Loading...
04-3659 (SFD) Revision 1 Structural Calcs+ Nun, -8-2004 05:.11P FROM:FRED SNEU, SE (760)955-7522 FRED SHEUTide -.MUGYtJiRAL ENGINEERnr Description; (790) 86b-7821 Scope.: v..e xwd6040a4. Ver S:b1. ae;Ort: 004 General Timber Beam TO:2883163 Date: P:2 Job# T {General Infonrtatlon — — — — _ Caloule0one are des[grwd to 1897 NDS and1997 UBC Requirarnlf ft l Section Name12 49 Canter apse 18:OOR .....Lv R 0.00 fl 0.00 ft Besm Width 5.500 in Beam Depth 1:1.500'11. ept Lett Cantilever ......Lu Right Csntl*Mt R .....W 0.00 ft MemborType Sawn Douglas Fir •'Larchi No.1 1;3b0.0 poi Bm wt. Added to Loads 1.250 Fb Be" Allow Fv Mow 85.0 psi Load Our. Factor Beam Fid Fhdty Pln-Pin Fo Allow 625.0 ppsi 1,ROO,O kai Wood Dsnaity 36.000 pof E Full Length Uniform loads — — — W - —to. center 7 OTA 385.00 Wit LL Nift gift LL wR Lett Cantilever OL Right Cantilever DL LL Sumo» — — — — — Beam Design OK ,f Open. 15.00R, exam Width • 5:800ln x Op h_ 11,11M, EmWare-Pin-Pin f Max Stress Ratioeob : 1 Maximum Shear' 1.5 3.6 k Maximum Moment Allawabie2.75 1;o kit Allowable as k 1 Max: Positive Moment 10,350 m 7.500 ft Shaer R It I.Leftt 2'. 75k R 715 Max. Nega"ViorneM 0.00 k -R at 0.000 Camber: ®Lett 0. in Max®Lttft3upport O'.00 k -R (Center 0.5831n Max ®:Right supw 0.60 k4t ® Right O,OflOin Max. M allow 17.05 `I fb 1;022.78 ps{, 14 I pb 1,687:50 psi _Fv —10625 Reactions... 57.30 p81 Left OL 2,78 k psi Right Dl —2.76 k 1 Max 2.7e k 2:76k — MaxJ l Deflections Center Span.- D0lledbn •0;37511 r... -0.376an D8lfection 0:000 in 0.00000 In 0.0 n 7.a00 f ...LanpthlDeN ...Location thging g 479.76 flight CogVIever.., Deflection 0.010an. 0.0.0 in aambar (uslnp 1:5' D.L. Deli )..-, oo oo - ®Center 0.663 in :.LengWDd a Left 0.000 in a Right 0.000 in 3 S z- i t F Z: LV � d ,i 'S NEV-8-2004 05:1813 FROM:FRED SHEU, SE (760)955-7522 70:2883163 P:2 Field Sheu Project. Dlorenzo. Rgaidenoe Page -L-99 Structural Engineer Job,# JAM ALL LINE # 1 ,PANEL �ESfGN: Raft #2 Panel 93 Panel #4 Panel #5 Panel Section a• Tributary width (M a 37.0 Selsmic(plo"= 134.0 Wind (pif)= 231.4 Section 1- Tributary width (ft) a 0 Seismic(pif)= 00 Wind (00= 0:0 Seismic load above this floor {Ib) = 0 Wind load above this floor (Ib) 0 Total seismic load = 134.0.3712 + 0 ■ 2,479 lbs 0 0 Total wind load = - 231.413712+0.e 4,281 lbs -e---controls 0.0 Total panel length= 20.8 ft 0.0 0.0 0.0 Shear= 4,281/20.5 a 205:5 Ib1ft Is 0 0 »> Panel type used 3/8" CDX Plywood, Mark - gyp. (see sheet SD1 for nailing schedule) OVERTURNING ANALYSIS: 0 0 0 0 0 0 Panel #1#1 Panel 02 Panel 03 panel #4 Panel #5 panel #6 Panel length (ft) 20.83 0.00 0.0 0.0 0.0 0.0 Panel height (ft) = 10.0 0.0 0.0 0 0 0 Uplift du® to lateral load .Qb)= 2,055 0 0 0 0 0 Dead load on the panel (lb)= 1200 0 0 0 0 0 Roof tributary (ft) 1.0 0.0 0.0 0.0 0,0 0.0 Floortributary (ft) 0.0 0.0 0.0 0.0 0.0 0.0 wall weight (psi) to a 0 0 0 0 Uplift of this floor(lb) a 855 0 0 0 0 0 Uplift from upper floor 0b) = 0 0 0 0 0 0 Total hold-down force (lb) ■ 855 0 0 0 0 0 »> Hold-down Type STHD14 SHEAR WALL LINE # 2 PANEL DERILGN: Section a- Tributary width (ft) = 37.0 Section b- Tributary width (M = 13 Seismic load above this floor 0b) = 0 Total seismic load = 134.0*3712415e•1312+0= Total wind load ■ 231.4'37/ +229:01312 + 0 - Total panel length ■ 13.6 ft Seismlc(plQ 134.0 Wind (plf)= 231.4 Selsmic(plo= 153.6 Wind (plf)= 229.0 Wind load above this floor dbj = 0 3,4.77 lbs 5,789 lbs <--controls $hear = 5,789/13.5 = 427.4 lb/ft >» Panel type used KV41 -14 t!U�ITNE it, Panel length (ft) Panel height (ft) ■ Uplift.due to lateral load (lb)= Dead load on the panel (lb)= Roof tributary (ft) Floor tributary (ft) Wall weight (psfl Uplift of this floor0b) ■ Uplift from upper floor (Ib) _ Total hold-down force 0b) _ >» Hold-down Type 378' COX Plywood, 'Mark - a (see sheet SD1 for nailing schedule) Panel, -#I Raft #2 Panel 93 Panel #4 Panel #5 Panel 13.50 0:00 0;0 0.0 0:0 0.0 10.0 0.0 0.0_ 0 0 0 4;274 0 0 0 0 0 778 0 0 0 0 0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Is 0 0 0 0 0 3,498 0 0 0 0 0 0 0 0 0 0 0 3,488 0 0 0 0 0 STHD14 Fred Sheu ProJect: D'Lorenzo Residence Page !-! t U Structural Engineer Job # S4172 PANEL DESIGN: Section a- Tributary width (ft) d 9 Section b- Tributary width (ft) = 17.0 Seismic load above This floor (lb) = 0 Total seismic load ■ 127.5-aI2+169.7'17/2+O,a Total wind load a 277.ZW2 + 229.0.17/2 + o ■ Total panel length a 12.0 it Selsmic(plf)= 127.5 Wind (pip= 277.2 Selsmlc(plf)= 169.7 Wind (pit)= 229.0 Wind load above this floor Ob) = 0 2,016 lbs 3,1.94 The <---controls Shear = 3,194/12.0 = 286.2 IbtR >>> Panel type used Panel length (ft) ­ Panel height (ft) _ Uplift due to lateral load (lb)s Dead load on the panel (Ib)= Roof tributary (R) Floor tributary (ft) Wall weight (paq Uplift of this noor(lo) _ Uplift from upper floor(lb) = Total hold-down force (lb) = >>> Hold-down Type 3/8" CDX Plywood, Mark - 4 (see sheet SDI for nailing schedule) Panel #5 Paaelfa 12.00 0.00 0.0 0.0 0.0 0.0 1010 0.0 0.0 0 0 0 2,652 0 0 0 0 0 1077 0 0 0 0 0 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16 0 0 0 0 0 1;584 0 0 0 0 0 0 0 0 0 0 0 1,684 0 0 0 0 0 STHD14 0 348 •217 -667 -936 SHEAR WALL LINE # 6 Section a Tributary width (ft) a 17.0 Section b- Tributary width (it) s 20 Seismic load above this floor 00) = 0 Total seismic load = 182.7017/2 + 171.r2W2+ 0 Total wind load • 222.0"1712+ 229:0.20/2 + 0 Total panel length = 52.0 ft Sheaf a 4,237/52.0 = >>> Panel type used Panel length (ft) _ Panel height (ft) = Uplift due to lateral load Ob),* Dead load on the panel (lb)e Roof tributary (ft) Floor tributary (ft) Wall weight (psf) Uplift of this floor(lb) a Uplift from upper floor (Ib) Total hold-down force (lb) »> Hold-down Type Selsmio(pli)= 189.7 Wind (plf)= 229:0 6eiemi4(plf)- 171.7 Wind (plt)z 229.0 Wind load above this floor 0b) = 0 3,159 lbs 4,237 lbs <.--controls 81.5 Ibtft 3I8" CDX. Plywood, Mark -' (see sheet SDI for nailing schedule) kbVdS*O Ir/e/O f Panel #1 Panji ? Panel 93 Panel #4 panel #3 Panel 5.00 11.00 18.5 19.5 0.0 0.0 10.0 10.0 1.0.0 10 0 0 815 S1$ 815 815 0 0 489 1032 1481 1,751 0 0 1'0.0 10:0 9.0 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16 1e 1.8 18 0 0 348 •217 -667 -936 0 0 0 0 0 a 0 0 346 .217 -867 -938' 0 0 STHD14 STHD14 STHD14 STHD14 FROM' : Fred Shea, S. E. .PHONE NO. : 9095982246 Feb. 01 2005 09: WM P2 FRED SHED Title Job STRUCTURAL ENGINEER Dagrin Date. �atsano Description: (760) 966-7522 Scope: Description 1.1General Informadon Calculationeare designed to 1997 NDg ane 19117 U13C ftwirements Sedloif Name Q 16.E 0. C Canter Span 11.001 .—.1u. 0.00 111 soom Width -1,500 in Let Conifiever It.... Lu 0.00 ft so" Depth 7.160 In Right Cantilever ' It .....Lu mob ft MwWrIVI)s I%- Larch, NQ,a .000Mc 0.0 Aflwable OWMAdded to Load* -awlas *Fb BaSe Allow 87:pal Allmable ,Laid Our-Fsotgr 1.250 l3dini-EM Fixity 151"'-pth FY Allow 96.'0 psi W(@x*P&1i0i mon*nt Max:NegatNe Moment . wbodpaiwty 36=0 pof FGAIlow 11 620.0pel 1.600.Oksi RiPOWNG Member I -Full Lenoth Uniform Load* 0271( QW111 Leksupport 0.00 k -ft Dorm, -ir*TAL 41).70 Wit LL elft 0.27k LokCanillever OL 0/ft LL aleJJk Right Candimw OL Will LL 6enw in SdMM MAX 4 allow 1.00 Beam Desigh OK 1 Reaotbne .. tomw beam Width.. 1,5wh x Motha 7-2fin, Ends am,13in-Pin ib. 881.63 psi %dUFJFWF.- span... Ak stre" kavo 402 [mad Low TC411111.1.94 Deflection -0-2131n In DOW Ma 61yit 114m4rd 066 in TY �k- Mwdmum Shear 1.6 0.4 k .000Mc 0.0 Aflwable 618.9 1.7 k -ft Allmable Camber (using 1.5 1,3 k 06fiedlon W(@x*P&1i0i mon*nt Max:NegatNe Moment 076 k -ft oloakA at at 5.500 ff 0.000 ft Shear: Lett R ht 0271( QW111 Leksupport 0.00 k -ft a Right 0,000 In 0.27k 146it"Fuliktupport 0;00 k -ft 6enw in MAX 4 allow 1.00 Reaotbne .. --umin ib. 881.63 psi fv 33.64,poi Left DL 0.27 It Max 027k Fb - .1,09.38 psi Fv 118.75 pal Right OL 0.27 k Max 0.27 k %dUFJFWF.- span... MIJUIM, T -Wal -LOW LM 1944uie"G.. [mad Low TC411111.1.94 Deflection -0-2131n In DOW 0.000 in 066 in 3.600 It 8.500 It l erpthlDo9 6.0 .000Mc 0.0 618.9 618.04 Right Cantilever_ Camber (using 1.5 • D.L. DA• 06fiedlon 0.000 in 0.000 In a Center 0.320 in —Lvngtlf O.D 0.0 QW111 0.00 in a Right 0,000 In /Z 4&vr- LvAp v r A Pred'Sheu Project: D'Lorenzo Residence Page C/5 Stmdural Engineer Job # S4172 SHEAR WALL LINE # 11 PANEL DESIGN: Section a- Tributary width (ft) = Section b- Tributary width (ft) = Seismic load above this floor (lb) _ Total seismic load = 203.3*2ar2 + o = Total wind load = 229V28/2+ 0 - =Total Total panel length = 14.0 Shear*-- 30206/14.0 = >>> Panel type used OVERTURNING ANALYSIS: Panel length (ft) Panel height (ft) =. Uplift due to lateral load (lb)= Dead load on the panel (lb)= Roof tributary (ft) Floor tributary (ft) Wall weight (pso Uplift of this floor(lb) = Uplift from upper floor (lb) = Total hold-down force (lb) = >>> Hold-down Type 28 Seismic(plf)= 203.3 Wind (plf)= 2290 .0 Seismic(plo= 0.0 Wind (plf)= 0.0 0 Wind load above this floor(lb) 0 2,846 lbs 3,206 lbs <---controls ft ShearMax Panel Panel #1 2.00 8.0 1,832 94 1..0 0.0 16 1,738 0 1,738 manufacturer 229.0 Ib/ft <4) 5mzL/ 8 Jr zo/9, t2 x28gs (�) SM?6-I2 = i 3, 810 la Panel #2 2.00 8.0 1,832 .94 1.0 0.0 16 Panel #3 2:0 8.0 1,832 94 1.0 0.01 16 Panel #4 2..0 8 1,832 94 1,.0 0.0 16 1,738 1,738 1 CiTY OF LA 016 INT 1,738 BUILDI RIB& SAFCEPT APPROYD FORLONS T IR TION SHEAR WALL PANEL DESIGN_ : �-- Section a= Tributary width (ft) = 28-* Section b- Tributary width (ft) = 12 Seismic load above this floor (lb) = 0 Total seismic load = 203.3.28/2+ 214.9*12/2 + 0 = Total wind load = 229.0*2812 + 229.0*12/2.+ 0 = Total panel length = 30.6 ft Panel #5 3.0 12 2,748 410 18.0 0.0 16 ,338 0 ,338 Seismic(plf)= v 203.3 Wind (plf)= Seismic(plo= 214.9 Wind (plf)= Wind load above this floor (lb) _ 4,136 lbs 4,580 lbs <--controls A Shear = 4,580/30.6 = 149.8 Ib/ft >>> Panel type used OVERTURNING ANALYSIS: Panel length ,(ft) Panel height (ft) = Uplift due to lateral load (lb)= Dead load on the panel (lb)= Roof tributary (ft) Floor tributary (ft) Wall weight (psf) Uplift of this floor(ib) _ Uplift from upper floor (lb) = Total hold-down force (lb) = >>> Hold-down Type. 3/8" CDX Plywood, Mark- /o Panel #1 15.83 10.0 1,498 2821 36.0 0.0 10 -1,324 0 -1,324 STHD14 14.75 10.0 1,498 1680 20:0 0.0 10 -182 0 -182 STHD14 Panel #3 0.0 0.0 0 0.0 0.0 0 0 Panel #4 0.0 0 0 0.0 ,0.0 0 0 0 Panel A 0.0 0 0 0.0 0.0 0 0 Panel #6 3.0 12 2,748 410 18.0 0.0 16. 2,338 0 2;338 229.0 229.0 . 0.0 0 0 0 0.0 0.0 0 0 0 -MT „,_FRO FRQf 1 : MIKE MENDOZA, DESIGNER D7 Tf� c N rm m �y flt a O mrp - =MX ■ S?CE, 3a L amvi FAX NO. : 760-329-0766 Mar. 14 2005 08:43AM P3 I D10 ° - w _ U1 ; at MAR -14-2005 MON 08:25AM ID:.FRED SHEU, SE No. 5-4111 Exp.9-30-Lq �jpp�ovEt� ” s�gs�uc PAGE:3 n .. • - Irv.. .. '11..•i • 1 wl •�r✓ I"-. ..•L ♦ VV J a.- 1 .+LL 1 V • L:UI]J1 V.;1 � r %Fred Shell Project ULorenzo Residence Page C/ y Stm uwl Engbwer Job # S072 SHEAR WALL LINE # 11 PANEL DESIGN: Section a- Tributary width (ft) - 28 Selsmle(pif)- 203.3 Wind (plf)= 229.0 Section b- Tributary width (ft) - 0 6eismi0(P1f)= 0.0 Wind (plf)= 0;0 Seismic load above this floor'(Ib) = 0 Wind load above this floor (lb) = 0 Total seismic load = 203.30= t o ■ zem Ibs Total wind lad = 229.0 -AM:+ 0 ■ 3.206 lbs <--controls Total panel length = 14.0 ft' Shear'- 3,208/14.0.= 229.0lb/ft »> Panel type used 8hearMax Panel (4) s H: µ y 41 c v� v A &t'1.6 y it z V P r x 787t (�) S n^16••la = � 3, Sia ��+ OVERTURNING ANALYSIS;. Panel #1 Panel #2 bnel #3 Panel 414 PaniIll 96 Panel OM Panel length (ft) a 2.00 100 2.0 2.0 3.0 3.0 Panel height (ft) = 8.0 8.0 8.0 8 12 12 Uplift due to lateral load (Ib)= 1,832 1,832 1,832 1,832 2,748 2,748 Dead bed on the panel (lb) = 94 94 94 94 410 410 Roof tributay'(ft) 1.0 1.0 1.0 to 18.0 16.0 Floor tributary (ft) 0.0 0.0 0.0 0.0 0.0 0.0 Wall weight (pet) 16 18 16 16 16 16 Uplift of this floor(ib) e ° 1,738 1,738 1,738 1,738 2,338 2,338 uplift from upper floor (Ib) = 0 0 0 0 0 - 0 Total hold-down force (lb) = 1,738 1.73819738 2.338 2,338 »> Hold-down Type manufacturer Cti au pOFC�tJIfVT,q NG & SAFETY S WALL INE P®VE® FT• PANEL DESIGN: Utl CONST Sedan a- Tdbulary width pt); 23 Se pi 2 �T10(I�Ilind'(p ■ 229.0 Section b- TMbutwy width (ft) = 12 DAT I 1 Wind"( = 229.0 Selsmic,load above this.floor (lb) = 0 r( Total seismic bad = 203.30282 + 214:9.124 + 0 ■ 4,136 Ib ,y ;�,oFES$ Total wind bad' _ 231.042&2 + =.o*l VZ + 0 - 4,580 Ib -controls F 3�' e� Total panel length 30.5 fit shear 4,580,30.6 = 149A Wit sss Panel type used 3/80 CDX Plywood, Marts - s P OVERTURNING ANALYSIS: P n Panel N2 P P�]:*4 pmt Panel length,(ft) a 16.83 14,76 0.0 0.0 0.0 - 0.0 Panel height (ft) s 10.0 10.0 0.0 0 0 0 Uplift due,t0 leter'81 load (Ib)= 1,498 1,498 0 0 � 0 0 Dead load on the panel (Ib)■ 2821 1680 0 0 0.0 . , 0.0 Roof tributary (ft) 38.0 20.0 0.0 0:0 �;. Floor tributary (ft) 0.0 0.0 0.0 0:0 0, .o.o Wall weight (psn 10 10 0 0:0 0 Uplift Of this floor(ib) -1.324 -182 0 0 "0: 0 Uptlft from upper fico, pb) • 0 0 0 0 0 0 Total hold-down force Vb) _ -1,324 -182 0 0 0 0 >» Hold-down Type STHD14 STHD14 i'PV[' 1•T-CY.uGiJ 11 : 'trJt1 f RVI'I:r'tSGu JrlLu� JG. � iG71CJ I7N.J'" 1 JGG 1 V • �UlAaal:U,..i " � G MIKE MEND02A. LESTONER-. FAY N1. 7Q-339-@766 Mar. 14 2M W: 43W Pr . fob.. -....r. ; � ' �•r �� �• , ..,,tea„- ..�... �— AM TZ _- e. Ln g Y/ 7 t —�• too Y. daumma , i 51 M. • m ` r 7.:..�O111r -71 or o 4. i i� •� r N I �� �.�.� emrm .+wrn•'• r4 Dl 1 Ne. 3dt t eqp �p.�L it MAR -14-2005 MCN 08s25AM IO:FRED 'SHEU, SE N1aGEia W, Sheu Sti-f- -;Iural Engineer 15434 5434 Sage Street, Suite A, Victorville, CA 92392 (760) 955-7522 Structural Calculations f®r .'D'Lorenzo Bros, Inc. 55-650 Cherry Hills Drive La Quinta, CA 92253 CITYOF LA QUI 13U/LD/NG & SAFE7yDEPT'. Prio -r FOR DA n4'4' Job # S4172 April 4, 2004 S504050 J a hN Fred Sheu Project D,LoQZ-Nc.0 Page A t Strc� `aural Engineer. Job # s Z TABLE OF CONTENTS Page DesignInformation .......................... ............................................................................. Al thru A7 GravitySystem ................................................... ,...................... ........................... . B1 thru B 6 Beams &, Headers Latual System .............................. .. ............. ......... _ .... ............................. C1 thru C t Seismic & Wind Loads Horizontal Diaphragm Shear Walls StmI VVaft-&Zoh1mns.......................................... .............................................„�-#firms-B”" Four-dation.....................................................................:..... ....... .. ..... .. .... 'E1 thru. E i Fred Sheu Structural Engineers Project D) Lo vVz o Page A2 DESIGN CRITERIA & SPECIFICATIONS Job # S y' _17-_ A. CODE: 2001 CBC B. SEISMIC: Zone 14 C. WIND: Basic, wind speed 8'0 MPH, Exposure C D: SOIL: Allowable soil bearing pressure / o o o psf E. LUMBER: Douglas Fir -Larch, 19% moisture content 1. 2X Joists & Rafters 42 or Better 2. 4X, 6X, 8X Beams & Headers - #1 or Better 3. Plates, Blocking & Studs - Stud Grade or Better F. GLUED -LAMINATED BEAM: Combination: 24F -V4 Specicies: DF/DF ; G. CONCRETE: Non -Monolithic Pour Foundation System, U.N.O. All slab-on-gradel continuous footing/pads/pole footing f =.2500, psi All structural concrete/retaining wall/column/beam------------------ c ='3000 psi H: ' STEEL: ASTM A36, Fy = 36 ksi for Structural Steel ASTM A615, Gr. 40 for #3 &4, Gr. 60 for #5 and larger rebar steel ASTM A53, Gr. B for Pipe Steel ASTM A500, Gr. B for Tube Steel I: CONCRETE BLOCK: ASTM C90, Grade N medium weight, Solid grouted all cells J.: COLD FORM STEEL: ASTM A570-79 Gr. 33 for 18 through 25 Gauge ASTM A570-79 Gr: 50 for 12 through 1.6 Gauge K: WOOD CONSTRUCTION CONNECTOR: SIMPSON Strong -Tie or Approved Equal It is the full intention of the Engneer that these calculations conform to the California Building Code, 2001 edition. These calculations shall govern the'structural portion of the working drawings. However, where any discrepancies occur between these calculations and the working drawings, the Engineer shall be notified immediately so proper action may be taken. The structural calculations included here are for the analysis and design of primary structural system. The attachment of non-structural elements is the responsibility of the architector designer, unless specifically shown otherwise.. The Engineer assumes no responsibility for work not a part of these calculations nor for inspection to ensure construction is performed in accordance with these calculations. When structural observation or .field investigation the Engineer is required, the architect/contractor shall make separate arrangements with the Engineer. Registrations: CA SE4111 NV CE1 CJ42 CA CE48562 AZ CE31875 v Fred Sheu Project pL.ORaNZ,o Page A. Structural Engineer .Job #' Sq, 7 z GRAVITY LOADS ROOF: L.L. _ 16 psf ----- pitch 4:1.2 or greater = 20 psf ---pitch less than 4:12 V D.L. Roof Cover = : 3 psf (comp shingle) 1/2" Plywood Sht'g = 1.5 psf Roof Framing = 3.5 psf 1/2" Drywall Ceiling = 2.0 psf Insulation = 2.0 psf D.L. =1 Zpsf Total Load = 31 psf FLOOR: L. =4 psf ---basic floor area & deck 0. psf exterior balcony D. L. Flo over = 3 psf 3/4" PI d Sh ' _ 2.5 psf 2x12(016" ' r Framing = 3.0 psf 1/2" Dryw Ceili = 2.0 psf Insula ' n = 2.0 ;psf D.L. =12p Total Load = 52 psf (fl o r) or 72 psf (balcony) EXT. WALL: D.L. 2x stud wall =1.5 psf 1/2" Plywood Panel = 1.5 psf 1/2" Drywall = 2.0 psf 7/8" Stucco =10.0 psf Insulation = 1.0 psf Total = 16.0 psf INT. WALL: D.L. 2x Stud Wall = 1.5 psf 3/8" Plywood Panel - = 1..1 psf (2)-1/2" Drywall = 4.0 psf Misc = 3.4, psf Total =10.0 psf !' Fred ►S'heu _ Structural Engineers Project Page Job #' _ Table iB Section Properties of Standard Dressed (S48) Sawn Lumber `1 X AXIS Y -Y AXIS Standard ressed Dressed Area of Section Moment o1 Section Momof Moment Atltroximafs weight in pounds.per lineal. loot, (%%) Size Size (;S) Section Modclus Inertia Modulus [nettle of piece when density olvood equals: bxd bxd A S„ 1,,, Sry I Itches x Inches Inz in3 Ino Ins IM 25 MP 30 Rt/i13. 35.11083 4016/1113 4516783 50 II A13 Ix 3 3/4 x 271/2 1.875 01K 1 0.977 0.234 0.088 0:326 0:3910.458 0:521 0:586 I C.651 1 x 4 3/4 x 3-1/2 2.625 1.531 2.680 0:3 28 0.123 0.456 0:647 0.638 0.729 0.820 ').9111 1 x 6 3/4 x 6-1/2 4:126` 3.7111 16.40 0.516 0.193 0:718 0.859 1.003 1.146 1.289 1.432 i x 8 3/4 x 7-1/4 6.438 6.570 23.82 0.680 0:265 0.944 1.133 14322 1.510 1.699 1.888 1 x 10 314x 9-1/4 6.938 10.#0 49.47 0.667 0.325 1.204 :.445 11.686 1.927 2.168 1..409 1 x 12 3/4)i 11-1/4 8.438 15.132 88.99 1.055 0.396 1.465 1.758 2.051 2.344 2.637 2.930 2,x 3 1-1/2 x 2-1/2 3.750 1.5Bl 1.953 0.936 0.703 0.651 U.781 0.911' 1.042 1.172 1.302' 2.x 4 1.1/2 x 3.1/2 5:250 '3.063 5.359 1.313 0.984 0.911 -.094 1.278 1.458 1.64.1 1.623 2:x 5 1.1/2 x 4-1/2 6.750 5'.063 11.39 1.686 1.266 1.172 t.406 1.641 1.875 2.109 2.344 2,x 6 1-1/2 x 5-1/2 8.250 7.563 20.80 2.063 1.547 1.432 1.719 2:005 2.292 2.578 1 2.885 2.x .8 1-1/2 x 7-1/4 10.88 13:14 47;63 2.719 2:039 1.888 2.266 2.643 3.021 1 3.308 3.776 2;x 10 1-1/2 x 9-1/4 13.88 21.39 98193 3.469 2.802 .2.409 2.891 3.372 .3.854 4.336 4.818 2 x 12 1-1/2 x 11. /4 16:88 31.54 178.0 4.219 3.164 2.930 3.516 4.102 4.688 5.273 ( 5.859 2 x 14 1=1/2 x 13.1/4 19.88 .43.89 290.8 4.969 3.727 3.451 4.141 .823 4:831 .5:521 6.211 6.901 3x 4 2.1/21* 3.1/2 8.760 51104 8:932 3.848 4.557 1.519 1 2.127 2.431' 2.734 5.038 3x'5 2-1/2:x 4-1/2 11.25 8.438 18.98 4.688 6.859 1.953 1 2.344 2:734 3.125 3.5113 3.906 3x 6 2-1/2 x 6-1/2 13.75 12.60 34.66 5.729 7.161 2.387 2.865 3.342 3.819 4.297 1 4.774 3x 8 2-1/2 x 7-1/4 18.13 21:90 79.39 7.552 9.440 3.147 3.776 4A05 5.035 5.664 ) C.293 3`x 10 2-1/2'x 9-1/4 23:13 35.66 164.9 9.635 12.04 4.015 I, 4.818 5.621 6.424 7.227 l 6.430 3 x 12 2-i/2 x.11-1/4 28.13 5213 296.6 11.72 14.65 4.883 6.859 6.836 1.813 8.789 I 9.766 3x 14 2-1/2 x 13.1/4 33.13 73.15 484.6 13.80 17.25 5.751 3.901 6.051 9201 10,35 I 11.60 3:x 16 2-1/2 x 1571/4 38.13 96.90 738.9 15.89 19.86 1 8:619 794.3 9.266 10:59 11;91 13.24 _ 4x 4 3-1/2 x 3-1/2 1225 7.146 12.51 7.146 12.51 2.127 c.552 2.977 3.403 3.828 I 4.253 4x 5 3-1/2 x 4-1/2 15.75 11.81 26.58 9.188 16.08 2.734 3.281 3.828 4.375 4.922 5.469 4x 6 3-1/2 x 5-1/2 19:25 17.6;5 48.63 11.23 19.65 3.342 4.010 4.679 6:016 i F:084 4 x 8 3.1/2 x 7-1/4 25.38 30;66 1,11.1 14.80 25.90 4.465 5.347 5:288 6.168 7.049 7.930 ' "401'1 4 x 10 3-i/2 x 9-1/4 32.38 49:91 230.8 18.69 33.05 5.621 6.745 7.869 8.993 10:12 I11.24 4 x;12 3-1/2 x 11-1/4 39:38 73.63 415.3 22.97 40.20 6.836 6203 8:670W94 12.30 13.67 4 x'14 3-1/2 x 13.1/4 46.38 102.4 678.5 27.05 47.34 8.051 I 9.881 11.27 12.88 14.49 16.10 4x 166 3-1/2 x 15-1/4 53.38 135.7 1034 31.14 64.49 1 9266 ! 11.12 12.97 14.83 16.66 i 18.53 5:x 5 4-1/2 x 4-1/2 20.25 16:13 34.17 15.19 34.17 3.516 I 4:219 4.922 5.625 8:328 4 7.031 6,x: 6 5-1/2 x 5-1/2 30.25 27.73 16.26 27.73 76.26 6.252 1 0,302 71352 8.403 9.453 I _ 10.50 6-x a SAM x 7-1/2 41.25 51.56 193.4 37.81 104.0 7:161 1 3.594 10.03 11.46 12.69 I 1.1.32 6 x 10 5-i/2 x 9.1/2 52.25 82.73 393.0 47.90 131.7 9.071 10.89 12.70 14.51 16.33 10.14 6 x-12 ` 5-1/2 x 11-1/2 63:25 121.? 697.1 57.98 169.4 10:98 13.18' I 15:37 1.7.67 19.77 �, 4:.1.98 6 x 14 6-1/2 x 13.1/2 74.25 16.1.1 11128 68.06 1872 12.89 115:A7 18.05 20.63 23.20 I 25.78 6 x 16 5-1/2 x 15-1/2 85.25 220.2 1707 78.15 ' 214:9 14.80 17.76 20.72 23.68 26.64 f 26.60. 6x 163 5-1/2 x 17-1/2 96.25 280.7 2456 66.23 242.6 18.71 I 20.05 '23.39 26.74 30.08 33.42 6 x 20 5-1/2 x 19-1/2 107.3 349.6 3398 98.31 270.4 18:62 2,2.34 26.0'7 29.79 33.52 37.24 6 x 22 5-1/2 x 21-1/2 118.3 423.7 4555 108.4 298.1 20:53 I 21.64 28.74 32.85 36.95 1 41.06 6 x 24 5 -1/2:x23 -i/2 129.3 50f3.2 6948 118.5 325.8 22.44 i 25;93 31.41 35.90 40.39 4.188 ex 8 7-1/2 x 7-1/2 56.25 70.31 263.7 70.31. 263.7 9.766 1 t.72 13167 15.63 17.58 V).53 8X 10 7-1/2 x 9-1/2 71.25 112.8 535.9 89.06 334.0 12.37 14:84 17.32 1919 22.27 2•1.74 8 x 12 7-1/2 x 11-1/2 86.25 165.3 950.6 107:8 404.3 14.97 1 1 i.97' 26.96 23.96 26.95 23.95 8;x 14 7-1/2 x 13-1/2 101:3 227.14 1638 126,8 474.6 17.58 24.61, 28.13 31.84 35 16 91x, i6 7.1/2 x15-1/2 116:3 300.3 2327 145:9 544.9 20.18 i21.09 24.22 28:26 32.29 36.33 4036 8 x 18 7-1/2,x17-112 131.3 382.:3 3350 164:1 6152 22.79 1 27-34 31:90 36.46 41.02 43.57 8 x 20 7-1/2 x 19-1/2 146.3 475:3 4634 182.8 685.5 25.39 :30.47 35:55 40.63 45.70 51.78 8 x c 7-1/2 x 21.1/2 161.3 577.8 6211 201.6 755.9 27:99 3.1.59 I 39.19 44.79 50.39' 5599 8 x.23 7-1/2 x 23-,1/2 176:3 690.3 8111 220.3 826.2 30.60 X.72 42.84 48.96 55.08 :' 20 9-112x 9-1/2 90.25; 142.9 678.8 142.9 678.8 15.67 :5.80' 10.x10 21.94 25.07 28.20 3:.34 lox 12 9-1/2 x 11-1/2 109.3 200.4 1204 173.0 821.7 18.97 ,^:2.76 26.55 30.35 34.14 36'93 10,x 14 9-1/2 x 13.1/2 128.3 288:6 1948 203.1 964.6 22.27 }.G.72 31.17 35.63 40.08 •14.53 10 X-16 9-1/2 x 15-1/2 147:3 380.4 2948 233.1 1107 25.56. 30.68 35.79 40.90 46.02 51.13 lox 18 9-1/2 x 17-1/2 166:3 484.9 4243 263.2. 1250 .28.88 34.64 40.41 46.18 51.95 51.73 10 x 209-1/2 x,19-1/2 185.3 602.1 5870 293.3 1393 32.16 38.59 45.03 51.46 57.89 G4.32; 10x12, 9-1/2 x 21.1/2 204.3 731.9 7868 323.4 1536 35.46 4'.55 49.64 56.74 63.83 7C,.J2 lox 24 9-1/2 x 23-1/2 223.3 874.4 10270 353:5 1679 38.76 1;:51 54.28 62.01 69.77 /.:52 c Ped Sh eu Project Pade A 5 Ir- ' =Jural Engineer _ gab # Nor Alloviable Stress for Visu' allyGraded Lumber from 97 NDS Do -,:,-,:as Fir -Larch Size Factor ': Select Structure Dense No. 1" No. 1 No. 2 Grading Rule A enc : MUM No. 2 E MA No.2 Repetitive Fv Size Select Structur_. '- NO 8 better No. 1 Fb Fv Factor Sizw. d ;a - CF = (12/d) 1600 85 1.6 '1550 85 1.7 1350 85 1.6 875 85 1.4 Fb Fv E' Fb Fv E Fb Fv E`. Fb Fv E Fb. Fv E 6X3 7.5 CF 1600 85 1.6 1550 85 1.7 1350 85 1.6 875 85 1:4 6X-10 9:5 1.6 1600 85 1..6 1550 85 1.7 1350 85 1.6 1450 95 1X9 1150 95 1.8. 1000 95 1.7 875 95 1.& 875. 95 1.6 2YA 85 1.5 .2175 95 1.9, . 1725 95 1'.81500 1530 95 1.7 1350 95 1.6 1552 95. 1.6 2Y11 15.5 1.3 12885 95 1.9 1.495 95 1.8 1300 95 1.7 1170 95 1.6 1345 95 1.6 2X6, 85 1.2 1740 95 1'.9 ; 1380 95 1.8 1200 95 1.7 1080 95 1.6 1242 95 1.6 2X ; ? 85 1.1 1595 95 I J 1265 95 1.8 1100 95 11 990 95 1.6 1138 95 1.6 2XI2 1 1450 95 T;0. 1150 95 . 1.8 ' 1000 95 1..7 900 95' 1.6 1035 95 '1.6 2X-! 4 0.9 1305 95 i:.9 1035 95 1.8 900 95 1.7' 810 95 1.6 931 95 1.6 4),,: ' 1.5 2175 95 1.0 1725 95 1.8 1500 95 0' 1313 95 1.6 1,510 95 1.6 06 1.4 1885 95 1 a) 1495 95 1.8 1300 95 1.7 1138 95 1.6 1309 .95 1.6 4M 1.3 1885 95 1495 95 1.8 1300 95 1.7'. '1138 95 1.6 1309 95 1.6 4X1') 1.2 1740 95 1.9 1.380 95 1.8 1200 95 1.7 1050 95 1.6 1207 95 1.6 4V2 1.1 1595 95 1.9 ; 1265 95 1.8 1100 95 1:7 963 95 1.6 1107 95 1.6 4x,M & UP 1 1450 95 1.9 ` 1150 95 1.8 1000 95 1.7 875 95 1.6 1006 95 1.6 AIE.'-,',::fable Stress for Visu ,1!.y Graded Lumber from 97 NDS Dou�jlas Fir -Larch Gradina Rule Aaencv: WCLIB/WWPA Not,_ )uration of Load. NDS TABLE 2,12 The allowable stress may Inc --ease as follows:. 15% for snow load 25% for seven days dura` .: as for,roof .loads Fb for 2x and 4x member have 1) an multiplied by the repetitive member factor of 1.15 when such. members are used as joist, truss chords, raftors, studs, planks, decking, or similar members which are, spaced not more than 24 inches on center. ... Istf: .,,, q11 W -St Size Factor ': Select Structure Dense No. 1" No. 1 No. 2 Fb Fv E Fb Fv E Fb Fv E Fb Fv E Sizw. d ;a - CF = (12/d) 1600 85 1.6 '1550 85 1.7 1350 85 1.6 875 85 1.4 6X6 5:5 1.0 1600 85 1.6 1.550 85 1.7 1350 85 1.6 875. 85 1.4 6X3 7.5 1.0 1600 85 1.6 1550 85 1.7 1350 85 1.6 875 85 1:4 6X-10 9:5 1.6 1600 85 1..6 1550 85 1.7 1350 85 1.6 875 85 1.4 6X1.2 11.5 1.0 1600 85 1.6 1550 85 1.7 1350 85 1.6 875 85 1.4 6XIM - 13:5 0.99 1579 85 1.6 1530 85 1,7 1332 85 1.6 864- 85 1.4 6XI G 15.5 0.97 1555 85 1.6 1507 85 1.7 1312 85 1.6 850 85 1.4 6Y 8 17.5 0.96 1'53'4 85 1.6 1486 85 1.7 1295 85 1;6 839 85 1.4 61; �J_1 19:5 0.95 1516 85 1.6 1469 85 1.7 1279 85 1.6 829 85 1.4 Not,_ )uration of Load. NDS TABLE 2,12 The allowable stress may Inc --ease as follows:. 15% for snow load 25% for seven days dura` .: as for,roof .loads Fb for 2x and 4x member have 1) an multiplied by the repetitive member factor of 1.15 when such. members are used as joist, truss chords, raftors, studs, planks, decking, or similar members which are, spaced not more than 24 inches on center. ... Istf: .,,, q11 W -St Fred Sheu ` Str t-Ttural Engineers Project Page A6 Job # TABLE 2341-H—ALLOWABLE SHEAR IN POUNDS PER FOOT FOR HQR9QNTgL HOOD STRUCTURAL PANEL DIAPHRAGMS W(CH FRAMING OF DOUGLAS FIR -LARCH OR'SOU�IIERN PINE 171are values are:forshort-lime loads due Aowind or earthquake and mum be reduced25 percent for normal loadi• g. Space usib 12 inches (305 mm) on center along i htttrmediate framing members. Alltrvahle shear values for nails in.franming members otuther species set Mail In Division 111, Port 111, shall be cat. �1,it.d' for all other grades by multiplyingg the shear ivilles for nails in Structural l by the following farlors: 0.824or species with apeci0c gravity greelerlhan or . ym:dl l0 0.42,but less lhan'0.49, end O.fiSifor.epedes wuh a specific gravity less titan 0:42. 21'r -ming at adjoining panel edges shall be 3 -inch (76 mm) nominal or wider and'nails shall be staggered where'njils are spaced 2 inches (5! mm) or 21/2 inches (64 mm) on center. 3routin$ at adjoining panel edges shall be 3 -inch (Ili mm) nominal or wider and nails shall be staggered where It .. a.ails having penetration into framing of more Ihan.l /g inches (41. mm) are spaced 3 inches (76 min) or loan on center. NOW ■ ■ M ■ �T■ =moi► DIAPHRAGM BOUNDARY BLOCK LOAD Lill C.aSF 5 CONTINUOUS PANEL JOINTS FRAMING a•s led INN MW 01 a!1li �L' minimi . 0 N.C.11111111 !■��� BLOCKING LOA[ COl I,,INUouS PANEL JOINTS CONTINUOU:: I.ANEL JOINTS NOTE: Framing maybe oriented In either direction fordlaphragn* provided sheathing; fnopedY designed (or'werlical loading. LAMING BLOCKING BLOCKED DUIPHHAGA;8 UNBLOCKEGOIAPNRAGMB Hall spadng grynm,,) at dlaphragm L c4AI. •lee (all oases) to bad at MI rMusaut panel edges;•valid lCsaM d and 1) and al all pana'Igu Raft ars"d a(tdlR mar. 1 Casa 5 and a) at x 46.4 for mm PANEL GRADE COMMON NAIL SIZE h11NiMIlM NAIL PENETRATION W FRAMING as) MINIMUM NOMINAL PANEL TI •ICKNEB s oncha MINIMUM NOWNAL WIDTN or FRAMING MEMBERt nehea B 4 ' a /s -_ - MAU opedng (In.) at Blur pa.0-gip ca" I unplocaed edges As other x tlliA for mm of eongnuamrsean — )Ding parallel to (Catia . B • a s B x 25A for awn • oAt" kc N/mm i 6d 11142 2 3 185 210 250 280 375 —r 420 420 475 165 185. l25 140 C.vdurall 8d 11/2 ]Is 2 3 270 300 360 400 530 600 ! t 600 675 240 265 1811 206 10d I5/gIS/]2 2 3 320 360 425 480 640 720 335 380 730 820 285 320 215 240 6d 11/4 S/te 2 3 170 190 225 250 380 430 I50 1 170 Ito 125 ],S 2 3 185 210 250 280 375 420 420 475 165 185_ — 125 140 C -0•'C -C. Sheathing, sudoiW grades"/162 onvered In USC Bd 1 t/2 ]/e 2 3 240 270 320 3610 480 540 _ 545 610 • 1 qr.,, " '160 180 3 255 285 340 380 505 570 575 .645 - 230 255 170 190 Stslmeard 23.2 or J . _530 ; 90 Is /32 .2 . 3 270 4a ¢00 I 40.1 ar 180 200 100 15/s, IS�Jz 2 3 290 325 385 430 575 ` 650 _675 735 655Jf285 255 190 215 Iv 2 320 360 425 480 640 721) 730/]23 820 240 171are values are:forshort-lime loads due Aowind or earthquake and mum be reduced25 percent for normal loadi• g. Space usib 12 inches (305 mm) on center along i htttrmediate framing members. Alltrvahle shear values for nails in.franming members otuther species set Mail In Division 111, Port 111, shall be cat. �1,it.d' for all other grades by multiplyingg the shear ivilles for nails in Structural l by the following farlors: 0.824or species with apeci0c gravity greelerlhan or . ym:dl l0 0.42,but less lhan'0.49, end O.fiSifor.epedes wuh a specific gravity less titan 0:42. 21'r -ming at adjoining panel edges shall be 3 -inch (76 mm) nominal or wider and'nails shall be staggered where'njils are spaced 2 inches (5! mm) or 21/2 inches (64 mm) on center. 3routin$ at adjoining panel edges shall be 3 -inch (Ili mm) nominal or wider and nails shall be staggered where It .. a.ails having penetration into framing of more Ihan.l /g inches (41. mm) are spaced 3 inches (76 min) or loan on center. NOW ■ ■ M ■ �T■ =moi► DIAPHRAGM BOUNDARY BLOCK LOAD Lill C.aSF 5 CONTINUOUS PANEL JOINTS FRAMING a•s led INN MW 01 a!1li �L' minimi . 0 N.C.11111111 !■��� BLOCKING LOA[ COl I,,INUouS PANEL JOINTS CONTINUOU:: I.ANEL JOINTS NOTE: Framing maybe oriented In either direction fordlaphragn* provided sheathing; fnopedY designed (or'werlical loading. LAMING BLOCKING I Flied Sheu Structural Engineer Project. Page Al SHEAR WALL PANEL SCHEDULE (PER 2001 CBC) Job # i10pl< WALL TYPE do NAIL SPACING (_COMMON OR BOX) ALLOWABLE ANCHOR BOLTS UPPER FLOOR SHEAR, PLF (12" LONG OR 15" FOR 2—POUR) SILL NAILING � 5/8' Drywall, blocked, with 6d cooler nails 85.5 5/8" O 6' 18d' O 18'' O 4" o.c. at edges and field (*175) (•5/8" O 3') <--- DBL. SIDED (sl 5d O 8!) 7/8" stucco over papper backed loth w/f 1 Ga. x 1.5" galy. nail ®8' o.c. at top and bottom e L6, plates, edge of wall, and in field 180. 5/8' O 6' 16d O 8" see note #3 below A3/8" CDX plywood or OSB w/8d nails O 6" o.c. at edges and O 12" o.c. In fold /260 5 8" ®4' 16d 0 6' see note #5 below (►520) (s5/8' O 2') <---IF DBL SiDED ('16d O. 3") 3/8' CDX plwwood or OSB w/8d nails O 4' o.c. 380 5/8" O 4' 16d 04' 11� at edges and O 12" o.c. in field USE 3X FOUNDATION SILL PLATE & ('760) (•5/8" O 2') <---IF OBL SIDED (•16d O 2") 3X STUDS AND BLOCKS AT ADJACENT PANELS ,�. 3/8' CDX plywood or O58 w/8d nails O 3' o.c, 6 edges and O 12' o.c. In field 490 5 8" O 3' / 16d O 3:5' USE 3X FOUNDATION SILL PLATE & (980) (•5/8" O 1.S') <---IF DBL SIDED (•2-16d O 3.5'x. 3X STUDS AND BLOCKS AT ADJACENT PANELS 318", CDX plywood or OSB. w/,8d nails O 2' o:c. ©at edges and O 12" . o.c. in field 640 5/8" O 26" 18d O 2.5" USE 3X FOUNDATION SILL PLATE 81 3X STUDS AND BLOCKS AT ADJACENT PANELS (•1280) (•5/8" O 14') <---IF DBL SIDED (•2-18d O 2.5) 1/2' Str. I plywood w/10d nails O 2" o.c. at edges and O 12" o.c. in field 870 5/8" O 20- 16d O 2' USE 3x 3X ST DSOANDABLOCKTION SLL AT ADJPLATACENT PANELS (•1740) C5/8' O 10") <---IF DBL SIDED (•2-18d O 2) NOTES: 1. (• — - - ) in the table designates that shear wall sheathing is to be applied on both faces of wall. 2. All' plywood edges must be blocked with 2x solid blocking. Field nailing shall be 12' o.c for stud spaced at 16" o.c. and 6" o.c: otherwise. 3. Paper backed self—furring expanded metal lath with ICBO approval. 4. Where allowable shear values exceed 350 pif, fcundation sill plates and all framing members receiving edge nailing from abutting panels shall not be less than. 3—Inch nominal member. Nails shall be staggered. 5. Where plywood is applied on both faces of a well and nail spacing Is less than 6 Inches on center on either side, panel joints shall be offset to fall on different framing members or framing shall be 3—Inch nominal or thicker and nails on each side shall be staggered. 6: All cort?rn-ous exterior footing shall have 5/8" x 12" A.B. O 6' o.c: for monolithic pour concrete system and 5/8" x 15" A.B. for non—monalithic pour concrete system unless at shear wall panel where anchor bolts shall be Installed per shear wall schedule. 7. All interior bearing and non—bearing footing's shall have 7/32 shot pine O 32" o.c. do 48' o.c. respectively., 8. All anchor bolt shall have plate wahere a minimum of 2" x 2" x 3/16' thick. 131 FRED SHED Title: Job # STRUCTURAL ENGINEER Dsgnr: Date: Description (760)955-7522 Scope: ; User; KW0602094 Ver 5.6.1, 25•oat.2002; General Timber Beam C. ic)1983.2002 ENOCALC Engineering Software Descrintion ... BM #1-1 CAR GARAGE DOOR Ir HDR Deflection General information -0.093 in Deflection Calculations are designed to 1997 NDS and 1997 UBC Requirements 0.000 in Section Name 6x12 5.000 ft Center Span 10.00 ft .....Lu 0.00 ft �. Beam Width 5.500 in Left Cantilever It .....Lu Camber ( using 1.5' 0.00 ft Deflection Beam Depth 11.500 in Right Cantilever ft .....Lu ...Length/Defl 0.00 ft 0.0 Member Type awn Douglas Fir -Larch, Nom Q Right 0.000 in Bm Wt. Added to Loads ase Allow 1,350.0 psi Load Dur. Factor 1.250 Fv Allow 85.0 psi Beam End Fixity Pin -Pin Fc Allow 625.0 psi Wood Density 35.000 pcf E 1,600.0 ksi Full Length Uniform Loads Center TOT)SIL 448.00 #/it LL #/ft Left. Cantilever DL #/ft LL #/ft Right Cantilever DL #/ft LL #/ft C Summary Beam Design OK Span= 10:00ft, Beam Width Max Stress Ratio = 5.500in x Det = 11.5in, Ends are Pin -Pin o.a22 : 1 < 1. 0 Maximum Moment 5.8 k -ft Maximum Shear ` 1.5 2.8 k Allowable 17.0 k -ft Allowable 6.7 k Max. Positive Moment 5.79 k -ft at 5.000 ft Shear @ Left 2.32 k C Max. Negative Moment O.00 k -ft at 0.000 it @ Rlght 2.32k Max @ Left Support 0.00 k -ft Oin Max @ Right Support 0.00 k -ft in Max. M allow 17.05 Reactlon&.. fb 573.34 psi fv 44.84 psi Left DL 2.32 k Max 2.32 k Fb 1,687.50 psi Fv 1.06:25 psi Right DL 2.32 k Max 2.321k FDeflections Deflection 4093 in -0.093 in Deflection 0.000. in 0.000 in ...Location 5.000 ft 5.00Q ft ...Length/Deft 0,0 0.0 ...Length/Deft 1;283.7 1,283.73 Right Cantilever... Camber ( using 1.5' D.L. Defl ).... Deflection 0.000 in 0.000 In Center 0.140 in ...Length/Defl 0.6 0.0 L7 Q Left 0.000 in Q Right 0.000 in w a a C IG IG IG 51 42 FRED SHEU Title: Job # STRUCTURAL ENGINEER Dsgnr. Date: Description (760955-7522 scope is User KWrU602094, Ver 5.6.1, 25•oct•2002 General Timber Beam L(019a3.2007ENERCALC Engineering Software Description BM #2- 2 CAR GARAGE DOOR HDR General Information -0.381 in Calculations are designed to 1997 NDS and 1997 UBC Requirements Section Name 6x14 0.000 in Center Span 16.00 ft .....Lu 0.00 It Beam Width 5.500`in Left Cantilever ft .....LU 0.00 ft Beam Depth 13.500 in Right Cantilever ft .....Lu 0.00 ft Member Type Sawn. Douglas Fir - Larch, No.1 0:000 in Bm Wt Added to Loads Max. Positive Moment a e, , o ,350.0 psi Load Dur. Factor 1.250 Fv Allow 85.0 psi Beam End Fixity Pin -Pin Fc Allow 625.0!psl Wood Density 35.000pct E 1,600.0ksi Full Length Uniform Loads Center ' b T -AL 448.00 #//ft LL #lit Left Cantilever DL. #Ht LL #1ft Right Cantilever DL Oft LL #/ft Beam Design OK Span 16:0011; Beam Width = 5.500in x De th - 13 51n, Ends are Pin -Pin Max Stress Ratio 0•�3 ; < l • o Deflections Deflection -0.381 in -0.381 in Deflection 0.000 in 0.000 in ...Location 8.000 ft Maximum Moment 0.0 14.9 k=ft Maximum Shear * 1.5 4.8 k Allowable 23.2 k -ft. D.L. Defl ) ... Allowable 0:000 in 7.9 k Max. Positive Moment 14.91 k -ft at 8.000 ft Shear. @ Left. 3.73 k Max. Negative Moment 0.00 kit at 16.000 it 0.000 in C Right 3.73 k Max ,@ Left Support 0:00 k -ft Max @ Right Support 6.00 k -it Max. M allow 23.19 Reactions... lb 1,071.23 psi fv 65.68 psi Left DL 3.73 k Max 3.73k Fb 1,665.56 psi Fv 106.25 psi Right DL 3.73 k Max 3.73 k Deflections Deflection -0.381 in -0.381 in Deflection 0.000 in 0.000 in ...Location 8.000 ft 8.000 ft ...Length/Defl 0.0 0:0 ..-.Length/Deft 504.1 504.11 Right Cantilever... Camber (using 1.5' D.L. Defl ) ... Deflection 0:000 in 0.000 in @ Center 0.571 in ...Length/Defl 0.0 0.0 @ Left 0.000 in @ Right 0.000 in w=37-x14'=yt�8 hLF w a o I br L• L �0 1C. FRED SHEU STRUCTURAL ENGINEER (750)955-7522 Description BM #3- Title: Dsgnr: Description Scope General Timber Beam NG AND GREAT ROOM Section Name (!!14_ 0.00 k -ft at Center Span 12.00 it ...Lu Beam Width 5.500 in Left Cantilever ft .....Lu Beam Depth 13.500 in RightZantilever ft .....Lu Member Type Sawn. Douglas Fir - Larch, No.1 Max. M allow Bm Wt. Added to Loads Reactions... Rig it tb Base ow 1,350.0 psi Load Dur. Factor 1.250 Fv Allow 85.0 psi Beam End Fixity Pin-PinFc Allow 625.0 psi Wood Density 35.000 paf E 1,600.0 ksi [Full Length Unifonn Loads Center %T j0L 768.00 #/ft LL #/ft Left Cantilever DL #/ft LL #/ft Right Cantilever DL #/ft LL Wft Job # B3 Date: 0.00 It 0.00 ft Beam Design OK Span=12:00ft, Beam Width = 5.5001n x DepAb = 13.5in, Ends are Pin -Pin Max Stress Ratio 0.732 a jj < I -o Maximum Moment 14.1 k -ft Maximum Shear' 1.5 5.8 k Allowable 23.2 k -ft Allowable 7.9 k Max. Positive Moment 14.15,k -ft at 6:000 ft Shear. @ Left 4.72 k Max. Negative Moment 0.00 k -ft at 0..QW it @ Right 4.72 k ...Length/Deft Max @ Left'Support 0.00 k -ft eanebei. @ Left 0.000011 0.305 in Max @ Right Support 0.00 k -ft @ Right 0.000 in Max. M allow 23.19n Reactions... Rig it 0.000 in 6.000 In fb 1,016.30 psi. fv 77.75 psi Left DL 4:72 k Max 4.721k Fb 1,665.56 psi FV 106.25,ps1 Right DL 4.72 k Max 4.72 k Deflections Deflection -0.203 in ...Location 6.000 It ...Length/Deft 708.5 Camber ( using 1.6' D.L. Deft ) ... @ Center 0.305 in @ Left 0.000 in @ Right 0.000 in /ROOD w=3Zxzf :2-l63 Pl,r . I LVaY LQIk VOIIYIQIQI ... J,.. -0.203 in Deflection 0.000 in 0.000 in 6.000 it ...Length/Defl 0.0 0.0 708.47 Right Cantilever... Deflection 0.000 in 6.000 In ...Length/Den 0.0 0.0 a A L Beam Design OK Span= 12.00ft, Beam Width= 5.500in x D 51n, Ends are Pin -Pin Max Stress Ratio 0.626 : 1 < 1'0 0.000 in Center Span 12.00 ft ...Lu 0:00 ft Maximum Moment 5.5001n Left Cantilever Maximum Shear' 1.5 4.9 k Allowable ft .....Lu 0_.00 ft 23.2 k -ft awn Allowable Camber ( using 1.6 • D.L. Defi 7.9 k Max. Positive Moment 13.64 k -ft at 6.000 ft Shear: @ Loft 3:89 k Max.. Negative Moment. 0.00 k -ft at 0.000 ft Wood Density @ Right 2:33 k Max @ Left Support 0.00 k -ft Q Right 0.000 in C in Max:@ Right Support 0.00 k=ft CO$rr ® CPnhw n 2R7 in Max. M allow 23.19 Reactions..: 0-04 Q '"n in fb 980.10 psi tv 66.55 psi Left DL 3.89 k Max 3.89k Fb' 1,665.56 psi Fv 106.25 psi Right DL 2.33 k Max 2.33 k Deflections FRm SHED ST""ICTURAL ENGINEER (760%955-7522 Description BM`#4- HDR Title : Dsgnr: Description Scope : General Timber Beam BED 2 Date: Job # 19 It General Information -0.171 in Calculations are designed to 1987 NDS and 1997'USC Requirements Section Name 6x14 0.000 in Center Span 12.00 ft ...Lu 0:00 ft Beam Width 5.5001n Left Cantilever ft .....Lu 0.00 ft Beam Depth 13.500 in Right Cantilever ft .....Lu 0_.00 ft Member Type__. awn Do�up�las, Fir - Larch No. Camber ( using 1.6 • D.L. Defi Bm Wt: Added to Loads Fb Base Allow 1,350.0 psi Load Dur. Factor 1.250 Fv Allow 85.0 psi Beam End Fixity Pin -Pin Fc Allow 625:0 psi Wood Density 35.000 pd E 1,600:0 ksi Trapezoidal Loads #1 DL Q Left 520.00 #/ft LL @ Left #/ft Start Loc 0.000 ft DL @ Right 520.00 #%ft LL @ Right #/ft End Loc 6.006 ft � Poing Loads P Bead Load 2,880.0 lbs lbs lbs lbs lbs lbs lbs Live Load lbs lbs lbs lbs - lbs lbs lbs ...distance 6.000 ft 0.000 ft 0.00oft 0.000 ft 0.000 ft 0.000 ft 0.000ft . o ft Deflection -0.171 in -0.171 In Deflection 0.000 in 0.000 in ...Location 5.808' 'ft 5.808 ft ...Length/Defl 0.0 0.0 L ...Length/Defl 840.2 840.22 Right Cantilever... Camber ( using 1.6 • D.L. Defi ) ... Deflection 0.000 in 0.000 in Center 0.257 in ...Length/Defl 0.0 0.0 Left 0.000 in Q Right 0.000 in CO$rr Z IT W Q d �z, FRIED SHEU STRUCTURAL ENGINEER (760)955-7522 Description BM #5- HDR Title : Dsgnr. Description: Scope : General Timber Beam OF GREAT Date: a.r Job # General Information Dead Load Calculations are designed to 1997 NDS and 1997 UBC Requirements Section Name x12 Dead Load Center Span 8.00 ft ...Lu 0.00 ft Beam Width 5.500 in Left Cantilever ft .....Lu 0:00 ft Beam Depth 11.500 n Right Cantilever ft .....Lu 0.00 ft Member Type Sawn Dou las Fir -Larch No..1 —Length/Defl Bm Wt. Added to Loads `— Fb Base low 1,350.0 psi Load Dur. Factor 1.250 Fv Allow 8&O,psi Beam End Fixity Pin -Pin Fc Allow 625.0 psi Wood Density 35.000pcf E 1,600.0ksi ,r�J ra Center ToT,QL Left Cantilever DL Right Cantilever DL #/ft LL 0/ft #/ft LL #/ft Wit LL #/ft Beam Design OK Span= 8.00ft, Beam Width = 5.500in x D th = 11.5in, Ends are Pin -Pin Max Stress Ratio t t., o Deflections Center Span... Dead Load Total Load _ Left Cantilever... Dead Load Total Load Deflection Maximum Moment -0.081 in 7.8 k -ft Maximum Shear' 1.5 4:5 k Allowable 4.000 ft 17.0 k -ft 0.0 Allowable —Length/Defl 6.7 k Max. Positive. Moment 7.80 k -ft at 4.000 ft Shear. Left 3.90 k Max. Negative Moment 0.00 k -ft at 0.000 ft 0.121 in @ Right 3.90k Max @ Left Support 0.00 k -ft Left 0.000 In C OOOin Max @ Right Support 0:00 k -ft 0:000 in in Max. Mallow 17.05 Reactions... fb 772.39 psi fv 71.06 psi Left DL 3.90 k Max 3.90k Fb 1,687:50 psi Fv 106.25 psi Right DL 3.90* Max 3.90 k Deflections Center Span... Dead Load Total Load _ Left Cantilever... Dead Load Total Load Deflection -0.081 in -0.081 in Deflectlon 0.000 in 0.000 In ...Location 4.000 ft 4.000 ft ...Length/Defl 0.0 0.0 —Length/Defl 1,191.1 1,,191.14 RlghtCantilever... Camber ( using 1.5 " D.L. Defl ) ... Deflection 0.000 In 0.000 in @ Center 0.121 in ...Length/Defl. 0.0 0.0 Left 0.000 In Right 0:000 in W =: 3z IP5F A 3o' 4Gco PLT - w a a S'JI 0 IG IC IG IG FRED SHEU STRUCTURAL ENGINEER (760)955-7522 Title: Dsgnr: Description Scope: User: KW0502094 Ver 5.6.1 25.Oct•2002 General Timber Beam ren 983.9M2 FNF14(:AI (`.Fnoinwwrino SnHu.w.w - F'� Date: Job # 86 General Information 0.560 Calculations are designed to 1997 NDS and"1997 UBC* Requirements Section Name 5.126x15.0 Center Span 21:00 ft ...Lu 0.00 ft Beam Width 5.125 in Left Cantilever it .....Lu 0.00 ft Beam Depth 15.000 in Right Cantilever ft ......Lu 0.00 ft Member Type GluLam Douglas Fir, 24F - V4 Allowable Bm Wt. Added to Loads 18.3 It Max. Positive Moment 2,347.0 psi Load Dur. Factor 1.250 Fv Allow 190.0 psi Beam'End Fixity Pin -Pin Fc Allow 650.0 psi Wood Density 35.000pcf E 1,800.0 K61 Full Lenath Uniform Gl) Center 7b TAL 448:00 Oft LL #/6 Left Cantilever DL #/ft LL #/ft Right Cantilever DL #%ft LL #/ft Beam Design OK Span= 21.00ft, Beam Width = 5.125in x Deptti = 15.1n, Ends are Pin -Pin Max Stress Ratio 0.560 ; 1 -Clio Dead Load Total Load Deflection Maximum Moment -0.787 in 25:7 k -ft Maximum Shear * 1.5 6.5 k Allowable 10.500 ft 45:9 k -ft 0.0 Allowable ...Length/Deft 18.3 It Max. Positive Moment 25.73 k -ft at 10.506 it Shear. a Left 4.90 k Max: Negative Moment. 0.00 k -ft at 0.000 ft @ Right 4.90 k Max @ Left Support 0:00 k -ft 0.000 in C O in Max.@ Right Support 0:00 k -ft n Max. M allow 45:95 Reactions... .Bight 00010 fb 1,606.31 psi fv 84':90 psi Left DL 4.90 k Max 4:901( Fb 2,869.01 psi Fv 237.50 psi RlghtDL 4.90 k Max 4.901k Deflections Center Span... Dead Load Total Load Left Cantilever... Dead Load Total Load Deflection -0.787 in -0.787 in Deflection 0:000 in 0.000 In ...Location 10.500 ft 10.500 ft ...Length/Deft 0.0 0.0 ...Length/Deft 320.2 320:17 Right Cantilever:.. Camber ( using 1.5 * D.L. Defl ) ... Deflection 0.000 in 0.000 in Center 1.181 In ...Length/Defl 0.0 0;0 Left 0.000 in Right 0.000 in W= 3zX/� r _ 'Ays, pq W, � a r ZI JL" red Shea Project >'LoRF-4ZO Page e Mractilral Engineer Job # S 72 SEISMIC FORCES Seismic zone 4 Z = 0.4 Soil profile = So Bearing wall system R 5..5 Seismic fault: SAnI AKPREAs FAULT Closest distance to the fault 5 J<m Near -Source factor Na = 1,2 Seismic coefficient Ca =0.44 Na = D - 5 Z g Standard occupancy I= 1.0 Simplied total design base shear: 3.0 Ca 3x 0.529 Eq. (30-11) V =------------ W =------------- W 0. Z Z8 W R $'- 5 _, Forces at each level: 3.0 Ca Eq. (30-12) Fx =----------- wi R Diaphragm force: '3.0 Ca Fpx =—----- ---- wpx R For allowable stre:.: design VASD = V/1.4 = 0.2.0 6 W h �ed Sheu Project P"-0RENz0 Page CZ Structural Engineer Job # SY 72 - WIND FORCES Design Wind Pressure P = Ce Cq qs Iw (20-1) Combined. Height, Exposure and Gust Factor Coefficient (Table 16-G) Ce = 1.06 H = 0-15', Exposure C - Ce = 1.13 H = '20', Exposure C, Ce = 1..19 H = 25', Exposure C Ce = 1.23 H = 30', Exposure C Ce = 1.31 H = 40', Exposure C Pressure Coefficient (Table,16-H) V CI =1.3 Primary frame, projected area method Cq = 1.2 Wall not in discontinuity area Cq = 1.5 Wall corners in discontinuity area (outward wind) Cq = 1.6 Partially enclosed structure wall Wind Stagnation Pressure at Standard .Height of 33 feet (Table 16-F) qs = 12.6 psf Basic Wind Speed = 70 MPH ✓ qs = 16.4 psf Basic Wind Speed = 80 MPH qs = 20.8 psf Basic Wind Speed = 90 MPH Standard Occupancy Iw = 1.0 ( Table 16-K) Mean Roof Height = t7' ===>P=(/,/3 )( /.3 )( /(•Y )( /)= ziF./ psf Fred Shea Project D' L OREn�Z O page c 3 Structural Engineer Job # s q / 7z 1sT FLOOR SHEAR WALL DIAGRAM -- Designates Shear Wall Number L.- - Designates Longitudinal Direction 5,w. 9 L= 7 rmex=max JVwx(1.0/lw)/Vi} = Reliability/ Redundancy Factor P = 2 -201 rmex JVAB = Z a a o.1/ 65z6 T - -- Designates Transverse Direction s' w rmax= max { Vw x. (10 / 1w) / V1 _ Reliability/ Redundancy Factor e 2 - 20/ rmex As = z _ 40 L- 8ell C-7 Q [-C 65x6 � O 3. n c8 (07 - b .F ('h l/ el 11 rr • Fred Sheu Project: D'Lorenzo Residence PageU ` StmaurQ.Z Engineer Job # S4172 LATERAL LOADS Ic IG IG I C - I c- Sentlon 4 L-2 Input: Reliability/ Redundancy Factor= 1.00 Roof weight= 12.0 Exterior wall weight= 16.0 1.7.0 Floor depth= Seismic Coefficient= 0206 Floor weight= 0.0 Interior wall weight= 10.0 Wind Load, Wind pressure= 24.1 psf pif <-- controls Seismic Load, C' Section L-1 432.0 Ext: Wall DL = Floor DL= Input: Roof height= 4.6 Wall height= 10.0 # of exterior walls= 2 Ext. Wall DL = Roof depth= 27.0 Floor depth= 0.0 ,# of interior walls= 1 Int. Wall DL = Wind Load, Vw = 24.1 * (4.6 + 10.0/2) = 231.4 pif <-- controls C- Total DL, W = 432.0 + 0.0 + 80.0 + 100.0 = 612.0 plf Seismic Load, Roof DL = 12.0 * 27.0 = 324.0 plf Floor DL= 0.0*0.0= 0.0 Ext. Wail DL = 2 * 16.0 * 10.0/2 = 160.0 Int: Wall DL- 1 * 10.0 * 10.0/2 = 50.0 4', Total DL, W = 324,0 + 0.0 + 160.0 + 50.0 = 534.0 plf Seismic Load = 0.206 * 534.0 * 1.00 = 110.0 pif Ic IG IG I C - I c- Sentlon 4 L-2 Input: Roof. height= 4.5 Wall height= 10.0 # of exterior walls= 1 1.7.0 Floor depth= Roof depth= 36.0 Floordepth= 0.0 # of interior walls= 2 Wind Load, Vw = 24.1 * (4.5 + 10.0/2) = 229.0 pif <-- controls Seismic Load, Roof DL = 12.0,* 36.0 = 432.0 Ext: Wall DL = Floor DL= 0.0*0.0= 0.0 Int. Wall. DL = 1 * 10.0 * 12.0/2 = Ext. Wall DL = 1 * 16.0 * 10.0/2 = 80.0 204.0 + 0.0 + 96.0 + 60.0 = Int. Wall DL = 2 * 10.0 * 10:0/2 = 100.0 74.2. pif Total DL, W = 432.0 + 0.0 + 80.0 + 100.0 = 612.0 plf Seismic Load = 0.206 * 612.0 * 1.00 = 126.1 plf Section L-3 Input: Roof height= 4.5 Wall height= 12.0 # of exterior walls= 1 Roof depth= 1.7.0 Floor depth= 0.0 # of interior walls= 1 Wind Load, Vw = 24.1 * (4.5 + 12:0/2) = 253.1 pif <-- controls Seismic Load, Roof DL = 12.0 * 17.0 = 204.0 Floor DL= 0.0*0.0= 0.0 Ext: Wall DL = 1 * 16.0 * 12.0/2 = 96.0 Int. Wall. DL = 1 * 10.0 * 12.0/2 = 60.0 Total DL, W = 204.0 + 0.0 + 96.0 + 60.0 = 360.0 plf Seismic. Load = 0.206 * 360.0 * 1.00 = 74.2. pif C 'A IC 10 [GI C, f Fred Sheu Project: Morenzo Residence. Page C-5 Stncsctural Engineer Job* LATERAL 'LOADS Reliability/ Redundancy Factor= 1.00 Roof weight= 12.0 Exterior wall weight= 16.0 Seismic Coefficient= 0.206 Floor weight= 0.0 interior wall weight= 10.0 Wind' pressure= 24.1 psf Wind Load, Vw = 24.1 * (4.5 + 10.0/2) _ Section L-4' Of <-- controls Seismic Load, Roof DL = Input.: Roof height= 4.5 Wall height= 14.0 # of exteriorvells= 1 Roof depth= 33.0 Floor depth= '0.0 *of interiorwalls= 0 Wind Load, Vw = 24.1 * (4.5 + 14.0/2) = 277.2 pif <-- controls. Seismic Load, Roof DL = 12.0 * 33.0 = 396.0 Int. Wall DL = Floor DL= 0:0*0.0= 0.0 pif Ext. Wall DL = 1 * 16.0 * 14.0/2 = 1.12:0 676:0 plf Int. Wall DL= 0*10.0*14.0/2= 0.0 1.39.3 Total DL, W = 396.0 + 0:0 + 112.0 + 0.0 = 508.0 plf Seismic Load = 0.206 * 508.0 ` 1.00 = 104.6 pif Section L-5 Input: Roof 'height-- 4.5 Wali height= 10.0 # of exterior walls= 1 54.0 Floor depth= Roof depth= 33.0 Floor depth= 0.0 # of Interiorwalls= 4 Wind Load, Vw = 24.1 * (4.5 + 10.0/2) _ 229.0 Of <-- controls Seismic Load, Roof DL = 12:0 * 33.0 = 396.0 Ext. Wail DL = Floor`DL = 0.0 * 0.0 = 0:0 Int. Wall DL = 3 * 10.0 * 10.0/2 = Ext. Wall DL- 1 * 16.0 * 10.0/2 = 80.0 648.0 +,0.0 + 80.0 + 150.0 = Int. Wall DL = 4 * 10:0 * 10.0/2 = 200.0 180.9 pif Total DL, W = 396.0 + 0.0 +,80:0 + 200.0- 676:0 plf Seismic Load = 0.206 *,676.0 * 1.00- 1.39.3 plf Section L-6 Input: Roof height= 4.5 Wall height= 10.0 # of exterior walls= 1 Roof depth= 54.0 Floor depth= 0.0 # of interior walls= 3 Wind Load, VW = 24.1 * (4.5 + 10.0/2) = 229.0 plf <---.controls Seismic Load, Roof DL = 12.0 * 54.0 _ 646.0 Floor DL = 0.0 * 0.0- 0.0 Ext. Wail DL = 1 * 16.0 * 10.0/2 = 80.0 Int. Wall DL = 3 * 10.0 * 10.0/2 = 150.,0 Total DL, W = 648.0 +,0.0 + 80.0 + 150.0 = 878.0 pif Seismic Load = 0206 'V&0 * 1.00 = 180.9 pif .J 'Fred Sheu Project: D'Lorenzo Residence Page Gb Structural Engineer Job # S4172 LATERAL LOADS. Reliability/ Redundancy Factor 1.00 Roof weight-- Seismic eight=Seismic Coefficient= 0.206 Floor weight-- Wind eight=Wind pressure= 24.1 psf G Section L-7 Input: Wind Load, Seismic Load, Section L-8 Input: G Wind Load, Seismic Load, G 12.0 Exterior, wall weight= 16.0 0.0 Intedorwall weight= 10.0 Roof height= 4.5 Wall height= 14.0 #=of exterior walls= 1 Roof depth= 50.0 Floor depth= 0.0 # of interior walls= 0 Vw = 2.4.1 * (4.5 + 14.0/2) = 277.2 plf <-- controls Roof DL = 12.0.50.0 = 600:0 Floor DL= 0.0*0.0= 0..0 Ext. Wall DL = 1 ` 16.0 * 14.012 = 112.0 Int. Wall DL= 0*10.0*14.0/2= 0.0 Total DL, W = 600.0 + 0.0 + 112.0 + 0.0 = 712.0 pif Seismic Load = 0.206 * 712.0 * 1.:00 = 146.7 plf Roof height= 4.5 Wail height= 10.0 # of exterior walls= 1 Roof depth= 42.0 Floor depth= 0.0 # of interior walls= 2 Vw = 24.1 * (4.5 + 10.0/2) = 229.0 plf <-- controls Roof DL = 12.0 "42.0 = 504.0 Floor DL= 0.0*0.0= 0.0 Ext. Wall DL = 1 * 16.0 * 10.012 = 80.0 Int. Wall DL = 2 ` 1:0.0 * 10.0/2 = 100.0 Total DL, W = 504.0 + 0.0 + 80.0 + 100.0 = 684.0 pif Seismic Load = 0.206 * 684.0 * 1.00 = 140.9 pif Fled Sheu Project: D'Lorenzo Residence Page c 7 Structural Engineer Job # S4172 LATERAL LOADS Reliability/ Redundancy Facto - 1.00 Roof weight= 12.0 Exterior wall weight= 16.0 Seismic Coefficient= 0.206 Floor weight= 0.0 Interior wall weight= 10:0 Wind pressure= 24.1 psf 229.0 pif <--- controls Seismic Load, Section T-1 42.0 * 48.0 = 576.0 Ext: Wall DL = Input: Roof height= 4.5 Wall height= 10.0 # of exterior walls= 2 Roof depth= 50.0 Floor depth= 0.0 # of interior walls= 1 ;Hind Load, Vw =-24.1 * (4.5 + 10.0/2) = 229.0 pif <- controls 297.1 plf <- controls Total DL, W = 576.0 + 0.0 + 80.0 + 200.0 = 856.0 pif Seismic Load., Roof DL = 12.0 * 50:0 = 600.0 176.3 pif Floor DL = 0.0 * 0.0 = 0.0 Ext. Wall DL = 2 * 16.0 * 10.0/2 = 160.0 Int. Wall DL = 1 * 10.0 * 10.0/2 = 50.0 Total DL, W = 600.0 + 0.0 + 160.0 + 50.0 = 81'0.0 pif Seismic Load = 0.206 * 810.0 * 1.00 = 166.9 plf fG IG Section T-2 Input: Roofheight= 4.5 Wall height= 10.0 # of exterior walls= 1 84.0 Floor depth= Roof depth= 48.0 Floor depth= 0.0 # of interior walls= 4 Wind Load, Vw = 24.1 * (4.5 + 10.0/2) = 229.0 pif <--- controls Seismic Load, Roof DL = 42.0 * 48.0 = 576.0 Ext: Wall DL = Floor DL = 0.0 * 0.0 = 0.0 Int. Wall DL = 3 * 10.0 * 14.0/2 = Ext. Wall DL = 1 * 16.0 * 10.0/2 = 80.0 1,008.0 + 0.0 + 224.0 + 210.0 = Int. Wall DL = 4 * 10.0 * 10.0/2 = 200.0 297.1 plf <- controls Total DL, W = 576.0 + 0.0 + 80.0 + 200.0 = 856.0 pif Seismic Load = 0206 * 856.0 * 1.00 = 176.3 pif Section T-3 Input: Roof height= 4.5 Wall'height= 14.0 # of exterior walls= 2 Roof depth= 84.0 Floor depth= 0.0 # of interior walls= 3 Wind Load, Vw= 24.1 * (4.5 + 14.0/2) = 277.2 plf Seismic Load, Roof DL = 12.0 * 84.0 = 1008.0 Floor DL = 0.0 * 0.0 = 0.0 Ext: Wall DL = 2 * 16:0 * 14.0/2 = 224.0 Int. Wall DL = 3 * 10.0 * 14.0/2 = 21.0.0 Total DL, W = 1,008.0 + 0.0 + 224.0 + 210.0 = 1442.0 plf, Seismic Load = 0.206 * 11442.0 * 1.00 = 297.1 plf <- controls G, `eu Project: D'Lorenzo Residence Page $ ►Sbi, 'ural Engineer Job # S4172 G LATERAL LOADS Reliability/ Redundancy Factor= 1.00 Roof weight= 12.0 Seismic Coefficient= 0.206 Floor weight= 0.0 Wind pressure= 24.1 psf C' Secti . ^ T-4 0.0 Input: Roof depth= Olind' Load, G # of interior wails= 0 Vw = 24.1 * (4.5 a 0.0/2) = Ceismic Load, plf <-- controls Roof DL = 12.0 * 34:0 = Section T-5 Imo_ G 0.0 "rind Load, 0*16.0*0:0/2= ,.,aismic ,Load, C 'Int. Wall. DL G 0.0 G Total DL, W = [IN Exterior wall weight= 16.0 Interior wall weight= 10.0 Roof height= 4.5 Wall height= 0.0 # of exterior walls= 0 Roof depth= 34.0 Floor depth= 0.0 # of interior wails= 0 Vw = 24.1 * (4.5 a 0.0/2) = 108.5 plf <-- controls Roof DL = 12.0 * 34:0 = 408.0 Floor DL - 0.0 * 0.0 = 0.0 Ext. Wall DL=- 0*16.0*0:0/2= 0.0 'Int. Wall. DL 0 * 10.0 * 0.0/2 = 0.0 Total DL, W = 408.0 + 0.0 + 0.0 + 0.0 = r�~ 408.0 - plf Seismic Load = 0.206 * 408.0 * 1.00 = 84.0 plf Roof heigh'.= 4.5 Wall height= 14.0 # of exterior walls= 2 Roof depth- 33:0 Floor depth= 0.0 # of interiorwalls= 2 Vw = 24.1 * (4.5 + 14.0/2) = 277.2 plf <-- controls Roof M = 12.0 ' 33.0 = 396.0 Floor DL = 0.0 * 0.0 = 0.0 Ext. Wall DL= 2*16.0*14.0/2= 224.0 Int. Wall DL = 2 * 10.0 * 14.0/2 = 140.0 Total DL, W = 396.0 + 0:0 + 224.0 + 140.0 _ - -- 760.0 pif Seismic Load - 0.206 !'760.0 * 1.00 = 156.6 plf G -K4.1 Sheq Project: D'Lorenzo Residence PaG I 9e Sft7 .;!tural Engineer Jib # s4172 ROOF .DIAPHRAGM Direc►.'an: T-3 Diaphr lgm Force: G Diaphragm Shear IG HORIZONTAL DIAPHRAGM DESIGN Between Shear Walls: 13 & 14 Width L(ft) = 32.0 Depth ,D(ft) = 84 Wind Load = 277.2 pif Seismic Load. Fpx = (3.0 Ca / R) Wpx = 297.1 plf <=== control 297.1 x (L/2) / D = 56.6 pif Use: 1/2" APA Rated Sheathing, or O.S.B. unblocked disphragm, exterior grade, Index 24/0 w/ 8 nails @ 6" o.c. at edges and boundaries, @ 12" o.c. in field Splice Chord Force, F = M / D = 1/8 x 297.1 x (32.0)"2 / 84.0 = 4531b 16d'sinker nails: allowable shear for double top plate, single;shear, 1.5" penetration (p) v = 103. lbs x Cd . =103x(p/12dia.)=103x(1.5"/12x0.135")=95 lbs Top Plate Splice: n = F /(1.33x95) = 4534127 = 3.6 Use ( 12) -16d sinkers IG IL IG Fred Sheu Project: D'Lorenzo Residence Pagel Strt: a ural Engineer Job # S4172 SHEAR WALL LINE # 2 PANEL DESIGN: Section a- Tributary, width (ft) = 37.0 Section b•- Tributary width (ft) = 13 Seismic load above this floor -(lb) = 0 Total seismic load = 110:0.37/2 + 126:1.13/2 + O= Total wind load = 231.4'3712 + 229:0'13/2 + 0 = Total panel length = 13.5 1 ft Seismic(plf)= 110.0 Wind. (pif)= 231.4 Seismic(plf)= 126.1 Wind (plf)= 229.0 Wind load above this floor (lb) = 0 2,855 lbs 5,769 lbs <---controls Shear .= 5,769/13.5 = 427.4 Ib/ft >>> Panel type used OVERTURNING ANALYSIS: Panel length (ft) = Panel Height (ft)' = Uplift due to lateral load (lb)= Dead load on the panel (lb)= Roof tributary (ft) Floor tributary (ft) Wall weight (psf) Uplift of this floor(lb) = Uplift from upper floor (lb) = Total hold down force (lb) = >>> Hold -clown Type 3/8" CDX Plywood, Mark - A (see sheet SDI for nailing schedule) Panel#1 SHEAR WALL LINE # 1 Panel#3 Panel #4 Panel#5 PANEL DESIGN: 13.50 0.00 0.0 0:0 0.0 Section a- Tributary width (ft) = 37.0 Selsmic(plf)= i 10.0 Wind (ptf)= 231.4 Section b- Tributary width (ft) = 0 Seismic(plf)= 0.G Wind (pif)= 0.0 Seismic load above this floor (lb) = 0 Wind load above this floor (lb) = 0 Total sFismic load = 110.0.37/2 + 0 = 2,035 lbs. 1.0 0.0 Total wind load = 231.4.37/2.4 o - 4,281 lbs <--controls 0.0 Total panel length = 26.0 ft 0.0 00 16 Shear == 4,281/26.0 = 164:7 Ib/ft 0 0 3,496 >>> Panel type used 3/8" CDX Plywood, Mark - ,o (see sheet SDI for nailing schedule) OVERTURNING ANALYSIS: 0 0 0 0 0 3,496 'Panel #1 Panel #2 Panel #3 Panel'#4 Panel #5 Panel #6 Panel length (ft) = 26.00 0.06 0.0 0.0 0.0 0.0 Panel height (ft) = 10.0 0.0 0.0 0 0 0 Uplift due to lateral load (Ib)= 1,647 0 0 0 0 0 Dead load on the panel (lb)= 1498 0 0 0 0 0 Roof tributary (ft) 1.0 0.0 0.0 0.0 0.0 0.0 Floor tributary (ft) 0.0 0.0 0.0 0.0 0.0 0.0 Wall weight (psf) 16 6 0 0 0 0 Uplift of this floor(lb) = 148 • 0 0' 0' 0 0 Uplift from upper floor (lb) = 0 0 0 0 0 0 Total hold-down force (lb) = 1.48 0 0 0 0 0 >>> Hold-down Type STHD14 SHEAR WALL LINE # 2 PANEL DESIGN: Section a- Tributary, width (ft) = 37.0 Section b•- Tributary width (ft) = 13 Seismic load above this floor -(lb) = 0 Total seismic load = 110:0.37/2 + 126:1.13/2 + O= Total wind load = 231.4'3712 + 229:0'13/2 + 0 = Total panel length = 13.5 1 ft Seismic(plf)= 110.0 Wind. (pif)= 231.4 Seismic(plf)= 126.1 Wind (plf)= 229.0 Wind load above this floor (lb) = 0 2,855 lbs 5,769 lbs <---controls Shear .= 5,769/13.5 = 427.4 Ib/ft >>> Panel type used OVERTURNING ANALYSIS: Panel length (ft) = Panel Height (ft)' = Uplift due to lateral load (lb)= Dead load on the panel (lb)= Roof tributary (ft) Floor tributary (ft) Wall weight (psf) Uplift of this floor(lb) = Uplift from upper floor (lb) = Total hold down force (lb) = >>> Hold -clown Type 3/8" CDX Plywood, Mark - A (see sheet SDI for nailing schedule) Panel#1 Panel#2 Panel#3 Panel #4 Panel#5 Panel #6 13.50 0.00 0.0 0:0 0.0 0.0 10.0 0.0 0.0 0 0 0 4,274 0 0 0 0 0 778 0 0 0 0 0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0:0 0.0 0.0 00 16 0 0 0 0 0 3,496 0 0 0 0 0 0 0 0 0 0 0 3,496 0 0 0' 0 0 STHD14 Fred Sheu Project: D'Lurenzo Residence Page -LL Stnictural Engineer Job # S4172 SHEAR WALL LINE # 3 PANEL DESIGN: Panel #1 Panel #2 Section a- Tributary width (ft) = 13 Section b- Tributary width (ft) = 15 Seismic load above this floor (lb) = 0 Total seismic load = 126.1`13/2 + 74.2'1512 + 0 - Total wind load = 229.013/2 + 253.1.15/2 + 0 = Total panel length = 14.5 ft Seismic(plf)= 126.1 Wind (pif)= 229.0 Seismic(plf)= 74.2 Wind (plf)= 253.1 Wind load above this floor (lb) = 0 1,376 lbs 3,387 lbs <---controls Shear = .3i387/14.5-= 233.6 Ib/ft. >>> Panel -type used 3/8" CDX Plywood, Mark - to (see sheet SDI for nailing schedule) OVERTURNING ANALYSIS: SHEAR WALL. LINE # 4 PANEL DESIGN: Section a- Tributary width (ft) 15 Section b Tributary width (ft) 9 Seismic load above this floor (ib) = 0 Total seismic load = 74.2'15/2 + 104:6.9/2 + 0 = Total wind load = 253.1*1512 + 277.2'912 + 0 = Total panel length = 15.0 ft. Seismic(pif)= 74.2 Wind (plf)= 253.1 Seismic(plf)= 104.6 Wind (pit)= 277:2 Wind'load above this floor (ib) _ 0 1,027 lbs 3,146 lbs <--controls Shear = 3,146/15.0 = 209.7 Ib/ft >>> Panel type used OVERTURNING ANALYSIS: Panel length (ft) = Panel- height (ft) = Uplift due to lateral load (lb) Dead load on the panel (lb)= Roof tributary (ft) Floor tributary (ft) 'Wall weight,(psf) Uplift of this floor(lb) = Uplift from, upper floor (lb) = Total hold-down force (lb) = >> Hold-down Type 3/8" CGX Plywood, Mark - ro (see sheet SDI for nailing schedule) Panel #1 Panel #1 Panel #2 Panel #3• Panel #4 Panel #5 Panel #6 Panel length (ft) = 8.50 6.00 0.0 0.0 0.0 0.0 Panel height (ft) = 10.0 10.0 0.0 0 0 0 Uplift due to lateral load (lb)= 2,336 2,336 0 0 0 0 Dead load on the panel (lb)= 490 346 0 0 0 0 -Roof tributary (ft) 1.0 1.0 0.0 0.0 0.0 0.0 Floor tributary (ft) 0.0 0.0 0.0 0.0 0.0 0.0 Wall weight (psf) 16 16, 0 0 0 0 Uplift of this floor(lb) = 1,846 1,990 0 0 0 0 Uplift from upper floor (lb) = 0 0 0 0 0 0 Total hold-down force (lb) = 1,846 1,990 0 0 0 0 >> Hold-down Type STHD14 STHD14 SHEAR WALL. LINE # 4 PANEL DESIGN: Section a- Tributary width (ft) 15 Section b Tributary width (ft) 9 Seismic load above this floor (ib) = 0 Total seismic load = 74.2'15/2 + 104:6.9/2 + 0 = Total wind load = 253.1*1512 + 277.2'912 + 0 = Total panel length = 15.0 ft. Seismic(pif)= 74.2 Wind (plf)= 253.1 Seismic(plf)= 104.6 Wind (pit)= 277:2 Wind'load above this floor (ib) _ 0 1,027 lbs 3,146 lbs <--controls Shear = 3,146/15.0 = 209.7 Ib/ft >>> Panel type used OVERTURNING ANALYSIS: Panel length (ft) = Panel- height (ft) = Uplift due to lateral load (lb) Dead load on the panel (lb)= Roof tributary (ft) Floor tributary (ft) 'Wall weight,(psf) Uplift of this floor(lb) = Uplift from, upper floor (lb) = Total hold-down force (lb) = >> Hold-down Type 3/8" CGX Plywood, Mark - ro (see sheet SDI for nailing schedule) Panel #1 Panel #2 Panel #3 Panel #4 Panel #5 Pane `#6 15.03 0.00 0.0 0.0 0.0 0.0 12.0 0.0 0.0 0 0 0 2,517 0 0 01 0 0 663 0 0 0 0 0 1.0 0.0 0.0 0.0 0.0 0'.0 0.0 0.0 0.0 0.0 0.0 0.0 10 0 0 0 0 0 1,853 0 0 0 0 0 0 0 0 0 0 0 1,853 0 0 0 0 0 STHD14 " FredSh eu Structural Engineer •12:0 • Project: D'Lorenzo Residence ,lob Page e ty S4172 3,194/12.0 = SHEAR WALL LINE # 5 >>> Panel type used 3/8" CDX Plywood, Mark - PANEL DESIGN:° OVERTURNING ANALYSIS: 0 0,0 0.0 Section a- Tributary width (ft)- 9 Seismic(plf)= 104.6 Wind (plf)= , 277.2 Section b- Tributary width (ft) = 17.0 Seismic(plf)= 139.3 Wind (pin= 229.0 Seismic load above this floor (lb) = 0 Wind load above this floor (lb) Uplift clue to lateral load.(Ib)= Total seismic load = 104.6"9/2 + 139.317/2 + 0 = 1,655 lbs 1077 Total wind load = 277.2'9/2 + 229.0'17/2 + 0 - . •, • 3,.194 lbs <--controls 0.0 0 A IG Total panel length = •12:0 • ft 0 Shear = 3,194/12.0 = 266.2 Ib/ft >>> Panel type used 3/8" CDX Plywood, Mark - 0 OVERTURNING ANALYSIS: 0 0,0 0.0 0.0 Panel #1 Pane( 02 Panel #3 Panel length (ft) = 12.00 0.00 OA Panel height (ft) = 10.0 0.0 0.0 Uplift clue to lateral load.(Ib)= 2,662 0 0 Dead load on the panel (lb)= 1077 0 0 Roof tributary (ft) 9.0 0.0 0.0 Floor tributary (ft) 0.0 0.0 0.0 Wall weight (psn 16 0 0 Uplift of this fioor(lb) _ 1,584 0 0 Uplift from upper floor (lb) = 0 0 0 Total hold-down. force (Ib) = 1,584 0 0 >>> Hold-down Type • STHD14 -275 -2,835 §HEAR WALL LINE #.';6 PANEL DESIGN: ,•(see sheet SDI for nailing schedule) Panel #4 Panel #5 Panel: 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0,0 0.0 0.0 • 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0. 0. or .56.0 (plf)= .. 229.0 Ib = 0 Section a- Tributary width (ft) = 17.0 Seismlc(plf)= 139.3 Win Section b- Tributary width (ft) 20 Seismic(plf)= 140.9 Win Seismic load above this floor (ib) = 0 Wind load above this floor (lb) Total seismic load = 139.3'17/2 + 140.9*20/2 + o = 2,593 lbs Total wino load- 229;0'17/2 + 229.0'20/2 + 0 = 4,237 --lbs. <---controls Wind {plf)= 229.0 Wind Total panel length = .56.0 ft 0 Shear = 4,237/56.0 = 75.7 Ib/ft 0 0 0 0 >>> Panel type used 3/8"`CDX Plywood, Mark - (o OVERTURNING ANALYSIS: 0.0 0.0 0.0 0 Panel'#1 Panel #2 Panel #3 1.4 Panel length (ft)- 5.00 11.00' 40:0 Panel height (ft) = 10.0 %0 0 Uplift•due to lateral load (lb)= 757 757 757 Dead load on the panel (lb)= 469 1032 3591 Roof tributary (ft) 10:0 10.0 9:0 Floor tributary (ft) 0:0 0.0 0.0 G Wall weight (pso 16 16 I6 Uplift of this floor(lb) = 288 -275 -2,835 Uplift from upper floor (lb) = 0 0 0 Total hold-down force (lb) = 288 -275 -2,835 >>> Hold-down Type STHD14 STHD14 . (see sheet SDI for nailing schedule) Panel #4 Panel Panel #6 0.0 0.0 0.0 0 10 0 0 0 0 0 0 0 0:0 0.0 0.0 0.0 0.0 0.0 0 0 0 0. 0 0 0 0 0 0 0 0 IG lG IG ICT IG - Fred Sheu Project: D'Lorenzo Residence Page e'3 Structural Engineer Job # 54172 SHEAR WALL LINE # 7 PANEL DESIGN: Panel #2 Section a- Tributary width (ft) = Section b- Tributary width (ft) = Seismic load above this floor (lb) _ Total seismic load = i 60.9'25/2 + 0 = Total wind load = 229.0.25/2 + 0 = Total panel length = 17.0 Shear = 2,863/17.0 = >>> Panel type used' OVERTURNING ANALYSIS: Panel length (ft) Panel height (ft) _ Uplift due to lateral load (lb)= Dead load on the panel (lb)= Roof tributary (ft) Floor tributary (ft) Wall weight (psf)- Up ift of this floor(lb) = Uplift from upper floor (lb) = Total hold-down force (lb) = >>> Hold-down Type 25.0 Seismic(plf)= 180.9: Wind (pif)= 229.0 0 Seismic(plf)= 0.0 Wind (plf)= 0.0 0 Wind load above this floor (Ib) = 0 2,261 lbs 2,863 lbs <-controls ft 3/8" CDX Plywood, 168.4 Ib/ft Mark -Q (see sheet SDI for nailing schedule) Panel#1 Panel #2 Panel #3 Panel #4 Panel #5 Pane 1.0.50 6.50 0.0 0.0 0.0 OD 1.0.0 10.0 0.0 0 0 0 1,684 1,684 0 0 0 0 689 375 0 0 0 0 3.0 1.0 0.'0 0.0 0.0 . 0."0 0.0 0:0 0.0 0.0 0.0 0.0 16 16 0 0 0 0 994 1,309 0 0 0 0 0 .0 0 0 0 0 994 1;309 0 0 0 0 STHD14 STHD14 SHEAR WALL LINE # 8 PANEL DESIGN: Section a- Tributary width (ft) = 25.0 Section b- Tributary width (ft) = 40 Seismic load above this floor (lb) = 0 Total seismic load = 180.9'25/2 + 146.7`40/2 + 0 = Total wind load = 229.0'25/2 + 277.2'4012 + 0 = Total panel length = . 33.0 ft Seismic(plf)= 180.9 Wind (plf)= 229.0 Seismic(plf)= 146.7 Wind (plf)= 277.2 Wind load above this floor (lb) = 0 5,195 lbs 8,407 lbs <--controls Shear = 8,407/33.0 = 254.7 Ib/ft >>> Panel type used OVERTURNING .ANALYSIS: Panel length (ft) = Panel height (ft) = Uplift due to lateral load (lb)= Dead load on the panel (lb)= Roof tributary (ft) Floor tributary (ft) Wall weight (psf) Uplift of tl its floor(lb) _ Uplift from upper floor (lb) = Total hold-down. force (lb) = >>> Hold-down Type 3/8" CDX Plywood, Mark - fo (see sheet SDI for nailing schedule) Panel #1 Panel #2 Panel #3 Panel -#4 Panel #5 Panel #6 33.00 0.00 0.0 0.0 0.0 0.0 14.0 0.0 0.'0 0 0 0 3,566 0 0 0 0 0 1548 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 0 0 0 0 0. 2,019 0 0 0. 0 0 0 0 0 0 0 0 2,019 0 0 0 0 0 STHD14 G I� IG IC 10 10 - Fred Sheu Project: D'Lorenzo Residence Page Cty Stnictural Engineer Job # W72 SHEAR WALL LINE .# 9 PANEL DESIGN: Section a- Tributary width (ft) = 40 . Section b- Tributary width (ft) = 20.0 Seismic load above this floor (lb) = 0 Total seismic load = 146.7.40/2 + 140.9.20/2 + 0 = To±al wind load = 277.2!4012 + 229:0.2= +,0 = Total panel length = 17.0 ft: Seismic(plf) 146.7 Wind (plo= 277.2 Seismic(plo= 140:9 Wind (plo= 229.0 Wind load above this floor (lb) = 0 4,343 lbs 7,834 lbs <---controls Shear = 7,834'/17.0 460.8 Ib/ft >>> Panal type used OVERTURNING ANALYSIS: Panel length (ft) = Panel height (ft) = Uplift.due to lateral load (lb)= Dead load on the panel (lb)= Roof tributary (ft) Floor tributary (ft) Wall weight (psf) Uplift of'this floor(lb) _ Uplift from upper floor (lb) = Total hold-down force (lb) >>> Hold-down Type 3/8" CDX Plywood, Mark - tv (see. sheet SD1 for nailing schedule) Panel#1 Panel #2 Panel#3 Panel #4 Panel#5 Panel #6 12.00 &00 0.0 0.0 0.0 0.0 10.0 10.0 0.0 0 0 0 4,608 4,608 0 0 0 0 884 469 0 0 0 0 10.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 16 16 16 0 0 3,724 4,139 0 0 0 0 0 0 0 0 0 0 3,724 4,139 0 0 0 0 STHD14 STHD14 SHEAR WALL LINE # 10 PANEL DESIGN: Panel #2 Panel .#3 Section a- Tributary width (ft) = 33.0 Section b= Tributary width (ft) = 0 Seismic load above this floor (ib) = 0 Total soi .mic load = 156.6`33/2 + 0 = 10.0 Total wind load = 277.2*33/2 + 0 = 0 Total panel length = 6.0 ft Shear = 4,574/6.0 = 0 »,> Panel type used OVERTURNING ANALYSIS: Panel langth (ft) = Panel height (ft) = Uplift due to lateral load (lb)= Dead Ic1,u on the panel (lb)= "oof'tributary (ft) 'aor tributary (ft) kil.'all weight (pso Uplift of this floor(lb) = Uplift from upper floor (lb) = Total hold=down force (lb) = >> Hold-down Type ShearMax Panel Seismic(plo= 156.6 Wind (plo= .277.2 Seismic(pl6= 0.0 Wind (plo= 0.0 Wind load above this floor (lb) = 0 2,584 lbs 4,574 lbs <--controls 762.3 Ib/ft Oz) S.n4;6-la A«OwABLLG t0Aa 2x .3g7.5`� 6g5o�s Panel #1 Panel #2 Panel .#3 Panel.#4 Panel #5 Panel #6 3.00 3.00 0.0 0.0 0.0 0.0 10.0 10.0 10.0 0 0 a 7,623 7,623 01 0 0 0 161 161 0 0 0 0 0.0 -0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16 16 0 0 0 '0 7,462 7,462 0 0 0 0 0 0 0 0 0 0 7,462 7,462 0 0 0 0 manufacturer IG IG IG ri.1 Sheu Project: D'Lorenzo Residence Page ell tr W Sth; r f iral Engineer ;� Job # S4172 PANEL ri.Eg IGN: Section Tributary width (ft) = 28 Sectior. `l- Tributary width (ft) = 12 Seismic load above this floor (!b) = 0 Total sei: mic load = 168.9.28/2 + 176.3'12/2 + 0 = Totalwind load = 229A'28/2 + 229.0'12/2 + 0 Total psna length = 29.5 ft Seismic(pif) 166.9 Wind (plo_= 229.0 Seismic(plf)= 176.3 Wind (pif)= 229.0 Wind load above this floor (lb) _ .0 3,394 lbs 4,580 lbs <--controls Shear = 4,580/29.5 = 155.3 Ib/ft >>> Pa: -el type used OVERTI.' NING ANALYSIS: Panel l ngth (ft) = Panel height (ft) = Uplift du to lateral load (lb)= Dead load: on the panel (lb)= Roof tributary (ft) Floor tributary (ft) 'all weight (psf) Uplift of ",.s floor(lb) _ Uplift fr:.::ri upper floor (lb) = Total hc�':I-down force (lb) = >>> Hold clown Type 3/8" CDX Plywood, Mark - /I \0 Panel #1 SHEAR WALL LINE # 11 Panel #3 Panel #4 Panel #5 PANEL ."..' ESIGN: 29.50 0.00 0.0 0.0 0.0 Sectic,• .n- Tributary width (ft) = 28 Seismic(plf)= 166.9 Wind (plf)= 229.0 Sectior h- . Tributary width (ft)'= 0 Seismic(plf)= 0.0 Wind (plf)= 0.0 Seismic load above this floor (Ih) = 0 Wind load above this floor (lb) _ 0 Total re�smic load = 166.9.28!2 + 0 = 2,337 lbs 36.0 0.0 Total w ^ -I load = 229.0.28/2 + 0 = 3,206 lbs <---controls 0.0 Total pnn. i length = 14.0 ft 0.0 0.0 0.0 10 Shear _ 3,206/14.0 = 229.0 Ib/ft 0 0 -3,705 >>> Pi -r-I type used ShearMax Panel (4) S M' 4:- 0 0 ie 0 0 (.2) SM 34 -h- AL LowAI&LE,= U xio�,o .r- 2 x 1!?8�=/3,g10 OVERTURNING ANALYSIS: 0 6 0 0 0 none Panel #1 Panel #2 Panel #3 Panel #4 Panel #5 Panel #6 Panel l 7; th (ft) = 2.00 2.00 2.0 2.0 3.0 3.0 Panel h;13ht (ft) = 8.0 8.0 8.0 8 12 12 Uplift clue to lateral load (lb)=' 1,832 1,832 1,832, 1,832 2,748 2,748 Dead load on the panel (lb)= 94 94 94 94 410' 410 Poof tributary (ft) 1.0 1.0 Ito 1.0 18.0 18.0 Floor tributary (ft) 0.0 0.0 0:0 0.0 0.0 0.0 Wall weight (psf) 16 16 16 16 16 16 Uplift of this floor(lb) = 1,738 1,738 1,738 1,738 2,338 2,338 Uplift from upper floor (lb) = 0 0 0 0 0 0 Total h -down force (lb) = 1,738 1,738 1,738 1,738 2,338 2,338 >>> Hc!d• down Type manufacturer - SHEAR WALL LINE # 12 PANEL ri.Eg IGN: Section Tributary width (ft) = 28 Sectior. `l- Tributary width (ft) = 12 Seismic load above this floor (!b) = 0 Total sei: mic load = 168.9.28/2 + 176.3'12/2 + 0 = Totalwind load = 229A'28/2 + 229.0'12/2 + 0 Total psna length = 29.5 ft Seismic(pif) 166.9 Wind (plo_= 229.0 Seismic(plf)= 176.3 Wind (pif)= 229.0 Wind load above this floor (lb) _ .0 3,394 lbs 4,580 lbs <--controls Shear = 4,580/29.5 = 155.3 Ib/ft >>> Pa: -el type used OVERTI.' NING ANALYSIS: Panel l ngth (ft) = Panel height (ft) = Uplift du to lateral load (lb)= Dead load: on the panel (lb)= Roof tributary (ft) Floor tributary (ft) 'all weight (psf) Uplift of ",.s floor(lb) _ Uplift fr:.::ri upper floor (lb) = Total hc�':I-down force (lb) = >>> Hold clown Type 3/8" CDX Plywood, Mark - /I \0 Panel #1 Panel.#2 Panel #3 Panel #4 Panel #5 Panel #6 29.50 0.00 0.0 0.0 0.0 0.0 10.0 0.0 0.0 0 0 0 1,553 0 0 0 0 0 5257 0 0 0 0 0 36.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 0 0 0 0 0 -3,705 0 0 0 0 0 0 0 0 0 0 0 -3,705 0 6 0 0 0 none G N IG IC IG IG IG FAV d Sh e u . Stmi aural Engineer Panel,#2 Project: Ul.orenzo Residence Job # Page GG S4172 3.00 SHEAR WALL LINE # 13 3,0 10.0 14.0 PANEL DESIGN: 14 6,062 8,487 8,487 8,487 Section - Tributary width (ft) = 12 Seismic(plf)= 176.3 Wind (-plf)= 229.0 . Section b- Tributary width (ft) = 38 Seismic(plf)= 297:1 Wind (plf)= 277.2 Seismic load from entry area (Ib) = 2584 Wind load from entry area (lb) = 4574 Total seismic load = 176.3.12/2 + 297.1'38/2 + 2584 = 9,287 lbs 8,008 0 Total wind load = 229.0.12/2 + 277.2'38/2+ 4574= 11,215 lbs <-controls 7,900 Total panel length = 18.5 ft manufacturer Shear = 11,215/18.5 = 606.2 Ib/ft >>> Panel.type used 3/8" CDX Plywood, Mark -/3 (see'sheet S131 for nailing schedule) OVERTURNING ANALYSIS: Panel #1 Panel #2 Panel #3 Panel #4 Panel #5 Panel I #6 Panef length (ft) = 18.50 0.00 0.0 0.0 0.0 0.0 Panel height (ft) = 10.0 0.0 0.0 0 0 0 Uplift d+u© to lateral load (lb)= 6,062 0 0 0 0 0 Dead Inad on the panel (lb)= 3520 0 0 0 0 0 Roof tributary (ft) 39.0 0.0 0.0 0.0 0:0 0.0 Floor tributary (ft) 0.0 0.0 0.0 0.0 0.0 0.0 Wall weight (psf) 10 0 0 0 0 0 Uplift of this floor(ib) _ 2,542 0 0 0 0 0 Uplift from upper floor (lb) = 0 0 0 0 0 0 Total hold-down force (lb) = 2,542 0 0 0 0 0 >>> Hold-down Type STHD14 SHEAR WALL LINE# 14 PANEL DESIGN: Section a- Tributary width (ft) = 38 Section l- Tributary width (ft) = 28 Seismic load above this floor (Ib) = 0 Total seismic load = 297.1.38/2 + 84.0'28/2•+ 0 = Total wind load = 277.2.38/2 + 108.5.28/2 + 0 Total panel length = 14.0 ft. I: Seismic(pif)= 297.1 Wind (plo= 277.2 Seismic(plf) a4:0 . Wind (plf)= 108.5 Wind load above this floor (lb) = 0 6,821 lbs <--controls 6,786 lbs ', Shear 6,821114.0 487.2lb/ft >>> Panel type used, ShearMax Panel c1> Sw z y - / o g� (w) 5 W 36 -- I V ALCowAaLE LoAn.: /7 os.+1< A OVERTURNING ANALYSIS: Panel lei , (ft) _ Panel height -(ft) = Uplift due to lateral load (lb)= Dead load on the panel (lb)= 'Roof tributary (ft) Fbor tributary (ft) % all weight (psf) Uplift of this floor(lb) = Uplift from upper floor (lb) Total hold-down force (lb) >>> Hold-down Type Panel #1 Panel,#2 Panel #3 Panel #4 2.00 3.00 3.0 3,0 10.0 14.0 14.0 14 6,062 8,487 8,487 8,487 348 587 587 478 30.0 30.0 30.0 21.0 0.0 0.0 0.0 0.0 16 16 16 16 5071.1 7,900 7,900 8,008 0 0 0 5,714 7,900 7,900 manufacturer LII Vt 7 ' l/, 585. Panel #5 3.0 14 8,487 478 21.0 0.0 16 8,008 oog Panel #6 0.0 0 0 0 0.0 0.0 0 0 0 0 M N 141 No 10 10 10 Fred Sheu Project: D'Lorenzo,Residence Page CI Structural Engineer :{ Job # 84172 SHEAR WALL LINE # 15 PANgL DESIGN: Section a- Tributary width (ft) = 28 Seismic(plf)= 84.0 Wind (plo= .108.5 Sention h- Tributary width (it) = 0 Seismic(plf)= 0:0 Wind (plo= '0.0 '. Seismic load above this floor (lig) = 0 Wind load above this floor (lb) = 0 , Total seismic load = 84.0.21112 + 0 = 1,176 lbs Total wind load = 1011.5'28/2 + 0= 1,519 lbs <=-controls Usc STELr-c, P0575 ; L8 45sIsmuc. CoA0 1+76 X 5•' �a 'I a. 4._ l2 Xiyx t1= i8`fB�Q i L. _ .zoXY'kl/'a3,ogoL8 l Mr, of Fos _ L1 SF- TS to x 6 x 3/8t STEEL TUBE y.g' k L. L. �--' SE�Smres••�,y�k )z.7 5 CHECK L ATEr2AL �R, FT 7-R i �ttowi3�C31.� D1Qr F p. a i T H I j'ooT i+nll, PA's w14 f E.w. .I GnAvrr BM 15' w r d= s-. 3 - I z•. 4 d x O. 5l57 �h T. 8r B t FVM C16 FRED SHEU Title: 1i Job 0 STRUCTURAL:.ENGINEER Dagrin ! Date: 0.000 in - Description Ecc. for Y -Y Axis Moments 0.000 In (760)955.=7522 Scope: i i! 0:85 ,, Point lateral Loads... _D _ LL tleight Rev: 560100 User: KW0602094 Ver 5.6.1, 25.Oet•2002 Steel Column is 12.750 it c)1983.2002 ENE�tCALC Engineering Software 9,905 psi k it Description STEEL COLUMN AT REAR OF LOGGIA 1.00 F'ey - DL+LL+ST 9;905 psi Cm:y DL+LL+ST General Information Calculations are designed to AISC 9th Edition ASD and 1997 UBC Requirements Section: TS6X6X3/8, Height = 12.75ft, Axial Loads: DL = 1.85, LL = 3.08, ST = O,OOk, Eoc. = t Steel 8action TSGXOX318 Fy 38.00 ksi i 1 X -X Sidesway : Sway Allowed Combined Stress Ratios Duration Factor 1.330 Y -Y Sidesway : Sway Allowed Column'Height 12.750 ft Elastic Modulus ' 29;000.00 ksi End Fixity Fix -Free X -X Unbraced 12.750 it Kxx 2.100 Live& Short Term Loads Combined Y -Y Unbraced 12.750 it Kyy 2.100 Axial Load... 1i i Dead. Load 1.85 k Ex. for'X-X Axis Moments 0.000 in Live Load 3.08 k Ecc. for Y -Y Axis Moments 0.000 In Short Term Load k Cm:x DL+LL 0:85 ,, Point lateral Loads... _D _ LL tleight Along Y -Y (strong axis moments) 0.85 ; 1.470 k 12.750 it Along X -X (r y moments) 9,905 psi k it Summary I 1.00 F'ey - DL+LL+ST 9;905 psi Cm:y DL+LL+ST 0:85 ` Column Design OK Section: TS6X6X3/8, Height = 12.75ft, Axial Loads: DL = 1.85, LL = 3.08, ST = O,OOk, Eoc. = 000in Unbraced Lengths: X -X = 12.75ft, Y -Y = 12:75ft Combined Stress Ratios Dead Live D +'LL DL + ST + 11. U'Chosen) AISC Formula H1 -1 AISC Formula H1 - 2 1 AISC Formula H1- 3 0.0307 0'.0512 d.b819 0.6262. XX Axis.: Fa caic'd per Eq. E2.2, K*Lir > Cc YY Axis: Fa caled per Ea. E2.2. K*Ltr> Cc i Stresses ; Allowable & Actual Stresses Dead Lin DL + LL DL + Short Fa : Allowable 7.45 ksi 7.45 ksl 7:45 ksi 9.91, ksi fa : Actual 0.23 ksi 0.38 ksi 1 0.61 ksl 0.61 ksi Fb:xx :.Allow [F3.1] 21.60 ksi 21.60 ksi ! 21.60 ksi 28.73 ksl fb : xx Actual 0.00 ksi 0.00 ksi 0.00 kal 16.22 ksi Fb:yy : Allow [F3.1) fb : yy Actual 21.60 ksi 21.60 ksl 0.00 ksl 0.00 ksi i 21.60 kai 0.00 ksi 28.73 ksi 0.00 ksl Analysis Values F'ex: DL+LL 7,448 psi Cm:x DL+LL 0:85 ,, Cb -x DL+LL 1.75 F'sy : DL+LL 7;448 psi Cm:y DL+LL 0.85 ; Cb:y DL+LL 1.75 rex: DL+LL+ST 9,905 psi Cm:x DL+LL+ST 0:85 , j Cb:x DL+LL+ST 1.00 F'ey - DL+LL+ST 9;905 psi Cm:y DL+LL+ST 0:85 ` Cb:y DL+LL+ST 1.75 Max X -X Axis Deflection -1.455 in at 12.750 ft Max Y -Y Axis Deflection i. _ I ;I i 0.0001n at 0.000 ft,,- G C G G G ! p FRED SHEU Title : Job.# STRUCTURAL ENGINEER Dsgnr. ;i Date: Description a ii (760)955-7522 scope.: Rev: 560100 Wer:KW4602094 Ver 5.6.1%25.Oct•2002 (01983.2002 ENEWALC Engineering Software Steefcolumn Description STEEL'COLUMN AT REAR OF LOGGIA { Section Properties TS6X6X318 Depth 6.001n Weight 27:45 #I/R 1 -roc 41.601M Width 6:000 in Area 8.081n2 11 I-yy 41.601n4 Thickness 0.375 in " S-xx 13.867 in3 S-yy 13.86710 r-1oc 2.2891n I r-yy '2.269 in G i i - G C G G G Fred Sheu Structural Engineer Prosect p�L�RE�Zo t _ Page / Job # s'`f / 7 Z - a CONTINUOUS FOOTING DESIGN' Allowable Soil Bearing Pressure- loco psf �I CONTINUOUS FOOTING at ,R CAP of all RAGE 9%. 045f,400" gATH (wo•ejT. CA40 - Loading on. Continuous Footing: Roof Load = 3 z K 711A / z 16 Wall Load Floor Load = o A' Total Load = /3/1, p t F Required Width of Footing = ► 3 l 6/ too 0 /, -3' 6 Use: /5 " wide x / 2 " deep w/ ./ *. 'rebars at top and; bottom CONTINUOUS FOOTING at REAR, oP ' MASTEiq. aaoxRbGM Loading on Continuous Footing:.. 'I Roof Load = 32 X30' = 960 Wall Load 6 n ! 6 0 Floor Load= o C1 Total Load = t t /Z P Lc Required Width of Footing = 1. t t z/,coo Use:f z "wide x f z " deep w/ t rebars at top 2- 1: bottom l' ,eu Sheu Project r1> LOR&k Z p Page Et-'2— ►Structural Engineer Job # s41172- FOUNDATION 417 z FOUNDATION DESIGN Allo,vable Soil Bearing Pressure = b QG psf I ,. Allowable Point Load at Continuous Footing: 4 x post (minimum)FLOOR ---- ..----_--� CONT. FTG,-- - - 7�' F• �. , ! I --• r. I ':.�:• 45 -deg. S -Bearing Area r� Pmax = Pa " S ` W /144 12" x 12' footing Pmax = / oo o. X 39:5 "x.12". ' / 144 3 , z � z `� ��. •.,. _,, 15" x 1 " footing, Pmax = 1000 X .5" x 15" / 144 L a PAD FOOTING: Loc•�tion Load Size Reinforcement 3M#2- 3 3k 2 sto,.x 2PFCrb / ,. 3 -#y -•.E :w B 1V1 q,,7 P- VC'►Z PEE -P lip - ,4 Fred Sheu • Structural Engineer. Page 3 Job# Li S MEAAMA X PANE 4 CONCRETE GRADE BEAM DE Shea; wall length = L Uplift = P Max Moment, M = PL M=As*Fy*(d-a/2)=As*Fy*(0.75d) =As*"36*0.75*d/12=4,Asd As = M/ 4 d Where M -- k -ft , d -- inches load factor = 1.4 As = 1.4xM/4d hear wall # randt e Length1. Uplift Moment Grade Beam Size Rebar ' Re 'd Rebar Flo+ M36 10 3� 7gbk ZZ.t�K•Fr 15 wxs8dp , 013�:�1 1 Z- ' @T&g. S 6- /2 3 i 3 Z.3yK 7.0aK�Fr t5"IVxZS°i air :n` @ z-#�f- r4 # ; � K K.-FrT @ 48 I�