Loading...
10-1398 (SFD) Structural Calcs• TitO Block Line 1 You can change this area using the "Settings" menu item and then using the "Printing & Title Block" selection. Title Block Line 6 Wood Beam Description: 620 ' Title :Taylor MC/16b Dsgnr. Project Desc.: Project Notes : ments and Set6ngslAdministratorNy Job # 45 Printed: 7 MAR 2011, 2:56PM .CALL DATA FILESItaylor me 16b.ec6 INC. 19832011, Ver. 6.2.00, N:50790 Material Properties Calculations per NDS 2006, IBC 2009, CBC 2010, ASCE 7-05 Analysis MethoAllowable Stress Design Fb - Tension 1,350.0 psi E: Modulus of Elasti Load Combinat00061BC&ASCE7-05 Fb - Compr 1,350.0 psi Ebend- xx 1,600.Oksi Fc - PHI 925.0 psi Eminbend - x 580.0 ksi Wood Species DouglasFir-Larch Fc - Perp 625.0 psi p * Wood Grade No.1 Fv 170.0 psi , Tributary Width = 1.0 ft Ft 675.0 psi Density 32.210 pcf Beam Bracing Beam is Fully Braced against lateral -torsion buckling D(0.574) Lr(0.452) D(0.34) Lr(0.268) Load for Span Number 2 126) Lr(0.099) D(0.164 6x8 � 6x8 A%\ Span = 2.50 ft Span = 5.0 ft Applied Loads Service loads entered. Lo or calculations. Beam self weight calculated and added to loads "��G Load for Span Number 1 p * Uniform Load : D = 0.1260, Lr = 0.0990 , Tributary Width = 1.0 ft Z Point Load : D = 0.5740, Lr = 0.4520 k @ 0.0 ft Load for Span Number 2 424 > Ren. Uniform Load : D=0.1640, Lr = 0.1290 , Tributary Width= 1.0 ft EDF Point Load : D=0.340, Lr = 0.2680 k @ 2.0 ft DESIGN SUMMARY Design • Maximum Bending Stress Ratio = _ 0.568 1 Maximum _ Shear Stress Ratio = 0.341 :1 Section used for this span 6x8 Section used for this span 6x8 . fb : Actual = 767.29psi fv : Actual = 57.96 psi FB: Allowable = 1,350.00psi Fv : Allowable = 170.00 psi Load Combination +D+Lr+H Load Combination mrLfrlCV._ +D+Lr+H Location of maximum on span = 2.500ft Location s,�a n -Auutt IXIImLmtcaabcur QUI Span # where maximum occurs = Span # 1 Span # ere op 1 Maximum Deflection BUILDING & SAFETY DEPT. Max Downward L+Lr+S Deflection 0.034 in Ratio = 1760 Max Upward L+Lr+S Deflection -0.004 in Ratio = 14049 APPROVED Max Downward Total Deflection 0.078 in Ratio = 772 Max Upward Total Deflection -0.010 in Ratio = 6243 : FORONOSTRUCTION i l ?Pq VP Maximum Forces & Stresses for Load Comt -DATE Q�,D',� ?Aft gY Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Leng6 Span # M V C d C fav C r Cm C t Mactual fb-design Fb-allow Vactual fv- design Fv-allow +D Length = 2.50 ft 1 0.320 0.193 1.000 1.000 1.000 1.000 1.000 -1.86 432.31 1,350.00 0.90 32.80 170.00 Length = 5.0 ft 2 0.320 0.193 1.000 1.000 1.000 1.000 1.000 -1.86 432.31 1,350.00 0.90 32.80 170.00 +D+Lr+H 1.000 1.000 1.000 1.000 Length = 2.50 ft 1 0.568 0.341 1.000 1.000 1.000 1.000 1.000 -3.30 767.29 1,350.00 1.59 57.96 170.00 Length = 5.0 ft 2 0.568 0.341 1.000 1.000 1.000 1.000 1.000 -3.30 767.29 1,350.00 1.59 57.96 170.00 +D+0.750Lr+0.750L+H 1.000 1.000 1.000 1.000 Length = 2.50 ft 1 0.506 0.304 1.000 1.000 1.000 1.000 1.000 -2.94 683.55 1,350.00 1.42 51.67 170.00 Length = 5.0 ft 2 0.506 0.304 1.000 1.000 1.000 1.000 1.000 -2.94 683.55 1,350.00 1.42 51.67 170.00 11 TdIOBlock Line 1 You can change this area using the "Settings" menu item and then using the "Printing & Title Block" selection. Title Block Line 6 Wood -Beam ' . i.00 •0 Description :';820: 46 Title :Taylor MC/16b Job # Dsgnr: Project Desc.: Project Notes Printed: 7 MAR 2011, 2:56PM meats and Setfings\Administrator'W Dbaimehts\ENERCALC DATA RLESltaylor me 16b.ec6 ENERCALC, INC. 19832011, Ver. 6.200, N:50790 Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C fav C r Cm Ct Mactual fb-design Fb-allow Vadual fv-resign Fv-allow +D+0.750Lr+0.750L+0.75OW- 1.000 1.000 1.000 1.000 Length = 2.50 ft 1 0.506 0.304 1.000 1.000 1.000 1.000 1.000 -2.94 683.55 1,350.00 1.42 51.67 170.00 Length = 5.0 ft 2 0.506 0.304 1.000 1.000 1.000 1.000 1.000 -2.94 683.55 1,350.00 1.42 51.67 170.00 +D+0.750Lr+0.750L+0.5250E 1.000 1.000 1.000 1.000 Length = 2.50 ft 1 0.506 0.304 1.000 1.000 1.000 1.000 1.000 -2.94 683.55 1,350.00 1.42 51.67 170.00 Length = 5.0 ft 2 0.506 0.304 1.000 1.000 1.000 1.000 1.000 -2.94 683.55 1,350.00 1.42 51.67 170.00 Overall Maximum Deflections - Unfactored Loads Load Combination Span Max. "" Defl Location in Span Load Combination Max. "+° Defl Location in Span D+Lr 1 0.0776 0.000 0.0000 0.000 2 0.0000 0.000 D+Lr -0.0096 1.346 Vertical Reactions - Unfactored Support notation : Far left is #* Values in KIPS Load Combination Support 1 Support 2 Support 3' Overall MAXimum 3.391 0.339 D Only 1.921 0.198 Lr Only 1.471 0.142 D+Lr 3.391 0.339 TFC � = V O G1 AZA Q Rei• \�O gTEOfG P�' Q FsT 151 C, s= `Z W1 45(IG•7s/2fi3) = 51'>-V C 3 CIJz , 45 ( I'a/z� = 3Go r, W r ' Zt "� 21.; zz V rz so o. t.4 17) 51-7 1 S = 19 WI 45(Ih/2) = 3Go «, Cr: 3 OV7- - 45(1) 45 C'I x`45 r• z?) GFjyfW- �10�2� �.22aw� 126 �= roo res �� L25 99 Wzd 4`a,�� Gni`/3o 2-4GO r kl-T •0.H, �S-)T3L8� S = 2,5 W W= 3Go 441 202 15S 9 3 25 CZ =17 04` Q B�rz i�� t�19, s= Is w 45 (12 2) = 270- w= 45(2/2)=4 Q, G = 3 4-5 I(y V r.. L— 2-Cj 620, 5 = 5 -W"= 45 (t 6/z) = 22$ "l c= 2.5 W 2 4s 574 4157- 12C, 225w 39 C�Su Sao l 013/21 = 2q3 "I 2c s I� = 45 Gu = 253"' 115 Py' 102fv 2- 3:39{• 2 = 33g. (�X8 r, K Qi 6x 1 z C,�< Taylor MC/16b Residence 81435 Columbus Way, La Quinta, CA92253 Structural Calculations PREPARED BY WALLING & McCALLUM LIMITED 45-190 Club Drive, Indian Wells, CA CITY OF LA QUINTA BUILDING & SAFETY DEPT. APPROVE® FOR CONSTRUCTION DATE 4 0' BY. t AR tSRe. Y Q� �n TF OF CP�'��/ ham' FEB 0 9 2011 IM 1 TABLE OF CONTENTS Designloads.............................................................A Beamloading Diagrams...........................................1 HeaderLoading Diagrams........................................55 ColumnLoading Diagrams........................................99 BasePlates..............................................................120 Gravity Load Footing Design...................................153 On Site Built Shear Walls........................................156 ShearMax Footings.................................................175 Misc..........................................................................201 Casita Beam/Header Loading..................................202 CasitaLateral Analysis............................................222 CasitaShear Walls...................................................223 SupplementalCalcs.................................................227 7rAA Taylor MC/16b -. 81435 Colu8mbus Way, La Quinta, CA 92253 Design Loads ROOF LOADS: EXTERIOR SOFFITS 4 ply gravel roofing...........................................................................6.5 psf 5/8„ plywood shtg.............................................................................1.8 ' Wood trusses......................................................................................4.0 Stucco.................................................................................................. 9.0 Parapets, etc......................................................................................3.0 ' 24.3 psf say 25 psf LL (or reduce pursuant to CBC 1607.11.2.1) 20 45 psf INTERIOR CEILINGS ' 4 ply gravel roofing..........................................................................6.5 psf 5/8" plywood sheathing.................................................................. 1.8 Woodtrusses.....................................................................................4.0 5/8" gypsum board...........................................................................3.1 Insulation............................................................................................3.6 ` 19.0 psf sa 20 psf LL (or reduce pursuant to CBC 1607.11,2, 1) 20 40 psf �1. FRAME WALLS: EXTERIOR WALLS 2X6/16..................................................................................................1.0 PSF Stucco.................................................................................................10.0 ' 6" insulation........................................................................................1.8 (1) layer 5/8" gypsum board ..........................................................3.1 INTERIOR WALLS 15.9 psf say 16 psf ' 2X6/16..................................................................................................1.0 PSF (2) layer 5/8"gypsum board...........................................................3.6 6" insulation........................................................................................1.8 6.4 psf say 7 psf �1. Fj� Description : Taylor MC/16b Occupancy ;Category Calculations per IBC 2006 & ASCE 7-05 Occupancy Category of Building or Other Structure : 'I' : Buildings and other structures that represent a low hazard to human life in the ACSE 7-05, Page 3, Table 1-1 event of failure. Occupancy Importance Factor = 1 ACSE 7-05, Page 116, Table 11.5-1 Ground Motion, Using USGS:Databasevalues _ _ ` --__ ASCE 7-05 9.4.1.1 Max. Ground Motions, 5% Damping: Longitude = 116.284 deg West SS = 1.50 9, 0.2 sec response Latitude = 33.682 deg North ' S1 = 0.60 g. 1.0 sec response Location: LA QUINTA, CA 92253 Ike Class, Site Coeff._ and -Design Category Site Classification 'D' :Shear Wave Velocity 600 to 1,200 tusec = D Site Coefficients Fa & Fv (using straight-line interpolation from table values) Maximum Considered Eartquake Acceleration 1 Design Spectral Acceleration Seismic Design Category Re"ssting`Sy tem Fa = 1.00 Fv = 1.50 S MS = Fa' Ss = 1.500 S M1 = Fv' S1 = 0.900 S DS- S MS 2l3 = 1.000 SDI= S Mi* 213 = 0.600 = D ( SDI is most severe) ASCE 7-05 Table 20.3-1 ASCE 7-05 Table 11.4-1 & 11.4-2 iasic Seismic Force Resisting System ... Bearing Wall Systems ASCE 7-05 Section 12.3.4 Seismic Design Category of D, E, or F therefore Redundancy Factor' p " =1.3 Light -framed walls sheathed wlwood structural panels rated for shear resistance or steel sheets. Response Modification Coefficient ' R ' = 6.50 Building height Limits: System Overstrength Factor ' Wo' = 3.00 Category'A & B' Limit: No Limit Deflection Amplification Factor ' Cd' = 4.00 Category 'C' Limit: Category 'D" Limit: No Limit Limit = 65 NOTE! See ASCE 7-05 for all applicable footnotes. Category 'E' Limit: Limit = 65 Calculated Period Entered Category'F' Limit: Limit = 65 ASCE 7-05 Table 11.4-3 ASCE 7-05 Table 11.44 ASCE 7-05 Table 11.6-1 ASCE 7-05 Table 12.2-1 i2edUridancy=F2Ct0�..;- :: ;. ` _ ASCE 7-05 Section 12.3.4 Seismic Design Category of D, E, or F therefore Redundancy Factor' p " =1.3 Lateral Force Procedure ASCE 7-05 Section 12.8 Equivalent Lateral Force Procedure The 'Equivalent Lateral Force Procedure" is being used according to the provisions of ASCE 7-0512.8 Det@Rtllrte:BU.Ilding;PeflOd Calculated Period Entered ' ' Ta:User Specified Building Period : 0.50 sec 'TL' : Long -period transition period per ASCE 7-05 Maps 22-15 > 22-20 8.000 sec ". CS " pip0E1Se:Ctleff Cil?�t ASCE 7-05 Section 12.8.1.1 _ S Ds Short Period Design Spectral Response = 1.000 From Eq. 12.8-2, Preliminary Cs = 0,154 ' R' : Response Modification Factor 6.50 From Eq. 12.8-3 & 12.84 , Cs need not exceed 0.185 ' I' : Occupancy Importance Factor = 1 From Eq. 12.8-5 & 12.8.6, Cs not be less than = 0.046 User has selected ASCE 12.8.1.3: Regular structure, Cs : Seismic Response Coefficient = S Dd 01) - 0.70 = 0.1077 Less than 5 Stories and with T <r- 0.5 sec, SO Ss <=1.5 for Cs calculation 1� 1 File C Omuments and Set6ngs1PC31My Document5lENERCALC DATA F!LESItiylor rr� i6b.e96 SCE 7.05 Seislrntic Factor Determmation.. ENERCALC, INC 19832010 ;Ver 6.151 N:50790, ,- Description : Taylor MC/16b LiEense Owner: WALLING MCCALLUM LTD. S9I6117116 Base Shaer Calculated for Allowable Stress Design Load Combinations ASCE 7-05 Section 12.8.3 Cs 0.1077 from 12.8.1.1 W ( see Sum Wi below) = 0.00 k Vertical Distribution of Seismic Forces Seismic Base Shear V = Cs • W = 0.00 k k ' : hx exponent based on Ta = 1.00 Table of building Weights by Floor Level... Level # Wi: Weight Hi: Height (Wi • Hi) ^k Cvx Fx=Cvx • V Sum Story Shear Sum Story Moment Sum Wi = 0.00 k Sum Wi • Hi = 0.00 k -ft Total Base Shear = 0.00 k ' Base Moment = 0.0 k -ft Diaphragm::Forces ; Seismic.Desigr.Category "D", `'E" & '.'F" _ ASCE 7-05 9.5.2.6.4.4 Level # Wi Fi Sum A Sum Wi Fpx Concrete & Masonry Wall Anchorage: Seismic Design Category 'C' &'D' per ACSE 7-05 12.11.2.1 Actual Wall Weight Tributary to Anchor = lbs/ lin. ft ' Fp: Anchorage Design Force ... - Rigid Diaphragm Design Force = 0.40' SDS' I' Trib. Weight - 0.00 lbs / foot Flexible Diaphragm Design Force - 0.80SDS' Wpx .......................... Weight at level of diaphragm and other structure elements attached to it. 0.00 lbs / foot Fi ............................ Design Lateral Force applied at the level. Sum Fi ........................ Sum of'Lat. Force' of current level plus all levels above ASCE 7-05 12.4.2.3 MIN Req'd Force @ Level ......... MAX Req'd Force @ Level ........ 0.20' SDs • I' Wpx 0.40 ' SDS • I ' Wpx Oe Fpx : Design Force @ Level .... , .. Wpx' SUM(x->n) Fi / SUM(x->n) wi, x = Current level, n = Top Level Load Description WaII Arrhorage .' :.. - ----- ---- --- - Concrete & Masonry Wall Normal Force: Minimum Force per ACSE 7-05 12.11.1 Minimum Factor: 0.40' SDS' Importance • Weight = 0.4000 ' Weight Concrete & Masonry Wall Anchorage: Seismic Design Category 'C' &'D' per ACSE 7-05 12.11.2.1 Actual Wall Weight Tributary to Anchor = lbs/ lin. ft ' Fp: Anchorage Design Force ... - Rigid Diaphragm Design Force = 0.40' SDS' I' Trib. Weight - 0.00 lbs / foot Flexible Diaphragm Design Force - 0.80SDS' I' Trib. Weight = 0.00 lbs / foot Combinatfon`of Load'Etfects ASCE 7-05 12.4.2.3 D Oe E Load Description Dead Load Seismic LoadH & V Load Effect 0.000 __. 0.000 .._...... E = p • Qe +0.20 •SDS • D = 0.000 0.000 0.000 E = p' Qe +0.20 • SDS • D = 0.000 0.000 0.000 t = p - ue +u.zu - tiub - u = 0.000 0.000 0.000 E = p • Qe +0.20 • SDS • D = 0.000 ' 0.000 0.000 E = p • Qe +0.20' SDS • D = 0.000 0.000 0.000 E = p • Qe + 0.20 • SDS • D = 0.000 0.000 0.000 E = p • Qe +0.20' SDS • D = 0.000 0.000 0.000 E = p • Qe +0.20 • SDS • D = 0.000 1� 1 l� 1 is ':.... Description : Taylor MC/16b _� %\i1a1j1tiC8{ Y81US — _ _ _ Calculations per IBC 2006 & ASCE 7-05 V: Basic Wind Speed per Sect 6.5.4 & Figure 1 85.0 mph Values based on wind speed are interpolated between tablular values. Roof Slope Angle 0 to 5 degrees Occupancy per Table 1-1 11 All Buildings and other structures except those listed as Category I, III, and IV Importance Factor per Sect 6.5.5, & Table 6-1 1.00 Exposure Category per 6.5.6.3-4 & .5 Exposure B Mean Roof height 19.50 ft 'Lambda' is interpolated between height tablular values. Lambda: per Figure 6.2, Pg 40 1.00 Effective Wind Area of Component & Cladding 10.0 ft"2 Net design pressure from table 1609.9.2.1(2)&(3) interpolated by area ' Roof pitch for cladding pressure Oto7degrees User specified minimum design pressure 10.0 psf Topographic Factor Kzt per6.5.7.2 1.00 pesign,Wrnd Pt'e$SureS _ Minimum Additional Load Case per 6.4.2.1.1=10 PSF on entire vertical plane Horizontal Pressures ... Zone: A = 11.50 psf Zone: C = 10.00 psf 11, S %C ' Zone: B = -10.00 psf Zone: D = -10.00 psf to.O i3 Vertical Pressures ... l3.8 17, ? Zone: E = -13.80 psf Zone: G = -10.00 psf Zone: F = -10.00 psf Overhangs ... Zone: H = -10.00 psf f (9.6 Zone: Eoh = -19.30 psf Zone: Goh = -15.10 psf GOmpOnent Clatding,Design Wind Pressures = Minimum Additional Load Case per 6.4.2.1.1=10 PSF on entire vertical plane Design Wind Pressure= Lambda* Kzt ' Importance ' Ps30 ASCE 7-05 6.4.2.1 Eq 6-1 per Roof Zone 1 : Positive: 10.000 psf Negative : 0.000 psf Roof Zone 2: Positive: 10.000 psf Negative: 0.000 psf Roof Zone 3: Positive: 10.000 psf Negative: 0.000 psf Wall Zone 4: Positive: 13.000 psf Negative: -14.100 psf Wall Zone 5: Positive : 13.000 psf Negative: -17.400 psf ' Roof Overhang Zone 2: 10.000 psf Roof Overhang Zone 1 10.000 psf l� 1 TAYLOR MC/16b BEAM AND HEADER LOADING DIAGRAMS 23.67 W= 45(24.,sj2+7)= Io9►"' 4eo 5 Q= 3(45)(14,2S1 = 3274' 18ss 3274' Iasi w= 1091'x, S E-4 2-3 . (17 r2-= 23, 1Z= 12,381 . W=1D9�� 15� tZ,= X348" 2.= X348" 3) B3, 5= M5 W Iox45 W/ Ili GmsR W 1ox22' u'/ .14 c MBR, W10X22 Crnsn 20.310 41 84, 5= 14-.5 C - ro.7s 132T¢1 W. logl "i. C,.75 1 14-.5 W IOx33. 0..l 3/s cM 1a, e caNT T 10.2 Irin.1 5) bt5 , 5= 24 r fRM C 5 �5 r r t2-= 9, ,05 r -7 s = M� ) �, .75' 2)7,g rw2, 79`i� i 35 r�= 4&6" t2; 13.425 w= 10910f. L= 22, 7.0 w; = 4-E, (7/,)= [5 b'-/ Wi= 4.5 (3,5121= `79 W1= 155'7, Be 7o41 R•� J 24& 1�= 22, 3 o 1 * �1= 45 (5) = 225`/ W = 4513>Z� = 2g3hi 137 = 635 wz = 45 12 944- 10 o92. 4d1 7'051 -- 193 347 293", 129 11,-75 I 7.25 TL.= 15, 97 C,' CAJ - 45 4n $o 1 240 Itis U/z� 349`'' 15a 2 = 1124 " 7,Z= 2,F, W I Ox 2` w/ 1/i crn P- TL C0X 8 W 1 45 7 116.1 C.X(�3 99 r. r r t2; 13.425 w= 10910f. L= 22, 7.0 w; = 4-E, (7/,)= [5 b'-/ Wi= 4.5 (3,5121= `79 W1= 155'7, Be 7o41 R•� J 24& 1�= 22, 3 o 1 * �1= 45 (5) = 225`/ W = 4513>Z� = 2g3hi 137 = 635 wz = 45 12 944- 10 o92. 4d1 7'051 -- 193 347 293", 129 11,-75 I 7.25 TL.= 15, 97 C,' CAJ - 45 4n $o 1 240 Itis U/z� 349`'' 15a 2 = 1124 " 7,Z= 2,F, W I Ox 2` w/ 1/i crn P- TL C0X 8 W 1 45 7 116.1 C.X(�3 tE�Cfp I jlr--� MM 10� 610E 5= S fv= 45(►5�2)= 33�'' C r" 14-9 I I) til I, s- II' w, = 4s.(2) = go", R-= 1910 S' P-:7 I F.b'+ l2)�12,S3II.5 t�,� /L5 (11 4.5"" C = 1.75 21 Q c 231 �' 12 5 5 IVIG II.5 l,�g 311 s' 13)P13, s= 6 C = 3 W ^ 9��Ib/i�� 3Gpl' 7.A1 158 Co 3 I =arn1L:t 2M 14) }3141 S = 9' W 45(2G.sji+.1� r GSI �' w = G4� 2E i 9. R— 2837 r 2 a 2937` y 2-C 15) pal 5 Q, to' W = 45 -7 \_ C- 5' 214- lG9 Gx � Glolx CoX6 C,vIC:? 51 C- � s = `2 (W, ' 45 ( I G •7s/2 t- 3) = 3 (,✓2, 45 3Go r� 22 S_ 3' Coe8 IU t D.N. 1-7) 131 , s = 19.. (oil = 45(I�,/2) = C, 3 Wz� 4SCI) =45 Ct> 9 � Q/je 45(3�2�=G6s''w'4(1 a%?) oil W $ 5.9 4520 � / 30 i 3 19 5, P—;-- 1449 r V14 -X 1 t; Pa;Z6-uzw3 ' W - 45 - �IGIZJ= 3Go W= 3Go' W;L- 1 + 3� q5 =174' fL= -6�3 ioXi; GU's 45 12-07, 4.5 t 3 15 .bzo, s = 5 w,-� 4s 0 aiz� _ 225 `/ wL-45(13/Zj= 293 mss= Sao p ' 27/ ' 45 zLs � 2 60b 12G Gu = 253.' 164 Lv,= 225" 99 1�-S 2.5 5 2= I 2 0x I C,�< r., 1 4-S 12- 32C''' S c- s W z 32G�i 14'� S 5.5 -2513' R'---734� 1.51 c� 4' 151 =2�p`h Iii 1p-= Ibis" Lu = 4 S (1) = 4.0 Pt _ 4-S(4/i}(6/2� 270` P1=I SoGYi, 280 21Z V- = 5s5' scle. 23) 1Q2-) s _ 10.25 wl= c - C. 75 159 2= 'L5 I o a Kis o , N 2.x) P_,I s4 , s ; c., P W _ d5 05/2{`I 3834r ►375 W = 353'" Sx'4 IoL2 IG§ � I 2751 Irv' k-= 61is, a-= I P-5 P, tJ T(QQQ V,ST 25) P l76 s = 21 Wj= 45(Z6,2511t IOIro wz= 4s (2G.25/ti+ i�/moi ^ 950` Iola a'a s w� = 4S (2/2,+ 95a" .5 41b I .fro` 2 sq. —• --i2.5 �,S � 2 j 6).0 12- &)(-I 2 Ga(► 2 Gx 12 7X 2-o t b 8Z£ Stz =' M !I rl J n t File: GIftunm eambeill n &c. # : KW -060073 I "IMM - _18 of I Wi6totidWropeffles Calculations per IBC 2006, CBC 2007,13th AISC Analysis Method: Allowable Stress Design Fy: Steel Yield: 36.0 ksi Beam Bracing: Beam is Fully Braced against lateral -torsion buckling E: Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending Load Combination 2006 IBC & ASCE 7-05 . . . ...... .. D(1.833) Lrl. Span = 5.0 ft Span = 23.670 ft - W 10X45 WlOX45 401116d.'Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Load for Span Number I Uniform Load : D=0.6110, Lr = 0.480 k/ft, Tributary Width= 1.0 ft Point Load : D = 1.833, Lr 1.441 k (a) 0.0 ft Load for Span Number 2 Uniform Load : D=0.6110, Lr = 0.480 k/ft. Tributary Width = 1.0 ft DESIGN SUMMARY: ; . .... . ... . ....... Maximum Bending Stress Ratio = ........... .. .......... ... ............. . .. ...... . . ... . . ..... ..... .. .. ... . .. .. 0.659:1 Maximum Shear Stress Ratio = ... . ... . ... ..... . .. . ...................... . ...... ... .......... .......... . . . . ..... . ... 0.290 ...... . .... . ...... Section used for this span WI0X45 Section used for this span W10X45 z Mu: Applied 65.024 k -ft Vu: Applied 14.739 k Mn / Omega: Allowable 98.623 k -ft Vn/Omega : Allowable 50.904 k Load Combination -D+Lr+H Load Combination +D+Lr+H Location of maximum on span 12.927ft Location of maximum on span 5.000 ft Span # where maximum occurs Span # 2 Span # where maximum occurs Span # I Maximum Deflection Max Downward L+Lr+S Deflection 0.365 in Ratio = 779 Max Upward L+Lr+S Deflection -0.170 in Ratio = 706 Max Downward Total Deflection 0.869 in Ratio = 326 Max Upward Total Deflection -0.410 in Ratio = 292 *aAmum"foirces &'Stresses fol Load Combinations Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # Mmax + max - Ma - Max Mnx Mnx/Omega Cb Rm Va Max Vnx Vnx/Omega Overall MAXimum Envelope Dsgn. L = 5.00 ft 1 0.310 0.290 -30.57 30.57 164.70 98.62+ 1.00 1.00 14.74 76.36 50.90 Dsgn. L = 23.67 ft 2 0.659 0.290 65.02 -30.57 65.02 164.70 98.62 1.00 1.00 14.74 76.36 50.90 Dsgn. L = 5.00 ft 1 0.176 0.167 -17.37, 17.37 164.70 98.62 1.00 1.00 8.50 76.36 50.90 140 Dsgn. L = 23.67 ft 2 0.382 0.167 37.69 -17.37 37.69 164.70 98.62 1.00 1.00 8.50 76.36 50.90 40-+Lr4H Dsgn. L = 5.00 ft 1 0.310 0.290 -30.57 30.57 164.70 98.62 1.00 1.00 14.74 76.36 50.90 Dsgn. L = 23.67 ft 2 0.659 0.290 65.02 -30.57 65.02 164.70 98.62 1.00 1.00 14.74 76.36 50.90 +D40.750Lr4O.750L+H Dsgn. L = 5.00 ft 1 0.277 0.259 -27.27 27.27 164.70 98.62 1.00 1.00 13.18 76.36 50.90 Osgn. L = 23.67 ft 2 0.590 0.259 58.19 -27.27 58.19 164.70 98.62 1.00 1.00 13.18 76.36 50.90 +D40.750Lr40.750L+0.750W-+H Dsgn. L = 5.00 ft 1 0.277 0.259 -27.27 27.27 164.70 98.62 1.00 11.00 13.18 76.36 50.90 Dsgn. L = 23.67 111 2 0.590 0.259 58.19 -27.27 58.19 164.70 98.62 1.00 1.00 13.18 76.36 50.90 ,_�D+0.750Lr4O.75OL-+0.5250E+H Dsgn. L= 5.00 ft 1 0.277 0.259 -27.27 27.27 164.70 98.62 1.00 1.00 13.18 76.36 50.90 Dsgn. L = 23.67 ft 2 0.590 0.259 58.19 -27.27 58.19 164.70 98.62 1.00 1.00 13.18 76.36 50.90 Overall Maximum Deflections - Unfactored Loads Load Combination Span Max. *-" Deft Location in Span Load Combination Max. Defi Location in Span 1 0.0000 D+Lr 2 0.8688 0.000 12.381 D+Lr -0.4101 0.0000 0.000 0.000 ` �File:and/ ��� �''��� mstan"v* up S.m nm 10.64 om 16"1 �w 21.S7 2430 nu mstancevv un 5.18 xm 10.64 am :" mw 21.57 24JO 27.03 Distance (ft) 00~411MA°`~f~^=0"0-1y0^0'1y6=^ Aiigf m" " Load Combination Span Max. Downward Defi Location in Span efi Location in Span -- - -- --------t[�Y�---- --- --- --' Lr Only 2 0.364 12.381 0.000 0.000 D+b 2 0.860 12.381 0.0000 0.00 Support notation Far �ft�#1 V�vnommPG ~� ��C���n sv��, ���x -_'_--_-_ _-' ---_- Support '_'- -_- Overall MAXimum 23.695 ---12.156'-------- -- ------'------------ DOnly Lr Only 13.815 10.00 7.033 5.123 Nl-r 23.695 12.156 Depth~ 10.100 in |xx 248.00 in^* 1 ~ 1.510io"* Web Thick = 0.350 in Gxx 49.10 in A 3 CW ~ 1.200.00in'16 ~— Flange Width ~ 8.020 in nxx ~ 4.320 in Flange Thick ~ 0.00 in Ix ~ 54.900 m^3 Area ~ 13.300io12 |yy ~ 53.40in^4 �N Weight ~ 45.273 pU Syy ~ 13a00 in^3 wno ~ 19.00io^2 mdo*ign ~ 1.12O in eyy ~ 2.010 in Rw ~ 23.600in^* K1 = 0.813 in Zy = 20.300 in^3 Qf = 11.300|n"3 na ~ 2.20 in rT ~ 2.180 in OW ~ 27.000in,13 Ycg 5.050 in mstan"v* up S.m nm 10.64 om 16"1 �w 21.S7 2430 nu mstancevv un 5.18 xm 10.64 am :" mw 21.57 24JO 27.03 Distance (ft) 00~411MA°`~f~^=0"0-1y0^0'1y6=^ _ .. - - ..�........ - Rln• blMrumonfc'vnN ReflinnelDr9fAAd n,­_.fe lrtjrorm &nATA Ell CSM -L-- lah"..R . LIG. ff . nvv-VOVV/J Description : B2 Material Properties Calculations per IBC 2006, CBC 2007,13th AISC Analysis Method: Allowable Stress Design Fy : Steel Yield: 36.0 ksi Beam Bracing: Beam is Fully Braced against lateral -torsion buckling E: Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending Load Combination 2006 IBC & ASCE 7-05 D(0.611) Lr0.48) Span = 15.0 ft W 10X22 Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads - Uniform Load : D = 0.6110, Lr = 0.480 k/ft, Tributary Width =1.0 ft DESIGN SUMMARY • Maximum Bending Stress Ratio = 0.670: 1 Maximum Shear Stress Ratio = 0.237: 1 Section used for this span W10X22 Section used for this span W10X22 Mu: Applied 31.306 k -ft Vu: Applied 8.348 k Mn / Omega: Allowable 46.707 k -ft Vn/Omega : Allowable 35.251 k Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span 7.500ft Location of maximum on span 0.000 ft Span # where maximum occurs Span # 1 Span # where maximum occurs Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.161 in Ratio = 1117 Max Upward L+Lr+S Deflection 0.000 in Ratio = 0 <360 Max Downward Total Deflection 0.373 in Ratio = 481 Max Upward Total Deflection 0.000 in Ratio = 0 <180 :Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Summary _of Moment Values Summary of Shear Values Segment Length Span # M _ V Mmax + Mmax - Ma - Max Mnx Mnx/Omega Cb Rm _ Va Max Vnx Vnx/Omega Overall MAXimum Envelope Dsgn. L = 15.00 ft 1 0.670 0.237 31.31 31.31 78.00 46.71 1.00 1.00 8.35 52.88 35.25 Dsgn. L = 15.00 ft 1 0.381 0.135 17.81 17.81 78.00 46.71 1.00 1.00 4.75 52.88 35.25 +D+Lr+H Dsgn. L = 15.00 ft 1 0.670 0.237 31.31 31.31 78.00 46.71 1.00 1.00 8.35 52.88 35.25 +D+0.750Lr+0.750L+H Dsgn. L = 15.00 ft 1 0.598 0.211 27.93 27.93 78.00 46.71 1.00 1.00 7.45 52.88 35.25 +D+0.750Lr+0.750L+0.750W+H Dsgn. L = 15.00 It 1 0.598 0.211 27.93 27.93 78.00 46.71 1.00 1.00 7.45 52.88 35.25 +0+0.750Lr+0.750L+0.5250E+H Dsgn. L = 15.00 ft 1 0.598 0.211 27.93 27.93 78.00 46.71 1.00 1.00 7.45 52.88 35.25 "Overall Maximum Deflections - Unfactored Loads Load Combination Span Max. ' ' Defl Location in Span Load Combination Max.'+' Defl Location in Span D+Lr 1 0.3735 7.575 0.0000 0.000 Maximum Deflections for Load Combinations - Unfactored Loads Load Combination Span _ _ _ _ Downward Defl Location in Span Max_ Upward Defl in Span _ _ _Max. D Only 1 _ 0.2124 7.575 _Location - - - 0.0000 0.000 1 Lr Only 1 0.1611 7.575 0.0000 0.000 D+Lr 1 0.3735 7.575 0.0000 0.000 Vertical Reactions • Unfactored Support notation Far left is #1 Values in KIPS Load Combination Support 1 _ _ _ _ - Support 2 _ Overall MAXimum 8.348 - - 8.348--- - - - --- -- - - - --- -- - -- - - D Only 4.748 Lr Only 3.600 4.748 3.600 File C:tooi urrient Getti Lic. # : KW -06007390 License Owner: WALLING MCCALLUM LTD. Description B2 Yeiticai Reactions - Uhfactor6d Support notation Far left is #1__Values in KIPS Load Combination Support 1 Support 2 D+Lr 8.348 8.348 misi WfOX22 Depth 10.200 in I xx 118.00 inA4 1 0.239 inA4 Web Thick 0.240 in S xx 23.20 in'13 CW 275.00 inA6 Flange Width = 5.750 in R xx = 4.270 in, Flange Thick = 0.360 in zx = 26.000 inA3 Area 6.490 in A 2 1 yy 11.400 inA4 Weight 22.092 plf S yy 3.970 in',3 Wno 14.100 inA2 Kdesign = 0.660 in R yy = 1.330 in SW = 7.320 inA4 K1 = 0.625 in Zy = 6.100 in'13 Of = 4.880 in A 3 its 1.550 in (T = 1.510 in QW = 12.900 in A 3 yog 5.100 in 32 24 -D BEAK—. 1.43 2.93 4.43 5.93 7.43 9193 10.43 11.93 13A3 14.93 Distance (ft) 8 0-411 MAX:— E—lope N +D 6 +D+L-+H 8 +D+0.75DL-+0.7SDL+h 0 +D+D.750t -+D.7SDL+D.7 SOW +M 2 +D+D.7$OL-.O.75OL+D.SZSOE+H 9 4 25 BEAM— '-4 -9 3 Distance (ft) 0 0-11 KAX:m.m E—lapa E +0 0 +D+L-+" N +D+D.75DL-+D.7SDL+h H +D+D.7SOL-+O.YSOL+O.7SDW+M 0 +D.D.7SOL-+D.7SOL+P.SZSDC+M .0.10 -0.19 -029 -038 1.43 2.93 4.43 S.93 7.43 9.93 10A3 11.93 13.43 14.93 Distance (ft) 00-11 MAX:— a- is a DO.1, 0 L-0-17 M D+L. t NDescription: B3 uc.0: nvv-,oUuro i Materia('PropeRies Analysis Method: Allowable Stress Design Beam Bracing: Beam is Fully Braced against lateral -torsion buckling Bending Axis: Major Axis Bending Load Combination 2006 IBC & ASCE 7-05 File: Calculations per IBC 2006, CBC 2007,13th AISC Fy : Steel Yield : 36.0 ksi E: Modulus: 29,000.0 ksi D0.833) Lr1.441) W 10X22 W 10X22 Applied loads... ' : Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load : D=0.6110, Lr = 0.480 k/ft, Tributary Width =1.0 ft Load(s) for Span Number 2 Point Load: D =1.833, Lr =1.441 k a(D 5.0 ft Uniform Load : D = 0.6110, Lr = 0.480 kt t, Tributary Width =1.0 ft DESIGN. SUMMARY. • -=--.._.._._..__....-- ..__.......-......................_............._....................._...:._........_...... Maximum Bending..Stress Ratio = )M 0.648: 1 Maximum Shear Stress Ratio = 0.325: 1 Section used for this span W10X22 Section used for this span W10X22 i Mu : Applied 30.284 k -ft Vu: Applied 11.470 k Mn / Omega: Allowable 46.707 k -ft Vn/Omega : Allowable 35.251 k Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span 17.500ft Location of maximum on span 17.500 ft Span # where maximum occurs Span # 1 Span # where maximum occurs Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.173 in Ratio= 1216 Max Upward L+Lr+S Deflection -0.027 in Ratio= 4416 Max Downward Total Deflection 0.404 in Ratio= 520 Max Upward Total Deflection -0.069 in Ratio= 1728 Maximum F..o�cet - Stresses for Load Combinations Load Combination Max Stress Ratios _ Summary of Moment Values _ _ _ Summary of Shear Values Segment Length Span # M V Mmax + Mmax - Ma • Max Mnx Mnx/Omega Cb Rim Va Max Vnx Vnx/Omega Overall MAXimumEnvelope --------- -------------------- ----- - Dsgn. L = 17.50 ft 1 0.648 0.325 28.81 -30.28 30.28 78.00 46.71 1.00 1.00 11.47 52.88 35.25 Dsgn. L = 5.00 ft 2 0.648 0.251 -30.28 30.28 78.00 46.71 1.00 1.00 8.84 52.88 35.25 +D Dsgn. L = 17.50 ft 1 0.366 0.185 16.45 -17.08 17.08 78.00 46.71 1.00 1.00 6.52 52.88 35.25 Dsgn. L = 5.00 ft 2 0.366 0.142 -17.08 17.08 78.00 46.71 1.00 1.00 5.00 52.88 35.25 +D+Lr+H Dsgn. L = 17.50 It 1 0.648 0.325 28.81 -30.28 30.28 78.00 46.71 1.00 1.00 11.47 52.88 35.25 Dsgn. L = 5.00 ft 2 0.648 0.251 -30.28 30.28 78.00 46.71 1.00 1.00 8.84 52.88 35.25 +D+0.750Lr+0.750L+H Dsgn. L = 17.50 ft 1 0.578 0.290 25.72 -26.98 26.98 78.00 46.71 1.00 1.00 10.23 52.88 35.25 Dsgn. L = 5.00 ft 2 0.578 0.224 -26.98 26.98 78.00 46.71 1.00 1.00 7.88 52.88 35.25 +D40.750Lr4.750L+0.750W+H Dsgn. L = 17.50 ft 1 0.578 0.290 25.72 -26.98 26.98 78.00 46.71 1.00 1.00 10.23 52.88 35.25 Dsgn. L = 5.00 ft 2 0.578 0.224 -26.98 26.98 78.00 46.71 1.00 1.00 7.88 52.88 35.25 Dsgn. L = 17.50 ft 1 0.578 0.290 25.72 26.98 26.98 78.00 46.71 1.00 1.00 10.23 52.88 35.25 ��+0.750Lr+0.750L+0.5250E+H Dsgn. L = 5.00 ft 2 0.578 0.224 -26.98 26.98 78.00 46.71 1.00 1.00 7.88 52.88 35.25 Overall Maximum Deflections - Unfactored Loads Load Combination Span Max. ' ' Dell Location in Span Load Combination Max. '+' Defl Location in Span D+Lr 1 0.4036 8.077 0.0000 0.000 2 0.0000 8.077 D+Lr -0.0694 5.000 ,.. rrlen ngs ■OI UlfO[:foi �'YG.hDPlO.FP Description : B3 1.99• �ti •Gf■l�'."/L\.1.C.�■119LAA.\-■-la l'L�■.I� -°,04""',befleations for.Load,Combinations - Unfactored Loads Load Combination Span Max. Downward Defl Location in Span __ __ Max. Upward Defl Location in Span D Only 1 0.2309 8.077 0.0000 0.000 Lr Only 1 0.1727 8.077 0.0000 0.000 D+Lr 1 0.4036 8.077 0.0000 0.000 Vertical Reacti ns - Unfactored- Support notation _Far left is #1 in KIPS Load Combination Support 1 Support 2 Support 3 Overall MAXimum 8.009 20.310 -_ - -Values D Only 4.564 11.514 Lr Only 3.445 8.796 D+Lr 8.009 20.310 :SteeUsectionOtoperties : W10X22 Depth = 10.200 in I xx 118.00 inA4 J = 0.239 inA4 1 Web Thick 0.240 in S xx- 23.20 inA3 Cw = 275.00 in"6 Flange Width 5.750 in R xx 4.270 in Flange Thick = 0.360 in Zx = 26.000 in A3 Area = 6.490 inA2 1 yy = 11.400 inA4 Weight 22.092 plf S yy 3.970 inA3 Wno 14.100 inA2 Kdesign 0.660 in R yy 1.330 in Sw 7.320 inA4 K1 = 0.625 in Zy = 6.100 in A3 Qf = 4.880 inA3 its = 1.550 in rT = 1.510 in ow = 12.900 inA3 Ycg = 5.100 in 29 14 F--e.-O . . ... ..... 7 1 . 9 4 BEAK -s � 1 .7 I 9 1� t r 2A2 4.17 633 8.48 10.63 12.79 14.94 17.10 19.19 2135 Distance (ft) 0 0-11 MAX; -n E-veM" ■ +D ■ +D+L.+M ■ +D+0.7SDL-+D.7SDL+M 0 +D+D.7SDL.+0.75DL+D.7SDW+M O +D+D.7S0L•+D.7SDL+D.SZS0E+M 2.02 4.17 633 8.48 10.63 12.79 14.94 17.10 19.19 2135 Distance (k) 0 0-11 MAX: --1 e--Wpa ■ +D ■ ♦DH.+M ■ +D+D.75DL-+D.75DL+M 0 +D+0.75DL.+0.7SDL+D.7SDW+M ■ ♦D+D.7S0L-+0.750L+0.SZSDE+M 2.02 4.17 6.33 8.48 10.63 12.79 14.94 17.10 19.19 2135 Distance (ft) 0 0-11 MAX:- E- 1- ■ DO.1y 0 L -O -y 8 0.0 12 -- �teel�Bealm Desi. In � DocumenlslENERCAI DATAfILES mclsn.ec6 Fle C.1Documents and SeltingslPC31My C ltaybr ENERCACG; INC 198 2010,:Verai;1S1, ft50790-: d: �i I Description: B4 Maternal PfOpedies _ _ Calculations per IBC 2006, CBC 2007,13th AISC Analysis Method: Allowable Stress Design Fy : Steel Yield: 36.0 ksi Beam Bracing: Beam is Fully Braced against lateral -torsion buckling E: Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending Load Combination 2006 IBC & ASCE 7-05 lE W 10X33 W 10X33 :Applied loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load : D=0.6110, Lr = 0.480 k/ft, Tributary Width = 1.0 It Point Load: D =1.833, Lr =1.441 k (a) 0.0 ft Load for Span Number 2 Uniform Load : D = 0.6110, Lr = 0.480 k/ft, Tributary Width =1.0 ft DESIGN SUMMARY • Maximum Bending Stress Ratio = 0.684:1 Maximum Shear Stress Ratio = 0.282: 1 Section used for this span W10X33 Section used for this span W10X33 Mu: Applied 47.707 k -ft Vu : Applied 11.440 k Mn / Omega: Allowable 69.701 k -ft Vn/Omega : Allowable 40.632 k Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span 6.750ft Location of maximum on span 6.750 ft Span # where maximum occurs Span # 1 Span # where maximum occurs Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.187 in Ratio = 866 Max Upward L+Lr+S Deflection -0.016 in Ratio= 10638 Max Downward Total Deflection 0.426 in Ratio = 380 Max Upward Total Deflection -0.036 in Ratio = 4832 Maxh6l 6: ,Ones. 8 Stresses for Load Combinations Load Combination Max Stress Ratios Summary of Moment Values _ Summary of Shear Values Segment Length Span # M V Mmax + Mmax - Ma - Max Mnx Mnx/Omega Cb Rm Va Max Vnx Vnx/Omega Overall MAXimum Envelope - Dsgn. L = 6.75 ft 1 0.684 0.282 -07.71 47.71 116.40 69.70 1.00 1.00 11.44 60.95 40.63 Dsgn. L = 14.50 ft 2 0.684 0.282 10.50 A7.71 47.71 116.40 69.70 1.00 1.00 11.44 60.95 40.63 Dsgn. L = 6.75 ft 1 0.388 0.161 -27.05 27.05 116.40 69.70 1.00 1.00 6.53 60.95 40.63 Dsgn. L = 14.50 It 2 0.388 0.161 6.10 -27.05 27.05 116.40 69.70 1.00 1.00 6.53 60.95 40.63 +D+Lr+H Dsgn. L = 6.75 It 1 0.684 0.282 A7.71 47.71 116.40 69.70 1.00 1.00 11.44 60.95 40.63 Dsgn. L = 14.50 ft 2 0.684 0.282 +040.750Lr+0.750L+H 10.50 -47.71 47.71 116.40 69.70 1.00 1.00 11.44 60.95 40.63 Dsgn. L = 6.75 ft 1 0.610 0.251 A2.54 42.54 116.40 69.70 1.00 1.00 10.21 60.95 40.63 Dsgn. L = 14.50 ft 2 0.610 0.251 9.40 A2.54 42.54 116.40 69.70 1.00 1.00 10.21 60.95 40.63 +D+0.750Lr+0.750L+0.7S0W+H Dsgn. L = 6.75 ft 1 0.610 0.251 A2.54 42.54 116.40 69.70 1.00 1.00 10.21 60.95 40.63 Dsgn. L = 14.50 It 2 0.610 0.251 9.40 -42.54 42.54 116.40 69.70 1.00 1.00 10.21 60.95 40.63 )�D+0.750Lr-+0.750L+0.5250E+H Dsgn. L = 6.75 It 1 0.610 0.251 -42.54 42.54 116.40 69.70 1.00 1.00 10.21 60.95 40.63 Dsgn. L = 14.50 It 2 0.610 0.251 Overall "Maximum Deflections - Unfactored Loads 9.40 -42.54 42.54 116.40 69.70 1.00 1.00 10.21 60.95 40.63 Load Combination Span Max. "Dell Location in Span Load Combination Max. "+* Dell Location in Span D+Lr 1 0.4263 0.000 0.0000 0.000 D+Lr 2 0.0227 10.485 D+Lr -0.0360 2.565 u L.. n . rxvv-vvvvr v Description 2.03 4.15 620 8.20 10.32 12.44 14.56 16b8 18.80 20.92 Distance (ft) ■ 0-11 MA%:n-n l-vab0a ■ +D ■ +D+4+M 81 +0+D.75DL.+D.750L+M • +D+0.7SDL.+0.7SDL+D.7SDW+X 8 +1>+0.7SDL.+D.7SDL+D.SZSDl+M 12 6 SEAM. -AA •5 •!1 21.03 4.15 628 820 10.32 12.44 14.56 16" 18.80 20.92 Distance (ft) ■ 0_11 MAX:_ C-valaua • +D ■ +D+L-+M ■ +D+0.75DL-+0.7SDL+M • +D+D.7SDL.+D.7SDL+D.7SDW+M O +D+0.750L-+D.75DL+D.5250D+M O t =Maximum D®flections.fohLoad�dom6inations-Unfactored Loads Load Combination Span Max. Downward Deft Location in Span . Max. Upward Def! Location in Span D Only 1 0.2394 0.000 0.0000 0.000 D Only 2 0.0140 10.373 -0.0197 2.565 Lr Only 1 0.1869 0.000 0.0000 0.000 Lr Only 2 0.0088 10.596 -0.0164 2.677 D+Lr 1 0.4263 0.000 0.0000 0.000 D+Lr 2 0.0227 10.485 -0.0360 2.565 Veiifcai Reactions-'Utlfactored Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Support 3 Overall MAXimum - ------- 22.301 -- -- 4.859_. -.___-------------__-- ----------.---------_____-- D Only 12.715 2.804 Lr Only 9.586 2.055 D+Lr 22.301 4.859 - ;;SteelSectiori`:Propetties .:<W10X33 Depth = 9.730 in I xx 171.00 inA4 J = 0.583 in14 Web Thick = 0.290 in S xx 35.00 inA3 Cw = 791.00 inA6 rFlange Width = 7.960 in R xx = 4.190 in Flange Thick = 0.435 in Zx = 38.800 inA3 Area = 9.710 inA2 1 y = 36.600 inA4 Weight = 33.053 plf S yy = 9.200 inA3 Wno = 18.500 inA2 Kdesign 0.935 in R yy 1.940 in SW 16.000 inA4 K1 0.750 in Zy 14.000 inA3 Qf 7.750 inA3 its = 2.200 in rT = 2.140 in Qw = 18.900 inA3 ` Ycg = 4.865 in 2.03 4.15 620 8.20 10.32 12.44 14.56 16b8 18.80 20.92 Distance (ft) ■ 0-11 MA%:n-n l-vab0a ■ +D ■ +D+4+M 81 +0+D.75DL.+D.750L+M • +D+0.7SDL.+0.7SDL+D.7SDW+X 8 +1>+0.7SDL.+D.7SDL+D.SZSDl+M 12 6 SEAM. -AA •5 •!1 21.03 4.15 628 820 10.32 12.44 14.56 16" 18.80 20.92 Distance (ft) ■ 0_11 MAX:_ C-valaua • +D ■ +D+L-+M ■ +D+0.75DL-+0.7SDL+M • +D+D.7SDL.+D.7SDL+D.7SDW+M O +D+0.750L-+D.75DL+D.5250D+M O t Description B4 0.04 BEAM- -048 .0-'D -032 -OA3 i- fle: Mmuments and :Setfin gsPC3Ny N 2.03 CIS 629 820 10.32 12.44 14.56 16.68 19.80 20.92 DMarvce (ft) 00-11 MAX;— e--lp. 0 D 0-ly 8 L- O -IV 0 D.L. Beam. Design Description: , .. B5 . Material Properties Analysis Method: Allowable Stress Design Beam Bracing : Beam is Fully Braced against lateral -torsion buckling Bending Axis: Major Axis Bending Load Combination 2006 IBC & ASCE 7-05 1 Span = 20.0 ft W 10X39 and Calculations per IBC 2006, CBC 2007,13th AISC Fy : Steel Yield 36.0 ksi E: Modulus: 29,000.0 ksi Load Combination Applied Loads Max. %* Defl Location in Span Load Combination- Service loads entered. Load Factors will be applied for calculations. Max. '+- Dell Location in Span Beam self weight calculated and added to loads _ D+Lr 1 0.6766 10.100 6.501 0.0000 0.000 Uniform Load : D = 0.6110, Lr = 0.480 k/ft, Tributary Width =1.0 ft Maximum Deflections for Load Combinations - Unfactored Loads -DESIGN SUMMARY9 Load Combination Span - • Max. Upward Defl �:__._...__... - :............._..-............._..............._..._........._ ........ Maximum Bending Stress Ratio = 0.672: 1 Maximum Shear Stress Ratio = _........._.._..._ _....._ ....... ..... _.. . 0.251: 1 0.3893 10.100 Section used for this span W10X39 Section used for this span W10X39 Lr Only 1 Mu: Applied 56.507 k -ft Vu : Applied 11.301 k O+Lr 1 Mn / Omega: Allowable 84.072 k -ft Vn/Omega : Allowable 44.997 k Vertical Reactions - Unfactored Load Combination +D+Lr+H Load Combination +D+Lr++i Location of maximum on span 10.000ft Location of maximum on span 0.000 ft Span # where maximum occurs Span # 1 Span # where maximum occurs Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.287 in Ratio = 835 Max Upward L+Lr+S Deflection 0.000 in Ratio = 0 <360 Max Downward Total Deflection 0.677 in Ratio = 354 Max Upward Total Deflection 0.000 in Ratio = 0 <180 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios _ Summary of Moment Values Summary of Shear Values Segment Length Span # M V Mmax + Mmax - Ma - Max Mnx Mnx/Omega Cb Rm Va Max Vnx Vnx/Omega Overall MAXimum Envelope Dsgn. L = 20.00 ft 1 .0.672 0.251 56.51 56.51 140.40 84.07 1.00 1.00 11.30 67.50 45.00 Dsgn. L = 20.00 It 1 0.387 0.144 32.51 32.51 140.40 84.07 1.00 1.00 6.50 67.50 45.00 +O+Lr+H Dsgn. L = 20.00 It 1 0.672 0.251 56.51 56.51 140.40 84.07 1.00 1.00 11.30 61.50 45.00 +0+0.750Lr-#0.750L+H Dsgn. L = 20.00 It 1 0.601 0.224 50.51 50.51 140.40 84.07 1.00 1.00 10.10 67.50 45.00 +D+0.750Lr+0.750L+0.750W+H Dsgn. L = 20.00 ft 1 0.601 0.224 50.51 50.51 140.40 84.07 1.00 1.00 10.10 67.50 45.00 +D+0.750Lr+0.750L+0.5250E+H Dsgn. L = 20.00 ft 1 0.601 0.224 50.51 50.51 140.40 84.07 1.00 1.00 10.10 67.50 45.00 Overall Maximum Deflections •. Unfactored Loads Load Combination Load Combination Span Max. %* Defl Location in Span Load Combination- Overall MAXimum Max. '+- Dell Location in Span 11.301 _ D+Lr 1 0.6766 10.100 6.501 0.0000 0.000 4.800 Maximum Deflections for Load Combinations - Unfactored Loads Load Combination Span Max. Downward Defl Location in Span Max. Upward Defl Location in Span D Only 1 0.3893 10.100 0.0000 0.000 Lr Only 1 0.2874 10.100 0.0000 0.000 O+Lr 1 0.6766 10.100. 0.0000 0.000 Vertical Reactions - Unfactored Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 11.301 11.301 D Only 6.501 6.501 Lr Only 4.800 4.800 rne::kUOCumenLSana:Je!(Ingsu'G1kNiy.uocument �tNF EkRCAm' SH 43 �r c'.. 29 14 J BEAD4 >s 1.90 3.90 5.90 7.90 9.90 11.90 13.90 15.90 0.90 19.90 �r Distance (ft) • Owall MAX; -n a-wla.. ■ +D • +D+L•+M ■ +D+D.75DL:+0.75DL+M B +D+O.7SOL•+0.7SDL+D.7 SOW+M 6 +D+D.75OL•+0.7SDL+O.SLSDE+M 12 6 � BEAK >r 12 1.90 3.90 5.90 7.90 9.90 11.90 13.90 15.90 17.90 19.90 Distance (ft) 00v.:.11 MAX;-E-wh.. ■ +D ■ +D+L:+M • +D+D.7SDL:+D.7SDL+M a +0+0.7SOL•+D.7SDL+D.7SDW+M 6 +D+D.7SOL•+0.7SDL+O.SZSDE+M 1.90 3.90 5.90 7.90 9.90 11.90 13.90 15.90 17.90 19.90 Distance (ft) ■ 0-11 MAX:- a-wlaa. 6 DO-ly • L -0-1y 0 D+L- ■APff:�� �•a•aan.navanl•a. Description : B5 �LR=n wz=a r:anawric���cl�icua.�_�a.r���.� Wfticaykiidons-;066to'red Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 D+Lr 11.301 11.301 Steel Section Properties : wibx-3o Depth = 9.920 in I xx 209.00 inA4 J - 0.976 in A4 Web Thick 0.315 in S xx- 42.10 inA3 Cw = 992.00 inA6 Flange Width 7.990 in R xx 4.270 in Flange Thick = 0.530 in Zx = 46.800 inA3 Area 11.500 inA2 1 yy 45.000 inA4 Weight 39.146 plf S yy 11.300 inA3 Wno 18.800 inA2 Kdesign 1.030 in R yy 1.980 in Sw - 19.900 inA4 K1 = 0.813 in Zy = 17.200 inA3 Qf = 9.550 inA3 rts = 2.240 in rT = 2.160 in Qw = 23.000 inA3 YDg = 4.960 in SH 43 �r c'.. 29 14 J BEAD4 >s 1.90 3.90 5.90 7.90 9.90 11.90 13.90 15.90 0.90 19.90 �r Distance (ft) • Owall MAX; -n a-wla.. ■ +D • +D+L•+M ■ +D+D.75DL:+0.75DL+M B +D+O.7SOL•+0.7SDL+D.7 SOW+M 6 +D+D.75OL•+0.7SDL+O.SLSDE+M 12 6 � BEAK >r 12 1.90 3.90 5.90 7.90 9.90 11.90 13.90 15.90 17.90 19.90 Distance (ft) 00v.:.11 MAX;-E-wh.. ■ +D ■ +D+L:+M • +D+D.7SDL:+D.7SDL+M a +0+0.7SOL•+D.7SDL+D.7SDW+M 6 +D+D.7SOL•+0.7SDL+O.SZSDE+M 1.90 3.90 5.90 7.90 9.90 11.90 13.90 15.90 17.90 19.90 Distance (ft) ■ 0-11 MAX:- a-wlaa. 6 DO-ly • L -0-1y 0 D+L- He:'QU)ociu nts and Description B6 Material: Properties Analysis Method: Allowable Stress Design Beam Bracing: Beam is Fully Braced against lateral -torsion buckling Bending Axis: Major Axis Bending Load Combination 2006 IBC & ASCE 7-05 D0611 Lr0.48) WlOX26 Calculations per IBC 2006, CBC 2007,13th AISC Fy: Steel Yield: 36.0 ksi E: Modulus: 29,000.0 ksi WIOX26 D(1.833) Lr1.441) .CoedsAppPed Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Load for Span Number I Uniform Load : D = 0.6110, Lr = 0.480 ktft, Tributary Width =1.0 ft Load for Span Number 2 Uniform Load : D=0.6110, Lr = 0.480 k/ft, Tributary Width =1.0 ft Point Load: D = 1.833, Lr =1.441 k (a) 5.750 ft DESIGN SUMMARY .. ....... . ........... . ........... .......... . ............... ..... ... . . . . .... ................. axir�i'di7n-B-e�-n�d�i-n'-'g-'-Stress Ratio = 0.689:1 Maximum Shear Stress Ratio = • ....... ............. 0.338 1 Section used for this span WI0X26 Section used for this span W10X26 Mu: Applied 38.756 k -ft Vu: Applied 13.034 k Mn / Omega: Allowable 56.228 k -ft Vn/Omega: Allowable 38.563 k Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span 8.308ft Location of maximum on span 20.000 ft Span # where maximum occurs Span # 1 Span # where maximum occurs Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.252 in Ratio= 953 Max Upward L+Lr+S Deflection -0.059 in Ratio= 2344 Max Downward Total Deflection 0.590 in Ratio= 406 Max Upward Total Deflection -0.146 in Ratio= 944 Maximum Fordes.4 Stresses for Load Combinations Load Combination Max Strew Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V Mmax + Mmax - Ma - Max Mnx Mnx/Ornega Cb Rm Va Max Vnx Vnx/Ornega Overall MAY(imurn Envelope Dsgn. L = 20.00 it 1 0.689 0.338 38.76 -37.29 38.76 93.90 56.23 1.00 1.00 13.03 57.84 38.56 Dsgn. L = 5.75 it 2 0.663 0.251 -37.29 37.29 93.90 56.23 1.00 1.00 9.70 57.84 38.56 +D Dsgn. L = 20.00 ft 1 0.394 0.192 22.18 -21.07 22.18 93.90 56.23 1.00 1.00 7.42 57.84 38.56 Dsgn. L = 5.75 ft 2 0.375 0.142 -21.07 21.07 93.90 56.23 1.00 1.00 5.50 57.84 38.56 +[)+Lr+H Dsgn. L = 20.00 It 1 0.689 0.338 38.76 -37.29 38.76 93.90 56.23 1.00 1.00 13.03 57.84 38.56 Dsgn. L = 5.75 it 2 0.663 0.251 -37.29 37.29 93.90 56.23 1.00 1.00 9.70 57.84 38.56 +040.750Lr+0.750L+H Dsgn. L = 20.00 ft 1 0.616 0.302 34.61 -33.23 34.61 93.90 56.23 1.00 1.00 11.63 57.84 38.56 Dsgn. L = 5.75 it 2 0.591 0.224 -33.23 33.23 93.90 56.23 1.00 1.00 8.65 57.84 38.56 +D+0.750Lr+0.750L+0.750W+H Dsgn. L = 20.00 ft 1 0.616 0.302 34.61 -33.23 34.61 93.90 56.23 1.00 1.00 11.63 57.84 38.56 Dsgn. L = 5.75 it 2 0.591 0.224 -33.23 33.23 93.90 56.23 1.00 1.00 8.65 57.84 38.56 ,-�+0.750Lr.+0.750L+0.5250E+H Dsgri.L= 20.00 ft 1 0.616 0.302 34.61 -33.23 34.61 93.90 56.23 1.00 1.00 11.63 57.84 38.56 L = 5.75 it 2 0.591 0.224 -33.23 33.23 93.90 56.23 1.00 1.00 8.65 57.84 38.56 tDsgn. 'Overall Maximum Deflections - Unfactored Loads Load Combination Span Max. *-'Defl Location in Span Load Combination Max. "4.* Defl Location in Span D+Lr 1 0.5903 9.231 0.0000 0.000 2 0.0000 9.231 D+Lr -0.1462 5.750 I File: clumpurrumts and Settinj ■LIC. ?F : r\411 -101:11J51, License *uner : fiALLir;u 1V1tNVKLL1R1 1!1%12� Description B6 Maximum 6696fibns for Load - Unfactored Loads Load Combination Span Max. Downward Defi Location in Span Max. Upward Defi Location in Span D Only 1 0.3386 9.231 0.0000 0.000 Lr Only 1 0.2517 9.231 0.0000 0.000 D+Lr 1 0.5903 9.231 0.0000 0.000 I I - ��VQ�fticaltkiiiidflo'hs - Unfid6red Support notation Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Support 3 Overall MAXimurn 9.305 22.730 D On, 5.316 12.918 Lr Only 3.989 9.812 D+Lr 9.305 22.730 Steel.Section ,'WIOX,26 Depth = 10.300 in I xx 144.00 inA4 1 = 0.402 inA4 Web Thick 0.260 in S xx-27.90 in A 3 Cw 345.00 in'16 Flange Width 5.770 in R xx4.350 in Flange Thick = 0.440 in zx = 31.300 in A 3 Area = 7.610 in A 2 1 yy = 14.100 inA4 Weight = 25.904 plf S yy = 4.890 in'13 Wno = 14.200 in A 2 Kdesign = 0.740 in R yy = 1.360 in Sw = 9.030 inA4 K1 = 0.688 in Zy = 7.500 in A 3 Qf = 5.980 in A 3 its = 1.580 in fT = 1.540 in Qw = 15.400 in'13 Ycg = 5.150 in �- 440 20 1 231 4.77 7.23 9.69 12.5 14.62 17.08 19.54 21.95 2439 Distance (ft) 0 0w-11 RAX;m- E-Iopc 8 +D 6 +D+L-+" 6 +D+D.ISDL-+0.7SDL+N M +D+0.7S0L-+0.750L+0.7SDW+M Z +0+0.7SDL-+D.75DL.0.S2%0E+H 231 4.77 723 9.69 12.15 14.62 17.08 19.54 21.95 24.38 D[Aanc6(ft) � 0 0-11 HAX:- C -Wo. a +0 a +0 +t.+m 0 +0+0.7S0L-+D.7S0L +it a +D+0.7S0L-+0JS0t +0.7SDW+" 9 +0.0.7S0L-+0.750L+0.52SDE+H 231 4.77 7.23 9.69 12.15 14.62 17.08 1954 21.95 2438 Distance (ft) N 0-11 KAX:- E--Wp. N 0 0-ty 0 L- 0-1y N D +L- 1 11 1 Span = 9.750 ft �LIC. 7; : N14AWWJ51 Description : B7 1.000 LicansL-sn er: iVALLici 1;1(,L LL;IC4uL I F. Loads Material Properties _ Calculations per IBC 2006, CBC 2007, 2005 NDS 0.269 Analysis Method: Allowable Stress Design Fb - Tension 1,350.0 psi E: Modulus of Elasticity 1.000 Load Combination 20061BC&ASCE7-05 Fb - Compr 1,350.0 psi Ebend- xx 1,600.Oksi 0.128 Varying Uniform Load: DIS,EI = 0.0440->0.0880, Fc - Pdl 925.0 psi Eminbend - xx 580.0 ksi 0.54 Wood Species : DouglasFir-Larch Fc - Perp 625.0 psi . • - .............. ._.... ............. _............. ................... .. zMaximum Bending Stress Ratio = Wood Grade : No.1 Fv 170.0 psi Section used for this span 6x6 Section used for this span Ft 675.0 psi Density 32.210pcf 584.13psi Beam Bracing : Beam bracing is defined as a set spacing over all spans 27.94 psi 1.35 FB: Allowable Unbraj ed Lengths Fv : Allowable = 170.00 psi 170.00 Load Combination First Brace starts at 0.0 ft from Left -Most support Load Combination +D+Lr+H Location of maximum on span = Regular spacing of lateral supports on length of beam = 2.0 ft Location of maximum on span = 9.311 ft 11 1 Span = 9.750 ft Mazimurh:forces & Stresses fcr`Ldad Combinations Max Stress Ratios Summa of Moment Values Summa of Shear Values Load Combination N _ _ __. Summary Segment Length Span # M V C d C IN C r C m C t C lu Mactual fb-design Fb-allow Vactual tv-design Fvallow � Length =1.999 ft Length =1.999 It Length =1.999 It Length =1.999 ft )Length =1.755 It +D+Lr+H Length =1.999 ft Length =1.999 ft Length =1.999 ft 0.170 0.086 1.000 0.263 c)'Applied Loads _ ---_ _Service loads entered. Load Factors will be applied for calculations. 0.269 Beam self weight calculated and added to loads 1.000 0.174 0.102 1.000 Load for Span Number 1 0.128 1.000 0.405 0.128 Varying Uniform Load: DIS,EI = 0.0440->0.0880, LrIS,E) = 0.01035->0.070 k/ft, Extent = 0.0 -» 9.750 ft, Trib Width = 1.0 ft 1.000 0.54 -00 NI RK 1,350.00 0.35 . • - .............. ._.... ............. _............. ................... .. zMaximum Bending Stress Ratio = 0.4331 Maximum Shear Stress Ratio = 0.164: 1 1,350.00 Section used for this span 6x6 Section used for this span 6x6 ,i fb : Actual = 584.13psi tv : Actual = 27.94 psi 1.35 FB: Allowable 1,350.00psi Fv : Allowable = 170.00 psi 170.00 Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span = 5.265ft Location of maximum on span = 9.311 ft Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.068 in Ratio= 1732 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.190 in Ratio= 616 Max Upward Total Deflection 0.000 in Ratio= 0 <180 Mazimurh:forces & Stresses fcr`Ldad Combinations Max Stress Ratios Summa of Moment Values Summa of Shear Values Load Combination N _ _ __. Summary Segment Length Span # M V C d C IN C r C m C t C lu Mactual fb-design Fb-allow Vactual tv-design Fvallow � Length =1.999 ft Length =1.999 It Length =1.999 It Length =1.999 ft )Length =1.755 It +D+Lr+H Length =1.999 ft Length =1.999 ft Length =1.999 ft 0.170 0.086 1.000 0.263 0.086 1.000 0.278 0.086 1.000 0.269 0.086 1.000 0.174 0.102 1.000 0.255 0.128 1.000 0.405 0.128 1.000 0.433 0.128 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.53 229.43 1,350.00 0.30 14.69 170.00 0.82 355.50 1,350.00 0.21 14.69 170.00 0.87 375.14 1,350.00 0.08 14.69 170.00 0.84 362.61 1,350.00 0.23 14.69 170.00 0.54 235.17 1,350.00 0.35 17.32 170.00 0.80 344.45 1,350.00 0.44 21.75 170.00 1.26 546.50 1,350.00 0.32 21.75 170.00 1.35 584.13 1,350.00 0.14 21.75 170.00 IDescription : B7 7m t t r w Load Combination Support notation : Far left is #1 Values in KIPS Max Stress Ratios Support 2 Overall MAXimum 0.466 0.635 Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C fly C r Cm C t C fu Mactual fb-design Fb-allow Vactual fv-design Fv-allow Length =1.999 ft 1 0.422 0.128 1.000 1.000 1.000 1.000 1.000 1.000 1.32 569.41 1,350.00 0.36 21.75 170.00 Length =1.755 ft 1 0.279 0.164 1.000 1.000 1.000 1.000 1.000 1.000 0.87 376.46 1,350.00 0.56 27.94 170.00 +0+0.750Lr+0.750L+H 1.000 1.000 1.000 1.000 1.000 Length =1.999 ft 1 0.234 0.118 1.000 1.000 1.000 1.000 1.000 1.000 0.73 315.69 1,350.00 0.40 19.98 170.00 Length =1.999 ft 1 0.369 0.118 1.000 1.000 1.000 1.000 1.000 1.000 1.15 498.75 1,350.00 0.29 19.98 170.00 Length =1.999 ft 1 0.394 0.118 1.000 1.000 1.000 1.000 1.000 1.000 1.23 531.84 1,350.00 0.12 19.98 170.00 Length =1.999 ft 1 0.383 0.118 1.000 1.000 1.000 1.000 1.000 1.000 1.20 517.71 1,350.00 0.33 19.98 170.00 Length =1.755 ft 1 0.253 0.149 1.000 1.000 1.000 1.000 1.000 1.000 0.79 341.14 1,350.00 0.51 25.29 170.00 +0+0.750Lr+0.750L+0.750W+H 1.000 1.000 1.000 1.000 1.000 Length =1.999 It 1 0.234 0.118 1.000 1.000 1.000 1.000 1.000 1.000 0.73 315.69 1,350.00 0.40 19.98 170.00 Length =1.999 ft 1 0.369 0.118 1.000 1.000 1.000 1.000 1.000 1.000 1.15 498.75 1,350.00 0.29 19.98 170.00 Length =1.999 ft 1 0.394 0.118 1.000 1.000 1.000 1.000 1.000 1.000 1.23 531.84 1,350.00 0.12 19.98 170.00 Length =1.999 ft 1 0.383 0.118 1.000 1.000 1.000 1.000 1.000 1.000 1.20 517.71 1,350.00 0.33 19.98 170.00 Length =1.755 ft 1 0.253 0.149 1.000 1.000 1.000 1.000 1.000 1.000 0.79 341.14 1,350.00 0.51 25.29 170.00 +0+0.750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 Length =1.999 It 1 0.234 0.118 1.000 1.000 1.000 1.000 1.000 1.000 0.73 315.69 1,350.00 0.40 19.98 170.00 Length =1.999 ft 1 0.369 0.118 1.000 1.000 1.000 1.000 1.000 1.000 1.15 498.75 1,350.00 0.29 19.98 170.00 Length =1.999 ft 1 0.394 0.118 1.000 1.000 1.000 1.000 1.000 1.000 1.23 531.84 1,350.00 0.12 19.98 170.00 Length =1.999 ft 1 0.383 0.118 1.000 1.000 1.000 1.000 1.000 1.000 1.20 517.71 1,350.00 0.33 19.98 170.00 Length =1.755 ft 1 0.253 0.149 1.000 1.000 1.000 1.000 1.000 1.000 0.79 341.14 1,350.00 0.51 25.29 170.00 Overall Maz nium Dei7estions, Unfk rid,Loads Load Combination Span Max. " " Defl Location in Span Load Combination Max. "+" Defl Location in Span D+Lr 1 0.1898 4.973 0.0000 0.000 •VeltiCai ReBCtIQ11S^ U_I1faCtOfed :•, Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 0.466 0.635 D Only 0.319 0.390 Lr Only 0.147 0.244 D+Lr 0.466 0.635 1 t r 1 1911 FIe C Owuments and se0rngslPC3Wy-Do h c. # : KW -060073 Load Combination M"al F ,oktios . _ Calculations per IBC 2006, CBC 2007,13th AISC Location in Span Analysis Method: Allowable Stress Design Fy : Steel Yield: 36.0 ksi D Only 1 Beam Bracing: Beam is Fully Braced against lateral -torsion buckling E: Modulus: 29,000.0 ksi 0.0000 0.000 , Bending Axis: Major Axis Bending 1 0.1753 (� Vi Load Combination 2006 IBC & ASCE 7-05 D(12.844) 1-00.092) D4tr D 0.126 0.441 Lr 0.099 0.347 ♦ D 0164 0 246 Lr 0129 0 193 10.070 0.0000 0.000 ``' W16X45 Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Load for Span Number 1 Varying Uniform Load: D(S,E) = 0.1640->0.2460, Lr(S,E) = 0.1290-4.0 k/ft, Extent =11.750 ->> 19.0 ft, Trib Width =1.0 It Varying Uniform Load: D(S,E) = 0.1260->0.4410, Lr(S,E) = 0.0990-4.0 k/ft, Extent = 0.0 ->> 11.750 ft, Tdb Width =1.0 ft Point Load: D =12.844, Lr =10.092 k (o)11.750 It DE31GN SUMMARY � • Maximum Bending Stress Ratio _ 0.850: 1 Maximum Shear Stress Ratio = 0.237 :1 Section used for this span W16X45 Section used for this span W16X45 Mu : Applied 125.677 k -ft Vu: Applied 18.976 k Mn / Omega: Allowable 147.844 k -ft Vn/Omega : Allowable 79.985 k Load Combination +D+Lr+H Location of maximum on span 11.685ft Load Combination Location of maximum on span +D+Lr+H 19.000 It Span # where maximum occurs Span # 1 Span # where maximum occurs Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.175 in Ratio = 1300 Max Upward L+Lr+S Deflection 0.000 in Ratio = 0 <360 Max Downward Total Deflection 0.406 in Ratio = 561 Max Upward Total Deflection 0.000 in Ratio = 0 <180 Maximum Forces & S_4resses for Load;4om i_iions. `,Load Combination Max Stress Ratios Summary of Moment Values__- Summary of Shear Values Segment Length Span # M V Mmax + Mmax - Ma - Max Mnx Mnx/Omega Cb Rm Va Max Vnx Vnx/Omega Overall MAXimum Envelope-------------------_-_.___._-------�..---.�----_._-.-- +DDsgn. L = 19.00 It 1 0.850 0.237 125.68 125.68 246.90 147.84 1.00 1.00 18.98 119.98 79.98 Dsgn. L = 19.00 It 1 0.482 0.135 71.22 71.22 246.90 147.84 1.00 1.00 10.82 119.98 79.98 +D+Lr+H Dsgn. L = 19.00 It 1 0.850 0.237 125.68 125.68 246.90 147.84 1.00 1.00 18.98 119.98 79.98 +040.750Lr+0.750L+H Dsgn. L = 19.00 It 1 0.758 0.212 112.06 112.06 246.90 147.84 1.00 1.00 16.94 119.98 79.98 +D40.750Lr+0.750L+0.750W+H Dsgn. L = 19.00 It 1 0.758 0.212 112.06 +0+0.750Lr+0.75OL+0.5250E+H 112.06 246.90 147.84 1.00 1.00 16.94 119.98 79.98 Dsgn. L = 19.00 It 1 0.758 0.212 112.06 112.06 246.90 147.84 1.00 1.00 16.94 119.98 79.98 :.;<OveralhMakilnum Deflections - Unfactored L'oads,..,...: Load Combination Span Max.' ' Dell Location in Span load Combination Max. '+' Defl Location in Span -� D+Lr 1 0.4061 10.070 0.0000 0.000 Load Combination Span Max. Downward Defl Location in Span Max. Upward Dell Location in Span D Only 1 0.2309 10.070 0.0000 0.000 , Lr Only 1 0.1753 10.070 0.0000 0.000 D4tr 1 0.4061 10.070 0.0000 0.000 Flle C lDocumeii _teel Beairn Design .: 1.91 j✓1 5.61 /Sl 9.41 1141 1311 15.11 17A1 19.91 Distance (ft) ■ Owro II MAX;..... E—to D4 ■ +D ■ + D + L +M ■ +D+D.7 S 0 L'+0.7 SO L + M 6 +D+0.7 S 0 L +0.75 O L+0.7S OW+M 0 +D+ D. 75 D L.♦ D. 7 S O L+D.S 2 SD E+M Distance (ft) ■ 0-11 MAX:— E-1— ■ ♦D • ♦D+L•+M ■ +D+D.7S1)L•+0.7SDL+M ■ +D+D.7SDL•+0.7SDL+0.7SDW+M 0 +D+0.7S0L.+D.750L+0.SZSDE+M I" 1 1.81 3.71 S.61 7S1 9.41 11.31 1321 15.11 17.01 16.91 Distance (ft) ■ 0-411 MAX:m.n t• lapc • DO•ly 9 L-O•ly • D+L- RIT-06007390 -. 7,. P, Description : B8 V@rtical'ReaCtionS -. UtlfactOf@d Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 13.425 18.976 D Only 7.706 10.815 Lr Only 5.719 8.161 D+Lr 13.425 18.976 SteeI, Oction,PtopectWs : W1 6)(45 Depth = 16.100 in I xx 586.00 inA4 J = 1.110 inA4 Web Thick 0.345 in S xx- 72.70 inA3 Cw = 1,990.00 inA6 Flange Width 7.040 in R xx 6.650 in Flange Thick 0.565 in Zx 82.300 inA3 Area = 13.300 inA2 1 yy = 32.800 inA4 Weight 45.273 plf S yy 9.340 inA3 Wno 27.300 inA2 Kdesign 0.967 in R yy 1.570 in Sw 27.200 inA4 K1 = 0.813 in Zy = 14.500 inA3 Qf = 14.700 inA3 its = 1.880 in rT = 1.830 in Qw = 40.600 inA3 Ycg = 8.050 in 1.91 j✓1 5.61 /Sl 9.41 1141 1311 15.11 17A1 19.91 Distance (ft) ■ Owro II MAX;..... E—to D4 ■ +D ■ + D + L +M ■ +D+D.7 S 0 L'+0.7 SO L + M 6 +D+0.7 S 0 L +0.75 O L+0.7S OW+M 0 +D+ D. 75 D L.♦ D. 7 S O L+D.S 2 SD E+M Distance (ft) ■ 0-11 MAX:— E-1— ■ ♦D • ♦D+L•+M ■ +D+D.7S1)L•+0.7SDL+M ■ +D+D.7SDL•+0.7SDL+0.7SDW+M 0 +D+0.7S0L.+D.750L+0.SZSDE+M I" 1 1.81 3.71 S.61 7S1 9.41 11.31 1321 15.11 17.01 16.91 Distance (ft) ■ 0-411 MAX:m.n t• lapc • DO•ly 9 L-O•ly • D+L- 1 1 1 r s Description : B9 Load Combination Max Stress Ratios Summary of Moment Values Segment Length Span # M V C d C Nv C r C m C t C fu Mach al fb-desgn Fb-allow Length = 2.0 ft 1 0.442 0.271 . 1.000 1.000 1.000 1.000 1.000 1.000 1.38 Length = 2.0 ft 1 0.466 0.271 1.000 1.000 1.000 1.000 1.000 1.000 1.45 Length = 2.0 It 1 0.347 0.433 1.000 1.000 1.000 1.000 1.000 1.000 -1.08 Length = 0.50 It 1 0.602 0.439 1.000 1.000 1.000 1.000 1.000 1.000 -1.88 Length =1.50 ft 2 0.602 0.439 1.000 1.000 1.000 1.000 1.000 1.000 -1.88 Length =1.750 ft 2 0.175 0.439 1.000 1.000 1.000 1.000 1.000 1.000 -0.54 40+0.750Lr+0.750L+H 3.250 D+Lr 725.11 1,350.00 0.89 1.000 1.000 1.000 1.000 1.000 210.24 Length = 2.0 It 1 0.394 0.242 1.000 1.000 1.000 1.000 1.000 1.000 1.23 Length = 2.0 It 1 0.415 0.242 1.000 1.000 1.000 1.000 1.000 1.000 1.30 Length = 2.0 It 1 0.309 0.386 1.000 1.000 1.000 1.000 1.000 1.000 -0.97 Length = 0.50 It 1 0.537 0.392 1.000 1.000 1.000 1.000 1.000 1.000 -1.68 Length =1.50 ft 2 0.537 0.392 1.000 1.000 1.000 1.000 1.000 1.000 -1.68 Length =1.750 ft 2 0.156 0.392 1.000 1.000 1.000 1.000 1.000 1.000 -0.49 +D40.750Lr+0.750L+0.750W+H 1.000 1.000 1.000 1.000 1.000 Length = 2.0 ft 1 0.394 0.242 1.000 1.000 1.000 1.000 1.000 1.000 1.23 Length = 2.0 ft 1 0.415 0.242 1.000 1.000 1.000 1.000 1.000 1.000 1.30 Length = 2.0 ft 1 0.309 0.386 1.000 1.000 1.000 1.000 1.000 1.000 -0.97 Length = 0.50 ft 1 0.537 0.392 1.000 1.000 1.000 1.000 1.000 1.000 -1.68 Length =1.50 ft 2 0.537 0.392 1.000 1.000 1.000 1.000 1.000 1.000 -1.68 Length =1.750 It 2 0.156 0.392 1.000 1.000 1.000 1.000 1.000 1.000 -0.49 +D+0.750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 Length = 2.0 ft 1 0.394 0.242 1.000 1.000 1.000 1.000 1.000 1.000 1.23 Length = 2.0 It 1 1 0.415 0 309 0.242 0 386 1.000 1.000 1.000 1.000 1.000 1.000 1.30 Length = 2.0 it tvdesign Fv-allow 1.000 1.000 1.000 1.000 1.000 1.000 -0.97 Length = 0.50 ft 1 0.537 0.392 1.000 1.000 1.000 1.000 1.000 1.000 -1.68 Length =1.50 ft 2 0.537 0.392 1.000 1.000 1.000 1.000 1.000 1.000 -1.68 Length =1.750 ft 2 0.156 0.392 1.000 1.000 1.000 1.000 1.000 1.000 -0.49 s Overall Maximum DeflecE'ions Widtored Loads 170.00 1,350.00 Load Combination 41.06 Span Max. ' ' Dell __ __ Location in Span Load Combination D+Lr 41.06 1 0.0752 1,350.00 2.900 65.66 D+Lr 725.11 2 0.0283 66.62 3.250 D+Lr 725.11 596.48 1,350.00 628.67 1,350.00 468.33 1,350.00 813.10 1,350.00 813.10 1,350.00 235.75 1,350.00 Summary of Shear Values Vactual tvdesign Fv-allow 0.93 46.03 170.00 0.62 46.03 170.00 1.48 73.62 170.00 1.51 74.70 170.00 1.00 74.70 170.00 0.62 74.70 170.00 532.03 1,350.00 0.83 41.06 170.00 560.75 1,350.00 0.55 41.06 170.00 417.62 1,350.00 1.32 65.66 170.00 725.11 1,350.00 1.34 66.62 170.00 725.11 1,350.00 0.89 66.62 170.00 210.24 1,350.00 0.56 66.62 170.00 532.03 1,350.00 0.83 41.06 170.00 560.75 1,350.00 0.55 41.06 170.00 417.62 1,350.00 1.32 65.66 170.00 725.11 1,350.00 1.34 66.62 170.00 725.11 1,350.00 0.89 66.62 170.00 210.24 1,350.00 0.56 66.62 170.00 532.03 1,350.00 0.83 41.06 170.00 560.75 1,350.00 0.55 41.06 170.00 417.62 1,350.00 1.32 65.66 170.00 725.11 1,350.00 1.34 66.62 170.00 725.11 1,350.00 0.89 66.62 170.00 210.24 1,350.00 0.56 66.62 170.00 - Max. W Dell Location in Span -- - - - --- - 0.0000 0.000 -0.0036 0.600 Vett cal React o --s - UnfactOred Support notation :Far left is #1 Values in KIPS Load Combination Support 1 Support 2' Support 3 - Overall MAXimum 1.124 2.858 D Only 0.638 1.622 Lr Only 0.486 1.237 D+Lr 1.124 2.858 r 1 ' lllood Beam Desi nALMMIS _. $. ...,. . I z 1 ' lllood Beam Desi nALMMIS _. $. ...,. . Wou nt�)1;Nt11t �y A,Ar-uts ma,broeas ENERCALG.lNC-198320,10 Ver:8151 :Nv5�T90 . Lic. KW -06007390 Service loads entered. Load Factors will License Owner: WALLING MCCALLUM LTD. Beam self weight calculated and added to loads Description : B9 Load for Span Number 1 Material Properties _ calculations per IBC 2006, CBC 2007, 2005 NDS _ _ _ Analysis Method: Allowable Stress Design Fb - Tension 1,350.0 psi E: Modulus of Elasticity Load Combination 20061BC&ASCE7-05 Fb - Compr 1,350.0 psi Ebend- xx 1,600.Oksi DESIGN SBIMMAR,Y ::.: Fc - PHI 925.0 psi Eminbend - xx 580.Oksi ;Maximum Bending Stress Ratio = Wood Species : DouglasFir-Larch Fc - Perp 625.0 psi Section used for this span Wood Grade ; No.1 Fv 170.0 psi fb : Actual = 813.10psi tv : Actual = Ft 675.0 psi Density 32.210pcf a Beam Bracing : Beam bracing is defined as a set spacing over all spans 170.00 psi 0Mbraced000hs 4D+Lr+H Load Combination +D+Lr+H ' First Brace starts at 0.0 ft from Left -Most support 6.500ft Location of maximum on span _ 6.050 ft Regular spacing of lateral supports on length of beam = 2.0 ft Span # 1 Span # where maximum occurs = Span # 1 1 ' Span = 6.50 ft Span = 3.250 ft Applled Wads_ Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load: D = 0.240, Lr = 0.1880 k/ft, Tributary Load for Span Number 2 Width =1.0 ft Uniform Load: D = 0.1950, Lr = 0.1540 k/ft, Tributary Width =1.0 ft DESIGN SBIMMAR,Y ::.: . • ;Maximum Bending Stress Ratio = 0.6021 Maximum Shear Stress Ratio = 0.439 :1 Section used for this span 6x6 Section used for this span 6x6 fb : Actual = 813.10psi tv : Actual = 74.70 psi FB: Allowable = 1,350.00psi Fv :Allowable = 170.00 psi ' Load Combination 4D+Lr+H Load Combination +D+Lr+H ' Location of maximum on span _ 6.500ft Location of maximum on span _ 6.050 ft Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.032 in Ratio= 2400 Max Upward L+Lr+S Deflection -0.002 in Ratio= 50388 Max Downward Total Deflection 0.075 in Ratio= 1036 Max Upward Total Deflection -0.004 in Ratio= 21548 Maximum Forces r, Stresses for Load Combinations Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C f/v Cr C m C t C fu Mactual fb-design Fb-allow Vactual N -design Fv-allow +D Length = 2.0 it 1 0.251 0.154 1.000 1.000 1.000 1.000 1.000 1.000 0.78 338.67 1,350.00 0.53 26.13 170.00 Length = 2.0 it 1 0.264 0.154 1.000 1.000 1.000 1.000 1.000 1.000 0.82 356.97 1,350.00 0.35 26.13 170.00 Length = 2.0 ft 1 0.197 0.246 1.000 1.000 1.000 1.000 1.000 1.000 -0.61 265.48 1,350.00 0.84 41.78 170.00 Length = 0.50 ft 1 0.342 0.249 1.000 1.000 1.000 1.000 1.000 1.000 -1.07 461.14 1,350.00 0.85 42.39 170.00 Length =1.50 ft 2 0.342 0.249 1.000 1.000 1.000 1.000 1.000 1.000 -1.07 461.14 1,350.00 0.56 42.39 170.00 Length =1.750 It 2 0.099 0.249 1.000 1.000 1.000 1.000 1.000 1.000 -0.31 133.70 1,350.00 0.35 42.39 170.00 +D+Lr+H 1.000 1.000 1.000 1.000 1.000 1 1 '�'; � t f� y � � , • � Y File C 1Documents aifd SeltingslPC31My DocumentslENERCALGDAiA fILESIEaybrme i6b.ec6> °`: ood Beam Desi n . _ ENERCALC'INC 1983E2010k,' 1S1 N50790 KW -06007390 LicenseOwner: Description : B10 Material Properties -.. . Applied LOads Calculations per IBC 2006, CBC 2007, 2005 NDS Analysis Method: Allowable Stress Design Fb - Tension 1,350.0 psi E : Modulus of Elasticity ' Load Combination 20061BC&ASCE7-05 Fb - Compr 1,350.0 psi Ebend- xx 1,600.0 ksi Fc - Pdl 925.0 psi Eminbend - xx 580.Oksi Wood Species : DouglasFir-Larch Fc - Perp 625.0 psi 0.083 Wood Grade : No.1 Fv 170.0 psi 0.34 ' Ft 675.0 psi Density 32.210pcf Beam Bracing : Beam bracing is defined as a set spacing over all spans $N SUMMARY• ::� :;._.::_::___,...:__.....__.__..._;_._.._._.. _.................................__.. -Unb�aced Lengths . • 0.121 -- - ;Maximum Bending Stress Ratio = First Brace starts at 0.0 ft from Left Most support 0.272: 1 1 Section used for this span Regular spacing of lateral supports on length of beam = 2.0 ft Section used for this span 6x6 170.00 1 ' Span = 5.0 ft Span = 2.50 ft 1 -.. . Applied LOads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load: D=0.1110, Lr = 0.1490 0, Tributary Width =1.0 ft 1 0.110 0.083 Load for Span Number 2 1.000 1.000 1.000 1.000 1.000 0.34 148.92 Uniform Load: D=0.1890, Lr = 0.1490 k/ft, Tributary Width =1.0 ft 0.28 14.09 170.00 $N SUMMARY• ::� :;._.::_::___,...:__.....__.__..._;_._.._._.. _.................................__.. 1 . • 0.121 -- - ;Maximum Bending Stress Ratio = .......... 0.3451 Maximum Shear Stress Ratio = 0.272: 1 1 Section used for this span 6x6 Section used for this span 6x6 170.00 fb : Actual = 466.25psi tv : Actual 46.19 psi 0.154 FB: Allowable = 1,350.00psi Fv : Allowable = 170.00 psi 264.75 Load Combination_ +D+Lr+H Load Combination +D+Lr+H ' Location of maximum on span 5.000ft Location of maximum on span _ 4.577 It 1.000 i Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1 1,350.00 Maximum Deflection 26.23 170.00 Length =1.50 ft Max Downward L+Lr+S Deflection 0.010 in Ratio = 5852 1.000 1.000 Max Upward L+Lr+S Deflection 0.000 in Ratio = 0 <360 1,350.00 0.29 Max Downward Total Deflection 0.024 in Ratio = 2528 +D+Lr+H Max Upward Total Deflection 0.000 in Ratio = 0 <180 1.000 1 , -:Maximum Forces.&Stresses for:Load.0oiitbinations Length = 2.0 ft 1 Load Combination Max Stress Ratios - Summary of Moment Values Summary of Shear Values ' Segment Length Span # M V C d C 1N C r_ C m C t C fu Mactual lb -design Fb-allow Vaclual tv-design Fvallow +D Length = 2.0 ft 1 0.110 0.083 1.000 1.000 1.000 1.000 1.000 1.000 0.34 148.92 1,350.00 0.28 14.09 170.00 'Length = 2.0 ft 1 0.110 0.121 1.000 1.000 1.000 1.000 1.000 1.000 0.34 148.26 1,350.00 0.42 20.63 170.00 =1.0 ft 1 0.196 0.154 1.000 1.000 1.000 1.000 1.000 1.000 -0.61 264.75 1,350.00 0.53 26.23 170.00 JLength Length =1.0 ft 2 0.196 0.154 1.000 1.000 1.000 1.000 1.000 1.000 -d.61 264.75 1,350.00 0.40 26.23 170.00 Length =1.50 ft 2 0.011 0.154 1.000 1.000 1.000 1.000 1.000 1.000 -0.22 95.31 1,350.00 0.29 26.23 170.00 +D+Lr+H 1.000 1.000 1.000 1.000 1.000 Length = 2.0 ft 1 0.194 0.146 . 1.000 1.000 1.000 1.000 1.000 1.000 0.61 , 262.26 1,350.00 0.50 24.82 170.00 Load Combination 4 :.. DesignA Description 1310 Load Combination Max Stress Ratios Segment Length , Span # M V C d JFile CADocumn IS N *2 910 V61 ENERCALC I.N.'jq-507 Summary of Moment Values Summary of Shear Values C f/v Cr Cm C Ctu Mactual fWesign Fb-allow Vactual fv-design Fv-allow Max. '+• Defi Location in Span Length = 2.0 ft 1 0.193 0.214 1.000 1.000 1.000 1.000 1.000 1.000 0.60 261.10 1,350,00 0.73 36.33 170.00 Support notation : Far left is #1 Length =1.0 It 1 0.345 0.272 1.000 1.000 1.000 1.000 1.000 1.000 -1.08 466.25 1,350.00 0.93 46.19 170.00 1.101 Length =1.0 1 2 0,345 0,272 1,100 1.000 1,000 1,000 1,110 1,100 -1,01 466,21 1,350,00 0*71 46,11 170,00 Length =1.50 It 2 0.124 0.272 1.000 1.000 1.000 1.000 1.000 1.000 .0.39 167.85 1,350.00 0.52 46.19 170.00 +DA.750Lr+0.750L+H 1.000 1.000 1.000 1.000 1.000 Length = 2.0 it 1 0.173 0.130 1.000 1.000 1.000 1.000 1.000 1.000 0.54 233.92 1,350.00 0.45 22.14 170.00 Length = 2.0 ft 1 0.173 0.191 1.000 1.000 1.000 1.000 1.000 1.000 0.54 232.89 1,350.00 0.65 32.40 170.00 Length =1.0 It 1 0.308 0.242 1.000 1.000 1.000 1.000 1.000 1.000 -0.96 415.87 1,350.00 0.83 41.20 170.00 Length =1.0 It 2 0.308 0.242 1.000 1.000 1.000 1.000 1.000 1.000 -0.96 415-87 1,350.00 0.63 41.20 170.00 Length =1.50 It 2 0.111 0.242 1.000 1.000 1.000 1.000 1.000 1.000 -0.35 149.71 1,350.00 0.46 41.20 170.00 40+0.750Lr40.750L+0.750W4+1 1.000 1.000 1.000 1.000 1.000 Length = 2.0 ft 1 0.173 0.130 1.000 1.000 1.000 1.000 1.000 1.000 0.54 233-92 1,350.00 0.45 22.14 170.00 Length = 2.0 ft 1 0.173 0.191 1.000 1.000 1.000 1.000 1.000 1.000 0.54 232.89 1,350.00 0.65 32.40 170.00 Length =1.0 It 1 0.308 0.242 1.000 1.000 1.000 1.000 1.000 1.000 -0.96 415.87 1,350.00 0.83 41.20 170.00 Length =1.0 It 2 0.308 0.242 1.000 1.000 1.000 1.000 1.000 1.000 -0.96 415.87 1,350.00 0.63 41.20 170.00 Length =1.50 It 2 0.111 0.242 1.000 1.000 1.000 1.000 1.000 1.000 -0.35 149.71 1,350.00 0.46 41.20 170.00 +DA.750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 Length = 2,0 It 1 0.173 0.130 1.000 1,000 1,000 1,000 1.000 1,000 0.54 233,92 1,350.00 0.45 22.14 170.00 Length = 2.0 ft 1 0.173 0.191 1.000 1.000 1.000 1.000 1.000 1.000 0.54 232.89 1,350.00 0.65 32.40 170.00 Length =1.0 It Length =1.0 It 1 2 0.308 0.308 0.242 0.242 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -0.96 -0.96 415.87 415,87 1,350.00 1,350.00 0.83 0.63 41.20 41.20 170.00 170.00 Length = 1.50 It 2 0.111 0.242 1.000 1.000 1.000 1.000 1.000 1.000 -0.35 149.71 1,350.00 0.46 41.20 170.00 imms ii r , f ihr'c 1:Ird-A-t-fnra,d,I;nidQ' Load Combination Span Max. '-* Defi Location in Span Load Combination Max. '+• Defi Location in Span D+Lr 1 0.0168 2.115 0.0000 0.000 D+Lr 2 0.0237 2.500 0.0000 0.000 Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Support 3 Overall MAXimum --6--646 1.939 D Only 0.367 1.101 Lr Only 0.279 0.838 D+Lr 0.646 1.939 I F L I 1� 1 I File 00ocuments.and SeWngsTC31My DocumenfslENERCALGOATA FlLESUaylorme ttib ec6 OOCI B@11fl De$19t1;; RCALC,INC. .1902010.Ver.6.1SC N:50790 ENE Calculations per IBC 2006, CBC 2007, 2005 NDS 1,350.0 psi E: Modulus of Elasticity 1,350.0 psi Ebend- xx 1,600.Oksi 925.0 psi Eminbend - xx 580.Oksi 625.0 psi 170.0 psi 675.0 psi Density 32.210pcf Span = 6.50 ft Span = 11.0 ft r ` " Service loads entered. Load Factors will be a ' ,appuea Loaas pplied for calculations. . . Description: 811am.. Material Properties Analysis Method: Allowable Stress Design Fb - Tension Load Combination 20061BC&ASCE7-05 Fb - Compr oad for Span Number 1 Fc - PHI ' Wood Species : DouglasFir-Larch Fc - Perp Segment Length Wood Grade : NO -1 Fv ' C d Ft C r Cm C t C fu Beam Bracing : Beam is Fully Braced against lateral -torsion buckling D(0.183) Lr(0.143) Calculations per IBC 2006, CBC 2007, 2005 NDS 1,350.0 psi E: Modulus of Elasticity 1,350.0 psi Ebend- xx 1,600.Oksi 925.0 psi Eminbend - xx 580.Oksi 625.0 psi 170.0 psi 675.0 psi Density 32.210pcf Span = 6.50 ft Span = 11.0 ft r ` " Service loads entered. Load Factors will be a ' ,appuea Loaas pplied for calculations. 1 74 --,inn C; = 0.126: 1 6x12 21.44 psi = 170.00 psi +D+Lr+H = 5.550 ft Span # 1 Summary of Moment Values Summary of Shear Values Mactual fb-design Fb-allow Vactual fv-design Fvallow -2.54 251.88 1,350.00 -2.54 251.88 1,350.00 -4.32 427.53 1,350.00 4.32 427.53 1,350.00 -3.88 383.62 1,350.00 -3.88 383.62 1,350.00 0.54 12.78 170.00 0.52 12.78 170.00 0.90 21.44 170.00 0.87 21.44 170.00 0.81 19.28 170.00 0.78 19.28 170.00 Beam self weight calculated and added to loads Mailmum Forces & Stresses for Load Combinations oad for Span Number 1 Max Stress Ratios ' Uniform Load: D = 0.050, Lr = 0.040 k/ft, Tributary Width =1.0 ft Segment Length Point Load : D=0.1830, Lr = 0.1430 k (o) 0.0 ft M- V C d Load for Span Number 2 C r Cm C t C fu Uniform Load : D = 0.050, Lr = 0.040 k/ft, Tributary Width =1.0 ft DESIGN3UMAti4RY__- .:w._ :..:...... ....... :............ ..........._. _....._........._ ,..::_.._...... . Length = 6.50 It 1 ;Maximum Bending Stress Ratio = 0.317.1 Maximum Shear Stress Ratio 1.000 Section used for this span 6x12 Section used for this span 2 fb : Actual 427.53psi fv : Actual 1.000 FB: Allowable _ 1,350.00psi Fv : Allowable Load Combination +D+Lr+H Load Combination 1.000 1.000 1.000 1.000 Location of maximum on span = 6.500ft Location of maximum on span 0.126 Span # where maximum occurs = Span # 1 Span # where maximum occurs =11.0 ft Maximum Deflection 0.317 0.126 1.000 Max Downward L+Lr+S Deflection 0.077 in Ratio = 2012 Max Upward L+Lr+S Deflection -0.011 in Ratio = 12512 1.000 Max Downward Total Deflection 0.184 in Ratio = 846 ' Max Upward Total Deflection -0.024 in Ratio = 5518 1 74 --,inn C; = 0.126: 1 6x12 21.44 psi = 170.00 psi +D+Lr+H = 5.550 ft Span # 1 Summary of Moment Values Summary of Shear Values Mactual fb-design Fb-allow Vactual fv-design Fvallow -2.54 251.88 1,350.00 -2.54 251.88 1,350.00 -4.32 427.53 1,350.00 4.32 427.53 1,350.00 -3.88 383.62 1,350.00 -3.88 383.62 1,350.00 0.54 12.78 170.00 0.52 12.78 170.00 0.90 21.44 170.00 0.87 21.44 170.00 0.81 19.28 170.00 0.78 19.28 170.00 Mailmum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Segment Length Span # M- V C d C flv C r Cm C t C fu Length = 6.50 It 1 0.187 0.075 1.000 1.000 1.000 1.000 1.000 1.000 Length =11.0 ft 2 0.187 0.075 1.000 1.000 1.000 1.000 1.000 1.000 +D+Lr+H 1.000 1.000 1.000 1.000 1.000 'Length = 6.50 ft 1 0.317 0.126 1.000 1.000 1.000 1.000 1.000 1.000 =11.0 ft 2 0.317 0.126 1.000 1.000 1.000 1.000 1.000 1.000 ,,�Length D+0.750Lr+0.750L4H 1.000 1.000 1.000 1.000 1.000 Length = 6.50 ft 1 0.284 0.113 1.000 1.000 1.000 1.000 1.000 1.000 Length =11.0 ft 2 0.284 0.113 1.000 1.000 1.000 1.000 1.000 1.000 +0+0.750Lr+0.750L+0.750W+H 1.000 1.000 1.000 1.000 1.000 1 74 --,inn C; = 0.126: 1 6x12 21.44 psi = 170.00 psi +D+Lr+H = 5.550 ft Span # 1 Summary of Moment Values Summary of Shear Values Mactual fb-design Fb-allow Vactual fv-design Fvallow -2.54 251.88 1,350.00 -2.54 251.88 1,350.00 -4.32 427.53 1,350.00 4.32 427.53 1,350.00 -3.88 383.62 1,350.00 -3.88 383.62 1,350.00 0.54 12.78 170.00 0.52 12.78 170.00 0.90 21.44 170.00 0.87 21.44 170.00 0.81 19.28 170.00 0.78 19.28 170.00 Lic. # : KW -0600739 1� 1� 1 Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C w Cr Cm C t C fu Mactual fb-design Fballow Vactual fv-clesign Fvallow Length = 6.50 ft 1 0.284 0.113 1.000 1.000 1.000 1.000 1.000 1.000 -3.88 383.62 1,350.00 0.81 19.28 170.00 Length =11.0 ft 2 0.284 0.113 1.000 1.000 1.000 1.000 1.000 1.000 -3.88 383.62 1,350.00 0.78 19.28 170.00 +D+0.750Lr+0.75OL40.5250E+H 1.000 1.000 1.000 1.000 1.000 = 6.50 ft 1 0.284 0.113 1.000 1.000 1.000 1.000 1.000 1.000 -3.88 383.62 1,350.00 0.81 - 19.28 170.00 'Length Length =11.0 ft 2 0.284 0.113 _ 1.000 1.000 1.000 1.000 1.000 1.000 -3.88 383.62 1,350.00 0.78 19.28 170.00 Overall Max'irnum Deflection's Unfactored`Loads _ Load Combination Span Max. ' ' DO Location in Span Load Combination Max. '+• Defl Location in Span D+Lr 1 0.1840 0.000 0.0000 0.000 2 0.0000 0.000 D+Lr -0.0239 3.638 VeiticaI Reactions-•UhfadWr@d ... Support notation :Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Support 3 ' Overall MAXimum 1.968 0.180 D Only 1.184 0.121 Lr Only 0.784 0.059 ' D+Lr 1.968 0.180 1� 1� 1 File I Description : B12 Material Properties Span = 11.50 ft Calculations per IBC 2006, CBC 2007, 2005 NDS Analysis Method: Allowable Stress Design Fb - Tension 1,350.0 psi E: Modulus of Elasticity Load Combination 2OO61BC&ASCE7-05 Fb - Compr 1,350.0 psi Ebend- xx 1,6OO.Oksi Load: D = 0.0250, Lr = 0.020 k/ft, Tributary Width =1.0 It Fc - Pdl 925.0 psi Eminbend - xx 58O.Oksi Wood Species : DouglasFir-Larch Fc - Perp 625.0 psi Point Load : D=1.298, Lr =1.016 k (q,1.750 ft Wood Grade : No -1 Fv 170.0 psi ...:_::.... _ ........ • • Ft 675.0 psi Density 32.210pcf Beam Bracing : Beam is Fully Braced against lateral -torsion buckling 6x12 Section used for this span 6x12 D(1.298) Lr(1.O16) Span = 11.50 ft Span = 1.750 ft Applied Loads . ' - _ Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads `road for Span Number 1 Load: D = 0.0250, Lr = 0.020 k/ft, Tributary Width =1.0 It 'Uniform Load for Span Number 2 Uniform Load: D = 0.0250, Lr = 0.020 k/ft, Tributary Width =1.0 ft Point Load : D=1.298, Lr =1.016 k (q,1.750 ft {DESIGN SUM119ARYr.:.t,. :;:..,, �...:. ...:_::.... _ ........ • • .--... ;Maximum Bending Stress Ratio = 0.3041 Maximum Shear Stress Ratio = 0.329: 1 Section used for this span 6x12 Section used for this span 6x12 fb : Actual 409.81 psi tv : Actual = 55.99 psi FB: Allowable 1,35O.00psi Fv :Allowable 170.00 psi Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span = 11.500ft Location of maximum on span = 11.500ft Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1 ' Maximum Deflection Max Downward L+Lr+S Deflection 0.018 in Ratio = 2308 Max Upward L+Lr+S Deflection -0.017 in Ratio = 8043 Max Downward Total Deflection 0.039 in Ratio = 1066 ' Max Upward Total Deflection -0.035 in Ratio = 3964 "M 1rhum Forces &.Stresses forlo"Ad dombinations Load Combination Max Stress Ratios of Moment Values Summary of Shear Values Segment Length Span # M V _Sum_mary C d C flv C r C m C t C fu Mactual ftrdesign Fb-allow Vactual tv-design Fvallow Length =11.50 ft 1 0.171. 0.185 1.000 1.000 1.000 1.000 1.000 1.000 -2.33 230.78 1,350.00 1.33 31.52 170.00 Length =1.750 ft 2 0.171 0.185 1.000 1.000 1.000 1.000 1.000 1.000 -2.33 230.78 1,350.00 1.33 31.52 170.00 +D+Lr+H 1.000 1.000 1.000 1.000 1.000 Length =11.50 it 1 0.304 0.329 1.000 1.000 1.000 1.000 1.000 1.000 4.14 409.81 1,350.00 2.36 55.99 170.00 =1.750 ft 2 0.304 0.329 1.000 1.000 1.000 1.000 1.000 1.000 -4.14 409.81 1,350.00 2.36 55.99 170.00 ,�Length fl+O.750Lr4750L+H 1.000 1.000 1.000 1.000 1.000 Length =11.50 ft 1 0.270 0.293 1.000 1.000 1.000 1.000 1.000 1.000 -3.69 365.05 1,350.00 2.10 49.81 170.00 Length =1.750 ft 2 0.270 0.293 1.000 1.000 1.000 1.000 1.000 1.000 -3.69 365.05 1,350.00 2.10 49.87 170.00 +040.750Lr+0.750L+0.750W+H 1.000 1.000 1.000 1.000 1.000 5 IJ t 1� i 11 Description : B12 Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C Uv Cr Cm C t C fu Mactual fb-design Fb-allow Vactual tv-design Fv-allow Length =11.50 ft 1 0.270 0.293 1.000 1.000 1.000 1.000 1.000 1.000 -3.69 365.05 1,350.00 2.10 49.87 170.00 Length =1.750 It 2 0.270 0.293 1.000 1.000 1.000 1.000 1.000 1.000 -3.69 365.05 1,350.00 2.10 49.87 170.00 +0+0.750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 Length =11.50 ft 1 0.270 0.293 1.000 1.000 1.000 1.000 1.000 1.000 -3.69 365.05 1,350.00 2.10 49.87 170.00 Length =1.750 ft 2 0.270 0.293 1.000 1.000 1.000 1.000 1.000 1.000 -3.69 365.05 1,350.00 2.10 49.87 170.00 01fe%all Maziinum�Deflections UnfactoredLoads Load Combination Span Max. ' ' Dell Location in Span Load Combination Max. *-V Dell Location in Span ' 1 0.0000 0.000 D+Lr -0.0348 7.254 D+Lr 2 0.0393 1.750 0.0000 7.254 :Vertical Reactions .'Unfactored Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Support 3 ' Overall MAXimum -0.042 3.118 D Only 0.022 1.794 Lr Only -0.042 1.323 D+Lr -0.020 3.118 IJ t 1� i 11 1 I,] 00�`Be1tt1 Deslnnil: s File=oWrrentsaritlSetlingslPC3Wlyoocurr ,t§IENERCALCDATAfILE 6bec6 ,.q .. ,N ,7.:..: t.:•; _ . _ .,... ENER( ACC INf .14�ft 7rNn .Va 1 , N 5(17M. ; Description : B13 Material Properties__ Applsedzloads.. Calculations per IBC 2006, CBC 2007, 2005 NDS Analysis Method: Allowable Stress Design Fb - Tension 1,350.0 psi E: Modulus of Elasticity Load Combination 20061BC&ASCE7-05 Fb - Compr 1,350.0 psi Ebend- xx 1,600.Oksi 2 Fc - Prll 925.0 psi Eminbend - xx 580.Oksi Wood Species : DouglasFir-Larch Fc - Perp 625.0 psi • / Length = 6.0 ft Wood Grade : No.1 Fv 170.0 psi �- • 1.000 Ft 675.0 psi Density 32.210pcf Beam Bracing Beam is Fully Braced against lateral -torsion buckling Section used for this span 6x6 Span =6.0ft Span =3.0ft Maximum.Forces 8 _Stresses for _Load. Combinations Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C l/v Cr Cm C t C fu Mactual fb-design Fb-allow Vactual tv-design Fvallow 1 +D Applsedzloads.. Length = 6.0 ft Service loads entered. Load Factors will be applied for calculations. Length = 3.0 ft Beam self weight calculated and added to loads +D+Lr+H 0.274 ' Length = 6.0 It 1 Span Number 2 2 +D+0.750Lr+0.750L+H 0.245 Length = 6.0 ft JLoadfor Uniform Load: D = 0.2020, Lr = 0.1580 k/ft, Tributary Width = 1.0 ft Length = 3.0 ft 1D+0.750Lr+0.750L+0.750W+H 2 • / Length = 6.0 ft :.:SDESIGN�SlIMMAR_Y......_.._...�.................................:........................................ = 3.0 ft 2 �- • 1.000 ...... Maximum Bending Stress Ratio = 0.5291 Maximum Shear Stress Ratio = 0.274: 1 Section used for this span 6x6 Section used for this span 6x6 ' fb : Actual 714.24psi fv : Actual 46.59 psi FB: Allowable 1,350.00psi Fv : Allowable 170.00 psi r Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span = Span # where maximum occurs = 6.000ft Span # 1 Location of maximum on span = Span # where maximum occurs = 6.000 ft Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.083 in Ratio = 866 Max Upward L+Lr+S Deflection -0.023 in Ratio = 3065 ' Max Downward Total Deflection 0.190 in Ratio = 378 Max Upward Total Deflection -0.053 in Ratio = 1360 Maximum.Forces 8 _Stresses for _Load. Combinations Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C l/v Cr Cm C t C fu Mactual fb-design Fb-allow Vactual tv-design Fvallow 1 +D 0.156 Length = 6.0 ft 1 Length = 3.0 ft 2 +D+Lr+H 0.274 ' Length = 6.0 It 1 Length = 3.0 ft 2 +D+0.750Lr+0.750L+H 0.245 Length = 6.0 ft 1 Length = 3.0 ft 1D+0.750Lr+0.750L+0.750W+H 2 • / Length = 6.0 ft 1 = 3.0 ft 2 'Length +0+0.750Lr+0.750L+0.5250E+H 11 0.301 0.156 1.000 0.301 0.156 1.000 0.529 0.274 1.000 0.529 0.274 1.000 0.472 0.245 1.000 0.472 0.245 1.000 0.472 0.245 1.000 0.472 0.245 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -0.94 406.55 1,350.00 -0.94 406.55 1,350.00 -1.65 714.24 1,350.00 -1.65 714.24 1,350.00 -1.47 637.32 1,350.00 -1.47 637.32 1,350.00 -1.47 637.32 1,350.00 -1.47 637.32 1,350.00 0.53 26.52 170.00 0.53 26.52 170.00 0.94 46.59 170.00 0.94 46.59 170.00 0.84 41.57 170.00 0.84 41.57 170.00 0.84 41.57 170.00 0.84 41.57 170.00 I I I I F1 1� I I ','Nmcrt- NC.'.IW3-2010_ ZZ KW -06007390 License Owner: WALLING MCCALLUM LTD. Description: B13 Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C f/v Cr Cm C Cfu Mactual fo-design Fb-allow Vactual fy-design Fv-allow Length = 6.0 It 1 0.472 0.245 1.000 1.000 1.000 1.000 1.000 1.000 -1.47 637.32 1,350.00 0.84 41.57 170.00 Length = 3.0 ft 2 0.472 0.245 1.000 1.000 1.000 1.000.1.000 1.000 -1.47 637.32 1,350.00 0.84 41.57 170.00 Overall Maximumiflettifns- 0dr.e'd Loads s Load Combination Span Max. *-" Defl Location in Span Load Combination Max. '+' Defi Location in Span .1 0.0000 0.000 D+Lr -0.0529 3.508 D+Lr 2 0.1900 3.000 0.0000 3.508 -No[kiictidhs - Uhfadtor6d Support notation :Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Support 3 Overall MAXimurn -0.255 1.396 D Only -0.136 0.803 Lr Only -0.119 0.592 D+Lr -0.255 1.396 I I I F1 1� I I 1 IDescription : B14 J f irk File: G:1 mum Material Properties 0.067 in Calculations per IBC 2006, CBC 2007, 2005 NDS Analysis Method: Allowable Stress Design Fb - Tension 1,350.0 psi E: Modulus of Elasticity Load Combination 2OO61BC&ASCE7-05 Fb - Compr 1,350.0 psi Ebend- xx 1,6OO.Oksi Uniform Load: D = 0,3590, Lr = 0.2820 k/ft, Tributary Width =1.0 ft Fc - Pdl 925.0 psi Eminbend - xx 58O.Oksi Wood Species : DouglasFir-Larch Fc - Perp 625.0 psi ;Maximum Bending Stress Ratio = Wood Grade : No -1 Fv 170.0 psi Section used for this span fb : Actual 6x10 958.57psi Ft 675.0 psi Density 32.210pcf Beam Bracing Beam is Fully Braced against lateral -torsion buckling D(O.359) Lr(O.282) Fv : Allowable 170.00 psi Span = 9.0 ft ;�App118d>LOadS _, •.;. � ; ::-' ::• 0.067 in Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Max Upward L+Lr+S Deflection 0.000 in Ratio= oad for Span Number 1 Max Downward Total Deflection 0.154 in Ratio= Uniform Load: D = 0,3590, Lr = 0.2820 k/ft, Tributary Width =1.0 ft Max Upward Total Deflection 0.000 in . ..................... 0 <180 Vactual • ;Maximum Bending Stress Ratio = 0.7112 1 Maximum Shear Stress Ratio = 0.412: 1 Section used for this span fb : Actual 6x10 958.57psi Section used for this span fv : Actual 6x10 69.98 psi FB: Allowable _ 1,35O.00psi Fv : Allowable 170.00 psi Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span = 4.500ft Location of maximum on span = 8.235 ft Span #where maximum occurs = Span # 1 Span #where maximum occurs = Span # 1 M Dflci' 1.000 1.000 1.000 1.000 1.000 aximm ue e ion Max Downward L+Lr+S Deflection 0.067 in Ratio= 1618 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.154 in Ratio= 699 Max Upward Total Deflection 0.000 in Ratio= 0 <180 Maz�mum:F0ces B;Stress046r:Load. .Combinations Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C fly C r Cm C t C fu Mactual ft) -design Fb-allow Vactual fv-design Fvallow Length = 9.0 ft 1 0.403 0.234 1.000 1.000 1.000 1.000 1.000 1.000 3.75 544.41 1,350.00 1.38 39.75 170.00 +D+Lr+H 1.000 1.000 1.000 1.000 1.000 Length = 9.0 ft 1 0.710 0.412 1.000 1.000 1.000 1.000 1.000 1.000 6.61 958.57 1,350.00 2.44 69.98 170.00 +D+O.750Lr+0.750L+H 1.000 1.000 1.000 1.000 1.000 Length = 9.0 ft 1 0.633 0.367 1.000 1.000 1.000 1.000 1.000 1.000 5.89 855.03 1,350.00 2.17 62.42 170.00 +0+0.750Lr+0.750L+O.750W+H 1.000 1.000 1.000 1.000 1.000 Length = 9.0 ft 1 0.633 0.367 1.000 1.000 1.000 1.000 1.000 1.000 5.89 855.03 1,350.00 2.17 62.42 170.00 +D+0.750Lr+0.750L40.5250E+H 1.000 1.000 1.000 1.000 1.000 Length = 9.0 It 1 0.633 0.367 1.000 1.000 1.000 1.000 1.000 1.000 5.89 855.03 1,350.00 2.17 62.42 170.00 `-` Overall Maximum'Deflection's - Unfactoreti.Loads ' Load Combination Span Max. ' ' Defl __ Location in Span Load Combination Max. '+' Dell Location in Span D+Lr 1 0.1545 4.545 _ 0.0000 0.000 OO,d Beam Desi nie: UUmments aM bftngsPpWyUoeumen1s1ENERGALC..UATaFILES mel6Dec6;•;::; ENERCALC.INC 19832010:Ver;6.-1S1.:N50790 ' Description : B14 VeltiCal Reactl0hs :UnfactOred Support notation :Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 2.937 2.937 D Only 1.668 1.668 Lr Only 1.269 1.269 D+Lr 2.937 2.937 'J 11 i ] rj I, �U;rbs acedLengths First Brace starts at 0.0 ft from Left -Most support Regular spacing of lateral supports on length of beam = 2.0 ft D(0.214) Lr(0.168) D(0.214) Lr(0.168) 6x12 6x12 L% Span = 6.0 ft Span = 5.0 ft Description: B15 Material Properties _ _ _ Calculations per IBC 2006, CBC 2007, 2005 NDS Beam self weight calculated and added to loads Analysis Method: Allowable Stress Design Fb - Tension _ 1,350.0 psi E: Modulus of Elasticity ' Load Combination 20061BC&ASCE7-05 Fb - Compr 1,350.0 psi Ebend- xx 1,600.Oksi Uniform Load: D = 0.2140, Lr = 0.1680 k/ft, Tributary Width =1.0 ft Fc - Prll 925.0 psi Eminbend - xx 580.Oksi Wood Species : DouglasFir-Larch Fc - Perp 625.0 psi Uniform Load: D = 0.2140, Lr = 0.1680 k/ft, Tributary Width = 1.0 ft Wood Grade : No.1 Fv 170.0 psi ......._..._....- .. . - Ft 675.0 psi Density 32.210pcf - ­--­..:.:............. .............. _ .. ........... .. 0.363: 1 Maximum Shear Stress Ratio = Beam Bracing Beam bracing is defined as a set spacing over all spans ' Section used for this span �U;rbs acedLengths First Brace starts at 0.0 ft from Left -Most support Regular spacing of lateral supports on length of beam = 2.0 ft D(0.214) Lr(0.168) D(0.214) Lr(0.168) 6x12 6x12 L% Span = 6.0 ft Span = 5.0 ft w ApOftidiL ds:Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load: D = 0.2140, Lr = 0.1680 k/ft, Tributary Width =1.0 ft Load for Span Number 2 Uniform Load: D = 0.2140, Lr = 0.1680 k/ft, Tributary Width = 1.0 ft ......._..._....- .. . - • ;Maximum Bending Stress Ratio = - ­--­..:.:............. .............. _ .. ........... .. 0.363: 1 Maximum Shear Stress Ratio = 0.281: 1 ' Section used for this span 6x12 Section used for this span 6x12 fb : Actual - 490.16psi fv : Actual - 47.76 psi FB: Allowable = 1,348.78psi Fv : Allowable = 170.00 psi Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span 6.000ft Location of maximum on span 6.000 ft Span # where maximum occurs Span # 1 Span # where maximum occurs Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.041 in Ratio = 2922 Max Upward L+Lr+S Deflection -0.003 in Ratio = 20965 Max Downward Total Deflection 0.097 in Ratio = 1238 Max Upward Total Deflection -0.008 in Ratio = 8891 r xMaximum Fortes, &;Stressesfor Load:Combinations ----- Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C f/v C r Cm C t C fu Mactual - fb-design Fb-allow - Vactual tv-design Fv-allow Length =1.985 it 1 0.007 0.034 1.000 1.000 1.000 1.000 1.000 1.000 0.10 9.49 1,348.81 0.24 5.78 170.00 =1.985 it 1 0.071 0.097 1.000 1.000 1.000 1.000 1.000 1.000 -0.97 95.73 1,348.81 0.70 16.52 170.00 'Length Length = 2.031 ft 1 0.209 0.162 1.000 1.000 1.000 1.000 1.000 1.000 -2.85 282.29 1,348.78 1.16 27.50 170.00 Length = 2.0 It 2 0.209 0.162 1.000 1.000 1.000 1.000 1.000 1.000 -2.85 282.29 1,348.80 0.93 27.50 170.00 Length = 2.0 ft 2 0.075 0.162 1.000 1.000 1.000 1.000 1.000 1.000 -1.03 101.63 1,348.80 0.68 27.50 170.00 Length =1.0 It 2 0.008 0.162 1.000 1.000 1.000 1.000 1.000 1.000 -0.11 11.29 1,349.40 0.23 • 27.50 170.00 +D+Lr+H 1.000 1.000 1.000 1.000 1.000 w File: C Omudtnts and SetfingsTON DocgmenlslENERCALC DATA FILESUayla me 1611 ec6 ood,Beam Desi n g..ENERCALC.iINC 19832010. Ver'.81.51.: Ni50790.- < r-� Description : 815 Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C f/v C r C m C t C fu Mactual fbdesign Fb-allow Vactual fvdesign Fv-allow Length =1.985 It 1 0.012 0.059 1.000 1.000 1.000 1.000 1.000 1.000 0.17 16.47 1,348.81 0.42 10.03 170.00 Length =1.985 It 1 0.123 0.169 1.000 1.000 1.000 1.000 1.000 1.000 -1.68 166.22 1,348.81 1.21 28.68 170.00 Length = 2.031 It 1 0.363 0.281 1.000 1.000 1.000 1.000 1.000 1.000 4.95 490.16 1,348.78 2.01 47.76 170.00 = 2.0 ft 2 0.363 0.281 1.000 1.000 1.000 1.000 1.000 1.000 4.95 490.16 1,348.80 1.62 47.76 170.00 'Length Length = 2.0 It 2 0.131 0.281 1.000 1.000 1.000 1.000 1.000 1.000 -1.78 176.46 1,348.80 1.19 47.76 170.00 Length =1.0 ft 2 0.015 0.281 1.000 1.000 1.000 1.000 1.000 1.000 -0.20 19.61 1,349.40 0.40 47.76 170.00 +040.750Lr+0.750L+H 1.000 1.000 1.000 1.000 1.000 Length =1.985 ft 1 0.011 0.053 1.000 1.000 1.000 1.000 1.000 1.000 0.15 14.73 1,348.81 0.38 8.97 170.00 Length =1.985 It 1 0.110 0.151 1.000 1.000 1.000 1.000 1.000 1.000 -1.50 148.60 1,348.81 1.08 25.64 170.00 Length = 2.031 It 1 0.325 0.251 1.000 1.000 1.000 1.000 1.000 1.000 4.43 438.20 1,348.78 1.80 42.69 170.00 Length = 2.0 It 2 0.325 0.251 1.000 1.000 1.000 1.000 1.000 1.000 4.43 438.20 1,348.80 1.44 42.69 170.00 Length = 2.0 ft 2 0.117 0.251 1.000 1.000 1.000 1.000 1.000 1.000 -1.59 157.75 1,348.80 1.06 42.69 170.00 Length =1.0 It 2 0.013 0.251 1.000 1.000 1.000 1.000 1.000 1.000 -0.18 17.53 1,349.40 0.35 42.69 170.00 +D+0.750Lr+0.750L+0.750W+H 1.000 1.000 1.000 1.000 1.000 Length =1.985 ft 1 0.011 0.053 1.000 1.000 1.000 1.000 1.000 1.000 0.15 14.73 1,348.81 0.38 8.97 170.00 Length =1.985 It 1 0.110 0.151 1.000 1.000 1.000 1.000 1.000 1.000 -1.50 148.60 1,348.81 1.08 25.64 170.00 Length = 2.031 It 1 0.325 0.251 1.000 1.000 1.000 1.000 1.000 1.000 -4.43 438.20 1,348.78 1.80 42.69 170.00 Length = 2.0 It 2 0.325 0.251 1.000 1.000 1.000 1.000 1.000 1.000 4.43 438.20 1,348.80 1.44 42.69 170.00 Length = 2.0 ft 2 0.117 0.251 1.000 1.000 1.000 1.000 1.000 1.000 -1.59 157.75 1,348.80 1.06 42.69 170.00 Length =1.0 It 2 0.013 0.251 1.000 1.000 1.000 1.000 1.000 1.000 -0.18 17.53 1,349.40 0.35 42.69 170.00 +D+0.750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 Length =1.985 It 1 0.011 0.053 1.000 1.000 1.000 1.000 1.000 1.000 0.15 14.73 1,348.81 0.38 8.97 170.00 Length =1.985 ft 1 0.110 0.151 1.000 1.000 1.000 1.000 1.000 1.000 -1.50 148.60 1,348.81 1.08 25.64 170.00 w Length = 2.031 It 1 0.325 0.251 1.000 1.000 1.000 1.000 1.000 1.000 4.43 438.20 1,348.78 1.80 42.69 170.00 Length = 2.0 It 2 0.325 0.251 1.000 1.000 1.000 1.000 1.000 1.000 -0.43 438.20 1,348.80 1.44 42.69 170.00 Length= 2.0 ft . 2 0.117 0.251 1.000 1.000 1.000 1.000 1.000 1.000 -1.59 157.75 1,348.80 1.06 42.69 170.00 Length =1.0 It 2 0.013 0.251 1.000 1.000 1.000 1.000 1.000 1.000 -0.18 17.53 1,349.40 0.35 42.69 170.00 Overall ,MaxiMyrnA ....Octions-;Unfactoreii Loads Combination Span Max. ' ' Dell Location in Span Load Combination Max. '+' Deft Location in Span 'Load . 1 0.0000 0.000 D+Lr -0.0081 4.062 D+Lr 2 0.0968 5.000 0.0000 4.062 Vertical Reacti0rls, Unfact0�@d Support notation :Far left is #1 Values in KIPS : Load Combination Support 1 Support 2 Support 3 erall MAXimum 0.363 3.994 D Only 0.209 2.300 Lr Only 0.154 1.694 D+Lr 0.363 3.994 r-� t �n►ooa Beam ues�gln ,;«_ Y v 0.00 Length = 3.0 ft Span = 3.0 ft •ENERCALC;'INC 19832010 Ver 6151`N50790"<' 1.000 Description: B16 1 Service loads entered. Load Factors will be applied for calculations. --- Beam self weight calculated and added to loads Material Properties Length = 2.01t Calculations per IBC 2006, CBC 2007, 2005 NDS ` Analysis Method: Allowable Stress Design Load Combination 20061BC&ASCE7-05 Fb - Tension Fb -Compr _ 1,350.0 psi 1,350.0 psi E: Modulus of Elasticity Ebend-xx 1,600.Oksi _ Un'rform Load : D=0.2020, Lr = 0,1580 ktft, Tributary Fc - Pdl 925.0 psi Eminbend xx 580.Oksi Wood Species : DouglasFir-Larch Fc - Perp Wood Grade : NO -1 Fv Ft Beam Bracing : seam is Fully Braced against lateral -torsion buckling _ 625.0 psi 170.0 psi 675.0 psi Density 32.210per t ' MaxlMu For%es w�;Stressesfor Load-Comfiinat ons _ Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C C Cr C C Mactual fb-des n Fb-allow Vacbral fv n Fvallow �9 n9 d flv r m t fu � -design +D Length = 2.0 It Span ,= 2.0 ft Length = 3.0 ft Span = 3.0 ft +D+Lr+H 1.000 Length = 2.0 It 1 Service loads entered. Load Factors will be applied for calculations. 2 Beam self weight calculated and added to loads 1.000 Length = 2.01t 1 ` oad for Span Number 1 +040.750Lr+0.750L+0.750W+H Length = 2.0 ft 1 1.000 1.000 1.000 1.000 Un'rform Load : D=0.2020, Lr = 0,1580 ktft, Tributary Width =1.0 ft Load for Span Number 2 Uniform Load: D = 0.2870, Lr = 0.2250 k/ft, Tributary Width =1.0 ft ..:.....:..:.....:........... _.:....:..::_..:..................... .Maximum Bending Stress Ratio = .... _. .. 0.4041 Maximum ... ........ Shear Stress Ratio = . • 0.330 :1 Section used for this span 6x8 Section used for this span 6x8 fb : Actual = 545.87psi fv : Actual = 56.07 psi FB: Allowable = 1,350.00psi Fv : Allowable = 170.00 psi Load Combination +D+Lr+H Load Combination +D+Lr+H j Location of maximum on span = 2.000ft Location of maximum on span = 2.000 ft Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.023 in Ratio = 3118 Max Upward L+Lr+S Deflection -0.001 in Ratio = 18668 Max Downward Total Deflection 0.053 in Ratio = 1346 Max Upward Total Deflection -0.003 in Ratio = 8068 ' MaxlMu For%es w�;Stressesfor Load-Comfiinat ons _ Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C C Cr C C Mactual fb-des n Fb-allow Vacbral fv n Fvallow �9 n9 d flv r m t fu � -design +D Length = 2.0 It 1 Length = 3.0 ft 2 +D+Lr+H 1.000 Length = 2.0 It 1 Length = 3.0 ft 2 +0.750Lr+0.750L+H 1.000 Length = 2.01t 1 Length = 3.0 ft 2 +040.750Lr+0.750L+0.750W+H Length = 2.0 ft 1 1 0.230 0.188 1.000 0.230 0.188 1.000 0.404 0.330 1.000 0.404 0.330 1.000 0.361 0.294 1.000 0.361 0.294 1.000 0.361 0.294 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -1.33 310.23 1,350.00 -1.33 310.23 11350.00 -2.35 545.87 1,350.00 -2.35 545.87 1,350.00 -2.09 486.96 1,350.00 -2.09 486.96 1,350.00 -2.09 486.96 1,350.00 0.88 31.92 170.00 0.70 31.92 170.00 1.54 56.07 170:00 1.24 56.07 170.00 1.38 50.03 170.00 1.11 50.03 170.00 1.38 50.03 170.00 ood Beam Desih, File.C:IDocumehteandSet6ngs1PWftDocumeetMENERCALCDATAFILE mcl6tiec6 i■ :._.z... .,., .. ... , ., ., ENERCALC, INC:.1883 2010>Ue 1,.;N1 9 50790 .i � 11 1 1 [I Description: 816 - - Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C fN Cr Cm C t C fu Mactual fb-design Fb-allow Vactual tv- design Fvallow Length = 3.0 It 2 0.361 0.294 1.000 1.000 1.000 1.000 1.000 1.000 -2.09 486.96 1,350.00 1.11 50.03 170.00 +D+0.750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 Length = 2.0 It 1 0.361 0.294 1.000 1.000 1.000 1.000 1.000 1.000 -2.09 486.96 1,350.00 1.38 50.03 170.00 Length = 3.0 It 2 0.361 0.294 1.000 1.000-1000 1.000 1.000 1.000 486.96 1,350.00 1.11 50.03 170.00 Overall Magimum-D®flections, U,66dtored Loads -2.09 - _ Load Combination Span Max. ' ' Dell Location in Span Load Combination Max. '+' Defl Location in Span D+Lr 1 2 0.0000 0.0535 0.000 D+Lr 3.000 -0.0030 0.0000 1.185 1.185 Vertical R@3Ct1011$ UrlfactOfed Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Support 3 Overall MAXimum -0.804 3.106 ' D Only -0.455 1.766 - Lr Only -0.348 1.339 D+Lr -0.804 3.106 � 11 1 1 [I 1 1 1 1 File G 1Documenl5 and SethngslP,C31Mq DopimentslENERCALGgATA FlLE54taytor me t6b eC6 , �� ood Beam Desi In ENERCALCrINC:19832010,Ver:8;151: Ni50790 LIC. Fi : KW-UbUU/Sy Description Material Properties Analysis Method: Allowable Stress Design Fb - Tension Load Combination 20061BC&ASCE7-05 Fb - Compr Load Combination Fc - Prll Wood Species : DouglasFir-Larch Fc - Perp Wood Grade : No.1 Fv Uniform Load: D = 0.2020, Lr = 0.1580 k/ft, Tributary Width = 1.0 ft Ft Beam Bracing : Beam is Fully Braced against lateral -torsion buckling Calculations per IBC 2006, CBC 2007, 2005 NDS 1,350.0 psi E: Modulus of Elasticity 1,350.0 psi Ebend- xx 1,600.Oksi 925.0 psi Eminbend -xx 580.Oksi 625.0 psi 170.0 psi 675.0 psi Density 32.210pcf rApph@d L08dS Service loads entered. Load Factors will be applied for calculations Summary of Moment Values Summary of Shear Values Mactual fb-design Fb-allow Vactual tv-design Fvallow -1.00 42.50 1,350.00 A.77 201.95 1,350.00 A.77 201.95 1,350.00 -1.72 72.60 1,350.00 -7.85 332.24 1,350.00 -7.85 332.24 1,350.00 0.67 10.63 170.00 0.83 13.17 170.00 0.83 13.17 170.00 1.14 18.15 170.00 1.36 21.55 170.00 1.36 21.55 170.00 Beam self weight calculated and added to loads Load Combination �oad for Span Number 1 Max Stress Ratios Uniform Load: D = 0.2020, Lr = 0.1580 k/ft, Tributary Width = 1.0 ft Segment Length Span # M Load for Span Number 2 C d C flv C r C m C t C fu Uniform Load: D = 0.0250, Lr = 0.020 k/ft, Tributary Width =1.0 ft Load for Span Number 3 Varying Uniform Load : D(S,E) = 0.0380->0.1260, Lr(S,E) = 0.030->0.0990 k/ft, Extent = 0.0 -» 9.0 ft, Trib Width = 1.0 ft Length = 3.0 ft t#&MV SUMMARY 0.031 0.063 1.000 1.000 Maximum Bending Stress Ratio = 0.2461 Maximum Shear Stress Ratio = 0.127: 1 2 Section used for this span- 5.25x18.0 Section used for this span 5.25x18.0 ' fb : Actual 332.24psi fv : Actual - 21.55 psi 0.077 F13: Allowable = 1,350.00psi Fv : Allowable = 170.00 psi +Lr+H Load Combination +D+Lr+H Load Combination +D+Lr+H 1.000 Location of maximum on span 19.000ft Location of maximum on span 19.000ft 0.054 Span # where maximum occurs Span # 2 Span # where maximum occurs Span # 2 Maximum Deflection 2 0.246 0.127 1.000 Max Downward L+Lr+S Deflection 0.089 in Ratio = 2432 Length = 9.0 ft 3 Max Upward L+Lr+S Deflection -0.023 in Ratio = 9934 1.000 �. Max Downward Total Deflection 0.208 in Ratio = 1036 Max Upward Total Deflection -0.047 in Ratio = 4840 Summary of Moment Values Summary of Shear Values Mactual fb-design Fb-allow Vactual tv-design Fvallow -1.00 42.50 1,350.00 A.77 201.95 1,350.00 A.77 201.95 1,350.00 -1.72 72.60 1,350.00 -7.85 332.24 1,350.00 -7.85 332.24 1,350.00 0.67 10.63 170.00 0.83 13.17 170.00 0.83 13.17 170.00 1.14 18.15 170.00 1.36 21.55 170.00 1.36 21.55 170.00 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Segment Length Span # M V C d C flv C r C m C t C fu _ Length = 3.0 ft 1 0.031 0.063 1.000 1.000 1.000 1.000 1.000 1.000 Length =19.0 It 2 0.150 0.077 1.000 1.000 1.000 1.000 1.000 1.000 Length = 9.0 ft 3 0.150 0.077 1.000 1.000 1.000 1.000 1.000 1.000 +Lr+H 1.000 1.000 1.000 1.000 1.000 `` Length = 3.0 ft 1 0.054 0.107 1.000 1.000 1.000 1.000 1.000 1.000 Length =19.0 ft 2 0.246 0.127 1.000 1.000 1.000 1.000 1.000 1.000 Length = 9.0 ft 3 0.246 0.127 1.000. 1.000 1.000 1.000 1.000 1.000 +D+0.750Lr+0.750L+H 1.000 1.000 1.000 1.000 1.000 Summary of Moment Values Summary of Shear Values Mactual fb-design Fb-allow Vactual tv-design Fvallow -1.00 42.50 1,350.00 A.77 201.95 1,350.00 A.77 201.95 1,350.00 -1.72 72.60 1,350.00 -7.85 332.24 1,350.00 -7.85 332.24 1,350.00 0.67 10.63 170.00 0.83 13.17 170.00 0.83 13.17 170.00 1.14 18.15 170.00 1.36 21.55 170.00 1.36 21.55 170.00 110 1� I I I I I File: CIDocuments and Sbt6r!q0C31M: y tNERCALUNC;�j"10,�:.V 11.51 N; License Owner: WALLING MCCALLUM LTD. Description B17 Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # m V C d C Yv Cr Cm C Cfu Mactual fb-design Fb-allow Vactual fv-design Fv-allow Length = 3.0 ft 1 0.048 0.096 1.000 1.000 1.000 1.000 1.000 1.000 -1.54 65.07 1,350.00 1.02 16.27 170.00 Length =19.0 ft 2 0.222 0.114 1.000 1.000 1.000 1.000 1.000 1.000 -7.08 299.66 1,350.00 1.23 19.46 170.00 Length = 9.0 ft 3 0,222 0.114 1.000 1.000 1.000 1.000 1.000 1.000 -7.08 299-66 1,350.00 1.23 19.46 170.00 +D+0,750Lr+0.750L+0.750W+H 1.000 1.000 1.000 1.000 1.000 Length = 3.0 I't 1 0.048 0.096 1.000 1.000* 1.000 1.000 1.000 1.000 -1.54 65.07 1,350.00 1.02 16.27 1170.00 Length =19.0 ft 2 0.222 0.114 1.000 1.000 1.000 1.000 1.000 1.000 -7.08 299-66 1,350.00 1.23 19.46 170.00 Length = 9.0 ft 3 0.222 0.114 1.000 1.000 1.000 1.000 1.000 1.000 -7.08 299.66 1,350.00 1.23 19.46 170.00 +0+0.750Lr+0.750L+0.5250E+H Length = 3.0 It 1 0.048 0.096 1,000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -1.54 65.07 1,350.00 1.02 16.27 170.00 Length =19.0 It 2 0.222 0.114 1.000 1.000 1.000 1.000 1.000 1.000 -7.08 299.66 1,350.00 1.23 19.46 170.00 Length = 9.0 ft 3 0.222 0.114 1.000 1.000 1.000 1.000 1.000 1.000 -7.08 299-66 1,350.00 1.23 19.46 170.00 -'UhAddredLoads, Load Combination Span Max. Dell Location in Span Load Combination Max. Defi Location in Span D+Lr 1 0.0230 0.000 0.0000 0.000 D+Lr 2 3 0.0000 0.2084 0.000 D+Lr 9.000 -0.0471 0.0000 11.785 11.785 Support notation Far left is #1 Values in KIPS Load Combination Support l Support 2 Support 3 Support 4 Overall MAYjmum D Only 1.449 0.909 2.460 1.565 Lr Only 0.539 0.895 D+Lr 1.449 2.460 1� I I I I I : KW -0600739 Lic..T Description Material Properties Load Combination Segment Length Calculations per IBC 2006, CBC 2007, 2005 NDS Method: Allowable Stress Design Fb - Tension 1,350.0 psi E: Modulus of Elasticity iAnalysis . Load Combination 20061BC&ASCE7-05 Fb - Compr 1,350.0 psi Ebend- xx 1,600.Oksi Beam self weight calculated and added to loads Fc - Pdl 925.0 psi Eminbend - xx 580.Oksi Wood Species : DouglasFir-Larch Fc - Perp 625.0 psi Wood Grade : No.1 Fv 170.0 psi r DESIGN SUMMARY a _ ' ? ` ' Ft 675.0 psi Density 32.210pcf Beam Bracing : Beam is Fully Braced against lateral -torsion buckling 0.188: 1 Section used for this span- Span 3.0 ft Load Combination Segment Length Span = 2.50 ft ' axIled tcoads > Y C g„ Service loads entered. Load Factors will be applied for calculations. : Summary of Shear Values Vactual fv-design Fvallow Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load D = 0 2020 Lr 01580 k/ft Tributary Width =1.0 ft r DESIGN SUMMARY a _ ' ? ` ' Length = 3.0 it • • !Maximum Bending Stress Ratio = 0.2881 Maximum Shear Stress Ratio = 0.188: 1 Section used for this span- 6x8 Section used for this span - 6x8 ' tb :Actual 386.68psi fv :Actual - 31.91 psi FB: Allowable = 1,350.00psi Fv : Allowable = 170.00 psi i Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span 3.000ft Location of maximum on span 2.377 ft Span #where maximum occurs Span # 1 Span #where maximum occurs Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.019 in Ratio= 3806 ` Max Upward L+Lr+S Deflection -0.002 in Ratio= 18471 i Max Downward Total Deflection 0.044 in Ratio= 1632 0.286 Max Upward Total Deflection -0.004 in Ratio= 7958 1.000 1.000 1.000 1.000 �NtaxrmumF4orc A,ttressiil. L604ombin atI ns Load Combination Segment Length Span # Max Stress Ratios M V C d C g„ C r Cm C t C fu Summary of Moment Values Mactual fb-design Fb-allow Summary of Shear Values Vactual fv-design Fvallow Length = 3.0 it 1 0.164 0.107 1.000 1.000 1.000 1.000 1.000 1.000 -0.95 221.21 1,350.00 0.50 18.26 170.00 Length = 2.50 it 2 0.164 0.107 1.000 1.000 1.000 1.000 1.000 1.000 -0.95 221.21 1,350.00 0.39 18.26 170.00 +0+t.r+H 1.000 1.000 1.000 1.000 1.000 Length = 3.0 it 1 0.286 0.188 1.000 1.000 1.000 1.000 1.000 1.000 -1.66 386.68 1,350.00 0.88 31.91 170.00 Length = 2.50 it 2 0.286 0.188 1.000 1.000 1.000 1.000 1.000 1.000 -1.66 386.68 1,350.00 0.67 31.91 170.00 +01+0 7501-r-47501-441 Length = 3.0 it 1 0.256 0.168 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -1.48 345.31 1,350.00 0.78 28.50 170.00 •, Length = 2.50 It 2 0.256 0.168 1.000 1.000 1.000 1.000 1.000 1.000 -1.48 345.31 1,350.00 0.60 28.50 170.00 1D+0.750Lr+0.750L+0.750W+H 1.000 1.000 1.000 1.000 1.000 �- / Length = 3.0 it 1 0.256 0.168 1.000 1.000 1.000 1.000 1.000 1.000 -1.48 345.31 1,350.00 0.78 28.50 170.00 Length = 2.50 it 2 0.256 0.168 1.000 1.000 1.000 1.000 1.000 1.000 -1.48 345.31 1,350.00 0.60 28.50 170.00 +D+0.750Lr+0.75OL40.5250E+H 1.000 1.000 1.000 1.000 1.000 �Nooc� Beam Desi n umenls'ENERCALGDATA FILE nx tsb:ec6 umen Seton , Y 9 ENERCALC, INC 19832010.Wna6:151,:N:50790 Lic. # : KW -0600739 C 1 11 Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C fN Cr Cm C t C fu Mactual fb-clesi n Fb-allow Vactual tv-design Fvallow Length = 3.0 It 1 0.256 0.168 1.000 1.000 1.000 1.000 1.000 1.000 -1.48 345.31 1,350.00 0.78 28.50 170.00 Length = 2.50 It 2 0.256 0.168 1.000 1.000 1.000 1.000 1.000 1.000 -1.48 345.31 1,350.00 0.60 28.50 170.00 Overall Maximum Deflections Unfaclored Loads ; Load Combination Span _ Max. ' ' Defl in Span Combination Max. W Dell Location in Span — D+Lr 1 _Location 0.0441 _Load 0.000 _^ 0.0000 0.000 2 0.0000 0.000 D+Lr -0.0038 1.058 Vertical Reactions U111�dCtOf@!f Support notation : Far left is #1 Values in KIPS Load Combination Support l Support 2 Support 3 Overall MAXimum 1.784 -0.653 D Only 1.025 -0.369 Lr Only 0.758 -0.284 D+Lr 1.784 -0.653 1 11 1 bF,Fib C Vocuments and- SetbngslFC31My DocumentslENERCALG OA7A FLE me t6b'ec6 ood Beam Design "ENERFALC lir!.1983:21110 Va 1 ii -i rN''S07Qn Lic. # : KW -0600739 Material Properties 9 Calculations per IBC 2006, CBC 2007, 2005 NDS Analysis Method: Allowable Stress Design Fb - Tension 1,350.0 psi E: Modulus of Elasticity Load Combination 20061BC&ASCE7-05 Fb - Compr 1,350.0 psi Ebend- xx 1,600.Oksi 1.000 Fc - Prll 925.0 psi Eminbend - xx 580.Oksi Wood Species ; DouglasFir-Larch Fc - Perp 625.0 psi 1 Wood Grade : NO -1 Fv 170.0 psi Ft 675.0 psi Density 32.210pcf Beam Bracing : Beam is Fully Braced against lateral -torsion buckling Varyinq Uniform Load: D(S,E) = 0.0250->0.1510, Span = 3.0 ft Span = 15.0 ft Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios _ Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C IN Gr Cm C t C fu Mactual fb-design Fb-allow Vactual fv-desgn Fv-allow 40 Length = 3.0 ft 9 Length =15.0 ft 2 +D+Lr+H 1.000 ,. Appli@d Ltiatis 1 Service loads entered. Load Factors will be applied for calculations. 2 Beam self weight calculated and added to loads 1.000 Length = 3.0 ft 1 Length =15.0 ft -)Oad for Span Number 1 +D+0.750Lr+0.750L+0.750W+H Length = 3.0 ft 1 1.000 1.000 1.000 1.000 J Uniform Load: D = 0.0250, Lr = 0.020 kfft, Tributary Width =1.0 ft Load for Span Number 2 Varyinq Uniform Load: D(S,E) = 0.0250->0.1510, Lr(S,E) = 0.020->0.1190 k/ft, Extent= 0.0->> 15.0 ft, Tdb Width =1.0 ft , . ,._ _ ..... _ .._ . rDES/GN-SUMMARY.._.__......................................... - • _._.:__::_..._... :Maximum Bending Stress Ratio = - .....:..._..__._...... ..... ....... _ ..... .. _ ... 0.3421 Maximum Shear Stress Ratio 0.181: 1 Section used for this span 6x12 Section used for this span 6x12 fb : Actual 471.73psi tv : Actual 30.71 psi FB: Allowable 1,350.00psi Fv : Allowable 170.00 psi Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span = 8.423ft Location of maximum on span = 14.077 ft Span # where maximum occurs = Span # 2 Span # where maximum occurs = Span # 2 Maximum Deflection Max Downward L+Lr+S Deflection 0.070 in Ratio = 2575 Max Upward L+Lr+S Deflection -0.041 in Ratio = 1760 Max Downward Total Deflection 0.172 in Ratio = 1048 Max Upward Total Deflection -0.100 in Ratio = 718 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios _ Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C IN Gr Cm C t C fu Mactual fb-design Fb-allow Vactual fv-desgn Fv-allow 40 Length = 3.0 ft 9 Length =15.0 ft 2 +D+Lr+H 1.000 Length = 3.0 ft 1 ' Length =15.0 It 2 +040.750Lr+0.750L+H 1.000 Length = 3.0 ft 1 Length =15.0 ft 2 +D+0.750Lr+0.750L+0.750W+H Length = 3.0 ft 1 7 0.013 0.081 1.000 0.207 0.106 1.000 0.020 0.134 1.000 0.349 0.181 1.000 0.018 0.121 1.000 0.314 0.162 1.000 0.018 0.121 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -0.18 17.44 1,350.00 2.82 279.52 1,350.00 -0.27 26.35 1,350.00 4.77 471.73 1,350.00 -0.24 24.12 1,350.00 4.28 423.67 1,350.00 -0.24 24.12 1,350.00 0.58 13.77 170.00 0.76 18.09 170.00 0.96 22.83 170.00 1.29 30.71 170.00 0.87 20.57 170.00 1.16 27.56 170.00 0.87 20.57 170.00 File C 1Doeumenis and SetUngs1PC31My DocurrentsAENERWA %TA FILESitaylor oodFBeam Desi n..: a. , AN, D 1 t RIT-lb'107390 License .• Description: B19 Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Length Span # M V C d C fav Cr Cm C t C fu Mactual fbclesign Fb-allow Vactual fv-0esgn Fvallow tSegment . Length =15.0 ft 2 0.314 0.162 1.000 1.000 1.000 1.000 1.000 1.000 4.28 423.67 1,350.00 1.16 27.56 170.00 +D40.750Lr+0.750LA.5250E+H 1.000 1.000 1.000 1.000 1.000 Length = 3.0 ft 1 0.018 0.121 1.000 1.000 1.000 1.000 1.000 1.000 -0.24 24.12 1,350.00 0.87 20.57 170.00 Length =15.0 ft 2 0.314 0.162 1.000 1.000 1.000 1.000 1.000 1.000 4.28 423.67 1,350.00 1.16 27.56 170.00 Overao*aximum Deflections:- Unfacfored Loads Load Combination Span Max. ' ' Defl Location in Span Load Combination Max. '+' Dell Location in Span 1 0.0000 0.000 D+Lr -0.1002 0.000 D+Lr 2 0.1716 7.846 0.0000 0.000 1/ertrca(Reacttons Unfactored Support notation :Far left is #1 Values in KIPS • Load Combination Support1 Support 2 Support 3 Overall MAXimum 1.201 1.551 D Only 0.738 0.912 Lr Only 0.463 0.639 D+Lr 1.201 1.551 D 1 t 1 i 70 Calculations per IBC 2006, CBC 2007, 2005 NDS 1,350.0 psi E: Modulus of Elasticity 1,350.0 psi Ebend- xx 1,600.Oksi 925.0 psi Eminbend - xx 580.Oksi 625.0 psi. 170.0 psi 675.0 psi Density 32.210pcf D(0.34) Lr(0.268) Span 2.50 ft Description: B20 Span = 5.0 ft Material Properties Cr Cm C t C fu _ Analysis Method: Allowable Stress Design Fb - Tension Load Combination 20061BC&ASCE7-05 Fb - Compr 1.000 Fc - Prl I Wood Species : DouglasFir-Larch Fc - Perp Wood Grade : NO Fv 0.187 Ft Beam Bracing : Beam is Fully Braced against lateral -torsion buckling i 70 Calculations per IBC 2006, CBC 2007, 2005 NDS 1,350.0 psi E: Modulus of Elasticity 1,350.0 psi Ebend- xx 1,600.Oksi 925.0 psi Eminbend - xx 580.Oksi 625.0 psi. 170.0 psi 675.0 psi Density 32.210pcf D(0.34) Lr(0.268) M irrium-ForcOS 8 Stresses 6r Load Combinations Load Combination Segment Length Span 2.50 ft Max Stress Ratios M V Span = 5.0 ft C Yv Cr Cm C t C fu Length = 2.50 ft 1 0.133 0.187 1.000 1.000 1.000 1.000 1.000 1.000 Service loads entered. Load Factors will be applied for calculations. 2 Beam self weight calculated and added to loads 0.187 1.000 1.000 1.000 1.000 1.000 1.000 ^'load for Span Number 1 j Uniform Load : D=0.1260, Lr = 0.0990 kilt, Tributary Width =1.0 ft 1.000 1.000 1.000 1.000 Length = 2.50 ft 1 Load for Span Number 2 0.330 1.000 1.000 1.000 1.000 1.000 1.000 Uniform Load : D = 0.1640, Lr = 0.1290 k/ft, Tributary Width =1.0 ft 2 0.384 0.330 0 2680 k P 2 0 ft Point Load : D= 0.340 Lr = ' ..,.. DESIGN SUMMARY :..:....:.......:.... 1.000 1.000 1.000 1.000 1.000 • ... ....... ..;.:..:.........._ .:._. :Maximum Bending Stress Ratio = 0.3841 Maximum Shear Stress Ratio = 0.330 :1 1.000 Section used for this span 6x6 Section used for this span 6x6 0.294 fb : Actual = 518.75psi fv : Actual 56.14 psi 2 FB: Allowable = 1,350.00psi Fv : Allowable = 170.00 psi 1.000 1.000 1.000 1.000 Load Combination +D+Lr+H Load Combination +D+Lr+H 1.000 Location of maximum on span = 2.154ft Location of maximum on span = 2.500 ft Span # where maximum occurs = Span # 2 Span # where maximum occurs = Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.018 in Ratio = 3424 Max Upward L+Lr+S Deflection -0.014 in Ratio = 4336 Max Downward Total Deflection 0.040 in Ratio = 1497 Max Upward Total Deflection -0.031 in Ratio = 1942 M irrium-ForcOS 8 Stresses 6r Load Combinations Load Combination Segment Length Span # Max Stress Ratios M V C d C Yv Cr Cm C t C fu Length = 2.50 ft 1 0.133 0.187 1.000 1.000 1.000 1.000 1.000 1.000 Length = 5.0 it 2 0.216 0.187 1.000 1.000 1.000 1.000 1.000 1.000 +D+Lr+H 1.000 1.000 1.000 1.000 1.000 Length = 2.50 ft 1 0.232 0.330 1.000 1.000 1.000 1.000 1.000 1.000 Length = 5.0 ft 2 0.384 0.330 1.000 1.000 1.000 1.000 1.000 1.000 � . +0350Lr+0.750L+H 1.000 1.000 1.000 1.000 1.000 Length = 2.50 It Il 0.207 0.294 1.000 1.000 1.000 1.000 1.000 1.000 Length = 5.0 It 2 0.342 0.294 1.000 1.000 1.000 1.000 1.000 1.000 +D+0.750Lr+0.750L+0.750W+H 1.000 1.000 1.000 1.000 1.000 1 Summary of Moment Values Summary of Shear Values Mactual fb-design Fb-allow Vactual tv-design Fvallow -0.41 179.55 1,350.00 0.67 291.86 1,350.00 -0.72 313.43 1,350.00 1.20 518.75 1,350.00 -0.65 279.96 1,350.00 1.07 462.03 1,350.00 0.64 31.82 170.00 0.64 31.82 170.00 1.13 56.14 170.00 1.13 56.14 170.00 1.01 50.06 170.00 1.01 50.06 170.00 .me V u=urnensra S arergng51F'(-im 000gry eq LSt tKt, UAI a rlttSltaylOf mCt16C,8Cb ,..00d Beaim Desi n . g.. ENERCALC.1NC 19n20in Var56151 N 50790 t t 1� t 1 # : f�;rj,-06007390 Licensretwner i;ALLIiAU 141(XALLIF11 LIN. Description: 620 Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span# M V C d C fN Cr Cm C t C fu Mactual fb-design Fb-allow Vactual tv-design Fvallow Length = 2.50 ft 1 0.207 0.294 1.000 1.000 1.000 1.000 1.000 1.000 -0.65 279.96 1,350.00 1.01 50.06 170.00 Length = 5.0 ft 2 0.342 0.294 1.000 1.000 1.000 1.000 1.000 1.000 1.07 462.03 1,350.00 1.01 50.06 170.00 +0+0.750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 Length = 2.50 It 1 0.207 0.294 1.000 1.000 1.000 1.000 1.000 1.000 -0.65 279.96 1,350.00 1.01 50.06 170.00 Length = 5.0 It 2 0.342 0.294 1.000 1.000 1.000 1.000 1.000 1.000 1.07 462.03 1,350.00 1.01 50.06 170.00 OveraO Maximum Deflections Unfactot0d Loads Load Combination Span Max. " Deft Location in Span Load Combination Max. W Defl Location in Span 1 0.0000 0.000 D+Lr -0.0309 0.000 D+Lr 2 0.0401 2.577 0.0000 0.000 ;nN@rtcal;'R@aCti011S:•, UnfactOfea,` Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Support 3 Overall MAXimum 1.838 0.848 D Only 1.046 0.480 Lr Only 0.793 0.368 D+Lr 1.838 0.848 t t 1� t 1 t 1 1 t Span = 5.0 ft Span = 5.50 ft - `Appiiedloads .a; t:z _ Service loads entered. Load Factors will be applied for calculations Beam self weight calculated and added to loads ■�(9f:>•��\'l'GLIlIIII�I+I. Description: B21 Material Properties 1.000 l�f.f• �i�l''III�f��-1'l�\111\\�1'I i\l�f�\AA\Ii'1����J� Calculations per IBC 2006, CBC 2007, 2005 NDS goad for Span Number 1 Analysis Method: Allowable Stress Design Fb - Tension 1,350.0 psi E: Modulus of Elasticity 1.000 1.000 1.000 1.000 Load Combination 20061BC&ASCE7-05 Fb - Compr 1,350.0 psi Ebend- xx 1,600.0 ksi • 'Maximum Bending Stress Ratio = Fc - PHI 925.0 psi Eminbend - xx 580.0 ksi 6x12 Wood Species : DouglasFir-Larch Fc - Perp 625.0 psi 420.87psi fv : Actual = Wood Grade : NO Fv 170.0 psi Fv : Allowable = 170.00 psi Load Combination Ft 675.0 psi Density 32.210pcf Location of maximum on span = Beam Bracing : Beam is Fully Braced against lateral -torsion buckling Location of maximum on span = 4.077 ft 1 1 t Span = 5.0 ft Span = 5.50 ft - `Appiiedloads .a; t:z _ Service loads entered. Load Factors will be applied for calculations Beam self weight calculated and added to loads 0.112 1.000 1.000 goad for Span Number 1 1 0.112 Length = 5.50 It +D+Lr+H Uniform Load D 01830 Lr 01430 k/ft Tributary Width =1.0 It 1.000 1.000 1.000 1.000 Length = 5.0 ft r=DESIGN SUMMARY ,_'x __ £ __............. ..... ...... ... __ .. . ........... _..... ......... .... .._........... ....... ..... ............ .... ....... ... _ . • 'Maximum Bending Stress Ratio = 0.312 1 Maximum Shear Stress Ratio = 0.193: 1 Section used for this span 6x12 Section used for this span 6x12 fb : Actual = 420.87psi fv : Actual = 32.89 psi _ FB: Allowable = 1,350.00psi Fv : Allowable = 170.00 psi Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span = 5.000ft Location of maximum on span = 4.077 ft Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1 - Maximum Deflection 1.000 1.000 1.000 1.000 1.000 0.279 Max Downward L+Lr+S Deflection 0.043 in Ratio= 2804 1.000 1.000 1.000 1.000 Max Upward L+Lr+S Deflection -0.005 in Ratio= 12039 1.000 Max Downward Total Deflection 0.101 in Ratio= 1188 Max Upward Total Deflection -0.013 in Ratio= 5163 Mazimum'Forces.B:St�esses for,;Ldid. Combinations Load Combination Max Stress Ratios _ ` Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C f/v C r C m C t C fu Mactual fb-design Fb-allow Vactual fv- design Fvallow r 0.181 0.112 1.000 1.000 Length = 5.0 it 1 0.112 Length = 5.50 It +D+Lr+H 2 1.000 1.000 1.000 1.000 Length = 5.0 ft 1 -3.80 Length = 5.50 It 2 0.312 +0+0.750Lr+0.750L+H 1.000 `Length = 5.0 ft 1 0.193 Length = 5.50 ft 2 1.000 1.000 1.000 1.000 04.750Lr+0.750L+0.750W+H ) Length = 5.0 ft 1 1.000 1.000 1.000 1.000 Length = 5.50 It 2 1.000 +1)+0.750Lr+0.750L+0.5250E+H r 0.181 0.112 1.000 1.000 1.000 1.000 1.000 1.000 0.181 0.112 1.000 1.000 1.000 1.000 1.000 1.000 420.87 1,350.00 -3.80 1.000 1.000 1.000 1.000 1.000 0.312 0.193 1.000 1.000 1.000 1.000 1.000 1.000 0.312 0.193 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.279 0.173 1.000 1.000 1.000 1.000 1.000 1.000 0.279 0.173 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.279 0.173 1.000 1.000 1.000 1.000 1.000 1.000 0.279 0.173 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -2.46 243.94 1,350.00 -2.46 243.94 1,350.00 4.25 420.87 1,350.00 -4.25 420.87 1,350.00 -3.80 376.64 1,350.00 -3.80 376.64 1,350.00 -3.80 376.64 1,350.00 -3.80 376.64 1,350.00 0.80 19.06 170.00 0.47 19.06 170.00 1.39 32.89 170.00 0.80 32.89 170.00 1.24 29.43 170.00 0.72 29.43 170.00 1.24 29.43 170.00 0.72 29.43 170.00 alUood Beam Desi n DocumenlsIENERCALc OA7A FILE me 16b . . File.. : _ omenta and SetGngslP Slta)'tor ec6 .., ... ,; ,_ . _ ENERCALC.INC.1963�2(ItO.Uec:6.151'N:50790 :' Lic. # : KW -0600733 r I i I t- 1� t t Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C Yv C r Cm C t C fu Mactual fb-design Fb-allow Vactual tv-0es4n Fvallow Length = 5.0 ft 1 0.279 0.173 1.000 1.000 1.000 1.000 1.000 1.000 -3.80 376.64 1,350.00 1.24 29.43 170.00 Length = 5.50 ft 2 0.279 0.173 1.000 1.000 1.000 1.000 1.000 1.000 -3.80 376.64 1,350.00 0.72 29.43 170.00 ,Overall Maximum Deflections:- Urfactored Loads Load Combination Span Max.' ' Deft Location in Span Load Combination Max. '+' Defl Location in Span D+Lr 1 0.1010 _ 0.000 _ 0.0000 0.000 2 0.0000 0.000 D+Lr -0.0128 2.327 i Vertical Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Support 3 Overall MAXimum 2.513 -0.734 D Only 1.473 -0.409 Lr Only 1.040 -0.325 D+Lr 2.513 -0.734 r I i I t- 1� t t .0 Description r 622 Material Proael Analysis Method: Allowable Stress Design Fb - Tension Load Combination 20061BC&ASCE7-05 Fb - Compr Fc - Prll Wood Species : DouglasFir-Larch Fc - Perp Wood Grade : No.1 Fv Ft Beam Bracing : Beam is Fully Braced against lateral -torsion buckling D(0.151) Lr(0.119) _ Calculations per IBC 2006, CBC 2007, 2005 NDS 1,350.0 psi E: Modulus of Elasticity 1,350.0 psi Ebend- xx 1,600.Oksi 925.0 psi Eminbend - xx 580.Oksi 625.0 psi 170.0 psi 675.0 psi Density 32.210pcf D(0.284) Lr(0.222) Span = 4.0 ft Span = 15.0 ft Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads -,4-oad for Span Number 1 Uniform Load: D = 0.0250, Lr = 0.020 k/ft, Tributary Width =1.0 ft % Point Load : D=0.1510, Lr = 0.1190 k P 0.0 ft Load for Span Number 2 Length = 4.0 it Uniform Load: D = 0.0250, Lr = 0.020 k/ft, Tributary Width =1.0 ft Point Load: D = 0.2840, Lr = 0.2220 k 0 7.250 ft 0.067 0.065 .: DESIGN SUMM�IRY >_ _: :;:� .......:.`.. _..:_::.:_ 1.000 • - • (Maximum Bending Stress Ratio = 0.2021 Maximum Shear Stress Ratio = 0.105: 1 ! Section used for this span 6x12 ' fb : Actual = 272.43psi Section used for this span fv : Actual = 6x12 17.88 psi j FB: Allowable = 1,350.00psi Fv : Allowable 170.00 psi Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span = 7.269ft Location of maximum on span = 4.000 ft Span # where maximum occurs = Span # 2 Span # where maximum occurs = Span # 1 Maximum Deflection 170.00 +D+Lr+H Max Downward L+Lr+S Deflection 0.031 in Ratio = Max Upward L+Lr+S Deflection -0.012 in Ratio = 5798 7798 Max Downward Total Deflection 0.082 in Ratio = Max Upward Total Deflection -0.036 in Ratio = 2182 2664 1.000 1.000 1.000 1.000 Maximumhrces & Stresses fbe Load Combinations Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C IN C r C m C t C fu Mactual fbdesign Fb-allow Vaclual fv-design Fv-allow Length = 4.0 it 1 0.067 0.065 1.000 1.000 1.000 1.000 1.000 1.000 -0.92 90.79 1,350.00 0.47 11.04 170.00 Length =15.0 it 2 0.124 0.065 1.000 1.000 1.000 1.000 1.000 1.000 1.69 167.13 1,350.00 0.47 11.04 170.00 +D+Lr+H 1.000 1.000 1.000 1.000 1.000 !� Length = 4.0 ft 1 0.114 0.105 1.000 1.000 1.000 1.000 1.000 1.000 -1.55 153.74 1,350.00 0.75 17.88 170.00 Length =15.0 ft 2 0.202 0.105 1.000 1.000 1.000 1.000 1.000 1.000 2.75 272.43 1,350.00 0.75 17.88 170.00 4040.750Lr+0.750L+H 1.000 1.000 1.000 1.000 1.000 Length = 4.0 it 1 0.102 0.095 1.000 1.000 1.000 1.000 1.000 1.000 -1.39 138.00 1,350.00 0.66 16.17 170.00 Length =15.0 it 2 0.182 0.095 1.000 1.000 1.000 1.000 1.000 1.000 2.49 246.10 1,350.00 0.68 16.17 .170.00 Fie C 1Doctirr�nis an_tl SWnps1PC31MyDocumentslENERCALC DATA FlLE me tBb ec6 QQ�•Beat11;Q@$�gtl.;; t ENERCALGINC,19A320t0.Veri6151iN:50790::^` r f(D 01 i r i 1 I r� • : KW -06007390 License Ownerr7ALLIAG iTICCALLIM Description : B22 Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C f/v C r C m C t C fu Mactual fb-design Fballow Vactual fv-design Fv-allow +D+0.750Lr+0.750L+0.750W+H 1.000 1.000 1.000 1.000 1.000 Length = 4.0 ft 1 0.102 0.095 1.000 1.000 1.000 1.000 1.000 1.000 -1.39 138.00 1,350.00 0.68 16.17 170.00 Length = 15.0 ft 2 0.182 0.095 1.000 1.000 1.000 1.000 1.000 1.000 2.49 246.10 1,350.00 0.68 16.17. 170,00 +D+0.750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 Length = 4.0 ft 1 0.102 0.095 1.000 1.000 1.000 1.000 1.000 1.000 -1.39 138.00 1,350.00 0.68 16.17 170.00 Length =15.0 ft 2 0.182 0.095 1.000 1.000 1.000 1.000 1.000 1.000 2.49 246.10 1,350.00 0.68 16.17 170.00 M,azimurn0odio: ns U'n" a6red Loads ;Overall. Load Combination Span Max. ' ' Defl Location in Span Load Combination Max. W Defl Location in Span 1 0.0000 0.000 D+Lr _ -0.0360 0.000 D+Lr 2 0.0825 7.846 0.0000 0.000 F ,Vertical. Reacftons,_ .Un%ctOf@fl . Support notation :Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Support 3 Overall MAXimum 1.315 0.585 ` D Only Lr Only 0.809 0.506 0.370 0.215 D+Lr 1.315 0.585 r f(D 01 i r i 1 I r� . ;�►ooc� ��e'�am Design : , `> •623 �� ciooG;n �i Description : Beam self weight calculated and added to loads 1.000 1.000 1.000 1.000 Material Properties 2 0.060 Analysis Method: Allowable Stress Design Fb - Tension 1.000 Load Combination 2OO61BC8,ASCE7-05 Fb - Compr �oad Undorm Load : D = 0. 1390, Lr = 0.1090 k/ft, Tributary Width = 1.0 ft Fc - PdI Wood Species : DouglasFir-Larch Fc - Perp Length =10.250 It Wood Grade : No.1 Fv 0.207 Uniform Load : D=0.2020, Lr = 0.1580 k/ft, Tributary Ft 1.000 1.000 1.000 1.000 Beam Bracing Beam is Fully Braced against lateral -torsion buckling r i Calculations per IBC 2006, CBC 2007, 2005 NDS 1,350.0 psi E: Modulus of Elasticity 1,350.0 psi Ebend- xx 1,600.0 ksi 925.0 psi Eminbend - xx 58O.Oksi 625.0 psi 170.0 psi 675.0 psi Density 32.210pcf Span = 10.250 ft Span = 2.750 ft Length =10.250 R 1 0.119 Service loads entered. Load Factors will be applied for calculations. ' 1.000 Beam self weight calculated and added to loads 1.000 1.000 1.000 1.000 Length = 2.750 ft 2 0.060 for Span Number 1 1.000 1.000 1.000 1.000 1.000 1.000 �� �oad Undorm Load : D = 0. 1390, Lr = 0.1090 k/ft, Tributary Width = 1.0 ft 1,350.00 1.000 Load for Span Number 2 Length =10.250 It 1 0.203 0.207 Uniform Load : D=0.2020, Lr = 0.1580 k/ft, Tributary Width =-1-.0 ft 1.000 1.000 1.000 1.000 Length = 2.750 ft 2 =DESIGN SUMMARY 0.207 1.000 1.000 1.000 1.000 1.000 1.000 - - ...._ - -._... .... .i Maximum Bending Stress Ratio = . .................. .. ............ ........ ....... ....................... ............. _. _........_.... _.... 0.2031 Maximum Shear Stress Ratio = 0.207 :1 Section used for this span 6x12 Section used for this span 6x12 1 fb : Actual = 274.35psi fv : Actual 35.14 psi 1.000 1.000 1.000 1.000 FB: Allowable 1,35O.00psi Fv : Allowable = 170.00 psi 1.000 Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span = 4.573ft Location of maximum on span = 10.250 ft 1 Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1 1.000 1.000 1.000 1.000 Maximum Deflection Max Downward L+Lr+S Deflection 0.018 in Ratio = 6657 Max Upward L+Lr+S Deflection -0.010 in Ratio = 6344 Max Downward Total Deflection 0.045 in Ratio = 2754 Max Upward Total Deflection -0.025 in Ratio = 2598 ` Maximum;Forces BStresses 9r,.9;_ Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C Yv Cr Cm C t C fu Mactual fb-design Fb-allow Vactual tv-design Fvallow Length =10.250 R 1 0.119 0.121 1.000 1.000 1.000 1.000 1.000 1.000 Length = 2.750 ft 2 0.060 0.121 1.000 1.000 1.000 1.000 1.000 1.000 +D+Lr+H -1.27 125.26 1,350.00 1.000 1.000 1.000 1.000 1.000 Length =10.250 It 1 0.203 0.207 1.000 1.000 1.000 1.000 1.000 1.000 Length = 2.750 ft 2 0.104 0.207 1.000 1.000 1.000 1.000 1.000 1.000 ".750Lr+0.750L+H 1.000 1.000 1.000 1.000 1.000 Length =10.250 it 1 0.182 0.185 1.000 1.000 1.000 1.000 1.000 1.000 Length = 2.750 ft 2 0.093 0.185 1.000 1.000 1.000 1.000 1.000 1.000 +D+0.750Lr+0.750L+0.750W+H 1.000 1.000 1.000 1.000 1.000 Length =10.250 it 1 0.182 0.185 1.000 1.000 1.000 1.000 1.000 1.000 7 1.62 160.68 1,350.00 -0.82 80.90 1,350.00 2.77 274.35 1,350.00 -1.41 140.04 1,350.00 2.48 245.93 1,350.00 -1.27 125.26 1,350.00 2.48 245.93 1,350.00 0.86 20.50 170.00 0.39 20.50 170.00 1.48 35.14 170.00 0.67 35.14 170.00 1.33 31.48 170,00 0.60 31.48 170.00 1.33 31.48 170.00 Description: 823 D W 1 It Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C f1v Cr Cm C t C fu Mactual fb-design Fb-allow Vactual tv-design Fvallow ` Length = 2.750 It 2 0.093 0.185 1.000 1.000 1.000 1.000 1.000 1.000 -1.27 125.26 1,350.00 0.60 31.48 170.00 +O+0.750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 Length =10.250 ft 1 0.182 0.185 1.000 1.000 1.000 1.000 1.000 1.000 2.48 245.93 1,350.00 1.33 31.48 170.00 Length = 2.750 ft 2 0.093 0.185 1.000 1.000 1.000 1.000 1.000 1.000 -1.27 125.26 1,350.00 0.60 31.48 170.00 Qve a11'Maxiinuin'040;1110ns.i,Unfact6red'L0ads, Load Combination Span Max. " Deft Location in Span Load Combination Max. '+' Deft Location in Span D+Lr 1 0.0447 4.967 0.0000 0.000 2 0.0000 4.967 D+Lr -0.0254 2.750 Support notation_ Far left is #1 Values in KIPS �Vertical_Reactfons .Unfa`ctored ; ,r';' _ =Load Combination Support 1 Support 2 Support 3 Overall MAXimum 1.205 2.510 D Only 0.705 1.459 Lr Only 0.500 1.051 �1 D+Lr 1.205 2.510 D W 1 It Lic. #t : KW -06007390 Material Properties calculations per IBC 2006, CBC 2007, 2005 NDS Analysis Method: Allowable Stress Design Fb - Tension 1,350.0 psi E: Modulus of Elasticity Load Combination 20061BC&ASCE7-05 Fb - Compr 1,350.0 psi Ebend- xx 1,600.0 ksi 170.00 Fc - Pdl 925.0 psi Eminbend - xx 580.Oksi Wood Species ; DouglasFir-Larch Fc - Perp 625.0 psi -8.26 Wood Grade : No.1 Fv 170.0 psi Length = 2.750 It 1 Ft 675.0 psi Density 32.210pcf Beam Bracing : Beam is Fully Braced against lateral -torsion buckling +0+0.750Lr+0.75OL40.750W+H 170.00 D(1.378) Lr(1.082) 728.56 _ ... _ .__... ............. _.......__.. _.._ ..............._....; Span 2.750 It Span = 6.0 ft ?, Appl(@d'LOadB Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads �! oad for Span Number 1 Uniform Load: D = 0.2140, Lr = 0.1680 loft, Tributary Width = 1.0 ft 1 Point Load : D =1.378, Lr =1.082 k 0.0 ft Load for Span Number 2 Uniform Load D 0 2140 Lr 01680 ktft Tributary Width =1.0 It DE31GN StlMM�4RY • iMaximum Bending Stress Ratio = 0.6061 Maximum Shear Stress Ratio = 0.443:1 Section used for this span 6x12 Section used for this span 6x12 fb : Actual = 817.92psi tv : Actual 75.23 psi i FB: Allowable = 1,350.00psi Fv : Allowable = 170.00 psi Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span = 2.750ft Location of maximum on span = 1.798 ft Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.038 in Ratio= 1742 Max Upward L+Lr+S Deflection -0.009 in Ratio= 8067 Max Downward Total Deflection 0.086 in Ratio= 764 Max Upward Total Deflection -0.020 in Ratio= 3575 MazimurmForces & Stresses fort oadCombinations Load Combination Max Stress Ratios _ Summary of Moment Values_ Summary of Shear Values Segment Length Span # M V C d C pv Cr Cm C t C fu Mactual f> -design Fb-allow Vactual fv-design Fvallow 0.341 0.249 1.000 0.341 0.249 1.000 0.606 0.443 1.000 0.606 0.443 1.000 0.540 0.394 1.000 0.540 0.394 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .4.65 460.50 1,350.00 1.79 Length = 2.750 It 1 4.65 Length = 6.0 ft 2 1.25 +D+Lr+H 170.00 .8.26 Length = 2.750 n 1 3.17 Length = 6.0 It 2 -8.26 �D+0.750Lr+0.750L+H 1,350.00 2.20 Length = 2.750 It 1 'Length = 6.0 ft 2 2.83 +0+0.750Lr+0.75OL40.750W+H 0.341 0.249 1.000 0.341 0.249 1.000 0.606 0.443 1.000 0.606 0.443 1.000 0.540 0.394 1.000 0.540 0.394 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .4.65 460.50 1,350.00 1.79 42.41 170.00 4.65 460.50 1,350.00 1.25 42.41 170.00 .8.26 817.92 1,350.00 3.17 75.23 170.00 -8.26 817.92 1,350.00 2.20 75.23 170.00 -7.36 728.56 1,350.00 2.83 67.03 170.00 -7.36 728.56 1,350.00 1.96 67.03 170.00 I I ID I I 1 1 -0 007390 License Owner: WALLING IVIC ALLUM LTD. Description B18A Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C f/v C r C m C Cfu Mactual fb-design Fb-allow Vactual fwdesil;ln Fv-allow Length = 2.750 It 1 0.540 0.394 1.000 1.000 1.000 1.000 1.000 1.000 -7.36 728.56 1,350.00 2.83 67.03 170.00 Length = 6.0 ft 2 0.540 0.394 1.000 1.000 1.000 1.000 1.000 1.000 -7.36 728.56 1,350.00 1.96 67.03 170.00 40,,0.111Lr40.111L+0,1251E+H Length = 2.750 ft 1 0.540 0.394 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -7,36 728.56 1,350.00 2.83 67.03 170.00 Length = 6.0 ft 2 0.540 0,394 1.000 1.000 1.000 1.000 1.000 1.000 -7.36 728.56 1,350.00 1.96 67.03 170.00 - ;X Medfloris: Uh a F 16 di Overall0. .64`;.1UM,0. Load Combination Span Max. Deft Location in Span Load Combination Max. '+* Dell Location in Span D+Lr 1 0.0862 0.000 0.0000 0.000 2 0.0000 0.000 D+Lr -0.0201 2.308 :,,V ii'Readiqns.=. Udfadtorbd Support notation Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAY(imum 6.115 -0.189 D Only 3.465 -0.091 Lr Only 2.650 -0.098 D+Lr 6.115 -0.189 I ID I I 1 1 Description : 817A 1 k �I 1 First Brace starts at 0.0 ft from Left -Most support Regular spacing of lateral supports on length of beam = 2.0 ft D(0.532.0.08911 ern A40 n Span = 21.0 ft "Applied loads . Service loads entered. Load Factors will be applied for calculations Beam self weight calculated and added to loads Material Properties Calculations per IBC 2006, CBC 2007, 2005 NDS Load for Span Number 1 i Analysis Method: Allowable Stress Design Fb - Tension 2900 psi E: Modulus of Elasticity Lr(S,E) = 0.4480->0.4180 k/ft, Extent = 0.0 ->> 12.50 ft, Trib Width =1.0 ft Load Combination 20061BC&ASCE7-05 Fb - Compr 2900 psi Ebend- xx 2000 ksi 'Wood Fc - Prll Species : iLevel Truss Joist Fc - Perp Wood Grade : Parallam PSL 2.0E Fv Ft Beam Bracing : Beam bracing is defined as a set spacing over all spans 2900 psi 750 psi 290 psi 2025 psi Eminbend - xx 1016.535ksi Density 32.21 pcf ' ,. Unbraced Lengths 0.310: 1 Section used for this span 7.0x20.0 Section used for this span 7.0x20.0 fb : Actual = 1,255.18psi tv : Actual = 1 k �I 1 First Brace starts at 0.0 ft from Left -Most support Regular spacing of lateral supports on length of beam = 2.0 ft D(0.532.0.08911 ern A40 n Span = 21.0 ft "Applied loads . Service loads entered. Load Factors will be applied for calculations Beam self weight calculated and added to loads Load for Span Number 1 i Varying Uniform Load: D(S,E) = 0.570->0.5320, Lr(S,E) = 0.4480->0.4180 k/ft, Extent = 0.0 ->> 12.50 ft, Trib Width =1.0 ft Varying Uniform Load: D(S,E) = 0.5320->0.0820, Lr(S,E) = 0.4180->0.0640 k/ft, Extent =12.50 -> 19.0 ft, Trib Width = 1.0 ft Length =1.995 it :DESIGNSUMMARY_.__..._.._....__:..... _.......... ..... ....... ' .. ,......... .,._...:._.. : 0.178 • _:.:.`.:....... ._ .... ;Maximum Bending Stress Ratio = _ .. 0.4331 Maximum Shear Stress Ratio = 0.310: 1 Section used for this span 7.0x20.0 Section used for this span 7.0x20.0 fb : Actual = 1,255.18psi tv : Actual = 89.89 psi FB: Allowable 2,896.56psi Fv : Allowable = 290.00 psi ! Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span = 9.765ft Location of maximum on span = 0.000 ft Span # where maximum occurs = Span # 1 Span #where maximum occurs = Span # 1 Maximum Deflection 23.84 612.99 2,896.56 Max Downward L+Lr+S Deflection 0.174 in Ratio = 1447 Length =1.995 ft Max Upward L+Lr+S Deflection 0.000 in Ratio = 0 <360 1.000 Max Downward Total Deflection 0.410 in Ratio = 614 697.14 Max Upward Total Deflection 0.000 in Ratio = 0 <180 290.00 �_'Maximum"Forces:& Stye§ses:foraoad'Comtiinations" __ 0.249 Load Combination Max Stress Ratios _ __ ___ __ _______ Summary of Moment Values Summary of Shear Values Segment Length Span # ,M V` Cd C f/v C r C m C t_ C �_ Mactual fb-design` Fb-allow _- _ Vactual_fv- design ^ Fvallow +D Length =1.995 it 1 0.092 0.178 1.000 1.000 1.000 1.000 1.000 1.000 10.31 265.04 2,896.56 4.82 51.65 290.00 ' Length =1.995 ft 1 0.162 0.178 1.000 1.000 1.000 1.000 1.000 1.000 18.25 469.17 2,896.56 4.57 51.65 290.00 Length =1.995 ft 1 0.212 0.178 1.000 1.000 1.000 1.000 1.000 1.000 23.84 612.99 2,896.56 3.39 51.65 290.00 Length =1.995 ft 1 0.241 0.178 1.000 1.000 1.000 1.000 1.000 1.000 27.11 697.14 2,896.56 2.22 51.65 290.00 Length =1.995 It 1 0.249 0.178 1.000 1.000 1.000 1.000 1.000 1.000 28.09 722.37 2,896.56 1.06 51.65 290.00 ' Length =1.995 It 1 0.249 0.178 1.000 1.000 1.000 1.000 1.000 1.000 28.09 722.23 2,896.56 1.22 51.65 290.00 Length =1.995 It 1 0.238 0.178 1.000 1.000 1.000 1.000 1.000 1.000 26.79 688.88 2,896.56 2.27 51.65 290.00 Length =1.995 ft 1 1 0.207 0.178 1.000 1.000 1.000 1.000 1.000 1.000 x 23.28 598.60 2,896.56 3.05 51.65 290.00 P (� COd' Beam D.es�gn File: Q0muments and Set6ngsIPC3Wy DocumentslENERCALC DATA FILESItaylofrnle 16b.eD6 ENERCALC, INC: 1983.2010 Ver: 6.151_, N:50790 Description: B17A Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C ffv C r C m C t C fu Mactual fb-design Fb-allow Vactual fv-design Fv-allow Length =1.995 It 1 0.159 0.178 1.000 1.000 1.000 1.000 1.000 1.000 17.93 461.10 2,896.56 3.56 51.65 290.00 Length =1.995 It 1 0.100 0.178 1.000 1.000 1.000 1.000 1.000 1.000 11.30 290.46 2,896.56 3.73 51.65 290.00 Length =1.050 ft 1 0.035 0.178 1.000 1.000 1.000 1.000 1.000 1.000 3.95 101.52 2,898.21 3.73 51.65 290.00 +O+Lr+H 1.000 1.000 1.000 1.000 1.000 Length =1.995 ft 1 0.159 0.310 1.000 1.000 1.000 1.000 1.000 1.000 17.94 461.31 2,896.56 8.39 89.89 290.00 Length =1.995 ft 1 0.282 0.310 1.000 1.000 1.000 1.000 1.000 1.000 31.75 816.35 2,896.56 7.95 89.89 290.00 Length =1.995 ft 1 0.368 0.310 1.000 1.000 1.000 1.000 1.000 1.000 41.46 1,066.21 2,896.56 5.89 89.89 290.00 Length =1.995 It 1 0.418 0.310 1.000 1.000 1.000 1.000 1.000 1.000 47.13 1,212.02 2,896.56 3.85 89.89 290.00 ' Length =1.995 It 1 0.433 0.310 1.000 1.000 1.000 1.000 1.000 1.000 48.81 1,255.18 2,896.56 1.84 89.89 290.00 Length = 1.995 It 1 0.433 0.310 1.000 1.000 1.000 1.000 1.000 1.000 48.80 1,254.88 2,896.56 2.14 89.89 290.00 Length =1.995 It 1 0.413 0.310 1.000 1.000 1.000 1.000 1.000 1.000 46.51 1,195.90 2,896.56 3.96 89.89 290.00 Length =1.995 ft 1 0.358 0.310 1.000 1.000 1.000 1.000 1.000 1.000 40.36 1,037.79 2,896.56 5.31 89.89 290.00 ' Length =1.995 It 1 0.275 0.310 1.000 1.000 1.000 1.000 1.000 1.000 31.03 797.87 2,896.56 6.17 89.89 290.00 Length =1.995 It 1 0.173 0.310 1.000 1.000 1.000 1.000 1.000 1.000 19.50 501.31 2,896.56 6.43 89.89 290.00 Length =1.050 ft 1 0.060 0.310 1.000 1.000 1.000 1.000 1.000 1.000 6.79 174.63 2,898.21 6.43 89.89 290.00 +D40.750Lr+0.750L+H 1.000 1.000 1.000 1.000 1.000 Length =1.995 It 1 0.142 0.277 1.000 1.000 1.000 1.000 1.000 1.000 16.03 412.25 2,896.56 7.50 80.33 290.00 Length =1.995 ft 1 0.252 0.277 1.000 1.000 1.000 1.000 1.000 1.000 28.37 729.55 2,896.56 7.11 80.33 290.00 Length =1.995 It 1 0.329 0.277 1.000 1.000 1.000 1.000 1.000 1.000 37.06 952.91 2,896.56 5.27 80.33 290.00 Length =1.995 It 1 0.374 0.277 1.000 1.000 1.000 1.000 1.000 1.000 42.13 1,083.30 2,896.56 3.44 80.33 290.00 Length =1.995 It 1 0.387 0.277 1.000 1.000 1.000 1.000 1.000 1.000 43.63 1,121.97 2,896.56 1.64 80.33 290.00 Length =1.995 It 1 0.387 0.277 1.000 1.000 1.000 1.000 1.000 1.000 43.62 1,121.71 2,896.56 1.91 80.33 290.00 Length =1.995 ft 1 0.369 0.277 1.000 1.000 1.000 1.000 1.000 1.000 41.58 1,069.14 2,896.56 3.54 80.33 290.00 Length =1.995 It 1 0.320 0.277 1.000 1.000 1.000 1.000 1.000 1.000 36.09 927.99 2,896.56 4.75 80.33 290.00 Length =1.995 ft 1 0.246 0.277 1.000 1.000 1.000 1.000 1.000 1.000 27.75 713.67 2,896.56 5.52 80.33 290.00 Length =1.995 ft 1 0.155 0.277 1.000 1.000 1.000 1.000 1.000 1.000 17.45 448.60 2,896.56 5.76 80.33 290.00 Length =1.050 It 1 0.054 0.277 1.000 1.000 1.000 1.000 1.000 1.000 6.08 156.35 2,898.21 5.76 80.33 290.00 40+0.750Lr+0.750L+0.750W+H 1.000 1.000 1.000 1.000 1.000 Length = 1.995 It 1 0.142 0.277 1.000 1.000 1.000 1.000 1.000 1.000 16.03 412.25 2,896.56 7.50 80.33 290.00 Length =1.995 ft 1 0.252 0.277 1.000 1.000 1.000 1.000 1.000 1.000 28.37 729.55 2,896.56 7.11 80.33 290.00 Length =1.995 It 1 0.329 0.277 1.000 1.000 1.000 1.000 1.000 1.000 37.06 952.91 2,896.56 5.27 80.33 290.00 Length =1.995 It 1 0.374 0.277 1.000 1.000 1.000 1.000 1.000 1.000 42.13 1,083.30 2,896.56 3.44 80.33 290.00 Length =1.995 It 1 0.387 0.277 1.000 1.000 1.000 1.000 1.000 1.000 43.63 1,121.97 2,896.56 1.64 80.33 290.00 Length =1.995 It 1 0.387 0.277 1.000 1.000 1.000 1.000 1.000 1.000 43.62 1,121.71 2,896.56 1.91 80.33 290.00 Length =1.995 It 1 0.369 0.277 1.000 1.000 1.000 1.000 1.000 1.000 41.58 1,069.14 2,896.56 3.54 80.33. 290.00 Length =1.995 It 1 0.320 0.277 1.000 1.000 1.000 1.000 1.000 1.000 36.09 927.99 2,896.56 4.75 80.33 290.00 Length =1.995 It 1 0.246 0.277 1.000 1.000 1.000 1.000 1.000 1.000 27.75 713.67 2,896.56 5.52 80.33 290.00 ' Length =1.995 ft 1 0.155 0.277 1.000 1.000 1.000 1.000 1.000 1.000 17.45 448.60 2,896.56 5.76 80.33 290.00 Length =1.050 It 1 0.054 0.277 1.000 1.000 1.000 1.000 1.000 1.000 6.08 156.35 2,898.21 5.76 80.33 290.00 +D+0.750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 Length =1.995 ft 1 0.142 0.277 1.000 1.000 1.000 1.000 1.000 1.000 16.03 412.25 2,896.56 7.50 80.33 290.00 t Length =1.995 It 1 0.252 0.277 1.000 1.000 1.000 1.000 1.000 1.000 28.37 729.55 2,896.56 7.11 80.33 290.00 Length =1.995 ft 1 0.329 0.277 1.000 1.000 1.000 1.000 1.000 1.000 37.06 952.91 2,896.56 5.27 80.33 290.00 Length =1.995 It 1 0.374 0.277 1.000 1.000 1.000 1.000 1.000 1.000 42.13 1,083.30 2,896.56 3.44 80.33 290.00 =1.995 ft 1 0.387 0.277 1.000 1.000 1.000 1.000 1.000 1.000 43.63 1,121.97 2,896.56 1.64 80.33 290.00 'Length Length =1.995 ft 1 0.387 0.277 1.000 1.000 1.000 1.000 1.000 1.000 43.62 1,121.71 2,896.56 1.91 80.33 290.00 Length =1.995 It 1 0.369 0.277 1.000 1.000 1.000 1.000 1.000 1.000 41.58 1,069.14 2,896.56 3.54 80.33 290.00 Length =1.995 ft 1 0.320 0.277 1.000 1.000 1.000 1.000 1.000 1.000 36.09 927.99 2,896.56 4.75 80.33 290.00 Length =1.995 It 1 0.246 0.277 1.000 1.000 1.000 1.000 1.000 1.000 27.75 713.67 2,896.56 5.52 80.33 290.00 ' Length =1.995 ft 1 0.155 0.277 1.000 1.000 1.000 1.000 1.000 1.000 17.45 448.60 2,896.56 5.76 80.33 290.00 Length =1.050 It 1 0.054 0.277 1.000 1.000 1.000 1.000 1.000 1.000 6.08 156.35 2,898.21 5.76 80.33 290.00 .Overall Maximum Deflections - Unfactored Loads Load Combination Span Max. ' ' Dell Location in Span Load Combination Max. '+" Defl Location in Span D+a_r 1 0.4103 0.0000 0.000 J10.395 � Vertical Reactions - U.nfactored Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum - 10.036 6.484 D Only 5.764 3.776 file C'Documents and Seteri6'PC31My DocirmentslENERCALC DATA FlLESVa} br me 16b:e� ood�Beam Desi n ,...,. ,..... 9.... ENERCALG,INC,:19832010Vei.6:1S1 N;50790 1 ^is Description : 817A Vertical Reactions - Unfactored Support notation : Far left is #1 Values in KIPS 1 Load Combination Support 1 Support 2 Lr Only 4.271 2.708 D+Lr 10.036 6.484 1 1 1 ID 1 i 1 1 i i 1 1 1 -... - men an ngs . mi .. , e ; o.r cid-Bea201,V:2 _W-06007390 Licensee 0m0,e e o iV:5079 Description : B24A Material Properties Calculations per NDS 2005, IBC 2006, CBC 2007, ASCE 7-05 Analysis MethoAllowable Stress Design Fb - Tension 1,350.0 psi E: Modulus of Elas6 Load Combinati20061BC&ASCE7-05 Fb - Compr 1,350.0 psi Ebend- xx 1,600.Oksi FB: Allowable = Fc - Prll 925.0 psi Eminbend - x 580.Oksi Wood Species DouglasFir-Larch Fc - Perp 625.0 psi Span # 1 Wood Grade No -1 Fv 170.0 psi Summary of Moment Values Ft 675.0 psi Density 32.210 pcf Beam Bracing Beam is Fully Braced against lateral -torsion buckling C d C fh C r Cm Span = 9.0 ft L Service loads entered. Load Factors will be applied for calculations. Applied Loads pp Beam self weight calculated and added to loads Load for Span Number 1 Varying Uniform Load: D(S,E) = 0.3490->0.3280, Lr(S,E) = 0.2750->0.0 kfft, Extent = 0.0 ­> 9.0 ft, Trib Width = 1.0 ft . -DESIGN OMMAR.Y ' Max Downward L+Lr+S Deflection 0.035 in Ratio= 3043 Max Upward L+Lr+S Deflection 0.000 in Ratio = 0 <360 Max Downward Total Deflection 0.083 in Ratio = 1308 Max Upward Total Deflection 0.000 in Ratio= 0 <180 Bending Stress Ratio 0.459 1 ' ;Maximum Section used for this span 6x12 fv : Actual = fb : Actual 620.03psi 170.00 psi FB: Allowable = 1,350.00psi Location of maximum on span = Load Combination Location of maximum on span = +D+Lr+H 4.455ft Span # 1 Span # where maximum occurs = Span # 1 Max Stress Ratios Maximum Deflection ' Max Downward L+Lr+S Deflection 0.035 in Ratio= 3043 Max Upward L+Lr+S Deflection 0.000 in Ratio = 0 <360 Max Downward Total Deflection 0.083 in Ratio = 1308 Max Upward Total Deflection 0.000 in Ratio= 0 <180 - - - - -- --- -- Maximum Shear Stress Ratio = 0.309 :1 ; Section used for this span 6x12 fv : Actual = 52.46 psi Fv : Allowable = 170.00 psi Load Combination +D+Lr+H Location of maximum on span = 0.000 ft Span # where maximum occurs-- Span # 1 ' Max Downward L+Lr+S Deflection 0.035 in Ratio= 3043 Max Upward L+Lr+S Deflection 0.000 in Ratio = 0 <360 Max Downward Total Deflection 0.083 in Ratio = 1308 Max Upward Total Deflection 0.000 in Ratio= 0 <180 11 - - - - -- --- -- - - -- ......_.. - - - - Maximum Fomes 8 Stresses'for Load Comt Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values ' Segment Length Span # M V C d C fh C r Cm Ct Mactual ft) -design Fb-allow Vadual fv-design Fv-allow +D Length = 9.0 ft 1 0.262 0.176 1.000 1.000 1.000 1.000 1.000 3.57 353.44 1,350.00 .:, , 1.26 29.89 170.00 +D+Lr+H 1.000 1.000 1.000 1.000 ' Length = 9.0 ft 1 0.459 0.309 1.000 1.000 1.000 1.000 1.000 6.26 620.03 1,350.00 2-21 52.46 170.00 +D+0.750Lr+0.750L+H 1.000 1.000 1.000 1.000 Length = 9.0 ft 1 0.410 0.275 1.000 1.000 1.000 1.000 1.000. 5.59 553,38 1,350.00 1.97 46.82 170.00 +D+0.750Lr+0.750L+0.750W 1.000 1.000 1.000 1.000. . Length = 9.0 ft 1 0.410 0.275 1.000 1.000 1.000 1.000 1.000 5.59 553.38 1,350.00 1.97 46.82 170.00 +D+0.750Lr+0.750L+0.5250E 1.000 1.000 1.000 1.000 Length = 9.0 ft 1 0.410 0.275 1.000 1.000 1.000 1.000 1.000 5.59 553.38 1,350.00 1.97 46.82 170.00 Overall Maximum Deflections - Unfactored Loads Load Combination Span Max. "" Defl Location in Span Load Combination Max. "+" Defl Location in Span D+Lr 1 0.0825 4.500 0.0000 0.000 11 w SettingslAdministratheft Do_cumentsENERCALC-DATA FILESWor me 18b.ee.*0OtBe8n men%ts. ENERCALC,:INC.198 - _and 2013 -Ve82:00,'N:50790 _ KW -06007390 Licensee Description : B24A Vertical Reactions - Unfactored Support notation : Far left is #' Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 2.813 2.755 D Only 1.603 1.571 Lr Only 1.211 1.184 ' D+Lr 2.813 2.755 7 � I al � I � I p= 23 X95' 1 '� zcy 'V aZe Q-= I I , 932 " R = I I . 932" 5'44 x-' I c papa e.� n 2i b42., S= II, w= ICoX Co.s 4 20 = 124 (:;)e12 !24+ 45 - 1 G 35 G-75" w�=45(4,2s/L)=97' 5-4- G� Z = .fix- ( 4/2 + 4. q 1 ! $7 W(= 47 9- is 54oW _. 191 jo P = f315` ( $22) 736 '" I 'S`''�� ~ 579 1,4771 'S, SZ3' s, = G, W, = 4s .(7,5/2-* c.5/2� r Ste= 5 w1= qs� g 3/21 �E, ,y W, =90o'i Soo- J 39c _1 157 )24 -- 1 2)U = 21 g ► 3" 15 5 �5, 12�e IL= 2,29-7' P 4,42, R I g7 " 71 U7! 7.-75 Vit :- SLS 02.512-4 F,) - 641 "/ C` 5, 5 �,z. 45 ("12 ZSz tz=�.r��° tt= r'7z5" ifs 5' 12.E 14A3 h = IG33 U!S& w .S>: 2b 6x & GY^ 8 CIX 12 611,11 G M4tz 5) N9.5- lo' �_ �5(10.5/Z� L�) = hG,4-", 37 z (oG4!/r X92 pr �X 12 M z W W10, s= ' 425 w- ?5� ��' 334 IZ = � ,275 ' i -!w�A Irl ►--►low , s= d' w = 4sC2n/2t 6,si = sem'-'' 1VJ iizc ,z) u►�, zs �.s w = 45 4g M. c�c3s 1to I 15, = 3. W _ 4-S (2o/Z� = 4; 0 GKCI 4-.5 3¢3'1 iw 4SC1 K, 2ti7 iZc ' � 3 3' Z=+ 47 R = 1769' 6IX G � w = 4s 02 /Z> - W Z 4s f ll/2� _ 394 57 3 G75 roX l 2 1911-ttCp, 6xco 20) I I I I, s- i�i 90 S94X-14 PA¢AL-a r1- 21'J 1-11, s= E•� wm 90"'. Co( (z 2.2) N1cJ = 3' IN 4b (I-?) -'.S-/2) ' �5fj"/, 6K% 23) 4-120, S - 2' to W = 1L5 (31z" SA + 1) 4,, (2�) = go p� 4.5 (1b/z�3) - ►oho°` (Gb'7`' 91.7 l63 7� %20 . =5G; Sf �9 co v 12 - TZ = 2 T2= - 14 7` 2s G, 23.3" 3-71'/, 6X6 4 G4 �.5 6x12 2'7) 14 2-4, s = 1e 5 2 r W = %4-1 "n 2-92. jL 1� S` 5929' 5(s 2412 1 2.71 _ r X0(04 roX G = MI�c 2�� }-12C�, 5= G-5' W- 45 (23�.5/2� 2.'51 X53 ' KGs %=�2:ri yL67 r 2, 2, t=-Gl-1 30� 1 �27� 5 C. 5 W = d5 (I !z /2_i 2.-75) 277 W=q95'' 2(e 1 Co09 3l) Li P-5 s =o3 u•t = 4s(t.5/2 a 2,'7 2-? (9!50 `�� 4 6 1� rz= Cl 76-" w = C3 d" , ��-rt► 3�1 yam, s= 3 w = 45 �ntcfiST; 351 �-132, s = ► 2, 5 w = g o'� ,KIT 37� 5 (N = d -S ta•5�2+ )) P= 52g' 1 9.' Wr=Q5(19-5IZ+ I = 424E PZ 45(27/2'=(aOb". care 6Gi3^i2'�°' S(2) 90 1445 1449 (DI7) r 2`b 21,1, �= 4599 r2-= - r,9E a)(C- 6,< 1,2 6,<12 C'xio 6"C 1 f2. w =45 W=4sxii/L_ 2,1�' W=45 (2) W = 4!� A'/. w = 4Ta (l j/2 + 1 G�Z� = SI 5bl, w _ 4C 45 (5/Z) = 2t 5 1 4°)'-4��� q� 6* 241 41) 265 �\f u -I 42-1 7-139 S' 1.5 43) 4A) 937' D011/MPS 4IS) P42, 5= ?. t rL �. 5 1 � GU ¢�r 4,) c 47 MEP/ 481 LI -4 w =45 W=4sxii/L_ 2,1�' W=45 (2) W = 4!� A'/. w = 4Ta (l j/2 + 1 G�Z� = SI 5bl, w _ 4C P-(2'�dt w 8 673 � I 55 5'/4 .x 14, Ph rus.u�r► 14 P�aua� C�>c G GAG C�XG (oX 14 45 (5/Z) = 2t 5 w= Zo3"s 1 9 p= q� 6* 241 265 � 2 937' l� 4-9 W 4- rL �. 5 1 � GU ¢�r rt fc LL�<iL13Zrj!) �5�� C' ? 5 u %l1 ' 4s•.� -L,O %l O�.,TU 54� 1-151, s 2 45 r 2-1 P-(2'�dt w 8 673 � I 55 5'/4 .x 14, Ph rus.u�r► 14 P�aua� C�>c G GAG C�XG (oX 14 u Description : H1 Span = 8.0 ft ApplieOLoads Beam self weight calculated and added to loads Service loads entered. Load Factors will be applied for calculations. Material Properties Calculations per IBC 2006, CBC 2007, 2005 NDS Analysis Method: Allowable Stress Design _ Fb - Tension 2900 psi E: Modulus of Elasticity ::-: Load Combination 2OO61BC&ASCE7-05 Fb - Compr 2900 psi . Ebend- xx 2OOOksi Bending Stress Ratio = Fc - Prll 2900 psi Eminbend - xx 1O16.535ksi 0.651 :1 Wood Species : iLevel Truss Joist Fc - Perp 750 psi Section used for this span Wood Grade : Parallam PSL 2.0E Fv 290 psi fb : Actual = 2,013.08 psi fv : Actual Ft 2025 psi Density 32.21 pcf Beam Bracing : Beam bracing is defined as a set spacing over all spans 2,894.41 psi Fv : Allowable 'Untraced<Lengths 290.00 psi Load Combination First Brace starts at 0.0 ft from Left -Most support +D+Lr+H Regular spacing of lateral supports on length of beam = 2.0 ft 4.00Oft Location of maximum on span = 0.000 ft D(13.269) Lr(1O.426) Span # where maximum occurs = Span 11 Span # where maximum occurs = Span # 1 Maximum Deflection Span = 8.0 ft ApplieOLoads Beam self weight calculated and added to loads Service loads entered. Load Factors will be applied for calculations. Point Load: D =13.269, Lr =10.426 k (a)4.0 ft SUMMARY . < .. ... 3IMaximum ::-: . • 'DEStt"sN Bending Stress Ratio = 0.6991 Maximum Shear Stress Ratio = 0.651 :1 Section used for this span 5.25x18.0 Section used for this span 5.25x18.0 fb : Actual = 2,013.08 psi fv : Actual 188.90 psi FB: Allowable = 2,894.41 psi Fv : Allowable 290.00 psi Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span = 4.00Oft Location of maximum on span = 0.000 ft Span # where maximum occurs = Span 11 Span # where maximum occurs = Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.038 in Ratio= 2530 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection Max Upward Total Deflection 0.087 in Ratio= 1108 0.000 in Ratio= 0 <180 Maximum Forces & Stresses for Load Combinations _ ,Load Combination Max Stress Ratios __ Summa_ry of_ Moment Values Summary of Shear Values Segment Length Span # M V C d C i/v C r Cm C t C fu Mactual lb -design Fb-allow Vactual fv-design Fvallow Length = 2.0 It 1 0.196 0.366 1.000 1.000 1.000 1.000 1.000 1.000 13.40 567.02 2,894.41 6.69 106.16 290.00 Length = 2.0 It 1 0.391 0.366 1.000 1.000 1.000 1.000 1.000 1.000 26.71 1,130.46 2,894.41 6.68 106.16 290.00 Length = 2.0 It 1 0.391 0.366 1.000 1.000 1.000 1.000 1.000 1.000 26.71 1,130.46 2,894.41 6.68 106.16 290.00 Length = 2.0 It 1 0.196 0.366 1.000 1.000 1.000 1.000 1.000 1.000 13.40 567.02 2,894.41 6.69 106.16 290.00 +D+Lr+H 1.000 1.000 1.000 1.000 1.000 Length = 2.0 ft 1 0.348 0.651 1.000 1.000 1.000 1.000 1.000 1.000 23.82 1,008.33 2,894.41 11.90 188.90 290.00 Length = 2.0 It 1 0.696 0.651 1.000 1.000 1.000 1.000 1.000 1.000 47.56 2,013.08 2,894.41 11.89 188.90 290.00 Length = 2.0 It 1 0.696 0.651 1.000 1.000 1.000 1.000 1.000 1.000 47.56 2,013.08 2,894.41 11.89 188.90 290.00 Length = 2.0 ft 1 0.348 0.651 1.000 1.000 1.000 1.000 1.000 1.000 23.82 1,008.33 2,894.41 11.90 188.90 290.00 +D+O.750Lr+0.750L+H 1.000 1.000 1.000 1.000 1.000 Lic. # : KW -060073 vmmw•• 1-2 [1 11 f� 1 Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C f/v C r Cm C t C fu Mactual fb-design Fb-allow Vactual fv- design Fv-allow Length = 2.0 It 1 0.310 0.580 1.000 1.000 1.000 1.000 1.000 1.000 21.22 898.00 2,894.41 10.60 168.21 290.00 Length = 2.0 ft 1 0.619 0.580 1.000 1.000 1.000 1.000 1.000 1.000 42.35 1,792.43 2,894.41 10.59 168.21 290.00 Length = 2.0 ft 1 0.619 0.580 1.000 1.000 1.000 1.000 1.000 1.000 42.35 1,792.43 2,894.41 10.59 168.21 290.00 Length = 2.0 It 1 0.310 0.580 1.000 1.000 1.000 1.000 1.000 1.000 21.22 898.00 2,894.41 10.60 168.21 290.00 +D+0.750Lr+0.750L+0.750W+H 1.000 1.000 1.000 1.000 1.000 Length = 2.0 It 1 0.310 0.580 1.000 1.000 1.000 1.000 1.000 1.000 21.22 898.00 2,894.41 10.60 168.21 290.00 Length = 2.0 It 1 0.619 0.580 1.000 1.000 1.000 1.000 1.000 1.000 42.35 1,792.43 2,894.41 10.59 168.21 290.00 Length = 2.0 It 1 0.619 0.580 1.000 1.000 1.000 1.000 1.000 1.000 42.35 1,792.43 2,894.41 10.59 168.21 290.00 Length = 2.0 It 1 0.310 0.580 1.000 1.000 1.000 1.000 1.000 1.000 21.22 898.00 2,894.41 10.60 168.21 290.00 +D+0.750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 Length = 2.0 It 1 0.310 0.580 1.000 1.000 1.000 1.000 1.000 1.000 21.22 898.00 2,894.41 10.60 168.21 290.00 Length = 2.0 It 1 0.619 0.580 1.000 1.000 1.000 1.000 1.000 1.000 42.35 1,792.43 2,894.41 10.59 168.21 290.00 Length = 2.0 ft 1 0.619 0.580 1.000 1.000 1.000 1.000 1.000 1.000 42.35 1,792.43 2,894.41 10.59 168.21 290.00 Length = 2.0 ft 1 0.310 0.580 1.000 1.000 1.000 1.000 1.000 1.000 21.22 898.00 2,894.41 10.60 168.21 290.00 Overall Maximum Deflections Unfactpro, Loads Load Combination Span Max. ' ' Dell Location in Span Load Combination Max. '+' Dell Location in Span D+Lr 1 0.0866 4.040 0.0000 0.000 V®ttiC81 R@aCttOr1S : U11fdCtOf@d .'; Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 11.932 11.932 DOnly 6.719 .6.719 Lr Only 5.213 5.213 D+Lr 11.932 11.932 [1 11 f� 1 I 11 i Description : H5 Calculations per IBC 2006, CBC 2007,13th AISC Analysis Method: Allowable Stress Design Fy : Steel Yield: 36.0 ks! Beam Bracing: Beam is Fully Braced against lateral -torsion buckling E: Modulus 29,000.0 ksi Bending Axis: Major Axis Bending Load Combination 2006 IBC & ASCE 7-05 W8X28 W8X28 Applied Loads, :,: Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Load for Span Number I Uniform Load : D=0.2680, Lr=0.210kift, Tributary Width 1.0. ft Load for Span Number 2 Uniform Load: D = 0.1070, Lr = 0.0840 k/ft, Extent = 0.0 ->> 1.250 ft, Tributary Width =1.0 ft Uniform Load: D = 0.0540, Lr = 0.0440 k/ft, Extent =1.250 ->> 7.50 ft, Tributary Width =1.0 ft Point Load: D = 0,7160, Lr = 0,5710 1 na 7,10 1 Point Load: D = 0.3020, Lr = 0.2380 k 1.250 ft Maximum Bending Stress Ratio = 0.290: 1 Maximum Shear Stress Ratio = 0.119 1 Section used for this span W8X28 Section used for this span W8X28 Mu Applied 14.155 k -ft Vu : Applied 3.946 k Mn Omega: Allowable 48.862 k -ft Vn/Omega: Allowable 33.078 k Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span 10.000ft Location of maximum on span 10.000 ft Span # where maximum occurs Span # I Span # where maximum occurs Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.111 in Ratio = 1628 Max Upward L+Lr+S Deflection Max Downward Total Deflection -0.008 in Ratio= 0.263 in Ratio= 15190 684 Max Upward Total Deflection -0-019 in Ratio= 6403 -7­*"­-'­7........ .. .. -. -.....7 foMaxim r LoidCoMbinations . .... . ... ..... ... . ...... . . ............... .... .. . ..... .... ... ... Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V Mmax + Mmax - Ma - Max Mnx Mnx/Ornega Cb Rm Va Max Vnx VnxtOmega Overall MAY(imurn Envelope Dsgn. L = 10.00 ft 1 0.290 0.119 Dsgn. L = 7.50 It 2 0.290 0.088 1.23 -14.16 -14.16 14.16 81.60 48.86 1.00 1.00 14.16 81.60 48.86 1.00 1.00 3.95 2.92 49.62 49.62 33.08 33.08 40 Dsgn. L = 10.00 It 1 0.169 0.070 0.73 -8.25 8.25 81.60 48.86 1.00 1.00 2.30 49.62 33.08 Dsgn. L = 7.50 It 2 0.169 0.052 -8.25 8.25 81.60 48.86 1.00 1.00 1.72 49.62 33.08 404Lr+H Dsgn. L = 10.00 It 1 0.290 0.119 1.23 -14.16 14.16 81.60 48.86 1.00 1.00 3.95 49.62 33.08 Dsgn. L = 7.50 ft 2 0.290 0.088 -14.16 14.16 81.60 48.86 1.00 1.00 2.92 49.62 33.08 +D+0.750Lr40.750L+H Dsgn L = 10.00 It 1 0.259 0.107 1.10 -12.68 12.68 81.60 48.86 1.00 1.00 3.54 49.62 33.08 Dsgn: L = 7.50 It 2 0.259 0.079 -12.68 12.68 81.60 48.86 1.00 1.00 2.62 49.62 33.08 +040.750Lr+0.750L-+0.750W+H Dsgn. L = 10.00 ft 1 0.259 0.107 1.10 -12.68 12.68 81.60 48.86 1.00 1.00 3.54 49.62 33.08 Dsgn. L = 7.50 ft 2 0.259 0.079 -12.68 12.68 81.60 48.86 1.00 1.00 2.62 49.62 33.08 +D+0.750Lr+0.75OL40.5250E+H Dsgn. L = 10.00 ft 1 0.259 0.107 1.10 -12.68 12.68 81.60 48.86 1.00 1.00 3.54 49.62 33.08 Dsgn. L = 7.50 ft 2 0.259 0.079 -12.68 12.68 81.60 48.86 1.00 1.00 2.62 49.62 33.08 'Overall Maximum. Deflections - Unfactored Loads Load Combination Span Max. "-" Dell Location in Span Load Combination Max. Dell Location in Span 1 0.0000 0.000 D+Lr -0.0187 7.231 File: CaDocuments and SettingslF J 11 1b9 3.46 523 7M 8.77 10.46 12.25 13.98 15.77 17.44 Distame (ft) ■ 0-11 NA%:n.n E -14W ■ +D ■ +D+L.+M ■ +D+0.7S0L.+0.75DL+M ■ +D+D.7S0L.+0.7SDL+0.7S0W+M i +D+D.750L.+0.7SDL+0.S2S0l+M 1.69 3.46 523 7= 8J7 10.46 1225 13.98 15.77 17.44 Distance (ft) • 0-11 HAX;m..1 E -lope • +D \ +D+L•+11 ■ +D+D.7S0L.+D.7S0L+0 • + D+0.7$DL.+0.7SD1+D.7S0W+M 9 +D+0.7 SOL-+0.7SOL+D.SIS0E+X # : KW -06007390 License Owner: ITALLIAG ifiCCALL1111 Description: H5 Oirerall Maximum;Deflections-::Unfactori3dUads Load Combination Span Max. ' ' Defl Location in Span Load Combination Max. W Defl Location in Span ' D+tt 2 0.2629 7.500 0.0000 7.231 Maximum Deflect 96 for Load.ColiNnifths Unfactored'toads Load Combination Span Max. Downward Dell Location in Span Max. Upward Dell Location in Span D Only 2 0.1524 7.500 0.0000 0.000 Lr Only 2 0.1105 7.500 0.0000 0.000 D+U 2 0.2629 7.500 0.0000 0.000 . N@IfICai ReaCtlOn$ ' Support notation : Far left is #1 Values in KIPS .,UltfaCtOfed Load Combination Support 1 Support 2 Support 3 Overall MAXimum 1.115 6.862 D Only 0.656 4.025 Lr Only 0.459 2.838 D+Lr 1.115 6.862 ` Y$teeitS dion'Properties : W8X28 _. .. . Depth = 8.060 in 1 xx = 98.00 inA4 J = 0.537 inA4 Web Thick 0.285 in S xx- 24.30 in13 Cw = 312.00 inA6 Flange Width 6.540 in R xx 3.450 in Flange Thick = 0.465 in Zx = 27.200 inA3 Area 8.240 inA2 Weight 28.049 plf 1 yy S yy 21.700 inA4 6.630 inA3 Wno 12.400 inA2 Kdesign 0.859 in R yy 1.620 in Sw _ 9.440 inA4 K1= 0.625 in Zy = 10.100 inA3 of = 5.520 inA3 )rts1.840 in rT = 1.770 in ow = 13.400 inA3 Ycg 4.030 in J 11 1b9 3.46 523 7M 8.77 10.46 12.25 13.98 15.77 17.44 Distame (ft) ■ 0-11 NA%:n.n E -14W ■ +D ■ +D+L.+M ■ +D+0.7S0L.+0.75DL+M ■ +D+D.7S0L.+0.7SDL+0.7S0W+M i +D+D.750L.+0.7SDL+0.S2S0l+M 1.69 3.46 523 7= 8J7 10.46 1225 13.98 15.77 17.44 Distance (ft) • 0-11 HAX;m..1 E -lope • +D \ +D+L•+11 ■ +D+D.7S0L.+D.7S0L+0 • + D+0.7$DL.+0.7SD1+D.7S0W+M 9 +D+0.7 SOL-+0.7SOL+D.SIS0E+X i �IIO. V.4JN1:e11 WIIW dN-JGWIIaJIrWUYIr. V Lic. # : KW -06007390 License Owner: WALLING MCCALLUM LTD. ROOM Distance (ft) 80—.urax:—e—M" 0 00•y 0 i -0•y 8 oaL- 1 1 1 1 1 1 cod Beam Description : ments and SettingsWdmirilstratorNy Doc C DATA FILESItaylor me 16b.ec6 19832011. Ver. 6.2.00. N:50790 Material Properties Calculations per NDS 2005, IBC 2006, CBC 2007, ASCE 7-05 Analysis MethoOkilowable Stress Design Fb - Tension 1,350.0 psi E : Modulus of Elasti Load Combinat00061BC&ASCE7-05 Fb - Compr 1,350.0 psi Ebend- xx 1,600.Oksi Load Combination Fc - Prll 925.0 psi Eminbend - x 580.Oksi Wood Species DouglasFir-Larch Fc - Perp 625.0 psi fb-design Fb-allow Wood Grade No.1 Fv 170.0 psi Ft 675.0 psi Density 32.210 pcf Beam Bracing Beam bracing is defined as a set spacing over all spans Unbraced Lengths Length = 1.975 ft 1 0.287 First Brace starts at ft from Left -Most support 1.000 1.000 1.000 1.000 Regular spacing of lateral supports on length of beam = 2.0 ft 1.67 387.67 1,349.23 1.04 37.76 170.00 D(0.504) Lr(0.396) D(0.157) Lr(0.124) D(1.575) Lr(1.238) Span = 6.0 ft Span = 5.0 ft Span = 1.250 ft JDApplied Loads Beam self weight calculated and added to loads Load for. Span Number 1 Uniform Load : D = 0.5040, Lr = 0.3960 , Tributary Width Load for Span Number 2 Uniform Load : D = 0. 1570, Lr = 0.1240 , Tributary Width Load for Span Number 3 Point Load : D = 1.575, Lr = 1.238 k @ 1.0 ft DESIGN SUMMARY Maximum Bending Stress Ratio = 0.544 1 Section used for this span 6x8 fb : Actual 733.32 psi FB: Allowable 1, 349.23 psi Load Combination +D+Lr+H Location of maximum on span = 2.658ft Span # where maximum occurs = Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.018 in R Max Upward L+Lr+S Deflection -0.013 in Max Downward Total Deflection 0.041 in R Max Upward Total Deflection -0.030 in R IMaximum Forces & Stresses for Load Comt Service loads entered. Load Factors will be applied for calculations. = 1.0 ft = 1.0 ft atio = 1658 Ratio = 4586 atio = 730 atio = 2020 Load Combination Maximum Shear Stress Ratio = 0.655 :1 Section used for this span 6x8 fv : Actual = 111.33 psi Fv : Allowable = 170.00 psi Load Combination +D+Lr+H Location of maximum on span = 6.000 ft Span # where maximum occurs-- Span # 1 atio = 1658 Ratio = 4586 atio = 730 atio = 2020 Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C f/v C r Cm C t Mactual fb-design Fb-allow Vactual fv-design Fv-allow +D Length = 1.975 ft 1 0.287 0.222 1.000 1.000 1.000 1.000 1.000 1.67 387.67 1,349.23 1.04 37.76 170.00 Length = 1.975 ft 1 0.306 0.222 1.000 1.000 1.000 1.000 1.000 1.78 413.36 1,349.23 0.68 37.76 170.00 /) Length = 2.051 ft 1 0.229 0.370 1.000 1.000 1.000 1.000 1.000 1.33 309.60 1,349.20 1.73 62.87 170.00 Length = 1.962 ft 2 0.196 0.370 1.000 1.000 1.000 1.000 1.000 -1.14 264.44 1,349.23 0.23 62.87 170.00 Length = 2.025 ft 2 0.199 0.370 1.000 1.000 1.000 1.000 1.000 -1.16 269.10 1,349.21 0.34 62.87 170.00 1 I bod Beam ments and SettingsAdministratDAW DocurnenWENERCALC -DATA RLESU.Wor mc I Sb.ecS ENIERCALC, INC. 19632011, Ver .61.00, N:50790 0.00 •0 Licensee Description : H6 Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C f/v C r Cm Ct Mactual fb-design Fb-allow Vactual tv-design Fv-allow Length = 1.013 ft 2 0.273 0.370 1.000 1.000 1.000 1.000 1.000 -1.58 368-22 1,349.61 1.58 62.87 170.00 Length = 0.9968 ft 3 0.273 0.370 1.000 1.000 1.000 1.000 1.000 -1.58 368-22 1,349.61 1.58 62.87 170.00 Length = 0*2532 ft 3 0*001 0*370 1.000 1.000 1.000 1,000 1.000 -0*01 1.23 1,349.90 1.58 62,87 170,00 +D+Lr+H 1.000 1.000 1.000 1.000 Length = 1.975 I't 1 0.510 0.394 1.000 1.000 1.000 1.000 1.000 2.95 687.56 1,349.23 1.84 66.96 170.00 Length = 1.975 It 1 0.544 0.394 1.000 1.000 1.000 1.000 1.000 3.15 733.32 1,349.23 1.20 66.96 170.00 Length = 2.051 ft 1 0.408 0.655 1.000 1.000 1.000 1.000 1.000 2.36 550.01 1,349.20 3.06 111.33 170.00 Length = 1.962 ft 2 0.346 0.655 1.000 1.000 1.000 1.000 1.000 -2.00 466.16 1,349.23 0.40 111.33 170.00 Length = 2.025 ft 2 0.357 0.655 1.000 1.000 1.000 1.000 1.000 -2.07 481-46 1,349.21 0.60 111.33 170.00 Length = 1.013 ft 2 0.486 0.655 1.000 1.000 1.000 1.000 1.000 -2.82 656-34 1,349.61 2.82 111.33 170.00 Length = 0.9968 ft 3 0.486 0.655 1.000 1.000 1.000 1.000 1.000 -2.82 656-34 1,349.61 2.82 111.33 170.00 Length = 0.2532 ft 3 0.002 0.655 1.000 1.000 1.000 1.000 1.000 -0.01 2.14 1,349.90 2.82 111.33 170.00 +D+0.750Lr+0.750L+H 1.000 1.000 1.000 1.000 Length = 1.975 ft 1 0.454 0.351 1.000 1.000 1.000 1.000 1.000 2.63 612.59 1,349.23 1.64 59.66 170.00 Length = 1.975 ft 1 0.484 0.351 1.000 1.000 1.000 1.0()0 1.000 2.81 653.33 1,349.23 1.07 59.66 170.00 Length = 2.051 ft 1 0.363 0.584 1.000 1.000 1.000 1.000 1.000 2.11 489-91 1,349.20 2.73 99.21 170.00 Length = 1.962 ft 2 0.308 0.584 1.000 1.000 1.000 1.000 1.000 -1.79 415.73 1,349.23 0.36 99.21 170.00 Length = 2.025 ft 2 0.317 0.584 1.000 1.000 1.000 1.000 1.000 -1.84 428-37 1,349.21 0.53 99.21 170.00 Length = 1.013 ft 2 0.433 0.584 1.000 1.000 1.000 1.000 1.000 -2.51 584.31 1,349.61 2.51 99.21 170.00 Length = 0.9968 It 3 0.433 0.584 1.000 1.000 1.0()0 1.000 1.000 -2.51 584.31 1,349.61 2.51 99.21 170.00 Length = 0.2532 ft 3 0.001 0.584 1.000 1.000 1.000 1.000 1.000 -0.01 1.91 1,349.90 2.51 99.21 170.00 +D+0.750Lr+0.750L+0.75OW- 1.000 1.000 1.000 1.000 Length = 1.975 ft 1 0.454 0.351 1.000 1.000 1.000 1.000 1.000 2.63 612.59 1,349.23 1.64 59.66 170.00 Length = 1.975 ft 1 0.484 0.351 1.000 1.000 1.000 1.000 1.000 2.81 653.33 1,349.23 1.07 59.66 170.00 Length = 2.051 ft 1 0.363 0.584 1.000 1.000 1.000 1.000 1.000 2.11 489-91 1,349.20 2.73 99.21 170.00 Length = 1.962 ft 2 0.308 0.584 1.000 1.000 1.000 1.000 1.000 -1.79 415.73 1,349.23 0.36 99.21 170.00 Length = 2.025 ft 2 0.317 0.584 1.000 1.000 1.000 1.000 1.000 -1.84 428.37 1,349.21 0.53 99.21 170.00 Length = 1.013 ft 2 0*433 0,584 1.000 1,000 1.000 1.000 1,0()0 -2*51 584*31 1,349*61 2*51 99*21 170*00 Length = 0.9968 It 3 0.433 0.584 1.000 1.000 1.000 1.000 1.000 -2.51 584.31 1,349.61 2.51 99.21 170.00 Length = 0.2532 ft 3 0.001 0.584 1.000 1.000 1.000 1.000 1.000 -0.01 1.91 1,349.90 2.51 99.21 170.00 +D+0.750Lr+0.750L+0.5250E 1.000 1.000 1.000 1.000 Length = 1.975 ft 1 0.454 0.351 1.000 1.000 1.000 1.000 1.000 2.63 612.59 1,349.23 1.64 59.66 170.00 Length = 1.975 ft 1 0.484 0.351 1.000 1.000 1.000 1.000 1.000 2.81 653.33 1,349.23 1.07 59.66 170.00 Length = 2.051 It 1 0.363 0.584 1.000 1.000 1.000 1.000 1.000 2.11 489-91 1,349.20 2.73 99.21 170.00 Length = 1.962 ft 2 0.308 0.584 1.000 1.000 1.000 1.000 1.000 -1.79 415.73 1,349.23 0.36 99.21 170.00 Length = 2.025 ft 2 0.317 0.584 1.000 1.000 1.000 1.0()0 1.000 -1.84 428.37 1,349.21 0.53 99.21 170.00 Length = 1.013 ft 2 0.433 0.584 1.000 1.000 1.000 1.000 1.000 -2.51 584.31 1,349.61 2.51 99.21 170.00 Length = 0.9968 It 3 0.433 0.584 1.000 1.000 1.000 1.000 1.000 -2.51 584.31 1,349.61 2.51 99.21 170.00 Length = 0.2532 It 3 0.001 0.584 1.000 1.13130 1.000 1.000 1.000 -0.01 1.91 1,349.90 2.51 99.21 170.00 Overall Maximum Deflections - Unfactored Loads Load Combination Span Max. "-" Defl Location in Span Load Combination Max. Defl Location in Span D+Lr 1 0.0621 2.886 0.0000 0.000 2 0.0000 2.886 D+Lr -0.0297 2.658 D+Lr 3 0.0411 1.250 0.0000 2.658 Vertical Reactions - Unfactored Support notation : Far left is # Values in KIPS Load Combination Support I Support 2 Support 3 Support 4 Overall MAXimum 2.394 3.624 3.714 D Only 1.350 2.055 2.091 Lr Only 1.044 1.568 1.622 D+Lr 2.394 3.624 3.714 I Description : H7 Material Analysis Method: Allowable Stress Design Fb - Tension Load Combination 20061BC&ASCE7-05 Fb - Compr 925.0 psi Fc - Pdl Wood Species : DouglasFir-Larch Fc - Perp Wood Grade : No.1 Fv 675.0 psi Ft Beam Bracing : Beam is Fully Braced against lateral -torsion buckling Calculations per IBC 2006, CBC 2007, 2005 NDS 1,350.0 psi E: Modulus of Elasticity 1,350.0 psi Ebend- xx 1,600.0 ksi 925.0 psi Eminbend - xx 580.Oksi 625.0 psi Beam self weight calculated and added to loads 170.0 psi 1 675.0 psi Density 32.210pcf Span = 5.50 ft Span # Span = 7.750 ft C d s ; ,plied LOadS , ; . `^' =' . - C r Cm C t C N Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Length = 5.50 ft 1 0.267 1oad for Span Number 1 1.000 1.000 1.000 1.000 1.000 1.000 Uniform Load : D = 0.2270, Lr = 0.1760 k/ft, Tributary Width =1.0 ft 361.04 1,350.00 Load for Span Number 2 37.01 170.00 Length = 7.750 it Uniform Load: D = 0.3590, Lr = 0.2820 k/ft, Tributary Width =1.0 ft 0.267 0.218 :.. 'DESIGN SUMMARY :' . 1.000 1.000 1.000 1.000 1.000 _114112• 'Maximum Bending Stress Ratio = _.. ...... ....... .. . . 0.4631 Maximum Shear Stress Ratio = 0.381: 1 Section used for this=span 6x12 Section used for this span 6x12 fb : Actual 624.54psi fv : Actual 64.69 psi FB: Allowable = 1,350.00psi Fv : Allowable 170.00 psi Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span = 5.500ft Location of maximum on span = 5.500 ft Span # where maximum occurs = Maximum Deflection Span 11 Span # where maximum occurs = Span 11 Max Downward L+Lr+S Deflection 0.043 in Ratio= 3044 170.00 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 0.381 Max Downward Total Deflection Max Upward Total Deflection 0.105 in Ratio= -0.002 in Ratio= 1258 47498 -6.31 It Maximum :Fo'rces &.:St[ ess +for;Load'Gomtiinations Max Stress Ratios Load Combinabon Segment Length Span # M V C d C flv C r Cm C t C N Summary of Moment Values Mactual fb-design Fb-allow Summary of Shear Values Vactual fv-design Fvallow Length = 5.50 ft 1 0.267 0.218 1.000 1.000 1.000 1.000 1.000 1.000 -3.65 361.04 1,350.00 1.56 37.01 170.00 Length = 7.750 it 2 0.267 0.218 1.000 1.000 1.000 1.000 1.000 1.000 -3.65 361.04 1,350.00 1.56 37.01 170.00 +D+Lr+H 1.000 1.000 1.000 1.000 1.000 Length = 5.50 it 1 0.463 0.381 1.000 1.000 1.000 1.000 1.000 1.000 -6.31 624.54 1,350.00 2.73 64.69 170.00 Length = 7.750 It 2 0.463 0.381 1.000 1.000 1.000 1.000 1.000 1.000 -6.31 624.54 1,350.00 2.73 64.69 170.00 \ +CA*750Lr+0.750L+H 1.000 1.000 1.000 1.000 1.000 J Length = 5.50 it 1 0.414 0.340 1.000 1.000 1.000 .1.000 1.000 1.000 -5.64 558.66 1,350.00 2.44 57.77 170.00 Length = 7.750 ft 2 0.414 0.340 1.000 1.000 1.000 1.000 1.000 1.000 -5.64 558.66 1,350.00 2.44 57.77 170.00 +0+0.750Lr+0.750L+0.750W+H 1.000 1.000 1.000 1.000 1.000 Length = 5.50 It 1 0.414 0.340 1.000 1.000 1.000 1.000 1.000 1.000 -5.64 558.66 1,350.00 2.44 57.77 170.00 1 File G.,U=ments anil Settings1BG31My od Beam Design. _. Description: H7 J J I 1 Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Scgment Length Span # M V --- C d - --- - C fly -- -- C r C m C t C fu - - - --- Mactual ------ ---- - fb- design -- -.... Fb-allow -- - - - Vactual - --,� fv-design Fvallow Length = 7.750 ft 2 0.414 0.340 1.000 1.000 1.000 1.000 1.000 1.000 -5.64 558.66 1,350.00 2.44 57.77 170.00 +D+0.750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 Length = 5.50 It 1 0.414 0.340 1.000 1.000 1;000 1.000 1.000 1.000 -5.64 558.66 1,350.00 2.44 57.77 170.00 Length 7.750 ft 2 0.414 0.340 1.000 1.000 1.000 1.000 1.000 1.000 -5.64 558.66 1,350.00 2.44 57.77 170.00 . Oye�all,Maximurn Deflections Unfictored'Loads Load Combination Span Max. ' ' Defl Location in Span Load Combination Max. '+' Deft Location in Span D+Lr 1 0.1049 0.000 0.0000 0.000 D+Lr 2 0.0124 4.888 D+Lr -0.0020 0.715 V.eitical Rdactlons=.UnfactOr@d . Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Support 3 Overall MAXimum 5.647 1.725 - D Only 3.243 0.975 Lr Only 2.404 0.749 D+Lr 5.647 1.725 J J I 1 F-RUic. # : KW -060073' t file C.1Documepts and Settings1PG3,". Doo gln .. Material Properties Analysis Method: Allowable Stress Design Fb - Tension Load Combination 20061BC&ASCE7-05 Fb - Compr Wood Species Wood Grade Beam Bracing Fc - Prll DouglasFir-Larch Fc - Perp No.1 Fv Ft Beam is Fully Braced against lateral -torsion buckling Calculations per IBC 2006, CBC 2007, 2005 NDS 1,350.0 psi E: Modulus of Elasticity . 1,350.0 psi Ebend- xx 1,600.Oksi 925.0 psi Eminbend - xx 580.Oksi .625.0 psi ............... .................... ........ .... Maximum Bending Stress Ratio = 170.0 psi 0.390 :1 675.0 psi Density 32.210pcf 1 T " 6X6 � 494.97 Span = 5.0 ft Service loads entered. Load Factors will be applied for calculations. ---- - Load for Span Number 1 Uniform Load D = 0 3660, Lr - 0.2870 k/ft, Tributary Width =1.0 ft � ' DES/GN SUMMA"RY.•::;.:. 883.10 1,350.00 = 5.0 It 1 ............... .................... ........ .... Maximum Bending Stress Ratio = ._......... _...... .............. .:. 0.6641 Maximum Shear Stress Ratio = 0.390 :1 1.000 Section used for this span fb : Actual 6x6 883.10psi Section used for this span fv : Actual 6x6 66.38 psi FB: Allowable 1,350.00psi Fv : Allowable 170.00 psi 0.654 Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span = Span # where maximum occurs = 2.500ft Span # 1 Location of maximum on span = Span # where maximum occurs = 0.000ft Span # 1 1.000 Maximum Deflection 1 Length = 5.0 It 1 0.582 0.348 Max Downward L+Lr+S Deflection 0.033 in Ratio= 1799 +D+0.750Lr+0.750L+0.750W+H Max Upward L+Lr+S Deflection Max Downward Total Deflection 0.000 in Ratio= 0.076 in Ratio= 0 <360 790 1.000 1.000 1.000 1.000 Length = 5.0 It 1 j . Max Upward Total Deflection 0.000 in Ratio= 0 <180 1.000 Maximum Forces & Stresses for Load'Combinations Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C f/v C r C m C t C fu Mactual fb•design Fb-allow Vactual tv-design Fvallow +DLength 494.97 1,350.00 2.04 883.10 1,350.00 = 5.0 It 1 0.367 0.219 1.000 1.000 1.000 1.000 1.000 1.000 +D+Lr+H 786.06 1,350.00 1.000 1.000 1.000 1.000 1.000 Length = 5.0 ft 1 0.654 0.390 1.000 1.000 1.000 1.000 1.000 1.000 +D+0.750Lr+0.750L+H 1.000 1.000 1.000 1.000 1.000 1 Length = 5.0 It 1 0.582 0.348 1.000 1.000 1.000 1.000 1.000 1.000 +D+0.750Lr+0.750L+0.750W+H 1.000 1.000 1.000 1.000 1.000 Length = 5.0 It 1 0.582 0.348 1.000 1.000 1.000 1.000 1.000 1.000 +D+0.750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 ,7)W Length = 5.0 ft 1 0.582 0.348 1.000 1.000 1.000 1.000 1.000 1.000 Overall Maximum Deflections • Unfactored Loads 1.14 494.97 1,350.00 2.04 883.10 1,350.00 1.82 786.06 1,350.00 1.82 786.06 1,350.00 1.82 786.06 1,350.00 Load Combination Span Max. %" Dell Location in Span Load Combination / D+Lr - ` 1 0. 07 59 2.525 A 0.75 37.20 170.00 1.34 66.38 170.00 1.19 59.09 170.00 1.19 59.09 170.00 1.19 59.09 170.00 Max. "+' Dell Location in Span 0.0000 0.000 � 1, Al Beam D.esr Il" DommentsXENE y File: Mmurrients.and SettingsTC3ftood License Owner: WALLING MCCALLUM LTD. Description : H8 1 'Aid '( S, U46dored Vertical'Aid Support notation Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 1.633 1.633 D Only 0.915 0.915 Lr Only 0.718 0.718 D+Lr 1.633 1.633 � 1, 5' Description H9 Material Properties 0.210 _ calculations per IBC 2006, CBC 2007, 2005 NDS Analysis Method: Allowable Stress Design Fb - Tension 1,350.0 psi E: Modulus of Elasticity Load Combination 20061BC&ASCE7-05 Fb -Compr 1,350.0 psi Ebend-xx 1,600.Oksi 0.375 Fc - PHI 925.0 psi Eminbend - xx 580.0 ksi Wood Species : DouglasFir-Larch Fc - Perp 625.0 psi 1.000 Wood Grade : No.1 Fv 170.0 psi 1.000 1.000 1.000 1.000 1.000 Ft 675.0 psi Density 32.210pcf Beam Bracing : Beam bracing is defined as a set spacing over all spans 1.000 1.000 1.000 1.000 5.31 ` UntiracedLengths• , :. 1,348.80 2.69 63.78 170.00 7.97 788.72 1,348.80 r 11 First Brace starts at 0.0 R from Left -Most support Reular sacing of lateral suppo s on length of beam 2.0 ft gp= Span = 10.0 ft Load for Span Number 1 Uniform Load: D = 0.3720, Lr = 0,2920 k/ft, Tributary Width = 1.0 ft .. Maximum Bending Stress Ratio = 0.609 1 Section used for this span 6x12 fb : Actual _ 821.58 psi FB: Allowable = 1,348.80psi 7,1 Load Combination +D+Lr+H Location of maximum on span = 5 000ft Service loads entered. Load Factors will be applied for calculations. Maximum Shear Stress Ratio Section used for this span fv : Actual Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs = Span # 1 Span # where maximum occurs Maximum Deflection Max Downward L+Lr+S Deflection 0.059 in Ratio = 2020 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.135 in Ratio = 888 Max Upward Total Deflection 0.000 in Ratio= 0 <180 0.375 :1 6x12 63.78 psi 170.00 psi +D+Lr+H 0.000 ft Span # 1 • Maximum Forces &Stresses forbad>Combinations _ Load Combination Max Stress Ratios _ Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C f/v C r C m C t C fu Mactual fb-design Fb-allow Vactual tv-design Fvallow +13 Length = 2.0 ft Length = 2.0 ft Length = 2.0 ft Length = 2.0 ft Length = 2.0 ft -� +D+Lr+H Length = 2.0 ft Length = 2.0 ft Length = 2.0 ft - Length = 2.0 ft r 1 0.218 0.210 1 0.328 0.210 1 0.341 0.210 1 0.328 0.210 1 0.218 0.210 1 0.390 0.375 1 0.585 0.375 1 0.609 0,375 Service loads entered. Load Factors will be applied for calculations. Maximum Shear Stress Ratio Section used for this span fv : Actual Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs = Span # 1 Span # where maximum occurs Maximum Deflection Max Downward L+Lr+S Deflection 0.059 in Ratio = 2020 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.135 in Ratio = 888 Max Upward Total Deflection 0.000 in Ratio= 0 <180 0.375 :1 6x12 63.78 psi 170.00 psi +D+Lr+H 0.000 ft Span # 1 • Maximum Forces &Stresses forbad>Combinations _ Load Combination Max Stress Ratios _ Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C f/v C r C m C t C fu Mactual fb-design Fb-allow Vactual tv-design Fvallow +13 Length = 2.0 ft Length = 2.0 ft Length = 2.0 ft Length = 2.0 ft Length = 2.0 ft -� +D+Lr+H Length = 2.0 ft Length = 2.0 ft Length = 2.0 ft - Length = 2.0 ft r 1 0.218 0.210 1 0.328 0.210 1 0.341 0.210 1 0.328 0.210 1 0.218 0.210 1 0.390 0.375 1 0.585 0.375 1 0.609 0,375 1 0.585 0.375 1.000 1.000 0.375 :1 6x12 63.78 psi 170.00 psi +D+Lr+H 0.000 ft Span # 1 • Maximum Forces &Stresses forbad>Combinations _ Load Combination Max Stress Ratios _ Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C f/v C r C m C t C fu Mactual fb-design Fb-allow Vactual tv-design Fvallow +13 Length = 2.0 ft Length = 2.0 ft Length = 2.0 ft Length = 2.0 ft Length = 2.0 ft -� +D+Lr+H Length = 2.0 ft Length = 2.0 ft Length = 2.0 ft - Length = 2.0 ft r 1 0.218 0.210 1 0.328 0.210 1 0.341 0.210 1 0.328 0.210 1 0.218 0.210 1 0.390 0.375 1 0.585 0.375 1 0.609 0,375 1 0.585 0.375 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.37 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 2.98 294.58 1,348.80 1.51 35.73 170.00 4.46 441.87 1,348.80 1.12 35.73 170.00 4.65 460.29 1,348.80 0.37 35.73 170.00 4.46 441.87 1,348.80 1.12 35.73 170.00 2.98 294.58 1,348.80 1.51 35.73 170.00 5.31 525.81 1,348.80 2.69 63.78 170.00 7.97 788.72 1,348.80 1.99 63.78 170.00 8.30 821.58 1,348.80 0.66 63.78 170.00 7.97 788.72 1,348.80 1.99 63.78 170.00 �Nood Beam Desiginooci, ie.: umen. an ngs - • Description : H9 j r t It Load Combination Max Stress Ratios Summary of Moment Values _ Summary of Shear Values Segment Length Span # M V C d C ffv C r C m C t C fu Mactual fb-design Fb-allow Vactual tv-design Fv-allow Length = 2.0 ft 1 0.390 0.375 1.000 1.000 1.000 1.000 1.000 1.000 5.31 525.81 1,348.80 2.69 63.78 170.00 +D+0.750Lr+0.750L+H 1.000 1.000 1.000 1.000 1.000 = 2.0 It 1 0.347 0.334 1.000 1.000 1.000 1.000 1.000 1.000 4.73 468.01 1,348.80 2.39 56.76 170.00 �Length 5 Length = 2.0 ft 1 0.520 0.334 1.000 1.000 1.000 1.000 1.000 1.000 7.09 702.01 1,348.80 1.77 56.76 170.00 Length = 2.0 ft 1 0.542 0.334 1.000 1.000 1.000 1.000 1.000 1.000 7.39 731.26 1,348.80 0.59 56.76 170.00 Length = 2.0 ft 1 0.520 0.334 1.000 1.000 1.000 1.000 1.000 1.000 7.09 702.01 1,348.80 1.77 56.76 170.00 Length = 2.0 It 1 0.347 0.334 1.000 1.000 1.000 1.0.00 1.000 1.000 4.73 468.01 1,348.80 2.39 56.76 170.00 +D+0.750Lr+0.750L+0.750W+H 1.000 1.000 1.000 1.000 1.000 Length = 2.0 ft 1 0.347 0.334 1.000 1.000 1.000 1.000 1.000 1.000 4.73 468.01 1,348.80 2.39 56.76 170.00 Length = 2.0 It 1 0.520 0.334 1.000 1.000 1.000 1.000 1.000 1.000 7.09 702.01 1,348.80 1.77 56.76 170.00 Length = 2.0 It 1 0.542 0.334 1.000 1.000 1.000 1.000 1.000 1.000 7.39 731.26 1,348.80 0.59 56.76 170.00 k Length = 2.0 ft 1 0.520 0.334 1.000 1.000 1.000 1.000 1.000 1.000 7.09 702.01 1,348.80 1.77 56.76 170.00 Length = 2.0 ft 1 0.347 0.334 1.000 1.000 1.000 1.000 1.000 1.000 4.73 468.01 1,348.80 2.39 56.76 170.00 +D+0.750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 Length = 2.0 ft 1 0.347 0.334 1.000 1.000 1.000 1.000 1.000 1.000 4.73 468.01 1,348.80 2.39 56.76 170.00 Length = 2.0 It 1 0.520 0.334 1.000 1.000 1.000 1.000 1.000 1.000 7.09 702.01 1,348.80 1.77 56.76 170.00 Length = 2.0 ft 1 0.542 0.334 1.000 1.000 1.000 1.000 1.000 1.000 7.39 731.26 1,348.80 0.59 56.76 170.00 Length = 2.0 ft 1 0.520 0.334 1.000 1.000 1.000 1.000 1.000 1.000 709 702.01 1,348.80 1.77 56.76 170.00 Length = 2.0 ft 1 0.347 0.334 1.000 1.000 1.000 1.000 1.000 1.000 4.73 468.01 1,348.80 2.39 56.76 170.00 0�!eiali Maximum, Defl_ectigns Unfactoretl Loads Load Combination Span Max. '- Dell Location in Span Load Combination �i Max. '+' Defl Location in Span D+Lr 1 0.1350 5.050 0.0000 0.000 Vertical Reacflons;OnfactOred Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 3.320 3.320 i D On, 1.860 1.860 Lr Only 1.460 1.460 D+Lr 3.320 3.320 j r t It ` Description : H10 1 r Properties _ _ calculations per IBC 2006, CBC 2007, 2005 Nos tMaterial � Analysis Method: Allowable Stress Design Fb - Tension 1,350.0 psi E: Modulus of Elasticity Beam self weight calculated and added to loads Load Combination 20061BC&ASCE7-05 Fb - Compr 1,350.0 psi Ebend- xx 1,600.0 ksi Load for Span Number 1 Fc - Prll 925.0 psi Eminbend - xx 580.Oksi Uniform Load D = 0.4250, Lr = 0.3340 kilt, Tributary Width = 1.0 ft Wood Species : DouglasFir-Larch Fc - Perp 625.0 psi -.-......-.........-........... -.:...-..._...._ ...... _._......._:. Wood Grade : No.1 Fv 170.0 si ;Maximum Bending Stress Ratio = 0.748 1 Maximum Shear Stress Ratio = 0.454: 1 Ft 675.0 psi Density 32.210pcf Section used for this span Beam Bracing : Beam is Fully Braced against lateral -torsion buckling fb : Actual 1,009.60psi N: Actual - D(0.425) Lr(0.334) FB: Allowable 1,350.00psi Fv : Allowable 170.00 psi Load Combination +D+Lr+H Load Combination 1 r Maximum`Forces ltiresset for Load Combinations 'Load Combination Max Stress Ratios _ Summary of Moment Values _ Summary of Shear Values Segment Length Span .# M V C d C f/v _C r Cm C t` C fu_ Mactual fb-design Fb-allow Vactual tv-design Fvallow Length = 1,111 1 0.424 0.257 1.000 1.000 1.000 1.000 1.000 1.000 3.94 572.06 1,350.00 1.52 43.69 170.00 +D+U+H 1.000 1.000 1.000 1.000 1.000 + Length = 8.50 ft 1 0.748 0.454 1.000 1.000 1.000 1.000 1.000 1.000 6.96 1,009.60 1,350.00 2.69 77.11 170.00 40+0.750Lr+0.750L+H 1.000 1.000 1.000 1.000 1.000 Length = 8.50 ft 1 0.667 0.404 1.000 1.000 1.000 1.000 1.000 1.000 6.21 900.21 1,350.00 2.39 68.75 170.00 +0+0.750Lr+0.750L+0.750W+H 1.000 1.000 1.000 1.000 1.000 Length = 8.50 It 1 0.667 0.404 1.000 1.000 1.000 1.000 1.000 1.000 6.21 900.21 1,350.00 2.39 68.75 170.00 i +0+0.750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 Length = 8.50 It 1 0.667 , 0.404 1.000 1.000 1.000 1.000 1.000 1.000 6.21 900.21 1,350.00 2.39 68.75 170.00 Overall Maximum Deflections - Unfacto_red_Loads _ _ _ ` Load Combination Span Max. ' 'Defl Location in Span Load Combination Max. '+' Defl Location in Span D+Lr 1 ---0.1451^- 4.293 - ---- --- 0.0000 0.000 1 Span = 8.50 ft Service loads entered. Load Factors will be applied for calculations. -, - -- PP Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load D = 0.4250, Lr = 0.3340 kilt, Tributary Width = 1.0 ft -.-......-.........-........... -.:...-..._...._ ...... _._......._:. ' • ;Maximum Bending Stress Ratio = 0.748 1 Maximum Shear Stress Ratio = 0.454: 1 Section used for this span- 6x10 Section used for this span 6x10 fb : Actual 1,009.60psi N: Actual - 77.11 psi FB: Allowable 1,350.00psi Fv : Allowable 170.00 psi Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span 4.250ft Location of maximum on span 7.735 ft Span # where maximum occurs Span # 1 _ Span # where maximum occurs Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.063 in Ratio = 1621 ' Max Upward L+Lr+S Deflection 0.000 in Ratio = 0 <360 Max Downward Total Deflection 0.145 in Ratio = 702 Max Upward Total Deflection0.000 in Ratio = 0 <180 Maximum`Forces ltiresset for Load Combinations 'Load Combination Max Stress Ratios _ Summary of Moment Values _ Summary of Shear Values Segment Length Span .# M V C d C f/v _C r Cm C t` C fu_ Mactual fb-design Fb-allow Vactual tv-design Fvallow Length = 1,111 1 0.424 0.257 1.000 1.000 1.000 1.000 1.000 1.000 3.94 572.06 1,350.00 1.52 43.69 170.00 +D+U+H 1.000 1.000 1.000 1.000 1.000 + Length = 8.50 ft 1 0.748 0.454 1.000 1.000 1.000 1.000 1.000 1.000 6.96 1,009.60 1,350.00 2.69 77.11 170.00 40+0.750Lr+0.750L+H 1.000 1.000 1.000 1.000 1.000 Length = 8.50 ft 1 0.667 0.404 1.000 1.000 1.000 1.000 1.000 1.000 6.21 900.21 1,350.00 2.39 68.75 170.00 +0+0.750Lr+0.750L+0.750W+H 1.000 1.000 1.000 1.000 1.000 Length = 8.50 It 1 0.667 0.404 1.000 1.000 1.000 1.000 1.000 1.000 6.21 900.21 1,350.00 2.39 68.75 170.00 i +0+0.750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 Length = 8.50 It 1 0.667 , 0.404 1.000 1.000 1.000 1.000 1.000 1.000 6.21 900.21 1,350.00 2.39 68.75 170.00 Overall Maximum Deflections - Unfacto_red_Loads _ _ _ ` Load Combination Span Max. ' 'Defl Location in Span Load Combination Max. '+' Defl Location in Span D+Lr 1 ---0.1451^- 4.293 - ---- --- 0.0000 0.000 1 1 Description : H10 11 n O 1 r i I V@t#icai'Reactions - UnfactOlred Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 3.275 3.275 D Only 1.856 1.856 Lr Only 1.420 1.420 D+Lr 3.275 3.275 11 n O 1 r i I Description : H10A Material Properties ' Analysis Method: Allowable Stress Design Fb - Tension Load Combination 20061BC&ASCE7-05 Fb - Compr Load for Span Number 1 Uniform Load : D - 0.3150, Lr = 0.2480 k/ft, Fc - Prll Wood Species : DouglasFir-Larch Fc - Perp Wood Grade : No -1 Fv Maximum Forces & Stresses for Load Combinations Ft Beam Bracing : Beam is Fully Braced against lateral -torsion buckling 1 Calculations per IBC 2006, CBC 2007, 2005 NDS 1,350.0 psi E: Modulus of Elasticity 1,350.0 psi Ebend- xx 1,600.Oksi 925.0 psi Eminbend - xx 580.Oksi '625.0 psi 170.0 psi 675.0 psi Density 32.210pcf 6x6 0 Span = 4.0 ft Service loads entered. Load Factors will be applied for calculations. Load for Span Number 1 Uniform Load : D - 0.3150, Lr = 0.2480 k/ft, Tributary Width =1.0 ft - Maximum Forces & Stresses for Load Combinations • .:.:__..........._.:........-:...:..... [Maximum Bending Stress Ratio = 0.361: 1 Maximum Shear Stress Ratio = 0.256 :1 Load Combination Section used for this span 6x6 Section used for this span 6x6 _Summary of Moment Values fb : Actual 487.28 psi fv : Actual = 43.55 psi C IN FB : Allowable = 1,350.00psi Fv : Allowable = 170.00 psi Vactual Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span = Span # where maximum occurs = 2.000ft Span # 1 Location of maximum on span = Span # where maximum occurs = 3.560 ft Span # 1 Maximum Deflection 0.202 0.143 1.000 1.000 1.000 1.000 1.000 1.000 Max Downward L+Lr+S Deflection 0.012 in Ratio= 4067 0.49 24.37 170.00 Max Upward L+Lr+S Deflection Max Downward Total Deflection 0.000 in Ratio= 0.027 in Ratio= 0 <360 1791 1.000 1.000 1.000 1.000 1.000 Max Upward Total Deflection 0.000 in Ratio= 0 <180 0 1 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios _Summary of Moment Values Summary of Shear Values 'Segment Length Span # M V C d C IN C r Cm C t C fu Mactual lb -design Fb-allow Vactual fv-design FY -allow +p Length = 4.0 It 1 0.202 0.143 1.000 1.000 1.000 1.000 1.000 1.000 0.63 272.64 1,350.00 0.49 24.37 170.00 +D+Lr+H 1.000 1.000 1.000 1.000 1.000 Length = 4.0 ft 1 0.361 0.256 1.000 1.000 1.000 1.000 1.000 1.000 1.13 487.28 1,350.00 0.88 43.55 170.00 +D+0.750Lr+0.750L+H 1.000 1.000 1.000 1.000 1.000 Length = 4.0 it 1 0.321 0.228 1.000 1.000 1.000 1.000 1.000 1.000 1.00 433.62 1,350.00 0.78 38.76 170.00 +D+0.750Lr+0.750L+0.750W+H 1.000 1.000 1.000 1.000 1.000 = 4.0 it 1 0.321 0.228 1.000 1.000 1.000 1.000 1.000 1.000 1.00 433.62 1,350.00 0.78 38.76 170.00 'Length +0+0.750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 1 Length = 4.0 ft 1 0.321 0.228 1.000 1.000 1.000 1.000 1.000 1.000 1.00 433.62 1,350.00 0.78 38.76 170.00 D'Overall Maximum Deflections - Unfactored Loads Load Combination Span Max. ' ' Defl Location in Span Load Combination Max. '+' Defl Location in Span D+Lr -- - - 1 - - -- 0.0268 - - 2.020 0.0000 0.000 1 /rlooci Beam, Desi i1 'iF ile: CADournents EVER -INC 19832010>Ver,6`1:5t N50790 KW -0600739 License Owner: WALLING MCCALLUM LTD. Description : H10A lk6id!69 .. Unfactored Support notation Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimurn 1.126 1.126 D Only 0.630 0.630 Lr Only 0.496 0.496 D+Lr 1.126 1.126 I r] I 1> I I I I I IJ I 1 Lic. # : KW -0600739 1 6x6 6x6 1 Material Properties Calculations per IBC 2006, CBC 2007, 2005 NDS Analysis Method: Allowable Stress Design Fb - Tension _ 1,350.0 psi E: Modulus of Elasticity for calculations. Load Combination 2OO61BC&ASCE7-05 Fb -Compr 1,350.0 psi Ebend-xx 1,6OO.Oksi Fc - Pill 925.0 psi Eminbend - xx 58O.Oksi Wood Species : DouglasFir-Larch Fc - Perp 625.0 psi 'l Wood Grade : NO -1 Fv 170.0 psi Uniform Load: D=0.1610, Lr = 0.1260 k/ft, Tributary Width = 1.0 ft Ft 675.0 psi Density 32.210pcf :.. Beam Bracing : Beam is Fully Braced against lateral -torsion buckling • ' D(0. 192 Lr 0.126 0.4141 Maximum Shear Stress Ratio = D 0 161 Lr 0 126 Section used for this span 6x6 Section used for this span .fi�'.�.�xiA'�3�'�:3fr`y�-z'��`'t`3x�_•+A�S'-;sL`3+SNw.x'r. MS�Y6'.�.i�''i�«^vRt'���"f.tt..�n�'�n�i+`"s��.../Stki��.'�f�h�EFt�,C.Y�.ii$S.�kg��"i'v7��,1�.°.�'+7,�:_:.'1=:`dn�iw�-'.. 6x6 .-:..-t:�ie��1 558.91 psi fv : Actual = 1 6x6 6x6 1 Span 3.0 ftpan = 3.0 ft appuea Loans 40i lo Service ads entered. Load Factors will lied be applied for calculations. _ Load for Span Number 1 Load Uniform Load: D=0.1920, Lr = 0.1260 k/ft, Tributary Width =1.0 ft 'l / Load for Span Number 2 Uniform Load: D=0.1610, Lr = 0.1260 k/ft, Tributary Width = 1.0 ft :.. • ' Maximum Bendin Stress Ratio 0.4141 Maximum Shear Stress Ratio = 0.224: 1 Section used for this span 6x6 Section used for this span 6x6 fb : Actual 558.91 psi fv : Actual = 38.09 psi FB: Allowable 1,35O.00psi Fv : Allowable = 170.00 psi Load Combination_ +D+Lr+H Load Combination +D+Lr+H Location of maximum on span 3.O00ft Location of maximum on span _ 2.562 ft Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1 i Maximum Deflection ' Max Downward L+Lr+S Deflection 0.036 in Ratio= 1996 i Max Upward L+Lr+S Deflection -0.003 in Ratio= 12549 Max Downward Total Deflection 0.081 in Ratio= 892 ' Max Upward Total Deflection -0.006 in Ratio= 5896 Maiimum Forces -&Stresses forLoad Combinations Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values - Segment Length Span # M V C d C f/v Cr Cm C t C fu Mactual fb-design Fb-allow Vactual fv-design Fvallow Length = 3.0 ft 1 0.232 0.130 1.000 1.000 1.000 1.000 1.000 1.000 -0.72 313.53 1,350.00 0.45 22.08 170.00 Length = 3.0 ft 2 0.232 0.130 1.000 1.000 1.000 1.000 1.000 1.000 -0.72 313.53 1,350.00 0.41 22.08 170.00 +D+Lr+H 1.000 1.000 1.000 1.000 1.000 Length = 3.0 It 1 0.414 0.224 1.000 1.000 1.000 1.000 1.000 1.000 -1.29 558.91 1,350.00 0.77 38.09 170.00 = 3.0 ft 2 0.414 0.224 1.000 1.000 1.000 1.000 1.000 1.000 -1.29 558.91 1,350.00 0.74 38.09 170.00 'Length +D+0.750Lr+0.750L+H 1.000 1.000 1.000 1.000 1.000 = 3.0 It 1 0.369 0.200 1.000 1.000 1.000 1.000 1.000 1.000 -1.15 497.56 1,350.00 0.69 34.08 170.00 JLength Length = 3.0 ft 2 0.369 0.200 1.000 1.000 1.000 1.000 1.000 1.000 -1.15 497.56 1,350.00 0.65 34.08 170.00 1.000 1.000 1.000 1.000 1.000 '+D+0.750Lr+O.750L+0.750W+H Length = 3.0 ft 1 0.369 0.200 1.000 1.000 1.000 1.000 1.000 1.000 -1.15 497.56 1,350.00 0.69 34.08 170.00 Length = 3.0 It 2 0.369 0.200 1.000 1.000 1.000 1.000 1.000 1.000 -1.15 497.56 1,350.00 0.65 34.08 170.00 1 File C 1 uments,and eaOn SetU sIP, Do ood;Bm Desi KW-06007390 .: . Description: H13 ' Load Combination Segment Length Span # Max Stress Ratios C d - Summary of Moment Values C fN C r C m C t C fu Mactual fbdesign Fb-allow Summary of Shear Values Vactual fv-design Fvallow M V +D+0.750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 Length = 3.0 ft 1 0.369 0.200 1.000 1.000 1.000 1.000 1.000 1.000 -1.15 497.56 1,350.00 0.69 34.08 170.00 Length = 3.0 It 2 0.369 0.200 1.000 1.000 1.000 1.000 1.000 1.000 -1.15 497.56 1,350.00 0.65 34.08 170.00 Overall Maziirium Deflectfb`n Unfactored Loads Load Combination Span Max. ' ' Dell Location in Span Load Combination Max. '+' Deft Location in Span 'D+Lr 1 2 0.0000 0.0806 0.000 D+Lr 3.000 -0.0061 0.0000 1.938 1.938 ;Vertical'Reactions = Uf1f3CtOf ed . , .. ,.; :. .', Support notation: Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Support 3 MAXimum 0.047 1.769 'Overall D Only 0.047 1.013 Lr Only 0.000 0.756 D+Lr 0.047 1.769 1 n r� U Description: H15 'Material Regular spacing of lateral supports on of Properties _ calculations per IBC 2006, CBC 2007, 2005 Nos Analysis Method: Allowable Stress Design Fb - Tension 1,350.0 psi E: Modulus of Elasticity 1.000 Load Combination 20061BC&ASCE705 Fb - Compr 1,350.0 psi Ebend- xx 1,600.0 ksi 1.000 'Maximum Bending Stress Ratio = Fc - Prll 925.0 psi Eminbend - xx 580.0 ksi 6x12 Wood Species : DouglasFir-Larch Fc - Perp 625.0 psi 352.22psi 1,348.80psi fv : Actual Fv : Allowable Wood Grade : ,No.1 Fv 170.0 psi Load Combination 0.73 Location of maximum on span = Ft 675.0 psi Density 32.210pcf Span # where maximum occurs = Beam Bracing : Beam bracing is defined as a set spacing over all spans Span # where maximum occurs 1 0.260 Maximum Deflection UnbracedLengths..._ 1.000 1.000 1.000 1.000 1.000 Max Downward L+Lr+S Deflection 0.018 in Ratio= First Brace starts at 0.0 ft from left Most support length beam =,)A" 1.000 Max Upward L+Lr+S Deflection 0.000 in Ratio = Span = 8.50 ft plied Loads. .. . Service loads entered. Load Factors will be applied for calculations. = 0.182 :1 6x12 30.97 psi 170.00 psi +D+Lr+H = 7.565 ft Span # 1 ::_Maximum Forces &Stresses for.Loatl Combinations Load Combination Max Stress Ratios Summary of Moment Values _ Summary of Shear Values Segment Length Span # M V C d C fq, Cr C m C r C fu Mactual fb-design Fb-allow Vactual tv-design Fvallow 1 Length =1.998 ft Length =1.998 ft ' Length =1.998 It Length =1.998 It Length = 0.510 ft J+D+Lr+H Length =1.998 It Length =1.998 It Length =1.998 ft Length =1.998 It 11 1 0.105 Load for Span Number 1 1.000 1.000 1.000 1.000 1.000 1.000 Uniform Load : D=0.2210, Lr = 0.1730 k/ft, Tributary Width= 1.0 ft 1.000 1.000 .:...:...._.._.:_:.:.. . 1 0.146 0.102 1.000 'Maximum Bending Stress Ratio = 0.261: 1 Maximum Shear Stress Ratio 1 0.122 Section used for this span 6x12 Section used for this span 1.000 1.000 1.000 1.000 fb : Actual FB: Allowable 352.22psi 1,348.80psi fv : Actual Fv : Allowable 1.000 Load Combination +D+Lr+H Load Combination 0.73 Location of maximum on span = 4.250ft Location of maximum on span 0.182 Span # where maximum occurs = Span # 1 Span # where maximum occurs 1 0.260 Maximum Deflection 1.000 1.000 1.000 1.000 1.000 1.000 Max Downward L+Lr+S Deflection 0.018 in Ratio= 5554 1.000 Max Upward L+Lr+S Deflection 0.000 in Ratio = 0 <360 1.000 Max Downward Total Deflection 0.042 in Ratio = 2438 1.31 Max Upward Total Deflection 0.000 in Ratio = 0 <180 = 0.182 :1 6x12 30.97 psi 170.00 psi +D+Lr+H = 7.565 ft Span # 1 ::_Maximum Forces &Stresses for.Loatl Combinations Load Combination Max Stress Ratios Summary of Moment Values _ Summary of Shear Values Segment Length Span # M V C d C fq, Cr C m C r C fu Mactual fb-design Fb-allow Vactual tv-design Fvallow 1 Length =1.998 ft Length =1.998 ft ' Length =1.998 It Length =1.998 It Length = 0.510 ft J+D+Lr+H Length =1.998 It Length =1.998 It Length =1.998 ft Length =1.998 It 11 1 0.105 0.102 1.000 1.000 1.000 1.000 1.000 1.000 1 0.146 0.102 1.000 1.000 1.000 1.000 1.000 1.000 1 0.146 0.102 1.000 1.000 1.000 1.000 1.000 1.000 1 0.122 0.102 1.000 1.000 1.000 1.000 1.000 1.000 1 0.033 0.102 1.000 1.000 1.000 1.000 1.000 1.000 44.57 1,349.70 0.73 1.000 1.000 1.000 1.000 1.000 1 0.188 0.182 1.000 1.000 1.000 1.000 1.000 1.000 1 0.260 0.182 1.000 1.000 1.000 1.000 1.000 1.000 1 0.261 0.182 1.000 1.000 1.000 1.000 1.000 1.000 1 0.217 0.182 1.000 1.000 1.000 1.000 1.000 1.000 1.44 142.07 1,348.80 0.73 17.37 170.00 1.99 196.86 1,348.80 0.50 17.37 170.D0 2.00 197.57 1,348.80 0.39 17.37 170.00 1.66 164.36 1,348.80 0.73 17.37 170.00 0.45 44.57 1,349.70 0.73 17.37 170.00 2.56 253.28 1,348.80 1.31 30.97 170.00 3.55 350.96 1,348.80 0.89 30.97 170.00 3.56 352.22 1,348.80 0.69 30.97 170.00 2.96 293.01 1,348.80 1.31 30.97 170.00 1 Lic. # : KW -0600739 •• >Fle: C:1Documents and.$eW 11 i 1 Load Combination Max Stress Ratios of Moment Values Summary of Shear Values Segment Length Span # M V ^ C d C f/v C r C m C t C fu _Summary Mactual fb- design _ Fb-allow Vactual tv-design Fv-allow Length = 0.510 ft 1 0.059 0.182 1.000 1,000 1.000 1.000 1.000 1.000 0.80 79.46 1,349.70 1.31 30.97 170.00 +O+0.750Lr+0.750L+H 1.000 1.000 1.000 1.000 1.000 Length =1.998 It 1 0.167 0.162 1.000 1.000 1.000 1.000 1.000 1.000 2.28 225.48 1,348.80 1.16 27.57 170.00 Length =1.998 It 1 0.232 0.162 1.000 1,000 1.000 1.000 1.000 1.000 3.16 312.43 1,348.80 0.79 27.57 170.00 Length =1.998 ft 1 0.232 0.162 1.000 1.000 1.000 1.000 1.000 1.000 3.17 313.56 1,348.80 0.61 27.57 170.00 Length =1.998 ft 1 0.193 0.162 1.000 1,000 1.000 1.000 1.000 1.000 2.64 260.85 1,348.80 1.16 27.57 170.00 Length = 0.510 ft 1 0.052 0.162 1.000 1.000 1.000 1.000 1.000 1.000 0.71 70.74 1,349.70 1.16 27.57 170.00 1.000 1.000 1.000 1.000 1.000 '+O+0.750Lr+0.750L+0.750W+H Length =1.998 ft 1 0.167 0.162 1.000 1.000 1.000 1.000 1.000 1.000 2.28 225.48 1,348.80 1.16 27.57 170.00 Length =1.998 It 1 0.232 0.162 1.000 1.000 1.000 1.000 1.000 1.000 3.16 312.43 1,348.80 0.79 27.57 170.00 Length =1.9981 1 0.232 0.162 1.000 1.000 1.000 1.000 1.000 1.000 3.17 313.56 1,348.80 0.61 27.57 170.00 Length =1.998 ft 1 0.193 0.162 1.000 1.000 1.000 1.000 1.000 1.000 2.64 260.85 1,348.80 1.16 27.57 170.00 Length = 0.510 ft 1 0.052 0.162 1.000 1.000 1.000 1.000 1.000 1.000 0.71 70.74 1,349.70 1.16 27.57 170.00 +O+0.750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 Length =1.998 ft 1 0.167 0.162 1.000 1.000 1.000 1.000 1.000 1.000 2.28 225.48 1,348.80 1.16 27.57 170.00 =1.998 ft 1 0.232 0.162 1.000 1.000 1.000 1.000 1.000 1.000 3.16 312.43 1,348.80 0.79 27.57 170.00 'Length Length =1.998 ft 1 0.232 0.162 1.000 1.000 1.000 1.000 1.000 1.000 3.17 313.56 1,348.80 0.61 27.57 170.00 Length = 1.998 ft 1 0.193 0.162 1.000 1.000 1.000 1.000 1.000 1.000 2.64 260.85 1,348.80 1.16 27.57 170.00 Length = 0.510 ft 1 0.052 0.162 1.000 1.000 1.000 1.000 1.000 1.000 0.71 70.74 1,349.70 1.16 27.57 170.00 Maximum.Deflections - Unfactored Loadsi 4 'Oyerall Load Combination Span Max. ' ' Deft Location in Span Load Combination^ Max. '+' Deff Location in Span D+Lr 1 0.0418 4,293 0.0000 0.000 iU6rtical<Reactlons - , UnfactOfed Support notation :Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 1.675 1.675 D Only 0.939 0.939 Lr Only 0.735 0.735 ' D+Lr 1.675 1.675 11 i 1 1� Calculations per IBC 2006, CBC 2007, 2005 NDS 1,350.0 psi E: Modulus of Elasticity 1,350.0 psi Ebend- xx 1,600.0 ksi 925.0 psi Eminbend - xx 58O.Oksi 625.0 psi 170.0 psi 675.0 psi Density 32.210pcf D(O.917) Lr(O.72) �fNIOOd Beam Design FilkCADmun Span = 4.50 ft Description : H21 C r C m C t C fu - .APPILet� Loads Material Properties _ 1 Analysis Method: Allowable Stress Design Fb - Tension 1.000 Load Combination 2OO61BC&ASCE7-05 Fb - Compr -4.79 473.76 Fc - Pill 1.87 Wood Species : DouglasFir-Larch Wood Grade : No -1 Fc - Perp Fv Length = 4.50 It 2 Ft 0.261 Beam Bracing : Beam is Fully Braced against lateral -torsion buckling 1.000 1.000 1.000 1.000 1.000 Uniform Load: D = 0.0510, Lr = 0.0390 k/ft, Tributary Width =1.0 ft 1� Calculations per IBC 2006, CBC 2007, 2005 NDS 1,350.0 psi E: Modulus of Elasticity 1,350.0 psi Ebend- xx 1,600.0 ksi 925.0 psi Eminbend - xx 58O.Oksi 625.0 psi 170.0 psi 675.0 psi Density 32.210pcf D(O.917) Lr(O.72) Maximum ForcesS`Stressesl& Loa6 Combinations Load Combination Segment Length Span 3.0 ft Max Stress Ratios M V Span = 4.50 ft C flv C r C m C t C fu - .APPILet� Loads Summary of Shear Values Vactual tv-design Fvallow Service loads entered. Load Factors will be applied for calculations. -------------------- 1 Beam self weight calculated and added to loads 0.261 1.000 1.000 "Load for Span Number 1 -4.79 473.76 1,350.00 1.87 r Uniform Load: D = 0.4850, Lr = 0.3810 k/ft, Tributary Width =1.0 ft 170.00 Length = 4.50 It 2 Load for Span Number 2 0.261 1.000 1.000 1.000 1.000 1.000 1.000 Uniform Load: D = 0.0510, Lr = 0.0390 k/ft, Tributary Width =1.0 ft 473.76 1,350.00 1.15 Point Load: D = 0.9170, Lr = 0.720 k na, 4,50 ft 170.00 ::.:DESIGN:SUMMA:R:1'_.-..:......:................... 1.000 - .......... ;::-._ :Maximum Bending Stress Ratio = 0.617. 1 Maximum Shear Stress Ratio = 0.460 :1 Section used for this span 6x12 Section used for this span 6x12 1.000 tb :Actual 833.56psi fv :Actual 78.13 psi 1,350.00 FB: Allowable 1,35O.00psi Fv : Allowable 170.00 psi 2 Load Combination +D+Lr+H Load Combination +D+Lr+H 1.000 1.000 1.000 1.000 Location of maximum on span = 3.00O1 Location of maximum on span = 1,0141 'Span #where maximum occurs Span # 1 Span #where maximum occurs = Span # 1 i Maximum Deflection 1.000 1.000 1.000 1.000 1.000 Max Downward L+Lr+S Deflection 0.059 in Ratio = 1826 `)Length Length = 3.0 ft Max Upward L+Lr+S Deflection Max Downward Total Deflection -0.003 in Ratio = 0.137 in Ratio = 13453 790 1.000 1.000 Max Upward Total Deflection -0.006 in Ratio = 5803 1,350.00 Maximum ForcesS`Stressesl& Loa6 Combinations Load Combination Segment Length Span # Max Stress Ratios M V C d C flv C r C m C t C fu - Summary of Moment Values Mactual fodesign Fb-allow Summary of Shear Values Vactual tv-design Fvallow +D Length = 3.0 ft 1 -- 0.351 0.261 1.000 1.000 1.000 1.000 1.000 1.000 -4.79 473.76 1,350.00 1.87 44.39 170.00 Length = 4.50 It 2 0.351 0.261 1.000 1.000 1.000 1.000 1.000 1.000 -4.79 473.76 1,350.00 1.15 44.39 170.00 1.000 1.000 1.000 1.000 1.000 '+D+Lr+H Length = 3.0 It 1 0.617 0.460 1.000 1.000 1.000 1.000 1.000 1.000 -8.42 833.56 1,350.00 3.29 78.13 170.00 = 4.50 it 2 0.617 0.460 1.000 1.000 1.000 1.000 1.000 1.000 -8.42 833.56 1,350.00 2.01 78.13 170.00 �N0.750U40.7501.+1­1 1.000 1.000 1.000 1.000 1.000 `)Length Length = 3.0 ft 1 0.551 0.410 1.000 1.000 1.000 1.000 1.000 1.000 -7.51 743.61 1,350.00 2.94 69.69 170.00 Length = 4.50 ft 2 0.551 0.410 1.000 1.000 1.000 1.000 1.000 1.000 -7.51 743.61 1,350.00 1.79 69.69 170.00 +O4750U40.750L40.75001+41 1.000 1.000 1.000 1.000 1.000 : 9 -�- - �- �---- - -file: C1Documents and $et6n s1PC31My DocOmentslENERCALC DATA FlLESI(ayla mC t6ties6 OOd Belrtt De81gi1 ENERCALC,INC 198 2010,Vei6;151,, 50790. Lic. # : KW -0600739 1� 1 fl 1 �J i� f 1 Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C flv Cr Cm C t C fu Mactual fb-design Fballow Vactual fvdesign Fvallow Length = 3.0 ft 1 0.551 0.410 1.000 1.000 1.000 1.000 1.000 1.000 -7.51 743.61 1,350.00 2.94 69.69 170.00 Length = 4.50 ft 2 0.551 0.410 1.000 1.000 1.000 1.000 1.000 1.000 -7.51 743.61 1,350.00 1.79 69.69 170.00 +D+0.750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 Length = 3.0 It 1 0.551 0.410 1.000 1.000 1.000 1.000 1.000 1.000 -7.51 743.61 1,350.00 2.94 69.69 170.00 Length = 4.50 ft 2 0.551 0.410 1.000 1.000 1.000 1.000 1.000 1.000 -7.51 743.61 1,350.00 1.79 69.69 170.00 OyeralLMaxmum Deflections Unfactored Loads ,s Load Combination Span Max. ' ' Defl Location in Span Load Combination Max. '+' Defl Location in Span 1 0.0000 0.000 D+Lr -0.0062 1.800 D+Lr 2 0.1366 4.500 0.0000 1.800 z VBrtical R@aCt1011S r U,tlfactof8d Support notation :Far left is #1 in KIPS Load Combination Support 1 Support 2 Support 3 _Values Overall MAXimum -1.487 6.233 D Only -0.847 3.554 Lr Only -0.640 2.679 D+Lr -1.487 6.233 1� 1 fl 1 �J i� f 1 iVUood Beam Desi nFie ClDocuments anO set6ngsIPC31My Do c4iMntslENERCALC DATA FILE_ for mel6tiec6 Prarr wr �aan v a �m:a Fv:u•vrrcn..::: Description: H23 t t nto :ism 1 HO 9R91 'A " �Iet:Loads Load for Span Num 6x12 Span = 9.50 ft Material Properties Ratio= Calculations per IBC 2006, CBC 2007, 2005 NDS Uniform Load: D = 0.3590, Lr = 0.2820 Wit, Analysis Method: Allowable Stress Design Fb - Tension 1,350.0 psi E: Modulus of Elasticity 0.106 in Load Combination 20061BC&ASCE7-05 Fb - Compr 1,350.0 psi Ebend- xx 1,600.0 ksi 6x12 0 <180 Fc - Pril 925.0 psi Eminbend - xx 580.Oksi FB: Allowable = Wood Species : DouglasFir-Larch Fc - Perp 625.0 psi +D+Lr+H C d C flv C r Wood Grade : No.1 Fv 170.0 psi I Span # where maximum occurs = Span # 1 0.160 Ft 675.0 psi Density 32.210pcf 1.000 1.000 1.000 1.000 Beam Bracing : Beam bracing is defined as a set spacing over all spans 7.05 697.47 1,348.80 ' 1.000 1.000 1.000 1.000 1.000 Length =1.995 ft 1 First Brace starts at 0.0 ft from Left -Most support 0.340 1.000 1.000 1.000 1.000 1.000 1.000 Regular spacing of lateral supports on length of beam = 2.0 ft 1 0.517 0.340 t t nto :ism 1 HO 9R91 'A " �Iet:Loads Load for Span Num 6x12 Span = 9.50 ft Service loads entered. Load Factors will be applied for calculations. Maximum Shear Stress Ratio Section used for this span fv : Actual Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 0.340 :1 6x12 57.77 psi 170.00 psi +D+Lr+H 0.000 ft Span # 1 Max Downward L+Lr+S Deflection p ber 1 Ratio= 2440 Uniform Load: D = 0.3590, Lr = 0.2820 Wit, Tributary Width =1.0 ft Ratio= DESIGN`SUMMARY__:';_.:::._ ......... ..... _........,.._.:_.:.. 0.106 in Maximum Bending Stress Ratio = 0.531: 1 Max Upward Total Deflection Section used for this span 6x12 0 <180 fb : Actual = 715.80psi 1.000 FB: Allowable = 1,348.80psi Length =1.995 ft Load Combination +D+Lr+H C d C flv C r Location of maximum on span = 4.750ft 1.000 1.000 1.000 1.000 I Span # where maximum occurs = Span # 1 0.160 Maximum Deflection 1.000 Service loads entered. Load Factors will be applied for calculations. Maximum Shear Stress Ratio Section used for this span fv : Actual Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs 0.340 :1 6x12 57.77 psi 170.00 psi +D+Lr+H 0.000 ft Span # 1 Max Downward L+Lr+S Deflection 0.047 in Ratio= 2440 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.106 in Ratio= 1073 Max Upward Total Deflection 0.000 in Ratio= 0 <180 �Maxtmum Forces BSfresses. for Load Combinations 0.190 1.000 Load Combination Max Stress Ratios 1.000 1.000 1.000 1.000 Length =1.995 ft __ __ Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C flv C r C m C t C fu Mactual fb-design Fb-allow Vactual fv-desgn N -allow Length =1.995 it 1 0.197 0.190 1.000 1.000 1.000 1.000 1.000 1.000 Length =1.995 ft 1 0.290 0.190 1.000 1.000 1.000 1.000 1.000 1.000 Length =1.995 ft 1 0.297 0.190 1.000 1.000 1.000 1.000 1.000 1.000 Length =1.995 ft 1 0.277 0.190 1.000 1.000 1.000 1.000 1.000 1.000 Length =1.520 it 1 0.160 0.190 1.000 1.000 1.000 1.000 1.000 1.000 \+D+Lr+H \ 7.05 697.47 1,348.80 1.77 1.000 1.000 1.000 1.000 1.000 Length =1.995 ft 1 0.352 0.340 1.000 1.000 1.000 1.000 1.000 1.000 =1.995 ft 1 0.517 0.340 1.000 1.000 1.000 1.000 1.000 1.000 'Length Length =1.995 ft 1 0.531 0.340 1.000 1.000 'J.000 1.000 1.000 1.000 Length =1.995 It 1 0.495 0.340 1.000 1.000 1.000 1.000 1.000 1.000 1 2.69 266.03 1,348.80 1.36 32.35 170.00 3.95 390.63 1,348.80 0.99 32.35 170.00 4.05 400.89 1,348.80 0.44 32.35 170.00 3.78 373.79 1,348.80 1.16 32.35 170.00 2.18 215.52 1,349.09 1.36 32.35 170.00 4.80 475.00 1,348.80 2.44 57.77 170.00 7.05 697.47 1,348.80 1.77 57.77 170.00 7.23 715.80 1,348.80 0.79 57.77 170.00 6.74 667.41 1,348.80 2.07 57.77 170.00 t fj 1 QQd B@affil 'DeSl9i1. �^ File: C:l0ocuments and Settings1PC31My DocumentslENERCALC DATA FILESItaylor rrc16b ec6 ENERCALC, INC 19832010 Ver'6`1S1 A.5079. Q,_X Description: H23 Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C f/v Cr Cm C t C fu Mactual fb-design Fb-allow Vactual Iv -design Fv-allow Length =1.520 It 1 0.285 0.340 1.000 1.000 1.000 1.000 1.000 1.000 3.89 384.81 1,349.09 2.44 57.77 170.00 +D+0.750Lr+0.750L+H 1.000 1.000 1.000 1.000 1.000 Length =1.995 ft 1 0.313 0.302 1.000 1.000 1.000 1.000 1.000 1.000 4.27 422.76 1,348.80 2.17 51.41 170.00 Length =1.995 It 1 0.460 0.302 1.000 1.000 1.000 1.000 1.000 1.000 6.27 620.76 1,348.80 1.57 51.41 170.00 Length =1.995 It 1 0.472 0.302 1.000 1.000 1.000 1.000 1.000 1.000 6.44 637.07 1,348.80 0.70 51.41 170.00 Length =1.995 It 1 0.440 0.302 1.000 1.000 1.000 1.000 1.000 1.000 6.00 594.00 1,348.80 1.84 51.41 170.00 Length =1.520 ft 1 0.254 0.302 1.000 1.000 1.000 1.000 1.000 1.000 3.46 342.49 1,349.09 2.17 51.41 170.00 +D+O.750Lr+0.750L40.750W+H 1.000 1.000 1.000 1.000 1.000 ' Length =1.995 It 1 0.313 0.302 1.000 1.000 1.000 1.000 1.000 1.000 4.27 422.76 1,348.80 2.17 51.41 170.00 Length =1.995 It 1 0.460 0.302 1.000 1.000 1.000 1.000 1.000 1.000 6.27 620.76 1,348.80 1.57 51.41 170.00 Length =1.995 ft 1 0.472 0.302 1.000 1.000 1.000 1.000 1.000 1.000 6.44 637.07 1,348.80 0.70 51.41 170.00 Length =1.995 It 1 0.440 0.302 1.000 1.000 1.000 1.000 1.000 1.000 6.00 594.00 1,348.80 1.84 51.41 170.00 ' Length =1.520 ft 1 0.254 0.302 1.000 1.000 1.000 1.000 1.000 1.000 3.46 342.49 1,349.09 2.17 51.41 170.00 +O+0.750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 Length =1.995 It 1 0.313 0.302 1.000 1.000 1.000 1.000 1.000 1.000 4.27 422.76 1,348.80 2.17 51.41 170.00 =1.995 It 1 0.460 0.302 1.000 1.000 1.000 1.000 1.000 1.000 6.27 620.76 1,348.80 1.57 51.41 170.00 'Length Length =1.995 ft 1 0.472 0.302 1.000 1.000 1.000 1.000 1.000 1.000 6.44 637.07 1,348.80 0.70 51.41 170.00 Length =1.995 It 1 0.440 0.302 1.000 1.000 1.000 1.000 1.000 1.000 6.00 594.00 1,348.80 1.84 51.41 170.00 Length =1.520 It 1 0.254 0.302 1.000 1.000 1.000 1.000 1.000 1.000 3.46 342.49 1,349.09 2.17 51.41 170.00 O�re�alf Maxirnurn Deflections ; Unfactoretl Loads Load Combination Span Max.'- Defl Location in Span Load Combination Max. W Defl Location in Span D+Lr 1 0.1062 4.798 0.0000 0.000 Vertical`k actio_ I1S - Uhfatto d Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 _ _ Overall MAXimum 3.045 3.045 D Only 1.705 1.705 Lr Only D+Lr 1.340 3.045 1.340 3.045 fj 1 LIC. 0 : KVV-UbUU/.Sy Description: Material Properties Analysis Method: Allowable Stress Design Fb - Tension Load Combination 20061BC&ASCE7-05 Fb - Compr Uniform Load D = 0 3590 Lr - 0.2820 k/ft, Tributary DE51GN SUMNL4RY ... : .... :...........: • :.:, = . _...,::._:.:.<.....•.........:.......:...._..:.........:.......-......_..........:._...:........... Fc - Pdl Wood Species : DouglasFir-Larch Fc - Perp Wood Grade ; No.1 Fv Section used for this span Ft Beam Bracing : Beam is Fully Braced against lateral -torsion buckling i] I . Calculations per IBC 2006, CBC 2007, 2005 NDS 1,350.0 psi E: Modulus of Elasticity 1,350.0 psi Ebend- xx 1,600.Oksi 925.0 psi Eminbend - xx 580.0 ksi 625.0 psi 170.0 psi 675.0 psi Density 32.210pcf Span = 18.50 ft Iced Loads , }` Service loads entered. Load Factors will be applied for calculations. .APp._,... PP Load for Span Number 1 Uniform Load D = 0 3590 Lr - 0.2820 k/ft, Tributary DE51GN SUMNL4RY ... : .... :...........: • :.:, = . _...,::._:.:.<.....•.........:.......:...._..:.........:.......-......_..........:._...:........... Width =1.0 ft • .::• ......__.=. ;Maximum Bending Stress Ratio = 0.6451 Maximum Shear Stress Ratio = 0.349: 1 Section used for this span 7.0x18.0 Section used for this span 7.0x18.0 fb : Actual = 870.56psi fv : Actual = 59.29 psi FB: Allowable = 1,350.00psi Fv : Allowable = 170.00 psi Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span = 9.250ft Location of maximum on span = 17.020 ft Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.138 in Ratio= 1612 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.313 in Ratio= 709 Max Upward Total Deflection 0.000 in Ratio= 0 <180 =.. Maximum Forces B� :Stresses°.for Load Combinations Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V Length =18.50 It 1 0.361 0.195 C d C f/v Cr Cm C t C fu Mactual fb•design Fb-allow 1.000 1.000 1.000 1.000 1.000 1.000 15.36 487.57 1,350.00 Vactual tv-design Fv-allow 2.79 33.21 170.00 +D+Lr+H 1.000 1.000 1.000 1.000 1.000 Length =18.50 It 1 0.645 0.349 '+0+0.750Lr+0.750L+H 1.000 1.000 1.000 1.000 1.000 1.000 27.42 870.56 1,350.00 1.000 1.000 1.000 1.000 1.000 4.98 59.29 170.00 Length =18.50 It 1 0.574 0.310 1.000 1.000 1.000 1.000 1.000 1.000 24.41 774.82 1,350.00 4.43 52.77 170.00 +0+0.750Lr+0.750L+0.750W+H 1.000 1.000 1.000 1.000 1.000 Length =18.50 ft 1 0.574 0.310 +D+0.750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 1.000 24.41 774.82 1,350.00 1.000 1.000 1.000 1.000 1.000 4.43 52.77 170.00 Length =18.50 It 1 0.574 0.310 1.000 1.000 1.000 1.000 1.000 1.000 24.41 774.82 1,350.00 4.43 52.77 170.00 Deflections • Unfactored Loads Load Combination Span Max. "' DO Location in Span Load Combination Max. '+" Dell Location in Span D+Lr 1 0.3128 9.343 0.0000 0.000 r � I 91 I . I I I I I 1� I I 11 I ood Beam Desi n l C Flle: P,, Mmurnents zim:SetUngsIPUft My DocuntSIENERCA ENIERMC, -INC-1902010', KW -06007390 License Owner: WALLING MCCALLUM LTD, Description: H24 kj " .1 - � ` I "' - " act Mid red phs., 9 I . - Support notation Far left is #1 Values in KIPS Load Combination Support , 1 Support 2 Overall MAXimum 5.929 5.929 D Only 3.321 3.321 Lr Only 2.609 2.609 D+Lr 5.929 5.929 � I 91 I . I I I I I 1� I I 11 I 1 Elle Q.Tocuments and Settings1RG31My.1 Lic. # : KW -0600739 Materia! Properties _ _ Calculations per IBC 2006, CBC 2007, 2006 NDS Analysis Method: Allowable Stress Design Fb - Tension 1,350.0 psi E: Modulus of Elasticity Load Combination 20061BC&ASCE7-05 Fb - Compr 1,350.0 psi Ebend- xx 1,600.Oksi 1.000 Fc - Pdl 925.0 psi Eminbend - xx 580.Oksi Wood Species : DouglasFir-Larch Fc - Perp 625.0 psi 1.000 Wood Grade : No.1 Fv 170.0 psi 1 Section used for this span Ft 675.0 psi Density 32.210pcf Beam Bracing : Beam bracing is defined as a set spacing over all spans fb : Actual = 801.37psi ,Unb�aced:=Letngth's ' 62.41 psi 1,349.21 FB: Allowable 7 First Brace starts at 0.0 ft from Left -Most support Fv :Allowable = 170.00 psi 0.504 Regular spacing of lateral supports on length of beam = 2.0 ft _..... _ . _... D(0.365) Lr(0.287) Load Combination _....__...... _........... _ ._.. . . I 1 Span = 6.50 ft }"A 0iddldads 1 Service loads entered. Load Factors will be applied for calculations. 0.206 J Load for Span Number 1 1.000 1.000 1.000 1.000 1.000 Length = 2.015 ft 1 Uniform Load: D = 0.3650, Lr = 0.2870 kilt, Tributary Width =1.0 ft 1.000 1.000 1.000 1.000 1.000 1.000 DE$lGN SUMMARY w :',..... .::....:....:. .......... 0.315 . • 1.000 _. .... ,Maximum Bending Stress Ratio = .... ...:__.. 0.5941 Maximum Shear Stress Ratio = 0.367 :1 1 Section used for this span 6x8 Section used for this span 6x8 1.000 1.000 1.000 1.000 fb : Actual = 801.37psi fv : Actual = 62.41 psi 1,349.21 FB: Allowable 7 1,349.21 psi Fv :Allowable = 170.00 psi 0.504 Load Combination +D+Lr+H Load Combination +D+Lr+H Length = 2.015 ft Location of maximum on span = 3.250ft Location of maximum on span = 5.883 It ' Span # where maximum occurs = Maximum Deflection Span # 1 Span # where maximum occurs = Span # 1 0.367 Max Downward L+Lr+S Deflection 0.038 in Ratio= 2076 Length = 0.520 ft 1 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 1.000 1.000 1.000 1.000 1.000 Max Downward Total Deflection Max Upward Total Deflection 0.085 in Ratio= 0.000 in Ratio= 914 0 <180 1.000 1.000 1.000 1.000 1.000 AAaximum;Forces & Stresses for -,oatl Combinations Load Combination Max Stress Ratios _ Summary of Moment Values Summary of Shear Values Segment length Span # M V C d C f/v Cr Cm C t C fu Mactual fb-design Fb-allow Vactual tv-design Fvaliow 1 Length =1.983 ft 1 0.282 0.206 1.000 1.000 1.000 1.000 1.000 1.000 Length = 2.015 ft 1 0.333 0.206 1.000 1.000 1.000 1.000 1.000 1.000 Length =1.983 ft 1 0.315 0.206 1.000 1.000 1.000 1.000 1.000 1.000 Length = 0.520 ft 1 0.098 0.206 1.000 1.000 1.000 1.000 1.000 1.000 +D+Lr+H 170.00 3.44 801.37 1,349.21 1.000 1.000 1.000 1.000 1.000 ` Length =1.983 ft 1 0.504 0.367 1.000 1.000 1.000 1.000 1.000 1.000 Length = 2.015 ft 1 0.594 0.367 1.000 1.000 1.000 1.000 1.000 1.000 Length =1.983 ft 1 0.563 0.367 1.000 1.000 1.000 1.000 1.000 1.000 Length = 0.520 ft 1 0.175 0.367 1.000 1.000 1.000 1.000 1.000 1.000 +D+0.750Lr+0.750L+H 1.000 1.000 1.000 1.000 1.000 1.63 380.38 1,349.23 0.96 34.94 170.00 1.93 448.62 1,349.21 0.46 34.94 170.00 1.83 424.89 1,349.23 0.96 34.94 170.00 0.57 132.07 1,349.80 0.96 34.94 170.00 2.92 679.48 1,349.23 1.72 62.41 170.00 3.44 801.37 1,349.21 0.83 62.41 170.00 3.26 758.97 1,349.23 1.72 62.41 170.00 1.01 235.92 1,349.80 1.72 62.41 170.00 L� 11 ��e$1 i1 ` ood BeaimENERCAL � > Rle G 1Documents anO 5etbngslRC31My Docur�ntslENERGALGOATA FlLE eic ltiti eC6 c IN 19832040 VeC 8i1Si N 50790 ,. Lic. # KW -06007390 ,... ,. License Owner: WALLING MCCALLUM LTCM Description : H26 Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C f/v C r Cm C t C fu_ Mactual f Resign Fb-allow Vactual fv-design Fv-allow Length =1.983 ft 1 0.448 0.327 1.000 1.000 1.000 1.000 1.000 1.000 2.60 604.71 1,349.23 1.53 55.55 170.00 Length = 2.015 ft 1 0.529 0.327 1.000 1.000 1.000 1.000 1.000 1.000 3.06 713.18 1,349.21 0.74 55.55 170.00 Length =1.983 ft 1 0.501 0.327 1.000 1.000 1.000 1.000 1.000 1.000 2.90 675.45 1,349.23 1.53 55.55 170.00 Length = 0.520 ft 1 0.156 0.327 1.000 1.000 1.000 1.000 1.000 1.000 0.90 209.96 1,349.80 1.53 55.55 170.00 +D+0.750Lr+0.750L+0.750W+H 1.000 1.000 1.000 1.000 1.000 Length =1.983 ft 1 0.448 0.327 1.000 1.000 1.000 1.000 1.000 1.000 2.60 604.71 1,349.23 1.53 55.55 170.00 Length = 2.015 It 1 0.529 0.327 1.000 1.000 1.000 1.000 1.000 1.000 3.06 713.18 1,349.21 0.74 55.55 170.00 Length =1.983 ft 1 0.501 0.327 1.000 1.000 1.000 1.000 1.000 1.000 2.90 675.45 1,349.23 1.53 55.55 170.00 Length = 0.520 It 1 0.156 0.327 1.000 1.000 1.000 1.000 1.000 1.000 0.90 209.96 1,349.80 1.53 55.55 170.00 +D+0.750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 Length =1.983 ft 1 0.448 0.327 1.000 1.000 1.000 1.000 1.000 1.000 2.60 604.71 1,349.23 1.53 55.55 170.00 Length = 2.015 ft 1 0.529 0.327 1.000 1.000 1.000 1.000 1.000 1.000 3.06 713.18 1,349.21 0.74 55.55 170.00 Length =1.983 ft 1 0.501 0.327 1.000 1.000 1.000 1.000 1.000 1.000 2.90 675.45 1,349.23 1.53 55.55 170.00 Length = 0.520 ft 1 0.156 0.327 1.000 1.000 1.000 1.000 1.000 1.000 0.90 209.96 1,349.80 1.53 55.55 170.00 Maximum Unfactored Ovecaii Deflections Load Combination Span Max. ' ' Defl Location in Span Load Combination Max. '+' Deft Location in Span D+Lr 1 0.0853 3.283 0.0000 0.000 VertiCal`R@aCt1O►IS, .UnfactOi@d :. Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 2.119 2.119 D Only 1.186 1.186 Lr Only 0.933 0.933 D+Lr 2.119 2.119 L� 11 11 Lic. # : KW -0600739 D- �I Span = 6.50 ft Service loads entered. Load Factors will beapplied for calculations. Applied: Loads _ ✓Load for Span Number 1 Material Properties 0.398 Calculations per IBC 2006, CBC 2007, 2005 Nos 1.000 Analysis Method: Allowable Stress Design Fb - Tension 1,350.0 psi E: Modulus of Elasticity 0.8381 Maximum Shear Stress Ratio Load Combination 20061BC&ASCE7-05 Fb - Compr 1,350.0 psi Ebend- xx 1,600.Oksi 1,131.32 psi fv : Actual Fc - Pill 925.0 psi Eminbend - xx 580.Oksi Load Combination Wood Species : DouglasFir-Larch Wood Grade : No.1 Fc - Perp Fv 625.0 psi 170.0 psi 3.250ft Location of maximum on span Span # where maximum occurs = Ft 675.0 psi Density 32.210pcf 170.00 Beam Bracing : Beam bracing is defined as a set spacing over all spans Max Downward L+Lr+S Deflection 0.072 in Ratio= 1078 , Unt race, � l All ths. `. 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.164 in Ratio= ,. First Brace starts at 0.0 ft from Left -Most support Max Upward Total Deflection 0.000 in Ratio= 0 <180 1 Regular spacing of lateral supports on length of beam = 2.0 ft 0.404 1.000 1.000 Span = 6.50 ft Service loads entered. Load Factors will beapplied for calculations. Applied: Loads _ ✓Load for Span Number 1 1 0.398 Uniform Load: D = 0.2770, Lr = 0.2180 ktft, Tributary Width =1.0 ft 1.000 DES/GNSUMMA'RY :r , 1.000 1.000 1.000 1.000 Length = 2.015 ft Maximum Bending Stress Ratio = 0.8381 Maximum Shear Stress Ratio Section used for this span 6x6 Section used for this span fb : Actual = 1,131.32 psi fv : Actual FB: Allowable 1,350.00psi Fv : Allowable Load Combination +D+Lr+H Load Combination Location of maximum on span - 3.250ft Location of maximum on span Span # where maximum occurs = Span # 1 Span # where maximum occurs Maximum Deflection 170.00 2.61 Max Downward L+Lr+S Deflection 0.072 in Ratio= 1078 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.164 in Ratio= 474 Max Upward Total Deflection 0.000 in Ratio= 0 <180 0.404 :1 6x6 68.60 psi = 170.00 psi +D+Lr+H 6.045 ft Span # 1 Miximum;Forces A Stresses for Load Combinations___ Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C fN C r C m C t C fu Mactual fb-design Fb-allow Vactual tv-desgn Fvallow Length =1.983 ft 1 0.398 0.226 1.000 1.000 1.000 1.000 1.000 1.000 Length = 2.015 ft 1 0.469 0.226 1.000 1.000 1.000 1.000 1.000 1.000 Length =1.983 It 1 0.444 0.226 1.000 1.000 1.000 1.000 1.000 1.000 Length = 0.520 It 1 0.138 0.226 1.000 1.000 1.000 1.000 1.000 1.000 +D+Lr+H 170.00 2.61 1,131.32 1,350.00 1.000 1.000 1.000 1.000 1.000 Length =1.983 It 1 0.711 0.404 1.000 1.000 1.000 1.000 1.000 1.000 1 Length = 2.015 It 1 0.838 0.404 1.000 1.000 1.000 1.000 1.000 1.000 J Length =1.983 It 1 0.794 0.404 1.000 1.000 1.000 1.000 1.000 1.000 Length = 0.520 ft 1 0.247 0.404 1.000 1.000 1.000 1.000 1.000 1.000 +D+0.750Lr+0.750L+H 1.000 1.000 1.000 1.000 1.000 1.24 536.79 1,350.00 0.77 38.39 170.00 1.46 633.08 1,350.00 0.35 38.39 170.00 1.39 599.59 1,350.00 0.76 38.39 170.00 0.43 186.38 1,350.00 0.77 38.39 170.00 2.22 959.25 1,350.00 1.38 68.60 170.00 2.61 1,131.32 1,350.00 0.63 68.60 170.00 2.48 1,071.48 1,350.00 1.35 68.60 170.00 0.77 333.06 1,350.00 1.38 68.60 170.00 I I I 1. 1 ,LE -sFiliiC:U)ocuMantS,Wt&Satfina! DocurnentsXENERqALR;DATA .,Fl ,flaylor Description : H27 Load Combination Max Strew Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C f/v Cr Cm C Ctu Mactual fb-design Fb-allow Vactual tv-design Fv-allow Length =1.983 It 1 0.632 0.359 1.000 1.000 1.000 1.000 1.000 1.000 1.97 853.63 1,350.00 1.23 61.05 170.00 Length = 2.015 It 1 0.746 0.359 1.000 1.000 1.000 1.000 1.000 1.000 2.33 1,006.76 1,350.00 0.56 61.05 170.00 Length =1.983 1 1 Length = 0.520 ft 1 0,706 0.220 0,351 0.359 1,001 1.000 1,000 1.000 1,000 1,000 1,000 1,000 1.000 1.000 1.000 1.000 2,20 0.68 153*10 296.39 1,350,00 1,350.00 1,20 1.23 61,05 61.05 170*10 170.00 +040.750Lr40.750L40.750W+H 1.000 1.000 1.000 1.000 1.000 Length =1.983 ft 1 0.632 0.359 1.000 1.000 1.000 1.000 1.000 1.000 1.97 853.63 1,350.00 1.23 61.05 170.00 Length = 2,015 1 1 0,746 0,351 1.000 1,000 1.000 1.000 1,000 1.000 2,33 1,101,76 1,350,00 0,56 61,05 170,00 Length =1.983 ft 1 0.706 0.359 1.000 1.000 1.000 1.000 1.000 1.000 2.20 953.50 1,350.00 1.20 61.05 170.00 Length = 0.520 It 1 0.220 0.359 1.000 1.000 1.000 1.000 1.000 1.000 0.68 296-39 1,350.00 1.23 61.05 170.00 +D+0.750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 Length =1.983 It 1 0.632 0.359 1.000 1.000 1.000 1.000 1.000 1.000 1.97 853.63 1,350.00 1.23 61.05 170.00 Length = 2.015 It 1 0.746 0.359 1.000 1.000 1.000 1.000 1.000 1.000 2.33 1,006.76 1,350.00 0.56 61.05 170.00 1 Length =1.983 It 1 0,706 0,359 1.000 1.000 1.000 1.000 1.000 1.000 2.20 953.50 1,350.00 1.20 61.05 170.00 Length = 0.520 ft 1 0.220 0.359 1.000 1.000 1.000 1.000 1.000 1.000 0.68 296.39 1,350.00 1.23 61.05 170.00 �� "uOndehidii ""t ; lbiids fax oft w`U,naigor6d Load Combination Span Max."' Dell Location in Span Load Combination Max. Dell Location in Span D -+Lr 1 0.1643 3.283 0.0000 0.000 Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 1.609 1.609 D Only, - 0.900 0.900 Lr Only D -+Lr JJ 0.709 1.609 0.709 1.609 I I I 1. 1 t Lic. # : KW -0600739 Material Properties Calculations per IBC 2006, CBC 2007, 2005 NDS Analysis Method: Allowable Stress Design Fb - Tension _ 1,350.0 psi E: Modulus of Elasticity Service loads entered. Load Load Combination 20061BC&ASCE7-05 Fb - Compr 1,350.0 psi Ebend- xx 1,600.Oksi Fc - Pdl 925:0 psi Eminbend - xx 580.0 ksi Uniform Load: D=0.1260, Lr = 0.990 kl t, Tributary Width =1.0 ft Wood Species : DouglasFir-Larch Fc - Perp 625.0 psi Load for Span Number 2 Wood Grade : No.1 Fv 170.0 psi Uniform Load: D = 0.5360, Lr = 0.4210 k/ft, Tributary Width =1.0 ft Ft 675.0 psi Density 32.210pcf Beam Bracing : Beam bracing is defined as a set spacing over all spans ' • ;Maximum Bending Stress Ratio = _..:.:;:;................................. ... ........... ............ _.-........... ... .... ..._....................._ 0.6551 Maximum Shear Stress Ratio ..... = First Brace starts at 0.0 ft from Left -Most support Section used for this span- 6x12 Section used for this span Regular spacing of lateral supports on length of beam = 2.0 ft 6x12 fb : Actual Span = 4.0 ft Span = 9.0 ft i %1p h@d LOadS. Service loads entered. Load Factors will I be applied for calculations. Load for Span Number 1 Uniform Load: D=0.1260, Lr = 0.990 kl t, Tributary Width =1.0 ft Load for Span Number 2 Uniform Load: D = 0.5360, Lr = 0.4210 k/ft, Tributary Width =1.0 ft <..::........ ' • ;Maximum Bending Stress Ratio = _..:.:;:;................................. ... ........... ............ _.-........... ... .... ..._....................._ 0.6551 Maximum Shear Stress Ratio ..... = 0.619: 1 Section used for this span- 6x12 Section used for this span 6x12 fb : Actual 883.75psi tv: Actual - 105.23 psi i FB: Allowable = 1,348.80psi Fv : Allowable = 170.00 psi Load Combination Location of maximum on span +D+Lr+H Load Combination 4.000ft Location of maximum on span +D+Lr+H 4.000 ft Span # where maximum occurs Span # 1 Span # where maximum occurs Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.117 in Ratio = 818 Max Upward L+Lr+S Deflection -0.015 in Ratio = 7035 Max Downward Total Deflection 0.117 in Ratio = 818 Max Upward Total Deflection -0.076 in Ratio = 1264 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios _ Summary of Moment Values _ Summary of Shear Values Segment Length Span # M V C d C f/v C r Cm C t C fu Mactual fb-design Fb-allow Vactual fv- design Fv-allow +0 Length = 2.0 It 1 0.018 0.035 1.000 1.000 1.000 1.000 1.000 1.000 -0.25 24.94 1,348.80 0.25 5.98 170.00 Length = 2.0 It 1 0.074 0.285 1.000 1.000 1.000 1.000 1.000 1.000 -1.01 99.78 1,348.80 2.04 48.42 170.00 Length =1.938 ft 2 0.211 0.285 1.000 1.000 1.000 1.000 1.000 1.000 2.88 284.85 1,348.83 2.04 48.42 170.00 - 2.008 It 2 0.351 0.285 1.000 1.000 1.000 1.000 1.000 1.000 4.78 473.03 1,348.79 1.48 48.42 170.00 Length = 2.008 ft 2 0.362 0.285 1.000 1.000 1.000 1.000 1.000 1.000 4.93 488.47 1,348.79 0.67 48.42 170.00 -)Length Length = 2.008 ft 2 0.332 0.285 1.000 1.000 1.000 1.000 1.000 1.000 4.52 447.35 1,348.79 1.74 48.42 170.00 Length =1.038 ft 2 0.154 0.285 1.000 1.000 1.000 1.000 1.000 1.000 2.10 207.82 1,349.38 1.82 48.42 170.00 +D+Lr+H 1.000 1.000 1.000 1.000 1.000 Lic. # : KW -0600739 i 1 Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C Nv Cr Cm C t C th Mactual fb-design_ Fballow Vactual fv-design Fvallow Length = 2.0 ft 1 0.164 0.311 1.000 1.000 1.000 1.000 1.000 1.000 -2.23 220.94 1,348.80 2.23 52.93 170.00 Length = 2.0 ft 1 0.655 0.619 1.000 1.000 1.000 1.000 1.000 1.000 -8.93 883.75 1,348.80 4.44 105.23 170.00 Length =1.938 ft 2 0.655 0.619 1.000 1.000 1.000 1.000 1.000 1.000 -8.93 883.75 1,348.83 4.44 105.23 170.00 Length = 2.008 ft 2 0.332 0.619 1.000 1.000 1.000 1.000 1.000 1.000 4.53 448.35 1,348.79 3.44 105.23 170.00 Length = 2.008 ft 2 0.421 0.619 1.000 1.000 1.000 1.000 1.000 1.000 5.74 568.16 1,348.79 1.52 105.23 170.00 Length = 2.008 It 2 0.415 0.619 1.000 1.000 1.000 1.000 1.000 1.000 5.66 559.91 1,348.79 2.32 105.23 170.00 Length =1.038 ft 2 0.215 0.619 1.000 1.000 1.000 1.000 1.000 1.000 2.93 289.63 1,349.38 2.45 105.23 170.00 +0 #0.750Lr+0.750L+H 1.000 1.000 1.000 1.000 1.000 Length = 2.0 ft 1 0.127 0.242 1.000 1.000 1.000 1.000 1.000 1.000 -1.74 171.94 1,348.80 1.74 41.19 170.00 Length = 2.0 ft 1 0.510 0.535 1.000 1.000 1.000 1.000 1.000 1.000 -6.95 687.76 1,348.80 3.84 91.03 170.00 Length =1.938 ft 2 0.510 0.535 1.000 1.000 1.000 1.000 1.000 1.000 -6.95 687.76 1,348.83 3.84 91.03 170.00 Length = 2.008 ft 2 0.337 0.535 1.000 1.000 1.000 1.000 1.000 1.000 4.59 454.52 1,348.79 2.95 91.03 170.00 Length = 2.008 ft 2 0.404 0.535 1.000 1.000 1.000 1.000 1.000 1.000 5.50 544.40 1,348.79 1.24 91.03 170.00 Length = 2.008 ft 2 0.394 0.535 1.000 1.000 1.000 1.000 1.000 1.000 5.37 531.77 1,348.79 2.18 91.03 170.00 Length =1.038 ft 2 0.199 0.535 1.000 1.000 1.000 1.000 1.000 1.000 2.72 269.18 1,349.38 2.29 91.03 170.00 +0+0.750Lr+0.750L+0.750W+H 1.000 1.000 1.000 1.000 1.000 Length = 2.0 ft 1 0.127 0.242 1.000 1.000 1.000 1.000 1.000 1.000 -1.74 171.94 1,348.80 1.74 41.19 170.00 Length = 2.0 ft 1 0.510 0.535 1.000 1.000 1.000 1.000 1.000 1.000 -6.95 687.76 1,348.80 3.64 91.03 170.00 Length =1.938 ft 2 0.510 0.535 1.000 1.000 1.000 1.000 1.000 1.000 -6.95 687.76 1,348.83 3.84 91.03 170.00 Length = 2.008 ft 2 0.337 0.535 1.000 1.000 1.000 1.000 1.000 1.000 4.59 454.52 1,348.79 2.95 91.03 170.00 Length = 2.008 ft 2 0.404 0.535 1.000 1.000 1.000 1.000 1.000 1.000 5.50 544.40 1,348.79 1.24 91.03 170.00 Length = 2.008 ft 2 0.394 0.535 1.000 1.000 1.000 1.000 1.000 1.000 5.37 531.77 1,348.79 2.18 91.03 170.00 Length =1.038 ft 2 0.199 0.535 1.000 1.000 1.000 1.000 1.000 1.000 2.72 269.18 1,349.38 2.29 91.03 170.00 +0+0.750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 Length = 2.0 ft 1 0.127 0.242 1.000 1.000 1.000 1.000 1.000 1.000 -1.74 171.94 1,348.80 1.74 41.19 170.00 Length = 2.0 ft 1 0.510 0.535 1.000 1.000 1.000 1.000 1.000 1.000 -6.95 687.76 1,348.80 3.84 91.03 170.00 Length =1.938 ft 2 0.510 0.535 1.000 1.000 1.000 1.000 1.000 1.000 -0.95 687.76 1,348.83 3.84 91.03 170.00 Length = 2.008 ft 2 0.337 0.535 1.000 1.000 1.000 1.000 1.000 1.000 4.59 454.52 1,348.79 2.95 91.03 170.00 Length = 2.008 ft 2 0.404 0.535 1.000 1.000 1.000 1.000 1.000 1.000 5.50 544.40 1,348.79 1.24 91.03 170.00 Length = 2.008 It 2 0.394 0.535 1.000 1.000 1.000 1.000 1.000 1.000 5.37 531.77 1,348.79 2.18 91.03 170.00 Length =1.038 It 2 0.199 0.535 1.000 1.000 1.000 1.000 1.000 1.000 2.72 269.18 1,349.38 2.29 91.03 170.00 iifiyuimumbeflgcoons UnfactoredLoads Load Combination Span Max. ' " Defl Location in Span Load Combination '+' Defl Location in Span Lr Only _ 1 0.1173 _ 0.000 D Only _ _ _Max. -0.0105 3.477 D Only 2 0.0638 4.638 0.0000 3.477 Y@lifl,Cal-R@7Ct dos,- WfactOf@d. Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Support 3 Overall MAXimum 9.763 3.315 D Only 3.028 2.300 Lr Only 6.735 1.015 D+Lr 9.763 3.315 i 1 r ood Beam Design .., :: x FIe C uxurnenLs wd SetUr�sIPC31My DoyumentslENERCALC DATA FlLES rtx 16b eC8 ENERGALCrINC..19832010.,Ver,6;1:5t...N•50790. Lic. # : KW -060073£ t Span = 9.50 ft �Apphed`LOadS Material Properties Service loads entered. Load Factors will be applied for calculations. Calculations per IBC 2006, CBC 2007, 2005 NDS Beam self weight calculated and added to loads Analysis Method: Allowable Stress Design Fb - Tension 1,350.0 psi E: Modulus of Elasticity Load for Span Number 1 Load Combination 20061BC&ASCE7-05 Fb - Compr 1,350.0 psi Ebend- xx 1,600.Oksi Uniform Load D = 0.2580, Lr = 0.2030 k/ft, Tributary Width = 1.0 ft Point Load : D = -0.2940, Lr = -0.2310 k na, 2.0 ft Fc - Pril 925.0 psi Eminbend - xx 580.Oksi Wood Species : DouglasFir-Larch Fc - Perp 625.0 psi = 0.300 :1 Wood Grade : No.1 Fv 170.0 psi 6x1 0 Ft 675.0 psi Density 32.210pcf 50.97 psi Beam Bracing : Beam bracing is defined as a set spacing over all spans FB: Allowable = 1,349.01 psi Fv : Allowable = `�•`Untraced��Lengtti ' �:�� � . .. <: `^Regular Load Combination Location of maximum on span = +D+Lr+H Load Combination 4.988ft Location of maximum on span = First Brace starts at 0.0 ft from Left -Most support Span # where maximum occurs = Span # 1 Span # where maximum occurs = spacing of lateral supports on length of beam= 2.0 ft ............ ......................... ....... ... ... .... ._.......... ...... .................... ..... .... .... .._ ............................. ............ .... .... ....... Maximum Deflection ..... . ..... .......... .......... ... D(-0.294) Lr( -0.231) Max Downward L+Lr+S Deflection Max Upward L+Lr+S Deflection ... D(0.258) Lr(0.203) Max Downward Total Deflection 0.123 in Ratio= 923 t Span = 9.50 ft �Apphed`LOadS Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load D = 0.2580, Lr = 0.2030 k/ft, Tributary Width = 1.0 ft Point Load : D = -0.2940, Lr = -0.2310 k na, 2.0 ft FDESIGN SUMMARY ` • ;Maximum Bending Stress Ratio = 0.518 1 Maximum Shear Stress Ratio = 0.300 :1 Section used for this span_ 6x10 Section used for this span 6x1 0 fb : Actual 699.21 psi fv : Actual _ 50.97 psi FB: Allowable = 1,349.01 psi Fv : Allowable = 170.00 psi Load Combination Location of maximum on span = +D+Lr+H Load Combination 4.988ft Location of maximum on span = +D+Lr+H 8.740 ft Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection Max Upward L+Lr+S Deflection 0.053 in Ratio= 2156 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.123 in Ratio= 923 Max Upward Total Deflection 0.000 in Ratio= 0 <180 Ma' iinum Forces B:Stresses forLoad Corntiinations Load Combination Max Stress Ratios 1 Segment Length Span # M V Summary of Moment Values C d C f/v C r C m C t C fu _ Mactual fb-design - Fb-allow Summary of Shear Values Vactual fv-design Fvallow _ _ _ _- Length =1.995 It 1 0.167 0.143 1.000 1.000 1.000 1.000 1.000 1.000 1.56 225.68 1,349.01 0.84 24.23 170.00 Length =1.995 ft 1 0.282 0.143 Length =1.995 It 1 0.296 0.143 1.000 1.000 1.000 1.000 1.000 1.000 2.62 380.54 1.000 1.000 1.000 1.000 1.000 1.000 2.76 399.69 1,349.01 1,349.01 0.79 24.23 170.00 0.27 24.23 170.00 Length =1.995 ft 1 0.282 0.143 Length =1.520 ft 1 0.166 0.171 1.000 1.000 1.000 1.000 1.000 1.000 2.62 379.92 1.000 1.000 1.000 1.000 1.000 1.000 1.54 223.60 1,349.01 1,349.25 0.81 24.23 170.00 1.01 29.11 170.00 +O+Lr+H Length =1.995 ft 1 0.292 0.249 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 2.71 393.35 1,349.01 1.47 42.25 170.00 Length =1.995 ft 1 0.493 0.249 1.000 1.000 1.000 1.000 1.000 1.000 4.59 665.35 1,349.01 1.39 42.25 170.00 o0 Beam Design, .. File G 1Documents and SettfngslPG3VNy DocumenlSIENERGALG DATA FILE lOf IIS 76D 6C6 ,.,, . ... _ ENERCACC INC 19833010, Ver,6s.1'S1,. N`50790:, Lic. # : KW -0600739 !1 1 11 l Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C ftv C r Cm C t C fu Mactual fb-design Fb-allow Vactual tv- design Fvallow Length =1.995 ft 1 0.518 0.249 1.000 1.000 1.000 1.000 1.000 1.000 4.82 699.21 1,349.01 0.47 42.25 170.00 Length =1.995 ft 1 0.493 0.249 1.000 1.000 1.000 1.000 1.000 1.000 4.58 664.85 1,349.01 1.42 42.25 170.00 Length =1"520 ft 1 0.290 0.300 1.000 1.000 1"000 1.000 1.000 1.000 2.70 391.46 1,349.25 1.78 50.97 170"00 +D+0.750Lr+0.750L•H 1.000 1.000 1.000 1.000 1.000 Length =1.995 It 1 0.261 0.222 1.000 1.000 1.000 1.000 1.000 1.000 2.42 351.43 1,349.01 1.31 37.74 170.00 Length =1.995 It 1 0.440 0.222 1.000 1.000 1.000 1.000 1.000 1.000 4.10 594.15 1,349.01 1.24 37.74 170.00 Length =1.995 ft 1 0.463 0.222 1.000 1.000 1.000 1.000 1.000 1.000 4.30 624.33 1,349.01 0.42 37.74 170.00 Length =1.995 It 1 0.440 0.222 1.000 1.000 1.000 1.000 1.000 1.000 4.09. 593.62 1,349.01 1.26 37.74 170.00 Length =1.520 ft 1 0.259 0.268 1.000 1.000 1.000 1.000 1.000 1.000 2.41 349.49 1,349.25 1.59 45.51 170.00 +D40.750Lr+0.750L+0.750W+H 1.000 1.000 1.000 1.000 1.000 Length =1.995 It 1 0.261 0.222 1.000 1.000 1.000 1.000 1.000 1.000 2.42 351.43 1,349.01 1.31 37.74 170.00 Length =1.995 It 1 0.440 0.222 1.000 1.000 1.000 1.000 1.000 1.000 4.10 594.15 1,349.01 1.24 37.74 170.00 Length =1.995 It 1 0.463 0.222 1.000 1.000 1.000 1.000 1.000 1.000 4.30 624.33 1,349.01 0.42 37.74 170.00 Length =1.995 ft 1 0.440 0.222 1.000 1.000 1.000 1.000 1.000 1.000 4.09 593.62 1,349.01 1.26 37.74 170.00 Length =1.520 ft 1 0.259 0.268 1.000 1.000 1.000 1.000 1.000 1.000 2.41 349.49 1,349.25 1.59 45.51 170.00 +D+0.750Lr+0.75OL+0.5250E+H 1.000 1.000 1.000 1.000 1.000 Length =1.995 ft 1 0.261 0.222 1.000 1.000 1.000 1.000 1.000 1.000 2.42 351.43 1,349.01 1.31 37.74 170.00 Length =1.995 It 1 0.440 0.222 1.000 1.000 1.000 1.000 1.000 1.000 4.10 594.15 1,349.01 1.24 37.74 170.00 Length =1.995 It 1 0.463 0.222 1.000 1.000 1.000 1.000 1.000 1.000 4.30 624.33 1,349.01 0.42 37.74 170.00 Length = 1.995 ft 1 0.440 0.222 1.000 1.000 1.000 1.000 1.000 1.000 4.09 593.62 1,349.01 1.26 37.74 170.00 Length = 1.520 ft 1 0.259 0.268 1.000 1.000 1.000 1.000 1.000 1.000 2.41 349.49 1,349.25 1.59 45.51 170.00 Overall Maximum Deflections Unfactored Loads: Load Combination Span Max. " " Defl Location in Span Load Combination Max. '+' Defl Location in Span D+Lr 1 0.1234 4.845 0.0000 0.000 V@rtIC81 R@8Ct10i1S -• U�fid ' 'd:. : ;; Support notation :Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 1.831 2.135 ' D Only 1.049 1.219 Lr Only 0.782 0.916 D+Lr 1.831 2.135 !1 1 11 l Description: H35 95 _ Calculations per IBC 2006, CBC 2007, 2005 Nos Description: H35 Span 4.50 ft Span = 5.50 ft Y ' Service loads entered. Load Factors will be applied for calculations. y,.b Applled,�Loads �-. , _, pp Beam self weight calculated and added to loads _"'N.1oad for Span Number 1 Uniform Load: D = 0.2710, Lr = 0.2130 k/ft, Tributary Width =1.0 ft Point Load : D = 0.2710, Lr = 0.2130 k (aD 0.0 ft Load for Span Number 2 Uniform Load: D = 0.050, Lr = 0,040 k/ft, Tributary Width =1.0 ft Point Load : D = 0.340, Lr = 0.2630 k (a) 3.0 ft �31GNSUMMARY,- ' � x �� s � �°; � s � . - • Material Properties _ _ _ Calculations per IBC 2006, CBC 2007, 2005 Nos �. Analysis Method: Allowable Stress Design Fb - Tension 2,900.0 psi E: Modulus of Elasticity Load Combination 2OO61BC&ASCE7-05 Fb - Compr 2,900.0 psi Ebend- xx 2,OOO.Oksi i FB: Allowable Fc - Prll 2,900.0 psi Eminbend - xx 1,O16.54ksi = Wood Species : iLevel Truss Joist Fc - Perp 750.0 psi Wood Grade : Parallam PSL 2.0E Fv 290.0 psi Location of maximum on span Ft 2,025.0 psi Density 32.210pcf Beam Bracing : Beam is Fully Braced against lateral -torsion buckling Span # where maximum occurs D(O.271) Lr(O.213) Span # 1 Span # where maximum occurs D(O.34) Lr(O.263) Span 4.50 ft Span = 5.50 ft Y ' Service loads entered. Load Factors will be applied for calculations. y,.b Applled,�Loads �-. , _, pp Beam self weight calculated and added to loads _"'N.1oad for Span Number 1 Uniform Load: D = 0.2710, Lr = 0.2130 k/ft, Tributary Width =1.0 ft Point Load : D = 0.2710, Lr = 0.2130 k (aD 0.0 ft Load for Span Number 2 Uniform Load: D = 0.050, Lr = 0,040 k/ft, Tributary Width =1.0 ft Point Load : D = 0.340, Lr = 0.2630 k (a) 3.0 ft �31GNSUMMARY,- ' � x �� s � �°; � s � . - • ;Maximum Bending Stress Ratio Section used for this span- = 0.247.1 Maximum Shear Stress Ratio 6x12 Section used for this span = 0.185 : 1 6x12 fb : Actual 714.85psi fv : Actual - 53.60 psi i FB: Allowable = 2,9OO.00psi Fv : Allowable = 290.00 psi Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span 4.500ft Location of maximum on span 3.565 ft Span # where maximum occurs Span # 1 Span # where maximum occurs Span # 1 i Maximum Deflection Max Downward L+Lr+S Deflection 0.049 in Ratio= 2190 ' Max Upward L+Lr+S Deflection -0.006 in Ratio = 10994 Max Downward Total Deflection 0.114 in Ratio = 948 Max Upward Total Deflection -0.014 in Ratio = 4789 ..... .... ............... ... ._ _ .. ........... _.._---- ------- --._rnum Mum,Fort es, 8'Stresses for Load Combinations. Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C Yv C r Cm C t C fu Mactual fb-design Fb-allow Vaaual 1v- design Fv-allow Length = 4.50 it 1 0.140 0.105 1.000 1.000 1.000 1.000 1.000 1.000 4.11 406.50 2,900.00 1.29 30.54 290.00 Length = 5.50 it 2 0.140 0.105 1.000 1.000 1.000 1.000 1.000 1.000 -4.11 406.50 2,900.00 1.02 30.54 290.00 +D-#Lr+H 1.000 1.000 1.000 1.000 1.000 Length = 4.50 it 1 0.247 0.185 1.000 1.000 1.000 1.000 1.000 1.000 -7.22 714.85 2.900.00 2.26 53.60 290.00 Length= 5.50 it 2 0.247 0.185 1.000 1.000 1.000 1.000 1.000 1.000 -7.22 714.85 2,900.00 1.78 53.60 290.00 +0+0.750Lr4O.750L+H 1.000 1.000 1.000 1.000 1.000 Length = 4.50 It 1 0.220 0.165 1.000 1.000 1.000 1.000 1.000 1.000 -6.44 637.76 2,900.00 2.02 47.83 290.00 Length = 5.50 ft 2 0.220 0.165 1.000 1.000 1.000 1.000 1.000 1.000 -6.44 637.76 2,900.00 1.59 47.83 290.00 Lic. # : KW -0600739 1 1 fl 1� f i i , Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C fN Cr Cm C t C fu Mactual fb-design Fb-allow Vactual fv-design Fv-affow +0+0.750Lr+0.750L+0.750W+H 1.000 1.000 1.000 1.000 1.000 Length = 4.50 ft 1 0.220 0.165 1.000 1.000 1.000 1.000 1.000 1.000 -6.44 637.76 2,900.00 2.02 47.83 290.00 Length = 5.50 ft 2 0.220 0.165 1.000 1.000 1.000 1.000 1.000 1.000 -6.44 637.76 2,900.00 1.59 47.83 290.00 +D40.750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 Length = 4.50 It 1 0.220 0.165 1.000 1.000 1.000 1.000 1.000 1.000 -6.44 637.76 2,900.00 2.02 47.83 290.00 Length = 5.50 It 2 0.220 0.165 1.000 1.000 1.000 1.000 1.000 1.000 -6.44 637.76 2,900.00 1.59 47.83 290.00 Overall Maz murn, Deflections Uhbdt&ed Loads _ Load Combination Span Max. " Defl Location in Span Load Combination Max. '+' Defl Location in Span D+Lr 1 0.1138 0.000 0.0000 0.000 2 0.0000 0.000 D+Lr -0.0138 2.200 rVefical Reactions Unfactored s , . ` Support notation :Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Support 3 Overall MAXimum 4.599 -0.698 D Only 2.632 -0.385 Lr Only 1.967 -0.313 D+Lr 4.599 -0.698 1 1 fl 1� f i i , t Loc. # : KW -0600739 Fle 00muments and.Setbnp PC:W 7MI rt t 11 n First Brace starts at 0.0 ft from Left -Most support Regular spacing of lateral suppo s on length of beam = 2.0 ft D(0.261) Lr(0.205) 6x6 Span = 6.0 ft �. Material Properties "--"- Calculations per IBC 2006, CBC 2007, 2005 NDS Beam self weight calculated and added to loads Analysis Method: Allowable Stress Design _ Fb - Tension 1,350.0 psi E: Modulus of Elasticity +D+Lr+H Load Combination 20061BC&ASCE7-05 Fb - Compr 1,350.0 psi Ebend- xx 1,600.0 ksi ' �DESlGN SUMM�4RY' Fc - Pill 925.0 psi Eminbend - xx 580:0ksi 0.465 1 Wood Species : DouglasFir-Larch Fc - Perp 625.0 psi V t Wood Grade : NO Fv 170.0 psi 1,350.00psi Load Combination Location of maximum on span = Ft 675.0 psi Density 32.210pcf Span # 1 Beam Bracing : Beam bracing is defined as a set spacing over all spans Maximum Deflection 1 0.208 Untirace i :Lengths, 1.000 1.000 1.000 1.000 1.000 1.000 Length = 2.010 ft 1 0.267 t 11 n First Brace starts at 0.0 ft from Left -Most support Regular spacing of lateral suppo s on length of beam = 2.0 ft D(0.261) Lr(0.205) 6x6 Span = 6.0 ft �. )Appfied`Loads-------- "--"- 6x6 Beam self weight calculated and added to loads 41.80 psi Fv : Allowable = Load for Span Number 1 Load Combination +D+Lr+H Uniform Load : D = 0.1130, Lr = 0.0890 ktft, Tributary Width = 1.0 ft 5.550 ft Point Load : D=0.2610, Lr = 0.2050 k to 4.0 ft Span # 1 ' �DESlGN SUMM�4RY' 0.000 in Ratio= ;Maximum Bending Stress Ratio = 0.465 1 Segment Length Section used for this span 6x6 V fb : Actual = 633.22psi C r C m C t C fu FB: Allowable = 1,350.00psi Load Combination Location of maximum on span = +D+Lr+H 3.750ft Span # where maximum occurs = Span # 1 Maximum Deflection 1 Service loads entered. Load Factors will be applied for calculations. Maximum Shear Stress Ratio = 0.246 :1 Section used for this span 6x6 fv : Actual = 41.80 psi Fv : Allowable = 170.00 psi Load Combination +D+Lr+H Location of maximum on span = 5.550 ft Span # where maximum occurs = Span # 1 I Max Downward L+Lr+S Deflection 0.033 in Ratio= 2202 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.076 in Ratio= 949 Max Upward Total Deflection 0.000 in Ratio= 0 <180 I : Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Segment Length Span # M V C d C W C r C m C t C fu +D Length =1.980 ft 1 0.208 0.114 1.000 1.000 1.000 1.000 1.000 1.000 Length = 2.010 ft 1 0.267 0.114 1.000 1,000 1.000 1.000 1.000 1.000 Length = 2.010 ft 1 0.265 0.140 1.000 1,000 1.000 1.000 1.000 1.000 +0+Lr+H 1.000 1.000 1.000 1.000 1.000 Length =1.980 It 1 0.365 0.201 1.000 1.000 1.000 1.000 1.000 1.000 Length = 2.010 ft 1 0.469 0.201 1.000 1.000 1.000 1.000 1.000 1.000 Length = 2.010 It 1 0.467 0.246 1.000 1.000 1.000 1.000 1.000 1.000 +D40.750Lr+0.750L+H 1.000 1.000 1.000 1.000 1.000 r _ Summary of Moment Values Summary of Shear Values Mactual fb-design Fb-allow Vactual tv-design Fvallow 0.65 280.82 1,350.00 0.83 359.86 1,350.00 0.83 358.06 1,350.00 1.14 492.65 1,350.00 1.46' 633.22 1,350.00 1.46 630.49 1,350.00 0.39 19.46 170.00 0.21 19,46 170.00 0.48 23.77 170.00 0.69 34.10 170.00 0.37 34.10 170.00 0.84 41.80 170.00 70 Lic. # : KW -060073E �- r Il` t A� 1 Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C flv Cr Cm C t C fu _Mactual fb-design Fb-allow Vactual fv-design Fvallow Length =1.980 It 1 0.326 0.179 1.000 1.000 1.000 1.000 1.000 1.000 1.02 439.70 1,350.00 0.61 30.44 170.00 Length = 2.010 ft 1 0.418 0.179 1.000 1.000 1.000 1.000 1.000 1.000 1.31 564.88 1,350.00 0.33 30.44 170.00 Length = 2.010 ft 1 0.417 0.219 1.000 1.000 1.000 1.000 1.000 1.000 1.30 562.38 1,350.00 0.75 37.30 170.00 +O+0.750Lr+0.750L+0.750W+H 1.000 1.000 1.000 1.000 1.000 Length =1.980 ft 1 0.326 0.179 1.000 1.000 1.000 1.000 1.000 1.000 1.02 439.70 1,350.00 0.61 30.44 170.00 Length = 2.010 ft 1 0.418 0.179 1.000 1.000 1.000 1.000 1.000 1.000 1.31 564.88 1,350.00 0.33 30.44 170.00 Length = 2.010 ft 1 0.417 0.219 1.000 1.000 1.000 1.000 1.000 1.000 1.30 562.38 1,350.00 0.75 37.30 170.00 +D+0.750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 Length =1.980 It 1 0.326 0.179 1.000 1.000 1.000 1.000 1.000 1.000 1.02 439.70 1,350.00 0.61 30.44 170.00 Length = 2.010 It 1 0.418 0.179 1.000 1.000 1.000 1.000 1.000 1.000 1.31 564.88 1,350.00 0.33 30.44 170.00 Length = 2.010 It 1 0.417 0.219 1.000 1.000 1.000 1.000 1.000 1.000 1.30 562.38 1,350.00 0.75 37.30 170.00 < Oyta all Maximum Deflections Un66torid,4voads Load Combination Span Max. '- DeB Location in Span Load Combination Max. '+' Deft Location in Span D+Lr 1 0.0759 3.120 0.0000 0.000 r�VerUcal Reactions ;Unfactored , ,,,A _, , Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 0.782 0.937 D Only Lr Only 0.446 0.335 0.533 0.404 D+Lr 0.782 0.937 Il` t A� 1 Lic. # : KW -0600739 J f )Applied Loads D(6.933) Lr(5.448) Span = 3.50 ft Beam self weight calculated and added to loads Material Properties Point Load : D = 6.933, Lr = 5.448 k A 2.50 ft Calculations per IBC 2006, CBC 2007, 2005 Nos D_ ESIGN;SUMMARY_ ..... .:.......... .:..;...... .:. _..' ................. ..... ....,....................... ~Section Analysis Method: Allowable Stress Design _ Fb - Tension _ 1,350.0 psi E: Modulus of Elasticity 6x1 4 Load Combination 20061BC&ASCE7-05 Fb - Compr 1,350.0 psi Ebend- xx 1,600.0 ksi Load Combination +D+Lr+H Fc - PHI 925.0 psi Eminbend - xx 580.0 ksi Span # 1 Wood Species : DouglasFir-Larch Fc - Perp 625.0 psi 0.987 �. Wood Grade ; NO -1 Fv 170.0 psi 0.987 1.000 1.000 1.000 1.000 0.340 Ft 675.0 psi Density 32.210pcf 1.000 1.000 1.000 1.000 Beam Bracing : Beam bracing is defined as a set spacing over all spans 0.375 1.000 0.987 Unbraced Lengths -- -- - - --- --- ----- - -- -- ------- ---_ - 0.987 First Brace starts at 0.0 ft from Left -Most support 0.340 0.375 1.000 0.987 Regular spacing of lateral supports on length of beam = 2.0 ft J f )Applied Loads D(6.933) Lr(5.448) Span = 3.50 ft Beam self weight calculated and added to loads 0.004 in Point Load : D = 6.933, Lr = 5.448 k A 2.50 ft 11560 D_ ESIGN;SUMMARY_ ..... .:.......... .:..;...... .:. _..' ................. ..... ....,....................... ~Section .... . Maximum Bending Stress Ratio = 0.4771 used for this span P 6x1 4 fb : Actual = 635.13psi FB: Allowable = 1,331.41 psi Load Combination +D+Lr+H Location of maximum on span = 2.503ft Span # where maximum occurs = Span # 1 Maximum Deflection 0.422 Service loads entered. Load Factors will be applied for calculations. Maximum Shear Stress Ratio Section used for this span fv : Actual Fv : Allowable Load Combination Location of maximum on span Span # where maximum occurs Max Downward L+Lr+S Deflection 0.004 in Ratio= 11560 Max Upward L+Lr+S Deflection0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.008 in Ratio= 5067 �r Max Upward Total Deflection 0.000 in Ratio= 0 <180 0.422 : 1 6x14 71.67 psi = 170.00 psi +D+Lr+H 0.000 ft Span # 1 -Maximum Forces & Stresses for. Load Combinations Load Combination Max Stress Ratios Summary of Moment Values _ Summary of Shear Values Segment Length Span # M V C d C IN Cr Cm C t C fu Mactual fb-design Fb-allow Vactual fv-design Fv-allow 0.215 0.237 Length =1.995 ft 1 V' Length =1.505 ft 1 +D+Lr+H 1.000 Length =1.995 It 1 Length =1.505 It 1 +D+0.750Lr+0.750L+H 0.987 Length =1.995 It 1 Length =1.505 It 1 +D+0.750Lr+0.750L+0.750W+H Length =1.995 It 1 0.215 0.237 1.000 0.987 1.000 1.000 1.000 1.000 0.268 0.237 1.000 0.987 1.000 1.000 1.000 1.000 635.13 1,331.41 6.31 0.987 1.000 1.000 1.000 1.000 0.382 . 0.422 1.000 0.987 1.000 1.000 1.000 1.000 0.477 0.422 1.000 0.987 1.000 1.000 1.000 1.000 0.987 1.000 1.000 1.000 1.000 0.340 0.375 1.000 0.987 1.000 1.000 1.000 1.000 0.425 0.375 1.000 0.987 1.000 1.000 1.000 1.000 0.987 1.000 1.000 1.000 1.000 0.340 0.375 1.000 0.987 1.000 1.000 1.000 1.000 3.98 285.65 1,331.07 4.96 356.31 1,331.41 7.08 508.70 1,331.07 8.84 635.13 1,331.41 6.31 452.94 1,331.07 7.87 565.42 1,331.41 6.31 452.94 1,331.07 1.99 40.23 170.00 1.98 40.23 170.00 3.55 71.67 170.00 3.53 71.67 170.00 3.16 63.81 170.00 3.14 63.81 170.00 3.16 63.81 170.00 File: : IUood Beam, Desi "in umenDoaimemsIENERCALCDATAFlLE rrrcl6h.ec6 . ngs " ENERCALGiNC.1983V 2010.&.:6:151, N:50790. . Lic. #: KW -0600739 11 t i� i 1 Load Combination Max Stress Ratios _Summary of Moment Values Summary of Shear Values_ Segment Length Span # M V C d. C f1v C r C m C t C to Mactual fb-clesign Fb-allow _ Vactual fv-design Fv-allow Length =1.505 It 1 0.425 0.375 1.000 0.987 1.000 1.000 1.000 1.000 7.87 565.42 1,331.41 3.14 63.81 170.00 +D+0.750Lr+0.750L+0.5250E+H 0.987 1.000 1.000 1.000 1.000 Length =1.995 ft 1 0.340 0.375 1.000 0.987 1.000 1.000 1.000 1.000 6.31 452.94 1,331.07 3.16 63.81 170.00 Length =1.505 It 1 0.425 0.375 1.000 0.987 1.000 1.000 1.000 1.000 7.87 565.42 1,331.41 3.14 63.81 170.00 I � Overaii"Maximum Deflections - Unfactored Loads Load Combination Span . Max. ' " Defl Location in Span Load Combination Max. '+' Defl Location in Span D+Lr 1 0.0083 1.943 0.0000 0.000 Veitieal Reactions ctOred . ; .. Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 3.566 8.873 - t D Only 2.010 4.981 Lr Only 1.557 3.891 D+Lr 3.566 8.873 11 t i� i 1 TAYLOR MC/16b COLUMN LOADING DIAGRAMS P ('S2G9 r) 7.S' P= 23,ro55 ' r � fF2Co 1)31 p=12351' b2 S- 34a 20,729• 11 c -O5 -9121 T,s.4x4-K s/,(, 7,) )jJ2 Q 1rs. s "c r= :J4� v V �3 (�, 3 5 7'71 (I sol SX 5 x 5/, 4) 83, 2= 1C.5' p. 20,2)}p` 11V74 - 74-S73a `r. S. 4 .)(4 s/,cam S73 a sm c- -'4 71 g5 = ! = F �. T-5. 4.x4-,< 'Vic, (I sol `r. S. 4 .)(4 s/,cam c- -'4 71 g5 = ! = F �. } t '�O I r 633 0 7.5 5x• 5 y BGS �' IS Imo' g��5• .aas� 7.S. Sx3�s/�^ 9) &aG, 2 = r5 p :. 2.2,7 i o' ;2�a� T :. 5� 3lc 5/i6 j0 OC; 2. 10) B� �= Ids �= I S 97(0' IOcz-7 �j'• S . S x 5y 5116 steel Columin EvalUation version Description . B1 'Gendit Uiiforniatiort Code Ref : 2006 IBC, AISC Manual 13th Edition Steel Section Name: TS4x4x5/16 Overall Column Height 7.50 ft Analysis Method : 2006 IBC & ASCE 7-05 Steel Stress Grade Fy : Steel Yield 36.0 ksi E : Elastic Bending Modulus 29,000.0 ksi Load Combination: Allowable Stress Top & Bottom Fixity Top & Bottom Pinned Brace condition for deflection (buckling) along columns: X -X (width) axis: Fully braced against buckling along X -X Axis Y -Y (depth) axis :Fully braced against buckling along Y -Y Axis 1 ` Apphed:LOadS Service loads entered. Load Factors will be applied for calculations. Column self weight included: 118.53 lbsDead Load Factor ___`___ AXIAL LOADS ... Axial Load at 7.50 ft, D =13.269, LR =10.426 k r DWON'SUMMARY ._- Bending & Shear Check Results PASS Max. Axial+Bending Stress Ratio = Load Combination 0.2534 : 1 +D+Lr+H Maximum SERVICE Load Reactions . Top along X -X . 0.0 k Location of max.above base 0.0 ft Bottom along X -X 0.0 k At maximum location values are... Top along Y -Y 0.0 k Pu: Axial 23.814 k Bottom along Y -Y 0.0 k Pn / Omega: Allowable 93.988 k Mu -x: Applied 0.0 k -ft Maximum SERVICE Load Deflections ... Mn -x / Omega : Allowable 10.599 k -ft Along Y -Y 0.0 in at 0.0ft above base for load combination : - Mu -y :Applied 0.0 k -ft Mn -y l Omega: Allowable 10.599 k -ft Along X -X 0.0 in at O.Oft above base for load combination PASS Maximum Shear Stress Ratio = 0.0 :1 Load Combination Location of max.above base 0.0 ft At maximum location values are... Vu: Applied 0.0 k Vn / Omega: Allowable 0.0 k �i '� Load�Combiriation Results ____ _-__ _ __ Maximum Axial + Bending Stress Ratios Maximum Shear Ratios Load Combination Stress Ratio Status Location Stress Ratio Status Location +D 0.142 PASS 0.00 ft _ 0.000 PASS 0.00 ft +D+Lr+H 0.253 PASS 0.00 ft 0.000 PASS 0.00 ft +D+0.750Lr+0.750L+H 0.226 PASS 0.00 ft 0.000 PASS 0.00 ft +D+0.750Lr+0.750L+0.750W+H 0.226 PASS 0.00 ft 0.000 PASS 0.00 ft +0+0.750Lr+0.750L+0.5250E+H 0.226 PASS 0.00 ft 0.000 PASS 0.00 ft =MaxrmUni Reacti0ns'- :UnfBCtor6d Note: Only non -zero reactions are listed. X -X Axis Reaction Y -Y Axis Reaction , Load Combination @ Base @ Top @ Base @ Top D Only Lr Only D+Lr ` Awdmum Deflections fot Load.Combinations - tlnfactored Loads Load Combination Max. X -X Deflection _ Distance Max. Y -Y Deflection Distance D Only 0.0000 in 0.000 ft 0.000 in 0.000 ft Lr Only 0.0000 in 0.000 ft 0.000 in 0.000 ft D+Lr 0.0000 in 0.000 ft 0.000 in 0.000 ft Steel Section Properties : TS4x4x5/16 1 1 m 16.100 in A4 Loads are total entered value. Arrows do not reflect absolute direction. ... .. .. ... . ... . ...... .. .. ... I .. ........... .. ..... ...... I ....... ...................... ...................................... . ... ............. ... . . ..................... ... . Xmilments anti EvalUation Version Description : 131 Depth 4.000 in I xx 9.58 jn'14 Web Thick 0.000 in S xx 4.79 in'13 Flange Width = 4.000 in R xx = 1.480 in Flange Thick 0.313 in Area 4.360 jnA2 I yy 9.580 in'14 Weight = 15.804 pif S yy = 4.790 in'13 R yy = 1.480 in Ycg = 0.000 in I SI .. . ..... .. Load I m 16.100 in A4 Loads are total entered value. Arrows do not reflect absolute direction. ... .. .. ... . ... . ...... .. .. ... I .. ........... .. ..... ...... I ....... ...................... ...................................... . ... ............. ... . . ..................... ... . Io2 Description: •B1/B2 Mu -y: Applied Mn -y /Omega: Allowable 0.0 k -ft 12.665 k -ft Along X -X 0.0 in at O.Oft above base for load combination: PASS Maximum Shear Stress Ratio = General lnforrriatiotl Steel Section Name: TS5x4x5116 Load Combination Code Ref :2006 IBC, AISC Manual 13th Edition Overall Column Height 16.50 ft Location of max.above base t Analysis Method: 2006 IBC & ASCE 7-05 At maximum location values are ... Top & Bottom Fixity Top & Bottom Pinned Vu: Applied Steel Stress Grade Vn I Omega: Allowable 0.0 k ' Fy : Steel Yield 36.0 ksi Brace condition for deflection (buckling) along columns: 0.111 E : Elastic Bending Modulus 29,000.0 ksi 0.00 ft X -X (width) axis: Fully braced against buckling along X -X Axis PASS Load Combination : Allowable Stress Y -Y (depth) axis :Fully braced against buckling along Y -Y Axis 0.196 Appiled l:0ads. 0.00 It Service loads entered. Load Factors will be applied for calculations. PASS Column self weight included: 297.86 lbsDead Load Factor +D+0.750Lr+0.750L+H 0.175 AXIAL LOADS ... 0.00 ft 0.000 PASS Axial Load at 16.50 ft, D =11.608, LR = 9.121 k +D+0.750Lr+0.750L+0.750W+H 0.175 <DES/GN S(JMMARY, 0.00 ft 0.000 PASS Bending & Shear Check Results +D+0.750Lr+0.750L+0.5250E+H 0.175 PASS Max. Axial+Bending Stress Ratio = 0.1959: 1 Maximum SERVICE Load Reactions- eactions..Load PASS LoadCombination +D+Lr+H Top along X -X 0.0 k Location of max.above base 0.0 ft Bottom along X -X 0.0 k non -zero reactions are listed. At maximum location values am ... Load Combination Top along Y -Y 0.0 k Y -Y Axis @ Base Pu: Axial 21.027 k Bottom along Y -Y 0.0 k Pn I Omega: Allowable 107.35 k _ Mu -x :Applied 0.0 k -ft Maximum SERVICE Load Deflections ... Mn -x I Omega: Allowable 14.802 k -ft Along Y Y 0.0 in at 0.0ft above base for load combination Mu -y: Applied Mn -y /Omega: Allowable 0.0 k -ft 12.665 k -ft Along X -X 0.0 in at O.Oft above base for load combination: PASS Maximum Shear Stress Ratio = 0.0 :1 Load Combination Stress Ratios Location of max.above base t 0.0 ft At maximum location values are ... Stress Ratio Vu: Applied 0.0 k Vn I Omega: Allowable 0.0 k LoadCombination Results Maximum Axial + Bending Stress Ratios Maximum Shear Ratios Load Combination Stress Ratio Status Location Stress Ratio Status Location +0 0.111 PASS 0.00 ft 0.000 PASS 0.00 ft +D+Lr+H 0.196 PASS 0.00 It 0.000 PASS 0.00 ft +D+0.750Lr+0.750L+H 0.175 PASS 0.00 ft 0.000 PASS 0.00 ft +D+0.750Lr+0.750L+0.750W+H 0.175 PASS 0.00 ft 0.000 PASS 0.00 ft +D+0.750Lr+0.750L+0.5250E+H 0.175 PASS 0.00 ft 0.000 PASS 0.00 ft Aklri uin Re1Ct10ni-. lAfactored Note: Only non -zero reactions are listed. ' Load Combination X -X Axis Reaction @ Base @ Top Y -Y Axis @ Base Reaction @ Top D Only _ ` Lr Only D+Lr Maximum l)eflectionsforLoad Comtiinatoris Uifactored Loads Load Combination Max X -X Deflection Distance Max. Y -Y Deflection Distance _ D Only 0.0000 in 0.000 It 0.000 in 0.000 It ' Lr Only 0.0000 in 0.000 ft 0.000 in 0.000 It D+Lr 0.0000 in 0.000 it 0.000 in 0.000 it ). $teel Section -Properties : UUU5118 II - Loads are total entered value. Arrows do not reflect absolute direction. ...... . ..... ..- .. .. . .... ... .. .... .... .............. . ................ .......... I ... .. ............. ... ... .. ....... �C_ ;DomentsIE NERCAL ERCALC, INC,19831010 1iN507.90... Evaluation Version Desuipbon: BIIB2 License Owner .StO91 Section Properties TS5x4x5/16 Depth Web Thick 5.000 in 0.000 in I xx S xx 16.60 in A4 6.65 in A 3 1 = 22.900 inA4 Flange Width = 4.000 in R xx = 1.830 in Flange Thick = 0.313 in Area 4.980 in A 2 1 yy 11.700 inA4 Weight 18.052 plf S yy 5.850 in A 3 R yy = 1.530 in Yog = 0.000 in . ......... . . . . ........ 1 . .......... ....... . ....... Loads are total entered value. Arrows do not reflect absolute direction. ...... . ..... ..- .. .. . .... ... .. .... .... .............. . ................ .......... I ... .. ............. ... ... .. ....... 04 Lic. # : Evaluation Version G®neral'Information '` ' Code Ref : 2006 IBC, AISC Manual 13th Edition 'Steel Section Name: TS5x5x5/16 Overall Column Height 16.50 ft Analysis Method: 2006 IBC & ASCE 7-05 Top & Bottom Fixity Top & Bottom Pinned Steel Stress Grade 'Fy : Steel Yield 36.0 ksi Brace condition for deflection (buckling) along columns E: Elastic Bending Modulus 29,000.0 ksi X -X (width) axis : Fully braced against buckling along X -X Axis Load Combination: Allowable Stress Y -Y (depth) axis :Fully braced against buckling along Y -Y Axis -AppIIP.dLOadS Service loads entered. Load Factors will be applied for calculations. Column self weight included: 335.53 lbs' Dead Load Factor Maximum Shear Ratios AXIAL LOADS ... Stress Ratio Status Axial Load at 11,111, D 9.160 LR = 1,1111 Stress Ratio Status DESIGN 010 ARY .. +D Bending & Shear Check Results PASS 0.00 ft PASS Max. Axial+Bending Stress Ratio = 0.1380 :1 Maximum SERVICE Load Reactions.. Load Combination +D+Lr+H Top along X -X 0.0 k ' Location of max.above base 0.0 ft Bottom along X -X 0.0 k At maximum location values are ... 0.00 ft Top along Y -Y 0.0 k Pu: Axial 16.693 k Bottom along Y -Y 0.0 k Pn / Omega: Allowable 120.93 k PASS ' Mu -x :Applied 0.0 k -ft Maximum SERVICE Load Deflections ... Mn -x I Omega: Allowable 17.425 k -ft Al Along Y Y 0.0 in at O.Oft above base 0.000 0.000 PASS PASS for load combination Mu -y: Applied 0.0 k -ft Mn -y / Omega : Allowable 17.425 k -ft Along X -X 0.0 in at O.Oft above base Note: Only non -zero reactions are listed. for load combination PASS Maximum Shear Stress Ratio = 0.0 :1 Y -Y Axis ' Load Combination Location of max.above base 0.0 It At maximum location values are ... Load Combination @ Base Vu : Applied 0.0 k @ Top Vn I Omega: Allowable 0.0 k Load Combination Maximum Axial + Bending Stress Ratios Maximum Shear Ratios Load Combination Stress Ratio Status Location Stress Ratio Status Location +D 0.079 PASS 0.00 ft 0.000 PASS 0.00 ft +D+Lr+H 0.138 PASS 0.00 ft 0.000 PASS 0.00 ft +D+0.750Lr+0.750L+H 0.123 PASS 0.00 ft 0.000 PASS 0.00 ft +D+O 750Lr+0 750L+0 750W+H +D+0.750Lr+0.750L+0.5250E+H 0.123 0.123 PASS PASS 0.00 It 0.00 It 0.000 0.000 PASS PASS 0.00 ft 0.00 ft IiIIaXInlUfn ReBCttOfiS UnfdCtOf@d Note: Only non -zero reactions are listed. X -X Axis Reaction Y -Y Axis Reaction Load Combination @ Base @ Top @ Base @ Top D Only _ _ Lr Only D+Lr Maximum Deflections for Load Combinatioris-Unfactored Loads Load Combination Max. X -X Deflection Distance Max. Y -Y Deflection Distance D Only 0.0000 in 0.000 ft 0.000 in 0.000 ft Only 0.0000 in 0.000 ft 0.000 in 0.000 ft 'Lr D+Lr 0.0000 in 0.000 It 0.000 in 0.000 ft Steel Section Properties : TS5x5x5/16 �� 105 I I I I 0.000 in Loads are total entered value. Arrows do not reflect absolute direction. ....... .. . I .... . .. . . ...... . ............. ... . ........ .... . ..... ...... ..... ... .., .. ... .............. .. . . ........ I ... .. . .... ........ ­ EN 50790 Lic. At EvalUation Version License Owner Description 132/0—None— ;.S*IIS6cUqrvProP6rtIei Ts5x5x5/16 Depth 5.000 in I xx A ----TO _10inA4 1 33.100 in 4 Web Thick 0.000 in S xx 8.02 in A 3 Flange Width = 5.000 in R xx = 1.890 in Flange Thick 0.313 in Area 5.610 inA2 I yy 20A00 jnA4 Weight 20.335 pif S yy 8.020 in A 3 R yy = 1.890 in I I I I 0.000 in Loads are total entered value. Arrows do not reflect absolute direction. ....... .. . I .... . .. . . ...... . ............. ... . ........ .... . ..... ...... ..... ... .., .. ... .............. .. . . ........ I ... .. . .... ........ ­ 1 File GM)N uftnts and SetfiNsTC3h w M:-.:. t " Description : 63 W 'GsherAl,IMortl * Qn. Code Ref : 2006 IBC, AISC Manual 13th Edition Steel Section Name: Pipe8 Std Overall Column Height 16.50 ft Analysis Method: 2006 IBC & ASCE 7-05 Top & Bottom Fixity Top & Bottom Pinned Steel Stress Grade 'Fy : Steel Yield 36.0 ksi Brace condition for deflection (buckling) along columns: E : Elastic Bending Modulus 29,000.0 ksi X -X (width) axis: Fully braced against buckling along X -X Axis Load Combination: Allowable Stress Y -Y (depth) axis :Fully braced against buckling along Y -Y Axis Applied LOads: Service loads entered. Load Factors will be applied for calculations. Column self weight included: 471.90 lbs ' Dead Load Factor AXIAL LOADS ... Axial Load at 16.50 ft, D =11.374, LR = 8.936 k Bending & Shear Check Results PASS Max. Axial+Bending Stress Ratio = 0.1228 :1 Maximum SERVICE Load Reactions- Load eactions-Load Combination +D+Lr+H Top along X -X 0.0 k Location of max.above base 0.0 ft Bottom along X -X 0.0 k At maximum location values are ... Top along Y -Y 0.0 k Pu: Axial 20.782 k Bottom along Y -Y 0.0 k Pn / Omega: Allowable 169.22 k Maximum SERVICE Load Deflections... Mu -x: Applied 0.0 k -ft Mn -x / Omega : Allowable 37.365 k -ft Along Y -Y 0.0 in at O.Oft above base Mu -y: O.0 k -ft for load combination : ' Mn -y / Omega: Allowable 37.365 k -ft Along X -X 0.0 in at O.Oft above base for load combination PASS Maximum Shear Stress Ratio = 0.0 :1 ' Load Combination Location of max.above base 0.0 ft At maximum location values are ... Vu: Applied 0.0 k Vn I Omega: Allowable 0.0 k `� Load'Comfytnation Results Maximum Axial + Bending Stress Ratios Maximum Shear Ratios Load Combination Stress Ratio Status Location Stress Ratio Status Location +D 0.070 PASS 0.00 ft 0.000 PASS 0.00 ft +D+Lr+H 0.123 PASS 0.00 ft 0.000 PASS 0.00 ft +D+0.750Lr+0.750L+H 0.110 PASS 0.00 ft 0.000 PASS 0.00 ft 40+0.750Lr+0.750L+0.750W+H 0.110 PASS 0.00 ft 0.000 PASS 0.00 ft +D+0.750Lr+0.750L+0.5250E+H 0.110 PASS 0.00 ft 0.000 PASS 0.00 ft sMaXilt1Ut11'RP.aCtiO�S ��faCtOYed' Note: Only non -zero reactions are listed. X -X Axis Reaction Y -Y Axis Reaction Load Combination @ Base @ Top @ Base @ Top D Only Lr Only - - -- -- -- -Maximum Deflections for Load Combinations - Unfactored Loads _ Load Combination Max. X -X Deflection Distance Max-- Y -Y Deflection Distance D Only 0.0000 in 0.000 ft 0.000 in 0.000 8 Lr Only 0.0000 in 0.000 ft 0.000 in 0.000 ft D+Lr 0.0000 in 0.000 ft 0.000 in 0.000 ft Steel sbction Fcoperties : Pipe8-St0 1 ■ Description: B3 Steel`SeclUon;Properties Pipe8 Std. ' 'Depth 8.625 in 1 xx 68.10 inA4 J = 136.000 in"4 Web Thick 0.000 in S xx 15.80 inA3 Flange Width = 8.625 in R xx = 2.950 in Thick 0.322 in 'Flange Area 7.850 in"2 Iyy 68.100 in14 Weight 28.600 plf S yy - 15.800 in"3 R yy = 2.950 in I Yog 1 0.000 in Loads are total entered value. Arrows do not reflect absolute direction. ........._... _... ....... ..- ............ .... ....... ....... ..... ......... ....__ ., .. ..... .............. .........._................. .... ..I ....... ......_._..................... _......... ......... .. 1 (os Il `Generaiflnformation" Code Ref : 2006 IBC AISC Manual 13th Edition ' , Steel Section Name: TS4x4x5/16 Overall Column Height 10.0 ft Analysis Method: 2006 IBC & ASCE 7-05 Top & Bottom Fixity Top & Bottom Pinned 93.988 k Steel Stress Grade Fy : Steel Yield 36.0 ksi Brace condition for deflection (buckling) along columns 0.0 k -ft E : Elastic Bending Modulus 29,000.0 ksi X -X (width) axis: Fully braced against buckling along X -X Axis Load Combination: Allowable Stress Y -Y (depth) axis :Fully braced against buckling along Y -Y Axis 10.599 k -ft "y! APP�ied LOads ., ...: .` "self Service loads entered. Load Factors will be applied for calculations. Column weight included :158.04 lbs' Dead Load Factor AXIAL LOADS ... Axial Load at 11.0 ft D =12.489, LR = 9.812 k DESIGN 3UMMA'itY 0.0 k -ft Bending & Shear Check Results - -- -- --__ - ' PASS Max. Axial+Bending Stress Ratio = 0.2390 :1 Maximum SERVICE Load Reactions- eactions. .Load 10.599 k -ft LoadCombination +D+Lr+H Top along X -X 0.0 k Location of max.above base 0.0 it Bottom along X -X 0.0 k At maximum location values are ... T I Y Y O O k Il Pu: Axial 22.459 k op a ong - Bottom along Y -Y 0.0 k Pn / Omega: Allowable 93.988 k Mu -x :Applied 0.0 k -ft Maximum SERVICE Load Deflections ... Mn -x / Omega: Allowable 10.599 k -ft Along 0.0 in at O.Oft above base for load combination Mu -y: Applied 0.0 k -ft ' Mn -y I Omega: Allowable 10.599 k -ft Along X -X 0.0 in at O.Oft above base 4) for load combination PASS Maximum Shear Stress Ratio = 0.0 :1 Load Combination Location of max.above base 0.0 ft At maximum location values are ... Vu: Applied 0.0 k Vn / Omega : Allowable 0.0 k Load CombinstionAesufts - Maximum Axial + Bending Stress Ratios Maximum Shear Ratios Load Combination Stress Ratio Status Location _ _ Stress Ratio Status Location +D 0.135 PASS 0.00 ft 0.000 PASS 0.00 ft +D+Lr+H 0.239 PASS 0.00 It 0.000 PASS 0.00 ft +0+0.750Lr+0.750L+H 0.213 PASS 0.00 ft 0.000 PASS 0.00 It +D+0,750Lr+0.710L+1,750W+H +0+0.750Lr+0.750L+0.5250E+H 0.213 0.213 PASS 0.00 ft PASS 0.00 It 0.000 PASS 0.000 PASS 0.00 It 0.00 ft Maximum:ReaW6ns-'.U4aCt6red ' Note: Only non -zero reactions are listed. X -X Axis Reaction Y -Y Axis Reaction Load Combination @ Base @ Top @ Base @ Top D Only Lr Only D+Lr • ,MazlmUm•Qdfiections=fdr-Load Combiria"tions • Unfactored;Loads Load Combination Max X -X Deflection Distance Max. Y -Y Deflection Distance D Only 0.0000 in 0.000 ft 0.000 in 0.000 it Lr Only 0.0000 in 0.000 ft 0.000 in 0.000 it D+Lr 0.0000 in 0.000 It 0.000 in 0.000 It Steel°Section Properties : TSUU611.6 Il I Ycg I 1 I I 1] . I 1" 0.000 in Loads are total entered value, Arrows do M reflect absolute direction. . ........ . . ....... ........ ...... ..... ......... ..... 100 feel Column 0. F-118: GIDMumpts'and :ENERCALC'jNC-902010N CIA,- -`6151;N: ,Lic. # : Evaluation Version License Owner: Description 84 'T$"51,16 Depth 4.000 in I xx 9.58 in'14 1 16.100 inA4 Web Thick 0.000 in S xx 4.79 in A 3 Flange Width = 4.000 in R xx = 1.480 in flange Thick 0.313 in Area 4,360 in12 I yy 9.580 in'4 Weight 15.804 plf S yy 4.790 in13 R yy = 1.480 in I Ycg I 1 I I 1] . I 1" 0.000 in Loads are total entered value, Arrows do M reflect absolute direction. . ........ . . ....... ........ ...... ..... ......... ..... 100 ;:.. _ • Fle G tDocurr�n� and 5 Description: B4/B5 (10 Lr Only General information . ^4 Code Ref : 2006 IBC, AISC Manual 13th Edition 0.0 k -ft Steel Section Name: TS5x3x5/16 Makyoum.Deflecfions;forLoad °Loads Overall Column Height 10.0 It Analysis Method: 2006 IBC & ASCE 7-05 Max. Y -Y Deflection Top & Bottom Fixity Top & Bottom Pinned 'Steel Stress Grade Fy : Steel Yield 36.0 ksi Brace condition for deflection (buckling) along columns: Lr Only 0.0000 in 0.000 It E : Elastic Bending Modulus 29,000.0 ksi 0.000 It X -X (width) axis: Fully braced against buckling along X -X Axis 0.000 in Load Combination: Allowable Stress Y -Y (depth) axis :Fully braced against buckling along Y -Y Axis PASS Maximum Shear Stress Ratio = Appii Ldid . ,... Service loads entered. Load Factors will be applied for calculations. Column self weight included: 158.05 lbs ' Dead Load Factor Load Combination AXIAL LOADS ... Axial Load at 10 0 ft D 8.826, LR = 6.934 k ' ,DES(i^aN SUMMARY - 0.0 ft Bending & Shear Check Results At maximum location values are ... PASS Max. Axial+Bending Stress Ratio = 0.1694: 1 Maximum SERVICE Load Reactions— eactions..Load LoadCombination +D+Lr+H Top along X -X 0.0 k Vu: Applied Location of max.above base 0.0 ft Bottom along X -X 0.0 k At maximum location values are ... Top along Y -Y 0.0 k Vn I Omega: Allowable Load`Cointiination`Resutts , . Pu: Axial 15.918 k Bottom along Y -Y 0.0 k PnOmega :Allowable 93.988 k Mu -x :Applied 0.0 k -ft Maximum SERVICE Load Deflections ... Stress Ratio Mn -x / Omega: Allowable 12.162 k -ft Along Y -Y 0.0 in at O.Oft above base Status Location ' for load combination : Lr Only Mu -y: Applied D+Lr 0.0 k -ft Makyoum.Deflecfions;forLoad °Loads Mn -y / Omega: Allowable Max. Y -Y Deflection 8.479 k -ft Along X -X 0.0 in at O.Oft above base Lr Only 0.0000 in 0.000 It 0.000 in 0.000 It D+Lr 0.0000 in 0.000 it 0.000 in for load combination PASS Maximum Shear Stress Ratio = 0.0 :1 Load Combination Location of max.above base 0.0 ft At maximum location values are ... Vu: Applied 0.0 k ' Vn I Omega: Allowable Load`Cointiination`Resutts , . 0.0 k Maximum Axial + Bending Stress Ratios Maximum Shear Ratios Load Combination Stress Ratio Status Location Stress Ratio Status Location ' +D 0.096 PASS 0.00 It 0.000 PASS 0.00 ft +D+{.r+H 0.169 PASS 0.00 ft 0.000 PASS 0.00 It +D+0.750Lr+0.750L+H 0.151 PASS 0.00 ft 0.000 PASS 0.00 ft +D+0.750Lr+0.750L+0.750W+H 0.151 PASS 0.00 ft 0.000 PASS 0.00 ft +0+0.750Lr+0.750L+0.5250E+H 0.151 PASS 0.00 ft 0.000 PASS 0.00 ft az mum ea ons - Unfictored Note: Only non -zero reactions are listed. X -X Axis Reaction Y -Y Axis Reaction Load Combination @ Base @ Top @ Base @ Top r%.,..k. Lr Only D+Lr Makyoum.Deflecfions;forLoad °Loads Load Combination Max. X -X Defection Distance Max. Y -Y Deflection Distance D Only 0.0000 in 0.000 It 0.000 in 0.000 It Lr Only 0.0000 in 0.000 It 0.000 in 0.000 It D+Lr 0.0000 in 0.000 it 0.000 in 0.000 ft Description : B4B5 �SfeeiµSectioncProperties:: � �: = �TSSz3z5f16. `:; :; Depth = 5.000 in < I xx _ __ = 13.20 in A4 J = 13.80 Web Thick = 0.000 in S xx = 5.27 in^3 Flange Width = 3.000 in R xx = 1.740 in Flange Thick 0.313 in Area 4.360 in"2 1 yy 5.850 in^4 Weight 15.805 pif S yy _ 3.900 in"3 R yy = 1.160 in ' Ykg = 0.000 in 1 _...-._.._................ ......................... ...... ......................... ......... I ....... .......... _.......... _._............. _............ .... ... ................ ............... .... ..... .................. _....... ... ...... __............. .... _....... -.... __........... ....._............ ... . - I i S i wad i ui f � I = i l t --ggn-i--- Loads are Iolal entered value. Arrows do not reflect absolute direction. J12 File: Description: B5 GenerallnfOmtatiori ' Code Ref : 2006 IBC, AISC Manual 13th Edition `Steel Section Name: TS5x3x5/16 Overall Column Height 10.0 ft Analysis Method: 2006 IBC & ASCE 7-05 Steel Stress Grade Fy : Steel Yield 36.0 ksi E : Elastic Bending Modulus 29,000.0 ksi Load Combination: Allowable Stress Top & Bottom Fixity Top & Bottom Pinned Brace condition for deflection (buckling) along columns: X -X (width) axis: Fully braced against buckling along X -X Axis Y -Y (depth) axis :Fully braced against buckling along Y -Y Axis Applied Loads ' . , „ Service loads entered. Load Factors will be applied for calculations. Column self weight included 158.05 lbs ' Dead Load Factor AXIAL LOADS ... Axial Load at 10.0 ft, D = 6.330, LR = 4.974 k :,DESIGN.'SUMMARY Bending & Shear Check Results PASS Max, Axial+Bending Stress Ratio = Load Combination 0.1220 :1 +D+Lr+H Maximum SERVICE Load Reactions.. Top along X -X 0.0 k Location of max.above base At maximum location values are ... Pu : Axial Pn 1 Omega: Allowable 0.0 ft 11.462 k 93.988 k Bottom along X -X Top along Y -Y Bottom along Y -Y 0.0 k 0.0 k 0.0 k Mu -x :Applied 0.0 k -ft Maximum SERVICE Load Deflections... Mn -x / Omega: Allowable Mu -y: Applied Mn -y / Omega: Allowable 12.162 k -ft 0.0 k -ft 8.479 k -ft Along Y Y 0.0 in at for load combination Along X -X 0.0 in at O.Oft above base . 0.0 ft above base for load combination PASS Maximum Shear Stress Ratio = 0.0 :1 ' Load Combination Location of max.above base 0.0 ft At maximum location values are ... Vu: Applied 0.0 k Vn / Omega : Allowable iL id'Combination'Results 0.0 k Maximum Axial + Bending Stress Ratios Maximum Shear Ratios Load Combination Stress Ratio Status Location Stress Ratio Status Location +D 0.069 PASS 0.00 ft 0.000 PASS 0.00 ft +D+Lr+H 0.122 PASS 0.00 ft 0.000 PASS 0.00 ft +D+0.750Lr+0.750L+H 0.109 PASS 0.00 ft 0.000 PASS 0.00 ft +D+0.750Lr+0.750L+0.750W+H 0.109 PASS 0.00 ft 0.000 PASS 0.00 ft +D+0.750Lr+0.750L+0.5250E+H 0.109 PASS 0.00 ft 0.000 PASS 0.00 ft „ MI: iteactions - U fadorid , . ;. .: Note: Only non -zero reactions are listed. Load Combination X -X Axis Reaction @ Base @ Top Y -Y Axis Reaction @ Base @ Top D Only Lr Only D+Lr ak °.Mazimum.Deflections for:Load:Combinations : • UnfactoredLoads Load Combination Max. X -X Deflection Distance Max. Y -Y Deflection Distance D Only Lr Only 0.0000 in 0.0000 in 0.000 ft 0.000 ft 0.000 in 0.000 ft 0.000 in 0.000 ft D+Lr 0.0000 in 0.000 ft 0.000 in 0.000 ft I I 13.20 in^4 = 5.27 in"3 1.740 in = 5.850 in14 3.900 in"3 1.160 in Steel%Secttori Properties :. TSSxUNI Depth .' 5.000 in I xx Web Thick 0.000 in S xx Flange Width = 3.000 in R xx Flange Thick 0.313 in Area 4.360 in12 I yy Weight 15.805 plf S yy R yy Yaa = 0.000 in 13.20 in^4 = 5.27 in"3 1.740 in = 5.850 in14 3.900 in"3 1.160 in 7 Lj 1 1 Description : B6 General'Mformation Code Ref : 2006 IBC, AISC Manual 13th Edition V Steel Section Name: TS5x4x5/16 Overall Column Height 10.0 ft Analysis Method: 2006 IBC & ASCE 7-05 Steel Stress Grade Fy : Steel Yield 36.0 ksi E : Elastic Bending Modulus 29,000.0 ksi Load Combination: Allowable Stress Top & Bottom Fixity Top & Bottom Pinned Brace condition for deflection (buckling) along columns: X -X (width) axis: Fully braced against buckling along X -X Axis Y -Y (depth) axis :Fully braced against buckling along Y -Y Axis pplied L.oadS ':.. .„-. ,,; :, :.. ` : ` PASS Maximum Shear Stress Ratio = Service loads entered. Load Factors will be applied for calculations. Column self weight included :180.52 lbsDead Load Factor Load Combination AXIAL LOADS ... Location of max.above base 0.0 ft Axial Load at 10.0 ft, D = 5.211, LR = 4.094 k At maximum location values are ... Status rDESI,GN`SUMMARY �', Vu: Applied _ Bending & Shear Check Results Vn /Omega :Allowable �LoadComtination`Results 0.0 k PASS Max. Axial+Bending Stress Ratio = 0.08836 :1 Maximum SERVICE Load Reactions.. Load Combination +D+Lr+H Top along X -X 0.0 k Location of max.above base 0.0 ft Bottom along X -X 0.0 k At maximum location values are ... 0.00 ft Top along Y -Y 0.0 k Pu: Axial 9.486 k Bottom along Y -Y 0.0 k Pn / Omega: Allowable 107.35 k PASS Mu -x :Applied 0.0 k -ft Maximum SERVICE Load Deflections ... Mn -x / Omega: Allowable 14.802 k -ft Along Y Y 0.0 in at O.Oft above base 0.000 PASS for load combination Mu-y: ApplieOmega: /} Mn -y I Omega :Allowable 0.0 k -ft 12.665 k -ft Along X -X 0.0 in at O.Oft above base for load combination : PASS Maximum Shear Stress Ratio = 0.0 :1 Stress Ratios Load Combination Load Combination Location of max.above base 0.0 ft Location At maximum location values are ... Status Location Vu: Applied 0.0 k 0.050 Vn /Omega :Allowable �LoadComtination`Results 0.0 k 0.000 : � - - Lr Only Maximum Axial + Bending Stress Ratios Maximum Shear Ratios Load Combination Stress Ratio Status Location Stress Ratio Status Location +D 0.050 PASS 0.00 ft 0.000 PASS 0.00 ft 0.0000 in 0.000 It +D+Lr+H 0.088 PASS 0.00 ft 0.000 PASS 0.00 ft +D+0.750Lr+0.750L+H 0.079 PASS 0.00 ft 0.000 PASS 0.00 ft +D+0.750Lr+0.750L+0.750W+H 0.079 PASS 0.00 ft 0.000 PASS 0.00 ft +D+0.750Lr+0.750L+0.5250E+H 0.079 PASS 0.00 ft 0.000 PASS 0.00 ft Maximurii Reactions - Unfactored Note: Only non -zero reactions are listed. Load Combination X -X Axis Reaction @ Base @ Top , Y -Y Axis @ Base Reaction @@ Top n nen, Lr Only D+Lr Maximum Defiectrons forbad Comtiinattons Urifa . red11oads,. Load Combination Max. X -X Deflection Distance Max. Y -Y Deflection Distance D Only 0.0000 in 0.000 It 0.000 in i 0.000 ft Lr Only 0.0000 in 0.000 It 0.000 in 0.000 It D+Lr 0.0000 in 0.000 ft 0.000 in 0.000 It 1 11 Yog If 0.000 in 13 Loads are total entered value. Arrom do not reflect absolutedirection. .... ... .. .... ... .. .. ............. ........... ........ ...... . ..... -.. — ... ..., ................ ......... ..... .... . ..... . ... .. Desaipfion: B6 ,Steel Section Properties TI�A — 4)(5116 Depth 5.000 in I xx 16.60 inA4 j 22.900 inA4 Web Thick 0.000 in S xx 6.65 in'13 Flange Width = 4.000 in R xx = 1.830 in Flange Thick = Area 0,113 in 4.980 in A 2 1 yy 11.700 in A 4 Weight 18.052 plf S yy 5.850 in'13 R yy = 1.530 in 1 11 Yog If 0.000 in 13 Loads are total entered value. Arrom do not reflect absolutedirection. .... ... .. .... ... .. .. ............. ........... ........ ...... . ..... -.. — ... ..., ................ ......... ..... .... . ..... . ... .. Description • Gerieran'"ormIttion :'A_" ; , 'µ Code Ref : 2006 IBC, AISC Manual 13th Edition a Steel Section Name: TS5x3x5/16 Overall Column Height 10.0 ft Analysis Method: 2006 IBC & ASCE 7-05 Top & Bottom Fixity Top & Bottom Pinned Steel Stress Grade Fy : Steel Yield 36.0 ksi Brace condition for deflection (buckling) along columns: E: Elastic Bending Modulus 29,000.0 ksi X -X (width) axis: Fully braced against buckling along X -X Axis Load Combination : Allowable Stress Y -Y (depth) axis :Fully braced against buckling along Y -Y Axis �� x ti s x •,nk^ , Y w�i ; �< r Service loads entered. Load Factors will be a aplied for calculations. Column self weight included: 158.05 lbs ' Dead Load Factor AXIAL LOADS ... Axial Load at 10.0 ft, D 12.729 LR 10.002 k f DES/GN,SU,MMARY; Bending & Shear Check Results PASS Max. Axial+8ending Stress Ratio = 0.2435 :1 Maximum SERVICE Load Reactions.. Load Combination +D+Lr+H Top along X -X 0.0 k Location of max.above base 0.0 ft Bottom along X -X 0.0 k At maximum location values are ... T I Y Y 0 0 Pu: Axial 22.889 k Bottom along Y -Y 0.0 k Pn / Omega : Allowable 93.988 k Mu -x :Applied 0.0 k -ft Maximum SERVICE Load Deflections .. . Mn -x I Omega: Allowable 12.162 k -ft Along 0.0 in at O.Oft above base for looaa d combination Mu -y: Applied 0.0 k -ft Mn -y I Omega: Allowable 8.479 k -ft Along X -X 0.0 in at O.Oft above base for load combination PASS Maximum Shear Stress Ratio = 0.0 :1 Load Combination ' Location of max.above base 0.0 ft At maximum location values are ... Vu : Applied 0.0 k Vn I Omega Allowable 0.0 k Maximum Axial +Bending Stress Ratios Maximum Shear Ratios Load Combination Stress Ratio Status Location Stress Ratio Status Location +D 0.137 PASS 0.00 ft 0.000 PASS 0.00 ft +D+Lr+H 0.244 PASS 0.00 ft 0.000 PASS 0.00 ft +D+0.750Lr+0.750L+H 0.217 PASS 0.00 ft 0.000 PASS 0.00 ft +D+0.750Lr+0.750L+0.750W+H 0.217 PASS 0.00 ft 0.000 PASS 0.00 ft +D+0.750Lr+0.750L+0.5250E+H 0.217 PASS 0.00 ft 0.000 PASS 0.00 ft Maxinum Reactions �,U11faCtOr@d S Note: Only non -zero reactions are listed. X -X Axis Reaction Y -Y Axis Reaction Load Combination @ Base @ Top @ Base @ Top D Only — _ ` Lr Only D+Lr s`,'Mazi'mum Defloctions for Load Combinations • Unfactored Loads Load Combination Max. X -X Deflection Distance Max. Y -Y Deflection Distance D Only 0.0000 in 0.000 ft 0.000 in 0.000 ft Lr Only 0.0000 in 0.000 ft 0.000 in 0.000 ft D+Lr 0.0000 in 0.000 ft .0.000 in 0.000 ft ��Sft3el Set4iori'Propertes : "•<TS5x3x5116 : � • t Description: B6 Steel 8ection.0roperties TS5x3z5/16 77 „I Load Depth 5.000 in I xx 13.20 in14 J = 13.800 in"4 Web Thick 0.000 in S xx 5.27 in"3 Flange Width = 3.000 in R xx = 1.740 in Range Thick 0.313 in Ci Area 4.360 in"2 lyy 5.850 in"4 =I Weight 15.805 pff S yy _ 3.900 in"3 I R yy = 1.160 in ..._......__... Loads are total entered value. Arrows do not reflect absolute direction. ' .. ... _... ... .. .. ... ... .. .. _.... ... ..... .., .. ..... .. ... .. ...._....__......_.......... ............... ..._... .... ................... ..... ._......... """'-_. yag = 0.000 in t „I Load 1 a` I Ci =I I t I c.............. .._...3.�t� . ..................._ ..._......__... Loads are total entered value. Arrows do not reflect absolute direction. ' .. ... _... ... .. .. ... ... .. .. _.... ... ..... .., .. ..... .. ... .. ...._....__......_.......... ............... ..._... .... ................... ..... ._......... """'-_. 1 eW Description: 88 General.lnfonnation Load Combination Code Ref : 2006 IBC, AISC Manual 13th Edition Location of max.above base Steel Section Name: TSUU5/16 Overall Column Height 10.0 ft Vu: Applied Analysis Method: 2006 IBC & ASCE 7-05 Top & Bottom Fixity Top & Bottom Pinned Load.:Combmation`Resuits Steel Stress Grade Fy : Steel Yield - 36.0 ksi Brace condition for deflection (buckling) along columns: DESAV,-t E : Elastic Bending Modulus 29,000.0 ksi X -X (width) axis : Fully braced against buckling along X -X Axis PASS Load Combination: Allowable Stress Y -Y (depth) axis :Fully braced against buckling along Y -Y Axis i.. AQplfid;LOadS PASS Max. Axial+Bending Stress Ratio = Load Combination Service loads entered. Load Factors will be applied for calculations. eW Column self weight included :158.05 lbsDead Load Factor Load Combination Maximum Shear Ratios Location of max.above base 0.0 ft AXIAL LOADS ... Location Vu: Applied 0.0 k Vn /Omega: Allowable Axial Load at 10.0 ft D 10.627, LR 8.349 k Load.:Combmation`Resuits PASS 0.00 ft 0.000 DESAV,-t 0.00 ft +D+Lr+H 0.204 PASS Bending & Shear Check Results 0.000 PASS 0.00 ft +D+0.750Lr+0.750L+H PASS Max. Axial+Bending Stress Ratio = Load Combination 0.2036: 1 +D+Lr+H Maximum SERVICE Load Reactions.. Top along X -X 0.0 k PASS Location of max -above base 0.0 ft Bottom along X -X 0.0 k 0.00 ft At maximum location values are ... PASS Top along Y -Y 0.0 k 0.181 Pu: Axial 19.134 k Bottom along Y -Y 0.0 k 0.00 ft Pn / Omega: Allowable Mu -x: Applied 93.988 k 0.0 k -ft Maximum SERVICE Load Deflections ... Mn -x / Omega: Allowable 12.162 k -ft Along Y -Y 0.0 in at 0.0ft above base _ Y -Y Axis Reaction for load combination : Load Combination Mu -y: Applied �) Mn -y / Omega: Allowable 0.0 k -ft 8.479 k -ft Along X -X 0.0 in at 0.0ft above base for load combination : PASS Maximum Shear Stress Ratio = 0.0 :1 Load Combination Maximum Shear Ratios Location of max.above base 0.0 ft At maximum location values are ... Location Vu: Applied 0.0 k Vn /Omega: Allowable 0.0 k Load.:Combmation`Resuits PASS Maximum Axial +Bending Stress Ratios Maximum Shear Ratios Load Combination Stress Ratio Status Location Stress Ratio Status Location +0 0.115 PASS 0.00 ft 0.000 PASS 0.00 ft +D+Lr+H 0.204 PASS 0.00 ft 0.000 PASS 0.00 ft +D+0.750Lr+0.750L+H 0.181 PASS 0.00 ft 0.000 PASS 0.00 ft +0+0.750Lr+0.750L+0.750W+H 0.181 PASS 0.00 ft 0.000 PASS 0.00 ft +D+0.750Lr+0.750L+0.5250E+H 0.181 PASS 0.00 ft 0.000 PASS 0.00 ft "M7XII11Ut17 R@aCti6h1 - Uhfadored Note: Only non -zero reactions are listed. X -X Axis Reaction _ Y -Y Axis Reaction Load Combination @ Base @ Top @ Base @ Top D Only --- _ - Lr Only D+Lr lNazimum We dd-ions for Load Combinations.-.UnfactoredLoads Load Combination Max. X -X Deflection Distance Max. Y -Y Deflection Distance D Only 0.0000 in 0.000 ft 0.000 in 0.000 ft Lr Only 0.0000 in 0.000 ft 0.000 in 0.000 ft D+Lr 0.0000 in 0.000 ft 0.000 in 0.000 ft I19 Lic. At : Evall.lati011 Version Lic. At : Evall.lati011 Version License Owner Description : 88 :Steel Section.Properties.::-'JS5z3z5116 = 5.000 in I ux = 13.20 in^4 J = 13.800 in"4 !Depth , Web Thick = 0.000 in S roc = 5.27 in"3 Flange Width = 3.000 in R xx - 1.740 in Flange Thick = 0.313 in Area 4.360 in"2 1 yy 5.850 in"4 Weight 15.805 plf S yy 3.900 in A3 R yy = 1.160 in Ycg 0.000 in .r ................ ........ _.......... ........................ ... ........ ............ ..... ....... ........ ......._. ... ............ .......... ....................... ........ _...... .......... ........... ............................ . r \/ i 8Load t �I \ l 1 Yi �rn i l i 3_OOin_..______.___ Loads are total entered value. Anows do not rened absolute diredlon. i _ .....-.............._..__............ ..... _....._._....._... _........... _...... ..... M TAYLOR MC/16b COLUMN BASE PLATES 1) 5I � 4>(4x S/lc P= 23 G95°`- R4 13 2c-? ID 426 S4 0 .o 9/� ivy /S I F1 = 750 P s� M -c 5'/4.x 134 u5E 5'4x g)/2-xY2 2) 61 = 123eIr 544 °J'�t�5 5211 56 = IS9 %Coy IO G27 6329 4ega 34% 41572 = 22 73ci 11�aQ I a eo z 0 0 II° r 5X3�C$�6 j31 VSC 11 X g x 0 $5 0 3! 13 2/t33 = 1�3�5 31C 1�5 55ZZ_ 0 0 if 0 0 20, 3(p' Ir3-74 � y3c 0 0 0 0 B2 /a 1-45 �3 Ilxll�s/� I1VIIx13116 1 Lic. # : KW -060073 �- � - � A RIM i Applied Loads - L� P -Y V -Z M-X�r- D: Dead Load ....... 13.269 k 0.0 k 0.0 k -ft :, .. L: Live ....... 0.0 k 0.0 k 0.0 k -ft -` s Lr: Roof Live ......... 10.426 k 0.0 k 0.0 k -ft S: Snow ................ 0.0 k 0.0 k 0.0 k -ft ' W :Wind ................ 0.0 k 0.0 k 0.0 k -ft .�U E : Earthquake .............. 0.0 k 0.0 k 0.0 k -ft H : Lateral Earth .......... 0.0 k 0.0 k 0.0 k -ft ' P' = Gravity load, '+' sign is downward. "+• Moments create higher soil pressure at +Z edge. '+' Shears push plate towards +Z edge. Anchor Bolts _ Anchor Bolt or Rod Description 3/4 Max of Tension or Pullout Capacity........... 0,0 k Shear Capacity ......................................... 0.0 k Edge distance: bolt to plate ................... 1.50 in Number of Bolts in each Row ................... 2,0 Number of Bolt Rows ........................ 2.0 Row Spacing ................................. 2.50 in t, 1 r General Information Calculations per 13th AISC & AISC Design Guide No. 1, 1990 by DeWolf & Ricker tMaterial Properties AISC Design Method Allowable Stress Design ASIF : Allowable Stress Increase Factor 1.0 Steel Plate Fy = 36.0 ksi ABIF : Allowable Bearing Increase Factor 1.0 Concrete Support fc = 0.750 ksi n c :ASD Safety Factor. 2.50 Assumed Bearing Area: Bearing Area = P / Fp Allowable Bearing Fp per J8 0.6375 ksi Col &num plate -------- - -- - ( -- - - Column Properties Steel Section: TS4x4x5/16 Depth 4 in Area 4.36 in^2 1 Width 4 in Ixx 9.58 in^4 Flange Thickness 0.3125 in lyy 9.58 in"4 Web Thickness 0 in Plate Dimensions Support Dimensions N : Length 9.50 in Support width along "X" 9.50 in B : Width 5.250 in Length along 'T 9.0 in Thickness 0.50 in Column assumed welded to base plate. A RIM i Applied Loads - L� P -Y V -Z M-X�r- D: Dead Load ....... 13.269 k 0.0 k 0.0 k -ft :, .. L: Live ....... 0.0 k 0.0 k 0.0 k -ft -` s Lr: Roof Live ......... 10.426 k 0.0 k 0.0 k -ft S: Snow ................ 0.0 k 0.0 k 0.0 k -ft ' W :Wind ................ 0.0 k 0.0 k 0.0 k -ft .�U E : Earthquake .............. 0.0 k 0.0 k 0.0 k -ft H : Lateral Earth .......... 0.0 k 0.0 k 0.0 k -ft ' P' = Gravity load, '+' sign is downward. "+• Moments create higher soil pressure at +Z edge. '+' Shears push plate towards +Z edge. Anchor Bolts _ Anchor Bolt or Rod Description 3/4 Max of Tension or Pullout Capacity........... 0,0 k Shear Capacity ......................................... 0.0 k Edge distance: bolt to plate ................... 1.50 in Number of Bolts in each Row ................... 2,0 Number of Bolt Rows ........................ 2.0 Row Spacing ................................. 2.50 in t, 1 r 1 f s File C 00Wnents and SetU s1PC31My DocumenlstENERCALG DATA,FlLESlfaOw"t 16b ec6 @'Base Plate Design ENERCALC,INC 198320t0:ver81.51:4N:50790.` it ( ) Load Comb.: +D+Lr+H Loading Pa: Axial Load .... Design Plate Height ......... Design Plate Width ......... Will be 06rent from entry d partial bearing used. Al : Plate Area ......... A2: Support Area .................. A21A1 ...................... Distance for Moment Calculation 'm' 'n' X.............................. Lambda ...................... n' ........................................ n' • Lambda .................................. L = max(m, n, n") ......................... Description : 61 GOVERNING DESIGN LOAD CASE SUMMARY Plate Design Summary Design Method Allowable Stress Desiqn Governing Load Combination +D+Lr+H Governing Load Case Type Axial Load Only Design Plate Size 9 -112" x 5.114" x 0 -112" Pa: Axial Load .... 23.695 k Me: Moment ........ 0.000 k -ft fv : Actual ................................ 0.000 ksi Fv : Allowable = 0.60 • Fy / 1.5 (per G2) 0.000 ksi Stress Ratio ................. 0.000 Shear Stress OK Load Comb.: +D Loading Pa: Axial Load .... 13.269 k Design Plate Height ......... 4.000 in Design Plate Width ......... 4.000 in Will be different from entry if partial bearing used. Al : Plate Area ......... 16.000 in"2 A2: Support Area .................. 49.875 in"2 A2/A1 ...................... 1.000 Distance for Moment Calculation ' m' ..................... 0.100 in 'n' ..................... 0.100 in X .............................. 0.000 in^2 Lambda ...................... 0.000 n' ........................................ 0.000 in n' •Lambda .................................. 0.000 in L = max(m, 23.695 k 4.000 in 4.000 in 16.000 in"2 49.875 in^2 1.000 0.100 in 0.100 in 0.000 in"2 0.000 0.000 in 0.000 in 0.100 in Mu: Max. Moment ..................... fb : Max. Bending Stress ............... Fb : Allowable: Fy • ASIF / Omega 0.001 k -in 0.020 ksi 21.557 ksi Stress Ratio ................. 0.001 Bending Stress OK fu : Max. Plate Bearing Stress .... 0.254 ksi Fp: Allowable: 0.255 ksi min( 0.85•fc'sgrt(A2/A1),1.7• Pc)•Ome Stress Ratio ................. 0.996 Bearing Stress OK _........................................................_....... ._...._...._...... ....-..... _.__._.................. _...._.._._... ... ....... ...... Axial Load Only, No Moment Bearing Stresses Fp: Allowable ............................... fa : Max. Bearing Pressu Stress Ratio ....................... Plate Bending Stresses Mmax=Fu•L"2/ 2 ................... fb : Actual ................................ Fb : Allowable .............................. Stress Ratio ..................... Shear Stress tv: Actual ................................ Fv : Allowable .............................. Stress Ratio ..................... Bearinq Stresses Fp: Allowable ............................... fa: Max. Bearing Pressu Stress Ratio ..................... Plate Bending Stresses Mmax=Fu•L"2/ 2 ................... fb : Actual ................................ Fb : Allowable .............................. Stress Ratio ..................... Shear Stress fv : Actual ................................ Fv : Allowable .............................. Stress Ratio ..................... 0.255 ksi 0.254 ksi 0.996 0.001 k4n 0.020 ksi 21.557 ksi 0.001 0.000 ksi 0.000 ksi 0.000 _. ........ ........ _..... ... _.._...._.... .---.._...._. Axial Load Only, No Moment 0.255 ksi 0.254 ksi 0.996 0.001 k4n 0.020 ksi 21.557 ksi 0.001 0.000 ksi 0.000 ksi 0.000 n n" ......................... 0.100 in it ( ) Load Comb.: +D+Lr+H Loading Pa: Axial Load .... Design Plate Height ......... Design Plate Width ......... Will be 06rent from entry d partial bearing used. Al : Plate Area ......... A2: Support Area .................. A21A1 ...................... Distance for Moment Calculation 'm' 'n' X.............................. Lambda ...................... n' ........................................ n' • Lambda .................................. L = max(m, n, n") ......................... Description : 61 GOVERNING DESIGN LOAD CASE SUMMARY Plate Design Summary Design Method Allowable Stress Desiqn Governing Load Combination +D+Lr+H Governing Load Case Type Axial Load Only Design Plate Size 9 -112" x 5.114" x 0 -112" Pa: Axial Load .... 23.695 k Me: Moment ........ 0.000 k -ft fv : Actual ................................ 0.000 ksi Fv : Allowable = 0.60 • Fy / 1.5 (per G2) 0.000 ksi Stress Ratio ................. 0.000 Shear Stress OK Load Comb.: +D Loading Pa: Axial Load .... 13.269 k Design Plate Height ......... 4.000 in Design Plate Width ......... 4.000 in Will be different from entry if partial bearing used. Al : Plate Area ......... 16.000 in"2 A2: Support Area .................. 49.875 in"2 A2/A1 ...................... 1.000 Distance for Moment Calculation ' m' ..................... 0.100 in 'n' ..................... 0.100 in X .............................. 0.000 in^2 Lambda ...................... 0.000 n' ........................................ 0.000 in n' •Lambda .................................. 0.000 in L = max(m, 23.695 k 4.000 in 4.000 in 16.000 in"2 49.875 in^2 1.000 0.100 in 0.100 in 0.000 in"2 0.000 0.000 in 0.000 in 0.100 in Mu: Max. Moment ..................... fb : Max. Bending Stress ............... Fb : Allowable: Fy • ASIF / Omega 0.001 k -in 0.020 ksi 21.557 ksi Stress Ratio ................. 0.001 Bending Stress OK fu : Max. Plate Bearing Stress .... 0.254 ksi Fp: Allowable: 0.255 ksi min( 0.85•fc'sgrt(A2/A1),1.7• Pc)•Ome Stress Ratio ................. 0.996 Bearing Stress OK _........................................................_....... ._...._...._...... ....-..... _.__._.................. _...._.._._... ... ....... ...... Axial Load Only, No Moment Bearing Stresses Fp: Allowable ............................... fa : Max. Bearing Pressu Stress Ratio ....................... Plate Bending Stresses Mmax=Fu•L"2/ 2 ................... fb : Actual ................................ Fb : Allowable .............................. Stress Ratio ..................... Shear Stress tv: Actual ................................ Fv : Allowable .............................. Stress Ratio ..................... Bearinq Stresses Fp: Allowable ............................... fa: Max. Bearing Pressu Stress Ratio ..................... Plate Bending Stresses Mmax=Fu•L"2/ 2 ................... fb : Actual ................................ Fb : Allowable .............................. Stress Ratio ..................... Shear Stress fv : Actual ................................ Fv : Allowable .............................. Stress Ratio ..................... 0.255 ksi 0.254 ksi 0.996 0.001 k4n 0.020 ksi 21.557 ksi 0.001 0.000 ksi 0.000 ksi 0.000 _. ........ ........ _..... ... _.._...._.... .---.._...._. Axial Load Only, No Moment 0.255 ksi 0.254 ksi 0.996 0.001 k4n 0.020 ksi 21.557 ksi 0.001 0.000 ksi 0.000 ksi 0.000 r 1 t I File: C:1Documebts and Setting; Axial Load Only, No Moment Bearina Stresses Fp: Allowable ............................... �Steei Base Prate Design fa: Max. Bearing Pressu 0.253 ksi KW -06007390 0.993 Plate Bending Stresses Description : 61 Mm ax = Fu ' L^2/2 ................... 0.001 k -in Load Comb.: +D+0.750Lr+0.750L+0.5250E+H 0.020 ksi Loading Pa: Axial Load .... Design Plate Height ......... 21.089 k 4.000 in Stress Ratio ..................... Design Plate Width ......... Will be different from entry d partial bearing used. 4.000 in Al : Plate Area ......... 16.000 in^2 Fv : Allowable .............................. e : Support Area .................. 49.875 in^2 0.000 A2/A1...................... Distance for Moment Calculation 1.000 gym' ..................... 0.100 in .n* ..................... 0.100 in X .............................. 0.000 in"2 Lambda ...................... 0.000 n. ........................................ 0.000 in V Lambda .................................. 0.000 in L = max(m, n, n") ......................... 0.100 in Load Comb.: +D+0.750Lr+0.750L-0.5250E+H Loading Pa: Axial Load .... Design Plate Height ......... 21.089 k 4.000 in Design Plate Width ......... 4.000 in Will be different from entry 8 partial bearing used. Al : Plate Area ......... A2: Support Area .................. 16.000 in"2 49.875 in"2 A2/A1 ...................... 1.000 Distance for Moment Calculation .m' ..................... 0.100 in 'n' ..................... 0.100 in X .............................. 0.000 in^2 Lambda-- ................. n' ........................................ 0.000 0.000 in n' • Lambda .................................. 0.000 in L = max(m, n, n") ......................... 0.100 in r 1 t I File: C:1Documebts and Setting; Axial Load Only, No Moment Bearina Stresses Fp: Allowable ............................... 0.255 ksi fa: Max. Bearing Pressu 0.253 ksi Stress Ratio ....................... 0.993 Plate Bending Stresses Mm ax = Fu ' L^2/2 ................... 0.001 k -in fb : Actual ................................ 0.020 ksi Fb : Allowable .............................. 21.557 ksi Stress Ratio ..................... 0.001 Shear Stress tv : Actual ................................ 0.000 ksi Fv : Allowable .............................. 0.000 ksi Stress Ratio ..................... 0.000 Axial Load Only, No Moment Bearina Stresses Fp: Allowable ............................... 0.255 ksi fa: Max. Bearing Pressu 0.253 ksi Stress Ratio ....................... 0.993 Plate Bending Stresses Mmax = Fu' L" 2/2 ................... 0.001 k -in fb : Actual ................................ 0.020 ksi Fb : Allowable .............................. 21.557 ksi Stress Ratio ..................... 0.001 Shear Stress fv : Actual ................................ 0.000 ksi Fv : Allowable .......................... 0.000 ksi Stress Ratio ..................... 0.000 �Steei Base Pla#e,Des�9� ::"' "� . ' ut"arnNrRiNcciaii �n nw� � Ij-.q n. e end ngs ..ON F Loading Pa : Axial Load .... Design Plate Height ......... 21.089 k 4.000 in 0.253 ksi Description : B1 4.000 in 1 Load Comb.: +D+0.750Lr+0.750L+H 16.000 in^2 0.001 k -in Lo� adina 21.089 k Fb : Allowable .............................. Pa : Axial Load .... Design Plate Height ......... 4.000 in 0.001 Design Plate Width ......... 4.000 in tv : Actual ................................ Will be dif mnf from entry if partial bearing used. 0.100 in 0.000 ksi Al : Plate Area ......... 16.000 in^2 e : Support Area .................. 49.875 in^2 A2/A1 ...................... 1.000 �1 Distance for Moment Calculation 0.100 in Load Comb.: +D+0.750Lr+0.750L-0.750W+H Loading Pa: Axial Load .... 21.089 k Design Plate Height ......... 4.000 in Design Plate Width ......... 4.000 in 'm' ..................... 0.100 in 'n' ..................... 0.100 in 16.000 in"2 X .............................. Lambda ...................... 0.000 in"2 0.000 49.875 in 2 1.000 n' ........................................ 0.000 in n' • Lambda .................................. 0.000 in 0.100 in L = max(m; n, n") ......................... 0.100 in 0.100 in 0.000 in"2 Load Comb.: +D+0.750Lr+0.750L+0.750W+H r Bearing Stresses Fp: Allowable ............................... fa : Max. Bearing Pressu Stress Ratio ....................... Plate Bending Stresses Mmax = Fu' L^2 12 ................... fb : Actual ................................ Fb : Allowable .............................. Stress Ratio ..................... Shear Stress tv : Actual ................................ Fv : Allowable .............................. Stress Ratio ..................... Bearina Stresses Fp: Allowable ............................... fa : Max. Bearing Pressu Stress Ratio ................. Plate Bending Stresses Mmax =Fu'L"2/2................... fb: Actual ................................ Fb : Allowable .............................. Stress Ratio ................. Shear Stress tv : Actual ................................ Fv : Allowable .............................. Stress Ratio ................. Bearina Stresses Axial Load Only, No Moment 0.255 ksi 0.253 ksi 0.993 0.001 k -in 0.020 ksi 21.557 ksi 0.001 0.000 ksi 0.000 ksi 0.000 Axial Load Only, No Moment 0.255 ksi 0.253 ksi 0.993 0.001 k4n 0.020 ksi 21.557 ksi 0.001 0.000 ksi 0.000 ksi 0.000 Axial Load Only, No Moment Fp: Allowable ............................... Loading Pa : Axial Load .... Design Plate Height ......... 21.089 k 4.000 in 0.253 ksi Desgn Plate Width ......... Will be different from entry it partial bearing used. 4.000 in 1 Al :Plate Area ......... 16.000 in^2 0.001 k -in HA2: Support Area .................. 49.875 in"2 Fb : Allowable .............................. A2/A1 ...................... 1.000 0.001 Distance for Moment Calculation 'm' ..................... 0.100 in tv : Actual ................................ 'n' ..................... 0.100 in 0.000 ksi X .............................. 0.000 in"2 Lambda ...................... if........................................ 0.000 0.000 in n' • Lambda .................................. 0.000 in L = max(m, n, n") ......................... 0.100 in Load Comb.: +D+0.750Lr+0.750L-0.750W+H Loading Pa: Axial Load .... 21.089 k Design Plate Height ......... 4.000 in Design Plate Width ......... 4.000 in Will be different from entry if partial bearing used. Al : Plate Area ......... 16.000 in"2 :.A21A1 A2: Support Area .................. ...................... 49.875 in 2 1.000 Distance for Moment Calculation ' m' ..................... 0.100 in ' n*, .................... X .............................. 0.100 in 0.000 in"2 Lambda ...................... 0.000 n' ........................................ 0.000 in n' • Lambda .................................. L = max(m, n, n") ......................... 0.000 in 0.100 in >_J r Bearing Stresses Fp: Allowable ............................... fa : Max. Bearing Pressu Stress Ratio ....................... Plate Bending Stresses Mmax = Fu' L^2 12 ................... fb : Actual ................................ Fb : Allowable .............................. Stress Ratio ..................... Shear Stress tv : Actual ................................ Fv : Allowable .............................. Stress Ratio ..................... Bearina Stresses Fp: Allowable ............................... fa : Max. Bearing Pressu Stress Ratio ................. Plate Bending Stresses Mmax =Fu'L"2/2................... fb: Actual ................................ Fb : Allowable .............................. Stress Ratio ................. Shear Stress tv : Actual ................................ Fv : Allowable .............................. Stress Ratio ................. Bearina Stresses Axial Load Only, No Moment 0.255 ksi 0.253 ksi 0.993 0.001 k -in 0.020 ksi 21.557 ksi 0.001 0.000 ksi 0.000 ksi 0.000 Axial Load Only, No Moment 0.255 ksi 0.253 ksi 0.993 0.001 k4n 0.020 ksi 21.557 ksi 0.001 0.000 ksi 0.000 ksi 0.000 Axial Load Only, No Moment Fp: Allowable ............................... 0.255 ksi fa : Max. Bearing Pressu 0.253 ksi Stress Ratio ....................... 0.993 Plate Bending Stresses Mmax = Fu ' 1-12 / 2 ................... 0.001 k -in fb : Actual ................................ 0.020 ksi Fb : Allowable .............................. 21.557 ksi Stress Ratio ...:............ 0.001 Shear Stress tv : Actual ................................ 0.000 ksi Fv : Allowable .............................. 0.000 ksi Stress Ratio ..................... 0.000 t feel Base Plate Desi h File G 1Documents and Set67gsIPC3, Doo*ptsl NERCALG DATA FIIE forme 166 ec6 ENERCALC, INQ'IM.N110.iVb�8ASV N:50790_ -M L Lic. #: KW -060073 I - 1 Plate Dimensions Support Dimensions N : Length 11.0 in Support width along 'X' 12.0 in B : Width 9.0 in Length along 7 12.0 in Thickness 0.3125 in Column assumed welded to base plate. General Information Calculations per 13th AISC & AISC Design Guide No. 1, 1990 by DeWolf 8 Ricker Material Properties Applied loads AISC Design Method Load Resistance Factor Design dy c : LRFD Resistance Factor 0.60 P -Y Steel Plate Fy = 36.0 ksi D: Dead Load ....... Concrete Support f = 3.0 ksi 0.0 k 0.0 k -ft Assumed Bearing Area: Bearing Area = P / Fp Allowable Bearing Fp per J8 5.10 ksi 0.0 k Column & Plate I Column Properties 4.972 k 0.0 k 0.0 k -ft Steel Section : TS5x3x5/16 S: Snow ................ 0.0 k Depth 5 in Area 4.36 in^2 W : Wind ................ E : Earthquake .............. 0.0 k 0.0 k Width 3 in Ixx 13.2 in^4 H: Lateral Earth ......... 0.0 k Flange Thickness 0.3125 in lyy 5.85 in"4 It: ' P' = Gravity load, '+' sign is downward. '+' Moments create higher soil pressure Web Thickness 0 in A I 1 Plate Dimensions Support Dimensions N : Length 11.0 in Support width along 'X' 12.0 in B : Width 9.0 in Length along 7 12.0 in Thickness 0.3125 in Column assumed welded to base plate. Anchor Bolts Anchor Bolt or Rod Description 11/2' Max of Tension or Pullout Capacity,.......... Shear Capacity ......................................... Edge distance: bolt to plate ................... Number of Bolts in each Row ................... Number of Bolt Rows ........................ f. t 0.0 k 0.0 k 1.250 in x 2.0 1.0 • •dX MV.- q- � V.-q-%� Applied loads P -Y V -Z M -X D: Dead Load ....... 6.329 k 0.0 k 0.0 k -ft L: Live ....... 0.0 k 0.0 k 0.0 k -ft Lr: Roof Live ......... 4.972 k 0.0 k 0.0 k -ft S: Snow ................ 0.0 k 0.0 k 0.0 k -ft W : Wind ................ E : Earthquake .............. 0.0 k 0.0 k 0.0 k 0.0 k 0.0 k -ft 0.0 k -ft H: Lateral Earth ......... 0.0 k 0.0 k 0.0 k -ft ' P' = Gravity load, '+' sign is downward. '+' Moments create higher soil pressure at +Z edge. A '+' Shears push plate towards +Z edge. Anchor Bolts Anchor Bolt or Rod Description 11/2' Max of Tension or Pullout Capacity,.......... Shear Capacity ......................................... Edge distance: bolt to plate ................... Number of Bolts in each Row ................... Number of Bolt Rows ........................ f. t 0.0 k 0.0 k 1.250 in x 2.0 1.0 • •dX MV.- q- � V.-q-%� Steel Base Plate Desi n Flle C1Documenls and setbngs1PC31My IbcumeritslENERCALC DATA FlLEsltaybrme f6bec6 .i _ ENFRCALG; INC 1983 2010 Ver,8151 N 50790 s 0.00Owner: Description : B5 GOVERNING DESIGN LOAD CASE SUMMARY Mu: Max. Moment ..................... 0.412 k4n Plate Design Summary fb : Max. Bending Stress ............... 16.876 ksi Design Method Load Resistance Factor Desiqn Fb : Allowable: 32.400 ksi Governing Load Combination +1.20D+1.601 -r+0.501- Fy' Phi Governing Ratio ................. 0.521ing Load Case Type Axial Load Only Bending Stress OK Design Plate Size 11" x 9" x 0 -5116" Pu: Axial ......... 15.550 k fu : Max. Plate Bearing Stress .... 0.808 ksi Mu: Moment ........ 0.000 k -ft Fp: Allowable: 3.060 ksi fv : All................................=00. 0.000 ksi min( 0.85'fc'sgrt(A2/A1), 1.7' fc)'Phi Fv :Allowow able = 0.60' Fy • 0.90 (per G2) 0.000 ksi Stress Ratio ................. 0.264 Stress Ratio ................. 0.000 Bearing Stress OK Shear Stress OK Load Comb.: +1.20D+O.SOLr+1.60L+1.60H Axial Load Only, No Moment Loading Pu: Axial ......... Design Plate Height......... Design Plate Width ......... 1�I Bearing Stresses Fp: Allowable ............................... fu : Max. Bearing Pressu Stress Ratio ....................... Steel Base Plate Desi n Flle C1Documenls and setbngs1PC31My IbcumeritslENERCALC DATA FlLEsltaybrme f6bec6 .i _ ENFRCALG; INC 1983 2010 Ver,8151 N 50790 s 0.00Owner: Description : B5 GOVERNING DESIGN LOAD CASE SUMMARY Mu: Max. Moment ..................... 0.412 k4n Plate Design Summary fb : Max. Bending Stress ............... 16.876 ksi Design Method Load Resistance Factor Desiqn Fb : Allowable: 32.400 ksi Governing Load Combination +1.20D+1.601 -r+0.501- Fy' Phi Governing Ratio ................. 0.521ing Load Case Type Axial Load Only Bending Stress OK Design Plate Size 11" x 9" x 0 -5116" Pu: Axial ......... 15.550 k fu : Max. Plate Bearing Stress .... 0.808 ksi Mu: Moment ........ 0.000 k -ft Fp: Allowable: 3.060 ksi fv : All................................=00. 0.000 ksi min( 0.85'fc'sgrt(A2/A1), 1.7' fc)'Phi Fv :Allowow able = 0.60' Fy • 0.90 (per G2) 0.000 ksi Stress Ratio ................. 0.264 Stress Ratio ................. 0.000 Bearing Stress OK Shear Stress OK Load Comb.: +1.20D+O.SOLr+1.60L+1.60H Axial Load Only, No Moment Distance for Moment Calculation Loading Pu: Axial ......... Design Plate Height......... Design Plate Width ......... 10.081 k 5.000 in 3.000 in Bearing Stresses Fp: Allowable ............................... fu : Max. Bearing Pressu Stress Ratio ....................... e : Support Area .................. Will be different from enpy if partial bearing used. " Plate Bending Stresses " Distance for Moment Calculation Al : Plate Area ......... 15.000 in 2 0.125 in e : Support Area .................. 117.818 in"2 ItAVA1 ...................... 2.000 Distance for Moment Calculation Loading Pu: Axial ......... Design Plate Height ......... 'm' ..................... 0.125 in ' n' ..................... 0.075 in X.. ............................ 0.000 in "2 Lambda ...................... 0.000 n' ........................................ 1.010 in n • Lambda .. L = max(m, n, n") ................... .. ........ _... ...._. _..... 0.000 in 1.010.. in.... _ . ................. fb : Actual ................................ .. Load Comb.: +1.20D+1.60Lr+0.50L A2IA1 ...................... Mmax = Fu L212 ................... fb : Actual ................................ Fb : Allowable .............................. Stress Ratio ..................... Shear Stress tv : Actual ................................. Fv : Allowable .............................. Stress Ratio ..................... i 3.060 ksi 0.524 ksi 0.171 0.267 k4n 10.940 ksi 32.400 kst 0.338 0.000 ksi 0.000 ksi 0.000 ..... .......... ....... .... .............. ................ ....... ... _ Axial Load Only, No Moment 3.060 ksi 0.808 ksi 0.264 0.412 k4n 16.876 ksi 32.400 ksi 0.521 0.000 ksi 0.000 ksi 0.000 Loading Pu: Axial ......... Design Plate Height ......... 15.550 k 5.000 in Bearing Stresses Fp: Allowable ............................... fu: Max. Bearing Pressu " Design Plate Width ......... 3.000 in Stress Ratio ....................... Will bediteMfrom entry #partialbearing used. Al : Plate Area ......... 15.000 in"2 Plate Bendinq Stresses Mmax = Fu' L"2 12 ................... e: Support Area .................. 117.818 in"2 fb : Actual ................................ A2IA1 ...................... 2.000 Fb : Allowable .............................. Distance for Moment Calculation Stress Ratio ..................... Shear Stress ' m' ..................... 0.125 in tv : Actual ................................ ' n ' ..................... 0.075 in Fv : Allowable .............................. X .............................. Lambda ...................... 0.000 in"2 0.000 Stress Ratio ..................... n' ........................................ 1.010 in n'' Lambda .................................. 0.000 in L = max(m, n, n") ......I .................. 1.010 in i 3.060 ksi 0.524 ksi 0.171 0.267 k4n 10.940 ksi 32.400 kst 0.338 0.000 ksi 0.000 ksi 0.000 ..... .......... ....... .... .............. ................ ....... ... _ Axial Load Only, No Moment 3.060 ksi 0.808 ksi 0.264 0.412 k4n 16.876 ksi 32.400 ksi 0.521 0.000 ksi 0.000 ksi 0.000 1 :-KW--060073--9-0 . _. _ . Description : B5 Load Comb.: +1.20D+1.60Lr+0.80W "Hie::a:wocunu ENERCALC; INC 19831010 Ver'$r151 iNi50790 • • . � - ,1ltitm � Axial Load Only, No Moment 3.060 ksi 0.808 ksi 0.264 0.412 k -in 16.876 ksi 32.400 ksi ... 0.521 0.000 ksi 0.000 ksi 0.000 Axial Load Only, No Moment Loading Bearing Stresses Pu: Axial ......... 15.550 k Fp: Allowable ............................... 3.060 ksi Design Plate Height ......... 5.000 in fu: Max. Bearing Pressu 0.808 ksi Design Plate Width ......... 3.000 in Stress Ratio ....................... 0.264 Will be different from entry it partial bearing used. Plate Bending Stresses Al : Plate Area ......... 15.000 in"2 Mmax = Fu ' 1-12 / 2 ................... 0.412 k4n .: e : Support Area .................. 117.818 in"2 fb : Actual ................................ 16.876 ksi A2/A1 ...................... 2.000 Fb : Allowable .............................. 32.400 ksi Stress Ratio ..................... 0.521 Distance for Moment Calculation Shear Stress m' ..................... 0.125 in tv : Actual ................................ 0.000 ksi ' n ' ..................... 0.075 in Fv : Allowable .............................. 0.000 ksi X .............................. 0.000 in"2 Stress Ratio ..................... 0.000 Lambda ...................... 0.000 n' ........................................ 1.010 in n'' Lambda .................................. 0.000 in L = max(m, n, n") ......................... 1.010 in i Load Comb.: +1.20D+0.50Lr+0.50L+1.60W Axial Load Only, No Moment Loading Bearinq Stresses Pu: Axial ......... 10.081 k Fp: Allowable ............................... 3.060 ksi Design Plate Height ......... 5.000 in fu : Max. Bearing Pressu 0.524 ksi Design Plate Width ......... 3.000 in Stress Ratio ....................... 0.171 Will be different from entry if partial bearing used. Plate Bending Stresses Al :Plate Area ......... 15.000 in^2 Mmax = Fu ' 1-112 / 2 ................... 0.267 k4n e: Support Area .................. 117.818 in"2 fb : Actual ................................ 10.940 ksi A2/A1 ...................... 2.000 Fb : Allowable .............................. 32.400 ksi Stress Ratio ..................... 0.338 Distance for Moment Calculation Shear Stress m' ..................... 0.125 in tv : Actual ................................ 0.000 ksi • n • ..................... 0.075 in Fv : Allowable .............................. 0.000 ksi X .......................... 0.000 in"2 Stress Ratio ..................... 0.000 Lambda ...................... 0.000 n' ........................................ 1.010 in n'' Lambda .................................. 0.000 in / L = max(m, n, n") ......................... 1.010 in Loading Pu: Axial ......... Design Plate Height ......... Design Plate Width ......... Will be different from entry it partial Bearing used. 15.550 k 5.000 in 3.000 in Bearinq Stresses Fp: Allowable ............................. fu: Max. Bearing Pressu Stress Ratio ............... Plate Bending Stresses Al : Plate Area ......... 15.000 in'2 Mmax = Fu' 1-112 / 2 ................... e: Support Area .................. A2JA1 ...... 117.818 in"2 2.000 fb : Actual ................................ Fb : Allowable .............................. Stress Ratio ............... Distance for Moment Calculation Shear Stress . m' ..................... 0.125 in fv : Actual ................................ ' n' ..................... X .............................. 0.075 in 0.000 in"2 Fv : Allowable .............................. Stress Ratio ............... Lambda ...................... 0.000 n' ................................. 1.010 in =` n" Lambda .................................. 0.000 in L = max(m, n, n") ......................... 1.010 in Load Comb.: +1.20D+1.60Lr-0.80W ENERCALC; INC 19831010 Ver'$r151 iNi50790 • • . � - ,1ltitm � Axial Load Only, No Moment 3.060 ksi 0.808 ksi 0.264 0.412 k -in 16.876 ksi 32.400 ksi ... 0.521 0.000 ksi 0.000 ksi 0.000 Axial Load Only, No Moment Loading Bearing Stresses Pu: Axial ......... 15.550 k Fp: Allowable ............................... 3.060 ksi Design Plate Height ......... 5.000 in fu: Max. Bearing Pressu 0.808 ksi Design Plate Width ......... 3.000 in Stress Ratio ....................... 0.264 Will be different from entry it partial bearing used. Plate Bending Stresses Al : Plate Area ......... 15.000 in"2 Mmax = Fu ' 1-12 / 2 ................... 0.412 k4n .: e : Support Area .................. 117.818 in"2 fb : Actual ................................ 16.876 ksi A2/A1 ...................... 2.000 Fb : Allowable .............................. 32.400 ksi Stress Ratio ..................... 0.521 Distance for Moment Calculation Shear Stress m' ..................... 0.125 in tv : Actual ................................ 0.000 ksi ' n ' ..................... 0.075 in Fv : Allowable .............................. 0.000 ksi X .............................. 0.000 in"2 Stress Ratio ..................... 0.000 Lambda ...................... 0.000 n' ........................................ 1.010 in n'' Lambda .................................. 0.000 in L = max(m, n, n") ......................... 1.010 in i Load Comb.: +1.20D+0.50Lr+0.50L+1.60W Axial Load Only, No Moment Loading Bearinq Stresses Pu: Axial ......... 10.081 k Fp: Allowable ............................... 3.060 ksi Design Plate Height ......... 5.000 in fu : Max. Bearing Pressu 0.524 ksi Design Plate Width ......... 3.000 in Stress Ratio ....................... 0.171 Will be different from entry if partial bearing used. Plate Bending Stresses Al :Plate Area ......... 15.000 in^2 Mmax = Fu ' 1-112 / 2 ................... 0.267 k4n e: Support Area .................. 117.818 in"2 fb : Actual ................................ 10.940 ksi A2/A1 ...................... 2.000 Fb : Allowable .............................. 32.400 ksi Stress Ratio ..................... 0.338 Distance for Moment Calculation Shear Stress m' ..................... 0.125 in tv : Actual ................................ 0.000 ksi • n • ..................... 0.075 in Fv : Allowable .............................. 0.000 ksi X .......................... 0.000 in"2 Stress Ratio ..................... 0.000 Lambda ...................... 0.000 n' ........................................ 1.010 in n'' Lambda .................................. 0.000 in / L = max(m, n, n") ......................... 1.010 in Base Plate Desi n KW -06007390 File: Q(Documents .*S!tt!nqsTC31* D6,66n**WENERW.,qA ,F -'feel NERCALCII N License Owner: WALLING MCCALLUM LTD. Description: B5 Load Comb.: +1.20D+0.50Lr+0.50L-1.60W Axial Load Only, No Moment Loading 10-081 Bearing Stresses Pu: Axial k Fp: Allowable ............................... 3.060 ksi Design Plate Height ......... 5.000 in fu: Max. Bearing Pressu 0.524 ksi Design Plate Width ......... 3.000 in Stress Ratio ....................... 0.171 Will be dfierent from enfry if partial bearing irsed Plate Bendinq Stresses Al : Plate Area ......... 15.000 in12 Mmax = Fu' L"2 12 ................... 0.267 k4n e: Support Area .................. 117.818 in A 2 fb: Actual ................................ 10.940 ksi A2JA1 ...................... 2.000 Fb: Allowable .............................. Stress Ratio ..................... 32.400 ksi 0.338 Distance for Moment Calculation Shear Stress m, ..................... 0.125 in tv: Actual ................................ 0.000 ksi n* ..................... 0.075 in Fv: Allowable .............................. 0.000 ksi X .............................. 0.000 inA2 Stress Ratio ..................... 0.000 Lambda ...................... 0.000 n ......................................... 1.010 in V Lambda .................................. 0.000 in L = max(m, n, n") ......................... 1.010 in }Steel Base Plate Dtasi n �' File: G 1Documents anC 95et6nOTC ." DocumentslENERCALCDATA FlLESItaylorme l6b ecB ,. ._ .. <ENERCALCr ING :1102010. Ver 8:151.,N:50790.: 4, U Plate Dimensions Support Dimensions N : Length 11.0 in Support width along 'X' 36.0 in B: Width 9.0 in Length along "Z' 36.0 in Thickness 0.3125 in Column assumed welded to base plate. . . ........... ....... . . .................. .......... I—I_ Description : B1 - ., V -Z M -X Calculations per 13th AISC & AISC Design Guide No. 1, 1990 by DeWolf 8 Ricker Generallnformation 6.933 k k Material Properties AISC Design Method Allowable Stress Design k ASIF : Allowable Stress Increase Factor 1.0 Steel Plate Fy = 36.0 ksi ABIF : Allowable Bearing Increase Factor 1.0 k -ft Concrete Support f = 3.0 ksi n c : ASD Safety Factor. 2.50 k -ft Assumed Bearing Area: Bearing Area = P i Fp W: Wind ................ E : Earthquake .............. Allowable Bearing Fp per J8 5.10 ksi k -ft k -ft Column & Plate H : Lateral Earth ......... k k k -ft Column Properties ' P ' = Gravity load, '+• sign is downward. W Moments create higher soil pressure at +Z edge. Steel Section: TS5x3x5/16 "+' Shears push plate towards +Z edge. Depth 5 in Area 4.36 in ^2 Width 3 in Ixx 13.2 in "4 Flange Thickness 0.3125 in lyy 5.85 in^4 Web Thickness 0 in i i 4, U Plate Dimensions Support Dimensions N : Length 11.0 in Support width along 'X' 36.0 in B: Width 9.0 in Length along "Z' 36.0 in Thickness 0.3125 in Column assumed welded to base plate. . . ........... ....... . . .................. .......... I—I_ Applied Loads - P -Y V -Z M -X D: Dead Load ....'.. 6.933 k k k -ft L: Live ....... k k k -ft Lr: Roof Live ......... 5.448 k k k -ft S: Snow ................ k k k -ft ' W: Wind ................ E : Earthquake .............. k k k k k -ft k -ft H : Lateral Earth ......... k k k -ft ' P ' = Gravity load, '+• sign is downward. W Moments create higher soil pressure at +Z edge. "+' Shears push plate towards +Z edge. 9 Anchor Bolts 1 _ _ I Anchor Bolt or Rod Description 11/2' Max of Tension or Pullout Capacity........... k Shear Capacity ......................................... k Edge distance: bolt to plate ................... 1.250 in T Number of Bolts in each Row ................... 2.0 Number of Bolt Rows ........................ 1.0 • • 130 feel Base,Plate Desi n File QVmuments'andSettings1R31My C0p0.;MrvtaNERCALCDATAFI10:LES Iormet6tie� <� ENERCALC. INC:.1l 20Ver 61 Si.. tV 50790 -: 0.328 k4n 13.437 ksi 21.557 ksi 0.623 Bending Stress OK Pa: Axial Load .... 12.381 k fu : Max. Plate Bearing Stress .... 0.643 ksi 5.000 in Description: B1 0.000 k -ft Fp: Allowable: 2.040 ksi GOVERNING DESIGN LOAD CASE SUMMARY Mu: Max. Moment min( 0.85'Pc'sgrt(A2/A1),1.7' f c)'Ome Stress Ratio ................. 0.315 Plate Design Summary Design Method Stress Design ..................... fb : Max. Bending Stress ............... Fb : Allowable: Bearing Stress OK Governing Load Combination Allowable +D+Lr+H Fy' ASIF / Omega Shear Stress Governing Load Case Type Axial Load Only Stress Ratio ................. Fv : Allowable .............................. Design Plate Size 11" x 9" x 0.5116" 0.000 0.328 k4n 13.437 ksi 21.557 ksi 0.623 Bending Stress OK Load Comb.: +D Loading Pa: Axial Load .... Design Plate Height......... Design Plate Width ......... ' Will be different from enby it partial bearing used. Al : Plate Area ......... A2: Support Area .................. A21A1 ...................... Distance for Moment Calculation .n, ..................... X.............................. Lambda ...................... n' ........................................ n- Lambda .................................. L= max(m, n, n") ......................... Load Comb.: +D+Lr+H Loading Pa: Axial Load .... Design Plate Height ......... Design Plate Width ......... Will be diflerent from entry if partial bearing used. Al : Plate Area ......... e : Support Area .................. AVA1 ...................... Distance for Moment Calculation . m' ..................... ' n ' ..................... � X .............................. , Lambda ...................... n' ........................................ n'' Lambda .................................. L= max(m, n, n") ......................... Shear Stress OK Pa: Axial Load .... 12.381 k fu : Max. Plate Bearing Stress .... 0.643 ksi 5.000 in Me: Moment ........ 0.000 k -ft Fp: Allowable: 2.040 ksi tv : Actual ................................ Fv : Allowable = 0.60' Fy / 1.5 (per G2) 0.000 ksi 0.000 ksi min( 0.85'Pc'sgrt(A2/A1),1.7' f c)'Ome Stress Ratio ................. 0.315 1,060.364 inA2 Stress Ratio ................. 0.000 Bearing Stress OK Load Comb.: +D Loading Pa: Axial Load .... Design Plate Height......... Design Plate Width ......... ' Will be different from enby it partial bearing used. Al : Plate Area ......... A2: Support Area .................. A21A1 ...................... Distance for Moment Calculation .n, ..................... X.............................. Lambda ...................... n' ........................................ n- Lambda .................................. L= max(m, n, n") ......................... Load Comb.: +D+Lr+H Loading Pa: Axial Load .... Design Plate Height ......... Design Plate Width ......... Will be diflerent from entry if partial bearing used. Al : Plate Area ......... e : Support Area .................. AVA1 ...................... Distance for Moment Calculation . m' ..................... ' n ' ..................... � X .............................. , Lambda ...................... n' ........................................ n'' Lambda .................................. L= max(m, n, n") ......................... Shear Stress OK ................................................ _...... _................... ........ _............ I ....... ............... Axial Load Only, No Moment 2.040 ksi 0.360 ksi 0.177 0.184 k4n 7.524 ksi 21.557 ksi 0.349 0.000 ksi 0.000 ksi 0.000 ....._...... ._.......... ...._.._._...._.._....._...__.._..._......._ .... .._. _....... ...... .. Axial Load Only, No Moment 2.040 ksi 0.643 ksi 0.315 0.328 k4n 13.437 ksi 21.557 ksi 0.623 0.000 ksi 0.000 ksi 0.000 Bearing Stresses 6.933 k Fp: Allowable ............................... 5.000 in fa : Max. Bearing Pressu 3.000 in Stress Ratio ....................... Plate Bending Stresses 15.000 inA2 Mmax = Fu' L^212 ................... 1,060.364 inA2 fb : Actual ................................ 2.000 Fb : Allowable .............................. Stress Ratio ..................... Shear Stress 0.125 in tv : Actual ................................ 0.075 in Fv : Allowable .............................. 0.000 inA2 Stress Ratio ..................... 0.000 1.010 in 0.000 in 1.010 in ................................................ _...... _................... ........ _............ I ....... ............... Axial Load Only, No Moment 2.040 ksi 0.360 ksi 0.177 0.184 k4n 7.524 ksi 21.557 ksi 0.349 0.000 ksi 0.000 ksi 0.000 ....._...... ._.......... ...._.._._...._.._....._...__.._..._......._ .... .._. _....... ...... .. Axial Load Only, No Moment 2.040 ksi 0.643 ksi 0.315 0.328 k4n 13.437 ksi 21.557 ksi 0.623 0.000 ksi 0.000 ksi 0.000 Bearing Stresses 12.381 k Fp: Allowable ......... :................. .... 5.000 in fa : Max. Bearing Pressu 3.000 in Stress Ratio ................. Plate Bending Stresses 15.000 inA2 Mmax = Fu ' LA2/2 ................... 1,060.364 inA2 fb : Actual ................................ 2.000 Fb : Allowable .............................. Stress Ratio ................. Shear Stress 0.125 in tv : Actual ................................ 0.075 in Fv : Allowable .............................. 0.000 inA2 Stress Ratio ................. 0.000 1.010 in 0.000 in 1.010 in ................................................ _...... _................... ........ _............ I ....... ............... Axial Load Only, No Moment 2.040 ksi 0.360 ksi 0.177 0.184 k4n 7.524 ksi 21.557 ksi 0.349 0.000 ksi 0.000 ksi 0.000 ....._...... ._.......... ...._.._._...._.._....._...__.._..._......._ .... .._. _....... ...... .. Axial Load Only, No Moment 2.040 ksi 0.643 ksi 0.315 0.328 k4n 13.437 ksi 21.557 ksi 0.623 0.000 ksi 0.000 ksi 0.000 ZD Fle C 1Documents arnl SetbngslFC31My DocumentslENERCALC QATA FlLESUaylor rr� 16b ec6 feel Base PlateDesi n >ENERCAMINC 19832040Ver:6i1S1 Ni50790,: Lic. # KW -06007390 License Owner: WALLING MCCALLUM LTD, i Description: Bl Load Comb.: +D+0.750Lr+0.750L+H Axial Load Only, No Moment Loading Bearing Stresses Pa: Axial Load .... 11.019 k Fp: Allowable ............................... 2.040 ksi Design Plate Height ......... 5.000 in fa: Max. Bearing Pressu 0.572 ksi Design Plate Width ......... 3.000 in Stress Ratio ....................... 0.281 Will be different from eniry if partial bearing used. Plate Bending Stresses Al : Plate Area ......... 15.000 in12 Mmax = Fu' L"212 ................... 0.292 kAn e: Support Area .................. 1,060.364 inn2 fb : Actual ................................ 11.959. ksi A2/A1 ...................... 2.000 Fb : Allowable .............................. 21.557 ksi Stress Ratio ..................... 0.555 Distance for Moment Calculation Shear Stress m' ..................... 0.125 in tv : Actual ................................ 0.000 ksi ' n ' ..................... 0.075 in Fv : Allowable .............................. 0.000 ksi �\ X .............................. 0.000 in"2 Stress Ratio ..................... 0.000 Lambda ...................... 0.000 n' ........................................ 1.010 in n' ' Lambda .................................. 0.000 in L = max(m, n, n") ......................... 1.010 in Load Comb.: +D+0.750Lr+0.750L+0.750W+H Axial Load Only, No Moment LoadingDes n Plate He' ht ......... k BearinFp: Stresses Pa :Axial Load .... 11.019 k Fp :Allowable ............................... 2.040 ksi � 5.000 : Max. Bearing Pressu 0.572 ksi Desk n Plate Width ......... 3.000 in Stress Ratio ....................... 0.281 Will be different from entry d partiat bearing used. Plate Bending Stresses y ` Al : Plate Area ......... 15.000 in12 Mmax = Fu' L^2 12 ................... 0.292 k4n A2: Support Area .................. 1,060.364 in^2 fb : Actual ................................ 11.959 ksi e Fb : Allowable .............................. 21.557 ksi A2/A1 ...................... 2.000 Stress Ratio ..................... 0.555 Distance for Moment Calculation Shear Stress ' m' ..................... 0.125 in tv : Actual ................................ 0.000 ksi n ' ..................... 0.075 in Fv : Allowable .............................. 0.000 ksi X .............................. 0.000 in12 Stress Ratio ..................... 0.000 y Lambda ...................... 0.000 n . ......................... I.............. 1.010 in n•' Lambda .................................. 0.000 in L = max(m, n, n") ......................... 1.010 in _...-- ._...._......__._...- -...._ ............................_._......._.................._.._.._ .._._....... .... ........ --....... ..._.._.._.......__..... ............ ... _. Load Comb.: +D+0.750Lr+0.750L-0.750W+H Axial Load Only, No Moment Loading Bearing Stresses Pa : Axial Load .... 11.019 k Fp: Allowable ............................... 2.040 ksi Desgn Plate Height ......... 5.000 in fa : Max. Bearing Pressu 0.572 ksi Design Plate Width ......... 3.000 in Stress Ratio ....................... 0.281 ' will be different from entry if partial bearing used. Plate Bending Stresses Al : Plate Area ......... 15.000 in"2 Mmax = Fu' L"2 12 ................... 0.292 k4n e: Support Area .................. 1,060.364 in"2 fb : Actual ................................ 11.959 ksi A21A1 ...................... 2.000 Fb : Allowable .............................. 21.557 ksi Stress Ratio ..................... 0.555 Distance for Moment Calculation Shear Stress ' m' �..................... 0.125 in tv : Actual ................................ 0.000 ksi � ' n ' ..................... 0.075 in Fv : Allowable .............................. 0.000 ksi X .......................... 2 0.000 in Stress Ratio ..................... 0.000 Lambda ...................... 0.000 n . ........................................ 1.010 in n•' Lambda .................................. 0.000 in `f L = max(m, n, n") ......................... 1.010 in �4 1 feel Base Plate Desi n Fdo C:Mmuments andSOngsIPC31My DocumenL�IENERCALC DATA fICESltaybrmc i6b ec6..: , .. ,. g .:..._ :ENERCALC: INC 191332010. Ver.6ab1-Ni501 1 Bearina Stresses Fp: Allowable ............................... fa : Max. Bearing Pressu Stress Ratio ..................... Plate Bending Stresses Mmax = Fu' L" 2/2 ................... fb : Actual ................................ Fb : Allowable .............................. Stress Ratio ..................... Shear Stress tv: Actual ................................ Fv : Allowable .............................. Stress Ratio ..................... Bearing Stresses Fp: Allowable ............................... fa : Max. Bearing Pressu Stress Ratio ....................... Plate Bending Stresses Mmax=Fu'L"2/2................... lb : Actual ................................ Fb : Allowable .............................. Stress Ratio ..................... Shear Stress tv : Actual ................................ Fv : Allowable .............................. Stress Ratio ..................... Axial Load Only, No Moment 2.040 ksi 0.572 ksi 0.281 0.292 k4n 11.959 ksi 21.557 ksi 0.555 0.000 ksi 0.000 ksi 0.000 Axial Load Only, No Moment 2.040 ksi 0.572 ksi 0.281 0.292 k -in 11.959 ksi 21.557 ksi 0.555 0.000 ksi 0.000 ksi 0.000 KW -06007390 Description: 81 Load Comb.: +D+0.750Lr+0.750L+0.5250E+H Loading Pa : Axial Load .... Design Plate Height ......... 11.019 k 5.000 in Design Plate Width ......... Will be different from entry it partial bearing used. 3.000 in Al : Plate Area ......... 15.000 in"2 e : Support Area .................. 1,060.364 in"2 A2IA1...................... Distance for Moment Calculation 2.000 ' m ...................... 0.125 in n ' ..................... X .............................. 0.075 in 0.000 in"2 Lambda ...................... 0.000 =' n' ........................................ 1.010 in n' • Lambda .................................. L = max(m, n, n") ......................... 0.000 in 1.010 in Load Comb.: +D+0.750Lr+0.750L-0.5250E+H Loading Pa: Axial Load .... Design Plate Height ......... 11.019 k 5.000 in Design Plate Width ......... 3.000 in Krill be different from entry it partial bearing used. � Al : Plate Area ......... 15.000 in" 2 � U A2: Support Area .................. e A2/A1 ...................... 1,060.364 in 2.000 Distance for Moment Calculation ' m ...................... 0.125 in n' ..................... 0.075 in X .............................. 0.000 in"2 Lambda ...................... n' ........................................ 0.000 1.010 in V Lambda .................................. 0.000 in L = max(m, n, n") ......................... 1.010 in 4 1 Bearina Stresses Fp: Allowable ............................... fa : Max. Bearing Pressu Stress Ratio ..................... Plate Bending Stresses Mmax = Fu' L" 2/2 ................... fb : Actual ................................ Fb : Allowable .............................. Stress Ratio ..................... Shear Stress tv: Actual ................................ Fv : Allowable .............................. Stress Ratio ..................... Bearing Stresses Fp: Allowable ............................... fa : Max. Bearing Pressu Stress Ratio ....................... Plate Bending Stresses Mmax=Fu'L"2/2................... lb : Actual ................................ Fb : Allowable .............................. Stress Ratio ..................... Shear Stress tv : Actual ................................ Fv : Allowable .............................. Stress Ratio ..................... Axial Load Only, No Moment 2.040 ksi 0.572 ksi 0.281 0.292 k4n 11.959 ksi 21.557 ksi 0.555 0.000 ksi 0.000 ksi 0.000 Axial Load Only, No Moment 2.040 ksi 0.572 ksi 0.281 0.292 k -in 11.959 ksi 21.557 ksi 0.555 0.000 ksi 0.000 ksi 0.000 Plate Dimensions Support Dimensions N : Length 11.0 in Support width along 'X' 12.0 in B : Width 9.0 in Length along "T 12.0 in Thickness 0.3125 in Column assumed welded to base plate. 't-) Applied Loads . • 'K'111-06007390 Description: B6 D: Dead Load....... 5.211 k 0.0 k 0.0 k -ft Generallnformation L : Live ....... 0.0 k Calculations per 13th AISC & AISC Design Guide No. 1, 1990 by DeWolf & Ricker 0.0 k -ft Material Properties -- --- -.-- 0.0 k -ft \� AISC Design Method Allowable Stress Design 0.0 k ASIF : Allowable Stress Increase Factor 1.0 W: Wind ................ 0.0 k Steel Plate Fy = 36.0 ksi ABIF : Allowable Bearing Increase Factor 1.0 E : Earthquake .............. 0.0 k Concrete Support fc = Assumed Bearing Area: Bearing Area = P / Fp 3.0 ksi 92 c : ASD Safety Factor. Allowable Bearing Fp per J8 2.50 5.10 ksi 0.0 k Column & Plate 1---- -------- ------ ----- "+' Moments create higher soil pressure at +Z edge. Column Properties Steel Section: TS5x3x5/16 Depth 5 in Area 4.36 in"2 Width 3 in Ixx 13.2 in^4 Iii Flange Thickness 0.3125 in lyy 5.85 in^4 Web Thickness 0 in Plate Dimensions Support Dimensions N : Length 11.0 in Support width along 'X' 12.0 in B : Width 9.0 in Length along "T 12.0 in Thickness 0.3125 in Column assumed welded to base plate. 't-) Applied Loads P -Y _- V -Z M -X D: Dead Load....... 5.211 k 0.0 k 0.0 k -ft L : Live ....... 0.0 k 0.0 k 0.0 k -ft Lr: Roof Live ......... 4.094 k 0.0 k 0.0 k -ft S: Snow ................ 0.0 k 0.0 k 0.0 k -ft W: Wind ................ 0.0 k 0.0 k 0.0 k -ft E : Earthquake .............. 0.0 k 0.0 k 0.0 k -ft H : Lateral Earth ......... 0.0 k 0.0 k 0.0 k -ft ' P' = Gravity load, '+' sign is downward. "+' Moments create higher soil pressure at +Z edge. Shears push plate towards +Z edge. Anchor Bolts Anchor Bolt or Rod Description 11/2' Max of Tension or Pullout Capacity........... Shear Capacity ......................................... Edge distance: bolt to plate ................... Number of Bolts in each Row ................... Number of Bolt Rows ........................ �l t� 0.0 k 0.0 k 1.250 in 2.0 1.0 q_,,,,,,. f 33: 134 .... .......... ..... . Load Comb.: +D Loading Pa: Axial Load .... Design Plate Height ......... Design Plate Width Will be different fmm entry ff partial bearing used. Al : Plate Area ......... A�. Support Area .................. e A2/A1...................... Distance for Moment Calculation .m* ..................... - n' ..................... X.............................. Lambda ...................... n' ........................................ n'* Lambda .................................. L= max(m, n, n") ......................... --Load --C--o"-m"b.-:"+,-D"--+-,L-r,*+-"H-,"'"', Loading Pa: Axial Load Design Plate Height ......... Design Plate Width ......... Will be different from entry if partial bearing used. Al : Plate Area ......... e: Support Area .................. A2/A1 ...................... Distance for Moment Calculation .1111, ................... . n . .................... X.............................. Lambda ...................... n' ........................................ If Lambda .................................. L= max(m, n, n") ......................... 5.211 k 5.000 in 3.000 in 15.000 in A 2 117.818 in A 2 2.000 0.125 in 0.075 in 0.000 ln12 0.000 1.010 in 0.000 in 1.010 in 9.305 k 5.000 in 3.000 in 15.000 in A 2 117.818 in A 2 2.000 0.125 in 0.075 in 0.000 in A 2 0.000 1.010 in 0.000 in 1.010 in .... . .. . ..... . ...... .. ........... ...... . ....................... . . .. __.......__.......I....._._ .... . I .. .......... .. Axial Load Only, No Moment Bearing Stresses Fp: Allowable ............................... Lic. # KW -06007390 fde C:1Document5 and SetlingskPC21ft, DocurrrenlslENERCALGDATA 9l# ENINC19832010 Ver 6;151N.50790 License Owner: WALLING MCCALLUM LTD. 0.271 ksi Stress Ratio ....................... Description B6 Plate Bending Stresses 0.483 ksi Mmax = Fu * L"2 / 2 ................... 66ARNMid 41ftGAi LOAD CASE SUMMARY M'u': Max. Moment ......................... 0.247 . . k 4n Fb: Allowable .............................. Plate Design Summary Design Method Allowable Stress Desiqn Governing Load Combination +D+Lr+H Governing Load Case Type Axial Load Only fb: Max. Bending Strew ............... Fb: Allowable: Fy * ASIF / Omega Stress Ratio ................. 10.099 ksi 21.557 ksi 0.468 Shear Stress Design Plate Size 111" x 9" x 0 -5116" tv : Actual ................................ Bending Stress OK 'l Pa : Axial Load 9.305 k fu: Max. Plate Bearing Stress .... 0.483 ksi Fv: Allowable .............................. Me: Moment ........ 0.000 k -ft Fp: Allowable: 2.040 ksi fv: Actual ................................ 0.000 ksi Fv: Allowable = 0,60' Fy / 1.5 (per (32) 0.000 ksi min( 0.85*f c*sqrt(A21A1), 1.7*fc)*Ome Stress Ratio ................. 0.237 Stress Ratio ................. 0.000 Bearing Stress OK Shear Stress OK .... .......... ..... . Load Comb.: +D Loading Pa: Axial Load .... Design Plate Height ......... Design Plate Width Will be different fmm entry ff partial bearing used. Al : Plate Area ......... A�. Support Area .................. e A2/A1...................... Distance for Moment Calculation .m* ..................... - n' ..................... X.............................. Lambda ...................... n' ........................................ n'* Lambda .................................. L= max(m, n, n") ......................... --Load --C--o"-m"b.-:"+,-D"--+-,L-r,*+-"H-,"'"', Loading Pa: Axial Load Design Plate Height ......... Design Plate Width ......... Will be different from entry if partial bearing used. Al : Plate Area ......... e: Support Area .................. A2/A1 ...................... Distance for Moment Calculation .1111, ................... . n . .................... X.............................. Lambda ...................... n' ........................................ If Lambda .................................. L= max(m, n, n") ......................... 5.211 k 5.000 in 3.000 in 15.000 in A 2 117.818 in A 2 2.000 0.125 in 0.075 in 0.000 ln12 0.000 1.010 in 0.000 in 1.010 in 9.305 k 5.000 in 3.000 in 15.000 in A 2 117.818 in A 2 2.000 0.125 in 0.075 in 0.000 in A 2 0.000 1.010 in 0.000 in 1.010 in .... . .. . ..... . ...... .. ........... ...... . ....................... . . .. __.......__.......I....._._ .... . I .. .......... .. Axial Load Only, No Moment Bearing Stresses Fp: Allowable ............................... 2.040 ksi fa: Max. Bearing Pressu 0.271 ksi Stress Ratio ....................... 0.133 Plate Bending Stresses 0.483 ksi Mmax = Fu * L"2 / 2 ................... 0.138 k -in fb : Actual ................................ 5.655 ksi Fb: Allowable .............................. 21.557 ksi Stress Ratio ..................... 0.262 Shear Stress 21.557 ksi tv : Actual ................................ 0.000 ksi Fv: Allowable .............................. 0.000 ksi Stress Ratio ..................... 0.000 . .............. ...... . . ........... . ..................... . .. ....... . .......... ...... . .. . ... . Axial Load Only, No Moment Bearinq Stresses Fp: Allowable ............................... 2.040 ksi fa: Max. Bearing Pressu 0.483 ksi Stress Ratio ....................... 0.237 Plate Bending Stresses Mmax = Fu * L"2 / 2 ................... 0.247 k -in fb : Actual ................................ 10.099 ksi Fb: Allowable .............................. 21.557 ksi Stress Ratio ..................... 0.468 Shear Stress tv : Actual ................................ 0.000 ksi Fv: Allowable .............................. 0.000 ksi Stress Ratio ..................... 0.000 feet Base Plate Desi n File: uments and ngsPPC3PMy Docunx nos NERCALC DATA FILE br ma 16b ec6 9 ENERCALC; INC 1983_,2Q10 ,V 151 �'N. SOZ90 0.ir i License Owner: WALLING MCCALLUM LTD. Description : B6 Load Comb.: +D+0.750Lr+0.750L+H Axial Load Only, No Moment Loading BearingStresses Pa: Axial Load .... 8.282 k Fp: Allowable ............................... 2.040 ksi Design Plate Height ......... 5.000 in fa : Max. Bearing Pressu 0.430 ksi Design Plate Width ......... 3.000 in Stress Ratio ....................... 0.211 Will be different from entry d partial bearing used. Plate Bending Stresses l Al :Plate Area ......... 15.000 inA2 Mmax = Fu ' LA2/2 ................... 0.219 k4n e: Support Area .................. 117.818 inA2 fb : Actual ................................ 8.988 ksi A2/A1 ...................... 2.000 Fb : Allowable .............................. 21.557 ksi Stress Ratio ..................... 0.417 Distance for Moment Calculation Shear Stress ' m' ..................... 0.125 in fv : Actual ......................:......... 0.000 ksi ' n ' ..................... 0.075 in Fv : Allowable .............................. 0.000 ksi X .............................. 0.000 inA2 Stress Ratio ..................... 0.000 Lambda ...................... 0.000 n' ........................................ 1.010 in n" Lambda .................................. 0.000 in L = max(m, n, n") ......................... 1.010 in Load Comb.: +D+0.750Lr+0.750L+0.750W+H Axial Load Only, No Moment Loading Bearing Stresses Pa: Axial Load .... 8.282 k Fp: Allowable ............................... 2.040 ksi r Design Plate Height ......... 5.000 in fa: Max. Bearing Pressu 0.430 ksi Design Plate Width ......... 3.000 in Stress Ratio ....................... 0211 Will be different ham envy a partial beating used. Plate Bending Stresses Al : Plate Area ......... 15.000 inA2 Mmax = Fu' LA2/2 ................... 0.219 k4n A2: Support Area .................. 117.818 inA2 fb : Actual ................................ 8.988 ksi e AVA1 ...................... 2.000 Fb : Allowable .............................. 21.557 ksi Stress Ratio ..................... 0.417 Distance for Moment Calculation Shear Stress v m, ..................... 0.125 in tv : Actual ................................ 0.000 ksi n ' ..................... 0.075 in Fv : Allowable .......................... 0.000 ksi X .............................. 0.000 inA2 Stress Ratio ..................... 0.000 Lambda ...................... 0.000 n' ........................................ 1.010 in ,i n'* Lambda .................................. 0.000 in L = max(m, n, n") ......................... 1.010 in _ __......... _._._..._..._.............__.___.......__.....__......._.......................................__.........__.............._......._._._..._..... _....._........ _. ........_..... ............................... _.................... _........... ........... _...... _.............. _ Load Comb.: +D+0.750Lr+0.750L-0.750W+H Axial Load Only, No Moment Loading Bearing Stresses Pa: Axial Load .... 8.282 k Fp: Allowable ............................... 2.040 ksi Design Plate Height .......... 5.000 in fa: Max. Bearing Pressu 0.430 ksi Design Plate Width ......... 3.000 in Stress Ratio ....................... 0.211 Will be 06rent from entry it partial bearing used. Plate Bending Stresses Al : Plate Area ......... 15.000 in12 Mmax = Fu' 1-112 / 2 ................... 0.219 k -in e: Support ..................... 2.000 Area .................. 117.818 inA2 fb : Actual ................................ 8.988 ksi A2/A1 . Fb : Allowable .............................. 21.557 ksi Stress Ratio ..................... 0.417 Distance for Moment Calculation Shear Stress m' ..................... 0.125 in tv : Actual ................................ 0.000 ksi ' n ' ..................... 0.075 in Fv : Allowable .............................. 0.000 ksi X .............................. 0.000 inA2 Stress Ratio ..................... 0.000 Lambda ...................... 0.000 n' ........................................ 1.010 in n' ' Lambda .................................. 0.000 in L = max(m, n, n") ......................... 1.010 in 11 feel Base Plate Desi n uments,ENERCALCDATX.FI § rnc,sti . ... .: � 8Urnen an. ngs .... 9 ENERCAL6r INC .19832010. Ver'6:1 S,, .Ni50790 .» 1 II � t, Bearing Stresses Fp: Allowable ............................... fa : Max. Bearing Pressu Stress Ratio ..................... Plate Bending Stresses Mmax=Fu'L"2/2................... fb : Actual ................................ Fb : Allowable .............................. Stress Ratio ..................... Shear Stress tv : Actual ................................ Fv : Allowable .............................. Stress Ratio ..................... Bearing Stresses Fp: Allowable ............................... fa : Max. Bearing Pressu Stress Ratio ..................... Plate Bending Stresses Mmax=Fu'L"2/2................... fb : Actual ................................ Fb : Allowable .............................. Stress Ratio ..................... Shear Stress fv: Actual ................................ Fv : Allowable .............................. Stress Ratio ..................... Axial Load Only, No Moment 2.040 ksi 0.430 ksi 0.211 0.219 kan 8.988 ksi 21.557 ksi 0.417 0.000 ksi 0.000 ksi 0.000 Axial Load Only, No Moment 2.040 ksi 0.430 ksi 0211 0.219 k4n 8.988 ksi 21.557 ksi 0.417 0.000 ksi 0.000 ksi 0.000 KW -06007390 Description: B6 r, Load Comb.: +D+0.750Lr+0.750L+0.5250E+H Loadin Pa: Axial Load .... Design Plate Height ......... 8.282 k 5.000 in Design Plate Width ......... Will be different from entry NparUal hearing used. 3.000 in Al : Plate Area ......... 15.000 in"2 : Support Area .................. e 117.818 in^2 A21At ...................... Distance for Moment Calculation 2.000 ' m ' ..................... 0.125 in ' n' ..................... X .............................. 0.075 in 0.000 in"2 Lambda ...................... 0.000 n' ........................................ 1.010 in n' • Lambda .................................. L = max(m, n, n") ......................... 0.000 in 1.010 in Load Comb.: +D+0.750Lr+0.750L-0.5250E+H Loading Pa: Axial Load .... Design Plate Height......... 8.282 k 5.000 in Design Plate Width ......... 3.000 in Will be different from entry if partial bearing. used. Al : Plate Area ......... 15.000 in"2 !/ : Support Area .................. e 117.818 in^ 2 A2/A1 ...................... 2.000 Distance for Moment Calculation m' ..................... 0.125 in ' n, ..................... 0.075 in X .............................. 0.000 in"2 ' Lambda ...................... n' ........................................ 0.000 1.010 in n" Lambda .................................. 0.000 in L = max(m, n, n") ......................... 1.010 in 1 II � t, Bearing Stresses Fp: Allowable ............................... fa : Max. Bearing Pressu Stress Ratio ..................... Plate Bending Stresses Mmax=Fu'L"2/2................... fb : Actual ................................ Fb : Allowable .............................. Stress Ratio ..................... Shear Stress tv : Actual ................................ Fv : Allowable .............................. Stress Ratio ..................... Bearing Stresses Fp: Allowable ............................... fa : Max. Bearing Pressu Stress Ratio ..................... Plate Bending Stresses Mmax=Fu'L"2/2................... fb : Actual ................................ Fb : Allowable .............................. Stress Ratio ..................... Shear Stress fv: Actual ................................ Fv : Allowable .............................. Stress Ratio ..................... Axial Load Only, No Moment 2.040 ksi 0.430 ksi 0.211 0.219 kan 8.988 ksi 21.557 ksi 0.417 0.000 ksi 0.000 ksi 0.000 Axial Load Only, No Moment 2.040 ksi 0.430 ksi 0211 0.219 k4n 8.988 ksi 21.557 ksi 0.417 0.000 ksi 0.000 ksi 0.000 feel Base Plate Oes� n FIB C U)=rnents and SetbngsT.C31My Docu ntslENERCALC DATA FlLE me 16b ee6 g ENERCALC; INC 19832010, der 6:151, <N:SW90 Lic. # : KW -06 073 Plate Dimensions Support Dimensions N : Length 11.0 in Support width along "X* 12.0 in B : Width 9.0 in Length along 7 12.0 in Thickness 0.3125 in Column assumed welded to base plate. t Generallnformation Calculations per 13th RISC & AISC Design Guide No. 1, 1990 by DeWoff & Ricker �i Material Properties P -Y V Z M X AISC Design Method Allowable Stress Design 0.0 k 0.0 k -ft 0.0 k 0.0 k -ft X, ASIF : Allowable Stress Increase Factor 1.0 Lr: Roof Live ......... 10.002 k Steel Plate Fy = 36.0 ksi ABIF : Allowable Bearing Increase Factor 1.0 Concrete Support f c 3.0 ksi Q c : ASD Safety Factor. 2.50 W: Wind ................ 0.0 k E: Earthquake .............. 0.0 k Assumed Bearing Area :Bearing Area = P / Fp Allowable Bearing Fp per J8 5.10 ksi 0.0 k 0.0 k -ft � {�} -_ ` Column & Plate ' P' = Gravity load, '+' sign is downward. '+' Moments create higher soil pressure at +Z edge. :. Column Properties Shears push plate towards +Z edge. i _°"t- Anchor Bolts Steel Section: TS5x3x5/16 Anchor Bolt or Rod Description 11/2' Depth 5 in Area 4.36 in "2 0,0 k - Width 3 in Ixx 13.2 in"4;c Flange Thickness 0.3125 in lyy 5.85 in"4� Number of Bolts in each Row ................... Web Thickness 0 in Plate Dimensions Support Dimensions N : Length 11.0 in Support width along "X* 12.0 in B : Width 9.0 in Length along 7 12.0 in Thickness 0.3125 in Column assumed welded to base plate. t Applied Loads F £P P -Y V Z M X D: Dead Load ....... 12.720 k L: Live ....... 0.0 k 0.0 k 0.0 k -ft 0.0 k 0.0 k -ft X, Lr: Roof Live ......... 10.002 k 0.0 k 0.0 k -ft S: Snow ................ 0.0 k 0.0 k 0.0 kft " " ,W K W: Wind ................ 0.0 k E: Earthquake .............. 0.0 k 0.0 k 0.0 k -ft NZ 0.0 k 0.0 k-fts� H: Lateral Earth ......... 0.0 k 0.0 k 0.0 k -ft � {�} ' P' = Gravity load, '+' sign is downward. '+' Moments create higher soil pressure at +Z edge. :. Shears push plate towards +Z edge. i _°"t- Anchor Bolts Anchor Bolt or Rod Description 11/2' Max of Tension or Pullout Capacity........... 0,0 k - '` Shear Capacity ......................................... 0.0 k Edge distance: bolt to plate ................... 1.250 in Number of Bolts in each Row ................... 2.0 Number of Bolt Rows ........................ 1.0 • ,)Steel Base Plate Dtas� n 0.00 •0 ,N SQ790 License Owner: Description: B6 22.722 k Fp: Allowable ............................... 2.040 ksi GOVERNING DESIGN LOAD CASE SUMMARY Mu: Max. Moment ..................... ... . ..................... 0.602 k4n tPlate , Design Summary Design Method Allowable Stress Desiqn Governing Load Combination +D+{ r+H Governing Load Case Type Axial Load Only Design Plate Size 11" x 9" x 0 -5/16" fb: Max. Bending Stress ............... Fb : Allowable: Fy • ASIF / Omega Stress Ratio ................. 24.660 ksi 21.557 ksi 1.144 Bending Exceeds Allowable 3.000 in Pa: Axial Load .... 22.722 k fu : Max. Plate Bearing Stress .... 1,180 ksi 15.000 in"2 Ma: Moment ........ 0.000 k -ft Fp: Allowable: 2.040 ksi ' tv : Actual ................................ Fv : Allowable = 0.60' Fy 11.5 (per G2) 0.000 ksi 0.000 ksi min( 0.85'fc'sgrt(A2/A1),1.7' fc)'Ome Stress Ratio ................. 0.579 Distance for Moment Calculation Stress Ratio ................. 0.000 1.144 Bearing Stress OK ' m' ..................... Shear Stress OK tv : Actual ................................ 0.000 ksi 'Lcuad �• _-- -...-..._._._._._...__......_... .................._......._......_........._.._....... Comb.: +D Loading Pa: Axial Load .... Design Plate Height .........5.000 Design Plate Width ......... 12.720 k in 3.000 in _......... ..... ..... ... ....... ......_.......__.......-...._. Bearing Stresses Fp: Allowable ............... fa : Max. Bearing Pressu Stress Ratio ....................... .... _.._............ _... -......... ....._.__.....__.._._...._........_...._..._.......... _ Axial Load Only, No Moment 2.040 ksi 0.661 ksi 0.324 -= will be ddferent from envy dpartiai bearing used. 2 0.000 in 0.000 Plate Bending Stresses 0.000 Al : Plate Area ......... 15.000 in"2 Mmax = Fu' 1-112 / 2 ................... 0.337 k4n e: Support Area .................. A2/A1 ...................... 117.818 in"2 2.000 fb : Actual ................................ Fb : Allowable .............................. 13.805 ksi 21.557 ksi L = max(m, n, n") ......................... 1.010 in Stress Ratio ..................... 0.640 Distance for Moment Calculation Shear Stress .m, ..................... ' n" ..................... 0.125 in 0.075 in fv : Actual ................................ Fv : Allowable .............................. 0.000 ksi 0.000 ksi X .......................... 0.000 in12 Stress Ratio ..................... 0.000 Lambda ...................... 0.000 n' ........................................ 1.010 in n'* Lambda . L = max(m, n, n") .................... _ _._..... _ ,..__..._.... _.__._.. .. 0.000 in 1.010 in _ - --- - ....._.._.. . . . ....... ..... Load Comb.: +D+Lr+H . _...... ........ _... ...... .... _....... _..... ...._..... _.. _._... - Axial Load Only, No Moment Loading Bearing Stresses Pa : Axial Load .... 22.722 k Fp: Allowable ............................... 2.040 ksi Design Plate Height ......... 5.000 in fa : Max. Bearing Pressu 1.180 ksi Design Plate Width ......... 3.000 in Stress Ratio ....................... 0.579 ' Will be dffierent from envy if partial bearing used. Al : Plate Area ......... 15.000 in"2 Plate Bending Stresses Mmax = Fu ' L" 212 ................... 0.602 k4n e: Support Area .................. A2/A1 ...................... 117.818 in^2 2.000 fb : Actual ................................ Fb : Allowable .............................. 24.660 ksi 21.557 ksi Distance for Moment Calculation Stress Ratio ..................... Shear Stress 1.144 ' m' ..................... 0.125 in tv : Actual ................................ 0.000 ksi ' n ' ..................... 0.075 in Fv : Allowable .............................. 0.000 ksi -= X.............................. Lambda ...................... 2 0.000 in 0.000 Stress Ratio ..................... 0.000 n'...........I............................ 1.010 in n" Lambda .................................. 0.000 in L = max(m, n, n") ......................... 1.010 in feel Base PlateDesi Il : , file C:1Docume„ts and set6ngs1FC31My{)pgq"ntsXENERCALC DATAFlCEftylorme I s ... ENERCALC: INC'.:1982010: Ver 8a 51. N50790. 1 Description: : 86 Load Comb.: +D+0.750Lr+0.750L+H Loading Pa: Axial Load .... 20.222 k Design Plate Height ......... 5.000 in Design Plate Width ......... 3.000 in 1 Will be different from entry i1 partial bearing used. Al : Plate Area ......... 15.000 in^2 e : Support Area .................. 117.818 in"2 'A21A1...................... 2.000 Distance for Moment Calculation M, ..................... 0.125 in 'n' ..................... 0.075 in 1 X .............................. 0.000 in"2 Lambda ...................... 0.000 n' ................................. 1.010 in n" Lambda .................................. 0.000 in 'L = max(m, n, n") ......................... 1.010 in Load Comb.: +D+0.750Lr+0.750L+0.750W+H Loading 1 Pa : Axial Load .... 20.222 k Design Plate Height ......... 5.000 in Design Plate Width ......... 3.000 in Will be different from entryd partial bearing used. Al : Plate Area ......... 15.000 in"2 e : Support Area .................. 117.818 in A21A1...................... 2.000 1 Distance for Moment Calculation m' ..................... 0.125 in .n, ..................... 0.075 in X .............................. 0.000 in^2 ' Lambda ...................... 0.000 n' ........................................ 1.010 in n" Lambda .................................. 0.000 in L = max(m, n, n") ......................... 1.010 in Load Comb.: +D+0.750Lr*0.750L-0.750W+H 1 Loading Pa : Axial Load 20.222 k Design Plate Height ......... 5.000 in Design Plate Width ......... 3.000 in Will be different Imm entry if partial bearing used. Al :Plate Area ......... 15.000 in"2 e : Support Area .................. 117.818 in"2 ' A21A1...................... 2.000 Distance for Moment Calculation .M, ..................... 0.125 in 1 ' n ' ..................... 0.075 in X .............................. 0.000 in"2 Lambda ...................... 0.000 n' ........................................ 1.010 in n' Lambda .................................. 0.000 in L = max(m, n, n") ......................... 1.010 in J 1 1 Bearing Stresses Fp: Allowable ............................... fa: Max. Bearing Pressu Stress Ratio ..................... Plate Bending Stresses Mmax = Fu ' L"2! 2 ................... fb : Actual ................................ Fb : Allowable .............................. Stress Ratio ..................... Shear Stress tv : Actual ................................ Fv : Allowable .............................. Stress Ratio ..................... Beadna Stresses Fp: Allowable ............................... fa: Max. Bearing Pressu Stress Ratio ..................... Plate Bending Stresses Mmax = Fu' L"212 ................... fb : Actual ................................ Fb : Allowable .............................. Stress Ratio ..................... Shear Stress fv : Actual ................................ Fv : Allowable .............................. Stress Ratio ..................... Bearing Stresses J�9 Axial Load Only, No Moment 2.040 ksi 1.050 ksi 0.515 0.536 k4n 21.946 ksi 21.557 ksi 1.018 0.000 ksi 0.000 ksi 0.000 Axial Load Only, No Moment 2.040 ksi 1.050 ksi 0.515 0.536 k -in 21.946 ksi 21.557 ksi 1.018 0.000 ksi 0.000 ksi 0.000 .............. ... _...... _.... ......... ..... _..... I............. .... .... ............ .......... . Axial Load Only, No Moment Fp: Allowable ............................... 2.040 ksi fa : Max. Bearing Pressu 1.050 ksi Stress Ratio ....................... 0.515 Plate Bending Stresses Mmax = Fu' 1-12 12 ................... 0.536 k4n fb : Actual ................................ 21.946 ksi Fb : Allowable .............................. 21.557 ksi Stress Ratio ..................... 1.018 Shear Stress . tv : Actual ................................ 0.000 ksi Fv : Allowable .............................. 0.000 ksi Stress Ratio ..................... 0.000 1 A Bearing Stresses Fp: Allowable ............................... fa : Max. Bearing Pressu Stress Ratio ................. Plate Bending Stresses Mmax = Fu' L"2l 2 ................... fb : Actual ................................ Fb : Allowable .............................. Stress Ratio ................. Shear Stress tv : Actual ................................ Fv : Allowable .............................. Stress Ratio ................. Bearing Stresses Fp: Allowable ............................... fa: Max. Bearing Pressu Stress Ratio ................. Plate Bending Stresses Mmax = Fu ' L^212 ................... fb : Actual ................................ Fb : Allowable .............................. Stress Ratio ................. Shear Stress fv : Actual ................................ Fv : Allowable .............................. Stress Ratio ................. Axial Load Only, No Moment 2.040 ksi 1.050 ksi 0.515 0.536 k4n 21.946 ksi 21.557 ksi 1.018 0.000 ksi 0.000 ksi 0.000 Axial Load Only, No Moment 2.040 ksi 1.050 ksi 0.515 0.536 k4n 21.946 ksi 21.557 ksi 1.018 0.000 ksi 0.000 ksi 0.000 •FIV -06007390 Description : B6 Load Comb.: +D+0.750Lr+0.750L+0.5250E+H ' Loading Pa : Axial Load .... Design Plate Height ......... 20.222 k 5.000 in ' Design Plate Width ......... Will be ddferent from entry U paf6al bearing used. 3.000 in Al : Plate Area ......... 15.000 in"2 e : Support Area .................. 117.818 in 'A2/A1 ...................... Distance for Moment Calculation 2.000 ' m ' .....I ............... 0.125 in ' n' ..................... 0.075 in X .............................. 0.000 in"2 Lambda ...................... 0.000 n' ........................................ 1.010 in n' • Lambda .................................. 0.000 in = max(m, n, n") .........................1.010 in 'L Load Comb.: +D+0.750Lr+0.750L-0.5250E+H Loadin Pa: Axial Load .... Design Plate Height ......... 20.222 k 5.000 in Design Plate Width ......... 3.000 in Will be different from entry it partial bearing used. Al : Plate Area ......... 15.000 in"2 ' e :Support Area .................. 117.818 in"2 A2/AI ...................... 2000 Distance for Moment Calculation ' m ' ..................... 0.125 in ' n' ..................... 0.075 in X .............................. 0.000 in"2 Lambda ...................... n' ........................................ 0.000 1.010 in n" Lambda .................................. 0.000 in L = max(m, n, n") ......................... 1.010 in 1 A Bearing Stresses Fp: Allowable ............................... fa : Max. Bearing Pressu Stress Ratio ................. Plate Bending Stresses Mmax = Fu' L"2l 2 ................... fb : Actual ................................ Fb : Allowable .............................. Stress Ratio ................. Shear Stress tv : Actual ................................ Fv : Allowable .............................. Stress Ratio ................. Bearing Stresses Fp: Allowable ............................... fa: Max. Bearing Pressu Stress Ratio ................. Plate Bending Stresses Mmax = Fu ' L^212 ................... fb : Actual ................................ Fb : Allowable .............................. Stress Ratio ................. Shear Stress fv : Actual ................................ Fv : Allowable .............................. Stress Ratio ................. Axial Load Only, No Moment 2.040 ksi 1.050 ksi 0.515 0.536 k4n 21.946 ksi 21.557 ksi 1.018 0.000 ksi 0.000 ksi 0.000 Axial Load Only, No Moment 2.040 ksi 1.050 ksi 0.515 0.536 k4n 21.946 ksi 21.557 ksi 1.018 0.000 ksi 0.000 ksi 0.000 i mems .. t6ngs DacumentslENERCALC DATA FlLE br me i6b ec6 'eI BaSC Plat@ QeS,lgn ENERCALC, INC 192010,,Ver;8.151.;N:b0790 r s Plate Dimensions Support Dimensions 'N : Length 11.0 in Support width along 'X' 12.0 in B :Width 9.0 in Length along 7 12.0 in Thickness 0.3125 in Column assumed welded to base plate. 7 ' Lic. # : KVV-0--6007390-- License Owner: WALLING MCCALLUM LTD. Description: 88 V -Z M -X D: Dead Load ....... 10.627 k 0.0 k Generallnformation ' Calculations per 13th AISC & AISC Design Guide No. 1, 1990 by DeWolf & Ricker ' Material Properties Lr: Roof Live ......... 8.349 k 0.0 k 0.0 k -ft AISC Design Method Allowable Stress Design S: Snow ................ 0.0 k ASIF : Allowable Stress Increase Factor 1.0 ' Steel Plate Fy = 36.0 ksi ABIF : Allowable Bearing Increase Factor 1.0 Concrete Support t"c = 3.0 ksi 0 c : ASD Safety Factor. 2.50 ' P ' = Gravity load, '+' sign is downward. Assumed Bearing Area: Bearing Area = P / Fp at +Z edge. Allowable Bearing Fp per J8 5.10 ksi Shears push plate towards +Z edge_ Column $ Plate Anchor Bolts Anchor Bolt or Rod Description 11/2' Column Properties Max of Tension or Pullout Capacity........... 0,0 k ' Steel Section: TS5x3x5/16 Shear Capacity ......................................... 0.0 k Depth 5 in Area 4.36 in "2 Number of Bolts in each Raw ................... Width 3 in Ixx 13.2 in ^4 Number of Bolt Rows ...............:........ 1.0 Flange Thickness 0.3125 in lyy 5.85 in"4 Web Thickness 0 in Plate Dimensions Support Dimensions 'N : Length 11.0 in Support width along 'X' 12.0 in B :Width 9.0 in Length along 7 12.0 in Thickness 0.3125 in Column assumed welded to base plate. 7 ' Applied Loads P -Y V -Z M -X D: Dead Load ....... 10.627 k 0.0 k 0.0 k -ft ' L: Live ....... 0.0 k 0.0 k 0.0 k -ft Lr: Roof Live ......... 8.349 k 0.0 k 0.0 k -ft S: Snow ................ 0.0 k 0.0 k 0.0 k -ft ' W : Wind ................ 0.0 k E : Earthquake .............. 0.0 k 0.0 k 0.0 k 0.0 k -ft 0.0 k -ft H: Lateral Earth ......... 0.0 k 0.0 k 0.0 k -ft ' P ' = Gravity load, '+' sign is downward. '+' Moments create higher soil pressure at +Z edge. Shears push plate towards +Z edge_ Anchor Bolts Anchor Bolt or Rod Description 11/2' - -' Max of Tension or Pullout Capacity........... 0,0 k Shear Capacity ......................................... 0.0 k Edge distance: bolt to plate ................... 1.250 in Number of Bolts in each Raw ................... 2.0 Number of Bolt Rows ...............:........ 1.0 I 11 I I I Description : B8 GOVERNING DESIGN LOAD CASE SUMMARY Plate Design Summary Design Method Allowable Stress Desiqn Governing Load Combination +D+Lr+H Governing Load Case Type Axial Load Only Design Plate Size 11" x 9" x 0.5116" Pa: Axial Load 18.976 k Ma: Moment ........ 0.000 k -ft tv : Actual ................................ 0.000 ksi Fv : Allowable = 0.60 * Fy / 1.5 (per G2) 0.000 ksi Stress Ratio ................. 0.000 Shear Stress OK He: QkDocurnents arfd:SettingT.�ebb �L,Es_ Wolor W, 'ENERCALC;INC'..190,2010.,,.V6r.:6;1.Z1N:50790,. Mu: Max. Moment ..................... . ... ........ . . . . 0.503 kAn fb: Max. Bending Stress ............... 20.594 ksi Fb: Allowable: 21.557 ksi Fy * ASIF / Omega 10.627 k 5.000 in 3.000 in Stress Ratio ................. 0.955 Bending Stress OK fu : Max. Plate Bearing Stress 0.986 ksi Fp: Allowable: 2.040 ksi min( O.85*f c*sqrqA2lA1), 1.7* Fc)*Ome Stress Ratio ................. 0.483 Bearing Stress OK I Load Comb.: +D ...... ...... ........... .... ... .... . ....... ... . . ............ ... . ........ . .. . .... . .. . .......... - . ......... . .. .... . . ....... I . ..... ..... . .......... ..... . ........... .......... ... . ......................... . ............ ....... .......... .. . ...... . ...... -.. Axial Load Only, No Moment Loading Pa: Axial Load Design Plate Height ......... Design Plate Width ......... 10.627 k 5.000 in 3.000 in Bearing Stresses Fp: Allowable ............................... fa: Max. Bearing Pressu Stress Ratio ....................... 2.040 ksi 0.552 ksi 0271 Will be different from entry if partial bearing used. Plate Bending Stresses Al : Plate Area ......... 15.000 in A 2 Mmax = Fu' L"2 / 2 ................... 0.282 kin e: Support Area .................. 117.818 in A 2 fb : Actual ................................ 11.533 ksi A2/AI ...................... 2.000 Fb: Allowable ............................... Stress Ratio ..................... 21.557 ksi 0.535 Distance for Moment Calculation Shear Stress . m' ..................... 0.125 in tv : Actual ................................ 0.000 ksi ..................... 0.075 in Fv: Allowable .............................. 0.000 ksi IDn, X .............................. 0.000 in A 2 Stress Ratio ..................... 0.000 Lambda ...................... 0.000 n' ........................................ 1.010 in n'* Lambda .................................. 0.000 in L = max(m, n, n") ............. :� . ... ........ . . 1.010 in .... ..... . ...... . ...... . .. ... .. ................ ......... ... ... . . Load Comb.: +D+Lr+H . . ... ..... . .. ... .. ... . .... ........ - ... .... ..... ...... ... . .... . . ... ..... .. . .......... . . .. ...... .. .. . ....... . ..... . ..... . ........... Axial Load Only, No Moment Loadinq Pa: Axial Load .... 18.976 k Bearing Stresses Fp: Allowable ............................... 2.040 ksi Design Plate Height 5.000 in fa: Max. Bearing Pressu 0.986 ksi Design Plate Width ......... 3.000 in Stress Ratio ....................... 0.483 Will be different from entry dpartial bearing used. Al : Plate Area 15.000 in A 2 Plate Bendinq Stresses Mmax = Fu' L"2 / 2 ................... 0.503 kAn e: Support Area .................. 117.818 in A 2 fb : Actual ................................ 20.594 ksi -j&AI ................... 2.000 Fb: Allowable .............................. 21.557 ksi Distance for Moment Calculation Stress Ratio ..................... Shear Stress 0.955 M, ..................... 0.125 in tv : Actual ................................ 0.000 ksi n' ..................... 0.075 in Fv: Allowable .............................. 0.000 ksi X .............................. ................... * - Lambda ...................... 0.000 in"2 0.000 Stress Ratio ..................... 0.000 n' ................................. ....... 1.010 in n- Lambda .................................. 0.000 in I L = max(m, n, n") ......................... 1.010 in I f feet Bade Plate y yos gr me t6b ec6 Oesri Irr' g NERCAIG:lNC :19A2111d V fif51. Mi50ZRn ": 1 0.10 •1 License •. n. r Jr • ' Description : B8 Load Comb.: +D+0.750Lr+0.750L+H Axial load Only, No Moment ' Loading Pa: Axial Load.... Design Plate Height ......... 16.889 k 5.000 in Bearing Stresses Fp: Allowable ............................... fa: Max. Bearing Pressu 2.040 ksi 0.877 ksi ' Design Plate Width ......... Win be different from entry if partial bearing used. 3.000 in Stress Ratio ....................... Plate Bending Stresses 0.430 Al : Plate Area ......... 15.000 inA2 Mmax = Fu ' LA2/2 ................... 0.447 k -in 'Distance e: Support Area .................. A2/A1 ...................... 117.818 in A2 2.000 fb : Actual ................................ Fb : Allowable .............................. Stress Ratio ..................... 18.329 ksi 21.557 ksi 0.850 for Moment Calculation Shear Stress .m, ..................... 0.125 in tv : Actual ................................ 0.000 ksi ' n ' ..................... 0.075 in Fv : Allowable .............................. 0.000 ksi X .............................. 0.000 inA2 Stress Ratio ..................... 0.000 ' Lambda ...................... 0.000 n' ........................................ 1.010 in n'* Lambda .................................. 0.000 in L = max(m, n, n") ......................... 1.010 in Load Comb.: +D+0.750 Lrr+0.750L+0.750W+H Axial Load Only, No Moment Loading Pa : Axial Load .... 16.889 k Bearing Stresses Fp: Allowable ............................... 2.040 ksi Design Plate Height ......... Design Plate Width ......... 5.000 in 3.000 in fa: Max. Bearing Pressu Stress Ratio ....................... 0.877 ksi 0.430 Will be different from entry a partial bearing used. Plate Bending Stresses Al : Plate Area ......... 15.000 inA2 Mmax = Fu ' LA2/2 ................... 0.447 k4n ' e : Support Area .................. 117.818 inA2 fb : Actual ................................ 18.329 ksi A21A1 ...................... 2.000 Fb : Allowable .............................. Stress Ratio ..................... 21.557 ksi 0.850 ' Distance for Moment Calculation ' m' ..................... 0.125 in Shear Stress fv : Actual ................................ 0.000 ksi ' n, ..................... 0.075 in Fv : Allowable .............................. 0.000 ksi X .............................. 0.000 inA2 Stress Ratio ..................... 0.000 ' Lambda ...................... n' ........................................ 0.000 1.010 in n" Lambda .................................. 0.000 in L = max(m, n, n") ..................I...... . .... ........ .--........ ........ _..__.... .._._.........._.... ....... ....... ...... ........ 1.010 in .... ....... ....... ._......... ........... .... .. ....... ..................... .......... _. ...... _........_.........__...._...._.............. ._...... ........._.. ........--.........__. . ......... Load Comb.: +D+0.750Lr+0.750L-0.750W+H Loading Pa: Axial Load .... 16.889 k Bearing Stresses Fp: Allowable ............................... Axial Load Only, No Moment 2.040 ksi Design Plate Height ......... Design Plate Width ......... 5.000 in 3.000 in fa: Max. Bearing Pressu Stress Ratio ....................... 0.877 ksi 0.430 Will be different from entry a partial bearing used. Plate Bending Stresses Al :Plate Area ......... 15.000 inA2 Mmax = Fu ' 1-12 / 2 ................... 0.447 k4n ' e : Support Area .........:........ A21A1 ..................... 117.818 in A2 2.000 fb : Actual ..:...... ..................""' Fb : Allowable .............................. Stress Ratio ..................... 18.329 ksi 21.557 ksi 0.050 Distance for Moment Calculation Shear Stress .m* ..................... 0.125 in fv : Actual ................................ 0.000 ksi n ' ..................... 0.075 in Fv : Allowable .............................. 0.000 ksi X ............................. 0.000 inA2 Stress Ratio ..................... 0.000 Lambda ...................... 0.000 n' ........................................ 1.010 in n' • Lambda .................................. 0.000 in L = max(m, n, n") ......................... 1.010 in 1 :File! Cubbuments acid Setbngs1BC31MyDocuineiitslENERCALC DATA FILEsltraybr me tstiei 8 9. :ENERCA6G INC ,19632010. Ver. 8:1.51 N;07,90: I[ � I Bearing Stresses Fp: Allowable ............................... fa: Max. Bearing Pressu Stress Ratio ....................... Plate Bending Stresses Mmax = Fu' L"212 ................... fb : Actual ................................ Fb : Allowable .............................. Stress Ratio ..................... Shear Stress tv : Actual ................................ Fv : Allowable .............................. Stress Ratio ..................... Bearing Stresses Fp: Allowable ............................... fa: Max. Bearing Pressu Stress Ratio ................. Plate Bending Stresses Mmax = Fu' 1-12 12 ................... fb : Actual ................................ Fb : Allowable .............................. Stress Ratio ................. Shear Stress tv : Actual ................................ Fv : Allowable .............................. Stress Ratio ................. N feel Base Plate Desi n Axial Load Only, No Moment 2.040 ksi 0.877 ksi 0.430 0.447 k4n 18.329 ksi 21.557 ksi 0.850 0.000 ksi 0.000 ksi 0.000 Axial Load Only; No Moment 2.040 ksi 0.877 ksi 0.430 0.447 Hn 18.329 ksi 21.557 ksi 0.850 0.000 ksi 0.000 ksi 0.000 'rr x.11 •� Description : B8 Load Comb.: +D+0.750Lr+0.750L+0.5250E+H ' Loading Pa: Axial Load .... Design Plate Height ......... 16.889 k 5.000 in ' Design Plate Width ..... - Will be different from entry if partial bearing used. 3.000 in Al : Plate Area ......... 15.000 in12 e : Support Area .................. 117.818 in"2 A2IA1...................... Distance for Moment Calculation 2.000 'm' ..................... 0.125 in •n' ..................... 0.075 in X .............................. 0.000 in A2 Lambda ...................... 0.000 n......................................... 1.010 in n' ' Lambda .................................. 0.000 in = max(m, n, n") ......................... 1.010 in 'L Load Comb.: +D+0.750Lr+0.750L-0.5250E+H ' Loading Pa : Axial Load .... Design Plate Height ......... 16.889 k 5.000 in Design Plate Width ......... 3.000 in Will be different from entry ff partial bearing used. Al : Plate Area ......... 15.000 in"2 ' eA2: Support Area .................. 117.818 in"2 AVAt ...................... 2.000 ' Distance for Moment Calculation 'm' ..................... 0.125 in ' n' ..................... 0.075 in X .............................. 0.000 in A2 ' Lambda ...................... n ......................................... 0.000 1.010 in n' ' Lambda .................................. 0.000 in L = max(m, n, n") ......................... 1.010 in I[ � I Bearing Stresses Fp: Allowable ............................... fa: Max. Bearing Pressu Stress Ratio ....................... Plate Bending Stresses Mmax = Fu' L"212 ................... fb : Actual ................................ Fb : Allowable .............................. Stress Ratio ..................... Shear Stress tv : Actual ................................ Fv : Allowable .............................. Stress Ratio ..................... Bearing Stresses Fp: Allowable ............................... fa: Max. Bearing Pressu Stress Ratio ................. Plate Bending Stresses Mmax = Fu' 1-12 12 ................... fb : Actual ................................ Fb : Allowable .............................. Stress Ratio ................. Shear Stress tv : Actual ................................ Fv : Allowable .............................. Stress Ratio ................. N feel Base Plate Desi n Axial Load Only, No Moment 2.040 ksi 0.877 ksi 0.430 0.447 k4n 18.329 ksi 21.557 ksi 0.850 0.000 ksi 0.000 ksi 0.000 Axial Load Only; No Moment 2.040 ksi 0.877 ksi 0.430 0.447 Hn 18.329 ksi 21.557 ksi 0.850 0.000 ksi 0.000 ksi 0.000 [I U Description : General information i Calculations per 13th AISC & AISC Design Guide No. 1, 1990 by DeWolf & Ricker Material Properties AISC Design Method Allowable Stress Design ASIF : Allowable Stress Increase Factor 1.0 Steel Plate Fy = 36.0 ksi ABIF : Allowable Bearing Increase Factor 1.0 Concrete Support fc = 3.0 ksi Q c : ASD Safety Factor. 2.50 Assumed Bearing Area: Bearing Area = P / Fp Allowable Bearing Fp per J8 5.10 ksi Column & Plate Column Properties Steel Section: TS5x5x5/16 Depth 5 in Area 5.61 in^2 Width 5 in Ixx 20.1 W4 Flange Thickness 0.3125 in lyy 20.1 in"4 Web Thickness 0 in Plate Dimensions Support Dimensions 'N : Length 11.0 in Support width along 'X' 12.0 in B: Width 11.0 in Length along "Z' 12.0 in Thickness 0.3125 in Column assumed welded to base plate. INumber of Bolt Rows.. ... 1.0 1� I n �a� X45 Applied Loads .:. --........... NY V•Z _M -X D: Dead Load ....... 9.160 k L: Live ....... 0.0 k 0.0 k 0.0 k 0.0 k-ftx 0.0 k -ft 5^ Lr: Roof Live ......... 7.197 k 0.0 k 0.0 k -ft �5 ri S: Snow ................ 0.0 k 0.0 k l. _ 0.0 k -ft - W: Wind ................ O.Ok O.Ok 7 O.Ok-ft E: Earthquake .............. 0.0 k 0.0 k 0.0 k -ft `" µ H: Lateral Earth ......... 0.0 k 0.0 k 0.0 ' P' = Gravity load, '+• sign is downward. "+' Moments create higher soil pressure at +Z edge. Shears push plate towards +Z edge. ' Anchor Bolts Anchor Bolt or Rod Description 11/2' Max of Tension or Pullout Capacity........... 0,0 k Shear Capacity ......................................... 0.0 k Edge distance: bolt to plate ................... 1.250 in Number of Bolts in each Row ................... 2.0 INumber of Bolt Rows.. ... 1.0 1� I n �a� X45 t t IL Axial Load Only, No Moment Bearina Stresses Fp: Allowable ............................... KW -06007390 fa : Max. Bearing Pressu 0.481 ksi Description: 62183 0.236 Plate Bending Stresses Load Comb.: +D+0.750Lr+0.750L+0.5250E+H Mmax = Fu ' 1-112 / 2 ................... ' Loading Pa: Axial Load .... Design Plate Height ......... 14.558 k 5.000 in Fb : Allowable .............................. 21.557 ksi Design Plate Width .,....... Will be different from entry ff partial bearing used. 5.000 in Shear Stress Al : Plate Area ......... 25.000 in"2 Fv : Allowable .............................. e : Support Area .................. 144.000 in "2 0.000 A2/A1 ...................... Distance for Moment Calculation 2.000 m ...................... 0.125 in n' ..................... X .............................. 0.125 in 0.000 in"2 Lambda .................... 0.000 n' ....................................... 1.010 in n' ' Lambda .................................. 0.000 in L = max(m, n, n") ......................... 1.010 in Load Comb.: +D+0.750Lr+0.750L-0.5250E+H 'Pa: Loading Axial Load .... Design Plate Height ......... 14.558 k 5.000 in Design Plate Width .,....... 5.000 in Will be different from entry 8 partial bearing used. Al : Plate Area ........, 25.000 in12 e :Support Area .................. 144.000A in A2/A1 ...................... 2.000 Distance for Moment Calculation . m' ..................... 0.125 in n ...................... 0.125 in X .............................. 0.000 in"2 ' Lambda ...................... n' ........................................ 0.000 1.010 in n" Lambda .................................. 0.000 in L = max(m, n, n") ......................... 1.010 in t IL Axial Load Only, No Moment Bearina Stresses Fp: Allowable ............................... 2.040 ksi fa : Max. Bearing Pressu 0.481 ksi Stress Ratio ....................... 0.236 Plate Bending Stresses Mmax = Fu ' 1-112 / 2 ................... 0.245 k -in fb : Actual ................................ 10.054 ksi Fb : Allowable .............................. 21.557 ksi Stress Ratio ..................... 0.466 Shear Stress tv : Actual ................................ 0.000 ksi Fv : Allowable .............................. 0.000 ksi Stress Ratio ..................... 0.000 Axial Load Only, No Moment Bearina Stresses Fp: Allowable ............................... 2.040 ksi fa : Max. Bearing Pressu 0.481 ksi Stress Ratio ....................... 0.236 Plate Bending Stresses Mmax = Fu ' 1-12 / 2 ................... 0.245 k4n fb : Actual ................................ 10.054 ksi Fb : Allowable .............................. 21.557 ksi Stress Ratio ..................... 0.466 Shear Stress tv : Actual ................................ 0.000 ksi Fv : Allowable .............................. 0.000 ksi Stress Ratio ..................... 0.000 1 � I � I 1.) LSI, 1 d Description: B2/B3 2.040 ksi Load Comb.: +D+0.750Lrr+0.750L+H 0.481 ksi Loading 0.236 Pa : Axial Load .... 14.558 k Design Plate Height ......... 5.000 in Design Plate Width ......... 5.000 in Will be different from entry it partial bearing used. 21.557 ksi Al : Plate Area ......... 25.000 in"2 e : Support Area .................. 144.000 in^2 A2IA1 ...................... 2.000 Distance for Moment Calculation 0.000 ksi " m ...................... 0.125 in "n' ..................... 0.125 in X .............................. 0.000 in"2 Lambda ...................... 0.000 n' ............ I .......... I ................ 1.010 in n" Lambda .................................. 0.000 in L = max(m, n, n") ......................... 1.010 in Load Comb.: +D+0.750Lr+0.750L+0.750W+H Loading Pa: Axial Load .... 14.558 k Design Plate Height ......... 5.000 in Design Plate Width ......... 5.000 in Will be different from entry if partial bearing used. Al :Plate Area ......... 25.000 in A2 : Support Area .................. e 144.000 in^2 A2IA1 ...................... 2.000 Distance for Moment Calculation " m ...................... 0.125 in ' n ...................... 0.125 in X .............................. 0.000 in A2 Lambda ...................... 0.000 n' ................. I...................... 1.010 in n' ' Lambda .................................. 0.000 in L = max(m, n, n") ......................... - ................. ............. ...-............... ................ 1.010 in ..... _........ _...._._............... ..... ... ......... _........ - - - ..-._....._... Load Comb.: +D+0.750Lr+O.750L-O.750W+H Loading Pa: Axial Load .... 14.558 k Design Plate Height ......... 5.000 in Design Plate Width ......... 5.000 in Will be different from entry if partial bearing used. Al : Plate Area ......... 25.000 in^2 A2., : Support Area .................. 144.000 in 2 A2IA1 ...................... 2.000 Distance for Moment Calculation 'm" ..................... 0.125 in n. ..................... 0.125 in X .............................. 0.000 in A2 Lambda ...................... 0.000 n' . .... .................I.-.....,.".... 1.010 in n" Lambda .................................. 0.000 in L = max(m, n, n") ......................... 1.010 in Axial Load Only, No Moment Bearino Stresses Fp: Allowable ............................... 2.040 ksi fa : Max. Bearing Pressu 0.481 ksi Stress Ratio ....................... 0.236 Plate Bending Stresses Mmax = Fu' 1-112 / 2 ................... 0.245 k4n fb : Actual ................................ 10.054 ksi Fb : Allowable .............................. 21.557 ksi Stress Ratio ..................... 0.466 Shear Stress tv : Actual ................................ 0.000 ksi Fv : Allowable .............................. 0.000 ksi Stress Ratio ..................... 0.000 Axial Load Only, No Moment Bearing Stresses Fp: Allowable ............................... 2.040 ksi fa: Max. Bearing Pressu 0.481 ksi Stress Ratio ....................... 0.236 Plate Bending Stresses Mmax = Fu' L"212 ................... 0.245 k4n fb: Actual ................................ 10.054 ksi Fb : Allowable .............................. 21.557 ksi Stress Ratio ..................... 0.466 Shear Stress tv : Actual ................................ 0.000 ksi Fv : Allowable .......................... 0.000 ksi Stress Ratio ..................... 0.000 ........... I. .... .... _ .... .. ...... I ............ ........ ... ........ ....... .......... ......... ._........_...... .-...-.......... .... ... ............. _.... ...... ...... -...._... ...... _...... Axial Load Only, No Moment Bearing Stresses Fp: Allowable ............................... 2.040 ksi fa : Max. Bearing Pressu 0.481 ksi Stress Ratio ....................... 0.236 Plate Bending Stresses Mmax = Fu ' 1-112 / 2 ................... 0.245 k4n fb : Actual ................................ 10.054 ksi Fb : Allowable .............................. 21.557 ksi Stress Ratio ..................... 0.466 Shear Stress tv: Actual ................................ 0.000 ksi Fv : Allowable .............................. 0.000 ksi Stress Ratio ............... 0.000 I 0.276 k4n 11.297 ksi 21.557 ksi 0.524 Sending Stress OK Pa: Axial Load Li # : KW -06007390 fu: Max. Plate Bearing Strew License Owi Ma: Moment ........ _Uc. Description : B21B3 Fp: Allowable: 2.040 ksi GMIMIAIG DESIGN LOAD WE SUMMARY Mu: Max. Moment ..................... min( 0.85*fesqrqA2/A 1), Stress Ratio ................. Plate Design Summary Design Method Governing Load Combination Governing Load Case Type Allowable Stress Desiqn +D+Lr+H Axial Load Only fb: Max. Bending Stress ............... Fb: Allowable: Fy * ASIF / Omega Strew Ratio ................. 0.000 Design Plate Size 111" x 11" x 0.5116" 0.276 k4n 11.297 ksi 21.557 ksi 0.524 Sending Stress OK Pa: Axial Load 16.357 k fu: Max. Plate Bearing Strew 0.541 ksi Ma: Moment ........ 0.000 k -ft Fp: Allowable: 2.040 ksi tv : Actual ................................ Fv: Allowable = 0.60' Fy / 1.5 (per G2) 0.000 ksi 0.000 ksi min( 0.85*fesqrqA2/A 1), Stress Ratio ................. 1.7* fc)*Ome 0.265 Stress Ratio ................. 0.000 Bearing Stress OK . Shear Stress OK . .... ......... ....... . .... . . . . . . . . ....... .............. ..... .... --.- . .......... . . ... ... Load Comb.: +D 1-1 ..... . ...... ..... ........ . . . ........ ... . . . .. ..... . . ...... ... . I .......... .. .. .. .... .... ..... . ... ....... .... . .... . ... . .... ...... ................................ ........ ....... I .............................. ............... ... . ...... . Axial Load Only, No Moment Loading Bearing Stresses Pa: Axial Load Design Plate Height Design Plate Width ......... 9.160 k 5.000 in 5.000 in Fp: Allowable ............................... fa : Max. Bearing Pressu Stress Ratio ....................... 2.040 ksi 0.303 ksi 0.148 Will be dftent from entry if partial bearing used, Plate Bending Stresses Al : Plate Area ......... 25.000 InA2 Mmax = Fu' L"2 / 2 ................... 0.154 k4n A2: Support Area .................. 144-000 in A 2 fb: Actual ................................ 6.326 ksi e AVAI ...................... 2.000 Fb: Allowable .............................. Stress Ratio ..................... 21.557 ksi 0.293 Distance for Moment Calculation Shear Stress rn . ..................... . ..................... 0.125 in 0.125 in tv : Actual ................................ Fv: Allowable .............................. 0.000 ksi 0.000 ksi X .............................. IDn 0.000 inA2 Stress Ratio ..................... 0.000 Lambda ...................... 0.000 n' ........................................ 1.010 in n'* Lambda .................................. 0.000 in I L = max(m, n, n") ......................... .... .... 1. 1-1 .... . .. ............... 1.010 in . ........ . .. ............... ...... . ...... ....... ........ . ....... .. . .... ..... .. ............. ....... ... .. ... .. ..... ............ . .... . . . ... .... ........ . ............ . ....... Load Comb.: +D+Lr+H ... . ............... ...... . ........ . .. .......... -.- ......... . ........ ........... . .. . ..... ........... - Axial Load Only, No Moment I Loading Pa: Axial Load Design Plate Height......... 16.357 k 5.000 in Bearing Stresses Fp: Allowable ............................... la: Max. Bearing Pressu 2.040 ksi 0.541 ksi Design Plate Width 5.000 in Stress Ratio ....................... 0265 Will be diflerent from a* ff partial bearing used Al : Plate Area 25.000 in'12 Plate Bending Stresses Mmax = Fu * 1.112 / 2 ................... 0.276 k4n e: Support Area .................. A21A1 ...................... Distance for Moment Calculation 144.000 inj%2 2.000 fb : Actual ................................ Fb: Allowable .............................. Stress Ratio ..................... Shear Stress 11.297 ksi 21.557 ksi 0.524 . m' ..................... 0.125 in tv : Actual ................................ 0.000 ksi . n . ..................... 0.125 in Fv: Allowable .............................. 0.000 ksi ".**,.,,.,.,.,**.**,*.,.,.,*.,.*.".,.,.,.**.* Lambda ...................... 0.000 inl,2 0.000 Stress Ratio ..................... 0.000 nX ........... 1.010 in n'* Lambda .................................. 0.000 in L = max(m, n, n") ......................... 1.010 in J Lic. #t : KW -060073 General information 7 Calculations per 13th AISC & AISC Design Guide No. 1, 1990 by DeWolf & Ricker Material Properties AISC Design Method Allowable Stress Design ASIF : Allowable Stress Increase Factor 1.0 Steel Plate Fy = 36.0 ksi. ABIF : Allowable Bearing Increase Factor 1.0 Concrete Support Pc = 2.50 ksi Q c : ASD Safety Factor. 2.50 Assumed Bearing Area :Bearing Area = P / Fp Allowable Bearing Fp per J8 2.795 ksi Column & Plate Column Properties Steel Section: Pipe8 Std Depth 8.625 in Area 7.85 in A2 Width 8.625 in Ixx 68.1 in^4 Flange Thickness 0.3 in lyy 68.1 in A4 Web Thickness 0 in Plate Dimensions Support Dimensions N : Length 11.0 in Support width along "X" 12.0 in B: Width 11.0 in Length along 7 12.0 in Thickness 0.5625 in Column assumed welded to base plate. 11 ' I Applied Loads P -Y V -Z M -X D: Dead Load ....... 11.374 k '0.0 k 0.0 k -ft L: Live ....... 0.0 k 0.0 k 0.0 k -ft Lr: Roof Live ......... 8.936 k 0.0 k 0.0 k -ft S: Snow ................ 0.0 k 0.0 k 0.0 k -ft W: Wind ................ 0.0 k 0.0 k 0.0 k -ft E : Earthquake .............. 0.0 k 0.0 k 0.0 k -ft H : Lateral Earth ......... 0.0 k 0.0 k 0.0 k -ft P' = Gravity load, '+' sign is downward. W Moments create higher soil pressure at +Z edge. +' Shears push plate towards +Z edge. Anchor Bolts Anchor Bolt or Rod Description 11/2' Max 1/2'Max of Tension or Pullout Capacity........... 0.0 k Shear Capacity ......................................... 0.0 k Edge distance : bolt to plate ................... 1.250 in " Number of Bolls in each Row ................... 2.0 Number of Bolt Rows ........................ 1.0 • • i IID I i �IeSigil File C 1Documents and Setbngslf,. 1 DocumenislENERCALCDATA FILESUByIDr me 16b ec6 ENERCALG,INC19832o10V8151 N;50790.:r Description : B3 GOVERNING DESIGN LOAD CASE SUMMARYMu : Max. Moment ..................... 0.091 k4n ' Plate Design Summary Design Method Allowable Stress Desiqn Governing Load Combination +D+Lr+H Governing Load Case Type Axial Load Only Design Plate Size 11" x 11" x 0 -9116" fb: Max. Bending Stress ............... Fb : Allowable: Fy' ASIF /Omega m e................. gss Ratio 1.147 ksi 21.557 ksi 0.053 Bending Stress OK Pa: Axial Load .... 20.310 k fu : Max. Plate Bearing Stress .... 0.244 ksi Ma: Moment ........ 0.000 k-ft Fp: Allowable: 1.118 ksi tv : Actual................................ Fv : Allowable = 0.60' Fy / 1.5 (per G2) 0.000 ksi 0.000 ksi min( 0.85'fesgrt(A2/A1), 1.7' fc)'Ome Stress Ratio ................. 0.218 Stress Ratio ................. 0.000 Bearing Stress OK Shear _....._.......................................... Stress OK _ .... _....... _........ _................... .... .............. _._........ .... -.............. .... --. Load Comb.: +D Loadinq Pa: Axial Load .... Design Plate Height ......... Design Plate Width ......... _..._. 11.374 k 8.625 in 8.625 in .... ........................_.. Bearing Stresses Fp: Allowable ............................... fa: Max. Bearing Pressu Stress Ratio ....................... ... ....... ... _......._....._.... ...._..................... _......... _..... ....... _....... ......... ..... .... Axial Load Only, No Moment 1.118 ksi 0.137 ksi 0.122 Will be drRarent from enby it partial bearing used. Plate Bending Stresses Al : Plate Area ......... 74.391 in"2 Mmax = Fu' L"2 / 2 ................... 0.295 k4n e: Support Area .................. A21A1 ...................... 144.000 in"2 1.315 fb : Actual................................ Fb : Allowable .............................. 3.736 ksi 21.557 ksi Stress Ratio ..................... 0.173 Distance for Moment Calculation Shear Stress ' m' ..................... 0.863 in fv : Actual................................ 0.000 ksi ' n' ..................... 0.863 in Fv : Allowable .............................. 0.000 ksi X .............................. 0.000 in"2 Stress Ratio ..................... 0.000 Lambda ...................... 0.000 n.......................I................. 2.080 in n • Lambda .................................. 0.000 in ........ L = . max(m, n, n") ................ 2.080 in _... _.__... _ ....... ..............._. Load Comb.: +D+Lr+H . ..... ....... --...... _..._...... ....... _....... .... ..... .... .... ....................... _.. ....... _........_._..........._.......... ......... _.... ....... ................ _......_.._.._......_. Axial Load Only, No Moment Loadin-q Pa: Axial Load .... 20.310 k Bearing Stresses Fp: Allowable ............................... 1.118 ksi Design Plate Height ......... 8.625 in fa: Max. Bearing Pressu 0.244 ksi Design Plate Width ......... 8.625 in Stress Ratio ....................... 0.218 ' Will be different from entry if paRlaf bearing used. A1: Plate Area ......... 74.391 in"2 Plate Bending Stresses Mmax = Fu ' 1.12 / 2 ................... 0.091 k4n e: Support Area .................. 144.000 ine2 fb : Actual................................ 1.147 ksi A2/A1 ...................... 1.315 Fb : Allowable .............................. 21.557 ksi Distance for Moment Calculation Stress Ratio ..................... Shear Stress 0.053 ' m' .......... I.......... 0.863 in tv : Actual................................ 0.000 ksi ' n ' ..................... 0.863 in Fv : Allowable .............................. 0.000 ksi X .............................. Lambda ...................... 0.000 in"2 0.000 Stress Ratio ..................... 0.000 n......................................... 0.000 in n' ' Lambda .................................. 0.000 in L = max(m, n, n") ......................... 0.863 in I i 1 Flle C lDocurt is and SelUngs1PC31My DocumentslENERCALC DATA FlLE&►�ybr me t0ec6 feel Base Plate Desi n .... .: '.ENERCAIt ;INC .1983=2010; Ver•'Bi1.51, N:50790 Description : B3 Load Comb.: +D+0.750Lr+0.750L+H Bearing Stresses Fp: Allowable ............................... fa : Max. Bearing Pressu Stress Ratio ................. Plate Bending Stresses Mmax=Fu'L"2/2................... fb : Actual ................................ Fb : Allowable .............................. Stress Ratio ................. Shear Stress fv : Actual ................................ Fv : Allowable .............................. Stress Ratio .................. Bearing Stresses Fp: Allowable ............................... fa: Max. Bearing Pressu Stress Ratio ................. Plate Bending Stresses Mmax=Fu'L"2/ 2 ................... fb : Actual ................................ Fb : Allowable .............................. Stress Ratio ................. Shear Stress tv : Actual ................................ Fv : Allowable .............................. Stress Ratio ................. Bearinq Stresses Axial Load Only, No Moment 1.118 ksi 0.217 ksi 0.194 0.081 k -in 1.021 ksi 21.557 ksi 0.047 0.000 ksi 0.000 ksi 0.000 Axial Load Only, No Moment 1.118 ksi 0.217 ksi 0.194 0.081 kin 1.021 ksi 21.557 ksi 0.047 0.000 ksi 0.000 ksi 0.000 _.....__.._..... __..........................._.._............. ....... _... --................... ... __... ---..._.... Axial Load Only, No Moment Fp: Allowable ............................... Loading18.076 Pa: Axial Load .... Design Plate Height ......... Design Plate Width ......... Will be different from entry d partial bearing used. k 8.625 in 8.625 in 0.217 ksi Al : Plate Area ......... 74.391 in A2 Plate Bendinq Stresses e : Support Area .................. 144.000 in"2 0.081 k -in A2/A1 ...................... Distance for Moment Calculation 1.315 j 'm, ..................... 0.863 in 0.047 ' n' ..................... X .............................. 0.863 in 0.000 in" 2 fv : Actual ................................ Lambda ...................... 0.000 0.000 ksi n' ........................................ 0.000 in n' • Lambda .................................. 0.000 in L = max(m, n, n") ......................... 0.863 in Load Comb.: +D+0.750Lr+0.750L+0.750W+H Loadin Pa: Axial Load .... Design Plate Height ......... 18.076 k 8.625 in Design Plate Width ......... 8.625 in Will be different from entry if partial bearing used. Al : Plate Area ......... 74.391 in"2 e: Support Area .................. 144.000 " 2 m A2/A1 ...................... 1.315 Distance for Moment Calculation .m" ..................... 0.863 in 'n' ..................... 0.863 in X .............................. 0.000 in"2 Lambda ...................... n' ........................................ 0.000 0.000 in n' • Lambda .................................. 0.000 in L = max(m, n, n") ......................... ........ ..... ......... ..... ... ... ... ..._...._...........__... 0.863 in __..._.._....._......... ... ..... ......... -. -- 'Load _..._..._.__.�.--_.._. _._..--------.._._...__.._ Comb.: +D+0.750Lr+0.750L-0.750W+H Loadinq Pa: Axial Load .... 18.076 k Design Plate Height ......... 8.625 in Design Plate Width ......... 8.625 in Will be different from entry if partial bearing used. Al : Plate Area ......... 74.391 in"2 e: Support Area .................. A2/A1 ..................... 144.000 in"2 1.315 Distance for Moment Calculation ' m' ..................... ' n' ..................... 0.863 in 0.863 in X .............................. 0.000 in"2 Lambda ...................... 0.000 n' ........................................ n' • Lambda .................................. 0.000 in 0.000 in L = max(m, n, n") ......................... 0.863 in 1l Bearing Stresses Fp: Allowable ............................... fa : Max. Bearing Pressu Stress Ratio ................. Plate Bending Stresses Mmax=Fu'L"2/2................... fb : Actual ................................ Fb : Allowable .............................. Stress Ratio ................. Shear Stress fv : Actual ................................ Fv : Allowable .............................. Stress Ratio .................. Bearing Stresses Fp: Allowable ............................... fa: Max. Bearing Pressu Stress Ratio ................. Plate Bending Stresses Mmax=Fu'L"2/ 2 ................... fb : Actual ................................ Fb : Allowable .............................. Stress Ratio ................. Shear Stress tv : Actual ................................ Fv : Allowable .............................. Stress Ratio ................. Bearinq Stresses Axial Load Only, No Moment 1.118 ksi 0.217 ksi 0.194 0.081 k -in 1.021 ksi 21.557 ksi 0.047 0.000 ksi 0.000 ksi 0.000 Axial Load Only, No Moment 1.118 ksi 0.217 ksi 0.194 0.081 kin 1.021 ksi 21.557 ksi 0.047 0.000 ksi 0.000 ksi 0.000 _.....__.._..... __..........................._.._............. ....... _... --................... ... __... ---..._.... Axial Load Only, No Moment Fp: Allowable ............................... 1.118 ksi fa: Max. Bearing Pressu 0.217 ksi Stress Ratio ....................... 0.194 Plate Bendinq Stresses Mmax = Fu' 1-12 / 2 ................... 0.081 k -in fb : Actual ................................ 1.021 ksi Fb : Allowable .............................. 21.557 ksi Stress Ratio ..................... 0.047 Shear Stress fv : Actual ................................ 0.000 ksi FY: Allowable .............................. 0.000 ksi Stress Ratio ..................... 0.000 � . I � I � I ­­ _­..........._­ � .. ...... .. . Axial Load Only, No Moment 1.118 ksi 0.217 ksi 0.194 0.081 k -in 1.021 ksi 21.557 ksi 0.047 0.000 ksi 0.000 ksi 0.000 Axial Load Only, No Moment 1.118 ksi 0.217 ksi 0.194 0.081 k4n 1.021 ksi 21.557 ksi 0.047 0.000 ksi 0.000 ksi 0.000 I 0 Base }Pla#e Desi In ic. Fle: QMmurnebts and'Saft -�Steei .77 License Description 83 Load Comb.: +D+0.750Lr+0.750L+0.5250E+H Loadinq Pa: Axial Load Design Plate Height ......... 18.076 k 8.625 in Beadn-q Stresses Fp: Allowable ............................... fa : Max. Bearing Pressu Design Plate Width Will be dftent from entry it partial bearing used. 8.625 in Stress Ratio ....................... Plate Bending Stresses Al : Plate Area 74.391 in A 2 Mmax = Fu' L^212 ................... A2: Support Area .................. e A2/A1 ...................... * 144.000 in A 2 1.315 fb : Actual ................................ Fb: Allowable .............................. Stress Ratio ..................... Distance for Moment Calculation Shear Stress . m . ..................... 0.863 in tv: Actual ................................ .n" ..................... X .............................. 0.863 in 0.000 inA2 Fv: Allowable .............................. Stress Ratio ..................... Lambda ...................... 0.000 n' ........................................ 0.000 in n'* Lambda .................................. 0.000 in L = max(m, n, n") ......................... 0.863 in Load Comb.: +D+0.7+50'Lr+0.7'50L-0.5+250E+H Loading Pa: Axial Load Design Plate Height 18.076 k 8.625 in Bearinq Stresses Fp: Allowable ............................... fa : Max. Bearing Pressu Design Plato Width ......... 8.625 in Stress Ratio ........................ Will be different from entry #partial bearing used. Plate Bendinq Stresses Al : Plate Area e-. Support Area .................. o A2JAI ....................... 74.391 in A 2 144.000 in A 2 1.315 Mmax = Fu' L"212 ................... fb: Actual ................................. Fb: Allowable .............................. Stress Ratio ..................... Distance for Moment Calculation m" ..................... 0.863 in Shear Stress tv: Actual ................................ n, ..................... 0.863 in Fv: Allowable .............................. X 0.000 inA2 Stress Ratio ..................... Lambda ...................... n' ........................................ 0.000 0.000 in n'* Lambda .................................. 0.000 in L = max(m, n, n") ......................... 0.863 in � I � I ­­ _­..........._­ � .. ...... .. . Axial Load Only, No Moment 1.118 ksi 0.217 ksi 0.194 0.081 k -in 1.021 ksi 21.557 ksi 0.047 0.000 ksi 0.000 ksi 0.000 Axial Load Only, No Moment 1.118 ksi 0.217 ksi 0.194 0.081 k4n 1.021 ksi 21.557 ksi 0.047 0.000 ksi 0.000 ksi 0.000 I 0 TAYLOR MC/16b GRAVITY LOAD FOOTING DESIGN PQ ST = jr .5 x $ _ _ 29 6' 225 8 3 74 1d.5 5GO l 5 2) pDST = IG,SJc16 = 2�� . 14-2 5 10,0 70`'/1500� �.7 3) B2 = G3�sp C3� �oQg 335 �rG= 225 x 12, - 2£SO lo,54145010 P 4-72 ��- 225X IG 'Goo 24 3 8 215 16.25 4 r 1 FAL}. = 4fi59' gs 4.t Sal posy = 15 x j 5,8 1= d G = 225 X 11.7 = 2G25 I`7D22/ 150 f1,3 3.4 3 Gscr � I35 = II moi FOs7=iSX 15,E 2-3'1 fisc = us x 8• �. = Inca SCP 13,4 0 G/ l s�c� '1 = 133 CG5 2=7 X 7. 2. 1 G 31 pos�3.15�(�•� s 237 26 7 J 7 I-7 5 4.2 4 3 sq ISao iF -I Co = 228-7 t = 10X20, 3 m 103 Po <3,T = JOX l(�- = =1 o PiG = Z2sx3 = 675 4829%c 3.2 1'F-- Co. 58S Sq 12� PSI SA � �I►S p GST= IOX1C', JGo LZS >e 5 12--76 7550��15oas 22 2�. 3 S4 �sT= Idx Zc.�_ = 203 2-2-S,x 14. 3 = 3225 2 2,4-0Q-/,s�a� t3f7a fo, v3� opsi=lO�tl� - (c0 4.14 4,_ o s? 25 728�IS�c l7, I5 ioxt,•e, = ISS 70 3 J'/,Sc�o 4.7 2 2'- 5"SQ I G) U Co = 4423 r X22 = X87 OX t G = •�Gd ATL = 225 x d - g o o d. 60 7 0'500 ICI) Pb 2.7 �!9 3320 has=1oXIcs 6'T. (AS -36.�22{2.5) �`j/=Zz5x33 = 974 co O 5 7/1560 4- 1-7) 1.110 : - 24 Pos-r roxlc. = JGo �I 1 I lJSco- 2.7 ISl X42.1 6'T. (AS -36.�22{2.5) X233.. PG ST=1 d �C1G - Ido rjz = ZZs X &. 55 73�Isao' ro.4 I�) u23 = 3o�s' k2-4 hs• -('�-) ►oxo G - 310 10, 4/sow ' 7.3 Zo) 1.12$ °J7G',` 144- ��- CZE x 7, I GSo 1),- �I,00 - 7.7 211 N35 4-5 5,5 2-12 y Jo�1 C� = Ido 11� 50 1 y- 5:3 22) P --17A ��T = 10 x Go - las 7 I 5-75 6 2 1 C3 /1so a, ` 5.5 2 2 1.c 2.5- 7, .s 7 3/� ' a, s .2.E, 2.�) 2.3 71-0 sq 2=0 2'-C, sq ; ,z 2L ca. z'q"sQ 2- 3" so 2- G Z ON SI -IIN—Ei: C'SU l l_T SvV s . (1-3) 12x9 1-l�zg 10;/, 9 13,6x9 251E 9 S 3554.' w 24c,7' 1948 " I14a I? 56• 750 ' /06' 2CbI6 22.7 S ' 1760 - 14 W5,5.. 251 9' 175 9' 14&4' 1Q-98� G ✓ N J ✓ L o p ✓ Q 17�Ci z4t 7 1729 2499 ICo7-7 2032'' 1944 X51° 6 3. 5G-79, 3czc. " 3 o6O' WM LTD PROJECT: Taylor MC/16b PAGE: CLIENT: i;, DESIGN BY: JOB NO.: '>S1N2' DATE: REVIEW BY: INPUT DATA LATERAL FORCE ON DIAPHRAGM: vdia, WIND = 260 plf,for wind vdla, SEISMIC = 374 plf,for seismic GRAVITY LOADS ON THE ROOF: WOE = 0 pB,for dead load WLL = 0 ptf,for live load DIMENSIONS: Lw = -0.5 It , h = 15 ft L = 9.5 ft, hp= 3 ft PANEL GRADE (0 or 1) = 1 <= Sheathing and Single -Floor MINIMUM NOMINAL PANEL THICKNESS = 15/32 in COMMON NAIL SIZE ( 0=6d, 1=8d, 2=1 Od 12 10d SPECIFIC GRAVITY OF FRAMING MEMBERS 0.5 Where: vb = 374 plf, ASD Lw = EDGE STUD SECTION 1 pcs, b = 4 in, h = 6 in SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH GRADE ( 1, 2, 3, 4, 5, or 6) 3 No. 1 Cd = 4 STORY OPTION ( 1=ground level, 2=upper level) 1 ground level shear wall w ha --------------------- ------ h l; �w I T. THE SHEAR WALL DESIGN IS ADEQUATE. DESIGN SUMMARY BLOCKED 15/32 SHEATHING WITH 10d COMMON NAILS @ 4 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 28 in O.C. HOLD-DOWN FORCES: TL = 5.25 k TR = 5.25 k (USE PHD6-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 6" DOUGLAS FIR -LARCH No. 1, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.57 in ANALYSIS HECK MAX SHEAR WALL DIMENSION RATIO L / B = 1.6 < 3:5 ..[Satisfactory) DETERMINE REQUIRED CAPACITY vb = 374 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 4 in) THF SHFAR rAPAr:ITIFS PFR IRr: Tahlp ?anF d 1 Note: i he Indicated shear numbers have reduced by speclhc gravity tactor per ItR; note a. JE DRAG STRUT FORCE: F = (L -Lw) MAX( vdla, WIND, novdla. SEISMIC) = 0,00 k ( no = 1 ) (Sec. 1633.2.6) JE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab. 11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 28 in O.C. THE HOLD-DOWN FORCES- vdla Wall Seismic Min. Min. Blocked Nail Spacing Holddown (plf) Panel Grade Common Penetration Thickness Boundary & All Edges SEISMIC 374 274 55757 Nail (in) (in) 1 6 1 4 3 1 2 EA L. Gt Sheathing and Single -Floor 10d 1 5/8 15/3: 1 310 1 460 1 600 1 770 37050 Left 6498 2/3 T� = 3444 Where: vb = 374 plf, ASD Lw = Note: i he Indicated shear numbers have reduced by speclhc gravity tactor per ItR; note a. JE DRAG STRUT FORCE: F = (L -Lw) MAX( vdla, WIND, novdla. SEISMIC) = 0,00 k ( no = 1 ) (Sec. 1633.2.6) JE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab. 11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 28 in O.C. THE HOLD-DOWN FORCES- EDGE STUD CAPACITY Pmax = 4.37 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1500 psi CD = 1.60 Cp = 0.17 A = 19.25 in' E= 1700 ksi CF = 1.10 F, = 457 psi > % = 227 (Satisfactory) vdla Wall Seismic Overturning Resisting Safety Net Uplift Holddown (plf) at mid -story (lbs) Moments (ft -lbs) Moments (ft -lbs) Factors (lbs) SIMPSON SEISMIC 374 274 55757 Left 6498 0.9 T = 5254 � y'S Right 6498 0.9 TR = 5254 EA L. Gt L». y0 WIND 260 37050 Left 6498 2/3 T� = 3444 Where: vb = 374 plf, ASD Lw = Right 6498 2/3 TR = 3444 E = 1.7E+06 psi [Satisfactory] (ASCE 7-05 12.8.6 A = 16.50 in` h = Q�p� EDGE STUD CAPACITY Pmax = 4.37 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1500 psi CD = 1.60 Cp = 0.17 A = 19.25 in' E= 1700 ksi CF = 1.10 F, = 457 psi > % = 227 (Satisfactory) (TL & TR values should include upper level UPLIF r forces if applicable =CK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) 3 8wh vbh hd A = A &,d.g + OShear + ANail .clip + Ac&,d s/rlce 51;p = + + 0.75hei + ° = 0.571 in, ASD < EA L. Gt L». sxe,anowable. Iso = 0.643 in Where: vb = 374 plf, ASD Lw = 10 ft E = 1.7E+06 psi [Satisfactory] (ASCE 7-05 12.8.6 A = 16.50 in` h = 15 it G = 9.0E+04 psi Cd = 4 1 = 1 t = 0.298 in en = 0.008 in da = 0.15 in (ASCE 7-05 Tab 12.2-1 & Tab 11.5-1 Aa = 0.02 _ (ASCE 7.05 Tab 12.12-1) EDGE STUD CAPACITY Pmax = 4.37 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1500 psi CD = 1.60 Cp = 0.17 A = 19.25 in' E= 1700 ksi CF = 1.10 F, = 457 psi > % = 227 (Satisfactory) i WM LTD PROJECT: Taylor MC/16b PAGE: (�B CLIENT: „5. DESIGN BY: JOB NO �tSW6 DATE: REVIEW BY ,S,h#4r;W I Desi` n Based on I8C,06=°/tCBC 07°l ND3, 05 `� INPUT DATA L - LATERAL FORCE ON DIAPHRAGM: Vdia, WIND _ 109 plf,for wind VJ Vdia, SEISMIC — 169 pff,for seismic GRAVITY LOADS ON THE ROOF: WDA = 0 plf,for dead load .WI -L = 0 plf,for live load v„ ho - DIMENSIONS: Lw = 11.5 ft. h = 9 ft L = 11.5 ft, hp= 3 ft PANEL GRADE (0 or 1) = 1 <= Sheathing and Single -Floor h MINIMUM NOMINAL PANEL THICKNESS = 15/32 in COMMON NAIL SIZE (0=6d, 1=8d, 2=10d) 2 10d SPECIFIC GRAVITY OF FRAMING MEMBERS -0;5 EDGE STUD SECTION 1 'pCS, b = 4. in, h = .6 in V. T, T. SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH GRADE ( 1, 2, 3, 4, 5, or 6) 3. No. 1 Lw STORY OPTION (1=ground level, 2=upper level) 1 ground level shear wall THE SHEAR WALL DESIGN IS ADEQUATE. DESIGN SUMMARY BLOCKED 15/32 SHEATHING WITH 10d COMMON NAILS @ 6 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. HOLD-DOWN FORCES: T, = 1.14 k TR = 1.14 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 6" DOUGLAS FIR -LARCH No. 1, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: d = 0.19 in ANALYSIS CHECK MAX SHEAR WALL DIMENSION RATIO L / B = 0.8 < 3:5 (Satisfactory] J� DETERMINE REQUIRED CAPACITY vo = 169 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 6 in) THE SHEAR C:APAC!TIFS PFR IRC: TaNe 2306 d 1 i (vote: I ne Indicated shear nurnders nave reaucea Dy speclnc gravlry Tactor per Itit, none a. VE DRAG STRUT FORCE: F = (L -Lw) MAX(vd;a, wlNo. Dovdta, sEIsmIc) = 0.00 k ( f)o = 1 ) (Sec. 1633.2.6) VE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. THF HN n-nr)WN FC)RCFS- vd;, Wall Seismic Overturning Min. Min. Blocked Nail Spacing (plf) at mid -story (lbs) Moments (ft -lbs) Panel Grade Common Penetration Thickness Boundary & All Edges 221 18816 Left 6348 0.9 TL = 1139 16 Right 6348 0.9 TR = 1139 Nail (in) in 6 1 4 1 3 2 C_ WIND 109 11282 Sheathing and Single -Floor 10d 1 5/8 1 15/32 1 310 1 46 1 600 1 770 i (vote: I ne Indicated shear nurnders nave reaucea Dy speclnc gravlry Tactor per Itit, none a. VE DRAG STRUT FORCE: F = (L -Lw) MAX(vd;a, wlNo. Dovdta, sEIsmIc) = 0.00 k ( f)o = 1 ) (Sec. 1633.2.6) VE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. THF HN n-nr)WN FC)RCFS- (TL & TR values should include upper level UPLIFT forces if :CK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) A=A&,dmg+Os&ar+AN.,/ stip+ACM,dsplim slip= 8Vbh +Vbh+0.75r_en+hd,, EALw Gt rl LW Where: ve = 169 plf, , ASD Lw = 12 ft E = 1.7E+06 psi A = 16.50 in` h = 9 ft G = 9.0E+04 psi I= 0.296 in en = 0.002 in da = 0.15 in 0.192 in, ASD < Sxe,allowable, Aso = 0.386 in [Satisfactory] (ASCE 7-0512.8,6 Cd= 4 1= 1 ,(ASCE 7-05 Taq 12.2-1 & Tab 11.5-1 Aa = 0.02 111 hax (ASCE 7,-05 Tab 12.12-1) EDGE STUD CAPACITY Pmax = 1.46 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1500 psi Co = 1.60 Cp = 0.43 A = 19.25 in' E = 1700 ksi CF = 1.10 Fc = 1146 psi > f, = 76 psi [Satisfactory] vd;, Wall Seismic Overturning Resisting Safety Net Uplift Holddown (plf) at mid -story (lbs) Moments (ft -lbs) Moments (ft -lbs) Factors (III S) SIMPSON SEISMIC 169 221 18816 Left 6348 0.9 TL = 1139 16 Right 6348 0.9 TR = 1139 C_ WIND 109 11282 Left 6348 2/3 TL = 613 Right 6348 2/3 1 TR = 613 Q�p� (TL & TR values should include upper level UPLIFT forces if :CK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) A=A&,dmg+Os&ar+AN.,/ stip+ACM,dsplim slip= 8Vbh +Vbh+0.75r_en+hd,, EALw Gt rl LW Where: ve = 169 plf, , ASD Lw = 12 ft E = 1.7E+06 psi A = 16.50 in` h = 9 ft G = 9.0E+04 psi I= 0.296 in en = 0.002 in da = 0.15 in 0.192 in, ASD < Sxe,allowable, Aso = 0.386 in [Satisfactory] (ASCE 7-0512.8,6 Cd= 4 1= 1 ,(ASCE 7-05 Taq 12.2-1 & Tab 11.5-1 Aa = 0.02 111 hax (ASCE 7,-05 Tab 12.12-1) EDGE STUD CAPACITY Pmax = 1.46 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1500 psi Co = 1.60 Cp = 0.43 A = 19.25 in' E = 1700 ksi CF = 1.10 Fc = 1146 psi > f, = 76 psi [Satisfactory] WM LTD PROJECT: Taylor'MC/16b PAGE: {5'9 CLIENT, DESIGN BY: JOB NO. ; S DATE: REVIEW BY: INPUT DATA LATERAL FORCE ON DIAPHRAGM: vdIs, WIND = . 100. pff,for wind vdia, SEISMIC = : . 181 pB,for seismic GRAVITY LOADS ON THE ROOF: wDL = 0: p8,for dead load wLL = 0 plf,for live load DIMENSIONS: Lw = 7:5 ft , h = 10 ft L = 7:5 ft, hp= 3 ft PANEL GRADE (0 or 1) _ .1 .' <= Sheathing and Single -Floor MINIMUM NOMINAL PANEL THICKNESS = 15/32 in COMMON NAIL SIZE (0=6d, 1=8d, 2=10d) 2 10d SPECIFIC GRAVITY OF FRAMING MEMBERS 0.5 Where: vb = 181 plf, , ASD Lw = EDGE STUD SECTION 1 pcs, b = 4' - in, h = ..6 in SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH GRADE ( 1, 2, 3, 4, 5, or 6) 3 No. 1 Cd = 4 STORY OPTION ( 1=ground level, 2=upper level) 1 ground level shear wall W V„ hp -------------------- ------ H h T, ve I T> THE SHEAR WALL DESIGN IS ADEQUATE. DESIGN SUMMARY BLOCKED 15/32 SHEATHING WITH 10d COMMON NAILS @ 6 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. HOLD-DOWN FORCES: T, = 1.59 k , TR = 1.59 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 6" DOUGLAS FIR -LARCH No. 1, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: e = 0.29 in ANALYSIS ;HECK MAX SHEAR WALL DIMENSION RATIO L / B = 1.3 < 35 [Satisfactory] )ETERMINE REQUIRED CAPACITY vb = 181 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 6 in) THE SHFAR CAPACITIES PFR IBC Tahip 2306 4 1 Note: 1 ne indicated shear numbers nave reduced Dy SpeCnlo gravity tactor per im; note a. NE DRAG STRUT FORCE: F = (L -L„) MAX(vdla. WIND. +WVdla. SEISMIC) = 0.00 k ( S10 = 1 ) (Sec. 1633.2.6) NE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) 5/8 in DIA, x 10 in LONG ANCHOR BOLTS @ 48 in O.C. THF Hnl ILnnWN FnRCFS• Min. Min. Blocked Nail Spacing Overturning Moments (ft -lbs) Resisting Safety Net Uplift Moments (ft -lbs) Factors (III S) lHolddown SIMPSON Panel Grade Common Penetration Thickness Boundary & All Edges 156 14589 Left 2925 0.9 TC = 1594 Nail (in) in 6 43 2 WIND 100 + 7500 Left 2925 2/3 T� = 0 J740 Sheathing and Single -Floor 10d 1 5/8 15/32 310 460 1 600 1 770 Note: 1 ne indicated shear numbers nave reduced Dy SpeCnlo gravity tactor per im; note a. NE DRAG STRUT FORCE: F = (L -L„) MAX(vdla. WIND. +WVdla. SEISMIC) = 0.00 k ( S10 = 1 ) (Sec. 1633.2.6) NE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) 5/8 in DIA, x 10 in LONG ANCHOR BOLTS @ 48 in O.C. THF Hnl ILnnWN FnRCFS• EDGE STUD CAPACITY Pmax = 1.56 kips, (this value should include upper level DOWNWARD loads if applicable) Fe = 1500 psi Co = 1.60 Cp = 0.36 A = 19.25 int E= 1700 ksi CF = 1.10 Fc = 961 psi > f, = 81 [Satisfactory] vda (plf) Wall Seismic at mid -story (lbs) Overturning Moments (ft -lbs) Resisting Safety Net Uplift Moments (ft -lbs) Factors (III S) lHolddown SIMPSON SEISMIC 181 156 14589 Left 2925 0.9 TC = 1594 y0� Right 2925 0.9 TR = 94 WIND 100 + 7500 Left 2925 2/3 T� = 0 J740 p`t Q� Right 2925 2/3 TR = EDGE STUD CAPACITY Pmax = 1.56 kips, (this value should include upper level DOWNWARD loads if applicable) Fe = 1500 psi Co = 1.60 Cp = 0.36 A = 19.25 int E= 1700 ksi CF = 1.10 Fc = 961 psi > f, = 81 [Satisfactory] (Tt. & TR values should include upper level UPLIFT forces if applicable ECK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) 3 8vbh vbhhd, A = A&.mg +Asbe„ + AN,u slip + Ocn„d spfwe VIP = + + 0.75he, + — 0.295 in, ASD < EALw Gt L,V sxe,allowable. Aso = 0.429 in Where: vb = 181 plf, , ASD Lw = 8 ft E = 1.7E+06 psi [Satisfactory] (ASCE 7-05 12.8.E A = 16.50 in` h = 10 ft G = 9.0E+04 psi Cd = 4 I = 1 I = 0.298 in e„ = 0.003 in da = 0.15 in ,(ASCE 7-05 Tab 12.2-1 & Tab 11.5-1 Aa = 0.02 ax (ASCE 7-05 Tab 12.12-1) EDGE STUD CAPACITY Pmax = 1.56 kips, (this value should include upper level DOWNWARD loads if applicable) Fe = 1500 psi Co = 1.60 Cp = 0.36 A = 19.25 int E= 1700 ksi CF = 1.10 Fc = 961 psi > f, = 81 [Satisfactory] WM LTD PROJECT: Taylor MC/16b PAGE CLIENT: DESIGN BY: r JOB NO.: 1SW$ ail DATE: REVIEW BY: INPUT DATA ` LATERAL FORCE ON DIAPHRAGM: vena, WIND = 310 pff,for wind w Vdla. SEISMIC = 478 plf,for seismic 1 GRAVITY LOADS ON THE ROOF: WDL = 416 plf,for dead load WLy = 327 ptf,for live load DIMENSIONS: Lw = 6:5 ft , h = 10 ft F� L = 6.5 ft, ho= 3 ft PANEL GRADE (0 or 1) = 1 <= Sheathing and Single -Floor MINIMUM NOMINAL PANEL THICKNESS — 15/32 in COMMON NAIL SIZE ( 0=6d, 1=8d, 2=10d) 2 10d SPECIFIC GRAVITY OF FRAMING MEMBERS 0.5 EDGE STUD SECTION 1. . 'x ~ ~�"' pcs, b = 'S:S f. I in , h = 5i5 'r in v° . .. T� SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH GRADE ( 1, 2, 3, 4, 5, or 6) :3 Dense No.1 Lw STORY OPTION ( 1=ground level, 2=upper level) 1 =ground level shear wall THE SHEAR WALL DESIGN IS / DESIGN SUMMARY BLOCKED 15/32 SHEATHING WITH 10d COMMON NAILS @ 3 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 22 in O.C. HOLD-DOWN FORCES: TL = 3.39 k , TR = 3.39 k (USE PHD2-SDS3 SIMPSON F DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 6" x 6" DOUGLAS FIR -LARCH Dense No.1, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.41 in ANALYSIS :HECK MAX SHEAR WALL DIMENSION RATIO L / B = 1.5 < 3.5' [Satisfactory] )ETERMINE REQUIRED CAPACITY vb = 478 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = THF RHFAR CAPACITIFC PFR IRC TahIP 93nA d 1 ho h T. ,TE. 3 in) Note: The indicated shear numbers have reduced by specific gravity factor per IBL note a. VE DRAG STRUT FORCE: F = (L -Lw) MAX( vdI., WIND. Oovdla, SEISMIC) = 0.00 k (no = 1 ) (Sec. 1633.2.6) VE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab. 11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 22 in O.C. THE HOLD-DOWN FORCES- vdla Min. Min. Blocked Nail Spacing Panel Grade Common Penetration Thickness Boundary & All Edges at mid -story (Ibs) Nail in 1 in 6 1 4 1 3 2 Sheathing and Single -Floor 10d 1 5/8 1 15/32 310 1 460 1 600 1 770 ho h T. ,TE. 3 in) Note: The indicated shear numbers have reduced by specific gravity factor per IBL note a. VE DRAG STRUT FORCE: F = (L -Lw) MAX( vdI., WIND. Oovdla, SEISMIC) = 0.00 k (no = 1 ) (Sec. 1633.2.6) VE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab. 11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 22 in O.C. THE HOLD-DOWN FORCES- EDGE STUD CAPACITY Pmax = 4.40 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1200 psi Co = 1.60 Cp = 0.41 A = 25 in' E = 1700 ksi CF = 1.00 Fc = 779 psi > f, = 176 [Satisfactory] vdla Wall Seismic Overturning Resisting Safety Net Uplift Holddown (plf) at mid -story (Ibs) Moments (ft -lbs) Moments (ft -lbs) Factors (Ibs) SIMPSON SEISMIC 478 135 31949 Left 10985 0.9 TL = 3394 ,y Right 10985 0.9 TR = 3394 EA j,,,. Gt L. 495y sxe,anowable. Aso = Left 10985 2/3 TL = 1973 Where: vb = 476 plf, , ASD Lw = WIND 310 [Satisfactory] 20150 A = 30.25 in` h = Right 10985 2/3 TR = 1973 G = 9.0E+04 psi Cd = 4 1= 1 t = 0.468 in ea = Q�p� EDGE STUD CAPACITY Pmax = 4.40 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1200 psi Co = 1.60 Cp = 0.41 A = 25 in' E = 1700 ksi CF = 1.00 Fc = 779 psi > f, = 176 [Satisfactory] (TL & TR values should include upper level UPLIFT forces if applicable -_CK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) 8vbh' vl h hd a A = A&e,d.g + As&., + ANail slip + OChod splice slip = + + 0.75hei + = 0.406 In, ASD < EA j,,,. Gt L. sxe,anowable. Aso = 0.429 in Where: vb = 476 plf, , ASD Lw = 7 It E = 1.7E+06 psi [Satisfactory] (ASCE 7-05 12.8.6 A = 30.25 in` h = 10 ft G = 9.0E+04 psi Cd = 4 1= 1 t = 0.468 in ea = 0.007 in da = 0.15 in (ASCE 7-05 Tab 12.2-1 & Tab 11.5-1 Da = 0.02 hay (ASCE 7;05 Tab 12.12-1) EDGE STUD CAPACITY Pmax = 4.40 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1200 psi Co = 1.60 Cp = 0.41 A = 25 in' E = 1700 ksi CF = 1.00 Fc = 779 psi > f, = 176 [Satisfactory] t i WM LTD PROJECT: Ta IorMC/16b PAGE: CLIENT: DESIGN BY: JOB NO.:�SW9.�; DATE : REVIEW BY: z y Fr ,� , S.h69t4,W,aIVx.j Iasi'; jBased;o IBQ,,06.'h ,-PQ0 /ANDS,=05 ,.�; rx � INPUT DATA L LATERAL FORCE ON DIAPHRAGM: vdia, WIND =134 pH,for wind — w vdia, selsMlc — 207 pH,for seismic �— GRAVITY LOADS ON THE ROOF: WDA = 315 plf,for dead load wLL = 248 pB,for live load-�- ho DIMENSIONS: Lw = 11 It , h = 10 It L = 11 it ho = 3 it PANEL GRADE (0 or 1) = 1 <= Sheathing and Single -Floor h MINIMUM NOMINAL PANEL THICKNESS = 15/32 in COMMON NAIL SIZE ( 0=6d, 1=8d, 2=10d) 2 10d SPECIFIC GRAVITY OF FRAMING MEMBERS .0.5 EDGE STUD SECTION 1 i . pcs, b = '''4 ` in , h = 6 in v° T, T. SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH GRADE (1, 2, 3, 4, 5, or 6) 3, No. 1 Lw STORY OPTION ( 1=ground level, 2=upper level) 1 ground level shear wall THE SHEAR WALL DESIGN IS ADEQUATE. DESIGN SUMMARY BLOCKED 15/32 SHEATHING WITH 10d COMMON NAILS @ 6 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. HOLD-DOWN FORCES: TL = 0.13 k TR = 0.13 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 6" DOUGLAS FIR -LARCH No. 1, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.25 in ANALYSIS CHECK MAX SHEAR WALL DIMENSION RATIO L / B = 0.9 < 3.5. , [Satisfactory] DETERMINE REQUIRED CAPACITY ve = 207 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 6 in) THE -SHEAR C-APAC:ITIE-S PER IRC. TaNe 2.106 d 1 Note: The indicated Shear numbers have reduced by SpeGTlc gravity tactor per im; note a. VE DRAG STRUT FORCE: F = (L -LW) MAX( vaia, WIND, OoVdia, SEISMIC) = 0.00 k ( Oo = 1 ) (Sec. 1633.2.6) VE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. THE HOLD-DOWN FORCES: Panel Grade Common Nail Min. Penetration in Min. Thickness in Blocked Nail Spacing Boundary & All Edges (plf) 6 4 3 1 2 Sheathing and Single -Floor I 10d 15/8 15/32 1 310 1 460 1 600 1 770 Note: The indicated Shear numbers have reduced by SpeGTlc gravity tactor per im; note a. VE DRAG STRUT FORCE: F = (L -LW) MAX( vaia, WIND, OoVdia, SEISMIC) = 0.00 k ( Oo = 1 ) (Sec. 1633.2.6) VE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. THE HOLD-DOWN FORCES: HECK EDGE STUD CAPACITY Pmax = 3.01 kips, (this value should include upper level DOWNWARD loads if applicable) F� = 1500 psi Co = 1.60 Cp = 0.36 A = 19.25 int E= 1700 ksi CF = 1.10 Fc = 961 psi > fc = 156 psi [Satisfactory] vdia Wall Seismic Overturning Resisting Safety Net Uplift Holddown (plf) at mid -story (Ibs) Moments (ft -lbs) Moments (ft -lbs) Factors (lbs) SIMPSON SEISMIC 207 229 24257 Left 25350 0.9 TL = 131 ,5 Right 25350 0.9 TR = 131 EAL,,. Gt Lw sxe,allowable, nso = y0�' WIND 134 E = 1.7E+06 psi 14740 Left 25350 2/3 TL = 0 A = 16.50 in` h = Right 1 25350 2/3 TR = 0 G = 9.0E+04 psi Cd = 4 1= 1 t = 0.298 in en = Q�Oti HECK EDGE STUD CAPACITY Pmax = 3.01 kips, (this value should include upper level DOWNWARD loads if applicable) F� = 1500 psi Co = 1.60 Cp = 0.36 A = 19.25 int E= 1700 ksi CF = 1.10 Fc = 961 psi > fc = 156 psi [Satisfactory] (TIL & TR values should include upper level UPLIFT forces if applici =CK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) 8Vbh' V hd° A — D &,ding + Am.., + ONail slip + OChwd splim slip — + bh + 0.75he„ + = 0.251 in, ASD < EAL,,. Gt Lw sxe,allowable, nso = 0.429 in Where: vp = 207 plf, , ASD LW = 11 ft E = 1.7E+06 psi [Satisfactory] (ASCE 7-05 12 A = 16.50 in` h = 10 It G = 9.0E+04 psi Cd = 4 1= 1 t = 0.298 in en = 0.004 in da = 0.15 in (ASCE 7-05 Tab 12.2-1 & Tab 11. Aa = 0.02 1 h. (ASCE 7,-05 Tab 12.12-1) HECK EDGE STUD CAPACITY Pmax = 3.01 kips, (this value should include upper level DOWNWARD loads if applicable) F� = 1500 psi Co = 1.60 Cp = 0.36 A = 19.25 int E= 1700 ksi CF = 1.10 Fc = 961 psi > fc = 156 psi [Satisfactory] WM LTD PROJECT: Taylor MC/16b PAGE: CLIENT: DESIGN BY JOB NO.:. kSW10.'. DATE: REVIEW BY JPUT DATA kTERAL FORCE ON DIAPHRAGM: vdla, WIND = 177 pB,for wind Vdia, SEISMIC = 321 plf,for seismic RAVITY LOADS ON THE ROOF: WDL = 0 pH,for dead load WLL = .0 _ plf,for live load IMENSIONS: Lw = 112 ft , h = -9 ft L = 12 ft, hp= 3 It 4NEL GRADE (0 or 1) = 1. <= Sheathing and Single -Floor INIMUM NOMINAL PANEL THICKNESS = 15/32 in DMMON NAIL SIZE (0=6d, 1=8d, 2=10d) 2 10d 2ECIF(C GRAVITY OF FRAMING MEMBERS 0.5 p`t )GE STUD SECTION 1 pcs, b = 4 in, h = 6 in SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH GRADE ( 1, 2, 3, 4, 5, or 6 ) 3 No. 1 rORY OPTION ( 1=ground level, 2=upper level) t '. ground level shear wall w v„ hp F h T. THE SHEAR WALL DESIGN IS ADEQUATE. ES1GN SUMMARY BLOCKED 15/32 SHEATHING WITH 10d COMMON NAILS @ 4 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 32 in O.C. HOLD-DOWN FORCES: TL = 2.49 k , TR = 2.49 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: • F = 0.00 k EDGE STUD: 1 - 4" x 6" DOUGLAS FIR -LARCH No. 1, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.26 in NALYSIS 1ECK MAX SHEAR WALL DIMENSION RATIO L / B = 0.8 < 3;5 [Satisfactory] TERMINE REQUIRED CAPACITY vb = 321 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 4 in) THE SHEAR CAPACITIES PER IBC Table 2306.4.1 (vote: I ne Inolcateo snear numoers nave reouceo by specmc gravity Tactor per lex, note a. VE DRAG STRUT FORCE: F = (L -Lw) MAX( vdia, wiNo, f1ovdia, selSMlc) - 0.00 k ( DO = 1 ) (Sec. 1633.2.6) 4E MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab. 11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 32 in O.C. THF Hol n-DnWN FORCFS- Vdia Wall Seismic Min. Min. Blocked Nail Spacing Holddown (plf) Panel Grade Common Penetration Thickness Boundary & All Edges SEISMIC 321 230 36050 Nail in in 6 1 4 3 2 y0� Sheathing and Single -Floor 10d 1 5/8 1 15/32 1 310 1 460 1 600 1 770 (vote: I ne Inolcateo snear numoers nave reouceo by specmc gravity Tactor per lex, note a. VE DRAG STRUT FORCE: F = (L -Lw) MAX( vdia, wiNo, f1ovdia, selSMlc) - 0.00 k ( DO = 1 ) (Sec. 1633.2.6) 4E MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab. 11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 32 in O.C. THF Hol n-DnWN FORCFS- (rL & TR values should include upper level UPLIFT forces if SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) 3 — A&,dd,g +As&,a, + ONa;r . np + Acb,e .rpl;re EALw + , + 0.75he„ + hd. _ L. Where: vb = 321 plf, , ASD Lw = 12 ft E = 1.7E+06 psi A = 16.50 in` h = 9 It G = 9.0E+04 psi I= 0.298 in e„ = 0.005 in da = 0.15 in 0.258 in, ASD ( < Sxe,audwable, aso - 0.386 in [Satisfactory]I (ASCE 7-05 12.8! Cd= 4 1= i ,(ASCE 7-05 Tab 12.2-1 & Tab 11.5 - Aa = 0.02 I hax (ASCE 1-05 Tab 12.12-1) EDGE STUD CAPACITY Pmax = 2.39 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1500 psi CD= 1.60 Cp = 0.43 A = 19.25 in' E= 1700 ksi CF = 1.10 Fc = 1146 psi > f� = 124 psi [Satisfactory] Vdia Wall Seismic Overturning Resisting Safety Net Uplift Holddown (plf) at mid -story (lbs) Moments (ft -lbs) Moments (ft -lbs) Factors (lbs) SIMPSON SEISMIC 321 230 36050 Left 6912 0.9 T, = 2486 ,5 Right 6912 0.9 TR = 2486 y0� Left 6912 2/3 T� = 1209 p`t WIND 177 19116 Right 6912 2/3 TR = 1209 Qd` (rL & TR values should include upper level UPLIFT forces if SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) 3 — A&,dd,g +As&,a, + ONa;r . np + Acb,e .rpl;re EALw + , + 0.75he„ + hd. _ L. Where: vb = 321 plf, , ASD Lw = 12 ft E = 1.7E+06 psi A = 16.50 in` h = 9 It G = 9.0E+04 psi I= 0.298 in e„ = 0.005 in da = 0.15 in 0.258 in, ASD ( < Sxe,audwable, aso - 0.386 in [Satisfactory]I (ASCE 7-05 12.8! Cd= 4 1= i ,(ASCE 7-05 Tab 12.2-1 & Tab 11.5 - Aa = 0.02 I hax (ASCE 1-05 Tab 12.12-1) EDGE STUD CAPACITY Pmax = 2.39 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1500 psi CD= 1.60 Cp = 0.43 A = 19.25 in' E= 1700 ksi CF = 1.10 Fc = 1146 psi > f� = 124 psi [Satisfactory] WM LTD PROJECT : 7ayLor MC16b PAGE: (G 3 CLIENT: t DESIGN BY: JOB NO.:SW12:` DATE: REVIEW BY INPUT DATA LATERAL FORCE ON DIAPHRAGM: Vdia, MIND = 1.315 . pB,for wind Vdia, SEISMIC = 111 pH,for seismic GRAVITY LOADS ON THE ROOF: WDA = 463 plf,for dead load WLL = 370 pff,for live load DIMENSIONS: Lw = 13 It , h = 9 It L = 13 ft, hp= .2 ft PANEL GRADE (0 or 1) = .1 <= Sheathing and Single -Floor MINIMUM NOMINAL PANEL THICKNESS = 15/32 in COMMON NAIL SIZE (0=6d, 1=8d, 2=10d) 2 10d SPECIFIC GRAVITY OF FRAMING MEMBERS .0.5 Left 46560 2/3 TL = 0 EDGE STUD SECTION 1 pcs, b = 4 in, h = 6 in SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH GRADE ( 1, 2, 3, 4, 5, or 6) 3 No. 1 da = 0.15 in STORY OPTION ( 1=ground level, 2=upper level) 1 ground level shear wall W --------------- vd;a h, Min. Min. Blocked Nail Spacing Resisting Safety Net Uplift Holddown h v Common Penetration Thickness Boundary & All Edges Moments (ft -lbs) Factors (lbs) SIMPSON SEISMIC 111 To THE SHEAR WALL DESIGN IS ADEQUATE. DESIGN SUMMARY BLOCKED 15/32 SHEATHING WITH 10d COMMON NAILS 6 in O.C. BOUNDARY & ALL EDGES / 12 in D.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. HOLD-DOWN FORCES: TL = 0.00 k , TR = 0.00 k (HOLD-DOWN NOT REQUIRED) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 6" DOUGLAS FIR -LARCH No. 1, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.16 in ANALYSIS HECK MAX SHEAR WALL DIMENSION RATIO L / B = 0.7 < 3:5^ ;:,i !; [Satisfactory] XTERMINE REQUIRED CAPACITY vb = 135 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 6 in) THF SHEAR CAPACITIES PER IRr: Tahle 2306 4 1 Note: The indicated shear numbers nave reducea by speclttc gravity Tactor per Itis note a. NE DRAG STRUT FORCE: F = (L -L„,) MAX( vasa, WIND. Oovdw, SEISMIC) = 0.00 k ( 00 = 1 ) (Sec. 1633.2.6) NE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. THF Hf)1 n-nnwN Fr1RCFS• vd;a Wall Seismic Min. Min. Blocked Nail Spacing Resisting Safety Net Uplift Holddown Panel Grade Common Penetration Thickness Boundary & All Edges Moments (ft -lbs) Factors (lbs) SIMPSON SEISMIC 111 Nail (in) in 6 4 3 2 Left 46560 0.9 Tr = 0 ,y Right 46560 0.9 TR = 0 Sheathing and Single -Floor 10d 1 5/8 15/32 310 460 1 600 770 Note: The indicated shear numbers nave reducea by speclttc gravity Tactor per Itis note a. NE DRAG STRUT FORCE: F = (L -L„,) MAX( vasa, WIND. Oovdw, SEISMIC) = 0.00 k ( 00 = 1 ) (Sec. 1633.2.6) NE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. THF Hf)1 n-nnwN Fr1RCFS• ECK EDGE STUD CAPACITY Pnw = 3.20 kips, (this value should include upper level DOWNWARD loads if applicable) F� = 1500 psi CD = 1.60 Cp = 0.43 A = 19.25 in' E= 1700 ksi CF = 1.10 Fc = 1146 psi > fc = 166 psi [Satisfactory] vd;a Wall Seismic Overturning Resisting Safety Net Uplift Holddown (pl at mid -story (lbs) Moments (ft -lbs) Moments (ft -lbs) Factors (lbs) SIMPSON SEISMIC 111 229 14245 Left 46560 0.9 Tr = 0 ,y Right 46560 0.9 TR = 0 L. Sxe,aaowable, Aso = �O& Where: vb = 135 plf. , ASD Lw = 13 ft E = 1.7E+06 psi [satisfactory] Left 46560 2/3 TL = 0 pti WIND 135 CO = 4 15795 I = 0.298 in ea = Right 46560 2/3 TR = 0 da = 0.15 in (ASCE 7-05 Tab 12.2-1 & Tab 11.5-1 Q� ECK EDGE STUD CAPACITY Pnw = 3.20 kips, (this value should include upper level DOWNWARD loads if applicable) F� = 1500 psi CD = 1.60 Cp = 0.43 A = 19.25 in' E= 1700 ksi CF = 1.10 Fc = 1146 psi > fc = 166 psi [Satisfactory] (TIL & TR values should include upper level UPLIF T forces if applicable :_CK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) 3 hd ° A = A&,di,R +A Sl.., + ANWI :uP + ACho d sa ce slip — EAS + G[ + 0.75hei + = 0.158 in, ASD < L. Sxe,aaowable, Aso = 0.386 in Where: vb = 135 plf. , ASD Lw = 13 ft E = 1.7E+06 psi [satisfactory] (ASCE 7-05 12.8.6 A = 16.50 in` h = 9 It G = 9.0E+04 psi CO = 4 1= 1 I = 0.298 in ea = 0.001 in da = 0.15 in (ASCE 7-05 Tab 12.2-1 & Tab 11.5-1 Aa = 0.02 I ha. (ASCE 7x05 Tab 12.12-1) ECK EDGE STUD CAPACITY Pnw = 3.20 kips, (this value should include upper level DOWNWARD loads if applicable) F� = 1500 psi CD = 1.60 Cp = 0.43 A = 19.25 in' E= 1700 ksi CF = 1.10 Fc = 1146 psi > fc = 166 psi [Satisfactory] WM LTD PROJECT: fayIdr.MC1,6b PAGE: !�4 CLIENT: DESIGN BY: JOB NO.: `SW13'' DATE : REVIEW BY: PUT DATA TERAL FORCE ON DIAPHRAGM: Vma, WIND = 179 . pB,for wind Vdia, SEISMIC = 252 plf for seismic AVITY LOADS ON THE ROOF: WDA = 0 pH,for dead load WLL = 0 plf,for live load AENSIONS: L.N. = 10 ft, h = 9 ft L = 10 ft, hp= 3 ft NEL GRADE (0 or 1) = 1 <= Sheathing and Single -Floor JIMUM NOMINAL PANEL THICKNESS = 15/32: in MMON NAIL SIZE (0=6d, 1=8d, 2=10d) 2 . ', 10d ECIFIC GRAVITY OF FRAMING MEMBERS 0.5: " p`t GE STUD SECTION 1 pcs, b = ;: ' 4 in, h = 6 in SPECIES (1 = DFL, 2 = SP) 1.. DOUGLAS FIR -LARCH GRADE (1, 2, 3, 4, 5, or 6) 3 No. 1 12.2-1 & Tab 11 )RY OPTION ( 1=ground level, 2=upper level) 1 ground level shear wall w v� hp h To THE SHEAR WALL DESIGN IS ADEQUATE. GN SUMMARY BLOCKED 15/32 SHEATHING WITH 10d COMMON NAILS Q 6 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 42 in O.C. HOLD-DOWN FORCES: TL = 1.95 k , TR = 1.95 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 6" DOUGLAS FIR -LARCH No. 1, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: o = 0.28 in .PSIS ( MAX SHEAR WALL DIMENSION RATIO L / B = 0.9 < -.3:5- '. [Satisfactory] IMINE REQUIRED CAPACITY vb = 252 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 6 in) THF SHEAR CAPACITIES PER IRC Table 2306 4-1 (vote: I ne Inalcateo snear numoers nave reaUCea Dy speclnc gravity Tactor per im; note a. VE DRAG STRUT FORCE: F = (L -Lw) MAX(vdla, WIND. rIoVdia. SEISMIC) = 0,00 k ( 00 = 1 (Sec. 1633.2.6) VE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab. 11E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 42 in O.C. THF Hr11 n-nnWN FnRCFS- Panel Grade Common Nail Min. Penetration in Min. Thickness (in) Blocked Nail Spacing Boundary & All Edges (plf) 6 43 2 Sheathing and Single -Floor 10d 1 5/8 15/32 310 460 600 1 770 (vote: I ne Inalcateo snear numoers nave reaUCea Dy speclnc gravity Tactor per im; note a. VE DRAG STRUT FORCE: F = (L -Lw) MAX(vdla, WIND. rIoVdia. SEISMIC) = 0,00 k ( 00 = 1 (Sec. 1633.2.6) VE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab. 11E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 42 in O.C. THF Hr11 n-nnWN FnRCFS- EDGE STUD CAPACITY Pmax = 1.91 kips, (this value should include upper level DOWNWARD loads if applicable) F, = 1500 psi Cc = 1.60 Cp = 0.43 A = 19.25 in' E = 1700 ksi CF = 1.10 F, = 1146 psi > fd = 99 [Satisfactory] vdla Wall Seismic Overturning Resisting Safety Net Uplift Holddown (plf) at mid -story (lbs) Moments (ft -lbs) Moments (ft -lbs) Factors (lbs) SIMPSON SEISMIC 252 192 23832 Left 4800 0.9 TL = 1951 ,5 Right 4800 0.9 TR = 1951 EAL, Gt Lw e,auowable, Aso - Sx_ y0y Where: vb = 252 plf, , ASD LN. = 10 ft E = 1.7E+06 psi [Satisfactory] Left 4800 2/3 TL = 1291 p`t WIND 179 Cd = 4 16110 t = 0.298 in e. = Right 4800 2/3 1 TR = 1291 da = 0.15 in (ASCE 7-05 Tab 12.2-1 & Tab 11 Q� EDGE STUD CAPACITY Pmax = 1.91 kips, (this value should include upper level DOWNWARD loads if applicable) F, = 1500 psi Cc = 1.60 Cp = 0.43 A = 19.25 in' E = 1700 ksi CF = 1.10 F, = 1146 psi > fd = 99 [Satisfactory] (TL & TR values should include upper level UPLIF r forces if applic; =CK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) 3 8V bh Vbh hdd A = A& ding + AShear + ANail stip + OChonf splice slip — + + 0.75he„ + = 0.279 in, ASD < EAL, Gt Lw e,auowable, Aso - Sx_ 0.366 in Where: vb = 252 plf, , ASD LN. = 10 ft E = 1.7E+06 psi [Satisfactory] (ASCE 7-0512 A = 16.50 in` h = 9 ft G = 9.0E+04 psi Cd = 4 1 = 1 t = 0.298 in e. = 0.008 in da = 0.15 in (ASCE 7-05 Tab 12.2-1 & Tab 11 Aa = 0.02 ax , (ASCE 7-05 Tab 12.12-1) EDGE STUD CAPACITY Pmax = 1.91 kips, (this value should include upper level DOWNWARD loads if applicable) F, = 1500 psi Cc = 1.60 Cp = 0.43 A = 19.25 in' E = 1700 ksi CF = 1.10 F, = 1146 psi > fd = 99 [Satisfactory] WM LTD PROJECT: Taylor MC16b PAGE: CLIENT: w : , _ �, _.. DESIGN BY: JOB NO.: SV11:14` . DATE: REVIEW BY: PUT DATA Panel Grade Common Nail Min. Penetration in TERAL FORCE ON DIAPHRAGM: vdia, WIND = 98 ...: plf,for wind vdla, SEISMIC = 218 plf,for seismic AVITY LOADS ON THE ROOF: WDL = '463 pff,for dead load WLL = 370 pH,for live load AENSIONS: Lw = '14' ft , h = 9 ft L = 14 ft, hp= 3' ft NEL GRADE (0 or 1) = 1 <= Sheathing and Single -Floor JIMUM NOMINAL PANEL THICKNESS = 15/32 in MMON NAIL SIZE (0=6d, 1=8d, 2=10d) 2 10d ECIFIC GRAVITY OF FRAMING MEMBERS 0.5 E = 1.7E+06 psi GE STUD SECTION 1 pcs, b = 4 in, h = 6 in SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH GRADE ( 1, 2, 3, 4, 5, or 6 ) 3 No. 1 t = 0.298 in e„ = DRY OPTION ( 1=ground level, 2=upper level) 1 ground level shear wall L W hp --------------------- ------ f� h T, THE SHEAR WALL DESIGN ISA EQUATE. GN SUMMARY BLOCKED 15/32 SHEATHING WITH 10d COMMON NAILS @ 6 in O.C. BOUNDARY & ALL EDGES 112 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. HOLD-DOWN FORCES: TL = 0.00 k , TR = 0.00 k (HOLD-DOWN NOT REQUIRED) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 6" DOUGLAS FIR -LARCH No. 1, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: e = 0.21 in .YSIS C MAX SHEAR WALL DIMENSION RATIO L / B = 0.6 < `a:5 . [Satisfactory] IMINE REQUIRED CAPACITY vb = 218 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 6 in) THE SHEAR CAPACITIES PER IRC Table 2306.4.1 Note: I he Indicated shear numbers nave reaucea Dy speclnc gravity tactor per Itsu note a. VE DRAG STRUT FORCE: F = (L -L_) MAX( vdla, WIND, Oovdia, SEISMIC) = 0.00 k ( Sip = 1 I (Sec. 1633.2.6) VE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. THE HOLD-DOWN FORCES: Panel Grade Common Nail Min. Penetration in Min. Thickness (in) Blocked Nail Spacing Boundary & All Edges Holddown SIMPSON SEISMIC 6 4 3 2 Sheathing and Single -Floor 10d 1 1 5/8 15/32 310 460 600 770 Note: I he Indicated shear numbers nave reaucea Dy speclnc gravity tactor per Itsu note a. VE DRAG STRUT FORCE: F = (L -L_) MAX( vdla, WIND, Oovdia, SEISMIC) = 0.00 k ( Sip = 1 I (Sec. 1633.2.6) VE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. THE HOLD-DOWN FORCES: EDGE STUD CAPACITY Pmax = 3.99 kips, (this value should include upper level DOWNWARD loads if applicable) Fd = 1500 psi CD= 1.60 Cp = 0.43 A = 19.25 int E= 1700 ksi CF = 1.10 F, = 1146 psi > fd = 207 [Satisfactory] vdia (plf) Wall Seismic at mid -story (Ibs) Overturning Moments (ft -lbs) Resisting Safety Net Uplift Moments (ft -lbs) Factors (lbs) Holddown SIMPSON SEISMIC 218 269 29081 Left 54782 0.9 TL = 0 Ce Right 54782 0.9 TR = 0 WIND 96 + 12096 Left 54782 2/3 T = 0 p`t Q� Right 54782 2/3 TR = 0 EDGE STUD CAPACITY Pmax = 3.99 kips, (this value should include upper level DOWNWARD loads if applicable) Fd = 1500 psi CD= 1.60 Cp = 0.43 A = 19.25 int E= 1700 ksi CF = 1.10 F, = 1146 psi > fd = 207 [Satisfactory] (TL & TR values should include upper level UPLIF I forces if applicabl ECK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) 3 8ybh vnh hd° = 08endo,g +Asir., + ONail slip + Acbo,v space slip = + + 0.75hei + = 0.207 in, ASD < EAL,,. Gt L,� • 6xe,an_owable, nso — 0.386 in Where: vb = 218 plf, , ASD Lw = 14 ft E = 1.7E+06 psi [Satisfactory] (ASCE 7-05 12.8.1 A= 16.50 in` h= 9 ft G= 9.0E+04 psi Cd= 4 1= 1 t = 0.298 in e„ = 0.005 in da = 0.15 in (ASCE 7-05 Tab 12.2-1 & Tab 11.5 - Aa = 0.02 ham, (ASCE 7-05 Tab 12.12-1) EDGE STUD CAPACITY Pmax = 3.99 kips, (this value should include upper level DOWNWARD loads if applicable) Fd = 1500 psi CD= 1.60 Cp = 0.43 A = 19.25 int E= 1700 ksi CF = 1.10 F, = 1146 psi > fd = 207 [Satisfactory] WM LTD PROJECT: Taylor=MC16b PAGE: CLIENT: DESIGN BY: JOB NO.:DATE: REVIEW BY : ..:. INPUT DATA Panel Grade Common Nail L Blocked Nail Spacing Boundary & All Edges Resisting Safety Net Uplift lHolddown LATERAL FORCE ON DIAPHRAGM: Vale, WIND = 228 . plf,for wind w 310 1 460 1 600 1 770 Moments (ft -lbs) Factors (lbs) Vdia, SEISMIC = 322 pff,for seismic 322 166 26842 GRAVITY LOADS ON THE ROOF: WDA = WLL = 162 plf,for dead load 130 plf,for live load v" EALw Gt Lw ho_ y0�' DIMENSIONS: L, = 8 ft, h= 10 ft F E = 1.7E+06 psi L = 8 ft, hp= 3 ft p`t WIND 228 PANEL GRADE (0 or 1) = 1 <= Sheathing and Single -Floor I = 0.298 in e„ = 0.005 in h MINIMUM NOMINAL PANEL THICKNESS = 15/32 in Right 8512 2/3 TR = 1571 Q� COMMON NAIL SIZE (0=6d, 1=8d, 2=10d) 2 10d SPECIFIC GRAVITY OF FRAMING MEMBERS 0.5 T. EDGE STUD SECTION 1 PCs, b = A. in, h = 6 in v° i, SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH GRADE ( 1, 2, 3, 4, 5, or 6) ..3 No. 1 Lw STORY OPTION (1=ground level, 2=upper level) 1.: _. ground level shear wall THE SHEAR WALL DESIGN IS A EQUATE. DESIGN SUMMARY BLOCKED 15/32 SHEATHING WITH 10d COMMON NAILS 4 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 32 in O.C. HOLD-DOWN FORCES: TL = 2.40 k , TR = 2.40 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 6" DOUGLAS FIR -LARCH No. 1, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.35 in ANALYSIS CHECK MAX SHEAR WALL DIMENSION RATIO L / B = 1.3 < 3.5 [Satisfactory] DETERMINE REQUIRED CAPACITY vb = 322 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 4 in) THE SHEAR CAPACITIES PER IRC Tahla 27nR d 1 Note: The indicated shear numbers have reduced by specific gravity tactor per IBC note a. DETERMINE DRAG STRUT FORCE: F = (L -Lw) MAX( vdla, WIND, Oovdia, SEISMIC) - 0.00 k ( 00 = 1 ) (Sec. 1633.2.6) DETERMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS Q 32 in O.C. THE HOLD-DOWN FORCES: Panel Grade Common Nail Min. Min. Penetration Thickness (in) in Blocked Nail Spacing Boundary & All Edges Resisting Safety Net Uplift lHolddown 6 4 1 3 1 2 Sheathing and Single -Floor 10d 1 1 5/8 15/32 310 1 460 1 600 1 770 Note: The indicated shear numbers have reduced by specific gravity tactor per IBC note a. DETERMINE DRAG STRUT FORCE: F = (L -Lw) MAX( vdla, WIND, Oovdia, SEISMIC) - 0.00 k ( 00 = 1 ) (Sec. 1633.2.6) DETERMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS Q 32 in O.C. THE HOLD-DOWN FORCES: EDGE STUD CAPACITY Pmax = 2.95 kips, (this value should include upper level DOWNWARD loads if applicable) F, = 1500 psi CD = 1.60 Cp = 0.36 A = 19.25 in' E= 1700 ksi CF = • 1.10 Fc = 961 psi > fd = 153 [Satisfactory] vdis Wall Seismic Overturning Resisting Safety Net Uplift lHolddown (plf) at mid -story (lbs) Moments (ft -lbs) Moments (ft -lbs) Factors (lbs) SIMPSON SEISMIC 322 166 26842 Leff 8512 0.9 T = 2398 � 0.355 in, ASD Right 8512 0.9 TR = 2398 EALw Gt Lw Sxe,auowaDle, asD = y0�' Where: vb = 322 plf, , ASD Lw = 8 It E = 1.7E+06 psi [Satisfactory] Left 8512 2/3 T = 1571 p`t WIND 228 Cd= 4 18240 I = 0.298 in e„ = 0.005 in da = 0.15 in (ASCE 7-05 Tab 112.2-1 & Tab 11.5-1 Right 8512 2/3 TR = 1571 Q� EDGE STUD CAPACITY Pmax = 2.95 kips, (this value should include upper level DOWNWARD loads if applicable) F, = 1500 psi CD = 1.60 Cp = 0.36 A = 19.25 in' E= 1700 ksi CF = • 1.10 Fc = 961 psi > fd = 153 [Satisfactory] (TL & TR values should include upper level UPLIFT forces if applicable =CK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) p 3 8Vhh —�&rdng+ASirar+ONail slip+AChord splice slip — +Vbh+0.75hea+hda = 0.355 in, ASD < EALw Gt Lw Sxe,auowaDle, asD = 0.429 in Where: vb = 322 plf, , ASD Lw = 8 It E = 1.7E+06 psi [Satisfactory] (ASCE 7-05 12.8.E A = 16.50 in` h = 10 ft G = 9.0E+04 psi Cd= 4 1= 1 I = 0.298 in e„ = 0.005 in da = 0.15 in (ASCE 7-05 Tab 112.2-1 & Tab 11.5-1 A, = 0.02 �tmc (ASCE 7-05 Tab 12.12-1) EDGE STUD CAPACITY Pmax = 2.95 kips, (this value should include upper level DOWNWARD loads if applicable) F, = 1500 psi CD = 1.60 Cp = 0.36 A = 19.25 in' E= 1700 ksi CF = • 1.10 Fc = 961 psi > fd = 153 [Satisfactory] 11 �I i I WM LTD PROJECT: Tay16r MC/16.b PAGE: �co7 CLIENT: DESIGN BY: JOB NO.: S]NI£. DATE : REVIEW BY: . INPUT DATA Common Nail hp LATERAL FORCE ON DIAPHRAGM: vdia. WND = 102 plf for Wind vdia. SEISMIC = 145 pH,for seismic GRAVITY LOADS ON THE ROOF: wDL = 238 pfl,for dead load wu = 190 plf,for live load DIMENSIONS: Lw = 17.5 ft , h = 10 ft L = 17.5 ft, hp= 3 ft PANEL GRADE (0 or 1) = 1 <= Sheathing and Single -Floor MINIMUM NOMINAL PANEL THICKNESS = 15/32. in COMMON NAIL SIZE (0=6d, 1=8d, 2=10d) P . 10d SPECIFIC GRAVITY OF FRAMING MEMBERS 0.5 [Satisfactory] EDGE STUD SECTION 1.. pcs, b = 4. in, h = 6 in SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH GRADE ( 1 2, 3, 4, 5, or 6) 3 No. 1 da = 0.15 in W v„ F Common Nail hp Min. Thickness (in) Blocked Nail Spacing Boundary & All Edges 6 1 4 1 3::Z 2 h v, 1 5/8 15/32 I `y y0y T. WIND T, ILw A, STORY OPTION (1=ground level, 2=upper level) 1 ground level shear wall , THE SHEAR WALL DESIGN IS DESIGN SUMMARY BLOCKED 15/32 SHEATHING WITH 10d COMMON NAILS 6 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. HOLD-DOWN FORCES: TL = 0.00 k , TR = 0.00 k (HOLD-DOWN NOT REQUIRI DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 6" DOUGLAS FIR -LARCH No. 1, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: 0 = 0.15 in ANALYSIS CHECK MAX SHEAR WALL DIMENSION RATIO L / B = 0.6 < [Satisfactory] DETERMINE REQUIRED CAPACITY vo = 145 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 6 in) THF 3HFAR CAPACITIFS PFR IRC Tahle 93nri A 1 Panel Grade Common Nail Min. Penetration in Min. Thickness (in) Blocked Nail Spacing Boundary & All Edges 6 1 4 1 3::Z 2 Sheathing and Single -Floor 10d 1 5/8 15/32 310 1 460 1 600 1 770 Note: I ne indicated shear numbers nave reduced by specltic gravity racior per im; note a. VE DRAG STRUT FORCE: F = (L -Lw) MAX( vdia, WIND, Oovdia, SEISMIC) = 0.00 k ( 00 = 1 (Sec. 1633.2.6) VE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab. 11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. THE HOLD-DOWN FORCES: - vdia (plf) Wall Seismic at mid -story (lbs) Overturning Moments (ft -lbs) Resisting Safety Net UpliftI Moments (ft -lbs) Factors (Ibs) Holddown SIMPSON SEISMIC 145 364 27741 9 T Left 52369 0. L = 0 `y y0y Right 52369 0.9 TR = 0 WIND 102 + 17850 Left 52369 2/3 TL = 0 < Right 52369 2/3 1 TR = 0 - (TL & TR values should include upper level UPLIFT forces if appliol ECK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) 3 8Vbh v°h hd,, O = — OIJe`ding + �SMar + f, Naif slip + OClnrd splice slip — + + 0.75he„ + = 0.152 in, ASD < EA L,,, fit L W Sxe.anowawa. Aso = 0.429 in Where: vp = 145 plf, , ASD L, = 18 ft E = 1.7E+06 psi [Satisfactory] (ASCE 7-0512 A = 16.50 in` h = 10 it G = 9.0E+04 psi Cd = 4 1= 1 t = 0.298 in e„ = 0.001 in da = 0.15 in (ASCE 7-05 Tab 12.2-1 & Tab 11 fid = 0.02 t6 (ASCE 7- D5 Tab 12.12-1) EDGE STUD CAPACITY Pmax = 3.05 kips, (this value should include upper level DOWNWARD loads if applicable) Fp = 1500 psi CD = 1.60 Cp = 0.36 A = 19.25 in' E= 1700 ksi CF = 1.10 Fc = 961 psi > fp = 159 [Satisfactory] 1 1 'J I I WM LTD PROJECT: Taylor MC/16b CLIENT JOB NO.: ts. Wr DATE PAGE ((08 DESIGN BY REVIEW BY: INPUT DATA` LATERAL FORCE ON DIAPHRAGM: vdia. WIND = 314 plf,forwind W Vdia. SEISMIC = '469 plf,for seismic GRAVITY LOADS ON THE ROOF: WpL = '0: pB,for dead load WLL= 0 plf,forlive load hp DIMENSIONS: LW = 5;5 ft , h = 10 ft F L = 5.5 ft, hp= 3 ft PANEL GRADE (0 or 1) = 1. <= Sheathing and Single -Floor h MINIMUM NOMINAL PANEL THICKNESS = 15/32 in COMMON NAIL SIZE (0=6d, 1=8d, 2=10d) 2 10d SPECIFIC GRAVITY OF FRAMING MEMBERS EDGE STUD SECTION "1 PCs, b = } + r'B k _ in , h =S In V. T, T. SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH GRADE ( 1, 2, 3, 4, 5, or 6) 3 Dense No.1 STORY OPTION ( 1= round level, 2=u r level 1 Lw g ppe ) ground level shear wall THE SHEAR WALL DESIGN IS ADEQUATE. DESIGN SUMMARY BLOCKED 15/32 SHEATHING WITH 10d COMMON NAILS 3 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 22 in O.C. HOLD-DOWN FORCES: TL = 4.57 k , TR = 4.57 k (USE PHD5-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 6" x 6" DOUGLAS FIR -LARCH Dense No.1, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.23 in ANALYSIS HECK MAX SHEAR WALL DIMENSION RATIO L / B = 1.8 < 3:5; - ;(Satisfactory] DETERMINE REQUIRED CAPACITY vp = 469 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 3 in) THE SHEAR CAPACITIFS PER IRC Tahlp 23nA A 1 Note: The indicated shear numbers have reduced by specitic gravity tactor per im; note a. DETERMINE DRAG STRUT FORCE: F = (L -L„.) MAX( vdia, WIND, OOvdia, SEISMIC) = 0.00 k ( DO = 1 ) (Sec. 1633.2.6) DETERMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 22 in O.C. THF HOt n-r1OWN FORCFS• Panel Grade Common Nail Min. Penetration (in) Min. Thickness in Blocked Nail Spacing Boundary & All Edges (plf) 6 4 3 2 Sheathing and Single -Floor 10d 15/8 15/32 310 1 460 1 600 1 770 Note: The indicated shear numbers have reduced by specitic gravity tactor per im; note a. DETERMINE DRAG STRUT FORCE: F = (L -L„.) MAX( vdia, WIND, OOvdia, SEISMIC) = 0.00 k ( DO = 1 ) (Sec. 1633.2.6) DETERMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 22 in O.C. THF HOt n-r1OWN FORCFS• (TL & TR values should include upper level UPLIFT forces if SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) A = Aee,dd,x +Asha. + AV.,/ ,11F + ACM d 8veh3 + veh + 0.75he„ + hda = EALw Gt L. Where: vp = 469 plf, , ASD Lw = 6 ft E = 1.7E+06 psi A = 30.25 W h = 10 ft G = 9.0E+04 psi I = 0.469 in an = 0.006 in da = 0.03 in 1 t! CHECK EDGE STUD CAPACITY Pmax = 3.41 kips, (this value should include upper level DOWNWARD loads if applicable) F, = 1200 psi CD = 1.60 Cp = 0.47 E = 1700 ksi CF = 1.00 F, = 908 psi t 0.229 in, ASD < bxe,anowabte, Aso = 0.429 in (Satisfactory] (ASCE 7-05 12 Cd= 4 1= 1 ,(ASCE 7-05 Tab 12.2-1 & Tab 11. Aa = 0.02 (ASCE 7-05 Tab 12.12-1) A = 30.25 int > fd = 113 (Satisfactory] vdia Wall Seismic Overturning Resisting Safety Net Uplift (Fioiddown (plf) at mid -story (lbs) Moments (ft -lbs) Moments (ft -lbs) Factors (III S) SIMPSON SEISMIC 469 114 26539 Left 1573 0.9 TL = 1 4568 ,b Right 1573 0.9 TR = 4568 4) 314 17270 Left 1573 2/3 T� = 2949 .14WIND Right 1573 2/3 TR = 2949 Q� (TL & TR values should include upper level UPLIFT forces if SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) A = Aee,dd,x +Asha. + AV.,/ ,11F + ACM d 8veh3 + veh + 0.75he„ + hda = EALw Gt L. Where: vp = 469 plf, , ASD Lw = 6 ft E = 1.7E+06 psi A = 30.25 W h = 10 ft G = 9.0E+04 psi I = 0.469 in an = 0.006 in da = 0.03 in 1 t! CHECK EDGE STUD CAPACITY Pmax = 3.41 kips, (this value should include upper level DOWNWARD loads if applicable) F, = 1200 psi CD = 1.60 Cp = 0.47 E = 1700 ksi CF = 1.00 F, = 908 psi t 0.229 in, ASD < bxe,anowabte, Aso = 0.429 in (Satisfactory] (ASCE 7-05 12 Cd= 4 1= 1 ,(ASCE 7-05 Tab 12.2-1 & Tab 11. Aa = 0.02 (ASCE 7-05 Tab 12.12-1) A = 30.25 int > fd = 113 (Satisfactory] ' WM LTD PROJECT: TaY .orMG/'16b CLIENT: ,t JOB NO.: x ISWK> DATE: INPUT DATA LATERAL FORCE ON DIAPHRAGM: va1a, WIND = 120 pB,for wind Vdia. SEISMIC = 179 plf,for seismic GRAVITY LOADS ON THE ROOF: wog = 0 pN,for dead load Wu = 0 pH,for live load DIMENSIONS: LW = 14 ft, h = 8 ft L = 14 ft, hp= 2 ft PANEL GRADE (0 or 1) = 1 <= Sheathing and Single -Floor MINIMUM NOMINAL PANEL THICKNESS = 15/32 in COMMON NAIL SIZE ( 0=6d, 1=8d, 2=10d) 2 10d SPECIFIC GRAVITY OF FRAMING MEMBERS 0.5 Q�p`t Right 7840 2/3 TR = 587 EDGE STUD SECTION 1 . pcs, b = 4 in, h = 6 in SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH GRADE ( 1, 2, 3, 4, 5, or 6) 3 No, 1 Aa = 0.02 h. 1 STORY OPTION ( 1=ground level, 2=upper level) 1 ground level shear wall PAGE' IFPS DESIGN I3 REVIEW BY: W va hp h T, T, THE SHEAR WALL DESIGN IS ADEQUATE. DESIGN SUMMARY BLOCKED 15/32 SHEATHING WITH 10d COMMON NAILS @ 6 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. HOLD-DOWN FORCES: TL = 1.01 k TR = 1.01 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 6" DOUGLAS FIR -LARCH No. 1, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.16 in ANALYSIS CHECK MAX SHEAR WALL DIMENSION RATIO L / B = 0.6 < 3 5. �i.. ,[Satisfactory] DETERMINE REQUIRED CAPACITY vp = 179 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 6 in) THE SHEAR CAPACITIES PER IRC Table 9306 d 1 Note: I ne Inolcawo snear numoers nave reouceo Dy specmc gravlry racior per ICL, nose a. VE DRAG STRUT FORCE: F = (I.A .) MAX( Vdia, WIND, C)dVdia, SEISMIC) = 0.00 k ( Oc = 1 ) (Sec. 1633.2.6) JE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab. 11E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. THE HOLD-DOWN FORCES- Panel Grade Common Nail Min. Min. Penetration Thickness in in Blocked Nail Spacing Boundary & All Edges SEISMIC 6 1 4 3 2 Sheathing and Single -Floor 10d 1 5/8 15/32 310 1 460 1 600 1 770 Note: I ne Inolcawo snear numoers nave reouceo Dy specmc gravlry racior per ICL, nose a. VE DRAG STRUT FORCE: F = (I.A .) MAX( Vdia, WIND, C)dVdia, SEISMIC) = 0.00 k ( Oc = 1 ) (Sec. 1633.2.6) JE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab. 11E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. THE HOLD-DOWN FORCES- EDGE STUD CAPACITY Pmax = 1.38 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1500 psi CD = 1.60 Cp = 0.52 A = 19.25 in' E= 1700 ksi CF = 1.10 Fc = 1374 psi > fc = 72 psi (Satisfactory] Vdia (pif) Wall Seismic at mid -story (Ibs) Overturning Moments (ft -lbs) Resisting Safety Net Uplift Holddown Moments (ft -lbs) Factors (lbs) SIMPSON SEISMIC 179 224 21168 Left 7840 0.9 TL = 1008 15 A = A& di g +A sie., + AN ai up + QChord .apt a dip = + _ + 0.75hen + Right 7840 0.9 TR = 10.08 y0� EAL„ Gt L». Left 7840 2/3 TL = 587 WIND 120 sxe,allowable, nsD = 0.343 in 13440 14 ft E = 1.7E+06 psi [Satisfactory] (ASCE 7-05 12.8.E A = 16.50 in` h = 8 ft Q�p`t Right 7840 2/3 TR = 587 EDGE STUD CAPACITY Pmax = 1.38 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1500 psi CD = 1.60 Cp = 0.52 A = 19.25 in' E= 1700 ksi CF = 1.10 Fc = 1374 psi > fc = 72 psi (Satisfactory] (TL & TR values should include upper level UPLIFT forces if applicable 7 -CK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) 8Vbh V bh h d. A = A& di g +A sie., + AN ai up + QChord .apt a dip = + _ + 0.75hen + 0.157 In, ASD < EAL„ Gt L». sxe,allowable, nsD = 0.343 in Where: Vo = 179 plf , ASD L„, = 14 ft E = 1.7E+06 psi [Satisfactory] (ASCE 7-05 12.8.E A = 16.50 in` h = 8 ft G = 9.0E+04 psi Cd = 4 1= 1 t = 0.298 in e„ = 0.003 in da = 0.15 in ,(ASCE 7-05 Tab12.2-1 & Tab 11.5-1 Aa = 0.02 h. 1 (ASCE 7-05 Tab 12.12-1) EDGE STUD CAPACITY Pmax = 1.38 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1500 psi CD = 1.60 Cp = 0.52 A = 19.25 in' E= 1700 ksi CF = 1.10 Fc = 1374 psi > fc = 72 psi (Satisfactory] I I WM LTD 1� 1 1 91 I I � I n J PROJECT: Taylor MC/16b PAGE : 1i70'. CLIENT : r DESIGN BY: JOB NO.: SVUL DATE: REVIEW BY: INPUT DATA T - LATERAL FORCE ON DIAPHRAGM: Vdia. WNo = 299 pff,for wind w Vdia. SEISMIC = 312 pif,for seismic GRAVITY LOADS ON THE ROOF: wog = 200 plf,for dead load wLL = 160 pif,for live loadV= �� �r � I _.__ hp DIMENSIONS: —.t L = 6.5 ft. hp = 2 ft PANEL GRADE (0 or 1) = 1 <= Sheathing and Single -Floor h MINIMUM NOMINAL PANEL THICKNESS = 15/32 in COMMON NAIL SIZE ( 0=6d, 1=8d, 2=10d) ?;.: 10d SPECIFIC GRAVITY OF FRAMING MEMBERS 0 5- 1 a �€ �; r EDGE STUD SECTION 1 pcs, b = ; n , 8. a f m , h = 4 8 '1 in T V. T. SPECIES (1 = DFL, 2 = SP) 1 , DOUGLAS FIR -LARCH GRADE (1, 2, 3, 4, 5, or 6) 3 . Dense No.1 Lw — �L STORY OPTION ( 1=ground level, 2=upper level) 1 ground level shear wall THE SHEAR WALL DESIGN IS ADEQUATE. DESIGN SUMMARY BLOCKED 15132 SHEATHING WITH 10d COMMON NAILS @ 6 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 34 in O.C. HOLD-DOWN FORCES: TL = 2.33 k , TR = 2.31 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = -0.03 k EDGE STUD: 1 - 6" x 6" DOUGLAS FIR -LARCH Dense No.t, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.25 in ANALYSIS HECK MAX SHEAR WALL DIMENSION RATIO L / B = 1.5 < 35 '[Satisfactory) DETERMINE REQUIRED CAPACITY vo = 307 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 6 in) THE SHEAR CAPACITIES PFR IRC TahlP 7306 d 1 Note: I he Indicated Shear numbers (lave reauced by specitiC gravity TaCtOr per ibu note a. JE DRAG STRUT FORCE: F = (L -Lw) M"(Vdia. WIND. OoVdla. SEISMIC) _ -0.03 k ( S10 = 1 ) (Sec. 1633.2.6) 4E MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab. 11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 34 in O.C. THE HOLD-DOWN FORCES: Panel Grade Common Nail Min. Penetration in Min. Thickness in Blocked Nail Spacing Boundary & All Edges SEISMIC 312 6 1 4 1 3 1 2 Sheathing and Single -Floor 10d 15/8 1513: 1 310 1 460 1 600 1 770 Note: I he Indicated Shear numbers (lave reauced by specitiC gravity TaCtOr per ibu note a. JE DRAG STRUT FORCE: F = (L -Lw) M"(Vdia. WIND. OoVdla. SEISMIC) _ -0.03 k ( S10 = 1 ) (Sec. 1633.2.6) 4E MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab. 11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 34 in O.C. THE HOLD-DOWN FORCES: (TL & TR values should include upper level UPLIFT forces if SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) 3 A - Ae .d.g + ASMar + AN d slip + DChpid splice slip - 8ynh + Vbh + 0.75hen + hda = EAL„, Gt Lw When:: vp = 307 pif , ASD L„, = 7 ft E = 1.7E+06 psi A = 30.25 in` h = 10 ft G = 9.0E+04 psi t = 0.469 in e„ = 0.016 in da = 0.03 in 0.247 in, ASD < 8xe,al owable, nso = 0.429 in [Satisfactory] (ASCE 7-0512.8.E Cd= 4 1= 1 ,(ASCE 7-05 Tab 12.2-1 & Tab 11.5-1 Aa= 0.02 h. (ASCE (ASCE 7,105 Tab 12.12-1) EDGE STUD CAPACITY Pmax = 2.78 kips, (this value should include upper level DOWNWARD loads if applicable) Fp = 1200 psi CO = 1.60 Cp = 0.47 A = 30.25 in' E= 1700 ksi CF = 1.00 F, = 908 psi > fp = 92 [Satisfactory] vd,a Oil) Wall Seismic at mid -story (Ibs) Overturning Moments (ft -lbs) Resisting Safety Net Uplift Moments (ft -lbs) Factors (Ibs) Holddown SIMPSON SEISMIC 312 127 21040 Left 6316 0.9 T = 2327 � `5 y0� Right 6446 0.9 TR = 2309 WIND 299 19435 Left 6316 2/3 T� = 2307 p`t Q� Right 6446 2/3 1 TR = 2294 (TL & TR values should include upper level UPLIFT forces if SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) 3 A - Ae .d.g + ASMar + AN d slip + DChpid splice slip - 8ynh + Vbh + 0.75hen + hda = EAL„, Gt Lw When:: vp = 307 pif , ASD L„, = 7 ft E = 1.7E+06 psi A = 30.25 in` h = 10 ft G = 9.0E+04 psi t = 0.469 in e„ = 0.016 in da = 0.03 in 0.247 in, ASD < 8xe,al owable, nso = 0.429 in [Satisfactory] (ASCE 7-0512.8.E Cd= 4 1= 1 ,(ASCE 7-05 Tab 12.2-1 & Tab 11.5-1 Aa= 0.02 h. (ASCE (ASCE 7,105 Tab 12.12-1) EDGE STUD CAPACITY Pmax = 2.78 kips, (this value should include upper level DOWNWARD loads if applicable) Fp = 1200 psi CO = 1.60 Cp = 0.47 A = 30.25 in' E= 1700 ksi CF = 1.00 F, = 908 psi > fp = 92 [Satisfactory] WM LTD PROJECT: Taylor MC/16b PAGE: (7 I CLIENT: g::, .;.. DESIGN BY: JOB NO.: rSWO`;= DATE: REVIEW BY INPUT DATA LATERAL FORCE ON DIAPHRAGM: vdia. WIND = 140 pB,for wind Vdla. SEISMIC = 170 pB,for seismic GRAVITY LOADS ON THE ROOF: woL = 0. plf,for dead load wIy = 0. pN,for live load DIMENSIONS: Lw = 5' ft, h = 10 ft L = 5 ft, ho= 3 ft DANEL GRADE (0 or 1) = _ 1. — Sheathing and Single -Floor MINIMUM NOMINAL PANEL THICKNESS = 15/32 in -OMMON NAIL SIZE (0=6d, 1=8d, 2=10d) 2 10d SPECIFIC GRAVITY OF FRAMING MEMBERS 0.5 p`t =DGE STUD SECTION 1 pcs, b = 4 in, h = 6, in SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH GRADE ( 1, 2, 3, 4, 5, or 6 j 3 No. 1 >TORY OPTION ( 1=ground level, 2=upper level) 1 ground level shear wall w V. -.- � � by w h T, ve T» THE SHEAR WALL DESIGN IS ADEQUATE. DESIGN SUMMARY BLOCKED 15/32 SHEATHING WITH 10d COMMON NAILS 6 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. HOLD-DOWN FORCES: TL = 1.60 k TR = 1.60 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 6" DOUGLAS FIR -LARCH No. 1, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.39 in WALYSIS ;HECK MAX SHEAR WALL DIMENSION RATIO L / B = 2.0 < 3.:5„:. ” ' (Satisfactory] )ETERMINE REQUIRED CAPACITY vb = 170 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 6 in) THE SHFAR CAPACITIFS PFR IRC TahlP 23ng-4-1 Note: I he Inalcatea shear numbers nave reaucea by SpeaTic gravity tactor per It su note a. YE DRAG STRUT FORCE: F = (L -Lw) MAX( vdm, WINO, 00vdia• SEISMIC) = 0.00 k ( 00 = 1 ) (Sec. 1633.2.6) VE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab. 11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. THF H(N n.nnWN FARCFS- Panel Grade Common Nail Min. Penetration (in) Min. Thickness (in) Blocked Nail Spacing I Boundary & All Edges (plf) 6 1 4 1 3 1 2 Sheathing and Single -Floor 10d 1 5/8 15/32 1 310 1 460 1 600 1 770 Note: I he Inalcatea shear numbers nave reaucea by SpeaTic gravity tactor per It su note a. YE DRAG STRUT FORCE: F = (L -Lw) MAX( vdm, WINO, 00vdia• SEISMIC) = 0.00 k ( 00 = 1 ) (Sec. 1633.2.6) VE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab. 11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. THF H(N n.nnWN FARCFS- (TL & TR values should include upper level UPLIFT forces if =CK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) 3 —OBe,do,g+Asha,+ANOiI ,Ip +Acl..1 spice slip — EALu + Gth+0.75hei+hd° _ Where: vb = 170 plf, , ASD Lw = 5 ft E = 1.7E+06 psi A = 16.50 in` h = 10 ft G = 9.0E+04 psi I = 0.298 in e„ = 0.002 in da = 0.15 in 0.390 in, ASD < Sxe,enowaWe, Aso = 0.429 in [Satisfactory] (ASCE 7-0512.8.6 Cd= 4 1= 1 ,(ASCE 7-05 Tab 12.2-1 & Tab 11.5-1 Aa = 0.02 1`6 (ASCE 71,05 Tab 12.12-1) EDGE STUD CAPACITY Pmax = 1.40 kips, (this value should include upper level DOWNWARD loads if applicable) F, = 1500 psi Co = 1.60 Cp = 0.36 A = 19.25 int E= 1700 ksi CF = 1.10 F, = 961 psi > f, = 73 [Satisfactory] vdia Wall Seismic Overturning Resisting Safety Net Uplift Holddown (plf) at mid -story (lbs) Moments (ft -lbs) Moments (ft -lbs) Factors (lbs) SIMPSON SEISMIC 170 104 9176 Left 1300 0.9 TL = 1601 ,5 Right 1300 0.9 TR = 1601 y0� Lift 1300 2/3 TL = 1227 p`t WIND 140 7000 Right 1300 2/3 TR = 1227 Qd` (TL & TR values should include upper level UPLIFT forces if =CK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) 3 —OBe,do,g+Asha,+ANOiI ,Ip +Acl..1 spice slip — EALu + Gth+0.75hei+hd° _ Where: vb = 170 plf, , ASD Lw = 5 ft E = 1.7E+06 psi A = 16.50 in` h = 10 ft G = 9.0E+04 psi I = 0.298 in e„ = 0.002 in da = 0.15 in 0.390 in, ASD < Sxe,enowaWe, Aso = 0.429 in [Satisfactory] (ASCE 7-0512.8.6 Cd= 4 1= 1 ,(ASCE 7-05 Tab 12.2-1 & Tab 11.5-1 Aa = 0.02 1`6 (ASCE 71,05 Tab 12.12-1) EDGE STUD CAPACITY Pmax = 1.40 kips, (this value should include upper level DOWNWARD loads if applicable) F, = 1500 psi Co = 1.60 Cp = 0.36 A = 19.25 int E= 1700 ksi CF = 1.10 F, = 961 psi > f, = 73 [Satisfactory] 1 I WTD f 1 ID PROJECT: Taylor MC/16b CLIENT: F= JOB NO.: SWP` DATE: PAGE : 72: DESIGN BY REVIEW BY: INPUT DATA LATERAL FORCE ON DIAPHRAGM: vdla. WIND = 258 ;, plf,for wind – 466 H,for seismic r — W v dla, SEISMIC ' P GRAVITY LOADS ON THE ROOF: WDL = 250 plf,for dead load u — 'WILL = 200 plf,for live load v_ hP DIMENSIONS: Lw = 7 ft, h= 10 ft F L = 7 ft, ha= .2 ft (PANEL GRADE (0 or 1) = 1 . <= Sheathing and Single -Floor h MINIMUM NOMINAL PANEL THICKNESS = 15/32 in COMMON NAIL SIZE (0=6d, 1=8d, 2=10d) 2 10d SPECIFIC GRAVITY OF FRAMING MEMBERS 0:5 EDGE STUD SECTION 1 pcs, b = rA, t`.6 r-; in , h = :'.;g in �V/ T T. SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH GRADE ( 1, 2, 3, 4, 5, or 6 ) 3 Dense No.1 �_ Lw STORY OPTION ( 1=ground level, 2=upper level) 1 ground level shear wall THE SHEAR WALL DESIGN ISA EQUATE. DESIGN SUMMARY BLOCKED 15/32 SHEATHING WITH 10d COMMON NAILS 3 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 22 in O.C. HOLD-DOWN FORCES: TL = 3.69 k , TR = 3.69 k (USE PHD5-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 6" x 6" DOUGLAS FIR -LARCH Dense No.t, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.21 in ANALYSIS CHECK MAX SHEAR WALL DIMENSION RATIO L / B = 1.4 < 115a , .- : [Satisfactory] DETERMINE REQUIRED CAPACITY vb = 466 plf, ( 1 . Side Diaphragm Required, the Max. Nail Spacing = 3 in) THE SHEAR CAPACITIES PER IBC Table 2306 4A Note: I ne Inalcatea shear numoers nave reaucea Dy specmc gravlry tactor per ibL; note a. fE DRAG STRUT FORCE: F = (L -LN.) MAX( vdla, WIND. f)&dla, SEISMIC) = 0.00 k ( 0o = 1 ) (Sec. 1633.2.6) VE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 22 in O.C. THF Hol n-nOWN FORCFS- Panel Grade Common Nail Min. Penetration (in) Min. Thickness (in) Blocked Nail Spacing Boundary & All Edges SEISMIC 466 6 1 4 1 3 1 2 Sheathing and Single -Floor 10d 1 1 5/8 15/32 310 1 460 1 600 1 770 Note: I ne Inalcatea shear numoers nave reaucea Dy specmc gravlry tactor per ibL; note a. fE DRAG STRUT FORCE: F = (L -LN.) MAX( vdla, WIND. f)&dla, SEISMIC) = 0.00 k ( 0o = 1 ) (Sec. 1633.2.6) VE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 22 in O.C. THF Hol n-nOWN FORCFS- EDGE STUD CAPACITY Pmax = 3.99 kips, (this value should include upper level DOWNWARD loads if applicable) F, = 1200 psi Co = 1.60 Cp = 0.47 A = 30.25 in' E= 1700 ksi CF = 1.00 Fc = 908 psi > 1� = 132 psi [Satisfactory] vdia (plf) Wall Seismic at mid -story (lbs) Overturning Moments (ft -lbs) Resisting Safety Net Uplift Moments ft -lbs) Factors (I S) Holadown SIMPSON SEISMIC 466 134 33426 Left 8477 0.9 TL = 3685 y0� Right 8477 0.9 TR = 3685 WIND 258 +Vbh 18060 Left 8477 2/3 TL = Q� Right 8477 2/3 TR = 1773 EDGE STUD CAPACITY Pmax = 3.99 kips, (this value should include upper level DOWNWARD loads if applicable) F, = 1200 psi Co = 1.60 Cp = 0.47 A = 30.25 in' E= 1700 ksi CF = 1.00 Fc = 908 psi > 1� = 132 psi [Satisfactory] (TL & TR values should include upper level UPLIFT forces if applicabl =CK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) O 3 8Vbh A-A&d�g+AS&.,+ONail slip+A(-Mid spix, slip — +Vbh +0.75he„+hd° = 0.2110 in,ASD < EAL,r Gt LW 5xa.aaowaeia.Aso= 0.429 in Where: vb = 466 plf, , ASD Lw = 7 ft E = 1.7E+06 psi [Satisfactory] (ASCE 7-05 12.8. A = 30.25 in` h = 10 ft G = 9.0E+04 psi Cd = 4 1= 1 I = 0.469 in e„ = 0.006 in da = 0.03 in (ASCE 7-05 Tab 12.2-1 & Tab 11.5 - Aa = 0.02 I h, (ASCE 7;05 Tab 12.12-1) EDGE STUD CAPACITY Pmax = 3.99 kips, (this value should include upper level DOWNWARD loads if applicable) F, = 1200 psi Co = 1.60 Cp = 0.47 A = 30.25 in' E= 1700 ksi CF = 1.00 Fc = 908 psi > 1� = 132 psi [Satisfactory] i WM LTD � PROJECT: TaylorMC/16p PAGE: 1�3 CLIENT: ._,.. n -._:. DESIGN BY JOB NO.: DATE: REVIEW BY: Shear Waiti.0lest' n @# d0o*3BC 06 (GPC O7 l MDS%05.,r': ; I ` INPUT DATA LATERAL FORCE ON DIAPHRAGM: Vdia, WIND = 302 pH,forwind w Vdia•SEISMIC = 473 pIffor seismic ( I GRAVITY LOADS ON THE ROOF: WDL = 0 plf,for dead load 1 1 , WLL = 0 plf,for live load --`�- a--� vm I h0 --"-"`' DIMENSIONS: L. = 12 ft, h= 9 ft F L = 12 it hp = 3 ft PANEL GRADE (0 or 1) = 1 <= Sheathing and Single -Floor h MINIMUM NOMINAL PANEL THICKNESS = 15/32 in COMMON NAIL SIZE (0=6d, 1=8d, 2=10d) 2 10d SPECIFIC GRAVITY OF FRAMING MEMBERS 0:5 j EDGE STUD SECTION 1 pcs, b = , 4 .. _ in , h = :6:. : ; in V. SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH T, Tw GRADE ( 1, 2, 3, 4, 5, or 6) 3 No. 1 Lw STORY OPTION ( 1=ground level, 2=upper level) 1, ground level shear wall THE SHEAR WALL DESIGN IS ADEQUATE. DESIGN SUMMARY BLOCKED 15/32 SHEATHING WITH 10d COMMON NAILS @ 3 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 22 in O.C. HOLD-DOWN FORCES: TL = 3.85 k TR = 3.85 k (USE PHD5-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 6" DOUGLAS FIR -LARCH No. 1, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.32 in ANALYSIS CHECK MAX SHEAR WALL DIMENSION RATIO L / B = 0.8 < 3:5 [Satisfactory] DETERMINE REQUIRED CAPACITY ve = 473 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 3 in) THE SHEAR CAPACITIES PER IBC Table 2306.4.1 NOW I ne Inalcaiea snear nUMDers nave reauCeo Dy speGnC graVIry Tacior per trst; now a. 4E DRAG STRUT FORCE: F = (L -L„.) MAX( Vdia. WIND. 00dia• SEISMIC) = 0.00 k (00 = 1 ) (Sec. 1633.2.6) VE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 22 in O.C. THE HOLD-DOWN FORCES: Vdia (plf) Wall Seismic at mid -story (lbs) Overturning Moments (ft -lbs) Min. Min. Blocked Nail Spacing 473 230 52466 Panel Grade Common Penetration Thickness Boundary & All Edges 0.75hei + = 6 1 4 1 3 1 2 I + Nail (in) in WIND 302 swallowable, Aso = 0.386 in 32616 Sheathing and Single -Floor 10d 15/8 15/32 1 310 1 460 1 600 1 770 NOW I ne Inalcaiea snear nUMDers nave reauCeo Dy speGnC graVIry Tacior per trst; now a. 4E DRAG STRUT FORCE: F = (L -L„.) MAX( Vdia. WIND. 00dia• SEISMIC) = 0.00 k (00 = 1 ) (Sec. 1633.2.6) VE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 22 in O.C. THE HOLD-DOWN FORCES: EDGE STUD CAPACITY Pmax = 3.30 kips, (this value should include upper level DOWNWARD loads if applicable) Fd = 1500 psi Co = 1.60 Cp = 0.43 A = 19.25 in' E= 1700 ksi CF = 1.10 F, = 1146 psi > % = 171 psi [Satisfactory] Vdia (plf) Wall Seismic at mid -story (lbs) Overturning Moments (ft -lbs) Resisting Safety Net Uplift Holddown Moments (ft -lbs) Factors (lbs) SIMPSON SEISMIC 473 230 52466 Left 6912 0.9 TL = 3854 „D A = Dae.d.g + Asim, + AN.,/ hp + OCnonl saire shp = EALW + 0.75hei + = Right 6912 0.9 TR = 3854 �Oy + Left 6912 2/3 TL = 2334 p� WIND 302 swallowable, Aso = 0.386 in 32616 12 ft E = 1.7E+06 psi [Satisfactory] (ASCE 7-05 12 A = 16.50 in` h = 9 ft Right 6912 2/3 TR = 2334 Q� EDGE STUD CAPACITY Pmax = 3.30 kips, (this value should include upper level DOWNWARD loads if applicable) Fd = 1500 psi Co = 1.60 Cp = 0.43 A = 19.25 in' E= 1700 ksi CF = 1.10 F, = 1146 psi > % = 171 psi [Satisfactory] (TL & TR values should include upper level UPLIFT forces if applies -_CK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) 3 dam bh A = Dae.d.g + Asim, + AN.,/ hp + OCnonl saire shp = EALW + 0.75hei + = 0.323 in, ASD < + swallowable, Aso = 0.386 in Where: vp = 473 plf, , ASD LW = 12 ft E = 1.7E+06 psi [Satisfactory] (ASCE 7-05 12 A = 16.50 in` h = 9 ft G = 9.0E+04 psi Cd = 4 1= 1 t = 0.298 in e„ = 0.007 in da = 0.15 in (ASCE 7-05 Tab 12.2-1 & Tab 11. Aa = 0.02 ha (ASCE 705 Tab 12.12-1) EDGE STUD CAPACITY Pmax = 3.30 kips, (this value should include upper level DOWNWARD loads if applicable) Fd = 1500 psi Co = 1.60 Cp = 0.43 A = 19.25 in' E= 1700 ksi CF = 1.10 F, = 1146 psi > % = 171 psi [Satisfactory] 1 1 1 1 1 WM LTD PROJECT: Taylor MC/16b PAGE: 1 4 CLIENT: DESIGN BY JOB NO.: ' SWR': r . DATE: REVIEW BY. INPUT DATA FORCE ON DIAPHRAGM: vdfa, WIND _ 120 pK,for wind (LATERAL vdia, SEISMIC — 128 pN,for seismic GRAVITY LOADS ON THE ROOF: WDA = 0' plf,for dead load 1 460 1 600 1 770 WLL = 0 pB,for five toad DIMENSIONS: Lw = 24 ft , h = 9 ft L = 24 it hp = 9' ft PANEL GRADE (0 or 1) = 1 <= Sheathing and Single -Floor MINIMUM NOMINAL PANEL THICKNESS = 15!32 in COMMON NAIL SIZE ( 0=6d, 1=8d, 2=10d) '2.. 10d SPECIFIC GRAVITY OF FRAMING MEMBERS 6:5 EDGE STUD SECTION 1 pcs, b = 4 in, h = 6 in SPECIES (1 = DFL, 2 = SP) 1. DOUGLAS FIR -LARCH GRADE (1 2 3 4 5 or 61 3 No. i W v� h, ------------- F h v T T. ( Lw STORY OPTION ( 1=ground level, 2=upper level) 1 ground level shear wall THE SHEAR WALL DESIGN IS DESIGN SUMMARY BLOCKED 15/32 SHEATHING WITH 10d COMMON NAILS @ 6 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. HOLD-DOWN FORCES: TL = 0.00 k TR = 0.00 k (HOLD-DOWN NOT DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 6" DOUGLAS FIR -LARCH No. 1, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.11 in ANALYSIS CHECK MAX SHEAR WALL DIMENSION RATIO L / B = 0.4 < 33:5: '"':s[Satisfactory] DETERMINE REQUIRED CAPACITY vb = 128 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 6 in) TNF CHFAR r:APArITIPR PFR IRr. Tnhlp ?snR d 1 Panel Grade Common Nail Min. Penetration in Min. Thickness in Blocked Nail Spacing I Boundary & All Edges 6 1 4 1 3 1 2 Sheathing and Single -Floor 10d 1 5/8 15/32 1 310 1 460 1 600 1 770 Note: The indicated shear numbers have reduced by specific gravity tactor per IBC note a. JE DRAG STRUT FORCE: F = (L -L„.) MAX( vd a, wiND, OoVdia, SEISMIC) = 0.00 k (C4 = 1 ) (Sec. 1633.2.6) JE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab. I1E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. THF HOI f) -DOWN FORCFS- (TL & TR values should include upper level UPLIFIT forces if ECK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) 3 A=OBerdd,g+AS&.,+ANail sup+OCMd spice slip = 8Vbh +Vbh +0.75hei+hda EAL, Gt Lw Where: vb = 128 plf. , ASD Lw = 24 ft E = 1.7E+06 psi A = 16.50 in` h = 9 ft G = 9.0E+04 psi t = 0.298 in e„ = 0.001 in da = 0.15 in CHECK EDGE STUD CAPACITY ' Pmax = 2.09 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1500 psi CD = 1.60 Cp = 0.43 E = 1700 ksi CF = 1.10 Fc = 1146 psi 1 0.106 in, ASD < 8xe,anowabie, Aso = 0.386 in [Satisfactory] (ASCE 7-05 12 Cd= 4 1= 1 ,(ASCE 7-05 Tab 12.2-1 & Tab 11. Aa = 0.02 I h®, (ASCE 7;05 Tab 12.12-1) A = 19.25 int > fc = 109 psi [Satisfactory) vd„ ( lo Wall Seismic at mid -story (lbs) Overturning Moments (ft -lbs) Resisting Safety Net Uplift Moments (ft -lbs) Factors (lbs) Holddown SIMPSON SEISMIC 128 691 33869 Left 41472 0.9 TL = 0 y0 Right 41472 0.9 TR = 0 WIND 120 25920 Left 41472 2/3 TL = 0 Right 1 41472 2/3 TR = 0 (TL & TR values should include upper level UPLIFIT forces if ECK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) 3 A=OBerdd,g+AS&.,+ANail sup+OCMd spice slip = 8Vbh +Vbh +0.75hei+hda EAL, Gt Lw Where: vb = 128 plf. , ASD Lw = 24 ft E = 1.7E+06 psi A = 16.50 in` h = 9 ft G = 9.0E+04 psi t = 0.298 in e„ = 0.001 in da = 0.15 in CHECK EDGE STUD CAPACITY ' Pmax = 2.09 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1500 psi CD = 1.60 Cp = 0.43 E = 1700 ksi CF = 1.10 Fc = 1146 psi 1 0.106 in, ASD < 8xe,anowabie, Aso = 0.386 in [Satisfactory] (ASCE 7-05 12 Cd= 4 1= 1 ,(ASCE 7-05 Tab 12.2-1 & Tab 11. Aa = 0.02 I h®, (ASCE 7;05 Tab 12.12-1) A = 19.25 int > fc = 109 psi [Satisfactory) John PROJECT: Taylor MC/16b PAGE. 175 CLIENT : as DESIGN BY: Walling JOB NO.: '15.1V1''" DATE: REVIEW BY: Footin ,Desi"n of S,hear�iAfail�Base onAC1�3;1;8-Q,5:.�,��,a���; ( , INPUT DATA ! WALL LENGTH L,,, = 4 ft WALL HEIGHT h = 16 ft 1 WALL THICKNESS t= 8 in f P•1 f" FOOTING LENGTH L = t;�raU �9.,•..'sft i FN L, = 2.5 It ! FOOTING WIDTH B = 3 It FOOTING THICKNESS T= 51 in PF 1 FOOTING EMBEDMENT DEPTH D = 3.6 ..ft ALLOWABLE SOIL PRESSURE qa = ...: A:5 . ksf D DEAD LOAD AT TOP WALL Pr,DL = 0 kis P LIVE LOAD AT TOP WALL Pr,LL = 0 kips Ll -- ------ Lw TOP LOAD LOCATION a = . 0 ft— i — L WALL SELF WEIGHT Pw = 1.92 kips LATERAL LOAD TYPE (0--mind,1=seismic) 1 seismic SEISMIC LOADS AT TOP (E/1.4, ASD) F = 3.167 kips THE FOOTING DESIGN IS ADEQUATE. M = 0 ft -kips CONCRETE STRENGTH fc' = 2.5 ksi REBAR YIELD STRESS fy = 60 ksi TOP BARS, LONGITUDINAL 3 # 5 BOTTOM BARS, LONGITUDINAL 10 # 5 BOTTOM BARS, TRANSVERSE # 4 @ .24 in o.c. < _= Not Required ANALYSIS CHECK OVERTURNING FACTOR (IBC 06 1605.2.1, 1801.2.1, & ASCE 7-05 12.13.4) F =MR /MO = 1.35 > 1.4 x 0.75 / 0.9 for seismic [Satisfactory] Where Pf = 16.63675 kips (footing self weight) Mo = F (h + D) + M = 62 ft -kips (overturning moment) MR = (Pr,DL) (1-1 + a) + Pf (0.5 L) + Pw (1-1 + 0.51-w) = 84 ft -kips (resisting moment without live load) CHECK SOIL CAPACITY (ALLOWABLE STRESS DESIGN) Ps = 11.475 kips (soil weight in footing size) P = (Pr,DL + Pr,LL) + Pw + (Pf - Ps) = 7.08 kips (total vertical net load) MR = (Pr,DL + Pr, LL) (1-1 + a) + Pf (0.5 L) + Pw (1-1 + 0.5Lw) = 84 ft -kips (resisting moment with live load) e = 0.5 L - (MR - Mo) / P = 1.47 ft (eccentricity from middle of footing) P 1+ 6e L for e< 9MAX BL 6 2 P L _ 0.52 ksf < 4 / 3 qa for e > 3B(0.5L—e)' 6 [Satisfactory] Where e= 1.47 ft, < (L / 6) HECK FOOTING CAPACITY (STRENGTH DESIGN) Mu,R = 1.2 [Pr,DL (L, + a) + Pf (0.5 L) + Pw (1-1 + 0.51.,,,)1 + 0.5 Pr, LL(L, + a) = 100 ft -kips MUM = 1.4 [F(h + D) + M] = 87 ft -kips PU = 1.2 (Pr,DL + Pf + Pw) + 0.5 Pr, LL = 22 kips eU = 0.51-- (MU,R - MU,o) / PU = 3.90 R PU' w 6e„ Mu P.1+ ( ,, 101' L L .for e„ 5 — ,—^ 1 1 1 1 1 1 q„,,,,,,,. = BL 6 = 8.28 ksf 2P„L for e„ > 6 1 ! I RENDING MOMENT A SHEAR AT EACH FOOTING SECTION Section 0 1/10 L 2/10 L 3/10 L 4/10 L 5/10 L 6/10 L 7/10 L 8/10 L 9/10 L L Xu (ft) 0 0.90 1.80 2.70 3.60 4.50 5.40 6.30 7.20 8.10 9.00 Pu,w (klo 0.0 0.0 0.0 29.9 15.2 0.6 -14.1 -28.8 0.0 0.0 0.0 Mu.w (ft -k) 0 0 0 -1 -16 45 -73 -90 -93 -95 -97 Vu,w (kips) 0 0 0 -6 -27 -34 -28 -8 -2 -2 -2 Pu.t(ksf) 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 Mu,f (ft -k) 0 -1 4 -8 -14 -22 -32 -44 -58 -73 -90 Vu,r(kips) 0 -2 4 -6 -8 -10 -12 -14 -16 -18 -20 qu (ksf) -8.3 4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Mu,q (ft -k) 0 8 27 47 67 87 107 127 147 167 187 Vu,q (kips) 0 17 22 22 22 22 22 22 22 22 22 E Mu (ft -k) 0 7 23 38 36 20 1 -7 -4 .1 0 E Vu (kips) 0 15 18 10 -12 -21 -17 0 4 2 0 60 40 20 0 -20 40 20 0 -20 40 MM ®V Location Mu.max d (in) PregD PpmvD Vu,max - OVc = 2 O b d (f.')05 Top Longitudinal -7 ft -k 47.69 0.0000 0.0005 21 kips 146 kips Bottom Longitudinal 38 ft -k 47.69 0.0018 0.0018 21 kips 146 kips Bottom Transverse 1 ft -k / ft 47.13 0.0000 0.0000 1 kips / It 48 kips / ft Where p = 0.85f� 1- 1- M„ 0.383bdz f'c ry 0.85,0.fC su PMAX = 0.0129 ry Eu+Et P min = 0.0018 (Satisfactory] )pro (confd) J�7 John PROJECT: TiMor'MC/16b PAGE: CLIENT: DESIGN BY: Walling JOB NO.: 'SVV3- DATE: REVIEW BY .......... �ootlii _°Desi- n�ofShear:WallwBas®dxon;�ACl 31;8-Q5,;,'J..n��� w INPUT DATA _ WALL LENGTH Lw = 4 ft WALL HEIGHT h = 15 ft P WALL THICKNESS t= 4: in M FOOTING LENGTH L 8=-t ftPW L1 = 2 ft FOOTING WIDTH B = 2:87 ft FOOTING THICKNESS T= 51 in 1 -fes FOOTING EMBEDMENT DEPTH D = 3.8 ft -- ALLOWABLE SOIL PRESSURE qa = 1:5 ksf D DEAD LOAD AT TOP WALL Pr,DL = :5.211 kips LIVE LOAD AT TOP WALL Pr,LL = 4.094 kips L I — — Lw TOP LOAD LOCATION a = 0.: ft L WALL SELF WEIGHT Pw = 0:98 kips LATERAL LOAD TYPE (O--vind,l=seismic) 1 seismic SEISMIC LOADS AT TOP (E/1.4, ASD) F = 2.375 kips THE FOOTING DESIGN IS ADEQUATE. M = 0 ft -kips CONCRETE STRENGTH fc' = 2.5 ksi REBAR YIELD STRESS fy = 60 ksi TOP BARS, LONGITUDINAL 4 # 5 BOTTOM BARS, LONGITUDINAL 9 # :5. BOTTOM BARS, TRANSVERSE # 4 @ 124: in o.c. < _= Not Required ANALYSIS HECK OVERTURNING FACTOR (IBC 06 1605.2.1, 1801.2.1, & ASCE 7-05 12.13.4) F =MR/ Mo = 1.51 > 1.4 x 0.75 / 0.9 for seismic [Satisfactory) Where Pf = 13.1631 kips (footing self weight) Mo = F (h + D) + M = 44 ft -kips (overturning moment) MR = (Pr,DL) (1-1 + a) + Pf (0.5 L) + Pw (L1 + 0.51-w) = 67 ft -kips (resisting moment without live load) HECK SOIL CAPACITY (ALLOWABLE STRESS DESIGN) Ps = 9.078 kips (soil weight in footing size) P = (Pr,DL + Pr,LL) + Pw + (Pf - Ps) = 14.35 kips (total vertical net load) MR = (Pr,DL + Pr. LL) (1-1 + a) + Pf (0.5 L) + Pw (L1 + 0.51-w) = 75 ft -kips (resisting moment with live load) e = 0.5 L - (MR - //MO) / P =l 1.84 ft (eccentricity from middle of footing) PI I+ L 1 L __ ll BL for e 5 6 9MAX 2P for a>L = 1.66 ksf < 4 / 3 qe — 3B(O,5L—e)' 6 [Satisfactory] Where a= 1.84 ft, > (L / 6) ;HECK FOOTING CAPACITY (STRENGTH DESIGN) MU,R = 1.2 [Pr.DL (1-1 + a) + Pf (0.5 L) + Pw (L1 + 0.5L1,r)) + 0.5 Pr. LL(L1 + a) = 64 ft -kips MU,o = 1.4 (F(h + D) + M) = 62 ft -kips PU = 1.2 (Pr DL + Pf + Pw) + 0.5 Pr. LL = 25 kips eU = 0.51-- (MU,R - MU,O) / Pu = 3.11 ft MU L .for e.. 5 BL 6 = 7.06 ksf 2P„for e,. >— RFunwrz IIRnMFNT R SMFAR AT FACM FM3TiN(% SFCTInN Section 0 1/10 L 2/10 L 3/10 L 4/10 L 5/10 L 6/10 L 7/10 L 8/10 L 9/10 L L xu (ft) 0 0.80 1.60 2.40 3.20 4.00 4.80 5.60 6.40 7.20 8.00 Pu,, (klf) 0.0 0.0 0.0 25.9 14.1 2.4 -9.4 -21.2 0.0 0.0 0.0 Mu.W (ft -k) 0 0 0 -2 -19 -44 -71 -92 -101 -109 -116 Vu,W (kips) 0 0 0 -12 -28 -34 -31 -19 -9 -9 -9 Pu,r(ksf) 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 Mu,r (ft -k) 0 -1 -3 -6 -10 -16 -23 -31 -40 -51 -63 Vu,f(kips) 0 -2 -3 -5 -6 -8 -9 -11 -13 -14 -16 qu (ksf) -7.1 -5.0 -2.8 -0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Mu,q (ft -k) 0 5 19 38 58 78 99 119 139 159 179 Vu.q (kips) 0 13 21 25 25 25 25 25 25 25 25 E Mu (ft -k) 0 6 17 30 29 19 5 -4 -3 -1 0 E Vu (kips) 0 11 18 9 -9 -17 -16 -5 3 Z 0 40 30 20 10 0 -10 20 0 -20 0 0 Location Mu.max d (in) PregO Pprovo Vu.max �Vc = 2 m b d (fc')0.e Top Longitudinal -4 ft -k 47.69 0.0000 0.0008 18 kips 130 kips Bottom Longitudinal 30 ft -k 47.89 0.0018 0.0018 18 kips 130 kips Bottom Transverse 1 ft -k / ft 47.13 0.0000 0.0000 1 kips / ft 48 kips / ft M. Where P= 0.85f� 1- 1- 0.383bd2 f'c fy _ 0.85QIf� Eu PMAX -' f y Eu+Et P min = 0.0018 0.0129 [Satisfactory] (coned) 78 John PROJECT: Taylor/MC16nb PAGE: ■ CLIENT- DESIGN BY: a JOB NO.: S1N4 DATE: REVIEW BY: Footin WPO n of rMift :Wa0 Base :on` ACS 3.8-05. Fr INPUT DATA rJ WALL LENGTH Lw = 4. ft _ WALL HEIGHT h = 15 ft F WALL THICKNESS t= 4:' in M FOOTING LENGTH L = ' . ft Fw 1r � ft l FOOTING WIDTH B = ,. 3 ft FOOTING THICKNESS T= 53 in F, f FOOTING EMBEDMENT DEPTH D = :-3 .6 ft L ALLOWABLE SOIL PRESSURE q8 = 1':5 ksf 3EAD LOAD AT TOP WALL Pr,DL = 12.729 kips _IVE LOAD AT TOP WALL Pr,ll = ,10:002. kips —LI — r — Lw rOP LOAD LOCATION a = . '0 ft lo L NALL SELF WEIGHT Pw = 6:96 kips ATERAL LOAD TYPE (0=wind,I=seismic) 1 seismic SEISMIC LOADS AT TOP (E/1.4 , ASD) F = 2:916 kips THE FOOTING DESIGN IS ADEQUATE. M = 0 ft -kips :ONCRETE STRENGTH fc = 2:5 ksi 2EBAR YIELD STRESS fy = .. 60 ksi rOP BARS, LONGITUDINAL 4 # 5 < _= Not Required 30TTOM BARS, LONGITUDINAL8' # 30TTOM BARS, TRANSVERSE # 4- 24 in o.c. < _= Not Required 4NALYSIS ;HECK OVERTURNING FACTOR (IBC 06 1605.2.1, 1801.2.1, & ASCE 7-05 12.13.4) F =MR /MO = 2.73 > 1.4 x 0.75 / 0.9 for seismic (Satisfactory) Where Pf = 17.29125 kips (footing self weight) Mo = F (h + D) + M = 54 ft -kips (overturning moment) MR = (Pr.OL) (1-1 + a) + Pf (0.5 L) + Pw (1-1 + 0.51-w) = 148 ft -kips (resisting moment without live load) ;HECK SOIL CAPACITY (ALLOWABLE STRESS DESIGN) Ps = 11.925 kips (soil weight in footing size) P = (Pr,0L + Pr,LL) + Pw + (Pf - Ps) = 29.06 kips (total vertical net load) MR = (Pr,DL + Pr. LL) (1-1 + a) + Pf (0.5 L) + Pw (L1 + 0.51-w) = 198 ft -kips (resisting moment with live load) e = 0.5 L - (MR - Mo) / P = -0.45 ft (eccentricity from middle of footing) P1+ 6e for e< 6 9MAfi - BLL 2P L = 0.75 ksf < 4 / 3 qa for e > 3B(0.5L—e)' 6 (Satisfactory) Where e= -0.45 ft, < (L / 6) ;HECK FOOTING CAPACITY (STRENGTH DESIGN) MU,R = 1.2 IPr,DL (1-1 + a) + Pf (0.5 L) + Pw (1-1 + 0.51-j + 0.5 Pr. LL(1-1 + a) = 203 ft -kips Mu,o = 1.4 [F(h + D) + M] = 76 ft -kips Pu = 1.2 (Pr,DL + Pf + Pw) + 0.5 Pr, LL = 42 kips P'•w eu = 0.51-- (Mu,R - Mu,o) / Pu = 1.49 ft C �Mu 0-C C L for e„ S L I q„ wAx = BL 6 = 3.12 ksi 1 1 1 I I 1 2P„ for e„ > L 3B(0.5L—e„)' 6 �— X1,1-- arurnwr- edMAPUT R cuceR AT Pena FnnTnua gFrTInkI Section 0 1/10 L 2/10 L 3/10 L 4/10 L 5/10 L 6/10 L 7/10 L 8/10 L 9/10 L L xu (ft) 0 0.90 1.80 2.70 3.60 4.50 5.40 6.30 7.20 8.10 9.00 Pu w (klf) 0.0 0.0 0.0 0.0 0.0 0.0 40.3 20.6 1.0 -16.7 -38.3 Mu,W (ft -k) 0 0 0 0 0 0 4 -33 -80 -127 -159 Vu,W (kips) 0 0 0 0 0 0 -18 45 -55 47 -21 Pu,f (ksf) 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 Mur (ft -k) 0 -1 4 -8 -15 -23 -34 46 -60 -76 -93 Vu,f (kips) 0 -2 4 -6 -8 -10 -12 -15 -17 -19 -21 9u (ksf) -3.1 -2.8 -2.5 -2.2 -1.9 -1.6 -1.3 -0.9 -0.6 -0.3 0.0 Mu.g (ft -k) 0 4 14 31 53 79 109 142 178 215 253 Vu,q (kips) 0 8 15 21 27 32 35 38 40 42 42 E Mu (ft -k) 0 3 10 22 38 66 72 63 38 12 0 £ Vu (kips) 0 6 11 16 19 21 6 -21 -31 -24 0 80 60 40 20 0 40 20 0 -20 -40 0M ®V Location Mu,max d (in) PregO PprovD Vu,max mV, = 2 0 b d (fc)o.s Top Longitudinal 0 ft -k 49.69 0.0000 0.0000 31 kips 152 kips Bottom Longitudinal 72 ft -k 49.63 0.0018 0.0020 31 kips 152 kips Bottom Transverse 1 ft -k / It 49.00 0.0000 0.0000 2 kips / ft 50 kips / ft (M 0.85f�11- )- M. 0.3836. Where P = ll fy 0.85/6, f � su Ptiux = fy Cu+Et P min = 0.0018 0.0129 (Satisfactory) (cont'd) 1 I 11 1 I I ID I 11 I j John PROJECT: Tailor MC/1.6b PAGE: CLIENT: DESIGN BY: Walling JOB NO.: SM . DATE: REVIEW BY: foofinAQ0,10- INPUT DATA WALL LENGTH Lw = 4 ft Cr WALL HEIGHT h = 10. It WALL THICKNESS t = 4 in f M FOOTING LENGTH L = 6 ft L,= 1'.' FOOTING WIDTH B = .2.67 It ft FOOTING THICKNESS T= .51 in FOOTING EMBEDMENT DEPTH D = ...-4.3 ft ALLOWABLE SOIL PRESSURE qa = ,' 1:5. ksf D DEAD LOAD AT TOP WALL Pr.DL LIVE LOAD AT TOP WALL Pal- kips L I L w ,,.'kips TOP LOAD LOCATION a = ft L WALL SELF WEIGHT PW 'kips LATERAL LOAD TYPE (0 --wind, I =seismic) I seismic SEISMIC LOADS AT TOP (E/1.4, ASD) F .1.069 kips THE FOOTING DESIGN IS ADEQUATE. M = 0 ft -kips CONCRETE STRENGTH fc'=: ksi REBAR YIELD STRESS fy 60, ksi TOP BARS, LONGITUDINAL ..4 # 5 BOTTOM BARS, LONGITUDINAL 9 # :5. BOTTOM BARS, TRANSVERSE # 4 @ 24 in o.c. < Not Required ANALYSIS CHECK OVERTURNING FACTOR (IBC 06 1605.2.1, 1801.2.1, & ASCE 7-05 12.13.4) F =MR/ MO = 2.03 > 1.4 x 0.75 / 0.9 for seismic [Satisfactory] Where Pf = 9.872325 kips (footing self weight) Mo = F (h + D) + M = 15 ft -kips (overturning moment) MR = (prDL) (1-1 + a) + Pf (0.5 L) + Pw (1-1 + 0.5L.) = 31 ft -kips (resisting moment without live load) CHECK SOIL CAPACITY (ALLOWABLE STRESS DESIGN) Ps = 6.8085 kips (soil weight in footing size) P = (Pr,DL * Pr,LL) + Pw + (Pf - Ps) = 3.54 kips (total vertical net load) MR = (Pr,DL + Pr, L0 (L, + a) + Pf (0.5 L) + P, (1.1 + 0.51-w) = 31 ft -kips (resisting moment with live load) a = 0.5 L - (MR - MO) / P = A.45 It (eccentricity from middle of footing) PI 1+6e1 L I fL or e < qt4Ax BL 6 2P L = -0.10 ksf < 4/3qa or e>- 3B(O.5L-e)' 6 [Satisfactory] Where a= -1.45 ft, -c (L / 6) CHECK FOOTING CAPACITY (STRENGTH DESIGN) MU.R = 1.2 [Pr,DL (Li + a) + Pf (0.5 L) + PW (I., + 0.51-j + 0.5 Pr, LL(Lj + a) = 37 ft -kips MU.0 = 1.4 [F(h + D) + M] = 21 ft -kips Pu = 1.2 (PrDL+ Pf + P.) + 0-5 Pr. LL = eu = 0.51. - (MU.R - MU.0) / PU = 1.72 ft 12 kips P. +6e.) L L . , for e. :5 - q,,.MAX BL 6 = 2.43 ksf ID U, F MU 2p,,L for e,, > 6 Xtu RENnING MOMENT R SHEAR AT EACH FOOTING SECTION Section 0 1/10 L 2/10 L 3/10 L 4/10 L 5/10 L 6/10 L 7/10 L 8/10 L 9/10 L L Xu (ft) 0 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Pu., (klf) 0.0 0.0 7.4 5.0 2.6 0.1 -2.3 4.7 -7.1 0.0 0.0 Mu.w (ft -k) 0 0 0 -2 -6 -11 -16 -20 -22 -23 -23 Vu.w (kips) 0. 0 -2 -5 -8 -8 -8 -6 -2 -1 -1 Pu.t(ksf) 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 Mu.f (ft -k) 0 0 -1 -3 -6 -9 -13 -17 -23 -29 -36 Vu.f(kips) 0 -1 -2 4 -5 -6 -7 -8 -9 -11 -12 qu (ksf) -2.4 -2.0 -1.7 -1.3 -0.9 -0.5 -0.1 0.0 0.0 0.0 0.0 MU,q (ft -k) 0 1 4 9 15 22 29 36 44 51 59 Vu.q (kips) 0 4 7 9 11 12 12 12 12 12 12 E Mu (ft -k) 0 1 3 3 3 2 0 -1 -1 0 0 L Vu (kips) 0 2 3 0 -2 -2 -2 -1 1 1 0 4 2 0 -2 4 2 0 -2 ®M ®V Location Mu,max d (in) PregD PprovD Vu,max r Vc = 2 0 b d (f� )O" Top Longitudinal -1 ft -k 47.69 0.0000 0.0008 3 kips 130 kips Bottom Longitudinal 3 ft -k . 47.69 0.0018 0.0018 3 kips 130 kips Bottom Transverse 1 ft -k / It 47.13 0.0000 0.0000 1 kips I ft 48 kips / ft ( 0.85f'Ill- 1- M„ Where 0.3836d2 f` ip = fy Pnux = 0.85,6,fc Eu - f y CU+Et P min = 0.0018 0.0129 [Satisfactory) (conrd) I I I I I I L I 1 I John PROJECT: Taylor MC116bSW1 I PAGE - CLIENT: DESIGN BY: Walling JOB NO.: :SW11 DATE: REVIEW BY: P._ INPUT DATA WALL LENGTH Lw= 4 it WALL HEIGHT h = 10 ft WALL THICKNESS t = 4 in FOOTING LENGTH L= :-6 ft L, = 1.5 ft FOOTING WIDTH B = It I 11 FOOTING THICKNESS T=- 60 in PF1 FOOTING EMBEDMENT DEPTH D .-:4*3.:. ft ALLOWABLE SOIL PRESSURE q,=' 1 5 'ksf D DEAD LOAD AT TOP WALL Pr,DL = kips LIVE LOAD AT TOP WALL Pr,LL = kips L w TOP LOAD LOCATION a = ft L WALL SELF WEIGHT Pw = 0.64 kips LATERAL LOAD TYPE (0--wind,1 =seismic) ..1 seismic SEISMIC LOADS AT TOP (E/1.4, ASD) F = 1 .:M kips THE FOOTING DESIGN IS ADEQUATE. M = 0 ft -kips CONCRETE STRENGTH 2.5 ksi REBAR YIELD STRESS fy PO ksi TOP BARS, LONGITUDINAL # 5 BOTTOM BARS, LONGITUDINAL ..g # 5 BOTTOM BARS, TRANSVERSE # .4 @ 24 in o.c. Not Required ANALYSIS CHECK OVERTURNING FACTOR (IBC 06 1605.2.1, 1801.2.1, & ASCE 7-05 12.13.4) F =MR/ MO = 1.20 > 1.4 x 0.75 / 0.9 for seismic [Satisfactory) Where Pf = 9.67875 kips (footing self weight) Mo = F (h + D) + M = 26 ft -kips (overturning moment) MR = (Pr,DL) (LI + a) + Pf (0.5 L) + Pw (LI + 0.51-w) = 31 ft -kips (resisting moment without live load) CHECK SOIL CAPACITY (ALLOWABLE STRESS DESIGN) Ps = 6.675 kips (soil weight in footing size) P = (Pr,DL + Pr,LL) + PW + (Pf - Ps) = .3.64 kips (total vertical net load) MR = (Pol. + Pr, LL) (Lj + a) + Pf (0.5 L) + Pw (LI + 0.5Lw) = 31 ft -kips (resisting moment with live load) a = 0.5 L - (MR - MO) / P = 1.60 ft (eccentricity from middle of footing) P + e) L I for e< L q"" BL 6 2P L = 0.65 ksf < 4/3qa for e> 3B(0.5L - e)' 6 [Satisfactory) Where a= 1.60 ft, > (L / 6) CHECK FOOTING CAPACITY (STRENGTH DESIGN) MU.R = 1.2 [Pr,DL (LI + a) + Pf (0.5 Q + Pw (L, + 0.5L.)] + 0.5 Pr, LL(LI + a) = 38 ft -kips Mu,o = 1.4 [F(h + D) + M] = 37 ft -kips Ps = 1.2 (Pr,DL + Pf + Pw) + 0.5 Pr, LL = 12 kips %,W eu = 0.5L - (MU,R - MU.0) / Pu = 2.93 ft L L for ell S q,,.A,Ax BL 6 = 42.78 ksf 2p. for e. > L 3B(0.5L -ell)' 6 X1.3 n AFNOING MOMENT & SHEAR AT EACH FOOTING SECTION Section 0 1/10 L 2/10 L 3/10 L 4/10 L 5/10 L 6/10 L 7/10 L 8/10 L 9/10 L L xu (ft) 0 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Pu.W (klf) 0.0 0.0 0.0 11.9 7.7 3.6 -0.5 -4.6 -8.7 -12.9 0.0 Mu,W (ft -k) 0 0 0 -1 -5 -12 -20 -28 -35 -38 -39 VU,w (kips) 0 0 0 4 -10 -13 -14 -13 -9 -2 -1 Pu,f (ksq 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 Mu,f (ft -k) 0 0 -1 -3 -6 -9 -13 -17 -22 -28 -35 Vu,f(kips) 0 -1 -2 -3 -5 -6 -7 -8 -9 -10 -12 qu (ksf) -42.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Mu.q (ft -k) 0 7 14 21 29 36 44 51 59 66 73 Vu,q (kips) 0 12 12 12 12 12 12 12 12 12 12 E Mu (ft -k) 0 6 13 18 18 16 11 6 2 0 0 E Vu (kips) 0 11 10 5 -2 -7 -9 -8 -5 0 0 20 10 0 10 20 10 0 -10 Location Mu,max d (in) PmgD PprovD Vu,max r V. = 2.p b d (f.')0'5 Top Longitudinal 0 ft -k 46.69 0.0000 0.0008 11 kips 127 kips Bottom Longitudinal 18 ft -k 46.69 0.0018 0.0019 11 kips 127 kips Bottom Transverse 1 ft -k / It 46.13 0.0000 0.0000 1 kips / ft 47 kips / ft 0.85f 1- 1- M. 0.383bdz fc Where P=- { J y Pnlwx = 0.85/31 f c eu = 0.0129 fy Eu+Ct P min = 0.0018 (Satisfactory) MM (cont'd) AFF I 1, I I I I 11 I I 1 John PROJECT: Taylor Md/16b PAGE: CLIENT: DESIGN BY: Walling JOB NO. DATE: REVIEW BY: g-',P'n Oil I F n- 1.1%00)oIIW11�3"4$;M=� P. - INPUT DATA WALL LENGTH L, = 4 ft WALL HEIGHT h = 15 It WALL THICKNESS I = - *4 in M FOOTING LENGTH L =jPw � ft L, = 1.25 ft FOOTING WIDTH B =' 2.67 It 11 FOOTING THICKNESS T= 151 in FOOTING EMBEDMENT DEPTH D ft D ALLOWABLE SOIL PRESSURE qa ksf fl DEAD LOAD AT TOP WALL Pr,DL = kips LIVE LOAD AT TOP WALL Pr,LL = Or kips loe LI -Lw- I TOP LOAD LOCATION a = 2 ft e- L pol WALL SELF WEIGHT Pw= 0.96 kips LATERAL LOAD TYPE (0---Mnd,l =seismic) 1 seismic SEISMIC LOADS AT TOP (E/1.4, ASD) F = 1.737, kips THE FOOTING DESIGN IS ADEQUATE. M = ft -kips CONCRETE STRENGTH f,'= 2.5 'k8i REBAR YIELD STRESS fy= 'A0, ksi TOP BARS, LONGITUDINAL .4' # 5 BOTTOM BARS, LONGITUDINAL 9 # 5 BOTTOM BARS, TRANSVERSE # .4 @ 24* in o.c. Not Required ANALYSIS CHECK OVERTURNING FACTOR (IBC 06 1605.2.1, 1801.2.1, & ASCE 7-05 12.13.4) F =MR/ MO= 1.29 > 1.4 x 0.75 / 0.9 for seismic [Satisfactory] Where Pf = 10.69502 kips (footing self weight) M, = F (h + D) + M = 32 ft -kips (overturning moment) MR = (PrDL)(1-1 + a) + Pf (0.5 L) + Pw (1-1 + 0.51-w) = 42 ft -kips (resisting moment without live load) CHECK SOIL CAPACITY (ALLOWABLE STRESS DESIGN) Ps = 7.375875 kips (soil weight in footing size) P = (Pr,DL + Pr.LL) + Pw + (Pf - Ps) = 5.45 kips (total vertical net load) MR = (Pr,DL + Pr, LL) (LI + a) + Pf (0.5 L) + Pw (1-1 + 0.51-0 = 42 ft -kips (resisting moment with live load) a = 0.5 L - (MR - MO) / P = 1.53 ft (eccentricity from middle of footing) P 1+6e L L for e :!-. qMAX BL 6 2 P L 0.79 ksf 4 / 3 q9 for e>- 3B(O.5L - e) 6 [Satisfactory) Where a= 1.53 ft, > (L 16) CHECK FOOTING CAPACITY (STRENGTH DESIGN) MU.R = 1.2 (PrDL (LI + a) + Pf (0.5 L) + Pw (1-1 + O-SLw)] + 0-5 Pr, LL(Lj + a) = 50 ft -kips Mu.0 = 1.4 [F(h + D) + M) = 45 ft -kips PU = 1.2 (Pr,DL + Pf + Pw) + 0.5 Pr, LL = 15 kips eu = 0.51- - (MU.R - MU.0) / PU 2.94 It r,.w P.(1+6e„ _ I lvl�' L Lfor e„ 5 '7. MAX = BL 6 = 12.36 ksf 2P. for -e. > L 3B(O.SL - e..) 6 41 RFNfLNG MOMFNT R SMFAR AT FAC14 FORTING SECTION Section 0 1/10 L 2/10 L 3/10 L 4/10 L 5/10 L 6/10 L 7/10 L 8/10 L 9/10 L L Xu (ft) 0 0.65 1.30 1.95 2.60 3.25 3.90 4.55 5.20 5.85 6.50 Pu,, (klf) 0.0 0.0 17.2 11.7 6.2 0.6 4.9 -10.4 -15.9 0.0 0.0 MU,w (ft -k) 0 0 0 -4 -13 -24 -35 45 -50 -52 -54 Vu.W (kips) 0 0 -1 -10 -16 -18 -17 -12 -3 -3 -3 Pu,f(ksf) 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 Mu,f (ft -k) 0 0 -2 -4 -7 -10 -15 -20 -27 -34 -42 Vu,f (kips) 0 -1 -3 -4 -5 -6 -8 -9 -10 -12 -13 qu (ksf) -12.4 -3.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Mu.q (ft -k) 0 5 15 25 35 45 55 65 75 85 95 Vu,q (kips) 0 14 15 15 15 15 15 15 15 15 15 £ Mu (ft -k) 0 5 14 18 16 11 5 0 -2 0 0 E Vu (kips) 0 13 12 1 -6 -9 -9 -5 2 1 0 20 10 0 -10 20 10 0 -10 -20 0 0V Location Mu,max d (in) PregD PprovD Vu,max OVc = 2 0 b d (fo)o.s Top Longitudinal -2 ft -k 47.69 0.0000 0.0008 13 kips 130 kips Bottom Longitudinal 18 ft -k 47.69 0.0018 0.0018 13 kips 130 kips Bottom Transverse 1 ft -k / ft 47.13 0.0000 0.0000 1 kips / ft 48 kips / ft Mu 0.85f 1- 1- ` 0.3836d2 f Where /p = { J y 0.85,6, f � Eu Paux = _ ,f y Eu+Et P min = 0.0018 0.0129 (Satisfactory) (cont d) ray John PROJECT: 'Young Addition PAGE: CLIENT: DESIGN BY: Walling JOB NO.: DATE: REVIEW BY: INPUT DATA WALLLENGTH L' = It WALL THICKNESS t = 4. in FOOTING LENGTH L = �4,.l ft PW FOOTING THICKNESS T= .43 in FOOTING EMBEDMENT DEPTH D = 3.6 ft DEAD LOAD AT TOP WALL Pr,DL .0 kips LIVE LOAD AT TOP WALL Pr,LL -'0 kips L I Lw TOP LOAD LOCATION 8 0 It L WALL SELF WEIGHT Pw 012 kips LATERAL LOAD TYPE (0 --wind, I =seismic) A seismic SEISMIC LOADS AT TOP (E/1.4, ASD) F = 1.074 kips THE FOOTING DESIGN IS ADEQUATE. BOTTOM BARS, LONGITUDINAL BOTTOM BARS, TRANSVERSE # ..'.4:: @ in o.c. < Not Required ANALYSIS CHECK OVERTURNING FACTOR (IBC 08 1605.2.1, 1801.2. 1, & ASCE 7-05 12.13.4) Where Pf 8.323725 kips (footing self weight) CHECK SOIL CAPACITY (ALLOWABLE STRESS DESIGN) ps = 5.7405 kips (soil weight in foobng size) P = (Pr,DL + Pr,LL) + Pw + (Pf - Ps) = 3.30 kips (total vertical net load) a = 0.5 L - (MR - MO) / P = 0.83 It (eccentricity from middle of footing) CHECK FOOTING CAPACITY (STRENGTH DESIGN) P 'W 537�71 Xu 1 1 1 1 RENDING MOMENT & SHEAR AT EACH FOOTING SECTION Section 0 1/10 L 2/10 L 3/10 L 4/10 L 5/10 L 6/10 L 7/10 L 8/10 L 9/10 L L Xu (ft) 0 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Pu,,,, (klt) 0.0 0.0 0.0 15.2 7.7 0.3 -7.2 -14.6 0.0 0.0 0.0 Mu, (ft -k) 0 0 0 -1 -6 -14 -23 -28 -30 -30 -31 Vu,w (kips) 0 0 0 -5 -12 -14 -12 -6 -1 -1 -1 Pu,f (ksf) 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 Mu,f (ft -k) 0 0 -1 -3 -5 -7 -11 -15 -19 -24 -30 Vu,f(kips) 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 qu (ksf) -6.4 -3.4 -0.3 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 Mu,q (ft -k) 0 3 8 15 21 28 34 41 48 54 61 Vu.q (kips) 0 8 11 11 11 11 11 11 11 11 11 E Mu (ft -k) 0 2 7 11 11 6 1 -2 -1 0 0 E Vu (kips) 0 7 9 3 -5 1 -9 -7 -2 2 1 0 15 10 5 0 -5 10 0 -10 5 w Location Mu,max d (in) Pr&gD PprovD Vu,max OV. = 2 0 b d (fo)0.e Top Longitudinakf -2 ft -k 39.69 0.0000 0.0010 9 kips 108 kips Bottom Longitudinal 11 ft -k 39.69 0.0018 0.0020 9 kips 108 kips Bottom Transverse 0 ft -k / ft 39.13 0.0000 0.0000 1 kips / ft 40 kips / It 0.85f 1- 1- M. 2f Where �p = {' J y 0.85/3, f � su = 0.0129 . fy eu+Et P min = 0.0018 ISatisfactory) (cont'd) I i John PROJECT: Taylor MC/16b PAGE: a ---A' Walling CLIENT JOB NO.:'SWC .., DATE: DESIGN BY: REVIEW BY: ' IPUT DATA ALLLENGTH ALL HEIGHT ALL THICKNESS 10T(NG LENGTH )OTING WIDTH 10TING THICKNESS *TING EMBEDMENT DEPTH LOWABLE SOIL PRESSURE AD LOAD AT TOP WALL /E LOAD AT TOP WALL )P LOAD LOCATION 4LL SELF WEIGHT TERAL LOAD TYPE (O--wind,I=seismic) !ISMIC LOADS AT TOP (E/1.4, ASD) M Lw '4:._..ft a ---A' h =. ' '16 r It F t =8 in L = 1'0 5'S ft Li = 3:25 ft I^' B = 2.6 It T = 42 in Pt D = 3:6 It - qa = 1 .5 ,. ksf D Pr.DL = 'O . kips Pr,LL = 0 kips L I i a = 0 ft-- ---- L Pw = 1,92 kips I seismic F =. 3:326.. kips THE FOOTING DESIGN IS ADEQUATE. M = . ,0 ft -kips CRETE STRENGTH f� _ .. :2:5''- . ksi \R YIELD STRESS fy = 0: ':' . ks) BARS, LONGITUDINAL 4'; # rOM BARS, LONGITUDINAL 8 ,.;.:., # i5, rOM BARS, TRANSVERSE # 4, @ ;�24' in o,c. _= Not Required CLYSIS ;K OVERTURNING FACTOR (IBC 06 1605.2.1, 1801.2.1, & ASCE 7-05 12.13.4) F = MR / Mo = 1.27 > 1.4 x 0.75 / 0.9 for seismic Where Pf = 13.85475 kips (footing self weight) Mo = F (h + D) + M = 65 ft -kips (overturning moment) MR = (Pr.DL) (Li + a) + Pf (0.5 L) + Pw (Li + 0.51-w) = 83 ;K SOIL CAPACITY (ALLOWABLE STRESS DESIGN) Ps = 9.555 kips (soil weight in footing size) P = (Pr,DL + Pr,LI) + Pw + (Pf - PS) = 6.22 kips (total vertical net load) MR = (Pr,DL + Pr, LIQ (1-1 + a) + Pf (0.5 L) + Pw (Li + 0.51-w) = 83 e=0.5 L - (MR - rMo) / P = l 2.42 ft (eccentricity from middle of footing) PI 1+ L I L _ l BL 11, for e 5 6 9MAX - 2P for e> L = 0.56 ksf 3B(0.5L—e)' 6 Where a= 2.42 It, > (L / 6) ;K FOOTING CAPACITY (STRENGTH DESIGN) Mu,R = 1.2 (Pr.DL (Li + a) + Pf (0.5 L) + Pw (Li + 0.5Lw)) + 0.5 Pr. LL(Li + a) _ Mu,o = 1.4 [F(h + D) + M] = 91 ft -kips P„ = 1.2 (Pr.DL + Pf + Pw) + 0.5 Pr. LL = 19 kips eu = 0.51-- (Mu,R - Mu.0) / Pu = 4.82 ft b„ L e P„ 1 + L for e„ 5 — q„MAX = BL 6 = 11.32 ksf 2 P,, for e„ > 6 3B(0.5L — e„) , [Satisfactory] ft -kips (resisting moment without live load) ft -kips (resisting moment with live load) < 4/3ga [Satisfactory] 99 ft -kips U.w I 111/ Mu Xu ii t t iii ,�— Y, u 1 rnrawn_ cerT�nu Section 0 1/10 L 2/10 L 3/10 L 4/10 L 5/10 L 6/10 L 7/10 L 8/10 L 9/10 L L Xu (ft) 0 1.05 2.10 3.15 4.20 5.25 6.30 7.35 8.40 9.45 10.50 Pu.w (klf) 0.0 0.0 0.0 0.0 18.5 0.6 -17.4 0.0 0.0 0.0 0.0 M,.w (ft -k) 0 0 0 0 -13 47 -81 -96 -99 -101 -103 Vu.w (kips) 0 0 0 0 -25 -35 -27 -2 -2 -2 -2 Pu.f(ksf) 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 Muf(ft-k) 0 -1 -3 -8 -14 -22 -31 -43 -56 -71 -87 Vu.f(kips) 0 -2 -3 -5 -7 -8 -10 -12 -13 -15 -17 qu (ksf) -11.3 -2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Mu,q (ft -k) 0 12 32 52 71 91 111 131 151 171 191 Vu,q (kips) 0 18 19 19 19 19 19 19 19 19 19 £ Mu (ft -k) 0 11 28 44 44 23 -1 -8 -3 -1 0 E Vu(kips)0 1 17 1 16 14 -13 -25 -18 5 3 2 0 60 40 20 0 -20 20 0 -20 40 M SV Location Mu,max d (in) PregD PvrovO Vu,max mV, = 2 0 b d (f. f' Top Longitudinal -8 ft -k 38.69 0.0000 0.0010 25 kips 103 kips Bottom Longitudinal 44 ft -k 38.69 0.0018 0.0021 25 kips 103 kips Bottom Transverse 0 ft -k / It 38.13 0.0000 0.0000 1 kips / it 39 kips/ ft M 0.85E 1- 1- u 0.383bd' f Where P = fy 0.85,6,fc Eu PnUx = - f y Eu+Et P min = 0.0018 0.0129 [Satisfactory] (coned) John PROJECT: Taylor MC(16b PAGE: Wallin CLIENT DESIGN BY: Walling JOB NO $IND DATE: REVIEW BY ►LYSIS :K OVERTURNING FACTOR (IBC 06 1605.2.1, 1801.2.1, & ASCE 7-05 12.13.4) F =MR / Mo = 1.19 > 1.4 x 0.75 / 0.9 for seismic Where Pt = 13.1631 kips (footing self weight) Mo = F (h + D) + M = 53 ft -kips (overturning moment) MR = (Pr,00 (L+ + a) + Pr (0:5 L) + Pw (L, + 0.51-w) = 63 :K SOIL CAPACITY (ALLOWABLE STRESS DESIGN) Ps = 9.078 kips (soil weight in footing size) P = (P,.DL + Pr,LL) + Pw + (Pf - PS) = 6.97 kips (total vertical net load) MR = (Pr.DL + Pr. LL) (L, + a) + Pf (0.5 L) + Pw (L, + 0.51-w) = 65 e = 0.5 L - (MR - Mo) / P = 2.18 ft (eccentricity from middle of footing) P 1+ 6e - BL L ' for e 5 6 gMAX 2P for e> L = 0.96 ksf 3B(0.5L-e)' 6 Where e = 2.18 It, > (L / 6) ;K FOOTING CAPACITY (STRENGTH DESIGN) Mu,R = 1.2 IPr.DL (Li + a) + Pf (0.5 L) + Pw (L, + 0.51-j + 0.5 Pr. LL(Lr + a) _ Mu,o = 1.4 [F(h + D) + M] = 74 ft -kips Pu = 1.2 (Pr,DL + Pr + P,,,) + 0.5 Pr, LL = 19 kips eu=0.51--(MuR-Mu,o)/Pu= 3.85 It P„ I ] + 6L" I L ` J , for e., .5 - 9., mAx = BL 6 = 30.56 ksf 2p, for e„ > L 3B(0.5L-e„)' 6 (Satisfactory] ft -kips (resisting moment without live load) ft -kips (resisting moment with live load) < 4/3qa [Satisfactory] 77 ft -kips M, C•,. FLIT DATA j ALL LENGTH Lw = S.5 ft _ ALL HEIGHT h = 16.5 ft ALL THICKNESS t = 4 in i f TOTING LENGTH L = 8 It F' L,= 2.25 .ft �' I w TOTING WIDTH B = 2.67 It TOTING THICKNESS T = .51 in TOTING EMBEDMENT DEPTH D = .:. '3:6 ft LOWABLE SOIL PRESSURE qa = :"1:5.. ksf :AD LOAD AT TOP WALL Pr,OL = .: U.63 kips /E LOAD AT TOP WALL Pat. = 0:495" kips - I- I - - L w - IP LOAD LOCATION a = 2:75 , ft-- 4LL SELF WEIGHT Pw =. " 1.78 kips TERAL LOAD TYPE (0=wind,l=seismic) 1 seismic ISMIC LOADS AT TOP (E/1.4, ASD) F = 2.62' kips THE FOOTING DESIGN IS ADEQUATE. M = 0' ft -kips INCRETE STRENGTH fi = 2:5 ksi BAR YIELD STRESS fy = 80 ksi P BARS, LONGITUDINAL 4 # 5 ' iTTOM BARS, LONGITUDINAL `9 .' # :5 �TTOM BARS, TRANSVERSE #4. :. 24 in o.c. < _= Not Required ►LYSIS :K OVERTURNING FACTOR (IBC 06 1605.2.1, 1801.2.1, & ASCE 7-05 12.13.4) F =MR / Mo = 1.19 > 1.4 x 0.75 / 0.9 for seismic Where Pt = 13.1631 kips (footing self weight) Mo = F (h + D) + M = 53 ft -kips (overturning moment) MR = (Pr,00 (L+ + a) + Pr (0:5 L) + Pw (L, + 0.51-w) = 63 :K SOIL CAPACITY (ALLOWABLE STRESS DESIGN) Ps = 9.078 kips (soil weight in footing size) P = (P,.DL + Pr,LL) + Pw + (Pf - PS) = 6.97 kips (total vertical net load) MR = (Pr.DL + Pr. LL) (L, + a) + Pf (0.5 L) + Pw (L, + 0.51-w) = 65 e = 0.5 L - (MR - Mo) / P = 2.18 ft (eccentricity from middle of footing) P 1+ 6e - BL L ' for e 5 6 gMAX 2P for e> L = 0.96 ksf 3B(0.5L-e)' 6 Where e = 2.18 It, > (L / 6) ;K FOOTING CAPACITY (STRENGTH DESIGN) Mu,R = 1.2 IPr.DL (Li + a) + Pf (0.5 L) + Pw (L, + 0.51-j + 0.5 Pr. LL(Lr + a) _ Mu,o = 1.4 [F(h + D) + M] = 74 ft -kips Pu = 1.2 (Pr,DL + Pr + P,,,) + 0.5 Pr, LL = 19 kips eu=0.51--(MuR-Mu,o)/Pu= 3.85 It P„ I ] + 6L" I L ` J , for e., .5 - 9., mAx = BL 6 = 30.56 ksf 2p, for e„ > L 3B(0.5L-e„)' 6 (Satisfactory] ft -kips (resisting moment without live load) ft -kips (resisting moment with live load) < 4/3qa [Satisfactory] 77 ft -kips M, RFNIIINI4 MAMFNT R AMFAR AT FACM MnTINA SFCTIAN Section 0 1/10 L 2/10 L 3/10 L 4/10 L 5/10 L 6/10 L 7/10 L 8/10 L 9/10 L L Xu (ft) 0 0.80 1.60 2.40 3.20 4.00 4.80 5.60 6.40 7.20 8.00 Pu.,,,, (klf) 0.0 0.0 0.0 33.5 17.2 0.9 -15.4 -31.7 0.0 0.0 0.0 Mu,W (ft -k) 0 0 0 0 -14 -38 -62 -77 -80 -83 -85 Vu.W (kips) 0 0 0 -5 -25 -33 -27 -8 -3 -3 -3 Pu,f(ksO 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 Mud (ft -k) 0 -1 -3 -6 -10 -16 -23 -31 -40 -51 -63 Vu.f(kips) 0 -2 -3 -5 -6 -8 -9 -11 -13 -14 -16 qu (ksf) -30.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Mu.q (ft -k) 0 12 27 42 58 73 88 103 118 133 146 VU.q (kips) 0 19 19 19 19 19 19 19 19 19 19 £ Mu (ft -k) 0 12 25 36 34 19 3 -5 -3 -1 0 E Vu(kips)0 17 16 9 -13 -22 -17 0 3 2 0 40 20 0 -20 20 0 -20 -10 ®M ®V Location Mu,max d (in) PragD Pprovo Vu,max AV, = 2 � b d (f.' )os Top Longitudinal -5 ft -k 47.69 0.0000 0.0008 22 kips 130 kips Bottom Longitudinal 36 ft -k 47.69 0.0018 0.0018 22 kips 130 kips Bottom Transverse 1 ft -k / ft 47.13 0.0000 0.0000 1 kips / ft 48 kips / ft 0.85f' )- 1- M" f` 0.3836dfC Where P = Iy PMAX - 0.85j31fC Eu .fy Eu+Et P min = 0.0018 0.0129 (Satisfactory) (cont'd) I I t I t. 1 John PROJECT: Ta'ylor MC/16b PAGE: CLIENT: DESIGN BY: Walling JOB NO.: E DATE: REVIEW BY: P. INPUT DATA WALL LENGTHL, = 3.5 ft WALL HEIGHT h = 16.5 It WALL THICKNESS t= 4 in f"I FOOTING LENGTH L= 6 It L, = 1.25 ft FOOTING WIDTH 8 = Z-67 It FOOTING THICKNESS T= I in '-2', FOOTING EMBEDMENT DEPTH D It ALLOWABLE SOIL PRESSURE qa ksf D DEAD LOAD AT TOP WALL PrDL ;0 kips Ll L w LIVE LOAD AT TOP WALL Pr.LL = 0 kips TOP LOAD LOCATION a ft WALL SELF WEIGHT Pw=, 0.024 kips LATERAL LOAD TYPE (0 --wind, I =seismic)` 1, seismic SEISMIC LOADS AT TOP (E/1.4, ASD) F = 1.44.2 kips THE FOOTING DESIGN IS ADEQUATE. M .10 ft -kips CONCRETE STRENGTH fc'= 2:5 ksi REBAR YIELD STRESS f, = 60 ksi TOP BARS, LONGITUDINAL 4 # 5 BOTTOM BARS, LONGITUDINAL 9 # 5 BOTTOM BARS, TRANSVERSE # 4 @ 24 in o.c. Not Required ANALYSIS CHECK OVERTURNING FACTOR (IBC 06 1605.2.1, 1801.2.1, & ASCE 7-05 12.13.4) F =MR I MO = 1.21 > 1.4 x 0.75 / 0.9 for seismic [Satisfactory] Where Pf = 9.872325 kips (footing self weight) M0 = F (h + D) + M = 27 ft -kips (overturning moment) MR = (Pr,DL) (L, + a) + Pf (0.5 L) + Pw (1-1 + 0.51-w) = 32 ft -kips (resisting moment without live load) CHECK SOIL CAPACITY (ALLOWABLE STRESS DESIGN) PS = 6.8085 kips (soil weight in footing size) P = (P,,DL + Pr LL) + Pw + (Pf - Ps) = 3.99 kips (total vertical net load) MR = (Pr,DL + Pr, LL) (I., + a) + Pf (0.5 L) + Pw (Li + 0.51-w) = 32 ft -kips (resisting moment with live load) a = 0.5 L- (MR - MO) / P = 1.57 ft (eccentricity from middle of footing) P 1+ 6e) L , for e < L q"AX BL 6 2P L . 0.70 ksf < 4/3% for e> 3B(0.5L - e)' 6 [Satisfactory] Where e= 1.57 ft, > (L 16) CHECK FOOTING CAPACITY (STRENGTH DESIGN) MU.R = 1.2 [Pr,DL (Lj * a) + Pf (0.5 L) + Pw (1-1 + 0.51-j + 0.5 Pr, LL(Lj + a) = 39 ft -kips MU.0 = 1.4 [F(h + 0) + MI = 37 ft -kips Pu = 1.2 (Pr,DL + Pf + Pw) + 0-5 Pt. LL = 13 kips a. = 0.5L - (Mu,R - Mu.0) / Pu = 2.88 It U. '0" L for e.,:5.:E q_"," = 8L 6 = 27.59 ksf 2p,, L for e. > 6 'X u - RFNniNG MOMENT R SHEAR AT EACH FOOTING SECTION Section 0 1/10 L 2/10 L 3/10 L 4/10 L 5/10 L 6/10 L 7/10 L 8/10 L 9/10 L L Xu (ft) 0 0.80 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Pu.W (klf) 0.0 0.0 0.0 12.9 6.6 0.3 -6.0 -12.2 0.0 0.0 0.0 Mu,W (ft -k) 0 0 0 -3 -10 -19 -29 -36 -39 -40 -41 Vu,W (kips) 0 0 0 -9 -14 -17 -15 -9 -1 -1 -1 Pu,r (ksf) 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 Mu,l (ft -k) 0 0 -1 -3 -6 -9 -13 -17 -23 -29 -36 Vu,i (kips) 0 -1 -2 -4 -5 -6 -7 -8 -9 -11 -12 qu (ksf) -27.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Mum (ft -k) 0 6 14 22 30 37 45 53 61 68 76 Vu.q (kips) 0 13 13 13 13 13 13 13 13 13 13 E Mu (ft -k) 0 6 13 16 14 9 4 -1 -1 0 0 E Vu (kips) 0 12 11 1 -6 -10 -9 -5 2 1 0 20 15 10 5 0 -5 20 10 0 -10 -20 ®M ®V Location Mu,max d (in) ProgD PprovD Vu.max �Vc = 2 r b d (f,,')0-5 Top Longitudinal -1 ft -k 47.69 0.0000 0.0008 12 kips 130 kips Bottom Longitudinal 16 ft -k 47.69 0.0018 0.0018 12 kips 130 kips Bottom Transverse 1 ft -k / ft 47.13 0.0000 0.0000 1 kips / ft 48 kips / ft o.s5f')- )- M„ 0.383bdz f� Where P = J { y _ - 0.85,0, f c Eu - PMAX - f CU+Et P min = 0.0018 0.0129 (Satisfactory] (confd) 194 11 1� 1 I John PROJECT: Taylor MC/16b PAGE: CLIENT: DESIGN BY: Walling JOB NO.: SWF. DATE: REVIEW BY: Fddtin Desi n;of.'Shear,Wa1P'500090C C1318=Q5—.i; INPUT DATA _ % WALL LENGTH Lw = 2.67 ft WALL HEIGHT h = 10 It F WALL THICKNESS t = .4• .. in M FOOTING LENGTH L = 4.675 ft p I w Lt = 1.. .. ft{ i FOOTING WIDTH B = 2.67. ft +I FOOTING THICKNESS T = 50 in PF FOOTING EMBEDMENT DEPTH D = :: 4.8. " It ALLOWABLE SOIL PRESSURE qa =. `T:5'. ksf i DEAD LOAD AT TOP WALL Pr,DI = kips r� I�- L 1 --�+' ----- L w LIVE LOAD AT TOP WALL Pr,LL = kips TOP LOAD LOCATION a = ft WALL SELF WEIGHT Pw = 0.427 kips LATERAL LOAD TYPE (0=wind,1=seismic) 1 seismic SEISMIC LOADS AT TOP (E/1.4, ASD) F = 2.401 kips THE FOOTING DESIGN IS INADEQUATE. M = . 0 ft -kips CONCRETE STRENGTH f� _ 2.5 ksi REBAR YIELD STRESS fy =. 66 ksi TOP BARS, LONGITUDINAL 4 # 5 BOTTOM BARS, LONGITUDINAL 4 # 5 BOTTOM BARS, TRANSVERSE # 4 @ '24 in o.c. <== Not Required ANALYSIS CHECK OVERTURNING FACTOR (IBC 06 1605.2.1, 1801.2.1, & ASCE 7-05 12.13.4) F = MR / Mo = 0.54 < 1.4 x 0.75 / 0.9 for seismic [Unsatisfactory] Where Pf = 7.541359 kips (footing self weight) Mo = F (h + D) + M = 34 ft -kips (overturning moment) MR = (Pr,oL) (1-1 + a) + Pf (0.5 L) + Pw (L1 + 0.5Lw) = 19 ft -kips (resisting moment without live load) CHECK SOIL CAPACITY (ALLOWABLE STRESS DESIGN) Ps = 5.200938 kips (soil weight in footing size) P = (Poi- + pr,LL) + Pw + (Pf - Ps) = 2.77 kips (total vertical net load) MR = (pr,DL + Pr, LL) (L1 + a) + Pf (0.5 L) + Pw (1-1 + 0.51.w) = 19 ft -kips (resisting moment with live load) e = 0.5 L - (MR - / P =ll 8.01 ft (eccentricity from middle of footing) rrMO) PI1+LJL for e 5 9MAX BL 6 2 P L = 0.12 ksf c 4/3% for e> 3B(0.5L—e)' 6 [Satisfactory] Where e= 8.01 ft, ?(L/6) CHECK FOOTING CAPACITY (STRENGTH DESIGN) Mu,R = 1.2 (Pr.DL (L1 + a) + Pf (0.5 L) + Pw (1-1 + 0.51-w)] + 0.5 Pr. LL(L1 + a) = 22 ft -kips Mu.o = 1.4 (F(h + D) + M] = 48 ft -kips Pu = 1.2 (Pr,0L + Pf + Pw) + 0.5 Pr, LL = 10 kips eu = 0.51-- (MU- Mu,o) / Pu = 5.03 ft ,R 11 P.,1 + C L", .tor e., q..x(AX = BL 6 = -0.89 ksf P„ for e„ > — 6 Xu --% RFN(NNr: MnMFNT R RNFAR AT FACW FAOTINr: RFCTInN Section 0 1/10 L 2/10 L 3/10 L 4/10 L 5/10 L 6/10 L 7/10 L 8/10 L 9/10 L L Xu (ft) 0 0.47 0.94 1.40 1.87 2.34 2.81 3.27 3.74 4.21 4.68 Pu,w (kif) 0.0 0.0 0.0 28.5 14.3 0.1 -14.1 -28.2 0.0 0.0 0.0 Mu,w (ft -k) 0 0 0 -3 -12 -24 -37 -46 -49 -49 -49 Vu,w (kips) 0 0 0 -14 -24 -27 -24 -14 -1 -1 -1 Pu,f (ksf) 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 Mu,f (ft -k) 0 0 -1 -2 -3 -5 -8 -10 -14 -17 -21 Vu.f(kips) 0 -1 -2 -3 -4 -5 -5 -6 -7 -6 -9 qu (ksf) 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Mu,q (ft -k) 0 30 35 39 44 48 53 57 61 66 70 Vu,q (kips) 0 10 10 10 10 10 10 10 10 10 10 E Mu (ft -k) 0 30 34 34 28 19 8 1 -1 0 0 E Vu (kips) 0 9 8 -7 -18 -22 -20 -11 2 1 0 40 30 20 10 0 -10 20 0 -20 -40 ®M ®V Location Mu,max d (in) PmgD PprovD Vu,max QVC = 2 0 b d (f�)as Top Longitudinal -1 ft -k 46.69 0.0000 0.0008 22 kips 127 kips Bottom Longitudinal 34 ft -k 46.69 0.0018 0.0008 22 kips 127 kips Bottom Transverse 1 ft -k / ft 46.13 0.0000 0.0000 1 kips / ft 47 kips / It ossf']- ]- M� ` 0.383bd2 fc Where ip = {' J y 0.85,6, f � cu Ptiux = _ .f y Eu+Ct P min = 0.0018 0.0129 [Unsatisfactory] (cont'd) 1 ,M, PROJECT: Youhg,Addition CLIENT: JOB NO.: )OTING WIDTH )OTING THICKNESS )OTING EMBEDMENT DEPTH LOWABLE SOIL PRESSURE :AD LOAD AT TOP WALL /E LOAD AT TOP WALL IP LOAD LOCATION 4LL SELF WEIGHT TERAL LOAD TYPE (0=wind,l=seismic) ISMIC LOADS AT TOP (E/1.4, ASD) DATE: PAGE: DESIGN BY: REVIEW BY: John Wallin Lw = 2.33 FQotiin" kOesrg h = INPUT DATA ft— WALL LENGTH 4 in WALL HEIGHT L = 5.33. WALL THICKNESS PW L, = FOOTING LENGTH 1 ,M, PROJECT: Youhg,Addition CLIENT: JOB NO.: )OTING WIDTH )OTING THICKNESS )OTING EMBEDMENT DEPTH LOWABLE SOIL PRESSURE :AD LOAD AT TOP WALL /E LOAD AT TOP WALL IP LOAD LOCATION 4LL SELF WEIGHT TERAL LOAD TYPE (0=wind,l=seismic) ISMIC LOADS AT TOP (E/1.4, ASD) DATE: PAGE: DESIGN BY: REVIEW BY: RETE STRENGTH 25 ksi \R YIELD STRESS fy = 80 ksi BARS, LONGITUDINAL 4 # 5 'OM BARS, LONGITUDINAL 9 # 5 'OM BARS, TRANSVERSE # 41 rQ 24 in o.c. LLYSIS :K OVERTURNING FACTOR (IBC 06 1605.2.1, 1801.2.1, & ASCE 7-05 12.13.4) F = MR / Mo = 1.23 > 1.4 x 0.75 10.9 for seismic Where Pt = 8.597956 kips (footing self weight) Mo = F (h + D) + M = 20 ft -kips (overturning moment) MR = (Pr,DL) (L, + a) + Pf (0.5 L) + Pw (L, + 0.51-w) = 24 SOIL CAPACITY (ALLOWABLE STRESS DESIGN) Ps = 5.929625 kips (soil weight in footing size) P = (Pr.DL + Pr,LL) + Pw + (Pf - Ps) = 3.10 kips (total vertical net load) MR=(PDX + Pr, LL) (LI +a)+Pf(0.5L)+Pw(LI +0.51-0= 24 e = 0.5 L - (MR - Mo) / P = 1.22 ft (eccentricity from middle of footing) P 1+6e gMAX — BL L ' for e 5 6 2P for e> L = 0.54 ksf 3B(0.5L—e)' 6 Where a= 1.22 It, > (L / 6) FOOTING CAPACITY (STRENGTH DESIGN) Mu,R = 1.2 IPr.DL (L, + a) + Pf (0.5 L) + Pw (L, + 0.51-j + 0.5 Pr, LL(L, + a) _ Mu.() = 1.4 IF(h + D) + MI = 27 ft -kips Pu = 1.2 (Pr.DL + Pf + Pw) + 0.5 Pr, LL = 11 kips eu = 0.51.- (MU,R - Mu.0) / Pu = 2.53 It 6e„ P. 1+ L L for e„ 5 — q,,M'" = BL 6 = 20.42 ksf 2p,, for e„ > L 3B(O.SL—e„)' 6 I < == Not Required ISatisfactory] ft -kips (resisting moment without live load) ft -kips (resisting moment with live load) < 4/3qa [Satisfactory] 29 ft -kips I-U.,v li u,f 101'Mu .t XI; _- M F,- Lw = 2.33 It h = 10 ft— t = 4 in f L = 5.33. It PW L, = 1.Q ft 1 B = 2:67 It T = 50 in F f D = .'.`4.3 ft .: qa=...,.1.5 ksf yD T Pr.DL = kips Pr,LL = kips -- L I L w — a= It — ---L Pw = 0.427 kips 1.. seismic F = :1:37 kips THE FOOTING DESIGN IS ADEQUATE. M = ,0 ft -kips RETE STRENGTH 25 ksi \R YIELD STRESS fy = 80 ksi BARS, LONGITUDINAL 4 # 5 'OM BARS, LONGITUDINAL 9 # 5 'OM BARS, TRANSVERSE # 41 rQ 24 in o.c. LLYSIS :K OVERTURNING FACTOR (IBC 06 1605.2.1, 1801.2.1, & ASCE 7-05 12.13.4) F = MR / Mo = 1.23 > 1.4 x 0.75 10.9 for seismic Where Pt = 8.597956 kips (footing self weight) Mo = F (h + D) + M = 20 ft -kips (overturning moment) MR = (Pr,DL) (L, + a) + Pf (0.5 L) + Pw (L, + 0.51-w) = 24 SOIL CAPACITY (ALLOWABLE STRESS DESIGN) Ps = 5.929625 kips (soil weight in footing size) P = (Pr.DL + Pr,LL) + Pw + (Pf - Ps) = 3.10 kips (total vertical net load) MR=(PDX + Pr, LL) (LI +a)+Pf(0.5L)+Pw(LI +0.51-0= 24 e = 0.5 L - (MR - Mo) / P = 1.22 ft (eccentricity from middle of footing) P 1+6e gMAX — BL L ' for e 5 6 2P for e> L = 0.54 ksf 3B(0.5L—e)' 6 Where a= 1.22 It, > (L / 6) FOOTING CAPACITY (STRENGTH DESIGN) Mu,R = 1.2 IPr.DL (L, + a) + Pf (0.5 L) + Pw (L, + 0.51-j + 0.5 Pr, LL(L, + a) _ Mu.() = 1.4 IF(h + D) + MI = 27 ft -kips Pu = 1.2 (Pr.DL + Pf + Pw) + 0.5 Pr, LL = 11 kips eu = 0.51.- (MU,R - Mu.0) / Pu = 2.53 It 6e„ P. 1+ L L for e„ 5 — q,,M'" = BL 6 = 20.42 ksf 2p,, for e„ > L 3B(O.SL—e„)' 6 I < == Not Required ISatisfactory] ft -kips (resisting moment without live load) ft -kips (resisting moment with live load) < 4/3qa [Satisfactory] 29 ft -kips I-U.,v li u,f 101'Mu .t XI; _- M OCUnO1G SAMECUT 2 CUP AD AT CALM CARTING CCL'TInN Section 0 1/10 L 2/10 L 3/10 L 4/10 L 5/10 L 6/10 L 7/10 L 8/10 L 9/10 L L Xu (ft) 0 0.53 1.07 1.60 2.13 2.67 3.20 3.73 4.26 4.80 5.33 P,,, (MO 0.0 0.0 0.0 28.0 14.1 0.2 -13.6 -27.5 0.0 0.0 0.0 Mu,v, (ft -k) 0 0 0 0 -5 -14 -23 -28 -28 -29 -29 Vu,W (kips) 0 0 0 -3 -14 -18 -14 -3 -1 -1 -1 Pu.t(ksf) 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 Mus (ft -k) 0 0 -1 -2 -4 -7 -10 -13 -18 -22 -27 Vu.r(kips) 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 qu (ksf) -20.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Mu,q (ft -k) 0 4 10 16 22 27 33 39 45 51 56 Vu.q (kips) 0 11 11 11 11 11 11 11 11 11 11 E Mu (ft -k) 0 4 9 13 12 7 1 -2 -1 0 0 C Vu (kips) 0 10 9 5 -7 -12 -10 0 2 1 1 0 15 10 5 0 -5 20 10 0 -10 -20 MM ®V Location Mu,max d (in) PregO PproVD Vu.max QVC = 2 0 b d (fc,fs Top Longitudinal -2 ft -k 46.69 0.0000 0.0008 12 kips 127 kips Bottom Longitudinal 13 ft -k 46.69 0.0018 0.0019 12 kips 127 kips Bottom Transverse 1 ft -k / ft 46.13 0.0000 0.0000 1 kips / ft 47 kips I ft r 0.85f'1 )- 1- M„') 0.383bd'fC Where P = l fy 0.85f3,fc Eu _ P,�,,,x = - 0.0129 .f y Eu+Et P min = 0.0018 [Satisfactory) (confd) 1 t i John Wallin Foafi611?Desi" n INPUT DATA WALL LENGTH WALL HEIGHT WALL THICKNESS FOOTING LENGTH PROJECT: 7aylor'MC196b . CLIENT: JOB NO.: 'SWN. TING WIDTH TING THICKNESS TING EMBEDMENT DEPTH )WABLE SOIL PRESSURE 3 LOAD AT TOP WALL LOAD AT TOP WALL LOAD LOCATION L SELF WEIGHT :RAL LOAD TYPE (O--wind,I=seismic) MIC LOADS AT TOP (E/1.4, ASD) Lw = 2 ft h = 10 ft t =:.` .:4 in L= S ft Li = 1:¢ : ft B = 2.67.'' ft T = '50 in D = 4:3 ft Pr.DL=.. kips Pr,LL = kips a = ft Pw = .:9:32 kips 1 seismic F = 0.956 kips M = ...:0, ft -kips DATE: CRETE STRENGTH ksi 4R YIELD STRESS fy = 60. ksi BARS, LONGITUDINAL 4 # 5 QOM BARS, LONGITUDINAL 9. # 5 rOM BARS, TRANSVERSE # :4 (d3 24 in o.c. ►LYSIS ;K OVERTURNING FACTOR (IBC 06 1605.2.1, 1801.2.1, & ASCE 7-05 12.13.4) F = MR / Mo = 1.53 > 1.4 x 0.75 / 0.9 for seismic Where Pf = 8.065625 kips (fooling self weight) Mo = F (h + D) + M = 14 ft -kips (overturning moment) MR = (Pr.DL) (1-1 + a) + Pr (0.5 L) + Pw (1-1 + 0.51-0 = 21 SOIL CAPACITY (ALLOWABLE STRESS DESIGN) Ps = 5.5625 kips (soil weight in footing size) P = (Pr,DL + Pr,LL) + Pw + (Pf - PS) = 2.82 kips (total vertical net load) MR=(Pr.DL+Pr, LL) (LI +a)+Pt(0.5L)+Pw(L1+0.51-0= 21 e = 0.5 L - (MR - /(Mo) / P = l -0.08 ft (eccentricity from middle of footing) P I 1+ Le I L fill BL /// , for e< 6 q"AX 2P for e > L 0.19 ksf = 3B(0.5L—e)' 6 Where a= -0.08 ft, -c (L / 6) FOOTING CAPACITY (STRENGTH DESIGN) Mu,R = 1.2 [Pr,DL (L, + a) + Pf (0.5 L) + Pw (L, + 0.51-j + 0.5 Pr. LL(Li + a) _ Mu,o = 1.4 [F(h + D) + M] = 19 ft -kips Pu = 1.2 (Pr,DL + Pf + Pw) + 0.5 Pr, LL = 10 kips e„=0.5L-(MuR-Mu.o)/Pu= 1.90 ft P. 1+ 6e., L for e„ S L q,,NAX = BL 6 = 4.20 ksf 2P. for e„ > L 3B(0.5L—e„)' 6 PAGE: DESIGN BY: REVIEW BY: THE FOOTING DESIGN IS ADEQUATE. < == Not Required [Satisfactory] ft -kips (resisting moment without live load) ft -kips (resisting moment with live load) < 413 qa [Satisfactory] 25 ft -kips F: U, V� L� e M` 1 y If 200 Location Mu,max d (in) [�regD PprovD Vu,max �Vc = 2 m b d (f.')0-5Top Longitudinal -2 ft -k 46.69 (cont'd) BENDING MOMENT & SHEAR AT EACH FOOTING SECTION 9 kips 127 kips Bottom Longitudinal 7 ft -k 46.69 0.0018 Section 0 1/10 L 2/10 L 3/10 L 4/10 L 5/10 L 8/10 L 7/10 L 8/10 L 9/10 L L Xu (ft) 0 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 Pu,W (klf) 0.0 0.0 0.0 28.9 14.5 0.2 -14.2 -28.5 0.0 0.0 0.0 Mu,W (ft -k) 0 0 0 0 -3 -10 -16 -20 -20 -20 -20 Vu w (kips) 0 0 0 0 -11 -15 -11 0 0 0 0, Pu.1(kst} 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 Mu,r (ft -k) 0 0 -1 -2 -4 -6 -9 -12 -15 -20 -24 Vu,r(kips) 0 -1 -2 -3 4-5 -6 -7 -8 -9 -10 qu (ksf) -4.2 -3.0 -1.9 -0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Mu.y (ft -k) 0 1 5 9 14 19 24 29 34 39 44 Vu.q 10 10 10 £ Mu (ft -k) 0 1 4 7 7 3 -1 -2 -1 0 0 £ Vu (kips) 0 4 6 7 -5 -9 -7 3 2 1 0 10 5 0 ®M -5 10 0 -10 0 V -20 M u O.pSf �- �- 0.383bdZ f C Where P = P min = 0.0018 fy 0.85)(3, f c Eu Pn�,.r = = 0.0129 [Satisfactory) f y Eu+Ct Location Mu,max d (in) [�regD PprovD Vu,max �Vc = 2 m b d (f.')0-5Top Longitudinal -2 ft -k 46.69 0.0000 0.0008 9 kips 127 kips Bottom Longitudinal 7 ft -k 46.69 0.0018 0.0019 9 kips 127 kips Bottom Transverse 1 ft -k / ft 46.13 0.0000 0.0000 1 kips / ft 47 kips / ft (kips) 0 5 8 10 10 10 10 10 10 10 10 £ Mu (ft -k) 0 1 4 7 7 3 -1 -2 -1 0 0 £ Vu (kips) 0 4 6 7 -5 -9 -7 3 2 1 0 Location Mu,max d (in) [�regD PprovD Vu,max �Vc = 2 m b d (f.')0-5Top Longitudinal -2 ft -k 46.69 0.0000 0.0008 9 kips 127 kips Bottom Longitudinal 7 ft -k 46.69 0.0018 0.0019 9 kips 127 kips Bottom Transverse 1 ft -k / ft 46.13 0.0000 0.0000 1 kips / ft 47 kips / ft 99 L d ss 7 oszz /86L �z-L i TAYLOR MC/16b (Casita) J BEAM AND HEADER LOADING DIAGRAMS gorz n� I) 5 24-, S = ro 25 = 45 ( '/z+ 4/2 r 2 -SS W =4.5015E- ' 6.25 1,42-7' 4-6 (17.-5/2_+ $/z�' 454`' i w = 4s4 5' b2ro, 5= ICn' w- 45( 14/Z+ ' wz MFcu U -NA 1 62�, s- ¢ W, - us 2D, 70 wz- 135"s 55 4 Q' m--1 � I 5) C32% s= �. 5' W = 45 (Ce/)-) ' 33 S �'=3sbYi 149 275 2,0' Z= 1 &07` e = - '( 4E a)(a 6,G6 &)X 10 w= 45(2-) = 9a"'*, w = �)O w = 4-5,(1-7/,L + 4.5) = S&5 `' ' b W = 585 W-= 45 ( 14,6)2- + O-= 17 r "z° pj 2oS w=,-371 ice, �•5` w1 4S( I7.5/Ztl� = 44Gkr ' 75 ' BP rzM J2) IjCoI S= 8.5 284 222 ' Q .= 2,Laor R= 22oe' (�, x to 2-665 �Xlo 2v4 ,00d� Beam �I Description 824 'Analysis Material Properties Maximum Shear Stress Ratio Calculations per IBC 2006, CBC 2007, 2005 NDS Method: Allowable Stress Design Fb - Tension 1,350.0 psi E: Modulus of Elasticity 965.18psi Load Combination 20061BC&ASCE7-05 Fb - Compr 1,350.0 psi Ebend- xx 1,600.Oksi Load Combination +D+Lr+H Fc - Pril 925.0 psi Eminbend - xx 580.Oksi Location of maximum on span Wood Species : DouglasFir-Larch Fc - Perp 625.0 psi Length = 2.0 It ' Wood Grade : No.1 Fv 170.0 psi 1.000 1.000 1.000 1.000 1.000 ' Length = 0.250 It Ft 675.0 psi Density 32.210pcf 1.000 Beam Bracing Beam bracing is defined as a set spacing over all spans 1.000 1.000 1.000 1.000 2.23 ' r Unt�aced'Lengtts 0.51 1.000 1.000 1.000 1.000 1.000 J+D+Lr+H Length = 2.0 It _^ 0.622 1 .1 1 First Brace starts at 0.0 ft from Left Most suppo Regular spacing of lateral supports on length of beam = 2. 0 ft Span = 6.250 ft Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load: D = 0.2520, Lr = 0.1980 ktft, Tributary Width =1.0 ft DESIGN ........ ........... r - I... Vlaximum Bending Stress Ratio = 0.7151 Maximum Shear Stress Ratio Section used for this span 6x6 Section used for this span fb : Actual 965.18psi fv : Actual FB: Allowable 1,350.00psi Fv : Allowable Load Combination +D+Lr+H Load Combination Location of maximum on span = 3.125ft Location of maximum on span Span # where maximum occurs = Span # 1 Span # where maximum occurs Maximum Deflection Max Downward L+Lr+S Deflection 0.056 in Ratio= 1335 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.130 in Ratio= 578 Max Upward Total Deflection 0.000 in Ratio= 0 <180 0.358 : 1 6x6 60.87 psi = 170.00 psi +D+Lr+H 0.000 ft Span # 1 Maxim.0"m Fo ces:r;<'Sfresses for:: Lgadtt"'Ohiiions Load Combination Max Stress Ratios Summary of Moment Values_ Summary of Shear Values Segment Length Span # M V C d C ftv Cr Cm C t C fu Mactual fb-design Fb-allow Vactual fv- design Fv-allow 40 475.93 1,350.00 0.70 34.48 170.00 Length = 2.0 ft 1 0.353 0.203 1.000 1.000 1.000 1.000 1.000 1.000 Length = 2.0 ft 1 0.405 0.203 1.000 1.000 1.000 1.000 1.000 1.000 Length = 2.0 It 1 0.373 0.203 1.000 1.000 1.000 1.000 1.000 1.000 ' Length = 0.250 It 1 0.062 0.203 1.000 1.000 1.000 1.000 1.000 1.000 2.23 965.18 1,350.00 0.51 1.000 1.000 1.000 1.000 1.000 J+D+Lr+H Length = 2.0 It 1 0.622 0.358 1.000 1.000 1.000 1.000 1.000 1.000 Length = 2.0 ft 1 0.715 0.358 1.000 1.000 1.000 1.000 1.000 1.000 ' Length = 2.0 ft 1 0.659 0.358 1.000 1.000 1.000 1.000 1.000 1.000 Length = 0.250 ft 1 0.110 0.358 1.000 1.000 1.000 1.000 1.000 1.000 1.10 475.93 1,350.00 0.70 34.48 170.00 1.26 546.79 1,350.00 0.29 34.48 170.00 1.16 503.92 1,350.00 0.70 34.48 170.00 0.19. 83.99 1,350.00 0.70 34.48 170.00 1.94 840.09 1,350.00 1.23 60.87 170.00 2.23 965.18 1,350.00 0.51 60.87 170.00 2.06 889.51 1,350.00 1.23 60.87 170.00 0.34 148.25 1,350.00 1.23 60.87 170.00 r� 1 1� ood Beam Desi n: 9 -File: C Owuments and Set6rigsIPCZ^. Do!: rt"nts\ENERCALC DATA FlLEsltaybrrtx 16b.ed6 :,■ ... License RCALC ING 1963.20,1 ENE O Ver":�6151 N�50790 . Owner: Description: B24 Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C f/v C r Cm C t C fu _ Mactual fbdesign Fb-allow , Vactual fvdesign Fv-allow +D+0.750Lr+0.750L+H 1.000 1.000 1.000 1.000 1.000 Length = 2.0 ft 1 0.555 0.319 1.000 1.000 1.000 1.000 1.000 1.000 1.73 749.05 1,350.00 1.09 54.27 170.00 Length = 2.0 ft 1 0.637 0.319 1.000 1.000 1.000 1.000 1.000 1.000 1.99 860.58 1,350.00 0.46 54.27 170.00 Length = 2.0 It 1 0.587 0.319 1.000 1.000 1.000 1.000 1.000 1.000 1.83 793.11 1,350.00 1.09 54.27 170.00 Length = 0.250 It 1 0.098 0.319 1.000 1.000 1.000 1.000 1.000 1.000 0.31 132.19 1,350.00 1.09 54.27 170.00 +D+0.750Lr+0.750L+0.750W+H 1.000 1.000 1.000 1.000 1.000 Length = 2.0 ft 1 Length = 2.0 ft 1 0.555 0.637 0.319 0.319 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.73 1.99 749.05 860.58 1,350.00 1,350.00 1.09 0.46 54.27 54.27 170.00 170.00 Length = 2.0 ft 1 0.587 0.319 1.000 1.000 1.000 1.000 1.000 1.000 1,83 793.11 1,350.00 1.09 54.27 170.00 Length = 0.250 ft 1 0.098 0.319 1.000 1.000 1.000 1.000 1.000 1.000 0.31 132.19 1,350.00 1.09 54.27 170.00 +D+0.750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 Length = 2.0 ft 1 0.555 0.319 1.000 1.000 1.000 1.000 1.000 1.000 1.73 749.05 1,350.00 1.09 54.27 170.00 ' Length = 2.0 It 1 0.637 0.319 1.000 1.000 1.000 1.000 1.000 1.000 1.99 860.58 1,350.00 0.46 54.27 170.00 Length = 2.0 ft 1 0.587 0.319 1.000 1.000 1.000 1.000 1.000 1.000 1.83 793.11 1,350.00 1.09 54.27 170.00 Length = 0.250 It 1 0.098 0.319 1.000 1.000 1.000 1.000 1.000 1.000 0.31 132.19 1,350.00 1.09 54.27 170.00 'Overall Maximum Deflections Unfactored'Loads. Load Combination Span Max. ' Dell Location in Span Load Combination Max. '+' Defl Location in Span D+Lr 1 0.1296 3.156 0.0000 0.000 Vert 61 kejcU' s = UnfaCtO_ ted Support notation • Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 1.427 1.427 D Only 0.809 0.809 FLr Ony 0.619 0.619 D+Lr 1.427 1.427 r� 1 1� OOi� Beam �@$) h { + • File C 1Documenis and semngs1PC31My t)ocumentslENERCALGDATA FILE511aylor me 1sti ec6 �; EMERCALC, INC 1983 2010 Ver.041 ,N:W,.. s r.., -Lic. # : K -06007390 License Owner: WALLING MCCALLUM LTD. Description : B25 Material Properties Calculations per IBC 2006, CBC 2007, 2005 NDS Analysis Method: Allowable Stress Design Fb - Tension 1,350.0 psi Load Combination 20061BC&ASCE7-05 Fb - Compr 1,350.0 psi Fc - Prll 925.0 psi Wood Species : DouglasFir-Larch Fc - Perp 625.0 psi ' Wood Grade : No -1 Fv 170.0 psi Ft 675.0 psi Beam Bracing : Beam bracing is defined as a set spacing over all spans Onlraced:Lengfhs. -- - ---- First Brace starts at 0.0 ft from Left -Most support ------- _ Regular spacing of lateral supports on length of beam = 2.0 ft 1 E: Modulus of Elasticity Ebend- xx 1,600.0 ksi Eminbend - xx 580.0 ksi Density 32.210pcf Span =5.0ft V,M­hetl,LOads -__ Service loads entered. Load Factors will be applied for calculations_ Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load: D = 0.2180, Lr = 0.2130 k/ft, Tributary Width =1.0 ft :__ • ........ ....... .......... ... ... ........... _......... Maximum Bending Stress Ratio = _..... 0.4391 Maximum Shear Stress Ratio = 0.262 :1 Section used for this span fb : Actual 6x6 Section used for this span 592.02 psi fv :Actual 6x6 44.50 psi FB: Allowable = 1,350.00psi Fv : Allowable 170.00 psi Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span 2.500ft Location of maximum on span 0.000 ft Span # where maximum occurs Span # 1 Span # where maximum occurs Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.025 in Ratio= 2424 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 ' Max Downward Total Deflection 0.051 in Ratio= 1179 i Max Upward Total Deflection0.000 in Ratio= 0 <180 Maximum Forces & Stresses for Load Combinations Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # - M --i V_ - -C d C f/v_.- r Cm C_ t� C fu lb -design Fb-allow Vactual tv-design Fvallow `Mactual ._C - `- Length = 2.0 It 1 0.216 0.134 1.000 1.000 1.000 1.000 1.000 1.000 0.67 291.81 1,350.00 0.46 22.85 170.00 Length = 2.0 ft 1 0.225 0.134 1.000 1.000 1.000 1.000 1.000 1.000 0.70 303.97 1,350.00 0.34 22.85 170.00 Length =1.0 It 1 0.144 0.134 1.000 1.000 1.000 1.000 1.000 1.000 0.45 194.54 1,350.00 0.46 22.85 170.00 +D+Lr+H 1.000 1.000 1.000 1.000 1.000 Length = 2.0 It 1 0.421 0.262 1.000 1.000 1.000 1.000 1.000 1.000 1.31 568.34 1,350.00 0.90 44.50 170.00 Length = 2.0 ft 1 0.439 0.262 1.000 1.000 1.000 1.000 1.000 1.000 1.37 592.02 1,350.00 0.66 44.50 170.00 =1.0 ft 1 0.281 0.262 1.000 1.000 1.000 1.000 1.000 1.000 0.88 378.89 1,350.00 0.90 44.50 170.00 'Length +D+0.750Lr+0.750L+H 1.000 1.000 1.000 1.000 1.000 Length = 2.0 ft 1 0.370 0.230 1.000 1.000 1.000 1.000 1.000 1.000 1.15 499.21 1,350.00 0.79 39.09 170.00 1 2�7 - T - - - -- ------ -- File: 00mumentsand SetlingsTUW Haim ;D.esign; Description: B25 l ri, 1 1 [I 1� i Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C fN C r Cm C t C fu Mactual fb design Fb-allow Vactual fv-clesign Fv-allow Length = 2.01t 1 0.385 0.230 1.000 1.000 1.000 1.000 1.000 1.000 1.20 520.01 1,350.00 0.58 39.09 170.00 Length =1.0 It 1 0.247 0.230 1.000 1.000 1.000 1.000 1.000 1.000 0.77 332.80 1,350.00 0.79 39.09 170.00 '+D+0.750Lr+0.750L+0.750W+H Length = 2.0 ft 1 0.370 0.230 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.15 499.21 1,350.00 0.79 39.09 170.00 Length = 2.0 It 1 0.385 0.230 1.000 1.000 1.000 1.000 1.000 1.000 1.20 520.01 1,350.00 0.58 39.09 170.00 Length =1.0 It 1 0.247 0.230 1.000 1.000 1.000 1.000 1.000 1.000 0.77 332.80 1,350.00 0.79 39.09 170.00 +D+0.750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 = 2.0 It 1 0.370 0.230 1.000 1.000 1.000 1.000 1.000 1.000 1.15 499.21 1,350.00 0.79 39.09 170.00 'Length Length = 2.0 it 1 0:385 0.230 1.000 1.000 1.000 1.000 1.000 1.000 1.20 520.01 1,350.00 0.58 39.09 170.00 Length =1.0 it 1 0.247 0.230 1.000 1.000 1.000 1.000 1.000 1.000 0.77 332.80 1,350.00 0.79 39.09 170.00 'OveraJtilNaximum;Deftections-Unfactored Loads Load Combination Span Max. • " Dell Location in Span Combination Max. '+• Defl Location in Span D+Lr 1 0.0509 _Load 2.525 - 0.0000 0.000 Unfiddr@d Support notation : Far left is #1 Values in KIPS 'VefUC81'R@BCtlohs,-. Load Combination Support 1 _ Support 2 Overall MAXimum 1.094 1.094 D Only 0.562 0.562 Lr Only 0.533 0.533 D+Lr 1.094 1.094 l ri, 1 1 [I 1� i sz_tc.s ".1..11 Description: B26 Beam Bracing : Beam bracing is defined as a set spacing over all spans 'First Brace starts at 0.0 ft from Left -Most support Regular spacing of lateral supports on length of beam = 2.0 ft Span = 16.0 ft Material Properties Service loads entered. Load Factors will be applied for calculations. - -pp Calculations per IBC 2006, CBC 2007, 2005 NDS Beam self weight calculated and added to loads Analysis Method: Allowable Stress Design Fb - Tension 2900 psi E: Modulus of Elasticity Load Combination 20061BC&ASCE7 05 Fb - Compr 2900 psi Ebend xx 2000ksi Fc - Pdl 2900 psi Eminbend - xx 1016.535ksi Wood Species : iLevel Truss Joist Fc - Perp 750 psi ' Wood Grade : Parallam PSL 2.0E Fv 290 si • .............. _... _:_.:....... _.:._._:.._. :Maximum Bending Stress Ratio - Ft 2025 psi Density 32.21 pcf Beam Bracing : Beam bracing is defined as a set spacing over all spans 'First Brace starts at 0.0 ft from Left -Most support Regular spacing of lateral supports on length of beam = 2.0 ft Span = 16.0 ft ✓� Service loads entered. Load Factors will be applied for calculations. - -pp Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load: D = 0.2020, Lr = 0.1580 k/ft, Tributary Width =1.0 ft `DES/6N_SUMMARY_..._...._: • .............. _... _:_.:....... _.:._._:.._. :Maximum Bending Stress Ratio - ....... ::._...... ..:_.......... _ 0.3051 Maximum Shear Stress Ratio = 0.166: 1 Section used for this span_ 7.0x11.875 Section used for this span 7.0x11.875 fb : Actual 883.67psi tv : Actual 48.10 psi FB: Allowable _ 2,897.97psi Fv : Allowable - 290.00 psi Load Combination +D+Lr+H Load Combination +D+Lr+ti Location of maximum on span - 8.000ft Location of maximum on span = 15.040 ft ' Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.120 in Ratio = 1597 Max Upward L+Lr+S Deflection 0.000 in Ratio = 0 <360 ' Max Downward Total Deflection 0.288 in Ratio = 666 Max Upward Total Deflection 0.000 in Ratio = 0 <180• :Maximum Forces &Stresses for load:Combinations Load Combination Max Stress Ratios _Summary of Moment Values_ Summary of Shear Values 1 Segment length Span # M V C d C f/v Cr Cm C t C fu Mactual I`Wesgn Fb-allow Vactual Iv -design Fvallow +0 Length = 2.0 it 1 0.078 0.097 1.000 1.000 1.000 1.000 1.000 1.000 3.09 225.26 2,897.97 1.55 28.02 290.00 Length = 2.0 ft 1 0.133 0.097 1.000 1.000 1.000 1.000 1.000 1.000 5.29 386.16 2,897.97 1.32 28.02 290.00 Length = 2.0 ft 1 0.167 0.097 1.000 1.000 1.000 1.000 1.000 1.000 6.62 482.70 2,897.97 0.88 28.02 290.00 Length = 2.0 It 1 0.178 0.097 1.000 1.000 1.000 1.000 1.000 1.000 7.06 514.88 2,897.97 0.44 28.02 290.00 Length = 2.0 ft 1 0.178 0.097 1.000 1.000 1.000 1.000 1.000 1.000 7.06 514.88 2,897.97 0.44 28.02 290.00 D Length = 2.0 it 1 0.167 0.097 1.000 1.000 1.000 1.000 1.000 1.000 6.62 482.70 2,897.97 0.88 28.02 290.00 ' Length = 2.0 ft 1 0.133 0.097 1.000 1.000 1.000 1.000 1.000 1.000 5.29 386.16 2,897.97 1.32 28.02 290.00 Length = 2.0 ft 1 0.078 0.097 1.000 1.000 1.000 1.000 1.000 1.000 3.09 225.26 2,897.97 1.55 28.02 290.00 r- +D+Lr+H 1.000 1.000 1.000 1.000 1.000 1�y --- -- ood Beam Desi Fi' Fle: C:IDocuments and $etfingOC30y1b umenlslENERCALC DATA' ENERCALC, INC 498 x r,.., , License Owner: WALLM! Description : B26 1 1 IJ t Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment length Span # M V C d C f/v Cr Cm C t C fu Mactual fb-design Fb-allow Vactual tv-design Fv-allow Length = 2.0 It 1 0.133 0.166 1.000 1.000 1.000 1.000 1.000 1.000 5.30 386.61 2,897.97 2.67 48.10 290.00 Length = 2.0 ft 1 0.229 0.166 1.000 1.000 1.000 1.000 1.000 1.000 9.09 662.75 2,897.97 2.27 48.10 290.00 Length = 2.0 It 1 0.286 0.166 1.000 1.000 1.000 1.000 1.000 1.000 11.36 828.44 2,897.97 1.51 48.10 290.00 Length = 2.0 ft 1 0.305 0.166 1.000 1.000 1.000 1.000 1.000 1.000 12.11 883.67 2,897.97 0.76 48.10 290.00 Length = 2.0 ft 1 0.305 0.166 1.000 1.000 1.000 1.000 1.000 1.000 12.11 883.67 2,897.97 0.76 48.10 290.00 Length = 2.0 ft 1 0.286 0.166 1.000 1.000 1.000 1.000 1.000 1.000 11.36 828.44 2,897.97 1.51 48.10 290.00 Length = 2.0 ft 1 0.229 0.166 1.000 1.000 1.000 1,000 1.000 1.000 9.09 662.75 2,897.97 2.27 48.10 290.00 'Length = 2.0 ft 1 0.133 0.166 1.000 1.000 1.000 1.000 1.000 1.000 5.30 386.61 2,897.97 2.67 48.10 290.00 +D+0.750Lr+0.750L+H 1.000 1.000 1.000 1.000 1.000 Length = 2.0 ft 1 0.119 0.149 1.000 1.000 1.000 1.000 1.000 1.000 4.75 346.27 2,897.97 2.39 43.08 290.00 Length = 2.0 ft 1 0.205 0.149 1.000 1.000 1.000 1.000 1.000 1.000 8.14 593.61 2,897.97 2.03 43.08 290.00 = 2.0 It 1 0.256 0.149 1.000 1.000 1.000 1.000 1.000 1.000 10.17 742.01 2,897.97 1.36 43.08 290.00 'Length Length = 2.0 It 1 0.273 0.149 1.000 1.000 1.000 1.000 1.000 1.000 10.85 791.47 2,897.97 0.68 43.08 290.00 Length = 2.0 It 1 0.273 0.149 1.000 1.000 1.000 1.000 1.000 1.000 10.85 791.47 2,897.97 0.68 43.08 290.00 Length = 2.0 It 1 0.256 0.149 1.000 1.000 1.000 1.000 1.000 1.000 10.17 742.01 2,897.97 1.36 43.08 290.00 Length = 2.0 It 1 0.205 0.149 1.000 1.000 1.000 1.000 1.000 1.000 8.14 593.61 2,897.97 2.03 43.08 290.00 Length = 2.0 It 1 0.119 0.149 1.000 1.000 1.000 1.000 1.000 1.000 4.75 346.27 2,897.97 2.39 43.08 290.00 +D+0.750Lr+0.750L+0.750W+H 1.000 1.000 1.000 1.000 1.000 Length = 2.0 ft 1 0.119 0.149 1.000 1.000 1.000 1.000 1.000 1.000 4.75 346.27 2,897.97 2.39 43.08 290.00 Length = 2.0 ft 1 0.205 0.149 1.000 1.000 1.000 1.000 1.000 1.000 8.14 593.61 2,897.97 2.03 43.08 290.00 Length = 2.0 It 1 0.256 0.149 1.000 1.000 1.000 1.000 1.000 1.000 10.17 742.01 2,897.97 1.36 43.08 290.00 Length = 2.0 ft 1 0.273 0.149 1.000 1.000 1.000 1.000 1.000 1.000 10.85 791.47 2,897.97 0.68 43.08 290.00 Length = 2.0 It 1 0.273 0.149 1.000 1.000 1.000 1,000 1.000 1.000 10.85 791.47 2,897.97 0.68 43.08 290.00 Length = 2.0 ft 1 0.256 0.149 1.000 1.000 1.000 1.000 1.000 1.000 10.17 742.01 2,897.97 1.36 43.08 290.00 Length = 2.0 ft 1 0.205 0.149 1.000 1.000 1.000 1.000 1.000 1.000 8.14 593.61 2,897.97 2.03 43.08 290.00 ' Length = 2.0 It 1 0.119 0.149 1.000 1.000 1.000 1.000 1.000 1.000 4.75 346.27 2,897.97 2.39 43.08 290.00 +D+0.750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 Length = 2.0 It 1 0.119 0.149 1.000 1.000 1.000 1.000 1.000 1.000 4.75 346.27 2,897.97 2.39 43.08 290.00 ' Length = 2.0 ft 1 0.205 0.149 1.000 1.000 1.000 1.b00 1.000 1.000 8.14 593.61 2,897.97 2.03 43.08 290.00 Length = 2.0 ft 1 0.256 0.149 1.000 1.000 1.000 1.000 1.000 1.000 10.17 742.01 2,897.97 1.36 43.08 290.00 Length = 2.0 It 1 0.273 0.149 1.000 1.000 1.000 1.000 1.000 1.000 10.85 791.47 2,897.97 0.68 43.08 290.00 Length = 2.0 ft 1 0.273 0.149 1.000 1.000 1.000 1.000 1.000 1.000 10.85 791.47 2,897.97 0.68 43.08 290.00 Length = 2.0 ft 1 0.256 0.149 1.000 1.000 1.000 1.000 1.000 1.000 10.17 742.01 2,897.97 1.36 43.08 290.00 Length = 2.0 It 1 0.205 0.149 1.000 1.000 1.000 1.000 1.000 1.000 8.14 593.61 2,897.97 2.03 43.08 290.00 Length = 2.0 ft 1 0.119 0.149 1.000 1.000 1.000 1.000 1.000 1.000 4.75 346.27 2,897.97 2.39 43.08 290.00 �efatl; MaxlMUM"DeflectionS - Unfactored°'Loads ___ Load Combination Span Max. ' ' Defl Location in Span_ Load Combination '+' DO Location in Span D+Lr _ 1 0.2880 8.080 _ ' _ _Max. 0.0000 0.000 Vertical.Reactions - Unfactored Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 3.029 3.029 D Only 1.765 1.765 Lr Only 1.264 1.264 ' D+Lr 3.029 3.029 1 1 IJ t kFle C Documents a, hd SetUngslPC31My Docu rilslENERCAICDATA FlLESltaylar nx 15b ec6 OOd Bealil @3191! .: y _ENERCALC:INC 19892010.Ver.;6A151.,N:50Z90. Description : B27 1 1 First Brace starts at 0.0 ft from Left -Most support Regular spacing of lateral supports on length of beam = 2.0 ft '}A Material Properties Span =4.0ft Service loads entered. Load Factors will be applied for calculations. Calculations per IBC 2006, CBC 2007, 2005 NDS Beam self weight calculated and added to loads Analysis Method: Allowable Stress Design Fb - Tension 1,350.0 psi E: Modulus of Elasticity Load for Span Number 1 Load Combination 20061BC&ASCE7 05 Fb - Compr 1,350.0 psi Ebend- xx 1,600.Oksi Uniform Load: D = 0.2650, Lr = 0.2080 k/ft, Tributary Width = 1.0 ft Fc - Prll 925.0 psi Eminbend - xx 580.Oksi Wood Species : DouglasFir-Larch Fc - Perp 625.0 psi Uniform Load: D = 0.0760, Lr = 0.0590 ksf, Tributary Width =1.0 ft Wood Grade : No.1 Fv 170.0 psi Ft 675.0 psi Density 32.210pcf .. Beam Bracing : Beam bracing is defined as a set spacing over all spans Section used for this span 1 tlnbaced Lengths 6x90 Ib : Actual 562.44psi fv : Actual = 44.95 psi 1 1 First Brace starts at 0.0 ft from Left -Most support Regular spacing of lateral supports on length of beam = 2.0 ft '}A Span =4.0ft Span =4.0ft Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load: D = 0.2650, Lr = 0.2080 k/ft, Tributary Width = 1.0 ft Load for Span Number 2 Uniform Load: D = 0.0760, Lr = 0.0590 ksf, Tributary Width =1.0 ft DESLGN:SUMMARYl:• _. __......... .- ...... _..... Maximum Bending Stress Ratio = __..... - - ...___....... ._ . .._.__ ... .. _.._...._........_......... _............ 0.417. 1 Maximum Shear Stress Ratio .. 0.264:1 Section used for this span 6x10 Section used for this span 6x90 Ib : Actual 562.44psi fv : Actual = 44.95 psi FB: Allowable 1,349.01 psi Fv : Allowable 170.00 psi Load Combination_ +D+Lr+H Load Combination +D+Lr+H Location of maximum on span 4.000ft Location of maximum on span _ 3.231 ft Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.041 in Ratio = 2338 Max Upward L+Lr+S Deflection - -0.004 in Ratio = 11271 Max Downward Total Deflection 0.095 in Ratio = 1006 Max Upward Total Deflection -0.010 in Ratio = 4877 =Mazimum�Forces 8 $tresses for Load Combinations Load Combination Max Stress Ratios Summary of Moment Values _- Summary of Shear Values Segment Length Span # M V C d C fly C r Cm C t C fu Mactual fb-design Fb-allow Vactual fv-design FY -allow Length = 2.0 It 1 0.060 0.093 1.000 1.000 1.000 1.000 1.000 1.000 -0.55 80.27 1,349.01 0.55 15.89 170.00 Length = 2.0 It 1 0.238 0.151 1.000 1.000 1.000 1.000 1.000 1.000 -2.21 321.07 1,349.01 0.89 25.66 170.00 Length = 2.0 ft 2 0.238 0.151 1.000 1.000 1.000 1.000 1.000 1.000 -2.21 321.07 1,349.01 0.66 25.66 170.00 Length = 2.0 It 2 0.100 0.151 1.000 1.000 1.000 1.000 1.000 1,000 -0.93 135.10 1,349.01 0.55 25.66 170.00 +D+Lr+H 1.000 1.000 1.000 1.000 1.000 ' Length = 2.0 ft 1 0.104 0.164 1.000 1.000 1.000 1.000 1.000 1.000 -0.97 140.61 1,349.01 0.97 27.83 170.00 Length = 2.0 It 1 0.417 0.264 1.000 1.000 1.000 1.000 1.000 1.000 -3.88 562.44 1,349.01 1.57 44.95 170.00 J J < ood Beam Design File G:1Document5 and Set.UnQSWP 1My DocumentslENERGA.W DATA RLE5lteylor rr� 16b:e� RCALC, INC 1l�2fI1 ;ENE 0 Ver6151 N,50790 • Description : 627 Load Combination Segment Length Span # Max Stress Ratios M V C d C f1v Cr Cm C t C fu Summary of Moment Values Mactual fb-design Fb-allow Summary of Shear Values Vactual fv-design Fvallow Length = 2.0 It 2 0.417 0.264 1.000 1.000 1.000 1.000 1.000 1.000 -3.88 562.44 1,349.01 1.15 44.95 170.00 Length = 2.0 It 2 0.177 0.264 1.000 1.000 1.000 1.000 1.000 1.000 -1.65 238.66 1,349.01 0.97 44.95 170.00 +0+0.750Lr+0.750L+H Length = 2.0 It 1 0.093 0.146 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -0.87 125.52 1,349.01 0.87 24.84 170.00 Length = 2.0 ft 1 0.372 0.236 1.000 1.000 1.000 1.000 1.000 1.000 -3.46 502.10 1,349.01 1.40 40.13 170.00 Length = 2.0 ft 2 0.372 0.236 1.000 1.000 1.000 1.000 1.000 1.000 -3.46 502.10 1,349.01 1.03 40,13 170.00 'Length = 2.0 ft 2 +fl+0.750Lr+0.750L+0.750W+H 0.158 0.236 1,000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -1.47 - 212.77 1,349.01 0.87 40.13 170.00 Length = 2.0 ft 1 0.093 0.146 1.000 1.000 1.000 1.000 1.000 1.000 -0.87 125.52 1,349.01 0.87 24,84 170.00 Length = 2.0 It 1 0.372 0.236 1.000 1.000 1.000 1.000 1.000 1.000 -3.46 502.10 1,349.01 1.40 40.13 170.00 Length = 2.0 ft 2 Length = 2.0 ft 2 0.372 0.158 0.236 0.236 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -3.46 -1.47 502.10 212.77 1,349.01 1,349.01 1.03 0.87 40.13 40.13 170.00 170.00 +D40.750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 Length = 2.0 ft 1 0.093 0.146 1.000 1.000 1.000 1.000 1.000 1.000 -0.87 125.52 1,349.01 0.87 24.84 170.00 Length = 2.0 It 1 0.372 0.236 1.000 1.000 1.000 1.000 1.000 1.000 -3.46 502.10 1,349.01 1.40 40.13 170.00 Length = 2.0 It 2 0.372 0.236 1.000 1.000 1.000 1.000 1.000 1.000 -3.46 502.10 1,349.01 1.03 40.13 170.00 Length = 2.0 ft 2 0.158 0.236 1.000 1.000 1.000 1.000 1.000 1.000 -1.47 212.77 1,349.01 0.87 40.13 170.00 ' '�Ove[atl Maximum Deflections ,Unfac`tored Loads 5 ` Load Combination Span Max. ' ' Deft Location in Span Load Combination Max. W Defl Location in Span D+Lr 1 0.0954 0.000 0.0000 0.000 2 0.0000 0.000 D+Lr -0.0098 1.662 ,Vertical, :Reactions - Unfactored..; on : Far Support notation left is #1 Values in KIPS Load Combination Support 1 Support 2 --� Support 3 -- ^ _ Overall MAXfmum 3.201 -0.676 D Only 1.835 -0.378 Lr On, D+Lr 1.366 3.201 -0.298 -0.676 J J Description: B28 t 212 Calculations per IBC 2006, CBC 2007, 2005 NDS 1,350.0 psi E: Modulus of Elasticity 1,350.0 psi Ebend- xx 1,600.0 ksi 925.0 psi Eminbend - xx 580.0 ksi 625.0 psi 170.0 psi 675.0 psi Density 32.210pcf Material Properties 'Analysis Method: Allowable Stress Design Fb - Tension Load Combination 20061BC&ASCE7-05 Fb - Compr Load for Span Number 1 Fc - Pdl 6x6 Wood Species : DouglasFir-Larch Fc - Perp Wood Grade : No.1 Fv ;; DESIGN,SUMMARY Ft • Beam Bracing : Beam bracing is defined as a set spacing over all spans 0.418:1 Maximum Shear Stress Ratio = 0.0046ed Lengths i Section used for this span ' F fb : Actual First Brace starts at 0.0 ft from Left -Most support 6x6 39.42 psi Regular spacing of lateral supports on length of beam = 2.0 ft 1,350.00psi Fv : Allowable _ MO 1A91 Lr10 1491 ' Load Combination t 212 Calculations per IBC 2006, CBC 2007, 2005 NDS 1,350.0 psi E: Modulus of Elasticity 1,350.0 psi Ebend- xx 1,600.0 ksi 925.0 psi Eminbend - xx 580.0 ksi 625.0 psi 170.0 psi 675.0 psi Density 32.210pcf Span = 2.750 ft Span = 2.0 ft OR "''"` Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Load for Span Number 1 6x6 - 6x6 ;; DESIGN,SUMMARY • -`Maximum Bending Stress Ratio = 0.418:1 Maximum Shear Stress Ratio = i Section used for this span ' F fb : Actual 6x6 Section used for this span 564.16psi IV : Actual 6x6 39.42 psi FB: Allowable _ 1,350.00psi Fv : Allowable _ Span = 2.750 ft Span = 2.0 ft OR "''"` Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load D=0.1890, Lr 0.1490 klft, Tributary Width =1.0 ft ;; DESIGN,SUMMARY • -`Maximum Bending Stress Ratio = 0.418:1 Maximum Shear Stress Ratio = 0.232 :1 Section used for this span ' F fb : Actual 6x6 Section used for this span 564.16psi IV : Actual 6x6 39.42 psi FB: Allowable _ 1,350.00psi Fv : Allowable _ 170.00 psi ' Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span = 2.750ft Location of maximum on span = 2.306 ft Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.030 in Ratio = 2214 Max Upward L+Lr+S Deflection -0.002 in Ratio = 11491 ' Max Downward Total Deflection 0.069 in Ratio = 958 Max Upward Total Deflection -0.005 in Ratio = 4986 Maximum,Forces"BStresses;for;Load:Combinations Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C fN -C r `C m C t C fu Mactual ib -design Fb-allow Vactual tv-design Fv-allow +D Length =1.988 ft 1 0.124 0.114 1.000 1.000 1.000 1.000 1.000 1.000 -0.39 167.49 1,350.00 0.39 19.30 170.00 Length = 0.7615 ft 1 0.237 0.132 1.000 1.000 1.000 1.000 1.000 1.000 -0.74 320.34 1,350.00 0.45 22.38 170.00 Length =1.246 It 2 0.237 0.132 1.000 1.000 1.000 1.000 1.000 1.000 -0.74 320.34 1,350.00 0.37 22.38 170.00 Length = 0.7538 It 2 0.088 0.132 1.000 1.000 1.000 1.000 1.000 1.000 -0.28 119.37 1,350.00 0.37 22.38 170.00 +Lr•ii 1.000 1.000 1.000 1.000 1.000 '._ Length =1.988 ft 1 0.218 0.200 1.000 1.000 1.000 1.000 1.000 1.000 -0.68 294.97 1,350.00 0.69 33.99 170.00 Length = 0.7615 ft 1 0.418 0.232 1.000 1.000 1.000 1.000 1.000 1.000 -1.30 564.16 1,350.00 0.79 39.42 170.00 Length =1.246 ft 2 0.418 0.232 1.000 1.000 1.000 1.000 1.000 1.000 -1.30 564.16 1,350.00 0.66 39.42 170.00 Length = 0.7538 ft 2 0.156 0.232 1.000 1.000 1.000 1.000 1.000 1.000 -0.49 211.27 1,350.00 0.65 39.42 170.00 213 �NOOd Boam mesign File C 1Documents an :<. 0.t0 •0 lDescription : B28 t 1 1 1 Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C IN Cr Cm C t C fu Macbual fb-desgn Fb-allow Vactual tv-design Fv-allow +D+0.750Lr+0.750L+H 1.000 1.000 1.000 1.000 1.000 Length =1.988 It 1 0.195 0.178 1.000 1.000 1.000 1.000 1.000 1.000 -0.61 263.10 1,350.00 0.61 30.32 170.00 Length = 0.7615 It 1 0.373 0.207 1.000 1.000 1.000 1.000 1.000 1.000 -1.16 503.21 1,350.00 0.71 35.16 170.00 Length =1.246 ft 2 0.373 0.207 1.000 1.000 1.000 1.000 1.000 1.000 -1.16 503.21 1,350.00 0.59 35.16 170.00 Length = 0.7538 It 2 0.139 0.207 1.000 1.000 1.000 1.000 1.000 1.000 -0.44 188.30 1,350.00 0.58 35.16 170.00 +D+0.750Lr+0.750L+0.750W+H 1.000 1.000 1.000 1.000 1.000 = 1.9881 1 0.195 0.178 1.000 1.000 1.000 1.000 1.000 1.000 -0.61 263.10 1,350.00 0.61. 30.32 170.00 'Length Length = 0.7615 It 1 0.373 0.207 1.000 1.000 1.000 1.000 1.000 1.000 -1.16 503.21 1,350.00 0.71 35.16 170.00 Length =1.246 it 2 0.373 0.207 1.000 1.000 1.000 1.000 1.000 1.000 -1.16 503.21 1,350.00 0.59 35.16 170.00 Length = 0.7538 It 2 0.139 0.207 1.000 1.000 1.000 1.000 1.000 1.000 -0.44 188.30 1,350.00 0.58 35.16 170.00 +D40.750Lr+0.750L40.5250E+H 1.000 1.000 1.000 1.000 1.000 Length =1.988 It 1 0.195 0.178 1.000 1.000 1.000 1.000 1.000 1.000 -0.61 263.10 1,350.00 0.61 30.32 170.00 Length = 0.7615 It 1 0.373 0.207 1.000 1.000 1.000 1.000 1.000 1.000 -1.16 503.21 1,350.00 0.71 35.16 170.00 Length =1.246 It 2 0.373 0.207 1.000 1.000 1.000 1.000 1.000 1.000 -1.16 503.21 1,350.00 0.59 35.16 170.00 Length = 0.7538 It 2 0.139 0.207 1.000 1.000 1.000 1.000 1.000 1.000 -0.44 188.30 1,350.00 0.58 35.16 170.00 OVeraQ Max imumDeflections-= irifktored Loads„ Load Combination Span Max.' ' Dell Location in Span Load Combination Max. '+' Dell Location in Span D+Lr 1 ` 0.0688 0.000 0.0000 0.000 2 0.0000 0.000 D+Lr -0.0048 0.846 VBrtIC,�7i Support notation: Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Support 3 Overall MAXimum 1.607 -0.645 D Only 0.915 -0.363 r Lr Only 0.691 -0.282 D+Lr 1.607 -0.645 t 1 1 1 I F1111541 �,121.2rXYZI - Description : H'58 1 Beam Bracing : Beam bracing is defined as a set spacing over all spans Au First Brace starts at 0.0 ft from Left Most support Regular spacing of lateral supports on length of beam = 2.0 ft Span = 3.0 ft Span = 2.0 ft Service loads entered. Load Factors will be applied for calculations. Pl[X!AM­ Material Properties Calculations per IBC 2006, CBC 2007, 2005 NDS Analysis Method: Allowable Stress Design Fb - Tension 1,350.0 psi E: Modulus of Elasticity Load Combination 2006IBC&ASCE7-05 Fb - Compr 1,350.Opsi Ebend-xx 1,600.Oksi Uniform Load : D = 0.3280, Lr = 0.2570 k/ft, Tributary Width =1.0 ft Fc - Pdl 925.0 psi Eminbend - xx 580.Oksi Load for Span Number 2 Wood Species DouglasFir-Larch Fc - Perp 625.0 psi Uniform Load: D = 0.3280, Lr = 0.2570 kift, Tributary Width =1.0 ft Wood Grade No.1 Fv 170.0 psi Ft 675.0 psi Density 32-210 pcf 1 Beam Bracing : Beam bracing is defined as a set spacing over all spans Au First Brace starts at 0.0 ft from Left Most support Regular spacing of lateral supports on length of beam = 2.0 ft Span = 3.0 ft Span = 2.0 ft Service loads entered. Load Factors will be applied for calculations. Pl[X!AM­ %Mi6ch U lrnfk6i g:Str ii-ty 'LOaO CoMbInAlphs Load Combination Max Strew Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C f1v C r C m Ct Cfu Mactual fb-design Fb-allow Vaclual fv-design Fv-allow +0 Length =1.985 ft 1 0.037 0.112 1.000 1.000 1.000 1.000 1.000 1.000 0.12 50.30 1,350-00 0.39 19.11 170.00 ,M: Length =1.015 ft 1 0.215 0.212 1.000 1.000 1.000 1.000 1.000 1.000 -0.67 289.75 1,350.00 0.73 35.97 170.00 Length =1.0 ft 2 0.215 0.212 1.000 1.000 1.000 1.000 1.000 1.000 -0.67 289.75 1,350.00 0.52 35.97 170.00 Length =1.0 ft 2 0.054 0.212 1.000 1.000 1.000 1.000 1.000 1.000 -0.17 72-44 1,350.00 0.33 35.97 170.00 +D+Lr+H 1.000 1.000 1.000 1.000 1.000 Length =1.985 ft 1 0.066 0.199 1.000 1.000 1.000 1.000 1.000 1.000 0.21 88.92 1,350.00 0.68 33.78 170.00 Length =1.015 ft 1 0.379 0.374 1.000 1.000 1.000 1.000 1.000 1.000 -1.18 512.18 1.350.00 1.28 63.58 170.00 Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load : D = 0.3280, Lr = 0.2570 k/ft, Tributary Width =1.0 ft Load for Span Number 2 Uniform Load: D = 0.3280, Lr = 0.2570 kift, Tributary Width =1.0 ft ....... .... i . .. ... ..... ... . . ..... ........ . ........... iMaximum Bending Stress Ratio ...... ............ . ...... .. 0.3721 Maximum Shear Stress Ratio 0.374: 1 Section used for this span 6x6 Section used for this span 6x6 fb : Actual 512.18psi tv : Actual 63.58 psi FB: Allowable Load Combination_+D+Lr+H 1,350.00psi Fv :Allowable Load Combination 170.00 psi +D+Lr+H Location of maximum on span3.000ft Location of maximum on span 3.000 ft Span # where maximum occurs = Span # I Span # where maximum occurs = Span # I Maximum Deflection Max Downward L+Lr+S Deflection 0.014 in Ratio = 3526 Max Upward L+Lr+S Deflection 0.000 in Ratio = 0 <360 Max Downward Total Deflection 0.031 in Ratio = 1530 Max Upward Total Deflection -0.002 in Ratio = 18159 %Mi6ch U lrnfk6i g:Str ii-ty 'LOaO CoMbInAlphs Load Combination Max Strew Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C f1v C r C m Ct Cfu Mactual fb-design Fb-allow Vaclual fv-design Fv-allow +0 Length =1.985 ft 1 0.037 0.112 1.000 1.000 1.000 1.000 1.000 1.000 0.12 50.30 1,350-00 0.39 19.11 170.00 ,M: Length =1.015 ft 1 0.215 0.212 1.000 1.000 1.000 1.000 1.000 1.000 -0.67 289.75 1,350.00 0.73 35.97 170.00 Length =1.0 ft 2 0.215 0.212 1.000 1.000 1.000 1.000 1.000 1.000 -0.67 289.75 1,350.00 0.52 35.97 170.00 Length =1.0 ft 2 0.054 0.212 1.000 1.000 1.000 1.000 1.000 1.000 -0.17 72-44 1,350.00 0.33 35.97 170.00 +D+Lr+H 1.000 1.000 1.000 1.000 1.000 Length =1.985 ft 1 0.066 0.199 1.000 1.000 1.000 1.000 1.000 1.000 0.21 88.92 1,350.00 0.68 33.78 170.00 Length =1.015 ft 1 0.379 0.374 1.000 1.000 1.000 1.000 1.000 1.000 -1.18 512.18 1.350.00 1.28 63.58 170.00 I I d8daM 0- Re: Q\�uinenls d �&,0.1� lom=nIsENIR �-ICDATAFR.ES�" ENER Ch C, INC. 19n20I0..yer..6. 1.51;', k"56 60 KW -06007390 License Owner WALLING MCCALLUM Ll Descripfion: H58 Load Combination Max Strew Ratios Summary of Moment Values Summary of Shear Values, Segment Length Span # M V C d C f/v Cr Cm C Cfu Mactual fb-design Fb-allow Vactuall tv-design Fv-allow Length =1.0 ft 2 0.379 0.374 1.000 1.000 1.000 1.000 1.000 1.000 -1.18 512.18 1,350.00 0.92 63.58 170.00 Length =1.0 It 2 0.095 0.374 1.000 1.000 1,000 1.000 1.000 1.000 -0.30 128.05 1.350.00 0.59 63.58 170.00 +CA.750Lr.+0.750L+H 1'000 1.000 1.000 1.000 1.000 Length =1.985 ft 1 0.059 0.177 1.000 1,000 1.000 1.000 1.000 1.000 0.18 79.27 1,350.00 0.61 30.12 170.00 Length =1.015 It 1 0.338 0.333 1.000 1.000 1.000 1.000 1.000 1.000 -1.06 456.57 1,350.00 1.14 56.68 170.00 Length =1.0 ft 2 0.338 0.333 1.000 1.000 1.000 1.000 1.000 1.000 -1.06 456.57 1,350.00 0.82 56.68 170.00 Length =1.0 ft 2 0.085 0.333 1.000 1.000 1.000 1.000 1.000 1.000 -0.26 11414 1.350.00 0.53 56.68 170.00 +D+0.750Lr+0.750L-+0.750W4+I 1.000 1.000 1.000 1.000 1.000 Length =1.985 It 1 0.059 0.177 1.000 1.000 1.000 1.000 1.000 1.000 0.18 79.27 1,350.00 0.61 30.12 170.00 Length =1.015 It 1 0.338 0.333 1.000 1.000 1.000 1,000 1.000 1.000 -1.06 456.57 1,350.00 1.14 56.68 170.00 Length =1.0 ft 2 0.338 0.333 1.000 1.000 1.000 1,000 1.000 1.000 -1.06 456.57 1,350.00 0.82 56.68 170.00 Length =1.0 ft 2 0.085 0.333 1,000 1.000 1.000 1.000 1.000 1.000 -0.26 114.14 1,350.00 0.53 56.68 170.00 +D.+0.750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 Length =1.985 ft 1 0.059 0.177 1.000 1.000 1.000 1.000 1.000 1.000 0.18 79.27 1.350.00 0.61 30.12 170.00 Length =1.015 It 1 0.338 0.333 1.000 1.000 1.000 1.000 1.000 1.000 -1.06 456.57 1,350-00 1.14 56.68 170.00 Length =1.0 ft 2. 0.338 0.333 1.000 1.000 1.000 1.000 1.000 1.000 -1.06 456.57 1,350-00 0.82 56.68 170.00 Length =1.0 It 2 0.085 0.333 1.000 1.000 1.000 1.000 1.000 1.000 -0.26 114.14 1,350-00 0.53 56.68 170.00 'f; Loads , 0y ;Deflections n actoro Load Combination Span Max. *-" Deft Location in Span Load Combination Max. '-V Defl Location in Span D+Lr 1 0.0004 0.646 D+Lr -0.0020 2.377 D+Lr 2 0.0313 2.000 0.0000 2.377 Vdi t*00 t 7, Support notation Far left is #1 Values in KIPS Load Combination Support I Support 2 Support 3 Overall MAXimurn 0.493 2,466 D Only 0.279 1.395 Lr Only 0.214 1.071 D+Lr 0.493 2.466 I I Description : H59 t L First Brace starts at ft from Left -Most support Regular spacing of lateral supports on length of beam = 2.0 ft Span = 6.50 ft Material Properties Analysis Method: Allowable Stress Design Fb - Tension Calculations per IBC 2006, CBC 2007, 2005 NDS 1,350.0 psi E: Modulus of Elastico 29.77 Load Combination 20061BC&ASCE7-05 Fb - Compr 1,350.0 psi Ebend- xx 1,600.0 ksi 0.308 0.175. Fc - Pill 925.0 psi Eminbend - xx 580.0 ksi Length = 2.015 It Wood Species : DouglasFir-Larch Fc - Perp 625.0 psi - • _ .. Maximum Bending Stress Ratio = Wood Grade ; No.1 Fv 170.0 psi 6x6 Section used for this span 6x6 Ft 675.0 psi Density 32.210pcf 52.36 psi Beam Bracing : Beam bracing is defined as a set spacing over all spans 1,350.00psi Fv : Allowable = .`xzU'nbacedlengtfi's::-.:. ,...._ .._. . +D+Lr+H Load Combination +D+Lr+H t L First Brace starts at ft from Left -Most support Regular spacing of lateral supports on length of beam = 2.0 ft Span = 6.50 ft Maximum'Forces;:&Stresses for Load Conrilb tions Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C flv C r C m C t_ C fu Mactual ft) -design Fb-allow Vactual fv-design Fvallow +D 416.19 Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads 29.77 170.00 1.13 Load for Span Number 1 1 0.308 0.175. Uniform Load D = 0 2080 Lr 01630 k/ft Tributary Width =1.0 It 1.000 1.000 1.000 1.000 Length = 2.015 It r _ "DESIGN SUMMARY.. :.. 0.175 - • _ .. Maximum Bending Stress Ratio = ............ .._...... .... _... _ .......... ....... ._... 0.6401 Maximum Shear Stress Ratio = 0.308 :1 Section used for this span 6x6 Section used for this span 6x6 fb : Actual = 863.38psi tv : Actual = 52.36 psi FB: Allowable = 1,350.00psi Fv : Allowable = 170.00 psi Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span = 3.250ft Location of maximum on span = 6.045 ft Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1 Maximum Deflection 1.000 1.000 1.000 1.000 1.000 Length = 2.015 ft Max Downward L+Lr+S Deflection 0.054 in Ratio = 1442 1.000 Max Upward L+Lr+S Deflection 0.000 in Ratio = 0 <360 1 Max Downward Total Deflection 0.125 in Ratio = 622 1.000 Max Upward Total Deflection 0.000 in Ratio = 0 <180 0.188 Maximum'Forces;:&Stresses for Load Conrilb tions Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C flv C r C m C t_ C fu Mactual ft) -design Fb-allow Vactual fv-design Fvallow +D 416.19 1,350.00 0.60 29.77 170.00 1.13 Length =1.983 ft 1 0.308 0.175. 1.000 1.000 1.000 1.000 1.000 1.000 Length = 2.015 It 1 0.364 0.175 1.000 1.000 1.000 1.000 1.000 1.000 Length =1.983 It 1 0.344 0.175 1.000 1.000 1.000 1.000 1.000 1.000 Length = 0.520 It 1 0.107 0.175 1.000 1.000 1.000 1.000 1.000 1.000 gD+Lr+H 1.89 817.71 1,350.00 1.03 1.000 1.000 1.000 1.000 1.000 J Length =1.983 ft 1 0.542 0.308 1.000 1.000 1.000 1.000 1.000 1.000 Length = 2.015 ft 1 0.640 0.308 1.000 1.000 1.000 1.000 1.000 1.000 Length =1.983 It U 1 0.606 0.308 1.000 1.000 1.000 1.000 1.000 1.000 Length = 0.520 ft 1 0.188 0.308 1.000 1.000 1.000 1.000 1.000 1.000 0.96 416.19 1,350.00 0.60 29.77 170.00 1.13 490.85 1,350.00 0.27 29.77 170.00 1.07 464.88 1,350.00 0.59 29.77 170.00 0.33 144.51 1,350.00 0.60 29.77 170.00 1.69 732.06 1,350.00 1.06 52.36 170.00 2.00 863.38 1,350.00 0.48 52.36 170.00 1.89 817.71 1,350.00 1.03 52.36 170.00 0.59 254.18 1,350.00 1.06 52.36 170.00 1 Description: H59 1 1� 1 Load Combination Segment Length Span # Max Stress Ratios C d C ffv Cr Cm C t C fu Summary of Moment Values Summary of Shear Values M V Mactual fb-design Fb-allow Vactual tv-design Fvallow +D+0.750Lr+0.750L+H 1.000 1.000 1.000 1.000 1.000 Length =1.983 It 1 0.484 0.275 1.000 1.000 1.000 1.000 1.000 1.000 1.51 653.10 1,350.00 0.94 46.71 170.00 Length = 2.015 ft 1 0.571 0.275 1.000 1.000 1.000 1.000 1.000 1.000 1.78 770.25 1,350.00 0.43 46.71 170.00 Length =1.983 ft 1 0.540 0.275 1.000 1.000 1.000 1.000 1.000 1.000 1.69 729.50 1,350.00 0.92 46.71 170.00 Length = 0.520 ft 1 0.168 0.275 1.000 1.000 1.000 1.000 1.000 1.000 0.52 226.76 1,350.00 0.94 46.71 170.00 +D+0.750Lr+0.750L+0.750W+H 1.000 1.000 1.000 1.000 1.000 Length =1.983 ft Length = 2.015 ft 1 1 0.484 0.571 0.275 0.275 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.51 1.78 653.10 770.15 1,350.00 1,350.00 0.94 0.43 46.71 46.71 170.00 170.00 Length =1.983 ft 1 0.540 0.275 1.000 1.000 1.000 1.000 1.000 1.000 1.69 729.50 1,350.00 0.92 46.71 170.00 Length = 0.520 ft 1 0.168 0.275 1.000 1.000 1.000 1.000 1.000 1.000 0.52 226.76 1,350.00 0.94 46.71 170.00 +D+0,750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 Length =1.983 It 1 0.484 0.275 1.000 1.000 1.000 1.000 1.000 1.000 1.51 653.10 1,350.00 0.94 46.71 170.00 Length = 2.015 It 1 0.571 0.275 1.000 1.000 1.000 1.000 1.000 1.000 1.78 770.25 1,350.00 0.43 46.71 170.00 Length =1.983 It 1 0.540 0.275 1.000 1.000 1.000 1.000 1.000 1.000 1.69 729.50 1,350.00 0.92 46.71 170.00 Length = 0.520 It 1 0.168 0.275 1.000 1.000 1.000 1.000 1.000 1.000 0.52 226.76 1,350.00 0.94 46.71 170.00 OverailMazimumiDefiections _U,nfactored 16ads; za Load Combination Span Max. ' Defl Location in Span Load Combination Max. '+' Defl Location in Span D+Lr 1 0.1254 3.283 0.0000 0.000 VerttCat Reac#fons�; tJnfactored ; , Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall imum 1.228 1.228 D Only Lr Only 0.698 0.530 0.698 0.530 D+Lr 1.228 1.228 1 1� 1 1 Description : H60 1 First Brace starts at 0.0 ft from Left -Most support Regular spacing of lateral supports on length of beam = 2.0 ft Span = 7.50 ft Material Properties 0.229 Calculations per IBC 2006, CBC 2007, 2005 NDS 1.000 Analysis Method: Allowable Stress Design Load Combination 20061BC8ASCE7-05 Fb - Tension Fb - Compr 1,350.0 psi 1,350.0 psi E: Modulus of Elasticity Ebend- xx 1,600.Oksi 1,349.22 Load for Span Number 1 Uniform Load D = 0 2330 Lr 01830 k/ft Tributary Fc - Pdl 925.0 psi Eminbend - xx 580.Oksi 1 Wood Species : DouglasFir-Larch Fc - Perp Wood Grade : No.1 Fv Ft Beam Bracing : Beam bracing is defined as a set spacing over all spans 625.0 psi 170.0 psi 675.0 psi Density 32.210pcf Section used for this span fb : Actual 6x8 695.83psi Section used for this span fv : Actual 6x8 48.71 psi 1,349.22 FB: Allowable _ 1,349.22psi Fv : Allowable _ 170.00 psi 1 1 First Brace starts at 0.0 ft from Left -Most support Regular spacing of lateral supports on length of beam = 2.0 ft Span = 7.50 ft M Length =1.988 It A hed loads 0.229 Service loads entered. Load Factors will be applied for calculations. 1.000 Beam self weight calculated and added to loads 1.000 1.000 1.000 1.000 1.33 308.81 1,349.22 Load for Span Number 1 Uniform Load D = 0 2330 Lr 01830 k/ft Tributary Width =1.0 ftDESlGN'SUMMARY 170.00 Length =1.988 It 1 '� '.............................................. ;Maximum Bending Stress Ratio = 0.5161 Maximum Shear Stress Ratio = ' ' • 0.287 :1 1.000 Section used for this span fb : Actual 6x8 695.83psi Section used for this span fv : Actual 6x8 48.71 psi 1,349.22 FB: Allowable _ 1,349.22psi Fv : Allowable _ 170.00 psi 1 Load Combination +D+Lr+H Load Combination +D+Lr+H .� Location of maximum on span Span #where maximum occurs 3.750ft Span # 1 Location of maximum on span Span # where maximum occurs 6.900 ft Span # 1 27.75 Maximum Deflection Length =1.50 ft 1 0.188 0.163 Max Downward L+Lr+S Deflection 0.042 in Ratio = 2120 1.09 253.68 Max Upward L+Lr+S Deflection 0.000 in Ratio = 0 <360 170.00 Max Downward Total Deflection 0.099 in Ratio = 912 1.000 Max Upward Total Deflection 0.000 in Ratio = 0 <180 1 Maximum:Forces & Stresses for Load Combinations. Length =1.988 ft 1 Load Combination Max Stress Ratios 0.281 Summary of Moment Values Summary of Shear Values 1.000 1.000 1.000 1.000 Segment Length Span # M v C d C IN Cr Cm C t C fu Mactual fb-design Fb-allow Vactual fv-design Fvallow M Length =1.988 It 1 0.229 0.163 1.000 1.000 1.000 1.000 1.000 1.000 1.33 308.81 1,349.22 0.76 27.75 170.00 Length =1.988 It 1 0.294 0.163 1.000 1.000 1.000 1.000 1.000 1.000 1.70 396.37 1,349.22 0.43 27,75 170.00 Length = 2.025 it 1 0.293 0.163 1,000 1.000 1.000 1.000 1.000 1.000 1.70 394.94 1,349.21 0.55 27.75 170.00 Length =1.50 ft 1 0.188 0.163 1.000 1.000 1.000 1.000 1.000 1.000 1.09 253.68 1,349.42 0.76 27.75 170.00 1.000 1.000 1.000 1.000 1.000 Length =1.988 ft 1 0.402 0.281 1.000 1.000 1.000 1.000 1.000 1.000 2.33 542.12 1,349.22 1.34 48.11 170.00 Length =1.988 it 1 0.516 0.287 1.000 1.000 1.000 1.000 1.000 1.000 2.99 695.83 1,349.22 0.75 48.71 170.00 Length = 2.025 It 1 0.514 0.287 1.000 1.000 1.000 1.000 1.000 1.000 2.98 693.32 1,349.21 0.96 48.71 170.00 Length =1.50 ft 1 0.330 0.287 1.000 1.000 1.000 1.000 1.000 1.000 1.91 445.33 1,349.42 1.34 48.71 170.00 Description : H60 1 Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C fly Cr Cm C t C fu Mactual fb-design Fb-allow Vactual fv-design Fvallow +D+0.750Lr+0.750L+H 1.000 1.000 1.000 1.000 1.000 Length =1.988 It 1 0.359 0.256 1.000 1.000 1.000 1.000 1.000 1.000 2.08 483.79 1,349.22 1.20 43.47 170.00 Length =1.988 ft 1 0.460 0.256 1.000 1.000. 1.000 1.000 1.000 1.000 2.67 620.96 1,349.22 0.67 43.47 170.00 Length = 2.025 It 1 0.459 0.256 1.000 1.000 1.000 1.000 1.000 1.000 2.66 618.73 1,349.21 0.85 43.47 170.00 Length =1.50 It 1 0.295 0.256 1.000 1.000 1.000 1.000 1.000 1.000 1.71 397.42 1,349.42 1.20 43.47 170.00 +O+0.750Lr+0.750L+0.750W+H 1.000 1.000 1.000 1.000 1.000 Length =1.988 It 1 0.359 0.256 1.000 1.000 1.000 1.000 1.000 1.000 2.08 483.79 1,349.22 1.20 43.47 170.00 Length =1.988 It 1 0.460 0.256 1.000 1.000 1.000 1.000 1.000 1.000 2.67 620.96 1,349.22 0.67 43.47 170.00 Length = 2.025 ft 1 0.459 0.256 1.000 1.000 1.000 1.000 1.000 1.000 2.66 618.73 1,349.21 0.85 43.47 170.00 Length =1.50 It 1 0.295 0.256 1.000 1.000 1.000 1.000 1.000 1.000 1.71 397.42 1,349.42 1.20 43.47 170.00 +O+O.7501-r+0.7501-+0.5250E+1­1 Length =1.988 ft 1 0.359 0.256 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 2.08 483.79 1,349.22 1.20 43.47 170.00 Length =1.988 ft 1 0.460 0.256 1.000 1.000 1.000 1.000 1.000 1.000 2.67 620.96 1,349.22 0.67 43.47 170.00 Length = 2.025 ft 1 0.459 0.256 1.000 1.000 1.000 1.000 1.000 1.000 2.66 618.73 1,349.21 0.85 43.47 170.00 Length = 150 ft 1 0.295 0.256 1.000 1.000 1.000 1.000 1.000 1.000 1.71 397.42 1,349.42 1.20 43.47 170.00 Overall Maximum;Deflections 01OWored Loads. ' Load Combination Span Max. -' Dell Location in Span Load Combination Max. '+' Defl Location in Span D+Lr 1 0.0986 3.788 0.0000 0.000 !@i#ICal�i%aCt1ORS„11F1faCO__ Support notation :Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 1.595 1.595 D Only Lr Only 0.908 0.686 0.908 0.686 D+Lr 1.595 1.595 1 220 Description: H61 Span = 8.50 ft \� Service loads entered. Load Factors will be applied for calculations. ---- - Beam self weight calculated and added to loads Material Properties 1.000 Calculations per IBC 2006, CBC 2007, 2005 NDS Analysis Method: Allowable Stress Design Fb - Tension 1,350.0 psi E: Modulus of Elasticity 0.206 Load Combination 20061BC&ASCE7-05 Fb-Compr 1,350.Opsi Ebend-xx 1,600.Oksi 0.5031 Maximum Shear Stress Ratio Section used for this span Fc - Pdl 925.0 psi Eminbend - xx 580.0 ksi 678.17psi Wood Species : DouglasFir-Larch Fc - Perp 625.0 psi Fv : Allowable Load Combination . Wood Grade : NO -1 FY 170.0 psi 4.250ft Location of maximum on span Span #where maximum occurs = Ft 675.0 psi Density 32.210pcf 1,349.01 Beam Bracing : Beam bracing is defined as a set spacing over all spans Max Downward L+Lr+S Deflection 0.042 in Ratio = 2440 Max Upward L+Lr+S Deflection 0.000 in Ratio = 0 <360 ------- 0.097 in Ratio = First Brace starts at 0.0 ft from Left -Most support Max Upward Total Deflection 0.000 in Ratio = 0 <180 1 Regular spacing of lateral supports on length of beam = 2.0 ft 0.305 1.000 Span = 8.50 ft \� Service loads entered. Load Factors will be applied for calculations. ---- - Beam self weight calculated and added to loads 1.000 1.000 1.000 1.000 1.000 Load for Span Number 1 1.000 Length =1.998 ft Uniform Load: D = 0.2840, Lr = 0.2220 klft, Tributary Width =1.0 ft 0.206 .::_DESIGN SUMMAR_Y............. 1.000 Length =1.998 It ;Maximum Bending Stress Ratio = 0.5031 Maximum Shear Stress Ratio Section used for this span 6x10 Section used for this span fb : Actual 678.17psi fv : Actual FB: Allowable = 1,349.01 psi Fv : Allowable Load Combination +D+Lr+H Load Combination Location of maximum on span = 4.250ft Location of maximum on span Span #where maximum occurs = Span # 1 Span # where maximum occurs Maximum Deflection 1,349.01 1.80 Max Downward L+Lr+S Deflection 0.042 in Ratio = 2440 Max Upward L+Lr+S Deflection 0.000 in Ratio = 0 <360 Max Downward Total Deflection 0.097 in Ratio = 1046 Max Upward Total Deflection 0.000 in Ratio = 0 <180 0.305 :1 6x10 51.79 psi 170.00 psi +D+Lr+H 7.735 ft Span # 1 Maximum'Forces.& Stresses forLoad Combinations - ___ _ _____ __ Load Combination Max Stress Ratios Summary of Moment Values _ Summary of Shear Values Segment Length Span # M V C d C fN Cr Cm C t C fu Mactual fb-design Fb-allow Vactual fv-design Fv-allow 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Length =1.998 ft 1 0.206 0.174 1.000 Length =1.998 It 1 0.286 0.174 1.000 Length =1.998 It 1 0.287 0.174 1.000 Length =1.998 ft 1 0.239 0.174 1.000 Length = 0.510 ft 1 0.065 0.174 1.000 �O+Lr+H 487.67 1,349.01 1.80 51.79 Length =1.998 It 1 0.362 0.305 1.000 Length =1.998 ft 1 0.501 0.305 1.000 Length =1.998 It 1 0.503 0.305 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.92 278.54 1,349.01 1.03 29.58 170.00 2.66 385.96 1,349.01 0.67 29.58 170.00 2.67 387.35 1,349.01 0.52 29.58 170.00 2.22 322.24 1,349.01 1.03 29.58 170.00 0.60 87.39 1,349.75 1.03 29.58 170.00 3.36 487.67 1,349.01 1.80 51.79 170.00 4.66 675.73 1,349.01 1.17 51.79 170.00 4.68 678.17 1,349.01 0.90 51.79 170.00 i Description: H61 Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C Yy Cr Cm C t C fu Mactual fb-design Fb-allow Vactual tv-design Fvallow Length =1.998 ft 1 0.418 0.305 1.000 1.000 1.000 1.000 1.000 1.000 3.89 564.17 1,349.01 _ 1.80 51.79 170.00 Length = 0.510 ft 1 0.113 0.305 1.000 1.000 1.000 1.000 1.000 1.000 1.05 152.99 1,349.75 1.80 51.79 170.00 +O+0.750Lr+0.750L+H Length =1.998 ft 1 0.323 0.272 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 3.00 435.39 1,349.01 1.61 46.24 170.00 Length =1.998 ft 1 0.447 0.272 1.000 1.000 1.000 1.000 1.000 1.000 4.16 603.28 1,349.01 1.04 46.24 170.00 Length =1.998 ft 1 0.449 0.272 1,000 1.000 1.000 1.000 1.000 1.000 4.17 605.46 1,349.01 0.81 46.24 170.00 Length =1.998 ft 1 0.373 0.272 1.000 1.000 1.000 1.000 1.000 1.000 3.47 503.69 1,349.01 1.61 46.24 170.00 �Length = 0.510 ft 1 0.101 0.272 1.000 1.000 1.000 1.000 1.000 1.000 0.94 136.59 1,349.75 1.61 46.24 170.00 • +D+0.750Lr+0.750L+0.750W+H 1.000 1.000 1.000 1.000 1.000 Length =1.998 ft 1 0.323 0.272 1.000 1.000 1.000 1.000 1.000 1.000 3.00 435.39 1,349.01 1.61 46.24 170.00 Length =1.998 ft 1 0.447 0.272 1.000 1,000 1.000 1.000 1.000 1.000 4.16 603.28 1,349.01 1.04 46.24 170.00 Length =1.998 ft 1 0.449 0.272 1.000 1.000 1.000 1.000 1.000 1.000 4.17 605.46 1,349.01 0.81 46.24 170.00 Length =1.998 ft 1 0.373 0.272 1.000 1.000 1.000 1.000 1.000 1.000 3.47 503.69 1,349.01 1.61 46.24 170.00 Length = 0.510 ft 1 0.101 0.272 1.000 1.000 1.000 1.000 1.000 1.000 0.94 136.59 1,349.75 1.61 46.24 170.00 +D+0.750Lr+0.750L+0.5250E+H 1.000 1.000 1.000 1.000 1.000 Length =1.998 ft 1 0.323 0.272 1.000 1.000 1.000 1.000 1.000 1.000 3.00 435.39 1,349.01 1.61 46.24 170.00 Length =1.998 ft 1 0.447 0.272 1.000 1.000 1.000 1.000 1.000 1.000 4.16 603.28 1,349.01 1.04 46.24 170.00 Length =1.998 ft 1 0.449 0.272 1.000 1.000 1.000 1.000 1.000 1.000 4.17 605.46 1,349.01 0.81 46.24 170.00 Length =1.998 ft 1 0.373 0.272 1.000 1.000 1.000 1.000 1.000 1.000 3.47 503.69 1,349.01 1.61 46.24 170.00 Length = 0.510 ft 1 0.101 0.272 1.000 1.000 1.000 1.000 1.000 1.000 0.94 136.59 1,349.75 1.61 46.24 170.00 Overall Maxrmum,Deflections Unfactored{Loads .. Load Combination Span Max. ' Defl Location in Span Load Combination - Max. '+' Defl Location in Span D+Lr V@ttiCal R@aGdOfIS ;U�faCtO[@d 1 0.0975 4.293 Support notation :Far left is #1 0.0000 Values in KIPS 0.000 J Load Combination Support 1 Support 2 ^ " Overall MAXimum 2.200 2.200 D Only 1.257 1.257 Lr Only 0.944 0.944 D+Lr 2.200 2.200 i 11 Taylor MC/16b Casita LATERAL ANALYSIS 71 r 1 � I G = 0,IX 27 = 2.7 - 3 0.4 f25= 5 v � � n 3 + ur t, FFs= r-4{4,5) l9!(11,25i= 2�37d Fw=- I20(10.$)4.- 1o4(s.2-'b)- IbCG' Pte= 11310 1, 25)" 2J 4- S k Fw = 130 r k I s,W T sw S 2437(32/421' d557b 21a�(32/,�a�=1G3%� 222 WM LTD PROJECT: Taylor MC/166 PAGE: Z23 CLIENT: DESIGN BY: J08 NO.: ;S` _._ :: DATE: REVIEW BY ll : IT DATA L Min. Penetration in tAL FORCE ON DIAPHRAGM: vdia, WIND = 3.14 pN,for wind I 1 6 1 4 1 3 1 2 Sheathing and Single -Floor w vdis. SEISMIC = .424 plt,for seismic L 1 310 1 460 1 600 1 770 ITY LOADS ON THE ROOF: WDA = _L 277 . plf,for dead load 424 106 WLL = 218 pH,for live load __—=_Y_v---_—___r___P= "--------------------------- hp ISIONS: Lw = 5.75 ft, h= 9 ft F 0O1 WIND L = 5.75 It hp = 2.5 ft 16250 Left 6100 2/3 TL = 2119 p`t Right 6100 2/3 TR = 2119 GRADE (0 or 1) = 1 <= Sheathing and Single -Floor da = 0.06 in I, Q� UM NOMINAL PANEL THICKNESS = 15/32 in A, = 0.02 ha,I ION NAIL SIZE (0=6d, 1=8d, 2=10d) 2 10d FIC GRAVITY OF FRAMING MEMBERS 0.5 STUD SECTION 1 pcs, b = 6 in, h = 8 in I, Tr SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH GRADE (1, 2, 3, 4, 5, or 6) 1. 3.. Dense No -1 Lw f OPTION ( 1=ground level, 2=upper level) 1 ground level shear wall THE SHEAR WALL DESIGN IS ADEQUATE. GN SUMMARY BLOCKED 15/32 SHEATHING WITH 10d COMMON NAILS @ 4 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 24 in O.C. HOLD-DOWN FORCES: TL = 2.97 k , TR = 2.97 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 6" x 6" DOUGLAS FIR -LARCH Dense No.1, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: 0 = 0.33 in .YSIS (MAX SHEAR WALL DIMENSION RATIO L / B = 1.6 < 3.5 .: .:[Satisfactory] IMINE REQUIRED CAPACITY vp = 424 pif, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 4 in) TWF gNFAR CAPACITIFg PFR IR(. Tnhla 93nR d 1 Panel Grade Common Nail Min. Penetration in Min. Thickness (in) Blocked Nail Spacing Boundary & All Edges 1 6 1 4 1 3 1 2 Sheathing and Single -Floor 10d 1 5/8 15/32 1 310 1 460 1 600 1 770 Note: The indicated shear numbers have reduced by specific gravity tactor per wu note a. VE DRAG STRUT FORCE: F = (L -L,,,) MAX( vd a, WIND, (1oVdia. SEISMIC) = 0.00 k ( Q0 = 1 ) (Sec. 1633.2.6) VE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab. 11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 24 in O.C. THF HAl 11-11OWN FC)RCFS, EDGE STUD CAPACITY Pmax = 3.32 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1200 psi Co = 1.60 Cp = 0.55 A = 30.25 int E = 1700 ksi CF= 1.00 F� = 1060 psi > f, = 110 psi [Satisfactory] vdla Wall Seismic Overturning Resisting Safety Net Uplift Holddown (pif) at mid -story (Ibs) Moments (ft -lbs) Moments (ft -lbs) Factors (Ibs) SIMPSON SEISMIC 424 106 22550 Left 6100 0.9 TL = 2967 ,y Right 6100 0.9 TR = 2967 Sxe,allowable, Aso = 0.386 in 0O1 WIND 314 [Satisfactory] (ASCE 7-05 12 16250 Left 6100 2/3 TL = 2119 p`t Right 6100 2/3 TR = 2119 t = 0.298 in en = 0.012 in da = 0.06 in (ASCE 7-05 Tab 12.2-1 & Tab 11 Q� EDGE STUD CAPACITY Pmax = 3.32 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1200 psi Co = 1.60 Cp = 0.55 A = 30.25 int E = 1700 ksi CF= 1.00 F� = 1060 psi > f, = 110 psi [Satisfactory] (TL & TR values should include upper level UPLIFT forces if applies =CK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) 8vhh3 v°h hdo A = Ajkrdj.R + Ash.,+ AND„ slip + Achurd lowe stip = + + 0.75he„ + = 0.328 in, ASD < EAI,,,. Gt L., Sxe,allowable, Aso = 0.386 in Where: vs = 424 pif, , ASD Lw = 6 ft E = 1.7E+06 psi [Satisfactory] (ASCE 7-05 12 A = 30.25 in` h = 9 ft G = 9.0E+04 psi Cd = 4 1= 1 t = 0.298 in en = 0.012 in da = 0.06 in (ASCE 7-05 Tab 12.2-1 & Tab 11 A, = 0.02 ha,I (ASCE 7-05 Tab 12.12-1) EDGE STUD CAPACITY Pmax = 3.32 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1200 psi Co = 1.60 Cp = 0.55 A = 30.25 int E = 1700 ksi CF= 1.00 F� = 1060 psi > f, = 110 psi [Satisfactory] WM LTD PROJECT: Taylor'MC/16b PAGE: �4 CLIENT :DESIGN BY: JOB NO.: :3WT. DATE: REVIEW BY: IT DATA M. Min. Blocked Nail Spacing Panel Grade Common vd;a L JP.in] etratioThickness in tAL FORCE ON DIAPHRAGM: vdla. WIND = 233 pli,for wind b 1 4 1 3 1 2 Sheathing and Single -Floor I 10d w Vdla, sEtsmic = 314 pH,for seismic f—T--- t t t t ITY LOADS ON THE ROOF: WDA = 277 pB,for dead load 1._.1 _ —1--1---t— Right 11082 0.9 TR = 1645 axe,allowabta, Aso = 0.386 in y0y ho 233 WLL= 218 pB,forlive load Left 11082 2/3 TL= 1144 -.. _. _--__. ..- __ __.__________ Right 11082 Z/31 TR = 1144 I = 0.298 in e, = ISIONS: Lw = .7.75 ft , In = 9 it (ASCE 7-05 Tab 12.2-1 & Tab 11. Q L = 7.75 ft, hp = 2.5 ft (ASCE 7-05 Tab 12.12-1) GRADE (0 or 1) = 1 <= Sheathing and Single -Floor h UM NOMINAL PANEL THICKNESS = 15/32 in ION NAIL SIZE (0=6d, 1=8d, 2=10d) 2 10d FIC GRAVITY OF FRAMING MEMBERS "0A " 1 STUD SECTION 1" pcs, b = .4 . " in, h = 6 in T, V° T. SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH GRADE ( 1, 2, 3, 4, 5, or 6) 3 No. 1 Lw / OPTION ( 1=ground level, 2=upper level) 1 " .. ground level shear wall THE SHEAR WALL DESIGN IS ADEQUATE. GN SUMMARY BLOCKED 15/32 SHEATHING WITH 10d COMMON NAILS @ 4 in O.C. BOUNDARY & ALL EDGES 112 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 34 in O.C. HOLD-DOWN FORCES: TL = 1.64 k , To = 1.64 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 6" DOUGLAS FIR -LARCH No. 1, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.21 in .YSIS C MAX SHEAR WALL DIMENSION RATIO L / B = 1.2 <3;5 , .. : [Satisfactory] IMINE REQUIRED CAPACITY vb = 314 pit. ( 1 Side Diaphragm Required, the Max. Nail Spacing = 4 in) THF SHEAR CAPACITIES PER IBC Table 2306.4.1 Note: The Irlalcatea shear numbers nave reaucea by specinc gravlry ractor per ins note a. VE DRAG STRUT FORCE: F = (L -Lw) MAX( Vd,a. WIND, Oovdla, SEISMIC) = 0.00 k (no = 1 ) (Sec. 1633.2.6) 4E MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 34 in O.C. T41C 41!11 ILnn1A/A1 Cl1RC8:S:• vd;a Nail JP.in] etratioThickness in in Boundary & All Edges b 1 4 1 3 1 2 Sheathing and Single -Floor I 10d 1 1 5/8 1 15/32 1 310 1 460 1 600 1 770 Note: The Irlalcatea shear numbers nave reaucea by specinc gravlry ractor per ins note a. VE DRAG STRUT FORCE: F = (L -Lw) MAX( Vd,a. WIND, Oovdla, SEISMIC) = 0.00 k (no = 1 ) (Sec. 1633.2.6) 4E MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 34 in O.C. T41C 41!11 ILnn1A/A1 Cl1RC8:S:• ECK EDGE STUD CAPACITY Pmax = 2.91 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1500 psi Co = 1.60 Cp = 0.43 A = 19.25 int E= 1700 ksi CF = 1.10 F, = 1146 psi > fc = 151 psi [Satisfactory] vd;a Wall Seismic Overturning Resisting Safety Net Uplift Holddown (plf) at mid -story Ibs Moments (ft -lbs) Moments (ft -lbs) Factors (Ibs) SIMPSON SEISMIC 314 143 22721 Left 11082 0.9 TL =_1_1645 ,5 Right 11082 0.9 TR = 1645 axe,allowabta, Aso = 0.386 in y0y WIND 233 [Satisfactory] (ASCE 7-05 12 16252 Left 11082 2/3 TL= 1144 p`t d` Right 11082 Z/31 TR = 1144 I = 0.298 in e, = 0.004 in da = 0.06 in (ASCE 7-05 Tab 12.2-1 & Tab 11. Q ECK EDGE STUD CAPACITY Pmax = 2.91 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1500 psi Co = 1.60 Cp = 0.43 A = 19.25 int E= 1700 ksi CF = 1.10 F, = 1146 psi > fc = 151 psi [Satisfactory] (Tt & TR values should include upper level UPLIFT forces if applict =CK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) 3 $veh vbh °° A = Aae,di.g +Asn..+ AN°a sup + Achow .spwL dip _ + + 0.75he„ +hd = 0.215 in, ASD < EALW Gt LW axe,allowabta, Aso = 0.386 in Where: vb = 314 pit, ASD Lw = 8 ft E = 1.7E+06 psi [Satisfactory] (ASCE 7-05 12 A = 19.25 in` In = 9 ft G = 9.0E+04 psi Cd = 4 1= 1 I = 0.298 in e, = 0.004 in da = 0.06 in (ASCE 7-05 Tab 12.2-1 & Tab 11. A, = 0.02 ha, (ASCE 7-05 Tab 12.12-1) ECK EDGE STUD CAPACITY Pmax = 2.91 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1500 psi Co = 1.60 Cp = 0.43 A = 19.25 int E= 1700 ksi CF = 1.10 F, = 1146 psi > fc = 151 psi [Satisfactory] r WM LTD PROJECT: Taylor MC/16b PAGE: 22� CLIENT: DESIGN BY: JOB NO.: S.W17 DATE: REVIEW BY: INPUT DATA w Min. Min. Blocked Nail Spacing LATERAL FORCE ON DIAPHRAGM: Vdla, WND = 155 pH,forwind --------F------------------ T, VMS, SEISMIC = ' 161 plf,for seismic GRAVITY LOADS ON THE ROOF: wDL = 0 ptf,for dead load 22320 wLL = 0 plf,for live load DIMENSIONS: Lw = 16 It , h = 9 ft L = 16 ft, hp= 2.5 It PANEL GRADE (0 or 1) = 1 <= Sheathing and Single -Floor MINIMUM NOMINAL PANEL THICKNESS = :15/32 In COMMON NAIL SIZE (0=6d, 1=8d, 2=10d) 2 10d SPECIFIC GRAVITY OF FRAMING MEMBERS 0.5 EDGE STUD SECTION 1 pcs, b = 4 in, h = 6 in SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH GRADE ( 1 2 3 4 5 or 6) 3 No 1 Lw STORY OPTION (1=ground level, 2=upper level) 1 ground level shear wall — ---�k THE SHEAR WALL DESIGN IS ADEQUATE. DESIGN SUMMARY BLOCKED 15/32 SHEATHING WITH 10d COMMON NAILS @ 6 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS,@ 48 in O.C. HOLD-DOWN FORCES: TL = 0.90 k , TR = 0.90 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 6" DOUGLAS FIR -LARCH No. 1, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.10 in ANALYSIS CHECK MAX SHEAR WALL DIMENSION RATIO L / B = 0.6 < 3:5:.' [Satisfactory] DETERMINE REQUIRED CAPACITY vb = 161 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 6 in) THE SHEAR CAPACITIES PER IBC Table 2306.4 .1 w Min. Min. Blocked Nail Spacing Resisting Safety Net Uplift Moments (ft -lbs) Factors (lbs) Holddown SIMPSON Panel Grade Common Penetration --------F------------------ T, v,e v> ho h To Lw STORY OPTION (1=ground level, 2=upper level) 1 ground level shear wall — ---�k THE SHEAR WALL DESIGN IS ADEQUATE. DESIGN SUMMARY BLOCKED 15/32 SHEATHING WITH 10d COMMON NAILS @ 6 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS,@ 48 in O.C. HOLD-DOWN FORCES: TL = 0.90 k , TR = 0.90 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 6" DOUGLAS FIR -LARCH No. 1, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.10 in ANALYSIS CHECK MAX SHEAR WALL DIMENSION RATIO L / B = 0.6 < 3:5:.' [Satisfactory] DETERMINE REQUIRED CAPACITY vb = 161 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 6 in) THE SHEAR CAPACITIES PER IBC Table 2306.4 .1 Note: I ne Inalcatea snear numDers nave reaucea by SpectnC gravity tactor per Int„ note a. 4E DRAG STRUT FORCE: F = (L-Lwj MAX(vdla. WIND, OoVdia. SEISMIC) = 0.00 k ( CIO = 1 ) (Sec. 1633.2.6) 4E MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, TabA I E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. THE HOLD-DOWN FORCES: vdla (plf) Min. Min. Blocked Nail Spacing Resisting Safety Net Uplift Moments (ft -lbs) Factors (lbs) Holddown SIMPSON Panel Grade Common Penetration Thickness Boundary & All Edges 24877 Left 11776 0.9 TL = 892 Nail in (in) 6 4 3 2 155 22320 Sheathing and Single Floor 10d 15/8 1 15/32 310 460 1 600 1 770 Note: I ne Inalcatea snear numDers nave reaucea by SpectnC gravity tactor per Int„ note a. 4E DRAG STRUT FORCE: F = (L-Lwj MAX(vdla. WIND, OoVdia. SEISMIC) = 0.00 k ( CIO = 1 ) (Sec. 1633.2.6) 4E MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, TabA I E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. THE HOLD-DOWN FORCES: EDGE STUD CAPACITY Pmax = 1.53 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1500 psi Co = 1.60 Cp = 0.43 A = 19.25 int E= 1700 ksi Cr = 1.10 Fc = 1146 psi > fc = 79 psi [Satisfactory] vdla (plf) Wall Seismic at mid -story (Ibs) Overturning Moments (ft -lbs) Resisting Safety Net Uplift Moments (ft -lbs) Factors (lbs) Holddown SIMPSON SEISMIC 161 294 24877 Left 11776 0.9 TL = 892 ,5 y0�' Right 11776 0.9 TR = 892 WIND 155 22320 Left 11776 2/3 TL = 904 Right 11776 2/3 TR = 904 EDGE STUD CAPACITY Pmax = 1.53 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1500 psi Co = 1.60 Cp = 0.43 A = 19.25 int E= 1700 ksi Cr = 1.10 Fc = 1146 psi > fc = 79 psi [Satisfactory] (TL & TR values should include upper level UPLIFT forces if applicable) =CK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) 3 ,h hdO° A = Q&.d.g +Am., + Awan vry + Och..d spfwe dm = EALN + 0.75he„ + = 0.103 in, ASD < + 8xe,aA0watge, Aso = 0.386 in Where: vb = 161 plf, ASD L,. = 16 It E = 1.7E+06 psi [Satisfactory] (ASCE 7-05 12.8.6) A = 19.25 in` h = 9 ft G = 9.0E+04 psi Cd = 4 1= 1 t = 0.298 in en = 0.002 in da = 0.06 in (ASCE 7-05 Tab 12.2-1 & Tab 11.5-1) Aa = 0.02 ham, (ASCE 7-05 Tab 12.12-1) EDGE STUD CAPACITY Pmax = 1.53 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1500 psi Co = 1.60 Cp = 0.43 A = 19.25 int E= 1700 ksi Cr = 1.10 Fc = 1146 psi > fc = 79 psi [Satisfactory] t I/ II � ID I WM LTD PROJECT: Taylor'MC/16b PAGE: ?2C: CLIENT: DESIGN BY JOB NO.: SW18':: DATE : REVIEW BY: PUT DATA Panel Grade ` Min. Thickness in TERAL FORCE ON DIAPHRAGM: vdia,,MND = 250 ptl,for wind 6 1 4 3 2 Sheathing and Single -Floor —TT-- w v dle. 6EISMIC ' 279 tI seismic p u 1 1 770 CAVITY LOADS ON THE ROOF: WDA = 0 plf,for dead load Left 24 2/3 TL= 1989 Q�pfl E3324 Right 2/3 TR = 1989 0 pH,for live load Sxe,aliowaa_e, asD - 0.386 in hp E = 1.7E+06 psi AENSIONS: L„,= 8,5 fl, h = 9 ft 9 ft +' Cd = 4 1= 1 I = 0.298 in e„ = L = 8:5 ft , hp = 2.5 it ,(ASCE 7-05 Tab 12.2-1 & Tab 11.5-1) Aa = 0.02 h. NEL GRADE (0 or 1) - 1 <= Sheathing and Single -Floor (ASCE 7-05 Tab 12.12-1) f, 41MUM NOMINAL PANEL THICKNESS = 15/32 in IMMON NAIL SIZE (0=6d, 1=8d, 2=10d) 2 10d ECIFIC GRAVITY OF FRAMING MEMBERS 0.5 1 GE STUD SECTION 1 pts, b = 4 in, h = 6 in T, v" TP SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH GRADE ( 1, 2, 3, 4, 5, or 6) . 3.. No. 1 Lw ORY OPTION ( 1=ground level, 2=upper level) 1 ground level shear wall THE SHEAR WALL DESIGN IS ADEQUATE. :SIGN SUMMARY BLOCKED 15/32 SHEATHING WITH 10d COMMON NAILS @ 6 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 38 in O.C. HOLD-DOWN FORCES: TL = 2.26 k , TR = 2.26 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" x 6" DOUGLAS FIR -LARCH No. 1, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.24 in IALYSIS ECK MAX SHEAR WALL DIMENSION RATIO L / B = 1.1 < 3:5 [Satisfactory] TERMINE REQUIRED CAPACITY vb = 279 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 6 in) THE SHEAR CAPACITIES PER IBC Table 2306.4.1 Note: 1 ne molcareo shear numoers nave reouceo Dy speclnc grawy Tactor per roc nose a. VE DRAG STRUT FORCE: F = (L -LW) MAX(vdw, wdao, Oovdla, SEISMIC) = 0.00 k (00 = 1 ) (Sec. 1633.2.6) VE MAX SPACING OF 518" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) 518 in DIA. x 10 in LONG ANCHOR BOLTS @ 38 in O.C. THE 1401 W)OWN FORCFS- Panel Grade Min. 11 Common Penetration Nail in Min. Thickness in Blocked Nail Spacing Boundary & All Edges Holddown SIMPSON 6 1 4 3 2 Sheathing and Single -Floor 10d 15/8 15/32 310 1 46 1 600 1 770 Note: 1 ne molcareo shear numoers nave reouceo Dy speclnc grawy Tactor per roc nose a. VE DRAG STRUT FORCE: F = (L -LW) MAX(vdw, wdao, Oovdla, SEISMIC) = 0.00 k (00 = 1 ) (Sec. 1633.2.6) VE MAX SPACING OF 518" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) 518 in DIA. x 10 in LONG ANCHOR BOLTS @ 38 in O.C. THE 1401 W)OWN FORCFS- EDGE STUD CAPACITY Pma„ = 2.01 kips, (this value should include upper level DOWNWARD loads if applicable) F, = 1500 psi CD = 1.60 Cp = 0.43 A = 19.25 in' E= 1700 ksi CF = 1.10 Fc = 1146 psi > % = 104 psi [Satisfactory] vdIa (plf) Wall Seismic at mid -story (lbs) Overturning Moments (ft -lbs) Resisting Safety Net Uplift Moments (ft -lbs) Factors (lbs) Holddown SIMPSON SEISMIC 279 156 22243 Left 3324 0.9 Tt. = 2265 y0 Right 3324 0.9 TR = 2265 WIND 250 19125 Left 24 2/3 TL= 1989 Q�pfl E3324 Right 2/3 TR = 1989 EDGE STUD CAPACITY Pma„ = 2.01 kips, (this value should include upper level DOWNWARD loads if applicable) F, = 1500 psi CD = 1.60 Cp = 0.43 A = 19.25 in' E= 1700 ksi CF = 1.10 Fc = 1146 psi > % = 104 psi [Satisfactory] (TL & TR values should include upper level UPLIFT forces if applicable) =CK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) 3 8vbh vbh hdO° A = A&.*ng + Ash,., + ANail slip + Ac&rd splice SIT = + + 0.75he„ + = 0.241 in, ASD < EAL,� Gt L,� Sxe,aliowaa_e, asD - 0.386 in Where: vb = 279 plf , ASD Lw = 9 it E = 1.7E+06 psi [Satisfactory] (ASCE 7-05 12.8.6) A = 19.25 in` h = 9 ft G = 9.0E+04 psi Cd = 4 1= 1 I = 0.298 in e„ = 0.011 in da = 0.06 in ,(ASCE 7-05 Tab 12.2-1 & Tab 11.5-1) Aa = 0.02 h. (ASCE 7-05 Tab 12.12-1) EDGE STUD CAPACITY Pma„ = 2.01 kips, (this value should include upper level DOWNWARD loads if applicable) F, = 1500 psi CD = 1.60 Cp = 0.43 A = 19.25 in' E= 1700 ksi CF = 1.10 Fc = 1146 psi > % = 104 psi [Satisfactory] SHEAR PANEL SCHEDULE (NORTH/SOUTH) ID LOCATION TYPE NO. OF L SPEC SIDES LENGTH OF WALL H HEIGHT OF WALL Nailing HD FND BOLT FTO DEPTH EDGE/FIELD (SIMPSON) DIA ox- ON.) FTO REINF. Wo Tas TRANSFER. ROOF (=Fi/w) 0OFA38b DRAG CONNECTION A Powder Room SM 4815 4'-0" 15'4" 51" (9)#5 T&B 5 CMST 14 each end B Dining/Family Room SM 3615 3'4" 151-0" 39" (8)35 T&S 6 CMST 14 south end C Den (2) SM4816 4'-0" 16'-0" 51" (8)#5 T&B 5 ea. wall CMST 14 each end D Bar (2) SM 4217(16'-6") 3'43" 16'-8" 45" (9)#5 T&B 4 ea. Wall CMST 14 each end E Bar Wing Wali SM 4217(16'-6") 3'-6" 16'-6" 45" (9)#5 T&B 4 CMST 14 each end F Den SM 289 2'-4" 9'-0" 35" (4)#S T&B 3 LSTA 30 each end G Den/MBR Site Built 8'-0" 10'-0" 4/12 4x6 PHD2 5/8"@32"oc 18" (2)#4 T&B 6 MSTA35 south end H MBR Site Built 171-6" 10'-0" 6/12 None 6/8"@48"oe 18" (2)#4 T&B 6 LSTA 30 south end PWDR Room SM 4210 3'-6" 10'-0" 45" (9)#5 T&B 2 LSTA 30 north end J MBA Tiolet Site Biult 5'-6" 10'-0" 3/12 6x6 PHOS 5/8"@22"oc 24" (3)#4 T&B 6 MSTA 36 north and K MBA Site Biult 14'-0" 8'-0" 6/12 4x6 PHD2 5/8"@48"oc 18" (2)#4 TO 5 LSTA 36 south end L KltchenlMech Site Built 6'-6" 10'-0" 6/12 6x6 PHD 2 5/8"@34" 24" (2)#5 T&B 5 LSTA 30 north/CMST 14 south M KltchenlBRKFST SM 2810 2'-4" 10'-0" 35" (9)#5 TO 4 LSTA 30 north/CMST 14 south N BRKFSTIPantry SM 2410 2'.0" 10'-0" 35" (9)#5 T&B 3 CMST 14 each end p Pantry Site Built 5'-0" 10'-0" 6/12 4x6 PH02 518"@48"oc 24" (2)14 T&B 2 LSTA 36 south end p Guest Bath Site Built T-0" 10'-0" 3/12 6x6 PUDS 5/8" @22" 24" (2)#5 T&B 7 MSTA 38 south and Q Closet/ Laundry Site Biult 12'-0" 9'-0" 3/12 4x6 PHD@ 518"@22" o4 24" (2)#5 TO 12 MSTC 40 south end R Garage Site Built 24'-0" 9'-0" 6/12 None 518"@48"oc 24" (2)15 T7B 7 None $ lCasita Bedroom Site Built 5'-9" 9'-0" 4/12 6x6 PHD@ 518"@24" 24" (2)95 T&B 4 MSTA 36 south end T lCosits Sitting Room Site Built T-9" 9'-0" 1 4/12 4x6 PHD2 5/8"@34" od 24" (2)#5 T&B 5 MSTA 36 noth side 1. ALL PANEL EDGES ARE BLOCKED. 2. SILL, STUDS & POSTS, and BLOCKING SHALL BE 3x8, UNLESS OTHERWISE NOTED. 3. NAIL WITH 10d COMMON NAILS. 4. SHEARMAX ICBO EVALUATION REPORT #5402 USE ED NAILS TO ATTACHSHEARWALLS TO PRESSURE TREATED LUMBER AW no MR, so SHEAR PANEL SCHEDULE (EAST WEST) ID LOCATION TYPE L 1 SPEC NO. OF SIDES LENGTHOFHEIGHT WALL N EIG OF Nailing EDGE/HELD HD (SIMPSON) FND BOLT DLA ®o.a FTO DEPTH ON.) FTG REINF. 13'e TdB TRANSFER AT ROOF /=FrSW) MOFA368 DRAG CONNECTION 1 MBR Fireplace SM 4818 4'-W 18140" 51" (5)05 T&B 5 LSTA 38 each and SM4216 3'-6" 16'-0" 45" (5)95 T&B 5 LSTA 36 each end 2 Entry She Built 9'-8" IVa, 4/12 4x8 PHDS 518"@28' oc 18" (2)94 T&B 8 MSTC 40 west and 3 Dining Room (2) SM 4215 3'-8" 15'-0" 45" (9)96 T&B 7 (2) LSTA 36 west end 4 Family Room (2) SM 4216 3'-6" 16'-0" 45" (9)#5 T&B 8 (2) LSTA 36 west end 6 MSTR Bedroom SM 4810 4'-0" 10'-0" 61" (9)95 T&B 3 CMST 14 west and 6 Den Site Built 11'-8" 9'-0" 6/12 4x6 PHD2 5/8"®48" oc 18" (2#4 T&B 4 LSTA 30 west end 7 MBR She Bullt T-0" 10'-0" 8/12 4x8 PHD2 5/8"048" oc 18" (2#4 T&B 3 LSTA 30 each end 8 MBA Tlolet She Built 8'4" 10'-0" 3/12 64 PHD2 5/8"@22"oc 18" (2#4 T&B 7 CMST 14 east and 9 MSTR Closet She Built 11'-0" 10'-0" 6112 4x6 PHD2 6/8"@48" oc 18" (2)04 T&B 6 LSTA 30 east end 10 Hallway She Built 12'-0" 91-0" 4/12 4x8 PHD2 6/8"@32" oc 18" (2)#4 T&B 8 CMST 14 each and 11 Pantry SM 4810 4'-0" 10'-0" 51" (9)#5 T&B 5 MSTA 36 west end 12 Guear Room She Built 13'-0" 9'-0" 8112 None 6/8"@48" oc 18" (2x94 T&B 4 LSTA 30 east end 13 Hallway She Bull 101-0" 9'-0" 6/12 4x8 PHD2 6/8"@42" oc 18" (2)#4 T&B 6 CMST 14 each end 14 Guest Room/Closet Site Built 13'-8" 9'-0" 6/12 None 6/8"@48" oc 18" (2)94 T&B 5 None 16 Garage Door SM 429 3'-8" 9'-0" 45" (9x95 T&B 6 MSTC 28 east end 16 Garage Site Built 28'-0" W.O. 6/12 None 6/8"(8248" oc 18" (2x94 T&S 6 None 17 Castle Bedroom She Built 18'-0" 9'-0" 6/12 4x6 PHD@ 5/8"@48" oc 18" (2)#4 T&B 6 None 18 Caelta Sitting Room She Built 8' 8" 9'-0" BH2 4x8 PHD2 6/8"@38" o0 18" (2)94 T&S 8 None NC TES: 1. ALL PANEL EDGES ARE BLOCKED. 2. SILL, STUDS & POSTS, and BLOCKING SHALL BE 3x6, UNLESS OTHERWISE NOTED. 3. NAIL WITH 10d COMMON NAILS. 4. SHEARMAX ICBO EVALUATION REPORT #640P 8 USE GALVANIZED NIS TO ATrACHSEA WALLS TO PRESSURE TREATED LUMBER if MAR 0 9 2011 II I j F i �EQta � 4� ria ouu�c,� 4' F-�Zl—uwoX No I5oK7m-J.1 T:--� (2)(1150�� 2 (6z&_ = 41-61 ` 4674" aj,4 = 454 (5 .S�z� = 1249 "/' �-) F2 -o C -,-n ►,s G j --G2 $t2. J $12 PSZ 10 K 3 a pq& 225 x 2- T caUcg- � r '�M MAuvFa�.Zvy2�St,s 5�15�n � G p E 51 G� F4go�„t M= 4.171 �!= 1 4_- 417(121 _ 'Lo, 000 to. USS. (1 i �4 EA, �oCZJE�z 3 00 5� 3 /I TOO I.r. 2'. 0 5 4 3� LbE F1R-�p�C� 92' tzEFRCV- W = f 050 -� 2ioo = 3 SO " " QCITY OF LA QUI NTA �P = 0.4(1 z (3750) CI + Z C6 5�`\1- 1400, BUILDING & SAFETY DEPT. APPROVED 6M = loo G ( S:S/z) = :t)a(p-7 FOR CONSTRUCTION DATE A 04 "1' BY " T- C36�7- �512(l.os) � = 1134 _tp Lo& �uj tz{-oCoM = 113q l,o�� I225 "/�z 1225(12 1�, 37 o(O.G7%= 2612 07G 1, os T= 0 I I F 12E91A CP--- A..1 U-4 o�z PGE 2")(1150 ntA = 454-(s.$) ,�= 1249 "' I 45¢' 1150(6-67) - 7-71 I,OS 385 " 2) , )=a GTP -3 G r—OfL ?,12, $12 PsT 1 )c 3 a P:V-' 22s x. 2 . S 3 00 SOPPW M�.JTA L CALcg " morn MA*'uFnc'ruV-EF�s 5m t C- 07 E .5► Cr—) FIRS 7-71 Nt= 4171 d= I 6,27 o0a I, r. cormiErz 22& John PROJECT: Taylor MC16b PAGE: WallinCLIENT: DESIGN BY: 9 JOB NO.: ;{ DATE: REVIEW BY: IT DATA LENGTH HEIGHT THICKNESS ING LENGTH TING WIDTH TING THICKNESS TING EMBEDMENT DEPTH )WABLE SOIL PRESSURE D LOAD AT TOP WALL LOAD AT TOP WALL LOAD LOCATION L SELF WEIGHT :RAL LOAD TYPE (0=wind,1=seismic) ) LOADS AT WALL TOP CRETE STRENGTH kR YIELD STRESS BARS, LONGITUDINAL fOM BARS, LONGITUDINAL fOM BARS, TRANSVERSE L. = 1.5 it h = 10 It t = ' 4 'in L = 4:5 It L, = 1.5 R B = 2.67: it T= 50 in D = 4.1666667 It qa = -15 ksf Pr DL 0 kips P,.LL = .. 0 los a = 0 It P. = 0:24 kips . 0. wind F= 0.632 kips M = -0 : ft4dps fi = .2- 5 ksi f„ = '60 ksi ,2 - # 9 # # 3. i D i L L P,. THE FOOTIIlG DESIGN IS ADEQUATE. 5 5 12 in O.C. < = Not Required OVERTURNING FACTOR (IBC 06 1605.2.1, 1801.2.1, & ASCE 7-05 12.13.4) F = MR / Mo = 1.88 > 1.6/0.9 for wind Where Pr = 7.2590625 kips (footing self weight) Mo = F (h + D) + M = 9 ft4ups (overturning moment) MR=(12,M)(L,+a)+Pr(0.5L)+P.(L,+0.54)= 17 SOIL CAPACITY (ALLOWABLE STRESS DESIGN) P$ 5.00625 kips (soil weight in footing size) P = (Pr.DL + Pcu) + PW + (Pr - Pa) = 2.49 kips (total vertical net load) / MR = (PrDL + Pr. LL) (L, + a) + Pr (0.5 Q + P. (L, + 0.5Lw) = 17 e = 0.5 L- (MR,- Mo) / P = -0.93 it (eccentricity from middle of footing) q 'vwx BL f or es 6 2P L -0.05 ksf = 3B(0.5L — e) ' for a 6 Where e = -0.93 ft, < (L / 6) FOOTING CAPACITY (STRENGTH DESIGN) MuR = 1.2 [Pr.DL (L, + a) + Pr (0.5 L) + Pr (L, + 0.5L„ r)] + 0.5 Pr. LL(L, + a) _ Map = 1.6 [F(h + D) + M] = 14 ft4dps P„= 1.2(PrDL+Pr+%)+0.5P,LL= 9 kips eu = 0-5L - MA - MU.o) / Pa = 1.59 It R 1 + L" L fore"s— q"y,,x m BL ' 6 e 3.41 ksf 2p" f or e" � 6 3B(O.SL — e") ' [Satisfactory] ft -kips (resisting moment without live load) ft -kips (resisting moment with live load) c 4/3qa [Satisfactory] 20 ft4ups 0 qu,rnax P u,w REMDIMG UnWMT d. SHEAR AT EACH FOOTING SECTION Section 0 1/10 L 2110 L 3/10 L 4/10 L 5/10 L 6/10 L 7/10 L 8/10 L 9/10 L L X0 (ft) 0 0.45 0.90 1.35 1.80 2.25 2.70 3.15 3.60 4.05 4.50 P,,.w (kll) 0.0 0.0 0.0 0.0 23.1 0.2 -22.7 0.0 0.0 0.0 0.0 MLL„ (flat) 0 0 0 0 -1 -7 -13 -15 -15 -15 -15 V,,.w (kips) 0 0 0 0 -0 -14 -9 0 0 0 0 P,,.f(ksf) 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 M,,.r (ft k) 0 0 -1 -2 -3 -5 -7 -10 -13 -16 -20 VLLt (kips) 0 -1 -2 -3 -3 -0 -5 -0 -7 -8 -9 q. (kms -3.4 -2.6 -1.9 -1.1 -0.3 0.0 0.0 0.0 0.0 0.0 0.0 MLL0 (flak) 0 1 3 6 10 14 18 22 26 31 35 V0.0 (kips) 0 4 6 8 9 9 9 9 9 9 9 F M0 (ftac) 0 1 2 6 6 2 1 -2 4 0 0 F V 0 3 5 6 40 -6 1 3 2 1 0 s s 4 2 s -2 10 5 0 s -10 -r5 Location MyOmd (in) Prekp Pv.O Vu,. jVc = 2 0 b d &10.5 Top LongiWdinal -2 flak 46.69 0.0000 0.0004 10 kips 127 kips Bottom Longitudinal 6 ftac 46.69 0.0018 0.0019 10 kips 127 kips Bottom Transverse 1 ft -k k / ft 46.19 0.0000 0.0000 1 / ft 47 / ft 0.85f.4 i - - 'K• 2 . Where 0.383bd f� P= ' r ,14P Permax I 0.85fitf, eu t fY su+Et 0.0129 P", = 0.0018 [Satisfactory] OM ■V