Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
BRES2015-0296 Structural Calcs
STRUCTURAL CALCULATIONS A CUSTOM ADDITION MECHEM RESIDENCE 52-111 DUNLEVIE COURT LA QUINTA9 CALIFORNIA CITY OF LA QUI --- UINT LUILL)NG & SAFETY AR PPOV( S"c FOR CONs-rRI jvkf:;�,cs CHARLES D. GARLAND, ARCHITECT I LICENSE NO. 11991 EXP 10131115 D/VFE JTh 74-991 JONI DR. SUITE #9 PALM DESERT cA-9-ma— PHONE: 760/340-3528 FAX:760/340-3728 RECEIVFD 5 F., p j, 7 2o1',, ('--I'T-�( O,F L,6, COMM U NIFIFY f)FVF[.0PMEN f Ate{- =::tyl 1991 ............. 10131/2015 ,A 1"'31 / EXP.DAATE Ofi c- 2 STRUCTURAL CALCULATIONS ❖ GOVERNING CODES.....................page 3 LOAD.......................................................Page 4 ❖ BEAM .................................................. Page 5 ❖ LATERAL ANALYSIS ........................ Page 9 ❖ SEISMIC ZONE ............................ Page 12 ❖ SHEAR WALL REQUIREMENTS.... Page 15 ❖ FOUNDATION ............................... Page 16 STRUCTURAL CALCULATIONS GOVERNING CODES A- IBC 2010 OR CBC 2013 B- DESIGN LOADS a. ROOF LIVE LOAD 20, PSF b. ROOF DEAD LOAD 19 PSF c. WIND IMPORTANCE FACTOR 1.00 WIND ZONE 110 MPH EXPOSURE C d. SITE CLASS DEFINITION( D) e. OCCUPANCY CATEGORY II f. SEISMIC DESIGN CATEGORY (D) g. COEFFICIENT Cs 0.15 h. SEISMIC Ss1.5g i. SEISMIC Sl 0.6g j. FACTOR R 6.5 k. SEISMIC SDs 1.00 I. SEISMIC SD10.60 STRUCTURAL CALCULATIONS TOTAL LOAD = D.L =I 7 PSF GYP BD. = 2 9 7/8" STUCCO = 10 _ 1 INSULATION= 1 2 D.L.= 15 :PSF 19 - _- 20 INTERIOR WALLS: 39_. PSF PSF WOOD STUDS - 2 1/2 GYP.BD.2SIDES = 3 _ INSULATION = _ 2_ D.L =I 7 PSF STRUCTURAL CALCULATIONS In BEAM DESIGN HDR #1 DOUGLAS FIR -LARCH No 1= Fb = 1000 psi SPAN = 5.3 ft Fv = 95 psi TRI B. AREA = 12 0 ft E = 1700000 psi Load Factor Co = 1.25 Wet. Service Factor CM = 1.00 D. L = 19.0 Ib/ft Temperature Factor Ct = 1.00 L. L = 20.0 Ib/ft Size Factor CF TOTAL 39.0 Ib/ft Repetitive m. Fact. Cr = 1.00 Incising Factor Ci = 1.00 Shear stress Factor CH = 1.00 W = 468.0 Ib/ft M= WxL2/8 ase b1ft M= 1643.3 ft -Ib M= 19719.2 in -Ib _.._5 30 H _.. ...._... _ V= _. _...._ _._ __.. WxL/2 BENDING' V= 1 1240.2 lb F'b = Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci) F'b = 1250 psi USE . Req'd S = M / F'b S= 15.78 in^3 6 X 6 Area = 30.31 in^2 f b = M/S Section= 27.7 in^3 ALLOW F'b = ACT. f b = Moment of Inertia= 76.3 in^4 1250 psi > 711.1 psi OK SHEAR F'v = F\(CD)(CM)(Ct)(CH) f v = 1.5 V / A F'v = 119 psi _ > f v = 61.50 psi OK DEFLECTION 5W,L^4 _ 0.06 in 384 E' 1 OK E'= E (C.)(C,)(C,) 1700000 psi BEAM 61X 6 d max = L / 240 = 0.27 in STRUCTURAL CALCULATIONS Wind Analysis for Low-rise Building, Based on ASCE 7-2010 LATERAL FORCE ANALYSIS IBC 2012 CBC 2013 ASCE 7-10. WIND 110 mph Exposure C ENCLOSED qz= 0.00256X Kz KA Kd V"2 INPUT DATA Roof angle 0 = 15.64 Exposure category (B, C or D, ASCE 7-10 26.7.3) Surface Importance factor (ASCE 7-10 Table 1.5-2) Iw = 1.00 Basic wind speed (ASCE 7-10 26.5.1 or 2012 IBC) V = 110 Topographic factor (ASCE 7-1026.8 & Table 26.84) Ki, = 1.00 Building height to eave ha = 9 Building height to ridge h = 11 r qh = velocity pressure at mean roof height, h. (Eq. 28.3-1 page 298 & Eq. 30.3-1 page 316) Kh = velocity pressure exposure coefficient evaluated at height, h, (Tab. 28.3.1, pg 299) = 0.85 Kd = wind directionality factor. (Tab. 26.6-1, for building, page 250) = 0.85 h = mean roof height - 10.00 qz= 22.38 PSF WM LAAD = cW(1 Ei2E+3E+4E +o.1 ANALYSIS WIND LOAD=. 184# ft p = qh [(G Cpf )-(G Cpi )l where: p = pressure in appropriate zone. (Eq. 28.4-1, page 298) pm;n = 16 psf (ASCE 7-10 28.4.4) G CPf= product of gust effect factor and external pressure coefficient, see table below. (Fig. 28.4-1, page 300 & 301) G CP; = product of gust effect factor and internal pressure coefficient. (Tab. 26.11-1, Enclosed Building, page 258) a = width of edge strips, Fig 28.4-1, note 9, page 301, MAX[ MIN(0.1 B, 0.1 L, 0.4h), MIN(0.04B, 0.04L), 3) = Net Pressures (psf), Basic Load Cases 1 E 0.74 1 12.08 19.77 1 -0.48 -14.11 -6.41 2E 1.07 26.73 -19.03 1.07 -26.73 -19.03 % 2 g 3 x x qty .+-'4r. s RrfF .CDROM i Yc 'R A �e'M D�i ?C 01. DWICT" Net Prescurec Incfl Tnrcinnni 1 and r`nccc Roof angle 0 = 15.64 1 Roof angle 0 = 0.00 Surface Net Pressure with Net Pressure with Net Pressure with (+GC ;) (-GC ; ) G CPf GCPf (+GC ;) (-GC ;) (IGC;)( -GC ; 1 0.49 6.68 14.37 -0.45 -13.47 -5.77 2 -0.69 -18.60 -10.90 -0.69 -18.60 -10.90 3 -0.45 -13.43 -5.73 -0.37 -11.76 -4.06 4 -0.39 -12.17 -4.48 -0.45 -13.47 -5.77 5 0.40 4.70 12.40 6 -0.29 -10.05 -2.35 1 E 0.74 1 12.08 19.77 1 -0.48 -14.11 -6.41 2E 1.07 26.73 -19.03 1.07 -26.73 -19.03 % 2 g 3 x x qty .+-'4r. s RrfF .CDROM i Yc 'R A �e'M D�i ?C 01. DWICT" Net Prescurec Incfl Tnrcinnni 1 and r`nccc Load Case A (Transverse) Load Case 8 (Longitudinal) Load Case A (Transverse) Load Case 8 (Longitudinal) Basic load Cases Torsional Load Cases Roof angle 0 = 15.64 Net Pressure with Surface G CP f (+GC ;) (-GC ; ) 1T 0.49 1.67 3.59 2T -0.69 -4.65 -2.73 3T -0.45 -3.36 -1.43 4T -0.39 -3.04 -1.12 Roof angle 0 = 0.00 Net Pressure with Surface G CP f (+GC ;) (-GC ; ) 5T 0.40 1.18 1 3.10 Load Case A (Transverse) Load Case 8 (Longitudinal) Load Case A (Transverse) Load Case 8 (Longitudinal) Basic load Cases Torsional Load Cases STRUCTURAL CALCULATIONS Basic Load Case A Transverse Direction) Basic Load Case B (Longitudinal Direction) Torsional Load Case A (Transverse Direction) Area Pressure (k) with Surface (ft) (+GCPi) (-GCPi) 1 990 6.61 14.23 2 2337 -43.46 -25.48 3 2337 -31.38 -13.39 4 990 -12.05 -4.43 1E 110 1.33 2.18 2E 260 -6.94 -4.94 3E 260 -4.57 -2.57 4E 110 -1.79 -0.94 98 Horiz 17.88 17.88 E Vert. -68.75 -32.37 h�f Vert. -83.15 -44.67 Min. wind Horiz. 28.80 28.80 28.4.4 Vert. -80.00 -80.00 Torsional Load Case A (Transverse Direction) Torsional Load Case B Lon itudinal Direction Area Pressure (k) with SurfaceArea (ft) (+GCPi) (-GCpi) 2 2337 -43.46 -25.48 3 2337 -27.48 -9.49 5 608 2.86 7.54 6 608 -6.11 -1.43 2E 260 5.94 -4.94 3E 260 -3.94 -1.94 5E 117 1.08 1.98 6E 117 -1.53 -0.63 98 Horiz. 11.57 11.57 £ Vert. -68.75 -32.37 h�f Horiz. 11.60 11.60.4 31 Vert. -80.00 -80.00 Torsional Load Case B Lon itudinal Direction Area Pressure (k) with Torsion (ft -k) Surface (ft) (+GCpi) (-GCPi) (+GCpi) (-GCPi) 1 440 2.94 6.32 66 142 2 1038 -19.32 -11.32 -117 -69 3 1038 -13.94 -5.95 85 36 4 440 -5.36 -1.97 121 44 1 E 110 1.33 2.18 60 98 2E 260 -6.94 -4.94 -84 -60 3E 260 -4.57 -2.57 55 31 4E 110 -1.79 -0.94 80 42 1 T 550 0.92 1.98 -23 -49 2T 1298 -6.04 -3.54 41 24 3T 1298 -4.36 -1.86 -29 -13 4T 550 1 -1.67 -0.62 -42 -15 Total Horiz. Torsional Load, MT 212 212 Torsional Load Case B Lon itudinal Direction Design pressures for components and cladding P = qhI (G CP) - (G CPi)] 5 1 where: p = pressure on component. (Eq. 30.4-1, pg 318) 5 I z° ` ° s a I! i iw iH N�H� Amin = 16.00 psf (ASCE 7-10 30.2.2) G Cp = extemal pressure coefficient. WC] IIs see table below. (ASCE 7-10 30.4.2) Roof Roof e. Zone 3 1 Zone 4 1 Zone 5 Comp. 8 Cladding Area Pressure (k) with Torsion (ft -k) Surface z (ft) (+GCpi) (-GCpi) (+GCpi) (-GCpi) 2 2337 -43.46 -25.48 -29 -17 3 2337 -27.48 -9.49 19 6 5 246 1.15 3.04 11 29 6 246 -2.47 -0.58 23 5 2E 260 -6.94 -4.94 89 63 3E 260 -3.94 -1.94 50 -25 5E 117 1.08 1.98 24 44 6E 117 -1.53 -0.63 34 14 5T 363 0.43 1.12 -5 -13 6T 1 363 -0.91 1 -0.21 1 -10 2 Total Horiz. Torsional Load, MT 1 104.6 104.6 Design pressures for components and cladding P = qhI (G CP) - (G CPi)] 5 1 where: p = pressure on component. (Eq. 30.4-1, pg 318) 5 I z° ` ° s a I! i iw iH N�H� Amin = 16.00 psf (ASCE 7-10 30.2.2) G Cp = extemal pressure coefficient. WC] IIs see table below. (ASCE 7-10 30.4.2) Roof Roof e. Zone 3 1 Zone 4 1 Zone 5 Comp. 8 Cladding Zone 1 I Zone 2 Zone 3 Zone 4 Zone 5 Pressure Positive Negative Positive Negative Posftive Negative Positive Negative Positive Negative (Psf) 16.00 -22.14 16.00 -35.42 16.00 -53.70 1 23.54 1 -25.68 23.54 30.41 STRUCTURAL CALCULATIONS CALIFORNIA BUILDING CODE 2013 MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION FOR REGION zw&Fvo �. _ Atm fir w STRUCTURAL CALCULATIONS SITE CLASS DEFINITION= D OCCUPANCY CATEGORY = II SEISMIC DESIGN CATEGORY = D LAQUINTA CALIFORNIA 92253' 0.2 seg Ss=150%g 1.0 seg S1 60%g SDs= 2/3 X SMS SD1 = 2/3 X SMI SDs _ 1.07 SDI = 0.6 R= 6.5 ;TABLE 12.2 ASCE 7-05 IE ASCE BASE S H EAR V= Cs W I I 0.165V (12.8-1) CS = SDS / (R/IE) 0.165 (12.8-2) NOT EXCEED Cs = SDI / T( R/IE ) 0.462 (12.8-3) NOT LESS THAN Cs =0.01 0.010 (12.8-5)' V= 0.16W STRUCTURAL CALCULATIONS IN STRUCTURAL CALCULATIONS SHEAR WALL REQUIREMENTS ROOF D.L. = 19 FT L # / ft -: FT No. # __....... WALLS D L = 15. 12 153 WALL HT,1 = 9 A 16560 190 UPLIFT FORMULA:.... 810 571 APPENDIX D 8 92 736 B 6624 152 3259 (Vh-(2/3 (lb L"2/2)+(WvkJ2)))/L -407 _ STRENGTH REDUCTION FACT 92 736 B 6624 152 3259 540 -407 6 6_ 0.66 .......... 1840 _C 16560 190 2291 405 -382 16 16 104 (0.65'850.1.33.12)lshearforce FIRST FLOOR 14904 171 14665 1080 -917 WALL UT FORCE TRIG AREA IOTAI FORCE TOTAL RESIST,WALL SHEAR FORCE LOAD (� UPLIFT, FORCE SHEAR WALL HOLGOWN STRONG A35 518'80LT $TRUD NO. PLF Ft LB WALL(FI) FTL #/fl WALL -SEG # TVPE TYPE WALL EA. BLOCK SPACING (n) NATE$ A 184 10. _ _ 1840 _ 12. 12 _153 1640 571 1 HDU2 1 48 1 B.__. 184 _. 8 1472 16... 8__. 92_._ 736..._ -407.. 1_ HDU2 _. 1 48 1..... 8...._.. 184 8 1472 16.. 8.. 92..... 736.... 407_ 1 HDU2 1 __... 48 _�..... _. C 164 _ 10 _ 1840 6 _ 6 307. 1640. -382 2 HDU2 _ 1 32 1 D 184 _.. 9 _.... 1656 16... 16 104..... 1656.... 917. _1_ HDU4 1. 48 1.... FT WALL HT,1 = 9 UPLIFT FORMULA: (Vh-(2/3 (wb LA2/2)+(WwU2)))/ L _ TOTAL RESIST,WALL SHEARFORCE LOAD(V) WALL Vh Wb 213(WbLA2/2) WwU2 UPLIFT. FORCE WALL (Ft) FT L # / ft WALL- SEG No. # __....... 12 12 153 1840 A 16560 190 9166 810 571 16 8 92 736 B 6624 152 3259 540 -407 16 8 92 736 B 6624 152 3259 540 -407 6 6_ 307 1840 _C 16560 190 2291 405 -382 16 16 104 1656 D 14904 171 14665 1080 -917 STRUCTURAL CALCULATIONS SHEAR WALL CONSTRUCTION D1/2" GYPSUM WALL BOARD APPLIED DIRECTLY TO 2x STUDS WITH STANDARD WALL BOARD NAILS (1 1/2" x 0.12" DIAMETER w/ 3/8" HEADS) OR 5d COOLER NAILS AT 7" 0/C MAX. TO ALL STUDS, SILLS, PLATES AND BLOCKING. ANCHOR w/ 5/8" DIAMETER x 10" LONG ANCHOR BOLTS (w/ 3" x 3" x 0.229" THICK PLATE WASHERS BETWEEN NUT AND WOOD SILL) @ 6'-0" O/C MAX 16" O.C. FRAMING (ALLOWABLE LOAD: 75 Of — PER CBC 2013 TABLE 2306.7) 7/8" PORTLAND CEMENT PLASTER ON WOVEN WIRE OR EXPANDED METAL LATH NAILED AT EACH STUD, SILL AND PLATE @ 6" O/C MAX. w/ No. 11 x 1'/z' GALVANIZED NAILS WITH 7/16' DIAMETER HEADS OR ATTACHED w/ No. 16 GAUGE STAPLES HAVING 7/8" LONG LEGS. ANCHOR w/ 5/8" DIAMETER x 10" LONG ANCHOR BOLTS 7" EMBED MIN (w/ 3" x 3" x 0.229" THICK PLATE WASHERS —SDC D ,BETWEEN NUT AND WOOD SILL) @ 48" 0/C MAX. 16" O.C. FRAMING (ALLOWABLE LOAD: 180 pif — PER 2013 CBC TABLE 2306.7 ) THE NEXT THREE (3) SHEAR WALL TYPES SHALL ALL HAVE THE FOLLOWING IDENTICAL STRUCTURAL I WOOD PANEL DIAPHRAGM: (WALL1 , 2 & 3 ONLY) 3/8" C -D EXPOSURE I APA PLYWOOD OR 3/8" ORIENTED STRAND BOARD APPLIED DIRECTLY TO THE STUDS, WITH THE LONG DIMENSION OF FULL PANELS LAID PARALLEL OR PERPENDICULAR TO THE LENGTH OF THE STUDS, ALL EDGES OF EACH PANEL SUPPORTED ON STUDS, SILLS, PLATES OR BLOCKING AND NAILED AND ANCHORED AS FOLLOWS: 1 D8d COMMON NAILS @ 6" 0/C AT ALL PANEL EDGES AND 8d COMMON NAILS @ 12" 0/C AT ALL FIELDS. ANCHOR WITH 5/8" DIAMETER BY 12" LONG ANCHOR BOLTS AT 48" 0/C. (ALLOWABLE LOAD: 280 Of — PER 2013 CBC TABLE 2306.3) * CONSTRUCTION NOTE(S) 1 & 2 APPLY (NOTES 3, 4 AND 6 APPLY ONLY WHEN DIAPHRAGM AT BOTH SIDES ) 2 D8d COMMON NAILS @ 4" 0/C AT ALL PANEL EDGES AND 8d COMMON NAILS @ 12" 0/C AT ALL FIELDS. ANCHOR WITH 5/8" DIAMETER BY 12" ANCHOR BOLTS AT 32" 0/C. (CALCULATE TO MAXIMUM OF 349 pif — PER 2013 CBC TABLE 2306.3) STUDS @16" O.0 CONSTRUCTION NOTE(S) 1 & 2 APPLY (NOTES 3, 4, 5 AND 6 APPLY WHEN DIAPHRAGM AT BOTH SIDES) 3 D8d COMMON NAILS @ 3" O/C AT ALL PANEL EDGES AND 8d COMMON NAILS @ 12" O/C AT ALL FIELDS. ANCHOR WITH 5/8" DIAMETER BY 12" LONG ANCHOR BOLTS AT 32" 0/C. (ALLOWABLE LOAD: 550 pif — PER 2013 CBC TABLE 2306.3 ) * CONSTRUCTION NOTE(S) 1, 2, 3 & 6 APPLY (NOTES 4 & 5 APPLY WHEN DIAPHRAGM AT BOTH SIDES) NOTE VALUES ARE APPLICABLE TO DOUGLAS FIR LARCH FRAMING @ 16" O.0 STRUCTURAL CALCULATIONS 4 ©15132" STRUCT. I APA PLYWOOD OR 15/32" ORIENTED STRAND BOARD (OSB) APPLIED DIRECTLY TO THE STUDS, WITH THE LONG DIMENSION OF FULL PANELS PARALLEL OR PERPENDICULAR TO THE LENGTH OF THE STUDS, ALL EDGES SUPPORTED ON STUDS, SILLS, PLATES OR BLOCKING AND NAILED AND ANCHORED AS FOLLOWS: 8d COMMON NAILS @ 2" 0/C AT ALL PANEL EDGES AND 8d COMMON NAILS @ 12" O/C AT ALL FIELDS, ANCHOR WITH 3l4" DIAMETER ANCHOR BOLTS AT 16" 0/C. —STATE EMBEDDED DISTANCE 7" MIN (ALLOWABLE LOAM: 730 Of— PER 2413 CBC TABLE 2346.3 ) * CONSTRUCTION NOTE(S) 1, 2, 3, & 6 APPLY (4 AND 5 APPLY WHEN DIAPHRAGM AT BOTH SIDES) CONSTRUCTION NOTES: 1 3" x 3" x 0.229" PLATE WASHERS SHALL BE PROVIDED BETWEEN ALL ANCHOR BOLT NUTS AND THE WOOD SILL. 2 SEE ANCHOR BOLT CALCULATIONS FOLLOWING THESE NOTES IN THE CALCULATIONS. 3 EDGE NAILING AT ABUTTING PANEL EDGES FOR WALLS LOADED IN EXCESS OF 350 plf SHALL BE APPLIED TO 3x OR WIDER STUDS. 4 APPLYING EQUAL THICKNESS STRUCTURAL WOOD PANELS TO BOTH STUD FACES OF A SHEAR WALL AND WITH MATCHING NAILING FOR BOTH SIDES SHALL PROVIDE DOUBLE THE LOAD CAPACITY OF WALLS HAVING THE SAME PANELS AND NAILING APPLIED TO ONLY ONE FACE. 5 STRUCTURAL WOOD PANEL SHEAR WALLS WITH PANELS APPLIED TO BOTH FACES AND WITH EDGE NAILING LESS THAN 6" OIC SHALL HAVE ABUTTING PANEL EDGES FOR ONE SIDE OFFSET ONE STUD SPACE FROM THE OTHER SIDE (NOTE No. 3 ALSO APPLIES) 6 ALL SHEAR WALLS HAVING A LOAD CARRYING CAPACITY IN EXCESS OF 350 plf SHALL BE PROVIDED WITH 3x P.T.D.F. SILL PLATES AND 12" LONG ANCHOR BOLTS OF THE DIAMETER PROSCRIBED FOR THAT WALL CONSTRUCTION TYPE (ALL ANCHOR BOLTS SHALL BE SET T' INTO CONCRETE) 7 WHERE THE CONTRACTOR DESIRES TO CONSTRUCT THE SLAB -ON -GRADE AND THE FOOTINGS AND FOUNDATION IN A TWO POUR SYSTEM, ALL ANCHOR BOLTS SHALL HAVE A MINIMUM LENGTH OF 14", SETTING THEM A MINIMUM OF 4" INTO THE TOP OF THE FOUNDATIONS BEFORE POURING THE SLAB. 8 ALL ANCHOR BOLTING, HOLDOWN BOLTS OR STRAPS AND OTHER FORMS OF CONCRETE INSERTS SHALL BE SECURELY HELD IN PLACE WITH JIGS OR OTHER SUCH DEVISES PRIOR TO REQUESTING FOUNDATION INSPECTION, DURING INSPECTION AND DURING ACTUAL POURING OF CONCRETE. 9 ALL ANCHOR BOLTS AND HOLDOWN BOLTS SHALL BE BROUGHT PLUG PRIOR TO THE CONCRETE HARDENING. MECHANICAL STRAIGHTENING OF BOLTS AFTER THE CONCRETE HAS HARDENED THAT RESULTS IN SLAB EDGE BREAKING SHALL RESULT IN REJECTION OF A PORTION OF THE SLAB AND FOUNDATION BY THE ARCHITECT OR STRUCTURAL DESIGNER OF RECORD AS HE DEEMS NECESSARY, ITS REMOVAL AND REPOURING OF THAT PORTION OF THE CONCRETE. 10 HOLDOWN STRAP HOOKS SHALL BE STABLIZED DURING THE CONCRETE POUR IN ORDER TO ENSURE THEY REMAIN AT THE MANUFACTURER'S PROSCRIBED ANGLE OF INSERTION. 11 ATTACHMENT OF A 3x SILLPLATE TO FLOOR FRAMING BELOW SHALL BE MADE WITH THE USE OF SIMPSON SDS °1•x6 WOOD SCREWS AT 3" o%. 12 ATTACHMENT OF A 2x SILL PLATE TO FLOOR FRAMING BELOW SHALL BE MADE WITH THE USE OF 16d @ SPACING INDICATED AT THE SHEAR WALL TABULATION. STRUCTURAL CALCULATIONS TABLE 2306.2:T(1) - ALLOWABLE SHEAR (POUNDS PER FOOT) FOR WOOD STRUCTURAL PANEL DIAPHRAGMS WITH FRAMING OF DOUGLAS FIR -LARCH. OR SOTITHERN PINE' FOR WINO nR cclauun 1 narmurra continued MINIMUM E _ NOMINALfastener spacing WIDTH OF at tontinuous FRAMING , BLOCKED DIAPHRAGMS s UNBLOCKED DIAPHRAGMS I (Inches) at diaphragm panty adges boundaries (Ill taaeaJ parallel to Wad ' MEMBERS AT �Casea � e at all_paml_e ft-- _ Cases 6.6}° ...._...._.. Fasteners spaced 6" rt c: ai supported edges° COMMON NAIL MINIMUM FASTENER MINIMUMADJOINING 6 NOMINAL PANEL—` 4 1 2t/,ct 2°� Case t PANEL GRADE SIZE OR STAPLE{ LENGTH AND GAGE PENETRATION IN FRAM NO i blares I ( PANEL EDQES AND ? Fastener THICKNESS; SOUNDARIESe ` inch aches 6 spacing (inches) 1, 2, 8 at ottrer par el edges S and 4)s ` (a continuous Ms 4 9 € paralte! to load con I oUtet �� Ceaee y 4.5 2 6 8d (2/,"xOJ31"J lsls ..-----jCasas 2 270 _ R. 3 300400 360 530 600 240 —. G00 675 265 , and 180 _. _ 200 2 2i5 350 400 155 lT5 1112 16 Gage T _175 trautuntll ares I Od`1(3 x 0148 ) _._.-- -. 3 ._._200 2 [ 320 205395 426#0 _..__ 450 175 s 7311 0 285 ` 130 - .. 3 360 t z �.: 480 ....j 720 820 _ 320 2d(1_ V/r 16 Gage 6,11 Wx 0.113 J 3 1 114 ' 175 — t{ _ _,..... 3 200 ? 2 185 235 __— 365 250 350 400 155 __. 195 450 f 175 375 420 i 165 120 130 12S 2I0 _.. 280 420 475 )85 140 8d (21/yx0131) T!8 _ 2 r 240 320 480 545 � 21S 0, 16 Gage 1 ( 160 — 210 315 360 i _ 140 105 180 335355 400 F 160 120 8d (2%'x 0.131 "} 1,/a 2 255 3 285 340 _ - 180 - 505 575 _ s 230 570 645 170 ...._... heathing, single€a lit 16 Gage 2, _...._ L 165 _ _ _ 22.5 _ _255 335 3R0 150 110 floor and Other ! 1 -., _ -_ adtsecrvertdin DOC PSiand PS2 _.— -- i8d(2'I� x0,131 } tit �_ I'!8 - 3 190 -. _ .�_ _.._...._.__. 2 270 I_,._.. .3... 300 �,_ ; _........� 250 360 4(>tt ._ 375 .,l 425 165 530 ._G00 240- 99 600_....1. 675 265 3 € 125 _ 180 ^ µ^ 2{lU INV (3 x 0.148") _ L 2 290 3 325 385 430..._. 575 655 255 - 240 190 _,215_._. 1'tzl6Gage 1 2 E 1 - — 210 175 360 140 103 t 235 355 405 160 120 _ _ 3 180 =10dd(3"x0.t48")I 13t, 16 liJ_ 2 32t1 _ 3f0 j I 2_ I 175 I 425 .. - - 480 235 640 j 73Fi 2135 _., 720 820 i 320 350 155 215 240 ITS Gage 1 -3 _ _ ........_. 3J.200 265 1 395 450 130 continued STRUCTURAL CALCULATIONS