Loading...
BRES2015-0445 Structural Calcs ReconstructionSTRUCTURAL CALCULATIONS RECONSTRUCTION OF A FIRE DESTROYED RESIDENCE RECEIVED FOR: NOV 18 2010 CITY OF LA QUINTA STEVE&. DEBBY MUNITY DEVELOPMENT PFANKUCHE 52523 AVElVIDA RAMIREZ LA QUINTAq CALIFORNIA CHARLES D. GARLAND, ARCHITECT LICENSE NO. 11991 EXP 10/31/17 74-991 JONI DR. SUITE #9 PALM DESERT CA 92260 PHONE:760/340-3528 FAX:760/340-3728 OF LA INTA :ATE ILDI FETY DEPI AP VED F CrONST CT 2- ' I �P BY D' �p9 oA *; No. C11991 * te�atiztm ;/ Q � WON tti J� OFF I ASV STRUCTURAL CALCULATIONS ❖ GOVERNING CODES.....................page 3 ❖ LOAD .......................................................Page 4 ❖ BEAM .................................................... Page 5 ❖ LATERAL ANALYSIS ........................ Page 9 ❖ SEISMIC ZONE ............................ Page 10 ❖ SHEAR WALL REQUIREMENTS.... Page 15 ❖ FOUNDATION ............................... Page 18 STRUCTURAL CALCULATIONS GOVERNING CODES A- IBC 2012 OR CBC 2013 B- DESIGN LOADS a. ROOF LIVE LOAD 20, PSF b. ROOF DEAD LOAD 19 PSF c. WIND IMPORTANCE FACTOR 1.00 WIND ZONE 110 MPH EXPOSURE C d. SITE CLASS DEFINITION ( D) e. OCCUPANCY CATEGORY II f. SEISMIC DESIGN CATEGORY (E) g. COEFFICIENT Cs 0.15 h. SEISMIC Ss1.5g i. SEISMIC S10.6g j. FACTOR R 6.5 k. SEISMIC SDs 1.00 I. SEISMIC SD10.60 STRUCTURAL CALCULATIONS LOADS : FLAT ROOF PSF EXTERIOR WALLS: PSF TAPERED SPRAY FOAM 4 WOOD STUDS = 2 30# ROOFING FELT 1 1/2" GYP BD. = 2 5/8" PLYWOOD SHEATHING 3 7/8" STUCCO = 10 2X12 ROOF JOIST@24" O.0 3 INSULATION= 1 R-38INSULATION 2 5/8" INSULATION 3 D.L.= 15 PSF 5/8" GYP. BD. CEILING 2 D.L.= 18 L. L= 20 TOTAL LOAD = 38 PSF INTERIOR WALLS: PSF ROOF WOOD STUDS = 2 ROOF TILE = 9 1/2 GYP.BD.2SIDES = 3 ROOFING FELT 0.6 INSULATION = 2 5/8 OSB/ RADIAN BARRIER 2.2 TRUSSES @24" O.0 2.6 D.L = 7 PSF R-38 INSULATION = 1.8 5/8" GYP. BD. = 2.8 D.L = L. L = 20 STRUCTURAL CALCULATIONS BEAM DESIGN HDR#1 SPAN = 5.0 TRIB. AREA = 16.0 ft D.L = 19.0 Ib/ft L. L = 20.0 Ib/ft TOTAL 39.0 Ib/ft IZi17I=II_F'i3faA_1:%]: ■► C.Ti e Load Factor Co = 1.Z Wet. Service Factor CM = 1.00 Temperature Factor Ct = 1.00 Size Factor CF = 1.00 Repetitive m. Fact. Cr = 1.00 Incising Factor Ci = 1.00 Shear stress Factor CH = 1.00 �rrirrrrrrrrfrr{rrrfrrrrrrrr,�iiiifir.�riirirririiriiriiiiiirrrririrrrr»rrrrrrfirrrrrrrr.. 1 BENDING F'b = Fbx[CD)(CM)(Ct)(CF)(Cr)(Ci) F'b = 1250 psi Req'd S = M I F'b S= 18.72 in^3 f b = MIS ALLOW F'b = ACT. f b = 1250 psi 843.9 psi SHEAR F'v = Fv(GD)(CM)(C%CH) F'v = 119 psi DEFLECTION 5WLL^4 0.07 in 384 E' I fv= 1.5V/A > f v = 77.36 psi E'= E (Cm)(C-)(G) 1700000 psi BEAM max = L / 240 = 0.25 In USE Fb = 1000 psi Fv = 95 psi E = 1700000 psi W = 624.0 Ib/ft I M=.WxLl/8 M= 1950.0 ft-lb M= 23400 in -lb V�:: W x L / 2 V= 1560 lb 6 X 6 Area = 30.3 in^2 Section= 27.7 in^3 Moment of Inertia= 76.3 in^4 OK OK 6 X 6 STRUCTURAL CALCULATIONS BEAM DESIGN HDR #2 SPAN = 1 6.0 ft TRI B. AREA = 6.0 ft D.L = 19.0 lb/ft L.L = 20.0 lb/ft TOTAL 39.0 lb/ft DOUGLAS FIR -LARCH No 1= Load Factor Co = Wet. Service Factor CM = Temperature Factor Ct= Size Factor CF = Repetitive m. Fact. Cr = Incising Factor Ci = Shear stress Factor G, _ iriirrrrirriiriiiiiiiiiririririrrriirrrrrrrrrrrrrrrrirrrrrrrrrrrrrrrrirrrrrrrrrrirrrrrrrr� 6.Og R BENDING F'b = Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci) F'b = 1250 psi Req'd S = M I F'b S= 10.11 in"3 f b = MIS ALLOW F'b = ACT. f b = 1250 psi > 455.7 psi SHEAR F'v = Fv(CD)(CM)(Ct)(CH) F'v = 119 psi DEFLECTION 5WLL^4 0.05 in 384 E'I fv= 1.5V/A' > f v = 34.81 psi Fb = 1000 psi Fv = 95 psi E = 1700000 psi 1.25 1.00 1.00 1.0d 1.00 1.00 1.00 W = 234.0 Ib/ft M= WxL2/8 M= 1053.0 ft-lb M= 12636 in -lb V=WxL/2 V= 702lb USE 6 X 6 Area = 30.3 in"2 Section= 27.7 in"3 Moment of Inertia= 76.3 in^4 OK OK E'= E (CM)(Ct)(Ci) 1700000 psi BEAM 6 X 6 d max = L / 240 = 0.30 in STRUCTURAL CALCULATIONS BEAM DESIGN HDR #3 SPAN = 3.0 ft TRI B. AREA = 130 ft D. L = 19.0 lb/ft L.L = 20.0 lb/ft TOTAL 39.0 lb/ft 3.00 ft DOUGLAS FIR -LARCH No 1= Load Factor Co = Wet. Service Factor CM = Temperature Factor Ct = Size Factor CF = Repetitive M. Fact. Cr = Incising Factor Ci = Shear stress Factor CH = BENDING F'b = Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci) F'b = 1250 psi Req'd S = M / F'b S= 5.48 in"3 f b = WS ALLOW F'b = ACT. f b = 1250 psi > 246.8 psi SHEAR F'v = Fv(CD)(CM)(Ct)(CH) F'v = 119 psi FLECTION 5WLL"4 0.01 in 384 E' I E'= E (Cv)(G)(C) fv= 1.5V/A > f v = 37.71 psi 1700000 psi 13y_1Ti1 d max = L / 240 = 0.15 in Fb = 1000 psi Fv = 95 psi E = 1700000 psi 1.25 1.00 1.00 1.06 1.00 1.00 1.00 W = 507.0 lb/ft M= WxLZ/8 M= 570.4 ft-lb M= 6844.5 in -lb V=IWxL/2 V= 760.5 lb USE 6 X 6 Area = 30.3 in^2 Section= 27.7 inA3 Momentof Inertia= 76.3 in^4 OK X2 OK 6X 6 STRUCTURAL CALCULATIONS BEAM DESIGN HDR #4 i SPAN = 4.0 ft TRI B. AREA = 16.0 h D. L = 19.0 Ib/ft L. L = 20.0 Ib/ft TOTAL 39.0 Ib/ft DOUGLAS FIR -LARCH No 1= Load Factor Co = Wet. Service Factor CM = Temperature Factor Ct= Size Factor CF = Repetitive m. Fact. Cr = Incising Factor Ci = Shear stress Factor CH = �iirirrirrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrirrrrrrrrirrrrrriiirirrrrrrrrrrrrrrrrrrrrrrf 4.00 n BENDING F'b = Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci) F'b = 1250 psi Req'd S = M f F'b S= 11.98 in"3 f b M/S ALLOW F'b = ACT. f b = 1250 psi > 290.5 psi SHEAR F'v = FV(CD)(CM)(Ct)(CH) F'v = 119 psi DEFLECTION 5WLL"4 0.01 in 384 E' I fv= 1.5V/A > f v = 45.38 psi E'= E (C-)(C,)(C,) 1700000 BEAM d max = L / 240 = 0.20 in Fb = 1000 , psi Fv = 95 psi E = 1700000 psi 1.25 1.00 1.00 1.00 1.00 1,00 1,00 W = 624.0 °Ib/ft M= WxLz/8 M= 1248.0 ft-Ib M= 14976 in -lb V= WxL/2 V= 1248 lb USE 6 X 10 Area = 41.3 in"2 Section= 51.6 in"3 Moment of Inertia= 193 in"4 OK OK OK 6X 10 STRUCTURAL CALCULATIONS 1 BEAM DESIGN HDR #5 SPAN = 6.0 ft TRI B. AREA = 16. 0 ft D. L = 19.0 lb/ft L. L = 20.0 lb/ft TOTAL 39.0 lb/ft COO fl DOUGLAS FIR -LARCH No 1= Load Factor Co = Wet. Service Factor G., Temperature Factor Ct= Size Factor CF = Repetitive m. Fact. Cr = Incising Factor Ci Shear stress Factor CH= SENDING F'b = Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci) F'b = 1250 psi Req'd S = M / F'b S= 26.96 inA3 f b = M/S ALLOW F'b = ACT. f b = 1250 psi ' 653.5 psi SHEAR F'v = FV(CD)(CM)(Ct)(CH) F'v = 119 psi DEFLECTION 5WLL^4 0.06 in 384 E'I fv='1.5V/A > f v = 68.07 psi E'= E (CM)(C,)(Ci) 1700000 psi BEAM d max = L / 240 = 0.30 in Fb = 1000 psi Fv = 95 psi E = 1700000 psi 125 1.00 1.00 1.00` 1.00 1.00 1.00 W = 624.0 Ib/ft M= WxLZ/8 M= 2808.0 ft-Ib M= 33696 in -lb V= WxL/2 V= 1872 lb USE 6 X 8 Area = 41.3 in^2 Section= 51.6 inA3 Moment of Inertia= 193 in"4 C07:/ OK 6X 8 STRUCTURAL CALCULATIONS BEAM DESIGN HDR #6 SPAN = 8.0 TRI B. AREA = 4.0 ft D.L = 19.0 Ib/ft Ll = 20.0 Ib/ft TOTAL 39.0 Ib/ft DOUGLAS FIR -!.,ARCH No 1= Load Factor Co = Wet. Service Factor CM = Temperature Factor Ct = Size Factor C{ = Repetitive m. Fact. Cr = Incising Factor Ci = Shear stress Factor CH = �rrrrf�rrrrrrfffrfrrfrirfrirrrrrriiriiirrrrirfrrrrirrrrrrrccccucarrrrrrrrrrrrrrrrriiri r B.Og R BENDING F'b = Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci) F'b = 1250 psi Req'd S = M / F'b S= 11.98 inA3 f b = M/S ALLOW F'b = ACT. f b = 1250 psi > 290.5 psi SHEAR F'v = Fv(CD)(CM)(Ct)(CH) F'v = 119 psi DEFLECTION 5WLL"4 0.04 in 384 E'I fv= 1.5V/A > f v = 22.69 psi Fb = 1000 psi Fv = 95 psi E = 1700000 psi 1.25 1.00 1,00 1.00 1.00 1.00 1.00 W = 156.0 Ib/ft M= WxL2/8 M= 1248.0!ft-lb M= 14976 in -lb V= WxL/2 V= 624lb USE 6 X 8 Area = 41.3 inA2 Section= 51.6 in^3 Moment ofIneria= 193in"4 OK OK r% 110, E'= E (CM)(C)(C) 1700000 psi BEAM 6 X 8 ,L max = L / 240 = 0.40 in STRUCTURAL CALCULATIONS BEAM DESIGN BEAM #1 SPAN = 9.0 Ft TRIB. AREA = 17.0 ft D.L = 19.0 Ib/ft L.L = 20.0 lb/ft TOTAL 39.0 lb/ft rrmzu DOUGLAS FIR -LARCH No 1= Load Factor Co = Wet. Service Factor CM = Temperature Factor Ct = Size Factor CF = Repetitive m. Fact. Cr = Incising Factor Ci = Shear stress Factor CH = �f�f��I�ii����ZZZZ, BENDING F"b = Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci) F"b = 1250 psi Req'd S = M 1 F'b S= 64.44 in"3 f b = M/S ALLOW F"b = ACT. f b = 1250 psi > 664.6 psi SHEAR F"v = Fv(CD)(CM)(Ct)(CH) F'v = 119 psi DEFLECTION 5W,L"4 0.08 in 384 E' I fv= 1.5V/A a f V= 70.75 psi E'= E (C,.+)(G)(Ci) 1700000 psi BEAM max = L / 240 = 0.45 in Fb = 1000 psi Fv = 95 psi E = 1700000 psi 125 1.00 1.00 1.06 1.00 1.00 _ 1.00 W = 663.0 Ib/ft M= W x L21 8 M= 6712.9 ft-lb M= 80554.5 in -lb V= WxL/2 V= 2983.5lb USE 6 X 12 Area = 63.3 in"2 Section= 12-1 inA3 Moment of Inertia= 697 in"4 OK ❑K OK 6 x 12 STRUCTURAL CALCULATIONS BEAM DESIGN BEAM #2 SPAN = 9.0 tt TRI B. AREA = 17.0 ft D. L = 19.0 Ib/ft L.L = 20.0 Ib/ft TOTAL 39.0 Ib/ft DOUGLAS FIR -LARCH No 1= Load Factor Co = Wet. Service Factor CM = Temperature Factor Ct = Size Factor CF = Repetitive m. Fact. Cr = Incising Factor Ci = Shear stress Factor CH = 563.1trlfl e.on n BENDING F"b = Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci) F' b = 1250 psi Req"d S = M / F'b S= 64.44 i n A 3 f b = M/S ALLOW F"b = ACT. f b = 1250 psi > 664.6 psi SHEAR F'v = Fv(CD)(CM)(Ct)(CH) F'v = 119 psi DEFLECTION 5WLL^4 0.08 in 384 E"I fv= 1.5V/A > f v = 70.75 psi E'= E (CM)(C,)(C,) 1700000 psi BEAM d max = L / 240 = 0.45 in Fb = 1000 psi Fv = 95 psi E = 1700000 psi 1.25 1.00 1.00 1.06 1.00 1-00 1.00 W = 663.0 Ib/ft M= xLZ/8 M= 6712.9 ft-lb M= 80554.5 in -lb V= WxL/2 V= 2983.5lb USE 6' X 12 Area = 63.3 in^2 Section= 121 inA3 Moment of Inertia= 697 in^4 OK X2 OK 6X 12 STRUCTURAL CALCULATIONS COLUMN DESIGN Column = DOUGLAS FIR -LARCH No 2= Fc = 625 psi le = 8.0 ft E = 1600000 psi LOAD 3260 lb Load Factor Co = 1.25 Wet. Sery Factor CM = 1.00 TOTAL 3260.0 lb Bucking Stiffeners Ct= 1.00 P Size Factor CF = .00 Incising Factor Ci = 1.00 KCE = 0.30 Buckling and Crushing Interaction c = 0.80 Fc* = Fc(CD)(CM)(Ct)(CF)(Cr)(Ci) Fc* = 781.25 psi USE Euler Critical Buckling Stress for Columns 4 X 6 FCE = KCE E = 638.0208 psi (le / d)^2 Column Stability Factor Cp= Area = 19.3 inA2 d = 3.5 in Cp = 1 + FEE /Fc* — r 1 + FEE/Fc*� ^2 — FcE/ Fc* 2c 2c c Cp = ; 0.6174 F'c = Fc (CP)(CD)(CM)(Ct)(CF)(Cr)(Ci) F'c = 482 psi P = F'c *A = 9285.17 P = 3260. COLUMN 4 X 6 STRUCTURAL CALCULATIONS F14 Wind Analysis for Low-rise Building, Based on ASCE 7-2010 LATERAL FORCE ANALYSIS IBC 2012 CBC 2013 ASCE 7-10. WIND: 110 mph Exposu re C ENCIMED qz= 0.00256X Kz " Kid V^2 I INPUT DATA Exposure category (B, C or D, ASCE 7-10 26.7.3) Importance factor (ASCE 7-10 Table 1.5-2) I,,,, = 1.00 Basic wind speed (ASCE 7-10 26.5.1 or 2012 IBC) V = 110 L Topographic factor (ASCE 7-10 26.8 & Table 26.8-1) Kn = 1.00 Building height to eave he = 9 Building height to ridge hr = 14 10'-0" qh = velocity pressure at mean roof height, h. (Eq. 28.3-1 page 298 & Eq. 30.3-1 page 316) Kh = velocity pressure exposure coefficient evaluated at height, h, (Tab. 28.3-1, pg 299) = 0.85 K,, = wind directionality factor. (Tab. 26.6-1, for building, page 250) = 0.85 h = mean roof height = 11.50 qz= 22.38 PSF NNDLOAD = gz'(1E+2E+3E+4E+0.18)-FV2 ANALYSIS WIND LOAD= 196 # ft p = qh I(G Cpf )-(G Cpi )] �-re: p = pressure in appropriate zone. (Eq. 28.4-1. page 298) Amin = 16 psf (ASCE 7-10 28.4.4) G Cp r= product of gust effect factor and external pressure coefficient, see table below. (Fig. 28.4-1, page 300 & 301) G Ca; = product of gust effect factor and internal pressure coefficient.(Tab. 26.11-1, Enclosed Building, page 258) a = width of edge strips, Fig 28.4-1, note 9, page 301, MAX[ MIN(0.1B, 0.1L, 0.4h), MIN(0.04B, 0.04L), 3] = let Pressures sf , Basic Load Cases Roof angle 6 = 15,64 Roof angle e = 0.00 Surface Net Pressure with Net Pressure v GC,F (-GC i) (GC i) GCPr (+GCDi) (GC i) 1 0.49 6.68 14.37 -0.45 -13.47 -5.77 2 -0.69 -18-60 -10.90 -0.69 -18.60 -10.90 3 -0.45 -1 3.43 -5.73 -0.37 -11.76 -4.06 4 -0.39 -12.17 -4.48 -0.45 -13.47 -5.77 5 0.40 4.70 12.40 6 -0.29 -10.05 -2,35 1 E 0.74 12.08 19.77 -0,48 -14.11 -6.41 2E -1.07 -26.73 -19.03 -1.07 -26.73 -19.03 Net Pressures s , Torsional Load Cases Roof a le 6 = 15.64 Net Pressure with Surface GCpf (+GC,;) (-GC ;) 1 T 0.49 1.67 3.59 2T -0.69 -4.65 -2.73 3T -0.45 -3,36 -1.43 4T -0.39 -3.04 -1.12 Roof angle 0 = 0.00 Surface Net Pressure with GOOF (+GC„) (-GC,;) 5T 0.40 1.18 3.10 xf x ar � r KTOWN [ Lone IT pvveiCEcabp F �[Srlld[i CY�t� DDT J ie * Umo DKZn0m ~ 111E owem" �1rM DAEC} M 7a me Dw"A Load Case A (Transverse) Load Case B (Longitudinal) Load Case A (Transverse) Load Case B (Longitudinal) Basic Loyd Cases Torsional Load Cases STRUCTURAL CALCULATIONS Fl-sl Basic Load Case A Transverse Direction) Basic Load Case B Lon itudinal Direction) Area pressure (k) with Surface (ft) (-GC, i) (-GCpi ) 1 990 6.61 14,23 2 2337 -43.46 -25.48 3 2337 -31.38 -13.39 4 990 -12.05 -4.43 1E 110 1.33 2.18 2E 260 -6.94 -4.94 3E 260 -4.57 -2.57 4E 110 -1,79 -0.94 Horiz 17.88 17.88 Vert. -83,15 �4.67 Min wind Horiz 28.80 28.80 2844 Vert. -80,00 �0.00 Area Pressure W with Surface (ft2) (+GCpi) (-GC.i) 2 2337 -43.46 25.48 3 2337 -27.48 -9.49 5 608 2.86 7.54 6 608 -6.11 -1 A3 2E 260 -6.94 -4,94 3E 260 -3.94 -1.94 5E 117 1.08 1,98 6E 117 -1.53 -0.63 Horiz. 11.57 11.57 £ Vert -68.75 -32.37 Min. wind Horiz 11,60 11,60 2844 Vert, -80.00 -80.00 Torsional Load Case A(Transverse Direction) Torsional Load Case B (Longitudinal Direction Area Pressure (k) with Torsion (ft-k) Surface (ft� (+GCpi) (-GCpi) (+GC i) (-GCpi) 1 440 2.94 6.32 66 142 2 1038 -19.32 -11.32 -117 -69 3 1038 -13.94 -5.95 85 36 4 440 -5.36 -1.97 121 44 t E 110 1.33 2.18 60 98 2E 260 -6,94 -4,94 -84 -60 3E 260 -4,57 -2.57 55 31 4E 110 -1.79 -0.94 80 42 IT 550 0.92 1.98 -23 -49 2T 1298 -6A4 -3.54 41 24 3T 1298 -4.36 -1.86 -29 -13 4T 550 -1.67 -0,62 -42 -15 Total Horiz Torsional Load, MT 212 212 Area Pressure (k) with Torsion (ft-k) Surface (ft2) (+GCpi) (-GCpi) (+GCpi) (-GCpi) 2 2337 -43.46 -25.48 -29 -17 3 2337 -27.48 -9-49 19 6 5 246 1,15 3.04 11 29 6 246 -2,47 -0.58 23 5 2E 260 -6.94 -4.94 89 63 3E 260 -3.94 -1.94 -50 -25 5E 117 1.08 1.98 24 44 6E 117 -1.53 -0,63 34 14 5T 363 0.43 1,12 -5 -13 6T 363 -0,91 1 -0.21 -10 2 Total Horiz Torsional Load, MT 104.6 104.6 Des Inn ) ress lies for compopent5 a n d C lad d in q ra Ly 7 '1=y3 p = qhI (G Cp) - (G Cpi)1 q •• I where: p = pressure on component. (Eq. 30.4-1. pg 318) Amin = 16.00 psf (ASCE 7-10 30.2.2) i p1 91 G Cp = external pressure coefficient. Walls ~a I2:j see table below_ (ASCE 7-10 30.42) Roof Roof Effective F Zone 1 1 Zone 2 1 Zone 3 I Zone 4 Zone 5 Comp. a Cladding Zone 7 Zone 2 Zone 3 Zone 4 Zone 5 Pressure Ppsitim 1 Neealive positive Ne Positive 1 hbathm Positive Wuative Positive I* ative l Psf1 16.00 -22.14 1 16.00 -35.42 16.00 -53,70 23,54 -25.66 1 23-54 -30.41 STRUCTURAL CALCULATIONS CALIFORNIA BUILDING CODE 2013 MAXIMUM CONSIDERED EARTHQUAKE GROUND MOTION FOR REGION -N, STRUCTURAL CALCULATIONS 17 Design Maps Summary Reportmum-- View Detailed Repo_ nt User -Specified Input Building Code Reference Document 2012 International Building Code (,Rich utilizes USGS hazard data available in 2008) Site Coordinates 33,729321%,116.38154°W Site Soil Classification Site :Class D — "Stiff Soil" Risk Category I/II/III 5000n, . �rr,�t ono Bermuda Q Rancho Mirage Due" ;6 aim Desert N O R T H E R I C A mapcquest r : 020141 �; Mganrn USGS-Provided Output Ss = 1.500 g S.s = 1,500 g Ss = 1.000 g Sy = 0,644 g S13 = 0,966 g S�1 = 0,644 g For information on how the SS and S1 values above have been calculated from probabilistic (risk -targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the'2009 NEH2p" building code reference document, MCE„ Response Spectrum 1.65 1.50 1.35 1.20 1.05 0� 0.90 y 0.75 0.60 0.4s 0.30 0-15 000 0 00 0 20 0.40 0 60 0.130 1.00 1.20 1.40 1.60 1.00 2.00 Period, T (secl Design Response Spectrum 1 10 0-99 029 0.77 C 0.66 N 0.55 0.44 0.22 0.11 0.00 0,00 0.20 0.40 0.60 0-60 1.00 1,20 1,40 160 1.90 2.00 Period, T (sec) �............... . . . ........� Although this information is a product of the U.S. Geological Survey, we provide no vrarranty, expressed or implied, as to the: accuracy of the data contained therein. This tool is not a :substitute for technical subject -natter ion oviled g en STRUCTURAL CALCULATIONS SITE CLASS DEFINITION= D OCCUPANCY CATEGORY = II SEISMIC DESIGN CATEGORY = D PALM DESERT CALIFORNIA 92201 0.2 seg Ss=150%g 1.0 seg S1 60%g SDs= 2/3 X SMS SDI = 2/3 X SM1 SDs = 1.07 SD1 = 0.6 R = 6.5 ~ TABLE 12.2 ASCE 7-11 IE = 1.0 t= 0.2 ASCE BASE SHEAR V= Cs W 0.165 W (12.8-1) Cs = SDS / (R/IE) 0.165 (12.8-2) NOT EXCEED Cs = SD1 / T( R/IE) 0.462 (12.8-3) NOT LESS THAN Cs =0.01 0.010 (12.8-5) V= 0.16 W STRUCTURAL CALCULATIONS SEISMIC (CONTINUED) D.L. ROOF 19 psi REDUNDANCY FACTOR 1.3 SEISMIC, V,= 0.21 DIAPH=42x'30 TRANSVERSEL WORST 42 FT WORST 30 ROOF = 798 1 Walls = 67.5 865.5 X 0.208 180 # ft (MAX) EXT. WALLS 15 WALL HT = 9 ft LONGITUDINAL FT ROOF = ' 570 1 Walls = 67.5 SEISMIC=180PLF >186= WIND 000 X 0.21 133 # ft ( MAX) T=C = W LA2 L= 30 = 498.2142857 B = 42 NAIL = TABLE 23-III-C-2 TOTAL NAIL = LOAD /NAIL= 2.657 PROVIDE (8 PAIR) 16 d COMMON @ E.A 4--0" SPACE @ TOP CHORDS STRUCTURAL CALCULATIONS Fl SHEAR WALL REQUIREMENTS ROOF D L_=:19 I WALLS D.L =,�15 WALL Hr,1 = 8 UPQFT FORMULA APPENDIX 0 . .. .... 1YW( J3 ,%b L"212)+1W 2)))1L ST54ENGTH REDUCTI0N PACT NHE- • a.ss {D, 6b' 85U'1.33'i 2}Ishear force FMSTFLOOR WALL I T.—E 7M. AAEA Tr3TIRFP TOTAL BESIST,WALL SNFARF4i10E LOAD)y) —FT. FONCE SFEARWALL HOEDOWN A31 5iB'BOLT STRUC N0. FLF F[ 1.13 W U(W11 FT MIq WA -SEG fi T'PE T'PE EA BLOt?7 SPACJNG (W TES A 196 11 2156 20 12 108 1294 -18 1 Ii]U2 1 48 1 A 196 11 2156 20 8 108 B62 262 1 HDL12 1 48: B 1J6 12 2352 18 10.5 131 1372 203 1 HDU2 1 48 1 B 196. 12 2352 18 7.5 131 9B0 432 1 HDU2 S 48 1 C 196 32 6272 33 20 190 3801 -2193 1 HDU2 1 48 1 D 1% 32 6272 33 13 190 2471 _1168 1 HDU2 1 48 1 D 1% 24 4704 165 3.5 285 998 1706 2 HDU2 9 32 1 D 196 24 4704 165 6.5 285 1853 1248 2 HDU2 ......., 1 v 1 D 196 24 4704 165 6.5 285 1853 1248 2 HDU2 1 32 1 E 196 4 784 4 4 196 7B4 1426 1 HDL12 1 48 1 F 196 8 1568 75 75 209 1568 1250 1 HDU2 1 4B 1 O 196 10 1960 9 4.5 218 980 1416 1 HDU2 1 48 S O 196 10 1960 9 4.5 218 980 1416 1 HDL12 1 48 1 H 196 21 4116 36 12 114 1372 -730 1 HDL12 1 48 1 H 195 21 4116 36 12 114 1372 -730 1 HDL12 1 48 1 H 1-96 27 4116 36 12 114 1372 -730 1 HDU2 1 .t8 1 1 196 15 2940 21 4 140 560 898 1 H13U2 1 48 1 1 196 15 2940 21 5 140 700 602 1 HOW. 1 48 1 1 196 15 2940 21 7.5 140 1050 1 364 1 HDU2 1 48 1 1 196 15 2940 21 5 140 700 1 602 1 HDL12 1 48 1 K 196 12 2352 8 8 294 2352 1701 2 HDU2 1 32 1 L Tw 12 2352 9 9 261 2352 1363 2 _ HDU2 1 48 1 M 196 12 2352 10 5 235 1176 1460 1_ HDU2 1 48 1 M 18B 12 2352 10 6: 235 1176 1460 1 HDU2 1 40 1 STRUCTURAL CALCULATIONS FT WALL HT,1 = 8 UPLIFT FORMULA: (Vh->213 (wb LA2/2)+(WWL/2)))/L TOTAL WALL (Flj RESIST,WALL FT L SHEAR FORCE it; / LOAD (V) WALL- SEG WALL NO, Vh I Wb I W3[Wbl- 2ZA, I j WwL/2 UPLIFT. FORCE # 20 12 108 1294 A 10349 209 10082 720 -18 20 8 106 862 A 6899 209 4481 480 262 18 10.5 131 1372 B 10976 228 8421 630 203 18 7.5 131 980 B 7840 228 4296 450 432 33 20 190 3801 C 30410 608 81472 1200 -2593 33 13 190 2471 C 19766 608 34422 780 -1168 16.5 3.5 285 998 D 7983 456 1871 210 1706 16.5 6.5 285 1853 D 14825 456 6454 390 1248 16.5 6.5 285 1853 D 14825 456 6454 390 1248 4 4 196 784 E 6272 76 407 240 1426 7.5 7.5 209 1568 F 12544 152 2864 450 1250 9 4.5 218 980 G 7840 190 1289 270 1416 9 4.5 218 980 G 7840 190 1289 270 1416 36 12 114 1372 H 1D976 399 19248 72D -730 36 12 114 1372 H 10976 399 19248 720 -730 36 12 114 1372 H 10976 399 19248 720 -730 21 4 140 560 1 448D 285 1528 240 698 21 5 140 700 1 5600 285 2387 300 602 21 7.5 140 1050 1 8400 285 5370 450 364 21 5 140 700 1 5600 285 2387 300 602 8 8 294 2352 K 18816 228 4888 480 1701 9 9 261 2352 L 18816 228 6157 540 1363 10 5 235 1176 M H408 228 1910 300 1460 10 5 235 1176 M 9408 228 1910 300 1460 STRUCTURAL CALCULATIONS SHEAR WALL CONSTRUCTION D1/2" GYPSUM WALL BOARD APPLIED DIRECTLY TO 2x STUDS WITH STANDARD WALL BOARD NAILS (1 1/2" x 0.12" DIAMETER w/ 3/8" HEADS) OR 5d COOLER NAILS AT 7" O/C MAX. TO ALL STUDS, SILLS, PLATES AND BLOCKING. ANCHOR w/ 5/8" DIAMETER x 10" LONG ANCHOR BOLTS (w/ 3" x 3" x 0.229" THICK PLATE WASHERS BETWEEN NUT AND WOOD SILL) @ 6'-0" O/C MAX 16" O.C. FRAMING (ALLOWABLE LOAD: 75 plf — PER CBC 2013 TABLE 2306.7) 7/8" PORTLAND CEMENT PLASTER ON WOVEN WIRE OR EXPANDED METAL LATH NAILED AT EACH STUD, SILL AND PLATE @ 6" O/C MAX. w/ No. 11 x 1'/z" GALVANIZED NAILS WITH 7/16' DIAMETER HEADS OR ATTACHED w/ No. 16 GAUGE STAPLES HAVING 7/8" LONG LEGS. ANCHOR w/ 5/8" DIAMETER x 10" LONG ANCHOR BOLTS 7" EMBED MIN (wl 3" x 3" x 0.229" THICK PLATE WASHERS —SDC D ,BETWEEN NUT AND WOOD SILL) @ 48" O/C MAX. 16" O.C. FRAMING (ALLOWABLE LOAD: 180 plf — PER 2013 CBC TABLE 2306.7) THE NEXT THREE (3) SHEAR WALL TYPES SHALL ALL HAVE THE FOLLOWING IDENTICAL STRUCTURAL I WOOD PANEL DIAPHRAGM: (WALL1 , 2 & 3 ONLY) 3/8" C-D EXPOSURE I APA PLYWOOD OR 3/8" ORIENTED STRAND BOARD APPLIED DIRECTLY TO THE STUDS, WITH THE LONG DIMENSION OF FULL PANELS LAID PARALLEL OR PERPENDICULAR TO THE LENGTH OF THE STUDS, ALL EDGES OF EACH PANEL SUPPORTED ON STUDS, SILLS, PLATES OR BLOCKING AND NAILED AND ANCHORED AS FOLLOWS: 1 D8d COMMON NAILS @ 6" O/C AT ALL PANEL EDGES AND 8d COMMON NAILS @ 12" O/C AT ALL FIELDS. ANCHOR WITH 5/8" DIAMETER BY 12" LONG ANCHOR BOLTS AT 481, O/C. (ALLOWABLE LOAD: 280 plf — PER 2013 CBC TABLE 2306.3) * CONSTRUCTION NOTE(S) 1 & 2 APPLY (NOTES 3, 4 AND 6 APPLY ONLY WHEN DIAPHRAGM AT BOTH SIDES ) 2 D8d COMMON NAILS @ 4" O/C AT ALL PANEL EDGES AND 8d COMMON NAILS @ 12" O/C AT ALL FIELDS. ANCHOR WITH 5/8" DIAMETER BY 12" ANCHOR BOLTS AT 321,0/C. (CALCULATE TO MAXIMUM OF 349 plf — PER 2013 CBC TABLE 2306.3) STUDS @16" O.0 CONSTRUCTION NOTE(S) 1 & 2 APPLY (NOTES 3, 4, 5 AND 6 APPLY WHEN DIAPHRAGM AT BOTH SIDES) 3 D8d COMMON NAILS @ 3" O/C AT ALL PANEL EDGES AND 8d COMMON NAILS @ 12" O/C AT ALL FIELDS. ANCHOR WITH 5/8" DIAMETER BY 12" LONG ANCHOR BOLTS AT 32" O/C. (ALLOWABLE LOAD: 550 plf — PER 2013 CBC TABLE 2306.3 ) * CONSTRUCTION NOTE(S) 1, 2, 3 & 6 APPLY (NOTES 4 & 5 APPLY WHEN DIAPHRAGM AT BOTH SIDES) NOTE VALUES ARE APPLICABLE TO DOUGLAS FIR LARCH FRAMING @ 16" O.0 STRUCTURAL CALCULATIONS 4 D15/32" STRUCT. I APA PLYWOOD OR 15/32" ORIENTED STRAND BOARD (OSB) APPLIED DIRECTLY TO THE STUDS, WITH THE LONG DIMENSION OF FULL PANELS PARALLEL OR PERPENDICULAR TO THE LENGTH OF THE STUDS, ALL EDGES SUPPORTED ON STUDS, SILLS, PLATES OR BLOCKING AND NAILED AND ANCHORED AS FOLLOWS: 8d COMMON NAILS @ 2" O/C AT ALL PANEL EDGES AND 8d COMMON NAILS @ 12" O/C AT ALL FIELDS. ANCHOR WITH 3/4' DIAMETER ANCHOR BOLTS AT 16" 0/C. —STATE EMBEDDED DISTANCE 7" MIN (ALLOWABLE LOAD: 730 plf — PER 2013 CBC TABLE 2306.3) * CONSTRUCTION NOTE(S) 1, 2, 3, & 6 APPLY (4 AND 5 APPLY WHEN DIAPHRAGM AT BOTH SIDES) CONSTRUCTION NOTES: 1 3" x 3" x 0.229" PLATE WASHERS SHALL BE PROVIDED BETWEEN ALL ANCHOR BOLT NUTS AND THE WOOD SILL. 2 SEE ANCHOR BOLT CALCULATIONS FOLLOWING THESE NOTES IN THE CALCULATIONS. 3 EDGE NAILING AT ABUTTING PANEL EDGES FOR WALLS LOADED IN EXCESS OF 350 plf SHALL BE APPLIED TO 3x OR WIDER STUDS. 4 APPLYING EQUAL THICKNESS STRUCTURAL WOOD PANELS TO BOTH STUD FACES OF A SHEAR WALL AND WITH MATCHING NAILING FOR BOTH SIDES SHALL PROVIDE DOUBLE THE LOAD CAPACITY OF WALLS HAVING THE SAME PANELS AND NAILING APPLIED TO ONLY ONE FACE. 5 STRUCTURAL WOOD PANEL SHEAR WALLS WITH PANELS APPLIED TO BOTH FACES AND WITH EDGE NAILING LESS THAN 6" O/C SHALL HAVE ABUTTING PANEL EDGES FOR ONE SIDE OFFSET ONE STUD SPACE FROM THE OTHER SIDE (NOTE No. 3 ALSO APPLIES) 6 ALL SHEAR WALLS HAVING A LOAD CARRYING CAPACITY IN EXCESS OF 350 plf SHALL BE PROVIDED WITH 3x P.T.D.F. SILL PLATES AND 12" LONG ANCHOR BOLTS OF THE DIAMETER PROSCRIBED FOR THAT WALL CONSTRUCTION TYPE (ALL ANCHOR BOLTS SHALL BE SET 7" INTO CONCRETE) 7 WHERE THE CONTRACTOR DESIRES TO CONSTRUCT THE SLAB -ON -GRADE AND THE FOOTINGS AND FOUNDATION IN A TWO POUR SYSTEM, ALL ANCHOR BOLTS SHALL HAVE A MINIMUM LENGTH OF 14", SETTING THEM A MINIMUM OF 4" INTO THE TOP OF THE FOUNDATIONS BEFORE POURING THE SLAB. 8 ALL ANCHOR BOLTING, HOLDOWN BOLTS OR STRAPS AND OTHER FORMS OF CONCRETE INSERTS SHALL BE SECURELY HELD IN PLACE WITH JIGS OR OTHER SUCH DEVISES PRIOR TO REQUESTING FOUNDATION INSPECTION, DURING INSPECTION AND DURING ACTUAL POURING OF CONCRETE. 9 ALL ANCHOR BOLTS AND HOLDOWN BOLTS SHALL BE BROUGHT PLUMB PRIOR TO THE CONCRETE HARDENING. MECHANICAL STRAIGHTENING OF BOLTS AFTER THE CONCRETE HAS HARDENED THAT RESULTS IN SLAB EDGE BREAKING SHALL RESULT IN REJECTION OF A PORTION OF THE SLAB AND FOUNDATION BY THE ARCHITECT OR STRUCTURAL DESIGNER OF RECORD AS HE DEEMS NECESSARY, ITS REMOVAL AND REPOURING OF THAT PORTION OF THE CONCRETE. 10 HOLDOWN STRAP HOOKS SHALL BE STABLIZED DURING THE CONCRETE POUR IN ORDER TO ENSURE THEY REMAIN AT THE MANUFACTURER'S PROSCRIBED ANGLE OF INSERTION. 11 ATTACHMENT OF A 3x SILLPLATE TO FLOOR FRAMING BELOW SHALL BE MADE WITH THE USE OF SIMPSON SIDS %x6 WOOD SCREWS AT 3" o/c. 12 ATTACHMENT OF A 2x SILL PLATE TO FLOOR FRAMING BELOW SHALL BE MADE WITH THE USE OF 16d @ SPACING INDICATED AT THE SHEAR WALL TABULATION. STRUCTURAL CALCULATIONS Z4- ] -' TAl8LER906.A.7(1) y ALLOWABLE SHEAR (POU14DS PER FOOT) FOA WOOD STRUCTURAL PANEL DIAPHRAGM5 WITH FRAWNG OF DOUGLA5 FIR -LARCH, OR SOUTHERN PiNE'fAR W1NOOR SEISMIC LOADING" MINIMUM I MINIMUM BLOCKED DIAPHRAGMS UNBLOCKED DIAPHRAGMS NOMINAL Faalener spacing OrA* o}) at dlophrogm bounAerlw WI oeMle)MOTM G t4➢44 rt Celn$1pa"t 01119" parallel to Id ( FRAMING MEMBERS AT Gaaoa A a� and Mal!ro pi edges {Gana B, ems.._ 4..�Aatenara ■ ad 5" max. at P _ }^ MINIMUM ADJOINING 5 4 2'4° 4• 1 PANEL COMMON NAIL FASTENER SIZE OR STAPLE'PENETRATION LENGTH AND IN FRAMING ITHICKHESS NOMINAL PANEL Faslener ➢peeing (inehe➢) atolher panel edgn Cw Y 1 PANEL EDGES AND (No unblocked edges All other SOUNDARIESP Ce 1. 2. 3 and AP oe wnllnuou} lolyda contlguradona GRADE GAGE i inct" .fumh) IMIWW k,4_ fC,,2,3,4 6.d_5 ructuml1 44 8d(2rI_'xU.131"3` 1'/ _ 22 ; Z7o _.:_.._.� 360 :: 400 531) 600 GQP_ 675 i ......................,�...,...::.: 265 �� .....— 2(N) 115 17S 235 350 ..400 155..... 3 �200 265 395 450 375 130 ades IOIW(3'x0.S48"} I�!_ x 3✓•-•-2---- 320 425 640 710 21t5 215 _-- _ 240.,. 360 430 721) 820 320 11.16 Gage I 2 175 235 3 U _�. -- 400 ................,. 355 �..,..,,. ...__ 320 3 200 265 395 ASO 175 130 6d° 2" x 0.1)3 111 185 250 I 375 420 165 125 3 210 290 420 475 [85 140 2 240 320 480 5a5 i f 215 8d(2'/z x0.131) 1'/s / v _ _ice .... 3 270_ .._... 360 _..�.._.._..�..... 540 610 240 __IRO IV, IGGage ] :. I60 _ 210 113 360 140 ]05 '+ 180 2.35 3i5 40(} 160 120 loathing, single ldorandMllcr arks covered in XX'PSIand PS 2 8d (211."x0.131 1'l� Zia 2 255 34U SOS 57s 230 170 3?!. .. 285 380 5 0 64S Z55 190 11/. e 16 Gage g 1 2 165 225 335 380 ]50 110 3 190 250 375 53(1 425 GflO I 165 240 125 -180 .200 d 8.(24,"x0.131-) I'!I I 2 270 - 3fi11 3 300 400 6DO Y fi75 265 I ()d" (3" x 0 f 48"} f'/z 2 290 385 _ 573 655 255 190 Is/v 3 325 430 00 735 290 Z35 16 Gage 1 2 IGO ! 210 311 360 140 105 _ 3 180 { 215 355 405 160 120 10d" (3" x 0.1481 .............';......,.........,..,,...,...,.....,....,...,................. i 3 _. i .............._ _ 64D 7 30 285 215 320 240 •'.. .360 1 480 72(1 920 ` 2 l .3 3'/,r 16 Gage l 175 350 LOD — ]SS - 175 - is 200 .76.5 395 450 I 130 continued STRUCTURAL CALCULATIONS FOUNDATION SOIL PRESSURE = 1500 PSF LOADING ROOF = 35 EXT. WALLS = 15 H-1 = 13 ft TYPICAL PERIMETER FOOTING AT 1 STORY Trib. Area (ft)= 18 LOADING: ROOF = 630 #1 WALL = 195 #1 W = 825 #1 REQ"D WIDTH = 0.55 FT / FT LENDTH 12" WIDE x 12" CONTIN PERIM FT, ,AND 2 # 4 BARS, CONTIN . FOUNDATION POST FOOTING Li 12" 18" 4" 18" 40" X 12" = 480SQ IN 3.3333 144 SO IN SOIL PRESSURE = 1000 PSF TOTAL LOAD = 3,300.# >2925# OK STRUCTURAL CALCULATIONS 5/8" SET-XP EPDXY ADHESIVE ANCHOR ASTEM 193 GRADE B7 hef= 10" calculate static steel strength tension per ACI 318-05 sect D 5.1. 0 SA N sa = 0.75x 27900= 20925# calculate static concrete breakout strength in tension per ACI 318-05 sect D 5.2. 0 SA N sa = 0.65x 6000 = 3900# calculate static pullout strength in tension per ACI 318-08 SECT D.5.3 as amended in section 4.1.4 of this repost 0 P Na = 0.65x 25175 = 16360# ACI 318-08 SECT D.4.1.2 0 N n= 3900# co=1.48 3900/1.48 = 2635 # STRUCTURAL CALCULATIONS 314 CLEI � M-91 ERE OCCURS -IDU2 DIAM. x 14" ALL THREAD -TG W/ SET-XP (ICC 2508) EPDXY OR 3X PLATE EXIST CONC EPDXY ONLY@ UPLIFT SITUATIONS EPDXY REQUIRES OBSERVATION OF LIC DEPUTY INSPECTOR