Loading...
BRES2018-0411 Structural Calcsrb F -C'-5 -ze t & - C) q (\ Fred Sheu' Engineering 14286 California Ave, Suite #103 Victorville, CA 92392 (760)955-7522 Structural Calculations for CITY , - FLA QUINTA BUILDING DIVISION REVIEWED FOR CODE COMPLIANCE DATE ,ULM g 1 RE( _ EIVED DEC 18 2018 '-'Ty ()F" LA QUINTA C4MN1t1N r)FVF%QPM9N7' Greg & Terri Gervais Single Family Residence Lot 2, Casa Del Sol La Quinta, CA 92253 Compliance- 8Y: ti _.� D;] t,-: 9MV119 1 he..e plar. 'vi: viedl fnr cc -,'e compliance on behalf of the AHJ. ^.pproval of thc,:. :,iri., ,hai not be construed to be a permit for or an approve l a any violations of any City, County, Stae or Federal la,vs. Project # S18250 Oct. 29, 2018 G� No. 4111 UJ iT+ f t EXE' 6-30-202o -CA Fred ►S'h eu Engineering Project GeRVA1S TABU OF CONTENTS Page Al Job# SIi��5e7 Design Information Pages Beams & Headers.,,.... ............................... Al thru A 4 Lateral Analysis ................................""""'.. .....B1thruB10 ......, Seismic &Wind Loads ......................... C1 thru Ci7 Horizontal Diaphragm Shear Walls Stud walls Foundation. , ........ Simpson Strong -wall ...... D1 thru D 2 .................... E1 thru E2 Fred Sheu Engineering A. CODE.- E3, ODE: B, SEISMIC: C. WIND; D: SOILS: E. LUMBER; F Project G ER VA /S Page A z Job # SIYZ.SO DESIGN CRITERIA & SPECIFICATIONS 2016 California Building Code (CBC) & ASCE 7-10 per CBC section 1616 and ASCE 7-10 section 12 Method : E uivalent lateral force rocedure Seismic Design Category; D Site class: D Occupancy category; II Importance factor: I Response modification coefficient R = 2- per CBC section 1609 and ASCE 7-10 Method; Sim lified MWF Envelo e Procedure Basic wind speed = i i�h Exposure = C Topographic factor = 1_0 Allowable vertical load bearing pressure Allowable lateral load bearing1500 psf pressure 150 psf/ft Douglas Fir -Larch, 19% moisture conten 1. 2X Joists & Rafters - #2 or Better 2. 4X, 6X, 8X Beams & Headers - #1 or Better 3 Plates, Blocking & Studs - Stud Grade or Better GLUED -LAMINATED BEAM PARALLAM BEAM: MICROLLAM BEAM: G. CONCRETE: H: STEEL: l: CONCRETE J: COLD Combination: 24F -V4 Specicies: DF/DF Truss Joist - MacMillan, 2.0E Parallam PSL Truss Joist - MacMillan, 1.9E Microllam LVL Non -Monolithic Pour Foundation System, U.N.O. All slab -on -grade/ continuous footing/pads/pole footing ---------- f'c = 2500 psi All structural concrete/retaining wall/column/beam------------------ f'c = 3000 psi ASTM A572 Gr, 50 for Structural Steel ASTM A615, Gr. 40 for #3 &4, Gr. 60 or #5 and larger rebar steel ASTM A53, Gr. B for Pipe Steel, ASTM A500, Gr. B for Tube Steel BLOCK: ASTM C90, Grade N medium weight, Solid grouted all cells FORM STEEL-- ASTM TEEL:ASTM A570-79 Gr ASTM A570-79 Gr 33 for 18 through 25 Gauge 50 for 12 through 1:6 Gauge K: WOOD CONSTRUCTION CONNECTOR: SIMPSON Strong -Tie or Approved Equal Fred Sh eu Engineering R_: L. L Project ERVA1.5 Page Job# J�1825� GRAVITY LOADS D. L Roof cover= 20 psf = 5 psf 112" roof sht'g Roof framing = 1.5 psf 112" drywall Ceiling= 3 5 psf = 2.0 psf misc_------------------------ -- psf D. L. Total Load �__2.0 = 14 psf = 34 psf PATIO ROOF with stucco lid: L.L. D.L. Roof cover = 20 psf 112" roof sht'g = 5 psf = 1.5 psf Roof framin 9 = 3.5 psf _________ 718° stucco ----------------------------- =10.0 psf D. L. = 20 psf Total Load = 40 psf EXTERIOR WALL D.L. 2x stud wall 1/2" shear panel = 1.5 psf 1/2" d = 1.5 psf drywall = 2.0 psf 7/8" stucco =10.0 psf Insulation ____________________- 1Y0 psf Total = 16.0 psf INTERIOR WALL D.L. 2x stud wall 318" shear panel = 1.5 psf (2)-112" d = 1.1 psf drywall = 4.0 psf Mise = 3.4 psf ---------------------------------------------------------- Total =10.0 psf !_�"red >,Sfheu � `i, ,c ineering MARK A A Project— (_-�C–)@VAIfS Page A4 Job # S1 l:�25D WOOD STRUCTURAL PANEL SHEAR WALL SCHEDULE (PER 2015 NDS SDPWS TABLE 4.3A SEISMIC ASD VALUE) WALL rrPE & NAIL SPACING (common or gale, be (USE 20% MORE NAILS 1F SINKER NAILS ARE USEI CDX plywood or OSB w/8d nails at edges and ® 12" o.c. in field 6„ O.C. see note #5 below 3/8" Cox plwwood or OSB w/8d nails at edges and 0 12" a•a, in field 4" o.e, USE 3X FOUNDATION SILL PLATE & 3X STUDS AND BLOCKS AT ADJACENT PANELS 3/$" CDH plywood or 058 w/8d nails ®3" O.C. at edges and ® 12" o.c. in field U 3X FOUNDATION SILL PLATE & 3X STUDS AND BLOCKS AT ADJACENT PANELS 3/8" COX plywood or 058 w/8d nails ® 2" o.c, at edges and 0 12" o.c, in field USE 3X FOUNDATION SILL PLATE 8, 3X STUDS AND BLOCKS AT ADJACENT PANELS 1/2" Str, I plywood w/10d nails ® 2" o,c. at edges and a 12" O.C. In field USE 3X FOUNDATION SILL PLATE a 3X STUDS AND BLOCKS AT ADJACENT PANELS i ALLOWABLE SHEAR, PLF ANCHOR BOLTS (12° LONG OR 18" FOR 2—POUR) UPPER FLOOR SILL NAILING 260 5/8" ® 4' 16d ® 6" 380 5/8" ® 3' (*760)(*5/8" ® 1.5' <---IF DBL SIDED 16d ® 6" (*16d ® 3") 490 (*980) 5/8„ ® 2.5' (*5/8" ® 1.25') <---IF DBL SIDE *16 ®4" (16d ®2") 640 (*1280) _ 5/8" ® 1.5' (*5/8 ®0,75' <--- ) IF DBL SIDED 16d ® 3.5„ (+2_16d ® 3.5") 870 5/8" ® 1,25' (*1740) (*5/8" ® 0 6') <_ l 6d ® 2.5" NOTES: --IF DBL SIDED (12-16d ®2 5") ( --- ) in the table designates that shear wall sheathing is to be applled on both faces of wo11. Ail Panel edges must be blacked with 2x solid blocking. 1Yhere shear design values exceed 350 pif, foundation sill Plates es and all framing s}loll not be less than 3—inch nominal member. Nails *hall be stagge d d nalting II be 12" o.c for stud spaced at rs i s" ° c. and 6" receivi 5 W110" off pone! is van di on both faces of a wall and nail spacing is fess than 6 Inches eon centernonee�e nailing from abutting O.C. otherwise, be offset to tali on 9 pvnefs rill continuous extervdrf different faces or embers or framing shall be 3—inch nominal or thicker and nalis tonreaside. ch sidepanel Shalljoints be staggered. A.8. for non—monalithic bearing footings shall have 5 8" till interior non—bearing Pour nconcrete system unless at shear wall x 12 A'8' ®6 a.c. for monolithic +II anchor bol# shall have plate hole sShell ave e minimum 2"shot Pins 0 32" penal where anchor bolts shall be installed pOur rete system and 5/8"x18.. 9 Use 209; more nails it sinker nails are used instead of cam mon v o.c. " a8" O.C. respectively. per shear wall schedule. For design to resist seismic forces, the shear wall aspect ratio x 0 229 thick. multiplied b golvonited box rails. Y 2b/h & panel blocked. The maximum (l ect ratio (h 6) sh hie shear well 2 3.5:1.Unless ( /re shale not exceed Is unless the norminal unit sheer capacity is Fred Sh eu Engineering BEAMS & HEADERS CALCULATIONS FRED SHEU ENGINEERING Sirutural Engineer 14286 California Ave, #103 Victorville, CA 92392 Project Title: Greg & Terri Gervais Enrvineer: Project ID: S18250 Project Descry SFR 13 f Wood Beam - Load Combination �- - - Fmdad f2No,/ A.8 ' } r Description : 81-10' HIGH HEADER AT REAR OF LIVING ROOM Segment Length 6x12 ` Fife = G:Is18250 ecEi ENERCALC, INC. 1983.2015. Build:6.15.12.9, Ver,6.11 8.31 ' e CODE REFERENCES D Only Lr=zoPSFX„f' m Load Combination Set: ASCE 7-10 Length = 10.0 ft = ?-go o'LF 0.90 Material Properties +D+L Span= 10.0 fl Analysis Method: Allowable Stress Design Length = 10.0 It 1 0.266 0.164 1.00 Load Combination ASCE7-10Fb - Tension 1,350.0 psi E: Modulus of Elasticity V Fb -Compr Fc Prll 1,350.0 psi Ebend-xx 1,600.Oksi Wood Species ;Douglas Fir - Larch .� Wood - Fc -Perp 925.0 psi 625.0 Eminbend - xx 580.Oksi Grade : No.1 J Fv psi 170.0 psi 6x12 Section used for this span 704.91 psi fv Ft Beam Bracing Beam is Fully Braced against lateral -torsion buckling 675.0 psi Density 31.20pcf ■ rl Q.270) 1-00.281 r r = Load Combination Maximum Forces & Stresses for Load Combli Load Combination �- - _ ations _... _- Segment Length 6x12 ` 7-76 P L� C D Only Lr=zoPSFX„f' m FN Length = 10.0 ft = ?-go o'LF 0.90 1.000 +D+L Span= 10.0 fl A-pplied Loads Length = 10.0 It 1 0.266 0.164 1.00 Beam self weight calculated and added to Io_MS ___ Service loads entered. Load Factors will be applied for calculations. - -- ---•. �._ _ Uniform Load : D = 0.2760, Lr = 0.280 , Tributary Width =1.0 ft V Length = 10.0 ft DESIGN SUMMARY 1.25 1.000 1.000 »D+S Length = 10,0 ft Maximum Bending Stress Ratio= Section used for this span 0.418 1 " Maximum Shear Stress Ratio +Dt0.750Lr+0.750L fb : Actual 6x12 Section used for this span 704.91 psi fv 0.258: 1 6x12 FB : Allowable _ : Actual = 1,687.50psi Fv : Allowable+D+L 54.73 psi Load Combination Location of maximum on span r r = Load Combination 212.50 psi Span # where maximum occurs - S.00 Span # 1 Location of maximum on span = +C+ Lr Maximum Deflection 1.00 Span # where maximum occurs - ` Span # 1Lift Max Downward Transient Deflection Max Upward Transient Deflection 0.057 in Ratio = 2112 358.46 Max Downward Total Deflection 0.000 in Ratio = 0 <360 0.00 Max Upward Total Deflection 0.116 in 0.000 Ratio = 1038 Ratio 1.00 100 in = 0 <180 Maximum Forces & Stresses for Load Combli Load Combination �- hlax 5tf12ss Ratios - _ ations _... _- Segment Length Span # M V C d C D Only '- m FN Length = 10.0 ft 1 0.295 0.182 0.90 1.000 +D+L Length = 10.0 It 1 0.266 0.164 1.00 1.000 1.000 +D+Lr V Length = 10.0 ft 1 0.418 0.258 1.25 1.000 1.000 »D+S Length = 10,0 ft 1 0.231 0.142 1,15 1.000 1,000 +Dt0.750Lr+0.750L 1215.00 06 l 1.17 27.83 Length =10.0 h T 0.366 0.226 1.25 1.000 1.000 +D+0.750L+0.750S 1.00 1.000 C Cr C �. -. Moment Values - �_ ^ - ' Shear Values i m C t C L �_. 6___..F�b V fv F'v 1.00 1.00 1,00 1.00 1,00 3.62 358.46 1215.00 06 l 1.17 27.83 0.00 1.00 1.00 1.00 1.00 1.00 153.00 1.00 1.00 1.00 -1.00 1.00 3,62 358.46 0.00 1350.00 0.00 1.17 0.00 27.83 0.00 1.00 1.00 1.00 1.00 100 170.00 1.00 1,00 1.00 1,00 1.00 7.12 704.91 0.00 1687.50 0.00 2.31 0.00 54.73 0.00 1.00 1.00 1.00 1.00 1.00 212.50 1.00 1.00 1.00 1.00 1.00 3.62 358.46 0.00 1552.50 0.00 1.17 0.00 27.83 0.00 1.00 1.00 1.00 1.00 1.00 195.50 1.00 1.00 1.00 1.00 1.00 6.25 618.30 0.00 1687.50 0.00 2.02 0.00 48.01 0.00 1.00 1.00 1.00 1.00 1.00 212.50 0.00 0.00 0.00 0.00 FRED SHEU ENGINEERING Strutural Engineer 14286 California Ave, #103 VIclorvllle, CA 92392 Project Title. Greg & Terri Gervais Engineer; Descr ProleProjeCt ID; S18250 cl ; SFR 8 ct Wood Beam �- � ~'- � ---- . P'!"Md 12 NOV 2013. Ii:05:�4 Description : B1. 10' HIGH HEADER AT REAR OF LIVING Re = GlFi8250.ei ENERCALC, INC.1983 2015, 01rib:6.15.12.9, ver:6.1 f,t3.31 ROOM ■ Load Combination Max Stress Ratios Segment Length Span # -_ M - V Cd CFN Ci Cr Cm Moment Values Shear ength-_. Length = 10.0 ft 1 0.231 C C Values +D{0.60W 0.142 1,15 1.000 1,00 1.00 1.00 100 L - _ v fv Fv Length =10.0 h 1 0.166 0.102 1,000 1.60 1.00 1.00 1.00 1,00 1.00 3.62 358.46 1552.50 1.17 27.83 195.50 +DLength Length =107 ft 1.000 1.00 1.00 1.00 1.00 1.00 3.62 358,46 0.00 2160.00 0;00 17 1 +D Lr+0.750L+0.450W 0.166 0,102 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.107 20;80 272.00 Length Length = 10,0 ft 1 0.286 0.177 1.60 1.00 1.00.46 3.62 35800 2160.00 1 210,83 2720.00 .00 +D S05+0.450W 1.000 1.00 1 00 1.00 1.00 1.00 6.25 0,00 0 0.00 Length Length =10. R 1 0 166 0.102 1.60 618.30 2160.00 2.02 48.010.00 272.00 +0.75 +D+0.75pL+0.15pS+4.5250E 1.000 1.00 1.00 1.00 1.00 1.00 3.62 0.00 0.00 0.00 0.00 Length =10,0 R +0.60D+0.60W 0.166 0.102 1.000 1,60 1.000 1.00 1.00 1.00 1.00 1.00 1.00 358,46 2160.00 1.17 27.83 272.00 Length =10.0 It 1 0.100 0.061 1.000 1.00 1.00 1.00 1.00 3.62 358.46 0.00 2160.00 10.00 20,83 272.00 +0.6 Length =0E11000 Length = 10.0 ft 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.17 215.08 0.00 2160.00 0 0,00 1 0.100 0.061 Overall Maximum Deflections 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1,00 1.00 1.00 2.17 0.00 0.700 0.00 16.700 272.00 Load Canlbina� - 215.08 2160.00 0.70 6.00 2.00 16.70 272.00 _. 17+1 r ^` _ Span Max.' ^ Deft Location in Span � Load Gam6inalton -- - -Den--- Vertical Vertical Reactions 1 0.1156 5.036 - _. _ _ - Max. '+^ 7e0 - -00000 Location in Span in S Load Combi-'tivrl - -- - '� Support notation: Far left is #1 Overall MAXimum -._ Support 1 .._ Support 2 ---- __ Values in KIPS Overall MINimum X849 2• g' D Only 0.869 0.869- +O+L 1.449 1.449 +D+Lr IIA49 1,449 +D+S 2.849 2.849 +0+0.750Lr+0.750L 1.449 1.449 +D+0.750L+0.750S 2.4 2.499 +.D 40.60W 1.4449 9 1.449 +D+0.70E 1,449 1.449 +D+0.750Lr+0.750L+0.45pW 1.449 1.449 +D+0.750L+0.7505+0,450W 2.499 2.499 +D-0.750L+0.750540.5250E 1.449 1.449 +0.60D+0,6ow 1.449 1.449 +0,600+0.70E 0.869 0.869 D Only 0.869 0.869 Lr Only 1.449 1.449 L Only 1.400 1.400 S Only W Only E Only H Only FRED SHEU ENGINEERING Strutural Engineer 14286 California Ave, #103 Victorville, CA 92392 Project Title: Greg & Terri Gervais Engineer: Project ID: 518250 Project Descr, SFR b Z P'M)Ie.d. 12NOV201812:361P,1 Wood Beam - ~ - -- . _- . -- - _ _ - File=l�+sla2sa . - ENERCALC, INC. 1983-2015, OuiW:fi:15.12.9. Ver.&.11,8zi Description: B2-10.5' BEAM BETWEEN LIVING & PATtt} ! � CODE REFERENCES Load Combination Set: ASCE 7-10 Material Properties _ Analysis Method: Allowable Stress Design T Fb -Tension Load Combination ASCE 7-1 D Fb - Compr Fc - Prll Wood Species : Douglas Fir - Larch Fc - Perp Wood Grade ; No.1 Fv Ft Beam Bracing Beam is Fully Braced against lateral -torsion buckling Applied Loads E: Modulus of Elasticity Beam self weight calculated and added to loads Ebend-xx 1,600.Oksi Uniform Load : D = 0.1840, Lr = 0.120 , Tributary Width =1.0 ft DESIGN SUMMARY 625.0 psi Maximum Bending Stress Ratio 0.595 1 Section used for this span 6x8 fb : Actual _ 1,003.68psi FIB: Allowable 1,687.50psi Load Combination +D+Lr Location of maximum on span 5.250ft Span # where maximum occurs w Span # 1 Maximum Deflection = Span # 1 Max D ^1,350,Opsi E: Modulus of Elasticity 1,350.0 psi Ebend-xx 1,600.Oksi 925.0 psi Eminbend - xx 580.0 ksi 625.0 psi 0.278 in Ratio= 0.000 Ratio= 170.0 psi Maximum Shear Stress Ratio 675.0 psi Density 31.20pcf ■ D zo PSFx6'tf6PSFNq-' 0.107 in Ratio= sxs �4 pad 0.000 in Ratio= 0 <360 Span = 10.50 h 0.278 in Ratio= 0.000 Ratio= Service loads entered. Load Factors will be applied for calculations. Maximum Shear Stress Ratio = 0.248: 1 Section used for this span 6x8 fv : Actual = 52.77 psi Fv: Allowable = 212,50 psi Load Combination +D+Lr Location of maximum on span = 0,000 ft Span It where maximum occurs = Span # 1 ownward Transient Deflection Max Upward Transient Deflection 0.107 in Ratio= 1 180 Max Downward Total Deflection 0.000 in Ratio= 0 <360 Max Upward Total Deflection 0.278 in Ratio= 0.000 Ratio= 452 _ in 0 <180 Maximum Forces & Stresses for Load Combinations Moment Values_ Lead Combination Shear Values Ma_x Stress_ Ratios CIL - -..M_.. _ Fb -- - Segment Length Span # M V' Cd CFN Ci Cr Cm D Only 0.00 153.00 1.00 1.00 0.00 - Length = 10.50 ft 1 0.509 0.213 0,90 1.000 1.00 1.00 1.00 L Length =10.50 It 1 0.458 0.191 1.00 1.000 1.000 1.00 1.00 1.00 1.00 1.00 1.00 i D *Lr Length =10.50 ft 1 0.595 0.248 1.25 1.000 1.000 1.00 1.00 1.00 1.00 1.00 1.00 D S Lenglh = 10.50 It 1 0.399 0.166 1.15 1.000 1.000 1.00 1.0o 1.00 1.00 1.00 1.00 D+0.750Lr+0.7501 0.00 1.00 1.00 1.000 1,00 1.00 1.00 Length = 10.50 ft 1 0.538 0.225 1.25 1.000 1.00 1.00 1.00 .,D47501 -+0,750S 0.00 1.00 1.00 1.000 1.00 1.00 1.00 Moment Values_ Shear Values C -.t._ CIL - -..M_.. _ �_.~ Fb V .�- � - - Fv 1.00 1.00 2.66 618.80 0.00 1215.00 a00 0.89 0.00 32.53 0.00 153.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 2.66 618.80 1350.00 0.89 32.53 170.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 4.31 1,003.68 1687,50 1.45 52.77 212.50 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 2.66 618.80 1552.50 0.89 32.53 195.50 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 3.90 907.46 1687.50 1.31 47.71 212.50 1.00 1.00 0.00 0.00 0.00 0.00 FRED SHEU ENGINEERING Strutural Engineer 14286 California Ave, #103 Victorville, CA 92392 Wood Beam Description : 82-10.5' BEAM BETWEEN LIVING & PATIO Project Title: Greg & Terri Gervais Engineer: Proiect ID: S18250 Pro�eCtDescr: SFR DZ� Pnniod' 12 NOV 2018 12;36PM ENERCALCANC. 1983-2015.OuIW:6.15.12.9, V66.1111.8.31 Load Combination a Max Stress Ratios 195.50 Lo ad Combination Span Max, ° " Defl Locali +D+Lr 32.53 272.00 Vertical Reactions 0.00 Segment Length Span # M V Cd C FN C i Cr C C C Moment M Values 1.013 Length = 10-50'flF 1 0.399 0.166 1.15 1.000 1.00-1.60--j-00f.6- +D+S m t 0 L 1.00 _ fb F'b D+t).60W2.66 1.013 +D+0.60W 1.013 1.000 1.00 1.00 . 1.00 1.00 1.00 1.485 618.80 1552.50 Length = 10.50 it 1 0.286 0.120 10.00 .60 1.000 1.00 1.00 1.00 1.00 1.00 2.66 1.013 1.013 D+Q.70E 0.630 0.630 L Only 1.000 1.00 1.00 1.00 1.00 1.00 618.80 2160.00 Length = 10.50 It 1 0.286 0.120 1.60 1.000 1.00 1,00 1.00 1.00 1.00 0.00 0+0.750Lr+0.750L+0.450W 1.000 1.00 1.00 1.00 1.00 1.00 2.66 618.80 2160.00 Length =10.50 ft 1 0.420 0.175 1,60 1.000 1.00 1.00 1.00 1.00 1.00 0.00 -�D+0.750L+0.750S+0.450W 1,000 1.00 1.00 1.00 1.00 1.00 3.90 907.46 2160.00 Length = 10.50 it 1 0.286 0.120 1.60 1.0000.00 1.00 1.00 1.00 1.00 1.00 2.66 D+4.750L+0.750S+0.5250E 1.000 1,00 1.00 1.00 1.00 1.00 618.80 2160.00 Length =10.50 It 1 0.286 0.120 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.66 0.00 -0.60D+0.60W 1.000 1.00 1.00 1.00 1.00 1.00 618.80 2160.00 Length = 10.50 it 1 0.172 0.072 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.60 0.00 O.GOD+0.70E 1.000 1.00 1.00 1.00 1.00 1.00 371.28 2160.00 Length =10.50 It 1 0.172 0.072 1.60 1.000 loo 1.00 1.00 1.00 1.00 0.00 OverII M 1.60 371.28 2160.00 axtlnutll Deflections 32.53 195.50 Lo ad Combination Span Max, ° " Defl Locali +D+Lr 32.53 272.00 Vertical Reactions 0.00 0.00 Load Combination Support 1 Support 2 �^ Overall MAX- imum - 1'.643^� '-`'I-'3 6 '� - Overall MINimum 0.608 0.608 D Only 1 013 1.013 +O+L 1.013 1.013 "fl+Lr 1.643 1.643 +D+S 1.013 1.013 +D+0.750Lr+0.750L 1.485 1.485 +D+0.750L+0.750S 1.013 1.013 +D+0.60W 1.013 1.013 +D+0.70E 1,013 1.013 +D+0.750Lr+0.750L+0.450W 1.485 1.485 +D+0.750L+0.750S+0.450W 1.013 1.013 +D+0,750L+0.750S+0.5250E 1.013 1.0130.6 +0.60D+0W 0.608 0.608 +0.60D+0.70E 0.608 0.608 D Only 1.013 1.013 Lr Only 0.630 0.630 L Only S Only W Only E Only H Only on in Span Load Combination 5.288 .. �.� .�.... ._. Support notation : Far left is #1 Shear Values V fv F'v 0.89 32.53 195.50 0.00 0.00 0.00 0.89 32.53 272.00 0.00 0.00 0.00 0.89 32.53 272.00 0.00 0.00 0.00 1.31 47.71 272.00 0.00 0.00 0.00 0.89 32.53 272.00 0.00 0.00 0.00 0.89 32.53 272.00 0.00 0.00 0.00 0.54 19.52 272.00 0.00 0.00 0.00 0.54 19.52 272.00 Max. `+" Deft LocaBon in Span 0.0000 0.000 Values in KIPS FRED SHEU ENGINEERING Project Title: Greg & Terri Gervais Strutural Engineer Engineer: Project ID: S18250 B 3 14286 California Ave, #103 Project Descr: SFR Victorville, CA 92392 _ Pruni -d. 12 NOV 2018..12-3911A Wood Beam Fite -QW82sa.W ENERCALC, INC. ty83 2015, Ouitd:li.15.12.9, Ver:6.11.8.3t Description : B3- REAR PATIO BEAM Ratio= Max Stress Ratios_ 0 in CODE REFERENCES Segment Length Span # M Load Combination Set : ASCE 7-10 Cd C FN D Only Material Properties T T Fb �.... Analysis Method: Allowable Stress Design Fb - Tension 1,350.0 psi E: Modulus of Elasticity Load Combination ASCE 7-10 Fb - Compr 1,350.0 psi Ebend- xx 1,600.Oksi 1.00 Fc - Prll 925.0 psi Eminbend - xx 580.Oksi Wood Species :Douglas Fir - Larch Fc - Perp 625.0 psi 0.504 Wood Grade : No.1 Fv 170.0 psi •=D +Lr - � Ft 675.0 psi Density 31.20 pcf Beam Bracing ; Beam is Fully Braced against latera[ -torsion buckling Length =11.50 ft 1 0.677 D O. 164 Lr 0.12 1.25 1.000 T ■ 1.00 1.00 r ■ I 1.000 Length = 11.50 ft 1 Applied Loads Beam self weight calculated and added to loads Uniform Load : D = 0.1680, Lr = 0.120 , Tributary Width =1.0 ft DESIGN SUMMARY Maximum Bending Stress Ratio = Section used for this span fb : Actual = FB: Allowable Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection 0.15 Max Upward Transient Deflection 0.00 Max Downward Total Deflection 0.38 Max Upward Total Deflection 0.00 "p; 20 P 5 r - X 6 'f 16 Ps�x �'_- t 6 b' PCT 6x8 LV=2oPSFx 6' = /2.o rL'F Span = 11.50 ft 0.677. 1 6x8 1,142.40 psi 1,687.50 psi +D+Lr 5.750 ft Span # 1 Maximum Forces & Stresses for Load Combinations Load Combination Ratio= Max Stress Ratios_ 0 in Ratio= Segment Length Span # M V Cd C FN D Only M ib Fb �.... 0.00 Length = 11.50 ft 1 0.560 0.217 0.90 1.000 +p+L 1.00 1.00 1.00 1.00 1.000 Length = 11.50 ft 1 0.504 0.195 1.00 1.000 •=D +Lr 0.00 1.00 1.000 Length =11.50 ft 1 0.677 0.262 1.25 1.000 +D+S 1.00 1.00 1.00 1.00 1.000 Length = 11.50 ft 1 0.438 0.170 1.15 1.000 -D+0.750Lr+0,750L 4.91 1,142.40 1687.50 1.00 1.000 Length =11.50 ft 1 0.609 0.236 1.25 1.000 D•+0.750L+0.750S 1.00 1.00 1.00 1.00 1.000 Service loads entered. Load Factors will I -)e applied for calculations. Maximum Shear Stress Ratio = Section used for this span fv : Actual = Fv: Allowable = Load Combination Location of maximum on span = Span # where maximum occurs = 4 in Ratio= 898 0 in Ratio= 0 <360 0 in Ratio= 363 0 in Ratio= 0 <180 0.262 : 1 6x8 5574 psi 212 50 psi +D+Lr 0.000 ft Span # 1 Shear Values V fv Fv 0.00 0.00 Moment Values 0.91 Ci Cr Cm C t CL M ib Fb �.... 0.00 � 1.53 - 212.50 0.00 0.00 1.00 1.00 1.00 1.00 1.00 2.92 680.73 1215.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 2.92 680.73 1350.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 4.91 1,142.40 1687.50 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 2.92 680.73 1552.50 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 4.41 1,026.98 1687.50 1.00 1.00 1.00 1.00 1.00 0.00 0.262 : 1 6x8 5574 psi 212 50 psi +D+Lr 0.000 ft Span # 1 Shear Values V fv Fv 0.00 0.00 0.00 0.91 33.22 153.00 0.00 0.00 0.00 0.91 33.22 170.00 0.00 0.00 0.00 1.53 55.74 212.50 0.00 0.00 0.00 091 33.22 195.50 0-00 0.00 0.00 1.38 50.11 212.50 0.00 0.00 0.00 FRED SHEU ENGINEERING Project Title: Greg & Terri Gervais Strutural Engineer Engineer: Project ID: S18250 14286 California Ave, #103 Project Descr: SFR 3� Victorville, CA 92392 ;:m ul 12 MOV 2018. 12 i k Wood BeamFile=GA08250,86 ENERCALC, INC, 1983.2015, Build:6.15.12.9, Vrr•6.15:8.31 Licensee FRED SHEU ENGINEERING, Description : 63- REAR PATIO BEAM r " Load Combination Max_ Stress Ratios 1.707 1.707- _ --- 0.610 0.610 1.017 1.017 1.017 Moment Values 1.707 1.707 Shear Values Segment Length Span # M �- V C d C FN C i Cr C m C I C L M fb Fib V N Pv Length = 11.50 ft 1 0.438 0.170 1.15 1.000 1.00 1.00 1.00 1,00 1.00 2,92 680.73 1552,50 0.91 33.22 195-50 D+0.60W 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =11.50 It 1 0.315 0,122 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.92 680.73 2160.00 0.91 33.22 272.00 D+0.70E 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =11.50 ft 1 0.315 0.122 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.92 680.73 2160.00 0.91 33.22 27200 ,D+0.750Lr+0,750L+0.45OW 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =11.50 ft 1 0.475 0.184 1.60 1.000 1.00 1.00 1.00 1.00 1.00 4.41 1,026.98 2160.00 1.38 50.11 272.00 1D+0,7501-+0.750S+0.450W 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =11.50 It 1 0.315 0.122 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.92 680.73 2160.00 0.91 33.22 272.00 +D+0.750L+0.750S+0.5250E 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =11.50 ft 1 0.315 0.122 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.92 680.73 2160.00 0.91 33.22 272.00 +0.60D+0.60W 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =11.50 ft 1 0.189 0.073 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.75 408.44 2160.00 0.55 19.93 272.00 40.60D+0.70E 1.000 1.00 1.00 1-00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 11.50 It 1 0.189 0.073 1.60 1,000 1.00 1.00 1.00 1.00 1.00 1.75 408.44 2160.00 0.55 19.93 272.00 Overall Maximum Deflections Load Combination +D+Lr Vertical Reactions_ LoadCombination S Overall MAXimum Overall MINimum D Only +D+L +D+Lr +D+S +D+0.750Lr+0.750L +DA750L+0.750S +D+0.60W +D+0.70E +D+0.7501 -r+0, 750L+0.450W +D+0.750L+0.750S+0.450W +D+0.750L+0.750S+0.5250E +0.601D+0.60W +0.60D+0.70E D Only Lr Only L Only S Only W Only E Only H Only Span Max. '=" Deft Location in Span Load Combination upport 1 Support 2 1.707 1.707- _ --- 0.610 0.610 1.017 1.017 1.017 1.017 1.707 1.707 1.017 1.017 1.535 1.535 1.017 1.017 1.017 1.017 1.017 1.017 1.535 1.535 1.017 1.017 1.017 1.017 0.610 0.610 0,610 0.610 1.017 1.017 0.690 0.690 Support notation : Far left is #1 Max.' -o Deft Location in Span T 0.0000 0.000 Values in KIPS FRED SHEU ENGINEERING Project Title: Greg & Terri Gervais Strutural Engineer Engineer: Project ID: S18250 14286 California Ave, #103 Project Descr: SFR Victorville, CA 92392 P, i d 12 NOv 2013. 12 4TIr,' Wood Beare _ Fi%a GV8250.ec5 ENERCALC. INC. i983.20i5, 8ui[d.B 15.,2.9, Ver:6.}1.8.31 a- 1:00: - e Description : 94- ENTRY AREA BEAM CODE REFERENCES Load Combination Set: ASCE 7-10 Material Properties _ Analysis Method: Allowable Stress Design Fb - Tension 1350 psi Load Combination ASCE 7-10 Fb - Compr 1350 psi _ __ Fc • Frill 925 psi �Wood ecies ; [3auglas�Fir-rch Fc • Perp 625 psi de : No.1 Fv 170 psi Ft 675 psi Beam Bracing : Beam is Fully Braced against lateral -torsion buckling Applied Loads Beam self weight calculated and added to loads 0.191 in Uniform Load : D = 0.2740, Lr = 0,30 , Tributary Width =1.0 ft DESIGN SUMMARY 0.000 in Maximum Bending Stress Ratio = 0.716 1 Section used for this span 6x14 fb : Actual = 1,192.10 psi FB: Allowable = 1,665.56psi Load Combination +D+Lr Location of maximum on span = 7.500f1 Span # where maximum occurs = Span # 1 Maximum Deflection C L E: Modulus of Elasticity Ebend-xx 1600ksi Eminbend - xx 580 ksi Density 31.2 pcf 2 `='LFP5F 15' t f6 F5�x '�' z 7 Y FLf- Span=15.0 ft LY_2oPs�X15 = 300 P tF Service loads entered. Load Factors will be applied for calculations. Maximum Shear Stress Ratio Section used for this span fv : Actual Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs Max Downward Transient Deflection 0.191 in Ratio= 944 Max Upward Transient Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.375 in Ratio= 480 Max Upward Total Deflection 0.000 in Ratio= 0 <180 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios_ 0.00 T 0.00 0.00 Moment Values Segment Length Span # M V C d C FN C i Cr C m C t C L M fb C Only 0.00 0.00 1665.56 3.78 76.36 212.50 0.00 0.00 0.00 0-00 1532.31 1.86 Length =15.0 ft 1 0.489 0.245 0.90 0.987 1.00 1.00 1.00 1.00 1,00 8.16 586.04 ,D+L 0.987 1.00 1.00 1.00 1.00 1.00 Length = 15.0 It 1 0.440 0.221 1.00 0.987 1.00 1.00 1.00 1.00 1.00 8.16 586.04 -'D+Lr 0.987 1.00 1.00 1.00 1.00 1.00 Length =15.0 0 1 0.716 0.359 1.25 0.987 1.00 1.00 1.00 1.00 1.00 16.60 1,192.10 ,c+S 0.987 1.00 1.00 1.00 1.00 1.00 Length =15.0 ft 4 0.382 0.192 1.15 0.987 1.00 1.00 1.00 1.00 1.00 8.16 586.04 +D,fO.750Lr+0.750L 0.987 1.00 1.00 1.00 1.00 1.00 Length =15.0 It 1 0.625 0.314 1.25 0.987 1.00 1.00 1.00 1.00 1.00 14.49 1,040.58 1•D *0.7501_+U.750S 0.987 1.00 1.00 1.00 1.00 1.00 - 0.359: 1 6x14 76.36 psi 212.50 psi +D+Lr - 13.905 ft Span # 1 Shear Values 0.00 T 0.00 0.00 0.00 1199.20 1.86 37.54 153.00 0.00 0.00 0.00 0.00 1332.45 1.86 37.54 170.00 0.00 0.00 0.00 0.00 1665.56 3.78 76.36 212.50 0.00 0.00 0.00 0-00 1532.31 1.86 37.54 195.50 0,00 0.00 0.00 0.00 1665.56 3.30 66.65 212.50 0.00 0.00 0.00 0.00 FRED SHEU ENGINEERING Strutural Engineer 14286 California Ave, #103 Victorville, CA 92392 Wood Beam Description : 64- ENTRY AREA BEAM Project Title: Greg & Terri Gervais Engineer: Project ID: S18250 'L Plofect Descr. SFR B T0. Fnmod :zr�avzo�s. i2n�i'�•.; _- F'itb c'G:ls1B250.ecS ENERCALC, INC. IX$2015, Sul16;6.15.12.9; V0f:8A 1.5.31 Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span # M V Cd C FN C i Cr Cm C t C L M ib Fb V fv v Length = 15.0 ft 1 0.382 0.192 1.15 0.987 1.00 1.00 1.00 1.00 1.00 8.16 586.04 1532.31 1.86 37.54 195.5 • D+0.60W 0.987 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 15.0 ft 1 0.275 0.138 1.60 0.987 1.00 1.00 1.00 1.00 1.00 8.16 586.04 2131.92 1.86 37.54 272.00 •+-D+0.70E 0.987 1,00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 15.0 it 1 0.275 0.138 1.60 0.987 1.00 1.00 1.00 1.00 1.00 8.16 586.04 2131.92 1.86 37.54 272.00 D+0.750Lr+0.750L+0.45OW 0.987 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =15.0 it 1 0.488 0.245 1.60 0.987 1.0.0 1.00 1,00 1.00 1.00 14.49 1,040.58 2131.92 3.30 66.65 272.00 +D+0.7501-+0.750S+0.450W 0.987 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =15.0 it 1 0.275 0.138 1.60 0.987 1.00 1.00 1.00 1.00 1.00 8.16 586.04 2131.92 1.86 37.54 272.00 +D+0,7501-+0.750S+0.5250E 0.987 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 15.0 ft 1 0.275 0.138 1.60 0.987 1.00 1,00 1.00 1.00 1.00 8.16 586.04 2131.92 1.86 37.54 272.00 a.60D+0,60W 0.987 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =15.0 ft 1 0.165 0.083 1.60 0.987 1.00 1.00 1.00 1.00 1,00 4.90 351.62 2131.92 1.0 22.52 272.00 PO.60D+0.70E 0.987 1.00 1.00 1.00 1.00 1.00 0.00 . 0.00 0.00 Length =15.0 it 1 0.165 0.083 1.60 0.987 1.00 1.00 1.00 1.00 1.00 4.90 351.62 2131.92 1.1111 1 22.52 272.00 Overall Maximum Deflections- ---- -- - Load Combination �- Span Max. " " Del Location in Span Load Combination Max. '+' Dell Location in Span +D+Lr 'T 1 0.3747 7.555 0.0000 0.000 Vertical Reactions Support notation: Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXirllilTrl 4.426 4.426 Overall MINimum 1.305 1.305 D Only 2.176 2.176 +D+L 2.176 2.176 +D+Lr 4.426 4.426 +D+S 2.176 2.176 +0+0.750Lr+0.750L 3.863 3.863 +D+0.750L+0.750S 2.176 2.176 +D+0.60W 2.176 2.176 +D+0.70E 2.176 2.176 +D+0.750Lr+0.750L+0.450W 3.863 3+863 +D+0350L+0.750S+0.450W 2.176 2.176 +D+0.750L+0.750S+0.5250E 2.176 2.176 +0.60D+0.60W 1.305 1.305 +0.60D40,70E 1.305 1.305 D Only 2.176 2.176 Lr Only 2.250 2.250 L Only S Only W Only E Only H Only FRED SHEU ENGINEERING Strutural Engineer 14286 California Ave, #103 Victorville, CA 92392 Wood Beam Project Title: Greg & Terri Gervais Engineer: Project ID: S18250 Project Descr: SFR -. r _..- -....- _ ...-...... - File = G.-W8250.KE EHERCALC, INC. 1983-2015, Build:6,15.12.9, Ver:6.11.8.31 o e Description : 65- FRONT PORCH BEAM CODE REFERENCES -- - - Load Combination Set: ASCE 7-10 Material Properties _ _...._. _._.._.. _ _..-._�.- Analysis Method : Allowable Stress Design Fb - Tension 1,350.0 psi E: Modulus of Elasticity Load Combination ASCE 7-10 Fb - Compr 1,350.0 psi Ebend- xx 1,600.Oksi Fc - Prll 925.0 psi Elninbend - xx 580.0 ksi Wood Species :Douglas Fir -Larch Fc - Perp 625.0 psi Fv 170.0 psi Wood Grade ; No.1 Ft 675.0 psi Density 32.210pcf Beam Bracing : Beam is Fully Braced against lateral -torsion buckling D(0. 12l.r 0.08 I I i _ n= z o pSFx 3 � -F /G fixa zY=zoPSFx 3 = 6o PAF Span = 13.0 ft 11ed Loads Ai?P _ _ Service loads entered- Load Factors - - will be applied for calculations Beam self weight calculated and added to loads Uniform Load : D = 0.1240, Lr = 0.060 , Tributary Width =1.0 ft DESIGN SUMMARY ' ` Maximum Bending Stress Ratio = 0.563. 1 Maximum Shear Stress Ratio = 0.195: 1 Section used for this span 6x8 Section used for this span 6x8 fb : Actual = 949,97psi fv : Actual = 41.34 psi FB : Allowable = 1,687.50psi Fv : Allowable = 212.50 psi Load Combination +D+Lr Load Combination +D+Lr 12 383 ft Location of maximum on span = 6,500ft Location of maximum on span = Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1 Maximum Deflection Max Downward Transient Deflection 0.125 in Ratio = 1244 Max Upward Transient Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.404 In Ratio = 386 Max Upward Total Deflection 0.000 in Ratio= 0 <180 Maximum Forces & Stresses for Load Combinations .Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span # M V Cd C FN C i C r C m C t CL M Ib F'b V fv F'v D Only- -- - - -- - - -- - 0.00 0.00 0.00 0.00 Length =13.0 ft 1 0.539 0.186 0.90 1.000 1.00 1.00 1.00 1.00 1.00 2.81 654.99 1215.00 0.78 28.50 153.00 .D+L 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =13.0 It 1 0.485 0.168 1.00 1.000 1.00 1.00 1.00 1.00 1.00 2.81 654.99 1350.00 0.78 28.50 170.00 -D+Lr 1.000 1.00 1.00 1-00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 13.0 ft 1 0.563 0.195 1.25 1.000 1.00 1.00 1.00 1.00 1.00 4.08 949.97 1687-50 IIA4 41.34 212.50 .D+S 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 13.0 ft 1 0.422 0.146 1.15 1.000 1.00 1.00 1.00 1.00 1.00 2.81 654.99 1552.50 0.78 28.50 195.50 D+0.750Lr+0.750L Length =13.0 ft 1 0.519 0.179 1.000 1.00 1.25 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1,00 3.77 876.23 0.00 1687.50 0.00 0.00 0.00 1.05 38.13 212.50 �D+0.7501_4750S 1.000 1.00 1,00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 FRED SHEU ENGINEERING Slrutural Engineer 14286 California Ave, #103 Victorville, CA 92392 Project Title: Greg & Terri Gervais Engineer: Proiect ID: 518250 Project Descr: SFR Q 56i - ... -- --- - - ---- ---- +D+L,r { 0.4037 6.547 - Vertical Reactions Support notation : Far left is #1 Load Combination W� Support 1 Support 2 Overall MAXIM um- Pm,; : , NO,' 201K 1:30-M'Wood Beam Overall MINimum ------- 0.390 ------------ 0.866 -- _ ......... 0.866 0.866 - - -- -- --File=G151825U6 0.866 0.866 +D+0.750Lr+0.750L 1.158 1.158 +D+0.750L+0.750S 0.866 0.866 +D+0.60W 0.866 0.866 ENERCALC. INC, 19834015, 96Id:6-15.12.9. Ver.6.11.6-31 +0+0.750Lr+0.7501_+0A50W 1.158 1-158 +0+0.750L+0.7503+0.450W 0.866 0.866 +D+0.750L+0.750S+0.5250E 0.866 0.866 +0.60D+0.60W 0.520 0.520 w 0.520 0.520 D Only Description : B5- FRONT PORCH BEAM Lr Only 0.390 0.390 L Only S Only W Only E Only Load Combination Max Stress Ratios H Only Moment Values Shear Values Segment Length Span # M V C d C FN C i Cr C m C t C L M fb F'b �V fv _ F'v Length =13.011 1 0.422 0.146 1.15 1.000 1.00 1.00 1.00 1.00 1.00 2.81 654.99 1552.50 0.78 28.50 195.50 D+0.60W 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =13.0 it 1 0.303 0.105 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.81 654.99 2160.00 0.78 28.50 272.00 +D -470E 1.000 1.00 1.00 1.00 1.00 1,00 0.00 0.00 0.00 0.00 Length = 13.0 it 1 0.303 0.105 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.81 654.99 2160.00 0.78 28.50 272.00 +D+0.750Lr+0.750L+0.450W 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 13.0 it 1 0.406 0.140 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.77 876.23 2160.00 1.05 38.13 272.00 D+0.750L+0.750S+0.450W 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =13.0 it 1 0.303 0.105 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.81 654.99 2160.00 0.78 28.50 272.00 +D+0.750L+0.750S+0.5250E 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =13.0 it 1 0.303 0.105 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.81 654.99 2160.00 0.78 28.50 272.00 -0.60D+0.60W 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 13.0 it 1 0.182 0.063 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.69 392.99 2160.00 0.47 17.10 272.00 ,0,60D+0.70E 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 13.0 it 1 0.182 0.063 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.69 392.99 2160.00 0.47 17.10 272.00 Overall Maximum Deflections Load Combination Span Max. "-" Dail Location in Span Load Combination +D+L,r { 0.4037 6.547 - Vertical Reactions Support notation : Far left is #1 Load Combination W� Support 1 Support 2 Overall MAXIM um- 1.256 1.251 Overall MINimum 0.390 0.390 D Only 0.866 0.866 +D+L 0.866 0.866 +D+Lr 1.256 1.256 +D+S - 0.866 0.866 +D+0.750Lr+0.750L 1.158 1.158 +D+0.750L+0.750S 0.866 0.866 +D+0.60W 0.866 0.866 +D+0.70E 0.866 0.866 +0+0.750Lr+0.7501_+0A50W 1.158 1-158 +0+0.750L+0.7503+0.450W 0.866 0.866 +D+0.750L+0.750S+0.5250E 0.866 0.866 +0.60D+0.60W 0.520 0.520 +0.60D+0.70E 0.520 0.520 D Only 0.866 0.866 Lr Only 0.390 0.390 L Only S Only W Only E Only H Only Max. "+" Dell Location in Span 0.0000 0.000 - Values in KIPS . FRED SHEU ENGINEERING Strutural Engineer 14286 California Ave, #103 Victorville, CA 92392 Wood Beam Description: B6- 8' HEADER AT FRONT OF LIVING CODE REFERENCES Project Title: Greg & Terri Gervais Engineer: Proiect ID: S18250 Project Descr: SFR File'=GlsT8250.ecfi ENERCALC, INC, 1983.2015, 8uild:6-t5.12,9.Ver.&11.8.31 Load Combination Set: ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Fb -Tension Load Combination ASCE 7-10 Fb - Compr I Fc - Nil Wood Species Dougla=Larch Fc - Perp �- '`ood Grade : No.1 Fv Ft Beam Bracing : Beam is Fully Braced against lateral -torsion buckling i Applied Loads E: Modulus of Elasticity Beam self weight calculated and added to loads Ebend-xx 1,600,Oksi Uniform Load : D = 0.260, Lr = 0.280 , Tributary Width =1,0 ft DESIGN SUMMARY 0.165 in Ratio= Maximum Bending Stress Ratio = 0.606: 1 Section used for this span 6x8 fb : Actual 1,022.56psi FB : Allowable = 1,687.50psi Load Combination +D+Lt Location of maximum on span 4ODoft Span # where maximum occurs Span # 1 Maximum Deflection Cm Max Do d CL 1, 350.0 psi E: Modulus of Elasticity 1,350.Opsi Ebend-xx 1,600,Oksi 925.0 psi Eminbend -xx 580.Oksi 625.0 psi 0.165 in Ratio= 170.0 psi Maximum Shear Stress Ratio 675.0 psi Density 32.21Opcf � r t}><a=1rFrnsFhi rf /6Psc., r=26oPQ� GY=2ofsr_x r5c - z8a PLF Span = 8,0 ft 0.165 in Ratio= Service loads entered. Load Factors will be applied for calculations Maximum Shear Stress Ratio = 0.318: 1 Section used for this span 6x8 fv : Actual - 67.64 psi Fv : Allowable 212,50 psi Load Combination Location of maximum on span +D+Lr = Span # where maximum occurs 7.387 ft = Span # 1 wnwar Transient Deflection Max Upward Transient Deflection 0.084 in Ratio= 1144 Max Downward Total Deflection 0.000 in Ratio= 0 <360 Max Upward Total Deflection 0.165 in Ratio= 583 501.25 0.000 in Ratio= 0 <180 Maximum Forces & Stresses for Load Combinations ^- M fb 0 0.00 Load Combination 0.00 Max Stress Ratios 501.25 1215.00 0.00 0.91 0.00 2.15 501.25 Segment Length Span # M V Cd CFN Ci Cr Cm C t CL DOnly 501.25 1552.50 --- --- 0.00 - --- _..��.. 1687.50 0.00 Length = 8.0 it D+L 1 0.413 0.217 0.90 1.000 1.00 1.00 1.00 1,00 1.00 Length = 8.0 fl 1 0.371 0.195 1.00 1.000 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1,00 �D+Lr Length = 8.0 ft 1 0.606 0.318 1.25 1.000 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 +S 1.00 1.00 Length = 8.0 It 1 0.323 0.170 1.15 1.000 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 +D+0.750Lr+0.750L Length = 8.0 ft 1 1.000 1.00 1,00 1.00 1.00 1.00 D+0.7501.+0.750S 0.529 0.278 1.25 1.000 1.00 1.00 1.00 1.00 1.00 1.000 1.00 1.00 1.00 1.00 1.00 Moment Values ^- M fb 0 0.00 0-91 0.00 2.15 501.25 1215.00 0.00 0.91 0.00 2.15 501.25 1350.00 0.00 1.86 0.00 4.39 1,022.56 1687.50 0.00 0.91 0.00 2.15 501.25 1552.50 0.00 1.62 0.00 3.83 892.23 1687.50 0.00 0.00 Shear Values V fv F'v 0.00 0.00 0.00 0-91 33.16 153.00 0.00 0.00 0.00 0.91 33.16 170.00 0.00 0.00 0.00 1.86 67.64 212.50 0.00 0.00 0.00 0.91 33.16 195.50 0.00 0.00 0.00 1.62 59.02 21250 0.00 0.00 0.00 W FRED SHEU ENGINEERING Strutural Engineer Project Title: Greg & Terri Gervais 14286 California Ave, #103 Engineer' ProDeser: SFR Proiect ID: S18250 `✓iclorville, CA 92392 fec[ 06o, Wood Beam - - -- - Printed �FAe= 11NOV2019 1 33,P1.1 ' ENERCALC, Uls1t3.250.6 -. IN.C,1993.2415, pulld:6,15.12,8, Description : 86- 8' HEADER AT FRONT OF LIVING Ver:6.11..8.31 Load Combination Max Sir ess_Ratios Segment Length Span 9 'M V Cd CFN Ci Cr Cn1 C CL Moment Values Shear Values_ � Length = B.0 Ft D+0.60W1.00 0.323 0-176-771-5-7 000 1,00 1-p0 I 1.00 1.00 M 2.15 fb F'b V M � F'v Length = 8.0 Fl 1 0.232 501.25 1552.50 0.91 33.16 195.50 D+0.70E 0.122 1,60 1,000 1,00 1.00 1, 0 1,00 1.00 2.15 501.25 0.00 2160.00 0.00 0.91 0.00 0.00 Length = 8.0 it 1 0.232 0.122 1.000 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 33.16 272.00 0.00 0.00 -*D+0.750Lr+0.750L+0.450W Length 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.15 501.25 2160.00 0.91 33.16 272.00 = 8.0 it 1 +D+0.750L+0.750S+0.450W 0.413 0.217 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.00 3.83 892.23 0.00 0.00 0.00 0.00 Length = 8.0 ft1 0.232 0.122 1.60 1.000 2160.00 0.00 1.62 0.00 59.02 272.00 0.00 �D+0.750L+0.750S40.5250E 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.15 501.25 2160.00 0.91 0.00 33.16 272.00 Length = 8.0 ft 1 -•0.60D+0.60W 0.232 0.122 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.15 0.0 Length 8.0 ft 1 1.000 1.00 1.00 1.00 1.00 1.00 501.25 2i60AQ 0.90 33.00 2720.00 .00 0.60E+0.70E 0.139 0.073 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.29 300.75 2160.00 Length = 8,0 ft 1 0.139 0.073 1.000 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.55 19.89 272.00 Overall Maximum Deflections 1.00 1.00 1,00 1.29 300,75 2160.00 0.55 19.89 272.00 Load Combinalion� -- Span --- Max. " " DeFl� -��--�-_ Location in Span Load Combination _ _ - "+' +D+Lr - 7 0.1646 4. 29 `- - -- �_ Max. Den --0.6000 Location in Span Vertical Reactions Load Combination Support 1 _ _ �' Support notation : Far len is #1 Values in KIPS Support 2 Overall MAXirriuim-" 2 7 .197 T Overall MINimum 0.646 0.646 __ D Only 1.077 1.077 +D+L 1.077 1.077 +D+Lr 2.197 2.197 +D+S 1.077 1.077 +D+0.7501 -r+0.7501. 1.917 1.917 +D+0.750L+0.750S 1.077 1.077 +0+0.60W 1.077 1.077 +D+0.70E 1.077 1.077 +D+0.750Lr+0.750L+0.450W 1.917 1.917 +D+0.750L+0.750S+0.450W 1.077 1.077 +D+0,750L+0.750S+0.5250E 1.077 1.077 +0.60D+0,60W 0.646 0.646 +0.60D+0,70E 0.646 0.646 D Only 1.077 1,077 Lr Only 1-120 1.120 L Only S Only W Only E Only H Only FRED SHEU ENGINEERING Strutural Engineer 14286 California Ave, #103 Victorville, CA 92392 Wood Beam Description : 87-18' GARAGE DOOR HEADER CODE REFERENCES Project Title: Greg & Terri Gervais Engineer: Project ID: S18250 Project Descr: SFR 137 --- __"miol 12NOV 201a, 200W. ----.._..._ _r%_GU9250,ec6 ENERCALC, INC, 1983-2015. SuNd:6.15.12.9, VarAI1.8,31 Load Combination Set: ASCE 7-10 0.590 1 Section used for this span 6x12 Material Properties FB: Allowable = 1,687.50psi Analysis Method: Allowable Stress Design Load Combination ASCE 7-10 Fb - Tension 1,350.0 psi E: Modulus of Elasticity Span # where maximum occurs = Fb -Compr 1,350.0 psi Ebend-xx 1,600.Oks Wood Species : Douglas Fir - Larch Fc - Prll Fc - Perp 925.0 psi 625.0 psi Eminbend - xx 580.0 ksi Wood Grade ; No.1 Fv 170.0 psi Beam Bracing Beam is Fully Braced against lateral Ft -torsion buckling 675.0 psi Density 32.210pcf Load Combination Max Stress Ratios f](0-13 Lr o.1 1350.00 1.20 Ap�llsd Loads . -� - -Beam self weight calculated and added to loads Uniform Load : D = 0,1340, Lr = 0.10 , Tributary Width =1.0 ft DESIGN SUMMARY M aximum Bending Stress Ratio = 0.590 1 Section used for this span 6x12 fb : Actual 994.81 psi FB: Allowable = 1,687.50psi Load Combination +D+Lr Location of maximum on span = 9.000ft Span # where maximum occurs = Span # 1 Maximum Deflection M D 408 sxlz D=�yPSFx 5 h l6�SFxc1c� _! a �4 Span =18 -Oft 1,--2op5Fx 5 = /00 PL Service loads entered. Load Faclors will be applied for calculations, Maximum Shear Stress Ratio Section used for this span fv : Actual Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs ax ownwaid Transient Deflection 0.213 in Ratio= 1014 6F'b Max Upward Transient Deflection V 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.00 0.529 in Ratio= 408 6.00 Max Upward Total Deflection 1215.00 0.000 in Ratio= 0 <180 Maximum Forces _& Stresses for Load Combinations 0.00 0.00 0.00 0.00 Load Combination Max Stress Ratios 593.92 1350.00 1.20 28.39 170.00 - Segment Length Span # M _- V Cd C FN C i Cr C m C t C L C Only 2.01 47.55 212.50 ...--L 0.00 Length = 18.0 ft 1 0.489 0,186 0.90 1.000 1.00 1.00 1.00 1.00 1.0 -D+L 195.50 1.000 1.00 1.00 1.00 1.00 1.0 Length = 18.0 ft 1 0.440 0,167 1.00 1.000 1.00 1.00 1.00 1.00 1.00 ,,D+Lr 1.000 1.00 1.00 1.00 1.00 1.00 Length =18.0 ft 1 0.590 0.224 1.25 1.000 1.00 1.00 1.00 1.00 1.00 „ D+S 1.000 1.00 1.00 1.00 1.00 1.00 Length = 18.0 ft 1 0.383 0.145 1.15 1.000 1.00 1-00 1.00 1.00 1.00 �D+0.750Lr+0.750L 1.000 1.00 1.00 1.00 1.00 1.00 Length = 18.0 fl 1 0.530 0.201 1.25 1.000 1.00 1.00 1.00 1.00 1.00 D+0.750L+0.750S 1.000 1.00 100 1.00 1.00 1.00 r 0.224 : 1 6x12 47.55 psi - 212.50 psi +D+Lr - 17.080 ft - Span # 1 Moment Values 0 0 Shear Values M 6F'b V - �____ Fv - 0.00 0.00 0.00 0100 6.00 593.92 1215.00 1.20 28.39 153.00 0.00 0.00 0.00 0.00 6.00 593.92 1350.00 1.20 28.39 170.00 0.00 0.00 0.00 0.00 10.05 994.81 1687.50 2.01 47.55 212.50 0.00 0.00 0.00 0.00 6.00 593.92 1552.50 1.20 28.39 195.50 0.00 0.00 0.00 0.00 9.04 894.59 1687.50 1.80 42.76 212.50 0.00 0.00 0.00 0.00 I -RED SHEU ENGINEERING Project Title: Greg & Terri Gervais Strulural Engineer Engineer: Project ID: S18250 14286 California Ave, #103 Project Descr: SFR victorville, CA 92392 6 7 -k - Wood Beam Span Max. "-" Defl Location in Span Load Combination F'v� 1.20 28.39 195.50 Vertical Reactions 0.00 0.00 Support notation : Far left is #1 -- r Support 2 0.00 Overall MAmrtium - - - 2.233 - - 2.233 - - Overall MINimum 0.800 0.800 1.80 ENERC;ALIC, INN 190, Description - B7. 18' GARAGE DOOR HEADER 1.333 0.00 +D+L 1.333 1.333 272.00 +D+Lr 2.233 :s 1.20 Load Combination Max Stress Ratios -V 1.333 0.00 +D+0.750Lr+0.750L 2.008 2,008 272.00 +D+0.750L+0.750S Moment Values 1.333 Segment Length Span # M 1.333 Cd C FN C I Cr C m C t C L M fb7 _ F'b Length =18.0 ft 1 *D+0.60W 0.383 0.145 1.15 1.00041.00 1-333 1.00 1.00 1.00 1.00 6.00 593.92 1552.50 Length =18.0 it 1 0.275 0.104 1.60 1.000 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1,00 1-00 1.00 0.00 D+0.70E 1.000 1.00 1.00 1.00 1.00 1.00 6.00 593.92 2160.00 Length =18.0 ft 1 D+0.7501 0.275 0.104 1.60 1.000 1.00 1.00 1.00 1.00 1.00 6.00 593.92 0.00 2160.00 -r+0.7501 -+0.450W Length = 18.0 ft 1 0.414 0.157 1.60 1.000 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 D+0.750L+0.750S+0.450W 1.000 1.00 1.00 1.00 1.00 1.00 9.04 894.59 2160.00 Length = 18.0 ft 1 D+0.750L+0.750S+0.5250E 0.275 0.104 1.60 1.000 1,00 1.00 1.00 1.00 1.00 6.00 593.92 0.00 2160.00 Length = 18.0 ft 1 0.275 0.104 1.60 1.000 1,000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 O.60D+0.60W 1.000 1.00 1.00 1.00 1.00 1.00 6.00 593.92 2160.00 Length =18.0 ft 1 -,0.60D+0.70E 0.165 0.063 1.60 1.000 1.00 1.00 1.00 1.00 1.00 3.60 356.35 0,00 2160.00 Length =18.0 ft 1 0.165 0.063 1.60 1.000 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 Overall Maximum Deflections 3.60 356.35 2160.00 Load Combination Span Max. "-" Defl Location in Span Load Combination F'v� 1.20 28.39 195.50 Vertical Reactions 0.00 0.00 Support notation : Far left is #1 Load Combination Support 1 Support 2 0.00 Overall MAmrtium - - - 2.233 - - 2.233 - - Overall MINimum 0.800 0.800 1.80 D Only 1.333 1.333 0.00 +D+L 1.333 1.333 272.00 +D+Lr 2.233 2.233 1.20 +D+S 1.333 1.333 0.00 +D+0.750Lr+0.750L 2.008 2,008 272.00 +D+0.750L+0.750S 1.333 1.333 0.72 +D+0.60W 1.333 1.333 +D+0.70E 1.333 1.333 +D+0.750Lr+0.750L+0.45OW 2.008 2.008 +D+0.750L+0.750S+0,450W 1.333 1.333 +D+0.750L+0.750S+0.5250E 1-333 1.333 +0,60D+0.60W 0.800 0.800 40.60D+0.70E 0.800 0.800 D Only 1.333 1.333 Lr Only 0.900 0.900 L Only S Only W Only E Only H Only 'rruai;q �: 'JO`i 2018 2GN!': File = G:1s18250.ec6 15, Build:6.15.12.9, Ver:6.11.8.31 �V Shear Values fv F'v� 1.20 28.39 195.50 0.00 0.00 0.00 1.20 28.39 272.00 0.00 0.00 0.00 1.20 28.39 272.00 0.00 0.00 0.00 1.80 42.76 272.00 0.00 0.00 0.00 1.20 28.39 272.00 0.00 0.00 0.00 1.20 28.39 272.00 0.00 0.00 0.00 0.72 17.03 272.00 0.00 0.00 0.00 0.72 17.03 272.00 Max• "+" Deb Location in Span 0.0000 0.000 Values in KIPS FRED SHEU ENGINEERING Strutural Engineer Project Title: Greg & Terri Gervais 14286 California Ave, #103 Engineer: Frolect Descr: SFR ProjectID: S18250 Viclorville, CA 92392 8 g Wood Beam 14i-a,618250.ecse Description : 68- 9' GARAGE DOOR HEADER EHHRLALC. INC. 1983 21115, 6uitd:6.15.12.9, Ver 6-i 1.8.31 9 1 - CODERERENCLS Load Combination Set: ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Load Combination ASCE 7-10 --- ---.. ,._ Fb- Tension 1,350,0 psi E: Modulus of Elasticity - Wood Species : Douglas Fir - Larch Fb - Compr 1,350.0 psi Ebend- xx Fc - Prll 925,0 psi Emirlbend -xx 1,600.0ksi 580.0lWood Grade Ido.1 Fc - Perp 625.0 psi Fv 170,0 psi Beam Bracing Beam is Fully Braced against lateral -torsion Ft buckling 675,Opsi Density 32.210pcf � r ❑ 0. IOG Lf{0.OG I V t? Lf SFX fl6Ps`x�'_ X06 pLF �r=zo1°!� K3' - 6d fLF Span = 9.0 ft Applied Loads _ Beam self weight calculated and added to loads-` Service loads entered. Load Factors will be applied for calculation - Uniform Load : D = 0 1060, Lr = 0.060 , Tributary Width = 1.0 ft DESIGN SUMMARY (Maximum Bending Stress Ratio Section used for this span 0.246 1 Maximum Shear Stress Ratio = fb : Actual 6x8 Section used for this span 0.116 : 1 _ FB: Allowable _ - 412.90psi p fv : Actual 1,687.50psi 6x8 24.70 psi Load Combination +D+Lr Fv :Allowable - 212.50 psi Location of maximum on span = Load Combination Span # where maximum occurs - 4,500(1 Location of maximum on span - +D+Lr - Maximum Deflection Span # 1 Span # where maximum occurs - 8 376 ft Span # 1 Max Downward Transient Deflection Max Upward Transient Deflection 0.029 in Ratio = 3750 Max Downward Total Deflection 0 .000 in Ratio = 0 <360 Max Upward Total Deflection 0.084 in Ratio = 1284 0.000 in Ratio = 0 <180 Maximum Forces & Stresses for Load Combinations Load Combination Max_ Stress Ratios ---- Segment Length Span # M `V Cd C C FN i CrMoment Values m C C - .. M Shear Values D Only- - -C t L, fb Fb V fv F'v Lenglh = 9.0 It 1 0.223 0.106 0.90 +D+L 1.000 1.00 1.00 1.00 1.00 1,00 0.00 0.00 1.17 271.52 0.00 - 0.00 Length = 9.0 fl 1 0.201 0.096 1.00 1.000 1.00 1.000 1.00 1215.00 0.45 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 16.24 153.00 0.00 0.00 •"D'ir Length = 9.0 ff 1 0.245 1,000 1.00 1.00 1.00 1.17 271.52 1350.00 0.45 1.00 1.00 1.00 1.00 16.24 170.00 0.116 1.25 D-Le0 1.000 1.00 1.00 1.00 1.00 1.00 1.77 412.90 1687.50 0.68 0 0.00 24.7 212.50 Length = 9.0 ft 1 0.175 0.083 1.15 tD+0.750Lr+0.750L 1.000 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.17 271,52 0.00 0.00 Length = 9.0 ff1 0.224 0.106 1.25 1.000 1.00 1552.50 0.45 1.00 1.00 0.00 0.00 16.24 195.50 0.00 0.00 �Di0,750L+0.750S 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.62 377.55 1687.50 0.62 22.58 212.50 0.00 0.00 0.00 0.00 FRED SHEU ENGINEERING Strutural Engineer 14286 California Ave, #103 Viclorville, CA 92392 Project Title: Greg & Terri Gervais En sneer: Project ID: S18250 PI1,i ect Descr: SFR l3 g Wood Beam u- File =GlsI825Red ENERGALG, INC. 1983-2015, Build:6.15.12.9, Ver:6.11.8.31 ]A M11 Description : 88.9' GARAGE DOOR HEADER Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span #` M V Cd C C Cr D C _ C FN i m I L M� fb F'b V tv FIV Length = 9.0 ft 1 0.175 0,083 1.15 1.N0 1.00 1.00 1.00 1.00 1.00 1.17 271.52 1552.50 0.45 16.24 195.50 +D+0.60W 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 9.0 ft 1 0.126 0.060 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.17 271.52 2160.00 0.45 16.24 272.00 +0+0.70E 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 9.0 It 1 0.126 0.060 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.17 271.52 2160.00 0.45 16.24 272.00 +D+0.750Lr-4750L+0.45oW 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 9.0 ft 1 0.175 0.083 1.60 1.000 1.00 1.00 1,00 1.00 1.00 1.62 377.55 2160.00 0.62 22.58 272.00 FD+0.7501-4750S+0.450W 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 9.0 ft 1 0.126 0.060 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.17 271.52 2160.00 0.45 16.24 272.00 +D+0.7501-+0.750S+0.5250E 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 9.0 ft 1 0.126 0.060 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.17 271.52 2160.00 0.45 16.24 272.00 +0.60D+0.60W 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 9.0 ft 1 0.075 0.036 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.70 162.91 2160.00 0.27 9.74 272.00 i -0.601)+0.70E 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 9.0 ft 1 0.075 0.036 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.70 162.91 2160.00 0.27 9.74 272.00 Overall Maximum Deflections oad Combination Span Max. " " Defl Location in Span Load Combination Max. "+^ Dell location in Span 4,533 0.0000 " 0.000 Vertical Reactions µ� Support notation : Far left is #1 Values in KIPS Load Combination Support 1 -Supp®rt --'"� -`-- Overall MAXimum - _ -'0.789 0.789 - - -- - -- - -• _�- ._._. Overall MINimum 0.270 0.270 D Only 0.519 0.519 +D+L 0.519 0.519 +D+Lr 0.789 0.789 +D+S 0.519 0.519 +D+0.750Lr+0.750L 0.721 0.721 +D+0.750L+0.750S 0.519 0.519 +D+0.60W 0.519 0,519 +D+0.70E 0.519 0.519 +D+0.750Lr+0.750L+0.45OW 0.721 0.721 +0+0.750L+0.750S+0.450W 0.519 0.519 +D+0.750L+0.750S-45250E 0.519 0.519 +0.60D+0.60W 0.311 0.311 +0.60D+0,70E 0.311 0.311 D Only 0.519 0.519 Lr Only 0.270 0.270 L Only S Only W Only E Only H Only FRED SHEU ENGINEERING Strutural Engineer Project Title: Greg & Terri Gervais 14286 California Ave, #103 Engineer: Project ID: S18250 Victorville, CA 92392 Project Descr: SFR Woad Beam - -___ - - - ----- - _ _ F,,,,,i,2ra:v2oi?• ;�;; File= G:W8250-ecz ENERCALC, INC• 1983.2015, Buildi6.15.12,9, VBc6.11:8-31 Description : 69- T HEADER AT LEFT OF GARAGE in' ' - ; r , CODE REFERENCES Load Combination Set: ASCE 7-10 Material Prn�erties Analysis Method : Allowable Stress Design Load Combination ASCE 7-10 Fb - Tension Fb - Compr Fc - Prll Wood Species Douglas Fir - Larch Fc - Perp Wood Grade ; No.1 Fv Ft Beam Bracing : Beam is Fully Braced against lateral -torsion buckling Ir IV 1,350.0 psi E: Modulus ofElasticily 1,350.0 psi 925.0 psi Ebend-xx 1,600.Qksi Eminbend - xx 580 0 ksi 625.0 psi 170.0 psi Applied Loads 675.0 psi Density 32.210pcf 6x6 x r'f,S�-%l6PJfXq":= PLF �Y=ZoPsF�C 5 =350 PLF Span = 6.0 rl Applied Loads - ---- -- --- - --- ---•�----_-...__._-_.___,____�_.,_____-___ Beam self weight calculated and added to loads _ _ -- Service loads entered. Load Factors will be applied for calculations. Uniform Load : D=03090, Lr = 0.350 , Tributary Width =1.0 ft ~ DESIr N SUMMARY Maximum Bending Stress Ratio0 _ Section used for this span .4151 1 Maximum Shear Stress Ratio fb : Actual 6x8 Section used for this span _ 0.273 : 1 r FIB: Allowable - 699.82psi6x8 1,687.50psi fv : Actual 58.00 psi Load Combination Fv :Allowable = 212.50 psi Location of maximum on span = +D+Lr Load Combination Span # where maximum occurs - 3.000ft Location of maximum on span = +D+Lr D+Lift - Maximum Deflection Span # 1 Span # where maximum occurs = Span # 1 Max Downward Transient Deflection Max Upward Transient Deflection 0.033 in Ratio = 2169 Max Downward Total Deflection 0.000 in Ratio = 0 <360 Max Upward Total Deflection 0.063 in Ratio = 1136 0.000 in Ratio = 0 <180 Maximum Forces & Stresses for_ Load_ Combinations Load Combination Max Stress Ratios _ Segment Length Span # --k-- _..z_ _---� - V Cd CFN Ci Cr- Cm __ _ oment Values C CLM--- ro..._. --V She_ar Values • - - -F'v DOnly t Fb tv Length = 6.0 K 1 0.274 0.181 0-90 -D+L 1.000 1.00 1.00 1.00 1.00 1.00 1.43. 0.00 0.00 0.00 0.00 Length = 6.0 It 1 0.247 333.27 1215.00 0.76 27.62 153.00 0.162 1.00 +D+Lr 1.000 1.00 1.00 1.00 1.00 1.00 1.43 333.27 0.00 1350.00 0.00 0.00 0.00 Length = 6.0 K 1 0.415 0.273 1.25 1.000 1.00 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.76 27.62 170.00 D+g Length = 6.0 ft 1 0.215 1.000 1.00 1.00 1.00 1.00 1.00 3.01 699.82 1.00 1.00 1687.50 1.59 58.00 21250 0.141 1.15 +D+0,750Lr+0.750L1.000 1.000 1.00 1.00 1.00 1.00 1.00 1.43 333.27 0.00 1552 50 0.00 0.00 0.00 Length = 6.0 K1 0.360 0.237 1.25 1.00 1.000 1.00 1Z 1.00 1,00 1.00 1.00 coo 0.76 0.00 27.62 195.50 0.00 0.00 •� D+0.750L+0.750S 1.000 1.00 1.00 1.00 1.00 1.00 1.00 2.61 608.18 1.00 1.00 1687.50 1.39 50.40 21250 0.00 0.00 0.00 0.00 FRED SHEU ENGINEERING Slrulural Engineer 14286 California Ave, #103 Victorville, CA 92392 Project Title: Greg & Terri Gervais Engineer: Proiect ID: S18250 Project bescr: SFR erg Wood Beam - F)RCJJ 12NO'14M 20-%' - r:k=c:slsMA 1 11: ENERt;ALQ INC 19832016; &ulld.18.15.I2,% Vnr6 i t.8.31 Description : B9- 6' HEADER AT LEFT OF GARAGE _ Load Combination Max Stress Ratios Moment Values Shear Values Segment Length San # M -- --• ••- ib F'b LBnglh = 6.0 ft 10.215 i -0+0.60W 0.141 1.15 1.000 1.00 1.00 1.00 1.00 1.00 1.43 333.27 1552.50 V 0.76 fv F'v 27.62 195.50 Length = 6,0 It 1 0.154 0.102 1.000 1.60 1.000 1.00 1.00 1.00 1.0o 1.00 1.00 100 1,00 1.00 1.00 0.00 0 00 0,00 0.00 -�D+0.70E 1.000 1.00 1.00 1.00 1.00 1.00 1.43 333,27 2160.00 0.76 27,62 272.00 Length = 6.0 it 1 0.154 0.102 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.43 333.27 0.00 2160.00 0.00 0.76 0.00 0.00 27.62 272.00 ,D+0.750Lr+0.7501_+0.450W 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 6.0 It 1 1-D+0.750L+0.750S+0.450W 0.282 0.185 1.60 1.000 1.00 1.00 1.00 1.00 1.00 2.61 608.18 2160.00 1.39 50.40 272.00 Length = 6.0 ft 1 0.154 0.102 1.000 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 +D+0.750L+0.750S+0.5250E 1.000 1.00 1.00 1.00 1.00 1.00 1.43 333.27 2160.00 0.76 27.62 272.00 Length = 6.0 ft 1 0.154 0.102 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.43 333.27 0.00 2160.00 000 0,76 0.00 0.00 27.62 272.00 -0.60D+0.60W Length = 6.0 it 1 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 +0.60D+0.70E 0.093 0.061 1.60 1.000 1.00 1.00 1.00 1.00 1.00 0.86 199.96 2160.00 0.46 16.57 272.00 Length = 6.0 ft 1 0.093 0.061 1.000 1.60 1.000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Overall Maximum Deflections 0.86 199.96 2160.00 0.46 16.57 272.00 Load Combination- Span Max. "" Dell _-- -'� Location in Span '" �- Load Combination ---------• --- ••-••---- Max. "+" Defl Location in Span 1 0.0634 ' - :azz __ _000 _. o.o - - o:000 Vertical Reactions Support notation : Far left is #1 Values in KIPS Load Combination Supportl Support OverallMAXimum --- -• ----`�Oa5- - 'x.665_ ^ �._.- .. _.. __�__- __�.._._ __ __ _.. r _-.._ Overall MlNimum 0.573 0.573 D Only 0.955 0.955 +D+L 0.955 0.955 +D+Lr 2.005 2.005 +D+S 0.955 0.955 +D+0.750Lr+0.750L 1.742 1,742 +0+0.750L+0.750S 0.955 0.955 +D+0.60W 0.955 0.955 +D+0.70E 0.955 0.955 +D+0.750Lr+0.750L+0.450W 1.742 1.742 +D+0.750L+0.750S+0.450W 0.955 0.955 +D+0.750L+0.750S+0.5250E 0.955 0.955 +0.60D+0.60W 0.573 0.573 +0.60D+0.70E 0.573 0.573 D Only 0.955 0.955 Lr Only 1.050 1.050 L Only S Only W Only E Only H Only FRED SHEU ENGINEERING Strutural Engineer 14286 California Ave, #103 Victorville, CA 92392 Project Title: Greg & Terri Gervais Engineer: Prosect ID: S18250 �3 l o Prfllect Descr: SFR Wood Beam -- _ ,,,,,: o 21,'0V201? le = G:1s182%ks i?NERGALC, INC. 1983-20 9u11d 815.t24, Ver:6.11.8.A kagg"iligDescription : 610- 6' HEADER AT RIGHT OF BEDROOM 2 r CODE REFERENCES Load Combination Set : ASCE 7-10 0.445 1 Maximum Shear Stress Ratio Section used for this span 6x8 Material Properties fb : Actual = 750.27psi fv : Actual Analysis Method: Allowable Stress Design Load Combination ASCE 7-10 Fb- Tension 1,350.0 psi E; Modulus of Elasticity +D+Lr Fb -Compr 1,350.0 psi Ebend-xx 1,600.Oksi Location of maximum on span Fc - Prll 925.0 psi Eminbend - xx 580.0 ksi Wood Species : Douglas Fir - Larch Fc • Perp 625.0 psi Max Downward Transient Deflection Waad Grade : No.1 Fv 170,0 psi 0.000 in Ratio = Ft Beam Bracing Beam is Fully Braced against lateral -torsion buckling 675.0 psi Density 32.210pcf 0(0-712) Lr(0.712) ✓t.i:4 � .S `G. TRU55 /b=1t�Ps�XrS'-hf6PfFxy- pra �-8 Gv-2ol°IFK15 =30o PGF Span = 6,0 fl Applied Loads _ Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads - Load for Span Number 1 Uniform Load : D = 0,2740, Lr = 0.30 k/ft, Extent = 0.0 ­> 5.0 ft, Tributary Width =1.0 ft Point Load : D = 0.7120, Lr = 0.7120 k (a, 5.0 ft DESIGN SUMMARY Maximum Bending Stress Ratio = 0.445 1 Maximum Shear Stress Ratio Section used for this span 6x8 Section used for this span fb : Actual = 750.27psi fv : Actual FB: Allowable = 1,687.50psi Fv : Allowable Load Combination +D+Lr Load Combination Location of maximum on span = 3.328f1 Location of maximum on span Span # where maximum occurs = Span # 1 Span # where maximum occurs Maximum Deflection 0.90 1.000 Max Downward Transient Deflection 0.035 in Ratio = 2041 Max Upward Transient Deflection 0.000 in Ratio = 0 <360 Max Downward Total Deflection 0.069 in Ratio= 1041 Max Upward Total Deflection 0.000 In Ratio = 0 <180 Maximum Forces & Stresses for Load Combinations Load Combination Cr Max Stress Ratios C t CL Segment Length Span # M V C d C FN 1.00 1.00 1.00 1.00 1.00 1.00 Length = 6.0 ft 1 0.302 0.282 0.90 1.000 "D+L 1.00 1.00 1.00 1.00 1.000 Length = 6.0 ft 1 0.272 0.254 1.00 1.000 4-0+Lr 1.00 1.00 1.00 1.00 1.000 Length = 6.0 It 1 0.445 0.411 1.25 1.000 +D+S 0.00 0.00 0.00 0.00 1.000 Length = 6.0 It 1 0.237 0.221 1.15 1.000 +D+0.750Lra0.7501_ 0.00 0.00 0.00 0.00 1.000 Ci Cr Cm C t CL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 100 1.00 1.00 1.00 r � 0.411 : 1 6x8 = 87.44 psi 212.50 psi +D+Lr 5.387 ft Span # 1 Moment Values --.. Shear Values M- Fb V tv F'v 0.00 0.00 0.00 0.00 1.58 367.29 1215.00 1.19 43.13 153.00 0.00 0.00 0.00 0.00 1.58 367.29 1350.00 1.19 43.13 170.00 0.00 0.00 0.00 0.00 3.22 750.27 1687.50 2.40 87.44 212.50 0.00 0.00 0.00 0.00 1,58 367.29 1552.50 1.19 43.13 195.50 0.00 0.00 0.00 0.00 FRED SHEU ENGINEERING Slrutural Engineer 14286 California Ave, #103 Victorville, CA 92392 Wood Beam Description : B10- 6' HEADER AT RIGHT OF BEDROOM 2 Project Title: Greg & Terri Gervais Engineer: Proiect ID: S18250 Project Descr: SFR 6 (ort Load Combination Max Stress Ratios bopport 2 Shear Values M fb .... F b. V fv- Segment Length Span # M V Cd C FN C i Cr C m C I L Length = 6.0 ft 1 0.388 0.359 1.25 -1.R-0-1.60--1,F0 1552.50 1.19 -1.6o---700- 195.50 _C 1.00 D+0.750L+0.750S 0.00 0.00 0.00 1.000 1.00 1.00 1.00 1.00 1.00 Length = 6.0 ft 1 0.237 0.221 1.15 1.000 1.00 1.00 1.00 1.00 1.00 *D+0.60W 43.13 272.00 0.994 1.000 1.00 1.00 1.00 1.00 1.00 Length = 6.0 ft 1 0.170 0.159 1.60 1.000 1.00 1.00 1.00 1.00 1.00 ,D+0.70E 1.58 3F7.29 2160.00 1.000 1.00 1.00 1.00 1,00 1.00 Length = 6.0 it 1 0.170 0.159 1.60 1.000 1.00 1.00 1.00 1,00 1.00 �D+0.7501-r+0.7501-+0.450W 0.00 0.00 0.00 1.000 1.00 1.00 1.00 1.00 1.00 Length = 6.0 It 1 0.303 0.281 1.60 1.000 1.00 1.00 1.00 1.00 1.00 -oD+0.750L+0.750S+0.450W 25.88 272.00 1.000 1.00 1.00 1.00 1.00 1.00 Length = 6.0 ft 1 0.170 0.159 1.60 1.000 1.00 1.00 100 1.00 100 +D+i- 5JL*0.750S+0.5250E 1.000 1.00 1.00 1.00 1,00 1.00 Length = 6.0 It 1 0.170 0.159 1.60 1.000 1.00 1.00 1.00 1.00 1.00 ,9.60D+0,60W 1.000 1.00 1.00 1.00 1.00 1.00 Length = 6,0 ft 1 0.102 0.095 1.60 1.000 1.00 1.00 1.00 1.00 1.00 +0.60D+0.70E 1.000 1.00 1.00 1.00 1.00 1.00 Length = 6.0 ft 1 0.102 0.095 1.60 1.000 1.00 1.00 1.00 1.00 1.00 Overall Maximum Deflections ._. Fria •ni ;[�t)4 .'Gi8 ?0''.''";: FNd G.W8250.eG6 LNC. 1190415, Build:6.15.11% Ver:6.11.8.31 Moment Values T Support 1 bopport 2 Shear Values M fb .... F b. V fv- F v' 2.81 654.52 1687.50 2.10 76.36 212.50 1.939 2.410 0.00 0.00 0.00 0.00 1.58 367.29 1552.50 1.19 43.13 195.50 0.946 1.192 0.00 0.00 0.00 0.00 1.58 367.29 2160.00 1.19 43.13 272.00 0.946 1.192 0.00 0.00 0.00 0.00 1.58 367.29 2160.00 1.19 43.13 272.00 0.994 1.218 0.00 0.00 0.00 0.00 2.81 654.52 2160.00 2.10 76.36 272.00 0.00 0.00 0.00 0.00 1.58 3F7.29 2160.00 1.19 43.13 272.00 0.00 G.Gv Uu- 1.58 367.29 2160.00 1.19 43.13 272.00 0.00 0.00 0.00 0.00 ).95 220.38 2160.00 0.71 25.88 272.00 0.00 0.00 0.00 0.00 ).95 220.38 2160.00 0.71 25.88 272.00 Load Combination Span Max. " " Dell Location in Span Load Combination 1 0.0691 3.088` Vertical Reactions Support notation: Far left is #1 Qa i"alicn Support 1 bopport 2 0v+eraA lufarrF ri • - --- --- ---•-1-X39-- -- - Overall MINimum 0.567 0.715 D Only 0.946 1.192 +O+L 0.946 1.192 +6+1:r 1.939 2.410 +D+S 0.946 1.192 +0+0.750Lr+0.750L 1.691 2.106 +D+0.750L+0.750S 0.946 1.192 +D+0.60W 0.946 1.192 +D+0.70E 0.946 1.192 +D+0.750Lr+0.750L+0.45OW 1.691 2.106 +D+0.7501-4750S+0.450W 0.946 1.192 +D+0.750L+0.750S+0.5250E 0.946 1.192 +0.60D+0.60W 0.567 0.715 +0.60D+0 70F 0.567 0.715 D Only 0.946 1.192 Lr Only 0.994 1.218 L Only S Only W Only E Only H Only Max. "+" De0 Location in Span 0.0000 0.000 Values in KIPS Fred ,S'h eu Engineering LATERAL ANALYSIS SEISMIC WIND SHEAR WALL ro =USGS Design Maps Summary Report G User -Specified Input Building Code Reference Document 2012/2015 International Building Code (which utilizes USGS hazard data available in 2008) Site Coordinates 33.673711N, 116.318491W Site Soil Classification Site Class D — "Stiff Soil" Risk Category I/II/III 4axncoral ti[y • C•mnntt:d Ranrho - Mir a ge - P a6z7 Desert I n di n• •. aWA; .Coachella La auill w F All R -W A rl r dlikhr USGS-Provided Output SS = 1.500 g SMS = 1,500 g SIDS = 1.000 g S1 = 0.601 g SM1 = 0.901 g SD1 = 0.601 g For information on how the SS and 51 values above have been calculated from probabilistic (risk -targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and sildect the "2009 NEHRP" building code reference document. NICTR ResponseSpectrurn 1)esilan ResvonseSomrum i It --- PrAINl. T Isar t:';0I_I911 this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to fhr: rulacy of the data contained therein. This tool is not a Substitute for technical subject -matter knowledge. Fred Sheu Project: ER VA IS Page C � Engineering Job# SEISMIC LOAD Per 2016 CBC Section 1613 and ASCE 7-10 section 12.8 Equivalent Lateral Force Procedure: Seismic Design Category = D Site Class = D Occupancy Category = II Importance Factor, I = 1.0 Response Mondification Coefficient, R = 6.50 System Overstrength Factor, QO = 3.00 Seismic Design Parameters from USGS: Site Coefficient (0.2 sec), Fa = 1.0 Site Coefficient (1.0 sec), F,= 1.5 Mapped Spectral Acceleration (0.2 sec), Ss = 1.500 Mapped Spectral Acceleration (1.0 sec), Si = 0.401 Adjusted Spectral Acceleration (0.2 sec), Sms = Fa SS = 1.500 Adjusted Spectral Acceleration (1.0 sec), Smi = Fv S1 = 0.601 Design Spectral Response Acceleration (0.2 sec), SIDS = 2/3 x Sm. = Design Spectral Response Acceleration (1.0 sec), Sol = 2/3 x Sm, = 1,000 0.401 Seismic Design Coefficient: (Eq. 12.8-2) CS= SDS/ (R/I)= 1.000/(6.5/1.0) = 0.154 (Eq. 12.8-5) (Eq. 12.8-6) Cs min. = 0.044 Sos I > 0.01 = 0.044 *1.000*1.0= Cs 0.044 (Eq. 12.8-3) min. = 0.5*Sl / ( R / I) = 0.5 * 0.4 / ( 6.5 / 1.0)= Cs 0.031 (Eq. 12.8-7) max. = So, / T( R / I) = 0.401/ 0.15*(6,5/1.0) = T * ^ 1.009 = Ct hn 0.75 = 0.02 * 15.0 " 0.75 = 0.152 sec. where hn = 15.0 ft (Sec. 12.3.4) Redundancy Factor, p = 1.3 Seismic Base Shear: (Eq. 12.8-1) V= p CS W = 1.3 * 0.154 * W = 0.200 W for LFRD or 0.200 * W / 1.4 = 0.143W for ASD Fred Sheu Engineering Project G a RyA15 Page u WIND LOAD Per ASCE 7-10 Simplified MWFRS Envelope Procedure Adjusted design.net wind pressure, p5 =A Kzt PS30 Mean roof height= 15' Basic wind speed = i I o rt l pk- Exposure = c. Kzt = topographic factor = 1.0 x = adjustment factor for building height & exposure Mean roof Height (ft) B Ex osure C D 15 1.00 1.21 1.47 20 1.00 1 M 1.55 25 1.00 1.35 1.61 30 1.00 1.40 1.66 35 1.05 1.45 1.70 40 1.09 1.49 1.74 45 1.12 1.53 1.78 50 1.16 1.56 1 1.81 55 1.19 1.59 1 1.84 60 1.22 1.62 1 1.87 Psao = Simplified design wind pressure for Exposure B, h= 30' Roof Angle horiz. pressu (pitch / degrees) for basic for basic wind speed= wind speed= 110 mph flat / 0 to 5 degree � 19.2 3:12 / 14.0 degree 23. 4:12 / 18.4 degree 25.8 5:12 / 22.6 de ree 25.3 6:12 / 26.6 degree 23.3 7:12 to 12:12% �1 21.6 30 to 45 dearee Job # 51?2-5'6' horiz. pressure horiz, pressure horiz, pressure for basic for basic for basic wind speed= wind speed= wind speed= 115 mh 120 mh 130m h 21.0 22.8 26.8 25.8 28.1 33.0 28,1 30.7 36.0 27.6 30.0 35.3 25.7 27.7 32.5 23.6 25.7 30.1 ==+ Ps= � Kzt Ps30 = f . Z i x l 1. a - 2 3,-Z P $ T- ==4 For ASD, ps=0.6ps= o-G,�<23�z=IypSr vsE 1-7 fSF= Fred Sheu Project: GERVAIS Page C5 Engineering Job # S18250 LATERAL LOADS Design spectral response acceleration Sos= 1.000 Roof weight= 14.0 Exterior wall weight= 16.0 Seismic base shear coefficient= 0.143 Floor weight= 0.0 Interior wall weight= 10,0 Wind pressure= 17.0 psf Section L-1 Input: Roof height= 5.0 Wall height= 10.0 # of exterior walls= 2 Roof depth= 31.5 Floor depth= 0.0 # of interior walls= 2 Wind Load, Vw = 17.0 * (5.0 + 10.0/2) = 170.0 plf <--- controls Seismic Load, Roof DL = 14.0 * 31.5 = 441.0 Floor DL = 0.0 * 0.0 = 0.0 Ext. Wall DL = 2 * 16.0 * 10.0/2 = 160.0 Int. Wall DL = 2 * 10.0 * 10.0/2 = 100.0 Total DL, W = 441.0 + 0.0 + 160.0 + 100.0 = 701.0 plf Seismic Load= 0,143 * 701.0 = 100.2 olf Section L-2 Input: Roof height= 5.0 Wall height= 10.0 # of exterior walls= 2 Roof depth= 47.0 Floor depth= 0.0 # of interior walls= 3 Wind Load, Vw = 17.0 * (5.0 + 10.0/2) = 170.0 plf <--- controls Seismic Load, Roof DL = 14.0 * 47.0 = 658.0 Floor DL= 0.0*0.0= 0.0 Ext. Wall DL = 2 * 16.0 * 10.0/2 = 160.0 Int. Wall DL= 3 * 10.0 * 10.0/2 = 150.0 Total DL, W = 658.0 + 0.0 + 160.0 + 150.0 = 968.0 plf Seismic Load= 0.143 * 968.0 = 138.4 plf Section L-3 Input: Roof height= 3.25 Wall height= 14.0 # of exterior walls= 2 Roof depth= 48.0 Floor depth= 0.0 # of interior walls= 0 Wind Load, Vw = 17.0 * (3.3 + 14.0/2) = 174.3 plf <--- controls Seismic Load, Roof DL = 14.0 * 48.0 = 672.0 Floor DL= 0.0*0.0= 0.0 Ext. Wall DL = 2 * 16.0 * 14.0/2 = 224.0 Int. Wall DL= 0 * 10.0 * 14.0/2 = 0.0 Total DL, W = 672.0 + 0.0 + 224.0 + 0.0 = ------------------.,----` 896.0 If P Seismic Load = 0.143 * 896.0 = 128.1 plf ,Fred Ski eu ,Engineering Project: GERVAIS Page c6 Job # S18250 LATERAL LOADS Design spectral response acceleration SDS= 1.000 Roof weight= 14.0 Exterior wall weight= 16.0 Seismic base shear coefficient= 0.143 Floor weight= 0.0 Interior wall weight= 10.0 Wind pressure= 17.0 psf Section L-4 Input: Roof height= 4.5 Wall height= 10.0 # of exterior walls= 1 Roof depth= 40.0 Floor depth= 0.0 # of interior walls= 1.0 Wind Load, Vw = 17.0 * (4.5 + 10.0/2) = 161.5 plf <--- controls Seismictoad; Roof DL = 14.0 * 40.0 - 560-.0- 60-.0Floor FloorDL= 0.0*0.0= 0.0 Ext. Wall DL = 1 * 16.0 * 10.0/2 = 80.0 Int. Wall DL = 1 * 10.0 * 10.0/2 = 50.0 Total DL, W = 560.0 + 0.0 + 80.0 + 50.0 = 690.0 plf Seismic Load= 0.143 * 690,0 = 98.7 plf Section L-5 Input: Roof height= 3.5 Wall height= 10.0 # of exterior walls= 1 Roof depth= 24.0 Floor depth= 0.0 # of interior walls= 2 Wind Load, Vw = 17.0 * (3.5 + 10.0/2) = 144.5 plf <--- controls Seismic Load, Roof DL = 14.0 * 24.0 = 336.0 Floor DL = 0.0 * 0.0 = 0.0 Ext. Wall DL = 1 * 16.0 * 10.0/2 = 80.0 Int. Wall DL= 2 * 10.0 * 10.0/2 = 100.0 Total DL, W = 336.0 + 0.0 + 80.0 + 100.0 = 516.0 plf Seismic Load = 0.143 * 516.0 = 738 plf Sectior. T- I Input: Roof height= 3.5 Wall height= 10.0 # of exterior walls= 2 Roof depth= 17.0 Floor depth= 0.0 # of interior walls= 0 Wind Load, Vw = 17.0 * (3.5 + 10.0/2) = 144.5 Of <--- controls Seismic Load, Roof DL = 14.0 * 17.0 = 238.0 Floor DL = 0.0 * 0.0 = 0.0 Ext. Wall DL = 2 * 16.0 * 10.0/2 = 160.0 Int. Wall DL= 0 * 10.0 * 10.0/2 = 0.0 Total DL, W = 238.0 + 0.0 + 160.0 + 0.0 = 398.0 plf Seismic Load= 0.143 * 398.0 = 56.9 plf Fred tSh eu Project: GERVAIS Page G7 ..Engineering Job # S18250 TERALLOADS Design spectral response acceleration Sos= 1.000 Roof weight= 14.0 Exterior wall weight= 16.0 Seismic base shear coefficient= 0.143 Floor weight= 0.0 Interior wall weight= 10.0 Wind pressure= 17.0 psf Section T-2 laWL Roof height= 3.3 Wall height= 14.0 # of exterior walls= 1 Roof depth= 78.0 Floor depth= 0.0 # of interior walls= 3 Wind Load, Vw = 17.0 * (3.3 + 14.0/2) = 174.3 plf Seismic Load, Roof DL = 14.0 * 78.0 = 1092.0 Floor DL= 0.0*0.0= 0.0 Ext. Wall DL = 1 * 16.0 * 14.0/2 = 112.0 Int. Wall DL= 3 * 10.0 * 14.0/2 = 210.0 Total DL, W = 1,092.0 + 0.0 + 112.0 + 210.0 = 1414.0 plf Seismic Load= 0.143 * 1,414.0 = 202.2 plf <--- controls Section T-3 Input: Roof height= 3.5 Wall height= 0.0 # of exterior walls= 0 Roof depth= 52.0 Floor depth= 0.0 # of interior walls= 0 Wind Load, Vw = 17.0 * (3.5 + 0.0/2) = 59.5 plf Seismic Load, Roof DL = 14.0 * 52.0 = 728.0 Floor DL= 0.0*0.0= 0.0 Ext. Wall DL = 0 * 16.0 * 0.0/2 = 0.0 Int. Wall DL = 0 * 10.0 * 0.0/2 = 0.0 Total DL, W = 728.0 + 0.0 + 0.0 + 0.0 = 728.0 plf Seismic Load = 0.143 * 728.0 = 104.1 plf <--- controls Section T-4 tMn !L Roof height= 2.5 Wall height= 14.0 # of exterior walls= 2 Roof depth= 20.0 Floor depth= 0.0 # of interior walls= 0 Wind Load, Vw = 17.0 * (2.5 + 14.0/2) = 161.5 plf <--- controls Seismic Load, Roof DL = 14.0 * 20.0 = 280.0 Floor DL= 0.0*0.0= 0.0 Ext. Wall DL = 2 * 16.0 * 14.0/2 = 224.0 Int. Wall DL= 0 * 10.0 * 14.0/2 = 0.0 Total DL, W = 280.0 + 0.0 + 224.0 + 0.0 = 504.0 plf Seismic Load = 0.143 * 504.0 = 72.1 plf fired Sh eu Project: GERVAIS Page C k ,.I ngineering Job* 518250 LATERAL LOADS Design spectral response acceleration SDs= 1.000 Roof weight= 14.0 Exterior wall weight= 16.0 Seismic base shear coefficient= 0.143 Floor weight= 0.0 Interior wall weight= 10.0 Wind pressure= 17.0 psf Section T-5 MgLtL Roof height= 3.5 Wall height= 10.0 # of exterior walls= 2 Roof depth= 30.0 Floor depth= 0.0 # of interior walls= 1 Wind Load, Vw = 17.0 * (3.5 + 10.0/2) = 144.5 plf <--- controls Seismic Load, Roof DL = 14.0 * 30.0 = 420.0 Floor DL = 0.0 * 0.0 = 0.0 Ext. Wall DL = 2 * 16.0 * 10.0/2 = 160.0 Int, Wall DL = 1 * 10.0 * 10.0/2 = 50.0 Total DL, W = 420.0 + 0.0 + 160.0 + 50.0 = 630.0 plf Seismic Load = 0.143 * 630.0 = 90.1 plf Section T-6 Input: Roof height= 4.5 Wall height= 10.0 # of exterior walls= 1 Roof depth= 34.5 Floor depth= 0.0 # of interior walls= 1 Wind Load, Vw = 17.0 * (4.5 + 10.0/2) = 161.5 plf <--- controls Seismic Load, Roof DL = 14.0 * 34.5 = 483.0 Floor DL = 0.0 * 0.0 = 0.0 Ext. Wall DL = 1 * 16.0 * 10.0/2 = 80.0 Int. Wall DL = 1 * 10.0 * 10.0/2 = 50.0 Total DL, W = 483.0 + 0.0 + 80.0 + 50.0 = 613,0 plf Seismic Load= 0.143 * 613.0 = 87.7 plf Section T-7 Input:_ Roof height= 2,8 Wall height= 10.0 # of exterior walls= 2 Roof depth= 14.0 Floor depth= 0.0 # of interior walls= 2 Wind Load, Vw = 17.0 * (2.8 + 10.0/2) = 131.8 plf <--- controls Seismic Load, Roof DL = 14.0 * 14.0 = 196.0 Floor DL= 0.0*0.0= 0.0 Ext. Wall DL = 2 * 16.0 * 10.0/2 = 160.0 Int. Wall DL = 2 * 10.0 * 10.0/2 = 100.0 --------------------------- _..------- ---- Total DL, W = 196.0 + 0.0 + 160.0 + 100.0 = 456.0 plf Seismic Load = 0.143 * 456.0 = 65.2 plf red Sheu Project: GERVAIS ,Engineering CHORD FORCE & ROOF DIAPHRAGM DESIGN Page_ Job# S18250 Direction: L-3 Between Shear Walls: 3 & 4 Width, L = 46.0 Depth, D = 28 Diaphragm Force: Wind Load = 174.3 plf <__= control Seismic Load = 128.1 plf Diaphragm Shear = 174.3 x (L/2) /D = 143.2 plf Use: 15/32" APA Rated Sheathing, or O.S.B, unblocked disphragm, exterior grade, Index 24/0 w/ 8 nails @ 6" o.c. at edges and boundaries, @ 12" o.c. in field Case 1 — allowable shear = 240 plf Splice Chord Force, F = M / D = 118 x 174.3 x (46.0)"*2 / 28.0 = 1,647 Ib 16d sinker nails: allowable shear for double top plate, single shear, 1.5" penetration (p) v = 118 lbs x Cd per Table 11 N, 2015 NDS =118x(p/10dia.)=118x1.0=118 lb Top Plate Splice: n = F /(1.6x118) = 1647 /189= 8.7 (Cd = 1.6) use (12) - 16d Sinkers at top plate splice Fred Sheu Panel#1 3.50 10.0 3.50 10.0 3,825 Project: GERVAIS Page C/O Engineering 286 8.0 8.0 0.0 Job # S18250 16 SHEAR WALL LINE # 1 PANEL DESIGN: 3,539 0 Section a- Tributary width (ft) = 14.5 Seismic(plf)= 100.2 Wind (plf)= 170.0 Section b- Tributary width (ft) = 0 Seismic(plf)= 0.0 Wind (plf)= 0.0 Total seismic load = 100.2"15/2 + 0 = 726 lbs Total wind load = 170.0"15/2 + 0 = 1,233 lbs <---controls Total panel length = 9.5 ft Shear = 1,233/9.5 = 129.7 Ib/ft >>> Panel type used MIN. 3/8" Plywood or OSB, Mark -ro OVERTURNING ANALYSIS: Panel #1 Pane! length (ft) = 9.50 Panel height (ft) = 10.0 Uplift due to lateral load (lb)= 1,297 Resisting=D"(0.6-0.14Sds) (lb)= 616 Roof DL tributary (ft) 4.0 Floor DL tributary (ft) 0.0 Wall weight (psf) 16 Net uplift of this floor(lb) = 682 Add uplift from upper floor (lb) = 0 Total hold-down force (lb) = 682 >>> Hold-down Type STHD14 SHEAR WALL LINE # 2 PANEL DESIGN: Section a- Tributary width (ft) = 14.5 Seismic(plf)= 100.2 Wind (plf)= 170.0 Section b- Tributary width (ft) = 17 Seismic(plf)= 138.4 Wind (plf)= 170,0 Total seismic load = Total wind load = Total panel length = Shear = >>> Panel type used OVERTURNING ANALYSIS: Panel length (ft) = Panel height (ft) = Uplift due to lateral load (lb)= Resisting=D"(0.6-0.14Sds) (lb)= Roof DL tributary (ft) Floor DL tributary (ft) Wall weight (psf) Net uplift of this floor(lb) = Add uplift from upper floor (lb) _ Total hold-down force (lb) _ >>> Hold-down Type 100.2"15/2 + 138.4"17/2 + 0 = 1,903 lbs 170.0"15/2 + 170,0`17/2 + 0 = 2,678 lbs <---controls 7.0 ft 2,678/7.0 = 382.5 Ib/ft MIN. 3/8" Plywood or OSB, Mark- /3 Panel#1 Panel#1 3.50 10.0 3.50 10.0 3,825 3,825 286 286 8.0 8.0 0.0 0.0 16 16 3,539 3,539 0 0 3,539 3,539 STHD14 STHD14 vvusfrr 1,1_10wA816- Loll o 6z�o pcFx�<zx3. o_I x 3.5') a,z FA 3,136Le3 PRAG? TPOp 5 = I 7 Y ZS f /YO k/z X� 7 .fired Sheu Engineering Project: GERVAIS Page Job # S18250 SHEAR WALL LINE # 3 PANEL DESIGN: Section a- Tributary width (ft) = 17.0 Seismic If - 138.4 Wind If - 174.0 Section b- Tributa width ft - 46.0 (p) (p ) Tributary () - Seismic(plf)= 128.1 Wind (plf)= 174.3 Total seismic load = Total wind load = Total panel length = Shear = >>> Panel type used OVERTURNING ANALYSIS: Panel length (ft) = Panel height (ft) = Uplift due to lateral load (lb)= Resisting=D*(0.6.0.14Sds) (lb)= Roof DL tributary (ft) Floor DL tributary (ft) Wall weight (psf) Net uplift of this floor(lb) = Add uplift from upper floor (Ib) _ Total hold-down force (Ib) = »> Hold-down Type PANEL DESIGN: Section a - Section b - Total seismic load = Total wind load = Total panel length = Shear = 138.4*17/2 + 128.1 *46/2 + 0 = 4,123 lbs 174.0`17/2 + 174.3*46/2 + 0 = 5,488 lbs <---controls 21.0 ft 5,488/21.0 = 261.3 Ib/ft MIN. 3/8" Plywood or OSB, Mark - Panel #1 Panel #2 Panel 93 APJusreD Az o-AeLF [olu 14.0 (300 J 3.50 - 3�o��Fx 3.s,X�,S� z x�o (3,) t 14 1.0 0.0 l Zx 3,659 2,613 2,613 1,549 670 245 286 = 712 5 1.0 8.0 8.0 0.0 0.0 0.0 10 16 16 2,989 2,368 2,328 0 0 0 2,989 2,368 2,328 STHD14 STHD14 STHD14 SHEAR WALL LINE # 4 Tributary width (ft) = 46.0 Seismic(plf)= 128.1 Wind(p) If = 174.3 Tributary width (ft) = 34.5 Seismic I 98.7 Wind (plo= 161.5 128.1 *46/2 + 98.7*35/2 + 0 = 4,649 lbs 174.3*46/2 + 161.5*35/2 + 0 = 6,795 lbs <---controls 35.5 ft 6,795/35.5 = 191.4 Ib/ft >>> Panel type used OVERTURNING ANALYSIS: Panel length (ft) = Panel height (ft) = Uplift due to lateral load (lb)= Resisting=D*(0.0-0.14Sds) (lb)= Roof DL tributary (ft) Floor DL tributary (ft) Wall weight (psf) Net uplift of this floor(lb) = Add uplift from upper floor (lb) _ Total hold-down force (lb) _ »> Hold-down Type MIN. 3/8" Plywood or OSB, Mark - 11) Panel #1 Panel. #2 28.50 7.00 14 10 2,680 1,914 3352 365 18.0 1.0 0.0 0.0 10 16 -672 1,549 0 0 -672 1,549 STHD14 Fred aS'heu Project: GERVAIS EJngineering SHEAR WALL LINE # 5 P NEL DESIGN: Section a- ` Tributary width (ft) = 34.5 Seismic(plf)= 98.7 Section b- Tributary width (ft) = 29.0 Seismic(plf)= 73.8 Total seismic load = Total wind load = Total panel length = Shear = >>> Panel type used OVERTURNING ANALYSIS• Panel length (ft) = Panel height (ft) = Uplift due to lateral load (lb)= Resisting=D*(0.6-0.14Sds) (lb)= Roof DL tributary (ft) Floor DL tributary (ft) Wall weight (psf) Net uplift of this floor(lb) = Add uplift from upper floor (lb) _ Total hold-down force (lb) _ >>> Hold-down Type Page C � Z Job # S18250 Wind (plf)= 161.5 Wind (plf)= 0.0 98.7*35/2 + 73.8*29/2 + 0 = 2,773 lbs 161.5*35/2 + 0.0"29/2 + 0 = 2,786 lbs <---controls 26.8 ft 2,786/26.8 = 104.1 Ib/ft 11QJu3TE0 /atLowA6Lf_ LoAv MIN. 3/8" Plywood or OSB, Mark - -- 2 6 Ptr,c �z.V .51 x; S') x 3 eA to' Panel #1Panel #2 Panel #3 Panel #4 Panel #5 �o Panel #6 4.75 10.0 7.50 10.0 3.5 10.0 3.5 10.0 -3.5 10.0 _ S Zg�B 4,0 10.0 1,041 1,041 1,041 , 41 1,041 1,041 248 864 418 418 418 293 1.0 16.0 17.0 17.0 17.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 16 16 16 16 16 16 793 177 624 624 624 749 0 0 0 0 0 0 793 177 624 624 624 749 STHD14 STHD14 STHD14 STHD14 STHD14 STHD14 SHEAR WALL LINE # 6 PANEL DESIGN: Section a- Tributary width (ft) = 29.0 Section b- Tributary width (ft) = 0.0 Total seismic load = Total wind load = Total panel length = Shear = >>> Panel type used OVERTURNING ANALYSIS: Panel length (ft) = Panel height (ft) = Uplift due to lateral load (lb)= Resisting=D*(0.6-0.14Sds) (lb)= Roof DL tributary (ft) Floor DL tributary (ft) Wall weight (psf) Net uplift of this floor(lb) = Add uplift from upper floor (lb) _ Total hold-down force (lb) _ >>> Hold-down Type Seismic(plf)= 73.8 Wind (plf)= 144.5 Seismic(plf)= 0.0 Wind (plf)= 0.0 73.8*29/2 + 0 = 1,070 lbs 144.5*29/2 + 0 = 2,095 lbs <---controls 14.0 ft 2,095/14.0 = 149.71b/ft MIN. 3/8" Plywood or OSB, Mark - ,• Panel #1 14.00 10.0 1,497 1554 15.0 0.0 16 -57 0 -57 STHD14 Fred Sheu Project: GERVAIS page C;L 3 Engineering Job* 518250 SHEAR WALL LINE # 7 PANEL DESIGN: Section, a- Tributary width (ft) = 18.5 Seismic(plf)= 56.9 Wind (plf)= 144.5 Section b- Tributary width (ft) = 0.0 Seismic(plf)= 0.0 Wind (plf)= 0.0 Total seismic load = Total wind load = Total panel length = Shear = >>> Panel type used OVERTURNING ANALYSIS: Panel length (ft) _ Panel height (ft) _ Uplift due to lateral load (lb)= Resisting= D"(0.6-0.14Sds) (lb)= Roof DL tributary (ft) Floor DL tributary (ft) Wall weight (psf) Net uplift of this floor(lb) _ Add uplift from upper floor (Ib) _ Total hold-down force (lb) _ >>> Hold-down Type 56.9"19/2 + 0 = 526 lbs 144.5'1912 + 0 = 1,337 lbs <---controls 11.5 ft 1,337/11.5 = 116.21b/ft MIN. 3/8" Plywood or OSB, Mark- ZL Panel#1 Panel 42 Panel #3 4.251 4.25 33 001 10.0 10.0 10.0 1,162 1,152 .162 258 258 169 3.0 3.0 2.0 0.0 0.0 0.0 16 16 16 905 905 993 0 0 0 905 905 993 STHD14 STHD14 STHD14 /Ao,JU5rEb Al LOW q5 6E (Gfin _ 2 6 Cz5 2 X ') X Z Eq . f ,o11 (ZX-!L-X3'JJ /o - 2,3 `a SHEAR WALL LINE # 8 PANEL DESIGN: Section a- Tributary width (ft) = 18.5 Seismic(plf)= 56.9 Wind (plf)= 144.5 Section b- Tributary width (ft) = 28.0 Seismic(plf)= 202.2 Wind (plf)= 174.3 Seismic load from Sec. T-4 (lb) = 288 Wind load from Sec. T-4 (lb) = 646 Total seismic load = 56.9`19/2 + 202 2"28/2 + 288 = 3,645 lbs Total wind load = 144.5"19/2 + 174.3`28/2 + 646 = 4,423 lbs <---controls Total panel length = 32.8 ft Shear = 4,423/32.8 = 135.0 Ib/ft >>> Panel type used MIN. 3/8" Plywood or OSB, Mark - no OVERTURNING ANALYSIS: r� R A ( T r2 us s - Panel #1 Panel #2 Panel #3r 16 4- 17 1J, 3 Y? Panel length (ft) = 15.00 5.25 12.50 21 Panel height (ft) = 14.0 10.0 10.0 - /, 8 6 Uplift due to lateral load (lb)= 1,891 1,350 1,350 Resisting=D'(0.6-0.14Sds) (lb)= 1890 466 1335 Roof DL tributary (ft) 14.0 14.0 14.0 Floor DL tributary (ft) 0.0 0.0 0.0 Wall weight (psf) 16 10 16 Net uplift of this floor(lb) = 1 884 15 Add uplift from upper floor (lb) = 0 0 0 Total hold-down force (lb) = 1 884 15 >>> Hold-down Type STHD14 STHD14 STHD14 Fred S'heu :engineering PANEL DESIGN: Section a - Section b - Total seismic load = Total wind load = Total panel length = Shear = Project: GERVAIS SHEAR WALL LINE # 9 Page L I q Job # S18250 Tributary width (ft) = 28.0 Seismic(plf)= 202.2 Wind (plf)= 174.3 Tributary width (ft) = 12.0 Seismic(plf)= 104.1 Wind (plf)= 59.5 >>> Panel type used OVERTURNING ANALYSIS: Panel length (ft) = Panel height (ft) = Uplift due to lateral load (lb)= Resisting=D*(0.6-0.14Sds) (lb)= Roof DL tributary (ft) Floor DL tributary (ft) Wall weight (psf) Net uplift of this floor(lb) = Add uplift from upper floor (lb) _ Total hold-down force (lb) _ >>> Hold-down Type PANEL DESIGN: 202.2"28/2 + 104.1 *1 2/2 + 0 = 174.3'28/2 + 59.5*12/2 + 0 = 18.0 ft 3,455/18.0 = 192.0 Ib/ft MIN. 3/8" Plywood or OSB, Mark - Panel #1 5.50 14.0 2,688 390 6.0 0.0 16 2,298 0 2,298 STHD14 Panel #2 5.00 10.0 1,920 426 15.0 0.0 16 1,494 0 1,494 STHD14 3,455 lbs <---controls 2,797 lbs Panel #3 3.00 �0.0 1,920 265 16.0 0.0 16 1,655 0 1,655 STHD14 SHEAR WALL LINE # 10 ,J- J usrCn A 1.zowAg c� Low zbo PLF,,[r2- XS.s`X55J 1.25 Panel height (ft) = Panel #4 4- z x 3 X3 l n4.50 10.0 +�z 1,920 �B 195 = 3,% qL' 2.0 0.0 16 1,725 0 1,725 STHD14 Section a- Tributary width (ft) = 12.0 Seismic(plf)= 104.1 Wind (plf)= Section b- Tributary width (ft) = 0.0 Seismic(plf)= 0.0 Wind (plf)= Total seismic load = 104.1 *1212 + 0 = 625 lbs <---controls Total wind load = 59.5*12/2 + 0 = 357 lbs Total panel length = 1 3 ft Shear = 625/1.3 = 499.7 Ib/ft >>> Panel type used Simposon Steel Strong -wall S 5 LV i . -,x /0 OVERTURNING.ANALYSiS: A «owgglE LDAP - / 8, & LB 59.5 0.0 Panel #1 Panel length (ft) = 1.25 Panel height (ft) = 10.0 Uplift due to lateral load (lb)= 4,997 Resisting =D*(0.6-0.14Sds) (lb)= 70 Roof DL tributary (ft) 6.0 Floor DL tributary (ft) 0.0 Wall weight (psf) 16 Net uplift of this floor(lb) = 4,927 Add uplift from upper floor (lb) = 0 Total hold-down force (lb) = 4,927 >>> Hold-down Type manufacturer 59.5 0.0 r red Aeu jE ngineering Project: GERVAIS SHEAR WALL LINE # 11 PANEL DESIGN: Section a- Tributary width (ft) = 8.0 Seismic(plf)= 72.1 Section b- Tributary width (ft) = 0.0 Seismic(plf)= 0.0 Total seismic load = Total wind load = Total panel length = Shear = >>> Panel type used OVERTURNING ANALYSIS: Panel length (ft) = Panel height (ft) = Uplift due to lateral load (lb)= Resisting=D"(0.6-0.14Sds) (lb)= Roof DL tributary (ft) Floor DL tributary (ft) Wall weight (psf) Net uplift of this floor(lb) = Add uplift from upper floor (lb) _ Total hold-down force (lb) _ >>> Hold-down Type Job # Page C/-5- S18250 /5S18250 Wind (plf)= 161.5 Wind (plf)= 0.0 72.1.8/2 + 0 = 288 lbs 161.58/2 + 0 = 646 lbs <---controls 6.0 ft 646/6.0 = 107.7 lb/ft MIN. 3/8" Plywood or OSB, Mark Panel #1 Panel #2 q ojo 5rEo A f_L O WABt6 �oHP 3.00 10.0 L20()0) - 26opzFx(�Zx 3!u3'� X,2- Eq 1,077 176 1,077 176 _ - 9 3 6 a 2.5 2.5 0.0 0.0 16 16 901 901 0 0 901 901 STHD14 STHD14 SHEAR WALL LINE # 12 PANEL DESIGN: Section a- Tributary width (ft) = 8.0 Seismic(plf)= 65.2 Wind (plf)= 131.8 Section b- Tributary width (ft) = 0.0 Seismic(plf)= 0.0 Wind (plf)= 0.0 Total seismic load = Total wind load = Total panel length = Shear = >>> Panel type used OVERTURNING ANALYSIS: Panel length (ft) = Panel height (ft) = Uplift due to lateral load (lb)= Resisting= D'(0.6-0.14Sds) (lb)= Roof DL tributary (ft) Floor DL tributary (ft) Wall weight (psf) Net uplift of this floor(lb) = Add uplift from upper floor (lb) _ Total hold-down force (lb) _ >>> Hold-down Type 65 2`8/2 + 0 = 131.8"8/2 + 0 = 1.25 ft 527/1.3 = 421.8 Ib/ft Simposon Steel Strong -wall Panel #1 1.25 10.0 4,218 76 3.0 0.0 16 4,142 0 4,142 manufacturer 261 lbs 527 lbs <---controls S 5w 15x 10 ALLDWAOCE LoA'D`a I, ti�5 to7 `7 Fred Sheu Project: GERVAIS Page c Ib Engineering Job # S18250 SHEAR WALL LINE # 13 PANEL DESIGN: Section a- Tributary width (ft) = 8.0 Seismic(plf)= 65.2 Wind (plf)= 131.8 Section b- Tributary width (ft) = 29.0 Seismic(plf)= 87.7 Wind (plf)= 161.5 Total seismic load = 65.2.8/2 + 87.7.29/2 + 0 = Total wind load = 131.8*8/2 + 161.5*29/2 + 0 = Total panel length = 3.0 ft Shear = 2,869/3.0 = 956.3 Ib/ft >>> Panel type used Simposon Steel Strong -wall OVERTURNING ANALYSIS: Panel#1 Panel#2 Panel length (ft) = 1.50 1.50 Panel height (ft) = 8.0 8.0 Uplift due to lateral load (lb)= 7,651 7,651 Resisting=D*(0.6-0.14Sds) (lb)= 83 83 Roof DL tributary (ft) 4.0 4.0 Floor DL tributary (ft) 0.0 0.0 Wall weight (psf) 16 16 Net uplift of this floor(lb) = 7,568 7,568 Add uplift from upper floor (lb) = 0 0 Total hold-down force (lb) = 7,568 7,568 >>> Hold-down Type manufacturer 1, 532 lbs 2,869 Ibs <---controls (z) 5sw lax C3 /ALLowAalC- Coil = Z x Zpe, !� 770,, BRAC Tl2usf f 31 •SX 8 -�- 161,5,E z9 X�11� J I � La 3 ' `>` SHEAR WALL LINE # 14 PANEL DESIGN: Section a- Tributary width (ft) = 29.0 Seismic(plf)= 87.7 Section b- Tributary width (ft) = 28.0 Seismic(plf)= 90.1 Total seismic load = Total wind load = Total panel length = Shear = >>> Panel type used OVERTURNING ANALYSIS: Panel length (ft) = Panel height (ft) = Uplift due to lateral load (lb)= Resisting= D*(0.6-0.14Sds) (lb)= Roof DL tributary (ft) Floor DL tributary (ft) Wall weight (psf) Net uplift of this floor(lb) = Add uplift from upper floor (lb) _ Total hold-down force (lb) _ >>> Hold-down Type Wind (plf)= 161.5 Wind (plf)= 144.5 87.7*2912 + 90.1.28/2 + 0 = 2,533 lbs 161.5*29/2 + 144.5*2812 + 0 = 4,365 lbs <---controls 29.5 ft 4,365/29.5 = 148.0 Ib/ft MIN. 3/8" Plywood or OSB, Mark- ro Panel #1 29.50 10.0 1,480 885 0.0 0.0 10 595 0 595 STHD14 Fred 'S'herc Project: GERVAIS Page 611 .Engineering Job # S18250 SHEAR WALL LINE # 15 PANEL DESIGN: Section a- Tributary width (ft) = 28.0 Section b- Tributary width (ft) = 0.0 Total seismic load = Total wind load = Total panel length = Shear = >>> Panel type used OVERTURNING ANALYSIS: Panel length (ft) _ Panel height (ft) _ Uplift due to lateral load (lb)= Resisting=D*(0.6-0.14Sds) (lb)= Roof DL tributary (ft) Floor DL tributary (ft) Wall weight (psf) Net uplift of this floor(lb) _ Add uplift from upper floor (lb) _ Total hold-down force (lb) _ >>> Hold-down Type 90.1.28/2 + 0 = 144.5*28/2 + 0 = 9.4 ft 2,023/9.4 = 215.2 Ib/ft MIN. 3/8" Plywood or OSB, Mark - Panel #1_ Panel #L Panel #3 3.40 3.00 3.00 10.0 10.0 10.0 2,152 2,152 2,152 220 194 182 4.0 4.0 3.0 0.0 0.0 0.0 16 16 16 1,932 1,958 1,970 0 0 0 1,932 1,958 1,970 STHD14 STHD14 STHD14 Seismic(plf)= 90.1 Seismic(plf)= 0.0 1,261 lbs 2,023 lbs <---controls Wind (plf)= Wind (plf)= 144.5 0,0 ,41>JUsrEo Attow 4BGE Loth ;go PLFx /b to X 3� \ X 2 EA 2z`l6z8 J � red Sheu L..ngineering 0 FOUNDATION CALCULATIONS CONTINUOUS FOOTING PAD FOOTING Fred ►Sheu Engineering Project C ER VA I S PAD FOUNDATION DESIGN Allowable Soil Bearing Pressure = /5O0 psf Maximum Allowable Point Load at Continuous_ Footing; 4 x post (mi(ilmum ) .................... CONT. FTG, 45-deg i Dearing Area � r 5 =Y3.5" Pmax = Pa w S * W /144 Page PZ' Job # - X10 777177 F, 6, I 41 few"1 12" w x 12' deep footing, Pmax = I �O b X 43.5" x 12" / 144 = S, 3 47 ! 0 PAD FOOTING: Location Load Size Reinforcement i red Sheu °1 ngtneering E_ Simpson Strong -wall - Uplift Calculatios Grade Beam Design Overtuning Analysis ESR -1679 1 Most Widely Accepted and Trusted Page 38 of 38 E I 2.5 ksi concrete 12 In. wall T = [28.1- 788 - 5.95(3.4P + Vl,) ]- P 15 In. wall T = [36.3 - 1301- 5.95(4.61' + 'Al) J -P 18 in. wall T = [45.0 - 2025 - 5.95(6.1 P + Vlt) ]-P 21 In. wall T = 153.9 - J2909 - 5.95(7.6P + Vh) �- P 24 In, wall T = [62.8 - 3950 - 5-95(9,1P + V11) ]- P 3.0 ksl concrete 12 in. wall T = [33.7 - ,f 1135 - 7.14(3,4P 15 in. wall T=[43.3- 1.874-7.14(4,6P+V11)]-P 18 In. wall T= [54.0 - 2916 - 7,14(6.1P -I- Vh)]- P 21 In. wall T = [64.7 - V4187 - 7..14(7TP + Vh)]- P 24 In, wall T=[75.4- 15688=7.14(9.1P4-Vh)-P 4.5 ksi concrete ;I 12 in, wall T=[50.5- 2554-10.71(3.4P+\r11)-P 15 in. wall T=[64,9-. 4216-10.71(4.6P+V11)-P 18 In. wall T=[81,0- 6560-10.71(6.1Pi-Vh)]-P 21 In, wall T = [97.1- 9421 -10.71(7,6P + Vh) -P 24 in, wall T=[113.1- 12,797-.10.71(9,1P+V11)I-P For SI: 1 inch = 25.4 mm, 1 kip = 4.45 kN, 1 ft -Ib = 1.36 N -m FO.F�CE5_AT BASE QF WALL T = resulting anchorage tension (uplift) force (kips) V = design shear (kips) P = total vertical load (kips) h = wall height (inches) For two-story stacked applications, substitute MB.,. for Vh: Vh=Me,sa(112 )(kip -in) Where Ma.s. = Design moment at base of wall (ft -lbs) For SI use the foltowing adjustments: V = design shear (kN) / 4.45 P = total vertical load (kN)1 4.45 h = wall height (mm) / 25.4 T x 4.45 = resulting anchorage tension (uplift) force (kN) For two-story stacked applications, substitute Mao., for Vh: V h = Meas0 (N - m ) 1130 Where Ma... = Design moment at base of wall (N -m) Notes: 1.) Equations may be used to calculate uplift forces at the base of first -story walls on concrete foundations. 2.) Equations are based on limiting concrete bearing on a 3-112" wide base plate at the edge of concrete, EXAMPLE 3 (Shale -Story SSW): Given: SSW18x9 wall on 2.5 ksl concrete Seismic Loading Design Shear (V) = 2.0 kips < 2,15 kips (VA110-bi.) P (Vertical Load) = 1.0 kip I) = wall height = 105,25" T = [45.0 - M25 - 5,95(6.1P + Vlt)]- P EXAMPLE 4 f2 -Story Stacked SSW Goirditionl: Given: See Example 2 -Two Story Application. SSW18x9-STK wall on 2.5 ksi concrete Wind Loading MBS.. = 17,550 ft -lbs (Moment at base of 2 -story, slicked wall) Vii = 17,550x 12 )ld p -in = 210.61dp -in (1000 P (Vertical Load) = 2.0 kips T=[45.0-X2025-5.95(6.1x1+2.0x105.25),-1.0=16.9kips T=[45.0- 2025-5.95(6.1P+Vb)]-P T=[45,0- 2025-5.95(6.1x2+210.6)-2=16.6 kips FIGURE S -EQUATIONS FOR CALCULATING UPLIFT FORCES AT BASE OF FIRST -STORY WALL -�)(�ow'i. V P ;I I�I ► 1 M Bast, •`. 0.4i, Al � � 'sir: i7{�''.',w.''�.......-.Till .�,; �..�,•: �.�.. FO.F�CE5_AT BASE QF WALL T = resulting anchorage tension (uplift) force (kips) V = design shear (kips) P = total vertical load (kips) h = wall height (inches) For two-story stacked applications, substitute MB.,. for Vh: Vh=Me,sa(112 )(kip -in) Where Ma.s. = Design moment at base of wall (ft -lbs) For SI use the foltowing adjustments: V = design shear (kN) / 4.45 P = total vertical load (kN)1 4.45 h = wall height (mm) / 25.4 T x 4.45 = resulting anchorage tension (uplift) force (kN) For two-story stacked applications, substitute Mao., for Vh: V h = Meas0 (N - m ) 1130 Where Ma... = Design moment at base of wall (N -m) Notes: 1.) Equations may be used to calculate uplift forces at the base of first -story walls on concrete foundations. 2.) Equations are based on limiting concrete bearing on a 3-112" wide base plate at the edge of concrete, EXAMPLE 3 (Shale -Story SSW): Given: SSW18x9 wall on 2.5 ksl concrete Seismic Loading Design Shear (V) = 2.0 kips < 2,15 kips (VA110-bi.) P (Vertical Load) = 1.0 kip I) = wall height = 105,25" T = [45.0 - M25 - 5,95(6.1P + Vlt)]- P EXAMPLE 4 f2 -Story Stacked SSW Goirditionl: Given: See Example 2 -Two Story Application. SSW18x9-STK wall on 2.5 ksi concrete Wind Loading MBS.. = 17,550 ft -lbs (Moment at base of 2 -story, slicked wall) Vii = 17,550x 12 )ld p -in = 210.61dp -in (1000 P (Vertical Load) = 2.0 kips T=[45.0-X2025-5.95(6.1x1+2.0x105.25),-1.0=16.9kips T=[45.0- 2025-5.95(6.1P+Vb)]-P T=[45,0- 2025-5.95(6.1x2+210.6)-2=16.6 kips FIGURE S -EQUATIONS FOR CALCULATING UPLIFT FORCES AT BASE OF FIRST -STORY WALL 1 Anchorage Details SIMPSON STEEL SLAB OR CURB AND STRONG -WALL SURROUNDING FOUNDATION NOT SHOWN FOR CLARITY Y2 W Y2 W SSWAB %2 W � W SEE TABLE BELOW FOR DIMENSIONS FOUNDATION PLAN VIEW STEEL STRONG -WALL@ ANCHORAGE SOLUTIONS FOR 2500 PSI CONCRETE DESIGN CRITERIA CONCRETE CONDITION ANCHOR STRENGTH SSWAB 314" ANCHOR BOLT SSWAB 1" ANCHOR BOLT ASD ASD ALLOWABLE W (In) do (In) ALLOWABLE W (In) de (In) TENSION (Ibs) TENSION (Ibs) SEISMIC CRACKED STANDARD 8,800 22 8 16,100 33 11 y 24 8 17,100 35 12 HIGH STRENGTH 16,500 36 12 33,000 61 17 19,900 38 13 35,300 54 18 .. UNCRACKED STANDARD B,800 19 7 15,700 28 10 8,600 21 7 17,100 30 10 HIGH STRENGTH 18,300 31 11 32,300 44 15 19,900 33 11 35,300 47 16 WIND CRACKED STANDARD 5,100 14 6 6,200 16 6 7,400 18 6 11,400 24 8 9,600 22 B 17,100 32 11 HIGH STRENGTH 11,400 24 8 21,100 36 12 13,600 27 9 27,300 42 14 15,900 30 10 31,600 46 16 19,900 35 12 35,300 50 1 17 UNCRACKED STANDARD 5,000 12 6 6,400 14 6 7,800 16 5 12,500 22 8 9,600 19 7 17,100 28 10 HIGH STRENGTH 12,500 22 8 21,900 32 11 14,300 24 B 26,400 36 12 17,000 27 9 31,500 40 14 19,900 1 30 1 10 1 35,300 43 1 15 MOTES: 1- ANCHORAGE DESIGNS CONFORM TO ACI 318-11 APPENDIX D WITH NO SUPPLEMENTARY REINFORCEMENT FOR CRACKED OR UNCRACKED CONCRETE AS NOTED, 2, ANCHOR STRENGTH INDICATES REQUIRED GRADE OF SSWAB ANCHOR BOLT. STANDARD (ASTM F1554 GRADE 36) OR HIGH STRENGTH (HS) (ASTM A449). 3, SEISMIC INDICATES SEISMIC DESIGN CATEGORY C THROUGH F. DETACHED 1 AND 2 FAMILY DWELLINGS IN SDC C MAY USE WIND ANCHORAGE SOLUTIONS, SEISMIC ANCHORAGE DESIGNS CONFORM TO ACI 318-11 SECTION D.3.3.4, 4. WIND INCLUDES SEISMIC DESIGN CATEGORY A AND B AND DETACHED 1 AND 2 FAMILY DWELLINGS IN SDC C. 6. FOUNDATION DIMENSIONS.ARE FOR ANCHORAGE ONLY. FOUNDATION DESIGN (SIZE AND REINFORCEMENT) BY OTHERS. THE REGISTERED DESIGN PROFESSIONAL MAY SPECIFY ALTERNATE EMBEDMENT, FOOTING SIZE OR ANCHOR BOLT. 6. REFER TO 1/SSW1 FOR de. SSINAB TENSION ANCHORAGE SCHEDULE 2500 PSI 2/SSW1 52 - Or Z Or CLi O O O _CLSa co a� U) C 06 CD Cts E2 O S:-,, U C 71