Loading...
10-1282 (CSCS) Structural Calcs Supplementali it WISEMAN+ROHY STRUCTURAL ENGINE -ERS SUPPLEMENTAL STRUCTURAL CALCULATIONS FOR GARFF CADILLAC BUILDING 9915 Mira Mesa Blvd. TEL. (858) 536-5166 DECEMBER 24, 2010 W + R JOB #10-079 L W.12-31 1 �° NXT �t OFCt- Suite 200-1 WRENGINEERS:COM MOVE dnra — 5 eon 1% CITY OF LA QUINTA BUILDING & SAFETY DEPT. APPROVED FOR CONSTRUCTION DATE San Diego, CA 92131 FAX. (858) 53675163 • Garff Cadillac Building Supplemental Structural Calculation Table of Contents Revised Canopy Roof Loads pp. 1- 3 1 RTU Screen Wall Design pp. 4 - 9 Ledger Splices and Chord/Drag Designs pp.10 -14 Roof framing designs based on RTU Wt. Revisions pp. 15 - 29c Roof Access Fixed Ladder Anchorages pp. 30 - 31 Shear Wall Holdown Steel Columns and Anchorages pp.32 - 35 Service Canopy Steel Columns and Anchorages pp.36 - 45 Shear Wall Holdown Anchorage pp.46 - 48 5-ron1E 'PAJEI. ATTAGµMEN-r ,WISEMAN + ROHY Structural Engineers _= Design Loads =_ PROJECT: La Quinta Cadillac LOCATION: Cadillac Bldg JOB NO: 10-079 Date: 12/9/2010 Roof Loads @ Cadillac Showroom: Material Suh-Purlinc Girrlorc Soicmir 4 -Ply Cap Sht w/o Gravel 2.0 2.0 2.0 Re -Roof 2.0 2.0 2.0 1/2" Ply 1.7 1.7, 1.7 2x6 Sub -Purlins @ 24" o.c. 1.0 1.0 1.0 Insulation 1.5 1.5 1.5 Sprinklers 1.5 1.5 1.5 Mech.&Elect. 1.0 1.5 1.5 GLB - See Calc 2.0 T -Bar System 1.5 1.5 1.5 Misc. 0.8 1.3 1.3 Partitions 5.0 Total 13.0 14.0 21.0 psf Live Loads (Reducible); 20 psf 2x8 Walls w/ Stone Veneer: Material • I aTal I Z.0 pst Roof Loads @ Cadillac Servic Canopy: _ r Mntarinl • 4 -Ply Cap Sht w/o Gravel 2.0 2.0 2.0 Re -Roof 2.0. Insulation*tRigid)®�-- 2.0 Limestone Veneer System --� 1.7 1.7 Sprinklers 1.5 1.5 1.5 MEP 0.5 0.5 0.5 14" I -Joists @ 24" o.c. 1.9 1.9 1.9 GLB In Calcs In Calcs I aTal I Z.0 pst Roof Loads @ Cadillac Servic Canopy: _ r Mntarinl • 4 -Ply Cap Sht w/o Gravel 2.0 2.0 2.0 Re -Roof 2.0. 2.0, 2.0 1/2" Ply 1.7 1.7 1.7 Sprinklers 1.5 1.5 1.5 MEP 0.5 0.5 0.5 14" I -Joists @ 24" o.c. 1.9 1.9 1.9 GLB In Calcs In Calcs 2x4 Ceiling Joists @ 24" 1.0 1.0 1.0 Exterior Gyp. Bd. Ceiling 2.5 2.5 2.5 Misc. 0.9 0.9 0.9 Total ,14.0 14.0 14.0 psf Live Loads (Reducible): 20 psf Sup J TONE VENEER 4P PER MFR -{�-T.O. FASCIA_ i - EL. II'll W / GAINLESS STL. =VEAL \ 4TCs. ON WD. STUD 2AMINCs, RE: STRUCT. OISTURE BARRIER RAINAGE PLANE TONE VENEER--------, rSTEM, ATTACH =R MFR B.O. FASCIA EL. 112'-0' -- SONE TERM. a- R}E,NFER MFR KTERIOR GYP. D. ON WD. MING, PAINT LA COL. EYOND, RE: ERUCT. I V I ARUN ROOF - MEMBRANE UP BA�K OF WALL /r AN TERMINA_T€ — — - PER ROOFING MFR 8 CANOPY SECTION ?A.2 1/2" =I 1-011 . LKG. E. STONE VENEER CAP PER MFR T.O. FASCIA EL. StAINLESS STL. ` REVEAL SHTG. ON WD. STUD FRAMING, RE: STRUC MOISTURE BARRIER DRAINAGE PLANE STONE VENEER SYSTEM, ATTACH +; • PER MFR — B.O. FASCIA EL. STONE TERM. DRIP P MFR EXTERIOR GYP. BD. ON WD. FRAMING, P I CLAD COL. BEYOND, RE: STRUCT. 7 CANOPY SECTION ,6.2 1/2" = 1'-0" LKG. E. N 11211= 1 1-0 n I I I I I - I I STONE VENEER CAP PER MFR T.O. FASCIA EL. StAINLESS STL. ` REVEAL SHTG. ON WD. STUD FRAMING, RE: STRUC MOISTURE BARRIER DRAINAGE PLANE STONE VENEER SYSTEM, ATTACH +; • PER MFR — B.O. FASCIA EL. STONE TERM. DRIP P MFR EXTERIOR GYP. BD. ON WD. FRAMING, P I CLAD COL. BEYOND, RE: STRUCT. 7 CANOPY SECTION ,6.2 1/2" = 1'-0" LKG. E. N 11211= 1 1-0 n Service Bay Ceilinq Joist INPUT DATA & DESIGN SUMMARY MEMBER SIZE 2.x4'• 't No. 2, Douglas Fir -Larch L �` L MEMBER SPAN L �8 It l + 1 UNIFORMLY DISTRIBUTED DEAD LOAD w0 = X1.0 lbs / ft PoiPc21 1 UNIFORMLY DISTRIBUTED LIVE LOAD wL = 30 lbs/ft WL CONCENTRATED DEAD LOADS PD1 = u0 ,lbs WO (0 for no concentrated load) L, =-' O ft PDz = , `_;7O lbs UEFLEL; I IUN LIMI I OF LIVE LOAD dL = L /;240 1.50 Camber => 0.18 inch DEFLECTION LIMIT OF LONG-TERM dKcrD+L = L / 80 Fb = 2160 psi d = 3.50 THE BEAM DESIGN IS ADEQUATE. Does member have continuous lateral support by top diaphragm ? F = FbE / Fb' = 1.24 A = (1= yes, 0= no) . .0 -No int I = 5 in° Fv = 180 psi Code Duration Factor, G, Condition Code Designation 1 0.90 Dead Load 1 Select Structural, Douglas Fir -Larch 2 1.00 Occupancy Live Load 2 No. 1, Douglas Fir -Larch 3 1.15 Snow Load 3 No. 2, Douglas Fir -Larch 4 1.25 r Construction Load 4 Select Structural, Southern Pine 5 " 1:60 Wind/Earthquake Load 5 No. 1, Southern Pine 6 2.00 Impact Load 6 No. 2, Southern Pine Choice => 5, Wind/Earthquake Load Choice => 3 ANALYSIS DETERMINE REACTIONS, MOMENT, SHEAR wseu wt = 1 lbs / ft RLert = 0.16 kips RRtght = 0.16 kips VMax = 0.15 kips, at 3.5 inch from left end MM. = 0.33' ft -kips, at 4.00 ft from left end DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES b = 1.50 in E'rro„ = 580 ksi E = Ex= 1600 ksi Fb = 2160 psi d = 3.50 in FbE = 2680 psi Fb = 900 psi F = FbE / Fb' = 1.24 A = 5.3 int I = 5 in° Fv = 180 psi Fe = 1,918 . psi Sx = 3.1 in3 RB = 16.117 < 50 E' = 1,600 ksi Fv' = 288 psi 1E= 13.9 (ft, Tab 3.3.3 footnote 1) CD CM Ct CI CL Cr Cv Cc Cr 1.60 1.00 .:;.1,00";;".,_1:00 0.89 1.50 1.00 1.00 1.00 CHECK BENDING AND SHEAR CAPACITIES fb = MMax / Sx = 1290 psi < Fb = 1918 psi [Satisfactory] f, = 1.5 VM,, / A = 44 psi < Fv' [Satisfactory] CHECK DEFLECTIONS Id (L, Max) = 0.32 in, at 4.000 ft from left end, < d L = L / 240 [Satisfactory] • 6 (Ker D - L, Max) = 0.50 in, at 4.000 ft from left end < dKcrD . L = L / 180 [Satisfactory] Where Kc, = .1.50.x, (NDS 3.5.2) DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) Id (1.5D, Max) = 0.18 in, at 4.000 ft from left end ''PP 3 1, i-WISEMM + IROHY i STRUCTURAL ENGINEERS t BY' 0 i DATE IZ to PROJECT GA .G uwrA �i4D i��i4 SHEET N0. OF 20 o F TyD � �'y,vt E,�r 5-c 2.E�.� G✓/Ivc. ' DE5 /y.J ! JOB NO. 09 i2Mra/E /a2L63 %b, ANS ESI Gn! �E�e�f9�lfr +y/3���Ti I.t)o�� Sd£A2 PSE VA -NT. Si i. T -1p. of 2 i 'rAv-el o, o , 'P j2E A�na�J s EA, ENg T+ - XA VM o, o . P, TSPR l,oRo, I Alt Ts TOP 'Q I Za u SLl e 10 0 jo '40��' � i fir' 9 Kco� , fir= q00 i SES TT�7 ;rDL o iaVJ - . VJ, Ag CAVI ZS.g J5 -:T Y� lames i IZo / - kr ! SES i`17�E f�WJLJ#,Vf-1 �0FJ FJ[s. I � e to ( � ! � I PJ i 'E jw. . Do ,IZD��� �(10J,DE 2x� i �� ! i I t i G� jjI /NSP / 7 ok "A wIL i ' ! I ' i I , S�Pt° s Wind Load,on Roof Screen Based'6nr18CJ2006-'1vASCE 7-05 s °' a r`h.'-`, Garff Cadillac Screen Wall INPUT DATA & DESIGN SUMMARY BASIC WIND VELOCITY V = 85 mph W � Wind Lood EXPOSURE TYPE (B, C, D) = > C L SCREEN TOP ELEVATION H = 21.34 ft .l P MEAN ROOF HEIGHT h = 17.5 ft BUILDING WIDTH B = 130 ft Ro IMPORTANCE FACTOR I = 1 (ASCE Tab. 6-1 & IBC Tab. 1604.5) _ SCREEN VERTICAL SIZE E = 8.34 ft SCREEN HORIZONTAL SIZE. D = 20 ft, (ASCE Fig. 6-21) DESIGN MEMBER TRIBUTARY AREA Af = 12 ft TOPOGRAPHIC FACTOR Ka = 1 Flat, (ASCE Eq.6-3) Out -of -plane load for screen design P Ground F0.3ps WIND ANALYSIS Out -of -plane wind force for screen design (ASCE 7-05, Eq.6-28) F = PA f = f gzGCfA f = f (0.00256KzK7jKdVZI) GC fA f = ( 26.8 psf) Af = 0.345 kips Where : f = Max{ Min[ 2 - Af / (B h) , 1.9] , 1.0) = 1.90 (ASCE 6.5.15.1) he = 17.17 ft, centroid height of the screen B h = 525 ft , building side area (ASCE 6.5.15.1) KZ = 0.87 ., (ASCE Tab. 6-3) Ka = 0.85 , (ASCE Tab. 6.4) G = 0.85 , (ASCE 6.5.8.1) Cp = 1.30 , (ASCE Fig. 6-21) a A • Svppte WoodBeam.Desi n1'6ase,o6!NDS:'2005F", CF Top Plates @ RTU Screen walls NOTe ' W - TO? VS TAk.E �� �� VJP40 ArQ INPUT DATA & DESIGN SUMMARY 1.00 1.00 =CK BENDING AND SHEAR CAPACITIES L, MEMBER SIZE 2 x 8 No. 2, Douglas Fir -Larch MEMBER SPAN L = 18.66 ft 1728 I '� P.i P°Z UNIFORMLY DISTRIBUTED DEAD LOAD wD = 0 lbs /ft F," _ t UNIFORMLY DISTRIBUTED LIVE LOAD WL = 30 lbs / ft W` CONCENTRATED DEAD LOADS PD, = 0 Itis `"0 (0 for no concentrated load) L, = 0 ft PD2 = 0 lbs 4 LZ = 0 ft DEFLECTION LIMIT OF LIVE LOAD d, = L / 180 Camber => 0.13 Inch DEFLECTION LIMIT OF LONG-TERM THE BEAM DESIGN IS ADEQUATE. Does member have.continuous lateral support by top diaphragm ? (1= yes, 0= no) 1 Yes Code Duration Factor, Cr, Condition Code Designation 1 .0.90 Dead.Load1 ' Select Structural, Douglas Fir -Larch 2 1.00 Occupancy Live Load 2 No. 1, Douglas Fr -Larch 3 1.15 Snow Load 3 No. 2, Douglas Fir -Larch 4. 1.25 Construction Load 4 Select Structural, Southern Pine 5 1.60 Wind/Earthquake Load 5 No. 1, Southern Pine 6 2.00 Impact Load 6 No. 2, Southern Pine Choice => 5 Wind/Earthquake Load Choice => '3 ANALYSIS DETERMINE REACTIONS, MOMENT, SHEAR w,M = 2 lbs/ft RLen = 0.30 kips RSM = 0.30 kips Vaa = 0.28 kips, at 7.25 inch from left end M" = 1.41 ft -kips, at 9.33 ft from left end DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES b = ,1.50 in E'rn;n = WA E= E,= 1600 ksi Fb = N/A d = - 7.25 in FbE = N/A Fb = 900 psi F = FbE / Fe = N/A A = 10.9 in" 1 = 48 in° F„ = 180 psi Fe = 1,728 psi SX = 13.1 1 in3R8 = N/A E' = 1,600 ksi Fv' = 288 psi 1E = N/A j CD CM Cr CI, CL CF Cv Cc Cr 1.60 1.00. 1.00 1.00 1.00 1.20 1.00 1.00 1.00 =CK BENDING AND SHEAR CAPACITIES fb = MMex / S. = 1286 psi < Fb = 1728 psi [Satisfactory] f,'= 1.5 Vmm / A = 39 psi < F," [Satisfactory] =CK DEFLECTIONS A 1.07 in, at 9.330 ft from left end, < d (Ka D: L;,, = 1.20 in, at 9.330 ft from left end < Where Ka = 1.50 , (NDS 3.5.2) (ERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) A 11.513, Ma -4 = 0.13 in, at 9.330 ft from left end t i ' 1 AL = L/ 180 [Satisfactory] d Ku D *.L = L/ 1 [Satisfactory] k I vvo < (7)115* "L(�o" Ct✓IP CONT. DBL. TOP >'s ot T.O.P. EA, dAILE2 w/ SPLICES PER g PER PLAN WALL STUDS PER PLAN 8,Vr CONT. 2x SOLE > . PER 12 • S4.1 T.O.S. nrn n[ • k i kVAKU)) < POST=< > 2p > 1 /4x3x1'— POST W/ 4-1"—' M.B. I— I PER PLAN ) TYP. OF 2 3 PER POST1/2 CX i I n I I I YP TYP. T 1j, B.O.GLB ---t — ci TYP. SECTION 3 X 1 [x NAIL PERERS 10 S1.3 HSS POST' PER PLAN Ml,�in�a 15000 ($,3�,+1.a") 2540��� Co Cq fie. I I 8,Vr CONT. 2x SOLE > . PER 12 • S4.1 T.O.S. nrn n[ • k i kVAKU)) < POST=< > 2p > 1 /4x3x1'— POST W/ 4-1"—' M.B. I— I PER PLAN ) TYP. OF 2 3 PER POST1/2 CX i I n I I I YP TYP. T 1j, B.O.GLB ---t — ci TYP. SECTION 3 X 1 [x NAIL PERERS 10 S1.3 HSS POST' PER PLAN Ml,�in�a 15000 ($,3�,+1.a") 2540��� Co Cq fie. Column: M19 45(fEFni vJA1,4, COI O d - Shape: HSS6X6X4 Material: A500 Gr.46 Length: 9 ft I Joint: N37 J Joint: N38 LC 5: DL+ W Code Check: 0.420 (bending) Report Based On 97 Sections .031 at 0 ft fa ksi ft 111111111111111pppw ksi -20.423 at 0 ft .16 at Oft A k (506, W. 0, 16.208 at 0 ft -1.148 at 9 ft A/SC 360-05: LRFD Code Check Direct Analysis Method Max Bending Check 0.420 Max Shear Check Location 0 ft Location Equation H1 -1b Max Defl Ratio Bending Flange Compact Compression Flange Bending Web Compact Compression Web Fy 46 ksi Out Plane In Plane phi*Pnc 187.385 k Lb 9 ft 9 ft phi*Pnt 216.297 k KUr 46.185 46.185 phi*Mn 38.625 k -ft Sway No No phi*Vn 61.247 k Cb 1.667 L Comp Flange 9 ft Taub 1 0.029 0 ft L194 az > `/jk3o ok Non -Slender Non -Slender Sipe 8 ! j I i I i I f I I - ----I - --- - ------ ! - - I — - I } - - i N C�j I -- e� I - ( '1)017) Q c I of �ea .ice I � .' 9� ate. �8Q - � - � *J•b�Q �'o'W Not%'3NlvQ� ��Ii�' . b-40-0/ 'ON 80r i0 'ON BINS Cl VD -tuty(PO VI D3fOHd of ZI 31Vac8M A8 I -_----1 -- --- ------___..------=--- Sa33N19N3:1dbI1ll0b15—------ � �5 i AHOM i + NVW3SIM' I ; l n p a ► - 7 /M Sd HJ -S „AZ IM15 ! 1 ; saMS �L rCd 1 S I N OS' 40�(�/8� �6 I) asl r 1 1 to / � G i r I � i a'• �� < ! L:•a ora i 4 7S r,"f �5 1 '1Nol'� r � ' 1 i i j I i j Iry I i i 1 z. , F21) I� t o • O/ 'ON 80f j i sN, S3Q J0 'ON 133HS -7 f 0$' DROM al ZI 31V0 BVI A8 5833NI9N31V8(1mis AHOb + HVW3SIM WISEMAN + 0HY STRUCTURAL ENGINEERS I ' I AFTA4A I 3eolk14 ATE_.-- �RoM _�,_`_�9__.oF .Dti�l��lArc.—Cf4i.GS _-_ C't,♦o-2fl----Fof?c-C_. _--2�3-K--�---- --- - i 3' � i I SPNL� -2p ! !l. COU;Ecorz t-oru6 1` l< So i i.i,be-mg i iIO�lE2•ls MAX,, 3 5 S �/, (9-t') > 2, 3 , ! G'o i ; I �} 'B7 INs�, 3 x 12 D.F. LEouE4 1� T --=A) o.J j .'SEE � I V• I I I I I; L. i, s peg. 12"'; i,�j sHEnQ Vll 3) $ y JNsLp .L, $ S To EA Seo Ok I i 4) CkEGK ; LEO4EQ S�c.�c,� : {JSC ��)- "1'��✓TG �kS'r'vAi s W/ '}tf- 10,d 51,vkaa-S I I BY W 60 I DATE IZ o PROJECT to Qg, v rA CAo,'w Ar_ SHEET NO. OF 3 I LEONE D Esw.�s JOB NO. 10-0" I AFTA4A I 3eolk14 ATE_.-- �RoM _�,_`_�9__.oF .Dti�l��lArc.—Cf4i.GS _-_ C't,♦o-2fl----Fof?c-C_. _--2�3-K--�---- --- - i 3' � i I SPNL� -2p ! !l. COU;Ecorz t-oru6 1` l< So i i.i,be-mg i iIO�lE2•ls MAX,, 3 5 S �/, (9-t') > 2, 3 , ! G'o i ; I �} 'B7 INs�, 3 x 12 D.F. LEouE4 1� T --=A) o.J j .'SEE � I V• I I I I I; L. i, s peg. 12"'; i,�j sHEnQ Vll 3) $ y JNsLp .L, $ S To EA Seo Ok I i 4) CkEGK ; LEO4EQ S�c.�c,� : {JSC ��)- "1'��✓TG �kS'r'vAi s W/ '}tf- 10,d 51,vkaa-S I I ! I j ! I I 3 i 70 39 � ! //, z 1< I I I � � � � �� . (t Sorts '(S} I!GS�c� • I � � .7i 1 �, k o ,N II /1] 6+ 'ire ai 0� - o lily✓.i, Z4 r I �j / i -_C_ ) S:P� -1 ) ,_.-t P --FNS �,->,✓ �' v,.�- -�- - ---. _ .- - -------- --- _ ... i� WISEMM + ROHY -STRUCTURAL ENGINEERS 12 BY W 60 !DATE 11110 PROJECT' 4A OV i di -A QA 6 IL,,LA4 SHEET NO. OF i o 4,ea > F-6 It, A -.5 C JOB NO. /0 1 -DESA ((A, v Tor 3�4 c, rl a_ C, le-, 6) 0: A E ak'. 11 -Z x b I e- (2) 4 57 ON How lr�0011�- or' 0 ca"ir |-STRUCTURAL ENGIINEERSBy DATE 11 //o !PROJECT IA Q U 17-A CA SHEET NO. OFJOB NO.owlUAp13� 11jp i -o r oL --j-4 F_ Q 31 Z / ---- � | �----� | | | i ! i � ! / r- ' ' WISEMAN + 0HY t STRURURAL ENGINEERS BY WBD I DATE. /Z io PROJECT LA Q�/�a;� C,�Drw I i AC. SHEET N0. OF - i LED/r�2 DES/Gn1S i JOB NO. l0" 0-f9 —(r��o�..,� E._C • _N o tE------AoM � Y-0 of oQ�U,',vac. Ch�cS Cj4O4O 3ABp.l ISA 4,0) "O I I - Ik v(ilII Fw"E e- CDU"'E-c�v2 �A2c.E L' Z � I i I 1 I 3x8r,jN -D. F. t.1 iLEVUea IN 7-oNsr0,J •I i'��, �.oi� ° i SEF (r2• oL, C-AL.LS) / I i I 1 I I 0� . i I u 1.4,. j �� 17E•S�l�n) t EDUE2 PL'. �� ��® i Ak, z i L a1 �/t��;�oE� ('ionlT. "G�l`f �o��Eo S;u��� /3uoss j Etir��F I i i I i i SQA ps �En�t� �� o��°� •1^J I I 1 b • C) �,aE (;M�S� 14 ��►s a (tn-jos 2,�- W / 30" SND 7r5rprg; I �� OR S#EAn-uJfiw �,Jo uJ� nJAi L, Notes. i I ;, rarer CApA,,,T I SCALE: 1/8' = 1'-0' s l pf ilke Ian Wilson prom: Wayne Deming Sent: Wednesday, December 01, 2010 4:30 PM To: Ian Wilson Subject: FW: HVAC weights for Cadillac La Quinta WAYNE DEMING P.E. PROJECT ENGINEER/MANAGER WISEMAN + ROHY STRUCTURAL ENGINEERS 9915 MIRA MESA BLVD SUITE 200 TEL: 858 536 5166 x304 SAN DIEGO, CA 92131 FAX: 858 536 5163 WWW.WRENGINEERS.COM From: Eric Sisson [mailto:eric0)tsgeng.com1 Sent: Wednesday, December 01, 2010 4:19 PM To: Wayne Deming �ubject: HVAC weights for Cadillac La Quinta I ��5fq��+r.�r3_. ,. .:�,.. :...:.rn I.,it .. • i 4. t ,.. ... Wayne i; Here is the breakdown from the manufacturer. It is more than I estimated, up to 1802 lbs. Please let me know if this will be ok. Thanks �.-50TCQA08 with....................885lbs -economizer(horizontal)........ 122lbs -powered exhaust.................290lbs -14" curb...............................155lbs -vibratio I t' b a �7. AiB ;3 n Isoa Ioncur ...... Total ........................... .18021 bs Eric Sisson"h. T -Squared Professional Engineers 1340 Specialty Dr. Suite E Vista, CA 92081 - (760) 560-0100 ext. 113 ax (760) 560-1010 sisson is en .com Please consider the environment before printing this e-mail 'This electronic file(s) is sent to you on an 'as is' basis. You are advised that T -SQUARED PROFESSIONAL ENGINEERS, INC. and their employees and agents make no warranties, expressed or implied, as to the correctness or condition of this file for any purpose and in no event shall T -SQUARED PROFESSIONAL 1 Ae WEIGHTS & DIMENSIONS (cont.) STD. UNIT CORNER CORNER CORNER CORNER UNIT WEIGHT WEIGHT (A) WEIGHT (B) WEIGHT (C) WEIGHT (D) C. G. KG. LBS. KG. LBS.1 KG. LBS. I KG. LBS. KG. X Y 2 5 TCOD08 401 85 72 1 1 112 133 39 15/16 110141 35 1/4 18951 23 1/2 15971 50TC6DOr 91TI 413 200 91 166 75 2/7 1 112 297 39 5/8 (10061 34 1/2 18761 23 1/2 15971 CORNER A CORNER 8 lot GO 1 CORNER D I CORNER C TOP Fig. 6 - Dimensions 50TCQ 08-09 FRONT Fig. 7 - Service Clearance C08678 C08337 LOC DIMENSION B © p 00 C= 00 FRONT Fig. 7 - Service Clearance C08678 C08337 LOC DIMENSION CONDITION 48—in. (1219 mm) Unit disconnect is mounted on panel A 18—in. (457 mm) No disconnect, convenience outlet option 18—in. (457 mm) Recommended service clearance 12—in. (305 mm) Minimum clearance 42 -in. (1067 mm) Surface behind servicer is grounded (e.g., metal, masonry wall) B _ 36—in. (914 mm) Surface behind servicer is electrically non—conductive (e.g., wood, fiberglass) Special Check for sources of flue products within 10—ft of unit fresh air intake hood C 36—in. (914 mm) Side condensate drain is used 18—in. (457 mm) Minimum clearance D 42—in. (1067 mm) Surface behind servicer is grounded (e.g., metal, masonry wall, another unit) 36—in. (914 mm) Surface behind servicer is electrically non—conductive (e.g., wood, fiberglass) r .23 • W6640eam Desi n�Basdl -hRNpS 2'0.05"j Su Mech'I Unit Support Beam INPUT DATA & DESIGN SUMMARY L MEMBER SIZE 4 x`8 No. 2, Douglas Fir -Larch L MEMBER SPAN L=. 18 ft l UNIFORMLY DISTRIBUTED DEAD LOAD WD = 26 _ lbs / ft PD1 1 i P02 UNIFORMLY DISTRIBUTED LIVE LOAD WL =' ' 40 lbs / It W` CONCENTRATED DEAD LOADS PD1 =' J 480 , Ibs "D (0 for -no concentrated load) L, = 1 ft PDz =. ;'..:Or', lbs L2 ft DEFLECTION LIMIT OF LIVE LOAD d L = L / 240'.. ; 3.50 Camber => 0.05 Inch DEFLECTION LIMIT OF LONG-TERM dKaD+L = L /4180'. 1600 ksi Fb = N/A d = THE BEAM DESIGN IS ADEQUATE. Does member have continuous lateral support by top diaphragm ? 900 psi F = FbE / Fb' = N/A (1= yes, 0= no) t:.1 ,:' Yes 25.4 inz I = 111 in°" Code Duration Factor, C, Condition Code Designation 1 0.90 Dead Load 1 Select Structural, Douglas Fir -Larch 2 1.00 Occupancy Live Load 2 No. 1, Douglas Fir -Larch 3 1.15 Snow Load 3 No. 2, Douglas Fir -Larch 4 1.25 Construction Load 4 Select Structural, Southern Pine 5 "r"1.60 `< Wind/Earthquake Load 5 No. 1, Southern Pine 6 2.00 Impact Load 6 No. 2, Southern Pine Choice => _ :4 : Construction Load Choice => 3 ANALYSIS DETERMINE REACTIONS, MOMENT, SHEAR wseifwt = 5 lbs / ft RLeft = 0.71 kips RR;eht = 0.35 kips VMax = 0.66 kips, at 7.25 inch from left end MM. = 0.84 ft -kips, at 3.10 It from left end DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES b = 3.50 in E',;,, = N/A E = Ex = 1600 ksi Fb = N/A d = 7.25 in FbE = N/A Fb = 900 psi F = FbE / Fb' = N/A A = 25.4 inz I = 111 in°" Fv = 180 psi Fe = 1,463 psi Sx = 30.7 in3 Rt; = N/A E' = 1,600 ksi F„ = 225 psi 1E= N/A CD CM Ct C; CL CF Cv Cc Cr 1.25 1,00 I:,1:OOf „` `],00 =1.00 1.30 1.00 1.00, •:. 1.00 CHECK BENDING AND SHEAR CAPACITIES fb = MMax / Sx = 328 psi < Fb = 1463 psi [Satisfactory] f, = 1.5 VMax / A = 39 psi < Fv' [Satisfactory] CHECK DEFLECTIONS d (L, Max) = 0.02 in, at 4.000 ft from left end, < d L = L / 240 [Satisfactory] d (KcrD+L , Max) = 0.07 in, at 3.700 ft from left end < d KcrD+L = L / 180 [Satisfactory] Where Kc, _ .'1.;50 ; , (NDS 3.5.2) DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) Id (15D, Max) = 0.05 in, at 3.700 ft from left end U $are j S.. _ 1 - ! WISEMAN +I ROHY 111 STRUCTURALINGINEERS I --- --'- ---- --- BY :W;$-r�l• ( DATE Vto PROJECT L!� iQUINT� G/atj►� c SNEET N0. OF GG6 5 $leo w R-aoHt l�of i JOB NO. t� V''�• C�.\ ! tza�,�-'�° j 5�,t,F tax lab�l,� ire g,�• f vk iLi-- - --- l I 50 ; I I , t n I i n � I I I i JSG C��16 SyQX I I j `SFS Rests o\3TP�� +---------' -- -- i !-------- -- may IOt p+.F j I V�'f7b*W � �• j 3.Rk i ilk j 1570 i C r� Bei L .h, - 'G,'�'�arc, 2'f, i G $44 . i ! f i Vsc &L6 S'19x�q o� PL- 47 ! ! W I S'p I i i I • j � USE ���[� � Zg GAB o� . , {DL i OG RoxiM,r T� CFOGf2 $L`C/9U5� I;aP P '2�, SjPP Ti S�)fP J,,, �9w-vl' -9 m IIA ;o ,. gel -f N#oil '911 1' _0 .14 W-0 7 Vj o7a -yWrA tA L M V/ *ON Bar jo *ON 133NS SH13NI9N3 ivanimmis. AHOM + Nvw3slm MAC_m J33foaj of z1 uva --ovm., As • spa TI -17 x zr1ISO Vj o7a -yWrA tA L M V/ *ON Bar jo *ON 133NS SH13NI9N3 ivanimmis. AHOM + Nvw3slm MAC_m J33foaj of z1 uva --ovm., As • S.)p p -2* S✓P p 2S s "p r 2o+ G* 20- j I WISEMAN + 10HY "STRUCTURAL i STRUCTURAL ENGINEERS -- _. — -- - - - - - - _ i s�PP 2s � BY 'Wga" iDATE IS to I i �_ PROJECT LA '. fav �,vr-A (i 1 Q 1 t.c. it G i r SHEET NO. OF ' JOB NO. _ ID - o r4 1; 7 PL LIL - i i Ssk✓ L Th'` p5f iS t ; I 2KL w °��'.Gt� 3L�L oK�X�'Pn` I},D� I i FX y D 30,54 R3ar -- -- -� - ----- - � - --+- F Sul - Sal - ---- '-- 1. i13, K i I � i I t i I i � � t i I 1 I I I 5'PP s&C, WISEMAN + 20HY S� ' PP ZiURAI STRUCTURAL ENGINEER � BY 817 ; DATE 17-1101PROJECT � LA 'Gi��Nr� G�fEOi.�i.rt•L i � SHEET N0. OF oT7n/!i DES/Gals I i JOB N0. 01-07-7 i K YWAx D - i I 1 i ► ,. MiN . i CA-Le- oN SNE Focia��� �Pr. 'FAo0i(A�oN,,o ! Tao J,AC 3 S41 x ., •" 3 QEF (�; � i ©k i ° ro°T�N�- e ISS ! -Fj�rAcx ? +4,3 i i i ,oe 3' sQ u '-3" i L ---.r- I W/ 4 -! 4 �AiLs M fnl : I — SEE CA i Lc o •1 n— WISEMAN+ROHY Structural Engineers PROJECT: La Quinta Cadillac _= TYPICAL SQUARE PAD FOOTING DESIGN TABLE _= LOCATION: May 2009 JOB NO: 09-000 12/23/10 1:12 PM Soil Bearing Pressure: Bar # • 3 q = 2000 psf q„ = q x 1.5 = 3000 psf soil weight = 0 pcf (use 0 if gross bearing pressure given) Material Strengths: (for selection of steel spacing vs. size only) concrete = 3000 psi fy = 60 ksi Miscellaneous: Bar # • 3 Area 0.11 column footprint = 6 in 4 0.20 steel spacing factor = 11 5 0.31 (for selection of steel spacing vs. size only) 6 0.44 USE: 7 0.60 12 8 0.78 0.0 9 1.00 Notes: 10 1.23 Assumes P„ = 1.5 (DL + LL) 11 1.56 Mark: Size (ft) -SQ. Thick (in) I Pmax (k) Depth (in) ONE WAY SHEAR: Vagi (k) Vail (k) OK? TWO WAY SHEAR: Vast (k) Vali (k) OK? M„ (k -in) a (in) AS (Req'd) AS (200/Fy) AS min (.0018) AS Use USE: 1.5 12 4 8 0.0 11.8 Y 2.5 73.6 Y 6 0.02 0.01 0.72 0.39 0.39 2 # 4 2.0 12 7 8 0.5 15.8 Y 7.3 73.6 Y 19 0.04 0.04 0.96 0.52 0.52 3 # 4 3 2.5 12 12 8 2.3 19.7 Y 13.6 73.6 Y 42 0.08 0.10 1.20 0.65 0.65 4 # 4 3.0 12 17 8 4.9 23.7 Y 21.2 73.6 Y 78 0.12 0.18 1.44 0.78 0.78 4 # 4 3.5 12 8 8.1 27.6 Y 30.2 73.6 Y 131 0.17 0.31 1.68 0.91 0.91 3 # 5 4.0 12 30 8 12.0 31.5 Y 40.6 73.6 Y 204 0.23 0.48 1.92 1.04 1.04 4 # 5 4.5 12 8 16.7 35.5 Y 52.4 73.6 Y 300 0.31 0.71 2.16 1.17 1.17 4 # 5 5.0 15 45 11 18.1 54.2 Y 62.5 122.9 Y 413 0.28 0.70 3.00 1.62 1.62 6 # 5 5.5 15 55 11 23.7 59.6 Y 76.8 122.9 Y 561 0.34 0.96 3.30 1.78 1.78 5 # 6 6.0 18 64 14 25.3 82.8 Y 88.5 184.0 Y 725 0.32 0.97 4.32 2.33 2.33 6 # 6 6.5 18 75 14 31.7 89.7 Y 105.1 184.0 Y 935 0.38 1.25 4.68 2.53 2.53 6 # 6 7.0 18 87 14 38.8 96.6 Y 123.1 184.0 Y 1181 0.44 1.59 5.04 2.72 2.72 7 # 6 7.5 18 100 14 46.6 103.5 Y 142.4 184.0 Y 1468 0.52 1.98 5.40 2.92 2.92 7 # 6 8.0 21 111 17 48.7 134.1 Y 157.2 257.0 Y 1759 0.48 1.94 6.72 3.63 3.63 7 # 7 8.5 21 126 17 57.2 142.5 Y 178.7 257.0 Y 2127 0.54 2.35 7.14 3.86 3.86 7 # 7 9.0 24 138 20 59.3 177.5. Y 194.6 341.8 Y 2487 0.51 2.33 8.64 4.67 4.67 6 # 8 9.5 24 153 20 68.6 187.3 Y 218.2 341.8 Y 2943 0.57 2.76 9.12 4.92 4.92 7 # 8 10.0 24 170 20 78.6 197.2 Y 243.0 341.8 Y 3452 0.64 3.25 9.60 5.18 5.18 7 # 8 10.5 26 185 22 83.5 227.7 Y 263.3 404.9 Y 3957 0.63 3.38 10.92 5.90 5.90 8 # 8 11.0 26 203 22 94.4 238.6 Y 290.3 404.9 Y 4571 0.70 3.91 11.44 6.18 6.18 8 # 8 11.5 30 215 26 93.4 294.8 Y 305.0 546.8 Y 5088 0.63 3.67. 13.80 7.45 7.45 8 # 9 12.0 30 234 26 104.8 307.6 Y 333.7 546.8 Y 5802 0.68 4.19 14.40 7.78 7.78 8 # 9 Z:\Standards\Design Aids\Foundations\typftg.xls I lWood`€Beam'Desion;Base,on"NDS 2005 Roof Sub -Purlins along grid C w/ brace load INPUT DATA & DESIGN SUMMARY MEMBER SIZE 2x6 L No. 2, Douglas Fir -Larch MEMBER SPAN L= 6 ft UNIFORMLY DISTRIBUTED DEAD LOAD w13 = 28 j lbs / It P0' 1 1 P.2 UNIFORMLY DISTRIBUTED LIVE LOAD WL = 0 Ills J ft W` CONCENTRATED DEAD LOADS P131 = 381 lbs "0 (0 for no concentrated load) L, = 4 ft 5 1.60 Wind/Earthquake Load Po2 = 0 lbs / 6 2.00 Impact Load L2 = 0 ft DEFLECTION LIMIT OF LIVE LOAD AL = L 1240 Camber--> 0.44 Inch DEFLECTION LIMIT OF LONG-TERM 21ICv13.L= L/ 180' DETERMINE REACTIONS, MOMENT, SHEAR 1.60 1.00 1.00 1.00 1.00 1.30 1.00 THE BEAM DESIGN IS ADEQUATE. Does member have continuous lateral support by top diaphragm ? (1= yes, 0= no) 1 Yes b = 1.50 in E'min = WA Code Duration Factor, Cn Condition Code Designation 1 0.90 Dead Load 1 Select Structural, Douglas Fir -Larch 2 1.00 Occupancy Live Load 2 No. 1, Douglas Fir -Larch 3 1.15 Snow Load 3 No. 2, Douglas Fir -Larch 4 1.25 ' Construction Load 4 Select Structural, Southem Pine 5 1.60 Wind/Earthquake Load 5 No. 1, Southern Pine 6 2.00 Impact Load 6 No..2, Southern Pine Choice => 5 Wind/Earthquake Load Choice => , 3 ANALYSIS Cr DETERMINE REACTIONS, MOMENT, SHEAR 1.60 1.00 1.00 1.00 1.00 1.30 1.00 1.00 wr�„„m = 2 lbs / ft RLee = 0.31 kips RRwd = 0.31 kips Vmm = 0.30 kips, at 5.5 inch from left end MMU = 1.00 ft4dps, at 4.00 ft from left end DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES b = 1.50 in E'min = WA E = Ex = 1600 ksi Fb = WA d = 5.50 in FbE = N/A Fb = 900 psi F = FbE / Fe = WA A = 8.3 int 1 = 21 in F„ = 180 psi Fe = 1,872 psi S. = 7.6 in' RB = WA - E' = 1,600 J ksi F,; = 288 psi G.E = N/A CD CM Ct Ci CL CF Cv Cc Cr 1.60 1.00 1.00 1.00 1.00 1.30 1.00 1.00 1.00 CHECK BENDING AND SHEAR CAPACITIES fi; = MMax / Sx = 1587 psi < Fb = 1872 psi [Satisfactory] f,' = 1.5 Vmx / A = 54 psi < Fv' [Satisfactory] CHECK DEFLECTIONS A a. max) = 0.00 in, at 4.000 ft from left end, < AL = L / 240 [Satisfactory] A(Ku 13, L, Max) = 0.44 in, at 4.000 ft from left end < A W 13 a L = L / 180 [Satisfactory] Where Ktt = 1.50 (NDS 3.5.2) DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) A (1.513, Ma q = 0.44. in, at 4.000 It from left end • i SPP 'ZIc I.WciodABeam Ddsign Base'on' NDS' 2005 Roof Sub-Pudins along Arid 3 w/ brace load INPUT DATA & DESIGN SUMMARY MEMBER SIZE 2 x 8' No. 2, Douglas Fir -Larch � L, MEMBER SPAN L = 8 It -1 UNIFORMLY DISTRIBUTED DEAD LOAD wD = 28 lbs/ft PD1 j 1 PD' UNIFORMLY DISTRIBUTED LIVE LOAD wL = 0 lbs/ft W` CONCENTRATED DEAD LOADS Po, = 763 Itis W° (0 for no concentrated load) L, = 4 It PD2 = 0 lbs / LZ = 0 It DEFLECTION LIMIT OF LIVE LOAD AL = L / 240 Camber => 0.33 Inch DEFLECTION LIMIT OF LONG-TERM AVcrD+L = L / 180 THE BEAM DESIGN IS ADEQUATE. Does member have continuous lateral support by top diaphragm ? (1= yes, 0= no) 1 Yes Code Duration Factor, G, Condition Code Designation 1 0.90 Dead Load 1 Select Structural, Douglas Fir -Larch 2 1.00 Occupancy Live Load 2 No. 1, Douglas Fir -Larch 3 1.15 Snow Load 3 No. 2, Douglas Fir -Larch 4 1.25 Construction Load 4 Select Structural, Southern Pine 5 1.60 Wind/Earthquake Load 5 No. 1, Southern Pine 6 2.00 Impact Load 6 No. 2, Southern Pine Choice => 5 Wind/Earthquake Load Choice => 3 ANALYSIS DETERMINE REACTIONS, MOMENT, SHEAR wselr w1= 2 , lbs / It RLfl = 0.50 kips Rr-, = 0.50 kips VMax = 0.48 kips, at 7.25 inch from left end MMex = 1.77 ft -kips, at 4.00 It from left end DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES b = 1.50 in E'min = WA E = Ex = 1600 ksi Fb = N/A• d = 7.25 in FbE = N/A Fb = 900 psi F = FbE / Fb' = N/A A = 10.9 int 1 .48 in F„ = 180 psi Fe = 1,728 psi Sx = 13.1 in' RB= N/A E' = 1,600 ksi F„ = 288 psi lE = N/A CD CM Ct Ci CL CF Cv Cc Cr 1.60 1.00 1.00 1.00 1.00 1.20 1.00 1.00 1.00 CHECK BENDING AND SHEAR CAPACITIES fb = MMax / Sx = 1615 psi < Fb = 1728 psi [Satisfactory] f,' = 1.5 VMax / A = 67 psi < F, [Satisfactory] CHECK DEFLECTIONS A a. Ma4 = 0.00 in, at 4.000 ft from left end, < d u = L / 240 [Satisfactory] d (Kcr D+L. Max) = 0.33 in, at 4.000 It from left end < d KaD+L = L / 180 [Satisfactory] Where Ka = 1.50 , (NDS 3.5.2) DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) 4 (1.50, M84 = 0.33 in, at 4.000 ft from left end -9 0, OVA # 00. #001 4).< cab Z4 -Jo Ia:A 0, V -V el 7757#5 -V cot -3 ov q! ON flor Jo 'ON 133HS MfOdt uva Q� der 5833N1 Ifi.IvHhffn IS-- AH0114 NVW3SImll _ . _ _ f _ , - ! ; VISEMAN + I ROHY SSP � .STRUCTURAL ENGINEERS BY !-DUE PROJECT (,1py oilr w CAW-/ SHEET NO. OF I I �Q!%�2! J ► I►.iL n U JOB NO. ----- --- - - ----I- -- ------------ -'- HO�DOb9N � I i j i,� lXi n 5 h k� DEQ I I I ad's wai1� � ,.,.,.w,R •.I e: nib 01 I°`e�Z) 441 I I 7i 33 ' I I I I I i I , ,;,el- .33 WISEMAN+ROHY Structural Engineers PROJECT: La Quinta Cadillac ACI 318-05 Appendix 'Dr Anchorage . ; LOCATION: Shearwali Line 3 Janus 2008 2006 IBC / 2007 CBC / ASCE 7-05 JOB NO: 10-079 12/23/2010 15:20:54 I ) ed edict= 108 In number of anchors = 7 ` spacing = 0 in edge dist (in) Getup of 1 edge dist (in) And— Emedmem Depth= 21.00 in An=na, Type eenro,an,e t for Shea, a,etss: he = 21.00 In (D.8.5 for PIA) ()Cmta(Whist @ N4 9opemeaatr uinfQamnt (a smanet man sq h, = 1 p anchors in tension O vast Installed Anchcr(s) 0 craned mnc Wth n m wgrs bd— and. and edge Diameter (dj = 1 1!4 in Cast 1n Pace AM -Torqued 70 Qadeda ec vein a tar IV W In SIIPAlF0S et 4• max bnwen M%hM+rod Thread Sparing = 7 / Inch OO ns _ Oyes A. (Use) = 0.969 int (area of single anchor) (RD.5.1.2) Csx In Type W4; N/A — for PIA Pas<trweued lmdetoxA,wcrsI ao.on oua Waa,e ra a4a a,paeav ,rip. dbrav ls, na, me.(ACI ala4a oa.q l 1@00 rammed Arwvs 0welded Headed Sedragas b splareme t,-tr ned A.&— & Headed gat (wdm must Steel Grade: A 307 (Gr. A) (H) (Ductile) O tooted amt en = 4 N/A —use for hooked bars fy,= - ksi cracked Cunaete7 Fa. (min.) c 60 ksl Anchors Installed In: orae vain Rearcmmnw¢ far Ra Demnmmtsm: F,,, = 80 list (125 list. 1.9fya max) Q. QW d Camete 0 red Cva,a vee S,�ptet,�pty,eic„� m some area Podoed PN farfara: Condition: A (per 0.4.4) lR O Ga6rE con— e. Pao under .70 No suppdemnary reinncreanva proeoed m adn.e mea Category: 's NIA — for PIA sds"so PaQa: concrete: (per D.3.3.3) Concrete Strength f, = 3.00 ksi m Sheet Concrete two Fom sehmicl OO Hamad weight Carnett Tension 0.75 0.75 Shear 0.85 0.75 OO toed R— c In Sdsrac Delo, CUMsty G D, E a F7 O AdwOmvdghu Concrete H m seismic a m Seismic Design Caagoty A m s7 0 simo-ug mnight Cormete HIN—re Adawaete Edge Agra and Spnmq: Concrete Type Factor = 1.00 minimum edge dist = 3.00 (per 0.8) In (OK) iii Base Mute oesloi7 1 O. ease Place? (Asc 741-0s: as Excepean) (apply to sgrt(fc) Thickness of Concrete = 24.00 In critical edge distance (c„) = 31.50 in I 0Nor ease Plate Concrete Cover Required = 3.00 in !minimum cemerto•cemer spacing= 5 - in (OK) factor for areas of moderate or high seismic risk = 1.00 Maximum Aggregate Size = 1 In • eeanrlp Rao n eoeom (ur galout farce in tetulon): V49M ens Take Stuart eradreeam y,ed, o,ed, 0 Lisa Heavy He, roe at eatam @) Baa detest W.V. late'hem the Sen on .6.29-0-&(C rete, &--A) O U+e Pea with mea: Use O Bolts 130hot from edge take shear Q W Nof,ae D.e.g (armdem Idq rdN. aurid hgve) Plate Area = 4.00 in' (can only use If welded to plate) ;?3.4-Gan:w`ealoahis`7- ZI S x, &C, $OL_ij RESULTS: D.7 INTERACTION OF TENSILE AND SHEAR FORCES D.7.1 Vua < 0.2 Phi Vn Nua / d' Nn = 0.940 < 1.0 OK D.7.2 Nua > 0.2 Phi Nn D.7.3 N/A Tension C„ = 24 in (closest side) Tension C,t = 108 in (smallest perp side to C„) Shear C„ = 108 in (Side In direction of shear) Shear Ca = 24 in (smallest perp side to C„) ` ZAProjects\70110-079 Chevy_Cadillac of La Quinta\CalmkCadillacLLatemilConcrele Anchorage ( Holdown Line 3).xts ) ed edict= 108 In number of anchors = 7 spacing = 0 in edge dist (in) Getup of 1 edge dist (in) '•' Total = 0 in 24 Anchors 24 Shear Loading edge dist = 108 In Up The APPLIED LOADS: Page N„a= 41.00 Vu = 0.00 W number of anchors = 1 spacing = 0 in TOTAL Concrete Width = 48 in (4 ft) Total = 0 in ` ZI S x, &C, $OL_ij RESULTS: D.7 INTERACTION OF TENSILE AND SHEAR FORCES D.7.1 Vua < 0.2 Phi Vn Nua / d' Nn = 0.940 < 1.0 OK D.7.2 Nua > 0.2 Phi Nn D.7.3 N/A Tension C„ = 24 in (closest side) Tension C,t = 108 in (smallest perp side to C„) Shear C„ = 108 in (Side In direction of shear) Shear Ca = 24 in (smallest perp side to C„) ` ZAProjects\70110-079 Chevy_Cadillac of La Quinta\CalmkCadillacLLatemilConcrele Anchorage ( Holdown Line 3).xts Tension(D.5 D.5.1 Steel Strength of Anchor(s) in Tension N. = 58.15 kips N. = nA.. fu, No = 58.1 kips . D.5.2 - Concrete Breakout Strength of Anchor(s) In Tension : N, = 99.10 kips N,, = (AN, / A,.) Wee.. Wed,N Ww W., N° (eq D-5) A. = 3024.00 )n` A- = 3969.00 In` (eq Din f.= 21.00 in (D.52.3) (for eqs D -4-D-11) Nb = 126.50 kips (eq D•7) Nb = 140.08 kips (eq 68) USE MAX Nb =. 140.08 kips - D.52.4 - Modification Factor For Anchor Group Loaded Eccentrically In Tension: e wx-dir = 0.00 e',y41r = 0.00 W_ = .4.000 (eq D•9) W,4 y = 1.000 (eq 0.9) W4+= 1.000 D.525 - Modification Factor for Edge Effects: WmN= 0.929 (eqs D-IO8D-11) D.S2.8 - Modification Factor For Anchors Located Ina Region of Cracking: 1.000 • Note: for post-insalled anchors — see mtle for kc and Wc,N t. D.527 - Modification Factor For Post -Installed Anchors In Untracked Concrete w/o Supplementary Reinforcement to Control Splitting: 1.000 (eqs D-12 & D-13) (Note: rot the same reinforcement as for Condition A or B) , D.S.3 - Pullout Strength of Anchor(s) In Tension N = 99.00 kips Nm = W, Np Np= 8Abrg fC A,, = 4.000 In Np = 98.00 kips / anchor in tension 41y = 1.000 - D.5.4 - Concrete Side -Face Blowout of a Headed Anchor(s) in Tension N N/Aipsi>N.n for an anchor or group of anchors with deep embedment dose to an edge Nm = 160 4, (At)°'°'(f�°'0 (for a single anchor) , DOES NOT APPLY (Cal - 0.4 het) . N. = 420.65 kips Nm = 420.85 kips (modified if C, c 3 x C,r) \ N„y' = (1+ (s/(6 cat)) Nsb' ,� • (for groups of anchors only) ' spacing of outer anchors = 0 in N„a = ingle Anch, kips t TENSION SUMMARY Phi 0.5.1 - Steel Strength of Anchor(s) In Tension N_=; ,.58.15. kips 0.75 D.52 - Concrete Breakout Strength of Anchor(s) In Tension N,°, = 99.10 kips 0.75 D.5.3 - Pullout Strength of Anchor(s) in Tension Np„ = 96.00 kips 0.75 D.5A -Concrete Side -Face Blowout of a Headed Anchor(s) In Tension N = N/A kips 0.75 CONTROLLING TENSION VALUE = 59.15 kips m x SEISMIC RISK FACTOR x CONTROLLING TENSION VALUE= 43.81 kips Z:1Pm)ects\10\10-079 Chevy_CadillaC of La OuintalCalcs\Cadillac\LatemhConcrete Anchorage (Holdown Line 3).xls sJP� 3� !;'rr .; j_ Shear (D.6) •- • I, - D.6.1 - Steel Strength of Anchor(s) In Shear kips ' V„ = 27.91 I V. = n A.. fn. �. I , Vu = 27.91 kips ' D.6.2 - Concrete Breakout Strength of Anchors) in Shear kips V,b = 41.58 V.g = (A.I A,) Wec,v Wed, 'p=v V, c,,' = 16 in modified: influenced by 3 edges Shear Parallel to Edge Left Side RI ht Side ' Av, = 1152.0 in`1152.0 1152.0 In - A— = 1152:0 In' (eq D23) 2592.0 2592.0 In` ' 6= 10.00 In - Vb = 41.58 kips (eq D -24 -or 25) 2410 2416 V,,, = 41.58 1 2147 1 2147 kips D.62.5- Modification Factor For Anchor Group Loaded Eccentrically In Shear. e'v = 0.00 Wcv = 1.000 (eq a26) D.6.2.6 - Modification Factor For Edge Effects: 1.000 (eqs D-27 8 0.28) r D.82.7 - Modification Factor For Anchors Located In a Region of Cracking: 'pav = 1.00 . . D.8.3 - Concrete Pryout Strength of Anchor(s) In Shear - kips (or V„) V,,, = 198.21 ' Vav _ kcp Ncbg . km = 2.0 - J V,= 198.21 kips r SHEAR SUMMARY Phi - D.6.1 - Steel Strength of Anchor(s) in Shear V. _ . 27:et,,,iklps 0.85 • -D.8.2 - Concrete Breakout Strength of Anchor(s) In Shear V„ = 41.58 kips 0.75 D.6.3 - Concrete Pryout Strength of Anchors) In Shear V,,, = 18821 kips 0.75 CONTROLLING SHEAR VALUE = 27.91 kips m x SEISMIC RISK FACTOR x CONTROLLING SHEAR VALUE= 18.14 kips 2:Tmjects%l Mi0-079 Chevy_CadiBac of La OuintalCalcsICadillackLateranConcrete Anchorage( Holdown Line 3).xls RAM BasePlate V1.5 Nowak-Meulmester & Associates Garff Cadillac Service Canopy Base PL S'r/- -3�y Detailed Design Results 12/23/10 16:20 CRITERIA: Analysis Maintain Strain Compatibility Use min. effective plate area for axial only compression load on plate. Design Use LRFD 2nd to check plate bending Max concrete bearing per AISC J9. Anchor Shear Check Per AISC Specifications. Anchor Tension Check Per RISC Specifications. INPUT DATA: Column Column Size ............................. HSS10X10X5/16 Dim: BfTop TfTop BfBot TfBot TW Depth (in) 10.00 0.291 10.00 0.291 0.291 10.00 Base Plate Plate Fy (ksi) ............... . .... 50.000 N (Parallel to Web) (in) ........... ..... 18.000 B (Perpendicular to Web) (in)........... 18.000 Plate Thickness (in) .................... 1.500 Anchor Anchor Size .............................. 7/811 Anchor Area (in'2)...................... 0.601 Anchor Material ......................... Other Anchor Modulus (ksi) ................. 29000.00 Anchor Strength Fu (ksi) 125.00 Thread Included in Shear Plane - Footing Footing Strength f'c (ksi) 3.00 Concrete Modulus (ksi) .............. 3122.02 Dimension (Parallel to web) (ft)........ 10.00 Dimension (Perpendicular to web) (ft)... 10.00 Design Load Building Code: - None - Load combination: 1.00DL + 1.00E Axial (kip) ........................... 10.50 Vx (kip) .............................. 6.33 Mx (kip -ft) ............................ 96.90 RESULTS: Analysis YBar (in) ........ ) Resultant Angle (° ................................ Plate Bending Max bending moment from anchor/s #1 in tension m [N -0.95d]/2.0 (in) ................................. n [B -0.95b]/2.0 (in)...... ......................... Controlling effective width to resist moment (in) ... Controlling plate bending moment (kip -ft) ......•..... PhiMn = (0.9xMn) (kip -ft) ........................... Mu/PhiMn............................................. Thickness Required(in).................:............ Thickness controlled by cantilever action. •Anchors Anchor. X(in) Y(in) V(kip ) T(kip ) Page 1 IN�v�c6s J''Lo ; 5Ef DRIv I nl �` L'%tyGi �d. 102-00 4.10 0.00 4.250 4.250 4.250 6.94 8.96 0.77 1.319 Interaction # X(in) 1 2. RAM Baseplate V1.5 7.000 2 7.000 1- Nowak-Meulmester & Associates 4 -7.000 -7.000 Garff Cadillac 7.000 Detailed Design Results Service Canopy Base PL 12/23/10 16:20 1 -7.00 7.00 1.58 37.00 0.88 2, 7.00 7.00 1.58 0.00 0.07 3 -7.00 -7.00 1.58 37.00 0.88 4 7.00 -7:00 1.58 0.00 0.07 Bearing Eff Area of Support A2 (in -2) ............. :.......... 1296.00 'Plate Area Al (in A2)................................. 324.00 Sqrt(A2/A1).......................................... 2.00 Capacity Bearing Stress (ksi) .................... 3.06 Actual Bearing Stress (ksi) ....................... 2.29 DIAGRAM: # X(in) 1 2. HSS10X10X5/16 7.000 2 7.000 3 4 -7.000 -7.000 # X(in) Y(in) 1 -7.000 7.000 2 7.000 7.000 3 -7.000 -7.000 4 7.000 -7.000 PL 18.00 X 18.00 X 1.50 (in) 4 - 7/8" Other Anchor Bolts www.mitims Company: Specifier: Address: Phone I Fax: E -Mail: Specifier's comments: 1. Input data Anchor type and diameter: Effective embedment depth: Material: Wiseman + Rohy IW Heavy Hex Head ASTM F 1554 GR. 105, 1 314 ha, = 21.000 in. ASTM F 1554 SSP P 3$ PROMS Anchor 2.1.1 Page: 1 Project: La Quinta Cadillac Sub -Project I Pos. No.: Date: 12/23/2010 Proof: design method ACI 318 / CIP Stand-off installation: without clamping (anchor); restraint level (anchor plate): 2.0; e, = 2.000 in.; t = 2.000 in. Hilti Grout: CB -G PG, precision, fro,,,, = 9572 psi Anchor plate: Ix x ly x t = 7.874 x 7.874 x 2.000 in. (Recommended plate thickness: not calculated) Profile no profile Base material: cracked concrete , 3000, f� = 3000 psi; h = 24.000 in. Reinforcement: tension: condition A, shear: condition B; edge reinforcement: none or < No. 4 bar Geometry [in.] • o 0 o N M 0 0 0 v CD Loading [lb, in. -Ib] Governing loads N = 41530 M= 0.000 t--2.000 ee 2.000 h„=21.000 Governing loads (Load case 1) V,, = 0 N 41530 My= 0.000 Vx 1583 VY 0 M. 0.000 MY 0.000 M, 0.000 Eccentricity (structural section) [in.] e, = 0.000; er = 0.000 Seismic loads (categories C, D, E, or F): yes (D.3.3.5) Vx = 1583 Mx = 0.000 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor ( c ) 2003-2009 H!Iti AG, FL -9494 Schaan Hilli is a registered Trademark of Hilti AG, Schaan t www.hilti.us Company: Wiseman + Rohy . Specifier: IW Address: Phone I Fax: - - E -Mail: '2. Load case/Resulting anchor forces Load case (governing): Anchor reactions [ib] Tension force: (+Tension, -Compression) Anchor Tension force Shear force Shear force x Shear force y 1 41522 1583 1583 max. concrete compressive strain [%e]: 0.00 max. concrete compressive stress [psi]: 0 resulting tension force in (x/y)=(0.000/0.000) [lb]: 41522 resulting compression force in (x/y)=(0/0) [lb]: 0 3. Tension load 0 Page: Project: Sub -Project I Pos. No.: Date: Sapp 39 PROMS Anchor 2.1.1 2 La Quinta Cadillac 12/23/2010 Y Ten 5ion x . Proof Load N, [lb] Capacity �N, [lb] Utilization aN [%] = N� /�N, Status Steel Strength* 41530 .178125 80 OK Pullout Strength* 41530 52214 Concrete Breakout Strength** 41530 78796 Concrete Side -Face Blowout, N/A N/A direction— irection—*anchor .anchorhaving the highest loading —anchor group (anchors intension) Steel Strength Equations Nsa = n Ase,N feta ACI 318-08 Eq. (D-3) Nsteel Z Nua ACI 318-08 Eq. (D-1) Variables n Ase,N (in•21 feta [psi] ` 1 1.90 125001. Calculations Nse [lb] t 237500 Results Ns. [lb] �sleel Ns. [lb] Nua [Ib] 237500 0.750 178125 41530 Input data and results must be checked for agreement with the existing conditions and for plausibilityl PROF IS Anchor( c ) 2003-2009 Hilti AG, FL -9494 Schaan Hilli is a registered Trademark of Hitti AG. Schaan 23 OK 80 OK 53 OK N/A N/A 5JPP to Pullout Strength Equations NPN = lllc,p NP ACI 318-08 Eq. (D-14) NP = 8 k,f. ACI 318-08 Eq. (D-15) _ � NPN 2 Nus ACI 318-08 Eq. (D-1) Variables www.hilti.us !1ANc N, = ` AN,) Yed,N We,N kVcp,N Nb PROMS Anchor 2.1.1 AbIg [in .2] Company: Wiseman + Rohy Page: • 3 3000 Specifier: IW Project: La Quinta Cadillac Np [lb] Address: Sub -Project I Pos. No.: 99456 ACI 318-08 Eq. (D-11) Phone I Fax: - - Date: 12/23/2010 ACI 318-08 Eq. (D=13) E -Mail: Oconcrete Oseismic Ononductile Npn [lb] NUe [lb] Pullout Strength Equations NPN = lllc,p NP ACI 318-08 Eq. (D-14) NP = 8 k,f. ACI 318-08 Eq. (D-15) _ � NPN 2 Nus ACI 318-08 Eq. (D-1) Variables !1ANc N, = ` AN,) Yed,N We,N kVcp,N Nb wc,p AbIg [in .2] fc [psi] . 1.000 4.14 3000 Calculations \ Wec,N = (1 + e ) 5 1.0 Np [lb] 3 hsf/ 99456 ACI 318-08 Eq. (D-11) Results WAN = MAX (C 1.5hef) 51.0 ' ACI 318-08 Eq. (D=13) Npn [lb] Oconcrete Oseismic Ononductile Npn [lb] NUe [lb] 99456 0.700 0.750 1.000 52214 41530 Concrete Breakout Strength Equations !1ANc N, = ` AN,) Yed,N We,N kVcp,N Nb ACI 318-08 Eq. (D-4) Nb 2 Nua OANc ACI 318-08 Eq. (D-1) see ACI 318-08, Part D.5.2.1, Fig. RD.5.2.1(b) -=' ANcO = 9 hef ACI 318-08 Eq. (D-6) 1 Wec,N = (1 + e ) 5 1.0 ACI 318-08 Eq. (D-9) 3 hsf/ l)Jed,N = 0.7 + 0.3 � Gamin) 5 1.0 1.5hef ACI 318-08 Eq. (D-11) WAN = MAX (C 1.5hef) 51.0 ' ACI 318-08 Eq. (D=13) Cac Cac f Nb = 16 hBf r' ACI 318-08 Eq. (D-8) Variables hef [In.] ec1 N [in.] ec2 N [in.] Ca min [In.] Yc N Cac [In.) kc 21.000 0.000 0.000 32.000 1.000 - 16 1 • fe [psi] 3000 Calculations ANC [in. 21 ANcO [in. 21 kVecl N XVec2 N YeciN l)Jcp N Nb [lb] 3969.00 3969.00 1.000 1.000 1.000 1.000 140082 Results Nce [lb] concrete seismic �nonductile tb Ncb [lb] NUe [lb] 140082 0.750 0.750 1.000 78796 41530 Input data and results must be checked for agreement with the existing conditions and for plausibilityl PROFIS Anchor (c) 2003-2009 Hilli AG, FL -9494 Schaan Hilli is a registered Trademark of Hilti AG, Schaan www.hilti.us Company: Wiseman + Rohy Page: r Specifier: IW Project: Address: Sub -Project I Pos. No.: Phone I Fax: - - Date: v Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL -9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan PROMS Anchor 2:1.1 4 La Quinta Cadillac 12/23/2010 Status OK OK OK OK' E -Mail: -4. Shear load Proof Load V. [lb] Capacity OV, [lb] Utilization Pv [%] = V./OVa Steel Strength' 1583 74100 2 Steel failure (with lever arm)" 1583 20307 8 Pryout Strength— 1583 147086 1 . Concrete edge failure in direction 1583 38746 4 x+"" a " anchor having the highest loading "anchor group (relevant anchors) Steel Strength Equations Vsa = n 0.6 Ase,v futa ACI 318-08 Eq. (D-20) Vsteel Z Vua ACI 318-08 Eq. (D-1) Variables n Ase,y [in .2] futa (Psi] 1 1.90 125001 Calculations Vs. [lb] 142500 Results Vsa [lb] stael �eb Vs, [lb] • Vua [lb] 142500 0.650 0.800 74100 1583 v Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL -9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan PROMS Anchor 2:1.1 4 La Quinta Cadillac 12/23/2010 Status OK OK OK OK' www.hilti.us Company: Wiseman + Rohy Page: I, Specifier: IW Project: Address: , Sub -Project I Pos. No.: Phone I Fax: - - Date: E -Mail: i ire �2 ELM PROFIS Anchor 2.1:1 5 La Quinta Cadillac 12/23/2010 Steel failure (with lever arm), acc. to ETAG Annex C 4.2.2.4 Equations . Vs = aML Ms bending equation for stand-off b MS = Ms (1 - N°a) resultant flexural resistance of anchor ONsa Ma° _ (1.2) (S) (fu,mia) characteristic flexural resistance of anchor (1 - N.. reduction reduction for tensile force acting simultaneously with a shear force on the anchor ON6a S = "32)3 elastic section modulus of anchor bolt at concrete surface Lb = z + (n)(do) internal lever arm adjusted for spalling of the surface concrete 0VB z Vua ACI 318-08 Eq. (D-2) Variables am fu,mia [psi] Nua [lb] ON.. [lb] z [in.] n do [in.] 2.00 125001 41503 178125 3.000 0.500 1.750 Calculations ( Nusl MS [in.lb] \1 �Nsa/ Ms [in.lb] Ly [in.] 78923.283 0.767 60534.158 3.875 Results VS [Ib]�ateel OV. [lb] Vua [lb] 31242 0.650 20307 1583 0 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor( c) 2003-2009 Hilti AG, FL -9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL -9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan Sirs 43 www.hilti.us.' PROMS Anchor 2.1.1 j Company: Wiseman+ Rohy Page: 6 Specifier: IW Project: La Quinta Cadillac Address: Sub -Project I Pos. No.: Phone I Fax:- - Date: 12/23/2010 E -Mail: Tryout Strength (Concrete Breakout Strength controls) ' Equations 1 VIP — kep L \ANSI kVed,N 4/c,N Ycp,N Ny, , ACI 318-08 Eq. (D-30) / . Vep a V10 ACI 318-08 Eq. (D-1) ANS see ACI 318-08, Part D.5.2.1, Fig. RD.5.2.1(b) I ANO = 9 hef ACI 318-08 Eq. (D-6) ' i. 1 yfeC N — (1 +.2 el s 1.0 ACI 318-08 Eq. (D-9) 3 hef / Wed,N = 0.7 + 0.3 r Ca,m!n / 5 1.0 ACI 318-08 Eq. (D-11) `1.5hef WwN = MAX(CJmin 1.5hefl 5 1.0 ACI 318-08 Eq. (D-13) Coe Car f _ Nb = 16 x -,Ff hBrf' ACI 318-08 Eq. (D-8) Variables kep `hef [in.] ect N (In.) ec2 N [In•] Ca min [In•] 41c N Cac [in.] I kc 2 21.000 0.000 0.000 32.000 1.000 16 fc [psi] 1 3000 .Calculations ".1 ANc [in.2] ANcO [in.2] 41ec1,N Yec2,N WedN WcPN Nb [lb] ^ 3969.00 3969.00 1.000 1.000 1.000 1.000 140082 Results V, [lb] concrete seismic Onanductiie Vw [lb] V„a [lb] 280164 0.700 0.750 1.000 147086 1583 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL -9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan 4 5. Combined tension and shear loads ON = N./ON. R„ = VAVe Utilization ON, [%] Status 0.795 0.078 Rai = ON + av �= 1 r 5/3 70 OK r, Input data and results must be checked for agreement with the existing conditions and for plausibilityl PROF IS Anchor( c ) 2003-2009 Hilti AG, FL -9494 Schaan Hilli is a registered Trademark of Hilti AG, Schaan www"hilti.us + PROFIS Anchor 2.1.1 Company: Wiseman + Rohy Page: 7 �- Specifier: IW Project: La Quinta Cadillac Address: Sub -Project I Pos. No.: . Phone I Fax: - I - Date: 12/23/2010 E -Mail: I Concrete edge failure in direction x+ 7 Equations Vcb = (A c ) gred,V yfc,V Wh,V ytparallel,v Vb ACI 318-08 Eq. (D-21) . Vcb a Vua ACI 318-08 Eq. (D-1) Avc see ACI 318-08, Part D.6.2.1, Fig. RD.6.2.1(b) Avco= 4.5 cat ACI 318-08 Eq. (D-23) 1 ylae,v + 2e� 5 1.0 ACI 318-08 Eq. (D-26)' \1 3cat Yed,V = 0,7 + 0.3(1 Scat) 51.0 ACI 318-08 Eq. (D-28) 1.5cat Wh v = Z 1.0 , ha ACI 318-08 Eq. (D-29)' " o.z \ Vb = (7 (d / 1 X cel . a / ACI 318-08 EQ. (D-24) . Variables . cat [in.] cat [in.] ecv [in.] yrcv ha [in.] le [In.] da [in.] 32.000 32.000 0.000 1.000 24.000 14.000 1 1.750 f. [psi]yl parallel V r 3000 1.000 Calculations _.� r Avc [in.2] Avco [in•Z] y/ec V r Wed V y/h V Vb [lb] 1920.00 460$.00 1.000 0.900 1.414 139161 Results Vcb [lb] concrete seismic �nonductile Vcb [lb] Vu. [lb] 73802 0.700 0.750 1.000 38746 1583 5. Combined tension and shear loads ON = N./ON. R„ = VAVe Utilization ON, [%] Status 0.795 0.078 Rai = ON + av �= 1 r 5/3 70 OK r, Input data and results must be checked for agreement with the existing conditions and for plausibilityl PROF IS Anchor( c ) 2003-2009 Hilti AG, FL -9494 Schaan Hilli is a registered Trademark of Hilti AG, Schaan www.hilti.us Company: Wiseman +Rohy Specifier: IW Address: Phone 1 Fax: - E -Mail: 6. Warnings �''PP `K• PROMS Anchor 2.1.1 Page: 8 Project: La Quinta Cadillac Sub -Project I Pos. No.: Date: 12/23/2010 • Condition A applies when supplementary reinforcement is used. The m factor is increased for non -steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to ACI 318, Part D.4.4(c). • ACI 318 does not specifically address anchor bending when a stand-off condition exists. PROFIS Anchor calculates a shear load corresponding to anchor bending when stand-off exists and includes the results as a shear Design Strength! • Checking the transfer of loads into the base material and the shear resistance are required in accordance with AC1318 or the relevant standard! • The anchor plate is assumed to be sufficiently stiff in order to be not deformed when subjected to the actions! • An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-08 Appendix D, Part D.3.3.4 that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case, Part D.3.3.5 requires that the attachment that the anchor is connecting to the structure shall be designed so that the attachment will undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. In lieu of D.3.3.4 and D.3.3.5, the minimum design strength of the anchors shall be multiplied by a reduction factor per D.3.3.6. An alternative anchor design approach to ACI 318-08, Part D.3.3 is given in IBC 2009, Section 1908.1.9. This approach contains "Exceptions" that may be applied in lieu of D.3.3 for applications involving "non-structural components" as defined in ASCE 7, Section 13.4.2. An alternative anchor design approach to ACI 318-08, Part D.3.3 is given in.IBC 2009, Section 1908.1.9. This approach contains "Exceptions" that maybe applied in lieu of D.3.3 for applications involving "wall out -of -plane forces" as defined in ASCE 7, Equation 12.11-1 or Equation 12.14-10. • It is the responsibility of the user when inputing values for brittle reduction factors (�. J different than those noted in ACI 318-08, Part D.3.3.6 to determine if they are consistent with the design provisions of ACI 318-08, ASCE 7 and the governing building code. Selection of �, = 1.0 as a means of satisfying ACI 318-08, Part D.3.3.5 assumes the user has designed the attachment that the anchor is connecting to undergo ductile yielding at a force level — the design strengths calculated per ACI 318-08, Part D.3.3.3. Fastening meets the design criteria! Input data and results must be checked for agreement with the existing conditions and for plausibility) PROF IS Anchor( c ) 2003-2009 Hilti AG, FL -9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan -3 WISEMAN+ROHY Structural Engineers ACI 318-05 Appendix 1D' Anchorage Lary 2008 (2006 IBC / 2007 CBC / ASCE 7 kN6v�HBD::t�.i,VUtVC / Ands: Emedmem Depth = j 10.00 In hr= In (D.8.5 for PIA) Shear Ca,smallest 0 anchors in tension Diairneler (d in Thread Spec, = 8 / iyNi A„ (use) = 0.808 int (area fVsingle anchor) (RD.S.' 4 WA - for PIA I&nEw Dl.mgMioMbobY.p.bgaay.' lM tYn NDlala•m DAAII Steel Grade: A 325 (H) (Ductile) Ice = - ksi F..(min.)= 120 ksi f F.; = 120 ksi (125 W. 1.9fya ma Condition: A Category: 3 WA - for PIA Shear 1 0.8.5 0.75 HIM—AD- Me Edge Dltmnce aM Spadnp: - minimum edge dist = critical edge distance (lee) = minimum center -to -center spacing= OU., Waw H.NutazBmmm DI1semate.1tharea: ' 4 In (OK) (per D.4.4) 3'E2 PROJECT: HDU -14 LOCATION: Must be in 2-4" wide GB w/ 12" extension past sheathing atend JOB NO: use 3x3 olate 12/23/2010 1a �1•�n RESULTS: D.7 INTERACTION OF TENSILE AND SHEAR FORCES D.7.1 Vua < 0.2 Phi Vn D.7.2 Nua > 0.2 Phi Nn D.7.3 WA .toadcrownjroc W page i Nua / ty Nn = 0.991 < 1.0 OK n TerWon C„ = 14 I (closest side) edge dist = 14 in Md -Type number of anchors = 1 RtlnfpRmerc for Sherr Dena: Shear Ca,smallest Cast N BarO) O No SuPPlef -" fleinfec.Yad (..01er 0- 04) edge O Post Insmlhd And -(t) edgedist (in) @ 0Wked COne MN 04 M large bee— ardw and e p Total = 0 in caa In Pla¢Annlw T0gMd7 14 OCmd<ed—Men 04 or haW IN STIRWM at 4 -mal ben— and- aead edl cid @. 41 Reinforcemm must be at side edge also to qualify (cat - 1.5 her) Loading O yes edge dist = 1000 in Up The APP DS: mt Installed Manor Type Cast In Type Page lkneM Arrd,aaTe,xm a� r4Ndled An -s NO O Welded headed Sind Da e—ent-CardmBed Md- spacing = 0 @Headed Bch (Wth nt) TOTAL Concrete Width = 28 in (2.33 fll Total = 0 _ O ltadod Bolt %= 4 WA - use for hooked bars Daded concrete? Anchors Installed IV' Cfadmn Canoft 1 Graa Pad? F No Grind Pad I/ aeaecaned rar Pn oeemm�ade,: . @ SuPPlematety fdrda ark oNded In failure O lfnt+Bded concrete S&.fl Factor: O G an Pad under Haze I p mea Ono AaPla c- y ematammt P eAd a n gnu e a ea I Cana: (per D.3.3.) Concrete Strength r, a 3.00 ksi r lead Foe Seamk7 @) load Foe SeMd' In selsMc DmO CAaegoty C. D, E M F) @ NemN Weight concrete O MAWftMot Camee I OLead NOTft- selsmkaazsntic SeiOdP CAtegaeyAaB7 0smW00•M0Mear-ere Concrete Type Factor=CIF t- laze Plate Deslq�a O Bina Plate? (AM 341.ps: 8.5 Fstpllm) TNCkrless of ConCrBiO =QNOrB-Pate ✓ Concrete CoverRequired=Maximum )In Aggregate Size factor for areas of moderate or high seismic risk = 0.75 WNN Bda Tram Slrar7 @ We; dMest m edge tale sh- Gredtllam Shrar Uek: ( Use S.M. 0.6.2 Sh- alede(Comae Brealmet) - O No faNrst ham edge tom them O DO NOT use D.6.2 (wflMet I.g fend. avdd hilum) (can only use If welded to plate) J7 di i'we;dotthl3T-' RESULTS: D.7 INTERACTION OF TENSILE AND SHEAR FORCES D.7.1 Vua < 0.2 Phi Vn D.7.2 Nua > 0.2 Phi Nn D.7.3 WA .toadcrownjroc W page i Nua / ty Nn = 0.991 < 1.0 OK n TerWon C„ = 14 I (closest side) edge dist = 14 in smallest perp side to C„) number of anchors = 1 side In direction of shear) U14ln Shear Ca,smallest perp side to Cal) spacing = 0 in edge dist (in) Group of 1 edgedist (in) Total = 0 in 14 Anchors 14 Shear cid Loading edge dist = 1000 in Up The APP DS: Page N. = 0.895 ps a� V. = 0.00 kips number of anchors = 1 spacing = 0 in TOTAL Concrete Width = 28 in (2.33 fll Total = 0 in RESULTS: D.7 INTERACTION OF TENSILE AND SHEAR FORCES D.7.1 Vua < 0.2 Phi Vn D.7.2 Nua > 0.2 Phi Nn D.7.3 WA .toadcrownjroc W page i Nua / ty Nn = 0.991 < 1.0 OK n TerWon C„ = 14 I (closest side) Tension C,� smallest perp side to C„) Shear C„ side In direction of shear) U14ln Shear Ca,smallest perp side to Cal) C:\D000ME- 11AMARTI-1\LOCALS-1\Temp\Temporary Directory 1 for HDU Anchor Calcs.ziP\HDU Anchor Caics\HDU14 - Anchors - ACI 318.05 - App D.xis i Tension (D.5) -- 0.5.1 - Steel Strength of Anchors) In Tension No = 72.69 kips N. = nA.. f,,, . N„ = 72.7 kips D.5.2 • Concrete Break-out Strength of Anchor(s) in Tension N, 37.48 kips N,pp=(A.l Arj WeC,N Wed,N War+ 41, Np (eq 0.5) A.= 784.00 In`. - Aran = 784.00 In` (eq 136) W.= 9.33 in (D.5.2.3) (for eqs D-4-D-11) ' Nb = 37.48 kips (eq 0.7) Nb = - kips (eq 0.8) USE MAX Nb = 97.48 kips, ' D.52.4 - Modlficatlon Factor For Anchor Group Loaded Eccentrically In Tension: , e'wx-dir= 0.00 - e'N-y-dir= 0.00 - WeN.? 1.000 (eq 0.9) W,aNy= 1.000 (eq 0.9) 1 Ws:.N= 1.000 D.5.2.5 - Modification Factor For Edge Effects: , W.as= 1.000 (egs0.1080.11) .. 0.5.2.6 - Modification Factor For Anchors Located Ina Region of Cracking: - Warr- 1.000 ' Note: for post-insalled anchors - see code for kc and Wc,N • D.5.2.7 - Modification Factor For Post-Installed Anchors In Untracked Concrete w/o Supplementary Reinforcement to Control Splitting: Wmm = 1.000 (eqs 0.12 8 0.13) (Note: not the same reinforcement as for Condition A or 8) D.5.3 • Pullout Strength of Anchor(s) In Tension N = 197.15 kips Np,=Wap Np . Np= 8Abrg fc Amp = 8.215 in` . Np = 197.15 kips / anchor in tension Wap- 1.000 0.5.4 • Concrete SI do-Face Blowout of a Headed Anchor(s) in Tension N - WA psro boo for an anchor or group of anchors with deep embedment dose to an edge ' Nm = 160 c„ (Amo)o.a (r.f-1 (for a single anchor) DOES NOT APPLY (Cat > 0.4 hep Nm = 351.04 kips . N. = 175.82 kips (modilled if C,z < 3 x C„) N&u = (1. (sl(6 cal)) Nsb' - (for groups of anchors only) spadng of outer anchors = 0 in ' N,pp' = Single Anchor kips - TENSION SUMMARY Phi 0.5.1 - Steel Strength of Anchor(s) in Tension N„ = 72.69 kips 0.75 D.5.2 - Concrete Break-out Strength of Anchor(s) In Tension N,m, = .37:48: kips 0.75 D.5.3 -Pullout Strength of Ariehors) In Tension N,,, = 197.15 kips 0.75 D.5.4 - Concrete Side -Face Blowout of a Headed Anchor(s) In Tension N, = WA kips 0.75 CONTROLLING TENSION VALUE = 37.48 kips • m x SEISMIC RISK FACTOR x CONTROLLING TENSION VALUE = 21.08 kips i I C:IDOCUME-11AMARTI-1LLOCALS-1%Temp%Temporary Directory 1 for HDU Ancor Calcs.zip1HDU Anchor CalcsWDU14 -Anchors - ACI 318-05 - App D.xls 1 a C:ID000ME-1VIMARTI-11LOCALS-I\Temp\Temporary Directory 1 for HDU Anchor Calcs.zipWDU Anchor Calcs1HOUi4 - Anchors - ACI 316-015 - App D.xls Shear (D.6) i �•' y 0.6.1 -Steel Strength of Anchorls) in Shear % kips V.. = 43.81 t Vo = n Ar fm . i V. = 43.61 kips .. h i 0.62 - Concrete Breakout Strength of Anchor(s) In. Shear kips V. = 19.88 Vmy = (Avc f Avm) Wec0.v Wed, "Wav V. q,' = 9.333333333 in modified: influenced by 3 edges " Shear Parallel to Edna - Left Side RI ht Side " Avc = 392.0 inc 392.0 392.0 In . Avm = 392.0 in` (eq D23) r, 882.0 862.0 in` - I. _ .8.00 In Vb = 16.57 ' kips (eq D-24 or 25) 983 963 Vme = 19.88 1027 1027 kips ' .D.8.2.5 - Modification Factor For Anchor Group Loaded Eccentrically in Shear. i e'v = 0.00 Wov = 1.000 (eq D-26) . D.62.6 - Modification Factor For Edge Effects: " W.av = 1.000 lens D-27 & D-28) ' D.62.7 - Modification Factor For Anchors Located In a Region of Cracking: Wcv= 1.20 - D.6.3 - Concrete Pryout Strength of Anchors) In Shear kips (or Vc,) V_ = 74.96 4 , Vao=ktq Nrbg _ � Um = 2.0 I V_ = 74.96 kips SHEAR SUMMARY Phi - Steel Strength of Anchor(s) In Shear . Vc - 43.61 kips 0.65 l ID.8.1 D.8.2 - Concrete Breakout Strength of Anchors) In Shear V. _ "19:88. kips 0.75 D.6.3 - Concrete Pryout Strength of Anchor(s) in Shear Vc - 74.96 kips 0.75 - CONTROLLING SHEAR VALUE - 19.88 kips ' m x SEISMIC RISK FACTOR x CONTROLLING SHEAR VALUE - 11.18 kips 1 a C:ID000ME-1VIMARTI-11LOCALS-I\Temp\Temporary Directory 1 for HDU Anchor Calcs.zipWDU Anchor Calcs1HOUi4 - Anchors - ACI 316-015 - App D.xls SHINION3 ivanDnais AHOY --FNVW3$IM