Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
BRES2015-0004 (Structural & Truss Calcs)
Summit'Structural Eng gineerin • s, n PO BOX 2618 r ' 902.Baycolt Way - McCall,. ID 83638 (208) 634-8148 Fax (208) 634-6395 ' February 23, 2015 JMW Truss' 2615 Auto Park Way i Escondido, CA 92029 :- Attn:; Jigiar g Cao Subject: YRoof Truss Shop Drawings and Calculations • Moreland Addition a 52-887 Sovana Lane .(Hideaway), _ :R_ La Quinta,-CA 92253 ` Dear Truss Designer, , The roof truss drawings by. JMW Truss for the subject -project were received by our office on February 20,F2015, and are approved' The submittal has been reviewed for general conformance to . the design concept of the project structural plans.. The fabrication' processes, techniques !of construction, dimensions, and quantities are not a- part of chis review.' Since the shop drawings were reviewed only for general conformance with the structural plans, unless variations from,the structural' plans have been clearly indicffied, we may not have listed them Our ,review :of tliese drawings does not'relieve.the truss J`engineer and the framing contractor from complying with the structural plans. , ` Yours truly; SUMMIT STRUCTURAL ENGINEERING r. CITY\N HF t OF LA QUI �s� v LDING & SAFETY DE ' No. C054193 � r PPROVE D Exp. 12 31 FOR CONSTRUCTIONs� civic. 9lF OF CA0�� , -Benjamin, Herbst, P.E.By r y _ BH - • c:\20,14jobfiles\KD-494\494_truss2.doc ' ` Residential; Commercial; Industrial, Land Development � 6 MIUO �O YTI .T�3C1 YT39A? Z roiilojiu 3 G `/ R09A �QiTOlff�T?tl0 i~D��d ya 3Ta f f b ,�, Truss Truss Type Oty Ply WEBS 501025 A01 .UEENPOST 1 1 in (loc) I/deft Ud . PLATES- GRIP TCLL 20.0: :.: Job Reference (optional) 001 .. .. . i ao�.s aep a c� � � rvn , en muusu,es, mc.. rn reo z� , rzv Do zu, 3 ra e i . ID wwRly?yo3AWyYNRZHggkmz4kSM-OAmoCptOPOtVtwpjWJnsHbbUjFRrMHgBBrvW81zj Dp l -2-0-0 4-2-47.8.12 11-2-4 15-4-0 2-0-0 4-2 4 3-6-8 3.5.8 4-1-12 Scate = 1:28.5 _ 5x4=: •. 3x45 = x6 = 4 "18 19 .: 5. 20 :6. 7. . _ T2 5.00 2x4 i / W2 i W3 y/q W5 N4 T1 ' �\ y 15 12 13 14 16 17:_ g G. •3x6 = •- 3x10.= 5x6 =. 3x4= 8 7-8-12 11-2.4 15-4-0 ' late Offsets (X,Y)_ 2:0-0 2 Edgeji[4:0-2-0,0-2-11]Alt • . . .. . . .. .... . . - - PCHORD 2x4 DF No.211) CHORD. 2x4. DF.180OF 1.6E WEBS Hanger(s) or other connection devices)shall be OADING (psf) : : SPACING2-0-0. CSI .. DEFL in (loc) I/deft Ud . PLATES- GRIP TCLL 20.0: :.: Plates Increase'.: :1.25 TC '0:54, Vert(LL) -0x17 2-11 >999 •360' MT20 185/148 CDL 24:0 ' Lumber Increase 1.25. BC 0.86 Vert(TL)=0.37 2;11 >484 240 .: MiTek recommends that Stabilizers and re aired q CLL 0.0 ' Rep Stress Inci • NO WB 0.77 Horz(TL) ' 0:03 ' ' 9 n/a n/a ' CDL; 10.0 Cod6IRC2012/TPI2007 (Matrix) :Wind(LL) 0.03 11'. 5999: ::240 Weight:;71 lb FT = 20% , LUMBER • . . .. . . .. .... . . - - PCHORD 2x4 DF No.211) CHORD. 2x4. DF.180OF 1.6E WEBS Hanger(s) or other connection devices)shall be COT2x4 HF Stud/StiffG. 3-11=-340/61, 4-11='-74/263; provided sufficient to support concentrated loads)BS - ACING 6-9='-1353%185, 5=11'=-57/668, Ib down and 1681b up at:7-8 :12, and 2051b down.and TOP CHORD 5-10=-925/178, 6-10=-152/1650 130 Ib up at 8-0-i 2, and 205 Ib down and 130 Ib up at 'A ' tructural wood sh•eathing directly applied or. 4-0-3 oc 4-0-12 on.topchord, and 101 Ib down at 2-0-12, 107 urlins. NOTES Ib down; at :4-0-12,'l07 lb down:at 6-0-12, ;1'08 lb down OT CHORD 1,) Unbalanced roof live loads, have been considered.for at 10-0=12, and 108 Ib down at 12.0-1.2, and 108 Ib igid:ceiling directly applied of 10:0-0 oc bracing. this:design. " :" down at 14-0-12 on* bottom chord: The MiTek recommends that Stabilizers and re aired q 2) Wind: ASCE 7-10; Vult=115mph (3 -second gust) ; design/selection of such connection device(s):'is iFie responsibility of others.. cross bracing:be installed during truss erection, in V(IRC2012)=91 mph; TCDL'=6:Opsf; BCDL=6.Opsf; 12)'Tbis truss does not include ah time.dependant accordance.with Stabilizer Installation uide'.- . 9 h=25ft; f3=45ft; L=24ft; eave=2ft Cat. ll; Exp C;: enclosed;.MWFRS directional); Lumber DOL=.1.60 deformation for long term loadirig•(sreeP) in the total . REACTIONS Ib/size ( ) `' plate grip DOL=1.60 load deflection. The buildmg.designer shall verify that this parameter fits with the intended use of this ' 2: =:: 1309/0-5-8 min. 0-1-9 3) Provide adequate; drainage to prevent water ponding.: . . • component. 1314/Mechanical) truss has been 4) This t n designed for a 10.0 psf bottom .. • 13),In.the LOAD CASE(S) section, loads applied t6the the �ax Horz .. . 8) chord live:load nonconcurrent with any other live loads.. 5) ' This truss has been designed for a:live load of face of the truss are noted as front (F) or back (B). Max Uplift 20.Opsf on:the bottom chord in all areas.where a : . .. 2: : : _; . --130(LC 8 ( ) c 6 0 to : rectangle 3 II by 2=0-0 Wide.will fit between the: LOAD CASE(S) -' 1.33(L'C 5,) bottom chord and any other members. : Standard y ax'Grav 6) A plate.rating reduction of 20% has been, applied for- 1) Regular:, Lumber Increase=1:25,:Plate Increase=1.25 - 1441 (LC 2) eRgreen um embers. Uniform Loads ( If) P 9 = 1442 LC 2 • ( ) Refer ) e to:girderO for truss to truss connections. Vert; 2-8=-20., 1-4=-78, 4-6=-78, 6-7=-48 " ' 8) Provide mechanical connection (by others) of truss to Concentrated Loads (lb) ORCES Ib ( ) bearing plate capable of withstanding 130 Ib uplift of Vert: 4=-290 1 - 4(F) 14=-54(F) ax. Comp./Max. Ten. All forces 250 (Ib) or less except ' joint 2 and 133 Ib uplift at joint 9: 9) is in 15= 54(F) --182(F) Q hen shown.. : :. TOP This truss: designed accordance with the 2012 International: Residential Code sections R502.11.1 and 20=-182 Q q CHORD .: ANSUTPI 2-3=-2313/137;3-4=-.1966/131, R802.10.2'and referenced standard 1. 10)"Semi-rigid pitchbreaks including heels''Member:: w JOANG CAO19=-756/139, 18-19=-1757/1:39, f'18=:11757/139, 5-20=-1261/11"6; end fixity model was:used in:the,analysis and design of tri •20=-1261/1.16 C 66380 � thjs.truss. r7 BOT CHORD'::- 2-12=-181/2042, 12-13--181/2042, W Ce7 EXP. 06/30/16 m t=14=-181/2042;11-14=-181/2042, 10-15=x116/1261 EB=416/1261, 3-11'=-340/61.,-.4-1.1=-74/263, F CALF 6-9=-1353/185,:5-11'=-57/668, -925/i78,6 -1d= -i52/1650 110= 7 February 20, 2015: b. � 7-8-12: 15-4-0 Truss Truss Type Qty Ply 2) Wind: ASCE 7-1.6; Vult=115mph (3second'gust) 501025 _ A02 Common Truss 3 1.: CSI ... DEFL .... '..in (loc) 1/defl " L/d... . Jot) Reference (optional) 002 . TCLL 20.0: :.: Plates Increase: : it.25. TC 0.91: Vert(LL) -0i07 :4-5 >999 360 •: : MT20 185/1.48 CDL 240,: Lumber'lncrease Y.25.. BC 0.61 Vert(TL) 0.20 7.350.s Sep 27 2012 MiTek Industries, Inc. Fri Feb 2011:24:59 2015 Page 1 >923 . 240. I D:wwRly?yo3AWYYN RZHggkmz4kSM-UMJAP8u0AK?MH4Ov3015gp8Zdfr?5u EKQVf3gkzjEDo Rep Stress Incr 2-0-0 7.8-12 15-4-0 .. 0:02 2.0.0 7-8-12 7-7-4 CDL: 10.0 Code" IRC2012%TP12007 Scale = 1:27.8 Wind(LL) :0.05 4-5 4x6 :240 :Weight:.501b FT 20% 7) Provide:mechahical connection (by others) of truss to 3 b. � 7-8-12: 15-4-0 Truss Truss Type Qty Ply 2) Wind: ASCE 7-1.6; Vult=115mph (3second'gust) 501025 _ A02 Common Truss 3 1.: CSI ... DEFL .... '..in (loc) 1/defl " L/d... . Jot) Reference (optional) 002 to late Offsets (X,Y)_[4:0-0-10,Edge] • " ' OP CHORD 2x4 DF No:2 "Except* T2: 2x4 DF 1800E 1.6E 2) Wind: ASCE 7-1.6; Vult=115mph (3second'gust) OADING (psf) SPACING 2-0-0 CSI ... DEFL .... '..in (loc) 1/defl " L/d... . PLATES • GRIP . TCLL 20.0: :.: Plates Increase: : it.25. TC 0.91: Vert(LL) -0i07 :4-5 >999 360 •: : MT20 185/1.48 CDL 240,: Lumber'lncrease Y.25.. BC 0.61 Vert(TL) 0.20 4-5 >923 . 240. CLL • 0:10 Rep Stress Incr YES WB 0.18 ;Horz(TL) .. 0:02 4; : n/a n/a"" CDL: 10.0 Code" IRC2012%TP12007 i, (Matrix) Wind(LL) :0.05 4-5 ">999 :240 :Weight:.501b FT 20% OP CHORD 2x4 DF No:2 "Except* T2: 2x4 DF 1800E 1.6E 2) Wind: ASCE 7-1.6; Vult=115mph (3second'gust) OT CHORD 2x4 DF No:7:":: V( RC2012 '9 h• TCDL 6 0 P BCDL' 6 0 I )= 1mp = ps , _ .psf; EBS :" 2x4 HF Stud/Std G . "• h=25ft; B=45ft; L=24ft; save=loft; Cat. ll; Exp C enclosed; MWFRS (directional) and C -C Exterior(2) BRACING CORD. i :' -2-0711 to:0-:1.1-5, Interior(1) 0-11-5 to 7-8,12, tmet,Hral RD d! athing directly applied Exterior(2)7-8-12 to 10-8-12 zone;C-C ;for• members oOP OT CHORD and forces:& MWFRS for reactions shown; Lumber igid:ceil ng directly applied 6� 10; 0-0 oc bracing. DOL=1.60 plate grip DOL=1;60 3) This truss has been designed for a'10.0 psf bottom MiTek recommends that Stabilizers and required , chord live load nonconctirrent.vuith any other live loads.. cross bracing be installed during truss erection; in 4) ' This truss:fias been designed for aai4e load of ' accordance.with Stabilizer Installation guide. 20.0psf on;the bottom chord in all areas where'a " rectangle 3-6-0 tall by 2-0 0 wide will fit'between the REACTIONS (lb/size) bottom chord and any other members. 4: = 724/Mechanical 6) A plate rating reduction of 20% has been applied for*': _ 929/0-5-8: (min. -01-15), the green.lumber members. - ax �Horz 6) Refer to:girder(s) for truss to truss connections. 60(LC 11) 7) Provide:mechahical connection (by others) of truss to .. Max Uplift bearing plate capable of withstanding 53 Ib uplift at joint 4: ; :: _.: -53(LC 12) . 4 and 151 Ib uplift at joint --1.51(LC 12) :.. 8) This truss is designed.in accordance with the 2012 fax Grav .. ._ Internatlonal.Resldentlal Code sections R502.1.1.1 and 797(LC 2) R802.10.2:and;referenced standard ANSI/TPI:1. 2 = 1029(LC 2) 9) "Semi-rigid pitchbreaks including heels".Member end RGES fixitymodel was used in:the analysis and design of this: (Ib) truss.x. Comp/Max. Ten. All forces 250 (Ib) or less except:' raen shown.' 10) This truss does notinclude any time dependant.: �Of ESS/' TOP deformation for. long term loading 6666" .in the total 9 9 ( P) Q !� . CHORD load deflection. The building designer shall verify that 2-6=-1272/120 6-.7=-.1 247/140, this parameter fits with the intended use of this Q All. G CAO 114/155, 3 8=-1104/165,:: :component. � I-'..7=:-.1 9==1139/145, 4-9=-1262/144 _y C 66380 z - OT CHORD ... M 2-5=-69/1046, 4 5==69/1046 LOAD.CASE(S) Uj a EXP. 06/30/16: WEBS 5=0/380 Standard .6 .. . OTES 1) Unbalanced: roof_ live loads have been considered. for F AO: this design: February 20, 2015. b Truss Truss Type Qty Ply 501025 A03 �OUEENPOST SPACING 2-0-0 1� 1' " (loc) I/defl Ud PLATES GRIP TCLL 20.0: ' Joli Reference (optionap 003 /.-MUS Ae Z/ Za ,Z Ml lex Inaustries, Inc. ID:wwRly?you3AWyYNR2Hggkmz4kS-UMJAP8u0AK?MH4Ov30 4-0-12 7-7-4 1 i -1-12 15-4-0 4-0-12 3-6 8 3-6-8 . 4-2-4 • - 4x4 = 3 reo zu n :zaaa zut o ra e , 189cfpS5paKQVf3gkzj Do 17-4-0 2-0-0 Scale = 1:28.5 7-7-4 15-4-0 7.7.4' _ .. 7.8.12 R late Offsets (&Yj. J1:0-0-2,0-0-10]_[5:0-3-0,0-1-8] OP OP CHORD 2x4 DF No.2 NOTES OT CHORD, W.DF.2400F 2.0E EBS 2x4 HF Stud/St.:.: c•; SPACING 2-0-0 CSI . ... DEFL in (loc) I/defl Ud PLATES GRIP TCLL 20.0: ' Plates Increase :1.25 TC 0.47: Vert(LL)' 3x4 = A-7- >999 7-7-4 15-4-0 7.7.4' _ .. 7.8.12 R late Offsets (&Yj. J1:0-0-2,0-0-10]_[5:0-3-0,0-1-8] OP OP CHORD 2x4 DF No.2 NOTES OT CHORD, W.DF.2400F 2.0E EBS 2x4 HF Stud/St.:.: OADING (psf) SPACING 2-0-0 CSI . ... DEFL in (loc) I/defl Ud PLATES GRIP TCLL 20.0: ' Plates Increase :1.25 TC 0.47: Vert(LL)' '-*0.: 13 A-7- >999 360 : < MT20 185/1.48 :. CDL 24.0' Lumber Increase 1.25 BC 0.71 Vert(TL) 0.29 1-7 >614 240 CLL ' 0.0 Rep Stress Ince NO WB 0.48 Horz(TL) 0:04 5 n/a n/a' = 1300,0-5-8' (min. 0-1-8) CDL; 10.0 Code IRC2012/TP12007 (Matrix) Wind(LL) 0.03 1-7 >999 .. 240 Wei6ht::59•lb FT = 20%- 0% OP CHORD 2x4 DF No.2 NOTES OT CHORD, W.DF.2400F 2.0E EBS 2x4 HF Stud/St.:.: 1.)'Unbalanced•root live loads have been'considered.for • • LOAD CASE(S) RACING TOP CHORD this design. 2) Wind: ASCE 7 10 Vult=115mph (3 second gust) Standard .1 Regular: Lumber Increase=1.25, Plate Increase--1.2NIF5 tructural wood sheathing directly applied or 3-8-13 oc V(IRC2012)=9.1 mph; TCDL'=6:Opsf; BCDL=6.Opsf; h=25f@; B=45ft;;L=24ft; rave=8ft; Cat II Ez C•; p Uniform Loads (plf) urhns OT CHORD � � � enclose dir ti n m FRS d;•MW(directional)" Luber O=.60 DL1 Vert: 1-5=-20, 1-3=-78, 3-6=-78 � Concentrated Loads (Ib) •pe Rigid:ceil ng directly applied or 10'-0-0:oc bracing. grip =. latriDOL160 3) This truss has been designed for a 10.0 psf bottom 3 Vert: 3= 372 7=-54(F) 8=-51(F) 9=-54(F) 10==54(F): Vert:11 MiTek recommends that Stabilizers and required chord live load nonconcurrent .with an other live loads. F 12=:54(F)13=-51 F O ( ) cross bracing:be installed during truss erection; In 4) ' This truss,has been designed foi:aaive load of accordance with Stabilizer Installation guide. .. 20.0psf on the bottom chord in all areas where 'a rectangle 3-6-0 tall by 2-0-0 wide will fit: between the REACTIONS (Ib/size) bottom chord and any other members. ' 1 • _. 1094/Mechanical 5) A plate rating reduction of 20% has been applied for = 1300,0-5-8' (min. 0-1-8) the green lumber members: ax Horz 6) Refer t&gieder(s) for truss to truss connections. -60(LC 6) 7) Provide "mechanical connection (by;others) of truss to Max Uplift " bearing plate"capable of withstanding 6 Ib uplift at joint 1 : _ -6(LC 8)" , . .1and 105 Ib uplift at joint 5. -' 195(L'C 8) 6) This truss is designed:in accordance with the 2012 taxG"rav � International: Residential Code sections R502.1.1.1 gild 1193(LC 2):., i R802.10:2 and referenced standard ANSI/TPI :1. 5 = 1426(LC 2) 9) "Semi-rigid pitchbreaks including heels'.Member end ' ORCES (Ib) fixitymodel was used in4.he analysis and design of this _ :. ax; Comp./Max. Ten. -All farces 250 (lb) or less except;'. hen shown. truss. 10) Hanger(s) or,other connection device(s).shall be: f ESS /Q�. TOP providedsufficient to support concerifrated load(s) 464 QRS CHORD .: = *2-.3=-.1 Ib down and*266 lb up at 7-8-12 on top chord, and 101 1-2=-2348/104; 953/42, Ib down at ' 2-0-0; 10.7.1b. down at 4-0-0, 107 Ib down At, n JIQIANG CAO 4=-1949/40, 4-5=-2294/71::: : _ 6-0.12, 108 Ib down at -8- 12, 107 Ib down at 9-4-12, : _ OT CHORD and 107 Ib down at 11-4-12, and 101 Ib down at 0 6638 m -8=-18/2108,.8.9=-18/2108, _ 13=4 12.on bottom chord. The design/selection of s uch v - 9-10=-18/2108; :7-10=-18/2108, connection device(s) is the responsibility:of others. Ly -W EXP. 06/30/16,:: m 7-11=0/2023; 11-12=0%2023, 12-13=0/20231: 11) This'truss does not include any time dependant 13=0/2023 deformation for long term loading (creep)' in the total, EBS -.7=-417/118, 3-7=0/1015, 4:7=-331/73 load deflection. The building;designer shall verify that this parameter fits with the intended use of this �P component.:. F CAt �F 12) In the.LOAD CASE(S) section, loads applied to the face of the truss"are noted as front (F) or back (B). February 20, 2015: b Truss� Truss Type Oty Ply 3), Bearing,at joints) 2 considers :parallel to grain value 501025 ACR Raflei Truss - • 2 1" 3x5 'DEFL . ... 3x5 4 5 (loc) /deft 3x5 8 Jo Reference (optional) 004 • - . "Ou.s ae a cu I c ivu i eK mausmes, mc. rn reo zu i i:za:vu ztn o r. a e i. ID:wwRly?yo3AWyYNRZHggkmz4kS yYtYdUvexe7DuDz5dkpKNOgnG3JngNFUf9OcCAzj Dn 2.9-15 "8-0-12 10-9 0 10-10-7 3), Bearing,at joints) 2 considers :parallel to grain value 2-9-15 8.0-12 2-8-4' 011-7 OADING (psf) Scale = 1:22.2 2 0 0 3x5 'DEFL . ... 3x5 4 5 (loc) /deft 3x5 8 lc TCLL 20.0: ;.:' :. Plates Increase: ...1.25. 3 Vert(LL) -0:07' ' >999 3.54 F12 MT20 220/195 CDL 24'.0'. Lumber Increase 7. BC 0.00 �.. 3x5:% � `,T2 2-3 >934 240 7) This.truss. is designed in accordance with the 2012 3x5 8 T1 Rep Stress Ince ':NO 5x5 ; �. . : :Horz(TL) -0:00 4•":; n/a n/a :.4; _• 368/0=t=&: (min. 0-1-8) CDL: 10.0 Code:IRC2012/TP12007 : ;; (Matrix) 'Wind(LL) 0.04 2-3 5999: 10=8-15 lop -0 late Offsets (X_[2:0 1-11;Edge] OP CHORD .2x4 DF IVo.2 RACING -_ 3), Bearing,at joints) 2 considers :parallel to grain value OADING (psf) SPACING 2 0 0 dSl' 'DEFL . ... In (loc) /deft L/d . PLATES GRIP TCLL 20.0: ;.:' :. Plates Increase: ...1.25. TC O.Z3' Vert(LL) -0:07' :2-3 >999 360 MT20 220/195 CDL 24'.0'. Lumber Increase 1.25. BC 0.00 Vert(TL) .-0.10 2-3 >934 240 7) This.truss. is designed in accordance with the 2012 CLL 00 '" Rep Stress Ince ':NO WB 0.00' ' : :Horz(TL) -0:00 4•":; n/a n/a :.4; _• 368/0=t=&: (min. 0-1-8) CDL: 10.0 Code:IRC2012/TP12007 : ;; (Matrix) 'Wind(LL) 0.04 2-3 5999: ;240 Wei ht:35Ib FT -20% : 9 - LUMBER OP CHORD .2x4 DF IVo.2 RACING -_ 3), Bearing,at joints) 2 considers :parallel to grain value .. ... . OP CHORD. using ANSI/TPI 1 angle to rain formula:' Building 9 9 9 .9::... tructural'wood sheathing directly applied or 6-0-0 oc designer should verify capacity of bearing surface: 4.) Provide mechanical connection (by others) of truss to purlins. OT CHORD :. bearing late at joint(s)'4, 3: ' P fgid.cejling directly aiiiilied or 10-0-0 oc bracing. 5) Provide:niechanical connection (by others) of truss to bearing plate capable of withstanding 197.Ib.uplift at MiTek recommends that Stabilizers and required ;joint 2; 116 Ib uplift at joint 4 and.172 Ib uplift at joint 3.: . cross bracing be installed during truss erection, in 6) Beveled plate or shim required to provide full bearing • accordance with Stabilizer Installation gwde. surface with truss chord.at.joint(s) 4, 3: 7) This.truss. is designed in accordance with the 2012 EACTIONS (Ib/size): International'Residential Code sections: R502.11.1 and 49.1/0-7-6 (min. 0-3-10). . R802.10.2 and referenced standard ANSI/TPI 1. :.4; _• 368/0=t=&: (min. 0-1-8) 8) "Semi-rigid pitchbieaks including heels" Member,end : 3: 544/0 1-8 : (min. 0-1 8) fixity model was used in the analysis and design of this ax Horz truss. . 143(LC 8) 9) Hangers) dr other connection device(§):shall be ax Uplift provided sufficient to support concentrated load(s) 139 2... . _ ._.1 97.(LC 8) Ib up at 248; 8 Ib down•and 96 Ib up'at 2-9=8, 32; Ib: ; 4; :.: _; • 116(LC 8) down and 74 Ib up at 5-7-7, 8 Ib down and 71 Ib up -iii 8) 5-7-7, 137 Ib down and 108 Ib up at 8-5-6, and 122 Ib ax Grav .. . down and: 104.lb up at '8-5-6, and 245:lb down and 124 565(LC 2) Ib up at .10-10-7 on top chord. The design/selection of 4 = 420(LC 2) such connection device(s) is the responsibility of others. ' :3: :.: _ . 620(LC 2) 1:0) This truss does not include any time dependant'': ' deformation for Ion .term loading (creep) in the total ORCES (lb) Lax. Com /Max..Ten. All forces 250 Ib :or less except P• ( ) P load deflection. The building designer shall verify that . ' ... .. pFESS/' this parameter•fits with the intended use of:fhis' Q� when shown'..' component. �O 1. 1.1) In the LOAD CASES) section, loads applied to the C� JIQIANG CAO . face of the truss are noted.as•front (F) or back (B): y fOTES 7-10; Vult=115nioh (3=second gust) ' O 66J13v ZJRC2012)=91 (Wind:.ASCE mph; TCDL=6:Opsf; BCDL=6.Opsf; h=25ft m B=45ft; L=24ft eave=oft Cat. II; Exp C; enclosed; ;. Lumber LOAD.CASE(S) :" EXP. 06/3 /16.: MWFRS (directional); DOL=1.60 plate grip' Standard: OL=.1.60 1) Regular: Lumber Increase=1.25, Plate Increase=1:25. This:truss has been designed fora live load of 'Psf Uniform Loads (plf) 0.0 on the bottom chord in all areas where a Vert: 1-4=-78, 4-5=-48 rectangle 3-6-0 tall by 2-0-0 wide Will fit between the Concentrated Loads (Ili) F CALF bottom chord and.any other members. Vert: 4=-212(6) 6=141(F=54, B=86) 7=-35(F=-28, B=-7) 8=r229(F=-121, B= -,o8) February 20, 201"5:: late Offsets (X,Y)_[1:0-1-11;Edge] Ir ..... OP CHORD'2x4 DF No.2 RACING .. . ; 3) Bearing:at joint(s) 1 considers parallel to grain value OP CHORD Otructural using ANSI/TPI 1 an le to, rain formula: Build: 9 9 9 :OADING (psf) SPACING. . 2-.0-0 CSI'. •DEFL. . .. in ,(loc) 'I%defl L/d PLATES— GRIP TCLL 20.0 • .,.: .. Plates Increase 1.25. TC 6.54 Vert(LL) 0:16 :1-2 >924 360 ,. MT20 .-M/1'05 :. CDL 24.0 Lumber Increase •1.25 BC 0.00: Vert(TL) .-Q.26 '1-2 >467 240 7) This t'rd§s: is.designed in accordarice with the 2012 CLL 0.0 ' Rep Stress Inct ... NO WB 0.00' Horz(TL) ' 0:00 ' 3 : n/a n/a 274/0-7=0 :min. 0-1-8 ( ) CDL 10.0 Code: IRC2012/TP12007 (Matrix) • Wind(LL) 0.09 1-2 >999' 240 Weight:;31 Ib FT = 20% LUMBER ..... OP CHORD'2x4 DF No.2 RACING .. . ; 3) Bearing:at joint(s) 1 considers parallel to grain value OP CHORD Otructural using ANSI/TPI 1 an le to, rain formula: Build: 9 9 9 wood sheathing directly applied or 6-0-0 oc designer should verify capacity of bearing surface: purlins: 4) Provide mechanical connection (by others) of truss to ' OT CHORD bearing plate.at joint(s)'3, 2: :. 5) Provide nfechanical connection (by others) of truss to igidceiling directly applied or 10-0-0 oc,bracing. bearing plate capable of withstanding 52 Ib uplift at joint fvliTek recommends that Stabilizers and required 3, 88 Ib uplift at joint 1 and228 Ib uplift at joint 2. cross bracing be installed during truss erection, in ' 6) Beveled plate or shim required to provide full bearing accordance with Stabilizer Installation guide. surface with truss chord: at.joint(s) 3; 2. 7) This t'rd§s: is.designed in accordarice with the 2012 �EACTIONS (Ib/siie):international Residential Code sections: R502.11.1 and 160/0-1-8 (min. 0-1-8) R802.10.2 and referenced standard ANSI/TPI 1. 274/0-7=0 :min. 0-1-8 ( ) ' 8) "Semi-rigid pitchbreaks including heels" Member end 2: _ 647/0=1-8• min.0-1-8 ' ( ) fixity model was used in•the analysis and design of this : ax Horz truss.. . - 107(LC 8) tax 9) Hangers) or other connection device(s):shall be Uplift provided sufficient to support concentrated load(s) 139 .3. = 52(LC 8) Ib up at 2-8-7; 1 Ib down•and 75 lb up at 2-9=8, 8 Ib; . ....1: ;' : -88(LC 8) . down and 71 Ib up at S 6 6, 77 Ib down and 98 Ib up at _-228(LC 8) 5-74, and 165 Ib down and 124 Ib up at 8-5-6, and 122 ax Grav :chord. Ili down.and:104 Ib up at 8-5-fi on to :chord. The top = 180 LC 2 ) .. design/selection of such connection device(s) is the 1 = 315(LC 2) responsibility of others. 2: : . _ : 734.(LC 2) 1'0) This truss does notinclude any time dependant: deformation for long term loading (creep) in the total ORCES Ib ( ) ..... ax. Com P All forces 250 Ib or lessexce t ' ( ) P load -deflection. The building designer shall verify that use FESS ./Max.:Ten. . . this parameter, fits with the intended ofahis Q� when shown..'q component. �O 1. 1,1) In the LOAD CASE(S) section, loads applied to the JIQIANG: CAO �OTES : ) Wind:ASCE 7-10; Vult-115m0h (3 -second gust) face'of the truss are noted.as front (F)'or back (B). IRm . - . . 66380C x B=45ft; L=24ft; eave=oft; Cat. II; Exp C; enclosed; _• Lumber LOAD.CASE(S) a EXP. 06/30/16: MWFRS (directional); DOL=1.60 plate grip Standard OL=1.60 1) Regular: Lumber Increase=1.25, Plate Increase=l; 25_ This:truss has been designed fora live load of _ . 0.00sf on the bottom in Uniform Loads (plf) Q chord all'areas where a Vert: 1-3=-78, 34=-48 rectangle 3 6 0, tall• by 2-0-0 wide will fit between the. Concentrated Loads (Ib) bottom chord and: any other members. Vert: 5=90(F=86, B=4) 6=-75(F=-7, B=-68) 7=-254(F=008, 6=-146) February 20; 2015.: ob Truss Truss Type Oly Ply 1501025 AJ JACK -OPEN TRUSS 1 1 Job Reference (optional)006 ID:wwRly?you3AWyYNRZHggkmz4kSM-ux?J2X, uTFOx8X7Ul9soSRm4hss3lHkm6TtjH3zj DI -2 0-0 i 7-8-6 2-0-0 7-8-0 3 Scale = 1:21.3 5.00 12 6 7 N .. .. i . 5 l 24 -: 4 i 7-8_Q 7.8.0 .- OADING (psf) SPACING 2-0-0 CSI DEFL in (loc) I%dell L/d PLATES GRIP CLL 20.0, Plates Increase 1.25 TC - 0.92. Vert(LL) ..:0.16 2-4 >570 360. NAM 220/195 - ' TCDL 24.0::.:. Lumber Increase .:1.25. BC 0.59: Vert(TL)- -0.31 .2-4 >285 240 CLL '0.6 RepStress�lnci: ' YES. WB 0.00' Horz(TL) :-:0.00 3 n/a 616 CDL 10.0 Code IRC2012/TP12007 (Matrix) Wind(LL) 0:00 2 240 Weight: 25. Ib FT = 20% UMBER TOP CHORD 2x4.DF No.1 3)' This truss:has:been designed for a_I1ye load of OT CHORD 2x4'DF No.2 20.Opsf orrthe bottom chord in all areas where a RACING OP.CHORD rectangle 3=6-0 tall'by . 2 ::0 0 .wide will fit between the . .0 :.:. 9 ... tructura(wood sheathing dire'ctly.applied or 2-2-0 oc' bottom chord and any other. members. purlins. 4) Refer to girder(s) for Truss fo truss connections. OT CHORD.`: 5)' Refe(to:girder(s)'for truss to truss connections. igid ceiling'directly applied or 10-0-0 oc bracing. 6) Provide mechanical connection (by others) of truss to bearing plate:capable of withstanding P1.16. uplift at joint M. MiTek recommends that, Stabilizers and required3 and 106 Ib uplift at joint 2.. cross bracing be installed during truss erection, in 7) This truss is designed:in accordance with the 2012 accordance with Stabilizer Installation guide. International Residential Code: sections R502.11.1 arid... R802.10:2 and'referenced standard ANSi/TPI 1. �EACTIONS (Ib/size):! 8) "Semi-rigid pitchbreaks including heels"Member end 2 567/0-5-'8:: 260/Mechanical .: - fixity model•was•used in the analysis and design of, this (min. 0-1-8) truss. • 4: = 74/Mechanical ax Horz g) This truss does not include any time dependant oirnation ong term ng _ 143(LC 12).. i.. oafd deflectiorif.ITlie building dlesi(nrereshalbverifyhtthat tax Uplift g p this parameter tits with the intended use of this .3. 781(LC 12) component: 2: '-106 LC 1,2) ax Gray. 293(CC 4) . LO -CA 631 (LC 2) Standard: 4 = 148(LC 3) t RCES (Ib) i x. Comp./Max. Ten. All forces 250 (lb) or less except en shown. �O QR�f ESS j�Ngl NOTES Wind:.ASCE 7-10; Vult=l j5rilpli (3 second gust) h�� JIQIANG CAO (IRC2012)=91 mph; TCDL=6:00sf; BCDL=6.Opsf; h 25ft; : GO =45ft; L=24ft•eave=8ft; Cat: 11; Exp C; enclosed; 66380 m MWFRS (directional) and C -C Exterior(?)` -2-0-11 to 0-11-5,Intedor(1) 0=11--5 to 7-7-4 zone;C-C for members cl�" EXP. 06/30/16 nd forces & MWFRS:for reactions shown; Lumber ... OL=1.60 plate grip DOL=1:60: : �Q This truss has been designed for a 10.6 psf bottom _ v.1 chord live load:nonconcurrent with any other; live loads.\F CAC ' .. February 20, 2015: b Truss Truss Type 07PI ' 7.8-0 501025 AJ1 JACK -OPEN TRUSS 4 I 1 OADING (psf) SPACING. 2-0-0 CSI DEFL in (loc) I/defl L/d PLATES GRIP Joti Reference (optional) 007 ULVIJ G . ID:wwRly?you3AWyYNRZHggkmi4kS-M7ZhFWxWEZWoIhiglsNl_fIFCRGC-11k_wL7dHJ.VJpVzj C Dk1 p:0:0' 7-8-0 . 2_0_0 7-8.0 i 3 Scale, -7 1;21..3 t A - 2x4 ' 7.8-0 7.8.0 OADING (psf) SPACING. 2-0-0 CSI DEFL in (loc) I/defl L/d PLATES GRIP CLL 20.0 Plates Increase. 1.25 TC .0.92. LL Vert(LL) .:0.16 2-4 >570 (: 360 MT20 .220/195 TCDL 24.0.: Lumber Increase .1.25. BC 0.59: Vert(TL) -0.31 2-4 >285• 240 CLL 0:0 ' Rep Stress 166' YES. WB 0.00•' Horz(TL) ,0.00 3 n/a n/a 'FT CDL 10.0 Code" IRC2012/TP12007 (Matrix)" ' ' :Wind(LL) 0:00 2 240. Weight 251b ='20% UMBER " TOP CHORD 2x4. DF No.1 OT CHORD 2x4 DF. Not 3)' This.truss;has:been designed for aaive load of RACING 20.0 s1. onahe bottom chord in all areas where a OP CHORD ....: �. rectangle 3=6=0 tall b ?-.0-0. wide will fit between the 9 Y... .. tructural'wood sheathing directly applied or 2-2-0 oc bottom chord and any othecmembers. purlins. Refer to girder(s) for truss io truss connections: OT CHORD e mec4) 5) Providhanical co(by-others) () nnection b othof tru§'s to igid ceiling directly applied or 10-0-0 oc bracing. bearing plate capable of withstanding' 01 Ib uplift at joint 3 and 106 Ib uplift at joint 2. MiTek recommends that Stabil.iiers.and required g :. 6) This truss is designed in accordance with the 2012 " cross bracing be installed during truss erection, in International Residential Code sections R502.11:1.arid: accordance with Stabilizer Installation guide: R802.10.2 and referenced standard ANSI/TPI 1. "Semi 7). =rigid pijchbreaks including, heels":Member end EACTIONS . (Ib/size) : fixity model was used in the analysis and'design of this 260/Mechanical truss. 2: _. 567/0-'5=8:min.0-1-8 ( ) 8) This truss does not `include any time dependant .: . 4 _ 74/Mechanical deformation for long term loading (creep) in the total ax Hori .' .... load deflection.. The building designer, shall, verify that - 143 LC :. 12 ( ) tax this parameter fits. with the intended use of:this Uplift - p component. 3. . r81(LC 12) 'tax Grav : LOAD CASE(S) _ 293(LC'2) . . . :. Standard: :. 631 (LC 2) 4 = 148 LC 3 ORCES (lb) ax. Comp./Max. Ten. - All forces 250 (lb) or less except" 4When shown.: ": ��F FESS/ . ; . :. • , Q N 'NOTES 7-10; Vult=1:15mpFi (3 -second gust) �JDANG CAO �W16d:,ASCE (IRC2012)=91 mph; TCDL=6:00sf; BCDL=6.Opsf; h=25ft;: GO C 66380 45ft; L=24ft;.eave=7ft; Cat: II; Exp C; enclosed; m MWFRS (directional) and C -C Exterior(2) 2=0.1:1 to 0-11-5, Interior(1) 0=11=5 to 7-7-4 for w a EXP. 06/30/16 m zone;C-C members forces & MWFRS for reactions shown; Lumber {} .Wnd OL=9.60 plate grip DOL=1:60.: This truss has been desibhbd'fdr a 10.0 psf bottom' chord live load:nonconcurrent with any other live loads. F CAL\F ...February 20, 2015:. . b Truss Truss Type AJ2 10-ty-7177501025 MONO 4 b Reference (optional) 00_ 7.350.s Sep 27 2012 MiTek Industries, Inc. Fri Feb 20 11:25:03 2015 Page 1 ID:wwR1y2_jo3AWy.YNR2Hggkmz4kSM=M7 ZhFWxWEZWolhiglsNl-fINXGIZ1k wL7dHpVzjEDk - _2.0.0 _ 5-6-0 2-0-0 5.6.0 .. .. Sdale = 1:17.7 . 2x4 11: 3 . �. 5.06F12cli . � W1 1 .7. 8� 2 81 6 2x4 = • 2z4 115:.. S-6-0 5.6-0 OADING (psf) SPACING 2-0-0 CSI i •DEFL in (loc) I/dell Ud PLATES GRIP CLL 20.0 Plates Increase. 1.25 TC ..0.41 Vert(LL) .: 0.03 2-6 >999 360 MT20- 185/148 TCDL 24.0: ! :: Lumber Increase :.:1.25. .,BC 0.25 Vert(TL) ,0:06 .2-6 >923 .240 CLL "0.0.:' Rep Stress Incr: YES, WE , 0.00 Horz(TL) 0.06 n/a n/a . CDL' 10.0 Code. IRC2012/TPI2007 (Matriz)' Wind(LL) 0:00 2. "" 240 We.ight:'21Ib FT'- 20 TOP CHORD' 2x4. DF No.2 CHORD 2x4 DF No.2 4) A plate'(ating reduction of 20% has been applied for BS2x4 HF:Stud/Std G5) the greentumber members. ACING OCT Refer to girders) for truss to truss connections. P CHORD' ; :.<• .. .6) Provide mechanical connection b others of truss to (Y ) Structural' wood sheathing directly applied or 5-6,0 oc bearing plate capable of withstanding 1.09 Ib uplift at.: urlins, except .end verticals. joint 2-and:16 Ib uplift atjoint 6: OT CHORD 7) This truss is'designed in accordance with the 2012 igid. ceiling directly applied.or 10-0-0 oc bracing. International. Residential Code sections ..502 11.1 and R802.10.2 and referenced standard ANSVTPI 1. MiTek recommends that Stabilisers and required 6) "Semi-rigid pitchbreaks including heels" Memberend- cross bracing be installed during truss erection, in fixity model was used in-the.analysis and design of this. . accordance:with Stabilizer Installation guide.:. truss.','':: : REACTIONS us' :d' 9) This truss does not include any time.dependant . Ib/size ( ) deformation for long term loading (creep) in the total 2 = 463/0-'5-'8:: (min. 0 1 8) load *deflection. The building designer shall verify.that :. 6: ' _• 223/Mechanical this parameter fits with the intended use of this ' ax Horz component. , 114 LC 12 ( ) tax Uplift -_ 2. 109(LC 12) LOAD CASE(S) 6: : : _: -16(LC 12) i : :.St andard " ax Grav, 516(LC 2) 243(LC 2). FORCES. (lb) . . ax: Comp./Max. Ten. - All fo�ces:250 (lb) or less except hen shown. Q�pFESS/' NOTES 1) Wind: ASCE 7,10;.Vult=115mph (3-second.gust) (IRC2012)=91 TCDL=6:Opsf; BCDL=6.Opsf; h 25ft JIQIANG; CAO mph; :: h� 45ft; G=24ft; eave=81t; Cat: II; Exp C; enclosed; C: 66380 WFRS (directional) and C-C Exterior(?), 2-0-11, to I ,, 0-11-5, Interior(1) 0=11-5 to 5 6-0 zone;C C'for members and forces & MWFRS for reactions shown; Lumber w m EXP. 06/30/16: .1.60 plategrip DOL=1.60.J)Or,��,s truss has been_desigried for al 0.0 psf bottom. Q ord live. load noncoiicurrent:with ahy other live loads. 3)' This truss has been designed for a live load of 20.Opsf on the bottom chord in all areas where a' ctangle 3-610 tall by 2-0-0 wide will fit between the 1ottom chord and any other. members. " Feb iUlfy 2O, 2015 b Truss Tu—ype O>y Ply 501025 AJ -DRAG MONO 2 1 Cq T1 :7 2 Job Reference (optional) 009 - - .. i.JUVA QVP Gl GV IG rv11ICM1 IIIUUJUICJ, IT IU. — rvu LU I L D.VY CV IJ COye I, ID:wwRly?you3AWyYN RZHggkmz4kSM-gK73Tsy8?sefNrHtsauGXsrYjgeom BE3anMgLyzIE 6: 2 0 0 5-6-0 2,0-0 5.6.0 .. Scale = 1:17.7 2x4 11: _.. 3 4 5.0015-2cli / Cq T1 :7 2 131 9, 6 :. 8 3x4 = .5 5-6 0 . . . 5-6-0 late Offsets (X Y)_[2:0-2 2, Edge] OADING (psf) SPACING .2m() -O- CSI . .. DEFL in (loc) I/dell Ud : . PLATES GRIP TCLL 20.0: Plates Increase: :.:1.25. TC 0.44 Vert(LL) ' -0.03 :2-6 >999 366 MT20 185/1.48 . CDL 24.0 Lumber Increase 1.25. BC 0.25 Vert(TL) -0.06' 2-6 >923 240 .: CLL 0.0 ' Rep Stress Ince YES WB 0.00- Horz(TL) -0:00 6 n/a n/a ". CDL 10.0 Code: IRC2012/TP12007 (Matrix) Wind(LL) -0.00 2- 5999" .240 Weight: "21 Ib FT = 20% LUMBER 0P-CHORD'2x4 DF No.2 OT CHORD 2x4. DF:No.2 2) This truss has been designed for a 10.0'psf bottom EBS 2x4 HF Stud/Std G. chord Iiv_eload rionconcurrent with any other'live loads.. ; RACING 3) ':This truss has been"designed for a live load of 'chord,in TOP CHORD 20.0psf on the bottom 611 areas where a giliftructural'wo directly applied or. 5-6.0 oc rectangle 3:6c0 tall, by 2=0=O'wide will fit between the ` " " . urlins; except end verticals. bottom'chord.and'any other members.• • :. OT CHORD 4) A plate: rating. reduction of 20% has;been applied for " igid'ceiling directly applied or 6=0-0 dc bracing. the green.lumber members.. 5) Refer to girder(s) for truss:to truss connections. MiTek recommends that Stabilizers and required 6) Provide mechanical connection (by others) of truss to, cross bracing,be installed during truss -erection, In bearing'plate capable of withstanding 551 Ib uplift at accordance.with Stabilizer Installation guide. :. joint 2 and:l6 Ib uplift at joint 6. 7) This truss is designed in accordance with the 2012 REACTIONS (Ib/size) International Residential Code sections R502.11.1 and: 2: _ 463/0-5-8 : (min. 0=1-8) R802.10.2 and referenced "standard ANSI/TPI 1. " - 223/Mechanical 8) This truss, has been designed for a total drag load of ax Horz 200 pit L6mb6r DOL=(1.33) Plate grip DOL=(1:33) 139(LC 34)' Connect truss'to resist drag loads along bottom chord Max Uplift from 0-0-6 to 1-0=0, 4-6.0 to 5-6-0 for 550.0p If. 2: = 551; LC 33 ( ) 9) "Semi-rigid pitchbreaks including heels" Member end ; --1:6(LC 34) fixity model was used in.the analysis and design of this Jax Grav truss. :.... . - 747(LC 30). 10) This truss does not include any time dependant 6 ' = 243(LC 2) deformation for long term loading (creep). in the total ORCES (lb) load deflection. The building .desi ner shall verify that this:parameter fits with the intend d'use of this ax: Comp./Max. Ten. - All forces 250 (lb) or less except - '4Mvhen shown., " component. ESS/D� TOP CHORD,ql �O Q�OF 2-7=-1175/1061, 3.7=.978/908 LOAD CASE(S) C^ Standard h� JIQIANG. CAO #OTCHORD 8='-699/699, 8-9=-550/550,-6-9'-_-550/550 C 66380 m N Wind: ASCE 7-10; Vult=115mph (3 -second gust) EXP. 06/30/16 :.� . (IRC2012)=91 mph;TCDL=6.Opsf; BCDL=6.Opsf; h=25ft; W-45ft; L=2411; eave=l ft; Cat. It: Exp C; enclosed; ZWFRS (directional) and C-C:Conler(3)-2-0-11 to 0-11-5 'Exterior(2) 0-11-5 to 5-6-0 zone;C C for members and ` F CALF forces 8 MWFRS for reactions shown; Lumber DOL=1.60 " late grip DOL=1.66 February 20, 2015; ob Truss Truss Type7 Qty Ply 1501025 J02 Jack•Open Truss 3 71Job eference (9p tonal) 010 7.350.s Sep 27 2012 MiTek Industries, Inc. Fri Feb 2011:25:05 2015 Pagel, ID:wwR ly?yo3AWyYN RZHggkmz4kSM-J W hRgCznlAm W??r3QH PV44Oi54uNVeU DpR6NuOzjE Di 20-0 1-10-15 _ 470 7712 2 0 0 1-10-15 2-8-1 3-0-12 .. ... - Sole.-- 1;17.9 3 5.00 12 S, �I 2 of T1 i B1 h . ' 2x4 = " 1-9-13 1.1,0-15 7-7.12 _.. .1-9-13 0'1'-2 5813 OADING (psf) SPACING 2-0-0 CSI DEFL in (loc) I/defl L/d PLATES GRIP CLL ' 20.0. . Plates'lncrease 1.25 TC 0.47 Vert(LL) . :0.15 2-4 >602 360. MT20" 220/195 TCDL. 24:0: Lumber Increase : :1.25. BC 0.61: Vert(TL) -029 :24 >301 240 CLL 6.0.: Rep Stress Ind' NO. WB 0.00 Horz(TL) .:0.00 3 n/a n/a CDL 10.0, Code, IRC2012/TP12007 (Matrix) Wind(LL) '0:00' 2 240'' Weight:. 16.1b 'FT='20% UMBER. TOP 2x4. DIF No.2 - fOT- CHORD 2x4 DF No.2 5) Provide;niechanical connection (by others) of truss to RACING bearing plate capable of withstanding 71 Ib uplift at joint " OP :CHORD " 3 and 119 lb, uplift at joint 2.: trUctural'wood sheathing directly applied or 6-0-0. oc 6) This truss is designed:in accordance:with the 2012 purlins. " Irttimational Residential Code sections R502.11.1 and OT CHORD. R802.10:2 and referenced'standard ANSI/TPI 1. igid ceiling directly applied or 10-0-0 oc bracing: 7) "Semi rigid pitchbreaks including'heels'."Member end fixity model was used in the analysis and design of this MiTek recommerids that Stabilizers and required truss. cross bracing be installed during truss erection, in 6) Hanger(s) or.other connecfion device(s) shall be . accordance with Stabilizer Installation guide. provided sufficient to support concentrated load(s) 9:Ibupat . �EACTIONS "(Ib/sire): 6-0-12 o� bottomchord. The design/s ectiori of such _ -63/Mechanical'.:: connection device(s) is the responsibility of others. 2; : • _. • 438/0-5-4', (min. 0 1 8) g) This truss does not include anytime dependant' 4 _ 71/Mechanical deformation for long term loading (creep) in the total ax Horz load deflection. The building designer.shall verify that 66 LC 8 ( ) this parameter fits with the intended 'use of;this: flax Uplift component .3. . . _..-7.1 (LC 2) 10) In the LOAD CASE(S) section, loads applied to the: , 2: 1 t 9(LC 8) face of the truss are noted'as front (F) or back (B): Fax Gray. . = 485(LC 2) LOAD:CASE(S) 141 4 LC 3 _ ( ) .. Standard ..... ,1,) Regular: Lumber Increase=1.25, Plate Increase=1,25• FRCES.Ib � g :( )Uniform Loads (plfjx.Cp/Max. Ten. -Allforces 250 (lb) or less except:' Vert: 1-3= 78, 2 4=-20 en shown.."OF ESS/ Concentrated Loads (lb) NOTES Vert: 5=2(B) 6=2(B) 7=2(B) ) Wind:.ASCE 7-10; Vult=1.15mph (3-second gust) :: :.. ::: ��� JIQIANG CAO (IRC2012)=91 mph; TCDL=6:00sf; BCDL=6.Opsf; h=25ft;. =45ft- L=24f ;.eave=2ft; Cat: II; Exp C; enclosed; �; C • 66380 m MWFRS (directional); Lumber DOL=1.60 plate' grip DOL=1.60EXP. 06/30/16 This truss has been designed for a 10.0 psf bottom hord live. load nonconcurrent:with-any other live loads.-'.':�Q This truss has been designed for a live load of 20:00sf on the bottom chord in all'areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the �ottom chord and any other members. ) Referto girders) for truss to truss connectidris. February 20, "21715 1501025 J04' Jack-Open:Truss 3 ' 1 Job Reference (optional) 011 7.350,s Sep 27 2012 MiTek Industries, Inc. Fri Feb 20 11:25:06 2015 Pagge I D:wwRly?yo3AWyYN RZHggkmz4kSM-niFgtY.zP W UuNd8QF_?wkcHwvOTD2E5kM 15rxQgzj E Dh1. -2-0-0 _ 3-10-15 7-7-12 2-0-0 3.10.15 3-813 Scale = 1:17.9 5.00 F12 / ix 2 Ti B1:' 4 2x4 - 3.9.13 3=10-15 7-7=12 3-9 13 0.1-2 OADING (psf) SPACING 2-0-0 CSI DEFL in (loc) 1/defl Ud PLATES GRIP CLL' 20.0. Plates Increase. 1.25 TC ..0.37 Vert(LL) :0.15 2-4 >575 _360 MT20' 220/195 TCDL 24.0: Lumber Increase : :1.25. BC 0.59: Vert(TL) -0:31 .2-4 >287 240 CLL 0.0 ' Rep Stress lricr: YES. WB '0.00 Horz(TL) -0. 0 0' 3 n/a 6/6 CDL 10.0 "' Code. IRC2012/TP12007 (Matrix) 'Wind(LL) 0:00 2. "" 240: "' We.ight.19 lb FT 20% : . UMBER. TOP CHORD .2x4.DF No.2 OT CHORD .2x4 DF No.2 . 3) ` This truss:has been designed for Itve. load of RACING 20.00sf on.the bottom chord in all areas where a ` OP CHORD rectangle 3=6=O tall by 2 04wide will fit between the : bottom chord and any other. members.' Structural wood sheathing directly, applied, or 6.0-0 oc: ' purlins. 4) Refer to girder(s) for truss`to truss connections. OT CHORD 5) Provide mechanical 'connection (by others) of truss to" If Igid ceiling directly'applied or 10-0-0 oc bracing: -. bearing plate capable of withstanding 22 lb uplift at joint 3 and 94 Ib uplift at joint 2. MiTek recommends that Stabilizers and required 6) This truss is designed in accordance with the 2012 cross.bracing be installed during truss erection, in International Residential Code sections R502.11:1 grid accordance with Stabilizer Installation guide. R802.10.2 and referenced standard ANSI/TPI t: 7) "Semi=rigid pitchbreaks including heels" Member end �EACTIONS. (Ib/size): fixity model was used in the analysis and'design of this 85/Mechanical truss. _. . 20-1-8 . _. 449/0-544 min. ( ) 8) This truss does not include any dependant • 4 = 74/Mechanical deformation for long term loading (creep) in the total' ax Hori load deflection. The building designer. shall verify that' 92(LC 12) this parameter fits with the intended use of:this: ,tax Uplift component. 3.. _ .r22(LC 9) ax Grav LOAD CASES _ 96(LC 2) Standard: 497(LC 2) . 4 _ 147(LC 3) RCES (lb) a x. AlI f Comp./Max. Ten. orces 250 (Ib) or less except shown. - Q�pF ESS/ NOTES Wirid:.ASCE 7-10: Vulf=1:15rr1ph (3 second gust) q JUANG CAO (IRC2012)=91 mph-, TCDL=6 0psf; BCDL=6.Opsf; h=25ft; ; q C-0 =45ft L=24ft;.eave=4ft; Cat: II; Exp C; enclosed; C 66380 x M MWFRS (directional) and C C Exterior(2)'-2 0=1.1 to w r-+7 0-11-51 Interior(1) 0=11=5 to 3-10-3 zone;C-C for -members �, EXP. 06/30/16 `�- nd forces & MWFRS-for reactions shown; Lumber OL=9.60 plate grip D0L=1.60::: v\ \Q This truss has been designed for a 10.0 psf bottom - chord live load:nonconcurrent with any other, live loads.AL\F F'C • February 20, 2015. . � � e T + � - - �� -, �' 1 ,, ' � � � � - t ... . ' � . i � ,. - - � R C - ( - .. ,` _ � � 5Y � . .. - • , r� 1 i' �- � J - � � � � k � s. � � - - • � � � - _.. s � - .� st „ � • t 1 i � _ },� ,3 o i . ` .- � - _ 4 , �. .. ,• _ ., ' .a - - . .. .. a• .. .. � • � � ' b Truss Truss Type ' Q�PIy. SPACING 2-0-0 CSI 501025 J06 Jack -Open Truss 3 1 L15 Vert(LL) .-'0.15 2-4 >575 360 MT20 . 220/195 TCDL 24.0: Lumber Increase 1.25, -Reference (optional) 012 i.00u.s aep a cu,c rvn ieK mvustnes, mc. rn rev ev i rto:uo zui o ra e i ID:wwRly?_yo3AWyYNRZHggkmz4kSM:niFgtYzPWUuNd8QF_?wkcHwtHTD2E5kM15rxQgzj Dh -2-0-0 5-11-11 7-7.12 2 0_0 5.11-11 1-8-1 _ Scale = 1:17.9 .3 y, Io. 2x4 F;1 5-10-9 _ _ 5.10.9 .: .... _ " 5-11-11 7-7-12 ' 0.1 2.... 1-8-1 .. ... OADING (psf) k- SPACING 2-0-0 CSI DEFL in (loc) I/deft Ud PLATES GRIP CLL 20A Plates Increase 1.25 TC 0.50 Vert(LL) .-'0.15 2-4 >575 360 MT20 . 220/195 TCDL 24.0: Lumber Increase 1.25, BC 0.59: Vert(TL) -'0x31 :2-4 >287 240 CLL- '0'0:: Rep Stress 166:' YES WB 0:00 Horz(TL) -0.00 3 n/a ri/a CDL 10.0 Code IRC2012lTP12007 (Matrix)' Wind(LL) , 0:00 2 240" Weight: 22 Ib FT ='20% UMBER. • TOP ,CHORD -2x4.DF No.2 OT CHORD 2x4 OF No 2 'fRA 3) 'This truss:has been designed for a,liye load of CING' -. 20.Opsf onahe bottom chord in all areas where a CHORD rectangle 3=6=0 tall by 2-0-.0 wide will fiT between -the Structural wood sheathing directly applied or 6-0-0 oc bottom chord and any other. members. purlins. • 4) Refer to girder(s) for truss to truss connections. ., OT CHORD 5) Provide mechanical connection (by others) of truss to igid ceiling directly applied or 10-0-'0 oc bracing. bearing plate capable of withstanding 55 lb uplift at joint 3 and 98.ib uplift at joint 2. MiTek recommends that Stabilizers and required 6) This truss is designed in accordance with the 201.2.- cross bracing be installed;during truss erection, in International Residential Code sections R502.11:1 d' accordance with Stabilizer Installation guide. R802.10.2 and referenced standard ANSI/TPI 1. 7) "Semi-rigid Pitchbreaks including,heels" Member end �EACTIONS (Ib/size): fixity model was used in the analysis-and'design of this 186/Mechanical .. truss. 2: = 509/0-5-4: (min. 0-1 -8) 8) This truss does not include any time dependant 4 = 74/Mechanical deformation for long •term loading (creep) in the total c ax Horz Ioaddeflection. The building designer shall. verify that 120(LC 12) tax this parameter fits with the intended use of:this: Uplift ' ' . . . component. . . .. 3.. . _ -55(LC 12) _ .. ax Grav LOAD CASE(S) (. ) . 210 LC 2 ...Standard.:.. _ 565(LC 2) . 4 _ 147(LC 3) (lb) JORCE$ ax, Comp./Max Ten. All forces 250 (Ib) or less except hen shown. E ESS/e7�.1 O NOTES 1) Wind:.ASCE. 7-10; Vult=1'15Riph (3 -second gust) hJUANG: CAO (IRC2012)=91 mph; TCDL=6:00sf; BCDL=6.Opsf; h=25ft; C".66380.11 =45ft; L=24ft;.e4ve=8fi; Carll1 Exp C; enclosed; MWFRS (directional) and C -C Exterior(2) 2 0=111 to 0-11-5, Interior(1)0=11=5 to 5-10-15 for ' _. a: EXP. 06/30/16: zone;C,C and forces & MWFRS for reactions shown; , �} ,embers umber DIOL=1.60 plate grip DOL'=1.60 — ti �Q This truss has been designed fora 10.0 psf bottom chord live load:nonconcurrent with any other. live loads. F CAL\F February 20, 2015. b Truss Truss Type70717[: 501025 SJ2 Jack -Open Truss 2 deference (optional) 013 7.350.s Sep 27 2012 MiTek Industries, Inc. Fri Feb 2011:25:07 2015 Page 1 ID:wwRly?yo3AWyYNRZHggkmz4kSM=FvoC5t-1 HnOEEI?RXiRz9VT4XtiwzY_WGIbUyHzIEDg -2-0.0 1-11-11 2-0-0 i. 2.0-0 1-11-11 0-0-5 Scale = 1'. 0.0 3 4 .: 5.00 .12 .� 2 / .. - • �\ .. .. 2x4 1-11-11 2-0.0 OADING (psf) SPACING 2-0-0 CSI ' DEFL in (loc)I/defy Ud PLATES GRIP CLL ' 20.0 Plates Increase. 1.25 TC . 0.34 Vert(LL) --0.00 2 >999 360 MT20 220/195. TCDL 24.0: :: Lumber Increase i :1.25 BC 6.03 Vert(TL) -0.'00 :2-5 >999 240 CLL 0:0. ' Rep Stress 166: YES WB 0.00 Horz(TL) =0.00 3 n/a n/a , CDL 10.0 Code.IRC2012fTP12007 (Matrix) -Wind(LL) .0:00 2 240 Weight:9lb FT, UMBER. :TOP CHORD 2x4.DF No.2 OT CHORD. 2x4 DF No.2 3)' This truss,:has,been designed for.a.live load of RACING 20.Opsf on.the' bottom chord in all areas where a ...... .( OP CHORD rectangle 3 6 0 tall b 2 0 0 wide will fit between the 9 y. '.-... . tructural wood sheathing directly applied or 2-0-0 oc bottom chord and any other. members. purlins.: 4) Refer to girder(s) for truss to truss connections. OT CHORD.': :: 5) Provide mechanical conHection (by others) of tru§s to Igid ceiling directly applied or 10-0-0 oc bracing. bearing plate capable of withstanding 1:29 Ib uplift at joint 2 and'18, Ib uplift at joint 3. MiTek recommends that- Stabilizers and required' 6) This truss is designed:in accordance with the 2012 cross bracing be installed during truss erection, in International Residential Code sections R502.11:1 and accordance with Stabilizer Installatiori guide. R802.10.2 and referenced standard ANSI/TPI 1. 7) "Semi=rigid pitchbreaks including,heels":Member end EACTIONS Ib%size ( ) fixity -model was used in the analysis and design of this 349/0 min. -5 8 ( 0-1-8) : tr uss. 5; .... __ 19/Mechanical 8) This truss does not include anytime dependant:' 3: : _: -15/Mechanical deformation for long term loading (creep) in thetotal ax Horz' : load deflection The building designer. shall verify t hat 68LC 12 : ' ( ) . . , : • :. tax this parameter: fits, with the intended use of this Uplift component. 2. . . _ : 1.29(LC 12) . 3 8 1LC 2) - ( Gray. LOAD CASE(S) fax .... .- 391 (LC 2)Standard:: . 39(LC 3) 3 _ 25(LC 12) RCES (Ib) x Comp./Max. Ten. All forces 250 (lb) or less except. ns theshown.: FESS:/ ON: NOTES Wind: ASCE 7-10; Vult=1 f5rhpfi (3 -second gust) �� JIQIANG CAO �) (IRC2012)=91 mph; TCDL=6 Opsf; BCDL=6.Opsf; h 25ft• : -45ft; L=24ft; eave=4ft; Cat'. II; Exp C; enclosed;r,1 C-66380 MW FRS (directional) and C -C Exterior(?) 2.0=11 to 0-11-5, Interior(1) 0=11:5 to 1-11-11 zone;C C for w m Ie• EXP. 06/30/16 and forces & MW FRS foryeactions shown �embers um6er D.OL=1.60 plate grip DOL=1.60 Q This truss has been desighed fora.1 0.0 psf bottom chord live load nonconcurrent with any other live loads. 0A�\F : February 20, 2015 b Truss Truss Type Oty Ply 501025 SJ2S Jack -Open Truss 1 , I Scale: _ , 8.4 FJobReferelce " 5.00 f 12 (optional) 014 - .. r.JOu.b aep a ZV 1 e IVII I erc InOU51r1e5, InG. rrl reu zu 11:ZIXV/ ZVI ra e 1 ID:wwRggkmz4kSM-FvoC5t_1HnOEEI?RXiRz9VT92ti: zY_WGIbUyHzj Dg 1y?_yo3AWyYN0ZH I 1.10-3 .• 1.108 1.10-3 0.0-5 2 3 Scale: _ , 8.4 5.00 f 12 TIN j �I c CID CD 131 4 = 20 -0-1-8 1-10.8 .. .... .. 0-0-5 OADING (psf) SPACING. 2-0-0 CSI DEFL in (loc) I/defl L/d PLATES GRIP CLL 20.0. Plates Increase 1.25 TC .0.05 � ( ... VertLL) :0.00 1 >999 360 MT20, 220/195. TCDL 24.0:: : Lumber Increase :.:1.25. BC 0.03 Vert(TL) -0.00 .:l-4 >999 240 CLL 0:0.:' Rep Stress lncr: YES. WB 0.00 Horz(TL) ;;0.00 2 n/a h/a . CDL 10.0 Code. IRC2012/TPI2007 (Matrix) Wind(LL) 0:00 1 240 Weight 5 lb FT = 20% UMBER TOP CHORD 2x4.DF No.2 CHORD 2x4 OF No.2 5) Provide:niechanical connection (by 'otl els) of truss to RACINGbearing : plate capable of withstanding 27 Ib uplift of joint fOT. .... OP CHORD 2 : . rUciural wood sheathing directly applied or 2-0-0 oc 6) This truss is designed•in accordance. with the 2012 'and purlins. Irate?national Residential Code sections R502.11:1 'sfandard OT CHORD.: > R802.10:2 and referenced ANSUTPI 1. igid ceiling directly applied or 10 0 0 oc bracing. 7) "Sernkrigid pitchbreaks including'heels :Member end fixity model was used in the analysis and design of this MiTek recommends that Stabilizers and required' truss: cross bracing be installed during truss erection, in 8) This truss does not include any time dependant •accordance with Stabilizer Installation guide. deformation for long term loading (creep) in the total. . . load deflection: The building designer shall. verify that #EACTIONS. (Ib/size): this parameter fits with the intended use of this 85/0-5-8 (min.0-1-8) .. component: 18/Mechanical .. .. . . 2: _ :74/Mechanical ax Horz : .. LOAD.CASE(S) 28(LC 12) .. Standard: lax Uplift 2. . _ -27(LC 12) �Max.Grav _. 93(LC 2), 36(LC 3) = 83(LC 2). . ;'FORCES . (Ib) ax::Comp./Max. Ten. - AILforces:250 (lb) or less except, henshown. f ESS/ON 'NOTES �o 1) Wind: ASCE 7.10;,Vult=115mph (3-secorid.gust) TCDL=6:Opsf; BCDL=6.Opsf; h=25ft . h� JIQIANG: CAO (IRC2012)=91 mph; =45ft; L=24ft; eave=oft; Cat. II; Exp C; enclosed;' C 66380 x W FRS (directional) and C-CExterior(?) zone;C-C for members and forces & MWFRS for reactions shown; :Lumber DOL=1:60 DOL=1.60 W 06/30/16: m plate grip This truss has been designed for a 10.0 psf bottom * �} �EXP. hord live. load nonconcurrent:with any other live loads. } • This 'truss has been designed fora live load �\ �Q of 20:Opsf "on the bottom chord'in 'all'areas where a rectangle 3-6-Q tall by 2-0-0 wide will fit between the ttom chord and any other members. Refer to girder(s) for truss:to.truss connections. t February ZO, 2015 b Truss Truss Type 2 0 0 2-0-0 3-1 1501025" �• SJ4 �OtyPly Jack -Open Truss 2 1' Scale•= 1:-14.3 3: i Job Reference (optional) 015' " -- r.cou.s aep a zuiz miteK mausuies,.mc. rn eeo zu 1 i:zo:ua zu1b'r. a e i. ID:wwRly?y. o3AWyYNRZHggkmz4kSM-j5MaID?f2585sSae5PzChiOGkH29i?DfVPK1 Ujz1 Of 2 0 0 2-0-0 3-1 2-0-0 2-0-0 1-11-11 Scale•= 1:-14.3 3: i 500 T1 2 ' 5 j 2x4 —< 4' 200 :r. 2-0-0 OADING (psf) SPACING 2-0-0 CSI DEFL in (loc) :l/defl L/d PLATES GRIP CLL 20.0. Plates Increase 1.25 TC 0.31 • "Vert(LL) -0.00 2 >999 360 MT20- 220/195 TCDL 24.0 Lumber Increase ; :1.25 BC 0:03: Vert(TL) -0.00 .2-4 >999 246 . CLL 0.0 Rep Stress lncr: YES. WB 0.00 Horz(TL) , b.00 3 n/a 6/6 CDL 10.0 Code. IRC2012/TPI2007 (Matrix) :Wind(LL) 0:00• 2 240. Weight: 121b ' FT = 20% UMBER. rt TOP CHORD'2z4.OF No:2 .: ...: .. e ' OT CHORD 2x4 OF No.2 3)- This truss;has been designed for•a'Ii4e load.of RACING 20.00sf on.the bottom chord in all areas where a 'by ;OP CHORDY. rectangle 3=6-0 tall2 0 0 wide will fit between the. '. . tructural"wood sheathing directly applied or 2-0-0 oc bottom chord and any other. members. purlins. 4) Refer to girder(s) for taus§ to truss connections. OT CHORD . ' .5)• Provide mechanical connection (by others) of truss to igid ceiling directly applied or 10-0-0 oc bracing. bearing plate capable of withstanding 25 lb uplift at joint 3 and 117 lb•uplift at joinf2. MiTek recorrimerids that Stabilizers and required 6) This truss is designed:in accordance with the 2012 . [cross bracing be installed during truss erection, in i International Residential Code.sections R502.11.1,and accordance with Stabilizer Installation guide. 1802.10.2 and referenced standard ANSI/TPI L "Semi=rigid 7) pitchbreaks including-heels":Member end EACTIONS (Ib/siie): fixity model was used in the analysis and design of this 106/Mechanical truss. 2: : = 379/0-'5-8:: (min. 0-1-8) 8) This truss does not include any time dependant 4. = t9/Mechanical deformation for long term loading (creep) in the total ax. Horz buildingthat apartan*6f,, hWi _ 93(LC 12) .' .' . : this fits h the ntended use ofshall this' . ax Upliftcomponent.. 3. = .-25(LC 12) .. . . :. . GravLOAD CASE(S) fax .. 120(LC 2) Standard: _ 425(LC 2) , . 4 = 39(LC 3) . ORCES (lb) :. ./M ax: Compax. Ten. All forces 250 (lb) or less except � hen shown. FESS/ON Q NOTES ) Wind: ASCE 740; Vult=1:15mph (3 -second gust) .... :: ��� 40ANG: CAO %(IRC2012)=91 mph; TCDL=6:00sf; BCDL=6.Opsf; h=25ft;: CO 6638 =45ft; L=24ft•eave=6ft; CaC II; Exp C; enclosed; MZ MWFRS (directional) and C -C Exterior(?)' -2:0-1.1 to, 0-11-5, Interior(t) 0=11=5 to 3-10-15 for W EXP, 06/30/16 : zone;C-C embers and'forces & MWFRS for reactions'shown, umber D.OL=1:60 plate grip DOL=1.60 This truss has been designed fora 10.0 Q �ti �� psf bottom live load live chord nonconcurrent with any other, loads. February20, 2015: �: b Truss Truss Type Oty Ply 501025 SJ4S Jack•Open'Truss 1 1: :.Scale = 1:12.7 2 - 5.00 12 4,6 Job Reference (optional) 016' Wx , . c 1. yggmkSM-j5MaID?f2585sSae5PzChi0G5H2Di?DfVPKIUjDf 1-10-8 3.10 -3 1-10-8' 1-1.1.11 :.Scale = 1:12.7 2 - 5.00 12 4,6 a / T1 o 61 ac4 _ _ 0-1 -8- 2-0-0 2.0.0 . OADING (psf) RCLL SPACING 2-0-0 CSI DEFL in• (loc) I/deft UdPLATES GRIP 20.0. . Plates Increase •1.25 "TC 0.29 Vert(LL) -0.00 1 >999 360 - MT20 220/195_ TCDL 24.0: .: Lumber Increase : ]_25. BC 0.03: , : Vert(TL). -OM 1-3 >999 240 CLL 0.a:: Rep Stressaricr: YES. WB 0.00 Horz(TL) `;0.00• 2 n/a 6/6 CDL 10.0 i Code. IRC2012/TPI200.7 (Matrix) "' Wind(LL) 0.00 1 • : 240'• Weight: 8Ib FT 220% 'UMBER_ TOP CHORD 2x4. DF No.2 MIFOT CHORD 2x4 DF N6.2 3)This twss:has been designed fora live load of RACING` 20.Opsf onahe bottom chord in all areas where a OP CHORD. recta le 3=6=0 tall. b 2 0 0 wide will fit between the . . g y. '.'... _.. .. • tructural wood sheathing directly applied or 2-0-0 oc bottom chord and any other. members. purlins.. 4) Refer to girder(s) for ,ttuss to truss connections.- . OT CHORD. :. 5)' Provide mechanical corinection (by others) of truss to igid.ceiling directly•applied or 10-0-0 oc bracing. bearing plate capable, of withstanding 15lb at joint 1 and 49 Ib uplift at joint 2. MiTek recommends that Stabilizers and required 6 This truss is desi ned:in r n wi h ' ) da th th1 : cross bracingbe installed durin truss erection, in g. dccs n§ :. International Residential Code sections R502.11.1 and accordance with Stabilizer Installation guide. R802.10.2 and referenced standard ANSI/TPI 1. 7) "Semi eigid pitchbreaks including.h'66W':Member end FACTIONS. Ib/size : ( ) , fixity model was used in the an y clysis and design of this - 164/0-5-8 (mm. 0-1-8)• truss. 2: _ 1.46/.Mechanical 8) This truss does not -include. anytime dependant 18/Mechanical deformation for longterm loading (creep) in the total: ax Horz load deflection. The building designer shall.verify that = 53(LC 12) this parameter fits with the intended use of:this ax Uplift component. . r15(LC 12) -49(LC 12) ax Gray. LOAD CASE(S) 183(LC 2) Standard: = 165(LC 2) 3- 36(LC 3) ORCE$ (lb) :. :. ax. Comp./Max. Ten. All forces 250 (lb) or less except hen shown:. ESS%�� e NOTES Wi6d..ASCE 7-10; Vult=115nipFi (3 -second gust) h�� JIQIANG: CAO (IRC2012)=91 mph; TCDL=6;0IJM; BCDL=6.Opsf; h=25ft; : CIO C 66380 =45ft, L=24ft;,eave=6ft; Cat'. II; Exp C; enclosed; m MWFRS (directional) and C C Exterior(2) 0;2-.1, to 3.-.2- 1, Interior(1) 3-2-1to"3-10-15 zone;C-C for members d x EXP. 06/30/16 rces & MWFRS for reactions shown; Lumber DOL=1.60 Iate.grip'D0L=1.60 Q This truss has been designed for a 10.0 psf bottom chord live load:nonconcurrent with any other: liv@•loads. .. F CAS\� February'20, 2015• b Truss Truss Type O�PIy 1501025. SJ6= Jack -Open Truss 2 1' ' Joli Reference (optionap 01 7 7.350.s Sep 27 2012 MiTek Industries, Inc. Fri Feb 2011:25:09 2015Pagge 1 I D:wwR ly?yo3A WyYNRZHggkmz4kSM-BHwyWZOHpPGxUc9gf 7U R EwYMHhOORSToj34b 19zjEDe -2-0-0: 2-0-0 5.11.11 2-0-0 2-0-0 I 3.11.11 3 5.00 .12 cli 19 71 of 2 l Bt .. 2x4 = 4 2-0-0 2-0-0 OADING (psf) SPACING 2=0-0 CSI DEFL in (Ioc) I/deft L/d PLATES GRIP CLL 20.0. Plates Increase 1..25 TC 0.58 - VertLL ( ) :OAO - 2 >999 360 .. . MT20 220/195 TCDL 24.0 : : Lumber Increase .:1.25. BC 6.03: Vert(TL) -0.00 :2-4 >999 240 CLL 0:0:' Rep Stress Ind' YES. WB 0.00 Horz(TL) '-;0.00 3 n/a n/a .: CDL' 10.0 Code. 1RC2012/TPI2007 (Matrix) •.. :Wind(LL) 0:00 2, 240-' Weight:'15lb FT -20% UMBER - TOP CHORD 2x4. DF No.2 3) ' This truss has been designed for aai4e load of OT CHORD. 2x4 DF No.2 20.Opsf onahe bottom chord in all areas where a . RACING :. . rectangle 3=6=0 tall by 2-0-0 wide will fit between the OP.CHORD bottom chord and any other. members. tructural wood sheathing directly applied or 2-0-0 oc 4) Refer to girder(s) for truss to truss connections. purlins. 5) Provide mechanical connection (by others) of truss to OT CHORD bearing plate capable of withstanding' 59 Ili uplift at joint Igid'ceiling directly applied or 10-0-0 oc bracing. 3 and 123 Ib. uplift at joint 2. MiTek recommends that Stabilizers and required' 6) This truss is designed in accordance with the 2012 cross bracing be installed dining truss erection, in International Residential Code sections R502.11.1 and • accordance with Stabilizer Installation guide. R802.10.2 and referenced standard ANSI/TPI 1. �EACTIONS Ib/size : . .. 7) "SeMi4igid pitchbreaks including.heels":Member end ( ) fixity model Was used in the analysis and design of this 199/Mechanical truss. 2; : 442/0-5-8:: (min. 0-1 -8) 8) This truss does not include any time dependant 4 _• b9/Mechanical deformation for long term loading (creep) in the total JW ax- Hort 120(LC 12). this dparameiter fits hwith the intended use of:th srify that .: aX UP=Iift component. '3. .r59(LC 12) Fax Gray. LOAD CASE(S) 225(L'C 2) Standard = 496(LC 2) 4 = 39(LC .3) &ORCES. (lb) ax. Comp./Max. Ten. All forces 250 (lb) or less except lien shown...QFIOF ESS%pNgl NOTES Wind: ASCE 7-10; Vult' 115mph (3 -second gust) h�� �IQIANG CAO (IRG2012)=91 mph; TCDL=6;00sf; BCDL=6.Opsf; h=2511; =45ft; L=24ft;•eave=8ft Cat: II; Exp C; enclosed; �'-66380 x M MW FRS (directional) and C -C Exterior(2)'-2-0=11 to W 1T1- 0-11-5, Interior(1) 0=11--5 to 5.10-.15 zone;C-C.for EXP. 06/30/16 , 9embers and'forces & MWFRS for reactioris•shown, umlier DIOL=.1.60 plate grip DOL=1.60 ) This truss has been designed fora 10.0 psf bottom �\ chord live load nonconcurrent with any other. live -loads. F OA>L\F February 20, 2015.: b Truss Ply 501025 SJ6S �Tru—ssType 7Oty Jack-OpenTruss 1� 1 - Job Reference (optional) 018 1.0 '5 oe zi cu r c rvu i eK inuusrnes, rnc. rn reo eu i r:exue zu i o r. a r. lb:wwRly?=yo3AWyYNRZHggkmz4kSM= HwyWZOHPPGxUc9gf7UREWYKyhOSRSToj34b19zje De 1-10-8 5-1-0-3 '' 110-8 3.11-1t c Scale, _ 2 1:16.9 5.00.121. ✓ ; i /T1 N 3 _ 2x4 = - -0-1-8 2-0-0. 10ADING (psf) SPACING' 2-0-0 CSI 'DEFL in (loc) I/defl L/d PLATES GRIP CLL 20.0. . Plates Increase.: 1.25 TC 0.73 Vert(LL) -0.00 1 >999. 360 MT20 ' 220/195 TCDL 24;0 .: Lumber Increase - .1.25 BC 0.03 Vert(TL) -0.00 :1-3 >999 240 CLL 0.0.: Rep Stress Ind: YES. . WB -O.00 Horz(TL) -,0.06 2' n/a 6/6'': CDL 10.0 Code.IRC2012/fP12007 (Matrix) Wind(LL) 0:00 1 240 Weight 11 Ib - FT =20% UMBER. -TOP CHORD 2x4.DF No.2 OT CHORD 2x4 DF No.2 3) - This truss has been designed fora11i4e1oad of RACING 20.Opsf onthe bottom chord in all areas where a rectangle3=6=0 tall by 2-0-0 wide wilLfit between the . ISP CHORD bottom chord and any other. members. tructural'wood sheathing directly.applied or 2-0-0 oc 4) Refer to girder(s) for truss'to truss connections. purlins.'.5) Provide mechanical connection (by others) of truss to ' .. OT CHORD bearing plate capable of withstanding 29 Ili ;uplift at joint igid ceiling directly applied or 10-0-0 oc bracing. 1 and 75.1 ' b uplift at joint 2. MMiTek recommends that Stabilizers and req*. g 6) This truss is designed:in accordance with the 2012 .. , cross bracing be installed during truss erection; in International Residential Code sections R502.11:1 and accordance with Stabilizer In guide. R802.10.2 and referenced standard ANSI/TPI 1. 7) `'Serpi-rigid pitchbreaks including heels" Member end FACTIONS. (Ib/siie) i fixity model was used in the analysis and design of this = 242/0-5-8 (min. 0-1-8) truss. 2: ; __ 224/Mechanical 8) This truss does not include any time dependant' 3: = 18/Mechanical deformation for long term loading (creep) in the total .t -ax Hori load deflection. The building designer, shall verify that 80(LC 12) this parameter fits, with the intended use ofthis' ax Uplift component. 1 . 729(LC 12) 2: :.: -75(LC 12) ax Grav LOAD CASE(S) 271 (LC 2) Standard:: ... ._ 253(LC 2) . 3 _ 36(LC 3) lW&ORCES (lb) ax; Comp./Max. Ten. - All forces 250 (lb) or less except . hen shown. �oQEZ�FESS%pNgl NOTES ) Wirid:.ASCE 7-10; VuIt=115rAph (3 -second gust) h�� •41QIANG CAO F� (IRC2012)=91 mph; TCDL=6;00sf; BCDL=6.Opsf; h=2.5 =45ft L=24ft;.eave=8ft; Cat: II; Exp C; enclosed; c C 66380 m MWFRS (directional) and C -C Exterior(?) 0=2-1 to 3-2-1, Interior(1) 3-2 1:to 510-15 zone;C-C for members and a EXP. 06/30/16: rces & MWFRS for reactions shown. Lumber DOL -1.60 �} �} Iate;grip DOL=1.60 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other• live loads: F CALF ,i February 20, 2015 t s . ,' ' FOR: a' DECD TO. GUEST IBEI�i2��OM CONE ���1T i•. � '* 1 t. MOREL ,AND ; IDEhTCE 52-88? SIA SO�`VATA ` �• �'� �I . :LA`IJINTA, C,AY�JMA 9225-3 a.•+' •.P.a. , ' 1. `� '•� C�TY'.OF:i�I VtUILY 1A ' •' "'� s 1,. ",' ll BUILDING &,SAFETY DEPT. 201 4 } �'� •;� ; y`:. , ., ;•,,. OQ'R _SS,O APPROVECY r �, , - ti ', �.. .F �Q� ����nl►yyF ti FOR CONST UCTION • '� ' �,. �S4t83 _t•-� '1 ` '- TE •' T, �+;1 i} ti t•. •4 •a f 4-•. ,.. .tir_ � , �•..,r v'..• �4yr ;-` •yr �,t ,•♦• p. !t � `fir , CAVIL . '� J,t . Y •I i 4 r �t _ r r' 1 r }`f Vit•. r �°FMAk, ® 2,2015 t•; • � : . �:.. - � ,,. � t'' .. ~. Prepa_red•By: c®���� u�yy®pp�����6xV�•�. . , ... rl .r•( ai•, •..tf 1• .. .., • r. '/ -,• aiIDE ' .. f r t _ Ik:., !'� '7' ♦ • i ti - `� t' : - }?; r Y '4 '3 ..+'•" - •..7 .. X11 •.^• Kik' . ♦ .i .4 i, ty f '+ . , `'• A ..' ��•I �/. •. 7.34 t : _ r ..,+ - Ilr !� _ ,�6 'a. - '"�.�_ , `. ' 1 ' , ' `•'may.'. tK_rJ11'.�1•F„i.iT ;S- i` V,.0 �,i.'�L J►:.iJ _ , , ' .j'Y '�e . i 9N, 5, G �w * •ter r ♦ ' � a• EO�S�LTTG ENG.. . 1�.. 1+ +i •°:+ - ���. [ J.• }#� �" -=-�,1 (INE Z.0) 63481.48 (2Q8 634 63' f5 fez' i '+e' , t .r •+•,' •'ZIA Zrr'� r t.a �'. ,rti .,r• i -.tt i; ti KD -494 + • /, • •+ , A �' . ,� J .• • r.. 1 t s . ,' ' FOR: a' DECD TO. GUEST IBEI�i2��OM CONE ���1T i•. � '* 1 t. MOREL ,AND ; IDEhTCE 52-88? SIA SO�`VATA ` �• �'� �I . :LA`IJINTA, C,AY�JMA 9225-3 a.•+' •.P.a. , ' 1. `� '•� C�TY'.OF:i�I VtUILY 1A ' •' "'� s 1,. ",' ll BUILDING &,SAFETY DEPT. 201 4 } �'� •;� ; y`:. , ., ;•,,. OQ'R _SS,O APPROVECY r �, , - ti ', �.. .F �Q� ����nl►yyF ti FOR CONST UCTION • '� ' �,. �S4t83 _t•-� '1 ` '- TE •' T, �+;1 i} ti t•. •4 •a f 4-•. ,.. .tir_ � , �•..,r v'..• �4yr ;-` •yr �,t ,•♦• p. !t � `fir , CAVIL . '� J,t . Y •I i 4 r �t _ r r' 1 r }`f Vit•. r �°FMAk, ® 2,2015 t•; • � : . �:.. - � ,,. � t'' .. ~. Prepa_red•By: c®���� u�yy®pp�����6xV�•�. . , ... rl .r•( ai•, •..tf 1• .. .., • r. '/ -,• aiIDE ' .. f r t _ Ik:., !'� '7' ♦ • i ti - `� t' : - }?; r Y '4 '3 ..+'•" - •..7 .. X11 •.^• Kik' . ♦ .i .4 i, ty f '+ . , `'• A ..' ��•I �/. •. 7.34 t : _ r ..,+ - Ilr !� _ ,�6 'a. - '"�.�_ , `. ' 1 ' , ' `•'may.'. tK_rJ11'.�1•F„i.iT ;S- i` V,.0 �,i.'�L J►:.iJ _ , , ' .j'Y '�e . i 9N, 5, G �w * •ter r ♦ ' � a• EO�S�LTTG ENG.. . 1�.. 1+ +i •°:+ - ���. [ J.• }#� �" -=-�,1 (INE Z.0) 63481.48 (2Q8 634 63' f5 fez' i '+e' , t .r •+•,' •'ZIA Zrr'� r t.a �'. ,rti .,r• i -.tt i; ti KD -494 + • /, • •+ , A �' . ,� J .• e SUMMIT STRUCTURAL ENGINEERING P.O. Box 2618 902 Baycolt Way. McCall, ID 83638 N DES`I`GN�CRITERLi��IFOR.-STRTU�R L�CALC LATI'ON�S • The drawings, calculations, specifications and reproduction are instruments of - service to be: used only for the specific. project covered by agreement and cover ' sheet. Any other use is.solely prohibited. •" The structural calculations included here are for the analysis and design of the' primary structural system: ' Non-structural elements and the attachment mechanism -is the responsibility of the architects or, designer, unless specifically.shown otherwise. • , All changes made to the subject project shall be submitted to Summit Structural Engineering in"writing for review and comments: • Sketches and details in calculations are not to scale and may not present true conditions on plans. Architect or designer is responsible for drawing details in plan, which represent true.framing conditions and scale: E Governing Code,, 2013 CBC Seismic Criteria Location La Quinta, CA 92211 Ss 1.503 S 1=,0.600 Sds=1, 002 Sd 1=0:600. Seismic Design -Category = D �. Site Class D (assumed) Occupancy Category it . Seismic Importance" I = 1.0 Response Modification Coefficient R=6.5(1.25 @ Steel Cant. Column where occurs) ; Reduncancy Factor p = 1.3. Wind. Loading Wind exposure category C Risk Category.= II .V3 "Basic Wind S eed .= 90 mph V3 V�,t x 4.6 -> V 115 mph) p p ( un = P) . Topographic Factor Kzt=1.0 ' Soil ReP ort BY.: IBC- MIN. . Report No. ' Dated: Phone No.: Soil Bearing. Pressure 1500 base ' �SUMMRSTRUCTURi4L�ENGIPIEERING£�%PHONE�(ZO8);634-8148��F,az(208)634;•§395�';�s��aPo�BOX 2618 McCniLs`��Q�,' 1 - SUMMIT STRUCTURAL ENGINEERING e P.O.-Box 2618 a 902 Baycolt Way ' McCall, ID 83638 ` 1 ,'DESIGN LOADS :: ..... rv.. .... .... .... .f .... :.... ... ... .. 4 Roof Loads - Sloped. Clay Tile -mud set 22 psf. Sheathing (1/2",CDX) 1.5 psf. Framing 2.5 psf. Insulation 1.5 psf. Ceiling i 2.5 psf. Misc. 0.0 psf. . Total Dead.Load 30 psf. Total Live Load 20 psf. Total Roof Load .. 50 psf T '; * +10 psf dl @ stucco lid/porch Wood Floor Loads Sheathing (3/4" Plywd.) . '2.5 psf. " Framing 3.5 psf. ,Ceiling 2.5 psf. 1.1 /2" Lt At Conc. 0 psf." Misc: 6.5 psf. Total Dead Load 15 psf. Total Live Load 40 psf.' Total Floor Load 55 psf Exterior Wall ' Stucco 10.0 psf. Studs 1.0 psf. Drywall 2.5 psf. Misc. 1.0 psf. Total_Wall Weight *Stone Veneer 75.0 psf. Roof Loads --Flat Roofing 3.5 psf. Sheathing (1/2" CDX) 1.5 psf. Framing 2.5 psf. Insulation 1.8'psf. Ceiling 2.5 psf. Misc,. 8.2 psf. Total Dead Load " . 20 psf. Total Live Load 20 psf. Total Roof Load _........ 40 psf *Trellis 5.0 psf: *Stucco Lid 10.0 psf.. *Timber Clg 7.5 psf. Deck Loads Tile and Mortar/Lt. Wt. 31 psf. Framing 6.0 psf Misc. 8.0 psf Total Dead Load 45 psf. Total Live Load 40 psf. Total Load. `''85 psf Interior Wall Drywall • 5.0-psf. Studs 1.0 psf.. Mechanical & Insulation 1.0 psf. Misc. 1.0 psf. Total WaII Weight „x 10 0°psf SUMMIT STRUCTURAL�ENGINEERING�� PHONE` 208 6348148 FAX 208 �634„6395k�;����``�P£O�BOx,2618 �MCcA�I`�ID, SUMMIT STRUCTURAL ENGINEERING P.O. Box"2618 "— 902 Baycolt Way McCall, ID 83638 MATERIAL SPECIFICATION Timber: All timber shall be Douglas Fir Larch with a maximum moisture content of 19%. Grading rules agency: West Coast Lumber Inspection Bureau (WCLIB)." , Member Fb si Fv(psi) E(psi) r Sawn Lumber (DF -L)* SUMMIT STRUCTURAL ENGINEERING P.O. Box"2618 "— 902 Baycolt Way McCall, ID 83638 MATERIAL SPECIFICATION Timber: All timber shall be Douglas Fir Larch with a maximum moisture content of 19%. Grading rules agency: West Coast Lumber Inspection Bureau (WCLIB)." , Member Fb si Fv(psi) E(psi) . Sawn Lumber (DF -L)* 2x Joists & Rafters (N6.2) 1006 95 1.6x 106 4x Sawn Beams (No.2) 875 95 1.6x 106 6x Sawn Beams (No.2) 875 85 1.3x106 ' 4x Sawn Beams (No.1) 1000 95 1.7x106 6x Sawn Beams (No. 1) 1350 85 1.6x 106 Values may be increased according to size factor, CF Manufactured Products Glu -Lam 2400 165 1.8x 106 DMicrollam Paralam PSL 2900 290 LVL 2600 285 * 2.Ox 106, 1.8x 106 ♦ Concrete: _ Application Strength @ 28 days' Slab on grade 2500 psi Footings and grade beams 3000 psi Design is based on 2500 psi concrete. No inspection is required, unless noted otherwise. ♦ Reinforcing Steel: Bars Allowable stress #4 and smaller reinforcing bars shall conform to A.S.T.M. A - 615-40. Fy=40,000 psi ' #5 and larger reinforcing bars shall conform to A.S.T.M. A - 615-60. Fy=60,000 psi ♦ Structural Steel: , Description Specification Allowable stress Pipe ASTM A-53 Type E or S, Grade B Fy=30,000' psil Tube ASTM A-500, Grade B Fy=46,000 psi All other shapes ASTM A-36 ' Fy=36,000 psi High strength bolts ASTM A-325 All other bolts ASTM A-307 -. ♦ CONCRETE MASONRY UNITS All concrete masonry units shall conform to standard specifications for hollow load bearing concrete masonry units (ASTM C-90, Grade N-11). ' SUMMIT,STRUCTURALiENGINEERING�,�"PHONE„�(208)634$1�48��Ftic,(208)634;G395�,,�, �,�� ��:�PYO€BOX2618�"MCCAII� IDS 3 . r SUMMIT STRUCTURAL ENGINEERING UL P.O. Box 2618 902 Baycolt. Way . McCall, ID 83638 " k SHEAR WALLSCHEDULE::"` `...... Number Construction Plate A35 Anchor Bolt . Shear Nailing 'Equiv. Size and Value ` ' 16d sinker Spacing '/Z' or 5/8" Drywall 8" 48" 5/8" @ 48" 100 plf: . unblocked, w/ 5d (6d @ 5/8") `50 plf in 1 Cooler nails @,7" o.c. @ edges zone 3 & 4 and field W or 5/8" Drywall ` . 8" 32" 5/8" @.48" 200 plf. 1 unblocked, w/ 5d (6d @ 5/8") •100 plf in a cooler nails @ 7" o.c. @ edges zone 3 & 4 and field. Both Sides. 3/8" Plywood, w/ 8d nails @ 2" 2" 8" 5/8" @ 16" . 640 plf. ' 2 o.c. @ edges and 12" o.c. field. 3/8" Plywood, w/ 8d nails @ 2" 2-16d @ 2" 4" 7/8" @ 12" 1280 plf. 2a o.c. @ edges and 12" o.c. field. Both Sides. _ - 3/8" Plywood, w/ 8d nails @ 3" 3" 12, 5/8" @ 16" 490 plf. 3 o.c. @ edges and 12" o.c. field. 3/8" Plywood; w/ 8d nails @ 3" 2-16d,@ 3" 6"7/8 ' " @ 12" 980 plf. 3a o.c. @ edges and 12" o.c. field. Both Sides. " Plywood, w/ 8d nails @ 4" 4" .16" 5/8" @ 24" 385-plf. < >3/8" 4 o.c. @ edges and 12" O.C. (limited to field. 350 plf.) . 3/8" Plywood, w/ 8d nails @ 4" 2". 8" , g/" @ .12" 760 plf. 4a o.c. @ edges and 12" o.c. field. Both Sides. 3/8" Plywood, w/ 8d nails @ 6" 6" 24" 5/8",@.32" 260 plf. 6 o.c. @ edges and 12" o.c. field. 7 7/8" Stucco o/ paper backed lath w/ 16 8" 32" 5/8" @ 48" 180 plf gauge staples @ 6" o.c. @ top, bottom, edge, and field. W Plywood, w/ 10d nails @ 2" 2" 7" 5/8" @ 16" 770 plf. 8 o.c. @ edges and 12" o.C. , field. PO Box 2618,MCCA�LrID; ' ISUMMR STRUCTURAL ENGINEERING � PHONE 208 63,4-8148„�FAX 2U8 `634�395t, � �� � � x ' � 4 _ . SUMMIT STRUCTURAL ENGINEERING P.O. Box 2618 902 Baycolt Way `McCall, ID 83638 Wind Load is based on the Simplified Method Justification for this is. as follows: (ASCE 7 section 6":4) I. The building is a simple diaphragm building as defined in section 6:2 2. The building is a low-rise building as defined in section 6.2 3. .The building is enclosed -as defined in section 6.2 and'conforms to the wind- borne debris provisions of section 6.5.9.3 (building is not in a wind-borne debris region) , 4. The building is a regular -shape building or structure as defined in section 6.2. ^.5. .,,The buildingis n I of c assified.as a flexible building as defined in section 6.2. 6. The building does not have response characteristic making it subject to across`wind.load, vortex shedding, instability due'to galloping or flutter; and does` not have a site location for which channeling effects or buffeting in the wake of upwind obstructions warrant special consideration. 7. 'The building has an .approximately symmetrical' cross section in _each direction with either a flat roof or a gable or hip roof with 9 :5.460 8. The building is exempted from torsional load cases as indicated in Note 5 of Fig. 6-10, or'the torsional load cases defined in Note 5 "do not control the design'of any of the MWFRS' of the building. Component and Cladding Wind Design for Glazing Pnet = KZt1 pnet30 (10,psf minimum,inward and outward) Pnet = (1.21) x 1 x 1 x 13.6 psf 16.5 psf All windows and glazing in doors must be designed for this. force. 9 9 9 Truss to top plate. uplift calculation. x$UMMIT�$TRUCTURAL�ENGINEERING�rPHONE,�(208)�',634-81'48�Fax,(208)634;6395u�������„,PrOBOX2618MCCAIa,ID? '” .: ,' 1iSUMMIT:STRUCTURAL ENGINL=EKING ,los Na 902 BAYCOLT WAY SHEET NO. :PO BOX 2618 CALCULATED: BY: McCall, 1;83638 CHECKED BY '(208).634-8148 fax (208) 6346395 SCALE z COMPANY PROJECT Summit Structural Engineering 'Moreland Addition PO Box 2618 52-887 Via Sovana 1►,� dodWorks', 902 Baycolt Way La Quinta, CA �' sraers�axrrraesvdonrarsrc+ McCall,. ID 83638 Beam1 Jan. 8, 2015 12:45 ; • �a Design Check Calculation Sheet ' Sizer 8.3 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit 743 Other 575 tern Start End Start . End 548' d Dead Full Area Live .Defl'n 1206• 30.00(9.50)* psf 1 Roof live Full Area #2 <L/999 20.00'(9'.50)* Psf pl Dead Point 0.50* 1.00 944 lbs 2 Roof .live Point + 1.00. 563 lbs. *Tributary Width (ft) MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : Vol ZY Unfactored' Anal sis Value Desi Value. 'Dead • 932 fv 743 Other 575 fv/Fv' = 0.33 463 Factored: 548' •,Fb' = 1380 1507 Live .Defl'n 1206• Total' Bearing: . = L/360 0.05 Total Defl'n #2 <L/999 #2 Load Comb Length 0.•50* DShear 0.50* Cb -• ' 1.00 Deflection: LC #2 = D+Lr (live) . 1.00 Min. bearing length for beams is 1/2" for exterior supports . • Timber -soft, D.Fir-L, No. 1, 6x6"' • Self -weight of 7.19 pif included in loads; Lateral support: top= at supports, bottom= at supports; Analysis vs.. Allowable Stress (psi) and Deflection (in) using NDS NOS: i Criterion' Anal sis Value Desi Value. Anal sis/Design Shear fv 64 Fv'•= 195 fv/Fv' = 0.33 Bending(+) fb _ 548' •,Fb' = 1380 fb/Fb' = 0.40 Live .Defl'n 0.00 = <L/999 0.08 = L/360 0.05 Total Defl'n 0.01.= <L/999 0.13 L/240 LC #2 D+Lr, V = 1507, V design = 1286 lbs _ ADDITIONAL DATA:- I FACTORS: F/E, CD, CMS Ct CL CF Cfu. Cr Cfrt Ci Cn LC# r Fv' 170 1.15 ,1. 00 1.00 - - - - 1.00: 1.00 1:00 2 Fb'+ 1200 1..15 ~.1.00 1:00 1.000..'1.000 '1.00 1.00 1.00' 1.00 - 2 625' " - ' 1.00 1..00 1.00 1.00 = - _ = El E E' 1.6 million 1.00 1.00 � ` 1.00 1.00 2 Emin' 0.00 million.1.00 1.00 1.00 1.00 -' 2 Custom duration factor for Live load ='1.15 r. ` LC #2 D+Lr, V = 1507, V design = 1286 lbs DShear Bending (+)-: LC #2 = D+Lr,.:M = 1266 lbs -ft Deflection: LC #2 = D+Lr (live) . LC .#2 = D+Lr (total) EI = 122e06 lb -int t - Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection.a + D=dead L=live S=snow W=wind' I=impact Lr=roof live Lc=concentrated All LC's•are listed in the Analysis output Load combinations: ASCE 7-05 , DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. _ 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. Load Type COMPANY PROJECT ` Location [ft] Start End ©PO Summit Structural Engineering Box 2618 ' - Moreland Addition 52-887 Via Sovana Dead WoodWorks. 902 Baycolt Way La Quinta, CA 30.00 (6.00)* psf McCall, ID 83638 Beam2.wwb Full Area 5OFAr AarFOR WOOD nFcrr,•N Jan. 8, 2015 13:06 20.00 (6.00)* psf Design Check Calculation Sheet Dead Sizer 8.3 Load Comb LOADS:' ' Load Type Distribution Pat- tern Location [ft] Start End Magnitude • Start End Unit d Dead Full Area fb = 350 1380 30.00 (6.00)* psf L Roof live Full Area 2405 20.00 (6.00)* psf D2 Dead Full Area Load Comb #3 15.00 (8.50)* psf L2 - Live Full Area 0,72 Cb 40.00 (8.50)* psf W Dead Full Area 15.00 (9.00)* psf *Tributary Width (ft) MAXIMUKRE CTIONS (lbs) and BEARING r 10, Unfactored: Criterion Analysis Value Desi n Value Anal sis/Desi n Dead 1370 fv = 39 1370 Other 1380 fb = 350 1380 Factored: Fcp' 650 - - 1.00 1.00 - -- - - 1.00 - - Live Defl'n 0.01 = <L/999 Total 2405 2405 Bearing: 0.30.= L/240 0.08 Shear LC #2 = D+L, V = 2390, V design = 1593 lbs Load Comb #3 #3 Length 0.72 0,72 Cb 1.001- 'EI•=," 1328e06 lb-in2 1.00 Glulam-Unbal., West Species, 24F -1.8E WS, 5-1/8x12" Self -weight of 14.16 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Desi n Value Anal sis/Desi n FACTORS: F/E - CD' CM Ct CL CV Cfu Cr Cfrt Notes Cn Shear fv = 39 Fv' _, 305 fv Fv' = 0.13 2 Bending(+) fb = 350 Fb' = 2760 fb/Fb' = 0.13 Fcp' 650 - - 1.00 1.00 - -- - - 1.00 - - Live Defl'n 0.01 = <L/999 0.20 = L/360 0.04, ; Total Defl'n ' 0.02 = <L/999 0.30.= L/240 0.08 Shear LC #2 = D+L, V = 2390, V design = 1593 lbs ADDITIONAL DATA: FACTORS: F/E - CD' CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1_00 2 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 2 Fcp' 650 - - 1.00 1.00 - -- - - 1.00 - - - E' 1.8 million, 1.00 1.00 - - - - 1.00 - - 2 Emin0.85 million 1.00 1.00 - - - - 1.00 - - Custom duration factor for Live load = 1.15 _ 2 Shear LC #2 = D+L, V = 2390, V design = 1593 lbs Bending(+): LC #2 = D+L, M = 3585 lbs -ft Deflection: LC #2 .= D+L (live) LC #2 = D+L (total) 'EI•=," 1328e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load,Deflection. D=dead L=live S=snow W --wind I=impact Lr=roof live Lc=concentrated + All LC's are listed in the Analysis output F Load combinations: ASCE 7 -OS DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC Al 90.1-1992 GLULAM: bxd = actual breadth x actual depth. t3. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). i COMPANY PROJECT Summit Structural Engineering Moreland Addition WoodW,orks • 90 Box2618.52 887 Via Sovana 902 Baycolt Way La Quinta, CA • McCall, ID 83638 Beam3.wwb ,s�3FrsYaaSrpu,upt9r�l,trrrS . Jan. 8,2015 13:11 Design Check Calculation Sheet . Sizer 8.3 * LOADS: Load Type Distribution Pat- tern Location [ft] Start 'End Magnitude'' Start .. End Unit d. Dead Full Area ' 413 30.00 (5.50)* psf ' L Roof live Full Area #9 ^•, 20.00 (5.50)* psf D2 Dead Full Area Cb 1 1.001,.,1.00 15.00,(0.67)*. psf L2 Live Full Area Deflection: LC #3 = D+,75(L+Lr) (live) •' f 40.00 (0.67)* psf w Dead Full Area 15.00 (9.00)* psf *Tributary Width (ft), MAXIMUM REACTIONS lbs and BEARING LENGT S. in� 10'. Unfactored: Anal sis Value Desi n Dead 1269 Shear 1269 Other Factored:, 413 ' 413 Total Bearing: 1681+ - : r 1681 Load Comb #9 ^•, #4 Length 0..50. L/360 0.50 Cb 1 1.001,.,1.00 <L/999 0.38.= .Criterion Anal sis Value Desi n Value. Anal sis/Desi n Shear Glulam-Unbal. West Species, 24F -1.8E WS 5-1/8x24" 10 - 305 Self -weight of 28.32 plf included in loads; Bending(+) fb = 58 Lateral support: top= full,'bottom= at supports; E' 1.8 million' 1.00 1.00 -. - - - 1.00 - - Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS zoos Live' Defl'n 0.00 = <L/999 0.25 =- 1 L/360 0.00 Total Defl'n 0.00 = <L/999 0.38.= L/240 0.01 .Criterion Anal sis Value Desi n Value. Anal sis/Desi n Shear fv = 10 Fv' _ 305 fv Fv''= 0.03 Bending(+) fb = 58 Fb' =.2160 E' 1.8 million' 1.00 1.00 -. - - - 1.00 - - fb/Fki' = 0.03 Live' Defl'n 0.00 = <L/999 0.25 =- 1 L/360 0.00 Total Defl'n 0.00 = <L/999 0.38.= L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Crr -Cfrt Notes Cn LC# Fv'. 265 1.15 1.00' 1.00 '1.00 1.00 1.00 4 Fb'+ . 2400 0.90 1.00 1.00 1.000 1.000 1:00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million' 1.00 1.00 -. - - - 1.00 - - 3 , 0.85 million 1.00 1.00 - - ♦ - - - 1.00 - - 3 ' 'Emin'-' Custom duration factor for Live load 1.15 Shear - LC #4 = D+Lr, V = ' 1681,' V design = 785 lbs Bending(+): LC #1 _ = D only, M = 2379 lbs -ft Deflection: LC #3 = D+,75(L+Lr) (live) •' °' Y ' •LC #3 = D+.75(L+Lr) (total) - y EI = 10627e06 lb-in2. Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. „ D=dead L=live S=snow W -wind I=impact Lr=roof live Lc=concentrated ,All LC's are listed in the Analysis output' s Load combinations: ASCE 7-05 DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. . . 2. Glulam design values are for materials conforming to,AITC 117-2001 and manufactured in accordance with ANSI/ARC A190.1_-1992 3. GLULAM: bxd = actual breadth x actual depth. - 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n).- ' Moreland Addition Project Title. �� y • 1 52-877 Via Sovana Engineer: Project ID: La Quinta, CA 92253 ' Protect Descr: Printed: 8 JAN 2015, 2:04PM F� <4=x:,u a:•; <3: EsF .F3F ;?FFg! i ,.. _,a; <:.,F k n;=.fiN.. % € z_, r,i:. F =F , .,€FUe Ic\UserslBentammlDOCUME 1\ENERCA <1\morelandec6:: Steel II IFS i a3 F< �I.vR, f.. ENEQCALC,, IN.C, ;1983 20,14Bw1d:6?14 11.18<Ver,6 14i<12 31 r.rr s Description : Steel Beam ¢'Y CODE REFERENCES �� ,� �;i � �<,� „.:'�� � -- � � •'` i Calculations per Al SC 360-10 IBC 2012, ASCE 7-10' " ' Load CombinatioA Set: ASCE 7-10 : + f - Analysis MethoAllowable Strength Design Fy : Steel Yield 50.0 ksi 7..+" Beam Bracing Beam is Fully Braced against lateral -torsional buckling, E: Modulus: 29,000.0,ksi , Bending Axis: Major Axis Bending Load CombinatiAS_ CE 7-10 Y Applied.Loads,, �`,,„ „ •, •,;, ,•',_. ;,,;.:. Service loads entered. Load Factors will be applied for calculations. ' Beam self weight NOT internally calculated and added ; Loads on all spans... Uniform Load on ALL spans: D=0.0150, L =. 0.040 ksf, Tributary Width= 8.0 ft Load for Span Number 1 , Uniform Load : D = 0.180, Lr = 0.120 k/ft, Tributary Width = 1.0 ft Uniform Load: D = 0.2250, Lr = 0.150 k/ft, Tributary Width =.1.0 ft Load for Span Number 2 Uniform Load D=0.180, Lr0 120 k/ft Tributary Width = 1 ft 0 r '1.0 ; • , Lr 0 150 k/ft, Tributa Width = ft Uniform Load D 0 2250 ry 1 R, 3 aJy K, hh�. 'R`""Y? • .. ' F DESIGN SUMMARY, '.:..:::. ; . ..... ............................................_............................. Maximum Bending Stress Ratio = 0.156: 1 Maximum Shear Stress Ratio = Section used for this span W1639 Section used for this span . ®.. 0.129 :'1 W10x39 Ma: Applied 18.262 k -ft Va : Applied 8.077; k Mn / Omega: Allowable 116.766 k -ft Vn/Omega : Allowable 62.496 k Load Combination +D+0.750Lr+0.750L+H, Load Combination +D+0.750Lr+0.750L+H Location of maximum on span 14.000ft Location of maximum on span 14.000 ft. Span # where maximum occurs Span # 1 Span # where maximum occurs Span # 1 ' Maximum Deflection Max Downward Transient Deflection. 0.025 in , Ratio = 6,653 Max Upward Transient Deflection -0.002 in Ratio= 49,728 ' Max Downward Total Deflection 0.076 in Ratio = 2201 •- t Max Upward Total Deflection L '70.007 in Ratio= 6448 T ...............................................:.......................................................................................::........................................_'...................................:..._.............................................................. -................... .................................................................................... 24 MazimumForces•,Stresses for.load Corn Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length 'Span # M V Mmax + Mmax = Ma - Max Mnx Mnx/Omega Cb Rm Va Max Vnx Vnx/Omega , ,. ; +D+H r Dsgn. L = 14.00 ft 1 0.085 ' ` 0.070 8.38 -9.91 9.91 195.00 116.77 1.00 1.00 s ` _ 4.38 •. 93.74 62.50 Dsgn. L'= 9.00 ft 2 0.085 0.055 1.52 -9.91 •9.91' 195.00. ' 116.77 1.00 1.00 3.46 93.74 •, '62.50 +D+L+H . Dsgn. L = .14.00 ft 1 - 0.137 0.113 13.49 -15.95 15.95 195.00 ' 116.77 1:00 1.00 Dsgn. L = 9.00 ft 2 0.137 0.089 , 2.44.'t -15.95 ' 15.95. 195.00 116.77 1.00 1:00 < . 7.05 93.74 62.50 5.57 93.74 62.50 1 +D+Lr+H s Dsgn. L = 14.00 ft - 1 0.129 - 0.106. ' 12.70 -15.01 15.01 195.00 116.77 1.00 1.00 6.64 93.74. 62.50 ' Dsgn. L = 9.00 ft 2 0.129 0.084 2.29 -15.01 15.01 195.00 116.77 1.00 1.00 5.24 • : 93.74 62.50 +D+S+H . • , • , , . Dsgn. L = 14.00 ft 1 0.085 0.070 :" 8.38 -9.91 9.91 195.00 116.77 1.00 1.00 .. . 4.38 93.74 62.50 ' ; - Dsgn. L = 9.00 ft 2 0.085 0.055 1.52 -9.91 9.91 195.00 116.77.1.00 1.00' 3.46 93.74 62.50 +D+0.750Lr+0.750L+H - "• �. Dsgn. L = 14.00 ft 1 0.156 ,. 0.129 15.45 -18.26 18.26 195.00 _ 116.77 1.00 1.00 Dsgn. L = 9.00 ft 2. 0.156 0.102 2.79 -18:26 - 18.26 195.00 , ,116.77 1.00 1.00 8.08 93.74 62.50 6.38 93.74 62.50 +D+0.750L+0.750S+H . � Moreland Addition -�� 52-877 Via Sovana Project Title: Engineer: Project ID: 'a. La Uinta CA 92253 Project Descr: - r Printed: 8 JAN 2015, 2:04PM -3<{: €-11-11--'-,-..--,'i ''=i €i , i s ' "�€ T ' £E"I ,File c.lUserslBen amm1D000NIE.- ENERCAx:lVnoreland ec6 •"` F3SteelgBe rnf. tl..:.€3 ... �k. F € i I .:..x.s s€ ; ?�',, y€' ,;�, -,,fn s€ •f,,,m , . ,km<ina ... _�i_:I€, ENERCALC;gINC 1983 2014; BUtld.8:1411 1$V�r 6 1A.1231..,x Description: Steel Beam 4 • Load Combination Max Stress Ratios , Summary of Moment Values Summary of Shear Values �. Segment Length Span #. M V. Mmax +. ' Mmax - Ma,- Max Mnx Mnx(Omega Cb Rm Va Max Vnx Vnx/Omega "Dsgn. L = 14.00 ft 1 0.124 0.102 12.22 -14.44 14.44 195.00 116.77 1.00 1.00 6.39 , 93.74 62.50 Dsgn. L = ;9.00 ft •2 0.124 0.081 2.21 -14.44. 14.44 195.00 116.77 1.00 1.00 5.05 93.74 " 62.50 +D+0.60W+H Dsgn. L =. 14.00 ft 1 0.085 - 0.070 8.38 -9.91 9.91 195.00 ' 116.77 1.00 1.00 4.38. 93.74 62.50 Dsgn. L = 9.00 ft' 2 0.085 0.055 • 1.52 -9.91 9.91 195.00 116.77 1.00 1.00 3.46 -93.74 62.50 +D+0.70E+H Dsgn. L = 14.00 ft .._ :1 0.085 0.070 8.38 ' - -9.91 , 9.91% ; 195.00 116.77 1.00 1.00 4.38 93.74 62.50 Dsgn. L'= 9.00 ft 2 .0.085 0.055 1.52 -9.91 9.91 195.00 ` 116.77 1.00 1.00 3.46' 93.74 62.50 +D+0.750Li+0.750L+0.450W+H , , - ` Dsgn. L = 14.00 ft 1 0.156 0.129 15.45 -18.26 18.26 195.00 116.77 1.00,1.00. 8.08 93.74 62.50 F Dsgn. L = 9.00 ft - 2 0.156 •0.102 2.79 -18.26. 18.26 ' 195.00 116.77 1.00 1.00 6.38 93.74 62.50 - +D+0.750L+0.750S+0.450W+H ',.- Dsgn. L = 14.00 ft 1 •- 0.124` 0.102. • 12.22 -14.44 14.44 195.00 116.77 1.00 1.00 . `6.39. 93.74 62.50 r D Dsgn. L = 19.00 ft 2 0.124 0.081 2.21 -14.44 14.44 195.00 116.77 1.00 1.00 - 5.05 93.74 62.50 +D+0.750L+0.750S+0.5250E+H. Dsgn. L = 14.00 ft 1 0.124' 1 0.102 12.22 -14.44, • 14.44 195.00 116.77 1.00 1.00 6.39 93.74 62.50 Dsgn. L = 9.00 ft 2 0.124 •• 0.081 2.21 .14.44 14.44 ,195.00 116.77.1.00 1.00 - 5.05 93.74 62.50 +0.60D+0.60W+0.60H i Dsgn. L = 14.00 ft ' 1 0.051 0.042 ' ' t 5.03 -5.95. 5.95 195.00 -116.77 1.00 1:00 2.63 93.74 62.50 • Dsgn. L = 9.00 ft 2 0.051 0.033 0.91 -5.95 5.95`: 195.00 116.77'1.00 1.00 .2.08- 93.74 % 62.50' - +0.60D+0.70E+0.60H Dsgn: L = 14.00 ft •,1 0.051 0.042-, 5.03 , -5.95 5.95 195.00 116.77 1.00 1.00 Y 2.63. 93.74 - • 62.50 . Dsgn L 9.00 ft 2 0.051 0.033 0.91 -5:95 5.95 195.00 116.77 1.00 1.00. 2.08 93.74 62.50 . _Mazii- 30veal»umDefle"�.. ._ _x Load Combination Span . Max "" Defl Location in Span Load Combination Max 'Y' Defl Location in Span ' +D+0.750Lr+0.750L+0.450W+H 1 0.0763 6.354 0.0000 •2.077 l +D+0.750Lr+0.750L+0.450W+H 2 0.0003 " 7.546 +D+0.750Lr+0.750L+0.450W+H -0:0066 2.077 rV,ertlCal Reaction. s€ _ Support notation : Far left is #1 Values in KIPS Load Combination , Support 1 Support 2 Support 3 Overall MAXimum 5.468 14.460 : 2.325 ' Overall MINimum - 1.526 4.035 _ 0.649 ., +D+H 2.967. 7.846 - 1.261 - ' +D+L+H 4.776. 12.629 2.030 - . +D+Lr+H 4.493 11.882 - 1.910 ` r +D+S+H 2.967 7.846' 1.261. +D+0.750Lr+0.750L+H 5.468 14.460 -2.325 ' '+D+0.750L+0.750S+H 4.324 11.433 .1.838 +D+0.60W+H. « 2.967 7.846 :1.261 .. ... +D+0.70E+H 2.967 .7.846 1.261 ,• +D+0.750Lr+0.750L+0.450W+H 5.468 14.460 '• 2.325' 'r +D+0.750L+0.750S+0.450W+H 4.324 11.433 1.838 a +D+0.750L+0.750S+0.5250E+H 4.324 11.433 -1.838 ' r' +0.60D+0.60W+0.60H 1.780 4.708 0.757 ' ' .. +0.60D+0.70E+0.60H 1.780" 4.708 0.757 4 D Only -, 2.967 7.846 A.261 - Lr Only a • 1.526 4.035. :' 0.649? .. ." ' L Only 1.809. 4.783 0.769 •, S Only " j 1. r W Only E Only +, ' a H Only • v �,a, - - . 4 Moreland Addition' ' Project ti e. 52-877 Via.Sovana Engineer: - Project ID: La Quinta, CA 92253 , Protect Descr. i Printed: 8 JAN 2015, 2:75PM _ € is � T M2 F � &a irs l E�1 AH S z � File- c:lUsersl6en aminlDOCOME-I1ENEftCA-1lmoreland ec6 ? £)£`"',zs`?<::;3F€<€ F`€ ik.s ?9..<s.,....< ;::n�: - ,f.r a H, SteelF Beam A` H „N , ,_, � ENEFiCALC INCK1983,26,T'4 Budd 6:114 11 18;iaVer 6 14 12 3,1�, WIM ' Description : Steel Beam5 rN CODE REFERENCES r '.," ,Calculations per RISC 360-10, IBC 2012, ASCE 7-10 . Load Combination Set: ASCE 7-10 Analysis MethoAllowable Strength Design Fy :Steel Yield 50:0 ksi Beam Bracing Beam isfully Braced against lateral-torsional buckling' E: Modulus.: 29,000.0 ksi. : Bending Axis : Major Axis Bending ..Load CombihatASCE 7-10 ....... ........ ......................................................... ........ ....... ............................................ ........ .............................................. ........ __ 0(2.967) L0.526) L(1.809) b 0.180 Lr 0.1 0 - ,..i .. _ - 00.135 ft 0M all F Span=lB:Ofl ............................... .... ......... ........ ......:. Service loads entered Load Factors will be applied for calculations �Alied Loads �;- :� „ �• Beam self weight calculated and added to loading ' Loads on all spans.:. 4 - :Uniform'Loadon ALL spans':. D = 0.030, Lr =, 0.020`ksf, Tributary Width = 6.0 ft Uniform Load D 0 1350 Vft Tributary Width = 1.0 ft ` �., Point Load D 2.967, Lr 1 526 L 1.809 k @ 4.0 ft Maxim um,Bending Stress Ratio, _ 0.157: 1 Maximum Shear Stress Ratio = 0.073.: 1 Section used for this span W18x4V Section used for this span,; WI 8)(40 Ma: Applied 30.624 k--ft Va :Applied 8..260 k i -Mn /.Omega `. Allowable 195.609 k-ft Vn/Omega Allowable` 112.770. k Load Combination +D+0.750Lr+0.750L+H Load Combination +D+0.750Lr+0.750L+H S p. r. p, p f .Location of maximumomspan 6.300ft Location of maximum on span 0.000+ Span maximum occurs _ S an # 1 • San # where maximum occurs S an # 1 ti ;Maximum,Deflection ' Max Downward Transient Deflection 0 028 in Ratio = 7,844 Max Upward Transient Deflection, ..: 0 000 in Ratio 0 <360 Max Downward Total Deflection 0.101 in Ratio = `. 2145 ' -;Max Upward TotaiDeflection•- 0.000 in Ratio= 0 <1r80 fMaximuimForces8'Stresses?;for"LoadComl ,. _. Load Combination, Max Stress Ratios Summaryof Moment Values Summary of Shear Values' Segment Length ` Span # M V Mmax + • Mmax Ma-Max, .'Mnx • Mnx/Omega Cb Rm Va Max Vnx Vnx/omega . +p +H Dsgn L 18.00 ft 1 0.107 • .0.049 : 20.93 20.93 326.67 195.61- 1 00 1 00 5.50 169.16 1,12.77: . +D+L+H (F Dsgn , L = . 16'00 ft 1 0.130 0061. 25.52. 25.52 326:67 195,61 :1.00 1.00 6.91 169.16 112.77 ' +D+Lr+H Dsgn L 18 00 ft 1 : 0.150 0069 -29.28, 29'28 : '326.67 195.61 1.00100 7 77 -16916 i 11277 f: r +D+S+H 'Dsgn L 18.00 ft ; ` 1 0.107 0,049, 20.93 -20.93 • > 326.67. 195.61 1.001-00. 5.50 169.-16, 11277 .� +D+0.750Lr+0.750L+H Dsgn. L = ' 18.00 ft 0.157 `0.073 ,' 30:62' 30.62 326'.67, . 195.61 1.00"1.00. 8 26. , 169.16„ 112 7Z; +D+0:750L+0:750S+H :. Dsgn., L =, 18.00 ft, 1 e 0.124 , 0.058: ' 24 33 . • 24.33. 326.67 : ` 195.61 1.00 1.00 :6.56 .169.16 112.77,'-,--' +D+0.60W+H psgn. L' 18 00 ft ; 1 0:107" 0.049 20.93 20:93 826.67 195.61 1 :00 1:00 5:50 ,'169116 112.77 +p+0.70E+H z , Dsgn. L = 18 00 ft ' 1 0:107 0.04920 93 20.93 326 67 195.61 1.00.^1.00 5.50 169.16 ' 112.77 +D+0.75OLr+0.750L+0.450W+H Dsgn, L = 18.00 ft' ' „ '1 0.157 '0.073' 30.62. 30.62 • : 326.67 195.61 1.00 1:00, 8:26 ` 169:16 ` ' 112.77 +D+0:750L+0:750S+0.450W+H ; Dsgn.'L = 18.00 ft 1 0.124 0.058 24 33. 24.33 316.67 _,195;61 1:00 1.00656 169.16 12.77 . ' +D+0:750L+0.750S+0.5250E+H IMoreland Addition L ri Project Title: 7t 7 52-877 Via Sovana Engineer: Project ID: 1 La Duirita, CA 92253Project Descr:. ► , , f.� '"moi .� r, - rrw • •.r _� -, .. ` 4 }."• ,� ,• • '.1� •. , '„e .. Printed 8 JAN 2015 2 15PM 6 t .< k i 3 . , {€ : Fr`. iFi€F�'• L FF .(:. k £ :...«.... -- ..�., . « .;,<.6 i €�MR- 'k3. ^ r iF€€,•,�&tf:. E€ 1 r i' €'-{ € �£•�i E€Q i... z--, 3 E_ File,c IUserslBenlammlDOCUME, 1\ENERCA 1lmorelandec6E .0 tXSteel i` y;€il`Iii�Fi e:.- F -a.�xs • •. «nr,.,.YE(KG<.»,F..€•..s-.., •€_«...,r,,{ENERCALC„IIVCh,19832014 Bw1d:6.341.11$;4Ver67412:`31Ni �.rr• 'Description : Steel Beam 5 Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values - + Segment Length Span #{ r M V Mmax + " Mmax - Ma - Max Mnx Mnx/Omega Cb Rm IVa Max Vnx Vnxtomega Dsgn. L = '.18.00 ft, 1 . 0.124 0.058 24.33 `. 24.33 326.67 195.61 1.00 1.00 6.56 169.16 112.77 +0.60D+0.60W+0.60H ` . Dsgn. L =, 18.00 ft' 1. 0.064 0.029 , 12.56 12.56 326.67 .195.61 1.00 1.00 f. 3:30 169.16 112.77 . +0 60D+0 70E+0 60H Dsgn L 18.00 ft 1 6.064, 0.029 1256 12.56 }. 326.67 195.61, 1.00 1.00 3.30 169.16 112.77. z;€,.,a � Overall; Maximum,>Deflec4tons, r,x Load Combination Span Max "" Defl Location in Span . Load Combination Maio "+° Defl Location in Span . > +D+O 75OLr+0 750L+0 450W+H 1 0.1007 .--8.550 0.0000 110",Vertical€ Reactions .z ,,,;;R._._ ,,i_,;x r,,•, Support notation :Far left is #1 - Values in KIPS ' Load Combination' + Support 1 Support 2 ; { ' Overall MAXimum 8.260 5.275 r Overall MINimum 1.407 w 0.402 '• i' +D+H a 5.504 + 3.856 +D+L+H 6.911, .. 4.258 = r- +D+Lr+H 7.171 5.275 • t .. a +D+S+H 5.504 3.856 p . •, 4 _ .- +D+0.750Lr+0.750L+H 8:260 .-5.222 ' tl +D#0.750L+0.750S+H 6.559 4.157. +D+0.60W+H 5.504, 3.856; M �.' +D+0.70E+H ' " 5.504 3.856 M +D+0.756U+- 0.750L+0:450W+H . 8.260 5.222 - r +D+0.750L+0.750S+0.450W+H 6.559- 4.157 +D+0.750L+0.750S+0.5250E+H • 6.559 4.157 +0.60D+0.60W+0.60H 3.303 2.314 ' +0.60D+0.70E+0.60H 3.303 „ , 2.314 ti 4 D Only 5.504 3.856 Lr Only ; 2.267 1.419. ... LOnly. 1.407- 0.402 ' -S Only W Only E Only,.,•r -� �` . H Only ' ' e ' ' � r � a . - SUMMIT STRUCTURAL;ENGINEE RING JOB No. '902 BAYCOLT WAY SHEET'NO. PO BOX 2618 CALCULATED BY McCall, ID 83638 CHECKED BY (208) 634-8148 fax (208)W4-6395 SCALE ti =In v. ' C3 O Z r� Shdar Li ktstoo- ilic "I" yEET { X"I "ij n � � ,� �,,:.• if lk, r�� � F„w : '_.�-T•. •"' .. �Y �r.; "' . tr+' ...'...xS!" °.L'...t+o�i- x'�,`....:t�":SC'4L•Eo.v` ys�....-..Y„�'" *(2081:634 81:48. ,:fax.1208:1' 634-6395 .:. J ' LATERAL ANALYSIS NOTES The original calculations by Young Engineering use dead loads and live loads, and shear wall strength at similar given values typically used by Summit Structural Engineering. The deck dead load used by Young Engineering is 68 psf The tile, sloped floor, topping, etc were removed from this deck, and the actual dead load now is 15 psf. (live load at deck and guest floor are the same at 40 psf). The new roof added over the deck weights approximately 30 psf (27 psf.. according to Young Engineering) -for. a total weight of deck and roof of 45 psf, ' which is under the original calculated deck only dead load of 68 psf. This implies that base shear and beam loading will remain the same, as the removal of the deck topping and finish is comparable to the added weight of the roof framing and tile. However, the roof mass is higher vertical (about 5' taller than the great room plate), which requires a lateral analysis to distribute the masses appropriately (see "Wind and Seismic Load Distribution" calculation sheets). We also recalculated the beams (in Vertical Load section) to ensure that the beam sizes were appropriate and adequate. ME.s �3 n Roof Level — There is an existing shear wall at the front upper box of the entry ' tower. Because it is balloon framed, and also picks up'/2 of the mass area of the existing guest bedroom, it shows a shear wall length of 5-10" and a shear wall type "E" (15/32" plywd w/ 8d nails @ 2"/12" and 3x mudsill). Note that down ' below the shear type changes. to type 132 (3/8" plywd w/ 8d @ 4"/12", 3x mudsill/sole plate). See calculation for shear line 1, roof level. 'We added shear around the window opening of the new guest, in addition to providing hold-down straps from the 2"d floor to the first level, which is conservative. Floor Level- There is an existing shear wall at the front of the existing dining room, with a length of 7'-10" and type C (3/8" plywd, 8d @ 2"/12" 3x mudsill). We will assume that the shear wall at the front of entry and this shear wall deflect at the'same rate, and have roughly similar stiffness. This brings the total shear wall This is a large house, with multiple shear lines, blocks, steel moment frame, one' story elements combined with smaller area two story elements, double sided shear walls, various plate heights, fairly high drag complexity - with a simple small addition; consisting of the conversion of a conservatively designed exterior deck to a guest bedroom. Although not included in this calculation package, we did generate additional calculations, in order to get a general feel for the stiffness and over -strength of the existing shear resisting system, throughout the house. -. After reviewing these calculations, and the calculations provided in this book, we'. feel that this addition will not exceed the system strength of the existing lateral force ' resisting system in a negative way. The notes that followmay be of use to provide clarity regarding specific points at each shear line (and.for the engineer's reference, if and when questions arise regarding what is permissible in the proposed design during construction). The original calculations by Young Engineering use dead loads and live loads, and shear wall strength at similar given values typically used by Summit Structural Engineering. The deck dead load used by Young Engineering is 68 psf The tile, sloped floor, topping, etc were removed from this deck, and the actual dead load now is 15 psf. (live load at deck and guest floor are the same at 40 psf). The new roof added over the deck weights approximately 30 psf (27 psf.. according to Young Engineering) -for. a total weight of deck and roof of 45 psf, ' which is under the original calculated deck only dead load of 68 psf. This implies that base shear and beam loading will remain the same, as the removal of the deck topping and finish is comparable to the added weight of the roof framing and tile. However, the roof mass is higher vertical (about 5' taller than the great room plate), which requires a lateral analysis to distribute the masses appropriately (see "Wind and Seismic Load Distribution" calculation sheets). We also recalculated the beams (in Vertical Load section) to ensure that the beam sizes were appropriate and adequate. ME.s �3 n Roof Level — There is an existing shear wall at the front upper box of the entry ' tower. Because it is balloon framed, and also picks up'/2 of the mass area of the existing guest bedroom, it shows a shear wall length of 5-10" and a shear wall type "E" (15/32" plywd w/ 8d nails @ 2"/12" and 3x mudsill). Note that down ' below the shear type changes. to type 132 (3/8" plywd w/ 8d @ 4"/12", 3x mudsill/sole plate). See calculation for shear line 1, roof level. 'We added shear around the window opening of the new guest, in addition to providing hold-down straps from the 2"d floor to the first level, which is conservative. Floor Level- There is an existing shear wall at the front of the existing dining room, with a length of 7'-10" and type C (3/8" plywd, 8d @ 2"/12" 3x mudsill). We will assume that the shear wall at the front of entry and this shear wall deflect at the'same rate, and have roughly similar stiffness. This brings the total shear wall length at lino,l-floor'to 14'. See the calculation for line 1 floor., Existing shear k. .' resisting- system is adequate.` Note that there are several steel columns at the" entry, and a-shear line at the back-of the-garage that:will, alsoprovide some. ' , additional energy, dissipation'during. a, high seismic event.. 77 Eflf Linen2 IN N w !, i Roof Level.. There aree-a cou le exiO shear:w II p g_ a s along this hne. The first is , at the backwall of the existing"guest shower (type`C, 3/8" plywd', 8d @ 2"/1`2") with a length of 5;5' The second is the outer wall of the existing entry, similar ; shear wall :°len th of g .. 8.. We: are providing a strap back from a new girder, truss at: the -new. roof to, 'the- 8''wall; However,, the shear transfer and stiffness of the diaphragm will likely redistribute" some of'this shear"to'the-face wall of the,`existing great-room. ,Th6y'will, likely,act a"s:one line.in terms, of stiffness/deflection Floor. Level' There is an existing 24 ; type C shear wall between the existing r master: bath andbedroom: Also, the:entry tower, though curved,. is, heathed per'. shear!wall type C though we did, not need`to.include,.this -wall in: our ;calculations; as the existing long straight `Wal l"was adequate. ' #'s a£'` a-,xr:. a 'fit gpr , �j-"" `z. ' Line 3,;,..,...' ,v,. gy� _z.. _.Roof Level =There is an existing 16' long type A.shear wall (3/8" plywood with .8d • @ 6"/12") :Also, there is.shear around;the existing• clerestory windows, which will be `f lied in: due,to :the new guest add itiori,Mhich brings the, a6tua'Upractical ength :.. to 38'. This shear line also supports the front of the great'room,(block`b.in our A calculationsY - We just.,used the existing 16° lengtli.in our calculations, as this was, w :. adequate Floor Level We'used a 12:5' and-10 existing type C shear walls ate, existing . pantryand laundry to`resist loads.along his line ,There are also a couple TS5x5x1/2 steel'columns supporting the great room steel beam at the opening #o _ the dining room,•Which'Will provide some additionalIateral strength (but,not used' in the calculations:As the entire face-'of the great coom`wall,will be solid shear, and -the new uest addition built• ri the existing deck joists has•a lot oflen th along this opening, we f66[the drag and'connection. to these:'two-shear walls is ':. 8 adequate. p ' 1 4 '€c" Line A, %MP "?... jai,. �f U, .- �i+�'a'`..;,;,>;' R6of,L6ve'l - New wall is 23' long,: with. a=few small window;openings.' `Shear o" stress i I ° w. - . s . ,Opposite:roof at garage-side, comes in, at,floor. level:.- Floor..Level The"dining room shear wall is longer, on;.Ahe: as"built drawing versus, ` the original "structur`al drawings',by Young engineering: We used the wall length Ghat is actually at°the job-site and built: The`garage has a long shear wall beyond'; this-wall, which is,ade'quate to support the entire garage-roof..••However, we...., .added' 1728,:Ib "shear load from the garage roof, directly adjacent to this shear _ 2012 IBC Lateral Analysis. La.Quinta CA 92253 Wind and Seismic Load Distribution'- Block A ` Weight of Materials Roof DL i 30 psf Floor DL .. .' _ � .. 30 psf - + Exterior Wall 15 psf ' -Interior Wall 10 psf Y Design Base Shear ' Ss= 1.5 Fa= S11 0.6 Fv= 1.5 Sds= + 1 Sds = 2/3 Sms = Fa x Ss x 2/3 Shc= 0.6 Shc = 2/3 Sml = Fv x S1 x 2/3 ' Seismic Design Category = D Site Class = D (assumed) Occupancy Category II , Seimic Importance 1=1 h = 20`- t R= 6.5- T= Ct(hn)3i4 Rho= 1.3 +' r " 'T=, . 0.189 , V= (rho) x Sds x`I'/ 1.4R x W Ts = Shc/Sds = 0.6 V= 0.143 W 4 , '- • 0.189 < 0.2505 Sds governs Design Wind Pressure (Simplified Method) - ASD level (V3=90mph,.V„n=115mph) Roof slope = 4 •12 Roof angle = 18.44 degrees ' - - Ps30 15 deg. 20 deg., linear interp. --ps=AKIps30 Zone A ' 16.1 y ; 17.8 17.27 22.69 F Zone B ,.-5.4 4.7 -4.92 -6.46 Zone C 10.7 11.9 11:52 ' 15.14 Zone D ` -3 -2.6 -2:73 -3.58 - Mean Height - 22 ps at 15' 20.89 * , 'All 5'= 1.21 -5.95 • i i20'= 1.29 13.94 A25'= 1.35 -3.30 Aht.=' 1.31 Wind Exposure Category C •0.40 mean height = ' 8.8 ft. Importance 1'= 1 ' Least horiz dim. = 24 r Basic Wind Speed = 90 mph 0.1 b = . 2.4 Topographic Factor Kzt = 1 2a = End Zone Dim 4.8 ft.' - WindFactor ps = A x Kzt x I x Ps30 Zone B and D are negative (outward) and are set to 0 for most conservative value ,!°', x^ ry ^ ^°Y >*K` -+:, ,, :., r a•F -a•a- w' qr-r . r r,r ... Pn. SUMMIT STRUCTURAL ENGINEERING Joe NO :902 BA'YCOLT WAY , , f SHE ET NO y a i s PO Box 261$ nCALCULATED BY. a n McCall, ID383638 °. �� s CKED BY ' �.:, r:_ CHE s . Y 1 (208)6348148 fax (208) 634m6395 , x i,, w tim>.° ScaLE. 4 Vertical Distribution of Forces ' Roof Level H= 22 ft. ' North - South Direction , Dead Loads Tribituary Area : ' Roof Exterior Wall 30 . psf x 15 psf x 50 ft 4.5 ft'x = 2 = . 1500 •• 135' Interior Wall 10 psf z 4.5 ft x 2 = 90 .. ' 1725 ' Wind A 22.7 psf , x 9 ft. _ 204 Ib./ft. Wind C 15.1 psf. x 9 ft. = 136 Ib./ft. Check 10 psf min to dia 10 x 9 ft. 90 Ib./ft. Floor Level H= '10 ft. - Dead Loads Tribituary,Area Floor 30 psf x '57 ft _ 1.710 Exterior Wall . 15 psf x 10 ft x • 2 = 300 Interior Wall 10 psf x 10 ftx 2- = 200- -2210 Wind A 20.9. psf x • 10 ft. = 209 Ib./ft. Wind C 13.9 psf. x . 10 ft. = 139 Ib./ft. Check 10 psf miri to dia 10 x loft. 100 Ib./ft. . East.- West Direction. Dead Loads TribituaryArea Roof 30 psf x 26 ft = 780 Exterior Wall 15 psf x 4.5 ft x' 2 = 135 Interior Wall 10 psf x 4.5 ft x 1 _ .45 . 960 .. ' Wind A 22.7 psf x 9 ft. _ 204,lb./ft. Wind C 15.1 psf. x 9: ft. '= 136 Ib./ft. Check 10 psf min to dia lox 9 ft. 90 lb./ft.. Dead' Loads .Tribituary Area ' Floor' 30 psf x 26 ft = —780 Exterior Wall 15 psf x 10 ft x 2 = , 300 Interior Wall 10 psf x 10 ftx 1 = 100 ' 1180 Wind A' 20.9 psf x 110 ft. _ 209 Ib./ft. Wind C 13.9 psf. x 10 ft. _ . 139 Ib./ft. SUMMIT STRUCTURAL ENGINEERING Jos No 902 BAYCOLT WAY ` SHEET NO k ,PO BOX 2618 � CALCULATED BYE ,, McCall, ID 83638 'CHECKED BY ,: z 2012 IBC Lateral Analysis La Quinta CA 92253 . , 'Wind and•Seismic Load Distribution - Block"13 Weight of Materials ' Roof DL 30 psf .. Floor, DL 30 psf - Exterior Wall 15 psf Interior Wall L 10 psf Design Base Shear y Ss= -1.5 Fa= S 1= 0.6 FV' --1.5 ' Sds 1 Sds =�'2/3 Sms = Fa x Ss x 2/3 " Shc= - 0.6 Shc = 2/3 Sml = Fv x S1 x 2/3 • Seismic Design Category = D� c. Site Class = D (assumed) Occupancy Category II ; Seimic_Importance 1=1 h = 20, R= 6.5 T= . Ct(hn)31e - Rho=' "1.3 T= 0.189 V= (rho) x Sds x I 1 AR x W kTs = Sd1/Sds = 0.6. ` V= 0.143 W ` 0.189 < 0.2505 Sds governs Design Wind Pressure (Simplified Method) - ASD, level (V3=90mph, V„n=115mph) Roof slope = 4 12' Roof angle = ` 18.44 degrees Ps30- 15 deg- 20 deg. `linear interp. • ps=AKlps30 , Zone A 16.1 17.8 17.27 22.69 Zone B -5.4 -4.7 -4.92 - -6.46 • Zone C 10.7 11.9 11.52 15.14 ' • Zone D -3 -2.6 -2.73 -3.58 " Mean Height' 22 ps at 15' 20.89. Al 5'= • 1.21 -5.95 A20'= 1.29 13.94 a A25'= 11.35 -3.30 A ht. = 1.31 ... `.. _ .• Wind Exposure Category C 0.40 mean height = 8:8 ft. • • ' Importance = I = 1 - Least horiz dim. _ 24 '• Basic Wind Speed = 90 mph .. 0.1b = 2.4 Topographic Factor Kzt = 1 2a =,End Zone Dim 4.8 ft. Wind Factor ps = A x Kzt x I x Ps30 ' • r Zone Band D are negative (outward) and are set to 0 for most conservative value - .n SUMMITSTRUCTURAL ENGINEERING �. a :Jog No ; :902 BAYCOLTWAY.: 4 SHEET NO vry t E; PO Box 2618' 'r 6A Ebb LAY ED BY 3 `�.. ? McCall; ID 83638 , HECK BY7 ED 777 (208) 634-8148 fax (208) 6346395 1 SCALE . a .. .......;. s.... . >.��.., w.... ._ .. .. _.. Vertical Distribution of Forces Roof Level H= .22 ft. North - South Direction Dead Loads Tribituary Area Roof 30 psf x 16 ft = 480 " Exterior Wall 15 psf x 4.5 ft x 2 • 135 Interior Wall 10 psf x " 4.5 ft x 0 = 0 615 Wind A 22.7 psf x 9 ft. _ 204 Ib./ft. Wind C 15.1 psf. x 9 ft. _ 136 Ib./ft. Check 10 psf min to dia 10 x 9 ft. 90 Ib./ft. Floor Level H= 10 ft. y . Dead Loads Tribituary Area + Floor 30,psf x 83 ft = 2490 Exterior Wall 1b• psf x 10 ft x - 2 = 300 Interior Wall 10 psf x 10 ft x 3 = 300 v 3090 Wind A 20.9 psf x, 10 ft. = 209. Ib./ft. ' V\And C 13.9 psf. x 10 ft. _ 139 Ib./ft. Check 10 psf min to dia lox 10 ft. 100 ' lb./ft. East - West Direction y Dead Loads Tribituary Area , Roof 30 psf. x , 26 ft _ 780 Exterior Wall + .15. psf x 4.5 ft x 2 = 135 Interior Wall 10 psf x 4.5 ft x 1 = 45 960 Wind A 22.7 psf x 9 ft. _ 204 Ib./ft. Wind C 15.1 psf. x 9 ft. = 136 Ib./ft. • Check 10 psf min to dia 10 X' 9 ft. 90 Ib./ft. Dead Loads Tribituary Area - Floor 30 psf x = 26 ft � _ 1780 = , Exterior Wall 15 psf x • 10 ft x 2 300 i Interior Wall 10 psf x - 10 ft x 1 = '100- 100-1180 1180 Wind A `20.9 psf x 10 ft. _ 209'lb./ft: y Wind C _ 13.9 psf. x 10 ft. _ 139 Ib./ft. ,M ry . • ` ' Lateral Analysis r r Shear Wall Line ' 1 Roof Level Block A, front of new guest F ` L= t . ' ♦'- - _, • ..V- • 355'. i - Q1 = - 355 Ib/ft x 19/ 2 = 3372.5_;. Load From Side 1,14 Ib/ft x 16 / 2 _ ., 912 ' Additional Load 0 - 0' , ` .Total Load � 4284.5' ' Unit Shear = 4284.5 / -15.5 ft. = 276 Ib./ft. • Use Shear Wall Schedule'No. 3• Capacity = 490 lb./ft. 3/8" Plywd. CDX w/ 8d @ 3/3/12 Notes: 355 Ib/ft -.4/60"" 114 Ib/ft load from existing guest: ' �• ' Overturning. Check, T Li .-15 h . .9- Unit Unit Shear = 276 Dead Loaa , • y Tribituary Load`'- x' Arm2/�Mr .' Roof/Clg Load 30 psf x 6 _ 180 15 20250 t . Wall Load 15 psf x _ 9 _ « 135 15 15187:5 Floor Load 25 psf x -0 = 0 .15 0 Additional Pt. D.L. 0 " 0 15 - 0 Mr = .35437.5 ~Mot = 276 plf x 15 x' 9 �. = 37317 Tup = (Mot - .67 x Mr) / 15 ft- 0.33 ft. T = 925 ' Use MSTC40 ' Cap. =.3465 lb: Notes: . Shear around opening; above and below window too. ` SUMMIT STRUCTURAL" ENGINEERING Joa N0 i 4 a 902 BAYCOLT WAY 'y� SHEET No PO.:Box:2618 ... , ALCULATEDY B d McCall, ID 83638 % 4j : V.lg Y CHECKED B - (208) 6348148 (208) 634-6395 SCALE w ` mfax m _�„ I s. r ` ' � � � _ � i Lateral Analysis ys s . Shear Wall Line '3 Floor Level Block A and B (front of existing:great ro,' L= 22.5 V= F 207 ; Q1 = 207 Ib/ft x : 7/ 2 724.5 Load From Side 368 lb/ft x 26/ 2 _ 4784 Additional Load 3214 •3214 • # Total Load 8722.5• ' Unit Shear = 8722.5 / 22.5 ft. = 388 Ib./ft. Use Shear Wall Schedule No. 3 Capacity = 490 lb.'/ft. j Y 3/8' Plywd. CDX w/ 8d @ 3/3/12 Notes: ' Overturning Check Li 0 h 9 Unit Shear.'- v 388 ` Dead Load Tribituary Load x Arm2/2 Mr r Roof/Clg Load .30 psf x 2 = 60 10 '. 3000 Wall Load _ 10 psf x +9 = 90 10 4500. Floor Load 15 psf x 0 = 0 10 0 Additional Pt. D.L. 0 0 10 0� - 'Mr = 7500 _Mot = 388 plfi x •10 x 9 = ' 34890 Tup = (Mot -.67 x Mr) / loft- 0.33 ft. t T = 3088 Use HDU5 ' Cap. = 5645 Ib. ' " Notes: HD5a specified on plan, adequateMJ SUMMIT TRUCTU'RAL`'ENGINEERING JOs No S . g ti Y S .F 902 BAYCOLTWAY' SHEETING y y; ,. ¢ } >PO Box 2618 z C BY s Y McCAIIJID $363$CHECKEDTBY r > x , (208 63481'48 fax (208) 6346395 ' S E Q-8-2 CAL _ _ ... , _ f. :.� .:. �, � .-� _- , ...� ., :I';?. '�' S"`?y,^-.«"?s"' .. xav:. _J q- x ,. �:".. ,. .: ''' . _. ....: ! "? s+'�a t� ...'wdq^:"• , � Lateral An'alysis' e Shear Wall Line A Roof Level Right •side of new guest addition L= 17.5 .196 ,.Q1 = X196 lb/ft x ' 15/ 2 1470 Load From Side 0 Ib/ft x 0/ 2' _ ~0 F r.0 *. Additional Load 0 ' Total Load 1470 . -Unit Shear = 1470 / .17.5 ft. _ 84. lb./ft. r Use Shear Wall Schedule No. 3' Capacity = 490 Ib./ft. 3/8" Plywd. CDX w/ 8d @ 3/3/12 Notes - •,` }. Overturning Check a \ Li 23.5 , h•. 9- Unit Shear = 84 Dead,Load ' •- Tribituary . Load x ArmZ%,, Mr • Roof/Clg' Load - 30 psf x ' 10 ; _ ` '300 23.5 82837.5 ' \ Wall Load ,' 15 psf x' 9 _ • •135 23.5 , 37276.9 Floor Load, 15 psf x 0 _'- _ _ 0 23.5 , 0 ' Additional Pt. D.L. , 0 0 23.50 +120114 , , Mr = Mot = ' • ` _ 84 plf x 23.5 x 9 = `- 17766 •s Tup = (Mot - .67• x Mr) / - 23.5 ft.- 0.33 ft. • T= --2707 , ' Standard A.B. adequate No Holdown Required ' Notes: f. :.� .:. �, � .-� _- , ...� ., :I';?. '�' S"`?y,^-.«"?s"' .. xav:. _J q- x ,. �:".. ,. .: ''' . _. ....: ! "? s+'�a t� ...'wdq^:"• , J Lateral Analysis Shear Wall Line - B Floor Level Left side of dining s L 8 V_ 110 Q1•= 110 Ib/ft x 16/ 2 = 880- Load 80 Load From Side 110 Ib/ft x 8/ 2 = 440 Additional Load 1360 1360 Total Load 2680 Unit Shear = .2680 / 8 ft. = 335 Ib./ft. Use Shear Wall Schedule No. 3. Capacity = 490 Ib./ft. 3/8" Plywd. CDX w/ 8d @ 3/3/12 ' Notes: 440 Ib is from 'circular stair and wall at floor level Overturning Check Li 8 _. h 10 - Unit Shear = 335 ' Dead Load Tribituary- Load x Arm2/2 Mr Roof/Clg Load' 30 psf x 6 180 8 5760 Wall Load ,10 psf x `•20 = 200 8 6400 Floor Load' 15 psf x 4,: _ . .-.60 8 1920 Additional Pt. D.L, -0 0 8 0 Mr'= •14080 ' Mot 335 pif x 8x 10 = ~' 26800 Tup = (Mot —.67 x Mr) / 8 ft-. a0.33 -ft. T= -2264 Standard A.B. adequate - No Holdown Required Notes: Circular wall is longer than shown on this calculation. ' �k SCALE -� w