Loading...
06-1572 (RC) Seismic AnalysisSEIZMIC MATERIAL HANDLING ENGINEERING TEL: (909)869 - 0989 FAX : (909)869 - 0981 PROJECT BEST BUY # 1020 FOR BEST BUY SHEET NO. 2 CALCULATED BY RF 161 ATLANTIC STREET, POMONA, CA 91768 DATE; 2/27/2005 TABLE OF CONTENTS TABLEOF CONTENTS & SCOPE '........ ... ..... ............. .............. ....... ......... ..... ....... ....... .......... ........ ......... .-...................... _............_..._.......__._.........__......................_..._. 2 PARAMETERS-.:_._ ........ _..... __._..........:._..----...__.._ ....: _.._._..-- ---- -...._..._..__...._........_._._....._._.__...-_.._..----__ ----------- -._... 3 COMPONENTS& SPECIFICATIONS . ......... ........... ........ ..._.................. ..... _..._................... ..... ................ ......... _._......... ........._..._...................._......... 4 LOADS& DISTRIBUTION --._...._..- - .-.._......-- ---....._._..._._._.. --- .......- --....----...._.__......._..._.._.. 10. LONGITUDINAL ANALYSIS COLUMN._.... .......... ..,... ..... _.... _...... _....__............ ........... ....... __..__.......... _............. _...... ........ ......_..... ........................ ... _........ _..._._... ....... _............................... _...... _........ _....... -... ........ ......._....__....... 12 BEAM_..._. .............. -- .... -- -- ........... . ..... ...._.._...__....... _.....:........ .... __._............. ... ...... _.....----..... ...... .............. __.... ---- --.._........_.--.. .._.__..._.......... 13 BEAMTO COLUMN ....:...... ..... ........ ...... ...... ........... ..... ........ ..... .......... ..... ...................... ..................... ...... ........... ....... ..........._..................................................................._......_..... .......... .......... ....... 15 BRACING--- .............--.._..... _............... ... - .... _....... .... _.... _--.._..........._._._..._..._..... - --_.__...... --... .............. .-........ --....._......----... 16 OVERTURNING...... _.............. --.1 .. .... '...... ......... .... _............. _:............................ --... --.............._.._................... ...._...... _.._... .......... .............. _.... _..__ .......... _.................... 17 BASEPLATE........ _................. ............._.:........._........._._.._........_...._._....__._._..-............_..........__..... _....... _._........_..... _........ _.._._......... ......... .... _..... __.......... _...................... _ 18 SLAB& SOIL ........ ....... :... ...... _....... _._......__..__...__._...........---.....__......__.._.-.__...._.._....._...-......----........... ...... _..... _........ _..... _........ .._....... 19 (40NDpI-A AWN% -ISIS 20 SCOPE: THIS ANALYSIS OF THE STORAGE SYSTEM IS TO DETERMINE ITS COMPLIANCE WITH THE APPROPRIATE BUILDING CODES WITH RESPECT TO STATIC AND SEISMIC FORCES. THE STORAGE RACKS ARE PREFABRICATED AND ARE TO BE FIELD ASSEMBLED ONLY, WITHOUT ANY FIELD WELDING. ° VEIZM'V PROJECT BEST BUY #1020 FOR BEST BUY MATERIAL, HANDLING ENGINEERING SHEET NO. 3 TEL: (909)869 - 0989 FAX :(909)869 - 0981 CALCULATED BY RF 161 ATLANTIC STREET, POMONA, CA 91768 DATE 2/27/2005 THE STORAGE RACKS CONSIST OF SEVERAL BAYS, INTERCONNECTED IN ONE OR BOTH DIRECTIONS, WITH THE COLUMNS OF THE VERTICAL FRAMES BEING COMMON BETWEEN AND ADJACENT BAYS. THE ANALYSIS WILL FOCUS ON A TRIBUTARY BAY TO BE ANALYSED IN BOTH THE LONGITUDINAL AND TRANSVERSE DIRECTION. STABILITY IN THE LONGITUDINAL DIRECTION IS MAINTAINED BY THE BEAM TO COLUMN MOMENT RESISTING CONNECTIONS, WHILE BRACING ACTS IN THE TRANSVERSE DIRECTION. CONCEPTUAL DRAWII\ LEGEND .1. COLUMN 2. BEAM - 3. BEAM TO COLUMN 4. BASE PLATE 5. HORIZONTAL BRACING 6. DIAGONAL.BRACING 7. BACK TO BACK CONNECTOR LONGITUDINAL *ACTUAL CONFIGURATION SHOWN ON COMPONENTS & SPECIFICATIONS SHEET ESEMMIC MATERIAL HANDLING ENGINEERING TEL: (909)869 - 0989 FAX : (909)869 - 0981 161 ATLANTIC. RTRF.F.T PQMQNA CA 9176R PROJECT BEST BUY #1020 FOR BEST BUY SHEET NO. 4 CALCULATED BY RF DATE 2/27/2005 COMPONENTS & SPECIFICATIONS : TYPE C ANALYSIS PER CHAP 22, DIV X OF THE 2001 CBC LEVELS = 4 Hl =36 in.W 4 Wl =1000 lbs. YI =41 in H2 =36 in. W2 =1000 lbs. Y2 = 41 in. PANELS = 4 H3 = 36 in. H41= 36 in. H4 W3 =1000 lbs. Y4 W4 =1000 lbs. Y3 = 18 in. Y4 = 30 in. W3 LIVE LOAD = .1000 lbs. . FRAME HEIGHT =1.44 in. • ^ H3 H W2 Y3 H FRAME DEPTH = 36 in. • BEAM LENGTH= 144 in. H2 Y2 W1 + ZONE = Zone 4 (Na = 1.1) 1 H1 Y1 L 1 COLUMN BEAM @ Level 1 CONNECTOR @ Level 1 OK OK OK LA Darling: 3 x 1 1/2 x 14GA (Tube) 'LA Darling: 4 1/2 x 2 5/8 x 14GA THREE PIN CONNECTOR Steel = 55000 psi Steel = 55000 psi Stress = 21.%, Stress =42% Max Static Capacity = 3113 lb. Static Stress = 32% Seismic Stress = 8% COLUMN BACKER BEAM @ Level 2+ CONNECTOR @ Level 2+ OK OK LA Darling: 4 1/2 x 2 5/8 x 14GA THREE PIN CONNECTOR None Max Static Capacity = 3113 lb. Stress = 19% Stress = Static Stress = 32% Seismic Stress = 7% BRACING SLAB & SOIL OK OK Slab = 4" X 2500 psi OK HORIZONTAL DIAGONAL Soil Bearing Pressure = 1000 psf LA Darling: 1 1/2 x 3/4 x 16GA LA Darling: 1 1/2 x 3/4 x 16GA Slab Puncture Stress = 65% Stress = 20% Stress = 72%. Slab Bending Stress = 61 % BASEPLATE ANCHORS OK HILTI KB II(ICC# ESR -1355) 0.375 Dia. X 2.5 Min. EmbOK 4 in X 3 in X 0.1875 in Pullout Capacity = 546 lbs. Steel = 36000 psi Shear Capacity = 1026 lbs. MBase = 2965 in. lb. No. Of Anchors = 2 per Base Plate Stress = 31 % Anchor Stress = 64% SEIZMIC MATERIAL HANDLING ENGINEERING TEL: (909)869 - 0989 FAX : (909)869 - 0981 1,<1 ATi 'A -.T -m- c`TDrr-r DMArwA PA 01-7A4 PROJECT BEST BUY #1020 FOR BEST BUY SHEET NO. 5 CALCULATED BY RF nATF. 7/77/�MS COMPONENTS & SPECIFICATIONS : TYPE 1 ANALYSIS PER CHAP 22, DIV X OF. THE 2001 CBC H 1 = 36 in. LEVELS = 4W 4 W 1 =1000 lbs. Y1 = 41 in. _ Y2 41 m H2 = 36 in. W2 =1000 lbs. . PANELS = 4 H3 =36 in. H4 = 36 in. H4 W3 =1000 lbs. Y4 W4 =1000 lbs. = Y3 = 18 in Y4 = 30 in. W3 LIVE LOAD =1000 lbs. FRAME HEIGHT = 1.44 in. H3 Y3 H 'N 2 H FRAME DEPTH = 36 in. BEAM LENGTH= 144 in. H2 Y2 w 1 ZONE= Zone 4 (Na = .1.1) H1 Y1 L COLUMN BEAM @ Level I CONNECTOR @ Level 1 OK OK OK LA Darling: 3 x 1 1/2 x 14GA (Tube) LA Darling: 4 1/2 x 2 5/8 x 14GA THREE PIN CONNECTOR -Steel = 55000 psi Steel = 55000 psi Stress = 2.1.% Stress =23% Max Static Capacity = 3113 lb. Static Stress = 32% Seismic Stress = 8% COLUMN BACKER BEAM @ Level 2+ CONNECTOR @ Level 2+ OK OK LA Darling: 4 1/2 x 2 5/8 x 14GA THREE PIN CONNECTOR None Max Static Capacity = 3113 lb. Stress = 19% Stress = Static Stress = 32% Seismic Stress = 7% BRACING - SLAB & SOIL OK OK Slab = 4" X 2500 psi OK HORIZONTAL DIAGONAL Soil Bearing Pressure = 1000 psf LA Darling: 1 1/2 x 3/4 x 16GA LA Darling: 1 1/2 x 3/4 x 16GA Slab Puncture Stress = 65% Stress = 20% Stress = 72% Slab Bending Stress = 61 % BASE PLATE ANCHORS OK HILTI KB II(ICC# ESR -1355) 0.375 Dia. X 2.5 Min. EmbOK 4 in X 3 in X 0.1875 in Pullout Capacity = 546 lbs. Steel = 36000 psi Shear Capacity = 1026 lbs. MBase = 2991 in. lb. No. Of Anchors = 2 per Base Plate Stress = 31 % Anchor Stress = 65% SEIZMIC MATERIAL HANDLING ENGINEERING TEL : (909)869 - 0989 FAX: (909)869 - 0981 161 ATLANTIC STREET. POMONA. CA 91768 PROJECT FOR SHEET NO. CALCULATED BY DATE BEST BUY #1020 BEST BUY 6 RF 2/27/2005 COMPONENTS & SPECIFICATIONS : TYPE H ANALYSIS PER CHAP 22, DIV X OF THE 2001 CBC LEVELS = 3 H1 = 6 in. H2=69 in.T PANELS = 4 H3 = 69 in. H3 W3 W 1 =2000 lbs. W2 =2000 lbs. W3 =0 lbs. Y4 Y1=41 in. Y2 = 41 in. Y3 = 18 in. Y4 = 30 in. LIVE LOAD = Load Varies W2 FRAME HEIGHT= 1.44 in. FRAME DEPTH = 36 in. H H2 Y3 H BEAM LENGTH= 120 in. W 1 Y2 ZONE = Zone 4 (Na = 1.1) H1 Y1 L COLUMN BEAM @ Level 1 CONNECTOR @ Level 1 OK OK OK LA Darling: 3 x 1 1/2 x 14GA (Tube) LA Darling: 4 1/2 x 2 5/8 x 14GA THREE PIN CONNECTOR Steel = 55000 psi Steel = 55000 psi Stress = 27%, Stress =30% Max Static Capacity = 4278 lb. Static Stress = 47% Seismic Stress = 1.0% COLUMN BACKER BEAM @ Level 2+ CONNECTOR @ Level 2+ OK OK LA Darling: 4.1/2 x 2 5/8 x 14GA THREE PIN CONNECTOR None Max Static Capacity = 4278 lb. Stress = 29% Stress = Static Stress = 47% Seismic Stress =1 l % BRACING SLAB & SOIL OK OK Slab = 4" X 2500 psi OIC HORIZONTAL DIAGONAL Soil Bearing Pressure= 1000 psf LA Darling:' 1 1/2 x 3/4 x 16GA LA Darling: 1 1/2 x 3/4 x 16GA Slab Puncture Stress = 55%, Stress= 20% Stress= 73% Slab Bending Stress = 48% BASEPLATE ANCHORS OK HILTI KB II(ICC# ESR -1355) 0.375 Dia. X 2.5 Min. EmbOK 4 in X 3 in X 0.1875 in Pullout Capacity = 780 lbs. Steel = 36000 psi Shear Capacity = 1466 lbs. MBase = 355 in. lb. No. Of Anchors = 1 per Base Plate Stress = '13"/" Anchor Stress = 1.3% SEIZMIC MATERIAL HANDLING ENGINEERING TEL: (909)869 - 0989 FAX : (909)869 - 0981 161 ATLANTIC STREET. POMONA. CA 91768 PROJECT BEST BUY # 1020 FOR BEST BUY SHEET NO. 7 CALCULATED BY RF DATE 2/27/2005 COMPONENTS & SPECIFICATIONS : TYPE F ANALYSIS PER CHAP 22, DIV X OF THE 2001 CBC • LEVELS = 1 HI =96 in. W1 Y1=41 in. W1 =2000 lbs. Y2 = 41 in. PANELS = 2 LIVE LOAD= Load Varies Y2 FRAME HEIGHT = 96 in. 1 FRAME DEPTH = 36 in. H H1 H BEAM LENGTH= 144 in. ZONE= Zone 4 (Na = 1.1) Y1 ,'-L D COLUMN BEAM @ Level 1 CONNECTOR @ Level 1 OK OK OK LA Darling: 3 x 1 1/2 x 14GA (Tube) LA Darling: 4 1/2 x 2 5/8 x 14GA THREE PIN CONNECTOR Steel = 55000 psi Steel = 55000 psi Stress = 48% Stress =45% Max Static Capacity = 3113 lb. Static Stress = 64% Seismic Stress = 18% COLUMN BACKER BEAM @ Level 2+ CONNECTOR @ Level 2+ OK OK LA Darling: 4 1/2 x 2 5/8 x 14GA THREE PIN CONNECTOR None Max Static Capacity = 4278 Ib. Stress = 0% Stress--- Static Stress = 47% Seismic Stress= 11.% BRACING SLAB & SOIL OK OK Slab = 4" X 2500 psi OK HORIZONTAL DIAGONAL Soil Bearing Pressure = 1000 psf LA Darling: 1 x 1 x 16GA (Tub LA Darling: I x 1 x 16GA (Tub Slab Puncture Stress = 30% Stress = 8% Stress = 26% Slab Bending Stress = 18% BASE PLATE ANCHORS OK HILTI KB II(ICC# ESR -1355) 0.375 Dia. X 2.5 Min. EmbOK 4 in X 3 in X 0.1875 in Pullout Capacity = 753 lbs. Steel = 36000 psi Shear Capacity = 1466 lbs. MBase = 0 in. Ib. No. Of Anchors = 1 per Base Plate Stress = 5% 'Anchor Stress = 17% SEIZMIC MATERIAL HANDLING ENGINEERING TEL: (909)869 - 0989 FAX : (909)869 - 0981 161 ATLANTIC STRF.FT_ PQMQNA_ CA 91768 PROJECT BEST BUY #1020 FOR BEST BUY SHEET NO. 8 CALCULATED BY RF DATE 2/27/2005 COMPONENTS & SPECIFICATIONS : TYPE D ANALYSIS PER CHAP 22, DIV X OF THE 2001 CBC LEVELS = 4 Hl =36 in. W4 W1 =500 lbs. Y1=41 in. H2 =36 in. W2 =500 lbs. Y2 = 41 in. PANELS = 4 H3 = 36 in. H4 = 36 in. H4 W3 =500 lbs. Y4. W4 =500 lbs. Y3=18 in Y4 = 30 in. W3 LIVE LOAD = 500 lbs. FRAME HEIGHT = 1.44 in. H3 Y3 FRAME DEPTH = 36 in. BEAM LENGTH= 144"in. H2 Y2 w1 ZONE= Zone 4 (Na = 1.1) H1 Y1 L ID �f I COLUMN BEAM @ Level 1 CONNECTOR @ Level 1 OK OK OK LA Darling: 3 x 1 1/2 x 14GA (Tube) LA Darling: 4 1/2 x 2 5/8 x 14GA THREE PIN CONNECTOR Steel = 55000 psi Steel =55000 psi Stress =12% Stress =1.3% Max Static Capacity = 3113 lb. Static Stress = 1.6% Seismic Stress = 5% COLUMN BACKER BEAM @ Level 2+ CONNECTOR @ Level 2+ OK OK LA Darling: 4 1/2 x 2 5/8 x 14GA THREE PIN CONNECTOR None Max Static Capacity = 3113 lb. Stress = i I% Stress = Static Stress = 1.6% Seismic Stress = 4% BRACING SLAB & SOIL OK OK Slab = 4" X 2500 psi OK HORIZONTAL DIAGONAL Soil Bearing Pressure= 1000 psf LA Darling: 1 x 1 x 16GA (Tub LA Darling: 1 x 1 x 16GA (Tub Slab Puncture Stress = 35% Stress = 9% Stress = 28% Slab Bending Stress = 23% BASE PLATE ANCHORS OK HILTI KB II(ICC# ESR -1355) 0.375 Dia. X 2.5 Min. EmbOK 4 in X 3 in X 0.1875 in Pullout Capacity = 780 lbs. Steel = 36000 psi Shear Capacity = 1466 lbs. MBase = 1679 in. lb. No. Of Anchors = 1 per Base Plate Stress =17% Anchor Stress = 41 ' SEMMIC MATERIAL HANDLING ENGINEERING TEL: (909)869 - 0989 FAX: (909)869 - 0981 141 ATT AATTTr QTRFRT PMAOXTA rA 01 7f PROJECT BEST BUY #1020 FOR BEST BUY SHEET NO. 9 CALCULATED BY RF DATE 2/27/2005 COMPONENTS & SPECIFICATIONS : TYPE DI ANALYSIS PER CHAP 22, DIV X OF THE 2001 CBC LEVELS = 2 Hl =92 in. IN 2 WI1000 lbs. YI = 25 in. Y2 = 16 in. H2 = 52 in. T W2 =I000 lbs. Y6 y3 = 16 in. PANELS = 6 + Y4 = 24 in. LIVE LOAD= .1000 lbs. H2 Y5 Y5=18 in Y6 = 30 in. • FRAME HEIGHT= 1.44 in. Y4 FRAME DEPTH = 36 in. Y3 , BEAM LENGTH= 144 in. H1 Y2 ZONE= Zone 4 (Na = 1.1) Y1 L -� .� D COLUMN BEAM @ Level 1 CONNECTOR @ Level 1 OK OK OK LA Darling: 3 x 1 1/2 x 14GA (Tube) LA Darling: 4 1/2 x 2 5/8 x 14GA THREE PIN CONNECTOR Steel = 55000 psi Steel = 55000 psi Stress = 33% Stress =46% Max Static Capacity = 3113 Ib. Static Stress = 32% Seismic Stress = 1.3% COLUMN BACKER BEAM @ Level 2+ CONNECTOR @ Level 2+ OK OK LA Darling: 4 1/2 x 2 5/8 x 14GA THREE PIN CONNECTOR None Max Static Capacity = 3113 lb. Stress = 8% Stress = Static Stress = 32% Seismic Stress = 3% BRACING SLAB & SOIL OK OK Slab = 4" X 2500 psi OK HORIZONTAL DIAGONAL Soil Bearing Pressure = 1000 psf LA Darling: 1 1/2 x 3/4 x 16GA LA Darling: 1 1/2 x 3/4 x 16GA Slab Puncture Stress = 36% Stress = 1.0% Stress = 1.8% Slab Bending Stress = 25% BASEPLATE ANCHORS OK HILTI KB H(ICC# ESR -1355) 0.375 Dia. X 2.5 Min. EmbOK 4 in X 3 in X 0.1875 in Pullout Capacity = 780 lbs. Steel = 36000 psi Shear Capacity = 1466 lbs. MBase = 0 in. lb. No. Of Anchors = 1 per Base Plate Stress = 5% Anchor Stress = 74% SEIZMIC MATERIAL HANDLING ENGINEERING TEL: (909)869 - 0989 FAX: (909)869 - 0981 161 ATLANTIC STREET POMONA. CA 91768 PROJECT BEST BUY #1020 FOR BEST BUY SHEET NO. 10 CALCULATED BY RF DATE 2/27/2005 COMPONENTS & SPECIFICATIONS : TYPE C1 ANALYSIS PER CHAP 22, DIV X OF THE 2001 CBC LEVELS = 2 Hl = 72 in. W2 Y1 =20 in. WI =1000 lbs. H2 = 72 in. W2 =1000 lbs. Y2 = 10 in. Y6 PANELS = 6 T Y3 = 24 in. 5'4 = 28 in. + LIVE LOAD = 1000 lbs. H2 Y5 Y5 = 18 in. Y6 = 30 in. FRAME HEIGHT = 1.44 in. Y4 H w1 H FRAME DEPTH = 36 in. Y3 BEAM LENGTH= 144 in. H1 Y2 ZONE = Zone 4 (Na = 1.1) Y1 +L ID COLUMN BEAM @ Level 1 CONNECTOR @ Level 1 OK OK OK LA Darling: 3 x 1 1/2 x 14GA (Tube) LA Darling: 4 1/2 x 2 5/8 x 14GA THREE PIN CONNECTOR Steel =55000 psi Steel = 55000 psi Stress =19% Stress =.19%0 Max Static Capacity = 3113 lb. Static Stress = 32% Seismic Stress = 7% COLUMN BACKER BEAM @ Level 2+ CONNECTOR @ Level 2+ OK OK LA Darling: 4 1/2 x 2 5/8 x 14GA THREE PIN CONNECTOR None Max Static Capacity = 3113 lb. Stress = 10% Stress = Static Stress = 32% Seismic Stress = 4% BRACING SLAB & SOIL OK OK Slab = 4" X 2500 psi OK HORIZONTAL DIAGONAL Soil Bearing Pressure= 1000 psf LA Darling: 1 1/2 x 3/4 x 16GA LA Darling: 1 1/2 x 3/4 x 16GA Slab Puncture Stress = 35% Stress = 1.0% Stress =14% Slab Bending Stress = 23% BASE PLATE ANCHORS OK HILTI KB II(ICC# ESR -1355) 0.3.75 Dia. X 2.5 Min. EmbOK 4 in X 3 in X 0.1875 in ' Pullout Capacity = 780 lbs. Steel = 36000 psi Shear Capacity = 1466 lbs. • MBase = 3052 in. lb. No. Of Anchors = 1 per Base Plate Stress = 26% Anchor Stress = 96% M SEIZMIC 3 MATERIAL HANDLING ENGINEERING TEL: (909)869 - 0989 FAX: (909)869 - 0981 PROJECT BEST BUY #1020 FOR BEST BUY SHEET NO. 10A CALCULATED BY RF 161 ATLANTIC STREET POMONA. CA 91768 DATE 2/27/2UU5 LOADS AND DISTRIBUTION: TYPE C EL" Fn Determines Seismic Base Shear per Section 2228.5, Chap 22, Div X of the 2001 CBC. EL F5 V SEISMIC ZONE: Zone 4 Ca: { 0.44 EL F4 Number Of Levels: 4 1: 1.00 �� F3 wLL (Sum of live loads) : 4000 lbs Na: 1.10 EL2 Fz wDL (Sum of dead loads): 260 lbs Rw (Longitudinal): 5.60 EL' F, TOTAL FRAME LOAD: 4260 lbs Rw (Transverse): 4.40 a LONGTUDINAL DIRECTION TRANSVERSE DIRECTION n: 1 n: 1 l VLong - 2.5 • Ca - Na - 1 ( wLL + wDL VLong = 2.5 • Ca • Na • 1 ( wLL + wDL J Rw • 1 .4 l n Rw . 1 .4 I n 11 (2.5 X 0.44 X 1.1 X 1 X ((4000/ 2) + 260)) / (5.6 X 1. (2.5 X 0.44 X 1.1 X 1 X ((4000/1) + 260)) / (4.4 X 1 VLong: 349 lbs VTrans: 837 lbs F; = V( E W,Hj W;Hi Levels hs LONGITUDINAL TRANSVERSE W., 14;A ✓i W. wXhX .f; 1 36 565 20,340 35 1,065 38,340 84 2 72 565 40,680 70 1,065 76,680 167 3 108 565 61,020 105 1,065 115,020 251 4 144 565 81,360 140 1,065 153,360 335 203,400 _ 349 lbs 383,400 837 lbs E MIC MATERIAL HANDLING ENGINEERING TEL: (909)869 - 0989 FAX: (909)869 - 0981 PROJECT BEST BUY #1020 FOR BEST BUY SHEET NO. 11 CALCULATED BY RF I W A 1 LAN11C b l KEh 1, YUMUNA, UA Y 1 /02S LA I t ci c i i cvv� 1 LONGITUDINAL ANALYSIS: TYPE C THE ANALYSIS IS BASED ON THE PORTAL METHOD, WITH THE POINT OF CONTRA FLEXURE OF THE COLUMNS ASSUMED AT MID -HEIGHT BETWEEN BEAMS, EXCEPT FOR THE LOWEST PORTION, WHERE THE BASE PLATE PROVIDES ONLY PARTIAL FIXITY, THE CONTRA FLEXURE IS ASSUMED TO OCCUR CLOSER TO THE BASE. (OR AT THE BASE FOR PINNED CONDITION, WHERE THE BASE PLATE CANNOT CARRY MOMENT). Mn -n Fn MUpper + MLower — MConn'R' + MConn'L' _ MS -5 FS MConn'R' — MConn'L' MConn ' 2 = MUpper + MLower M44 15 4 _ MUpper + MLower M3-3 4 MConn — 2 + MEnds F3 �-2 2 V VLong = 174 lbs Ml -I Co! _ — F1 2 1 • M base 11 MBase — 2965 in/Ib MEnds - 658 in/lb FRONT ELEVATION LEVELS hi fi AXIAL LOAD MOMENT Mconn 1 34 18 2,128 2,951 3,538 2 36 35 1,596 2,808 3,151 3 36' 52 1,064 2,178 2,368 4 36 70 532 1,242 1,279 SAMPLE CALC. MI -I — (Vcol hi) — MBase _ (174 lbs X-34 in) - 2965 in/lb = 2,951 in/lb I SEIZMIC MATERIAL HANDLING ENGINEERING i TEL : (909)869 - 0989. FAX: (909)869 - 0981 161 ATLANTIC STREET, POMONA, CA 91768 PROJECT BEST BUY #1020 FOR BEST BUY SHEET NO. 12 CALCULATED BY RF DATE 2/27/2005 COLUMN ANALYSIS: TYPE C •.ANALYZED PER DIV VII, CHAP 22 OF THE 2001 CBC. SECTION PROPERTIES BASED ON THE EFFECTIVE SECTION. P =' 2128 lbs M;= 2951 in/lb Kx • LX - 1.2 X 34in / 1.08in KL t Rx= 37.8 Max = 130.6 f K y• Ly 1 X 82in / 0.628in R Ry = 130.6 Axial r12 Fe =17.1 KSI F.Y-m- : T A� . Fy �f _ . 28 KSI B 2 Since: F, < Fy /2 C - Fn = FQ = 17.07704 Pn = Aeff Fn = 0.63 in^2 X 17.1 KSI = 10759 lbs P" SECTION PROPERTIES • P = = 10759 lbs / 1.92 = 5603 lbs S2c A 3 in P B 1.5 in - = 0.38 C Pa t : 0.0747 in Flexure Aeff : 0.63 in^2 'Since: P P Mx Ix : 0.736 in^4 > 0.15 Check: + <1.33 Sx : 0.491 in^3 PQ Pa Max Rx :1.08 in Myeild = M = S • Fy My x 3 = 0.491 In X 55000 PSI = 27005 in/Ib Iy : 0.25 in^4 Sy : 0.33 in^3 M y Ry : 0.628 in Max = = 27005/1.67 = 16171 in/lb Kx :1.2 Qf Lx : 34 in W EI Ky : 1 Pcr = = (3.14159)^2 X 29500, KSI / (82 n.)^2 = 31869 lbs Ly :82 in 2 (Kl)Max Fy : 55 KSI . E : 29500 KSI 1 Px = P = (1 / (i - (1.92 X 2128 lb / 31869 lb)))^ -1 = 0.87 S2c : 1.92 �1=CS2c S2f : 1.67 . PCr Cmx : 0.85 Cb 1 (2128 lb / 5603 lb) + (0.85 X 2951 in/lb / 16171 in/lb X 0.87) = 0.56 <.1.33 (42%) SEUMIC MATERIAL HANDLING ENGINEERING TEL: (909)869 -'0989 FAX: (909)869 - 0981 161 ATLANTIC: SKE1 1, l UMUNA, UA 91 M PROJECT BEST BUY #1020 FOR BEST BUY SHEET NO. 13 CALCULATED BY RF UA Ir. 6/c /lcVVJ BEAM ANALYSIS: TYPE C BEAM -TO COLUMN CONNECTIONS PROVIDE ADEQUATE MOMENT CAPACITY TO STABLIZE THE SYSTEM, ALTHOUGH IT DOES NOT PROVIDE FULL FIXITY. THUS, THE BEAMS WILL BE ANALYSED ASSUMING PARTIAL END FIXITY. FOR THE COMPUTATION OF BEAM TO COLUMN MOMENT CAPACITY, THE PARTIAL END FIXITY MOMENT OF THE BEAM WILL BE ADDED TO THE LONGITUDINAL FRAME MOMENT FOR THE ANALYSIS OF THE EFFECTIVE MOMENT FOR PARTIALLY FIXED BEAM For a simply supported beam, the max moment at the center is given by wt 3 /8 . An assumption of partial fixity will decrease this maximum moment by the following method. Y Percentage of End Fixity = 10% 0= 0.1 MCenter = MCenter(Simple ends) - 6*MCenter(Fixed ends) WI2/8—(0.K72/12)= 0.117- p72 Reduction Coefficient R = 0.117/0.125 = 0.933 MCenter =,8-W7?I8 =0.933.K72/8 Mind _ 0 MM. (FixedEnds) = WI2 /12. 0.1 �- = 0.0083 . gq2 ' EFFECTIVE DEFLECTION FOR PARTIALLY FIXED BEAM For a simply supported beam, the max deflection at the center is given by5rP7'/384 E . An assumption of partial fixity will decrease this maximum deflection by the following method. 5W14 AMax =)6 384 • E • I,, LiveLoadlIv1= 1000 lbs DeadLoad 11v1 =4lb/ft X 2 X (144/12 = 96 lbs MCenter — 0.117* p72 =9206 in/lb MEnds = 0.0083* W72 = 658 in/lb Fb = 0.6 • Fy = 33boo PSI. FBEf = 33000 PSI Mcenter(simple) Mends M cerrter (fes) (fled) �.,�����ui��llllllllll IIIIIIIIIIIIIIIIIIIIIII III �������� TYPICAL BEAM FRONT VIEW SEIZMIC MATERIAL HANDLING ENGINEERING TEL: (909)869 - 0989 FAX : (909)869 - 0981 161 ATLANTIC STREET, POMONA, CA 91768 BEAM ANALYSIS: TYPE C MAXIMUM STATIC LOAD PER LEVEL DEPENDS ON: 1. MAXIMUM MOMENT CAPACITY Fb = M/S. z 6. WI /8 FBE�- = S, PROJECT BEST BUY #1020 FOR BEST BUY SHEET NO. 14 ' CALCULATED BY RF DATE 2/27/2005 FBE� -16--S, Max.Weight / 1v1=a /jL ((33000 X 16 X 1) / (0.933 X 144)) X 0.875 = 3448 lbs/Ivl 2. MAXIMUM ALLOWABLE DEFLECTION Aa,raw = L/180 = 0.8 In _ 5W1° 384 -E -Ix 384 -E -I -0 Max.Weight / M = x Allow . L3 5-40 I = 2.4 in/,4 x S = 1 in^3 x Fy =55000 PSI a(impactCoefficient) = 0.875 P=0.933 9= 0.1 L(Length) = 144 in Ln = 144 in Step = 1.75 in BeamThickness = 0.0747 i Result BeamDepth = 4.5 in TopWidth = 1.75 in Bottom Width= 2.625 in =((384 X 29000000 X 2.4 X 0.8)/(5 - (4X 0.1))) X 144^3 =3113 lbs/lvl MAXIMUM ALLOWABLE LIVE LOAD PER LEVEL = 3113lbs/lvl BeamStress = 32% ALLOWABLE AND ACTUAL BENDING MOMENT AT EACH LEVEL Mstatia = Rq z /8MAIlow,sfanc = Sx * Fb MArmw,seilmil = S.,* Fb * 133 MImpact = MStatic * 1.125 Mse,s is = MConn Level Msrac;e MImPaet M.Afflow,static Mseisnue Mn,low,seismie Result 1 9206 10357 33000 3538 44000 GOOD 2 9206 10357 33000 3151 44000 GOOD 3 9206 10357 33000 2368 44000 GOOD 4 9206 10357 33000 1279 44000 GOOD IC IF SEMMIC MATERIAL HANDLING ENGINEERING TEL: (909)869 - 0989 FAX : (909)869 - 0981 161 ATLANTIC STREET, POMONA, CA 9.1768 PROJECT BEST BUY #1020 } FOR BEST BUY SHEET NO. 15 CALCULATED BY RF DATE 2/27/2005 BEAM TO COLUMN ANALYSIS: TYPE C CONNECTION CAPACITY DEPENDS OWING PARAMETERS: 1. SHEAR CAPACITY OF PIN PinDiameter. = 0.43 81n. Fy = 550001PSI Ashear = Diameter2 4 = . 0.1507 in^2 PShear = 0.4 • Fy • Ashear = 0.4 X 55000 X 0.1507 in^ = 3315 lbs 2. BEARING CAPACITY OF PIN ColumnThickness = 0.0747 F,, = 65000PSI Q = 2.22 a = 2.22 AT LEVEL 1 PBearing =a . Fa Dia. • Col.Thickness/S2 = 2.22 X 65000 X 0.438 X 0.0747 / 2.22 = 2127 lbs " 3. MOMENT CAPACITY OF BRACKET EdgeDist . =1.0In. PinSpacing = 2 I Fy = 55000 PSI C= P,+PZ+P3 = P, + P, (2.5/4.5)+ P, (5/4.5) = PIX1.667 Tcrp = 0.179In. Sc,ip = 0.127In3 Mcapacil ='Schp • FBend;ng = 0.127 In^3 X .66 X Fy = 4610 in -Ib C•d =M Ca paci ry = 1.667 P, •d 3„ d = EdgeDist/2 = 0.5 r c Pcrp = MCapacity/( 1.667 • d) = 4610 / (1.667 X 0.5) = 5531 lbs MT IIMUM VALUE OF P1 GOVERNS P = 2127 lbs Mcann-a;iaw = [P *4.5]+[P, *(2.5/4.5)*2.5]+[P, *(5/4.5)*.5]*1.33 _ . 16816in-lb > 3538in-lb OK ,r SEMMIC MATERIAL HANDLING ENGINEERING TEL: (909)869 - 0989 FAX: (909)869 - 0981 161 ATLANTIC STREET, POMONA, CA 91768 PROJECT BEST BUY #1020 FOR BEST BUY SHEET NO. 16 CALCULATED BY RF DATE - 2/27/2005 TRANSVERSE ANALYSIS: BRACING: TYPE C IT IS ASSUMED THAT THE LOWER PANEL. RESISTS THE FRAME SHEAR INTENSION AND COMPRESSION. IF HORIZONTAL AND DIAGONAL MEMBERS ARE THE SAME, ANALYSIS WILL BE DONE ON THE DIAGONAL MEMBER AS IT WILL GOVERN. ' DIAGONAL BRACING: COMPRESSION MEMBER Ldiag = (L — 6)Z + (D — (2 • BCol))Z = 50.3" Vdia Prans • LDiag $ _ . d = 1276 Ibs k-1 (I X 50.3289) / (0.304) = 165.6 In rMin z e FQ = = 10442.6 PSI k�rMin Fy = 27500 2 F Fe < 2 Fn = Fe — 10442 6 PSI Pn = Area Fn Qc =1.92 PP a = QC ag Brace Stress = VDi 0 2558 Ibs = 1332 Ibs 0.96 < 1.33 (72%) I � o SIDE ELEVATION Panel Height (L) = 41 In Panel Depth (D) = 36 In Column Depth (B) = 1.5 In Clear Depth (d) = (D - 2*13) = 33 ESEMMIC MATERIAL HANDLING ENGINEERING TEL (909)869 - 0989 FAX: (909)869 - 0981 161 ATLANTIC STREET, POMONA, CA 91768 PROJECT BEST BUY #1020 FOR BEST BUY SHEET NO. -17 CALCULATED BY RF DATE 2/27/2005 OVERTURNING ANALYSIS: TYPE C ANALYSIS OF OVERTURNING WILL BE BASED ON SECTION 2228.7.1 OF THE 2001 CBC. FULLY LOADED Total Shear = 837 lbs Movr Vrr."S • Ht .1. 15 Movr = 837 X 108 X 1.15 = 103955 in/Ib Ms, = (Wp +.85wDL)• d/2 _ Msr (4000+(.85 X 260)) X 36/2 = 75978 in/Ib (103955-75978)/36 PUpLrf, = 777 lbs. d TOP SHELF LOADED Shear = 248 lbs Mo,, = V,,,p • Ht • 1.15 = MOW248X.144 X 1.15 = 40986 in/lb Msr(WP +wDL)•d/2 Msr = (1000 + (.85 X 260)) X 36 /2 = 21978 in/lb Pup _ l(M°vr — Msr) _ (40986 - 21978) / 36 upL;f — d 528 lbs. . ANCHORS No. of Anchors : 2 Pull Out Capacity: 546 Lbs. Shear Capacity : 1026 Lbs. COMBINED STRESS Fullv Loaded = (777 / 546 X 2))+ ((837 /2)/(1026 X 2)) _ .0.64 Ton ShelfLoaded (528 / (546 X`2))+ ((248 /2)/(1026 X 2)) = 0.31 . USE 2 HILTI KB.II(ICC# ESR -1355) 0.375 Dia. X2.5 Min. Embd. Anchors per BasePlate. W CROSS AISLE ELEVATION Fr i. V SEIZMIC MATERIAL HANDLING ENGINEERING TEL: (909)8691- 0989 FAX : (909)869 - 0981 161 ATLANTIC STREET, POMONA, CA 91768 PROJECT BEST BUY # 1020 FOR BEST BUY SHEET NO. 18 CALCULATED BY RF DATE 2/27/2005 ' BASE PLATE ANALYSIS: TYPE C THE BASE PLATE WILL BE ANALYZED WITH THE RECTANGULAR STRESS RESULTING FROM THE VERTICAL LOAD P, COMBINED WITH THE TRIANGULAR STRESSES RESULTING FROM THE MOMENT Mb (IF ANY). THERE ARE 3 CRITERIA IN DETERMINING Mb. THEY ARE 1. MOMENT CAPACITY OF THE BASE PLATE, 2. MOMENT CAPACITY OF THE ANCHOR BOLTS, AND 3. Vcol*h/2 (FULL FIXITY). Mb IS THAT SMALLEST VALUE OBTAINED FROM THE 3 CRITERIA ABOVE. PC./ = 2128 lbs Base Plate Width (B) = 4 in b = 3 in MBase = 2965 in/lb Base Plate Depth (D) = 3 in bl = 0.5 in Base Plate Thickness (t) = 0.1875 in Fv (base) = 36000 PSI P— • Pc°, = 177.3 PSI A D•B _ M fb D BZ/6 = 370.6 PSI 2•b, fb2 = B '.fb = 92.66 PSI Jbl = fb —.fbz _ = 277.97 PSI 2 wbI -= b12 �{'a + Mb — 2 .2 ' l✓ .fbl + .67fbz Mb = 64.63 in/lb 1•t2 , SBase = 6 = 0.01 in/cb FBase = •75Fy • 1.33 = 36000 PSI fb _ Mb = 0.31 <= 1 OK Fb SBase FB.,, ANCHOR TENSION No. ofAnchors Resisting Tension (n) = 1 Mo T • d2 = MB= — PCO • (b / 2)) T=MBase_Pc.,•b d2 ' n•d2 = 0 NEGATIVE, THEREFORE NO TENSION n b b bl 8 fa fb Pco pp M 0 T f— Dancho4 t2 fb I SEIZMIC MATERIAL HANDLING ENGINEERING TEL: (909)869 - 0989 FAX : (909)869 - 0981 PROJECT BEST BUY #1020' : FOR BEST BUY SHEET NO. 19 CALCULATED BY RF IN AILANIIU; iIKhh1,YUMUNA UAYl/05 LABS L/L//LVVJ SLAB AND SOIL: TYPE C' THE SLAB WILL BE CHECKED FOR PUNCTURE STRESS. IF NO PUNCTURE OCCURS, IT WILL BE ASSUMED TO DISTRIBUTE THE LOAD OVER A LARGER AREA OF SOIL AND WILL ACT AS A FOOTING. PUNCTURE * (EQ 12-5) SEC. 1612.2. Pstatic = 2130 lbs Mar = 103955.4 in -lb p Pmax =1.1 • (1.2 • Pstaac + 1.0 • (Mat / d )) * = 5732 lbs = 100 PSI Fpunct 1 1 —[(B + 2)+(' + 2ApunctJ].2.t = 88 sq. in. J v = Pmax = 0.65 Fv Apunct ' Fpunct SLAB TENSION -P• 144 Max Aso;/ = 1.33 • fsaF/ = 621 sq. in. FOOTING L = A B— 4 in = 24.91 in W = 3 in B= B W+t = 7.46 in - Frame Depth d = 36 in b L 2 B = 8.72 in CONCRETE wb2 1.33 2 b f b = 2500 PSI M .fs°`/ c°nc — = 352 in -lb 2 144.2 t = 4 in . 1:t2 Sconc — = 2.67 cb. in. 0 = 0.65 . 6 F = 50 f' Fc c SOIL = 162.5 PSI .f6 MConc fSO1l = 1000 PSF = 0.61 Fb SConc ' Fconc OK SEIZMIC PROJECT BEST BUY #1020 FOR BEST BUY INC. SHEET NO. 20 CALCULATED BY RF .MATERIAL HANDLING ENGINEERING DATE 2/27/2006 TEL: (909) 869-0989 • FAX: (909) 869-0981 161 ATLANTIC AVENUE • POMONA, CA 91768 OVERRACK GONDOLA ANALYSIS SCOPE: ITHE PURPOSE OF THIS ANALYSIS IS TO SHOW THAT THE OVERRACK GONDOLA COMPLIES WITH THE 2001 CBC. GONDOLA SHELVING UNITS WILL BE ANALYZED AS AN'ELEMENT UTILIZING THE FOLLOWING MAX. LATERAL FORCE FORMULA: V= 2.5 x Ca x I x W / R <== MAXIMUM SECTION 1630.2.1 EQN. 30-5 V= 0.56 x Ca z I x W — SECTION 1634.5 EQN. 34-2 V= 1.6xZxNvxIxW/R— SECTION 1634.5 EQN. 34-3 I SPECIFICATIONS: MAIN STEEL - Fy = 36,000 PSI MINIMUM YIELD STEEL BOLTS - A307 UNLESS OTHERWISE NOTED WHEN USED ANCHORS - 3/8"0 x 2-1/2" MIN. EMBD. HILTIKWIK BOLT II WEDGE ANCHORS (ICC #ESR -1355) SLAB - 4" x 2,000 PSI (MIN.) SOIL - 1,000 PSF (MIN.) CONFIGURATIONS: SHELF HEIGHTS VARY BETWEEN 145 9/16" & 96" TALL. CRITIC#,L CONFIGURATION AjVALYZED '�- 96"� 69' , 28 15/32' � ......................:.A.....1 6.. 739/16- 499/161, 39/16"499/16" I COMM VICM/ CHIC %lir-l11 R1/ll 101 C1 CMC WICMIMIIQ!_I C' FULL GONDOLA OVER RACK HEIGHT (Ht1)= 145.6 IN depth (d1) = 28:47 IN depth (d2) = 32.72 IN depth (d3) = 60.0 IN Wgond = 350 LB Wshelf = 150 LB Wtotal1 = 500 LB r i SEIZMIC IN00 C. MATERIAL HANDLING ENGINEERING TEL: (909) 869-0989 • FAX: (909) 869-0981 1 A ATI ANTIC AVENUE • POMONA. CA 91768 PROJECT FOR SHEET NO. CALCULATED BY DATE LOADS & DISTRIBUTION: (OVERRACK GONDOLA BEST BUY # 1020 BEST BUY 21 RF 2/27/2006 ANALYZED PER 1634.5, AND TABLE 16-P OF THE 2001 CBC. SEISMIC ZONE 7'4 Z- 0.3 •. ap = 2.5 Ca = 0.484 Na = 1.1 <== ONLY USED IN ZONE 4 Nv = 1:.33 =T. Rtrans. =`2.9' <== TABLE 16-P; NO. 3 CANTILEVERED MASS ELEMENT V(30-6)'= 2.5 x 0.484 x 1 x W/ R x 1.4 = 0.864 * W/R <__= CONTROLS V(34-2) = 0.56 x 0.484 x 1 x W/ 1.4 0.242 * W V(34-3)= 1.6 x 0.3 x 1.33 x 1 xW/Rx1.4 = 0.456 * W/R LONGITUDINAL & TRANSVERSE DIRECTION. (SINGLE SIDED): Wgond = 350 LB, Wshelf = 150 LB Fp shelf Fp.gond.= 104 LB Fp shelf = 45 LB, Fp total = 149 LB Pcol = 500 LB Mcol(stat) = Wtotall x d1/2 = 500 LB x 28.46875 IN / 2 7,117 IN -LB Mcol(seis) = Fp gond x Ht/2 + Fp shelf x Ht = 104 LBx146 IN/2+45LBx146 in =,14,099 LB Mtotal = Mcol(stat) + Mcol(seis) • = 21;216 LB LONGITUDINAL &.TRANSVERSE DIRECTION (DOUBLE.SIDED): ONE SIDE LOADED � � 60"-- Wtotall = 500 LB Fp shelf 9 Fp"= 149 LB 11 Pcol = 500 LB Fp gond Mcol(stat) = Wtotall x d1/2 145 = 500 LB x 28.47 IN / 2 = 7,117 IN -LB y Mcol(seis) = Fp gond x Ht/2 + Fp shelf Ht = 104 LBx146 IN/2+45LBx1 6 in = 14,099 LB Mtotal = Mcol(stat) + Mcol(seis) SIDE VIEW (DOUBLET = 21,216 LB 1 32 2:28 1459 /16" —♦ SIDE VIEW (SINGLE BOTH SIDES LOADED Fp gond Wtotall = 1,000 LB Fp = 298 LB Pcol = 1,000 LB Mcol(stat) = 0 LB Mcol(seis) = (Fp gond x Ht/2 + Fp shelf x Ht) x 2 = 104 LBx146 IN/2+45LBx146 inx2 = 28,198 IN -LB Mtotal = Mcol(stat) + Mcol(seis) = 28,198 IN -LB SEIZMIC. INC. MATERIAL HANDLING ENGINEERING TEL: (909) 869-0989 • FAX: (909) 869-0981 . • 161 ATLANTIC AVENUE • POMONA, CA 91768 PROJECT FOR SHEET NO. CALCULATED BY DATE BEST BUY # 1020 BEST BUY 22 RF 2/27/2006 COLUMN ANALYSIS { ANALYZED PER AISI AND THE 2001 CBC. SECTION PROPERTIES BASED ON THE EFFECTIVE SECTION. P= 1,000 LB M= 28,1981N=C6 KxLx/rx = 2.1*145.5625 1N/2.1861 IN t = 139.8 <___ (KI/r)max KyLy/ry = 1*78 IN/1.2734 IN s = 61.3 ' AXIAL Fe= Tr^2E/(KUr)max^2 14.9 KSI r Fy/2= 18.0 KSI z<:r Nn.y SINCE, " Fe < Fy/2 THEN, Fn= Fe F� A 36 KSI*[1-36 KSI/(4*14.9 KSI)] SECTION PROPERTIES = 14.9 KSI Pn= AeffFn A= 3.0 IN = 31,206 LB B= 6.0 IN IIc= 1:92 t = 0.120 IN Aeff = 2.096 IN^2 Pa= Pn/Qc Ix = 10.0.15 IN^4 = 31206 LB/1.92 Sx = 3.338 IN^3 = 16,253 LB rx = 2.186 IN P/Pa=. 0.06 < 0.15 ly = 3.398 INA 4 FLEXURE Sy = 2.265 IN^3 CHECK: P/Pa + Mx/Max <_ 1.33 ry = 1.273 IN Kx = 2.1 Pno= Ae*Fy Lx = 145.56 IN = 2.096 IN^2 *36000 PSI Ky = 1.00 75,442 LB Ly = 78.0 IN Pao= Pno/Oc _ Fy= 36 KSI = 75442 LB/1.92 E= 29,500 KSI = 39,293 LB Myield=My= Sx*Fy ' = 3.338 IN^3 * 36000 PSL Of= 1.67 = 120,1.82 IN -LB Cmx= 0.85 ,Max= My/Qi r Cb= 1.0 = 120162 IN-LB/1.67 71,966 IN -LB Pcr- Tr^2EI/(KL)max^2 ' Nx= {1/[1-(f)c*P/Pcr)])^-1 = Tr^2*29500 KSI/(2.1*145.5625 IN)^2 = {1/[1-(1.92*1000 LB/31207 LB)])^ -1 = 31,207 LB = 0.94 THUS, (1000 LB/16253 LB) + (28198 IN -1-13/71966 IN -LB) = 0.42 < 1.33, OK r. SEMMIC PROJECT BEST BUY #1020 + FOR BEST BUY INC. SHEET NO. 23 CALCULATED BY RF MATERIAL HANDLING ENGINEERING DATE 2/27/2006 TEL: (909) 869-0989 • FAX: (909) 869-0981 161 ATLANTIC AVENUE • POMONA, CA 91768 BASE & ARM ANALYSIS BASE ANALYSIS: a Mbase = 28,198 IN -LB t Fb=0.66xFy s = 0.66 x 36000 PSI ARM & BASE v 23,760 PSI fb M/Sx = 28198 IN -LB / 1.553 IN^3 yt = 18,157 -PSI A fb /-Fb = 18157 PSI / 23760 PSI = 0:76 < 1.33 THEREFORE OK SECTION PROPERTIES ARM CHECK: A= 2.5 IN Marm = Wtotall x dl/2 B= 4.0 IN = 500 LB x 28.46875 IN/ 2 t= 0.120 IN = 7,117 IN -LB Fy= 36 KSI Sx= 1.5531N^3 fb = M/Sx Fw = 70 KSI = .7117 IN -LB / 1.553.IN^3 WELd t = 0.125 IN = 4,583 PSI teff = 0.088 IN WELD L1 = 4.0 IN Fb = 23,760 PSI WELD L2 = 3.0 IN Sweld = 1.395 IN ^3 fb / Fb = 4583 PSI / 23760 PSI = 0.19 < 1.0 THEREFORE OK WELD CHECK: . Mmax = 28,198 IN -LB fb = M/Sweld = 28198 IN -LB / 1.395 IN^3 = 20,214 PSI . Fb(weld) = 0.3 x Fw = 0.3 x 70000 PSI = 21,000 PSI fb I Fb = 20214 PSI / 21000 PSI 0.96 < 1.33 THEREFORE OK 1 I 1 r000sotol ift �c- MATERIAL HANDLING ENGINEERING TEL: (909) 869-0989 • FAX: (909) 869-0981 161 ATLANTIC AVENUE o POMONA, CA 91768 OVERTURNING ANALYSIS SINGLE SIDED - FULLY LOADED: TOTAL SHEAR = 149 LB Movt = 21,216 IN -LB PROJECT FOR SHEET NO. CALCULATED BY DATE t—2-1/2" mil E D Mst =.Wpxd2/2 = 500 LB x 32.71875 IN / 2 3/8" = 8,180 IN -L6 ANCHOR: HILTIKWIK II WEDGE (ICC/ ICBO #4627) BEST BUY # 1020 BEST BUY 24 RF 2/27/2006 Puplift = [Movt - Mst] / dl = [21216 - 8180] IN -LB / 28.46875 IN TENSION cap = 753 LB = 458 LB SHEAR cap = 1,467 LB # ANCHORS/base = 1 INTERACTION EQN.: 458 LB % (753 LB)"5/3 + (149 LB / 1467 LB)"5/3 = 0.71 < 1.0 THEREFORE OK * * *L J* * TOP VIEW (ANCHORING LOCATION) MP VIEW (SINGLE) USE (1) ANCHOR PER BASE. DOUBLE SIDED FULLY LOADED TOTAL SHEAR = 298 LB Movf = 28,198 IN -LB Mst= Wpxdl /2 = 1000 LB x 60 IN/ 2 = 30,000 IN -LB Puplift = [Movt - Mst] / d3 = [28198 - 30000] IN -LB / 60 IN = -30 LB <== NO UPLIFT cru I � 11'=� II1111�I1 �111�1 I ANCHOR: HILTIKWIK II WEDGE (ICC/ ICBO #4627) TENSION cap = 753 LB SHEAR cap = 1,467 LB # ANCHORS/base = 1 INTERACTION EQN.: (OLB/(753 LBx1/2))^5/3+(298 LB/1467 LB)^5/3 = 0.07 < 1.0 THEREFORE OK k SEI ZMIC INC. MATERIAL HANDLING ENGINEERING TEL: (909) 869-0989 o FAX: (909) 869-0981 lAl ATI ANTIC AVENUE • POMONA. CA 91768 OVERTURNING ANALYSIS cont. DOUBLE SIDED - FULLY.LOADED cont. * * f PROJECT BEST BUY # 1020 FOR BEST BUY SHEET NO. 25 CALCULATED BY RF DATE 2/27/2006 TOP VIEW (ANCHORING LOCATION) TOP VIEW (DOUBLE) USE (2) ANCHORS, PER BASE FOR END FRAMES, AND"(1) ANCHOR PER BASE FOR INTERMEDIATE FRAMES AS SHOWN. DOUBLE SIDED - SINGLE SIDE LOADED 2-1/2" TOTAL SHEAR"-- 149 LB IMil MBDMNT Movt = 21,216 IN -LB Mst= Wpxdl /2 = 500LBx60IN/2 = 15,000 IN -LB Puplift = [Movt - Mst] /A3 = [21216 - 15000] IN -LB / 60 IN 104 LB INTERACTION EQN.: (104 LB/(753 LBx1/2))^513+(149 LB/1467 LB)"5/3 = 0.14 * r-,—1 * Fr-- I- . 3/8" ANCHOR: HILTIKWIK II WEDGE (ICC/ ICBO TENSION cap = 753 LB SHEAR cap = 1'1467 LB # ANCHORS/base = 1 < 1.0 THEREFORE OK * n Fr -!--Tl* * ® LJ TOP VIEW (ANCHORING LOCATION) TOP.VIEW .(DOUBLE) USE (2) ANCHORS PER BASE FOR END FRAMES, AND (1) ANCHOR PER BASE FOR INTERMEDIATE FRAMES AS SHOWN. SEIZIUIIC PROJECT BEST BUY 41020 FOR BEST BUY INC. SHEET NO. 26 CALCULATED BY RF MATERIAL HANDLING ENGINEERING DATE 2/27/2006 TEL: (909) 869-0989 • FAX: (909) 869-0981 1A1 ATI ANTIr AVFNIIF • POMONA. CA 91768 FEATURE END GONDOLA ANALYSIS W/ SPEAKER ARCH SCOPE: THE PURPOSE OF THIS ANALYSIS IS TO SHOW THAT THE FEATURE END GONDOLA COMPLIES WITH THE 2001 CBC. PARAMETERS: GONDOLA SHELVING UNITS WILL BE ANALYZED AS AN ELEMENT UTILIZING THE FOLLOWING MAX. LATERAL FORCE FORMULA: V = 2.5 x Ca x I x W / R — MAXIMUM SECTION 1630.2.1 EQN. 30-5 V = 0.56 x Ca x I x W — SECTION 1634.5 EQN. 342 V= 1.6xZxNvxIxW/R— SECTION 1634.5 EQN. 34-3 SPECIFICATIONS: MAIN STEEL - Fy = 36,000 PSI MINIMUM YIELD STEEL BOLTS - A307 UNLESS OTHERWISE NOTED WHEN USED ANCHORS - 3/8" fd x 2-1/2" MIN EMBD. HILTIKWIK BOLT II WEDGE ANCHORS (ICBO #4627) SLAB - 4" x 2,000 PSI (MIN.) SOIL - 1,000 PSF (MIN.) CONFIGURATIONS; SINGLE BAY FEATURE END GONDOLA FEATURE END GONDOLA FEATURE END GONDOLA 4'-0" CTRs` HEIGHT (Ht1) = 144:0 IN SHELVING GONDOLA t I HEIGHT (ht) = 96.0.IN SEE DRAWING 981486D FOR DETAILS depth (d1) = 24.0 IN 96" ------------ r -- I I Yr-----rr-"--I o I 1 az" d 96" 937;8" II II II II � II II I II II•. I 24-t II n I ' II II 1 , F�-----1L----' .I-------- 91/4" SIDE VIEW FRONTVIEW k W gond = 350 LB W shelf = 150 LB W arch =.55 LB \Altntmll = 555 ME $EIZMIC PROJECT BEST BUY #1020 FOR BEST BUY INC. SHEET NO. 27 CALCULATED BY RF MATERIAL HANDLING ENGINEERING DATE 2/27/2006 TEL: (909) 869-0989 - FAX: (909) 869-0981 1 Al ATI AMTlr^. n\/FNl1F - POMONA. CA 91768 LOADS & DISTRIBUTION: (144"H FEATURE END GONDOLA) ANALYZED PER 1634.5, AND TABLE 16-P OF THE 2001 CBC. SEISMIC ZONE - 4 Z- 0.4 Na = 1..,1, : <_= ONLY USED IN ZONE 4 Nv = 1:33i Ca = 0.484 ap = 25 Rtrans. = 2.9 <== TABLE 16-P, NO. 3 CANTILEVERED MASS ELEMENT V(30-5)= 2:5x0.484x1 xW/Rx1.4 = 0.864 * W/R <__= CONTROLS V(34-2) = 0.56 x 0.484 x 1 x W/ 1.4 = 0.194 * W V(34-3)= 1.6 x0.4x1.33x1 xW/Rx1.4 = 0.608 * W/R LONGITUDINAL & TRANSVERSE DIRECTION: . Wtotal1 = 555 LB Fp gond = 104 LB Fp ar t Fp shelf = 45 LB Fp arch = 16 LB Fp(col) = 83 LB Pcol = 278 LB GONDOLA: Mgond(stat) = [V11 gond x d1/21 / 2 = [350 LB x'24 IN / 2] / 2 = 2,100 IN -LB Mgond(seis) = (V/2) x Ht/2 = 52 LB x 96 IN/2 = 2,503 LB SHELF: Mshelf(stat) = [W shelf x d1/2] / 2 [150 LBx24IN/2]/2 = 9001N -LB Mshelf(seis) = (V/2) x Ht = 22 LB x 96 IN = 2,146 LB SPEAKER ARCH: March(stat) = LENGTH,* WEIGHT/2 = 95.5 IN * 55LBS/2 = 2,626 IN -LB March(seis) = (V arch/2) x Ht ). = 1,1641N -LB u 96 ---------- Fp s tr----- rr- - ---i 24"t LOCATION OF SPEAKER ARCH ELEVATION @ 142" Fp gond 96" Mcol(total) = Mgond(stat) + Mgond(seis) +Mshelf(stat) + Mshelf(seis) + March(stat) + March(seis) = 11,439 LB SEIZMIC BEST BUY PROJECT BEST BUY #1020 FOR. INC. SHEET NO. 28 CALCULATED BY RF MATERIAL HANDLING ENGINEERING DATE 2/27/2006 TEL: (909) 869-0989 • FAX: (909) 869-0981 161 ATLANTIC AVENUE • POMONA, CA 91768 COLUMN ANALYSIS ANALYZED PER AISI AND THE 2001 CBC. SECTION PROPERTIES BASED ON THE EFFECTIVE SECTION. P= 278 LB M= 11,439 IN -LB KxLx/rx = 2.1*96 IN/1.0687 IN = 188.6 <___ (KI/r)max B KyLy/ry = 1*84 IN/0.6127 IN = 137.1 AXIAL Fe= -r 2E/(KUr)max^2 = 8.2 KSI � Fy/2= 18.0 KSI`*- SINCE, Fe < Fy/2 THEN, Fn= Fe a _ = 36 KSI*[1-36 KSI/(4*8.2 KSI)] 8.2 KSI Pn= Aeff*Fn = 8,339 LB Qc= 1.92 Pa= Pn/Qc = 8339 LB/1.92 = 4;343 LB P/Pa= 0.06 < 0.15 FLEXURE CHECK: P/Pa + Mx/Max <_ 1.33 11 THUS, Pno= Ae*Fy = 1.019 IN^2 *36000 PSI = 36,691 LB Pao= Pno/bc = 36691 LB/1.92 = 19,110 LB Myield=My= Sy*Fy 0.51 IN^3 * 36000 PSI = 18,367 IN -LB Max= MyMf = 18367 IN-LB/1.67 = 10,9981N -LB Pcr= 1r^2EI/(KL)max^2 = Tr^2*29500 KSI/(2.1*96 IN)^2 = 8,340 LB A= 1.5 IN B= 3.0 IN t = 0.120 IN Aeff = 1.019 IN^2 Ix = 1.164 IN^4 Sx = 0.776 IN^3 rx = 1.069 IN Iy = 0.383 IN^4 Sy = 0.510 IN^3 ry = 0.613 IN Kx = 2.1 Lx = 96.0 IN Ky = 1.00 Ly = 84.0 IN Fy= 36 KSI E= 29,500 KSI Nx= (141 -(Clc*P/Pcr)]}A 71 = {1/[1-(1.92*278 LB/8340 LB)]}^ -1 = 0.94 (278 LB/4343 LB) + (11439 IN-LB/10998 IN -LB) = 1.10 < 1.33, OK Of= 1.67 Cmx= 0.85 Cb= 1.0 SEIZMIC INC. MATERIAL HANDLING ENGINEERING TEL: (909).869-0989 - FAX: (909) 869-0981 161 ATLANTIC AVENUE - POMONA, CA 91768 ARM & OVERTURNING. ANALYSIS ARM ANALYSIS: Marm = [Wshelf x dl / 2] / 2 = 150LBx241N/2 = 1,8001N -LB Fb= 0.6xFy = 0.6 x 36000 PSI = 21,600 PSI . fb = M/Sx = 1800 IN -LB / 0.578 IN^3 = 3,114 PSI PROJECT FOR SHEET NO. CALCULATED BY DATE 318=- 688" VQ 132^ - BEST BUY #1020 BEST BUY 29 RF 2/27/2006 A= 5.75 IN B= 1.187 IN t= 0.105 IN Fy= 36 KSI Sx= 0.578 IN^3 fb / Fb = 3114 PSI / 21600 PSI = 0.14 < 1.33 THEREFORE OK NOTE: THE SYSTEM IS BEING BRACED BY THE OVERRACK GONDOLA IN THE LONGITI inIh Al DIRECTION. 2-1/2" I° ' I OVERTUNING SINGLE SIDED - FULLY LOADED: M EMBDMNT TOTAL SHEAR = 165 LB' Movt = 5,813 IN -LB 3/8 ANCHOR: HILTIKWIK II WEDGE (ICC/ ICBO f Mst= Wpxdl /2 = 277.5 LB x 24 IN / 2 = 3,330 IN -LB Puplift = [Movt - Mst] / d1 ' _ [58.13 - 33301 IN -LB / 24 IN = 103 LB INTERACTION EQN.: + 4'-0° CTRS f (103 LB / 753 LB)^5/3 + (83 LB 11467 LB)"5/3 = 0.04 TENSION cap = 753 LB SHEAR cap= 1;467 LB # ANCHORS/base = 1 < 1.0 THEREFORE OK NOTE: THERE IS NO OVERTURNING TRANSVERSE DIRECTION BECAUSE IT IS BEING SUPPORTED. BY THE OVERRACK GONDOLA. NOTE: THE FEATURE END GONDOLA IS ATTACHED TO THE OVERRACK BY (2) 3/8"0 CARRIAGE BOLTS @ THE 93-718" ELEVATION. 11 SEIZMIC INC. MATERIAL HANDLING ENGINEERING TEL: (909) 869-0989 • FAX: (909) 869-0981 161 ATI ANTIC; AVENUE • POMONA. CA 91768 PROJECT FOR SHEET NO. CALCULATED BY DATE BEST BUY #1020 BEST BUY 30 RF 2/27/2006 BOLT ADEQUACY THE BOLTS WILL BE PROVEN TO BE ABLE TO TAKE THE SEISMIC SHEAR IMPOSED BY THE FEATURE END FIXTURE IN THE LONGITUDINAL DIRECTION, AND OVERTURNING TENSION CAUSED BY SEISMIC SHEAR IN THE TRANSVERSE DIRECTION. SHEAR ANALYSIS OF (2) 318"0 A307 CARRIAGE BOLTS Pcap = Fv x Area x (# OF BOLTS) BOLT SPECIFICATIO S = 10000 PSI x 0.11 IN^2 x 2 BOLTS _.2,208 LB BOLT 0 = 0.375 IN AREA= 0.110 IN^2 Fp(total) = 45 LB Fv = 10 KSI Ft = 19 KSI Fp / Pcap = 0.02 < 1.33 THEREFORE OK # of BOLTS = 2 TENSION ANALYSIS OF (2) 318"0 A307 CARRIAGE BOLTS Tcap = Ft x Area x (# OF BOLTS) = 19100 PSI x 0.11 IN^2 x 2 BOLTS _.4,217 LB Fp(total) = 165 LB Puplift = 103 LB TENSION(TOTAL) = 269 LB Tmax ! Tcap = 0.06 < 1.33 THEREFORE, OK