Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
10-1282 (CSCS) Structural Calcs
WISEMAN+RQHY STRUCTURAL, ENGINEERS 0 STRUCTURAL CALCULATIONS FOR ...4 GARFF CADILLAC BUILDING •fit �- �"' R.Ecl- Y BY. t 9915 Mira Mesa Blvd. WISEMAN+RQHY STRUCTURAL, ENGINEERS 0 STRUCTURAL CALCULATIONS FOR ...4 GARFF CADILLAC BUILDING November, 2010 W + R JOB #10-079 Q�OFESS/py ��Q ��J • q0 <ey W N 341 K, Exp. 12-31- It o QCT Suite 200 WRENGINEERS.COM U 61= F' I, C� CITY OF LA QUINTA BUILDING & SAFETY DEPT. APPROVE® FOR CONSTRUCTION DArE Of 0(Q�Zoi� i I of -2-- San San Diego, CA 92131 FAX. (858) 536-5163 R.Ecl- NOV 222010 BY. t 9915 Mira Mesa Blvd. TEL. (858) 536-5166 November, 2010 W + R JOB #10-079 Q�OFESS/py ��Q ��J • q0 <ey W N 341 K, Exp. 12-31- It o QCT Suite 200 WRENGINEERS.COM U 61= F' I, C� CITY OF LA QUINTA BUILDING & SAFETY DEPT. APPROVE® FOR CONSTRUCTION DArE Of 0(Q�Zoi� i I of -2-- San San Diego, CA 92131 FAX. (858) 536-5163 0 . ` . � � , Quinta ,�U � __ / � ^ ^ ^ Table of Contents Design Criteria , 1-14 / Gravity � � � �15'58 � � . Lateral ' Anak/ss ' 59-71 � , Shear Walls & Grade BK4,s 72-89 Drags . 90-101 ' Service Canopy' 102-1I9 ' Wind Bracing/King 5tuds/Misc. 120'134 WISEMAN-+ ROHM STRUCTURAL ENGINEERS BY W BD DATE 10/28/2010 PROJECT Garff Cadillac Building SHEET NO. 1 OF 3 BASIS OF DESIGN JOB NO. 10-079 -GE NERAL Governing Building Code(s): 2007 CBC (2006 International Building Code) Building Type: Cadillac: Wood Studs Bearing / Sheary Walls, Wood Framed Roof. Design Live Loads: All Loads Reducible U.O.N. Roof: Flat 20 psf Floor: N/A 0 psf psf psf Seismic Design Criteria: Wind Design Criteria: Site Class: D Exposure: C SDs: 1 Basic Wind Speed MSM 85 mph SDI: 0.6 Importance Factor (IW): 1 Occupancy Category: II MFRS - Method 2 - Analytical Procedure Seismic Design Category: D C & C — Method 2 - Analytical Procedure . Importance Factor (IE): 1 R: 6.5 For Lightweight Wood Shearwalls ASCE 7 Table 12.2-1, Item A.13 flo: 2 f20: 3 (For Cantilevered Columns) Cd: 4 GEOTECHNICAL Shallow Foundations Min. Width of Footing: 12 in. Cont. Footings Min. Width of Footing: 24 in. Pad Footings Minimum Footing Depth: 12 in. Cont. & Pad (Below Lowest Adjacent Finish Grade) Allowable Bearing Pressure: 1,800 psf (Cont. Footings) Allowable Bearing Pressure:. 2,000 psf (Pad Footings) Allowable Bearing Pressure increases up to 2,500 psf Max.: 250 psf (For Each Additional 6 in. of Depth) 250 psf (For Each Additional 1 ft. of Width) Increases Allowed forTransitory Loading: 133% Wind or Seismic Coefficient of Friction: 0.45 Passive: 300 pcf (Up to Max. of 3,350 psf) Increases Allowed forTransitory Loading: 133% Wind or Seismic ' � ' STRUCTURAL ENGINEERS� `BYWBD DATE 10/28/�010 PROJECT Garff Cadillac Building SHEET NO.'BASIS OF DESIGN JOB NO.Reinforcin4l Bars: 2a op _ 10-O7Q UeformeUBaro:^ ASTM A615 Grade: 60 (#3) ^ 60 h#5& ' . VVa|dobI6 Deformed Bars: ASTM A706 Grade: 60 - ' . Welds for Rebar: ' E70XX Electrodes (Grade 4Oonly) E80XX Electrodes (Grade GO) ' Welded Wire Fabric: ASTM A185 Min Lap 12 in. . . . . . . Concrete Strengths at 28 Days: ' '' Footings: 3000 psi Sp. ' Rao�? YES ` . Grade Beams: 3000 i YES . ` : . 3000 poi ' NO WISEMAN + ROHY ' STRUCTURAL ENGINEERS BY WBD DATE 10/28/2010 PROJECT Garff Cadillac Building SHEET NO. 3 OF 3 l J BASIS OF DESIGN JOB NO. 10-079 i STEEL Structural Steel: Wide Flange Shapes:. ASTM A 992 Fy= 50 ksi ` Hollow Structural Section (Square): ASTM A 500 (gr. B) Fy= 46 ksi ri Hollow Structural Section (Round): ASTM A 500 (gr. B) Fy= 42 ksi . Pipes: ASTM A 53 (gr. B) Fy= 36 ksi Plates: ASTM A 36 (Except @ Frames) Fy= 36 ksi Machine Bolts: ASTM A 307 ` High Strength Bolts: ASTM A 325N Anchor Bolts: ASTM A 307 High Strength Anchor Bolts: ASTM A A449 Welds: E70XX Electrodes Metal Deck: Sheet Steel Per: ASTM A 446 Galvanizing Per: ASTM A 525 Class G90 Welds: E70XX Electrodes Light Gage Steel Framing - Sheet Steel Per: ASTM A 653 Grade 50 (50 KSI) 12, 14 and 16 ga. Members Sheet Steel Per: ASTM A 653 Grade 33 (33 KSI) 18 and 20 ga. Members ICC # ER -4943 Welds: E70XX Electrodes Conterminous 48 States . 2,003 NEHRP Seismic Design Provisions Latitude = 33.707 Longitude -116.283 Spectral Response Accelerations Ss and S1 Ss and S1'= :Mapped Spectral Acceleration Values Site Class B - Fa = 1.0 ;Fv = 1.0 Data are based on a '0'.009999999776482582 deg grid spacing Period Sa (sec) (g) 0.2 1.500 (Ss, Site Class B) 1.-0 0.600 (S1, Site Class B) Conterminous 48 States 2003 NEHRP Seismic Design Provisions Latitude = 33.707 .Longitude -116.283 Spectral Response Accelerations SMs and SM1 SMs = Fa x Ss and SM1 =-Fv x S1 Site Class D - Fa = 1.0 ,Fv = 1.5 Period Sa (sec)_ (g) 0.2 1.500 (SMs, Site Class D) 1.0 0.900 (SM1, Site Class D) Conterminous 48 States 2003 NEHRP Seismic Design Provisions Latitude = 33.707 Longitude -116.283 Design Spectral Response Accelerations SDs and SD1 SDs = 2/3 x SMs and SD1 = 2/3 x SM1 Site Class D - Fa = 1.0 ,Fv = 1.5 Period Sa (sec) (g) 0.2 1.000 (SDs, Site Class D) 1.0 0.600 (SD1, Site Class D) WISEMAN+ROHY Structural Engineers PROJECT: 10.00 SEISMIC BASE SHEAR (ASCE 7-05 11.4) LOCATION: Wood Shearwalls January 2008 (2006 IBC / 2007 CBC / ASCE 7-05) JOB NO: 10-079 10/28/2010 08:44:34 2006 IBC SEISMIC EQUATIONS ' Base Shear: Occupancy Category = ii 2006 IBC Table 1604.5 (i,ii,iii,or iv) Importance Factor 00 = 1.00 ASCE 7-05 Table 11.5-1 Site Class= D (From Soils Engineer or'D' if not known) TL = , 8 sec ASCE 7-05 Figure 22-15 Ss = 1.5 g Sj = 0.6 g -- R = 6.5 ASCE 7-05 Table 12.2-1 Maximum Height = 20 feet Number of Stories = 1 Fa = 1.00 ASCE 7-05 Table 11.4-1 F„= 1.50 ASCE 7-05 Table 11.4-2 SMs = 1.500 ASCE 7-05 Eq 11.4-1 SMS = 0.900 • ASCE 7-05 Eq 11.4-2 SDS = 1.000 ASCE 7-05 Eq 11.4-3 Sol = 0.600 ASCE 7-05 Eq 11.4-4 Short Period Seismic Design Category = D ASCE 7-05 Table 11.6-1 1 Sec Period Seismic Design Category = D ASCE 7-05 Table 11.6-2 Cu = 1.4 CT= 0.020 x = 0.75 Ta = 0.19 Sec ASCE 7-05 Eq 12.8-7 Ta = - Sec ASCE 7-05 Eq 12.8-8 O Steel Moment Frame O concrete Moment Frame O Eccentrically Braced Steel Frame All Other Structural Systems Use Category: D ASCE 7-05 Table 12.8-2 USE Ta = 0.19 sec Vu = 0.154 x W (basic) Eq 12,8-2 Vu = 0.488 . x W (max) (0.01 min) (Used) Eq 12.8-3 & 5 Vu = -- x W (max) (Not Used) Eq 12.8-4 & 5 Vu = 0.046 x W (min) (for S, - 0.6g only) Eq 12.8-6 Vu= 0.154 xW V=V„/1.4= 0.1099 xW Bearing WallOut-Of-Plane and Anchorage Forces: Out -of -Plane Wall Forces % Fpu= 0.400 x W - Fp = Fp„ / 1.4 = 0.286 x W ` Anchorage Force for Concrete & Masonry Walls to a Flexible Diaphragm Fps 0.800 x- W Fp = Fpu / 1.4 = 0.571 x W Minimum Anchorage Forces Fpu min= 400 plf F _.� p min =Fpu / 1.4 = 286 Of I I* WISEMAN+ROHY Structural Engineers PROJECT: La Quinta Cadillac SEISMIC BASE SHEAR (ASCE 7-05 11.4) LOCATION: Service Reception Cant. Col. January 2008 (2006 IBC / 2007 CBC / ASCE 7-05) JOB NO: 10-079 11/1/2010 09:06:24 2006 IBC SEISMIC EQUATIONS Base Shear: , Occupancy Category = ii 2006 IBC Table 1604.5 (i,ii,iii,or iv) Importance Factor 00 = 1.00 ASCE 7-05 Table 11.5-1 Site Class = D (From Soils Engineer or'D' if not known) TL = 8 sec ASCE 7-05 Figure 22-15 Ss = 1.5 g S, = 0.6 g _. R = 2.5 ASCE 7-05 Table 12.2-1 Maximum Height = 20 feet Number of Stories = 1 Fa = 1.00 ASCE 7-05 Table 11.4-1 F„= 1.50 ASCE 7-05 Table 11.4-2 SMs = 1.500 ASCE 7-05 Eq 11.4-1 SM, = 0.900 ASCE 7-05 Eq 11.4-2 SDs = 1.000 ASCE 7-05 Eq 11.4-3 Sol = 0.600 ASCE 7-05 Eq 11.4-4 Short Period Seismic Design Category = D ASCE 7-05 Table 11.6-1 1 Sec Period Seismic Design Category = D ASCE 7-05 Table 11.6-2 C„ = L4 Cf = 0.020 x = 0.75 Ta = .0.19 Sec ASCE 7-05 Eq 12.8-7 Ta = - Sec ASCE 7-05 Eq 12.8-8 O Steel Moment Frame O Concrete Moment Frame O Eccentrically Braced Steel Frame * All Other Structural Systems Use Category: D ASCE 7-05 Table 12.8-2 USE Ta = - 0.19 sec Vu = 0.400 x W (basic) Eq 12.8-2 Vu = 1.269 x W '(max) (0.01 min) (Used) Eq 12.8-3 & 5 Vu= - x W (max) (Not Used) Eq 12.8-4 & 5 Vu = 0.120 x W (min) (for S, - 0.6g only) Eq 12.8-6 Vu = 0.400 x W V = Vu / 1.4 = 0.2857" x W Bearing Wall Out -Of -Plane and Anchorage forces: Out -of -Plane Wall Forces Fpu 0.400 x W Fp = Fpu / 1.4 = 0.286. x W Anchorage Force for Concrete & Masonry Walls to a Flexible Diaphragm Fpu= •0.800 x W - Fp= Fpu/ 1.4 = 0.571 x W Minimum Anchorage Forces �' Fpu min= 400 plf F - F / 1.4 = 286 Ofp min - pu WISEMAN + ROHM Structural Engineers PROJECT: La Quinta Cadillac • _= Design Loads== LOCATION: Cadillac Bldg JOB NO: 10-079 Date: 11/1/2010 Roof Loads @ Cadillac Showroom: Material Suh-Purlins Girders Saismir 4 -Ply Cap Sht (w/o Gravel) 2.0 2.0 -. 2.0 Re -Roof 2.0 2.0 2.0 1/2" Ply 1.7 1.7 1.7 2x6 Sub -Purlins @ 24" o.c. 1.0 1.0 1.0 Insulation 1.5 1.5 1.5 Sprinklers 1.5 1.5 1.5 Mech.&Elect. 1.0 1.5 1.5 GLB - See Calc 2.0 T -Bar System 1.5 1.5 1.5 Misc. 0.8 1.3 1.3 Partitions Total 13.0 14.0 21.0 psf Live Loads (Reducible): 20 psf 2x8 Walls w/ Stone Veneer: Material 2x8 Studs @ 16" ox. 1.9 15/32 Ply or OSB 1.2 5/8 Gyp 2.5 Insulation (Rigid) 1.5 Limestone Veneer System 4.0 Misc. - 0.9 Insulation 1.5 1.5 1.5 Sprinklers 1.5 1.5 1.5 Mech.&Elect. 1.0 1.0 1.0 14" I -Joists @ 24" o.c. 1.9 1.9 1.9 i otai Iz.0 pst Roof Loads @ Cadillac Servic Canopy:. `Material Iists Girdar Saicmir 4 -Ply Cap Sht (w/o Gravel) 2.0 2.0 2.0 Re -Roof 2.0 2.0 2.0 1/2" Ply 1.7 1.7 1.7 Insulation 1.5 1.5 1.5 Sprinklers 1.5 1.5 1.5 Mech.&Elect. 1.0 1.0 1.0 14" I -Joists @ 24" o.c. 1.9 1.9 1.9 GLB - In Calcs In Calcs Exterior T -Bar Ceiling 1.5 1.5 1.5 Misc. 0.9 0.9 0.9 Total 14.0 14.0 14.0 psf Live Loads (Reducible): 20 psf I SHaaMloN:a_IVH=rl.aLs AHOU -t- NIVWISIjW- 9-Y I oa� -313 _3151- 5 -_7 1541 21 1 I TLo - 0-1 -ON sop 3^11 30 —,OmlzaHsn�--U— - .qjzarods— �00/ ZLva x1a SHaaMloN:a_IVH=rl.aLs AHOU -t- NIVWISIjW- "Ian Wilson Ilk;From: Burt Hanada [bhanada@la-quinta.org] Sent: Monday, September 27, 2010 10:18. AM ?o: Ian Wilson Ian, The City of La Quinta currently enforces the 2007 California Building Code and there are no City amendments that affect ASCE 7-05..I have attached some specific general design information.that might be of interest to you. If you require additional information, The Building Codes are in Title 8 of the Municipal Code and can be found in our City website at http://gcode.us/codes/laquinta/ • 2007 California Building Code (based on the 2006 IBC; effective 01/01/2008) . 2007 California Mechanical Code (based on the 2006 UMC; effective 01/01/2008) • 2007 California Plumbing Code (based on the 2006 UPC; effective 01/01/2008) 2007 California Electrical Code (based on the 2005 NEC; effective 01/01/2008) • 2008 California Energy Code (effective 01/01/2009) Other: In addition, for structures in La Quinta, design for the following requirements:. • Seismic Design Category: "D" Basic Wind Speed: 85 mph (3 -second gust), Exposure "C" Climate Zone: 15 Burt T Hanada City of La Quinta —Building & Safety Dept. f Sr. Plans Examiner 78-495 Calle Tampico La Quinta,. CA 92253 Ph: 760-777-7023 (T) 760-777-7011 (F) bhanada(cbla-au inta.org From:.Ian Wilson[mailto:iwilson@wrengineers.com] Sent: Monday, September 27, 2010 9:41 AM To: Building Web Email Subject: IBC/ASCE Amendments To Whom It May Concern, I am a project engineer in San Diego.and am starting the design process for the new Chevrolet/Cadillac of La Quinta there Auto Center off the 111, and need to know if there are any City amendments or additions to the IBC or ASCE 7-05 (ie. Basic Wind -Speed, factors of safety, etc.). Any information on this would be greatly appreciated, please see contact info below. v Thanks, Ian J. Wilson Project Engineer (D. August 20, 2010 - 5 - Project No. 544-101.1.3 10-08-190 2007 CBC SEISMIC DESIGN PARAMETERS Sladden has reviewed the 2007. California. Building Code (CBC) and summarized the current seismic design parameters for the proposed structure. The seismic design category for a structure may be determined in accordance with Section 1613 of the 2007 CBC or ASCF7. According to the 2007 CBC, Site Class D may be used to estimate design seismic loading for the proposed structures. The period of the structures should be less than 'A second. This assumption should be verified by the project structural engineer. The 2007 CBC Seismic Design Parameters are summarized below. Occupancy Category (Table 1604.5): H Site Class (Table 1613.5.5): 0' Ss (Figure 1613.5.1):1.500g S1 (Figure 16135.1): 0.600g' Fa (Table 1613.5.3(1)):1.0 Fv (Table 1613.5.3(2)):1.5 Sms (Equation 16-37 ;Fa X Ssj):1.500g Sml (Equation 16-38 (Fv X Si)). 0.900g SDs (Equation 16-39 {2/3 X SmsJ): 1.000g Sg1(Equation 16-40 (2/3 X 5m1)): 0.6008 Seismic,Design Category: D i GEOLOGIC HAZARDS The subject site is located in an active seismic zone and will likely experience strong seismic shaking during the design life of the proposed project. In general, the intensity of ground shaking will depend on several factors including: the distance to the earthquake focus, the earthquake magnitude, the response characteristics of the underlying materials, and the quality and type of construction. Geologic hazards and their relationship to the site are discussed below, I- Surface Rupture. Surface rupture is expected to occur along preexisting, known active fault traces. However, surface rupture could potentially splay or.stcp from known active faults or rupture along unidentified traces. Based on our review of Rogers (1965), Jennings (1994), Hart and Bryant (1997), and RCLi5 (2010), no known faults arc currently mapped immediately adjacent to the site. in addition, no signs of active surface faulting were observed during our review of non -stereo digitized photographs of the site and site vicinity (Google, 2010, Terra Server 2002). Finally, no signs of active surface fault rupture or secondary seismic effects (lateral spreading, lurching etc.) were identified on-site during our field investigation. 'Therefore, it is our opinion that risks associated with primary surface ground rupture should be considered "low". H. Ground Shaking. The site has been subjected to past ground shaking by faults that traverse through the region. Strong seismic shaking from nearby active faults is expected to produce strong seismic shaking during the design life of the proposed project. A probabilistic approach was employed to the estimate the peak ground acceleration (a..) that could be experienced at the site. Based on the USGS Probabilistic Hazard Curves (USGS, 2009) the site could be subjected to ground motions on the order of 0.568. The peak ground acceleration at the site is judged to have a 475 year return period and a 10 percent chance of exceedence in 50 years. Sladden Engineering ' August 20, 2010 • -8- EARTHWORK AND GRADING Project No. 544-10113 10-08-190 All earthwork including excavation, backfill and preparation of the subgrade soil, should be performed in accordance with the geotechnical recommendations presented in this report and portions of the local regulatory requirements, as applicable. All earthwork should be performed under the observation and testing of a qualified soil engineer. The following geotechnical engineering recommendations for the proposed project are based on observations from the field investigation program, laboratory testing and geotechnical engineering analysis. a, Stripping. Areas to be graded should be cleared of any existing pavement, utilities, vegetation, associated root systems, and debris. All areas scheduled to receive fill should be cleared of old fills and any irreducible matter. The strippings should be removed off site, or stockpiled for later use in landscape areas. Voids left by removals should be properly backfilled in accordance with the compaction recommendations of this report. b. Preparation of the Building Areas. In order to achieve a firm and unyielding bearing surface, we recommend overexcavation and recompaction throughout the building areas. All native low density near surface soil should be removed .to a depth of at least 3 feet below existing grade or 3 feet below the bottom of the footings, whichever is deeper. Remedial grading should extend laterally, a minimum of. five feet beyond the building perimeter where possible, The exposed surface should then be scarified, moisture conditioned to within two percent of optimum moisture content, and compacted to at least 90 percent relative compaction. Testing of the native soil within the excavation bottoms should be performed.during grading to verify adequacy. C. Compaction. Soil to be used as engineered fill should be free of organic material, debris, and other deleterious substances, and should not contain irreducible matter greater than three inches in maximum dimension. All fill materials should be placed in thin lifts, not exceeding six inches in their loose state. if import fill is required, the material should be of a low to non -expansive nature -and should meet the following criteria: Plastic Index Less than 12 Liquid Limit Less than 35 Percent Soil Passing #200 Sieve Between 15% and 35% Maximum Aggregate Size 3 inches The subgrade and all fills should be compacted with acceptable compaction equipment, to at least 90 percent relative compaction. The bottom of the exposed subgrade should be observed by a representative of Sladden Engineering prior to fill placement. Compaction testing should be performed on all lifts in order to ensure proper placement of the fill materials. Table 2 provides a summary. of the excavation and compaction recommendations. Sladden Engineering It August20, 2010 r -y- Table 2 SUMMARY OF RECOMMENDATIONS lZ Project No. 544-10113 10-08-190 *Remedial Grading Excavation and recompaction within the building envelope and extending laterally for 5 feet beyond the building limits and to a minimum of 3 feet below existing grade or 3 feet below the bottom of the footin , whichever.is deeper. Native / Import Engineered Fill Place in thin lifts not exceeding 6 inches in the loose state, compact to a minimum of 90 percent relative compaction within 2 percent of the optimum moisture content. Pavement Areas and Concrete Flatwork Compact .the top 12 inches to at least 95 percent compaction within 2 percent of optimum moisture content. "Actual depth may vary and should be determined by a representative of Sladden Engineering in the field during construction. . d. hri k�gc and Subsid .nc .. Volumetric shrinkage of the material that is excavated and replaced as controlled compacted fill should be anticipated. We estimate that this shrinkage could vary from 10 to 20 percent Subsidence of the surfaces that are scarified and compacted should be �l between 1 and 2 tenths of a foot. This. will vary depending upon the type of equipment used, the moisture content of the soil at the1ime of grading and the actual degree of compaction attained. FOUNDATION CONVENTIONAL SPREAD.FOOTINGS 4 Load bearing'.walls may be'supported on continuous spread footings and interior columns may be supported on isolated pad footings. All footings should be founded upon properly engineered fill and should have a minimum embedment depth of 12 inches measured from the lowest adjacent finished grade. Continuous and isolated footings should have a minimum width of 12 inches and 24 inches respectively. Continuous and isolated footings placed on such materials may be designed using an allowable (net) bearing pressure of 1800 and 2000 pounds per square foot (psf) respectively. Allowable increases of 250 psf for each additional 1 foot in width and 250 psf for each additional 6 inches in depth may be utilized, if desired. The maximum allowable bearing pressure should be 2,500 psf. The maximum bearing value applies to combined dead and sustained live loads. The allowable bearing pressure may, be increased by one-third when considering transient live loads, including seismic and wind forces. All footings should be reinforced in accordance with the project structural engineer's recommendations. Based on the allowable bearing pressures recommended above, total settlement of the shallow footings are anticipated to be less than one -inch, provided foundation preparations conform to the recommendations described in this report. Differential settlement is anticipated to be approximately half the total settlement for similarly loaded footings spaced up to approximately 40 feet apart. Lateral load resistance for the spread footings will be developed by passive soils pressure against the sides of the footings below grade and by friction acting at the base of the concrete footings bearing on compacted fill. An allowable passive pressure of 300 psf per foot of depth may be used for- design purposes. Sladden Engineering • August 20, 2010 _10- Project No. 544-10113 10-08-190 An allowable coefficient of friction 0.45 may be used for dead and sustained live loads to .compute the frictional resistance of the footing placed directly on compacted fill. Under seismic and wind loading conditions, the passive pressure and frictional resistance may be increased by one-third. All footing excavations should be observed by a representative of the project geotechnical consultant to verify adequate embedment depths prior to placement of forms, steel reinforcement or concrete. The excavations should be trimmed neat, level and square. All loose, disturbed, sloughed or moisture - softened soils and/or any construction debris should be removed prior to concrete placement. Excavated soil generated from footing and/or utility trenches should not be stockpiled within the building envelope or in areas of exterior concrete flatwork. SLABS -ON -GRADE In order to reduce the risk of cracking and settlement, concrete slabs -on -grade must be placed on properly compacted fill as outlined in the previous sections. The slab subgrades should remain near optimum moisture content and should not be permitted to dry. Prior to concrete pour, all slab subgrades should be firm and unyielding. Disturbed soils should be removed and then replaced and compacted to a minimum of 90 percent relative compaction. Slab .thickness and reinforcement should be determined by the structural engineer, We recommend a minimum slab thickness of 4.0 inches. All slab reinforcement should be supported on concrete chairs to ensure that reinforcement is placed at slab mid -height.. Slabs with moisture sensitive surfaces should -be underlain with a moisture vapor retarder consisting of a polyvinyl chloride membrane such as 10 -mil .Visqueen, or equivalent. All laps within the membrane should be sealed and at least 2 inches of clean sand should be placed over the membrane to promote uniform curing of the concrete. To reduce the potential for punctures, the membrane should be placed on a pad surface that has been graded smooth without any sharp protrusions. If a smooth surface cannot be achieved by grading, consideration should be given to placing a 1 -inch thick leveling course of sand across the pad surface prior to placement of the membrane. PRELIMINARY PAVEMENT DESIGN Asphalt concrete pavements should be designed in accordance with Topic 608 of the Caltrans Highway Design Manual based on R -Value and Traffic Index. Design R -Value is assumed to be 50. On-site and any imported soils should be tested for R -Value. Actual R -Value of subgrade soil should be consistent with the pavement design. For Pavement design, Traffic Indices (TI) of 5.0 and b.5 were used for the light duty and heavy duty pavements, respective)y. We assumed Asphalt Concrete (AC) over Class 11 Aggregate Base (AB). The preliminary flexible pavement layer thickness is as follows: RECOMMENDED ASPHALT PAVEMENT SECTION LAYER THICKNESS Pavement Material Recommended Thickness TI=3.0 TI-b.S As halt Concrete Surface Course 3 inches 4 inches Class 11 Aggregate Base Course 4 inches 6 inches Compacted Subgrade Soil 12 inches 1.2 inches Sladden Engineering (3 • August 20,.201.0 Project No. 544-10113 10-08-190 Asphalt concrete should .conform to Sections 203 and 302 of the latest edition of the Standard Specifications for Public Works Constriction ("Greenbook"). Class II aggregate base should conform to Section 26 of the Caltrans Standard Specifications, lat6t edition. The aggregate base course should be compacted to at least 95 percent of the maximum dry density as determined by ASTM Method D 1557. SOLUBLE SULFATES Use T -& .LL Soluble sulfate concentrations were determined to be "negligible" (less th1,000 ppm) based upon our laboratory testing. Based upon our preliminary testing the use of Type V and/or sulfate resistant mix design should no be necessary. However, the soil should to be retested for, soluble sulfate concentration . after grading and compaction work is completed. Soluble sulfate content of the surface soil should be reevaluated after grading and appropriate concrete mix designs should be established based upon post - grading test results. UTILITY TRENCH BACKFILL All utility trench backfill should be compacted to a minimum relative compaction of 90 percent. Trench y backfill materials should be placed in lifts no greater than six inches in their loose state, moisture conditioned (or air-dried) as necessary to achieve near optimum moisture conditions, and then mechanically compacted in place to a minimum relative compaction of 90 percent. A representative of the project soil engineer should test the -backfill to verify adequate compaction: EXTERIOR CONCRETE FLATWORK To minimize cracking of .concrete flatwork, the subgrade soil below concrete flatwork areas .should first be compacted to a minimum relative compaction of 90 percent. A representative of the project geotechnical consultant should observe and verify the density and moisture content of the soil prior to concrete placement. DRAINAGE All final grades should be provided with positive -gradients away from foundations to provide rapid— removal of surface water runoff to an adequate discharge point. No water should be allowed to be pond on or immediately adjacent to foundation elements. In order to reduce water infiltration into the subgrade soil, surface water should be directed away from building foundations to an adequate discharge point. Subgrade drainage should be evaluated upon completion of the precise grading plans and in the field during grading. Sladden Engineering �` `.� � `` z �®SCALE: I/8° = I'-0' WISEMAN+ROHY Structural Engineers PROJECT: _= TYPICAL POST/STUD DESIGN TABLE April 2006 JOB NO.: Bearing for Critical Deflection Structure? Based on 2006 IBC (2005 NDS) Cd=1.25 0 Yes X INDICATES BRACED IN WEAK DIRECTION No ALL VALUES BASED ON DOUGLAS FIR -LARCH (NDS 4.2.6) Q POST SIZE Depth in Width in AREA IN z Allowable Sill Brng k ALLOWABLE LOAD (KIPS) -UNSUPPORTED HEIGHT IN FT LOAD. TABLE. 125% <_ 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2X4 1.5 3.5 5.25 3.28 .92 v~, 2X4 X 3.5 1.5 5:25. 3.28_. MR,380 . 3:12': ::2.54`, ; 2.09 .. 1:73: 146,v -1:24 ; 1.06'92 . 0z 2X4 1.5 3.5 5.25 3.28 1 14 2X4 X 3.5 1.5 5.25. . 3.28 5°37 417 29 ;:2.65: . 2.18-.: ' 1 8:1„' `J:54., 1..14. . 2X6 1.5 5.5 8.25 5.16 1.68 cli 2X6 X 5.5 1:5 . 8:25 5.16:.t2 43 M& „9 68 HOME- M710 SOME '0124 4.54. 3,97 1 3.49. 3.,10 , 2.76._ :2.47., 2;23'.,L .2.02 .1.84 1.68 z 2X8 1.5 7.25 10.875 6.80 2.21 2X8 X 7.25. 1.5 ' :10:875 6.80 17 53 16 74 15 74 14, °56 1�3t25 11 9110 63 � 9 46 8 42 r . ,t7�'S2 �` 6:73: 6.05..:. 5:46. 4:94- . 4.49... .,4.,10 3.76 3X4 2.5 3.5 8.75 5.47 5.02 3.77 2.92 2.33 1.90 3X4 X . 3.5 .. 2.5 8:75.. 5.47E819y4 6`955f49 .:.4.,42 .3.63 _ 3.02,,;, 2:56:: -2.19 _ -1.90- :. . . 3X6 2.5 5.5 13.75 8.59 7.86 5.91 4.58 3.65 2.98 3X6 X . 5.5 . 2.5 -, 13.75. 8.59 22;7{1 _201` 1x7 45 14 12 69. ",10�84� 9 33 .8.08.' A . 7.06 6.21 , , 5.50... 4.90: , _ 4:39 , . 3 :96::. 3.58...3:26 2.98.. _ 3X8 2.5 7.25 18.125 11.33 10.32 7.76 6.03 4.81 3.92 O z 3X8 X 7.25 2.5 18.125 11.33-0_ 32y29 30 74 28 78 X26 4 23'�9r7 23145 19 ©:7 6 93 g1�5?04k' 1':3 40^ 411@0A .:,10.76 9.70.- 8:78:,, 1-98 7.28, 6.67 . 4X4 3.5 3.5 12.25 7.66 Fff,-Z,,5225RM2 F7686.19 5.08 4.23 3.58 3.07 2.65 4X6 3.5 5.5 19.25. 12.03s1,9¢ 1518 12.02 9.69, 7.96 ,. .6:64 5.62,' 4.81.., 4:17 4X6 X 5.5 3.5 19.25 12.03 3y1792823 '4x4 208 77� 1h5_1,8� x,3.0 11.31 9.88 8.69 7.69 6.86 6.15 5.54 5.02 4.56 4.17 4X8 3.5 7.25!': ;; 25.375. 15.86:,,, 25319?87 15!T6.-,,-1,2:73.. ;10..46,: 8 74 7 „40 .::.6.34. .5:.4.9.; 4X8 X 7.25 3.5 25.375 15.865 21 X43 03 : 40 237 06 X335.5 0 03:26 7,© 23 7 21V06 1g8j?$Wp 16 77 15.06 13.58 12.29 11.18 10.20 9.34 6X6 5:5 5.5: 30.25 18.91 X33 45x3142 28 91269 23?�1�8 203 .,17.95: ,:15.80: 13.95 12..37 .1.1.02.::9;87: _ 8.88.: .8 02.::::; 7.28:;. 6:64 _6.08. a 0 6X8 5.5 7.5 41.25 25.78 ;45"62 42585 139x43 1351 UM ' 31. 12 86 24.48 21.54 19.02 16.86 15.03 ;48"74748 4594 440"447 39"1!8 3536 X33 45 3058€ 278.6 25:34..23.06, MUft � 51 1 [4774;9] X43,2 W35181 F34 44 30.44 26.89 23.81 21.16 18.88 13.46 12.11 10.94 9.93 9.05 8.28 ::21.01-; :19:,17_. 17.54. 16:09. 14.80. 16.93 15.25 13.79 12.53 11.42 10.46 6X8 'X ..:7.5 5.5 41,:25. 25.78 6X10 5.5 9.5 52.25 32.66 z 6X10 X 9.5 . 5.5_.- : 52.25 32.66:. 58 69 57 87 1.561981 559n�5,'fij -1 53..09 X51 MR, A931 +47,f07� "�4�4�55� �42+�© "M 51y.330 �34yM 32,07_ ;29:85. 27.78 8X8 7.5 7.5 56.25 35.16 X66 42 o- 64 75 62 64 :60;`05 56 96 3A43 149;59 4..5x62 1L -4-7Q h37 99% 34.56 31.44 28.64 26.15 23.92 21.95 20.19 m 2006 - Wood Post Cd=125.xis WISEMAN+ROHY Structural Engineers PROJECT: E: _= TYPICAL POST/STUD DESIGN TABLE April 2006 JOB NO.: Based on 2006 IBC (2005 NDS) Cd=1.00 X INDICATES BRACED IN WEAK DIRECTION ALL VALUES BASED ON DOUGLAS FIR -LARCH Bearing for Critical Deflection Structure? O Yes *No (NDS 4.2.6) r - J 2006 - Wood Post Cd=100.xls n('DI Depth in Width in AREA IN 2 AllowableLLOWABLE Sill Brng k LOAD KIPS -UNSUPPORTED HEIGHT IN FT LOAD TABLE ;100% ": 6 7 8 9 10 11 12 13 14 15 . 16 17 18 • 19 20 21 22 2X4 1.5 3.5 5.25 3.28 .91 u) 2X4 X 3.5 1.5 - .. 5.25 3.28...-. „3r4Q: 2.90 2:42. 2.01 1.69 1.43 1.22 1.05 91 2X4 1.5 3.5 5.25 3.28 113 zz 2X4 X 3.5 1.5 5.25 3.28..3.21 2:60: 2;15 1.80:' 1-.52,- .1.31 1.13 2X6 1.5 5.5 8.25 5.16 1.67 N zz 2X6 X 5.5 1..5.. 8.25 5.16 X1,0,550; 9,"fib R8�71s769 671583 x° :5,07:'. :4.43.. 3.89. . 3.43:: . 3.05. . 2:73 -...24.5 ..•.2.21 2.00 1.82. 1.67 12X8 1 1.5 7.25 10.875 6.80 2.19 2X8 X1 7.25 1.5 10:875 6.8014351,3`88 1,32812155 y1�1,70•, 14Q7{7 9.8;1M'S88'.BOOrT7261 a' 6.50;: 5.88::,:5:32;... 4:84._ 4.41'..4,04 3.71 3X4 2.5 3.5 8.75 5.47 4.91 3.71 2.89 2..31 1.88 3X4 X 3.5 2.5, 8.75r 5.47.a8x4;3'669 ,5.35. ...4.34 3.58` ,2.99, 2.54;: _;,2.18 1.88 3X6 2.5 5.5 13.75 8.59 7.68 5.82 4.53 3.62 2.96 3X6 X 5.5 2.5 13.75 8.59 1i9!27 1c 6V 7,,kUQ� 1;3E86 12 03 10 42a j9[04 .. 7.88 6.92 6._1.0: 5:42 ..4.84. :.4.34 .3..92.. 3.55. 3.24 2.96 _ 3X8 2.5 7.25. 18.125 11.33 10.06 7.64 5.96 4.77 3.89 0 z 3X8 X 7.25 2.5 18.125 11.33. ;26 42554 $2F4�37 X22 9m4 X21291950 17q 69 X15 951°434 )1289„ 160 10.42:..: 9.48:. 8.61 Z.85 7:18. ;,..6.58 4X4 3.5 3.5 12.25 7.66 E1� i�g,% 937 7.49 6.08 5.01 4.19 3.55 3.05 2.64 4X6 3.5 5.5 : 19.25. 12.03..+. 18.27 z4�58 :11:70 ;: 9.51 .,:7.84: , ., "6•.57:. : 5 57_; . 4.78.: 4.14. 4X6 X 5.5 3.5 19.25 12.03 `�26T97 473 2212 E19:140 -16 84 458 1L2 66 11.04 9.68 8.55 2370 1� 903 15.3.1; 12.47;.1.0:30. '8:63.•. 7.32;', ; 6.29: :5.45.:_ 7.59 6.78 6.08 5.49 4.98 4.53 4.14 4X8 3.5 7.25 25.375 15.86 4X8 X 7.25 3.5 25.375 15.86 w37 05 3 76 J_3,41�1-1 32I RM Z7L_ �24�7;;6 2�-1-31 L20L077 18 X27 5 0_1 E26 38 X24 8523 Q22i00 1;892 _16.9.1; 15.07 .13.43 ::11.99 j 16LTM 14.66 13.27 12.06 10.99 10.05 9.22 10.74_ 9.66:.:8:72.:.7.90. .7:1.8. ; 6:56 6.01 6X6 5.5 5.5 30.25 18.91. 6X8 5.5 7.5 41.25 25.783T6235'97 33388 f31�39 OM 258801 23.06 20.55 18.32 16.35 14.65 13.17 11.89 10.77 9.80 8.95 8.20 00 17 6X8 X 7.5 5.5:. _41.25 25.78 X39 47 38 7>31 X36 68 LM? 33 73 31 927 ��29�94 ; 2788' 2$80' 44 46, 42 40,,501 �370T}3 .�4�$,j11 31.62 28.46 25.50 22.82 20.44 23.77. 21:86. .20:08. 18.46. 16.98 15.64 14.44 18.35 16.53 14.94 13.55 12.34 11.27 10.33 6X10 5.5 9.5 52.25 32.66 z 6X10 X E7.5 5.5.:_ 52:25 32.66:. ` n370; 3530 X33 4 .31.62 .29 78 27.98 26.26 j479 x467, 446�194.55n44,47 386 X42°8; 4,1fi140�24 38 7 53 83u 15-20 ,151T'56 50 02 481{Z X45 99 43?53<� 40183, 38 ©1 35p18 32.42 29.81 27.39 25.17 23.15 21.33 19.69 8X8 7.5 1 56.25 35.16 r - J 2006 - Wood Post Cd=100.xls WISEMAN+ROHY Structural Engineers PROJECT: _= JOIST AND BEAM DESIGN TABLE __ LOCATION: Jan 2008 2006 IBC / 2007 CBC JOB NO: 05-000 Based On : 2006 IBC (2005 NDS) Cr = 1.15 (repetitive member factor) F„ = 180 psi (for Light Framing and Joists & Planks) Wood : Douglas-Fir/Larch E = 1,700,000 psi (#1 Light Framing) F„ = 170 psi (for Beams & Stringers and Posts & Timbers) E = 1,600,000 psi (#2 Joists & Planks, #1 Beams & Stringers, #1 Posts &.Timbers) * Flat Use Member Design 2006 - Joists(lb-ft) DFL.xIs APPROVED: (Lb -ft & Lb) -- FLOOR -- Cd= 1.00 (Lb -ft & Lb) -- ROOF -- Cd= 1.25 MEMBER: SIZE: (35 PCF) PROPERTIES: BENDING STRESS: Nominal Grade Type B (in) D (in) PLF Alin ^2) S(in^3) I(in^4) Fb(psi) CF Fb x CF Mmax Mmax(rep) Vmax Mmax Mmax(rep) Vmax 2x4 #1 LF 1.5 3.50 1.3 5.3 3.1 5.4 1000 1.50 1500 383 440 630 479 550 788 2x6 #2 JP 1.5 5.50 2.0 8.3 7.6 20.8 900 1.30 1170 737 848 990 922. 1060 •1238 2x8 #2 JP 1.5 7.25 2.6 10.9 13.1 47.6 900 1.20 1080 1183 1360 1305 1478 1700 1631 2x10 #2 JP 1.5 9.25 3.4 13.9 21.4 98.9 900 1.10 990 1765 2029 1665 2206 2537. 2081 2x12 #2 JP 1.5 11.25 4.1 16.9 31.6 178.0 900 1.00 900 2373 2729 2025 2966 3411 2531 2x14 #2 JP 1.5 13.25 4.8 19.9 43.9 290.8 900 0.90 810 2963 3407 2385 3703 4259 2981 44 #1 LF 3.5 3.50 3.0 12.3 7.1 12.5 1000 1.50 1500 893 1027 1470 1117 1284 1838 46 #1 JP 3.5 5.50 4.7 19.3 17.6 48.5 1000 1.30 1300 1912 2198 2310 2390 2748 2888 48 #1 JP 3.5 7.25 6.2 25.4 30.7 111.1 1000 1.30 1300 3322 3820 3045 4152 4775 3806 400 #1 JP 3.5 9.25 7.9 32.4 49.9 230.8 1000 1.20 1200 4991 5740 3885 6239 7175 - 4856 412 #1 JP 3.5 11.25 9.6 39.4 73.8 415.3 1000 1.10 1100 6768 7783 4725 8459 9728 5906 414 #1 JP 3.5 13.25 11.3 46.4 102.4 678.5 1000 1.00 1000 8534 9814 5565 10668 12268 6956 6x4* #1 JP 5.5 3.50 4.7 19.3 11.2 19.7 1000 1.05 1050 983 (not allowed) 2310 1228 (not allowed) 2888 6x6 #1 PT 5.5 5.50 7.4 30.3 27.7 76.3 1200 1.00 1200 2773 (not allowed) 3428 3466 (not allowed) 4285 6x8 #1 PT 5.5 7.50 10.0 41.3 51.6 193.4 1200 1.00 1200' 5156 (not allowed) 4675 6445 (not allowed) 5844 6x10 #1 BS 5.5 9.50 12.7 52.3 82.7 393.0 1350 1.00 1350 9307 (not allowed) 5922 11634 (not allowed) 7402 6x12 #1 BS 5.5 11.50 15.4 63.3 121.2 697.1 1350 1.00 1350 13638 (not allowed) 7168 17048 (not allowed) 8960 * Flat Use Member Design 2006 - Joists(lb-ft) DFL.xIs APPROVED: i WISENIAN. +IRONY - - I• • � --- ; STRURURAL'ENGINEERS - BY I DATE, 1� /U' PROJECT (: t�.iYn7rP,-�C i SHEET N0. 'OF JOB NO. kill o., i 6xr$ F 6`� I I I I VJKV. 1 , . i i USV �� 3�yx `A - =z'9 : I �� =4 1✓ I ISzV SSi 9IT. pu pvl 1A 4IV- I I ' I G6l, i Q� 1'O�D .� i I . � i i , j I I i i ----------- Inn H2 by Weyerhaeuser � � .5'1/2" x 5 1/2`1.6E Solid Sawn Douglas Fir #1 TJ -Beam 6.36 Serial Number: ier:2 1v»rz010410:13PM THIS PRODUCT 'MEETS ..OR EXCEEDS THE SET DESIGN geI Engine Version: 6.35.0 CONTROLS FOR THE APPLICATION AND LOADS LISTED Member Slope: OM2 Roof SlopeOM2 All dimensions are horizontal. LOADS: Analysis is for a Drop Beam Member. Tributary Load Width: 1' Primary Load Group - Roof (psf): 0.0 Live at 125 % duration, 0.0 Dead Vertical Loads: Type Class Live Dead Location Application Comment Uniform(plf) Roof(1.25) 60.0 144.0 0 To T Adds To Point(lbs) Roof(1.25) 0 • 100 4'6" - SUPPORTS: j• Input Bearing Width Length 1 Stud wall 3.50" 1.50" 2 Stud wall 3.50" 1❑, 2❑ b 71 i All dimensions are horizontal. LOADS: Analysis is for a Drop Beam Member. Tributary Load Width: 1' Primary Load Group - Roof (psf): 0.0 Live at 125 % duration, 0.0 Dead Vertical Loads: Type Class Live Dead Location Application Comment Uniform(plf) Roof(1.25) 60.0 144.0 0 To T Adds To Point(lbs) Roof(1.25) 0 • 100 4'6" - SUPPORTS: Other Input Bearing Width Length 1 Stud wall 3.50" 1.50" 2 Stud wall 3.50" 1.50" ESIGN CONTROLS: j Maximum Shear (lbs) -769 Moment (Ft -Lbs) , 1293 Live Load Defl (in) Total Load Defl (in) Product Diagram is Conceptual. Vertical Reactions (Ibs) Detail Other Live/Dead/Uplift/Total 210 / 564 / 0 / 774 By Others None 210 / 594 / 0 / 804 By Others None Design Control Result Location -481 3085 Passed (16%) . Rt. end Span 1 under Dead loading 961 2808 Passed (34%) MID Span 1 under Dead loading 0.022 0.222 Passed (U999+) MID Span 1 under Roof loading 0.085 0.333 Passed (U945) MID Span 1 under Roof loading -Deflection Criteria: Specified(LL:U360,TL:U240). -Bracing(Lu): All compression edges (top and bottom) must be braced at T o/c unless detailed otherwise. Proper attachment and positioning of lateral bracing is required to achieve member stability. -The allowable shear stress (Fv) has not been increased due to the potential of splits, checks and shakes. See NDS for applicability of increase. -Analysis based on vertical loads only and assumes structural supports as noted in the input. Axial loads are not considered in this analysis. ADDITIONAL NOTES: -IMPORTANT! The analysis presented is output from software developed by iLevel®. iLevel® warrants the sizing of its products by this software will be accomplished in accordance with iLevel® product design criteria and code accepted design values. The specific product application, input design loads, and stated dimensions have been provided by the software user. This output has not been reviewed by an iLevel® Associate. -Not all products are readily available. Check with your supplier or iLevel® technical representative for product availability. . -THIS ANALYSIS FOR iLevel® PRODUCTS ONLY! PRODUCT SUBSTITUTION VOIDS THIS ANALYSIS. Solid sawn lumber analysis is in accordance with 2001 NDS methodology. -Allowable Stress Design methodology was used for Building Code IBC analyzing the solid sawn lumber material listed above. PROJECT INFORMATION: La Quinta Cadillac Copyright 0 2009 by iLevel°, Federal Way, WA. OPERATOR INFORMATION: Ian Wilson Wiseman + Rohy 9915 Mira Mesa Blvd. Suite 200 San Diego, CA 92131 Phone: (858) 536-5166 iwilson@wrengineers.com I J � r H2 by Weyerhaeuser 5'1 /2"-.x:5 ,1/2"-1.6E'Solid Sawn Douglas 'Fir #1 TJ-Beam 6.36 Serial Number: ser:2 ""'rz°'°4:,0:,3PM THIS PRODUCT MEETS OR EXCEEDS THE SET DESIGN e 2 Engine Version: 6.35.0 CONTROLS FOR THE APPLICATION AND LOADS LISTED Load Group: Primary Load Group 6' 8.00" Max. Vertical Reaction Total (lbs) 774 804 Max. Vertical Reaction Live (lbs) 210 210 Required Bearing Length in 1.50(W) 1.50(W) Max. Unbraced Length (in) 84 Loading on all spans, LDF = 0.90 , 1.0 Dead .Shear at Support (lbs) 451 -481 Max Shear at Support (lbs) 539 -569 Shear Within Span (lbs) =216 Member Reaction (lbs) 539 569 Support Reaction (lbs) 564 594 Moment (Ft-Lbs) 961 Loading on all spans, LDF = 1.25 1.0 Dead + 1.0 Floor + 1.0 Roof Shear at Support (lbs) 616 -646 Max Shear at Support (lbs) 739 -769 Shear within Span (lbs) -276 Member Reaction (lbs) 739 769 Support Reaction (lbs) 774 804 Moment (Ft.-Lbs) 1293 Live Deflection (in) 0.022 Total Deflection (in) 0.085 4 PROJECT INFORMATION: La Quinta Cadillac Copyright ° 2009 by il,eyel°, Federal Way, WA. s OPERATOR INFORMATION: Ian Wilson Wiseman + Rohy 9915 Mira Mesa Blvd. Suite 200 San Diego, CA 92131 Phone : (858) 536-5166 iwilson@wrengineers.com . 0 • • ZZ Standard Structures Inc. COMPANY PROJECT P.O. Box K Santa Rosa, Ca. 95402 (877)980-7732 Fax:(707)838-8377 www.ssispec.com Nov. 17, 2010 16:36 1 H3.wwb Design Check Calculation Sheet SSI Sizer 2.01 LOADS ( lbs, psf, or plf ) Name Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Dead Full UDL 144.0 plf Load2 Dead Point 3300 4.00 lbs Load3 Non -Snow Point 3200 4.00 lbs Load4 Dead Point 3300 12.00 lbs Loads Non -Snow Point 3200 12.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 0' 14'-6" Dead 4003 4665 Live 2869 3531 Total 6872 8216 Bearing: Re 'd Len. 1.57 1.87_ Douglas Fir 24F -V4 6-3/4x10-1/2" Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2001 Criterion Analysis Value Desiqn Value Analysis/Design .Shear fv = 171 Fv' = 331 fv/Fv' = 51.69 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.25 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.25 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Shear LC #2 = D+C, V = 8216, V design = 8090 lbs Bending(+): LC #2 = D+C, M = 26334 lbs -ft Deflection: LC #2 = D+C EI= 1172e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ASCE 7-02 DESIGN NOTES: 1. Please verify that the deflection limits are appropriate for your application. 2. Glulam values are for materials conforming to APA Y117 and manufactured in accordance with ANSI/AITC A190.1-1992. 3. This analysis is for Standard Structures Inc (SSI) Glued -Laminated beams furnished by SSI only. Product substitutions will void this analysis. 4. Additional bracing may be required at cantilevers, at unsupported edge and should be reviewed for uplift loading. 5. The product listed above must be supported on a member with adequate bearing and nailing. 6. The specific product application loads, spans, and spacings have been provided by others and have not been reviewed by Standard Structures, Inc. for accuracy. 7. GLULAM: bxd = actual breadth x actual depth. 8. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 9. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). (�) Bending(+) fb = 2548 Fb' = 3000 fb/Fb' = 84.93 Dead Defl'n 0.51 = L/344 Live Defl'n 0.37 = L/468 0.73 = L/240 51.26 Total Defl'n 0.88 = L/196 0.97 = L/180 90.74 z3 - H1 by Weyerhaeuser 5.1/2"x,5 1/2"-1:6E'Solid'Sawn Douglas Fir#1 TJ-BearrO6.36 Serial Number: Ojer: 2 11/1720105:01:56PM THIS PRODUCT MEETS OR EXCEEDS THE SET DESIGN ge 1 Engine Version: 6.35.0 CONTROL'S FOR THE APPLICATION AND LOADS LISTED Member Slope: OM2 Roof Slope0M2 0 Q All dimensions are horizontal. Product Diagram is Conceptual. LOADS: Analysis is for a Drop Beam Member. Tributary Load Width: 1' Primary Load Group - Roof (psf): 0.0 Live at 125 % duration, 0.0 Dead Vertical Loads: .Type Class Live Dead, Location Application Comment Uniform(plf) Roof(1.25) 50.0 177.0 0 To 10' 6" Adds To SUPPORTS: Input Bearing Vertical Reactions (Ibs) Detail Other Width Length Live/Dead/Upliftrrotal 1 Stud wall 3.50" 1.50" 263 / 967 / 0 / 1229 By Others None 2 Stud wall 3.50" 1.50" - 263 / 967 / 0 / 1229 By Others None DESIGN CONTROLS - Maximum Design Control Result Location hear (Ibs) 1190 -829 3085 Passed (27%) Rt. end Span 1 under Dead loading .Moment (Ft -Lbs) 3026 2380 2808 Passed (85%) MID Span 1 under Dead loading Live Load Defl (in) 0.099, 0.339 Passed (U999+) MID Span 1 under Roof loading Total Load Defl (in) 0.461 0.508 Passed (U264) MID Span 1 under Roof loading -Deflection Criteria: Specified(LL:U360,TL:U240). -Bracing(Lu): All compression edges (top and bottom) must be braced at 10'6" o/c unless detailed otherwise. Proper attachment and positioning of lateral bracing is required to achieve member stability. -The allowable shear stress (Fv) has not been increased due to the potential of splits, checks and shakes. See NDS for applicability of increase. -Analysis based on vertical loads only and assumes structural supports as noted in the input. Axial loads are not considered in this analysis. ADDITIONAL NOTES: -IMPORTANT! The analysis presented is output from software developed by iLevel@. iLevel@ warrants the sizing of its products by this software will be accomplished in accordance with iLevel@ product design criteria and code accepted design values. The specific product application, input design loads, and stated dimensions have been provided by the software user. This output has not been reviewed by an iLevel@ Associate. -Not all products are readily available. Check with your. supplier or iLevel@ technical representative for product availability. -THIS ANALYSIS FOR iLevel@ PRODUCTS ONLY! PRODUCT SUBSTITUTION VOIDS THIS ANALYSIS. Solid sawn lumber analysis is in accordance with 2001 NDS methodology. -Allowable Stress Design methodology was used for Building Code IBC analyzing the solid sawn lumber material listed above. PROJECT INFORMATION: OPERATOR INFORMATION: La Quinta Cadillac Ian Wilson Wiseman + Rohy 9915 Mira Mesa Blvd. Suite 200 �j San Diego, CA 92131 Phone: (858) 536-5166 iwilson@wrengineers.com Copyright 0 2009 by iLevel°, Federal Way, WA. H1 by Weyerhaeuser 5'1/211x'5 1/2 -1.6E`Solid Sawn Douglas Fir #1 TJ-BearrO 6.36 Serial Number: User 2 11/17/2010 5:01:56 PM THIS PRODUCT MEETS OR EXCEEDS THE SET DESIGN ge 2 Engine Version: 6.35.0 CONTROLS FOR THE APPLICATION AND LOADS LISTED I Load Group: Primary Load Group 10' 2.00" A Max. Vertical Reaction Total (lbs) 1229 1229 + Max. Vertical Reaction Live (lbs) 263 263 Required Bearing Length in 1.50(W) 1.50(W) Max. Unbraced Length (in). 126 Loading on all spans, LDF 0.90 1.0 Dead Shear at Support (lbs) 829 -829 Max Shear at Support' (lbs) 936 -936 Member Reaction (lbs) 936 936 Support Reaction (lbs) 967 967 Moment (Ft -Lbs) 2380 Loading on all spans, LDF = 1.25 1.0 Dead + 1.0 Floor + 1.0 Roof Shear at Support (lbs) 1054 -1054 Max Shear at Support (lbs) 1190 -1190 Member Reaction (lbs) 1190 1190 Support Reaction (lbs) 1229 1229 Moment (Ft -Lbs) 3026 Live Deflection (in) 0.099 Total Deflection (in) 0.461 PROJECT INFORMATION: La Quinta Cadillac Copyright 0 2009 by il,evel°, Federal Way, WA. OPERATOR INFORMATION: Ian Wilson Wiseman + Rohy 9915 Mira Mesa Blvd. Suite 200 San Diego, CA 92131 Phone :(858) 536-5166 iwilson@wrengineers.com W. Standard Structures Inc. COMPANY PROJECT P.O. Box K Santa Rosa, Ca. 95402 (877)980-7732 Fax:(707)838-8377 www.ssispec.com Nov. 17, 2010 11:46 H4.wwb Design Check Calculation Sheet SSI Sizer 2.01 LOADS ( Ibs, psf, or plf ) Name Type Distribution Magnitude Location [ft] Units Shear 1280 Total Start End Start End 3792 Loadl Dead Full UDL 144.0 1.21 plf Load2 Dead Point 4300 4.00 lbs Load3 Non -Snow Point 3200 4.00 lbs MAXIMUM REQ ,CTIONS (Ibs) and BEARING LENGTHS (in) : p`,*y�d' �a � C'tt �„��� � ,rn,��t�����a . y i �1,�i� �� �.7"�•r%.� i � ,�i.`�a+t'Yr .q'"ijk'` �,i�� `^at�r a 41 U 10' Dead 3372 Value 2512 Live 1920 Shear 1280 Total 5292 = 331 3792 Bearing: fb = 2621 Fb' 1.21 fb/Fb' = 87.36 0.86 Re 'd Len. Douglas Fir 24F -V4 6-3/4x9" Self -weight of 14.43 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) usinn nips 2nn, Criterion Analysis Value Design Value Analysis/Design(�) Shear fv = 128 Fv' = 331 fv/Fv' = 38.56 Bending(+) fb = 2621 Fb' = 3000 fb/Fb' = 87.36 Dead Defl'n 0.25 = L/487 Live Defl'n 0.15 = L/814 0.50 = L/240 29.47 Total Defl'n 0.39 = L/304 0.67 = L/180 59.04 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.25 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.25 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+C, V = 5292,.,V design = 5173 lbs Bending(+): LC #2 = D+C, M = 19900 lbs -ft Deflection: LC #2 = D+C EI= 738e06 lb -int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the deflection limits are appropriate for your application. 2. Glulam values are for materials conforming to APA Y117 and manufactured in accordance with ANSI/AITC A190.1-1992. 3. This analysis is for Standard Structures Inc (SSI) Glued -Laminated beams furnished by SSI only. Product substitutions will void this analysis. 4. Additional bracing may be required at cantilevers, at unsupported edge and should be reviewed for uplift loading. 5. The product listed above must be supported on a member with adequate bearing and nailing. 6. The specific product application loads, spans, and spacings have been provided by others and have not been reviewed by Standard Structures, Inc. for accuracy. 7. GLULAM: bxd = actual breadth x actual depth. 8. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 9. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). Standard Structures Inc. COMPANY PROJECT P.O. Box K Santa Rosa, Ca. 95402 j (877)980-7732 Fax:(707)838-8377 J www.ssispec.com Nov. 17, 2010 12:00 H5.wwb Design Check Calculation Sheet SSI Sizer 2.01 LOADS ( lbs, psf, or plf ) Name Type Distribution Magnitude Start End Location (ft] Start End Units Loadl, Dead Full UDL 340.0 Dead Defl'n plf Load2 Dead Point 3300 6.00 lbs Load4 Non -Snow Full UDL 280.0 1.23 = L/180 plf LoadS Non -Snow Point 3200 6.00 lbs Load6 Non -Snow Point 3200 13.50 lbs Load? Dead I Point 3300 13.50 lbs MAXIMUM REACTIONS (Ibs) and BEARING LENGTHS (in) : o, til 18'-6" Dead 6511 Design Value 6868 Live 5617 fv = 161 fb = 2488 5963 Total 12128 Dead Defl'n 12831 Bearing: Live Defl'n 2.76 0.92 = L/240 2.92 Re 'd Len. Douglas Fir 24F -V4 6-3/4x16-1/2" Self -weight of 26.45 plf included in loads; Lateral support: top= full, bottom= at supports; Analysis vs. Allowable Stress (psi) and Deflection (in) usina NDS 2001 Criterion Analysis Value Design Value Analysis/Design (�) Shear Bending(+) fv = 161 fb = 2488 Fv' = 331 Fb' = 2863 fv/Fv' = 48.56 fb/Fb' = 86.89 Dead Defl'n 0.47 = L/470 Live Defl'n 0.41 = L/536 0.92 = L/240 44.73 Total Defl'n 0.89 = L/250 1.23 = L/180 71.80 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.25 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.25 1.00 1.00 1.000 0.954 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+C, V = 12831, V design = 11942 lbs Bending(+): LC #2 = D+C, M = 63494 lbs -ft Deflection: LC #2 = D+C EI= 4548e06 lb -int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow w=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC -IBC DESIGN NOTES: 1. Please verify that the deflection limits are appropriate for your application. 2. Glulam values are for materials conforming to APA Y117 and manufactured in accordance with ANSI/AITC A190.1-1992. 3. This analysis is for Standard Structures Inc (SSI) Glued -Laminated beams furnished by SSI only. Product substitutions will void this analysis. 4. Additional bracing may be required at cantilevers, at unsupported edge and should be reviewed for uplift loading. 5. The product listed above must be supported on a member with adequate bearing and nailing. 6. The specific product application loads, spans, and spacings have been provided by others and have not been reviewed by Standard Structures, Inc. for accuracy. 7. GLULAM: bxd = actual breadth x actual depth. 8. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 9. GLULAM: bearing length based on smaller of Fcp(tension), Fcp(comp'n). i I i%xz q<n. I OV7 1sl Acl 7jko09W > ls 15.95•L - ZQOT 'ON sor Jo *ON IMHS IV -7 mroad, 07711j '3Iva I AG ONlivannnsis, + Nvw3slm: SPANS AND LOADS Dimensions represent horizontal design spans. Member Slope: 0/12 i 28'- 0.0" APPLICATION LOADS Type Units DOL Live Dead Partition Spacing/Trib. Member Type Uniform psf 125% 20 14 0 24". Roof Joist ADDITIONAL LOADS Type Units DOL Live Dead Location - from left Application Comment NOTES , • Building code: IBC. Methodology: Allowable Stress Design • Min end bearing = 1.75 inches, web stiffeners not required. • Continuous lateral support required at top edge. Lateral support at bottom edge shall be per RedBuilt recommendations. :\Projects\10\10-079 Chevy—Cadillac of La Quint,\Calcs\Cadillac\Framing\I Joists at Service Canopy.red Page 1 of 1 The products noted are intended for interior, untreated, non -corrosive applications with normal temperatures and dry conditions of use, and must be installed in accordance with local building code requirements and RedBuilt`" recommendations. The loads, spans, and spacing have been provided by others and must be approved for the specific application by the design professional for the project. Unless otherwise noted, this output has not been reviewed by a RedBuilt'" associate.. PRODUCT SUBSTITUTION VOIDS THIS ANALYSIS. RedBuilt", RedSpec'", Red -I", Red -I45'", Red -I65—, Red -165T'", Red-190TM, Red -I901-1'", Red-190HS", Red -L'", Red -LT'", Red-WTM, Red -S'", Red M'", Red-HTM, RedLam'", FloorChoice'" are trademarks of RedBuilt H r. RniSP ID_ usa r—rinht n')n1n oo �a it 11 r nu lilhti l .ewe. —A a Project: Location: Project 31 Type: Type Folder: Folder Date: 11/16/10 7:53 AM RedSpecTI by RedBuilt'"' Designer: IW v7.0.7 Comment: 14" Red -165 TM @ 24" O/C This product meets or exceeds the set design controls for the application and loads listed DESIGN CONTROLS % Allow. Design Allow. DOL - Control Pass/Fail Shear (lb) 36% 952 2656 125% - All Loads PASS Positive Moment (ft -Ib) 66% 6664 10038 125% - All Loads PASS DEFLECTIONS (in) % Allow. Design Allow. Design Allow. Pass/Fail Span Live 63% 0.882 1.400 L / 381 L/ 240 PASS Span Total 80% 1.499 1.866 L/224 L / 180 PASS SUPPORTS Support 1 Support z ' Live Reaction, Critical (lb) (DOL%) 560 (125) 560 (125) Dead Reaction (lb) 392 392 Total Reaction (lb) (DOL%) 952 (125) 952 (125) Bearing Flush Flush - Support Wall Wall HANGERS Model Top Face Member Header Size Left None Selected Right None Selected SPANS AND LOADS Dimensions represent horizontal design spans. Member Slope: 0/12 i 28'- 0.0" APPLICATION LOADS Type Units DOL Live Dead Partition Spacing/Trib. Member Type Uniform psf 125% 20 14 0 24". Roof Joist ADDITIONAL LOADS Type Units DOL Live Dead Location - from left Application Comment NOTES , • Building code: IBC. Methodology: Allowable Stress Design • Min end bearing = 1.75 inches, web stiffeners not required. • Continuous lateral support required at top edge. Lateral support at bottom edge shall be per RedBuilt recommendations. :\Projects\10\10-079 Chevy—Cadillac of La Quint,\Calcs\Cadillac\Framing\I Joists at Service Canopy.red Page 1 of 1 The products noted are intended for interior, untreated, non -corrosive applications with normal temperatures and dry conditions of use, and must be installed in accordance with local building code requirements and RedBuilt`" recommendations. The loads, spans, and spacing have been provided by others and must be approved for the specific application by the design professional for the project. Unless otherwise noted, this output has not been reviewed by a RedBuilt'" associate.. PRODUCT SUBSTITUTION VOIDS THIS ANALYSIS. RedBuilt", RedSpec'", Red -I", Red -I45'", Red -I65—, Red -165T'", Red-190TM, Red -I901-1'", Red-190HS", Red -L'", Red -LT'", Red-WTM, Red -S'", Red M'", Red-HTM, RedLam'", FloorChoice'" are trademarks of RedBuilt H r. RniSP ID_ usa r—rinht n')n1n oo �a it 11 r nu lilhti l .ewe. —A WISEMAN+ROHY Structural Engineers PROJECT: ==JOIST AND BEAM DESIGN TABLE== LOCATION: Jan 2008 2006 IBC / 2007 CBC JOB NO: 05-000 Based On : 2006 IBC (2005 NDS) Cr = 1.15 (repetitive member factor) F„ = 180 psi (for Light Framing and Joists & Planks) Wood : Douglas-Fir/Larch E = 1,700,000 psi (#1 Light Framing) Fv = 170 psi (for Beams & Stringers and Posts & Timbers) E `- 1,600,000 psi (#2 Joists & Planks, #1 Beams & Stringers, #1 Posts & Timbers) Flat Use Member Design 2006 - Joists(lb-ft) DFL.xIs APPROVED: (Lb -ft & Lb) -- FLOOR -- Cd = 1.00 (Lb -ft & Lb) -- ROOF -- Cd = 1.25 MEMBER: SIZE: (35 PCF) PROPERTIES: BENDING STRESS: Nominal Grade Type B (in) D (In) PLF A(In^2) S(In^3) I(In^4) Fb(PSi) CF Fb x C F M max (re M max p) V max M maz r M max ep) V max 2x4 #1 LF 1.5 3.50 1.3 5.3 3.1 5.4 1000 1.50 1500 383 440 630 479 550 788 2x6 #2 JP 1.5 5.50 2.0 8.3 7.6 20.8 900 1.30 1170 737 848 990 922 1060 1238 2x8 #2 JP 1.5 7.25 2.6 10.9 13.1 47.6 900 1.20 1080 1183 1360 1305 1478 1700 1631 2x10 #2 JP 1.5 9.25 3.4 13.9 21.4 98.9 900 1.10 990 1765 2029 1665 2206 2537 2081 2x12 #2 JP 1.5 11.25 4.1 16.9 31.6 178.0 900 1.00 900 2373 2729 2025 2966 3411 2531 2x14 #2 JP 1.5 13.25 4.8 19.9 43.9 290.8 900 0.90 810 2963 3407 2385 3703 4259 2981 4x4 #1 LF 3.5 3.50 3.0 12.3 7.1 12.5 1000 1.50 1500 893 1027 1470 1117 1284 1838 4x6 #1 JP 3.5 5.50 4.7 19.3 17.6 48.5 1000 1.30 1300 1912 2198 2310 2390 2748 2888 4x8 #1 JP 3.5 7.25 6.2 25.4 30.7 111.1 1000 1.30 1300 3322 3820 3045 4152 4775 3806 4x10 #1 JP 3.5 9.25 7.9 32.4 49.9 230.8 1000 1.20 1200 4991. 5740 3885 6239 7175 4856 4x12 #1 JP 3.5 11.25 9.6 39.4 73.8 415.3 1000 1.10 1100 6768 7783 4725 8459 9728 5906 4x14 #1 JP 3.5 13.25 11.3 46.4 102.4 678.5 1000• 1.00 1000 8534 9814 5565 10668 12268 6956 6x4' #1 JP 5.5 3.50 4.7 19.3 11.2 19.7 1000 1.05 1050 983 (not allowed) 2310 1228 (not allowed) 2888 6x6 #1 PT 5.5 5.50 7.4 30.3 27.7 76.3 1200 1.00 1200 2773 (not allowed) 3428 3466 (not allowed) 4285 6x8 #1 PT 5.5 7.50 10.0 41.3 51.6 193.4 1200 1.00 1200 5156 (not allowed) 4675 6445 (not allowed) 5844 6x10 #1 BS 5.5 9.50 12.7 52.3 82.7 393.0 1350 1.00 1350 9307 (not allowed) 5922 11634 (not allowed) 7402 6x12 #1 BS 5.5 11.50 15.4 63.3 121.2 697.1 1350 1.00 1350 13638 (not allowed) 7168 17048 (not allowed) 8960 Flat Use Member Design 2006 - Joists(lb-ft) DFL.xIs APPROVED: i � i ' i � , � � I � --------- I - � --- ' I -�--`- _ I � i ! . i I i � i I . � � I i �,:, f i -------- � ---I ------' --- - _ i 3z '33 3H i 3� • I i I i I I � I • i ' 'd o: pis'►-� 425 I 9)dy,.,��� � i ,mak ! . j 'ON 80f ! i �0 I 'ON illHS j l'7 . . . l)lrOHd � �. live AS:. S833NIM iyanimals: ! . I AH0t NV� + WI I .. _SIM; — � _ .-. _ _• _� -�13 ii '39 Steel'BearimlDesign with[Gravity I: i'E4 49ed4onY'AISC^Manua1;13th E fition (AISC 360=05)`.,14 a�-, tit HSS Perimeter Beam along Gridline C INPUT DATA & DESIGN SUMMARYj3 BEAM SECTION (WF, Tube or WT) _ > HSS18X6X1/2 Tube Ix Sx J br tt tw 770 85.6 387.00 6.00 0.50 0.50 SLOPED DEAD LOADS woi,i = .0.53 kips/ft WDL.2 = 0 ' kips / ft P . PROJECTED LIVE LOADS wLL.1 = 0.3 i kips / ft WLL2 Wu..2 = 0 kips / ft CONCENTRATED LOADS Poi = 0 kips WDL2 PLL = 0 kips BEAM SPAN LENGTH L = 33.5 ft CANTILEVER LENGTH L2= 0 ft, (0 for no cantilever) w m.i BEAM SLOPE 0 :12 (0= 0.00 e ) DEFLECTION LIMIT OF LIVE LOAD ALL = L / 1000. i 1 R, BEAM YIELD STRESS Fy = 46 ksiJ Slope 12 THE BEAM DESIGN IS ADEQUATE. t R, ANALYSIS DETERMINE REACTIONS, MOMENTS & SHEARS R2=0.5I osLJ +WUJ ILi+.( o" +WLLJ (Li+0.5L2)L2+PLl+L2 \ / LI LI 13.90 kips _ WDLJ ll wpL.2 ll R' NosB+wLL.JLI+(Cosa+wii.:JLz+P—Rz = 13.90 kips X, = 16.75 ft X2 = 16.75 ft X3= 0.00 ft M,w" - 0.5 WDia Cos 0 + wLL.2 I Lz + PL2 = 0.0 ft -kips _ (XI+X2)z _ luMar— wau '}wuJ — 116.4 ft -kips Cosa ) 8 Amax = 13.90 kips, at R1 right. MMin BENDING CAPACITY ABOUT MAJOR AXIS (AISC 360-05 Chapter F) i = Max(L2 2 X3) = 0.00 ft, unbraced length X, X2 X, Cha ter F Sections for WF Required Conditions F2 F3 F4 F5 Tube WT F7 F9 Double Symmetric x x x Compact Web x x x Noncom act Web Slender Web x Compact Flanges x x Noncom act Flanges Slender Flanges Applicable Section ok MMax BENDING CAPACITY ABOUT MAJOR AXIS (AISC 360-05 Chapter F) Mallowable = Mn / Db = 3085.0 ft -kips, top flange fully supported MMax [Satisfactory] I AE. Dib Mallowable = Mn I nb = 3085.0 ft -kips MMin [Satisfactory] where Db = 1.67 (AISC 360-05 F1) • f CHECK DEFLECTION AT LIVE LOAD CONDITION P = PLL cos 0 = 0.00 kips, perpendicular to beam W1 =wLL,l cos2 0 = 0.30 klf, perpendicular to beam wZ = wLL,2 cos2 0 = 0.00 klf, perpendicular to beam _rPa2(L+a) w,L3a w:a3(4'L+3a)COS&= = l DE"d L 3EI 24EI + 24,E1,J 0.00 in, downward to vertical direction. < 2L 2 / 1000 = 0.00 in [Satisfactory] Pa2 Sw,L4 _ w:L2a2 AMid —P 16 L + 38 .L4 32EI ] cos B = 0.38 in, downward to vertical direction. < • L r / 1000 = 0.40 in [Satisfactory] (coni ECK SHEAR CAPACITY ABOUT MAJOR AXIS (AISC 360-05 Chapter G2 or G5) Vallowable'=Vn /•nv:= -297.5 .kips VMax [Satisfactory] where nv = 1.67 (AISC 360-05 G1) rERMINE CAMBER AT DEAD LOAD CONDITION L =L l / cos 0 = 33.50 ft, beam sloped span a = L 2/ cos 0 = 0.00 ft, beam sloped cantilever length P = Poi coS0 = 0.00 kips, perpendicular to beam • w, = woL.t COS 0= 0.53 klf, perpendicular to beam W2 = wDL,2 COS 0 = 0.00 klf, perpendicular to beam Pa2(L+a) w,L3a w.a3(4L+3a� DEnd = 3EI 24EI + 24EI — 0.00 in, downward perpendicular to beam. USE C = 0/4" AT CANTILEVER. Pa2 L4 5 W.i 2 2 OMid 6EI + 384E7 0.67 in, downward perpendicular at middle of beam. 32EI USE C = 3/4" AT MID BEAM. CHECK DEFLECTION AT LIVE LOAD CONDITION P = PLL cos 0 = 0.00 kips, perpendicular to beam W1 =wLL,l cos2 0 = 0.30 klf, perpendicular to beam wZ = wLL,2 cos2 0 = 0.00 klf, perpendicular to beam _rPa2(L+a) w,L3a w:a3(4'L+3a)COS&= = l DE"d L 3EI 24EI + 24,E1,J 0.00 in, downward to vertical direction. < 2L 2 / 1000 = 0.00 in [Satisfactory] Pa2 Sw,L4 _ w:L2a2 AMid —P 16 L + 38 .L4 32EI ] cos B = 0.38 in, downward to vertical direction. < • L r / 1000 = 0.40 in [Satisfactory] i� ; '0 L4r Sfee158eamlDesigntviilth GravityaLoading_Besed9on?AISC)MaritiaCa3thiEditiori,:(AISC 360-05) , .,. L: `i HSS Perimeter Beam along Gridline 3 INPUT DATA & DESIGN SUMMARY � 1 BEAM SECTION (WF, Tube or WT) _ > HSS18X6X1/2 Tube Ix Sx J br tt tw 770 85.6 387.00 6.00 0.50 0.50 SLOPED DEAD LOADS woL•1 = 0.24 kips / ft woL.2 = 0 kips / ft P wu' PROJECTED LIVE LOADS wLL,1 _ .0.06 kips / ft w� wu.2 = 0 kips / ft CONCENTRATED LOADS Poi = 0 kips wO, PLL = .0 , kips BEAM SPAN LENGTH L t = 42 ft CANTILEVER LENGTH L2= 0 ft, (0 for no cantilever) BEAM SLOPE 0 :12 (0= 0.00 e) 1 DEFLECTION LIMIT OF LIVE LOAD d LL = L / 1000 R BEAM YIELD STRESS Fy = 46 ksi J Slope _ 12 THE BEAM DESIGN IS ADEQUATE. I R. ANALYSIS DETERMINE REACTIONS, MOMENTS & SHEARS R2=0.5I +wU,jLi+( WT F7 \ o.W." Double Symmetric x x osB+wusj(Li+0.5Lz)Lz+pLi+L2 Li Li = 6.30 kips x _N RI WDL.I ll WDL.$ 1 ILz+P—R2 osB+wLL,JLI+(cos9+wLL.L Compact Flanges x = 6.30 kips Noncom act Flanges Slender Flanges Xt= 21.00 ft ! X2= 21.00 ft X3= 0.00 ft W oi,z l`I Z MmjI =0.5Noso+WLL,=JL2+PL.2 0.0 ft -kips _ W-' (Xl+X2)2 - MMa,— +wua — 66.2 ft -kips (Coso ) 8 Vmax = 6.30 kips, at R1 right. MMin BENDING CAPACITY ABOUT MAJOR AXIS (AISC 360-05 Chapter F) 1= Max(L2 X3) = 0.00 ft, unbraced length Chapter F Sections for WF Required Conditions F2 F3 F4 F5 Tube WT F7 F9 Double Symmetric x x x Compact Web x x x Noncom act Web Slender Web x Compact Flanges x x Noncom act Flanges Slender Flanges Applicable Section ok CHECK MMax BENDING CAPACITY ABOUT MAJOR AXIS (AISC 360-05 Chapter F) Mallowable = Mn / Db = 3085.0 ft -kips, top flange fully supported > MMax [Satisfactory] Mallowable = Mn / Db = 3085.0 ft -kips > MM;n [Satisfactory] where 12b = 1.67 , (AISC 360-05 F1) 1� (cont'd) CHECK SHEAR CAPACITY ABOUT MAJOR AXIS (AISC 360-05 Chapter G2 or G5) Vallowable=Vn /•nv = 297.5 kips > V Max [Satisfactory] where !2v = 1.67 (AISC 360-05 (i1) DETERMINE CAMBER AT DEAD LOAD CONDITION ? L = L l / cos 0 = 42.00 it, beam sloped span a= L2/Cos 0 = 0.00 ft, beam sloped cantilever length P = PDL Cos B = 0.00 kips, perpendicular to beam w, =WDL,1 COS.0 = 0.24 klf, perpendicular to beam W2 =WOL,2 Cos 0= 0.00 klf,perpendicular tobeam Pa'(L+a) w,L3a wza3(4L+'3a) _ DEnd = 3E7 24EI + 24EI 0.00 in, downward perpendicular to beam. F USE C = 0/4" AT CANTILEVER. 2 La 2 z OMid - - aL + 384EI 3 Ea 0.75 in, downward perpendicular at middle of beam. USE C = 314"A T MID BEAM. CHECK DEFLECTION AT LIVE LOAD CONDITION P = P« cos 0 = 0.00 kips, perpendicular to beam W, = W LL,l COS 2 0 = 0.06 klf, perpendicular to beam W2 = W LL,2 COS 2 0 = 0.00 klf, perpendicular to beam Pa++ 2�La) w,L3a w:a3�4L3a)1 _ End — [ 3EI 24EI + 24EI I cos B = J 0.00 in, downward to vertical direction. < 2L2 / 1000 = 0.00 in [Satisfactory] PaL2 5w,L4 w:L2a2 _ _ _ �M`d — [ 16E1 + 384EI 32EI ] cos B = 0.19 in, downward to vertical direction. < L l / 1000 = ) 0.50 in [Satisfactory] I I I Vill I , • i I I j I I a�10 �j--- i I I , i i _ jr z Of ls-lo�� �1C) , i I I I I Z� . I � S� • I �SdZ")7Z = �t!o_ �S ��)��•�'� =d z�s � �2��L = �.'M '��� � `?�5$'� 1rYa.0�y) IZ �� . 161 I ly co—o 'ON 80f I i0 'ON 133NS — I I - I Nlinanimsi AHOM + NVW]SIM I ; Company Wiseman +Rohv Nov 2, 2010 uao � 1W .2:03 PMJob Number' 10'078 Showroom Girders/ ServioCanopy Checked Global Hot Rolled Steel Code AISC: LRFD 13th Wood Code NDS 2005: ASID IWI "d Concrete Code ACI 2002 Number of Shear Regions 4 Concrete Stress Block Rectangular Bad Framing Warnings No Member Distributed Loads (BLC I: DO Member Distributed Loads (BLC 2: RL) Member Distributed Loads (BLC 4: Wind) Member Label Direction Start Magnitudefk/ft djag] End Magnitudefk/ft.... Start LocationLft.%I End LocationIftM Load Combinations n~~,ri"o"" Q.*~pn CZo n,r=.+ D., =.-+ =.,=— =.,,--. ..-..^ ....-� ...-'- ...-'- Display Sections for Member Calcs 5 Include Shear Deformation Yes .P -Delta Analysis Tolerance Hot Rolled Steel Code AISC: LRFD 13th Wood Code NDS 2005: ASID IWI "d Concrete Code ACI 2002 Number of Shear Regions 4 Concrete Stress Block Rectangular Bad Framing Warnings No Member Distributed Loads (BLC I: DO Member Distributed Loads (BLC 2: RL) Member Distributed Loads (BLC 4: Wind) Member Label Direction Start Magnitudefk/ft djag] End Magnitudefk/ft.... Start LocationLft.%I End LocationIftM Load Combinations n~~,ri"o"" Q.*~pn CZo n,r=.+ D., =.-+ =.,=— =.,,--. ..-..^ ....-� ...-'- ...-'- - Wood Material Properties . Wood Section Sets RISA -21D Version 9.0.0 [ZA ... ... \Calcs\Cadillac\Service Canopy Col. & BM.r2d] Page 1 3 DL Yes Y - Wood Material Properties . Wood Section Sets RISA -21D Version 9.0.0 [ZA ... ... \Calcs\Cadillac\Service Canopy Col. & BM.r2d] Page 1 L?5 Yb Lil Turn, to the. Experts. Elm Arm Pirron� Pl1ANT • (• me em;mnmmnmar crone nYgennl ... _-.....r.,.a •`• I C08613 r MODEL NUMBER NOMENCLATURE 5Z 1 2 '3 4 5 6 7 8 9 10 11 '12 13 14 15 16 17 18 5 10 T C 101A 10 16.1A12 JA15 JAJO JAJTA O Unit Type Packaging 450 =Cooling%Elec_HeaRTIJ 0 =Standard 1 = LTL Model STC. �High'Eff�(wrth Puron�refrigerant) Heat Size F.ump; Refrig. System Options A = 1 -stage cooling compressor models {D 2"=stg cooling compressor;�mbdel§' Cooling Tons 04=3Ton 05=4Ton 06=5Ton 07=6Ton 09=8.5Ton 12 = 10 Ton Sensor Options A = None B = RA smoke detector C S_A_smoke:detgetor"- D = RA & SA smoke detector E = CO2 sensor F = RA smoke detector & CO2 G = SA smoke detector & CO2 H = RA & SA smoke detector & CO2 Indoor Fan Options 0 = Electric drive X13 5-speed/torque motor (3-5 ton only) 1 Standardstatic,o iQn� Belt;dnv_e 2 = Medium static option - Belt drive 3 = High static option - Belt drive 3 3 4 ectrical Options = None = Non-fused disc = Thru the base = Non-fused & thru the base :rvice Options = None = Unpowered convenience outlet = Powered convenience outlet take / Exhaust Options = None = Temp econo w/ baro relief = Enthalpy econo w/ baro relief = 2 position damper ase Unit Controls = Electromechanical = PremierLink DDC controller = Open protocol DDC controller Rev assigned = 575/3/60 = 208-230/1/60 ;208 23073%60 = 460/3/60 Coil Options (Outdoor - Indoor - Hail Guard) A = AI/Cu - AI/Cu B = Precoat AI/Cu - AI/Cu C = E coat AI/Cu - AI/Cu D = E coat AI/Cu - E coat AI/Cu E = Cu/Cu - AI/Cu F = Cu/Cu - Cu/Cu M = AI/Cu - AI/Cu - Louvered Hail Guards N = Precoat AI/Cu - AI/Cu - Louvered Hail Guards P = E coat AI/Cu - AI/Cu - Louvered Hail Guards Q = E coat AI/Cu - E coat AI/Cu - Louvered Hail Guards R = Cu/Cu - AI/Cu - Louvered Hail Guards S = Cu/Cu - Cu/Cu - Louvered Hail Guards • a WEIGHTS & DIMENSIONS (cont.) 53 �— 110261 NOTES: 1. DIMENSIONS ARE IN INCHES, DIMENSIONS v[RZER 20.3/4 ECO MOOD 15271 IN I I ARE IN MILLIMETERS. IOPEIONAEI 2.'CENTER.OF GRAVITY 3. y DIRECTION OF AIR FLOW H TOP 25.1/2 16471 4-5/S 1118) A, 11681 A. CONDENSER G COIL 2-5/8 161) (15101 RETURN TIP C� / HEILT 171 R AIR I EAC TORI INSTALLED DISCONNECT /'U ANDLC C2CANDLE IIo0 4— NPI/A ',5*51 AIR . (6591 �F`'`I1I� I�AIR IIIIIIIIII�% III!!G(1F,F,\m%'%%Ilhllllillll 110211 SUPPLY 11AYvAAAAUVAA _�� `%/L%/////!III H TOP 25.1/2 16471 4-5/S 1118) LCCTA ICAL DISCONNECT LOCATION 21-1/8 (1091 6.5/8 I A, 11681 A. CONDENSER G COIL 2-5/8 161) (15101 E TIP C� LCCTA ICAL DISCONNECT LOCATION 21-1/8 (1091 6.5/8 I 122]81 FRONT CONTROL 601 11681 8 ACCESS PANEL CONDENSER 1 3/4' 1511 DIA -GAUGE ACCESS PLUG 2-5/8 161) (15101 E TIP INDOOR SLOWER / OP TIONALJ ACCESS I EAC TORI INSTALLED DISCONNECT /'U ANDLC C2CANDLE IIo0 4— NPI/A 122]81 FRONT A 11681 8 59-1/2 CONDENSER 1 3/4' 1511 DIA -GAUGE ACCESS PLUG 2-5/8 161) (15101 E TIP G 2 ' 1511 DIA POWER SUPPLY KNOCK -OUT CURB 1.114 LEFT I n9rx E STD_ ' CONDENSATE DRAIN OUTSIDE 26 AIR . (6591 122]81 FRONT SUPPIT AETAROMETRIC UAN B AIR RIGHT AIR + RELIEF FLOW BACK Vertical Connections / Economizer CONNECTION SIZES A 1 3/8' (35) DIA FIELD POWER SUPPLY HOLE 8 2 1/2' [641 DIA POWER SUPPLY KNOCKOUT CONDENSER 1 3/4' 1511 DIA -GAUGE ACCESS PLUG 0 COIL E 3/4-14 NPT CONDENSATE DRAIN G 2 ' 1511 DIA POWER SUPPLY KNOCK -OUT SUPPIT AETAROMETRIC UAN B AIR RIGHT AIR + RELIEF FLOW BACK Vertical Connections / Economizer CONNECTION SIZES A 1 3/8' (35) DIA FIELD POWER SUPPLY HOLE 8 2 1/2' [641 DIA POWER SUPPLY KNOCKOUT C 1 3/4' 1511 DIA -GAUGE ACCESS PLUG 0 7/8' [221 DIA FIELD CONTROL WIRING HOLE E 3/4-14 NPT CONDENSATE DRAIN G 2 ' 1511 DIA POWER SUPPLY KNOCK -OUT Horizontal Connections / Economizer 9. ASE CHART THESE HOLES 1EOII1E1 101 ISE Fig. 5 - Dimensions 50TCQ 08-09 1 22 C08677 CORNER A i CORNER D WEIGHTS ,& DIMENSIONS (cont.) STD. UNIT CORNER CORNER CORNER CORNER C.G. WEIGHT WEIGHT (A) WEIGHT (B) WEIGHT (C) WEIGHT (D) KG. ABS. KG. LBS. KG. LBS. KG. LBS. KG. X Y 2 885 401 187 85 158 72 247 112 293 133 39 15/16 [ 1014 1 35 1/4 18951 23 1/2 (5971 910 413 200 91 166 75 247 112 297 135 39 5/8 11006 34 1/2 18761 23 1/2 (5971 CORNER 8 CORNER C TOP Fig. 6 - Dimensions 50TCQ 08-09 FRONT Fig. 7 - Service Clearance C08678 C08337 LOC DIMENSION B 23 D D 000 00 FRONT Fig. 7 - Service Clearance C08678 C08337 LOC DIMENSION CONDITION 23 48 -in. (1219 mm) Unit disconnect is mounted on panel A 18 -in. (457 mm) No disconnect, convenience outlet option 18 -in. (457 mm) Recommended service clearance 12 -in. (305 mm) Minimum clearance 42 -in. (1067 mm) Surface behind servicer is grounded (e.g., metal, masonry wall) B 36 -in. (914 mm) Surface behind servicer is electrically non-conductive (e.g., wood, fiberglass) Special Check for sources of flue products within 10 -ft of unit fresh air intake hood C 36 -in. (914 mm) Side condensate drain is used 18 -in. (457 mm) Minimum clearance D 42 -in. (1067 mm) Surface behind servicer is grounded (e.g., metal, masonry wall, another unit) 36 -in. (914 mm) Surface behind servicer is electrically non-conductive (e.g., wood, fiberglass) r 23 • 1.0 "WEIGHTS:&'DIlVIENSIONS (cont.) NOTES• ROOFCURB A B ACCESSORY UNIT SIZE CRRFCURB003A01 CONTROL 356 [30" 50TCQD08, 09 CRRFCURB004A01 610 1 3/4"[44.5] 1. ROOFCURB ACCESSORY 15 SHIPPED DISASSEMBLED. 2. INSULATED PANELS: 1" THK. POLYURETHANE FOAM, 1-3/4 # DENSITY. 3. DIMENSIONS IN ( ] ARE IN MILLIMETERS, 4. ROOFCURB: 18 GAGE STEEL ON 14' CURB, AND 16 GAGE STEEL ON 24' CURB. S. ATTACH DUCTWORK TO CURB. (FLANGES OF DUCT REST ON CURB) 6. SERVICE CLEARANCE 4' ON EACH SIDE. 7. E* DIRECTION OF AIR FLOW. 8. CONNECTOR PACKAGES CRBTMPWROOIAO1 AND 2AO1 ARE FOR THRU-THE-CURB TYPE CONNECTIONS. PACKAGES CRBTMPWRO03AOI AND 001 ARE FOR THE THRU-THE-BOTTOM TYPE CONNECTIONS. CONNECTOR PKG. ACC. B C O ALT DRAIN HOLE POWER CONTROL ACCESSORY PWR CRBTMPWR001A01 CRBTMPWRO02AOI 2'-8 7/16 [827] 1'-10 15/16- [583] 1 3/4"[44.5] 3/4-[191NPT 1 1/4 [31.7] 1/2-02.731SIPT 1/2-[12.71 NPT CRBTMPWRO03AOI 3/4-[19]NPT CRBTMPWRO04AOI 1 1/4-[31.7] C f I UNIT l I 0'-3 5/16" I ��--` ♦� I GASKE NAIL [84.0) I (SUPPLIED WITH CURB) I ) C I ♦�--� - 1 Dl1CT TYPICAL (4) SIDES J•` )1_ %�� 1 (FIELD SUPPLIED) 0'-7/16" ♦ ♦ I (11] COUNTER FLASHING C ♦ _ I (FIELD SUPPLIED) ROOFING FELT I (FIELD SUPPLIED) ° CANT STRIP SECTION "C -C (FIELD SUPPLIED) 0'-3" ROOFING MATERIAL SCALE 1,4 [76]I (FIELD SUPPLIED) b -L I.D. I o I 1 I _ I I RIGID INSULATION 0(76] 1 8" - (FIELD SUPPLIED) �L /R�E�TIUR OPENING I 3'-3 5/8" I 1 [1006] I I SUPPLY AIR I I I / 1'-3 1/4"II OPENING •C" I 1 / [387) I _ - - - _ 1 / OPENING FOR BASEPAN I I A ENTRY SERVICE (SEE NOTE .B) �r I ASLPPLIED) 0'-0 7/16" H2'-6 15/16'-27/B" 0'-07/16" /1(BOLT HEADS) [11] / [7B6) 3 [378] (BOLT HEADS) / [76]0'-0 7/16" 4'013/16" 0'-0 7/16" 5 SEE I (III .[1240] [11] / (BOLT HEADS) (BOLTHEADS)AA /'-4 3/16 0' HEAD OF BOLT TO BE ON INSIDE OF FLANGE VIEW •8- (TYP. ALL CORNERS) SEE VIEW 'B-' A Fig. 8 - Curb Dimensions 50TCQ 08-09 24 NOTE, MICROMETL "MICROLOK" CORNER FASTENING DEVICE IS ACCEPTABLE ALTERNATE CONSTRUCTION. C08553 - a 41 .M . tt S , Itit L, 2 b 'ON 80r j j ►Nu�i25 Z! 1 Jo 'ON 13INS I Oki J S1MV 3;�i liHoaa A8' AHOM 1 + NVW3SIM �, j I {• t I I � i I I � I I j j I E S IQs = 4a ;9,C; 95 _ X11 2•ht -P a .i i i f I ii �-�- -ON 8or d0 'ON 133HS a9 i -Y 7 MfObd wo ! A8 j IM33NION31V8f1wais AH08 + NVW3SIM ! i j lnqNlrv1 �I 4�) al o ' . ; ! ; . (S 94��? �5��:— c', �1 .2'1.21: • S' �- .. -7L O --P7 'ON 80f. ry / ci ; 10 'ON 133HS I 7TITF/7 -72—mfova 37/// uIro...... samom ivannnsis: w, 2.9 AHOXI + mvw3simi ��I 9 4�) al o ' . ; ! ; . (S 94��? �5��:— c', �1 .2'1.21: • S' �- .. -7L O --P7 'ON 80f. ry / ci ; 10 'ON 133HS I 7TITF/7 -72—mfova 37/// uIro...... samom ivannnsis: w, 2.9 AHOXI + mvw3simi ��I VISEMAN +4RONY STRUCTURAL: ENGINEERS ;hq i S833N19N� ltlafl�(la1S, I j AHOM + NVWHIM I ! �h• j. � - —�--I -- � -- 1 I LSi !$1,o 40 I 1 ; a1 ; I i i ! P1 cl S1��1� L 0 - -ON 80f i ' yc� (n X91 f d0 'ONil33HS t '1-i C '1.. virovd 0 Uva G 7 ;hq i S833N19N� ltlafl�(la1S, I j AHOM + NVWHIM Jo *ON 133HS SH33NION3 ivanDnHis.. ANON j + Nvw3slm 1 (77711 31v0 —77-7— As 430.3 .392.3 0)Loads: LC 1, ).OWL Results for LC 1, 1.OWL Reaction units are Ib and k -ft Wiseman + Rohy IW 10-079 Wind Analysis -571.3 21 •312.2 14.41b/h 14 6.31btl— QWI-5-162.1 6 13 -29.2 W v—� Nov 15, 2010 at 3:56 PM Wind Design.r2d Company � VViuen�an+Rnhy Nov 15.2D10 Designer � |VV 3:43 PM Job Number 10'078 Wind Ankmi Checked Joint Coordinates and Temperatures Nll 30 26 0 5 N15 40 15.5 0 RISA -2D Version 9.0.0 [ZA ... \ ... \ ... \Calcs\Cadillac\Lateral\Wind Design.r2d] Page 1 RISA -2D Version 9.0.0 [ZA ... \ ... \ ... \Calcs\Cadillac\Lateral\Wind Design.r2d] Page 1 t 6 . g ' 43k/ft -.198k/ft 1 3 014 2.7 . K 14.8 = ►1 ,5 -.754 WN ,1 Loads: LC 1, Wind Results for LC 1, Wind ,Reaction units are k and k -ft Wiseman + Rohy IW 10-079 4 Wind Load To Lines Nov 15, 2010 at 3:41 PM Wind Load To Lines.r2d I L,ol P Z Results for LC 1, Wind S Member Bending Moments (k -ft) Wiseman + Rohy IW 10-079 -18.5 17.1 7 8 -99.1 73.5 -,19.1 -171.5 •1 Z� C,kV-. ,4 -148.1 -349.8 v s� Z �L-► LR.-, 0 Wind Load To Lines Nov 10, 2010 at 3:49 PM Wind Load To Lines.2d . . . ' ^ -7/ '/ Coman,� VV�enman+Rohv^ Nnv1i2U10 Oan � NV ' . 3:41Py� Job Numbbr 10-079 Wind Load ToLines Checked Joint Reactions (By Combination) oil . '. . ^ ' m/Sa'2uVersion yuu LZA ... Ll'VCa|oo\CadiUan\LaberaKVVindLoad ToLinea.r2d Page ` . ^ N3 0 14.768 0 . '. . ^ ' m/Sa'2uVersion yuu LZA ... Ll'VCa|oo\CadiUan\LaberaKVVindLoad ToLinea.r2d Page ` . ^ WISEMAN +lR0HY 1 Z 'STRUCTURAL INGINEERS BY. j DATE /O PROJECT SHEET NO. i OF cllml JOB NO. I IV �IW -,27- PL j_ 156 S Dch-w- w Au - 47 1 L 0.'604.9 37- V i I I I i �---- •�. 1 I I I I I I �z I I I cn I i j 12J3vki^ta raw y, S 1 1-,ov �I\ ! 4\� /,el 1, f - I I I I 10 *ON sor ; *ON133NS n3r08d AB. I�L I Sa33NION3 ivanDnals_ AN08;+ NVWISIM'; Table 4_:TWFNominal Unit Shear Capacities for Wood-V_77we Shear Walls1,3 Wood -based Panels (Excluding Plywood for Ga)4 A B SEISMIC WIND Panel Edge Fastener Spacing (in.) Panel Edge Fastener Spacing in. 6 4 1 3 2 6 4 3 2 V8 Ge V. Ge I va Ga Vg G. Vw Vw Vw I Vw 400 Minimum Minimum 18.0 Sheathing Nominal Fastener Fastener Material Panel Penetration Type 8 Size 1 1430. Thickness In Framing' 720 24.0 (in.) (in.) 1220 43.0 645 1010 Nail (common or 1710 510 16.0 galvanized box) Wood Structural 5/16 1-1/4 6d 3/82 715 Panels - Structural14*5 7/162 1-3/8 8d 860 15/32 1100 24.0 15/32 1-1/2 10d 785 1205 5/16 1-1/4 6d 22.0 3/8 29.0 1330 Wood Structural 3/8 51.0 950 Panels- 7/162 1-3/8 8d Sheathing4*5 15/32 18.0 700 24.0 15/32 37.0 505 755 980 1-1/2 10d 11.0 19/32 15.0 780 1 20.0 1020 32.0 Nail (galvanized casing) Plywood Siding 5/16 1-1/4 6d 440 3/8 1-3/8 8d 820 31.0 1060 Nail (common or 615 895 1150 box) Particleboardgalvanized Sheathing - 3/8 700 6d 3/8 28.0 8d (M -S "Exterior Glue" and M-2 1/2 980 1260 "Exterior Glue") 1/2 13.0 10d 19.0 980 518 1280 1 39.0 730 1065 Nall (common or 1790 620 22.0 galvanized rooting) Fiberboard 1200 37.0 8d common or 11 ga. galv. Sheathing - 1/2 1290 roofing nail (0.120" x Structural 680 19.0 1-1/2" long x 7/16" head) 26.0 8d common or 11 ga. gals. 33.0 1740 48.0 25/32 950 roofing nail (0.120" x 1860 2435 280 1-3/4" long x 7/16" head) SEISMIC WIND Panel Edge Fastener Spacing (in.) Panel Edge Fastener Spacing in. 6 4 1 3 2 6 4 3 2 V8 Ge V. Ge I va Ga Vg G. Vw Vw Vw I Vw 400 13.0 1 600 18.0 1 780 23.0 1020 1 35.0 560 1 840 1090 1 1430. 460 19.0 720 24.0 920 30.0 1220 43.0 645 1010 1290 1710 510 16.0 790 21.0 1010 27.0 1340 40.0 715 1105 1415 1875 560 14.0 860 18.0 1100 24.0 1460 37.0 785 1205 1540 2045 680 22.0 1020 29.0 1330 36.0 1740 51.0 950 1430 1860 2435 360 13.0 540 18.0 700 24.0 900 37.0 505 755 980 1260 400 11.0 600 15.0 780 1 20.0 1020 32.0 560 840 1090 1430 440 17.0 640 25.0 820 31.0 1060 45.0 615 895 1150 1485 480 15.0 700 22.0 900 28.0 1170 42.0 670 980 1260 1640 520 13.0 1 760 19.0 980 25.0 1280 1 39.0 730 1065 1370 1790 620 22.0 920 30.0 1200 37.0 1540 52.0 870 1290 1680 2155 680 19.0 1020 26.0 1330 33.0 1740 48.0 950 1430 1860 2435 280 13.0 420 16.0 550 17.0 720 21.0 390 590 770 1010 320 16.0 480 18.0 620 20.0 820 22.0 450 670 870 1150 240 15.0 1 360 1 17.0 1 460 1 19.0 600 1 22.0 505 645 840 260 18.0 380 20.0 480 21.0 630 23.0 530 670 880 280 18.0 420 20.0 540 22.0 700 24.0 r56 590 755 980 370 21.0 550 23.0 720 24.0 920 25.0 770 1010 1290 400 21.0 610 23.0 790 24.0 1040 26.0 855 1105 1455 340 1 4.0 1 460 1 5.0 1 520 1 5.5 1 ( 475 1 645 1 730 360 I 4.0 I 480 I 5.0 I 540 I 5.5 I 505 1 670 1 755 1 1. Nominal unit shear capacities shall be adjusted in accordance with 4.3.3 to determine ASD allowable unit shear capacity and LRFD factored unit resistance. For general construction regLlireinents See 4.3.6. For specific requirements, see 4.3.7.1 for wood structural panel shear walls, 4.3.7.2 for particleboard shear walls, and 4.3.7.3 for fiberboard shear walls. 2. Shears are permitted to be increased to values shown for 15/32 inch sheathing with same nailing provided (a) studs are spaced a maximum of 16 inches on center, or (b) panels are applied with long dimension across studs. 3. For framing grades other than Douglas Fir -Larch or Southern Pine, reduced nominal unit shear capacities shall be determined by multiplying the tabulated nominal unit shear capacity by the Specific Gravity Adjustment Factor = [ I - (0.5 - G)], where G = Specific Gravity of the framing lumber from the NDS. The Specific Gravity Adjustment Factor shall not be greater than I . 4. Apparent shear stiffness values, G., are based on nail slip in framing with moisture content less than or equal to 19% at time of fabrication and panel stiffness values for shear walls constructed with OSB panels. When plywood panels are used, G. values shall be determined in accordance with Appendix A. 5. Where moisture content of the framing is greater than 19% at time of fabrication, G. values shall be multiplied by 0.5 I Page .1 -5 RAM BasePlate V1.5 Nowak-Meulmester & Associates La Quinta Cadillac Detailed Design Results HSS Holdown Shearwall Line 3 11/16/10 16:39 CRITERIA: Analysis Maintain Strain Compatibility Use min. effective plate area for axial only compression load on plate. -Design Use LRFD 2nd'to check plate bending Max concrete bearing per AISC J9. Anchor Shear Check Per AISCSpecifications.:• Anchor Tension Check Per AISC Specifications. INPUT DATA: ' Column Column Size .............................. HSS6X6X5/16 Dim: BfTop TfTop BfBot TfBot TW Depth (in) 6.00 0.291 6.00 0.291 0.291 6.00 Base Plate Plate Fy (ksi) ....................... 36.000 N (Parallel to Web) (in)............'.... 12.000 B (Perpendicular to Web).(in)........... 12.000 Plate Thickness (in).................... 1.250 Anchor Anchor Size .............................. 7/8" Anchor Area (in"2) ..................... 0.601 Anchor Material ......................... A307-60 Anchor Modulus (ksi) 29000.00 Anchor Strength Fu (ksi) ............... 60.00 *Thread Included in Shear Plane Footing Footing Strength :flc.(ksi) ........... 3.00 -Concrete Modulus (ksi) .............. 3122.02 Dimension (Parallel to web) (ft)........ 10.00 Dimension (Perpendicular to web) (ft)... 10.00 Design Load Building Code: - None - Load combination: Single Load Case Axial (kip)........................... -65.20 Vx (kip)........ .............. .... 0.00 Mx (kip-ft)..................... .... 0.00 RESULTS: Analysis YBar(in)........................................... 0.00 Resultant Angle (°)......................... ...... 0.00 Plate Bending Max bending moment from anchor/s ##1 in tension m (N-0.95d)/2.0 (in). ..........:................... 3.150 n [B-0.95b]/2.0(in)... ............................... 3.150 Controlling effective width to resist moment :(.in) 13.150 Controlling plate bending moment (kip-ft) ............ 2.24 PhiMn = (0.9xMn) -(kip-ft) ........................... 3.32 Mu/PhiMn.................... ....... 0.67 Thickness Required(in)...***''*................ :....... 1.027 Thickness controlled by cantilever action. Anchors Anchor X(in) Y(in) V(kip j T(kip ) Interaction Page .1 -5 RAM BasePlate V1.5 X(in) Y(in) 1 Nowak-Meulmester & Associates 4.500 2 4.500 La Quinta Cadillac 3 Detailed Design Results HSS Holdown Shearwall Line 3 4.500 -4.500 11/16/10 16:39 1 -4.50 4.50 0.00 16.30 0.80 2 4.50. 4.50 0.00 16.30 0.80 3 -4.50 -4.50 0.00 16.30 0.80 4 4.50 -4.50 0.00 16.30 0.80 Bearing . Eff Area of Support A2 (in^2) ........................ 576.00 Plate Area Al (in'2)................................. 144.00 Sgrt(A2/A1)....... ......... ......................... 2.00 Capacity Bearing Stress (ksi) .................... 0.00 Actual Bearing Stress (ksi) ....................... 0.00 DIAGRAM: lei • Page .2 • 1 2 SS6X6X5/16 3 4 # X(in) Y(in) 1 -4.500 4.500 2 4.500 4.500 3 -4.500 -4.500 4 4.500 -4.500 PL 12.00 X 12.00 X 1.25 (in) •4'-'7/8" A307 Anchor Bolts .l ad a dist = 18 in WISEMAN+ROHY Structural Engineers -T PROJECT: La Quinta Cadillac ACI 318-05 Appendix V Anchorage spacing = 0 LOCATION: Shearwall Line 3 edge dist (in) Greup of 1 _ January2008 2006 IBC 12007 CBC / ASCE 7-05 JOB NO: 10-079 11/17/2010 07:56: 18 AnCrors 18 Shear And—: �- a Emetlmem Depth= 12.00 in Ander Type Rdrfarcemera for shear Cheat: t4d = 12.00 In (D.8.5 for PIA) Ocast In edt(s) O. No Supprmanaty RtlNdr¢mea (a colla than e4) n,= 1 p anchors intension O � Instated An dv(s) O cnrl,rn twr with as a blear Ixarser, endior and cage Diameter (da) = 1, in CAa In Nue AnthorTaRped? O Creued cont with 04 w IWW IN STIRRUPS at 4- coxa between andv arxd edl Thread Spacing = 8 / Inch O• Ho _ Orn Nm = 16.30 A. (use) = 0.606 Int (area of single anchor) (RD.5.1.2) tau b type — 'i CFuO N/A — for PIA Past Installed Anrry T1pe unaem AndrusI kips an—n Dtmgb madW e-9-Paa a adds Ettore, kvr ll.n arson (AC' 3I54S DAA) I O Welded lkaded SDfOTotpue {eMdled Arpva[06 DifPntettert-C N led AnCh- Q Headed ed, (Mall real spacing = 0 Steel Grade: A 307 (Gr. A) (H) . (Ductile) O Hooked edt eh= 4 WA – use for crooked bars fy,= - ksi Crad2d Caibde? In F,,, (min.) = 60 ksi Anchors Installed In: newt Pad t RdnfarRmE,t hr Nd Demmmaam: FW = 60 ksi (125 ksi, 1.9fya max) O Cracked racde O Ho Gaut Pad 1r 1 O supplatmanty relnhramua PoNaW In hllm area Pn rams: Condition : B (per D.4.4) O Ud4atled C—tte O Gee Pad Undee Rab Ill O?ro SuPPlemaxary reindan ma Prwlded h fWt= arta Category: 5 N/A – for PIA ses nit raw: cameo: D.3.3.3) Concrete Strength r, = 3.00 ksi m Steel Concrete(per Leat Fotn Sesmk7 Q N—al Weight Cantle Tendon 0.75 0.70 - O Lead Fore Sesttac b Stivnit Deslpn Cft*aty C, 0, E u R O AII•lwatw fight cu,vee Shear 0.85 0.70 OO Lead NOT Fom Sdsmk a in Sdandc Design CAtgµy A or e7 O S.6uo vigM C to f4Wmum All—de Edge Olstarce and Spadag: Concrete Type Factor = 1.00 • (per D.8) minimum edge dist = .3.00 in (OK) iii ease Hare Del n7 OO ease PIM7 (A1SC 141-05: as rm pidan) (apply to sgn(rc) Thickness of Concrete = 24.00 In „ critical edge distance (c„) = 18.00 in ONUT eau Nffie Concrete Cover Required = 3.00 in minimum center -to -center spacing = 4 in (OK) factor for areas of moderate or high seismic risk = 1.00 Maximum Aggregate Size = 1 in &acing Nate a eamm (fa Pdkta lard In U.0.): WNrh Was Take War? Gadeeeam Shear Ch WL * Ilse Henry Hex Wd a edmm O Bob dmCt m ear take a.. O Use SeWon 0.6.2 Sir r O,Ck (Choose Wea)ad) O Use Rue with arta: O cob rudest hom edge take shear Q W NOT use 0.6.2 (suflltlea wq tend. avid W—) Plate Area = 4.00 Ina (can only use If welded to plate) 5777 Cahwf3.dothis7F .l RESULTS: 0.7 INTERACTION OF TENSILE AND SHEAR FORCES D.7.1 Vua a 0.2 Phi Vn D.7.2 Nua - 0.2 Phi Nn D.7.3 WA Nua / Ip Nn = 0.646 1.0 OK Tension C„ = ' 16 in (closest side) Tension C,3 = 18 in (smallest perp side to C„) s Shear C„ = 18 in (side in direction of shear) Shear Ca, = 18 in (smallest perp side to C„) Z:\Pmjects\10114079 Chevy_Cadillac of La Quinta\Cala\Cadillac Latefal\Concrete Anchorage ( Holdown Line 3).xls ad a dist = 18 in number of anchors = 1 spacing = 0 In edge dist (in) Greup of 1 edge dist (n) . Total = 0 in 18 AnCrors 18 Shear Loading edge dist = 18 in Up The APPLIED LOADS: Page Nm = 16.30 Idps V. = 0.00 kips number of anchors = t spacing = 0 in TOTAL Concrete Width = 38 in (3 N) Total = 0 In RESULTS: 0.7 INTERACTION OF TENSILE AND SHEAR FORCES D.7.1 Vua a 0.2 Phi Vn D.7.2 Nua - 0.2 Phi Nn D.7.3 WA Nua / Ip Nn = 0.646 1.0 OK Tension C„ = ' 16 in (closest side) Tension C,3 = 18 in (smallest perp side to C„) s Shear C„ = 18 in (side in direction of shear) Shear Ca, = 18 in (smallest perp side to C„) Z:\Pmjects\10114079 Chevy_Cadillac of La Quinta\Cala\Cadillac Latefal\Concrete Anchorage ( Holdown Line 3).xls slx'(f aun umo0loH) 86woy3uy ataA3uo'j4eAatel}3eII1Pe7s31e0\ewm0 el to 3ell!De0 Ana40 BLObI\OL\spalwd\Z A • r sd14 ZZ'SZ = 3L17yA NOISN31 "JNIl101lJN03 x ifOlOyd NSRI 3IWSI3S XO ; sdi'l £0'9£ - 3nWA NOISN310NIllOLL.N00 ' L'0 sdl4 VIN = 'N uolsuel ul (sP043uV pepeeH a JO 1nOmOIS 03e.4 -OPTS elw3uo0. 1,'S-(]OL'0 sdlq Eo'9£, ='°N uolsuel ul (S)1a43uV 10 41Buw1S lnollnd • E'S'0 OL'0 sdpl ZFSS - "'N uolsuel u! (spo43uy L0 416uw1S Ino-yeelg elwouo0 - Z'S'0 SOLOstll>f C£'9f = "N uolsuel ul (e)Jo43UV l0 416uw1S I0e1S • VS'0 14d Aidvww 1S NOISN31 A - SdIN 4pW 816ur = •fN ul 0 = SAO43ue Aetna Lo Bupeds , (6luo sAapue Lo sdnwB Aa)) ASN (WO 9)/S) -0 = °"N ('•0 x E > 10 LI poulpow) WIN 09'98 = wN 'Sdq ercu ="N - Ua4 0'0 < PO) AlddV ION 5300 - 004oue alouls a Aa1) s.IN) s.o("V)'g 091 ='N - 8OP8 us 01 asap Wawpaqwa daap g1vA 9otpue LO dnwB Ao Aapue us Aol . W--)sdl4 V/N 'N uolsuel ul (s)Ao43uV pepeeH elo lnomolg eoej-aPIS elwouo O.4'S'0 ' 000 L -aefi . uO!sual u! AOlpue / sd!Al EO'9f = IN ` 3J djQV 9 = IN . IN °'d, mN t sdp £0'96 N uOISuel u! (s)Jo43uV )Q 41OUSAS lnollnd • £'S'0 (g Ao V uo0!puo0 Aq se l ...01UP awes a41 IOU MION) (EL•O 8 Zl-O sba) OOO'l = Nmm :BulBlldS ICUWOO 01 luewe3Aolulea .Geluewold]nS o/rA Blwouo0 Povejoun u! MOW pellelsul-]sod A0j AOpej uolle3l11POW • L'Z'S'0 � N'3d+ Pue OX AOL aP03 gas - wo43ue pallesul-tsod AOL :a]ON . 000't = "'di . :BuPL3w0 10 u0169H a ul Peleool w043uV AOj lope j uolle3UIPOW • 9 -Z'S -Cl . (L L-0 20L9 sba) 000,L :s13e93 eOp3 Aoj iotOej UOIle3UIPOW - - 000, t = "M (6.0 te) 0004 = R'"srh .. (6.0 be) oo0'L = 00'0 =nP•,(l,a 1 00'0 =A!P-Vo ' :uolsuel u! Atlleo}A4ueoo3 PePeol dna0l043UV Aoj lopej uoNe3UIpoW - 4'Z'S'0 ' SPI ZVSS =QN XVW 3SL1 (9-0 ba) sd!% ZL'SS = QN " (L•0 ba) AN 09'05 =4N ( L LC-t^Osba Aat)(EWS'0)ul OOZL =P,4 (9(3 ba) ul 00'96ZL =—V - ,ul 00'9621 ='"V (99 ba) - 'IN w-1 -'I 'PS, "a, (="y /'"V) = ewN sdl4 ZL'SS = N uolsuel u! (S)J043uV jo 41ouw1S lno-yewg elw3uo0. 2'5'0 014 E'9E = "N .nt-vu ="N . SdIX 4E'9£ _ "N „ uolsuel ul (s)Jo43uy LO 4tBuw1S I9WS - t'S'0 _ • 9,4 uo(sua1. Shear (D.6) D.6.1 - Steel Strength of Anchor(s) In Shear V„ = 17.45 kips V. = n A. fu. V. = 17.45 kips D.6.2 - Concrete Breakout Strength of Anchors) in Shear V,e = 25.80 kips Vmo = (Avc / A„.) Wec.v Wed., 4'cv Ve 4i = 16 in modified: influenced by 3 edges Shear Parallel to Edge Left Side Rf ht Side - . 'A�= 864.0 in` 864.0 884.0 in A— = 1152.0 In' (eq 023) 1458.0 1458.0 in` 4 = 8.00 in Vb = 37.19 kips (eq D-24 or 25) 1403 1403 V.. = 25.80 1663 1663 kips 2:\Prejects\10\10.079 Chevy_Cadillac of La OUima\Catm\Cadillac\Lateral\Concrete Anchorage ( Holdow Line 3).xls r 4 • D.62.5 - Modification Factor For Anchor Group Loaded Eccentrically In Shear: e'v = 0.00 Wsv= 1.000 (eq D-26) . D.62.6 - Modification Factor For Edge Effects: 0.925 (eqs D-27 8 D-28) D.6.2.7 - Modification Factor For Anchors Located In a Region of Cracking: 41,= 1.00 • 1 D.6.3 - Concrete Pryout Strength of Anchors) In Shear V« = kips (or V„) 110.24 �11 V, = kcp Ncbg k`D 2.0 T i V,= 110.24 kips ' SHEAR SUMMARY Phi D.8.1 - Steel Strength of Anchors) in Shear V„ _ -. 0:17.45 �. -kips 0.65 0. .2 - Concrete Breakout Strength of Anchor(s) In Shear V,e = 25.80 kips0.70 ' D.6.3 - Concrete Pryout Strength of Anchor(s) in Shear V� - 110.24 kips 0.70 CONTROLLING SHEAR VALUE = 17.45 kips Q) x SEISMIC -RISK FACTOR x CONTROLLING SHEAR VALUE = 11.37 kips f 2:\Prejects\10\10.079 Chevy_Cadillac of La OUima\Catm\Cadillac\Lateral\Concrete Anchorage ( Holdow Line 3).xls r 4 :MAN+ROHY Structural Engineers _= GRADE. BEAM DESIGN =_ January 2009 SOIL: D L 4 CONCRETE: W D L L. Allowable Soil Bearing = 2500 psf (not Increased) 1.000 1.000 8].84 631.50 Allowable Increase = 1.333 (for lateral loads in All Cases) rc = 3.00 ksi phi = 0.75 (shear) - Equation 1&16 D I L • O.SS - 1.31N 1.000 1.000 ly = 60 last phi = 0.9 (bending) rho = 1.00 (1.0 or 1.3) 1.000 0.650 61.50 Equation 1&20 D • L 5 • rho E 1 blended factor = 1.4 d = thickness - 4.0 In 81.50 Equation 16.21 o9D - rho E 0.900 d = 20.0 in FOOTING: Equation 16-22 0.670 - 1.31N 0.870 0.750 1.300 Extension at left = 9 It (to left of first load) SHEAR: Extension at right = 9 It max extension shear Vu = 43.1 kips Equation 16.13(c) Length = 26.00 ft phi Vc = 98.6 kips D 10.751. • 0.75S • 0.5625 rho1.000 0.750 0.750 0.563 (shear steel not needed) 0.60- W distance from Slab to TOF = w 1 H use min steel exception?(Y/N) Y ACI 11.5.6.1 exception (a) Thickness = 2 ft Shear Reinf. Size = If 3 0.11 In= Width = 5 N _ number of shear steel legs = 2 481.3 Grade -Beam Volume = 260 cu. ft. Vs Re 'd = 0.0 kips 7.46 N Spacing = 0.00 in Added OL Surcharge = 0.00 kit BENDING: 776.6 1.61 GB Concrete Weight = 1.50 Rif (concrete = 150 pcQ max extension moment = 252.47 k -ft 1.71 Soil Above Weight = 0.55 Rif (soil = 110 pcQ 481.3 Asin' a4a = 4.00 Total GB Weight = 2.05 Rif a = 1.13 In As = 2.89 int ' GOOD Beta = 0.85 1.33 xAs = 3.84 int 8.72 4.28 0.75 rho balanced = 0.0160 As ,,,r,= 19.24 In' ' 0.01 GOOD Longitudinal Bar = # 7 1 7 If 7 bars re uired Alternate Load Combinations: NO GOOD Y 26.0 D. as • Basic Load Combinations: GOOD 0.0 778.6 Infinite GOOD (either all basic or all alternate cases must work 0.37 Y 28.0 LOAD COMBINATIONS (Basad on Aso 'Altom WI: Per 2006 IBC 1605.3.2 D L 4 S E W D L L. Equellon 16-16(al D • L • Lr Equation 1&18 b D • L . S 1.000 1.000 1.000 1.000 1.000 1.000 1.000 8].84 631.50 Equation 16-17 D • L + 1.3W 1.000 1.000 1.000 7.000 1.300 61.50 Equation 1&16 D I L • O.SS - 1.31N 1.000 1.000 0.500 1.300 81.50 Equation 1&19 D • L • S - O.65W 1.000 1.000 1.000 0.650 61.50 Equation 1&20 D • L 5 • rho E 1.000 1.000 1.000 7.000 1.000 0.750 81.50 Equation 16.21 o9D - rho E 0.900 1.000 1.00D 55.35 Equation 16-22 0.670 - 1.31N 0.870 0.750 1.300 41.20 Allowable Soo Bearing txessura irlceased Dy 1.3]7 far W iM end Seismic Loads 0.750 LOAD COMBINATIONS (Based on ASD'Banic'): Racist. Mom. (k4t) Factor of Safety Per ASCE 7-0512.4.1 8 12.4.2.31 8 2008 IBC 1605.3.1 D L L. S E W E uation 18-e D 1.000 Load Load Load Load E uation t&9 D • L 1.000 7.000 1 2 Equation 18.10(x)D • Lr 1.000 1.000 Start End & t b Equation 16-10(b) D• S 1.000 1.000 Equation 18-1 Ila) D . 0.75L • 0.75U 1.000 0.750 0.750 0.00 ft Equation 16-11 b D 0.75L 0.75S 1.000 0.750 0.750 Equation 16.12(e) D • W 1.000 1.00D Equation 1&t2 b O. 0.75 rho E 1.000 0.750 Equation 16-13(a) D • 0.751. • 0.75Lr • 0.75W 1.000 0.750 0.750 0.750 Equation 18.13(b) D • 0.751 0.755 0.75W 1.000 0.750 0.750 0.750 Equation 16.13(c) D • 0.75L + 0.75U + 0.5625 rho 1.000 0.750 0.750 0.563 Equation 16-13(d) D 10.751. • 0.75S • 0.5625 rho1.000 0.750 0.750 0.563 E uation 1&t4 0.60- W 0.800 1.000 E uation l&15 0.80. 0.75 rhoE 10.600 0.00 it 0.750 61.60 61.50 63.84 61.50 83.25 61.60 61.50 61.50 63.25 61.50 63.25 61.50 36.90 36.90 • PROJECT: La Quinta Cadillac LOCATION: Line 3 JOB NO: 10-079 VERTICAL LOADS (ASD): . 10 11/17/2010 10:02:24 LATERAL LOADS (ASD): Racist. Mom. (k4t) Factor of Safety X Rom right (ft) Dist Load - 1 Dist Load - 2 Bearing Length (ft) Load Load Load Load • Load Load Load Load Distance to: Distance to: Level Slab H 1 2 3 4 5 6 7 8' SlarUklf Endlkl s Start End Dist from Load 1 = 0.00 ft 4.00 ft 8.00 ft 358.9 - 0.00 fl 6.00 ft 0.00 ft 0.00 ft D = 0.00 k 0.00 it 5.70 it 0.00 0.0 0.312 kit 2.50 k - 0.00 it L = 0.00 it 0.00 it 0.50 0.0 - 0.000 Rif 0.00 it 0.0 0.00 it Lr = 0.00 It 0.00 It 1.70 it 0.00 0.0 0.080 kit 0.64 it infinite 0.00 it S = 0.00 It 0.00 it 26.0 0.43 0.51 0.000 Rif 0.00 it 778.6 0.00 It E (* Is up) = 0.00 k 0.00 k N 14.4 1.71 0.000 kll 0.00 k 481.3 0.G0 k W • IS u = 0.00 k 0.07 k 7.46 N 16.6 0.000 klf 0.00 k GOOD 0.00 k LATERAL LOADS (ASD): Racist. Mom. (k4t) Factor of Safety X Rom right (ft) Height Height Bearing Length (ft) Max. Goering (kat Above Above Bim. Seismic Seismic Wind Wind Level Slab H of Ft N (kips) Moment(k-ft) kis Moment (k -ft) Roof 15.50 it 18.50 0.00 it 0.0 19.40 it 358.9 - 12.50 0.00 0.0 26.0 0.0 - GOOD 0.00 0.0 infinite 0.0 - Y 0.00 0.0 0.50 0.0 - 778.6 0.00 0.0 0.37 0.0 - 0.51 0.00 0.0 0.0 0.0 # Levels = I Moments= ' 0.0 k -ft I Moments = 358.9 k -ft O.T. Mom. IRA) Racist. Mom. (k4t) Factor of Safety X Rom right (ft) a from center (ft) In Kem? (YM) Bearing Length (ft) Max. Goering (kat Min. Bearing (ksQ OK? O.T. Mom. (k4t) Raslat. Mom. (k•ft) Factor of Safety X from left (ft) a from center (fl) In Kem? (YIN) Soaring Length (ft) Max. Bearing (kaf) Min. Bearing (kaf) OK? 0.0 800.3 Infinite 12.50 0.48 Y 26.0 0.54 0.44 GOOD 0.0 859.5 infinite 13.46 -0.45 Y 26.00.44 0.43 0.50 GOOD 0.0 778.6 IMnite 12.93 0.37 Y 28.0 0.51 0.43 GOOD 0.0 a22.2 infinite 13.37 -0.37 Y 26.0 0.43 0.51 GOOD 481.3 778.6 1.61 4.80 8.20 N 14.4 1.71 0.00 GOOD 481.3 822.2 1.71 5.54 7.46 N 16.6 1.48 0.00 GOOD 481.3 776.6 1.61 4.80 8.20 N 14.4 1.71 0.00 GOOD 481.3 822.2 1.71 5.54 7.OB N 18.6 1.48 0.00 GOOD 240.7 776.6 3.23 8.72 4.28 Y 26.0 0.94 0.01 GOOD 240.7 822.2 3.42 9.48 3.54 Y 26.0 D. as 0.09 GOOD 0.0 778.6 Infinite 12.63 0.37 Y 28.0 0.51 0.43 GOOD 0.0 822.2 Infinite 13.37 -0.37 Y 26.0 0.43 0.51 GOOD 0.0 699.0 Infinite 12.63 0.37 Y 28.0 0.48 0.39 GO 0.0 -o0 infinite 13.31 -0.37 Y 26.0 0.39 0.46 GOOD 481.3 520.4 1.06 0.95 12.05 N 2.8 5.80 0.00 GOOD 481.3 550.9 1.14 1.69 11.31 N 5.1 3.25 DOD - GOOD O.T. Mom. (k -ft) Realat. Mom. (k -ft) Factor of Safety X from right (ft) a from center (ft) In Kam? (YIN) Bearing Length (ft) Max. Bearing (kat) Min. Bearing (kat) OK? O.T. Mom. (k -fl) Resist Mom. (k -ft) Factor of Safety X froma loft (ft) from conte, (ft) In Kom7 (YIN) Bearing Length (ft) Max. Bearing (kaf) Min. Bearing (kat) OK7 0.0 778.8 Infinite 12.63 0.37 Y 25.0 0.51 0.43 GOOD 0.0 822.2 infinite 13.37 -0.37 Y 26.0 0.43 0.51 GOOD 0.0 776.6 Infinite 12.63 0.37 Y 25.0 0.51 0.43 GOOD 0.0 822.2 Infinite 13.37 -0.37 Y 26.0 0.43 0.51 GOOD 0.0 800.3 infinite 12.54 0.46 Y 26.0 0.54 0.44 GOOD 0.0 859.5 Infinite 13.46 -0.46 Y 28.0 0.44 0.54 GOOD 0.0 776.8 Infinite 12.63 0.37 Y 26.0 0.51 0.43 GOOD 0.0 822.2 Infinite 13.37 .0.37 Y 26.0 0.43 0.51 GOOD 0.0 794.4 Infinite 12.58 0.44 Y 26.0 0.54 0.44 GOOD 0.0 850.2 Infinite 13.44 -0.44 Y 26.0 0.44 0.54 GOOD 0.0 778.8 infinite 12.63 0.37 Y 26.0 0.51 0.43 GOOD 0.0 822.2 Infinite 13.37 .0.37 Y 26.0 0.43 0.51 GOOD 370.2 776.8 2.10 6.61 8.39 N 10.8 1.24 0.00 GOOD 370.2 822.2 2.22 7.35 5.65 N 22.1 1.12 0.00 GOOD 0.0 776.6 Infinite 12.63 0.37 Y 26.0 0.51 0.43 GOOD 0.0 822.2 Infinite 13.37 -0.37 Y 26.0 0.43 0.51 GOOD 277.7 794.4 2.86 8.17 4.83 N 24.5 1.03 0.00 GOOD 277.7 850.2 3.06 9.05 3.95 Y 26.0 0.93 0.04 GOOD 277.7 779.9 2.80 8.11 4.89 N 24.3 1.01 0.00 GOOD 277.7 822.2 2.98 8.86 4.14 Y 26.0 0.93 '0.02 GOOD 0.0 794.4 infinite 12.55 0.44 Y 26.0 0.54 - 0.44 GOOD 0.0 850.2 infinite 13.44 -0.44 Y 29.0 0.44 0.54 GOOD 0.0 776.6 Infinite 12.83 0.37 Y 26.0 0.51 0.43 GOOD 0.0 822.2 infinite 13.37 -0.37 Y 26.0 0.43 0.51 GOOD 370.2 466.0 1.26 r 2.60 10.40 N 7.8 1.90 0.00 GOOD 370.2 493.3 1.33 3.34 9.66 N 10.0 1.47 0.00 GOOD 0.0 489.0 Infinite 12.63 0.37 Y 26.0 0.31 0.20 GOOD 1 0.0 493.3 Infinite 13.37 -0.37 Y 28.0 0.28 0.31 GOOD Legend: Notes: D = Dead Load Ev = 0 per IBC (alternate) and ASCE (basic) No loads possible on extensions - model extension past last load L = Floor Live Load Overturning forces (W & E) it 0.75 for basic cases per ASCE 12.13.4 L, = Roof Live Load This spreadsheet considers E as ASD ,w E = Earthquake Load Uses lowest of controlling case from basic or alternate load cases for Shear & Moment W S = Snow Load Load 1 = first load from left after left extension R L --o/ *ON sor srilk-) TY7 Jo 'ON 133HS SH33HIONIlUnDn81s AHOIJ I + NVW3SIM -----� --- ---------L' | .| / . . | � | � / / ! |*/m ` E Ills 91 IV4 PIP" 'a ON Hof 10 *ON 133HS AHOVI .-� ^ WISEMAN+ROHY Structural Engineers PROJECT: La Quinta Cadillac _= GRADE BEAM DESIGN =_ LOCATION: Line C Wall 1 January 2009 JOB NO: 10-079 11/17/2010 10:10:19 SOIL: LOAD COMBINATIONS (Based an ASD'Altomete'): CONCRETE: X from right (ft) Dist Load - 1 Allowable Soil Bearing = 2500 psf (not Increased) Per 2006 IBC 1605.3.2 Load Load D L 4 Allowable Increase = 1.333 (for lateral loads in Alt Cases) Fc = 3.00 ksi phi = 0.75 (shear) D+L+Lr 1.000 1.000 1.000 Start End fy = 60 ksl phi = 0.9 (bending) - E ualion 16-16 e rho = 1.00 (1.0 or 1.3) 1.000 0.00 ft 44.37 • D = Equation 16-17 D • L • 1.3W blended factor = 1.4 d = thickness - 4.0 In 1.300 44.37 0.0 _ If = 14.0 in 0.500 FOOTING: 44.37 0.000 kif Equation 16-19 D • L • S+ 0.65W 1.000 1.000 Extension at left = 4 It (to left of first load) SHEAR: Sum of EO Equation 16-20 D + L + S + rho E Extension at right = 4 ft max extension shear Vu = 27.8 kips 0.00 k O.00 k + Length = 20.00 ft phi Vc = 55.2 kips 39.93 0.00 k Equation 16.22 0.67D - 1.3W (shear steel not needed) 1 1.3001 distance from Slab to TOF = 'I ry use min steel exceptlon7(Y/N) Y ACI 11.5.6.1 exception (a) 0.00 k 2.75 k 1 ' Thickness = 1.5 ft Shear Reinf. Size = # 3 0.11 Int GOOD - Width = 4 ft • number of shear steel legs = 2 6.14 N Grade -Beam Volume = 120 cu. ft. Vs Req'd = 0.0 kis y 0.00 in 441.9 Spacing = Added DL Surcharge = 0.00 kit BENDING: 11.3 1.95 0.00 GS Concrete Weight = 0.90 kif (concrete = 150 pct) max extension moment = 66.13 k -ft 6.95 3.05 Soil Above Weight = 0.44 kit (soil = 110 pct) 1.06 As nin = 2,24 In' 137.0 Total GB Weight = 1.34 kit a = 0.52 In As = 1.07 Int 20.0 1.08 0.03 Beta = 0.85 1.33 x As = 1.42 in' Infinite 10.04 -0.04 0.75 rho balanced = 0.0160 As m„ = 10.78 in' 0.56 GOOD 0.0 Longitudinal Bar = # 6 F -4# 6 bars re uired 0.00 Alternate Load Combinations: NO GOOD 20.0 0.56 0.55 . GOOD Basic Load Combinations: GOOD ' Infinite 10.04 GOOD (either all basic or all alternate cases must work Y 20.0 0.49 All LOAD COMBINATIONS (Based an ASD'Altomete'): Factor of Safety X from right (ft) Dist Load - 1 Dist Load - 2 Bearing Length (ft) Per 2006 IBC 1605.3.2 Load Load D L 4 S E W Level Slab N 1 2 Equatio l6 -16(a) D+L+Lr 1.000 1.000 1.000 Start End Dist from Load 1 - 52.67 6.00 ft -12.00 ft E ualion 16-16 e 0 • L • S 1.000 1.000 1.000 0.00 ft 44.37 • D = Equation 16-17 D • L • 1.3W 1.000 1.000 r 1.300 44.37 0.0 Equation 16-18 D • L • O.5S + I AW 1.000 1.000 0.500 1.300 44.37 0.000 kif Equation 16-19 D • L • S+ 0.65W 1.000 1.000 1.000 0.650 44.37 Sum of EO Equation 16-20 D + L + S + rho E 1.000 1.000 1.000 1.000 0.00 k 44.37 0.00 k O.00 k Equation 16-21 0.9D - rho E 0.900 1.000 0.00 k 39.93 0.00 k Equation 16.22 0.67D - 1.3W 0.670 1 1.3001 29.73 VERTICAL LOADS IASDI: LATERAL LOADS (ASD): Mom- (k -ft) Factor of Safety X from right (ft) Dist Load - 1 Dist Load - 2 Bearing Length (ft) Load Load Load Load Load Load Load Load Distance to: Distance to: Level Slab N 1 2 3 4 5 6 7 8 Startlklf End/ki s Start End Dist from Load 1 - 0.00 ft 6.00 ft 6.00 ft -12.00 ft - Infinite 0.00 fl 12.00 fl 0.00 ft 0.00 ry • D = 5.70 k 0.00 k 3.30 k 5.40 it 0.0 r 0.264 kif 3.17 k 0.0 0.00 k • L = 0.00 k 0.00 k 0.00 0.0 0.0 0.000 kif 0.00 k 0.00 0.00 k Lr - 1.701, 0.00 k 3.20 k 3.60 k Sum of EO Sum of Wind 0.000 k1f 0.00 k Moments = 0.0 k -ft 0.00 k • S = 0.00 k O.00 k 20.0 0.56 0.55 0.000 kit 0.00 k 445.5 0.00 k E (+ Is up) = 0.00 k 0.00 k N 11.6 1.91 0.000 kif 0.00 k 274.0 ' 0.00 k W + Is u 0.00 k 2.75 k 1 6.22 N 11.3 0.000 kif 0.00 k GOOD 0.00 k LATERAL LOADS (ASD): Mom- (k -ft) Factor of Safety X from right (ft) Height Height Bearing Length (ft) Max. Bearing (kat) Above Above Btm. Seismic Seismic Wind Wind Level Slab N of Ftg H kis Moment jk-ft) (kis Moment[k-fit) Roof 17.00 ft 19.50 0.00 k 0.0 9.40 It 183.3 - Infinite 0.00 0.0 0.0 - 0.70 0.00 0.0 0.0 - infinite 0.00 0.0 0.0 - - 0.62 0.00 0.0 0.0 445.5 Infinite 0.00 0.0 0.0 20.0 0.55 Sum of EO Sum of Wind # Levels = 'I 441.9 Moments = 0.0 k -ft Moments = 183.3 k -ft O.T.Resist. Mom. (1,41) Mom- (k -ft) Factor of Safety X from right (ft) a from canter (ft) In K-7 (YIN) Bearing Length (ft) Max. Bearing (kat) Min. Bearing (kef) OK? O.T. Mom. (k -ft) Resist. Mom, (k -ft) Factor of Safety X from left (N) a from cantor (ft) In Kam? (YIN) Bearing Length (ft) Max. Bearing (ksf) Min. Bearing (kef) OK? 0.0 519.1 Infinite 9.82 0.18 Y 20.0 0.70 0.62 GOOD 0.0 538.3 • infinite 10.18 -0.18 Y 20.0 0.62 0.70 GOOD 0.0 445.5 Infinite 10.00 -0.04 Y 20.0 0.55 0.56 GOOD 0.0 441.9 Infinite 9.96 0.04 Y 20.0 0.56 0.55 GOOD 274.0 445.5 1.63 3.88 6.14 N 11.6 1.91 0.00 GOOD 274.0 441.9 1.61 3.78 6.22 N 11.3 1.95 0.00 GOOD 274.0 445.5 1.63 3.88 6.14 N 11.6 1.91 0.00 GOOD 274.0 441.9 1.61 3.78 6.22 N 11.3 1.95 0.00 GOOD 137.0 445.5 3.25 6.95 3.05 Y 20.0 1.06 0.05 GOOD 137.0 441.9 3.22 6.87 3.13 Y 20.0 1.08 0.03 GOOD 0.0 445.6 Infinite 10.04 -0.04 Y 20.0 0.65 0.56 GOOD 0.0 441.9 Infinite 9.98 0.00 Y 20.0 0.56 0.55 . GOOD 0.0 400.9 Infinite 10.04 -0.04 Y 20.0 0.49 0.51 GOOD 0.0 397.7 Infinite 9.96 0.04 Y 20.0 0.51 0.49 GOOD 274.0 298.5 1.09 0.82 9.18 N 2.5 6.03 0.00 GOOD 274.0 298.1 1.08 0.74 9.26 N 2.2 6.69 0.00 GOOD Sod efi 44.37 44.37 52.87 44.37 50.74 44.37 44.37 44.37 50.74 44.37 50.74 44.37 28.62 28.62 o- a Be no pressure increased by 1.333 for Wind and Seismic Loads Ir LOAD COMBINATIONS (Based on ASO'Basic'(: Roelof. Mom. (k -ft) Factor of Safety Per ASCE 7-05 (2.4.1 & 12.4.2.31 & 2006 IBC 1605.3.1 D L L, S E W Equation 16-8 O 1.000 OK? Equation 16-9 D+L 1.000 1.000 X from loft (ft) Equation 16-10(a) 0 • Lr 1.000 1.000 Max. 'Bearing (kef) Equation 16-10(bt D • S 1,000 1,ppg Equation 16-11(a) D • 0.75L + 0.751! 1.000 0.750 0.750 Y Equation 16.11 b 0 • 0.751 . 0.755 1.000 0.750 0.750 Equation 16-12(a) D • W 1.000 1.000 Equation 16-12(b) D + 0.75rho E 1.000 0.750 Equation 16-13(a) D + 0.751 + 0.75Lr + 0.75W 1.000 0.750 0.750 0.750 Equation l6 -13(b) D• O.75L+0.75S+0.75W 1.0000.750 0.750 0.750 Equation 16-17(c) D+0.751-+0.751--0.5625rM 1.000 0.750 0.750 0.563 Equation 16-13(d) D + 0.75L + 0.75S + 0.5625 rho 1.000 0.750 0.750 0.563 Euation 16-14 O.6D-W 0.600 1.000 uation lS- 5 E!.. 0.8D-0.75.1 10.600 0.0 0.750 Legend: D = Dead Load L = Floor Live Load L, = Roof Live Load E = Earthquake Load S = Snow Load O.T. Morn. (k -ft) Roelof. Mom. (k -ft) Factor of Safety X from right (ft) a from center (ft) In Kom7 (YIN) Bearing Length (ft) Max.Min. Bearing (kef) Bearing (kef) OK? O.T. Mom. (k -ft) Reeist. Mom. (k -ft) Factor of Safety X from loft (ft) a from center (ft) In Kom? (YIN) Bearing Length (ft) Max. 'Bearing (kef) Min. Bearing fkal) OK? 0.0 445.5 Infinite 10.00 -0.04 Y 20.0 0.55 0.56 GOOD 0.0 441.9 infinite 9.96 0.04 Y 20.0 0.56 0.55 GOOD 0.0 445.5 infinite 10.04 -0.04 Y 20.0 0.65 0.56 GOOD 0.0 441.9 Infinite 9.96 0.04 Y 20.0 0.58 0.55 GOOD 0.0 519.1 Infinite 9.02 0.18 Y 20.0 0.70 0.62 GOOD 0.0 638.3 infinite 10.18 -0.18 Y 20.0 0.62 0.70 GOOD 0.0 445.5 infinite 10.04 -0.04 Y 20.0 0.55 0.56 GOOD 0.0 441.9 Infinite 9.98 0.04 Y 20.0 0.56 0.55 GOOD 0.0 500.7 innnite 9.87 0.13 Y 20.0 0.66 0.61 GOOD 0.0 514.2 Infinite 10.13 -0.13 Y 20.0 0.61 0.66 GOOD 0.0 445.5 infinlle 10.04 -0.00 Y 20.0 0.55 0.S8 GOOD 0.0 441.9 Infinite 9.96 0.04 Y 20.0 0.56 0.55 GOOD 210.8 445.5 2.11 5.29 4.71 N 15.9 1.40 0.00 GOOD 210.8 441.9 2.10 5.21 4.79 N 15.6 1.42 0.00 GOOD 0.0 445.5 Infinite 10.04 -0.04 Y 20.0 0.55 0.56 GOOD 0.0 441.9 Infinite 9.96 0.04 Y 20.0 0.56 0.55 GOOD 158.1 500.7 3.17 8.75 3.25 Y 20.0 1.25 0.02 GOOD 158.1 514.2 3.25 7.02 2.98 V 20.0 1.20 0.07 GOOD 158.1 445.5 2.82 6.48 3.52 N 19.4 1.14 0.00 GOOD 158.1 441.9 2.79 6.40 3.60 N 19.2 1.16 0.00 GOOD 0.0 500.7 Inlinile 9.87 0.13 Y 20.0 0.88. 0,61 GOOD 0.0 514.2 Infinite 10.13 -0.13 Y 20.0 0.61 0.88 GOOD 0.0 445.5 infinite 10.04 -OD4 Y 20.0 0.65 0.56 GOOD 0.0 441.9 infinite 9.96 0.00 Y 20.0 0.56 0.65 GOOD 210.8 267.3 1.27 2.12 7.88 N 6.4 2.09 0.00 GOOD 210.8 265.1 1.26 2.04 7.96 N 6.1 2.17 0.00 GOOD 0.0 267.3 Infinite 10.04 -0.04 Y 20.0 0.33 0.34 GOOD 1 0.0 265.1 Infinite 9.98 0.04 Y 20.0 0.34 0.33 GOOD Notes: ' Ev = 0 per IBC (alternate) and ASCE (basic) No loads possible on extensions - model extension past last load Overturning forces (W & E) It 0.75 for basic cases per ASCE 12.13.4 This spreadsheet considers E as ASD Uses lowest of controlling case from basic or alternate load cases for Shear & Moment 146 Load 1 = first load from left after left extension . al WISEMAN+ROHY Structural Engineers PROJECT: La Quinta Cadillac _= GRADE BEAM DESIGN =_ LOCATION: Line C Wall 2 January 2009 JOB NO: 10-079 11/17/2010 10:25:Of SOIL: ReslsL Mo. (k -ft) CONCRETE: Dist Load - 1 Dist Load - 2 Allowable Soil Bearing = 2500 DO (not Increased) S . E W Distance to: Allowable Increase = 1.333 (for lateral loads In Alt Cases) Pc = 3.00 ksi phi = 0.75 (shear) Equation 16-16(b) O+L+S 1.000 1.000 fy = 60 ksl 1 phi = 0.9 (bending) rho = 1.00 (1.0 or 1.3) 1' 1.300 48.22 Equation 16-18 D.L+0.5S+1.3W 1.000 1.0101) blended factor = 1.4 It = thickness - 4.0 In - Equation 1&19 0 + L + S . 0.65W 1.000 1.000 If = 14.0 in FOOTING: E ual'wn 18.20 D + L + S • rho E 1.000 1.000 1.000 1.000 0.000 kit Extension at left = 6 ft ((o left of first load) SHEAR: Extension at right = 4 ft _ max extension shear Vu = 32.5 kips 0.870 Length = 22.67 ft - phi Vc = 55.2 kips S =0.00 k 0.00 k - (shear steel not needed) - distance from Slab to TOF = 1 R - use min steel exceptlon?(Y/N) Y ACI11.5.6.1 exception (a) Thickness = 1.5 .,ft Shear Reinf. Size = If 3 0.11 In= Width = 4 ft 4 number of shear steel legs = 2 W + Is u = Grade -Beam Volume = 136.02 cu. ft. r Vs Re 'd = 0.0 kis 4.12 0.000 kit Sparing = 0.00 in Added DL Surcharge = 0.00 kit BENDING: 269.1 600.8 2.08 GB Concrete Weight = 0.90 kit (concrete = 150 pct) max extension moment = 123.72 k -ft 1.24 0.00 Soil Above Weight = 0.44 kit (soil = 110 pct) 492.4 As ,,,1, = 2.24 In' 7.22 Total GB Weight = 1.34 kit a = 1.00 In As = 2.041 In2 144.8 600.8 4.18 Beta = 0.85 1.33 x As = 2.71 In2 22.7 0.80 0.27 0.75 rho balanced = 0.0160 As ,,,a, = 10.78 In' 3.35 7.16 4.17 Longitudinal Bar = # 6 . 6 # 6 bars required DOD Alternate Load Combinations: NO GOOD Basic Load Combinations: GOOD GOOD either all basic or all alternate cases must work LOAD COMBINATIONS (Based on ASD'Altomale7: ReslsL Mo. (k -ft) Factor of Safety Dist Load - 1 Dist Load - 2 Per 2006 IBC 1605.3.2 D L L. S . E W Distance to: Equation 16-16(a) D+L+Lr 1.000 1.000 1.000 3 4 5 6 7 8 Start1klf End/kips 56.72 Equation 16-16(b) O+L+S 1.000 1.000 1.000 19.50 48.22 Equation 16-17 D+L+1.3W 1.000 1.000 0.00 R 1.300 48.22 Equation 16-18 D.L+0.5S+1.3W 1.000 1.0101) 0.500 1.3D0 48.22 Equation 1&19 0 + L + S . 0.65W 1.000 1.000 1.000 0.650 48.22 E ual'wn 18.20 D + L + S • rho E 1.000 1.000 1.000 1.000 0.000 kit 48.22 Equation 16.21 0.913- rho E 0.900 1.000 5.30 k 0.00 k 43.40 Equation 16-22 0.67D - 1.3W Allowabl Sou Bead 1 0.870 0.000 kit 1.300 32.31 VERTICAL LOADS IAm. LATERAL LOADS (ASD): ReslsL Mo. (k -ft) Factor of Safety Dist Load - 1 Dist Load - 2 Height Load Load Load Load Load Load Load Load Distance to: Distance to: Seismic . Seismic - 1 2 3 4 5 6 7 8 Start1klf End/kips Start . End Dist from Load 1 = 0.00 ft 6.00 ft 6.00 ft - - 19.50 0.00 k 0.0 0.00 ft 12.G7 ft 0.00 R 0.00 ft D- 11.20 k 0.00 k 3.30 k 0.39 0.00 0.264 kit 3.34 k - 0.00 k L = 0.00 k 0.00 k 0.0 - 0.88 0.000 kit 0.00 k 0.0 0.00 k Lr = 5.30 k 0.00 k 3.20 k 0.0 22.7 0.000 kit .0.00 k Sum of Wind 0.00 k S =0.00 k 0.00 k - 1.12 - 0.000 kit 0.00 k 0.37 0.00 k E (+ Is up) = 0.00 k 0.00 k 2.08 8.48 4.87 0.000 kit 0.00 k 1.24 0.00 k W + Is u = OAO k 2.75 k 492.4 1.68 4.12 0.000 kit 0.00 k 12.4 0.00 k LATERAL LOADS (ASD): ReslsL Mo. (k -ft) Factor of Safety X from right (ft) Height Height Bearing Length (ft) Max. Bearing (kat Above Above Bim. Seismic . Seismic - Wind Wind Level . Slab ft of Ftg R kl s Moment (k -ft) (kips) Moment [k -ft) Roof 17.00 ft 19.50 0.00 k 0.0 9.90 k 193.1 723.3 Infinite 0.00 0.0 0.0 - 0.39 0.00 0.0 0.0 - Infinite 0.00 0.0 0.0 - 0.88 0.00 0.0 0.0 600.8 Infinite 0.00 0.0 0.0 22.7 0.37 Sum of EQ Sum of Wind # Levels = I 492.4 Moments = 0.0 k -ft Moments = 193.1 k -ft O.T. Mom. (k4l) ReslsL Mo. (k -ft) Factor of Safety X from right (ft) a from cantor (N) In Kom? (YIN) Bearing Length (ft) Max. Bearing (kat Mln. Bearing (kef) OK? O.T. Mom. (k -ft) Resist. Mo, (1,41) Factor of Safety X from left (ft) a from center (ft) In Kom? (YIN) Bearing Length (ft) Max. Bearing (ks0 Min.m Bearing (kof) OK? 0.0 723.3 Infinite 12.75 -1.42 Y 22.7 0.39 0.88 GOOD 0.0 582.8 Infinite 9.92 1.42 Y 22.7 0.88 0.39 GOOD 0.0 600.8 Infinite 12.48 .1.12 Y 22.7 0.37 0.69 GOOD 0.0 492.4 Infinite 10.21 1.12 Y 22.7 0.69 0.37 GOOD 289.1 600.8 2.08 8.48 4.87 N 19.4 1.24 0.00 GOOD 293.9 492.4 1.68 4.12 7.22 N 12.4 1.95 0.00 GOOD 269.1 600.8 2.08 6.46 4.87 N 19.4 1.24 0.00 GOOD 293.9 492.4 1.68 4.12 7.22 N 12.4 1.95 0.00 GOOD 144.8 600.8 4.18 9.46 1.87 Y 22.7 0.80 0.27 GOOD 146.9 492.4 3.35 7.16 4.17 N 21.5 1.12 DOD GOOD 0.0 600.8 Infinite 12.48 -1.12 Y 22.7 0.37 0.89 GOOD 0.0 492.4 Infinite 10.21 1.12 Y 22.7 0.69 0.37 GOOD 0.0 540.7 infinite 12.48 -1.12 Y 22.7 0.34 0.62 GOOD 0.0 443.2 Infinite 10.21 1.12 Y 22.7 0.62 0.34 GOOD 289.1 402.5 1.39 3.51 7.82 N 10.5 1.53 0.00 GOOD 293.9 329.9 1.12 1.12 10.22 N 3.3 4.83 0.00 NO e ng pressure rxxeased by 1.333 for Wind and Seismic Loads FORCE TOWARD RIGHT: LOAD COMBINATIONS (Basad on Aso 'Basic'): Resist. Mom. (k -ft) Factor of Safety Per ASCE 7-0512.4.1 8 12.4.2.31 8 2008 IBC 1605.3.1 0 L L. S E W Equation 16-8 D 1.000 OK? Equation 16.9 D + L 1.000 1.000 Xfrom leftenter (ft) Equation 16-10(a) D+Lr 1.000 1.000 Max. Bearing (ksf) Equation 1&1 b D! S 1.000 1.000 Equation 18-11(a) D + 0.751. + 0.75Lr 1.000 0.750 0.750 Y Equation 16-11 h 0 + 0.751. + 0.75S 1.000 0.750 0.750 Equation 16-12(a) D+ W 1.000 - 1.000 Equation 16-12(b) D+ 0.75 rho E 1.000 0.750 Equation 18-13(a) D+ 0.75Ll 0.75Lr+ 0.75W 1.000 0.750 0.750 0.750 Equation 16-13(b) D + 0.75E + 0.75S + 0.7SW 1.000 0.750 0.750 0.750 Equation 18-1.1(c) 0 + 0.75L + 0.75Lr + 0.5825 rho 1.000 0.750 0.750 0.553 E ualion l&13tl D+0.751 -+0.75S+0.5525 rho 1.000 0.750 0.750 0.563 E ual'ron 18-14 0.60- W 0.800 1.000 E ualion 16-15 Iu.Uu, - 0.75 rho E 0.800 0.750 48.22 48.22 56.72 48.22 54.60 48.22 48.22 48.22 54.80 48.22 54.60 48.22 28.93 28.93 O.T. Mom. (k -ft) Resist. Mom. (k -ft) Factor of Safety Xfrom right (f1) .from center (ft) In Kom? (YIN) Bearing Length (ft) Max. Bearing (kat) Min. Bearing (kef) OK? O.T. Mom. (k -ft) Rq.IaL Mom. (k -ft) Factor of Safety Xfrom leftenter (ft) .from c (R) In Kom? (YM) Bearing Length (ft) Max. Bearing (ksf) Min. Bearing (ko0 OK? 0.0 600.8 infinite 12.46 -1.12 Y 22.7 0.37 0.69 GOOD 0.0 492.4 infinite 10.21 1.12 Y 22.7 0.69 0.37 GOOD 0.0 600.8 infinite 12.46 -1.12 Y 22.7 0.37 0.69 GOOD 0.0 492.4 infinite 10.21 1.12 Y 22.7 0.69 0.37 GOOD 0.0 723.3 infinile 12.75 -1.42 Y 22.7 0.39 0.88 GOOD 0.0 582.6 Infinite 9.92 1.42 Y 22.7. 0.88 0.39 GOOD 0.0 600.8 Infinite 12.46 -1.12 Y 22.7 0.37 0.69 GOOD 0.0 492.4 Infinite 10.21 1.12 Y 22.7 0.69 0.37 GOOD 0.0 692.7 infinite 12.69 -1.35 Y 22.7 0.39 0.82 GOOD 0.0 545.0 infinite 9.98 1.35 Y 22.7 0.82 0.39 GOOD 0.0 600.8 Infinite 12.46 -1.12 Y 22.7 0.37 0.69 GOOD 0.0 492.4 Infinite 10.21 1.12 Y 22.7 0.69 0.37 GOOD 222.4 600.8 2.70 7.85 3.49 Y 22.7 1.02 0.04 GOOD 226.1 492.4 2.18 5.52 5.81 N 16.6 1.46 0.00 GOOD 0.0 600.8 Infinite 12.46 .1.12 Y 22.7 0.37 0.69 GOOD 0.0 492.4 Infinite 10.21 1.12 Y 22.7 0.69 0.37 GOOD 168.8 692.7 4.15 9.63 1.70 Y 22.7 0.87 0.33 GOOD 169.5 545.0 3.21 6.88 4.46 N 20.6 1.32 0.00 GOOD 166.8 600.8 3.60 9.00 2.33 Y 22.7 0.86 0.20 GOOD 169.5 492.4 2.90 6.70 4.64 N 20.1 1.20 0.00 GOOD 0.0 692.7 infinite 12.69 -1.35 Y 22.7 0.39. 0.82 GOOD 0.0 545.0 Infinite 9.98 1.35 Y 22.7 0.82 0.39 GOOD 0.0 800.8 Infinite 12.46 .1.12 Y 22.7 0.37 0.69 GOOD 0.0 492.4 Infinite 10.21 1.12 Y 22.7 0.69 0.37 GOOD 222.4 360.5 1.62 4.77 6.56 N 14.3 1.01 0.00 GOOD 226.1 295.4 1.31 2.40 8.94 N 7.2 2.01 0.D0 GOOD 0.0 360.5 Infinite 12.46 .1.12 Y 22.7 0.22 0.41 GOOD 1 0.0 295.4 Infinite 10.21 1.12 Y 22.7 0.41 0.22 GOOD Legend: Notes: D = Dead Load Ev = 0 per IBC (alternate) and ASCE (basic) No loads possible on extensions - model extension past last load L = Floor Live Load Overturning forces (W & E) x 0.75 for basic cases per ASCE 12.13.4 L, = Roof Live Load This spreadsheet considers E as ASD - E = Earthquake Load Uses lowest of controlling case from basic or alternate load cases for Shear & Moment wn- S = Snow Load Load 1 = first load from left after left extension vii ' ISM 3x h �SC� i I i f9'o clw ts i X5.91 t 4 � I io 'ON 133NS ! ��n mroba 11Va i— Ae S$ ! AHOMI+-NVW3SIM; _ 1 WISEMAN+ROHY Structural Engineers PROJECT: La Quinta Cadillac _= GRADE BEAM DESIGN =_ . LOCATION: Line 1 January 2009 JOB NO: 10-079 11/17/2010 10:50:4( SOIL: Dist Load - 7 CONCRETE: Per ASCE 7-05 (2.4.1 8 12.4.2.31 8 2006 IBC 1605.3.1 D L L. Allowable Soil Bearing = 2500 DO (not Increased) S E W Dist from Load 1 = Allowable Increase = 1.333 (for lateral loads in Alt Cases) Pc = 3.00 ksl phi = 0.75 (shear) E uation 16-16(b) D + L + S _ ty = 60 ksl - phi = 0.9 (bending) rho = 1.00 (1.0 Or 1.3) Equation 1&11(a) 1.300 40.48 ° 1.000 IODO blended factor = 1.4 d = thickness - 4.0 In - • - 1.000 d = 14.0 in FOOTING: 1.000 1.000 1.000 1.000 Equatio.,16-,13 (4) 40.48 Extension at left = 3 it (lo left of first load) SHEAR: D • 0.75L • 0.75S + 0.75W Extension at right = 3 ft max extension shear Vu = 15.1 kips 1.300 27.12 Length = 35.00 ft - phi Vc = 41.4 kips E uallon 16-14 o6D - W 10.800 Moments = 0.0 k -ft i3ODO (shear steel not needed) 10.60.0.75 rhoE 10.600 ' distance from Slab to TOF =• 1 ft use min steel exception7(Y/N) Y ACI 11.5.6.1 exception (a) 17.3 Thickness = 1.5 it Shear Relnf. Size = # 3 - 0.11 Int 1.49 Width = 3 It number of shear steel legs = 2 1.58 0.00 Grade -Beam Volume = 157.5 cu. It. I Vs Re 'd = 0.0 kis 1.49 5.78 11.72 Spacing = 0.00 in 1.58 Added DL Surcharge = 0.00 kit 1' BENDING: 708.4 1.49 5.78 GB Concrete Weight = 0.68 kif (concrete = 150 pct) max extension moment = 23.48 k -ft 0.00 GOOD Soil Above Weight = 0.33 kit (soil = 110 pct) 2.99 As _ = 1.68 In7 N Total GB Weight = 1.01 kif a = 0.25 In As = 0.38 Int 708.4 2.99 11.64 Beta = 0.85 1.33 x As = 0.50 Int 0.77 0.00 GOOD 0.75 rho balanced = 0.0160 As ,,,,, = 8.08 Int 17.50 0.00 Y Longitudinal Bar = # 4 3 It 4 bars required GOOD Alternate Load Combinations: NO GOOD Infinite - 0.00 Y Basic Load Combinations: GOOD , 0.39 0.39 - GOOD either all basic or all alternate cases must wnrk 637.6 Infinite - LOAD COMBINATIONS (Based on ASD'Allernate'): Dist Load - 7 Dist Load - 2 Per ASCE 7-05 (2.4.1 8 12.4.2.31 8 2006 IBC 1605.3.1 D L L. Par 2006 IBC 1605.3.2 D L L, S E W Dist from Load 1 = Equ.lion 16-16(4) D + L + Lr 1,000 1.000 1.000 1.000 1.000 Above Bim. 42.22 E uation 16-16(b) D + L + S 1.000 1.000 1.000 Equation 16-10(b) &1 b 40.48 Equation 16-17 D • L + 1.3W 1.000 1.000 Equation 1&11(a) 1.300 40.48 Equation 16-18 D • L + 0.5S + 1.3W 1.000 IODO 0.500 1.300 40.48 Equation 16.19 D + L + S + o65W 1.000 1.000 1.000 0.650 40.48 Equation 16.20 D + L + S • rho E 1.000 1.000 1.000 1.000 Equatio.,16-,13 (4) 40.48 Equation 16-21 0.90 - rho E 0.900 7.000 D • 0.75L • 0.75S + 0.75W 38.43 Equation 16-22 o67D - 1.3W 0.670 0: D75L+0.751 +0.5625 the 1.300 27.12 Allowable Soil Bearinil pressure Increased by 1.333 for Wind and Seismic Loads D • 0.75E • 0.755 • 0.5825 da LOAD COMBINATIONS (Based on ASD'Basie'I: Dist Load - 7 Dist Load - 2 Per ASCE 7-05 (2.4.1 8 12.4.2.31 8 2006 IBC 1605.3.1 D L L. S E W Equation 16-8 D 1.000 Dist from Load 1 = Equation 15.9 D + L 1.000 1.000 Above Bim. Equation 16-10(a)D • Lr 1.000 1.000 0.00 it Equation 16-10(b) &1 b 0• S 1.000 1.000 Equation 1&11(a) O • 0.75L+0.75Lr 1.000 0.750 0.750 - Equation 1&11 D • 0.75E + 0.75S 1.000 0.750 0.750 Equation 16-12(s) O+W 1.000 1.000 Equation 16-12(b) D• 0.75 rho E 1.000 0.750 Equatio.,16-,13 (4) D • 0.75E • 0.751r • 0.75W 7.000 0.750 0.750 0.750 Equation &3(0) D • 0.75L • 0.75S + 0.75W 1.000 0.750 0.750 0.750 Equation l6-la(c) 0: D75L+0.751 +0.5625 the 1.0000.7500.750 0.563 E uation 7&13 d D • 0.75E • 0.755 • 0.5825 da 1.000 0.750 0.750 0.583 E uallon 16-14 o6D - W 10.800 Moments = 0.0 k -ft i3ODO E uation 16-15 10.60.0.75 rhoE 10.600 0.00 k 0.760 Legend: D = Dead Load L = Floor Live Load L, = Roof Live Load E = Earthquake Load S = Snow Load 40.48 40.48 42.22 40.48 41.79 40.48 40.48 40.48 41.79 4018 41.79 40.48 24.29 24.29 VFRTICAI 1 OAnS fASn1- O.T. Mom. (k -ft) Dist Load - 7 Dist Load - 2 Load Load Load Load Load Load Load Load Distance to: Olstanceto: 1 2 3 4 5 6 7 8 Start/klf Endfklps Start End Dist from Load 1 = 0.00 it 14.50 it 0.00 it Above Above Bim. 0.00 it 29.00 It 0.00 it 0.00 it D = 0.00 it 0.00 k 0.00 k - 16.50 N 19.00 0.183 kif 5.31 k - 0.00 k L = 0.00 k 0.00 k 0.00 k - 738.9 0.000 1,1 0.00 k 0.0 0.00 If Lr = 0.00 k 0.00 k 0.00 k 0.0 - 0.060 kff 1.74 it 0.0 0.00 k S - 0.00 k 0.00 k 0.00 k 0.0 0.0 0.000 kif 0.00 k Sum of EQ 0.00 k E (+ Is up) = 0.00 k 0.00 k Moments = 0.0 k -ft Moments = 323.0 k -ft 0.39 0.000 kif 0.00 k 708.4 0.00 k W + Is u O.00 k 2.40 k N 17.3 1.56 0.000 kif 0.00 k I D.00 k O.T. Mom. (k -ft) Resist. Mom, (k -ft) t Xfrom right (ft) LATERAL LOADS (ASD): In Kem? (YIN) Bearing Length (if) Max. Soaring (haft Height Height O.T.fleslsl. Mom. (k -ft) Mom. (k41) Above Above Bim. Seismic Seismic Wind Wind Level Slab it of Fig H kl s Moment jk-ft) (kl s Moment(k-ft) Roof 16.50 N 19.00 0.00 k 0.0 _ 17.00 k 323.0 - 35.0 0.00 0.0 - 0.0 - 738.9 0.00 0.0 0.0 - 35.0 0.00 0.0 0.0 - 708.4 0.00 0.0 0.0 Y 35.0 0.00 0.0 0.0 - 708.4 Sum of EQ Sum of Wind # Levels = i Y Moments = 0.0 k -ft Moments = 323.0 k -ft 0.39 GOOD 474.5 708.4 O.T. Mom. (k -ft) Resist. Mom, (k -ft) Factor of safety Xfrom right (ft) .from center (fl) In Kem? (YIN) Bearing Length (if) Max. Soaring (haft Min. Bearing (kaf) OK? O.T.fleslsl. Mom. (k -ft) Mom. (k41) Factor of Safety Xfrom left (ft) afrom center (it) In Kern? (Y/N) Bearing Length (fl) Max. Bearing (kal) Min. Bearing (ksf) OK? 0.0 738.9 Infinite 17.50 0.00 Y 35.0 0.40 0.40 GOOD 0.0 738.9 Infinite - 17.50 0.00 Y 35.0 0.40 0.40 GOOD 0.0 708.4 Infinite 17.50 ODD Y 35.0 0.39 0.39 GOOD 0.0 708.4 Infinite 17.50 0.00 Y 35.0 0.39 0.39 GOOD 474.5 708.4 1.49 5.78 11.72 N 17.3 1.56 0.00 GOOD 474.5 708.4 1.49 5.78 11.72 N 17.3 1.58 0.00 GOOD 474.5 708.4 1.49 5.78 11.72 N 17.3 1.58 0.00 GOOD 474.5 708.4 1.49 5.78 11.72 N 17.3 1.56 0.00 GOOD 237.3 708.4 2.99 11.64 5.88 N 34.9 0.77 0.00 GOOD 237.3 708.4 2.99 11.64 5.86 N 34.9 0.77 0.00 GOOD 0.0 708.4 Infinile 17.50 0.00 Y 35.0 0.39 0.39 GOOD 0.0 708.4 Infinite 17.50 0.00 Y 35.0 , 0.39 0.39 GOOD 0.0 637.6 Infinite 17.50 0.00 Y 35.0 0.35 0.35 GOOD 0.0 837.6 Infinite 17.50 0.00 Y 35.0 0.35 0.35 GOOD 474.5 474.7 1.00 0.01 17.49 N 0.0 1079.42 0.00 1 474.5 474.7 1.00 0.01 17.49 N 0.0 1079.42 0.00 GOOD O.T. Mom. (1,41) R.slat. Mom. (1 Factor of Safety X from right (if) a from center (ft) In Kom? (YIN) Bearing Length (ft) Max. Bearing (haf) Min. Bearing (haft OK? O.T. Mom. (k -try Resist. Mom. (k -ft) Factor of Safety X from loft (it) a from center (0) In Kern? (Y/N) Bearing Length (it) Max. Bearing (ksf) mi.. Bearing (ksf) OK? 0.0 700.4 Infinite 17.50 0.00 Y 35.0 0.39 0.39 GOOD 0.0 708.4 Infinite 17.50 0.00 Y 35.0 0.39 0.39 GOOD 0.0 708.4 Infinite 17.50 0.00 Y 35.0 0.39 0.39 GOOD 0.0 708.4 infinite 17.50 0.00 Y 35.0 0.39 0.39 GOOD 0.0 738.9 fnfinife 17.50 0.00 Y 35.0 0.40 0.40 GOOD 0.0 738.9 Infinite 17.50 0.00 Y 35.0 0.40 0.40 GOOD 0.0 708.4 InMile 17.50 0.00 Y 35.0 0.39 0.39 GOOD 0.0 708.4 Infinite 17.50 0.00 Y 35.0 0.39 0.39 GOOD 0.0 731.3 Infinite 17.50 0.00 Y 35.0 0.40 0.40 GOOD 0.0 731.3 infinite 17.50 0.00 Y 35.0 0.40 0.40 GOOD 0.0 708.4 Infinite 17.50 0.00 Y 35.0 0.39 0.39 GOOD 0.0 708.4 infinite 17.50 0.00 Y 35.0 0.39 0.39 GOOD 385.0 708.4 1.94 8.48 9.02 N 25.5 1.09 ODD GOOD 365.0 708.4 1.94 9.48 8.02 N 25.5 1.06 0.00 GOOD 0.0 708.4 Infinite 17.50 0.00 V 35.0 0.39 0.39 GOOD 0.0 708.4 Infinite 17.50 0.00 Y 35.0 0.39 0.39 GOOD 273.8 731.3 2.67 10.95 6.55 N 32.8 0.85 0.00 GOOD 273.8 731.3 2.67 10.95 6.55 N 32.8 0.85 0.00 GOOD 273.8 708.4 2.59 10.74 6.76 N 32.2 0.84 0.00 GOOD 273.8 708.4 2.59 10.74 6.76 N 32.2 0.84 MOD GOOD 0.0731.3 infinite 17.50 0.00 Y 35.0 0.40. 0.40 GOOD 0.0 731.3 IMnile 17.50 0.00 Y 35.0 0.40 0.40 GOOD 0.0 700.4 infinite 17.50 0.00 Y 35.0 0.39 0.39 GOOD 0.0 7081 !.finite 17.50 0.00 Y 35.0 0.39 0.39 GOOD 385.0 425.1 1.16 2.47 15.03 N 7.4 2.18 0.00 GOOD 365.0 425.1 1.16 2.47 15.03 N 7.4 2.18 0.00 GOOD 0.0 425.1 Infinite 17.50 0.00 V 35.0 0.23 0.23 GOOD 0.0 425.1 Infinite 17.50 0.00 Y 35.0 0.23 0.23 • GOOD Notes: Ev = 0 per IBC (alternate) and ASCE (basic) No loads possible on extensions - model extension past last load Overturning forces (W & E) x 0.75 for basic cases per ASCE 12.13.4 This spreadsheet considers E as ASD Uses lowest of controlling case from basic or alternate load cases for Shear 8 Moment Load 1 = first load from left after left extension I' I ' Ch' 1 + I � �z , (^s 9),9 0 ,sZ/CI?� bl�L l)(j,„9b1'0)9.�, I� o; (A.0 - i l I ,a, Cz -- ---i—^ l ,9-1 C�5•-t19:..P- = %V� i i � 1 ,s�s1)s L, VA I aC. s moo' 005ti� _kms `I f ���hi = ���'��� is � i�^M ���+ale, � •�d�a�+�d�,,)�/-� �.-�,�,,� i .. .`.,- i • i— I 1 "ray � I rae� � _ k ! Ll_ �� I IV i jAl 4 •ON sor j 10 *ON 1lSNS a �1Va- A8 5833NI9N31Vall�flbl5 � - � ;. ----- • L 8 ANON + mm3siM I i i I I i I i , I i I j i I I Ia I i I I I f I , I i 5.91 1 I I , i h .2i _ I ^S• Zi I � i J0 ON eor - 'ON 133NS 1)3rovd ! 'A8 i .... Uva . S833NION3M8(ll)f1815 AHOB + NVWISIM WISEMAN+ROHY Structural Engineers PROJECT: La Quinta Cadillac _= GRADE BEAM DESIGN =_ LOCATION: Line B ' January 2009 JOB NO: 10-079 11/17/2010 r 13:37:27 SOIL: Dist Load - 1 CONCRETE: Per ASCE 7-0512.4.1 6 12.4.2.318 2008 IBC 1605.3.1 D L I. Allowable Soil Bearing = 2500 psf (not Increased) S E W Dist from Load 1 = Allowable Increase = 1.333 (for lateral loads in All Cases) f c = 3.00 ksi phi = 0.75 (shear) E uaiion 18-18(b) D + L + S 1.000 1.000 ry = 60 ksi phi = 0.9 (bending) rho = 1.00 (1.0 or 1.3) E4ualicn 18-11(a) 1.300 61.80 Equation 16-18 D+L+0.55+1.3W " blended factor = 1.4 d = thickness - 4.0 In Equation 15-19 0+L+S+0.65W 1.000 1.000 1.000 d = 14.0 In FOOTING: 1.000 1.000 00 1.0 1.000 Equation 16.13(x) 81.60 Extension at left = I It (to left of first load) SHEAR: Extension at right = 4 0 max extension shear Vu = 26.9 kips 0.0 Length = 36.00 It phi Vc = 41.4 kips , 0.00 It E(+Is up)= (shear steel not needed) 36.0 distance from Slab to TOF = 1 it use min steel exceptlon7(Y/N) Y ACI 11.5.6.1 exception (a) Thickness = 1.5 ft Shear Reinf. Size = # 3 ' 0.11 in= Width = .3 it number of shear steel legs = 2 0.00 it Grade -Seam Volume = 162 cu. ft. Vs Re 'd = 0.0 kis N 28.4 Spacing = 0.00. in Added OL Surcharge = 0.00 kif BENDING: 1.64 6.01 GB Concrete Weight = 0.68 kif (concrete = 150 pcf) max extension moment = 58.29 k -ft 0.00 - Soil Above Weight = 0.33 kif (soil = 110 pcf) 1180.2 As = 1.68 In' Total GS Weight = 1.01 kif a = 0.62 in As = 0.95 Int GOOD 318.2 Beta = 0.85 1.33 x As = ' 1.26 Inr 6.25 N 0.75 rho balanced = 0.0160 As ,,,,, = 8.08 in' GOOD 318.2 Lon Iludinal Bar = # 6 3 # 6 bars required Alternate Load Combinations: NO GOOD Y 38.0 0.96 Basic Load Combinations: GOOD GOOD 0.0 1044.7 GOOD either all basic or all alternate cases must work 18.90 1.10 V LOAD COMBINATIONS (Beeod on ASD-Altarnato'): Dist Load - 1 Dist Load - 2 Per ASCE 7-0512.4.1 6 12.4.2.318 2008 IBC 1605.3.1 D L I. Per 2008 ISC 1605.3.2 D L L, S E W Dist from Load 1 = Equalbn t&IS(al D+L+U 1.000 1.000 1.000 1.000 1.000 - 68.02 E uaiion 18-18(b) D + L + S 1.000 1.000 1.000 Equation 16-10(b) 81.80 Equation 16-17 D+L+/,3W 1.000 1.000 E4ualicn 18-11(a) 1.300 61.80 Equation 16-18 D+L+0.55+1.3W 1.000 1.000 0.500 1.300 61.80 Equation 15-19 0+L+S+0.65W 1.000 1.000 1.000 0.650 81.80 Equation t& 20 D + L + S + rho E 1.000 1.000 00 1.0 1.000 Equation 16.13(x) 81.60 Equation 16-21 O.9D - rho E 0.900 1.000 0.280 kif 55.62 Equation 16-22 0.670. 1.300 0.870 0.0 1.300 41.41 Allowable Soil Bearing wessure Increased by 1.333 for Wind and Seismic Loads 0.00 k LOAD COMBINATIONS leased on ASO *Basic": Dist Load - 1 Dist Load - 2 Per ASCE 7-0512.4.1 6 12.4.2.318 2008 IBC 1605.3.1 D L I. S E W Equation 16.8 D 1.000 Dist from Load 1 = Equation 16.9 O+L 1.000 1.000 - Equation 16-10(a) D+U 1.000 1.000 28.0011 Equation 16-10(b) D+S 1.000 1.000 E4ualicn 18-11(a) 0+0.75L+O.75U 1.000 0.750 0.750 0.196 kif Equation 18-11(b) D + 0.75L + 0.755 1.000 0.750 0.750 Equation 16.12(a) D+W 1.000 1.000 Equation 16-12(b) D+ 0.75 rho E 1.000 047W Equation 16.13(x) D+0.75L+O.75U+0.7500 1.000 0.750 0.750 0.500 k9 14.00 k 0.280 kif 5.32 it S = 0.00 k 0.0 - _ 0.000 kif 0.00 k 0.0 0.00 It E(+Is up)= 0.00 Y. 36.0 0.00 18.15 O.5D - 0.75 rho E 060050 0.0 Legend: D = Dead Load L = Floor Live Load L, = Roof Live Load E = Earthquake Load S = Snow Load 61.80 61.80 88.02 61.80 81.47 61.80 61.60 61.60 81.47 81.80 81.47 61.80 37.08 37.08 VERTICAL LOADS IASnt. LATERAL LOADS (ASD): Dist Load - 1 Dist Load - 2 Load Load _ Load Load Load Load I Load Load Distance to: Distance to: 1 2 3 4 5 6 7 8 Start/kit Endfki s Start End Dist from Load 1 = 0.00 h 9.00 ft 28.00 It 14.00 ft Seismic - 0.00 It 28.00 ft 9.00 It 28.0011 D = 2.50 It 1.00 k 8.50 k - 18.00 0.425 Mf 11.90 k 0.196 kif 3.72 it L = 0.00 k ' 0.0 0.0 - 0.000 kif 0.00 k - 0.00 k Lr - 1.30 k 5.60 k G000 0.0 0.500 k9 14.00 k 0.280 kif 5.32 it S = 0.00 k 0.0 - _ 0.000 kif 0.00 k 0.0 0.00 It E(+Is up)= 0.00 Y. 36.0 0.00 0.08 0.000 k11 0.00k 0.0 0.00 it W + Is uP = 0.00 k 9.70 k 19.8 2.08 0.000 kif 0.00 k 638.5 0.00 it LATERAL LOADS (ASD): Realist. Mom. (k -ft) Factor of Salary X from right (f) a I.. canter (ft) Height Height Max. Bearing Purl) Min. Bearing (ka0 OK? Above Above Bim. Seismic Seismic Wind Wind Level Slab ft of Ftg H (kips) Moment[k-ft) (kips) Moment[k-ft) Roof 15.50 it 18.00 0.00 k 0.0 17.50 k 315.0 - r 0.00 0.0 0.0 infinite 0.0 - Y 0.00 0.58 0.0 G000 0.0 - Infinite 0.00 1.10 0.0 39.0 0.0 - _ 0.00 1180.2 0.0 19.10 0.0 - 36.0 0.00 0.08 00 636.5 0.0 If Levels = 'I Moments = 0.0 k -ft I Moments = 315.0 k -ft O.T. Mom. (k -fl) Realist. Mom. (k -ft) Factor of Salary X from right (f) a I.. canter (ft) In Korn? (YIN) Bearing Length (fl) Max. Bearing Purl) Min. Bearing (ka0 OK? O.T. Mom. (k -ft) Resist. Mom, (k -fl) Factor of Sefory X from left (/t) a from center (fl) In Kam? (YIN) Bearing Length (ft) Mex. Bearing (ksf) Min. Bearing (kelt OK7 0.0 1432.6 Infinite 18.27 1.73 Y 35.0 1.05 0.68 GOOD 0.0 1738.3 infinite 19.73 -1.73 Y 36.0 0.58 1.05 G000 0.0 1044.7 Infinite 16.90 1.10 Y 39.0 0.68 0.47 GOOD 0.0 1180.2 Infinite 19.10 -1.10 Y 36.0 0.47 0.08 GOOD 636.5 1044.7 1.64 6.61 11.39 N 19.8 2.08 0.00 GOOD 638.5 1180.2 1.85 8.80 9.20 N 28.4 1.56 0.00 GOOD 638.5 1044.7 1.64 6.01 11.39 N 19.8 2.08 0.00 - GOOD 636.5 1180.2 1.85 8.80 9.20 N 26.4 1.56 0.00 GOOD 318.2 1044.7 3.28 11.75 6.25 N 35.3 1.17 0.00 GOOD 318.2 1180.2 3.71 13.95 4.05 Y 38.0 0.96 0.19 GOOD 0.0 1044.7 infinite 18.90 1.10 V 38.0 0.68 0.47 GOOD 0.0 1180.2 Infinite 19.10 .1.10 Y 36.0 0.47 0.68 GOOD 0.0 940.2 Infinite 18.90 1.10 Y 36.0 0.61 0.42 GOOD 0.0 1082.2 infinite 19.10 -1.10 Y 36.0 0.42 0.61 GOOD 838.5 700.0 1.10 1.63 16.47 N 4.6 6.00 0.00 GOOD 638.5 790.8 1.24 3.73 14.27 N 11.2 2.47 0.00 GOOD O.T. Mom. fk-ft) Rssiet. Mom. (k -ft) Factor of Safety X from right (ft) a from cantor (ft) In Kam? (YIN) Bearing Longth (ft) Max. Boadmi (ken Min. Soaring (ka0 OK? O.T.Resist. Mom. (k -ft) Mom. (k-ft) Factor of satisfy(fl) X from loft a tram ontor c(ft) In Kom7 (YM) Bearing Length 00 Max. Bearing (kef) Min. Soaring (kat) OK? 0.0 1044.7 Intin le 16.00 1.10 Y 36.0 0.68 0.47 GOOD 0.0 1180.2 Infinite 19.10 -1.10 Y 36.0 0.47 0.68 GOOD 0.0 1044.7 Infinite 16.90 1.10 Y 36.0 0.68 0.47 GOOD 0.0 1180.2 Inlinile 19.10 -1.10 Y 36.0 0.47 0.88 GOOD 0.0 1432.5 Infinite 16.27 1.73 Y 38.0 1.05 0.58 GOOD 0.0 1736.3 Infinite 1 9.7 3 -7.73 Y 36.0 0.58 1.05 GOOD 0.0 1044.7 Infinite 16.90 1.10 Y 38.0 0.88 0.47 GOOD 0.0 1160.2 Infinite 19.10 .1.10 Y 36.0 0.47 0.68 GOOD 0.01335.6 IMnile 16.39 1.61 Y 38.0 0.98 0.55 GOOD 0.0 1597.3 infinite 19.61 .1.61 Y 36.0 0.55 0.98 GOOD 0.0 1044.7 IMnite 16.90 1.10 Y 36.0 0.88 0.47 GOOD 0.0 1180.2 infinite 19.10 .1.10 Y 38.0 0.47 0.68 GOOD 489.6 1044.7 2.13 8.98 9.02 N 25.9 1.53 0.00 GOOD 489.6 1180.2 2.41 11.17 6.83 N 33.5 1.23 MOD GOOD 0.0 1044.7 Infinite 16.90 1.10 Y 36.0 0.68 0.47 GOOD 0.0 1180.2 Infinite 19.10 .1.10 Y 36.0 0A7 0.68 GOOD 387.2 1335.5 3.64 11.89 6.11 N 35.7 1.52 0.00 G000 387.2 1597.3 4.35 15.10 2.90 Y 38.0 1.12 0.39 GOOD 387.2 1044.7 2.85 10.96 7.04 N 32.9 1.25 0.00 GOOD 387.2 1180.2 3.21 13.15 4.85 Y 36.0 1.03 0.11 GOOD 0.01335 .5 InfiNle 16.39 1.81 V 38.0 0.98 0.55 GOOD 0.0 1597.3 infinite 19.61 -1.61 Y 36.0 0.55 0.96 GOOD 0.0 1044.7 Infinite 15.90 1.10 Y 38.0 0.68 0.47 GOOD 0.0 1180.2 Infinite 19.10 -1.10 V 36.0 0.47 0.68 GOOD 489.6 626.8 1.28 3.70 14.30 N 11.1 2.23 0.00 GOOD 489.5 708.1 1.45 5.69 12.11 N 17.7 1.40 0.00 GOOD 0.0 626.8 Infinite 18.90 1.10 Y 38.0 0.41 0.28 GOOD 1 0.0 708.1 Infinite 19.10 -1.10 Y 38.0 0.28 0.41 GOOD Notes: Ev = 0 per IBC (alternate) and ASCE (basic) No loads possible on extensions - model extension past last load Overturning forces (W & E) x 0.75 for basic cases per ASCE 12.13.4 This spreadsheet considers E as ASD Uses lowest of controlling case from basic or alternate load cases for Shear & Moment Load 1 = first load from left after left extension I i d i ( ; I i j I I j 9.9 •oN sof I Z9 j io •oN133Ns.J33road 0//II 31Va! "A8 Sb33NION] lyunD ais -` I 1- I I • i i i ! ' � I I i � pli ! I I i i. -Z S )I - 'ON 80r 10 'ON 133NS '� �`� '� �� i mroNd o it 31V0_j ,AB : .. ' I S833NI9Nl inaninals: 1 ANN + Nvw3slm : j I I j I j i j I i i i I I t I , i i I I j I I I . i I a�1�5 'MC 3y I • I �fa, I I i I I I I r i I 9 C L q. )Ale 4 I i I j I I , I �32Qr Zlx£ ?-Sn -; --- -- I ---- ------ — ° -- i --- -----� - 4`-�'t - -- 0"hs z-o -O I 'ON sor. i io *ON 133HS AD 47 Daroaa As ()o AHOb! + NVW3SIM _ J Loads: BLC 4, Wind Results for LC 5, Wind (Uplift) Reaction units are k and k-k Wiseman + Rohy IW 10-079 Showroom Girders/ Servic Canopy Nov 18, 2010 at 8:47 AM Service Canopy Col. & BM.r2d OM Beam: M10 Shape: 3X12 Material: DF Larch Length: 20 ft I Joint: N19 J Joint: N20 LC 5: Wind (Uplift) Code Check: 0.329 (bending) Report Based On 97 Sections -.58 at 0 ft fa fc ksi -16.3 at 0 ft A v ksi I M a k k k -ft ft ksi D _ in NDS 2005 Code Check Max Bending Check 0.32.9 Max Shear Check 0.000 Location 0 ft Location 0 ft Equation 3.9-1 Max Defl Ratio L/10000 CD 1:6 RB 17.889 CL .844 Cv 1 Cr 1 Cfu 1.16 CP .041 ksi Cm Ct CF Out In Fc' Ft' Fb' Fv' E' .108 1 1 1 1.76 1 1 1 2.497 1 1 1 .336 1 1 1800 1 1 Lb 20 ft 20 ft le/d 96 21.333 Sway No No Le -Bending Top 20 ft L B d' B t V"(, U- en ing o 20 it t LL Imo Wig. 9 (?ohL iO Y'l Sr;4 Qly -Z4 NA �F a 7 <�71kg �133rovdl P)A HV S133NIONUvanimmi5. AHOMi+ MEN]- TZ--o-ol -oNsor JO *ON 133HS OD (A 1 *ON sor. jo 'ON 133HS C1573v) rq *VY 13]fOHd c>> i I 31va As IS33NION3 ivanDnHis AHOMI+ NVW3sImI cl t����a�' ! -- 9�- - �- - I j ' ! j C j xt c� �M Ll a1) ,,� �' a xr�9 "\off' ��rh S i al *ON sor. jo 'ON 133HS C1573v) rq *VY 13]fOHd c>> i I 31va As IS33NION3 ivanDnHis AHOMI+ NVW3sImI CO x Oh .146kIff-.146kI f t I1 11111141 1111114 411111 Jill11 "II II i III I. I,I i I. I 5 6 s . { 40Loads: LC 8, (1.2 + 0.2Sds)DL + Oe -IResults for LC 8, (1.2 + 0.2Sds)DL + Qe Wiseman + Rohy. Showroom Girders/ Servic Canopy iW Nov 16, 2010 at 11:37 AM 10-079 Service Canopy Col. & BM.r2d 1 , I% Column: M4A Shape: HSS10X10X5 Material: A500 Gr.46 Length: 15 ft I Joint: N9A J Joint: N7 LC 8: (1.2 + 0.2Sds)DL + Qe Code Check: 0.388 (bending) Report Based On 97 Sections .948 at 0 ft fa ksi .877 at 15 ft A/SC 13th LRFD Code Check Max Bending Check 0.388 Location 0 ft Equation H1 -1b Bending Flange Non -Compact Bending Web Compact Fy 46 ksi phi*Pnc 398.365 k phi*Pnt 458.283 k phi*Mn 129.122 k -ft phi*Vn 131.794 k. Cb 1.667 10.495 at 0 ft A k 9.704 at 15 ft 3.229 at 0 ft k 48.435 at 0 ft D in -1.267 15 ft Max Shear Check 0.025 Location 0 ft Max Defl Ratio L/142 Compression Flange Non -Slender Compression Web Non -Slender Out Plane In Plane Lb 15 ft 15 ft KL/r 45.64 45.64 Sway No No L Comp Flange 15 ft 01, C'S Company Wiseman + Rohy Nov 16, 2010 Designer IW 11:33 AM Job Number : 10-079 Showroom Girders/ Servic Canopy Checked By: Global Display Sections for Member Calcs 5 Max�lnternal'Sections for:Member�Calcs ;�; :97a Include Shear Deformation Yes Mer a Tolerance. m L_ t ; 12 P -Delta Analysis Tolerance 0.50% Hot Rolled Steel Code AISC : LRFD 13th Cold; FormedSteel'.Code c," fir. ' ^-:<. b' ;. 'AISI99:.ASD4 Wood Code NDS 2005: ASD - Wood Tem erature Concrete Code ACI 2002 Masonry. Code`", k s,.�,' Fz� 3 r MS;1C05/IBC'OtiASD Number of Shear Regions 4 Reg ion' -Spacing :Increment, in Concrete Stress Block Rectan ular Use :° Cracked'SectionsYes,. :-.f Bad Framing Warnings No UnusedForce.:Warnin s3,"t.�' 1:2 L!1, Load Combinations Ile ntin e..l.... on c� of n r__a 1 _ _. - _ .-...-...._-� DL + RL Yes Y ........ --- 1 1 . —L...— ---- 1 alil...LJUU, FOUL...OLI� r-OUL... 2 1 � :(1:2 + 0 2Sds)DL�'+. (rho)Qe =Yes+ :Y � W ;, 3 1 3 3 DL Yes Y I1 1 4 �.�••� y,.� y7 - "ni'S �.�."'�:.;,< . n Yw,..�{< 1:2 L!1, 2 :x'.1.6, 5 Wind (Uplift) Y 4 1 Y ,: .Yes. ,Y=; k�,} 2 1 » ,.:3 1-�.. ' "! v V, , ka` �f xK 7 (1.2 + 0.2Sds)DL + (Omeg... Yes Y 1 1.4 3 2 {01sj"-:104; ^-.104 Y F 17 ..1 1.4= �,.�0': w., Member Distributed Loads (BLC 1 : DL) Mcmhcr t �hnl �1;..,..ti.... oa...a �A......:a.J_rt.m �__i r_� •.___�.--�_....:. ... . . .. ... -.. _ .. .. __. _._ 1 M1 - --- -•• Y --••-• •••.. ........... ..... vu -.27 ,_„� ,r,aa ,,,auuc rv1a ... 27 VlOI LuU011 UlI LIl. L2 I CI IU LU l:OL [1 Il - 0 1 °� ,$VK 24.. ; . ,r.�, _. 57Y -. M3 4 �.�••� y,.� y7 - "ni'S �.�."'�:.;,< . n Yw,..�{< 't:SJ �8. r z•'-. P. :..,.. ,.n•-^104 *. , ; , r,r �; .1.04'• �:; .._ .:.0:�. .. r c� :_� f, _ i ;, � • r: i -a 3 M3 Y -.104 -.104 25 50 100 {01sj"-:104; ^-.104 ,�.=_1104 r" �,.�0': w., 100,: <. 5 M4 Y -.104 25 50 Member Distributed Loads (BLC 2: RL) Member Label Direction Start Ma nitude k/ft de k/ft End Ma nitude ... Start Location ft % ft End Location °o 1 M1 Y -.224 .224 0 100� z F ;� . :x; `128'.x. �.•. 3_. t<p�. 100 3 M4 Y -.128 -.128 0 100 Member Distributed Loads (BLC 4: Wind) RISA -2D Version 9.0.0 [Z:\ ... \...\... \Calcs\Cadillac\Service Canopy Col. & BM.r2d] Page 1 0, i • Company Wiseman + Rohy Nov 16, 2010 Designer IW 11:33 AM Job Number : 10-079 Showroom Girders/ Servic Canopy Checked By: Joint Loads and Enforced Displacements (BLC 1 : DL) Joint Loads and Enforced Displacements (BLC 3: Qe) Joint Label L D M Direction Ma nitude k k -ft in rad k*SA 2/ft k'ft^2 1 N1 L X 6.3 Joint Deflections (By Combination) 1 8 N1 .268 .245 IN -1-1 IIQUI -9.008e-3 1-:26 :246 f r' :'8t991.e=3" 3 8 N5 0 -1.772e-2 5 8 N7 1.267 -.007 -9.07e-3 :n .: -:007; z93055e 3' - - 7 8 N9 0 -1.772e-2 ,1:01:901.62--� t\i- 1 7' Ly i AF 9 8 N9A 0 0 0 •1'0 ss� x k s amu„ 2 . z .:. 0 RISA -2D Version 9.0.0 [Z:\ ... \...\... \Calcs\Cadillac\Service Canopy Col. & BM.r2d] Page 2 8. co—) r .146k/ft -.146k/ft I IINN I 111i I I 1 1,11 1111111-111i. ' I I I I I 11. I I 6 6 Loads: LC 2, (1.2 + 0.2Sds)DL + (rho)Qe Results for LC 8, (1.2 + 0.2Sds)DL + Qe Wiseman + Rohy Showroom Girders/ Servic Canopy 1W Nov 16, 2010 at 11:37 AM 10-079 Service Canopy Col. & BM.r2d v I i Column: M4A Shape: HSS10X10X5 Material: A500 Gr.46 Length: 15 ft I Joint: N9A J Joint: N7 LC 2: (1.2 + 0.2Sds)DL + (rho)Qe Code Check: 0.501 (bending) Report Based On 97 Sections .948 at 0 ft fa ksi .877 at 15 ft RISC 13th LRFD Code heck Max Bending Check 0.50 Location 0 ft Equation H1 -1b Bending Flange Non -Compact Bending Web Compact Fy 46 ksi phi*Pnc 398.365 k phi*Pnt 458.283 k phi*Mn, 129.122 k -ft phi*Vn 131.794 k Cb 1.667 10.494 at 0 ft A k 9.703 at 15 ft 4.198 at 0 ft V k 62.965 is s TIT I D in -1.648 at 15 ft Max Shear Check 0.032 Location 0 ft Max Defl Ratio L/109 Compression Flange Non -Slender Compression Web Non -Slender Out Plane In Plane Lb 15 ft 15 ft KL/r 45.64 45.64 Sway No No L Comp Flange 15 ft tag I 4 a Loads: LC 7, (1.2+0.2��uow� T wnicya/ ec f Results for LC 7, (1.2 + 0.2Sds)DL + (Omega)Qe Reaction units are k and k -ft Wiseman + Rohy Showroom Girders/ Servic Canopy iW �C��ti FoasS �o Nov 10, 2010 at 11:40 AM 10-079 Service Canopy Col. & BM.r2d • 3 Company • Wiseman + Rohy Nov 16, 2010 Designer IW 11:40 AM Job Number : 10-079 Showroom Girders/ Servic Canopy Checked By: Joint Reactions (BV Combination) 1 7 N5 0 5.596 0 t 'F F: ^rr: ,: 7.w4':1.6 5 . ' 0 3 7 N9 0 5.596 0 At",q5: L, i y;1 .y 4-> e+.'..ri1, 'ti . S _ti: 2V 42. it• i2ti. , ?�: Z.+. F f..( ' I 0:�:a- ; '1• - S r I h _ 5 7 N9A -6.316 10.491 96.87 ,6. w :f f7 .g, -5`; .ti.N 1.0A; 7 7.- Totals: -12.6 47.034 • 124>612 2238 6 RISA -2D Version 9.0.0 [Z:\ ... \... \...\Calcs\Cadillac\Service Canopy Col. & BM.r2d] Page 3 RAM BasePlate V1.5 Nowak-Meulmester & Associates La Quinta , Detailed Design Results Service Canopy Base PL' 11/17/10 14:33 CRITERIA: Analysis Maintain Strain Compatibility Use min. effective plate area for axial only compression load on plate. Design Use LRFD 2nd to check plate.bending Max concrete bearing per AISC J9'. Anchor Shear Check Per AISC Specifications. Anchor Tension Check Per AISC Specifications. INPUT DATA: Column Column Size ............................. HSS10X10X5/16 Dim: BfTop TfTop BfBot TfBot TW Depth (in) 10.00 0.291 10.00 0.291 0.291 10.00 Base Plate Plate Fy (ksi) ........................ 50.000 N (Parallel to Web) (in)...18.000 B (Perpendicular to Web) (in)........... 18.000 Plate Thickness (in) .................... 1.500 Anchor t Anchor Size ............................. 7/81 Anchor Area (in'2)...................... 0.601 Anchor Material ......................... Other Anchor Modulus (ksi) ................. Anchor Strength Fu (ksi) .............. 29000.00 125.00 i Thread Included in Shear Plane Footing Footing Strength f'c (ksi) ........... 3.00 Concrete Modulus (ksi) .............. 3122.02 Dimension (Parallel to web) (ft)........ 10.00 Dimension (Perpendicular to web) (ft)... '10.00 Design Load Building Code: - None - Load combination: 1.00DL + 1.00E Axial (kip)..... .................... 10.50 Vx(kip) .............................. 6.30 Mx (kip -ft) ........................... 96.90' RESULTS: M Analysis . YBar(in) ......................................... 4.19 Resultant Angle (°) ................................ 0.00 Plate Bending Max bending moment from anchor/s #1 in tension m [N-0.95d]/2.0(in)................................. 4.250 n .[B-0.95b]/2:0(in)................................. 4.250 Controlling effective width to resist moment (in) ... 4.250 Controlling plate bending moment (kip -ft) :...... 8.22 PhiMn = (0.9xMn) (kip -ft) ......... ................ 8.96 Mu/PhiMn............................................. 0.92 Thickness Required(in).............................. 1.436 Thickness controlled by cantilever action. • Anchors Anchor X(in) Y(in) V(kip ) � T(kip ) Interaction Page . 1 no 1 2 HSS10X10X5/16 # X(in) Y(in) 1 -7.500 7.500 2 7.500 RAM BasePlate V1.5- 3 -7.500 -7.500 Nowak-Meulmester & Associates 7.500 -7.500 La Quinta Detailed Design Results Service Canopy Base PL ' 11/17/10 14:33 1 -7.5.0 '7.50 1.58 35.85 0.85 .2 7.50 7.50 1.58 0.00 0.07 3 -7.50 -7.50 1.58 35.85 .0.85 4 7.50 -7.50 1.58 0.00 0.07 Bearing Eff Area of Support A2 (inA2) ........................ 1296.00 - Plate Area•A1(in'2)................................. 324.00 Sqrt(A2/A1).......................................... 2.00 Capacity Bearing Stress (ksi) .................... 3.06 Actual Bearing Stress (ksi) ....................... 2.18 DIAGRAM: 1 2 HSS10X10X5/16 # X(in) Y(in) 1 -7.500 7.500 2 7.500 7.500 3 -7.500 -7.500 4 7.500 -7.500 PL 18.00 X 18..00 X 1.50 (in) 4 - 7/8" Other Anchor Bolts 4 - �) www.hilti.us r Company: Wiseman + Rohy Specifier: IW Address: Phone I Fax: - E -Mail: �i • Specifier's comments: 1. Input data Anchor type and diameter: Effective embedment depth: Material: J Proof: Stand-off installation: Profile Base material: Reinforcement: Geometry [in.] . Heavy Hex Head ASTM F 1554 GR. 105, 1 1/2 h„ = 18.000 in. ASTM F 1554 V13 PROMS Anchor 2.0.9 Page: 1 Project: La Quinta Cadillac Sub -Project I Pos. No.: Date: 11/17/2010 design method ACI 318 / CIP - (Recommended plate thickness: not calculated) no profile cracked concrete , 3000, f,'= 3000 psi; h = 24.000 in. condition B; no supplemental splitting reinforcement present edge reinforcement: none or < No. 4 bar Loading [lb, in. -Ib] h„=18.000 Governing loads Governing loads (Load case 1) N = 36000 Vv = 0 N 36000 MZ 0.000 MY= 0.000 V, 1530 z V, 0 M, 0.000 y Mr 0.000 M. 0.000 Eccentricity (structural section) [in.] x e, = 0.000; e, = 0.000 Seismic loads (cracked concrete assumed; categories C, D, E, or F): yes Vr = 1530 M, = 0.000 Input data and results must be checked for agreement with the ebsbng conditions and for plausibility! PROFIS Anchor (c) 2003-2009 HIIU AG, FL -9494 Schaan HiIU is a registered Trademark of HiIU AG, Schaan www.hilti.us / Company: Wiseman+ Rohy Specifier: IW Address: Phone I Fax: - E -Mail: 2. Load case/Resulting anchor forces Load case (governing): ul PROMS Anchor 2.0.9 Page: 2 Project: La Quinta Cadillac Sub -Project I Pos. No.: Date: 11/17/2010 Anchor reactions [lb] Tension force: (+Tension, -Compression) Anchor Tension force Shear force Shear force x Shear force y 1 35992 1530 1530 0 max. concrete compressive strain 0.00 max. concrete compressive stress [psi]: 0 ! resulting tension force in (x/y)=(0.000/0.000) [lb]: 35992 resulting compression force in (x/y)=(0/0) [lb]: 0 d / 3. Tension load Proof Load N_ [lb] Capacity �N„ [Ib] Utilization p„ [%] = N„/ONS Status Steel Strength` 36000 99141 36 OK Pullout Strength` 36000 39287 92 OK Concrete Breakout Strength" 36000 56880 63 OK �? Concrete Side -Face Blowout, y N/A N/A N/A N/A direction— ` most unfavorable anchor "anchor group (anchors in tension) Steel Strength N.. [Ibl �..„ ON.. [lb] N� [lb] 176250 0.750 0.750 99141 36000 Pullout Strength N, [lb] w., �..� ONS [lb) N. [lb) 74832 1.000 0.700 0.750 39287 36000 _ Concrete Breakout Strength A„. [in9 A,m [incl c [in.] c,, Ww.„ 2916.00 2916.00 393.701 1.000 e.,.„ [in.] w eu.„ [in.] W..,N ka 0.000 1.000 0.000 1.000 1.000 1.000 16.000 N, [lb] �..b ON, , [lb] N_ [lb] 108344 0.700 0.750 56880 36000 M Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494Schaen Hilli is a registered Trademark of Hilti AG, Schaan o5 S� wwwAiltims Steel failure (with lever arm)* N/A Pryout Strength— PROFIS Anchor 2.0.9 Concrete edge failure in direction— Company: Wiseman + Rohy Page: 3 Steel Strength Specifier: IW Project: La Quinta Cadillac 105750 0.650 Address: Sub -Project I Pos. No.: AN. [incl ANW [incl Phone I Fax: I Date: 11/17/2010 e.,., [in.] W..,.N E -Mail: " -0.000 1.000, 0.000 I N, [lb) 4. Shear load Proof Load V. [Ib] Capacity OV, [lb] Utilization p„ (%] = Vw/�Ve Status Steel Strength* 1530 Steel failure (with lever arm)* N/A Pryout Strength— 1530 Concrete edge failure in direction— N/A " most unfavorable anchor **anchor group (relevant anchors) Steel Strength N/A ' V.. [lb) 0..b�. 105750 0.650 0.750 Pryout Strength AN. [incl ANW [incl c 2916.00 2916.00 e.,., [in.] W..,.N e.z.v [in.] -0.000 1.000, 0.000 I N, [lb) 51553 3 OK N/A N/A N/A 113761 1 OK N/A N/A N/A oV„ [lb] V_ [lb] 51553 1530 kw Ww,N ` 2.000 111.1000 ' Wec2,N YN,N �c) ka 1.000 1.000 1.000 16.000 �V• [lb] V. [Ib] 108344 0.700 0.750 113761 1530 5. Combined tension and shear,loads pN = N./ONe OV = V./OVe Utilization° pN.� [ /°] Status 0.916 0.030 79 OK pN=(tN+p„)/1.2<=1 6. Warnings • Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs. • IBC 2006, Section 1908.1.16, requires that the governing design strength of an anchor or group of anchors be limited by ductile steel failure, if this is NOT the case, ACI 318-D Section D.3.3.5 requires that the attachment that the anchor is connecting to the structure shall be designed so that the attachment will undergo ductile yielding at a load level corresponding to anchor forces no greater than the design strength of anchors specified in ACI 318-D section D.3.3.3, or the minimum design strength of the anchors shall be at least 2.5 times the factored forces transmitted by the attachment. • Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI318 or the relevant standard! • The anchor plate is assumed to be sufficiently stiff in order to be not deformed when subjected to the actions! Fastening meets the design criteria! Input data and results must be checked for agreement with the ebsdng conditions and for plausibility! PROFIS Anchor( c) 2003-2009 Hilli AG, FL -9494 Schaan HiIG is a registered Trademark of Hilti AG, Schaan vrww•hlltl.us PROMS Anchor 2.0.9 Company: Wiseman + Rohy Page: 4 V Specifier: IW Project: La Quinta Cadillac Address: Sub -Project I Pos. No.: Phone I Fax: - Date: 11/17/2010 E -Mail: 7. Installation data Anchor plate, steel: - Anchor type and diameter: Heavy Hex Head ASTM F 1554 GR. 105, 1 1/2 Profile: no profile Installation torque: 0.000 in. -Ib Hole diameter in the fixture: d, = 1.563 in. Hole diameter in the base material: - Plate thickness (input): 0.000 in., r Hole depth in the base material: - Recommended plate thickness: not calculated Minimum thickness of the base material: 20.500 in. Coordinates Anchor [in.] Anchor x y c� c„ cy cti 1 0.000 0.000 . Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor( c) 2003-2009 Hilti AG, FL -9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan ` Loads: LC 9, D + rhoQe/1.4 1 Results for LC 9, D + rhoQe/1.4 Reaction units are k and k -ft tO Wiseman + Rohy Showroom Girders/ Servic Canopy iW _ -!FT Nov 17, 2010 at 3:28 PM 10-079 Service Canopy Col. & BM.r2d IV 6 Company Nowak & Wiseman November 17, 2010 Designer IW Job Number: 10-079 Service Canopy Ftg. Checked By: Sketch Z Details 8 ft 3.5 ft X A¢-� B SINN '� t'44 Y 44 N , 1v2 D 1 i C 8 ft C #6@9.89 in #6@9.89 in X Dir. Steel: 4.15 int (10,#6) Z Dir. Steel: 4.15 int (10 #6) Bottom Rebar Plan Geometry, Materials and Criteria C. JJ W ILH co H TV • N D C N X a MD Footing Elevation C a w N Length :8 ft eX :0 in Gross Allow. Bearing :2500 psf Steel fy :60 ksi Width :8 ft eZ :0 in Concrete Weight :145 pcf Minimum Steel :.0018 Thickness :24 in pX :12 in Concrete fc :3 ksi Maximum Steel :.0075 Height :24 in pZ :12 in Design Code : ACI 318-02 Footing Top Bar Cover :3.5 in Overturning Safety Factor :1.5 Phi for Flexure :0.9 Footing Bottom Bar Cover :3.5 in Coefficient of Friction :0.45 Phi for Shear :0.75 Pedestal Longitudinal Bar Cover :1.5 in Passive Resistance of Soil :0 k Phi for Bearing :0.65 Loads P k Vx k Vz k Mx k -ft) Mz(k-ft) Overburden psf DL -7.5 1 1 1 100 EL 2.9 1 1 1 44.8 +P. � +Vx A D 4-rw+Vz(--u D C + M x D C +Mz A D +Over RISAFoot Version 2.0 [Untitled.rft] Page 1 �1 Company Nowak & Wiseman -Designer IW 01 November 17, 2010 Job Number: 10-079 Service Canopy Ftg. Checked By: Soil Bearing Description Categories and Factors Gross Allow.(psf) Max Bearing(psf) Max/Allowable Ratio D + rhoQe/1.4 1 DL+1 EL 2500 1828.18 A .731 AB 0 D C 1DL+1EL QA: 1828.18 psf QB: 1828.18 psf QC: 0 psf QD: 0 psf NAZ: -1 in NAX:28.963 in Footin_q Flexure Design (Bottom Bars) Description Categories and Factors Mu -XX (k -ft) Z Dir As (int ) Mu -ZZ (k -ft) X Dir As (int ) Footinq Shear Check Two Way (Punching) Vc: 566.578 k One Way (X Dir. Cut) Vc 211.64 k One Way (Z Dir. Cut) Vc: 211.64 k Punching X Dir. Cut Z Dir. Cut Description Categories and Factors Vu(k) Vu/,oVc Vu(k) Vu/,OVc Vu(k) Vu/,oVc Concrete Bearin_g Check (Vertical Loads Only) Bearing Bc : 734.4 k Description Categories and Factors Bearing Bu (k) Bearing Bu/0Bc OverturningCheck (Service) Description Categories and Factors Mo-XX(k-ft) Ms-XX(k-ft) Mo -ZZ (k -ft) Ms-ZZ(k-ft) OSF-XX OSF-ZZ D + rhoQe/1.4 I 1 DL+1 EL 30 100.61 86.4 1 100.6 3.353 Ti.164 Mo -XX: Governing Overturning Moment about AD or BC Ms -XX: Governing Stablizing Moment about AD or BC OSF-XX: Ratio of Ms -XX to Mo -XX Sliding Check (Service) Description Categories and Factors Va-XX k Vr-XX k Va-ZZ k Vr-ZZ k SR -XX SR -ZZ D + rhoQe/1.4 I 1 DL+1 EL 1 2.9 7.942 1 0 1 7.942 12.739 1 NA Va-XX: Applied Lateral Force to Cause Sliding Along XX Axis Vr-XX: Resisting Lateral Force Against Sliding Along XX Axis SR -XX: Ratio of Vr-XX to Va-XX - RISAFoot Version 2.0 [Untitled.rft] Page 2 WISEMAN +I ROHY - i STRUCTURAL ENGINEERS t I BY =rU`' DATE ll o PROJECT Vk- Q 0) N 1 C_ b� tJ 11.LPi(_ j SHEET NO. OF f JOB NO. :L,')Np CA(, c,fIL5. --,— -- , -----r----- I__— I I R C��.1 ��y �� ® Ll O.L. 1 = ('3'y�►�; !�5/Z�� 3 i 7163 13.E c I iRy Zx6 I I ! ✓mob > 5 kJ'S S iZo / I i She Bos\ 6EA,16N i I vS��ZK6 RPIXE -- - --� — ----- ! co MAIL I I f WISEMAN+ROHY Structural Engineers PROJECT: _= TYPICAL POST/STUD DESIGN TABLE __ April 2006 JOB NO.: Based on 2006 IBC (2005 NDS) Cd=1.60 X INDICATES BRACED IN WEAK DIRECTION ALL VALUES BASED ON DOUGLAS FIR -LARCH Bearing for Critical Deflection Structure? O Yes *No (NDS 4.2.6) LU Q POST SIZE Depth in Width in AREA IN s Allowable�BLE Sill Brng k LOAD (KIPS) -UNSUPPORTED HEIGHT IN FT LOAD_TABLE .160% _ 7 1 8 1 9 1 10 11 12 13 1 14 1 15 16 17 18 19 20 21 22 0 2X4 1.5 3.5 5.25 3.28 .93 v~, 2X4 X 3.5 1.5 5.25. 3.28 t4F173m31'._2.65 2.1.5....1.77. 1:48: 1:25r 1.07_ 93 0 2X4 1.5 3.5 5.25 3.28 1.14 z 2X4 X 3.5 1.5. 5.25 3.28 5, 62 4'' 29 3M , 2.69! .2.20- .:1.83 _ -j.55,_ _ 1:32. 1.14 2X6 1.5 5.5 8.25 5.16 1.69 - 2X6 X 5.5 1.5 8.25 5.16 !14� 60a �2 454 k,, 0 55 MW 8U83 k7 INS X5 3,8 .,4.64,. 4.04. 3.54 3:1.3 2.79. ..2.50 ,.,2.25 .2.03 1.85 1.69 z 2X8 1.5 7.25 10.875 6.80 2.22 2X8 X 7.25 1.5 10:875 6.80X21 67 X20 261855 16nfi4 ,1'472'' 2921132 9.94 8�76r 77�6x '�6 9r>1"., 6.19 5.56 5.03 4.56 4.16 3.80 3X4 2.5 3.5 8.75 5.47 5.11 3.81 2.95 2.34 1.91 3X4 X . 3.5 2.5 8.75 5.47 9k37; € 7215_ t5 _4.49; . 3.67. _ .3.05_ 2.58 .2.20 1.9.1 3X6 2.5 5.5 13.75 8.59 8.01 5.98 4.62 3.68 2.99 3X6 X 5.5 2.5 13.75 8.59 .. 26:p54 X22€62 ; 18:921 1,5 7 L1!3 23 IM,9 5fi ,-,8.24 7.17 6:29. 5.56.: ,,4.95 ,4.43. _3.99, , 3.61 3:28 2.99 _ 3X8 2.5 7.25 18.125 11.33 10.52 7.87 6.09 4.84 3.94 0 z 3X8 X 7.25 2.-5. 18.125 11.33 39`8.1.1 X37?06 33?73 130 08 �26�47� r2_& d1 �2Q�23� �17�73� X15_ 1*3 81� X12=29� 10.99, . 9:88 , 8:92 8.09 , 7.37 6.74 4X4 3.5 3.5 12.25 7.66 13 i11aX -.,'071, 7 84' 6.28 5.14 4.27 3.61 3.09 2.67 4X6 3.5 5.5 19.25 12.03 X.0 4;6 X15 ,fi6n 12 28` .:9.85.: -8.06 6.70_ . 5.66" 4.84 4.19 4X6 X 5.5 3.5 19.25 12.03 37 ;15 31?66� 6 49 22 09v X18 52+1516QII 13,538 11.54 10.04 8.81 7.78 6.92 6.20 5.58 5.05 4.59 4.19 4X8 3.5 .7.25 ...25.375. _ 15.86...26 76-X20 5y4 6f 1,3 ;.12.95 ,10.60.. ,8.82 :7,46. , 6.38. ;5.52- 4X8 X1 7.25 3.5 25.375 15.86 X5188472.24212)3706 32,41 2833) 2483 ,21,85 1934 1r7 `20 15.39 13.83 12.49 11.33 10.32 9.44 6X6 5.5 5.5 30.25. 18.91 40 8211378299 3_3,5=20 GI (251=11 2 70,E ,18.81: 16.39 _14.36 .12:67.. 11.25_ 10.04 9.01., 8.13. 7.37. _6:7.1 6.13 N 6X8 5.5 7.5 41.25 25.78 X55 ;6750 85 45 27, 9 56th 134 255 29? -M 25.65 22.35 19.59 17.28 15.33 13.69 12.29 11.08 10.05 9.15 8.36 6X8 X 7.5 5.5 41.25 25.78 X61 Y1x4 X58"975623 X528949A.444'89 X40 68 366532;94 2959266r4g .24.03. 21.75. ,19.76 _18.00. ,16.46 15.10 oz 6X10 5.5 9.5 52.25 32.66 166534;ro61, 201,55y09 X48'63 2 423686# 32.07 28.02 24.61 21.74 19.31 17.26 15.50 13.99 12.69 11.55 10.56 6X10 X 9.5 5.5 ,. 52.25 32.6674229, X73 003 ,71x47= X69^57 X67 28?64586149 X58 07 54d2s50?67;46?95 X4:3 373999 3686 3F4`00 31..39. .29.02 8X8 7.5 7.5 56.25 35.168338 X80 42 7,66$��721,2 X66°8861215548 4998;4491 x4036 ;3632 32.77 29.67 26.94 24.55 22.45 20.59 �J y 2006 - Wood Post Cd=160.x1s -ON vor JO 'ON BINS cn 133(03d - —7T/7/1 AIVO SH33NI9N3.lvmhbhn&s-,- AHOt+ HVW3SI 91 --*Qj Q009 '1�-, C'\ 1)� 9 l -ON vor JO 'ON BINS cn 133(03d - —7T/7/1 AIVO SH33NI9N3.lvmhbhn&s-,- AHOt+ HVW3SI I 1-4.0 M 717 L SallS 9CI ()A carmrA ;jc-LQ---z ar4-53 to 670 - -01 -ON flor ( �Ao V�01- 1)3rOVd 10 *ON MINS 1-1 uval RK AS.' I9N3 ifbMfs AH oal+ Hvw3SIM; M Loads: LC 10, 0.7W (Deflection) Results for LC 10, 0.7W (Deflection) ' Wiseman + Rohy iW 10-079 Showroom Girders/ Servic Canopy Kl%& ® w� kl � jNov18,2010at12:04PM Service Canopy Col. & BM.r2d kZ� no Loads: LC 5, 1.0 W ,Results for LC 5, 1.0 W Wiseman + Rohy IW 10-079 Showroom Girders/ Servic Canopy ku Nov 18, 2010 at 12:06 PM Service Canopy Col. & BM.r2d Loads: LC 10, 0.7W (Deflection) ;Results for LC 10, 0.7W (Deflection) Wiseman + Rohy IW 10-079 Showroom Girders/ Servic Canopy YCIQ (,S ® �A 3 Nov 18, 2010 at 12:13 PM Service Canopy Col. & BM.r2d kzq �9 Loads: LC 5, 1.0 W results for LC 10.0.7W (Deflection) Wiseman + Rohy IW 10-079 W, Showroom Girders/ Servic Canopy Q3D Nov 18, 2010 at 12:13 PM Service Canopy Col. & BM.r2d X31 Loads: BLC 4, Wind Results for LC 5, Wind (Uplift) Reaction units are k and k -ft Wiseman + Rohy IW 10-079 Showroom Girders/ Servic Canopy Nov 17, 2010 at 5:36 PM Service Canopy Col. & BM.r2d ��3 t.3