Loading...
12-1046 (AR) Structural CalcsSTRUCTURAL CALCULATIONS Project Location Owner: Prepared by: Building Code Edition 79760 Citrus La Quinta, CA 92253 Bryan Residence (Due) 1 -Story Home Additia nit 1 Ben Phan, P.E. (714) 251-4537 11541 Elizabeth Street Garden Grove, CA 92840 2010 California Building Code Concrete: f , = 2,500 psi @ 28 days Ready -mixed concrete per ASTM C94 Concrete aggregates per ASTM C33 Cement ASMT C150 Type 11 or V u.n.o. Foundation: Minimum allowable soil bearing pressu Date: 8/30/2012 �QROFESS/0 r60 Pyq� �2 No.57550 m EXP. 12/31/ c�P � 9� C/VIL �. F CALW ' CITY OF LA QUINTA BUILDING & SAFETY DEPT. APPROVED I:5 f;O CONSTRUCTION ogs Structural Steel: ASTM A-36, ASTM a-92 Pipe Columns: ASTM A-53, Grade B Welding: Electric are process by certified welders in approved licensed fabrication C1•Fti shop. Concrete Masonry: Grout: Reinforcing Steel Wood Framing: Studs, joists, rafters: Beams and posts: Glulam: Paral lam 2.0 PSL: Microllam LVL: Plywood: TJI: ASTM C90, Grade N, f m = 1,500 psi Type M, 1:3:1/4 mix; Cement: Sand: Hydrated Lime or Lime Putty. 1:3:2 mix; Cement: Sand: 3/8" pea gravel; f , = 2,000 psi. Deformed bars per ASTM A915; Grade 40 for #4 and smaller; Grade 60 for #5 and larger. WCL1B or WWPA Grading Rules Agency Douglas Fir -Larch #2 Douglas Fir -Larch #I 24F -V4 or 24F -V8 DF/DF (cantilevered) ICC ESR -1387 ICC ESR -1387 4 or more plies, Structural 1 or CD, CC Structural Panel per PS -1-95 ICC ESR -1153 (ILevel) All information shown on plans relative to existing conditions are provided as the best present knowledge but without guarantee of accuracy. Where actual conditions conflict with the plans, they shall be reported to the Engineer so that modifications may be made in writing. Modifications of plans and details shall not be made without written approval of the Engineer. By accepting this calculations or report, the Engineer shall not be held liable for discrepancies not brought up to the attention of the Engineer. The design analysis and calculations were done in accordance with generally accepted engineering principles and practice. RF vy':i�%E� OCT 18 2012 BY: -- a ROOF DEAD LOAD : Tiles Roofing Shiathing/Ins.u4tion. i. 2X RJR,@ .1 t 0 C 2X- CJ- @. •i;6; -'-.6c Drywall C.Piling"''. MISCELLANEOUS SLOPE CORRECTION 'X12" MISCELLANEOUS ROOF DEAD LOAD: ROOF SNOW LOAD: ROOF LIVE LOAD: TOTAL ROOF LOAD: ROOF TYPE I --il-i?o J,100 PSF :0:000: PSF PSF ... .. . . ..... . ... 0 PSF PSF PSF 1-24 PSF 0.0 PSF PSF 0 1-0 PSF ROOF LIVE LOAD: PSF PSF PSF PSF PSF 20.3 PSF 1.08 PSF 0.0 PSF 22.0 PSF o;. .0 PSF PSF 1, -42.01 PSF RR RR RR ci ci ci ci ci ROOF DEAD LOAD : ROOF TYPE 2 SUB -TOTAL --il-i?o PSF SLOPE CORRECTION "X:12" :0:000: PSF PSF ... .. . . ..... . ... 0 PSF 00 PSF PSF = 0.0 PSF ROOF SNOW LOAD: 0 PSF PSF ROOF LIVE LOAD: PSF . . . ........ ... - 0 PSF PSF SUB -TOTAL = 0.0 PSF SLOPE CORRECTION "X:12" :0:000: 1.00 PSF MISCELLANEOUS 'LOAD = 00 PSF ROOF DEAD : = 0.0 PSF ROOF SNOW LOAD: MAX. SOIL PRESSURE - Qa :1',500 0 PSF ROOF LIVE LOAD: =20 . . . ........ ... - 0 PSF TOTAL ROOF LOAD: PSF SOILS REPORT :None Proyided:U-,iAs . suqfe-.-Qo0, GEOTECHNICAL ENGINEER: I:'. Not Aooli6a-ble':'Y'ju-isem bode"'bi BASIC BEARING PRESSURE PADS & CONT. FNDT.,= Qa �--1:500, PSF INCREASE FOR WIDTH 0.0, % INCREASE FOR DEPTH = 0:0 % MAX. SOIL PRESSURE - Qa :1',500 0 PSF ALLOW PASSIVE PRESSURE PCF ALLOW SOIL FRICTION DATE OF REPORT: ISOLATED FOUNDATIONS = PSF EQUIV. FLUID PRESSURE PCF Latitude =MM8L.7. North Lvnonmoe. = mmo dccup;ncy C�tognry = Important Factor (0 = (Table 1.5-2) Shear Panels Timber Frames| Use Simplified Alternative Structural Design V 0.20 Shear Panels DESIGN WIND VELOCITY N3s) n = MPH Von .. . C, = | v~ ~ Use Simplified Alternative Structural Design V 0.20 Shear Panels DESIGN WIND VELOCITY N3s) = MPH Von = MPH Occupancy Category = Site Class Important Factor (1) = (Table 1.5-2) Exposure Category = 00 Adjustment Coefficient (k) =14.0 2§:" (Figure 28.6-1) FT . Mean Roof Height SDC FT MWFRS Design Wind Pressure P.30 (PSf) = L--22.6---]^ Horizontal I. Roof End Zone Building Width = V = 0.67 Timber Frames = Longitudinal (Case A) 22.6 26.6 -7.0 17.7 2a Mean Roof Height 6.0 FT Roof Horizontal Loadl FT 1 7861 I -B.§—] (Transverse) Roof Horizontal Load Fr 1,0611 LBS (Longitudinal) Roof Height = FT Wall Height (2ndtOoor) = Site Class WaoMa��(1�Ono� = FT 00 Total Height =14.0 FT . Mean Roof Height SDC FT Roof Angle = L--22.6---]^ Building Width = V = 0.67 Timber Frames Roof Height = FT Wall Height (2ndtOoor) = WaoMa��(1�Ono� = FT Total Height =14.0 FT . Mean Roof Height =11.6 FT Roof Angle = L--22.6---]^ Building Width = FT Building Length = FT sovoMoimm = pr Mean Roof Height = FT a 3.0. Fr 2a 6.0 FT D V> LOAD: Roof weights Roof DL (horiz. Proj.),= Ext. Wall DL = Int. Shear Wall DL = Wall Height (1 st floor) _ Roof Height = Total height, hn = N -S Length = E -W Length = Roof Area = Tributary Ext. Walls to Roof = Tributary Int. Shear Walls to Roof = Roof Weight = Tributary Ext. Walls to Roof = Tributary Int. Shear Walls to Roof = W..f = Total DL (W) _ Total Base Shear M = Design Base Shear: Period: T=Ct(hn)314 = 0.02'(hn)314 = Vertical distributions of seismic forces: Shear Diaphragm E -W N -S E -W N -S 22.0 22.0 22.0 22.0 17.0 17.0 17.0 17.0 7.0 7.0 7.0 7.0 9.0 9.0 9.0 9.0 5.0 5.0 5.0 5.0 14.0 14.0 14.0 14.0 28.8 28.8 18.0 18.0 517.5 517.5 517.5 517.5 93.5 93.5 57.5 36.0 18.0 28.8 18.0 28.8 11,381 11,381 11,381 11,381 7,153 7,153 4,399 2,754 567 906 567 906 19,100 19,439 16,346 15,040 19,100 19 439 16,346 15 040 3,820 3 820 0.145 sec E -W N -S V= 0.20 0.20 W V= 3,820 3,820 lbs Level wx Ib Area (ftZ) Fx NS ( ) (lb) Fpx NS 0.2 Sns W fx NS fpx N -S (lb) Ib Use (Ib) (psf) (psf) Roof 19,100 518 3,820 3,820 3,820 3,820 7.38 7.38 1 st Floor - E 19,100 3,820 3,820 0.2 Sos W fx E -W fpx E -W Fx EM (Ib) Fx E -W wx lb Use (Ib) (psf) (psf) 3,820 3,820 3,820 3,820 7.38 7.38 3,820 3,820 >q.ft. t t bs. bs. bs. bs. bs bs WIf Longitudinal Direction: Shear Walls (Vertical): Hiah Roof Level - D + E/1.4 (Eq. 12-9) (no Increase) E = p Eh Use P = 1.30 1.30 Lonaitudinal Shear Walls Wall (grid line) EFaboveIb EFx ( ) (Ib) 1 1 to 2 2to3 3 3to4 4 MW 7.38 7.38 7.38 7.38 7.38 7.38 7.38 Spacing ft 18 0 27.5 Depth ft 28.75(Existing) 15(Existing) Net D b, ft 1.5 1.5 Vseismic (Ib) 1,910 1,522 Vwi d (Ib) 1,061 1,061 Vgovems (Ib) 1,910 1,522 Wall Ib 2,090 2,090 —Spec, Wall T e HFX-18x9 HFX-18x9 Vgovems(P t) 270 270 vfadored(Pl� 8d @ 6",6",12" 8d @ 6",6",12" vfactored*1.0 (M Min. D ft 1.5 1.5 Mo (Ib -ft) 17,190 13,702 Wroof (Ply 198 302 Wwaij (A 153 153 0.6*MR (Ib -ft) 237 307 Tie -down 6" YES YES Tie -down Ib 11,302 8,930 Tie -down 1/8" STD 1 1/8" STD COMP. Post 2-2x4 I 2-2x4 D + E/1.4 (Eq. 12-9) (no Increase) E = p Eh Use P = 1.30 1.30 Lonaitudinal Shear Walls Wall (grid line) EFaboveIb EFx ( ) (Ib) Ftotn, v--EH.4b lb (Plf) Shear Wall Length Sheathing 1 o Allowable Shear (n) 2 sides Olf) 1 - 1,910 1,910 HFX-18x9 2,090 2 - - - (Existing) 15(Existing) 3 - 1,522 1,522 HFX-18x9 2,090 4 - - -(Existing) VWnd(Plf) 18 Diaphragm (horizontal): Roof Level: 1 1 to 2 2to3 3 3to4 4 fp'(Psf) 7.38 7.38 7.38 7.38 7.38 7.38 7.38 L ft 18 0 27.5 Depth ft 28.75(Existing) 15(Existing) Area ft2 518 413 fse15mi4lo 66 101 VWnd(Plf) 18 35 Govems Seis. Seis. vgovemed(Plf) 66 101 Roof Panel 112" CDX 1/2" CDX Shear 270 270 Edge Nail 8d @ 6",6",12" 8d @ 6",6",12" Transverse Direction: Shear Walls (Vertical): Roof Level A AtoB B BtoC C CtoD D fx s 7.38 7.38 7.38 7.38 7.38 7.38 7.38 Spacing ft 28.75 26 10.75 Depth ft(Existing) 6.7 9.83(Existing) Net D b, ft 5.5 9.75 Vseismic (lb) 711 1,333 . Vwind (lb) 786 786 Vgovem, (Ib) 786 1,333 Vgovems P 143 137 Vfactored(plf) 143 137 factored*1.0 (plf) 143 137 Min. D ft 5.5 9.75 Mo (Ib -ft) 7,071 12,000 ` Mf (Plf) 319 286 `^fwaii (A 153 153 0.6*MR (Ib -ft) 4,282 12,517 Tie -down 6" YES NO Tie -down Ib 558 N/A Tie -down HDU2&SSTB16 N/A COMP. Post I 2-2x4 1 2-20 D + E/1.4 (Eq. 12-9) (no increase) E = p Eh Use P = 1.30 1.30 Transverse Shear Walls Wall rid line EFabove Ib £Fx (g ) ( ) (lb) Fturai v=EN.4b Ib (Plf) Wall Length Shear # (ft) Sheathing 1 or 2 sides Allowable Shear (plf) A - - - 7:38 7.38 L ft 28.75 B - 786 786 143 1 5.5 1 280 C - 1,333 1,333 137 1 9.8 1 280 D - I - I - 96 vwind(Plf) Diaphragm (horizontal): Roof Level: A AtoB B BtoC C CtoD D fpx(psf) 7.38 7.38 7.38 7.38 7.38 7:38 7.38 L ft 28.75 26 10.75 Depth ft (Existing) 1 6.7 9.83 (Existing) Area (ft) (Existing) 256(Existing) fseismic(Plf) 96 vwind(Plf) 40 Governs Seis. ugovemed(Plf) 96 Roof Panel 1/2" CDX Shear 270 Edge Nail 8d @ 6",6",12" You can changes this area using the "Settings" menu item and then using the "Printing & Title Block" selection. Title: Job # Dsgnr. Project Desc.: Project Notes : Uescription : KK -1 L Z4- UL; Material Properties Calculations per Nos 2005, IBC 2009, CBC 2010, ASCE 7-05 Analysis Method: Allowable Stress Design Fb - Tension 900 psi E: Modulus of Elasticity Load Combination 2006 IBC & ASCE 7-05 Fb -Compr 900 psi Ebend-xx 1600ksi . ,;.. Maximum Bending Stress Ratio Fc - Prll 1350 psi Eminbend - xx 580ksi Wood Species : Douglas Fir - Larch Fc - Perp, 625 psi I fb : Actual Wood Grade : No -2 Fv 180 psi - = 1,170.00psi Ft 575 psi Density 32.21 pcf Beam Bracing Beam is Fully Braced against lateral -torsion buckling 'Load Combination +D+Lr+H Location of,maximum on span D(0.03) Lr(0.04) ---- ----- 6.545 ft Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1 Span=7.0ft ';'bads '•.: r =•;.;,.. • ..:,x : ?;;: ;, .; ?•`.: ''' `,a`_ .• Service loads entered. Load Factors will be applied for calculations. Service Uniform Load: D=0.0150, Lr = 0.020 ksf, Tributary Width = 2.0 ft, (Roof Loads) C r C m pESIGN'SUMMARY:: : �;;"�„-.: -.._: ;:::.- :..,,:: Summary of Shear Values Vactual fv-design Fv-allow . - • . ,;.. Maximum Bending Stress Ratio = 0.581: 1 Maximum Shear Stress Ratio, = 0.215: 1 Section used for this span 2x6 Section used for this span 2x6 I fb : Actual = 680.33psi - fv : Actual 38.75 psi FB: Allowable = 1,170.00psi Fv : Allowable = 180.00 psi i Load Combination +D+Lr+H 'Load Combination +D+Lr+H Location of,maximum on span = 3.500ft Location of maximum on span = 6.545 ft Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1 Maximum Deflection i Max Downward L+Lr+S Deflection 0.065 in Ratio = 1283 1.000 Max Upward L+Lr+S Deflection 0.000 in Ratio = 0 <360 Max Downward Total Deflection 0.115 in Ratio = 733 0.581 Max Upward Total Deflection I 0.000 in Ratio = 0 <180 1.000 Load Combination Segment Length Span # Max Stress Ratios M V C d C FIV C r C m C t Summary of Moment Values Mactual ttrdesign Fb-allow Summary of Shear Values Vactual fv-design Fv-allow +D Length = 7.0 ft 1 0.249. 0.092 1.000 1.300 1.000 1.000 1.000 0.18 291.57 1,170.00 0.09 16.61 180.00 +D+Lr+H 1.300 1.000 1.000 1.000 Length = 7.0 ft 1 . 0.581 0.215 1.000 1.300 1.000 1.000 1.000 0.43 .680.33 1,170.00 0.21 38.75 180.00 +D+0.750Lr+0.750L+H 1.300 1.000 1.000 1.000 Length = 7.0 ft 1 0.498 0.185 1.000 1.300 1.000 1.000 1.000 0.37 583.14 1,170.00 0.18 33.22 180.00 +D+0.750Lr+0.750L+0.750W+H 1.300 1.000 1.000 1.000 Length =1.0 It 1 0.498 0.185 1.000 1.300 1.000 1.000 1.000 0.37 583.14 1,170.00 0.18 33.22 180.00 +D+0.750Lr+0.750L+0.5250E+H 1.300 1.000 1.000 1.000 Length = 7.0 ft 1 0.498 0.185 1.000 1.300 1.000 1.000 1.000 0.37 583.14 1,170.00 0.18 33.22 180.00 -'i:°Q�%raltMaximum Deflections Unfactored loads > _ ,:.'; Load Combination Span Max. "= Defl Location in Span Load Combination Max. "+" Dell Location in Span D+Lr 0.1146 3.535 V You can changes this area using the 'Settings' menu item and then using the "Printing & Title Block' selection. Title: Osgnr: Project Desc.: Project Notes : Job # Description : CJ -1 @ 24' OC, Material Properties Calculations per NDS 2005, IBC 2009, CBC 2010, ASCE 7-05_ Analysis Method: Allowable Stress Design Fb - Tension 900.0 psi E: Modulus of Elasticity Load Combination 2006 IBC & ASCE 7-05 Fb -Compr 900.0 psi Ebend-xx 1,600.Oksi iMaximum Bending Stress Ratio Fc - PdI 1,350.0 psi Eminbend - xx 580.Oksi Wood Species : Douglas Fir - Larch Fc - Perp 625.0 psi fb : Actual Wood Grade : No.2 Fv 180.0 psi FB: Allowable 1,350.00 psi Ft 575.0 psi Density 32.210pcf Beam Bracing : Beam is Fully Braced against lateral -torsion buckling Load Combination +D+Lr+H D(0.02) Lr(0.02) 2x4 Span =7.0ft Maximum Foeces &'Stresses.for Load'Comlinatioiis; Load Combination Max Stress Ratios Service loads entered. Load Factors will be applied for calculations. Uniform Load : D = 0.010, Lr = 0.010 ksf, Tributary Width = 2.0 ft, (Ceiling Loads) DESIGN SUMMARY ���- M Summary of Shear Values Segment Length Span # iMaximum Bending Stress Ratio = 0.711: 1 Maximum Shear Stress Ratio = 0.204: 1 Section used for this span 2x4 Section used for this span 2x4 fb : Actual 960.00psi fv : Actual = 36.80 psi FB: Allowable 1,350.00 psi Fv : Allowable 180.00 psi Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span = 3.500ft Location of maximum on span = 6.720 ft Span #where maximum occurs = Span # 1 Span #where maximum occurs = Span # 1 Maximum Deflection 1.000 1.500 1.000 Max Downward L+Lr+S Deflection 0.127 in Ratio = 661 480.00 Max Upward L+Lr+S Deflection 0.000 in Ratio = 0 <360 +D+Lr+H j Max Downward Total Deflection 0.254 in Ratio = 330 1.500 Max Upward Total Deflection 0.000 in Ratio = 0 <180 Maximum Foeces &'Stresses.for Load'Comlinatioiis; Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C F/V C r C m C t Mactual ftrdesign Fb-allow Vactual fv-design Fvallow +0 Length = 7.0 ft 1 0.356 0.102 1.000 1.500 1.000 1.000 1.000 0.12 480.00 1,350.00 0.06 18.40 180.00 +D+Lr+H 1.500 1.000 1.000 1.000 Length = 7.0 ft 1 0.711 0.204 1.000 1.500 1.000 1.000 1.000 0.25 960.00 1,350.00 0.13 36.80 180.00 +D+0.750Lr+0.750L+H 1.500 1.000 1.000 1.000 Length = 7.0 It 1 0.622 0.179 1.000 1.500 1.000 1.000 1.000 0.21 840.00 1,350.00 0.11 32.20 180.00 +D+0.750Lr+0.750L+0.750W+H 1.500 1.000 1.000 1.000 Length = 7.0 ft 1 0.622 0.179 1.000 1.500 1.000 1.000 1.000 0.21 840.00 1,350.00 0.11 32.20 180.00 +D+0.750Lr+0.750L+0.5250E+H 1.500 1.000 1.000 1.000 Length = 7.0 ft 1 0.622 0.179 1.000 1.500 1.000 1.000 1.000 0.21 840.00 1,350.00 0.11 32.20 180.00 ':_g0weralhMaximum=,Deflections Unfactored Loads;,. � �, _ Load Combination Span Max. ' ' Defl Location in Span Load Combination Max. '+° Defl Location in Span D+Lr 1 0.2540 3.535 0.0000 0.000 V IC You can changes this area using the "Settings" menu item and then using the 'Printing & Title Block" selection. Title : Dsgnr: Project Desc.: Project Notes : Job # Description : HIP -1 - Hip Beam Material Properties Calculations per NDS 2005, IBC 2009, CBC 2010, ASCE 7-05 Analysis Method: Allowable Stress Design Fb - Tension 900 psi E: Modulus of Elasticity , Load Combination 2006 IBC & ASCE 7-05 Fb - Compr 900 psi Ebend- xx 1600ksi 66.84 psi Fc - Prll 1350. psi Eminbend - xx 580 ksi -Wood Species : Douglas Fir - Larch Fc - Perp 625 psi Load Combination Wood Grade : No.2 Fv 180 psi Location of maximum on span = 7.400 ft Ft 575 psi Density 32.21 pcf Beam Bracing : Beam is Fully Braced against lateral -torsion buckling ,._._........... --....... - .._... -- --------._-....._._..--- ...__... ..... ...... ...... - i _ - D 0.015 0.09 Lr 0.02,0.12 Max Downward L+Lr+S Deflection OR 4 1124 0.360 0.159 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 1.000, Max Downward Total Deflection 0.149 in Ratio= 642 1,080.00 i� 2x8 0 <180 / Span =8.0ft 1.000 1.000 _Aliedlads'r=' `'�g� �: ^''a► _•s6 Service loads entered. Load Factors will be applied for calculations. Load for Span Number 1 Varyinq Uniform Load: D(S,E) = 0.0150->0.0150, Lr(S,E) = 0.020->0.0 ksf, Extent = 0.0 ->> 8.0 ft, Trib Width =1.0->6.0 ft, (Roof Loads) .TnrnYnu:n.nuenv!,:<��z.b:..'�.:,._ii:':'.`::;•a:;,;�<>-,�,..d";:��.i";u �: _o._,._,...._:.:;,.._'r".-^-`"'•`--"----------'-----.._._...-- . ;Maximum Bending Stress Ratio = --..--.-..........--.__-._................. 0.8401 Maximum Shear Stress Ratio = 0.371 : 1 i Section used for this span 2x8 Section used for this span 2x8 fb : Actual = 907.26psi N : Actual = 66.84 psi FB: Allowable = 1,080.00psi Fv : Allowable 180.00 psi Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span = 4.440ft Location of maximum on span = 7.400 ft Span #where maximum occurs = Span # 1 Span #where maximum occurs = Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.085 in Ratio= 1124 0.360 0.159 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 1.000, Max Downward Total Deflection 0.149 in Ratio= 642 1,080.00 Max Upward Total Deflection 0.000 in Ratio= 0 <180 MazimumtFbrcesB;Sfresses4for:'Load:.Comtiin'ationsm Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C FN C r CM C t Mactual fb-design Fb-allow Vactual tv-design Fvallow +D Length = 8.0 ft 1 0.360 0.159 1.000 1.200 1.000 1.000, 1.000 0.43 388.83 1,080.00 0.21 28.65 180.00 +D+Lr+H 1.200, 1.000 1.000 1.000 Length = 8.0 ft 1 0.840 0.371 1.000 1.200 1.000 1.000 1.000 _ 0.99 907.26 1,080.00 0.48 66.84 180.00 +0+0.750Lr+0.750L+H 1.200 1.000 1.000 .1.000 Length = 8.0 ft 1 0.720 0.318 1.000 1.200 1.000 1.000 1.000 0.85 777.65 1,080.00 0.42 57.29 180.00 +0+0.750Lr+0.750L+0.750W+H 1.200 1.000 1.000 1.000 Length = 8.0 ft 1 0.720 0.318 1.000 1.200 1.000 1.000 1.000 0.85 777.65 1,080.00 0.42 57.29 180.00 +0+0.750Lr+0.750L+0.5250E+H 1.200 1.000 1.000 1.000 Length = 8.0 ft 1 0.720 0.318 1.000 1.200 1.000 1.000 1.000 0.85 777.65 1,080.00 0.42 57.29 180.00 Overall Mazimurn Deflectloris t]nfactored Loads `:.•�Z'�-�,.�z Load Combination Span Max. '= Defl , Location in Span Load Combination Max. '+" Defl Location in Span D+Lr 1 0.1494 4.120 0.0000 0.000 You can changes this area using the "Settings' menu item and then using the 'Printing & Title Block" selection. Title : Job # Dsgnr: Project Desc.: Project Notes : Description : HIP -1 - Hip Beam 1_.:Vertical,Reaclions�:-tUpfactorgd,;;, n° �,�;,7 :,f;,�::;„„ v .� Support notation :Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall tvlAXimum 0.373 0.607 D Only 0.160 0.260 Lr Only 0.213 0.347 DiLr 0.373 0.607 Title You can changes this area Dsgnr. using the "Settings" menu item Project Desc.: and then using the 'Printing & Project Notes Title Block" selection. Job # Description : CB -1- (E) 2 -Car Garage Material Properties Calculations per NDS 2005, IBC 2009, CBC 2010, ASCE 7-05 Analysis Method: Allowable Stress Design Fb - Tension 900 psi E: Modulus of Elasticity Load Combination 2006 IBC & ASCE 7-05 Fb - Compr 900 psi Ebend- xx 1600ksi Fc - Prll 1350 psi Eminbend - xx 580 ksi Wood Species : Douglas Fir - Larch Fc - Perp 625 psi ;Maximum Bending Stress Ratio = 0.5941 Maximum Shear Stress Ratio = Wood Grade ; No.2 Fv 180 psi Section used for this span Ft 575 psi Density 32.21 pcf Beam Bracing : Beam is Fully Braced against lateral -torsion buckling 52.93 psi FB: Allowable = 1,170.00psi D(0.176) Lr(0.16) - -- - ...- ----- -- -... ---......---------- ---------_ ----- -- i Span = 6.50 ft A • Ied�L'oads :,;: �:.;:�;:� >; �„�=�;(��? :;=.;�: ��::•:�f°;; �<..:.,,1,.:>.:�f��: Service loads entered. Load Factors will be applied for calculations. Uniform Load : D = 0.0220, Lr = 0.020 ksf, Tributary Width = 8.0 ft, (Roof Loads) ;Maximum Bending Stress Ratio = 0.5941 Maximum Shear Stress Ratio = 0.294 :1 Section used for this span 4x8 Section used for this span 4x8 i fb : Actual = 694.49psi fv : Actual = 52.93 psi FB: Allowable = 1,170.00psi Fv : Allowable = 180.00 psi Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span = 3.250ft Location of maximum on span = 5.915 ft Span #where maximum occurs = Span # 1 Span #where maximum occurs = Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.036 in Ratio= 2141 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.076 in Ratio= 1019 i Max Upward Total Deflection 0:000 in Ratio= 0 <180 _..._... ._._......--,_..... ....... _.__...._......... _ .... - ..... _................... . ----- --- = .. �y..'4` �. .;�. a�p{:d s-• s5}c:Y {$..' .- l �'@TT76t Maziirium�Forces &�8tresses-for Load Com6inafions - ----- --... ...... __._._...._.._._.._...._...---- ........ __.....-- Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C FIV C r C m C t Mactual fb-design Fb-allow Vactual fv-design Fv-allow +D' Length = 6.50 It 1 0.311 0.154 1.000 1.300 1.000 1.000 1.000 0.93 363.78 1,170.00 0.47 27.73 180.00 +D+Lr+H 1.300 1.000 1.000 1.000 Length = 6.50 ft 1 0.594 0.294 1.000 1.300 1.000 1.000 1.000 1.77 694.49 1,170.00 0.90 52.93 180.00 +D+0.750Lr+0.750L+H 1.300 1.000 1.000 1.000 Length = 6.50 ft 1 0.523 0.259 1.000 1.300 1.000 1.000 1.000 1.56 611.81 1,170.00 0.79 46.63 180.00 +D+0.750Lr+0.750L+0.750W+H 1.300 1.000 1.000 1.000 Length = 6.50 ft 1 0.523 0.259 1.000 1.300 1.000 1.000 1.000 1.56 611.81 1,170.00 0.79 46.63 180.00 +D40.750Lr+0.750L+0.5250E+H 1.300 1.000 1.000 1.000 Length = 6.50 ft 1 0.523 0,259 1.000 1.300 1.000 1.000 1.000 1.56 611.81 1,170.00 0.79 46.63 180.00 �' � Overall MazimumtDeflectrons Unfacto�ed"Loads,;��_,,;� ,.• ���. ,;, Load Combination Span Max. " " Def! Location in Span Load Combination Max. "+" Defl Location in Span 0.0765 3.283 TZ You can changes this area using the 'Settings' menu item and then using the 'Printing & Title Block' selection. Title: Job # Dsgnr: Project Desc.: Project Notes : Values in KIPS • '� .. �: :,= Description : CB -1- (E) 2 -Car Garage klfIv Support notation :Far left is #1 PP A Load Combination Support 1 Support 2 Overall MAXimum 1.092 1.092 D Only 0.572 0.572 Lr Only 0.520 0.520 D+Lr 1.092 1.092 klfIv 9F®RTE 4' MEMBER REPORT Level, CB -2 -Ceiling Beam 1 piece(s) 3 1/2" x, 9 1/4" 2AE Parallam@ PSL Overall Length: 11'7" 0 g gg& wmgg_ All Dimensions Are Horizontal; Drawing Is Conceptual 114 �. I R �_K"iom I- 91 - 11W t ". � 1,: 1. , .. _� 1 biaEo-*n...attern)t- .. member Reaction (lbs) & 3464 @ 2" 9188 Passed (38%) 1.0 D + 1.0 Lr (AJI Spans) FShear (lbs) 2829 @ 1'3/4" 7824 Passed (36%) 1.25 1.0 D + 1.0 Lr (All Spans) Moment (R -lbs) 9462 @ 5'9 1/2" 15519 Passed (61%) 1.25 1.0 D + 1.0 Lr (All Spans) Live Load Defl. (in) 0.234 @ 5'9 1/2" 0.375 Passed (L/576) 1.0 D + 1.0 Lr (All Spans) Total Load Defl. (in) 0.501 @ 5'9 1/2" 0.563 Passed (L/270) 1.0 D + 1.0 Lr (AJI Spans) Deflection criteria: U. (1.1360) and TL (L/240). Bracing (Lu): All compression edges (top and bottom) must be braced at 11'7" o/c unless detailed otherwise. Proper attachment and positioning of lateral bracing is required to achieve member stability. R �101F_Nl� 01'.11-30i wl 1 - Column - DF 3.50" 3.50" 1.50" 1842 1622 3464 Blocking 2 - Column - DF 3.50' 3.50' 1.50' 1842 1622 3464 Blocking xiang renis are assumes to carry no ioaas applied alrecuy above tnem and the tull load is applied to the member being ciesignea. Ow Im" ... .. . .. ... ... . .. .. . . ...... . .. ..................... Ben Phan LOa Is :1 Q no _0 M �0 90 � -- . . . . . . . law 1 - Uniform(PSF) 0to11'7' 14' 22.0 20.0 Roof (N) Entry Met FRIAMISIONS, .;Weyefiaeuser(Notes� „4< AIM0, Weyerhaeuser warrants that the sizing of Its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature for Installation details. (www.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software is not Intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer Is responsible to assure that this calculation is compatible with the overall project Products manufactured at Weyerhaeuser facilities are third -party certified to sustainable forestry standards. The product application, input design loads, dimensions and support Information have been provided by Forte Software Operator Mitial ... .. . .. ... ... . .. .. . . ...... . .. ..................... Ben Phan VP Home (714) 251-4537 ben_phan@yahoo.com PASSED System :Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC Design Methodology: ASD Member Pitch: 0/12 SUSTAINABLE FORESTRY INITIATIVE 9/2/2012 2:20:55 PM Forte 0.5, Design Engine: V5.5.3.2 Page 1 all. 1 UNIFORM AND POINT LOAD ON CONTINUOUS FOOTING Footing Width (FW) = 12 in Soil Density = 110 pcf Footing Depth (FD) = 12 in Concrete Density = 150 pcf Soil Bearing (SB) = 1,500 psf Inc. Width (IW) = 0 psf Max. Soil Bearing = 1,500 psf Inc. Depth (ID) = 0 psf Plain Concrete Design: F'c = 2,500 psi Tension Fb = 80 psi Procedures: Fsoil = ((D-FD)/12*ID)+SB F'soil = Fsoil-(D/12*(150-110)) w = W*F'soil/12 M = Fb*W*d^2/12"/6 L= (2*M/w)"1 /2 Pmax = 2*L*w W (") D (") Fsoil (psf) F'soil (psf) w (#/ft) M ('#) L (ft) Pmax # 12 x 12 1,500 1 460 1 460 1,920 1.62 4 73 15 x 12 1,500 1,460 11825 2,400 1.62 19 18 x 12 1,500 1,460 2,190 2,880 1.62 7 103 21 x 12 1,500 1,460 2,555 3,360 1.62 8,287 24 x 12 1,500 1,460 2,920 3,840 1.62 9,471 12 x 15 1,500 1,450 1 450 3,000 2.03 5 899 15 x 15 1,500 1,450 1, 813 3,750 2.03 7 374 18 x 15 1,500 1,450 2,175 4,500 2.03 8,849 21 x 15 1,500 1,450 2,538 5,250 2.03 10,3241 24 x 15 1,500 1,450 2,900 6,000 2.03 11,798 12 x 18 1,500 1,000 1,000 4,320 2.94 5,879 15 x 18 1,500 1,000 1,250 5,400 2.94 7,348 18 x 18 1,500 1,()00 115-0-0- 6,480 2.94 8 818 21 x 18 1,500 1,000 1,750 7,560 2.94 10,288 24 x 18 1,500 1,000 2,000 8,640 2.94 11,758 12 x 21 1,500 1,000 1,000 5,880 3.43 6,859 15 x 21 1,500 1 000 1 250 7 350 3.43 8,573 18 x 21 1,500 1,000 1,500 8,820 3.43 10,2881 21 x 21 1 5001. 1 0001. 1,750 10,290 3.43 12,002 24 x 21 1,500 1,000 2,000 11,760 3.43 13,717 12 x 24 1,500 1,000 1,000 7,680 3.92 7,838 15 x 24 1,500 1,000 1,250 9,600 3.92 9,798 18 x 24 15001. 1000 1500 11520 3.92 11,758 21 x 24 1,500 1,0001 1,7501 13,4401 3.921 13,717 24 x 24 1 1,500 1,0001 2,0001 15,3601 3.921 15,677 30 x 24 1 1,500 1,0001 2,5001 19,2001 3.921 19,596 Note: For point loads on footings with uniform loads, take the difference between "w" above and the uniform load, then multiply by two and by "L" above for P'max. 0 STRUCTURAL CALCULATIONS Project Location: Owner: Prepared by: Building Code Edition 79760 Citrus La Quinta, CA 92253 Bryan Residence (Duc New1-§tot C ias t Unit 2 Ben Phan, P.E.. (714) 251-4537 11541 Elizabeth Street Garden Grove, CA 92840 2010 California Building Code Concrete: f , = 2,500 psi @ 28 days Ready -mixed concrete per ASTM C94 Concrete aggregates per ASTM C33 Cement ASMT C 150 Type II or V u.n.o Foundation: Structural Steel: Pipe Columns: Welding: Minimum allowable soil bearing pressure = Date: 8/30/2012 ,- Q�OFESSJp EN PNq W No.57550 (* Exp. 12/31/ `V CIVI1. CITY L� �'dilqTA BUILDING & DEPT, APPC_`;its FOR COiNS��= .,),R ;, BION ,500 psf. ASTM A-36, ASTM a-92 ASTM A-53, Grade B - Electric arc process by certified welders in approved licensed fabrication Z �� �'' shop. Concrete Masonry: ASTM C90, Grade N, f,, = 1,500 psi Grout: Type M, 1:3:1/4 mix; Cement: Sand: Hydrated Lime or Lime Putty. 1:3:2 mix; Cement: Sand: 3/8" pea gravel; f r = 2,000 psi. Reinforcing Steel: Deformed bars per ASTM A915; Grade 40 for #4 and smaller; Grade 60 for #5 and larger. Wood Framing: WCLIB or WWPA Grading Rules Agency Studs, joists, rafters: Douglas Fir -Larch #2 Beams and posts: Douglas Fir -Larch #1 Glulam: 24F -V4 or 24F -V8 DF/DF (cantilevered) Parallam 2.0 PSL: ICC ESR -1387 Microllam LVL: ICC ESR -1387 Plywood: 4 or more plies, Structural I or CD, CC Structural Panel per PS -1-95 TJ 1: ICC ESR -1153 (ILevel) All information shown on plans relative to existing conditions are provided as the best present knowledge but without guarantee of accuracy. Where actual conditions conflict with the plans, they shall be reported to the Engineer so that modifications may be made in writing. Modifications of plans and details shall not be made without written approval of the Engineer. By accepting this calculations or report, the Engineer shall not be held liable for discrepancies not brought up to the attention of the Engineer. The design analysis and calculations were done in accordance with generally accepted engineering principles and practice. Rpq vim. iA W ED OCT 18 2012 By: i 1- 7 t, 0 ROOF DEAD LOAD: ROOF TYPE I T-.iI'es-:Ro'ofin'.' q', --11:10 0 PSF She6f* ins lation':.-,,, 1:5;PSF PSF 2X 67 OC 4 :0 PSF 2X 6.J@.- 16"OC 17.0 PSF x...:0'3 ..2.2 PSF MPE:-"-. . . ....... ... .... ... . .. PSF PSF PSF MISCELLANEOUS MISCELL L :Y;1:61 PSF SUB -TOTAL = 20.3 PSF SLOPE CORRECTION "X:12" 1.08 PSF MISCELLANEOUS PSF PSF ROOF DEAD LOAD: = 22.0 PSF ROOF SNOW LOAD: .0.0 PSF ROOF LIVE LOAD: .....20.0,1 PSF TOTAL ROOF LOAD: .;-42.01 PSF EXTERIOR WALL LOADS: TOTAL EXTERIOR WALL: EAR WALL LOADS: HING 6Uis NTERIOR WALL: GEOTECHNICAL ENGINEER: BASIC BEARING PRESSURE PADS & CONT. FNDT. = Qa INCREASE FOR WIDTH INCREASE FOR DEPTH MAX. SOIL PRESSURE - Oa ALLOW PASSIVE PRESSURE ALLOW SOIL FRICTION '744 PSF 10* PSF 16 PSF 0:5 PSF 7.0 PSF PSF PSF % PSF --'-2. PSF 0'4 PSF -2j; PSF 7 - l.0 PSF 17.0 PSF '744 PSF 10* PSF 16 PSF 0:5 PSF 7.0 PSF RR RR RR ci ci ci ci ci ROOF DEAD LOAD: ROOF TYPE 2 PSF % . .... ...... 00 :00 % PSF PCF PSF x...:0'3 RR RR RR ci ci ci ci ci ROOF DEAD LOAD: ROOF TYPE 2 PSF PSF . . ...... . o PSF 'o PSF . . ....... ... .... ... . .. PSF . ... ..0 PSF 0 PSF .. ...... . .. .. ..... PSF SUB -TOTAL = 0.0 PSF SLOPE CORRECTION "X:12" JA�'000]' F777M 1:00 PSF MISCELLANEOUS PSF ROOF DEAD LOAD 0.0 PSF ROOF SNOW LOAD: t,:;: .. .. PSF ROOF LIVE LOAD: .20.0 PSF TOTAL ROOF LOAD: 710:01 PSF FIRST FLOOR LOADS PSF UE 6"6 PSF Ao PSF DECK DEAD LOAD = 0.0 PSF DECK LIVE LOAD PSF DATE OF REPORT: ISOLATED FOUNDATIONS = PSF . EQUIV. FLUID PRESSURE PCF zm Latitude' = 33 6718 North 1%.1 West Longtitude = 146 114 Occupancy Category = Important Factor (1) 1 00 (Table 1.5-2) Shear Panels Timber Frames R C, P= 0 S, 7 14 0&- .5 0.; Site Class Use Simplified Alternative Structural Design F V = (F-Ss)/R V = 0.20 Shear Panels S. S, Site Class F. F„ SD Sms = 1.500 9 S., = 0.900 g Sd. = 1.000 g D SO 0.600 9 D F V = (F-Ss)/R V = 0.67 Timber Frames FT DESIGN WIND VELOCITY M.) MPH Roof Height = 50 Vfm = ATJ*, MPH Wall Height (2ndt floor) = 00 FT Occupancy Category 11. Wall Height (1st floor) _9.0,. N FT Important Factor (1)(Table 15 14.0 FT . -2) Total Height = Exposure Category Mean Roof Height = 11.5 FT Adjustment Coefficient (k) (Figure 28.6.1) Roof Angle = 22.6 o Kt 1:00_..._:°=" Edea 1.7. ps KztPs30 Building Width 3.0 FT Building Length = FT 'Eave Height = FT Mean Roof Height 5 i?;'="; 4.6 FT a = 3.0 FT 2a = 6.0 FT MWFRS Design Wind Pressure P1130 (136f) Horizontal Loads Roof End Zone Int. Zone Load Direction Angle A -:::I B C D # of SW Lines Transverse (Case B) 0.0 19.2 0.0 12.7 0.0 3 Longitudinal (Case A) 22.6 26.6 -7.0 17.7 -3.9 2 .2a = 6.0 FT Roof Horizontal Load l = I 766 LBS (Transverse) Roof Horizontal Load l = I 1,456 LBS (Longitudinal) y LOAD: Roof weights Roof DL (horiz. Proj.) _ Ext. Wall DL = Int. Shear Wall DL = Wall Height (1 st floor) _ Roof Height = Total height, hn = N -S Length = E -W Length = Roof Area = Tributary Ext. Walls to Roof = Tributary Int. Shear Walls to Roof = Roof Weight = Tributary Ext. Walls to Roof = Tributary Int. Shear Walls to Roof = W..f = Total DL (W) _ Total Base Shear M = Design Base Shear: Period: T=Ct(hn)34 = 0.02*(hn)314 = Vertical distributions of seismic forces: Shear Diaphragm E -W NS E -W NS 22.0 22.0 22.0 22.0 17.0 17.0 17.0 17.0 7.0 7.0 7.0 7.0 9.0 9.0 9.0 9.0 5.0 5.0 5.0 5.0 14.0 14.0 14.0 14.0 26.0 26.0 17.5 17.5 455.0 455.0 455.0 455.0 87.0 87.0 52.0 35.0 17.5 26.0 17.5 26.0 10,006 10,006 10,006 10,006 6,656 6,656 3,978 2,678 551 819 551 819 17,213 17,481 14,535 13,503 17.213 17,481 14,535 13,503 3,443 3 443 0.145 sec E -W N -S V= 0.20 0.20 W V= 3,443 3,443 lbs Level Wx (lb) Area (ft) Fx NS (lb) Fpx N -S 0.2 S,, W Use (lb) fx NS fpx N -S (lb) Ib (psf) sf) Roof 17,213 455 3,443 3,443 3,443 3,443 7.57 7.57 1st Floor - E 17,213 3,443 3,443 Fx E -W (lb) Fx E -W wx 0.2 Ss W Use (lb) fx E -W fpx E -W ib (Psf) (Psf) 3,443 3,443 3,443 3,443 7.57 7.57 3,443 3,443 psf plf plf ft ft ft sq.ft. ft ft lbs. lbs. lbs. lbs. bs bs Longitudinal Direction: Shear Walls (Vertical): High Roof Level: D + EMA (Eq. 12-9) (no increase) E = p Eh Use P = .1.30 1.30 Longitudinal Shear Walls Wall (grid line) EFabove (Ib) EFx (Ib) 1 1 to 4 2 fx s 7.57 7.57 7.57 Spacing ft 17.5 1 - 1,721 Depth ft 26 26 Net D b, ft 20.0 14.5 Vseismio (Ib) 1,721 1,721 V111 d (Ib) 1,456 1,456 Vgovems (lb) 1,721 1,721 Vgovems(P >) 86 119 Vfaaor 41f) 86 119 ufactored*1.0 (00 86 119 Min. D ft 5.0 14.5 Mo (Ib -ft) 3,873 15,492 wroof (plo 192 192 wwaii (Ply 153 153 0.6 -MR (Ib -ft) 2,591 21,788 Tie -down 6" YES NO Tie -down Ib 285 N/A Tie -down HDU2&SSTB16 N/A Drag Location ft N/A 14.5 Drag Force Ib 960 Drag Tie ST6236 Tail (Ib) 3,845 Comp. Post 2-2x4 2-2x4 D + EMA (Eq. 12-9) (no increase) E = p Eh Use P = .1.30 1.30 Longitudinal Shear Walls Wall (grid line) EFabove (Ib) EFx (Ib) From v=EN.4b Wall Length Shear # Sheathing 1 o Allowable Shear L ft Ib 010 (n) 2 sides (0) 1 - 1,721 1,721 86 1 1 1 20.0 1 280 2 - 1,721 1,721 119 1 1 1 14.5 1 280 Diaphragm (horizontal): Roof Level: W,�- 1 1 to 2 2 fp.(Psf) 7.57 7.57 7.57 L ft 17.5 Depth ft 26 26 Area ft2 455 f.ismic(p 0 66 vwm(plf) 28 Governs Seis. Vgovemed(plo 66 Roof Panel 1/2" CDX Shear 270 Edge Nail 8d @ 6",6",12" W,�- Transverse Direction: Shear Walls (Vertical): Roof Level D + E/1.4 (Eq. 12-9) (no increase) E= p Eh Use P= 1.30 1.30 Transverse Shear Walls Wall (grid line) A AtoB B BtoC C fx(pso 7.57 7.57 7.57 7.57 7.57 Spacing ft 14.5 960 11.5 Depth ft 17.5 17.5 14.42 Net D b, ft 12.5 7.25 14.4 Vseismic (Ib) 960 1,721 627 Vw;„ d (Ib) 766 766 766 Vgovems (Ib) 960 1,721 1 766 Spec. Wall Ib Edge Nail 8d @ 6",6",12" Perf. S.W. Wall TyRe See BP7 Vgovems P 77 237 Vf.d..d(Plf) 77 237 VfWo.d*1.0 (A 77 237 Min. D ft 6.3 7.25 Mo (Ib -ft) 4,320 15,492 Wroof (plf) 159 159 W,,,,a11 (A 153 153 0.6 -MR (Ib -ft) 3,661 4,927 Tie -down 6" YES YES Tie -down Ib 115 1,565 Tie -down HDU2&SSTB16 HDU2&SSTB16 HD02&SSTB16 Com P. Post 2-2x4 2-2x4 2-2x4 D + E/1.4 (Eq. 12-9) (no increase) E= p Eh Use P= 1.30 1.30 Transverse Shear Walls Wall (grid line) EFabove (Ib) £Fx (Ib) F,o„i Ib v=E/1.4b (plf) Shear# Wall Length (ft) Sheathing 1 or 2 sides Allowable Shear (plf) A - 960 960 77 1 12.5 1 280 B - 1,721 1,721 237 1 7.3 1 280 C - 766 1 766 Roof Panel 1 14.4 1 1 1 280 Diaphragm (horizontal): Roof Level: A AtoB B BtoC C fp.(psf) 7.57 7.57 7.57 7.57 7.57 L ft 14.5 11.5 Depth ft 17.5 17.5 14.42 Area (ft) 254 166 fseismic(A 55 44 vwind(Plfl 22 27 Governs Seis. Seis. Vgovemed(Plfl 1 551 1 44 Roof Panel 112" CDX 1/2" CDX Shear 270 270 Edge Nail 8d @ 6",6",12" 8d @ 6",6",12" r,. Perforated Shear Wall Design Location: Unit 2 -Grid Line 'C' Calculations: Wall full height (H) = 9 ft Max. opening height = 6.67 ft Max. openg height ratio = 0.74 Total Wall Length (L) = 14.42 ft Total Perforated Segments (EL) = 7.66 ft Full -height Sheathing Ratio = 0.53 Adjust. Factor, Co = 0.6 (Table 2305.3.8.2) Vwail = 766 lbs (From BP5) V = Vwall/(Co*ELi) V = 167 plf Use: Type 1 Shearwall Vail = 280 plf OK Uplift Anchorage at Shearwall .Ends: R = Vwaii*h/(Co*Y-Li) R = 1,499 lbs Use: HDU2 Hold-down Tail = 3,075 plf OK Longest Perf. Segment (Li,max) = 3.83 ft drag = V* i,max Tdrag = 638 lbs Use: CS16 Cont. Strap Tail = 1,705 plf OK ?97 You can changes this area using the."Settings° menu item and then using the "Printing & - Title Block" selection. Title: Dsgnr: Project Desc.: Project Notes : Job # Description: RR -1 L 24° OG Material Properties Calculations per NDS 2005, IBC 2009, CBC 2010, ASCE 7-05 Analysis Method: Allowable Stress Design Fb - Tension 900.0 psi E: Modulus of Elasticity Load Combination 2006 IBC & ASCE 7-05 Fb - Compr 900.0 psi Ebend- xx 1,600.Oksi = 0.581: 1 Maximum Shear Stress Ratio = Fc - Prll 1,350.0 psi Eminbend - xx 580.0 ksi Wood Species : Douglas Fir - Larch Fc - Perp 625.0 psi = 680.33psi Wood Grade ; No.2 Fv 180.0 psi = 1,170.00psi Fv : Allowable = Ft 575.0 psi Density 32.210pcf Beam Bracing : Beam is Fully Braced against lateral -torsion buckling Location of maximum on span = 3.500ft Location of maximum on span = D(0.03) Lr(0.04) Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1 Span =7.0ft Maximum Deflection Max Downward L+Lr+S Deflection Service loads entered. Load Factors will be applied for calculations. Uniform Load : D = 0.0150, Lr = 0.020 ksf, Tributary Width = 2.0 ft, (Roof Loads) ;'DESLGNSUMMA'R�Ys ��=��,�_�:�'� S' � �:� :•x Max Upward L+Lr+S Deflection :Maximum Bending Stress Ratio = 0.581: 1 Maximum Shear Stress Ratio = 0.215: 1 Section used for this span 2x6 Section used for this span 2x6 fb : Actual = 680.33psi fv : Actual 38.75 psi FB: Allowable = 1,170.00psi Fv : Allowable = 180.00 psi Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span = 3.500ft Location of maximum on span = 6.545 ft Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.065 in Ratio= 1283 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.115 in Ratio= 733 Max Upward Total Deflection 0.000 in Ratio= . 0 <180 Maximum:Forces;&�$tresses..:for Load Comtiinatlons;f Load Combination Max Stress Ratios Summary of Moment Values _ Summary of Shear Values Segment Length Span # M V C d C FN C r C m C t Mactual firdesign Fb-allow Vactual fv-design Fv-allow Length = 7.0 ft 1 - 0.249 0.092 1.000 1.300 1.000 1.000 1.000 0.18 291.57 1,170.00 0.09 16.61 180.00 +D+Lr+H 1.300 1.000 1.000 1.000 Length = 7.0 ft 1 0.581 0.215 1.000 1.300 1.000 1.000 1.000 0.43 680.33 1,170.00 0.21 38.75 180.00 +0+0.750Lr+0.750L+H 1.300 1.000 1.000 1.000 Length = 7.0 ft 1 0.498 0.185 1.000 1.300 1.000 1.000 1.000 0.37 583.14 1,170.00 0.18 33.22 180.00 +D+0.750Lr+0.750L+0.750W+H 1.300 1.000 1.000 1.000 Length = 7.0 It 1 0.498 0.185 1.000 1.300 1.000 1.000 1.000 0.37 583.14 1,170.00 0.18 33.22 180.00 +0+0.750Lr+0.750L+0.5250E+H 1.300 1.000 1.000 1.000 Length = 7.0 ft 1 0.498 0.185 1.000 1.300 1.000 1.000 1.000 0.37 583.14 1,170.00 0.18 33.22 180.00 2':Gt.�•�•::r �4-• f'a% ,xi�;,..�,�,1,x $ A�"1c"M`:§, _ Overall Maximum;beflecttoris Unfactore_d;L✓✓gads _ ;a���YY�dN . Load Combination Span Max.' ' Defl Location in Span Load Combination. Max. "+" Defl _ Location in Span D+Lr 1 0.1146 3.535 0.0000 0.000 You can changes this area using the "Settings" menu item and then using the "Printing & Title Block' selection. Title : Dsgnr: Project Desc.: Project Notes : Job # Description : . CJ -1 L 24" 0C Material Properties Calculations per NDS 2005, IBC 2009, CBC 2010, ASCE 7 -06. - Analysis Method: Allowable Stress Design Fb - Tension 900.0 psi E: Modulus of Elasticity Load Combination 2006IBC; &ASCE ?-05 Fb -Compr 900.0 psi Ebend-xx 1,600.Oksi - Fc - Prll 1,350.0 psi Eminbend - xx 580.0 ksi Wood Species :Douglas Fir- Larch Fc - Perp 625.0 psi 0.204: 1 Wood Grade : NO -2 Fw 180.0 psi 2x4 Ft 575.0 psi Density 32.210pcf Beam Bracing : Beam is Fully Braced against lateral -torsion buckling _ _ ... ------.._....__...._......_...-----... --...-.....__..__...----..__._...----.--_..._.....__.....__..__.............. 36.80 psi _..... 1,350.00psi D(0.02) Lr(0.02) 180.00 psi Load Combination +D+Lr+H Load Combination 2x4 �� Span =7.0ft Applied L08ds i" ;r` `S _ Service loads entered. Load Factors will be applied for calculations. Uniform Load : D = 0.010, Lr = 0.010 ksf, Tributary Width = 2.0 ft, (Ceiling Loads) .DESIGN�SUMMARY' "�� - � • iMaximum Bending Stress Ratio = 0.711: 1 Maximum Shear Stress Ratio = 0.204: 1 Section used for this span 2x4 Section used for this span 2x4 fb : Actual = 960.00psi fv : Actual = 36.80 psi FB: Allowable = 1,350.00psi Fv : Allowable = 180.00 psi Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span = 3.500ft Location of maximum on span = 6.720 It Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.127 in Ratio= 661 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.254 in Ratio= 330 Max Upward Total Deflection 0.000 in Ratio= 0 <180 „Maxmurn Forces:& Stresses for Load Combinations; Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C FIV C r C m C t Mactual fb-design Fb-allow Vactual fv-design Fv-allow Length = 7.0 ft 1 0.356 0.102 1.000 1.500 1.000 1.000 1.000 0.12 480.00 1,350.00 0.06 18.40 180.00 +D+Lr+H 1.500 1.000 1.000 1.000 Length = 7.0 ft 1 0.711 0.204 1.000 1.500 1.000 1.000 1.000 0.25 960.00 1,350.00 0.13 36.80 180.00 +D+0.750Lr+0.750L+H 1.500 1.000 1.000 1.000 Length = 7.0 ft 1 0.622 0.179 1.000 1.500 1.000 1.000 1.000 0.21 840.00 1,350.00 0.11 32.20 180.00 +D+0.750Lr+0.750L+0.750W+H 1.500 1.000 1.000 1.000 Length = 7.0 ft 1 0.622 0.179 1.000 1.500 1.000 1.000 1.000 0.21 840.00 1,350.00 0.11 32.20 180.00 +0+0.750Lr+0.750L+0.5250E+H 1.500 1.000 1.000 1.000 Length = 7.0 ft 1 0.622 0.179 1.000 1.500 1.000 1.000 1.000 0.21 840.00 1,350.00 0.11 32.20 180.00 '� Ov,erall Maxlmum�peflections�, Unfac_ tored,Loads a ���?`�'� . Load Combination Span Max.'-" Defl Location in Span Load Combination Max. "+" Defl Location in Span D+Lr 1 0.2540 3.535 0.0000 0.000 y9 Job # Description : CJ -2 @ 24" OC Material Properties Title You can changes this area Dsgnr: using the 'Settings' menu item. Project Desc.: and then using the "Printing & " Project Notes: Title Block' selection. Ebend- xx 1,600.0 ksi Job # Description : CJ -2 @ 24" OC Material Properties Calculations per NDS 2005, IBC 2009, CBC 2010, ASCE 7-05 Analysis Method: Allowable Stress Design Fb - Tension 900.0 psi E: Modulus of Elasticity Load Combination 2006 IBC & ASCE 7-05 Fb - Compr 900.0 psi Ebend- xx 1,600.0 ksi Fc - Pdl 1,350.0 psi - Eminbend - xx 580.Oksi Wood Species : Douglas Fir - Larch Fc - Perp 625.0 psi Section used for this span Wood Grade : No.2 Fv 180.0 psi 1,049.26psi tv : Actual Ft 575.0 psi Density 32.210pcf Beam Bracing : Beam is Fully Braced against lateral -torsion buckling .._.._........ .... -'---._.._.. - - - ..._...._.._.__....-...__....._ ....----._.._.._....---_.........._._.._ _.....-'--- ._.......' --..._...-._.._..... - ' - -- .._._..- - "--'---- ._... . 180.00 psi - D(0.02) Lr(0.02) +D+Lr+H Load Combination +D+Lr+H Location of maximum on span = 5.750ft Span = 11.50 It A .plied-Loads'=trai �r~ti^'.' ``, Service loads entered. Load Factors will be applied for calculations. Uniform Load : D = 0.010, Lr = 0.010 ksf, Tributary Width = 2.0 ft, (Ceilinq Loads) ;.DESfGNSUMMARYL�'':..°;; ,Maximum Bending Stress Ratio = 0.897.1 Maximum Shear Stress Ratio = 0.216: 1 Section used for this span 2x6 Section used for this span 2x6 fb : Actual 1,049.26psi tv : Actual 38.89 psi FB: Allowable 1,170.00psi Fv : Allowable 180.00 psi `Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span = 5.750ft Location of maximum on span = 0.000 ft Span # where maximum occurs = Span # 1 Span # where maximum occurs = Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.238 in Ratio= 578 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 i Max Downward Total Deflection 0.477 in Ratio= 289 Max Upward Total Deflection 0.000 in Ratio= 0 <180 i :Maximum F:orces:E�rStresses, r LoadivCom_ brnatlons Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C FIV C r C m C t Mactual fb-design Fb-allow Vachial tv-design Fv-allow Length =11.50 ft 1 0.448 0.108 1.000 1.300 1.000 1.000 1.000 0.33 524.63 1,170.00 0.11 19.45.' 180.00 +D+Lr+H 1.300 1.000 1.000 1.000 Length =11.50 ft 1 0.897 0.216 1.000 1.300 1.000 1.000 1.000 0.66 1,049.26 1,170.00 0.21 38.89 180.00 +0+0.750Lr+0.750L+H, 1.300 1.000 1.000 1.000 Length =11.50 ft 1 0.785 0.189 1.000 1.300 1.000 1.000 1.000 0.58 918.10 1,170.00 0.19 34.03 180.00 +D+0.750Lr0.750L+0.750W+H 1.300 1.000 1.000 1.000 Length =11.50 ft 1 0.785 0.189 1.000 1.300 1.000 1.000 1.000 0.58 9.18.10 1,170.00 0.19 34.03 180.00 +0+0.750Lr+0.750L+0.5250E+H 1.300 1.000 1.000 1.000. Length =11.50 ft 1 0.785 0.189 1.000 1.300 1.000 1.000 1.000 0.58 918.10 1,170.00 0.19 34.03 180.00 OveralLM Kill Deflections Unfactored,Loatls „x � Load Combination Span Max. "-" Defl Location in Span Load Combination Max. "+" Dell Location in Span D+Lr 1 0.4768 5.808 0.0000 0.000 W10. You can changes this area using the "Settings' menu item and then using the "Printing & Title Block" selection. Title : Job # Dsgnr: Project Desc.: Project Notes : uescnption : w -a L z4- vu Material Properties Calculations per NDS 2005, IBC 2009, CBC 2010, ASCE 7-05 Analysis Method: Allowable Stress Design Fb - Tension 900.0 psi E: Modulus of Elasticity Load Combination 2006 IBC & ASCE 7-05 Fb- Compr 900.0 psi Ebend-xx 1,600.Oksi Fc - Pdl 1,350.0 psi Eminbend - xx 580.0 ksi Wood Species : Douglas Fir - Larch Fc - Perp 625.0 psi . Wood Grade : No.2 Fv 180.0 psi ;Maximum Bending Stress Ratio- = 0.7991 Maximum Shear Stress Ratio = Ft 575.0 psi Density 32.210pcf Beam Bracing : Beam is Fully Braced against lateral -torsion buckling Section used for this span ................_...-----.._-...._._....__._._..__.._._._._......---..._..... ._......-- -... - - -._ _..__...__...--....__...---- _---.._._..---._..__.._...- ......_.. - .._..._..... - - - - - ._ .... i D(0.02) Lr(0.02) Span = 13.750 ft :-AppliedLoads •., : r''>� .;;> = ` - ' ''_ ` ' '' Service loads entered. Load Factors will be applied for calculations. Uniform Load : D = 0.010, Lr = 0.010 ksf, Tributary Width = 2.0 ft, (Ceiling Loads) DESIGN�SUMMAR,Y�� ��;`• -.'�:.,:�::'�", ..:.. .. . ;Maximum Bending Stress Ratio- = 0.7991 Maximum Shear Stress Ratio = 6.194: 1 Section used for this span 2x8 Section used for this span 2x8 fb : Actual = 863.26psi fv : Actual 34.90 psi FB: Allowable = 1,080.00psi Fv : Allowable 180.00 psi Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span = 6.875ft Location of maximum on span = 0.000 ft Span # where maximum occurs = Span #.1 Span # where maximum occurs = Span # 1 Maximum Deflection Max Downward L+Lr+S Deflection 0.213 in Ratio= 775 Max Upward L+Lr+S Deflection -, 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.425 in Ratio= 387 Max Upward Total Deflection i 0.000 in Ratio= 0 <180 s Mazi Nr 10 6inafi.oris< ------------------- _ Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C FN C r C m C t Mactual fo- design Fb-allow Vactual fv-design Fvallow Length =13.750 ft 1 0.400 0.097 1.000 1.200 1.000 1.000 1.000 0.47 431.63 1,080.00 0.13 17.45 180.00 +O+Lr+H 1.200 1.000 1.000 1.000 Length =13.750 ft 1 0.799 0.194 1.000 1.200 1.000 1.000 1.000 0.95 863.26 1,080.00 0.25 34.90 180.00 +0+0.750Lr+0.750L+H 1.200 1.000 1.000 1.000 Length =13.750 ft 1 0.699 0.170 1.000 1.200 1.000 1.000 1.000 0.83 755.35 1,080.00 0.22 30.53 180.00 +0+0.750Lr+0.750L+0.750W+H 1.200 1.000 1.000 1.000 Length =13.750 ft 1 0.699 0.170 1.000 1.200 1.000 1.000 1.000 0.83 755.35 1,080.00 0.22 30.53 180.00 +0+0.750Lr+0.750L+0.5250E+H 1.200 1.000 1.000 1.000 Length =13.750 ft 1 0.699 6.170 1.000 1.200 1.000 1.000 1.000 0.83 755.35 1,080.00 0.22 30.53 180.00 Qverall Mazirnum Deflecpons-„`Unfactoced Loads Load Combination Span Max. ' ' Dell Location in Span Load Combination Max. '+' Defl Location in Span D+Lr 1 0.4255 6.944 0.0000 0.000 tyll You can changes this area using the "Settings' menu item and then using the 'Printing & Title Block" selection, Title : Dsgnr. Project Desc.: Project Notes: Job # description: Hit -2 - Hip beam Material Properties calculations per NDS 2005, IBC 2009, CBC 2010, ASCE 7-05 Analysis Method: Allowable Stress Design Fb - Tension - 900.0 psi E: Modulus of Elasticity Load Combination 2006 IBC & ASCE 7-05 Fb - Compr 900.0 psi Ebend- xx 1,600.Oksi Location of maximum on span Fc - Prll 1,350.0 psi Eminbend - xx 580.0 ksi Wood Species ; Douglas Fir - Larch Fc - Perp 625.0 psi 0.170 in Ratio= Wood Grade ; No.2 Fv 180.0 psi Load Combination Max Stress Ratios Ft 575.0 psi Density 32.210pcf Beam Bracing : Beam is Fully Braced against lateral -torsion buckling ' Summary of Moment Values 2-2X8 ,.r Span = 9.50 ft "'�_` "' "' '• "_� " : Service loads entered. Load Factors will be applied for calculations. PP Load for Span Number 1 Varyinq Uniform Load : D(S,E) = 0.0150->0.0150, Lr(S,E) = 0.020-4.0 ksf, Extent = 0.0 ->> 9.50 ft, Trib Width=1.0->7.0 ft, (Roof Loads) ;Maximum Bending Stress Ratio i Section used for this span fb : Actual FB: Allowable i Load Combination Location of maximum on span Span # where maximum occurs Maximum Deflection Max Downward L+Lr+S Deflection Max Upward L+Lr+S Deflection Max Downward Total Deflection Max Upward Total Deflection I = 0.6781 Maximum Shear Stress Ratio 2_2x8 Section used for this span = 732.08psi fv : Actual = 1,080.00psi Fv:Allowable +D+Lr+H Load Combination = 5.320ft Location of maximum on span = Span # 1 Span #where maximum occurs 0.097 in Ratio= 1175 0.000 in Ratio= 10 <360 0.170 in Ratio= 671 0.000 in Ratio= 0 <180 0.266 : 1 2-2x8 47.94 psi 180.00 psi +D+Lr+H 8.930 ft = Span # 1 �Mazimiim�F:occes;B�;,Stresses for:Load'Com6inatio_ _ v ns . Load Combination Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V C d C FN C r C m C t Madual fb-design Fb-allow Vactual tv-design Fv-allow +D Length = 9.50 ft 1 0.291 0.114 1.000 1.200 1.000 1.000 1.000 0.69 313.75 1,080.00 0.30 20.55 180.00 +D+Lr+H 1.200 1.000 1.000 1.000 Length = 9.50 It 1 0.678 0.266 1.000 1.200 1.000 1.000 1.000 1.60 732.08 1,080.00 0.70 47.94 180.00 +D+0.750Lr+0.750L+H 1.200 1.000 1.000 1.000 Length = 9.50 ft 1 0.581 0.228 1.000 1.200 1.000 1.000 1.000 1.37 627.50 1,080.00 0.60 41.10 180.00 +D+0.75OLr+0.750L+0.750W+H 1.200 1.000 1.000 1.000 Length = 9.50 ft 1 0.581 0.228 1.000 1.200 1.000 1.000 1.000 1.37 627.50 1,080.00 0.60 41.10 180.00 +D+0.750Lr+0.750L+0.5250E+H 1.200 1.000 1.000 1.000 Length = 9.50 It 1 0.581 0.228 1.000 1.2000 1.000 1.000 1.000 1.37 627.50 1,080.00 0.60 41.10 180.00 Ove�alL Maximum DeflecfionsT UnfactoredLoads = , � ,,, .� _ s.«. _ Load Combination Span Max. *2 Defl Location in Span Load Combination Max. '+" Dell Location in Span D+Lr 1 0.1698 4.893 0.0000 0.000 You can changes this area using the "Settings' menu item and then using the "Printing & Title Block' selection. Title : Job # Dsgnr: Project Desc.: Project Notes : Description : HIP -2 - Hip Beam Support notation : Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 0.499 0.831 D Only 0.214 0.356 Lr Only 0.285 0.475 Dir 0.499 < -2- ,? qq i9FORTE MEMBER REPORT Level, CB -1- Ceiling Beam 1 piece(s) 3 1/2" x 9 1/4" 2.0E Parallam@ PSL Overall Length: 12' 11" + r -.1 NEW =";�% 4SIMMIN M. lmmw0 116' All Dimensions Are Horizontal; Drawing Is Conceptual Desi frR alts` cew I VQ abiw Member Reaction (lbs) -k2855 @'31' 11" 9188 Passed (31%) 1.0 D + 1.0 Lr (All Spans) Shear (lbs) 2556 @ 11' 1/4" 5633 Passed (45%) 0.90 1.0 D (AJI Spans) Moment (Ft -lbs) 7497 @ 6' 6" 11174 Passed (67%) 0.90 1.0 D (All Spans) Uve Load Defl. (in) 0.040 @ 6' 7/16" 0.392 Passed (L/999+) -- 1.0 D + 1.0 Lr (All Spans) Total Load Defl. (in) 0.425 @ 6' 6" 0.587 , Passed (L/332) -- 1.0 D + 1.0 Lr (All Spans) Deflecdon criteria: LL (L/360) and TL (1.1240). Bracing (Lu): All compression edges (top and bottom) must be braced at 12' lo o/c unless detailed otherwise. Proper attachment and positioning of lateral bracing is required to achieve member stability. U K, Wft. WON Supports Required a 11 1 - Column - DF 3.50" 3.50" 1.50" 1364 242 1606 Blocking 2 - Column - DF 3.50* 3.50" 11.50" 2614 242 2856 Blocking locking Panels are assumed to Carry no IoadS applied directly above them and the full load Is applied to the member being designed. Member Notes 'Wq'rMX RIM r 'X Carry HIP -2 Weyerhaeuser warrants that the sizing of its products will be In accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature,for Installation details. (www.woodbywy.com) Accessories (RIM Board, Blocking Panels and Squash Blocks) are riot designed by this software. Use of this software Is not Intended to circumvent.the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer Is responsible to assure that this calculation is compatible with the overall project Products manufactured at Weyerhaeuser facilities are third -party certified to sustainable forestry standards. The product application, input design loads, dimensions and support information have been provided by Forte Software operator 4-- PASSED System : Roof Member Type: Flush Beam Building Use : Residential Building Code : IBC Design Methodology: Aso Member Pitch: 0/12 A I A SUSTAINABLE FORESTRY INITIATIVE T -.Fote S0 ft 9/3/2012 1143:00 AM Forte v3.5. Design Engine: V5.5.3.2 BRYAN--1ATE Page 1 of 1 cew I VQ abiw I - Uniform(PSF) 0 to 12' 1" 2' 22.0 20.0 Roof 2 - Point(Ib) 6' 6- N/A $31 From HIP -2 F --P. Int(lb) 6-6- N/A $31 From HIP -2 4 - Point(Ib) 10, N/A 831 From HIP -2 5 - Point(Ib) 10, /A 831 From HIP -2 Member Notes 'Wq'rMX RIM r 'X Carry HIP -2 Weyerhaeuser warrants that the sizing of its products will be In accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature,for Installation details. (www.woodbywy.com) Accessories (RIM Board, Blocking Panels and Squash Blocks) are riot designed by this software. Use of this software Is not Intended to circumvent.the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer Is responsible to assure that this calculation is compatible with the overall project Products manufactured at Weyerhaeuser facilities are third -party certified to sustainable forestry standards. The product application, input design loads, dimensions and support information have been provided by Forte Software operator 4-- PASSED System : Roof Member Type: Flush Beam Building Use : Residential Building Code : IBC Design Methodology: Aso Member Pitch: 0/12 A I A SUSTAINABLE FORESTRY INITIATIVE T -.Fote S0 ft 9/3/2012 1143:00 AM Forte v3.5. Design Engine: V5.5.3.2 BRYAN--1ATE Page 1 of 1 0ot Ben Phan VP Home (714) 2514537 ben_phan@yahoo.corn i4FORTIE" MEMBER REPORT Level, CB -2 - Ceiling Beam 1 piece(s) 3 1/2" x 9 1/4" 2.0E Parallam@ PSL Overall Length: 14'3" Deflection criteria: LL (L/360) and TL (L/240). Bracing (Lu): All compression edges (top and bottom) must be braced at 14'3" o/c unless detailed otherwise. Proper attachment and positioning of lateral bracing Is required to achieve member stability. N gg Roof` III'! 111M, N ki6lWbW -M NMI"" 1% MKIME Member Reaction (lbs) 1536 @ 2" 0 Passed (17%) -- 1.0 D + 1.0 Lr (All Spans) Shear (lbs) 0 5633 pt "n Moment (Ft -lbs) 7080 @ 6'10" 11174 Passed (63%) 0.90 1.0 b (All Spans) Live Load Defl. (in) 0.077 @ 7- i 1/2" 0.464 Passed (L/999+) 1.0 D + 1.0 Lr (All Spans) 13'8" 0.548 @ r 7/8" 0.696 Passed (V305) 1.0 D + 1.0 Lr (AJI Spans) All Dimensions Are Horizontal; Drawing Is Conceptual Deflection criteria: LL (L/360) and TL (L/240). Bracing (Lu): All compression edges (top and bottom) must be braced at 14'3" o/c unless detailed otherwise. Proper attachment and positioning of lateral bracing Is required to achieve member stability. N gg Roof` III'! 111M, N ki6lWbW -M NMI"" 1% MKIME Member Reaction (lbs) 1536 @ 2" 9188 Passed (17%) -- 1.0 D + 1.0 Lr (All Spans) Shear (lbs) 1194 @ 1'3/4" 5633 Passed (21%) 0.90 1.0 D (All Spans) Moment (Ft -lbs) 7080 @ 6'10" 11174 Passed (63%) 0.90 1.0 b (All Spans) Live Load Defl. (in) 0.077 @ 7- i 1/2" 0.464 Passed (L/999+) 1.0 D + 1.0 Lr (All Spans) Total Load Defl. (in) 0.548 @ r 7/8" 0.696 Passed (V305) 1.0 D + 1.0 Lr (AJI Spans) Deflection criteria: LL (L/360) and TL (L/240). Bracing (Lu): All compression edges (top and bottom) must be braced at 14'3" o/c unless detailed otherwise. Proper attachment and positioning of lateral bracing Is required to achieve member stability. • Blocking Panels are assumed to carry no loads applied directly above them and the full load Is applied to the member being designed. -fDeae- Tribubry N gg Roof` III'! 111M, N ki6lWbW -M NMI"" 1% MKIME 5 ZIA N V I -.Column - DIF 3.50" 3.50" 1.50" 1251 285 1536 Blocking 2 - Column - DF 3.50" 3.50" 1.50" 11182 1 285 1467 Blocking • Blocking Panels are assumed to carry no loads applied directly above them and the full load Is applied to the member being designed. -fDeae- Tribubry I - Uniform(PSF) 0 to 14'3" 2- 22.0 26.0 Roof 2 - Point(lb) V10" N/A 831 - From HIP -2 3 - Point(lb) 6',10" N/A 831 From HIP -2 Carry HIP -2 E vra, M-500 Weyerhaeuser warrants that the sizing of Its products will be In accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related tc) the software. Refer to current Weyerhaeuser literature for Installation details. (www.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software Is not Intended to circumvent the need for a design professional as determined by the authority having Jurisdiction. The designer of record, builder or framer Is responsible to assure that this calculation is compatible with the overall project. Products manufactured at Weyerhaeuser facilities are third -party cerUfled to sustainable forestry standards. The product application, Input design loads, dimensions and support Information have been provided by Forte Software Operator PASSED System : Roof Member Type : Flush Beam Building use: Residential Building Code : IBC Design Methodology: ASD Member Pitch: 0/12 0 SUSTAINABLE FORESTRY INITIATIVE 9/3/2012 11:48:10 AM Forte v3.5, Design Engine: V5.5.3.2 BRYAN--1.4TE Pagel of 1 1 F® R T E MEMBER REPORT Level, HDR -1- Header 1 piece(s) 3 1/2" x 9 1/4" 2.0E Parallam@ PSL Overall Length: 8'8" Deflection criteria: U. (1.1360) and TL (1.1240). Bracing (Lu): All compression edges (top and bottom) must be braced at 8' 8" o/c unless detailed otherwise. Proper attachment and positioning of lateral bracing Is required to achieve member stability. - Blocking Panels are assumed to carry no loads applied directly above them and the full load Is applied to the member being designed. n A` Ben Phan Member Reaction (lbs) 0 9188 Passed (24%) 0 Shear (lbs) 1397 @ 1'3/4" 5633 Passed (25%) 0.90 1.0 D (All Spans) Moment (Ft -lbs) 4558 @ 3' 10" 11174 Passed (41%) 0.90 1.0 D (All Spans) 8' V 0.037 @ 4'4 1/16" 0.278 Passed (L/999+) 1.0 D + 1.0 Lr (All Spans) I Total Load Deft. (in) All Dimensions Are Horizontal;, Drawing Is Conceptual 0.417 Passed (V629) 1.0 D + I.O'Lr (All Spans) Deflection criteria: U. (1.1360) and TL (1.1240). Bracing (Lu): All compression edges (top and bottom) must be braced at 8' 8" o/c unless detailed otherwise. Proper attachment and positioning of lateral bracing Is required to achieve member stability. - Blocking Panels are assumed to carry no loads applied directly above them and the full load Is applied to the member being designed. n A` Ben Phan Member Reaction (lbs) 2178 @ 21' 9188 Passed (24%) 1.0 D + 1.0 Lr (All Spans) Shear (lbs) 1397 @ 1'3/4" 5633 Passed (25%) 0.90 1.0 D (All Spans) Moment (Ft -lbs) 4558 @ 3' 10" 11174 Passed (41%) 0.90 1.0 D (All Spans) We Load Defl. (in) 0.037 @ 4'4 1/16" 0.278 Passed (L/999+) 1.0 D + 1.0 Lr (All Spans) I Total Load Deft. (in) 0.I59@4'37/16" 0.417 Passed (V629) 1.0 D + I.O'Lr (All Spans) Deflection criteria: U. (1.1360) and TL (1.1240). Bracing (Lu): All compression edges (top and bottom) must be braced at 8' 8" o/c unless detailed otherwise. Proper attachment and positioning of lateral bracing Is required to achieve member stability. - Blocking Panels are assumed to carry no loads applied directly above them and the full load Is applied to the member being designed. n A` Ben Phan VP Home Jnlform(PSF) 0 to 81 8" 7' 22.0 20.0 Roof loint(lb) 3'10" N/A I536 - From CB -2 N* Mr 1380_ A Weyerhaeuser warrants that the sizing of Its products will be In accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature for Installation details. (www.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation Is compatible with the overall project. Products manufactured at Weyerhaeuser facilities are third -party certified to sustainable forestry standards. The product application,' Input design loads, dimensions and support Information have been provided by Forte Software Operator ForteoOperator._:ale. _, ...... . . . .. . Job s� Ben Phan VP Home (714) 2514537 ben_phan@yahoo.com PASSED System :Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC Design Methodology: ASD Member Pitch: 0/12 SUSTAINABLE FORESTRY INITIATIVE 913/2012 11:56:23 AM Forte 0.5, Design Engine: V5.5.3.2 BRYAN--1.4TE Page 1 of 1 UNIFORM AND POINT LOAD ON CONTINUOUS FOOTING Footing Width (FW) = 12 in Soil Density = 110 pcf Footing Depth (FD) = 12 in Concrete Density = 150 pcf Soil Bearing (SB) = 1,500 psf Inc. Width (IW) = 0 psf Max. Soil Bearing = 1,500 psf Inc. Depth (ID) = 0 psf Plain Concrete Design: F'c = 2,500 psi Tension Fb = 80 psi Procedures: Fsoil = ((D-FD)/12*ID)+SB F'soil = Fsoil-(D/12*(150-110)) w = W*F'soil/12 M = Fb*W*d^2/12"/6 L = (2*M/w)^1/2 Pmax = 2*L*w W (") D (") Fsoil (psf) F'soil (psf) w(#/ft) M ('#) L (ft) Pmax # 12 x 12 1,500 1,460 1,460 1,920 1.62 4,736 15 x 12 1,500 1,460 1,825 2,400 1.62 5,919 18 x 12 1,500 1,460 2,190 2,880 1.62 7,103 21 x 12 1,500 1,460 2,555 3,360 1.62 8,287 24 x 12 1,500 1,460 2,920 3,840 1.62 9,471 12 x 15 1 500 1,450 1145-0- 3,000 2.03 5,899 15 x 15 1,500 1,450 1,813 3,750 2.03 7,374 18 x 15 1,500 1,450 2,175 4,500 2.03 8,849 21 x 15 1 500 1145-0- 2 538 5,250 2.03 10,324 24 x 15 1,500 1,450 2,900 6,000 2.03 11 8 12 x 18 1,500 1,000 1,000 4,320 2.94 C 5,879- 15 x 18 1,500 1,000 1,250, 5,400 2.94 348 18 x 18 1,500 1,000 1,500 6,480 2.94 8,818 21 x 18 1,500 1,000 1,750 7,560 2.94 10 288 24 x 18 1,500 1,000 2,000 8,640 2.94 11,758 12 x 21 1,500 1,000 1,000 5,8801 3.43 6,859 15 x 21 1 500 110-0-0- 1 250 7,350 3.43 8,573 18 x 21 1,500 1,000 1,500 8,820 3.43 10,288 21 x 21 1,500 1,000 .1 ,750 10,290 3.43 12,002 24 x 21 1,500 1,000 2,000 11,760 3.43 13,717 12 x 24 1,500 1,000 1,000 7,680 3.92 7,838 15 x 24 1,500 1,000 1,25 9,600 3.92 9,798 18 x 24 1,500 1,000 1,500 11,520 3.92 11,758 21 x 24 1,5001 1,0001 1,7501 13,440 3.92 13 717 24 x24 1,5001 1,0001 2,0001 15,360 3.92 15 677 30 x 24 1,5001 1,0001 2,5001 19,2001 3.92 19,596 Note: For point loads on footings with uniform loads, take the difference between "w" above and the uniform load, then multiply by two and by "L" above for P'max. TIM q r7