Loading...
BRES2015-0160 Structural Calcs9� i RrA S�TRr UCJT�URrAL EJ -;VY Ir4MYGM:, 77570 Springfield Lane, Suite "D Telephone: (760) 360-9998 Palm Desert, CA 92211 Fax: (760j,360-9963 E Structural Calculation For Van Willigen Residence At 55221 Riviera La Quinta, CA.- Designer: Rios Design Date: 4/15/201.5 Design by: R.A. .1N: 15033.1 Type Of Pro.iect: Residential. Addition+Remodeling 0 r � TO Of NO. C 67613 EXP.' CITY OF LA QUINTA APR 2 4 2015 BUILDING & SAFETY DEPT. Cn1'OFLq APPROVED �OMMUNnv pEVEioP1NENT FOR CON RUCTION DATE S k ZMA aTR,' U097JYMMIAti M- TABLE OF CONTENTS 1. Design Criteria....................................................................................1 2. Framing Design............................................................. ...........................2-25 3. Foundation Design..........................................................................26 4. Lateral & Shear Wall Design..............................................................27-54 P•. RA Structural Engineering DESIGN LOADS Roof Loads — Sloped Concrete Tile 12 psf Framing 2.5 psf Sheathing (1/2" CDX) 1.5 psf Ceiling 2.5 psf Insulation 1.5 psf Misc. 7 psf Total Dead Load 27 psf Total Live Load 20 psf Total Roof Load 47 psf Exterior Wall 6 Framing 7/8" Stucco 10 psf Insulation 1 psf Drywall 2.5 psf Studs 1 psf Misc. 2.5 psf Dotal Wall Weight 17 psf Roof Loads — Flat W/Solar Roofing 6 Framing 2.5 Sheathing (1/2" C'DX) 1.5 Ceiling 2.5 Insulation 1.5. Solar Panel 4 Misc. 6 Total Dead Load 1 24. SHEET': JOB NO: 150331 DATE: 4/15/201`5 Roof Loads — Flat Roofing 6 Framing 2.5 Sheathing (1 /2" CDX) 1.5 Ceiling 2.5 Insulation 1.5 Misc. 6 Total Dead Load 20 Total Live Load 20 Total Roof Load 40 Deck Loads Framing 3.5 Sheathing (3/4" Plywood) 2.5 Ceiling 2.5 Lt. Wt. Conc./Flooring Tile 15 Lt. Wt. Conc./Flooring Tile 10 Misc. 1.5 Total Dead Load 37 Total Live Load 60 Total Deck Load 97 Interior Wall Insulation 1 D rywa II 5 Studs 1 Misc. 3 Total Wall Weight 10 Page 1 of 54 RA. Structural Engineering Project Title: Van Willigen Residence 77570 Springfield Lane, Suite D Engineer: R.A. Proiect ID: 150331 Palm Desert, CA. 92211 Protect Descr: Addition+Remodeling ' (760)771-9993 Beam Description : Existing 200 Roof Joist @ 24'01C (Max. Span=16 ft.) CODE REFERENCES File = Printed: 17 APR Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 0.264 : 1 Section used for this span 2x10 Load Combination Set: ASCE 7-10 59.49 psi Fv : Allowable = 225.00 psi Material Properties +D+Lr+H Location of maximum on span = 0.000 ft Analysis Method: Allowable Stress Design Fb - Tension 900 psi E: Modulus of Elasticity Load Combination AS_ CE 7-10 Fb - Compr - 900 psi Ebend- xx 1600ksi Deo Location in Span Fc - Prll 1350 psi Eminbend - xx 580 ksi Wood Species : Douglas Fir - Larch Fc - Perp Fv 625 psi 180 psi 0.0000 Wood Grade : No.2 Ft 575 psi Density 32.21 pcf Beam Bracing : Beam is Fully Braced against lateral -torsion buckling 0.0000 Repetitive Member Stress Increase 1)(0.03) Lr 0.04 200 Span = 16.50 ft --- Applied Loads _ Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Uniform Load: D = 0.030, Lr = 0.040 , Tributary Width =1.0 ft, (Roof) aximum Bending Stress Ratio Section used for this span fb : Actual FB: Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection Overall Maximum Deflections 0.981: 1 2x10 1,395.64 psi 1,423.13 psi +D+Lr+H 8.250ft Span # 1 Maximum Shear Stress Ratio = 0.264 : 1 Section used for this span 2x10 tv : Actual = 59.49 psi Fv : Allowable = 225.00 psi Load Combination +D+Lr+H Location of maximum on span = 0.000 ft Span # where maximum occurs = Span # 1 0.424 in Ratio= 467 0.000 in Ratio= 0 <360 0.775 in Ratio= 255 0.000 in Ratio= 0 <240 Load Combination Span Max. "Deft Location in Span Load Combination Max. *+* Dell Location in Span +D+Lr+H 1 0.7747 8.310 0.0000 0.000 Maximum Deflections for.Load Combinations Load Combination Span Max. Downward Deo Location in Span Max. Upward Dell Location in Span +D+H 1 0.3508 8.310 0.0000 0.000 +D+L+H 1 0.3508 8.310 0.0000 0.000 +D+Lr+H 1 0.7747 8310 0.0000 0.000 +D+S+H 1 0.3508 8.310 0.0000 0.000 +D+0.750Lr+0.750L+H 1 0.6687 8.310 0.0000 0.000 +0+0.750L+0.750S+H 1 0.3508 8.310 0.0000 0.000 +0+0.60W+H 1 0.3508 8.310 0.0000 0.000 +D+0.70E+H 1 0.3508 8.310 0.0000 0.000 +D+0.750Lr+0.750L+0.450W+H 1 0.6687 8.310 0.0000 0.000 Page 2 of 54 RA Structural Engineering 77570 Springfield. Lane, Suite D Palm Desert, CA.,92211 (760)771,9993 Description: Existing 200 Roof Joist @ 24' OIC (Mai. SpaA=16 ft) Mazimum'Deflections for Load -Combinatlons- Project Title: Van Willigen Residence Engineer: R.A. Proiect ID: .150331 Protect Descr: Addition+Remodeling 4 Printed: 17 APR 2015; 1:05PM Load Combination Span Max. Downward Defl Location in Span Max. Upward'Defl Location in Span +D+0.750L+0.750Si0A50W+H 1 0.3508. 8.310 0.0000 0.000 40+0.750L+0.750S+0.5250E+H 1 0.3508 •8.310 0.0000 0.000 +0.60D+0.60W+0.60H 1 0.2105 8.310 0.0000 0.000 +0.60D+0.70E+0.60H 1 0.2105 8.310 0.0000 0.000 D Only 1 0.3508 8.310 0:0000 0.000 Lr Only 1 0.4239 8.310 0.0000 0.000 -Vertical Reactions Support notation: Far left is #1 Values in KIPS Load Combination _ Support 1 Support 2 Overall MAXimum 0.603 0.603 Overall_ MINimum 0.164 0.164 +D+ii 0.273 -0.273 +Dk+H 0.273 0.273 +D+tr+H 0:603 0.603 +D+S+H 0.273 0.273 +D40.750Lr+0.750L4H 0.521 0.521 +0+0.750L+0.750S+H 0.213 0.273 +D+0:60W+H 0.273 0.273 +040.70E+H 0.273 0.273 +".750Lr+0.750L+0,450W4H 0.521 0.521 +0+0.750L+0.750S40.450W+H 0.273 0:273 +0+0.750L+0.750S40.5250E+H 0.273 0.273 +0.60D+0.60W+0.60H 0.164 0.164 +0.60D40.7OE40.60H 0:164 0.164 D Only 0:273 0.273 U Only 0.330 .0.330 L Only S Only W.Only E Only H Only 0 Page 3 of 54 CLIENT: V(AY% W i'll 13 e h RA Strt SUBJECT: A+Reny f DESIGN BY:-�} �8 goo Q� 0 �S z wo•�,.= (1-7P5P) (5 ) etc, Po, = 1215 -6 hL.z. e6 2C. SHEET: JOB NO: 150331 DATE: LA/ V W i-1 5 use 6xk2- OF, #i USE y,xl0 D 6 #2 L�. use e4x6 oFZ BM #y = L= 7� a L f, iz 5 w�,�.=C��rS �C siz)= 5o.PLF Use ux10 PF. -;rZ. Page 4 of 54 • r PROJECT: BM#1 PAGE: qSTRt t 1.'u,u. CLIENT: Van Wiiligen Residence DESIGN BY R A:. 1:,Vc; t,�r 1.l•ttii JOB NO.: 150331 DATE: 4/1$/2015 REVIEW BY: R. A., Wood Beam Desicin Based on NDS 2012 INPUT DATA 8 DESIGN SUMMARY . Duration Factor. CCondition 1 MEMBER SIZE 6 x 12 L. No. 1, Douglas Fir -Larch . �- L MEMBER SPAN L = 18 z ft UNIFORMLY DISTRIBUTED DEAD LOAD WD = 0 lbs -1 ft PD1 + rbz UNIFORMLY DISTRIBUTED LIVE LOAD wL = 0 lbs / ft CONCENTRATED DEAD LOADS Po, = 2115, lbs wo (0 for no concentrated load) L, = 9 ft 4 Construction Load P02.= 0 lbs 32.2 L2 = '0 ft DEFLECTION LIMIT OF LIVE LOAD Id = L /,360 Camber=> 0.64 Inch DEFLECTION LIMIT OF LONG-TERM dKaD+L = L / 249 kips, at 11.5 inch from left end Does member have continuous lateral support by top diaphragm ? (1= yes, 0= no) 0 No Code . Duration Factor. CCondition 1 0.90 Dead Load 2 1.00 Occupancy Live Load 3 1.15 Snow Load 4 1.25 Construction Load 5 1.60 Wind/Earthquake Load 6 2.00 Impact'Load Choice => 4 Construction Load ANALYSIS /E- 32.2 DETERMINE REACTIONS, MOMENT, SHEAR WSeu VY, = 14 lbs / ft RLeft 1.18 kips Vm.. = '11.117 kips, at 11.5 inch from left end DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES b = 5.50 in E'min = 58.0 ksi d = 11.50 in FbE.= 4736 psi A =. 63.3 int I = 697 in4 S -x = 121.2 in' RB = 12.123 <.50 /E- 32.2 (ft. Tab 3.3.3 footnote l) Co CM Ct Ci CL CF Cv 1.25 1.00 1.00 1.00 0.97 1.00 1.00 CHECK BENDING AND SHEAR CAPACITIES fb = MMax / S. _ .997 psi < Fb = fv = 1.5 VMa■ / A = 28 psi < CHECK DEFLECTIONS d (L. Max) = .0.00 in, at 9.000 ft from left end,. d (Koro:+.L. Max) = 0.64 in. at 9.000 ft from left.end Where Ku = 1.50 , (NDS 3.5.2) DETERMINE.CAMBER AT 1.5 (DEAD + SELF WEIGHT)+ d 0.50. Max) = 0.64 1n, at 9.000,ft from.left end THE BEAM DESIGN 1S ADEQUATE. .Code Designation 1 Select Structural, Douglas Fir -Larch 2 - No. 1, Douglas Fir -Larch 3 No. 2, Douglas Fir -Larch 4 Select Structural, Southern Pine 5 No..1, Southern Pine 6 No. 2, Southern Pine Choice => 2 RR+yh, = 1.18 kips iMma. = 10.07 ft -kips, at 9100 ft from left end E - E, = 1600 ksi Fp = 1687.5 psi Fb = 1,350 psi F = FbE / Fb* = 2.81 Fv = 170 psi Fe = 1,644 psi E' = 1,600 ksi F,; -= 213 psi C, Cr 1.00 1.00 1644 psi [Satisfactory] F, , [Satisfactory] <' AL = L / 360 (Satisfactory) < A WD - L= L/ -240 [Satisfactory] Page 5 of 54 • • CHECK THE BEAM CAPACITY WITH AXIAL LOAD AXIAL LOAD F = 5 kips THE ALLOWABLE COMPRESSIVE STRESS IS FC = Fc Co Cp CF = 294 psi Where Fc = 925 psi - Cp = 1.60 F F CF = 1.00 (Lumber only) '= Ca, = (1+F) / 2c- [((1+F) / 2c)Z - F / cJos 0.199 Fc` = Fc Co CF = 1480• psi Le = K,L = 1.0L = 216 in b = 5.5 in SF = slendemess ratio = 39.3 < 50 [Satisfies NDS 2012 Sec. 3.7.1..4] FIE = 0.822 E',,,, / SF2 = 309 psi . E'min = 580 ksi F = FIE / Fc' = 0.209 C = 0.8 THE ACTUAL COMPRESSIVE STRESS IS tc = F / A =. 79 psi < Fe' [Satisfactory] THE ALLOWABLE FLEXURAL STRESS IS F,- = 2104 psi, ( for Co = 1.6 J THE ACTUAL FLEXURAL STRESS IS fe = (M + Fe) / S = 1224 psi < Fp [Satisfactory] CHECK COMBINED STRESS [NDS 2012 Sec.3.9.21 (%J F,' ,)2 + fp / [Fp 0 - fc / FcE)J = 0.854 < 1 [Satisfactory] Page 6 of 54 9 0 PROJECT: BM#2 PAGE: rl«.� iJ;r.w.• CLIENT: 'Van Willigen Residence. DESIGN BY: R.A.- -A-I.-'N(; IN M; JOB NO.: 15033.1 DATE: 4/16/2015 REVIEW BY: 'R A.... ' Wood Beam Design Based on NDS 2012 INPUT DATA & DESIGN SUMMARY L MEMBER SIZE 4 x 10 No. 2, Douglas Fir -Larch L MEMBERS PAN L- 6.5 'ft 1 UNIFORMLY DISTRIBUTED DEAD LOAD W,,. -BS- lbs/ft P ; 1 o� 1 P6, UNIFORMLY DISTRIBUTED LIVE LOAD wl = 0 lbs/ft WL CONCENTRATED DEAD LOADS PD1 = 21•15 lbs wp (0 for no,concentrated load) L, = 3.25 ft No. 2, Southern Pine Choice => 4 Construction Load P02-= 0 lbs ANALYSIS Cc L2 =, 0 : ft DEFLECTION LIMIT OF LIVE LOAD AL = L l 366 RR,aM = Camber => '0.10 Inch DEFLECTION LIMIT OF LONG-TERM d Kcr o • L = L / 240 ft -kips, at 3.25 ft frown left end fb = MMax / Sx = 943 psi < Fb = 1331 THE BEAM DESIGN IS ADEQUATE. Does member have continuous lateral support by top diaphragm? (1= yes, 0= no) 0 No b = $:50 in Emir; = 580 ksi' Code Duration Factor. C„ Condition Code Designation I 1 0.90 Dead Load 1 Select Structural, Douglas Fir -Larch 2 1.00 Occupancy Live Load_ 2 No: 1, Douglas Fir -Larch* 3 1.15 Snow Load 3 No. 2, Douglas Fir -Larch 4 1.25 Construction Load 4 Select Structural, Southern Pine 5. 1.60 Wind/Earthquake.Load 5 No. 1', Southern Pine . 6 2.00 Impact Load 6 No. 2, Southern Pine Choice => 4 Construction Load Choice => 3 ANALYSIS Cc Cr DETERMINE REACTIONS, MOMENT, SHEAR. 1.25' 1:00 1.00 1.06 0.99 1.20 1.00 wswi VVI = 7 lbs, / ft RLeft 1.36 kips RR,aM = 1.36 kips VMe. = 1.29 kips, at,9.25 inch from left end MMex _ 3.92 ft -kips, at 3.25 ft frown left end DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES b = $:50 in Emir; = 580 ksi' E = Ex= 1606 ksi Fb = 1350 psi d = 9.25 in FbE = 5951 psi Fb = 900 psi F, = FbE /.Fe = 4.41 A = 32.4 int 1 = 231 Ih4 F„ = 180 psi Fe - 1;331 psi Sx = 49.9 in3 Re=. 10.815 <50 E' = 1,600 ksi F, = 225 psi' I•E = 12.9 (ft, Tab 3.3.3 footnote 1) Co CM CI Ci CL CF. Cv Cc Cr 1.25' 1:00 1.00 1.06 0.99 1.20 1.00 1.00 1.00 CHECK BENDING AND SHEAR CAPACITIES fb = MMax / Sx = 943 psi < Fb = 1331 psi [Satisfactory] (VI =1.5 VM,x / A = 60 psi < Fv' [Satisfactory) CHECK DEFLECTIONS ail, Max) = 0.00 in, at 3.250 it from left end, < dl = L / 360 [Satisfactory] d (Kcr 0; L. MAxj = 0.10 In, at 3.250 ft from left end < d Kcr o . L = L / 240 [Satisfactory) Where Kir = 1.50 , (NDS 3.5.2) DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) 0.10 in, at 3.250 ft from left end Page 7 of 54 • 0 CHECK THE BEAM CAPACITY WITHAXIAL LOAD AXIAL LOAD F 2 kips THE ALLOWABLE COMPRESSIVE STRESS IS FI- = F, CD C1 CF = 850 psi Where Fc = 1350 psi Co = 1.60 F F CF = 1:00 (Lumber only) Cp = (1+F) / 2c : [((l +F) / 2c)2 - F / c]o.5 = 0.393 i Fc = Fc Co CF = 2160 psi LB = Ke L 1.0 L = 78 in b = 3.5 in SF = slenderness ratio = 22.3 < 50 [Satisfies NDS 2012 Sec. 3.7.1`.4) FIE = 0.822 E',,,6 I SFz = 960 psi E'min = 580 ksi . F FIE / F, = 0.444 C — 0.8 THE ACTUAL COMPRESSIVE STRESS IS fe = F/ A = 62 psi < Fc' [Satisfactory] THE ALLOWABLE FLEXURAL STRESS IS Fb' _. 1703 psi. [ for Co = 1.6 J THE ACTUAL FLEXURAL STRESS -IS fe = (M + Fe) I S = 1083 psi < Fp (Satisfactory) CHECK COMBINED STRESS [NDS 2012 Sec. 3.9.21, (fc / F,,')2 + fp / IFo (1 - f. / FE)) = 0.685 < 1 [Satisfactory] Page 8 of 54 0 �71 0 PROJECT: BM#3 PAGE: TRU TURA CLIENT: Van Willigen°Residence DESIGN BY: A.A.,\� JOB NO.: 1663311' DATE: 4/16/2015' REVIEW BY : R.A. Wood Beam Desion Based on NDS 2012 INPUT DATA & DESIGN SUMMARY MEMBER SIZE MEMBER.SPAN UNIFORMLY DISTRIBUTED DEAD LOAD. UNIFORMLY DISTRIBUTED LIVE LOAD CONCENTRATED DEAD LOADS (0 for no concentrated load) DEFLECTION LIMIT OF LIVE LOAD DEFLECTION LIMIT OF LONG-TERM 4 x-6., 6. 0 No No. 2, Douglas Fir -Larch Duration Factor, C� Condition L= ;3 , ft IL 1.00 wD = ..80 lbs/ft PD PD2 WL = '0 lbs / ft w` PD1 = '0 lbs Impact load wo L, = 0 H PD2 = 0 lbs 4 L2 = 0 ft kips, at 5.5 inch from left end '- AL = L 1360 • Camber => 0.00 Inch dKaD•L0L/240 Does member have continuous lateral support by top diaphragm 7 (1= yes, 0= no) 0 No Code Duration Factor, C� Condition 1 0.90 Dead Load 2 1.00 Occupancy Live Load 3 1.15 Snow Load 4 1'.25 Construction Load 5. 1.60 Wind/Earthquake Load 6 - 2.00 Impact load Choice => 4 Construction Load ANALYSIS - DETERMINE REACTIONS, MOMENT, SHEAR wsou wt = 4 lbs/ft RLee = 0.13 kips VMa. = 0.09 kips, at 5.5 inch from left end '- DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES b = 3.50 In E'min 580 ksl d, = 5.50 in FbE = 20,903 psi A. = 19.3 in 1 = 49 ih` Sx = 17.6 in' Re = _ 5.770 < 50 IE = 6.2 (ft, Tab 3.3.3 footnote 1) - Co CM Ct C1 CL CF Cv 1.25 1.00 1.00 1.00 1.00 1.30 1.00 CHECK BENDING.AND SHEAR CAPACITIES THE BEAM DESIGN IS ADEQUATE. Code Designation 1 Select Structural, Douglas Fir -Larch 2 No. 1, Douglas Fir -Larch 3 No. 2, Douglas Fir -Larch 4 Select Structural, Southern Pine 5 No. 1, Southern Pine 6 No. 2, Southern Pine Choice => 3 RRiBm = 0.13 kips Mm.. = 0.09 ft -kips, at 1.50 ft from left •end E = Ex = 1600 ksi Fb. = 1462.5 psi Fb = 900 psi F = FbE / Fb, = 14.29 Fv = 180 psi Fe = 1,457 psi E' = 1,600 ksi Fv' = 225 psi Cc 'Cr 1.00 1.00 fb = MMax / S. = 64 psi < Fb = 1457 psi f,'= 1.5 VMax / A = 7 psi < F,; (Satisfactory] CHECK DEFLECTIONS d(L. Maxy= 0.00 in, at 1.500 ft from left end, < d(KW D. L, Ma.) = 0.00 in, at 1.500 ft from left end < Where K, 1.50 , (NDS 3.5.2) DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT). Id p.5D, Maxi = 0.00 in, at 1.500 ft from left end [Satisfactory] dL = L / 360 [Satlsfactory] 4 -CID -IL = L / 240 (Satisfactory] Page 9 of 54 • • CHECK THE BEAM CAPACITY WITH AXIAL LOAD AXIALLOAD F = 2 kips THE ALLOWABLE COMPRESSIVE STRESS IS F,' = F, CD CP CF = 2039 psi Y Where F, = 1350 psi - Co = 1:60 F F CF = 1.10 (Lumber only) CP = (1+F) / 2c - [((1.+F) / 2c)2 - F / 010'6 = 0.858 F, = F� CD'CF = 2376 psi L. = K. L = 1.0 L = 36 in b 3.5 in SF = slenderness ratio = 10.3 < 50 (Satisfies NDS 2012 Sec. 3.7.1.41 F.E = 0.822 E'min / SIF 2 = 4506 psi Emin = 580 ksi F = F,E / F, = 1.897 C, = 0.8 THE ACTUAL COMPRESSIVE STRESS IS f, = F / A = 104 psi < F�' [Satisfactory] THE ALLOWABLE FLEXURAL STRESS. IS Fb' = 1865 psi, I for C0 = 1.6 ' J THE ACTUAL FLEXURAL STRESS IS fo - (M + Fe) / S = 461 psi < Fe [Satisfactory] CHECK COMBINED STRESS INDS 2012 Sec. 3.9.21 (f. / Fc' )2+ fo / IF,,'(1 - f. / F.01 = 0.256 < 1 [Satisfactory] Page 10 of 54 RA Structural Engineering, 77570 Springfield Lane, Suite D z Palm Desert, CA. 92211 (760)771.9993 ?am Description : BM#4 @ Rear Patio ICODE.REFERENCES Project Title: Van Willigen Residence Engineer: R.A. Project Descr: Addition+Remodeling Hie = Proiect ID' 150331 Piked: 17 APR Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 4x10 Section used for this span 86.01 psi Load Combination Set: ASCE 7-10 1,312.50 psi Fv : Allowable +D+Lr+H Material Properties 3.985 ft Location of maximum on span Span #.1 Analysis Method: Allowable Stress Design Fb - Tension 875.0 psi E: Modulus of Elasticity Load Combination ASCE 7-10 , Fb - Compr 875.0 psi Ebend- xx 1,300.0 ksi 0 <240 Fc - Prll 600.0 psi Eminbend - xx 470:O.ksi Wood Species • : Douglas Fir - Larch Fc - Perp 625.0 psi , +D+H Wood Grade : No.2 Fv 170.0 psi 0.0000 0.000 Ft 425.0 psi Density 32.210pcf Beam Bracing : Beam is Fully Braced against lateral -torsion buckling 0.0000 0.000 Span - 7.0 it A - lied•Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Load for Span Number 1 ' Varying Uniform Load : D(S,E) = 0.0->0.050 kift, Extent = 0.0 -- 7.0 ft, Trib Width1.0 ft, (Roof) 3ximum Bending Stress Ratio Section used for this span fb : Actual = FB: Allowable = Load Combination Location of maximum on span = Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection 0.0661 Maximum Shear Stress Ratio 4x10 Section used for this span 86.01 psi fv : Actual 1,312.50 psi Fv : Allowable +D+Lr+H Load Combination 3.985 ft Location of maximum on span Span #.1 Span # where maximum occurs 0.005 in Ratio= 18530 0.000 in Ratio= 0 <360 0.010 in Ratio= 8095 0.000 in Ratio= 0 <240 Load Combination 0.039 :1 4x10 8.37 psi 212.50 psi +D+Lr+H = 6.234 ft Span # 1 %Ove�all'Mazimum Defiections Load Combination Span Max."-'Defl Location In Span Load Combination Max. "+" Deft Location In Span +D+Lr+H 1 0.0104 3.628 0.0000 0.000 Maximum Deflections for Load Combinations Load Combination Span 'Max, Downward Defl Location in Span Max. Upward Defl Location In Span +D+H 1 0.0058 3.628 0.0000 0.000 +0+L+H 1 0.0058 3.628 0.0000 0.000 +D+Lr+H 1 0.0104 3.628 0.0000 0.000 +D+S+H 1 0.0058 •3.628 0.0000 0.000 +040.750Lr-0.750L+H 1 0.0092 3.628 0.0000 0.000 +0+0.750L+0.750S+H -1 0.0058 3.628 0.0000 0.000 +0+0.6.OW+H 1 0.0058- 3.628 0.0000 0.000 +0+0.70E+H 1- 0.0058 3.628 0.0000 0.000 Page 11 of 54 RA Structural Engineering Project Title: Van Willigen Residence 77570 Springfield Lane, Suite D Engineer: R.A. Prolect ID: ' 150331 Palm Desert, CA. 92211 Protect Descr: Addition+Remodeling (760)7711-9993 17 APR 201S, .Cd Be1m File Description : BM#4 @ Rear Patio Maximum Deflections. for Combinations Load Combination Span Max. Downward Defl Location in Span Max. Upward Deft Location in Span +0+0.750Lr+0.750L+0.450W+H 1 0.0092 3.628 0.0000 0.000 +0+0.750L+0.750S+0.450W+H 1 0.0058 3.628 0.0000 0.000 +0+0.750L+0.750S+0.5250E+H 1 0.0058 3.628 0.0000 0.000 +0.60D+0.60W40.60H 1 0.0035 3.628 0.0000 0000 +0.600+0.70E+0.60H 1 0.0035 3.628 0.0000 0.000 D' Only 1 0.0058 3.628 0.0000 0.000 Lr Only 1 0.0045 1653 0.0000 0.000 Vertical Reactions Support notation ; Far left Is #1 values in KIPS Load Combination Support 1 Support 2• Overall MAXimum 0.142 0259 Overall MINimum 0.050 0.085 +D+H 0.084 0.142 +D+L+H 0:084 0.142 +O+Lr+H 0.142 0.259 +D+S+H 0.084 0.142 +D+0.750Lr+0.750L+H 0.127 0.230 +D+0.750L+0.750S4H 0.084 0.142 +D+0.60W+H 0.084 0.142 +D+0.70E+H 0.084 0.142 +0+0.750U-4750L40.450W+H 0.127 0.230 +D+0.750L+0.750S+0A50.W+H 0.084 0.142 +0+0.750L+0.750S+0.5250E+H, 0.084 0.142 +0.60D+0.60W+0.60H 0.050 0.085 +0.60D+0.70E+0.60H 0.050 0.085 ' D Only 0.084 0.142 Lr Only 0.058 0.117 L Only S Only W Only. E Only, H Only • Page 12 of 54 CLIENT: V n v V (I i s 0i SHEET: SUBJECT: Add -'f,-„ t'"rh ojP RA Structural Entneering, Inc., JOB NO: 150 33 ) DESIGN BY:. DATE: 4//14/15 SP) # 5 S' W, 0 -OW ( z, = 8o rLF Wz (Z0 pSf ( 5 _ 50 P'LF, Q b 4 I CaM#5) 3 5 11.8'75 �S L 2-o-6 ,gym L_ �5� 2 W 1 747 6.75 x13-56UQ 2t F-vy Page 13 of .54 U Q- RA Structural Engineering Project Title: Van Willigen Residence 77570 Springfield Lane, Suite D Engineer: R.A. Proiect ID: 150331 Palm Desert, CA. 92211 Project Descr: Addition +Remodeling (760)77-1-9993' Wood Beam Description : BM#5 @ Rear Patio CODE REFERENCES Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10. Load Combination Set: ASCE 7-10 File APR Material Properties 0.190 : 1 Section used for this span 4x10 Analysis Method: Allowable Ztress Design Fb - Tension 875.0 psi E: Modulus of Elasticity Load Combination ASCE 7-10 Fb - Compr 875.0 psi Ebend- xx 1,300.Oksi Span#where maximum occurs = Fc - Prll 600.0 psi Eminbend - xx 470.0 ksi Wood Species ; Douglas Fir - Larch Fc - Perp 625.0 psi Wood Grade : No.2 Fv 170.0 psi Load Combination Span Ft 425.0 psi Density 32.210pcf Beam Bracing : Beam is Fully Braced against lateral -torsion buckling +D+H 1 0.0683 4.785 0.0000 .0.000 i i �•.�a f� M1 �H% 9 Span = 9.50 it : Appuea;Loaas. Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Uniform Load: D = 0.080, Lr = 0.080, Tributary Width =1.0 It, (Roof) Varying Uniform Load : D(S,E) = 0.0->0.050 k/ft, Extent = 4.50 ­> 9.50 -ft, Trib Width =1.0 ft, (Roof) Point Load D = 0.0840, Lr = 0.0580 k (o, 4.50 ft, (BM#4) - Maximum Bending Stress Ratio Section used for this span fb : Actual FB: Allowable Load Combination Location -of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection 0.4431 4x10 580.91 psi 1,312.50psi +D+Lr+H 4.611 ft Span # 1 Maximum Shear Stress Ratio = 0.190 : 1 Section used for this span 4x10 fv : Actual = 40.30 psi Fv : Allowable = 212.50 psi Load Combination +D+Lr+H Location of maximum on span = 8.737 ft Span#where maximum occurs = Span #.1 0.061 in Ratio = 1863 0.000 in Ratio= 0 <360 0.129 in Ratio= 880 0.000 in Ratio= 0 <240 Overall Maximum Deflections Load Combination Span Max. -' Dell Location in Span Load Combination Max. '+' Dell Location' in Span +D+Lr+H 1 0.1295 4.819 0.0000 0.000 Maximum'Deflec_tions foe Load Combinations Load Combination Span Max. Downward Defl Location in Span Max. Upward Defl Location in Span +D+H 1 0.0683 4.785 0.0000 .0.000 +O+L+H 1 0.0683 4.785 0.0000 0,000 +D+Lr+H 1 0.1295 4.819 0.0000 0.000 +D+S+H 1 0.0683 4.785 0.0000 0.000 +0+0.750Lr+0.750L+H 1 0.1142 4.785 0.0000 0.000 +0+0.750L+0.750S+H 1 0.0683 4.785 0.0000 0.000, +D+1160W+H 1 0.0683 4.785 0.0000 0.000 Page 14 of 54 RA Structural Engineering Project Title: Van Willigen Residence 77570 Springfield Lane, Suite D Engineer: R.A. . Project ID: 150331 Palm Desert, CA. 92211 Project Descr: Addition+Remodeling (760)771.-9993 Printed: 17 APR 2015.107AM Description : BM#5 @ Rear Maximum Deflections for Load. Combinations Load Combination Span Max. Downward Deft Location in Span Max. Upward Dell Location in Span +D+0.70E+H 1 0.0683 4:785 0.0000 0.000 +D+0.750Lr+0.750L+0.450W+H 1 0.1142 4.785 0.0000 0.000 +0+0.750L+0.750S+0.450W+H 1 0.0683 4.785 0.0000 0.000 +0+0.750L+0.750S+0.5250E+H 1 0.0683 4.785 0.0000 0.000 +0.60D+0.60W+0:60H 1 -0.0410 4.785 0.0000. 0.000 +0.60D+0.70E+0.60H 1 0.0410 4.785 0.0000 0.000 ' D Only 1 0.0683 4.785 0.0000 0:000 Lr Only 1 0.0612 4.819 0.0000 0.000 Veitical'Reactions Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 0.913 1.068 Overall MINimum 0.288 0.334 +O+H 0.481 0.557 +D+L+H 0.481 0.557 +D+Lr+H 0.913 1.068 +D+S+H 0.481 0.557 +0+0:750Lr+0.750L+H 0.805 0.940 +0+0.750L+0.750S+H 0.481 0.557 +0+0.60W+H 0.481 0.557 +D+0.70E+H 0.481 0.557 +D+0.75OLr+0.750L+0.450W+H 0.805 0.940 +D+0.750L-4750S+0.450W+H 0.481 0.557 +D+0.750L+0.750S+0.5250E+H 0.481 0.557 +0.60D40.6.OW+U.60H 0.288 0.334 40.60D40.7OE+01.60H 0.288 0.334 D Only 0.481 0:557 Lr Only 0.432 0.51.1 L Only S Only W Only E Only H Only Page 15 of 54 RA Structural Engineering 77570 Springfield Lane, Suite D Palm Desert, CA. 92211 (760)771-9993 Project Title: Van Willigen Residence Engineer: R.A. Project ID: 150331 ProjectDescr: Addition+Remodeling 1111111111111116 Printed: 17 APR 2015. 9:55AM WrWood Beam FIIe=C:lUsersUsandysOMUME-1lENERCA;IIVANML-1(EC6 ENERCALC, INC. 1983-2015, Bulld:6.15.1.19, Ver6.15.1.19. KW-06005737Licensee: RA STRUCTURAL ENGINEERING Description: 8M#6 (Cantilever @ Rear Patio) CODE REFERENCES Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 0.3921 Maximum Shear Stress Ratio = 0.181 : 1 Section used for this span Load Combination Set: ASCE 7-10 Section used for this span 3.5x11.875 fb : Actual = Material Properties fv : Actual = 65.75 psi FB: Allowable = Analysis Method: Allowable Stress Design Fb - Tension 2,900.0 psi E: Modulus of Elasticity Load Combination ASCE 7-10 Fb - Compr 2,900.0 psi Ebend- xx 2,000.Oksi 0.000ft Fc - PHI 2,900.0 psi Eminbend - xx 1,016.54 ksi Wood Species : Truss Joist Fc - Perp 750.0 psi Maximum Deflection Wood Grade : Parallam PSL 2.0E Fv 290.0 psi Max Downward Transient Deflection 0.298 in Ratio= Ft 2,025.0 psi Density 32.210pcf Beam Bracing :Completely Unbraced 4464 0.0000 Max Downward Total Deflection (— 316 0.6438 8.500 D(0.481)Lr(0.432)—, 3.5x11.875 U 3.501.875 Span = 5.50 ft Span = 8.50 ft Applied Loads --- Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load : D = 0.020, Lr = 0.020 , Tributary Width =1.0 ft, (Rool) Load for Span Number 2 Uniform Load: D = 0.020, Lr = 0.020 , Tributary Width = 1.0 ft, (Roof) Point Load: D = 0.4810, Lr = 0.4320 k (a, 8.50 fl, (BM#5) Maximum Bending Stress Ratio = 0.3921 Maximum Shear Stress Ratio = 0.181 : 1 Section used for this span 3.5x11.875 Section used for this span 3.5x11.875 fb : Actual = 1,391.90psi fv : Actual = 65.75 psi FB: Allowable = 3,553.14psi Fv : Allowable 362.50 psi Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span = 0.000ft Location of maximum on span = 4.517 ft Span # where maximum occurs = Span # 2 Span # where maximum occurs = Span # 1 Maximum Deflection Max. Upward Dep Location in Span +D+H Max Downward Transient Deflection 0.298 in Ratio= 684 0.000 Max Upward Transient Deflection -0.015 in Ratio= 4464 0.0000 Max Downward Total Deflection 0.644 in Ratio= 316 0.6438 8.500 Max Upward Total Deflection -0.032 in Ratio= 2064 Overall Maximum Deflections Load Combination Span Max.'-' Dep Location in Span Load Combination Max. '+' Den Location in Span 1 0.0000 0.000 +D+Lr+H -0.0320 3.196 +D+Lr+H 2 0.6438 8.500 0.0000 3.196 Maximum Deflections for Load _ _ Combinations ' Load Combination Span Max. Downward Dep Location in Span Max. Upward Dep Location in Span +D+H 2 0.3460 8.500 0.0000 0.000 +D+L+H 2 0.3460 8.500 0.0000 0.000 +D+Lr+H 2 0.6438 8.500 0.0000 0.000 Page 16 of 54 RA Structural Engineering 77570.Springfield Lane, Suite D Palm Desert, CA. 92211 (760)771-9993 Description: BM#6 (Cantilever .@ Reai Maximum Deflections for LoadCombinations Project Title: Van Willigen Residence Engineer: R.A. Project ID: 150331 Project Descr: Addition+Remodeling 17 -APR 2015. 9:55AM Load Combination Span Max. Downward Deft Location in.Span Max. Upward Dell Locabon,in•Spgn tO+S+H 2 0.3460 8.500, 0.0000 0.000 +0+0,750Lr+0.750L+H 2 0.5694 8.500 0.0000 0.000 +0+0.750L+0.750S+H 2 0.3460 8.500 0.0000 01.000 +0+0.60W+H 2 0.3460 8.500 0.0000 0:000 +D+0.70E+H 2 0,3460 8.500 0:0000 0.000 +0+0.750Lr+0.750L+0.450W+H 2 0.5694 8.500 0:0000: 0.000 +D+6.750L+0.750S+0.450W+H 2 0.3460 8.500 .0.0000 0.000 +0+0.750L+0.750S+0.5250E+H 2 0.3460 8.500 0.0000 0.000 +0.60D+0.60W+0.601-1 2 0.2076 8.500 0.0000 0.000 +0.60D+0.70E+0.60H 2 0.2076 8.500 0.0000 0.000 D Only 2 0.3460 8.500 0.0000, 0.000 Lr Only 2 0:2978 8.500 10.0000 0.000 VertlCai.Reactions Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Support 3 Overall MAXimum -1.599 3.202 • f Overall MINimum -0.513 1,048 +D+H -0.855 1.746 +D+L+H -0.855 1.746 +O+Lr+H =1.599 3.202 +O+S+H -0.855 1.746 +D+0.750Lr+0.750L+H -1:413 2.838 +0.750L+0.750S.+H -0.855 1.746 +D+0.60W+H -0.855 1.746 +D+0.70E+H -0.855 1.746 +0+0.750Lr+0.750L+0:450W+H -1.413 2.838 +D+0.750L+0.750S.+0.450W.+H -0.855 1.746 +D+0.750L+0.7505+0.5250E+H -0.855 1.746 +0.60D+0.60W+O.60H -0.513 1.048 +O:60D+O.70E+O.60H -0.513 1.048 D Only -0.855 1.746 Lr Onl 4.744 1.456 Y L.Only S' Only W Only E Only H Only Page 17 of 54 RA Structural Engineering. Project Title: Van Willigen Residence 77570 Springfield Lane, Suite D Engineer: R.A. - Palm Desert, CA. 92211 . ' ` Project Descr: Addition+Remodeling (760)771-9993 Description : BM#7 @ Rear Patio CODE -REFERENCES Proiect I0: 150331 17 APR 2015.11:50Md Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 Load Combination Set: ASCE 7-10 - Material Properties - ' . + • - Maximum Bending Stress Ratio = Analysis Method: Allowable Stress Design Fb - Tension 2,400.0 psi E: Modulus of 0800Y Load. Combination ASCE?-10 Fb -Compr 1,850.0 psi Ebend--xx 1,800.Oksi tv : Actual = Fc - Prll 1,650.0 psi Eminbend.- xx 930.Oksi Wood Species : DF/DF Fc - Perp 650.0 psi Ebend- yy 1,600:0 ksi Wood Grade :24F - V4$ - Fv 265.0 psi Eminbend - yy 830.Oksi Span # 1 Ft 1,100.0 psi Density 32.21 d pcf Beam Bracing : Beam is Fully Braced against lateral -torsion buckling 1 Max Downward Transient Deflection 0.407 in Ratio= 737 0.000 Max Upward Transient Deflection 0.000 in Ratio= 0 <360. 12.318 Span = 25.0 It ��. A_PPlied Loads . _ Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads .Uniform Load : D = 0.10, Lr = 0.080 , Tributary Width =1.0 ft, (Roof) Point Load: D =0.5570, Lr = 0.5110 k aO 8.0 ft, (BM#5) Point Load : D = 0. 1420, Lr = 0.1170 kaO13.0 ft, (BM#4) ' DESIGN SUMMARY ' . + • - Maximum Bending Stress Ratio = 0.446 1 -Maximum Shear Stress Ratio = 0.156: 1 Section used for this span 6.75x13.5 Section used for this span 6.75x13.5 fo : Actual = 1,264.13psi tv : Actual = 51.62 psi FB: Allowable = 2,834.48psi Fv : Allowable = 331.25 psi .. Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span = 11.405ft Location of maximum on span = 0.000 ft Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1 Maximum Deflection - +D+L+H 1 Max Downward Transient Deflection 0.407 in Ratio= 737 0.000 Max Upward Transient Deflection 0.000 in Ratio= 0 <360. 12.318 Max Downward Total Deflection 0.971 in Ratio= 308 1 Max Upward Total Deflection 0.000 in Ratio= 0 <240 0.000 0vealf.Mazimum: Deflections ' Load Combination Span Max.'-* Defl Location in Span Load Combination Max. '+" Defl Location in Span +D+Lr+H 1 0.9714 12.318 0.0000 0.000 r: Maximum Deflections for load Combinatlons Load Combination ^- Span Max. Downward Defl Location in Span Max. Upward Deo Location In Span +D+H 1.. 0.5645: 12.318 0.0000 0.000 +D+L+H 1 0,5645 12.318 - 0.0000 0.000 +D+Lr+H :. 1 0.9714.. 12.318 0.0000 0.000 +D+S+H 1 0.5645 12.318 0.0000 0.000 +D+0.750Lr+0.750L+H 1 0.8697 12.318 0.0000 0.000 +D+0.750L+0.750S+H 1 0.5645 12.318 0.0000 0.000 +D+0.60W+H 1 0.5645 12.318 0.0000 0.000 .Page 18 of 54 RA.Structural Engineering 77570 Springfield Lane, Suite D Palm Desert; CA. 92211 (760)771-9993 Description: BM#7 @ Rear'Pabo Mazimum,Deflections:fot load Combinations Project Title: Van Willigen Residence Engineer: R.A. Project Descr: Addition+Remodeling Project ID: 150331 Printed: 17 APR 2015. .1 IMAM Load Combination Span Max. Downward Def Location:in Span Max. Upward Deft Location in Span +0+0.70E+H 1 0.5645 12.318 0.0000 0.000 +0+0.750Lr+0.75OL40.450W+H 1 0.8697 12.318 0.0000. 0.000 +".750L40.750S+0.450W+H 1 0.5645 12.318 0.0000 0.000 +0+0.750L+0.750S+0.5250E+H 1 0.5645 12.318 0.0000 0.000 +0.60D40.60W+0.60H 1 0.3387 12.318 0.0000 0.000 +0.60D40.70E+0.60H 1 0.3387 12.318 0.0000 0.000 D Only 1 0.5645 12.318 0.0000 0.000 Lr Only 1 0.4069 12.318 0.0000 0.000 ; 'Vertical Reaction$ Support notation : Far left is #1 Values in KIPS _ Load Combination Support 1 Support 2 Overall MAXimum 3.355 2.981 Overall MINimum _ 1.171 1.054 +D+H 1.952 1.757 +O+L+H 1.952 1.757 +O+Lr+H 3.355 2.981 +O+S+H 1.952 1.757 +0+0.750Lr40.750L+H 3.004 2.675 +0+0.750L+0.750S+H 1.952 1.757 +0+0.60W+H 1.952 1.757 - D+ .70E+H 1:952 1.757 +0+0.750Lr+0.750L+0..450W+H 3.004 2.675 ` +D+0.750L40.750S+0.450W+H 1.952 1.757 +0+0.7501.+0.750S+0.5250E+H 1.952 1.757 1.171 1.054 •+0.60D+0.60W+0.60H +0.60D+0.70E+0.60H 1.171 1.054 D Only 1.952 1.757 Lr Only 1:404 1.224 L Only S'Only W Only E Only H Only , C Page 19 of 54 r 'i Page 19 of 54 RA Structural Enzineerina, Inc. SHEET: JOB NO: 15c3 31 DATE:. LI Lt 11 S 5m 6 x lu 27 Ps.f RA C r6 = Z z z C 1260 �b 1� z 32u OLF 2LI/) = o pLF. Po.c-7o 1 -fib x=2 (12, -f 12- z P� L.: { 2 0 r54) 2-1/ � �132 6 Z 'f s � Zs x 9 5 P �. Page 20 of 54 RA Structural Engineering 77570 Springfield Lane, Suite D Palm Desert, CA. 92211 (760)771-9993 61 d Beam Description: 8Mk9 CODE REFERENCES Project Title: Van Willigen Residence Engineer: R.A. Proiect ID: 150331 Project Descr: Addition+Remodeling Printed; 17 APR. 2015. 1:1 OKA Calculations per NDS 2012, IBC 2012, CBC 2013, ASCE 7-10 Ratio= 3445 0.000 in Load Combination Set: ASCE 7-10 0 <360 0.033 in Ratio= Material Properties 0.000 in Ratio= 0 <240 Analysis -Method: Allowable. Stress Design Fb - Tension 1350 psi E: Modulus of Elasticity Load Combination ASCE 7-10 Fb - Compr 1350 psi Ebend- xx 1600ksi Fc - Prll 925 psi Eminbend - xx 580ksi Wood Species : Douglas Fir - Larch Fc - Perp 625 psi Max. Upward Def! Wood Grade : No.1 Fv 170 psi 0.0190. 2.015 Ft 675 psi Density 32.21 pcf Beam Bracing : Completely Unbraced 0.0190 2.015 0.0000 D(1.7) Lr(1.26) 8X8 Spun - 4.0 H _hppuea toads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Uniform Load: D = 0.3240; Lr = 0.240, Tributary Width =1.0 h, (Roof} Point Load : D =1.70, Lr = 1.260 k A 2.0 ft, (BM#8) aximum Bending Stress Ratio Section used for this span fb : Actual FB: Allowable Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection 0.5671 6x8 955.68 psi 1,685.00 psi +D+Lr+H 2.000ft Span # 1 Maximum Shear Stress Ratio Section used for this span fv : Actual Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 0.014 in Ratio= 3445 0.000 in Ratio= 0 <360 0.033 in Ratio= 1459 0.000 in Ratio= 0 <240 0.389 : 1 6x8 82.73 psi 212.50 psi +D+Lr+H 3.367 ft Span # 1 Overall Maximum, Deflections Load Combination Span Max. -* Defl Location in Span Load Combination Max.'+' Defl Location in Span +D+Lr+H 1 0.0329 2.015 0.0000 0.000 Maxlmum Deflections for Load Combinations Load Combination Span Max. Downward DO Location In Span Max. Upward Def! Location in Span +D+H 1 0.0190. 2.015 0.0000 0:000 +O+L+H 1 0.0190 2.015 0.0000 0.000 +D+Lr+H 1 0.0329 2.015 0.0000 0.000 -D+S+H • 1 0.0190 2.015 0.0000 0.000 +D+0.750Lr+0.750L+H 1 b.0294 2.015 6.0000 0.000 +0+0.750L-0.750S+H 1 0.0190 2.015 0.0000 0:000 +M.60W4.H 1 0.0190 2.015 0.0000 0.000 +M.70E+41 1 0.0190 2.015 0.0000 0.000 Page 21 of 54 RA Structural Engineering Project Title: Van Wiiligen Residence 77570 Springfield Lane, Suite D Engineer: R.A. Project ID: 150331 Palm Desert, CA. 92211 Project Descr: Addition+Remodeling (760)771-9993 Description: BM#9 -Maxi for Load Comb(nations ' Load Combination Span Max. Downward Deft Location in Span Max. Upward Defl Locationin Span +D+0.750Lr+0.750L+0.450W+H 1 0.0294 2.015 0.0000 0.000 +0+0.750L+0.750S+0.450W+H 1 0.0190 2.015 0.0000 0.000 +0+0.750L+0.750S+0.5250E+H 1 0.0190 2.015 0.0000 0.000 +6.60D40.60W+0.60H 1 0.0114 2.015 0.0000 0.000 +0.600+0.70E+0.60H 1 0.0114 2.015 0.0000 0.000 D Only 1 6.0190 2.01,5 10.0000 0.000 Lr Only 1 0.0139' 2.15, 0.0000' 0.000 VeoicaL:Re;ptions Support notation: Far left Is:#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 2.626 2.626 Overall MINimum 0.910 0.910 +D+H 1.516 1.516 +D+L+H 1.516 1.516 +O+Lr+H 2.626 2.826 +O+S+H 1.516 1.516 +0+0.750Lr+0.750L+H 2.349 2.349 +D+0.750L40.750S*H 1.516 1.516 +D+0.60W+H 1.516 1.516 4:70E4H 0+0 1.516 1.516 +0+0.750Lr+0.750L+0.450W+H .2.349 2.349 +0+0.750L+0.750S+0.450W+H 1.516 1:516 +0+0.750L+0.750S45250E+H 1.516 1:516 +0.60D+0.60W+0.60H 0.910 0.910 +0.60D+0.70E+0.60H 0.910 0:910 D Only 1.516 1.516 Lr Only 1.110 1.110 L Only S Only W Only E Only H Only Page 22 of 54 RA Structural Engineering Project Title: Van Willigen Residence 77570 Springfield Lane; Suite D Engineer: . R.A. Project ID: 150331 Palm Desert, CA. 92211 Project Descr: Addition+Remodeling (760)771-9993 'Printed: 17 APR 2015, 1:30PM Flle = C Wser vsandyslDOCUME-IIENERCA HVANWH 1:EC6? Wood Beam ' " ' ENERCALCJNC.19832015;Bu(Id6151;19;Ver.6.15.1i19` Description: BM#10 Section used for this span 1,711.15psi fv : Actual = CODE REFERENCES Fv : Allowable = +D+Lr+H - Load Combination Calculations, per NDS 2012, IBC 2012, CBC 2013, ASCE 740 Location of maximum on span = Span # 1 Span # where maximum occurs = Load Combination Set: ASCE 7-10 823 0.000 in Ratio = 0 <360 Material Properties 334 0.000 in Ratio = 0 <240 Analysis. Method: Allowable Stress Design Fb - Tension 2900 psi E: Modulus of Elasticity Load. Combination ASCE 7-10 Fb - Compr 2900 psi Ebend- xx 2000ksi Location in Span Fc - Pdl 2900 psi Eminbend - xx 1016.535 ksi Wood Species : Truss Joist Fc - Perp 750 psi +D+L+H Wood Grade : Parallam PSL 2.0E Fv 290 psi 0.0000 • Ft 2025 psi _ Density 32.21 pcf Beam Bracing : Completely Unbraced 0.0000 0.000 +D+S+H APp11ea Loaas_ if, . Beam self weight calculated and added to loads. Point Load D =1.782, 'Lr =1.320 k (ad) 5.0 ft, (Existing Ridge Beam) Maximum Bending Stress Ratio = Section used for this span fb : Actual = FB: Allowable = Load Combination Location of maximum on span = Span # where maximum occurs = Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection L Span =17.0 ft Service loads entered. Load Factors will be applied for calculations.. 0.478 1 Maximum Shear Stress Ratio 5.25x9.5 Section used for this span 1,711.15psi fv : Actual = 3,578.50psi Fv : Allowable = +D+Lr+H - Load Combination 5.02611 Location of maximum on span = Span # 1 Span # where maximum occurs = 0:248 in Ratio = 823 0.000 in Ratio = 0 <360 0.610 in Ratio = 334 0.000 in Ratio = 0 <240 0.189 ' 1 5.25x9.5 68.46 psi 362.50 psi +D+Lr+H. 0.000 ft Span #.1 k.. 'Overall Maxlmum;Deflections - -• Load Combination Span Max. ' ' Defl Location in Span Load Combination Max. W Deft Location in Span +D+Lr+H 1 0.6098 7.693 .0.0000 0.000 7; Maxi mum' Deflections for Load Combinations; Load Combination Span Max. Downward Deft Location In Span Max. Upward Deft Location in Span +D+H 1 0.3621 7.693 0.0000 ' 0.000 +D+L+H 1 0.3621 7.693 0.0000 0.000 -+D+Lr+H 1 • 0.6098 7.693 0.0000 0.000 +D+S+H -1 0.3621 7.693 0.0000 _ 0-000 +0+0.750Lr+0.750L+H 1 0.5479 7.693 0.0000 0.000 +0+0.750L+0.750S+H ' 1 0.3621 7.693 0.0000 0.000 +D+0.60W+H 1 0.3621 7.693 0.0000 0.000 +0+0.70E+H 1 03621 7.693 0.0000 0.000 +.D+0.750Lr+4.750L+0.450W+H 1 0.5479 7.693 0.0000 0.000 - Page 23 of 54 RA Structural Engineering Project Title: Van Willigen Residence 77570 Springfield Lane, Suite D Engineer: R.A. Project ID: , 150331 Palm Desert, CA. 92211 Project Descr: Addition+Remodeling (760)771-9993 Ponted I7 APR 2015.1:30R., F.ile=C1Users1158ndys\D000ME t1ENERCA 11VANWIL;I EC6 WOO.d •B@ally c r - ENERCALC,INC.;19832015,;BuIId615.L19,Ver6.15ai:19 Description: BM#10 • Maximum Deflections for -Load Combinations Load Combination Span Max. Downward Deft Location in Span Max. Upward Deft Location in Span +D+0.750L40.750S40.450W+H 1 0.3621 7.693 0.0000 0.000 +D+0.750L+0.750S+0.5250E+H 1 0.3621 7.693 .0.0000 0.000 +0.60D+0.60W+0.60H 1 0.2173 7.693 0.0000 0.000 40.600+030E4601-1 1 0.2173: 7.693 0.0000 0.000 D Only 1 0.3621 7.693 0.0000 0.000 Lr Only 1 0.2477 7.631 0.0000 0.000 V@rtlCaf Reactions Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 2.284 1.007 Overall MINimum 0.812 0.371 +D+H 1.353 0.619 +D+L+H 1.353 0.619 +D+Lr+H 2.284 1.007 +D+S+H 1.353 0:619 4"',750Lr--0.750L+H 2.052 0.910 +D+0.750L+0.750S+H 1.353 0.619 +D+0,60W+H 1.353 0.619 +D+0.70E+H 1.353 0.619 +W.750Lr4O.75OL40.450W+H 2.052 0.910 +D+0.750L-4750Si0.450W4H 1.353 0.619 +040.750L40.75OS40.5250E+H 1.353 0.619 +0.60D -460W40.601-11 0.812 0.371 +0.60D40.70E+0.60H 0.812 0.371 D Only 1.353 0.619 Lr Only 0.932 0.388 L Only S Only W Only E Only H Only • Page 24 of 54 �M- • • PROJECT: Wood Post Design Table PAGE: t 14-C-I-tTRA1. CLIENT: Van Willigen Residence DESIGN BY: R.A. 1--�A-P'NG,1 4E.IN I*N( JOB NO.: 150331 DATE :4/14/2015 REVIEW BY: R.A. Tables for Wood Post Desiqn Based on NDS 2012 RATION FACTOR (1.0, 1.15, 1.25, 1.6) Co = 1.00 , (NDS 2.3.2) MMERCIAL GRADE (# 1 or # 2) # 2 Post Axial Capacity for Douglas Fir -Larch # 2, (kips) Height Section Size ft 4 x 4 4 x 6 4 x 8 4x10 .4x12 6x6 6x8 6x10 6x12 8x8 8x10 6 10.89 16.85 21.84 27.34 33.25 19.59 26.72 33.85 40.97 37.92 48.03 7 8.68 13.51 17.62 22.21 27.01 18.89 25.76 32.63 39.49 37.33 47.28 8 6.96 10.87 14.22 18.00 21.89 17.99 24.54 31.08 37.63 36.59 46.34 9 5.66 8.85 11.60 14.72 17.90 16.91 23.06 29.21 35.35 35.69 45.21 10 4.67 7.31 9.59 12.19 14.82 15.66 21.35 27.05 32.74 34.61 43.84 11 3.90 6.12 8.04 10.23 12.44 14.32 19.52 24.73 29.93 33.34 1 42.23 12 3.31 5.19 6.83 8.69 10.57 12.96 17.67 22.39 27.10 31.87 40.37 13 2.84 4.46 5.86 7.46 9.08 11.67 15.91 20.15 24.39 30.23 38.30 14 2.46 3.86 5.08 6.47 7.87 10.47 14.28 18.09 21.90 28.46 36.05 15 2.15 3.38 4.45 5.67 6.89 9.41 12.83 16.25 19.67 26.62 33.72 16 1.90 2.98 1 3.92 5.00 6.08 8.46 11.54 14.62 17.70 24.76 31.37 17 1.69 2.65 3.49 4.44 5.40 7.63 10.41 13.19 15.96 22.96 29.08 18 1.51 2.37 3.12 3.97 4.83 6.91 9.42 11.93 14.44 21.23 1 26.89 19 1.36 2.13 2.80 3.57 4.35 6.27 8.55 10.83 13.12 19.62 24.85 20 1.23 1.92 2.53 3.23 3.93 5.72 7.79 9.87 11.95 18.13 22.96 21 1.11 1.75 2.30 2.94 3.57 5.22 7.12 9.02 10.92 16.76 21.23 22 1.02 1.59 2.10 2.68 3.26 4.79 6.53 8.28 10.02 15.52 19.66 23 0.93 1.46 11.92 2.45 2.98 4.41 6.01 7.62 9.22 14.39 18.23 24 0.85 1.34 1.77 2.26 2.74 4.07 5.55 7.03 8.51 13.36 16.93 25 0.79 1.24 1.63 2.08 2.53 3.77 5.13 6.50 7.87 12.43 1 15.75 26 0.73 1.15 1.51 1.92 2.34 3.49 4.76 6.03 7.30 11.59 14.68 27 0.68 1.06 1.40 1.79 1 2.17 3.25 4.43 5.61 6.80 10.82 13.71 28 1 0.63 0.99 1.30 1.66 1 2.02 1 3.03 4.13 5.23 6.34 10.13 12.83 29 0.59 0.92 1.22 1.55 1.89 2.83 3.86 4.89 1 5.92 9.49 12.02 30 1 0.55 1 0.86 1 1.14 1.45 1 1.76 1 2.65 3.62 4.58 1 5.54 8.91 11.29 Post Axial Capacity for Southern Pine # 2, (kips) Height Section Size ft 4 x 4 4 x 6 4 x 8 4x10 4x12 6x6 6x8 6x10 6x12 8x8 8x10 6 11.10 17.27 22.54 28.44 34.17 14.96 20.41 25.85 31.29 28.68 36.32 7 8.79 13.73 17.98 22.77 27.49 14.57 19.87 25.16 30.46 28.33 35.89 8 7.02 10.98 14.41 18.30 22.15 14.07 19.18 24.30 29.42 27.91 35.36 9 5.69 8.91 11.71 14.89 18.05 13.45 18.35 23.24 28.13 27.41 34.72 10 1 4.69 7.35 9.66 12.30 14.91 1 12.72 17.35 1 21.98 26.61 26.80 1 33.95 11 3.92 6.15 1 8.09 10.30 12.50 11.90 16.22 20.55 24.87 26.09 33.05 12 3.32 5.21 6.86 8.74 10.61 11.00 15.00 19.00 23.00 25.26 32.00 13 2.85 4.47 5.88 7.50 9.10 10.09 13.76 17.42 21.09 24.32 30.81 14 2.47 3.87 5.10 6.50 7.89 9.20 12.54 15.88 19.23 23.27 29.47 15 2.16 3.39 4.46 5.69 6.91 8.36 11.40 14.44 17.48 22.12 28.02 16 1.90 2.99 3.93 5.01 6.09 7.59 10.35 13.11 15.87 20.91 26.48 17 1.69 2.65 3.49 4.45 5.41 6.89 9.40 11.91 14.42 19.66 24.91 18 1.51 2.37 3.12 3.98 4.84 6.27 8.56 10.84 13.12 18.42 23.33 19 1.36 2.13 2.81 3.58 4.35 5.72 7.80 9.88 11.96 17.21 21.80 20 1.23 1.93 2.54 3.24 3.93 5.23 7.13 9.04 10.94 16.05 20.33 21 1.11 1.75 2.30 2.94 3.57 4.80 6.54 8.28 10.03 14.95 18.94 22 1.02 1.60 2.10 2.68 3.26 4.41 6.01 7.62 9.22 13.93 17.65 23 0.93 1.46 1.93 2.46 2.99 4.06 5.54 7.02 8.50 12.98 16.45 24 0.86 1.34 1.77 2.26 2.74 3.76 1 5.12 6.49 7.86 12.11 15.34 25 0.79 1.24 1.63 2.08 2.53 3.48 4.75 6.01 7.28 11.31 14.33 26 0.73 1.15 1.51 1.93 2.34 3.23 4.41 5.59 6.76 10.58 13.40 27 0.68 1.06 1.40 1.79 2.17 3.01 4.11 5.20 6.30 9.90 1 12.54 28 0.63 0.99 1.30 1.66 2.02 2.81 3.83 4.85 5.88 9.28 1 11.76 29 1 0.59 0.92 1.22 1.55 1.89 2.63 3.58 4.54 1 5.50 1 8.72 1 11.04 30 1 0.55 0.86 1.14 1.45 1 1.76 j 2.46 3.36 4.25 1 5.15 1 8.20 1 10.39 Note: 1. The bold values require steel bearing plate based on, F,l, 625 psi. 2. The table values are from Wood Column software at www.Engineering-international.com . Page 25 of 54 Ll - 0 ALLOWABLE POINT LOAD ON CONTINUOUS. FOOTING P MAX = S8 x S x W - (150ox9ox12) 144 144 P MAX = 5000 J=4_0 :Al 1 St04. ^� Page 26 of 54 0 Page 27 of 54 4/1912015 converting Addresses to/from Latitude/LongitudelApitude in One Step (Geocoding) Converting Addresses to/from Latitude/Longitude/Altitude in One Step Stephen R Morse, San Francisco Batch Mode (Forward) I I Batch Mode (Reverse) Batch Mode (Altitude) I I Deg/Min/Sec to Decimal Computing Distances Frequently Asked Questions My Other Webpages address 55221 Riviera city La Quinta state CA. Zip 92253 country United States � Determine Lat/Lon Get Altitudes set re latitude longitude above values must be in decimal with minus signs for south and west Determine Address reset 55221, R • U Access geocoder.us / geocoder.ca (takes a relatively long time) fromog ogle latitude longitude 7:]altitude decimal F33,6491929 I -1 1.6.27498300000002 deg -min -sec 33° 38' 57.0944" -116° 16' 29.9388" fromyak h_oo latitude _ Ilongitude I altitude decimal 33.6489 -116.274719 deg -min -sec 33° 38' 56.148" -116° 16' 28.9884" 55221 Riviera, La Quinta, California 92253 from open street m Ilatitude longitude — I altitude decimal 33.6490750876292 -116.274792 1 1 9644 deg -min -sec 33° 38' 56.6-7-073-7]F--116- 1629.2516" viers_ La Ouinta_ Riverside Countv. California. 92253. United States of 1 from tamu latitude Ilongitude altitude decimal IF33.649104243236 -116.274779564181 deg -min -sec 33° 38' 56.7753" -116° 16' 29.20 -6W -]E- 54901-55709 9.2064" C C L N 7 � Z httpJ/stevemorse.orgrca]AaU on.php 54901-55709 Riviera CA 92253 kmerica, Page 28 of 54 1/1 4/19/2015 Design Maps Summary Report III USS Design Maps Summary Report User -Specified Input Report Title Van Will igen Residence Sun April 19, 2015 19:30:31 UTC Building Code Reference Document ASCE 7-10 Standard • (which utilizes USGS hazard data available in 2008) Site Coordinates 33.649190N, 116.27498°W Site Soil Classification Site Class D - "Stiff Soil" Risk Category I/II/III 20500�.,; + ,. til 11 ina ji 0-10m1 _ =�=liighv.aj% r`•.s ,,,,., , 1 !+ s f# rf "`- ` ,,rJr I , c .a , „W �'f=`�+� (�...r• li i 'eJ'p1ti1S .!'}�! -il 1i-...-...• 4- Itsal-lL,,,M=� �I _ y w Hays _.kna�.:, % • ,: _ .tt. I_.. _ +.� �. �,C ac he l -a�.%c�. •� 3, 1,'G7 A:llutltl;wtr.�t,_ 1"(Po' Iroee Cs .t iY i'j w •'l 1 t{•a� S$'d �I 'ftr tt dCyv,.! � ,� b4 r RY �?y.d ' +s* ".ASH skLSh4a.u,+r7.n:�y! s ( r i• .'r� ,� . ,�--E �_ y TI! { L aL"t * } "�♦' t ' !; '' "fty ", Y f «• ' t s.d { kfl \ p �r F� , M E F ��,*t� � , .. *. JiS�'.C� hd�unhSU,�,,.��re_ly�N� >'...A,t I: ~ : a � � �1."•.: "{'r s"" .. .R_. �" ^ . wi",S T �"„9✓ E}... s • .i 1S, heel �fE1 pgU85L 02015 M90tieest Some data 02015:'V USGS-Provided Output esti SS = 1.500 g SMs = 1.500 g SDs = 1-0009 S1= 0.610g SMI= 0.915g SD1= 0.610g For information on how the SS and S1 values above have been calculated from probabilistic (risk -targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and. select the "2009 NEHRP" building code reference document. MCEa Response Spectrum Design Response Spectrum 1.65 1.50 1.35 1.20 1.05 v 0.90 to 0.75 0.60 0.45-- 0.20.- 0.15-- 0.00 .450.300.150.00 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 Period, T (sec) 1.10 0.99 0.77 -- cm 0.66 v LA 0.55- 0.44- 0.33-- 0.22-- 0.11 .550.440.330.220.11 0.00 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 Period, T (sec) For PGAM, TL, CRS, and CR, values, please view the detailed report. Page 29 of 54 httpJ/ehp2-earthquake.wr.usgs.gov/desigrimaps/us/summary.php?template=mi rdma18Jatitude=33.6491929&Iorigitbde=-116.27498300000002"iteclass=3&risk..: 1/2 CLIENT: Van W, e'Structural Engineering, Inc. SHEET: SUBJECT: AWillil' + /*r'►��� 6,J - JOB NO:'( 503 3 DESIGN BY: (R.A-. DATE: L(, i 15,,15 Lures of IOU d fir dy sus V\/A = C�7Ps x `c� ++0DP4-AU 14 z � WA u52� �b ��I =2a ISob�6 � 00 ' + 1-1 S x2x�lx = Lf`1 2 �N = 20 S xgx2�7 C �� 2� 3 � C r� , 16 V/0 ; (.2 7pq X 52- x2 Y,3) 55 70 7 �b Page 30 of 54 X = 0.75 (ASCE 7 Tab 12.8-2) T = Ct (hn)x = 0.104 sec, (ASCE 7 Sec 12.8.2.1) R.A. Calculate Vertical Distribution of Forces & Allowable Elastic Drift (ASCE 7, Sec 12.8.3 & 12.8.6) Level Wx hx hxk Wxhxk FX , ASD (12.8-11) Sxe,allowable, ASD Roof 14:52 9 9.0 131 1.6 (o.11 wx ) 0.4 14.5 131 1.6 r Where k = PROJECT: Seismic Load (Diaphragm A) PAGE: like,allowable, ASD = Aa 1/ (1.4 Cd), (ASCE 7 Sec 12.8.6) k = �.rRUCTURAL CLIENT: Van Willigen Residence. DESIGN BY: Cd = 4 ,(ASCE 7 Tab 12.2-1) NGINITKING JOB NO.: 150331 DATE: 4/20/2015 REVIEW BY.: for T >= 2.5 One Sto . ;Seismic Analysis Based on 2012 IBC ! 2013 CBC Aa = '0.02 hsx, (ASCE 7 Tab 12.12-1) Determine Base Shear (Derived from ASCE 7 Sec. 12.8 &Supplement 2) V = MAX{ MIN ( SD11 / (RT) , SDS I / R.] MAX(0.044SD51 , 0.01) 0.5S1,1 / R } W = MAX{ MIN[ 0.90W , 0.15W 1, 0.04W 0:05W } _ � = 0.15 W, (SD) ' ; (for S1 z 0.6 g only) = 0.11 W, (ASD) = 1.60 kips Where ' SDg = 1 (ASCE 7 Sec 11.4.4) SD1 = 0.61 (ASCE 7 Sec 11.4.4) S1 = 0.61 (ASCE 7 Sec 11.4.1) R = 6.5 (ASCE 7 Tab 12.2-1) 1= } 1 (2012 IBC Tab 1604.5 & ASCE 7 Tab 11.5-1) Ct = 0.02 (ASCE 7 Tab 12.8-2) hn = 9.0 ft X = 0.75 (ASCE 7 Tab 12.8-2) T = Ct (hn)x = 0.104 sec, (ASCE 7 Sec 12.8.2.1) R.A. Calculate Vertical Distribution of Forces & Allowable Elastic Drift (ASCE 7, Sec 12.8.3 & 12.8.6) Level Wx hx hxk Wxhxk FX , ASD (12.8-11) Sxe,allowable, ASD Roof 14:52 9 9.0 131 1.6 (o.11 wx ) 0.4 14.5 131 1.6 r Where k = 1 for T <= 0.5 like,allowable, ASD = Aa 1/ (1.4 Cd), (ASCE 7 Sec 12.8.6) k = 0.5 T + 0.75 for T @ (0.5 , 2.5) Cd = 4 ,(ASCE 7 Tab 12.2-1) k = 2 for T >= 2.5 Aa = '0.02 hsx, (ASCE 7 Tab 12.12-1) Iculate Diaphragm Forces (ASCE 7; Sec 12.10.1.1) Level Wx, EWx Fx £Fx Fpx , ASD, (12.10-1) Roof 14.5 14.5 1.6 1.6 1.9 ( 0.13 wx ) 14.5 1.6 v Where Fml„ = 0.2 SDS I Wx / 1.5 , ASD Finax = 0.4 SDS I Wx / 1.5 , ASD • Page 31 of 54 R PROJECT: Seismic Load (Diaphragm B) PAGE, 5 rtu'c"ru :v- CLIENT: Uan.. , illigen Residence DESIGN -BY: R.A; JOB NO.: 150331 DATE: 4/20/2015 REVIEWBY:. R.A. One'Story Seismic Analysis Based on 2012 SBC'./ 20.13 CBC Determine Base Shear (Derived from ASCE 7 Sec. 12.8 &:Supplement 2) V = MAX{ MIN [ SD11 / (RT) , SDS I / R ] MAX(0.044SnSl , 0.01) 0.551 I / R ) W = MAX{ MIN[ 0.90W , 0.15W ] , 0.04W 0.05W) t = 0.15 W. (SD) ;(for. S, z 0.6 g only) _ 0.11 W, (ASD) = 0.20 kips Where SDS = 1 (ASCE 7 Sec 11.4.4) SDI = 0.61 (ASCE 7 Sec 11.4.4) $1 = 0.61. (AS.CE 7 Sec 11.4.1) R = 6.5 (ASCE 7 Tab 12.2-1) 1 = 1 (2012 IBC Tab 1604.5 & ASCE 7 Tab 11.5-1) Ct = 0.02 (ASCE 7 Tab 12.8-2) hn = 9.0 ft X= 0.75 (ASCE 7 Tab 12.8-2) T = Ct (hn)x = 0.104 Sec, (ASCE 7 Sec 12.8.2.1) Iculate Vertical Distribution of Forces &Allowable Elastic Drift (ASCE 7, Sec 12.8.:3 8,12.8.6) Level . Wx hx hxk Wxhxk Fx , ASD (12.8-11) Sxe,allowable, ASD Roof 1.8 9 9.0 16 0.2 (o. i -t wx) 0.4 1.8 16 0.2 Where k = 1 for T <= 0.5 j. xe;allowable, ASD = Da 1/ (1.4 Cd), (ASCE 7 Sec 1.2:8.6) k = 0.5 T + 0.75 for T @ (0.5 , 2.5) Cd = 4 (ASCE 7 Tab 12.2-1) k = 2 for T >= 2.5 Aa = 0.02 hsx, (ASCE 7 Tab 12.12-1) Calculate Diaphragm Forces (ASCE 7, Sec 12.10.1.1) Level Wx EWx 'Fx EFx Fpx , ASD, (12.10-1) Roof 1.8 1.8 0.2 0.2 0.2 ( 0.13 Wx) 1.8 0.2 Where Fmi„ = 0.2 SDS'I Wx / 1.5 , ASD Finax = 0.4 SDS I Wx / 1.5 , ASD Page 32 of 54 PROJECT: Seismic Load (Diaphragm C) PAGE: srhCt'r�`�i. CLIENT: Van Willigen Residence DESIGN BY: R.A. �C•NGI�IEI:FL�G , JOB NO.: 150331 DATE: 4/20/2015 REVIEW BY: R.A. One' Story -Seismic Analysis Based on 2012 IBC / 2013 CBC Where k = Determine Base Shear (Derived from ASCE 7 Sec. 12.8 & Supplement 2) for T <= 0.5 V = MAX{MIN { SD11 / (RT) , SDS I / R ] MAX(0.044SDSl , 0.01) 0:5S1 I / R) W k = = MAX(MIN[ 0.90W , 0.15W ] , 0.04W 0.05W) for T @ (0.5 , 2.5) , = 0.15 W, (SD) (for S1 z 0.6 g only) k = = 0.11 W, (ASD) = 0.54 kips for T >= 2.5 Where SDS = 1 (ASCE 7 Sec 11.4,4) SD1 = 0.61 (ASCE 7 Sec 11.4.4) S1 = 0.61 (ASCE 7 Sec 11.4.1) R = 6.5 (ASCE 7 Tab 12.2-1) 1 = 1 (2012 IBC Tab 1604.5 & ASCE 7 Tab 11.5-1) Ct = 0.02 (ASCE 7 Tab 12.8-2) hn = 9.0 ft X = 0.75 (ASCE 7 Tab 12.8-2) T = Ct (hn)x = 0.1.04 sec, (ASCE 7 Sec 12.8:2.1)' Calculate Vertical Distribution of Forces ,& Allowable Elastic Drift. (ASCE 7, Sec_12.8.3 & 12.8.6) Level Wx hx hxk Wxhxk. Fx , ASD (12.8-11) Sxe,allowable, ASD Roof 4.932 9 9.0 44 0.5 (o.vi 1 wx) '0.4 4.9 44 0.5 Where k = 1 for T <= 0.5 Iaxe,allowable, ASD = Aa 1/ (1.4 Cd), (ASCE 7 Sec 12.8.6) k = 0.5 T + 0.75 for T @ (0.5 , 2.5) , l i Cd = 4 (ASCE 7 Tab 12.2-1), k = 2 for T >= 2.5 11Aa = 0.02 hsx, (ASCE 7 Tab 12.12-1) alculate Diaphragm Forces (ASCE 7, Sec 12.10.1.1) Level Wx EWx Fx EFx Fpx , ASD, (12.10=1) Roof 4.9 4.9 0.5 0.5 0.7 ( o.13 wx ) 4.9 0.5 Where Fmin = 0,2 SDS I Wx / 1,5 „ASD Fina, = 0.4 SDS 1 Wx / 1.5 , ASD Page 33 of 54 R PROJECT : Seismic load (Diaphragm PAGE I'I&C' r��' CLIENT : Van Willigen Residence DESIGN BY: 'R.A. k,- %\i;G41i MM; JOB NO.: 150331 DATE: 4/20/2.015 REVIEW BY.: R.A. One Story Seismic Analysis Based on 2012 IBC / 2013 CBC Determine Base Shear (Derived from -ASCE 7 Sec. 12.8 & Supplement 2) V = MAX(MIN [ SD11 / (RT) ., SDS I / R ] MAX(0.044SoSl , 0.01) 0.5S1 1 / R) W = MAX(MIN[ 0.90W , 0.15W ] , 0.04W 0.05W) vT __. = 0.15 W, (SD) (for S, a 0.6 g only) = 0.11 W, (ASD) = 6.12 kips Where SDS = 1 (ASCE 7 Sec 11.4.4) SD1 = 0.61 (ASCE 7 Sec 11.4:4) S1 = 0.61 (ASCE 7 Sec 11.4.1) R = 6.5 (ASCE 7 Tab 12.2-1) 1 = 1 (2012 IBC Tab 1604.5 & ASCE 7 Tab 11.5-1) Ct = 0.02 (ASCE 7 Tab 12.8-2) hn = 9.0 ft X = 0.75 (ASCE 7 Tab 12.8-2) T = Ct (hn)x = 0.104 sec, (ASCE 7 Sec 12.8.2.1) Iculate Vertical Distribution of Forces & Al Iowa ble.Elastic Drift (ASCE 7, Sec 12.8.3 & 12:8.6) Level Wx hx hxk Wxhxk Fx , ASD (12.8-11) 8xe,allowable. ASO Roof 55.707 9 9.0 501 6.1 (o.1, Wx) 0.4 55.7 501 6.1 Where k = 1 for T <= 0.5 :8xe,allowable, ASD = 4a 1/ (1.4 Cd), (ASCE 7 Sec 12.8,6) k = 0.5 T + 0.75 for T @ (0.5 , 2.5) Cd = 4 ,(ASCE 7 Tab 12.2-1) k = 2 for T >= 2.5 ' Aa = 0.02 hsx, (ASCE 7 Tab 12.12-1) Iculate Diaphragm Forces (ASCE 7, Sec 12.10.1.1) Level Wx EWx Fx EFx Fpx , ASD, (12.10-1) Roof 55.7 55.7 6.1 6.1 7.4 (o. T3-Wx ) 55.7 6.1 - Where Fmin = 0.2 SDS I Wx / 1.5 ASD Fina, = 0.4 SDS I Wx / 1.5 , ASD 0 Page 34 of 54 • 1-1 • PROJECT: Wind Load (Diaphragm A) S'I'RUC'RA. Al. CLIENT: Van.Willigen Residence mE.M.iINIC1iGIKC; Ino ►In . Aen121111 INPUT DATA Roof an Ie 0 = 30.07 Roof an le 0 = 0.00 GCpf Exposure Category (B, C or D, ASCE 7-10 26.7.3) with C Net Pressure with Importance factor (ASCE 7-10 Table 1.5-2) Iw = 1.00 for all Category Basic wind speed (ASCE 7-10.26.5.1 or 2012 IBC) V = 110 mph Topographic factor (ASCE 7.10 26.8 8 Table 26.8-1) Ke = 1 Flat r v Building height to eave he = 9 it L Building height to, ridge hr = 14.5 it Building length L = 19 ft Building width B = 19 ft Effective area of components (or Solar Panel area) A = 20. ft' DESIGN.SUMMARY Max horizontal force normal to building length, L, face Max horizontal force normal to building length. B, face Max total horizontal torsional load ANALYSIS velocity Pressure qh = 0:00256 Kh K, Ka V2 = 22:38 psf where: qh = velocity -pressure at mean roof height, h. (Eq. 28.3-1 page 298 & Eq. 30.3-1 page 316) Kh = velocity pressure exposure coefficient evaluated at height, h, (Tab. 28.3.1, Pg 299) 0.85 Kd = wind directionality factor. (Tab'. 26.6-1, for building, page 250) = 0.85 h"= mean roof height • 11.75 It < 60 ft, [Satisfactory] (ASCE 7-10 26.2:1) < Min (L, B), (Satisfactory] (ASCE 7-10 26.2:2) Design Pressures for MWFRS p = cih ((G Cpf )•(G CPI )] where: p = pressure in appropriate zone. (Eq. 28.4-1,.page 298). Amin = 16 psi (ASCE 7-1028.4.4) G Cp f = product of gust effect factor and external pressure coefficient, see table below. (Fig. 28.4-1, page 300 & 301) G Cp i = product of gust effect factor and internal pressure coefficient. (Tab. 26.11-1, Enclosed Building, page 258j 0.18 or -0.18 a =width of edge strips, Fig 28.4-1, note 9, page 301, MAX[ MIN(0.1 B, 0.11, 0.4h), MIN(0.04B, 0.04L), 3] _ PAGE: DESIGN BY: 5.46 kips, SO level (LRFD level),.Typ.. 3.91 kips 14.00 ft -kips 5 78 kine Not Droeeurac rnen At air'J and rnene SE S 2 2 2E S *2E SE \6✓� RCFE.RENCEEE SE .'REFERENCE CORNERr1ND DIRECTION 2c, o d WIND DIRECTION Load Case.A (Transverse) Load Case B (Longitudinal) 3.00 ft Net Pressures (Dsf). Torsional Load Cases Roof an Ie 0 = 30.07 Roof an le 0 = 0.00 GCpf Net Pressure with GCpf Net Pressure with Surface (-GC,.) (-GCP0 .(+GCpI) (-GCf,1) 1 0.56 8.50 16.56 -0.45 -1410 -6.04 2 0.21 0.67 8.73 -0.69 -19.47 -11.41 .3 -0.43 -13.65 -5.60 -0.37 -12.31 -4.25 4 -0.37 -12.31 4.25 -0.45 -14.10 -6.04 5 0.40 4.92 12:98 6 -0.29 -10.52 -2.46 1E 0.69 11.41 19.47 -0.48 -14.77 -6.71 2E 0.27 2.01 1.0.07 -1.07 -27.98 49.92 3E •0.53 -15.89 -7.83 -0.53 -15.89 -7.83 4E 0.48 14.77 6.71 0.48 -14.77 -6.71 5E 0.61 9.62 17.68 6E -0A3 1 -13.65 1 -5.60 SE S 2 2 2E S *2E SE \6✓� RCFE.RENCEEE SE .'REFERENCE CORNERr1ND DIRECTION 2c, o d WIND DIRECTION Load Case.A (Transverse) Load Case B (Longitudinal) 3.00 ft Net Pressures (Dsf). Torsional Load Cases JF y 11 p z<2 tE _ ✓6 5 IT i _1 RErrRENCE 00RNER IE a 04� WLVD 014ECTION L� a- REFERENCE CORNER ,�. W110 NRECT6N Load.Cose A (Transverse) Load Case B (Longitudinal) Page 35 of 54 Roof an Ile 0 = 30.07 G cp f Net Pressure with Surface (+GC,,l') (-GC 1) 1T 0.56 2:13 4.14 2T 0.21 0.17 2,18 3T -0.43 -3.41 -1.40 4T -0.37 -3.08 -1.06 Root an le 6 = 0.0re0 G Cp f Net Prossuwith Surface (+GCpr) (-GCp 1) 5T 0.40 1.23 3:25 6T -0.29 -2.63 -0.62 JF y 11 p z<2 tE _ ✓6 5 IT i _1 RErrRENCE 00RNER IE a 04� WLVD 014ECTION L� a- REFERENCE CORNER ,�. W110 NRECT6N Load.Cose A (Transverse) Load Case B (Longitudinal) Page 35 of 54 • 0 Racir 1 nad race a fTranavama ni-ml-% Tn el I nad r- A /T.e............. nt...�.t--.-t Basic Load Case B (Longitudinal Direction). Area pressure k with Surface SurfaceArea (+GC,i) (-GC,I) (-GC , ) (ft!) 1 117 1:00 1.94 2 143 0.10 1.25 3 143 -1.95 -0.80 4 117 -1.44 -0.50 1E 54 0.62 1.05 2E 66 0.13 0.66 3E 66 -1.05 -0.52 4E 54 -0.80 -0.36 1. Horiz. 5:46 5.46 r Vert. -2.39 0.51 Min. wind Horiz. 4.41 4.41 28.4.4 Vert. -5.78 -5.78 Tn el I nad r- A /T.e............. nt...�.t--.-t Basic Load Case B (Longitudinal Direction). Surface Area Pressure k with SurfaceArea (+GC,'i) (+GC„) (-GC , ) (R') (n') 2 143 -2.78 -1.63 3 143 -1.76 -0.61 5 164 0:81 2.13 6 164 -1.73 -0.40 2E 66 -1.84, -1.31 3E 66 -1.05 -0.52 5E 59 0.57 1.05 6E 59 -0.81 -0.33 2 Horiz. 3.91 3.91 -0.80 -0.36 Vert. 4.13 -1.32 Min, Wind' Horiz. 3.57 3.57 28.4.4 -Vert. -5.78 -5.78 Surface Area PressureW with Torsion ft -k (+GC i) (-GC, i) (+GC,'i) (-GCP I ) (-GCpI) (R') 1 32 0.27 0.52 1 2 2 38 0.03 0.34 0 1 3 38 -0.52 -0.21 1 0 4 32 -0.39 -0.13 1 0 1E 54 0.62 1.05 4 7 2E 66. 0.13 0.66 0 2 3E 66. -1.05 -0.52 3 2 4E 54 -0.80 -0.36 5 2 1T 86 0.18 0.35 .1 -2 2T 104 0.02 0.23 0 .1 3T 104- -0.36 -0.15 .1 0 4T 86 -0.26 -0.09 1 -1 0 Total Horiz. Torsional Load, M, 1 13 13 Tnminnal I nad Cana R rl nnnifnAinnl rllmrti-t Design pressures for components and cladding Tr- z r3 s r �, } p = qhl (G Cp) - (G Cpl)j s i s where: p = pressure on component. (Eq. 30.4-1. pg 318) "'° • 's , I r^^' -I-- pmin = 16.00 psf (ASCE 7-10.30.2.2) 1 1 1 1 -,G C, =external pressure coefficient Wolfs see table below. (ASCE 7-10 30.4.2) Roof a-, Roof a>r- Effectivo Zone 1 Zone 2 Zone 3 Zone 4 ZoneS Area (ft') GC - GC GC - GC GC - GC GC • GC GC GC Com . 20 0.87 -0.94 0.87 -1.14 0.87 -1."14 0.95. -1.05 0.95 -1.29 Comp. & Cladding Pressure ( psf 1 Area Pressure k with Torsion n-li Surface Neiltive, Positive Neg.ttve (+GC, I) (-GCpI) (+GC, I) (-GC,,) (ft=) 2 143 -2:78 -1.63 -2 -1 • 3 143 -1.76 -0.61 1 0 5 52 0.26 0.68 1 2 6 52 -0.55 -0.13 2 0 ,2E 66 -1.84 -1.31 7 5 3E 66 -1.05 -0.52 -4 -2 5E 59 0.57 1.05 5 8 6E 59 -0.81 -0.33 6 3 5T 112 0.14 0.36 -1 -2 6T 112 1 -0.29 -0.07 -1 0 Total Horiz. Torsional Load, M? 14.0 14.0 Design pressures for components and cladding Tr- z r3 s r �, } p = qhl (G Cp) - (G Cpl)j s i s where: p = pressure on component. (Eq. 30.4-1. pg 318) "'° • 's , I r^^' -I-- pmin = 16.00 psf (ASCE 7-10.30.2.2) 1 1 1 1 -,G C, =external pressure coefficient Wolfs see table below. (ASCE 7-10 30.4.2) Roof a-, Roof a>r- Effectivo Zone 1 Zone 2 Zone 3 Zone 4 ZoneS Area (ft') GC - GC GC - GC GC - GC GC • GC GC GC Com . 20 0.87 -0.94 0.87 -1.14 0.87 -1."14 0.95. -1.05 0.95 -1.29 Comp. & Cladding Pressure ( psf 1 one 1 Zone 2 Zone 3 Zone 4 1 Zone S Poskivd N ativo Posleve Negative positive Nalialve Peshltre Neiltive, Positive Neg.ttve 23.50 25.06 1 23.50 -29.54 2150 -29.54 25.22 -27.46 25.22 -32.98 Note: If the effective area is roof Solar Panel area, the only zone 1, 2 , or 3 apply. Page 36 of 54 • • ®R PROJECT: Wind Load (0(af-kel�jv\ C PAGE: ti l'r2L:1:.:'1'LA AL CLIENT: Van Wlligen Residence DESIGN BY: RA. �`'�u'tnEr'1't,tr.`„ JOB NO. ' 150331 DATE: 04/1.5/15 REVIEW BY: .R.A.. Wind Analysis for Low-rise Building: Based on ASCE 7-2010 INPUT DATA Exposure Category (B, C or D. ASCE 7.10 26.7.3) Roof an le 0 = 24.78 C G C °' Importance factor (ASCE 7.10 Table 1.5-2) Iw = 1.00 for all Category Basic wind speed (ASCE 7-10 26.5.1 or 201218C) V = 110 mph `- Topographic factor (ASCE 7-10.26.8 8 Table 26.8-1) Kt, = 1 Flat Building height to eave he = 9 d It ` Building height to ridge hr = 21 It Building length L = 31 ft Building width B = 52 ft Effective area.of components (or Solar Panel area) A = 20 ft' DESIGN SUMMARY Max horizontal force normal to building length, L. face = 10.42 kips, SD level (LRFD level), Typ; Max horizontal force normal to building length. B, face = 12.52 kips Max total horizontal torsional load = 78.27 ft -kips Max total upward force - 25.79 kips ANALYSIS Velocity Pressure qh = 0.00256 Kh Kn Kd Vz = 22.38 psf where: qh = velocity pressure at mean roof height, h. (Eq. 28.3-1 page 298 & Eq. 30.3-1 page 316) Kh = velocity pressure exposure coefficient evaluated at height, h, (Tab. 28.3-1, pg 299) 0.85 Kd = wind directionality factor. (Tab. 26.6-1, for building, page 250) 0.85 h = mean roof height 15.00 It < 60 it, [Satisfactory] (ASCE 7-10 26.2.1:) < Min (L, B), [Satisfactory] (ASCE 7-10 26.2.2) Design Pressures for MWFRS p = qh [(G Cpr )-(G Cpl )] where: p = pressure in appropriate zone. (Eq. 28:4-1, page 298). Pmin _ 16 psf (ASCE 7-10 28.4.4) G CpI = product of gust effect factor and extemal.pressure coefficient, see,table below. (Fig..28.4-1, page 300 & 301) G Cp i = product of gust effect factor and internal pressure coefficient.(Tab. 26.11-1, Enclosed Building, page 258) = 0.18 or -0.18 a = width of edge strips, Fig 28.4-1, note 9, page 301, MAX( MIN(0.1B, 0.1L, 0.4h), MIN(0.04B, 0.04L), 3] _ 3.10 ft Nat PIAQ..- 1 -fl Reein I -A r-. !E 1 2 4E�= REFERENCE CORNER. a� >rV0 OIRECAgV Load Case A (Transverse) 2 2E 3 6� \ ✓ 4 6[- 1E _�.�FE I ---I E %5EE_ _ 5 REFERF,VCE CORNER 2a ° �' N{ND DIRECTION Load Case B (Longitudinal) Net Pressures (psf), Torsional Load Cases Roof an le 0 = 24.78 Roof an le 0 = 0.00 G C °' Net Pressure with G C ° ` Net Pressure with Surface (+GCp I) (-GCp i) (+GCp) (-GC i ) 1 0.54 8.15 16.21 -0.45 -14.10 -6.04 2 -0.26 -9.85 -1.80 -0.69 -19.47 -11.41 3 -0.46 -14.24 -6.18 -0.37 -12.31 -4.25 4 -0.40 -13.01 -4.95 -0.45 -14.10 -6.04 5 6T -0.29 0.40 4.92 12.98 6 -0.29 -10.52 -2.46 ,. 1E 0.75 1+2.70 20.76 -0.48 -14,77 -6.71 2E -0.43 -13.65 -5.60 -1.07 -27.98 -19.92 3E -0.61 -17.76 -9.70 -0.53 -15.89 -7.83 4E -0.56 -16.64 -8.58 -0.48 -14.77 -6.71 5E 0.61 9.62 17.68 6E -0.43 -13.65 -5.60 !E 1 2 4E�= REFERENCE CORNER. a� >rV0 OIRECAgV Load Case A (Transverse) 2 2E 3 6� \ ✓ 4 6[- 1E _�.�FE I ---I E %5EE_ _ 5 REFERF,VCE CORNER 2a ° �' N{ND DIRECTION Load Case B (Longitudinal) Net Pressures (psf), Torsional Load Cases SE 1 ST 2t '2E 2 6 4E`` D � 5 It '1 REFERENCE CORNER- IE ° �'w;ND OIRECr.ON 27 ! SE 6 ti, 4 SE__' .,-4E 6 51 IE k RErERENCE CORNER WIND DIRECTION Load Case A (Transverse) Load Case B (Longitudinal) Page 37 of 54 Roof angle 0 = 24.78 G C °` Net'Pressure with Surface (+GCp1) (Gc,,5 1T 0.54 2.04 4.05 2T -0.26 -2.46 -0.45 3T -0.46 -3.56 -1.54 4T -0.40 -3.25 -1.24 Roof an le 0 = 0.00 G C P f Not Pressure with Surface 5T 0.40 1.23 3.25 6T -0.29 -2.63 1 -0.62 SE 1 ST 2t '2E 2 6 4E`` D � 5 It '1 REFERENCE CORNER- IE ° �'w;ND OIRECr.ON 27 ! SE 6 ti, 4 SE__' .,-4E 6 51 IE k RErERENCE CORNER WIND DIRECTION Load Case A (Transverse) Load Case B (Longitudinal) Page 37 of 54 • 10 Rnair 1 nail Caen A /Tranaunran rlirartinnl Tnrninnal Lnad Cann A ITranauornn hi-finnl Basic Load Case B Longitudinal Direction) Area Pressure k with Surface Surface (+GC, 0 (-GCPi ) (-GCpi) (8=) 1 223 1.82 3.62 2 710 -7.00 -1.28 3 710 " -10.11 -4.39 4 223 -2.90 -1.11 1E 56 0.71 1.16 2E 178 -2.42 -0.99 3E 178 -3.15 -1.72 4E 56 -0.93 -0.48 -0.34 Horiz. 7.97 7.97 12.52 Vert. -20.60 -7.61 Min. wind Horiz. 10.42 10.42 28.4.4 Vert. -25.79 -25.79 Tnrninnal Lnad Cann A ITranauornn hi-finnl Basic Load Case B Longitudinal Direction) Tnralnnal 1 narl r -an R Ilnnnlfulllnnl nimetinnl Area Pressure ftwith Surface (ft') (+GCpi) (-GCpi) (+GC 1) (ft') 2 710 -13.83 :8.11 3 710 -8.74 -3.02 5 720 3.54 9.34 6 720 -7.57 -1.77 2E 178 -4.87 -3.54 3E 178 .-2.82 -1.39 5E 60 0.58 1.06 6E 60 -0.82 -0.34 -2.42 Horiz. 12.52 12.52 3E Vert. -20.71 -9.44 Min. wind Horiz. 12.48 12.48 28.4.4 Ven. -25.79 -25.79 Tnralnnal 1 narl r -an R Ilnnnlfulllnnl nimetinnl Area Pressure k with Torsion ft -k Surface (ft') (+GC 1) (-GCp 1) (+GC 1) (-GC 1) 1 84 0.68' 1.36 4 8 2 266 -2.62 -0.48 -7 -1 3 266 -3.79 -1.65 10 4 4 '84 -1.09 -0.41 7 3 1E 56 0.71 1.16 9 14- 2E 178 -2.42 -0.99 -13 -5 3E 178 -3.15 -1.72 16 9 4E 56 -0.93 -0.48 12 6 it 140 0.28 .0.57 -2 -4 2T 444 -1:09 -0.20 4 1 3T 444 -1.58 -0.69 -5 -2 4T 1 140 -0.45 1 -0.17 -4 -1 Tnralnnal 1 narl r -an R Ilnnnlfulllnnl nimetinnl Total Horiz. Torsional Load, MT 31 31 Design pressures for components and cladding �^ r -- } 3 r= t A i' -, I'll p e 9hl (G Cp) - (G Cpl)] where: p = pressure on component. (Eq. 30.4-1, pg 318) l°"" • ' s e i°"" ? ; ;' '' Pmin = 16.00 psf (ASCE 7-10 30.2.2) G Cp = external pressure coefficient. Wolls - _ z J `sag T13't see table below. (ASCE 7-10'30.4.2) Roof e.+ Roof' o..,• t 1 Effective Zone / 1 Zone 1 Zone J 1 Zone 4 1 Zone 6 Area Ot') GC - GCp I GC - GCp I GC -GC GC - GC GC GC Comp. 20 0.44 -0.87 0.44 -1.55 0.44 -2.42 0.95 -1.05 0.95 1 -1.29 Comp. 3 Cladding Pressure ( PSI) Zone 1 I Pressure k with Torsion R -k surfaceArea (a=) (+GC i) (-GI) C (+GC •i) (-GC 1) 2 710 -13.83 -8.11 -9 -5. 3 710 -8.74 -3.02 6 2 .5 330 1.62 4.28 17 44 6 330 -3.47 -0.81 35 8 2E 178 -4.97 -3.54 29 21 3E 178 -2.82 -1.39 -16 -8 5E 60 0.58 1.06 14 26 6E 60 -0.82 -0.34 20 8 5T 390 0.48 1.27 -5 -14 6T 390 -1.03 -0.24 -12 -3 Total Horiz. Torsional Load, MT 78.3 78:3 Total Horiz. Torsional Load, MT 31 31 Design pressures for components and cladding �^ r -- } 3 r= t A i' -, I'll p e 9hl (G Cp) - (G Cpl)] where: p = pressure on component. (Eq. 30.4-1, pg 318) l°"" • ' s e i°"" ? ; ;' '' Pmin = 16.00 psf (ASCE 7-10 30.2.2) G Cp = external pressure coefficient. Wolls - _ z J `sag T13't see table below. (ASCE 7-10'30.4.2) Roof e.+ Roof' o..,• t 1 Effective Zone / 1 Zone 1 Zone J 1 Zone 4 1 Zone 6 Area Ot') GC - GCp I GC - GCp I GC -GC GC - GC GC GC Comp. 20 0.44 -0.87 0.44 -1.55 0.44 -2.42 0.95 -1.05 0.95 1 -1.29 Comp. 3 Cladding Pressure ( PSI) Zone 1 I Zone 2 Zone ] Zone 4 Zone S Positive Neqative .Positive Negative Poafive Negstlw Poaahe- N ative Positive N a1We 16.00 -23.50 16.00 =38.71 16.00 -58.17 25.22 -27.46 25.22 Note: If the effective area is roof Solar Panel area, the only zone 1, 2 , or 3 apply. Page 38 of 54 CLIENT: Vah wi rr,:�ern A Structural EnineeYin�. Inc. SHEET: SUBJECT: Adh +on JOB N0: 156 33 I DESIGN BY; 2 DATE: y /15/15 s� , ,OYC rn P 2 �' j -!Ae Y GJct�.Q on &Yi' �'h2 (S'W#'�) L • A -r (3 a 5 e. iW C, &o Vf y'y% I600x1.3x1/ foo I.3� 130o�.bI x $6 L(. C 2)�C -7 sl,euy WW, (Sw#3) L= IL4 0 SCi5MiC.1 V_cw� 6120x1-3 x 3�/z ) ��54o xl•3x �2 1 = 27a3,Q.b Xlly,- 1�5P1F 52 bol 1252n Qb x 0.6 5 ,-56 - r . GaV'e Y A No char Page 39 of 54 m,. • PROJECT: SW#1 PAGE: -R�SrRI"C'R h:,t. CLIENT: •Van Willigen Residence DESIGN BY: R.A. A.E.NGINE11.,11 , JOB NO.: 150331 DATE : 4_/20/2015. REVIEW BY': R.A. Shear Wall Design Based on 2012 IBC ! 2013 CBC ! NDS 2012 INPUT DATA - L LATERAL FORCE ON DIAPHRAGM: vdlo, WIND = 100 plf,for wind yl Vdia. SEISMIC o 149 plf,for seismic. ASD GRAVITY LOADS ON THE ROOF: WDA = 120 plf,for dead load - WILL = 90 plf,for live load _ �-- .� �- -.� _ ho /,. DIMENSIONS: L. = 7 ft, h= 9 ft +� L = 7 ft, ha= 0 ft PANEL GRADE (0 or 1) = 1 <= Sheathing and Single -Floor h MINIMUM NOMINAL PANEL THICKNESS = 3/8 in COMMON NAIL SIZE (0=6d, 1=8d, 2=10d) 1 8d SPECIFIC GRAVITY OF FRAMING MEMBERS 0.5 EDGE STUD SECTION 1 pcs, b = 4, in, h =. 4 in `~„ -V. SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH 7, T. GRADE GRADE ( 1, 2, 3, 4, 5, or 6 ) 4 No. 2 STORY OPTION ( 1=ground level, 2=upper level) 1 ground level shear wall The oncnr...na.►, uwrvr. ra rwcvvra r c. DESIGN SUMMARY BLOCKED 3/8 SHEATHING WITH 8d COMMON NAILS @ 6 in O.C. BOUNDARY & ALL EDGES / 12 In O.C. FIELD, 5/8 in DIA. x 10 in LONG. ANCHOR BOLTS @ 48 in O.C. (or 1/2 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C.) HOLD-DOWN FORCES: TL = 0.80 k , TR = 0.80 k (USE HDU2-1/4x2:5 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 4" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: c1 0.26 in YSIS MAX SHEAR WALL DIMENSION RATIO. L / B = 1.3 E [Satisfactory] MINE REQUIRED CAPACITY va = 149 pif, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 6 in) THE SHEAR CAPACITIES PFR IBC Tahle 2306 31 SDPWS-08 Tahle 4.3A with ASD reduction factor 2.01 Panel Grade Common Nail Min. Mln. I'enetmtion Thickness (in) (in) Blocked Nail Spacing Boun ary &A Edges 1 6 1 4 1 3 1 2 Sheathing and Single -Floor I 8d 1 1/2 1 3/8 1 220 1 320 1 410 1 530 Note: 1. I he Indicated shear numbers have reduced by specitic gravity tactor per Itsu note a. 2. Since the wall is blocked, SOPW-08 Table 4.3.3.2 does not apply. JE DRAG STRUT FORCE: F = (L -Lw) MAX( vala,w(No• ()oVEia. SEISMIC) = 0.00 k ( CIO = qE MAX SPACING OF 5/8" DIA (or 112" DIA) ANCHOR BOLT (NDS 2012, Tab.11E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. (or 1/2 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 In O.C.) Tuc unl n_nnlA1M Cnar`=Q- 1 ) (Sec. 1633.2.6) CHECK EDGE STUD CAPACITY Pn,ax = 1.39 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1350 psi Co = 1.60 Cp = 0.19 A - 12.25 In= E= 1600 ksi Cr = 1.15 F, = 478 psi > f, = 113 psi [Satisfactory) Page 40 of 54 vd;a ( If) Wall Seismic at mid -story (Ibs) Overturning Moments (ft -lbs) Resisting Safety Net Uplift Moments ft -lb's Factors (I S) Hoedown. SIMPSON SEISMIC 149 101 9841 Left 4704 0.9 T = 801 h Right 4704 0.9 T = 801 WIND 100 EA L,,, G/ 6300 Left 4704 2/3 T = 452 J`t' 1� ' Right 4704 2/3 T = 452 CHECK EDGE STUD CAPACITY Pn,ax = 1.39 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1350 psi Co = 1.60 Cp = 0.19 A - 12.25 In= E= 1600 ksi Cr = 1.15 F, = 478 psi > f, = 113 psi [Satisfactory) Page 40 of 54 (TL & TR values should include upper level UPLIFT forces if applicable) ECK MAXIMUM SHEAR WALL DEFLECTION: ( IBC Section 2305.3 / SDPWS-08 4.3.2) 4,41+ %)b17 hC/ „ O/iu, m, +ASlw,+ AA'ad slg7+ OClo,tl sidke .dy, = + 0.75he„ + 0 0.256 .in, ASD < EA L,,, G/ [ „. $xe,allowabte, Aso = 0.386in Where:; va = 149 plf, , ASD L„, = 7 ft E = 1.7E+06 psi [Satisfactory] (ASCE 7-10 12.8.6) A = 16.50 in` h = 9 ft. G = 9.0E+04 psi Cd = 4 1 = 1 I= 0.221 in e„ = 0.010 in, SO da = 0.15 in, SO ,(ASCE 7=10 Tab 12.2-1 & Tab 11;5-1) CM = 1.0 Da = 0.02 hw . (NDS 4.1..4) (ASCE 7-10 Tab 12.12-1) CHECK EDGE STUD CAPACITY Pn,ax = 1.39 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1350 psi Co = 1.60 Cp = 0.19 A - 12.25 In= E= 1600 ksi Cr = 1.15 F, = 478 psi > f, = 113 psi [Satisfactory) Page 40 of 54 PROJECT: SW#2 PAGE: �I IiL'i:111<:v• CLIENT: Van Willige'n Residence DESIGN BY: R.A. _i:v<71NI3tdt.INr7 JOB NO.: 150,331; DATE : 4/20/20,15REVIEW BY: A A:• Shear .Wall Design Based on 2012 IBC / 2013 CBC /;NDS -2012 INPUT DATA LATERAL FORCE ON DIAPHRAGM: vdia, WIND = 120 plf,for wind Vdia, SEISMIC = 186 plf,for seismic, ASD GRAVITY LOADS ON THE ROOF: wDL = 200 plf,for dead load WILL = 170 pif,for live:load DIMENSIONS; Lw = 7 ft, h= 9 R L = 7 ft, ho= 0 ft PANEL GRADE-( 0 or 1) = 1 <= Sheathing and Single -Floor MINIMUM NOMINAL PANEL THICKNESS = 3/8 in COMMON NAIL SIZE (0=6d, 1=8d, 2=10d) 1 8d SPECIFIC.GRAVITY OF FRAMING MEMBERS 0:5 EDGE STUD SECTION 1 PCs, b = 4 in. h = 4 in SPECIES (1 = DFL, 2 = SP.) 1 DOUGLAS FIR -LARCH GRADE ( 1, 2, 3, 4, 5, or 6 ) 4 No. 2 STORY OPTION ( 1=ground level, 2=upper level) 1 ground level shear wall L `` W f —I� _3 - - - - Ve, ti rF� h t� L To Lw Thr unwmr% vvp%L.L wr-7maii r.7 MNr%dZ#mg G. ESIGN SUMMARY BLOCKED 3/8 SHEATHING WITH.8d COMMON NAILS @ 6 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 518 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in D.C. (or 1/2 in DIA. x 10 in LONG ANCHOR BOLTS ($ 40 in O.C.) HOLD-DOWN FORCES: TV = 0.88 k Ta = 0.88 k (USE HDU2-114x2.5 SIMPSON HOLD-DOWN) DRAG, STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 4" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: is = 0.30 in IALYSIS ECK MAX SHEAR WALL DIMENSION RATIO, L / B = 1.3` < 3;5,.[Satlsfactory] TERMINE REQUIRED CAPACITY vp = 186 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 6. in ) THF gHFAR CAPACITIFq PFR IRr. T.hlc Sana a r CnDave_na T.W. a ie ..ark can ...4, II-- 6..w.., e m ,.,yw. I. ,!it: Inu,catea snear numoers nave reaucea Dy speclnc,gravlry tactor per ItiG note a. 2. Since the wall is blocked, SDPW-08 Table 4.3.3.2 does not apply. NE DRAG STRUT FORCE: F = (L -Lw) MAX( va=. WIND. t)ovdb. SEISMIC) = 0.00 k (no NE MAX SPACING OF 5/8" DIA (6r•1/2`' DIA),ANCHOR BOLT (NDS 2012, Tab.11E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS Q 48 in O.C. (or 1/2 in DIA, x 10 in LONG ANCHOR BOLTS.@ 40 in O.C.) TNF unl n_nnWM cnorcc• 1 ) (Sec. 1633.2.6) Min. Min: Blocked Nail Spacing Panel Grade Common Penetration Thickness' Boundary & All Edges Nail (in) in) 6 4 1 3 1 2 Sheathing and Single -Floor 8d 1 112 3/8 220 1 320 1 410 1 530 ,.,yw. I. ,!it: Inu,catea snear numoers nave reaucea Dy speclnc,gravlry tactor per ItiG note a. 2. Since the wall is blocked, SDPW-08 Table 4.3.3.2 does not apply. NE DRAG STRUT FORCE: F = (L -Lw) MAX( va=. WIND. t)ovdb. SEISMIC) = 0.00 k (no NE MAX SPACING OF 5/8" DIA (6r•1/2`' DIA),ANCHOR BOLT (NDS 2012, Tab.11E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS Q 48 in O.C. (or 1/2 in DIA, x 10 in LONG ANCHOR BOLTS.@ 40 in O.C.) TNF unl n_nnWM cnorcc• 1 ) (Sec. 1633.2.6) (TL & TR values should Include upper level UPLIFT forces if applicable CHECK MAXIMUM SHEAR WALL DEFLECTION: ( IBC. Section 2305.3 / SDPWS-084:3.2) _ 8ynh3 vn%, hd„ Q — Qllivtfi,r�, +OSIx„r+�Nni! slyr '}-O( Irn1 art•&t' .Jp— EA -f• C, +0•75her,+ 0.296 In, ASO L,,. Sxe,allowable,ASD= 0.386 in. Where: v, = 186 pif , ASD L,� = 7 R E - 1.7E+06 psi(Satisfactory) [ ry) (ASCE 7-10.12.8:E A = 16.50 in' h = 9 ft G = 9.0E+04 psi Cd = 4 I= 1 I= 0.221 in e„ = 0.015 in. SD d,,,= 0.15 in, SD ,(ASCE 7.10 Tab 12.2-1 & Tab 11.5.1 CM = 1.0. o, = 0.02. h,,. CHECK EDGE STUD CAPACITY (NDS 4.1.4) (ASCE 7-10 Tab 12.12-1) Pmax = 1.79- kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1350 psi Co = 1.60 CP = 0.19 A = 92.25 .in°• • E = 1600 ksl CF= . 1.15 Fc' = 478 psi > fc = 146 psi [Satisfactory] Page 41 of 54 vd;, Wall Seismic Overturning Resisting Safety Net Uplift Holddown pif) at mid-sta (lbs) Moments(ft-lbs) Moments'(ft-lbs) Factors Ibs) •SIMPSON SEISMIC 186 101 12172 LCR 6664 0.9 T = 882 y Right 6664 0.9 T - 882 WIND 120 7560 Left 6664 2/.3 T.= 445 Jti Rii ht 6664 2/3 T = 445 Z� (TL & TR values should Include upper level UPLIFT forces if applicable CHECK MAXIMUM SHEAR WALL DEFLECTION: ( IBC. Section 2305.3 / SDPWS-084:3.2) _ 8ynh3 vn%, hd„ Q — Qllivtfi,r�, +OSIx„r+�Nni! slyr '}-O( Irn1 art•&t' .Jp— EA -f• C, +0•75her,+ 0.296 In, ASO L,,. Sxe,allowable,ASD= 0.386 in. Where: v, = 186 pif , ASD L,� = 7 R E - 1.7E+06 psi(Satisfactory) [ ry) (ASCE 7-10.12.8:E A = 16.50 in' h = 9 ft G = 9.0E+04 psi Cd = 4 I= 1 I= 0.221 in e„ = 0.015 in. SD d,,,= 0.15 in, SD ,(ASCE 7.10 Tab 12.2-1 & Tab 11.5.1 CM = 1.0. o, = 0.02. h,,. CHECK EDGE STUD CAPACITY (NDS 4.1.4) (ASCE 7-10 Tab 12.12-1) Pmax = 1.79- kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1350 psi Co = 1.60 CP = 0.19 A = 92.25 .in°• • E = 1600 ksl CF= . 1.15 Fc' = 478 psi > fc = 146 psi [Satisfactory] Page 41 of 54 • • L] PROJECT: rx SW#3 Min. Min. PenetrationThickness (in) (in) PAGE: 6 4 1 3 1 2 Ir14, c 1C."I- CLIENT: Van Willigen Residence 1 1/2 318 1 DESIGN BY': R.A. setir;IN VI:IViN[t JOB NO.: 150331 DATE : 412012015 REVIEW BY: R,A., Shear Wall Design Based on 2012 IBC / 2013 CBC / NDS 2012 Left 39396 0.9 T = 903 g Right 39396 0.9 T = 903 INPUT DATA % L LATERAL FORCE ON DIAPHRAGM: vale. WIND = 150 plf,for wind 34650 Left 39396 213 T = 599 ' Vdia. SEISMIC ' 195 plf,for seismic, ASD VJ GRAVITY LOADS ON THE ROOF: w - pL - 270 plf,for dead load 1 WLL =. 200 plf,for live.load - ---—� V. -----__ hp DIMENSIONS: L,,,,= 14 ft, h = 16.5 It -- F -- L = 14 ft, h,= 0 ft PANEL GRADE ( 0 or 1) = 1 <= Sheathing and Single -Floor MINIMUM NOMINAL PANEL THICKNESS = 318 in ii COMMON NAIL SIZE (0=6d. 1=8d, 2=10d) 1 8d SPECIFIC GRAVITY OF FRAMING MEMBERS 0.5 EDGE STUD SECTION 1 pcs, b = 4 In. h = 6 in �— - - SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH T,1 T. GRADE ( 1, 2, 3, 4, 5, or 6 ) 4 No. 2 ' STORY OPTION ( 1=ground level, 2=upper level) 1 ground level shear wall j Lw The urlcr�n •tNVL ✓GJIVI• W M✓G�iVMI C. DESIGN SUMMARY BLOCKED 318 SHEATHING WITH 8d COMMON NAILS ® 6 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8, in DIA. x 10 in LONG ANCHOR BOLTS ® 48 in O.C. (or 1/2 in DIA. x 10 in LONG ANCHOR BOLTS (d 38 in O.C.) HOLD-DOWN FORCES: TL = 0.90 k TR = 0.90 k (USE HOU2-1/4x2.5 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F - 0.00 k EDGE STUD: 1 - 4" x 6" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.45 in 1ALYSIS ECK.MAX SHEAR WALL DIMENSION RATIO L / B, = 112 < 3;5 �•] [Satisfactory] TERMINE REQUIRED CAPACITY vo = 195 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 6 in) TNF',WrAD CADAr'ITI=Q Doo ICr• T.J.I.. eo e', cneum — t_u_ . — -..!.I ..... __� _--__ ._ _.- - _ ­ Panel Grade Conunon Nail Min. Min. PenetrationThickness (in) (in) Blocked Nail S acin Boundary & All Edges 6 4 1 3 1 2 Sheathing and Single -Floor 8d 1 1/2 318 1 220 1 320 1 410 1 530 • nluwalcu uncal Ilunluels nave reouceo oy spectnc grawry tactor per roc note a. 2. Since the wall is blocked, SDPW-08 Table 4.3.3.2 does not apply. JE DRAG STRUT FORCE: F = (LA-) MAX(vdl,. WIND• 00Vdm. SEISMIC) = 0.00 k ( no 1 ) (Sec. 1633:2.6) JE MAX SPACING OF 518" DIA (or 1/2" DIA) ANCHOR BOLT (NOS 2012, Tab. 11E) 518 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. (or 1/2 in DIA. x 10 in LONG ANCHOR BOLTS @ 38 in O.C.) THE Hnt D.DnWN FnanFc, ( 1 L 6 .t R values should Include upper level UPLIFT forces if applicable iCK MAXIMUM SHEAR WALL DEFLECTION: ( IBC Section 2305.3 / SDPW$-08 4.3.2) _ yn = A&,xiog +Om—,+ Avail '14,+ Au -11 :�/V v ,d¢r _ EAL., h + , +0.75he,,+hd„ — _ 0.448 in, ASD < L„, L,� 8xe,auowable, nsD = 0.707 in Where: ve = 195 plf, , ASD Lw = 14 ft E = 1.7E+06 psi (SaUsfactory) (ASCE 7-1012.8.8 A = 16.50 in' h - 17 It G = 9.0E+04 psi Cd = 4 1 = 1 I = 0.221 in e„ = 0.016 in, SO d, = 0.15 In, SD (ASCE 7-10 Tab 12.2.1 & Tab 11.5-1 CM = 1.0 n; _ 0.02 h„ (NDS 4.1.4) (ASCE 7.10 Tab 12.12-1) CK EDGE STUD CAPACITY Pmar = 4.17 kips, (this value should Include upper level DOWNWARD loads if applicable) F, = 1350 psi Co - 1.60 Cv = 0:15 A = 19.25 Int E = 1600 ksi CF = 1,10 F, - = 355 psi > f, = 216 psi (Satisfactory) Page 42 of 54 vq;, Wall Seismic Overturning Resisting Safety Net Uplift Holddqwn (plf) at mid -story lbs) Moments (ft -lbs) Moments ft -lbs Factors lbs SIMPSON SEISMIC 195 370 48094 Left 39396 0.9 T = 903 g Right 39396 0.9 T = 903 WIND 150 34650 Left 39396 213 T = 599 J'1 Right 39396 213 T = 599 ( 1 L 6 .t R values should Include upper level UPLIFT forces if applicable iCK MAXIMUM SHEAR WALL DEFLECTION: ( IBC Section 2305.3 / SDPW$-08 4.3.2) _ yn = A&,xiog +Om—,+ Avail '14,+ Au -11 :�/V v ,d¢r _ EAL., h + , +0.75he,,+hd„ — _ 0.448 in, ASD < L„, L,� 8xe,auowable, nsD = 0.707 in Where: ve = 195 plf, , ASD Lw = 14 ft E = 1.7E+06 psi (SaUsfactory) (ASCE 7-1012.8.8 A = 16.50 in' h - 17 It G = 9.0E+04 psi Cd = 4 1 = 1 I = 0.221 in e„ = 0.016 in, SO d, = 0.15 In, SD (ASCE 7-10 Tab 12.2.1 & Tab 11.5-1 CM = 1.0 n; _ 0.02 h„ (NDS 4.1.4) (ASCE 7.10 Tab 12.12-1) CK EDGE STUD CAPACITY Pmar = 4.17 kips, (this value should Include upper level DOWNWARD loads if applicable) F, = 1350 psi Co - 1.60 Cv = 0:15 A = 19.25 Int E = 1600 ksi CF = 1,10 F, - = 355 psi > f, = 216 psi (Satisfactory) Page 42 of 54 CLIENT: Van (,.�,' {l 1 .e h SHEET: SUBJECT: � � Structural En�'aneeYan�. Inc. Add4j'0--A+RXr�a�ti�� JOB. NQ: DESIGN BY: �,/�; DATE: LA/15/ 15 64ur W OU o � G r � j 9;y\ f (s ►N W �- = 6 t6 0 -� Se PSm V�c.w � (I boox 13 x �� �. (�oDx �-•3,-: 13ooQb . Wtha ,�du.lA = 5`�6©X o • G x IX2- 1638 Q /13 7 r �- F 12 �,Jzn � Cso�/eYv� SJ�eP� w oh Gyi G; isV\/#: 57 6,5 16'sm" c move ( V\ b V�c�,✓= (1600X 1.3x �) +(,54o x1,3)= 17412A x 1 268 eLF. 11 y t V c w 240 ,Pb X 1- 3 X 2 - -- .9 Lf 3,8 �� x --� ; 2 a.� P F 3i 11 Windt good = I o4 o x o. 6 x + `' _ I a 16 fb 56S."m i C GaMeYK Page 43 of 54 U • I RPROJECT: SW#4 PAGE: 1'Idl'(,:TV: AL CLIENT: Van Willigen Residence DESIGN BY: R.A. m1Z:� Nt:l,rtlal Ira, JOB NO.: 150331 DATE : 4n0/2015 REVIEW BY: R.A: Shear Wall Desion Based on 2012 IBC'/ 2013 CBC / NDS 2012 Nail (in) INPUT DATA Sheathing and Single -Floor L LATERAL FORCE ON DIAPHRAGM: Vdia. WIND = 137 plf,for wind 9864 Vdta, SEISMIC = 120 plf,for seismic, ASD IN GRAVITY LOADS ON THE ROOF: wpL = 27 plf.for dead load h = 12 ft G = 9.0E+04 psi Cd = 4 1 = 1 I = 0.221 in WILL = 20 plf,for live load ,(ASCE 7.10 Tab 12.2-1 & Tab 11.5.1 V� ho CM = 1.0 DIMENSIONS: Lw = 6 ft, h= 12 ft (NDS 4.1A) (ASCE 7.10 Tab 12.12-11 L = 6 ft, •ha= 0 ft f PANEL GRADE (0 or 1) = 1 <= Sheathing and Single -Floor MINIMUM NOMINAL PANEL THICKNESS = 3/8 in h COMMON NAIL SIZE (0=6d. 1=8d, 2=10d) 1 8d SPECIFIC GRAVITY OF FRAMING MEMBERS 0.5 EDGE STUD SECTION 1 pcs, b = 4 in, h = 6 in SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH T, �A V. 10 GRADE( 1, 2, 3. 4, 5, or 6) 4 No. 2 STORY OPTION ( 1=ground level, 2=upper level) 1 ground level shear wall Lw The ,vn=mF% •INCL LoC._�&V,r aJ--------. DESIGN SUMMARY BLOCKED 318 SHEATHING WITH 8d COMMON NAILS 6 in O.C. BOUNDARY & ALL EDGES / 12 in O:C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS Q 48 in D.C. (or 1)2 In DIA. x 10 in LONG ANCHOR BOLTS '@ 48 in.O.C:) HOLD-DOWN FORCES: TIL = 1.40 k , TR = 1.40 k (USE HDU2.1/4x2.5 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 -4" x 6' DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: D = 0.36 In YSIS . MAX SHEAR WALL DIMENSION RATIO LIB = 2.0 < 3.512-3 [SaUafactoryj MINE REQUIRED CAPACITY vb = 137 plf, ( 1 -Side Diaphragm Required, the Max. Nail Spacing = 6 in) TNF CHFeR rA0ArITI=c 1300 ,or V,w o. •- ..,a ,.,a,..a, , nun woi a nave ,CU uceu uy apecmc gravity Tactor per It7c note a. 2; Since the wall is blocked, SDPW-08 Table 4.3.3.2 does not apply. DETERMINE DRAG STRUT FORCE: F = (L -Lw) MAX( VEia. WIND, noVdu: SEISMIC) = 0.00 k ( 00 VE MAX SPACING OF 5/8" DIA (or 12" DIA) ANCHOR BOLT (NDS 2012, Tab.11E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS (4148 in O.C. (or 1/2 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 In O:C.) THE HOLD.DOWN FAR(:FC- 1 ) (Sec. 1633.2.6) Min. Min. Blocked Nail Spacing Panel Grade Common Penetration Thickness Boundary & All Edges 6 1 4 3 1 2 9331 Nail (in) (in) Sheathing and Single -Floor 8d 1 1/2 3/8 220 1 320 1 410 1 530 •- ..,a ,.,a,..a, , nun woi a nave ,CU uceu uy apecmc gravity Tactor per It7c note a. 2; Since the wall is blocked, SDPW-08 Table 4.3.3.2 does not apply. DETERMINE DRAG STRUT FORCE: F = (L -Lw) MAX( VEia. WIND, noVdu: SEISMIC) = 0.00 k ( 00 VE MAX SPACING OF 5/8" DIA (or 12" DIA) ANCHOR BOLT (NDS 2012, Tab.11E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS (4148 in O.C. (or 1/2 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 In O:C.) THE HOLD.DOWN FAR(:FC- 1 ) (Sec. 1633.2.6) EDGE STUD CAPACITY Pmax = 1.34 kips, (this value should include upper level DOWNWARD loads if applicable) F, = '1350 psi CD = 1.60 Cp = 0.27 A = 19.25 in E = 1600 ksi CF= , 1.10 F,'= 647 psi > f, = 70 psi [Satisfactory] Page 44 of 54 vdip (pill Wall Seismic at mid-sto lbs Overturning Moments ft -lbs Resisting Safety Net Uplift Moments (ft -lbs) Factors (III S) Holddown SIMPSON SEISMIC 120 115 9331 Left 2214 0.9 T = 1 1223 y Right 2214 0.9T = 1223 WIND 137 9864 Lcfl 2214 2/3 T = 1398 Jti -Right 2214 2/3 T = 1398 IP EDGE STUD CAPACITY Pmax = 1.34 kips, (this value should include upper level DOWNWARD loads if applicable) F, = '1350 psi CD = 1.60 Cp = 0.27 A = 19.25 in E = 1600 ksi CF= , 1.10 F,'= 647 psi > f, = 70 psi [Satisfactory] Page 44 of 54 l I L & 'R values should include upper level UPLIFT forces if applicable HECK MAXIMUM SHEAR WALL DEFLECTION: (IBC Section 2305.3 / SDPWS-08 4.3.2j 0 = A&,,vb,s + 6m,-+ A vwl ../y, + Acv.,tl r/ear .dv, = 8Vbh + vh`J + 0.75hen + hd °n = 0.362 in, ASD < EALw. Gi Lµ, ' 8xo,allowable, nso = 0.514 In Where: v 137 If ,ASD b = P = Lw 6 ft E = 1.7E+08 psi [Satisfactory] (ASCE 7.10 12.8.6 A = 16.50 in` h = 12 ft G = 9.0E+04 psi Cd = 4 1 = 1 I = 0.221 in e. = 0.008 In,.SD da.= 0.15 In, SO ,(ASCE 7.10 Tab 12.2-1 & Tab 11.5.1 CM = 1.0 A = 0:02 It,, (NDS 4.1A) (ASCE 7.10 Tab 12.12-11 EDGE STUD CAPACITY Pmax = 1.34 kips, (this value should include upper level DOWNWARD loads if applicable) F, = '1350 psi CD = 1.60 Cp = 0.27 A = 19.25 in E = 1600 ksi CF= , 1.10 F,'= 647 psi > f, = 70 psi [Satisfactory] Page 44 of 54 • • • -RPROJECT : SW#5 PAGE: CLIENT: Van Willigen Residence DESIGN BY: R.A. JOB NO.: 150331 DATE : 4/2012015 REVIEW BY: RA. Shear Wall Design Based on 2012 IBC / 2013 CBC 1 NDS 2012 NPUT DATA Min. Min. Penetration Thickness (in) (in) Blocked Nail Spacing Boundary &'All Edges ATERAL FORCE ON DIAPHRAGM: vdiaa. WIND = 200 plf,for wind vdia. SEISMIC = 268 plf,for seismic. ASD :RAVITY LOADS ON THE ROOF: WDA = 27 plf.for dead load WILL = 20 pff,for live load ISIONS: Lw = 6.5 ft, h = 12 ft L = 6.5 ft, h,= 0 ft .GRADE( 0 or t) = 1 <= Sheathing and Single -Floor JM NOMINAL PANEL THICKNESS = 318 in ON NAIL SIZE (0=6d, 1=8d, 2=10d) 1 8d FIC GRAVITY OF FRAMING MEMBERS 0.5 STUD SECTION 1 pcs, b = 4 in, In = 4 in SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH GRADE ( 1, 2, 3, 4, 5, or 6 ) 4 No. 2 'OPTION ( 1=ground level. 2=upper level) 1 ground level shear wall T. -% Lw f The ortichn rvh9-L- ueorvll to MWr_%AVM r r-. ESIGN SUMMARY BLOCKED 3/8 SHEATHING WITH 8d COMMON NAILS @ 4 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 40 in O.C. (or 1/2 'in DIA. x 10 In LONG ANCHOR BOLTS @ 28 in D.C.) HOLD-DOWN FORCES: TL = 2.97 k , TR = 2.97 k (USE HDU2-1/4x2.5 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 4" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.47 in YSIS MAX.SHEAR WALL DIMENSION RATIO L / B 1.8 c 3:Si (Satisfactory] MINE REQUIRED CAPACITY vb = 268 pif, ( 1 Side'Diaphragm Required, the Max. Nail Spacing = 4 in) TNF SHFAR r.APAr11TIGC DCO Inr T�kl6 Tann o i ene',vc Panel Grade Common Nail Min. Min. Penetration Thickness (in) (in) Blocked Nail Spacing Boundary &'All Edges 1 6 1 4 1 3 1 2 Sheathing and Single' -Floor 8d 1 112 3/8 1 220 1 '320 1 410 1, 530 . , --c- *1 o 1 nunmvla nave Ieaucea oy specmC grawty Tactor per rov note a. 2. Since the wall is blocked, SOPW-08 Table 4.3.3.2 does not apply. JE DRAG STRUT FORCE: F = (L -L ..) MAX( vdia.wino• Dovdu, SEISMIC) = 0.00 k (Cl, _ 4E,MAX SPACING OF 5/8" DIA (or 112" bIA) ANCHOR BOLT (NDS 2012, Tab. 11 E) 518 in DIA. x 10 in LONG ANCHOR BOLTS @ 40 in O.C. (or 1/2 in DIA. x 10 in LONG ANCHOR BOLTS @ 28 in O.C.) THF Hnl n_nnWN FnorCc- 1 ) (Sec. 1633:2.6) (11. & 'R values should include upper level UPLIFT forces if applicable CHECK MAXIMUM SHEAR WALL DEFLECTION: ( IBC Section 2305.3 / SDPWS-08 4.3.2) l ' -A&pmig+Asixw,+ANail xlip+AClnnl "I.Ywe ,dy,= 8vhh +Vhh+0.75hcn+hurl = ' 17.467 In, ASD <. EAS,,, GI Lm ke,allowable,ASD= 0.514 16 Where: v, = 268 plf, , ASO Lw = 7 It E = 1.7E+06 psi (Satisfactory], (ASCE 7-10 12.8.6 A= 16.50 in` In = 12 ft G - 9.0E+04 psi Cd = 4 I = 1 I = 0.221 in e,.= 0.014 in, SD d, = 0.15 in, SD (ASCE 7.10 Tab 12.2-1 & Tab 11.5-1 CM = 1.0 A. = 0.02 h.. (NDS 4.1.4) (ASCE 7-10 Tab 12.12-1) CHECK EDGE STUD CAPACITY Pmax = 2.49 kips. (this value should Include upper level DOWNWARD loads if applicable) F� = 1350 psi Co = 1.60 CP = 0.1.1 A = 12.25 Int E = 1600 ksi Cr. = 1.15 Fc' = 275 psi > f, = 203 psi (Satlsfactory] Page 45 of 54 v,I, (plf) Wall Seismic at mid -story (Ibs) Overturning Moments ft -lbs). Resisting Safety Net Uplift Moments (ft -lbs). Factors (III a) Holddown SIMPSON SEISMIC 268 125 21653 Left 2598 0.9 T,'- 1 2971 y Right 2598 0.9 TR = 2971�\p�,. WIND 200 -15600 Leff 2598 2/3 TL = 2134 J`t Ril hl 2598 1 2/3 Tg = 2134 (11. & 'R values should include upper level UPLIFT forces if applicable CHECK MAXIMUM SHEAR WALL DEFLECTION: ( IBC Section 2305.3 / SDPWS-08 4.3.2) l ' -A&pmig+Asixw,+ANail xlip+AClnnl "I.Ywe ,dy,= 8vhh +Vhh+0.75hcn+hurl = ' 17.467 In, ASD <. EAS,,, GI Lm ke,allowable,ASD= 0.514 16 Where: v, = 268 plf, , ASO Lw = 7 It E = 1.7E+06 psi (Satisfactory], (ASCE 7-10 12.8.6 A= 16.50 in` In = 12 ft G - 9.0E+04 psi Cd = 4 I = 1 I = 0.221 in e,.= 0.014 in, SD d, = 0.15 in, SD (ASCE 7.10 Tab 12.2-1 & Tab 11.5-1 CM = 1.0 A. = 0.02 h.. (NDS 4.1.4) (ASCE 7-10 Tab 12.12-1) CHECK EDGE STUD CAPACITY Pmax = 2.49 kips. (this value should Include upper level DOWNWARD loads if applicable) F� = 1350 psi Co = 1.60 CP = 0.1.1 A = 12.25 Int E = 1600 ksi Cr. = 1.15 Fc' = 275 psi > f, = 203 psi (Satlsfactory] Page 45 of 54 • 0 �� PROJECT: SW#6 PAGE: baa: WIND = `nr. �, uanl. RN;71NJI kI (: CLIENT: JOB NO.: Van Willigen Residence 150331 DATE : 4/20/2015 DESIGN BY: REVIEW BY: RA.= RA. Perforated Shear Wall Desian.Based on 2012 IBC 12013 CBCJ`NDS 2012 n- 1 , INPUT DATA va, IMF LATERAL FORCE ON DIAPHRAGM (SERVICE LOADS): baa: WIND = 150 plf,for wind Vdla. SEISMIC ' 222 ptf,for seismic, Aso NUMBER OF OPENINGS n- 1 , DIMENSIONS: L. 11.25 It H- 13 ft h- 6.67 ft (the highest opening) IEL GRADE ( 0 or 1) 1 <= Sheathing and Single -Floor IMUM NOMINAL PANEL THICKNESS 318 in 11MON NAIL SIZE ( 0=6d, 1=8d, 2=10d) 1 8d CIFIC GRAVITY OF FRAMING MEMBERS 0.5 IRY OPTION ( 1=ground level, 2=upper level) 1 ground Vdtc SIP.eP = G 0 KING STUD SECTION 2 PCs. b = 2 SPECIES (1 - DFL, 2 - SP) GRADE ( 1, 2,'3, 4, 5, or 6 ) EDGE STUD SECTION .1 pes, b 4 SPECIES (1 - DFL, 2 - SP) GRADE ( 1, 2, 3.4.5, or 6 ) in, h = 4 in 1 DOUGLAS FIR -LARCH 4 No.2 In, h 8 in 1 DOUGLAS FIR -LARCH 4 No.2 THE SHEAR WALL DESIGN IS ADEQUATE. SUMMARY BLOCKED 3/8 SHEATHING. EACH SIDE, WITH 8d COMMON NAILS ®.4 in O.C. BOUNDARY 8 ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS (d1 34 in O.C. (or 1/2 in DIA. x 10 in LONG ANCHOR BOLTS @ 24 in O.C.) HOLD-DOWN FORCES: TL - 4.15 k TR = 4.15 k (USE HDU4-1/4x2.5.SIMPSON HOLD-DOWN) MAX STRAP FORCE: F - 1.60 It (USE SIMPSON CS16 OVER WALL SHEATHING.WITH FLAT BLOCKING) KING STUD: 2 - 2" x 6" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. EDGE STUD: i - 4" x 6" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A e 0.37 1n ANALYSIS CHECK MAX SHEAR WALL DIMENSION RATIO h / w = 3.5 < 3.5 [Satisfactory) (allow reduced 2w/h. SDPWS-08 4.3.4) DETERMINE SHEAR RESISTANCE ADJUSTMENT FACTOR, Co Percentage of Full -Height Sheathing = 78%, , (SDPWS-08 4.3.3.5) Maximum Opening Height = 0.51 H Co 0.894 (SDPWS-08 Table 4.3.3,5) DETERMINE REQUIRED CAPACITY (SDPWS-08 4.3.3.5) v p = V / (Co £L l) = 319 plf, ( 2 Sides Panel Required, the Max. Nail Spacing = 4 In) < 870 plf. (SDPWS-08 4.3.5.3.3) [Satisfactory] THF SHEAR CAPAr:ITIFC PPP IAr Telae 9309 -A! CnDWC nn T..r.re a 3A nen ....._ va, IMF Min. Min. �r Blocked Nail Spacing (plf) KING STUD SECTION 2 PCs. b = 2 SPECIES (1 - DFL, 2 - SP) GRADE ( 1, 2,'3, 4, 5, or 6 ) EDGE STUD SECTION .1 pes, b 4 SPECIES (1 - DFL, 2 - SP) GRADE ( 1, 2, 3.4.5, or 6 ) in, h = 4 in 1 DOUGLAS FIR -LARCH 4 No.2 In, h 8 in 1 DOUGLAS FIR -LARCH 4 No.2 THE SHEAR WALL DESIGN IS ADEQUATE. SUMMARY BLOCKED 3/8 SHEATHING. EACH SIDE, WITH 8d COMMON NAILS ®.4 in O.C. BOUNDARY 8 ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS (d1 34 in O.C. (or 1/2 in DIA. x 10 in LONG ANCHOR BOLTS @ 24 in O.C.) HOLD-DOWN FORCES: TL - 4.15 k TR = 4.15 k (USE HDU4-1/4x2.5.SIMPSON HOLD-DOWN) MAX STRAP FORCE: F - 1.60 It (USE SIMPSON CS16 OVER WALL SHEATHING.WITH FLAT BLOCKING) KING STUD: 2 - 2" x 6" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. EDGE STUD: i - 4" x 6" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A e 0.37 1n ANALYSIS CHECK MAX SHEAR WALL DIMENSION RATIO h / w = 3.5 < 3.5 [Satisfactory) (allow reduced 2w/h. SDPWS-08 4.3.4) DETERMINE SHEAR RESISTANCE ADJUSTMENT FACTOR, Co Percentage of Full -Height Sheathing = 78%, , (SDPWS-08 4.3.3.5) Maximum Opening Height = 0.51 H Co 0.894 (SDPWS-08 Table 4.3.3,5) DETERMINE REQUIRED CAPACITY (SDPWS-08 4.3.3.5) v p = V / (Co £L l) = 319 plf, ( 2 Sides Panel Required, the Max. Nail Spacing = 4 In) < 870 plf. (SDPWS-08 4.3.5.3.3) [Satisfactory] THF SHEAR CAPAr:ITIFC PPP IAr Telae 9309 -A! CnDWC nn T..r.re a 3A nen ....._ . ua ".—a— anadr numualS nave reeucea Dy specnlc gravity Tactor per RR; note a. JE MAX SPACING OF 5/8" DIA (or 112" DIA) ANCHOR BOLT (NDS 2012, Tab.11 E) 5/81n DIA. x 10 in LONG ANCHOR BOLTS @ 34 In O.C. (or 1121n DIA: x 10 In LONG ANCHOR BOLTS @ 24 in O.C.) THF Hnl n_nnwu coerce- va, Wall Seismic Min. Min. �r Blocked Nail Spacing (plf) Pancl Grndc Commo;P�; Moments ft -lbs) Factors (III S) 'micknes., Boundary R All @dgcs 222 G 4 3 2 32468 Left 0 0.9 T - 4148 Nail Right 0 0.9 TR = 4148 (in)' Sheathing and Single -Floor 8d1 150 318 127 1 185 1 237 1 306 . ua ".—a— anadr numualS nave reeucea Dy specnlc gravity Tactor per RR; note a. JE MAX SPACING OF 5/8" DIA (or 112" DIA) ANCHOR BOLT (NDS 2012, Tab.11 E) 5/81n DIA. x 10 in LONG ANCHOR BOLTS @ 34 In O.C. (or 1121n DIA: x 10 In LONG ANCHOR BOLTS @ 24 in O.C.) THF Hnl n_nnwu coerce- (IL 6 1R values should include upper level UPLIFT forces if Page 46 of 54 va, Wall Seismic Overturning Resisting Safety Net Uplift Holddown (plf) at mid -story (lbs) Moments (ft -lbs) Moments ft -lbs) Factors (III S) SIMPSOH SEISMIC 222 234 32468 Left 0 0.9 T - 4148 y Right 0 0.9 TR = 4148 WIND 150 21938 Lefl 0 2/3 . TL = 2803 Jp Right 0 2/3 T - 2803 �O (IL 6 1R values should include upper level UPLIFT forces if Page 46 of 54 • :CK MAXIMUM SHEAR WALL DEFLECTION: ( IBC Section 2305.31 SDPWS-08 4.3.2) 8wh'+ vnhh +0.75{i'i+ hd" _ Qrr•u/Hx Qs/r"r Qn..0 .e/q, Qcn,"r /vk• .Jy,'— EA L C1 eLw Where: vp = 319 pit. ASD L. - 6.75 ft E- 1.7E4�06 psi A = 16.50 in' h.- 13 R G - 9.0E+04 psi t 0.221 in e„ - 4.07E-03 in, SD d,"=, 0.15 in, SD Cu' 1:0 (NDS 4.1.4) KING STUD CAPACITY (SDPWS-08 4.3.6.1.2) Pmax ` 2.05 kips F, = 1350 psi Co = 1.60 E = 1600 ksi CF M 1:10 0:375 in, ASD < axe,anoweble. Aso = 0.557 in (Satisfactory) (ASCE 7-10 12:8.6) Ca= 4 I= 1 ;(ASCE 7 -10 -Tab 12.2-1 & Tab 11.5-1) A. = 0.02 h., (ASCE 7-10 Tab 12.12-1) C, = 0.23 A = 16:50 in' F, - 558 psi > fi _ '124 psi (Satisfactory) EDGE STUD CAPACITY (SDPWS-08 4.3.6.1.2) Pmax' 4.15 kips, (this value should Include upper level DOWNWARD loads if applicable_ ) F�"= 1350 psi Co - 1.60 CP = 0.23 A a 19:25 in' E- 1600 ksi CF - 1.10 558 psi > % - 215 psi (Satisfactory) Page 47 of 54 CLIENT: RA Structural EnzineeLiaL Inc. SHEET: SUBJECT: JOB NO: 150 3 31 DESIGN BY: A. DATE: y /15 -'6.5' Q �2 � � 6 a 5 .�� x 1 6e5 /,/0 P h j44 X (Y`Q Of q03 p LF. Page 48 of 54 s • • • ®� PROJECT: SW#7 PAGE Min. Thickness (in) CLIENT: Van W[lligen Residence DESIGN BY': R.A. -i:n(;INI•:I lar:r JOB NO..: 150331 DATE : .4/20/2015 REVIEW BY: R. A. . Shear Walt Design Based on 2012 IBC 12013 CBC / NDS 2012 415 125 INPUT DATA Left 2598 0.9 T = 4735 I ' LATERAL FORCE ON DIAPHRAGM: Vdln. WIND = 300 plf.for wind WIND300 tl Vaa; SEISMIC = 415 pif,for seismic, ASD spy J� Right .2598 2/3 T = 3334 GRAVITY LOADS ON THE ROOF: WOL = 27 Dlf,for dead load WILL = 20 plf,for live load V1. ��_ _�-_ _� hP DIMENSIONS: Lw = 6.5 It , h = 12 ft F L = 6.5 ft,_ h,= 0 ft PANEL GRADE ( 0 or. 1) = 1 <= Sheathing and Single -Floor MINIMUM NOMINAL PANEL THICKNESS = 3/8 in II COMMON NAIL SIZE (0=6d. 1=8d, 2=10d) 1 8d SPECIFIC GRAVITY OF FRAMING MEMBERS 0.5 EDGE STUD SECTION 1 pcs, b = 4 in, h = 6 in �- SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH T, v, T. GRADE ( 1, 2, 3, 4, 5, or 6) 4 No. 2 r STORY OPTION ( 1=ground level, 2=upper level) 1 ground level shear wall Lw The wcalv/v to r,v.,v�.Kv.,, c, ucc .,,.:,a. r 1AS BE N SUMMARY BLOCKED 3/8 SHEATHING WITH 8d COMMON NAILS (0 2 in O.C. BOUNDARY 8 ALL EDGES 112 in,O.C. FIELD. 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 26 in O.C. (or 1/2 in DIA, x 10 in LONG ANCHOR BOLTS @ 18 In O.C.) HOLD-DOWN FORCES: TL = 4.74 k , TR = 4.74 k (USE HOU5-1/4x2.5 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 6" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: I n = 0:53 in ANALYSIS CHECK MAX SHEAR WALL DIMENSION RATIO L / B = 1.8 < 3.`5 -`# [Satisfactory) DETERMINE REQUIRED CAPACITY vt,= 415 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 2 In) THF SHFAR CAPACITIFS PFR IRC T.hIn 99nR'l I CnDLNQ_nR T�kle a ZA ,.alti AQn .ea,,..u..., u....., e m Panel Grade Common Nail Min. Penetration (in) Min. Thickness (in) Blocked Nail Spacing Boundary & All Edges 64 1 3 2 Sheathing and Single -Floor 8d 1 112 318 220 320 1 410 1 530 1-tc. ,. 1 nu mu,carcu sneer numuers nave reoucea Dy speclnc gravlry rector per mu note a. 2. Since the wall is blocked, SDPW-08 Table 4.3.3.2 does not apply. JE DRAG STRUT FORCE: F = (L -Lw) MAX( Vdia.WIND• OoVdie.SEISMC) = 0.00 k1 ( f2o = � ) (Sec. 1633.2.6) VE MAX SPACING OF 518" DIA (or 12" DIA) ANCHOR BOLT (NDS 2012, Tab. 11E) 518 in DIA. x 10 in LONG ANCHOR BOLTS @ 26 in O.C. (or 1/2 in DIA. x 10 in LONG ANCHOR BOLTS @ 18 in O.C.) THF HAI n.nf)WN GARCFC - ' (TL 8 7R values should include upper level UPLIFT forces if :CK MAXIMUM SHEAR WALL DEFLECTION: ( IBC Section 2305.3 / SDPWS-08 4.3:2) - A&-liig +Os/,a + ONuii ..Ir+ ACIonl splaa• .Jql = 8vhh + Veh +0.75he„ +hon p = 0.534 In, ASD > EAL,,, Gl L 8xe,aIIowable,ASD= 0.514 in Where: ve = 415 pit, ASD Lw = 7 ft E = 1.7E+06 psi [Unsatisfactory) (ASCE,?-10 12.8.6) A = 16.50 in` h = 12 ft G = 9.0E+04 psi Cd = 4 1 = 1 t = 0.221 in e„ = 0.009 in, SD d, = 0.15 in, SD ,(ASCE 7.10 Tab 12.2-1 8 Tab 11.5-1) CM = 1.0 A. = 0.02 h.,, (NDS 4.1:4) (ASCE 7-10 Tab 12.12-1) CHECK EDGE STUD CAPACITY Pmak = 3.66 kips, (this value should include upper level DOWNWARD loads if applicable) F, = 1350 psi Co = 1.60 Cp = 0.27 E = 1600 ksi CF = 1.10 Fc* = 647 psi A - 19.25 ini > f, = 190 psi [Satisfactory] ` Page 49 of 54 vola Wall Seismic Overturning Resisting Safely Net Uplift Hoxfdown ( if) at mid -story (lbs) Moments (ft -lbs Moments ft -lbs) Factors Ibs SIMPSON SEISMIC 415 125 33119 Left 2598 0.9 T = 4735 y Right 2598 0.9 T = 4735 WIND300 23400 Leff 2598 2/3 T = 3334 spy J� Right .2598 2/3 T = 3334 (TL 8 7R values should include upper level UPLIFT forces if :CK MAXIMUM SHEAR WALL DEFLECTION: ( IBC Section 2305.3 / SDPWS-08 4.3:2) - A&-liig +Os/,a + ONuii ..Ir+ ACIonl splaa• .Jql = 8vhh + Veh +0.75he„ +hon p = 0.534 In, ASD > EAL,,, Gl L 8xe,aIIowable,ASD= 0.514 in Where: ve = 415 pit, ASD Lw = 7 ft E = 1.7E+06 psi [Unsatisfactory) (ASCE,?-10 12.8.6) A = 16.50 in` h = 12 ft G = 9.0E+04 psi Cd = 4 1 = 1 t = 0.221 in e„ = 0.009 in, SD d, = 0.15 in, SD ,(ASCE 7.10 Tab 12.2-1 8 Tab 11.5-1) CM = 1.0 A. = 0.02 h.,, (NDS 4.1:4) (ASCE 7-10 Tab 12.12-1) CHECK EDGE STUD CAPACITY Pmak = 3.66 kips, (this value should include upper level DOWNWARD loads if applicable) F, = 1350 psi Co = 1.60 Cp = 0.27 E = 1600 ksi CF = 1.10 Fc* = 647 psi A - 19.25 ini > f, = 190 psi [Satisfactory] ` Page 49 of 54 • 0 • • RPROJECT: SW#8 PAGE: CLIENT: Van Willigen Residence DESIGN BY: R.A. JOB NO.: 1150331 DATE : 4/20/2015 REVIEW BY: R.A. Shear Wall Design Based on 2012 IBC / 2013 CBCItNDS 2012 Left 3014 0. T = 4564;_1 INPUT DATA LATERAL Right 3014 0.9 TR = 4564 L FORCE ON DIAPHRAGM: Vdla, WIND = 300 plf,for wind 25200 Vdia, SEISMIC - 403 plf,for seismic, ASD W GRAVITY LOADS ON THE ROOF: wDL = 27 plf,for dead load WILL = 20 plf,for live load ----------------===-------- DIMENSIONS: Lw = 7 ft , h = 12 it F� - L = 7 ft, h,= 0 It PANEL GRADE (0 or 1) = 1 — Sheathing and Single -Floor MINIMUM NOMINAL PANEL THICKNESS = 3/8 in it COMMON NAIL SIZE (0=6d, 1=8d, 2=10d) 1 8d SPECIFIC GRAVITY OF FRAMING MEMBERS 0.5 EDGE STUD SECTION 1 PCs, b = 4 in, h = 6 in — — — — SPECIES (1 = DFL. 2 = SP) 1 DOUGLAS FIR -LARCH T, V. T. GRADE ( 1, 2, 3, 4, 5, or 6) 4 No..2 STORY OPTION ( 1=ground level, 2=upper level) 1 ground level shear wall / Lw Tf'1L' VLJIl71• IJ lIvMUCI,(UM I L•, ?L'L MIOML ISIS BE. DESIGN SUMMARY BLOCKED 378 SHEATHING WITH 8d COMMON NAILS @ 3 in O:C. BOUNDARY & ALL EDGES / 12 in O:C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 26 in O:C. (or 1/2 in DIA. x 10 in LONG ANCHOR BOLTS @ 18 in O.C.) HOLD-DOWN FORCES: TL = 4.56 k , TR = 4.56 k DRAG STRUT FORCES: • F= 0.00 k EDGE STUD: 1 - 4" x 6" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.56 in' (USE HDU4-1/4x2.5 SIMPSON HOLD-DOWN) YSIS MAX SHEAR WALL DIMENSION RATIO L / B = 1.7 < 3:5� (Satisfactory) MINE REQUIRED CAPACITY Vb = 403 plf, ( 1 Side Diaphragm Required, the Mai. Nail Spacing = 3 in) THF SI.IFOR COpArITICc DFD mr. T. kl- ogne 9 1 enou T -:I- I .� Panel Grade Common Nail Min. Penetration (in) Min. Thickness in Blocked Nail Spacing Boundary & All Edges b 4 1 3 1 2 Sheathing and Single -Floor 8d 1 1/2 3/8 220 1 320 1 410 1 530 I I IR O1CY ,hoar nurnaerb nave reaucea Dy specint; gravity tactor per Itsc note a. 2. Since the wall is blocked, SDPW-08 Table 4.3.3.2 does not apply. VE DRAG STRUT FORCE: F = (L -Lw) MAX( Vdia. WIND, novdm. SEISMIC) = 0.00 k (t10 = 1 ) (Sec. 1633:16) JE MAX SPACING OF 5/8" DIA (or 1/2" DIA) ANCHOR BOLT (NDS 2012. Tab. 11E) 5j8 In DIA. x 10 in LONG ANCHOR BOLTS @ 26'in O.C. (or 1/2 In DIA. x 10 In LONG ANCHOR BOLTS@ 18 in O.C.) THF'HnI n-nnwnl cnprcc• ' (TL & TR values should Include upper level UPLIFT forces if applicable :CK MAXIMUM SHEAR WALL DEFLECTION: ( IBC Section 2305.3 / SDPWS-08 4.3.2) a � — 011e rxlul,G + O51rar + AN11d .clip + AClnnl shin• sl yl — EA /h + h + 0.75/ie„ + `lrCdn _ 0.565 in, ASD, > Lp, lJ L. 8xe.allowabla, nsD = 0.514 in. Where: vt, 403 plf, , ASD Lw = 7 ft E = 1.7E+06 psi (Unsatisfactory) (ASCE 7-10 12.8.E A = 16.50 In` h = 12 it G = 9.0E+04 psi Cd.= 4 1= 1 I = 0.221 in e„ = 0.017 in, SD d, = 0.15 In, SD ,(ASCE 7-10 Tab 12.2-1 & Tab 11.5-1 CM = 1.0 Ad = 0.02 hly (NDS 4.1.4) (ASCE 7-10 Tab 12.12-1) KEDGE STUD CAPACITY Plnex = 3.59 kips, (this value should include upper level DOWNWARD loads if applicable) F, = 1350 psi Co = • 1.60 Cp = 0.27 A = 19.25 In' E = 1600 ksl CF = 1.10 F,, = 647 psi > f, =. 186 psi (Satisfactory) Page 50 of 54 vd,a If) Wall Seismic at mid -story Ibs) Overturning Moments (ft -lbs) Resisting Safety Net.Uplift Moments ft -lbs Factors lbs Holddown SIMPSON SEISMIC 403 134 34658 Left 3014 0. T = 4564;_1 y Right 3014 0.9 TR = 4564 WIND 300 25200 Left 3014 2/3 T = 3313 J� Z� Right 3014 2/3 TR = 3313 (TL & TR values should Include upper level UPLIFT forces if applicable :CK MAXIMUM SHEAR WALL DEFLECTION: ( IBC Section 2305.3 / SDPWS-08 4.3.2) a � — 011e rxlul,G + O51rar + AN11d .clip + AClnnl shin• sl yl — EA /h + h + 0.75/ie„ + `lrCdn _ 0.565 in, ASD, > Lp, lJ L. 8xe.allowabla, nsD = 0.514 in. Where: vt, 403 plf, , ASD Lw = 7 ft E = 1.7E+06 psi (Unsatisfactory) (ASCE 7-10 12.8.E A = 16.50 In` h = 12 it G = 9.0E+04 psi Cd.= 4 1= 1 I = 0.221 in e„ = 0.017 in, SD d, = 0.15 In, SD ,(ASCE 7-10 Tab 12.2-1 & Tab 11.5-1 CM = 1.0 Ad = 0.02 hly (NDS 4.1.4) (ASCE 7-10 Tab 12.12-1) KEDGE STUD CAPACITY Plnex = 3.59 kips, (this value should include upper level DOWNWARD loads if applicable) F, = 1350 psi Co = • 1.60 Cp = 0.27 A = 19.25 In' E = 1600 ksl CF = 1.10 F,, = 647 psi > f, =. 186 psi (Satisfactory) Page 50 of 54 . J' Anchor DesignerTM Software ; • Version 2.0.5154.13 . Company: RA Structural Date: 5/27/2014 Engineer: Reza Asgharpour, P.E. Page: 1/4 Project: Location: Address: 77570 springfield Lane Suite D , Phone: 760-360-9998 E-mail: reza@rastructural.com 71 _ + 1.Proiectinformation _-.._._-----^._...------•--,---,. . ' Customer company: • Project description: , Customer contact name: Location: Customer e-mail:. Fastening description: Comment: 2. Input Data & Anchor Parameters, r • ` General Base Material Design method:ACI 318-11 Concrete: Normal -weight Units: Imperial units Concrete thickness; h (inch): 18.00 ` ' State: Cracked Anchor Information: - Compressive strength, fc (psi): 2500 + Anchor type: Bonded anchor Way: 1.0 Material: F1554 Grade 36 Reinforcement condition: B tension, B shear Diameter (inch): 0.625 Supplemental reinforcement: Not applicable Effective Embedment depth, her (inch): 10.000 Do not evaluate concrete breakout in tension: No ' Code report: IMES ESR -2508 Do not evaluate concrete breakout in shear: No Anchor category: - Hole condition: Dry concrete , Anchor ductility: Yes Inspection: Continuous hn,;� (inch): 13.13 ` Temperature range: 1 ' cac (inch): 22.57 Ignore Edo requirement: Not applicable Cmm (inch): 1.75 t Build-up grout pad: No S„dn (inch): 3.00 L - Base Plate Load and Geometry r z (ff 250 16S x 014 Zj 9 _I Load factor source: ACI 318 Section 9.2 • • Load combination: not set Seismic design: Yes ` 4250;6 t Anchors subjected to sustained tension: Yes Ductility section for tension: D.3.3.4.2 not applicable Ductility section for sliear: D.3.3.5.2 not applicable • Oo factor: not set i Apply entire shear load at front row: No 5 Anchors only resisting wind and/or seismic loads: Yes <Figure 1>k�'t r ' - -f `�Op• •l , 01b _3 f r • 4 lir • - - If. Input data and results must be checked for agreement with the exlsling circumstances, the standards and guldellnes must be checked for plausibility. Simpson Strong -Tie Company Inc. 5956 W. Las Posilas Boulevard -,Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com y s f Page 51 of 54 J �`'ttvtl-z'�r■ Anchor Designer"m Software Version 2.0.5154.13 <Figure 2> Company: RA Structural Date: 5/27/2014 Engineer: Reza Asgharpour, P.E. I Page: 2/4 Project: Braaten Residence Address: 77570 springfield Lane Suite D Phone: 760-360-9998 E-mail: reza@rastructural.com 0 Recommended Anchor Anchor Name: SET -XP® - SET -XP w/ 5/8"0 F1554 Gr.. 36 Code Report Listing: ICC -ES ESR -2508 Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com Page 52 of 54 i , A Sr n r♦iC7i sY� N ♦ � s � • t��i� �� S 0 Recommended Anchor Anchor Name: SET -XP® - SET -XP w/ 5/8"0 F1554 Gr.. 36 Code Report Listing: ICC -ES ESR -2508 Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com Page 52 of 54 Anchor DesignerTm Software Version 2.0.5154.13 Company: RA Structural Date: 5/27/2014 Engineer: Reza Asgharpour, P.E. Page: 3/4 Project: Braaten Residence Address: 77570 Springfield Lane Suite D Phone: 760-360-9998 E-mail: reza@rastructural.com 3. Resulting Anchor Forces in TensionfSec ONaa (lb) D.5.11 Anchor Tension load, Shear load x, Shear load y, Shear load combined, Nua (lb) Vuax (lb) Vuay (lb) q(Vu84=+(Vuay)1'(lb) 1 4250:0 0.0' 0.0 0.0 Sum 4250.0 0.0 0.0 0.0 Maximum concrete compression strain (%o): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 4250 Resultant compression force (lb): 0 Eccentricity of resultant tension forces in x-axis, e'Nx (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 4. Steel Strength of Anchor Nsa (Ib) 0 in TensionfSec ONaa (lb) D.5.11 13110 0.75 9833 5. Concrete Breakout Strength of Anchor In Tension (Sec. DAM Nb = *,A.4rchar'•s (Eq. D-6) kc 1.u. rc (psi) he (in) Nb (lb) 17.0 1.00 2500 10.000 26879 0.75ONcb = 0.750 (ANc/ANcu)Y'uo.NY4,NY'cn.NNb (Sec. D.4.1 & Eq. D-3) ANc (m2) ANco 062 Y'od,N Yo.N Y'cpw Nb (I b) 0 0.750Ncb (lb) 360.00 900:00 0.820 1.00 1.000 26879 0.65 4298 6. Adhesive Strength of Anchor Tk,cr = 7h,afabod•tamKsal�Nsola in Tension (Se5.51 nc.v (psi). Ghon-to'm Ksat amsefa M. (psi) 855 1.00. 1.00 1.00 855 Ni. = Aarcrrrdohaf(Eq. D-22) A a ra (psi) da (in) hof (in) Nb. (Ib) 1.00 855 0.63 10.000 16788 • 0.750Na = 0.750 (ANa/ANao)%dNaY�p,NaNba (Sec. D.4.1 & Eq. D-18) Am, (int) ANco (int) Y'ed.Na Y'p.Na Noo (lb) 0 0.750Nu (lb) 206.02 294.74 0.910 1.000 16788 0.65 5204 ONsusr = 0.550Nb. (Eq. D-1) 0 Nba(Ib) ONsust (lb) 0.65 16788 6002 Input data and results must be checked for agreement wltli the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tic Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax:•925.847.3871 www.stro'ngtio.com Page 53 of 54 •__N Anchor DesignerTm Software Version 2.0.5154.13 Company: RA Structural I Date: 5/27/2014 Engineer: Reza Asgharpour; P.E. I Page: 4/4 Project: Braaten Residence Address: 77570 springfield Lane Suite D Phone: 760-360-9998 E-mail: reza@rastructural.com 11. Interaction of Tensile Tension and Shear Force (Sec. Factored Load, N_ (lb) Q.7) Design Strength, eN„ (lb) Ratio Status Steel 4250 9833 0.43 Pass Concrete breakout 4250 4298 0.99 Pass (Governs) Adhesive 4250 5204 0.82 Pass Adhesive (sustained) 4250 6002 0.71 Pass SET -XP w/ 5/8"0 F1554 Gr. 36 with hef = 10.000 inch meets the selected design criteria. 12. Warnings - Concrete compressive strength used in concrete breakout strength in tension, adhesive strength in tension and concrete pryout.strength in shear for SET -XP adhesive anchor is limit to 2,500 psi per ICC -ES ESR -2508. Section 5.3. - Per designer input, the tensile component of the strength -level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor tensile force associated with the same load combination. Therefore the ductility requirements of D.3.3.4.3 for tension need not be satisfied — designer to verify. - Per designer input, the shear component of the strength -level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of D.3.3.5.3' for 'shear need not be satisfied — designer to verify. Designer must exercise own judgement to determine if this design is suitable. Refer to manufacturer's product literature for hole cleaning and installation instructions. Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong -Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone:.925.560.9000 Fax: 925.847.3871 www.strongtie.com Page 54 of 54