BRES2015-0445 Structural Calcs ReconstructionSTRUCTURAL CALCULATIONS
RECONSTRUCTION OF A FIRE
DESTROYED RESIDENCE
RECEIVED
FOR:
NOV 18 2010
CITY OF LA QUINTA
STEVE&. DEBBY MUNITY DEVELOPMENT
PFANKUCHE
52523 AVElVIDA RAMIREZ
LA QUINTAq CALIFORNIA
CHARLES D. GARLAND, ARCHITECT
LICENSE NO. 11991 EXP 10/31/17
74-991 JONI DR. SUITE #9 PALM DESERT CA 92260
PHONE:760/340-3528 FAX:760/340-3728
OF LA INTA
:ATE
ILDI FETY DEPI
AP VED
F CrONST CT
2- ' I �P BY
D' �p9
oA
*; No. C11991 *
te�atiztm ;/ Q
� WON tti J�
OFF
I
ASV
STRUCTURAL CALCULATIONS
❖ GOVERNING CODES.....................page 3
❖ LOAD .......................................................Page 4
❖ BEAM .................................................... Page 5
❖ LATERAL ANALYSIS ........................ Page 9
❖ SEISMIC ZONE ............................ Page 10
❖ SHEAR WALL REQUIREMENTS.... Page 15
❖ FOUNDATION ............................... Page 18
STRUCTURAL CALCULATIONS
GOVERNING CODES
A- IBC 2012 OR CBC 2013
B- DESIGN LOADS
a. ROOF LIVE LOAD 20, PSF
b. ROOF DEAD LOAD 19 PSF
c. WIND IMPORTANCE FACTOR 1.00 WIND ZONE 110 MPH
EXPOSURE C
d. SITE CLASS DEFINITION ( D)
e. OCCUPANCY CATEGORY II
f. SEISMIC DESIGN CATEGORY (E)
g. COEFFICIENT Cs 0.15
h. SEISMIC Ss1.5g
i. SEISMIC S10.6g
j. FACTOR R 6.5
k. SEISMIC SDs 1.00
I. SEISMIC SD10.60
STRUCTURAL CALCULATIONS
LOADS :
FLAT ROOF
PSF
EXTERIOR WALLS:
PSF
TAPERED SPRAY FOAM
4
WOOD STUDS =
2
30# ROOFING FELT
1
1/2" GYP BD. =
2
5/8" PLYWOOD SHEATHING
3
7/8" STUCCO =
10
2X12 ROOF JOIST@24" O.0
3
INSULATION=
1
R-38INSULATION
2
5/8" INSULATION
3
D.L.=
15 PSF
5/8" GYP. BD. CEILING
2
D.L.=
18
L. L=
20
TOTAL LOAD =
38 PSF
INTERIOR WALLS:
PSF
ROOF
WOOD STUDS =
2
ROOF TILE =
9
1/2 GYP.BD.2SIDES =
3
ROOFING FELT
0.6
INSULATION =
2
5/8 OSB/ RADIAN BARRIER
2.2
TRUSSES @24" O.0
2.6
D.L =
7 PSF
R-38 INSULATION =
1.8
5/8" GYP. BD. =
2.8
D.L =
L. L =
20
STRUCTURAL CALCULATIONS
BEAM DESIGN
HDR#1
SPAN = 5.0
TRIB. AREA = 16.0 ft
D.L = 19.0 Ib/ft
L. L = 20.0 Ib/ft
TOTAL 39.0 Ib/ft
IZi17I=II_F'i3faA_1:%]: ■► C.Ti e
Load Factor Co =
1.Z
Wet. Service Factor CM =
1.00
Temperature Factor Ct =
1.00
Size Factor CF =
1.00
Repetitive m. Fact. Cr =
1.00
Incising Factor Ci =
1.00
Shear stress Factor CH =
1.00
�rrirrrrrrrrfrr{rrrfrrrrrrrr,�iiiifir.�riirirririiriiriiiiiirrrririrrrr»rrrrrrfirrrrrrrr..
1
BENDING
F'b = Fbx[CD)(CM)(Ct)(CF)(Cr)(Ci)
F'b = 1250 psi
Req'd S = M I F'b S= 18.72 in^3
f b = MIS
ALLOW F'b = ACT. f b =
1250 psi 843.9 psi
SHEAR
F'v = Fv(GD)(CM)(C%CH)
F'v = 119 psi
DEFLECTION
5WLL^4 0.07 in
384 E' I
fv= 1.5V/A
> f v = 77.36 psi
E'= E (Cm)(C-)(G) 1700000 psi
BEAM
max = L / 240 = 0.25 In
USE
Fb = 1000 psi
Fv = 95 psi
E = 1700000 psi
W =
624.0 Ib/ft
I
M=.WxLl/8
M=
1950.0 ft-lb
M=
23400 in -lb
V�:: W x L / 2
V=
1560 lb
6 X 6 Area = 30.3 in^2
Section= 27.7 in^3
Moment of Inertia= 76.3 in^4
OK
OK
6 X 6
STRUCTURAL CALCULATIONS
BEAM DESIGN
HDR #2
SPAN = 1 6.0 ft
TRI B. AREA = 6.0 ft
D.L = 19.0 lb/ft
L.L = 20.0 lb/ft
TOTAL 39.0 lb/ft
DOUGLAS FIR -LARCH No 1=
Load Factor Co =
Wet. Service Factor CM =
Temperature Factor Ct=
Size Factor CF =
Repetitive m. Fact. Cr =
Incising Factor Ci =
Shear stress Factor G, _
iriirrrrirriiriiiiiiiiiririririrrriirrrrrrrrrrrrrrrrirrrrrrrrrrrrrrrrirrrrrrrrrrirrrrrrrr�
6.Og R
BENDING
F'b = Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci)
F'b = 1250 psi
Req'd S = M I F'b S= 10.11 in"3
f b = MIS
ALLOW F'b = ACT. f b =
1250 psi > 455.7 psi
SHEAR
F'v = Fv(CD)(CM)(Ct)(CH)
F'v = 119 psi
DEFLECTION
5WLL^4 0.05 in
384 E'I
fv= 1.5V/A'
> f v = 34.81 psi
Fb =
1000 psi
Fv =
95 psi
E =
1700000 psi
1.25
1.00
1.00
1.0d
1.00
1.00
1.00
W =
234.0 Ib/ft
M= WxL2/8
M= 1053.0 ft-lb
M= 12636 in -lb
V=WxL/2
V= 702lb
USE
6 X 6 Area = 30.3 in"2
Section= 27.7 in"3
Moment of Inertia= 76.3 in^4
OK
OK
E'= E (CM)(Ct)(Ci) 1700000 psi
BEAM 6 X 6
d max = L / 240 = 0.30 in
STRUCTURAL CALCULATIONS
BEAM DESIGN
HDR #3
SPAN = 3.0 ft
TRI B. AREA = 130 ft
D. L = 19.0 lb/ft
L.L = 20.0 lb/ft
TOTAL 39.0 lb/ft
3.00 ft
DOUGLAS FIR -LARCH No 1=
Load Factor Co =
Wet. Service Factor CM =
Temperature Factor Ct =
Size Factor CF =
Repetitive M. Fact. Cr =
Incising Factor Ci =
Shear stress Factor CH =
BENDING
F'b = Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci)
F'b = 1250 psi
Req'd S = M / F'b S= 5.48 in"3
f b = WS
ALLOW F'b = ACT. f b =
1250 psi > 246.8 psi
SHEAR
F'v = Fv(CD)(CM)(Ct)(CH)
F'v = 119 psi
FLECTION
5WLL"4 0.01 in
384 E' I
E'= E (Cv)(G)(C)
fv= 1.5V/A
> f v = 37.71 psi
1700000 psi
13y_1Ti1
d max = L / 240 = 0.15 in
Fb = 1000 psi
Fv = 95 psi
E = 1700000 psi
1.25
1.00
1.00
1.06
1.00
1.00
1.00 W = 507.0 lb/ft
M= WxLZ/8
M= 570.4 ft-lb
M= 6844.5 in -lb
V=IWxL/2
V= 760.5 lb
USE
6 X 6 Area = 30.3 in^2
Section= 27.7 inA3
Momentof Inertia= 76.3 in^4
OK
X2
OK
6X 6
STRUCTURAL CALCULATIONS
BEAM DESIGN
HDR #4
i SPAN = 4.0 ft
TRI B. AREA = 16.0 h
D. L = 19.0 Ib/ft
L. L = 20.0 Ib/ft
TOTAL 39.0 Ib/ft
DOUGLAS FIR -LARCH No 1=
Load Factor Co =
Wet. Service Factor CM =
Temperature Factor Ct=
Size Factor CF =
Repetitive m. Fact. Cr =
Incising Factor Ci =
Shear stress Factor CH =
�iirirrirrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrirrrrrrrrirrrrrriiirirrrrrrrrrrrrrrrrrrrrrrf
4.00 n
BENDING
F'b = Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci)
F'b = 1250 psi
Req'd S = M f F'b S= 11.98 in"3
f b M/S
ALLOW F'b = ACT. f b =
1250 psi > 290.5 psi
SHEAR
F'v = FV(CD)(CM)(Ct)(CH)
F'v = 119 psi
DEFLECTION
5WLL"4 0.01 in
384 E' I
fv= 1.5V/A
> f v = 45.38 psi
E'= E (C-)(C,)(C,) 1700000
BEAM
d max = L / 240 = 0.20 in
Fb = 1000 , psi
Fv = 95 psi
E = 1700000 psi
1.25
1.00
1.00
1.00
1.00
1,00
1,00 W = 624.0 °Ib/ft
M= WxLz/8
M= 1248.0 ft-Ib
M= 14976 in -lb
V= WxL/2
V= 1248 lb
USE
6 X 10 Area = 41.3 in"2
Section= 51.6 in"3
Moment of Inertia= 193 in"4
OK
OK
OK
6X 10
STRUCTURAL CALCULATIONS
1
BEAM DESIGN
HDR #5
SPAN = 6.0 ft
TRI B. AREA = 16. 0 ft
D. L = 19.0 lb/ft
L. L = 20.0 lb/ft
TOTAL 39.0 lb/ft
COO fl
DOUGLAS FIR -LARCH No 1=
Load Factor Co =
Wet. Service Factor G.,
Temperature Factor Ct=
Size Factor CF =
Repetitive m. Fact. Cr =
Incising Factor Ci
Shear stress Factor CH=
SENDING
F'b = Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci)
F'b = 1250 psi
Req'd S = M / F'b S= 26.96 inA3
f b = M/S
ALLOW F'b = ACT. f b =
1250 psi ' 653.5 psi
SHEAR
F'v = FV(CD)(CM)(Ct)(CH)
F'v = 119 psi
DEFLECTION
5WLL^4 0.06 in
384 E'I
fv='1.5V/A
> f v = 68.07 psi
E'= E (CM)(C,)(Ci) 1700000 psi
BEAM
d max = L / 240 = 0.30 in
Fb = 1000 psi
Fv = 95 psi
E = 1700000 psi
125
1.00
1.00
1.00`
1.00
1.00
1.00 W = 624.0 Ib/ft
M= WxLZ/8
M=
2808.0 ft-Ib
M=
33696 in -lb
V=
WxL/2
V=
1872 lb
USE
6 X 8 Area = 41.3 in^2
Section= 51.6 inA3
Moment of Inertia= 193 in"4
C07:/
OK
6X 8
STRUCTURAL CALCULATIONS
BEAM DESIGN
HDR #6
SPAN = 8.0
TRI B. AREA = 4.0 ft
D.L = 19.0 Ib/ft
Ll = 20.0 Ib/ft
TOTAL 39.0 Ib/ft
DOUGLAS FIR -!.,ARCH No 1=
Load Factor Co =
Wet. Service Factor CM =
Temperature Factor Ct =
Size Factor C{ =
Repetitive m. Fact. Cr =
Incising Factor Ci =
Shear stress Factor CH =
�rrrrf�rrrrrrfffrfrrfrirfrirrrrrriiriiirrrrirfrrrrirrrrrrrccccucarrrrrrrrrrrrrrrrriiri
r
B.Og R
BENDING
F'b = Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci)
F'b = 1250 psi
Req'd S = M / F'b S= 11.98 inA3
f b = M/S
ALLOW F'b = ACT. f b =
1250 psi > 290.5 psi
SHEAR
F'v = Fv(CD)(CM)(Ct)(CH)
F'v = 119 psi
DEFLECTION
5WLL"4 0.04 in
384 E'I
fv= 1.5V/A
> f v = 22.69 psi
Fb = 1000 psi
Fv = 95 psi
E = 1700000 psi
1.25
1.00
1,00
1.00
1.00
1.00
1.00 W = 156.0 Ib/ft
M= WxL2/8
M= 1248.0!ft-lb
M= 14976 in -lb
V= WxL/2
V= 624lb
USE
6 X 8 Area = 41.3 inA2
Section= 51.6 in^3
Moment ofIneria= 193in"4
OK
OK
r% 110,
E'= E (CM)(C)(C) 1700000 psi
BEAM 6 X 8
,L max = L / 240 = 0.40 in
STRUCTURAL CALCULATIONS
BEAM DESIGN
BEAM #1
SPAN = 9.0 Ft
TRIB. AREA = 17.0 ft
D.L = 19.0 Ib/ft
L.L = 20.0 lb/ft
TOTAL 39.0 lb/ft
rrmzu
DOUGLAS FIR -LARCH No 1=
Load Factor Co =
Wet. Service Factor CM =
Temperature Factor Ct =
Size Factor CF =
Repetitive m. Fact. Cr =
Incising Factor Ci =
Shear stress Factor CH =
�f�f��I�ii����ZZZZ,
BENDING
F"b = Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci)
F"b = 1250 psi
Req'd S = M 1 F'b S= 64.44 in"3
f b = M/S
ALLOW F"b = ACT. f b =
1250 psi > 664.6 psi
SHEAR
F"v = Fv(CD)(CM)(Ct)(CH)
F'v = 119 psi
DEFLECTION
5W,L"4 0.08 in
384 E' I
fv= 1.5V/A
a f V= 70.75 psi
E'= E (C,.+)(G)(Ci) 1700000 psi
BEAM
max = L / 240 = 0.45 in
Fb =
1000 psi
Fv =
95 psi
E =
1700000 psi
125
1.00
1.00
1.06
1.00
1.00
_
1.00
W =
663.0 Ib/ft
M= W x L21 8
M= 6712.9 ft-lb
M= 80554.5 in -lb
V= WxL/2
V= 2983.5lb
USE
6 X 12 Area = 63.3 in"2
Section= 12-1 inA3
Moment of Inertia= 697 in"4
OK
❑K
OK
6 x 12
STRUCTURAL CALCULATIONS
BEAM DESIGN
BEAM #2
SPAN = 9.0 tt
TRI B. AREA = 17.0 ft
D. L = 19.0 Ib/ft
L.L = 20.0 Ib/ft
TOTAL 39.0 Ib/ft
DOUGLAS FIR -LARCH No 1=
Load Factor Co =
Wet. Service Factor CM =
Temperature Factor Ct =
Size Factor CF =
Repetitive m. Fact. Cr =
Incising Factor Ci =
Shear stress Factor CH =
563.1trlfl
e.on n
BENDING
F"b = Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci)
F' b = 1250 psi
Req"d S = M / F'b S= 64.44 i n A 3
f b = M/S
ALLOW F"b = ACT. f b =
1250 psi > 664.6 psi
SHEAR
F'v = Fv(CD)(CM)(Ct)(CH)
F'v = 119 psi
DEFLECTION
5WLL^4 0.08 in
384 E"I
fv= 1.5V/A
> f v = 70.75 psi
E'= E (CM)(C,)(C,) 1700000 psi
BEAM
d max = L / 240 = 0.45 in
Fb = 1000 psi
Fv = 95 psi
E = 1700000 psi
1.25
1.00
1.00
1.06
1.00
1-00
1.00 W = 663.0 Ib/ft
M= xLZ/8
M= 6712.9 ft-lb
M= 80554.5 in -lb
V= WxL/2
V= 2983.5lb
USE
6' X 12 Area = 63.3 in^2
Section= 121 inA3
Moment of Inertia= 697 in^4
OK
X2
OK
6X 12
STRUCTURAL CALCULATIONS
COLUMN DESIGN
Column =
DOUGLAS FIR -LARCH No 2= Fc = 625 psi
le = 8.0 ft E = 1600000 psi
LOAD 3260 lb Load Factor Co = 1.25
Wet. Sery Factor CM = 1.00
TOTAL 3260.0 lb Bucking Stiffeners Ct= 1.00
P Size Factor CF = .00
Incising Factor Ci = 1.00
KCE = 0.30
Buckling and Crushing Interaction c = 0.80
Fc* = Fc(CD)(CM)(Ct)(CF)(Cr)(Ci)
Fc* = 781.25 psi
USE
Euler Critical Buckling Stress for Columns 4 X 6
FCE = KCE E = 638.0208 psi
(le / d)^2
Column Stability Factor Cp=
Area = 19.3 inA2
d = 3.5 in
Cp = 1 + FEE /Fc* — r 1 + FEE/Fc*� ^2 — FcE/ Fc*
2c 2c c
Cp = ; 0.6174
F'c = Fc (CP)(CD)(CM)(Ct)(CF)(Cr)(Ci)
F'c = 482 psi
P = F'c *A = 9285.17
P = 3260.
COLUMN 4 X 6
STRUCTURAL CALCULATIONS
F14
Wind Analysis for Low-rise Building, Based on ASCE 7-2010
LATERAL FORCE ANALYSIS
IBC 2012 CBC 2013
ASCE 7-10.
WIND: 110 mph Exposu re C
ENCIMED qz= 0.00256X Kz " Kid V^2 I
INPUT DATA
Exposure category (B, C or D, ASCE 7-10 26.7.3)
Importance factor (ASCE 7-10 Table 1.5-2)
I,,,, =
1.00
Basic wind speed (ASCE 7-10 26.5.1 or 2012 IBC)
V =
110 L
Topographic factor (ASCE 7-10 26.8 & Table 26.8-1)
Kn =
1.00
Building height to eave
he =
9
Building height to ridge
hr =
14
10'-0"
qh = velocity pressure at mean roof height, h. (Eq. 28.3-1 page 298 & Eq. 30.3-1 page 316)
Kh = velocity pressure exposure coefficient evaluated at height, h, (Tab. 28.3-1, pg 299) = 0.85
K,, = wind directionality factor. (Tab. 26.6-1, for building, page 250) = 0.85
h = mean roof height = 11.50
qz= 22.38 PSF
NNDLOAD = gz'(1E+2E+3E+4E+0.18)-FV2
ANALYSIS WIND LOAD= 196 # ft
p = qh I(G Cpf )-(G Cpi )]
�-re: p = pressure in appropriate zone. (Eq. 28.4-1. page 298) Amin = 16 psf (ASCE 7-10 28.4.4)
G Cp r= product of gust effect factor and external pressure coefficient, see table below. (Fig. 28.4-1, page 300 & 301)
G Ca; = product of gust effect factor and internal pressure coefficient.(Tab. 26.11-1, Enclosed Building, page 258)
a = width of edge strips, Fig 28.4-1, note 9, page 301, MAX[ MIN(0.1B, 0.1L, 0.4h), MIN(0.04B, 0.04L), 3] =
let Pressures sf , Basic Load Cases
Roof angle 6 = 15,64 Roof angle e = 0.00
Surface Net Pressure with Net Pressure v
GC,F
(-GC i)
(GC i)
GCPr
(+GCDi)
(GC i)
1
0.49
6.68
14.37
-0.45
-13.47
-5.77
2
-0.69
-18-60
-10.90
-0.69
-18.60
-10.90
3
-0.45
-1 3.43
-5.73
-0.37
-11.76
-4.06
4
-0.39
-12.17
-4.48
-0.45
-13.47
-5.77
5
0.40
4.70
12.40
6
-0.29
-10.05
-2,35
1 E
0.74
12.08
19.77
-0,48
-14.11
-6.41
2E
-1.07
-26.73
-19.03
-1.07
-26.73
-19.03
Net Pressures s , Torsional Load Cases
Roof a
le 6 = 15.64
Net Pressure with
Surface
GCpf
(+GC,;)
(-GC ;)
1 T 0.49 1.67 3.59
2T -0.69 -4.65 -2.73
3T -0.45 -3,36 -1.43
4T -0.39 -3.04 -1.12
Roof angle 0 = 0.00
Surface Net Pressure with
GOOF (+GC„) (-GC,;)
5T
0.40 1.18
3.10
xf x ar � r
KTOWN [ Lone IT pvveiCEcabp F �[Srlld[i CY�t� DDT J
ie * Umo DKZn0m ~ 111E owem" �1rM DAEC} M 7a me Dw"A
Load Case A (Transverse) Load Case B (Longitudinal) Load Case A (Transverse) Load Case B (Longitudinal)
Basic Loyd Cases Torsional Load Cases
STRUCTURAL CALCULATIONS
Fl-sl
Basic Load Case A Transverse Direction) Basic Load Case B Lon itudinal Direction)
Area
pressure (k) with
Surface
(ft)
(-GC, i)
(-GCpi )
1
990
6.61
14,23
2
2337
-43.46
-25.48
3
2337
-31.38
-13.39
4
990
-12.05
-4.43
1E
110
1.33
2.18
2E
260
-6.94
-4.94
3E
260
-4.57
-2.57
4E
110
-1,79
-0.94
Horiz
17.88
17.88
Vert.
-83,15
�4.67
Min wind
Horiz
28.80
28.80
2844
Vert.
-80,00
�0.00
Area
Pressure W with
Surface
(ft2)
(+GCpi)
(-GC.i)
2
2337
-43.46
25.48
3
2337
-27.48
-9.49
5
608
2.86
7.54
6
608
-6.11
-1 A3
2E
260
-6.94
-4,94
3E
260
-3.94
-1.94
5E
117
1.08
1,98
6E
117
-1.53
-0.63
Horiz.
11.57
11.57
£
Vert
-68.75
-32.37
Min. wind
Horiz
11,60
11,60
2844
Vert,
-80.00
-80.00
Torsional Load Case A(Transverse Direction) Torsional Load Case B (Longitudinal Direction
Area
Pressure (k) with
Torsion (ft-k)
Surface
(ft�
(+GCpi)
(-GCpi)
(+GC i)
(-GCpi)
1
440
2.94
6.32
66
142
2
1038
-19.32
-11.32
-117
-69
3
1038
-13.94
-5.95
85
36
4
440
-5.36
-1.97
121
44
t E
110
1.33
2.18
60
98
2E
260
-6,94
-4,94
-84
-60
3E
260
-4,57
-2.57
55
31
4E
110
-1.79
-0.94
80
42
IT
550
0.92
1.98
-23
-49
2T
1298
-6A4
-3.54
41
24
3T
1298
-4.36
-1.86
-29
-13
4T
550
-1.67
-0,62
-42
-15
Total Horiz Torsional Load, MT
212
212
Area
Pressure (k) with
Torsion (ft-k)
Surface
(ft2)
(+GCpi)
(-GCpi)
(+GCpi)
(-GCpi)
2
2337
-43.46
-25.48
-29
-17
3
2337
-27.48
-9-49
19
6
5
246
1,15
3.04
11
29
6
246
-2,47
-0.58
23
5
2E
260
-6.94
-4.94
89
63
3E
260
-3.94
-1.94
-50
-25
5E
117
1.08
1.98
24
44
6E
117
-1.53
-0,63
34
14
5T
363
0.43
1,12
-5
-13
6T
363
-0,91
1 -0.21
-10
2
Total Horiz Torsional Load, MT
104.6
104.6
Des Inn ) ress lies for compopent5 a n d C lad d in q ra Ly 7 '1=y3
p = qhI (G Cp) - (G Cpi)1 q •• I
where: p = pressure on component. (Eq. 30.4-1. pg 318)
Amin = 16.00 psf (ASCE 7-10 30.2.2) i p1
91
G Cp = external pressure coefficient. Walls ~a I2:j
see table below_ (ASCE 7-10 30.42) Roof Roof
Effective F Zone 1 1 Zone 2 1 Zone 3 I Zone 4 Zone 5
Comp. a Cladding
Zone 7
Zone 2 Zone 3
Zone 4
Zone 5
Pressure
Ppsitim
1
Neealive
positive
Ne Positive
1
hbathm
Positive
Wuative
Positive
I* ative
l Psf1
16.00
-22.14
1 16.00
-35.42 16.00
-53,70
23,54
-25.66
1 23-54
-30.41
STRUCTURAL CALCULATIONS
CALIFORNIA BUILDING CODE 2013
MAXIMUM CONSIDERED EARTHQUAKE
GROUND MOTION FOR REGION
-N,
STRUCTURAL CALCULATIONS
17
Design Maps Summary Reportmum--
View Detailed Repo_ nt
User -Specified Input
Building Code Reference Document 2012 International Building Code
(,Rich utilizes USGS hazard data available in 2008)
Site Coordinates 33,729321%,116.38154°W
Site Soil Classification Site :Class D — "Stiff Soil"
Risk Category I/II/III
5000n, .
�rr,�t ono
Bermuda
Q
Rancho Mirage Due"
;6
aim Desert
N O R T H
E R I C A
mapcquest r : 020141 �; Mganrn
USGS-Provided Output
Ss = 1.500 g S.s = 1,500 g Ss = 1.000 g
Sy = 0,644 g S13 = 0,966 g S�1 = 0,644 g
For information on how the SS and S1 values above have been calculated from probabilistic (risk -targeted) and
deterministic ground motions in the direction of maximum horizontal response, please return to the application
and select the'2009 NEH2p" building code reference document,
MCE„ Response Spectrum
1.65
1.50
1.35
1.20
1.05
0� 0.90
y 0.75
0.60
0.4s
0.30
0-15
000
0 00 0 20 0.40 0 60 0.130 1.00 1.20 1.40 1.60 1.00 2.00
Period, T (secl
Design Response Spectrum
1 10
0-99
029
0.77
C 0.66
N 0.55
0.44
0.22
0.11
0.00
0,00 0.20 0.40 0.60 0-60 1.00 1,20 1,40 160 1.90 2.00
Period, T (sec)
�............... . . . ........�
Although this information is a product of the U.S. Geological Survey, we provide no vrarranty, expressed or implied,
as to the: accuracy of the data contained therein. This tool is not a :substitute for technical subject -natter
ion oviled g en
STRUCTURAL CALCULATIONS
SITE CLASS DEFINITION= D
OCCUPANCY CATEGORY = II
SEISMIC DESIGN CATEGORY = D
PALM DESERT CALIFORNIA 92201
0.2 seg Ss=150%g 1.0 seg S1 60%g
SDs= 2/3 X SMS SDI = 2/3 X SM1
SDs = 1.07
SD1 = 0.6
R = 6.5 ~ TABLE 12.2 ASCE 7-11
IE = 1.0
t= 0.2
ASCE
BASE SHEAR V= Cs W 0.165 W (12.8-1)
Cs = SDS / (R/IE) 0.165 (12.8-2)
NOT EXCEED
Cs = SD1 / T( R/IE) 0.462 (12.8-3)
NOT LESS THAN
Cs =0.01 0.010 (12.8-5)
V= 0.16 W
STRUCTURAL CALCULATIONS
SEISMIC (CONTINUED)
D.L.
ROOF 19 psi
REDUNDANCY FACTOR 1.3
SEISMIC, V,= 0.21
DIAPH=42x'30
TRANSVERSEL
WORST 42 FT WORST 30
ROOF = 798
1 Walls = 67.5
865.5
X 0.208
180 # ft (MAX)
EXT. WALLS 15
WALL HT = 9 ft
LONGITUDINAL
FT
ROOF = ' 570
1 Walls = 67.5
SEISMIC=180PLF >186= WIND
000
X 0.21
133 # ft ( MAX)
T=C = W LA2 L= 30 = 498.2142857
B = 42
NAIL = TABLE 23-III-C-2
TOTAL NAIL = LOAD /NAIL= 2.657
PROVIDE (8 PAIR) 16 d COMMON
@ E.A 4--0" SPACE @ TOP CHORDS
STRUCTURAL CALCULATIONS
Fl
SHEAR WALL REQUIREMENTS
ROOF D L_=:19
I
WALLS D.L =,�15
WALL Hr,1 = 8
UPQFT FORMULA
APPENDIX 0
. .. ....
1YW( J3 ,%b L"212)+1W 2)))1L
ST54ENGTH REDUCTI0N PACT
NHE- • a.ss
{D, 6b' 85U'1.33'i 2}Ishear force
FMSTFLOOR
WALL I T.—E
7M. AAEA
Tr3TIRFP
TOTAL
BESIST,WALL SNFARF4i10E
LOAD)y)
—FT. FONCE SFEARWALL HOEDOWN
A31 5iB'BOLT
STRUC
N0. FLF
F[
1.13
W U(W11
FT
MIq
WA -SEG
fi T'PE
T'PE
EA BLOt?7 SPACJNG (W
TES
A 196
11
2156
20
12
108
1294
-18 1
Ii]U2
1 48
1
A 196
11
2156
20
8
108
B62
262 1
HDL12
1 48:
B 1J6
12
2352
18
10.5
131
1372
203 1
HDU2
1 48
1
B 196.
12
2352
18
7.5
131
9B0
432 1
HDU2
S 48
1
C 196
32
6272
33
20
190
3801
-2193 1
HDU2
1 48
1
D 1%
32
6272
33
13
190
2471
_1168 1
HDU2
1 48
1
D 1%
24
4704
165
3.5
285
998
1706 2
HDU2
9 32
1
D 196
24
4704
165
6.5
285
1853
1248 2
HDU2 .......,
1 v
1
D 196
24
4704
165
6.5
285
1853
1248 2
HDU2
1 32
1
E 196
4
784
4
4
196
7B4
1426 1
HDL12
1 48
1
F 196
8
1568
75
75
209
1568
1250 1
HDU2
1 4B
1
O 196
10
1960
9
4.5
218
980
1416 1
HDU2
1 48
S
O 196
10
1960
9
4.5
218
980
1416 1
HDL12
1 48
1
H 196
21
4116
36
12
114
1372
-730 1
HDL12
1 48
1
H 195
21
4116
36
12
114
1372
-730 1
HDL12
1 48
1
H 1-96
27
4116
36
12
114
1372
-730 1
HDU2
1 .t8
1
1 196
15
2940
21
4
140
560
898 1
H13U2
1 48
1
1 196
15
2940
21
5
140
700
602 1
HOW.
1 48
1
1 196
15
2940
21
7.5
140
1050 1
364 1
HDU2
1 48
1
1 196
15
2940
21
5
140
700 1
602 1
HDL12
1 48
1
K 196
12
2352
8
8
294
2352
1701 2
HDU2
1 32
1
L Tw
12
2352
9
9
261
2352
1363 2 _
HDU2
1 48
1
M 196
12
2352
10
5
235
1176
1460 1_
HDU2
1 48
1
M 18B
12
2352
10
6:
235
1176
1460 1
HDU2
1 40
1
STRUCTURAL CALCULATIONS
FT
WALL HT,1 = 8
UPLIFT FORMULA:
(Vh->213 (wb LA2/2)+(WWL/2)))/L
TOTAL
WALL (Flj
RESIST,WALL
FT L
SHEAR FORCE
it; /
LOAD (V)
WALL- SEG
WALL
NO,
Vh
I
Wb
I
W3[Wbl- 2ZA,
I j
WwL/2
UPLIFT. FORCE
#
20
12
108
1294
A
10349
209
10082
720
-18
20
8
106
862
A
6899
209
4481
480
262
18
10.5
131
1372
B
10976
228
8421
630
203
18
7.5
131
980
B
7840
228
4296
450
432
33
20
190
3801
C
30410
608
81472
1200
-2593
33
13
190
2471
C
19766
608
34422
780
-1168
16.5
3.5
285
998
D
7983
456
1871
210
1706
16.5
6.5
285
1853
D
14825
456
6454
390
1248
16.5
6.5
285
1853
D
14825
456
6454
390
1248
4
4
196
784
E
6272
76
407
240
1426
7.5
7.5
209
1568
F
12544
152
2864
450
1250
9
4.5
218
980
G
7840
190
1289
270
1416
9
4.5
218
980
G
7840
190
1289
270
1416
36
12
114
1372
H
1D976
399
19248
72D
-730
36
12
114
1372
H
10976
399
19248
720
-730
36
12
114
1372
H
10976
399
19248
720
-730
21
4
140
560
1
448D
285
1528
240
698
21
5
140
700
1
5600
285
2387
300
602
21
7.5
140
1050
1
8400
285
5370
450
364
21
5
140
700
1
5600
285
2387
300
602
8
8
294
2352
K
18816
228
4888
480
1701
9
9
261
2352
L
18816
228
6157
540
1363
10
5
235
1176
M
H408
228
1910
300
1460
10
5
235
1176
M
9408
228
1910
300
1460
STRUCTURAL CALCULATIONS
SHEAR WALL CONSTRUCTION
D1/2" GYPSUM WALL BOARD APPLIED DIRECTLY TO 2x STUDS WITH STANDARD WALL BOARD
NAILS (1 1/2" x 0.12" DIAMETER w/ 3/8" HEADS) OR 5d COOLER NAILS AT 7" O/C MAX. TO ALL
STUDS, SILLS, PLATES AND BLOCKING. ANCHOR w/ 5/8" DIAMETER x 10" LONG ANCHOR BOLTS
(w/ 3" x 3" x 0.229" THICK PLATE WASHERS BETWEEN NUT AND WOOD SILL) @ 6'-0" O/C MAX
16" O.C. FRAMING
(ALLOWABLE LOAD: 75 plf — PER CBC 2013 TABLE 2306.7)
7/8" PORTLAND CEMENT PLASTER ON WOVEN WIRE OR EXPANDED METAL LATH NAILED
AT EACH STUD, SILL AND PLATE @ 6" O/C MAX. w/ No. 11 x 1'/z" GALVANIZED NAILS WITH
7/16' DIAMETER HEADS OR ATTACHED w/ No. 16 GAUGE STAPLES HAVING 7/8" LONG
LEGS. ANCHOR w/ 5/8" DIAMETER x 10" LONG ANCHOR BOLTS 7" EMBED MIN (wl 3" x 3" x
0.229" THICK PLATE WASHERS —SDC D ,BETWEEN NUT AND WOOD SILL) @ 48" O/C MAX.
16" O.C. FRAMING
(ALLOWABLE LOAD: 180 plf — PER 2013 CBC TABLE 2306.7)
THE NEXT THREE (3) SHEAR WALL TYPES SHALL ALL HAVE THE FOLLOWING
IDENTICAL STRUCTURAL I WOOD PANEL DIAPHRAGM: (WALL1 , 2 & 3 ONLY)
3/8" C-D EXPOSURE I APA PLYWOOD OR 3/8" ORIENTED STRAND BOARD APPLIED DIRECTLY
TO THE STUDS, WITH THE LONG DIMENSION OF FULL PANELS LAID PARALLEL OR
PERPENDICULAR TO THE LENGTH OF THE STUDS, ALL EDGES OF EACH PANEL SUPPORTED
ON STUDS, SILLS, PLATES OR BLOCKING AND NAILED AND ANCHORED AS FOLLOWS:
1 D8d COMMON NAILS @ 6" O/C AT ALL PANEL EDGES AND 8d COMMON NAILS @ 12" O/C AT
ALL FIELDS. ANCHOR WITH 5/8" DIAMETER BY 12" LONG ANCHOR BOLTS AT 481, O/C.
(ALLOWABLE LOAD: 280 plf — PER 2013 CBC TABLE 2306.3) *
CONSTRUCTION NOTE(S) 1 & 2 APPLY (NOTES 3, 4 AND 6 APPLY ONLY WHEN
DIAPHRAGM AT BOTH SIDES )
2 D8d COMMON NAILS @ 4" O/C AT ALL PANEL EDGES AND 8d COMMON NAILS @ 12" O/C AT
ALL FIELDS. ANCHOR WITH 5/8" DIAMETER BY 12" ANCHOR BOLTS AT 321,0/C.
(CALCULATE TO MAXIMUM OF 349 plf — PER 2013 CBC TABLE 2306.3) STUDS @16" O.0
CONSTRUCTION NOTE(S) 1 & 2 APPLY (NOTES 3, 4, 5 AND 6 APPLY WHEN DIAPHRAGM
AT BOTH SIDES)
3 D8d COMMON NAILS @ 3" O/C AT ALL PANEL EDGES AND 8d COMMON NAILS @ 12" O/C AT
ALL FIELDS. ANCHOR WITH 5/8" DIAMETER BY 12" LONG ANCHOR BOLTS AT 32" O/C.
(ALLOWABLE LOAD: 550 plf — PER 2013 CBC TABLE 2306.3 ) *
CONSTRUCTION NOTE(S) 1, 2, 3 & 6 APPLY (NOTES 4 & 5 APPLY WHEN DIAPHRAGM AT
BOTH SIDES)
NOTE VALUES ARE APPLICABLE TO DOUGLAS FIR LARCH FRAMING @ 16" O.0
STRUCTURAL CALCULATIONS
4 D15/32" STRUCT. I APA PLYWOOD OR 15/32" ORIENTED STRAND BOARD (OSB) APPLIED
DIRECTLY TO THE STUDS, WITH THE LONG DIMENSION OF FULL PANELS PARALLEL OR
PERPENDICULAR TO THE LENGTH OF THE STUDS, ALL EDGES SUPPORTED ON STUDS, SILLS,
PLATES OR BLOCKING AND NAILED AND ANCHORED AS FOLLOWS: 8d COMMON NAILS @ 2"
O/C AT ALL PANEL EDGES AND 8d COMMON NAILS @ 12" O/C AT ALL FIELDS. ANCHOR WITH 3/4'
DIAMETER ANCHOR BOLTS AT 16" 0/C. —STATE EMBEDDED DISTANCE 7" MIN
(ALLOWABLE LOAD: 730 plf — PER 2013 CBC TABLE 2306.3) *
CONSTRUCTION NOTE(S) 1, 2, 3, & 6 APPLY (4 AND 5 APPLY WHEN DIAPHRAGM AT
BOTH SIDES)
CONSTRUCTION NOTES:
1 3" x 3" x 0.229" PLATE WASHERS SHALL BE PROVIDED BETWEEN ALL ANCHOR BOLT NUTS
AND THE WOOD SILL.
2 SEE ANCHOR BOLT CALCULATIONS FOLLOWING THESE NOTES IN THE CALCULATIONS.
3 EDGE NAILING AT ABUTTING PANEL EDGES FOR WALLS LOADED IN EXCESS OF 350 plf SHALL
BE APPLIED TO 3x OR WIDER STUDS.
4 APPLYING EQUAL THICKNESS STRUCTURAL WOOD PANELS TO BOTH STUD FACES OF A
SHEAR WALL AND WITH MATCHING NAILING FOR BOTH SIDES SHALL PROVIDE DOUBLE THE
LOAD CAPACITY OF WALLS HAVING THE SAME PANELS AND NAILING APPLIED TO ONLY ONE
FACE.
5 STRUCTURAL WOOD PANEL SHEAR WALLS WITH PANELS APPLIED TO BOTH FACES AND
WITH EDGE NAILING LESS THAN 6" O/C SHALL HAVE ABUTTING PANEL EDGES FOR ONE SIDE
OFFSET ONE STUD SPACE FROM THE OTHER SIDE (NOTE No. 3 ALSO APPLIES)
6 ALL SHEAR WALLS HAVING A LOAD CARRYING CAPACITY IN EXCESS OF 350 plf SHALL BE
PROVIDED WITH 3x P.T.D.F. SILL PLATES AND 12" LONG ANCHOR BOLTS OF THE DIAMETER
PROSCRIBED FOR THAT WALL CONSTRUCTION TYPE (ALL ANCHOR BOLTS SHALL BE SET 7"
INTO CONCRETE)
7 WHERE THE CONTRACTOR DESIRES TO CONSTRUCT THE SLAB -ON -GRADE AND THE
FOOTINGS AND FOUNDATION IN A TWO POUR SYSTEM, ALL ANCHOR BOLTS SHALL HAVE A
MINIMUM LENGTH OF 14", SETTING THEM A MINIMUM OF 4" INTO THE TOP OF THE
FOUNDATIONS BEFORE POURING THE SLAB.
8 ALL ANCHOR BOLTING, HOLDOWN BOLTS OR STRAPS AND OTHER FORMS OF CONCRETE
INSERTS SHALL BE SECURELY HELD IN PLACE WITH JIGS OR OTHER SUCH DEVISES PRIOR
TO REQUESTING FOUNDATION INSPECTION, DURING INSPECTION AND DURING ACTUAL
POURING OF CONCRETE.
9 ALL ANCHOR BOLTS AND HOLDOWN BOLTS SHALL BE BROUGHT PLUMB PRIOR TO THE
CONCRETE HARDENING. MECHANICAL STRAIGHTENING OF BOLTS AFTER THE CONCRETE
HAS HARDENED THAT RESULTS IN SLAB EDGE BREAKING SHALL RESULT IN REJECTION OF A
PORTION OF THE SLAB AND FOUNDATION BY THE ARCHITECT OR STRUCTURAL DESIGNER
OF RECORD AS HE DEEMS NECESSARY, ITS REMOVAL AND REPOURING OF THAT PORTION
OF THE CONCRETE.
10 HOLDOWN STRAP HOOKS SHALL BE STABLIZED DURING THE CONCRETE POUR IN ORDER TO
ENSURE THEY REMAIN AT THE MANUFACTURER'S PROSCRIBED ANGLE OF INSERTION.
11 ATTACHMENT OF A 3x SILLPLATE TO FLOOR FRAMING BELOW SHALL BE MADE WITH THE
USE OF SIMPSON SIDS %x6 WOOD SCREWS AT 3" o/c.
12 ATTACHMENT OF A 2x SILL PLATE TO FLOOR FRAMING BELOW SHALL BE MADE WITH THE
USE OF 16d @ SPACING INDICATED AT THE SHEAR WALL TABULATION.
STRUCTURAL CALCULATIONS
Z4- ]
-' TAl8LER906.A.7(1) y
ALLOWABLE SHEAR (POU14DS PER FOOT) FOA WOOD STRUCTURAL PANEL DIAPHRAGM5 WITH
FRAWNG OF DOUGLA5 FIR -LARCH, OR SOUTHERN PiNE'fAR W1NOOR SEISMIC LOADING"
MINIMUM I
MINIMUM BLOCKED DIAPHRAGMS UNBLOCKED DIAPHRAGMS
NOMINAL Faalener spacing OrA* o}) at dlophrogm bounAerlw WI oeMle)MOTM
G t4➢44 rt Celn$1pa"t 01119" parallel to Id (
FRAMING
MEMBERS AT Gaaoa A a� and Mal!ro pi edges {Gana B, ems.._ 4..�Aatenara ■ ad 5" max. at P _ }^
MINIMUM ADJOINING 5 4 2'4° 4• 1
PANEL
COMMON NAIL FASTENER
SIZE OR STAPLE'PENETRATION
LENGTH AND IN FRAMING ITHICKHESS
NOMINAL PANEL Faslener ➢peeing (inehe➢) atolher panel edgn Cw Y 1
PANEL EDGES AND (No unblocked edges All other
SOUNDARIESP Ce 1. 2. 3 and AP oe wnllnuou} lolyda contlguradona
GRADE
GAGE i inct"
.fumh) IMIWW k,4_ fC,,2,3,4 6.d_5
ructuml1
44
8d(2rI_'xU.131"3`
1'/
_ 22
;
Z7o
_.:_.._.�
360 ::
400
531)
600
GQP_
675 i
......................,�...,...::.:
265
�� .....—
2(N)
115
17S
235
350
..400
155.....
3
�200
265
395
450
375
130
ades
IOIW(3'x0.S48"}
I�!_
x
3✓•-•-2----
320
425
640
710
21t5
215
_-- _
240.,.
360
430
721)
820
320
11.16 Gage
I
2
175
235
3 U
_�. --
400
................,.
355
�..,..,,. ...__
320
3
200
265
395
ASO
175
130
6d° 2" x 0.1)3
111
185
250
I 375
420
165
125
3
210
290
420
475
[85
140
2
240
320
480
5a5 i
f 215
8d(2'/z x0.131)
1'/s
/
v _ _ice ....
3
270_
.._...
360
_..�.._.._..�.....
540
610
240
__IRO
IV, IGGage
]
:.
I60
_
210
113
360
140
]05
'+
180
2.35
3i5
40(}
160
120
loathing, single
ldorandMllcr
arks covered in
XX'PSIand
PS 2
8d (211."x0.131
1'l�
Zia
2
255
34U
SOS
57s
230
170
3?!.
..
285
380
5 0
64S
Z55
190
11/. e 16 Gage
g
1
2
165
225
335
380
]50
110
3
190
250
375
53(1
425
GflO
I 165
240
125
-180
.200
d
8.(24,"x0.131-)
I'!I
I
2
270
-
3fi11
3
300
400
6DO
Y fi75
265
I ()d" (3" x 0 f 48"}
f'/z
2
290
385
_
573
655
255
190
Is/v
3
325
430
00
735
290
Z35
16 Gage
1
2
IGO
! 210
311
360
140
105
_
3
180
{ 215
355
405
160
120
10d" (3" x 0.1481
.............';......,.........,..,,...,...,.....,....,...,.................
i 3
_.
i .............._ _
64D
7 30
285 215
320 240
•'..
.360
1 480
72(1
920
` 2
l
.3
3'/,r 16 Gage
l
175
350
LOD
— ]SS
- 175 -
is
200
.76.5
395
450
I
130
continued
STRUCTURAL CALCULATIONS
FOUNDATION
SOIL PRESSURE = 1500 PSF
LOADING
ROOF = 35
EXT. WALLS = 15
H-1 = 13 ft
TYPICAL PERIMETER FOOTING AT 1 STORY
Trib. Area (ft)=
18
LOADING:
ROOF =
630 #1
WALL =
195 #1
W =
825 #1
REQ"D WIDTH = 0.55 FT / FT LENDTH
12" WIDE x 12" CONTIN PERIM FT,
,AND 2 # 4 BARS, CONTIN .
FOUNDATION
POST
FOOTING
Li
12"
18" 4" 18"
40" X 12" = 480SQ IN
3.3333
144 SO IN
SOIL PRESSURE = 1000
PSF
TOTAL LOAD = 3,300.#
>2925# OK
STRUCTURAL CALCULATIONS
5/8" SET-XP EPDXY ADHESIVE ANCHOR ASTEM 193 GRADE B7
hef= 10"
calculate static steel strength tension
per ACI 318-05 sect D 5.1.
0 SA N sa = 0.75x 27900= 20925#
calculate static concrete breakout
strength in tension
per ACI 318-05 sect D 5.2.
0 SA N sa = 0.65x 6000 = 3900#
calculate static pullout strength in
tension per ACI 318-08 SECT D.5.3
as amended in section 4.1.4 of this repost
0 P Na = 0.65x 25175 = 16360#
ACI 318-08 SECT D.4.1.2
0 N n= 3900# co=1.48
3900/1.48 = 2635 #
STRUCTURAL CALCULATIONS
314
CLEI
� M-91
ERE OCCURS
-IDU2
DIAM. x 14" ALL THREAD
-TG W/ SET-XP (ICC 2508) EPDXY
OR 3X PLATE
EXIST CONC
EPDXY ONLY@ UPLIFT SITUATIONS
EPDXY REQUIRES OBSERVATION OF LIC
DEPUTY INSPECTOR