Loading...
BRES2018-0414 Structural CalcsFred Sheu Engineering '14286 California Ave, Suite # 103 Victorville, CA 92392 (760) 955-7522 `�.�i 1.0 12-- CiLiliq 46 Vt 4 Po0 Wtiv\" —TOE6-1-, Structural Calculations fo r La Paloma Homes, LLC. Single Family Residence- Plan #1 54660 Avenida Juarez La Quinta, CA 92253 L;I I Y OF LA QUINVA BUILDING DIVISION REVIEWED FOR CODE COMPLIANCE DATE Job # S18264 Feb. 21,2019 ,-.'r'.Fl\/ED 1NTERVVE,b I CONSULTING GROUP r FEB 2 6 2019 4 4FQQF E 1� (D No. 4111 aj V- EXP. 6-30-20-Z0')-2 ;E77-- red Sheu Engineering -:4L Project Project `A PA C d rung No r»£s TABLE OF CONTENTS Page A I Job# $1$260 Pages Design Information ......................... ........... ................. Al thru A Beams& Headers., .......... ........................................................... 61 thru B 2 - LaterLateral al Analysis............................................................................. C1 thru C13 Seismic & Wind Loads Horizontal Diaphragm Shear Walls Stud walls Foundation.......... ......... __................................. .................... ...................................... D1 thru D 2 - SimpsonStrong-wall.................................................................................................. E1 thru E Z :' f rred Shea Project !'iingineering Ar..a LA PAL vmA HOMES page A z Job# 5 /0OZ6q DESIGN CRITERIA & SPECIFICATIONS A, CODE: 2016 California Building Code (CBC) & ASCE 7-10 B. SEISMIC: per CBC section 1616 and ASCE 7-10 section 12 Method : E uivalent lateral force procedure Seismic Design Category: D Site class: D Occupancy category: II Importance factor ; I Response modification coefficient R = 6.5 C, WIND: per CBC section 1609 and ASCE 7-10 Method: Sim iified MWFRS Envelope Procedure Basic wind speed = io mph Exposure = C Topographic factor = 1_0 D: SOILS: Allowable vertical load bearing pressure 1500 psf Allowable lateral load bearing pressure 150 psf/ft E. LUMBER: Douglas Fir -Larch, 19% moisture conten 1. - 2X Joists & Rafters - #2 or Better 2. 4X, 6X, 8X Beams & Headers - #1 or Better 3. Plates, Blocking & Studs - Stud Grade or Better F. GLUED -LAMINATED BEAM: Combination: 24F -V4 Specicies: DF/DF PARALLAM BEAM: Truss Joist - MacMillan, 2.0E Parallam PSL MICROLLAM BEAM: Truss Joist - MacMillan, 1,9E Microllam LVL G, CONCRETE: Non -Monolithic Pour Foundation System, U.N.O. All slab -on -grade/ continuous footing/pads/pole footing ---------- f'c = 2500 psi All structural concrete/retaining wall/column/beam------------------ f'c = 3000 psi 1-1: STEEL: ASTM A572 Gr, 50 for Structural Steel ASTM A615, Gr, 40 for #3 &4, Gr. 60 or #5 and larger rebar steel ASTM A53, Gr, B for Pipe Steel, ASTM A500, Gr, B for Tube Steel I: CONCRETE BLOCK: ASTM C90, Grade N medium weight, Solid grouted all cells J: COLD FORM STEEL: ASTM A570-79 Gr, 33 for 18 through 25 Gauge ASTM A570-79 Gr, 50 for 12 through 16 Gauge K: WOOD CONSTRUCTION CONNECTOR: SIMPSON Strong -Tie or Approved Equal Fred She u Engineering Project GA PIS LCM A NOME -5 GRAVITY LOADS ROOF: L.L. D. L. Roof cover 1/2" roof sht'g Roof framing 1/2" drywall Ceiling misc. --------------- D. L. Total Load PATIO ROOF with stucco lid: .__ L. L. D, L. Roof cover 1/2" roof sht'g Roof framing 7/8" stucco ----------------------- D. L. Total Load EXTERIOR WALL: D. L. 2x stud wall 1/2" shear panel 1/2" d rywa I I 7/8" stucco Insulation -------------------------------------- Total INTERIOR WALL: D.L. 2x stud wall 3/8" shear panel (2)-1/2" drywall Misc --------------------------------- = 20 psf 5 psf = 1.5 psf = 3.5 psf = 2.0 psf = 2.0 psf = 14 psf 34 psf 20 psf 5 psf = 1.5 psf = 3.5 psf =10.0 psf ------------------------------ 25 psf 45 psf = 1.5 psf = 1,5 psf = 2.0 psf =10.0 psf = 1.0 psf -------------- = 16.0 psf = 1.5 psf = 1.1 psf = 4.0 psf = 3.4 psf Total =10.0 psf Page A 3 Job# S/626q A�' { red Sheu ngzneerzng w Project 4A PALVMA 14061F�s Page A4 Job # S182 -by WOOD STRUCTURAL PANEL SHEAR WALL SCHEDULE (PER 2015 NDS SDPWS TABLE 43A SEISMIC ASD VALUE) MARK WALL TYPE & NAIL SPACING (common or galy. box) (USE 20% MORE NAILS IF SINKER NAILS ARE USED) ALLOWABLE SHEAR, PLF ANCHOR BOLTS (1'2" LONG OR 18" FOR 2—POUR) UPPER FLOOR SILL NAILING A3(8" CDX plywood or OSB w/8d nails ® 6" o.c. a 0 260 5/8" ® 4' edges and 12" o.c. in field see note #5 below 16d ® 6" 3/8" CDX plwwood or OSB w/Bd nails ® 4" o.c. at edges and ® 12" o,c, in field 380 5/8" ® 3' 16d 0 6" USE 3X FOUNDATION SILL PLATE & (*760) (*5/8" ® 1.5') <---IF DBL SIDED (*16d ® 3") 3X STUDS AND BLOCKS AT ADJACENT PANELS CDX plyr;ood or OSB w/8d nails ® 3" o,c. Q3/8" at edges and 0 12" o.c. in field 490 5/8" 0 2.5' 16d ® 4" USE 3X FOUNDATION SILL PLATE 8, (*980) (*5/8" ® 1.25') <---IF DBL SIDE (*16d ® 2") 3X STUDS AND BLOCKS AT ADJACENT PANELS 3/8" CDX plywood or OSB w/Bd nails ® 2" o.c. Qat edges and 0 12" o.c. in field 640 5/8" ® 1,5' 16d ® 3.5" 3 USE 3X FOUNDATION SILL PLATE & 3X STUDS AND BLOCKS AT ADJACENT PANELS («1280) (*5/8" ® 0.75')< ---IF DBL SIDED (*2-16d ® 3.5") 1/2" Str. I plywood w/lOd nails ® 2" o.c. Aat edges and ® 12' o.c, in field 870 5/8" ® 1.25' 16d ® 2.5" 14 USE 3X FOUNDATION SILL PLATE & 3X STUDS AND BLOCKS AT ADJACENT PANELS: («1740) (*5/8" ® 0.6') <---IF DSL SIDED (*2-16d ®2.5") �OTLS: ( " ---- ) in the table designates that shear wall sheathing is to be applied on both faces of wall. All panel edges must be blocked with 2x solid blocking. Field nailing shall be 12" o.c for stud spaced at 16" o.c, and 6" o,c. otherwise. Whcre shear design values exceed 350 plf, foundation $III plates and all framing members receiving edge nailing from abutting panels sholi not be less than 3 --inch nominal member. Noils shall be staggered. Where panel 1s applied on both faces of a wall and nail spacing Is less than 6 inches on center on either side, panel Joints shall lre Offset to fall on different froming members or froming shall be 3—inch nominal or thicker and nails on each side shall be staggered. All continuous exterior &interior bearing footings shall have 5/8" x 12" A.B. 0 6' o.c. for monolithic pour concrete system and 5/8"x18" A.B. for non—monolithic pour concrete system unless at shear wail panel where anchor bolts shall be installed per shear wall schedule. All interior nor—bear-Ing footing shall hove 7/32" shot pins ® 32" o.c. & 48" O.C. respectively. All anchor bolt shall have plate wohers a minimum of 3" x 3" x 0,229" thick. Use 70% more nails if sinker nails are used instead of common or galvanized box nails. r. For design to resist seismic forces, the shear wall aspect ratio (h/b) shall not exceed 2:1 unless the norminal unit shear capacity is rrrultiplied by 2b/h & panel blocked. The maximum (h/b) ratio of reducible shear wall is 3.5:1. Fred Sh eu engineering BEAMS & HEADERS CALCULATIONS J FRED SHEU ENGINEERING Slrutural Engineer 14286 California Ave, #103 Victorville, CA 92392 Project Title: LA PALOMA HOMES Engineer: Fred Sheu Project ID: S18264 0 j Project Descr: SFR 'Wood Beam Nrinted:20NOV 2018, 4:1QPhA File=c;l0orkaley1185TH4s18264.ec6 EM6RCALC, INC- 1983.2015, Bulld;6.15.12.9, Ver:6.31.8.31 Description : 81-12' HEADER AT LEFT OF KITCHEN ` CODE REFERENCES Load Combination Set :ASCE 7-10 Material Properties Analysis Method: Allowable Stress Design Load Combination ASCE 7-10 Fb -Tension 1,350.0 psi E: Modulus of Elasticity Fb - Compr 1,350.0 psi Ebend- xx 1,600.Oksi (-Wood Species ; Douglas Fir - Larch Fc - PrIl 925.0 Fc - Perp 625.0 psi Esi minbend xx 580.Oksi Wootl Grade ; No.1 Fv 170.0 psi Beam Bracing Beam is Fully Braced against lateral -torsion Ft buckling 675,0 psi Density 31.20pcf � p a -4o Lr ❑,aa r 6x14 0- �1 f1'SFXII % �s �S�XG f !d /'stX", s_, �/_o,? l / ! ! F Span = 12.0 ft Applied Loads Beam self weight calculated and added to loads Service loads entered. Load Factors will be applied for calculations - -- Uniform Load : D = 0.4080, Lr = 0,340 , Tributary Width =1.0 ft DESIGN SUMMARY Maximum Bending Stress Ratio 0.593 1 Maximum Shear Stress Ratio Section used for this span Section used for this span 0.356 : 16x14 fb : Actual 987.91 psi fv : Actual 6x14 FB : Allowable 1,665.56psi Fv : Allowable 75,72 psi Load Combination= Location of maximum on span = +D+Lr+H Load Combination 212.50 psi +D+Lr+H Span # where maximum occurs = 6,000f1 Span # i Location of maximum on span = 0,000 ft Maximum Deflection Span # where maximum occurs = Span # 1 Max Downward Transient Deflection 0.088 in Ratio= 1628 Max Upward Transient Deflection 0.000 in Ratio = 0 <360 Max Downward Total Deflection Max Upward Total Deflection 0.199 in Ratio= 724 0.000 in Ratio= 0 <180 _ Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Segment Length Span # M V C d C FN C i -- Moment Values C r C m C C M fb _ Shear Values �+D+H - t L F'b V iv F'v Length = 12.0 It 1 0.457 0.275 0.90 �D+L+H 0.987 1.00 1.00 1.00 1.00 1.00 7.63 548.32 1199.20 2.08 42.02 Length = 12.0 ft 1 0.412 0.247 1.00 0.987 1,00 0.967 1.00 1.00 1.00 1.00 1.00 1,00 1.00 1.00 1.00 153.00 0.00 0.00 0.00 0.00 D �LLr+H Length = 12,0 ft 1 0.987 1.00 7.63 548.32 1.00 1.00 1.00 1.00 1332.45 2.08 42.02 170.00 0.593 0.356 1,25 rD+S� H 0.987 1,00 0.987 1.00 1,00 1.00 1.00 13,75 987.91 0.00 1665.56 3.75 70.00 0.00 5.720 212.50 Length = 12.0 ft 1 0.358 0.215 1,15 +I)4750Lr+0.750L+H 1.00 0.987 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1,00 7.63 548.32 0.00 0.00 0.00 0.00 1532.31 Length = 120 ft 1 0.527 0.317 1.25 0.9870.00 1.00 1.00 1.00 2.08 42.02 195.50 0.00 0.00 0.00 FD �0.750L+0.750S+H 0.987 1.00 1,00 1.00 12.22 878.01 1.00 1.00 1.00 1.00 1665.56 3.33 67.29 212.50 0.00 0.00 0.00 0.00 FRED SHEU ENGINEERING Strutural Engineer 14286 California Ave, #103 Victorville, CA 92392 Wood Beam Project Title: LA PALOMA HOMES Englneer: Fred Sheu Project ID: S18264 Project Descr: SFR D jot. Description : 131-12' HEADER AT LEFT OF KITCHEN Load Combination Max Stress Ratios Segment Length Span # M V C d C FN C i Cr C m C t C L Length = 12.0 It 1 0.358 +D+0.60W+H 1.00 Length =12.0 ft 1 0.257 +D+0.70E+H 1.00 Length =12,0 ft 1 0.257 +D+0.750L r+0.750L+0.450W+H 0,987 Length =12,0 ft 1 0.412 +D+0.750L+0.750S+0.450W+H 1.00 Length = 12.0 ft 1 0.257 -FD+O , 750 L+0.750S+0, 5250E+H 1.60 Length = 12.0 It 1 0.257 - 0.60D+0.60W+0.60H 1.00 Length = 12.0 It 1 0.154 d O.60D+0.70E+0.60H 0.00 Length = 12.0 ft 1 0,154 Overall Maximum Deflections Printed: 20 NOV 2018, 4:IOPM File = c:%urkaI*165TR1s18254A6 INC. W-2015, Build:6.15.12.9, Ver:6.11.8.31 Moment Values Shear Values M fb F'b 0.215 1.15 0.987 1.00 1.00 1.00 1.00 1.00 7.63 0.00 0.00 0,987 1.00 1.00 1.00 1.00 1.00 0.00 0.155 1.60 0.987 1.00 1.00 1.00 1.00 1,00 7,63 0.00 0.00 0.987 1,00 1.00 1.00 1.00 1.00 0.00 0,155 1.60 0.987 1,00 1,00 1.00 1.00 1.00 7.63 +0.60D+0.70E+0.60H 1.527 0.987 1.00 1.00 1.00 1.00 1.00 2.040 0,247 1.60 0,987 1.00 1.00 1.00 1.00 1.00 12.22 E Only 0.987 1.00 1.00 1.00 1,00 1.00 0.155 1.60 0.987 1.00 1.00 1.00 1.00 1.00 7.63 0.987 1.00 1,00 1.00 1.00 1.00 0.155 1.60 0.987 1.00 1.00 1.00 1.00 1,00 7.63 0.987 1.00 1.00 1.00 1.00 1.00 0.093 1.60 0.987 1.00 1.00 1.00 1.00 1.00 4.58 0.987 1.00 1.00 1,00 1.00 1.00 0.093 1.60 0.987 1.00 1.00 1.00 1.00 1.00 4.58 548.32 1532.31 0.00 549.32 2131.92 0.00 548.32 2131.92 0.00 878.01 2131.92 0.00 548.32 2131.92 0.00 548,32 2131.92 0.00 328.99 2131.92 0.00 328.99 2131.92 2.08 42.02 195.50 0.00 0.00 0.00 2.08 42.02 272.00 0.00 0.00 0.00 2.08 42.02 272.00 0.00 0.00 0.00 3.33 67.29 272.00 0.00 0.00 0.00 2.08 42.02 272.00 0.00 0.00 0.00 2.08 42.02 272.00 0.00 0.00 0.00 1.25 25.21 272.00 0,00 0.00 0.00 1,25 25.21 272.00 Load Combination Span Max. "" Defl Location in Span Load Combination Max. "+" Defl Location in Span +D+Lr+H Vertical Reactions 1 0.1987 6.044 Support notation : Far left is #1 O:o006 0.000 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 4.685 .585 Overall MINimum 1.527 1.527 +D+H 2.545 2.545 +D+L+H 2.545 2.545 +D+Lr+H 4.585 4.585 +D+S+H 2,545 2.545 +D+0.750Lr+0.750L+H 4.075 4.075 +D+0.750L+0.750S+H 2.545 2.545 +D+0,60W+H 2,545 2.545 +D+0.70E+H 2.545 2.545 +D+0.750Lr+0.750L+0.450W+H 4.075 4.075 +D+0,750L+0.750S+0.450W+H 2.545 2.545 +D+0.750L+0,750S+0.5250E+H 2.545 2.545 +0.60D+0.60W+0.60H 1.527 1.527 +0.60D+0.70E+0.60H 1.527 1.527 D Only 2.545 2.545 Lr Only 2.040 2.040 L Only S Only W Only E Only H Only FRED SHEU ENGINEERING Strutural Engineer 14286 California Ave, #103 Victorville, CA 92392 Project Title: En ineer: Pro}�ect Descr: LA PALOMA HOMES Fred Sheu Protect ID. S18264 SFR 2" 11folted:20 NOV 2016, 4:25PM 1�1lOOd Beam 6x12 Section used for this span Flla=cAkvkeIW188TRW8284.ec6 778.28 psi fv : Actual ENERCALC. INC. 1983.2015. Build:6.15.12.9, Ver:6.11.8,31 r =� Load Combination +D+Lr+H r Description B2-16' GARAGE DOOR HEADER 8.000ft Location of maximum on span Span # where maximum occurs = CODE REFERENCES Span # where maximurn occurs Maximum Deflection C m Load Combination Set : ASCE 7-10 Max Downward Transient Deflection 0.106 in Ratio = 1804 Material Properties 0.000 in Ratio = 0 <360 Max Downward Total Deflection Analysis Method: Allowable Stress Design Fb- Tension 1,350.0 psi E: Modulus of Elasticity Load Combination ASC E7-10 Fb-Compr 1,350.0 psi Ebend-xx 1,600.Oksi Fc - Prll 925.0 psi Eminbend - xx 580.0 ksi Wood SpeciesC:Douglas Fir - Larch Fc- Perp 625.0 psi 0.00 Wootl Grade o.1 Fv 170,0 psi 0.432 0.181 Ft 675.0 psi Density 31.20pcf Beam Bracing Beam is Fully Braced against lateral -torsion buckling 1.00 1.00 1.00 1)0.152 LOOM) 524.88 1215.00 A plied Loads Beam self weight calculated and added to loads Uniform Load : D = 0.1520, Lr = 0.080 , Tributary Width = 1.0 ft DESIGN SUMMARY 6x12 lJ=14p5T xy'f 16 PsFx 6'=lSz PAF~ Span =16.0 ft �r=zoPsr>cL'=g0 rLF Service loads entered. Load Factors will be applied for calculations. Maximum Bending Stress Ratio 0.461: 1 Maximum Shear Stress Ratio Section used for this span 6x12 Section used for this span fb : Actual = 778.28 psi fv : Actual FB : Allowable 1,687.50psi Fv : Allowable Load Combination +D+Lr+H Load Combination Location of maximum on span = 8.000ft Location of maximum on span Span # where maximum occurs = Span # 1 Span # where maximurn occurs Maximum Deflection C m C t Max Downward Transient Deflection 0.106 in Ratio = 1804 Max Upward Transient Deflection 0.000 in Ratio = 0 <360 Max Downward Total Deflection 0.327 in Ratio = 587 Max Upward Total Deflection 0.000 In Ratio = 0 <180 Maximum Forces & Stresses for Load Combinations - 0.194: 1 6x12 41.17 psi 212.50 psi +D+Lr+H 15.066 ft Span # 1 Load Combination Max Stress Ratios Moment Values Shear Values Segment Length Span # M V C d C FN C 1 Cr C m C t C L M fb F'b V fv F'v +D+H 0.00 0.00 0.00 0.00 Length =16.0 ft 11 0.432 0.181 0.90 1.000 1.00 1.00 1.00 1.00 1.00 5.30 524.88 1215.00 1.17 27.77 153.00 A D+L+H 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =16.0 ft 1 0.389 0.163 1.00 1.000 1.00 1.00 1.00 1.00 1.00 5.30 524.88 1350.00 1.17 27.77 170.00 -1-D+Lr+H 1,000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length =16.0 ft 1 0.461 0.194 1.25 1.000 1.00 1.00 1.00 1.00 1.00 7,86 778.28 1687.50 1,74 41.17 212.50 +D+S+1­1 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 16,0 ft 1 0.338 0.142 1.15 1.000 1.00 1.00 1.00 1.00 1,00 5.30 524.88 1552.50 1.17 27.77 195.50 +D+0.7501_r+0.750L+H - 1.000 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 Length = 16.0 ft 1 0.424 0.178 1.25 1.000 1.00 1.00 1.00 1.00 1.00 7.22 714.93 1687.50 1.59 37.82 212.50 FD+0.750L+0.750S+H 1.000 1.00 1.00 1.00 1,00 1.00 0.00 0.00 0.00 0.00 FRED SHEU ENGINEERING Project Title: LA PALOMA HOMES Strutural Engineer Egineer: Fred Sheu Project ID: S18264 14286 California Ave, #103 Protect Descr: SFR g 2� Victorville, CA 92392 Wood Beam Support 1 Support 2 Overall MAXimum 1.06 1.966 Overall MINimum 0.640 0.640 +D+H 1.326 1.326 +D+L+H 1.326 1.326 +D+Lr+H 1.966 1.966 +D+S+H 1.326 Description ; B2-16' GARAGE DOOR HEADER +D+0.750Lr+0,750L+H 1.806 1.806 +D+0,750L+0.750S+H 1,326 1.326 +D+0.60W+H Load Combination Max Stress Ratios +D+0.70E+H 1.326 1.326 +D+0.750Lr+0.7501-+0.450W+H 1.806 1.806 +D+0.750L+0.750S+0.450W+H Segment Length Span # M V C d C FN C i Cr C m C t C L Length =16.0 ft 1 0,338 0.142 1.15 1.000 1.00 1.00 1.00 1.00 1.00 +D+0.60W+H W Only 1.000 1.00 1.00 1.00 1.00 1.00 Length =16.0 ft 1 0,243 0,102 1.60 1.000 1.00 1.00 1.00 1.00 1.00 +D+0.70E+H 1.000 1.00 1.00 1.00 1.00 1.00 Length =16.0 ft 1 0.243 0.102 1.60 1.000 1.00 1.00 1.00 1.00 1.00 +D+0.750Lr+0.7501-+0A50W+H 1.000 1.00 1.00 1.00 1.00 1.00 Length =16.0 ft 1 0.331 0.139 1.60 1,000 1.00 1.00 1.00 1.00 1.00 +D+0.750L+0.750S+0.450W+H 1.000 1.00 1.00 1.00 1.00 1.00 Length =16.0 It 1 0.243 0,102 1.60 1.000 1.00 1.00 1.00 1.00 1.00 +D+0.750L+0,750S+0.5250E+H 1.000 1.00 1.00 1.00 1.00 1.00 Length =16.0 ft 1 0.243 0.102 1.60 1.000 1.00 1,00 1.00 1.00 1.00 +UOD+0.60W+0.601-1 1.000 1.00 1.00 1.00 1.00 1.00 Length = 16.0 It 1 0,146 0.061 1.60 1.000 1.00 1.00 1.00 1.00 1.00 +0.60D+0.70E+0.60H 1.000 1.00 1.00 1.00 1.00 1.00 Length = 16.0 ft 1 0.146 0.061 1.60 1.000 1.00 1.00 1.00 1.00 1.00 Overall Maximum naflarfinnc Load Combination Span Max. "" Defl Location in Span Load Combination +D+tr+H 1 0.3267 8.058 Vertical Reactions Support notation : Far left is #1 Load Combination Support 1 Support 2 Overall MAXimum 1.06 1.966 Overall MINimum 0.640 0.640 +D+H 1.326 1.326 +D+L+H 1.326 1.326 +D+Lr+H 1.966 1.966 +D+S+H 1.326 1.326 +D+0.750Lr+0,750L+H 1.806 1.806 +D+0,750L+0.750S+H 1,326 1.326 +D+0.60W+H 1.326 1.326 +D+0.70E+H 1.326 1.326 +D+0.750Lr+0.7501-+0.450W+H 1.806 1.806 +D+0.750L+0.750S+0.450W+H 1.326 1.326 +D+0.750L+0.750S+0.5250E+H 1.326 1.326 +0.60D+0.60W+0.60H 0.795 0.795 +0.60D+0.70E+0.60H 0.795 0.795 D Only 1.326 1.326 Lr Only 0.640 0.640 L Only S Only W Only E Only H Only Printed: 20 NOV 201a. 425PIJ File = e: Rl rke1 1 OSTWss18264.ee6 ENERCALC. INC. 1983-2015. &Uild:6.15.12.9. Ver:6.11.8.31 Moment Values M fb F'b 5.30 524.88 1552.50 0.00 5.30 524.88 2160.00 0.00 5.30 524.88 2160.00 0.00 7.22 714.93 2160.00 0.00 5.30 524.88 2160.00 0.00 5.30 524.88 2160.00 0.00 3.18 314.93 2160.00 0.00 3.18 314.93 2160.00 _ Shear Values V fv 1.17 27.77 0.00 0.00 1.17 27.77 0.00 0.00 1.17 27.77 0.00 0.00 1.59 37.82 0.00 0.00 1.17 27.77 0.00 0.00 1.17 27.77 0.00 0.00 0.70 16.66 0.00 0.00 0.70 16.66 F'v 0.00 272.00 0.00 272.00 0.00 272.00 0.00 272.00 0.00 272.00 0.00 272.00 0.00 272.00 Max. "+" Dell Location in Span 6A000 0.000 Values in KIPS bred Ski eu. engineering LATERAL ANALYSIS SEISMIC WIND SHEAR WALL c U, Design Maps Summary Report U-Ser—Specified Input Building Code Reference Document 2012/2015 International Building Code (which utilizes USGS hazard data available in 2006) Site Coordinates 33.67050N, 116.31671W Site Soil Classification Site Class D — "Stiff Soil" Risk Category I/II/III Rantho — Mirage ' • d Cil y Palm Desert I n r . n Mt. 5V . _ r Coachella Lo Quit '� �l'GtlSilkf JI Ali OtI Sl Al +c ��� � .acquell�sR,CczrtrrarE Alpo Ali puil•. Mecc USGS—Provided Output SS = 1,500 g SMS = 1.500 g SDs = 1.000 g S1 = 0.600 g SM1 = 0.900 g SDl = 0.600 g For information on how the SS and S1 values above have been calculated from probabilistic (risk -targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document. NIC'I?I, Respousespeckrun) ..J. la., IJ,I.,. Period, T is�ti'r Desko'n Ruvonsespwelrum Pcriltil, '1' IsiY'y Ald-ough this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject -matter knowledge. GI red`heu Project: LA PA Conn,q HonIEs Page Cz a ngtneering Job # 5187-6y SEISMIC LOAD Per 2016 CBC Section 1613 and ASCE 7-10 section 12.8 Equivalent Lateral Force Procedure: Seismic Design Category = D Site Class = D Occupancy Category = II Importance Factor, 1 = 1.0 Response Mondification Coefficient, R = 6.50 System Overstrength Factor, QO = 3.00 Seismic Design Parameters from USGS: Site Coefficient (0.2 sec), Fa = 1.0 Site Coefficient (1.0 sec), Fv = 1.5 Mapped Spectral Acceleration (0.2 sec), SS = Mapped Spectral Acceleration (1.0 sec), S1 = Adjusted Spectral Acceleration (0.2 sec), Sms = Fa Ss = Adjusted Spectral Acceleration (1.0 sec), Sm1 = Fv S1 _ 1.500 0.600 1.500 0.900 Design Spectral Response Acceleration (0.2 sec), SDs = 2/3 x Sm" Design Spectral Response Acceleration (1.0 sec), Sol = 2/3 x Sm, :_ Seismic Design Coefficient: (Eq. 12.8-2) Cs= SDS /(R/I)= 1.000/(6.5/1.0) = (Eq. 12.8-5) Cs min. = 0.044 SDs I > 0.01 = 0.044 *1.000*1.0= (Eq. 12.8-6) Cs min. = 0.5*Sl / ( R / 1) = 0.5 * 0.6 / ( 6.5 / 1.0)= (Eq. 12.8-3) Cs max.= SD1 / T( R / 1) = 0.600/ 0.15*(6.5/1.0) _ (Eq. 12.8-7) T = Ct * hn " 0.75 = 0.02 * 15.0 ^ 0.75 = where hn = 15.0 ft (Sec. 12.3.4) Redundancy Factor, p = 1.3 Seismic Base Shear: (Eq. 12.8-1) V= p CSW = 1.3 * 0.154 * W = 0.200 W for L.FRD or 0.200 * W / 1.4 = 0.143W for ASD 1.000 0.600 0.154 0,044 0.046 1.009 0.152 sec. //,- ed Sheu .1` 41g ineering ProJect LA PALomA5: Honies Pago G"3 WIND LOAD Per ASCE 7-10 Simplified MWFRS Envelope Procedure Adjusted design,net wind pressure, ps = Kzt P330 Mean roof height = r 5 Basic wind speed = 1/o mpk Exposure = c Kzt = topographic factor = 1.0 = adjustment factor for building height & exposure Mean roof Hett (t (ft) Ex osure B C D 15 1.00 C1.21D 1.47 20 1.00 1.29 1.55 25 1.00 1.35 1.61 30 1.00 1,40 1.66 35 1.05 1.45 1.70 40 1.09 1.49 1.74 45 1,12 1.53 1.78 50 1,16 1,56 1.81 55 1.19 1,59 1.84 60 1.22 1.62 1.87 -:�:] P830 = Simplified design wind pressure for Exposure B, h= 30' Job # 5182611 Roof Angle horiz, pressure horiz. pressure' horiz, pressure horiz, pressure (pitch / degrees) for basic for basic for basic for basic wind speed= wind speed= wind speed= wind speed= 110m h 115m h 120 mh 130m h flat / 0 to 5 degree9.2 21,0 2-2.8 26.8 3:12 / 14.0 legree 23.6 25.8 28.1 33.0 4:12 / 18.4 degree 25.8 28.1 30.7 36.0 5:12 / 22,6 degree 25.3 27.6 30.0 35,3 6:12 / 26.6 de ree 23,3 25.7 27.7 32,5 7:12 to 12:12 / 21.6 23.6 25.7 30.1 30 to 45 decree ps = Kzt PS30 = /, z 1 x I g, Z = 23.7- p S __-� For ASD, ps = 0,6 ps = o. 6 y23 . L= r q P 3F U s E /7 p sF f`1,4ed Sheu Project LA PALOMA 146)MEs Page Ccf „nglneerzng 1' S T. FLOOR SHEAR WALL DIAGRAM 0 -- Designates Shear Wall Number L -- Designates Longitudinal Direction T -- Designates Transverse Direction 17- 0 z 0 _ 1'q 3 I 1-1.... SSw��'X�L v� is it ❑ µ LB -- LJ �/ 0 L_COi C 0 S 5' 7' N A is it ❑ µ LB -- LJ �/ 0 ri {red Sheu 0 1P ngineering Project: La Paloma Homes LATERAL LOADS Page C 5 Job # S18264 Design spectral response acceleration SDs= 1.000 Roof weight= 14.0 Exterior wall weight= 16.0 Seismic base shear coefficient= 0.143 Floor weight= 0.0 Interior wall weight= 10.0 Wind pressure= 17.0 psf Section L-1 Input: Roof height= 3.5 Wall height= 10.0 # of exterior walls= 1 Roof depth= 43.0 Floor depth= 0.0 # of interior walls= 3 Wind Load, Vw = 17.0 * (3.5 + 10.0/2) = 144.5 plf <--- controls Seismic Load, Roof DL = 14.0 * 43.0 = 602.0 Floor DL = 0.0 * 0.0 = 0.0 Ext. Wall DL = 1 * 16.0 * 10.0/2 = 80.0 Int. Wall DL = 3 * 10.0 * 10.0/2 = 150.0 Total DL, W = 602.0 + 0.0 +. 80.0 + 150.0 = 832.0 plf Seismic Load= 0.143 * 832.0 = 119.0 plf Section L-2 Input: Roof height= 3.5 Wall height= 10.0 # of exterior walls= 1 Roof depth= 29.0 Floor depth= 0.0 # of interior walls= 2 Wind Load, Vw = 17.0 * (3.5 + 10.0/2) = 144.5 plf <--- controls Seismic Load, Roof DL = 14.0 * 29.0 = 406.0 Floor DL= 0.0*0.0= 0.0 Ext. Wall DL = 1 * 16.0 * 10.0/2 = 80.0 Int. Wall DL = 2 * 10.0 * 10.0/2 = 100.0 Total DL, W = 406.0 + 0.0 + 80.0 + 100.0 = 586,0 plf Seismic Load = 0.143 * 586.0 = 83.8 plf Section L-3 Input: Roof height= 4.3 Wall height= 12.0 # of exterior walls= 1 Roof depth= 22.0 Floor depth= 0.0 # of interior walls= 1 Wind Load, Vw = 17.0 * (4.3 + 12.0/2) = 175.1 plf <--- controls Seismic Load, Roof DL = 14.0 * 22.0 = 308.0 Floor DL= 0.0*0.0= 0.0 Ext. Wall DL = 1 * 16.0 * 12.0/2 = 96.0 Int. Wall DL = 1 * 10.0 * 12.0/2 = 60.0 ------------------------------------------------------------------------------------------------ Total DL, W = 308.0 + 0.0 + 96.0 + 60.0 = 464.0 plf Seismic Load= 0.143 * 464.0 = 66.4 plf 2"'red Sheu Project: La Palcma Homes Page C 6 .engineering Job# 518264 LATERAL LOADS Design spectral response acceleration SDS= 1.000 Roof weight= 14.0 Exterior wall weight= 16.0 Seismic base shear coefficient= 0.143 Floor weight= 0.0 Interior wall weight= 10,0 Wind pressure= 17.0 psf Section T-1 Input: Roof height= 4.5 Wall height= 10.0 # of exterior walls= 2 Roof depth= 40.0 Floor depth= 0.0 # of interior walls= 2 Wind Load, Vw = 17.0 * (4.5 + 10.0/2) = 161.5 plf <--- controls Seismic Load, Roof DL = 14.0 * 40.0 = 560.0 Floor DL= 0.0*0.0= 0.0 Ext. Wall DL = 2 * 16.0 * 10.0/2 = 160.0 Int. Wall DL = 2 * 10.0 * 10.0/2 = 100.0 Total DL, W = 560.0 + 0.0 + 160.0 + 100.0 = 820.0 plf Seismic Load= 0.143 * 820.0 = 117.3 plf Section T-2 Input: Roof height= 4.5 Wall height= 10.0 # of exterior walls= 2 Roof depth= 41.5 Floor depth= 0.0 # of interior walls= 1 Wind Load, Vw = 17.0 * (4.5 + 10.0/2) = 161.5 plf <--- controls Seismic Load, Roof DL = 14,0 * 41.5 = 581.0 Floor DL = 0.0 * 0.0 = 0.0 Ext. Wall DL = 2 * 16.0 * 10.0/2 = 160.0 Int. Wall DL = 1 * 10.0 * 10.0/2 = 50.0 Total DL, W = 581.0 + 0.0 + 160.0 + 50.0 = 791.0 plf Seismic Load = 0.143 * 791.0 = 113.1 plf Section T-3 Input: Roof height= 4.5 Wall height= 10.0 # of exterior walls= 1 Roof depth= 21.5 Floor depth= 0.0 # of interior walls= 1 Wind Load, Vw = 17.0 * (4.5 + 10.0/2) = 161.5 plf <--- controls Seismic Load, Roof DL = 14.0 * 21.5 = 301.0 Floor DL = 0.0 * 0.0 = 0.0 Ext, Wall DL = 1 * 16.0 * 10.0/2 = 80.0 Int. Wall DL = 1 * 10.0 * 10.0/2 = 50,0 Total DL, W = 301.0 + 0.0 + 80.0 + 50.0 = 431.0 plf Seismic Load= 0.143 * 431.0 = 61.6 plf Fred S h eu Project: La Paloma }-tomes Page 14, ngineering Job # S18264 LATERAL LOADS Design spectral response acceleration SDS= 1.000 Roof weight= 14.0 Exterior wall weight= 16.0 Seismic base shear coefficient= 0.143 Floor weight= 12.0 Interior wall weight= 10.0 Wind pressure= 17.0 psf Section T-4 Input: Roof height= 4.3 Wall height= 12.0 # of exterior walls= 1 Roof depth= 22.0 Floor depth= 0.0 # of interior walls= 1 Wind Load, Vw = 17.0 * (4.3 + 12.0/2) = 175.1 plf <--- controls Seismic Load, Roof DL = 14.0 * 22.0 = 308.0 Floor DL= 12.0*0.0= 0.0 Ext. Wall DL = 1 * 16.0 * 12,0/2 = 96.0 Int. Wall DL = 1 * 10.0 * 12.0/2 = 60.0 Total DL, W = 308.0 + 0.0 + 96.0 + 60.0 = 464.0 plf Seismic Load= 0.143 * 464.0 = 66.4 plf Fred Aeu Project: La Paloma Domes Page 08 J'?ngineering Job # S18264 Direction: L-1 Diaphragm Force: ROOF DIAPHRAGM DESIGN Between Shear Walls: 1 & 2 Width, L = 40.0 Depth, D = 42 Wind Load = 144.5 plf <__= control Seismic Load = 119.0 plf Diaphragm Shear = 144.5 x (L/2) /D = 68.8 plf Use: 15/32" APA Rated Sheathing, or O.S.B. unblocked disphragm, exterior grade, Index 24/0 w/ 8 nails @ 6" o.c. at edges and boundaries, @ 12" o.c. in field Case 2- allowable shear =180 plf Splice Chord Force, F = M / D = 1/8 x 144.5 x (40.0)**2 / 42.0 = 688 Ib 16d sinker nails: allowable shear for double top plate, single shear, 1.5" penetration (p) v = 118 lbs x Cd per Table 11 N, 2015 NDS =118x(p/10dia.)=118x1.0=118 Ib Top Plate Splice: n = F /(1.6x118) = 688 /189= 3.6 (Cd = 1.6) use (12) - 16d Sinkers at top plate splice :V4 Fred Sheu Project: La Paloma Homes Page G 14-i ngineering Job # 518264 SHEAR WALL LINE # 1 PANEL DESIGN: Section a- Tributary width (ft) = 40.0 Seismic(plf)= 119,0 Wind (plf)= 144.5 Section b- Tributary width (ft) = 21.0 Seismic(plf)= 83.8 Wind (plf)= 0.0 Total seismic load = Total wind load = Total panel length = Shear = >>> Panel type used OVERTURNING ANALYSIS: Panel length (ft) _ Panel height (ft) _ Uplift due to lateral load (lb)= Resisting=D*(0.6-0.14Sds) (lb)= Roof. DL tributary (ft) Floor DL tributary (ft) Wall weight (psf) Net uplift of this floor(lb) = Add uplift from upper floor (lb) _ Total hold-down force (lb) _ >>> Hold-down Type PANEL DESIGN: 119.0*40/2 + 83.8*21/2 + 0 = 3,260 lbs <---controls 144.5*40/2 + 0.0*21/2 + 0 = 2,890 lbs 21.5 ft 3,260/21.5 = 151.6 lb/ft MIN. 3/8" Plywood or USB, Mark -A Panel #1 Panel #2 Panel #3 6.50 6.00 9.00 10.0 10.0 10.0 1,516 1,516 1,516 386 356 635 7.0 7.0 10.5 0.0 0.0 0.0 16 16 16 1,131 1,160 881 0 0 0 1,131 1,160 881 STHD14 STHD14 STHD14 SHEAR WALL LINE # 2 Section a- Tributary width (ft) = 40.0 Seismic(plf)= 119.0 Wind (plf)= Section b- Tributary width (ft) = 0.0 Seismic(plf)= 0.0 Wind (plf)= 'Total seismic load = 119.0*40/2 + 0 = 2,380 lbs Total wind load = 144.5*40/2 + 0 = 2,890 lbs <---controls Total panel length = 15.8 ft Shear = 2,890/15.8 = 183.5 Ib/ft >>> Panel type used MIN. 3/8" Plywood or USB, Mark - OVERTURNING ANALYSIS: / Panel #1 Panel #2 Panel #3 Panel length (ft) = 6.25 5.00 4.50 Panel height (ft) = 10.0 10,0 10.0 Uplift due to lateral load (lb)= 1,835 1,835 1,835 Resisting=D*(0.6-0.14Sds) (lb)= 628 576 518 Roof DL tributary (ft) 12.5 16.0 16.0 Floor DL tributary (ft) 0.0 0.0 0.0 Wall weight (psf) 16 16 16 Net uplift of this floor(lb) = 1,207 1,259 1,317 Add uplift from upper floor (lb) = 0 0 0 Total hold-down force (lb) = 1,207 1,259 1,317 >>> Hold-down Type STHD14 STHD14 STHD14 144.5 0.0 .t?,- 1red Sh eu Project: La Paloma Homes PageC / bb r'a'nineerin g g Job # S18264 SHEAR WALL LINE # 3 PANEL DESIGN: Section a- Tributary width (ft) = 21.0 Seismic(plf)= 83.8 Wind (plf)= 144.5 Section b- Tributary width (ft) = 19.0 Seismic(plf)= 66.4 Wind (plf)= 175.1 Total seismic load = Total wind load = Total panel length = Shear = >>> Panel type used [OVERTURNING ANALYSIS: Panel length (ft) _ Panel height (ft) _ Uplift due to lateral load (lb)= Resisting=D*(0,6-0.14Sds) (lb)= Roof DL tributary (ft) Floor DL tributary (ft) Wall weight (psf) Net uplift of this floor(lb) _ Add uplift from upper floor (lb) _ Total hold-down force (lb) _ >>> Hold-down Type 83.8*21 /2 + 66.4*19/2 + 0 = 1,511 lbs 144.5*21/2 + 175.1 *19/2 + 0 = 3,181 lbs <---controls 13.5 ft 3,181/13.5 = 235.6 lb/ft MIN. 3/8" Plywood or USB, Mark- /b Panel #1 13.50 12 2,827 1912 20.0 0.0 16 916 0 916 STHD14 SHEAR WALL LINE # 4 PANEL DESIGN: Section a- Tributary width (ft) = 19.0 Section b- Tributary width (ft) = 0.0 Total seismic load = Total wind load = Total panel length = Shear = >>> Panel type used OVERTURNING ANALYSIS: Panel length (ft) _ Panel height (ft) _ Uplift due to lateral load (lb)= Resisting=D*(0.6-0.14Sds) (lb)= Roof DL tributary (ft) Floor DL tributary (ft) Wall weight (psf) Net uplift of this floor(lb) _ Add uplift from upper floor (lb) _ Total hold-down force (lb) _ >>> Hold-down Type Seismic(plf)= 66.4 Wind (plf)= 175.1 Seismic(plf)= 0.0 Wind (plf)= 0.0 66.4*19/2 + 0 = 631 lbs 175.1 *19/2 + 0 = 1,663 lbs <---controls 2.5 ft 1,663/2.5 = 665.4 lb/ft Simpson Steel Strong -wall (y ) 5 5 W / SX / Z Panel #1 Panel #, 2. 4LLowAt3tE LoAr, = Z x/ a� 113 1.25 1.25 ��, 66 3 Gd 12 12 7,985 7,985 122 122 9.5 9.5 0.0 0.0 16 16 7,863 7,863 0 0 7,863 7,863 manufacturer Ir'{ red Sheu ngineering Project: La Paloma Homes Page C 11 SHEAR WALL LINE # 5 t'ANEL DESIGN: Section a- Tributary width (ft) = 20.0 Seismic(plf)= 117.3 Section b- Tributary width (ft) = 0.0 Seismic(plf)= 0.0 Total seismic load = Total wind load = Dotal panel length = Shear = >>> Panel type used OVERTURNING ANALYSIS: Panel length (ft) _ Panel height (ft) _ Uplift due to lateral load (lb)= Resisting=D*(0.6-0.14Sds) (lb)= Roof DL tributary (ft) Floor DL tributary (ft) Wall weight (psf) Net uplift of this floor(lb) _ Add uplift from upper floor (lb) _ Total hold-down force (lb) _ >>> Hold-down Type Job # S18264 Wind (plf)= 161.5 Wind (plf)= 0.0 117.3.20/2 + 0 = 1,173 lbs 161.520/2 + 0 = 1,615 lbs <---controls 18.0 ft 1,615/18.0 = 89.7 Ib/ft MIN. 3/8" Plywood or OSB, Mark - /L Panel #1 Panel #2 Panel #3 5.50 5.50 7.00 10.0 10.0 10.0 897 897 897 287 287 365 1.0 1.0 1.0 0.0 0.0 0.0 16 16 16 610 610 532 0 0 0 610 610 532 STHD14 STHD14 STHD14 SHEAR WALL LINE # 6 PANEL DESIGN: Section a- Tributary width (ft) = 20.0 Section b- Tributary width (ft) = 22.5 Total seismic load = Total wind load = Total panel length = Shear = >>> Panel type used OVIERTURNING ANALYSIS: Panel length (ft) _ Panel height (ft) _ Uplift due to lateral load (lb)= Resisting=D*(0.6-0.14Sds) (lb)= Roof DL tributary (ft) Floor DL tributary (ft) Wall weight (psf) Net uplift of this floor(lb) _ Add uplift from upper floor (lb) _ Total hold-down force (lb) _ >>> Hold-down Type Seismic(plf)= 117.3 Wind (plf)= 161.5 Seismic(plf)= 113.1 Wind (plf)= 161.5 117.3'20/2 + 113.1"23/2 + 0 == 2,445 lbs 161.5"20/2 + 161.5'23/2 + 0 = 3,432 Ibs <---controls 15.5 ft 3,432/15.5 = 221.4 Ib/ft MIN. 3/8" Plywood or OSB, Mark - Panel #1 15.50 10.0 2,214 465 0.0 0.0 10 1,749 0 1,749 STHD14 Fred S'heu .engineering Project: La Paloma Homes Page G 12 - Job # S18264 >>> Panel type used MIN. 3/8" Plywood or OSB, Mark - ,�3 gVI^RTURNING ANALYSIS: SHEAR WALL LINE # 7 Panel #2 1"AN)rL DESIGN - Panel length (ft) = Panel height 2.67 2.67 Section a- Tributary width (ft) = 22.5 Seismic(plf)= 113.1 Wind (plf)= 161.5 Section b- Tributary width (ft) = 27.0 Seismic(plf)= 61.6 Wind (plf)= 161.5 Seismic load from Sec. T-4 (lb) = 697 Wind load from Sec. T-4 (lb) = 0 Total seismic load = 113.1"23/2 + 61.6"2712 + 697 = 2,801 lbs 3.0 Total wind load = 161.5'23/2 + 161,5"27/2 + 0 = 3,997 lbs <---controls 0.0 Total panel length = 11.0 ft Wall weight (psf) 16 Shear = 3,997/11.0 = 363.4 Ib/ft Net uplift of this floor(lb) = >>> Panel type used MIN, 3/8" Plywood or OSB, Mark - �x OVERTURNING ANALYSIS; 0 /a OJusT&p Att O wABGC L e)h 0 I-otal hold-down force (lb) = 3,130 Panel #1 Panel #2 >>> Hold-down Type Panel length (ft) = Panel height (ft) = 4.00 7.00 12.0 10.0 �r x 7 rya1F (� �- x�f � Uplift due to lateral load (lb)= 4,361 3,634_ L Resisting= D*(0.6-0.14Sds) (lb)= 230 0 , � � Roof DL tributary (ft) Floor DL 0.0 0.0 3, 9 LB tributary (ft) 0.0 0.0 Wall weight (psf) 16 O z z,5c,0 Gpw bR/�G Truss = 161.�i rSF x(2 �= /S 1, Net uplift of this floor(lb) = 4,130 3,634 , Add uplift from upper floor (lb) =0 p 7) Total hold-down force (lb) = 4,130 3,634 z >>> Hold-down Type HDU5 HDU5 SHEAR WALL LINE # 8 PANEL DESIGN - Section a- Tributary width (ft) = 27.0 Seismic(plf)= 61.6 Wind (plf)= 161.5 Section b- Tributary width (ft) = 0.0 Seismic(plf)= 0.0 Wind (plf)= 0.0 Total seismic load = 61.6"27/2 + 0 = 832 lbs Total wind load = 161.5.27/2 + 0 = 2,180 lbs <---controls Total panel length = 5.3 ft Shear = 2,180/5.3 = 408.3 lb/ft >>> Panel type used MIN. 3/8" Plywood or OSB, Mark - ,�3 gVI^RTURNING ANALYSIS: Panel #1 Panel #2 /t DJustEo Al'I-OwA&F ZOAP Panel length (ft) = Panel height 2.67 2.67 = 6 el 67 P �F x I(z x z' �7 6 . x z. 7' EAX Z (ft) = g 0 g 0 • J Uplift due to lateral load (lb)= 3,256 ca Resisting=D*(0.6-0.14Sds) (lb)= 136 136 _ z 2 g Roof DL tributary (ft) 3.0 3.0 f Floor DL tributary (ft) 0.0 0.0 Wall weight (psf) 16 16 Net uplift of this floor(lb) = 3,130 3,130 Add uplift from upper floor (lb) = 0 0 I-otal hold-down force (lb) = 3,130 3,130 >>> Hold-down Type STHD14 STHD14 Fred Sh eu Engineering Project: La Paloma Homes Page C, 1 3 Job # S18264 SHEAR WALL LINE # 9 PANEL DESIGN: Section a- Tributary width (ft) = 21.0 Seismic(plf)= 66.4 Wind (pif)= 175.1 Section b- Tributary width (ft) = 0.0 Seismic(plf)= 0.0 Wind (plf)= 0.0 Total seismic load = 66.4'21/2 + 0 = 697 lbs Total wind load = 175.1`21/2 + 0 = 1.839 lbs <---controls Total panel length = 1.5 ft Shear = 1,839/1.5 = 1225.7 lb/ft >>> Panel type used Simpson Steel Strong -wall S s OVERTURNING ANALYSIS: Panel#1 L1cIow/18lZ / Panel length (ft) = 1.50 Panel height (ft) = 12.0 Uplift due to lateral load (lb)= 14,708 Resisting=D*(0.6-0.14Sds) (lb)= 86 Roof DL tributary (ft) 0.0 Floor DL tributary (ft) 0.0 Wall weight (psf) 16 Net uplift of this floor(lb) = 14,622 Add uplift from upper floor (lb) = 0 Total hold-down force (lb) = 14,622 >>> Hold-down Type manufacturer <<' `red Sheu i`n ineering u FOUNDATION CALCULATIONS CONTINUOUS FOOTING PAD FOOTING Fred Sheu Project - PACo-rwA Norte Ps Page t> I Engineering --.—Job # s1p2 6g CONTINUOUS FOOTING DESIGN Allowable Soil Bearing Pressure = / 5 o o psf CONTINUOUS FOOTING at Loading on Continuous Footing: Roof Load = Wall Load = Floor Load = ------------------------ Total Load = Required Width of Footing = Use: 1 Z " wide x 12- " deep with 1— #4 rebars at top and bottom CONTINUOUS FOOTING at Loading on Continuous Footing: Roof Load = Wall Load = Floor Load = ----------------------------------------------------------------------- Total Load = Required Width of Footing = Use: " wide x ___" deep with #4 rebars at top and bottom Fred Sh eu Engineering Project LA FALoMA MOMP-1, page PZ PAD FOUNDATION DESIGN Allowable Soil Bearing Pressure = / S o o psf Maximum Allowable Po.i.nt I.oad.at Continuous_ Footing;. 4 x post (minimum) r..J,.. r. r.. r....rrr+..r-� CONT, FTG,:" 45-cleg Bearing Area � h� a = qf3, 5 " Pmax=Pa*S*W/144 Job # S1'? -29q 7-1777M,7 F + 4r, IZ� W 12'' w x 12' deep footing, Pmax = X 43.5" x 12" / 144 = S, 3 6 7 La PAD FOOTING; red Sheu .+� �� ngznee�zng C_ Simpson Strong -wall Uplift Calculatios Grade Beane Design ®vertuning Analysis ESR -1679 1 Most Widely Accepted and Trusted Page 38 of 38 9 2.5 ks1 concrete 12 In, wall T = [28,1 - 788 _-'5.95(3,4P +41)]- P 15 In, wall T=[36.1- 1301 -5,95(4,61'+V11)] -P 18 in, wall T = [45,0 - 2025 - 5, 95(6.1 P +41) �- P 21 In. wall T = [53.9 - 2908 - 5.95(7.6P + Vh) ]- P 24 In, wall T = [62,8 - 3950 - 5.95(9.1P + V31) ]- P 3.0 ksl concrete 12 in, wall T = [33,7 - 1135 - 7,.14(3,4P TW) ]- P 15 in. wall T=[43,3- 1874-7,14(4,6P+Vh) ]-P 18 In, wall T = 154,0 - 2916 - 7,.14(6-0 + V11) ]- P 21 In. wall T=[64,7- V4187-7..14(7.6P+Vh) I -P 24 In, wall T=[75.4- 5688=7.14(9,1P+V10]-P 4,5 ksl concrete 12 in, wall T = 150,5 - 12554 -10.71(3,4P + Vh) ]-P 15 In, wall T=[64,9- 4216-10,71(4,6P+V11)]-P 18 In. wall T=[81,0- 6560 -10.71(6.1P+811)] -P 21 In, wall T = [97.1- 9421 -10,71(7,6P + Vh) J --P 24 in, wall T=[113.1- 12,797-10.71(9.1P+Vh)]-P For SI: 1 inch = 25.4 mm, 1 kip = 4.45 kN, 1 ft -Ib = 1.36 N -m FO.ELQE5.ATBASE..OF_W— L T = resulting anchorage tension (uplift) force (kips) V = design shear (kips) P = total vertical load (kips) h = wall height (inches) For two-story stacked applications, substitute Mea,a for Vh: Vh= Msaeo(1000)(klp-In) Where MD.,. = Design moment at base of wall (ft -lbs) For SI use the following adlustmonts: V = design shear (0) / 4,45 P = total vertical load (kN) 14,45 h = wall height (mm) 125.4 T x 4.45 = resulting anchorage tension (uplift) force (kN) For two-story stacked applications, substitute MD.,. for Vh: Vh=Maosa (N -m) 113.0 Where M8... = Design moment at base of wall (N -m) Notes: 1.) Equations may be used to calculate uplift forces at the base of first -story walls on concrete foundations, 2,) Equations are based on limiting concrete bearing on a 3.112" wide base plate at the edge of concrete, EXAMPLE 3 (Single -Story SSW_): Given: SSW18x9 wall on 2,5 ksl concrete Seismic Loading . Design Shear (V) = 2.0 kips < 2,15 kips (VA„—bie) P (Vertical Load) = 1,0 kip h = wall height = 105,25" T=[45,0- V2025-5,95(6,1P+V11)]-P EXAMPLE 4 P-Story_Stacked 55VY Gondltlonj: Given: See Example 2 - Two Story Application, SSW18x9-STK wall on 2,5 ksl concrete Wind Loading MB09B = 17,550 ft -lbs (Moment at base of 2 -story, stacked wall) Vh = 17,550x 12 1000 Idp -in = 210.61cip -in P (Vertical Load) = 2,0 kips T=[45,0— 2025-5.95(6,1x1+2,0x105.25)-1,0=16.9 kips T=[45.0— 2025-5.95(6.1P+V1))]--P T = [45.0 — 42025 —5,95(6,1 x 2 + 210,6)-- 2 =16,6 kips FIGURE 8—EQUATIONS FOR CALCULATING UPLIFT FORCES AT BASE OF FIRST -STORY WALL V __�7 d�{�� �'f��6#�+1!i�;�,i� >a'�'��� .�4j • 4t: - d'a���f#���:i`.a�' �a?' !�� i ��k1.i��'�:�';;.'�i`�+li �'�4'�i��,� •'s :i=r�l+ti9�;):,[�ly �,�5#MP�ON Anchorage Details SIMPSON STEEL STRONG -WALL 77. Y2A+ , �' e YY vv Y2 W L.. .i Y2 W SLAB OR CURB AND SURROUNDING FOUNDATION NOT SHOWN FOR CLARITY SSWAB Y2 W 55E TABLE BELOW FOR DIMENSIONS FOUNDATION PLAN VIEW STEEL STRONG•WALL® ANCHORAGE SOLUTIONS FOR 2500 PSI CONCRETE DESIGN CRITERIA CONCRETE CONDITION ANCHOR STRENGTH SSWAB 3/4" ANCHOR BOLT SSWAB 1" ANCHOR BOLT ASD ALLOWABLE TENSION (Ibs) ASD W (In) do (In) ALLOWABLE W (In) do (In) TENSION (Ibs) SEISMIC CRACKED STANDARD 8,800 22 8 16,100 33 11 9,600 4 17,100 35 HIGH STRENGTH 18,500 36 12 33,000 61 17 19,900 38 13 35,300 54 18 UNCRACKED STANDARD 8,800 19 7 15,700 28 10 9,60021 7 17,100 30 10 HIGH STRENGTH 16,300 31 11 32,300 44 16 19,900 33 11 35,300 47 16 WIND CRACKED STANDARD 5,100 14 6 6,200 16 6 7,400 18 6 11,400 24 8 9,600 22 8 17,100 32 11 HIGH STRENGTH 11,400 24 8 21,100 36 12 13,600 27 9 27,300 42 14 15,900 30 10 31,800 46 18 19,900 35 12 35,300 50 17 UNCRACKED STANDARD 51000 12 6 8,400 14 6 7,800 16 6 12,500 22 8 91600 19 7 17,100 28 10 HIGH STRENGTH 12,500 22 8 21,900 32 11 14,300 24 8 26,400 '36 12 17,000 27 9 31,500 40 14 19,900 30 10 35,300 43 15 i'IV I CJ: 1. ANCHORAGE DESIGNS CONFORM TO ACI 318.11 APPENDIX D WITH NO SUPPLEMENTARY REINFORCEMENT FOR CRACKED OR UNCRACKED CONCRETE AS NOTED 2. ANCHOR STRENGTH INDICATES REQUIRED GRADE OF SSWAB ANCHOR BOLT, STANDARD (ASTM F1664 GRADE 30) OR HIGH STPENGTH (HS) (ASTM A44E), 3. SEISMIC INDICATES SEISMIC DESIGN CATEGORY C THROUGH F, DETACHED 1 AND 2 FAMILY DWELLINGS IN SDC C MAY USE WIND ANCHORAGE SOLUTIONS, SEISMIC ANCHORAGE DESIGNS CONFORM TO ACI 316.11 SECTION D,34,4, 4. WIND INCLUDES SEISMIC DES IGN"CATEGORY A AND B AND DETACHED 1 AND 2 FAMILY DWELLINGS IN SDC C, 5, FOUNDATION DIMENSIONS,ARE FOR ANCHORAGE ONLY, FOUNDATION DESIGN (SIZE AND REINFORCEMENT) BY OTHERS, THE REGISTERED DESIGN PROFESSIONAL MAY SPECIFY ALTERNATE EMBEDMENT, FOOTING SIZE OR ANCHOR BOLT, 6. REFER TO 1/5SW1 FOR de, SSWAB TENSION ANCHORAGE SCHEDULE 2500 PSI 2/SSW1 71