12-0254 (RC) Structural Calcs•
r
JAG , �gj
Rr_,I�.,�G
78080 Calle Amigo, Suite 102 phone: (760)771-9993
La Quinta, CA 92253 Fax: (760)771-.9998
Cell: (760)808-9146
Date: April 25, 2012
Design by: R.A.
JN: 120441
Structural Calculation
For Provident Bank
At 78752 HWY 111
La Quinta, CA.
Type Of Proiect: Commercial
T.I.
4-26- 12
CITY CSF LA OUINTA
BUILDING & SAFETY DEPT. Qrr -
�4PPROVE®
FOR CONSTRUCTION APR 2 s 2012
a
''S t
.." By
DATE �Z Ay O
CLIENT: P(OV19-efit 80.n c' SHEET:
SUBJECT: T -f • RA Structural Engineering JOB ISO. 12ou4 k
DESIGN BY: ,A. DATE: a -•Z5 _12 ,
DESIGN LOADS
Roof Loads --Sloped__
3.5 psf.
Clay Tile
15 psf.
Framing
2.5 psf.
sheathing (v2° CDx)
1.5 psf
Ceiling
2.5 psf.
insulation
1.5 psf.
Misc.
4.0 psf
Total Dead Load
27 psf.
Total live Load
20 psf
Total Roof Load
47 psf.
Floor Loads
Framing
3.5 psf.
sheathing (3/4" Plywd)
2.5 psf
Ceiling
2.5 psf.
Lt. Wt. Conc./ Flooring Tile
15 psf.
Misc.
3.5 psf
Total Dead Load
27 psf.
Total live Load
40 psf
Total Floor Load
67 psf.
Exterior Wall
7/8" Stucco 10.0 psf.
Drywall 2.5 psf
Studs 1.0 psf.
Misc. 1.0 psf.
Total Wall Weight 15.0 psf.
Roof Loads - Flat
Roofing
6.0 psf.
Framing
2.5 psf.
sheathing (1/2" CDx)
1.5 psf
Ceiling
2.5 psf.
insulation
1.5 psf.
Misc.
6.0 psf
Total Dead Load
20 psf.
Total live Load
20 psf
Total Roof Load
40 psf.
Deck Loads
Framing
3.5 psf.
sheathing (3/4" Plywd)
2.5 psf
Ceiling
2.5 psf.
Lt. Wt. Conc.
15 psf.
Flooring Tile
10 psf
Misc.
3.5 psf
Total Dead Load
37 psf.
Total live Load
60 psf
Total Load
97 psf.
Interior Wall
Insulation
1.0 psf.
Drywall
5.0 psf
Studs
1.0 psf.
Misc.
1.0 psf.
Total Wall Weight
10.0 psf.
'/2'3
a'-
4r
At4H Z S1 S/
Woq �MV I A Oid
0
uonvert►ng Addresses to/trom Latitude/Longitude/Altitude in One Ste...
r'!
i
of I
http://stevemorse.org/jcal/latlon.ph
Converting Addresses to/from. Latitude/Longitude/Altitude in One
Step
Stephen P. Morse, San Francisco
►
L,Batch Mode. (Forward) Batch Mode. (Reverse) Batch Mode. (Altitude) i Deg/Min/Sec to. Decimal
Computing. Distances Frequently. Asked Questions My. Other. Webpages
address
78752 HWY 111
33.712317
latitude
city
La Quinta
-116. 17' 29.4504"
longitude
state
CA.
above values must be in decimal
zip
with minus signs for south and ►vest
country
United States
I
Determine. Lat/Lon Get Altitudes
reset
Determine. Address I reset
Ej Access geocoder.us / geocoder.ca (takes a relatively long time)
from g2ggLe latitude longitude altitude
decimal 33.7.1.252 -116.29122
deg -min -sec 33° 42'.45.072" 1.116° 17'2'8.392" �—
from use latitude longitude altitude
J decimal 133.65375398361'/-)51-'116.27924670')371 I
deg -min -sec 33° 39' 13.5143" -116° 16'45.2881" F-
78752 HIGHWAY 1 l 1 La Quinta CA
from yahoo Ilatitude Ilongitude altitude
decimal
33.712317
-116.291514 �—
deg-min-sec
33° 42' 44.3412"
-116. 17' 29.4504"
�—
/8 /52 Highway 111, La Quinta; California 92253
Data presented here comes from the following.websites:
og ogle. (all addresses)
Qeocodecca. (US and Canadian addresses only)
'.geocoder.us. (US addresses only)
gpsvisualizer. (for altitudes)
locatienet. (European addresses only)
3123
4/25/20t29:55 AM
Conterminous 48 States
• 2005 ASCE 7 Standard
Latitude = 33.71252
Longitude = -116.29122000000001
Spectral Response Accelerations Ss and S1
Ss and S1 = Mapped. Spectral Acceleration Values
Site Class B - Fa ,= 1.0 ,Fv = 1.0
Data are based on a 0.01 deg grid spacing
Period Sa
(sec) (g)
0.2 1.500 (Ss, Site Class B)
1.0 0.600 (S1; Site Class B)
Conterminous 48 States
2005 ASCE 7 Standard
Latitude = 33.71252
Longitude = -116.29122000000001
Spectral Response Accelerations SMs and SM1
SMs = Fa x Ss and SM1 = Fv x S1
Site Class D-' Fa = 1.0 ,Fv = 1.5 `
Period Sa
(sec) (g)
0.2 1.500 (SMs, Site Class D)
1.0 0.900 (SM1, Site Class D)
Conterminous 48 States
2005 ASCE 7 Standard
Latitude =. 33.71252
Longitude = -116.29122000000001
Design Spectral Response Accelerations SDs and SD1
SDs = 2/3 x SMs and SD1 = 2/3 x SM1
Site Class D - Fa = 1.0 ,Fv = 1.5
Period Sa
(sec) (9)
0.2 1.000 (SDs, Site Class D)
1.0 0.600 (SD1, Site Class D)
11/23
•
is
•
Reza PROJECT: Seismic Load (Diaphragm "A") PAGE:
s g ha rpo u I JOB NO.,: 11Bank 20441 Provident DATE: 4/25/2012 RES W BY : R.A.
One Story Seismic Analysis Based on IBC 06 / CBC 07
Determine Base Shear (Derived from ASCE 7-05 Sec. 12.8)
V= MAX{ MIN (SD1I/(RT) , SDS I/R] 0.01 0.5S11/R)W
= MAX{ MIN[ 0.89W , 0.15W ] , 0.01W 0.05W) -~ A
= 0.15 W, (SD) (for S, >_ 0.6 g only)
= 0.11 W, (ASD) = 0.51 kips
Where SDS = 1 (ASCE 7-05 Sec 11.4.4)
SD1.= 0.6 (ASCE 7-05 Sec 11.4.4)
_S1= 0.6 (ASCE 7-05 Sec 11.4.1)
R = 6.5 (ASCE 7-05 Tab 12.2-1)
1 = 1 . (IBC 06 Tab 1604.5 & ASCE 7-05 Tab 11.5-1)
Ct = 0.02 (ASCE 7-05 Tab 12.8-2)
hn = 9.0 ft
X = 0.75 (ASCE 7-05 Tab 12.8-2)
T = Ct (hn)x = 0.104 sec, (ASCE 7-05 Sec 12.8.2.1)
Calculate Vertical Distribution of Forces & Allowable Elastic Drift (ASCE 7-05, Sec 12.8.3 & 12.8.6)
.Level Wx hx hxk Wxhxk Fx , ASD (12.8-11) 8xe,allowable, ASD
Roof 4.62 9 9.0 42 0.5 (o.11 wx) 0.4
4.6 42 0.5
Where k =
1
for T <= 0.5
Ike,allowable, ASD = Aa 1/ (1.4 Cd), (ASCE 7-05 Sec 12.8.6)
k =
0.5 T + 0.75
for T @ (0.5 , 2.5)
Cd = 4 (ASCE 7-05 Tab 12.2-1)
k =
2
for T >= 2.5
Aa = 0.02 hsx, (ASCE 7-05 Tab 12.12-1)
Iculate Diaphragm Forces (ASCE 7-05, Sec 12.10.1.1)
Level Wx EWx Fx EFx Fpx , ASD, (12.10-1)
Roof 4.6 4.6 ,0.5 0.5 0.6 (0.13M)
4.6 0.5
A
Where Fmin = 0.2 SDS I Wx / 1.5 , ASD
Finax = 0.4 SDS I Wx / 1.5 , ASD
23
0
•
r
Reza PROJECT: Seismic Load (Diaphragm "B") PAGE:
s g h a rpo u CLIENT: Provident Bank DESIGN BY: R.A.
JOB NO.: 120441 DATE: 4/25/2012 REVIEW BY : R.A.
One Story Seismic Analysis Based on IBC 06 / CBC 07
Determine Base Shear (Derived from ASCE 7-05 Sec. 12.8)
V= MAX{ MIN ISD1I/(RT) ,
SDS I/R] 0.01. , 0.5S11/R)W
= MAX{MIN[ 0.89W , 0.15W ] , 0.01W 0.05W)
= 0.15 W, (SD)
(for S, >_ 0.6 g only)
= 0.11 W, (ASD) =
5.63 kips
Where SDS =
1 (ASCE 7-05 Sec 11.4.4)
SD1 =
0.6 (ASCE 7-05 Sec 11.4.4)
i S1 = '
0.6 (ASCE 7-05 Sec 11.4.1)
R=
6.5 (ASCE 7-05 Tab 12.2-1)
1=
1 (IBC 06 Tab 1604.5 & ASCE 7-05 Tab 11.5-1)
Ct =
0.02 (ASCE 7-05 Tab 12.8-2)
hn `
9.0 ft
X =
0.75 (ASCE 7-05 Tab 12.8-2)
T = Ct (hn)x
= 0.104 sec, (ASCE 7-05 Sec 12.8.2.1)
Calculate Vertical Distribution of Forces & Allowable Elastic Drift (ASCE 7-05, Sec 12.8.3 & 12.8.6)
Level Wx
hx hxk Wxhxk FX , ASD (12.8-11) ke,allowable, ASD
Roof 51.24
9 9.0 461 5.6 (o.11 wx) 0.4
51.2
461 5.6
Where k = 1 for T <= 0.5 S o 1.4
xe,allowable, ASD = a I / ( Cd), (ASCE 7-05 Sec 12.8.6)
k = 0.5 T + 0.75 for T @ (0.5 , 2.5) Cd = 4 ,(ASCE 7-05 Tab 12.2-1)
.k = 2' for T >= 2.5 Aa = 0.02 hsx, (ASCE 7-05 Tab 12.12-1)
Calculate Diaphragm Forces (ASCE 7=05, Sec 12.10.1.1)
Level Wx EWx Fx EFx Fpx , ASD, (12.10-1)
Roof 51.2: 51.2 5.6 5.6 6.8 ( 0.13 Wx )
51.2 5.6
Where Fmin = 0.2 SDS I Wx / 1.5 , ASD
Finax = 0.4 SDS I Wx / 1.5 , ASD
6123
•
M
•
Reza
PROJECT: Wind Load Diaphragm "A" PAGE:
AS har our CLIENT: Provident Bank DESIGN BY: R.A.
9 P JOB NO.: 120441 DATE : 04/25/12 REVIEW BY: R.A.
Wlnd:A_na. sis for LQW-rise Building, Based on. ASCE 7-05 / IBC 2006 /:CBC 2007
INPUT DATA
Roof an le 8 0.00
Roof an le 8 =: 0.00
Surface
Exposure category (B, C or D)
Net Pressure with
C
Net Pressure with
Importance factor, pg 77, (0.87, 1.0 or 1.15)
1 =
1.00
Category II
2T,
Basic wind speed (IBC Tab 1609.3.1 Vas)
V =
85
mph
2.94
7.75
Topographic factor (Sec.6.5.7.2, pg 26 8 45)
K:, =
1
Flat `
-0.69
-11.63
Building height to eave
he =
12
ft
t
-0.37
Building height to ridge
hr =
12
ft
-2.54
4
Building length,
L =
22
ft
Building width
B =
6
ft
Effective area of components
A =
20
ft2
DESIGN SUMMARY
Max horizontal force normal to building length; L, face
Max horizontal force normal to building length, B, face
Max total horizontal torsional load
Max total upward force
2.77 kips
1.00 kips
8.54 ft -kips
_ 17zL-i
ANALYSIS
Velocity Pressure
qh = 0.00256 K„ Krt Ka V21 = 13.36 psf
where: qh = velocity pressure at mean roof height, h. (Eq. 6-15, page 27)
Kh =. velocity pressure exposure coefficient evaluated at height, h, (Tab. 6-3, Case 1,pg 79)
Kd = wind directionality factor. (Tab. 6-4, for building; page 80)
h = mean roof height
0.85
0.85
= 12.00 ft
< 60 ft, [Satisfactory]
> Min (L, B), [Unsatisfactory], ASCE 7-05 6.2 (2)
Desiqn Pressures for MWFRS '
P = qh [(G Cpf)-(G Cpi )l
where: p = pressure in appropriate zone. (Eq. 6-18, page 28). Amir, = 10 psf (Sec. 6.1.4.1 & 6.1.4.2)
G Cp, = product of gust effect factor and external pressure coefficient, see table below. (Fig. 6-10, page 53 & 54)
G Cp; = product of gust effect factor and internal pressure coefficient. (Fig. 6-5, Enclosed Building, page 47)
0.18 or -0.18
a =width of edge strips, Fig 6-10, note 9, page 54, MAX(MIN(0.1 B, 0.4h), 0.04B,3] = 3.00 ft
Net Pressures (psf), Basic Load Cases Net Pressures (psf), Torsional Load Cases
JE J
2E 2 } 2E 2 i r 20NE 2/3 90UNDARv
4E 4\� 6 a'_` �6
4E-_
REFERENCE CORNER lE REFERENCE CORNER
WIND DIRECTION ° •Za WIND DIRECTION
Transverse Direction Longitudinal Direction
Basic Load Cases
Roof an le 8 0.00
Roof an le 8 =: 0.00
Surface
G Cp t
Net Pressure with
G CP
Net Pressure with
(+GCp I)
(-GCp)
(+GCp t)
(-GCp I )
2T,
-0.69
-2.91
1
0.40
2.94
7.75
0.40
2.94
7.75
2.
-0.69
-11.63
-6.82
-0.69
-11.63
-6.82
3
-0.37
-7.35
-2.54
-0.37
-7.35
-2.54
4
-0.29
-6.28
-1:47.
-0.29
-6.28'
-1.47
1 E
0.61
5.75
10.56
0.61
5.75
10.56
2E
-1.07
-16.70
-11.89
-1.07
-16.70
-11.89
3E
-0.53
-9.49
-4.68
-0.53.
-9.49
-4.68
4E
-0.43
-8.15
-3.34
-0.43
-8-15,
-3.34
5
-0.45
-8.42.
-3.61,
-0.45
-8.42
-3.61
6 1
-0.45
-8.42
3.61
-0.45 1
-8.42 1
-3.61
JE J
2E 2 } 2E 2 i r 20NE 2/3 90UNDARv
4E 4\� 6 a'_` �6
4E-_
REFERENCE CORNER lE REFERENCE CORNER
WIND DIRECTION ° •Za WIND DIRECTION
Transverse Direction Longitudinal Direction
Basic Load Cases
} 2E 2 ST
SE } }i 2i JE 2T
.a �4T1`r 2c' 2 4T\ I I -�6
IE ��6 4
R 4Ev
$/ / 1T IT
5 a IE i
REFERENCE CORNER I' IE -
I REFERENCE CORNER
WIND DIRECTION za b
lflNO DIRECTION
Transverse Direction Longitudinal Direction
Torsional Load Cases
i
i
(
'1Z 3
Roof angle
0 = 0.00
G CP ,
Net Pressure with
Surface
(+GCp t)
(-GCp I )
1T
0.40
0.73
1.94
2T,
-0.69
-2.91
-1.70
3T
-0.37
-1.84
-0.63
4T
-0.29
1 -1.57
-0.37
Roof angle
8 = 0.00
GCpt
Net Pressure with
Surface
(+GCp;) (-GCp;)
1T
0.40
0.73 1.94
2T
-0.69
-2.91 -1.70
3T
-0.37
-1.84 -0.63
4T
-0.29
-1.57 -0.37
} 2E 2 ST
SE } }i 2i JE 2T
.a �4T1`r 2c' 2 4T\ I I -�6
IE ��6 4
R 4Ev
$/ / 1T IT
5 a IE i
REFERENCE CORNER I' IE -
I REFERENCE CORNER
WIND DIRECTION za b
lflNO DIRECTION
Transverse Direction Longitudinal Direction
Torsional Load Cases
i
i
(
'1Z 3
•
Basic Load Cases in Transverse Direction
Surface
Area '
Pressure k with
(+GCp i)
(-GCP i )
(-GCP i)
(ft)
1
192
0.56
1.49
2
48
-0.56
-0.33
3
48
-0.35
-0.12
4
192
-1.21
-0.28
1 E
72
0.41
0.76
2E
18'
-0.30
-0.21
3E
18
-0.17
-0.08
4E 1
72
-0.59
-0.24
1 -0.24
Horiz.
• 2.77
2.77
1.00
Vert.
-1.38
-0.75
Min. wind
Horiz.
2.64'
2.64
Sec. 6.1.4.1
Vert.
-1.32
-1.32
Tnmi-i 1 nod 1%. n T -..e- n:......:....
Basic Load Cases in Lonqitudinal Direction
SurfaceArea
Area
Pressure
k with
(+GCP i)
(-GCP i)
(+GCP i)
(ft') I
1
0
0.00
0.00
2
0
0.00
0.00
3
0
0.00
0.00
4
0
0.00
0.00
1E
72
0.41
0.76
2E
66
-1.10
-0.78
3E
66
-0.63.
-0.31
4E 1
72 .
-0.59
1 -0.24
2E
Horiz.
1.00
1.00
-
Vert.
-1.73
-1.09
Min. wind
Horiz.
0.72
0.72
Sec. 6.1.4.1
Vert.
-1.32
-1.32
Surface
Area
Pressure k with
Torsion ft -k
(+GCP i)
(-GCP i)
(+GCP i)
(-GCP i )
Comp.
(ft2)
1
60
0.18
0.47
1
2
2
15
-0.17
-0.10
0
0
3
15
-0.11
-0.04
0
0
4
60
-0.38
-0.09
2
0
1E
72
0.41
0.76
3
6
2E
18
-0.30
-0.21
0
0
3E
18
-0.17
-0.08
0
0
4E
72
-0.59
-0.24
5
2
1T
132
0.10
0.26
-1
-1
2T '
33
-0.10 '
-0.06
0
0
3T
33
-0.06
-0.02
0
0
4T
132 1
-0.21
-0.05
-1 1
.0
Total Horiz. Torsional Load, MT
9 1
9
Tn-inn.l 1 n.d in 1 n n:...d: n.�l n:......:....
Surface
Area
Pressure k with
Torsion ft -k
(+GCP i)
(-GCP i)
(+GCP i)
(-GCP i )
Comp.
(ft')
1
-36
-0.11
-0.28
0
0
2
-66
0.77
0.45
0
0
3
-66
0.49
0.17
0
0
4
-36
0.23
0.05
0
0
1E
72
0.41
0.76
0
0
2E
66
-1.10
-0.78
0
0
3E
66
-0.63
-0.31
0
0
4E
72
-0.59
-0.24
0
0
1T
36
0.03
0.07
0
0
2T
0
0.00
0.00
0
0
3T
0
0.00
0.00
0
0
4T 1
36 1
-0.06 1
-0.01 1
0 1
0
Total Horiz. Torsional Load, MT
0.4 1
0.4
Design pressures for components and cladding a' z _ _ z y 3 3 r2 � a 3
p = qh[ (G Cp) - (G Cpi)] o'c
where: p=pressure on component. (Eq. 6-22, pg 28) < t s 5 i zo^` ^ z i c - i z 2: c i u 12
fi � i�
Pmin = 10.00 psf (Sec. 6.1.4.2, pg 21) i i i i ti
G Cp = external pressure coefficien(. wo I I s r _ z - -37
see table below. (Fig. 6-11, page 55=- 8) Roof e. Roof
(Walls reduced 10 %, Fig. 6-11A note 5.)
Comp. 8&' Cladding Zone 1 Zone 2 Zone 3 Zone 4 Zone 5
Pressure Positive P"92"" Pesltivo Ne ativo Positive No ativo Positive Nsativa Poaitivo Ne ativs
(nsf ) 10.00 -15.37 10.00 -23.64 10.00 -32.98 13.79 -15.00 13.79 17.96
I
t
Effective
Zone 1 Zone 2 Zone 3' Zone 4 Zone 5
Area (ft=)
GCP .
- GCP GC - GCP GCP, - GCP GCP
- GCP GC - GCP
Comp.
1 20
0.27
1 -0.97 0.27 -1.59 0.27 -2.29 0.85
-0.94 0.85 -1.16
(Walls reduced 10 %, Fig. 6-11A note 5.)
Comp. 8&' Cladding Zone 1 Zone 2 Zone 3 Zone 4 Zone 5
Pressure Positive P"92"" Pesltivo Ne ativo Positive No ativo Positive Nsativa Poaitivo Ne ativs
(nsf ) 10.00 -15.37 10.00 -23.64 10.00 -32.98 13.79 -15.00 13.79 17.96
I
t
Reza
Asgharpour
•Wind Analysis folflo
PROJECT: Wind Load Diaphragm "B"
CLIENT: Provident Bank
JOB NO.:. 120441
ding, Based on'ASCE 7-051 IBC:
INPUT DATA
Exposure category (B, C or D)
Importance factor, pg 77, (0.87, 1.0. or 1.1.5)
Basic wind speed (IBC Tab 1609.3.1 V3s)'
Topographic factor (Sec.6.5.7.2, pg 26 & 45)
Building height to eave.
Building height to ridge
.Building length
Building width
Effective area of components
04/25/12
;2007 " i
PAGE:
DESIGN BY: R.A.
REVIEW BY: R.A.
I
DESIGN SUMMARY
Max horizontal force normal to building length, L, face = 7.86 kips
Max horizontal force normal to building length, B, face = 7.00 kips
Max total horizontal torsional load = 43.90 ft -kips
Max total upward force - 16.43 kips
ANALYSIS
Velocity pressure
qh = 0.00256 Kh Ke Ka V2 I .13.84 psf
where: qh = velocity pressure at mean roof height. h. (Eq. 6-15, page 27)
Kh = velocity pressure exposure coefficient evaluated at height, h, (Tab. 6-3, Case 1,pg 79) = 0.88
Ka = wind directionality factor. (Tab. 6-4, for building, page 80) = 0.85
h = mean roof height . = 18.00 ft
< 60 ft, [Satisfactory]
< Min (L, B), [Satisfactory]
• Desian Pressures for MWFRS
p = qh [(G Cpf )-(G Cpl )]
where: p = pressure in appropriate zone. (Eq. 6-18, page 28.).pm;, = 10 psf (Sec. 6.1.4.1 & 6:1.4:2)
I G CpT = product of gust effect factor and external pressure coefficient, see table below. (Fig. 6-10, page 53 & 54)
G Cp i = product of gust effect factor and internal pressure coefficieni.(Fig. 6-5, Enclosed Building, page 47)
0.18 or -0.18
a = width of edge strips, Fig 6-10; note 9, page 54, MAX[ MIN(0.1B, 0.4h), 0.04B,3] = 3.70 ft
•
Not pra....- /Heil I -A l+........
C
Roof an le 0 = 0.00
Surface
I =
1.00
Category II
Net Pressure with
V =
85
mph
(-GCp i )
Kz, =
1
Flat L
v
he =
18
•
ft
0.40
hr =
18
ft
w
L =
42
ft
B =
37
ft
A =
20
ft2
PAGE:
DESIGN BY: R.A.
REVIEW BY: R.A.
I
DESIGN SUMMARY
Max horizontal force normal to building length, L, face = 7.86 kips
Max horizontal force normal to building length, B, face = 7.00 kips
Max total horizontal torsional load = 43.90 ft -kips
Max total upward force - 16.43 kips
ANALYSIS
Velocity pressure
qh = 0.00256 Kh Ke Ka V2 I .13.84 psf
where: qh = velocity pressure at mean roof height. h. (Eq. 6-15, page 27)
Kh = velocity pressure exposure coefficient evaluated at height, h, (Tab. 6-3, Case 1,pg 79) = 0.88
Ka = wind directionality factor. (Tab. 6-4, for building, page 80) = 0.85
h = mean roof height . = 18.00 ft
< 60 ft, [Satisfactory]
< Min (L, B), [Satisfactory]
• Desian Pressures for MWFRS
p = qh [(G Cpf )-(G Cpl )]
where: p = pressure in appropriate zone. (Eq. 6-18, page 28.).pm;, = 10 psf (Sec. 6.1.4.1 & 6:1.4:2)
I G CpT = product of gust effect factor and external pressure coefficient, see table below. (Fig. 6-10, page 53 & 54)
G Cp i = product of gust effect factor and internal pressure coefficieni.(Fig. 6-5, Enclosed Building, page 47)
0.18 or -0.18
a = width of edge strips, Fig 6-10; note 9, page 54, MAX[ MIN(0.1B, 0.4h), 0.04B,3] = 3.70 ft
•
Not pra....- /Heil I -A l+........
3E S
*M�
2 } 2E 2 i rZONE 2/3 BOUNDARY
3c 4E4 4 �� b
4E.�_ REFERENCE CORIE
REFERENCE CORNERwRID DIRECTION - - '� WIND OIRECDON
Transverse Direction I Longitudinal Direction
I Basic Loo d -Cases
Net Pressures (psf), Torsional Load Cases
Roof an le 0 = 0.00
Roof an le 0 = 0.00
Surface
G CPT
Net Pressure with
G C° I
Net Pressure with
(+GCp i)
(-GCp i)
('GCp i)
(-GCp i )
2T
-0.69
-3.01
1
0.40
3.04
8.02
0.40
3.04
8.02
2
-0.69
-12.04
'-7.06
-0.69
-12.04
-7.06 '
3
-0.37
-7.61
-2:63
-0.37
-7.61
-2.63
4.
-0.29
-6.50
-1.52
-0:29
-6.50
-1.52
1E
0.61
5.95
10.93
0.61
5.95
10.93
2E
-1.07
-17.29
-12.31
-1.07
-17.29
-12.31
3E
-0.53
-9.82
-4.84
-0.53
-9.82
-4.84
4E
-0.43
-8.44
-3.46
-0.43
-8.44
-3.46
5 •
-0.45
-8.72
-3.74
-0.45
-8.72
-3.74
6
-0.45 1
-8.72' 1
-3.74 1
-0.45
-8.72
-3.74
3E S
*M�
2 } 2E 2 i rZONE 2/3 BOUNDARY
3c 4E4 4 �� b
4E.�_ REFERENCE CORIE
REFERENCE CORNERwRID DIRECTION - - '� WIND OIRECDON
Transverse Direction I Longitudinal Direction
I Basic Loo d -Cases
Net Pressures (psf), Torsional Load Cases
3 3i*
3 2E 2 3T
3-c 2i JE 2T
4E I2E 2 / '�6 4i\ I Ii�6
4E.�_
E
s ;T IT
5
t
RMURENCE CORNER IE , jIE
REFERENCE CORNER
WIND DIRECTION ° b
t WIND DIRECTION
Transverse Direction Longitudinal Direction
Torsional Load .Cases
Roof an
le 9 = 0.00
GCp,
Net Pressure with
Surface
(+GCp i)
(-GCp i )
1T
0.40
0.76
2.01
2T
-0.69
-3.01
-1.76
3T
-0.37
-1.90
-0.66
4T
-0.29
-1.63
-0.38
Roof an
le 6 = 0.00
G Cpl
Net Pressure with
Surface
(+GCp i)
(-GCp i )
1T
0.40
0.76
2.01
2T
-0.69
-3.01
1.76
3T
-0.37
-1,.90
-0.66
4T 1
-0.29
-1.63
-0.38
3 3i*
3 2E 2 3T
3-c 2i JE 2T
4E I2E 2 / '�6 4i\ I Ii�6
4E.�_
E
s ;T IT
5
t
RMURENCE CORNER IE , jIE
REFERENCE CORNER
WIND DIRECTION ° b
t WIND DIRECTION
Transverse Direction Longitudinal Direction
Torsional Load .Cases
•
•
Basic Load Cases in Transverse Direction
Torsional Lead Casal in Trancvnrcu n:.e. �:....
Basic Load Cases in Longitudinal Direction
Surface
Area
Pressure k with
(+GCP i)
(-GCP i )
(-GCP i)
(ft)(ft
1
623
1.90
5.00
2
640
-7.70
-4.52
3
640
-4.87
-1.68
4
623
-4.05
-0.95
1 E
133
0.79
1.46
2E
137
-2.37
-1.69
3E
137
-1.34
-0.66
4E
133
-1.12
-0.46
137.
Horiz.
7.86
7.86
4E
Vert.
-16.29
=8.55
Min. wind
Horiz.
7.56
7.56
Sec. 6.1.4.1
Vert.
-15.54
-15.54
Torsional Lead Casal in Trancvnrcu n:.e. �:....
Basic Load Cases in Longitudinal Direction
Surface
Area
Pressure k with
(+GCp i)
(-GCP i )
(-GCP i)
(ft)
1
533
1.62.
4.28
2
622
-7.48
-4.39
3
622
-4.73
-1.63
4
533
-3.46
-0.81
1E
133
0.79
1.46
2E
155
-2.69
-1.91
3E
155
-1.53 .
-0.75
4E
133
-1.12
-0.46
137.
Horiz.
7.00
7.00
4E
Vert.
-16.43
-8.69
.Min. wind
Horiz.
6.66
6.66
Sec. 6.1.4.1
Vert.
-15.54
-15.54
Surface
Area
(ft')
Pressure k with
Torsion ft -k
(+GCP i)
(-GCP i)
(+GCP i)
(-GCP i )
1
245
0.75 1.96
6
-17
2
252
-3.03 -1.78
0
0
3
252
-1.91 -0.66
0
0
4 '
245
-1.59 -0.37
14
3
1E
133
0.79 1.46
14
25
2E
137
-2.37 -1.69
0
0
3E
137.
-1.34 -0.66
0
0
4E
133
-1.12 -0.46
19
8
1T
378
0.29 0.76
-3
-8
2T
389
-1.17 -0.69
0
0
3T
389
-0.74 -0.26
0
0
4T
378
0.61. -U 14
6
2
-1
Horiz. Torsional Load, MT
31.6
31.6
Tnrsinnal I nad r....cnc in 1 n....:�...r:..�t n:.... ;--
Surface
Area Pressure k with Torsion ft -k
(ft') (+GCP i) (-GCP i) (+GCP ;) (-GCP i )
1 200 0.61 1.60 3 9
2 466 -5.61 -3.29 0 0
3 466 -3.55 -1.23 0 0
4 200 -1.30 -0.30 7 2
1 E 133 0.79 1.46 12 22
2E 155 -2.69 -1.91 0 0
3E 155 -1.53 -0.75 0 0
4E 133 -1.12 -0.46 17 .7
1T 333' 0.25 0.67 • -2 -6
2T - 622 -1.87 -1.10 0 0
3T 622 -1.18 -0.41 0 0
Total Horiz. Torsional Load; MT 44 44
Design Pressures for components and cladding , z z ,, , z a 3 z 3
p = qh[ (G Cp) - (G Cpl)l a --
where: p= pressure on component. (Eq. 6-22, pg 28) a I°^° i s I s i 1°^° ° 0 1 z 1 - z 2: ,� i_ i z
�' i
Amin = .10.00 psf (Sec. 6.1.4.2, pg 21)
G CP = external pressure coefficient. Walls ' ' ` z - - z a 3 �z� } s ,2j -
see
see table below. (Fig. 6-11, page 55-58) Roof �,� Roof a -t•
Surface
I
t 1 ,
Comp. & Cladding Zone 1. Zone 2 Zone 3 Zone 4 Zone 5
Pressure positive Ne alive Positive Ne alive Positive Ne alive Positive Ne alive Positive Negative
( Psf) 10.00 -15.91 10.00 -24.48 10.00 34.15 14.28 15.53 14.28 -18.60
4TTotal
333
-0.54 -0.13
-5
-1
Horiz. Torsional Load, MT
31.6
31.6
Design Pressures for components and cladding , z z ,, , z a 3 z 3
p = qh[ (G Cp) - (G Cpl)l a --
where: p= pressure on component. (Eq. 6-22, pg 28) a I°^° i s I s i 1°^° ° 0 1 z 1 - z 2: ,� i_ i z
�' i
Amin = .10.00 psf (Sec. 6.1.4.2, pg 21)
G CP = external pressure coefficient. Walls ' ' ` z - - z a 3 �z� } s ,2j -
see
see table below. (Fig. 6-11, page 55-58) Roof �,� Roof a -t•
Surface
I
t 1 ,
Comp. & Cladding Zone 1. Zone 2 Zone 3 Zone 4 Zone 5
Pressure positive Ne alive Positive Ne alive Positive Ne alive Positive Ne alive Positive Negative
( Psf) 10.00 -15.91 10.00 -24.48 10.00 34.15 14.28 15.53 14.28 -18.60
C'LIENI P(0 v i zh 80r% -KS !1'""
SLIBJE:C'I':T g. RA Structural Engineering I�E3 �
DESIGN BY: DATE_
I-G�V
W4 2 Z" �.�Ci5pS�x2Z'-})_x4620` 1
FS = 50 b
1�lX � 20 s x.42- x 37 +- �5P51 g 42X- t } � 2 )t (10 s¢xy2x � x3
i 2 iz
. C � � z
fZ �a Tj boo
F, w l 0 0 :4 b ;Kih o A C ove ry\
WLHd I Lo G Qh �
i
F W a b '-o h �, L 0 (-A G,,Ve 6X !I
2
11 i
CLIENT:i�roVi e� 6av►I�tifll:I.l: II
SUBJECT: T.1. RA Structural EnXcneerin ; .IOB'NO: I)oUu t . I�
DESIGN BY:
/oo
Lf 0-o o it
u 3 �• i
sir Pa t4
;S sup z,e
• j r
i
� < r
Reza
PROJECT: Shear Wall #1 PAGE:
As har Q(�r
CLIENT: Provident Bank DESIGN BY.- R.A.
JOB NO.: 120441 DATE: 4/25/2012 REVIEW BY: R.A:
$hear, lall;Desi n Based on IBC 06 / CBC 07 / NDS 05
4 No.2
STORY OPTION( 1=ground level, 2=upper level) 1 ground level shear wall I Lw
THE SHEAR WALL DESIGN IS ADEQUATE.
DESIGN SUMMARY
BLOCKED 3/8 SHEATHING WITH 8d COMMON NAILS
@ 6 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD,
5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C:
HOLD-DOWN FORCES: TI = 1.47 k TR = 1.47 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN)
DRAG STRUT FORCES: F = 0.00 k
EDGE STUD: 2 - 2" x 6" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT.
SHEAR WALL DEFLECTION: A = 0.30 in
ANALYSIS
CHECK MAX SHEAR WALL DIMENSION RATIO L / B = 1.2 < 3.5 [Satisfactory]
DETERMINE REQUIRED CAPACITY vb = 143 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 6 in)
TNFSHEAR r`ADAPITICC DCo Ion r
INPUT DATA
LATERAL FORCE ON DIAPHRAGM: vdia. WIND = 143" plf,for wind
vdia. SEISMIC = 110. plf,for seismic
GRAVITY LOADS ON THE ROOF: WDA = 20 ' plf,for dead load
WILL = 20 pif,for live load
DIMENSIONS: Lw = f 12 ft , h = 14 ft
L =. 12 -•ft,' h°= 0 ft
PANEL GRADE (0 or 1) _ 1 1 ' <= Sheathing ;and Single -Floor
MINIMUM NOMINAL PANEL THICKNESS = 3/8 in
COMMON NAIL SIZE ( 0=6d, 1=8d, 2=10d) 1 8d
SPECIFIC GRAVITY OF FRAMING MEMBERS .' 0.5
EDGE STUD SECTION t 2'. PCs. b = 2 in. h = 6 in
SPECIES (1 =DFL, 2 = SP) 1 DOUGLAS FIR -LARCH
GRADE 1 1 2 3 4 5 or 6
THESHEAR
vy ayylavity Idutul Pei IDI, note a.
DETERMINE DRAG STRUT FORCE: F = (L -Lw) MAX( V11G.wwD, Oovd,a. SEISMIC) = 0.00 k (no = 1 ) (Sec. 1633.2.6)
DETERMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E)
5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C.,
THF Wni r1_nnln1KI CnDnc
uv I aUIC
GJ Va.Y. 1
'
Overturning
Moments (ft -lbs)
Resisting . Safety Net Uplift
Moments (ft -lbs) Factors (Ibs)
Holddown
SIMPSON
0.298 in, ASD <
Min.
Min. -Blocked Nail Spacing
269
20362
Panel Grade
Common
Penetration
Thickness Boundary R All Edges
143
sxe,allowable, Aso = 0.600 in
(Satisfactory] (ASCE 7-05 12.8.
24024
Nail
(in)
(in) 6 1 4 1. 3 1 2
Cd = 4 I= 1
Sheathing and Single -Floor
8d
1 1/2
• 3/8 220
1 320
1 410 530
vy ayylavity Idutul Pei IDI, note a.
DETERMINE DRAG STRUT FORCE: F = (L -Lw) MAX( V11G.wwD, Oovd,a. SEISMIC) = 0.00 k (no = 1 ) (Sec. 1633.2.6)
DETERMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E)
5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C.,
THF Wni r1_nnln1KI CnDnc
EDGE STUD CAPACITY
Pmax = 1.86 kips, (this value should include upper level DOWNWARD loads if applicable)
F, = 1350 psi CD = ' 1.60 Cp = 0.20 A = 16.5 int
E = 1600 ksi Cr = 1.10 Fc' = 486 psi > fe = 113 psi
[Satisfactory]
�-3
CHECK SHEAR WALL DEFLECTION: (IBC Section 2305.3.2)
villa
(Plo
Wall Seismic
at mid -story Ibs)
Overturning
Moments (ft -lbs)
Resisting . Safety Net Uplift
Moments (ft -lbs) Factors (Ibs)
Holddown
SIMPSON
0.298 in, ASD <
SEISMIC
110
269
20362
Left 9504 0.9 TL= 1 984
�Oy
p1
Q�
Right 9504 0.9 TR = 984
WIND
_
143
sxe,allowable, Aso = 0.600 in
(Satisfactory] (ASCE 7-05 12.8.
24024
Left 9504 2/3 Tt= 1474
Right 9504 213 TR = 1474
EDGE STUD CAPACITY
Pmax = 1.86 kips, (this value should include upper level DOWNWARD loads if applicable)
F, = 1350 psi CD = ' 1.60 Cp = 0.20 A = 16.5 int
E = 1600 ksi Cr = 1.10 Fc' = 486 psi > fe = 113 psi
[Satisfactory]
�-3
CHECK SHEAR WALL DEFLECTION: (IBC Section 2305.3.2)
t 1 L AI l R values should include upper level UPLIFT forces if applicabl
A=.A&,,>vb,g +Asia,,"+ON,,,r i; + =
s p 0['/nrt/ sprca• .d;p
8yeh3
+
vnh hd,,. _
— + 0.75he„ +_ -
0.298 in, ASD <
EA L,,.
Cr L „•
Where: vb = 143 ' plf, , ASD L;,. =
12 ft
E = 1.7E+06 sl
p �
sxe,allowable, Aso = 0.600 in
(Satisfactory] (ASCE 7-05 12.8.
A = 16.50 in` h =
14 ft
G= 9.0E+04 psi
Cd = 4 I= 1
1
t = 0.221 in e„ = ,0.001
in
da = 0.15 in
(ASCE 7-05 Tab 12.2-1 & Tab 11.5-
Da = 0.02 h"'
(ASCE 7-05 Tab 12.12-1)
EDGE STUD CAPACITY
Pmax = 1.86 kips, (this value should include upper level DOWNWARD loads if applicable)
F, = 1350 psi CD = ' 1.60 Cp = 0.20 A = 16.5 int
E = 1600 ksi Cr = 1.10 Fc' = 486 psi > fe = 113 psi
[Satisfactory]
�-3
C.Z X 6 ;ST v. G� u•� i* ll niFire �� o r Pa`(le 1 of 8
Anchor Calculations W 5�
• - Anchor Selector (Version 4.5.1.0)
Job Name: Date/Time : 5/20/2011 11:41:13 AM
1) Input
Calculation Method : ACI 318 Appendix D For Cracked Concrete
Code; ACI 318-08
Calculation Type : Analysis
a) Layout
Anchor: 5/8" SET -XP Number of Anchors : 1
I Steel Grade: A307 GR. C Embedment Depth : 10 in
Built-up Grout Pads : No
Cxt c 2
a 1 ANCHOR
1. '►tua IS POSITIVE FOR TENSION AND NEGATIVE FOR
COMPRESSION.
*INDICATES CENTER OF THE ANCHOR
u
Anchor Layout Dimensions :
cx1 : 2.75 in
cx2 : 9.25 in
a cyl 60 in
cy2 : 60 in
b) Base Material
r
Concrete: Normal weight
v Cracked Concrete : Yes
•Condition : B tension and shear
abouvblank
fc : 2500.0 psi
`Pc,V : 1.00.
�Fp . 1381.3
'I
�/2
3
x/20/2011
X
VUay
MUy
Nu by2
I�Aj
Mux by1 Vuax
bx1 b !
a 1 ANCHOR
1. '►tua IS POSITIVE FOR TENSION AND NEGATIVE FOR
COMPRESSION.
*INDICATES CENTER OF THE ANCHOR
u
Anchor Layout Dimensions :
cx1 : 2.75 in
cx2 : 9.25 in
a cyl 60 in
cy2 : 60 in
b) Base Material
r
Concrete: Normal weight
v Cracked Concrete : Yes
•Condition : B tension and shear
abouvblank
fc : 2500.0 psi
`Pc,V : 1.00.
�Fp . 1381.3
'I
�/2
3
x/20/2011
Thickness, ha : 18 in
• Supplementary edge reinforcement : No
Hole Condition : Dry Concrete
Inspection :. Continuous,
Temperature, Range :. 1 (Maximum 110 OF short term and 75 °F long .term
temp.)
c) Factored Loads
Load factor source: ACI'318 Appendix C
. Nua : 2150 Ib
Vuuay :40 Ib
Muy : 0 Ib*ft
ex.0in
i
ey Ain
Moderate/high seismic risk or intermediate/high design category : Yes
Anchor w/ sustained tension : No
Anchors only resist wind and/or. seismic loads : Yes
Apply'entire shear load at front row for breakout : No
d) Anchor Parameters
. From [F-SAS-CSAS2009]
Anchor Model = SETXP da = 0.625 in
Category = 1 hef = 10 in
hmin _ 13.125 in. cac = 30 in
cmin 1.75 in smin - 3 in
Ductile = Yes
2) Tension Force:on Each Individual Anchor.
Anchor #1 Nuai = 2150.00 Ib
Sum of Anchor Tension ENua ='2150.00 Ib
el NX =0.00 in-
e'Ny - 0.00 in '
3) Shear Force on Each Individual Anchor
Resultant shear forces in each anchor:
Anchor #1 Vual = 0.00 lb (Vualx = 0.00 Ib , VUaly = 0.00 Ib )
Sum of Anchor. Shear ZVuax.= 0.00 Ib, ZVuay = 0.00 Ib.
el VX =;0.00 in
. F
about:61ank
Pae 2 of 8
psi
Vuax : 0 Ib
MUX: 0 Ib*ft
9
,
23
5/20/2011
_ ; ., 't ye ,. .. ' .a., .. . .'. _. •. � ., st♦ a .. ,. . ,. ..
! ^r. i r . h•. tw d "LO, Payepi,
,. of $
e.'vY.= '0.00 in
•4)•Steel Strength ofAnchorin Tension.[Sec. rD:5.1]
Nsa = nAse futa [Eq. D-3]
Number of anchors acting in tension, n = 1
Nsa = 13110 Ib (for'a single anchor) [F-SAS-C'SAS2009]'
= 0.80 [D.4.5]
�Nsa = 10488.00 lb (for a single anchor)
5) Concrete Breakout Strength of Anchor in Tension [Sec. D..5.2]
Ncb = ANc'ANco4ed,N4c,N4cp,NNb [Eq. D=4]
Number of influencing edges = 2
hef = 10 in
ANco = 900.00 int [Eq. D-6] -
ANC = 360.00 int
Smallest edge distance, ca,min = 2.75 in
`t'ed,N = 0.7550 [Eq. D-10 or D-11]
Note:.Cracking shall be controlled per D.5.2.6
`Yc,N = 1.0000 [Sec. D.5.2.6]
`f'cp,N = 1.0000 [Eq: D-12 or D-13]
Nb = kcn,� f, C hef 1.5 = 26879.36 Ib [Eq. D-7]
kc = 17 [Sec. D.5.2.6]
Ncb = 8117.57 Ib [Eq. D-4]
� = 0.75 [D.4.5]
�seis ' 0.75
Ncb = 4566.13 Ib (for a single anchor)
6) Adhesive Strength of Anchor in Tension [Sec. D.5.3 (AC308 Sec.3.3)]
Tk,cr = 718 psi [F-SAS-CSAS2009]
kcr = 17 [F-SAS-CSAS2009]
hef (unadjusted) = 10 in
Nao = Tk,cr7r dahef = 14097.90 Ib [Eq. D -16f]
Tk,uncr = 2263.00 psi for use in '[Eq. D716d]
• scr,Na = min[20 da � (Tk,uncr/1450) , 3hef] = 15.616 in [Eq. D-1 6d]
about: blank
r6
z3
5/20/2011
Pa0e 4 of 8
Ccr,N. = Scr,Na/2 = 7.808 in [Eq. D -16e]
Na = ANa/ANaoTed,NaTp,NaNao [Eq. D -16a],
A 16c = 243.86 int E . D=
Nao [ q ]
ANa = 164.87 int
Smallest edge distance, ca,min - 2.75 in
`1'ed,Na = min[0,7+0.3ca,min/ccr,Na 1.0] = 0.8057 [Eq. D=16m]
`Pp,Na = 1.0000 [Sec. D.5.3.14]
Na = 7679.25 lb [Eq. D -16a]
= 0.75 [F-SAS-CSAS2009]
Oseis = 0.75
ONa = 4319.58 lb (for a single anchor)
7) Side Face Blowout of.Anchor in Tension [Sec. D.5.4]
Concrete side face blowout strength is only calculated for headed anchors in tension close to
an edge,.cal < 0.4hef. Not applicable in this case.
8) Steel Strength of Anchor in Shear [Sec D.6.1]
• Vsa = 7865.00 Ib (for a single anchor)
Veq = Vsaay.seis [AC308 Eq. 11-27]
ay.seis = 0.71 [F-SAS-CSAS2009]
Veq = 5584.15 Ib
0.75 [DA.5]
Veq = 4188.11 Ib (for a single anchor)
9) Concrete Breakout Strength of Anchor in Shear [Sec D.6.21
Case 1: Anchor checked against total shear load
In x -direction...
Vcbx = Avcx/Avcox`Ped,V`Nc,V`Ph,V Vbx [Eq. D-21]'
Cal = 9.25 in
Avcx = 385.03 int
AvCox '= 385.03 int [Eq. D-23]
`1'ed,V = 1.0000 [Eq. D-27 or D-28]
Tc,v = 1.0000 [Sec. D.6.2.7]
• `I'h,V = 4 (1.5c al / ha) =.t0000 [Sec. D.6.2.8]
1-.7 22,3
about:blank 5/20/2011
Vbx = 7(le/ da )0.2 , dak til f ::(Cal)l.' [Eq. D-24]
• Ie=5.00 in
Vbx = 11798.82 Ib
Vcbx = 11798.82 Ib [Eq. D-21]
= 0.75
�seis = 0.75
Vcbx = 6636.84 Ib (for a single anchor)
In y -direction...
Vcby = Avcy/' Ycoy`l'ed,V`l'c,V`Ph,V Vby [Eq. D-21]
Cal = 12.00 in (adjusted for edges per D.6.2.4)
Agcy = 216.00 int
Avcoy = 648.00 in2 [Eq. D-23]
`Yed,V = 0.7458 [Eq. D-27 or D-28]
`Pc;v = 1.0000 [Sec. D.6.2.7]
%,V = � (1.5cal / ha) = 1.0000 [Sec. D.6.2.8]
Vby = 7(le/ da )0.2 da^ fc(ca1)�.5 [Eq. D-241 ,
• L 5.00 in
Vby = 17434.04 Ib
Vcby = 4334.29 Ib [Eq..D-21 ]
= 0.75
�seis - 0.75
Vcby = 2438.04'1b (for a single anchor)
Case 2: This case does not apply to single anchor layout
Case a. Anchor, checked for parallel to edge condition
Check anchors at cx1 edge
Vcbx — Avcx/AvcoLP x ed,V�c,V�h,V Vbx [Eq. D-21]
Ca -1 = 2.75 in
cx = 34.03 in2,
Avcox = 34.'03in2 [Eq. D-23] ..
ed,v = 1.0000 [Sec. D.6.2.'1(c)]
T6, -v - 1.0000 [Sec. D.6.2.7]
about:blank
i
Pabe 5 of 8
(8
X23
x/20/2011
Th,V = (1.5ca1 / ha) = 1.0000 [Sec. D.6.2.8]
• Vbx=.7(le/ da )0.2 da%y fc(ca1)1.5.[Eq. D-24].
le 5.00 in
Vbx = 1912.60 Ib
Vcbx= 1912.60 Ib [Eq. D-21]
Vcby = 2 # Vcbx [Sec. D.6.2.1(c)]
Vcby = 3825:21 Ib
= 0:75
�seis = 0.75
Vcby = 2151.68 Ib (for a.single anchor)
Check anchors at cy1 edge,
Vcby — Avcy/' Ycoy`ped,V`l'c,V`Ph,V Vby [Eq. D=21]
cal = 12.00 in (adjusted for edges per D.6.2.4)
�cy = 216.00 in2_
Avcoy = 648.00 in2 [Eq: D-23]
`l'ed,V = 1.0000 [Sec. D.6.2.1'(c)]
• q'c,v = 1.0000 [Sec.. D.6.2.71
y6.V = � (1:5cal / ha)'
= 1:0000 [Sec. D.6.2.8]
Vb _. 7(I / d J. f• (c )1.5 D-24
Vby e, a a c al [Eq. ]
1e=5..00 in
Vby = 17434.04 Ib
Vcby: = 5811.35 Ib [Eq. D-21],
Vcbx 2 *• Vcby [Sec. D.6.2 1(c)]
Vcbx = 11622.69 Ib
=
0.75'
�seis =.0.75
Vcbx - 6537.76 Ib (for a single anchor)
Check anchors at cz2 edge—,
V = � 'c)Av `l' `I' T ' V [Eq. D-21
Vcbx , , cox ,ed,V c,V h,V bx q ]
Cal = 9:25 in
• A)cx - 385:03 in2 ,
about:blank '
Page 6 of 8
iq.
/Z3
x/20/20.11
.Aveox = 385.03 int [Eq. D-23]
`Yed,v = 1.0000 [Eq. D-27 or D-28] [Sec. D.6.2.1 (CA
`I'c,V = 1.0000 [Sec: D.6.2.7]
h,V _ (1.5cal / ha),=,' 00.00 [Sec. D.6.2.8J
Vbx = .7(le/ da )0.2 day, N" fc(cal')1.5 [Eq. D-24]
le ='5,.00 in
Vbx = 11798.82 Ib
Vcbx = 11798.82 Ib [Eq. D-21 ]
Vcby = 2 * Vcbx [Sec.-D.6.2.1(c)]
Vcby = 23597.64 Ib
= 0.75
�seis = 0.75
OVcby = 13273.67 Ib (fora single anchor)
Check anchors at cy2 edge
Vcby = Avcy/Avcoy`1'ed,VTc;VTh;V Vby [Eq. D-21]
Cal, = 12.00 in (adjusted for edges per D.6.2.4)'
• Avcy = 216.00 in2
AvcOy =648.00 int [Eq. D=23]
`Ped,V = 1.0000 [Sec. D.6.2.1(c)]
`I'c,v = 1.0000 [Sec. D.6.2.71 .
`I'h,V = .� 0.5cal / ha) = 1.0000 [SeC, D.6.2.8]
Vby*= 7(le/ da )0:2 dao fc(cal)l.5 [Eq. D-241
le=5.00 in
Vby = 17434.04 Ib
Vcby = 5811.35 Ib [Eq. D-21]
Vcbx = 2 * Vcby [Sec. D.6.2.1(c)]
Vcbx 11.622.69 Ib
0:75
Oseis = 0.75
OVcbx = 6537.76 Ib (for a single anchor)
• 10) Concrete Pryout Strength of Anchor in. Shear [Sec.. D.6.3]
about:blank
Page 7 of 8.
2
12,3
x/20/2011
'VCP = min[kcpNa)kcpNcb] [Eq. D730a]
•kip = 2 [Sec. D.6.3.2]
` Na = 7679.25 Ib (from Section (6) of calculations)
Ncb '8117.57 Ib (.from,Section (5) of calculations)
Vcp = 15358.51 Ib.
= 0.75 [D.4.5]
�seis = 0.75
�Vcp = 8639.16.Ib (for a single. anchor)
,.
11) Check Demand/Capacity Ratios [Sec. D.7]
Note: Ratios have been divided by 0.5 factor for brittle .failure.
Tension
Steel : 0.2050 i
-
Breakout: 0.9417
- Adhesive : 0.9955
Sideface Blowout: N/A
Shear
Steel : 0.0000 '
Breakout" (case:1) : 0.0000
- Breakout (case. 2) : N/A
- Breakout (case 3) : 0.0000
- Pryout : 0.0000
V.Max(0) <= 0.2 and•T.Max(1) <= 1.0 [Sec D.7.1]
Interaction check: PASS '
Use 5/8" diameter A307 GR. C SET -XP anchor(s) with 10 in. embedment
T
abouvblank
Page 8 of 8,
211 3
x/20/2011
Anchor Calculations
• Anchor Selector (Version 4.5.1.0)
Job Name:
Calculation Summary ACI 318 Appendix D For Cracked Concrete per ACI 318.08
Anchor
Anchor Steel I# of Anchors Embedment Depth (in)Category
5/8" SET -XP A307 GR. C 1 10 1
Concrete
Concrete
Cracked
Pc(psi) I'c.v
Normal weight
1yes
12500.0 11.00
Yes
Condition
Thickness (in)
Suppl. Edge Reinforcement
B tension and shear
18
No
Hole Condition
Inspection
Temp. Range
Ory Concrete
Continuous
1
Factored Loads
Nua (lb) Vuax (lb) Vuay (Ib) Mux (Ib -ft) MU .(lb -ft)
2150 10 10 10 to
A
y
n)
Mod/high
seismic
Anchor w/ sustained
tension
Anchor only resists
wind/seis loads
Apply entire shear
@ front row
Yes
No
IYes
lNo
Individual Anchor Tension Loads
N uat (lb)
2150.00 '
e.Nx(in) e'Ny(In)
0.00 10.00
Individual Anchor Shear Loads
V ual (lb)
0.00
eIvx(in) e'V,(in)
0.00 0.00
Tension Strengths
steel p = 0.80 )
FNsa(Ib) mNsa(Ib) Nua(Ib) Nua sa
/�N
13110 110488.00 2150.00. 10.2050
Concrete Breakout (m = 0.75 , (Dseis = 0.75 )
Ncb(lb) (DNeb(lb) Nua(lb) Nua /4)Ncb.
8117.57 4566.13 2150.00 0.4709 .
Adhesive (m = 0.75 , %els = 0.75 )
Na(Ib) mNa(lb) Nua(Ib) Nua /4)Na.
7679.25 14319.58 12150.00 10.4977
A
about:blanlc
Page I of 2
Date/Time : 5/20/2011 11:41:13 AM
I
22
X3
x/20/2011
Side -Face Blowout does not apply
Shear Strengths
Steel (4) = 0.75 , ay.seis = 0.71 )
Veq(lb) 4)Veq(lb) Vva(Ib) V ua /kpveq
5584.15 14188.11 10.00: 0.0060
Concre[e Breakout (case 1) (4> = 0.75 , kbseis = 0.75 )
Vcbx(lb) mVcbx(lb) Vuax(lb) Vuax /mVcbx
11798.82 6636.84 0.00. 10.0000
Vcby(Ib) mVcby(lb) VUey(Ib) Vuax /OVcbY .Vua /NVcb
4334.29 2438.04 10.00 10.0000 i I 0.0000
Concrete Breakout (case 2) does not apply to single anchor layout
Concrete Breakout (case 3) (4) = 0.75 . vseis = 0.75 )
cx1 edge
Vcby(lb).1. OVcby(lb) Vuay(Ib) Vuay /NVcby
3825.21 2151.68 10.00 0.0000
cyl edge
F,,622.6916537.76
bx(lb) 'Dv.x(Ib) Vuax(Ib) Vuax /mVcbx
. 0.00 0.0000
cxz edge
Vcby(lb) "cby(Ib) Vuay(Ib) Vuay/cAVcby
23597.64 13273.67 0.00 0.0000
crz edge .
Vcbx(Ib) mVcbx(Ib) Vuax(lb) Vuax /4'Vcbz Vua /4>Vcb
11622.69 6537.76 0.00 0.0000 0.0000
Pryout (kD = 0.75 , Nseis = 0.75 )
Vcp(Ib) CDVcp(Ib) Vuax(lb) Vuax /NVcp
15358.51 18639.16 10.0000
Vcp(lb)mVcP(lb) Vuay(Ib) Vuay /(DVcp Vua /Vvcp
15358.51 18639.16 10 ; 10.0000 0.0000
Note: Ratios havq been divided by 0.6 factor for brittle failure.
Interaction check
V.Max(0) <= 0.2 and T.Max(1) <= 1.0 [Sec D.7.11
I
Interaction check: PASS
Use 5/8" diameter A307 GR. C SET -XP anchor(s) with 10 in. embedment.
about:blank
I
Page 2"of 2
23
x/20/2011