Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
08-1783 (AR) Structural Calcs
} J EJOVEN ENGINEERING S t r u c t u r a l E n g i n e e r i n g P.O. Box 5098 La Quinta, CA 92248-5098 (760) 408-6441 Structural Calculations for Rosenfeld Cabana 53-380 Avenida Carranza La Quinta, CA CITY OF LA QUIMAg : South West Concepts BUILDING & SAFETY DEPT. APPROVED FOR CONSTRUCTION qovernber, 2008 ►A BYJk— I Job No. 08-527 v�yv�yG�2�\ h� � 2 No. C 041210 m Exp. 3-31 -C-11 if FOF CAL1F0 Table of Contents: Page Number Design Criteria Title page: T1 Code: 2007 California Building Code Material 1STRUCTURAL SYSTEM: Plan 2 =Diaphragm with Cantilevered Columns R = 2.5 Roof Framing 3 ,thru 4 Lateral Analysis L1 thru L6 Seismic: Cantilevered Column C1 thru C2 Sds = 1.50; Sd1 = .60; Rho = 1.3; Distance = 10 kr Importance= I =1.0 WIND: 85 M.P.H. Exposure "C" Snow Load= 0.0 ps1� FAREALISPACD 100 1 V0BS120081527VEWF0L-ITOVERS-I. WPD JOB # 527 Joven Engineering BY: P. O, Box 5098 DATE: Lo Quints, CA 92248-5098 SHEET: 1 jj t (760) 408-6441 LUMBER: AI I STRI ICTI IRAI LUMBER SHALL BE DOUGLAS FIR-t ARCH OLLOWORLF STRFSSFS IN P_S_I_ FROM 1991 NDS GRADING RULES WWPA & WCLIB Fb Ft Fv E Fc' Fc' STUDS & 44 POST - DOUGLAS FIR # 2 875 575 95 1.6 1300 625 jOISTS 2"-4" THICK, Less than 6" Wide - DOUGLAS FIR # 2 875 575 95 1.6 1300 625 JOISTS 2"-4° THICK, 6" & WIDER - DOUGLAS FIR # 1 1000 675 95 1.7 1450 625 JOIST 2"- 4"THICK, X 12" & 14 - DOUGLAS FIR #1 & BETTER 1150 775 1 95 1.8 1 1500 625 BEAMS 5" & THICKER RECTANGULAR - SELECT STRUCT. 1600 950 85 1.6 1100 625 POST & TIMBERS: 4 x 6 - DOUGLAS FIR # 1 1200 825 85 1.6 1000 625 POST & TIMBERS: 5x5 & LARGER - SELECT STRUCTURAL 1500 1000 85 1.6 1150 625 2°-4" T&G DECKING - SELECT DEX 1750 -- -- 1.8 -- 625 LAMINATED BEAMS - (24F -V8) values are about the x -x axis (24F -V4) values are about the x -x axis 2400 2200 1100 1000 165 165 1.8 1.8 1650 1650 650 650 1.9E Microllam LVL Western Species 2600 2600 285 1.9 2310 750 1.3E TimberStrand LSL Western Species 1700 1700 285 1.3 1400 285 1.5E TimberStrand LSL Western Species 2250 2250 285 1.5 1950 650 2.0E Parallam PSL Western Species 2900 2400 290 2.0 2900 480 TJI Pro Series Joist. 2600 2000 285 1.9 1 2310 750 CONCRETE: 1000 P.S.F. THE 28 DAY STRENGTH & TYPE OF CONCRETE SHALL BE AS FOLLOWS: 1000 SLABS ON GRADE: 2000 P.S.I. 150 P.C.F. FOOTINGS: 2000 P.S.I. 150 P.C.F. GRADE BEAMS: 3000 P.S.I. 150 P.C.F. MASONRY: FRICTION: 0.35 REINFORCED CONCRETE BLOCK: GROUTED SOLID 1500 P.S.I. REINFORCED CONCRETE BLOCK: GROUTED AT STEEL 1350 P.S.I. CONCRETE BLOCK (Normal Weight) A.S.T.M C-90 Grade N-1 1900 P.S.I. (Avg of 3) MORTAR: 1800 P.S.I. GROUT: 2000 P-.S.I. SPECIAL INSPECTION REQUIRED? NO REINFORCING: TYPICAL REINFORCING: GRADE 60 STIRRUPS, TIES, & NON-STRUCTURAL ITEMS: GRADE 40 REINFORCING TO BE WELDED: A.S.T.M. A-706 GRADE 60 STRUCTURAL STEEL: STRUCTURAL SHAPES: A.S.T.M. A-992 50 K.S.I. STRUCTURAL PLATES: A.S.T.M. A-36 36 K.S.I. PIPE COLUMNS: A.S.T.M. A-53 Grade B 36 K.S.I. STEEL TUBES: A.S.T.M. A-500 Grade B 46 K.S.I. BOLTS: A.S.T.M. A-307 ---- FOUNDATIONS: NO SOILS REPORT PROVIDED: DESIGN VALUES: SOIL BEARING PRESSURE: ISOLATED SQ. OR RECT. 1000 P.S.F. CONT. FOOTINGS: 1000 P.S.F. MAXIUM SOIL PRESSURE: 1300 P.S.F. PASSIVE EARTH PRESSURE: 250 P.S.FJFT. EQUIVALENT FLUID PRESSURE: 35 P.S.F./FT. FRICTION: 0.35 TIMES THE NORMAL DEAD LOAD JAM 2W8 527 MATERI-I,WPD r. Z II � Q ISI o���JJ II �S ��bJJ �sd g%!!xZ%� r ���.. WV199 mlxt7 LLI w Q w z 0- . r IX aC14 I �, (aN3 C2?ilc i iNOO WVIV' cG gi�llXZiiE �d y+� X �p Roof Beams RB -1 IOVEN ENGINEERING Inertia width Rosenfeld Cabana 'beam1 Uniformly loaded simple span joist, rafter or beam 1-1-00 Span = Job # 527 T.A. = 101.97 sq. ft. P. 0. Box 5098 9.00 ft. 53-390 Avenida Carranza React. Momn't. L.L. = by JV 0 1020 2890 La Quinta, California 92248-5098 E 21.0 psf > > La Quinta, CA 1071 3034 Extra = Date 11/19/2008Phone 0 57 161 (760) 408-6441 ____ South West Concepts 0.31 Totals > Sheet r1 of 2148 6085 > ver. 3-1-00 48 psi fb= Machine La Quinta Retrieve/Save drive =C: work dir = 527 > wk4 Filespec: J:\JOBS\2008\527\VERT-1.WK4 131 # CM = 1.00 Fvh = Load drive = C: filespec = vert Extra = 10.0 #/ft dead line load 63 # Deflections > > LL = 0.00 in. = L / 45577 Use these Loadings loads Loadings Mmax@ M@X = Number of DL = -0.02 in. = L / 5115 0.318 % 8-1-00 Vertical Flat Roof Flat Roof Sloped Roof Sloped Roof Sloped Roof Sloped Roof Floor Floor -0.02 in. = L / RF1 RF2 RF3 RF4 RF5 RF6 FL1 FL2 Roofing/Flooring 6.0 psf 6.0 psf 12.0 psf 11.0 psf 0.0 psf 0.0 psf 1.0 psf 0.0 Sheathing 1.8 1.8 1.8 1.8 0.0 0.0 0.0 0.0 Rafters/Beams 3.5 3.5 3.5 3.0 0.0 0.0 0.0 0.0 703 Ceiling . 10.0 10.0 2.8 10.0 0.0 0.0 0.0 0.0 514 Misc. 0.7 2.7 1.9 2.2 0.0 0.0 0.0 0.0 297 ------- ------- Dead Load 22.0 psf-rfldl ------- ------- 24.0 psf-rf2dl ------- ------- -------------- 22.0 psf-rf3dl 28.0 psf-fl2dl ------- ------- -------------- 0.0 psf-rftdl 0.0 psf -rf2dl ------- ------- 1.0 PSI -f11dl ---- ---- 0.0 Live Load 20.0 psf -rf111 20.0 psf -rf211 20.0 psf -rf311 20.0 psf-fl211 20.0 psf -rf111 20.0 psf -rf211 40.0 psf-f1111 60.0 Snow Load 0.0 psf 0.0 psf 0.0 psf 0.0 psf 0.0 psf 0.0 psf 0.0 psf 10.0 x/12 1 4 RR -1 beam Uniformly loaded simple span joist, rafter or beam > > sawn > > options: sawn, glb, tji, lam or steel 1-1-00 Span = 16.00 ft. T. A. = 21.28 sq. ft. sawnpro size grade area sect Inertia width depth Fb > in. Ft > mount trib = 1.33 ft. Axial React. Momn't. Try >> 2x10#1 (df #1) 13.88 21.39 98.9 1.50 9.25 1100 743 L.L. 20.0 psf >> 0 213 852 C(D) = 1.25 fvh = 44 psi fb= 1003 psi fa= 0 psi fa/Fa 0.00 D.L. = 22.0 psf >> 0 234 937 Ch = 1.25 Fvh = 119 psi Fb= 1100 psi Fa= 1160 psi fb/Fb 0.91 Extra = 0.0 #/ft > > 0 0 0 Deflections > > LL = 0.23 in. = L/ 823 combined stress 0.37 (dead line load) _ _ _ _ _ _ _ _ _ _ _ _ _ _ Number of DL = 0.26 in. = L/ 748 0.912 % Totals > 0 447 1789 pieces 1 TL = 0.49 in. = L/ 392 Deflection control 1 roof R1 =1.000 R2 =1.00 20.0 Ct= 0.8 USE Tapered x 12's grade = (df #1) min. bearing= 0.48 inches Wind uplift per joist from sheet L3 378 lbs Design 378 / 1.33 x 2 568 lbs Provide Simpson HUS 210@ each rafter/joist Allowable = 2310 lbs Uplift RR -2 beam Uniformly loaded simple span joist, rafter or beam > > sawn > > options: sawn, glb, tji, lam or steel 1-1-00 Span = 6.00 ft. T. A. = 12 sq. ft. sawnpro size grade area sect Inertia width depth Fb > in. Ft > mount trib = 2.00 ft. Axial React. Momn't. Try > > 2x6#2 (df #2) 8.25 7.56 20.8 1.50 5.50 1 138 748 L.L. = 20.0 psf >> 0 120 180 C(D) = 1.25 fvh = 39 psi fb= 600 psi fa= 0 psi fa/Fa 0.00 D.L. = 22.0 psf > > 0 132 198 Ch = 1.25 Fvh = 119 psi Fb= 1138 psi Fa= 1144 psi fb/Fb 0.53 Extra = 0.0 #/ft > > 0 0 0 Deflections > > LL = 0.04 in. = L/ 2053 combined stress 0.33 (dead line load) _ _ _ _ _ _ _ _ _ _ _ _ _ _ Number of DL = 0.04 in. = L/ 1866 0.528 % Totals > 0 252 378 pieces 1 TL = 0.07 in. = L/ 978 Deflection control 1 roof R1 =1.000 R2 =1.00 20.0 Ct= 0.8 USE 2x6#2 grade = Of #2) min. bearing= 0.27 inches Roof Beams RB -1 area sect Inertia width depth Fb > in. 'beam1 Uniformly loaded simple span joist, rafter or beam 1-1-00 Span = 11.33 ft. T.A. = 101.97 sq. ft. mount trib = 9.00 ft. Axial React. Momn't. L.L. = 20.0 psf > > 0 1020 2890 D.L. = 21.0 psf > > 0 1071 3034 Extra = 10.0 #/ft > > 0 57 161 (dead line load) ____ ____ ______ 0.31 Totals > 0 2148 6085 > > lam > > options: sawn, glb, tji, lam or steel lamprop Call Actual area sect Inertia width depth Fb > in. Ft > Try >> 3x12p 3.5x11.£ 41.56 82.26 488.4 3.50 11.88 2903 2903 C(D) = 1.25 fvh = 64 psi fb= 888 psi pa= 0 psi fa/F. 0.00 CM = 1.00 Fvh = 290 psi Fb = 2907 psi Pa= 2900 psi fb/F 0.31 Deflections > > LL = 0.07 in. = L / 1989 combined stress 0.31 Number of DL = 0.08 in. = L / 1799 0.305 % 48 psi fb= pieces 1 TL = 0.14 in. = L / 945 Deflection control 131 # CM = 1.00 Fvh = 290 psi Fb= 2907 psi Pa= 2900 psi fb/F 1 roof Extra = R1 =1.00 R2 =1.00 20.0 Ct= 0.8 USE 3.501.875 PSL min. bearing= 0.94 inches RB -2 beam24EUniformly loaded cantilevered joist or beam w/ point load lam > > options: sawn, glb, tji, lam or steel 7-1-05 BkSpan= 9.80 ft.,cant= 7.66 ft.,T.A.= 52.38 sq. ft. lamprop Call Actual area sect Inertia width depth Fb > in. Ft > WJ Peentrib= 3.00 ft. Point load at end of cantilever Try >> 3x12p 3.5x11.E 41.56 82.26 488.4 3.50 11.88 2903 2903 L.L. 20.0 psf 125 # C(D) = 1.25 fvh = 48 psi fb= 925 psi pa= 0 psi fa/F. 0.00 D.L. 21.0 psf 131 # CM = 1.00 Fvh = 290 psi Fb= 2907 psi Pa= 2900 psi fb/F 0.32 Extra = 10.0 #/ft dead line load 63 # Deflections > > LL = 0.00 in. = L / 45577 combined stress 0.32 Mmax@ M@X = Number of DL = -0.02 in. = L / 5115 0.318 % Axial R1,# 9.8 1.38 R24 pieces 1 TL = -0.02 in. = L / 5762 Deflection control L.L. = 0 196 -2718 -384 1156 #,#ft,#ft,# 1 roof D.L. � 0 18 -2854 -36 1214 #,#ft,#ft USE 3.501.875 PSL min. bearing= 0.59 inches Extra = 0 -30 -772 -51 267 #,#ft,#ft Ct = 0.8 Cantilever Deflections Totals 0 184 6344 471 2637 #,#ft,#ft,# 0.17 in. = L / 703 cantilever moment governs 0.23 in. = L / 514 R1 =1.00 R2 =1.00 20.0 0.40 in. = L / 297 R1 =1.00 R2 =1.00 20.0 0.29 in. = L / 280 .2)OVEN ENGINEERING Rosenfeld Cabana Job # 527 P. O. Box 5098 53-390 Avenida Carranza by JV La Quinta, California 92248-5098 La Quinta, CA Date 10/29/2008 Phone (760) 408-6441 South. West Concepts Sheet of > ver. 3-1-00 Machine La Quinta Retrieve/Save drive =C: work dir = 527 > wk4 Filespec: J:\JOBS\2008\527\VERT-1.WK4 Load drive = C: filespec = vert RB -3 beam24EUniformly loaded cantilevered joist or beam w/ point load lam > > options: sawn, glb, tji, lam or steel 7-1-05 BkSpan= 15.00 ft.,cant= 1.50 ft.,T.A.= 49.5 sq. ft. lamprop Call Actual area sect Inertia width depth Fb > in. Ft > WJ Peentrib= 3.00 ft. Point load at end of cantilever Try > > 3x12p 3.5x111 41.56 82.26 488.4 3.50 11.88 2903 2903 L.L. 20.0 psf 196 # C(D) = 1.25 fvh = 30 psi fb= 520 psi pa= 0 psi fa/F. 0.00 D.L. = 21.0 psf 18 # C(f) = 1.00 Fvh = 290 psi Fb= 2907 psi Pa= 2900 psi fb/F 0.18 Extra = 10.0 #/ft dead line load -30 # Deflections > > LL = 0.06 in. = L / 2874 combined stress 0.18 Mmax@ M@X= Number of DL = 0.08 in. = L / 2155 0.179 % Axial Rt,# 7.3 7.32 R2.# pieces 1 TL = 0.15 in. = L / 1231 Deflection control L.L. = 0 430 1543 1543 760 #,#ft,#ft,# 1 roof D.L.= 0 466 1723 1723 591 #,#ft,#ft USE 3.5x11.875 PSL min. bearing= 0.43 inches Extra = 0 77 297_ 297_ 58 #,#ft,#ft Ct = 0.8 Cantilever Deflections Totals 0 974 3564 3564 1409 #,#ft,#ft,# 0.02 in. = L / 8401 mainspan moment governs 0.02 in. = L / 10061 R1 =1.00 R2 =1.00 20.0 0.04 in. = L / 4578 RB -4 beam24EUniformly loaded cantilevered joist or beam w/ point load lam > > options: sawn, glb, tji, lam or steel 7-1-05 BkSpan= 6.75 ft.,cant= 7.66 ft.,T.A.= 43.23 sq. ft. lamprop Call Actual area sect Inertia width depth Fb > in, Ft > WJ Peentrib= 3.00 ft. Point load at end of cantilever Try >.> 302p , 3.5x111 41.56 82.26 488.4 3.50 11.88 2903 2903 L.L. 20.0 psf 196.3 # C(D) = 1.25 fvh = 43 psi fb= 775 psi pa= 0 psi fa/F. 0.00 D.L. = 21.0 psf 17.512 # C(f) = 1.00 Fvh = 290 psi Fb = 2907 psi Pa= 2900 psi fb/F 0.27 Extra = 10.0 #/ft dead line load -29.79 # Deflections > > LL = -0.00 in. = L / 17213 combined stress 0.27 Mmax@ M@X = Number of DL = -0.01 in. = L / 11869 0.267 % Axial R1,# 6.8 0.58 R2.# pieces 1 TL = -0.01 in. = L / 7025 Deflection control L.L. = 0 -20 -3264 -281 1342 #,#ft,#ft,l/ 1 roof D.L.= 0 -81 -1982 -58 1006 #,#ft,#ft USE 3.501.875 PSL min. bearing= 0.53 inches Extra = 0 24 765 . 12 901 #,#ft,#ft Ct = 0.8 Cantilever Deflections Totals 0 -77 5312 326 2439 #,#ft,#ft,# 0.19 in. = L / 434 cantilever moment governs 0.10 in. = L / 794 R1 =1.00 R2 =1.00 20.0 0.29 in. = L / 280 TerraServer Image Courtesy of the USGS Page 1 of 1 �L http://terraserver-usa.com/Printlmage.aspx?T=I&S=10&Z=l 1 &X=2818&Y=18623 &W=... 10/20/2008 LZ Conterminous 48 States 2005 ASCE 7 Standard Latitude = 33.66118 Longitude = -116.31294 Spectral Response Accelerations Ss and S1 Ss and S1 = Mapped Spectral Acceleration Values Site Class B - Fa = 1.0 ,Fv = 1.0 Data are based on a 0.01 deg grid spacing Period Sa (sec) (g) 0.2 1.500 (Ss, Site Class B) 1.0 0.600 (S1, Site Class B) A Conterminous 48 States 2005 ASCE 7 Standard Latitude = 33.66118 Longitude = -116.31294 Spectral Response Accelerations SMs and SM1 SMs =Fax Ss and SMI =FvxS1 Site Class D - Fa = 1.0 ,Fv = 1.5 Period Sa 6 (sec) (g) 0.2 1.500 (SMs, Site Class D) 1.0 0.900 (SM1, Site Class D) Conterminous 48 States 2005 ASCE 7 Standard Latitude = 33.66118 Longitude = -116.31294 Design Spectral Response Accelerations SDs and SD1 SDs = 2/3 x SMs and SD1 = 2/3 x SM1 Site Class D - Fa = 1.0 ,Fv = 1.5 Period Sa (sec) (g) 0.2 1.000 (SDs, Site Class D) 1.0 0.600 (SD1, Site Class D) 70VEN ENGINEERING Rosenfeld Cabana P. 0. Box 5098 53-390 Avenida Carranza La Quints, California 92248-5098 La Quinta, CA Phone (760) 408-6441 South West Concepts > ver. 1-15-08 Retrieve/Save drive = > wk4 Filespec: F:\REAL\SPACE\1001\JOBS\2008\527\NEWFOL-1\08WDLA-1.WK4 Load drive = FrischNenuti 10-25-06. LATERAL ANALYSIS Allowable Stress Design Governing Code: CBC 2007 ( CBC, DSA, LA) Job # 527 by JV Date 11/18/2008 Sheet L $ of C: work dir = 527 C: Flespec = 08WdLat Seismic Force Site Class = D (IBC Chapter 20) or Soils Report Approx. Period = Ta = 0.1748 sec TL = 8 Fig. 22-1: Occupancy Catagory = II (Tablel-1 Roman Numeriais ct 0.02 Table 12.8-2 T = Importance Factor= 1.00 (Tablell.5-1) x = 0.75 Table 12.8-2 R value U 2.5 (table12.2-1) A. Bearing Wall 13. h = 18.00 ft. no = ✓ 1.5 Footnote g. Cd = 2.5 (tablel2.2-1) A. Bearing Wall 13. Rho Factor= p= 1.30 (Sec. 12.3.4.2.a.) Complies with Table 12.3-3 for Shear Walls N Structure is regular, irregular ? Regular From USGS web site = hftp://earthquake.usgs.gov/research/hazmaps/design/ Java Ground Motion Parameter Calculator - Version 5.0.8 Short Period Accel fSsl 1 111 Sprnnd Arrpl M11 ' Mapped Spectral ACC =ESDC- s = 1.500 USGS Haz Ma S1 = 0.600 USGS Haz Ma C & C Site Coefficients =a = 1.0 Table 11.4-1 Fv = 1.5 Table 11.4-21 Longitudinal Seismic Design Catagory =hort Period D Table 11.6-1 SDC - 1 Sec. Period D Table 11.6-2Max. Importance Factor = 1.00 P = qz (GCpf - GCpi) Considered EQ (MCE) =ms = Fa*Ss 1.50 Sm1 = Fv*S1 0.90 /txposure Category = C (Sect. 1609.4.3) opographic Factor: Kzt = 1.00 (ASCE7-05 Sect. 6.5.7) V Max. ht.(mean)= 15 ft Figure 6 -1( 0.18 GCpf = Design Spectral Acc =ds = 2/3 *Sms = 1.01)0 Shc = 2/3 *Sml 0.600 -0.29 Equivalent Lateral Force Procedure Sec 12.8 Zone a varible 0.6 ft. V Cs max. = IF Ta<TL = Sd1 / ( Ta*( R/I )) = 1.373 Cs max. = IF TL Ta = Sd1*TL / (Ta A2*( R/I )) = N/A / Cs = Sds / (R/I) = 0.400 ✓ C & C V = Cs*W = ✓V = Cs'W = 0.400 W Strength Level Design 0.286 W ASD Design Cs min. = IF S1-0.6 = 0.5*S1 / (R/1) = 0.010 Force 3.0 Longitudinal ROOF DIAPHGRAM AREA 1 Open Structure Trib. Area 1.2 Wind Force: Method 2 - Low -Rise Proceedure Wind Speed: V = 85 mph (Sect. 1609.3) qz =.00256 Kz Kzt Kd VA Rise/Run = "X" / 12 Rigid Structure 5.72 Roof Slope: 2.8624 deg Rise ft. 0.600 Importance Factor = 1.00 P = qz (GCpf - GCpi) 33.4 Surface Roughness = C (Sect. 1609.4.2) Kz = 0.85 Height of crest or escarpment H = 0 ft. /txposure Category = C (Sect. 1609.4.3) opographic Factor: Kzt = 1.00 (ASCE7-05 Sect. 6.5.7) V Max. ht.(mean)= 15 ft Figure 6 -1( 0.18 GCpf = Kd = G = 0.40 0.85 0.85 0.61 windward (1,1 E) Distance to H/2 upward crest Lh = 0 ft. Distance to Bldg from crest x = 0 ft. Height above loacl ground Z = 0 ft. GCpi : -0.18 -0.29 -0.43 leeward (4,4E) K1 = 0 K2 = 0 K3 = 0 Height Windward Leeward Total Level to level x Kz qz qi gGCpf giGC i Fx gGCpf giGCpi Fy Fx Areas Roof 11 0.85 13.36 13.36 4.5 / -2.04 6.59 -3.29 -2.41 -0.89✓ 7.48 psf 1 &4V / Roof 11 0.85 13.36 13.36 6.93 -2.04 8.97 -3.29 -2.41 -0.89 9.86 psf 1 E & 4E v Design Wind Pressure: ps = lambda*Kzt*l*ps30 = Zone a varible 0.6 ft. Tranverse 1.5 ft. C & C 6 ft. Trib. Area a = 6.0 ft. Force 3.0 Longitudinal 2 1 Trib. Area 1.2 Force ROOF DIAPHGRAM 1 Plan Dimensions in "Y" Direction = 15.00 Non Directional Pressure Parapet Pressure 18.00 ft. ✓ C & C 2.00 Case A Case B Wind Lee Net F 3 2 1 1 1.2 0.3 -1.1 1 -0.1 1.5 -1.0 2.5 33.4 3.5 3.5 2.3 13.36 13.36 13.36 13.36 0 # total (both directions) Mech Units DL = 0 # - <aA2 <4aA2 >4aA2 135.0 135.0 135.0 135.0 - - 30.0 90.0 18.0 - 2165 541 -1984 -180 0 0 0 1002 315 63 -0.8 -0.6 0.8 0.5 1.5 -1.0 2.5 33.4 3.5 3.5 13.36 13.36 13.36 13.36 - - - <aA2 <4aA2 >4aA2 270.0 270.0 270.0 270.0 1 36.0 108.0 1 36.0 2886 -162 2886 1351 01 0 0 12031 378 126 ROOF DIAPHGRAM 1 Plan Dimensions in "Y" Direction = 15.00 ft ✓/ Plan Dimensions in "X" Direction = 18.00 ft. ✓ Roof Rise (Plt to Ridge)/ Parapet Ht = 2.00 ft. Roof Overhang Width = Y = 0.00 ft. X =1 0.00 ft. Sill to Top Plate Height = 10.00 ft. Avg. Number of Interior Walls = 0 (each direction) Roof Tributary Area = Roof Dead Load = 17.0 ✓ psf- / = 270 sq.ft. 4590 # total Avg. Ext. Wall DL 18.3 psf V 1510 # total (both directions) Avg. Int. Wall DL 9.2 psf 0 # total (both directions) Mech Units DL = 0 # - 0 # total Total Mass 6099.8 # Diaphragm Edge Shear= V(ydir)= v(ydir)= V(xdir)= v(xdir)= Chord Force = F(ydir)= F(xdir)= Y Direction Roof Loadings -Transverse T Total Wind = 3708 # = Total Seismic =. 1547 # = X direction roof loadings -Longitudinal L Total Wind = 4224 # = Total Seismic = 1508 # = minus = 0 sq. ft. Ab= 270 sq.ft. x% 1.00 = 206 #/ft. governs 86 #/ft. 282 # / ft. governs 101 #/ft. 550 sq. ft. 4224 Use diaphragm type UB 1854 # USE 5/8 CDX Plywood or O.S.B. Sheathing 124 plf v diaph = ------ : 124 #/ ft. 2112 # Nailing: Boundar) 10d @ 6 " o.c. 117 plf Edge- 10d @ 6 " o.c. Field- 10d @ 12 " o.c. 556 # Framing: 2x v allow= 215 #/ft. 440 # Blocking no Case =(I or2-62-6 4251 )OVEN ENGINEERING P. 0. Box 5098 La Quints, California 92248-5098 Phone (760)408-6441 Rosenfeld Cabana 53-390 Avenida Carranza La Quinta, CA South West Concepts > ver. 1-15-uts Retrieve/Save drive = > wk4 Filespec: F:\REAL\SPACE\1001\JOBS\2008\527\NEWFOL-1\08-1.WK4 Load drive = TABLE 2306.4.1 Allowable Shear For Structural Panel Shear Walls? V sillbolt Panel Nominal Min. Nails Fastener Spacing Grade Panel Fastener C: A B C D 0 ::.>::.>.> Thickne Penn. HTT16 6 4 3 2 4) PH D 2 3080 ICC -ESR No. STRUC 3/8 1-3/8 8d 230 360 460 610 1 1/2 1-3/8 8d 280 350 550 730 ............... 6000 >:>:>::>:>:: 1/2 1-1/2 10d 340 510 665 870 6923 :::;<::>:>:::> 3/8 1-1/4 6d 200 300 390 510 6 s 3/8 1-3/8 8d 220 320 410 530 CDX 1/2 1-3/8 8d 260 350 490 640 11479 :.>:::»:`:>::: 1/2 1-1/2 10d 310 460 600 770 122 5/8 1-1/2 10d 340 510 665 870 Holdown Lookup Table. Simpson 2008 ( 2000 psi concrete. 2 pours ) " HD # CBC Table 100% 100% CBC Comer table Date IMin Sheet L!1 of C: work dir = 527 None Re `iifed>::.> 0 :>:<::.»:»<:: 0 0 ::.>::.>.> LA -25667 ICC -ESR No. HTT16 1340 ::>:::>::':>:: 1340::::::>:.>?:>.>:.> 1005 ::<`:>:.>::: LA -25667 4) PH D 2 3080 ICC -ESR No. 2310 LA -25667 -4) PHD5 454 :: :> 5 ..:.........::: 4545 :<::_::<'<:. ............. 3409 >`::<:z:!:'>:< 570 -4) PHD6 ..:::::::::::::. 5210:::::>::>:><:<: 5210> 3908:<:>:>>: 6061 4) 1224 ............... 6000 >:>:>::>:>:: 6000 ::>::>:>:::>::::: 4 500 830 4s HDQ89230 >:::>:>:<:>: 9230::::::>:'::>:>:: 6923 :::;<::>:>:::> 1415 6s HHDQ11::;:>::>::::>:>:s: 11810 ::::>:::::>:::>. 11810:::<:::>::::>::::>::::;: 1330 1780 6 s HHDQ1 :> 13710 13710 »:>::>::>:: 10283 »::::>«:.><: 1317 -6) HDU 14 ::::: 14925 ::::.>::: >:.>:::>::: . 14925 ::>::>::::>:::.>': 11194 :::::>:::.>::::#::>:: Sin le oan#ilev660° 'iilkbolt in'3z6stll late -6) HD15 15305 ::::>:::<:: 15305 :::::::;::;: 11479 :.>:::»:`:>::: -6) _ 1040. 1350r 1720` 2150 Minimum value from table above stud 1 :, in 8" min. stem :6 :6 :6 :6 Job # 527 by iv Date 11/18/2008 Sheet L!1 of C: work dir = 527 C: filespec = 08WdLat ICBO No. 5313 LA -25318 ICC -ESR No. 2330 LA -25300 ICC -ESR No. 2330 LA -25300 ICC -ESR No. 2330 LA -25300 ICC -ESR No. 2330 LA -25667 ICC -ESR No. 2330 LA -25667 ICC -ESR No. 2330 LA -25667 ICC -ESR No. 2330 LA -25667 ICC -ESR No. 2330 LA -25667 NER No. 5708 LA -25528 Cd = 1.33 Load Duration Factor Ct = 0.8 Temperture Factor 100< T <125 degrees Default bolt 5/8" x 3x sill1:107;; #/bolt Bolt size Min. Nails Nominal BLOCKED DIAPHRAGMS Bolt size Grade Panel Fastener 1.33 x 0.80 x 2x4 sill ? :r;;883..#/bolt 1/2" 1 5/8" 1 3/4" 1 7/8" 1" 1/2" 1 5/8" 1 3/4" 1 7/8" 1" 1.33 x 0.80 x 2x6 sill ;; '; f' 8831 #/bolt Bolt values x adjustment & duration factors Ib Bolt values in pounds 2-1/2 2 Single bolt in 2000 psi concrete 2x4 sill 6061 883 1122 1221 1197 570 830 11501 1530 1800 Single bolt in 2000 psi concrete 2x6 sill 6061 883 1224 1628 1915 570 830 1150 1530 1800 Single bolt in 1500 psi masonry 904 1415 1894 2043 2181 850 1330 1780 1920 2050 Sindleicanhieveredi'§i11 bo11Jn 3z,4,sR _late _ " ., .. 641 1107 1317 1373 1430 _.,�_ 700 1_%_ 1Q40: __9350, 1.720, 21;5.0, Sin le oan#ilev660° 'iilkbolt in'3z6stll late 745 1107 1436 1830 2288 700= _ 1040. 1350r 1720` 2150 Minimum value from table above 606 ..:;883 820 122 : ::9221 .:::1:197„ CDX 570 830 1150 1530 1800 i aDie Dasea on pressure treatea hem-t-ir sin piates tb.u. =.4,i / i aDie r.s.i & i aoie ts.zt iaar NUb TABLE 2306.3.1 Allowable Shear For Wood Structural Diaphragms Panel Nominal Min. Nails Nominal BLOCKED DIAPHRAGMS UNBLOCKED Grade Panel Fastener Width of A B C D DIAPHRAGMS Thickne Pen. Framing 6 4 2-1/2 2 6 6 4 3 Casel Case2-6 STRUC 3/8 1-3/8 8d 2x 270 360 530 600 240 180 1 3x 300 400 600 675 265 200 1/2 1-1/2 10d 2x 320 425 640 730 285 215 3x 360 480 720 820 320 240 CDX 3/8 1-3/8 8d 2x 240 320 480 545 215 160 3x 270 360 540 610 240 180 1/2 1-3/8 8d 2x 270 360 530 600 240 180 3x 300 400 600 675 265 200 1/2 1-1/2 10d 2x 290 385 575 655 255 190 3x 325 430 650 735 290 215 5/8 1-1/2 10d 2x 320 425 640 730 285 215 3x 360 480 720 820 320 240 JOVEN ENGINEERING P. O. Box 5098 La Quinta, California 92248-5098 Phone (760) 408-6441 Rosenfeld Cabana 53-390 Avenida Carranza La Quinta, CA South West Concepts > ver. 1-15-08 527 by JV > wk4 Filespec: F:\REAL\SPACE\1001\JOBS\2008\52-ANEWWFFOL-1\08WDLA-1.WK4 Sheet L -J of C: work dir = 527 ywall Redundancy factor for "Y" direction walls P= 1.30 " "Y" Shearwall - Line 1 & 2 adjustment % End Wall Condition if A or 1 E Diaphragm no: 1 Wind Seismic ... 1/0 Total Minus % Trib. width (1)= 9.00 ft. 1.000 1.000 0 144 72.2 0.500 Trib. width (2)= 0.00 ft. 1.000 1.000 0 Trib. width (3)= 0.00 ft. 1.000 1.000 0 "Y" Wind F(x) = 1854 # x 1.00 0.0 + 50 psi fb= + added wind = 0 # =total "Y" wind= fa/Fa 1854 # governs ' Y seismic F(x)= 773 # x 1.00 0.0 1075 Keineveibave onve = Load drive = Job # 527 by JV Date 11/18/2008 Sheet L -J of C: work dir = 527 C: filespec = 08WdLat Y Walls Story Strength (max) = 4390.1 Between lA & F ASCE 7 Sec. 12.3.4.2 a. 1 + added seismic - 0 it = total Y seismic = 773 # Total Columns 2.00 ft. x P= 1005 # Stud depth = 5 in. Factored Load per Column = 927 # R (cant. cols) _ /2.5 Correction for R = 1.00 Provide 2 Cantilevered Columns this wall Line see sheet Worst Case Equations for FB -4 37 lbs 0.0 + 0.0 + Eq. 5 = Roof Dead Floor Dead Eq. 2 D + L 17 ✓ and/or 0 + '-/E Eq.7 = / Eq.8 = q. 5 +(1.0 + .14Sds)D + .7omega o x Qe 19.4 ✓ and/or 0.0 /Eq. 5w +(1.0 + .14Sds)D + W 19.4 and/or 0.0 ,Eq. 6 (1+.105Sds)D+.75(Lr + L)+.525Emh 18.8 and/or 0.0 + 1200 743 L.L. = 0.0 psf >>> /Eq. 6w (1 +. 1 05Sds)D+. 75(Lr + L)+ W 18.8 and/or 0.0 + 50 psi fb= 711 psi fa= 3 psi fa/Fa VEq.7 +(.6-.14Sds)D+ W 7.8 and/or 0.0 1075 2956 Ch = 1.25 Fvh = 119 psi Fb= 8 +(.6-.14Sds)D + .7omega o x Qe 7.8 and/or /0.0 v Eh = rho x Qe = 1005 lbs. -1005 lbs. Ev = .2 Sds D = /Roof Deflections >> LL = 0.00 in. = L / ..."""' D = 17.0 psf Roof L (Lr) = 20.0 psf Floor D = 0.0 psf Eq.2 = 37 lbs 0.0 + 0.0 + Eq. 5 = 1075 lbs Worst Case Eq. 5w = 946 lbs Eq.6 = 811 lbs Eq. 6w = 946 lbs Eq.7 = 935 lbs Eq.8 = -1048 lbs Roof Live Floor Live 20 and/or 0 100 1.5 = OMEGA o 0.0 + 0.0 + 0.0 + 0.0 + 792 1.105 Emh = OMEGA o x Qe +/_ 0.2 D + Emh = 1508 lbs Floor L1 : 0.0 psf Floor 1-2: 100 - Emh = -1508 lbs / 0.0 W = 927 lbs beam 192Cant levered rafter, joist or beam 1.5 = OMEGA o 1056 1.140 0 927 1.140 792 1.105 0 927 1.105 0 927 0.46 -1056 0.46 - Emh = -1508 lbs / 0.0 W = 927 lbs beam 192Cant levered rafter, joist or beam » sawn » options: sawn, glb, tji, lam or steel 7-1-05 Cant = 2.75 ft. T.A. = 2.75 sq. ft. sawnprog size grade area sect Inertia width depth Fb > inch Ft > MounWetrib = 1.00 ft. Axial React. Momn't. Try >> 4x10#1 (df #1) 32.38 49.91 230.8 3.50 9.25 1200 743 L.L. = 0.0 psf >>> 100 0 0 C(D) = 1.25 fvh = 50 psi fb= 711 psi fa= 3 psi fa/Fa 0.00 D.L. = 0.0 psf >>> 0 1075 2956 Ch = 1.25 Fvh = 119 psi Fb= 1200 psi Fa= 1450 psi fb/Fb 0.59 Extra = 0 #/ft >>> 0 0 0 Deflections >> LL = 0.00 in. = L / ..."""' combined stress 0.59 PILL) = 0 Number of DL = 0.03 in. = L/ 1006 0.594 % P(DL) = 1075 Totals > 100 1075 2956 pieces 1 TL = 0.03 in. = L/ 1006 Deflection control 1 roof Ct= 0.8 USE 4x10#1 grade= (df#1) min. bearing= 0.49 inches delta x =Cd delta xei 1 = 0.08 in. <' 0.66 in. =,02 x h Therefore; OK JOVEN ENGINEERING P. 0. Box 5098 La Quinta, California 92248-5098 Phone (760) 408-6441 Rosenfeld Cabana 53-390 Avenida Carranza La Quinta, CA South West Concepts > ver. 1-15-08 527 by > wk4 Filespec: F:\REAL\SPACE\1001\JOBS\2008\527WEWFOL-1\08WDLA-1.WK4 xwall Redundancy factor for "X" direction walls p= 1.30 "X" Shearwall - Line A & B adjustment % End Wall Condition if A or 1E Diaphragm no: 1 Wind Seismic ... 1/0 Total Minus % Thb. width (1)= 7.50 ft. 1.000 1.000 0 144 72.2 0.500 Trib. width (2)= 0.00 ft. 1.000 1.000 0 Trib. width (3)= 0.00 ft. 1.000 1.000 0 "Y" Wind F(x) = 2112 # x 1.00 + added wind = 0 # = total "Y" wind = 2112 # governs "Y"seismic F(x)= 754 # x 1.00 + added seismic = 0 # = total "X" seismic = 754 # Total Columns 2 X p= 980 # Kemeve/save anve = Load drive = Job # 527 by JV Date 11/18/2008 Sheet I. % of C: work dir = 527 C: filespec = 08WdLat X Walls Story Strength (max) = 6857.4 Between 1 & 3 ASCE 7 Sec. 12.3.4.2 a. 1 Stud depth = 5.5 in. Factored Load per Column = 1056 # R (cant. cols) = 2.5 Correction for R = 1.00 Provide 2 Cantilevered Columns this wall Line see sheet Worst Case Equations for FB -4 Roof Dead Floor Dead Roof Live Floor Live Eq. 2 D + L 17 and/or 0 + 20 and/or 0 1.5 = OMEGA o Eq. 5 +(1.0 + .14Sds)D + .7omega o x Qe 19.4 and/or 0.0 + 1029 1.140 Eq. 5 +(1.0 + .14Sds)D + W 19.4 and/or 0.0 + 0 1056 1.140 Eq.6 (1+.105Sds)D+.75(Lr + L)+.525Emh 18.8 and/or 0.0 + 0.0 + 0.0 + 772 1.105 Eq. 6 (1+.105Sds)D+.75(Lr + L)+ W 18.8 and/or 0.0 + 0.0 + 0.0 + 0 1056 1.105 Eq. 7 +(.6-.14Sds)D + W 7.8 and/or 0.0 +/- 0 1056 0.46 Eq. 8 +(.6-.14Sds)D + .7omega o x Qe 7.8 and/or 0.0 +/- -1029 0.46 Emh = OMEGA o x Qe Eh = rho x Qe = 980 lbs. -980 lbs. Ev =.2 Sds D = 0.2 D + Emh = 1470 lbs Emh = -1470 lbs Roof D = 17.0 psf Roof L (Lr) = 20.0 psf Floor D = 0.0 psf Floor L1 0.0 psf Floor 1-2: 0.0 W = 1056 lbs Eq.2 = 37 lbs Eq, 5 = 1048 lbs Eq. 5w = 1075 lbs Worst Case Eq, 6 = 790 lbs Eq. 6w = 1075 lbs Worst Case Eq.7 = 1064 lbs Eq.8 = -1021 lbs beam 192Cantilevered rafter, joist or beam >> sawn » options: sawn, glb, tji, lam or steel 7-1-05 Cant = 2.00 ft. T.A. = 2 sq. ft. sawnprof size grade area sect Inertia width depth Fb > incli Ft > MountNetrib= 1.00 ft. Axial React. Momn't. Try» 08#1 (df#1) 25.38 30.66 111.1 3.50 7.25 1300 810 L.L. = 0.0 psf >>> 100 0 0 C(D) = 1.25 fvh = 64 psi fb= 841 psi fa= 4 psi fa/Fa 0.00 D.L. = 0.0 psf >>> 0 1075 2150 Ch= 1.25 Fvh = 119 psi Fb= 1300 psi Fa= 1523 psi fb/Fb 0.65 Extra = 0 #/ft >>> 0 0 0 Deflections >> LL = 0.00 in.= L / •`•"""' combined stress 0.65 P(LL) = 0 Number of DL= 0.03 in. = L/ 916 0.650 % P(DL) = 1075 Totals > 100 1075 2150 pieces 1 TL = 0.03 in. = L/ 916 Deflection control 1 roof Ct = 0.8 USE 4x8#1 grade = (df #1) min. bearing= 0.49 inches delta x =Cd delta xe/ 1 = 0.07 in. < 0.48 in. =.02 x h Therefore; OK )OVEN ENGINEERING Rosenfeld Cabana Job # 527 01 1 P.O. Box 5098 53-390 Avenida Carranza by JV La Quinta, California 92248-5098 La Quinta, CA Date 11/19/2008 Phone (760) 408-6441 South West Concepts Sheet C 1 of > ver. 11-13-00 Retrieve/Save drive - W: work dir = 527 > wk4 Filespec: F:\REAL\SPACE\1001\JOBS\2008\527\NEWFOL-1\CCOL-B-I.WK4 Load drive = C: filespec = CColftg-1 Grid Line 1 &A V Applied Load Top of Columt 1200 # x no = 1500 lbs ASD Level Loading Resisted by 2 Cols = 750 lbs./col. 1200 # x no = 1500 lbs Strength Level Loadin$tesisted by 2 Cols = 750 lbs./col. no = 1.25 Cd = 2.5 Wind Governs Design so delta for Wind is used in Drift Calculation cant -col Cantilevered Column Design Wind input Wind Load 5 sq. ft. V wind= 67 # x ht = 675 ft. # H: 10.10 ft Speed 85 mph - 12.6 psf Applied Load 1 750 Lbs. x Height 10.10 ft. = 7575 ft. # Ht. 11.00 ft. Applied Load 2 0 Lbs. x Height 7.00 ft. = 1 ft. # Exposure[BCD] C - Ce = 1.06 Column width = 1 ft. V col = 135 # x ht = 681 ft. # Pressure % = 1.3 - Cq Importance = 1.0 V total= 885 OTM= 8257 Gross Pressure = 13.4 psf ✓ Leeward pressure = 5.1 psf Center or pressure = OTM/ V total = 9.33 ft. Windward pressure = 9.0 psf Cantilevered steel column for Design ASD level Forces Cant (ft.) 1 2 Cant = 10 7.00 React. Momn't. Delta size Fy area Sxx I xx r xx S yy lyy r yy V 1 = 750 # 750 7576 0.507 Try » TS6x6x0. 42 5.59 10.1 30.3 2.33 10.1 30.3 2.33 V2= 0 # >>> 0 1 0.000 C(D) = 1.33 K = 2.1 fb= 20.6 ksi pa= 0.2 ksi 0.031 Extra = 135 #/ft >>> 135 681 0.034 Axis = xx Fb= 33.5 ksi Pa= 6.3 ksi 0.615 - ______ ______ ______ Deflections >> V 1 0.51 in. = L / 239 combined stress Axial = 1100 # 885 8258 0.541 < totals V 2 0.00 in. = L / """..... 0.646 OK Extra 0.03 in. = L / 3546 Total = 0.54 in. = L / 224 0.606 in. _ .005 x h USE TS6x6x0.25 Fy = 42 ksi OK Cantilevered steel column Strength Level forces for Deflection Only Cant (ft.): 1 2 Cant = 10 7.00 React. Momn't. Delta size Fy area Sxx I xx r xx S yy lyy r yy V 1 = 750 # 750 7576 0.507 Try » TS6x6x0. 42 5.59 10.1 30.3 2.33 10.1 30.3 2.33 V2= 0 # >>> 0 1 0.000 C(D) = 1.33 K = 2.1 fb= 20.6 ksi pa= 0.2 ksi 0.031 Extra = 135 #/ft >>> 135 681 0.034 Axis = xx Fb= 33.5 ksi Pa= 6.3 ksi 0.615 ______ ______ ______ Deflections >> V 1 0.51 in. = L/ 239 Axial = 1100 # 885 8258 0.541 < totals V 2 0.00 in.= L / """""' Extra 0.03 in. = L / 3546 Total = 0.54 in. = L / 224 delta x =Cd delta xe/ I = 1.35 in. < 2.42 in. _ .02 x h Therefore; OK Base plate welding fb = 20.6 ksi = 5.2 kips / inch weld on 1 sides = 5.2 kips / inch / side ( tubes and pipes and only be fillet welded on 1 side ) Fy ( base metal = 50 ksi Fy (filler) = 70 ksi fillet sizes capacity = filler base min. Partial penetration - 45 degree ( t - 116 ) 3/16 = 0.19 2.8 3.75 2.8 No Good 3.75 Need thicker wall/flange 1/4 = 0.25 3.7 5 3.7 too big 5/16 = 0.31 4.6 6.25 4.6 too big 3/8 = 0.38 5.6 7.5 5.6 too big basepit Base -Plate mdf Axial load= 1.1 kips Material properties: Max. concrete bearing stress: O.T.M.= 8.3 k -ft. Fy-- 36 ksi d+l fbrg.= 0.0065 ksi <Fbrg. OX Reaction= 11.6 kips F'c= 2000 psi d+I+s fbrg.= 0.2964 ksi <1.33Fbrg. OX Baseplate dimensions Allowable stresses: Max. plate bending stress: Width= 13 in. Fb= 27 ksi fb= 0.4784 ksi <Fb OX length= 13 in. F'brg.= 600 psi fb= 14.673 ksi <1.33Fb OX thk.= 1 in. Spit= 2.1667 in43 bolt edge dist.= 2 in. col. width 6 Cjl1S 1 in. thick Baseplate 13 wide X 13 long bolt spacing= 9 in. Grade beam VMoment in grade beam = 5161 ft. # depth = 2.00 it. 2.00 ft. deep x 2.00 ft. wide Grade Beam with elf. depth = 20 ins. A(s) = 0.135 sq. ins. 2 - #5 bars top & bottom & #3 stirrups at 12"o.c. Check overturning grade beam length = 10.00 ft. P = 7100 M = 8258 P/A = 355 grade beam width = 2.00 ft. A = 20 S = 33 M/S = 248 OX grade beam dead load = 6000 # roof dead load on gr. bm. = 1100 # 30VEN ENGINEERING Rosenfeld Cabana Job Or 527 P. 0. Box 5098 53-390 Avenida Carranza by JV La Quinta, Califomia 92248-5098 La Quinta, CA Date 11/19/2008 Phone (760) 408 -6441 ------------------------South West Concepts -------------------------------Sheet ----/1 2 -- of- > ver. 11-13-00 Retrieve/Save drive - W: work dir = 527 > wk4 Filespec: F:\REAL\SPACE\1001UOBS\2008\527\NEWFOL-1\CCOL-B-l.WK4 Load drive= C: filespec= CColftg-1 Cantilevered Column C Anchor bolts (Ultimate) Fastner Head Type (1 =Square, 2=Heavy Square, 3=Hex, 4=Heavy Hex, 5=Hardened Washers) Heavy Hex 4 Bolt forces on entrire group: Try: 3/4 in. dia. bolts Ase = 0.334 inA2 Db 0.75 in .6§hea-885 # hef = 12 in. embedment Ab = 1.121 inA2 1 = 6 in Tension= 11561 # S1 = 9 in. S2 = 4 in. C1 = 24 in. C2= 10.0 in cmin = 10 in No. of bolts resisting force An = 696 Ano = 400 hef =cmin/1.5 hef = 6.6667 in Shear- 2 Av = 260 Avo = 450 Tension= 2 Tensile Strength: (ACI 318, D.5.1.2 & ASCE 14.2.2.17) Design force for each bolt= 4) Ns = phi .75 n Ase(futa) = 21.794 k > Nua Good Shea - 0.4 k = Vua /Tension= 5.8 k = Nua Concrete Breakout Strength: Tension (ACI 318, D.5.1.2) 1080 fc= 2500 psi ip Ncbg = phi .75 An/Ano ec,N ed,N c,N Nb Vis= 60000 psi Nb = 24(fcA.5) hefA1.5 20656 Jfuta = 58 ksi 1p ec,N = 1.0 for no eccentricity 1.0 36.00 � = 0.75 tension ip ed,N = 1.0 for no side effects 0.867 ,(D = 0.65 shear 'ip c,N =1.0 for concrete likely to cra- 1.0 / Ncbg = 17521 k > Nua Good ti/ Concrete Pullout Strength: (ACI 318, D.5.3.1) 0 Npn =phi .75 n cp,N(Ab8fc) = 25.2 k > Nua Good �i c,N =1.0 for concrete likely to crack 1.0 ,/Side -Face Blowout Strength: (ACI 318, D.5.4.1) ccmin > .4 he 10 in > 4.8 in Good ,,'Design Tensile Strength: fi Nn = min(phi Ns, Phi Ncbg, Phi Npn) = 21.79 k i ✓Shear Strength: (ACI 318, D.5.1.2 & ASCE 14.2.2.17) cp Vs = phi .75 n .6Ase(futa) = 11.333 k > Vua Good ,,-Concrete Breakout Strength: Shear (ACI 318, D.6.2.1) 0 Vcbg =phi .75 Av/Avo ec,V cd,V c,V Vb Vb=7(VDb)A.2'dA.5*c96A.5'i89A1.5 54017 ip ec,V =1.0 for no eccentricity 1.0 ip ed,V =1.0 for no side effects 0.7833 IP c,V =1.0 for concrete likely to crack 1.0 1 = 1.0 for concrete likely to crack 6.0 (D Vcbg = 13752 k > Vua Good V Concrete Pryout Strength: Shear (ACI 318, D.6.3.1) 0 Vcpg =phi .75 kcp An/Ano ed,V c,V Nb Nb=24(fcA.5) heA1.5 20656 �i ec,N =1.0 for no side effects 0.867 �i ed,N =1.0 for concrete likely to crack 1.0 kcp =he > 2.5 in. 2.0 Vcpg = 35043 k > Vua Good V6esign Shear Strength: -0 Vn = min(phi Vs, Phi Vcbg, Phi Vcpg) = 11.33 k Tension & Shear Interaction: (ACI 318, D.7) Since Nua > .2 phi Nn 4.36 k & Vua >.2 phi Vn 2.27 k 1.825 Nua/phi Nn + Vua/phi Vn < 1.2 0.2652 + 0.0391 = 0.304 <1.2 Therefore; O.K. Therefore use 4 - 3/4 in. Diameter ASTM F-1554 Anchor Rods