Loading...
11-0895 (AR) Revision 1 Structural CalcsAi� RrAT3C"1' r'J1`-"� `I' ` £rl_s 78080 Calle Amigo, Suite 102 phone: (760)771-9993 La Quinta, CA 92253 Fax: (760)771-9998 Cell: (760)808-9146 Structural Calculation For Page Residence At 48-801 San Lucas Dr. La Quinta, CA. Type Of Project: Residential Remodeling+Addition Designer: Michael Kiner Architect Date: September 30, 2011 Design by: R.A. JN: 11028 Revision#1 9/30/2011 RECEIVED OCT 10 2011 BY:1 — ipt C CITY OF LA QUINTA BUILDING & SAFETY DEPT. APPROVED FOR CONSTRUCTION tj —oq5 �PPgGHq� o�! W G tr NO. C 67613 EXP, 6/_3& /� t _ , • DESIGN CRITERIA 2009 INTERNATIONAL BUILDING CODE 2010 CALIFORNIA BUILDING CODE SOILS BEARING PRESSURE = 1500 PSF (PER SOILS REPORT) EXTERIOR WALL = 25.00 PSF INTERIOR WALL = 10.00 PSF ROOF LOAD ROOF DEAD LOAD TILE ROOFING = 10.00 PSF SHEATHING = 2.00 PSF FRAMING = 2.50 PSF DRYWALL = 2.00 PSF INSULATION = 1.50 PSF MISCELLENUOUS = 7.00 PSF TOTAL DEAD LOAD = 25.00 PSF TOTAL LIVE LOAD = 20.00 PSF TOTAL LOAD = 45.00 PSF L' El 0 a • • RA PROJECT Page Res PAGE. CLIENT beam If1 hdr..left of rii. bdrm Structural JOB NO DESIGN BY: DATE: REVIEW BY: INPUT DATA & DESIGN SUMMARY MEMBER SIZE MEMBER SPAN UNIFORMLY DISTRIBUTED DEAD LOAD UNIFORMLY DISTRIBUTED LIVE LOAD CONCENTRATED DEAD LOADS (0 for no concentrated load) DEFLECTION LIMIT OF LIVE LOAD DEFLECTION LIMIT OF LONG-TERM 4%5.e &K to 0 No No. 1, Douglas Fir -Larch L = 11.5 It Wo = 165 lbs / It WL = "60.._ . lbs / It Poo = 0 lbs Lo = 0 ft Poe = 6 _: lbs L2 = 0 ' It L Purr 1 + P02 Wo d L - &-I 360 Camber => 0.33 inch dKaD,L=L/240. Does member have continuous lateral support by top diaphragm ? (1= yes, 0= no) 0 No Code Duration Factor. Cn Condition 1 0.90 Dead Load 2 1.00 Occupancy Live Load 3 1.15 Snow Load 4 1.25 Construction Load 5 1.60 Wind/Earthquake Load 6 2.00 Impact Load Choice => 4 Construction Load ANALYSIS 51.6 DETERMINE REACTIONS, MOMENT, SHEAR Wserrwt = 9 lbs / It RLeR = 1.35 kips Vhu. = 1.20 kips, at 7.5 inch from left end DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES b = 5.50 in E'min = 580 ksi d = 7.50 in FbE = 11345 psi A = 41.3 int 1 = 193 in S,r = 51.6 in Re = 7.833 < 50 l E = 20.6 (ft, Tab 3.3.3 footnote 1) . = THE BEAM DESIGN IS ADEQUATE. Cc) CM Ct Ci CL CF Designation 1.25 1.00 1.00 1.00 0.99 1.00 1 CHECK BENDING AND SHEAR CAPACITIES r fb = MMa. / S. = 900 psi < F - b - No. 1, Douglas Fir -Larch f, = 1.5 VMa. / A = 44 psi < 3 CHECK DEFLECTIONS d (L, M.) = 0.08 in, at 5.750 ft from left end, Select Structural, Southern Pine d (Ku D + L , M.) = 0.30 in, at 5.750 ft from left end 5 Where KQ = 1.00 , (NDS 3.5.2) DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) No. 2, Southern Pine d 0.50, M.) = 0.33 in, at 5.750 It from left end THE BEAM DESIGN IS ADEQUATE. Cv Cc Cr 1.00 1.00 1.00 1673 psi F, [Satisfactory] [Satisfactory] d L = L / 360 [Satisfactory] d Kco.L = L/ 240 [Satisfactory] 0 Code Designation 1 Select Structural, Douglas Fir -Larch 2 No. 1, Douglas Fir -Larch 3 No. 2, Douglas Fir -larch 4 Select Structural, Southern Pine 5 No. 1, Southern Pine 6 No. 2, Southern Pine Choice => 2 RRigtt = 1.35 kips . = 3.87 ft -kips, at 5.75 It from left end E = E. = 1600 ksi Fy = 1687.5 psi Fb = 1,350 psi F = FbE / Fe = 6.72 Fv = 170 psi Fe = 1,673 psi E' = 1,600 ksi Fv' = 213 psi Cv Cc Cr 1.00 1.00 1.00 1673 psi F, [Satisfactory] [Satisfactory] d L = L / 360 [Satisfactory] d Kco.L = L/ 240 [Satisfactory] 0 0 0 CHECK THE BEAM CAPACITY WITH AXIAL LOAC AXIAL LOAD F = `,.0: --kips THE ALLOWABLE COMPRESSIVE STRESS IS F� = F� CD CP CF = 654 psi Where F, = 925 psi CD = 1.50 CF = 1.00 (Lumber only) Cp = (1+F) / 2c - [(1+F) / 2c)2 - F / c]'.5 = F-' = F. CD CF = 1480 Psi LQ = Ke L = 1.0 L = 138 in b = 5.5 in SF = stendemess ratio = 25.1 < F,E = 0.822 E'mn / SF2 = 757 psi E'min = 580 ksi F = F,E / F,* = 0.512 C = 0.8 THE ACTUAL COMPRESSIVE STRESS IS fc = F / A = 0 psi < Fc' THE ALLOWABLE FLEXURAL STRESS IS Fo = 2141 psi, [ for CD = 1.6 ] THE ACTUAL FLEXURAL STRESS IS fb = (M + Fe) / S = 900 psi < F; CHECK COMBINED STRESS [NDS 2005 Sec. 3.9.21 (fe / Fe )2 + fb / fFe (1 - fc / FCE)] = 0.420 F F 1 / 0.442 50 [Satisfies NDS 2005 Sec. 3.7.1.41 [Satisfactory] [Satisfactory] < 1 [Satisfactory] L • • RA PROJECT: 'Page Res:' PAGE + Structural CLIENT beam 42 p An beam atm bdrrn DESIGN BY: JOB NO.: DATE: REVIEW BY: INPUT DATA & DESIGN SUMMARY MEMBER SIZE MEMBER SPAN UNIFORMLY DISTRIBUTED DEAD LOAD UNIFORMLY DISTRIBUTED LIVE LOAD :,ONCENTRATED DEAD LOADS (0 for no concentrated load) DEFLECTION LIMIT OF LIVE LOAD DEFLECTION LIMIT OF LONG-TERM ,GW -'5 1/2-x 13-1/2' 4: Glulam24F-1.8E L =.;:•18:51 'ft WD =--- 300 lbs / ft WL = 240: lbs / ft PD1 _ .' . 0- lbs L1= -0_ ft PD2 = U Ibs L2 = 0. 'ft AL=L/360. Wind/Earthquake Load AKaD.L=L/240 2.00 Does member have continuous lateral support by top diaphragm ? (1= yes, 0= no) 0 No Code Duration Factor Co Condition 1 0.90 Dead Load 2 1.00 Occupancy Live Load 3 1.15 Snow Load 4 1.25 Construction Load 5 1.60 Wind/Earthquake Load 6 2.00 Impact Load Choice => 4 Construction Load ANALYSIS 33.5 (ft, Tab 3.3.3 footnote 1) DETERMINE REACTIONS, MOMENT, SHEAR WscrHe = 18 lbs / ft RL,.n = 5.16 kips Vm. = 4.53 kips, at 13.5 inch from left end DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES b = 5.50 in E'min = 930 ksi d = 13.50 in FbE = 6215 psi A = 74.3 int I = 1,128 in' Sx = 167.1 in3 RB = 13.400 < 50 lE = 33.5 (ft, Tab 3.3.3 footnote 1) CD CM G Ci CL C. 1.25 1.00 1.00 1.00 0.96 1.00 CHECK BENDING AND SHEAR CAPACITIES fb = MMax / Sx = 1714 psi < Fb = fv' = 1.5 VMax / A = 92 psi < HECK DEFLECTIONS 2,400 A (L. Max) = 0.31 in, at 9.250 ft from left end, 4 (Ka D . L. Mm) = 0.72 in, at 9.250 ft from left end Where Ku = 1.00 , (NDS 3.5.2) rERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) Id (1.5D• Mm) = 0.62 in, at 9.250 ft from left end L F�P-1 C�, 1 Pos 1 W` F 23.86 ft-ldps, at 9.25 ft from left end E = E. = 1800 ksi Fb* = 3000 psi Fb = 2,400 psi F = FbE / Fb' = 2.07 Fv = 265 psi Fe = 2,876 psi Camber => 0.62 inch THE BEAM DESIGN IS ADEQUATE. Cv CC C, 0.99 1.00 1.00 2876 psi [Satisfactory] F, [Satisfactory] < dl=L/360 < 'dl(iD.L=L/240 [Satisfactory] [Satisfactory] 0 R" = 5.16 kips Mr. = 23.86 ft-ldps, at 9.25 ft from left end E = E. = 1800 ksi Fb* = 3000 psi Fb = 2,400 psi F = FbE / Fb' = 2.07 Fv = 265 psi Fe = 2,876 psi E' = 1,800 ksi F,; = 331 psi Cv CC C, 0.99 1.00 1.00 2876 psi [Satisfactory] F, [Satisfactory] < dl=L/360 < 'dl(iD.L=L/240 [Satisfactory] [Satisfactory] 0 N U • CHECK THE BEAM CAPACITY WITH AXIAL LOA[ AXIAL LOAD F THE ALLOWABLE COMPRESSIVE STRESS IS F.' = F- Co CP CF = 411 psi Where F� = 1600 psi Co = 1.60 CF = 1.00 (Lumber only) Cp = (1+F) / 2c - [(1+F) / 2c)Z - F / c]°.5 = F.* = F. CD CF = 2560 psi Le = Ke L = 1.0 L = 222 in b = 5.5 in SF = slenderness ratio = 40.4 < FSE = 0.822 E'er;„ / SFZ = 419 psi E'min = 830 ksi F = F.E / F.' = 0.164 C = 0.9 THE ACTUAL COMPRESSIVE STRESS IS % = F / A = 0 psi < F.' ALLOWABLE FLEXURAL STRESS IS Fb' = 3681 psi, [ for CD = 1.6 j 19 F F 0.161 ' 50 [Satisfies NDS 2005 Sec. 3.7.1.4] [Satisfactory] ACTUAL FLEXURAL STRESS IS fb = (M + Fe) / S = 1714 psi < Fe [Satisfactory] ECK COMBINED STRESS [NDS 2005 Sec. 3.9.2] (fc / Fo )z + fb / [Fb' (1 - f. / F.E)] = 0.466 < 1 [Satisfactory] O • C] RA PROJECT Page Res PAGE: 1 ' Structural CLIENT beam ft3 beam at m'bathroom DESIGN BY JOB NO f DATE REVIEW BY INPUT DATA & DESIGN SUMMARY MEMBER SIZE MEMBER SPAN UNIFORMLY DISTRIBUTED DEAD LOAD UNIFORMLY DISTRIBUTED LIVE LOAD CONCENTRATED DEAD LOADS (0 for no concentrated load) DEFLECTION LIMIT OF LIVE LOAD DEFLECTION LIMIT OF LONG-TERM 'GL8 5:1/2 x 13 1/2 - Glutam 24F -1.8E L=',..15.5 -'ft Wo = -330..' lbs / ft WL = 240'.'' lbs / ft Poe =' ; 0....' lbs Lt = 0 .`ft PDz = 0" `! lbs L2=-' 0. 'ft A = L/ 360;. dKcD.L=L/240 Does member have continuous lateral support by top diaphragm 7 (1= yes, 0= no) 0 No Code Duration Factor, Factor Cn Condition 1 0.90 Dead Load 2 1.00 Occupancy Live Load 3 1.15 Snow Load 4 1.25 Construction Load 5 1.60 Wind/Earthquake Load 6 2.00 Impact Load Choice => 4 Construction Load kLYSIS 1.E = 28.6 'ERMINE REACTIONS, MOMENT, SHEAR Wseirwe = 18 lbs / ft Rt�ft = 4.55 kips Vm. = 3.89 kips, at 13.5 inch from left end DETERMINE SECTION PROPERTIESB ALLOWABLE STRESSES b = 5.50 in E'min = 930 ksi d = 13.50 in FbE = 7276 psi A = 74.3 int 1 = 1,128 in' Sx = 167.1 in RB = 12.385 < 50 1.E = 28.6 (ft, Tab 3.3.3 footnote 1) CO ' CM Ct Ci CL CF 1.25 1.00 1.00 1.00 0.97 1.00 IECK BENDING AND SHEAR CAPACITIES fb = MMax / S. = 1268 psi < Fb = f,'= 1.5 VMa, / A = 79 psi < ECK DEFLECTIONS 2,400 d (L. F&x) = 0.15 in, at 7.750 ft from left end, d (Ka D . L. M.* = 0.38 in, at 7.750 ft from left end Where K, = 1.00 , (NDS 3.5.2) (ERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) Id 0.50. M�t = 0.33 in, at 7.750 ft from left end L R" = 4.55 kips _ .r L ft4dps, at 7.75 It from left end PDi�P. / 1/ WL 2,400 psi F = FbE / Fe = 2.43 Fv = 265 WD E' = 1,800 ksi 17; = 331 psi } Camber => 0.33 inch THE BEAM DESIGN IS ADEQUATE. Cv C, C, 1.00 1.00 1.00 2904 psi F,; [Satisfactory] [Satisfactory] d L = L / 360 [Satisfactory] dKv0+L = L / 240 [Satisfactory] 11 R" = 4.55 kips Mneme = 17.65 ft4dps, at 7.75 It from left end E = Ex = 1800 ksi Fb* = 3000 psi Fb = 2,400 psi F = FbE / Fe = 2.43 Fv = 265 psi Fb' = 2,904 psi E' = 1,800 ksi 17; = 331 psi Cv C, C, 1.00 1.00 1.00 2904 psi F,; [Satisfactory] [Satisfactory] d L = L / 360 [Satisfactory] dKv0+L = L / 240 [Satisfactory] 11 0 • • CHECK THE BEAM CAPACITY WITH AXIAL LOAD AXIAL LOAD F = >=p: bps THE ALLOWABLE COMPRESSIVE STRESS IS Fr-= Fc Co CP CF = 580 psi Where Fe = 1600 psi Co = 1.60 CF = 1.00 (Lumber only) CP = (1+F) / 2c - [(1+F) / 2c)2 - F / c]0-5 = 0.226 F. = Fc Co CF = 2560 psi Le = Ke L = 1.0 L = 186 in b = 5.5 in SF = slenderness ratio = 33.8 < 50 FCE = 0.822 E',,;,,/ SF = 597 psi E'min = 830 ksi F = F.E / Fc' = 0.233 C = 0.9 'HE ACTUAL COMPRESSIVE STRESS IS f = Cl - [Satisfies NDS 2005 Sec. 3.7.1.41 A - 0 psi < Fc' [Satisfactory] ALLOWABLE FLEXURAL STRESS IS Fe' = 3717 Psi, [ for Co = 1.6 ] ACTUAL FLEXURAL STRESS IS fb = (M + Fe) / S = 1268 psi < F; ECK COMBINED STRESS [NDS 2005 Sec. 3.9.2] (fe/Fc )2+fb/[Fe (1-fe/Fer)] = 0.341 [Satisfactory] < 1 [Satisfactory] 0 1 1 ITTM F F 1 [Satisfies NDS 2005 Sec. 3.7.1.41 A - 0 psi < Fc' [Satisfactory] ALLOWABLE FLEXURAL STRESS IS Fe' = 3717 Psi, [ for Co = 1.6 ] ACTUAL FLEXURAL STRESS IS fb = (M + Fe) / S = 1268 psi < F; ECK COMBINED STRESS [NDS 2005 Sec. 3.9.2] (fe/Fc )2+fb/[Fe (1-fe/Fer)] = 0.341 [Satisfactory] < 1 [Satisfactory] 0 11 • RA PROJECT Page Res PAGE: t CLIENT beam !f4 tidr at rearof m bathroom DESIGN BY Structural JOB NO V►li,.,:�':Ct�a1.: n..:ac�.-` �==- -- .......-,�•-_:.. � _ DATE REVIEW BY: - INPUT DATA & DESIGN SUMMARY MEMBER SIZE MEMBER SPAN UNIFORMLY DISTRIBUTED DEAD LOAD UNIFORMLY DISTRIBUTED LIVE LOAD CONCENTRATED DEAD LOADS (0 for no concentrated load) DEFLECTION LIMIT OF LIVE LOAD DEFLECTION LIMIT OF LONG-TERM t3 x 6 No. 1, Douglas Fir4arch L = :6:25' It WD = ' 235: lbs / ft WL _-' 140- `' lbs / ft Pot = O:, r: lbs L1 = 0: ft Poz = `0 .. lbs L2 = 0 _L ft L Duration Factor C Condition 1 0.90 L 2 _ Occupancy Live Load 3 FD jj Snow Load Poz + 7 W` ` 8 + # - 5 8 Wind/Earthquake Load wD 2.00 Impact Load Choice => 4 Construction Load ANALYSIS I E = 11.6 DETERMINE REACTIONS, MOMENT, SHEAR WsenW = dL - /. Camber=> 0.10 inch d r.D.L=L/240, Does member have continuous lateral support by top diaphragm ? (1= yes, 0= no) 0 No Code Duration Factor C Condition 1 0.90 Dead Load 2 1.00 Occupancy Live Load 3 1.15 Snow Load 4 1.25 Constnxtion Load 5 1.60 Wind/Earthquake Load 6 2.00 Impact Load Choice => 4 Construction Load ANALYSIS I E = 11.6 DETERMINE REACTIONS, MOMENT, SHEAR WsenW = 7 lbs / ft RLan = 1.19 kips VMax = 1.02 kips, at 5.5 inch from left end MINE SECTION PROPERTIES& ALLOWABLE STRESSES b = 5.50 in E'min = 560 ksi d = 5.50 in FbE = 27589 psi A = 30.3 int I = 76 in° Sx = 27.7 in RB = 5.023 < 50 I E = 11.6 (ft, Tab 3.3.3 footnote 1) CO CM Ct Ci CL CF 1.25 1.00 1.00 1.00 1.00 1.00 ECK BENDING AND SHEAR CAPACITIES fb = MMax / S. = 806 psi < Fb = f,,'= 1.5 VMax / A = 50 psi < ECK DEFLECTIONS 5 d (L. Mix) = 0.04 in, at 3.125 ft from left end, d (Ka D . L. Marl = 0. 11 in, at 3.125 ft from left end Where Ka = 1.00 , (NDS 3.5.2) FERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) A (1.5D. Max) = 0.10 in, at 3.125 ft from left end THE BEAM DESIGN IS ADEQUATE. Code Designation 1 Select Structural, Douglas Fir -Larch 2 No. 1, Douglas Fir -Larch 3 No. 2, Douglas Fir -larch 4 Select Structural, Southern Pine 5 No. 1, Southern Pine 6 No. 2, Southern Pine Choice => 2 R" = 1.19 kips M'. = 1.86 ft4dps, at 3.13 ft from left end E = Ex = 1600 ksi Fb = 1,350 psi Fv = 170 psi E' = 1,600 ksi Cv Cc Cr 1.00 1.00 1.00 1682 psi F,' [Satisfactory] Fb = 1687.5 psi F = FbE / Fb. = 16.35 Fb = 1,682 psi Fv = 213 psi [Satisfactory] d L = L/ 360 [Satisfactory] d Kc o . L = L/ 240 [Satisfactory] 01 • • 0 CHECK THE BEAM CAPACITY WITH AXIAL LOAD r AXIAL LOAD F = ;:.0... kips THE ALLOWABLE COMPRESSIVE STRESS IS F.' = Fc CD Cp CF = 1245 psi Where Fc = 925 psi Co = 1.60 CF = 1.00 (Lumber only) Cp = (1+F) / 2c - [(1+F) / 2c)Z - F / c]°,5 = 0.841 Fc = Fc CD CF = 1480 psi Le = KL = 1.0 L = 75 in b = 5.5 in SF = slenderness ratio = 13.6 < 50 FcE = 0.822 E'm„ / SF = 2564 psi E'min = 580 ksi F = FcE / Fc = 1.732 C = 0.8 THE ACTUAL COMPRESSIVE STRESS IS f = F/A = FTTT �� F F } [Satisfies NDS 2005 Sec. 3.7.1.4] c 0 psi < Fc' [Satisfactory] ALLOWABLE FLEXURAL STRESS IS Fe = 2153 psi, [ for CD = 1.6 ] E ACTUAL FLEXURAL STRESS IS fb = (M + Fe) / S = 806 psi < Fo ECK COMBINED STRESS [NDS 2005 Sec. 3.9.2] (fc/FC, )2+tb/[Fe (1-fc/Fcr)I= 0.374 [Satisfactory] < 1 [Satisfactory] x • 0 • RA PROJECT Page R� CLIENT beam #5 hdr at rear.',of exercise room PAGE. Structural DESIGN BY: JOB NO f DATE ►IVnnA`:Ro�en n'e�s..� n ._ ._:...� _ :.; ' REVIEW BY. INPUT DATA & DESIGN SUMMARY MEMBER SIZE MEMBER SPAN UNIFORMLY DISTRIBUTED DEAD LOAD UNIFORMLY DISTRIBUTED LIVE LOAD :;ONCENTRATED DEAD LOADS (0 for no concentrated load) DEFLECTION LIMIT OF LIVE LOAD DEFLECTION LIMIT OF LONG-TERM 6'X:8",, No. 1, Douglas Fir -larch L ="`_:7'25; . ft Wo = ,235":.; Ibs / ft WL = 140 ` lbs / ft PD1 =' . 0.<: lbs Occupancy Live Load ft PD2 = ::>0 Ibs L2 0 ft L, Duration Factor C Condition 1 FL Dead Load � Po j Occupancy Live Load { Po2 WL Snow Load 4 1.25 ' 'D 1.60 Wind/Earthquake Load 6 2.00 Impact Load Choice => 4 Construction Load ANALYSIS I E = d L = L / 360 Camber => 0.07 inch dKoD.L=Ll240 :. Does member have continuous lateral support by top diaphragm ? 0= yes, 0= no) 0 No Code Duration Factor C Condition 1 0.90 Dead Load 2 1.00 Occupancy Live Load 3 1.15 Snow Load 4 1.25 Construction Load 5 1.60 Wind/Earthquake Load 6 2.00 Impact Load Choice => 4 Construction Load ANALYSIS I E = 13.7 DETERMINE REACTIONS, MOMENT, SHEAR Wsetrw = 9 lbs / ft RLe11 = 1.39 kips VM. = 1.15 kips, at 7.5 inch from left end MINE SECTION PROPERTIES& ALLOWABLE STRESSES b = 5.50 in E'min = 560 ksi d = 7.50 in FbE = 17085 psi A = 41.3 int I = 193 in' Sx = 51.6 in3 RB = 6.383 < 50 I E = 13.7 (ft, Tab 3.3.3 footnote 1) CD CM Ct Ci CL CF 1.25 1.00 1.00 1.00 0.99 1.00 ECK BENDING AND SHEAR CAPACITIES fb = MMax / S. = 587 psi < Fb = fv = 1.5 VMax / A = 42 psi < ECK DEFLECTIONS 5 d (L. Max) = 0.03 in, at 3.625 ft from left end, d (Kn D + L. Max) = 0.08 in, at 3.625 ft from left end Where Ku = 1.00 , (NDS 3.5.2) FERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) A(1sD. Max) = 0.07 in, at 3.625 ft from left end THE BEAM DESIGN IS ADEQUATE. Code Designation 1 Select Structural, Douglas Fir -Larch 2 No. 1, Douglas Fir -Larch 3 No. 2, Douglas Fir -Larch 4 Select Structural, Southern Pine 5 No. 1, Southern Pine 6 No. 2, Southern Pine Choice => 2 Rwgr = 1.39 kips Mm. = 2.52 ft -kips, at 3.63 ft from left end E = Ex = 1600 ksi Fb = 1,350 psi Fv = 170 psi E' = 1,600 ksi Cv Cc Cr 1.00 1.00 1.00 1678 psi F,; [Satisfactory] Fb = 1687.5 psi F = FbE / Fb* = 10.12 Fb' = 1,678 psi Fv = 213 psi [Satisfactory] d L = L/ 360 [Satisfactory] d rOD. L = L/ 240 [Satisfactory] N d • • • HECK THE BEAM CAPACITY WITH AXIAL LOA[ KIAL LOAD F = ,:0 : kips iE ALLOWABLE COMPRESSIVE STRESS IS F.' = F. Co CP CF = 1140 psi Where F. = 925 psi Co = 1.60 CF = 1.00 (Lumber only) CP = (1+F) / 2c - [(1+F) / 2c)2 - F / cju.5 = F. = F. Co CF = 1480 Psi Le = Ke L = 1.01- = 87 in b = 5.5 in SF = slenderness ratio = 15.8 < FIE = 0.822E',,„/SF 2 = 1905 Psi E'min = 580 ksi F = F.E / F.* = 1.287 C = 0.8 E ACTUAL COMPRESSIVE STRESS IS fc = F / A = 0 psi < Fc' ALLOWABLE FLEXURAL STRESS IS Fe = 2148 psi, [ for Co = 1.6 j 1 F F 0.770 50 [Satisfies NDS 2005 Sec. 3.7.1.4] [Satisfactory] E ACTUAL FLEXURAL STRESS IS fb = (M + Fe)/ S = 587 psi < Fe [Satisfactory] ECK COMBINED STRESS [NDS 2005 Sec. 3.9.21 (f. / F�' )2 + fb / (Fe' (1 - fc / FCE)j = 0.273 < i (Satisfactory] 8 • • • RA PROJECT PAGE RES PAGE: i CLIENT.$EAM#9 FL H AT FRONTOFGREATROO DESIGN BY STRUCTURAL JOB NO . DATE :%'.� �/ : REVIEW BY. INPUT DATA & DESIGN SUMMARY MEMBER SIZE MEMBER SPAN UNIFORMLY DISTRIBUTED DEAD LOAD UNIFORMLY DISTRIBUTED LIVE LOAD CONCENTRATED DEAD LOADS (0 for no concentrated load) LIMIT OF LIVE LOAD LIMIT OF LONG-TERM `6X`10 (1= Yes, 0= no) `No.1,Douglas Fir -Larch L 8 It Wo = :'- 455;; lbs / ft WL = .; 340,. ; Ibs / ft Po, _:: ,.. �;.: .: lbs 1.25 0 It PD2=.::0:, Wind/Earthquake Load lbs Lz= ;,: 0 :ft L (1= Yes, 0= no) 1 Yes Code L Z_� 1 Po 1 Dead Load PDz w� Occupancy Live Load 3 WD Snow Load 4 1.25 Construction Load 5 1.60 Wind/Earthquake Load 6 2.00 Impact Load d - L / :360 Camber => 0.10 inch dV.D.L=L/240 Does member have continuous lateral support by top diaphragm ? (1= Yes, 0= no) 1 Yes Code Duration Factor, Cn Codes 1 0.90 Dead Load 2 1.00 Occupancy Live Load 3 1.15 Snow Load 4 1.25 Construction Load 5 1.60 Wind/Earthquake Load 6 2.00 Impact Load Choice => 2 Occupancy Live Load ANALYSIS DETERMINE REACTIONS, MOMENT, SHEAR Wsenw, = 11 lbs / It Rye = 3.23 kips Vwzx = 2.59 kips, at 9.5 inch from left end NINE SECTION PROPERTIES& ALLOWABLE STRESSES THE BEAM DESIGN IS ADEQUATE. Code Designation 1 Select Structural, Douglas Fir -Larch 2 No. 1, Douglas Fir -Larch 3 No. 2, Douglas Fir -Larch 4 Select Structural, Southern Pine 5 No. 1, Southern Pine 6 No. 2, Southern Pine Choice => 2 Rray,r = 3.23 kips M' = 6.45 ft4dps, at 4.00 ft from left end b = 5.50 in Emir, = N/A E = E.= 1600 kei Fb = N/A d = 9.50 in FbE = N/A Fb = 1,350 psi F = FbE / Fb* = N/A A = 52.3 int 1 = 393 in Fv = 170 psi Fb' = 1,350 psi Sx = 82.7 in RB = N/A E' = 1,600. ksi Fv' = 170 psi lE = N/A CD CM Ct Ci CL CF 1.00 1.00 1.00 1.00 1.00 1.00 CHECK BENDING AND SHEAR CAPACITIES fb = MMax / Sx = 936 psi < Fb = f,;= 1.5 VMax / A = 74 psi < CHECK DEFLECTIONS d (L. M.) = 0.05 in, at 4.000 ft from left end, d (Ka o . L . M.) = 0.12 in, at 4.000 ft from left end Where K= = 1.00 , (NDS 3.5.2) DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) A (1.50, Max) = 0.10 in, at 4.000 ft from left end Cv C, Cr 1.00 1.00 1.00 1350 psi F,; [Satisfactory] [Satisfactory] dL=L/360 40-L=L/240 [Satisfactory] [Satisfactory] 6 I • • C, HECK THE BEAM CAPACITY WITH AXIAL LOA[ ;IAL LOAD F kips IE ALLOWABLE COMPRESSIVE STRESS IS F.* = Fo Co CP CF = 1367 psi Where F. = 925 psi CD = 1.80 CF = 1.00 (Lumber only) CP = (1+F) / 2c - 1(1+F) / 2c)2 - F / c]o.e = Fo = F. CD CF = 1480 Psi Lo = K, L = 1.01- = 96 in d = 9.5 in SF = slenderness ratio = 10.1 < FoE = 0.822 E',a„ / SF = 4669 psi E'min = 580 ksi F = Foe / Fe = 3.155 C = 0.8 ACTUAL COMPRESSIVE STRESS IS fo = F / A = 0 psi < Fc' ALLOWABLE FLEXURAL STRESS )S Fe = 2160 psi, [ for CD = 1.6 ] ACTUAL FLEXURAL STRESS IS fb = (M + Fe) / S = 936 psi < FD ECK COMBINED STRESS [NDS 2005 Sec. 3.9.21 (fc / FC, )2 + fb / [Fe (1 - fo / Foe)] = 0.433 F F 0.924 50 [Satisfies NDS 2005 Sec. 3.7.1.4] [Satisfactory] [Satisfactory] < 1 [Satisfactory] 9 11 • RA PROJECT PAGE RES =: PAGE: ' CLIENT 'BEAM #11 FL HDR:A71"RQNT'F GREAT Ra DESIGN BY : STRUCTURAL JOB NO DATE ..._ ., .... ,.. .u,_..,.,. .._-, .._.. � ,oir �' REVIEW BY: INPUT DATA & DESIGN SUMMARY MEMBER SIZE MEMBER SPAN UNIFORMLY DISTRIBUTED DEAD LOAD UNIFORMLY DISTRIBUTED LIVE LOAD CONCENTRATED DEAD LOADS (0 for no concentrated load) DEFLECTION LIMIT OF LIVE LOAD DEFLECTION LIMIT OF LONG-TERM Does member have continuous lateral support by top diaphragm ? (1= yes, 0= no) 1 Yes L Glulam 24F -1.8E L= .'1%5*.. R Wo = ;580 ?.. lbs / ft WL = ' 440; , lbs / ft Pao = :0 :5: lbs 2 1.00 Occupancy Live Load PD2 = - ::0. ' s lbs L2=_ 0 ft d L = L / 360' dK D-L=L/240 Does member have continuous lateral support by top diaphragm ? (1= yes, 0= no) 1 Yes L C�,Po, Poe WL 1 0.90 Dead Load 0 2 1.00 Occupancy Live Load 4 Camber => 0.34 inch THE BEAM DESIGN IS ADEQUATE. Code Duration Factor. C Condition 1 0.90 Dead Load 2 1.00 Occupancy Live Load 3 1.15 Snow Load 4 1.25 Construction Load 5 1.60 Wind/Earthquake Load 6 2.00 Impact Load Choice => 2 Occupancy Live Load ANALYSIS DETERMINE REACTIONS, MOMENT, SHEAR Wsar o rt = 22 lbs / ft RLQ = 8.60 kips Rw yx = 8.60 kips Vm. = 7.03 kips, at 18 inch from left end Mm. = 35.46 ft -kips, at 8.25 ft from left end DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES b = 5.13 in E'min = N/A E = Ex = 1800 ksi Fb = N/A d = 18.00 in FbE = N/A Fb = 2,400 psi F = FbE / Fe = N/A A = 92.3 int 1 = 2,491 in Fv = 265 psi Fb' = 2,361 psi Sx = 276.8 in 3 RB = N/A E' = 1,800 ksi F,; = 265 psi lE = N/A Cc CM Ct Ci CL CF Cv Cp Cr 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 :HECK BENDING AND SHEAR CAPACITIES fb = MMax / Sx = 1538 psi < Fb = 2361 psi [Satisfactory] fv' = 1.5 VMax / A = 114 psi < F, [Satisfactory] HECK DEFLECTIONS d iL, M.0 = 0.16 in, at 8.250 It from left end, < d L = L / 360 [Satisfactory] d (Ka D . L. Mui = 0.39 in, at 8.250 ft from left end < d K� D , L = L / 240 [Satisfactory] Where Ka = 1.00 , (NDS 3.5.2) (ERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) d (1.50. Max) = 0.34 in, at 8.250 It from left end e fil ff / 0 00 1 r-r�kD • • i HECK THE BEAM CAPACITY WITH AXIAL LOA[ CAL LOAD F = 'V 0' i : kips -IE ALLOWABLE COMPRESSIVE STRESS IS Fe = F. CD CP CF = 2411 psi Where F. = 1600 psi Co = 1.50 CF = 1.00 (Lumber only) CP = (1+F) / 2c - [(1+F) / 2c)2 -F / c]0.5 F-' = F. Co CF = 2560 psi Le = K� L = 1.01- = 198 in d = 18 in SF =slenderness ratio = 11.0 < FIE = 0.822 E' --n /SF2 = 5318 psi E'min = 930 ksi F = F,E / F�* = 2.468 C = 0.9 E ACTUAL COMPRESSIVE STRESS IS fc = F / A = 0 psi < F.' ALLOWABLE FLEXURAL STRESS 1S Fo = 3777 psi, [ for Co = 1.6 ] / 1 F F 0.942 50 [Satisfies NDS 2005 Sec. 3.7.1.41 [Satisfactory] -- ACTUAL FLEXURAL STRESS IS fb = (M + Fe) / S = 1538 psi < Fti [Satisfactory] ECK COMBINED STRESS [NDS 2005 Sec. 3.9.21 (f. / F.' )2 + fp / (Fb, (1 - fc / FcE)j = 0.407 < 1 [Satisfactory] • • 0 RA PROJECT PAGE RES s STRUCTURAL JCLIENT - OB NO.:$ #13 HpR A DAN�OF INPUT DATA & DESIGN SUMMARY MEMBER SIZE MEMBER SPAN UNIFORMLY DISTRIBUTED DEAD LOAD UNIFORMLY DISTRIBUTED LIVE LOAD CONCENTRATED DEAD LOADS (0 for no concentrated load) DEFLECTION LIMIT OF LIVE LOAD DEFLECTION LIMIT OF LONG-TERM 6X;92 No. I. Douglas Fir -Larch L 8:5 ;ft WD =' :580; lbs / ft WL Dead Load lbs ft 1.00 Occupancy Live Load 3 1.15 Snow Load ft PD2 = Construction Load 5 L2 = ; 0. , ft PAGE: )M DESIGN BY: REVIEW BY: - y L Po, I (1= yes, 0= no) 1Pos / wl 'D Duration Factor Co Condition 1 0.90 Dead Load 2 1.00 Occupancy Live Load 3 1.15 Snow Load 4 Camber => 0.09 inch d K� D. L = L/ 246 Does member have continuous lateral support by top diaphragm ? (1= yes, 0= no) 1 Yes Code Duration Factor Co Condition 1 0.90 Dead Load 2 1.00 Occupancy Live Load 3 1.15 Snow Load 4 1.25 Construction Load 5 1.60 Wind/Earthquake Load 6 2.00 Impact Load Choice => 2 Occupancy Live Load ANALYSIS DETERMINE REACTIONS, MOMENT, SHEAR Wstlrwt = 14 lbs / ft RLe = 4.39 kips VMax = 3.40 kips, at 11.5 inch from left end M'x = DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES b = 5.50 in E'min = N/A d = 11.50 in FbE = N/A A = 63.3 int 1 = 697 in Sx = 121.2 in' RB = N/A LE = N/A CD CM G Ci CL CF 1.00 1.00 1.00 1.00 1.00 1.00 ECK BENDING AND SHEAR CAPACITIES fb = MMax / S. = 924 psi < Fb = f,'= 1.5 VMax / A = 81 psi < ECK DEFLECTIONS 5 Id (L. Max) = 0.05 in, at 4.250 ft from left end, 'd (Kar o . L. Max) = 0.11 in, at 4.250 ft from left end Where Kn = 1.00 , (NDS 3.5.2) DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) d (1.5D, Max) = 0.09 in, at 4.250 ft from left end THE BEAM DESIGN IS ADEQUATE. Code Designation 1 Select Structural, Douglas Fir -Larch 2 No. 1, Douglas Fir -Larch 3 No. 2, Douglas Fr -larch 4 Select Structural, Southern Pine 5 No. 1, Southern Pine 6 No. 2, Southern Pine Choice => 2 RMON = 4.39 kips 9.34 ft -kips, at 4.25 ft from left end E = E. = 1600 ksi Fb = 1,350 psi Fv = 170 psi E' = 1,600 ksi Fb = N/A F = FbE / Fb = WA Fb = 1,350 psi F,, = 170 psi C„ C' C, 1.00 1.00 1.00 1350 Psi [Satisfactory] Fv' [Satisfactory] < dL=L/360 < dK«D.L=L/240 f,m . 4 l2 t /rli��� [Satisfactory] [Satisfactory] 1ECK THE BEAM CAPACITY WITH AXIAL LOAC .IAL LOAD F E ALLOWABLE COMPRESSIVE STRESS IS F-' = FI CD CP CF = 1396 psi Where F. = 925 psi CO = 1.60 CF = 1.00 (Lumber only) CP = (1+F) / 2c - [(1+F) / 2c)2 - F / cf.5 = Fc = Fc CD CF = 1480 Psi Le = Ko L = 1.01- = 102 in d = 11.5 in SF = slenderness ratio = 8.9 < FIE = 0.822 E;,. /SF2 = 6060 psi E'min = 580 ksi F = Foe / F.* = 4.095 C = 0.8 ACTUAL COMPRESSIVE STRESS IS fI = F / A = 0 psi < Fc' E ALLOWABLE FLEXURAL STRESS 1S 1 1 F F 0.944 50 [Satisfies NDS 2005 Sec. 3.7.1.4] [Satisfactory] Fn' = 2160 psi, [ for CD = 1.6 ) E ACTUAL FLEXURAL STRESS IS fb = (M + Fe) / S = 924 psi < Fti [Satisfactory] ECK COMBINED STRESS [NDS 2005 Sec. 3.9.21 (fI / FI. )2 + fb / [Fb' (1 - fI / F.01 = 0.428 < 1 (Satisfactory] • 0 101 C] • • Raymond B. Franqie PROJECT: THE PAGE RESIDENCE CLIENT: BEAM # 14 cant bm at.patio JOB NO.: DATE: INPUT DATA $ DESIGN SUMMARY BEAM SECTION GLB 51/8 x 18 Glulam 24F -1.8E BEAM SPAN L t = . 30 ft CANTILEVER L2= 3 ft, (0 for no cantilever) DEAD LOADS PROJECTED LIVE LOADS wDL,l = 0.205 kips/ ft wDL.2 = 0.14 kips / ft wLL.i = 0.205 kips / ft wLL,2 = 0.14 kips / ft INCENTRATED LOADS P, P2 I P3 Dead ki s 0 0 1 0 Live kis 0 0 0 Location from Left End ft 0 0 33 LOPE 4 :12 (0 = 18.43 ° ) DEFLECTION LIMIT OF LIVE LOAD ALL =L/360 Code Duration Factor. Cn Condition 1 0.90 Dead Load 2 1.00 Occupancy Live Load 3 1.15 Snow Load 4 1.25 Construction Load 5 1.60 Wind/Earthquake Load 6 2.00 Impact Load Choice => 4 Construction Load YSIS 1 REACTIONS, MOMENTS & SHEARS Rz=051 cosB+w )Li+(cos0+w,, l(Li+0.5Lz)Lz+EP d = l 1111/ Li Lt w-,wn.., l R� cosB+w,•.,)L,+(cos9+w,,, ILz+EP–Rz= 6.27 kips PAGE: DESIGN BY: REVIEW BY: w— _ wu., j_Z_0 =iT R,f 'N Slope t2 I R I t L L, MMm L�-2 A- THE BEAM DESIGN IS ADEQUATE. 7.22 kips Xt = 15.00 ft X2 = 15.00 ft X3= 0.00 ft M = 46.7 ft -kips M trn = 0.5 + wuz) Li wd, + P3L2 = 1.3 ft -kips Ya = 6.36 kips, at R2 left. (coso i 2MINE SECTION PROPERTIES AND DESIGN FACTORS L„ = M -(X3 . L2 ) = 3.0 ft, (NDS 2005 Table 3.3.3) GLB 5 1/8 x 18 Properties b = 5.13 in Fb = 2,400 psi LE = 6.2 ft, (fab 3.3.3 footnote 1) d = 18.00 in Fv = 265 psi, (NDS 97 CM included) R 7.1 < 50 A = 92.3 int 6= E' = 1,800 ksi E'y= 1,600 ksi M A • • • Sx = 276.8 in Fp = 2,753 psi I = 2,491 in F, = 331 psi E = E.= 1800 ksi E'f in = 930 ksi CD CM Ct Ci CL CF CV Cc C1 1.25 1.00 1.00 1.00 0.99 1.00 0.92 1.00 1.00 CHECK BENDING AND SHEAR CAPACITIES Cantilever. Jr. =Mmin lSX = 56 psi < Fb = Middle Span: fb = MMS IS,, = 2026 psi < Fb = Shear. f„' = 1.5 VMa, lA = 103 psi < (neglected d offset conservatively) CHECK DEFLECTION AT LIVE LOAD CONDITION L = L 1loos B = 31.62 ft, beam sloped span Put Put Pua a or b, ft 31.62 31.62 3.16 P, (k) 1 0.00 1 0.00 1 0.00 W1 =war COS2 0= 0.18 klf, perpendicular to beam W2 = WU 2 OOS2 B = 0.13 ktf, perpendicular to beam P3a3(L+a3) w2a3(4L+3a3) FbE = 21959 psi Fb = 3000 psi F = FbE / Fb. = 7.32 2753 psi 2775 psi F„' [Satisfactory] [Satisfactory] [Satisfactory] 3E/ + 24E/ )°OSB 0.01 in, downward to vertical direction. < 2 L2 / 360 = 0.20 in [Satisfactory] _ 0.0 2 z`t.s SwtL4l __ Oneia — E ElL L —b + 384E1 J cosB 0.88 in, downward to vertical direction. < L, / 360 = 1.00 in [Satisfactory] N) • • r\ • - Ac V\ , , ` \I I\ ) Reza PROJECT: BEAM#'15, CANT BM. AT PATIO - A$ har our CLIENT: ;PAGERESIDEBCE ,- 9 p JOB NO.: 11.028,- 4 __ ..� ' DATF719/28/20M Wood Beam.Dn nSAse on NDS:2005 ' d W iP INPUT DATA & DESIGN SUMMARY BEAM SECTION GLB-5,1/2 x 19 1/2 Glulam BEAM SPAN L =i 11.5 `.ft yl CANTILEVER L2 2 5 'ft. (0 for no cantil SLOPED DEAD LOADS WDLA =, 0.4 2Jsoce 14, WDL.2-� 0 PROJECTED LIVE LOADS WLL•1 = '0 • N— WLL.2 = 0 CONCENTRATED LOADS PDL = 4.22 PLL = 3 SLOPE 0 :12 (0 = 0.00 °) '`'-i DEFLECTION LIMIT OF LIVE LOAD I x. I x I x, d LL = L /360y LONG T - ERM DEFLECTION (NDS 3.5.2) a_ 4 Kcr D . L = L / -180 Code Duration Factor C„ Condit 1 0.90 Dead Load 2 1.00 Occupancy Live Load 3 1.15 Snow Load 4 1.25 Construction Load R:=0.5 =+,,,_, L,* �coso -=+,,,_, (r•,+osc.)r=°+rr"r--= �wsn Wind/Earthquake Load r•, r•, Impact Load \ -' " .' Construction Load 1 (W50 C050 + (cos A ALYSIS TERMINE REACTIONS, MOMENTS & SHEARS 0.73 kips A', = 1.83 ft X2= 1.83 ft X3 = 7.85 ft PAGE: DESIGN BY: RA REVIEW BY: �RA 41 11 Acr- 0s: 5' 9 OV PSL THE BEAM DESIGN IS ADEQUATE. 11.09 kips 18.1 ft -kips 0.7 ft -kips Amax = 11.09 kips, at R2 left. TERMINE SECTION PROPERTIES AND DESIGN FACTORS L u = M -(X3 , L2 ) = 7.8 ft, (NDS 2005 Table 3.3.3) GLB 5 1/2 x 10 1/2 Properties _,Ejt] .,n'(a L.-3,,)1 0 = 2,400 psi _ p /E = 15.4 ft, (Tab 3.3.3 footnote 1) 3rar 2asr 24 /-'/ U ry = 265 psi, (NDS 97 CM included) R 8.0 < 50 E' = 1,800 ksi E'y= 1,600 ksi 16L'r 384EI 32 El oao • C] • SX = 101.1 in Fe = 2,969 psi i"bE = 17379 psi I = 531 in' _ F,; - 331 psi Fb' = 3000 psi E = Ex = 1800 ksi E'min = 930 ksi F = FbE / Fb* = 5.79 3/i/ � C C' ?4 /:/ 24 // C f 1.40 I.Uu I.vu 1.uv v.99 1.00 1.00 1.00 1.00 /, `L� CIAmwd Pcos fl= " /="2) OPACITIES 161.7 3846/ 32/:7 Cantilever: fb' = MM;r, /SX = 2143 psi < Fb = 2969 psi [Satisfactory] Middle Span: fb = MMax IS. = 79 psi < Fb = 3000 psi [Satisfactory] Shear: f„' = 1.5 VMax /A = 288 psi < F„' [Satisfactory] (neglected d offset conservatively) CHECK DEFLECTION AT LIVE LOAD CONDITION L = L , /cos 0 = 11.50 ft, beam sloped span a = L 2/cos 0 = 2.50 ft, beam sloped cantilever length P = PLL cos 0 = 3.00 kips, perpendicular to beam W, = W LL.1 cos 2 0 = 0.00 klf, perpendicular to beam W2 = W LL 2 cos 2 0 = 0.00 klf, perpendicular to beam 0.16 in, downward to vertical direction. < 2 L2 / 360 = 0.17 in [Satisfactory] -0.11 in, uplift to vertical direction. < L, / 360 = 0.38 in ,[Satisfactory] :_CK DEFLECTION AT LONG-TERM LOAD, Kr DL + LL, CONDITION P = PKcroL+LL cos 0 = 9.33 kips, perpendicular to beam Ku = 1.50 , (NDS 3.5.2) w, = Kcr W DL., cos 0 + W LL.1 cost 0 = 0.60 klf, perpendicular to beam W2 = Kcr W DL.2 cos 0 + W LL,2 cos 2 0 = 0.00 klf, perpendicular to beam 0.32 in, downward to vertical direction. < 2 L2 / 180 = 0.33 in [Satisfactory] -0.10 in, uplift to vertical direction. < L, / 180 = 0.77 in [Satisfactory] D (confd) • • RA 'STRUCTURAL PROJECT PAGE RES: PAGE: CLIENT BEAM #18 fYP HDR'AT F OF 4ALLWAY DESIGN BY: JOB NO. DATE 1�. REVIEW BY INPUT DATA 8 DESIGN SUMMARY MEMBER SIZE MEMBER SPAN UNIFORMLY DISTRIBUTED DEAD LOAD UNIFORMLY DISTRIBUTED LIVE LOAD CONCENTRATED DEAD LOADS (0 for no concentrated load) LIMIT OF LIVE LOAD LIMIT OF LONG-TERM 6 ic;8 ','No. 1, Douglas Fir -Larch L = . 6;25',:1 ft WD = : '5W:' IbS / ft WL = -.. 400 lbs / ft PD1 = . 0, lbs 1.25 Construction Load 5 PD2 = Q:. IbS L2 = Q - ft L Poi 111111 L 1 wL WD Dead Load 2 1.00 Occupancy Live Load 3 1.15 Snowy Load 4 1.25 Construction Load 5 d L = L / 360 Camber => 0.10 inch dreD.L=L/240: Does member have continuous lateral support by top diaphragm ? (1= Yes, 0= no) 1 Yes Code Duration Factor, C. Condition 1 0.90 Dead Load 2 1.00 Occupancy Live Load 3 1.15 Snowy Load 4 1.25 Construction Load 5 1.60 Wind/Earthquake Load 6 2.00 Impact Load Choice => 2 Occupancy Live Load kLYSIS Rwyt = FERMINE REACTIONS, MOMENT, SHEAR Wse f m = 9 lbs / ft RLen = 3.09 kips VM„ = 2.47 kips, at 7.5 inch from left end DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES b = 5.50 in E'mi„ = N/A d = 7.50 in FbE = N/A A = 41.3 int 1 = 193 in S, = 51.6 in' RB = WA lE = N/A Choice => 2 CD CM Ct Ci CL CF 1.00 1.00 1.00 1.00 1.00 1.00 CHECK BENDING AND SHEAR CAPACITIES fb = MMax / S. = 1124 psi < Fb = f,; = 1.5 VM,, / A = 90 psi < CHECK DEFLECTIONS 3 d (L, Max) = 0.04 in, at 3.125 ft from left end, d (Kv D. L , Max) = 0.11 in, at 3.125 ft from left end Where Ka = 1.00 , (NDS 3.5.2) DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) A (11.50, Max) = 0.10 in, at 3.125 ft from left end THE BEAM DESIGN IS ADEQUATE. Cv C, Cr 1.00 1.00 1.00 1350 Psi [Satisfactory] Fy' [Satisfactory] < dL=L/ 360 < dKWD+L=L/240 dmf 16f li 010r6p [Satisfactory] [Satisfactory] 9 Code Designation 1 Select Structural, Douglas Fr -Larch 2 No. 1, Douglas Fir -Larch 3 No. 2, Douglas Fir -Larch 4 Select Structural, Southern Pine 5 No. 1, Southern Pine 6 No. 2, Southern Pine Choice => 2 Rwyt = 3.09 kips MM„ = 4.83 ft-Idps, at 3.13 It from left end E = E, = 1600 ksi Fb* = N/A Fb = 1,350 Psi F = FbE / Fb' = N/A F„ = 170 psi Fe = 1,350 psi E' = 1,600 ksi F, = 170 psi Cv C, Cr 1.00 1.00 1.00 1350 Psi [Satisfactory] Fy' [Satisfactory] < dL=L/ 360 < dKWD+L=L/240 dmf 16f li 010r6p [Satisfactory] [Satisfactory] 9 CHECK THE BEAM CAPACITY WITH AXIAL LOAC AXIAL LOAD F = 0,`>''< kips THE ALLOWABLE COMPRESSIVE STRESS IS • F� = Fc Co CP CF = 1370 psi Where Fc = 925 psi Co = 1.60 CF = 1.00 (Lumber only) CP = (1+F) / 2c - [(1+F) / 2c)2 - F / c]o.e = Fc` = Fc CO CF = 1480 psi Le = K, L = 1.0 L = 75 in d = 7.5 in SF = slenderness ratio = 10.0 < FcE = 0.822 E'„j„ / SF2 = 4766 psi E'min = 580 ksi F = Foe / Ft* = 3.221 C = 0.8 THE ACTUAL COMPRESSIVE STRESS IS fc = F / A = 0 psi < F.' E ALLOWABLE FLEXURAL STRESS IS F F 0.925 50 [Satisfies NDS 2005 Sec. 3.7.1.4] [Satisfactory] Fe = 2160 psi, [ for CD = 1.6 J E ACTUAL FLEXURAL STRESS IS fD = (M + Fe) / S = 1124 psi < F; [Satisfactory] ECK COMBINED STRESS [NDS 2005 Sec. 3.9.2] (fo / Fc. )2 + fD / [FD (1 - fo / FoE)l = 0.520 < 1 [Satisfactory] r: �J • RA PROJECT :Pa*R- PAGE: CLIENT beam #20 drop beam`s! {sundry DESIGN BY Structural JOB NO.: . DATE::. REVIEW BY: Wood;BeamDesign:8ase an -NDS 2005 . -'; '; :: INPUT DATA & DESIGN SUMMARY MEMBER SIZE MEMBER SPAN UNIFORMLY DISTRIBUTED DEAD LOAD UNIFORMLY DISTRIBUTED LIVE LOAD CONCENTRATED DEAD LOADS (0 for no concentrated load) DEFLECTION LIMIT OF LIVE LOAD DEFLECTION LIMIT OF LONG-TERM A L = L /:36D Camber => 0.18 inch d Ka D . L = L / :240.. Does member have continuous lateral support by top diaphragm ? (1= yes, No. 1, Douglas Fir -Larch L=` '10:' ft wo = `:330 lbs / ft WL = ::240. ` lbs / ft PD, _ 0' . lbs Snow Load .0' It PD2 = _0 : lbs LZ = Q ft A L = L /:36D Camber => 0.18 inch d Ka D . L = L / :240.. Does member have continuous lateral support by top diaphragm ? (1= yes, 0= no) 0 -F Code Duration Factor, C„ Po, w,. C + PD / 'D 2 1.00 Occupancy Live Load 3 1.15 Snow Load 4 4 Construction Load 4 A L = L /:36D Camber => 0.18 inch d Ka D . L = L / :240.. Does member have continuous lateral support by top diaphragm ? (1= yes, 0= no) 0 No Code Duration Factor, C„ Condition 1 0.90 Dead Load 2 1.00 Occupancy Live Load 3 1.15 Snow Load 4 1.25 Construction Load 5 1.60 Wind/Earthquake Load 6 2.00 Impact Load Choice => 4 Construction Load ANALYSIS DETERMINE REACTIONS, MOMENT, SHEAR THE BEAM DESIGN IS ADEQUATE. Code Designation 1 Select Structural, Douglas Fir -Larch 2 No. 1, Douglas Fir -Larch 3 No. 2, Douglas Fir -Larch 4 Select Structural, Southern Pine 5 No. 1, Southern Pine 6 No. 2, Southern Pine Choice => 2 Wsenvuc = 11 lbs / ft RLQ = 2.91 kips 1.00 0.99 1.00 RRkft = 2.91 Id ps f,'= 1.5 VM,, / A = Vm„ = 2.45 kips, at 9.5 inch from left end M" = 7.27 ft4dps, at 5.00 ft from left end in, at 5.000 ft from left end DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES , (NDS 3.5.2) b = 5.50 in E'min = 580 ksi E = E,= 1600 ksi Fb* = 1687.5 psi d = 9.50 in FbE = 9889 psi Fb = 1,350 psi F = FbE / Fe = 5.86 A = 52.3 int 1 = 393 in" F, = 170 psi Fe = 1,671 psi SX = 82.7 in' RB= 8.389 <50 E' = 1,600 ksi F„ = 213 psi 1E= 18.7 (ft, Tab 3.3.3 footnote 1) CD CM Ct Ci CL CF 1.25 1.00 1.00 1.00 0.99 1.00 ECK BENDING AND SHEAR CAPACITIES fb = MMa. / S. = 1054 psi < Fb = f,'= 1.5 VM,, / A = 70 psi < ECK DEFLECTIONS d (L, Max) = 0.09 in, at 5.000 ft from left end, d (Ka D . L, M�) = 0.21 in, at 5.000 ft from left end Where Ka = 1.00 , (NDS 3.5.2) (ERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) d 0.50, MW = 0.18 in, at 5.000 ft from left end Cv C, Cr 1.00 1.00 1.00 1671 psi F� [Satisfactory] [Satisfactory] d L = L/ 360 [Satisfactory] d Ker D. L = L/ 240 [Satisfactory] CHECK THE BEAM CAPACITY WITH AXIAL LOAC AXIAL LOAD F 0 =:' Idps THE ALLOWABLE COMPRESSIVE STRESS IS Fe = Fc Co CP CF = 808 psi Where F. = 925 psi Co = 1.60 CF = 1.00 (Lumber only) CP = (1+F) / 2c - [(1+F) / 2c)2 - F / c]0.e = Fc = F. Co CF = 1480 psi Le = KB L = 1.01- = 120 in b = 5.5 in SF = slenderness ratio = 21.8 < FCE = 0.822 E'ffd„ / SF = 1002 Psi E'min = 580 ksi F = FIE / Fc* = 0.677 C = 0.8 THE ACTUAL COMPRESSIVE STRESS IS f, = F / A = 0 psi < F,' E ALLOWABLE FLEXURAL STRESS IS m � Z F F 0.546 T 50 [Satisfies NDS 2005 Sec. 3.7.1.41 [Satisfactory] Fb' = 2138 psi, [ for Co = 1.6 ] E ACTUAL FLEXURAL STRESS IS fb = (M + Fe) / S = 1054 psi < Fp [Satisfactory] ECK COMBINED STRESS [NDS 2005 Sec. 3.9.21 (fo / F., )Z + fb / [Fe (1 - f. / FCE)] = 0.493 < 1 [Satisfactory] Cl (0 • • 0 RA STRUCTURAL PROJECT PAGE RES CLIENT BEAM 022 JOB NO.: )S�2005 INPUT DATA & DESIGN SUMMARY MEMBER SIZE MEMBER SPAN UNIFORMLY DISTRIBUTED DEAD LOAD UNIFORMLY DISTRIBUTED LIVE LOAD CONCENTRATED DEAD LOADS (0 for no concentrated load) DEFLECTION LIMIT OF LIVE LOAD DEFLECTION LIMIT OF LONG-TERM S DR ATfNTRY OO DATE: . -ham pai PAGE: DESIGN BY: REVIEW BY: L PD+ 1 L No. 1, Douglas Fir -Larch L= 5. ft Wo = :520 lbs / ft WL = 320 lbs / ft Poo = 0> lbs 4 1.25 ft P02 = .. 0 . lbs L2 = 0 ,, ft PAGE: DESIGN BY: REVIEW BY: L PD+ 1 L + PD2 WL wo Duration Factor CD Condition 1 0.90 Dead Load 2 1.00 Occupancy Live Load 3 1.15 Snow Load d L = L / 360 Camber => 0.04 inch d KaD«L = L/240 Does member have continuous lateral support by top diaphragm ? (1= Yes, 0= no) 1 Yes Code Duration Factor CD Condition 1 0.90 Dead Load 2 1.00 Occupancy Live Load 3 1.15 Snow Load 4 1.25 Construction Load 5 1.60 Wind/Earthquake Load 6 2.00 Impact Load Choice => 2 Occupancy Live Load ANALYSIS 2.65 ft -kips, at 2.50 ft from left end DETERMINE REACTIONS, MOMENT, SHEAR Wsulwr = 9 Itis / It RLeft = 2.12 kips Vm. = 1.59 kips, at 7.5 inch from left end NINE SECTION PROPERTIES& ALLOWABLE STRESSES b = 5.50 in E'fT11„ = N/A d = 7.50 in FbE = N/A A = 41.3 int I = 193 in' Sx = 51.6 in' RB = N/A 1E= N/A Choice => 2 CD CM Ct Ci 1.00 1.00 1.00 1.00 CHECK BENDING AND SHEAR CAPACITIES fb = MMax / Sx = 617 psi < f,'= 1.5 Vma, / A 56 ps HECK DEFLECTIONS THE BEAM DESIGN IS ADEQUATE. CL CF Cv CD Cr 1.00 1.00 1.00 1.00 1.00 Fb = 1350 psi < F, [Satisfactory] d (L, Max) = 0.01 in, at 2.500 ft from left end, < d (Ka D . L. Ma* = 0.04 in, at 2.500 ft from left end < Where Ka = 1.00 , (NDS 3.5.2) DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) A (1.51), mu) = 0.04 in, at 2.500 It from left end [Satisfactory] dL=L/360 dKaD.L=L/240 [Satisfactory] [Satisfactory] Code Designation 1 Select Structural, Douglas Fr -Larch 2 No. 1, Douglas Fir -Larch 3 No. 2, Douglas Fir -Larch 4 Select Structural, Southern Pine 5 No. 1, Southern Pine 6 No. 2, Southern Pine Choice => 2 Rwpt = 2.12 kips M'. = 2.65 ft -kips, at 2.50 ft from left end E = E. = 1600 ksi Fb = N/A Fb = 1,350 psi F = FbE / Fb* = N/A Fv = 170 psi Fe = 1,350 psi E' = 1,600 ksi F, = 170 psi CL CF Cv CD Cr 1.00 1.00 1.00 1.00 1.00 Fb = 1350 psi < F, [Satisfactory] d (L, Max) = 0.01 in, at 2.500 ft from left end, < d (Ka D . L. Ma* = 0.04 in, at 2.500 ft from left end < Where Ka = 1.00 , (NDS 3.5.2) DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) A (1.51), mu) = 0.04 in, at 2.500 It from left end [Satisfactory] dL=L/360 dKaD.L=L/240 [Satisfactory] [Satisfactory] • • 0 CHECK THE BEAM CAPACITY WITH AXIAL LOAC AXIAL LOAD F = 0` kips THE ALLOWABLE COMPRESSIVE STRESS IS F.' = F. Co CP CF = 1414 psi Where F� = 925 psi Co = 1.60 CF = 1.00 (Lumber only) CP = (1+F) / 2c - [(1+F) / 2c)2 - F / c]o.5 = F-' = Fc Co CF = 1480 Psi La = K8 L = 1.0 L = 60 in d = 7.5 in SF = slenderness ratio = 8.0 < FcE = 0.822 E'„d„ / SF2 = 7449 psi E'min = 580 ksi F = Fee / Fc' = 5.033 C = 0.8 THE ACTUAL COMPRESSIVE STRESS IS fc = F / A = 0 psi < F.' ALLOWABLE FLEXURAL STRESS 1S Fti = 2160 psi, [ for Co = 1.6 J T 1 1 F F 0.955 4 50 [Satisfies NDS 2005 Sec. 3.7.1.4) [Satisfactory] E ACTUAL FLEXURAL STRESS IS fb = (M + Fe) / S = 617 psi < Fti [Satisfactory] ECK COMBINED STRESS [NDS 2005 Sec. 3.9.21 (f. / FC' )Z + fb / (Fb, (1 - f. / F..), = 0.286 < f (Satisfactorvl 'UT DATA & DESIGN SUMMARY MBER SIZE MBER SPAN IFORMLY DISTRIBUTED DEAD LOAD IFORMLY DISTRIBUTED LIVE LOAD NCENTRATED DEAD LOADS (0 for no concentrated load) DEFLECTION LIMIT OF LIVE LOAD DEFLECTION LIMIT OF LONG-TERM GLB 5 4/8 x 131/2 RA PROJECT PAGE RES PAGE: lbs / ft STRUCTURAL CLIENT JOB NO. SEAM #23 HDR AT ENTRY TOWER DATE , �?L�7/ DESIGN BY: REVIEW BY: 'UT DATA & DESIGN SUMMARY MBER SIZE MBER SPAN IFORMLY DISTRIBUTED DEAD LOAD IFORMLY DISTRIBUTED LIVE LOAD NCENTRATED DEAD LOADS (0 for no concentrated load) DEFLECTION LIMIT OF LIVE LOAD DEFLECTION LIMIT OF LONG-TERM GLB 5 4/8 x 131/2 Glulam 24F -I ZE L 14 ft Wo = _ 470 lbs / ft WL = 280.`, lbs ft Pot = 2500. lbs 9:5 ft PD2 = ; ' p Itis L2 ft A L = L /:360, 1.25 d 1c« o . L = L / •240;' 5 Does member have continuous lateral support by top diaphragm ? (1= yes, 0= no) 1 Yes Code Duration Factor. Co Condition 1 0.90 Dead Load 2 1.00 Occupancy Live Load 3 1.15 Snow Load 4 1.25 Construction Load 5 1.60 Wind/Earthquake Load 6 2.00 Impact Load Choice => 2 Occupancy Live Load _YSIS ERMINE REACTIONS, MOMENT, SHEAR L Po, LZ ,r # P.z WL Wp CHECK BENDING AND SHEAR CAPACITIES Rwo„ = 7.06 kips • Vm. = 6.20 kips, at 13.5 inch from right end MMS, = 24.82 ft4dps, at 8.00 ft from left end Camber => 0.50 inch THE BEAM DESIGN IS ADEQUATE. CD CM Cr WSeMm = 16 lbs / It RLC„ = 6.17 kips CHECK BENDING AND SHEAR CAPACITIES Rwo„ = 7.06 kips • Vm. = 6.20 kips, at 13.5 inch from right end MMS, = 24.82 ft4dps, at 8.00 ft from left end Where Ke = 1.00 DETERMINE SECTION DETERMINE CAMBER AT 1.5 (DEAD PROPERTIES& ALLOWABLE STRESSES A (1.50. Me ) = 0.50 in, at 7.250 ft from left end b = 5.13 in E'mi„ = N/A E = E,= 1800 ksi Fb = N/A d = 13.50 in FbE = N/A Fb = 2,400 psi F = FbE / Fb* = N/A A = 69.2 int 1 = 1,051 in Fv = 265 psi Fe _ - 2,400 psi Sx = 155.7 in RB = NIA E' = 1,800 ksi F, = 265 psi lE = N/A CD CM Cr Ci CL CF 1.00 1.00 1.00 1.00 1.00 1.00 CHECK BENDING AND SHEAR CAPACITIES fb = MMax / Sx = 1914 psi < Fb = f,; = 1.5 VMax / A = 134 psi < CHECK DEFLECTIONS d (L, Max) = 0.13 in, at 7.000 ft from left end, d rue. D . L, M.) = 0.46 in, at 7.250 ft from left end Where Ke = 1.00 , (NDS 3.5.2) DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) A (1.50. Me ) = 0.50 in, at 7.250 ft from left end C] Cv Cr Cr 1.00 1.00 1.00 2400 psi F,; [Satisfactory] [Satisfactory] d L = L/ 360 [Satisfactory] d Rv D . L = L / 240 [Satisfactory] CHECK THE BEAM CAPACITY WITH AXIAL LOAD 'AXIAL LOAD F = :r,.;.:0,; ?: kips • THE ALLOWABLE COMPRESSIVE STRESS IS F-' = Fc CD CP CF = 2347 psi Where F. = 16W psi F F CD = 1.50 --� CF = 1.00 (Lumber only) ` 1 CP = (1+F) / 2c - [(1+F) / 2c)2 - F / c]o.5 = 0.917 T T Fj = F. CO CF = 2560 psi Le = Ke L = 1.01- = 168 in d = 13.5 in SF = slenderness ratio = 12.4 < 50 [Satisfies NDS 2005 Sec. 3.7.1.4] FeE = 0.822 E'ntn / SF = 4936 psi E'min = 930 ksi F = FoE / F.' = 1.928 C = 0.9 THE ACTUAL COMPRESSIVE STRESS IS fc = F / A = 0 psi < F.' [Satisfactory] ALLOWABLE FLEXURAL STRESS 1S Fe = 3840 psi, [ for CD = 1.6 ] E ACTUAL FLEXURAL STRESS IS fb = (M + Fe) / S = 1914 psi < F; [Satisfactory] ECK COMBINED STRESS [NDS 2005 Sec. 3.9.21 (f. / FC' )Z + fb / (Fb' (1 - f. / F.E)1 = 0.498 < 1 (Satisfactory] • • • • • RA PROJECT 06ge-Res . PAGE Structural CLIENT beam #24 hdrnghtofk,tchen DESIGN BY: JOB NO. DATE. REVIEW BY: INPUT DATA & DESIGN SUMMARY MEMBER SIZE MEMBER SPAN UNIFORMLY DISTRIBUTED DEAD LOAD UNIFORMLY DISTRIBUTED LIVE LOAD CONCENTRATED DEAD LOADS (0 for no concentrated load) DEFLECTION LIMIT OF LIVE LOAD DEFLECTION LIMIT OF LONG-TERM PD1 Duration Factor. C., Condition PD2 6 x%6 Dead Load No. 1, Douglas Fr -Larch L 6 25 ft Wo = :275:. lbs / ft WL =; 180- lbs/ft Por = , .0': : lbs 6 ,5 ft PD2 = ' 0: : lbs L2= A ft PD1 Duration Factor. C., Condition PD2 wL Dead Load 2 wDI Occupancy Live Load 3 1.15 Snow Load 4 1.25 Construction Load 5 Id L = L / 3W:; Camber => 0.12 inch d KaD.L = L/'240 Does member have continuous lateral support by top diaphragm ? (1= yes, 0= no) 0 No Code Duration Factor. C., Condition 1 0.90 Dead Load 2 1.00 Occupancy Live Load 3 1.15 Snow Load 4 1.25 Construction Load 5 1.60 Wind/Earthquake Load 6 2.00 Impact Load Choice => 4 'Construction Load ',LYSIS 6 -ERMINE REACTIONS, MOMENT, SHEAR Wseffwt = 7 lbs / ft RLee = 1.44 kips V,,,,,, = 1.23 Idps, at 5.5 inch from left end DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES b = 5.50 in E'min = 580 ksi d = 5.50 in FbE = 27589 Psi A = 30.3 int 1 = 76 in S, = 27.7 in' RB = 5.023 < 50 l E = 11.6 (ft, Tab 3.3.3 footnote 1) in, at 3.125 ft from left end CD CM Ct Ci CL CF 1.25 1.00 1.00 1.00 1.00 1.00 CHECK BENDING AND SHEAR CAPACITIES fb = MMax / S. = 975 psi < Fb = fv' = 1.5 VMax / A = 61 psi < CHECK DEFLECTIONS No. 1, Douglas Fir -Larch A (L, W4 = 0.05 in, at 3.125 ft from left end, d (Kcr D + L. Max) = 0.13 in, at 3.125 ft from left end Where Ka = 1.00 , (NDS 3.5.2) DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) Id (1.50, Maxi = 0.12 in, at 3.125 ft from left end THE BEAM DESIGN IS ADEQUATE. Cv Cc Cr 1.00 1.00 1.00 1682 psi F,; [Satisfactory] [Satisfactory] AL = L/ 360 [Satisfactory] d Kao . L = Ll 240 [Satisfactory] 300 Code Desianation 1 Select Structural, Douglas Fir -Larch 2 No. 1, Douglas Fir -Larch 3 No. 2, Douglas Fir -larch 4 Select Structural, Southem Pine 5 No. 1, Southern Pine 6 No. 2, Southern Pine Choice => 2 Ra;ot = 1.44 kips MM„ = 2.25 ft -kips, at 3.13 ft from left end E = E, = 1600 ksi Fb = 1687.5 psi Fb = 1,350 psi F = FbE / Fb = 16.35 Fv = 170 psi Fb' = 1,682 psi F = 1,600 ksi F� = 213 psi Cv Cc Cr 1.00 1.00 1.00 1682 psi F,; [Satisfactory] [Satisfactory] AL = L/ 360 [Satisfactory] d Kao . L = Ll 240 [Satisfactory] 300 CHECK THE BEAM CAPACITY WITH AXIAL LOAD AXIAL LOAD F = `_`0"•':: kips • THE ALLOWABLE COMPRESSIVE STRESS IS F� = F� Co CP CF = 1245 psi Where F, = 925 psi Co = 1.60 CF = 1.00 (Lumber only) Cp = (1+F) / 2c - [(1+F) / 2c)' - F / c]o.s = F,' = F� Co CF = 1480 psi Le = Ke L = 1.0 L = 75 in b = 5.5 in SF = slenderness ratio = 13.6 < FSE = 0.822 E'm„ / SFZ = 2564 psi E'min = 580 ksi F = F.E / F.' = 1.732 C = 0.8 THE ACTUAL COMPRESSIVE STRESS IS % = F / A = 0 psi < Fc' : ALLOWABLE FLEXURAL STRESS IS Fe' = 2153 psi, [ for Co = 1.6 ] � 1 F F T 0.841 50 [Satisfies NDS 2005 Sec. 3.7.1.4] [Satisfactory] ACTUAL FLEXURAL STRESS IS fb = (M + Fe) / S = 975 psi < Fe [Satisfactory] ECK COMBINED STRESS [NDS 2005 Sec. 3.9.2] (f. / F�, )Z + fb / [FD (1 - f. / FcE)] = 0.453 < 1 [Satisfactory] (31 • RA PROJECT Page3Res PAGE Structural JOB beam#25 ridge beam:a4latcheri20 DESIGN BY JOS NO. DATE ;• REVIEW BY Woad --Beam Design Base-,oti NDS 200.5 INPUT DATA & DESIGN SUMMARY MEMBER SIZE MEMBER SPAN UNIFORMLY DISTRIBUTED DEAD LOAD UNIFORMLY DISTRIBUTED LIVE LOAD CONCENTRATED DEAD LOADS (0 for no concentrated load) DEFLECTION LIMIT OF LIVE LOAD DEFLECTION LIMIT OF LONG-TERM .GLB 5:1/8 x 18•.: ` `; Glulam 24F -1.8E L = : 20:5., ft wo = : 386.', lbs / ft WL = 2fIO lbs / ft Por = 0.: lbs L, = 0:. ft PD2 = : O. " lbs L2 = . '-0 ; . ft A L = L / ,360, 5 dKaD.L=L/24t) Wind/Earthquake Load Does member have continuous lateral support by top diaphragm ? (1= yes, 0= no) 0 No Code Duration Factor, C Coen 1 0.90 Dead Load 2 1.00 Occupancy Live Load 3 1.15 Snow Load 4 1.25 Construction Load 5 1.60 Wind/Earthquake Load 6 2.00 Impact Load Choice => 4 Construction Load ANALYSIS DETERMINE REACTIONS, MOMENT, SHEAR WseKHn = 22 lbs / ft RL�ft = 6.99 kips VMa■ = 5.97 kips, at 18 inch from left end DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES b = 5.13 in E'miD = 930 ksi d = 18.00 in FbE = 3579 psi A = 92.3 int I = 2,491 ins S,r = 276.8 in3 RB = 17.658 < 50 LE = 37.9 (ft, Tab 3.3.3 footnote 1) L, RR44 = 6.99 kips Mtmr = L ft-Idps, at 10.25 ft from left end PD, 1800 P. 11 W` 2,400 psi F = FbE / Fb. = 1.19 wD 265 psi Fb' = 2,633 psi E' = 1,800 ksi F,; = 331 psi Camber => 0.53 inch THE BEAM DESIGN IS ADEQUATE. CD CM Ct Ci CL CF Cv C,: Cr 1.25 1.00 1.00 1.00 0.88 1.00 0.96 1.00 1.00 ECK BENDING AND SHEAR CAPACITIES fb = MMax / SX = 1553 psi < Fb = 2633 psi [Satisfactory] f, = 1.5 VMax / A = 97 psi < F„ [Satisfactory] ECK DEFLECTIONS d (L, MU) = 0.25 in, at 10.250 ft from left end, < d (Ka D . L. WW* = 0.60 in, at 10.250 ft from left end < Where Ka = 1.00 , (NDS 3.5.2) DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) Id 0.5D. Wax) = 0.53 in, at 10.250 ft from left end A L = L / 360 [Satisfactory] A r, D+L = L / 240 [Satisfactory] RR44 = 6.99 kips Mtmr = 35.83 ft-Idps, at 10.25 ft from left end E = Ex = 1800 ksi Fb = 3000 psi Fb = 2,400 psi F = FbE / Fb. = 1.19 Fv = 265 psi Fb' = 2,633 psi E' = 1,800 ksi F,; = 331 psi CD CM Ct Ci CL CF Cv C,: Cr 1.25 1.00 1.00 1.00 0.88 1.00 0.96 1.00 1.00 ECK BENDING AND SHEAR CAPACITIES fb = MMax / SX = 1553 psi < Fb = 2633 psi [Satisfactory] f, = 1.5 VMax / A = 97 psi < F„ [Satisfactory] ECK DEFLECTIONS d (L, MU) = 0.25 in, at 10.250 ft from left end, < d (Ka D . L. WW* = 0.60 in, at 10.250 ft from left end < Where Ka = 1.00 , (NDS 3.5.2) DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) Id 0.5D. Wax) = 0.53 in, at 10.250 ft from left end A L = L / 360 [Satisfactory] A r, D+L = L / 240 [Satisfactory] CHECK THE BEAM CAPACITY WITH AXIAL LOAC • AXIAL LOAD F = 0:_ii:> kips • THE ALLOWABLE COMPRESSIVE STRESS IS Fc = Fc CD CP CF = 292 psi Where F. = 1600 psi CO = 1.60 CF = 1.00 (Lumber only) CP = (1+F) / 2c - [(1+F) / 2c)2 - F / c]0.5 = F. = F. CD CF = 2560 psi Le = Ke L = 1.0 L = 246 in b = 5.125 in SF = slenderness ratio = 48.0 < FIE = 0.822 E',- / SF = 296 psi E'min = 830 ksi F = F.E / F.* = 0.116 C = 0.9 THE ACTUAL COMPRESSIVE STRESS IS fc = F / A = 0 psi < F.' E ALLOWABLE FLEXURAL STRESS IS Fp = 3371 psi, [ for CD = 1.6 ] ACTUAL FLEXURAL STRESS IS fb = (M + Fe) / S = 1553 psi < F; ECK COMBINED STRESS [NDS 2005 Sec. 3.9.2] (fo / FC' )2 + fb / [Fe (1 - f. / FcE)l = 0.461 • 0 - i � F ]j IF 0.114 T 50 [Satisfies NDS 2005 Sec. 3.7.1.4] [Satisfactory] [Satisfactory] < f [Satisfactory] • • C7 RA PROJECT PB" Res a PAGE Structural CLIENT beam #26 ntige beam,at outdoorpatto DESIGN BY: r s J08 NO. �: << �: DATE REVIEW BY: INPUT DATA & DESIGN SUMMARY Ci CL CF MEMBER SIZE ; 1 ' 5;1/8 x 15;. ' Glulam 24F -1.8E MEMBER SPAN L = `,x.:19;° ft UNIFORMLY DISTRIBUTED DEAD LOAD w = o -,;.'330 � lbs / ft UNIFORMLY DISTRIBUTED LIVE LOAD WL= 0; 240 lbs / ft CONCENTRATED DEAD LOADS P t' 'i:;. :` iii -U lbs (0 for no concentrated load) L, _ ;0;•`" f ft in, at 9.500 ft from left end Where Ka = 1.00 , (NDS 3.5.2) L2 = ;,0: ^ ft DEFLECTION LIMIT OF LIVE LOAD AL = L/ 360" .= DEFLECTION LIMIT OF LONG-TERM AKaD~L=L/''240`'',:" L Ci CL CF THE BEAM DESIGN IS ADEQUATE. Does member have continuous lateral support by top diaphragm ? L fb = MMD„ / S. = 1658 Po, j f,'= 1.5 VMa„ / A = 1 P. 1 wL d (L• Max) = 0.27 WD Code Duration Factor. C, Condition in, at 9.500 ft from left end Where Ka = 1.00 , (NDS 3.5.2) DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) 1 0.90 Dead Load in, at 9.500 ft from left end Camber => 0.59 inch CD CM Ct Ci CL CF THE BEAM DESIGN IS ADEQUATE. Does member have continuous lateral support by top diaphragm ? CHECK BENDING AND SHEAR CAPACITIES fb = MMD„ / S. = 1658 psi < Fb = f,'= 1.5 VMa„ / A = (1= yes, 0= no) 0 No CHECK DEFLECTIONS d (L• Max) = 0.27 in, at 9.500 ft from left end, Code Duration Factor. C, Condition in, at 9.500 ft from left end Where Ka = 1.00 , (NDS 3.5.2) DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) 1 0.90 Dead Load in, at 9.500 ft from left end 2 1.00 Occupancy Live Load 3 1.15 Snow Load 4 1.25 Construction Load 5 1.60 Wind/Earthquake Load 6 2.00 Impact Load Choice => 4 Construction Load ANALYSIS DETERMINE REACTIONS, MOMENT, SHEAR wS.ffw = 18 lbs / ft RL�e = 5.59 kips R" = 5.59 kips Vmr = 4.85 kips, at 15 inch from left end Mme, = 26.55 ft -kips, at 9.50 ft from left end DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES b = 5.13 in E'min = 930 ksi E= E.= 1800 ksi Fb = 3000 psi d = 15.00 in FbE = 4690 psi Fb = 2,400 psi F = FbE / Fb' = 1.56 A = 76.9 int 1 = 1,441 in° F,,. = 265 psi Fe = 2,794 psi S,, = 192.2 in3 RB = 15.425 < 50 E' = 1,800 ksi F, = 331 psi l E = 34.7 (ft, Tab 3.3.3 footnote 1) CD CM Ct Ci CL CF 1.25 1.00 1.00 1.00 0.93 1.00 CHECK BENDING AND SHEAR CAPACITIES fb = MMD„ / S. = 1658 psi < Fb = f,'= 1.5 VMa„ / A = 95 psi < CHECK DEFLECTIONS d (L• Max) = 0.27 in, at 9.500 ft from left end, A (Ka D . L, MO = 0.66 in, at 9.500 ft from left end Where Ka = 1.00 , (NDS 3.5.2) DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) A (1.50. tax) = 0.59 in, at 9.500 ft from left end D Cv C'. C, 0.99 1.00 1.00 2794 psi . F� . ' (Satisfactory] (Satisfactory] d L = L/ 360 [Satisfactory] A Ka D. L = L/ 240 [Satisfactory] r • CHECK THE BEAM CAPACITY WITH AXIAL LOAD 'AXIAL LOAD F = `::Os:. ', kips THE ALLOWABLE COMPRESSIVE STRESS IS F.' = F. Co CP CF = 340 psi Where F, = 1600 psi Co = 1.60 CF = 1.00 (Lumber only) CP = (1+F) / 2c - [(1+F) / 2c)2 - F / cf.5 = F. = F. Co CF = 2560 psi Le = K, L = 1.01- = 228 in b = 5.125 in SF = slenderness ratio = 44.5 < FIE = 0.822C,,„/S172 = 345 psi E'min = 830 ksi F = FcE / Fc' = 0.135 C = 0.9 THE ACTUAL COMPRESSIVE STRESS IS f� = F / A = 0 psi < Fc' ALLOWABLE FLEXURAL STRESS IS Fe' = 3576 psi, [ for CD = 1.6 J ACTUAL FLEXURAL STRESS IS fb = (M + Fe) / S = 1658 psi < F, :CK COMBINED STRESS [NDS 2005 Sec. 3.9.2] (fc/Fc )2+fb/[Fb (1-f./F.01 = 0.463 a i i F F 0.133 50 [Satisfies NDS 2005 Sec. 3.7.1.4] [Satisfactory] [Satisfactory] < i [Satisfactory] • • • RA Camber => 0.12 inch DEFLECTION LIMIT OF LONG-TERM L / 246:„>•;' PROJECT PageRes °� r, L �k PAGE THE BEAM DESIGN IS ADEQUATE. CLIENT beam #27 tidr at front of kttchen DESIGN BY: (1= yes, 0= no) 0 No Structural JOB NO: ; x ,:::-.,� _ :.',•> ,.> DATE s ..';::: .�..., REVIEW BY: Code INPUT DATA & DESIGN SUMMARY ' MEMBER SIZE "_ 6 z 12 7 No. 1, Douglas Fir-Larch �d` MEMBER SPAN L = + 8 25.`'* ft 'jI� UNIFORMLY DISTRIBUTED DEAD LOAD wo ,. ,.60;, lbs / ft P., j + P. UNIFORMLY DISTRIBUTED LIVE LOAD WL = r>;=`0 v lbs / ft W` CONCENTRATED DEAD LOADS PD, _ 'r.:5600S lbs "o y. (0 for no concentrated load) L, _ It P02 t) lbs L2 ft DEFLECTION LIMIT OF LIVE LOAD' d L = L /.360 ,:_, Camber => 0.12 inch DEFLECTION LIMIT OF LONG-TERM L / 246:„>•;' b = 5.50 in E'min = 580 ksi E = E,= THE BEAM DESIGN IS ADEQUATE. Does member have continuous lateral support by top diaphragm ? 1687.5 psi d = 11.50 in FbE = 9347 psi (1= yes, 0= no) 0 No 1,350 psi F = FbE / Fe = 5.54 Code Duration Factor, Co Condition Code Designation 1 0.90 Dead Load 1 Select Structural, Douglas Fit -Larch 2 1.00- Occupancy Live Load 2 No. 1, Douglas Fir -Larch 3 1.15 Snow Load 3 No. 2, Douglas Fr -Larch 4 1.25 Construction Load 4 Select Structural, Southern Pine 5 1.60 Wind/Earthquake Load 5 No. 1, Southern Pine 6 2.00 Impact Load 6 No. 2, Southern Pine Choice => - 4 Construction Load Choice => 2 ANALYSIS CHECK BENDING AND SHEAR CAPACITIES DETERMINE REACTIONS, MOMENT, SHEAR - wseavt = 14 lbs / ft R,e, = 1.83 kips Ra;a„ = 4.38 kips VM,z = 4.31 kips, at 11.5 inch from right end M = 9.66 ft -kips, at 6.00 ft from left end DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES b = 5.50 in E'min = 580 ksi E = E,= 1600 ksi Fb = 1687.5 psi d = 11.50 in FbE = 9347 psi Fb = 1,350 psi F = FbE / Fe = 5.54 A = 63.3 int I = • 697 in° F„ _ 170 psi Fe _ - 1,669 psi s SK = 121.2 in RB = 8.629 < 50 E' = 1,600 ksi F,; = 213 psi /E = 16.3 (ft, Tab 3.3.3 footnote 1) CD CM Ct Ci CL CF Cv Cr Cr 1.25 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 CHECK BENDING AND SHEAR CAPACITIES fb = MMax / SK = 956 psi < Fb = 1669 psi [Satisfactory] f,'= 1.5 VMax / A = 102 psi < F, [Satisfactory] CHECK DEFLECTIONS d (L, Max) = 0.00 in, at 4.125 It from left end, < d L = L / 360 [Satisfactory] d (Ka D + L , Max) = 0.08 in, at 4.500 ft from left end < It Ko D « L = L 1240 [Satisfactory] Where Kp = 1.00 , (NDS 3.5.2) DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) A (1.50, Mu) = . 0.12 - in, at 4.500 ft from left end - • • CHECK THE BEAM CAPACITY WITH AXIAL LOAC 'AXIAL LOAD F = ::;0 ';` kips THE ALLOWABLE COMPRESSIVE STRESS IS F� = F. Co CP CF = 1020 psi Where F. = 925 psi Co = 1.60 CF = 1.00 (Lumber only) CP = (1+F) / 2c - [(1+F) / 2c)2 - F / c]o.s = Fc' = Fc CD CF = 1480 Psi Le = Ke L = 1.0 L = 99 in b = 5.5 in SF = slenderness ratio = 18.0 < FSE = 0.822 E'„i„ / SF2 = 1471 psi E'min = 580 ksi F = FSE / F,' = 0.994 C = 0.8 THE ACTUAL COMPRESSIVE STRESS IS f, = F / A = 0 psi < Fc' E ALLOWABLE FLEXURAL STRESS IS Fe = 2137 psi, [ for CD = 1.6 j i i F F 0.689 50 [Satisfies NDS 2005 Sec. 3.7.1.4] [Satisfactory] ACTUAL FLEXURAL STRESS IS fb = (M + Fe) / S = 9% psi < F; [Satisfactory] ECK COMBINED STRESS [NDS 2005 Sec. 3.9.2] (fc / F., )2 + fb / [Fp (i - fe / FCE)] = 0.448 < 1 [Satisfactory] • • • -- RA /� PROJECT Page;Res -. ` PAGE Structural CLIENT beam ff2a hdr left of[outdoa.. DESIGN BY: MEMBER SPAN JOB NO. .: 7..,.: DATE REVIEW BY: ' INPUT DATA & DESIGN SUMMARY Ci CL CF 1.25 1.00 1.00 1.00 0.97 1.00 MEMBER SIZE GL'B 5 1/ISx 12: ; :. `' Glulam 24F -1.8E f,; = 1.5 VM. / A = MEMBER SPAN L = 15:25 ft d (L. M.W = 0.15 UNIFORMLY DISTRIBUTED DEAD LOAD wD = 290. lbs / ft Po, j + PD1 UNIFORMLY DISTRIBUTED LIVE LOAD WL = 160.::- lbs / ft W` CONCENTRATED DEAD LOADS PD1 = : 0 lbs -D (0 for no concentrated load) Lt = 0 . , ft PD2 = 0: lbs L2= 0,, ft DEFLECTION LIMIT OF LIVE LOAD d L = L / 360 Camber => 0.42 inch DEFLECTION LIMIT OF LONG-TERM d Ka D. L = L / 240 6 2.00 Impact Load THE BEAM DESIGN IS ADEQUATE. Does member have continuous lateral support by top diaphragm ? (1= yes, 0= no) 0 No Ci CL CF 1.25 1.00 1.00 1.00 0.97 1.00 CHECK BENDING AND SHEAR CAPACITIES fb = MMax / Sx = 1318 Code Duration Factor. Co Condition f,; = 1.5 VM. / A = 75 psi < CHECK DEFLECTIONS d (L. M.W = 0.15 1 0.90 Dead Load d (Kar D . L. M.0 = 0.43 in, at 7.625 ft from left end Where K= = 1.00 , (NDS 3.5.2) 2 1.00 Occupancy Live Load 3 1.15 Snow Load 4 1.25 Construction Load 5 1.60 Wind/Earthquake Load 6 2.00 Impact Load Choice => 4 Construction Load ANALYSIS DETERMINE REACTIONS, MOMENT, SHEAR wsdrve = 15 lbs / ft RLm = 3.54 kips Re;g = 3.54 kips Vm. = 3.08 kips, at 12 inch from left end Mm = 13.51 ft4dps, at 7.63 ft from left end DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES b = 5.13 in E'miD = 930 ksi E = Ex= 1800 ksi Fb = 3000 psi d = 12.00 in FbE = 7307 psi Fb = 2,400 psi F = FbE / Fb* = 2.44 A = 61.5 int 1 = 738 in Fv = 265 psi Fb' = 2,904 psi 3 Sx = 123.0 in RB = 12.358 < 50 E' = 1,800 ksi F� = 331 psi /E = 27.9 (ft, Tab 3.3.3 footnote 1) CD CM Ct Ci CL CF 1.25 1.00 1.00 1.00 0.97 1.00 CHECK BENDING AND SHEAR CAPACITIES fb = MMax / Sx = 1318 psi < Fb = f,; = 1.5 VM. / A = 75 psi < CHECK DEFLECTIONS d (L. M.W = 0.15 in, at 7.625 ft from left end, d (Kar D . L. M.0 = 0.43 in, at 7.625 ft from left end Where K= = 1.00 , (NDS 3.5.2) DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) d n.so. F&x) = 0.42 in, at 7.625 ft from left end Cv Cr Cr 1.00 1.00 1.00 2904 psi F,; [Satisfactory] [Satisfactory] d L = L/ 360 [Satisfactory] d Kar D . L - L / 240 [Satisfactory] f 3f) 0 • Cl CHECK THE BEAM CAPACITY WITH AXIAL LOAC AXIAL LOAD F = 0..: ; kips THE ALLOWABLE COMPRESSIVE STRESS IS F.' = F� Co CP CF = 522 psi Where F. = 1600 psi Co = 1.60 CF = 1.00 (Lumber only) CP = (1+F) / 2c - [(1+F) / 2c)2 - F / c]0.e = F. = F. Co CF = 2560 psi 1, = Ka L = 1.01- = 183 in b = 5.125 in SF = slenderness ratio = 35.7 < FCE = 0.822 E',,;,, / SFZ = 535 psi E'min = 830 ksi F = FcE / Fc' = 0.209 C = 0.9 THE ACTUAL COMPRESSIVE STRESS IS f, = F / A = 0 psi < Fc' ALLOWABLE FLEXURAL STRESS 1S Fe = 3717 psi, [ for CD = 1.6 ] � 1 F F 0.204 50 [Satisfies NDS 2005 Sec. 3.7.1.4] [Satisfactory] E ACTUAL FLEXURAL STRESS IS fb = (M + Fe) / S = 1318 psi < Fti [Satisfactory] ECK COMBINED STRESS [NDS 2005 Sec. 3.9.2] qC / F., )2 + fb / [Fti (1 - f. /'F.E)] = 0.335 < 1 [Satisfactory] -............... .. J ........... - 0 DESIGN CRUERIA-SEISMIC .LOADING LOCATION: LA QUINTA, CA (ZIPCODE: 92253) Ss =1.515 S, = 0.600 SDs =1.010 SBI = 0.600 SEISMIC DESIGN CATEGORY D (IBC SECTION 1613.5.6) SITE CLASS D (ASSUMED) (IBC SECTION 1613.5.2) OCCUPANCY CATEGORY H (IBC TABLE 16045) SEISMIC AVORTANCE FACTOR 1 1.00 (ASCE 7-05, TABLE11.5-1) RESPONSE MODIFICATION COEFFICIENT R =6.5 (ASCE 7-05, TABLE 12.2-1) ATHARDYFRAA& PANEL R = 6.5 w (BF CATALOG 6-08) AT CAMMEVER STEEL- COL UMV R = L5 j (ASCE 7-05, TABLE 122-1) REDUNDANCY FACTOR p =1.30 (ASCE 7-05, SECT. '12.3.4.2) BASE.SBEAR V = p x'[SwV(1.4 x R)] x W i (ASCE 7-05, EQU. 12.8-1 & 12.8-2) BASE SHEAR V =1.30 x [1-01.0 x 1.0/(1-4 x 6.5)] = 0.145W DESIGN =WIND LOADING ASSUMED MOST CONSERVATIVE ROOF ANGLE2:00 • ps3o =17.8 PSF (ASCE 7-05, FIGURE 6-2) WIND E)CPOSURE"CATEGORY C ----(ASCF-1-,05S;ECT. 6.5.6.3) WIND HAPORTANCE FACTOR I= 1.00 (ASCE 7-05, TABLE 6-1) BASIC WUMD SPEED 90 MPH (ASCE 7-05, FIGURE 6-1) TOPOGRAPHIC FACTOR Kzr 1.00 (ASCE 7-05, SECT. 6.5-7.2) VVEND FACTOR pi = X x Kir x I x ps3o (ASCE 7-05; EQU. 6-1) 11 21.54 psf MAM MUM HEIGHT 15 ft {1L 1-21) WIM FACTOR ,!)9 MA,!MvfUMEEIGHT.20ft:::(?L=1-29)VMWFACTOR 1 .pli = 22.97 psf Nf A3CDvlU- M HEIGHT 25 ft ::(). =1.35) ViM FACTOR pg = 24.03 psf MA)CMUM HEIGHT 30 ft (X =1.40) VAM FACTOR p,§ = 2492 psf 9 LATERAL ANALYSIS SECTION 1 LONGITUDINAL ROOF AVERAGE HEIGHT = 20.00 FT TOP PLATE AVERAGE HEIGHT = 10.00 FT 20 FT. MAX ROOF HEIGHT WIND FORCE = 22.97 PSF WIND LOAD = 22.97 x ( 20.00 - 10.00/2 ) = 345.. 00 PLF SEISMIC LOAD = 0.145 x ( 25.00x66.00 + 15.00x2x5 + I O.00x2x5) = 276.00 PLF WIND GOVERNS = 345.00 PLF MAX. SHEAR = 345.00 x 28.00 / 2 x 66.00 = 74.00 PLF CHORD FORCE = 345.00 x 28.00 x 28.00 / 8 x 65.00 = 513.00 LBS USE '/z" CDX UNBLOCKED WITH 8D' S AT 6", 12" O/C USE (6) 16D' S PER TOP PLATE SPLICE SECTION 2 LONGITUDINAL ROOF AVERAGE HEIGHT = 15.00 FT TOP PLATE AVERAGE HEIGHT = 10.00 FT 15 FT. MAX ROOF HEIGHT WIND FORCE = 21.54 PSF WIND LOAD = 21.54 x ( 15.00 - 10.00/2 ) = 216.00 PLF SEISMIC LOAD = 0.145 x ( 25.00x40.00 + 15.00x2x5 + I0.00xlx5) = 174.00 PLF SEISMIC GOVERNS = 216.00 PLF MAX. SHEAR = 216.00 x 28.00 / 2 x 40.00 = 76.00 PLF CHORD FORCE = 216.00 x 28.00 x 28.00 / 8 x 40.00 = 530.00 LBS USE/2" CDX UNBLOCKED WITH 8D' S AT 6", 12" O/C • USE (6) 16D' S PER TOP PLATE SPLICE • LATERAL ANALYSIS SECTION 1 TRANSVERSE ROOF AVERAGE HEIGHT = 17.00 FT TOP PLATE AVERAGE HEIGHT = 10.00 FT 20 FT. MAX ROOF HEIGHT WIND FORCE = 22.97 PSF WIND LOAD = 22.97 x ( 17.00 - 10.00/2 ) = 276.00 PLF SEISMIC LOAD = 0.145 x ( 25.00x110.00 + 15.00x2x5 + 10.00x6x5) = 464.00 PLF SEISMIC GOVERNS = 464.00 PLF MAX. SHEAR = 464.00 x 28.00 / 2 x 110.00 = 59.00 PLF CHORD FORCE = 464.00 x 28.00 x 28.00 / 8 x 110.00 = 414.00 LBS USE '/z" CDX UNBLOCKED WITH 8D' S AT 6", 12" O/C USE (6) 16D'S PER TOP PLATE SPLICE SECTION 2 TRANSVERSE ROOF AVERAGE HEIGHT = 17.00 FT TOP PLATE AVERAGE HEIGHT = 10.00 FT 20 FT. MAX ROOF HEIGHT WIND FORCE = 22.97 PSF WIND LOAD = 22.97 x ( 17.00 - 10.00/2 ) = 276.00 PLF SEISMIC LOAD = 0.145 x ( 25.0003.00 + 15.00x2x5) = 118.00 PLF WIND GOVERNS = 276.00 PLF MAX. SHEAR = 276.00 x 20.00 / 2 x 33.00 = 84.00 PLF CHORD FORCE = 276.00 x 20.00 x 20.00 / 8 x 33.00 = 419.00 LBS • USE '/z" CDX UNBLOCKED WITH 8D' S AT 6", 12" O/C USE (6) 16D'S PER TOP PLATE SPLICE • 0 /4?,-pv/54 (glZg/11) • SHEAR WALL DESIGN SW #I LEFT ELEVATION TOTAL LOAD = 345.00 x 20.00/2 = 3450.00 LBS. SHEAR WALL LENGTH = 4.00 + 11.00 (7.00 AROUND WINDOWS) = 11.00 FT. SHEAR WALL = 3450.00 / 11.00 = 314.00 PLF USE SHEAR WALL TYPE 13 WITH 5/8" x 12" A.B. AT 8" O.0 MAX. DRAG = 1088.00 LBS. USE (10) 16D'S PER TOP PLATE SPLICE MAX. UPLIFT = 2948.00 LBS USE SIMPSON HDU5 HOLDOWN EACH END SW #2 RIGHT OF M. BDRM AND OFFICE TOTAL LOAD = 345.00 x 35.00/2 = 6038.00 LBS. SHEAR WALL LENGTH = 7.00 + 7.00 = 14.00 FT. SHEAR WALL = 6038.00 / 14.00 = 431.00 PLF USE SHEAR WALL TYPE 12 WITH 5/8" x 12" A.B. AT 12" O.0 MAX. DRAG = 3782.00 LBS. USE (28) 16D'S PER TOP PLATE SPLICE OR ST6236 MAX. UPLIFT = 3962.00 LBS USE SIMPSON HDU5 HOLDOWN EACH END SW #3 LEFT OF HER CLOSET TOTAL LOAD = 345.00 x 35.00/2 = 6038.00 LBS. SHEAR WALL LENGTH= 10.00 FT. • SHEAR WALL = 6038.00 / 1.00 = 604.00 PLF USE SHEAR WALL TYPE 13 WITH 5/8" x 12" A.B. AT 8" O.0 MAX. DRAG = 3194.00 LBS. USE (28) 16D'S PER TOP PLATE SPLICE OR ST6236 MAX. UPLIFT = 5539.00 LBS USE SIMPSON HDU8 HOLDOWN EACH END SW #4 LEFT OF BATH 2 TOTAL LOAD = 345.00 x 47.00/2 = 8108.00 LBS. SHEAR WALL LENGTH = 20.00 FT. SHEAR WALL = 8108.00 / 20.00 = 405.00 PLF USE SHEAR WALL TYPE 12 WITH 5/8" x 12" A.B. AT 12" O.0 MAX. DRAG = 4065.00 LBS. USE (30) 16D'S PER TOP PLATE SPLICE OR ST6236 MAX. UPLIFT = 3055.00 LBS USE SIMPSON HDU5 HOLDOWN EACH END SW #5 LEFT OF GARAGE TOTAL LOAD = 345.00 x 55.00/2 = 9488.00 LBS. SHEAR WALL LENGTH = 16.00 FT. SHEAR WALL = 9488.00 / 16.00 = 593.00 PLF USE SHEAR WALL TYPE 13 WITH 5/8" x 12" AB. AT 8" O.0 MAX. DRAG = 3225.00 LBS. USE (24) 16D'S PER TOP PLATE SPLICE MAX. UPLIFT = 5250.00 LBS USE SIMPSON HDU8 HOLDOWN EACH END ftl.56 e., b A(. 06'elft 51s7/AA JPU f7= X� U°S • 4-x4x1,Sa150 = cp otos C] • RA PROJECT: :PAGE RES. — PAGE CLIENT: SHEAR WALLS 1:. DESIGN BY JOB NO : DATE: REVIEW BY: INPUT DATA LATERAL FORCE ON DIAPHRAGM: vy. WPM _ : 344 plf,for wind (SERVICE LOADS) vcftSEISWC=, .:250: ptf,forseismic, ASO DIMENSIONS: L,= 3S, :' ft, L2 = 4. :ft, L3 = 3.5 ft H, 3 ft, H2 4. ft. H3 = ft KING STUD SECTION 1 pcs, b 4 in, h 8 in SPECIES (1 = DFL, 2 = SP) Y DOUGLAS FIR -LARCH GRADE (1, 2, 3 4 5, or 6) 4 No. 2 EDGE STUD SECTION TPCs. b - 4 4n, h = 's6 in SPECIES 0 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH GRADE (1,2,3,4,5,or(l) 4'. No.2 PANEL GRADE (0 or 1) = 4 " r_ Sheathing and Single Floor MINIMUM NOMINAL PANEL THICKNESS = 4t2' - in COMMON NAIL SIZE (0=6d, 1=8d, 2=10d) 2 10d SPECIFIC GRAVITY OF FRAMING MEMBERS O:S" STORY OPTION ( 1=ground level, 2 --upper levet) t. ground level shear wall DESIGN SUMMARY '%LOCKED 15132 SHEATHING WITH 10d COMMON NAILS 3 in O.C. BOUNDARY 8 ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 30 in O.C. SIR V dio T�40� W'�� HOLD-DOWN FORCES: TL = 3.14 k , TR = 3.14 k (USE PHD2--DW SIMPSON HOLD-DOWN) MAX STRAP FORCE: F = 1.05 k (USE SIMPSON CS18 OVER WALL SHEATHING WITH FLAT BLOCKING) KING STUD: 1 - 4" x 6' DOUGLAS FIR -LARCH No. 2. CONTINUOUS FULL HEIGHT, EDGE STUD: 1 - 4"x 8" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: e = 0.53 in V 712 t L2 3 L TL TR ASSUME INFLECTION POINT AT MIDDLE OF WINDOW Lt 1.2/2 F1 I F2 = 1 F4 + 2 F4 I <+ I F5 F6 F9 F10 F5 5 F5 F13 F5 7 F5 L1 + 0.5 L2 n o j 1-2/2 L3 F2 I F3 J 3 F4 + 4 F7 + F8 F11 F12 FB 6 FS F14 F8 8 F8 F15 Fib F17 F18 —F5 - F19 — — F20 ---' FS s 9 F21 1 0 � F21 1 1 F2, I 1 2 F22 F23 F23 1 F24 TL FREE -BODY INDIVID lA PANFIS OF WA TR M-1 0 0 ANALYSIS Panel GladeCommon Nail Min. Penetration'dmess (m) _ Min. cul) Blocked Nail Spacing Boundary R A8 Edges CHECK MAX SHEAR WALL DIMENSION RATIO h / w = 1.1 < 3* .z ;_; ,. [Satisfactory] 2 Sheathing and Single-Fkwr DETERMINE FORCES 8 SHEAR STRESS OF FREE -BODY INDIVIDUAL PANELS OF WALL 15/32 310 460 INDMDLIAL PANEL W (h) H (h) MAX SHEAR STRESS (plp NO. FORCE (M NO. FORCE (mf) 1 3.50 3.00 194 F1 680 F13 1570 2 200 3.00 523 F2 1047 F14 1570 3 2.00 3.00 523 F3 680 F15 2557 4 3.50 3.00 194 F4 1570 F16 987 5 3.50 2.00 493 F5 1727 F17 987 6 3.50 2.00 493 F6 1047 F18 2557 7 3.50 2.00 493 F7 1047 F19 1047 8 3.50 2.00 493 F8 1727 F20 1047 9 3.50 3.00 194 F9 583 F21 1570 10 200 3.00 523 F10 987 F22 880 11 2.00 3.00 523 F11 987 F23 1047 12 3.50 3.00 194 F12 583 F24 680 DETERMINE REQUIRED CAPACITY vb = 523 pB, ( 1 Side Panel Required, the Max. Nail Spacing = THE SHFAR C_APA('MF=A PFR ..---....- ......- �,..�,...�.� ..o.� �o...,�.c., uy ormulo Uia my Iautw per n5k. note a. JE MAX SPACING OF 5V DIA ANCHOR BOLT (NDS 2005, Tab. 11E) 518 in DIA, x 10 in LONG ANCHOR BOLTS @ 30 in O.C. TNF Nr)l IlMV1ru c^or 3 in) Panel GladeCommon Nail Min. Penetration'dmess (m) _ Min. cul) Blocked Nail Spacing Boundary R A8 Edges SEISMIC 6 4 3 2 Sheathing and Single-Fkwr 10d 1 518 15/32 310 460 600 770 ..---....- ......- �,..�,...�.� ..o.� �o...,�.c., uy ormulo Uia my Iautw per n5k. note a. JE MAX SPACING OF 5V DIA ANCHOR BOLT (NDS 2005, Tab. 11E) 518 in DIA, x 10 in LONG ANCHOR BOLTS @ 30 in O.C. TNF Nr)l IlMV1ru c^or 3 in) KING STUD CAPACITY van (P) Wall Seismic at mid -story pbs) Overturning Moments (ft4bs) Resisting Safety Net Uplift Moments (ft4bs) Factors cabs) Hdddorn SIMPSON SEISMIC 250 176 28380 left 0 0.9 TL = 2580 O4, Right 0 0.9 TR = 2580 WIND 314 EAL„ 34540 Left 0 2/3 TL = 3140 ti Q� Right 0 2/3 TR = 3140 KING STUD CAPACITY ( I L 6 I R le values should Include upper vel UPLIFT forces if applicabh ECK MAXIMUM SHEAR WALL DEFLECTION: (IBC Section 2305.33 0.99 kips F, = 39? =A&,dmg+Aslmf+6Nall :to+OCto,d .rpae do=8y +V � +0.75;henxf= in, ASD 1600 EAL„ Gt 00 ce/hl�0.525 e,n= 0.429 in b,albwadsD Where: vi,= 523 plf . ASD L„ = 11 ft E = 1.7E+06 psi a I (ASCE 7-0512.8.E A = 16.50 in` h = 10 It G = 9.0E+04 psi Ca 4 I 1 t= 0.298 in G, = 0.024 in do = 0.15 in ,(ASCE 7-05 Tab 12.2-1 8 lab 11.51 Cp = 0.38 A = 19.25 in' E = 1600 A. = 0.02 ho CF = 1.10 Fc = 894 psi > fc = 163 psi (ASCE 7-05 Tab 12.12-1) KING STUD CAPACITY P. = 0.99 kips F, = 1350 psi Co = 1.60 C, = 0.38 A = 19.25 in' E = 1600 ksi CF= 1.10 F,'= 894 psi > fc = 51 psi [Satisfactory) EDGE STUD CAPACITY P.= 3.14 kips, (this value should include upper level DOWNWARD loads H applicable) F, = 1350 psi Co = 1.60 Cp = 0.38 A = 19.25 in' E = 1600 ksi CF = 1.10 Fc = 894 psi > fc = 163 psi [Satisfactory] 0 tl • • • Re ✓ V—o( ( 9 2 q / 11 Reza PROJECT: Shear Wal['#3 J �` PAGE: As harnnQur CLIENT 'Page Residence DESIGN BY: A.A. M JOB NO : 11028 fT T DATE# REVIEW BY: ',R.A. INPUT DATA WALL LENGTH WALL HEIGHT WALL THICKNESS FOOTING LENGTH FOOTING WIDTH FOOTING THICKNESS FOOTING EMBEDMENT DEPTH ALLOWABLE SOIL PRESSURE DEAD LOAD AT TOP WALL LIVE LOAD AT TOP WALL TOP LOAD LOCATION WALL SELF WEIGHT LATERAL LOAD TYPE (0--wind,1=seismic) WIND LOADS AT WALL TOP Lw = , 1:0 It h = 10 ,ft t =° 6 in L = 22 ft L, = 2 ft z B =. 2 ;ft T=. 24 in D = 2 r ft qa =; 1.5- ksf D Pr,DL = 0.1 kips Pr.LL = r 0.1 kips i— L 1 a -; 2.25 ft Pw=e 1 akips 0 wind F = 6 ! kips THE FOOTING DESIGN IS ADEQUATE. M = 0 f ft -kips CONCRETE STRENGTH fc. =f 2.5 lksi REBAR YIELD STRESS fy =} 60 ksi TOP BARS, LONGITUDINAL 4 # 5, BOTTOM BARS, LONGITUDINAL 4 3 # 1 5 BOTTOM BARS, TRANSVERSE # 3 @ .12. ' in o.c. < _= Not Required ANALYSIS CHECK OVERTURNING FACTOR (IBC 06 1605.2.1, 1801.2.1, & ASCE 7-05 12.13.4) F=MR/Mo= 2.05 > 1.6/0.9 for wind Where Pf = 12.76 kips (footing self weight) Mo = F (h + D) + M = 72 ft -kips (overturning moment) MR = (Pr.00 (Lt + a) + Pf (0.5 L) + Pw (L, + 0.51-w) = 148 CHECK SOIL CAPACITY (ALLOWABLE STRESS DESIGN) Ps = 8.8 kips (soil weight in footing size) P = (Pr.DL + Pr,LL) + Pw + (Pf - Ps) = 5.16 kips (total vertical net load) MR = (Pr,DL + Pr. LL) (1-1 + a) + Pf (0.5 L) + Pw (L, + 0.51-w) = 148 e = 0.5 L - (MR - Mo) / P = -3.77 It (eccentricity from middle of footing) P(1+ Le) L \\ for e < — 9Arnx = BL 6 2P ,for e>L = 0.00 ksf — 3B(0.5L—e)' 6 Where e = -3.77 It, < (L/6) CHECK FOOTING CAPACITY (STRENGTH DESIGN) MU.R = 1.2 [Pr,DL (1-1 + a) + Pf (0.5 L) + Pw (L, + 0.51-w)] + 0.5 Pr. LL(L1 + a) _ M�,o = 1.6 [F(h + D) + M] = 115 ft -kips Pu = 1.2 (Pf.DL + Pf + Pw) + 0.5 Pr. LL = 17 kips eu=0.5L-(Mua-Mu,o)/Pu= 7.26 It P„ 1 + 6e., L ) , fore„ < L BL 6 = 1.49 ksf 2 P„ L 3B(0.5L-e„)• for e„> 6 [Satisfactory] ft -kips (resisting moment without live load) ft -kips (resisting moment with live load) < 4/3qa [Satisfactory) 178 ft -kips L au,rlc c is • 0 sw -*3 Location A4 Mu,max d (in) (OregD PprovD Vu,max OV,,= 2 0 b d (f� )o.s Top Longitudinal -39 ft -k 20.69 (cont'd) BENDING MOMENT & SHEAR AT EACH FOOTING SECTION 9 kips 42 kips Bottom Longitudinal 5 ft -k 20.69 0.0018 Section 0 1/10 L 2/10 L 3110 L 4110 L 5110 L 6/10 L 7/10 L 8/10 L 9/10 L L Xu (ft) 0 2.20 4.40 6.60 8.80 11.00 13.20 15.40 17.60 19.80 22.00 Pu,N,(klf) 0.0 6.8 3.7 0.7 -2.4 -5.4 0.0 0.0 0.0 0.0 0.0 Mu,w(ft-k) 0 0 -17 -52 -91 -118 -124 -127 -130 -133 -136 Vu,w (kips) 0 -1 -13 -18 -16 -7 -1 -1 -1 -1 -1 Put(ksf) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 Mu.f (ft -k) 0 -2 -7 -15 -27 -42 -61 -83 -108 -136 -168 Vu.t(kips) 0 -2 -3 -5 -6 -8 -9 -11 -12 -14 -15 qu (ksf) -1.5 -1.2 -0.9 -0.6 -0.3 0.0 0.0 0.0 0.0 0.0 0.0 Mu,q (ft -k) 0 7 25 52 85 121 158 195 231 268 305 Vu.G (kips) 0 6 11 14 16 17 17 17 17 17 17 :. Mu (ft -15 -7 -2 0 L Vu (kips) 0 3 -6 -9 -6 2 6 5 3 2 0 10 0 -10 - -20 -30 -40 ® M -50 10 0 -41111111 WWI- OV -10 0.85 1- j 1- " 0.383bd2j Where P = ` / P m;� = 0.0018 f 0.85/3, f c Eu _ Pnaaa• = 0.0129 [Satisfactory] fV eu+Et Location A4 Mu,max d (in) (OregD PprovD Vu,max OV,,= 2 0 b d (f� )o.s Top Longitudinal -39 ft -k 20.69 0.0009 0.0025 9 kips 42 kips Bottom Longitudinal 5 ft -k 20.69 0.0018 0.0025 9 kips 42 kips Bottom Transverse 0 ft -k-/ ft 20.19 0.0000 0.0000 0 kips / ft 21 kips / ft -k) 0 5 1 -15 -33 -39 -27 -15 -7 -2 0 L Vu (kips) 0 3 -6 -9 -6 2 6 5 3 2 0 Location A4 Mu,max d (in) (OregD PprovD Vu,max OV,,= 2 0 b d (f� )o.s Top Longitudinal -39 ft -k 20.69 0.0009 0.0025 9 kips 42 kips Bottom Longitudinal 5 ft -k 20.69 0.0018 0.0025 9 kips 42 kips Bottom Transverse 0 ft -k-/ ft 20.19 0.0000 0.0000 0 kips / ft 21 kips / ft Iw PROJECT: SHEAR WALL 5 CLIENT . JOB NO DATE Footi n g i ei ignof:Shear, a- 0,0asedolti;A iI31_$-0 5 IPUT DATA 'ALL LENGTH LW = 16 ft ALL HEIGHT h = 40 ft ALL THICKNESS t = •6 in DOTING LENGTH L = 50 : ft Lr = 17 ft )OTING WIDTH B = 1 .ft )OTING THICKNESS T = `' 12, in )OTING EMBEDMENT DEPTH D = 1 ` ft .LOWABLE SOIL PRESSURE q8 = :. 1:5 . , ksf :AD LOAD AT TOP WALL Pr.DL = ; : "0:1t " : kips /E LOAD AT TOP WALL Pr.LL = 0.1 kips IP LOAD LOCATION a = 2;25.:.:.; ft 4LL SELF WEIGHT PW = 0.15 kips TERAL LOAD TYPE (0=wind,1=seismic) t):. . wind NO LOADS AT WALL TOP F = '6'. kips M = . 0 ft -kips )NCRETE STRENGTH fc, = 2.5..: ksi BAR YIELD STRESS fy = gp ksi P BARS, LONGITUDINAL 3 # TTOM BARS, LONGITUDINAL `,g. # TTOM BARS, TRANSVERSE # 3-- @ PAGE: DESIGN BY: REVIEW BY: P,. L THE FOOTING DESIGN IS ADEQUATE. 5 /�0 f 22 �to w'C 04-k 5-ee f)n 44 44 .12 in..j,: < == Not Required ANALYSIS CHECK OVERTURNING FACTOR (IBC 06 1605.2.1, 1801.2.1, & ASCE 7-05 12.13.4) • F= MR/ MO= 2.83 > 1.610.9 for wind Where Pf = 7.25 tips (footing self weight) Mo = F (h + D) + M = 66 ft -kips (overturning moment) MR = (P1,00 (1-1 + a) + Pt (0.5 L) + PW (L, + 0.51-W) = 187 • SOIL CAPACITY (ALLOWABLE STRESS DESIGN) Ps = 5 kips (soil weight in footing size) P = (Pr.DL + Pr.L0 + PW + (Pf - Ps) = 2.60 kips (total vertical net toad) MR = (Pr,OI + Pr. LL) (LI + a) + Pf (0.5 L) + PW (Lr + 0.51-W) = 189 e = 0.5 L - (MR - Mo) / P = -22.25 ft (eccentricity from middle of footing) P 1+6e Ll, for e < L 9AuX = 6 2P for e>L = -0.09 ksf — 3B(O.5L—e)' 6 Where e = -22.25 ft, < (L / 6) FOOTING CAPACITY (STRENGTH DESIGN) [Satisfactory] ft -kips (resisting moment without live load) ft -kips (resisting moment with live load) < 4/3g8 [Satisfactory] Mu.R = 1.2 [Pr,DL (L+ + a) + Pt (0.5 L) + PW (Lr + 0.5LW)] + 0.5 Pr, LL(Li + a) = 225 ft -kips Mu.o = 1.6 [F(h + D) + M] = 106 ft -kips Pu = 1.2 (Pr,DL + Pt + PW) + 0.5 Pr, LL = 9 kips eu = 0.51-- (Mu,R - Mru,o) / Pu = 11.78 It u ,w Pu l 1+6eu1 P f ri 111 L) for eu L OK 9 u,.awx = BL 6 = 0.46 ksf 2pu for eu > L 0 3B(O.5L —e,J ' 6 1 qu,ma x .f— Xu �� • 0 tt Mu,� d (in) PregD PpraaD Vu,max OV, = 2 P b d (f�)os Top Longitudinal >K1 *57 8.69 0.0063 0.0089 7 kips 9 kips Bottom Longitudinal 31 ft -k 8.69 0.0087 0.0089 (conrd) BENDING MOMENT & SHEAR AT EACH FOOTING SECTION Bo Section 0 1110 L 2/10 L 3/10 L 4/10 L 5110 L 6/10 L 7/10 L 8/10 L 9/10 L L Xu (ft) 0 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 Pu,w (k� 0.0 0.0 0.0 0.0 1.6 0.0 -1.5 0.0 0.0 0.0 0.0 M,,(ft-k)0 0 0 0 -10 54 -99 -110 -112 -114 -115 Vu,w (SPS) 0 0 0 0 -6-10 -60 0 0 0 Pu.t (kms 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 Mu,r (ft -k) 0 -2 -9 -20 -35 54 -78 -107 -139 -176 -218 Vu,t (kips) 0 -1 -2 -0 -3 -0 -5 -6 -7 -8 -9 qu (ksf) -0.5 -0.4 -0.3 -0.3 -0.2 -0.2 -0.1 -0.1 0.0 0.0 0.0 Mu,q (ft -k) 0 5 21 45 76 113 154 197 242 288 333 Vu,q (wPs) 0 2 4 6 7 8 9 9 9 9 9 L Mu (ft -k) 0 3 12 25 31 4 -23 -19 -9 40 20 - 0 v,- a -2p OM -40 5 0 -5 - oV -10 0.85 1_F j "' -r ` O.3836dz j' Where P = - P min - 0.0018 j r 0.85 f� .%� C Eu PU4.X = Et,+E/ = 0.0129 (Satisfactory) .fy 61 Location Mu,� d (in) PregD PpraaD Vu,max OV, = 2 P b d (f�)os Top Longitudinal -23 ft -k 8.69 0.0063 0.0089 7 kips 9 kips Bottom Longitudinal 31 ft -k 8.69 0.0087 0.0089 7 kips 9 kips Bo -2 0 £. Vu (kips) 0 1 2 3 3 -7 3 2 2 1 0 Location Mu,� d (in) PregD PpraaD Vu,max OV, = 2 P b d (f�)os Top Longitudinal -23 ft -k 8.69 0.0063 0.0089 7 kips 9 kips Bottom Longitudinal 31 ft -k 8.69 0.0087 0.0089 7 kips 9 kips Bo 0M1(A) SHEAR WALL DESIGN • C� SW #6 LEFT OF KITCHEN Ipc1}'0 TOTAL LOAD = 216. 00 x 28.00/2 = 3 024. 00 LBS. -t-- i 0 2 7 Q b y v 51 SHEAR WALL LENGTH = 6.50 FT. SHEAR WALL=4o5f.00 / 6.50 =6:13.Q0 PLF USE SHEAR WALL TYPE li{ WITH 5/8" x 12" A.B. AT 12" O.0 (3 SCS ll) MAX. DRAG =1956,.00 LBS. USE (16) 16D'S PER TOP PLATE SPLICE MAX. UPLIFT =5065.00 LBS USE SIMPSON FIDUSHOLDOWN EACH END SW #7 RIGHT OF KITCHEN AND OUTDOOR .PATIO TOTAL LOAD = 216.00 x 28.00/2 = 3024.00 LBS. SHEAR WALL LENGTH = 5.00 + 6.00 = 11.00 FT. SHEAR WALL = 3024.00 / 11.00 = 275.00 PLF USE SHEAR WALL TYPE 11 WITH 5/8" x 12" A.B. AT 32" O.0 MAX. DRAG = 1442.00 LBS. USE (12) 16D'S PER TOP PLATE SPLICE MAX. UPLIFT = 2333.00 LBS USE SIMPSON HDU5 HOLDOWN EACH END SW #8 REAR ELEVATION TOTAL LOAD = 464.00 x 24.00/2 = 5568.00 LBS. SHEAR WALL LENGTH = 21.00 + 9.00 + 19.00 + 8.00 + 18.00 = 75.00 FT SHEAR.WALL = 5568.00 / 75.00 = 75.00 PLF USE SHEAR WALL TYPE 8 WITH 5/8" x 12" A.B. AT 48" O.0 MAX. DRAG = 558.00 LBS. USE (6) 16D'S PER TOP PLATE SPLICE MAX. UPLIFT = 318.00 LBS HOLDOWNS NOT REQUIRED SW #9 AT HALLWAY TOTAL LOAD = 464.00 x 50.00/2 = 11600.00 LBS. SHEAR WALL LENGTH = 8.00 + 8.00 + 8.00 = 24.00 FT. SHEAR WALL = 11600.00 / 24.00 = 484.00 PLF USE SHEAR WALL TYPE 13 WITH 5/8" x 12" A.B. AT 8" O.0 MAX. DRAG = 1768.00 LBS. USE (12) 16D'S PER TOP PLATE SPLICE MAX. UPLIFT = 5015.00 LBS USE SIMPSON HDU5 HOLDOWN EACH END SW #10 REAR OF PATIO AND KITCHEN TOTAL .LOAD = 464.00 x 43.00/2 x 80/110 = 7255.00 LBS. SHEAR WALL LENGTH = 5.00 + 8.00 = 13.00 FT. SHEAR WALL = 7255.00 / 13.00 = 558.00 PLF USE SHEAR WALL TYPE 13 WITH 5/8" x 12" A.B. AT 8" O.0 MAX. DRAG = 3626.00 LBS. USE (26) 16D'S PER TOP PLATE SPLICE MAX. UPLIFT = 5136.00 LBS USE SIMPSON HDU5 HOLDOWN EACH END 6)71-44 C;' QV & v c13� S,O�lbs 4N *- hnofo)0 �F N -6`T ®-- 4 6 SHEAR WALL DESIGN • SW #11 FRONT OF KITCHEN TOTAL LOAD = 276.00 x 40.00/2 = 5520.00 LBS. SHEAR WALL LENGTH = 14.00 FT. SHEAR WALL = 5520.00 / 14.00 = 395.00 PLF USE SHEAR WALL TYPE 12 WITH 5/8" x 12" A.B. AT 12" O.C. MAX. DRAG = 2623.00 LBS. USE (20) 16D'S PER TOP PLATE SPLICE MAX. UPLIFT = 3244.00 LBS USE SIMPSON HDU5 HOLDOWN EACH END SW #12 FONT OF OUTDOOR PATIO TOTAL LOAD = 276.00 x 20.00/2 = 2760.00 LBS. SHEAR WALL LENGTH = 12.00 FT. SHEAR WALL = 2760.00 / 12.00 = 230.00 PLF USE SHEAR WALL TYPE 10 WITH 5/8" x 12" A.B. AT 48" 0. C. MAX. DRAG = 1252.00 LBS. USE (10) 16D'S PER TOP PLATE SPLICE MAX. UPLIFT = 1958.00 LBS USE SIMPSON HDU5 HOLDOWN EACH END SW #1-_; STEEL COL. AT ENTRY AND PATIO TOTAL LOAD = (25.00 x 33.00 + 15.00 x 4.00) x 0.145 x 16.00/2 = 102 7. 00 CANTILEVER STEEL COLUMN R= 1.5 LOAD = 1027.00 x 6.5/1.5 = 4900.00 LBS • SEE STEEL COLUMN DESIN 11 • • I- Le.c�. (q/2 Reza PROJECT: S.W. #13Steel Column kt Patio PAGE: . As har Our CLIENT . !Page Residence _ DESIGN BY: R.A. JOB NO 11028 DATE : 1.9/28/2011 REVIEW BY: 'R.A. Cantilever Column & Footina Desian Based oKAISC iso_ Act sla'and iac Isns'z I INPUT DATA & DESIGN SUMMARY COLUMN SECTION (Tube, Pipe, or WF) 'HSS84X5/8 . Tube COLUMN YIELD STRESS F y = ; 36. !, ksi CANTILEVER HEIGHT H = 10 ft COLUMN TOP LATERAL LOAD F = 4.9 kips, ASD (Strong Axis Bending only) = 0.62 < 1.0 [Satisfactory] COLUMN TOP GRAVITY LOAD P = 5 kips, ASD DIAMETER OF POLE FOOTING b = 3 ft ALLOW SOIL PRESSURE Qa = 1.5 ksf LATERAL SOIL CAPACITY Pp = VAS ksf/ft RESTRAINED @ GRADE ?(1=yes,0=no) Mry = 0 1 Yes Use 3 ft dia x 6.14 ft deep footing restrained @ ground level THE DESIGN IS ADEQUATE. Pc = Pn / f2c = 420 / 1.67 = 251.48 kips, (AISC 360-05 Chapter E) US,� ANALYSIS CHECK COMBINED COMPRESSION AND BENDING CAPACITY OF COLUMN (AISC 360-05, H1) Pr+8Mrx+'lL for Pr> -0.2 P, 9 Mc, M,y) P, = 0.62 < 1.0 [Satisfactory] Pr + (A4, Mrx+ Mr1 for Pr <0.2 2P� M,y) P, Where Pr = 5.00 kips Mrx = 49.00 ft -kips Mry = 0 ft -kips KL y = 20 ft, weak axis unbraced axial length Pc = Pn / f2c = 420 / 1.67 = 251.48 kips, (AISC 360-05 Chapter E) > Pr [Satisfactory] Mcx = Mn 1.(2b = 134.10 / 1.67 = 80.30 ft -kips, (AISC 360-05 Chapter F) > Mrx [Satisfactory] Mcy = Mn 1.0b = 134.10 /1.67 = 80.30 ft -kips, (AISC 360-05 Chapter F) > Mry [Satisfactory] DESIGN POLE FOOTING (IBC Sec.1805.7 / UBC Sec.1806.8) By trials, use pole depth, d = 6.141 ft Lateral bearing @ bottom, S3 = 2 Pp Min(d , 12') = 1.84 ksf Lateral bearing @ d/3, S, = 2 Pp Mind/3, 12') = 0.61 ksf Require Depth is given by 1 A[,+ l+ l+ 4.36h h J for nonconstrained d- - 4.25Ph - 6.141 ft [Satisfactory] for constrained 6S, Where P= F= 4.90 kips A= 2.34 P/(b S,) = 4.18 h = Mmax IF= 10.00 ft CHECK VERTICAL SOIL BEARING CAPACITY (ACI, Sec. 15.2.2) Cl soil = P I (n b 214) = 0.71 ksf, (net weight of pole footing included.) CHECK STRONG AXIS LATERAL DEFLECTION < Qa [Satisfactory] FH .3 3El 0.67 in < 2 H/ 240 = 1.00 in [Satisfactory] �D( FOUNDATION DESIGN SOIL BEARING PRESUURE = 1800 PSF PER SOILS REPORT MAX LOAD = 45.00x25.00/2 + 15.00x 12.00 + 150x 15x 18/144 = 893.00 PLF FOUNDATION WIDTH REQUIRED = (893.00/1500)x12 = 8" USE 12" WIDE x 12" DEEP FOOTINGS WITH (I) # 4 TOP AND BOTTOM FOOTING CAPACITY = (1 500x52xl 2)/(12xl2) = 5000.00 LBS PADS DESIGN BM # 11= 8600.00 LBS USE 2'-6" SQ. x 18" DEEP W/ (3) #4 BARS ECH WAY BM # 23= 7000.00 LBS USE 2'-6" SQ. x 18" DEEP W/ (3) #4 BARS ECH WAY BM # 25= 7000.00 LBS USE 2'-6" SQ. x 12" DEEP W/ (3) #4 BARS ECH WAY BM # 26 LEFT = 5600.00 LBS USE 2'-6" SQ. x 12" DEEP W/ (3) #4 BARS ECH WAY BM # 27 RIGHT + BM # 25 = 11400.00 LBS USE 3'-0" SQ. x 12" DEEP W/ (3) #4 BARS ECH WAY .7 wq)zF--(i 0 s 0 0 Reza PROJECT: Maximum Load For 2 sq'ft Fad Footing (1500ps>] PAGE: j As har„CLIENT: f i DESIGN BY R:A.;- t 9 M JOB NO.: DATE : ,� - REVI OUr EW BY RrA. INPUT DATA LONGITUDINAL TRANSVERSE d DESIGN SUMMARY 8.50 b COLUMN WIDTH c, = 4 0 in FOOTING WIDTH B = 2,00 ft COLUMN DEPTH u = , 0' in FOOTING LENGTH L = 2.00 ft BASE PLATE WIDTH b; = 4 in FOOTING THICKNESS T = 12 in BASE PLATE DEPTH b, = s 4 in LONGITUDINAL REINF. 3 # 4 @ 9 in o.c. FOOTING CONCRETE STRENGTH t,' = 2.5 ksi TRANSVERSE REINF. 3 # 4 @ 9 in ox REBAR YIELD STRESS fy = 40 ksi AXIAL DEAD LOAD PcL = 2.5 k P ' AXIAL LIVE LOAD PL, = 2:5 k LATERAL LOAD (O=WIND. 1=SEISMIC) = 1 Seismic.SD SEISMIC AXIAL LOAD PLAT = -•0 k, SD _ 117,7777' ' SURCHARGE qS = 0; ;ksf SOIL WEIGHT WS = + .:0:1:1 kcf FOOTING EMBEDMENT DEPTH Or = ,2 ft FOOTING THICKNESS T = 12 in -- - - - c ALLOW SOIL PRESSURE Qa = • 1.5 ksf FOOTING WIDTH B = 2 ft _ -74 (/ —• FOOTING LENGTH L = 2 ft ~ BOTTOM REINFORCING # 4 •-- Ell• .•tee THE PAD DESIGN IS ADEQUATE. ANALYSIS DESIGN LOADS (IBC SEC. 1605.3.2 & ACI 318-05 SEC.9.2.1) CASE 1: DL + LL P = 5 kips 1.2 DL + 1.6 LL Pu = 7 kips CASE 2: DL + LL + E / 1.4 P = 5 kips 1.2 DL + 1.0 LL + 1.0 E Pu = 6 kips CASE 3: 0.9 DL + E / 1.4 P = 2 kips 0.9 DL + 1.0 E Pu = 2 kips CHECK SOIL BEARING CAPACITY (ACI 318-05 SEC. 15.2.2) P CASE 1 CASE 2 CASE 3 8/ +y, + (0. 15 — u ., )%' — 1.29 kSf, 1.29 ksf, 0.60 ksf q MAX < k Q a • [Satisfactory] Where k = 1 for gravity loads. 4/3 for lateral loads. DESIGN FOR FLEXURE (ACI 318-05 SEC. 15.4.2. 10.2, 10.3.5. 10.5.4, 7.12.2, 12.2, & 12.5) 0.85[3 ,f c 11 LONGITUDINAL TRANSVERSE d 8.75 8.50 b 24 24 q u.max 1.75 1.75 Mu 1.47 1.47 P 0.000 0.000 Pmin 0.000 0.000 AS 0.07 0.08 RegD 1 # 4 1 # 4 Max. Spacing 18 in o.c. 18 in o.c. USE 3 # 4 @ 9 in o.c. 3 # 4 @ 9 in o.c. Pmax 0.019 0.019 Check ppm, , pmax [Satisfactory] [Satisfactory] 11 w ul [7 CHECK FLEXURE SHEAR (ACI 318-05 SEC. 9.3.2.3, 15.5.2. 11.1.3.1, & 11.3) 06'lt = 20hdF. PUNCHING SHEAR (ACI 318-05 SEC. 15.5.2, 11.12.1.2. 11.12.6. & 13.5.3.2) 54.98 kips where 0 = 0.75 (ACI 318-05. Section 9.3.2.3 ) Its = ratio of long side to short side of concentrated load = 1.00 bo = C1 * C2 + 131 + b2 + 4d = 42.5 in AP = by d = . 366.6 in' y tf = MIN(2 , 4 / (3c. 40 d / bp) = 2.0 Vu = l'u.max(I --(h ci+c/l(h: ca +c/l1 5.63 kips < ¢ V n [Satisfactory) a (oont'd) LONGITUDINAL TRANSVERSE Vu 0.66 0.73 P 0.75 0.75 0Vn 15.8 15.3 Check V„ < Wn [Satisfactory] [Satisfactory] PUNCHING SHEAR (ACI 318-05 SEC. 15.5.2, 11.12.1.2. 11.12.6. & 13.5.3.2) 54.98 kips where 0 = 0.75 (ACI 318-05. Section 9.3.2.3 ) Its = ratio of long side to short side of concentrated load = 1.00 bo = C1 * C2 + 131 + b2 + 4d = 42.5 in AP = by d = . 366.6 in' y tf = MIN(2 , 4 / (3c. 40 d / bp) = 2.0 Vu = l'u.max(I --(h ci+c/l(h: ca +c/l1 5.63 kips < ¢ V n [Satisfactory) a (oont'd) • Reza TRANSVERSE d 8.75 8.50 PROJECT: Max.`Load For 2'5 sq: ft Pa'd Fooling (1500psf)` PAGE q u.max „ CLIENT: As har our DESIGN BY . ,R.A.; ,_ Mu N JOB NO.: L t DATE: } REVIEW BY: R.A. 0.000 Ndif 'Desi n`6asei'`on'ACi318-05( . 0.001 0.001 A, 0.17 0.18 RegD INPUT DATA 1 # 4 DESIGN SUMMARY 18 in ox, 18 in o.c. COLUMN WIDTH c, = 0 in FOOTING WIDTH B = 2.50 it 0.019 COLUMN DEPTH C2 = ;; •0 in FOOTING LENGTH L = 250 It BASE PLATE WIDTH b, = ' '4 in FOOTING THICKNESS T = 12 in BASE PLATE DEPTH b, = 4 ' in LONGITUDINAL REINF, 3 4 4 @ 12 in o.c FOOTING CONCRETE STRENGTH fc = 2:5 ksi TRANSVERSE REINF. 3 9 4 @ 12 in o.c REBAR YIELD STRESS fy = • =40 ksi 3 AXIAL DEAD LOAD P, = 4.5, k AXIAL LIVE LOAD Pig = , ,4.5 k LATERAL LOAD (O=WIND, 1=SEISMIC) = 1 I Seismic,SD SEISMIC AXIAL LOAD PL,,, = 0 k, SD SURCHARGE qs to ksi SOIL WEIGHT W, = 0,11 kcf - FOOTING EMBEDMENT DEPTH Or = p ft 4 - FOOTING THICKNESS T = 12 ` in c' ALLOW SOIL PRESSURE Oa = <1.5 `ksf FOOTING WIDTH B = FOOTING LENGTH L = 25 ft rr ' 2:5 tt •,y< BOTTOM REINFORCING # '4 _l THE PAD DESIGN IS ADEQUATE. ANALYSIS DESIGN LOADS (IBC SEC.1605.3.2 & ACI 318-05 SEC.9.2.1) CASE 1: OL + LL P = CASE 2: DL + LL + E / 1.4 P = 9 9 kips 1.2 DL + 1.6 LL kips Pu = 13 kips 1.2 DL + 1.0 LL + 1.0 E Pu = 10 kips CASE 3: 0.9 DL + E / 1 4 P = 4 kips 0.9 OL + 1.0 E Pu = 4 kips CHECK SOIL BEARING CAPACITY (ACI 318-05 SEC.15.2.2) P CASE 1 CASE 2 CASE 3 1 5 — �r,.,.) % _ 1.48 ksf, 1.48 ksf. 0.69 ksf q mAx < k Q a . (Satisfactory] where k = 1 for gravity loads, 4/3 for lateral loads. DESIGN FOR FLEXURE (ACI 318-05 SEC.15.4.2, 10.2, 10.3.5. 10.5.4, 7.12.2, 12.2, & 12.5) - 1 • LONGITUDINAL TRANSVERSE d 8.75 8.50 b 30 30 q u.max 2.02 2.02 Mu 3.43 3.43 P 0.000 0.001 Pmin 0.001 0.001 A, 0.17 0.18 RegD 1 # 4 1 # 4 Max. Spacing 18 in ox, 18 in o.c. USE 3 # 4 @ 12 in o.c. 3 # 4 @ 12 in o.c. Pmax 0.019 0.019 Check Pprod , Pmax [Satisfactory] [Satisfactory] El • CK FLEXURE SHEAR (ACI 318-05 SEC.9.3.2.3, 15.5.2, 11.1.3.1, & 11.3) Or 20bdFf. PUNCHING SHEAR (ACI 318-05 SEC. 15.5.2. 11.12.1.2. 11.12.6. & 13.5.3.2) Ov,=(2+ v)o fc..4P = 54.98 kips where 0 = 0.75 (ACI 318-05. Section 9.3.2.3 ) 0, = ratio of long side to short side of concentrated load = 1.00 bo = c1+G2+b1+b2+4d = 42.5 in Ap = b0 d = 366.6 in' Y = MIN(2 . 4 / (1c, 40 d / bo) = 2.0 u = Pu. maxL I H/ ( 2 d )! 2 + d I I = 11.02 kips < 0 V „ [Satisfactory] (conrd) LONGITUDINAL TRANSVERSE Vu 2.21 2.31 4) 0.75 0.75 Wn 19.7 19.1 Check V„ < Wn [Satisfactory] [Satisfactory] PUNCHING SHEAR (ACI 318-05 SEC. 15.5.2. 11.12.1.2. 11.12.6. & 13.5.3.2) Ov,=(2+ v)o fc..4P = 54.98 kips where 0 = 0.75 (ACI 318-05. Section 9.3.2.3 ) 0, = ratio of long side to short side of concentrated load = 1.00 bo = c1+G2+b1+b2+4d = 42.5 in Ap = b0 d = 366.6 in' Y = MIN(2 . 4 / (1c, 40 d / bo) = 2.0 u = Pu. maxL I H/ ( 2 d )! 2 + d I I = 11.02 kips < 0 V „ [Satisfactory] (conrd) (6 • • Reza PROJECT: ,_ #P. PAGE CLIENT: DESIGN BY . -R.A.AS har OVr JOB NO.: DATE : ` . ' . REVIEW BY: R.A. INPUT DATA LONGITUDINAL TRANSVERSE d DESIGN SUMMARY COLUMN WIDTH c, = 0 in FOOTING WIDTH COLUMN DEPTH c7 = 0 in FOOTING LENGTH BASE PLATE WIDTH b, = 4 in FOOTING THICKNESS BASE PLATE DEPTH b, = ,4 . in LONGITUDINAL REINF FOOTING CONCRETE STRENGTH fc' = w'2,5 ksi TRANSVERSE REINF REBAR YIELD STRESS fy = 40 ksi 0.019 AXIAL DEAD LOAD P, = 6:5 k AXIAL LIVE LOAD PL: = 6.5 k LATERAL LOAD (O=WIND, 1=SEISMIC) = 1 Seismic,SD SEISMIC AXIAL LOAD PLAT = 0 k. SO SURCHARGE qs = :0 ksf SOIL WEIGHT ws = 0.11 kcf FOOTING EMBEDMENT DEPTH Dr = 2 ft FOOTING THICKNESS T = 12 in ALLOW SOIL PRESSURE Qa = 1.5 ksf FOOTING WIDTH B = 3 ft FOOTING LENGTH L = 3 ft BOTTOM REINFORCING # 4 THE PAD DESIGN IS ADEQUATE. B = 3.00 It L = 3.00 h T = 12 in 3 # 4 @ 15 in o.c. 3 # 4 @ 15 in ox n r ANALYSIS DESIGN LOADS (IBC SEC.1605.3.2 & ACI 318-05 SEC.9.2.1) CASE 1: DL + LL P = 13 kips 1.2 DL + 1.6 LL Pu = CASE 2: DL + LL + E / 1.4 P = 13 kips 1.2 DL + LO LL + 1.0 E Pu = CASE 3: 0.9 OL + E 11.4 P = 6 kips 0.9 DL + 1.0 E Pu = CHECK SOIL BEARING CAPACITY (ACI 318-05 SEC. 15.2.2) L. CASE 1 CASE 2 CASE 3 ry,r,,x=—+q.,+(0.15-Tr,, )% = 1.48 ksf, 1.48 ksf. 0.69 ksf 6L. q MAx < k Q a , [Satisfactory] where k = 1 for gravity loads, 4/3 for lateral loads. DESIGN FOR FLEXURE (ACI 318-05 SEC.1 5A.2,10.2, 10.3.5, 10.5.4, 7.12.2. 12.2, & 12.5) r 0.851', I- 1-7/u 0.85 i 1 0.383h,/= - r err / /. 4 f,r r'rr Lr Pura l d 3 �1 18 kips 14 kips 6 kips 0 LONGITUDINAL TRANSVERSE d 8.75 8.50 b 36 36 Cl u,max 2.02 2,02 Mu 6.09 6.09 P 0.001 0.001 Pmm 0.001 0.001 As 0.31 0.32 RegD 2 # 4 2 # 4 Max. Spacing 18 in o.c. 18 in o.c. USE 3 # 4 @ 15 in o.c. 3 # 4 @ 15 in o.c. Pmax 0.019 0.019 Check Pprcw < Pmax [Satisfactory] [Satisfactory] 18 kips 14 kips 6 kips 0 w • • FLEXURE SHEAR (ACI 318-05 SEC.9.3.2.3, 15.5.2, 11.1.3.1, & 11.3) of ' 11= 20hdF PUNCHING SHEAR (ACI 318-05 SEC. 15.5.2. 11.12.1.2, 11.12.6, & 13.5.3.2) OI'n=('—+ v)o A = 54.98 kips where 0 = 0.75 (ACI 318-05, Section 9.3.2.3) 01, = ratio of long side t0 Short side of Concentrated load = 1.00 bo = Cl * C2 * bl + b2 + 4d = 42.5 in Ap = bo d = 366.6 in7 Y = MIN(2 , 4 / fig. 40 d / b 2.0 o) = I _P II_ I hi+,'i+(/�(b LL d)ll= 16.61 kis < u— u, mai BL( 2 l 2 /J P m n [Satisfactory] 0 (cont'd) LONGITUDINAL TRANSVERSE Vu 4.17 4.30 4 0.75 0.75 Wn 23.6 23.0 Check V„ < Wn [Satisfactory) [Satisfactory] PUNCHING SHEAR (ACI 318-05 SEC. 15.5.2. 11.12.1.2, 11.12.6, & 13.5.3.2) OI'n=('—+ v)o A = 54.98 kips where 0 = 0.75 (ACI 318-05, Section 9.3.2.3) 01, = ratio of long side t0 Short side of Concentrated load = 1.00 bo = Cl * C2 * bl + b2 + 4d = 42.5 in Ap = bo d = 366.6 in7 Y = MIN(2 , 4 / fig. 40 d / b 2.0 o) = I _P II_ I hi+,'i+(/�(b LL d)ll= 16.61 kis < u— u, mai BL( 2 l 2 /J P m n [Satisfactory] 0 (cont'd) • • /� /Reza PROJECT: Max:Yload For 3 5 sq.fk Pad FooLng'(15OOpsf),, A�''/ har OUr CLIENT : ii :7 P JOB NO.: d~�° e` ,,q 1-� _ �. �h.e r u_ _:z -DATE : �"' ` INPUT DATA B = 3.50 ft COLUMN WIDTH C, =o • in COLUMN DEPTH Ce = 1 4, in BASE PLATE WIDTH b, = 4 -'in BASE PLATE DEPTH bz = 4 7 in FOOTING CONCRETE STRENGTH fc, _ "2,5: ksi REBAR YIELD STRESS fy = 40' ksi AXIAL DEAD LOAD Poi = 8.5 1 k AXIAL LIVE LOAD PLL = 8.5 k LATERAL LOAD (O=WIND, 1=SEISMIC) _ -11. Seismic.SD SEISMIC AXIAL LOAD PLAT = 0 k. SD SURCHARGE qs = 0 ksf SOIL WEIGHT'rs ="k0;11 kCf FOOTING EMBEDMENT DEPTH D) = r `''2 -ft FOOTING THICKNESS T = f •', ,17-, in ALLOW SOIL PRESSURE Qa = �1.5 ksf FOOTING WIDTH B = 3.5- ft FOOTING LENGTH L = Y'3.5` . ft BOTTOM REINFORCING # 4 THE PAD DESIGN IS ADEQUATE. IANALYSIS DESIGN LOADS (IBC SEC.1605.3.2 & ACI 318-05 SEC.9.2.1) CASE 1: DL + LL P = 17 kips CASE 2: DL + LL + E / 1.4 P = 17 kips CASE 3: 0.9 DL + E / 1.4 P = 8 kips CHECK SOIL BEARING CAPACITY (ACI 318-05 SEC. 15.2.2) DESIGN SUMMARY PAGE DESIGN BY R A. REVIEW BY: ,R-A`.� FOOTING WIDTH B = 3.50 ft FOOTING LENGTH L = 3.50 ft FOOTING THICKNESS T = 12 in LONGITUDINAL REINF 4 # 4 12 in o.c TRANSVERSE REINF. 4 # 4 Q 12 in o c P 0.001 0.001 Pmm 0.001 0.001 As 0.48 0.50 RegD 3 # 4 3 # 4 Max. Spacing 18 in O.C. 18 in o.c. USE l 4 # 4 @ 12 in o.c. Pmax pJ` _ 0.019 Check Pproa < Pmax [Satisfactory] [Satisfactory] %/."j _- t D_.. 1.2 DL + 1.6 LL Pu = 24 kips 1.2 DL+LOLL+1.OE Pu = 19 kips 0.9 DL + 1.0 E Pu = 8 kips P CASE 1 CASE 2 CASE 3 K7 (0.15 - i„ ,) % - 1.43 ksf, 1.43 ksf. 0.66 ksf 4 MAx < k O a . [Satisfactory] where k = 1 for gravity loads, 4/3 for lateral loads. DESIGN FOR FLEXURE (ACI 318-05 SEC. 15.4.2. 10.2, 10.3.5. 10.5.4, 7.12.2, 12.2, & 12.5) Ox 'f/tr /r. I 11 0.3R3hd'./,.) - O.RS�i✓�• er: - 11 f" t ° ll d 3 1 !.2 LONGITUDINAL TRANSVERSE d 8.75 8.50 b 42 42 q u.max 1.94 1.94 Mu 9.44 9.44 P 0.001 0.001 Pmm 0.001 0.001 As 0.48 0.50 RegD 3 # 4 3 # 4 Max. Spacing 18 in O.C. 18 in o.c. USE 4 # 4 @ 12 in o.c. 4 # 4 @ 12 in o.c. Pmax 0.019 0.019 Check Pproa < Pmax [Satisfactory] [Satisfactory] !.2 .f ' • s 0 FLEXURE SHEAR (ACI 318-05 SEC.9.3.2.3, 15.5.2, 11.1.3.1, & 11.3) Or, = 2obd f . PUNCHING SHEAR (ACI 318-05 SEC.15.5.2, 11.12.1.2. 11.12.6, & 13.5.3.2) Tia=(2+!'�� ./r. !IP = 54.98 kips where 0 = 0.75 (ACI 318-05. Section 9.3.2.3) Oc = ratio of long side to short side of concentrated load = 1.00 bo = C1 + C2 + b1 + b2 + 4d = 42.5 in AID = bo d = 366.6 in - y = MIN(2. 4/13c. 40d/bo) = 2.0 I ' u = Pu, max L I 81.(-2 * d II 2 * d1J = 22.28 kips < 0 v n [Satisfactory] 9 (cont'd) LONGITUDINAL TRANSVERSE Vu 6.38 6.52 Op 0.75 0.75 0Vn 27.6 26.8 Check Vu < 0Vn [Satisfactory] [Satisfactory] PUNCHING SHEAR (ACI 318-05 SEC.15.5.2, 11.12.1.2. 11.12.6, & 13.5.3.2) Tia=(2+!'�� ./r. !IP = 54.98 kips where 0 = 0.75 (ACI 318-05. Section 9.3.2.3) Oc = ratio of long side to short side of concentrated load = 1.00 bo = C1 + C2 + b1 + b2 + 4d = 42.5 in AID = bo d = 366.6 in - y = MIN(2. 4/13c. 40d/bo) = 2.0 I ' u = Pu, max L I 81.(-2 * d II 2 * d1J = 22.28 kips < 0 v n [Satisfactory] 9 (cont'd) • CK SOIL BEARING CAPACITY (ACI 318-05 SEC. 15.2.2) P CASE 1 CASE 2 CASE 3 BL t q + (0. 15 - 11,07 = 1.48 ksf. 1.48 ksf, 0.69 ksf q MAX < k O a . [Satisfactory] where k = 1 for gravity loads. 4/3 for lateral loads. IGN FOR FLEXURE (ACI 318-05 SEC. 15.4.2. 10.2, 10.3.5. 10.5.4, 7.12.2. 12.2, & 12.5) 11.85. / .I I I 0.383hc/'/,) - 0.85�i.%c err / l P va.r - �• l c rr -r t r P.ur, = P :b//,%' 0.0018 d Reza TRANSVERSE d 8.75 8.50 b 48 48 PROJECT: Max.JLoad For 4'O.sg7-f Pad Footin' '(1500psf) . PAGE Mu A A� har Olir P CLIENT : ..% - ,, t " +: - •- :.> DESIGN BY R.A., ` 0.002 0.002 JOB NO.: I_ �. ;r .i DATE: :._ ..: ' REVIEW BY: R.A. 4 # 4 Pad Footii ;Desi h"Sa d on}'ACi 318-05 18 in o.c. 18 in o.c. USE 4 # 4 @ 14 in o.c. 4 # 4 @ 14 in o.c. Pmax 0.019 0.019 Check pproe ` Pmax INPUT DATA [Satisfactory] DESIGN SUMMARY COLUMN WIDTH c, = 0: in FOOTING WIDTH B = 4.00 It COLUMN DEPTH q2 = 0 in FOOTING LENGTH L = 4.00 It BASE PLATE WIDTH b, = 4 in FOOTING THICKNESS T = 12 in BASE PLATE DEPTH b: = 4 - . in LONGITUDINAL REINF 4 # 4 @ 14 in o.c FOOTING CONCRETE STRENGTH fc' = 2.5 . ksi TRANSVERSE REINF 4 # 4 @ 14 in o.c REBAR YIELD STRESS fy = 4.6 ksi AXIAL DEAD LOAD Po, = -11.5 k AXIAL LIVE LOAD PLL = 1.1:5 k ' LATERAL LOAD (O=WIND• 1=SEISMIC) = 1. Seismic,SO SEISMIC AXIAL LOAD PLAT = 0,. k, SD SURCHARGE qs = 9 ksf 7 I" to SOIL WEIGHT ws = X0.11. kcf FOOTING EMBEDMENT DEPTH Of = 2 g FOOTING THICKNESS T = 12 in ALLOW SOIL PRESSURE Oa = .1:5: ksf '- FOOTING WIDTH B = q It FOOTING LENGTH L BOTTOM REINFORCING # 4 b. THE PAD DESIGN IS ADEQUATE. v ANALYSIS DESIGN LOADS (IBC SEC.1605.3.2 & ACI 318-05 SEC.9.2.1) CASE 1: OL + LL CASE 2: DL + LL + E / 1.4 P = P = 23 23 kips kips 1.2 DL + 1.6 LL 1.2 DL + 1.0 LL + 1.0 E Pu = 32 kips Pu = 25 kips CASE 3: 0.9 DL + E / 1.4 P = 10 kips 0.9 DL + 1.0 E Pu = 10 kips • CK SOIL BEARING CAPACITY (ACI 318-05 SEC. 15.2.2) P CASE 1 CASE 2 CASE 3 BL t q + (0. 15 - 11,07 = 1.48 ksf. 1.48 ksf, 0.69 ksf q MAX < k O a . [Satisfactory] where k = 1 for gravity loads. 4/3 for lateral loads. IGN FOR FLEXURE (ACI 318-05 SEC. 15.4.2. 10.2, 10.3.5. 10.5.4, 7.12.2. 12.2, & 12.5) 11.85. / .I I I 0.383hc/'/,) - 0.85�i.%c err / l P va.r - �• l c rr -r t r P.ur, = P :b//,%' 0.0018 d A 0 LONGITUDINAL TRANSVERSE d 8.75 8.50 b 48 48 q u.max 2.01 2.01 Mu 14.79 14.79 P 0.001 0.001 Pmin 0.002 0.002 As 0.76 0.78 RegD 4 # 4 4 # 4 Max. Spacing 18 in o.c. 18 in o.c. USE 4 # 4 @ 14 in o.c. 4 # 4 @ 14 in o.c. Pmax 0.019 0.019 Check pproe ` Pmax (Satisfactory] [Satisfactory] A 0 FLEXURE SHEAR (ACI 318-05 SEC.9.3.2.3. 15.5.2. 11.1.3.1. 8 11.3) 01'n = 30hd f . PUNCHING SHEAR (ACI 318-05 SEC.15.5.2. 11.12.1.2. 11.12.6. & 13.5.3.2) 0I'n=��+ 00j,- Ap = 54.98 kips where 0 = 0.75 (ACI 318-05, Section 9.3.2.3) [3, = ratio of long side to short side of concentrated load = 1.00 bo = C1 + c2 + bi + b2 + 4d = 42.5 in Ap = bo d = 366.6 in' Y = MIN(2 . 4 / (1c , 40 d / bo) = 2.0 I',u = Pu. max I -- +d I( +d)] 30.62 kips < 0 V „ [Satisfactory] , (cont'd) LONGITUDINAL TRANSVERSE Vu 9.56 9.73 0 0.75 0.75 ovn 31.5 .30.6 Check Vu < 0Vn [Satisfactory) [Satisfactory] PUNCHING SHEAR (ACI 318-05 SEC.15.5.2. 11.12.1.2. 11.12.6. & 13.5.3.2) 0I'n=��+ 00j,- Ap = 54.98 kips where 0 = 0.75 (ACI 318-05, Section 9.3.2.3) [3, = ratio of long side to short side of concentrated load = 1.00 bo = C1 + c2 + bi + b2 + 4d = 42.5 in Ap = bo d = 366.6 in' Y = MIN(2 . 4 / (1c , 40 d / bo) = 2.0 I',u = Pu. max I -- +d I( +d)] 30.62 kips < 0 V „ [Satisfactory] , (cont'd)