WILDING & SAFETY AC H. ROKEE HOMES APPROVED—." Fdli C©NST�U . / CTION DA ' F . • j 65- 1 O -Aug -05 { 5 04 MA H 31, 2 T UCL T O GAL\ PREPARED UNDER THE DIRECT SUPERVISION OF. ' JEFFREY B. YOUNG, S.E. VERTICAL LOAD DESIGN DESIGN DATA: LUMBER: NO. 1 DOUGLAS FIR-LARCH W.C.L.I.B. GRADING SIZE Fb psi Fbr psi Fv psi Fc psi E psi SINGLE REPETITIVE 2X4 1500 1725 95 1495 1700000 2X6 1300 1495 95 1430 1700000 2X8 1200 1380 95 1365 1700000 2X10 1100 1265 95 1300 1700000 2X12 1000 1150 95 1300 1700000 2X14 & WIDER 900 1035 95 1300 1700000 4X4 1500 95 1495 1700000 4X6 1300 -- 95 1430 1700000 4X8 1200 — 95• 1365 1700000 4X10 1100 — 95 1300 1700000 4X12 1000 — 95 1300 1700000 4X14 & WIDER 900 — 95 1170 1700000 6X6 1300 85 925 1600000 6X8 1300 -- 85 925 1600000 6X10 1300 — 85 925 1600000 .6X12. 1300 85 925 1600000 6X14 1300 85 925 1600000 ABOVE VALUES DO NOT INCLUDE LOAD DURATION FACTORS GLU-LAM BEAMS SIMPLE CANTILEVER MICROLAMS PARALLAMS .. 24F-V4 DF/DF 24F-V8 DF/DF TRUS JOIST TRUS "JOIST Fb=2400 psi Fb=2400 psi Fb=2800 psi Fb=2900 psi Fv=165psi' Fv=165psi Fv=285psi Fv=290psi .E=1800000psi E=1800000psi. E=2000000psi E=2000000psi. POSTS: No.1 DOUGLAS FIR-LARCH " SIZE Fb psi Fv psi Fc psi E psi 6X 1200 85 1000 1600000 CONCRETE: f'c=2500 psi REINFORCING STEEL: GRADE 40 GRADE 60 BARS 4 AND SMALL BARS 5 AND LARGER STRESS No. 1 -1- (Higby)05-1201-08v1.29.xis VERTICAL LOAD DESIGN DESIGN DATA: LUMBER: NO. 2 DOUGLAS FIR -LARCH W.C.L.I.B. GRADING SIZE Fb psi Fbr psi Fv psi Fc psi E psi SINGLE REPETITIVE 2X4 1313 1510 95 1495 1600000 2X6 1139 1310 95 1430 1600000 2X8 1052 1210 95 1365 1600000 2X10 961 1105 95 1300 1600000 2X12 874 1005 95 1300 1600000 .2X14 & WIDER r 788 906 95 1300 1600000 4X4 ` 1312 — 95 1495 1600000 4X6 1138 95 1430 1600000 4X8 1138 — 95 1365 1600000 4X10 1050 — 95 1300 1600000 4X12 962 — 95 1300 1600000 4X14 & WIDER 875 — 95 '1170 1600000 6X6 875 — 85 925 1600000 6X8 875 — 85 925 1600000 6X10 875 - 85 925 1600000 6X12 875 — 85 925 1600000 6X14 875 — 85 925 1600000 ABOVE VALUES DO NOT INCLUDE LOAD DURATION FACTORS GLU-LAM BEAMS SIMPLE CANTILEVER MICROLAMS PARALLAMS 24F -V4 DF/DF 24F -V8 DF/DF TRUS JOIST TRUS JOIST Fb=2400 psi Fb=2400 psi Fb=2800 psi Fb=2900 psi Fv=165psi Fv=165psi Fv=285psi Fv=290psi ..E=1800000psi E=1800000psi, E=2000000psi E=2000000psi POSTS: No. 2 DOUGLAS FIR -LARCH SIZE Fb psi Fv psi Fc psi E psi 6X 750 85 700 1300000 CONCRETE: f'c=2500 psi REINFORCING STEEL: y GRADE 40 GRADE 60 BARS 4 AND SMALL BARS 5 AND LARGER STRESS No. 2 (Higby)05-1201.08v1.29.x1s LOAD CASES: STRENGTH DESIGN: (12-1) 1 AD (12-2) 1.2D+1.6L+.5(Lr OR S) (12-3) 1.2D+1.6(Lr OR S)+(f1 L OR .8W) (12-4) 1.2D+1.3W+f1 L+.5(Lr OR S) (12-5) 1.2D+1.OE+(f1 L+f2S) (12-6) .9D +/- (1.OE OR 1.3W) f1=1.00 FOR LL>=100 & GARAGE f1=.5 OTHERS f2=.7 ROOF THAT DO NOT SHED SNOW f2=.2 OTHERS ALLOWABLE LOAD CASES (12-7) D (12-8) D+L+(Lr OR S) * (12-9) D+(W OR E/1.4) * (12-10) .913 +/- E/1.4 * (12-11) D+.75[L+(Lr OR S)+(W OR E/1.4)] * = MAY NOT USE 1/3 RD STRESS INCREASE ALTERNATE ALLOWABLE CASES: E=pEh+Ev (12-12) D+L+(Lr OR S) Em=OMEGA Eh ** (12-13) D+L+(W OR E/1.4) *' (12-14) D+L+W+S/2 p= 2-20/rMAX(Ab)".5 ** (12-15) D+L+W+S/2+W/2 1 <p<1.5 ** (12-16)' D+L+S+E/1.4 ** = MAY USE 1/3 RD STRESS INCREASE 4 LOAD CASES' (Higby)05.1201-08v129.xis STUD TABLES STUD TABLES 2X4 DF -L at 16" o/c LDF=1.60 2X4 DF -L at 16" o/c 70 MPH EXP. C 80 MPH EXP. C HEIGHT LOAD/STUD HEIGHT LOAD/STUD No.2 No.1 No.2 No.1 10 959 1112 10 750 915 11 674 807 11 467 614 12 458 576 12 245 383 13 287 397• 13 57 198 14 147 254 14 --- 37 2X6 DF -L at 16" o/c LDF=1.60 2X6 DF -L at 16" o/c 70 MPH EXP. C. 80 MPH EXP. C HEIGHT LOAD/STUD HEIGHT LOAD/STUD No.2 No.1 No.2 No.1 10 5100 5585 10 4665 5172 11' 4015 4440 11 3600 4040 12 3180 3550 12 2780 3165 13 2525 2855 13 2135 '2480 14 2005 2300 14 1628. 1937 15 1590 1854 15 1215 1500 16 1250 1490 16 875 1140 17 965 1187 17 585 840 18 .725 936 18 335 585 19 525• 724 19 110 360 20 345 540 20 --- 160 21 186 377 21 ----- --- 22 35 234 22 ----- VERTICAL LOADS: ROOF: TYPICAL (PITCHED) TYPICAL (FLAT) DEAD LOAD: DEAD LOAD: 1 /2"PLYWOOD 1.50 1 /2"PLYWOOD 1.50 TILE 18.00: BUILT-UP ROOF 5.50 2X12 OR 2X TRUSSES @ 24" 2.10 2X12 @ 24" 3:20' 1/2" DRYWALL 2.50: 1/2" DRYWALL 2.50` INSULATION 1.00- INSULATION 1.00 MISC. F 1.g0 MISC. F 1.30: TOTAL r 27.00 P.S.F. TOTAL 15.00 P.S.F. ADD 10 P.S.F. FOR STUCCO SOFFITS LIVE LOAD: >4:12 <4:12 LESS THAN 200 S.F T.A' 16.00 P.S.F. 20.00 P.S.F. 201-600 S.F. T.A. 14.00 P.S.F. 16.00 P.S.F. GREATER THAN 600 S.F. T.A. 12.00 P.S.F. 12.00 P.S.F. FLOOR: DECK: DEAD LOAD: DEAD LOAD: 3/4" PLYWOOD 2.30• 3/4" TILE 10.00:' 3/4" GYPCRETE 6:50: 2" LIGHT WT. CONC. .16.00. CARPET & PAD 1.00: 3/4" PLYWOOD 2.30; ?BUSSES @ 16" o/c 3.00. 2x12 @ 16" o/c 3.20` 5/8" DRYWALL 3.13% 7/8" STUCCO 10:00: INSULATION 1.00' MISC. 2:50 MISC. 3.07 -TOTAL F 20.00 P.S.F. TOTAL 44.00 P.S.F. LIVE LOAD RESIDENTIAL FLOOR 40.00 P.S.F. DECK 60.00 P.S.F. RF RES -BU HEAVY TILE - - - 5 (H i g by) 05-1201.08v 129. xls RF RES -BU HEAVY TILE TYPICAL INTERIOR 2X4 DEAD LOAD: 2 LAYERS 5/8" DRYWALL 6.25: INSULATION 1:00' 2X4 STUDS @ 16" o/c 1..00 MISC. _ 1.75;: TOTAL 10.00 P.S.F. TYPICAL INTERIOR 2X6 DEAD LOAD: 2 LAYERS 5/8" DRYWALL ._ ;,K:: 6:25 . INSULATION y:»-„;.,,,. } 1 00.' 2X6 STUDS @ 16” o/c'� 1 60 5:-. TOTAL 10.00 P.S.F. TYPICAL EXTERIOR 2X6 DEAD LOAD: STUCCO 1 LAYERS 5/8" DRYWALL INSULATION =` ""' t..00- 2X12 STUDS @ 16" o/c MISC. TOTAL 17.00 P.S.F. 7 REfEi�ENGE W 1 PIT . . . . . . . . X 11 LLL= a 3q A.. // ,} lC)00/a) :-So. SCF . . . . . . WILL (?ob.) = So PIF . . . .. USE g t�(►GO _ .lav PAF Poi = a�16/��(�/a) L6 -5 GAA O4 601 LLL' LL' t= y6afi . AL '. l 0 (10%) _ -S.0 Pte_ USE X31. x= a' DL.L s8a LLL �Sb (0-01.� N = .« �- PAF lj L.L l6, (s ?.Lf-- �T - tl0 6lv6e� ; .PI04 = .a�,(��aX USE 1. Pc,i , . . . Dl1 S 35 # . LL, IS/ 4# . a 7/ (14/a) T 57 rGT, , 4vyl 1 rcLE' Y NaX'`'/a�:loa6. SHEET YOUNGENGINEERING SERVIG=S =�P' .:OB NAME.: ?i-804 WILDCAT DR. MITE G 7 PALM DESERT, GA. ?7.211 BY: . OB NO.: ?H '60-360-5770 FAX 160-360-5714 Rev: 580004 User: KW -0601715, Ver 5.8.0, 1•Dec-2003 Description R1 Title : Job # Dsgnr: Date: 9:11AM, 10 AUG 05 Description Scope : General Timber Beam Page 1 General Information Dead Load Code Ref: 1997/2001 NDS, 2000/2003 IBC, 2003 NFPA 5000. Base allowables are user defined Section Name 6x8 ... Location Center Span 9.33 ft .....Lu 0.00 ft Beam Width 9.375 in Left Cantilever ft .....Lu 0.00 ft Beam Depth 8.500 in Right Cantilever ft .....Lu 0.00 ft Member Type Sawn Douglas Fir - Larch, No.1 0.000 in Bm Wt. Added to Loads 2.44 k Fb Base Allow 1,350.0 psi Load Dur. Factor 1.250 Fv Allow 170.0 psi Beam End Fixity Pin -Pin Fc Allow 625.0 psi Wood Density 34.000pcf E 1,600.0ksi Full Length Uniform Loads Center DL 50.00 #/ft LL 50.00 #/ft Left Cantilever DL #/ft LL #/ft Right Cantilever DL #/ft LL #/ft Trapezoidal Loads #1 DL @ Left 216.00 #/ft LL @ Left 128.00 #/ft Start Loc 0.000 ft DL @ Right 216.00 #/ft LL @ Right 128.00 #/ft End Loc 4.330 ft Point Loads Live Load 512.0 lbs lbs lbs lbs lbs ...distance 4.330 ft 0.000 ft 0.000 ft 0.000 ft 0.000 ft Summary Span= 9.33ft, Beam Width = 9.375in x Depth = 8.5in, Ends are Pin -Pin Max Stress Ratio 0.391 : 1 Maximum Moment 6.2 k -ft Maximum Shear* 1. Allowable 15.9 k -ft Allowable Max. Positive Moment 6.21 k -ft at 4.329 ft Shear: Max. Negative Moment 0.00 k -ft at 0.000 ft Max @ Left Support 0.00 k -ft Camber: Max @ Right Support 0.00 k -ft Max. M allow 15.88 Reactions... fb 659.78 psi fV 39.99 psi Left DL 1.50 k . Fb 1,687.50 psi Fv 212.50 psi Right DL 0.94 k Deflections Center Span... Dead Load Deflection -0.069 in ... Location 4.478 ft ...Length/Deft 1,615.4 Camber ( using 1.5 * D.L. Defl ) ... @ Center 0.104 in @ Left 0.000 in @ Right 0.000 in :al Load Left Cantilever... -0.112 in Deflection 4.478 ft ...Length/Deft 995.89 Right Cantilever... 16.9 k Deflection 2.44 k ...Length/Deft 0.000 in lbs lbs 0.000 ft 0.000 ft 0.0 Beam Design OK 5 3.2 k 0.0 16.9 k @ Left 2.44 k @ Right 1.54 k @ Left 0.000 in @ Center 0.104 in @ Right 0.000 in Max 2.44 k Max 1.54 k 0.000 in 0.000 in 0.0 0.0 0.000 in 0.000 in 0.0 0.0 Title : Job # Dsgnr: Date: 9:11 AM, 10 AUG 05 Description Scope : Rev:580004 User: KW -0601715, Ver 5.8.0, 1 -Dec -2003 General Timber Beam (01983.2003 ENERCALC Engineerinp Software - Description R1 Page 2 Stress Calcs Bending Analysis Ck 24.972 Le 0.000 ft Sxx 112.891 in3 Area 79.688 in2 Cf 1.000 Rb 0.000 Cl 2435.559 Max Moment Sxx Redd Allowable fb @ Center 6.21 k -ft 44.14 in3 1,687.50 psi @ Left Support 0.00 k -ft 0.00 in3 1,687.50 psi @ Right Support 0.00 k -ft 0.00 in3 1,687.50 psi Shear Analysis @ Left Support @ Right Support Design Shear 3.19 k 2.19 k Area Required 14.998 in2 10.297 in2 Fv: Allowable 212.50 psi 212.50 psi Bearing @ Supports Max. Left Reaction 2.44 k Bearing Length Req'd 0.416 in Max. Right Reaction 1.54 k Bearing Length Req'd 0.263 in Query Values M, V, & D @ Specified Locations Moment Shear Deflection @ Center Span Location = 0.00 It 0.00 k -ft 2.44 k 0.0000 in @ Right Cant. Location = 0.00 ft 0.00 k -ft 0:00 k 0.0000 in @ Left Cant. Location = 0.00 ft 0.00 k -ft 0:00 k 0.0000 in v; Title : Job # Dsgnr: Date: 9:11AM, 10 AUG 05 Description Rev: 580004 User: KW -0601715. Ver 5.8.0, 1 -Dei (c)1983-2003 ENERCALC Engineer Description R2 Scope : General Timber Beam Page 1 General Information Dead Load Code Ref: 1997/2001 NDS, 2000/2003 IBC, 2003 NFPA 5000. Base allowables are user defined il Section Name 6x12 Max Stress Ratio Center Span 18.50 ft .....Lu 0.00 ft Beam Width 5.500 in Left Cantilever ft .....Lu 0.00 ft Beam Depth 11.500 in Right Cantilever ft .....Lu 0.00 ft Member Type Sawn Douglas Fir - Larch, No.1 17.0 k -ft Bm Wt. Added to Loads Allowable Fb Base Allow 1,350.0 psi Load Dur. Factor 1.250 Fv Allow 170.0 psi Beam End Fixity Pin -Pin Fc Allow 625.0 psi Wood Density 34.000pcf E 1,600.0ksi Full Length Uniform Loads Center DL 50.00 #/ft LL 50.00 #/ft Left Cantilever DL #/ft LL #/ft Right Cantilever DL Wit LL #/ft Beam Design OK Span= 18.50ft, Beam Width = 5.500in x Depth = 11.5in, Ends are Pin -Pin Dead Load Total_Load Left Cantilever... Dead Load Max Stress Ratio 0.288 : 1 -0.153 in -0.272 in Deflection 0.000 in 0.000 in Maximum Moment 9.250 ft 4.9 k -ft Maximum Shear* 1.5 0.0 1.4 k Allowable 817.41 Right Cantilever... 17.0 k -ft Allowable DO ) ... 13.4 k Max. Positive Moment 4.92 k -ft at 9.250 ft Shear: @ Left 1.06 k Max..Negative Moment 0.00 k -ft at 18.500 ft @ Right 1.06 k Max @ Left Support 0.00 k -ft Stress Calcs Camber: @ Left 0.000 in Max @ Right Support 0.00 k -ft @ Center 0.230 in Max. M allow 17.05 Reactions... 0.000 @ Right 0.000in fb 486.72 psi tv 22.79 psi Left DL 0.60 k Max 1.06k Fb 1,687.50 psi Fv 212.50 psi Right DL 0.60 k Max 1.06 k Deflections Center Span... Dead Load Total_Load Left Cantilever... Dead Load Total Load Deflection -0.153 in -0.272 in Deflection 0.000 in 0.000 in ...Location 9.250 ft 9.250 ft ...Length/Deft 0.0 0.0 ...Length/Defl 1,446.8 817.41 Right Cantilever... Camber (,using 1.5 * D. L. DO ) ... Deflection 0.000 in 0.000 in @ Center 0.230 in ...Length/Defl 0.0 0.0 @ Left 0.000 in @ Right 0.000 in Stress Calcs Bending Analysis Ck 24.972 Le 0.000 ft Sm 121.229 in3 Area 63.250 in2 Cf 1.000 Rb 0.000 Cl 1063.139 Max Moment Sxx Reo'd Allowable fb @ Center 4.92 k -ft 34.97 in3 1,687.50 psi @ Left Support 0.00 k -ft 0.00 in3 1,687.50 psi @ Right Support 0.00 k -ft 0.00 in3 1,687.50 psi Shear Analysis @ Left Support @ Right Support Design Shear 1.44 k 1.44 k Area Required 6.784 in2 6.784 in2 Fv: Allowable 212.50 psi 212.50 psi Bearing @ Supports Max. Left Reaction 1.06 k Bearing Length Req'd 0.309 in Max. Right Reaction 1.06 k Bearing Length Req'd 0.309 in y`, ? Title : Job # Dsgnr: Date: 9:11 AM, 10 AUG 05 Description Scope: Page 2 1 Rev: sa000a Use,: KW -0601715, Ver 5.9.0, 1 -Dec -2009 General Timber Beam (c)1963-2003 ENERCALC Engineering Software hi b .eow:Calculations IN Description R2 Query Values M, V, & D @ Specified Locations Moment Shear Deflection @ Center Span Location = 0.00 ft 0.00 k -ft 1.06 k 0.0000 in @ Right Cant. Location.= 0.00 ft 0.00 k -ft 0.00 k 0.0000 in @ Left Cant. Location = 0.00 ft 0.00 k -ft r 0.00 k 0.0000 in 7 Title : Job # Dsgnr: Date: 9:11AM, 10 AUG 05 Description Rev:580004 User: KW -0601715, Ver 5.8.0. 1 -Dec -2003 Description R3 Scope : General Timber Beam Page 1 General Information Span= 4.00ft, Beam Width = 5.500in x Depth = 5.5in, Ends are Pin -Pin Code Ref: 1997/2001 NDS, 2000/2003 IBC, 2003 NFPA 5000. Base allowables are user defined Section Name 6x6 Center Span 4.00 ft .....Lu 0.00 ft Beam Width 5.500 in Left Cantilever It .....Lu 0.00 ft Beam Depth 5.500 in Right Cantilever ft .....Lu 0.00 ft Member Type Sawn Douglas Fir - Larch, No.1 Bm Wt. Added to Loads Allowable Fb Base Allow 1,350.0 psi Load Dur. Factor 1.250 Fv Allow 170.0 psi Beam End Fixity Pin -Pin Fc Allow 625.0 psi Wood Density 34.000 pcf E 1,600.0 ksi Full Length Uniform Loads Center DL 176.00 #/ft LL 64.00 #/ft Left Cantilever DL #/ft LL #/ft Right Cantilever DL #/ft LL #/ft Point Loads Live Load 256.0 lbs lbs lbs lbs lbs lbs lbs ... distance 2.000 ft 0.000 ft 0.000 It 0.000 ft 0.000 ft 0.000 ft 0.000 ft Beam Design OK - 1 2 - Span= 4.00ft, Beam Width = 5.500in x Depth = 5.5in, Ends are Pin -Pin Max Stress Ratio 0.303 : 1 Maximum Moment 1.2 k -ft Maximum Shear * 1.5 1.1 k Allowable 3.9 k -ft Allowable 6.4 k Max.. Positive Moment 1.18k -ft at 2.000 ft Shear: @ Left 0.84 k Max. Negative Moment 0.00 k -ft at 4.000 ft @ Right 0.84 k Max @ Left Support 0.00 k -ft Camber: @ Left 0.000in Max @ Right Support 0.00 k -ft @ Center 0.025 in Max. M allow 3.90 Reactions... @ Right 0.000 in fb 511.64 psi fv 36.08 psi Left DL 0.58 k Max 0.84 k Fb 1,687.50 psi Fv 212.50 psi Right DL 0.58 k Max 0.84 k Deflections Center Span... Dead Load Total Load Left Cantilever... Dead Load Total Load Deflection -0.017 in -0.025 in Deflection 0.000 in 0.000 in ...Location 2.000 It 2.000 ft ...Length/Deft 0.0 0.0 ...Length/Deft 2,856.5 1,946.53 Right Cantilever... Camber ( using 1.5 * D.L. Defl ) ... Deflection 0.000 in 0.000 in @ Center 0.025 in ...Length/Deft 0.0 0.0 @ Left 0.000 in @ Right 0.000 in - 1 2 - Title : Job # Dsgnr: Date: 9:11AM, 10 AUG 05 Description Scope : Rev: 580004 User: KW -0601715, Ver 5.8.0, 1 -Dec -2003 General Timber Beam Page 2 (c)1983-2003 ENERCALC Engineering Software higby.ecw:Calculatioro Description R3 Stress Caics Bending Analysis Ck 24.972 Le 0.000 ft Sxx 27.729 in3 Area 30.250 in2 Cf 1.000 Rb 0.000 Cl 838.285 Max Moment Sxx Read Allowable fb @ Center 1.18 k -ft 8.41 in3 1,687.50 psi @ Left Support 0.00 k -ft 0.00 in3 1,687.50 psi @ Right Support 0.00 k -ft 0.00 in3 1,687.50 psi Shear Analysis @ Left Support @ Right Support Design Shear 1.09 k 1.09 k Area Required - 5.136 in2 5.136 in2 Fv: Allowable 212.50 psi 212.50 psi Bearing @ Supports Max. Left Reaction 0.84 k Bearing Length Req'd 0.244 in Max. Right Reaction 0.84 k Bearing Length Req'd 0.244 in Query Values M, V, & D @ Specified Locations Moment Shear Deflection- @ Center Span Location = 0.00 ft 0.00 k -ft 0.84 k 0.0000 in @ Right Cant. Location = 0.00 ft 0.00 k -ft 0.00 k 0.0000 in @ Left Cant.. Location =. 0.00 ft 0.00 k -ft 0.00 k 0.0000 in - 1 3 - Rev:580004 User: KW -0601715. Ver 5.8.0. 1 -Dec -2003 (c)1983-2003 ENERCALC Engineering So Description R4 Title : Job # Dsgnr: Date: 9:11AM, 10 AUG 05 Description Scope : General Timber Beam Page 1 General Information Code Ref: 1997/2001 NDS, 2000/2003 IBC, 2003 NFPA 5000. Base allowables are user defined Section Name 6x6 0.383 1 Center Span 2.50 ft .....Lu 0.00 ft Beam Width 5.500 in Left Cantilever ft .....Lu 0.00 ft Beam Depth 5.500 in Right Cantilever ft .....Lu 0.00 ft Member Type Sawn Douglas Fir - Larch, No.1 6.4 k - Bm Wt. Added to Loads 0.86 k -ft Fb Base Allow 1,350.0 psi Load Dur. Factor 1.250 Fv Allow 170.0 psi Beam End Fixity Pin -Pin Fc Allow 625.0 psi Wood Density 34.000pcf E 1,600.0ksi Full Len th Uniform Loads Center DL 257.00 #/ft LL 152.00 #/ft Left Cantilever DL #/ft LL #/ft Right Cantilever DL #/ft LL #/ft Point Loads Dead Load 1,026.0 lbs lbs lbs lbs lbs Ibs lbs Live Load 608.0 lbs lbs lbs lbs lbs lbs lbs ...distance . 2.000 ft 0.000 ft 0.000 ft 0.000 ff 0.000 ft 0.000 ft 0.00oft Beam Design OK Span= 2.50ft, Beam Width = 5.500in x Depth = 5.5in, Ends are Pin -Pin Max Stress Ratio 0.383 1 Maximum Moment 0.9 k -ft Maximum Shear* 1.5 2.5 k Allowable 3.9 k -ft Allowable 6.4 k - Max. Positive Moment 0.86 k -ft at 2.000 ft Shear: @ Left 0.85 k Max. Negative Moment 0.00 k -ft at 2.500 ft @ Right 1.83 k Max @ Left Support 0.00 k -ft Camber: @ Left 0.000 in Max @. Right Support 0.00 k -ft @ Center 0.007 in Max. M allow 3.90 Reactions... @ Right 0.000 in fb 372.89 psi fv 81.33 psi Left DL 0.54 k Max 0.85 k Fb 1,687.50 psi Fv 212.50 psi Right DL 1.15 k Max 1.83 k Deflections Center Span... Dead Load Total Load Left Cantilever... Dead Load Total Load Deflection -0.005 in -0.007 in Deflection 0.000 in 0.000 in ...Location 1.350 ft 1.350 ft ...Length/Deft 0.0 0.0 ...Length/Deft 6,493.8 4,095.52 Right Cantilever... Camber ( using 1.5 * D.L. Defl) ... Deflection 0.000 in 0.000 in @ Center 0.007 in ...Length/Deft 0.0 0.0 @ Left 0.000 in @ Right 0.000 in 14- Title : Job # Dsgnr: Date: 9:11AM, 10 AUG 05 Description Scope: Rev: 580004 User. KW-0801715. Ver 5.8.0, 1-Dec-2003 - General Timber. Beam Page 2 (c)1983.2003 ENERCA!_C En ineerin Software - - hi b .ecw:Calculations - Description R4 Stress Calcs Bending Analysis Ck 24.972 Le 0.000 ft Sxx 27.729 in3 Area 30.250 in2 Cf 1.000 Rb 0.000 CI 846.978 Max Moment Sxx Req'd Allowable fb @ Center 0.86 k-ft 6.13 in3 1,687.50 psi @ Left Support 0.00 k-ft 0.00 in3 1,687.50 psi @ Right Support 0.00 k-ft 0.00 in3 1,687.50 psi Shear Analysis @ Left Support @ Right Support Design Shear 0.99 k 2.46 k Area Required 4.657 in2 11.577 in2 Fv: Allowable 212.50 psi 212.50 psi Bearing @ Supports Max. Left Reaction 0.85 k Bearing Length Req'd 0.246 in Max. Right Reaction 1.83 k Bearing Length Req'd 0.532 in Query Values ESE gel M, V, & D @pcified Locations Moment Shear Deflection @ Center Span Location = 0.00 ft 0.00 k-ft 0.85 k 0.0000 in @ Right Cant. Location = 0.00 ft 0.00 k-ft 0.00 k 0.0000 in @ Left Cant. Location = 0.00 ft 0.00 k-ft 0.00 k 0.0000 in IQ Rev: 580004 User: KW -0601715, Ver 5.8.0, 1 -Dec -2003 (01983-2003 ENERCALC Enoineerina Sol Description R5 Title : Dsgnr: Description Scope : General Timber Beam Job # Date: 9:11 AM, 10 AUG 05 Page 1 General Information Code Ref: 1997/2001 NDS, 2000/2003 IBC, 2003 NFPA 5000. Base allowables are user defined Section Name 6x6 0.619 : 1 Center Span 5.00 ft ......Lu 0.00 ft Beam Width 5.500 in Left Cantilever ft .....Lu 0.00 ft Beam Depth 5.500 in Right Cantilever ft .....Lu 0.00 ft Member Type Sawn Douglas Fir - Larch, No.1 Bm Wt. Added to Loads Max. Positive Moment Fb Base Allow 1,350.0 psi Load Dur. Factor 1.250 Fv Allow 170.0 psi Beam End Fixity Pin -Pin Fc Allow 625.0 psi Wood Density 34.000pcf E 1,600.0ksi Full Length Uniform Loads ter DL 27.00 #/ft LL 16 Cen.00 #/ft Left Cantilever DL #/ft LL #/ft Right Cantilever DL #/ft LL #/ft Tra ezoidaI Loads #1 DL @ Left - 216.00 #/ft LL @ Left 128.00 #/ft Start Loc 0.000 ft DL @ Right 216.00 #/ft LL @ Right 128.00 #/ft End Loc 2.500 ft Point Loads Uead Load 864.0 lbs lbs lbs lbs lbs lbs lbs Live Load 512.0 lbs lbs lbs lbs lbs lbs lbs ...distance . 2.500 ft 0.000 ft 0.000 ft 0.000 ft 0.000 ft 0.000 ft 0.000 ft Beam Design OK Span= 5.00ft, Beam Width = 5.500in x Depth = 5.5in, Ends are Pin -Pin Max Stress Ratio 0.619 : 1 Maximum Moment 2.4 k -ft Maximum Shear * 1.5 1.9 k Allowable 3.9 k -ft Allowable 6.4 k Max. Positive Moment 2.41 k -ft at 2.500 ft Shear: @ Left 1.46 k Max. Negative Moment 0.00 k -ft at 5.000 ft @ Right 1.03 k Max @ Left Support 0.00 k -ft Camber: @ Left 0.000 in Max @ Right Support 0.00 k -ft @ Center 0.072 in Max. M allow 3.90 Reactions... @ Right 0.000 in fb 1,044.76 psi fV 63.72 psi Left DL 0.92 k Max 1.46k Fb 1,687.50 psi Fv 212.50 psi Right DL 0.65 k Max 1.03 k Deflections Center Span... Dead Load Total Load Left Cantilever... Dead Load Total Load Deflection -0.048 in -0.076 in Deflection 0.000 in 0.000 in ...Location 2.460 ft 2.460 ft ...Length/Deft 0.0 0.0 ...Length/Deft 1,243.0 785.45 Right Cantilever... Camber ( using 1.5 * D.L. Defl ) ... Deflection 0.000 in 0.000 in @ Center 0.072 in ...Length/Defl 0.0 0.0 @ Left 0.000 in @ Right 0.000 in - 1 7 - r User: KW -0601715, Ver 5.8.0, Description R5 Title Dsgnr: Description Scope General Timber Beam Job # Date: 9:11 AM, 10 AUG 05 Page 2 Stress Calcs Bending Analysis Ck 24.972 Le 0.000 ft Sxx 27.729 in3 Area 30.250 int Cf 1.000 Rb 0.000 Cl 1458.356 Max Moment Sxx Req'd Allowable fb @ Center 2.41 k -ft 17.17 in3 1,687.50 psi @ Left Support 0.00 k -ft 0.00 in3 1,687.50 psi @ Right Support 0.00 k -ft 0.00 in3 1,687.50 psi Shear Analysis @ Left Support @ Right Support Design Shear 1.93 k 1.51 k Area Required 9.070 in2 7.103 in2 Fv: Allowable 212.50 psi 212.50 psi Bearing @ Supports Max. Left Reaction 1.46 k Bearing Length Req'd 0.424 in Max. Right Reaction 1.03 k Bearing Length Req'd 0.299 in Query Values M, V, & D @ Specified Locations Moment Shear Deflection @ Center Span Location = 0.00 ft o.Ob k -ft 1.46, k 0.0000 in @ Right Cant. Location = 0.00 ft 0.00 k -ft 0.00 k 0.0000 in @ Left Cant. Location = 0.00 ft 0.00 k -ft 0.00 k 0.0000 in ins k� Title: Job # Dsgnr. Date: 9:11AM, 10 AUG 05 Description Scope Rev: 580000 User: KW -0601715, Ver 5.8.0, 1 -Dec -2003 (c)1983-2003 ENERCALC Engineering Software Description F1.5 PAD FOOTING Square Footing Design Page 1 General Information Code Ref: ACI 318-02,1997 UBC, 2003 IBC, 2003 NFPA 5000 Dead Load 3.000 k Footing Dimension 1.500 ft Live Load 0.000 k Thickness 12.00 in Short Term Load 0.000 k # of Bars 3 Seismic Zone 4 Bar Size 5 Overburden Weight 0.000 psf Rebar Cover 3.250 Concrete Weight 145.00 pcf f'c 2,500.0 psi LL & ST Loads Combine Fy 60,000.0 psi Load Duration Factor 1.250 Column Dimension 0.00 in Allowable Soil Bearing 1,500.00 psf Note: Load factoring supports 2003 IBC and 2003 NFPA 5000 by virtue of their references to ACI 318-02 for concrete design. Factoring of entered loads to ultimate loads within this program is according to ACI 318-02 C.2 Reinforcing Rebar Requirement Actual Rebar "d" depth used 8.438 in As to USE per foot of Width 0.259 int 200/Fy 0.0033 Total As Req'd 0.389 int As Req'd by Analysis 0.0002 int Min Allow% Reinf 0.0014 Min. Reinf % to Req'd 0.0014% ummary A 1.50ft square x 12.Oin thick with 3- #5 bars Max. Static Soil Pressure 1,478.33 psf Allow Static Soil Pressure 1,500.00 psf Max. Short Term Soil Pressure 1,478.33 psf Allow Short Term Soil Pressure 1,875.00 psf Mu : Actual 0.58 Mn * Phi :Capacity 21.50 �1� Vu: Actual One -Way Vn*Phi : Allow One -Way Vu: Actual Two -Way Vn*Phi : Allow Two -Way Alternate Rebar Selections... 2 # 4's 2 # 5's 1 # Ts 1 # 8's Footing OK 0.96 psi 85.00 psi 12.76 psi 170.00 psi 1 # 6's 1 # 9's 1 # 10's N O Q-34 Active Fault Near -Source Zones This map is intended to be used In conjunction with the 1997 Uniform Building Code, Tables 16-S and 16-T Q-34 California Department of Conservation of Mines and Geology 1�1 LEGEND Sao a i)amlod logo, of and Index u,ap Slradod zcnos am eilhln 2 Am soismic souu:us. ul hno,m ® A fault F -7-1 B fault Contours of closest horizontal distance to known selsmlc sources. ? - ----------------- 5 km --------------- ----------- 10 kin -------------- 15 kin 5 10 Kilometers 1/4' is approximately equal to I km August, 1997 0 �' �� • . `; a,. •.l (1 ) - Input Une Data _22_ (Higby)05.1201-09v1.29.xts GENERAL INPUT & OUTPUT GENERAL INPUT LEVEL DIAPHRAGM DEAD LOADS WINO STORY Mn.a x TLA STORY WEIGHT WIND DATA HEIGHT 14) Ib) (c) (FI EXT.WALL INT. WALL PRESSURE AMPLIFICATION LB WIND SPEED 70 FT PSF PSF PSF PBF PSF PSF PSF A% ,XXX WIND EXPOSURE C t- 00 0 0 0 SEISMIC DATA 0 0 " 0 SIMPLIFIED BASE SHEAR Y 0 0 0 SOURCE TYPE A 1 13.5. Z7 IS 10 20 f7 10 17.28 100% 0.173 41070 SOIL TYPE O.OEFAULT TYPE ZONE= D 4 BASE SHEAR COEFFICIEM .2001 C.B.C. LINE LABELS FOR AUTO NUMBERING ' R. - 5.5 (304) V.(CWRT)W 0.978 SHALL BE THIS EXCEPT LEVELi- START NO LEVEL " START NO - ' ' . Is. 1.00 30• V= 2.6 W 0.202 NEED NOT EXCEED NO.LEVELS 1.00 30.8 V..11 Co8W 0.049 BUT NOT LESS THAN DISTANCE KM 10 (30-7) V.(.BZNvVii1W 0.065 BUT NOT LESS THAN IN ZONE 4 1 LEVEL3 LEVEL START .START NO NO f 1 b^' 10.00 (3011) V.(3Ce/R)W 0.242 SIMPLIFIED STATIC (IF USED) Ct= 0.02 70 70 MPHE)"SUREC C T•plA^) ' 0.16 METHOD2 Z. 0.401 H C. CO R4 I p Nm - 1.01. 0.15 1.06 1.30 12.59 1.00 17.35 . - .. . ' ' Nw 1.22 20.00 1.13 1.30 12.69 1.00 18.60 C°= - OA4 25.00 1.19 1.30 12.59 1.00 19A8 C- 0.78 30.00 1.23 1.30 12.69 LOW ..20.14 V BASE SHEAR W/o RHO 0.262 40.00 1.31 1.40 12.59 1-.00 23.10 /1.4 0.173 60.00 1.0 1.40 1269 1.00 25.21 Oo 1830.0.2 2.80 80.00 1.53 1.40 12.58 1.00 26.97 0 1630.8.2 1.00 LRFD LDF 1630.8.2 1.70 ASD LOF CH. 23 DIV.III 1,73 ASD ST INCREASE 1.33 LRFD/ASD FACTOR (RHO) CALCULATION FOOTPRINT AREA At, E 920.00 - ... SEISMIC DATA LEVEL 1 LEVEL 0 LEVEL 0 LEVEL 0 X Y x Y x Y X Y r MAX SHEAR WALLS CALL 0.60 0.51 0.00 0.00 0.00 0.00 0.00 0.00 r MAX SHEAR WALLS 0 0 0 0 0 0 0 . 0 rMAXFRAMER 0 0 0 0 0 0 0 0 r MAX BRACED FRAMES 0 0 0 0 0 0 0 0 r MAX CAM. COLS. 0 0 0 0 0 0 0 0- r MAX INPUT 0,803 0.513 0.000 0.000 0.000 0.000 0.000 0.000 LC0.012 0.721 10.000 DOW 0.000 0.000 0.000 0.000 v USED 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 FOUNDATION SYSTEM (1 ) - Input Une Data _22_ (Higby)05.1201-09v1.29.xts LINE;INPUT,1 ,.,.. +LEVEL ?FROM 7:'TO ..AREA' NEa NEOs '�'G(e)• +Lr'@J, in, ... Lr (� No.IM: . Nlnt.. No.4rt. ,N6rt; L. sxlY, SUPPORT ,.LINE. COMMENT LINEr-.;l1NE ._-FT. 'fiET f`';FT•.. : FT.- FT ) rsF7 a:� Fi7 t: ;Sif7..r, TJR - f: -CODE'.. i C 5 '' -Y � 1 91 \ � t `. f• i t 2 �' Sv .b p c � ..•i 'A T 'tiS'°� "3' (,s +eE: S: }r VX z 7 t( M� ,hy 3 `�'•C j S K� L, ✓" '}(^r rX - C i. "7, i y.}.{. ui5� 'i q, F 1 }'t'A f'+.C+'z r}•.: S Z Y `" J '' first S y �. d$ n...,;,43,�5,1 i krg i�^.. 5 I;e . lhG 4 �� r y } 1'YTby`i =s.Y Y .ax .r;r, ysR . S- •-X Ni4 1. - '2 2 4 5 18:75 0.01 0.01- 0.01 '3 5 2 5 28.5 X S' ' 2 - 3 1 2 6.75 7.5 0.01 0.01 -0.01 0.01 0.01; 2 6.75 8.0 X 1 a 4 0.01 0.01 0.01 o.m 0.01 0.01 0.01 0.01 o.at 0.01 0.a x E 4 - 'S 1 "" 2 6.75 '8 0.01 0.01 O.OL 1 6:75' .I•" 6.75 7.5 V S " 5 - 6 0.01 0.01: 0.01 0.01 0.01 0.01 0.01 0.01 .0.01 - 0.01 0.0 Y E ' 6". - 7 21 .4. 5 28.5 0.01 O.ot 0.01 2- 5 2 5 18.8 Y S 7 - 8 3- 8'.• - -9 •. - 4 5' 15.75 0.01 0.01 0.01 0.01' 0.01 - 0.01 0.01' 0.01 0.01 0.01' 0.01 0.01 •'2 5 18.5 Y 1 0.01 0.01 0.01 0.0 - V -'E 9 10 ' .3 4 Sl 16.5 0.01. 0.01 0.01 ' 1 5 1 5 15.8 V S 10 11 - '0.01 0.01 0.01' 0.01 0.01 0.01 •0.01 0.01 0.01 0.01 0.0 X E 11 - 12 0.01 0.01" 0:01 0.01 0.01 0.01' 0.01 0.01 0.01 0.01' 0.0" Y I 12 13 0.01 0.01 0.01 0.01 0.01 0.01 0.01' 0.01 . 0.01 0.01. . 0.0. V ' 1 13 - 14' 0.01 0.01 0.01 '0.01 0.01 0.01 0.01 0.01 0.01 0.01 - 0.0 Y 'I 14 15 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 '0.01 0.0 V -I 15 18 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 :0.0 V I " 18-- 17 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0 V I- '- 17 18 ' 0.01 0.01 .0.01 0.01 0.01 0.01 0.01 - 0.01 0.01 0.01 0.0 V 1 18' f9 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0 Y 1 18 20 211 21 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01. 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0 Y 1 0.01 0.01 0.01 0.0 V I 21 22 0.01 0.01 0.01 0.01 0.01 0.01. 0.01 0.01 . 0.01 0.01 0.0 V I 1. J. 1., ,;;�s�r .. 72 1 , �4.p, Y;, �` �`� �'� INPUT,.(2 �'"� .� :,,, •,: . # > > .ALINE rye �; r.� " {i ..: •:` - x .,a. 7 ! Jr . '-`.. .. ,...:,,.- ,} yr ' " �.+`• r: r '� TOLEVEL .x,a k^-ADDUNEBNEAR. ::;r ' a+. ;�Vo. 'S:Vw�.'.: .LINE. XBTART-X WTXEND*. :LINE+ X START ,i REND- +UNE^UNE"iLEYEL,NO:`.'•. UNE NOi%: .. LEWLNOr `,sUNENO. 7MEL'.NO.' `:UNENO.`' LEVEL•NO: 1'UNE'NO ::+LBt . t„L8:/'. ;py,. fT1 .�'� F7:. :: ry a. ,� •: �:. L l..'FT._�.e: "EN t ii v "f,: : Y 'h K i i! �, �. 1 F S '4 '}i jai X4 t�x1 P x� 'Cx P aN� A ,� y.'fks v .g„ .F`.. ✓ 3 C 1 � r r, �' . �' ia�✓'” h :.. � i !h �1'}�#c t1:2 1 f '1 r i•v. a �« 4'. •k r r �1 #�Y � 1 y �� Y s ..1✓ �1 �" z, Yi � �'C "2 {"Sy M�} �#C +�.L sZ f .S ,a i°�1`lr ,; 7 ` �^{-: r t„,��• 'i'.J R' 4 �4 ti!:X• 1 91�:r t`-137FMt. �,R6f 3•�7L,•'%'Cw ,"'� J L .%i i,'�i�4 k . r' �� `p°H3 � � ��r Lj 1 T '. 1 � ��+�'' � � 1 .�' 4 J C. _ Zi - k rr�l'i. ✓'. !t<µ ex y ..L{i". J2.1 �:.+ .�. r.��l��`t .'� ir���1 .� 1 - 2 0. 0, 1RJ 13 31.98 SIR, 0. 0 2 3 '0 0 2L .13 32 52L 0 0. " 3' 0 0 2R 26 33 52R 0 0 4 5 ' • - 0 - 0 3L 26 33 53L 0 0 5 0 3R 0 'O 53R 0' 0 6 7 0 ." 0 4L 0 0 54L 0 0 7 - 8 - 0 0 4R 77' 85 . 54R 0 . 0 8 - 8 - 0 0 SL n es SSL 0 0 9 — 10 • R 0 0 SSR 0 0. f0 it L '0 0 SSL 0•. 0 11 .12 - R 48 -77 SSR 0 0 12. 13 0-'-- L 48 77 57L 0 0 13 14 R 45 Mf 61 'S7R 0 0 14`- 15 L 45 61. 58L 0 0 15 1fiR 45 62 58R '0 0 16 17 L 0 0 59L 0 0 17 18 - 0 0 9R 0 0 59R 0 0 18 19 0 0 10L 1 32 48 60L 0 0 19 20 0 0 !OR 0 0 60R 0' 0 20 21 0 0 11L 0 0 61L 0 0 21 22 0 0 11R 0 0 61R 0 0 -804 Wildcat Dr. Palm Desert, Ca. 92211 P == : - 25 - .,UNE INPUT 3 :..;, LEVEL 'FROM ` ' TO - .41 X1 Fs2 . '7I2 'M3, ° .: X3 "N2o '� ' PwT X10 .: •,,, ;X2' " Pw3. 'X3 0'- -' WiM ' `L4 :Lc.. SEISMIC-. WIND ; '•._:::UNE"!14 i.UNE': ...LB.:- FT.: -': LB ;.'FT. ..LB :'`.-..Fr, UI+7:.> LB.. ;• :FT -' ...Ui.: !;F -r :,.•�.'. FT'.:. :LBfFT '_rFT :.Fr'>! SCALEi'BCAIiEr% •0 ,0.01 ,0 FACTOR` 'FACTOR*: 1 - 2 0.01 0 0.01 0 0.01 0 0.01r 0 0.01 0.1Bf 1.00 1.00 2 - 3 0.01 0.00 0.01 O.OD 0.01 '0.00 0.00 0.01 O.Do 0.01 0.00 0.01 0.00, .e 1.00 1.00 '3 4 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00' 1.00 1.00 4 5 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 8 1.00 1.00 5 6 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.01 - 0.00 0.01 0.00 1.OD 1.00 6 7' 0.01 0. 00 0.01 0,00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.o0 30 1.00 .1.00 7 - - 6 0.01 0.000 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00' 0.01 0.00 16 1.00 1.00 B 0.01 0.00 0.01 0.00 0.01 ODD 0.00 0.01 0.00 0.01 0.00 0.01 0:00. 1.00 1.00 B - 10 0.01 0.00 1 0.01 0.00 0.01 0.00 o.o0 1 0.01 0.00 0.01 0.00 0.01 0.00 17 ' 1.00 1.00. 10 - 11 0.01 0.00 0.01 0.00 0.01 O.Do 0000 0.01 o.00 0.01 0.00 . 0.01 0.00 1.00 1.00 11 12 0.01' 0.00 0:01 0.00 0.01 0.00 O.Do 0.01' 0.00 0.01 o.00 '0.01 0.00 1.00 1.00 . . 1z 13 0.01 0.00' 0.01 0.00 0.01 0000 0.00 0.01 D.00 0.01 0:00 0.01 0.00 1.00- 1.00 13 1 14 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.D0 0.01 0.00 0.01 0.00 1.00 1,00 14 1 15 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 1.00 1,00 /5 16 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.o0 0.01 0.00 1.00 1.00 78 17 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.o0 1.00 1.00- .0017 17 /8 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 1.00 1,00 18 1B 0.01 0.00 0.01 0.00 0.01 0.00 0.00 ---T-. 0.01 0.00 0.01 0.00 1,00 1,7X1 10 20 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 1.00 1.00 20 21 0.01 0.00 0.01 0.00 0.01 0.00 O.oD 0.01 0.00 0.01 0.00 0.01 0.00 1.00 1.00 21 22 0.01 0:00 0.01 0.00 0.01 O.Oo 0.00 0.01 0.00 0.01 0.00 0.01 0.00 1,00 1,00 - 25 - r w 26- .z£. •- s ,f.L'INE OUTPUT- •LEVEL. FROM ••.TO INE FORCE9 1i yWALLtLENOTHv ELEfiIENi STORY DUIPHRAOM LE11f7TH `�i` h OIAPHRAOMUNR SHEMS X3i fir o --' Y 9 a• �.1rb rx'f' 7.419) ,xi. , ' 1 NE t.UNE IRECT1ONdss1 .. ALONG :3 v�BNEAR RATIO �.. `wh EACX BIDE OF. UNE 'iA * WINDk.:°[ '_ 1 l5 55xyy '` <g 31Cyj rcii�i i '','9.4UNE!'Y%k d X. r'/i,Y'^ti". ! �i•.i LEFT`p-RIGHf. 'A s Y LEFT .:i1 '�'.. RH7lR '1 `X,LEFT i 'Y:cRIOHT. "i vv - t T h •�..� ii'-� f�YtSo 3PV4n(Y) °�}r? b TOTAL >. srOC rIYX•'�,Yi.a Ldl{ N u Ldr .y < a X vW1? <�q rs+"rtvw '�S P(•.nnA '"Ph.onA '. F`+�L9F`1•ra'�,+�•tw,a2"FT..l+f'Fs°'tom. 7 ..'Y "' oFTik s.� . "•" '` y : 1 Y'; .1 .. r. �...r N x 'Y. ��.�. �. $ Ctrs• A v: • 1 2 - 5.17 0.6031 19 122 2 - .3 6.37 0.5533 19 7 309 .82 12o- 3* ' — 4 4.17 0.0989 7 7 82 40 4' -5 ': 258 3.51 0.1016 7 .5 ^ 6 258 8.01 0.0445 •6 - 7 1728 4.72 0.5054 B fez 218 7 — '8'' 2578 6.93 0.5131 8 8 182 160 106 ' e 9 849 8.01 0.1463 8 9, 10 791 13.05 1 0.0835 lo— 11 7.42 0.1468 29 42 11° 12'• 29 29 12 -- 13 - 29 16 13 '14 16 16 14 15': 16 16 _ 15 16 16 18 17 17 — 18 16 18 19 i6 18 - 20 20 21 21 22 1 CONVENTIONAL SHE_ARWALL SUMMARY I I I I I I i i 1 I 1 LEVEL WALL UNE v b h hlb PLYWD PLYWD ALT. SPECIAL_ SILL Ell No. No. 1 2 WALL or - -- Lbfft Ft Ft SIDE SIDES WALL A CALC PLATE 1 I 2 i 1 2 444 455 i. 5.16 1 3.37 1 10.00 8.67 I 1.94 2.57 I C i C L_AA_I AA NA NO 3X E I YES 3X I E 3 1 3 1 145 1 4.16 I 8.00 1 1.92A I AA I NA NO ! 2X 4 4 1 162. 1 3.50 I 13.50 1 3.86 I A I AA YES 2X I E 5 I 5 I 71 1 8.00 j 13.50i 1.69 A I AA NA I NO I 2X I E 6 I 6 I 1 4.71 j 10.00 I 212 1 B.3 1 AA I I YES 3X E 7 7 I 396 I 6.92 1.45 1 B.3 I AA I NA 1 NO ! 3X ! E 8 8 160 8.00 10.00 1 1.25 1 A AA NA I NO I 2X E 9 9��94 I 13.04 ; 10.00 j 0.77 A 1 AA NA I NO I 2X I E 10 I 10 I - 165I 4.21 I 10.00 I 2.38 A AA I ! YES ; 2X E 11 I 10 165 I 3.21. 1 10.00 I 3.12 A 1 AA I YES 1 2X I E 12 I 2 1 _ 455 3.00 I 8.67 I 2.89 I C AA (. YES I 3X 1 E I I I i NA 1--1 SW SUMMARY s (CONVENTIONAL SHEARWALL SUMMARY HOEDOWN OPTIONS LEVEL WALL LINE T=C HD PHD LTTIMTTIHTT HPA-STHD @FON LE HPA-STHD @FDN RIGHT No. No. MST(POST-POS MST POST-BEAM) Lb HOLDOWN HOLDOWN HOLDOWN HOEDOWN HOLDOWN 1 1 2 1 2 _3918 HDSA(4XISST816 PHD5R-.2X!SSTB20_I MTT288(2_2X_4XJSSTB201 STHD141L2X4)q I STHDM(2.2X,4X!_ I' 3657 HDSA(2_2X!SSTB16 PHDS!2_2X!SSTB20 I MTT288(2.2X4))SSTB201 STHD14(2-2X,4)) j STHD14(2-2X,4)!_ ! 973 I HD2A(2-2X,4))SSTB16 ! PHD2(�SSTB16 I LTT19(2.2X.4))SSTB16 I STHDB!2_2X0) ; STHDB(2.2X,4X!_ ! 1917 1 HD2Aj2- 4X)SSTB16 PHD2[2_2XJSSTBI6 i LTT131(2.2X,4XJSSTBI61 STHDB!2-2X,4XJ ! STHD8(2-2X,4))_ 345 1 HD2A(2-2X.4XJSST816 ! PHD_2[2_2)JSSTBI6 i LTT191L-2 . X)SSTB16 1 STHDB(2.2X,gXJ STHD8(2_2X,4))_ 2893 ! HDSA(2_2X)S3TB16 ( PHD2(2-2X)SSTB16 1 HTT16(2.2X4XISST81 ST6 HD10!2-2X,4X! ! STHD10(2.2X4XI I 3567 i HDSAj2_2XJSSTBI6 ! PHD2(�SSTB16 I MTT28B(2.2X,gSSTB201 STHD14(2-2X4X! I STHD14!2.2X4JX_ 862 H�2-2X4 SSTB16 ! PHD2!22X)SSTB16 I LTT19(2.2X4XISSTBI6 I STHDB(2_2)4Oq 1 STHDB(2_2X,4X� 200 I HD2A!2.2X,4X!SSTB16 j PHD2j2_2X�SSTB16 i LTT19!2-2X,4X!SSTB16 L STHDB!2_2X,4XJ ! STHD8!2-2X,4X)_ 1108 I HD 2.2X,4XJSSTB16 ! PHD2(2_2ASSTB16 ! LTT19(2_2X4 SSTB16 I STHD8(2-2X,4)qSTHDB(2-2X_4X!_ 1468 HD2A(2.2X,gXJSST816 �FHD2(2-2X)SSTB16 I LTT20B!2-2X4X)SSTB16 STHDB!2-2X,4 STHDB!2.2X� 3688 HDSA(2_2XJSST816 ! PHDS(2-2XJSST82 M1T28B(2--2X,4 SSTS201 STHD102 I STHDi0f2-2X,gX!_ 3 I 3 4 I 4 5 5 6 ! 6 7 7 8 I 8 9 I 9 10 10 11 10 12 2 SW SUMMARY (Higby)05-1201-08v1.29.xls s (Higby)05-1201-08v1.29.xls SW SUMMARY (H igby)05.1201-08v1.29.xls 1 LEVEL WALL _LINE FTA @ FLR ATR WALL XSTART YSTART XSTART YEND W No. No. HOLDOWN NO. 1 i 1 i SR4 1 1 135 2 I 2 i SR4 2 I j j I I 108 I' 3 3 I 4 4 _SR4 SR4 3 1 I I I 4 5 5 SR4 5 1II 6 6 SR4 6 210684 7 7 8 6LSR4 SR4 II - IIIj 7 tII 8 9 9 iII g 10 SR4 10 216 11 I 1100 11 j I 12 2 SR4 12 I I 108 j 2400 I I SW SUMMARY (H igby)05.1201-08v1.29.xls LINE NO. 2z LINE OVERIDE VALUE LEVELNO. ' 1 WIND NA,; SEASONED LUMBER or N `: Y SEISMIC `` NA' >" STRUC-i (1 OR 2) or (OSB) 2 1) NA LINE DIRECTION —500— Mot w LB- 13554 F WIND 2.90 12 VII A 1.000 1 WALL WI 0.55 3381 V/1.4 x WALL WT. 0.62 0.395 0.458 0.520 2.601 F iV/1.4 0.07 445 F )V/1.4 + V/1.4 x WALL Wi. 0.62 390 358 3775 NG OK OK 1.00 FcoV W SHEAR WALL DEFLECTION CALCULATION UBC STD. 23.223 WALL No 2 WALL H TYPE 82 8.67 B POST SIZE 3.33 6X6 POST GRADE 1 HOLDOWN EXTINI Ell HD5A- E w dl Amax ul LB/Ff ULT 0.413 Kull %F LBIIN 3955 Fs LB Fw LB 3 Aw= A. A�w A� s I I .00SH .025H 0.395 0.458 0.520 2.601 v, LB 101 v, LB 469. vrhm LB 469 Mot s LB- 1601 Mot w LB- 13554 Mr LB- 481 oiniw (T=C)s (T=C)w STATUS STATUS STATUS LB LB) v HD A 351 3974 NG OK OK 12 82 8.67 3 6X6 1 HDSA E 0.435 3381 iV/1.4 x WALL WT. 6 0.395 0.458 0.520 2.601 96 445 445 1426 11587 390 358 3775 NG OK OK 1.00 Fcov W A287 LINE NO. 11 ' LINE OVERIDfflVALUE LEVEL NO. i, WIND SEASONED LUMBER or N Y' SEISMICSTRUCT (1 OR 2) or (OSB) 2 1) LINE DIRECTION 2295 F WIND 2.29 )V/1.4 1.000 WALL WT 0.00 iV/1.4 x WALL WT. 0.15 , F rV/1.4 0.15 F rV/1.4 + )V/1.4 x WALL WT. 0.15 1.00 Fcov W SHEAR WALL DEFLECTION CALCULATION UBC STD. 23.223 �' ���® •�, 1 �� ��®�®���� xl 1. ���������®�®' W N LINE NO. 4 LINE O�VAIWUELEVEL NO. i° WINDSEASONED LUMBER orN Y` SEISMISTRUCT (l OR 2) Or (OSB) -'2 . LINE DIRECTION 567 F WIND 0.57 ,V/1.4 1.000 WALL WT 0.47 ,V/1.4 x WALL Wi. 0.54 F �V/1.4 0.07 . F ,V11.4 +,VI1.4 x WALL Wr. 0.54 r 1.00 Fcov W SHEAR WALL DEFLECTION CALCULATION UBC STD. 23.223 LINE NO. 6 LINE OVERIDE VALUE LEVEL NO. 1 WIND NA `: f SEASONED LUMBER or N Y' SEISMIC NA' r' z STRUCT (1 OR 2) or (OSB) 2 p ' NA ' "; LINE DIRECTION 1459 F WIND 1.46 V/1.4 1.000 WALL WT 0.47 V/1.4 x WALL WT. 0.65 F ,V/1.4 - 0.18• . F )V/1.4 + pV/f.4 x WALL WE 0.65 r 1.00 Foy, w SHEAR WALL DEFLECTION CALCULATION UBC STD. 23.223 77-804 LINE NO. -10 LINE OVERIDE VALUE LEVEL NO. .-I A WIND NA' .- SEASONED LUMBER or N Y A SEISMIC ' NA`'' STRUCT (1 OR 2) or (OSB) .2-1 p 1. '. ' NA LINE DIRECTION 1225 LB -FT Mot%358 F WIND 1.23 A 10 ,V/1.4 1.000 HDSA E WALL Wr 0.73 440 IWAA x WALL WT. 0.73 106 F ,V/1.4 0.00 2081 F ,VII A r ,VIt.4 x WALL WT. 0.73 11 A 10 1.00 1 Foov W 2734 0.40 JG SERVICES Ca. 92211 P.(760) 360-5770 .F.(760) 360-5719 SHEAR WALL DEFLECTION CALCULATION UBC STD. 23.223 WALL No 2 STATUS POST GRADE WALL No WALL H TYPE B POST SIZE POST GRADE HOLDOWN ar EII w dl Amax UI LBIFT ULT Kull %F LB/I Fs LB Fw LB Ay_ A. e w. iuw Huls I .005H .025H v, LB V. LB vmax LB Mots LB- LB -FT Mot%358 STATUS STATUS STATUS v HD A 10 A 10 4.16 4X6 4 HDSA E 0.396 4122 0.60 440 737 0.179 0.576 0.600 3.000 106 177 177 2081 7366 OK OK OK 11 A 10 3.16 4X6 1 HDSA E 0.453 2734 0.40 292 489' 0.179 0.576 0.600 3.000 92 155 155 1580 4885 . OK OK OK t. - LINE NO. 1 •- LINE OVERIDE VALUE LEVEL NO. 1 WIND NA" " SEASONED LUMBER or N ' Y SEISMIC " NA STRUCT (1 OR 2) or (OSB) 2 " p NA LINE DIRECTION 2295 F WIND 2.29 ,V11.4 - 1.000 - WALL WT 0.00 INAA A x WALL WT. 0.15 F ,V/1.4 - 0.15 F ,V/1.4 ,V/1.4 x WALL WT. 0.15 1.00 Fcov - - W ' SHEAR WALL DEFLECTION CALCULATION UBC STD. 23.223