Loading...
12-0254 (RC) Structural Calcs• r JAG , �gj Rr_,I�.,�G 78080 Calle Amigo, Suite 102 phone: (760)771-9993 La Quinta, CA 92253 Fax: (760)771-.9998 Cell: (760)808-9146 Date: April 25, 2012 Design by: R.A. JN: 120441 Structural Calculation For Provident Bank At 78752 HWY 111 La Quinta, CA. Type Of Proiect: Commercial T.I. 4-26- 12 CITY CSF LA OUINTA BUILDING & SAFETY DEPT. Qrr - �4PPROVE® FOR CONSTRUCTION APR 2 s 2012 a ''S t .." By DATE �Z Ay O CLIENT: P(OV19-efit 80.n c' SHEET: SUBJECT: T -f • RA Structural Engineering JOB ISO. 12ou4 k DESIGN BY: ,A. DATE: a -•Z5 _12 , DESIGN LOADS Roof Loads --Sloped__ 3.5 psf. Clay Tile 15 psf. Framing 2.5 psf. sheathing (v2° CDx) 1.5 psf Ceiling 2.5 psf. insulation 1.5 psf. Misc. 4.0 psf Total Dead Load 27 psf. Total live Load 20 psf Total Roof Load 47 psf. Floor Loads Framing 3.5 psf. sheathing (3/4" Plywd) 2.5 psf Ceiling 2.5 psf. Lt. Wt. Conc./ Flooring Tile 15 psf. Misc. 3.5 psf Total Dead Load 27 psf. Total live Load 40 psf Total Floor Load 67 psf. Exterior Wall 7/8" Stucco 10.0 psf. Drywall 2.5 psf Studs 1.0 psf. Misc. 1.0 psf. Total Wall Weight 15.0 psf. Roof Loads - Flat Roofing 6.0 psf. Framing 2.5 psf. sheathing (1/2" CDx) 1.5 psf Ceiling 2.5 psf. insulation 1.5 psf. Misc. 6.0 psf Total Dead Load 20 psf. Total live Load 20 psf Total Roof Load 40 psf. Deck Loads Framing 3.5 psf. sheathing (3/4" Plywd) 2.5 psf Ceiling 2.5 psf. Lt. Wt. Conc. 15 psf. Flooring Tile 10 psf Misc. 3.5 psf Total Dead Load 37 psf. Total live Load 60 psf Total Load 97 psf. Interior Wall Insulation 1.0 psf. Drywall 5.0 psf Studs 1.0 psf. Misc. 1.0 psf. Total Wall Weight 10.0 psf. '/2'3 a'- 4r At4H Z S1 S/ Woq �MV I A Oid 0 uonvert►ng Addresses to/trom Latitude/Longitude/Altitude in One Ste... r'! i of I http://stevemorse.org/jcal/latlon.ph Converting Addresses to/from. Latitude/Longitude/Altitude in One Step Stephen P. Morse, San Francisco ► L,Batch Mode. (Forward) Batch Mode. (Reverse) Batch Mode. (Altitude) i Deg/Min/Sec to. Decimal Computing. Distances Frequently. Asked Questions My. Other. Webpages address 78752 HWY 111 33.712317 latitude city La Quinta -116. 17' 29.4504" longitude state CA. above values must be in decimal zip with minus signs for south and ►vest country United States I Determine. Lat/Lon Get Altitudes reset Determine. Address I reset Ej Access geocoder.us / geocoder.ca (takes a relatively long time) from g2ggLe latitude longitude altitude decimal 33.7.1.252 -116.29122 deg -min -sec 33° 42'.45.072" 1.116° 17'2'8.392" �— from use latitude longitude altitude J decimal 133.65375398361'/-)51-'116.27924670')371 I deg -min -sec 33° 39' 13.5143" -116° 16'45.2881" F- 78752 HIGHWAY 1 l 1 La Quinta CA from yahoo Ilatitude Ilongitude altitude decimal 33.712317 -116.291514 �— deg-min-sec 33° 42' 44.3412" -116. 17' 29.4504" �— /8 /52 Highway 111, La Quinta; California 92253 Data presented here comes from the following.websites: og ogle. (all addresses) Qeocodecca. (US and Canadian addresses only) '.geocoder.us. (US addresses only) gpsvisualizer. (for altitudes) locatienet. (European addresses only) 3123 4/25/20t29:55 AM Conterminous 48 States • 2005 ASCE 7 Standard Latitude = 33.71252 Longitude = -116.29122000000001 Spectral Response Accelerations Ss and S1 Ss and S1 = Mapped. Spectral Acceleration Values Site Class B - Fa ,= 1.0 ,Fv = 1.0 Data are based on a 0.01 deg grid spacing Period Sa (sec) (g) 0.2 1.500 (Ss, Site Class B) 1.0 0.600 (S1; Site Class B) Conterminous 48 States 2005 ASCE 7 Standard Latitude = 33.71252 Longitude = -116.29122000000001 Spectral Response Accelerations SMs and SM1 SMs = Fa x Ss and SM1 = Fv x S1 Site Class D-' Fa = 1.0 ,Fv = 1.5 ` Period Sa (sec) (g) 0.2 1.500 (SMs, Site Class D) 1.0 0.900 (SM1, Site Class D) Conterminous 48 States 2005 ASCE 7 Standard Latitude =. 33.71252 Longitude = -116.29122000000001 Design Spectral Response Accelerations SDs and SD1 SDs = 2/3 x SMs and SD1 = 2/3 x SM1 Site Class D - Fa = 1.0 ,Fv = 1.5 Period Sa (sec) (9) 0.2 1.000 (SDs, Site Class D) 1.0 0.600 (SD1, Site Class D) 11/23 • is • Reza PROJECT: Seismic Load (Diaphragm "A") PAGE: s g ha rpo u I JOB NO.,: 11Bank 20441 Provident DATE: 4/25/2012 RES W BY : R.A. One Story Seismic Analysis Based on IBC 06 / CBC 07 Determine Base Shear (Derived from ASCE 7-05 Sec. 12.8) V= MAX{ MIN (SD1I/(RT) , SDS I/R] 0.01 0.5S11/R)W = MAX{ MIN[ 0.89W , 0.15W ] , 0.01W 0.05W) -~ A = 0.15 W, (SD) (for S, >_ 0.6 g only) = 0.11 W, (ASD) = 0.51 kips Where SDS = 1 (ASCE 7-05 Sec 11.4.4) SD1.= 0.6 (ASCE 7-05 Sec 11.4.4) _S1= 0.6 (ASCE 7-05 Sec 11.4.1) R = 6.5 (ASCE 7-05 Tab 12.2-1) 1 = 1 . (IBC 06 Tab 1604.5 & ASCE 7-05 Tab 11.5-1) Ct = 0.02 (ASCE 7-05 Tab 12.8-2) hn = 9.0 ft X = 0.75 (ASCE 7-05 Tab 12.8-2) T = Ct (hn)x = 0.104 sec, (ASCE 7-05 Sec 12.8.2.1) Calculate Vertical Distribution of Forces & Allowable Elastic Drift (ASCE 7-05, Sec 12.8.3 & 12.8.6) .Level Wx hx hxk Wxhxk Fx , ASD (12.8-11) 8xe,allowable, ASD Roof 4.62 9 9.0 42 0.5 (o.11 wx) 0.4 4.6 42 0.5 Where k = 1 for T <= 0.5 Ike,allowable, ASD = Aa 1/ (1.4 Cd), (ASCE 7-05 Sec 12.8.6) k = 0.5 T + 0.75 for T @ (0.5 , 2.5) Cd = 4 (ASCE 7-05 Tab 12.2-1) k = 2 for T >= 2.5 Aa = 0.02 hsx, (ASCE 7-05 Tab 12.12-1) Iculate Diaphragm Forces (ASCE 7-05, Sec 12.10.1.1) Level Wx EWx Fx EFx Fpx , ASD, (12.10-1) Roof 4.6 4.6 ,0.5 0.5 0.6 (0.13M) 4.6 0.5 A Where Fmin = 0.2 SDS I Wx / 1.5 , ASD Finax = 0.4 SDS I Wx / 1.5 , ASD 23 0 • r Reza PROJECT: Seismic Load (Diaphragm "B") PAGE: s g h a rpo u CLIENT: Provident Bank DESIGN BY: R.A. JOB NO.: 120441 DATE: 4/25/2012 REVIEW BY : R.A. One Story Seismic Analysis Based on IBC 06 / CBC 07 Determine Base Shear (Derived from ASCE 7-05 Sec. 12.8) V= MAX{ MIN ISD1I/(RT) , SDS I/R] 0.01. , 0.5S11/R)W = MAX{MIN[ 0.89W , 0.15W ] , 0.01W 0.05W) = 0.15 W, (SD) (for S, >_ 0.6 g only) = 0.11 W, (ASD) = 5.63 kips Where SDS = 1 (ASCE 7-05 Sec 11.4.4) SD1 = 0.6 (ASCE 7-05 Sec 11.4.4) i S1 = ' 0.6 (ASCE 7-05 Sec 11.4.1) R= 6.5 (ASCE 7-05 Tab 12.2-1) 1= 1 (IBC 06 Tab 1604.5 & ASCE 7-05 Tab 11.5-1) Ct = 0.02 (ASCE 7-05 Tab 12.8-2) hn ` 9.0 ft X = 0.75 (ASCE 7-05 Tab 12.8-2) T = Ct (hn)x = 0.104 sec, (ASCE 7-05 Sec 12.8.2.1) Calculate Vertical Distribution of Forces & Allowable Elastic Drift (ASCE 7-05, Sec 12.8.3 & 12.8.6) Level Wx hx hxk Wxhxk FX , ASD (12.8-11) ke,allowable, ASD Roof 51.24 9 9.0 461 5.6 (o.11 wx) 0.4 51.2 461 5.6 Where k = 1 for T <= 0.5 S o 1.4 xe,allowable, ASD = a I / ( Cd), (ASCE 7-05 Sec 12.8.6) k = 0.5 T + 0.75 for T @ (0.5 , 2.5) Cd = 4 ,(ASCE 7-05 Tab 12.2-1) .k = 2' for T >= 2.5 Aa = 0.02 hsx, (ASCE 7-05 Tab 12.12-1) Calculate Diaphragm Forces (ASCE 7=05, Sec 12.10.1.1) Level Wx EWx Fx EFx Fpx , ASD, (12.10-1) Roof 51.2: 51.2 5.6 5.6 6.8 ( 0.13 Wx ) 51.2 5.6 Where Fmin = 0.2 SDS I Wx / 1.5 , ASD Finax = 0.4 SDS I Wx / 1.5 , ASD 6123 • M • Reza PROJECT: Wind Load Diaphragm "A" PAGE: AS har our CLIENT: Provident Bank DESIGN BY: R.A. 9 P JOB NO.: 120441 DATE : 04/25/12 REVIEW BY: R.A. Wlnd:A_na. sis for LQW-rise Building, Based on. ASCE 7-05 / IBC 2006 /:CBC 2007 INPUT DATA Roof an le 8 0.00 Roof an le 8 =: 0.00 Surface Exposure category (B, C or D) Net Pressure with C Net Pressure with Importance factor, pg 77, (0.87, 1.0 or 1.15) 1 = 1.00 Category II 2T, Basic wind speed (IBC Tab 1609.3.1 Vas) V = 85 mph 2.94 7.75 Topographic factor (Sec.6.5.7.2, pg 26 8 45) K:, = 1 Flat ` -0.69 -11.63 Building height to eave he = 12 ft t -0.37 Building height to ridge hr = 12 ft -2.54 4 Building length, L = 22 ft Building width B = 6 ft Effective area of components A = 20 ft2 DESIGN SUMMARY Max horizontal force normal to building length; L, face Max horizontal force normal to building length, B, face Max total horizontal torsional load Max total upward force 2.77 kips 1.00 kips 8.54 ft -kips _ 17zL-i ­ ANALYSIS Velocity Pressure qh = 0.00256 K„ Krt Ka V21 = 13.36 psf where: qh = velocity pressure at mean roof height, h. (Eq. 6-15, page 27) Kh =. velocity pressure exposure coefficient evaluated at height, h, (Tab. 6-3, Case 1,pg 79) Kd = wind directionality factor. (Tab. 6-4, for building; page 80) h = mean roof height 0.85 0.85 = 12.00 ft < 60 ft, [Satisfactory] > Min (L, B), [Unsatisfactory], ASCE 7-05 6.2 (2) Desiqn Pressures for MWFRS ' P = qh [(G Cpf)-(G Cpi )l where: p = pressure in appropriate zone. (Eq. 6-18, page 28). Amir, = 10 psf (Sec. 6.1.4.1 & 6.1.4.2) G Cp, = product of gust effect factor and external pressure coefficient, see table below. (Fig. 6-10, page 53 & 54) G Cp; = product of gust effect factor and internal pressure coefficient. (Fig. 6-5, Enclosed Building, page 47) 0.18 or -0.18 a =width of edge strips, Fig 6-10, note 9, page 54, MAX(MIN(0.1 B, 0.4h), 0.04B,3] = 3.00 ft Net Pressures (psf), Basic Load Cases Net Pressures (psf), Torsional Load Cases JE J 2E 2 } 2E 2 i r 20NE 2/3 90UNDARv 4E 4\� 6 a'_` �6 4E-_ REFERENCE CORNER lE REFERENCE CORNER WIND DIRECTION ° •Za WIND DIRECTION Transverse Direction Longitudinal Direction Basic Load Cases Roof an le 8 0.00 Roof an le 8 =: 0.00 Surface G Cp t Net Pressure with G CP Net Pressure with (+GCp I) (-GCp) (+GCp t) (-GCp I ) 2T, -0.69 -2.91 1 0.40 2.94 7.75 0.40 2.94 7.75 2. -0.69 -11.63 -6.82 -0.69 -11.63 -6.82 3 -0.37 -7.35 -2.54 -0.37 -7.35 -2.54 4 -0.29 -6.28 -1:47. -0.29 -6.28' -1.47 1 E 0.61 5.75 10.56 0.61 5.75 10.56 2E -1.07 -16.70 -11.89 -1.07 -16.70 -11.89 3E -0.53 -9.49 -4.68 -0.53. -9.49 -4.68 4E -0.43 -8.15 -3.34 -0.43 -8-15, -3.34 5 -0.45 -8.42. -3.61, -0.45 -8.42 -3.61 6 1 -0.45 -8.42 3.61 -0.45 1 -8.42 1 -3.61 JE J 2E 2 } 2E 2 i r 20NE 2/3 90UNDARv 4E 4\� 6 a'_` �6 4E-_ REFERENCE CORNER lE REFERENCE CORNER WIND DIRECTION ° •Za WIND DIRECTION Transverse Direction Longitudinal Direction Basic Load Cases } 2E 2 ST SE } }i 2i JE 2T .a �4T1`r 2c' 2 4T\ I I -�6 IE ��6 4 R 4Ev $/ / 1T IT 5 a IE i REFERENCE CORNER I' IE - I REFERENCE CORNER WIND DIRECTION za b lflNO DIRECTION Transverse Direction Longitudinal Direction Torsional Load Cases i i ( '1Z 3 Roof angle 0 = 0.00 G CP , Net Pressure with Surface (+GCp t) (-GCp I ) 1T 0.40 0.73 1.94 2T, -0.69 -2.91 -1.70 3T -0.37 -1.84 -0.63 4T -0.29 1 -1.57 -0.37 Roof angle 8 = 0.00 GCpt Net Pressure with Surface (+GCp;) (-GCp;) 1T 0.40 0.73 1.94 2T -0.69 -2.91 -1.70 3T -0.37 -1.84 -0.63 4T -0.29 -1.57 -0.37 } 2E 2 ST SE } }i 2i JE 2T .a �4T1`r 2c' 2 4T\ I I -�6 IE ��6 4 R 4Ev $/ / 1T IT 5 a IE i REFERENCE CORNER I' IE - I REFERENCE CORNER WIND DIRECTION za b lflNO DIRECTION Transverse Direction Longitudinal Direction Torsional Load Cases i i ( '1Z 3 • Basic Load Cases in Transverse Direction Surface Area ' Pressure k with (+GCp i) (-GCP i ) (-GCP i) (ft) 1 192 0.56 1.49 2 48 -0.56 -0.33 3 48 -0.35 -0.12 4 192 -1.21 -0.28 1 E 72 0.41 0.76 2E 18' -0.30 -0.21 3E 18 -0.17 -0.08 4E 1 72 -0.59 -0.24 1 -0.24 Horiz. • 2.77 2.77 1.00 Vert. -1.38 -0.75 Min. wind Horiz. 2.64' 2.64 Sec. 6.1.4.1 Vert. -1.32 -1.32 Tnmi-i 1 nod 1%. n T -..e- n:......:.... Basic Load Cases in Lonqitudinal Direction SurfaceArea Area Pressure k with (+GCP i) (-GCP i) (+GCP i) (ft') I 1 0 0.00 0.00 2 0 0.00 0.00 3 0 0.00 0.00 4 0 0.00 0.00 1E 72 0.41 0.76 2E 66 -1.10 -0.78 3E 66 -0.63. -0.31 4E 1 72 . -0.59 1 -0.24 2E Horiz. 1.00 1.00 - Vert. -1.73 -1.09 Min. wind Horiz. 0.72 0.72 Sec. 6.1.4.1 Vert. -1.32 -1.32 Surface Area Pressure k with Torsion ft -k (+GCP i) (-GCP i) (+GCP i) (-GCP i ) Comp. (ft2) 1 60 0.18 0.47 1 2 2 15 -0.17 -0.10 0 0 3 15 -0.11 -0.04 0 0 4 60 -0.38 -0.09 2 0 1E 72 0.41 0.76 3 6 2E 18 -0.30 -0.21 0 0 3E 18 -0.17 -0.08 0 0 4E 72 -0.59 -0.24 5 2 1T 132 0.10 0.26 -1 -1 2T ' 33 -0.10 ' -0.06 0 0 3T 33 -0.06 -0.02 0 0 4T 132 1 -0.21 -0.05 -1 1 .0 Total Horiz. Torsional Load, MT 9 1 9 Tn-inn.l 1 n.d in 1 n n:...d: n.�l n:......:.... Surface Area Pressure k with Torsion ft -k (+GCP i) (-GCP i) (+GCP i) (-GCP i ) Comp. (ft') 1 -36 -0.11 -0.28 0 0 2 -66 0.77 0.45 0 0 3 -66 0.49 0.17 0 0 4 -36 0.23 0.05 0 0 1E 72 0.41 0.76 0 0 2E 66 -1.10 -0.78 0 0 3E 66 -0.63 -0.31 0 0 4E 72 -0.59 -0.24 0 0 1T 36 0.03 0.07 0 0 2T 0 0.00 0.00 0 0 3T 0 0.00 0.00 0 0 4T 1 36 1 -0.06 1 -0.01 1 0 1 0 Total Horiz. Torsional Load, MT 0.4 1 0.4 Design pressures for components and cladding a' z _ _ z y 3 3 r2 � a 3 p = qh[ (G Cp) - (G Cpi)] o'c where: p=pressure on component. (Eq. 6-22, pg 28) < t s 5 i zo^` ^ z i c - i z 2: c i u 12 fi � i� Pmin = 10.00 psf (Sec. 6.1.4.2, pg 21) i i i i ti G Cp = external pressure coefficien(. wo I I s r _ z - -37 see table below. (Fig. 6-11, page 55=- 8) Roof e. Roof (Walls reduced 10 %, Fig. 6-11A note 5.) Comp. 8&' Cladding Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Pressure Positive P"92"" Pesltivo Ne ativo Positive No ativo Positive Nsativa Poaitivo Ne ativs (nsf ) 10.00 -15.37 10.00 -23.64 10.00 -32.98 13.79 -15.00 13.79 17.96 I t Effective Zone 1 Zone 2 Zone 3' Zone 4 Zone 5 Area (ft=) GCP . - GCP GC - GCP GCP, - GCP GCP - GCP GC - GCP Comp. 1 20 0.27 1 -0.97 0.27 -1.59 0.27 -2.29 0.85 -0.94 0.85 -1.16 (Walls reduced 10 %, Fig. 6-11A note 5.) Comp. 8&' Cladding Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Pressure Positive P"92"" Pesltivo Ne ativo Positive No ativo Positive Nsativa Poaitivo Ne ativs (nsf ) 10.00 -15.37 10.00 -23.64 10.00 -32.98 13.79 -15.00 13.79 17.96 I t Reza Asgharpour •Wind Analysis folflo PROJECT: Wind Load Diaphragm "B" CLIENT: Provident Bank JOB NO.:. 120441 ding, Based on'ASCE 7-051 IBC: INPUT DATA Exposure category (B, C or D) Importance factor, pg 77, (0.87, 1.0. or 1.1.5) Basic wind speed (IBC Tab 1609.3.1 V3s)' Topographic factor (Sec.6.5.7.2, pg 26 & 45) Building height to eave. Building height to ridge .Building length Building width Effective area of components 04/25/12 ;2007 " i PAGE: DESIGN BY: R.A. REVIEW BY: R.A. I DESIGN SUMMARY Max horizontal force normal to building length, L, face = 7.86 kips Max horizontal force normal to building length, B, face = 7.00 kips Max total horizontal torsional load = 43.90 ft -kips Max total upward force - 16.43 kips ANALYSIS Velocity pressure qh = 0.00256 Kh Ke Ka V2 I .13.84 psf where: qh = velocity pressure at mean roof height. h. (Eq. 6-15, page 27) Kh = velocity pressure exposure coefficient evaluated at height, h, (Tab. 6-3, Case 1,pg 79) = 0.88 Ka = wind directionality factor. (Tab. 6-4, for building, page 80) = 0.85 h = mean roof height . = 18.00 ft < 60 ft, [Satisfactory] < Min (L, B), [Satisfactory] • Desian Pressures for MWFRS p = qh [(G Cpf )-(G Cpl )] where: p = pressure in appropriate zone. (Eq. 6-18, page 28.).pm;, = 10 psf (Sec. 6.1.4.1 & 6:1.4:2) I G CpT = product of gust effect factor and external pressure coefficient, see table below. (Fig. 6-10, page 53 & 54) G Cp i = product of gust effect factor and internal pressure coefficieni.(Fig. 6-5, Enclosed Building, page 47) 0.18 or -0.18 a = width of edge strips, Fig 6-10; note 9, page 54, MAX[ MIN(0.1B, 0.4h), 0.04B,3] = 3.70 ft • Not pra....- /Heil I -A l+........ C Roof an le 0 = 0.00 Surface I = 1.00 Category II Net Pressure with V = 85 mph (-GCp i ) Kz, = 1 Flat L v he = 18 • ft 0.40 hr = 18 ft w L = 42 ft B = 37 ft A = 20 ft2 PAGE: DESIGN BY: R.A. REVIEW BY: R.A. I DESIGN SUMMARY Max horizontal force normal to building length, L, face = 7.86 kips Max horizontal force normal to building length, B, face = 7.00 kips Max total horizontal torsional load = 43.90 ft -kips Max total upward force - 16.43 kips ANALYSIS Velocity pressure qh = 0.00256 Kh Ke Ka V2 I .13.84 psf where: qh = velocity pressure at mean roof height. h. (Eq. 6-15, page 27) Kh = velocity pressure exposure coefficient evaluated at height, h, (Tab. 6-3, Case 1,pg 79) = 0.88 Ka = wind directionality factor. (Tab. 6-4, for building, page 80) = 0.85 h = mean roof height . = 18.00 ft < 60 ft, [Satisfactory] < Min (L, B), [Satisfactory] • Desian Pressures for MWFRS p = qh [(G Cpf )-(G Cpl )] where: p = pressure in appropriate zone. (Eq. 6-18, page 28.).pm;, = 10 psf (Sec. 6.1.4.1 & 6:1.4:2) I G CpT = product of gust effect factor and external pressure coefficient, see table below. (Fig. 6-10, page 53 & 54) G Cp i = product of gust effect factor and internal pressure coefficieni.(Fig. 6-5, Enclosed Building, page 47) 0.18 or -0.18 a = width of edge strips, Fig 6-10; note 9, page 54, MAX[ MIN(0.1B, 0.4h), 0.04B,3] = 3.70 ft • Not pra....- /Heil I -A l+........ 3E S *M� 2 } 2E 2 i rZONE 2/3 BOUNDARY 3c 4E4 4 �� b 4E.�_ REFERENCE CORIE REFERENCE CORNERwRID DIRECTION - - '� WIND OIRECDON Transverse Direction I Longitudinal Direction I Basic Loo d -Cases Net Pressures (psf), Torsional Load Cases Roof an le 0 = 0.00 Roof an le 0 = 0.00 Surface G CPT Net Pressure with G C° I Net Pressure with (+GCp i) (-GCp i) ('GCp i) (-GCp i ) 2T -0.69 -3.01 1 0.40 3.04 8.02 0.40 3.04 8.02 2 -0.69 -12.04 '-7.06 -0.69 -12.04 -7.06 ' 3 -0.37 -7.61 -2:63 -0.37 -7.61 -2.63 4. -0.29 -6.50 -1.52 -0:29 -6.50 -1.52 1E 0.61 5.95 10.93 0.61 5.95 10.93 2E -1.07 -17.29 -12.31 -1.07 -17.29 -12.31 3E -0.53 -9.82 -4.84 -0.53 -9.82 -4.84 4E -0.43 -8.44 -3.46 -0.43 -8.44 -3.46 5 • -0.45 -8.72 -3.74 -0.45 -8.72 -3.74 6 -0.45 1 -8.72' 1 -3.74 1 -0.45 -8.72 -3.74 3E S *M� 2 } 2E 2 i rZONE 2/3 BOUNDARY 3c 4E4 4 �� b 4E.�_ REFERENCE CORIE REFERENCE CORNERwRID DIRECTION - - '� WIND OIRECDON Transverse Direction I Longitudinal Direction I Basic Loo d -Cases Net Pressures (psf), Torsional Load Cases 3 3i* 3 2E 2 3T 3-c 2i JE 2T 4E I2E 2 / '�6 4i\ I Ii�6 4E.�_ E s ;T IT 5 t RMURENCE CORNER IE , jIE REFERENCE CORNER WIND DIRECTION ° b t WIND DIRECTION Transverse Direction Longitudinal Direction Torsional Load .Cases Roof an le 9 = 0.00 GCp, Net Pressure with Surface (+GCp i) (-GCp i ) 1T 0.40 0.76 2.01 2T -0.69 -3.01 -1.76 3T -0.37 -1.90 -0.66 4T -0.29 -1.63 -0.38 Roof an le 6 = 0.00 G Cpl Net Pressure with Surface (+GCp i) (-GCp i ) 1T 0.40 0.76 2.01 2T -0.69 -3.01 1.76 3T -0.37 -1,.90 -0.66 4T 1 -0.29 -1.63 -0.38 3 3i* 3 2E 2 3T 3-c 2i JE 2T 4E I2E 2 / '�6 4i\ I Ii�6 4E.�_ E s ;T IT 5 t RMURENCE CORNER IE , jIE REFERENCE CORNER WIND DIRECTION ° b t WIND DIRECTION Transverse Direction Longitudinal Direction Torsional Load .Cases • • Basic Load Cases in Transverse Direction Torsional Lead Casal in Trancvnrcu n:.e. �:.... Basic Load Cases in Longitudinal Direction Surface Area Pressure k with (+GCP i) (-GCP i ) (-GCP i) (ft)(ft 1 623 1.90 5.00 2 640 -7.70 -4.52 3 640 -4.87 -1.68 4 623 -4.05 -0.95 1 E 133 0.79 1.46 2E 137 -2.37 -1.69 3E 137 -1.34 -0.66 4E 133 -1.12 -0.46 137. Horiz. 7.86 7.86 4E Vert. -16.29 =8.55 Min. wind Horiz. 7.56 7.56 Sec. 6.1.4.1 Vert. -15.54 -15.54 Torsional Lead Casal in Trancvnrcu n:.e. �:.... Basic Load Cases in Longitudinal Direction Surface Area Pressure k with (+GCp i) (-GCP i ) (-GCP i) (ft) 1 533 1.62. 4.28 2 622 -7.48 -4.39 3 622 -4.73 -1.63 4 533 -3.46 -0.81 1E 133 0.79 1.46 2E 155 -2.69 -1.91 3E 155 -1.53 . -0.75 4E 133 -1.12 -0.46 137. Horiz. 7.00 7.00 4E Vert. -16.43 -8.69 .Min. wind Horiz. 6.66 6.66 Sec. 6.1.4.1 Vert. -15.54 -15.54 Surface Area (ft') Pressure k with Torsion ft -k (+GCP i) (-GCP i) (+GCP i) (-GCP i ) 1 245 0.75 1.96 6 -17 2 252 -3.03 -1.78 0 0 3 252 -1.91 -0.66 0 0 4 ' 245 -1.59 -0.37 14 3 1E 133 0.79 1.46 14 25 2E 137 -2.37 -1.69 0 0 3E 137. -1.34 -0.66 0 0 4E 133 -1.12 -0.46 19 8 1T 378 0.29 0.76 -3 -8 2T 389 -1.17 -0.69 0 0 3T 389 -0.74 -0.26 0 0 4T 378 0.61. -U 14 6 2 -1 Horiz. Torsional Load, MT 31.6 31.6 Tnrsinnal I nad r....cnc in 1 n....:�...r:..�t n:.... ;-- Surface Area Pressure k with Torsion ft -k (ft') (+GCP i) (-GCP i) (+GCP ;) (-GCP i ) 1 200 0.61 1.60 3 9 2 466 -5.61 -3.29 0 0 3 466 -3.55 -1.23 0 0 4 200 -1.30 -0.30 7 2 1 E 133 0.79 1.46 12 22 2E 155 -2.69 -1.91 0 0 3E 155 -1.53 -0.75 0 0 4E 133 -1.12 -0.46 17 .7 1T 333' 0.25 0.67 • -2 -6 2T - 622 -1.87 -1.10 0 0 3T 622 -1.18 -0.41 0 0 Total Horiz. Torsional Load; MT 44 44 Design Pressures for components and cladding , z z ,, , z a 3 z 3 p = qh[ (G Cp) - (G Cpl)l a -- where: p= pressure on component. (Eq. 6-22, pg 28) a I°^° i s I s i 1°^° ° 0 1 z 1 - z 2: ,� i_ i z �' i Amin = .10.00 psf (Sec. 6.1.4.2, pg 21) G CP = external pressure coefficient. Walls ' ' ` z - - z a 3 �z� } s ,2j - see see table below. (Fig. 6-11, page 55-58) Roof �,� Roof a -t• Surface I t 1 , Comp. & Cladding Zone 1. Zone 2 Zone 3 Zone 4 Zone 5 Pressure positive Ne alive Positive Ne alive Positive Ne alive Positive Ne alive Positive Negative ( Psf) 10.00 -15.91 10.00 -24.48 10.00 34.15 14.28 15.53 14.28 -18.60 4TTotal 333 -0.54 -0.13 -5 -1 Horiz. Torsional Load, MT 31.6 31.6 Design Pressures for components and cladding , z z ,, , z a 3 z 3 p = qh[ (G Cp) - (G Cpl)l a -- where: p= pressure on component. (Eq. 6-22, pg 28) a I°^° i s I s i 1°^° ° 0 1 z 1 - z 2: ,� i_ i z �' i Amin = .10.00 psf (Sec. 6.1.4.2, pg 21) G CP = external pressure coefficient. Walls ' ' ` z - - z a 3 �z� } s ,2j - see see table below. (Fig. 6-11, page 55-58) Roof �,� Roof a -t• Surface I t 1 , Comp. & Cladding Zone 1. Zone 2 Zone 3 Zone 4 Zone 5 Pressure positive Ne alive Positive Ne alive Positive Ne alive Positive Ne alive Positive Negative ( Psf) 10.00 -15.91 10.00 -24.48 10.00 34.15 14.28 15.53 14.28 -18.60 C'LIENI P(0 v i zh 80r% -KS !1'"" SLIBJE:C'I':T g. RA Structural Engineering I�E3 � DESIGN BY: DATE_ I-G�V W4 2 Z" �.�Ci5pS�x2Z'-})_x4620` 1 FS = 50 b 1�lX � 20 s x.42- x 37 +- �5P51 g 42X- t } � 2 )t (10 s¢xy2x � x3 i 2 iz . C � � z fZ �a Tj boo F, w l 0 0 :4 b ;Kih o A C ove ry\ WLHd I Lo G Qh � i F W a b '-o h �, L 0 (-A G,,Ve 6X !I 2 11 i CLIENT:i�roVi e� 6av►I�tifll:I.l: II SUBJECT: T.1. RA Structural EnXcneerin ; .IOB'NO: I)oUu t . I� DESIGN BY: /oo Lf 0-o o it u 3 �• i sir Pa t4 ;S sup z,e • j r i � < r Reza PROJECT: Shear Wall #1 PAGE: As har Q(�r CLIENT: Provident Bank DESIGN BY.- R.A. JOB NO.: 120441 DATE: 4/25/2012 REVIEW BY: R.A: $hear, lall;Desi n Based on IBC 06 / CBC 07 / NDS 05 4 No.2 STORY OPTION( 1=ground level, 2=upper level) 1 ground level shear wall I Lw THE SHEAR WALL DESIGN IS ADEQUATE. DESIGN SUMMARY BLOCKED 3/8 SHEATHING WITH 8d COMMON NAILS @ 6 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C: HOLD-DOWN FORCES: TI = 1.47 k TR = 1.47 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 2 - 2" x 6" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.30 in ANALYSIS CHECK MAX SHEAR WALL DIMENSION RATIO L / B = 1.2 < 3.5 [Satisfactory] DETERMINE REQUIRED CAPACITY vb = 143 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 6 in) TNFSHEAR r`ADAPITICC DCo Ion r INPUT DATA LATERAL FORCE ON DIAPHRAGM: vdia. WIND = 143" plf,for wind vdia. SEISMIC = 110. plf,for seismic GRAVITY LOADS ON THE ROOF: WDA = 20 ' plf,for dead load WILL = 20 pif,for live load DIMENSIONS: Lw = f 12 ft , h = 14 ft L =. 12 -•ft,' h°= 0 ft PANEL GRADE (0 or 1) _ 1 1 ' <= Sheathing ;and Single -Floor MINIMUM NOMINAL PANEL THICKNESS = 3/8 in COMMON NAIL SIZE ( 0=6d, 1=8d, 2=10d) 1 8d SPECIFIC GRAVITY OF FRAMING MEMBERS .' 0.5 EDGE STUD SECTION t 2'. PCs. b = 2 in. h = 6 in SPECIES (1 =DFL, 2 = SP) 1 DOUGLAS FIR -LARCH GRADE 1 1 2 3 4 5 or 6 THESHEAR vy ay­ylavity Idutul Pei IDI, note a. DETERMINE DRAG STRUT FORCE: F = (L -Lw) MAX( V11G.wwD, Oovd,a. SEISMIC) = 0.00 k (no = 1 ) (Sec. 1633.2.6) DETERMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C., THF Wni r1_nnln1KI CnDnc uv I aUIC GJ Va.Y. 1 ' Overturning Moments (ft -lbs) Resisting . Safety Net Uplift Moments (ft -lbs) Factors (Ibs) Holddown SIMPSON 0.298 in, ASD < Min. Min. -Blocked Nail Spacing 269 20362 Panel Grade Common Penetration Thickness Boundary R All Edges 143 sxe,allowable, Aso = 0.600 in (Satisfactory] (ASCE 7-05 12.8. 24024 Nail (in) (in) 6 1 4 1. 3 1 2 Cd = 4 I= 1 Sheathing and Single -Floor 8d 1 1/2 • 3/8 220 1 320 1 410 530 vy ay­ylavity Idutul Pei IDI, note a. DETERMINE DRAG STRUT FORCE: F = (L -Lw) MAX( V11G.wwD, Oovd,a. SEISMIC) = 0.00 k (no = 1 ) (Sec. 1633.2.6) DETERMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C., THF Wni r1_nnln1KI CnDnc EDGE STUD CAPACITY Pmax = 1.86 kips, (this value should include upper level DOWNWARD loads if applicable) F, = 1350 psi CD = ' 1.60 Cp = 0.20 A = 16.5 int E = 1600 ksi Cr = 1.10 Fc' = 486 psi > fe = 113 psi [Satisfactory] �-3 CHECK SHEAR WALL DEFLECTION: (IBC Section 2305.3.2) villa (Plo Wall Seismic at mid -story Ibs) Overturning Moments (ft -lbs) Resisting . Safety Net Uplift Moments (ft -lbs) Factors (Ibs) Holddown SIMPSON 0.298 in, ASD < SEISMIC 110 269 20362 Left 9504 0.9 TL= 1 984 �Oy p1 Q� Right 9504 0.9 TR = 984 WIND _ 143 sxe,allowable, Aso = 0.600 in (Satisfactory] (ASCE 7-05 12.8. 24024 Left 9504 2/3 Tt= 1474 Right 9504 213 TR = 1474 EDGE STUD CAPACITY Pmax = 1.86 kips, (this value should include upper level DOWNWARD loads if applicable) F, = 1350 psi CD = ' 1.60 Cp = 0.20 A = 16.5 int E = 1600 ksi Cr = 1.10 Fc' = 486 psi > fe = 113 psi [Satisfactory] �-3 CHECK SHEAR WALL DEFLECTION: (IBC Section 2305.3.2) t 1 L AI l R values should include upper level UPLIFT forces if applicabl A=.A&,,>vb,g +Asia,,"+ON,,,r i; + = s p 0['/nrt/ sprca• .d;p 8yeh3 + vnh hd,,. _ — + 0.75he„ +_ - 0.298 in, ASD < EA L,,. Cr L „• Where: vb = 143 ' plf, , ASD L;,. = 12 ft E = 1.7E+06 sl p � sxe,allowable, Aso = 0.600 in (Satisfactory] (ASCE 7-05 12.8. A = 16.50 in` h = 14 ft G= 9.0E+04 psi Cd = 4 I= 1 1 t = 0.221 in e„ = ,0.001 in da = 0.15 in (ASCE 7-05 Tab 12.2-1 & Tab 11.5- Da = 0.02 h"' (ASCE 7-05 Tab 12.12-1) EDGE STUD CAPACITY Pmax = 1.86 kips, (this value should include upper level DOWNWARD loads if applicable) F, = 1350 psi CD = ' 1.60 Cp = 0.20 A = 16.5 int E = 1600 ksi Cr = 1.10 Fc' = 486 psi > fe = 113 psi [Satisfactory] �-3 C.Z X 6 ;ST v. G� u•� i* ll niFire �� o r Pa`(le 1 of 8 Anchor Calculations W 5� • - Anchor Selector (Version 4.5.1.0) Job Name: Date/Time : 5/20/2011 11:41:13 AM 1) Input Calculation Method : ACI 318 Appendix D For Cracked Concrete Code; ACI 318-08 Calculation Type : Analysis a) Layout Anchor: 5/8" SET -XP Number of Anchors : 1 I Steel Grade: A307 GR. C Embedment Depth : 10 in Built-up Grout Pads : No Cxt c 2 a 1 ANCHOR 1. '►tua IS POSITIVE FOR TENSION AND NEGATIVE FOR COMPRESSION. *INDICATES CENTER OF THE ANCHOR u Anchor Layout Dimensions : cx1 : 2.75 in cx2 : 9.25 in a cyl 60 in cy2 : 60 in b) Base Material r Concrete: Normal weight v Cracked Concrete : Yes •Condition : B tension and shear abouvblank fc : 2500.0 psi `Pc,V : 1.00. �Fp . 1381.3 'I �/2 3 x/20/2011 X VUay MUy Nu by2 I�Aj Mux by1 Vuax bx1 b ! a 1 ANCHOR 1. '►tua IS POSITIVE FOR TENSION AND NEGATIVE FOR COMPRESSION. *INDICATES CENTER OF THE ANCHOR u Anchor Layout Dimensions : cx1 : 2.75 in cx2 : 9.25 in a cyl 60 in cy2 : 60 in b) Base Material r Concrete: Normal weight v Cracked Concrete : Yes •Condition : B tension and shear abouvblank fc : 2500.0 psi `Pc,V : 1.00. �Fp . 1381.3 'I �/2 3 x/20/2011 Thickness, ha : 18 in • Supplementary edge reinforcement : No Hole Condition : Dry Concrete Inspection :. Continuous, Temperature, Range :. 1 (Maximum 110 OF short term and 75 °F long .term temp.) c) Factored Loads Load factor source: ACI'318 Appendix C . Nua : 2150 Ib Vuuay :40 Ib Muy : 0 Ib*ft ex.0in i ey Ain Moderate/high seismic risk or intermediate/high design category : Yes Anchor w/ sustained tension : No Anchors only resist wind and/or. seismic loads : Yes Apply'entire shear load at front row for breakout : No d) Anchor Parameters . From [F-SAS-CSAS2009] Anchor Model = SETXP da = 0.625 in Category = 1 hef = 10 in hmin _ 13.125 in. cac = 30 in cmin 1.75 in smin - 3 in Ductile = Yes 2) Tension Force:on Each Individual Anchor. Anchor #1 Nuai = 2150.00 Ib Sum of Anchor Tension ENua ='2150.00 Ib el NX =0.00 in- e'Ny - 0.00 in ' 3) Shear Force on Each Individual Anchor Resultant shear forces in each anchor: Anchor #1 Vual = 0.00 lb (Vualx = 0.00 Ib , VUaly = 0.00 Ib ) Sum of Anchor. Shear ZVuax.= 0.00 Ib, ZVuay = 0.00 Ib. el VX =;0.00 in . F about:61ank Pae 2 of 8 psi Vuax : 0 Ib MUX: 0 Ib*ft 9 , 23 5/20/2011 _ ; ., 't ye ,. .. ' .a., .. . .'. _. •. � ., st♦ a .. ,. . ,. .. ! ^r. i r . h•. tw d "LO, Payepi, ,. of $ e.'vY.= '0.00 in •4)•Steel Strength ofAnchorin Tension.[Sec. rD:5.1] Nsa = nAse futa [Eq. D-3] Number of anchors acting in tension, n = 1 Nsa = 13110 Ib (for'a single anchor) [F-SAS-C'SAS2009]' = 0.80 [D.4.5] �Nsa = 10488.00 lb (for a single anchor) 5) Concrete Breakout Strength of Anchor in Tension [Sec. D..5.2] Ncb = ANc'ANco4ed,N4c,N4cp,NNb [Eq. D=4] Number of influencing edges = 2 hef = 10 in ANco = 900.00 int [Eq. D-6] - ANC = 360.00 int Smallest edge distance, ca,min = 2.75 in `t'ed,N = 0.7550 [Eq. D-10 or D-11] Note:.Cracking shall be controlled per D.5.2.6 `Yc,N = 1.0000 [Sec. D.5.2.6] `f'cp,N = 1.0000 [Eq: D-12 or D-13] Nb = kcn,� f, C hef 1.5 = 26879.36 Ib [Eq. D-7] kc = 17 [Sec. D.5.2.6] Ncb = 8117.57 Ib [Eq. D-4] � = 0.75 [D.4.5] �seis ' 0.75 Ncb = 4566.13 Ib (for a single anchor) 6) Adhesive Strength of Anchor in Tension [Sec. D.5.3 (AC308 Sec.3.3)] Tk,cr = 718 psi [F-SAS-CSAS2009] kcr = 17 [F-SAS-CSAS2009] hef (unadjusted) = 10 in Nao = Tk,cr7r dahef = 14097.90 Ib [Eq. D -16f] Tk,uncr = 2263.00 psi for use in '[Eq. D716d] • scr,Na = min[20 da � (Tk,uncr/1450) , 3hef] = 15.616 in [Eq. D-1 6d] about: blank r6 z3 5/20/2011 Pa0e 4 of 8 Ccr,N. = Scr,Na/2 = 7.808 in [Eq. D -16e] Na = ANa/ANaoTed,NaTp,NaNao [Eq. D -16a], A 16c = 243.86 int E . D= Nao [ q ] ANa = 164.87 int Smallest edge distance, ca,min - 2.75 in `1'ed,Na = min[0,7+0.3ca,min/ccr,Na 1.0] = 0.8057 [Eq. D=16m] `Pp,Na = 1.0000 [Sec. D.5.3.14] Na = 7679.25 lb [Eq. D -16a] = 0.75 [F-SAS-CSAS2009] Oseis = 0.75 ONa = 4319.58 lb (for a single anchor) 7) Side Face Blowout of.Anchor in Tension [Sec. D.5.4] Concrete side face blowout strength is only calculated for headed anchors in tension close to an edge,.cal < 0.4hef. Not applicable in this case. 8) Steel Strength of Anchor in Shear [Sec D.6.1] • Vsa = 7865.00 Ib (for a single anchor) Veq = Vsaay.seis [AC308 Eq. 11-27] ay.seis = 0.71 [F-SAS-CSAS2009] Veq = 5584.15 Ib 0.75 [DA.5] Veq = 4188.11 Ib (for a single anchor) 9) Concrete Breakout Strength of Anchor in Shear [Sec D.6.21 Case 1: Anchor checked against total shear load In x -direction... Vcbx = Avcx/Avcox`Ped,V`Nc,V`Ph,V Vbx [Eq. D-21]' Cal = 9.25 in Avcx = 385.03 int AvCox '= 385.03 int [Eq. D-23] `1'ed,V = 1.0000 [Eq. D-27 or D-28] Tc,v = 1.0000 [Sec. D.6.2.7] • `I'h,V = 4 (1.5c al / ha) =.t0000 [Sec. D.6.2.8] 1-.7 22,3 about:blank 5/20/2011 Vbx = 7(le/ da )0.2 , dak til f ::(Cal)l.' [Eq. D-24] • Ie=5.00 in Vbx = 11798.82 Ib Vcbx = 11798.82 Ib [Eq. D-21] = 0.75 �seis = 0.75 Vcbx = 6636.84 Ib (for a single anchor) In y -direction... Vcby = Avcy/' Ycoy`l'ed,V`l'c,V`Ph,V Vby [Eq. D-21] Cal = 12.00 in (adjusted for edges per D.6.2.4) Agcy = 216.00 int Avcoy = 648.00 in2 [Eq. D-23] `Yed,V = 0.7458 [Eq. D-27 or D-28] `Pc;v = 1.0000 [Sec. D.6.2.7] %,V = � (1.5cal / ha) = 1.0000 [Sec. D.6.2.8] Vby = 7(le/ da )0.2 da^ fc(ca1)�.5 [Eq. D-241 , • L 5.00 in Vby = 17434.04 Ib Vcby = 4334.29 Ib [Eq..D-21 ] = 0.75 �seis - 0.75 Vcby = 2438.04'1b (for a single anchor) Case 2: This case does not apply to single anchor layout Case a. Anchor, checked for parallel to edge condition Check anchors at cx1 edge Vcbx — Avcx/AvcoLP x ed,V�c,V�h,V Vbx [Eq. D-21] Ca -1 = 2.75 in cx = 34.03 in2, Avcox = 34.'03in2 [Eq. D-23] .. ed,v = 1.0000 [Sec. D.6.2.'1(c)] T6, -v - 1.0000 [Sec. D.6.2.7] about:blank i Pabe 5 of 8 (8 X23 x/20/2011 Th,V = (1.5ca1 / ha) = 1.0000 [Sec. D.6.2.8] • Vbx=.7(le/ da )0.2 da%y fc(ca1)1.5.[Eq. D-24]. le 5.00 in Vbx = 1912.60 Ib Vcbx= 1912.60 Ib [Eq. D-21] Vcby = 2 # Vcbx [Sec. D.6.2.1(c)] Vcby = 3825:21 Ib = 0:75 �seis = 0.75 Vcby = 2151.68 Ib (for a.single anchor) Check anchors at cy1 edge, Vcby — Avcy/' Ycoy`ped,V`l'c,V`Ph,V Vby [Eq. D=21] cal = 12.00 in (adjusted for edges per D.6.2.4) �cy = 216.00 in2_ Avcoy = 648.00 in2 [Eq: D-23] `l'ed,V = 1.0000 [Sec. D.6.2.1'(c)] • q'c,v = 1.0000 [Sec.. D.6.2.71 y6.V = � (1:5cal / ha)' = 1:0000 [Sec. D.6.2.8] Vb _. 7(I / d J. f• (c )1.5 D-24 Vby e, a a c al [Eq. ] 1e=5..00 in Vby = 17434.04 Ib Vcby: = 5811.35 Ib [Eq. D-21], Vcbx 2 *• Vcby [Sec. D.6.2 1(c)] Vcbx = 11622.69 Ib = 0.75' �seis =.0.75 Vcbx - 6537.76 Ib (for a single anchor) Check anchors at cz2 edge—, V = � 'c)Av `l' `I' T ' V [Eq. D-21 Vcbx , , cox ,ed,V c,V h,V bx q ] Cal = 9:25 in • A)cx - 385:03 in2 , about:blank ' Page 6 of 8 iq. /Z3 x/20/20.11 .Aveox = 385.03 int [Eq. D-23] `Yed,v = 1.0000 [Eq. D-27 or D-28] [Sec. D.6.2.1 (CA `I'c,V = 1.0000 [Sec: D.6.2.7] h,V _ (1.5cal / ha),=,' 00.00 [Sec. D.6.2.8J Vbx = .7(le/ da )0.2 day, N" fc(cal')1.5 [Eq. D-24] le ='5,.00 in Vbx = 11798.82 Ib Vcbx = 11798.82 Ib [Eq. D-21 ] Vcby = 2 * Vcbx [Sec.-D.6.2.1(c)] Vcby = 23597.64 Ib = 0.75 �seis = 0.75 OVcby = 13273.67 Ib (fora single anchor) Check anchors at cy2 edge Vcby = Avcy/Avcoy`1'ed,VTc;VTh;V Vby [Eq. D-21] Cal, = 12.00 in (adjusted for edges per D.6.2.4)' • Avcy = 216.00 in2 AvcOy =648.00 int [Eq. D=23] `Ped,V = 1.0000 [Sec. D.6.2.1(c)] `I'c,v = 1.0000 [Sec. D.6.2.71 . `I'h,V = .� 0.5cal / ha) = 1.0000 [SeC, D.6.2.8] Vby*= 7(le/ da )0:2 dao fc(cal)l.5 [Eq. D-241 le=5.00 in Vby = 17434.04 Ib Vcby = 5811.35 Ib [Eq. D-21] Vcbx = 2 * Vcby [Sec. D.6.2.1(c)] Vcbx 11.622.69 Ib 0:75 Oseis = 0.75 OVcbx = 6537.76 Ib (for a single anchor) • 10) Concrete Pryout Strength of Anchor in. Shear [Sec.. D.6.3] about:blank Page 7 of 8. 2 12,3 x/20/2011 'VCP = min[kcpNa)kcpNcb] [Eq. D730a] •kip = 2 [Sec. D.6.3.2] ` Na = 7679.25 Ib (from Section (6) of calculations) Ncb '8117.57 Ib (.from,Section (5) of calculations) Vcp = 15358.51 Ib. = 0.75 [D.4.5] �seis = 0.75 �Vcp = 8639.16.Ib (for a single. anchor) ,. 11) Check Demand/Capacity Ratios [Sec. D.7] Note: Ratios have been divided by 0.5 factor for brittle .failure. Tension Steel : 0.2050 i - Breakout: 0.9417 - Adhesive : 0.9955 Sideface Blowout: N/A Shear Steel : 0.0000 ' Breakout" (case:1) : 0.0000 - Breakout (case. 2) : N/A - Breakout (case 3) : 0.0000 - Pryout : 0.0000 V.Max(0) <= 0.2 and•T.Max(1) <= 1.0 [Sec D.7.1] Interaction check: PASS ' Use 5/8" diameter A307 GR. C SET -XP anchor(s) with 10 in. embedment T abouvblank Page 8 of 8, 211 3 x/20/2011 Anchor Calculations • Anchor Selector (Version 4.5.1.0) Job Name: Calculation Summary ACI 318 Appendix D For Cracked Concrete per ACI 318.08 Anchor Anchor Steel I# of Anchors Embedment Depth (in)Category 5/8" SET -XP A307 GR. C 1 10 1 Concrete Concrete Cracked Pc(psi) I'c.v Normal weight 1yes 12500.0 11.00 Yes Condition Thickness (in) Suppl. Edge Reinforcement B tension and shear 18 No Hole Condition Inspection Temp. Range Ory Concrete Continuous 1 Factored Loads Nua (lb) Vuax (lb) Vuay (Ib) Mux (Ib -ft) MU .(lb -ft) 2150 10 10 10 to A y n) Mod/high seismic Anchor w/ sustained tension Anchor only resists wind/seis loads Apply entire shear @ front row Yes No IYes lNo Individual Anchor Tension Loads N uat (lb) 2150.00 ' e.Nx(in) e'Ny(In) 0.00 10.00 Individual Anchor Shear Loads V ual (lb) 0.00 eIvx(in) e'V,(in) 0.00 0.00 Tension Strengths steel p = 0.80 ) FNsa(Ib) mNsa(Ib) Nua(Ib) Nua sa /�N 13110 110488.00 2150.00. 10.2050 Concrete Breakout (m = 0.75 , (Dseis = 0.75 ) Ncb(lb) (DNeb(lb) Nua(lb) Nua /4)Ncb. 8117.57 4566.13 2150.00 0.4709 . Adhesive (m = 0.75 , %els = 0.75 ) Na(Ib) mNa(lb) Nua(Ib) Nua /4)Na. 7679.25 14319.58 12150.00 10.4977 A about:blanlc Page I of 2 Date/Time : 5/20/2011 11:41:13 AM I 22 X3 x/20/2011 Side -Face Blowout does not apply Shear Strengths Steel (4) = 0.75 , ay.seis = 0.71 ) Veq(lb) 4)Veq(lb) Vva(Ib) V ua /kpveq 5584.15 14188.11 10.00: 0.0060 Concre[e Breakout (case 1) (4> = 0.75 , kbseis = 0.75 ) Vcbx(lb) mVcbx(lb) Vuax(lb) Vuax /mVcbx 11798.82 6636.84 0.00. 10.0000 Vcby(Ib) mVcby(lb) VUey(Ib) Vuax /OVcbY .Vua /NVcb 4334.29 2438.04 10.00 10.0000 i I 0.0000 Concrete Breakout (case 2) does not apply to single anchor layout Concrete Breakout (case 3) (4) = 0.75 . vseis = 0.75 ) cx1 edge Vcby(lb).1. OVcby(lb) Vuay(Ib) Vuay /NVcby 3825.21 2151.68 10.00 0.0000 cyl edge F,,622.6916537.76 bx(lb) 'Dv.x(Ib) Vuax(Ib) Vuax /mVcbx . 0.00 0.0000 cxz edge Vcby(lb) "cby(Ib) Vuay(Ib) Vuay/cAVcby 23597.64 13273.67 0.00 0.0000 crz edge . Vcbx(Ib) mVcbx(Ib) Vuax(lb) Vuax /4'Vcbz Vua /4>Vcb 11622.69 6537.76 0.00 0.0000 0.0000 Pryout (kD = 0.75 , Nseis = 0.75 ) Vcp(Ib) CDVcp(Ib) Vuax(lb) Vuax /NVcp 15358.51 18639.16 10.0000 Vcp(lb)mVcP(lb) Vuay(Ib) Vuay /(DVcp Vua /Vvcp 15358.51 18639.16 10 ; 10.0000 0.0000 Note: Ratios havq been divided by 0.6 factor for brittle failure. Interaction check V.Max(0) <= 0.2 and T.Max(1) <= 1.0 [Sec D.7.11 I Interaction check: PASS Use 5/8" diameter A307 GR. C SET -XP anchor(s) with 10 in. embedment. about:blank I Page 2"of 2 23 x/20/2011