Loading...
BSOL2015-0208 (Structural Calcs)DENNIS ROBERTSCID TITLE SHEET PV -1 ELECTRICAL SINGLE LINE Z U 5. MARKINGTHE "PV SYSTEM DISCONNECT' SHALL BE IN ACCORDANCE WITH.690.17. MARKING OF THE "DC PV POWER SOURCE" SHALL BE IN ACCORDANCE WITH NEC 690.53. MARKING OF THE "INTERACTIVE SYSTEM POINT OF CONNECTION" SHALL BE IN ACCORDANCE z wLO � PHOTOVOLTAIC INSTALLATION 26.16 kWpDC8. � O Z_Oo�roi o � worn Oa) 7. PV EQUIPTMENT, SYSTEMS AND ALL ASSOCIATED WIRING AND INTERCONNECTIONS SHALL ONLY BE INSTALLED BY QUALIFIED PERSONS NEC 690.4E Z W HC) N GENERAL NOTES: to o � z o 8. PHOTOVOLTAIC SYSTEM CONDUCTORS SHALL BE IDENTIFIED AND GROUPED. THE MEANS OF IDENTIFICATION SHALL BE PERMITTED BY SEPARATE COLOR CODING, MARKING TAPE, TAGGING OR OTHER APPROVED MEANS NEC 690.48 0 O > Q 0) mor aZ M 2 C2m _5 s 1. PHOTOVOLTAIC SOLAR MODULES UL 1703; INVERTERS: UL 1741, PHOTOVOLTAIV MODULES ARE TO BE CONSIDERED NON-COMBUTABLE. 2. ALL EXTERIOR CONSUIT IS TO BE PAINTED TO MATCH THE BUILDING IN WHICH THE CONDUIT IS ATTACHED. TY 01- 1 A QUINTA r&�S/�AFETY '7; 4. ALL MODULE AND RACKING GROUNDING LUGS SHALL BE UL 567 APPROVED (ILSCO GBL-4DBT) DEPT. rBUILDINGt L Q 5. NO SHEET METAL OR TECH SCREWS SHALL BE USED TO GROUND DISCONNECT ENCLOSURES WITH TIN-PLATED ALUMINUM LUGS; PROPER GROUNDING/GROUND BAR KITS WILL BE USED. APPROVED QQ m 0 0 Cc 6. FERROUS METAL RACEWAYS ENCLOSING GEC CONDUCTORS SHALL BE ELECTRICALLY CONTINUOUS OR BONDED IN ACCORDANCE WITH ART 250.64( E). FOR CONSTRUCTION 7. LOCAL UTILITY PROVIDER SHALL BE NOTIFIED PRIOR TO USE AND ACTIVATION OF ANY SOLAR PHOTOVOLTAIC INSTALLIATION. ,w ) �j /� BY 8. APPLICATION FOR WHICH NO PERMIT IS ISSUED WITHIN 180 DAYS FOLLOWING THE DATE OF APPLICATION SHALL AUTOMATICALLY EXPIRE (95.7 CEC). DATE l f 9. THE PERMIT ISSUED SHALL BECOME INVALID UNLESS WORK AUTHORIZED IS COMMENCED WITH 180 DAYS, A SUCCESSFUL INSPECTION IS NOT OBTAINED WITHIN 180 DAYS, OR THE WORK IS SUSPENDED. !1� 10. SMOKE ALARMS TO BE INSTALLED OUTSIDE EACH SEPARATE SLEEPING AREA, IN EACH ROOM FOR SLEEPING PURPOSES, IN EACH'STORY, INCLUDING BASEMENT CARBON MONOXIDE DETECTORS TO BE INSTALLED AS COMBINATION UNITS WITH SMOKE DETECTORS IN ALL REQUIRED LOCATIONS PER R315 CRC. U 11. THE BACKFED PV BREAKER(S) AT THE MAIN PANEL WILL -BE INSTALLED AT THE OPPOSITE END OF THE BUS BAR FROM THE MAIN BREAKER AND A PERMANENT WARNING LABEL WITH THE FOLLOWING MARKING WILL BE PROVIDED ADJACENT TO THE PV BREAKER(S): "WARNING- -Rsc% PHOTOVOLTAIC CONNECTION. DO NOT RELOCATE THIS OVERCURRENT DEVICE" (NEG 690.64 8 7) � Y ' UJI C 72111 M ELECTRICAL NOTES: 1.SOLAROBIDE BY THEFOLLOWING: CUGROUP VB OL EWILL 2. AWHITE) WHERE METALIC CONDUIT CONTAINING DC CONDUCTORS IS USED INSIDE THE BUILDING, IT SHALL BE IDENTIFIED AS "CAUTION: HIGH VOLTAGE DC CIRCUIT" ALL WIRING NG WIL(DCUNDERGROUND CONDUCTOR DCUNDERG UNDERGROUND CONDUCTOR EVERY 5 FEET. 3. #10 AWG SOLID BARE COPPER GROUND WILL BE USED.AS AN EQUIPMENT GROUND TO CONNECT THE PV RACKING STRUCTURE WHEN NOT EXPOSED TO DAMAGE. IF EXPOSED TO DAMAGE, #6 AWG WILL BE USED. 4. ALL DISCONNECT SWITCHES SHALL BE WIRED SUCH THAT THE LINE SIDE WILL HAVE LIVE CONDUCTORS WHEN THE SWITCH IS ON THE OPEN POSITION. TITLE SHEET PV -1 ELECTRICAL SINGLE LINE Z U 5. MARKINGTHE "PV SYSTEM DISCONNECT' SHALL BE IN ACCORDANCE WITH.690.17. MARKING OF THE "DC PV POWER SOURCE" SHALL BE IN ACCORDANCE WITH NEC 690.53. MARKING OF THE "INTERACTIVE SYSTEM POINT OF CONNECTION" SHALL BE IN ACCORDANCE z SITE PLAN WITH NEC 690.0. 54. ') `/- O 6. ALL EXTERIOR CONDUIT, FITTINGS AND BOXES SHALL BE RAIN TIGHT AND APPROVED FOR USE IN A WET LOCATION. � 7 2 j � 7. PV EQUIPTMENT, SYSTEMS AND ALL ASSOCIATED WIRING AND INTERCONNECTIONS SHALL ONLY BE INSTALLED BY QUALIFIED PERSONS NEC 690.4E Z W HC) N 8. PHOTOVOLTAIC SYSTEM CONDUCTORS SHALL BE IDENTIFIED AND GROUPED. THE MEANS OF IDENTIFICATION SHALL BE PERMITTED BY SEPARATE COLOR CODING, MARKING TAPE, TAGGING OR OTHER APPROVED MEANS NEC 690.48 0 O > Q 0) 9. DC CONDUCTORS SHALL BE LOCATED AS CLOSE AS POSSIBLE TO THE RIDGE OR HIP OR VALLEY CRC R331.3 L Q 10. A PHOTOVOLTAIC METER SOCKET WILL BE PROVIDED WITHIN 10" TO 72" FROM THE EXISTING SERVICE METER AND IT WILL BE INSTALLED BETWEEN 48" TO 75" ABOVE FLOOR OR GRADE LEVEL. THE METER WILL BE PROVIDED AND INSTALLED BY RIVERSIDE PUBLIC UTILITIES WHEN THEY ARE THE SERVICE PROVIDERS. m 0 0 Cc _ CUSTOMER: DENNIS ROBERTS 50375 VISTA MONTANA ROAD LA QUINTA, CA 92253 760-485-2949 APN# JURISDICTION: LA QUINTA CONTRACTOR: PRECIS SOLAR 36625 KEVIN RD. STE. 147/48 W ILDOMAR, CA 92595 951-696-9400 BRIAN HOPWOOD Lic. No. 952305 PROJECT SCOPE: THE PROJECT CONSISTS OF: 1. (80) SUN POWER SPR -E20 -327W SOLAR MODULES 2. (2) IG PLUS ADVANCED 11.4-1 UNI -240V (SPR -11402f) ) THE SYSTEM WILL`- BE INTERCONNECTED AND IN PARALLE WITH THE UTILITY GRID. PLAN DIRECTORY: SHEET # SHEET NAME T-01 TITLE SHEET PV -1 ELECTRICAL SINGLE LINE PV -2 MOUNTING DETAILS / WIRING CHART PV -3 SITE PLAN rtle: TITLE SHEET Project #: 0011 DateTme: 12/8/2015 4:58:59 PM DESIGN BY: Sheet: 07T-01 mD Cr �0 WO o z czn 0 Z ZC M m �O m z m >N Z > 0r J 0 0 im 0 a m z� z m c m r v� m m _ O Om m m 0 M > D w � Z �n r m0 z m m x y? D v pc �r yv_ CA) �z c M z 0 N �o r { I Dm rz c x 0-4 C Dr z m 0 D z r m : 0 m tllsin 0 atlOb tlNtl1NOW D r z 5n 03>M K =w ZpD�N Z� Zzp 1c0 �cnao �D� rnrn (�ODcn nza div ��� cn ao w l iC m G)O2m �� mn=nD �, mcg {= m*o =-U M�� ym mm cf) oD�y mcn� �� ��� m v m x v ���v my Ommmm Dm rDm =m p<D mr-z m= C)pcLnnp �mm ZO DOX O vp 0 O z z zmA ZnM :E) �Z zrcn am -mD 0DZ Z'� -imM -2m ...i �zv � (n -i U) vmm"m an moodo OCi y0D r0 O<Zm ow0 n0 mmm0 mmm ov o-0 z o m o m C cil v�D� m0 -4 mm- LSD �Dm mcg mmv i�mm ax D�OO ��D �Oo r0 n m N = >U) �n m�OX9 Cx woo (7z >XD pzD om cnmoz cnvr z :0ccnnm Z n z> n n C z r- > U) -D vmv0> mz mpK zo om- mD az m--i�� min m o00 0 m� D m cn 0vZ mr OKcm D0 >mD D0 Dp ,0 m0 m �OZZ a (�Sm m z D cOv m 0mm:u Z m> Z Z (n rm O cn O M m* Z p vmz mm C0-1mD vr- pry mD3 rnOD nD D n=�K 2v C -u N OT Om T r D7 mv0 mo. --i r- m0 Cmm �(n cn�r -im � �m2D DC r -0 c7 z D m T Cm-.mz00 mz zozzz n� ��= y� mm -c v vzO�m �c� m np� -�i m •-� < Op GO - nv mz 0-=-0 nv zn, Km 0K >,v ozivc= `"z m -{OD z - �o m0 �zmD -z , Dz =Z O= 0 mmD vmD a z�r m n�� �o �cn nDmp z, Z. rz -ice Cm v "mvr ZZ z ��m W D Z 4J map .0 mzmm DO �� mD �x cn mzmm -iz v z�m O m z m Z� O c)0K y= Zr ap z �- n -i�Om m0 m mzc x 0 om c> mm min mm- m cn a nz D�m70 mm - 33 mz mm Ov z� O 3:> z �v n �Om c iv 03, ® mvmv m as 0- m az 0a Dm mm �G) m mmcn U)0 m 0D --Ii v m z r(�=m -I z� �co Z� r-� (� (7 rr z � Zr� m O CCf� < v m�r-� m oc� zS vm rm cn -n 0 Dv T, oc�m v -'� 1 �1 .arm cn 0 cozrm� < dim c�� xz m_� D = 'O� �� � �nDi m 0 m cn m m(nm cn OC "� mD z0 r moa 00 Om r- 0 z o® 2 2020 Z m -< m Z n D z j m O m z D m DODO m 700 m70 mvr 0m O� mMap 0Ocn m mO cn (7 rrZ v O v� �� vC x Jnr 7DoU) =io 2 C K 'rD m0 m 7o OQ� D� n 1{ m *q D m r, n DD 0 C1 mz 0m m v Zci I mj m �r OD mz v m '�' 0 z cn m o m ,� REG/ST SFO FO ca T DENNIS 'C3 9 36625 KEVIN RD. STE. 147/48 < m ROBERTS -4 &-.Mom WILDOMAR,CA92595 m GNC7, �' 951-696-9400 W C' co D 50375 VISTA c -s `� 1 BRIAN HOPWOOD 3 z MONTANA ROAD LA 9'yiq ,���`��� Precis Solar Lic. No. 952305 QUINTA, CA 92253 33N��� —. t r � 9 .1, t d i Icn �=NZ° � I o nOxm O:E--i z'mozn�T 9 mz W ��gm m m W� W� m y °om10, a A s 5 ��rW'to �y � Z �° � m ,zmm�m;7moiN� <0 u,>�o IWco�o I O o u�-msa mp�� Wv�DmZ.i t Wo C3 mo tZi�(nm� W V"zip 1'N O O N Op II D r°�� T o m�0m.00,aaDov m0 m�ma-i ooxyOm,�o Oram � C -oDiNnZ �Om � .0 Z m 30mO-I �yJf oc� D �z D 0m D v ^ � ��/� � JIA S DZ ZO� Z m � X •Cfn fin-. C% � c V/ m�r{� V nm Z c< X DyZ1� 3i z�iOro O �vm3 c) 90 � �, c) O c 1 myc,D' Z Z � Z iOZO � ZZ tim O v ZZ Smp ZOp �C —L v 080> _ vLi m0�m Gi (i � Z�0D �o=o sxrro 1 me o 11m 1 A < o�Obmm - �yL iiIi ' � z C�y Z 041 DO°•rm � ZOO � m °yam = o�vo w 90 i � 0 CrmD n vz T m yrs � � �ZTo x g c�rv' oD a m o � m O c Z o 0o ZO O mems � �9 �o l � amN � 70 �ozzmo O n omo c (nyOT<ti „ --1 o p AAZ Na c, I�I�� `Q m yO�Ayn Z ay,iZj Tm �YI j N ,0` y x Z N (7 z T V DDyy��oo OXmm 90 � Rr Z��Z mINVERTERtt1 �< ZOZf7innf9'04imav0NoG)Wzn®mmmaC.�%z�^vav��3nmaz�ovosi a W�zW ...-zl, m j 1. Ci � ADND moves z cc�c�f ori'�O O• �O m a� m mzyoD mo zAAD Z 1 �SOZ Dti OpOZ N�j m ( m O �� � O A Z 2 — z 0 a a D n O W�ma�c� caw vyzc� c��A�nmasaz2 i '�� �� W zoz� T� movu! 9nmmo c)p➢�..,➢ -. O �aN�1 '� 1 X Z AOy2 m(/itiC� 03HmtnTT(nAZR,Z 0 �C <I�10 11 ♦ . z ci R, zgm� NvmoO nox _,ZZ<STAStnT�G� �mv��oz � NO � uoio�>2> D m�Nm�<-zimnnzv �TCn'ZN � L� . .00=iN m3D Zynvmmm A G��f Gm�� + C yZ ?DNO r'� �On�DI OmOm Z9 Qm�v� �I Z. �i �% j Km �t0/)yZD I ��tiyAD <Z*' � D rl 0 Ij � O o n<A��� � O DotWi� zvromc� nP OO10 NCA Z WG)D Z fn Zm-012 j Dfni�0Cf47 O O� OA UI I I O n O m 00 _I GJ�2S21 �j _!' ➢A i �c So < X OC N V1 in to mTmcN =C mn�mrX: vADi< ry 'DZ� rO O O ,A„�r�ro oy mm do zvmmi � mN0 D � 5 �-Ac> oD ns yA! cry W D ozn�� o8m o°S' nol o➢ y�2 SI SI 31 C'T'S~gym ADZ mGi D � O� A K T 0 0�•1 y Z T yA � I '' A ' � m m m zonnN moZ T= 9n� ax Li N N (n ou'omm rD�r LJ ycj vn � j N XaTNyO 9m I ➢< I mOmO^� mOzO�' z�� `-�� j 1 < <Wo W o z Z Z Z c -i mv� -40 XX x= X�< m m m m IT! a N zv9N oz -4:OD *m m m m .. .. N m S W W W W mm z z z m c S S FME cm m y z o 0 0 CD 00 co 5 v n � Bi7�0 7�0 7�0 � o m z z z rn � " n G) 0 G> ?? m D O O O W N T L c o n con c { 1 5? O CJI 1 O � CIO — } 0 0 0 pq r' � y m I ci � a � 0 ® t i Al Obi r � C31 0,11 E Z� 0 o Om � m D o (7 a o W N O O '00 O C O O () �m r avv n Z Z-0� �z -'z �z Som C �,<n-'1 � �m �m �m W N V V "S2 c UZ W � � � � � � N A A �f�im OW OW OW ..00 O N� V� N� V21 m z CD 00 mTi N N� �'O C W � In r m D W D N � O m REG F F � � CD 77 ,' o D E N N I cn m 0 36625 KEVIN RD. STE. 147/48 C N � �m ROBERTS N p�) 0-,Mhm WILDOMAR, CA 92595 N m Ir6 951-696-9400 1 � � m D 50375 VISTA paw BRIAN Precis So/ar HOPWOOD 3 MONTANA ROAD LA��'� Lic. No. 952305 QUINTA, CA 92253 '� �33N\`�� PjY" �orl -D2oQ _ _ ecis Solar, �Eechr�at®gy ��ryxy�'�nv�r�ranve�►t STRUCTURAL CALCULATIONS 16.17 kW GROUND MOUNT SOLAR PV SYSTEM Project: THE ROBERTS RESIDENCE 50375 VISTA MONTANA, ROAD LA QUINTA; CA 9283 � UIN -rpPnPrlredJnr: SAFTYpEPT®�ON,�®PretsS lac TIpN36635 KeWn Road DATE Wildmmar, C1 k595 �ley PH: 951=696-9.400 .- pROF�3$�p •+ . �1D 1/ql '' � Qi0.ti9a � By: Leon u quiza, y' g Date: 70/6/2025 1 certify that this proposed structure is cede compliant and able to withstand the loads of the proposed PV system brlSdpll��IflPd. ' Roberts Residence Page 2 Ground Mount Report 10/6/2015 By R.G. Dealer.— Project -Name;._ Roberts Residence Create Date: 2015-30.06718:26:28.0700 "'s, BOM°ft? 43149 iia* 7 _ No''_ , ,... Premium Atloy<Rail No_ __ Pv Module Data: Module Brand SunPower Length 61:39 inches Model SPR-327NE-WHT-D Width 41:18 inches Environmental Requirements: Depth .. 1:61. inches Standard IBC 2012 Weight, - 41:00 pounds Snow Load 0 psf Rated power @ STC 327• _ _.- W Wind Speed 130 mph Rail Color ' Black Array Information: Racking Color _ __..:Black' Tilt 20 de rees Number of rows per array 4 High (Landscape) Number of columns per array _26, End clamp Universal Number of arrays _ _,_,1. _--i Minimum Height of Leading Edge , - _36.w , ,} inches Pipel Sch.40 Module Overhang ",. p15i_ I inches Pipe Fittings Material Aluminum/Hollaender Grounding Method WEEBs Foundation Option Standard Pier Bracing Standard' Existing Terrain: N-5Slope � Microinverter Attachment Kits No. .Maw _ _>Att usteaL E=W„post spacing 81 r80 inches,. Total Array,length 102 51 feet 'wt—04•spa.Wfj '§197!rflCFies E=1fi<eXteiio�postdistance 100007Ffeet% Front Piee OeptFi 30:00 inches E-.Wjezferior rdil distance 1'00.02 feet Ba"ck PieeQepth 48:06 inches Rail -Span (RS) ;,100 00 inifie$, Balls perColurnn 2 RaihOvefiang (RO) 3111, ` inches Total Number ofModules .__,M Plpe;1S" (1:9-'Outslde.( meter) (P..er;Afta �� ove`'rade _TbiAbahigtt' Totati�uanTOtaLkd$#: � ._ � i _ Total Feet•. Back Post 16 81.52 1 9358 irtcties1 16 � H2h 32. ; - PerArra Let z Totav ntay'Total Feet Horizontals 2 f66 -5i i feet. . _,2. 201.04, Brace A4 16 j '.105 21 .: incties'Y6 =140.26 ;. Brace C� 5 Every3rd:8ay 114 92 pitches i 5 ° :47:88 Brace D: 5 Every:3rd Bay 93:81 inches I Total Pipei 714 Feet NOtE: PlPejm'�hiaMccncretequantiditvare estirnatlgmand rraynotreflect conditions In the Held. Note: All Pipe lengths” are estimated to he slightly tong: i . _ _ .COnCrete. Eftlmate Pipe coUpli'ngs will slighfl'y reduce length aficross braces, t�� 601b Bags of Cudlc<Yards and terrain variations 669 effect ierigttis as Well Cofieretil ,. Roberts Residence Ground Mount -Report 10/6/2015 Page 3 By R.G. MAX RAIL OVERHANG (RO) MAX RAIL LENGTH (RL) B' RAIL SPAN (RS SNAPNRACK GROUND RAIL WITH MAX RAIL LENGTH (RL), V RAIL SPAN (RS) AND MAX RAIL OVERHANG OR CANTILEVER (RO) ARRAY TILT ANGLE MAX 46' I{ ABOVE GRADE 6-" Slandard Installation Rear View Bracing .RAY SIDE VIEW "-" t ULi•m I 6' MAX Roberts Residence Page 4 Ground Mount Report WIND CALCULATIONS 27.4.3, Design Wind Load on Open Structures with Monoslope CNw = -1.30 CIL = 1.73 1 -22.53 psf 5 0.04 psf CIL = -1.50 CNw = 1.57 -26.00 psf 27.16 Case A Case A CNw = -2.23 CIL = 0.67 2 ,-38.71 psf 11.56 psf CIL = 0.20 6 CNw = 2.07 -3.47 psf 35.82 Case B Case B Clear Wind Flow CNw = -1.37 CIL = -1.03 3 -23.69 psf -17.91 psf CIL = -1.63 7 CNw = 0.47 -28.31 psf 8.09 Case A Case'A CNw = -2.23 CIL -0.1 -38.71 psf -1.73 psf 4 CIL =-0.60 8 CNw = 1.27 -13.87 psf 21.96 h 0.51- 0.5L Case B Case B 1016/2015 By R.G. psf psf Obstructed Wind Flow ASCE 7-10 Figure 27.4.4 p= qh G CN (27.4-3) q,.= .00256 K: KZi Kd V2 (27.3-1) Roof Angle = 20 ° Mean Roof Height h =` 5.3683 FT E) = C Evosure coefficient K. = 0.85 T-27.3-1 Topography factor Kt = 1.00 T-26.8-1 Directionality factor Kd = 0.85 T-26.6-1 Building & Structure Risk Category = I, low hazard IBC T-1604.5 Wind Speed V = 105 MPH Fig. 26.5-1C, MRI = 300 yrs q: = 20.39 PSF Gust Effect factor G = 0.85 26.9 CN = Net pressure coefficient frorr T-27.4-1 p = 17.33 CN PSF psf Roberts Residence Ground Mount Report 10/6/2015 Page 5 By R.G. r 1. Civw and CNL denote net pressures (contributions from top and bottom surfaces) for oindmrd and leeward half of roof surfaces, respectively. 2. Clear Kind flowdenotes relatively unobstructed Hind Now Kith blockage less than or equal to 50%. Obstructed Nand flow denotes objects below roof inhibiting Kind flow(>50%blockage). 4. Plus and minus signs signify pressures acting toKerds and away from the top roof surface, respectively Simple Span L = 13.85167 FT Distance between supports: I = 7.8308 FT RL = 238.38 lbs/ft TRL = -258.16 lbs/ft RR= 206.92Ibs/ft RR= -194.23 lbs/ft Wind Loads Condition 6.Clear Wind Flow, Dir =180 Deg, Case B 4.Obstructed Wind Flow, Dir=O Deg, Case B 5.Clear Wind Flow, Dir 180 Deg, Case A 3.Obstructed Wind Flow, Dir -0 Deg, Case Roberts Residence Ground Mount Report 10/612015 Page 6 By R.G. CONCRETE PIER DESIGN Criteria: 1.) Per CBC 2012 Chapter 18A 2.) Assume Allowable Foundation and Lateral Pressure as per UBC Table No. 1806A.2 3.) Soils Report shall supercede all assumptions. 4.) Assume structure not adversely affected by a 1/2" motion at ground surface due to short term lateral loads. TABLE 1808A.2 PREsuIUPTtvla 1 nAn..APAlalrur. vel tip - For SI: 1 pound per square foot = 0.0479 kPa. 1 pound per square foot per foot = 0.157 kPa/nl. o. Coefficient to be multiplied by the dead load. b. Cohesion vulue to be multiplied by the contact area, as limited by Section I8WA.3.2. OPTIONAL: FORM TOP CF PIER 4" TYPICAL ABOVE GRADE WITH Ir SOWITUSE `4" 1W. HSGHT A130bE GRADE i� r' .- .t APRAY i:' AUGr 1. LATERAL BEARING LATERAL SLIDING RESISTANCE N� \\ VERTICAL FOUNDATION PRESSURE Coefficient of friction' Cohoolon (ppf)b CLASS OF MATERIALS PRESSURE: (pef) (pef/h below natural Prado) I. Crystalline bedrock 12,000 1,200 0.70 — 2. Sedimentary and foli- 4,000 400 0.35 — aled rock 3. Sandy gravel and/or 3,000 200 0.35 — gravel (GW and GP) 4. Sand. silty sand, clayey sand, silty gravel and 2.000 150 0.25 clayey gravel (SW, SP, SM, SC, GM and GC) 5. Clay, sandy clay, silty clay, clayey.silt, silt and 1.500 100 — 130 sandy silt (CL, ML, MH and CIA) For SI: 1 pound per square foot = 0.0479 kPa. 1 pound per square foot per foot = 0.157 kPa/nl. o. Coefficient to be multiplied by the dead load. b. Cohesion vulue to be multiplied by the contact area, as limited by Section I8WA.3.2. OPTIONAL: FORM TOP CF PIER 4" TYPICAL ABOVE GRADE WITH Ir SOWITUSE `4" 1W. HSGHT A130bE GRADE i� r' .- .t APRAY i:' AUGr 1. b � ~�~ CCNCRETE PIERS 1 N� \\ '�� CONCRETE: 2,500 _ �` ASA.. PIER OEM � \ PSI MIN. ice` PIER SHORT _ PER TALL I PIPE.':�.i PPE j- --J—PIER _I—PIER DIAMETER IYnllw sgylioll STANDARD 12, TYR PIER DETAIL ' Roberts Residence Ground Mount Report 10/6/2015 Page 7 By R.G. B. Check For Resistance to Vertical Loads (Front) Input: d = 2.50 Depth of embedment (FT) L= 6.4 ft 1-1/2" Pipe S = 2000 Allowable Soil Bearing Pressure (PSF) Wt.= 2.72 LBS/FT Weight b = 12.0 Diameter of Concrete Pier (INCHES) Wt. = 203.6 LBS Modules Loads: Wind= 206.92 LBS/FT @ 6.7' (PS) Wind= 1379 LBS 1. D.L. + L.L. = 1583 LBS Vertical Load (Wind Governs) 2. Column D.L. = 18 LBS (1-1/2" dia. steel ) 3. Concrete D.L. = 295 LBS Concrete Pier Total 1895 LBS Allowable Friction _ "Allowable Soil Bearing Pressure / 6 333 - LB/SF Friction Area = 8 SF Allowable Load 2618 LBS > 1895 LBS USE : 12 inch diameter x 2.50 feet deep C. Check For Resistance to Uplift Loads Input: d = 2:50 Depth of embedment (FT) S = 2000 Allowable Soil Bearing Pressure (PSF) b = 12.0 Diameter of Concrete Pier (INCHES) P(UP) = -1295 LBS (See Sheet 3 of Calculations) Loads: 1. D.L. = 203.6 LBS LBS (Modules) 2. Column D.L. = 18 LBS (Pipe) 3. Concrete D.L. = 295 LBS (Concrete Pier) Total 516 LBS Allowable Friction = Allowable Soil Bearing Pressure / 6 333 LB/SF Friction Area = 8 SF Allowable Load = 3134 LBS > -1295 LBS U 12 inch diameter x 2.50 feet deep Safety Factor = 1.4 Wind= -194.23 LBS/FT @ 6.7' (PS) Wind= -1295 LBS Safety Factor = 2.4 Roberts Residence Ground Mount Report 10/6/2015 Page 8 By R.G. B. Check For Resistance to Vertical loads (Back) Input: d = 4.01 Depth of embedment (FT) L = 10.8 ft 1-1/2" Pipe S = 2000 Allowable Soil Bearing Pressure (PSF) Wt. = 2.72 LBS/FT Weight b = 12.0 Diameter of Concrete Pier (INCHES) Wt. = 203.6 LBS Modules Loads: 1. D.L. + L.L. _ 2. Column D.L. _ 3. Concrete D.L. _ Total Allowable Friction Friction Area Allowable Load Wind= 238.38 LBS/FT @ 6.7'(PS) Wind= 1589 LBS 1793 LBS Vertical Load (Wind Governs) 29 LBS (1-1/2" dia steel ) 472 LBS Concrete Pier 2294 LBS Allowable Soil Bearing Pressure / 6 333 LB/SF 13 SF 4194 LBS > 2294 LBS USE: 12 inch diameter x 4.01 feet deep C. Check For Resistance to Uolift Loads Input: d = 4.01 Depth of embedment (FT) S = 2000 Allowable Soil Bearing Pressure (PSF) b = 12.0 Diameter of Concrete. Pier (INCHES) P(LIP) = -1721 LBS Loads: 1. D.L. = 203.6 LBS LBS (Modules) 2. Column D.L. = 29 LBS (Pipe) 3. Concrete D.L. = 472 LBS (Concrete Pier) Total 705 LBS Allowable Friction = Allowable Soil Bearing Pressure / 6 = 333 LB/SF Friction Area = 13 SF Allowable Load = 4899 LBS > USE : 12 inch diameter x 4.01 feet deep -1721 LBS Safety Factor = 1.8 Wind= - 258.16 LBS/FT @ 6.7' (PS) Wind= - 1721 LBS Safety Factor= 2.8 ELECTRICAL LOA® CALCULATIONS &P4 '2�s - M Owner D nes Rvbwi� O Address j - Ve !,1A0�_ P4 lYl cre- Prepared by General Lighting Load Sq.Ft. `� % ` X 3 Volt Amps = )6) ;�e)o VA Small Appliance Circuits at 1500 VA each x `'/ (min. of two) = 6> O0 0 VA f Laundry (Washing Machine) Circuit 1500 VA x � (min. e) � / VA Sub -Total //��C�®W - VA First 3,000 VA of Lighting, Small Appliance-, Laundry Load 106'r����` e ^ 3,000 VA From 3,001 to 120,000 VA at 35% X .3 F� I`�'p S`qF� ' v�� / / 170 VA Over 120,000 VA use 25% WIA- x. !b. �oNsl I ��Fa_ I " 1— VA Electrical CookingAppliances, Use NEC Table 220-55 �R�CT�® PP � (Number of Appliances) Demand 10 % x Total kW 6 Z5 (Co A 1, 0 = 1006 VA (Number of Appliances) Demand 35 % x Total kW ,030 (Column B) x 1, 1 � � a VA (Number of Appliances) -----Demand �o x Total kW (Column B) x 1,000 = P �A VA Dryer Loads use NEC Table 220-54 = /J i 7 Y VA (1) Sub -Total = 6 1� VA Heating/Air Conditioning - List type and VA at 100% (H) 'east Pum (G) Gas + Cool (S) Heatcip (Al Cir (2) Sub -Total = Yl VA Fixed Appliances Microwave 1300 VA x ( Food Center 600 VA x Compactor 1200 VA x N/ Hot Water 4500 VA x Dishwasher 1200 VA x l VA x Disposal 400 VA x VA x Cent Vacuum 1500 VA x VA x "Z)5 - Appliance Subtotal q x ( 75%) (3) Sub -Total = " J VA Add 25% of the largest motor (typical AC compressor) X 25% LM (4) Sub -Total =� VA (5) Spare 20arnps x 240 volts Sub -Total = / VA GRAND TOTAL (Add Sub Totals (1), (2), (3), (4) & (5) _ tlq % -7gs— vA Total Volt Amps ` q/74c5- Divide by 240 Volts = 96Amps Service Size d�,g Pue, Grounding Electrode Conductor • .y nec U� CE Product Data Sheet DU222RB SWITCH NOT FUSIBLE GD 240V 60A 2P NEMA3R Technical Characteristics 0 by Schneider Electric List Price $353.00 USD Availability Stock Item: This item is normally stocked in our distribution facility. Number of Poles 2 -Pole Terminal Type Lugs Type of Duty General Duty Maximum Voltage Rating 240VAC Wire Size #10 to #2 AWG(AI) - #14 to #2 AWG(Cu) Action Single Throw Ampere Rating 60A Approvals UL Listed File Number E2875 Enclosure Rating NEMA3R Enclosure Type Rainproof and Sleet/Ice proof (Indoor/Outdoor) Factory Installed Neutral No Disconnect Type Non -Fusible Mounting Type Surface Shipping and Ordering , Category 00106 - Safety Switch, General Duty, 30 - 200 Amp, NEMA3R Discount Schedule DE1A GTIN 00785901491491 Package Quantity 1 Weight 4.7 lbs. Availability Code Stock Item: This item is normally stocked in our distribution facility. Returnability Y Country of Origin MX As standards, specifications, and designs change from time to time, please ask for confirmation of the information given in this document. Generated: 09/07/2012 11:07:32 O 2012 Schneider Electric. All rights reserved. Schneider VElectric January 15, 2014 Attn.: Engineering Department, IAN ETH '< yzq�y FG CD LU No. S3878 UCTOk 9TF OF CA\-\F� Re: Engineering Certification for UniRac's SolarMount Code -Compliant Installation Manual 227.3 PZSE, Inc. -Structural Engineers has reviewed UniRac's "SolarMount Code -Compliant Installation Manual 227.3 published October 2010 and specifically "Part I. Procedure to Determine the Design Wind Load", and "Part II: Procedure to Select Rail Span and Rail Type". This letter certifies that the structural calculations contained within UniRac's "SolarMount Code - Compliant Installation Manual 227.3 published October 2010 are in compliance with the following Codes 1. 2012 International Building Code, by International Code Council, Inc. 2. 2013 California Building Code by California Building Standards Commission 3. 2010Aluminum Design Manual, by The Aluminum Association If you have any questions on the above, do not hesitate to call. Sincerely, k� Paul Zacher, SE - President 8137 Sunset Avenue, Suite 120 • Fair Oaks, (A 95628 • 916.961.3960 • 916.961.3965 f • WWWRSUCH 0 ::�UNIRAC A HILTI GROUP COMPANY SolarMount Beams Part No. 310132C, 310132C -B, 310168C, 310168C -B, 310168D 310208C,310208C-B,310240C,31024OC-B,310240D,_ 410144M, 410168M, 410204M, 410240M Properties Units SolarMount SolarMount HD Beam Height in 2.5 3.0 Approximate Weight (per linear ft) plf 0.811 1.271 Total Cross Sectional Area in' 0.676 1.059 Section Modulus (X -Axis) in3 0.353 0.898 Section Modulus (Y -Axis) in 0.113 0.221 Moment of Inertia (X -Axis) in' 0.464 1.450 Moment of Inertia (Y -Axis) in 0.044 0.267 Radius of Gyration (X -Axis) in 0.289 1.170 Radius of Gyration (Y -Axis) in 0.254 0.502 SLOT FOR T -BOLT OR 4" HEX HEAD SCREW 2X SLOT FOR BOTTOM CLIP SLOT FOR 38" HEX BOLT 387— .750 Y �--► X SolarMount Beam LA11I11 SLOT FOR T -BOLT OR 1/4" HEX HEAD SCREW SLOT FOR BOTTOM CLIP SLOT FOR HEX BOLT Y i 1.875 -� X SolarMount HD Beam 3.000 11 1.385 = I I Dimensions specified in inches unless noted SolarMount Beam Connection Hardware SolarMount L -Foot Part No. 304000C, 304000D Y #—► X Df AOT fQR KkWWAPE !f{ 2.01 -- Dimensions specified in inches unless noted an UNIRAC A HILTI GROUP COMPANY • L -Foot material: One of the following extruded aluminum alloys: 6005- T5, 6105-T5, 6061-T6 • Ultimate tensile: 38ksi, Yield: 35 ksi • Finish: Clear or Dark Anodized • L -Foot weight: varies based on height: —0.215 lbs (98g) • Allowable and design loads are valid when components are assembled with SolarMount series beams according to authorized 301t UNIRAC documents L -Foot For the beam to L -Foot connection: • Assemble with one ASTM F593 W-16 hex head screw and one ASTM F594'/a'serrated flange nut • Use anti -seize and tighten to 30 ft -lbs of torque • Resistance factors and safety factors are determined according to part 1 section 9 of the 2005 Aluminum Design Manual and third -party test results from an IAS accredited laboratory NOTE: Loads are given for the L -Foot to beam connection only; be sure to check load limits for standoff, lag screw, or other attachment method Applied Load Direction Average Ultimate lbs (N) Allowable Load lbs (N) Safety Factor, FS Design Load lbs (N) Resistance Factor, m Sliding, Z± 1766 (7856) 755 (3356) 2.34 1141 (5077) 0.646 Tension, Y+ 1859 (8269) 707 (3144) 2.63 1069 (4755) 0.575 Compression, Y- 3258 (14492) 1325 (5893) 2.46 2004 (8913) 0.615 Traverse, X± 486 (2162) 213 (949) 2.28 323 (1436) 0.664 SolarMount Mid Clamp Part No. 302101 C, 302101 D, 302103C, 302104D, 302105D,302106D WrWeen V40ULM � ! rM Y I I L ►.X Dimensions specified in inches unless noted SolarMount End Clamp Part No. 302001 C, 302002C, 302002D, 302003C, 302003D,302004C,302004D,302005C,302005D, 302006C,302006D,302007D,302008C,302008D, 302009C,302009D,302010C,302011C,302012C �?UNIRAC A HILTI GROUP COMPANY • Mid clamp material: One of the following extruded aluminum alloys: 6005-T5, 6105-T5, 6061-T6 • Ultimate tensile: 38ksi, Yield: 35 ksi • Finish: Clear or Dark Anodized • Mid clamp weight: 0.050 lbs (23g) • Allowable and design loads are valid when components are assembled according to authorized UNIRAC documents • Values represent the allowable and design load capacity of a single mid clamp assembly when used with a SolarMount series beam to retain a module in the direction indicated • Assemble mid clamp with one Unirac'/4"-20 T -bolt and one Y4"-20 ASTM F594 serrated flange nut • Use anti -seize and tighten to 10 ft -lbs of torque • Resistance factors and safety factors are determined according to part 1 section 9 of the 2005 Aluminum Design Manual and third - party test results from an IAS accredited laboratory Applied Load Direction Average Ultimate lbs (N) Allowable Load lbs (N) Safety Factor, FS Design Load lbs (N) Resistance Factor, m Tension, Y+ 2020 (8987) 891 (3963) 2.27 1348 (5994) 0.667 Transverse, Z± 1 520 (2313) 229 (1017) 2.27 1 346 (1539) 0.665 Sliding, X± 1194 (5312) t490 (2179) 2.44 1 741 (3295) 0.620 -- • A 1.5 It � NOt1+4J►1 VARIEvARrrs S wtrn �aoue Tntc?m Dimensions speci • End clamp material: One of the following extruded aluminum alloys: 6005-T5, 6105-T5, 6061-T6 • Ultimate tensile: 38ksi, Yield: 35 ksi • Finish: Clear or Dark Anodized • End clamp weight: varies based on height: —0.058 lbs (26g) • Allowable and design loads are valid when components are assembled according to authorized UNIRAC documents • Values represent the allowable and design load capacity of a single end clamp assembly when used with a SolarMount series beam to retain a module in the direction indicated • Assemble with one Unirac'/4"-20 T -bolt and one''/4"-20 ASTM F594 serrated flange nut • Use anti -seize and tighten to 10 ft -lbs of torque • Resistance factors and safety factors are determined according to part 1 section 9 of the 2005 Aluminum Design Manual and third - party test results from an IAS accredited laboratory • Modules must be installed at least 1.5 in from either end of a beam Applied Load Direction Average Ultimate lbs (N) Allowable Load lbs (N) Safety Factor, FS Design Loads lbs (N) Resistance Factor, m Tension, Y+ 1321 (5876) 529 (2352) 2.50 800 (3557) 0.605 Transverse, Z± 63 (279) 14 (61) 4.58 21 (92) 0.330 Sliding, X± 142 (630) i 52 (231) 2.72 79 (349) 0.555 m ::�UNIRAC A HILTI GROUP COMPANY SolarMount Technical Datasheet Pub 110818 -ltd V1.0 August 2011 SolarMount Module Connection Hardware.................................................................. 1 BottomUp Module Clip.................................................................................................1 MidClamp....................................................................................................................2 EndClamp....................................................................................................................2 SolarMount Beam Connection Hardware......................................................................3 L-Foot........................................................................................................................... 3 SolarMountBeams..........................................................................................................4 SolarMount Module Connection Hardware BE SolarMount Bottom Up Module Clip - Part No. 302000C Dimensions specified in inches unless noted • Bottom Up Clip material: One of the following extruded aluminum alloys: 6005-T5, 6105-T5, 6061-T6 • Ultimate tensile: 38ksi, Yield: 35 ksi • Finish: Clear Anodized • Bottom Up Clip weight: —0.031 lbs (14g) • Allowable and design loads are valid when components are assembled with SolarMount series beams according to authorized UNIRAC documents • Assemble with one %"-20 ASTM F593 bolt, one %"-20 ASTM F594 serrated flange nut, and one %" flat washer • Use anti -seize and tighten to 10 ft -lbs of torque • Resistance factors and safety factors are determined according to part 1 section 9 of the 2005 Aluminum Design Manual and third - party test results from an IAS accredited laboratory • Module edge must be fully supported by the beam * NOTE ON WASHER: Install washer on bolt head side of assembly. DO NOT install washer under serrated flange nut Applied Load Direction Average Ultimate lbs (N) Allowable Load lbs (N) Safety Factor, FS Design Load lbs (N) Resistance Factor, m Tension, Y+ 1566 (6967) 686 (3052) 2.28 1038 (4615) 0.662 Transverse, X± 1 1128 (5019) 329 (1463) 3.43 497 (2213) 0.441 Sliding, Z± 66 (292) 27(119) 2.44 41 (181) 0.619 Mr. Rick Gentry QUICKSCREWS INTERNATIONAL Adjustable Tile Roof Hook December 9, 2013 Project Number 113778C Test setup and typical hook bending at maximum load are provided in Appendix A. Based on the above testing, the average maximum tensile load of the adjustable tile hook attached to a 2"x4" Douglas Fir rafter using #14 Quickscrew was determined to be 1040 lbf. 3. Specific Gravity of Wood The average specific gravity and moisture content of the test rafter as per ASTM D2395, Method A (oven -dry) was determined to be 0.424 and 11.0 %; respectively. If you have any questions regarding the above, please do not hesitate to call the undersigned. Respectfully Submitted, APPLIED MATERIALS & ENGINEERING, INC. ani aiyaz Laboratory Manager Reviewed By: Armen T jria , Ph.D., P.E. Principal 11casm 2,s Page 2 of 8 APPUEDD HATEROALO A EMMONS, ONQ APPLOGDD HGa` E ROALS o EMOONEERON89 ONC . 980 41St Street Tel: (510) 42U-8190 Oakland, CA. 94608 FAX: (510)_ 420-8186 e-mail: info@appmateng.com December 9, 2013 Mr. Rick Gentry QUICKSCREWS INTERNATIONAL 5830 Las Positas Road Livermore, CA 94551 Project Number 113778C Subject: Adjustable Tile Roof Hook (Part # STRHADJ9038) Laboratory Load Testing Dear Mr. Gentry: As requested, Applied Materials & Engineering, Inc. (AME) has completed load -testing the adjustable tile roof hooks (see Appendix A, Figure 1). The purpose of our testing was to evaluate the tensile (uplift) and compression load capacity of the adjustable tile roof hook attached to a 2"x4" Douglas Fir Rafter using 2 - #14 x3" Hex washer T17 302 stainless steel Quickscrews installed at the farthest point. SAMPLE DESCRIPTION Mockup samples were delivered to our laboratory on November 13, 2013. Mockup configuration. consisted of five 12" long rafters at 2.5"o.c., screwed to 3/4" Structural I plywood. The tile roof hook is attached- through the plywood into a rafter with two fasteners. TEST PROCEDURES & RESULTS 1. Compressive Load Test A total of three tests were conducted for compressive load capacity on December 6, 2013 using a United Universal testing machine. Samples were rigidly attached to the testing machine and a compressive load was applied to the hook. The samples were loaded in compression at a constant rate of axial deformation of 0.09 in. /min. without shock until the hook was completely bent; displacement at maximum load was recorded. Detailed results are provided in Table I. Test setup and typical hook bending at maximum load are provided in Appendix A. Based on the above testing, the average maximum compression load of the adjustable the roof hook attached to a 2"x4" Douglas Fir rafter using #14 Quickscrew was determined to be 328 lbf. 2. Tensile (Uplift) Load Test A total of three tests were conducted for tensile load capacity on December 6, 2013 using a United Universal testing machine. Samples were rigidly attached to the testing machine and a tensile load was applied to the hook. The samples were loaded in tension at a constant rate of axial deformation of 0.09 in. /min. without shock until the hook was bent and the bolt began to pull-out; displacement at maximum load was recorded. Detailed results are provided in Table II. Page 1 of 8 . APPLIED WG;1'1►EMALI A ENOINEEMN®m INC.