Loading...
BRES2015-0445 Structural CalcsSTRUCTURAL CALCULATIONS A CUSTOM RESIDENCE FOR: STEVE & DEBBY PFANNKUCHE RESIDENCE 52523 AV. RAMIREZ. LA QUINTAg.C-ALIFORNIA LA FETa r Y DE-pT zi)r 04, CHARLES D. GARLAND, ARCHITECT LICENSE NO,11991 EXP 10131117 ! 74-991 JONI DR. SUITE #9 PALM DESERT CA 92260 `- PHONE:760/340-3528 FAX:760/340-3728 JAN 22 2013 M STRUCTURAL CALCULATIONS 4*"* GOVERNING CODES .....................page 3 **** LOAD ....................................................... Page 4 **+* BEAM ............ Page 5 ,e LATERAL Page 9 **** SEISMIC ZONE ............................ Page 14 **** SHEAR WALL REQUIREMENTS.... Page 18 + FOUNDATION ............................... Page 19 07' -FIT STRUCTURAL CALCULATIONS GOVERNING CODES A- IBC 2012 OR CBC 2013 B- DESIGN LOADS a. ROOF LIVE LOAD 20, PSF b. ROOF DEAD LOAD 19 PSF c. WIND IMPORTANCE FACTOR 1.00 WIND ZONE 110 MPH EXPOSURE C d. SITE CLASS DEFINITION( D) e. OCCUPANCY CATEGORY II f. SEISMIC DESIGN CATEGORY (D) g. COEFFICIENT Cs 0.15 h. SEISMIC Ss1.5g i. SEISMIC S10.6g j. FACTOR R 6.5 k. SEISMIC SDs 1.00 I. SEISMIC SD10.60 STRUCTURAL CALCULATIONS �I LOADS ROOF ROOF TILE = EXTERIOR WALLS : WOOD STUDS = 9 PSF 2 ' -F--- ROOFING ELT 0.6 1/2" GYP BD. = 2 -1 15/8 OSB/ RADIAN BARRIER 2.2 7/8" STUCCO = lo TRUSSES @24" O.0 k--38 ——INSULATION 5&"GYP. BD. D.L Ll = 2.6 INSULAT10 1.8 2.8 . . . ....... D.L. 15 1 PSF 19 20 INTERIOR WALLS Po __jFSF TOTAL LOAD = 39 PSF WOOD STUDS 2 II PSF 1/2 GYP.BD.2SIDES _j 3 INSULATION = �21 D.L = 7 _PSF. 1 TAR / GRAVEL 5 x PLYWOOD 3 IRAFTERS INSULATION = 2 CEILING = 6 19 20 D.L = Ll .................. TOTAL LOAD = 39 PSF CITY OF LA QUIN IA I 11'. D I N G & F lE-'- f Y DEFT R CONSTRUCTION BY STRUCTURAL CALCULATIONS BEAM DESIGN HDR41 .. .. .. .... DOUGLAS FIR -LARCH No 1=.. Fb = 000 . . . ............. . .. . ..................................... . . ........ . . . .... .. ... ­T SPAN 5.0 ft Fv 95 psi TRI B. AREA 1�404ft= I I I E = . 17000001PIsi J_ . . ............... .. 2 .. ................ .. ...... .. .... ....................... ... .... ...... ... ... ............. . .................. M= :W xLl 8 ............ . .. . ............. ............. tM ibill M= 487.5 Ml ... ........ .. ... 1 BENDING ......... ...... I F'b = Fbx(CR�.(CN%Ct)(CF)(Cr)(Ci) . .. .. ... .. . .. ... ................. F'b 1250 psi I Req'd S =,IM_F'b S= 4.68 in A 31 I f b = M/S Al I OW Ph ArT f h = V= WxL/ V= 3E lb/ft I i . ............ I . . .... i in -lb j: USE X 6 Area= 30.3 inA 2 . . ...... �Section=? 27.7 inA.3 Mnrnpntnf lnPrfia=: 763 inA4 1250FOO SHEAR > 211.0 psi OK . . . ......... �F'v = Fv(CD)(CM)(C C.),. If V=i! 1.5V/A I . ......... . . V= 19.34 psi ....... ... 10K: .. . .... .............. ..................... OK . . ............ v 119..sl > DEFLECTION 5WL LA4 0.02 1 �...,...I. 384 E' I E'= E (Cm)(c)(C)L 1700000 d max = L 240 = 0.25 in 2.s] BEAMI 6 X. 16 TA A QUIN BUILDING & S,F-E_rY DEFT. A'V_ 3 P R C -) V; E I D Load Factor Co= 1.26 Wet. Service Factor Cm .. .. .. .. ... . .. .. .... ... .. .. ... ... ... ... . 1.00 D.L 19.0 lb/ft Temperature Factor Ct 1.00. . Ll = . ................ M.0 1 lb/ft I Size Factor CF 1.06 TOTAL 39.0 lb/ft Repetitive rn. Fact. Cr 1.00 Incising Factor Ci 1.00 . ..... . ............. Shear stress Factor CH . ......... . 1.001 W =1 156.0 1 STRUCTURAL CALCULATIONS .............. ... ............. BEAM DESIGN HDR #2 1 ......... .. . . . . . . . . . . . . DOUG FIR -LARCH No._= SPAN = 7.0 ft .. .. .... . . TRIB_ AREA= 8.0 T Load Factor Co Service Factor Cm D.L = 19.0 lb/ft Temperature Factor Ct .... .. .... Ll = 20.0 lb/ft Size Factor CF = . ...... TOTAL 39.0 lb/ft Repetitive m. Fact. Cr ........ ...... ..... . ............ 1 1 nciE Lina Factor Ci .. ......... Shear stress Factor CH L . ........ 1.00' W,!!l 312.0 . . .......... M= W x L2 / 8 312;b/ft 1 RA= 1911.0 4 16 M7 22932 in -lb _J ........ . .... V=WxL/2 7-00 ft BENDING' I - V= 1092. lb F'b Fbx(CD)(C_ C Cr ICI . . ......... . . . . .... . . ........... .. ..... . .... ... . . .................... . ........... . ..... j F'b 1250 1psi USE Re,g:.d M/,-' S= 18.351 in-3,, . .. ..... A. x 16 Area -T3�0.3 in-2 b M/S Secton= 27.7 inA3 ALLOW F'b ACT. f b t of Inertia= n76.3 inA4 I 12501.psi > 827.0 psi' JOK SHEAR F'v = FACD)IPM)(Ct)(CH) .... .. ... f v 1.5 V A. ... ...... .. ... ...... .. .... .. . ............ 119 psi > f v=T 54.15 psi OK DEFLECTIOt[ 5WL LA4 I FO.-631 n . .... ........ - ...................... . ... ........................ .384 E' I E'=LE (CmAq,)Lq)__ _JV700000 I psi BEAM ex 1.6 d max= L / 240 = 0.35 in =b 00 .................. .............. . ... .... Fv 95 psi E = 17000MIUsi I J i LIJ I SAJF:)l_f Y 1) EPT ­D 4_10Vi- �;��1`4 CRUCTiON STRUCTURAL CALCULATIONS 0 ........ ... ............ . . . .. . ............... ... BEAM DESIGN HDR #3 T DOUGLAS FIR -LARCH No 1= Fb = . 1000 psi s: SPAN = 7.0 ft TRI B. AREA = 7.0 ft ! i E 1.700000].psi _ Load Factor Cb = 1.25 Wet Service Factor CM = 1.00- D.L= I 19.0 lb/ft Temperature Factor Ct 1.001 1_1 1 L. L - 20.0 lb/ft Size Factor CF TOTAL:. 39.0 lb/ft Repetitive m. Fact Cr - 1.00 Incising Factor Ci = 1.001 Shear stress Factor CH = 1.00 W = 273.0 E lb/ft [ . I M= W x LZ / 8 I 273 lb/ft „M yW A67AG 11 GIL t-K1,. _�Xd-f 1 t M= . 20065.5' in -lb . i I F 7.00n V=WxL/2 ] ( ) F"b - Fbx(CD)(CM)(Ct)(CF)(Gr)(Ci.... �...,.�.....—. - 5.8 b BENDING: k � i V- 95 I _ •- i i --- . ....... F'b = 1250 . s] USE Req'd S = M / F'b S= 16.051 in^3 I 6 X 6 Area =, W-3.1 nA f b = M/S Section= 27.7! inA3 ALLOW F'b - I ACT. f b = Moment of Inertia= 76.3! in^4 1250 psi >.. .. 723.E gpsi OK i SHEAR j Fv(C_D)(CM)(Ct)(CH) I f v..= 1.5 V/ A — I F"v = 11 psi > fv=1 47.38Dsi I. OK I I DEFLECTION 5WLL^4 0.11 in , 384 E" I E'= E (Cm)(Ct)(C) 1700000 psi , k d max = L / 240 = 0.35 in i..... ._........ I............ _ OK 1 DEPT & SAFEII q � S t i�t,i� 14�7v. i3Y STRUCTURAL CALCULATIONS E BEAM DESIGN BEAM #1 I ............ _ ...__. DOUGLAS FIR -LARCH No 1= ` ' Fb = 1000 ski SPAN = 9.0 ft Fv= _ 95 psi TRIB. AREA = 16.0 ft _ E = 1700000 psi Load Factor Co = 1.2 Wet Service Factor CM 1.00 = __. D. L = 19.0 Ib/ft Temperature Factor Ct == 1.00 I L. L = 20.0 Ib/ft Size Factor CF = 1.00 I i ............. TOTAL 39.0 :Ib/ft i Repetitive m. Fact Cr_= 1.00„ I Incisina Factor Ci = 1.00 I _ Shear stress Factor CH = 1.00 W - 624.0 lb!ft I WWxL2/_8 624 ID/ft - .63 IO.O 1L-�U • 1 .. -- M= 75815 in -lb -�1 ............. _.._. 0.00 ft V= WXL/2 l --- _ V= 808Ib BENDING I .... ..---�-:... � 1 2 i:..... F'b=. Fbx(C[7.7.(CMj(Ct)(CF)(Cr)(Ci}........................_._......_......_._._.,.....................,,.....L........._.._._,..... 1 . ................. F'i7 - 1250 psi W USE Req'd S M / F'b S=1 60.65 in^3 ... I 61 X 12 Area = 63.3�2 •�• } a _ f b = WS i. Section= 121::in^3 —_. Y.:..........._............. _ _ .,� 1. ALLOW F'b = _I ACT_f b = Moment of Inertia= 697 in^4 l 1250 psi 625.5 � �K _w_.._.._._._... _.. SHEAR F'v = FACD](CM)(Ct)(CH) if v =1 1.5 V / A ! F'v = 119psi > (v_ 66.59 si FOK T DEFLECTION ... 5WLL^4 ._ 0.08 in - i 384 E" I OK _ I � 0.1 ..::.....__..............—� _ BEAM 8_X ' 12 ~ d max = L / 240 = 0.45 hn I; Y OF LA QIJIIIN 1 A !13 L)H ; a & SAFETY OEf'T. 0 _� Y STRUCTURAL CALCULATIONS BEAM DESIGN �__— �dlW ....... ................... __ 4_� ROOF JOIST #1 _ ( _i ' .ww DOUGLAS FIR -LARCH No 1= Fb...= ... .... 1000 Ipsi SPAN = 4.0 7 1 Fv=f 95 si TRIB. AREA 2.0 ft I E = 1700000 psi .:.... . ......... , Load Factor Co = 1.25 4 .......... I,.,., —m.. Wet. Service Factor CM = 1.00 _ m D. L = 19.0 Ib/ft Temperature Factor Ct = 1.00 ( _� L. L = 20.0 Ib/ft Size Factor CF = 1.00 ---.....,. ._:. -- I.......................I.,................. TOTAL 39.0 Ib/ft Repetitive m. Fact Cr = 1.00 _ Incising Factor Ci = ��' 1.00. I I ..........._.._ ................................-- R Shear stress Factor CH — 1.00 W =.j 78.0 ; Ib/ft ; 1 I _ I M=WXLz/$. M= 156.01'ft Ib M= 18721 in-Ib 400R V= WxL/2 .. �.:. m _ N BENDIG s V=1 156lb Fb = Fbx(CD)(CM)(CtX F)SCo C( i) �- ...... _� . 3 F'b = 1250 psi USE Re d S = M / F'b S= 1.50 inA3 ` 2 X 12 Area 16.9 inA2 f b ---M/S Section= 31.6in^3 ALLOW F'b = ACT. f b = _ f:. Moment of Inertia= 178 in^4 1250 psi > II 59.2 ;psiK — �i -- . SHEAR F'v = Fv(CD)(CM)KCt)jCH) f I I F'v = 1 119 psi { > f v = 13.86 psi _tK DEFLECTION . _.. _ L5WLLA4 L— �_ 0 in 384 E' I iOK E'= E (CM)(Ci)(G) 1700000 psi_. BEAMI 2IX .112 d max = L / 240 = 0.20 : ,in ` { .............. i_ f I I ,..L LA I _ .. EY STRUCTURAL CALCULATIONS _10 Analysis for Low-rise Building, Based on ASCE 7-2010 -RAL FORCE ANALYSIS IBC 2012 CBC 2013 ASCE 7-10. WIND: 110 mph EVow re C EHCLI]SED qz= 0.00256X Kz Kit KO._V" 2 INPUT DATA Exposure category (% C or D, ASCE 7-10 26.7.3) ' Importance factor (ASCE 7-10 Table 1.5-2) IW = 1.00 Basic wind speed (ASCE 7-10 26.5.1 or 2012 ®C) V = 110 Topographic factor (ASCE 7-1026.8 & Table 26.84) KA = 1.00 Building height to eave he = 9 Building height to ridge hr = 12 ............... ... s c 8 ql, = velocity pressure at mean roof height, h. (Eq. 28.3-1 page 298 & Eq. 30.3-1 page 316) Kh = velocity pressure exposure coefficient evaluated at height, h, (Tab. 28.3-1, pg 299) = 0.85 Ka = wind directionality factor. (Tab. 26.6-1, for building, page 250) - 0.85 h = mean roof height = 10.50 qz= 22.38 PSF WW LoaD = qzl(l E+211E+312+41E 40.11111rM ANALYSIS WIND LOAD= 182 # ft p = qh [(G Cpf )-(G C'pi )] where: p = pressure in appropriate zone. (Eq. 28.4-1, page 291) Amin = 16 psf (ASCE 7-10 2"AA) G CPf= product of gust effect factor and external pressure coefficient, see table below. (Fig. 28.4-1, page 300 & 301) G Cp i = product of gust effect factor and internal pressure coefficient.(Tab. 26.11-1, Enclosed Building, page 258) a =width of edge strips, Fig 28.4-1, note 9, page 301, MAX[ MIR0.1B, 0.1L, 0.4h), MIN(0.04B, 0.04L), 3] = let Pressures , Basic Load Cases Roof a le 0 = 15.64 Roof angle 9 = 0.00 Surface Net Pressure with Net Pressure with GCpf GCPf (+GC,t) (-GC i) (+GC i) (-GCpi 1 0.49 6.68 14.37 -0.45 -13.47 -5.77 2 -0.69 -18.60 -10.90 -0.69 -18.60 -10.90 3 -0.45 -1 3.43 -5.73 -0.37 -11.76 -4.06 4 -0.39 -12.17 -4.48 -0A5 -13.47 -5.77 5 0.40 4.70 12.40 6 -0.29 -10.05 -2.35 1 E 0.74 12.08 19.77 -0.48 -14.11 -6.41 2E -1.07 -26.73 -%03 -1.07 1 -26.73 1 -19.03 x x 'Er i�P@Kl Co�rlfr IOaO1LLG4�4 •FAO Plo{L'19k 7° ~�IOOI�LnON Load Case A (Transverse) Load Cass B (Longitudinal) jksir_1A d Cases Net Pressures (psf), Torsional Load Cases Roof an le 0 = 15.64 Nn Pressure with Surface G f (+G i) (-G i ) 1T 0.49 1.67 3.59 2T -0.69 -4.65 -2.73 3T -0.45 -3.36 -1.43 4T -0.39 -3.04 -1.12 Roof angle 0 = 0.00 G Cp f Net Pressure with (+GC i) (-GC,; ) Surface 5T 0.40 1.18 3.10 x > >* IT y T IIIfaGKi.dwo ,! +�:'PKI[C oCauFle Load Case A (Transverse) Load Case A (Lo git dinal) Torsional :Load Co C . .� SF1=r-.T`7� DEPT W STRUCTURAL CALCULATIONS Basic Load Case A (Transverse Direction) Surface Area Pressure (k)t81 w W) 1 990 6.61 1423 2 2337 43.46 -25AB 3 2337 -31.38 -13.39 4 990 -12.05 -4A3 1E 110 1.33 218 2E 260 -6.94 -4.94 3E 260 -4.57 -2.57 4E 110 -1.79 -0.94 Horiz. 17.88 17.8E £ Vert. -83.15 - 4.67 Min. wind Horiz 2B.80 28.80 28.4.4 Vert -80.00 1 -80.00 Basic Load Case B fLnnoitildinai DirecHenl Area Pressure (k) WO Surface ie) (+GCP i) (-GCP i ) 2 2337 -43 46 -25.48 3 2337 -27.48 -9.49 5 608 2.86 7.54 6 608 -6.11 -1.43 2E 260 -0 94 -494 3E 260 -3.94 -1.94 5E 117 1.08 1.98 6E 117 -1.53 -0.63 Horiz 11.57 11.57 Vert -68.75 -32.37 Mtn. wind Heriz 11.60 11.60 284.4 Vert -80.00 -80.00 ,r-i-i i -i rncu A rrr:,naverae n6iv n-i 'r-i-i r -1 r:aen R fl nnnairAF-1 mean-N-n Area (k) wtth Torsion ((1-kk)) $UfIaCG (e) �/P-reesssure ( Glq,,) (-`."N1) (-GC,,) (-GC,,) 1 440 2.94 6.32 66 142 2 1038 -19.32 -11.32 -117 -69 3 1038 -13.94 -5.95 85 36 4 440 -5.36 -1.97 121 44 1 E 110 1.33 2.18 60 98 2E 260 -0.94 -4.94 -84 -00 3E 260 -4.57 -2.57 55 31 4E 110 -179 -0.94 80 42 1T 550 0.92 1.98 -23 -49 2T 1298 -6.04 -3.54 41 24 3T 1298 -4.36 -1.86 -29 -13 4T 1 550 1 -1,67 1 -0.62 1 -42 -15 Total Horiz Torsional Load, Mr 1 212 1 212 Area Pressure (k) wkh Torsion (Rac) Surface W) (+GCol) (ti��rpl) �r ( GCp I) +� (-„Cp I) 2 2337 -43.46 -25.48 -29 -17 3 2337 -27A8 -9.49 19 6 5 246 1.15 304 11 29 6 246 -2.47 -0.58 23 5 2E 260 -6.94 -4.94 89 63 3E 260 -3.94 -1.94 -50 -25 5E 117 1.08 1.98 24 44 6E 117 -1.53 -0.63 34 14 5T 363 0.43 1.12 -5 -13 6T 363 -0.91 -021 -10 -2 Total Horiz Torsional Load, MT 1046 1046 Design pressures for components and cladding r a r W-4 p= qh[ (G CP) - (G CPi)] S r 1 I I r r where: p = pressure on component. (Eq. 30 4-1. pg 318) • t a + t 4'" ` s z r x - i - - a Amin = 16.00 psf (ASCE 7-10 302.2) G Cp = external pressure coefficient. Wells see table below. (ASCE 7-10 30.42) Roof Roof r.-^ Zone 3 1 Zone 4 1 Zone 5 Comp. 8 Craddtng Pressure Zone 1 Zone 2 Zone 3 1 Zone 4 Zone 5 Pwalw ii I P-m" mg-u- Pw11hn rU➢stlw Porlew rA➢Ww Po.kiw 1Apulw ( ➢d 1 1600 2114 16.00 -35.42 16.00 -53.70 23.54 -25.68 3.54 -30.41 ,:. f-- T.' CONS� 6� CTIl7N I STRUCTURAL CALCULATIONS P12 CALIFORNIA BUILDING CODE 2013 MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION FOR REGION STRUCTURAL CALCULATIONS Design Maps Summary Repo User -Specified Input Building Code Reference Document 2012 international Build'ing Code (which utilizes USGS hazard data available in 2008) Site Coordinates 33,712330N, 116.27471DW Site Soil Classification Site Class D - "Stiff Soil" Risk C ategory 1/uN1 Itanen❑ Mlooan 9 Palmm Desert Indl fn dh D � .w { Q R f'I-E pLa Owinla 'E R C A :• myspquast USGS-Provided Output Ss = 1.620 g S., = 1.620 g Sea = 1.080 g S1 = 0.767 g Sal = 1.151 g Sol = 0.767 g For information on how the SS and S1 values above have been calculated from probabilistic (risk -targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2004 NEHRP' building code reference document. m YA MCEe Response Spectrum 0.00 0.20 0.10 DA0 0.112 r.00 1.20 1.40 1.00 IAD 20 Period. T (sec) _a Design Response Spectrum 0-" D.ZD 0-40 6-69 0.1e 1-a0 1,2a 1.4fl 1.60 1.20 2.ca Period, T (sec) Although this information is a product of the U.S, Geological Survey, we provide na warranty. expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject -matter knorAedge. CF :-, OF LA C UINTA BUILDING & SAFETY DEPT. I -OR CONSTRUCT ION BY STRUCTURAL CALCULATIONS SITE CLASS DEFINITION= D OCCUPANCY CATEGORY = 11 SEISMIC DESIGN CATEGORY D [LA QUINTA CALIFORNIA. 92253 �0.2 seq Ss=150%g 1.0 seg Sl 60%g ............. SDs= 2/3 X SMS SD1 = 2/3 X Smi SDs = J 1.08 SDI = 10.767 R = :6.5 TABLE 12.2 ASCE 7-11 IE = 1.0 t= . . . . . .. . . ............... . ..... .. ... ... . . .... ........ BASE SHEAR V= Cs W . . . . ........... Cs = SDS R/IE), NOT EXCEED I Cs = SDI T( R/IE) NOT LESS THAN Cs =0.01, ............... 0.166 W (12.8-1) 0.166 0.590 ........ .. (12.8-2) (12.8-3) -A�0.010- (12.8-5): V= 0.17M LA C"J" NT A SAFE ,� E) PT A,i J BY STRUCTURAL CALCULATIONS L SEISMIC (CONTINUED) D.L. ROOF 19 psi EXT. WALLS 15 .. ... ... ... ... .. . . ........... . ...... SEISMIC. V= 0.17 WALL HT = loft —IA H=20xl5 TRANSVERSEL 1LONGff UDIL I WORST 20 `FT . ...... . — WORST FT - ROOF J=-380 1- ROOF = 2851 2 Walls = 150 21 Walls = 1501 1 530 .435i X 0.17 1 X 0.2! 90.1 # MAX 74 # ft MAX) J i - SEISMIC =90PLF <182= WIND . . ............ .. .... . --------- W= �2 . . . . . .............. T= C= WLA 2 8b TL= 115 = 255.9375 NAIL = B =j20 077 . .... . ....... . ........ . .......... . . . ...... TABLE 23-111 -C-2 TOTAL NAIL = LOAD /NAIL= 1. 365 PROVIDE (8 PAIR) 16 d COMMON @ E.A 4'-0" SPACE 10 TOPrCHORDS 1 C 7y L-p q n, - DEPT 1:3 G D k"0NSTRL1(-;'-F10N r3Y STRUCTURAL CALCULATIONS !SHEAR WALL REQUIREMENTS ROOF D L. = 19 IFT _ WALLS O.L = .15 WALL Hr,1 -9 UPLIFT FCRAILk APPENDIX D (Vh-(22 (Wb LA2/2)+(WWLM))/ L STRENGTH REDUCTION FACT SHEAR = 0.65 ... ....... - - ............._............... -- - ..... --........:. ....-- [0.65' 850'1.33'12 fshaar force .FIRSTFLOOR 1 WALL LAT.FORCE TRIG. AREA TOTAL FORCE ... .TOTAL RESISTWALL SHEAR FORCE LOAD— — UPLIFT. FORCE SHEAR WALLHOLDONM _._.._._.. A35 5'e• BOLT . STRUC _ .. .. .. _. P 1 WALL 01 FT #I WALL-SEG # 'TYPE TYPE EA BLOCK SPACING 0.1 NOTES 25 4550 j 1d5 _.._fU 278 "_..ILI792 _.. 14M _z..gyp .—_.—_48." �. A d92__.I. 1?6.. 4550 18.5 5 2 �........_FDU2 1 +18 " _ JtQ:. _.278 _I -�;;..2'758—_�759] —. B 192 7 1274 _ 13 ? 8 98 _ RK .^. -356 1 hDU2 1 4H 1 B - 182 _. 7 — .. 1274 13 5 98 490 -223,. ] FKXD 1 45 1 C ]82 10 ...........................1 _.... _...."".... 9 - 4,5. - -- .910 . .....- ................ 1 .- HDL!2. 1 C 182 10 1820 9 4.5 202 ' 910 -286 1 FDU2 1 48"= 1 182 7 — 1274 ........ ............. ..........._.._ 64 1 1274 -891 HDL12 :.............!. .ice WALL HT,1 =9 _--.... _.._..------I...... UPLIFT FORMULA -.1...� (%A-(2/3 (Nb L^2/2)+(WvuLl2)))/ L:. .................... -- _ _ — � 1^ 1 i I I TOTAL_ RESIST,WALL 1 SHEAR FORCE VLOAD jL __ _WALL __ Vh Wb 213(WbLA212) WwL12 UPLIFT. FORCE WALL(Ft) [ FT # I WALL- SEG No. # 16.5 [ 6.5 276 1792 A 16132 475 6723 439 1402 16.5 10 i 276 2758 A 24818 475 15913 675 -1591 I 13 8 i. 98 784 B 1 7056 133 2852 540 -356 13 _ 5 _ 98 I 490 B 4410 133 1114 338 ` -223 I 9 ,,,,• 4.5 ..j 202 � 910 C 8190 190 1.289.... 304 -286 _ _._._.._.._.._....._.,. _.._._.._.._.._.._ 9 4.5 202 910 C 8190 190 1289 _ 304 -286 -- - -- _,.....I.—........_m,..,m,._ I 20 _ 20 64 1 1274 A 11466 133 1782-2 1350 -891 OF LA 01 INTA BUILDING & SAFETY DEPT. CONSTRUC f ON I I I I 1 1 I [ 1 r I r i , t I t , r I , , 17 I 1 1 l I I [ -1 I. I f � I SYVI x9 ICIminim - - �- —_togs*ssnaL Q } 9X� 9N1�[3-- L , 5 1 3N -- Ma 'Z00H NG & SAFETY D# T. ` , IT A PROOFED FOi CONSTRUCTION I BY _r .� o STRUCTURAL CALCULATIONS SHEAR WALL CONSTRUCTION D1/2" GYPSUM WALL BOARD APPLIED DIRECTLY TO 2x STUDS WITH STANDARD WALL BOARD NAILS (1 1/2" x 0.12" DIAMETER w/ 3/8" HEADS) OR 5d COOLER NAILS AT 7" O/C MAX. TO ALL STUDS, SILLS, PLATES AND BLOCKING. ANCHOR w/ 5/8" DIAMETER x 10" LONG ANCHOR BOLTS (w/ 3" x 3" x 0.229" THICK PLATE WASHERS BETWEEN NUT AND WOOD SILL) @ 6'-0" O/C MAX 16" O.C. FRAMING (ALLOWABLE LOAD: 75 plf - PER CBC 2013 TABLE 2306.7) >� 7/8" PORTLAND CEMENT PLASTER ON WOVEN WIRE OR EXPANDED METAL LATH NAILED AT EACH STUD, SILL AND PLATE @ 6" O/C MAX. w/ No. 11 x 1%" GALVANIZED NAILS WITH 7/16' DIAMETER HEADS OR ATTACHED w/ No. 16 GAUGE STAPLES HAVING 7/8" LONG LEGS. ANCHOR w/ 5/8" DIAMETER x 10" LONG ANCHOR BOLTS 7" EMBED MIN (w/ 3" x 3" x 0.229" THICK PLATE WASHERS -SDC D ,BETWEEN NUT AND WOOD SILL) @ 48" O/C MAX. 16" O.C. FRAMING {ALLOWABLE LOAD: 180 plf_- PER 2013 CBC TABLE 2306.7 ) THE NEXT THREE (3) SHEAR WALL TYPES SHALL ALL HAVE THE FOLLOWING IDENTICAL STRUCTURAL I WOOD PANEL DIAPHRAGM: (WALL1 , 2 & 3 ONLY) 3/8" C-D EXPOSURE I APA PLYWOOD OR 3/8" ORIENTED STRAND BOARD APPLIED DIRECTLY TO THE STUDS, WITH THE LONG DIMENSION OF FULL PANELS LAID PARALLEL OR PERPENDICULAR TO THE LENGTH OF THE STUDS, ALL EDGES OF EACH PANEL SUPPORTED ON STUDS, SILLS, PLATES OR BLOCKING AND NAILED AND ANCHORED AS FOLLOWS: 1 D8d COMMON NAILS @ 6" O/C AT ALL PANEL EDGES AND 8d COMMON NAILS @ 12" O/C AT ALL FIELDS. ANCHOR WITH 5/8" DIAMETER BY 12" LONG ANCHOR BOLTS AT 48" O/C. (ALLOWABLE LOAD: 280 Of - PER 2013 CBC TABLE 2306.3) * CONSTRUCTION NOTE(S) 1 & 2 APPLY (NOTES 3, 4 AND 6 APPLY ONLY WHEN DIAPHRAGM AT BOTH SIDES ) 2 D8d COMMON NAILS @ 4" O/C AT ALL PANEL EDGES AND 8d COMMON NAILS @ 12" O/C AT ALL FIELDS. ANCHOR WITH 5/8" DIAMETER BY 12" ANCHOR BOLTS AT 32" O/C. (CALCULATE TO MAXIMUM OF 349 Of - PER 2013 CBC TABLE 2306.3) STUDS @16" O.0 CONSTRUCTION NOTE(S) 1 & 2 APPLY (NOTES 3, 4, 5 AND 6 APPLY WHEN DIAPHRAGM AT BOTH SIDES) 3 D8d COMMON NAILS @ 3" O/C AT ALL PANEL EDGES AND 8d COMMON NAILS @ 12" O/C AT ALL FIELDS. ANCHOR WITH 5/8" DIAMETER BY 12" LONG-ANCHOR-BOLT-SAT-32"9LC (ALLOWABLE LOAD: 550 plf - PER 2013 CBC TABLE 2306:3') Y, r CONSTRUCTION NOTE(S) 1, 2, 3 & 6 APPLY (NOTES 4: W;Am T BOTH SIDES) "`.'l;- r 'Y DEPT. NOTE VALUES ARE APPLICABLE TO DOUGLAS -'- LARCH FRAMING @ 16" O.0 STRUCTURAL CALCULATIONS 4 D15132" STRUCT. I APA PLYWOOD OR 15/32" ORIENTED STRAND BOARD (OSB) APPLIED DIRECTLY TO THE STUDS, WITH THE LONG DIMENSION OF FULL PANELS PARALLEL OR PERPENDICULAR TO THE LENGTH OF THE STUDS, ALL EDGES SUPPORTED ON STUDS, SILLS, PLATES OR BLOCKING AND NAILED AND ANCHORED AS FOLLOWS: 8d COMMON NAILS @ 2" O/C AT ALL PANEL EDGES AND 8d COMMON NAILS @ 12" O/C AT ALL FIELDS. ANCHOR WITH 3/d' DIAMETER ANCHOR BOLTS AT 16" O/C. —STATE EMBEDDED DISTANCE 7" MIN (ALLOWABLE LOAD: 730 Of — PER 2013 CBC TABLE 2306.3) * CONSTRUCTION NOTE(S) 1, 2, 3, & 6 APPLY (4 AND 5 APPLY WHEN DIAPHRAGM AT BOTH SIDES) CONSTRUCTION NOTES: 1 3" x 3" x 0.229" PLATE WASHERS SHALL BE PROVIDED BETWEEN ALL ANCHOR BOLT NUTS AND THE WOOD SILL. 2 SEE ANCHOR BOLT CALCULATIONS FOLLOWING THESE NOTES IN THE CALCULATIONS. 3 EDGE NAILING AT ABUTTING PANEL EDGES FOR WALLS LOADED IN EXCESS OF 350 plf SHALL BE APPLIED TO 3x OR WIDER STUDS. 4 APPLYING EQUAL THICKNESS STRUCTURAL WOOD PANELS TO BOTH STUD FACES OF A SHEAR WALL AND WITH MATCHING NAILING FOR BOTH SIDES SHALL PROVIDE DOUBLE THE LOAD CAPACITY OF WALLS HAVING THE SAME PANELS AND NAILING APPLIED TO ONLY ONE FACE. 5 STRUCTURAL WOOD PANEL SHEAR WALLS WITH PANELS APPLIED TO BOTH FACES AND WITH EDGE NAILING LESS THAN 6" O/C SHALL HAVE ABUTTING PANEL EDGES FOR ONE SIDE OFFSET ONE STUD SPACE FROM THE OTHER SIDE (NOTE No. 3 ALSO APPLIES) 6 ALL SHEAR WALLS HAVING A LOAD CARRYING CAPACITY IN EXCESS OF 350 plf SHALL BE PROVIDED WITH 3x P.T.D.F. SILL PLATES AND 12" LONG ANCHOR BOLTS OF THE DIAMETER PROSCRIBED FOR THAT WALL CONSTRUCTION TYPE (ALL ANCHOR BOLTS SHALL BE SET 7" INTO CONCRETE) 7 WHERE THE CONTRACTOR DESIRES TO CONSTRUCT THE SLAB -ON -GRADE AND THE FOOTINGS AND FOUNDATION IN A TWO POUR SYSTEM, ALL ANCHOR BOLTS SHALL HAVE A MINIMUM LENGTH OF 14", SETTING THEM A MINIMUM OF 4" INTO THE TOP OF THE FOUNDATIONS BEFORE POURING THE SLAB. 8 ALL ANCHOR BOLTING, HOLDOWN BOLTS OR STRAPS AND OTHER FORMS OF CONCRETE INSERTS SHALL BE SECURELY HELD IN PLACE WITH JIGS OR OTHER SUCH DEVISES PRIOR TO REQUESTING FOUNDATION INSPECTION, DURING INSPECTION AND DURING ACTUAL POURING OF CONCRETE. 9 ALL ANCHOR BOLTS AND HOLDOWN BOLTS SHALL BE BROUGHT PLUMB PRIOR TO THE CONCRETE HARDENING. MECHANICAL STRAIGHTENING OF BOLTS AFTER THE CONCRETE HAS HARDENED THAT RESULTS IN SLAB EDGE BREAKING SHALL RESULT IN REJECTION OF A PORTION OF THE SLAB AND FOUNDATION BY THE ARCH ITEGT-OR-STRUCTURAL DESIGNER OF RECORD AS HE DEEMS NECESSARY, ITS REMOVAL AI DfELQURING•QFJT AT.PQRTT OF THE CONCRETE. 10 HOLDOWN STRAP HOOKS SHALL BE STABLIZED DURING THE CONCRETE POURliVQXp-TO ENSURE THEY REMAIN AT THE MANUFACTURER'S PROSCRIBED -ANGLE OF INSERTION. 11 ATTACHMENT OF A 3x SILLPLATE TO FLOOR FRAMING B�LAWC$HALL BE MADE WITH THE USE OF SIMPSON SDS'/<x6 WOOD SCREWS AT 3" o/c. { 12 ATTACHMENT OF A 2x SILL PLATE TO FLOOR FRAMING BELOW SHALL BE MADE WITH THE USE OF 16d @ SPACING INDICATED AT THE SHEAR WALL-7ABU.L.ATLON, STRUCTURAL CALCULATIONS F179 I FOUNDATION I -- SOIL PRESSURE = 1000 JPSF LOADING ROOF = 35 EXT. WALLS =' 15 H-1 = 13 ft TYPICAL PERIMETER FOOTING AT 1:1 STORY Tdb. Area (ft)= ' 18 LOADING : ROOF = 630 #1 I 1 WALL = { 195 #1 W =� 825 #1 FT / FT LENDTH REQ"D WIDTH =�^ 0,825 12" WIDE x 12" CONTIN_PERIM AND 2 # 4 BARS, CONTIN . FT, FOUNDATION _ i. ........ FOOTING 18" 4„ 18"- - ..__l._�� ..__.. 40" X 12" = 480SQ IN 3.3333 144 SQ IN — SOIL PRESSURE PSF TOTAL LOAD = 3,300.# >2000# OK BUH DING & `""IFLE-TY DEPT. :,A d it —r i� r OR CONS:'' .— ; �'si�UTtON r,—-�R,r