12-1046 (AR) Structural CalcsSTRUCTURAL CALCULATIONS
Project Location
Owner:
Prepared by:
Building Code Edition
79760 Citrus
La Quinta, CA 92253
Bryan Residence (Due)
1 -Story Home Additia nit 1
Ben Phan, P.E. (714) 251-4537
11541 Elizabeth Street
Garden Grove, CA 92840
2010 California Building Code
Concrete: f , = 2,500 psi @ 28 days
Ready -mixed concrete per ASTM C94
Concrete aggregates per ASTM C33
Cement ASMT C150 Type 11 or V u.n.o.
Foundation: Minimum allowable soil bearing pressu
Date: 8/30/2012
�QROFESS/0
r60 Pyq� �2
No.57550 m
EXP. 12/31/
c�P �
9� C/VIL
�. F CALW '
CITY OF LA QUINTA
BUILDING & SAFETY DEPT.
APPROVED
I:5 f;O CONSTRUCTION
ogs
Structural Steel: ASTM A-36, ASTM a-92
Pipe Columns: ASTM A-53, Grade B
Welding: Electric are process by certified welders in approved licensed fabrication C1•Fti
shop.
Concrete Masonry:
Grout:
Reinforcing Steel
Wood Framing:
Studs, joists, rafters:
Beams and posts:
Glulam:
Paral lam 2.0 PSL:
Microllam LVL:
Plywood:
TJI:
ASTM C90, Grade N, f m = 1,500 psi
Type M, 1:3:1/4 mix; Cement: Sand: Hydrated Lime or Lime Putty.
1:3:2 mix; Cement: Sand: 3/8" pea gravel; f , = 2,000 psi.
Deformed bars per ASTM A915; Grade 40 for #4 and smaller; Grade 60
for #5 and larger.
WCL1B or WWPA Grading Rules Agency
Douglas Fir -Larch #2
Douglas Fir -Larch #I
24F -V4 or 24F -V8 DF/DF (cantilevered)
ICC ESR -1387
ICC ESR -1387
4 or more plies, Structural 1 or CD, CC Structural Panel per PS -1-95
ICC ESR -1153 (ILevel)
All information shown on plans relative to existing conditions are provided as the best present knowledge
but without guarantee of accuracy. Where actual conditions conflict with the plans, they shall be reported
to the Engineer so that modifications may be made in writing. Modifications of plans and details shall not
be made without written approval of the Engineer. By accepting this calculations or report, the Engineer
shall not be held liable for discrepancies not brought up to the attention of the Engineer. The design
analysis and calculations were done in accordance with generally accepted engineering principles and
practice.
RF vy':i�%E�
OCT 18 2012
BY: --
a
ROOF DEAD LOAD :
Tiles Roofing
Shiathing/Ins.u4tion. i.
2X RJR,@ .1 t 0 C
2X- CJ- @. •i;6; -'-.6c
Drywall C.Piling"''.
MISCELLANEOUS
SLOPE CORRECTION 'X12"
MISCELLANEOUS
ROOF DEAD LOAD:
ROOF SNOW LOAD:
ROOF LIVE LOAD:
TOTAL ROOF LOAD:
ROOF TYPE I
--il-i?o
J,100
PSF
:0:000:
PSF
PSF
... .. . . ..... . ... 0
PSF
PSF
PSF
1-24
PSF
0.0
PSF
PSF
0
1-0
PSF
ROOF LIVE LOAD:
PSF
PSF
PSF
PSF
PSF
20.3
PSF
1.08
PSF
0.0
PSF
22.0
PSF
o;.
.0
PSF
PSF
1, -42.01
PSF
RR
RR
RR
ci
ci
ci
ci
ci
ROOF DEAD LOAD : ROOF TYPE 2
SUB -TOTAL
--il-i?o
PSF
SLOPE CORRECTION "X:12"
:0:000:
PSF
PSF
... .. . . ..... . ... 0
PSF
00
PSF
PSF
=
0.0
PSF
ROOF SNOW LOAD:
0
PSF
PSF
ROOF LIVE LOAD:
PSF
. . . ........ ... - 0
PSF
PSF
SUB -TOTAL
= 0.0
PSF
SLOPE CORRECTION "X:12"
:0:000:
1.00
PSF
MISCELLANEOUS
'LOAD
=
00
PSF
ROOF DEAD :
=
0.0
PSF
ROOF SNOW LOAD:
MAX. SOIL PRESSURE - Qa
:1',500 0
PSF
ROOF LIVE LOAD:
=20
. . . ........ ... - 0
PSF
TOTAL ROOF LOAD:
PSF
SOILS REPORT :None
Proyided:U-,iAs . suqfe-.-Qo0,
GEOTECHNICAL ENGINEER:
I:'. Not Aooli6a-ble':'Y'ju-isem bode"'bi
BASIC BEARING PRESSURE
PADS & CONT. FNDT.,= Qa
�--1:500,
PSF
INCREASE FOR WIDTH
0.0,
%
INCREASE FOR DEPTH
= 0:0
%
MAX. SOIL PRESSURE - Qa
:1',500 0
PSF
ALLOW PASSIVE PRESSURE
PCF
ALLOW SOIL FRICTION
DATE OF REPORT:
ISOLATED FOUNDATIONS = PSF
EQUIV. FLUID PRESSURE PCF
Latitude =MM8L.7. North
Lvnonmoe. = mmo
dccup;ncy C�tognry =
Important Factor (0 = (Table 1.5-2)
Shear Panels Timber Frames|
Use Simplified Alternative Structural Design
V 0.20 Shear Panels
DESIGN WIND VELOCITY N3s)
n =
MPH
Von
.. .
C, =
|
v~ ~
Use Simplified Alternative Structural Design
V 0.20 Shear Panels
DESIGN WIND VELOCITY N3s)
=
MPH
Von
=
MPH
Occupancy Category
=
Site Class
Important Factor (1)
=
(Table 1.5-2)
Exposure Category
=
00
Adjustment Coefficient (k)
=14.0
2§:" (Figure 28.6-1)
FT
.
Mean Roof Height
SDC
FT
MWFRS Design Wind Pressure P.30 (PSf)
=
L--22.6---]^
Horizontal I.
Roof
End Zone
Building Width
=
V
= 0.67 Timber Frames
=
Longitudinal (Case A)
22.6
26.6 -7.0 17.7
2a
Mean Roof Height
6.0 FT
Roof Horizontal Loadl
FT
1 7861 I -B.§—] (Transverse)
Roof Horizontal Load
Fr
1,0611 LBS (Longitudinal)
Roof Height
=
FT
Wall Height (2ndtOoor)
=
Site Class
WaoMa��(1�Ono�
=
FT
00
Total Height
=14.0
FT
.
Mean Roof Height
SDC
FT
Roof Angle
=
L--22.6---]^
Building Width
=
V
= 0.67 Timber Frames
Roof Height
=
FT
Wall Height (2ndtOoor)
=
WaoMa��(1�Ono�
=
FT
Total Height
=14.0
FT
.
Mean Roof Height
=11.6
FT
Roof Angle
=
L--22.6---]^
Building Width
=
FT
Building Length
=
FT
sovoMoimm
=
pr
Mean Roof Height
=
FT
a 3.0.
Fr
2a 6.0
FT
D
V>
LOAD:
Roof weights
Roof DL (horiz. Proj.),=
Ext. Wall DL =
Int. Shear Wall DL =
Wall Height (1 st floor) _
Roof Height =
Total height, hn =
N -S Length =
E -W Length =
Roof Area =
Tributary Ext. Walls to Roof =
Tributary Int. Shear Walls to Roof =
Roof Weight =
Tributary Ext. Walls to Roof =
Tributary Int. Shear Walls to Roof =
W..f =
Total DL (W) _
Total Base Shear M =
Design Base Shear:
Period: T=Ct(hn)314 = 0.02'(hn)314 =
Vertical distributions of seismic forces:
Shear
Diaphragm
E -W
N -S
E -W
N -S
22.0
22.0
22.0
22.0
17.0
17.0
17.0
17.0
7.0
7.0
7.0
7.0
9.0
9.0
9.0
9.0
5.0
5.0
5.0
5.0
14.0
14.0
14.0
14.0
28.8
28.8
18.0
18.0
517.5
517.5
517.5
517.5
93.5
93.5
57.5
36.0
18.0
28.8
18.0
28.8
11,381
11,381
11,381
11,381
7,153
7,153
4,399
2,754
567
906
567
906
19,100
19,439
16,346
15,040
19,100
19 439
16,346
15 040
3,820
3 820
0.145 sec
E -W N -S
V= 0.20 0.20 W
V= 3,820 3,820 lbs
Level wx Ib Area (ftZ) Fx NS
( ) (lb)
Fpx NS 0.2 Sns W fx NS fpx N -S
(lb) Ib Use (Ib) (psf) (psf)
Roof 19,100 518 3,820
3,820 3,820 3,820 7.38 7.38
1 st Floor -
E 19,100 3,820
3,820
0.2 Sos W fx E -W fpx E -W
Fx EM (Ib) Fx E -W wx lb Use (Ib) (psf) (psf)
3,820 3,820 3,820 3,820 7.38 7.38
3,820 3,820
>q.ft.
t
t
bs.
bs.
bs.
bs.
bs
bs
WIf
Longitudinal Direction:
Shear Walls (Vertical):
Hiah Roof Level -
D + E/1.4 (Eq. 12-9) (no Increase)
E = p Eh Use
P = 1.30 1.30
Lonaitudinal Shear Walls
Wall (grid line) EFaboveIb EFx
( ) (Ib)
1 1 to 2
2to3 3 3to4 4
MW
7.38 7.38 7.38
7.38 7.38 7.38 7.38
Spacing ft
18
0 27.5
Depth ft
28.75(Existing)
15(Existing)
Net D b, ft
1.5
1.5
Vseismic (Ib)
1,910
1,522
Vwi d (Ib)
1,061
1,061
Vgovems (Ib)
1,910
1,522
Wall Ib
2,090
2,090
—Spec,
Wall T e
HFX-18x9
HFX-18x9
Vgovems(P t)
270
270
vfadored(Pl�
8d @ 6",6",12"
8d @ 6",6",12"
vfactored*1.0 (M
Min. D ft
1.5
1.5
Mo (Ib -ft)
17,190
13,702
Wroof (Ply
198
302
Wwaij (A
153
153
0.6*MR (Ib -ft)
237
307
Tie -down 6"
YES
YES
Tie -down Ib
11,302
8,930
Tie -down
1/8" STD
1 1/8" STD
COMP. Post
2-2x4 I
2-2x4
D + E/1.4 (Eq. 12-9) (no Increase)
E = p Eh Use
P = 1.30 1.30
Lonaitudinal Shear Walls
Wall (grid line) EFaboveIb EFx
( ) (Ib)
Ftotn, v--EH.4b
lb (Plf)
Shear
Wall Length Sheathing 1 o Allowable Shear
(n) 2 sides Olf)
1 - 1,910
1,910
HFX-18x9
2,090
2 - -
-
(Existing)
15(Existing)
3 - 1,522
1,522
HFX-18x9
2,090
4 - -
-(Existing)
VWnd(Plf)
18
Diaphragm (horizontal):
Roof Level:
1 1 to 2 2to3
3 3to4 4
fp'(Psf)
7.38 7.38 7.38 7.38
7.38 7.38 7.38
L ft
18 0
27.5
Depth ft
28.75(Existing)
15(Existing)
Area ft2
518
413
fse15mi4lo
66
101
VWnd(Plf)
18
35
Govems
Seis.
Seis.
vgovemed(Plf)
66
101
Roof Panel
112" CDX
1/2" CDX
Shear
270
270
Edge Nail
8d @ 6",6",12"
8d @ 6",6",12"
Transverse Direction:
Shear Walls (Vertical):
Roof Level
A
AtoB B BtoC
C CtoD D
fx s 7.38
7.38 7.38 7.38
7.38 7.38 7.38
Spacing ft
28.75 26
10.75
Depth ft(Existing)
6.7
9.83(Existing)
Net D b, ft
5.5
9.75
Vseismic (lb)
711
1,333 .
Vwind (lb)
786
786
Vgovem, (Ib)
786
1,333
Vgovems P
143
137
Vfactored(plf)
143
137
factored*1.0 (plf)
143
137
Min. D ft
5.5
9.75
Mo (Ib -ft)
7,071
12,000
` Mf (Plf)
319
286
`^fwaii (A
153
153
0.6*MR (Ib -ft)
4,282
12,517
Tie -down 6"
YES
NO
Tie -down Ib
558
N/A
Tie -down
HDU2&SSTB16
N/A
COMP. Post
I 2-2x4 1
2-20
D + E/1.4 (Eq. 12-9) (no increase)
E = p Eh Use
P = 1.30 1.30
Transverse Shear Walls
Wall rid line EFabove Ib £Fx
(g ) ( ) (lb)
Fturai v=EN.4b
Ib (Plf)
Wall Length
Shear # (ft)
Sheathing 1
or 2 sides
Allowable
Shear (plf)
A - -
-
7:38 7.38
L ft
28.75
B - 786
786 143
1 5.5
1
280
C - 1,333
1,333 137
1 9.8
1
280
D - I - I
-
96
vwind(Plf)
Diaphragm (horizontal):
Roof Level:
A AtoB
B BtoC C
CtoD D
fpx(psf)
7.38 7.38
7.38 7.38 7.38
7:38 7.38
L ft
28.75
26
10.75
Depth ft
(Existing) 1
6.7 9.83
(Existing)
Area (ft)
(Existing)
256(Existing)
fseismic(Plf)
96
vwind(Plf)
40
Governs
Seis.
ugovemed(Plf)
96
Roof Panel
1/2" CDX
Shear
270
Edge Nail
8d @ 6",6",12"
You can changes this area
using the "Settings" menu item
and then using the "Printing &
Title Block" selection.
Title: Job #
Dsgnr.
Project Desc.:
Project Notes :
Uescription : KK -1 L Z4- UL;
Material Properties
Calculations per Nos 2005, IBC 2009, CBC 2010, ASCE 7-05
Analysis Method: Allowable Stress Design
Fb - Tension
900 psi
E: Modulus of Elasticity
Load Combination 2006 IBC & ASCE 7-05
Fb -Compr
900 psi
Ebend-xx 1600ksi
. ,;..
Maximum Bending Stress Ratio
Fc - Prll
1350 psi
Eminbend - xx 580ksi
Wood Species : Douglas Fir - Larch
Fc - Perp,
625 psi
I fb : Actual
Wood Grade : No -2
Fv
180 psi
-
= 1,170.00psi
Ft
575 psi
Density 32.21 pcf
Beam Bracing Beam is Fully Braced against lateral -torsion buckling
'Load Combination
+D+Lr+H
Location of,maximum on span
D(0.03) Lr(0.04) ----
-----
6.545 ft
Span # where maximum occurs
= Span # 1
Span # where maximum occurs =
Span # 1
Span=7.0ft
';'bads '•.: r =•;.;,.. • ..:,x : ?;;:
;, .; ?•`.: ''' `,a`_ .•
Service loads entered. Load Factors will be applied for calculations.
Service
Uniform Load: D=0.0150, Lr = 0.020 ksf, Tributary Width = 2.0 ft, (Roof Loads)
C r
C m
pESIGN'SUMMARY:: : �;;"�„-.: -.._:
;:::.- :..,,::
Summary of Shear Values
Vactual fv-design Fv-allow
. - •
. ,;..
Maximum Bending Stress Ratio
= 0.581: 1 Maximum Shear Stress Ratio, =
0.215: 1
Section used for this span
2x6
Section used for this span
2x6
I fb : Actual
= 680.33psi -
fv : Actual
38.75 psi
FB: Allowable
= 1,170.00psi
Fv : Allowable =
180.00 psi
i Load Combination
+D+Lr+H
'Load Combination
+D+Lr+H
Location of,maximum on span
= 3.500ft
Location of maximum on span =
6.545 ft
Span # where maximum occurs
= Span # 1
Span # where maximum occurs =
Span # 1
Maximum Deflection
i Max Downward L+Lr+S Deflection
0.065 in Ratio =
1283
1.000
Max Upward L+Lr+S Deflection
0.000 in Ratio =
0 <360
Max Downward Total Deflection
0.115 in Ratio =
733
0.581
Max Upward Total Deflection
I
0.000 in Ratio =
0 <180
1.000
Load Combination
Segment Length Span #
Max Stress Ratios
M V
C d
C FIV
C r
C m
C t
Summary of Moment Values
Mactual ttrdesign Fb-allow
Summary of Shear Values
Vactual fv-design Fv-allow
+D
Length = 7.0 ft 1
0.249.
0.092
1.000
1.300
1.000
1.000
1.000
0.18
291.57
1,170.00
0.09
16.61
180.00
+D+Lr+H
1.300
1.000
1.000
1.000
Length = 7.0 ft 1 .
0.581
0.215
1.000
1.300
1.000
1.000
1.000
0.43
.680.33
1,170.00
0.21
38.75
180.00
+D+0.750Lr+0.750L+H
1.300
1.000
1.000
1.000
Length = 7.0 ft 1
0.498
0.185
1.000
1.300
1.000
1.000
1.000
0.37
583.14
1,170.00
0.18
33.22
180.00
+D+0.750Lr+0.750L+0.750W+H
1.300
1.000
1.000
1.000
Length =1.0 It 1
0.498
0.185
1.000
1.300
1.000
1.000
1.000
0.37
583.14
1,170.00
0.18
33.22
180.00
+D+0.750Lr+0.750L+0.5250E+H
1.300
1.000
1.000
1.000
Length = 7.0 ft 1
0.498
0.185
1.000
1.300
1.000
1.000
1.000
0.37
583.14
1,170.00
0.18
33.22
180.00
-'i:°Q�%raltMaximum Deflections Unfactored loads >
_ ,:.';
Load Combination
Span
Max. "= Defl
Location in Span
Load Combination
Max. "+" Dell
Location in
Span
D+Lr
0.1146 3.535
V
You can changes this area
using the 'Settings' menu item
and then using the "Printing &
Title Block' selection.
Title:
Osgnr:
Project Desc.:
Project Notes :
Job #
Description : CJ -1 @ 24' OC,
Material Properties
Calculations per NDS 2005, IBC 2009, CBC 2010, ASCE 7-05_
Analysis Method: Allowable Stress Design
Fb - Tension
900.0 psi
E: Modulus of Elasticity
Load Combination 2006 IBC & ASCE 7-05
Fb -Compr
900.0 psi
Ebend-xx 1,600.Oksi
iMaximum Bending Stress Ratio
Fc - PdI
1,350.0 psi
Eminbend - xx 580.Oksi
Wood Species : Douglas Fir - Larch
Fc - Perp
625.0 psi
fb : Actual
Wood Grade : No.2
Fv
180.0 psi
FB: Allowable
1,350.00 psi
Ft
575.0 psi
Density 32.210pcf
Beam Bracing : Beam is Fully Braced against lateral -torsion buckling
Load Combination
+D+Lr+H
D(0.02) Lr(0.02)
2x4
Span =7.0ft
Maximum Foeces &'Stresses.for Load'Comlinatioiis;
Load Combination
Max Stress Ratios
Service loads entered. Load Factors will be applied for calculations.
Uniform Load : D = 0.010, Lr = 0.010 ksf, Tributary Width = 2.0 ft, (Ceiling Loads)
DESIGN SUMMARY ���-
M
Summary of Shear Values
Segment Length Span #
iMaximum Bending Stress Ratio
= 0.711: 1 Maximum Shear Stress Ratio =
0.204: 1
Section used for this span
2x4
Section used for this span
2x4
fb : Actual
960.00psi
fv : Actual =
36.80 psi
FB: Allowable
1,350.00 psi
Fv : Allowable
180.00 psi
Load Combination
+D+Lr+H
Load Combination
+D+Lr+H
Location of maximum on span
= 3.500ft
Location of maximum on span =
6.720 ft
Span #where maximum occurs
= Span # 1
Span #where maximum occurs =
Span # 1
Maximum Deflection
1.000
1.500
1.000
Max Downward L+Lr+S Deflection
0.127 in Ratio =
661
480.00
Max Upward L+Lr+S Deflection
0.000 in Ratio =
0 <360
+D+Lr+H
j Max Downward Total Deflection
0.254 in Ratio =
330
1.500
Max Upward Total Deflection
0.000 in Ratio =
0 <180
Maximum Foeces &'Stresses.for Load'Comlinatioiis;
Load Combination
Max Stress Ratios
Summary of Moment Values
Summary of Shear Values
Segment Length Span #
M
V
C d
C F/V
C r
C m
C t
Mactual
ftrdesign
Fb-allow
Vactual
fv-design Fvallow
+0
Length = 7.0 ft 1
0.356
0.102
1.000
1.500
1.000
1.000
1.000
0.12
480.00
1,350.00
0.06
18.40 180.00
+D+Lr+H
1.500
1.000
1.000
1.000
Length = 7.0 ft 1
0.711
0.204
1.000
1.500
1.000
1.000
1.000
0.25
960.00
1,350.00
0.13
36.80 180.00
+D+0.750Lr+0.750L+H
1.500
1.000
1.000
1.000
Length = 7.0 It 1
0.622
0.179
1.000
1.500
1.000
1.000
1.000
0.21
840.00
1,350.00
0.11
32.20 180.00
+D+0.750Lr+0.750L+0.750W+H
1.500
1.000
1.000
1.000
Length = 7.0 ft 1
0.622
0.179
1.000
1.500
1.000
1.000
1.000
0.21
840.00
1,350.00
0.11
32.20 180.00
+D+0.750Lr+0.750L+0.5250E+H
1.500
1.000
1.000
1.000
Length = 7.0 ft 1
0.622
0.179
1.000
1.500
1.000
1.000
1.000
0.21
840.00
1,350.00
0.11
32.20 180.00
':_g0weralhMaximum=,Deflections Unfactored Loads;,.
� �,
_
Load Combination
Span
Max. ' ' Defl
Location in Span
Load Combination
Max. '+° Defl
Location in Span
D+Lr
1
0.2540
3.535
0.0000
0.000
V IC
You can changes this area
using the "Settings" menu item
and then using the 'Printing &
Title Block" selection.
Title :
Dsgnr:
Project Desc.:
Project Notes :
Job #
Description : HIP -1 - Hip Beam
Material Properties
Calculations per NDS 2005, IBC 2009, CBC 2010, ASCE 7-05
Analysis Method: Allowable Stress Design
Fb - Tension
900 psi
E: Modulus of Elasticity ,
Load Combination 2006 IBC & ASCE 7-05
Fb - Compr
900 psi
Ebend- xx 1600ksi
66.84 psi
Fc - Prll
1350. psi
Eminbend - xx 580 ksi
-Wood Species : Douglas Fir - Larch
Fc - Perp
625 psi
Load Combination
Wood Grade : No.2
Fv
180 psi
Location of maximum on span =
7.400 ft
Ft
575 psi
Density 32.21 pcf
Beam Bracing : Beam is Fully Braced against lateral -torsion buckling
,._._........... --....... - .._... -- --------._-....._._..--- ...__...
..... ...... ...... -
i _ -
D 0.015 0.09 Lr 0.02,0.12
Max Downward L+Lr+S Deflection
OR 4
1124
0.360 0.159
Max Upward L+Lr+S Deflection
0.000 in Ratio=
0 <360
1.000,
Max Downward Total Deflection
0.149 in Ratio=
642
1,080.00
i�
2x8
0 <180
/
Span =8.0ft
1.000
1.000
_Aliedlads'r=' `'�g� �: ^''a► _•s6 Service loads entered. Load Factors will be applied for calculations.
Load for Span Number 1
Varyinq Uniform Load: D(S,E) = 0.0150->0.0150, Lr(S,E) = 0.020->0.0 ksf, Extent = 0.0 ->> 8.0 ft, Trib Width =1.0->6.0 ft, (Roof Loads)
.TnrnYnu:n.nuenv!,:<��z.b:..'�.:,._ii:':'.`::;•a:;,;�<>-,�,..d";:��.i";u �:
_o._,._,...._:.:;,.._'r".-^-`"'•`--"----------'-----.._._...--
.
;Maximum Bending Stress Ratio =
--..--.-..........--.__-._.................
0.8401 Maximum Shear Stress Ratio =
0.371 : 1
i Section used for this span
2x8
Section used for this span
2x8
fb : Actual =
907.26psi
N : Actual =
66.84 psi
FB: Allowable =
1,080.00psi
Fv : Allowable
180.00 psi
Load Combination
+D+Lr+H
Load Combination
+D+Lr+H
Location of maximum on span =
4.440ft
Location of maximum on span =
7.400 ft
Span #where maximum occurs =
Span # 1
Span #where maximum occurs =
Span # 1
Maximum Deflection
Max Downward L+Lr+S Deflection
0.085 in Ratio=
1124
0.360 0.159
Max Upward L+Lr+S Deflection
0.000 in Ratio=
0 <360
1.000,
Max Downward Total Deflection
0.149 in Ratio=
642
1,080.00
Max Upward Total Deflection
0.000 in Ratio=
0 <180
MazimumtFbrcesB;Sfresses4for:'Load:.Comtiin'ationsm
Load Combination
Max Stress Ratios
Summary of Moment Values
Summary of Shear Values
Segment Length Span #
M V
C d
C FN
C r
CM
C t
Mactual
fb-design
Fb-allow
Vactual
tv-design Fvallow
+D
Length = 8.0 ft 1
0.360 0.159
1.000
1.200
1.000
1.000,
1.000
0.43
388.83
1,080.00
0.21
28.65 180.00
+D+Lr+H
1.200,
1.000
1.000
1.000
Length = 8.0 ft 1
0.840 0.371
1.000
1.200
1.000
1.000
1.000 _
0.99
907.26
1,080.00
0.48
66.84 180.00
+0+0.750Lr+0.750L+H
1.200
1.000
1.000
.1.000
Length = 8.0 ft 1
0.720 0.318
1.000
1.200
1.000
1.000
1.000
0.85
777.65
1,080.00
0.42
57.29 180.00
+0+0.750Lr+0.750L+0.750W+H
1.200
1.000
1.000
1.000
Length = 8.0 ft 1
0.720 0.318
1.000
1.200
1.000
1.000
1.000
0.85
777.65
1,080.00
0.42
57.29 180.00
+0+0.750Lr+0.750L+0.5250E+H
1.200
1.000
1.000
1.000
Length = 8.0 ft 1
0.720 0.318
1.000
1.200
1.000
1.000
1.000
0.85
777.65
1,080.00
0.42
57.29 180.00
Overall Mazimurn Deflectloris t]nfactored Loads `:.•�Z'�-�,.�z
Load Combination
Span
Max. '= Defl
, Location in Span
Load Combination
Max. '+" Defl
Location in Span
D+Lr
1
0.1494
4.120
0.0000
0.000
You can changes this area
using the "Settings' menu item
and then using the 'Printing &
Title Block" selection.
Title : Job #
Dsgnr:
Project Desc.:
Project Notes :
Description : HIP -1 - Hip Beam
1_.:Vertical,Reaclions�:-tUpfactorgd,;;,
n° �,�;,7 :,f;,�::;„„ v .� Support notation :Far left is #1 Values in KIPS
Load Combination
Support 1 Support 2
Overall tvlAXimum
0.373 0.607
D Only
0.160 0.260
Lr Only
0.213 0.347
DiLr
0.373 0.607
Title
You can changes this area Dsgnr.
using the "Settings" menu item Project Desc.:
and then using the 'Printing & Project Notes
Title Block" selection.
Job #
Description : CB -1- (E) 2 -Car Garage
Material Properties Calculations per NDS 2005, IBC 2009, CBC 2010, ASCE 7-05
Analysis Method: Allowable Stress Design
Fb - Tension
900 psi
E: Modulus of Elasticity
Load Combination 2006 IBC & ASCE 7-05
Fb - Compr
900 psi
Ebend- xx 1600ksi
Fc - Prll
1350 psi
Eminbend - xx 580 ksi
Wood Species : Douglas Fir - Larch
Fc - Perp
625 psi
;Maximum Bending Stress Ratio = 0.5941 Maximum Shear Stress Ratio =
Wood Grade ; No.2
Fv
180 psi
Section used for this span
Ft
575 psi
Density 32.21 pcf
Beam Bracing : Beam is Fully Braced against lateral -torsion buckling
52.93 psi
FB: Allowable = 1,170.00psi
D(0.176) Lr(0.16) - -- - ...- ----- -- -... ---......----------
---------_
----- --
i
Span = 6.50 ft
A • Ied�L'oads :,;: �:.;:�;:� >; �„�=�;(��? :;=.;�: ��::•:�f°;; �<..:.,,1,.:>.:�f��:
Service loads entered. Load Factors will be applied for calculations.
Uniform Load : D = 0.0220, Lr = 0.020 ksf, Tributary Width = 8.0 ft, (Roof Loads)
;Maximum Bending Stress Ratio = 0.5941 Maximum Shear Stress Ratio =
0.294 :1
Section used for this span 4x8
Section used for this span
4x8
i fb : Actual = 694.49psi
fv : Actual =
52.93 psi
FB: Allowable = 1,170.00psi
Fv : Allowable =
180.00 psi
Load Combination +D+Lr+H
Load Combination
+D+Lr+H
Location of maximum on span = 3.250ft
Location of maximum on span =
5.915 ft
Span #where maximum occurs = Span # 1
Span #where maximum occurs =
Span # 1
Maximum Deflection
Max Downward L+Lr+S Deflection 0.036 in Ratio=
2141
Max Upward L+Lr+S Deflection 0.000 in Ratio=
0 <360
Max Downward Total Deflection 0.076 in Ratio=
1019
i Max Upward Total Deflection 0:000 in Ratio=
0 <180
_..._... ._._......--,_..... ....... _.__...._......... _ .... - ..... _................... . ----- --- =
.. �y..'4` �. .;�. a�p{:d s-• s5}c:Y {$..' .- l �'@TT76t
Maziirium�Forces &�8tresses-for Load Com6inafions
- ----- --... ......
__._._...._.._._.._...._...----
........ __.....--
Load Combination Max Stress Ratios
Summary of Moment Values
Summary of Shear Values
Segment Length Span # M V C d C FIV C r C m
C t Mactual fb-design Fb-allow
Vactual
fv-design Fv-allow
+D'
Length = 6.50 It 1 0.311 0.154 1.000 1.300 1.000 1.000
1.000 0.93 363.78 1,170.00
0.47
27.73 180.00
+D+Lr+H 1.300 1.000 1.000
1.000
Length = 6.50 ft 1 0.594 0.294 1.000 1.300 1.000 1.000
1.000 1.77 694.49 1,170.00
0.90
52.93 180.00
+D+0.750Lr+0.750L+H 1.300 1.000 1.000
1.000
Length = 6.50 ft 1 0.523 0.259 1.000 1.300 1.000 1.000
1.000 1.56 611.81 1,170.00
0.79
46.63 180.00
+D+0.750Lr+0.750L+0.750W+H 1.300 1.000 1.000
1.000
Length = 6.50 ft 1 0.523 0.259 1.000 1.300 1.000 1.000
1.000 1.56 611.81 1,170.00
0.79
46.63 180.00
+D40.750Lr+0.750L+0.5250E+H 1.300 1.000 1.000
1.000
Length = 6.50 ft 1 0.523 0,259 1.000 1.300 1.000 1.000
1.000 1.56 611.81 1,170.00
0.79
46.63 180.00
�' � Overall MazimumtDeflectrons Unfacto�ed"Loads,;��_,,;� ,.•
���. ,;,
Load Combination Span Max. " " Def! Location in Span
Load Combination
Max. "+" Defl
Location in Span
0.0765 3.283
TZ
You can changes this area
using the 'Settings' menu item
and then using the 'Printing &
Title Block' selection.
Title: Job #
Dsgnr:
Project Desc.:
Project Notes :
Values in KIPS
• '� .. �: :,=
Description : CB -1- (E) 2 -Car Garage
klfIv
Support notation :Far left is #1
PP
A
Load Combination
Support 1
Support 2
Overall MAXimum
1.092
1.092
D Only
0.572
0.572
Lr Only
0.520
0.520
D+Lr
1.092
1.092
klfIv
9F®RTE 4' MEMBER REPORT Level, CB -2 -Ceiling Beam
1 piece(s) 3 1/2" x, 9 1/4" 2AE Parallam@ PSL
Overall Length: 11'7"
0
g gg& wmgg_
All Dimensions Are Horizontal; Drawing Is Conceptual
114 �. I
R �_K"iom
I-
91 -
11W
t ". � 1,: 1. , .. _� 1 biaEo-*n...attern)t- ..
member Reaction (lbs)
& 3464 @ 2"
9188
Passed (38%)
1.0 D + 1.0 Lr (AJI Spans)
FShear (lbs)
2829 @ 1'3/4"
7824
Passed (36%)
1.25 1.0 D + 1.0 Lr (All Spans)
Moment (R -lbs)
9462 @ 5'9 1/2"
15519
Passed (61%)
1.25 1.0 D + 1.0 Lr (All Spans)
Live Load Defl. (in)
0.234 @ 5'9 1/2"
0.375
Passed (L/576)
1.0 D + 1.0 Lr (All Spans)
Total Load Defl. (in)
0.501 @ 5'9 1/2"
0.563
Passed (L/270)
1.0 D + 1.0 Lr (AJI Spans)
Deflection criteria: U. (1.1360) and TL (L/240).
Bracing (Lu): All compression edges (top and bottom) must be braced at 11'7" o/c unless detailed otherwise. Proper attachment and positioning of lateral
bracing is required to achieve member stability.
R �101F_Nl� 01'.11-30i
wl
1 - Column - DF 3.50" 3.50" 1.50" 1842 1622 3464 Blocking
2 - Column - DF 3.50' 3.50' 1.50' 1842 1622 3464 Blocking
xiang renis are assumes to carry no ioaas applied alrecuy above tnem and the tull load is applied to the member being ciesignea.
Ow
Im"
... .. . .. ...
... . .. .. . . ...... . .. .....................
Ben Phan
LOa Is :1 Q no
_0
M �0 90
� --
. . . . . . .
law
1 - Uniform(PSF) 0to11'7'
14' 22.0
20.0
Roof
(N) Entry
Met FRIAMISIONS,
.;Weyefiaeuser(Notes� „4< AIM0,
Weyerhaeuser warrants that the sizing of Its products will be in accordance with Weyerhaeuser product design criteria and published design values.
Weyerhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature for Installation details.
(www.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software is not Intended to
circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer Is responsible to
assure that this calculation is compatible with the overall project Products manufactured at Weyerhaeuser facilities are third -party certified to sustainable
forestry standards.
The product application, input design loads, dimensions and support Information have been provided by Forte Software Operator
Mitial
... .. . .. ...
... . .. .. . . ...... . .. .....................
Ben Phan
VP Home
(714) 251-4537
ben_phan@yahoo.com
PASSED
System :Roof
Member Type : Flush Beam
Building Use : Residential
Building Code : IBC
Design Methodology: ASD
Member Pitch: 0/12
SUSTAINABLE FORESTRY INITIATIVE
9/2/2012 2:20:55 PM
Forte 0.5, Design Engine: V5.5.3.2
Page 1 all. 1
UNIFORM AND POINT LOAD ON CONTINUOUS FOOTING
Footing Width (FW) =
12 in
Soil Density =
110 pcf
Footing Depth (FD) =
12 in
Concrete Density =
150 pcf
Soil Bearing (SB) =
1,500 psf
Inc. Width (IW) =
0 psf
Max. Soil Bearing =
1,500 psf
Inc. Depth (ID) =
0 psf
Plain Concrete Design:
F'c = 2,500 psi
Tension Fb = 80 psi
Procedures:
Fsoil = ((D-FD)/12*ID)+SB
F'soil = Fsoil-(D/12*(150-110))
w = W*F'soil/12
M = Fb*W*d^2/12"/6
L= (2*M/w)"1 /2
Pmax = 2*L*w
W (")
D (")
Fsoil (psf)
F'soil (psf)
w (#/ft)
M ('#)
L (ft)
Pmax #
12
x
12
1,500
1 460
1 460
1,920
1.62
4 73
15
x
12
1,500
1,460
11825
2,400
1.62
19
18
x
12
1,500
1,460
2,190
2,880
1.62
7 103
21
x
12
1,500
1,460
2,555
3,360
1.62
8,287
24
x
12
1,500
1,460
2,920
3,840
1.62
9,471
12
x
15
1,500
1,450
1 450
3,000
2.03
5 899
15
x
15
1,500
1,450
1, 813
3,750
2.03
7 374
18
x
15
1,500
1,450
2,175
4,500
2.03
8,849
21
x
15
1,500
1,450
2,538
5,250
2.03
10,3241
24
x
15
1,500
1,450
2,900
6,000
2.03
11,798
12
x
18
1,500
1,000
1,000
4,320
2.94
5,879
15
x
18
1,500
1,000
1,250
5,400
2.94
7,348
18
x
18
1,500
1,()00
115-0-0-
6,480
2.94
8 818
21
x
18
1,500
1,000
1,750
7,560
2.94
10,288
24
x
18
1,500
1,000
2,000
8,640
2.94
11,758
12
x
21
1,500
1,000
1,000
5,880
3.43
6,859
15
x
21
1,500
1 000
1 250
7 350
3.43
8,573
18
x
21
1,500
1,000
1,500
8,820
3.43
10,2881
21
x
21
1 5001.
1 0001.
1,750
10,290
3.43
12,002
24
x
21
1,500
1,000
2,000
11,760
3.43
13,717
12
x
24
1,500
1,000
1,000
7,680
3.92
7,838
15
x
24
1,500
1,000
1,250
9,600
3.92
9,798
18
x
24
15001.
1000
1500
11520
3.92
11,758
21
x
24
1,500
1,0001
1,7501
13,4401
3.921
13,717
24
x
24
1 1,500
1,0001
2,0001
15,3601
3.921
15,677
30
x
24
1 1,500
1,0001
2,5001
19,2001
3.921
19,596
Note: For point loads on footings with uniform loads, take the difference
between "w" above and the uniform load, then multiply by two and by
"L" above for P'max.
0
STRUCTURAL CALCULATIONS
Project Location:
Owner:
Prepared by:
Building Code Edition
79760 Citrus
La Quinta, CA 92253
Bryan Residence (Duc
New1-§tot C ias t Unit 2
Ben Phan, P.E.. (714) 251-4537
11541 Elizabeth Street
Garden Grove, CA 92840
2010 California Building Code
Concrete: f , = 2,500 psi @ 28 days
Ready -mixed concrete per ASTM C94
Concrete aggregates per ASTM C33
Cement ASMT C 150 Type II or V u.n.o
Foundation:
Structural Steel:
Pipe Columns:
Welding:
Minimum allowable soil bearing pressure =
Date: 8/30/2012
,- Q�OFESSJp
EN PNq
W No.57550
(* Exp. 12/31/
`V CIVI1.
CITY L� �'dilqTA
BUILDING & DEPT,
APPC_`;its
FOR COiNS��= .,),R ;, BION
,500 psf.
ASTM A-36, ASTM a-92
ASTM A-53, Grade B -
Electric arc process by certified welders in approved licensed fabrication Z �� �''
shop.
Concrete Masonry: ASTM C90, Grade N, f,, = 1,500 psi
Grout: Type M, 1:3:1/4 mix; Cement: Sand: Hydrated Lime or Lime Putty.
1:3:2 mix; Cement: Sand: 3/8" pea gravel; f r = 2,000 psi.
Reinforcing Steel: Deformed bars per ASTM A915; Grade 40 for #4 and smaller; Grade 60
for #5 and larger.
Wood Framing:
WCLIB or WWPA Grading Rules Agency
Studs, joists, rafters:
Douglas Fir -Larch #2
Beams and posts:
Douglas Fir -Larch #1
Glulam:
24F -V4 or 24F -V8 DF/DF (cantilevered)
Parallam 2.0 PSL:
ICC ESR -1387
Microllam LVL:
ICC ESR -1387
Plywood:
4 or more plies, Structural I or CD, CC Structural Panel per PS -1-95
TJ 1:
ICC ESR -1153 (ILevel)
All information shown on plans relative to existing conditions are provided as the best present knowledge
but without guarantee of accuracy. Where actual conditions conflict with the plans, they shall be reported
to the Engineer so that modifications may be made in writing. Modifications of plans and details shall not
be made without written approval of the Engineer. By accepting this calculations or report, the Engineer
shall not be held liable for discrepancies not brought up to the attention of the Engineer. The design
analysis and calculations were done in accordance with generally accepted engineering principles and
practice.
Rpq vim. iA W ED
OCT 18 2012
By: i 1- 7
t,
0
ROOF DEAD LOAD:
ROOF TYPE I
T-.iI'es-:Ro'ofin'.'
q',
--11:10 0
PSF
She6f* ins lation':.-,,,
1:5;PSF
PSF
2X 67 OC 4
:0
PSF
2X 6.J@.- 16"OC
17.0
PSF
x...:0'3
..2.2
PSF
MPE:-"-.
. . ....... ... .... ... . ..
PSF
PSF
PSF
MISCELLANEOUS MISCELL
L :Y;1:61
PSF
SUB -TOTAL =
20.3
PSF
SLOPE CORRECTION "X:12"
1.08
PSF
MISCELLANEOUS
PSF
PSF
ROOF DEAD LOAD: =
22.0
PSF
ROOF SNOW LOAD:
.0.0
PSF
ROOF LIVE LOAD:
.....20.0,1
PSF
TOTAL ROOF LOAD:
.;-42.01
PSF
EXTERIOR WALL LOADS:
TOTAL EXTERIOR WALL:
EAR WALL LOADS:
HING
6Uis
NTERIOR WALL:
GEOTECHNICAL ENGINEER:
BASIC BEARING PRESSURE
PADS & CONT. FNDT. = Qa
INCREASE FOR WIDTH
INCREASE FOR DEPTH
MAX. SOIL PRESSURE - Oa
ALLOW PASSIVE PRESSURE
ALLOW SOIL FRICTION
'744 PSF
10* PSF
16 PSF
0:5 PSF
7.0 PSF
PSF
PSF
%
PSF
--'-2.
PSF
0'4
PSF
-2j;
PSF
7 -
l.0
PSF
17.0
PSF
'744 PSF
10* PSF
16 PSF
0:5 PSF
7.0 PSF
RR
RR
RR
ci
ci
ci
ci
ci
ROOF DEAD LOAD:
ROOF TYPE 2
PSF
%
. .... ...... 00
:00
%
PSF
PCF
PSF
x...:0'3
RR
RR
RR
ci
ci
ci
ci
ci
ROOF DEAD LOAD:
ROOF TYPE 2
PSF
PSF
. . ...... .
o
PSF
'o
PSF
. . ....... ... .... ... . ..
PSF
. ... ..0
PSF
0
PSF
.. ...... . .. .. .....
PSF
SUB -TOTAL
=
0.0
PSF
SLOPE CORRECTION "X:12" JA�'000]'
F777M
1:00
PSF
MISCELLANEOUS
PSF
ROOF DEAD LOAD
0.0
PSF
ROOF SNOW LOAD:
t,:;: .. ..
PSF
ROOF LIVE LOAD:
.20.0
PSF
TOTAL ROOF LOAD:
710:01
PSF
FIRST FLOOR LOADS
PSF
UE
6"6 PSF
Ao PSF
DECK DEAD LOAD = 0.0 PSF
DECK LIVE LOAD PSF
DATE OF REPORT:
ISOLATED FOUNDATIONS = PSF
. EQUIV. FLUID PRESSURE
PCF
zm
Latitude' = 33 6718 North
1%.1 West
Longtitude = 146 114
Occupancy Category =
Important Factor (1) 1 00 (Table 1.5-2)
Shear Panels Timber Frames
R
C,
P=
0
S,
7 14 0&-
.5 0.;
Site Class
Use Simplified Alternative Structural Design
F
V = (F-Ss)/R
V = 0.20 Shear Panels
S.
S,
Site Class
F.
F„
SD
Sms
= 1.500
9
S.,
= 0.900
g
Sd.
= 1.000
g D
SO
0.600
9 D
F
V
= (F-Ss)/R
V
= 0.67
Timber Frames
FT
DESIGN WIND VELOCITY M.) MPH Roof Height = 50
Vfm = ATJ*, MPH Wall Height (2ndt floor) = 00 FT
Occupancy Category 11. Wall Height (1st floor) _9.0,. N FT
Important Factor (1)(Table 15 14.0 FT
. -2) Total Height =
Exposure Category
Mean Roof Height = 11.5 FT
Adjustment Coefficient (k) (Figure 28.6.1) Roof Angle = 22.6 o
Kt 1:00_..._:°="
Edea
1.7.
ps KztPs30 Building Width 3.0 FT
Building Length = FT
'Eave Height =
FT
Mean Roof Height 5 i?;'="; 4.6 FT
a = 3.0 FT
2a = 6.0 FT
MWFRS Design Wind Pressure P1130 (136f)
Horizontal Loads
Roof End Zone Int. Zone
Load Direction Angle A -:::I B C D # of SW Lines
Transverse (Case B) 0.0 19.2 0.0 12.7 0.0 3
Longitudinal (Case A) 22.6 26.6 -7.0 17.7 -3.9 2
.2a = 6.0 FT
Roof Horizontal Load l = I 766 LBS (Transverse)
Roof Horizontal Load l = I 1,456 LBS (Longitudinal)
y
LOAD:
Roof weights
Roof DL (horiz. Proj.) _
Ext. Wall DL =
Int. Shear Wall DL =
Wall Height (1 st floor) _
Roof Height =
Total height, hn =
N -S Length =
E -W Length =
Roof Area =
Tributary Ext. Walls to Roof =
Tributary Int. Shear Walls to Roof =
Roof Weight =
Tributary Ext. Walls to Roof =
Tributary Int. Shear Walls to Roof =
W..f =
Total DL (W) _
Total Base Shear M =
Design Base Shear:
Period: T=Ct(hn)34 = 0.02*(hn)314 =
Vertical distributions of seismic forces:
Shear
Diaphragm
E -W
NS
E -W
NS
22.0
22.0
22.0
22.0
17.0
17.0
17.0
17.0
7.0
7.0
7.0
7.0
9.0
9.0
9.0
9.0
5.0
5.0
5.0
5.0
14.0
14.0
14.0
14.0
26.0
26.0
17.5
17.5
455.0
455.0
455.0
455.0
87.0
87.0
52.0
35.0
17.5
26.0
17.5
26.0
10,006
10,006
10,006
10,006
6,656
6,656
3,978
2,678
551
819
551
819
17,213
17,481
14,535
13,503
17.213
17,481
14,535
13,503
3,443
3 443
0.145 sec
E -W N -S
V= 0.20 0.20 W
V= 3,443 3,443 lbs
Level Wx (lb) Area (ft) Fx NS (lb)
Fpx N -S 0.2 S,, W Use (lb) fx NS fpx N -S
(lb) Ib (psf) sf)
Roof 17,213 455 3,443
3,443 3,443 3,443 7.57 7.57
1st Floor -
E 17,213 3,443
3,443
Fx E -W (lb) Fx E -W wx 0.2 Ss W Use (lb) fx E -W fpx E -W
ib (Psf) (Psf)
3,443 3,443 3,443 3,443 7.57 7.57
3,443 3,443
psf
plf
plf
ft
ft
ft
sq.ft.
ft
ft
lbs.
lbs.
lbs.
lbs.
bs
bs
Longitudinal Direction:
Shear Walls (Vertical):
High Roof Level:
D + EMA (Eq. 12-9) (no increase)
E = p Eh Use
P = .1.30 1.30
Longitudinal Shear Walls
Wall (grid line) EFabove (Ib) EFx (Ib)
1 1 to 4
2
fx s
7.57 7.57
7.57
Spacing ft
17.5
1 - 1,721
Depth ft
26
26
Net D b, ft
20.0
14.5
Vseismio (Ib)
1,721
1,721
V111 d (Ib)
1,456
1,456
Vgovems (lb)
1,721
1,721
Vgovems(P >)
86
119
Vfaaor 41f)
86
119
ufactored*1.0 (00
86
119
Min. D ft
5.0
14.5
Mo (Ib -ft)
3,873
15,492
wroof (plo
192
192
wwaii (Ply
153
153
0.6 -MR (Ib -ft)
2,591
21,788
Tie -down 6"
YES
NO
Tie -down Ib
285
N/A
Tie -down
HDU2&SSTB16
N/A
Drag Location ft
N/A
14.5
Drag Force Ib
960
Drag Tie
ST6236
Tail (Ib)
3,845
Comp. Post
2-2x4
2-2x4
D + EMA (Eq. 12-9) (no increase)
E = p Eh Use
P = .1.30 1.30
Longitudinal Shear Walls
Wall (grid line) EFabove (Ib) EFx (Ib)
From v=EN.4b Wall Length
Shear #
Sheathing 1 o
Allowable Shear
L ft
Ib 010 (n)
2 sides
(0)
1 - 1,721
1,721 86 1 1 1 20.0
1
280
2 - 1,721
1,721 119 1 1 1 14.5
1
280
Diaphragm (horizontal):
Roof Level:
W,�-
1 1 to 2 2
fp.(Psf)
7.57 7.57 7.57
L ft
17.5
Depth ft
26 26
Area ft2
455
f.ismic(p 0
66
vwm(plf)
28
Governs
Seis.
Vgovemed(plo
66
Roof Panel
1/2" CDX
Shear
270
Edge Nail
8d @ 6",6",12"
W,�-
Transverse Direction:
Shear Walls (Vertical):
Roof Level
D + E/1.4 (Eq. 12-9) (no increase)
E= p Eh Use
P= 1.30 1.30
Transverse Shear Walls
Wall (grid line)
A AtoB
B
BtoC C
fx(pso
7.57 7.57
7.57
7.57 7.57
Spacing ft
14.5
960
11.5
Depth ft
17.5
17.5
14.42
Net D b, ft
12.5
7.25
14.4
Vseismic (Ib)
960
1,721
627
Vw;„ d (Ib)
766
766
766
Vgovems (Ib)
960
1,721 1
766
Spec. Wall Ib
Edge Nail
8d @ 6",6",12"
Perf. S.W.
Wall TyRe
See BP7
Vgovems P
77
237
Vf.d..d(Plf)
77
237
VfWo.d*1.0 (A
77
237
Min. D ft
6.3
7.25
Mo (Ib -ft)
4,320
15,492
Wroof (plf)
159
159
W,,,,a11 (A
153
153
0.6 -MR (Ib -ft)
3,661
4,927
Tie -down 6"
YES
YES
Tie -down Ib
115
1,565
Tie -down
HDU2&SSTB16
HDU2&SSTB16
HD02&SSTB16
Com P. Post
2-2x4
2-2x4
2-2x4
D + E/1.4 (Eq. 12-9) (no increase)
E= p Eh Use
P= 1.30 1.30
Transverse Shear Walls
Wall (grid line)
EFabove (Ib) £Fx (Ib)
F,o„i
Ib
v=E/1.4b
(plf)
Shear#
Wall Length
(ft)
Sheathing 1
or 2 sides
Allowable
Shear (plf)
A
- 960
960
77
1
12.5
1
280
B
- 1,721
1,721
237
1
7.3
1
280
C
- 766 1
766
Roof Panel
1
14.4
1 1 1
280
Diaphragm (horizontal):
Roof Level:
A AtoB B
BtoC C
fp.(psf)
7.57 7.57 7.57
7.57 7.57
L ft
14.5
11.5
Depth ft
17.5 17.5
14.42
Area (ft)
254
166
fseismic(A
55
44
vwind(Plfl
22
27
Governs
Seis.
Seis.
Vgovemed(Plfl
1 551
1 44
Roof Panel
112" CDX
1/2" CDX
Shear
270
270
Edge Nail
8d @ 6",6",12"
8d @ 6",6",12"
r,.
Perforated Shear Wall Design
Location: Unit 2 -Grid Line 'C'
Calculations:
Wall full height (H) = 9 ft
Max. opening height = 6.67 ft
Max. openg height ratio = 0.74
Total Wall Length (L) = 14.42 ft
Total Perforated Segments (EL) = 7.66 ft
Full -height Sheathing Ratio = 0.53
Adjust. Factor, Co = 0.6 (Table 2305.3.8.2)
Vwail = 766 lbs (From BP5)
V = Vwall/(Co*ELi)
V = 167 plf
Use: Type 1 Shearwall
Vail = 280 plf OK
Uplift Anchorage at Shearwall .Ends:
R = Vwaii*h/(Co*Y-Li)
R = 1,499 lbs
Use: HDU2 Hold-down
Tail = 3,075 plf OK
Longest Perf. Segment (Li,max) = 3.83 ft
drag = V* i,max
Tdrag = 638 lbs
Use: CS16 Cont. Strap
Tail = 1,705 plf OK
?97
You can changes this area
using the."Settings° menu item
and then using the "Printing &
- Title Block" selection.
Title:
Dsgnr:
Project Desc.:
Project Notes :
Job #
Description: RR -1 L 24° OG
Material Properties
Calculations per NDS 2005, IBC 2009, CBC 2010, ASCE 7-05
Analysis Method: Allowable Stress Design
Fb - Tension
900.0 psi
E: Modulus of Elasticity
Load Combination 2006 IBC & ASCE 7-05
Fb - Compr
900.0 psi
Ebend- xx 1,600.Oksi
= 0.581: 1 Maximum Shear Stress Ratio =
Fc - Prll
1,350.0 psi
Eminbend - xx 580.0 ksi
Wood Species : Douglas Fir - Larch
Fc - Perp
625.0 psi
= 680.33psi
Wood Grade ; No.2
Fv
180.0 psi
= 1,170.00psi
Fv : Allowable =
Ft
575.0 psi
Density 32.210pcf
Beam Bracing : Beam is Fully Braced against lateral
-torsion buckling
Location of maximum on span
= 3.500ft
Location of maximum on span =
D(0.03) Lr(0.04)
Span # where maximum occurs
= Span # 1
Span # where maximum occurs =
Span # 1
Span =7.0ft
Maximum Deflection
Max Downward L+Lr+S Deflection
Service loads entered. Load Factors will be applied for calculations.
Uniform Load : D = 0.0150, Lr = 0.020 ksf, Tributary Width = 2.0 ft, (Roof Loads)
;'DESLGNSUMMA'R�Ys ��=��,�_�:�'�
S'
� �:� :•x
Max Upward L+Lr+S Deflection
:Maximum Bending Stress Ratio
= 0.581: 1 Maximum Shear Stress Ratio =
0.215: 1
Section used for this span
2x6
Section used for this span
2x6
fb : Actual
= 680.33psi
fv : Actual
38.75 psi
FB: Allowable
= 1,170.00psi
Fv : Allowable =
180.00 psi
Load Combination
+D+Lr+H
Load Combination
+D+Lr+H
Location of maximum on span
= 3.500ft
Location of maximum on span =
6.545 ft
Span # where maximum occurs
= Span # 1
Span # where maximum occurs =
Span # 1
Maximum Deflection
Max Downward L+Lr+S Deflection
0.065 in Ratio=
1283
Max Upward L+Lr+S Deflection
0.000 in Ratio=
0 <360
Max Downward Total Deflection
0.115 in Ratio=
733
Max Upward Total Deflection
0.000 in Ratio= .
0 <180
Maximum:Forces;&�$tresses..:for Load Comtiinatlons;f
Load Combination Max Stress Ratios
Summary of Moment Values
_
Summary of Shear Values
Segment Length Span # M V C d
C FN C r C m
C t Mactual
firdesign
Fb-allow
Vactual
fv-design Fv-allow
Length = 7.0 ft 1 - 0.249 0.092 1.000
1.300 1.000 1.000
1.000
0.18
291.57
1,170.00
0.09
16.61 180.00
+D+Lr+H
1.300 1.000 1.000
1.000
Length = 7.0 ft 1 0.581 0.215 1.000
1.300 1.000 1.000
1.000
0.43
680.33
1,170.00
0.21
38.75 180.00
+0+0.750Lr+0.750L+H
1.300 1.000 1.000
1.000
Length = 7.0 ft 1 0.498 0.185 1.000
1.300 1.000 1.000
1.000
0.37
583.14
1,170.00
0.18
33.22 180.00
+D+0.750Lr+0.750L+0.750W+H
1.300 1.000 1.000
1.000
Length = 7.0 It 1 0.498 0.185 1.000
1.300 1.000 1.000
1.000
0.37
583.14
1,170.00
0.18
33.22 180.00
+0+0.750Lr+0.750L+0.5250E+H
1.300 1.000 1.000
1.000
Length = 7.0 ft 1 0.498 0.185 1.000
1.300 1.000 1.000
1.000
0.37
583.14
1,170.00
0.18
33.22 180.00
2':Gt.�•�•::r �4-• f'a% ,xi�;,..�,�,1,x $ A�"1c"M`:§,
_
Overall Maximum;beflecttoris Unfactore_d;L✓✓gads _ ;a���YY�dN
.
Load Combination Span Max.' ' Defl
Location in Span
Load Combination.
Max. "+" Defl
_
Location in Span
D+Lr 1 0.1146
3.535
0.0000
0.000
You can changes this area
using the "Settings" menu item
and then using the "Printing &
Title Block' selection.
Title :
Dsgnr:
Project Desc.:
Project Notes :
Job #
Description : . CJ -1 L 24" 0C
Material Properties Calculations per NDS 2005, IBC 2009, CBC 2010, ASCE 7 -06. -
Analysis Method: Allowable Stress Design
Fb - Tension
900.0 psi
E: Modulus of Elasticity
Load Combination 2006IBC; &ASCE ?-05
Fb -Compr
900.0 psi
Ebend-xx 1,600.Oksi
-
Fc - Prll
1,350.0 psi
Eminbend - xx 580.0 ksi
Wood Species :Douglas Fir- Larch
Fc - Perp
625.0 psi
0.204: 1
Wood Grade : NO -2
Fw
180.0 psi
2x4
Ft
575.0 psi
Density 32.210pcf
Beam Bracing : Beam is Fully Braced against lateral -torsion buckling
_ _ ... ------.._....__...._......_...-----... --...-.....__..__...----..__._...----.--_..._.....__.....__..__..............
36.80 psi
_.....
1,350.00psi
D(0.02) Lr(0.02)
180.00 psi
Load Combination
+D+Lr+H
Load Combination
2x4 ��
Span =7.0ft
Applied L08ds i" ;r`
`S _
Service loads entered. Load Factors will be applied for calculations.
Uniform Load : D = 0.010, Lr = 0.010 ksf, Tributary Width = 2.0 ft, (Ceiling Loads)
.DESIGN�SUMMARY' "��
-
�
•
iMaximum Bending Stress Ratio =
0.711: 1 Maximum Shear Stress Ratio =
0.204: 1
Section used for this span
2x4
Section used for this span
2x4
fb : Actual =
960.00psi
fv : Actual =
36.80 psi
FB: Allowable =
1,350.00psi
Fv : Allowable =
180.00 psi
Load Combination
+D+Lr+H
Load Combination
+D+Lr+H
Location of maximum on span =
3.500ft
Location of maximum on span =
6.720 It
Span # where maximum occurs =
Span # 1
Span # where maximum occurs =
Span # 1
Maximum Deflection
Max Downward L+Lr+S Deflection
0.127 in Ratio=
661
Max Upward L+Lr+S Deflection
0.000 in Ratio=
0 <360
Max Downward Total Deflection
0.254 in Ratio=
330
Max Upward Total Deflection
0.000 in Ratio=
0 <180
„Maxmurn Forces:& Stresses for Load Combinations;
Load Combination Max Stress Ratios
Summary of Moment Values
Summary of Shear Values
Segment Length Span # M V
C d C FIV C r C m
C t Mactual fb-design Fb-allow
Vactual
fv-design Fv-allow
Length = 7.0 ft 1 0.356 0.102
1.000 1.500 1.000 1.000
1.000 0.12 480.00 1,350.00
0.06
18.40 180.00
+D+Lr+H
1.500 1.000 1.000
1.000
Length = 7.0 ft 1 0.711 0.204
1.000 1.500 1.000 1.000
1.000 0.25 960.00 1,350.00
0.13
36.80 180.00
+D+0.750Lr+0.750L+H
1.500 1.000 1.000
1.000
Length = 7.0 ft 1 0.622 0.179
1.000 1.500 1.000 1.000
1.000 0.21 840.00 1,350.00
0.11
32.20 180.00
+D+0.750Lr+0.750L+0.750W+H
1.500 1.000 1.000
1.000
Length = 7.0 ft 1 0.622 0.179
1.000 1.500 1.000 1.000
1.000 0.21 840.00 1,350.00
0.11
32.20 180.00
+0+0.750Lr+0.750L+0.5250E+H
1.500 1.000 1.000
1.000
Length = 7.0 ft 1 0.622 0.179
1.000 1.500 1.000 1.000
1.000 0.21 840.00 1,350.00
0.11
32.20 180.00
'� Ov,erall Maxlmum�peflections�, Unfac_ tored,Loads a ���?`�'�
.
Load Combination Span Max.'-" Defl Location in Span
Load Combination
Max. "+" Defl
Location in Span
D+Lr 1
0.2540 3.535
0.0000
0.000
y9
Job #
Description : CJ -2 @ 24" OC
Material Properties
Title
You can changes this area
Dsgnr:
using the 'Settings' menu item.
Project Desc.:
and then using the "Printing &
"
Project Notes:
Title Block' selection.
Ebend- xx 1,600.0 ksi
Job #
Description : CJ -2 @ 24" OC
Material Properties
Calculations per NDS 2005, IBC 2009, CBC 2010, ASCE 7-05
Analysis Method: Allowable Stress Design
Fb - Tension
900.0 psi
E: Modulus of Elasticity
Load Combination 2006 IBC & ASCE 7-05
Fb - Compr
900.0 psi
Ebend- xx 1,600.0 ksi
Fc - Pdl
1,350.0 psi -
Eminbend - xx 580.Oksi
Wood Species : Douglas Fir - Larch
Fc - Perp
625.0 psi
Section used for this span
Wood Grade : No.2
Fv
180.0 psi
1,049.26psi
tv : Actual
Ft
575.0 psi
Density 32.210pcf
Beam Bracing : Beam is Fully Braced against lateral -torsion buckling
.._.._........ .... -'---._.._.. - - - ..._...._.._.__....-...__....._ ....----._.._.._....---_.........._._.._
_.....-'--- ._.......'
--..._...-._.._..... - ' - -- .._._..- - "--'---- ._... .
180.00 psi
-
D(0.02) Lr(0.02)
+D+Lr+H
Load Combination
+D+Lr+H
Location of maximum on span =
5.750ft
Span = 11.50 It
A .plied-Loads'=trai �r~ti^'.' ``,
Service loads entered. Load Factors will be applied for calculations.
Uniform Load : D = 0.010, Lr = 0.010 ksf, Tributary Width = 2.0 ft, (Ceilinq Loads)
;.DESfGNSUMMARYL�'':..°;;
,Maximum Bending Stress Ratio =
0.897.1 Maximum Shear Stress Ratio =
0.216: 1
Section used for this span
2x6
Section used for this span
2x6
fb : Actual
1,049.26psi
tv : Actual
38.89 psi
FB: Allowable
1,170.00psi
Fv : Allowable
180.00 psi
`Load Combination
+D+Lr+H
Load Combination
+D+Lr+H
Location of maximum on span =
5.750ft
Location of maximum on span =
0.000 ft
Span # where maximum occurs =
Span # 1
Span # where maximum occurs =
Span # 1
Maximum Deflection
Max Downward L+Lr+S Deflection
0.238 in Ratio=
578
Max Upward L+Lr+S Deflection
0.000 in Ratio=
0 <360
i Max Downward Total Deflection
0.477 in Ratio=
289
Max Upward Total Deflection
0.000 in Ratio=
0 <180
i
:Maximum F:orces:E�rStresses, r LoadivCom_ brnatlons
Load Combination Max Stress Ratios
Summary of Moment Values
Summary of Shear Values
Segment Length Span # M V
C d C FIV C r C m
C t Mactual fb-design Fb-allow
Vachial
tv-design Fv-allow
Length =11.50 ft 1 0.448 0.108
1.000 1.300 1.000 1.000
1.000 0.33 524.63 1,170.00
0.11
19.45.' 180.00
+D+Lr+H
1.300 1.000 1.000
1.000
Length =11.50 ft 1 0.897 0.216
1.000 1.300 1.000 1.000
1.000 0.66 1,049.26 1,170.00
0.21
38.89 180.00
+0+0.750Lr+0.750L+H,
1.300 1.000 1.000
1.000
Length =11.50 ft 1 0.785 0.189
1.000 1.300 1.000 1.000
1.000 0.58 918.10 1,170.00
0.19
34.03 180.00
+D+0.750Lr0.750L+0.750W+H
1.300 1.000 1.000
1.000
Length =11.50 ft 1 0.785 0.189
1.000 1.300 1.000 1.000
1.000 0.58 9.18.10 1,170.00
0.19
34.03 180.00
+0+0.750Lr+0.750L+0.5250E+H
1.300 1.000 1.000
1.000.
Length =11.50 ft 1 0.785 0.189
1.000 1.300 1.000 1.000
1.000 0.58 918.10 1,170.00
0.19
34.03 180.00
OveralLM Kill Deflections Unfactored,Loatls „x �
Load Combination Span Max.
"-" Defl Location in Span
Load Combination
Max. "+" Dell
Location in Span
D+Lr 1
0.4768 5.808
0.0000
0.000
W10.
You can changes this area
using the "Settings' menu item
and then using the "Printing &
Title Block" selection.
Title : Job #
Dsgnr:
Project Desc.:
Project Notes :
uescnption : w -a L z4- vu
Material Properties
Calculations per NDS 2005, IBC 2009, CBC 2010, ASCE 7-05
Analysis Method: Allowable Stress Design
Fb - Tension
900.0 psi
E: Modulus of Elasticity
Load Combination 2006 IBC & ASCE 7-05
Fb- Compr
900.0 psi
Ebend-xx 1,600.Oksi
Fc - Pdl
1,350.0 psi
Eminbend - xx 580.0 ksi
Wood Species : Douglas Fir - Larch
Fc - Perp
625.0 psi
.
Wood Grade : No.2
Fv
180.0 psi
;Maximum Bending Stress Ratio- =
0.7991 Maximum Shear Stress Ratio =
Ft
575.0 psi
Density 32.210pcf
Beam Bracing : Beam is Fully Braced against lateral -torsion buckling
Section used for this span
................_...-----.._-...._._....__._._..__.._._._._......---..._..... ._......-- -... - - -._ _..__...__...--....__...---- _---.._._..---._..__.._...- ......_.. - .._..._..... - - - - - ._ ....
i
D(0.02) Lr(0.02)
Span = 13.750 ft
:-AppliedLoads •., : r''>� .;;> = ` - ' ''_ ` ' ''
Service loads entered. Load Factors will be applied for calculations.
Uniform Load : D = 0.010, Lr = 0.010 ksf, Tributary Width = 2.0 ft, (Ceiling Loads)
DESIGN�SUMMAR,Y�� ��;`• -.'�:.,:�::'�",
..:.. ..
.
;Maximum Bending Stress Ratio- =
0.7991 Maximum Shear Stress Ratio =
6.194: 1
Section used for this span
2x8
Section used for this span
2x8
fb : Actual =
863.26psi
fv : Actual
34.90 psi
FB: Allowable =
1,080.00psi
Fv : Allowable
180.00 psi
Load Combination
+D+Lr+H
Load Combination
+D+Lr+H
Location of maximum on span =
6.875ft
Location of maximum on span =
0.000 ft
Span # where maximum occurs =
Span #.1
Span # where maximum occurs =
Span # 1
Maximum Deflection
Max Downward L+Lr+S Deflection
0.213 in Ratio=
775
Max Upward L+Lr+S Deflection -,
0.000 in Ratio=
0 <360
Max Downward Total Deflection
0.425 in Ratio=
387
Max Upward Total Deflection
i
0.000 in Ratio=
0 <180
s Mazi Nr 10 6inafi.oris<
-------------------
_
Load Combination Max Stress Ratios
Summary of Moment Values
Summary of Shear Values
Segment Length Span # M V
C d C FN C r C m
C t Mactual fo- design Fb-allow
Vactual
fv-design Fvallow
Length =13.750 ft 1 0.400 0.097
1.000 1.200 1.000 1.000
1.000 0.47 431.63 1,080.00
0.13
17.45 180.00
+O+Lr+H
1.200 1.000 1.000
1.000
Length =13.750 ft 1 0.799 0.194
1.000 1.200 1.000 1.000
1.000 0.95 863.26 1,080.00
0.25
34.90 180.00
+0+0.750Lr+0.750L+H
1.200 1.000 1.000
1.000
Length =13.750 ft 1 0.699 0.170
1.000 1.200 1.000 1.000
1.000 0.83 755.35 1,080.00
0.22
30.53 180.00
+0+0.750Lr+0.750L+0.750W+H
1.200 1.000 1.000
1.000
Length =13.750 ft 1 0.699 0.170
1.000 1.200 1.000 1.000
1.000 0.83 755.35 1,080.00
0.22
30.53 180.00
+0+0.750Lr+0.750L+0.5250E+H
1.200 1.000 1.000
1.000
Length =13.750 ft 1 0.699 6.170
1.000 1.200 1.000 1.000
1.000 0.83 755.35 1,080.00
0.22
30.53 180.00
Qverall Mazirnum Deflecpons-„`Unfactoced Loads
Load Combination Span Max. ' ' Dell Location in Span
Load Combination
Max. '+' Defl
Location in Span
D+Lr 1
0.4255 6.944
0.0000
0.000
tyll
You can changes this area
using the "Settings' menu item
and then using the 'Printing &
Title Block" selection,
Title :
Dsgnr.
Project Desc.:
Project Notes:
Job #
description: Hit -2 - Hip beam
Material Properties
calculations per NDS 2005, IBC 2009, CBC 2010, ASCE 7-05
Analysis Method: Allowable Stress Design
Fb - Tension
- 900.0 psi
E: Modulus of Elasticity
Load Combination 2006 IBC & ASCE 7-05
Fb - Compr
900.0 psi
Ebend- xx 1,600.Oksi
Location of maximum on span
Fc - Prll
1,350.0 psi
Eminbend - xx 580.0 ksi
Wood Species ; Douglas Fir - Larch
Fc - Perp
625.0 psi
0.170 in Ratio=
Wood Grade ; No.2
Fv
180.0 psi
Load Combination
Max Stress Ratios
Ft
575.0 psi
Density 32.210pcf
Beam Bracing : Beam is Fully Braced against lateral -torsion buckling '
Summary of Moment Values
2-2X8 ,.r
Span = 9.50 ft
"'�_` "' "' '• "_� " : Service loads entered. Load Factors will be applied for calculations.
PP
Load for Span Number 1
Varyinq Uniform Load : D(S,E) = 0.0150->0.0150, Lr(S,E) = 0.020-4.0 ksf, Extent = 0.0 ->> 9.50 ft, Trib Width=1.0->7.0 ft, (Roof Loads)
;Maximum Bending Stress Ratio
i
Section used for this span
fb : Actual
FB: Allowable
i Load Combination
Location of maximum on span
Span # where maximum occurs
Maximum Deflection
Max Downward L+Lr+S Deflection
Max Upward L+Lr+S Deflection
Max Downward Total Deflection
Max Upward Total Deflection
I
= 0.6781 Maximum Shear Stress Ratio
2_2x8
Section used for this span
= 732.08psi
fv : Actual
= 1,080.00psi
Fv:Allowable
+D+Lr+H
Load Combination
= 5.320ft
Location of maximum on span
= Span # 1
Span #where maximum occurs
0.097 in Ratio=
1175
0.000 in Ratio=
10 <360
0.170 in Ratio=
671
0.000 in Ratio=
0 <180
0.266 : 1
2-2x8
47.94 psi
180.00 psi
+D+Lr+H
8.930 ft
= Span # 1
�Mazimiim�F:occes;B�;,Stresses for:Load'Com6inatio_
_
v
ns
.
Load Combination
Max Stress Ratios
Summary of Moment Values
Summary of Shear Values
Segment Length Span #
M V
C d
C FN
C r
C m
C t
Madual
fb-design
Fb-allow
Vactual
tv-design Fv-allow
+D
Length = 9.50 ft 1
0.291 0.114
1.000
1.200
1.000
1.000
1.000
0.69
313.75
1,080.00
0.30
20.55 180.00
+D+Lr+H
1.200
1.000
1.000
1.000
Length = 9.50 It 1
0.678 0.266
1.000
1.200
1.000
1.000
1.000
1.60
732.08
1,080.00
0.70
47.94 180.00
+D+0.750Lr+0.750L+H
1.200
1.000
1.000
1.000
Length = 9.50 ft 1
0.581 0.228
1.000
1.200
1.000
1.000
1.000
1.37
627.50
1,080.00
0.60
41.10 180.00
+D+0.75OLr+0.750L+0.750W+H
1.200
1.000
1.000
1.000
Length = 9.50 ft 1
0.581 0.228
1.000
1.200
1.000
1.000
1.000
1.37
627.50
1,080.00
0.60
41.10 180.00
+D+0.750Lr+0.750L+0.5250E+H
1.200
1.000
1.000
1.000
Length = 9.50 It 1
0.581 0.228
1.000
1.2000
1.000
1.000
1.000
1.37
627.50
1,080.00
0.60
41.10 180.00
Ove�alL Maximum DeflecfionsT UnfactoredLoads = , � ,,, .� _ s.«.
_
Load Combination
Span Max.
*2 Defl
Location in Span
Load Combination
Max. '+" Dell
Location in Span
D+Lr
1
0.1698
4.893
0.0000
0.000
You can changes this area
using the "Settings' menu item
and then using the "Printing &
Title Block' selection.
Title : Job #
Dsgnr:
Project Desc.:
Project Notes :
Description : HIP -2 - Hip Beam
Support notation : Far left is #1 Values in KIPS
Load Combination Support 1 Support 2
Overall MAXimum 0.499 0.831
D Only 0.214 0.356
Lr Only 0.285 0.475
Dir 0.499 < -2-
,?
qq
i9FORTE MEMBER REPORT Level, CB -1- Ceiling Beam
1 piece(s) 3 1/2" x 9 1/4" 2.0E Parallam@ PSL
Overall Length: 12' 11"
+
r -.1 NEW =";�% 4SIMMIN M. lmmw0
116'
All Dimensions Are Horizontal; Drawing Is Conceptual
Desi frR alts`
cew I
VQ
abiw
Member Reaction (lbs) -k2855
@'31' 11"
9188
Passed (31%)
1.0 D + 1.0 Lr (All Spans)
Shear (lbs)
2556 @ 11' 1/4"
5633
Passed (45%)
0.90 1.0 D (AJI Spans)
Moment (Ft -lbs)
7497 @ 6' 6"
11174
Passed (67%)
0.90 1.0 D (All Spans)
Uve Load Defl. (in)
0.040 @ 6' 7/16"
0.392
Passed (L/999+)
-- 1.0 D + 1.0 Lr (All Spans)
Total Load Defl. (in)
0.425 @ 6' 6"
0.587 ,
Passed (L/332)
-- 1.0 D + 1.0 Lr (All Spans)
Deflecdon criteria: LL (L/360) and TL (1.1240).
Bracing (Lu): All compression edges (top and bottom) must be braced at 12' lo o/c unless detailed otherwise. Proper attachment and positioning of lateral
bracing is required to achieve member stability.
U
K,
Wft.
WON
Supports
Required
a 11
1 - Column - DF 3.50" 3.50" 1.50" 1364 242 1606 Blocking
2 - Column - DF 3.50* 3.50" 11.50" 2614 242 2856 Blocking
locking Panels are assumed to Carry no IoadS applied directly above them and the full load Is applied to the member being designed.
Member Notes 'Wq'rMX RIM r
'X
Carry HIP -2
Weyerhaeuser warrants that the sizing of its products will be In accordance with Weyerhaeuser product design criteria and published design values.
Weyerhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature,for Installation details.
(www.woodbywy.com) Accessories (RIM Board, Blocking Panels and Squash Blocks) are riot designed by this software. Use of this software Is not Intended to
circumvent.the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer Is responsible to
assure that this calculation is compatible with the overall project Products manufactured at Weyerhaeuser facilities are third -party certified to sustainable
forestry standards.
The product application, input design loads, dimensions and support information have been provided by Forte Software operator
4--
PASSED
System : Roof
Member Type: Flush Beam
Building Use : Residential
Building Code : IBC
Design Methodology: Aso
Member Pitch: 0/12
A I
A SUSTAINABLE FORESTRY INITIATIVE
T
-.Fote S0 ft 9/3/2012 1143:00 AM
Forte v3.5. Design Engine: V5.5.3.2
BRYAN--1ATE
Page 1 of 1
cew I
VQ
abiw
I - Uniform(PSF)
0 to 12' 1" 2' 22.0
20.0 Roof
2 - Point(Ib)
6' 6- N/A $31
From HIP -2
F --P. Int(lb)
6-6- N/A $31
From HIP -2
4 - Point(Ib)
10, N/A 831
From HIP -2
5 - Point(Ib)
10, /A 831
From HIP -2
Member Notes 'Wq'rMX RIM r
'X
Carry HIP -2
Weyerhaeuser warrants that the sizing of its products will be In accordance with Weyerhaeuser product design criteria and published design values.
Weyerhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature,for Installation details.
(www.woodbywy.com) Accessories (RIM Board, Blocking Panels and Squash Blocks) are riot designed by this software. Use of this software Is not Intended to
circumvent.the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer Is responsible to
assure that this calculation is compatible with the overall project Products manufactured at Weyerhaeuser facilities are third -party certified to sustainable
forestry standards.
The product application, input design loads, dimensions and support information have been provided by Forte Software operator
4--
PASSED
System : Roof
Member Type: Flush Beam
Building Use : Residential
Building Code : IBC
Design Methodology: Aso
Member Pitch: 0/12
A I
A SUSTAINABLE FORESTRY INITIATIVE
T
-.Fote S0 ft 9/3/2012 1143:00 AM
Forte v3.5. Design Engine: V5.5.3.2
BRYAN--1ATE
Page 1 of 1
0ot
Ben Phan
VP Home
(714) 2514537
ben_phan@yahoo.corn
i4FORTIE" MEMBER REPORT Level, CB -2 - Ceiling Beam
1 piece(s) 3 1/2" x 9 1/4" 2.0E Parallam@ PSL
Overall Length: 14'3"
Deflection criteria: LL (L/360) and TL (L/240).
Bracing (Lu): All compression edges (top and bottom) must be braced at 14'3" o/c unless detailed otherwise. Proper attachment and positioning of lateral
bracing Is required to achieve member stability.
N
gg Roof`
III'! 111M, N ki6lWbW -M NMI""
1% MKIME
Member Reaction (lbs)
1536 @ 2"
0
Passed (17%)
-- 1.0 D + 1.0 Lr (All Spans)
Shear (lbs)
0
5633
pt
"n
Moment (Ft -lbs)
7080 @ 6'10"
11174
Passed (63%)
0.90 1.0 b (All Spans)
Live Load Defl. (in)
0.077 @ 7- i 1/2"
0.464
Passed (L/999+)
1.0 D + 1.0 Lr (All Spans)
13'8"
0.548 @ r 7/8"
0.696
Passed (V305)
1.0 D + 1.0 Lr (AJI Spans)
All Dimensions Are Horizontal; Drawing Is Conceptual
Deflection criteria: LL (L/360) and TL (L/240).
Bracing (Lu): All compression edges (top and bottom) must be braced at 14'3" o/c unless detailed otherwise. Proper attachment and positioning of lateral
bracing Is required to achieve member stability.
N
gg Roof`
III'! 111M, N ki6lWbW -M NMI""
1% MKIME
Member Reaction (lbs)
1536 @ 2"
9188
Passed (17%)
-- 1.0 D + 1.0 Lr (All Spans)
Shear (lbs)
1194 @ 1'3/4"
5633
Passed (21%)
0.90 1.0 D (All Spans)
Moment (Ft -lbs)
7080 @ 6'10"
11174
Passed (63%)
0.90 1.0 b (All Spans)
Live Load Defl. (in)
0.077 @ 7- i 1/2"
0.464
Passed (L/999+)
1.0 D + 1.0 Lr (All Spans)
Total Load Defl. (in)
0.548 @ r 7/8"
0.696
Passed (V305)
1.0 D + 1.0 Lr (AJI Spans)
Deflection criteria: LL (L/360) and TL (L/240).
Bracing (Lu): All compression edges (top and bottom) must be braced at 14'3" o/c unless detailed otherwise. Proper attachment and positioning of lateral
bracing Is required to achieve member stability.
• Blocking Panels are assumed to carry no loads applied directly above them and the full load Is applied to the member being designed.
-fDeae-
Tribubry
N
gg Roof`
III'! 111M, N ki6lWbW -M NMI""
1% MKIME
5 ZIA
N
V
I -.Column - DIF 3.50" 3.50" 1.50" 1251 285 1536
Blocking
2 - Column - DF 3.50" 3.50" 1.50" 11182 1 285 1467
Blocking
• Blocking Panels are assumed to carry no loads applied directly above them and the full load Is applied to the member being designed.
-fDeae-
Tribubry
I - Uniform(PSF)
0 to 14'3" 2- 22.0 26.0 Roof
2 - Point(lb)
V10" N/A 831 - From HIP -2
3 - Point(lb)
6',10" N/A 831 From HIP -2
Carry HIP -2
E
vra, M-500
Weyerhaeuser warrants that the sizing of Its products will be In accordance with Weyerhaeuser product design criteria and published design values.
Weyerhaeuser expressly disclaims any other warranties related tc) the software. Refer to current Weyerhaeuser literature for Installation details.
(www.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software Is not Intended to
circumvent the need for a design professional as determined by the authority having Jurisdiction. The designer of record, builder or framer Is responsible to
assure that this calculation is compatible with the overall project. Products manufactured at Weyerhaeuser facilities are third -party cerUfled to sustainable
forestry standards.
The product application, Input design loads, dimensions and support Information have been provided by Forte Software Operator
PASSED
System : Roof
Member Type : Flush Beam
Building use: Residential
Building Code : IBC
Design Methodology: ASD
Member Pitch: 0/12
0 SUSTAINABLE FORESTRY INITIATIVE
9/3/2012 11:48:10 AM
Forte v3.5, Design Engine: V5.5.3.2
BRYAN--1.4TE
Pagel of 1
1 F® R T E MEMBER REPORT Level, HDR -1- Header
1 piece(s) 3 1/2" x 9 1/4" 2.0E Parallam@ PSL
Overall Length: 8'8"
Deflection criteria: U. (1.1360) and TL (1.1240).
Bracing (Lu): All compression edges (top and bottom) must be braced at 8' 8" o/c unless detailed otherwise. Proper attachment and positioning of lateral
bracing Is required to achieve member stability.
- Blocking Panels are assumed to carry no loads applied directly above them and the full load Is applied to the member being designed.
n
A`
Ben Phan
Member Reaction (lbs)
0
9188
Passed (24%)
0
Shear (lbs)
1397 @ 1'3/4"
5633
Passed (25%) 0.90
1.0 D (All Spans)
Moment (Ft -lbs)
4558 @ 3' 10"
11174
Passed (41%) 0.90
1.0 D (All Spans)
8' V
0.037 @ 4'4 1/16"
0.278
Passed (L/999+)
1.0 D + 1.0 Lr (All Spans)
I Total Load Deft. (in)
All Dimensions Are Horizontal;, Drawing Is Conceptual
0.417
Passed (V629)
1.0 D + I.O'Lr (All Spans)
Deflection criteria: U. (1.1360) and TL (1.1240).
Bracing (Lu): All compression edges (top and bottom) must be braced at 8' 8" o/c unless detailed otherwise. Proper attachment and positioning of lateral
bracing Is required to achieve member stability.
- Blocking Panels are assumed to carry no loads applied directly above them and the full load Is applied to the member being designed.
n
A`
Ben Phan
Member Reaction (lbs)
2178 @ 21'
9188
Passed (24%)
1.0 D + 1.0 Lr (All Spans)
Shear (lbs)
1397 @ 1'3/4"
5633
Passed (25%) 0.90
1.0 D (All Spans)
Moment (Ft -lbs)
4558 @ 3' 10"
11174
Passed (41%) 0.90
1.0 D (All Spans)
We Load Defl. (in)
0.037 @ 4'4 1/16"
0.278
Passed (L/999+)
1.0 D + 1.0 Lr (All Spans)
I Total Load Deft. (in)
0.I59@4'37/16"
0.417
Passed (V629)
1.0 D + I.O'Lr (All Spans)
Deflection criteria: U. (1.1360) and TL (1.1240).
Bracing (Lu): All compression edges (top and bottom) must be braced at 8' 8" o/c unless detailed otherwise. Proper attachment and positioning of lateral
bracing Is required to achieve member stability.
- Blocking Panels are assumed to carry no loads applied directly above them and the full load Is applied to the member being designed.
n
A`
Ben Phan
VP Home
Jnlform(PSF)
0 to 81 8" 7'
22.0
20.0 Roof
loint(lb)
3'10" N/A
I536
- From CB -2
N* Mr 1380_ A
Weyerhaeuser warrants that the sizing of Its products will be In accordance with Weyerhaeuser product design criteria and published design values.
Weyerhaeuser expressly disclaims any other warranties related to the software. Refer to current Weyerhaeuser literature for Installation details.
(www.woodbywy.com) Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Use of this software is not intended to
circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to
assure that this calculation Is compatible with the overall project. Products manufactured at Weyerhaeuser facilities are third -party certified to sustainable
forestry standards.
The product application,' Input design loads, dimensions and support Information have been provided by Forte Software Operator
ForteoOperator._:ale.
_,
...... . . . .. .
Job s�
Ben Phan
VP Home
(714) 2514537
ben_phan@yahoo.com
PASSED
System :Roof
Member Type : Flush Beam
Building Use : Residential
Building Code : IBC
Design Methodology: ASD
Member Pitch: 0/12
SUSTAINABLE FORESTRY INITIATIVE
913/2012 11:56:23 AM
Forte 0.5, Design Engine: V5.5.3.2
BRYAN--1.4TE
Page 1 of 1
UNIFORM AND POINT LOAD ON CONTINUOUS FOOTING
Footing Width (FW) = 12 in
Soil Density =
110 pcf
Footing Depth (FD) = 12 in
Concrete Density =
150 pcf
Soil Bearing (SB) = 1,500 psf
Inc. Width (IW) =
0 psf
Max. Soil Bearing = 1,500 psf
Inc. Depth (ID) =
0 psf
Plain Concrete Design:
F'c = 2,500 psi
Tension Fb = 80 psi
Procedures:
Fsoil = ((D-FD)/12*ID)+SB
F'soil = Fsoil-(D/12*(150-110))
w = W*F'soil/12
M = Fb*W*d^2/12"/6
L = (2*M/w)^1/2
Pmax = 2*L*w
W (")
D (")
Fsoil (psf)
F'soil (psf)
w(#/ft)
M ('#)
L (ft)
Pmax #
12
x
12
1,500
1,460
1,460
1,920
1.62
4,736
15
x
12
1,500
1,460
1,825
2,400
1.62
5,919
18
x
12
1,500
1,460
2,190
2,880
1.62
7,103
21
x
12
1,500
1,460
2,555
3,360
1.62
8,287
24
x
12
1,500
1,460
2,920
3,840
1.62
9,471
12
x
15
1 500
1,450
1145-0-
3,000
2.03
5,899
15
x
15
1,500
1,450
1,813
3,750
2.03
7,374
18
x
15
1,500
1,450
2,175
4,500
2.03
8,849
21
x
15
1 500
1145-0-
2 538
5,250
2.03
10,324
24
x
15
1,500
1,450
2,900
6,000
2.03
11 8
12
x
18
1,500
1,000
1,000
4,320
2.94
C 5,879-
15
x
18
1,500
1,000
1,250,
5,400
2.94
348
18
x
18
1,500
1,000
1,500
6,480
2.94
8,818
21
x
18
1,500
1,000
1,750
7,560
2.94
10 288
24
x
18
1,500
1,000
2,000
8,640
2.94
11,758
12
x
21
1,500
1,000
1,000
5,8801
3.43
6,859
15
x
21
1 500
110-0-0-
1 250
7,350
3.43
8,573
18
x
21
1,500
1,000
1,500
8,820
3.43
10,288
21
x
21
1,500
1,000
.1 ,750
10,290
3.43
12,002
24
x
21
1,500
1,000
2,000
11,760
3.43
13,717
12
x
24
1,500
1,000
1,000
7,680
3.92
7,838
15
x
24
1,500
1,000
1,25
9,600
3.92
9,798
18
x
24
1,500
1,000
1,500
11,520
3.92
11,758
21
x
24
1,5001
1,0001
1,7501
13,440
3.92
13 717
24
x24
1,5001
1,0001
2,0001
15,360
3.92
15 677
30
x
24
1,5001
1,0001
2,5001
19,2001
3.92
19,596
Note: For point loads on footings with uniform loads, take the difference
between "w" above and the uniform load, then multiply by two and by
"L" above for P'max.
TIM
q r7