BSOL2015-0208 (Structural Calcs)DENNIS ROBERTSCID
TITLE SHEET
PV -1
ELECTRICAL SINGLE LINE
Z U
5. MARKINGTHE "PV SYSTEM DISCONNECT' SHALL BE IN ACCORDANCE WITH.690.17. MARKING OF THE "DC PV POWER SOURCE" SHALL BE IN ACCORDANCE WITH NEC 690.53. MARKING OF THE "INTERACTIVE SYSTEM POINT OF CONNECTION" SHALL BE IN ACCORDANCE
z
wLO
�
PHOTOVOLTAIC INSTALLATION 26.16 kWpDC8.
�
O
Z_Oo�roi
o
�
worn Oa)
7. PV EQUIPTMENT, SYSTEMS AND ALL ASSOCIATED WIRING AND INTERCONNECTIONS SHALL ONLY BE INSTALLED BY QUALIFIED PERSONS NEC 690.4E
Z W HC) N
GENERAL NOTES:
to o � z o
8. PHOTOVOLTAIC SYSTEM CONDUCTORS SHALL BE IDENTIFIED AND GROUPED. THE MEANS OF IDENTIFICATION SHALL BE PERMITTED BY SEPARATE COLOR CODING, MARKING TAPE, TAGGING OR OTHER APPROVED MEANS NEC 690.48
0 O > Q 0)
mor aZ
M 2 C2m _5
s
1. PHOTOVOLTAIC SOLAR MODULES UL 1703; INVERTERS: UL 1741, PHOTOVOLTAIV MODULES ARE TO BE CONSIDERED NON-COMBUTABLE.
2. ALL EXTERIOR CONSUIT IS TO BE PAINTED TO MATCH THE BUILDING IN WHICH THE CONDUIT IS ATTACHED.
TY 01- 1 A QUINTA
r&�S/�AFETY
'7;
4. ALL MODULE AND RACKING GROUNDING LUGS SHALL BE UL 567 APPROVED (ILSCO GBL-4DBT) DEPT.
rBUILDINGt
L Q
5. NO SHEET METAL OR TECH SCREWS SHALL BE USED TO GROUND DISCONNECT ENCLOSURES WITH TIN-PLATED ALUMINUM LUGS; PROPER GROUNDING/GROUND BAR KITS WILL BE USED.
APPROVED
QQ
m 0
0 Cc
6. FERROUS METAL RACEWAYS ENCLOSING GEC CONDUCTORS SHALL BE ELECTRICALLY CONTINUOUS OR BONDED IN ACCORDANCE WITH ART 250.64( E). FOR CONSTRUCTION
7. LOCAL UTILITY PROVIDER SHALL BE NOTIFIED PRIOR TO USE AND ACTIVATION OF ANY SOLAR PHOTOVOLTAIC INSTALLIATION.
,w
) �j /� BY
8. APPLICATION FOR WHICH NO PERMIT IS ISSUED WITHIN 180 DAYS FOLLOWING THE DATE OF APPLICATION SHALL AUTOMATICALLY EXPIRE (95.7 CEC). DATE l f
9. THE PERMIT ISSUED SHALL BECOME INVALID UNLESS WORK AUTHORIZED IS COMMENCED WITH 180 DAYS, A SUCCESSFUL INSPECTION IS NOT OBTAINED WITHIN 180 DAYS, OR THE WORK IS SUSPENDED.
!1�
10. SMOKE ALARMS TO BE INSTALLED OUTSIDE EACH SEPARATE SLEEPING AREA, IN EACH ROOM FOR SLEEPING PURPOSES, IN EACH'STORY, INCLUDING BASEMENT CARBON MONOXIDE DETECTORS TO BE INSTALLED AS COMBINATION UNITS WITH SMOKE DETECTORS IN ALL
REQUIRED LOCATIONS PER R315 CRC.
U
11. THE BACKFED PV BREAKER(S) AT THE MAIN PANEL WILL -BE INSTALLED AT THE OPPOSITE END OF THE BUS BAR FROM THE MAIN BREAKER AND A PERMANENT WARNING LABEL WITH THE FOLLOWING MARKING WILL BE PROVIDED ADJACENT TO THE PV BREAKER(S): "WARNING-
-Rsc%
PHOTOVOLTAIC CONNECTION. DO NOT RELOCATE THIS OVERCURRENT DEVICE" (NEG 690.64 8 7)
�
Y
'
UJI C 72111 M
ELECTRICAL NOTES:
1.SOLAROBIDE BY THEFOLLOWING: CUGROUP VB
OL EWILL
2. AWHITE) WHERE METALIC CONDUIT CONTAINING DC CONDUCTORS IS USED INSIDE THE BUILDING, IT SHALL BE IDENTIFIED AS "CAUTION: HIGH VOLTAGE DC CIRCUIT"
ALL WIRING NG WIL(DCUNDERGROUND CONDUCTOR DCUNDERG UNDERGROUND CONDUCTOR
EVERY 5 FEET.
3. #10 AWG SOLID BARE COPPER GROUND WILL BE USED.AS AN EQUIPMENT GROUND TO CONNECT THE PV RACKING STRUCTURE WHEN NOT EXPOSED TO DAMAGE. IF EXPOSED TO DAMAGE, #6 AWG WILL BE USED.
4. ALL DISCONNECT SWITCHES SHALL BE WIRED SUCH THAT THE LINE SIDE WILL HAVE LIVE CONDUCTORS WHEN THE SWITCH IS ON THE OPEN POSITION.
TITLE SHEET
PV -1
ELECTRICAL SINGLE LINE
Z U
5. MARKINGTHE "PV SYSTEM DISCONNECT' SHALL BE IN ACCORDANCE WITH.690.17. MARKING OF THE "DC PV POWER SOURCE" SHALL BE IN ACCORDANCE WITH NEC 690.53. MARKING OF THE "INTERACTIVE SYSTEM POINT OF CONNECTION" SHALL BE IN ACCORDANCE
z
SITE PLAN
WITH NEC 690.0. 54.
')
`/-
O
6. ALL EXTERIOR CONDUIT, FITTINGS AND BOXES SHALL BE RAIN TIGHT AND APPROVED FOR USE IN A WET LOCATION. �
7 2 j �
7. PV EQUIPTMENT, SYSTEMS AND ALL ASSOCIATED WIRING AND INTERCONNECTIONS SHALL ONLY BE INSTALLED BY QUALIFIED PERSONS NEC 690.4E
Z W HC) N
8. PHOTOVOLTAIC SYSTEM CONDUCTORS SHALL BE IDENTIFIED AND GROUPED. THE MEANS OF IDENTIFICATION SHALL BE PERMITTED BY SEPARATE COLOR CODING, MARKING TAPE, TAGGING OR OTHER APPROVED MEANS NEC 690.48
0 O > Q 0)
9. DC CONDUCTORS SHALL BE LOCATED AS CLOSE AS POSSIBLE TO THE RIDGE OR HIP OR VALLEY CRC R331.3
L Q
10. A PHOTOVOLTAIC METER SOCKET WILL BE PROVIDED WITHIN 10" TO 72" FROM THE EXISTING SERVICE METER AND IT WILL BE INSTALLED BETWEEN 48" TO 75" ABOVE FLOOR OR GRADE LEVEL. THE METER WILL BE PROVIDED AND INSTALLED BY RIVERSIDE PUBLIC
UTILITIES WHEN THEY ARE THE SERVICE PROVIDERS.
m 0
0 Cc
_
CUSTOMER:
DENNIS ROBERTS
50375 VISTA MONTANA ROAD LA
QUINTA, CA 92253
760-485-2949
APN#
JURISDICTION: LA QUINTA
CONTRACTOR:
PRECIS SOLAR
36625 KEVIN RD. STE.
147/48
W ILDOMAR, CA 92595
951-696-9400
BRIAN HOPWOOD
Lic. No. 952305
PROJECT SCOPE:
THE PROJECT CONSISTS OF:
1. (80) SUN POWER SPR -E20 -327W
SOLAR MODULES
2. (2) IG PLUS ADVANCED 11.4-1
UNI -240V (SPR -11402f)
)
THE SYSTEM WILL`- BE
INTERCONNECTED AND IN PARALLE
WITH THE UTILITY GRID.
PLAN DIRECTORY:
SHEET # SHEET NAME
T-01
TITLE SHEET
PV -1
ELECTRICAL SINGLE LINE
PV -2
MOUNTING DETAILS / WIRING CHART
PV -3
SITE PLAN
rtle: TITLE SHEET
Project #: 0011
DateTme: 12/8/2015 4:58:59 PM
DESIGN BY:
Sheet:
07T-01
mD
Cr
�0
WO
o z czn
0
Z
ZC
M
m �O
m z
m >N
Z
>
0r
J
0 0 im 0
a m z�
z m c
m r v�
m m _
O Om
m m 0
M >
D w
� Z
�n
r m0
z m
m x y?
D
v pc
�r
yv_
CA) �z
c M
z
0 N �o
r { I Dm
rz
c x 0-4
C Dr
z m
0
D
z
r
m
: 0
m
tllsin 0
atlOb tlNtl1NOW D
r
z
5n 03>M K =w ZpD�N Z� Zzp 1c0 �cnao �D� rnrn (�ODcn nza div ��� cn ao w l iC
m G)O2m �� mn=nD �, mcg {= m*o =-U M�� ym mm cf) oD�y mcn� �� ��� m v m x
v ���v my Ommmm Dm rDm =m p<D mr-z m= C)pcLnnp �mm ZO DOX O vp 0 O z z
zmA ZnM :E) �Z zrcn am -mD 0DZ Z'� -imM -2m ...i �zv � (n -i U)
vmm"m an moodo OCi y0D r0 O<Zm ow0 n0 mmm0 mmm ov o-0 z o m o m
C cil v�D� m0 -4 mm- LSD �Dm mcg mmv i�mm ax D�OO ��D �Oo r0 n m N
= >U) �n m�OX9 Cx woo (7z >XD pzD om cnmoz cnvr z :0ccnnm Z n z> n n C
z r-
> U)
-D vmv0> mz mpK zo om- mD az m--i�� min m o00 0 m� D m
cn 0vZ mr OKcm D0 >mD D0 Dp ,0 m0 m �OZZ a (�Sm m z D
cOv m 0mm:u Z m> Z Z (n rm O cn O M m* Z
p vmz mm C0-1mD vr- pry mD3 rnOD nD D n=�K 2v C -u N OT Om T r
D7 mv0 mo. --i r- m0 Cmm �(n cn�r -im � �m2D DC r -0 c7 z D
m T Cm-.mz00 mz zozzz n� ��= y� mm -c v vzO�m �c� m np� -�i m
•-� <
Op GO - nv mz 0-=-0 nv zn, Km 0K >,v ozivc= `"z m -{OD z -
�o m0 �zmD -z , Dz =Z O= 0 mmD vmD a z�r m
n�� �o �cn nDmp z, Z. rz -ice Cm v "mvr ZZ z ��m W D Z
4J map .0 mzmm DO �� mD �x cn mzmm -iz v z�m O m z m
Z� O c)0K y= Zr ap z �- n -i�Om m0 m mzc x
0 om c> mm min mm- m cn
a nz D�m70 mm - 33 mz mm Ov z� O 3:> z �v n �Om c iv
03, ® mvmv m as 0- m az 0a Dm mm �G) m mmcn U)0 m 0D --Ii v
m z r(�=m -I z� �co Z� r-� (� (7 rr z � Zr� m O
CCf� < v m�r-� m oc� zS vm rm cn -n 0 Dv T, oc�m v
-'� 1 �1 .arm cn 0 cozrm� < dim c�� xz m_� D = 'O� �� � �nDi m 0 m
cn m m(nm cn OC "� mD z0 r moa 00 Om r-
0 z
o®
2 2020 Z m -< m Z n D z j m O m
z D m DODO m 700 m70 mvr 0m O� mMap 0Ocn m mO
cn (7 rrZ v O v� �� vC x Jnr 7DoU) =io 2
C K 'rD m0 m 7o OQ� D� n 1{ m *q D
m r, n DD 0 C1 mz 0m m v Zci I
mj m �r OD mz v m '�' 0
z
cn
m o m ,� REG/ST
SFO FO
ca T
DENNIS 'C3 9
36625 KEVIN RD. STE. 147/48
< m ROBERTS -4 &-.Mom WILDOMAR,CA92595
m GNC7, �' 951-696-9400
W C' co
D 50375 VISTA c -s `� 1 BRIAN HOPWOOD
3 z MONTANA ROAD LA 9'yiq ,���`��� Precis Solar Lic. No. 952305
QUINTA, CA 92253 33N���
—.
t r �
9 .1,
t
d i Icn
�=NZ° � I
o
nOxm
O:E--i
z'mozn�T 9 mz W
��gm m m W� W� m y
°om10, a A s 5 ��rW'to �y � Z
�° � m ,zmm�m;7moiN� <0
u,>�o IWco�o I O o u�-msa
mp�� Wv�DmZ.i t Wo C3 mo
tZi�(nm� W V"zip
1'N O O N Op II D
r°�� T o m�0m.00,aaDov m0
m�ma-i ooxyOm,�o Oram � C
-oDiNnZ �Om � .0 Z
m
30mO-I �yJf oc� D �z D 0m D v ^ � ��/�
� JIA S DZ ZO� Z m � X •Cfn fin-. C% � c V/
m�r{� V nm Z c< X DyZ1� 3i z�iOro O
�vm3 c) 90 � �, c) O c 1 myc,D' Z Z � Z
iOZO � ZZ tim O v ZZ Smp ZOp �C —L v
080>
_ vLi m0�m Gi (i �
Z�0D �o=o sxrro 1 me o 11m 1 A <
o�Obmm - �yL iiIi ' � z C�y
Z
041
DO°•rm � ZOO � m
°yam = o�vo w 90 i �
0 CrmD n
vz T m yrs
� � �ZTo x g c�rv' oD a m
o � m O c
Z o 0o ZO O mems � �9 �o l � amN � 70
�ozzmo O n omo c
(nyOT<ti „ --1 o p AAZ Na c, I�I�� `Q m
yO�Ayn Z ay,iZj Tm �YI j N
,0`
y x Z N
(7 z T V
DDyy��oo
OXmm 90 � Rr
Z��Z mINVERTERtt1 �<
ZOZf7innf9'04imav0NoG)Wzn®mmmaC.�%z�^vav��3nmaz�ovosi a W�zW
...-zl, m j 1. Ci � ADND
moves z cc�c�f ori'�O O• �O m a� m
mzyoD mo zAAD Z 1
�SOZ Dti OpOZ N�j m ( m O �� �
O A Z 2 —
z 0 a a D
n
O
W�ma�c� caw vyzc� c��A�nmasaz2 i '�� ��
W zoz� T� movu! 9nmmo c)p➢�..,➢ -. O �aN�1 '� 1
X Z AOy2 m(/itiC� 03HmtnTT(nAZR,Z 0 �C <I�10 11 ♦ . z ci
R, zgm� NvmoO
nox _,ZZ<STAStnT�G� �mv��oz � NO
� uoio�>2> D m�Nm�<-zimnnzv �TCn'ZN � L� . .00=iN m3D Zynvmmm A G��f Gm�� + C
yZ
?DNO r'� �On�DI OmOm Z9 Qm�v� �I Z. �i �%
j Km �t0/)yZD I ��tiyAD
<Z*' � D rl 0 Ij � O
o n<A��� � O DotWi�
zvromc� nP OO10 NCA Z WG)D
Z fn Zm-012 j Dfni�0Cf47 O O� OA UI I I O n O m
00 _I GJ�2S21 �j _!' ➢A i
�c So < X OC
N
V1 in to mTmcN =C mn�mrX: vADi< ry 'DZ�
rO O O ,A„�r�ro oy mm do zvmmi � mN0
D � 5 �-Ac> oD ns yA! cry W D
ozn�� o8m o°S' nol o➢ y�2
SI SI 31 C'T'S~gym ADZ mGi
D � O� A K T 0 0�•1 y Z T yA � I '' A ' �
m m m zonnN moZ T= 9n� ax
Li
N N (n ou'omm rD�r LJ ycj vn � j N
XaTNyO 9m I ➢<
I
mOmO^� mOzO�' z�� `-�� j 1
< <Wo W o z Z Z Z
c -i mv� -40 XX x= X�< m m m m
IT! a N zv9N oz -4:OD *m m m m
.. .. N m S W W W W
mm z z z
m c S S FME
cm m y
z
o 0 0 CD 00 co
5 v n � Bi7�0 7�0 7�0 � o m
z z z
rn � " n G) 0 G>
?? m D O O O
W N T L
c o n con
c { 1
5?
O CJI 1 O � CIO — }
0 0 0 pq r' � y m I
ci � a � 0 ® t i
Al Obi r � C31 0,11
E Z�
0 o Om �
m
D o (7
a o
W N O O '00
O C O O ()
�m r
avv n Z Z-0� �z -'z �z
Som C �,<n-'1 � �m �m �m
W N V V "S2 c UZ W � � � � � �
N A A �f�im OW OW OW
..00 O N� V� N� V21
m z CD 00
mTi N N� �'O
C W �
In r m D W D
N � O
m REG
F F
� � CD
77 ,' o D E N N I
cn m 0 36625 KEVIN RD. STE. 147/48
C N � �m ROBERTS N p�) 0-,Mhm
WILDOMAR, CA 92595
N m Ir6
951-696-9400
1
�
� m D
50375 VISTA
paw
BRIAN
Precis So/ar
HOPWOOD
3
MONTANA ROAD
LA��'�
Lic.
No. 952305
QUINTA, CA 92253
'� �33N\`��
PjY" �orl -D2oQ _ _
ecis Solar,
�Eechr�at®gy ��ryxy�'�nv�r�ranve�►t
STRUCTURAL CALCULATIONS
16.17 kW GROUND MOUNT SOLAR PV SYSTEM
Project:
THE ROBERTS RESIDENCE
50375 VISTA MONTANA, ROAD
LA QUINTA; CA 9283 �
UIN
-rpPnPrlredJnr: SAFTYpEPT®�ON,�®PretsS lac TIpN36635 KeWn Road DATE
Wildmmar, C1 k595 �ley
PH: 951=696-9.400
.- pROF�3$�p •+ .
�1D 1/ql
'' � Qi0.ti9a �
By:
Leon u quiza, y' g
Date: 70/6/2025
1 certify that this proposed structure is cede compliant and
able to withstand the loads of the proposed PV system
brlSdpll��IflPd.
' Roberts Residence
Page 2
Ground Mount Report
10/6/2015
By R.G.
Dealer.—
Project -Name;._
Roberts Residence
Create Date: 2015-30.06718:26:28.0700 "'s, BOM°ft? 43149
iia* 7 _ No''_ , ,...
Premium Atloy<Rail No_ __
Pv Module Data:
Module Brand
SunPower
Length
61:39
inches
Model
SPR-327NE-WHT-D
Width
41:18
inches
Environmental Requirements:
Depth
.. 1:61.
inches
Standard
IBC 2012
Weight,
- 41:00
pounds
Snow Load
0
psf Rated power @ STC
327• _ _.-
W
Wind Speed
130
mph Rail Color
' Black
Array Information:
Racking Color
_ __..:Black'
Tilt
20 de rees
Number of rows per array
4 High (Landscape)
Number of columns per array
_26,
End clamp Universal
Number of arrays _
_,_,1. _--i
Minimum Height of Leading Edge
, - _36.w , ,}
inches Pipel Sch.40
Module Overhang ",.
p15i_ I
inches Pipe Fittings Material Aluminum/Hollaender
Grounding Method
WEEBs
Foundation Option
Standard Pier
Bracing
Standard'
Existing Terrain: N-5Slope �
Microinverter Attachment Kits
No.
.Maw _ _>Att usteaL
E=W„post spacing 81 r80 inches,. Total Array,length 102 51 feet
'wt—04•spa.Wfj '§197!rflCFies E=1fi<eXteiio�postdistance 100007Ffeet%
Front Piee OeptFi 30:00 inches E-.Wjezferior rdil distance 1'00.02 feet
Ba"ck PieeQepth 48:06 inches Rail -Span (RS) ;,100 00 inifie$,
Balls perColurnn 2 RaihOvefiang (RO) 3111, ` inches
Total Number ofModules .__,M
Plpe;1S" (1:9-'Outslde.( meter)
(P..er;Afta �� ove`'rade _TbiAbahigtt' Totati�uanTOtaLkd$#:
� ._ � i _ Total Feet•.
Back Post 16 81.52 1 9358 irtcties1 16 � H2h
32.
; -
PerArra Let z Totav ntay'Total Feet
Horizontals 2
f66 -5i i feet. . _,2. 201.04,
Brace A4 16 j '.105 21 .: incties'Y6 =140.26
;.
Brace C� 5 Every3rd:8ay 114 92 pitches i 5 ° :47:88
Brace D: 5 Every:3rd Bay 93:81 inches
I Total Pipei 714 Feet
NOtE: PlPejm'�hiaMccncretequantiditvare
estirnatlgmand rraynotreflect conditions In
the Held.
Note: All Pipe lengths” are estimated to he slightly tong: i . _ _ .COnCrete. Eftlmate
Pipe coUpli'ngs will slighfl'y reduce length aficross braces, t�� 601b Bags of
Cudlc<Yards
and terrain variations 669 effect ierigttis as Well Cofieretil ,.
Roberts Residence Ground Mount -Report 10/6/2015
Page 3 By R.G.
MAX RAIL OVERHANG (RO)
MAX RAIL LENGTH (RL)
B' RAIL SPAN (RS SNAPNRACK GROUND RAIL
WITH MAX RAIL LENGTH
(RL), V RAIL SPAN (RS)
AND MAX RAIL OVERHANG
OR CANTILEVER (RO)
ARRAY TILT ANGLE
MAX 46' I{
ABOVE GRADE 6-"
Slandard Installation Rear View Bracing
.RAY SIDE VIEW
"-"
t ULi•m
I
6' MAX
Roberts Residence
Page 4
Ground Mount Report
WIND CALCULATIONS
27.4.3, Design Wind Load on Open Structures with Monoslope
CNw = -1.30 CIL = 1.73
1 -22.53 psf 5 0.04 psf
CIL = -1.50 CNw = 1.57
-26.00 psf 27.16
Case A Case A
CNw = -2.23 CIL = 0.67
2 ,-38.71 psf 11.56 psf
CIL = 0.20 6 CNw = 2.07
-3.47 psf 35.82
Case B Case B
Clear Wind Flow
CNw = -1.37 CIL = -1.03
3 -23.69 psf -17.91 psf
CIL = -1.63 7 CNw = 0.47
-28.31 psf 8.09
Case A Case'A
CNw = -2.23 CIL -0.1
-38.71 psf -1.73 psf
4 CIL =-0.60 8 CNw = 1.27
-13.87 psf 21.96
h 0.51- 0.5L
Case B Case B
1016/2015
By R.G.
psf
psf
Obstructed Wind Flow
ASCE 7-10 Figure 27.4.4
p= qh G CN
(27.4-3)
q,.= .00256 K: KZi Kd V2
(27.3-1)
Roof Angle = 20 °
Mean Roof Height h =` 5.3683 FT E) =
C
Evosure coefficient K. = 0.85
T-27.3-1
Topography factor Kt = 1.00
T-26.8-1
Directionality factor Kd = 0.85
T-26.6-1
Building & Structure Risk Category = I, low hazard
IBC T-1604.5
Wind Speed V = 105 MPH
Fig. 26.5-1C, MRI = 300 yrs
q: = 20.39 PSF
Gust Effect factor G = 0.85
26.9
CN = Net pressure coefficient frorr
T-27.4-1
p = 17.33 CN PSF
psf
Roberts Residence Ground Mount Report 10/6/2015
Page 5 By R.G.
r
1. Civw and CNL denote net pressures (contributions from top and bottom surfaces) for oindmrd and leeward half of roof surfaces,
respectively.
2. Clear Kind flowdenotes relatively unobstructed Hind Now Kith blockage less than or equal to 50%. Obstructed Nand flow denotes
objects below roof inhibiting Kind flow(>50%blockage).
4. Plus and minus signs signify pressures acting toKerds and away from the top roof surface, respectively
Simple Span
L = 13.85167 FT
Distance between supports: I = 7.8308 FT
RL = 238.38 lbs/ft
TRL = -258.16 lbs/ft
RR= 206.92Ibs/ft
RR= -194.23 lbs/ft
Wind Loads Condition
6.Clear Wind Flow, Dir =180 Deg, Case B
4.Obstructed Wind Flow, Dir=O Deg, Case B
5.Clear Wind Flow, Dir 180 Deg, Case A
3.Obstructed Wind Flow, Dir -0 Deg, Case
Roberts Residence Ground Mount Report 10/612015
Page 6 By R.G.
CONCRETE PIER DESIGN
Criteria: 1.) Per CBC 2012 Chapter 18A
2.) Assume Allowable Foundation and Lateral Pressure as per
UBC Table No. 1806A.2
3.) Soils Report shall supercede all assumptions.
4.) Assume structure not adversely affected by a 1/2" motion
at ground surface due to short term lateral loads.
TABLE 1808A.2
PREsuIUPTtvla 1 nAn..APAlalrur. vel tip -
For SI: 1 pound per square foot = 0.0479 kPa. 1 pound per square foot per foot = 0.157 kPa/nl.
o. Coefficient to be multiplied by the dead load.
b. Cohesion vulue to be multiplied by the contact area, as limited by Section I8WA.3.2.
OPTIONAL:
FORM TOP CF PIER 4"
TYPICAL ABOVE GRADE
WITH Ir SOWITUSE
`4" 1W. HSGHT
A130bE GRADE i� r' .- .t APRAY i:' AUGr
1.
LATERAL BEARING
LATERAL SLIDING RESISTANCE
N� \\
VERTICAL FOUNDATION
PRESSURE
Coefficient of friction'
Cohoolon (ppf)b
CLASS OF MATERIALS
PRESSURE: (pef)
(pef/h below natural Prado)
I. Crystalline bedrock
12,000
1,200
0.70
—
2. Sedimentary and foli-
4,000
400
0.35
—
aled rock
3. Sandy gravel and/or
3,000
200
0.35
—
gravel (GW and GP)
4. Sand. silty sand, clayey
sand, silty gravel and
2.000
150
0.25
clayey gravel (SW, SP,
SM, SC, GM and GC)
5. Clay, sandy clay, silty
clay, clayey.silt, silt and
1.500
100
—
130
sandy silt (CL, ML,
MH and CIA)
For SI: 1 pound per square foot = 0.0479 kPa. 1 pound per square foot per foot = 0.157 kPa/nl.
o. Coefficient to be multiplied by the dead load.
b. Cohesion vulue to be multiplied by the contact area, as limited by Section I8WA.3.2.
OPTIONAL:
FORM TOP CF PIER 4"
TYPICAL ABOVE GRADE
WITH Ir SOWITUSE
`4" 1W. HSGHT
A130bE GRADE i� r' .- .t APRAY i:' AUGr
1.
b
� ~�~
CCNCRETE PIERS 1
N� \\
'�� CONCRETE: 2,500 _ �` ASA..
PIER OEM � \
PSI MIN. ice`
PIER SHORT _ PER TALL
I
PIPE.':�.i PPE
j-
--J—PIER
_I—PIER
DIAMETER IYnllw sgylioll
STANDARD
12, TYR
PIER DETAIL
' Roberts Residence
Ground Mount Report
10/6/2015
Page 7
By R.G.
B. Check For Resistance to Vertical Loads (Front)
Input:
d = 2.50
Depth of embedment (FT)
L= 6.4 ft
1-1/2" Pipe
S = 2000
Allowable Soil Bearing Pressure (PSF)
Wt.= 2.72 LBS/FT
Weight
b = 12.0
Diameter of Concrete Pier (INCHES)
Wt. = 203.6 LBS
Modules
Loads:
Wind= 206.92 LBS/FT
@ 6.7' (PS)
Wind= 1379 LBS
1. D.L. + L.L. =
1583 LBS Vertical Load (Wind Governs)
2. Column D.L. =
18 LBS (1-1/2" dia. steel )
3. Concrete D.L. =
295 LBS Concrete Pier
Total 1895 LBS
Allowable Friction _ "Allowable Soil Bearing Pressure / 6
333 - LB/SF
Friction Area = 8 SF
Allowable Load 2618 LBS > 1895 LBS
USE : 12 inch diameter x 2.50 feet deep
C. Check For Resistance to Uplift Loads
Input:
d = 2:50 Depth of embedment (FT)
S = 2000 Allowable Soil Bearing Pressure (PSF)
b = 12.0 Diameter of Concrete Pier (INCHES)
P(UP) = -1295 LBS (See Sheet 3 of Calculations)
Loads:
1. D.L. = 203.6 LBS LBS (Modules)
2. Column D.L. = 18 LBS (Pipe)
3. Concrete D.L. = 295 LBS (Concrete Pier)
Total 516 LBS
Allowable Friction = Allowable Soil Bearing Pressure / 6
333 LB/SF
Friction Area = 8 SF
Allowable Load = 3134 LBS > -1295 LBS
U 12 inch diameter x 2.50 feet deep
Safety Factor = 1.4
Wind= -194.23 LBS/FT @ 6.7' (PS)
Wind= -1295 LBS
Safety Factor = 2.4
Roberts Residence Ground Mount Report 10/6/2015
Page 8 By R.G.
B. Check For Resistance to Vertical loads (Back)
Input:
d = 4.01 Depth of embedment (FT) L = 10.8 ft 1-1/2" Pipe
S = 2000 Allowable Soil Bearing Pressure (PSF) Wt. = 2.72 LBS/FT Weight
b = 12.0 Diameter of Concrete Pier (INCHES) Wt. = 203.6 LBS Modules
Loads:
1. D.L. + L.L. _
2. Column D.L. _
3. Concrete D.L. _
Total
Allowable Friction
Friction Area
Allowable Load
Wind= 238.38 LBS/FT @ 6.7'(PS)
Wind= 1589 LBS
1793 LBS Vertical Load (Wind Governs)
29 LBS (1-1/2" dia steel )
472 LBS Concrete Pier
2294 LBS
Allowable Soil Bearing Pressure / 6
333 LB/SF
13 SF
4194 LBS > 2294 LBS
USE: 12 inch diameter x 4.01 feet deep
C. Check For Resistance to Uolift Loads
Input:
d = 4.01 Depth of embedment (FT)
S = 2000 Allowable Soil Bearing Pressure (PSF)
b = 12.0 Diameter of Concrete. Pier (INCHES)
P(LIP) = -1721 LBS
Loads:
1. D.L. = 203.6 LBS LBS (Modules)
2. Column D.L. = 29 LBS (Pipe)
3. Concrete D.L. = 472 LBS (Concrete Pier)
Total 705 LBS
Allowable Friction = Allowable Soil Bearing Pressure / 6
= 333 LB/SF
Friction Area = 13 SF
Allowable Load = 4899 LBS >
USE : 12 inch diameter x 4.01 feet deep
-1721 LBS
Safety Factor = 1.8
Wind= - 258.16 LBS/FT @ 6.7' (PS)
Wind= - 1721 LBS
Safety Factor= 2.8
ELECTRICAL LOA® CALCULATIONS
&P4 '2�s - M
Owner D nes Rvbwi� O
Address j - Ve !,1A0�_ P4 lYl cre- Prepared by
General Lighting Load Sq.Ft. `� % ` X 3 Volt Amps = )6) ;�e)o VA
Small Appliance Circuits at 1500 VA each x `'/ (min. of two) = 6> O0 0 VA f
Laundry (Washing Machine) Circuit 1500 VA x � (min. e) � / VA
Sub -Total //��C�®W - VA
First 3,000 VA of Lighting, Small Appliance-, Laundry Load 106'r����` e ^ 3,000 VA
From 3,001 to 120,000 VA at 35% X .3 F� I`�'p S`qF� ' v�� / / 170 VA
Over 120,000 VA use 25% WIA- x. !b. �oNsl I ��Fa_ I " 1— VA
Electrical CookingAppliances, Use NEC Table 220-55 �R�CT�®
PP �
(Number of Appliances) Demand 10 % x Total kW 6 Z5 (Co A 1, 0 = 1006 VA
(Number of Appliances) Demand 35 % x Total kW ,030 (Column B) x 1, 1 � � a VA
(Number of Appliances) -----Demand �o x Total kW (Column B) x 1,000 = P �A VA
Dryer Loads use NEC Table 220-54 = /J i 7 Y VA
(1) Sub -Total = 6 1� VA
Heating/Air Conditioning - List type and VA at 100%
(H) 'east Pum (G) Gas + Cool (S) Heatcip (Al Cir
(2) Sub -Total = Yl VA
Fixed Appliances
Microwave 1300 VA x ( Food Center 600 VA x
Compactor 1200 VA x N/ Hot Water 4500 VA x
Dishwasher 1200 VA x l VA x
Disposal 400 VA x VA x
Cent Vacuum 1500 VA x VA x "Z)5 -
Appliance Subtotal q x ( 75%) (3) Sub -Total = " J VA
Add 25% of the largest motor (typical AC compressor)
X 25% LM (4) Sub -Total =� VA
(5) Spare 20arnps x 240 volts Sub -Total = / VA
GRAND TOTAL (Add Sub Totals (1), (2), (3), (4) & (5) _ tlq % -7gs— vA
Total Volt Amps ` q/74c5- Divide by 240 Volts = 96Amps
Service Size d�,g Pue, Grounding Electrode Conductor
• .y
nec U� CE
Product Data Sheet DU222RB
SWITCH NOT FUSIBLE GD 240V 60A 2P NEMA3R
Technical Characteristics
0
by Schneider Electric
List Price $353.00 USD
Availability Stock Item: This item is normally stocked in our distribution facility.
Number of Poles
2 -Pole
Terminal Type
Lugs
Type of Duty
General Duty
Maximum Voltage Rating
240VAC
Wire Size
#10 to #2 AWG(AI) - #14 to #2 AWG(Cu)
Action
Single Throw
Ampere Rating
60A
Approvals
UL Listed File Number E2875
Enclosure Rating
NEMA3R
Enclosure Type Rainproof and Sleet/Ice proof (Indoor/Outdoor)
Factory Installed Neutral No
Disconnect Type Non -Fusible
Mounting Type Surface
Shipping and Ordering ,
Category 00106 - Safety Switch, General Duty, 30 - 200 Amp, NEMA3R
Discount Schedule DE1A
GTIN
00785901491491
Package Quantity
1
Weight
4.7 lbs.
Availability Code
Stock Item: This item is normally stocked in our distribution facility.
Returnability
Y
Country of Origin
MX
As standards, specifications, and designs change from time to time, please ask for confirmation of the information given in this document.
Generated: 09/07/2012 11:07:32
O 2012 Schneider Electric. All rights reserved. Schneider
VElectric
January 15, 2014
Attn.: Engineering Department,
IAN ETH '<
yzq�y FG
CD
LU
No. S3878
UCTOk
9TF OF CA\-\F�
Re: Engineering Certification for UniRac's SolarMount Code -Compliant Installation Manual 227.3
PZSE, Inc. -Structural Engineers has reviewed UniRac's "SolarMount Code -Compliant Installation Manual
227.3 published October 2010 and specifically "Part I. Procedure to Determine the Design Wind Load",
and "Part II: Procedure to Select Rail Span and Rail Type".
This letter certifies that the structural calculations contained within UniRac's "SolarMount Code -
Compliant Installation Manual 227.3 published October 2010 are in compliance with the following Codes
1. 2012 International Building Code, by International Code Council, Inc.
2. 2013 California Building Code by California Building Standards Commission
3. 2010Aluminum Design Manual, by The Aluminum Association
If you have any questions on the above, do not hesitate to call.
Sincerely,
k�
Paul Zacher, SE - President
8137 Sunset Avenue, Suite 120 • Fair Oaks, (A 95628 • 916.961.3960 • 916.961.3965 f • WWWRSUCH
0
::�UNIRAC
A HILTI GROUP COMPANY
SolarMount Beams
Part No. 310132C, 310132C -B, 310168C, 310168C -B, 310168D
310208C,310208C-B,310240C,31024OC-B,310240D,_
410144M, 410168M, 410204M, 410240M
Properties
Units
SolarMount
SolarMount HD
Beam Height
in
2.5
3.0
Approximate Weight (per linear ft)
plf
0.811
1.271
Total Cross Sectional Area
in'
0.676
1.059
Section Modulus (X -Axis)
in3
0.353
0.898
Section Modulus (Y -Axis)
in
0.113
0.221
Moment of Inertia (X -Axis)
in'
0.464
1.450
Moment of Inertia (Y -Axis)
in
0.044
0.267
Radius of Gyration (X -Axis)
in
0.289
1.170
Radius of Gyration (Y -Axis)
in
0.254
0.502
SLOT FOR T -BOLT OR
4" HEX HEAD SCREW
2X SLOT FOR
BOTTOM CLIP
SLOT FOR
38" HEX BOLT
387—
.750
Y
�--► X
SolarMount Beam
LA11I11
SLOT FOR T -BOLT OR
1/4" HEX HEAD SCREW
SLOT FOR
BOTTOM CLIP
SLOT FOR
HEX BOLT
Y i 1.875
-� X
SolarMount HD Beam
3.000
11
1.385
= I I
Dimensions specified in inches unless noted
SolarMount Beam Connection Hardware
SolarMount L -Foot
Part No. 304000C, 304000D
Y
#—► X
Df AOT fQR
KkWWAPE !f{
2.01 --
Dimensions specified in inches unless noted
an UNIRAC
A HILTI GROUP COMPANY
• L -Foot material: One of the following extruded aluminum alloys: 6005-
T5, 6105-T5, 6061-T6
• Ultimate tensile: 38ksi, Yield: 35 ksi
• Finish: Clear or Dark Anodized
• L -Foot weight: varies based on height: —0.215 lbs (98g)
• Allowable and design loads are valid when components are
assembled with SolarMount series beams according to authorized
301t UNIRAC documents
L -Foot For the beam to L -Foot connection:
• Assemble with one ASTM F593 W-16 hex head screw and one
ASTM F594'/a'serrated flange nut
• Use anti -seize and tighten to 30 ft -lbs of torque
• Resistance factors and safety factors are determined according to part
1 section 9 of the 2005 Aluminum Design Manual and third -party test
results from an IAS accredited laboratory
NOTE: Loads are given for the L -Foot to beam connection only; be
sure to check load limits for standoff, lag screw, or other
attachment method
Applied Load
Direction
Average
Ultimate
lbs (N)
Allowable Load
lbs (N)
Safety
Factor,
FS
Design
Load
lbs (N)
Resistance
Factor,
m
Sliding, Z±
1766 (7856)
755 (3356)
2.34
1141 (5077)
0.646
Tension, Y+
1859 (8269)
707 (3144)
2.63
1069 (4755)
0.575
Compression, Y-
3258 (14492)
1325 (5893)
2.46
2004 (8913)
0.615
Traverse, X±
486 (2162)
213 (949)
2.28
323 (1436)
0.664
SolarMount Mid Clamp
Part No. 302101 C, 302101 D, 302103C, 302104D,
302105D,302106D
WrWeen V40ULM � !
rM
Y I
I
L ►.X
Dimensions specified in inches unless noted
SolarMount End Clamp
Part No. 302001 C, 302002C, 302002D, 302003C,
302003D,302004C,302004D,302005C,302005D,
302006C,302006D,302007D,302008C,302008D,
302009C,302009D,302010C,302011C,302012C
�?UNIRAC
A HILTI GROUP COMPANY
• Mid clamp material: One of the following extruded aluminum
alloys: 6005-T5, 6105-T5, 6061-T6
• Ultimate tensile: 38ksi, Yield: 35 ksi
• Finish: Clear or Dark Anodized
• Mid clamp weight: 0.050 lbs (23g)
• Allowable and design loads are valid when components are
assembled according to authorized UNIRAC documents
• Values represent the allowable and design load capacity of a single
mid clamp assembly when used with a SolarMount series beam to
retain a module in the direction indicated
• Assemble mid clamp with one Unirac'/4"-20 T -bolt and one Y4"-20
ASTM F594 serrated flange nut
• Use anti -seize and tighten to 10 ft -lbs of torque
• Resistance factors and safety factors are determined according to
part 1 section 9 of the 2005 Aluminum Design Manual and third -
party test results from an IAS accredited laboratory
Applied Load
Direction
Average
Ultimate
lbs (N)
Allowable
Load
lbs (N)
Safety
Factor,
FS
Design
Load
lbs (N)
Resistance
Factor,
m
Tension, Y+
2020 (8987)
891 (3963)
2.27
1348 (5994)
0.667
Transverse, Z±
1 520 (2313)
229 (1017)
2.27 1
346 (1539)
0.665
Sliding, X±
1194 (5312)
t490 (2179)
2.44 1
741 (3295)
0.620
-- • A
1.5
It � NOt1+4J►1
VARIEvARrrs
S
wtrn
�aoue
Tntc?m
Dimensions speci
• End clamp material: One of the following extruded aluminum
alloys: 6005-T5, 6105-T5, 6061-T6
• Ultimate tensile: 38ksi, Yield: 35 ksi
• Finish: Clear or Dark Anodized
• End clamp weight: varies based on height: —0.058 lbs (26g)
• Allowable and design loads are valid when components are
assembled according to authorized UNIRAC documents
• Values represent the allowable and design load capacity of a single
end clamp assembly when used with a SolarMount series beam to
retain a module in the direction indicated
• Assemble with one Unirac'/4"-20 T -bolt and one''/4"-20 ASTM F594
serrated flange nut
• Use anti -seize and tighten to 10 ft -lbs of torque
• Resistance factors and safety factors are determined according to
part 1 section 9 of the 2005 Aluminum Design Manual and third -
party test results from an IAS accredited laboratory
• Modules must be installed at least 1.5 in from either end of a beam
Applied Load
Direction
Average
Ultimate
lbs (N)
Allowable
Load
lbs (N)
Safety
Factor,
FS
Design
Loads
lbs (N)
Resistance
Factor,
m
Tension, Y+
1321 (5876)
529 (2352)
2.50
800 (3557)
0.605
Transverse, Z±
63 (279)
14 (61)
4.58
21 (92)
0.330
Sliding, X±
142 (630) i
52 (231)
2.72
79 (349)
0.555
m
::�UNIRAC
A HILTI GROUP COMPANY
SolarMount Technical Datasheet
Pub 110818 -ltd V1.0 August 2011
SolarMount Module Connection Hardware.................................................................. 1
BottomUp Module Clip.................................................................................................1
MidClamp....................................................................................................................2
EndClamp....................................................................................................................2
SolarMount Beam Connection Hardware......................................................................3
L-Foot........................................................................................................................... 3
SolarMountBeams..........................................................................................................4
SolarMount Module Connection Hardware
BE
SolarMount Bottom Up Module Clip -
Part No. 302000C
Dimensions specified in inches unless noted
• Bottom Up Clip material: One of the following extruded aluminum
alloys: 6005-T5, 6105-T5, 6061-T6
• Ultimate tensile: 38ksi, Yield: 35 ksi
• Finish: Clear Anodized
• Bottom Up Clip weight: —0.031 lbs (14g)
• Allowable and design loads are valid when components are
assembled with SolarMount series beams according to authorized
UNIRAC documents
• Assemble with one %"-20 ASTM F593 bolt, one %"-20 ASTM F594
serrated flange nut, and one %" flat washer
• Use anti -seize and tighten to 10 ft -lbs of torque
• Resistance factors and safety factors are determined according to
part 1 section 9 of the 2005 Aluminum Design Manual and third -
party test results from an IAS accredited laboratory
• Module edge must be fully supported by the beam
* NOTE ON WASHER: Install washer on bolt head side of assembly.
DO NOT install washer under serrated flange nut
Applied Load
Direction
Average
Ultimate
lbs (N)
Allowable
Load
lbs (N)
Safety
Factor,
FS
Design
Load
lbs (N)
Resistance
Factor,
m
Tension, Y+
1566 (6967)
686 (3052)
2.28
1038 (4615)
0.662
Transverse, X± 1
1128 (5019)
329 (1463)
3.43
497 (2213)
0.441
Sliding, Z±
66 (292)
27(119)
2.44
41 (181)
0.619
Mr. Rick Gentry
QUICKSCREWS INTERNATIONAL
Adjustable Tile Roof Hook
December 9, 2013
Project Number 113778C
Test setup and typical hook bending at maximum load are provided in Appendix A. Based on the above
testing, the average maximum tensile load of the adjustable tile hook attached to a 2"x4" Douglas Fir
rafter using #14 Quickscrew was determined to be 1040 lbf.
3. Specific Gravity of Wood
The average specific gravity and moisture content of the test rafter as per ASTM D2395, Method A
(oven -dry) was determined to be 0.424 and 11.0 %; respectively.
If you have any questions regarding the above, please do not hesitate to call the undersigned.
Respectfully Submitted,
APPLIED MATERIALS & ENGINEERING, INC.
ani aiyaz
Laboratory Manager
Reviewed By:
Armen T jria , Ph.D., P.E.
Principal
11casm
2,s
Page 2 of 8 APPUEDD HATEROALO A EMMONS, ONQ
APPLOGDD HGa` E ROALS o EMOONEERON89 ONC .
980 41St Street Tel: (510) 42U-8190
Oakland, CA. 94608 FAX: (510)_ 420-8186
e-mail: info@appmateng.com
December 9, 2013
Mr. Rick Gentry
QUICKSCREWS INTERNATIONAL
5830 Las Positas Road
Livermore, CA 94551
Project Number 113778C
Subject: Adjustable Tile Roof Hook (Part # STRHADJ9038) Laboratory Load Testing
Dear Mr. Gentry:
As requested, Applied Materials & Engineering, Inc. (AME) has completed load -testing the adjustable
tile roof hooks (see Appendix A, Figure 1). The purpose of our testing was to evaluate the tensile (uplift)
and compression load capacity of the adjustable tile roof hook attached to a 2"x4" Douglas Fir Rafter
using 2 - #14 x3" Hex washer T17 302 stainless steel Quickscrews installed at the farthest point.
SAMPLE DESCRIPTION
Mockup samples were delivered to our laboratory on November 13, 2013. Mockup configuration.
consisted of five 12" long rafters at 2.5"o.c., screwed to 3/4" Structural I plywood. The tile roof hook is
attached- through the plywood into a rafter with two fasteners.
TEST PROCEDURES & RESULTS
1. Compressive Load Test
A total of three tests were conducted for compressive load capacity on December 6, 2013 using a United
Universal testing machine. Samples were rigidly attached to the testing machine and a compressive load
was applied to the hook. The samples were loaded in compression at a constant rate of axial deformation
of 0.09 in. /min. without shock until the hook was completely bent; displacement at maximum load was
recorded. Detailed results are provided in Table I. Test setup and typical hook bending at maximum load
are provided in Appendix A. Based on the above testing, the average maximum compression load of the
adjustable the roof hook attached to a 2"x4" Douglas Fir rafter using #14 Quickscrew was determined to
be 328 lbf.
2. Tensile (Uplift) Load Test
A total of three tests were conducted for tensile load capacity on December 6, 2013 using a United
Universal testing machine. Samples were rigidly attached to the testing machine and a tensile load was
applied to the hook. The samples were loaded in tension at a constant rate of axial deformation of 0.09
in. /min. without shock until the hook was bent and the bolt began to pull-out; displacement at maximum
load was recorded. Detailed results are provided in Table II.
Page 1 of 8 . APPLIED WG;1'1►EMALI A ENOINEEMN®m INC.