Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
BRES2018-0376 Structural Calcs
Fred Sheu Engineering SES u,s- a 3 -►k UI I Y OF LA QUINTA BUILDING DIVISION REVIEWED FOR CODE COMPLIANCE DATE ZL2'— g 14286 California Ave, Suite #103 Victorville, CA 92392 (760)955-7522 Structural Calculations for Simons Residence APN 774-265-031 5,06 5 Avenida Juarez La Quinta, CA 92253 s'�I 9m s fivEw�.�� — N r -'D Project # S18212 Nov. 7, 2018 C FTI FEB 0 6 2019 ,�ROF�S51p� rti No. 4111 rn us LG EXP, 3-30-20 LO 7`1 � ST�UCTA�4�P C- 1-3,-,/,7 C ALIF� 1 ` 3 "/,7 Fred Sheu Project s,moAIS ei Page r + � Engineering __.Job# S1�212 TABLE OF CONTENTS Pages Design Information ......... .-- Al thru A Beams & Headers..... - B1 thru B 3 Lateral Analysis ..................... . C1 thru C10 Seismic & Wind Loads Horizontal Diaphragm Shear Walls Stud walls Foundation............................. .. .... ........................ D1 thru DZ Simpson Strong -wall ....................... ....-- .--.... . ......... .... ...... ....... ....... E1 thru E 2 Frt-W S h eu Project _ SIM ONS-- -. _— page �Z ��1?� lYleef'ljZg Job # DESIGN. CRITERIA & SPECIFICATIONS A. CODE: 2016 California Building Code (CBC) & ASCE/SEI 7-10 B. SEISMIC. per CBC section 1616 and ASCE/SEI 7-10 section 12 C E F H Method : Equivalent lateral force Procedure Seismic Design Category: n Site class: D Occupancy category: II Importance factor: I Response modification coefficient R = 6.5 WIND per CBC section 1609 and ASCE/SEI 710 section 28 Method: Simplified design wind procedure Basic wind speed = r r o m)h Exposure = C Topographic factor = 1.0 SOILS Allowable soil !Dearing pressure 1500 psf LUMBER: Douglas Fir -Larch, 19% moisture content 1. 2X Joists & Rafters - #2 or Better 2. 4X, 6X, 8X Beams & Headers - #1 or Better 3. Plates, Blocking & Studs - Stud Grade or Better GLUED -LAMINATED BEAM. Combination: 24F -V4 Specicies: DF/DF PARALLAM BEAM: Truss Joist - MacMillan, 2.0E Parallanl PSL MICROLLAM BEAM: Truss Joist - MacMillan, 1.9E Microllam LVL CONCRETE: Non -Monolithic Pour Foundation System, U.N.O. All slab -on -grade/ continuous footing/pads/pole footing ---------- f'c = 2500 psi All structural concrete/retaining wall/column/beam ------------------- f'c = 3000 psi STEEL. ASTM A572 Gr. 50 for Structural Steel ASTM A615, Gr. 40 for #3 &4, Gr. 60 or #5 and larger rebar steel ASTM A53, Gr. B for Pipe Steel, ASTM A500. Gr. B for Tube Steel CONCRETE BLOCK: ASTM C90, Grade N medium weight, Solid grouted all cells �. COLD FORM STEEL: ASTM A570-79 Gr, 33 for 18 through 25 Gauge ASTM A570-79 Gr. 50 for 12 through 16 Gauge K. WOOD CONSTRUCTION CONNECTOR SIMPSON Strong -Tie or Approved Equal Fred ,Sh erg Project 5 / M o S page � 3 Engineering Job #_ GRAVITY LOADS ROOF: L.L. = 20 psf D.L. Roof Cover = 5 psf 1/2" Plywood Sht'g = 1.5 psf Roof Framing = 3.5 psf 1/2" Drywall Ceiling = 2.0 psf misc. = 2.0 psf D. L. = 14 psf Total Load = 34 psf PATIO ROOF: L.L. = 20 psf D.L. Roof Cover = 10 psf ---------------------------------------------------------------------------------- Total Load = 30 psf EXTERIOR WALL: D.L. 2x stud wall = 1.5 psf 1/2" Plywood Panel = 1.5 psf 1/2" Drywall = 2.0 psf 7/8" Stucco =10.0 psf Insulation = 1.0 psf ---------------------------------------------------------- Total = 16.0 psf INTERIOR WALL: D.L. 2x Stud Wall = 1.5 psf 3/8" Plywood Panel = 1.1 psf (2)-112" Drywall = 4.0 psf Misc = 3.4 psf ---------------------- Total =10.0 psf Fred Sheu Project MONS Page Ag Engineering ____ _ Job # WALL SHEAR WALL PANEL SCHEDULE (PER 2015 NDS SDPWS TABLE 4.3A SEISMIC ASD VALUE) ALL TYPE & NAIL SPACING (common or goly. box) ALLOWABLE SHEAR, PLF ANCHOR BOLTS (12" LONG OR 18" FOR 2—POUR) UPPER FLOOR SILL NAILING rMARK (USE 20�i'o MORE NAILS IF SINKER NAILS ARE USED 3/5" COX plywood or OSB w/8d nails O 6" O.C. 260 5/8' O 4' 16d ® 6" at edges and W 12" o.c. in field see note #5 below plwwood or OSB w/8d nails O 4" o.c. and O 12" o.c. in field 380 (+760) 5/8" O 3' (•5/8" O 1.5') <---IF DBL SIDED 16d O 6' (•16d O 3") FOUNDATION SILL PLATE a T��' S AND BLOCKS AT ADJACENT PANELS X plywood or OSB w/8d nails O 3" o.c. 1490 5/8" O 2.5' 16d O 4" and O 12" o.c. in field USE 3X FOUNDATION SILL PLATE & 0980) (•5/8" O 1.25') <---IF DBL SEDEI. (016d O 2") 3X STUDS AND BLOCKS AT ADJACENT PANELS 3/8" COX plywood or 055 w/8d nails O 2" o.c. edges and O 12" o.c. in field 640 5/8" O 1.5' 16d O 3.5' Qat 3 USE 3X FOUNDATION SILL PLATE 8� (+1280) (•5/8" O 0.75')< ---IF DBL SIDED (•2-16d O 3.5") 3X STUDS AND BLOCKS AT ADJACENT PANELS at edges and O 12" o.c, in field 1/2" Str_ I plywood w/10d nails =PANELS 5/8" O 1.25' 16d O 2.5' 14 USE 3X FOUNDATION SILL PLAT(•5/8" O 0.6') <---IF DBL SIDED (•2-16d O 2.5") 3X STUDS AND BLOCKS AT ADJ tJ rES: that shear wall she, Fie is to be applied an hath faces of wall, nil panel edges must be blocked with 2x solid blocking. Field nailing shpt! bs 12" a.c far stud spaced at 16" o.c. and 6" o.c. otherwise. } . ' " --- ) in the table designates •t. where shear design values exceed 350 pit, foundation sill plates and all framing members receiving edge nailing from abutting panels :I�ol! not be less than 3—inch nominal member. Nails shall be staggered. anal joints shall Nhare panel is applied on both Faces of a wall and nail spacing is less than 6 inches on center on either side, p I'e offset to foil on different homing members or framing shall be 3 inch nominal or thicker and nails on each silo shall be staggered. /,II continuous exterior do interior bearing Footings sholl have 5/8" x 12" A.B. 9 6' o.c_ for monolithic pour concrete system and S/8"x18" r..B_ tar non—monalithic pour concrete system unless at shear wail pane$ where anchor bolts shall be installed per shear wall schedule. 711 interior non—bearing footing shall have 7/32" shot pins O 32" o,c. & 48" o.c. respectively. All anchor bolt shall have plate wahers o minimum of 3" x 3" x 0.229" thick. ?. list 209: more no if sinker nods are used instead of common or galvonixed box nails. iv. For design to resist seismic forces, the shear wall aspect alio of/) sholl beduaiblenot sheorcwaldl s13.5:11 ss the norminal unit shear capacity is mvItiplied by 2b/h do panel blocked. The maximum (h/b) Fred She u .Engineering Beam Calculations Page B Fiod Sheu Engineering 1,1286 California Ave, #103 'Actorville, CA 92392 uescnplion . 61-16' SLIDER HEADER AT FAMILY ROOM CODEREFERENCES Project Title: SIMONS En ineer: Protect Descr: SFR Load Combination Set: ASCE 7-10 - - - -- Ebend-xx Material Properties Eminbend - xx 930 ksi Analysis Method: Allowable Stress Design ^- - - - - - Load Combination ASCE 7-10 Fb - Tension 2400 psi Width =1.0 ft Fb - Compr 1850 psi Wood Species : DF/DF Wood Grade :24F - V4 J Fc - Prll Fc - Perp Fv 1650 psi 650 psi Beam Bracing : Beam is Fully Braced against lateral -torsion Ft buckling 265 psi 1100 Psi 1. __ - ___ - - - __ - - - __ .T 0.268] Lr(0.29)-- `5.125x13.5 Span = 16.0 ft Project ID: S18212 W 3 rJOV 208 1 i N'%.1 Flip: C:1bCf�klQyIIS,SIf�4t�ti eCs 1883.2012 go"ad;6.12.11.1, Ver.8.11.8.31 E: Mcdulus of Eiasfic#y - - - -- Ebend-xx 1800ksi Eminbend - xx 930 ksi Ebend-yy 1600ksi Eminbend - yy 830ksi Density 32.21 pcf b-l�fPsxY7z ¢lnf'fF�rz'f-l60 X z PAF 5 `e zb LY -�n psF/ �, = �o Ap lied Loads � Beam self weight calculated and added to loads __ Service loads entered. Load Factors will be applied for calculations Uniform Load D = 0.2680, Lr = 0.290 , Tributary Width =1.0 ft DESIGN SUMMARY Maximum Bending Stress patio = Section used for this span 0.58R 1 Maximum Shear Stress Ratio t fb : Actual 5.125x13.5 Section used for this span _ 0.323.5 1 FB: Allowable 1,414.61 psi fv : Actual 5.125x 1-nad Combination 2,400.00psi p Fv :Allowable .67 85.67 psi 265.00 psi I_c:;alion of maximum on span +D+Lr Load Combination _ Span # where maximum occurs 8.000ft Location of maximum on span +D+Lr Maximum Deflection Span # 1 Span # where maximum occurs = 14.891 ft Span # 1 Max Downward L+Lr+S Deflection Max Upward L+Lr+S Deflection 0.227 in Ratio = 844 Max Downward Total Deflection 0.000 iRatio n = 0 <360 Max Upward Total Deflection 0.450 in Ratio = 426 0.000 in Ratio = 0 <180 Maximum Forces & Stresses for Load Combination$ l~ Lmd Combination Max Stress Ratios Segment Length Span # M V Cd CFN �i ��. Cm Moment Values C CL _ Shear Values DOnly- t M fb Fb V iv F'v Length =16.0 ft 1 0.291 0.160 "C 1.00 100 1.00 1.00 1.00 1.00 9.07 0.00 _0,00 0.00 0.00 Length =16.0 ft 1 0-291 0.160 1.00 1.00 1.00 1.00 699.26 1.00 1.00 2400.00 000 1.95 42.35 265.00 ;D+Lr Length =16.0 It 9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1,00 1.00 1.00 9.07 699.26 1,00 1.00 2400.00 0.00 1-95 0.00 0.00 42.35 265.00 1 0.589 0.323 0+S 1.00 1.00 1.00 1.00 1.00 1.00 18.35 1,414.61 D.DO 2400.00 0 00 0 00 0-00 Length =16,0 ft 1 0.291 0.160 ,D10.750Lr+0.750L 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 100 1.00 0.00 3.95 0.00 85.67 265.00 0.00 0.00 Length =16A ft 1 0.515 0.282 9.07 699.26 2400.00 1.95 42,35 265.00 D+0.750L+0.750S 1.00 1.00 1.00 1100 1.00 1.00 1.00 1.00 1.00 1.00 16.03 1,235.77 0,00 2400.00 0.00 3.45 0.00 0.00 74.84 265.00 1.00 1.00 0.00 0.00 0.00 0.00 Fie} Sheu Engineering 11286 California Ave. #103 'Aclorville, CA 92392 Wood Beam Description B1-16' SLIDER HEADER AT FAMILY ROOM Project Title: SIMONS Engineer: Project Descr: SFR I oad Combination Max Stress Ratios D Only 2.268 Lr Only 2.320 D+Lr 4.588 Segment Length Span # Length -MV C d C FN C I C r C m C t CL =16.0 ft 1 {) 0.291 0.160 1.00 1.00 1.00 1.00 1.00 1.00 Length Length =16.0 ft 1 0.291 0160 1.00 1.00 1.00 1.00 1.00 1.00 1.00 i)+0.70E 1.95 42.35 1.00 1.00 1.00 1.00 1.00 Length =16.0 ft 1 0.291 0.160 1.00 1.00 1.00 1.00 1.00 1.00 1.00 + D+0 750Lr+0.75OL40 450W 1.00 1.00 1.00 1,00 1.001.00 Length =16.0 It 1 0.515 0.282 1.00 1.00 1.00 1.00 1.00 1.00 1D F0,750L+0,750S+0.450W 1.00 1.00 1.00 1.. 00 1.00 Length +0.75 ft 1 0.291 0.160 1.00 1.00 1.00 1.00 1.00 1 00 1.00 D+0.750L+0.75 0S+0.5250E 1.00 1.00 1.00 1.00 1.00 Length =16.0 It 1 0.291 0.160 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0 60D+0Length 60W 1.00 1.00 1.00 1.00 1.00 Length =16.0 ft 1 0.175 0.096 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 E 0.Length 1.00 1.00 1.00 1.00 = Length =16.0 ft 1 0.175 0.096 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Overall Maximum Defections- �-' Unfactored Loads 1.00 1.00 1.00 1.00 1.00 Load Combination T Span Max. " "Deo _ Location in Span Load Combination 8.05f3 - Vertical Reactions - Unfactored Load -r Support notation : Far left is #1 °ria °n overall AXimum Support 1 4 D Only 2.268 Lr Only 2.320 D+Lr 4.588 Support 2 2.268 2.320 4.588 - ENERCALC, INC, IS Moment Values M fb 'FW 9.07 699.26 2400.00 000 9.07 699.26 240000 000 1.07 699.26 2400,00 000 i.03 1,235.77 2400.00 000 1.07 699.26 2400.00 000 07 699.26 2400,00 0.00 .44 419.55 2400.00 0.00 44 419.55 2400.00 Project ID: S18212 i a- Plwto: 6NOV2018- tisn Fila Ey118SM10212-ec6 112, BUOU.12.11.1, Ver 6.11.9.31 Shear Values V fy Fb 1.95 42.35 265.00 0.00 0.00 0.00 1.95 42.35 265,00 0.00 0.00 0.00 1.95 42,35 265.00 0.00 0.00 0.00 3.45 74.84 265.00 0.00 0.00 0.00 1.95 42.35 26500 0.00 0.00 0.00 1.95 42.35 265.00 0.00 0.00 0-00 1.17 25.41 265.00 0.00 0.00 0.00 1.17 25.41 265.00 "+" aefi Location in Span 0.0000 _ 0.000 Values in KIPS Fred Sheu Engineering 14286 California Ave, #103 Jictorville, CA 92392 Project Title: SIMONS Engineer: Project Descr: SFR Project ID: S18212 Wood Beam Span # Beam self weight calculated and added to loads Pr.ntcd 6NOV 2018, 232N.1 Filp:e:150ttodl@y 80918212ACS Uniform Load : D = 0.2680, Lr = 0.290, Tributary Width =1.0 ft DESIGN SUMMARY ENERCALC, INC. t983?Il1� Build:6,311.1,Ver611.8.3t Description : 82-10' WINDOW HEADER AT KITCHEN 0.5241 Section used for this span 6x12 CODE REFERENCES 707.93psi FB: Allowable = 1,350.00psi Load Combination Set: ASCE 7-10 +D+Lr Location of maximum on span = 5.000ft Material Pro erties Span # 1 Maximum Deflection 0.159 Analysis Method: Allowable Stress Design Load Combination ASCE 7-10 Fb Tension 1350 psi E: Modulus of Elasticity 1.00 Fb • Compr 1350 psi Ebend- xx 1600ksi I Wood Species~�6 _uigTas Fir -Larch 1 Fc - Pdl Fc • Perp 925 psi Eminbend 625 psi - xx 580ksi Wood Grade : No.1 Fv 170 psi 0.00 Ft Beam Bracing Beam is Fully Braced against lateral -torsion buckling 675 psi Density 32.21 pcf 0.259 0.258 ✓-r 0.29 -, D+0 750Lr+0.750L 349.11 1350.00 1.00 1.00 Length =10.0 ft 1 0.458 i 1.00 0+0 7501_+0 750S 1.00 1.00 6x12 0 = Irf f�SF,e 17. a rb l'SFk s 1.00 7.15 707.93 135000 o z� 1.00 1.00 1.00 1.00 Span =10.0ft LY, 26 f 5TvIq.5"z2,70 f Applied Loads Span # Beam self weight calculated and added to loads C d C FN Uniform Load : D = 0.2680, Lr = 0.290, Tributary Width =1.0 ft DESIGN SUMMARY 0.00 Maximum Bending Stress Ratio = 0.5241 Section used for this span 6x12 fb : Actual = 707.93psi FB: Allowable = 1,350.00psi Load Combination +D+Lr Location of maximum on span = 5.000ft Span # where maximum occurs = Span # 1 Maximum Deflection 0.159 Service loads entered. Load Factors will be applied for calculations. Maximum Shear Stress Ratio Section used for this span fv : Actual Fv: Allowable Load Combination Location of maximum on span Span # where maximum occurs Max Downward L+Lr+S Deflection 0.059 in Ratio= 2039 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.116 in Ratio= 1033 Max Upward Total Deflection 0.000 in Ratio= 0 <180 Maxirnum Forces & Stresses for Load Combinations oatl Combination Segment Length Span # Max Stress Ratios M V C d C FN D Only Moment Values 0.00 Ci Cr -Cm Length =10.0 it 1 0.259 0.159 1.00 'O+_ 27.11 170.00 0.00 1.00 Length = 10.0 ft 1 0 259 0.159 1.00 +D+Lr 1.00 1.00 1.00 1.00 Length =10.0 ft 1 0.524 0.323 1.00 -FD+S 1.00 0.00 0.00 1.00 Length =10.0 ft 1 0.259 0.159 1.00 D+0 750Lr+0.750L 349.11 1350.00 1.00 1.00 Length =10.0 ft 1 0.458 0.282 1.00 0+0 7501_+0 750S 1.00 1.00 1.00 1.00 • = 0.323 : 1 6x12 54.97 psi 170.00 psi +D+Lr 0.000 ft = Span # 1 Shear Values lV fv Fv Moment Values 0.00 Ci Cr -Cm 27.11 C t CL M ib F'b 27.11 170.00 0.00 0.00 0.00 -- - 000 1.00 1.00 1.00 1.00 1.00 3.53 349.11 135000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 100 3.53 349.11 1350.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 7.15 707.93 135000 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 3.53 349.11 1350.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 6.25 618.23 1350.00 1.00 1-00 1.00 1.00 1.00 0.00 Shear Values lV fv Fv 0.00 0.00 0.00 1.14 27.11 170.00 0.00 0.00 0.00 1.14 27.11 170.00 0.00 0.00 0.00 2.32 54.97 170.00 0.00 0.00 0.00 1.14 2.7.11 170.00 0.00 0.00 0.00 2.02 48.00 170.00 0.00 0.00 0.00 Fred Sheu Engineering 14286 California Ave, #103 Victorville, CA 92392 1,lood Beam �-IL. Description: 132-10' WINDOW HEADER AT KITCHEN Project Title: SIMONS Engineer: Protect Descr: SFR FNOICAI.C, INC. Project ID: S18212 ►3za Pnnted i NOV201B, 2:321161 Fdec c�lberkefeyliBsUls78xSi,etS ]72, 8ui1d:G.17.77.4, V�r.fi.77.8.31 Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span # M V C d C FN C i Cr C m C t C L M fb _ F'b V fv F'v Length =10.0 H 1 0.259 0.159 1.00 1.00 1.00 1.00 1.00 1.00 3.53 349.11 1350.00 1.14 27.11 170.00 1-D+d.60W 1.00 1.00 1.00 1.00 1.00 1.00 0.00 000 0.00 0.00 Length =10.0 ft 1 0.259 0.159 1.00 1.00 1.00 1.00 1.00 1.00 3.53 349.11 1350.00 1.14 27.11 170.00 +D+0,70E 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =10.0 It 1 0.259 0.159 1.00 1.00 1.00 1.00 1.00 1.00 3.53 349.11 1350.00 1.14 27.11 17000 +D+0.750Lr+0.750L+0A50W 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 000 Length =10.0 ft , 1 0.458 0.282 1.00 1.00 1.00 1,00 1.00 1.00 625 618.23 1350.00 202 48.00 170.00 1-D+0 750L+0.750S+0.450W 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 000 Length =10.0 It 1 0.259 0.159 1.00 1.00 1.00 1.00 1.00 1.00 3.53 349.11 1350.00 1 14 27.11 170.00 *D+0.750L+0.750S+0.5250E 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =10.0 It 1 0.259 0.159 1.00 1.00 1.00 1.00 1.00 1.00 3.53 349.11 135000 1.14 27.11 170.00 +0 60D+0.60W 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 000 Length =10.0 ft 1 0.155 0.096 1.00 1.00 1.00 1.00 1.00 1.00 2.12 209.47 13%00 0.69 16.26 170A0 0 60D+0.70E 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =10.0 ft 1 0.155 0.096 1.00 1.00 1.00 1.00 1.00 1.00 2.12 209.47 1350.00 0.69 16.26 170.00 Overall Maximum Deflections - Unfactored toads _ Load Combination Span TMax. ' " Defl Location in Span Load Combination Max. '+' Defl Location in Span D+U 1 0.1161 5,036 0.0000 0.1300 Vertical Reactions - Unfactored Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Nerall Akimurn - - .8 1�^ 1 D Only 1.411 1.411 Lr Only 1.450 1.450 D+Lr 2.861 2.861 Fied Sheu Engineering 14286 California Ave, #103 Victorville, CA 92392 Wood Beam Description - B3-10' SLIDER DOOR HEADER AT MASTER BEDROOM CODE REFERENCES Project lift SIMONS Engineer: Project Descr. SFR Prosect ID: S18212 •mled: EMpV:!•�' 213,011 ri4a: �:lherkeleyllAsrii51R7.12.ec& INC.1993.7.012, Btsdd:G.1211.1LV :6�1 Load Combination Set: ASCE 7-10 Material Properties __ ._-- --- - - -- -- - - - -- 1350.0 psi E: ModulusofElaslicify Analysis Method: Allowable Stress Design Fb- Tension,p 1,600.0ksi Fb - Compr 1,350.0 psi Ebend- xx Load Combination ASCE 7-10 Fc - Pril 925.0 psi Eminbend - xx 580.0 ksi Fc - Perp 625.0 psi Wood Species Douglas Fir - Larch~� Fv 170.0 psi Wood Grade No.1 _ Ft 675.0 psi Density 32 210pcf Beam Bracing Beam is Fully Braced against lateral -torsion buckling D 0.248 L r 0.24 6x10 _ Span = 10.0 ft Service loads entered- Load Factors will be applied foi calculations Alied Loads -- -- Beam self weight calculated and added to loads : 1 [).3576x10 Uniform Load : D = 0.2480, Lr = 0.240, Tributary Width =1.0 ft DESIGN 1jYMNARY _ - _ - 0.671:1 Maximum Bending Stress Ratio - 6x10 Section used for this span 906.01 psi fib : Actual = FB: Allowable = 1,350.00psi Load Combination +D+Lr 5.000ft Location of maximum on span - = Span # 1 Span # where maximum occurs 1.00 1.00 133 Maximum Deflection 0.086 in Ratio= Max nownward L+Lr+S Deflection 0.000 in Ratio= Max Upward L+Lr+S Deflection 0.180 in Ratio= Max Downward Total Deflection 0.000 in Ratio= Max Upward Total Deflection Maximum Forces & stresses for Load combinations Load Combination w . � a _ Maximum Shear Stress Ratio - : 1 [).3576x10 Section used for this span - 60.73 psi fv : Actual - 170.00 psi Fv: Allowable = D Only Length = 10.0 ft 1 +D+U Load Combination 0.000 ft Location of maximum on span = = Span # 1 Span # where maximum occurs 0.186 Maximum Deflection 0.086 in Ratio= Max nownward L+Lr+S Deflection 0.000 in Ratio= Max Upward L+Lr+S Deflection 0.180 in Ratio= Max Downward Total Deflection 0.000 in Ratio= Max Upward Total Deflection Maximum Forces & stresses for Load combinations Load Combination Cr Max Stress Ratios C C Segment Length Span #- M V d FN D Only Length = 10.0 ft 1 0.349 0.186 1.00 �D+L Length =10.0 it 1 0.349 0.186 1.00 1.00 1.00 100 1.00 1.00 1.0c +D+Lr Length =10.0 ft 1 0.671 0.357 1.0( +4.)+5 Length =10.0 ft 1 0.349 0.186 1.0( 10( D+0 750Lr+0.750L 1 0.591 0.314 1.01 Length =10.0 h 1.00 1.00 1.00 1.01 D+o 750L+0.750S 1.00 1.00 1.00 1.00 1389 0 <360 667 0 <180 Ci Cr Cm C t CL 1,00 1.00 1-00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Moment Values fv M fb Fb 0.00 1.10 0.00 3.25 470.85 1350.00 0.00 1.10 0.00 3.25 470.85 1350.00 0.00 2.12 0.00 6.25 906.01 1350.00 0.00 1.10 0.00 3.25 470.85 1350.00 0.00 1.86 0.00 5.50 797.22 135000 0.00 0.00 Shear Values V fv Fv 0.00 0.00 0.00 1.10 31.56 170.00 0-00 0.00 0.00 1.10 31.56 170.00 0.00 0.00 0.00 2.12 60.73 170.00 0.00 0.00 0.00 1.10 31.56 170.00 0.00 0.00 0.00 1.86 53.44 170.00 0.00 0.00 0.00 Fred Sheu Engineering Project Title: SIMONS project ID: S18212 Engineer: 14286 California Ave, #103 Project Descr: SFR 13 3 0. Viclorville, CA 92392 wood Beam Printed: CNOUN& 236Pt."; FIe'C VkI17�@�lltii6aL5104lzx E,NERCALC. INC. ig 12017, 8olld-5.1ZI I.1, Ver.CC. 11.8.31 B3-10' SLIDER DOOR HEADER AT MASTER BEDROOM Description: Moment Values Shear Values _ Load Combination Max Stress Ratios Cd C C i Cr C m C t CL M flb F'b V fv Pv Segment Length Span # M V~ FN 1.00 1.00 1,00 1.00 325 470.85 0.00 1350.00 1.10 30 170.00 Length =10.0 fl 1 gth 0.349 0.186 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 00 170.00 D+0 0.349 0.186 1.00 1.00 1.00 1.00 1.00 1.00 3.25 470.85 1350.00 0 00 0,00 1.10 30 00 Length =10.0 ft 1 +0+0.70E 1.00 1.00 1.00 1.00 1.OD 1.00 1.00 1.00 3.25 470.85 0.00 1350.00 1,10 30.00 170 Length =10.0 ft 1 0.349 0.186 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.001.86 0.00 00 i D+0.750Lr+0.750L�0.450W 1.00 1.00 1.00 1.00 1.00 1.00 1.00 5.50 797.22 1350.00 53.44 170.00 Length =10.0 It 1 0.591 0.314 1.00 1.00 1.00 1.00 1.00 1.00 0.00 30 170.00 �D+0.750L+0.750S+0.450W 1.00 1.00 1.00 1.00 1.00 1.00 3.25 470.65 1350 00 Length =10.0 ft 1 0.349 0.186 1.00 1.00 1.00 1.00 1.00 1.00 00 0.00 30.0 170 ,D+0.750L+0.750S+0.5250E 1.00 1.00 1.00 1.00 1.00 1.00 3.25 470.85 13500,000 00 Length =10.0 ft 1 Length=1060W 0.349 0.186 1.00 1.00 1.00 1.00 1.00 1.00 0.00 18.94 170-00 0. 0.209 0111 1.00 1.00 1.00 1.00 1.00 1.00 1.95 282.51 13500.0 0 6 0.00 00 Length =10.0 ft 1 i0 60D -470E 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1,95 282.51 .00 1350.00 0.66 18.94 170.00 Length =10.0 It 1 0.209 0.111 1.00 1.00 1.00 Overall Maximum DeflectionS . Unf actored Loads Max. '+" De 0 Location in Span Load Combination Span Max.''Dell Location in Span - _ _.. - Load Combination _ 0.0000 0.000 D+Lr 1 0.1799 5.036 Support notation : Far left is #1 Values in KIPS Vertical Reactions - Unfactored - - - - - -- - - - LoadCombinaslon Support Support2-- overall Ximum 2.98 D Only 1.298 1.298 Lr Only 1.200 1.200 D+Lr 2.498 2.498 Fred ,Shea Engineering Lateral Analysis Page G �� ��������a�s��u����ary Report ��m�a��� Design ~ User -Specified Input Building Code Reference Document 2012/2015 International Building Code (Which unxzesosGs hoza/udata available m zoox) Site Coordinates 33.851140N,110.31665"VV Site Soil Classification Site Class D - "Stiff Soi\^ Risk Category wm=p |u�Nnm o,"_�.�npon� � . ' ��Cw ' " , � .vmm Ft"I ^ ! AllPV�t � ^ ----'r �m« � ^. / ~ �^' � nVqk(^*^WFuo: USGS_Provided Output S"= 1.500g SMS = 1.500g S== 1.0009 S`= 0.600g S°`= 0.900g S== 0.6009 F | m rmouufromo" on how the SS and St values above have been c^|mu)o,eu �� probabilistic (risk -targeted) and d deterministic ground motions |nthe direction ofmaximum horizontal response, pl� mmsoturnto,hemppl|cattnnon select the ^zOO9NE*Rp''building code reference document. m������^�ox���mm NICE, m^�pvmmemp«mrmmo � ^� 'NK .~ ^` ,~ QA ~" � .~. ~° ^°. =' ^~ .� =. . .^, . - ~~ ^' ~~ "~ `.~. .- ._Ai, _ — ,,. °,' ,,. o°. ,^. .,. .� 1W.�� o° vm�m.Twwo m,mw'T^w* '------�--' ------ --- m,a�o,/mnopu aummo mumvnotms/n*vnm/vo.,"nmuw�mu`cos.ceomnxa/svwer.vmpn�m� "v=anvmv p acrvr",o/the data contained me.wo.This tool /,nol:vsubstitute for technical nuNwck'mam*rxnv°`y"� Fred ►Sheu '7-"ngineering Project: SEISMIC LOAD Per 2016 CBC Section 1613 and ASCE 7-16 section 12.8 Equivalent Lateral Force Procedure: Seismic Design Category = Site Clas = Occupancy Category = Importance Factor, I = Response Mondification Coefficient, R = System Overstrength Factor = Seismic Design Parameters from USGS: Site Coefficient (0.2 sec), Fa = 1.0 Site Coefficient (1.0 sec), Fv = 1.5 1.0 6.50 3.00 .51... /)vi. Ns Mapped Spectral Acceleration (0.2 sec), Ss = 1.500 Mapped Spectral Acceleration (1.0 sec), Si = 0.600 Adjusted Spectral Acceleration (0.2 sec), Sms = Fa Ss = 1.500 Adjusted Spectral Acceleration (1.0 sec), Sm, = Fv S1 = 0.900 Design Spectral Response Acceleration (0.2 sec), SDs = 2/3 x Sms = Design Spectral Response Acceleration (1.0 sec), So1 = 2/3 x Smi = Seismic Design Coefficient: (Eq. 12.8-2) Cs= SDS /(R/I)= 1.000/(6.5/1.0) = (Eq. 12.8-5) Cs min. = 0.044 SDs I > 0.01 = 0.044 *1.000*1.0= (Eq. 12.8-6) Cs min. =0.5*Sl/(R/1)=0.5*0.6/(6.5/1.0)= (Eq. 12.8-3) Cs max. = SW / T( R / 1) = 0.600/ 0.14*(6.5/1.0) _ (Eq. 12.8-7) T = Ct hn " 0.75 = 0.02 * 14.0 ^ 0.75 = where hn = 14.0 ft (Sec. 12.3.4) Redundancy Factor, p = 1.3 Seismic Base Shear: (Eq. 12.8-1) V = p Cs W =1.3*0.154*W= or 0.200 W / 1.4 = Page C 7 - Job Job # 518 X 12 1.000 0.600 0.154 0.044 0.046 1.063 0.145 sec. 0.200 W for LFRD 0.143W for ASD Fred S'heu Engineering Project_ S t Morals WIND LOAD Page o 3 Job #_olr��/z Per ASCE 7-10 Simplified MWFRS Envelope Procedure, Chapter 28 part 2 Adjusted design net wind pressure, ps --:;L Kzt Ps30 (Eq. 28.6-1) Mean roof height= 16.5 Basic wind speed = ► I o mph, Exposure = c.. Kzt = topographic factor per section 26.8 = 1.0 = adjustment factor for building height & exposure per Fig. 28.6-1 Mean roof Height (ft) Ex osure B C D 1.00 1.21 1.47 1.00 C1.29 1.55 15 20 25 1.00 1.35 _ 1.61 30 1.00 1.40 1.66 35 1.05 1.45 1.70 40 1.09 1.49 1.74 1 45 1.12 1.53 1.78 50 1.16 1.56 1.81 55 1.19 1.59 1.84 60 1.22 1.62 1.87 Ps30 = Simplified design wind pressure for Exposure B, h= 30' from Fig. 28.6-1 I Roof Angle horiz. pressure horiz, pressure horiz. pressure horiz. pressure (pitch / degrees) for basic for basic for basic for basic wit peed= wind speed= wind speed= wind speed= 115 m h 120 mph_ _1.30 mph -� flat / 0 to 5 degree 2 D 21.0 22.8 26.8 3:12 / 14.0 degree 23.6 25.8 28.1 33.0 4:12 / 18.4 degree 25.8 28.1 30.7 36.0 5:12 / 22.6 degree 25.3 27.6 30.0 _ 35.3 6:12 / 26.6 de ree 23.3 25.7 27.7 32.5 7:12 to 12:12 / 21.6 23.6 25.7 30.1 30 to 45 deqree ==O ps=A KztPS30 = I.2q,,(1 9.Z = zq. � p 5 r For ASD, ps = 0.6 ps = o . 6 x z ¢ S - p 5 F U s E 17 p5F Fred Sheu Engineering Project S f") o NS Page e `f Job# 518212- I 18212 I ST FLOOR SHEAR WALL DIAGRAM 0 -- Designates Shear Wall Number L -- Designates Longitudinal Direction T -- Designates Transverse Direction cD 2- (3) uzI lD Q O Prem Sheu Project: 51MONS RESIDENCE Page C 5 Engineering Job # S18212 LATERAL LOADS Design spectral response acceleration SDS= 1.000 Roof weight= 14.0 Exterior wall weight= 16.0 Seismic base shear coefficient= 0.143 Floor weight= 0.0 Interior wall weight= 10.0 Wind pressure= 17.0 psf Section L-1 jap.uLtL Roof height= 5.0 Wall height= 10.0 # of exterior walls= 2 Roof depth= 46.0 Floor depth= 0.0 # of interior walls= 2 Wind Load, Vw = 17.0 * (5.0 + 10.0/2) = 170.0 plf <--- controls Seismic Load, Roof DL = 14.0 * 46.0 = 644.0 Floor DL = 0.0 * 0.0 = 0.0 Ext. Wall DL = 2 * 16.0 * 10.0/2 = 160.0 Int. Wall DL = 2 * 10.0 * 10.0/2 = 100.0 Total DL, W = 644.0 + 0.0 + 160,0 + 100.0 = 904.0 plf Seismic Load= 0.143 * 904.0 = 129.3 plf Section L-2 Input: Roof height= 4.0 Wall height= 12.0 # of exterior walls= 2 Roof depth= 46.0 Floor depth= 0.0 # of interior walls= 2 Wind Load, Vw = 17.0 * (4.0 + 12.0/2) = 170.0 plf <--- controls Seismic Load, Roof DL = 14.0 * 46.0 = 644.0 Floor DL = 0.0 * 0.0 = 0.0 Ext. Wall DL = 2 * 60 * 12.0/2 = 192.0 Int. Wall DL = 2 * 10.0 * 12.0/2 = 120.0 Total DL, W = 644.0 + 0.0 + 192.0 + 120.0 = 956.0 plf Seismic Load= 0.143 * 956.0 = 136.7 plf red Sheu Project: SIMONS RESIDENCE Page .{engineering Job # 518212 LATERAL LOADS Design spectral response acceleration SDS= 1.000 Roof weight= 14.0 Exterior wall weight= 16.0 Seismic base shear coefficient= 0.143 Floor weight= 0.0 Interior wall weight= 10.0 Wind pressure= 17.0 psf Section T-1 1MkLtL Roof height= 4.0 Wall height= 12.0 # of exterior walls= 2 Roof depth= 72.0 Floor depth= 0.0 # of interior walls= 3 Wind Load, Vw = 17.0 * (4.0 + 12.0/2) = 170.0 plf Seismic Load, Roof DL = 14.0 * 72.0 = 1008.0 Floor DL= 0.0*0.0= 0.0 Ext. Wall DL = 2 * 16.0 * 12.0/2 = 192.0 Int. Wall DL= 3 * 10.0 * 12.0/2 = 180.0 Total DL, W = 1,008.0 + 0.0 + 192.0 + 180.0 = 1380.0 plf Seismic Load = 0.143 * 1,380.0 = 197.3 plf <--- controls Section T-2 Input: Roof height= 5.0 Wall height= 10.0 # of exterior walls= 2 Roof depth= 72.0 Floor depth= 0.0 # of interior walls= 4 Wind Load, Vw = 17.0 * (5.0 + 10.0/2) = 170.0 plf Seismic Load, Roof DL = 14.0 * 72.0 = 1008.0 Floor DL = 0.0 * 0.0 = 0.0 Ext. Wall DL = 2 * 60 * 10.0/2 = 160.0 Int. Wall DL = 4 * 10.0 * 10.012 = 200.0 Total DL, W = 1,008.0 + 0.0 + 160.0 + 200.0 = 1368.0 plf Seismic Load = 0.143 * 1,368.0 = 195.6 plf <--- controls 14 red Sheu ngineeri Eng Project: SIMONS RESIDENCE Page C7 Job* S18212 CHORD FORCE & ROOF DIAPHRAGM DESIGN Direction: L-2 Between Shear Walls: 2 & 3 Width, L = 41.0 Depth, D = 44.5 Diaphragm Force. Wind Load = 170.0 plf <__= control Seismic Load = 136.7 plf Diaphragm Shear = 170.0 x (L/2) /D = 78.3 plf Use: 15/32" APA Rated Sheathing, or O.S.B. unblocked disphragm, exterior grade, Index 24/0 w/ 8 nails @ 6" o.c. at edges and boundaries, @ 12" o.c. in field Case 1- allowable load= 240 plf Splice Chord Force, F = M / D = 1/8 x 170.0 x (41.0)**2 / 44.5 = 803 Ib 16d sinker nails: allowable shear for double top plate, single shear, 1.5" penetration (p) v = 118 lbs x Cd per Table 11 N, 2015 NDS =118x(p/10dia.)=118x1.0=118 lb Top Plate Splice: n = F /(1.6x118) = 803 /189= 4.2 (Cd = 1.6) use (12) - 16d Sinkers at top plate splice I'll red Sheu Project: SIMONS RESIDENCE Page $ Engineering Job # S18212 SHEAR WALL LINE # 1 PANEL DESIGN: Section a- _ Tributary width (ft) = 31.0 Seismic(plf)= 129.3 Wind (plf)= 170.0 Section b- Tributary width (ft) = 0 Seismic(plf)= 0.0 Wind (plf)= 0.0 Total seismic load = Total wind load = Total panel length = Shear = '» Panel type used OVERTURNING ANALYSIS: Panel length (ft) = Panel height (ft) = Uplift due to lateral load (lb)= Resisting=D" (0.6-0.14Sds) (lb)= Roof DL tributary (ft) Floor DL tributary (ft) Wall weight (psf) Net uplift of this floor(lb) = Add uplift from upper floor (lb) _ Total hold-down force (lb) _ >>> Hold-down Type 129.3'31/2 + 0 = 2,004 lbs 170.0`31/2 + 0 = 2,635 lbs <---controls 5.5 ft 2,635/5.5 = 479.1 Ib/ft Simpson Steel Strong -wall I8 x rl 2� (Z) SS w/5" X / o ALLowAW 60AC' Panel #1. Panel #2 Panel _#3 Panel #4 1.50 1.50 1.25 1.25 �a 2o75�B i 2 X Il q 5iB 11.0 11.0 10.0 10.0 5,270 5,270 4,791 4,791 50 50 38 38 L R 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 10 10 10 5,221 5,221 4,753 4,753 0 0 0 0 5,221 5,221 4,753 4,753 manufacturer SHEAR WALL LINE # 2 PANEL DESIGN_: Section a- Tributary width (ft) = 31.0 Section b- Tributary width (ft) = 42.5 Total seismic load = Total wind load = Total panel length = Shear = >>> Panel type used OVERTURNING ANALYSIS: Panel length (ft) = Panel height (ft) = Uplift due to lateral load (lb)= Resisting=D"(0.6-0.14Sds) (lb)= Roof DL tributary (ft) Floor DL tributary (ft) Wall weight (psf) Net uplift of this floor(lb) = Add uplift from upper floor (lb) _ Total hold-down force (lb) _ >>> Hold -clown Type Seismic(plf)= 129.3 Wind (plf)= 170.0 Seismic(plf)= 136.7 Wind (plf)= 170.0 129.3"31/2 + 136.7`43/2 + 0 = 4,909 lbs 170.0'31/2 + 170.0'43/2 + 0 = 6,248 lbs <---controls 30.4 ft 6,248/30.4 = 205.5 Ib/ft MIN. 3/8" Plywood or OSB, Mark \ Panel #1 Panel #2 L B z� 17.40 13.00 n12AG Ti2vs s = ��g u(4 ) = 3,z66 10.0 10.0 2,055 2,055 522 390 0.0 0.0 0.0 0.0 10 10 1,533 1,665 0 0 1,533 1,665 STHD14 STHD14 Fred ,Sheu SIJ ngin eering Project: 51M0N,; RF S -IDE-N. C Page C I SHEAR WALL LINE # 3 Job # S18212 PANEL DESIGN; Section a- Tributary width (ft) = 42.5 Seismic(plf)= 136.7 Wind (plf)= 170.0 Section b- Tributary width (ft) = 0.0 Seismic(plf)= 0.0 Wind (plf)= 0.0 Total seismic load = 136.7'4312 + 0 = 2,905 lbs "Total wind load = 170.0.4312 + 0 = 3,613 lbs <---controls Total panel length = 14.3 ft Shear = 3,613/14.3 = 253.5 Ib/ft >>> Panel type used A MIN. 3/8" Plywood or OSB, Mark-11i"I`•., OVERTURNING ANALYSIS: /� �JVSTC--p ALLow/-1 OLE [o n Panel #1 Panel #2 Panel #3 Panel length (ft) = r 4.25 6.25 10.0 (3.75 � Panel height (ft) = 10.0 .2-0 Uplift due to lateral load (lb )= 2,535 2,535 3,042 3 7 s ' z - Resisting=D*(0.6-0.14Sds) (lb)= 222 326 232 r z' Roof DL tributary (ft) 1.0 1.0 1.0 ca Floor DL tributary (ft) 0.0 0.0 • 0.0 Wall weight (psf) 16 16 16 6 Net uplift of this floor(lb) = 2,313 2,209 2,810 Add uplift from upper floor (lb) = 00 Total hold-down force (lb) = 2,313 2,209 0 2,810 « Z r�,2 A G T R s s = 3 613 x( >>> Hold-down Type STHD14 STHD14 STHD14 = /s- 9o�r3 I EL DESIGN: Section a - Section b - Total seismic load = Total wind load = Total panel length = Shear = SHEAR WALL LINE # 4 Tributary width (ft) = 24.0 Seismic(plf)= 197.3 Wind (plf)= 170.0 Tributary width (ft) = 0.0 Seismic(plf)= 0.0 Wind (plf)= 0.0 >>> Panel type used ovERTURNING ANALYSIS: Panel length (ft) = Panel height (ft) = Uplift due to lateral load (lb)= Resisting=D"(0.6-0.14Sds) (lb)= Roof DL tributary (ft) Floor DL tributary (ft) Wall weight (psf) Net uplift of this floor(lb) = Add uplift from upper floor (lb) _ Total hold-down force (lb) _ >>> Hold-down Type 197.3'24/2 + 0 = 2,368 lbs <---controls 170.0'24/2 + 0 = 2,040 lbs 15.9 ft 2,368/15.9 = 148.9 lb/ft MIN. 3/8" Plywood or OSB, Mark -A �,pJ(JsrE�f}�toWA�r& coA� Panel #1 Panel #2 Panel # n4.50 7.40 4.00 = 260 FL F! r�z x--5 10.0 10.0 11.0 1,489 8 4 (z x'Y 4 7 f 1,489 � `f 339 558 291 11 12.0 12.0 10.0 0.0 0.0 0.0 16 16 16 7z, 33 LP 1,150 931 1,347 0 0 0 1,150 931 1,347 STHD14 STHD14 STHD14 Fred Sheu Project: SIMQNS RESfDENCE Page C / Engineering Job # S18212 SHEAR V�ALL LINE # 5 f'ANE��; Section a- Tributary width (ft) = 24.0 Seismic If - 197,3 Wind (plf)= 170.0 Section b- Tributary width ft - 21,0 (p ) ( ) - Seismic(plf)= 195.6 Wind (plf)= 170.0 Total seismic load = Total wind load = Total panel length = Shear = »> Panel type used OVERTURNING ANALY515: Panel length (ft) _ Panel height (ft) _ Uplift due to lateral load (lb)= Resisting=❑•(0.6.0 14Sds) (lb)= Roof DL tributary (ft) Floor DL tributary (ft) Wall weight (psf) Net uplift of this floor(lb) _ Add uplift from upper floor (Ib) 1 otai hold-down force (lb) _ >>> Hold-down Type PAt+IEL DESIGN: Section a - Section b - Total seismic load = notal wind load = Total panel length = Shear = 197.3"24/2 + 195.6-2112 + 0 = 4,421 lbs <---controls 170.0"24/2 + 170.0.21/2 + 0 = 3,825 lbs 36.9 ft 4,421/36.9 = 119.8 lb/ft MIN. 3/8" Plywood or OSB, Mark -0 Panel *1 Panel #2 Panel #3 Panel #4 7.00 8.00 6.90 15.00 12.0 12.0 12.0 11.0 1,438 1,438 1,438 1.318 689 788 679 1442 22.0 22.0 22.0 22.0 0.0 0.0 0.0 0.0 10 10 10 10 749 650 759 -124 0 0 0 0 749 650 759 -124 STHD14 STHD14 STHD14 STHD14 SHEAR WALL LINE # 6 Tributary width (ft) = 21.0 Seismic(plf)= 195.6 Wind (pIf) = 170.0Tributa Tributary (ft) = 0.0 Seismic(plf)= 0.0 Wind (plf)= 0.0 >>> Panel type used ONE ANALYSIS: 195.621/2 + 0 = 2,054 lbs <---controls 170.021/2 + n - 1,785 lbs 30.5 ft 2,054/30.5 = 67.3 Ib/ft MIN. 3/8" Plywood or OSB, Mark -Q 0 Panel length (ft) = Fane/ #1 Panel #2 Panel #3 Panel #4 Panel #5 Panel height (ft) = 4.75 5.75 6.75 6.50 6.75 Uplift due to lateral load (lb)= 10.0 10.0 10.0 10.0 10.0 Resisting=D*(0.6-0.14Sds) (lb)= 673 335 673 673 673 673 Roof DL tributary (ft) 10.5 406 10.5 477 490 509 Floor DL tributary (ft) 0:0 0.0 10.5 12.0 12.0 Wall weight (psf) 16 16 0.0 0.0 0.0 Net uplift of this floor(lb) = 338 16 16 16 Acid uplift from upper floor (lb) = 0 267 197 183 164 Total hold-down force (lb) = 338 0 267 0 0 0 '» Hold-down Type YP STHD14 STHD14 197 STHD14 183 164 STHD14 STHD14 Fred Sheu Page Engineering Foundation Design Fred Sheu Project_. S U M O NS Page D 1 Engineering _._ _ Job # 519"' CONTINUOUS FOOTING DESIGN Allowable Soil Bearing Pressure = / 5 0 o psf CONTINUOUS FOOTING at /N71E)210R BEA,911V6 W qt L Loading on Continuous Footing: Roof Load= 3SL 1'SFx2z.s- 76 5 r6P Wall Load = o /' s r x z ' = iZ o P� Floor Load = o --------------------------- Total Load = 8 S P Lr - Required Width of Footing = Use: 12- " wide x 1 Z 885/!,500 = 0. 59r " deep w/ ! — #4 rebar at top and bottom CONTINUOUS FOOTING at Loading on Continuous Footing Roof Load = Wall Load = Floor Load = ---------------------------------------------------- Total Load = Required Width of Footing = Use: " wide x ___ " deep w/ #4 rebar at top and bottom Fred S h eu Engineering Project S / M 0 N5 page P-7— Job #51021Z FOUNDATION DESIGN Allowable Soil Bearing Pressure = / Sob psf Allowable Point Load at Continuous Footing: Y 4 x post ( minimum) 4`s4LgS CONT, Me-"'� 45 -deg. 5-0earing Area , V 3• �" �l Pmax = Pa * S " W /144 f z 12" x 12" footing, Pmax =/ 5 0 o X43.5" x 12" ! 144 = g 3 y 7.10 PAD FOOTING: Location Load Size Reinforcement 1 I - i Fred Sly eu Page r - Engineering Simpson Strong -wall Uplift & overturning alalysis ��MpsoN sr�E� SrRoNG- w��~ ESR -1679 Mosf Widely Accepted and Trusted 2.5 ksl_ 12 in, wall T = [28.1- 788 - 5.95(3.4P + V11)1- P 15 in. W311- T=[36.1- 1301-5.95(4.61'+V11) -1 18 in. wall T = [45.0 - 42025 - 5.950.1 P + V11)1_ P 21 in. wall T = [53.9 - x908 - 5•`)5(7.6P I Vh) ]- p 24 in. wall 3.0 ksi c�rete Vh) - P 12 in. wall I' _ [33.7 - 411,35 - 7.140.41' + 15 in. wall T=[43.3-- V1874- 7.14(4.61'+V11)1 -P r=154.0- 2016 - 7.14(6.11' + V11) ]--1' 18 in. wall 21 in, wall 'r = [64.7 - 24 in. wall T=[75.4- 45688-7.14(9.11'-FVh)]-1' 4.5ksi cgr+cr2te . 12 in. wall r = 150.5 - 2554 -10.71(3.41' +�'h)�- P 15 in, wall 1 =[64.9-,4216-1071(4.61'+ ")�-1' 1B in. wall I = [81.0 - 6560 - 10.71(6.11' + N101- p in. wall I'=[97.1- 9421-10.7](7.(iP+VI1)-1' 21 24 in. wall T=[113.1-V12,7I7-10.71(9.1P+V11)�-P Pact 38 of 38 E ern. .r, V P �1 J.` l�j M Bnse. FORCM AT- B.ASE_.OF _W -..ALL T = resulting 311chvr390 tension (uplift) force (kips) V = design shear (kips) p = total vertical load (kips) h = wall height (inches) For two-story stacked applications, substitute M@,s, for Vh: 12 -)(kip-ill)Vh - Mat�S(1000C) Where Mo;- = Design moment at base of wail (ft -lbs) Far 51 use the lollawin adiustments: V = design shear (kN)1 4.45 p = total vertical load (kN) 14.45 If = wail height (mm) 125.4 T x 4.45 = resulting anchorage tension (uplift) force (kN) For two-story stacked applications, substitute Mo„e for Vh: MBase (N - in) Vh=~113.0 oment at base of wall (N -in) Where Moa,, = Design m For Sl! 1 inch = 25.4 nvn, 1 kip = 4.45 kN, 1 ft -Ib = 1.36 N -m Notes: walls on concrete foundations. 1) Equations are y be U oil t mitinglltL ooncrele 4ea forces only 3.112'' wide b4 ser plate at the edge of concrete. 2.) Eq EXptNp1.E 4 2.Sior Stacked SSVI Condltian EXAMPLE 3 SIn Ie -Star SSW t3iyer5: SSW1Bx9 wall on 2.5 ksi concrete Seismic Loading Design Shear (V) = 2.0 kips ` 2.15 kips (Vauowo�ic) P (Vertical Load) = 1.0 kip li wall height = 105.25" 2025 - 5.95(6.1P kips 1' _ (45.0 - '2025 - 5.95(6.1 x 1 , 2.0 x 105.25) -1.0 =16 Given' See Example 2 - Two Story Application. SSWftlxg-STK wall on 2.5 ksi concrete Wind Loading Marie = 17,550 fl -lbs (Moment at base of 2 -story, stacked wall) 12 ITh = 17,550 %� -kip - in = 210.61cip -in 1000 P (Vertical Load) = 2,0 kips C = [45.0 - 4.2025 - 5.95(6.11P -1 Vh)�- P 1'=[45.0- x0Z5-5.)5(6.1x2+210.6)-Z=16.61cips FIGURE 8 -EQUATIONS FOR CALCULATING UPLIFT FORCES AT BASE OF FIRST -STORY WALL Anchorage Details _ ... _...-...._.-.__.___.._....___..._ SLAB OR C.UIiB AND SIMPSON STEEL SURROUNDING FOUNDATION STRONG -WALL NOT SHOWN FOR CLARITY a ,; ! �t LT W 2 vv '6 SSWAB 1/•2 W � i �? W • SEE TABLE BELOW FOR DIMENSIONS FOUNDATION PLAN VIEW SOLUTIONS FOR 2500 PSI CONCRETE' STEEL STRONG -WALL �� ANCHO SSWAB 3/4" ANCHOR BOLT SSWAB 1" ANCHOR BOLT DESIGN CONCRETE ANCHOR ASD do (111) A W (In) CONDITION STRENGTH ALLOWABLE ASD da (In) ALLOWABLE W (In) TENSION (Ibs) CRITERIA (Ibs) 6,ES 22 6 1G,1U0 33 11 12 STANDARD 9 p 17,100 35 12 CRACKED 16,500 36 HIGH 33,000 51 17 35,300 54 16 STRENGTH 19,900 36 133 _ - ~ 15,700 w 26 10 SEISMIC r " 6,600 9 7 STANDARD �� 6U� 21 7 17,100 30 10 UNCRZACKED HIGH 15,300 31 11 32,300 44 15 47 16 STRENGTH 19,900 33 11 35,300 16 G J 5,100 14 G 6.200 11,400 24 6 7,400 16 G STANDARD 6 17,100 32 11 9,600 12 6 2-, 36 12 CLACKED 11 - . 24 27 g 21,300 42 14 _ HIGH 13,600 30 10 31,300 4G 16 STRENGTH 15,900 12 35.360 50 17 19,900 35 G - 6,400 t4 6 t^llNp 5,000 12 G 12,500 22 6 STANDARD 7,x00 16 7 17,100 26 10 9,600 19 0 7.1,900 32 11 1'2,500 22 UNCRACKED 0 14.300 24 26,4100 3G 12 �'1,427 HIGH STRENGTH 17,0fl0 9 31,5UU 40 35.300 43 15 19,906 30 _ 10 U WIl•I•i NO SlPPLEIv1ENTAI�Y REINFORCEMENT FOR NOTES:. 1 ANC'riORAGE DESIGNS CONFORM TO ACI 318.11 Af'PGNDI?C C014GRETE AS NOT[D. STANDAR[? (ASTM F1554 {,RADn 3Q) Or CRACK5D OR UNCRACKED INDICATES REDUIRED GRADE OF SSWAB ANCHOR BOLT. 2. ANCHOR STRENGTH HIGH STRENGTH (HS) (ASTM A449). tcDESIGO ACI 3'0-11 SECTION a 3p� G MAY SEISMICA9ANrF RAGE DESIGNS CONFORM 3. SEISMIC INDICATES S SOLUTIONS, 1 AND ANCHORAGE 2 FAMILY DWELLINGS IN C, USE WIND 4. WIND INCLUDES SEI5DO SMiG DES CATEGORY A AND F3 ANO DETACHED FOUNDATION IZE AND REINFORCEMENT) BY 014LA.SPECIFYCSMBEDMCNT,FOOT NG 5ZEOR ANCHORAGE 5. FOUNDATION DIMENSIONS ECI YER ATE. DESIGN THE REGISTERED EF G N OTHERS. ANCHOR BOLT. G REFER TO 11SSW1 FOR de. SSWAB TENSION ANCHORAGE SCHEDULE 2500 PSI 2/SSW 1 U G C 4- U. C Oz G C ((X S C: Q Y. Fred Sheu Project s f M °AIS _Page L: � 3 ngineering Job # c�v�RTU►�Nlnr6 /4^/A+ -`t SIS of ROOATOP U,vtf t4ODGL : 4wcy So, B?A - S08 -IA -,Ed NET vv =479Le 'Stt5 'C- LOAr> Fo>Q '"OF MOuliTC-p E&ULpmENT (T/43LE 13.6-I AscE) Q-p=z. 3• Rip -3.o 3&t5 mic LcgAo Pr -k CCL . r 3.'3 - -I Fp_ V. 9: ae So s Wp � �p lti o. cF rz. 9 x !.o x 477 c8 `17 pvEarv,eN„r4 A4 = �t77 cgX �I.3�5.tr�`I� FULL. PEaJMCrE,e ROOF Movvrr.v4 cup a 1BY MA�v�FAcTut�C,e LzMn�E@ CONED S 1::1 - 'Tap vrr_�w CvRt3 "T. AC-1515T„vG A4 = <p6-/.44Ipx /37.$79'. 1 6 96 cg -Fr c8 4,79 t— • 479`8 11 p` -'FT 385 2 .. r l26 c8 rY+nP Sow TS I z Srl?A I” /4ccow�qC3LAC l3�Tw6: AJ 7REvsS 2, 1/ y- eu)eg =66f c� SrbE E -L Cs Vq Trc N