BRES2015-0445 Structural CalcsSTRUCTURAL CALCULATIONS
A CUSTOM RESIDENCE
FOR:
STEVE & DEBBY
PFANNKUCHE RESIDENCE
52523 AV. RAMIREZ.
LA QUINTAg.C-ALIFORNIA
LA
FETa r Y DE-pT zi)r
04,
CHARLES D. GARLAND, ARCHITECT
LICENSE NO,11991 EXP 10131117
! 74-991 JONI DR. SUITE #9 PALM DESERT CA 92260 `-
PHONE:760/340-3528 FAX:760/340-3728
JAN 22 2013
M
STRUCTURAL CALCULATIONS
4*"* GOVERNING CODES .....................page 3
**** LOAD ....................................................... Page 4
**+* BEAM ............ Page 5
,e LATERAL Page 9
**** SEISMIC ZONE ............................ Page 14
**** SHEAR WALL REQUIREMENTS.... Page 18
+ FOUNDATION ............................... Page 19
07'
-FIT
STRUCTURAL CALCULATIONS
GOVERNING CODES
A- IBC 2012 OR CBC 2013
B- DESIGN LOADS
a. ROOF LIVE LOAD 20, PSF
b. ROOF DEAD LOAD 19 PSF
c. WIND IMPORTANCE FACTOR 1.00 WIND ZONE 110 MPH
EXPOSURE C
d. SITE CLASS DEFINITION( D)
e. OCCUPANCY CATEGORY II
f. SEISMIC DESIGN CATEGORY (D)
g. COEFFICIENT Cs 0.15
h. SEISMIC Ss1.5g
i. SEISMIC S10.6g
j. FACTOR R 6.5
k. SEISMIC SDs 1.00
I. SEISMIC SD10.60
STRUCTURAL CALCULATIONS
�I
LOADS
ROOF
ROOF TILE =
EXTERIOR WALLS :
WOOD STUDS =
9
PSF
2
' -F---
ROOFING ELT
0.6
1/2" GYP BD. =
2
-1
15/8 OSB/ RADIAN BARRIER
2.2
7/8" STUCCO =
lo
TRUSSES @24" O.0
k--38 ——INSULATION
5&"GYP. BD.
D.L
Ll =
2.6
INSULAT10
1.8
2.8
. . . .......
D.L.
15 1 PSF
19
20
INTERIOR WALLS
Po __jFSF
TOTAL LOAD =
39
PSF
WOOD STUDS 2
II
PSF
1/2 GYP.BD.2SIDES _j 3
INSULATION = �21
D.L = 7 _PSF.
1
TAR / GRAVEL
5
x
PLYWOOD
3
IRAFTERS
INSULATION =
2
CEILING =
6
19
20
D.L =
Ll ..................
TOTAL LOAD =
39 PSF
CITY OF LA QUIN IA I
11'. D I N G & F lE-'- f Y DEFT
R
CONSTRUCTION
BY
STRUCTURAL CALCULATIONS
BEAM DESIGN
HDR41
.. .. .. ....
DOUGLAS FIR -LARCH No 1=.. Fb = 000
. . . ............. . .. . ..................................... . . ........ . . . .... .. ... T
SPAN 5.0 ft Fv 95 psi
TRI B. AREA 1�404ft= I I I E = . 17000001PIsi J_
. . ............... .. 2
.. ................ .. ......
.. .... ....................... ... .... ...... ... ... ............. . ..................
M= :W xLl 8
............ . .. . ............. .............
tM ibill M= 487.5
Ml
... ........ .. ...
1 BENDING
.........
......
I F'b = Fbx(CR�.(CN%Ct)(CF)(Cr)(Ci)
. .. .. ... .. . .. ... .................
F'b 1250 psi I
Req'd S =,IM_F'b S= 4.68 in A 31
I f b = M/S
Al I OW Ph ArT f h =
V= WxL/
V= 3E
lb/ft I i
. ............ I . . .... i
in -lb j:
USE
X 6 Area= 30.3 inA 2
. . ...... �Section=? 27.7 inA.3
Mnrnpntnf lnPrfia=: 763 inA4
1250FOO
SHEAR
> 211.0 psi OK
. . . .........
�F'v = Fv(CD)(CM)(C C.),.
If
V=i!
1.5V/A
I
. ......... . .
V=
19.34
psi
....... ...
10K:
.. . .... .............. .....................
OK
. . ............
v 119..sl >
DEFLECTION
5WL LA4 0.02 1 �...,...I.
384 E' I
E'= E (Cm)(c)(C)L 1700000
d max = L 240 = 0.25 in
2.s]
BEAMI
6 X. 16
TA
A QUIN
BUILDING & S,F-E_rY DEFT.
A'V_ 3 P R C -) V; E I D
Load Factor Co=
1.26
Wet. Service Factor Cm
.. .. .. .. ... . .. .. .... ... .. .. ... ... ... ... .
1.00
D.L
19.0
lb/ft
Temperature Factor Ct
1.00.
.
Ll =
. ................
M.0 1 lb/ft
I
Size Factor CF
1.06
TOTAL
39.0 lb/ft
Repetitive rn. Fact. Cr
1.00
Incising Factor Ci
1.00
. ..... . .............
Shear stress Factor CH . ......... .
1.001 W =1 156.0 1
STRUCTURAL CALCULATIONS
..............
... .............
BEAM DESIGN
HDR #2 1
......... ..
. . . . . . . . . . . . DOUG FIR -LARCH No._=
SPAN = 7.0 ft
.. .. .... . .
TRIB_ AREA= 8.0 T
Load Factor Co
Service Factor Cm
D.L = 19.0 lb/ft Temperature Factor Ct
.... .. ....
Ll = 20.0 lb/ft Size Factor CF = . ......
TOTAL 39.0 lb/ft Repetitive m. Fact. Cr
........ ...... ..... . ............
1 1 nciE Lina Factor Ci
.. .........
Shear stress Factor CH L . ........ 1.00' W,!!l 312.0
. . ..........
M= W x L2 / 8
312;b/ft 1 RA= 1911.0 4 16
M7 22932 in -lb
_J ........ . ....
V=WxL/2
7-00 ft
BENDING' I -
V= 1092. lb
F'b Fbx(CD)(C_ C Cr ICI
. . ......... . . . . ....
. . ........... .. ..... . .... ... .
. .................... . ........... . ..... j F'b 1250 1psi USE
Re,g:.d M/,-' S= 18.351 in-3,, . .. ..... A. x 16 Area -T3�0.3 in-2
b M/S Secton= 27.7 inA3
ALLOW F'b ACT. f b t of Inertia= n76.3 inA4
I 12501.psi > 827.0 psi' JOK
SHEAR
F'v = FACD)IPM)(Ct)(CH) .... .. ... f v 1.5 V A.
...
...... .. ... ...... .. .... .. . ............
119 psi > f v=T 54.15 psi OK
DEFLECTIOt[
5WL LA4 I FO.-631 n
. .... ........ - ...................... . ... ........................
.384 E' I
E'=LE (CmAq,)Lq)__ _JV700000 I psi
BEAM ex 1.6
d max= L / 240 = 0.35 in
=b 00
.................. .............. . ... ....
Fv 95 psi
E = 17000MIUsi I
J i LIJ I SAJF:)l_f Y 1) EPT
D 4_10Vi-
�;��1`4 CRUCTiON
STRUCTURAL CALCULATIONS
0
........ ... ............ . . . .. . ............... ...
BEAM DESIGN
HDR #3 T
DOUGLAS FIR -LARCH No 1= Fb = . 1000 psi
s:
SPAN = 7.0 ft
TRI B. AREA = 7.0 ft ! i E 1.700000].psi
_ Load Factor Cb = 1.25
Wet Service
Factor CM = 1.00-
D.L= I 19.0 lb/ft Temperature Factor Ct 1.001 1_1 1
L. L - 20.0 lb/ft Size Factor CF
TOTAL:. 39.0 lb/ft Repetitive m. Fact Cr - 1.00
Incising Factor Ci = 1.001
Shear stress Factor CH = 1.00 W = 273.0 E lb/ft [ .
I M= W x LZ / 8 I
273 lb/ft „M yW A67AG 11
GIL
t-K1,.
_�Xd-f 1 t
M= . 20065.5' in -lb .
i I
F 7.00n V=WxL/2 ]
( )
F"b - Fbx(CD)(CM)(Ct)(CF)(Gr)(Ci.... �...,.�.....—.
- 5.8 b
BENDING: k � i V- 95 I
_ •- i i
--- . .......
F'b = 1250 . s] USE
Req'd S = M / F'b S= 16.051 in^3 I 6 X 6 Area =, W-3.1 nA
f b = M/S Section= 27.7! inA3
ALLOW F'b - I ACT. f b = Moment of Inertia= 76.3! in^4
1250 psi >.. .. 723.E gpsi OK
i SHEAR j
Fv(C_D)(CM)(Ct)(CH) I f v..= 1.5 V/ A — I
F"v = 11 psi > fv=1 47.38Dsi I. OK I I
DEFLECTION
5WLL^4 0.11 in
,
384 E" I
E'= E (Cm)(Ct)(C) 1700000 psi
, k
d max = L / 240 = 0.35 in
i..... ._........ I............ _
OK
1
DEPT
& SAFEII q �
S t i�t,i� 14�7v.
i3Y
STRUCTURAL CALCULATIONS
E
BEAM DESIGN
BEAM #1 I
............ _ ...__.
DOUGLAS FIR -LARCH No 1= ` ' Fb = 1000 ski
SPAN = 9.0 ft Fv= _ 95 psi
TRIB. AREA = 16.0 ft _ E = 1700000 psi
Load Factor Co = 1.2
Wet Service Factor CM 1.00 =
__.
D. L = 19.0 Ib/ft Temperature Factor Ct == 1.00
I
L. L = 20.0 Ib/ft Size Factor CF = 1.00 I i
.............
TOTAL 39.0 :Ib/ft i Repetitive m. Fact Cr_= 1.00„
I Incisina Factor Ci = 1.00 I
_ Shear stress Factor CH = 1.00 W - 624.0 lb!ft
I WWxL2/_8
624 ID/ft - .63 IO.O 1L-�U • 1
.. -- M= 75815 in -lb
-�1
............. _.._.
0.00 ft
V= WXL/2
l
--- _ V= 808Ib
BENDING I .... ..---�-:... � 1 2
i:..... F'b=. Fbx(C[7.7.(CMj(Ct)(CF)(Cr)(Ci}........................_._......_......_._._.,.....................,,.....L........._.._._,.....
1 . .................
F'i7 - 1250 psi W USE
Req'd S M / F'b S=1 60.65 in^3 ... I 61 X 12 Area = 63.3�2 •�•
} a _ f b = WS i. Section= 121::in^3
—_. Y.:..........._............. _ _ .,�
1.
ALLOW F'b = _I ACT_f b = Moment of Inertia= 697 in^4
l 1250 psi 625.5 � �K _w_.._.._._._... _..
SHEAR
F'v = FACD](CM)(Ct)(CH) if v =1 1.5 V / A !
F'v = 119psi > (v_ 66.59 si FOK
T
DEFLECTION
...
5WLL^4 ._ 0.08 in -
i
384 E" I OK _ I �
0.1 ..::.....__..............—�
_ BEAM 8_X ' 12 ~
d max = L / 240 = 0.45 hn I;
Y OF LA QIJIIIN 1 A
!13 L)H ; a & SAFETY OEf'T.
0 _�
Y
STRUCTURAL CALCULATIONS
BEAM DESIGN �__— �dlW ....... ................... __ 4_�
ROOF JOIST #1 _ ( _i ' .ww
DOUGLAS FIR -LARCH No 1= Fb...= ... .... 1000 Ipsi
SPAN = 4.0 7 1 Fv=f 95 si
TRIB. AREA 2.0 ft I E = 1700000 psi
.:.... . ......... ,
Load Factor Co = 1.25
4
.......... I,.,., —m..
Wet. Service Factor CM = 1.00
_ m
D. L = 19.0 Ib/ft Temperature Factor Ct = 1.00 ( _�
L. L = 20.0 Ib/ft Size Factor CF = 1.00
---.....,. ._:. -- I.......................I.,.................
TOTAL 39.0 Ib/ft Repetitive m. Fact Cr = 1.00 _
Incising Factor Ci = ��' 1.00. I I
..........._.._ ................................-- R
Shear stress Factor CH — 1.00 W =.j 78.0 ; Ib/ft ;
1
I
_ I M=WXLz/$.
M= 156.01'ft Ib
M= 18721 in-Ib
400R V= WxL/2 .. �.:.
m
_ N BENDIG s V=1 156lb
Fb = Fbx(CD)(CM)(CtX F)SCo C( i) �- ...... _�
.
3
F'b = 1250 psi USE
Re d S = M / F'b S= 1.50 inA3 ` 2 X 12 Area 16.9 inA2
f b ---M/S Section= 31.6in^3
ALLOW F'b = ACT. f b = _ f:. Moment of Inertia= 178 in^4
1250 psi > II 59.2 ;psiK —
�i
--
. SHEAR
F'v = Fv(CD)(CM)KCt)jCH)
f I
I F'v = 1 119 psi { > f v = 13.86 psi _tK
DEFLECTION .
_.. _
L5WLLA4 L— �_ 0 in
384 E' I iOK
E'= E (CM)(Ci)(G) 1700000 psi_.
BEAMI 2IX .112
d max = L / 240 = 0.20 : ,in ` {
.............. i_ f I I ,..L
LA
I
_ .. EY
STRUCTURAL CALCULATIONS
_10
Analysis for Low-rise Building, Based on ASCE 7-2010
-RAL FORCE ANALYSIS
IBC 2012 CBC 2013 ASCE 7-10.
WIND: 110 mph EVow re C
EHCLI]SED qz= 0.00256X Kz Kit KO._V" 2
INPUT DATA
Exposure category (% C or D, ASCE 7-10 26.7.3)
'
Importance factor (ASCE 7-10 Table 1.5-2)
IW =
1.00
Basic wind speed (ASCE 7-10 26.5.1 or 2012 ®C)
V =
110
Topographic factor (ASCE 7-1026.8 & Table 26.84)
KA =
1.00
Building height to eave
he =
9
Building height to ridge
hr =
12
............... ...
s
c
8
ql, = velocity pressure at mean roof height, h. (Eq. 28.3-1 page 298 & Eq. 30.3-1 page 316)
Kh = velocity pressure exposure coefficient evaluated at height, h, (Tab. 28.3-1, pg 299) = 0.85
Ka = wind directionality factor. (Tab. 26.6-1, for building, page 250) - 0.85
h = mean roof height = 10.50
qz= 22.38 PSF
WW LoaD = qzl(l E+211E+312+41E 40.11111rM
ANALYSIS WIND LOAD= 182 # ft
p = qh [(G Cpf )-(G C'pi )]
where: p = pressure in appropriate zone. (Eq. 28.4-1, page 291) Amin = 16 psf (ASCE 7-10 2"AA)
G CPf= product of gust effect factor and external pressure coefficient, see table below. (Fig. 28.4-1, page 300 & 301)
G Cp i = product of gust effect factor and internal pressure coefficient.(Tab. 26.11-1, Enclosed Building, page 258)
a =width of edge strips, Fig 28.4-1, note 9, page 301, MAX[ MIR0.1B, 0.1L, 0.4h), MIN(0.04B, 0.04L), 3] =
let Pressures , Basic Load Cases
Roof a
le 0 = 15.64
Roof angle 9 = 0.00
Surface
Net Pressure with
Net Pressure
with
GCpf
GCPf
(+GC,t)
(-GC i)
(+GC i)
(-GCpi
1
0.49
6.68
14.37
-0.45
-13.47
-5.77
2
-0.69
-18.60
-10.90
-0.69
-18.60
-10.90
3
-0.45
-1 3.43
-5.73
-0.37
-11.76
-4.06
4
-0.39
-12.17
-4.48
-0A5
-13.47
-5.77
5
0.40
4.70
12.40
6
-0.29
-10.05
-2.35
1 E 0.74 12.08 19.77 -0.48 -14.11 -6.41
2E -1.07 -26.73 -%03 -1.07 1 -26.73 1 -19.03
x x
'Er
i�P@Kl Co�rlfr IOaO1LLG4�4
•FAO Plo{L'19k 7° ~�IOOI�LnON
Load Case A (Transverse) Load Cass B (Longitudinal)
jksir_1A d Cases
Net Pressures (psf), Torsional Load Cases
Roof an
le 0 =
15.64
Nn Pressure with
Surface
G f
(+G i)
(-G i )
1T
0.49
1.67
3.59
2T
-0.69
-4.65
-2.73
3T
-0.45
-3.36
-1.43
4T
-0.39
-3.04
-1.12
Roof angle 0 =
0.00
G Cp f
Net Pressure with
(+GC i) (-GC,; )
Surface
5T
0.40
1.18
3.10
x > >*
IT y T
IIIfaGKi.dwo ,!
+�:'PKI[C oCauFle
Load Case A (Transverse) Load Case A (Lo git dinal)
Torsional :Load Co C . .�
SF1=r-.T`7� DEPT
W
STRUCTURAL CALCULATIONS
Basic Load Case A (Transverse Direction)
Surface Area Pressure (k)t81 w
W)
1
990 6.61
1423
2
2337 43.46
-25AB
3
2337 -31.38
-13.39
4
990 -12.05
-4A3
1E
110 1.33
218
2E
260 -6.94
-4.94
3E
260 -4.57
-2.57
4E
110 -1.79
-0.94
Horiz.
17.88
17.8E
£
Vert.
-83.15
- 4.67
Min. wind
Horiz
2B.80
28.80
28.4.4
Vert
-80.00
1 -80.00
Basic Load Case B fLnnoitildinai DirecHenl
Area Pressure (k) WO
Surface
ie) (+GCP i) (-GCP i )
2
2337
-43 46
-25.48
3
2337
-27.48
-9.49
5
608
2.86
7.54
6
608
-6.11
-1.43
2E
260
-0 94
-494
3E
260
-3.94
-1.94
5E
117
1.08
1.98
6E
117
-1.53
-0.63
Horiz
11.57
11.57
Vert
-68.75
-32.37
Mtn. wind Heriz 11.60
11.60
284.4 Vert -80.00
-80.00
,r-i-i i -i rncu A rrr:,naverae n6iv n-i 'r-i-i r -1 r:aen R fl nnnairAF-1 mean-N-n
Area
(k) wtth
Torsion ((1-kk))
$UfIaCG
(e)
�/P-reesssure
( Glq,,)
(-`."N1)
(-GC,,)
(-GC,,)
1
440
2.94
6.32
66
142
2
1038
-19.32
-11.32
-117
-69
3
1038
-13.94
-5.95
85
36
4
440
-5.36
-1.97
121
44
1 E
110
1.33
2.18
60
98
2E
260
-0.94
-4.94
-84
-00
3E
260
-4.57
-2.57
55
31
4E
110
-179
-0.94
80
42
1T
550
0.92
1.98
-23
-49
2T
1298
-6.04
-3.54
41
24
3T
1298
-4.36
-1.86
-29
-13
4T
1 550
1 -1,67
1 -0.62
1 -42
-15
Total Horiz Torsional Load, Mr
1 212 1 212
Area
Pressure (k) wkh
Torsion (Rac)
Surface
W)
(+GCol)
(ti��rpl)
�r
( GCp I)
+�
(-„Cp I)
2
2337
-43.46
-25.48
-29
-17
3
2337
-27A8
-9.49
19
6
5
246
1.15
304
11
29
6
246
-2.47
-0.58
23
5
2E
260
-6.94
-4.94
89
63
3E
260
-3.94
-1.94
-50
-25
5E
117
1.08
1.98
24
44
6E
117
-1.53
-0.63
34
14
5T
363
0.43
1.12
-5
-13
6T
363
-0.91
-021
-10
-2
Total Horiz Torsional Load, MT
1046
1046
Design pressures for components and cladding r a r W-4
p= qh[ (G CP) - (G CPi)] S r 1 I I r r
where: p = pressure on component. (Eq. 30 4-1. pg 318) • t a + t 4'" ` s z r x - i - - a
Amin = 16.00 psf (ASCE 7-10 302.2)
G Cp = external pressure coefficient. Wells
see table below. (ASCE 7-10 30.42) Roof Roof r.-^
Zone 3 1 Zone 4 1 Zone 5
Comp. 8 Craddtng
Pressure
Zone 1 Zone 2 Zone 3
1 Zone 4
Zone 5
Pwalw ii I P-m"
mg-u- Pw11hn
rU➢stlw
Porlew
rA➢Ww
Po.kiw
1Apulw
( ➢d 1
1600 2114 16.00
-35.42 16.00
-53.70
23.54
-25.68
3.54
-30.41
,:. f-- T.'
CONS� 6� CTIl7N
I
STRUCTURAL CALCULATIONS
P12
CALIFORNIA BUILDING CODE 2013
MAXIMUM CONSIDERED EARTHQUAKE
GROUND MOTION FOR REGION
STRUCTURAL CALCULATIONS
Design Maps Summary Repo
User -Specified Input
Building Code Reference Document 2012 international Build'ing Code
(which utilizes USGS hazard data available in 2008)
Site Coordinates 33,712330N, 116.27471DW
Site Soil Classification Site Class D - "Stiff Soil"
Risk C
ategory 1/uN1
Itanen❑ Mlooan
9
Palmm Desert
Indl
fn dh D �
.w { Q R f'I-E
pLa Owinla 'E R C A
:•
myspquast
USGS-Provided Output
Ss = 1.620 g S., = 1.620 g Sea = 1.080 g
S1 = 0.767 g Sal = 1.151 g Sol = 0.767 g
For information on how the SS and S1 values above have been calculated from probabilistic (risk -targeted) and
deterministic ground motions in the direction of maximum horizontal response, please return to the application
and select the "2004 NEHRP' building code reference document.
m
YA
MCEe Response Spectrum
0.00 0.20 0.10 DA0 0.112 r.00 1.20 1.40 1.00 IAD 20
Period. T (sec)
_a
Design Response Spectrum
0-" D.ZD 0-40 6-69 0.1e 1-a0 1,2a 1.4fl 1.60 1.20 2.ca
Period, T (sec)
Although this information is a product of the U.S, Geological Survey, we provide na warranty. expressed or implied,
as to the accuracy of the data contained therein. This tool is not a substitute for technical subject -matter
knorAedge.
CF :-, OF LA C UINTA
BUILDING & SAFETY DEPT.
I -OR CONSTRUCT ION
BY
STRUCTURAL CALCULATIONS
SITE CLASS DEFINITION=
D
OCCUPANCY CATEGORY =
11
SEISMIC DESIGN CATEGORY D
[LA QUINTA CALIFORNIA. 92253
�0.2 seq Ss=150%g 1.0 seg Sl 60%g .............
SDs= 2/3 X SMS SD1 = 2/3 X Smi
SDs = J 1.08
SDI = 10.767
R = :6.5 TABLE 12.2 ASCE 7-11
IE =
1.0
t= . .
. . . .. . . ............... . ..... .. ... ... . . ....
........
BASE SHEAR V= Cs W
. . . . ...........
Cs = SDS R/IE),
NOT EXCEED
I Cs = SDI T( R/IE)
NOT LESS THAN
Cs =0.01,
...............
0.166
W
(12.8-1)
0.166
0.590
........ ..
(12.8-2)
(12.8-3)
-A�0.010-
(12.8-5):
V=
0.17M
LA C"J" NT A
SAFE ,� E) PT
A,i
J
BY
STRUCTURAL CALCULATIONS
L
SEISMIC (CONTINUED)
D.L.
ROOF 19 psi
EXT. WALLS 15
.. ... ... ... ...
.. . . ........... . ......
SEISMIC. V= 0.17 WALL HT = loft
—IA H=20xl5
TRANSVERSEL 1LONGff UDIL I
WORST 20 `FT . ...... . — WORST FT -
ROOF J=-380 1- ROOF = 2851
2 Walls = 150 21 Walls = 1501 1
530 .435i
X 0.17 1 X 0.2!
90.1 # MAX 74 # ft MAX)
J
i -
SEISMIC =90PLF <182= WIND
. . ............ .. .... . ---------
W= �2
. . . . . ..............
T= C= WLA 2 8b TL= 115 = 255.9375
NAIL = B =j20 077 .
.... . ....... . ........ . .......... . . . ......
TABLE 23-111 -C-2
TOTAL NAIL = LOAD /NAIL= 1. 365
PROVIDE (8 PAIR) 16 d COMMON
@ E.A 4'-0" SPACE 10 TOPrCHORDS
1 C 7y
L-p q n, -
DEPT
1:3 G
D
k"0NSTRL1(-;'-F10N
r3Y
STRUCTURAL CALCULATIONS
!SHEAR WALL REQUIREMENTS
ROOF D L. = 19
IFT
_
WALLS O.L = .15
WALL Hr,1
-9
UPLIFT FCRAILk
APPENDIX D
(Vh-(22 (Wb LA2/2)+(WWLM))/ L
STRENGTH REDUCTION FACT
SHEAR = 0.65
... ....... - -
............._...............
--
-
.....
--........:. ....--
[0.65' 850'1.33'12 fshaar force
.FIRSTFLOOR
1
WALL LAT.FORCE
TRIG. AREA
TOTAL FORCE
...
.TOTAL
RESISTWALL SHEAR FORCE LOAD—
—
UPLIFT. FORCE
SHEAR WALLHOLDONM
_._.._._..
A35 5'e• BOLT . STRUC
_ .. .. .. _.
P
1
WALL 01
FT
#I
WALL-SEG
#
'TYPE TYPE
EA BLOCK SPACING 0.1 NOTES
25
4550
j 1d5
_.._fU
278
"_..ILI792 _..
14M
_z..gyp
.—_.—_48."
�.
A d92__.I.
1?6..
4550
18.5
5
2 �........_FDU2
1
+18
"
_
JtQ:.
_.278
_I -�;;..2'758—_�759]
—.
B 192
7
1274 _
13
? 8
98
_ RK .^.
-356 1 hDU2
1
4H 1
B - 182
_.
7 —
.. 1274
13
5
98
490
-223,. ] FKXD
1 45 1
C
]82
10 ...........................1
_.... _....""....
9
- 4,5.
-
-- .910 .
.....- ................ 1 .- HDL!2.
1
C
182
10
1820
9
4.5
202
' 910
-286 1 FDU2
1 48"= 1
182
7
— 1274 ........
.............
..........._.._
64
1 1274
-891 HDL12
:.............!.
.ice
WALL HT,1 =9 _--.... _.._..------I...... UPLIFT FORMULA
-.1...� (%A-(2/3 (Nb L^2/2)+(WvuLl2)))/ L:. ....................
-- _ _ —
� 1^ 1 i I I
TOTAL_ RESIST,WALL 1 SHEAR FORCE VLOAD jL __ _WALL __ Vh Wb 213(WbLA212) WwL12 UPLIFT. FORCE
WALL(Ft) [ FT # I WALL- SEG No. #
16.5 [ 6.5 276 1792 A 16132 475 6723 439 1402
16.5 10 i 276 2758 A 24818 475 15913 675 -1591
I
13 8 i. 98 784 B 1 7056 133 2852 540 -356
13 _ 5 _ 98 I 490 B 4410 133 1114 338 ` -223
I
9 ,,,,• 4.5 ..j 202 � 910 C 8190 190 1.289.... 304 -286
_ _._._.._.._.._....._.,. _.._._.._.._.._.._
9 4.5 202 910 C 8190 190 1289 _ 304 -286
-- - -- _,.....I.—........_m,..,m,._
I
20 _ 20 64 1 1274 A 11466 133 1782-2 1350 -891
OF LA 01 INTA
BUILDING & SAFETY DEPT.
CONSTRUC f ON
I
I I I 1 1 I [ 1
r
I
r i , t I t , r I , ,
17
I 1 1 l I I [
-1
I.
I f
� I
SYVI x9 ICIminim
- -
�- —_togs*ssnaL
Q } 9X� 9N1�[3--
L , 5 1 3N --
Ma
'Z00H
NG & SAFETY D# T.
` , IT A PROOFED
FOi CONSTRUCTION
I
BY
_r
.� o
STRUCTURAL CALCULATIONS
SHEAR WALL CONSTRUCTION
D1/2" GYPSUM WALL BOARD APPLIED DIRECTLY TO 2x STUDS WITH STANDARD WALL BOARD
NAILS (1 1/2" x 0.12" DIAMETER w/ 3/8" HEADS) OR 5d COOLER NAILS AT 7" O/C MAX. TO ALL
STUDS, SILLS, PLATES AND BLOCKING. ANCHOR w/ 5/8" DIAMETER x 10" LONG ANCHOR BOLTS
(w/ 3" x 3" x 0.229" THICK PLATE WASHERS BETWEEN NUT AND WOOD SILL) @ 6'-0" O/C MAX
16" O.C. FRAMING
(ALLOWABLE LOAD: 75 plf - PER CBC 2013 TABLE 2306.7)
>� 7/8" PORTLAND CEMENT PLASTER ON WOVEN WIRE OR EXPANDED METAL LATH NAILED
AT EACH STUD, SILL AND PLATE @ 6" O/C MAX. w/ No. 11 x 1%" GALVANIZED NAILS WITH
7/16' DIAMETER HEADS OR ATTACHED w/ No. 16 GAUGE STAPLES HAVING 7/8" LONG
LEGS. ANCHOR w/ 5/8" DIAMETER x 10" LONG ANCHOR BOLTS 7" EMBED MIN (w/ 3" x 3" x
0.229" THICK PLATE WASHERS -SDC D ,BETWEEN NUT AND WOOD SILL) @ 48" O/C MAX.
16" O.C. FRAMING
{ALLOWABLE LOAD: 180 plf_- PER 2013 CBC TABLE 2306.7 )
THE NEXT THREE (3) SHEAR WALL TYPES SHALL ALL HAVE THE FOLLOWING
IDENTICAL STRUCTURAL I WOOD PANEL DIAPHRAGM: (WALL1 , 2 & 3 ONLY)
3/8" C-D EXPOSURE I APA PLYWOOD OR 3/8" ORIENTED STRAND BOARD APPLIED DIRECTLY
TO THE STUDS, WITH THE LONG DIMENSION OF FULL PANELS LAID PARALLEL OR
PERPENDICULAR TO THE LENGTH OF THE STUDS, ALL EDGES OF EACH PANEL SUPPORTED
ON STUDS, SILLS, PLATES OR BLOCKING AND NAILED AND ANCHORED AS FOLLOWS:
1 D8d COMMON NAILS @ 6" O/C AT ALL PANEL EDGES AND 8d COMMON NAILS @ 12" O/C AT
ALL FIELDS. ANCHOR WITH 5/8" DIAMETER BY 12" LONG ANCHOR BOLTS AT 48" O/C.
(ALLOWABLE LOAD: 280 Of - PER 2013 CBC TABLE 2306.3) *
CONSTRUCTION NOTE(S) 1 & 2 APPLY (NOTES 3, 4 AND 6 APPLY ONLY WHEN
DIAPHRAGM AT BOTH SIDES )
2 D8d COMMON NAILS @ 4" O/C AT ALL PANEL EDGES AND 8d COMMON NAILS @ 12" O/C AT
ALL FIELDS. ANCHOR WITH 5/8" DIAMETER BY 12" ANCHOR BOLTS AT 32" O/C.
(CALCULATE TO MAXIMUM OF 349 Of - PER 2013 CBC TABLE 2306.3) STUDS @16" O.0
CONSTRUCTION NOTE(S) 1 & 2 APPLY (NOTES 3, 4, 5 AND 6 APPLY WHEN DIAPHRAGM
AT BOTH SIDES)
3 D8d COMMON NAILS @ 3" O/C AT ALL PANEL EDGES AND 8d COMMON NAILS @ 12" O/C AT
ALL FIELDS. ANCHOR WITH 5/8" DIAMETER BY 12" LONG-ANCHOR-BOLT-SAT-32"9LC
(ALLOWABLE LOAD: 550 plf - PER 2013 CBC TABLE 2306:3') Y, r
CONSTRUCTION NOTE(S) 1, 2, 3 & 6 APPLY (NOTES 4: W;Am T
BOTH SIDES) "`.'l;- r 'Y DEPT.
NOTE VALUES ARE APPLICABLE TO DOUGLAS -'- LARCH FRAMING @ 16" O.0
STRUCTURAL CALCULATIONS
4 D15132" STRUCT. I APA PLYWOOD OR 15/32" ORIENTED STRAND BOARD (OSB) APPLIED
DIRECTLY TO THE STUDS, WITH THE LONG DIMENSION OF FULL PANELS PARALLEL OR
PERPENDICULAR TO THE LENGTH OF THE STUDS, ALL EDGES SUPPORTED ON STUDS, SILLS,
PLATES OR BLOCKING AND NAILED AND ANCHORED AS FOLLOWS: 8d COMMON NAILS @ 2"
O/C AT ALL PANEL EDGES AND 8d COMMON NAILS @ 12" O/C AT ALL FIELDS. ANCHOR WITH 3/d'
DIAMETER ANCHOR BOLTS AT 16" O/C. —STATE EMBEDDED DISTANCE 7" MIN
(ALLOWABLE LOAD: 730 Of — PER 2013 CBC TABLE 2306.3) *
CONSTRUCTION NOTE(S) 1, 2, 3, & 6 APPLY (4 AND 5 APPLY WHEN DIAPHRAGM AT
BOTH SIDES)
CONSTRUCTION NOTES:
1 3" x 3" x 0.229" PLATE WASHERS SHALL BE PROVIDED BETWEEN ALL ANCHOR BOLT NUTS
AND THE WOOD SILL.
2 SEE ANCHOR BOLT CALCULATIONS FOLLOWING THESE NOTES IN THE CALCULATIONS.
3 EDGE NAILING AT ABUTTING PANEL EDGES FOR WALLS LOADED IN EXCESS OF 350 plf SHALL
BE APPLIED TO 3x OR WIDER STUDS.
4 APPLYING EQUAL THICKNESS STRUCTURAL WOOD PANELS TO BOTH STUD FACES OF A
SHEAR WALL AND WITH MATCHING NAILING FOR BOTH SIDES SHALL PROVIDE DOUBLE THE
LOAD CAPACITY OF WALLS HAVING THE SAME PANELS AND NAILING APPLIED TO ONLY ONE
FACE.
5 STRUCTURAL WOOD PANEL SHEAR WALLS WITH PANELS APPLIED TO BOTH FACES AND
WITH EDGE NAILING LESS THAN 6" O/C SHALL HAVE ABUTTING PANEL EDGES FOR ONE SIDE
OFFSET ONE STUD SPACE FROM THE OTHER SIDE (NOTE No. 3 ALSO APPLIES)
6 ALL SHEAR WALLS HAVING A LOAD CARRYING CAPACITY IN EXCESS OF 350 plf SHALL BE
PROVIDED WITH 3x P.T.D.F. SILL PLATES AND 12" LONG ANCHOR BOLTS OF THE DIAMETER
PROSCRIBED FOR THAT WALL CONSTRUCTION TYPE (ALL ANCHOR BOLTS SHALL BE SET 7"
INTO CONCRETE)
7 WHERE THE CONTRACTOR DESIRES TO CONSTRUCT THE SLAB -ON -GRADE AND THE
FOOTINGS AND FOUNDATION IN A TWO POUR SYSTEM, ALL ANCHOR BOLTS SHALL HAVE A
MINIMUM LENGTH OF 14", SETTING THEM A MINIMUM OF 4" INTO THE TOP OF THE
FOUNDATIONS BEFORE POURING THE SLAB.
8 ALL ANCHOR BOLTING, HOLDOWN BOLTS OR STRAPS AND OTHER FORMS OF CONCRETE
INSERTS SHALL BE SECURELY HELD IN PLACE WITH JIGS OR OTHER SUCH DEVISES PRIOR
TO REQUESTING FOUNDATION INSPECTION, DURING INSPECTION AND DURING ACTUAL
POURING OF CONCRETE.
9 ALL ANCHOR BOLTS AND HOLDOWN BOLTS SHALL BE BROUGHT PLUMB PRIOR TO THE
CONCRETE HARDENING. MECHANICAL STRAIGHTENING OF BOLTS AFTER THE CONCRETE
HAS HARDENED THAT RESULTS IN SLAB EDGE BREAKING SHALL RESULT IN REJECTION OF A
PORTION OF THE SLAB AND FOUNDATION BY THE ARCH ITEGT-OR-STRUCTURAL DESIGNER
OF RECORD AS HE DEEMS NECESSARY, ITS REMOVAL AI DfELQURING•QFJT AT.PQRTT
OF THE CONCRETE.
10 HOLDOWN STRAP HOOKS SHALL BE STABLIZED DURING THE CONCRETE POURliVQXp-TO
ENSURE THEY REMAIN AT THE MANUFACTURER'S PROSCRIBED -ANGLE OF INSERTION.
11 ATTACHMENT OF A 3x SILLPLATE TO FLOOR FRAMING B�LAWC$HALL BE MADE WITH THE
USE OF SIMPSON SDS'/<x6 WOOD SCREWS AT 3" o/c. {
12 ATTACHMENT OF A 2x SILL PLATE TO FLOOR FRAMING BELOW SHALL BE MADE WITH THE
USE OF 16d @ SPACING INDICATED AT THE SHEAR WALL-7ABU.L.ATLON,
STRUCTURAL CALCULATIONS
F179
I
FOUNDATION
I
--
SOIL PRESSURE = 1000 JPSF
LOADING
ROOF = 35
EXT. WALLS =' 15
H-1 = 13 ft
TYPICAL PERIMETER FOOTING
AT
1:1
STORY
Tdb. Area (ft)=
' 18
LOADING :
ROOF = 630
#1
I
1
WALL = { 195
#1
W =� 825
#1
FT / FT LENDTH
REQ"D WIDTH =�^ 0,825
12" WIDE x 12" CONTIN_PERIM
AND 2 # 4 BARS, CONTIN .
FT,
FOUNDATION
_ i. ........
FOOTING
18" 4„ 18"- - ..__l._�� ..__..
40" X 12" = 480SQ IN 3.3333
144 SQ IN —
SOIL PRESSURE PSF
TOTAL LOAD = 3,300.# >2000# OK
BUH DING & `""IFLE-TY DEPT.
:,A d it —r i� r
OR CONS:'' .— ; �'si�UTtON
r,—-�R,r