06-1572 (RC) Seismic AnalysisSEIZMIC
MATERIAL HANDLING ENGINEERING
TEL: (909)869 - 0989 FAX : (909)869 - 0981
PROJECT BEST BUY # 1020
FOR BEST BUY
SHEET NO. 2
CALCULATED BY RF
161 ATLANTIC STREET, POMONA, CA 91768 DATE; 2/27/2005
TABLE OF CONTENTS
TABLEOF CONTENTS & SCOPE '........ ... ..... ............. .............. ....... ......... ..... ....... ....... .......... ........ ......... .-...................... _............_..._.......__._.........__......................_..._.
2
PARAMETERS-.:_._ ........ _..... __._..........:._..----...__.._ ....: _.._._..-- ---- -...._..._..__...._........_._._....._._.__...-_.._..----__ ----------- -._...
3
COMPONENTS& SPECIFICATIONS . ......... ........... ........ ..._.................. ..... _..._................... ..... ................ ......... _._......... ........._..._...................._.........
4
LOADS& DISTRIBUTION --._...._..- - .-.._......-- ---....._._..._._._.. --- .......- --....----...._.__......._..._.._..
10.
LONGITUDINAL ANALYSIS
COLUMN._.... .......... ..,... ..... _.... _...... _....__............ ........... ....... __..__.......... _............. _...... ........ ......_..... ........................ ... _........ _..._._... ....... _............................... _...... _........ _....... -... ........ ......._....__.......
12
BEAM_..._. .............. -- .... -- -- ........... . ..... ...._.._...__....... _.....:........ .... __._............. ... ...... _.....----..... ...... .............. __.... ---- --.._........_.--.. .._.__..._..........
13
BEAMTO COLUMN ....:...... ..... ........ ...... ...... ........... ..... ........ ..... .......... ..... ...................... ..................... ...... ........... ....... ..........._..................................................................._......_..... .......... .......... .......
15
BRACING--- .............--.._..... _............... ... - .... _....... .... _.... _--.._..........._._._..._..._..... - --_.__...... --... .............. .-........ --....._......----...
16
OVERTURNING...... _.............. --.1 .. .... '...... ......... .... _............. _:............................ --... --.............._.._................... ...._...... _.._... .......... .............. _.... _..__ .......... _....................
17
BASEPLATE........ _................. ............._.:........._........._._.._........_...._._....__._._..-............_..........__..... _....... _._........_..... _........ _.._._......... ......... .... _..... __.......... _...................... _
18
SLAB& SOIL ........ ....... :... ...... _....... _._......__..__...__._...........---.....__......__.._.-.__...._.._....._...-......----........... ...... _..... _........ _..... _........ .._.......
19
(40NDpI-A AWN% -ISIS
20
SCOPE:
THIS ANALYSIS OF THE STORAGE SYSTEM IS TO DETERMINE ITS
COMPLIANCE WITH THE APPROPRIATE BUILDING CODES WITH RESPECT TO
STATIC AND SEISMIC FORCES.
THE STORAGE RACKS ARE PREFABRICATED AND ARE TO BE FIELD
ASSEMBLED ONLY, WITHOUT ANY FIELD WELDING.
° VEIZM'V
PROJECT BEST BUY #1020
FOR BEST BUY
MATERIAL, HANDLING ENGINEERING SHEET NO. 3
TEL: (909)869 - 0989 FAX :(909)869 - 0981 CALCULATED BY RF
161 ATLANTIC STREET, POMONA, CA 91768 DATE 2/27/2005
THE STORAGE RACKS CONSIST OF SEVERAL BAYS, INTERCONNECTED IN ONE OR BOTH DIRECTIONS, WITH THE
COLUMNS OF THE VERTICAL FRAMES BEING COMMON BETWEEN AND ADJACENT BAYS.
THE ANALYSIS WILL FOCUS ON A TRIBUTARY BAY TO BE ANALYSED IN BOTH THE LONGITUDINAL AND
TRANSVERSE DIRECTION.
STABILITY IN THE LONGITUDINAL DIRECTION IS MAINTAINED BY THE BEAM TO COLUMN MOMENT RESISTING
CONNECTIONS, WHILE BRACING ACTS IN THE TRANSVERSE DIRECTION.
CONCEPTUAL DRAWII\
LEGEND
.1. COLUMN
2. BEAM -
3. BEAM TO COLUMN
4. BASE PLATE
5. HORIZONTAL BRACING
6. DIAGONAL.BRACING
7. BACK TO BACK CONNECTOR
LONGITUDINAL
*ACTUAL CONFIGURATION SHOWN ON COMPONENTS & SPECIFICATIONS SHEET
ESEMMIC
MATERIAL HANDLING ENGINEERING
TEL: (909)869 - 0989 FAX : (909)869 - 0981
161 ATLANTIC. RTRF.F.T PQMQNA CA 9176R
PROJECT BEST BUY #1020
FOR BEST BUY
SHEET NO. 4
CALCULATED BY RF
DATE 2/27/2005
COMPONENTS & SPECIFICATIONS : TYPE
C
ANALYSIS PER CHAP 22, DIV X OF THE 2001 CBC
LEVELS = 4 Hl =36 in.W
4
Wl =1000 lbs.
YI =41 in
H2 =36 in.
W2 =1000 lbs.
Y2 = 41 in.
PANELS = 4 H3 = 36 in.
H41= 36 in.
H4
W3 =1000 lbs. Y4
W4 =1000 lbs.
Y3 = 18 in.
Y4 = 30 in.
W3
LIVE LOAD = .1000 lbs.
.
FRAME HEIGHT =1.44 in.
• ^ H3
H
W2
Y3
H
FRAME DEPTH = 36 in.
•
BEAM LENGTH= 144 in.
H2
Y2
W1
+
ZONE = Zone 4 (Na = 1.1)
1
H1
Y1
L
1
COLUMN
BEAM @ Level 1
CONNECTOR @ Level 1
OK
OK
OK
LA Darling: 3 x 1 1/2 x 14GA (Tube)
'LA Darling: 4 1/2 x 2 5/8 x 14GA
THREE PIN CONNECTOR
Steel = 55000 psi
Steel = 55000 psi
Stress = 21.%,
Stress =42%
Max Static Capacity = 3113 lb.
Static Stress = 32% Seismic Stress = 8%
COLUMN BACKER
BEAM @ Level 2+
CONNECTOR @ Level 2+
OK
OK
LA Darling: 4 1/2 x 2 5/8 x 14GA
THREE PIN CONNECTOR
None
Max Static Capacity = 3113 lb.
Stress = 19%
Stress =
Static Stress = 32% Seismic Stress = 7%
BRACING
SLAB & SOIL
OK
OK
Slab = 4" X 2500 psi OK
HORIZONTAL
DIAGONAL
Soil Bearing Pressure = 1000 psf
LA Darling: 1 1/2 x 3/4 x 16GA
LA Darling: 1 1/2 x 3/4 x 16GA
Slab Puncture Stress = 65%
Stress = 20%
Stress = 72%.
Slab Bending Stress = 61 %
BASEPLATE
ANCHORS
OK
HILTI KB II(ICC# ESR -1355) 0.375 Dia. X 2.5 Min. EmbOK
4 in X 3 in X 0.1875 in
Pullout Capacity = 546 lbs.
Steel = 36000 psi
Shear Capacity = 1026 lbs.
MBase = 2965 in. lb.
No. Of Anchors = 2 per Base Plate
Stress = 31 %
Anchor Stress = 64%
SEIZMIC
MATERIAL HANDLING ENGINEERING
TEL: (909)869 - 0989 FAX : (909)869 - 0981
1,<1 ATi 'A -.T -m- c`TDrr-r DMArwA PA 01-7A4
PROJECT BEST BUY #1020
FOR BEST BUY
SHEET NO. 5
CALCULATED BY RF
nATF. 7/77/�MS
COMPONENTS & SPECIFICATIONS : TYPE
1
ANALYSIS PER CHAP 22, DIV X OF. THE 2001 CBC
H 1 = 36 in.
LEVELS = 4W
4
W 1 =1000 lbs.
Y1 = 41 in.
_
Y2 41 m
H2 = 36 in.
W2 =1000 lbs.
.
PANELS = 4 H3 =36 in.
H4 = 36 in.
H4
W3 =1000 lbs. Y4
W4 =1000 lbs.
=
Y3 = 18 in
Y4 = 30 in.
W3
LIVE LOAD =1000 lbs.
FRAME HEIGHT = 1.44 in.
H3
Y3
H
'N 2
H
FRAME DEPTH = 36 in.
BEAM LENGTH= 144 in.
H2
Y2
w 1
ZONE= Zone 4 (Na = .1.1)
H1
Y1
L
COLUMN
BEAM @ Level I
CONNECTOR @ Level 1
OK
OK
OK
LA Darling: 3 x 1 1/2 x 14GA (Tube)
LA Darling: 4 1/2 x 2 5/8 x 14GA
THREE PIN CONNECTOR
-Steel = 55000 psi
Steel = 55000 psi
Stress = 2.1.%
Stress =23%
Max Static Capacity = 3113 lb.
Static Stress = 32% Seismic Stress = 8%
COLUMN BACKER
BEAM @ Level 2+
CONNECTOR @ Level 2+
OK
OK
LA Darling: 4 1/2 x 2 5/8 x 14GA
THREE PIN CONNECTOR
None
Max Static Capacity = 3113 lb.
Stress = 19%
Stress =
Static Stress = 32% Seismic Stress = 7%
BRACING
-
SLAB & SOIL
OK
OK
Slab = 4" X 2500 psi OK
HORIZONTAL
DIAGONAL
Soil Bearing Pressure = 1000 psf
LA Darling: 1 1/2 x 3/4 x 16GA
LA Darling: 1 1/2 x 3/4 x 16GA
Slab Puncture Stress = 65%
Stress = 20%
Stress = 72%
Slab Bending Stress = 61 %
BASE
PLATE
ANCHORS
OK
HILTI KB II(ICC# ESR -1355) 0.375 Dia. X 2.5 Min. EmbOK
4 in X 3 in X 0.1875 in
Pullout Capacity = 546 lbs.
Steel = 36000 psi
Shear Capacity = 1026 lbs.
MBase = 2991 in. lb.
No. Of Anchors = 2 per Base Plate
Stress = 31 %
Anchor Stress = 65%
SEIZMIC
MATERIAL HANDLING ENGINEERING
TEL : (909)869 - 0989 FAX: (909)869 - 0981
161 ATLANTIC STREET. POMONA. CA 91768
PROJECT
FOR
SHEET NO.
CALCULATED BY
DATE
BEST BUY #1020
BEST BUY
6
RF
2/27/2005
COMPONENTS & SPECIFICATIONS : TYPE
H
ANALYSIS PER CHAP 22, DIV X OF THE 2001 CBC
LEVELS = 3 H1 = 6 in.
H2=69 in.T
PANELS = 4 H3 = 69 in.
H3
W3
W 1 =2000 lbs.
W2 =2000 lbs.
W3 =0 lbs. Y4
Y1=41 in.
Y2 = 41 in.
Y3 = 18 in.
Y4 = 30 in.
LIVE LOAD = Load Varies
W2
FRAME HEIGHT= 1.44 in.
FRAME DEPTH = 36 in.
H H2
Y3
H
BEAM LENGTH= 120 in.
W 1
Y2
ZONE = Zone 4 (Na = 1.1)
H1
Y1
L
COLUMN
BEAM @ Level 1
CONNECTOR @ Level 1
OK
OK
OK
LA Darling: 3 x 1 1/2 x 14GA (Tube)
LA Darling: 4 1/2 x 2 5/8 x 14GA
THREE PIN CONNECTOR
Steel = 55000 psi
Steel = 55000 psi
Stress = 27%,
Stress =30%
Max Static Capacity = 4278 lb.
Static Stress = 47% Seismic Stress = 1.0%
COLUMN BACKER
BEAM @ Level 2+
CONNECTOR @ Level 2+
OK
OK
LA Darling: 4.1/2 x 2 5/8 x 14GA
THREE PIN CONNECTOR
None
Max Static Capacity = 4278 lb.
Stress = 29%
Stress =
Static Stress = 47% Seismic Stress =1 l %
BRACING
SLAB & SOIL
OK
OK
Slab = 4" X 2500 psi OIC
HORIZONTAL
DIAGONAL
Soil Bearing Pressure= 1000 psf
LA Darling:' 1 1/2 x 3/4 x 16GA
LA Darling: 1 1/2 x 3/4 x 16GA
Slab Puncture Stress = 55%,
Stress= 20%
Stress= 73%
Slab Bending Stress = 48%
BASEPLATE
ANCHORS
OK
HILTI KB II(ICC# ESR -1355) 0.375 Dia. X 2.5 Min. EmbOK
4 in X 3 in X 0.1875 in
Pullout Capacity = 780 lbs.
Steel = 36000 psi
Shear Capacity = 1466 lbs.
MBase = 355 in. lb.
No. Of Anchors = 1 per Base Plate
Stress = '13"/"
Anchor Stress = 1.3%
SEIZMIC
MATERIAL HANDLING ENGINEERING
TEL: (909)869 - 0989 FAX : (909)869 - 0981
161 ATLANTIC STREET. POMONA. CA 91768
PROJECT BEST BUY # 1020
FOR BEST BUY
SHEET NO. 7
CALCULATED BY RF
DATE 2/27/2005
COMPONENTS & SPECIFICATIONS : TYPE
F
ANALYSIS PER CHAP 22, DIV X OF THE 2001 CBC
•
LEVELS = 1 HI =96 in.
W1 Y1=41 in.
W1 =2000 lbs.
Y2 = 41 in.
PANELS = 2
LIVE LOAD= Load Varies
Y2
FRAME HEIGHT = 96 in.
1
FRAME DEPTH = 36 in.
H H1
H
BEAM LENGTH= 144 in.
ZONE= Zone 4 (Na = 1.1)
Y1
,'-L
D
COLUMN
BEAM @ Level 1
CONNECTOR @ Level 1
OK
OK
OK
LA Darling: 3 x 1 1/2 x 14GA (Tube)
LA Darling: 4 1/2 x 2 5/8 x 14GA
THREE PIN CONNECTOR
Steel = 55000 psi
Steel = 55000 psi
Stress = 48%
Stress =45%
Max Static Capacity = 3113 lb.
Static Stress = 64% Seismic Stress = 18%
COLUMN BACKER
BEAM @ Level 2+
CONNECTOR @ Level 2+
OK
OK
LA Darling: 4 1/2 x 2 5/8 x 14GA
THREE PIN CONNECTOR
None
Max Static Capacity = 4278 Ib.
Stress = 0%
Stress---
Static Stress = 47% Seismic Stress= 11.%
BRACING
SLAB & SOIL
OK
OK
Slab = 4" X 2500 psi OK
HORIZONTAL
DIAGONAL
Soil Bearing Pressure = 1000 psf
LA Darling: 1 x 1 x 16GA (Tub
LA Darling: I x 1 x 16GA (Tub
Slab Puncture Stress = 30%
Stress = 8%
Stress = 26%
Slab Bending Stress = 18%
BASE
PLATE
ANCHORS
OK
HILTI KB II(ICC# ESR -1355) 0.375 Dia. X 2.5 Min. EmbOK
4 in X 3 in X 0.1875 in
Pullout Capacity = 753 lbs.
Steel = 36000 psi
Shear Capacity = 1466 lbs.
MBase = 0 in. Ib.
No. Of Anchors = 1 per Base Plate
Stress = 5%
'Anchor Stress = 17%
SEIZMIC
MATERIAL HANDLING ENGINEERING
TEL: (909)869 - 0989 FAX : (909)869 - 0981
161 ATLANTIC STRF.FT_ PQMQNA_ CA 91768
PROJECT BEST BUY #1020
FOR BEST BUY
SHEET NO. 8
CALCULATED BY RF
DATE 2/27/2005
COMPONENTS & SPECIFICATIONS : TYPE
D
ANALYSIS PER CHAP 22, DIV X OF THE 2001 CBC
LEVELS = 4 Hl =36 in.
W4
W1 =500 lbs.
Y1=41 in.
H2 =36 in.
W2 =500 lbs.
Y2 = 41 in.
PANELS = 4 H3 = 36 in.
H4 = 36 in.
H4
W3 =500 lbs. Y4.
W4 =500 lbs.
Y3=18 in
Y4 = 30 in.
W3
LIVE LOAD = 500 lbs.
FRAME HEIGHT = 1.44 in.
H3
Y3
FRAME DEPTH = 36 in.
BEAM LENGTH= 144"in.
H2
Y2
w1
ZONE= Zone 4 (Na = 1.1)
H1
Y1
L
ID �f
I
COLUMN
BEAM @ Level 1
CONNECTOR @ Level 1
OK
OK
OK
LA Darling: 3 x 1 1/2 x 14GA (Tube)
LA Darling: 4 1/2 x 2 5/8 x 14GA
THREE PIN CONNECTOR
Steel = 55000 psi
Steel =55000 psi
Stress =12%
Stress =1.3%
Max Static Capacity = 3113 lb.
Static Stress = 1.6% Seismic Stress = 5%
COLUMN BACKER
BEAM @ Level 2+
CONNECTOR @ Level 2+
OK
OK
LA Darling: 4 1/2 x 2 5/8 x 14GA
THREE PIN CONNECTOR
None
Max Static Capacity = 3113 lb.
Stress = i I%
Stress =
Static Stress = 1.6% Seismic Stress = 4%
BRACING
SLAB & SOIL
OK
OK
Slab = 4" X 2500 psi OK
HORIZONTAL
DIAGONAL
Soil Bearing Pressure= 1000 psf
LA Darling: 1 x 1 x 16GA (Tub
LA Darling: 1 x 1 x 16GA (Tub
Slab Puncture Stress = 35%
Stress = 9%
Stress = 28%
Slab Bending Stress = 23%
BASE
PLATE
ANCHORS
OK
HILTI KB II(ICC# ESR -1355) 0.375 Dia. X 2.5 Min. EmbOK
4 in X 3 in X 0.1875 in
Pullout Capacity = 780 lbs.
Steel = 36000 psi
Shear Capacity = 1466 lbs.
MBase = 1679 in. lb.
No. Of Anchors = 1 per Base Plate
Stress =17%
Anchor Stress = 41
' SEMMIC
MATERIAL HANDLING ENGINEERING
TEL: (909)869 - 0989 FAX: (909)869 - 0981
141 ATT AATTTr QTRFRT PMAOXTA rA 01 7f
PROJECT BEST BUY #1020
FOR BEST BUY
SHEET NO. 9
CALCULATED BY RF
DATE 2/27/2005
COMPONENTS & SPECIFICATIONS : TYPE
DI
ANALYSIS PER CHAP 22, DIV X OF THE 2001 CBC
LEVELS = 2 Hl =92 in.
IN 2
WI1000 lbs.
YI = 25 in.
Y2 = 16 in.
H2 = 52 in.
T
W2 =I000 lbs. Y6
y3 = 16 in.
PANELS = 6
+
Y4 = 24 in.
LIVE LOAD= .1000 lbs.
H2
Y5
Y5=18 in
Y6 = 30 in.
•
FRAME HEIGHT= 1.44 in.
Y4
FRAME DEPTH = 36 in.
Y3
,
BEAM LENGTH= 144 in.
H1
Y2
ZONE= Zone 4 (Na = 1.1)
Y1
L -�
.�
D
COLUMN
BEAM @ Level 1
CONNECTOR @ Level 1
OK
OK
OK
LA Darling: 3 x 1 1/2 x 14GA (Tube)
LA Darling: 4 1/2 x 2 5/8 x 14GA
THREE PIN CONNECTOR
Steel = 55000 psi
Steel = 55000 psi
Stress = 33%
Stress =46%
Max Static Capacity = 3113 Ib.
Static Stress = 32% Seismic Stress = 1.3%
COLUMN BACKER
BEAM @ Level 2+
CONNECTOR @ Level 2+
OK
OK
LA Darling: 4 1/2 x 2 5/8 x 14GA
THREE PIN CONNECTOR
None
Max Static Capacity = 3113 lb.
Stress = 8%
Stress =
Static Stress = 32% Seismic Stress = 3%
BRACING
SLAB & SOIL
OK
OK
Slab = 4" X 2500 psi OK
HORIZONTAL
DIAGONAL
Soil Bearing Pressure = 1000 psf
LA Darling: 1 1/2 x 3/4 x 16GA
LA Darling: 1 1/2 x 3/4 x 16GA
Slab Puncture Stress = 36%
Stress = 1.0%
Stress = 1.8%
Slab Bending Stress = 25%
BASEPLATE
ANCHORS
OK
HILTI KB H(ICC# ESR -1355) 0.375 Dia. X 2.5 Min. EmbOK
4 in X 3 in X 0.1875 in
Pullout Capacity = 780 lbs.
Steel = 36000 psi
Shear Capacity = 1466 lbs.
MBase = 0 in. lb.
No. Of Anchors = 1 per Base Plate
Stress = 5%
Anchor Stress = 74%
SEIZMIC
MATERIAL HANDLING ENGINEERING
TEL: (909)869 - 0989 FAX: (909)869 - 0981
161 ATLANTIC STREET POMONA. CA 91768
PROJECT BEST BUY #1020
FOR BEST BUY
SHEET NO. 10
CALCULATED BY RF
DATE 2/27/2005
COMPONENTS & SPECIFICATIONS : TYPE
C1
ANALYSIS PER CHAP 22, DIV X OF THE 2001 CBC
LEVELS = 2 Hl = 72 in.
W2 Y1 =20 in.
WI =1000 lbs.
H2 = 72 in.
W2 =1000 lbs. Y2 = 10 in.
Y6
PANELS = 6
T
Y3 = 24 in.
5'4 = 28 in.
+
LIVE LOAD = 1000 lbs.
H2
Y5 Y5 = 18 in.
Y6 = 30 in.
FRAME HEIGHT = 1.44 in.
Y4
H
w1 H
FRAME DEPTH = 36 in.
Y3
BEAM LENGTH= 144 in.
H1
Y2
ZONE = Zone 4 (Na = 1.1)
Y1
+L ID
COLUMN
BEAM @ Level 1
CONNECTOR @ Level 1
OK
OK
OK
LA Darling: 3 x 1 1/2 x 14GA (Tube)
LA Darling: 4 1/2 x 2 5/8 x 14GA
THREE PIN CONNECTOR
Steel =55000 psi
Steel = 55000 psi
Stress =19%
Stress =.19%0
Max Static Capacity = 3113 lb.
Static Stress = 32% Seismic Stress = 7%
COLUMN BACKER
BEAM @ Level 2+
CONNECTOR @ Level 2+
OK
OK
LA Darling: 4 1/2 x 2 5/8 x 14GA
THREE PIN CONNECTOR
None
Max Static Capacity = 3113 lb.
Stress = 10%
Stress =
Static Stress = 32% Seismic Stress = 4%
BRACING
SLAB & SOIL
OK
OK
Slab = 4" X 2500 psi OK
HORIZONTAL
DIAGONAL
Soil Bearing Pressure= 1000 psf
LA Darling: 1 1/2 x 3/4 x 16GA
LA Darling: 1 1/2 x 3/4 x 16GA
Slab Puncture Stress = 35%
Stress = 1.0%
Stress =14%
Slab Bending Stress = 23%
BASE
PLATE
ANCHORS
OK
HILTI KB II(ICC# ESR -1355) 0.3.75 Dia. X 2.5 Min. EmbOK
4 in X 3 in X 0.1875 in '
Pullout Capacity = 780 lbs.
Steel = 36000 psi
Shear Capacity = 1466 lbs.
• MBase = 3052 in. lb.
No. Of Anchors = 1 per Base Plate
Stress = 26%
Anchor Stress = 96%
M
SEIZMIC
3
MATERIAL HANDLING ENGINEERING
TEL: (909)869 - 0989 FAX: (909)869 - 0981
PROJECT BEST BUY #1020
FOR BEST BUY
SHEET NO. 10A
CALCULATED BY RF
161 ATLANTIC STREET POMONA. CA 91768 DATE 2/27/2UU5
LOADS AND DISTRIBUTION: TYPE C EL" Fn
Determines Seismic Base Shear per Section 2228.5, Chap 22, Div X of the 2001 CBC. EL F5
V
SEISMIC ZONE: Zone 4 Ca: { 0.44 EL F4
Number Of Levels: 4 1: 1.00 �� F3
wLL (Sum of live loads) : 4000 lbs Na: 1.10 EL2 Fz
wDL (Sum of dead loads): 260 lbs Rw (Longitudinal): 5.60 EL' F,
TOTAL FRAME LOAD: 4260 lbs Rw (Transverse): 4.40 a
LONGTUDINAL DIRECTION TRANSVERSE DIRECTION
n: 1 n: 1 l
VLong - 2.5 • Ca - Na - 1 ( wLL + wDL VLong = 2.5 • Ca • Na • 1 ( wLL + wDL J
Rw • 1 .4 l n Rw . 1 .4 I n 11
(2.5 X 0.44 X 1.1 X 1 X ((4000/ 2) + 260)) / (5.6 X 1. (2.5 X 0.44 X 1.1 X 1 X ((4000/1) + 260)) / (4.4 X 1
VLong: 349 lbs VTrans: 837 lbs
F; = V( E
W,Hj
W;Hi
Levels
hs
LONGITUDINAL
TRANSVERSE
W.,
14;A
✓i
W.
wXhX
.f;
1
36
565
20,340
35
1,065
38,340
84
2
72
565
40,680
70
1,065
76,680
167
3
108
565
61,020
105
1,065
115,020
251
4
144
565
81,360
140
1,065
153,360
335
203,400 _
349 lbs
383,400
837 lbs
E
MIC
MATERIAL HANDLING ENGINEERING
TEL: (909)869 - 0989 FAX: (909)869 - 0981
PROJECT BEST BUY #1020
FOR BEST BUY
SHEET NO. 11
CALCULATED BY RF
I W A 1 LAN11C b l KEh 1, YUMUNA, UA Y 1 /02S LA I t ci c i i cvv�
1
LONGITUDINAL ANALYSIS: TYPE C
THE ANALYSIS IS BASED ON THE PORTAL METHOD, WITH THE POINT OF CONTRA FLEXURE OF THE COLUMNS
ASSUMED AT MID -HEIGHT BETWEEN BEAMS, EXCEPT FOR THE LOWEST PORTION, WHERE THE BASE PLATE
PROVIDES ONLY PARTIAL FIXITY, THE CONTRA FLEXURE IS ASSUMED TO OCCUR CLOSER TO THE BASE. (OR
AT THE BASE FOR PINNED CONDITION, WHERE THE BASE PLATE CANNOT CARRY MOMENT).
Mn -n Fn
MUpper + MLower — MConn'R' + MConn'L'
_ MS -5 FS
MConn'R' — MConn'L'
MConn ' 2 = MUpper + MLower M44
15 4
_ MUpper + MLower M3-3 4
MConn — 2 + MEnds F3
�-2 2
V VLong = 174 lbs Ml -I
Co! _ — F1
2 1
• M base
11
MBase — 2965 in/Ib MEnds - 658 in/lb
FRONT ELEVATION
LEVELS
hi
fi
AXIAL LOAD
MOMENT
Mconn
1
34
18
2,128
2,951
3,538
2
36
35
1,596
2,808
3,151
3
36'
52
1,064
2,178
2,368
4
36
70
532
1,242
1,279
SAMPLE CALC.
MI -I — (Vcol hi) — MBase
_ (174 lbs X-34 in) - 2965 in/lb = 2,951 in/lb
I
SEIZMIC
MATERIAL HANDLING ENGINEERING
i TEL : (909)869 - 0989. FAX: (909)869 - 0981
161 ATLANTIC STREET, POMONA, CA 91768
PROJECT BEST BUY #1020
FOR BEST BUY
SHEET NO. 12
CALCULATED BY RF
DATE 2/27/2005
COLUMN ANALYSIS: TYPE C
•.ANALYZED PER DIV VII, CHAP 22 OF THE 2001 CBC. SECTION PROPERTIES BASED ON THE EFFECTIVE SECTION.
P =' 2128 lbs
M;= 2951 in/lb
Kx • LX -
1.2 X 34in / 1.08in KL
t Rx= 37.8 Max = 130.6
f K y• Ly 1 X 82in / 0.628in R
Ry = 130.6
Axial r12
Fe =17.1 KSI
F.Y-m- : T A�
. Fy
�f
_
. 28 KSI
B
2
Since: F, < Fy /2
C -
Fn = FQ =
17.07704
Pn = Aeff Fn =
0.63 in^2 X 17.1 KSI = 10759 lbs
P"
SECTION PROPERTIES
• P = =
10759 lbs / 1.92 = 5603 lbs
S2c
A 3 in
P
B 1.5 in
- =
0.38
C
Pa
t : 0.0747 in
Flexure
Aeff : 0.63 in^2
'Since: P
P Mx
Ix : 0.736 in^4
> 0.15 Check: + <1.33
Sx : 0.491 in^3
PQ
Pa Max
Rx :1.08 in
Myeild = M = S • Fy
My x
3 = 0.491 In X 55000 PSI = 27005 in/Ib
Iy : 0.25 in^4
Sy : 0.33 in^3
M y
Ry : 0.628 in
Max = =
27005/1.67 = 16171 in/lb
Kx :1.2
Qf
Lx : 34 in
W EI
Ky : 1
Pcr = =
(3.14159)^2 X 29500, KSI / (82 n.)^2 = 31869 lbs
Ly :82 in
2
(Kl)Max
Fy : 55 KSI
.
E : 29500 KSI
1
Px = P
= (1 / (i - (1.92 X 2128 lb / 31869 lb)))^ -1 = 0.87
S2c : 1.92
�1=CS2c
S2f : 1.67
. PCr
Cmx : 0.85
Cb 1
(2128 lb / 5603 lb) + (0.85
X 2951 in/lb / 16171 in/lb X 0.87) = 0.56 <.1.33 (42%)
SEUMIC
MATERIAL HANDLING ENGINEERING
TEL: (909)869 -'0989 FAX: (909)869 - 0981
161 ATLANTIC: SKE1 1, l UMUNA, UA 91 M
PROJECT BEST BUY #1020
FOR BEST BUY
SHEET NO. 13
CALCULATED BY RF
UA Ir. 6/c /lcVVJ
BEAM ANALYSIS: TYPE C
BEAM -TO COLUMN CONNECTIONS PROVIDE ADEQUATE MOMENT CAPACITY TO STABLIZE THE SYSTEM,
ALTHOUGH IT DOES NOT PROVIDE FULL FIXITY. THUS, THE BEAMS WILL BE ANALYSED ASSUMING PARTIAL END
FIXITY. FOR THE COMPUTATION OF BEAM TO COLUMN MOMENT CAPACITY, THE PARTIAL END FIXITY MOMENT
OF THE BEAM WILL BE ADDED TO THE LONGITUDINAL FRAME MOMENT FOR THE ANALYSIS OF THE
EFFECTIVE MOMENT FOR PARTIALLY FIXED BEAM
For a simply supported beam, the max moment at the center is given by wt 3 /8 . An assumption of partial fixity will decrease
this maximum moment by the following method.
Y
Percentage of End Fixity = 10% 0= 0.1
MCenter = MCenter(Simple ends) - 6*MCenter(Fixed ends)
WI2/8—(0.K72/12)= 0.117- p72
Reduction Coefficient R = 0.117/0.125 = 0.933
MCenter =,8-W7?I8 =0.933.K72/8
Mind _ 0 MM. (FixedEnds) = WI2 /12. 0.1 �-
= 0.0083 . gq2 '
EFFECTIVE DEFLECTION FOR PARTIALLY FIXED BEAM
For a simply supported beam, the max deflection at the center is given by5rP7'/384 E .
An assumption of partial fixity will decrease this maximum deflection by the following
method.
5W14
AMax =)6 384 • E • I,,
LiveLoadlIv1= 1000 lbs
DeadLoad 11v1 =4lb/ft X 2 X (144/12 = 96 lbs
MCenter —
0.117* p72 =9206 in/lb
MEnds = 0.0083* W72 = 658 in/lb
Fb = 0.6 • Fy = 33boo PSI.
FBEf = 33000 PSI
Mcenter(simple)
Mends M cerrter
(fes) (fled)
�.,�����ui��llllllllll IIIIIIIIIIIIIIIIIIIIIII III ��������
TYPICAL BEAM FRONT VIEW
SEIZMIC
MATERIAL HANDLING ENGINEERING
TEL: (909)869 - 0989 FAX : (909)869 - 0981
161 ATLANTIC STREET, POMONA, CA 91768
BEAM ANALYSIS: TYPE C
MAXIMUM STATIC LOAD PER LEVEL DEPENDS ON:
1. MAXIMUM MOMENT CAPACITY
Fb = M/S.
z
6. WI /8
FBE�- = S,
PROJECT BEST BUY #1020
FOR BEST BUY
SHEET NO. 14
' CALCULATED BY RF
DATE 2/27/2005
FBE� -16--S,
Max.Weight / 1v1=a
/jL
((33000 X 16 X 1) / (0.933 X 144)) X 0.875 = 3448 lbs/Ivl
2. MAXIMUM ALLOWABLE DEFLECTION
Aa,raw = L/180 = 0.8 In
_ 5W1°
384 -E -Ix
384 -E -I -0
Max.Weight / M = x Allow . L3
5-40
I = 2.4 in/,4
x
S = 1 in^3
x
Fy =55000 PSI
a(impactCoefficient) = 0.875
P=0.933
9= 0.1
L(Length) =
144 in Ln = 144 in
Step = 1.75 in BeamThickness = 0.0747 i
Result
BeamDepth = 4.5 in
TopWidth =
1.75 in Bottom Width= 2.625 in
=((384 X 29000000 X 2.4 X 0.8)/(5 - (4X 0.1))) X 144^3 =3113 lbs/lvl
MAXIMUM ALLOWABLE LIVE LOAD PER LEVEL = 3113lbs/lvl BeamStress = 32%
ALLOWABLE AND ACTUAL BENDING MOMENT AT EACH LEVEL
Mstatia = Rq z /8MAIlow,sfanc = Sx * Fb MArmw,seilmil = S.,* Fb * 133
MImpact = MStatic * 1.125 Mse,s is = MConn
Level
Msrac;e
MImPaet
M.Afflow,static
Mseisnue
Mn,low,seismie
Result
1
9206
10357
33000
3538
44000
GOOD
2
9206
10357
33000
3151
44000
GOOD
3
9206
10357
33000
2368
44000
GOOD
4
9206
10357
33000
1279
44000
GOOD
IC
IF
SEMMIC
MATERIAL HANDLING ENGINEERING
TEL: (909)869 - 0989 FAX : (909)869 - 0981
161 ATLANTIC STREET, POMONA, CA 9.1768
PROJECT BEST BUY #1020
} FOR BEST BUY
SHEET NO. 15
CALCULATED BY RF
DATE 2/27/2005
BEAM TO COLUMN ANALYSIS: TYPE C
CONNECTION CAPACITY DEPENDS OWING PARAMETERS:
1. SHEAR CAPACITY OF PIN
PinDiameter. = 0.43 81n.
Fy = 550001PSI
Ashear = Diameter2 4 = . 0.1507 in^2
PShear = 0.4 • Fy • Ashear = 0.4 X 55000 X 0.1507 in^ = 3315 lbs
2. BEARING CAPACITY OF PIN
ColumnThickness = 0.0747
F,, = 65000PSI
Q = 2.22
a = 2.22
AT LEVEL 1
PBearing =a . Fa Dia. • Col.Thickness/S2 = 2.22 X 65000 X 0.438 X 0.0747 / 2.22 = 2127 lbs "
3. MOMENT CAPACITY OF BRACKET
EdgeDist . =1.0In.
PinSpacing = 2 I
Fy = 55000 PSI
C= P,+PZ+P3 = P, + P, (2.5/4.5)+ P, (5/4.5) = PIX1.667
Tcrp = 0.179In.
Sc,ip = 0.127In3
Mcapacil ='Schp • FBend;ng = 0.127 In^3 X .66 X Fy = 4610 in -Ib
C•d =M Ca paci ry = 1.667 P, •d 3„
d = EdgeDist/2 = 0.5 r c
Pcrp = MCapacity/( 1.667 • d) = 4610 / (1.667 X 0.5) = 5531 lbs
MT IIMUM VALUE OF P1 GOVERNS
P = 2127 lbs
Mcann-a;iaw = [P *4.5]+[P, *(2.5/4.5)*2.5]+[P, *(5/4.5)*.5]*1.33
_ . 16816in-lb > 3538in-lb OK
,r
SEMMIC
MATERIAL HANDLING ENGINEERING
TEL: (909)869 - 0989 FAX: (909)869 - 0981
161 ATLANTIC STREET, POMONA, CA 91768
PROJECT BEST BUY #1020
FOR BEST BUY
SHEET NO. 16
CALCULATED BY RF
DATE - 2/27/2005
TRANSVERSE ANALYSIS: BRACING: TYPE C
IT IS ASSUMED THAT THE LOWER PANEL. RESISTS THE FRAME SHEAR INTENSION AND COMPRESSION.
IF HORIZONTAL AND DIAGONAL MEMBERS ARE THE SAME, ANALYSIS WILL BE DONE ON THE
DIAGONAL MEMBER AS IT WILL GOVERN. '
DIAGONAL BRACING: COMPRESSION MEMBER
Ldiag = (L — 6)Z + (D — (2 • BCol))Z = 50.3"
Vdia Prans • LDiag
$ _ . d = 1276 Ibs
k-1 (I X 50.3289) / (0.304) = 165.6 In
rMin
z
e
FQ = = 10442.6 PSI
k�rMin
Fy
= 27500
2
F
Fe < 2
Fn = Fe
— 10442 6 PSI
Pn = Area Fn
Qc =1.92
PP
a =
QC
ag
Brace Stress = VDi
0
2558 Ibs
= 1332 Ibs
0.96 < 1.33 (72%)
I � o
SIDE ELEVATION
Panel Height (L) = 41 In
Panel Depth (D) = 36 In
Column Depth (B) = 1.5 In
Clear Depth (d) = (D - 2*13) = 33
ESEMMIC
MATERIAL HANDLING ENGINEERING
TEL (909)869 - 0989 FAX: (909)869 - 0981
161 ATLANTIC STREET, POMONA, CA 91768
PROJECT BEST BUY #1020
FOR BEST BUY
SHEET NO. -17
CALCULATED BY RF
DATE 2/27/2005
OVERTURNING ANALYSIS: TYPE C
ANALYSIS OF OVERTURNING WILL BE BASED ON SECTION 2228.7.1 OF THE 2001 CBC.
FULLY LOADED
Total Shear = 837 lbs
Movr Vrr."S • Ht .1. 15
Movr = 837 X 108 X 1.15 = 103955 in/Ib
Ms, = (Wp +.85wDL)• d/2
_
Msr (4000+(.85 X 260)) X 36/2 = 75978 in/Ib
(103955-75978)/36
PUpLrf, = 777 lbs.
d
TOP SHELF LOADED
Shear = 248 lbs
Mo,, = V,,,p • Ht • 1.15
=
MOW248X.144 X 1.15 = 40986 in/lb
Msr(WP +wDL)•d/2
Msr = (1000 + (.85 X 260)) X 36 /2 = 21978 in/lb
Pup
_ l(M°vr — Msr) _ (40986 - 21978) / 36
upL;f — d
528 lbs. .
ANCHORS
No. of Anchors : 2
Pull Out Capacity: 546 Lbs.
Shear Capacity : 1026 Lbs.
COMBINED STRESS
Fullv Loaded = (777 / 546 X 2))+ ((837 /2)/(1026 X 2)) _ .0.64
Ton ShelfLoaded (528 / (546 X`2))+ ((248 /2)/(1026 X 2)) = 0.31 .
USE 2 HILTI KB.II(ICC# ESR -1355) 0.375 Dia. X2.5 Min. Embd. Anchors per
BasePlate.
W
CROSS AISLE ELEVATION
Fr
i.
V
SEIZMIC
MATERIAL HANDLING ENGINEERING
TEL: (909)8691- 0989 FAX : (909)869 - 0981
161 ATLANTIC STREET, POMONA, CA 91768
PROJECT BEST BUY # 1020
FOR BEST BUY
SHEET NO. 18
CALCULATED BY RF
DATE 2/27/2005
' BASE PLATE ANALYSIS: TYPE C
THE BASE PLATE WILL BE ANALYZED WITH THE RECTANGULAR STRESS RESULTING FROM THE VERTICAL
LOAD P, COMBINED WITH THE TRIANGULAR STRESSES RESULTING FROM THE MOMENT Mb (IF ANY).
THERE ARE 3 CRITERIA IN DETERMINING Mb. THEY ARE 1. MOMENT CAPACITY OF THE BASE PLATE,
2. MOMENT CAPACITY OF THE ANCHOR BOLTS, AND 3. Vcol*h/2 (FULL FIXITY). Mb IS THAT SMALLEST
VALUE OBTAINED FROM THE 3 CRITERIA ABOVE.
PC./ = 2128 lbs Base Plate Width (B) = 4 in b = 3 in
MBase = 2965 in/lb Base Plate Depth (D) = 3 in bl = 0.5 in
Base Plate Thickness (t) = 0.1875 in Fv (base) = 36000 PSI
P— • Pc°, = 177.3 PSI
A D•B
_ M
fb D BZ/6 = 370.6 PSI
2•b,
fb2 = B '.fb = 92.66 PSI
Jbl = fb —.fbz _ = 277.97 PSI
2
wbI -= b12 �{'a +
Mb — 2 .2
' l✓ .fbl +
.67fbz
Mb = 64.63 in/lb
1•t2 ,
SBase = 6 = 0.01 in/cb
FBase = •75Fy • 1.33 = 36000 PSI
fb _ Mb
= 0.31 <= 1 OK
Fb SBase FB.,,
ANCHOR TENSION
No. ofAnchors Resisting Tension (n) = 1
Mo
T • d2 = MB= — PCO • (b / 2))
T=MBase_Pc.,•b
d2 ' n•d2
= 0
NEGATIVE, THEREFORE NO TENSION
n
b b bl
8
fa
fb
Pco pp
M
0
T f— Dancho4
t2
fb I
SEIZMIC
MATERIAL HANDLING ENGINEERING
TEL: (909)869 - 0989 FAX : (909)869 - 0981
PROJECT BEST BUY #1020'
: FOR BEST BUY
SHEET NO. 19
CALCULATED BY RF
IN AILANIIU; iIKhh1,YUMUNA UAYl/05 LABS L/L//LVVJ
SLAB AND SOIL: TYPE C'
THE SLAB WILL BE CHECKED FOR PUNCTURE STRESS. IF NO PUNCTURE OCCURS, IT WILL BE
ASSUMED TO DISTRIBUTE THE LOAD OVER A LARGER AREA OF SOIL AND
WILL ACT AS A FOOTING.
PUNCTURE * (EQ 12-5) SEC. 1612.2.
Pstatic = 2130 lbs Mar = 103955.4 in -lb p
Pmax =1.1 • (1.2 • Pstaac + 1.0 • (Mat / d )) * = 5732 lbs
= 100 PSI
Fpunct 1 1
—[(B + 2)+(' + 2ApunctJ].2.t = 88 sq. in.
J v = Pmax = 0.65
Fv Apunct ' Fpunct
SLAB TENSION
-P• 144
Max
Aso;/ =
1.33 • fsaF/
= 621 sq. in.
FOOTING
L = A
B— 4 in
= 24.91 in
W = 3 in
B= B W+t
= 7.46 in -
Frame Depth d = 36 in
b L 2 B
= 8.72 in
CONCRETE
wb2 1.33 2
b
f b = 2500 PSI
M .fs°`/
c°nc —
= 352 in -lb
2 144.2
t = 4 in .
1:t2
Sconc —
= 2.67 cb. in.
0 = 0.65
.
6
F = 50 f'
Fc c
SOIL
= 162.5 PSI
.f6 MConc
fSO1l = 1000 PSF
= 0.61
Fb SConc ' Fconc
OK
SEIZMIC PROJECT BEST BUY #1020
FOR BEST BUY
INC. SHEET NO. 20
CALCULATED BY RF
.MATERIAL HANDLING ENGINEERING DATE 2/27/2006
TEL: (909) 869-0989 • FAX: (909) 869-0981
161 ATLANTIC AVENUE • POMONA, CA 91768
OVERRACK GONDOLA ANALYSIS
SCOPE:
ITHE PURPOSE OF THIS ANALYSIS IS TO SHOW THAT THE OVERRACK GONDOLA
COMPLIES WITH THE 2001 CBC.
GONDOLA SHELVING UNITS WILL BE ANALYZED AS AN'ELEMENT UTILIZING THE FOLLOWING MAX. LATERAL FORCE
FORMULA:
V= 2.5 x Ca x I x W / R <== MAXIMUM SECTION 1630.2.1 EQN. 30-5
V= 0.56 x Ca z I x W — SECTION 1634.5 EQN. 34-2
V= 1.6xZxNvxIxW/R— SECTION 1634.5 EQN. 34-3
I SPECIFICATIONS:
MAIN STEEL - Fy = 36,000 PSI MINIMUM YIELD STEEL
BOLTS - A307 UNLESS OTHERWISE NOTED WHEN USED
ANCHORS - 3/8"0 x 2-1/2" MIN. EMBD. HILTIKWIK BOLT II WEDGE ANCHORS (ICC #ESR -1355)
SLAB - 4" x 2,000 PSI (MIN.)
SOIL - 1,000 PSF (MIN.)
CONFIGURATIONS:
SHELF HEIGHTS VARY BETWEEN 145 9/16" & 96" TALL.
CRITIC#,L CONFIGURATION AjVALYZED
'�- 96"� 69' , 28 15/32'
� ......................:.A.....1 6.. 739/16-
499/161,
39/16"499/16" I
COMM VICM/ CHIC %lir-l11 R1/ll 101 C1 CMC WICMIMIIQ!_I C'
FULL GONDOLA OVER RACK
HEIGHT (Ht1)= 145.6 IN
depth (d1) = 28:47 IN
depth (d2) = 32.72 IN
depth (d3) = 60.0 IN
Wgond = 350 LB
Wshelf = 150 LB
Wtotal1 = 500 LB
r i
SEIZMIC
IN00
C.
MATERIAL HANDLING ENGINEERING
TEL: (909) 869-0989 • FAX: (909) 869-0981
1 A ATI ANTIC AVENUE • POMONA. CA 91768
PROJECT
FOR
SHEET NO.
CALCULATED BY
DATE
LOADS & DISTRIBUTION: (OVERRACK GONDOLA
BEST BUY # 1020
BEST BUY
21
RF
2/27/2006
ANALYZED PER 1634.5, AND TABLE 16-P OF THE 2001 CBC.
SEISMIC ZONE 7'4
Z- 0.3 •.
ap = 2.5
Ca = 0.484
Na = 1.1 <== ONLY USED IN ZONE 4
Nv = 1:.33
=T.
Rtrans. =`2.9' <== TABLE 16-P; NO. 3 CANTILEVERED MASS ELEMENT
V(30-6)'= 2.5 x 0.484 x 1 x W/ R x 1.4
= 0.864 * W/R <__= CONTROLS
V(34-2) = 0.56 x 0.484 x 1 x W/ 1.4
0.242 * W
V(34-3)= 1.6 x 0.3 x 1.33 x 1 xW/Rx1.4
= 0.456 * W/R
LONGITUDINAL & TRANSVERSE DIRECTION. (SINGLE SIDED):
Wgond = 350 LB,
Wshelf = 150 LB Fp shelf
Fp.gond.= 104 LB
Fp shelf = 45 LB,
Fp total = 149 LB
Pcol = 500 LB
Mcol(stat) = Wtotall x d1/2
= 500 LB x 28.46875 IN / 2
7,117 IN -LB
Mcol(seis) = Fp gond x Ht/2 + Fp shelf x Ht
= 104 LBx146 IN/2+45LBx146 in
=,14,099 LB
Mtotal = Mcol(stat) + Mcol(seis)
• = 21;216 LB
LONGITUDINAL &.TRANSVERSE DIRECTION (DOUBLE.SIDED):
ONE SIDE LOADED �
� 60"--
Wtotall = 500 LB Fp shelf
9
Fp"= 149 LB
11
Pcol = 500 LB
Fp gond
Mcol(stat) = Wtotall x d1/2
145
= 500 LB x 28.47 IN / 2
= 7,117 IN -LB
y
Mcol(seis) = Fp gond x Ht/2 + Fp shelf
Ht
= 104 LBx146 IN/2+45LBx1
6 in
= 14,099 LB
Mtotal = Mcol(stat) + Mcol(seis)
SIDE VIEW (DOUBLET
= 21,216 LB
1 32 2:28
1459 /16" —♦
SIDE VIEW (SINGLE
BOTH SIDES LOADED
Fp gond
Wtotall = 1,000 LB
Fp = 298 LB
Pcol = 1,000 LB
Mcol(stat) = 0 LB
Mcol(seis) = (Fp gond x Ht/2 + Fp shelf x Ht) x 2
= 104 LBx146 IN/2+45LBx146 inx2
= 28,198 IN -LB
Mtotal = Mcol(stat) + Mcol(seis)
= 28,198 IN -LB
SEIZMIC.
INC.
MATERIAL HANDLING ENGINEERING
TEL: (909) 869-0989 • FAX: (909) 869-0981 .
• 161 ATLANTIC AVENUE • POMONA, CA 91768
PROJECT
FOR
SHEET NO.
CALCULATED BY
DATE
BEST BUY # 1020
BEST BUY
22
RF
2/27/2006
COLUMN ANALYSIS {
ANALYZED PER AISI AND THE 2001 CBC. SECTION PROPERTIES BASED ON THE EFFECTIVE SECTION.
P= 1,000 LB
M= 28,1981N=C6
KxLx/rx = 2.1*145.5625 1N/2.1861 IN t
= 139.8 <___ (KI/r)max
KyLy/ry = 1*78 IN/1.2734 IN s
= 61.3 '
AXIAL
Fe= Tr^2E/(KUr)max^2
14.9 KSI
r
Fy/2= 18.0 KSI z<:r Nn.y
SINCE, " Fe < Fy/2
THEN, Fn= Fe F� A
36 KSI*[1-36 KSI/(4*14.9 KSI)] SECTION PROPERTIES
= 14.9 KSI
Pn= AeffFn A= 3.0 IN
= 31,206 LB B= 6.0 IN
IIc= 1:92 t = 0.120 IN
Aeff = 2.096 IN^2
Pa= Pn/Qc Ix = 10.0.15 IN^4
= 31206 LB/1.92 Sx = 3.338 IN^3
= 16,253 LB rx = 2.186 IN
P/Pa=. 0.06 < 0.15 ly = 3.398 INA 4
FLEXURE Sy = 2.265 IN^3
CHECK: P/Pa + Mx/Max <_ 1.33 ry = 1.273 IN
Kx = 2.1
Pno= Ae*Fy Lx = 145.56 IN
= 2.096 IN^2 *36000 PSI Ky = 1.00
75,442 LB Ly = 78.0 IN
Pao= Pno/Oc _ Fy= 36 KSI
= 75442 LB/1.92 E= 29,500 KSI
= 39,293 LB
Myield=My= Sx*Fy '
= 3.338 IN^3 * 36000 PSL Of= 1.67
= 120,1.82 IN -LB Cmx= 0.85
,Max= My/Qi r Cb= 1.0
= 120162 IN-LB/1.67
71,966 IN -LB
Pcr- Tr^2EI/(KL)max^2 ' Nx= {1/[1-(f)c*P/Pcr)])^-1
= Tr^2*29500 KSI/(2.1*145.5625 IN)^2 = {1/[1-(1.92*1000 LB/31207 LB)])^ -1
= 31,207 LB = 0.94
THUS,
(1000 LB/16253 LB) + (28198 IN -1-13/71966 IN -LB) = 0.42 < 1.33, OK
r. SEMMIC PROJECT BEST BUY #1020
+ FOR BEST BUY
INC. SHEET NO. 23
CALCULATED BY RF
MATERIAL HANDLING ENGINEERING DATE 2/27/2006
TEL: (909) 869-0989 • FAX: (909) 869-0981
161 ATLANTIC AVENUE • POMONA, CA 91768
BASE & ARM ANALYSIS
BASE ANALYSIS:
a
Mbase = 28,198 IN -LB t
Fb=0.66xFy s
= 0.66 x 36000 PSI
ARM & BASE v
23,760 PSI
fb M/Sx
= 28198 IN -LB / 1.553 IN^3 yt
=
18,157 -PSI
A
fb /-Fb = 18157 PSI / 23760 PSI = 0:76 < 1.33 THEREFORE OK
SECTION PROPERTIES
ARM CHECK:
A= 2.5 IN
Marm = Wtotall x dl/2 B= 4.0 IN
= 500 LB x 28.46875 IN/ 2 t= 0.120 IN
= 7,117 IN -LB Fy= 36 KSI
Sx= 1.5531N^3
fb = M/Sx Fw = 70 KSI
= .7117 IN -LB / 1.553.IN^3 WELd t = 0.125 IN
= 4,583 PSI teff = 0.088 IN
WELD L1 = 4.0 IN
Fb = 23,760 PSI WELD L2 = 3.0 IN
Sweld = 1.395 IN ^3
fb / Fb = 4583 PSI / 23760 PSI = 0.19 < 1.0 THEREFORE OK
WELD CHECK: .
Mmax = 28,198 IN -LB
fb = M/Sweld
= 28198 IN -LB / 1.395 IN^3
= 20,214 PSI .
Fb(weld) = 0.3 x Fw
= 0.3 x 70000 PSI
= 21,000 PSI
fb I Fb = 20214 PSI / 21000 PSI 0.96 < 1.33 THEREFORE OK
1
I
1
r000sotol
ift �c-
MATERIAL
HANDLING ENGINEERING
TEL: (909) 869-0989 • FAX: (909) 869-0981
161 ATLANTIC AVENUE o POMONA, CA 91768
OVERTURNING ANALYSIS
SINGLE SIDED - FULLY LOADED:
TOTAL SHEAR = 149 LB
Movt = 21,216 IN -LB
PROJECT
FOR
SHEET NO.
CALCULATED BY
DATE
t—2-1/2"
mil E D
Mst =.Wpxd2/2
= 500 LB x 32.71875 IN / 2 3/8"
= 8,180 IN -L6
ANCHOR: HILTIKWIK II WEDGE (ICC/ ICBO #4627)
BEST BUY # 1020
BEST BUY
24
RF
2/27/2006
Puplift = [Movt - Mst] / dl
= [21216 - 8180] IN -LB / 28.46875 IN TENSION cap = 753 LB
= 458 LB SHEAR cap = 1,467 LB
# ANCHORS/base = 1
INTERACTION EQN.:
458 LB % (753 LB)"5/3 + (149 LB / 1467 LB)"5/3 = 0.71 < 1.0 THEREFORE OK
* *
*L J*
*
TOP VIEW (ANCHORING LOCATION)
MP VIEW (SINGLE)
USE (1) ANCHOR PER BASE.
DOUBLE SIDED FULLY LOADED
TOTAL SHEAR = 298 LB
Movf = 28,198 IN -LB
Mst= Wpxdl /2
= 1000 LB x 60 IN/ 2
= 30,000 IN -LB
Puplift = [Movt - Mst] / d3
= [28198 - 30000] IN -LB / 60 IN
= -30 LB <== NO UPLIFT
cru I �
11'=� II1111�I1 �111�1
I
ANCHOR: HILTIKWIK II WEDGE (ICC/ ICBO #4627)
TENSION cap = 753 LB
SHEAR cap = 1,467 LB
# ANCHORS/base = 1
INTERACTION EQN.:
(OLB/(753 LBx1/2))^5/3+(298 LB/1467 LB)^5/3 = 0.07 < 1.0 THEREFORE OK
k
SEI
ZMIC
INC.
MATERIAL HANDLING ENGINEERING
TEL: (909) 869-0989 o FAX: (909) 869-0981
lAl ATI ANTIC AVENUE • POMONA. CA 91768
OVERTURNING ANALYSIS cont.
DOUBLE SIDED - FULLY.LOADED cont.
* * f
PROJECT BEST BUY # 1020
FOR BEST BUY
SHEET NO. 25
CALCULATED BY RF
DATE 2/27/2006
TOP VIEW (ANCHORING LOCATION)
TOP VIEW (DOUBLE)
USE (2) ANCHORS, PER BASE FOR END FRAMES, AND"(1) ANCHOR PER BASE FOR INTERMEDIATE FRAMES AS SHOWN.
DOUBLE SIDED - SINGLE SIDE LOADED
2-1/2"
TOTAL SHEAR"-- 149 LB IMil MBDMNT
Movt = 21,216 IN -LB
Mst= Wpxdl /2
= 500LBx60IN/2
= 15,000 IN -LB
Puplift = [Movt - Mst] /A3
= [21216 - 15000] IN -LB / 60 IN
104 LB
INTERACTION EQN.:
(104 LB/(753 LBx1/2))^513+(149 LB/1467 LB)"5/3 = 0.14
* r-,—1 * Fr-- I- .
3/8"
ANCHOR: HILTIKWIK II WEDGE (ICC/ ICBO
TENSION cap = 753 LB
SHEAR cap = 1'1467 LB
# ANCHORS/base = 1
< 1.0 THEREFORE OK
* n Fr -!--Tl*
* ® LJ
TOP VIEW (ANCHORING LOCATION)
TOP.VIEW .(DOUBLE)
USE (2) ANCHORS PER BASE FOR END FRAMES, AND (1) ANCHOR PER BASE FOR INTERMEDIATE FRAMES AS SHOWN.
SEIZIUIIC PROJECT BEST BUY 41020
FOR BEST BUY
INC. SHEET NO. 26
CALCULATED BY RF
MATERIAL HANDLING ENGINEERING DATE 2/27/2006
TEL: (909) 869-0989 • FAX: (909) 869-0981
1A1 ATI ANTIr AVFNIIF • POMONA. CA 91768
FEATURE END GONDOLA ANALYSIS W/ SPEAKER ARCH
SCOPE:
THE PURPOSE OF THIS ANALYSIS IS TO SHOW THAT THE FEATURE END GONDOLA COMPLIES
WITH THE 2001 CBC.
PARAMETERS:
GONDOLA SHELVING UNITS WILL BE ANALYZED AS AN ELEMENT UTILIZING THE FOLLOWING MAX. LATERAL FORCE
FORMULA:
V = 2.5 x Ca x I x W / R — MAXIMUM SECTION 1630.2.1 EQN. 30-5
V = 0.56 x Ca x I x W — SECTION 1634.5 EQN. 342
V= 1.6xZxNvxIxW/R— SECTION 1634.5 EQN. 34-3
SPECIFICATIONS:
MAIN STEEL - Fy = 36,000 PSI MINIMUM YIELD STEEL
BOLTS - A307 UNLESS OTHERWISE NOTED WHEN USED
ANCHORS - 3/8" fd x 2-1/2" MIN EMBD. HILTIKWIK BOLT II WEDGE ANCHORS (ICBO #4627)
SLAB - 4" x 2,000 PSI (MIN.)
SOIL - 1,000 PSF (MIN.)
CONFIGURATIONS;
SINGLE BAY FEATURE END GONDOLA
FEATURE END GONDOLA FEATURE END GONDOLA
4'-0" CTRs` HEIGHT (Ht1) = 144:0 IN
SHELVING GONDOLA t I HEIGHT (ht) = 96.0.IN
SEE DRAWING 981486D
FOR DETAILS depth (d1) = 24.0 IN
96"
------------ r --
I I
Yr-----rr-"--I o
I
1 az"
d
96" 937;8"
II II
II II �
II II I
II II•. I
24-t
II n I
' II II 1 ,
F�-----1L----' .I-------- 91/4"
SIDE VIEW FRONTVIEW
k
W gond = 350 LB
W shelf = 150 LB
W arch =.55 LB
\Altntmll = 555 ME
$EIZMIC PROJECT BEST BUY #1020
FOR BEST BUY
INC. SHEET NO. 27
CALCULATED BY RF
MATERIAL HANDLING ENGINEERING DATE 2/27/2006
TEL: (909) 869-0989 - FAX: (909) 869-0981
1 Al ATI AMTlr^. n\/FNl1F - POMONA. CA 91768
LOADS & DISTRIBUTION: (144"H FEATURE END GONDOLA)
ANALYZED PER 1634.5, AND TABLE 16-P OF THE 2001 CBC.
SEISMIC ZONE - 4
Z- 0.4
Na = 1..,1, : <_= ONLY USED IN ZONE 4
Nv = 1:33i
Ca = 0.484
ap = 25
Rtrans. = 2.9 <== TABLE 16-P, NO. 3 CANTILEVERED MASS ELEMENT
V(30-5)= 2:5x0.484x1 xW/Rx1.4
= 0.864 * W/R <__= CONTROLS
V(34-2) = 0.56 x 0.484 x 1 x W/ 1.4
= 0.194 * W
V(34-3)= 1.6 x0.4x1.33x1 xW/Rx1.4
= 0.608 * W/R
LONGITUDINAL & TRANSVERSE DIRECTION: .
Wtotal1 = 555 LB
Fp gond = 104 LB Fp ar t
Fp shelf = 45 LB
Fp arch = 16 LB
Fp(col) = 83 LB
Pcol = 278 LB
GONDOLA:
Mgond(stat) = [V11 gond x d1/21 / 2
= [350 LB x'24 IN / 2] / 2
= 2,100 IN -LB
Mgond(seis) = (V/2) x Ht/2
= 52 LB x 96 IN/2
= 2,503 LB
SHELF:
Mshelf(stat) = [W shelf x d1/2] / 2
[150 LBx24IN/2]/2
= 9001N -LB
Mshelf(seis) = (V/2) x Ht
= 22 LB x 96 IN
= 2,146 LB
SPEAKER ARCH:
March(stat) = LENGTH,* WEIGHT/2
= 95.5 IN * 55LBS/2
= 2,626 IN -LB
March(seis) = (V arch/2) x Ht
). = 1,1641N -LB
u
96
----------
Fp s
tr----- rr- - ---i
24"t
LOCATION OF SPEAKER ARCH
ELEVATION @ 142"
Fp gond
96"
Mcol(total) = Mgond(stat) + Mgond(seis) +Mshelf(stat) + Mshelf(seis) + March(stat) + March(seis)
= 11,439 LB
SEIZMIC BEST BUY PROJECT BEST BUY #1020
FOR.
INC. SHEET NO. 28
CALCULATED BY RF
MATERIAL HANDLING ENGINEERING DATE 2/27/2006
TEL: (909) 869-0989 • FAX: (909) 869-0981
161 ATLANTIC AVENUE • POMONA, CA 91768
COLUMN ANALYSIS
ANALYZED PER AISI AND THE 2001 CBC. SECTION PROPERTIES BASED ON THE EFFECTIVE SECTION.
P= 278 LB
M= 11,439 IN -LB
KxLx/rx = 2.1*96 IN/1.0687 IN
= 188.6 <___ (KI/r)max B
KyLy/ry = 1*84 IN/0.6127 IN
= 137.1
AXIAL
Fe= -r 2E/(KUr)max^2
= 8.2 KSI �
Fy/2= 18.0 KSI`*-
SINCE, Fe < Fy/2
THEN, Fn= Fe a _
= 36 KSI*[1-36 KSI/(4*8.2 KSI)]
8.2 KSI
Pn= Aeff*Fn
= 8,339 LB
Qc= 1.92
Pa= Pn/Qc
= 8339 LB/1.92
= 4;343 LB
P/Pa= 0.06 < 0.15
FLEXURE
CHECK: P/Pa + Mx/Max <_ 1.33
11
THUS,
Pno= Ae*Fy
= 1.019 IN^2 *36000 PSI
= 36,691 LB
Pao= Pno/bc
= 36691 LB/1.92
= 19,110 LB
Myield=My= Sy*Fy
0.51 IN^3 * 36000 PSI
= 18,367 IN -LB
Max= MyMf
= 18367 IN-LB/1.67
= 10,9981N -LB
Pcr= 1r^2EI/(KL)max^2
= Tr^2*29500 KSI/(2.1*96 IN)^2
= 8,340 LB
A= 1.5 IN
B= 3.0 IN
t = 0.120 IN
Aeff = 1.019 IN^2
Ix = 1.164 IN^4
Sx = 0.776 IN^3
rx = 1.069 IN
Iy = 0.383 IN^4
Sy = 0.510 IN^3
ry = 0.613 IN
Kx = 2.1
Lx = 96.0 IN
Ky = 1.00
Ly = 84.0 IN
Fy= 36 KSI
E= 29,500 KSI
Nx= (141 -(Clc*P/Pcr)]}A 71
= {1/[1-(1.92*278 LB/8340 LB)]}^ -1
= 0.94
(278 LB/4343 LB) + (11439 IN-LB/10998 IN -LB) =
1.10 < 1.33, OK
Of= 1.67
Cmx= 0.85
Cb= 1.0
SEIZMIC
INC.
MATERIAL HANDLING ENGINEERING
TEL: (909).869-0989 - FAX: (909) 869-0981
161 ATLANTIC AVENUE - POMONA, CA 91768
ARM & OVERTURNING. ANALYSIS
ARM ANALYSIS:
Marm = [Wshelf x dl / 2] / 2
= 150LBx241N/2
= 1,8001N -LB
Fb= 0.6xFy
= 0.6 x 36000 PSI
= 21,600 PSI .
fb = M/Sx
= 1800 IN -LB / 0.578 IN^3
= 3,114 PSI
PROJECT
FOR
SHEET NO.
CALCULATED BY
DATE
318=-
688"
VQ
132^ -
BEST BUY #1020
BEST BUY
29
RF
2/27/2006
A= 5.75 IN
B= 1.187 IN
t= 0.105 IN
Fy= 36 KSI
Sx= 0.578 IN^3
fb / Fb = 3114 PSI / 21600 PSI = 0.14 < 1.33 THEREFORE OK
NOTE: THE SYSTEM IS BEING BRACED BY THE OVERRACK GONDOLA IN THE LONGITI inIh Al
DIRECTION. 2-1/2" I°
' I
OVERTUNING SINGLE SIDED - FULLY LOADED: M EMBDMNT
TOTAL SHEAR = 165 LB'
Movt = 5,813 IN -LB 3/8
ANCHOR: HILTIKWIK II WEDGE (ICC/ ICBO
f
Mst= Wpxdl /2
= 277.5 LB x 24 IN / 2
= 3,330 IN -LB
Puplift = [Movt - Mst] / d1 '
_ [58.13 - 33301 IN -LB / 24 IN
= 103 LB
INTERACTION EQN.:
+ 4'-0° CTRS f
(103 LB / 753 LB)^5/3 + (83 LB 11467 LB)"5/3 = 0.04
TENSION cap = 753 LB
SHEAR cap= 1;467 LB
# ANCHORS/base = 1
< 1.0 THEREFORE OK
NOTE: THERE IS NO OVERTURNING TRANSVERSE DIRECTION BECAUSE IT IS BEING SUPPORTED. BY
THE OVERRACK GONDOLA.
NOTE: THE FEATURE END GONDOLA IS ATTACHED TO THE OVERRACK BY (2) 3/8"0 CARRIAGE
BOLTS @ THE 93-718" ELEVATION.
11
SEIZMIC
INC.
MATERIAL HANDLING ENGINEERING
TEL: (909) 869-0989 • FAX: (909) 869-0981
161 ATI ANTIC; AVENUE • POMONA. CA 91768
PROJECT
FOR
SHEET NO.
CALCULATED BY
DATE
BEST BUY #1020
BEST BUY
30
RF
2/27/2006
BOLT ADEQUACY
THE BOLTS WILL BE PROVEN TO BE ABLE TO TAKE THE SEISMIC SHEAR IMPOSED BY THE FEATURE END FIXTURE IN THE
LONGITUDINAL DIRECTION, AND OVERTURNING TENSION CAUSED BY SEISMIC SHEAR IN THE TRANSVERSE
DIRECTION.
SHEAR ANALYSIS OF (2) 318"0 A307 CARRIAGE BOLTS
Pcap = Fv x Area x (# OF BOLTS) BOLT SPECIFICATIO S
= 10000 PSI x 0.11 IN^2 x 2 BOLTS
_.2,208 LB BOLT 0 = 0.375 IN
AREA= 0.110 IN^2
Fp(total) = 45 LB Fv = 10 KSI
Ft = 19 KSI
Fp / Pcap = 0.02 < 1.33 THEREFORE OK # of BOLTS = 2
TENSION ANALYSIS OF (2) 318"0 A307 CARRIAGE BOLTS
Tcap = Ft x Area x (# OF BOLTS)
= 19100 PSI x 0.11 IN^2 x 2 BOLTS
_.4,217 LB
Fp(total) = 165 LB
Puplift = 103 LB
TENSION(TOTAL) = 269 LB
Tmax ! Tcap = 0.06 < 1.33 THEREFORE, OK