Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Santerra TR 32225 13-0620 (SFD) (Plans 2471, 2624, 3117 & 3418; Lots 7-20) Structural Calcs
STRUCTURAL CALCULATIONS PROJECT "5anterra" - 5FH LOCATION La Quinta, California DEVELOPER Legacy Homes ARCHITECT Legacy Homes ARCH. J.N. Legacy - 5anterra E N G. J. N. 0413-1783 RECEIVE DATE July 5, 2013 JUL 19 2013 Option One Consulting Engineers 1783COVER1.XL5 Crff OF LA QUINTA COMMUKrff DEVELOPMENT 1,111 4 8,38 6 p. J C - 2'0 14 A'July 51-2013' Foa r4�nh' J,'l DATE oNv'7-A YDSpT. 2755 Bristol Street, Suite 100, Costa Mesa, Cp 920L6-N;Z- .............. 000W r 4000, f�c C r cc el 714.556.1916 )x 714.556.1952 Option One Consulting Engineers � TABLE OF CONTENTS � GENERAL.................................................................. pages 0.3 - 0.12 PLAN2...................................................................... pages 2.0 - 2.24 PLAN3...................................................................... pages 3.0 - 3.25 PLAN4...................................................................... pages 4.0 - 4.23 PLAN5...................................................................... pages 5.0 - 5.27 ICI-1-y OF LA QUINTA BUILDING &SAFE APpR JE TY DEFT. FOR CONSTRU EID DATE BYE Page: 0.2 1783CONTALS Option One Consulting Engineers ull- LA ! �UIINTA DUII_DING & SAFETY DEPT. FD ®'RoVED UCTION oarE _ BY 1783TITLEALS Page: 0.3 Option One (Consulting Engineers FRAMING SYMBOLS AND NOTES j smear �o £#xl ETETRR, RE,ER ,o '9ei.R 011- SdHOut RN x01E5 X 0-1 — E.— LER1. OR --TER. n z ¢ I xa xw wxt wmm OR. O awa wrc •+�mR: N.x.0.1. 9n.R wits ;n o mu OR,•Rv¢Rs uto ro Wr usE snR.-O ERn eRartgs n-uFu a I _ � � "'°"" � Pua Ea. aru ,o daiR nEWw scadu rNo carts' rm RRa ego. oo *e: .rnr szw tltwn wmwa wmR m caalRuniox m rm-w,. rvreaw. x ,a narR Ettutx, «mom PER Glwunwe. OR I ow S O u: � i J. OX e'er\ 91aG16 SrRUCM 4'x6 iw0 �. - sly 00< ! ndurts xmm azxx w/oR Nun.x s a a1 a ra I.xern r rts Pmlwle ar mia a a � aza. X xuerR d' Exr Incur m •rtt. z _ r Q W U J e. `LaGi[S rgfr5 V d964bi (EUIORIW �.�. R �. 0.c z 0 ` a .ml . wR.:9x1 n e-R•:. euc 19 rRxxc .a•�o a r - o ��` awEs Rlzs ar mml. r Itam: zl� � vt a PI. eWut6 a>-Remwn I s .na w.ac •xt� nmE .i owe .ewt ,a i ; a. •xt " m (m m,,. aP. I FOUNDATION SYMBOLS AND NOTES O.R.o -jr �_ woI— Ex,cxr or sxEK Y)Jt / rNcHER A— I�— woiu,6 uRR oTr s RR ETE w. RE" io '91FM xx EJEUEw —oua cam x. rm OEe0Wwx5, w=s wwxux cuximv ar RxaoR ears R1 uumw ¢llrfx,55 E[ aN 06RN'Wurq ad,5 YbxO x, uups.J OR NiQaulE sRRM wsr=/ i-wmurzz earto ,wE Ilotm=m cawrcctms. xolnoER POTr x umiG.,Es sraw ,wE xddorx mxxEcrOas. —Hdea]x nndOR eOEiS (iwlm wii srOlR�mR,'W'rox irs,'TExr rs µvsio�..�iw Wcan � mrt aznr¢x�'srs0 � 1 +ssWsx w9cerzs RRGIOR wus wrn * mC Sue —/m top m d Gum RrJ'CdrOmR R 3n uuosRtl * * w Im wu sPRcwc mx mum( Rs1ERm1 wourzs ]/r,wnmR ed,s R, uta (io'K ouon�[ uvosvttilswuxruux .: PRmttncM rRau sve —/OR top w E.. OEd- i x_ rm sRawR Tor.• uuosRt xrolm .Enal.,E. a,cR ro mxt e/aas. ABBREVIATIONS rxclroq en, Js rmltaxrJ. 9�i. (m) . m. (RSJ Imc snm(5) - RamT w lRc wa'1 'mhcl(uRwt) RE. REVE:I uuvurcd vtx[m lvu6m 90L - wnou cxoRo (ocm wwl )o. uiwur, R din Etr.4 tie) - 6ugd01ccR , I ). ex (H))• xNnTL ». N 1a SGLE mx9N0 0/.5. t: (c)G ruinc EruwtE tt. o OR EE� nrNe enuro j cCxrEq L: e=. PPWP.—E—cd-w To N. - pmssua )RGIm ( LLRLf e5. PF. F TJRC IRUIT ER,Q- RR I x - PRnm i dWdt'w Ruw'. j TO. : owm.!s m REO'o. a/s ). sa : mcR �dsr .. smc. vlvn�axc - DEEP Auitw R. (E) 5. : —o Gs SNPwO u . Ew.P. ti nR: I.E., - Sint PNl[ NxVxa ,c. oo, so. x ). ntv. t�nawx slr�iccREo - Ewx �xa ERTERRER c/s nommwm' or GIaRo e'M tneo) rxl m Rxt IIJ. .0. unL65 x0,[p OIxERwS[ O ! Kn .K�Rrcx rtOaR tarss rt[l 119. w/0 wRxOu,1 IRm Rw Biw-- .-nEgryt Oar S L R�K TOT cmrwRR6. bPow[iOER. 1 w,CPom EIxo Et. I - mBER STRUCTURAL SHEET INDEX sl.l: PLW 1 - famMlex Sxl: �1IG mm6 NO 512 PLW 1 - fIWeNO nrN r - ramlM Sm2 60e11K SmKTMM ee MERU .11 SLI: Rrx x - faeadiotl Sml: mtnW SlRlttene mm no WRU ux: x - ROms SmE: mot¢ 51RUOIWW tm116 xo anru W— ROWRO vx nrn x -rams " S).1: REIN s - rnRwnox WI: m9nvem mru 1 wx mxeJgtni REms x S12 PUW ] - riirYle SOI: 51111atIWa mires i Rril ] -ramp Tm: TmImIPd r x U` 51.1: PLw R - raxami ml FRL 0 ] 5R2 11Mi R - fANNc I IWmr i 1 Way Sit PINT f - ROm6E Mm N x WXI SS1: PUN s - saeansn Wf,, ] 1e]x Wnm n,. nrn s - mxnc ssa nrx s -rams NWJ[ rx et�n wro�wnl mMs DESIGN ASSUMPTIONS curt (dour rwsmeR euve curt (mE7 xoio eanerJ �c rt�ectt tEeeee o-mwaon curd: nt ma:�droaru¢�ie cE R : u o+ pa) i a > pecl� us r>muaro - d xRw ' r a of i4 ,Ellin fJ-StEPe Ro°�`an' R r.cGOwimR GKi §curl • m E]Pmua r w. rmssc: talc.- are m]we,r IaWta laRft imrID]E sin axs9x.Rlax V Itw gip) RF51nxEE fRGm, R. V bdG r m - v acre .Ea EISiEJ1 ea i� nit Ixsi awls ins. a. dim �o ,N•�Tf� I�m'�'�'1'.113 R. sa E� SOa REPm, w q�, e1O�RSEEJe 9olimre6i 'n-.lie munRr aNq a. RdORi SHEAR ELEMENT SCHEDULE AND NOTES ''��mm®®m®m NOLES: ' .xm0 Ptx.E. Rx1�M9UA •R4 omRd mtt5 W>'usE n�w0uo M (Rdvml ORE +vERs. ro PxO .— qw Gi ScnRErtax¢0 rROu _ J.9.!). µn PPoOR 10'mmepaxG'To m iwG cJ. 1/7' r R,E Slue CntxR to wlnw tleS u[ w rRnrt w.srq I - Of ME [m[ Of ,xE ma0u%Purz O a/�e' �xl¢ txC SNUM[0 50C. auwll./ R Mi i/91] r rxsltil@ TP.RGxO A! MrES cam IBVrrw(G( PRwt r0ixi5. E. Or wo00 P�EIt�Pwmr4LBOxm m xTo o iJtuetRl.mx] PUIdSe55xxi wnrdW wOw ,EI ! ur_ MwixO uEiIRERs xa to a WuOUS ERRIZ xr R uRvuw Or 18 smPC Mn —c- [xcirOR EFRs 1EPRroRu 1�0w5,x.0 O,r¢R SPEd E.— . uKK5'J N OxD 1 9. xi xOPo2arrt TE -R. Rn,n ]' xOuwLL OR nom igxRn0 w5rxt PrNRS 9 wRRRucTaRsWr S = ro ruRRxo FRO. —1 TLt —E TO ,m Pu.rE.S Rmn R0 rvPum OR Eom rrcEs arzn 1a rx"ROi. m .-RE.' c sx.G m J Ro— an .1— Roo Rxts OR Exw sec TE e N'NO d0 To-IGSxru S BE SVrrIEIEN, ,0 PREOfxr SPurrix0 °xiswoOo.— 51RM[5. Rx 9. R. RxrEa sxG,xwa SxfrR — TRET— OR rRWxO Runs Sxui x01 eE tt55 Ixul E—E m nROxoo R�riE IE]cl Eoct5m ruEL5.w0 Or rNxn4. r1LwwO utu0ER5 zWu sxUnaxO SR¢ui PwElS r.1xI. EToERim s 0 R LaG,ex5 Olar. OKR xP,x. RR,m —ERE. 1.CORROSRER L�rm -1 swu r uula .1x onxt ]/ew dPPw m G •: PµE LRPPm P0N i� rm ,o rRxxRw�c mws,u� A = m —T.,..Ioo, R,1x eP ,r : d.E st.dsRm. TO WOLF _,xNunE wn[R[ uqv. e.SC wR0 SPEfO•(l-5[cOnO ausTl K 90 uPn OR ua-Y O rcF uy v"W .V.—R[ruREO - � ��,R=wE.'PxaLS »,-sE� uiixurrCruRm er Nriim �a� I N� rcc aeieiE wrntt. s¢)WNVfr[IVRCI u,Gu,uRq f�-xme: /�� 6,QtriflRaw° iRu; �RrIG uiimfiC RN�er,,9 F1 1ot D� IXa—SyQ,. (NJa�.afZP.vn-s¢�iveRvf.[tUHE br�i.,WF�� 1 Nti-.sNOCNRxLc51EELs:, _ x0u¢'Rw v0urxl rrJ 4 t{a �,\} y �+ yu� trM. 1-' /V'o�: M91oE,xLl^�f'U XGFlG1WNS V �=1x4ow=NaUl--RUCTiON DATE Page: 0.4 (a Option One Consulting Engineers �a 0 IS C=;1Ovi I Cw CUi Z , iC an4o 8 a, 2 ¢UVa O mOWZ oa�� a za m �i00NZ FABRICATED ROOF TRUSSES I urAtluxm 10 PRo-noE wtuulwxs PER ;eater ElCT- vO] 1 N ...I I�, lws o[ncrnax ux� a ioru. Lo o � .1 E. J/. is [NIUCE I- Ru (Muss uwurx-IORw wr C.wBM MUSSES i0 COLIR INM - On ERO. PCCwEUMi) ] MUss NUNfA .- lO -CN 'sHGR" T a.. TO .1- 1.1 uF[Ru 10. wdG1[0 ON 0 PLWs. OR NE UNI N OF DIE SxEAR EiE]ICrollx°d)rox L11P11m BY MC MCOwMIE CAPACITY tlwi FM -EM AI O(TSEi M ul[M x O ]. mLL-BCNDXG a5xIu5°BP PAWdG YuSIE eCYaPRCmO[O .� u.2Me cwiC Bfr)2xG PER SEa NY4'C %_", iwsi W NET COIN WxN 10 Fllu c=M .l .-.G uMLs. NEEL 1ws5ES Ai PulE UNE TO w1Cx COm 0NNI, PMm JCbTS, N,IERC L2dPm5. 5 YuiufAGTYRCR wY dax%.E TRUSS -CCRS ANO TRV54 nMT1wME CWNCCTONS, wrRd1 OOiLR rROu TnOff. IDEOFED On ra APPIavfD FPuOxc PWK AS l-0 as ln[ GttaKT- u 0051(w [MIIIIY R nE wNGERS .um fgxlECldiZ Pammm 5 COUN. 10 OR OREAMR oast sllMw 1 ra AVPaavm FRA1m1G Puss. T SZ TT .1 Cnw[R 10 KFUY Latugx NEE PRO1aC RCmTORCEB 1WSs(S fOR Tw SlgPoltF Or N1Y uC[wmCK fOUIPu(M, wxFAE !. 11aS5 uA IURER la t M, AOxpLBE w .CTURNaI.s-.1s. ETC. wFOBHr IN, rElpi Cnu1G6. APo1. MAwNBs. BErM TE sn M sMunuPAL aadl cann.l vTE dawwc . iwss uYD1n audwY. Snug a TOra EIroaEH M atpm REVI[v rN0 COuuCxi Rana ra FAHrLGMw. iw1 Zl- aY1paGImAO1xIM 9WE a SaBlrrirEa 1O 1rE EdtOwC aPM1uCM FOR mN4rwuttrCx_ 10 9LLEn N/0) M °}E2R' (TOR WJE.L dal }2/IaER i<. b1LW' KKCMCLSS.CE1Ci (fOR PNEa I MPROKD iR115S 91pP Ow.YwGS Sxx1 BE A PMi M TMSC CIX15mUttIW OOdwExiS. 1 nEr sxuL a .nAORn TD lx[sC OrunmGs N1O swu BE ON ME C°NsrRuc - TOR 1 ONE cn OF ME PRaEtt. APPa SxM duxwGS w A sNOP SFAUP' FROu E M REcarm (Earmx d¢ cans I ENdnCERs). I lwss uANUFACIUR[P 5xua III Thv55[S 50 Rut - _Es ARE NBl °LOCI¢➢NNJaR dtclwuvAq. SSEN ARC TO BE TA®lx'- FI OX SNCP M A uCCx5T0 fABNENTOR. 11 NEPR0 NESIFO CB �p pPr � LOCICIOED �R CMS Of MC CENTER OF ME Soµ ON M)E TALE OF ONE aOnou CNERO: el.TT ' ONf ME C--f uY1u FERC ME Tw54. 11 ME VNIONG�OF NUSsEs. .111Pv5sES NOTE° `RN ROM E.n.' OFI is iP.wwc PLvS OR E_ sxu. BE OES-I w M IEOO w5. u1CRV. lam CAPA.dn, IB. 1aVS5 YMIMACRwER TO BOREN aw ALL OPEN a I . w¢udxG AI Tx[ Fwu.. FOR •UYnED .S OCTTxm BY ME �. NEFER TO BEIw Bry¢. I2. ME B NBC,INE NAB BEEN a➢INED to suRaR1 axtr iM tOa4 uSRB Ox iwS 9xCR UNOW 9[SxR+ ASSuuP11EnE'. 0' mC _BBE0.0. xAs wPum dFFERmI bay rdi A uORE C.MEMAmE FRUOS a9GN. NE s[NUCDMC r5 ASSUNED TO sMPMT 0- WR LNdNG. IB. 9mP MnwOIG SU- a'.IC'A' Is III, FOR, GEJIBtE CdaM_ Na. OR, pl9cn CNC[P1 AHa OE11fRN CWPWNCE vnN MCSE GaNST =11 OaCwExR. --1 6 ldam 10 aKRALL OFAO, lNi A2q wu+D LNOS. 1M m BOn) ora0.O w1ERui. 6FMMG RWM. wNc[. 1 uiERA. wM [MACRY (wxERF v1OmEIm) AxO uvE I d BEFE MU536 ro dCUAE nE IIETIXI M ra [21FxgP. vNa FWSx uAtOWi AxO .x, nxlcwc sorTTr - FABRICATED FLOOR TRUSSES MYa wxurACMmR To PROROC wtuAtgxs IN I== arnax 2. sMEf°¢R. OUlLCIWlwfaNmgAm °Ixm-mK�Rrllnc Bsa cn[i1Qw°� s -a- armlc, SS Ytua1S Swat a AOEWAI¢r _Ea Ax0 BRg4m d KComwCC RON T. WNVrIEIURER's REWMENENM. I. APPPoYID r BE � K°nm MESE O�n N1aTswta I IN NCR [CdF.1Po ININ . FOR R WGRON M ME PRO1ECr. APPROxEp SxM ORANix45 vnla aAH A iMM SruW' fRO1I ME FnOWER Or ICORO. 0. m ss pp 1KiIONR°aSE. Stt[OIE1- 1. 012 wPROKDftSFTYµw°2aaV5s�Sxs"�ES°WLOxc EINNEE sRiltmp' N ONOW C � IR NE wH� � CdM S1Ms vOONBm 5 mar. ro OR caurER 6 . ORC COrIRFE ZCT Or $iRVCTUwa OESGx [AaduMxlS. IxCwOwc A MUSS 1 O1AWN, Swil BE BUBwiim iO nE CxERIER M I- FOR RMCR Aw CWI2Exr RBM iO TRVSY IT Aewcanax. ). IPPRWAa NssgR DO Sr uK CWSrRUC1 SU .-11O MFOR E BUIwInc OEPMMw u.. ME FO BE -I- w NE -P Or A -Ea fAefbGTOR. S CWMFOEn UIRU s, SUCH MussEdS°u°YiKis%aDES4gNm EraT NEII 1OLLOm.I - C.- IN A➢OOax 10 IHM KRnCK NCO/OR uTERA. LOMS: R) M TT ANaA OOM_ FORCE. Ai (I)-CSIB 51RAP IO1wOd1S q °PUPun MD/aR °DOwxRARa FORA- a5a .T Idr1s e1 Bsrcu+ 1nun9n 1). WU1S AND/BR WNIONRD FORCE . 2 2 .1. 0i (1)-STa2Jc smAP LOGtgM. To. MUSSES NOT[O 'Atln FlOOR E...• ON ME -.I BANS ON OEIAgS Sx4l BC E ➢GNm ENCwu M 1500 1ffi. uiER.1L LOAD [VafJlr OR ra ICIWM a M[ ON, E1LM[M(s) [APNSM1 IT,Mai STEM EwuCxl AT OFFSd rn ulGMm I Muss - BE 1LC8r BRumm. _Ea ORauENw,a INK PmuuExlLr Anl#O aro is faLEO I wFORwlIOx LOGE➢ NOxd z fiR C! IN, _ER OFTNE SPAN IN, i))NC fKC M ME BGTTW CNOND B). D N1 E.G.E M ME <ouPANY uunGALMAIMC ME rR'vSS. C lO •). NE ID.CdG M 1PUSSYS. I:. muss uvnurAtflR✓01 s+uL asGn narn MussEs rrn 1xE rauadlc a+TERu )ooucaTrngll ...._.__ i Il. PL 7InODO xCD I. -.a x.1K BEm sPEmlm 1° coxrcRu To TI I- - CRrwu M NE F�LLORwG P mNrt srul°Md ,.. ORAI1Vm SuOOnrL RMEIF 9 i III, FOR tINfPA. [d6diY.WC[ wM NEO[SCx CONCEIT M. C(x(AAL CWPLWICF wOx MESS cOxSiwttgll OCdRExni LP2-RE..TOtO pKRAIt MAD. 11.E AIm wwD LOCOS. rM tr wnOu OIORO w,ERVaEi aa�aNRIxG PoaNs. wNGCRS, U1FNL IOA➢ WA[In (wlEld dDIC.Srm) MO urOuf. POST -TENSION (BY OTHERS) I. 1-. GWwCI- E- totA. OTss5O t��aa °X _Call=- RF Po�1-�frxSdu fncm¢R Or REC iD Swai AS'SVUC .eu OMER Va wm5 . 2`A ENNE 2. mx¢NMAim a- LOAOZ NE TO CEEB AND LR£' NEE SnOwx M. (NIrE) IN ra PWIS OtEY wlEa MEY CxCfm A iOiN. M 1.W] w. b" I swRl I[Ru LOAD. ] BE NEOMBv ra [O�dRns CaOl OF NETCSIrorw OsxUBIeE iAB1L 4C0 ° la frn NElYP[ IfM swwnRllttua wrmx wnRUL xlEa COCE t➢S B 92Bd1 _ `RAIN 2hJ w Iut1 IENCM OR x¢PP1A.stER ME C._ MMttE�RmF 90w 111% COf1 ro LOGE, Na. REFER�O �sEal� Dacax�slRucnalENvoxwcM �'91s iurz� 101imE B.a ldmuu aCMMExaO Posi-FENSgx sue u ff DE DEscxm lO R[551 rM rOUOwIIm: c).LOCA .D SxFM III at MC. xO1DOrvx N 5E NUiOwARf. ON Sr uCAW[E.. MIN 4M Ecw w5 Ox .11 BE e[ IINEi°lu.n�wuug10NUFNCCTuR_EA cwACm°IF EI. CInRIiOlw- °vl[°�axrNLwS FR. ME Aaoroa -1 -.Is OR inC STEEL cauwlS M OPTION EK CO- MGINEERS�OR w BE BE ONE NE uRNOuau uulu-IIYREA WACOF NE OY c).-.T v»Iwa hS°OLMw[m By TM CdNUNG -1 OF TE sn[ul -1 OR m' MC cALwuClroxs BY(1CP CON EAlf-TI BExG11 Ix R;.s ON . TO 1 IOC cuNIXulmauSwcE ia[ u) l C1O s.. fiPaxsgn ul OBFERENN, SFn .Z.,, ILS1 REO ,-. 1. E 1011, "'WIX1 NE D A1E °Eli 1 P. M fn9Ox GL MB. rtMO a 9r MF sMUCNNC AR[ in[ R[SPoxddun Of 6 11... xSP[CnOx 5 NC Ea FOR ixF 'PUCEu£rvt M NE xrORCNIG SEtt um/ON PRESTRESSING' TENOOxs PER OfluL 2/91a. OxCCPDaaiwB cE.- CWP 11 NIIN 1.1. GM[Ru mxfORUAv[C 11n 1N[ 1 N1 MCw 15 WOOD FRAMING 1 Nd m sE coo �TR-1. Pm EEC,.. 2]BB IF Ee�tet, l s 10 a PER ,E - 2Sa 0, ;n, j z= (Cxlydixu W c cwE). 2. J. BW'LL EAOS AxB ui4 BEUVNG CN wOoO svui naK O tut wAs ONE u CO BO�r BE srlay. 1. ..[e dN. I/32' AxD uu sFµO.1_R VNG[R 111121 M[ BYLI dA ALL BOLR 1 a uw. NO2. � x.O. T FIOLIS S BE RE-IICIOENED PRIOR FO .I> E ,O. M TwRNIEs 5, 11 M1E5 OF o9Tw wu.s sxw a TN'B RF[es M[ Sul[ 512E a5 STws. U.N.O. 5 s to uv f-' uuoruu vain x Nmvuuu OF (-1-Tea C... xu14 OR (12)-Im IGUN) xuLs. uxO. 2a MINE 11/.M1a. B. BFwR.Cat OKRSiMt IEurolw.'O L RON SE.E tNIAR OF V-O'f. -. TO nfA]nxO P(MNOC ulxMUu 24 SmOS AT PLIluOwc wAlls. V.x O. B B[u5 Arm NENJER.S .1 10 eE SUwaMEe x,in INE SUK dMn FO.E 6GRxc _B M PDsrs. u 9 a rwMm rlRa NOR, usxa z.: mIDsO°.r 1�6' o.c E a�i�r®C�xcniK,s um 1°-.FVE rEwNs. I.N.O. I0. ROOacREE s RA ONO _ ID . �ProRTrawsa¢ wSnAR�"0im.s�sARE Io s.rt,�. ME 1 sTRUCM NC ORB swu NORREFOR Pm[5. _ON s. ETC., -Ell OPCdflcwuY 1.NERIiY LOGtw Of xdaOwxS pANCxax -11 um 0M[R IM[RK wIM MC mxdrnE Cb11PNC1ON to ASZNE ACWIUE IN I__. I]. N CWKM1dNLa B R OOUBIE UfEls sww BE AT- mrN (il-RONS Or IBB'F Ar RON mc[ E OF NARNC TO BE 2 FOR WYBI[ I -,IONS` CONIECnW, uAxMACnYai aCNIu[nO.TmNE. I -a - BE --1 .1. 1/` Or -NINE nrcuuO. Jds15 uN.O.. IBM sNN- wasERs Ox Ud+ SqF Or BCw, -E ONSfAxcE Or 1/2- BOLM TO BE 1-. 1 u nuNE/drrwmx). utEs1 Emaw_(ursl/APmPq,wsl um PER as fwigxAL I SITE m NON-Srrcw w,.Ls 10 BE scuRfo w,rx ¢c-Cm MPRaKa s 1 RNs IN u wASxERs, ]2" O.t. uAOuu u CARxCRs AN.. 1. V.N.o. art PLwS. 12, lAc BERE. TO BE IN PPEENF- 1U0 HELLS. 19. FENCE NBIS wsl BE REE - -EO (P.T.) DR wruFLWv DEur R[954W1. 19, Ia.CTfD Mi- IFA51�CRs - I. RF�PRESF/10.Gtm ulO nM-RETMNNr ROOF AND FLOOR SHEATHING ROOF SHCAMIING 1E/Ja' w xdG SCAN Rv]INC ]2/re. [iP BE 'AT. W CnmgN. -_ At FIEm. PULL ENCES O OF N/0 IDMCwmIC1E0K u4 5BOVx0wCBo/sDl FOR IDA - ExCLEOwC 211, FLOOR SHGMWG W Iml. 2J/]a• MA wlm (SnRm-I-Barn) 5v[.1MwG. SPAN Pwnrm a/2O. GPOWa I CY1FgON, tdlGa MD as-. MM IN ruts (CErCRNEO B-) AF B" O.C. At OR mE[s AxD BINImWEs. Alm 12" O.C. AF FEELD.PrxF15 1-s uNan- . Ea. 8 . 2 I/2' CNCON, E 1vRF/Om. SFugw 2wt Mt rNO, boD sv2M wr BE -D w-.. M Ise s. fESR-Ia12). ONC E: ua IDM wFua ./I' -NE JONSTs NRE IDA[EO AT 21 O.C. 1. 1. PufS SNGMWL RMMY[uuR i0 Jd515 NRn 'C" rAt[ OOwN rdt PLYwOOO Alm MM SIOO 2. TRC SPA[wG CPo ps"M DRON Aw ROOF SUPPdfis - -C. ra P.w[Ls N2E -Ea Sw1E wl EECEm ME IDAN RNwG S1A1wm ON 1. PULLS. ] AAMts SNAIi a gp1BED Mix 21E -.P- - - oRME APA ON (M OERFORNU $IAA¶MO RIP-1OB. RER-100 AND DOE Ps-1 DOC PS-2.) _B TO NEE, AuENENCEisu c xsa [uvxa c°1aaOi1sE Anras.Mi[s IrcGOA w w mEE .-.N TONEDR A4w DNB. AND ~ OI ACCORENR ICE RON ICE uumrACMR.EEs' NCCOuuCNDAT ON SAWN LUMBER I. ONs.NN uucEaCR oac°vs oRAarn m ,o er) ONE IT1Nr Folaowlxa OxaYaunaxs e. (SIµNNAORB cP°P�i011aii mBEs)/1B) - ISFAHava caAmxc RUCs FOR, cvinwx wuaR, u.s. [dlan) 2. All - N B[nCR. NE (Al ix[ i O ra Sl NC O E IF N,,NO) wi ro E2CfCOat9 POlCCx, AEcumi6: a ME uONS1uRE mxiCxT Ai M[ ONE OE UFACRIRC 1. s.wx WUBER SMNL INK ra FOUOwwG udduN cRAa.. (uN.O.) Alt 1. fRAYIH uBERS. .................... ...•••-•••••• - - aM PaSls _......° ...... ... .. #2 /I Au a- 5 - --- YwuAAMLL uaa I2( 5_wxEFaCw2 m Sa sDs xcrNua O .ME 2. D-su.xc 2. 1MEs... ...._........... ....S....n......ro........C..d...O..e..N...S..sS.I.rI.Ra.A.Ux.x.rna.a.w.I.RO))°2N 2E__.......................................O NOFE, iM • BODMI CxOmZ ..._..__... u1. PF[EE PRauRM 01O. cRAOG AND sPm[S FFA uuan. _ _ att RR wrdr. uIr Ic) rs s Ala SEJ M1E5 RESrwG ON CaxfAflF MGUA5OxRr 1. 01 PR(SSIINE II= OOUCuS tW. Sa aTAR )rya FO fi. ALL R6AYw AxO PWGIIGm B[A1rs . 1 -1 M KuiT CEN ER'I.Q. GLUE LAMINATED TIMBER I. I,D CORE =uulw Sx1a1 �`�BC TO -w1NUA5S1NmaR0 ZIERN,O2s fdi�siRU ,.. GLUED uFMa .1 i- -, MC/lFl-E 9I.5. it l1 a. AMr/u1C .-90AND Au APPNOKO sUPPw- x2 N.-a. VaIwFFO Bfurs D INK rxC FOuawwG GRMEs (Vx.O. OFI CENT LY RED E m BGMs ..caueUwnax aK-v1 fOP S ""'"''U EENZ OR BGus COxiMlauS3. OKR SUPPD .....COubwlgx tar-vB I .LL Lu`_ - 1 BE VNturaTC eGuS C C ror1F0Ru la INBER A.s. rnaIsEERE u. S. Yd CET . A Of FIE LWBER At THE iwC CFICLdNG 51Wi wr a uDR( Mal oB PCRLENF Mix A watt. vBEunOx Of 9 PBEC M Am' BGu. 9. COOS aseEN.E swu BE SGUD AND sews sw.0 BE LND YRAPPm FOR PROrtCrgx "!. OR RE Bw1L BEM A LEd81E APA-E.W.S. DP A.I.I.C.' R- slAUP.Al ILLCOIBtE OR RES= BY W¢1NnC Mn[va5, A'C[RRnGE M u15PECnOx' BY AN MPPOvm MIDErn. AGENCY E_ BE'OB INED lO ra .-NEar PR_ . EIIEC .. PARALLEL STRAND LUMBER 1. PMwIEL SMum U.B. (PSL ON P.L) swfa BE f.BxxNlm EY i--@ AxI CONFOR. CONIFO1& r0 I.C.C. RCPORI No. CSR-I]O2 m LW APPRvuCD &TERNOICs ARC o1c9GaE0in O°Nr REcOno JpwoNrERwics19�usr CsE.vwO.ro d wRlwc ar l.E x. PAPAun BIT, wu�R swu INK 1. __NC uw Yuu ascx I.- E, up , W EII-1, F e), =1 sMa ..... .... 2. Ps r3, sops` 29O PY . � ne �.nmac,av, I^12 - -.1 cn;n.r_e _._..._... _......... ................. 650 gel J. F OR OR IIUNBER Y 1 ON rIMPDu°EKi M uCUBCP 9dLL COURVENIM URmS sPCBtGmINS. 1. VSE IIOULwBEO" (paSWNC-1RGtm1 N"+Ca Al E+Posm ETEMOR APpgGFgxS: I.E. aIXs F-Poacn[s. eaacadcs. nn�c. E/_�' B� ' CIT, AA.fIN•.>J IF',f11�CTRAA Nff1�l I IAARC{7 11 h Bea-. . OF RECORB P1EroR 1O ERECT-) " ^-'a SE _ 2 w ATCD � slwu NE °trawl C Icn L• 1 1 E ((i / MM.. SUMNL )/? JW O�pv LB� O uIF/) 1v )+ (]0 WO•� ). S •rnCA+ f(e). CAP. i�..� S'� .e+�......8... .b\..... .\\p NE. wNah r(N)'p (2ia1=fO.a921� E uER [ lw uul OR[.... �PCOnullOxs. an xwR.R FACE M u[wm .MAIL CWRr .1. BY Page: 0.5 Op}ion One Consultinq Engineers B, uo< �ZW I �Qo wZQ NO Z 4 U I 6Og I �04 �W i Soe; 1 -�OCB 00W3 a .IQ boo: zm CC¢ VUn OO�Z Sn�o a2 0 m0 ¢ STRUCTURAL STEEL slftuc3 u. ,-- FT wBc SD (I .a.- Neel. sREL PaF I- 'I'- Co.,-- Toa, sir -sJ. cRKE B. t IueixG .mr . To ss, u D. M2s swu -C.. r0 ..s.t.u..-sn cw0[ o (oft .z.1. ul.o 0 6WN w MCrma t . Oo sRCt YEYFFNB Swu [OKOftu 10 w5.l.u. MAID, PVxS. ° oR.EO srtEL uC.- snug COMORu 10 .1 A-.. I. N9,ECBM,S. HOT1C wOK.1iE0 ON - OR IT- SNUG BE Or 111E FRICnON me KBO. IT RE x111. L -111 UrnSi.u.wG -1. 1.1 CaRKT RT- -t= ...IUCOUPuTO A aS. _d o. B .NG OF-CIT- BTEEL 1- CONKER. ,O -I. DI.I V9RG AP B- CJOn. I. I..LLCxna c 9uu BC PERNRHO H A 1 - a, IJSRRG TM EICCIRY INTO.Cm MEss A, uCENSm I.-' OP O,xCRHSECMPRpKO O, ME - -.1 MPr. 3ECTRIx e. RCOUBEO raR Au O£,D WRaxe. I o MAN[x Slue BC K7T-aP a1vAw)m KiCR Fw9GnOx, oTNERIr OxiprMATrER P .-. NET,Z, w, RE .sm. VEu r P0. ..0 --,. ,O BI— . I/,- I. . J' .TL S,Ai Ja' O.c. o� Pwrs oft B Nuts. I RE DEswN, rwwuTwx. ..m txcnOl. W nCERTFORT. To .1 LNicrrnaulniea �Oal eu wlws�_ e:°5�"N D 5 1 aREWm 6, ,II Baru FKIES S H SWO I-Cl OR NON-a1wNx CROUT 5. - rs 10 RE FMRrGTm 11 ra .MOP W A UCO.SED fr TOR. 16. III BRDRNCTI 4 BE BUMMED TO OPITTN ONE FORT Rf1 AND C-Eni PRIOR CO • nON..1 6RKEO FRMr[s N ..EM FRuas, ra -.to nuca unM sw1 NAxE �°o1M v-NEia (Ex17 .-C. W zD rr-16., AT JR I. (nor-. rs PaoNIeR[a). GENERAL W1a- TIC., w[ irrt SORE RCSP WATTlry OP NE FaUUNC CQx1RK,W MD HN2 No, I.. caagmFRED H Il¢ 1TRUCl- [x6dCER. ONE B C-70. K ubts, RpOF FOR nWR WPIelIF 1 iWSn 111 111 51.11 -1 IF I hff xUR NECFSWa ¢RKwG 10 PRBNmC S,MIUh 1. I TO ra .PP1Yw1xY. OE ra 1TIC- u A I.m w Do Not FRv.rnxo6M 1 r°i5 0[E C�OxS�iKnBI 6iff 6t AND .1 TIC OBSERv.I°vm°ESRPERradmdCev` sIWJCtuRa1 CnEdtEa aJRv.c CO CTRUcq. ARE No, [OM - [Mx SEAVKES rw[x AnE PETROPum Br OIMRS ORSERVAna]B Ru[o erns,Nlmi[i°Mu�Mcw¢RWeGx 11 1 CcaSM° 1 will[ilbrl 11 oacw nn. OB4Rv.rgM W Nott sA . __,.I PERra CE MC not 70 RE CONSTITTEB ISCW WECw- COUarE T wK NET B(Lx CamOEP[D. ] .Nr R[SPMSI�.ry FCR M9W W 1IE 4. _ FR6..xD/OR Ca.SUFJAM x+s BEEx COxIRK- n[ fWxpAnOrls. 10 Sn6KNqu lxCVuigxS fORGAW aIESnOM RFOwow6 LU1a[R CRAMS. BCMK uaNCNtS. BEFOR 1. xs RCWRa1G - RE___ OF .xr IVPE 09uu BE COx[O.ID IRgI rO wsPEClwx BI' ra 40vpooMG u s. GPAOv.0 .x0 Oft.nuLE: ALL PAHm. Mr eam Axp PuxTEgS M], To ra R.68wG SxU1 RE P¢w[sRr LRKEO tp War wTEA .u, FRO. DIII11ID.0. lO ,IKY PC.uS n,rrouT TM. xx0R1IDt[ aP rRrl[]1 UP - OF ME OxmrEFR rxpSE 9LxIlURE APPURB NEB[ OH. 1. BE OF TIC T RESIwiO DKd .x0 W [ILCIPoGL O. s[Rwcf Arm tFC1RKM Arm P. AND Sue coxiRK,aS 86a2 GPawcRUNM Bcw�wJ�'KKHi'N E I uR.1 OnAus sxul az uME n1lan ra rRlrtol AwftwM I, ,1°¢Msa�w�IM E?+EwnR. nNwpv ars xaT ®1s,1M Mwn .1. IIE t°..0 li bR Eaut-ira C TOR BnAu SLBUR FOR ra SIRUCTURM CxGOIQfl'B APPROVM auquER, xwcx s cOxsmwm -ER EDuu- to TV E-II- tl PRatM Bp[CIM IT, IN, I, CO DU', B eY SEC,Ia1 r] W ra . Axp erElm R[aPtm B, ixC Oinm COxBUnAM4 CMS,RUCTON poCl THE d Ka,gx, R[OuawG s . rxSPI nM TxE BU" Wi,UAI. I.. UwEs9 rvWE INNTE Ox n4 ORH6x4J. OnARS Or. aU.rwES 5RE BE USER CO.O.tR APNGm1L. HE x0 Of1K 5 SnOAx, COwJTxunKK. swu BE AS 4110rx OR MR $aMn u'ORN. 1° I u@e[iE °Cm rn6rt[Ar[W1 vPcwi G[T. rW i, RE w° Pu r IEF�E � on M WTIN. E ECTERRE NS APE Faso :Nwa1 ANC NW sPEanW1r BETI ;ID No IT_ IT cu Dn a va __C wwEs. PRawn, xor6v sw _ MO _ I Itt mrG,RUCnpx Rrm rORRwxSwv Sww. CavaW ,0 W0,1 CIJRREM Cbna. OF ra to 1 . K rPPRGVEO STRIIO CRE CIA)]5 ♦RC ARC Not ot,TW E AS9LM0 T. ,xwB aIA nEIR OINER NNFINCP ID d% eeiravc m� 5wx° m[x' PE11OPR.Imox Arm cpxsExr er OPmn rimrDONE °vnRn. - INIENCNi ND Pn 1 1sMw1En�ETo EFna`�ON ex[ ce�xsvREidc w.I - w�115mlis . CONSTRUCTION PERFORMANCE GUIDELINES RE (BUR1vM.) TO Ru[M SO AB I. I. CExlux mlfCa2i 0.DAnnG TO APPCwRIJ1M. 1�1) CAM2 Oul =11 w SUO-On--E nOM4 SnO1M NOT CICE(D 3/I6' w HOM OR r/6rx aSPU ..I - Anr I] m t[xcM. FOR - MOBS rwr .1 to RE CQJCAL mED NO. - _.No OR 9uuM w,ERUL CRKNS I.- x01 RE vL9Btf Ix NE "I" Max Al A 1 1wtE W B fEn L MT NOR- G-I Co... K. I.]) KRIICx CI.. w E rEE,� GiI_ _ MW W I... I, E.CEEO I/I. W O ,JI COxCPlIE. FLOpas - auWIM._ __ - cF UHYC.- OF WORE inlx 1/� OvfA A III T' MAVRwO TM iI or TIC c R6.u: FR I ' xc aafrnax m . aPo sa 1.. POm W 9IouIO6C11En o [c S Co..[E uTO TE ZITC111O R 1M (raaACor.AtN110 Mrw[C 1 IM I s[LOn1 COxCRC2 iv- rs C- 11 KCLIT- iwz [W111, -11 _ Or MweE .TC w N[ [[u[uT REKTS Htx ua5t Aa. 1I) zNGK LooSC OR L, Ax0 Cpinwuo0.11 -BETTED -II- If N ;°- - R➢OR -NOEEDo EEua, ar" ' nuSiIc /I NCar iD CID°iN0 n CaH"" S.zl .CIA+' I 10 crw.. IZ E,4ms r/� o[rgC59W Oq Po04[ w . ]a' Br Ja' ,wU . RE OWDE1RF°.M OFT°. I= Sup -HOOP, SIOUID BROIT.DC WORE MU1 1 /]- wcIER OR 1.) EXPOSED xtOp BEMS OR -1 -1 -1 trot EXCEED 5/R' I voFN MC CON- wD ARC -CEDTMT µ. 35) Anr [ Vu IN AOR M1w1 -I WNE 1/SI � AN B-Fool ... I C WOETTED 1 1 u1 n1ERnR STUICD Co,ERED rAus. 0mls /BN I— NOT -CC MPo - w ro Iog- w AW.MM W r zaK dsgAc[uENf. R'A � ETTIFNEC [TrM (Sm ITTE A SmO� .x1Y11Ee _RN).AA �M�A9E. Ir I xIrS la�C I .-1 1.- uU . NNE.Dqr. R 1.]) VC uM .wpl 1RsIr S-1 RC 1=-u D w Sual A uuw(A F- - ENSURE ra TO RE xAICRIICI, wo FREE rn0u ANC [.Rwde r.T[R w,1NJ.9Ox. s[REE. SxOa9 xor RECart IIISTm 10 INE Z W WT _- N. qu51 uwx5 On M sa CC ARE CaNUxOERD) CCCllK E, E WORE ,It1r1 5 -W uEuOURwG DNCR •q IAmtSveswarsPttrvuOD1. �iLnmO Nb', r.-I Mwrw - -I OR .M ra n1TaC II.cT R[ SNORB eE xA,Eft1- TIE C.IERTI RIONT 910ND REITAI AS TO wSIALIm s. DapRA:L MF uvinCI DR Wn01C Bp.MNwO Or rA1ER w11uw,IOx Arm/OR OIBIBRCw w E.M55 W l,J, w rBa111- .1 EMR .x MTw�. . 1 UwtCOOFF J r� w�0x x wcxm ra ,xlI nx mSnT[.ws IBC D .- caM.NE Sp !1 q' E SUFRa rN� TiroeiEx=� T ¢C ,DICIIc B,N ,B SWPE .m,vwldaRrOF aUR, IU d� �a IT .-To m- as GRKm SVUE) TWREpUNCu[x,s n w0 MP.T- M. d = a F. R[a�PM SLOPS 11 � u� � ]R a.]) E.rsidc DR- Axe SruLs ARE x0 oTD�B FEBBE. u . RD a. 5. 9 �.. ON 9 WP wdP. wr R.- asl sOR52I- .."1 1. 1-. OR Pax W INE rOlwwTmx OO[S III Co-E .7.11 21 WIR5 MCx . IUN, IT COWITONTO ;TFFI rnNNFrTORC I Au "I cOxx[[ SxU1 6C FROY In -IF maMs?1. RE APPFa20P Arta.L°Bv "...1 Ir MRW° 'uim°MIN I -,VI . z-w cO.. (u EWM) rm -_ E EPIOR Fa'wunon, arwl� 5. CORNOSM M[-�EiKDwr EIC-S, FEMI ICRS. FER,NTR FVUES rn O,NEn B 1fl CCs ,wl .OVCR,EL, u"E0 IT- CONxCCTORS MD rF.SiENER6 uIST BE W COr.PATaLi IFA51fxCP5 NOT I.- 1.- BE PCR uwUFKlwmRs REE-RET.W,S. !. Mo- U1 •xnnCO FIC51E- BEFORE COMING TIC CONNECTIM, � .. C NNC[IDW tEB w -1 1. wSPCCnpx 1- TO C --I M� TC ° Swl.. M MW 5. - IT- IOm 1 A!m CMwx - TO RE r.STENED 30 wx... POST uN 0 6 UL L.. ANSI nwCCxS TO BF P_B. ' . NANCERS u.n.O., OR M I.C.C. APPRa£D EWM CD - W9Gx .ND - I -ES. 7. wNMRs ,0 RE S-0x 'w xwLfRS U.N.O.. W M LC.0 MPRa2o [OaL IN I UCNRK OC9W w0 -D D. wiRx °NiPPtilttqu wiP Sn RE i`�"mox BwuranoriNuceelws Oa/iIN. NINREEa NAIL TYPE SCHEDULE fr.NklN! arA06 _ 166 9NNca w EMS R W H3 uVN OIA LNf[ 'to w Gw2 VYII 6e O.IJI' 1p-I . nl.Jr' aUl' 1 I.II' O.Ib' 9 a Lb' l Im 6 lwiJ a.l- loci R Pwix m E191' E O 1. NE -BR 20Q. R EUSwG ,FKNERS®COLOR-CBDm xuC M2u, FOR USE OF NNL OEPVIGMN Ece6a) ] 6 KMpiwlE OUSE 1-NU 1WC5 B' TIC ARE CMDE 6 vEx[Ru1KK+.ATCIES ENDSE BRIT -Do ex MC P-B pI OETUtn FOUNDATION 1 ORB MMn - RE. ...W. RASED 1 1n HxHvu ULiHA1Ei Ct1- S,NO]E,n W aaoaiiilwusp av el: NO,[ Our OxS 61,IEBOE. ENCTR M c. RU¢pixL gN 6) rBNIDm SPECS.. Axp e).msoEa° u ivtisun[s PER ra OIL.= RTE_ 10 __ eI- KaTaxM wmgw,wx. a. CWl E FOR SUB -a. r). 911J1 wxt A uAuxuu -.I IF " (FW,.:urvP FOR w -OIrSCR.1of) PER wS.T.uC-I.J. uAv.. uv FORw05 ANOCRAWI Rf ,1u1,0. a. MrKx, USED swu COxFORu TO US.'.u. C-.50. FIRE 6. Ax0 sAND .u-C OwC SFOR°'1uGxntE�tONFORN [d.fAn[0 wS.iY. C-II FOR xOxw1 Mf6M [Or.[IRR Slue M uwm Axe Mw(Nm w KCOROwCE HIN -.T... C-B.. PP06pf J/� nuuFmS Al ut B, mm. SP- PWttMNNE vMpR Rn_R (rwm[ ICaRRED) SIU1 ETT -1 -1 w0 a ECREER FWnnCs ! _ RC UFwCD . uv6uw W 6'. PaClbaO Rn.ROm 51wi RC RCPlKLI OR RE-D. ,E1m,EM vAPOR IT- (HEAC ua 1 - RE ,ERUd I Ar w9M m¢ OF PERK n FODI NGS ! 9w: BE UF1YD A udum. OF 6'. PUNCNRED RnwOm Bw BE P[N/JJ9 ON RCPURm. Sul rawC'IER . 1w l0 UW (ux.W. w. W pl-ear., PER - �(1)-BMT LOGt[o°ONm TufORE tnw I] R us rwJl _ B O LT aur[TCRB FRO. C1W ENO w0/OR SPUC[ b" ME M2 u.x.O..w� Icc-[sx rr+m sxEi Pw GnHuu -EJ] D.C. uwuuu, 6 FRON mRrma ArA SPURTS Ua.O. ON PL1r]5. Hl-El B BU31 FEerwcs TO wvE uw. 111-11 REvwamxc Rw K Ire Arm �nOY. U.N.O. Ox 1B. /] PUwS. I I.' . TIC, 0 I] Fnmr CORxm2 AT UCd[Af1EDTEEI."1.Co. A uw_C C"'I" NR"IS.o"" wM WEt`RE ""'M POSmaT_CC_B, THE U-NE M° W AM CON-C, (uVOSnt ANMOR BOtls. Ax0)OR ODRELS wr BC "Si.BRm' 6 MJOxto Rr nE LOrx Rnnnlc orvTnMl. I]. �BC PRIOR �D RATE IIIIIN-IT.. Otnex IxsrRis Imm mullxe -1. 13. TOTTIONGS 5N- RE OWCR.w AND APPIO.Ee 1. r NL W TIC PROFIT SaM1B/MO,BG, EEPRRT T IN To RO" ' . 'NoJN _ W -C. OF IT,. -I Rr NC SOaS T I w.0 (-OCTW) - I. - No AS 9gxx TO RE I—- amww¢£ OR A vAIID oM ENCgEnexc REPON HNC. _ 0.EOUn¢ OF WE sAUC. 15. TTNoWws (nWEFRE01m°u1adDO,3euABrsNot I-. Ro, C EI.RIOR 10 wT OF coNs,Rucnpll Iz As e. .E.ea�cINn �a.l5�saucrouns pAI°Ncxnc roCoO�o I. CONCRETE PWPO Je)'REDD. 6EGw °w�uLMBfRxnnCx3 Wr SAFICR CODE WUR C CT%ININDTR RRUxs IxDMwTC $: w ROOFwx'0'RDax � NRm IE`mcssP`�x awF BDREBIED. IT. RE°UIMVExR FOR - I[x9M sues "ATWr ;): o). COxOxIW rWol POST-Ip.BOx'I OES- Br OIrEW IBER m MSG w CruRC wort SN.1 BC OWuamC TO RC'_ ON vpip1CN90x ROnw . 57. PCIAr. rsB.¢mIED Rr __ - RLFCRTIO On-2N9Ox1FWN. I- IxCWOm w Iw5 Bn OF OMH 1 17, BUI R TO STROIT A CO'l Or w Bats REPORT 10 TIC BUREBNG OEPOINCM FOR PVw PURPpI.. 10. NL51°r[HTCO INN TI[fitEtMpuEU R Tx 1O TI- NTIC Ps0il5 [xAND . °I4LLt14� � � I.. LO�GR To afcxroDw r au L /AA[n[oaanrrDBa`12wMw0is 10GnOr.s. 9)F Arm ncNf1C -.I II Axe IIEPT. AONMNArS. , nc. REINFORCING STEEL 1.NL ....NO I.. Sw CpKORu 10 AS.r.u. A_m5-.O FOR B! BARB AxD SUALLEA. 2. xc -EL - rn,I.. rp ws.Lu. A- - FOR !. BMS .rm UwQR_ l taO HRE uaac Tp mw'OT. TB .B.1.N..-IBS. W TO u. N- I-WT.. .111. RONFORTIK OnuunG. RENINI Ana PUCK 9uu COxraW 10 A[.I. 111. 5. wpa.1 OF NO- IT- Swu Co.-T. TO 111 -.1 -B. STIwWfo; 15wG Ex -1. ROBS, e. ra FOuanrm .dui. aE.1R asTwcEs enxEa ftElraoRORc s¢n Axe rKE or -111 51vLL BC IC 1w.L55 n sF Ox SWS ON W -C CENTER W SUB -<a.CMF 9ELOw D fo (Pauam Kuxs1 CunN)_..................._........_.._...... ]' -cpxrnETE 1a. uxraxuwu .._.._ .......... . ......___..... I-1 ja: .....,..,......__.....-._..._.............__. -COwuxS Axp BCu5 ID RAw BKS....._...._...................................._......._...._................. a" ). ALL flV65P WYlBUABO o SxH1 M W Pm A .Iw.lUu °r .O BM aMc ERs (]'-0' uvauW) M RCRw w r.15 w0 -,-I - M StKGOSO .'-0' uwI4161. a. PROUOC WMRS w FORD".. _/I CAME RE- 1. SAUE 9)E .n0 xuuaFR K vFR1KM BUJ. OR C RE-P,Cwc. OOMLS Snu1 wti A uawUu PIT C_ To C. No. ID. 1 5 MU02 Swu MSUK2 WICK M-RCM -T mvRpuM Or ENGwCER W RECOND. V.L RE AND CW r _ CwG O wrSCrnor1 - 1-.. S COxcR_ II CRO- w50xpfCNim B,la. vETRK BIAS RI W - BE K[uw10, POSROxED H TIE W w u0. TIC . I nm wI0 IOCITEN A, INC I- - BOOOu MO AT TIC -No' I.- III BAR EFER-r. c-.ws(wourl. i Y fnxol�RVE�11 raxDAn ��- DEF�Tx 5;d11.nM, A �aWe. LEW��SNE 5,� TI � ]D� PW � �mm Bx.1 �.� aR�tbTER�I..W=iM APP.G6.E I�, DATE Page: 0.6 NOW Option One Consullting Engineers LOCATION OF UNINHABITABLE ATTIC WITH LIMITED STORAGE NOTESSCALE: 1 /16" = 1'-0" : 1. HATCHED AREA INDICATES THE LOCATION OF UNINHABITABLE ATTIC WITH LIMITED STORAGE (THE AREA BETWEEN ATTIC ACCESS AND ATTIC F.A.U., U.N.O.). 2. REFER TO DETAIL "5/SN2' FOR THE REOUIRED SS°COADING U (INHABITABLE ATTIC THOUT 3. PLEASE ICONTACT TOPTIONORAGEAONEUCONSUNINHABLITItGEENGl E& IF 1"HY' YC A� ES4 AND/OR ATTIC F.A.U. LOCATIONS HAVE BEEN ANLQ[t) jILD�N� � Ca����NT/F, ���& SAFETY DEPT. FOR CO��VED ON DATE BY I Poge: 0.7 Option One Consulting Engineers MINIMUM UNIFORMLY DISTRIBUTED VERTICAL DESIGN LOADS California Building Code (CBC), 2010 Edition ROOF -(Tile) Snow................................................... No Roof Pitch ........................................... 5.0 :12 4.0 :12 6.0 :12 3.0 :12 Ceiling Pitch ........................................ 0.0 :12 0.0 :12 0.0 :12 0.0 :12 Unit Wt. Avg. Wt. Avg. Wt Avg. Wt. Avg. Wt. DEAD LOAD psf % Used psf psf psf psf Tile Roofing Material .........:......................................... 9.70 9.70 9.70 9.70 1/2" Plywood /15/32" OSB Sht'g.................................... 1.60 Truss Top Chord (at 24" o.c.)....................................... 0.64 Factored Roof DL (Due to slope) .................................. ^ 12.93 (1)-Layer Gypsum Sht'g ...... J 1/2" 1 2.20 ! Or 0.00 5/8' 2.75 too/ � 2.75 Truss Bottom Chord (at.24" o.c.)................................... o.64 Insulation ..................... Fire -Sprinklers ............... Miscellaneous (MEP, etc.) 0.30 0.50 0.30 1.60 0.64 12.58 0.00 2.75 l 0.64 0.30 0.50 0.30 13.35 0.00 2.75 0.64 0.30 0.50 0.30 1.60 0.64 2.31 0.00 2.75 0.64 0.30 0.50 0.30 Reserved............................................................... 0.58 0.93 0.16 1.21 Factored Ceiling DL (Due to slope) ............................... 5.07 5.42 I 118.00 18.00 I 4.65 ;;1 18.00 5.70 18.00 Total DL for seismic design, psf .................................... LIVE LOAD Live Load, table 1607.1............................................... 20.0 20.0 20.0 20.0 Reduction Factor (RD for Sloped Roof ........................... 0.95 1.00 0.90 1.00 "Round -up" factor ...................................................... 1.00 0.00 2.00 0.00 Total factored gravity design load, psf ......................... 38 00 38.00 38.00 38.00 Footnotes: 1. All assumed dead loads are referenced from ASCE SEI 7-05, table C3-1, unless noted otherwise. 2. Sawn lumber weight is based upon 35 pcf for lumber with an in-service moisture content not to exceed 19%. 3. Tile weight is referenced from ICC ESR-1900 for Eagle roofing products, U.N.O. 3. Attics without storage are those where the maximum clear height between the joist and rafter is less than 42", or where there are not two or more adjacent trusses with the same web configuration capable of containing a rectangle 42" by 24" wide, or greater, located within the plane of the truss. For attics without storage, this live load need not be assumed to act concurrently with any other live load requirements. 4. Attics with limited storage and constructed with trusses, this live load need only be applied to those portions of the bottom chord where there are two or more adjacent trusses with the same web configuration capable of containing a rectangle 42" high by 24" wide or greater, located within the plane of the truss. The rectangle shall fit between the top of the bottom chord and the bottom of any other truss member, provided that each of the following criteria is met: i. The attic area is accessible by a pull -down stairway or framed opening in accordance with section 1209.2, and ii. The truss shall have a bottom chord pitch less than 2:12. iii. Bottom chords of trusses shall be designed for the greater of actual imposed dead load or 10 psf, uniformly distributed over the entire span. 5. Reduction in roof live loads. (L, L,,R1R2 where: 12=<L,=<20) L,: Reduced live load per square foot of horizontal projection in psf R1 and R2 : Reduction factors per following formulas. R1=1 for At=<200 sf; R1=1.2-0.001At for 200 sf- At=e600=sf where A, is tributary area in square foot R2=1 for F=<4; R2=1.2-0.05F for 4<F<12N RZ 0.6 fo>12'where Fps number fmches=of--rise per foot BUILDING'� QUINT'A References:& SAFFiV n, ,- California Building Code (CBC), 2010 Edition ,*tI-- HHOV International Building Code (IBC), 2009 Edition FOR CON �� Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-05 STRUCTION BATE 1783_LOADS_10.XLS (Rev. 09/2010) Page: 0.8 C. 0 Option One Consulting Engineers MINIMUM UNIFORMLY DISTRIBUTED VERTICAL DESIGN LOADS Califomia Building Code (CBC), 2010 Edition FLOOR -(W/O GypCrete/Lt. Wt. Concrete) Unit Wt. Avg. Wt. DEAD LOAD psf % Used psf Fin. Floor Mat'I (Carpet/pad or Linoleum) . 1.00 90% 0.90 1 ceramic tile (slipsheet & thinset) ; 5.70 10i 0.57 --�-- 3/4" Plywood / 23/32" OSB Sht'g........................................ --- 2.4.0 -Joist or OW Floor Joists ................................................. 2.48 (1)-Layer Gypsum Sht'g ............ 1 1/2" 2.20 8or 1.76 1 5/8" 2.75 207 0.55 Insulation.................................................................. 0.30 Fire-Sprinklers............................................................... 0.50 Miscellaneous (MEP, etc.) ................................................ 0.10 Reserved.............................:........................................ 0.44 _Total DL for seismic design, psf......................................... 1 10.00 LIVE LOAD Live Load, table 1607.1.................................................... 40.0 "Round -up" factor ....................................... .. ................ 2.00 Total factored gravity design load, psf................................. 1 52.00 DECK -(With Elastomeric Top) DECK -(With Spaced Decking) DEAD LOAD DEAD LOAD Fin. Floor Mat'I (Dex-O-Tex Weatherwear) ............ 2.50 3/4" Plywood / 23/32" OSB Sht'g. ....................... 2.40 2x F.J. (Sawn) Spaced at 16" o.c......................... 3.08 7/8 in. Stucco (sand base) ................................. 10.40 Miscellaneous (MEP, etc.) ................................ 0.10 Reserved....................................................... 1.52 Total DL for seismic design, psf .......................... 20.00 LIVE LOAD Live Load, table 1607.1: Balcony: (1)- & (2)-family < 100 ft2 ....................... 6o.0 „Round -up" factor ............................................ 0.00 Total factored gravity design load, psf .................. 80.00 3xDecking ............................................... 6.68 2x F.J. (Sawn) Spaced at 16" o.c..................... 3.08 Miscellaneous (MEP, etc.) ............................ 0.10 Reserved................................................... 0.14 Total DL for seismic design, psf ...................... t0.00 LIVE LOAD Live Load, table 1607.1: Balcony: (1)- & (2)-family < 100 ft2 .................. 60.0 "Round -up" factor ........................................ 0.00 Total factored gravity design load, psf .............. 1 70.00 1. All assumed dead loads are referenced from ASCE SEI 7-05, table C3-1, unless noted otherwise. 2. 2x sawn lumber weight is based upon 35 pcf for lumber delivered at 20% moisture content and in-service moisture content not to exceed 19%. 3. 718" stucco weight is referenced from the Portland Cement Plaster/Stucco Manual, 5th Edition. 4. Joist weight based upon i-level 14" deep 230 or 16" deep 210 series (3.3 plf) at 16" o.c., or manufucturered 2x4 open web trusses at 24" o.c. 5. Exterior Balcony is defined per section 1602 as an exterior floor projecting from and supported by a structure without additional independent supports. 6. Deck is defined per section 1602 as an exterior floor supported on at least two opposing sides by an adjacent structure, and/or posts, piers or other independent supports. u� F LAQUI,NTA G & SAFETY DEPT. APPRoVED FOP CO TRUC T10fV DATE Page: 0.9 1783_LOADS-10.XLS (Rev. 09/2010) Option One Consulting Engineers e-f MINIMUM UNIFORMLY DISTRIBUTED VERTICAL DESIGN LOADS California Building Code (CBC), 2010 Edition WALLS -(EXTERIOR) Unit Wt. Avg. Wt. DEAD LOAD psf % Used psf 7/8 in. Stucco (sand base) ............... 10.40 100% 10.40 Full Heiaht Stone/Brick Veneer ......... n/a 0% n/a Studs at 16" o.c. w/ Plates... 2x4 1.44 80% 1.15 �(1)-Lay re Gypsum Sht'g...... 2x6 1/2" 2.26 2.00 1 20% 100% 0.4-5 1 2.00 2.50 0% j 0.00 _5/8" �Wallw/ Plywd/OSB Sht'g.... 3/8" 1.20 20% 0.24 1/2" 1.60 10% 0.16 Walls w/o Plywood Sht'g.................. n/a 70% n/a Insulation ................................. Miscellaneous (MEP, etc.) .......... _Subtotal Dead Load, psf .............. Glazing portion of wall ................. Remaining portion of wall ............ Reserved ................................. Total Dead Load, psf .................. CEILING -(w/o STORAGE) ......................... 0.30 ......................... 0.10 14.&0 F____ 5.00 15% 1.20 1480 85%�12.58 ......................... 0.22 ........................ 14.00 Unit Wt. Avg. Wt. DEAD LOAD psf % Used psf 2x Framing at 16" o.c................................................. 1.98 (1)-Layer Gypsum Sht'g ......i 1/� 2 -2.20 10o D j 5/8" 1_2_75 '- of j 0.00 Miscellaneous (MEP, etc.) .......................................... 0.10 Reserved................................................................. 0.72 Subtotal Dead Load, psf.............................................' 5.00 LIVE LOAD Live Load, Table 1607.1............................................. 10.0 „Round -up" factor ................................................ 0.00 Total factored gravity design load, psf ........................... 15.00 Footnotes: WALLS -(INTERIOR) DEAD LOAD Unit Wt. Avg. Wt. psf % Used psf (2)-Layer Gypsum Sht'g...... 1/2" 5/8" 2.00 2.50 100% o% 4.00 0.00 Studs at 16" o.c. w/ Plates.. 2x4 1.44 ao% 1.15 2x6 2.26 20% 1 0.45 _ 'Wall w/ Plywd/OSB Sht'g.... 3/8" 1.20 20% 0.24 1/2" 1.60 10% 0.16� ;Walls w/o Plywood Sht'g.................... 1 n/a -. 70% n/a Insulation................................................................... 0.30 Miscellaneous (MEP, etc.) ............................................ 0.10 Reserved................................................................... 1.60 Total Dead Load, psf................................................... 8.00 CEILING-(w/ LIMITED STORAGE) Unit Wt. Avg. Wt. DEAD LOAD psf % Used psf 2x Framing at 16" o.c.................................................... 1.98 (l)-Layer Gypsum Sht'g ...... 1/2" 2.20 ! 100% 2.20 5/8" i 2.75 0% 0.00 Miscellaneous (MEP, etc.) ............................................ 0.10 Reserved................................................................... 0.72 Subtotal Dead Load, psf............................................... 5.00 LIVE LOAD Live Load, Table 1607.1................................................ 20.0 „Round -up" factor ................................................ . 0.00 Total factored gravity design load, psf .............................. 25.00 1. All assumed dead loads are referenced from ASCE SEI 7-05, table C3-1, unless noted otherwise. 2. 2x sawn lumber weight is based upon 35 pcf for lumber delivered at 20% moisture content and in-service moisture content not to exceed 19%. 3. 7/8" stucco weight is referenced from the Portland Cement Plaster/Stucco Manual, 5th Edition. 4. For ceiling (w/o storage), the live load need not be considered acting simultaneously with other live loads imposed upon the ceiling framing or its supporting structures. For ceiling (w/limited storage), the live load is considered to act simultaneously with all other live loads. C! f Y OF LA QUINTA BUILDING & SAFETY DEPT. /-`,Fj,t:)R0VED FOR 6ONSTRUCTION DATE _----_ _ BY 1783_LOADS_10.XLS (Rev. 0912010) Page: 0.10 0. Option One Consulting Engineers REQUIREMENTS FOR WOOD STRUCTURAL PANEL SHEAR WALLS RESISTING WIND & SEISMIC FORCES IN SEISMIC DESIGN CATEGORY D, E or F (AF&PA Special Design Provisions for Wind and Seismic, 2008 Edition) Seismic Loads (E) Shearwal) Wood Struct. Sill Plate A.B. Diameter Spacing A.B. Sole Plate Sole Plate Spacing Sole Plate Allowable Type Grade' Thk. Nail Pane12 I Size Std. Alt. (in O.C.) (plt) Size Connection (in O.C.) (plt) (pit) P6 W5P j 3e" i ad 260 2x '/2" 5/a" 48 260 2x 1 row 1661 4 355 260 F14 W5P '/a" .-....._. 51 -..__. 380 2x %110 %14) 32 390 2x 1-row 16d 4 355 350 _. M _..... . W5P j ''/e" ad 490 2x ''/z" %" 16 780 2x 2-row5161 4 711 - 490 P2 I W5P '/e" 8d 640 2x '/2" 4) %" q) -- 16 760 2x 2-row516d 4 711 640 P2a '' 5TK1 /33 ; 10d 870 2x %" (p %" 12 1,040 2x 2-rows SDS'/a" 8 1,680 870 PP3t { W5P . '/e ad 980 3x '/z" %" 12 1,232 3x 2-rows SD5'/a" 6 1,690 980 T.1ts 1,740 3x 'p /<" 12 2,464 3x 2-rows SDS%4' 4 2,534 1,740�- Wind Loads W Shearwall . Type Grade' Thk:. Nail Wood Struct. Panel l Sill Plate Size A.B. Diameter St& Alt. Spacing (in O.C.) A.B. (pit) Sole Plate Size Sole Plate Connection Spacing (in O.C,) Sole Plate (Pit) Allowable (plo ` Y" tad 365 2x '/2" q) %' q) 48 260 2x 1-row 16d 4 355 _W5P I'4 m'W5P % 8d 533 2x ''/2" q) 6/" 32 390 2x 1-row 16d 4 355 _200 350 p3. I w5p '/e" 8d 685 2x 1/2" q) 5/" (P 16 780 2x 2-row516d 4 711 490 P2. 1 W5P %" ad 895 2x %" (P %" (D 16 780 2x 2-row516d 4 711 640 R2a :~ 5TR1 'tsl3z ....._. IF _ 10d 1,218 2x '/2" 5/"-- -12 1,040 2x 2-rows SDS%<" 5 8 1,680 1,040 !'n . W5P 1 '/e" j 8d 1,370 3x '/z" --- 5/" 12 1,232 3x --o 2-rows 5D5'/4" - 6 1,690 - 1,200 PP21 .f STR1'S132; 10d 1 2,435 3x '/<" '/<" 12 2,464 3x 2-rows 5D5'/4" 4 2,534 �2,400 - 1). Indicates double -sided shear wall 2). Nominal Unit Shear Capacity per SDPWS Table 4.3A (ASD) Mud -Sill Anchor Bolt Calculations: 3). WSP = Wood Structural Panel -Sheathing STR1 = Wood Structural Panel -Structural 1 Condition: Load per A.B., lb. Load Dui. CD Adjusted Capacity per Anchor Bolt (ASD) 1/2" Dia. A.B. at 2x Mud -sill _ 650 1.60 1,040 lb. 1/2" Dia. A.B. at 3x Mud -sill 770 1.60 1,232 lb. _ 5/5" Dia. A.B. at 2x Mud -Sill 930 1.60 1,488 lb. 5/8" Dia. A.B. at 3x Mud -sill _ 1,180 1.60 1,888 lb. 3/4" Dia. A.B. at 3x Mud -Sill 1,540 1.60 2,464 lb. 2005 NDS, Table 11 E Sole Plate Calculations: 2005 NDS, Table 11 N & Simpson Catalog C-2009 Condition; Load per Fastener, lb. Load Dur. CD Adj Factor Adjusted Capacity per each Fastener (ASD) 16d nail 2x Sole w/ 3/4" 5ht'g. 97 1.60 0.76 118.5 lb. 5D5'/4" 2x Sole w/ 3/4' 5ht'g. 350 1.60 1.00 560.0 lb. SDS''/4" 3x Sole w/ 3/4" Sht'g. 350 1.60 0.75 _ 422.4 lb. Notes & Limitations: 1). For wind & seismic load restrictions and adjustments, refer to AF&PA SDPWS Table 4.3A, Section 4.3.6 & Section 4.3.7.1 2). Design assumes all framing members ............................................. PF/5P with a minimum Speck Gravity, G ............... 0.50 (NDS Table 11.3.2A) 3). Shear walls where allowable design shear exceeds 350 plf (ASD): All framing members receiving edge nailing from abutting panels shall not be less than a 3x member (alt.: 2-2x). (SDPWS Sect. 4.3.7.1) The minimum edge distance for nails in receiving members and plywood shall be 3/8". 4). Use 3"x3"x0.229" plate washer over 2x and 3x mud -sill for 1/2", 5/8" and 3/4" diameter a chotolts exceptwvken a of the following occur: (SDPWS Sect. 4.3.6.4.3) a). Shear walls with nominal unit shear capacity less than 490 pit (ASD) B u� D OF LA ^ � f � �� b). Neglect effects of Resistive Moment (RM) A rn (`+Cl c). Height -to -Width ratio 2:1 or less ` G & SAFETY 5). Simpson SDS wood screws values based on catalog ......................... C-2011 A ry 9 DEPT. Design References: FOR , -r SEC) AF&PA Special Design Provisions for Wind and Seismic (SDPWS), 2008 Edition AF&PA National Design Specification (NDS), 2005 Edition LDA Wood Construction Connectors C-2011, Simpson Strong -Tie �_ Eiy Anchor Bolts in Light -Frame Construction at Small Edge Distances, June 2009, The SEAOC Blue Book -�-� Page: 0.11 1783_SW_SUM.xls (Rev. 02/2011) Conterminous 48 States 2003 NEHRP Seismic Design Provisions Latitude = 33.627533 Longitude =-116.25080399999999 Spectral Response Accelerations Ss and S1 Ss and S1 = Mapped Spectral Acceleration Values Site Class B - Fa = 1.0 ,Fv = 1.0 Data are based on a 0.01 deg grid spacing Period Sa (sec) (g) 0.2 � 30` Ss S ite Class B) 1.0i0%; S 1,, Site Class B) Conterminous 48 States 2003 NEHRP Seismic Design Provisions Latitude = 33.627533 Longitude =-116.25080399999999 Spectral Response Accelerations SMs and SM1 SMs = Fa x Ss and SM1 = Fv x S1 Site Class B - Fa = 1.0 ,Fv = 1.0 (sec) (g) 0.2 w Oat S ite Class B) 1.0 Ad'd6i-04 Site Class B) Conterminous 48 States 2003 NEHRP Seismic Design Provisions Latitude = 33.627533 Longitude =-116.25080399999999 Design Spectral Response Accelerations SDs and SD1 SDs = 2/3 x SMs and SD1 = 2/3 x SM1 S�teCas �Ea� '10 ,v0'*. ..17 Period Sa (sec) (g) 0.2 bO S©s, Site Class B) 1.00 4Q0'(SD Site Class B) 'ITY OF LA QUINT/A BUILDING & SAFETY DEFT. APPROVED FOR CONSTRUCTION DATE BY PDF created with pdfFactory trial version www.pdffacto[y.com fa** 0.01 Option One Consulting Engineers PLAN 2 CITY OF LA QUANTA BUILDING & SAFETY DEPT. APPROVED FOR CONSTRUCTION DATE BY I Page: 2.0 1783TITLEALS 0) Option One Consulting Engineers PROJ.: "5anterra" / Plan 2 BEAM D E S I G N J.N.: 0413-1783 ( N05 2005) (1) HDR. AT REAR OF M. BDRM. Member Length, L (ft)..................... 5.25 Load Duration Factor, CD ............... 1.25 Uniform Max. Allowable Deflection ............. L / 360 Size Factor Coefficient, Ct...................... 1.00 Trib. Area for Roof LL Reduction, A (ft2).... n/a KOOr LOaa = ( �5b.0 psf ) x ( ) ft + and Section Properties Partition = ( 14.0 psf ) x ( 2 ) ft M.O.E., ksi ............... 1,600.0 Floor Load = ( 52.0 psf ) x ( ) ft F'b, psi ...................... 1,500.0 Attic Storage = ( 20.0 psf ) x ( ) ft F',,, psi ...................... 212.5 Beam Wt. = 11.5 plf Depth, d, in .............. 7.500 Total Uniform Load, wTL .............................. 39.5 plf Width, b, in ............... 5.500 Rxn, (Left), lb........... 1,302 Rxn, (Right), lb......... L858 Point Loads P, at ............... 2.75 ft PLL+DL = 1,b02.0 lb............. 38*8/2*24.5/2 P2 at ............... 3.75 ft PLL+DL = 1,091.0 lb............. (38*24.5/2+20*8/2)*2 P3 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P4 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE Demand Moment......... 3.3 ft-k Sreq•d................... 26.7 < 51.6 in *O.K." Demand Shear............ 1,833.5 lb. Areq'd................... 12.9 < 41.3 in "O.K.* Demand M.0.1............ 52.4 in Aamm..............••.. 0.047 < 0,175 in *O.K.* U S E 6 Nt3 D.F. #17. A L T NA (2) DROP BM. AT REAR OF PATIO Member Length, L (ft)..................... 17.00 Load Duration Factor, CD ............... 1.25 Volume Factor, Cv......................... 1.00 Uniform Loads Max. Allowable Deflection .............. L / 360 Size Factor Coefficient, C,...................... 0.99 Trib. Area for Roof LL Reduction, A(fl)..... n/a Rxns., KOOT Loao = ( 38.0 psf) x ( 7/2 + 2 ) ft + and Section Properties Partition = ( 14.0 psf) x ( ) ft M.O.E., ksi ............... 1,800.0 Floor Load = ( 52.0 psf ) x ( ) ft F'b, psi ...................... 2,961.0 Deck Load = ( 15.0 psf) x ( ) ft F',,, psi ...................... 331.3 Beam Wt. = 11.7 plf Depth, d, in .............. 13.500 Total Uniform Load, wTb .............................. 220.7 plf Width, b, in ............... 3.125 Rxn, (Left), lb........... 1,876 Rxn, (Right), lb......... 1,876 Point Loads P, at ............... 0.00 ft PLL+DL = 0.0 lb.....:....... NONE P2 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P3 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P4 at ............... 0.00 ft PLL+DL = 0.0 lb. .....now' Demand Moment......... 8.0 ft-k Sr q•d_..... N... (I,�L�2:3 Y1 Vf < 94'9 U in3�i /� *O.K.* Demand Shear............ 1,627.9 lb. ------- Afegd......�........... 7.4,3 S'44F2y Un P7 "O.K." Demand M.0.1............ 406.E in4 ��actual•••� .......... r. 0ZroO ,<ti...0:567�rin O.K. USE 3.125 x 115 IGLB ALT 3.5 x 14 1PSLTE_ 1783P2B1.x1s (Rev.01/2012) Page: 2.1 Option One Consulting Engineers PROJ.: "5anterra" / Plan 2 BEAM DESIGN J.N.: 0413-1783 (N05 2005) (3) HDR. AT LEFT OF M. BATH (WORST CASE) Member Length, L (ft)..................... 5.25 Max. Allowable Deflection ............. L / 360 Load Duration Factor, CD ............... 1.25 Size Factor Coefficient, Cf...................... 1.00 Trib. Area for Roof ILL Reduction, A (ft).... n/a Uniform Loads Allowable Stresses, Rxns., Roof Load = ( 35.0 psf ) x ( ) ft + and Section P:ro erties Partition = ( 14.0 psf ) x ( 2 ) ft M.O.E., ksi ............... 1,600.0 Floor Load = ( 52.0 psf) x ( ) ft F'b, psi ...................... 1,625.0 Attic Storage = ( 20.0 psf) x ( ) ft F'v, psi ...................... 212.5 Beam Wt. = 14.5 plf Depth, d, in .............. 9.500 Total Uniform Load, wT.. .............................. 42.5 plf Width, b, in ............... 5.500 Rxn, (Left), lb........... 3,605 Rxn, Ri ht , lb......... 2,057 Point Loads Pf at ............... 1.00 ft PLL+DL = 665.0 lb............. 38*17.5/2*2 P2 at ............... 2.00 ft PLL+DL = 4,773.1 lb............. (3&*24.5/2+20*5/2)*17.5/2 P3 at ............... 0,00 ft PLL+DL = 0.0 lb............. NONE P4 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE Demand Moment......... 6.3 ft-k S req'd................... 46.3 < 82.7 in *O.K.* Demand Shear............ 3,571.1 lb. Areq'd................... 25.2 < 52.3 in *O.K.* Demand M.O.I............ 91.6 in --------`+'Aactual.................. 0.041 < 0.175 in *O.K.* USE 6 A L T NA (4) HDR. AT FRONT OF ENTRY Member Length, L (ft)..................... 5.25 Load Duration Factor, CD ............... 1.25 Uniform Loads Max. Allowable Deflection .............. L / 360 Size Factor Coefficient, Cf...................... 1.00 Trib. Area for Roof ILL Reduction, Pl(ft2)..... n/a Allowable.Stiesses, Rxns., Moot Loao = ( 6b.0 psf ) x ( 25/2 + 3 ) ft + and Section Properties Partition = ( 14.0 psf ) x ( 2 ) ft M.O.E., ksi ............... 1,600.0 Floor Load = ( 52.0 psf ) x ( ) ft F'b, psi ...................... 1,500.0 Attic Storage = ( 20.0 psf) x ( 8/2 ) ft F', psi ...................... 212.5 Beam Wt. = 8.4 plf Depth, d, in .............. 5.500 Total Uniform Load, wTu .............................. 705.4 plf Width, b, in ............... 5.500 Rxn, (Left), lb........... 1,852 Rxn, (Right), lb......... 1,852 Point Loads P, at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P2 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P3 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P4 at ............... 0.00 ft PLL+DL = 0.0 lb..... .._. NONE Demand Moment......... 2.4 ft-k Sreq'd..•••••.....a-' 19.4iJ < 27r( 1 iinij�/� *O.K.* Demand Shear............ 1,528.4 lb. Areq'd............BUI 1';YG < Sg.0.31 Vi�EP~ *O.K.* Demand M.O.I............ 43.1 in 4 --�-�- � Aactuai .................AD. ,q , r9r17p,� in �• *O.K.* U S E 6 x 6 p.F..#1:. '' vi�i�i� fFiUCTIQ ALT NA �- --_ BY_ 1783P261.x1s (Rev. 01/2012) Page: 2.2 11(r), Option One Consulting Engineers PROJ.: "Santerra" / Plan 2 BEAM DESIGN J.N.: 0413-17,53 (Nos 2005/ (5) HDR. AT REAR OF KITCHEN (WORST CASE) Member Length, L (ft)..................... 5.00 Max. Allowable Deflection ............. L / 360 Load Duration Factor, CD ............... 1.25 Size Factor Coefficient, C,...................... 1.00 Trib. Area for Roof LL Reduction, A (ft).... n/a Uniform Loads Allowable Stresses, Rxns., Roof Load = ( 38.0 psf) x ( 25/2 ) ft + and Section Properties Partition = ( 10.0 psf) x ( 10 ) ft M.O.E., ksi ............... 1,600.0 Floor Load = ( 52.0 psf ) x ( ) ft F'b, psi ...................... 1,625.0 Misc. _ ( 10.0 psf ) x ( ) ft F',,, psi ...................... 212.5 Beam Wt. = 14.5 plf Depth, d, in .............. 9.500 Total Uniform Load, wTL .............................. 589.5 plf Width, b, in .............. 5.500 Rxn, (Left), lb........... 2,358 Rxn, (Right), lb......... 2,358 Point Loads P, at ............... 0.00 ft PLL+DL - O.O lb............. NONE Pz at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P3 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P4 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE Demand Moment......... 4.7 ft-k ------->•Sreq'a................... 34.8 < 82.7 in *O.K.* Demand Shear............ 1,891.4 lb. ------>A,q'd................... 13.4 < 52.3 in *O.K.* Demand M.O.I............ 127.3 in Aaa„el.................. 0.086 < 0.267 in *O.K.* U S E 6 x 10 DF #1 ALT NA (6) HDR. AT LEFT OF DINING Member Length, L (ft)..................... 5.25 .Load Duration Factor, CD ............... 1.25 Max. Allowable Deflection .............. L / 360 Size Factor Coefficient, Cf...................... 1.00 Trib. Area for Roof LL Reduction, AM) ..... n/a Uniform Loads Allowable Stresses, Rxns., and Section Properties Roof Load = ( 38.0 psf) x ( 23.5/2 + 1 ) ft + Partition = ( 14.0 psf) x ( 2 ) ft M.O.E., ksi ............... 1,600.0 Floor Load = ( 52.0 psf) x ( ) ft F'b, psi ...................... 1,500.0 Attic Storage = ( 20.0 psf) x ( ) ft F',,, psi ...................... 212.5 Beam Wt. = 8.4 plf Depth, d, in .............. Width, b, in ............... 5.500 5.500 Total Uniform Load, wTtr .............................. 520.9 plf Rxn, (Left), lb........... 1,367 Rxn, Ri ht , lb......... 1,367 Point Loads P, at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE PZ at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P3 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P4 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE Demand Moment.... 1.8 ft-k Sfeq'd............... r'71 in3 *O.K.* Demand Shear............ Demand M.O.L ........... 1,128.7 31.8 lb. A regd..............�a. in° Aactual ................1..� ®<----2-7.7 a' A F A[l l�q < L?J�.✓_jUih V TA 0.073<$c �yQa175 i AO.K.* "O.K.* A ra4 W`1 r-% US 6 ALT NA ""' ► K(1C 71n� r DATE BY 1783P2B1.x1s (Rev.01/2012) �"' Page: 2.3 C) Option One Consulting Engineers PROJ.: "5anterra" / Plan 2 BEAM DESIGN J.N.: 0413-1783 (NO5 2005) (7) 2-CAR GARAGE DOOR HEADER Member Length, L (ft)..................... 16.50 Load Duration Factor, CD ............... 1.25 Uniform Loads Max. Allowable Deflection ............. L / 360 Size Factor Coefficient, Cf...................... 1.00 Trib. Area for Roof ILL Reduction, A (ft2).... n/a Allowable Stresses, Rxns., Koot Load = ( 38.D psf ) x ( 8/2 + 1 ) ft + and Section Properties Partition = ( 14.0 psf ) x ( 3 ) ft M.O.E., ksi ............... 1,600.0 Floor Load = ( 52.0 psf ) x ( ) ft F'b, psi ...................... 1,062.5 Attic Storage = ( 20.0 psf ) x ( ) ft F', psi ...................... 225.0 Beam Wt. = 12.9 plf Depth, d, in .............. 13.250 Total Uniform Load, wTb .............................. 244.9 plf Width, b, in ............... 3.500 Rxn, (Left), lb........... 2,020 Rxn, (Right), lb......... 2,020 Point Loads Pf at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P2 at ............... 0.00 ft . PLL+DL = 0.0 lb............. NONE P3 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P4 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE Demand Moment......... 5.3 ft-k Sreq'd.............•••••• 94.1 < 102.4 in *O.K.* Demand Shear............ 1,749.9 lb. Afeq•d................... 11.7 < 46.4 in *O.K." Demand M.O.I............ 464.1 in -0'Aactuai••••••.•.......••• 0.376 < 0.550 in "O.K." USE -4 x 14 d #1 A L T 3.125 x 13.5 GLB (8) NANA DOOR AT FRONT OF OPT. ENTRY Member Length, L (ft)..................... 15.25 Max. Allowable Deflection.............. L / 360 Load Duration Factor, CD ............... 1.25 Size Factor Coefficient, Cf...................... 0.93 Volume Factor, Cv......................... 1.00 Trib. Area for Roof ILL Reduction, A(ft)..... n/a Uniform Loads _ Allowable Stresses, Rxns., Roof Load = ( 38.0 psf ) x ( 25/2 + 3 ) ft + and Section Properties Partition = ( 10.0 psf ) x ( 10 ) ft M.O.E., ksi ............... 1,800.0 Floor Load = ( 52.0 psf ) x ( ) ft F'b, psi ...................... 2,797.6 Attic Storage = ( 20.0 psf ) x ( 8/2 ) ft F', psi ...............:...... 331.3 Beam Wt. = 32.0 plf Depth, d, in .............. 22.500 Total Uniform Load, wTb .............................. 801.0 plf Width, b, in ............... 5.125 Rxn, (Left), lb........... 6,106 Rxn, (Right), lb......... 6,108 Point Loads Pi at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P2 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P3 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P4 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE Demand Moment......... 23.3 ft-k Sfegd...... T9y9:9 t 4 in3 T "O.K." Demand Shear............ 4,606.0 lb. Areq'd...... •••�R ^ 20:9 < V 195:3>U,n2i� 1 A *O.K." 4 �UIL�ING & S�` Demand M.O.L ........... 1,065.3 in Aactuah•••• ..........- OU111,� < 0.508„l' i'DEPT O.K. USE ) 5:125 x 22:5' ALB FpR CI�nNcr ALT I NA DATE BY 1783P261.x1s (Rev.0112012) Page: 2.4 Option One Consulting Engineers PROJ: "5anterra" / Flan 2 J.N.: 0413-1783 LATERAL FORCE ANALYSIS - EARTHQUAKE LOADS ASCE 7-05 Section 12.8: EQUIVALENT LATERAL FORCE PROCEDURE Site & Building Data (ASCE 7-05 Chapter I & 12) SS ....... 0.2 Spectral Response Acc........... Per USGS Maps ................ Figures 22-1 to 22-14 ............ 1.50 S1 ....... 1.0 Spectral Response Acc........... Per USGS Maps ................ Figures 22-1 to 22-14 ............ 0.60 SC ...... Site Classification ....................... Per USGS Maps ................ Table 20.3-1 ......................... D Fa ........ Site Coefficient (short) .................. Per USGS Maps ................ Table 11.4-1 ......................... 1.00 F„ ........ Site Coefficient (1-sec.) ............... Per USGS Maps ................ Table 11.4-2 ...................... 1.00 SMS • • • • • Max. Considered EQ (short period) MCEs = Fa*Ss .................... Equation 11.44 .................... 1.50 SM1 ....., Max. Considered EQ (1-sec. period) MCE, = F *S. ................... Equation 11.4-2 .................... 0.60 SDS ...... Design Spectral Response (short period) = 2/3*SMs .................. Equation 11.4-3 .................... 1.00 SD1 • • • • • • Design Spectral Response (1-sec. period) = 2/3*SM1 ................. Equation 11.4-4 .................... 0.40 O.C..... Occupancy Category .......................................................... Table 1-1 ............................. II IE ........ Seismic Importance Factor .................................................. Table 11.5-1 _...................... 1.00 R ......... Response Modification Coefficient ......................................... Table 12.2-1 ......................... 6.50 SDC .... Seismic Design Category .................................................... Table 11.6-1, 2 ..................... D Structure Period (ASCE Section 12.8.2 Ct ........ Seismic Coefficient ..................... Table 12.8-2 ..................... 0.020 Exp., x ........... 0.75 TL ........ Long -Period Transition ................ Figure 22-15 ..................... 12 sec. hn ........ Maximum Building Height (Mean Roof Height) ......................... 15.00 feet Ta ........ Fund. Period = Ct*hnx .................. Eq. 12.8-7 ........................ 0.15 sec. Design Base Shear (ASCE Section 12.8.1) [ Aso - Allowable 5trees Design 1 Note:....... Alternate Basic Load Combinations, CBC Sect. 1605.3.2, Eq. 16-20 .................. D + L + 5 + E / 1.4 V ......... Design Base Shear = (SDs*IE/R)*W / 1.4.................................. Eq. 12.8-2 ...... 0.1099 X WDL Governe VMax • • • Max. Base Shear _< (SD1*IE/R*T)*W / 1.4.................................. Eq. 12.8-3 ...... 0.2884 x WDL VMax • • • • Max. Base Shear <_ (SD,*TL*IE/R*T)*W / 1.4............................. Eq. 12.8-4 ...... 22.6988 X WDL n/a VMin ••••. Min. Base Shear>_ (0.044SDs)*I*W / 1.4 >_ (0.01)*W / 1.4............ Eq. 12.8-5 . _ _ 0.0314 x WDL n/a VMin • • • • • Min. Base Shear >_ (0.5*S,*IE/R)*W / 1.4.................................. Eq. 12.8-6 ...... 0.0330 x WDL Vertical Distribution of Force (ASCE Section 12.8.3) Fx ........ Vertical Force Distribution .................................. Eq. 12.8-12 ...................... V ` (Wx " hx') / E (W. hi ) k ......... Exponent ......................... 1.00 See Note: Per Section 12.3.1.1 of ASCE 7-05, all wood structural panel di one- and two-family residential buildings of light -frame construction. Building Code ......................... Wind Speed & Exposure ........ Snow Load ............................. O.F [A,r T iEr��IViad$eec�dpeFE le N 1 A SAFETY DEPT. APPROVED .nr) ,-.,,.. ....... California Building Code (CBC), 2010 Edition ....... Vu=85 mph (3 sec. gust speed), Exposure "C" NIA " DATE BY 1783P2L1_CBC2010.x1s (Rev. 07/2012) Page: 2.5 Co Option One Consulting Engineers PROJ: "Santerra" / I'lan 2 J.N.: 0413-1783 LATERAL FORCE ANALYSIS - EARTHQUAKE LOADS Supplement No. 2 - Design Base Shear V(S DS) V min Equivalent Lateral Force Procedure (ASCE 7-05, Section 12.8) To Ts=SDI IS Ds Period, T (sec.) Region 1:'Short period range /constant spectral response acceleration Region 2: Long period range / constant spectral response velocity Region 3: Very long period range / constant spectral response displacement ASCE 7-05 Section 12.8: Equivalent Lateral Force Procedure Design Base Shear, V.................................. Cr, " W Eq. 12.8-1 Seismic Response Coefficient, CS .................. SDS / (R / I) Eq. 12.8-2 Max. Coefficient, CS ............. (T <_ TJ ............ SD1 / T (R / I) Eq. 12.8-3 Max. Coefficient, CS ............. (T > TL) ............ SW TL / TZ (R / I) Eq. 12.8-4 Min. Coefficient, Cs ...................................... 0.044SDS`I >_0.01 Eq. 12.8-5 Min. Coefficient, CS .............. (S1 >_ 0.6) ......... 0.5 S1 / (R / I) Eq. 12.8-6 Long -Period, TL .......................................... Per Figure 22-15 Fundamental Period, T = Ta .......................... C1 h„" Eq. 12.8-7 Reference Period, To ................................... 0.2 SD1 / SpS Sect. 11.4.5 Reference Period, Ts ................................... SD1 / SpS Sect. 11.4.5 SD1 .............................. • • • •. Design Spectral Response Acceleration Parameter, 5% damped, at a period of T = 1.0 sec SDs .............................. • • • • • Design Spectral Response Acceleration Parameter, 5% damped, at a short period of T = 0.2 sec CITY OF Lq QUINT/ BUILDING & SAFETY DEPT. APPROVED FOR CONSTRUCTION DATE Page: 2.6 1783P2L1_CBC2010.xls (Rev. 10/2010) Option One Consulting Engineers PROD: "5anterra" / Plan 2 (1-Story) J.N.: 0413-1783 WIND DESIGN PRESSURES AND DIAPHRAGM FORCES ASCE 7-05 Section 6.5.3: Method 2 - Analytical Procedure LOCATION ............................. REAR PORTION (M. DPW., FAMILY, KITCHEN) Design Procedure: 1) Basic Wind Speed, V = 85 mph Directionality Factor, Kd = 0.85 2) Importance Factor, I = 1.00 3) Exposure Category = C 4) Topographic Factor, Kt = 1.o0 5) Gust Factor, G or Gf = 0.55 6) Enclosure Classification = "Enclosed" 7) Internal Pressure Coeff., GCP; = 0.18 8) External Pressure Coeff., CP = See chart below External Pressure Coefficient, C Location North -South j East-West Windrd wa Leeward Windward_ _ Leeward Wall 0.80 -0.50 0.80 -0.28 Roof (H) -0.55 -0.08 -0.57 -0.36 0.14 -0.57 Roof (G)� 0.00 0.00 0.00 0.00 L / B" 0.43 2.33 h / L" 0.59 0.25 Figure 6-1 Table 6-4 Table 6-1 Section 6.5.6 Section 6.5.7 Section 6.5.8 Section 6.5.9 Figure 6-5 Figure 6-6 (based on 3-second gust Vas) NOTES: r Neglect effect of uplift forces on lateral loads. Interpolation allowed. Roof Slope = 4 :12 (max) Theta, O = 15.4 degrees' N-S Dimension = 25.5 feet E-W Dimension = 59.5 feet Mean Roof Height, h = 15.0 feet 1 st Floor Plate = 10 feet 9) Velocity Pressure Coeff., Kh,Z = 5ee chart below Table 6-3 = 2.01 (z/zj2/a for 15Rsz<_z9 = 2.01 (15 / zg)' for z < 15 It Velocity Pressure, qh,Z = 5ee chart below Eqn. 6-15 = 0.00256 KZ Kn Kd V21 Height, z KZ I Kn Kd V I I I I qz Notes: 0.0 0.849 1.00 0.85 85 1.00 13.35 10.0 _O.849 1.00 0.85 85 1.00 _ 13.35 Plate Level 15.0 0.849 _ 1.00 0.85 85 1.00 13.35 Koof Level 15.0 0.&49 1.00 _ 0.85 85 1.00 13.35 Height, h Kn Kn Kd V �L _ _ qn Notes 15.0 0.849 1 1.00 0.85 1 85 1-0 C 1, Ly 3"-,3P= i Mean,-���t.' . (X = 9.5 z9 = 900 feet 10) Design Wind Load, p = See chart below = NOTE: Since all internal wind pressures for enclosed buildings act eqt and in opposite directions), these pressures cancel each other Net uplift pressures acting on components to be analyzed and Y -" *-411JI! NTA 6BUILDING & SAFETY DEPT. 5CP - ���;P P R E �6v on all FOR on internal Nlr T8''tFegLal!y0N in the lateral direction only. yneallseparatel_ BY 1783P2L 1 _C13C2010.x1s Page: 2.7 Location Pressure Tributary Load Load"w Wall Below 14.75 5.00 73.74 95.86 Gable Roof 14.75 0.00 0.00 0.00 Total..................................................... 95.86 plf East=West Direction Fast-Wpst Dirertinn Mall) Option One Consulting Engineers PROJ: "5anterra" / Plan 2 J.N.: 0413-1783 WIND DESIGN PRESSURES AND DIAPHRAGM FORCES ASCE 7-05 Section 6.5.3: Method 2 - Analytical Procedure LOCATION ...........I ................. REAR PORTION (M. I3DRM., FAMILY, KITCHEN) North=South Direction North -South Direction- (Wail) Location Height, z % CP G q,GCp ghGCp) Notes Windward 10.0 13.35 0.80 0.55 9.08 2.40 Plate Level Windward 15.0 13.35 0.80 0.85 _ 9.08 2.40 Roof Level Location Height, h qh Cp G ghGCP ghGCP; Notes Leeward 1 15.0 13.35 1 -0.50 1 0.85 1 -5.67 1 2.40 IMean ht. Derri.acrnrr.7.a�irr.�crr•�:rrs� Location Height, h qh Cp G ghGCp I ghGCP; , INotes Windward 15.0 13.35 -0.08 0.85 -0.89 2.40 Max CP Leeward 15.0 13.35 1 -0.57 1 0.85 1 -6.51 2.40 ►►'rU� G II►T•7I r l;t 1 /Jr�:IH iLr/Tl �-►r•7:C.r.)lIlF77i7i : r: r. i1 r.Yr: � 1 Location P TributaryL d L d" oca Ion Pressure Load . oa w Wall Below 14.75 73.74 95.86 Hip Roof 10.00 5.00 Gable: 14.75 - Hip: 10.00 50.00 65.00 Controls Total ..................................................... 16o.86 plf North -South Direction: (Gable Roof Diaphragm Load) 14.75 --- Hip/Gable Cond. (N-S) Schematic: Not to Scale Location Height, z qZ Cp G gZGCp I ghGCp) lNotes _Windward 10.0_ 13.35 0.80 9.08 2.40 Plate Level Windward 15.0 13.35 0.50 _0.85 0.55 _ 9.08 2.40 Roof Level Location Height, h qh Cp G ghGCP ghGCp; Notes Leeward 15 13.35 -0.28 1 0.85 1 -3.21 2.40 Mean ht. tasr-wesr urrecnon, tHin Knnr) Location Height, h qh Cp G ghGCp I ghGCp; INotes Windward 15 13.35 0.14 0.85 1.54 2.40 Max CP Leeward 15 13.35 0.57 1 0.55 -6.45 2.40 1.-f.'LYO �I �1:J.9I/I/G'IN/UII///G/1/1C6L71I/Y_TiIiT�L��/I Location f P Pressure T Tributary U ary Load L L Oad' w w Gable: 12.29 Wall Below 12.29 5.00 61.45 79.88 ip: 1e:ot Hip Roof 10.00 3.00 30.00 39.00 ��� Total ..................................................... 118.88 plf B East-West Dirertinn• ('ahla Rnnf Dianhranm I narll 1a!L Location I Pressure Tributary I Load Load''w Wall Below 12.29 5.00 61.45 79.85 Gable Roof ` 12.29 3.33 40.96 53.25 FOR I otal..................................................... 133.13 plf i DATE .......................� y x� Lac. QUINT A S _EN DEPT. NOTE: When Alternative Basic Load Combination, Sect. 1605.3.2, is u"tiliz e-w#W___ load shall be magnified by the following coefficient .................. w = 1.3 NNot to Scale (1-Story) 1783P2L1 _CBC2010.x1s Page: 2.8 Option One Consulting Engineers PROJ: "5anterra" / Plan 2 (1_Story) J.N.: 0413-1783 WIND DESIGN PRESSURES AND DIAPHRAGM FORCES ASCE 7.05 Section 6.5.3: Method 2 - Analytical Procedure LOCATION ............................. LEFT PORTION (M. BATH, W.I.C., 130RM.2) Design Procedure: 1) Basic Wind Speed, V = 85 mph Directionality Factor, Kd = 0.85 2) Importance Factor, I = 1.00 3) Exposure Category = C 4) Topographic Factor, KZt = 1.00 5) Gust Factor, G or Gt = 0.55 6) Enclosure Classification = "Enclosed" 7) Internal Pressure Coeff., GCP; = 0.18 8) External Pressure Coeff., Cp = See chart below External Pressure Coefficient, C Location Norfh-South - --- - -- Windward Leeward East-West --- _.d_.__. WindwarLeeward Wall 0.&0 -0.31 0.80 -0.50 Roof (H) -0.46 0.00 -0.57 -0.69 -0.14 -0.59 Roof (G)f 0.00 _ 0.00 0.00 0.00 L/B` 1.94 0.51 h/L' _ 0.43 1 0.83 Figure 6-1 Table 6-4 Table 6-1 Section 6.5.6 Section 6.5.7 Section 6.5.8 Section 6.5.9 Figure 6-5 Figure 6-6 (based on 3-second gust V35) NOTES: T Neglect effect of uplift forces on lateral loads. Interpolation allowed. Roof Slope = 4 :12 (max) Theta, O = 18.4 degrees" N-S Dimension = 35 feet E-W Dimension = 18 feet Mean Roof Height, h = 15.0 feet 1 st Floor Plate = 10 feet 9) Velocity Pressure Coeff., Kh Z = see chart below Table 6-3 = 2.01(z/zy)21a for 15ft<_z<_z9 = 2.01(15/zy)' forz<15ft Velocity Pressure, qh,Z = see chart below Eqn. 6-15 = 0.00256 KZ Kn Kd VZ I Height, z KZ KZt Kd V I I qz Notes 0.0 0.849 1.00 0.85 85 1.00 13.35 10.0 0.&49 1.00 0.85 85 1.0_0 13.35 Plate Level 15.0 0.849 1.00 0.85 85 1.00 13.35 Roof Level 15.0 0.849 1.00 0.85 85 1.00 13.35 Height, h Kh Kn Ka V,: qh Notes 15.0 0.849 1 1.00 1 0.85 1 85 I I U11 O '-) F3.P5,a EAanlht �-r- (X = 9.5 z9 = 900 feet 10) Design Wind Load, p = 5ee chart below = NOTE: Since all internal wind pressures for enclosed buildings act and in opposite directions), these pressures cancel each of Net uplift pressures acting on components to be analyzed �NW„'4 r T-lIeis ZSAFET DING & Y DEPT. ar,�ICR01EE� y FOR CbNSTBP &s pa all on all the interna su y out in the lateral direction only. �gned-sepacately. BY 1783P2L1_C13C2010.x1s Page: 2.9 Option One Consulting Engineers Location I Pressure I Tributary Load Load"w Wall Below - 14.75 _ 5.00 73.74 95.86 Gable Roof 14.75 0.00 0.00 _ 0.00 PROJ: "5anterra" / Plan 2 J.N.: 0413-1783 WIND DESIGN PRESSURES AND DIAPHRAGM FORCES ASCE 7.05 Section 6.5.3: Method 2 - Analytical Procedure LOCATION ............................. LEFT PORTION (M. BATH, W.I.C., 13DRM.2) North -South Direction North -South Dirertion- (Wall) Location Height, z gZ CP G q,.GCP I ghGCp; I Notes Windward 10.0 _ 13.35 0.80 0.55 9.08_ 2.40 Plate Level Windward 15.0 13.35 0.80 0.85 9.08 2.40 Roof Level Location Height, h qh Ca,..:. G ghGCp ghGCP; Notes Leeward 15.0 1 13.35 1 -0.31 0.85 -3.53 1 2.40 Mean ht. Dlrl r /I ATrlrl /II //I (L7N/U71IrrGl /r1:ULU Location Height, h qh CP G :.ghGCP I ghGCP; INotes Windward 15.0 13.35 0.00 0.85 -0.01 2.40 Max C, Leeward 15.0 13.35 -0.57 0.85 -6.45 2.40 ►►'UJNiII►z.]rutl/J/[:JNlCrli�rG/r7: r r lll�r��ll Location I Pressure Tributary Lod Load*w a Gable: 12.60 ............................. Wall Below 12.60 5.00 63.02 81.93 Hip: 10.00 - Hip Roof 10.00 3.00 30.00 39.00 Controls Total ..................................................... 120.93 plf North -South Direction: (Gable Roof Diaphragm Load) 12.60 -- Location Pressure Tributary Load Load"w Wall Below 12.60 5.00 63.02 81.93 Gable Roof 12.60 2.00 25.21 32.77 Total ..................................................... 114.70 plf East-West Direction East-West Dirertinn (Wall) Hip/Gable Cond. (N-S) Schematic: Not to Scale Location Height, z qZ CP G gZGCP ghGCP; Notes Windward 10.0 _ 13.35 _ 0.80 0.85 9.08 2.40 Plate Level_ Windward 15.0 13.35 0.80 0.85 9.08 2.40 Koof Level Location Height, h qh CP . ::. G . ghGCP ghGCp; Notes Leeward 15 13.35 1 -0.50 0.85 1 -5.67 2.40 Mean ht. lr.irl: r yaalrayrai//r:aNarTrrrrnrraa.T.rr Location Height, h qh CP G ghGCp I ghGCp; INotes Windward 15 13.35 0.14 0.85 -1.57 2.40 1 Max CP Leeward 15 13.35 -0.59 0.85 -6.69 1 2.40 ,r. M'w:rviu.aniul.=.�usouuNir-uulr-nuuW.xT.0 Location Pressure Tributary Load Load" co Wall Below 14.75 5.00 73.74 95.86 Gable: 14.75 _ .....,....................... Hip Roof 10.00 3.00 30.00 39.00 coQ;TY OF QI; IN TA � Total ..................................................... 134.86 pl3UILDlNG & 16 =�9- East-West Direction: (Gable Roof Diaphragm Load) `" E� DEFT FOR CON`H1PTGat;egod%%(E-vv) Schematic: ["o Scale Total ..................................................... 95.86 1 [PATE ---- BY_ NOTE: When Alternative Basic Load Combination, Sect. 1605.3.2, is u672e the wmd- load shall be magnified by the following coefficient .................. w = 1.3 _(I -Story) 1783P2L1_CBC2010.xls Page: 2.10 Option One Consulting Engineers PROJ: "5anterra" / Plan 2 (1-Story) J.N.: 0413-1783 WIND DESIGN PRESSURES AND DIAPHRAGM FORCES ASCE 7-05 Section 6.5.3: Method 2 - Analytical Procedure LOCATION ............................. RIGHT PORTION.(DINING, GARAGE) Design Procedure: 1) Basic Wind Speed, V = 65 mph Figure 6-1 (based on 3-second gust Vas) Directionality Factor, Kd = 0.85 Table 6-4 2) Importance Factor, I = 1.00 Table 6-1 3) Exposure Category = C Section 6.5.6 4) Topographic Factor, Kn = 1.00 Section 6.5.7 5) Gust Factor, G or Gf = 0.55 Section 6.5.8 6) Enclosure Classification = "Enclosed" Section 6.5.9 7) Internal Pressure Coeff., GCP; = 0.18 (+/-) Figure 6-5 8) External Pressure Coeff., Cp = See chart below Figure 6-6 External Pressure Coefficient, C Location North -South Windward Leeward East=West Windward Leeward Wall 0.80 -0.41 0.80 -0.50 Roof Ili) -0.46 0.00 _ 0.57 -0.57 -0.09_ -0.58 Roof (G)l ......___ . _..... 0.00 0.00 0.00 _ 0.00 L 7''B* _ _ 1.46 0.69 hi L-k 0.43 _--.-_-- 0.63 NOTES: i Neglect effect of uplift forces on lateral loads. Interpolation allowed. Roof Slope = 4 :12 (max) Theta, O = 15.4 degrees" N-S Dimension = 35 feet E-W Dimension = 24 feet Mean Roof Height, h = 15.0 feet 1 st Floor Plate = 10 feet 9) Velocity Pressure Coeff., Kh.Z = See chart below Table 6-3 = 2.01 (z/z9)Mc for 15ft5z<_z9 = 2.01 (15 / z9)va for z < 15 it Velocity Pressure, qh,Z = 5ee chart below Eqn. 6-15 = 0.00256 KZ Krt Kd VZ I Height, z KZ Kzc Kd V I % lNotes 0.0 0.849 1.00 0.85 85 1.00 13.35 10.0 0.849 _1.00 0.85 85 1.00 13.55 Plate Level 15.0 0.849 1.00 0.85 85 1.00 13.35 Roof Level 15.0 0.849 1.00 0.85 85 _ 1.00 13.35 Height, h Kh Kn Kd V -- q h Notes 15.0 0.849 1 1.00 0.85 85 �-,1.b0Y (r F1 3E35 Pvleanlht a = 9.5 z9 = 900 feet 10) Design Wind Load, p = 5ee chart below = NOTE: Since all internal wind pressures for enclosed buildings ac and in opposite directions), these pressures cancel each c Net uplift pressures acting on components to be analyzed Kell DIN &�- -" * ''-" Ta a 6-2 SAFETY DEPT. qGG R lP, -- '6 )7 I -OR CUNSTR�� rally on all the internal suWaceslfeVally out in the lateral direction only. des igned-separately6 Y 1783 P2 L 1 _C BC2010. xis Page: 2.11 Option One Consulting Engineers Location Pressure Tributary Load Load-(,) Wall Below 13.71 5.00 68.54 89.10 Gable Roof 13.71 2.33 31.98 41.58 Total ..................................................... 130.68 pif East-West Direction East -Watt DirPr:tinn !Wall) PROJ: "5anterra" / Plan 2 J.N.: 0413-1783 WIND DESIGN PRESSURES AND DIAPHRAGM FORCES ASCE 7-05 Section 6.5.3: Method 2 - Analytical Procedure LOCATION ............................. RIGHT PORTION (DINING, GARAGE) North -South Direction North -South Direction: (Wall) Location Height, z qZ Cp G ghGCp ghGCp; I Notes Windward 10.0 13.35 0.80 0.85 9.08 2.40 Plate Level Windward 15.0 13.35 0.80 0.85 9.08 2.40 Roof Level ;;Location Height, h I qh I Cp G ghGCP :: ghGCpi Notes Leeward 1 15.0 1 13.35 1 -0.41 1 0.85 -4.63 2.40 Mean ht. Location Height,lh qh CP G ghGCp I ghGCpi lNotes Windward 15.0 13.35 0.00 0.85 -0.01 2.40 Max CP Leeward 15.0 13.35 -0.57 0.85 1 45.45 2.40 r►�rri.�a.�r.�rri.���rrr�irr.�i:tr>.:rr.���>Fm.r�rmr.�:n Location P Tributary- L d Load" ressure Load W Wall Below 13.71 5.00 68.54 Gable: 13.71 - _ _89.10 Hip Roof 10.00 3.50 35.00 45.50 Hip: 10.00 Controls Total..................................................... 134.60 plf North -South Direction: (Gable Roof Diaphragm Load) 13.71 Hip/Gable Cond. (N-S) Schematic. Not to Scale Location Height, z qZ I Cp G I cl qCp I ghGCp) Notes Windward 10.0 13.35 0.&0 0.85 9.08 1 2.40 1 Plate Level Windward 15.0 13.35 0.50 0.85 9.08 2.40 Roof Level Location Height,h] qh Cp G ghGCp ghGCp; Notes Leeward 1 15 1 13.35 -0.50 1 0.&5 -5.67 2.40 Mean ht. Last -West Ulrectlon: tHlo Hoot) Location Height, h qh Cp G ghGCp I ghGCpi lNotes Windward 15 13.35 �_-0.09 0.85 -0.99 1 2.40 Max CP Leeward 15 13.35 -0.55 0.85 -6.54 1 2.40 rYlC9arlrl:7C�1�lTi-rNlr7i» :I O rce O NDIF"s APTUNU T- :L Location Pressure Tributary L d Load* W Wall Below 14.75 5.00 73.74 95.86 Gable: 14.75 """•""""""""" "'......... Hip: 10.00 Hip Roof 10.00 4.00 40.00 52.00 Controls -- Total .................................................... 147.80 ptf ITY OF 1 East-West Direction: (Gable Roof Diaphragm Load) I BUILDiK'1475.Q Ql.lNTA Location Pressure Tributary Load Load*wl Wall Below 14.75 5.00 73.74 Gable Roof 14.75 _ 0.00 0.00 _95.86_ 0.00 I otal ...... NOTE: 1783 P2 L 1 _C BC 2010. xls ............................................. 95.86 plf When Alternative Basic Load Combination, Sect. 1665. load shall be magnified by the following coefficient ...... /� °� =E QFPT Hip/Gable Con . (E-W) FOR CONSTRUCTIONchematic:N to Scale (1-Story). Page: 2.12 Option One Consulting Engineers PROJ: "5anterra" / Plan 2 (y_story) ...... .:. V ......... . . ... J.N.: 0413-1783 WIND DESIGN PRESSURES AND DIAPHRAGM FORCES ASCE 7-05 Section 6.5.3: Method 2 - Analytical Procedure LOCATION ............................. FRONT PORTION (DEN, BREEZEWAY) Design Procedure: 1) Basic Wind Speed, V = 85 mph Figure 6-1 (based on 3-second gust V3s) Directionality Factor, Kd = 0.55 Table 6-4 2) Importance Factor, I = 1.00 Table 6-1 3) Exposure Category = C Section 6.5.6 4) Topographic Factor, Kn = 1.00 Section 6.5.7 5) Gust Factor, G or Gf = 0.85 Section 6.5.6 6) Enclosure Classification = "Enclosed" Section 6.5.9 7) Internal Pressure Coeff., GCP; = 0.15 (+/) Figure 6-5 8) External Pressure Coeff., Cp = See chart below Figure 6-6 External Pressure Coefficient, C Location North-South East-West Windward :Leeward Windward' Leeward Wall 0.80 -0.50 0.50 -0.42 Roof (H) 0.79 -0.18 -0.60 -0.76 -0.17 -0.60 Roof G 0.00 0.00 0.00 0.00 L / B* 0.71 1.41 h / L" 1.33 0.95 NOTES: r Neglect effect of uplift forces on lateral loads. Interpolation allowed. Roof Slope = 4 :12 (max) Theta, O = 16.4 degrees" N-S Dimension = 13.5 feet E-W Dimension = 19 feet Mean Roof Height, h = 18.0 feet 1 st Floor Plate = 10 feet 9) Velocity Pressure Coeff., Kh,Z = See chart below Table 6-3 = 2.01 (z/z9)?J' for 15Its zsz9 = 2.01 (15 / z9)2/a forz < 15 It Velocity Pressure, qh,Z = see chart below Eqn. 6-15 = 0.00256 Kz K, Kd VZ I Height, z KZ Kn ; .. _ -'' Kd V I 1 qZ Notes 0.0 0.849 1.00 0.55 85 1.00 13.35 10.0 0.849 1.00 0.85 85 1.00 13.35 Plate Level 18.0 _0.849 1.00 0.85_ 85 1.00 _ 13.35 Roof Level 15.0 0.849 1.00 0.85 85 _ 1.00 13.35 Height, h Kh Kn I Kd V I qn Notes 18.0 1 0.882 1 1.00 1 0.85 85 1.00�� -1387� Iv}ean=ht= a = 9.5 z9 = 900 feet 10) Design Wind Load, p = See chart below = NOTE: Since all internal wind pressures for enclosed buildings act eqa and in opposite directions), these pressures cancel each other Net uplift pressures acting on components to be analyzed and ;,,I I Tut- L/A UUINTA bl.B6--6ILDING & SAFETY DEPT. gGCP - C1`,P 3 Eqn. 6-1=7nn OVEV ly on ahthe inter q�yfacYe5(equanyN it in the lateral direction only. signed separately. i DATE - BY - -_- 1783P2L 1_CBC2010. xls Page: 2.13 Option One Consulting Engineers PROJ: "5anterra" / Plan 2 J.N.: 0413-1783 WIND DESIGN PRESSURES AND DIAPHRAGM FORCES ASCE 7-05 Section 6.5.3: Method 2 - Analytical Procedure LOCATION ............................. FRONT PORTION (DEN, BREEZEWAY) North -South Direction North -South Direction: (Wall) Location Height, z. qt CP G gnGCp I gnGCp; Notes Windward 10.0 13.35 0.80 0.85 9.05 2.50PIa Level Windward 18.0 13.35 0.80 0.85 9.08 2.50Poo Level Location Height, h qn Cp G gnGCp gnGCP; Notes Leeward 18.0 13.87 1 -0.50 0.85 -5.89 1 2.50Mea ht. ftyrUi/IATi7/it)1ARMIZiilriTIMI.r101 IFMTO i Location Height, h qn Cp G gnGCP I gnGCp; INotes Windward 18.0 13.87 -0.18 0.85 -2.121 2.501vlax C c Leeward 18.0 13.87 0.60 1 0.85 -7.07 1 2.50 u�ur.ua�unu��ucueun.rrr-n.>.cr.r.rorr:r.rus:rniivara: Location P T i t L d L d" ca ion Pressure rl u ary oa oa W Wall Below 14.97 5.00Gable: 14.97;.• Wall Below 14.97 5.00 74.85 97.30 Hip: 10.00 Hip Roof 10.00 2.50 25.00 32.50 Controls Total..................................................... 129.80 plf North -South Directinn- lt;ahlP Rnnf Dianhrarrm I narll 1497 Location Pressure Tributary Load Load*W Wall Below 14.97 5.00 74.85 97. 50 Gable Roof 14.97 0.00 0.00 0.00 Total ..................................................... 97.30 plf East-West Direction East-West Direction (Wall) Hip/Gable Cond. (N-S) Schematic: Not to Scale Location Height, z qz CP G gGCP I gnGCp; Notes Windward 10.0 _ 13.35 0.80 0.85--Mq 2.50PIa Level Windward 18.0 13.35 0.50 0.55 2.50Poo Level Location Height, h qn Cp GgnGCp; Notes Leeward 18 13.87 1 -0.42 1 0.85 1 -4.93 2.50Mea ht. ��: rya v �ayraiirraemnrrr.u.>.a.r.v Location I Height, h r % :. CP G gnGCp I gnGCp) I Notes Windward 18 13.87 -0.17 0.85 -1.97 2.50Max C Leeward 18 13.87 -0.60 1 0.85 -7.03 1 2.50 r ca0�d %zMff.jrc tnu jirIfni/Mat lnmrnr.rnr►ruuur.xroil Location Pressure Tributary L d Load* Oa W Gable: 14.01 Wall Below . 14.01 5.00 70.04 91.06 Hip: 1o.00 Hip:Roof. 10.00 2.50 25:00 32.50 �r- plf a [ Y OF Total.................................................... 123.56 East-West Direction: (Gable Roof Diaphragm Load) 13UILDIN 1a.oi> Location Pressure' Tributary Load Load' Wall Below 14.01 70.04 91.06 Gable Roof 14.01 __5.00_ 2.00 28.02 36.4 Ialai ..................................................... 127 NOTE When Alternative Basic Load Combination, S load shall be magnified by the following coefficient AP FOR CON Controls i/Gable Cond. (E-W) UCTION Sohema(, O-Stay) 1783P2L 1_CBC2010.xls Page: 2.14 C-) Option One Consulting Engineers PROJ.: "5antcrra"/Man 2 f1S;ory): J.N. 0413-1783 LATERAL SHEAR DISTRIBUTION ANALYSIS ASCE 7-05 Section 12.8: Equivalent Lateral Force Procedure LOCATION............................................................... REAR PORTION (M. DPW, FAMILY, KITCHEN) Seismic Response Coefficient, Cs ............................. 0.110 ASCE Section 12.8.1.1 Design Base Shear, V = Cs x W.................................... 4.64 kips ASCE Equation 12.8-1 Dead Load of Structure: Roof Dead Weight ................. 18.0 psf x ( 25.5 ft N/S x 59.5 ft E/W) F-.f Ave. Projected Ht. - 18.0 psf x ( 0.0 ft N/S x 0.0 ft E/W)_ Overhang (O.H.) ...... 2.0 N/S E/W 1.0 [29.95 ..kips 5.0 ft Exterior Wall Weight .............. 14.0 psf Pit. Line t N/S Walls........ ( 10/2 ft ) x ( 2.0 ) _ 3.57 ;kips E/W Walls....... ( 10/2 ft ) x ( 1.5 ) = 6.25 :kips O.H. 10.0 ft Interior Wall Weight ............. 5.0 psf N/S Walls........ ( 10/2 - ft ) x ( 1.3 ) = 1.28 kips E/W Walls....... ( 10/2 ft ) x ( 0.5 ) _ 1.19 kips " ELEVt};tt7N •.;: (N/S - EM) TotalDead Load, W............................................................................................... 42.2 kips - Seismic Story pSeismic Wind N/S Direction North/South Direction Shear, lb. P plf plf Lateral Load at Roof . .................................. 4,650 1.30 102.0 161.0 EM Uirection W f� Seismic Story pSeismic Wind PLAN (footprint) East/West Direction Shear, lb. P plf plf (-) annotation indicates a reduction Lateral Load at Roof . .................................. 4,650 1.30 237.0 134.0 in roof/floor area, i.e. stairways, diaphragm openings, area indentations, etc. LOCATION.............................................................. LEFT PORTION (M. 'BATH, W.I.C., 13DRM.2) Seismic Response Coefficient, Cs ............................. 0.110 ASCE Section 12.8.1.1 Design Base Shear, V = Cs x W.................................... 2.25 kips ASCE Equation 12.8-1 Dead Load of Structure: Roof Dead Weight ................. 18.0 psf x ( 35.0 ft N/S x 15.0 ft E/W) Froot-� Ave. Projected Ht. - 18.0 psf x ( 0.0 ft N/S x 0.0 ft E/W )_ Overhang (O.H.) ..... -- - - -- 1.0 N/S E/W 1.0 1 12.31 kips 3.0 ft Exterior Wall Weight .............. 14.0 psf - Plt. Line N/S Walls........ ( 10/2 ft ) x ( 1.50 ) - 3 kips E/W Walls....... ( 10/2 ft ) x ( 1.00 ) _ 1.26 ikips O.H. 10.0 (ft J Interior Wall Weight ............. &.0 psf N/S Walls........ ( 10/2 ft ) x ( 1.00 ) _ 1.40 1 kips E/W Walls....... ( 10/2 ft ) x ( 2.50 ) = L_ 1.&0 kips i 61:ItA1It�N :4 <; -- ----- __ (N/S-EM) .. .: :Total Dead Load, W............................................................................................... 20.4 kips Seismic Story pSeismic W d I' i O- LA Q N Dfrection �fl r North/South Direction Shear, lb. plf Q GILDING & SA Lateral Load at Roof . .................................. 2,250 1.30 163.0 14.0 �EPE/til/ Direction AP,RO N ( ) seismic story nd FOR CpNSTR[JI�T��LA�I(footprint) pSeismic Tif East/West Direction Shear, lb. pit (-) annotation indicatea reduction Lateral Load at Roof . .................................. 2,250 1.30 84.0 1'�5., r in roof/floor area, i.e. stairways, d>aphFagm-openings, 11rea indentations, Page: 2.15 1783P2L1_CBC2010.x1s (Rev. 10/2010) C) Option One Consulting Engineers PROJ.: "5anterra" / Plan 2 J.N. 0413-1783 (-Story) LATERAL SHEAR DISTRIBUTION ANALYSIS ASCE 7-05 Section 12.8: Equivalent Lateral Force Procedure LOCATION.............................................................. RIGHT PORTION(PINING, GARAGE) Seismic Response Coefficient, CS ............................. 0.110 ASCE Section 12.8.1.1 Design Base Shear, V = C, x W.................................... 2.62 kips ASCE Equation 12.8-1 Dead Load of Structure: Roof Dead Weight ................. 18.0 psf x ( 35.0 ft N/S x 24.0 ft E/W) Froof Ave. Projected Ht. - 15.0 psf x ( 0.0 ft N/S x 0.0 ft E/W )= - ♦ s. Overhang (O.H.) ...... 1.0 N/S E/W 1.0 1Tkips 4.0 i ft Exterior Wall Weight .............. 14.0 psf Plt. Line N/S Walls........ ( 10/2 ft ) x ( 1.5 ) = 3.68 kips E/W Walls....... ( 10/2 ft ) x ( 1.0 ) = 1.68 kips O.H. 10.0 3 ft Interior Wall Weight ............. &.0 psf N/S Walls........ ( 10/2 ft ) x ( 0.3 ) = 0.35 kips E/W Walls...._.. ( 10/2 ft ) x ( 2.0 ) _ 1.92 kips ELEl1<IC}i+l ,z„' (N/S - EMI) -Total Dead Load, W ....... ...__ :_._._..,_._._.__..--.__....__........ 23.8 kips Seismic Story pSeismic . Wind N/S Direction North/South Direction Shear, lb. P plf PI Lateral Load at Roof . .................................. 2,620 1.30 142.0 135.0 EMIction Seismic Story pSeismic Wind PLAN (footprint) EasttWest Direction Shear, lb. P plf I plf (-) annotation indicates a reduction Lateral Load at Roof . .................................. 2,620 1.30 98.0 148.0 in roof/floor area, i.e. stairways, diaphragm openings, area indentations, etc. LOCATION............................................................... FRONT PORTION (DEN, BREEZEWAY) Seismic Response Coefficient, CS ............................. 0.110 ASCE Section 12.8.1.1 Design Base Shear, V = Cs x W.................................... 0.98 kips ASCE Equation 12.8-1 Dead Load of Structure: Roof Dead Weight ............... 15.0 psf x ( 13.5 ft N/S x 19.0 ft E/W) Froof - 18.0 psf x ( 0.0 ft N/S x 0.0 ft E/W )= Overhang (O.H.) ...... 1.0 N/S E/W 1.0 5.22 kips Exterior Wall Weight . ........ . 14.0 psf Plt. Line N/S Walls........ ( 10/2 ft ) x ( 0.00 ) = 0.00 kips E/W Walls....... ( 10/2 ft ) x ( 2.00 ) = 2.66 J j kips O.H. Interior Wall Weight ............. &.0 psf N/S Walls........ ( 10/2 ft ) x ( 2.00 ) _;kips E/W Walls....... ( 10/2 ft ) x ( 0.00 ) = 0.00 kips !Total Dead Load, W............................................................................................... 9.0 kips Ave. Projected Ht. -------- 2.5 1 ft (N/S -mEMI) North/South Direction Seismic Story Shear, Ib. pSeismic plf Wi I pl 7�-�Ys (� F U(� 1 ' N'/AASI v �a( l�� $c S' „.. DEFER Rm '( R dNS Lateral Load at Roof . .................................. 990 1.30 68.0 1300 �UII-®ING Seismic Story pSeismic Wi d R ��P'L((=AA�N (footpr East/West Direction Shear, lb. plf p f (�anndt�tion indicate! in roof/floor area, i.e. s ___________ BWiaphragm opening.. i Lateral Load at Roof . .................................. 990 1.30 95.0 124.0 DATE 10.0 i ft reduction indentations, 1783P2L7_CBC2010.x1s (Rev. 10/2010) Page: 2.16 Option One Consulting Engineers PROJ.: "5anterra" / Plan 2 J.N.: 0413-1783 SHEAR WALL (S.W.) DESIGN: SUMMARY California Building Code (CBC), 2010 Edition / SDPWS-2008 / ASCE 7-05 General Assumptions & Design Data: Project Moisture Content, MC ......................................... 13.0 % (Assumed in use; range = 13%- 1951.) Spectral Response Acceleration, SDs •. • ...... •. • ............. • • • • • 0.83 ASCE 7-05 and/or Soils Report Multiplier for HDs that do not consider cyclic loading ............ 1.00 Per Building Dept. Requirements Maximum negligible uplift load is ..................................... 10 lb Shear Wall Information: Panel Type Panel Capacity (plf) Wind Seismic Nail Type Nail Spc'g. (O.C.) Panel Thick. (in.) LLPanel Type (rating 24/0) Ga (kip/in) SDPWS T1.3A Uplift ppL WpL V P6 260 260 86l 6 3/8 WSP 13 F .4 350 350 . 8d 4 3/8 WSP 19 P3 490 490 8d 3 318 WSP 25 Pane J(DL) P2 640 640 8d 2 3/8 WSP 39 P2a 1,040 870 1061 2 15/32 5TK1 51 Ph.1d.— PP3 1,200 980 8d 3 3/8 WSP 50 PP2 2,400 1,740 1061 2 15/32 5TK1 102 Free Bo& Diagram Holdown Information: (Simpson C-2011 DF/SF Simpson Holdown Elongation No. of Fast. Dia. End Post End Post Capacity MOE (psi) ICC-ESR B Type (in) Fasteners (inches) (min.) Area (inZ) (Ib) End -Post Report No. N/A n/a 0 0 2x4 5.25 0 N/A N/A (1)-0516 0.125 36 0.113 2x4 5.25 1,705 1,400,000 2105 (2)-0516 0.125 72 0.113 2-2x4 10.50 3,410 1,400,000 2105 (3)-0516 0.125 108 0,113 3-2x4 15.75 5,115 1,400,000 2105 (4)-0516 0.125 144 0.113 4x8 25.35 6,820 1,400,000 2105 CM5TC16 0.125 52 0.148 2-2x4 10.50 4,585 1,400,000 2105 (1)-CM5T14 0.125 76 0.148 2-2x4 10.50 6,490 1,400,000 2105 (2)-5T6224 0.125 56 0.162 4x6 10.50 5,080 1,400,000 2105 (2)-5T6236 0.125 80 0.162 4x6 10.50 7,690 1,400,000 2105 (2)-CM5T14 0.125 104 0.162 4x8 25.38 12,980 1,400,000 2105 (2)-M5TC48133 0.125 .105 0.146 4x8 25.36 6,490 1,400,000 none 5THD10 0.096 28 0.148 4x4 12.25 2,640 1,600,000 2920 5THD14 0.206 38 0.148 4x4 12.25 3,695 1,600,000 2920 H1)U2 0.088 6 0.250 4x4 12.25 3,075 1,600,000 2330 HTT4 0.123 18 0.162 4x4 12.25 4,235 1,600,000 none HTT5 0.135 26 0.162 4x4 12.25 5,090 1,600,000 none HDU5 0.115 14 0.250 4x4 12.25 5,645 1,600,000 2330 HDUB(x4) 0.116 20 0.250 4x4 12.25 6,970 1,600,000 2330 HDU8(x6) 0.113 20 0.250 4x6 19.25 7,705 1,600,000 2660 i 1-1148 0.095 20 0.250 4x6 12.25 9,230 1,600,000 2330 HDU11(x6) 0.137 30 0.250 4x6 19.25 9,535 1,600,000 2330 HDU11(x8) 0.137 30 0.250 4x8 25:3A--�11,#.7.5 t,600,000 2330 HDU14(4x8) 0.177 36 0.250 4x8 C55-F' TV C13�t�9� 1,697 000 �530 HDU14(6x6) 0.177 36 0.250 4x8 13,09p HD19(4x10) HD19(6x8) 0.180 0.177 5 5 1.000 1.000 4x10 6x8 AF1,00000��2330 32.38 19, 60 1,600,OODEP 41.2AP 19,0 0�'16Q0;t70t) none non Footnotes: _ r CONST U: QrI'$ll Dia: (in) A.B. Capacity -- (lb) Notes: Loads based on member thickness in the direction of the fastener Mud -sill Anchor Bolt Loads based on "Anchor Bolts in Light -Frame Construction at Small Edge Distances, June 00,9ATheFSEAOC Blume a Book_ 1/2 110 Refer to "CAST -IN -PLACE HOLDOWN ANCHOR BOLTS" calculation for additional information B -172---1,232 at 3x Sill Effective Capacity based upon mimum of holddown assembly (i.e., post, hardware, anchor bolt, etc.) 3/4 ;494 at 3x Sill 1783P2SW1.XLS (Rev.04/2012) Option One Consulting Engineers PROJ.: "5anterra" / Plan 2 J.N.: 0413-1783 SHEAR WALL (S.W.) / ELEMENT DESIGN Callfomia Building Code (CBC), 2010 Edition / SDPWS-2008 /ASCE 7-05 1 ). 1 5t Floor - LEFT ELEVATION Vseismic = ( 102 )X( 60/2 ( 163 )X( 1512 ) + ( )X( ) + ( )X( ) + ( )x( ) + = 4,527 Ib ................. 377 pif 3 = 4,830 Ib ......,. ............. 403 plf Govems Modified Vseismic= V / rmin = 4,527 Ib Vwind= V = 4,830 Ib vseismic = 4,527 - 12.00 = 377 plf < 490 •O.K.• Vwind = 4,830 + 12.00 = 403 pif < 490 •O.K." _._ - ........ USe. f 3 with min. 2x mud sill elate end 1i2"-diameter anchor ball s at ma t6"o.a _. _. Pn1 No I L ft H ft OTM, K-ft DfE DtW Resisting Moment (RM) Due to Uniform Load, Ib ft External Uplift, Ib DfE DfW I Corr. Ann, ft I H / W ModifieTj I Ratio r Uplift, Ib DfE D±W Holdown Type Check b� in i 12.00 10.00 45.3 48.3 1 22,716 =(18'(17.5/2+1)+14'10)'12^2/2 0 0 11.83 0.83 i 1.00 i 2,099 € 2,803 i 5TH014 •O.K.• � 0.352 Comments: None ran = 1.00 2 ). 1 51; Floor - RIGHT OF HALL & W.I.C. Vseismic = ( 163 )X( 18/2 ) + Vwind _ 121 )X( 15/2 ) + ( 68 )x( 18/2 ) + { 130 )x( 18/2 ) + ( )X( ) + )X(' ) + n = 2,079 Ib .................. 260 pif = 2.259 Ib ............................ 282 pif Govrrne, Modified Vseismic= V / rim = 2,599 Ib V,„,d = V 2.259 Ito v seismic = 2,599 * 5.00 325 pif < 490 -O.K.-' Vwmd = 2 259 + 8.00 282 pif < 490 •O.K." wth min. Zx p" .: _ . .. _ "mud-sH1 omE Prd . L H OTM, K,ft Resisting Moment (RM) External Uplift, Ib Corr. H / W Modifier Uplift, Ib Holdown axe No .ft ft _ DtE DfW Due to Uniform Load, Ib-ft DtE I DfW Arm, ft Ratio } r DfE DtW Tvpe Check in 1 4.00 10.00 10.4 11.3 2,524 =(18•(17.5/2+i)+14'10)•4^2/2 3.53 2.50 0.80 2,121 2,510 5THD14 •O.K.• 0.617 2 4.00 10.00 10.4 y 11.3 1.552 =(18'(4/2+1)+14'10)'4^2/2 3.83 2.50 I 0.80 2,349 2,679 I 5THD14 'O.K.• 0.649 Comments: None - rmin =, 0.60 USE HTT4 AT INTERIOR FOR PANEL #1 3). 1 5t Floor- LEFT OF DINING Vseismic = ( 142 )X( 24/2 ) + ( 68 )x( 18/2 ) + u ( )X( ) + EI ( )X( ) _ Z = 2.316 Ib .................. 331 plf Modified Vseismic = V/'rmin = 2,316 Ib Vseismic = 2,316 + 7.00 = 331 pif < 490 •O.• K With min. 2x mud -sill olate and 112 dtaix e+or anrshnr b, Vwind = ( 135 )X( 24/2 ) + ( 130 )X( 18/2 ) + ( )X( ) + 9 ( N )_ 3 = 2,790 Ib ........................... 399 plf Governs Vwind = V = 2.790 Ib Vwind = 2,790 + 7.00 = 599 pif < 490 •O.K." Pnl - L I H OTK K-ft Resisting Moment (RM) External Uplift, Ib C)rr. H / W Modifier Uplift, Ib Holdown aze DtE I? W DtE i DfW D±E ':. DtW Type Check No ft ft Due to Uniform Load, Ib ft Arm, R Ratio r . in 1 7.00 10.00 23.2 j 27.9 9,053 =(18'(23.5/2+l)+14'10)'7^2/2 D 0 6.83 1.43 1 1.00 2,198 I 3,201 5THD14 •O.K.` 0.529 Comments: None - - Il1'OP t c W �u-q'j I 'r E 1 - 1 ,A e•., �r L t'" I ,Notes & Assumptions: '10 I- � � j v ----------._._..-......_--............._..............................__........_................_..._........._..._....___....._._..._..---...__....__._._........_........._.............._._....._......_......__........... ,...f _..... -......_....,�_.._....._..........._.._,:_3:._.., .... s M-_......__...... 1). Height -to -width (H / W) Ratio modifier (seismic)............ r = 2 ' bs / h for aspect ratios betwee 2:1 to 3.&1"J 1 1 (SDPWSTFab)e�4i3�4v��O ^ . 2). Uplift force is determined by using net overturning force ( OTM - RM ); moment arm correction is appliL±wW plift 't VV CBC 2010 Alternative Basic Load Combinations (ASD), Sect. 1605.3.2 ................ Wnd: (2/3)T Seismic:0.9D ± E/1.4 DL muftipher for ------- -------- - BY 1 DL mulliplierfor -- -- 3). Shear wall deflection .............. S," = Bvh' / EAb + t h / 1000Gs + h�, / b (SDPWS Eq. 4:3=1)-7mportancefad( 4). Story Drift Limits, ASCE 7-05 Sect. 12.8.6 ................... d, = Cd 6,a / > < 0.025 h� (Assume Occupancy Cat i or II) Page: 2.18 1783P2SW1.%LS (Rev. 06/2012) 2 Option One Consulting Engineers PROJ.: "5anterra" / Plan 2 J.N.: 0413-1783 SHEAR WALL (S.W.) / ELEMENT DESIGN Califomia Building Code (CBC), 2010 Edition / SDPWS-2008 / ASCE 7-05 4). 1 51; Floor - RIGHT ELEVATION Vseismic = ( 102 )X( 60/2 ) + Vwind = ( 161 )X( 60/2 ) + ( 142 )X( 24/2 ) + ( )X( ) + ( )X( ) + ( )X( ) + EI ( )X( ) = eI ( )X( ) _ = 4,764 lb.._ ............. 340 plf = 4,830 lb..._ ............. _ .. 345 plf Govemr, Modified V'seis dc= V / rmn = 4,764 lb Vwind= V = 4,830 lb V'seisndc= 4,764 + 14.00 = 340 plf < 490 •O.K.•( Vwind= 4,830 + 14.00 = 345 plf < 490 •O.K.• �m , w 7r hit". 2x mttd alit nlatie'and k12" dlani; a -aisehor<bdtfis at ma)c 16•' o.e.. ; r - m - Pnl No I L ft I H ft OTM, K-ft D±E i DtW Resisting Moment (RM) Due to Uniform Load, lb-ft Extemal Uplift, Ib Corr. Ann, ft. H / W Modifier Ratio r Uplift, Ib D. E D+W Holdown Type Check 6. in DtE D*W 1 2 8.00 6.00 10.00 10.00 27.2 27.6 20.4 1 20.7 5,032=(18'(2/2+1)+14'10)•8^2/2 6,165=(18'(20.5/2+1)+14'10)•6^2/2 0 0 O O 7.83 5.83 1.25 1 1.00 1.67 + 1.00 I I i 2,829 3,045 Z550 2,846 5TH014 •0.K.• 5TH014 •O.K.• 0.444 0.521 Comments: None rmin = 1.00 5 ). 1 5t Floor - REAR ELEVATION --.._..._....._.._ ......._._..._. Vseismic . _ ( 237 )X( 28/2 ) + ( )X( ) + ( )X( ) + E ( )X( ) _ N = 3,318 lb .................. 415 plf Goveme Modified Vsseimic= V / rmn = 3,318 lb Vseismic = 3,318 r 8.00 = 415 plf < 490 'O.K.• ii52_ ta3 W with„min .at mud s8t pate acid i11a illattieteF and har b Vwind = ( 134 W 28/2 ) + ( )x( ) + ( )x( ) + o ( )X( ) _ "3I 1,876 lb_ ......................... 235 plf Vwind= V = 1,876 lb Vwind = 1,876 + 8.00 = 235 plf < 490 •OX.* Pnl No L ft I H - ft -.OTM K-ft - - D-+E DtW Resisting Moment (RM) Due to Uniform Load, Ib-ft xteml Up F,�ialift, Ib Corr. Arm, ft H/W.;Modifier Ratio' �. _. r Uplift,Ib D±E DtW Holdown T e Check 6. in JtE DtW 1 8.00 10.00 33.2 18.8 12,256=(18'(25/2+1)+14'10)'8^2/2 0 0 7.83 1.25 1.00 i i 2,829 1,352 i 5TH014 •O.K.• 0,455 Comments: None rmin = 1.00 6). 1 5t Floor - REAR OF DINING ._........._ V._______...__.. ......... seismic = ( 237 _..._._.__..._........_ )X( 28/2 ) + Vwind = ( 134 ( 84 )x( 17/2 ) + ( 138 )X( 17/2 ) + ( 98 )X( 10/2 ) + ( )X( ) + EI ( )X( ) _ ' eI ( )X( ) _ = 4,522 lb .................. 377 plf Govem5 3,049 lb ._....... ............ 254 plf GO Modified Vseismic= V / rmin = 4,522 lb Vwind = V = 3,049 lb �._ Vseism c = 4,522 ..,.. _ + 12.00 = 377 plf < 640 •O.K.• i Vw nd = 3,049 + 12.00 = 254 pit < C-40 •O.K.• - _.____�_. _.,.._._ _ E132a P2 = with m)n 2x,mud-5ill pia a and 112" dip tirster anchor bof -s at m4jx.16"' Pnl L I H GTM,K-fk Resisting Moment (RM) External Uplift lb Corr H / W Modifier Uplift lb Holdown ---r -- No ft ft DfE T DtW Due to Uniform Load lb-ft D±E D±W Ann, ft Ratio r DtE DtW Type Check: to 1 112.00110.001 45.2 1 30.5 1 8,352=(18'(4/2)+8'10)'12^2/2 1 O 1 O 1 11.50 0.83 1.00 1 3,279 2,167 1 7-F4 •O.K.• 10.237 None Notes & Assumptions: ..... 1- 1 . Height -to -width H / �.... g ( W) Ratio modifier (seismic)............ r = 2 ' b, / h for aspect ratios betweer`i`2:1 to 3. : (S�P Table�.3.4) 2). Uplift force is determined by using net overturning force ( OTM - RM ); moment arm correction is appliet for uplift®R CSC NSTR UCTION CBC 2010 Alternative Basic Load Combinations (ASD), Sect. 1605.3.2 ................ Wind: (2/3)D - c1W ;Seismic: 0.9D t E/1.4 . DL multiplierlor DL multiplier for 3). Shear wall deflection .............. 6_ = 8vh3 / EAb + vh / 1000G, + hAe / b (SDP q. 4 3--1)------- BY Importance Fade 4). Story Drift Limits, ASCE 7-05 Sect. 12.8.6 ................... 6, = Cd 6„ / 7, t 0.025 hs, (Assume Occupancy t or I=) Page: 2.19 1793P2SWIAS (Rev. 062012) Option One Consulting Engineers PROJ.: "5anterra" / Plan 2 J.N.: 0413-1783 SHEAR WALL (S.W.) / ELEMENT DESIGN California Building Code (CBC), 2010 Edition / SDPWS-2008 I ASCE 7-05 7). 1 5t Floor - REAR OF DEN & GARAGE Vseismic = ( 84 )X( 35/2 ) + Vwind = ( 148 )X( 35/2 ) + ( 95 )X( 14/2 ) + ( )x( ) + ( 98 )X( 32/2 ) + ( )X( ) + = 3,703 lb .................. 309 plf Governs 3 = 2,590 Ito ............................ 216 plf Modified Vseismic= V / rmin = 4,629 lb Vwind= V = 2,590 lb V'seismc= 4,629 + 12.00 = 386 plf < 490 'O.K.' Vwind= 2,590 12DO = 216: plf < 490 "O.K.• _ W.... ..........._..._.. _ wlth min. ?x rnud•®111,clate and Yl2 diatnetFr anbhor butts at max..tb" a,a. 1'nl No L ft I H ft OTM, K-ft -- - ._ Dd:E I}tW Resisting Moment (RM) - Due to Uniform Load, Ib-ft - Extemal Uplift, Ib - DtE DEW Con. Arm, ft H! W Modifier Ratio ' r Uplift, lb __�_._..-- Holdown - a,� in DtE DtW ------ - _ _._ Type Check 1 2 4.00 8.00 10.00 10.00 12.3 I 6.6 24.7 i 17.3 2,236=(18'(13.5/2+1)+14'l0)-4^2/2 6.712 =(18'(4/2)+8'10)'8^2/2 0 1 0 0 1 0 3.53 7.83 2.50 1 0.80 1.25 1.00 I 2,697 1,665 2,726 1,589 5TH014 'O.K.` 5THD14 'O.K.' #### 0.397 Comments: rmin = 0.80 8). 1 5t Floor - ;FRONT OF 5DRM.2 - ----- .. ....... .._ ................ . seismic 84 )X( 18/2 ) + ( 95 x 1/2 )X( 1412 ) + ( )X( ) + fi ( )X( rA C = 1,089 lb .................. 272 plf �) 3 Modified Vsesmic= V / rmin = 1,361 lb Vseismc= 1,361 4.00 = 340 plf < 350 'O.K." P.t wAth �mtn 2Y iriti l.will >nlate:a„a lti' ilYmxsot nnr_hnr hnhs Vwind = ( 135 )X( 18/2 ) + ( )X( ). + ( )X( } + .. ( )X( ) = 1,215 lb .......... 304 plf Govern@ Vwind = V = 1,215 lb Vwnd= 1,215 + 4.00 - 304 plf < 350 'O.K.' maY. 32' e..c.4, Pnl No L ft I H ft 07M, K-ft Resisting Moment (RM) Due to Uniform Load, Ib ft External Uplift, Ib DtE t D±W Corr. Arm, ft H / W Ratio `Modifier r Uplift, lb DtE j D±W Holdown Type Check axe m DtE DfW 1 4.00 10.00 10.9 12.2 1,408=(18'(2l2+1)+14'10)'4"2/2 3.83 2.50 I 0.80 I 2,511 1 2,927 1 i i 5THD'4 'O.K.' 0.745 Comments: None rmin = 0.80 9). 1 51; Floor - FRONT OF GARAGE Vseismic = ( 98 )X( 22/2 ) + ( 95. x 1/2 )X( 14/2 ) + ( )X( ) + EI ( x ) ( ) _ = 1,411 lb .................. 303 plf 3 Modified Vseismic= V / rniin = 2,270 lb Vse smic = 2,270 + 4.66 = 487 plf < 640 'ox, .. •.• USe. .• k P2 wfth.min. 2x mud-slli'alate and 11V diamr-ter ariehoe bMtd at find = ( 148 )X( 22/2 ) + ( )X( ) + ( )X( ) + ( )X( ) _ = 1,628 lb ............................ 349 plf Governs Vwind= V = 1,628 to Vwind= 1,628 + 4.66 - _ 349 plf < - 640 'O.K' Pnl I L I H OTM, K-ft ---- Resisting Moment (RM) External Uplift, Ib -Exte- Corr. H / W :Modifier -. Uplift, lb Holdown axe No ft ft DtE MW We to Uniform Load Ib-ft r--- DtE D W Arm, ft Ratio r ._ D:tE ...--- DtW --------yp .-n __ ...... Type Check in 1 2.33 7.50 5.3 6.1 478=(18'(2/2+1)+14'10)`2.33"2/2 O I 0 1.83 3.22 0.62 2,655 3,162 HTT5 'O.K.' 0,511 2 2.33 7.50 5.3 j 6.1 478=(18'(2/2+1)+14.10)`2.33"2/2 O 0 22 -Fh62� 2,655 3,162 HTT5 'O.K.' 0.571 r r l LDI' 0� ti Q ��__ �' 1 A Comments: EFFECTIVE SHEAR WALL HEIGHT = HEADER HEIGHT (SEE DETAIL). Tin-OF62-�rYY-� _ Y'1 Notes &Assumptions „_._.._.._........_ . 1). Height -to -width (H / W) Ratio modifier (seismic)............ r = 2 ' b, / h for aspect ratios between 2:1 to 3.5:1 (SDPWS Table 4.3.4 2). Uplift force is determined by using net overtuming force ( OTM - RM ); moment arm correction is appl etlyJo_ktfplifl t CBC 2010 Alternative Basic Load Combinations (ASD), Sect+ 1605.3.2 ................ Wind: (2/3)DD t c W Seisrlic:_0.9E/ DL m �-DLm 3). Shear wall deflection .............. 6„ = 8vh3 / EAb + vh / 1000G, + hA, / b (SDPWS Eq. 4.3-1) -.... 4). Story Drift Limits, ASCE 7-05 Sect. 12.8.6 ................... 61 = Cd 6„ 11 < 0.025 hs, (Assume Occupancy Cat. Z or II) Page: 2.20 1763MW ALS (Rev.062012) 0", Option One Consulting Engineers PROJ.: "5anterra" / Plan 2 ___._._.. _.............v__._. Cs = 0.11 Section 12.8.1 J.N.: 0413-1783 SDs = 1.00 Section 11.4.4 DRAG STRUT / COLLECTOR FORCE CBC 2010 Location = let Floor - Left Elevation (5W#1) Shear Force, Fp = 4.53 kips Shear Force, (Fp) min = 4.53 kips Drag Length, Ldrag = 59 ft Vdiaphragm - Fp / Ldrag = 77 plf No. Segments, n = 3 S.W. Length, Lwaii = 12 ft Vsnearwall= Fp / Lwaii = 377 pif Segment No. Length, ft Shear Wall ? Section Point Distance, ft Drag Force, kips 1 2 3 28.5 12 18.5--------- - ---- NO YES NO 0 1 2 3 0 28.5 40.5 59 -2.19 1.42 Use Minimum Strap = 5T6224 Strap Capacity = 2,362 Ibs > Max. Drag = 2,187 Ibs ... OKI 93% Max. Anchor Spacing =. 76 inches O.C. Top Plates = 2-2x4 Pit. Capacity = 9,660 Ibs ... OKI 23% 2 T— � emu; s�-- '0 s_sa_ss__so �z " o Distance,ft SHEAR WALL SEGMENTS & DRAG STRUT ELEVATION (Conceptual Dwg.) DRAG Strut / COLLECTOR FORCE DIAGRAM (Conceptual Dwg.) Location = lot Floor - Right Elevation (SW#4) Shear Force, Fp = 4.76 kips Shear Force, (Fp) min = 4.76 kips Drag Length, Ldrag = 6O ft Vdiaphragm = Fp / Ldrag = 79 plf No. Segments, n = 5 S.W. Length, Lwaii = 14 ft ushearwau= Fp / Lwaii = 340 pif Segment No. Length, ft Shear Wall ? Section Point Distance, ft Drag Force, kips 1 2 3 4 5 NO YES NO YES NO 0 1 2 3 4 5 -0.79 1.29 -0.85 0.71 Use Minimum Strap = (12)-1661 Strap Capacity = 1,705 Ibs > Max. Drag = 1,293 Ibs ... OKI 76% Max. Anchor Spacing = 74 inches O.C. Top Plates = 2-2x4 Pit. Capacity = 9,660 Ibs ... OKI 13% SHEAR WALL SEGMENTS & DRAG STRUT ELEVATION (Conceptual Dwg.) 15 T I — 1 �— G Distance, ft DRAG Strut I COLLECTOR FORCE DIAGRAM (Conceptual Dwg.) Notes & Assumptions: I CITY O j'� 1). Anchor spacing based upon Simpson connector capacity (lb)...... DF/ P ('g0U%� il�(�n�d/�r 35 4`85� vAF l= F 2). Refer to latest edition of Simpson Connector catalog for strap/connector val es. /st 3). Note that (12)-16d nails are basic plate splice per general structural notes. �APPROVE OVE 4). Force at shear line ( Fp) at Allowable Stress Design (ASD) level per Shear Wall calduf fiRC0NSTRUC 5). Anchor spacing based upon material SG = 0.50 ; Strap tension basted upprr SG = 0.50 Note: SG denotes Specific Gravity per NDS. t ` ---- _ BY 6). Assume building with Importance Factor, i = 1.0 and light -frame construction. StrafiTA Capacity 12� 6 • . 1,705 C 6T 6 1,705 �5TA36 1,705 4 2,362 5T6236 3,576 M5T48 4,938 EM*-BBL_ ta. 7,590 "—'Page: 2.21 1783P2SW1.XLS (Rev. 09/2012) 01 Option One Consulting Engineers PROJ.: "Santerra" / Plan 2 Cs = 0.11 Section 12.8.1—^� J.N.: 0413-1783 S = 100 Section 11.4.4 DRAG STRUT / COLLECTOR FORCE CBC 2010 Location = lot Floor - Rear Elevation (5W#5) Shear Force, Fp = 3.32 kips Shear Force, (Fp) min = 3.32 kips Drag Length, Ldrag = 41 ft Vdiaphragm - Fp / Ldrag = 81 plf No. Segments, n = 3 S.W. Length, Lwa„ = 8 ft Vshear wall = Fp / Lwall = 415 plf Segment No. Length, ft Shear Wall ? Section Point Distance, ft Drag Force, kips 1 2 3 13 --- 8 20 ---- — ----- NO YES NO 0 1 2 3 0 13 21 41 -1.05 1.62 Use Minimum Strap = 51"6224 Strap Capacity = 2,362 Ibs > Max. Drag = 1,619 Ibs ....OK! 69r Max. Anchor Spacing = 72 inches O.C. Top Plates = 2-2x4 Pit. Capacity = 9,660 Ibs ... OKI 1ri w � a SHEAR WALL SEGMENTS & DRAG STRUT ELEVATION (Conceptual Dwg.) 2 05 is -1.5 c Distance, It DRAG Strut / COLLECTOR FORCE DIAGRAM (Conceptual Dwg.) Location = let Floor - VOID, NOT USED Shear Force, (Fp) min = 3.32 kips Drag Length, Ldrag = 21.16 ft No. Segments, In = 3 S.W. Length, L ,all = 4.66 ft Segment No. Length, ft Shear Wall ? Shear Force, Fp = 3.32 kips Vdiaphragm = Fp / Ldrag = 157 plf Vshear wall = Fp / Lwaii=712pif 1 ,2. 3 ------------ --- — -- - — -- --- — ------ — --- -- 2.33 16.5 2.33 YES NO YES Section Point O 1 2 3 Distance, ft 0 2.33 18.53 21.16 Drag Force, kips 1.29 -1.29 Use Minimum Strap = (12)-16cl Strap Capacity = 1,705 Ibs > Max. Drag = 1,294 Ibs Max. Anchor Spacing = 38 inches O.C. Top Plates = 2-2x4 Pit. Capacity = 9,66o Ibs SHEAR WALL SEGMENTS & DRAG STRUT ELEVATION (Conceptual Dwg.) Notes & Assumptions: 1). Anchor spacing based upon Simpson connector capacity (lb)...... 2). Refer to latest edition of Simpson Connector catalog for strap/tonn( 3). Note that (12)-16d nails are basic plate splice per general structural 4). Force at shear line ( Fp ) at Allowable Stress Design (ASD) level pei — m + o -1.5- G Distance, ft DRAG Strut / COLLECTOR FORCE DIAGRAM (Conceptual Dwg.) CITY OF LA U]154 esDEr 'a alueAPPROVEp M ear "'APPROVED S 5 5). Anchor spacing based upon material SG = 0.50 ; Strap ten ic®'jfeed upon SG = 0.50 Note: SG denotes Specific Gravity per NDS. — — BY 6). Assume building with Importance Factor, i. = 1.0 and light -frame construction. OK! 767 OKI 13% 1,705 1,705 1,705 2,362 3,576 4,93& T.Plte. 7,590 Page: 2.22 1783P2SW1.XLS (Rev. 09/2012) Option One Consulting Engineers PROJ.: "5anterra" / Plan 2 J.N.: 0413-1783 CONVENTIONAL FOUNDATION DESIGN CBC Section 1805 12 inch wide x 12 inch deep cont. ft'g (1-Story Footing) _ inch wide_ x _ inch deep cont. ft'g 18 inch deep (thick) pad footing Use rnln. 1 #4 bar at to -& bot#om of all footings, - P 9 typical. U.N.O. Min. Max. Soil Bearing Pressure, SBP ......... 1,500 — 3,000 psf Weight of Concrete, Wc ................. 145 psf Allow. Stress Increase ................. 1.20 ASCE 7-05 Weight of Soil, WS ........................ 110 psf Allow. SBP Increase ................... 10o psf / ft. depth Allow. SBP Increase ..................... 10o psf / ft. width When footing base is below ......... 1.0 feet When footing is wider than ............. 1.0 feet 17Sto ` FOOtin . (worst case) 0 (worst case) Roof ....... ( 38 ) * ( 25/2 ) = 475 ( 38 ) * ( ) = 0 Wall........( 14 )*( 10 )= 140 ( 14 )*( )_ 0 Floor.......( 52 )*( 0 )= 0 ( 52 )*( )= 0 Storage ... ( 20 ) * ( 8/2 ) = 80 ( 20 ) * ( ) _ 0 Total....... 695 plf _ 0 plf Req'd Footing Width .......... 1-Story Footing ........ 2-Story Footing ........ Required Pad Size ............ Description / Location: 13M#8 LOAD / [SBP - (W,- Wj] 5.7 in < 12 in ....... 0.0 in > 0 in ....... LOAD / [SBP - (W, - Wj] Max. Point Load ............... [SBP - (Wc- Wj] x L x W OK! 1-Story Footing ............. 4,639 lb. NG! 2-Story Footing ............. 0 lb. (see charts below): Load Case Minimum Pad Size D+L 4 D+L+E D+LI D+L+E I P, (lb.) P, (Ib.) iriZ(in) 6,500 27 n/a i 1). Use SBP for D +L load case; use SBP x Allow. Stress Increase for D + L + E load case. 2). An allowable stress increase of 1.2 can be used with special load combinations per ASCE 7-05 Section 12.4.3.3. References: 1). California Building Code (CBC), 2010 Edition 2). ASCE 7-05 Allowable Load, P Pad Footing Size Rebar Req'd. D+ L D+ L+ E (Ib. 11b.(in) (Bolt. E/W) 6,460 ! 7,780 24 (2) 44 8,303 9,998 27 (2) -_#4_ 10,406 12,531 30 (2) 44 12,781 1 15,390 33 (2) -#4 15,435 18,585 36 (3) 44 J f - 42A - _ j(3)�#�4-f- 21,62j 26 031 30,355( ;l 45 p C� -(3) j4 _25,17 � 29,0400 34,960 33,235 L'Q08 51�(4)-#5— 37 42,643 51,330 57 (4) 45 47,875D j 7 - ,625 -�--: 60 _ (5) 45 - 1783P2FD1.xls (Rev. 12/2010) Page: 2.23 0 Option One Consulting Engineers PROJ.: "Santerra" / Plan 2 J.N.: 0413-1783 GRADE BEAM DESIGN: CBC 2010 / AC1318-08 Location / Description ............... ENTRY D L Lr E W Post/Column Load, P ............! 2.2 0.0 2.4 0.0 0.0 ikips Post/Column Moment, M ....... 0.0 -- - - - 0.0 -4 0.0 0.0 0.0 k-ft Post/Column size, c .............. 3.5 in Soil Bearing Pressure, SBP . 1.50 ksf Overall footing depth, d ......... 12.0 in Allow. Stress Increase ........ 1.00 Cover at Btm ....................... 3.0 in Conc. Strength, fc ............. 2,500 psi GB Length, L=EP/(SBP*b) ...... 3.0 ft Weight of Conc., Wc .......... 145 pcf GB width, b ......................... 1.0 ft Weight of Soil, Ws ............. 110 pcf Top Reinf............. (1)- # 4 bar(s) Min. Yield Strength, fy ......... 60 ksi Bottom Reinf........ (1)- # 4 bar(s) Soil Bearing Pressure Factored, P„ ........................ Factored, M„ ........................ Pressure, gmax / gmin ...... • • • .. • • • One-Way/Flexure Shear Max. per Load Combination Max. per Load Combination P„ /A ± M JS ( Phi, 0 = 0.65 ) = 6.4 = 0.0 = 2.12 kips k-ft -► 2.12 Sect. 9.2 Sect. 9.2 ksf Critical Section, x .................. L / 2 - c / 2 - d, = 1.08 ft Allowable Shear, 0Vn ........... 0-2 * folt2 * b * d' = 9.18 kips Eqn 11-3 Critical Pressure, qx .............. gmax - x (gmax - gmin) / L = 2.12 ksf Applied Shear, Vu ................. b * x * (qx + gm,,) / 2 = 2.29 kips Check V„ / CDVn .................... Actual / Allowable = 25 % ... OKI (w/o Shear reinf.) Two-Way/Punching Shear ( Phi, 0 = 0.85 ) Allowable Shear, (PVn •• • • • • ...... 4) [ (2 + 4/[i) * fc't2 * bo * d'] = _ 57.8 _ kips Eqn 11-33 Ratio Long/Short, [3 ............... b / b = 1.00 E Allowable Shear, OV 0 [{(asd'/ba) + 2) * fc12 * bo * d] = 209.3 kips Eqn 11-34 o -. Location Factor, a S ............... 40 (int.), 30 (edge), 20 (corner) = 40 Sect. 11.12.2.1 Allowable Shear, OV 0 * 4 * fc"2 * bo * d' = 38.5 kips Eqn 11-35 Critical Perimeter, bo ............. 2 * (c + d') + 2 * b = 25.2 in (limited by GB width) Critical Pressure, qy .............. at center of column = P„ / A = 2.12 ksf Applied Shear, V„ ................. Max. per Load Combination, P„ = 6.4 kips Check V„ / OVn .................... Actual / Allowable = 170 ... OKI (w/o shear reinf.) Flexural/Reinforcement Check ( Phi, 0 = 0.90 Area of Steel, AS (btm)............ 0.20 in Ptotal = 0.0027 OKI Sect. 10.5.4 Compression Area, a ............ (A., * fy) / (0.85 * fc * b) = 0.462 in Allowable Moment, 4)Mn ......... 4) * AS * fy * (d'- a / 2) = 7.75 k-ft Sect. 10.2 Critical Pressure, qZ .............. at face of column = qy + q' - 2.12 ksf Applied Moment, M„ .............. [ qZ * 1-12/2 + ( gmaX % * 21-1/3 ] * b = 2.00 k-ft Sect. 15.4 Check M / OMn ................... Actual / Allowable = 26% OKI (w/ teneion reinf.) Schematic Diagram�A, r- Y Y ter- U It�-� I I>osr Cri(ri1�Sp ction n cq Critical; ecti n Elevation Column P M On'v"" hear]+�' � Sr-,�� IY D Moment i. } * ... t Effective Length, L Critical Section q [DATE Plan View Two-W, yShear References -- BY_ Building Code Requirements for Structural Concrete, ACI 318-08 Design of Reinforced Concrete Structures, A. Williams (Section 8.2.3) Page: 2.24 1783P2FD1.xls Option One Consulting Engineers PLAN 3 CITY OF LA QUINTA BUILDING & SAFETY DEPT. APPROVED FOR CONSTRUCTION DATE 1783TITLEALS Page: 3.0 CO Option One Consulting Engineers PROJ.: "5anterra" / Plan 3 BEAM D E S I G N J.N.: 0413-1783 (N052005) (1) HDR. AT REAR OF FAMILY Member Length, L (ft)..................... 5.25 Load Duration Factor, CD ............... 1.25 Max. Allowable Deflection ............. L / 360 Size Factor Coefficient, Ct...................... 1.00 Trib. Area for Roof LL Reduction, A (ft).... n/a Uniform Loads Allowable Stresses, Rxns., and Section Pro erties Roof Load = ( Partition = ( Floor Load = ( Attic Storage = ( Beam Wt. = 35.0 14.0 52.0 20.0 psf) x ( psf) x ( psf) x ( psf) x ( 24/2 + 1 2 8/2 8.4 plf ) ft + ) ft ) ft ) ft M.O.E., ksi ............... 1,600.0 F'b, psi ...................... 1,500.0 F',,, psi ...................... 212.5 Depth, d, in .............. 5.500 Width, b, in ............... 5.500 Total Uniform Load, wTL. .............................. 610.4 plf Rxn, (Left), lb........... 1,602 Rxn, (Right). lb......... 1.602 Point Loads P, at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P2 at ............... 0.00 ft PLL+DL - 0.0 lb............. NONE P3 at ............... 0.00 ft PLL+DL - 0.0 lb............. NONE P4 at ............... 0.00 ft PLL+DL - 0.0 lb............. NONE Demand Moment......... 2.1 ft-k -»---mySreq'd................... 16.6 < 27.7 in *O.K.* Demand Shear............ 1,322.6 lb. -------o-Af,q'd................... 9.3 < 30.3 in 2 *O.K.* Demand M.O.I............ 37.3 in - Aamai.................• 0.086 < 0.175 in *O.K.* A L T NA (2) DROP BM. AT REAR OF PATIO Member Length, L (ft)..................... 12.50 Load Duration Factor, CD ............... 1.25 Volume Factor, Cv......................... 1.00 Max. Allowable Deflection .............. L / 360 Size Factor Coefficient, Ct...................... 1.00 Trib. Area for Roof LL Reduction, A(ft)..... n/a unirolm Loaa►s Allowable Stresses, Rxns., Roof Load = ( 38.0 psf) x ( 24/2 + 1 ) ft + and Section Pro erties Partition = ( 14.0 psf) x ( 2 ) ft M.O.E., ksi ............... 1,800.0 Floor Load = ( 52.0 psf) x ( ) ft F'b, psi ...................... 3,000.0 Attic Storage = ( 20.0 psf ) x ( 8/2 ) ft F',,, psi ...................... 331.3 Beam Wt. = 10.4 plf Depth, d, in .............. 12.000 Total Uniform Load, wTb .............................. 612.4 plf Width, b, in ............... 3.125 Rxn, (Left), lb........... 3,828 Rxn, (Right), lb......... 3,828 Point Loads 71 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P2 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P3 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P4 at ............... 0.00 ft PLL+DL = 0.0 lb. ..... r7=NONE __._ Demand Moment......... 12.0 ft-k Sfegd........... ...t;i 1�7b " <" -76bQQ in3 IV I A*6.K.* Demand Shear............ 3,215.3 lb.------�Afeq'd........... �....... 14.6 �G � S3� n2DEPT. *O.K.* Demand M.O.I............ 448.5 in ------» 0 1........ actual.......... ©:4a5 < ,R0.4 V in * .K.* U S E ALT 3.5 x 11.875 P r AT 1783P3B.xls (Rev.01/2012) Page: 3.1 Option One Consulting Engineers PROJ. J.N. (3) "5anterra" / Plan 3 BEAM D E S I G N 0413-1783 HDR. AT REAR OF M. DPW. Member Length, L (ft)..................... 5.25 Load Duration Factor, CD ............... 1.25 Loads ( N05 2005) Max. Allowable Deflection ............. L / 360 Size Factor Coefficient, Cf...................... 1.00 Trib. Area for Roof LL Reduction, A (ft2).... n/a Allowable Stresses, Rx Roof Load = ( 38.0 psf) x ( + 1 ) ft + and Section Properties Partition = ( 14.0 psf) x ( 2 ) ft M.O.E., ksi ............... 1,600.0 Floor Load = ( 52.0 psf) x ( ) ft F'b, psi ...................... 1,500.0 Attic Storage = ( 20.0 psf) x ( ) ft F',,, psi ...................... 212.5 Beam Wt. = 8.4 plf Depth, d, in .............. 5.500 Total Uniform Load, wTb .............................. 74.4 plf Width, b, in ............... 5.500 Rxn, (Left), lb........... 1,607 Rxn, (Right), lb......... 1,064 Point Loads P, at ............... 2.00 ft PLL+DL = 2,280.0 lb............. 38*10/2*24/2 P2 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P3 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P4 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE Demand Moment......... 3.0 ft-k Srq'd................... 23.9 <. 27.7 i n 3 *O.K.* Demand Shear............ 1,572.7 lb. A,q'd................... 11.1 < 30.3 in *O.K.* Demand M:O.I............ 43.8 in Aaauai..............•••• 0.100 < 0.175 in *O.K.* USE 6 ALT NA (4) HDR. AT RIGHT OF FAMILY Member Length, L (ft)..................... 12.50 Load Duration Factor, CD ............... 1.25 Max. Allowable Deflection .............. L / 360 Size Factor Coefficient, Cf...................... 1.00 Trib. Area for Roof ILL Reduction, A(ft)..... n/a Allowable Stresses, Rx Roof Load = ( 38.0 psf ) x ( ) ft + and :Section Properties Partition = ( 10.0 psf ) x ( 10 ) ft M.O.E., ksi ............... 1,600.0 Floor Load = ( 52.0 psf) x ( ) ft F'b, psi ...................... 1,625.0 Attic Storage = ( 20.0 psf) x ( ) ft F', psi ...................... 212.5 Beam Wt. = 17.6 plf Depth, d, in .............. 11.500 Total Uniform Load, wTt. .............................. 117.6 plf Width, b, in ............... 5.500 Rxn, (Left), lb........... 735 Rxn, (Right), lb......... 735 Point Loads Pf at ............... 0.00 ft PLL+DL = 0.0 Ib............. NONE P2 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P3 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P4 at ............... 0.00 ft PLL+DL = 0.0 lb... _ NONE Demand Moment......... 2.3 ft-k Sf,'d.............. A :0� 1 ����� �1 IA 1�+t Demand Shear............ 622.2 lb. ----A�aq•d ... ...... ..... ...BUfLDt4� &SAF�3 Demand M.O.I............ 96.9 in Aactua)•• •.......•••• • D.05 < �0.4�1Z m P T• * O.K.* USE 6 x 12;.; �E #�``' ERUCT 7-AL T 5.125 x 12 r GLB By 1783P3B.xls (Rev.0112012) Page: 3.2 2 Option One Consulting Engineers PROJ.: J.N.. (5) "5anterra" / Plan 3 BEAM DESIGN 0413-1783 (N05 2005) HDR. AT FRONT OF KITCHEN Member Length, L (ft)..................... 5.75 Load Duration Factor, CD ............... 1.25 Uniform Loads Max. Allowable Deflection ............. L / 360 Size Factor Coefficient, Ct...................... 1.20 Trib. Area for Roof LL Reduction, A (ft).... n/a Roof Load = ( 35.0 psf ) x ( + 1 ) ft + and Section Properties Partition = ( 8.0 psf) x ( 2 ) ft M.O.E., ksi ............... 1,600.0 Floor Load = ( 52.0 psf ) x ( ) ft F'b, psi ...................... 1,275.0 Attic Storage = ( 20.0 psf) x ( 8/2 ) ft F',,, psi ...................... 225.0 Beam Wt. 1 9.0 plf Depth, d, in .............. 9.250 Total Uniform Load, wn. .............................. 143.0 plf Width, b, in ............... 3.500 Rxn, (Left), lb........... 2,087 Rxn, (Right), lb......... 2,156 Point Loads P, at ............... 2.00 ft PLL+DL = 1,524.0 lb............. 38'8/2'24/2 P2 at ............... 4.00 ft PLL+DL = 1,596.0 lb............. 38'24/2*3.5 P3 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P4 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE Demand Moment......... 3.9 ft-k SfeQd................... 36.6 < 49.9 in *O.K.* Demand Shear............ 2,045.7 lb. Af q'd................... 13.6 < 32.4 i n 2 *O.K.* Demand M.O.I............ 75.6 in Aant..................••. 0.063 < 0.192 in *O.K.* U S E 4 A L T NA (6) HDR. AT REAR OF ENTRY Member Length, L (ft)..................... 12.75 Load Duration Factor, CD ............... 1.25 Volume Factor, Cv......................... 1.00 Max. Allowable Deflection .............. L / 360 Size Factor Coefficient, C, ...................... 0.98 Trib. Area for Roof LL Reduction, A (ft)-.. n/a Uniform Loads Allowable Stresses, Rxns., and Section Properties Roof Load = ( 38.0 psf) x ( 30/2 ) ft + Partition = ( 6.0 psf ) x ( ) ft M.O.E., ksi ............... 1,800.0 Floor Load = ( 52.0 psf) x ( ) ft F'b, psi ...................... 2,926.5 Attic Storage = ( 20.0 psf) x ( 5/2 ) ft F',,, psi ...................... 331.3 Beam Wt. = 13.0 plf Depth, d, in .............. 15.000 Width, b, in .............. 3.125 Total Uniform Load, wTb .............................. 663.0 pif Rxn, (Left), lb........... 4,227 Rxn, (Right), lb......... 4,227 Point Loads P, at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P2 at ............... 0.00 It PLL+DL = 0.0 lb............. NONE P3 at ............... 0.00 ft PLL+DL = 0.0 lb............. NON - P4 at ............... 0.00 ft PLL+DL = 0.0 lb............. NYONUTY OF LA QU� 1 rtt Demand 13.5 a ETY p�6.lE.* �«. Demand Sheaent....:::: 339&.0 bk A fegd................... �to 55.4 46';9i Demand M.O.I............ 515.3 in 4 �Aaauar•••••...••.......1,0249F�<� ' ® �042 jriin USE 3.126 x:", 15 GLB !� O� A L T 1 3.5 x 16 LSL 11!`5E:1----13Y 1783P38.xls (Rev.01/2012) Page: 3.3 Option One Consulting Engineers PROJ.: "5anterra" / Plan 3 BEAM DESIGN J.N.: 0413-1783 c N95 2005) (7) HDR. AT REAR OF M.BATH Member Length, L (ft)..................... 4.25 Max. Allowable Deflection ............. L / 360 Load Duration Factor, CD ............... 1.25 Size Factor Coefficient, Cf...................... 1.30 Trib. Area for Roof ILL Reduction, A (ft).... n/a Uniform Loads I Allowable Stresses, Rxns., Roof Load = ( 35.0 psf ) x ( ) ft + and Section Properties Partition = ( 14.0 psf ) x ( ) ft M.O.E., ksi ............... 1,600.0 Floor Load = ( 52.0 psf ) x ( ) ft F'b, psi ...................... 1,381.3 Attic Storage = ( 20.0 psf ) x ( ) ft F',,, psi ...................... 225.0 Beam Wt. = 5.1 plf Depth, d, in .............. 5.250 Total Uniform Load, wTb .............................. 5.1 plf Width, b, in ............... 3.500 Rxn, (Left), lb........... 2,023 Rxn, Ri ht , lb......... 279 Point Loads Pf at ............... 0.50 ft PLL+DL = 2,260.0 lb............. 38*10/2*24/2 P2 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P3 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P4 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE Demand Moment......... 1.0 ft-k Sreq'd................... 8.5 < 16.1 in *O.K.* Demand Shear............ 2,020.5 lb. - Areq'd................... 13.5 < 18.4 in *O.K.* Demand M.O.I............ 10.0 in """®` A..tua,.................. 0.034 < 0.142 in *O.K.* (8) 1-CAR GARAGE DOOR HEADER Member Length, L (ft)..................... &.50 Max. Allowable Deflection.............. L / 360 Load Duration Factor, CD ............... 1.25 Size Factor Coefficient, C ....................... 1.00 Volume Factor, Cv......................... 1.00 Trib. Area for Roof ILL Reduction, A(ft)..... n/a Uniform Loads Allowable Stresses, Rxns., Roof Load = ( 35.0 psf) x ( ) ft + and Section Properties Partition = ( 14.0 psf) x ( 3 ) ft M.O.E., ksi ............... 1,800 Floor Load = ( 52.0 psf) x ( ) ft F'b, psi ...................... 3,000.0 Attic Storage = ( 20.0 psf) x ( ) ft F', psi ...................... 331.3 Beam Wt. = 10.4 plf Depth, d, in .............. 12.000 Total Uniform Load, wTL .............................. 52.4 plf Width, b, in ............... 3.125 Rxn, (Left), lb........... 2,051 Rxn, (Right), lb......... 3,176 Point Loads P, at ............... 5.25 ft PLL+DL _ 4,751.2 lb............. (38*7/2*21/2)+(38*24/2*14.5*7.25/21)+(38*7/2*24/2`14.5/21) P2 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P3 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P4 at ............... 0.00 ft PLL+DL = 0.0 lb. ......... rr--NONEs Demand Moment......... Demand Shear............ Demand M.O.I............ 9.8 ft-k 3,123.5 lb. 204.2 in """ Sreq'd................ Aregd.•..•.......... "� Aactuai•••••......••?•.. --- 3 •Il 75:0 in3 i M.K.* BQ.It-DI(<I!G 4 F' W ••• /p 37;5��E 2 DEPi*0. .* 0.129) Er`"<PP-e 3)in *0, ,* N 44 (l 10-r-m R ere-+-e ri USE -LT 3.125 x 12' GL,B y .����,ff 1 A 3.5 x 11.875 LSLI( j,§g� 7, , - -- Y 1783P38.xls (Rev.01l2012) Page: 3.4 Option One Consulting Engineers PROJ.: "5anterra" / Plan 3 BEAM D E S I G N J.N.: 0413-1783 (NL'S 2005) (9) 2-CAR GARAGE DOOR HEADER Member Length, L (ft)..................... 16.50 Load Duration Factor, CD ............... 1.25 Max. Allowable Deflection ............. L / 360 Size Factor Coefficient, C,...................... 1.00 Trib. Area for Roof LL Reduction, A (ft).... n/a Uniform Loads Allowable Stresses, Rxns., and Section Pro erties Roof Load = ( 35.0 psf) x ( 5/2 + 1 ) ft + Partition = ( 14.0 psf) x ( 3 ) ft M.O.E., ksi ............... 1,600.0 Floor Load = ( 52.0 psf) x ( ) ft F'b, psi ...................... 1,062.5 Attic Storage = ( 20.0 psf) x ( ) ft F', psi ...................... 225.0 Beam Wt. = 12.9 plf Depth, d, in .............. 13.250 Width, b, in ............... 3.500 Total Uniform Load, wTb .............................. 244.9 plf Rxn, (Left), lb........... 2,020 Rxn. (Right). lb......... 2.020 Point Loads P, at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P2 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P3 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P4 at .............. 0.00 ft PLL+DL = 0.0 lb............. NONE Demand Moment......... 8.3 ft-k S re q•d................... 94.1 < 102.4 i n 3 *O.K.* Demand Shear............ 1,749.9 lb. A,q•d................... 11.7 < 46.4 in *O.K.* Demand M.O.I............ 464.1 in *Aactuai.................. 0.376 < 0.550 in *O.K.* U S E 4 x 14 D.F. #1 A L T 3.125 x 12 GLB (10) NANA-DOOR AT FRONT OF OFT. ENTRY Member Length, L (ft)..................... 13.00 Max. Allowable Deflection.............. L / 360 Load Duration Factor, CD ............... 1.25 Size Factor Coefficient, Cf...................... 0.99 Volume Factor, Cv......................... 1.00 Trib. Area for Roof LL Reduction, A (ft)..... n/a Uniform Loads Allowable Stresses, Rxns., Roof Load = ( 38.0 psf ) x ( 6/2 ) ft + and Section Pro erties Partition = ( 10.0 psf ) x ( 10 ) ft M.O.E., ksi ............... 1,800.0 Floor Load = ( 52.0 psf ) x ( ) ft F'b, psi ...................... 2,961.0 Attic Storage = ( 20.0 psf ) x ( ) ft F',,, psi ...................... 331.3 Beam Wt. = 25.3 plf Depth, d, in .............. 13.500 Total Uniform Load, wTu .............................. 239.3 plf Width, b, in ............... 6.750 Rxn, (Left), lb........... 1,556 Rxn, (Right), lb......... 1,556 Point Loads P, at ............... 0.00 ft PLL+DL _ 0.0 lb............. NONE P2 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P3 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P4 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE Demand Moment......... 5.1 ft-k S�eq'd.• �•••••�`05<� 205.0 in ji v � ij2J NTA *N Demand Shear............ 1,286.4 lb. A,q'd............... 5:8 < 91.1, in Q.K. BUILDING & SAI:: TT DEPT. *► Demand M.O.I............ 197.2 in '" Aacwal ..... 0.g62� Pr 1 �0.433 in ,K, USE 6.75 x 13.5 G415�.5-F(RCONSTRWTIQ ALT NA DATE _ BY I 1783P36.xls (Rev.01/2012) Page: 3.5 Option One Consulting Engineers PROJ: "5anterra" / flan 3 J.N.: 0413-17,53 LATERAL FORCE ANALYSIS - EARTHQUAKE LOADS ASCE 7-05 Section 12.8: EQUIVALENT LATERAL FORCE PROCEDURE Site & Building Data (ASCE 7-05 Chapter 11 & 12) SS ....... 0.2 Spectral Response Acc........... Per USGS Maps ................ Figures 22-1 to 22-14 ............ 1.50 S1 ....... 1.0 Spectral Response Acc........... Per USGS Maps ................ Figures 22-1 to 22-14 ............ 0.60 SC ...... Site Classification ....................... Per USGS Maps ................ Table 20.3-1 ......................... D Fa ........ Site Coefficient (short) .................. Per USGS Maps ................ Table 11.4-1 ......................... 1.00 FV ........ Site Coefficient (1-sec.) ............... Per USGS Maps ................ Table 11.4-2 ...................... 1.00 SMS • • • • • Max. Considered EQ (short period) MCEs = Fa*Ss .................... Equation 11.4-1 .................... 1.50 SM1 • • • • • • Max. Considered EQ (1-sec. period) MCE1 = F *S1 ................... Equation 11.4-2 .................... 0.60 SDS ...... Design Spectral Response (short period) = 2/3*SMs .................. Equation 11.4-3 .................... 1.00 SD1 • • • • • • Design Spectral Response (1-sec. period) = 2/3*SM1 ................. Equation 11.4-4 .................... 0.40 O.C..... Occupancy Category .......................................................... Table 1-1 .... _... _.................. II IE ........ Seismic Importance Factor .................................................. Table 11.5-1 ........................ 1.00 R ......... Response Modification Coefficient ......................................... Table 12.2-1 ........................ 6.50 SDC .... Seismic Design Category .................................................... Table 11.6-1, 2 ..................... D Structure Period (ASCE Section 12.8.2 Ct ........ Seismic Coefficient ..................... Table 12.8-2 ..................... 0.020 Exp., x ........... 0.75 TL ........ Long -Period Transition ................ Figure 22-15 ..................... 12 sec. hn ........ Maximum Building Height (Mean Roof Height) ......................... 15.00 feet Ta ........ Fund. Period = C,*h„................... Eq. 12.8-7 ........................ 0.15 sec. Design Base Sit ear (ASCE Section 12.8.1) [A50 - Allowable Stress Design] Note:....... Alternate Basic Load Combinations, CBC Sect. 1605.3.2, Eq. 16-20 .................. D + L + 5 + E / 1.4 V ......... Design Base Shear = (SDs*IE/R)*W / 1.4.................................. Eq. 12.8-2 ...... 0.1099 X WDL Governs VMax • • • • Max. Base Shear <_ (SD1*IE/R*T)*W / 1.4.................................. Eq. 12.8-3 ...... 0.2654 x WDL VMax • • • • Max. Base Shear <_ (SD1*TL*IE/R*T)*W / 1.4............................. Eq. 12.8-4 .... _ 22.6988 x WDL n/a VMin • • • • . Min. Base Shear a (0.044SDs)*I*W / 1.4 >_ (0.01)*W / 1.4............ Eq. 12.8-5 ...... 0.0314 x WDL n/a VMin • • • • . Min. Base Shear >_ (0.5*S1*IE/R)*W / 1.4.................................. Eq. 12.8-6 ...... 0.0330 X WDL Vertical Distribution of Force (ASCE Section 12.8.3) Fx ........ Vertical Force Distribution .................................. Eq. 12.8-12 ...................... V * (W. - h.') / E (W; * hi') k ......... Exponent ......................... 1.00 See attached ca/culation_for s. ear dis ribution ? I Y' F LA UINTA Note: Per Section 12.3.1.1 of ASCE 7-05, all wood structural panel diaphragms !are cbns�idered lflexible" orE i Y DEPT. :: 4 �. one- and two-family residential buildings of light -frame construction. APPROVED Building Department Requirements FOR CCINST Building Code ..................................... California Building Code (CBC), 2010 Edition �~ Wind Speed & Exposure .................... V35 85 mph (3 sec. gust speed), Exposure "C" DATE Snow Load ......................................... N/A - BY Page: 3.6 1783P3L_CBC2010.x1s (Rev. 07/2012) Option One Consulting Engineers PROD: "5anterra" /Plan 3 J.N.: 0413-1783 LATERAL FORCE ANALYSIS - EARTHQUAKE LOADS Supplement No. 2 - Design Base Shear V(S Ds) V min Equivalent Lateral Force Procedure (ASCE 7 OS, Section IZ8) Period, T (sec.) Region 1: Short period range / constant spectral response acceleration Region 2: Long period range /constant spectral response velocity Very 3: Region Re g long period range /constant spectral response displacement ASCE 7-05 Section 12.8: Equivalent Lateral Force Procedure Design Base Shear, V.................................. Cr, ` W Eq. 12.8-1 Seismic Response Coefficient, CS .................. SDS / (R / I) Eq. 12.8-2 Max. Coefficient, CS .............. (T s To ............ SW / T (R / I) Eq. 12.8-3 Max. Coefficient, CS .............. (T > TJ ............ SD, T, / T2 (R / I) Eq. 12.8-4 Min. Coefficient, Cs ...................................... 0.044SDS-1 >_0.01 Eq. 12.8-5 Min. Coefficient, CS .............. (S, >_ 0.6) ......... 0.5 S, / (R / I) Eq. 12.8-6 Long -Period, TL .......................................... Per Figure 22-15 Fundamental Period, T = Ta .......................... C, h„" Eq. 12.8-7 Reference Period, To ................................... 0.2 Sp, / SDS Sect. 11.4.5 Reference Period, Ts ................................... SD1 / SDS Sect. 11.4.5 SD, • • • • • • ... • • • .. • . • .................. Design Spectral Response Acceleration Parameter, 5% damped, at a period of T = 1.0 sec SDS .............................. • • • • • Design Spectral Response Acceleration Parameter, 5% damped, at a short period of T = 0.2 sec CITY OF LA OUINTA BUILDING & SAFETY DEPT. APPROVED FOR CONSTRUCTION DATE BY 1783P3L_CBC2010.xls (Rev. 10/2010) Page: 3.7 Option One Consulting Engineers PROJ: "5anterra" / Plan 3 J.N.: 0413-1783 WIND DESIGN PRESSURES AND DIAPHRAGM FORCES ASCE 7-05 Section 6.5.3: Method 2 - Analytical Procedure LOCATION ............................. REAR PORTION (M. BDRM., FAMILY, KITCHEN) Design Procedure: 1) Basic Wind Speed, V = 85 mph Figure 6-1 (based on 3-second gust V3s) Directionality Factor, Kd = 0.85 Table 6-4 2) Importance Factor, I = 1.00 Table 6-1 3) Exposure Category = C Section 6.5.6 4) Topographic Factor, Kt = 1.00 Section 6.5.7 5) Gust Factor, G or Gf = 0.85 Section 6.5.8 6) Enclosure Classification = "Enclo5ed" Section 6.5.9 7) Internal Pressure Coeff., GCPI = 0.18 (+/-) Figure 6-5 8) External Pressure Coeff., CP = See chart below Figure 6-6 External Pressure Coefficient, C Location North -South Windward. Leeward. East-West Windward Leeward Wall _ 0.80 -0.50 0.80 Roof (H) _ -0.49 0.06 -0.57 -0.36 0.14 _-0.40 -0.57 Roof (G) 0.00 _ 0.00 0.00 0.00 0.50 h'/ L" 1 0.50 _ 0.25 _2.00 NOTES: r Neglect effect of uplift forces on lateral loads. Interpolation allowed. Roof Slope = 4 :12 (max) Theta, O = 18.4 degrees* N-S Dimension = 30 feet E-W Dimension = 60 feet Mean Roof Height, h = 15.0 feet 1 st Floor Plate = 10 feet 9) Velocity Pressure Coeff., Kh,Z = 5ee chart below Table 6-3 = 2.01 (z/z9)`/a for 15ftszsz9 = 2.01(15/z9)' forz<15ft Velocity Pressure, qh,Z = 5ee chart below Eqn. 6-15 = 0.00256 KZ Kn Kd Vz 1 Height, z KZ KZt Kd V I qZ Notes 0.0 0.849 1.00 0.85 85 1.00 13.35 10.0 0.849 1.00 0.85 1.00 13.35 Plate Level 15.0 0.849 1.00 0.85 _85 85 1.00 13.35 Roof Level 15.0 0.849 1.00 0.85 85 1.00 13.35 Height, h Kh Ke Kd V I qh Notes 15.0 0.849 1.00 0.85 85 11.00�73:35vlea�a hvt (X = 9.5 z9 = 900 feet 10) Design Wind Load, p = 5ee chart below = NOTE: Since all internal wind pressures for enclosed buildings act eqL and in opposite directions), these pressures cancel each other Net uplift pressures acting on components to be analyzed and �-j ' � yr LA QUINTA "''JI! DING & SAFE GC GC X qn. DEPT. P "�a.0" on all th'- terrGalCs'ujac'91ku tl in the lateral direction only. ll.•'"' I ------_ BY (1-Story) . 1783P3L_CBC2010.x1s 3.8 Option One Consulting Engineers PROJ: "5anterra" / Plan 3 J.N.: 0413-1783 WIND DESIGN PRESSURES AND DIAPHRAGM FORCES ASCE 7-05 Section 6.5.3: Method 2 - Analytical Procedure LOCATION ............................. REAR PORTION (M. DORM., FAMILY, KITCHEN) North -South Direction North -South Direction- (Wall) Location Height, z qZ CP G q,GCP gnGC,i Notes Windward 10.0 13.35 0.60 0.55 9.08 2.40 Plate Level Windward 15.0 13.35 0.80 0.85 9.08 2.40 Roof Level Location Height, h qh Cp G :ghGCp ghGCp; Notes Leeward 15.0 13.35 -0.50 1 0.85 -5.67 2.40 Mean ht. �UfT l �a►Y7lil �7llri7iT �/:I17:fii Location I Height, h I qh Cp G ghGCp ghGCp; Notes Windward 15.0 13.35 -0.06 0.85 -0.64 2.40 1 Max C, Leeward 1 15.0 1 13.35 -0.57 1 0.85 -6.45 2.40 IP�L�.`l7TiL71]T' i 1. /C/1.7: f e la]FT.7J .001 • . UIl L ti P r i T b W Load L d" 41-story,.. OCa On reSSU a rU a;.ry Oa Oa -GI Gable: 14.75 - Vvail Below 14.75 5.00 73.74 95.86 Hip: 10.00 - Hip Roof 10.00 5.50 55.00 71.50 Controls Total..................................................... 167.36 plf North -South Direction: (Gable Roof Diaphragm Load) 14.75- Location Pressure Tributary Load Load"w Wall Below 14.75 5.00 73.74 95.86 Gable Roof 14.75 0.00 0.00 _ 0.00 Total..................................................... 95.86 plf East-West Direction East-West Direction (Wall) Hip/Gable Cond. (N-S) Schematic: Not to Scale Location I Height, z, qz CP G gZGCP ghGCpi . .Notes Windward 10.0 13.35 0.50 0.85 9.06 2.40 Plate Level Windward 15.0 13.35 0.80 0.55 9.08 2.40 Roof Level Location Height, h qh ' CP G ghGCp ghGCPi Notes Leeward 15 13.35 1 -0.40 1 0.85 -4.54 1 2.40 1 Mean ht. Last -west u►recnon* min Knott' -Location Height, h qh Cp G I ghGCp ghGCp; INotes Windward 15 13.35 0.14 0.85 1.56 1 2.40 Max CP Leeward 15 1 13.35 -0.57 0.85 -6.45 1 2.40 Last -west UlrBctlon' /Hln Knot Ulanhranm l nary) Location Pressure Tributary Load I Load"w Wall Below 13.61 5.00 68.06 88.48 Hip Roof 10.00 4.00 40.00 1 52.00 Gable: 13.61 - Total ..................................................... 140.48 plf BUILDIf East-West Direction- ((3'ah1e Rnnf Dianhrarrm I nari) I 1AG1 __:=;= Location Pressure Tributary Load Load"w Wall Below 13.61 5.00 68.06 Gable Roof 13.61 3.67 49.92 ____88.48 1 64.89 Total ..................................................... 153.38 plf DATE ------ BY NOTE: When Alternative Basic Load Combination, Sect. 1605.3.2, is utilized the wind load shall be magnified by the following coefficient .................. w = 1.3 QUINTA ETY DEPT. N Schematic: Not to Scale 1783P3L_CBC2010.xls Page: 3.9 Option One Consulting Engineers PROJ: "5anterra" / Plan 3 O-Story) J.N.: 0413-1783 WIND DESIGN PRESSURES AND DIAPHRAGM FORCES ASCE 7.05 Section 6.5.3: Method 2 - Analytical Procedure LOCATION ............................. LEFT PORTION (M. BATH, W.I.C., 13DRM.2) Design Procedure: 1) Basic Wind Speed, V = 85 mph Figure 6-1 (based on 3-second gust Vas) Directionality Factor, Kd = 0.&5 Table 6-4 2) Importance Factor, I = 1.00 Table 6-1 3) Exposure Category = C Section 6.5.6 4) Topographic Factor, KZ, = 1.00 Section 6.5.7 5) Gust Factor, G or Gf = 0.85 Section 6.5.6 6) Enclosure Classification = "Enclo5ed" Section 6.5.9 7) Internal Pressure Coeff., GCP; = 0.18 (+/-) Figure 6-5 8) External Pressure Coeff., CP = See chart below Figure 6-6 External Pressure Coefficient, C Location _North -South Windward Leeward East-West ward WindT.... Leeward Wall 0.&0 -0.37 0.&0 -0.50 Roof (H) -0.45 0.01 -0.57 -0.61 -0.11 -0.58 Roof (G)� _ 0.00 0.00 0.00 0.00 L / B*_ _ 1.67 0.60 h / L* 0.42 0.70 NOTES: r Neglect effect of uplift forces on lateral loads. Interpolation allowed. Roof Slope = 4 :12 (max) Theta, O = 18.4 degrees* N-S Dimension = 36 feet E-W Dimension = 21.5 feet Mean Roof Height, h = 15.0 feet 1 st Floor Plate = 10 feet 9) Velocity Pressure Coeff., Kh,Z = 5ee chart below Table 6-3 = 2.01(z/z1)210` for 15ft<_z<_z9 = 2.01(15/zg)' forz<15ff Velocity Pressure, qh,Z = 5ee chart below Eqn. 6-15 = 0.00256 KZ Kn Kd V 2 1 Height, z Kz Kt Kd I V I I qz Notes 0.0 0.849 1.00 0.85 85 1.00 13.35 10.0 0.,549 1.00 0.85 85 1.00 13.35 Plate Level 15.0 _ 0.849 1.00 0.85 85 1.00 13.35 Roof Level 15.0 0.,549 1.00 0.85 85 1.00 Height, h Kh Kt Kd V I �Eqr� (N otes 15.0 0.849 a = 9.5 z9 = 900 feet Table 6-2 10) Design Wind Load, p = See chart below = gGCP - NOTE: Since all internal wind pressures for enclosed buildings act equally on al and in opposite directions), these pressures cancel each other out in the Net uplift pressures acting on components to be analyzed and designed ht. �e n ')UINTA _TY DEPT. APPROVED FO" CQnN'6S'iTRUCTI0N rnal surfaces (equally h�ection-only-- BY 1783P3L_CBC2010.x1s Page: 3.10 Option One Consulting Engineers PROJ: "5anterra" / Plan 3 J.N.: 0413-1783 WIND DESIGN PRESSURES AND DIAPHRAGM FORCES ASCE 7.05 Section 6.5.3: Method 2 - Analytical Procedure LOCATION ............................. LEFT PORTION (M. BATH, W.I.C., BDRM.2) North -South Direction North -South Direction: (Wall) Location I Height, z % Cp G q,.GCp I ghGCp; INotes Windward 10.0 13.35 0.80_ 0.85 9.08 2.40 Plate Level Windward 15.0 13.35 0.80 0.85 9.08 2.40 Roof Level Location Height,.h 911 CID G ghGCp ghGCp; Notes Leeward 1 15.0 13.35 1 -0.37 1 0.85 1 -4.14 1 2.40 1 Mean ht. Location Height, h Ah I Cp G ghGCP I ghGCpi Notes Windward 15.0 13.35 0.01 0.85 0.09 2.40 Max Cp Leeward 15.0 13.35 1 -0.57 1 0.85 -6.45 2.40 North-Snutn Urrerunn, rHin Hnnt /)ianhranm I nar/1 Location P Tributary L d Lad* oca Ion Pressure Load o ra Gable: 13.22 - ............. Wall Below 13.22 5.00 66.09 85.91 Hip: 10.00 Hi Roof 10.00 4.00 40.00 52.00 Controls Total ..................................................... 137.91 plf North -South Direction: (Gable Roof Diaohraom Load) 1322 Location Pressure Tributary: Load Load'W. Wall Below 13.22 5.00 6_6.09 55.91 Gable Roof 13.22 0.00 0.00 0.00 Total..................................................... 85.91 plf East-West Direction East-West Direction (Wall) Hip/Gable Cond. (N-S) Schematic: Not to Scale Location Height, Z.1, qZ I Cp I G ghGCP I ghGCp; INotes Windward 10.0 13.35 0.&0 0.8_5 9.05 2.4_0 Plate Level Windward 15.0 13.35 _ 0.50 0.85 9.08 2.40 Roof Level Location Height, h qh Cp G ghGCp ghGCp; Notes Leeward 1 15 1 13.35 -0.50 1 0.85 1 -5.67 2.40 Mean ht. Ir�<1:ya�� �:�9ta•IIL�Nanrri-n.>.:r.T.3� Location I Height, h qh Cp G ghGCp ghGCp; INotes Windward 1 15 1 13.35 -0.11 0.85 -1.19 2.40 Max Gr Leeward 1 15 1 13.35 -0.58 0.85 -6.59 2.40 r�:rya i �ay��ucaymn.�ru.�rr.r.r��irrmrf:rnnsrrr.c Location Pressure Tributary Load Load*W Wall Below 14.75 5.00 73.74 )5.86 Hip Roof 10 00 4.00 40.00 _ 52 00 Controls Total..................................................... 147.86 plf East-West Direction- (Gable Rnnf Dianhranm I narll Location I Pressure Tributary I Load Load*W Wall Below _ 14.75 5.00 7_3.74_ Gable Roof 14.75 0.00 D.OD _95.86 0.00 Total..................................................... 95.86 plf 1ot0 r UILG 14.75 A �`�'`` P" Hip/Gable (1-Story) IN VA DEPT. DATE Schematic: Not to Scale ----- BY NOTE: When Alternative Basic Load Combination, Sect. 1605.3.2, is utilized the wind load shall be magnified by the following coefficient .................. W = 1.3 Page: 3.11 1783P3L_CBC2010.xis Option One Consulting Engineers PROJ: "5anterra" / Plan 3 J.N.: 0413-1783 WIND DESIGN PRESSURES AND DIAPHRAGM FORCES ASCE 7.05 Section 6.5.3: Method 2 - Analytical Procedure LOCATION ............................. RIGHT PORTION (DINING, GARAGE) Design Procedure: 1) Basic Wind Speed, V = 85 mph Figure 6-1 (based on 3-second gust V30 Directionality Factor, Kd = 0.85 Table 6-4 2) Importance Factor, I = 1.00 Table 6-1 3) Exposure Category = C Section 6.5.6 4) Topographic Factor, KZ, = 1.00 Section 6.5.7 5) Gust Factor, G or Gf = 0.85 Section 6.5.8 6) Enclosure Classification = "Enclosed" Section 6.5.9 7) Internal Pressure Coeff., GCP; = 0.18 (+/) Figure 6-5 8) External Pressure Coeff., Cp = See chart below Figure 6-6 External Pressure Coefficient, C Location North -South I Windward, Leeward East-West I WindwardLeeward Wall 0.80 -0.40 0.80 -0.50 Roof (H) -0.45 0.01 -0.57 -0.57 -0.09 -0.58 _ Roof (G)� 0.00 0.00 0.00 _ 0.00 L / B" 1.50 0.67 h / L" 0.42 0.63 NOTES: r Neglect effect of uplift forces on lateral loads. Interpolation allowed. Roof Slope = 4 :12 (max) Theta, O = 18.4 degrees" N-S Dimension = 36 feet E-W Dimension = 24 feet Mean Roof Height, h = 15.0 feet 1 st Floor Plate = 10 feet 9) Velocity Pressure Coeff., Kh,Z = See chart below Table 6-3 = 2.01 (z / z 9) 2/a for 15 ft 5z5z9 = 2.01 (15 / zd2/a for z < 15 ft Velocity Pressure, qh,Z = See chart below Eqn. 6-15 = 0.00256 KZ Kn Kd V2 1 Height, z KZ KZ, I Kd V I I qZ I Notes 0.0 0.549 1.00 0.55 85 1.00 13.35 10.0 0.549 1.00 0.85 85 1.00 _ 13.35 _ Plate Level 15.0 0.849 1.00 0.85 _ 85 1 1.0`0 _ -o_af_-L-eve.l- 15.0 0.849 1.00 _ 0.85 85 l .35 '0 1 Height, h Kh KZt Kd V B1.111-1719h�R-, Notes-p 15.0 0.&49 1.00 0.85 85 1 1.10 1�3 5� ean�llAt. I I NTA DEPT. a= 9.5 Z9= 900 feet Table 2 FOR CONSTRUCTION 10) Design Wind Load, p = See chart below = qlp. - CbGCP; Eqn. 6-17 I DATE NOTE: Since all internal wind pressures for enclosed buildings act equally on all the in erg naTsurfYcees%ually-- and in opposite directions), these pressures cancel each other out in the lateral direction on y. Net uplift pressures acting on components to be analyzed and designed separately. O-Story) Page: 3.12 1783P3L_CBC2010.x1s 511 E 0- . Option One Consulting Engineers PROJ: "5anterra" / Plan 3 J.N.: 0413-1783 WIND DESIGN PRESSURES AND DIAPHRAGM FORCES ASCE 7-05 Section 6.5.3: Method 2 - Analytical Procedure LOCATION ............................. RIGHT PORTION (DINING, GARAGE) North -South Direction North -South Direction: (Wall) Location I Height, z qZ Cp G gZGCp I ghGCp; Notes Windward 10.0 13.35 0.80 0.85 9.08 2.40 Plate Level Windward 15.0 15.35 0.80 0.85 9.08 2.40 Roof Level Location Height, h qn Cp _ G ghGCp ghGCp) Notes Leeward 1 15.0 13.35 -0.40 0.85 -4.54 2.40 1 Mean ht. �J�L'II►Y.7Ii1.71]i'�ii �1:�:.. i Location Height, h qn Cp G ghGCp ghGCp; lNotes Windward 15.0 113.35 0.01 0.85 0.09 2.40 Max C Leeward 15.0 1 13.35 1 -0.57 0.85 -6.45 1 2.40 Nnrtn-Sntlth Utrectinn' IHtn Knot IJtanhranm I nar/l Location Pressure I Tributary I Load Load*w Wall Below- 13.61 5.00 68.00 88.48 Hip Roof 10.00 4.00 1 40.00 52.00 Total ..................................................... 140.48 plf Nnrth-South Direction- (Gah1e Roof Dianhranm I narl) Location Pressure Tributary I Load Load*w Wall Below 13.61 5.00 68.06 88.48 Gable Roof 13.61 3.50 j 47.64 61.94 Control Total..................................................... 150.42 plf East-West Direction East-West Direction (Wall) Gable: 13.61 _ .................... Hip: 10.00 13.61 7777 Hip/Gable Cond. (N-S) 5 Schematic: Not to Scale Location Height, z % I Cp : G gZGCp I ghGCp; INotes Windward 10.0 13.35--.- 0.85 9.08 2.40 Plate Level Windward 15.0 13.35 ___0.80 0.80 0.55 9.08 _ 2.40 Roof Level Location Height; h qn Cp G gnGCP ghGCp; Notes Leeward 15 13.35 1 -0.50 0.55 -5.67 2.40 Mean ht. a�:l�ya i«yn�Irrelc.��trrin>.ro7.3� Location Height, h qn Cp G ghGCp ghGCp;I Notes Windward 15 13.35 -0.09 0.85 -0.99 2.40 Max CP Leeward 15 13.35 -0.58 0.85 -6.54 2.40 ►x1C�a � �:����1r�i3lr.Tile:Ir.7:r.Tiil�lFr.7.r�t::7rfr.►; Location Pressure Tributary Load Load*w Wall Below 14.75 5.00 75.74 95.86 Hip Roof 10.00 5.25 52.50 68.25 total..................................................... 164.11 East-West Direction_ (Gable Roof Dianhranm I narll Location Pressure I Tributary I Load I Load*w. Wall Below 14.75 1 5.00 1 95.86 Gable Roof 1 14.75 0.00 _7_3.74 1 0.00 1 0.00 Gable: 14.75 ............................. 01pi0. 0 --- iUINTA 3UG ILDIN � AF DEPT. Total..................................................... 95.86 p DATE _ BY NOTE: When Alternative Basic Load Combination, Sect. 1605.3.2, is utilized the wmd- load shall be magnified by the following coefficient .................. w = 1.3 Schematic. (1-Story) 1783P3L_CBC2010.xls Page: 3.13 Option One Consulting Engineers PROJ: "5anterra" / Plan 3 (1-Story) _................ J.N.: 0413-1783 WIND DESIGN PRESSURES AND DIAPHRAGM FORCES ` ASCE 7.05 Section 6.5.3: Method 2 - Analytical Procedure LOCATION ............................. FRONT PORTION (DEN, BREEZEWAY) Design Procedure: 1) Basic Wind Speed, V = 85 mph Figure 6-1 (based on 3-second gust Vas) Directionality Factor, Kd = 0.85 Table 6-4 2) Importance Factor, I = 1.00 Table 6-1 3) Exposure Category = C Section 6.5.6 4) Topographic Factor, KZ, = 1.00 Section 6.5.7 5) Gust Factor, G or Gf = 0.85 Section 6.5.8 6) Enclosure Classification = "Enclosed" Section 6.5.9 7) Internal Pressure Coeff., GCP; = 0.18 (+/-) Figure 6-5 8) External Pressure Coeff., Cp = See chart below Figure 6-6 External Pressure Coefficient, C North -South East-W_ est Location Windward-d Leeward Windward Leeward Wall. 0.80 -0.41 0.80 -0.50 Roof (H) Roof (G)t -0.61 -0.10 0.00 -0.58 _ 0.00 -0.79 -0.18 0.00 -0.60 _ 0.00 L / B* _ 1.47_ 0.68 1.02 NOTES: r Neglect effect of uplift forces on lateral loads. Interpolation allowed. Roof Slope = 4 :12 (max) Theta, O = 18.4 degrees* N-S Dimension = 22 feet E-W Dimension = 15 feet Mean Roof Height, h = 15.3 feet 1 st Floor Plate = 10 feet 9) Velocity Pressure Coeff., Kn,Z = .5ee chart below Table 6-3 = 2.01 (z / z9)?/a for 15 ft < z <_ z9 = 2.01 (15/zj2/a forz<15ft Velocity Pressure, qn.Z = 5ee chart below Eqn. 6-15 = 0.00256 K, Kn Kd VZ I 10) NOTE: Height, z KZ KZf Kd V I q, Notes _ 0.0 _ 0.54_9 1.00 0.55 85 1.00 13.35 _ 10.0 0.849 1.00 0.85 85 1.00 13.35 Plate Level 15.5 0.&49 1.00 85 1.Q- 13.35 Roof Level 15.0 0.(549 _ 1.00 _0.8_5 0.85 85 Height, h Kn Kzf Kd V Pi l P n`rt n Rldtes INTA 15.3 0.852 1.00 0.85 85 1. 0 13 39" ' Iv17 n F+"€.1dcD DEFT. a = 9.5 z9 = 900 feet -'� VC- Table 6-2 FOR CONS�RUCTION Design Wind Load, p = 5ee chart below = a Cp q;GCp, Eqn. 6-17 Since all internal wind pressures for enclosed buildings act equally rPATt ie- Wnai___s,rf`c�(equally and in opposite directions), these pressures cancel each other out in e a t-direc-tix Net uplift pressures acting on components to be analyzed and designed separately. Page: 3.14 1783P3L_CBC2010.x1s 0 Option One Consulting Engineers Location Pressure Tributary Load Load*w ' Wall Below 15.70 5.00 65.52 89.08 Gable Roof 13.70 0.00 0.00 0.00 ) otal..................................................... 89.08 plf East-West Direction East-WPst Dirartinn (Wall) PROJ: "5anterra" / Plan 3 J.N.: 0413-1783 WIND DESIGN PRESSURES AND DIAPHRAGM FORCES ASCE 7-05 Section 6.5.3: Method 2 - Analytical Procedure LOCATION ............................. FRONT PORTION (DEN, BREEZEWAY) North -South Direction Nnrth-Snuth Dirertinn- /Wall) Location Height; z % Cp G q,GCP ghGCp; Notes Windward 10.0 13.35 0.80 0.85 9.08 2.41 Plate Level Windward 15.3 13.35 0.80 0.85 9.08 2.41 Roof Level Location Height, h qh Cp G ghGCp ghGCp; Notes Leeward 15.3 13.39 -0.41 0.85 -4.63 2.41 IMeanht. u�rrru>zzm�r>.�nrxrlrrr�r-lr.�:rrfr Location Height, h qh Cp G ghGCp ghGCp; jNotes Windward 15.3 13.39 -0.10 0.85 -1.19 2.41 Max CP Leeward 15.3 13.39 -0.58 0.85 6.61 2.41 North-Journ Ulrectlon, tH/n Hnnt U/anhranm I narl) Location Pressure Tributary L d Load* U Oa W Wall Below 13.70 5.00 Gable: 13.70 •••••• ......•••• 68.52 89.08 Hip: lo.00 - Hip Roof 10.00 3.50 35.00 45.50 Controls Total ..................................................... 134.58 plf North -South Direction: (Gable Roof Diaphragm Load) 13.70 --- Hip/Gable Cond. (N-S) Schematic: Not to Scale Location I Height, z qZ Cp G ghGCp . I ghGCp; lNotes Windward 10.0 13.35 0.80 0.85 9.08 2.41 Plate Level Windward 15.5 13.35 0.80 0.85 _ 9.08 2.41 Roof Level Location Height, h qh Cp G gnGCP ghGCpi Notes Leeward 1 15.25 1 13.39 1 -0.50 0.65 1 -5.69 1 2.41 1 Mean ht. �..T.'6YG9�l:LYIIJI [:7MIU//t�rGl/17Gl.L7r Location Height, h qh I Cp G ghGCp ghGCp; lNotes Windward 15.25 13.39 -0.18 0.&5 -2.05 1 2.41 1 Max CP Leeward 15.25 13.39 1 -0.60 0.55 -6.83 1 2.41 !�:tiya���c�y�.�lcxetrrr>rr-irn:r.T.ve�mr�rr.�r.�ru Location I Pressure Tributary Load Load* U ry Oa w Gable: 14.77 Wall Below 14.77 5.00 R 83 95.98 Hip:_1O oo - Hip Roof 10.00 1.50 00 19.50 Total..................................................... 115.48 .p East-West Direction: (Gable Roof Diaphragm Load) If BU►�l�l�14.77 Location Pressure Tributary Load Load*w Wall Below 14.77 5.00 73.83 95.98 Gable Roof 14.77 2.00 29.53 38.39 loTal..................................................... 134.38 pIfDATE FOR NOTE: When Alternative Basic Load Combination, Sect. 160 2; is utilized-th Jnd load shall be magnified by the following coefficient .................. w = 1. UINTA (1-Sfoly) 1783P3L_CBC2010.x1s Page: 3.15 Option One Consulting Engineers PROJ.: "5antcrra" / Plan 3 J.N. 0413-1783 U.Stary) _. LATERAL SHEAR DISTRIBUTION ANALYSIS ASCE 7-05 Section 12.8: Equivalent Lateral Force Procedure LOCATION..............................................................: REAR .PORTION (M. BDRM., FAMILY, KITCHEN) Seismic Response Coefficient, Cs ............................. omo ASCE Section 12.8.1.1 Design Base Shear, V = C. x W.................................... 5.38 kips ASCE Equation 12.8-1 Dead Load of Structure: Roof Dead Weight ................. 18.0 psf x ( 30.0 ft N/S x 60.0 ft E/W) Froof Ave. Projected Ht. - - - - - _._._._._._._. - - 18.0 psf x ( 0.0 ft N/S x 0.0 ft E/W)_ ._._. Overhang (O.H.) ...... _ 1.0 N/S E/W 1.0 34.04 _{kips 5.5 ft Exterior Wall Weight .............. 14.0 psf Plt. Line N/S Walls........ ( 10/2 ft ) x ( 2.9 ) 7_ kips E/W Walls....... ( 10/2 ft ) x ( 1.2 ) = 5.22 -� kips O.H. 10.0 ` ft Interior Wall Weight ............. 8.0 psf N/S Walls........ ( 10/2 ft ) x ( 1.0 ) _ 1.20 !kips E/W Walls....... ( 10/2 ft ) x ( 1.0 ) = 240 Jkips I VATIpN _...._..._-_-..__..�____ _.-.__.__ (N/S-E/W) {Total Dead Load, W............................................................................................... 48.9 kips A North/South Direction Seismic Story pSeismic Wind I Shear, lb, P plf plf N/S Direction EM' Ulfection Lateral Load at Roof . .................................. 5,380 1.30 117.0 168.0 Seismic Story pSeismicWind PLAN (footprint) East/West Direction Shear, lb. P plf plf (-) annotation indicates a reduction Lateral Load at Roof . .................................. 5,380 1,30 233.0 154.0 in roof/floor area, i.e. stairways, diaphragm openings, area indentations, etc. LOCATION.............................................................. LEFT PORTION (M. BATH, W.I.C., 13DRM.2) Seismic Response Coefficient, Cs ............................. 0.110 ASCE Section 12.8.1.1 Design Base Shear, V = Cs x W.................................... 2.73 kips ASCE Equation 12.8-1 Dead Load of Structure: Roof Dead Weight ................. 18.0 psf x ( 36.0 ft N/S x 21.5 ft E/W) F rooms Ave: Projected Ht. - 18.0 psf x ( 0.0 ft N/S x 0.0 ft E/W )_ Overhang (O.H.) ... 1.0 N/S E/W 1.0 _ 14.99 1 kips 5.5' ft; Exterior Wall Weight .............. 14.0 psf Ph. Line N/S Walls........ ( 10/2 ft ) x ( - 2.00 ) - 5 .04 ;kips E/W Walls....... ( 10/2 ft ) x ( 1.00 = 1.51 kips O.H. 10.0 ft Interior Wall Weight....-....-... 8.0 psf N/S Walls........ ( 10/2 ft ) x ( 1.00 ) = 1.44 ,kips E/W Walls....... ( 10/2 ft ) x ( 2.14 ) = i 1.84 'kips ELEVATION`_ (N/S - EIW) Total Dead Load, W ................................................ 24.8 North/South Direction Seismic Story Shear, lb. pSeismic P plf Wind plf Lateral Load at Roof . .................................. 2.730 1.30 165.0 138.0 f ) East[West Direction Seismic Story Shear, lb. pSeismic P plf Wind plf Lateral Load at Roof . .................................. 2,730 1.30 99.0 148.0 U11YQi BUILDING A0__" P FOR CO DATE / PLAN (footprint) =_ _�-(- &(Q tion indicates a diaphragm openings, area indentations, etc. 1783P3L_CBC2010.x1s (Rev. 10/2010) Page: 3.16 Option One Consulting Engineers PROJ.: "5ant-erra" / Plan 3 (? orYi J.N.: 0413-1783 LATERAL SHEAR DISTRIBUTION ANALYSIS ASCE 7-05 Section 12.8: Equivalent Lateral Force Procedure LOCATION........................................................... RIGHT PORTION (DINING, GARAGE) Seismic Response Coefficient, Cs ............................. 0.110 ASCE Section 12.8.1.1 Design Base Shear, V = C. x W.................................... 2.74 kips ASCE Equation 12.8-1 Dead Load of Structure: Roof Dead Weight ................. 18.0 psf x ( 36.0 ft N/S x µ 24.0 ft EMI) Froof Ave. Projected Ht. - 18.0 psf x ( 0.0 ft N/S x 0.0 ft E/W)_ ♦ - - - - - - - ................ - Overhang (O.H.) ...... 1.0 N/S E/W 1.0 16.65 kips 5.5 ft Exterior Wall Weight .............. 14.0 psf Pit. Line N/S Walls........ ( 10/2 ft ) x ( 1.7 ) = 4.37 7,kips E/W Walls....... ( 10/2 ft ) x ( 1.0 ) = 1.68 ;kips O.H. 10.0 j ft Interior Wall Weight ............. 8.0 psf N/S Walls........ ( 10/2 ft = x ( 0.4 ) 0.58 kips E/W Walls....... ( 10/2 ft ) x ( 1.7 ) = i 1.64 kips EI:EVATtON' =k: (NIS - E/W) Total Dead Load, W............................................................................................... 24.9 kips g Seismic Story pSeismic Wind NIS Direction North/South Direction Shear, lb.: _. ... plf pif Lateral Load at Roof, .................................. 2,740 1.30 149.0 151.0 E/W ' irection Seismic Story pSeismic Wind PLAN (footprint) East/West Direction Shear, lb. P plf pif (-) annotation indicates a reduction Lateral Load at Roof . .................................. 2,740 1.30 99.0 165.0 in roof/floor area, i.e. stairways, diaphragm openings, area indentations, etc. LOCATION..............._............................. ............... FRONT PORTION (DEN, BREEZEWAY) Seismic Response Coefficient, C. ............................. 0,110 ASCE Section 12.8.1.1 Design Base Shear, V = C, x W.................................... 1.09 kips ASCE Equation 12.8-1 Dead Load of Structure: Roof Dead Weight ................. 18.0 psf x ( 22.0 ft N/S x 15.0 ft E/W) Fropf ► Ave. Projected Ht. - 18.0 psf x ( 2.5 ft N/S x 7.3 ft E/W)= - -- ----- --- Overhang (O.H.) ...... 1.0 N/S E/W E/W 1.0�6.29 kips 5.0 ft Exterior Wall Weight .............. 14.0 psf Pit. Line I N/S Walls........ ( 10/2 ft ) x ( 1.00 -- ) _ 1.54 !kips i E/W Walls....... ( 10/2 ft ) x ( 2.00 2.10 1kips O.H. 10.0 j ft Interior Wall Weight ............. 8.0 psf N/S Walls........ ( 10/2 ft x ( 0.00 ) = 0.00 ;kips E/W Walls....... ( 10/2 ft ) x ( 0.00 ) = L 0.00 ikips ELEVAT10N" TotalDead Load, W............................................................................................... 9.9 kips North/South Direction Seismic Story 1--Shear, lb. pSeismic P pif Win plf Lateral Load at Roof . ................................- 1,100 1.30 95.0 135.49 +---> Seismic Story East/West Direction Shear, lb. Lateral Load at Roof, .................................. 1,100 pSeismic 1.30 65.0 ✓��f 01- i UILDING & Fp PPnR (NIS - EIW) INIS Direction reduction II iri �06VfibbMfi b, i.e. st rways, DATE diaphragm openings, a a indentations, -'-�_ 13Wtc_ 1783P3L_Cl3C2010.x1s (Rev. 10/2010) Page: 3.17 C) Option One Consulting Engineers PROJ.: "5anterra" / Plan 3 J.N.: 0413-1783 SHEAR WALL (S.W.) DESIGN: SUMMARY California Building Code (CBC), 2010 Edition / SDPWS-2008 / ASCE 7-05 General Assumptions & Design Data: Project Moisture Content, MC ......................................... 13.0 % (Assumed in use; range = 13%- 19%) Spectral Response Acceleration, SDs ............ • • • .. • •. • ......... 0.83 ASCE 7-05 and(or Soils Report Multiplier for HDs that do not consider cyclic loading ............ 1.00 Per Building Dept. Requirements Maximum negligible uplift load is ..................................... to lb Sl:ear Wall Information: Panel Type Panel Capacity (plf) Wind Seismic Nail Type Nail Spdg. (O.C.) Panel Thick. . (in.) Panel Type (rating 24/0) G, (kip/in) SDPWS T4.3A Uplift PDL WDL V P6 260 260 8d 6 3/8 W5P 13 P4 350 350 8d 4 3/8 W5P 19 P3 490 490 8d 3 3/8 W5P 25 Pane(DL) P2 640 640 8d 2 3/5 W5P 39 P2a 1,040 870 10d 2 15/32 5TR1 51 Phold— PP3 1,200 980 Sd 3 3/5 W5P 50 PP2 2,400 1,740 loci 15/32 5TR1 102 Free Body Diagram Holdown Information: (Simpson C-2011 DF/SP) Simpson Holdown Elongation No. of Fast. Dia. End Post End Post Capacity MOE (psi) ]CC-ESR Type _ (in) Fasteners (inches) (min.) Area (in2)(lb) End -Post Report No. N/A n/a 0 0 2x4 5.25 0 N/A N/A (1)-0516 0.125 36 0.113 2x4 5.25 1,705 1,400,000 2105 I (2)-0516 0.125 72 0.113 2-2x4 10.50 3,410 1,400,000 2105 (3)-0516 0.125 108 0,113 3-2x4 15.75 5,115 1,400,000 2105 (4)-0516 0.125 144 0.113 4x8 25.36 6,820 1,400,000 2105 CM5TC16 0.125 52 0,148 2-2x4 10.50 4,585 1,400,000 2105 (1)-CM5T14 0.125 76 0.145 2-2x4 10.50 0,490 1.400,000 2105 (2)-5T6224 0.125 56 0.162 4x6 10.50 5,080 1,400,000 2105 (2)-5T6236 0.125 80 0.162 4x6 10.50 7,690 .1,400,000 2105 (2)-CM5T14 0.125 104 0.162 4x8 25.38 12,980 1,400,000 2105 (2)-M5TC48B3 0.125 108 0.148 4x8 25.38 6,490 1,400,000 none 5THD10 0.096 28 0.148 4x4 12.25 2,640 1,600,000 2920 I 5THD14 0.206 38 0.148 4x4 12.25 3,695 1,600,000 2920 1 HDU2 0.088 6 0.250 4x4 12.25 3,075 1,600,000 2330 HTT4 0.123 18 0.162 4x4 12.25 4,235 1,600,000 none HTT5 0.135 26 0.162 4x4 12.25 5,090 1,600,000 none HDU5 0,115 14 0.250 4x4 12.25 5,645 1,600,000 2330 HDUB(x4) 0.116 20 0.250 4x4 12.25 6,970 1,600,000 2330 HDUB(x6) 0.113 20 0.250 4x6 19.25 7,705 1,600,000 2660 1-11)Q8 0.095 20 0.250 4x6 12.25 9,230 1,600,000 2330 HDUll(x(o-) 0.137 30 0.250 4x6 19.25 9,535 1,600,000 2330 H1)Ull(x8) 0.137 30 0.250 4x8 25.38it-�-�,+ 11;175-1;6QQ,0adacitv HDU14(4x8) 0.177 36 0.250 4x8 25�389 t i 13 090 �1f600 HDU14(6x6) 0.177 36 0.250 4x8 25�Sj(L(�j13',09pp, 60��.,Q �� HD19(4x10) 0.180 5 1.000 4x10 32.38 19,360 00;0 HD19(6x8) 0.177 5 1.000 6x8 41.25 19�070V,600�_ Footnotes: 1�i V A A ' ' �Mnacity - Loads based on member thickness in the direction of the fastener Mud -sill Anchor Bolt Loads based on 'Anchor Bolts in Light -Frame Construction at Small Edge Distances, June 2009, The"SEA-OC-Blue.Book° Refer to °CAST -IN -PLACE HOLDOWN ANCHOR BOLTS' calculation for additional information -- Effective Capacity based upon mimum of holddown assembly (i.e., post, hardware, anchor bolt, etc.) Dia. (in) I Notes: _(lb) BY 1/2 1,040 1/2-1-232- at 3x Sill i 3/4 2,464 �Paae: at 3x Sill 3.18 1783P3SW.XLS (Rev.04/2012) 0 Option One Consulting Engineers PROJ.: "5anterra" / Plan 3 J.N.: 0413-1783 SHEAR WALL (S.W.) / ELEMENT DESIGN California Building Code (CBC), 2010 Edition I SDPWS-2008 I ASCE 7-05 1 ). 1 5t Floor - LEFT ELEVATION _.__..__._ .... ._ ............. _ ..__ _ .._ __ . Vseismic = ( 117 ,_..__.___ _ __.,_, _._.....____ )X( 59/2 ) + ___..__.___.__ .._ _ ..._ _ __ ..__._. ._._..._ ... Vwind = ( 168 )X( ... . _... _......... 59/2 -- } + ( 165 )X( 21/2 ) + ( )X( ) + ( )X( ) + ( )X( ) + EI ( )X( ) = e) ( )X( ) _ w = 5,211 lb .................. 434 plf Governs 3 = 4,956 lb ............................ 413 plf Modified Vseismc=V/fmin= 5,211 Ib Vvvnd= V = 4,956lb Vsesmc= 5.211 + 12.00 = 434 plf < 490 •O.K.•' Vwind= 4,956 + 12.00 = 413 plf z 490 •O.K.` _._. _.__..._ _ _ _ .__ _ .: Use: I'S :, �wfth min. 2xmuil�s{ft-rfaiB�an�112"dlame6er�nchor.boltsatmatc:#6"o.e, „. Phi No L ft H ft OTM, K-ft DtE OtW Resisting Moment (RM) Due to Uniform Load, lb-ft External Uplift, Its Corr. Arm, ft H / W Modifier Ratio ` r Uplift, Ib' Hold.. axe in D E OtW DfE DtW Type Check 1 12.00 10.00 52.1 49.E 12,672 =(18'(2/2+1)+W10)'12^212 0 0 11.83 0.83 1.00 i i I 3,441 3,475 i 5THD14 •O.K.• 0.408 Comments: None Aron = 1.00 2). 1 st Floor - LEFT OF BREEZEWAY _.......... ...._..._....._.......__..........._......_._.......__..__......._....._.._........_... seismic = ( 165 w ....:........:.... ...... :.:..' )X( 21/2 - --..... _......._......_-............ ) + ......... __.._..._.. -._._.._.._._..........................-- Vwind = ( 138 x 0.8/1.3 )X( --- ........ _............ _..._........_............._ _------- ........._- 21/2 ) + ( 95 N 812 ) + )X( ) + I ul= 2,140 lb .................. 267 plf Governs 3 = 906 lb .........,.................. 113 plf Modified Vseismc= V / rvmn = 2,140 lb V„,;nd= V = 906 lb V seismic = 2,140 + 8 00 267 plf < 350 •O K Vwind - 906 + 8.00 = 115 plf < 350 0 K 1 P4 with min'. 2x mttd irwittaanj 1l :diattta4et anchor bolts at max .32" o c. . � ?: +: ? E <: Pnl No I L ft I H ft --- DfE i D±W Resisting Moment (RM) Due to Uniform Load, lb-ft External Uplift, lb --- - - -- D±E Df W Corr. Arm, ft H / W I Modifier Ratio r Uplift, Ib Holdown axej__OT?,LK-ft in --- DtE i D±W --- _. Type Check 1 8.00 10.00 21.4 9.1 10,528 =(18'(2l/2)+14'10)•8^2/2 7.83 1.25 1 1.00 i ; 1,523 1 260 5TH014 •O.K.` 0.299 Comments: None fmin = 1.00 3 ). 1 st Floor - RIGHT OF BREEZEWAY ..................._.. Vseismic _ ( 149 )X( 31/2 _._ _._......,. ) + Vwind - ( 151 x 8l1.3 )X( ......,.__, 31/2 ._._..�_. ) + ( 95 )X( 8/2 ) + ( 135 )X( 8/2 ) + ( )X( ) + ( )X( ) + 'a =. 2,690 lb .................. 336 plf Governs _ 1,980 lb ........................... 248 ph' m Modified Vseismic= V / fmin = 2,690 lb V-no = V = 1,980 lb Vseismic = 2,690 + 8.00 336 plf < 350 'O.K.• Vvnnd 1980 + 8.00 248 plf < 350 •O.K! USe.. F4 with min. 21t mud-eill elate andl/r dlameter anchor boles at max: 32 - pill No L ft H ft OTM, K-ft DtE D±W Resisting Moment (RM) Due to Uniform Load, lb-ft External Uplift, lb Corr. Arm, ft H / W Ratio' ! Modifier r - Uplift, Ib DtE ' DtW. Holdown Type Check axe n DtE ' D±W 1 8.00 10.00 26.9 19.8 5,632 =(18'(4/2)+14'10)-8^2/2 0 O 7.83 CITY Bt�iLDl 1.25 14JF 1.00 ��� 2,788 i 2,050 ��. LA IQU�IVTq 5TH014 •O.K.• 0.458 Comments : None fmin= 100 - Notes &Assumptions: �,JTR - I -- 1). Height -to -width (H / W) Ratio modifier (seismic)............ r = 2 ` bs / is for aspect ratios between 2:1 to 3.5:1 (SDPWS Table 4.3.4) 2). Uplift force is determined by using net overturning force ( OTM - RM ); moment arm correction is applied for r uplift CBC 2010 Alternative Basic Load Combinations (ASO), Sect. 1605.3.2 ................ Wind: (2/3)D ± w ---Seismic:_0.9Q± E`,4 DL multiplier so Mud ...... 0.67 --F=� ._ - DL mul6p 1�to seismic-3 0.90 3). Shear wall deflection .............. 6x„ = Bvh' / EAb + vh / 1000Gs + h3, / b (SDPWS Eq. 4.3-1) Importance a or, i ...... 1.00 4). Story Drift Limits, ASCE 7-05 Sect. 12.8.6 ................... 6, = Cd 6xs 11 < 0.025 hs, (Assume Occupancy Cat i or 77) Page: 3.19 1783P3SW.XLS (Rev. OW012) Option One Consulting Engineers PROJ.: "5anterra" / Plan 3 J.N.: 0413-1783 SHEAR WALL (S.W.) / ELEMENT DESIGN Califomia Building Code (CBC), 2010 Edition / SDPWS-2008 / ASCE 7-05 4 ). 1 5t Floor - RIGHT ELEVATION Vseismic = ( 117 )X( 59/2 ) + 1 3 Vwind = ( 168 )X( 59/2 ) + ( 149 )X( 31/2 ) + ( )X( ) + ( )X( ) + ( )X( ) + EI ( )X( ) = c� ( )X( ) _ W = 5,761 Ib .................. 412 plf Governs 3 = 4,956 Ib ............................ 354 plf Modified Vseismic= V / rmin = 5,761 Ib Vwind= V = 4,956 Ib Vseismic= 5,761 + 14.00 ....._ .. .._. .. ....__ . = 412 plf < 490 'O.K.''s Vmnd= 4,956 + 14.00 = 354 plf < 490 'O.K.• _.... ... .... _ m _ __... _r_ Use. P5 with min. 21t mud-afll plate and 112"diameter anchor Oohs at -'max 16" o.c1 • s Pnl No I L It I H ft OTM, K-ft D±E D+W Resisting Moment (RM) Due to Uniform Load, lb-ft External Uplift, Ib DtE D+W Corr. Arm, ft I H / W i Modifterl I Ratio ' r Uplift,'lb Holdown axe in D±E I DtN ;:Type Check 1 2 8.00 6.00 10.00 10.00 32.9 t - 28.3 24.7 i 21.2 5,632=(18'(2/2+1)+14'10)'8^2/2 6,570=(18'(23/2+1)+14"10)'6^2/2 0 O 0 j 0 7.53 5.83 1.25 1.00 1.67 1.00 i 3,557 3,137 3,221 ( 2,892 i i 5THD14 •O.K.• 5THD14 'O.K.' 0.523 0.599 Comments: None rmin = 1.00 5). 1 5t Floor - REAR ELEVATION Vseismic = ( 233 )X( 24/2 ) + ( )X( ) + ( )X( ) + ( )X( ) h = 2,796 Ib .................. 322 plf Governs Modified Vseismic = V I rmin = 4,660 Ib Vseismic = 4,660 + 8.67 = 537 plf < 640 'O.K.' <hlSe P2 with :oitrr:?x mu&Z111 plate and Vr dtameter anshoct Pnl No I L ft I H ft OTM, K-ft D±E D--W - Resisting Moment (RM) T-1):EE Due to Uniform Load, lb-ft temal Uplift, Ib Eiiml Corr. Arm, ft H / W Modifier Ratio r Uplift, lb Holdown - axe n D±E DfW . Type Check 1 2 5.67 3.00 10.00 10.00 18.3 12.1 9.7 6.4 5,940=(18'(23.5/2+1)+14.10)'5.67^2/2 1,663=(18'(23.5/2+1)+14'10)'3^2/2 0 i 0 0 0 i i 5.50 2.53 1.76 1.00 3.33 j 0.60 2,353 1,477 2,890 1,808 5THD14 'OK' 5TH014 'O.K.' 0.420 0.857 Comments: None rmin =' 0.60 6 ). 1 5t Floor - REAR OF M BATH Vseismic = ( 233 .._ )X( 24/2 _... _.. ____.....v......_._.___. ) + __._..._--...__.,._....____.. Vwind = ( 154- )x( 24/2 ) + ( 99 )X( 19/2 ) + ( 165 )X( 19/2 ) + ( 99 )X( 19/2 ) + ( )X( ) + EI ( )X( ) = e� ( )X( ) _ = 4,677 Ib .................. 468 plf Governs 3,416 Ib ............................ 342 plf Modified Vseismic= V / rmin = 4,677 Ib Vwind= V = 3,416 Ib Vseismic = 4,677 - 10.00 = 468 plf < 490 'O.K.• ;; VwinG = 3,416 + 10.00 = 342 plf < 490 'O.K.' Use. _ P3 with Min, 2xanahorboltsatmax.16"aoe> Pnl No I L ft I H ft OTM, K-ft _ Resisting Moment (RM) Due to Uniform Load, Ib-ft External Uplift, Ib Corr. Arm, ft H i W Ratio Modifier r 6 Uplift, Ib Holdown 6. in D±E i D+W D±E DtW DtE I DtW Type ';. Check 1 10.00 10.00 46.6 34.2 15,475=(18'(23.5/2+1)+8.10)'10^2/2 0 1 O i 9:5`D"too ILCING 1.Q0 ' 01_ 3,457 i 2,509 LA Q1 S FE7Y HTT4 •O.K.' p PA 0.307 Comments: None rmin _. Notes & Assumptions: - nLJk, I 1UN 1). Height -to -width (H / W) Ratio modifier (seismic)............ r = 2 ' bs / h for aspect ratios between 2r:1� to 3.5:1 (SDPWS Table 4.3.4) 2). Uplift force is determined by using net overturning force ( OTM - RM ); moment arm correction is applied forvplil -- �_�_ BY ____....._. CBC 2010 Alternative Basic Load Combinations (ASD), Sect. 1605.3.2 ................ Wind: (2/3)D t aW-,-Seism, ic: 0.9D t /1 4 �-DL-mullipfierforwi d .....! 0.67 7-M mulaplier.mr seismic .. 0.90 3). Shear wall deflection .............. 6xs = 8vh3 / EAb + vh / 1000G, + h:�s / b (SDPWS Eq. 4.3-1) Importance Factor, > ..... 1.00 4). Story Drift Limits, ASCE 7-05 Sect. 12.8.6 ................... 6x = Cd 6_ 11 < 0.025 hs, (Assume Occupancy Cat. I or II) Page: 3.20 17a3MW.XLS (Rev.0612012( Option One Consulting Engineers PROJ.: "5anterra" / Plan 3 J.N.: 0413-1753 SHEAR WALL (S.W.) / ELEMENT DESIGN California Building Code (CBC), 2010 Edifion / SDPWS-2008 / ASCE 7-05 7 ). 1 51; Floor - REAR OF GARAGE — . __......__.._.. ..._ ___.M..-_._...._, Vseismic = ( 99 -._............ __........ _..... _.... _......_. )X( 41/2 ___._____-.___.__._.-.. __ _ ) + __.._.___........... Vwind ( _ .._.._ )X( — ) + ( 99 )X( 41/2 ) + j ( 165 )X( 41/2 ) + u ( 65 )X( 20/2 ) + ( )X( } + d = 4,709 lb .................. 392 plf Governo 3,353 lb ............................ 282 plf Modified \Pseismic- V / rmin = ' 4,709 lb Vwind= V = 3,383 Ib Vseismic= 4,709 + 12.00 = 392 plf < 490 •O.K."1 V,x,(nd= 3,383 + 12.00 = 282 plf < 490 'OK' ,., .......... ._. �_....... �.... _. _- ......... Use. P3 with iitin. 2X mud s3tl slate and 1/2' diameter anchor bntta%£ tnax77 . ... Pnl No L ft I H ft OTM, K-ft DIE ! DIW Resisting Moment (RM) Due to Uniform Load, Ib-ft Extemal Uplift, ib DIE D±W Cor. Arm, ft H / W Modifier Ratio r Uplift, Ib DIE . i DIW Holdown Type Check bxe in 1 12.00 10.00 471 i 33.8 7,056 =(18'(2/2)+8'10)'12^2/2 0 ! 0 i 11.83 0.83 ; 1.00 i 3,444 2,462 5TH014 •O.K.' 0.355 Comments: rrrn= 1.00 8 ). 1 5t Floor - FRONT OF 5DRM.3 ............... .__......_..._.._...__......._.__..._..______.-.... Vseismic = ( 99 _..______._.._..__.....__.._._.__._..._._..__..._..._.,-___-- )X( 23/2 ) + -- _..___.___._.....____. Vwind ' ( 146 x .6/1.3 )X( 2312 ) ( 65 x 1/2 )X( 2012 ) + ( )X( ) + ( )X( ) + ! ( )x( ) + = 1,464 lb .................. 366 plf Governs 3 = 1,047 lb ............................ 262 pit ' Modified Vseismic= V / rmin = 1,829 lb Vwind = V = 1,047 lb 1 I Vseismic.=... 4.00 457 plf 490 + ..wnd, 4M.00 262 plf < 490 'D.K.• ...1,829 . any ..ame..Us_ ....P3er chor,bolt�rat max,l6"_ac.� W Pal No I L ft I H ft OTM, K-ft DtE 4 DtW Resisting Moment (RM) Due to Uniform Load, lb-ft Eztemal Uplift I6; DIE DIW I: Cori: Arm, ft H / W ;Modifier[__ Ratio r Upliftlb DIE j DIW Holdown Type Check axe to 1 4.00 10.00 14.6 10.5 1,840 =(18'(8/2+1)+14.10)'4^2/2 3.83 2.50 0.50 3,389 2,414 5THD14 •0.K' 0.826 Comments: None rmin = 0.80 9 ). 1 5t Floor - FRONT OF GARAGE .__...._....__...... .......__ Vseismic = ( 99 —._._.._.._._._._----.___.._.._._.,...___ )X( 22/2 .._,..._......_. _. ) + i Vwind = ( 165 x .811.3 )X( 2212 ) + I ( 65 x 1/2 )X( 20/2 ) + ' ( )X( u ( )X( ) + ( )X( ) + EI ( )X( i )X( ) = 1,414 lb ... ............ n/a plf Governs 1,117 lb ............ .......... n/a plf Modified V'selsmic= V / rmin = 1,414 lb Vwnd = V = 1,117 lb i V seismic = 1,414 0.00 = n/a plf Vyind = 1,117 + 0.00 = n/a _ ..._..__ _.... _. USe: (HF) Hardyframs(s)/t'anst(s) pet manufacturer apecNicatlons.±see .. _ notes below _ ' Pal L H OTM, K-ft Resisting Moment (RM) External Uplift, lb Corr. li / W Modifier Uplift Ib Holdown axe No ft ft DIE DtW Due to Uniform Load, lb-ft DtE ! DIW Arm, ft Ratio i r DIE D±W Type Check in GITY 0- ILE. ING & SAFE}' R-I y D PT. Comments: None USE (1) HFX_78x10 HARDY PANELS W/ 1-1/8" DiA. STD. A.Ba; CAP. = 1,8351bs ) rmin = 1 1.00` i--Uj--( >(�1°�.,i �Tr� eve vv 1 IVIV Notes & Assump...... ... _.... __._. __._..._........._... 1). Height -to -width (H / W) Ratio modifier (seismic)............ r = 2 ' bs / h for aspect ratios between 2:;1)to 3:5 1 (SDPWS Table 4.3.4) 2). Uplift force is determined by using net overturning force (OTM - RM ); moment arm correction is applied for upl1iR BY CBC 2010 Alternative Basic Load Combinations (ASD), Sect. 1605.3.2 ................ Wnd: (2/3)D t 61W Sefsm7c0:9D=±_EJ_1..4 � 3). Shear wall deflection .............. 6,e = 8vh3 / EAb + vh / 1000Gs + h3,, / b (SDPWS Eq. 4.3-1) 4). Story Drift Limits, ASCE 7-05 Sect. 12.8.6 ................... 6. = Ca 6„ / i < 0.025 h� (Assume Occupancy Cat 1 or 77) Page: 3.21 1783P3SW.XLS (Rev. 062012) Option One Consulting Engineers PROD.: "5anterra" / Flan 3 i CS = 0.11 — Section 12.8.1 J.N.: 0413-1783 I ¥¥ Spg = 1.00 Section 11.4.4 ; DRAG STRUT / COLLECTOR FORCE CBC 2010 Location = lot Floor - Left Elevation (5W#1) Shear Force, Fp = 5.21 kips Shear Force, (Fp) min = 5.21 kips Drag Length, Ldrag = 65 ft Vdiaphragm = Fp / Ldrag = 80 plf No. Segments, n = 3 S.W. Length, Lwall = 12 ft Vshear wail = Fp / Lwall = 434 plf Segment No. Length, ft Shear Wall ? Section Point Distance, ft Drag Force, kips 1 2 3 19 12 34 - -- ---- NO YE5 NO 0 1 2 3 _ -1.52 2.73 Use Minimum Strap = 5T6236 Strap Capacity = 3,576 Ibs > Max. Drag = 2,726 Ibs ... OKI 765% Max. Anchor Spacing = 73 inches O.C. Top Plates = 2-2x4 Pit. Capacity = 9,660 Ibs ... OKI 28% 3 — 2 24 Bf v m -2 { Distance, R SHEAR WALL SEGMENTS & DRAG STRUT ELEVATION (Conceptual Dwg.) DRAG Strut / COLLECTOR FORCE DIAGRAM (Conceptual Dwg.) Location = lot Floor- Right Elevation.(5W#2) Shear Force, Fp = 5.76 kips Shear Force, (Fp) min = 5.76 kips Drag Length, Ldrag = 65 ft Vdiaphragm — Fp / Ldrag = 89 plf No. Segments, n = 5 S.W. Length, Lwall = 14 ft Vshear wall = FP / Lwall = 412 plf Segment No. 1 2 3 4 5 Length, ft 5 8 38 6 8 Shear Wall ? NO YES NO YF5 NO Section Point Distance, ft Drag Force, kips 0 1 2 3 4 5 0 5 13 51 57 65 -0.44 2.14 -1.23 0.71 Use Minimum Strap = 5T6224 Strap Capacity = 2,362 Ibs > Max. Drag = 2,140 IDS ... OKI 91% Max. Anchor Spacing = 66 inches O.C. Top Plates = 2-2x4 Pit. Capacity = 9,660 Ibs ... OKI 22% ;...I T — 21-1 a--, C Distance, it SHEAR WALL SEGMENTS & DRAG STRUT ELEVATION (Conceptual Dwg.) DRAG Strut I COLLECTOR FORCE DIAGRAM (Conceptual Dwg.) Notes & Assumptions: CITY Y✓OF LA Q L Star TA N Cnpncity 1 e. rt 1). Anchor spacing based upon Simpson connector capacity (Ib)...... DF/ P t160 e%1):.�H9Aan o A35 F4L. (12).16�d= 1,705 2). Refer to latest edition of Simpson Connector catalog for strap/connector values. i"� / _C`5�16x,36S' " 1,705 3). Note that (12)-16d nails are basic plate splice per general structural notes. N S"" � R 0 V E M •-TA36 1,705 4). Force at shear line ( Fp ) at Allowable Stress Design (ASD) level per Shear Wall calculation. '��S��iuCT 24 2,362 5T6236 3,576 5). Anchor spacing based upon material SG = 0.50 Strap tension bases?upon SG_-_- 0.50B�, M5T48 4,938 Note: SG denotes Specific Gravity per NDS. - rn Cont-DBL-T. N Ito. 7,590 6). Assume building with Importance Factor, r = 1.0 and light -frame construction. Page: 3.22 1783P3SW.XLS (Rev. 09/2012) (0 Option One Consulting Engineers PROJ.: "5anterra" / Plan 3 J.N.: 0413-1783 CS = 0.11 Section 12.8.1- 3 i SDS = 1.00 Section 11.4.4 DRAG STRUT / COLLECTOR FORCE CBC 2010 Location = let Floor - Rear Elevation (5W#5) Shear Force, Fp = 2.80 kips Shear Force, (Fp) min = 2.80 kips Drag Length, Ldrag = 59.75 ft Vdiaphragm = Fp / Ldrag = 47 plf No. Segments, In = 5 S.W. Length, Lv,,all = 8.75 ft Vshearwaii = Fp / Lwall = 320 plf Segment No. Length, ft Shear Wall ? 1 2 3 4 5 _ 26 5.75 12 3 13 NO YES NO YES NO Section Point 0 1 2 3 4 5 Distance, ft 0 26 31.75 43.75 _ 46.75 59.75 Drag Force, kips -1.22 0.35 -0.21 0.61 Use Minimum Strap = (12)-16d Max. Anchor Spacing = 125 inches O.C. Strap Capacity = 1,705 Ibs > Max. Drag = 1,217 Ibs ... OKI 71% Top Plates = 2-2x4 Pit. Capacity = 9,660 Ibs ... OKI 13% - — - . 0 0 i -f.51--Distance, ft 0 SHEAR WALL SEGMENTS & DRAG STRUT ELEVATION (Conceptual Dwg.) DRAG Strut I COLLECTOR FORCE DIAGRAM (Conceptual Dwg.) Location = let Floor - Rear of M. Bath (SW#6) Shear Force, Fp = 4.68 kips Shear Force, (Fp) min = 4.68 kips Drag Length, Ldrag = 59 ft Vdiaphragm = Fp / Ldrag = 79 plf No. Segments, n = 3 S.W. Length, Lwall = 10 ft Vshearwaii= Fp Lwalt. = 468 plf Segment No. 1 2 3 Length, ft 41 10 8 Shear Wall ? NO YES NO Section Point D 1 2 3 Distance, It — D— - 41 51 59�—---------- ---- ---------- Drag Force, kips -3.25 0.63 Use Minimum Strap = 5T6236 Strap Capacity = 3,576 Ibs > Max. Drag = 3,250 Ibs ... OKI 91% Max. Anchor Spacing = 74 inches O.C. Top Plates = 2-2x4 Pit. Capacity = 9,660 Ibs ... OKI 34% SHEAR WALL SEGMENTS & DRAG STRUT ELEVATION (Conceptual Dwg.) e x a r—i--- a -3 o Distance, It ©RAG`StnR'/`COLLEGTOR:FORCE DIAGRAM (Conceptual Dwg.) r,r t 1--h QU Notes &Assumptions: E3UFl DjNG & SAFETY 1). Anchor spacing based upon Simpson connector capacity (lb) .. J/51' (160%)gHI and/or. /or- fA355` ,455 2). Refer to latest edition of Simpson Connector catalog for strap/connector values, 1— R � J �/ 3). Note that (12)-16d nails are basic plate splice per general structural notet FOR CONS I HUCTR 4). Force at shear line ( Fp ) at Allowable Stress Design (ASD) level per Sher Wall calculation. IDATE 5). Anchor spacing based upon material SG = 0.50 ; Strap tension based-upon.SG_ = o.50Y—'--- Note: SG denotes Specific Gravity per NDS. 6). Assume building with Importance Factor, z = 1.0 and light -frame construction. S,1r. p Capacity (1"2)�-ld& 1,705 '516x36" 1,705 �NTA36 1,705 5T6224 2,362 5T6236 3,576 �MSTAB_--_4,938 ruff .-®5LJT.Plts. 7,590 Page: 3.23 1783P3SW.XLS (Rev. 09/2012) 01, Option One Consulting Engineers PROJ.: "Santerra" /Plan 3 LSDS 0.11 Section 12t3-1J.N.: 0413-1783 =� 1.00 ^ Section l Section IN 4 DRAG STRUT / COLLECTOR FORCE CBC 2010 Location = lot Floor - Rear of Garage (SW#7) Shear Force, Fp = 4.71 kips Shear Force, (Fp) min = 4.71 kips Drag Length, Ldrag = 61 ft Vdiaphragm — Fp / Ldrag = 77 plf No. Segments, n = 3 S.W. Length, Lwail = 12 It Vshearwall= Fp Lwali = 392 plf Segment No. Length, ft Shear Wall ? Section Point Distance, It Drag Force, kips 1 2 3 _ 43 12 6 NO YES NO 0 1 2 3 - O-- 43 55 --- 61 -3.32 0.46 Use Minimum Strap = 5T6236 Strap Capacity = 3,576 Ibs > Max. Drag = 3,319 Ibs ... OKI 937 Max. Anchor Spacing = 76 inches O.C. Top Plates = 2-2x4 Pit. Capacity = 9,660 lbs ... OKI 34% U a a -2 --r—t �°t" — o` Distance,ft SHEAR WALL SEGMENTS & DRAG STRUT ELEVATION (Conceptual Dwg.) DRAG Strut I COLLECTOR FORCE DIAGRAM (Conceptual Dwg.) Location = let Floor - VOID, NOT U6ED Shear Force, Fp = 4.68 kips Shear Force, (Fp) min = 4.68 kips Drag Length, Ldrag = 59 ft Vdiaphragm - Fp / Ldreg = 79 plf No. Segments, n = 3 S.W. Length, Lwali = 10 ft Vshear wail = Fp / Lwall = 468 plf Segment No. Length, ft Shear Wall ? Section Point Distance, ft Drag Force, kips 1 2 3 NO YES NO 0 1 2 3 0 41 51 59 -3.25 0.63 Use Minimum Strap = 5T6236 Strap Capacity = 3,576 Ibs > Max. Drag = 3,250 Ibs ... OKI 91% Max. Anchor Spacing = 74 inches O.C. Top Plates = 2-2x4 Pit. Capacity = 9,660 IDS ... OKI 34% U -0 _--. Disfance,ft SHEAR WALL SEGMENTS & DRAG STRUT ELEVATION (Conceptual Dwg.) ��i�u1►NU Notes & Assumptions: & SAFE-n 1). Anchor spacing based upon Simpson connector capacity (lb)...... DF/5P (160%): IHan�d or A305�485, 2). Refer to latest edition of Simpson Connector catalog for strap/connector dues. FOR CONSTRU ral 3). Note that (12)-16d nails are basic plate splice per general structunotes CT 4). Force at shear line ( Fp ) at Allowable Stress Design (ASD) level per Shear UV0II calculation. BY 5). Anchor spacing based upon material SG = 0.50 ; Strap tension based upon SG Note: SG denotes Specific Gravity per NDS. 6). Assume building with Importance Factor, i = 1.0 and light -frame construction. S1rWP,PT. Capacity '(1)-16d 1,705 Gi516x36" - YA36 1,705 1,705 5T6224 2,362 5T6236 3.576 _— 48 4,938 Cont. DBL T.Plto. 7.590 Page: 3.24 1783P3SW.XLS (Rev. 09/2012) Option One Consulting Engineers PROJ.: "5anterra" / Flan 3 J.N.: 0413-1783 CONVENTIONAL FOUNDATION DESIGN CEIC Section 1805 12 inch wide x 12 inch deep cont. ft'g (1-Story Footing) inch wide x inch deep cont. ft'g 18 inch. deep (thick).pad footing s min. (1) - #4 bar at top & bottom of all footings, typical U.N.O. Min. Max. Soil Bearing Pressure, SBP ......... 1,500 ---* 3,000 psf Allow. Stress Increase ................. 1.20 ASCE 7-05 Allow. SBP Increase ................... 100 psf / ft. depth When footing base is below ......... 1.0 feet Weight of Concrete, Wc ................. 145 psf Weight of Soil, W . ........................ 110 psf Allow. SBP Increase ..................... loo psf /ft. width When footing is wider than ............. 1.0 feet (1 -Story Footing) (Worst case) 0 (worst case) Roof ....... 38 30/2 570 38 0 Wall........( & 10 80 14 0 Floor.......( 52 0 0 52 0 Storage ... 20 10/2 100 20 0 Total....... 750 plf 0 plf I Req'd Footing Width .......... LOAD I [SBP - (Wc - WS)] Max. Point Load ............... [SBP - (W,- WJ] x L x W 1-Story Footing ........ 6.1 in < 12 in ....... OK! 1-Story Footing ............. 4,639 lb. 2-Story Footing ........ 0.0 in > 0 in ....... NG! 2-Story Footing ............. 0 lb. Required Pad Size ............ LOAD I [SBP - (W, - WJ] (see charts below): Load Case Minimum Pad Size Description Location: D+L P, (lb.) !D+L+E 1 P, (1b.) D+L D+L+E (in 2) (in 2) KXN. FROM G.T. AT GARAGE 6,500 27 n1a Min.4 Z.. Abv1. . Footing Projected Length > NTS Notes: 1). Use SBP for D + L load case; use SBP x Allow. Stress Increase for D + L + E load case. 2). An allowable stress increase of 1.2 can be used with special load combinations per ASCE 7-05 Section 12.4.3.3. References: .... ....... .... . 1). California Building Code (CBC), 2010 Edition 2). ASCE 7-05 Allowable Load, P Pad Footing Size (in 2) R bar Req'd. (Bolt. E/W) D.+ L (,b) D+L+E (lb. 6,.4601 7,780 24_ (2) 44 8'503 9,998 27 (2) 44 10,406 12,531 30 (2) 44 12,781 15,435 —i-5—,379 15,bEl� 14,50511 36 44 T11 BU 2 3 21,6521 021 r En— 2P,031 A DI 25,172 29,040 AU3b 305 4 4 4 9,4— ,o _467 1-4) I Wr-- 33,235 40,00 b 51 46'— 37,766 42,643 j R45ry4E 51-,330— 54 1757— roo 4) 45 4 __ 47,575 57,625 53,471 64,358 63 (5) 45 PT. I ITA TA 1783P3FD1.xls (Rev. 12/2010) Page: 3.25 Option One Consulting Engineers PLAN 4 4 CITY OF LA QUINTA BUILDING & SAFETY DEPT. APPROVED FOR CONSTRUCTION 1783TITLEALS Page: 4.0 Option One Consulting Engineers PROJ.: "5anterra" / Plan 4 BEAM DESIGN J.N.: 0413-1783 (N05 2005) (1) NANA-DOOR AT REAR OF FAMILY Member Length, L (ft)..................... 20.25 Max. Allowable Deflection ............. L / 360 Load Duration Factor, CD ............... 1.25 Size Factor Coefficient, C ....................... 0.96 Volume Factor, Cv......................... 1.00 Trib. Area for Roof LL Reduction, Pt (ft).... n/a Roof Load = ( 35.0 psf ) x ( ) ft + and Section Properties Partition = ( 10.0 psf ) x ( 10 ) ft M.O.E., ksi ............... 1,800.0 Floor Load = ( 52.0 psf ) x ( ) ft F'b, psi ...................... 2,867.8 Attic Storage = ( 20.0 psf ) x ( ) ft F', psi ...................... 331.3 Beam Wt. = 25.6 plf Depth, d, in .............. 18.000 Total Uniform Load, wTb .............................. 125.6 plf Width, b, in ............... 5.125 Rxn, (Left), lb........... 1,272 Rxn, (Right), lb......... 1,272 Point Loads P� at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P2 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P3 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P4 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE Demand Moment......... 6.4 ft-k ;.S req•d................... 26.9 < 276.8 Ina *O.K.* Demand Shear............ 1,083.E lb. A req•d................... 4.9 < 92.3 in *O.K.* Demand M.O.I............ 391.2 in Aactuai.................• 0.106 < 0.675 in *O.K.* USE 5A2& x 18 1 AL T 5.25 x. 18 PSL (2) HDR. AT RIGHT OF PATIO Member Length, L (ft)..................... 4.25 Load Duration Factor, CD ............... 1.25 Uniform Loads Roof Load = ( 38.0 psf) x ( 30/2 Partition = ( 14.0 psf) x ( 2 Floor Load = ( 52.0 psf ) x ( Deck Load = ( 15.0 psf) x ( Beam Wt. = 8.4 Total Uniform Load, wTL Point Loads Max. Allowable Deflection .............. L / 360 Size Factor Coefficient, C....................... 1.00 Trib. Area for Roof LL Reduction, A (ft)..... n/a Allowable Stresses, Rxns., + 1 ) ft + and Section Pro erties ft M.O.E., ksi ............... 1,600.0 ft F'b, Psi ...................... 1,500.0 ft F'v, Psi ...................... 212.5 plf Depth, d, in .............. 5.500 644.4 plf Width, b, in ............... 5.500 Rxn, (Left), lb........... 1,369 Rxn, (Right), lb......... 1.369 1 P2 at ............... 0.00 ft LL+DL - PLL+DL - 0.0 0.0 Ib............ N Ty 1 ' lb............ NNL g� � - A P3 at ............... 0.00 ft PLL+DL = 0.0 Q V ^' lb............ 1`i'dDI NG & i+ V r q SA'E" �EP7; P4at............... 0.00 ft PLL+DL - 0.0 lb............ NONEAPpF3 Demand Moment......... 1.5 ft-k Sraq'd...............!... 11.6 pf3(�� ION *0, ,* Demand Shear............ 1,074.0 lb. Areq'd.............. ..DAr�F7�6� < 30.3 in *0 ,* Demand M.0.1............ 20.9 in ---°' Dactual ................. O D39 -s 0.1 in *0 K.* U S E 6 x 6 D.F. #1 ALT NA 1783P4B1.x1s (Rev.0112012) Page: 4.1 Option One Consulting Engineers PROJ.: "5anterra" / Plan 4 BEAM DESIGN J N . 0413-1783 ( voe Zoos) (3) HDR. AT REAR OF DINING Member Length, L (ft)..................... 5.25 Max. Allowable Deflection ............. L / 360 Load Duration Factor, CD ............... 1.25 Size Factor Coefficient, Cf...................... 1.00 Trib. Area for Roof LL Reduction, R (ft).... n/a Uniform Loads Allowable Stresses, Rxns., Roof Load = ( 38.0 psf) x ( 36/2 + 1 ) ft + and Section Properties Partition = ( 14.0 psf ) x ( 2 ) ft M.O.E., ksi ............... 1,600.0 Floor Load = ( 52.0 psf ) x ( ) ft F'b, psi ...................... 1,500.0 Attic Storage = ( 20.0 psf) x ( 8/2 ) ft F'V, psi ...................... 212.5 Beam Wt. = 8.4 plf Depth, d, in .............. 5.500 Total Uniform Load, wTb .............................. 838.4 plf Width, b, in ............... 5.500 Rxn, (Left), lb........... 2,201 Rxn, (Right), lb......... 2,201 Point Loads P, at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P2 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P3 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P4 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE Demand Moment......... 2.9 ft-k Sr q'd................... 23.1 < 27.7 in *O.K.* Demand Shear............ 1,816.6 lb. Afeq'd................... 12.8 < 30.3 i n 2 *O.K.* Demand M.O.I............ 51.2 in ----- - �"Aaa.at•••••.....••••••. 0.117 < 0.175 in *O.K.* -US f 6 x 6 ©:F #1 -A -LT NA (4) HDR. AT REAR OF B0NU5 Member Length, L (ft)..................... 5.25 Load Duration Factor, CD ............... 1.25 Uniform Loads Roof Load = ( 38.0 psf) x ( Partition = ( 14.0 psf) x ( Floor Load = ( 52.0 psf ) x ( Attic Storage = ( 20.0 psf) x ( Beam Wt. _ 7 us Max. Allowable Deflection .............. L / 360 Size Factor Coefficient, Cf...................... 1.00 Trib. Area for Roof LL Reduction, A(ft)..... n/a Allowable Stresses, Rw ft + and Section Pro r ie ft M.O.E. ksi ............... 16� )ft )ft wTb .............................. 39.5 plf F'b, Psi ...................... 1,500.0 F', Psi ...................... 212.5 Depth, d, in .............. 7.500 Width, b, in ............... 5.500 Rxn, (Left), lb........... 2,937 Rxn, (Right), lb......... 1.032 P, at ............... 0.75 ft PLL+DL = 1,026.0 lb...r-----3&2&2:1,5 P2 at ............... 1.50 P3 at ............... 0.00 ft ft PLL+DL = 2,736.0 PLL+DL = 0.0 lb.... .... C�. 135W/ 6�2LA QU I NTA lb.........., •. 0 E P4 SDI• =SIG & SAFETY DEPT. at ............... 0.00 ft PLL+DL = 0.0 lb...Y......... ONE ..,. Demand Moment......... 3.5 ft-k --os req ......... . F(2WCr&STrpCTION O.K.* Demand Shear............ 2,912.6 lb. Areq•d........ 20.6 < 41.3 in O.K.* Demand M.O.I............ 49.9 in4 A., ............... •; _ 0,045 < 0.175 in *O.K.* U-S E 6" x . 8 D.F A L T--F NA 1783P461.x1s (Rev.0112012) Page: 4.2 0)" Option One Consulting Engineers PROJ.: "5anterra" / Plan 4 BEAM DESIGN J.N.: 0413-1783 (s) HDR. AT LEFT OF FAMILY ( N05 2005) Member Length, L (ft)..................... 4.25 Max. Allowable Deflection ............. L / 360 Load Duration Factor, CD ............... 1.25 Size Factor Coefficient, C ....................... 1.30 Trib. Area for Roof ILL Reduction, A (ft).... n/a Uniform Loads Allowable Stresses, Rxns., Roof Load = ( 38.0 psf ) x ( 46/2 ) ft + and Section Properties Partition = ( 14.0 psf ) x ( ) ft M.O.E., ksi ............... 1,600.0 Floor Load = ( 52.0 psf) x ( ) ft F'b, psi ...................... 1,381.3 Attic Storage = ( 20.0 psf ) x ( 14/2 ) ft F'v, psi ...................... 225.0 Beam Wt. = 7.0 plf Depth, d, in .............. 7.250 Total Uniform Load, wTb .............................. 1,021.0 plf Width, b, in ............... 3.500 Rxn, (Left), lb........... 2,170 Rxn, (Right), lb......... 2,170 Point Loads P, at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P2 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P3 at ............... . 0.00 ft PLL+DL = 0.0 lb............. NONE P4 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE Demand Moment......... 2.3 ft-k Sf.q.d................... 20.0 < 30.7 in *O.K.* Demand Shear............ 1,552.9 lb. A,q•d................... 10.4 < 25.4 in *O.K.* Demand M.O.I............ 33.1 in Aactuat••..•........••••• 0.042 < .0.142 in *O.K.* (6) HDR. AT LEFT OF B1)RM.2 Member Length, L (ft)..................... 3.25 Load Duration Factor, CD ............... 1.25 Uniform Loads Roof Load = ( 38.0 psf ) x ( 30/', Partition = ( 14.0 psf ) x ( 2 Floor Load = ( 52.0 psf ) x Attic Storage = ( 20.0 psf ) x Beam Wt. = 8.4 Max. Allowable Deflection .............. L / 360 Size Factor Coefficient, C....................... 1.00 Trib. Area for Roof LL Reduction, A(ft)..... n/a Allowable Stresses, Rxns.; + 1 ) ft + and Section Pro erties ft M.O.E., ksi ............... 1,600.0 ft Fb, Psi ...................... 1,500.0 ft F'v, Psi ...................... 212.5 plf Depth, d, in .............. 5.500 Total Uniform Load, wTb .............................. 644.4 plf Width, b, in ............... 5.500 Rxn, (Left), lb........... 1,047 Rxn. (Riaht). lb......... 1.047 Point Loads i at ............... 0.00 ft PLL+DL - O.0 lb............ --_NO E®_ P2 at ............... 0.00 ft P3 at 0.00 ft PLL+DL = PLL+DL - 0.0 0.0 lb. ............ (NONNE CIF� QUINTq lb. t i ............... P4 at ............... 0.00 ft PLL+oL - 0.0 ...... I... ONE -f Ib............`N'ONEDING & SSAFETY DEPT. Demand Moment......... 0.9 ft-k S,eqd,...........(..... 6.8"i < t27:7 1in,3 * K.* i,K.* Demand Shear. ........... 751.8 Ib. Afegd.................. 5.3 <Ca{�1'�OUCr ION * Demand M.O.I............ 9.3 in 4 """-`""`"""`�" 'Aactuat...••.•.•......•• �0.013 < 0.108 in * c ,K,* .<, - - - RV USE 6 x ALT i NA 1783MI.As (Rev.0112012) Page: 4.3 Option One Consulting Engineers PROJ.: "Santerra" / Plan 4 BEAM DESIGN J.N.: 0413-1783 (Nn52005) (7) HDR. AT LEFT OF 131)RM.2 Member Length, L (ft)..................... 3.25 Load Duration Factor, CD ............... 1.25 Uniform Loads Max. Allowable Deflection ............. L / 360 Size Factor Coefficient, Cf...................... 1.00 Trib. Area for Roof LL Reduction, A (ft).... n/a Allowable Stresses, Rxns., ROOf Load = ( 38.0 psf) x ( ) ft + and Section Properties Partition = ( 14.0 psf ) x ( 2 ) ft M.O.E., ksi .............. 1,600.0 Floor Load = ( 52.0 psf ) x ( ) ft F'b, psi ...................... 1,500.0 Attic Storage = ( 20.0 psf ) x ( ) ft F',,, psi ...................... 212.5 Beam Wt. = 11.5 plf Depth, d, in .............. 7.500 Total Uniform Load, wT.. .............................. 39.5 plf Width, b, in ............... 5.500 Rxn, (Left), lb........... 1,066 Rxn, (Right), lb......... 1,895 Point Loads P, at ............... 2.00 ft PLL+DL = 2,262.9 lb............. "N. FROM G.T. P2 at ............... 2.50 ft PLL+DL = 570.0 lb............. 38*30/2*1 P3 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P4 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE Demand Moment......... 2.0 ft-k Sr q•d.................. 16.0 < 51.6 in *O.K." Demand Shear............ 1,570.5 lb. Afeq,d................... 13.2 < 41.3 in "O.K." Demand M.O.I............ 18.2 in4 A.,_t..................••. 0.010 < 0.108 in *O.K." USE x 8 ALT NA (8) HDR. AT RIGHT OF BDRM.3 Member Length, L (ft)..................... 5.25 Load Duration Factor, CD ............... 1.25 Max. Allowable Deflection..... ......... L / 360 Size Factor Coefficient, C....................... 1.00 Trib. Area for Roof LL Reduction, A(ft)..... n/a Roof Load = ( 38.0 psf) x ( 30/2 + 1 ) ft + Partition = ( 14.0 psf) x ( 2 ) ft Floor Load = ( 52.0 psf) x ( ) ft Attic Storage = ( 20.0 psf ) x ( ) ft Beam Wt. = 8.4 plf Total Uniform Load, wT.. .............................. 644.4 plf Point Loads and Section Properties M.O.E., ksi ._............ 1,600.0 F'b, Psi ...................... 1,500.0 F', Psi ...................... 212.5 Depth, d, in .............. 5.500 Width, b, in ............... 5.500 Rxn, (Left), lb........... 1,692 Rxn. (Rioht). lb......... 1.692 at ............... 0.00 ft PLL+DL - 0.0 lb....... N G N Pl at ............... 0.00 P3 at 0.00 ft ft PLL+DL - PLL+DL - 0.0 Ib.............IN 0.0 Ib. NONE -r-�, CUINTA t OF NO�IJ(EeILC^INO ............... P4 at ............... 0.00 ft PLL+DL - 0.0 lb.............ONE & ETY DEPT. k Demand Moment......... 2.2 ft-k Sregd..................I _ 17. = '� ` 7`'� k' t- *O.K " OFF Demand Shear............ 1,396.2 lb. A req'd.................. CQ VTR �TION 9.9 < 0`3 0, Demand M.O.I............ 39.3 in 4 Y AacwM..........•••..• 0.090 < 0.175 in *Q, �,, USE 6 x 6 QF.# ALT NA 1783P461.x1s (Rev.0112012) Page: 4.4 Option One Consulting Engineers PROJ.: "5anterra" / Plan 4 BEAM DESIGN J N • 0413-1783 (N932005) (9) HDR. AT FRONT OF PORCH Member Length, L (ft)..................... 14.50 Max. Allowable Deflection .............. L / 360 Load Duration Factor, CD ............... 1.25 Size Factor Coefficient, Cf...................... 1.10 Trib. Area for Roof ILL Reduction, A (ft).... n/a Uniform Loads Allowable Stresses, Rxns., Roof Load = ( 38.0 psf ) x ( 4.5/2 + 1 ) ft + and Section Properties : . Partition = ( 14.0 psf ) x ( ) ft M.O.E., ksi ............... 1,600.0 Floor Load = ( 52.0 psf ) x ( ) ft F'b, psi ...................... 1,165.8 Attic Storage = ( 20.0 psf ) x ( ) ft F'v, psi ...................... 225.0 Beam Wt. = 10.9 plf Depth, d, in .............. 11.250 Total Uniform Load, wTl, .............................. 134.4 plf Width, b, in ............... 3.500 Rxn, (Left), lb........... 975 Rxn, (Right), lb......... 975 Point Loads P, at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P2 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P3 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P4 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE Demand Moment......... 3.5 ft-k Sfegd................... 36.3 < 73.6 in *O.K.* Demand Shear............ 848.7 lb. A feq'd................... 5.7 < 39.4 in *O.K.* Demand M.O.I............ 172.9 in A actual .................. 0.201 < 0.483 in O.K. USE 4 x 12 A L T 3.5 x 9.5 LSL (1.3E) (1o) 2-CAR GARAGE DOOR HEADER Member Length, L (ft)..................... 16.50 Load Duration Factor, CD ............... 1.25 Uniform Loads Max. Allowable Deflection .............. L / 360 Size Factor Coefficient, Cf...................... 1.10 Trib. Area for Roof LL Reduction, A(ft)..... n/a Roof Load = ( 38.0 psf) x ( 2/2 + 1 ) ft + Partition = ( 14.0 psf ) x ( 3 ) ft Floor Load = ( 52.0 psf) x ( ) ft Attic Storage = ( 20.0 psf ) x ( ) ft Beam Wt. = 10.9 plf Total Uniform Load, wTt. .............................. 128.9 plf Point Loads Allowable. Stresses; Rxns., and Section P_ ro Parties M.O.E., ksi ............... 1,600.0 F'b, Psi ...................... 1,168.8 F'v, Psi ...................... 225.0 Depth, d, in .............. 11.250 Width, b, in ............... 3.500 Rxn, (Left), lb........... 1,064 Rxn. (Right). lb......... 1.064 P at .............. 0.00 ft P --- P2at............... 0.00 ft PLL+DL _ 0.0 lb...... .... N6NECI I i OF P3 at ............... 0.00 P4 0.00 ft ft PLL+DL - 0.0 PLL+DL = lb............. NONE , IAIU��TA (+I`D��O &SAFETY DEPT. at ............... 0.0 lb............. NONE Demand Moment......... 4.4 ft-k--4»S req•d................... 45.1 '� FOR R CZIN S' T� 3 � * K Demand Shear............ 942.9 Ib. A fegd................... 6.3 .�UCTIO� * < 39.4 m . K. Demand M.O.L ........... 244.4 in4 Aactuab••••.••••••.•••. 0:32.4 < 0,550 in *O.K.* 1-0-SY-7. 4 x 12 Df.. #2 A L T 3.125 x 12 GLB 1783P481.x1s (Rev.0112012) Page: 4.5 Option One Consulting Engineers PROJ.: "5anterra" / Plan 4 BEAM DESIGN J.N.: 0413-1783 (NO5 2005) (11) NANA-DOOR AT FRONT OF OPT. ENTRY Member Length, L (ft)..................... 14.25 Max. Allowable Deflection ............. L / 360 Load Duration Factor, CD ............... 1.25 Size Factor Coefficient, Cf...................... 0.99 Volume Factor, Cv......................... 1.00 Trib. Area for Roof LL Reduction, Pf (ftz).... n/a Uniform Loads Allowable Stresses, Rxns., Roof Load = ( 38.0 psf ) x ( 4/2 ) ft-, and Section Properties Partition = ( 10.0 psf) x ( 10 ) ft M.O.E., ksi ............... 1,800.0 Floor Load = ( 52.0 psf) x ( ) ft F'b, psi ...................... 2,961.0 Attic Storage = ( 20.0 psf) x ( ) ft F',, psi ...................... 331.3 Beam Wt. = 19.2 plf Depth, d, in .............. 13.500 Total Uniform Load, wTb .............................. 195.2 plf Width, b, in ............... 5.125 Rxn, (Left), lb........... 1,391 Rxn, (Right), lb......... 1,391 Point Loads P, at ............... 0.00 ft PLL+DL - 0.0 lb............. NONE P2 at ............... 0.00 ft PLL+DL - 0.0 lb............. NONE P3 at ............... 0.00 ft PLL+DL - 0.0 lb............. NONE P4 at ............... 0.00 ft PLL+DL - 0.0 lb............. NONE Demand Moment......... 5.0 ft-k Sreq'd................... 20.1 < 155.7 in *O.K.* Demand Shear............ 1,171.4 lb. Arq'd................... 5.3 < 69.2 in *O.K.* Demand M.O.I............ 211.8 in Aactuat.................. 0.096 < 0.475 in *O.K.* USE 5.125 ° x 13 a GRB ,F k A L T 5.25 x 14 PSL (12) HDR. AT RIGHT OF GARAGE (WORST CASE) Member Length, L (ft)..................... 2.75 Max. Allowable Deflection.............. L / 360 Load Duration Factor, CD ............... 1.25 Size Factor Coefficient, C ....................... 1.00 Trib. Area for Roof LL Reduction, A(ft)..... n/a Uniform Loads Allowable Stresses, Rxns., Roof Load = ( 38.0 psf) x ( ) ft + and Section Properties Partition = ( 14.0 psf ) x ( 2 ) ft M.O.E., ksi ............... 1,600.0 Floor Load = ( 52.0 psf) x ( ) ft F'b, psi ...................... 1,500.0 Attic Storage = ( 20.0 psf) ) x ( ) ft F', psi ...................... 212.5 Beam Wt. = 11.5 plf Depth, d, in .............. 7.500 Total Uniform Load, wTb .............................. 39.5 plf Width, b, in .............. 5.500 Rxn, (Left), lb........... 6,965 Rxn, (Right), lb......... 1,590 Point Loads P, at ............... 0.50 ft PLL+DL = 8,446.0 lb............. 31-3G/ +20" 14/2)`'20:5/� P2 at ............... 0.00 ft PLL+DL = 0.0 lb. ....... I.... NONE OF LA d U I 1 V TA P3at............... 0.00 ft PLL+DL = 0.0 lb. ....... .....ENONEDING & SAFETY DEPT. P4 at ............... 0.00 ft PLL+DL = 0.0 lb NONE> ---) ............ -, X �1-� 1P R Demand Moment......... 3.4 ft-k Sfeq'd.................. 27 i i i�1i ION *O K.* Demand Shear............ 1,565.2 lb. Areq'd.••••••.•.•.•1..... 11.0 < 41.3 in *O.K.* Demand M.O.I............ 23.3 in4 0 C'i9. 1 < 0. in actual•••• .• .K. USE G ALT NA 1783P4B1.x1s (Rev.01/2012) Page: 4.6 Ct Option One Consulting Engineers PROJ: "5anterra" / Plan 4 J.N.: 0413-1783 LATERAL FORCE ANALYSIS - EARTHQUAKE LOADS ASCE 7-05 Section 12.8: EQUIVALENT LATERAL FORCE PROCEDURE Site & Building Data (ASCE 7-05 Chapter 11 & 12) SS ....... 0.2 Spectral Response Acc........... Per USGS Maps ................ Figures 22-1 to 22-14 ............ 1.50 S1 ....... 1.0 Spectral Response Acc........... Per USGS Maps ................ Figures 22-1 to 22-14 ............ 0.60 SC ...... Site Classification ....................... Per USGS Maps ................ Table 20.3-1 ......................... D Fa ........ Site Coefficient (short) .................. Per USGS Maps ................ Table 11.4-1 .....................:... 1.00 F„ ......1, Site Coefficient (1-sec.) ............... Per USGS Maps ................ Table 11.4-2 ................._... 1.00 SMS • • • • • Max. Considered EQ (short period) MCEs = Fa*Ss .................... Equation 11.4-1 .................... 1.50 SM1 ...... Max. Considered EQ (1-sec. period) MCE, = Fv*S, ................... Equation 11.4-2 ................. 0.60 SDS • • • •. Design Spectral Response (short period) = 2/3*SMs .................. Equation 11.4-3 .................... 1.00 SD1 . • • • • . Design Spectral Response (1-sec. period) = 2/3*SM, ................. Equation 11.4-4 .................... 0.40 O.C..... Occupancy Category .......................................................... Table 1-1 ............................. II IE ........ Seismic Importance Factor .................................................. Table 11.5-1 ........................ 1.00 R ......... Response Modification Coefficient ......................................... Table 12.2-1 ......................... 6.50 SDC .... Seismic Design Category .................................................... Table 11.6-1, 2 ..................... D Structure Period (ASCE Section 12.8.2 Ct ......... Seismic Coefficient ..................... Table 12.8-2 ..................... 0.020 Exp., x ........... 0.75 TL ........ Long -Period Transition ................ Figure 22-15 ..................... 12 sec. hn ........ Maximum Building Height (Mean Roof Height) ......................... 15.00 feet Ta ........ Fund. Period = Ct*hnx .................. Eq. 12.8-7 ........................ 0.15 sec. Design Base Shear (ASCE Section 12.8.1) f A50 - Allowable 5rrese Design Note:....... Alternate Basic Load Combinations, CBC Sect. 1605.3.2, Eq. 16-20 .................. D + L + 5 + E / 1.4 V ......... Design Base Shear = (SDs*IE/R)*W / 1.4.................................. Eq. 12.8-2 ...... 0.1099 X WDL Governs VMax • • • • Max. Base Shear _< (SD,*IE/R*T)*W / 1.4.................................. Eq. 12.8-3 ...... 0.2884 X WDL VMax • • • • Max. Base Shear _< (SD,*TL*IE/R*T)*W / 1.4............................. Eq. 12.8-4 ...... 22.6988 X WDL n/a VMin • • • • . Min. Base Shear >_ (0.044SDs)*I*W / 1.4 >_ (0.01)*W / 1.4............ Eq. 12.8-5 ...... 0.0314 x WDL n/a VMin • • • • • Min. Base Shear >_ (0.5*S,*IE/R)*W / 1.4.................................. Eq. 12.8-6 ...... 0.0330 X WDL Vertical Distribution of Force (AS Fx ......I. Vertical Force Distribution k ......... Exponent .... Section 1 ........ Eq. 12.8-12 .....1. See attached Note: Per Section 12.3.1.1 of ASCE 7-05, all wood structural panel diaphragms one- and two-family residential buildings of light -frame construction. CITY OF LA QUINTA U 1 L//��Q.II W q v � C,fj-/�_" E�'RT lation�for.rh�a�r dls ribudon D consldeOR CONSTRUCTION for I DATE gy Building Department Requirements Building Code ..................................... California Building Code (CBC), 2010 Edition Wind Speed & Exposure .................... V35 85 mph (3 sec. gust speed), Exposure "C" Snow Load ......................................... N/A Page: 4.7 1783P4L1_CBC2010.x1s (Rev. 07/2012) C�) Option One Consulting Engineers PROJ: "5anterra" / Flan 4 J.N.: 0413-1783 q LATERAL FORCE ANALYSIS - EARTHQUAKE LOADS Supplement No. 2 - Design Base Shear V(SDS) V min Equivalent Lateral Force Procedure (ASCE 7-05, Section 12.8) T.,=SD1/SDs Period, T (sec.) Region 1: Short period range / constant spectral response acceleration Region 2: Long period range / constant spectral response velocity Region 3: Very long period range / constant spectral response displacement ASCE 745 Section 12.8: Equivalent Lateral Force Procedure Design Base Shear, V.................................. Cr, " W Seismic Response Coefficient, CS .................. Sos / (R / I) Max. Coefficient, CS .............. (T <_ TL) ............ Sp, / T (R / I) Max. Coefficient, CS .............. (T > TJ ............ Sp, TL / Tz (R / I) Min. Coefficient, Cs ...................................... 0.044SDS-1 >_0.01 Min. Coefficient, Cs .............. (S, >_ 0.6) ......... 0.5 S, / (R / I) Long -Period, TL .......................................... Per Figure 22-15 Fundamental Period, T = Ta .......................... Ct hnx Reference Period, To ................................... 0.2 Sp, / Sps Reference Period, T5................................... Sp, / Sps Eq. 12.8-1 Eq. 12.8-2 Eq. 12.8-3 Eq. 12.8-4 Eq. 12.8-5 Eq. 12.8-6 Eq. 12.8-7 Sect. 11.4.5 Sect. 11.4.5 Sp, ................................... Design Spectral Response Acceleration Parameter, 5% damped, at a period -of T =1-Asses�--n Sps................................... Design Spectral ResponseAcIeleaITY OF LA QUANTA Parameter, 5% damped, at a o Wriio@d) 'q a RoGETY DEPT. APPROVED FOR CONSTRUCTION DATE ________ gy Page: 4.8 1783P4L1_CBC2010.x1s (Rev. 10/2010) co! Option One Consulting Engineers PROJ: "5anterra" / flan 4 (1-Story) J.N.: 0413-1783 WIND DESIGN PRESSURES AND DIAPHRAGM FORCES ASCE 7-05 Section 6.5.3: Method 2 - Analytical Procedure LOCATION ............................. REAR MAIN PORTION Design Procedure: 1) Basic Wind Speed, V = 85 mph Figure 6-1 (based on 3-second gust Vas) Directionality Factor, Kd = 0.55 Table 6-4 2) Importance Factor, I = 1.00 Table 6-1 3) Exposure Category = C Section 6.5.6 4) Topographic Factor, KZ, = 1.00 Section 6.5.7 5) Gust Factor, G or Gf = 0.55 Section 6.5.8 6) Enclosure Classification = "Enclosed" Section 6.5.9 7) Internal Pressure Coeff., GCPI = 0.18 (+/-) Figure 6-5 8) External Pressure Coeff., Cp = See chart below Figure 6-6 External Pressure Coefficient, C Location Notth-South Windward':. Leeward East-West Windward Leeward Wall 0.50 -0.50 0.&0 -0.30 --Roof(H) -0.43 0.04 -0.57 _ -0.36 0.14 -0.57 Roof (G)? 0.00 0.00 0.00 0.00 L /_B* 0.50 1.99 0.38 0.19 NOTES: . r Neglect effect of uplift forces on lateral loads. Interpolation allowed. Roof Slope = 4 :12 (max) Theta, O = 18.4 degrees" N-S Dimension = 40 feet E-W Dimension = 79.5 feet Mean Roof Height, h = 15.0 feet 1st Floor Plate = 10 feet 9) Velocity Pressure Coeff., Kh Z = 5ee chart below Table 6-3 = 2.01(z/z9)2/" forl5ft5z5z9 = 2.01 (15 / z9)2/a forz < 15 ft Velocity Pressure, q,,.Z = See chart below Eqn. 6-15 = 0.00256 K. Kn Kd V21 10) NOTE: Height, z KZ KZ, Kd V 1 qz Notes 0.0 0.849 _ 1.00 0.85 85 1.0_0 13.35 10.0 0.849 1.00 0.85 85 1.00 13.35 Plate Level _ 15.0 0.849 _ 1.00 0.85 85 1.00 13.55 Roof Level 15.0 0.549 100 _ 0 85 85 1 1 ,5 Height, h Kn Kzc Kd V t qn motes I NTA 15.0 0.849 1.00 0.85 85 1. a 0 I L a 0 Mean h� _ DEPT. a = 9.5 z9 = 900 feet Table 12 h K U FOR CONSTRUCTION Design Wind Load, p = See chart below = clG p q;GC,i Eqn. 6-17 Since all internal wind pressures for enclosed buildings act equally o ill thhejnternal surfacesQ{$ualLy and in opposite directions), these pressures cancel each other out in ,theFlateraW --ectso,�_onlh Net uplift pressures acting on components to be analyzed and designed separately. Page: 4.9 1783P4L1_CBC2010.x1s Option One Consulting Engineers PROJ: "5anterra" / Flan 4 J.N.: 0413-1753 WIND DESIGN PRESSURES AND DIAPHRAGM FORCES ASCE 7.05 Section 6.5.3: Method 2 - Analytical Procedure LOCATION ............................. REAR MAIN PORTION North -South Direction North -South Direction: !Wall) Location Height, z qZ Cp G ghGCp ghGCp; Notes Windward 10.0 13.35 0.80 0.85rqhGCp 2.40 Plate Level Windward 15.0 13.35 0.&0 0.85 2.40 Roof Level Location Height, h qh. p G I ghGCp; INAes Leeward 15.0 13.35 -0.50 0.85 1 -5.67 2.40 I Mean ht. �JtTlr�►Y.nilr7Uldl./:":..1 Location Height, h qh Cp G ghGCp I ghGCp; Notes Windward 15.0 -413.35 13.35 ).04 1 0.85 0.46 2.40 1 Max C, Leeward 15.0 1 -0.57 1 0.55 1 -6.45 2.40 r►�r.Ti�iII►Y�7/i1r7�1rrTil��.�:fi1�IJ�r7r�Ti7iil�r Location Pressure I Tributary Load d* Loaw u ry oa Gable: 14.75 Wall Below ` 14.75 5.00 73.74 95.86 Hip: 10.00 Hip Roof 10.00 7.00 70.00 91.00 Controls Total ..................................................... 186.86 plf North -South Direction: (Gable Roof Diaphragm Load) 14.75 Location Pressure Tributary Load Load*w Wall Below 14.75 5.00 73.74 95.86 Gable Roof 14.75 4.67 65.82 89.47 total ..................................................... 185.32 plf East-West Direction East-West Dirartinn fWalll 77,77, Hip/Gable COnd. (N-S) Schemah'c: Not to Scale Location Height, z qz Cp G ghGCp I ghGCp; INotes Windward 10.0 13.35 0.80 0.85 9.08 2.40 I'late Level Windward 15.0 13.35 _ 0.50 0.85 9.05 2.40 Roof Level Location Height, h qh Cp G ghGCp ghGCp; Notes Leeward 15 13.35 1 -0.30 1 0.85 1 -3.43 1 2.40 1 Mean ht. tasr-west urrecnnn, it -fin Hnntt' Location Height, h qh Cp G ghGCp I ghGCp; INotes Windward 15 13.35 0.14 0.85 1.56 2.40 Max CP Leeward 15 13.35 -0.57 0.85 -6.45 2.40 17UB97'PIf MWIZ1101.-r.T.I AFRIPm.VPT&W-MMY-�. II Location Pressure. I Tributary Load Load-W Wall Below 1 12.51 5.00 52.53 81.29 Hip H Roof 10.00 8.00 80 00 104 00 00 Controls Total ..................................................... 185.29 pif East-West Direction: (Gable Roof Dianhraam Load) Location I Pressure Tributary Load Load*w _Wall Below 12.51 5.00 62.55 81.29 Gable Roof 12.51 5.33 66.70 86.71 1 otal..................................................... 168.01 plf (1-story) 12r,'ITY 0 .,.1.-it"'Q.1,�.t.t.-.ITA 1i [SIG ; t DEPT. .:.; OVED 12.51 FXDr=C0r,JSTRUCTl0N DATE Hip/GableCond.EAI1M NOTE: When Alternative Basic Load Combination, Sect. 1605.3.2, is utilized the wind load shall be magnified by the following coefficient .................. w = 1.3 Page: 4.10 1783P4L 1_CBC2010.xls ;. Option One Consulting Engineers PROJ: "5anterra" / Plan 4 (1-story) J.N.: 0413-17&3 WIND DESIGN PRESSURES AND DIAPHRAGM FORCES ASCE 7-05 Section 6.5.3: Method 2 - Analytical Procedure LOCATION ............................. LEFT PORTION (13DRM.2 & 3) Design Procedure: 1) Basic Wind Speed, V = 85 mph Figure 6-1 (based on 3-second gust Vas) Directionality Factor, Kd = 0.85 Table 6-4 2) Importance Factor, I = 1.00 Table 6-1 3) Exposure Category = C Section 6.5.6 4) Topographic Factor, Kt = 1.00 Section 6.5.7 5) Gust Factor, G or Gf = 0.85 Section 6.5.8 6) Enclosure Classification = "Enclosed" Section 6.5.9 7) Internal Pressure Coeff., GCp; = 0.18 (+/-) Figure 6-5 8) External Pressure Coeff., Cp = See chart below Figure 6-6 External Pressure Coefficient, C Location North -South Windward Leeward East-West Windward,. Leeward Wall 0.80 -0.50 0.80 -0.40 Roof (H) -0.63 -0.11 -0.58 -0.49 -0.05 -0.57 _ Roof (G _ 0.00 _ 0.00 0.00 0.00 L / B" 0.67 1.49 h / L"-- 0.73 - ----- 0.49 Roof Slope = 4 N-S Dimension = 20.5 Mean Roof Height, h = 15.0 9) Velocity Pressure Coeff., Kh,z = Velocity Pressure, qh,Z = NOTES: i Neglect effect of uplift forces on lateral loads. Interpolation allowed. :12 (max) Theta, O = 18.4 degrees" feet E-W Dimension = 30.5 feet feet 1 st Floor Plate = 10 feet See chart below Table 6-3 2.01 (z/z9)2Ja for 15ft5zsz9 2.01 (15 / zd 2/a for z < 15 ft See chart below Eqn. 6-15 0.00256 KZ Kn Kd V21 Height, z KZ Kt Kd V I qZ Notes 0.0 0.849 1.00 0.85 85 1.00_ 13.35 10.0 0.849 _ 1.00 0.85 85 1.00 13.35 Plate Level 15.0 0.849 _ 1.00 0.85 85 1.0 Roof'Ceveli 15.0 0.849 1.00 0.85 85 1.00 13b5 Height, h Kh Kt Kd V I L LJIL-'cWNG k}o%S'1FE1 15.0 0.849 1.00 0.85 85 1.00 e / I NTA DEPT. a = 9.5 z9 = 900 feet Table 6 2 FOR CONSTRUCTION 10) Design Wind Load, p = See chart below = qcc ,-,%GCP; Eqn. 6-17 L i T BY NOTE: Since all internal wind pressures for enclosed buildings act equally on all the interna! surf c�(s a wally and in opposite directions), these pressures cancel each other out in the lateral direction only. Net uplift pressures acting on components to be analyzed and designed separately. Page: 4.11 1783 P4 L 1 _C B C2010. xls 0 Option One Consulting Engineers Location Pressure Tributary Load Load-w Wall Below .._..... 14.75 5.00 7: 95.8 3 _...-__.._-- Gable Roof ------ 14.75 ---- -- 0.00 0.00 0.00 Total ..................................................... 95.86 plf East-West Direction East-West Direction (Wall) PROJ: "5anterra" / Plan 4 J.N.: 0413-1783 WIND DESIGN PRESSURES AND DIAPHRAGM FORCES ASCE 7-05 Section 6.5.3: Method 2 - Analytical Procedure LOCATION ............................. LEFT PORTION (13PRM.2 & 3) North -South Direction North -South Direction: (Wall) Location I Height, z % Cp G gZGCP ghGCp; jfslotes Windward 10.0 _ 13.35 0.80 0.85 9.08 2.40 Plate Level Windward 15.0 13.35 0.80 0.85 9.08 2.40 Roof Level Location Height, h qh Cp , G ghGCp " ghGCp; Notes Leeward 1 15.0 1 13.35 -0.50 0.85 1 -5.67 2.40 Mean ht. Location Height, h I qh Cp G ghGCp I ghGCp; lNotes Windward 15.0 13.35 -0.11 0.85 -1.29 2.40 Max Cp Leeward 15.0 13.35 -0.58 0.55 -6.62 2.40 Norm -North Ulrectlon, imin Knot Ulanhranm I narn Location I Pressure Tributary Lad Load* re sure Load w Wall Below: 14.75 5.00 73.74 95.86 Gable: 14.75 _ Hip: 10.00 Hip Roof 10.00 5.00 50.00 65.00 : Controls Total ..................................................... 160.86 plf North -South Direction: (Gable Roof Diaphragm Load) 14.75 Hip/Gable Cond. (N-S) Schematic: Not to Scale Location Height, z qZ Cp G ghGCp ; gnGCpt Notes Windward 10.0 13.35 0.50 0.85 9.05 2.40 Plate Level Windward 15.0 13.35 0.80 0.85 9.08 2.40 Roof Level Location Height, h qn Cp G ghGCp.7 qh Cp; Notes :. Leeward 15 13.35 1 -0.40 0.85 1 -4.57 1 2.40 1 Mean ht. t•3: tivaaR�J.yI/l/(dN/UIIIS�Gll.1.-r.Ta� Location Height, h qh Cp G ghGCp I ghGCp; INotes Windward 15 13.35 -0.05 0.85 0.57 2.40 Max CP Leeward 15 13.35 -0.57 0.85 -6.45 1 2.40 14%[•yGIL�`71111[:ZNIC.71i�/G�:..1I�i��1; Location I Pressure Tributary Load Load`w Wall Below_ 13.64_ 68.20 88.66 Hip Roof 10 00 _5.00 5.00 50.00 65.00 Control Total ..................................................... 153.66 plf East-West Direction: (Gahle Roof Dianhranm I narll Location I Pressure I Tributary I Load Load"w Wali below _ 13.64 I68.20 88.66_ Gable Roof.Roof.1 _ 13.64 _____5.00 1 0.00 1 0.00 1 0.00 Total..................................................... 88.66 plf (1-Story} Gable- F ..1 ipR1Q"ob DIR�& r__ I DEPT. FOB NS r RUCTION 13.64 DATE Hp/Gable •0`4. g-Wl _ ........... -- NOTE: When Alternative Basic Load Combination, Sect. 1605.3.2, is utilized the wind load shall be magnified by the following coefficient .................. w = 1.3 Page: 4.12 1783 P4 L 1 _C BC2010. xls Option One Consulting Engineers PROJ: "5anterra" / Plan 4 O-Story) J.N.: 0413-1783 WIND DESIGN PRESSURES AND DIAPHRAGM FORCES ASCE 7.05 Section 6.5.3: Method 2 - Analytical Procedure LOCATION ............................. RIGHT PORTION (DEN, GARAGE) Design Procedure: 1) Basic Wind Speed, V = 85 mph Directionality Factor, Kd = 0.85 2) Importance Factor, I = 1.00 3) Exposure Category = C 4) Topographic Factor, Kn = 1.00 5) Gust Factor, G or Gf = 0.85 6) Enclosure Classification = "Enclo5ed" 7) Internal Pressure Coeff., GCPI = 0.15 8) External Pressure Coeff., CP = See chart below External Pressure Coefficient, C ........_........_ North -South East-West Location _... Windward 1 Leeward Windward ` Leeward Wall 0.80 -0.50 0.50 -0.37 Roof (H) -0.64 0.12 _ -0.58 -0.47 -0.02 -0.57 Roof (G) 0.00 0.00 0.00 0.00 L / B_* 0.60 1.68 h /L* 0.75 _ --- _ 0.45 Figure 6-1 Table 6-4 Table 6-1 Section 6.5.6 Section 6.5.7 Section 6.5.8 Section 6.5.9 Figure 6-5 Figure 6-6 (based on 3-second gust V35) NOTES: r Neglect effect of uplift forces on lateral loads. Interpolation allowed. Roof Slope = 4 :12 (max) Theta, O = 18.4 degrees* N-S Dimension = 20 feet E-W Dimension = 33.5 feet Mean Roof Height, h = 15.0 feet 1 st Floor Plate = 10 feet 9) Velocity Pressure Coeff., Kh,Z = Velocity Pressure, qh,Z = See chart below Table 6-3 /a 2.01 (z / z9)2 for 15 ft <_ z <_ z9 2.01(15 / z9)21 for z < 15 ft See chart below Eqn. 6-15 0.00256 Kz Kn Kd VZ I CITY OF QUINT& Height, z KZ KZt Kd V I wv , o(s & Sj 0.0 0.849 1.00 0.85 85 1.00 13.35 / 4 10.0 0.8_49_ 1.00 0.85 85 1.00 13.3EF0 veh 15.0 0.849 1.00_ 0.85 55_ 1.00 13.35 Roof Level_ 15.0 0.549 1.00 0.85 85 _ 1.00 5 Height, h Kh KZf Kd V I qh B 15.0 0.649 1.00 0.85 1 85 1 1.00 1 13.35 Mean ht. a = 9.5 z9 = 900 feet Table 6-2 10) Design Wind Load, p = See chart below = gGCP - q-GCP; Eqn. 6-17 NOTE: Since all internal wind pressures for enclosed buildings act equally on all the internal surfaces (equally and in opposite directions), these pressures cancel each other out in the lateral direction only. Net uplift pressures acting on components to be analyzed and designed separately. FETY DEPT. )VED RUCTION r 1783P4L1_CBC2010.x1s Page: 4.13 101191 Option One Consulting Engineers Location Pressure Tributary Load Load* Wall Below. 14.75 5.00 73.74 95.8 3 Gable Roof 14.75 4.00 58.99 76.69 Total..................................................... 172.54 plf East-West Direction East-West Direction (Wall) PROJ: "5anterra" / Plan 4 J.N.: 0413-1783 WIND DESIGN PRESSURES AND DIAPHRAGM FORCES ASCE 7.05 Section 6.5.3: Method 2 - Analytical Procedure LOCATION ............................. RIGHT PORTION (DEN, GARAGE) North -South Direction North -South Directinn- (Wall) Location I Height, z qZ Cp G ghGCp I ghGCp) lNotes Windward 10.0 13.35 0.80 0.85 1 9.08 2.40 Plate Level Windward 15.0 13.35 0.80 0.85 9.08 1 2.40 1 Roof Level Location Height, h qh Cp G ghGCp I ghGCp; INotes Leeward 1 15.0 1 13.35 1 -0.50 0.85 -5.67 1 2.40 1Mean ht. �1��1�a►7�P11�1�d�l:In: � � 1 ..Location Height; h qh Cp G ghGCP I ghGCp; INotes Windward 15.0 13.35 0.12 0.85 -1.34 2.40 Max C, Leeward 15.0 13.35 -0.58 1 0.85 -6.63 2.40 057VA!MU/ihr7�]R7ii>.�/:�: � � ill�rr��11 Location P Tributary L d L d* oca Ion Pressure Load oa W Wall Below 73.74 95.86 Gable: 14.75 - •••••• 14.75 5.00 Hip: 10.00 - Hip Roof 10.00 6.00 60.00 78.00 Controls Total ..................................................... 173.86 plf North -Smith Directinn• (Gahle Rnnf Dianhranm I narl) 14.75 Hip/Gable Cond.(N-S) Schematic: Not to Scale Location Height, z qZ Cp G ghGCp ghGCP; Notes Windward 10.0 13.35 0.80 0.85_ 9.08 2.4.0 Plate Level Windward 15.0 13.35 0.80 0.85 9.08 2.40 Roof Level Location Height, h qh Cp G ghGCp ghGCp; Notes Leeward 15 13.35 1 -0.37 0.85 -4.14 2.40 Mean ht. Location Height, h qh Cp G ghGCp hG p It Windward 15 13.35 -0.02 0.85 -0.18 2. I M09 1 [_1CyaApff 7Nrri7ilFIG�a: 1� � 1; Location Pressure Tributary Load Load*w . Location I Pressure Tributary' Load Load'cj Wall Below 13.22 5.00 66.08 85.90 Gable Roof 13.22 0.00 1 0.00 0.00 13.22 _IYiYYiT. ` Hip/Gable Cond. (E-W) Schematic: Not to Scale Total..................................................... 85.90 plf NOTE: When Alternative Basic Load Combination, Sect. 1605.3.2, is utilized the wind load shall be magnified by the following coefficient .................. W = 1.3 (1-Story) 1783 P4 L 1 _C B C2010. xls Page: 4.14 Option One Consulting Engineers PROJ.: "5anterra" / Plan 4 (t Story) J.N. 0413-1783 LATERAL SHEAR DISTRIBUTION ANALYSIS ASCE 7-05 Section 12.8: Equivalent Lateral Force Procedure LOCATION............................................................... REAR MAIN PORTION Seismic Response Coefficient, C. ............................. 0.110 ASCE Section 12.8.1.1 Design Base Shear, V = C, x W.................................... 5.87 kips ASCE Equation 12.8-1 Dead Load of Structure: Roof Dead Weight ................. 18.0 psf x ( 40.0 ft N/S x 79.5 ft ENV) Froof r Ave. Projected Ht. - - - - - - 18.0 psf x ( 0.0 ft N/S x 0.0 E/W - - - -.._.- Overhang (O.H.) ...... - ---- 1.0 N/S E/W 1.0 59.41 _ft kips 7.0 ft Exterior Wall Weight .............. 14.0 psf Plt. Line N/S Walls........ ( 1012 ft ) x ( 2.0 ) _ ; 5.60 kips ° E/W Walls....... ( 10/2 ft ) x ( 1.3 ) _ :- 6.96 kips O.H. 10.0 ft Interior Wall Weight ............. 8.0 psf N/S Walls........ ( 10/2 ft ) x ( 3.0 ) = 4.80 (kips E/W Walls....... ( 10/2 ft ) x ( 1.3 ) 3.98 !kips tw .E4:__' , ION (N/S - E/W) ;Total Dead Load, W................................................................................-............. 80.7 kips I Seismic Story PSeismic Wind N/S Direction North/South Direction Shear, lb. P. plf plf Lateral Load at Roof . ................................ 8,880 1.30 146.0 187.0 E/W UICeotion Seismic Story PSeismic Wind PLAN (footprint) EasttWest Direction Shear, lb. plf plf (-) annotation indicates a reduction Lateral Load at Roof . .................................. 8,88o 1.30 289.0 186.0 in roof/floor area, i.e. stairways, diaphragm openings, area indentations, etc. LOCATION.............................................................. LEFT PORTION (BDRM.2 & 3) Seismic Response Coefficient, C. ............................. 0.110 ASCE Section 12.8.1.1 Design Base Shear, V = C. x W.................................... 2.20 kips ASCE Equation 12.8-1 Dead Load of Structure: Roof Dead Weight ................. 18.0 psf x ( 20.5 ft N/S x 30.5 ft E/W) Froof Ave. Projected Ht. - 18.0 psf x ( 0.0 ft N/S x 0.0 ft E)_ ----------- /W Overhang (O.H.) ... 1.0 N/S E/W 1.0 12.19 kips 5.0 ft Exterior Wall Weight .............. 14.0 psf Plt. Line y N/S Walls........ ( 10/2 ft x ( 2.00 - _-- ) 2.&7 kids :' � •� E/W Walls....... ( 10/2 ft ) x ( 1.00 ) _ ! _ki s ,H O.O' ft Interior Wall Weight... .......... 5.0 psf -2.14 CITY I - LA Q U I N A N/S Walls........ ( 10/2 ft ) x ( 2.00 ) 1.64 1 kits BUILDING & SA ' E/W Walls....... ( 10/2 ft ) x ( 1.00 ) 1.22 1 ki s ',,�LF�V TID/��`' - AP� -�n 1l nn�@ 1 DeadLoad, W............................................. 20.1 North/South Direction Seismic Story I Shear, lb. pseismic P plf Wind plf Lateral Load at Roof . .................................. 2,210 1.30 94.0 161.0 ( -) Seismic Story PSeismic Wind _ast/West Direction Shear, lb. P plf plf -ateral Load at Roof . ................................... 2,210 1.30 140.0 154.0 OR CONSTRUCTION DATE BY N/S Direction y E/W Direction / PLAN (footprint) (-) annotation indicates a reduction in roof/floor area, i.e. stairways, diaphragm openings, area indentations, etc. 1783P4L1_Cl3C2010.x1s (Rev. 102010) Page: 4.15 C) Option One Consulting Engineers PROJ.: "5antcrra" / Plan 4 t1 Story) J.N.: 0413-1783 LATERAL SHEAR DISTRIBUTION ANALYSIS ASCE 7-05 Section 12.8: Equivalent Lateral Force Procedure LOCATION.............................................................. RIGHT PORTION (DEN, GARAGE) Seismic Response Coefficient, Cs ............................. 0.110 ASCE Section 12.8.1.1 Design Base Shear, V = C, x W.................................... 2.09 kips ASCE Equation 12.8-1 Dead Load of Structure: Roof Dead Weight ................. 18.0 psf x ( 20.0 ft N/S x 33.5 ft EMI) Froof Ave. Projected Ht. -� ___ - 1&.0 psf x ( 0.0 ft NIS x 0.0 ft EMI )= Overhang (O.H.) ...... 1.0 N/S E/W 1.0 13.04 ;kips _ 6.0 ft Exterior Wall Weight .............. 14.0 psf Plt. Line N/S Walls........ ( 10/2 ft ) x ( 2.0 ) _ 2.50 :kips E/W Walls....... ( 10/2 ft ) x ( 1.0 ) = i 2.35 !kips O.H. 10.0 ft Interior Wall Weight ............. 5.0 psf N/S Walls........ ( 10/2 ft ) x ( 1.0 ) = 0.80 kips E/W Walls....... ( 10/2 ft ) x ( 0.0 ) _ ; 0.00 skips WATION�'w (NIS -ENV) TotalDead Load, W............................................................................................... 19.0 kips Seismic Story pSeismic Wind N/S Direction North/South Direction I Shear, lb. P plf plf Lateral Load at Roof, .... 2,090 1.30 81.0 174.0 E:T�irection Seismic Story pSeismic Wind PLAN (footprint) East/West Direction Shear, lb.. p plf plf (-) annotation indicates a reduction Lateral Load at Roof . .................................. 2,090 1.30 136.0 156.0 in roof/floor area, i.e. stairways, diaphragm openings, area indentations, etc. LOCATION.............................................................. PORCH.:: Seismic Response Coefficient, C. ............................. 0.110 ASCE Section 12.8.1.1 Design Base Shear, V = C. x W.................................... 0.17 kips ASCE Equation 12.8-1 Dead Load of Structure: Roof Dead Weight ................. 18.0 psf x ( 4.5 ft N/S x 15.0 ft EMI) Froof Ave. Projected Ht. -- - - - - - 18.0 psf x ( 0.0 ft N/S x 0.0 ft EMI )_ - - - - - - } Overhang (O.H.) ...... 1.0 N/S EMI 1.0 1.55 kips 2.5 ft Exterior Wall Weight .............. 14.0 psf Pit. Line NIS Walls .... ( 10/2 ft ) x ( 0.00 ) = 0.00 ;kips EMI Walls....... ( 10/2 ft ) x ( 0.00 ) 0.00 kipfs� IT`Y , OO�_H• QUINT/ 16 I ft ' Interior Wall Weight ............. 8.0 psf �. NIS Walls........ ( 10/2 ft > x ( 0.00 ) = 0.00 jkRUILDING & SAFETY DEP EMI Walls....... ( 10/2 ft ) x ( 0.00 ) = 0.00 (kips Al--' lO ..., -w..~............................................................................... Total Dead Load, W-..... 6 p kips I uONSTRLN 3 North/South Direction Seismic Story Shear, lb. pSeismic P plf Wind plf Lateral Load at Roof . .................................. 180 1.30 16.0 50.0 +--i• Seismic Story pSeismic Wind ast/West Direction Shear, lb. p plf plf -ateral Load at Roof . .................................. 180 1.30 51.0 50.0 BY. ENV PLAN (footprint) (-) annotation indicates a reduction in roof/floor area, i.e. stairways, diaphragm openings, area indentations, etc. 1783P4L1_CBC2010.x1s (Rev. 10/2010) Page: 4.16 Option One Consulting Engineers 9 PROJ.: ' 5anterra" / Flan 4 J.N.: 0413-1783 SHEAR WALL (S.W.) DESIGN: SUMMARY California Building Code (CBC), 2010 Edition / SDPWS-2008 / ASCE 7-05 General Assumptions & Design Data: Project Moisture Content, MC ......................................... 13.o % (Assumed in use; range = 13%- 1951.) Spectral Response Acceleration, SDS ....•. •...................• •.. 0.83 ASCE 7-05 and/or Soils Report Multiplier for HDs that do not consider cyclic loading ............ 1.00 Per Building Dept. Requirements Maximum negligible uplift load is ..................................... 10 lb Shear Wall Information: Panel Type Panel Capacity (pif) Wind Seismic Nail Type Nail Spc'g..(O.C.) Panel Thick. (in,) Panel Type (rating 24/0) G. (kip/in) SDPWS Ta.3A PDL WDL Uplift V P6 260 260 861 6 3/8 WSP 13 P4 350 350 8d 4 3/8 WSP 19 P3 490 490 8d 3 3/8 WSP 25 Pane(DL) P2 640 640 8d 2 3/8 WSP 39 1 P2a 1,040 870 10d 2 15/32 5TK1 51 Ph.iao,,,, PP3 1,200 980 8d 3 3/8 WSP 50 PP2 f 2,400 1,740 10d 2 15/32 5TK1 102 Free Body Diagram Holdown Information: (Simpson C-2011 DF/SP) Simpson Holdown Elongation No. of Fast. Di a End Post End Post Capacity MOE (psi) ICC-ESR Type (in) Fasteners (inches)(min.) Area (inZ) {lb) End -Post Report No. N/A n/av 0 0 2x4 5.25 0 N/A N/A 1 (1)-0516 0.125 36 0.113 2x4 5.25 1,705 1,400,000 2105 (2)-0516 0.125 72 0.113 2-2x4 10.50 3,410 1,400,000 2105 (3)-0516 0.125 108 0.113 3-2x4 15.75 5,115 1,400,000 2105 (4)-0516 0.125 144 0.113 4x8 25.38 6,820 1,400,000 2105 j CMSTC16 0.125 52 0.148 2-2x4 10.50 4,585 1,400,000 2105 (1)-CM5T14 0.125 76 0.148 2-2x4 10.50 6,490 1,400,000 2105 i (2)-5T6224 0.125 56 0.162 4x6 10.50 5,080 1,400,000 2105 t (2)-5T6236 0.125 80 0.162 4x6 10.50 7,690 1,400,000 2105 (2)-CMST14 0.125 104 0.162 4x8 25.38 12,980 1,400,000 2105 (2)-M5TC48133 0.125 108 0.148 4x8 25.38 6,490 1,400,000 none 5THD10 0.096 28 0,148 4x4 12.25 2,640 1,600,000 2920 ) 5THD14 0.206 38 0.148 4x4 12.25 3,695 1,600,000 2920 HDU2 0.088 6 0.250 4x4 12.25 3,075 1,600,000 2330 HTT4 0.123 18 0.162 4x4 1f:25 3�5�"C- -i-6ee 80Q— HTT5 0.135 26 0.162 4x4 1�� ,0�(�1� 6 ,0O��I nr i HDU5 0.115 14 0.250 4x4 12.25BU{LLNOG & 1'qAp:QOD„ , 2 T. I H0U8(x4) 0.116 20 0.250 4x4 1".25 6;97p�,rOICO[t0�1 U2�OT' HDU8(x6) 0.113 20 0.250 4x6 1 .25 ' '705 1, 0 16E D660 HDQB 0.095 20 0.250 4x6 12.25 F� 9PN%TCRb,e£3t TI1 0 HDU11(x(o) 0.137 30 0.250 4x6 19.25 9,535 1,600,000 2330 HDU11(x8) 0.137 30 0.250 4x8 2� ZATE 11,175 1,Fgf,000 2330 HDU14(4x8) 0.177 36 0.250 4x8 25:38—._J3_,_090 1,600-000--2338-- H1)U14(6x6) 0,177 36 0.250 4x8 25.38 13,090 1,600,000 23 0 HD19(4x10) 0.180 5 1.000 4x10 32.38 19,360 1,600,000 none E Y HD19(6x8) 0.177 5 1.000 6x8 - 41.25 19,070 1,600,000 none Footnotes: _ ^- ^_ Y- --� Mud -Sill A-B. Capacity Loads based on member thickness in the direction of the fastener Dia. (in) (lb) Notes: Mud -sill Anchor Bolt Loads based on "Anchor Bolts in Light -Frame Construction at Small Edge Distances, June 2009, The SEAOC Blue Book" 1 /2 1,040 Refer to "CAST -IN -PLACE HOLDOWN ANCHOR BOLTS" calculation for additional information 1/2 1,232 at 3x Sill Effective Capacity based upon mimum of holddown assembly (i.e., post, hardware, anchor bolt, etc.) 3/4 2,464 at 3x Sill Page: 4.17 1783P4SW1.XLS (Rev.04/2012) �T Option One Consulting Engineers PROD.: "5anterra" / Plan 4 J.N.: 0413-1783 SHEAR WALL (S.W.) / ELEMENT DESIGN California Building Code (CBC), 2010 Edition / SDPWS-2008 / ASCE 7-05 1 ). 1 5t Floor - LEFT ELEVATION Vseismic = ( 146 )X( 46/2 ) + Vwind = ( 187 )X( 46/2 ) + ( 94 )X( 31/2 ) + ( )X( ) + ( )X( ) + ( )X( ) + ! = 4,815 lb .................. 401 plf Governs 3 = 4,301 lb ............................ 358 plf Modified Vseismic = V / rmin = 6,019 lb # Vwind = V - 4,301 - lb Vseismic = 6,019 + 12.00 = 502 plf < 640 •O.K.• Vw nd = 4,301 + 12.00 = 358 Of < 640 'O.K _.... , ... _� m, _ -. 11se. Y2 ^ �. with min. 2x mud-a111 plate and 1t2° ifiiameter. chor balte at max. W o . •` `"� Pnl No I L ft I H ft OTM, K-ft Resisting Moment (RM) Due to Uniform Load, Ib-ft External Uplift, lb- D±E DtW Corr. Arm, ft H / W Modifier Ratio . r Uplift, lb Holdown 61 '. in D#E D*W . D±E DtW Type Check 1 2 8.00 4.00 10.00 10.00 32.1 28.7 76.1 14.3 I 9,520=(18'(15.5/2+1)+14"10)'8^2/2 2,848=(18'(22/2+1)+14'10)'4^2!2 - 7.83 3.63 1.25 1.00 2.50 0.80 i I 3,005 i 2,851 3,521 3,248 5TH014 'O.K.' 5THD14 •O.K.• 0.408 0.811 Comments: None rmin = 0.50 2 ). 1 51; Floor - RIGHT OF I3DRM.3 _._.._._...--....---..----.......... -------.._._... Vseismic = ( 94 - --------- )X( 31/2 - --...:_._.:._.._....... _...... _..... -............. ----...... _._...__._.._..._... _.......... ) + Vwind = ( 161 x ,.._.......................... _.__-_---------- _....._.._....._.. 0.8/1.3 )X(, 31/2 -.......... .... _.......... _-. .__............ ) + ( 16 )X( 15/2 ) + ( )X(' ) + ZI= 1,577 lb .................. 394 plf GovemS 3 = 1,536 lb ...... 384 plf Modified Vseismic = V / rmin = -1,577 lb Vvnnd V 1536 lb # V seismic = 1577 + 4.00 - 394 plf < 490 •O K Ind 1536 + 4.00 384 pif < 490 O K _M - - _ ....., - .. .._. Use. P3 with min.2x"mud-5111 alateand 1f2" dt rileter ahclior bolts at max.10" o.c. f Pnl No L ft.. H ..--r-- ft OTM, K-ft Resisting Moment (RM) Due to Uniform Load, lb-ft External Uplift, Ib Corr. Arm, ft H / W Modifier Ratio I r Uplift, lb DfE DtW Holdown Type Check dxe .. in DBE D=W, -__ D±E ; D±W 1 4.00 5.00 12.6 I 12.3 1,696=(18'(6/2+1)+14'10)'4^2/2 I 3.53 2.00 1.00 2,595 i Z912 5TH014 •O.K.• 0.588 Comments: None rmin =' 1.00 3). 1 5t Floor _........ ....._._:...,.,.._ ____�_._... __ ... Vseismic = ( 146 LEFT OF DEN )X( 58/2 + 1 -' u�r ! IA V irid ( ,6 )X( 15/2 + SA�-ETY DEP o u , P'FI�,, VED 15I ( )X. ) _ G_I ff ( FOR COIO'T ) _ = 4,881 lb .................. 610 plf = 423 Ib ..............I............. r Ta7 PIf�QN Govern Modified Vseismic = V / rmin = 6101 lb I V--V - 5423 lb V seismic = 6101 + 8.00 763 plf < 870 O K Vw nd 42 , E ' 8 OD = 678 plf < 1040 O K Use.. f'2a, m!N2x mud-e,II plate and 112;.dtaraeter gchorbotCs:at max:121, o.a. W Pnl L - H I OTM, K-A Resisting Moment (RM) rnal Uplift, lb -----. TD-±-E Corr. H / W ( Modifier Uph o - _ - b%e No ft ft D±E ! D±W : Due to Uniform Load, lb-ft MW Ann, ft Ratio r .-_..... -- -- D±E D±W ---- Type Check m i 4.00 10.00 24.4 27.1 2,125 =(18'(12/2+1)+14'l0)'4^2/2 0 0 3.75 2.50 0.80 5,997 6,852 HDUB(x4) •O.K.' 0.069 2 4.00 110.001 24.4 27.1 1,696=(18"(6/2+1)+14'10)"4^2/2 j 3.75 1 2.50 0.80 6,100 6.929 HOUB(x4) •O.K.' 0.674 Notes & Assumptions: _......_..._.__...---._...--._ -------- ._....... -...... ---...................... _..................... ...... ..... ._........ ----._._.�._.. __.....--- ........... --- ........... _._........ -...... .-------- 1). Height -to -width (H / W) Ratio modifier (seismic)............ r = 2 ' be / h for aspect ratios between 2:1 to 3.5:1 (SDPWS Table 4.3.4) 2). Uplift force is determined by using net overturning force ( OTM - RM ); moment arm correction is applied for uplift CBC 2010 Alternative Basic Load Combinations (ASD), Sect. 1605.3.2 ................ Wind: (2/3)D ± wW ; Seismic: 0.91) ± E/1.4 3). Shear wall deflection .............. 6„ = 8vh3 / EAb + vh / 1000Ge + hAs / b (SDPWS Eq. 4.3-1) 4). Story Drift Limits, ASCE 7-05 Sect. 12.8.6 ................... 6, = Cd 6„ / I < 0.025 he, (Assume Occupancy Cat. I or II) DL multiplier for wind ...... 1 0.6 DL multiplier for seismic. ` 0.90 Impedance Factor, 1.00 Page: 4.18 1783P4SW1.XLS (Rev. 06/2012) Option One Consulting Engineers PROJ.: "5anterra" / Flan 4 J.N.: 0413-1783 SHEAR WALL (S.W.) / ELEMENT DESIGN Califomia Building Code (CBC), 2010 Edition I SDPWS-2008 / ASCE 7-05 4 ). 1 et Floor - LEFT OF GARAGE Vseismic = ( 146 .M....... _..................... )X( 54/2 ) + = ( Vwind 187 _.................... _.._-. ) ( 34/2 { ) ( 81 )X( 34/2 ) + ( )X( ) + ( )1r( ) + ( )X( ) + = 3,859 lb .................. 386 plf Governs 3,179 lb ............................ 315 pIf Modified Vseismic = V / rmin = 3,859 lb Vw nd = V = 3,179 lb v'seisrrc = 3,859 + 10.00 = 386 pIf < 640 •O.• K Vwind = 3,179 + 10.00 = 315 pIf < 640 10;m ........... v : ... Use: i'2 with min. 2xmud-sill of and 4)2 .diameter An, batCs at tnax 96" o.a. _m. r . Pnl No I L R I H ft I OTM,.K-ft DtE DtW Resisting Morrie fit (RM) Due to Uniform Load, lb-ft External Uplift, Ib DtE DfW Corr. Ann, ft I H / W i Modifier Ratio r Uplift lb DtE I>fW Holdown Type Check dxe in 1 10.00 10.00 38.6 31.8 13,225 =(18'(20.5/2)+8'10)'10^2/2 0 0 9.50 1.00 1.00 Z809 2,418 i 5TH014 •O.K.• 0.328 Comments: None rmin = 1.00 5). 1 Mt Floor - RIGHT ELEVATION ......... --.--......_...........---......._...__._._...........................__......._........ Vseismic = ( 146 .......... ..................... )X( __._....... _..... __.._ 21/2 ...... ........... _..- ..... ................... _....._. ) + ( 81 )x( 21/2 ) + ( )X( ) + ( )X( ) _ = 2,384 lb .................. 298 pIf Governs Modified Vseismic= V / rmin = 2,384 lb Vseismic = 2.384 + 8.00 = 298 pIf < 350 •O.• K.a nn..... P4 , -with min. 2x mud sill vlateand 112" diameter anchor 1; Pnl- No L ft H ft OTM, K-ft DtE DfW Resisting Moment jRM) Due to Uittfotm Load; lb-ft External Uplifl, lb D+E DtW Corr. Ann,.ft H ! W ;Modifier Ratio r Uplift Ib ME i DtW Holdown Type Check bxe . in 1 8.00 10.00 23.8 19.6 5,632 =(18'(2/2+1)+14'10)'8^2/2 0 0 7.83 1.25 j 1,00 i 2,397 ! 2,028 5TH014 •O.K.• 0.399 Comments: None rmin = 1.00 6 ). 1 st Floor - REAR ELEVATION Vseismic = ( 289 )X( 39/2 ) + Vwind = ( 186 ( )X( ) + ( )X( ) + ( )X( ) = el = 5,636 lb .................. 501 pit Governs i 3 = 3,62' Modified Vseismic= V / rmin = 5,636 lb € V Vwind = � V sale mc' 5,6536 + 1125 501 pIf < 640 O.K. t v ind = 3 62 ....... ... _..._;.... .... ._.... .. ,. .._ ... Use. P2 with min. 2x mud-OWvfate and 1l2" diameter anchor bolta at max. o.c. )X( 3912 ) + )x( ) .+ )X( ) + )x( J ' A ! Ib .1.� tl9....�t'��r r.. l.. /j322J �PIf 1 V �/ 3 627 Ib �/`� Q 3U(LD;1�25G & SM22E Y DE w..'O.K.- �3rltr -Nx or, ---re Pni No L ft H ft OTM, K-ft D±E D±W Resisting MomentE B (RM) Due to Uniform Load, lb-ft xternal Uplift, lb P Cr�orr. Aire, ft H/r Nr1ModtlfieIr f Rat o _ r Up1 "`Vb DBE i� Holdown e Check axe in DtW 1 2 5.50 5.75 110.00 10.00 27.0 17.7 28.8 18.5 2.662 =(18'(2/2+1)+14`70)'5.5^2/2 2,910 =(18'(2/2+1)+14'10)'5.75^Z/2 0 0 O O I p.00 5.2 I'r 1.52 1.74 TE� 1.00 I 1.00 5,031 4,988 3,191 3,162 HTt5 •O.K.• HTTS •O.K.• 0.541 0.520 Comments: None rmin = 1.00 Notes & Assumptions: ................. _......... _............ ....................... _....._.............. _.... .---... _...._...._._..._...................... ._................... _.._..... ................ ................. _.............. .............. _................. _...... _............. _............ _.._....... _ ..... ........ _............. _.... 1). Height -to -width (H / W) Ratio modifier (seismic)............ r = 2 ' bs / h for aspect ratios between 2:1 to 3.5:1 (SDPWS Table 4.3.4) 2). Uplift force is determined by using net overturning force ( OTM - RM ): moment arm correction is applied for uplift CBC 2010 Altemative Basic Load Combinations (ASD), Sect. 1605.3.2 ................ Wind: (2/3)D ± roW : Seismic: 0.913 ± Ell-4 3). Shear wall deflection .............. 6,e = Bvh3 / EAb + vh / 1000G, + hie / b (SDPWS Eq. 4.3-1) 4). Story Drift Limits, ASCE 7-05 Sect. 12.8.6 ................... dx = Cd 6,e / i < 0.025 hs, (Assume Occupancy Cat i or 11) DL multiplier for wind ...... 0.67 ? DL multiplier for seismic Importance Factor, 1 ..... 1.00 Page: 4.19 1783P4SW1.XLS (Rev. 062012) 21 Option One Consulting Engineers PROJ.: "5antcrra" / Plan 4 J.N.: 0413-1783 SHEAR WALL (S.W.) / ELEMENT DESIGN Califomia Building Code (CBC), 2010 Edition / SDPWS-2008 / ASCE 7-05 7). 1 5t Floor - REAR OF BORM.2 & DEN' .._..._-_.. Vseismic = ( 289 _ _.-___._ .. )X( 40/2 ) + Vwind - ( 186 )X( 4012 ) + - ( 140 )X( 19/2 ) + ( )X( ) + ( 136 )X( 14/2 ) + ( 158 )X( 19/2 ) + �I ( 51 )X( 4/2 ) _ el ( )X(14 ) _ = 8,164 lb .................. 510 plf Governs 3 = 5,221 to ......................... 326 plf Modified Vseismic= V / rm;n = 6,164 lb Vwind= V = 5,221 lb Vseismic= 8,164 * 16.00 = 510 plf < 640 •O.K.• Vwind= 5,221 + 16.00 = 326 -plf < 640 *OK' Use. t.v P2 with m1n. 2x:mud afll v�2"=diameter anchor boUat max 16' o c. Pnl No L ft H ft OTM, K-ft D±E D±W Resisting Moment(RM) Due to Uniform Load, Ib-ft External Uplift, lb D±E D±W Corr. Arm, ft I H / W ;Modifier Ratio r Uplift Ib Holdown 6. in D±E D±W Type Check 1 2 8.00 8.00 10.00 10.00 40.8 26.1 40.8 26.1 3,712 =(18'(4/2)+890)'8"2/2 13,504 =(18'(36/2+2/2)+8'10)'8"2/2 0 ! O D 0 i 7.50 7.50 1.25 1.00 1.25 1.00 4,997 5,151 3,822 ':. 2,280 HTT5 `O.K.` HITS `O.K• 0.413 0.353 Comments: rmin = 1.00 8 ). 1 5t Floor - FRONT OF 15ATH.2 ------ ...__.._.........__._.....--.....................__...._..._............_.._........--_......_....._..._.._._......_....._....-........_...................._.............._,.........._....._.............._........................................_....._..._......_.... Vseismic = ( 140 )X( 19/2 ) + Vwind = ( 154 _. - -- )X( - - -- _. .. _. 19/2 + i ( W )+ ( )X(.- )+ E ( )X( )X( ) _ at = 1,330 lb ................. 222 plf 3I = 1,463 lb .......... 244 plf Govern rn Modified V'semrvc= V / rmin = 1,330 lb Vwind= V = 1,463 Ib I . V seismic = 1330 .. _. 6.00 222 plf < 350 •O K Vvnnd 1463 * 6.00 = 244 plf < 350 .�. with min. 2x lnud-eiil•pfate and lY2 diatiteter�artchor bolts at Max. 32 _o o . _. _ Poi No. I L ft I H ft OTM, K-ft D±E D±W Resisting Moment (RM) Due to Uniform Load, lb=R External Uplift, lb Corr. Arm ft H / W Ratio Modifier r Uplift, Ib D±E D±W Holdown Type Check 6ze in D±E DtW 1 6.00 10.00 13.3 14.6 4,140 =(18'(8/2+i)+14'10)'6"2/2 5.53 1.67 i 1.00 1,642 2,036 5THD14 •O.K.' 0.402 Comments: None rm. = 1.00 9). 1 5t Floor - FRONT OF DEN & GARAGE Vseismic = ( 136 )X( 14/2 ) + ( 136 )X( 6 ) + U ( )X( ) + ( I )X( ) _ = 1,768 lb .................. 287 plf Governs Modified Vsws,,d,= V / rrrn = 2,526 lb V seismic = 2,526 + 6.17 09 4plf < 640 •O K.• _, liS9. P2 . with min. Zx mud -sill niaia:end 1I2' dWM0tW aiichar t Vwind { 158 ` )X( 20/2 ) + vwi d= vBU€1 Dl1'�0j �t SAFETY DEPT. Vvnnd = 550 + &IV 5 f 640 O K Its at.max.16"_act. Pnl No I L - ft H ft OTM, K-ft Resisting Moment (RM Due to;UnlformLoad, lb ft. External Uplift, lb y orr. A ft Hr Ratio .bif j r I Hold. - 6ze in D±E D±W D±E-�DtW D±E ;' D±W Type Check 1 2 3.50 2.67 10.00 7.50 10.0 ; 9.0 5.7 5.1 1,076=(18'(2/2+1)+14.10)'3.5^2/2 627 =(18'(2/2+1)+14.10)"2.67^2/2 0 0 I i3.33 12.15" R 2.86 j� 0.70 2,720 2,476 TY- 5THD14 -O.K.- u -O.K.- 0.696 0.349 l Comments: EFFECTIVE SHEAR WALL HEIGHT = HEADER HEIGHT (SEE DETAIL). rmin = 0.70 Notes & Assumptions: 1). Height -to -width (H / W) Ratio modifier (seismic)............ r = 2 ` b, / h for aspect ratios between 2:1 to 3.5:1 (SDPWS Table 4.3.4) 2). Uplift force is determined by using net overturning force ( OTM - RM ); moment arm correction is applied for uplift CBC 2010 Alternative Basic Load Combinations (ASD), Sect. 1605.3.2 ................ Wind: (2/3)D ± wW ; Seismic: 0.90 ± E/1.4 3). Shear wall deflection .............. 6,e = 8vh' / EAb + vh / 1000G, + hAs / b (SDPWS Eq. 4.3-1) 4). Story Drift Limits, ASCE 7-05 Sect. 12.8.6 ................... 6, = Cd 6„ / i < 0.025 h„ (Assume Occupancy Cat. I or II) DL multiplier for wind ...... 0.67 DL multiplier for seismic 0.90 - Importance Factor, i ......; LOO Page: 4.20 1783P45W1.XLS (Rev.062012) Option One Consulting Engineers PROJ.: "5anterra" / Plan 4 WCs = 0.11 Section 12.s.9 J.N.: 0413-1753 SDS = 1.00 Section DRAG STRUT / COLLECTOR FORCE CBC 2010 Location = let Floor - Left Elevation (5W#1) Shear Force, Fp = 4.82 kips Shear Force, (Fp) min = 4.82 kips Drag Length, Ldrag = 58 ft Vdiaphragm = Fp / Ldrag = 83 plf No. Segments, In = 5 S.W. Length, Lwall= 12 ft Vshearwall= Fp / Lwan = 401 plf Segment No. Length, ft Shear Wall ? 1 2 3 4 5 5.5 8 22 4--- NO YES NO YES NO Section Point 0 1 2 3 4 5 Distance, ft 0 5.5 13.5 35.5 39.5 58 Drag Force, kips -0.46 2.09 0.26 1.54 Use Minimum Strap = ST6224 Strap Capacity = 2,362 Ibs > Max. Drag = 2,069 Ibs ... OKI 88% Max. Anchor Spacing = 71 inches O.C. Top Plates = 2-2x4 Plt. Capacity = 9,660 Ibs ... OKI 22% Z5 1.5 - - LL 117 . m e a.,-,. x- 1 s-0.5o-ice"$- - 7 - Distance, ft SHEAR WALL SEGMENTS & DRAG STRUT ELEVATION (Conceptual Dwg.) DRAG Strut I COLLECTOR FORCE DIAGRAM (Conceptual Dwg.) Location = lot Floor - Right Elevation (5W#5) Shear Force, Fp = 2.38 kips Shear Force, (Fp) min = 2.38 kips Drag Length, Ldrag = 55 ft m Vdia hra = F / L = p g p drag 43 plf No. Segments, n = 3 S.W. Length, Lwall = 8 ft Vshearwall= Fp / Lwall = 298 plf Segment No. 1 2 3 Length, ft 14 8 33 Shear Wall ? NO YES NO Section Point 0 1 2 3 ... ..... . . Distance, ft 0 14 22 55 Drag Force, kips -0.61 1.43 Use Minimum Strap = (12)-1(od Strap Capacity = 1,705 Ibs > Max. Drag = 1,430 Ibs ... OKI 84% Max. Anchor Spacing = 135 inches O.C. Top Plates = 2-2x4 --PIt.Capacity�9z6F0L-lbs --OKI 15% SHEAR WALL SEGMENTS & DRAG STRUT ELEVATION (Conceptual Dwg.) CITY OF LA QUINTA Z nee e r r y °p ; i .5 5110 E i V I � Distance, It DRABS t�gOLLECTOR FORCE I GRAM (Conceptual Dwg.) Notes & Assumptions: 1). Anchor spacing based upon Simpson connector capacity (lb)...... 1)F/5P (160% ): 1-11 and/or A35 455 2). Refer to latest edition of Simpson Connector catalog for strap/connector values. 3). Note that (12)-16d nails are basic plate splice per general structural notes. 4). Force at shear line ( Fp) at Allowable Stress Design (ASD) level per Shear Wall calculation. 5). Anchor spacing based upon material SG = 0.50 ; Strap tension based upon SG = 0.50 Note: SG denotes Specific Gravity per NDS. 6). Assume building with Importance Factor, z = 1.0 and light -frame construction. Strap Capacity (12)-trod 1,705 C516x36" 1,705 M5TA36 1,705 5T6224 5T6236 M5T48 2,362 3,576 4,938 Cont. DBL T.Plta. 7,590 Page: 4.21 1783P4SW1.XLS (Rev. 09/2012) 0 Option One Consulting Engineers PROJ.: "5anterra" / Plan 4 CS = 0.11 Section 12.8.1 J.N.: 0413-1783 ; SDs = 1.00 Section 11.4.4 DRAG STRUT / COLLECTOR FORCE _ CBC 2010 Location = lot Floor - Rear Elevation (5W#6) Shear Force, Fp = 5.64 kips Shear Force, (Fp) min = 5.64 kips Drag Length, Ldrag = 80.25 ft Vdiaphragm - Fp / Ldrag = 70 plf No. Segments, n = 6 S.W. Length, L,all = 11.25 ft VshearwallFp / Lwa€i = 501 plf Segment No. Length, ft Shear Wall ? Section Point Distance, ft Drag Force, kips 1 2 3 4 5 6 1 5.5 28 18.5 5.75 9.5 NO YE5 NO NO YE5 NO 0 1 2 3 4 5 6 0 13 15.5 46.5 65 70.75 50.25 -0.91 1.46 -0.51 -1.81 0.67 Use Minimum Strap = 5T0224 Strap Capacity = 2,362 Ibs > Max. Drag = 1,809 Ibs ... OKI 7ri Max. Anchor Spacing = 83 inches O.C. Top Plates = 2-2x4 Pit. Capacity = 9,660 Ibs ... OKI 19% 2 . V6ts �9$. -2 _ - m p` Distance, ft SHEAR WALL SEGMENTS & DRAG STRUT ELEVATION (Conceptual Dwg.) DRAG Strut I COLLECTOR FORCE DIAGRAM (Conceptual Dwg.) Location = 1st Floor - VOID, NOT USED Shear Force, Fp = 2.38 kips Shear Force, (Fp) min = 2.35 kips Drag Length, Ldrag = 21.16 ft Vdia hra m = F / L p g p drag - 113 plf No. Segments, n = 3 S.W. Length, Lwall= 4.66 ft Vshearwail= Fp/ Lwa€I = 511 plf Segment No. Length, ft Shear Wall ? Section Point Distance, ft Drag Force, kips 1 2 3 2.33 16.5 2.33 YES NO YES 0 1 2 3 - 0 2.33 18.83 21.16 0.93 -0.93 Use Minimum Strap = (12)-16d Strap Capacity = 1,705 Max. Anchor Spacing = 52 inches O.C. Top Plates = 2-2 a x4 C I_TPI�t? C�pacitSr A9CX J 1 NTA BUILDING & SAFETY DEPT. ' e►- e s - G Distance, ft SHEAR WALL SEGMENTS & DRAG STRUT ELEVATION (Conceptual Dwg.) DRAGrSfnit7COLLECTOKFORCELYAb. Notes & Assumptions: 1). Anchor spacing based upon Simpson connector capacity (lb)...... DF/5P (160%): H1 and/or A35 455 2). Refer to latest edition of Simpson Connector catalog for strap/connector values. 3). Note that (12)-16d nails are basic plate splice per general structural notes. 4). Force at shear line ( Fp ) at Allowable Stress Design (ASD) level per Shear Wall calculation. 5). Anchor spacing based upon material SG = 0.50 ; Strap tension based upon SG = 0.50 Note: SG denotes Specific Gravity per NDS. 6). Assume building with Importance Factor, i = 1.0 and light -frame construction. 55% 10% Strap Capacity (12)-16d 1,705 C516x36" 1,705 M5TA36 1,705 5T6224 5T6236 M5T48 Cont. PIK TYlto. 2,362 3,576 4,938 7,590 Page: 4.22 1783P4SW1.XLS (Rev. 0912012) �. Option One Consulting Engineers PROJ.: "5anterra" / Plan 4 J.N.: 0413-1783 CONVENTIONAL FOUNDATION DESIGN CBC Section 1805 12 inch wide x 12 inch deep cont. ft'g (1-Story Footing) inch wide x inch deep cont. ft'g 18 inch deep (thick) pad footing. Use min. (1) - #4 bar at top & bottom of all footings, typical U.N.O. Soil Bearing Pressure, SBP ......... Allow. Stress Increase ................ Allow. SBP Increase ................... When footing base is below ......... Min. Max. 1,500 -> 3,000 psf 1.20 ASCE 7-05 100 psf / ft. depth 1.0 feet Weight of Concrete, W. ................. 145 psf Weight of Soil, Ws ........................ 110 psf Allow. SBP Increase ..................... 100 psf / ft. width When footing is wider than ............. 1.0 feet (I -Story Footing) (worst case) p (worstcase). Roof ....... ( 38 ) ` ( 3612 ) = 684 ( 3& ) ' ( ) = 0 Wall........( 8 )"( 10 )= 80 ( 14 )`( )= 0 Floor ....... ( 52 ) ( 0 ) = 0 ( 52 ) " ( ) = 0 Storage ... ( 20 ) " ( 1012 ) = 100 ( 20 ) " ( ) = 0 Total....... 564 plf 0 plf Req'd Footing Width .......... LOAD / [SBP - (Wc - Ws)] 1-Story Footing ........ 7.1 in < 12 in . 2-Story Footing ........ 0.0• in > 0 in . Required Pad Size ............ LOAD / [SBP - (Wc - Ws)] Description / Location: RXN. FROM G.T. AT LEFT OF GARAGE RXN. F_ROM_G.T. AT RIGHT OF ENTRY RXM. FROM G,T. AT RIGHT OF FAMILY BM. #12 (L) Min 4" I Abv. ---- -- ----� - - ---- 1' Footing �- Projected Length NTS Notes: 1). Use SBP for D + L load case; use SBP x Allow. Stress Increase for D + L + E load case. 2). An allowable stress increase of 1.2 can be used with special load combinations per ASCE 7-05 Section 12.4.3.3. References: 1). California Building Code (CBC), 2010 Edition 2). ASCE 7-05 Max. Point Load ............... [SBP - (W,- WJ] x L x W OK! 1-Story Footing ............. 4,639 lb. NG! 2-Story Footing ............. 0 lb. (see charts below): Load Case Minimum Pad Size D+L D+L+E D+L D+L+E P, (lb) I P, (1b.) in2 iwl 8,500 30n/a 7,500 27 n/an/a 7,500 I 27 i n/a 7,000 27 n/a D+L _6,460 8,303 10,406 12,751 15,435 18,379 21,621 25,172 29,040 33,235 37,766 42,643 47,&75 53,471 LoP �( CrP L1 IN Footin SS.AF A e . ZWRT. D 1b.�I�ize i 7,780 I �2" ED 9 99XffEftKi 12,531 30 (2) 44 15,390 33 (2) 44 j 36- 26,031 42 (3) -#4 30,305 45 (3) 44 34,960 48 (4) 45 40,006 51 (4) 45 45,461 54 (4) 45 51,330 57 (4) 45 57,625 60 (5) 45 64,358 63 (5) 45 1783P4FD1.xls (Rev. 12/2010) Page: 4.23 Option One Consulting Engineers PLAN, 5 CITE' OF LA QUANTA BUILDING & SAFETY DEPT. APPROVED FOR CONSTRUCTION DATE BY f 1783TITLEALS Page: 5.0 ot" Option One Consulting Engineers PROJ.: "5anterra" / Plan 5 BEAM DESIGN J.N.: 0413-1783 (1) HDR. AT REAR OF KITCHEN Member Length, L (ft)..................... 4.25 Load Duration Factor, CD ............... 1.25 (N05 2005) Max. Allowable Deflection ............. L / 360 Size Factor Coefficient, Cf...................... 1.00 Trib. Area for Roof LL Reduction, A (ft2).... n/a Allowable Stresses Rxi Roof Load = ( 38.0 psf) x ( + 1 ) ft + and Section Pro erties Partition = ( 14.0 psf) x ( 2 ) ft M.O.E., ksi ............... 1,600.0 Floor Load = ( 52.0 psf ) x ( ) ft Pb, psi ...................... 1,500.0 Attic Storage = ( 20.0 psf ) x ( 8/2 ) ft F',,, psi ...................... 212.5 Beam Wt. = 8.4 plf Depth, d, in .............. 5.500 Total Uniform Load, wTl. .............................. 154.4 plf Width, b, in ............... 5.500 Rxn, (Left), lb........... 1,614 Rxn, (Right), lb......... 1,665 Point Loads P, at ............... 1.50 ft PLL+DL = 1,748.0 lb............. 38"9.5/2"23/2 P2 at ............... 3.50 ft PLL+DL = 874.0 lb............. 38-23/2°2 P3 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P4 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE Demand Moment......... 2.2 ft-k ----- Sreq'd................... 17.8 < 27.7 in *O.K.* Demand Shear............ 1,594.1 lb. - A,q'd.......-••••••••••• 11.3 < 30.3 in *O.K.* Demand M.O.I............ 29.2 in -- Aaauai.................. 0.054 < 0.142 in *O.K.* USE x 6 D: #1ZU ALT NA (2) HDR. AT REAR OF NOOK Member Length, L (ft)..................... 5.25 Load Duration Factor, CD ............... 1.25 Max. Allowable Deflection .............. L / 360 Size Factor Coefficient, C,...................... 1.00 Trib. Area for Roof LL Reduction, A (ft2)..... n/a Uniform Loads Allowable Stresses, Rxns.' and Section Pro erties Roof Load = ( 38.0 psf ) x ( 23/2 + 1 ) ft + Partition = ( 14.0 psf ) x ( 2 ) ft M.O.E., ksi ............... 1,600.0 Floor Load = ( 52.0 psf ) x ( ) ft F'b, psi ...................... 1,500.0 Attic Storage = ( 20.0 psf) x ( 8/2 ) ft F', psi ...................... 212.5 Beam Wt. = 8.4 plf //��, ptyya�rn T^- 00 Total Uniform Load, wTb .............................. 591.4 plf BUILDI ar&(D,fkFfTY.D-EPT.1, 53 AF' -E ` s, fv' ,••• • 1, 53 Point Loads r P, at ............... 0.00 ft PLL+DL = 0.0 lb............ N P2 at ............... 0.00 ft PLL+DL = O.0 lb............ NONE P3 at ............... P4 at ............... 0.00 0.00 ft ft PLL+DL = PLL+DL = 0.0 0.0 lb. ...... lb....... ..)Aj,�NE .. NONE BY Demand Moment......... 2.0 ft-k Sregd................... 16.3 < 27.7 in *O.K.* Demand Shear............ 1,261.4 lb. - --->�A,q'd................... 9.0 < 30.3 in *O.K.* Demand M.O.I............ 36.1 in -- --'°- Aacwa�......•••---.---- 0.0&3 < 0.175 in *O.K.* USE 6 DF: #1 ` _. ALT NA 1783P58.xls (Rev.01/2012) Page: 5.1 to Option One Consulting Engineers PROJ.: "5anterra" / Plan 5 BEAM DESIGN J.N.: 0413-1783 (NO5 2005) (3) HDR. AT REAR OF FAMILY Member Length, L (ft)..................... 4.25 Load Duration Factor, CD ............... 1.25 Max. Allowable Deflection ............. L / 360 Size Factor Coefficient, C....................... 1.00 Trib. Area for Roof LL Reduction, A (ft).... n/a Roof Load = ( 38.0 psf ) x ( 23/2 + 1 ) ft + I and;Section Properties Partition = ( 14.0 psf ) x ( 2 ) ft M.O.E., ksi ............... 1,600.0 Floor Load = ( 52.0 psf) x ( ) ft F'b, psi ...................... 1,500.0 Attic Storage = ( 20.0 psf) x ( 8/2 ) ft F', psi ...................... 212.5 Beam Wt. = 8.4 plf Depth, d, in .............. 5.500 Total Uniform Load, wT.. .............................. 591.4 plf Width, b, in ............... 5.500 Rxn, (Left), lb........... 1,257 Rxn, (Right), lb......... 1,257 Point Loads P, at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P2 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P3 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P4 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE Demand Moment......... 1.3 ft-k Sreq'd................... 10.7 < 27.7 i n 3 *O.K.* Demand Shear............ 965.7 lb. Areq'd................... 7.0 < 30.3 in *O.K.* Demand M.O.I............ 19.2 in4 factual.•.••••••••••••••. 0.036 < 0.142 in *O.K.* ALT NA (a) DROP BM. AT REAR OF PATIO Member Length, L (ft)..................... 16.75 Load Duration Factor, CD ............... 1.25 Uniform Loads Roof Load = ( 38.0 Partition = ( 14.0 Floor Load = ( 52.0 Attic Storage = ( 20.0 Beam Wt. _ Total Uniform Load, wTL Point Loads psf ) x ( 8/2 psf ) x ( 1 psf) x psf)x( Max. Allowable Deflection .............. L / 300 Size Factor Coefficient, Cf...................... 1.00 Trib. Area for Roof LL Reduction, A(ft2)..... n/a t �y r- rss ees, Rxns., + 1 l 1e- I AndA-'Mien iProner ies 11.5 plf 215.5 plf )(JILD i ' EW. )ft F' si............. ) ft OF POVED 3' W'UC11 TPON 3 DATE Rxn, (Left), lb........... 1, P, at ............... 0.00 ft PLL+DL - 0.0 lb............. NONE P2 at ............... 0.00 ft PLL+DL - 0.0 lb............. NONE P3 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P4 at ............... 0.00 ft PLL+DL - 0.0 lb............. NONE Demand Moment......... 7.6 ft-k Sreq'd................... 32.2 < 82.3 in *O.K.* Demand Shear............ 1,591.9 lb. Areq'd................... 6.7 < 41.6 in *O.K.* Demand M.O.I............ 379.9 in Aactual.................. 0.521 < 0.670 in *O.K.* 11.875 LSL .(1 .5E) ALT 3.125 x 12 GLB 1783P5B.x1s (Rev.01/2012) Page: 5.2 Option One Consulting Engineers PROJ.: "5anterra" / Plan 5 BEAM D E S I G N J.N.: 0413-1783 (ND5 2005) (5) HDR. AT RIGHT OF FAMILY Member Length, L (ft)..................... 12.50 Load Duration Factor, CD ............... 1.25 Volume Factor, Cv......................... 1.00 Uniform Loads Max. Allowable Deflection ............. L / 360 Size Factor Coefficient, Cf...................... 0.98 Trib. Area for Roof ILL Reduction, Pt (ft2).... n/a Roof Load = ( 35.0 psf ) x ( 15/2 + 1 ) ft + and Section Properties. . _ Partition = ( 10.0 psf ) x ( 10 ) ft M.O.E., ksi ............... 1,800.0 Floor Load = ( 52.0 psf ) x ( ) ft F'b, psi ...................... 2,926.5 Attic Storage = ( 20.0 psf ) x ( ) ft F', psi ...................... 331.3 Beam Wt. = 21.4 plf Depth, d, in .............. 15.000 Total Uniform Load, wTu .............................. 501.4 plf Width, b, in ............... 5.125 Rxn, (Left), lb........... 3,134 Rxn, (Right), lb......... 3,134 Point Loads P, at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P2 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P3 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P4 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE Demand Moment......... 9.8 ft-k Sfeq'd................... 40.2 < 192.2 in *O.K.* Demand Shear............ 2,506.8 lb. Afegd................... 11.4 < 76.9 in *O.K.* Demand M.O.I............ 367.2 in `* Aactuaj.................• 0.106 < 0.417 in *O.K.* USE 5.125 x '!S �GL3 x A L T 5.25 x 14 PSL (6) H DR. AT LEFT OF M. BDRM. Member Length, L (ft)..................... 5.25 Max. Allowable Deflection.............. L / 360 Load Duration Factor, CD ............... 1.25 Size Factor Coefficient, Cf...................... 1.00 Trib. Area for Roof ILL Reduction, A(ft)..... n/a Uniform Loads Allowable Stresses Rxns., Roof Load = ( 38.0 psf ) x ( ) ft + and Section Properties Partition = ( 14.0 psf) x ( ) ft M.O.E., ksi ............... 1,600.0 Floor Load = ( 52.0 psf ) x ( ) ft F'b, psi ...................... 1,500.0 Attic Storage = ( 20.0 psf) ) x ( sl...................... 212.5 )ftq-, Beam Wt. = Total Uniform Load, w TL ..................... ......... 11.5 plf ep fry........... I th, ill ............. 11.5 plf 1 1' 'P 4a(UI P, at ............... 4.25 ft P2 at ............... 2.13 ft P3 at ............... 0.00 ft P4 at ............... 0.00 ft PLL+DL = 2,508.0 lb ............. PLL+DL = 2,664.8 lb ............. PLL+DL = 0.0 lb ............. PLL+DL = 0.0 lb ............. (2*4.25 TE Demand Moment......... 4.4 ft-k Sfeq'd................... 35.0 < 51.6 in *O.K.* Demand Shear............ 3,131.8 lb. Areq'd.......•........... 22.1 < 41.3 in *O.K.* Demand M.O.I............ 73.1 in Aactual•.•..........•••• 0.066 < 0.175 in *O.K.* U S E 6 x 8 D:. #fi ALT NA 1783P5B.xis (Rev.01/2012) Page: 5.3 Option One Consulting Engineers PROJ.: "5anterra" / Plan 5 BEAM DESIGN J.N.: 0413-1783 (NP52005) (7) HDR. AT REAR OF COURTYARD Member Length, L (ft)..................... 12.25 Load Duration Factor, CD ............... 1.25 Max. Allowable Deflection ............. L / 360 Size Factor Coefficient, Cf...................... 1.20 Trib. Area for Roof ILL Reduction, A (ft).... n/a Allowable Stresses, Rxns., Roof Load = ( 35.0 psf) x ( 4/2 + 1 ) ft + and Section Properties Partition = ( 14.0 psf ) x ( 4 ) ft M.O.E., ksi ............... 1,600.0 Floor Load = ( 52.0 psf ) x ( ) ft F'b, psi ...................... 1,275.0 Attic Storage = ( 20.0 psf) x ( ) ft F'v, psi ...................... 225.0 Beam Wt. = 9.0 plf Depth, d, in .............. 9.250 Total Uniform Load, wTb .............................. 179.0 plf Width, b, in ............... 3.500 Rxn, (Left), lb........... 1,096 Rxn, (Right), lb......... 1,096 Point Loads P, at .............6. 0.00 ft PLL+DL = 0.0 lb............. NONE P2 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P3 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P4 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE Demand Moment......... 3.4 ft-k Sreq'd.............•••••• 31.6 < 49.9 in *O.K.* Demand Shear............ 958.4 lb. Arega................... 6.4 < 32.4 in *O.K.* Demand M.O.I............ 138.8 in factual.................. 0.246 < 0.408 in *O.K.* USE I �.. 4 x �iU k @ nos _..... r.n.,,.. ALT I NA (8) HDR. AT REAR OF DEN Member Length, L (ft)..................... 0.00 Load Duration Factor, CD ............... 1.25 Uniform Loads Roof Load = Partition = Floor Load = Attic Storage = Beam Wt. _ Total Uniform Load, wTL 38.0 psf) x ( 23/2 &.0 psf) x ( 2 52.0 psf) x ( 20.0 psf ) x ( 8/2 7.0 578.0 Max. Allowable Deflection .............. L / 360 Size Factor Coefficient, C....................... 1.30 Trib. Area for Roof ILL Reduction, n/a Allowable Stresses, Rxns., + 1 ) ft + and Section Properties ft M.O.E., ksi ............... 1,600.0 ft F'b, Psi ...................... 1,381.3 plf C TD ptQd, 1n ..0 U I WN& l xn (R ht)?�b �... 1.734 I I Point Loads rum uul'4Z:) I HU U I I I P, at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P2 at ............... 0.00 ft PLL+DL - 0.0 lb............. N N1MATE P3 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE BY P4 at ............... 0.00 ft PLL+DL - 0.0 lb............. NONE Demand Moment......... 2.6 ft-k Sreq•d.................. 22.6 < 30.7 in *UK.* Demand Shear............ 1,385.0 lb. Areq'd................... 9.2 < 25.4 in *O.K.* Demand M.O.I............ 52.7 in �paa�ai .................. 0.095 < 0.200 in *O.K.* USE 4 . x ALT I NA 1783P5Bxls (Rev.01/2012) Page: 5.4 V\ Option One Consulting Engineers PROJ.: "5anterra" / Plan 5 BEAM D E S I G N J.N.: 0413-1783 (N05 2005) (9) HDR. AT LEFT OF DINING Member Length, L (ft)..................... 6.25 Max. Allowable Deflection ............. L / 360 Load Duration Factor, CD ............... 1.25 Size Factor Coefficient, C,...................... 1.00 Trib. Area for Roof ILL Reduction, Pt (ft).... n/a Uniform Loads Allowable Stresses, Rxns., Roof Load = ( 38.0 psf ) x ( 19/2 + 1 ) ft + and. Section. Properties Partition = ( 14.0 psf ) x ( 2 ) ft M.O.E., ksi ............... 1,600.0 Floor Load = ( 52.0 psf) x ( ) ft F'b, psi ...................... 1,500.0 Attic Storage = ( 20.0 psf) x ( ) ft F', psi ...................... 212.5 Beam Wt. = &.4 plf Depth, d, in .............. 5.500 Total Uniform Load, wTu .............................. 435.4 plf Width, b, in ............... 5.500 Rxn, (Left), lb........... 1,361 Rxn, (Right), lb......... 1,361 Point Loads P1 at ............... 0.00 ft PLL+DL - 0.0 lb............. NONE P2 at ............... 0.00 ft PLL+oL = 0.0 lb............. NONE P3 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P4 at ............... 0.00 ft PLL+DL = 0.0 lb..........:.. NONE Demand Moment......... 2.1 ft-k ----->.S req'd................... 17.0 < 27.7 Ina *O.K.* Demand Shear............ 1,161.1 lb. Ar q'd................... 8.2 < 30.3 in *O.K.* Demand M.O.I............ 44.8 in Aactuai.................. 0.123 < 0.208 in *O.K.* U S E 6 x 6 D.F. #9 ALT NA (10) 1-CAR GARAGE DOOR HEADER Member Length, L (ft)..................... 8.50 Max. Allowable Deflection.............. L / 360 Load Duration Factor, CD ............... 1.25 Size Factor Coefficient, C ....................... 1.30 Trib. Area for Roof LL Reduction, Pt(ft)..... n/a Uniform Loads Allowable Stresses, Rxns., Roof Load = ( 38.0 psf) x ( 8/2 + 1 ) ft + and Section Properties Partition = ( 14.0 psf) x ( 3 ) ft M.O.E., ksi ............... 1,600.0 Floor Load = ( 52.0 psf) x ( )ft F'b, psi ...................... 1,381.3 Attic Storage = ( 20.0 Beam Wt. = psf) x ( 7.0 ) plf ft C �psi .._................. D'e�ptfh kin A. .l i I N7T22, ° ' t@O Total Uniform Load, w Tv .............................. 239.0 plf 'LWidthn;^:Y Rxn,) (Left)�-,�Jb�-.-...,. 1,016 htIb '� D 1,016 Point Loads F "1 ����� l HIJU I ICON P1 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P2 at ............... 0.00 ft P at ............... 0.00 ft 3 PLL+DL = P LL+DL - 0.0 O.O lb............. NQI lb ............. NONE ATE _ BY P4 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE Demand Moment......... 2.2 ft-k ---------- Sreq'd................... 18.8 < 30.7 in *O.K.* Demand Shear............ 871.6 lb. Areq'd................... 5.8 < 25.4 in *O.K.* Demand M.O.I............ 61.9 in Aactuai.................. 0.158 < 0.253 in *O.K.* U SE 4 x 8 L?... #2 FALT NA 1783P58.xls (Rev.0112012) Page: 5.5 CC Option One Consulting Engineers PROJ.: "5anterra" / Plan 5 BEAM D E S I G N J.N.: 0413-1783 (N05 2005) (11) 2-CAR GARAGE DOOR HEADER Member Length, L (ft)..................... 16.50 Max. Allowable Deflection ............. L / 360 Load Duration Factor, CD ............... 1.25 Size Factor Coefficient, Cf...................... 1.00 Trib. Area for Roof ILL Reduction, R (ft).... n/a Uniform Loads Allowable Stresses, Rxns., Roof Load = ( 38.0 psf ) x ( 5/2 + 1 ) ft + and Section Properties Partition = ( 14.0 psf ) x ( 3 ) ft M.O.E., ksi ............... 1,600.0 Floor Load = ( 52.0 psf) x ( ) ft F'b, psi ...................... 1,062.5 Attic Storage = ( 20.0 psf ) x ( ) ft F',,, psi ...................... 225.0 Beam Wt. = 12.9 plf Depth, d, in .............. 13.250 Total Uniform Load, wTl. .............................. 244.9 plf Width, b, in ............... 3.500 Rxn, (Left), lb........... 2,020 Rxn, (Right), lb......... 2,020 Point Loads P, at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P2 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P3 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P4 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE Demand Moment......... 8.3 ft-k S,.q'd................... 94.1 < 102.4 in *O.K.* Demand Shear............ 1,749.9 lb. Areq'd................... 11.7 < 46.4 in *O.K.* Demand M. .I............ 464.1 in actual.................. 0.376 < 0.550 in O.K. USE Xx A L T 3.125 x .13.5 ,G°_ LB (12) HDR. AT FRONT OF OPT. ENTRY Member Length, L (ft)..................... 12.25 Load Duration Factor, CD ............... 1.25 Volume Factor, Cv......................... 1.00 Uniform Loads Max. Allowable Deflection .............. L / 360 Size Factor Coefficient, Ct...................... 0.97 Trib. Area for Roof LL Reduction, A(ft)..... n/a Roof Load = ( 38.0 psf ) x ( 27/2 ) ft + Partition = ( 10.0 psf ) x ( 10 ) ft Floor Load = ( 52.0 psf) x ( ) ft Attic Storage = ( 20.0 psf ) x ( 8/2 ) ft Beam Wt. = 23.5 plf Total Uniform Load, wTu .............................. 716.5 plf I� Z Attowable.Mresses, KxnS., and Section Properties M.O.E., ksi ............... 1,800.0 F'b, Psi ...................... 2,895.7 Fw,sPSi- •;.�.., .er�......... 331.3 Depthrd,M f1 Lin- .... v1' '16 51,9 Width, b in _d.125 Point Loads ; F 1 ra P, at ............... 0.00 ft PLL+DL - 0.0 lb............. NONE P2 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE P3 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONI�A + E BY P4 at ............... 0.00 ft PLL+DL = 0.0 lb............. NONE Demand Moment......... 13.4 ft-k Sreq'd.............•••••. 55.7 < 232.5 in *O.K.* Demand ear............ 3,403.3 lb. ------A req'd................... 15.4 < 84.6 in *O.K.* Demand M.O.I............ 493.9 in -~-" Aactuai.................. 0.105 < 0.408 in *O.K.* USE ` 5.125 x 16 5 GLB A Cf___j 5.25 x 16 PSL 1783P58.xls (Rev.0112012) Page: 5.6 Ck)" Option One Consulting Engineers PROJ: "5anterra" / Plan 5 J.N.: 0413-1783 LATERAL FORCE ANALYSIS - EARTHQUAKE LOADS ASCE 7-05 Section 12.8: EQUIVALENT LATERAL FORCE PROCEDURE Site & Building Data (ASCE 7-05 Chapter 11 & 12) SS ....... 0.2 Spectral Response Acc........... Per USGS Maps ................ Figures 22-1 to 22-14 ............ 1.50 S1 ....... 1.0 Spectral Response Acc........... Per USGS Maps ................ Figures 22-1 to 22-14 ............ 0.60 SC ...... Site Classification ....................... Per USGS Maps ................ Table 20.3-1 ......................... D Fa ........ Site Coefficient (short) .................. Per USGS Maps ................ Table 11.4-1 ......................... 1.00 F„ ........ Site Coefficient (1-sec.) ............... Per USGS Maps ................ Table 11.4-2 ...................... 1.00 SMS ..... Max. Considered EQ (short period) MCEs = Fa*Ss .................... Equation 11.4-1 .................... 1.50 SM1 ...... Max. Considered EQ (1-sec. period) MCE1 = F,*S1 ................... Equation 11.4-2 .................._ 0.60 SDS ...... Design Spectral Response (short period) = 2/3*SMs .................. Equation 11.4-3 .................... 1.00 SD1 • • • • • • Design Spectral Response (1-sec. period) = 2/3*SM1 ................. Equation 11.4-4 .................... 0.40 O.C..... Occupancy Category .......................................................... Table 1-1 ............................. II IE ........ Seismic Importance Factor .................................................. Table 11.5-1 ........................ 1.00 R ......... Response Modification Coefficient ......................................... Table 12.2-1 ......................... 6.50 SDC .... Seismic Design Category .................................................... Table 11.6-1, 2 ..................... D Structure Period (ASCE Section 12.8.2 Ct ........ Seismic Coefficient ..................... Table 12.8-2 .......... :.......... 0.020 Exp., x ........... 0.75 TL ........ Long -Period Transition ................ Figure 22-15 ..................... 12 sec. hn ........:Maximum Building Height (Mean Roof Height) ......................... 15.00 feet Ta ........ Fund. Period = Ct*hrx .................. Eq. 12.8-7 ........................ 0.15 sec. Design Base Shear (ASCE Section 12.8.1) (A50- Allowable 5tr s5 r42*'01 _ %a _ Note:....... Alternate Basic Load Combinations, CBC Sect. 1605.3.2, Eq. 16-20 .[DATE BI.jj.�-D1 + 5 --�/ 1. `� � r 1 �Y DEPT. V ......... Design Base Shear = (SDs*IE/R)*W / 1.4.................................. Eq8-2 ..A P[o—�- ipq�\ X1W Govern VMax .... Max. Base Shears (SD1*IE/R*T)*W / 1.4.................................. Eq8-3 FaR C TRL X�p©N VMax • • • • Max. Base Shears (SD1*TL*IE/R*TZ)*W / 1.4............................. Eq8-4 ...... 22.6988 X WDL n/a VMin ••••. Min. Base Shear >_ (0.044SDs)*I*W / 1.4 z (0.01)*W / 1.4............ Eq- .g. mtlpY 1^ o____ /- VMin • • • .. Min. Base Shear z (0.5*S1*IE/R)*W / 1.4.................................. Eq. 12.8-6 ...... 0.0330 X WDL Vertical Distribution of Force (ASCE Section 12.8.3) Fx ......., Vertical Force Distribution .................................. Eq. 12.8-12 ...................... V " (W. " h.') / Z (WI . hi') k ....... , , Exponent ......................... 1.00 See attached calculation for shear distribution Note: Per Section 12.3.1.1 of ASCE 7-05, all wood structural panel diaphragms are considered "flexible" for one- and two-family residential buildings of light -frame construction. Building Department Requirements Building Code ..................................... California Building Code (CBC), 2010 Edition Wind Speed 8 Exposure .................... V35 85 mph (3 sec. gust speed), Exposure "C" SnowLoad ......................................... N/A Page: 5.7 1783P5L_cBC2010.x1s (Rev. 07/2012) Option One Consulting Engineers PROJ: "5antcrra" / Flan 5 J.N.: 0413-1783 LATERAL FORCE ANALYSIS - EARTHQUAKE LOADS Supplement No. 2 - Design Base Shear Equivalent Lateral Force Procedure (ASCE 7-05, Section 128) . S DS '� V(S DS) h Aq V(S Di) d Q V min To Ts =S DI IS DS ISDI ' E RT VISDI-(R/1)77W 1.0 TL SDIIETL TT 1 V=(0.5S,+(R/I))W where S,>_0.6g V==[SD,TL=(R11)TZ]W 0.5S11� R V=0.044S,cIW Period, T (sec.) ti Region 1: Short period range / constant spectral response acceleration Region 2: Long period range / constant spectral response velocity Region 3: Very long period range /constant spectral response displacement ASCE 7-05 Section 12.8Equivalent Lateral Force Procedure Design Base Shear, V.................................. CS i4 W Eq. 12.8-1 Seismic Response Coefficient, CS .................. SDs / (R / I) Eq. 12.8-2 Max. Coefficient, CS .............. (T <_ TL) ............ Sp, / T (R / I) Eq. 12.8-3 Max. Coefficient, CS .............. (T > T j ............ SDI TL / TZ (R -4 Min. Coefficient, Cs ...................................... 0.044SDS*1 >_0 01 5 Min. Coefficient, CS .............. (S, a0.6) ......... 0.5 S, / (R / I) C ITY BUILDING � SA1r : � U I NTA FETY DEPT. Long -Period, TL.......................................... Per Figure 22 15 n Fundamental Period, T = Ta .......................... C, hnx APp1 E D Reference Period, To ................................... 0.2 Sp, /Sps FORQN1£TBUCTION Reference Period, T5 • • •• ............................... SDI / SDS Sect. 11.4.5 SDI .............................. • • • • • Design Spectral Response AccelE rdii@NE BY Parameter, 5% damped, at a peri SDs .............................. • • • • • Design Spectral Response Acceleration Parameter, 5% damped, at a short period of T = 0.2 sec Page: 5.8 1783P5L_CBC2010.xls (Rev. 10/2010) Option One Consulting Engineers PROJ: "5anterra" / Plan 5 (1,7siory)' J.N.: 0413-1783 _........ WIND DESIGN PRESSURES AND DIAPHRAGM FORCES ASCE 7.05 Section 6.5.3: Method 2 - Analytical Procedure LOCATION ............................. REAR PORTION (M. BDRM., FAMILY, KITCHEN) Design Procedure: 1) Basic Wind Speed, V = 85 mph Figure 6-1 (based on 3-second gust V30 Directionality Factor, Kd = 0.85 Table 6-4 2) Importance Factor, I = 1.00 Table 6-1 3) Exposure Category = C Section 6.5.6 4) Topographic Factor, Kt = 1.00 Section 6.5.7 5) Gust Factor, G or Gf = 0.55 Section 6.5.8 6) Enclosure Classification = "Enclosed" Section 6.5.9 7) Internal Pressure Coeff., GCP; = 0.15 (+/-) Figure 6-5 8) External Pressure Coeff., Cp = See chart below Figure 6-6 External Pressure Coefficient, C Location North -South East-West Windward: Leeward Vl/indward? wa Leerd _Wall 0.80 -0.50 0.50 -0.23 Roof (H) -0.55 -0.09 -0.58 -0.36 0.14 _ -0.57 .Roof (G) 0.00 0.00 0.00 0.00 L / B" 0.29 3.40 h / L 0.64 0.19 NOTES: f Neglect effect of uplift forces on lateral loads. Interpolation allowed. Roof Slope = 4 :12 (max) Theta, O = 15.4 degrees' N-S Dimension = 23.5 feet E-W Dimension = 80 feet Mean Roof Height, h = 15.0 feet 1 st Floor Plate = 10 feet 9) Velocity Pressure Coeff., Kh,Z = See chart below Table 6-3 = 2.01 (z/z1)?/a for 15ftsz5z = 2.01 (15 / z9)'a for z < 15 It Velocity Pressure, qh,Z = See chart below Eqn. 6-15 = 0.00256 K, Kn Kd VZ 1 CITY OF LA QUID PA BUILDING & SAFETY APPROVEDs N Height, z Kz Kzt Kd V I qz r o es 0.0 0.849 1.00 0.55 85 1.00 13.35 10.0 0.849 1.00 0.85 85 1.00 1L5ME glat -evel- 15.0 0.849 _ 1.00 0.85 _ 8_5 1.00 -34 eve 15.0 0.849 1.00 0.85 85 1.00 13.35 Height, h Khjj Kn Kd V I qh Notes 15.0 1 0.849 1 1.00 1 0.85 1 85 1.00 13.35 Mean ht. (X = 9.5 z9 = 900 feet Table 6-2 10) Design Wind Load, p = See chart below = gccp - OiGcpj Eqn. 6-17 NOTE: Since all internal wind pressures for enclosed buildings act equally on all the internal surfaces (equally and in opposite directions), these pressures cancel each other out in the lateral direction only. Net uplift pressures acting on components to be analyzed and designed separately. IY 1783P5L_CBC2010.x1s Page: 5.9 Option One Consulting Engineers PROJ: "5anterra" / Plan 5 (1-Story) _:......._.�...._:_....... J.N.: 0413-1783 WIND DESIGN PRESSURES AND DIAPHRAGM FORCES ASCE 7.05 Section 6.5.3: Method 2 - Analytical Procedure LOCATION ............................. REAR PORTION (M. BPRM., FAMILY, KITCHEN) North -South Direction North -South Direction: (Wall) Location Height, z g 4� CI) G ghGCp ghGCp! Notes Windward 10.0 13.35 0.80 0.85 9.08 2.40 Plate Level Windward 15.0 13.35 _ 0.80 0.85 9.05 2.40 Roof Level Location Height, h qh CID G ghGCp :. ghGCp; Notes Leeward 1 15.0 13.35 1 -0.50 0.85 1 -5.67 2.40 Mean ht. �Or�Ti�iII►Ti7lilil�Jrt:7.3Iri�I:ln:.. Location Height, h qh Cp I G I ghGCp ghGCp; lNotes Windward 15.0 13.35 -0.09 0.85 -1.03 2.40 Max CP Leeward 15.0 15.35 -0.58 1 0.85 -6.55 1 2.40 nVIRnuII►10)nuEVucrNUlT.r.cm>r"L)IIIF: AL1A-TiTii7MriY-Ti II Location P Tributary L d Load' oca ton Pressure Load W Gable: 14.75 - - ..................••• Watl. Below 14.75 5.00 73.74 95.86 10.00 - Hip Roof Hip Roof 10.00 10.00 4.55 4.55-j 45.50 45.50 59.15Hip: 59.15 Controls Total ..................................................... 155.01 plf North -South Direction: (Gable Roof Diaphragm Load) 14.75 Location Pressure Tributary Load- Load*� .; Wall Below 14.75 5.00 73.74 95.86 Gable Roof 14.75 0.00 0.00 0.00 Total..................................................... 95.86 plf East-West Direction Fast -West Dirertion !Wall) Hip/Gable Cond. (N-S) Schematic: Not to Scale Location Height, z q� I Cp G q.GCp I ghGCp; INotes Windward _ 10.0 13.35 0.80 0.85 9.08 2.40 Plate Level Windward 15.0 13.35 0.80 0.55 9.08 2.40 ev Location Height h ; qh Cp G ghGCp ; Leeward 15 13.35 -0.23 0.85 -2.61 I o QUINTA gtt�A=EN DEPT. Nate U�pN Location Height, h qh Cp G ghGCp ghGC ; Windward 15 13.35 0.14 0.85 1.56 2.4 ax o Leeward 15 13.35 -0.57 0.&5 -6.45 2.40 East-West Direction: (Hip Roof Diaphragm Load) DATE Y Location Pressure Tributary Load Load*cw Wall Below 11.68 5.00 58.41 75.93 Hip Roof 10.00 4.00 40.00 52.00 Gable: 11. - - .................... I......... Hip: 10.00 - Controls Total..................................................... 127.93 plf East-West Direction: (Gable Roof Diaphragm Load) 11.68 Location Pressure Tributary Load Load-w Wall Below 5.00 58.41 Gable Roof 1_11.68 11.68 0.00 _ 0.00 _75.93 0.00 Hip/Gable Cond. (E-W) Schematic: Not to Scale Total..................................................... 75.93 plf NOTE: When Alternative Basic Load Combination, Sect. 1605.3.2, is utilized the wind load shall be magnified by the following coefficient .................. W = 1.3 Page: 5.10 1783P5L_CBC2010.xls Option One Consulting Engineers ................. _ _... . PROJ: "5anterra" / Plan 5 J.N.: 0413-1783 ..-_.R.,_... WIND DESIGN PRESSURES AND DIAPHRAGM FORCES ASCE 7-05 Section 6.5.3: Method 2 - Analytical Procedure LOCATION ............................. LEFT PORTION (DINING, HALL 2) Design Procedure: 1) Basic Wind Speed, V = 85 mph Directionality Factor, Kd = 0.85 2) Importance Factor, I = 1.00 3) Exposure Category = C 4) Topographic Factor, KZt = 1.00 5) Gust Factor, G or Gf = 0.85 6) Enclosure Classification = "Enclo5ed" 7) Internal Pressure Coeff., GCP; = 0.15 8) External Pressure Coeff., Cp = See chart below External Pressure Coefficient, C Location North -South Windward I Leeward East-West Windward I Leeward _Wall 0.60 -0.50 0.50 -0.50 Roof (H) -0.63 -0.11 -0.58 -0.64 -0.12 -0.58 Roof (G)f 0.00 0.00 0.00 0.00 L / B* 1.03 0.95 h / L* 1 0.73 0.75 Figure 6-1 Table 6-4 Table 6-1 Section 6.5.6 Section 6.5.7 Section 6.5.8 Section 6.5.9 Figure 6-5 Figure 6-6 (based on 3-second gust V3s) NOTES: r Neglect effect of uplift forces on lateral loads. Interpolation allowed. Roof Slope = 4 :12 (max) Theta, O = N-S Dimension = 20.5 feet E-W Dimension = Mean Roof Height, h = 15.0 feet 1 st Floor Plate = 9) Velocity Pressure Coeff., Kh,Z = 5ee chart below Table 6-3 = 2.01 (z/zy)"O' for 15It<_z<-z = 2.01 (15 / z1)2/a forz < 15 It Velocity Pressure, qh,Z = 5ee chart below Eqn. 6-15 = 0.00256 KZ Krt Kd Vz 1 18.4 degrees* ----26-----feet GITY(f �F LA QUIVITA BUILDING & SAFETY DEPT. APPROVED FOR CONSTRUCTION DATE BY Height, z KZ Kn Kd V I qz Notes 0.0 0.849 1.00 0.85 85 1.00 13.35 10.0 0.849 1.00 0.85_ 85 1.00 13.35 Plate Level 15.0 0.849 1.00 0.55 85 1.00 13.35 Roof Level 15.0 0.&49 1.00 0.85 _ 85 1.00 13.35 Height, h Kh Kn Kd V I qh Notes 15.0 0.849 1.00 1 0.85 1 85 1.00 13.35 Mean ht. (X = 9.5 z9 = 900 feet Table 6-2 10) Design Wind Load, p = 5ee chart below = gGCP - q;GCp, Eqn. 6-17 NOTE: Since all internal wind pressures for enclosed buildings act equally on all the internal surfaces (equally and in opposite directions), these pressures cancel each other out in the lateral direction only. Net uplift pressures acting on components to be analyzed and designed separately. Page: 5.11. 1783P5L_C13C2010.x1s Option One Consulting Engineers Location Pressure Tributary Load Load'w Wall Below 14.75 5.00 73.74 95.86 Gable Roof 14.75 0.00 0.00 0.00 Total..................................................... 95.86 plf PROD: "5anterra" / Plan 5 (1-story): J.N.: 0413-1783 WIND DESIGN PRESSURES AND DIAPHRAGM FORCES ASCE 7.05 Section 6.5.3: Method 2 - Analytical Procedure LOCATION ............................. LEFT PORTION (DINING, HALL 2) North -South Direction : North -South Direction: (Wall) Location Height, z qZ Cp G gnGCp I gnGCp; Notes: Windward 10.0 13.35 0.80 0.55 9.08 2.40 Plate Level Windward 15.0 13.35 0.80 0.85 9.05 2.40 Roof Level Location Height, h . qn Cp G' gnGCp gnGCp) Notes Leeward 15.0 13.35 1 -0.50 0.55 1 -5.62 1 2.40 Mean ht. Location Height, h qn Cp G gnGCp gnGCp; Notes Windward 15.0 13.35 -0.11 0.85 -1.29 2.40 Max CP Leeward 15.0 13.35 -0.55 0.85 -6.62 2.40 IOtTLII►Y�7/iL7�JT'�i3 /:�: # * NO] M.s i� • ..h Location Pressure Tributary Load Load" cu Wall Below 14.69 5.00 73.45 95.49 Hip Roof 10.00 0.00 0.00 0.00 Total..................................................... 95.49 plf North -South Direction: (Gable Roof Diaohragm Load) Location Pressure I Tributary I Load I Load.w ; Wall Below 14.69 5.00 73.45 Gable Roof f 14.69 1 0.00 1 0.00 _95.49 1 0.00 Gable: 14.69 _ ....................... Hip: 10.00 14.69 Hip/Gable Cond. (N-S) Schematic: Not to Scale Total..................................................... 95.49 plf East-West Direction East-West Direction (Wall) Location Height, z qZ Cp G gzGCP gnGCpt Notes Windward 10.0 13.35 0.50 0.85 9.0 Windward 15.0 15.65 0.&0 0.85 9.0 o e Location Height; h qn Cp G qnG I tes Leeward 15 13.35 -0.50 0.85 -5.6 �Jha �I East-West Direction: (Hip Roof) Location Height, h qn Cp G qnG n MM Windward 15 13.35 -0.12 0.85 -1. 2.40 Max CP Leeward 15 13.35 0.55 0.85 -6.6 D TE BY - East -West Direction: (Hin Roof Dlaohraom Load) Location P Tributary L d Load' ` oca.lon Pressure Oa jJ Gable: 14.75 1IVaII.Below 14.75 5.00 73.74 95.86 Hip: 10.00 - Hip Roof 10.00 4.50 45.00 58.50 Controls Total ..................................................... '154.36 plf East-West Direction: (Gable Roof Diaphragm Load) 14.75 Hip/Gable Cond. (E-W) Schematic: Not to Scale I I NTA DEPT. D ION NOTE: When Alternative Basic Load Combination, Sect. 1605.3.2, is utilized the wind load shall be magnified by the following coefficient .................. w = 1.3 Page: 5.12 1783P5L_CBC2010.xls 0 Option One Consulting Engineers .....__.... PROJ: "5anterra" / Plan 5 (1-story) J.N.: 0413-1783 WIND DESIGN PRESSURES AND DIAPHRAGM FORCES ASCE 7-05 Section 6.5.3: Method 2 - Analytical Procedure LOCATION ......................... Design Procedure: 1) Basic Wind Speed, V = Directionality Factor, Kd = 2) Importance. Factor, I = 3) Exposure Category = 4) Topographic Factor, Kt = 5) Gust Factor, G or Gf = 6) Enclosure Classification = 7) , Internal Pressure Coeff., GCP; = 8) External Pressure Coeff., CP = RIGHT PORTION (GARAGE, M.BATH, W.I.C.) 85 mph 0.85 1.00 C 1.00 0.85 "Enclosed" 0.18 see chart below External Pressure Coefficient, C North -South East-West Location Windward 1 Leeward Windward Leeward _Wall 0.80 -0.50 0.80 -0.45 Roof (H) -0.44 0.02 -0.57 -0.40 -0.57 Roof (G) 0.00 0.00 _0.08 0.00 0.00 L / B' 0.80 1.25 h / L" 0.40 0.32 Figure 6-1 Table 6-4 Table 6-1 Section 6.5.6 Section 6.5.7 Section 6.5.8 Section 6.5.9 Figure 6-5 Figure 6-6 (based on 3-second gust V35) NOTES: r Neglect effect of uplift forces on lateral loads. Interpolation allowed. Roof Slope = 4 :12 (max) Theta, O = 18.4 degrees* N-S Dimension = 37.5 feet E-W Dimension = 47 feet Mean Roof Height, h = 15.0 feet 1 st Floor Plate = 10 feet 9) Velocity Pressure Coeff., Kh Z = see chart below Table 6-3 = 2.01 (z/zy)z'a for 15ft<_z<_zg = 2.01 (15 / z )Z'°° forz < 15It eight, z 9 Velocity Pressure, qh,Z = 5ee chart below Eqn. 6-1 CITY OF LA QU I NTA = 0.00256 Kz Kn Kd v2 1 BUILDING & SAFETY DEPT. Kz Kn Kd V I I z °IVotesJED ,TION H 0.0 0.849 1.00 0.85 85 1.00 1�'i IVY I "ill 10.0 0.849 1.00 0.55 85 1.00 13.35 Plate Level _ 15.0 0.&49 1.00 0.85 85 1.00 13.35 Koof L I S: 15.0 0.849 1.00 0.85 85 1.00 ' 3 Height, h Kr, KZ, Kd V I qh Notes 15.0 0.849 1.00 0.85 85 1.00 13.35 Mean ht. a = 9.5 z9 = 900 feet Table 6-2 10) Design Wind Load, p = 5ee chart below = gGCP - G;GCP, Eqn. 6-17 NOTE: Since all internal wind pressures for enclosed buildings act equally on all the internal surfaces (equally and in opposite directions), these pressures cancel each other out in the lateral direction only. Net uplift pressures acting on components to be analyzed and designed separately. Page: 5.13 1783P5L_C13C2010.x1s a = 9.5 z9 = 900 feet Table 6-2 10) Design Wind Load, p = 5ee chart below = gGCP - G;GCP, Eqn. 6-17 NOTE: Since all internal wind pressures for enclosed buildings act equally on all the internal surfaces (equally and in opposite directions), these pressures cancel each other out in the lateral direction only. Net uplift pressures acting on components to be analyzed and designed separately. Page: 5.13 1783P5L_C13C2010.x1s CC, ) Option One Consulting Engineers PROJ: "5anterra" / Plan 5 J.N.: 0413-1783 WIND DESIGN PRESSURES AND DIAPHRAGM FORCES ASCE 7-05 Section 6.5.3: Method 2 - Analytical Procedure LOCATION ............................. RIGHT PORTION (GARAGE, M.BATH, W.I.C.) North -South Direction North -South Direction: (Wall) Location Height, z qZ Cp G q,GCp gnGCp, Notes Windward 10.0 13.35 0.80 0.85 9.08 2.40 Plate Level Windward 15.0 13.35 0.80 0.85 9.08 2.40 Roof Level Location Height, h qn Cp G gnGCp gnGCp; Notes Leeward 15.0 13.35 1 -0.50 1 0.85 1 -5.67 F 2.40 Mean ht. ►��IiII►Y7Ti1�7Ill�.TiiTil Location Height, h -' qn Cp G gnGCp gnGCp; Notes Windward 15.0 1 13.35 0.02 0.85 1 0.24 2.40 Max Cp Leeward 15.0 1 13.35 -0.57 0.85 1 -6.45 1 2.40 North -South Direction: (Hio Root Dianhraam Load) Location Pressure 'Tributary I Load Load*w Wall Below 14.75 5.00 73.74 95.86 Hip Roof 10.00 0.00 0.00 0.00 Total..................................................... 95.86 plf North -South Direction: (Gable Roof Dianhraam Load) Location Pressure Tributary Load Load*w Wall Below 14.75 5.00 73.74 95.86 Gable Roof 14.75 5.50 51.11 105.44 Control Total ..................................................... 201.30 plf East-West Direction East-West Direction (Wall) Gable: 14.75 - :+- Hip: 10.00 14.75 Hip/Gable Cond. (N-S) 5 Schematic: Not to Scale Location I Height, z % Cp G gZGCp IgnGCp; Notes Windward 10.0 13.35 0.80 0.85 9.08 2.4+7-- Plate Level= Windward 15.0 13.35 0.80 0.55 9.08 �Rgof on Height, h .: 9n Cp G gnGCp 15M VotesE)pR Leeward 1 15 1 13.35 1 -0.45 0.85 1 -5.10 11 2.4: „ r1 tvl an tom. y` Last -west uirernon, tHin Rnnn (I -Story) )UINTA =TY DEPT. _1ED l CTION .Location Height, h qh. Cp G gnGCp Cp gnG `otes Windward 15 13.35 0.08 0.85 0.95 2.40 Max CP Leeward 15 13.35 -0.57 0.85 -o.45 DAjF4 Last -West Direction: (HID Root Dianhraam Load) Location . Pressure Tributary Load Load"w Wall Below 14.17 5.00 70.86 92.12 H' Roof 10.00 5.50 55.00 7150 Gable: 14.17................................ Hip: 10.00 - Hip oo Controls Total..................................................... 163.62 plf East-West Direction: (Gable Roof Dianhraam Load) Location I Pressure Tributary Load Load*w Wall Below 14.17 5.00 70.86 92.12 Gable Roof 14.17 0.00 0.00 0.00 14.17 Hip/GableCond. (E-W) Schematic: Not to Scale Total..................................................... 92.12 plf NOTE: When Alternative Basic Load Combination, Sect. 1605.3.2, is utilized the wind load shall be magnified by the following coefficient .................. w = 1.3 Page: 5.14 1783P5L_CBC2010.x1s Option One Consulting Engineers PROJ: "5anterra" / Plan 5 (1-Story) J.N.: 0413-1783 WIND DESIGN PRESSURES AND DIAPHRAGM FORCES ASCE 7.05 Section 6.5.3: Method 2 - Analytical Procedure LOCATION ............................. FRONT PORTION (BEDROOM 3, BREEZEWAY) Design Procedure: 1) Basic Wind Speed, V = Directionality Factor, Kd = 2) Importance Factor, I = 3) Exposure Category = 4) Topographic Factor, Kn = 5) Gust Factor, G or Gt = 6) Enclosure Classification = 7) Internal Pressure Coeff., GCPi = 8) External Pressure Coeff., CP = 85 mph Figure 6-1 0.85 Table 6-4 1.00 Table 6-1 C Section 6.5.6 1.00 Section 6.5.7 0.55 Section 6.5.8 "Enclosed" Section 6.5.9 0.15 (+l-) Figure 6-5 See chart below Figure 6-6 External Pressure Coefficient, C Location North -South East-West Windward Leeward .Windward ` Leeward _ Wall 0.80 -0.50 0.80 -0.31 Roof (H) -0.72 -0.15 -0.59 -0.47 -0.02 -0.57 Roof (G)'t 0.00 0.00 0.00 0.00 L /-'B* 0.52 1.94 h/L''' 0.88 0.45 (based on 3-second gust V30 NOTES: r Neglect effect of uplift forces on lateral loads. Interpolation allowed. Roof Slope = 4 :12 (max) Theta, O = 18.4 degrees' N-S Dimension = 17 feet E-W Dimension = 33 feet Mean Roof Height, h = 15.0 feet 1 st Floor Plate = 10 feet 9) Velocity Pressure Coeff., Kh,Z = Velocity Pressure, qh,Z = see chart below Table 6-3 2.01 (z / zy)va for 15 It 5 z <_ z9 2.01 (15 / zy)y" for < 15 It see chart below Eqn. 6-15 0.00256 KZ Kn Kd VZ I Height, z KZ Kn Kd V I qZ Notes 0.0 0.849 1.00 0.85 85 1.00 113.35 10.0 0.849 1.00 0.85 85 1.00 C 13: ' hate ever 15.0 0.849 1.00 0.85 85 1.00 R 13.3 Roof Level 15.0 0.849 1.00 0.85 85 1.00 13.35 Height, h Kh Kn Kd V I qh Notes 15.0 0.849 1.00 0.85 85 1.00 13.35 Mean ht. a = 9.5 z9 = 900 feet Table 6-2 10) Design Wind Load, p = See chart below = gGCP - CtGCP; Eqn. 6-17 NOTE: Since all internal wind pressures for enclosed buildings act equally on all the internal surfaces (equally and in opposite directions), these pressures cancel each other out in the lateral direction only. Net uplift pressures acting on components to be analyzed and designed separately. CITY OF LA QUINTA BUILDING & SAFETY DEPT. APPROVED RUCTION 3Y 1 1783P5L_CBC2010.x1s Page: 5.15 Option One Consulting Engineers PROJ: "5anterra" / Plan 5 J.N.: 0413-1753 WIND DESIGN PRESSURES AND DIAPHRAGM FORCES ASCE 7.05 Section 6.5.3: Method 2 - Analytical Procedure LOCATION ............................. FRONT PORTION (BEDROOM 3, BREEZEWAY) North -South Direction North -South Direction: (Wall) Location Height, z qZ Cp G '%GCp I ghGCp; Notes Windward 10.0 13.35 0.&0 0.85 9.05 2.40 Plate Level Windward 15.0 13.35 0.60 0.85 9.08 _ 2.40 Roof Level Location Height, h qh Cp G ghGCp ghGCp; Notes Leeward 1 15.0 1 13.35 1 -0.50 1 0.85 1 -5.67 1 2.40 1 Mean ht. �Ofl1I/IATQ/I /III//L:7N/(I/Ilr/G/I11:f.T1)/ Location Height, h qh Cp G ghGCp ghGCP; INotes Windward 15.0 13.35 -0.15 0.85 -1.71 2.40 Max CP Leeward 15.0 13.35 -0.59 0.85 -6.72 2.40 ►►'rril.aY.m�i>.��rr�airr.��crr.>.:rrfHaIPn.Frr,:ur@F_r:J; Location Pressure Tributary I Load Load"w Wall Below 14.75 5.00 73.74 95.86 Hip Roof 10.00 _ 0.00 F0.00 0.00 Total..................................................... 95.86 plf North -South Direction- tGahle Rnnf Dianhranm I narfl Location Pressure Tributary Load Load*w Wall Below 14.75 5.00__ 73.74 1 95.86 Gable Roof 1 14.75 2.75 40.55 52.72 Control Gable: 14.75 - -•••-•• Hip: 10.00 14.75 Hip/Gable Cond. (N-S) 5 Schematic: Not to Scale Total..................................................... 148.58 plf East-West Direction East-West Direction (Wall) Location Height, z qZ Cp G ghGCp Windward 10.0 15.35 0.80 0.85 Windward 15.0 13.35 0.80 0.85 9.08 Location Height, h qh Cp G ghGCp Leeward 15 1 13.35 -0.31 1 0.85 East-West Direction: (Hip Root) Location Height, h qh Cp G ghGCp Windward 15 13.35 -0.02 0.85 0.24 Leeward 15 13.35 0.57 0.55 -6.45 East-WP.st Dirpctinn• t"in Rnnf Manhranm I narll Location Pressure I Tributary Load Load*w Wall Below 12.61 81.98 Notes Notes Max C. (I-st4/y) UINTA Y DEPT. -D ;TION Gable: 12.61 _ ............................. 5.00 63.06 Hip: 10.00 -_ Hip Roof 10.00 4.75 47.50 61.75 Controls Total ..................................................... 143.73 plf East-West Direction: (Gable Roof Dianhranm I marl) 1261 Location Pressure Tributary Load Load"w Wall Below 12.61 5.00 63.06 81.98 Gable Roof 12.61 0.00 0.00 0.00 Hip/Gable Cond. (E-W) Schemah'c: Not to Scale Total ..................................................... 81.98 plf NOTE: -When Alternative Basic Load Combination, Sect. 1605.3.2, is utilized the wind load shall be magnified by the following coefficient .................. w = 1.3 Page: 5.16 1783P5L_CBC2010.xls Option One Consulting Engineers PROJ.: "5anterra" / Plan 5 f1 Story) J.N.: 0413-1753 LATERAL SHEAR DISTRIBUTION ANALYSIS ASCE 7-05 Section 12.8: Equivalent Lateral Force Procedure LOCATION.............................................................. REAR PORTION (M. BDRM., FAMILY,..KITCHEN) Seismic Response Coefficient, Cs ............................. 0,110 ASCE Section 12.8.1.1 Design Base Shear, V = C, x W.................................... 6.00 kips ASCE Equation 12.8-1 Dead Load of Structure: Roof Dead Weight ................. 18.0 psf x ( 23.5 ft N/S x &0.0 ft EMI) F-t Ave. Projected Ht. -� - 15.0 psf x ( 0.0 ft N/S x 0.0 ft EMI )_ ...... - ..... - - - - - - - - - Overhang (O.H.) ...... 1.0 N/S EMI 1.0 35.72 kips 4.5 ` ft Exterior Wall Weight .............. 14.0 psf Pit. Line N/S Walls........ ( 10/2 ft ) x ( 4.0 ) _ 6.58 kips , EMI Walls....... ( 10/2 ft ) x ( 1.0 ) _ 5.60 kips O.H. 10.0 ft Interior Wall Weight ............. &.0 psf N/S Walls........ ( 10/2 ft ) x ( 2.0 ) _ 1.88 ikips EMI Walls....... ( 1012 ft ) x ( 1.5 ) _ 4.80 !kips (N/S - EMI) TotalDead Load, W............................................................................................... 54.6 kips Seismic Story NIS Direction Directi No pSeismic Wind Seismic Story pSeismic Wind.- PLAN (footprint) :ast/West Direction Shear, lb. plf plf (-) annotation indicates a reduction .ateral Load at Roof . .................................. 6,000 1.30 332.0 128.0 in roofffloor area, i.e. stairways, diaphragm openings, area indentations, etc. LOCATION............................................................... LEFT PORTION (DINING, HALL 2) Seismic Response Coefficient, C. ............................. 0.110 ASCE Section 12.8.1.1 Design Base Shear, V = C. x W.................................... 1.39 kips ASCE Equation 12.8-1 Dead Load of Structure: Roof Dead Weight ................. 18.0 psf x ( 20.5 ft N/S x 20.0 ft EMI ) - 18.0 psf x ( 0.0 ft N/S x 0.0 ft EMI )_ Overhang (O.H.) ...... 0.0 N/S EMI 1.0 7.75 kips Exterior Wall Weight .............. 14.0 psf Seismic Story pSeismic Wind forth/South Direction Shear, lb. p plf plf .ateral Load at Roof . .................................. 1,390 1.30 91.0 96.0 Seismic Story pSeismic Wind :asUWest Direction Shear, lb. p plf plf .ateral Load at Roof . .................................. 1,390 1.30 89.0 155.0 _O�-� �a AojectedU-I�� BU{LDI � & SA -EN DEBT' It. Line ,,�°! ���5�n 4: oFH R CONSTRUl `o�_ DATE BY _ (N/S -EMI) . ...., N/S Direction EMI Direction / PLAN (footprint) (-) annotation indicates a reduction in roof/floor area, i.e. stairways, diaphragm openings, area indentations, etc. 1783P5L_CBC2010.x1s (Rev. 10/2010) tl Page: 5.17 Option One Consulting Engineers PROJ.: "5anterra" / Flan 5 . (17Story) , J.N.: 0413-1783 LATERAL SHEAR DISTRIBUTION ANALYSIS ASCE 7-05 Section 12.8: Equivalent Lateral Force Procedure LOCATION............................................................... RIGHT PORTION (GARAGE, M.BATH, W.I.C.) Seismic Response Coefficient, Cs ............................. 0.110 ASCE Section 12.8.1.1 Design Base Shear, V = C. x W.................................... 5.34 kips ASCE Equation 12.8-1 Dead Load of Structure: Roof Dead Weight ................. 15.0 psf x ( 37.5 ft N/S x 47.0 ft E/W) Froof Ave. Projected Ht. --- ----------- - 15.0 psf x ( 0.0 ft N/S x 0.0 ft E/W)= -- Overhang (O.H.) ...... 1.0 N/S E/W 1.0 33.2E :kips 5.5 ft Exterior Wall Weight .............. 14.0 psf Plt. Line N/S Walls........ ( 10/2 ft ) x ( 2.0 ) = 5.25 ' kips E/W Walls....... ( 10/2 ft ) x ( 1.0 3.29 Jkips O.H. 10.0 ft Interior Wall Weight ............. 8.0 psf N/S Walls........ ( 10/2 ft ) x ( 2.0 ) = 3.O--]kips E/W Walls....... ( 10/2 ft ) x ( 2.0 ) _ `_3.76 !kips ELEY14TION (N/S - ENV) Total Dead Load, W............................................................................................... 48.6 kips --`� Seismic Story PSeismic Wind � N/S Direction North/South Direction Shear, lb. `ecti plf plf Lateral Load at Roof . .................................. 5,340 1.30 148.0 2020. Seismic Story. pSeismic Wind PLAN (footprint) East/West Direction Shear, lb. plf plf (-) annotation indicates a reduction Lateral Load at Roof . .................................. 5,340 1.30 186.0 164.0 in roof/floor area, i.e. stairways, diaphragm openings, area indentations, etc. LOCATION............................................................. FRONT PORTION _.(BEDRODM 3 BREEZEWAY) Seismic Response Coefficient, C. ............................. 0.110 ASCE Section 12.8.1.1 Design Base Shear, V = Cs x W.................................... 1.9E kips ASCE Equation 12.8-1 Dead Load of Structure: ( Roof Dead Weight ................. 18.0 psf x ( 17.0 ft N/S x 33.0 ft ENV) - 18.0 psf x ( 6.0 ft N/S x 13.0 ft E/W ) Overhang (O.H.) ...... 1.0 N/S E/W 1.0 9.61 !kips _ Exterior Wall Weight .............. 14.0 psf N/S Walls........ ( 10/2 ft ) x ( 2.00 ) _ 2.38 ,kips ENV Walls....... ( 10/2 ft ) x ( 1.50 kips Interior Wall Weight ............. 8.0 psf N/S Walls........ ( 10/2 ft ) x ( 1.50 ) = y 1.02 1(kips E/W Walls....... ( 10/2 ft ) x ( 1.00 1.32 kips TotalDead Load, W............................................................................................... 17.8 kips North/South Direc6gri Seismic Story Shear, lb. pSeismic plf Wind plf Lateral Load at Roof . .................................. 1,960 1.30 78.0 149.0 Seismic Story PSeismic Wind :ast/West.Ditection Shear, lb. P plf plf ateral Load at Roof . .................................. 1,960 1.30 150.0 144.0 ft N 5 ARi _ ITY O� L QUI T,q L�roof�� r .. Lj�"IT Oi Plt. Linen x r"j '•- IV O.H. 10.0 ft BY - EL t�ATtON (N/S -ENV) N/S Direction ENV Direction / PLAN (footprint) (-) annotation indicates a reduction in roof/floor area, i.e. stairways, diaphragm openings, area indentations, etc. 1783P5L_CBC2010.x1s (Rev. 10/2010) Page: 5,18 Option One Consulting Engineers PROJ.: "5anterra" / Plan 5 J.N.: 0413-1783 SHEAR WALL (S.W.) DESIGN: SUMMARY California Building Code (CBC), 2010 Edition / SDPWS-2008 / ASCE 7-05 General Assumptions & Design Data: Project Moisture Content, MC ......................................... 13.0 % (Assumed in use; range =13% -19%) Spectral Response Acceleration, SDs . •........ • • •....... • • • • . • • • • • 0.83 ASCE 7-05 and/or Soils Report Multiplier for HDs that do not consider cyclic loading ............ 1.00 Per Building Dept. Requirements Maximum negligible uplift load is ..................................... 10 lb Shear Wall Information: Panel Type Panel Capacity (plf) Wind Seismic Nail Type Nail Spc'g. (O.C.) Panel Thick. (in.) Panel Type (rating 24/0) Ge (kip/in) .SDPWS T4.3A Uplift PDL WDL V I P6 260 260 8d 6 3/8 W512 13 P4 350 350 8d 4 318 W51' 19 P3 490 490 8d 3 318 W5P 25 Panel(DQ P2 640 640 8d 2 3/8 W5P 39 ' P2a 1,040 670 101 2 15/32 5TR1 51 Phold- PP3 1,200 980 8d 3 3/5 W51' 50 PP2 2,400 1,740 1061 2 15/32 5TR7 102 Free BoA Diagram Holdown Information: (Simpson C-2011 DF/SP) Simpson Holdown Elongation No. of Fast. Dia. End Post End Posty Capacity MOE (psi) ICC-ESR Type (in) Fasteners (inches) (min.) Area (in2) � (lb) End -Post Report No. N/A n/a 0 0 2x4 5.25 0 N/A N/A (1)-0516 0.125 36 0,113 2x4 5.25 1,705 1,400,000 2105 (2)-0516 0.125 72 0,113 2-2x4 10.50 3,410 1,400,000 2105 (3)-0516 0.125 108 0.113 3-2x4 15.75 5,115 1,400,000 2105 (4)-0516 0.125 144 0.113 4x8 25.38 6,820 1,400,000 2105 CM5TC16 0.125 52 0.148 2-2x4 10.50 4,585 1,400,000 2105 (1)-CM5T14 0.125 76 0.148 2-2x4 10.50 6,490 1,400,000 2105 (2)-5T6224 0.125 56 0,162 4x6 10.50 5,0130 1,400,000 2105 (2)-5T6236 0.125 80 0.162 4x6 10.50 7,690 11400,000__ 2105 (2)-CM5T14 0.125 104 0.162 4x8 25.3� fi- o'000 2"1b 1 `` h �- C?m � Ql� �ITA (2) MSTC48B3 0.125 108 0.148 4x8 25.38 r6;490 1,400,000 no e l 5THD10 0.096 28 0.145 4x4 12.25 a� ��s �A _T1r'�EPT. B 2 oRMC-1,680;000 29�2-`0� 5THD14 0.206 38 0.148 4x4 12.25 3,ro9-1,6y00 �y�9? HDU2 0.088 6 0.250 4x4 12.25 • 3>o75 A;600;00'0((�1�3nN y Cat �.� o HTT4 0.123 18 0.162 4x4 12.25 �- �? 4,2 1.5 1,600,000 none HTTS 0.135 26 0.162 4x4 12.25 5,090 1,600,000 none HDU5 0.115 14 0.250 4x4 12.25 �Y--_330 HDUB(x4) 0.116 20 0.250 4x4 12.25 70---I-680, 2330 H1)U8(x6) 0.113 20 0.250 4x6 19.25 7,705 1,600,000 2660 HDQ8 0.095 20 0.250 46 12.25 9,230 1,600,000 2330 HOU11(x6) 0.137 30 0.250 4x6 19.25 9,535 1.600,000 2330 HDU11(x8) 0.137 30 0.250 4x8 25.38 11,175 1.600,000 2330 HDU14(4x8) 0.177 36 0.250 4x8 25.38 13,090 1,600,000 2330 HDU14(6x6) 0.177 36 0.250 4x8 25.38 13,090 1,600,000 2330 HD19(4x10) 0.180 5 1.000 4x10 32.38 19,360 1,600,000 none HD19(6x8) 0.177 5 1.000 6x8 41.25 19,070 1,600,000 none Footnotes ` _ Mud -Sill A.B. Capacity Loads based on member thickness in the direction of the fastener Dia. (in) (lb) Notes: Mud -sill Anchor Bolt Loads based on "Anchor Bolts in Light -Frame Construction at Small Edge Distances, June 2009, The SEAOC Blue Book" 1/2 1,040 Refer to "CAST -IN -PLACE HOLDO WN ANCHOR BOLTS" calculation for additional information 1/2 1,232 at 3x Sill Effective Capacity based upon mimum of holddown assembly (i.e., post, hardware, anchor bolt, etc.) 3/4 2,464 at 3x Sill Pam: 5,19 1783P5SW.XLS (Rev.04/2012) OV Option One Consulting Engineers PROJ.: "5anterra" / Plan 5 J.N.: 0413-1783 SHEAR WALL (S.W.) / ELEMENT DESIGN Califomia Building Code (CBC), 2010 Edition 1 SDPWS-2008 / ASCE 7-05 1 ). 1 5t Floor - LEFT ELEVATION Vseismic = ( 98 )X( 33/2 ) + i Vwind = ( 156 _ )X( ( 91 )X( 19/2 ) + € ( )X( ( 78 )X( 25/2 ) + ( 149 x 8/1.3 )X( EI ( )X( ) = el ( )X( d = 3,413 Ib .................. 284 plf 3 = 3,658 lb ............. ... .... Modified Vseismic= V / ran = 3,413 lb Vwind= V = 3,658 Ib Vseismic= 3.413 + 12.00 = 284 plf < 350 •O.K.•? Vwind= 3,658 12.00 = _._ _... Use. 41144&'bolt$rat,m4m 33/2 ) + 25/2 ) + 505 plf Governs 305 plf < 350 •O.K • Pnl No L ft I H ft OTM K ft ,' Resisting Moment (RM) .. Due to Uniform Load, lb-ft TE xtumal Uplift, lb D±E D±W Corr. An., ft I H / W Modifier Ratio ' r I Uplift Ib Holdown axe in DIE - DIW DIE DIWType : Check 1 12.00 10.00 34.1 36.6 16,560 =(18'(8/2+1)+14'10)92^2/2 O 0 i 11.83 0.83 1.00 i 1,625 1 2,159 I 5TH014 •O.K.• 0.307 Comments: None radn = 1.00 2 ). 1 5t Floor - RIGHT OF DINING -..__.......... _....... -.-.-......... .... __....... ---- .... -__.... ---- ._...... ....... _... Vseismic = ( 91 )X( 19/2 ) + ( )X( ) + ( )X( ) + E ( )X( ) - = 865 lb .................. 216 plf Governs rA Modified V'ssismic- V / rmin = 1,081 lb Vseismic= 1,081 + 4.00 = 270 plf < 350 `O.K.• Pnl No - L - ft I H ft OTM, K,.A - DIE DtW Resisting Moment (RM) Due to Uniform Load, lb-ft External Uplift, lb -D+E ( DIW Corr. Arm, ft H / W Modifier Ratio r I Uplift, lb Holdown axe in DIE i DIW Type Check 1 4.00 10.00 8.6 0.0 Z560 =(18'(18/2+1)+14'10)'4^2/2 0 0 3.83 2.50 0,80 i i 1,656 1 0 5THD14 •O.K.' 0.449 Comments: None rmin = 0.50 3 ). 1 of Floor - RIGHT OF BDRM. 3 C iTY U 1 L A U U I I N 1 1-% Vseismic = ( 78 )X( 29/2 ) + V BI.F L_n! 1 �) �1 OC 2..-.',.,� +�-p wind =`( 149 X r ( N )+ ( XIbROVE 1 ( )X( ) + (l )X( e� ( )X( ) = E o� ( FOR Q01�S7RllCTl _ a= 1,119 lb .................. 187 plf ' 3 = 2,138 l ....... 356 plf Governs ................. . v' Modified V - V / r seismic- min = 1,119 lb Vwind= V ��� 2,138 lb V seismic = 1119 + 6.00 187 plf < 490 •O K. �m Vwnd - 2138 j)AT900 = 556 B�f-<-- 49b I m_. __ - _... _. . - .USE: with.min. N muff-e111 plate and 1/2" diameterranchor #iv41s''at niaiL 16" os_ Pnl No I L ft I H ft OTM, K-ft DIE i DIW Resisting; Moment (RM) Due to Uniform Load, Ito ft External Uplift, lb Corr. Arm, ft H / W Ratio j Modifier r Uplift, Ito Holdown dice in D±E D±W DIE D±W Type .:: Check 1 6.00 10.00 11.2 21.4 � i 5,760 =(18'(18/2+1)+14'10)'6^2/2 0 0 5.83 1.67 : 1.00 I 1,031 3,009 I i i 5TH014 •O.K.• 0.547 Comments: None rmin = 1.00 Notes & Assumptions: __...__.................__...._..--...._._-._-......... _... _....... ... _.._.._.......__..._._........................_................ _........................ ......._._......_._..,.......-- ......... ---._... ..._...__....-------.._.... _........... _.... ........ ........_.......... _.- ............ _.. 1). Height -to -width (H / W) Ratio modifier (seismic)............ r = 2 ' bs / In for aspect ratios between 2:1 to 3.5:1 (SDPWS Table 4.3.4) 2). Uplift force is determined by using net overturning force ( OTM - RM ); moment arts correction is applied for uplift CBC 2010 Alternative Basic Load Combinations (ASD), Sect. 1605.3.2 ................ Wind: (2/3)D± c4W ; Seismic: 0.913± E/1.4 3). Shear wall deflection .............. d,e = 8vh3 / EAb + vh / 1000Ge + hie / b (SDPWS Eq. 4.3-1) 4). Story Drift Limits, ASCE 7-05 Sect. 12.8.6 ................... d, = Cd 6- / I < 0.025 hs, (Assume Occupancy Cat. I or II) DL multiplier for wind ..... 0.67 DL multiplier for seismic . j 0.90 Importance Factor, 7 .....! 1.00 Page: 5.20 1783PSSWAS (Rae 062012) Option One Consulting Engineers PROJ.: "5anterra" / Plan 5 J.N.: 0413-1753 SHEAR WALL (S.W.) / ELEMENT DESIGN Calffornia Building Code (CBC), 2010 Edifion I SDPWS-2008 / ASCE 7-05 4). 1 5t Floor - LEFT OF DEN & CA51TA _ Vseismic = ( 98 _........... )X( 79/2 ) + V.Imi = ( 202 )X( 79/2 ) + ( 148 )X( 54/2 ) + ( )X(:. ) + ( )X( ) + ( )X( ) + EI ( )X( ) _ =I ( )X( ) _ = 7,867 lb .................. 219 plf 3 = 7,979 lb .........................;.. 222 plf Governs Modified V'seisrrc= V / r = 7,867 lb Vw nd = V = 7,979 lb Vseismic= 7,867 + 36.00 = 219 plf < 490 'OK. Vwmd-= 1,979 + 36,00 = 222 pif < 490 `O.K.• Use. P3 " .: tit tit€n.-' mud sill plate and ll2":dlameter"arrahtri 100ks'At max. os. Pnl No L ft I H ft OTM, K-ft DIE i D+W 'Resisting Moment (RM) . External Upliti, Ib& Due to Uniform Load, Ib-ft D±E , DfW Corr. Ann, ft I H / W 1 Modifier Ratio r Uplift, lb D±E I DfW Holdown Type Check d)w in 1 #### 10.00 78.7 79.8 0 0 I 35.83 0.28 i 1.00 i 2,196 ' Z227 I i HTT5 •O.K.' 0.117 Comments: REFER TO ATTACHED SHEAR WALL W/ OPENING CALCULATION (PSW METHOD). rmin = 1.00 5 ). 1 51; Floor - RIGHT ELEVATION �........---- ...._._._.__...--------- _ Vseismic = ( 98 )X( 46/2 ) + ( 148 )X( 46/2 ) + ( )X( ) + ( )X( ) = CI = 5,658 lb .................. 354 plf Governs Modified Vseismic= V / rng, = 5,658 lb Vseismic = 5,658 + 16.00 = 354 pif < 490 •O.K.' USe: (-,. ,,, Wttt,rirt2x mud-ail{,tilate and t/2° di r„, ameter ancNpr'iiclts Vwind = ( 202 )X( 46/2 ) + ( 0 x .8/1-3 )X( 46/2 ) + ( )X( ) + ( )X( ) _ = 4,646 lb ............................ 290 plf Vwind= V = 4,646 lb Vwr,d= 4,646 + 16.00 = 290 plf < 490 'D:K.• Pnl No I L ft I H ft OTM, K-ft ME D.+W Resisting Moment (RM) External Uplift, lb Due to Uniform Load, lb-ft D±E DtW Corr, Arm, ft- H / W Modifier Ratio : r Uplift, lb- Holdown dze in IJfE DtW Type Check 1 2 8.00 8.00 10.00 10.00 25.3 - 23.2 28.3 23.2 9,376 =(18'(15/2+1)+W10)'8^2/2 0 'i - 0 14,272=(18'(32/2+1)+14.10)'8^2/2 O 0 7.53 7.53 1 1.25 1.00 1 1.25 1.00 2,535 2,105 1.973 1,152 i 5THD14 •O.K.• 5THD14 'O.K.• 0.400 0.346 Comments: None rmfn = 1.00 6 ). 1 et Floor - REAR ELEVATION Vseismic = ( 332 )X( 2312 ) + ( )X( ) + ( )X( ) + EI ( )X( ) _ A) = 3,748 lb .................. 375 plf Governs 3 Modified Vseismic= V / rn m = 4,685 lb V seismic = 4,685 + 10.00 469 plf < 490 'O K.• ¥ ... _. __ _ _.... ..._...... _. 77 Use. F3 with tnlit.2x mud-elltnlate'and 112" diamatPxanther CITY --OF LA QUINTA ind.._..(.._ 126 )X( 2&- f ( � 6UIL)X(ING +� vr�FE � DEPT. ( A)sir P ROV'FiD ( I FGx,(3 CONSTRUG 'ION 1,445 lb .....I ...................... 145 plf Vvend = V = 1,445 lb Vwo d = 1,445 + 10.00r: - 145 plf 490 'O.K.' Pnl No I L ft I H ft _ OTM, K-ft_ D±E ? DfW Resisting Moment (RM) Due to Uniform Load, lb-ft Pn!rn.l UPla' Ib D±E ' D±W Cort. Arm, ft H / W Ratio Modifier r Uplift, lb Holdown in DtE DfW _ Type Check 1 2 0.00 4.00 10.00 10.00 22.5 8.7 15.0 5.8 I I 3,166 =(18'(2/2+1)+14'10)'6^2/2 2,920=(18'(23/2+1)+14'10)'4^2(2 0 0 0 i 0 5.50 3.50 1.67 2.50 I 1.00 I 0.80 3,571 1,192 3,535 1,095 5THD14 'O.K.• 5THD14 •O.K.• 0.626 0.657 Comments: None rntin = 0.80 Notes &Assumptions: 1). Height -to -width (H / W) Ratio modifier (seismic)............ r = 2 ' ba / h for aspect ratios between 2:1 to 3.5:1 (SDPWS Table 4.3.4) 2). Uplift force is determined by using net overturning force ( OTM - RM ); moment arm correction is applied for uplift ... ......... ..,._---- _......., CBC 2010 Alternative Basic Load Combinations (ASD), Sect. 1605.3.2 ................ Wind: (2/3)D ± c1W ; Seismic: 0.91) t E/1.4 DL mul6plierfor wind ...... 0.67 DL multiplier for seismic- 0.90 f 3). Shear wall deflection .............. 6s = 8vh' / EAb + vh / 1000Gs + hAs / b (SDPWS Eq. 4.3-1) /mporlance Fador, z ...... 1.00 4). Story Drift Limits, ASCE 7-05 Sect. 12.8.6 ................... 6, = C, 6,e / i < 0.025 hs, (Assume Occupancy Cat. I or II) Page: 5.21 1783PSSW.1(LS (Rev. 06/2012) Option One Consulting Engineers PROJ.: "5antcrra" / Plan 5 J.N.: 0413-17&3 PERFORATED WOOD SHEARWALL (PSW) DESIGN Special Design Provisions for Wind and Seismic - ANSI/AF&PA SDPWS 2008 Ed., Section 4.3 PSW Location .................... 1 st Floor - Design Shear Capacity Vwall = vm. * Co " T-Li Eq. 4.3-9 Vwall = Induced shear force in PSW, lb v = Induced unit shear, plf Ca = Adjustment Factor iL; = Sum of PSW segments, ft LEFT OF DEN & CA51TA (SW #4) 0 Ilb Wind External Uplift (where occurs) 0 lb Seismic VWind = 7,979 lb VSeismic _ 7.867 lb Perforated Shearwall • PSW (Free Body Diagram) X Lp1= 12.00 ft h N N Lot= 2.50 ft Lp2= 10.00 ft Lot= 5.00 ft Lp3= 6.50 ft Design Criteria Uplift Anchoraee at PSW Ends T= Vwall*h/[Co*FL;] Eq.4.3-8 T = Tension force (uplift), lb Vwal;= Induced shear force in PSW, lb h = Shearwall height, ft PSW Deflection Due to In -Place Force 6sw= (8vh3/Eab)+(vh/1000Ga)+(h0a/b) _ Eq. 4.3-9 6sw= Max. PSW deflection by elastic analysis, in W t x N N T Provide shtg. above & below windows and above doors. I C Type of Shearwall........................... ) P3 Sheathing area ratio, r=1/(1+A0/hFLi)....... 0.83 Eq. 4.3-6 Shear Wall Height, h........................ 10.00 ft Factor, Co [r/(3-2r)]"(Ltota✓YLl) .•. •........... • 0.77 Eq. 4.3-5 Total Shear Wall Width, w................. 36.00 ft .............. Eq. 4.34 Upliftffension force, T=Vwanh/(Co-FLJRM �Eq� Total sum of wall segments, FL; ......... 28.50 ft PSW in -plane anchorage, Vma =V 1�(.. °4.3 Uplift anchorage at ends, T(EQ)......... 3,565 lb PSW deflection, (6sw/Co)...... �...nt t8 SAFETY DEPT. Uplift anchorage at ends, T (Wind)...... 3,616 lb APPROVED Sill/Sole anchorage for uplift, t = vmax... 362 plf Holdown capacity factor..........= Holdown at boundaries ..................... HTT5 ........................�JSTRUCTION Holdown capacity0 Ib O.K. Max Demand 16dcapacity LTP4capa.y SDScapaaty ABcapa 4 MASAcap. Wall Width gm Height HIW HIW Cp Unit Adj. Unit Shear Value Al�pwable Shear Seg. No. ft ft Ratio Mod. Factor Shear Wind TGovern E QA Win�€Q -Wind P1 ( 12.00 10.00 0.83 1.00 0.77 490 379 379 379 379 P2 10.00 10.00 1.00 1.00 0,77 490 379 379 379 37 P3 6.50 10.00 1.54 1.00 0.77 490 379 379 379 37 1 otal Allowable Shear Load, Vwall .... Unit Shear Uplift, t Duration Shear Tension plf (v) c Load Check Check _plf �222 W - 362 i Shear, V Withdrawal, T .= 0 CL U to Factor Co Ratio "vN" Ratio "tff" 95 30 2 1.6 0.19 6 0.7 58 670 670 32 1.0 300 389 i 8 1.6 0.49 0.39 51 640 773 1105 722 16 1.6 0.46 0.27 0.39 48 i 16 1.6 0.67 62 % j n/a nia O.K. ).K. References 4,552 O.K. 9 3,794 3,794 O.K. 9 2,466 2,466 O.K. O.K. D.K. Simpson Catalog C-2011, 2011-2012 Edition AF&PA SDPWS, 2008 Edition California Building Code (CBC), 2010 Edition Evalutation Report ESR-2611 Comments: Page: 5.22 1783P5SW.XLS (Rev.06/2012) Option One Consulting Engineers PROJ.: "Santerra" / Plan 5 J.N.: 0413-17&3 SHEAR WALL (S.W.) / ELEMENT DESIGN California Building Code (CBC), 2010 Edition / SDPWS-2008 / ASCE 7-05 7 ). 1 st Floor - REAR OF DINING & DEN ✓seismic = ( 332 )X( 23/2 ) + ( 89 )X( 21/2 ) + ( 186 )X( 19/2 ) + u E) ( )X( ) _ "v = 6.351 Ib .................. 532 plf Governs Modified V = V / r seismic- mYn = 7,976 Ib Vseismic= 7.976 + 12.00 = 665 plf < 870 •o.K.• _ Use: - PZa ;: :- wtLhirifn. Zx rirlid-alll mate and 1/2"=diarneteasnchor b Vwind = ( 128 )X( 23/2 ) + ( 164 N 19/2 - ) + ( W )_ 3I = 2,962 Ib .... ......... --- ....:.. 247 plf Vwind = V = 2,962 Ib Vwind = 2,962 - 12.00 = 247 plf < 1,040 -O.K.- Its at Ma)L % o.o. `? , Pnl No I L- ft H ft OTM, K-ft D#E 3 D±W Resisting Moment (RM) Due to Uniform Load, lb-ft Uplift, Ib -! MW f�FE Corr. Arm,:B H i W Ratio Modifier r Uplift lb Holdown fire in DtE D±W _ Type. Check 1 2 8.00 4.00 10:00 10.00 42.5 19.7 21.3 .9.9 9,040=(18'(22.5/2)+8'10)'8^2/2 2,260=(18'(22.5/2)+8'10)•4^2/2 O 0 0 0 t 7.53 3.83 1.2.5 2.50 1.00 j 0.80 I 4,394 5.022 - 1,752 2,185 HTT5 •O.K.• HTT5 •O.K.• 0.357 0.674 Comments: rmin = 0.80 8 ). 1 5t Floor - FRONT OF COURTYARD & WIC ._._.:_.._._....._.._.._.._.........-_..... ✓seismic = ( 156 )X( ..._..........._....... 3712 -............ ) + ( 89 )X( 2012 ) + ( 150 )X( 17/2 ) + ( )X( ) = c Z= 5,606 Ib .................. 400 plf Governs 3 Modified ✓'seismc= V / rmin = 5,606 lb Vseismic= 5,606 + 14.00 = 400 plf < 490 •O.K.- 'nl L H OTM,-K-ft Resisting Moment (RM) - Exte 40 ft ft DtE DfW Due to Uniform Load, lb-ft DfE 1 6.00 10.00 24.0 1 20.8 4,626=(18'(11/2+1)+W10)'6^2/2 0 2 8.00 10.00 32.0 i 27.7 3,712=(18'(4/2)+8'10)-8^2/2 O Comments: 9 ). 1 5t Floor - RIGHT OF CASITA Vseismic = ( 148 x 18/38 )X( 47/2 ) + ( )X( ) + ( )X( ) + EI ( )X( ) _ = 1,647 Ib .................. 137 plf Governs Modified Vseismic= V / rmin = 1,647 Ib Vseismic = 1,647 + 12.00 = 137 plf < 26K. 0 •o.• ._-...- _. .......W...._-.-...... ..m-r"' t....... .... . Use. ?6' tiltltmfn.2x mud slOrolateanz11i2:dlsmcE�c�6ndho�,t Vwind = ( mal 164 )X( 37/2 ) + ( 155 x .&/1.3 )X( 38/2 ) + ( )X( ) + ( )X( ) _ = 4,846 Ib ............................ 346 plf Vwind = V = 4,546 Ib V flnd = 4,846 + 14.00 _ 346 plf < 490 •O.K `. Uplift, lb Corr. H / W ' M.diftert Uplift, lb Holdown are MW Arr1, ft Ratio r in atE Di-.W Type Check 0 5.53 1.67 ; 1.00 3,407 3,034 5THD14 -O.K.- 0.618 O 7.83 1.25 1.00 3,665 3,221 5THD14 •O.K.• 0.528 Vwind = ( ( c) ( 3 = O Ib ...... V d= V = 1 1 0 A A r'o 1 K" r1 0 C' !A A"'r-Tl,! C A✓l Be �J` 11_ 1 1 4 i-A %A %. lk I L 1 1 1� 1 FI FI Fp(R CONSTRU�- ION )X( ) + DATE BY vnn vmnd = 0 12.00 = 0. plf < 260 •O.K.• ---------- may-_ 4$ o.e. Pnl No L ft I H ft OTM, K-ft Resisting Moment (RM) Due to Uniform Load, lb-ft External Uplift, Ib DtE DtW Corr. Arm, ft H / W Modifier Ratio T Uplift, lb Holdown 6. in DtE D-+W Df- E�-DfW __ Type Check 1 12.00 10.00 16.5 1 0.0 35.244=(18"(45.5/2)+8"10)92^2/2 0 0 11.83 0.83 1.00 i 0 0 N/A •O.K.• #### Comments: None rmin = 1.00 Notes & Assumptions: -._...-_._.._.... ...-- --...... -._._--- __........_.._...-----_.....- ---- ...---------------- --...---.._.._....._.....__......__.._..._......._...._....._...._._.._....._.__..._.... ----..__...._._._...-----.._.._.._...--------.._-......._._.... _ 1). Height -to -width (H / W) Ratio modifier (seismic)............ r = 2 ' bs / h for aspect ratios between 2:1 to 3.5:1 (SDPWS Table 4.3.4) 2). Uplift force is determined by using net overturning force ( OTM - RM ); moment arm correction is applied for uplift CBC 2010 Alternative Basic Load Combinations (ASD), Sect. 1605.3.2 ................ Wind: (2/3)D t wVV ; Seismic: 0.913 t E/1.4 DL multiplier for wind ...... 0.67 ' DL multiplier for seismic..' 0.90 3). Shear wall deflection .............. 6_ = 8vh3 / EAb + vh / 1000Ge + hAs / b (SDPWS Eq. 4.3-1) ilmeodance Factor, I ..... 1.00 4). Story Drift Limits, ASCE 7-05 Sect. 12.8.6 ................... 6, = Cd 6- / I < 0.025 ham, (Assume Occupancy Cat. I or II) Page: 5.23 17831`5SWALS (Rev. 062012) Option One Consulting Engineers ....... PROJ.: _ "5anterra" / Plan 5 .. .. ....... ................... .............................. ...... .... ...... _ J.N.: 0413-1785 SHEAR WALL (S.W.) / ELEMENT DESIGN Caldomia Building Code (CBC), 2010 Edition / SDPWS-2008 / ASCE 7-05 10). 1 st Floor - FRONT OF BDRM. 3 ...._... Vseismic ............................ .. = ( 150 ..... .. . ......... ........ . )X( 17/2 ) + Vwind - ( 144 )X( 17/2 ) + ( )X( ) + ( )X( ) + u ( )X( ) + ( )X( ) + EI ( )X( ) = cl ( )X( ) = i,256 lb .................. 314 plf Governs 3 = 1,2.06 lb.- ......................... 302 plf Modified Vseismic= V / fmin = 1,570 lb _ Vwind - V = 1,206 lb- Vseismic = 1,570 + 4.00 = 393 plf < 490 •O.K.' Vvdnd = T,206 4.00 = 302 -plf < - 490 •O.K.•. Use.- ........ _ .... _ _.... ...._ ._ _ __. -._ __.. P3 with min. 2x [Heal-slll vista and 1/2" diameter anchor bolts at max.16" o c. _... Pnl No 1 1. ft 1 H ft OTM, K-ft DtE ' DtW Resisting Moment (RM) Due to Uniform Load, lb-ft External Uplift, lb D±E DfW Corr. Arm, ft H / W I Modifier Ratio r Uplift, Ib Holdown 6. in D=E D±W Type Check 1 4.00 10.00 12.6 12.1 i 1,408 =(18'(2/2+1)+14'10)'4^2/2 0 0 3.83 2.50 OZO 2,949 2,904 5TH014 •O.K.• 0.716 Comments: fmin = 0.80 11 ). 1 St Floor - FRONT OF GARAGE ........ .... _.._._......_...................... ...................... ................. ......_.................. _...... .................................. _... _.._... Vseismic = ( 186 )X( 19/2 ) + Vw nd = ( 164 )X( 1912 } + ( )X( ) + ( )X( ) ( )X( ) + ( )X( ) + ( )X( ) = of a ( )X( ) _ m = 1,721 lb .................. 199 plf Governs 3 = 1,517 lb ............................ 175 plf Modified Vseismic- V / fmin = 2,769 lb Vwind = V = 1.517 lb Vseismic= 2,769 - 8.66 = 320 plf < 490 •O.K.• Vwind= 1,517 + 8.66 = 175 plf < 490 •O.K.• .......... .. __ ___.... ._...._._ _ ...._.... Use:. P3 with min.2x mud-islWkatesand,lie diameter anchor bolts at max. 16' o.c. Pnl No I L ft I H ft OTM, K-ft Resisting Moment (RM) Due to Uniform Load, lb-ft Extemal Uplift, lb - Hold- Hold DtE D±W Corr. Arm, ft H / W Ratio i Modifier r Uplift, lb Hold..6xe in 13 E D=U' DtE D±W Type Check 1 2 3 4.00 2.33 2.33 10.00 7.50 7.50 ?.9 7.0 3.5 33 3.5 3.1 1,408=(18'(2/2+1)+14'10)'4^2/2 548=(18`(8/2+1)+14'b)'2.33^2/2 548 i I1 3.83 2.16 1.83 2.50 3.22 3.22 I 0.80 I 0.62 i 0.62 I 1,744 1,584 1,379 1,248 1,627 1,473 5TH014 •O.K.• HTTS `O.K.• HTT5 •O.K.• 0.430 0.257 0.289 Comments: EFFECTIVE SHEAR WALL HEIGHT = HEADER HEIGHT (SEE DETAIL). fmin =` ----Hold-Hold--Hold Hold y 0.4 J as%� 12 ). 1 et Floor - VOID - NOT USED Vseismic = ( )X( ) + ( )X( ) + u ( )X( ) + EI ( )X( ) _ = 0 lb .................. n/a plf Modified V'seismic= V / fmin = 0 lb Vseismic = 0 - 0.00 = n/a plf lUse . N/A Not AVOIcable _._. 0lJ1L_VIINGI Oc vr11 `r t vx_.x x . Vwind = ( ,1)x(t 9 V I l %J V) r+ L-/ ( F)x(,R CONSTRUPTION ( )X( ) + V. ( )X( ) _ 3I = a lb ........47:Fn/�nit BY Vwind= V = a O I - Vwind= O + 0.00 - = nla Pnl No L- . ft-.. - H ft DTM, K-ft --'Hold-- DtE DtW Resisting Moment (RM) Due to Uniform Load, lb-ft zte Emal Uplift, Ib Hold-"-_ DtE DtW Corr. Arm, ft H / W Ratio I I Modifier r Uplift, lb Hold_ow_ n b in --------HoldHold----- DfE DfW _ Type Check I I I i j I I Comments: None rnin = 1.00 A'otes & Assumptions: .....__._.._....... -._......,_....._.................. ..........._....._...._..._._....._.-....._...._...... -........ _........ _...._..------_._.._....................... _...__......._....................... _... .-......... -....... _.._.._.... _.......... _....__.........__..I ........... _........._.... 1). Height -to -width (H / W) Ratio modifier (seismic)............ r = 2 ' b, / h for aspect ratios between 2:1 to 3.5:1 (SDPWS Table 4.3.4) 2). Uplift force is determined by using net overturning force ( OTM - RM ); moment arm correction is applied for uplift CBC 2010 Alternative Basic Load Combinations (ASD), Sect. 1605.3.2 ................ Wind: (2/3)D ± c1W ; Seismic: 0.91D ± E/1.4 3). Shear, wall deflection .............. 6x, = 8vh' / EAb + vh / 1000G, + h3, / b (SDPWS Eq. 4.3-1) 4). Story Drift Limits, ASCE 7-05 Sect. 12.8.6 ................... 6x = Cd 6x,1 > < 0.025 hex (Assume Occupancy Cal I or ix) _._...... _-...__ .____,__...... ............... _.._., i DL multiplier for wind ...... 0.67 i Dlmultiplier for seismic. . 0.90 ;Importance Factor, 1 . `1.00 Page: 5.24 1783PSSW.XLS (Rev-0612012) 0, Option One Consulting Engineers PROJ.: "5antcrra" / Plan 5 CS = 0.11 Section 12.8.1 J.N.: 0413-1783 SDS = 1.00 Section 11.4.4 DRAG STRUT / COLLECTOR FORCE CBC 2010 Location = 15t Floor- Left Elevation (SW#1) Shear Force, Fp = 3.41 kips Shear Force, (Fp) min = 3.41 kips Drag Length, Ldrag = 54.5 ft Vdiaphragm = Fp / Ldrag = 63 plf No. Segments, n = 3 S.W. Length, Lwall = 12 ft Vshearwa1I = Fp / LvvaI1 = 284 plf Segment No. Length, ft Shear Wall ? Section Point Distance, It Drag Force, kips 1 2 3 29.5 12 13-- - NO YES NO 0 1 2 3 0 29.5 41.5 54.5 -1.85 0.81 Use Minimum Strap = 5T6224 Strap Capacity = 2,362 Ibs > Max. Drag = 1,647 Ibs ... OKI 78% Max. Anchor Spacing = 93 inches O.C. Top Plates = 2-2x4 Pit. Capacity = 9,660 Ibs ... OKI 19% Distance, ft SHEAR WALL SEGMENTS & DRAG STRUT ELEVATION (Conceptual Dwg.) DRAG Strut I COLLECTOR FORCE DIAGRAM (Conceptual Dwg.) Location = let Floor - Right Elevation (5W#5) Shear Force, Fp = 5.66 kips Shear Force, (Fp) min = 5.66 kips Drag Length, Ldrag = 60.5 ft m Vdia hra = F / L = p g p drag 94 plf No. Segments, n = 4 S.W. Length, Lwall = 14 ft VshearwaII= Fp / Lwau = 404 plf Segment No. 1 2 3 4 Length, ft 10 6 36.5 8 Shear Wall? I NO YE5 NO YE5 Section Point O 1 2_ 3 4 Distance, ft 0 10 16 52.5 60.5 Drag Force, kips 1 -0.94 0.93 -2.48 Use Minimum Strap = 5T0236 Strap Capacity = 3,576 Ibs > Max. Anchor Spacing = 63 inches O.C. Top Plates = 2-2x4 APPROVED Max. Drag = 2,485 Ibs ... OKI 6. t. Capacity = 9,660 Ibs ... OKI 21 DATE BY �e ' i ' z aii.yyiBi daa p, 3 Distance, ft SHEAR WALL SEGMENTS & DRAG STRUT ELEVATION (Conceptual Dwg.) DRAG Strut I COLLECTOR FORCE DIAGRAM (Conceptual Dwg.) Notes & Assumptions: 1). Anchor spacing based upon Simpson connector capacity (lb)...... DF/51? (160% ): H1 and/or A35 485 2). Refer to latest edition of Simpson Connector catalog for strap/connector values. 3). Note that (12)716d nails are basic plate splice per general structural notes. 4). Force at shear line ( FP) at Allowable Stress Design (ASD) level per Shear Wall calculation. 5). Anchor spacing based upon material SG = 0.50 ; Strap tension based upon SG = 0.50 Note: SG denotes Specific Gravity per NDS. 6). Assume building with Importance Factor, i = 1.0 and light -frame construction. Strap Capacity (12)-16d 1,705 G51&56" 1,705 M5TA36 1,705 5T6224 2,362 5T6236 3,576 M5T48 - -- -- 4,938 Cont. DBL T.Plto. 7,590 Page: 5.25 1783P5SW.XLS (Rev. 09/2012) Option One Consulting Engineers PROJ.: Santerra" / Plan 5 F = 0'1 Section 12.8.1 J.N.: 0413-1783 Sos = 1.00 Section 1 t4.4 a DRAG STRUT / COLLECTOR FORCE CBC 2010 Location = 1st Floor - Rear Elevation (5W#6) Shear Force, Fp = 3.75 kips Shear Force, (Fp) min = 3.75 kips Drag Length, Ldrag = 80 ft Vdiaphragm = Fp Ldrag = 47 plf No. Segments, n = 4 S.W. Length, Lwall= 10 ft Vshearwall= Fp/ LwaiI = 375 plf Segment No. Length, ft Shear Wall ? Section Point Distance, ft Drag Force, kips 1 2 3 4 —6-- 36 4 34 ---- -- — -- ------- YES NO YES NO 0 1 2 3 4 D 6 42 46 80 - - -- ----------------- 1.97 0.26 1.59 Use Minimum Strap = 5T6224 Strap Capacity = 2,362 Ibs > Max. Drag = 1,968 Ibs ... OKI 83% Max. Anchor Spacing = 125 inches O.C. Top Plates = 2-2x4 Plt. Capacity = 9,660 Ibs ... OKI 20% 2.5 �,. 0 5 r l 1 a ...,.,.t 0 0 0 5 10 15 20 25 3pDi§Sange, SO 55 60 6.5 TO 75 80 SHEAR WALL SEGMENTS & DRAG STRUT ELEVATION (Conceptual Dwg.) DRAG Strut I COLLECTOR FORCE DIAGRAM (Conceptual Dwg.) Location = lot Floor - REAR OF DEN & M. BATH (5W#7) Shear Force, Fp = 4.00 kips Shear Force, (Fp) min = 4.00 kips Drag Length, Ldrag = 45 ft Vdiaphragm = Fp / Ldrag = 89 plf No. Segments, n = 5 S.W. Length, LH,a11= 12 ft Vshearwall= Fp / Lwall = 333 plf Segment No. 1 2 3 4 5 _.._._...--- --- ---- - ---- --------- Length, ft 7 8 18 4 8 She Wall ? NO YES NO YES NO (-, ITY nF I A nI JINT d Section Point Distance, ft Drag Force, kips 0 - 1 -- 2 - 3 - 4 5 -- - CSt`Jit LlliViaHY-� 1� L�° ! - -- 0 7 15 33 37 45 AP PROVED -0.62 1.33-0.27 0.71 x-,-',r3 r�f�N100-1- _ Ilr' Use Minimum Strap = ST6224 Strap Capacity = 2,362 Ibs > I Max. Drag = 1,333 ►bsv ... OK! 6r Max. Anchor Spacing = 66 inches O.C. Top Plates = 2-2x4 P-_It..,(qapacity = 9,660,,bs ... OKI 14% L), , t ,s x —w o s 0 - --- Distance, M SHEAR WALL SEGMENTS & DRAG STRUT ELEVATION (Conceptual Dwg.) DRAG Strut / COLLECTOR FORCE DIAGRAM (Conceptual Dwg.) Notes & Assumptions: 1). Anchor spacing based upon Simpson connector capacity (lb)...... PF/S(' (160 % ): H1 and/or A35 4&5 2). Refer to latest edition of Simpson Connector catalog for strap/connector values. 3). Note that (12)-16d nails are basic plate splice per general structural notes. 4). Force at shear line ( Fp ) at Allowable Stress Design (ASD) level per Shear Wall calculation. 5). Anchor spacing based upon material SG = 0.50 ; Strap tension based upon SG = 0.50 Note: SG denotes Specific Gravity per NDS. 6). Assume building with Importance Factor, i = 1.0 and light -frame construction. Strap Capacity (12)-1661 1,705 C516x36" 1,705 M5TA36 1,705 5T6224 5T6236 2,362 3,576 M5T48 4,938 Cont. DBL T.PIt5. 7,590 Page: 5.26 1783P5SW.XLS (Rev. 09/2012) CC) Option One Consulting Engineers PROD.: "5anterra" / Plan 5 J.N.: 0413-1783 CONVENTIONAL FOUNDATION DESIGN CBC Section 1805 12 inch Wide x 12 inch deep cont.'ffg (1-Story Footing) inch wide x inch deep cont.;ft'g 18 inch deep (tlick):pad footing Use min. (1) - #4 bar at top & bottom of alt footings, typical U.N.Q. Min. Max. Soil Bearing Pressure, SBP ......... 1,500 —> 3,000 psf Weight of Concrete, Wc ................. 145 psf Allow. Stress Increase ................. 1.20 ASCE 7-05 Weight of Soil, WS ........................ 110 psf Allow. SBP Increase ................... too psf / ft. depth Allow. SBP Increase ..................... 100 psf / ft. width When footing base is below ......... 1.0 feet When footing is wider than ............. 1.0 feet 11 -Story Footing) (worst case) 0 (worst case) Roof ....... ( 38 ) * ( 46/2 ) = 874 ( 38 ) * ( ) = 0 Wall........( 8 )*( 10 )= 80 ( 14 )*( )= 0 Floor.......( 52 )*( 0 )= 0 ( 52 )*( )= 0 Storage ... ( 20 ) * ( 0 ) = 0 ( 20 ) * ( ) = 0 Total....... 954 plf 0 plf Req'd Footing Width .......... LOAD / [SBP - (WI - WS)] Max. Point Load ............... [SBP - (Wc - Ws)] x L x W 1-Story Footing ........ 7.8 in < 12 in ....... OK! 1-Story Footing ............. 4,639 lb. 2-Story Footing ........ 0.0 in > 0 in ....... NG! 2-Story Footing ............. 0 lb. Required Pad Size ............ LOAD / [SBP - (Wc - Ws)] (see charts below): M 2), 1). 2). Load Case Minimum Pad Size Description /Location: D+L P, (lb) jD+L+E P, (lb.) D+L+E inZ r - _ INGx Q , ! i --- _`4 Min.9" j ----- -- - -- -Abv- 1 Footing `. �— Projected Length —� NTS Notes: _ _ Allowable Load, P Pad Footing Size (in) Rebar Req'd. (Bott. E/W) D+ L lb. D+ L+ E lb.) . _ 6,460 7,780 _ 24 (2) 44 8,303 1 9,99& 27 (2) -#4 10,406_j 12,551 30 (2) 44 12,781 � 15,390 33 (2) -#4 15,435 18,585 36 (3) 44 18,3_7_9 22,128 39 (3) 44 Use SBP for D +L load case; use SBP x Allow. Stress Increase for D + L + E load case. An allowable stress increase of 1.2 can be used with special load combinations per ASCE 7-05 Section 12.4.3.3. 21,621 26,031 42 (3) -#4 25,172 1 30,305 45 (3) -#4 29,040 ! 34,960 48 (4) 45 53,235 I 40,008 51 (4) -#5 37 42,643 1_ 45,461 54 (4) 45 51,330 57 (4) 45 California Building Code (CBC), 2010 Edition ASCE 7-05 47,575 53,471 1 11 57,625 60 (5) 45 64,358 63 (5) 45 F QU! A V TY DEFT U CTION 1783P5FD1.xls (Rev. 1212010) Page: 5.27