BRES2015-0445 Revision 1 Structural Calcs ReconstructionSTRUCTURAL CALCULATIONS
RECONSTRUCTION OF A FIRE
DESTROYED RESIDENCE
CITY OF U� QUINTA.
BUILDING & SAFETY DEPT.
APPROVED
FOR CONSTRUCTION FOR:
DATE 11
VE & DEBBY
PFANKUCHE
52523 AVENIDA RAMIREZ
LA QUINTA9 CALIFORNIA
C�l
CHARLES D. GARLAND, ARCHITECT
LICENSE NO. 11991 EXP 10/31/17
74-991 JONI DR. SUITE #9 PALM DESERT CA 92260
PHONE:760/340-3528 FAX:760/340-3728
;_�¢� ��.�, RECEIVE[
t * ( i No. ci1s91 1 *I, APR 0 3 2017
101311209 �f
y� F. BRTE . f
CITY OF LA QUINTA,
COMMUNITY DEYELOPM]
STRUCTURAL CALCULATIONS
❖ GOVERNING CODES.....................page 3
❖ LOAD .......................................................Page 4
❖ BEAM .................................................... Page 5
❖ LATERAL ANALYSIS ........................ Page 9
❖ SEISMIC ZONE ............................ Page 10
❖ SHEAR WALL REQUIREMENTS.... Page 15
❖ FOUNDATION ............................... Page 18
STRUCTURAL CALCULATIONS
GOVERNING CODES
A- IBC 2015 OR CBC 2016
B- DESIGN LOADS
a. ROOF LIVE LOAD 20, PSF
b. ROOF DEAD LOAD 19 PSF
c. WIND IMPORTANCE FACTOR 1.00 WIND ZONE 110 MPH
EXPOSURE C
d. SITE CLASS DEFINITION (D)
e. OCCUPANCY CATEGORY II
f. SEISMIC DESIGN CATEGORY (E)
g. COEFFICIENT Cs 0.15
h. SEISMIC Ss1.5g
i. SEISMIC S10.6g
j. FACTOR R 6.5
k. SEISMIC SDs 1.00
I. SEISMIC SD10.60
STRUCTURAL CALCULATIONS
LOADS
FLAT ROOF
PSF
TAPERED SPRAY FOAM
4
30# ROOFING FELT
1
5/8" PLYWOOD SHEATHING
3
2X12 ROOF JOIST @24" O.0
3
R-38 INSULATION
2
5/8" INSULATION
3
5/8" GYP. BD. CEILING
2
D.L.=
18
L.L=
20
TOTAL LOAD =
38 PSF
ROOF
ROOF TILE =
9
ROOFING FELT
0.6
5/8 OSB/ RADIAN BARRIER
2.2
TRUSSES @24" O.0
2.6
R-38 INSULATION =
1.8
5/8" GYP. BD. =
2.8
D. L =
19
L. L =
20
EXTERIOR WALLS: PSF
WOOD STUDS =
2
1/2" GYP BD. =
2
7/8" STUCCO =
10
INSULATION= .
1
D.L.= 15 PSF
INTERIOR WALLS:
WOOD STUDS =
1/2 GYP.BD.2SIDES =
INSULATION =
PSF
2
3
D. L = 7 PSF
STRUCTURAL CALCULATIONS
BEAM DESIGN
HDR#1
SPAN = 5.0 ft
TRIB. AREA = 16.0 ft
D.L = 19.0 lb/ft
L.L = 20.0 ibM
TOTAL 39.0 lb/ft
DOUGLAS FIR -LARCH No 1=
Load Factor Co =
Wet. Service Factor CM =
Temperature Factor Ct =
Size Factor CF =
Repetitive m. Fact. Cr =
Incising Factor Ci =
Shear stress Factor CH =
�rffrrririiirriifrrrirriirrrrrrrroirrsumrfrarmirs�isu�.crriisrirrrriirrrirrrrr�
6.00 it
BENDING
F'b = Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci)
F'b = 1250 psi
Req' d S= M I F'b S= 18.72 i n"3
f b = M/S
ALLOW F'b = ACT. f b =
1250 psi > 843.9 psi
SHEAR
F'v = Fv(CD)(CM)(Ct)(CH)
F'v = 119 psi
DEFLECTION
5WLL"4 0.07 in
384 E'I
fv- 1.5V/A
> f v = 77.36 psi
E'= E (C-)(C,)(C•) 1700000 psi
BEAM
d max = L 1240 = 0.25 in
Fb = 1000 psi
Fv = 95 psi
E = 1700000 psi
1.25
1.00
1.00
1.06
1.00
1.00
1.00 W = 624.0 lb/ft
M= WxLz/8
M= 1950.0 ft-lb
N�= 23400 in -lb
V= W xLl2
V- 1560 lb
USE
6 x 6 Area = 30.3 in"2
Section= 27.7 in"3
Moment of Inertia- 76.3 in"4
❑K
[a]:1
OK
6x 6
STRUCTURAL CALCULATIONS
BEAM DESIGN
HDR #2
SPAN = 6.0 h
TRIB. AREA = 6.0 ft
D.L = 19.0 Ib/ft
20.0 Ib/ft
TOTAL 39.0 Ib/ft
DOUGLAS FIR -LARCH No 1=
Load Factor Co =
Wet. Service Factor CM =
Temperature Factor Ct =
Size Factor CF =
Repetitive m. Fact. Cr=
Incising Factor Ci =
Shear stress Factor CH _
frrrrrrriiirrrrririiirrrirrrrrirrirriirrrrrrrirrrrr�riirrrrrrrrrnrrrrrrrrrrrrErrrEriiiii�
r
6.00 It
BENDING
F'b=Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci)
F'b = 1250. psi
Req'd S = M / F'b S= 10.11 in43
f b = M/S
ALLOW F'b = ACT. f b =
1250 psi > 455.7 psi
SHEAR
F'v = Fv(CD)(CM)(Ct)(CH)
F'v = 119 psi
DEFLECTION
5WLL"4 0.05 in
384 E'I
fv= 1.5V/A
> f v = 34.81 psi
E'= E (C.)(C)(C•) 1700000 psi
BEAM
d max = L / 240 = 0.30 in
Fb =
1000 psi
Fv =
95 psi
E =
1700000 psi
1.26
1.00
1.00
1.06
1.00
1.00
1.00
W =
234.0 Ib/ft
M= WxLZ/8
M= 1053.0 ft-lb
M= 12636 in -lb
V= WxL/2
V= 702lb
USE
6 X 6 Area = 30.3 in"2
Section= 27.7 in"3
Moment of Inertia= 76.3 in"4
OK
C�I:I
OK
6 X 6
STRUCTURAL CALCULATIONS
BEAM DESIGN
HDR #3
SPAN = 3.0 ft
TRI B. AREA = 13.0 ft
❑. L = 19.0 lb/ft
L.L = 20.0 lb/ft
TOTAL 39.0 lb/ft
DOUGLAS FIR -LARCH No 1=
Load Factor Co =
Wet. Service Factor CM =
Temperature Factor Ct =
Size Factor CF =
Repetitive m. Fact. Cr =
Incising Factor Ci =
Shear stress Factor CH =
!llffJlJIJJIJ//Jf1YflIYIIMIll O/.Uf//ff/!////7/f19YffHf/Hf19SUl fflf/!ff!/!f!f!f//fJl
IN ri
BENDING
F'b= Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci)
F'b = 1250 psi
Req' d S= M/ F'b S= 5.48 i n^3
f b = M/S
ALLOW F'b = ACT. f b =
1250 psi > 246.8 psi
SHEAR
F'v = Fv(CD)(CM)(Ct)(CH)
F'v = 1191 psi
DEFLECTION
5WLL^4 0.01 in
384 E'I
fv= 1.5V/A
> f v = 37.71 psi
E'= E (C-)(C)(G) 1700000 psi
BEAM
d max = L / 240 = 0.15 in
Fb =
1000 psi
Fv =
95 psi
E =
1700000 psi
1.25
1.00
1.00
1.0[]
1.00
1.00
1.00
W =
507.0 lb/ft
M= WxLZ/8
M= 570.4 ft-lb
M= 6844.5 in -lb
V= xL/2
V= 760.51lb
USE
6 X 6 Area = 30.3 in A 2
Section= 27.7 inA3
Moment of Inertia= 76.3 in"4
OK
M
aK
6 X 6
STRUCTURAL CALCULATIONS
1
BEAM DESIGN
HDR #4
SPAN = 4.0 ft
TRI B. AREA = 14.0 ft
D. L = 19.0 lb/ft
L.L = 20.0 lb/ft
TOTAL 39.0 lb/ft
DOUGLAS FIR -LARCH No 1=
Load Factor Co =
Wet- Service Factor C.+ _
Temperature Factor Ct =
Size Factor CF =
Repetitie m. Fact. Cr =
Incising Factor Ci
Shear stress Factor CH
BENDING
F"b = Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci)
F' b = 1250 psi
Req' d S = M / F' b S= 10.48 in"3
f b = M/S
ALLOW F' b = ACT. f b
1250 psi a 472.E psi
SHEAR
F'v = Fv(CD)(CM)(Ct)(CH)
F'v = 119 psi
DEFLECTION
5WLLA4 0.02 in
384 E'I
f v = 1.5V/A
> f v = 54.15 psi
E'= E (CM)(C-)(C,) 1700000 psi
BEAM
max = L / 240 = 0.20 in
Fb = 1000 psi
Fv = 95 psi
E = 1700000 psi
1.25
1.00
1.00
1.00
1.00
1.00
1.00 W = 546.0 lb/ft
M= WxL2/8
M= 1092.0 ft-lb
M= 13104 in -lb
V= WxL12
V= 1092 lb
USE
6 X 6 Area = 30.3 inA2
Section= 27.7 in^3
Moment of Inertia= 76.3 in"4
OK
OK
OK
6X 6
STRUCTURAL CALCULATIONS
'BEAM DESIGN
HDR #5
SPAN = 6.0 FI
TRI B. AREA = 15.0 ft
D.L= 19.0 Ib/ft
L. L = 20.0 Ib/ft
TOTAL 39.0 Ib/ft
DOUGLAS FIR -LARCH No 1=
Load Factor Co =
Wet. Service Factor CM =
Temperature Factor Ct
Size Factor CF =
Repetitive m. Fact. Cr =
Incising Factor Ci =
Shear stress Factor CH =
iiiiiirirrrrrrriiiirfrrrrrrrrrrrrrrrrrrriiiiirirfrsrfrrirrrrririrrirrrrrrfrrrrirrrrrrrrrri
coo- n
BENDING
F"b = FbxtCD)(CM)(Ct)(CF)(Cr)(Ci)
F'b = 1250 psi
Req'd S = M / F'b S= 25.27 in"3
f b = WS
ALLOW F'b = ACT. f b =
1250 psi a 612.7 psi
SHEAR
F'v = Fv(CD)(CM)(Ct)(CH)
F'v = 119 psi
DEFLECTION
5WLL14 0,05 in
384 E' I
fv= 1.5V/A
> f v = 63.82 psi
E'= E (C-)(C)(C) 1700000 psi
BEAM
L max = L / 240 = 0.30 in
Fb = 1000 psi
Fv = 95 psi
E = 1700000 psi
1.25
1.00
1.00
1.06
1.00
1.00
1.00 W = 585.0 Ib/ft
M= WxL2/8
M= 2632.5 ft-lb
M= 31590 in -lb
V= WxL/2
V= 1755 !b
USE
6 X 8 Area = 41.3 in"2
Section= 51.6 in"3
Moment of Inertia= 193 in"4
OK
M
OK
6X 8
STRUCTURAL CALCULATIONS
BEAM DESIGN
BEAM #1
SPAN = 16. ❑ ft
lR[B. AREA = 6.0 ft
D.L = 19.0 lb/ft
L. L = 20.0 lb/ft
TOTAL 39.0 lb/ft
I010111t]W_149lliaW 19-0 C■d" O e
Load Factor Cr, =
Wet. Service Factor Chi _
Temperature Factor Ct =
Size Factor CF =
Repefitive m. Fact. Cr =
Incising Factor Ci =
Shear stress Factor CH
�,tlD it
BENDING
F'b = Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci)
F'b = 1250 : psi
Req'd S = M / F'b S= 71.88 in^3
f b = M/S
ALLOW F'b = ACT. f b =
1250.psi > 741.4 psi
SHEAR
F'v = Fv(CD)(CM)(Ct)(CH)
F'v = 119 psi
DEFLECTION
5WLL"4 029 in
384 E' I
fv=.1.5V/A
v = 44.40 psi
E'= E (CM)(C-)(0) 1700000 psi
BEAM
d max = L / 240 = 0.80 in
Fb =
1000 psi
Fv =
95 psi
E =
1700000 psi
1.25
1.00
1.00
1.00
1.00
1.00
1.00
W =
234.0 lb/ft
M=WxL7/8
M= 7488.0 ft-lb
M= 89856 in -lb
V= W xL/2
V= 1872 lb
USE
6 X 12 Area = 63.3 inA2
Section- 121 in"3
Moment of Inertia= 697 in"4
OK
OK
OK
6X 12
STRUCTURAL CALCULATIONS
BEAM DESIGN
BEAM #2
SPAN = 9.0 ft
TRI B. AREA = 22.0 ft
D.L = 19.0 lb/ft
L.L = 20.0 lb/ft
TOTAL 39.0 lb/ft
f7i!tic Z461ty-
121c(al17,&wry
110111C tie
Load Factor Co =
Wet. Service Factor CM =
Temperature Factor Ct =
Size Factor Cr =
Repetitive m. Fact. Cr =
Incising Factor Ci =
Shear stress Factor CH =
a$a-mni
9.d0 it
BENDING
F"b = Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci)
F'b = 1250 psi
Req'd S. = M I F"b S=
ALLOW F'b =
1250 ps'
QF# 135-0 ��> — cv
SHEAR
�6 F"v = Fv(CD)(CM)(Ct)(Cl-�
Akck L�O
F"v = 119 psi
DEFLECTION
C3CA"HJ
83.40 in^3
f b = M/S
ACT. f b =
Fb = 1000 psi
Fv = 95 psi
E = 1700000 psi
1.25
1.00
1.00
1.0d
1.00
1,00
1.00 W = 858.0 lb/ft
M= WxLr/8
M= 8687.3 ft-lb al2•q •-15!61
M= 104247 in -lb
V= WxL/2
V= 3981`Ib S 5Cr f b
711Xti- 44w}v'r '
USE 5vJy. W/N)(41005'-0f
6 X 12 Area = 63.3 in^2 ineAJ'C"�-
Section= 121 in^3
Moment of Inertia= 697 in^4
> 9Y"' ' psi OK
> ! zK0 Vr+y cksf—
Coe) vf ;11c4* Stli wcl?k y
fv= 1.5V/A
> f v = 91.57 psi OK
5WLL^4 = 0.11 in
384 E'I
E"= E (CM)(C)(C) 1700000 psi
d. max = L / 240 = 0.45 in
OK
BEAM 6 X 12
❑k
STRUCTURAL CALCULATIONS
COLUMN DESIGN
800
Column =
DOUGLAS FIR -LARCH No 2-
-le = 8.0
LOAD 3861 lb Load Factor Co = 1.25
Wet. Sery Factor CM = 1.00
TOTAL 3861.0 lb Bucking Stiffeners Ct= 1.00
P Size Factor CF = 1.00
Incising Factor Ci = 1.00
KIE = 0.30
Buckling and Crushing Interaction c = 0.80
Fc* = z Fc(CD)(CM)(Ct)(CF)(Cr)(Ci)
Fc* = 781.25 psi
Euler Critical Buckling Stress for Columns
FCE = KCE E = 638.0208 psi
(le / d)^2
Column Stability Factor Cp=
Cp = 1 + FCE /Fc* — I 1 + FCE/Fc* A
2c 2c
Cp = 0.6174
F'c = Fc (CP)(CD)(CM)(Ct)(CF)(Cr)(Ci)
F'c = 482 psi
P = F'c *A = 9285.17
Fc = 625 psi
E = -1600000 psi
USE
4 X 6 Area =, 19.3 inA2
d = 3.51 in
FCE/ Fc*
c
OK P =' 3861.0
COLUMN 4 X 6
STRUCTURAL CALCULATIONS
COLUMN DESIGN
Column =
DOUGLAS FIR -LARCH No 2= Fc 625 psi
le = 8.0 ft E 600000 psi
LOAD 5372 lb Load Factor CD = 1.25
Wet. Sery Factor CM = 1.00
TOTAL 5372.0 lb Bucking Stiffeners Ct= 1.00
P Size Factor CF = 1.00
Incising Factor Ci = 1.00
K.E = 0.30'
Buckling and Crushing Interaction c = 0.86,
Fc*=,Fc(CD)(CM)(Ct)(CF)(Cr)(Ci)
Fc* = 781.25 psi
Euler Critical Buckling Stress for Columns
F,,E = KBE E = 638.0208 psi
(le / d)"2
Column Stability Factor Cp=
Cp = 1 + FCE /Fc* — 1 + FEE/Fc* ^2
2c fXr2c
Cp = 0.6174
USE
4 X 6 Area = 19.3 in^2
d = 3.51 in
FCE/ Fc*
c
F'c = Fc (CP)(CD)(CM)(Ct)(CF)(Cr)(Ci)
F'c = 482 psi
P = F'c *A = 9285,17 OK P = 5372.0
COLUMN 4 X 6
STRUCTURAL CALCULATIONS
F14
Wind Analysis for Low-rise Building, Based on ASCE 7-2010
IBC 2015 CBC 2016 ASCE 7-10.
WIND: 110 mph Exposu re C
ENCLOSED qz= 0.00256X Kz Kzt Kd V12 I
INPUT DATA
Exposure category (8, C or D, ASCE 7-10 26.7.3)
Importance factor (ASCE 7-10 Table 1.5-2) Iw = 1.00
Basic wind speed (ASCE 7-10 26.5.1 or 2012 IBC) V = 110 `
Topographic factor (ASCE 7-1026.8 &Table 26.8-1) Kt = 1.00
Building height to eave he = 8
Building height to ridge hr = 12
10'-0"
qh = velocity pressure at mean roof height, h. (Eq. 28.3-1 page 298 & Eq. 30.3-1 page 316)
K;, = velocity pressure exposure coefficient evaluated at height, h, (Tab. 28.3-1, pg 299) - 0.85
K,. = wind directionality factor. (Tab. 26.6-1, for building, page 250) = 0.85
h = mean roof height = 10.00
qz= 22.38 PSF
WIND LOAD = q;e`(1Ef2E+3E+4E+0.181F92
ANALYSIS WIND LOAD= 186 # ft
p = qh I(G Cpf )-(G Cpi )]
Owe: p = pressure in appropriate zone. (Eq. 28.4-1, page 298) Amin = 16 psf (ASCE 7-10 28.4.4)
G Cpf = product of gust effect factor and external pressure coefficient, see table below. (Fig. 28.4-1, page 300 & 301)
G Cp i = product of gust effect factor and internal pressure coefficient.(Tab. 26.11-1, Enclosed Building, page 258)
a = width of edge strips, Fig 28.4-1, note 9, page 301, MAX[ MIN(0.1 B, 0.1L, 0.4h), MIN(0,04B, 0.04L), 3] =
Net Pressures
Roof
Surface
G Cpf
1 0.49
2 -0.69
3 -0.45
4 -0 39
, Basic Load Case
ile 0 = 15.64
Net Pressure with
(+GCp;) (-GCp; )
6.68 14.37
-18,60 -10.90
-13.43 -5.73
-12.17 -4.48
Roof an
le 0 =
0.00
Net Pressure
with
GCp'
(-GC.,)
(-GC ;;
-0.45
-13.47
-5.77
-0.69
-18.60
-10.90
-0.37
-11.76
-4,06
-0.45
-13.47
-5.77
0.40
4.70
12.40
-0.29
-10.05
-2.35
1E 1 0.74 12.08 19.77 1 -0.48 -14.11 -6.41
2E 1 -1.07 -26.73 1 -19.03 1 -1.07 -26.73 -19.03
a
u r� rk
1!lrnKMY C}MC1 1r Rjplp([COMM
��4 0nariP' $° � lelrl 0�lCCn(M
Net Pressures (psf), Torsional Load Cases
I Roof an
Surface
G Cpf
3le 0 = 15.64
Net Pressure with
(+GC i)
(-GCp, )
1T
2T
3T
4T
0.49
-0.69
-0.45
-0.39
1.67
-4,65
-3.36
j -3.04
3.59
-2.73
-1.43
-1.12
Surface
Roof an
jle 6 = 0.00
GCpf
Net Pressure with
(+GCpi) (-GC i)
5T
0.40
1.18 3.10
h
•_+fir
d
F it
prt(p>�C( OOMR RETFOR�CI O=�IEI�
n �tr04rCi�Y 7i 00 a:SC1gN
Load Case A (Transverse) Load Case B (Longitudinal) Load Case A (Transverse) Load Case 8 (Longitudinal)
Basic Laod Cases TorsionaLLoad Cases
STRUCTURAL CALCULATIONS
�il
Basic Load Case A(Transverse Direction)
Area
Pressure (k) with
Surface
(rt)
(+GCpi)
(-GCpi)
1
990
6.61
14M
2
2337
-43.46
-25.48
3
2337
-31,38
-13.39
4
990
-12.05
-4.43
1E
110
1.33
2.18
2E
260
-6.94
-4.94
3E
260
-4.57
-2.57
4E
110
-1.79
-0-94
Horiz-
17.88
17.88
£
Vert
-83.15
-44.67
Min, wind
Horiz,
28.80
28.80
28.44
Vert
-80.00
-80.00
Rnair I Hari raea R I nnn it. Ed in al nirartinnl
Area
Pressure (k) with
Surface
(rtz)
(+GCpi)
(-GCpi )
2
2337
-43.46
-25.48
3
2337
-27.48
-9 49
5
608
2.86
7.54
6
608
-611
-143
2E
260
-6 94
-4.94
3E
260
-3.94
-194
5E
117
1.08
1.98
6E
117
1 -1,53
-0.63
Horiz.
11.57 11.57
Vert.
-68.75 -32,37
Min wind
Horiz.
11.60 11,60
2844
Vert
-80.00 -80.00
T-innal I narf race A trmnsuamp nfvnrfS n1 Torsional Load Case H fLonaitudinal Direciionl
Area
Pressure (k) with
Torsion (ft-k)
Surface
1
440
2.94
6.32
66
142
2
1038
-19.32
-11.32
-117
-69
3
1038
-13.94
-5-95
85
36
4
440
-5.36
-1-97
121
44
1 E
110
1.33
2.18
60
98
2E
260
-6.94
-4.94
-84
-60
3E
260
-4 57
-2.57
55
31
4E
110
-1.79
-0.94
80
42
1T
550
0.92
1.98
-23
-49
2T
1298
-6.04
-3.54
41
24
3T
1298
-4.36
-1.86
-29
-13
4T
1 550
1 -1.67
1 -0.62
-42
-15
Total Horiz. Torsional Load, MT
212
212
Area
Pressure (k) with
Torsion (rt-k)
Surface
(rt')
(+GCpi)
(-GCoi)
(+GCoi)
(-GCpi)
2
2337
-43.46
-25.48
-29 1
-17
3
2337
-27.48
-9.49
19
6
5
246
1.15
3.04
11
29
6
246
-2.47
-0.58
23
5
2E
260
-6.94
-4.94
89
63
3E
260
-3.94
-1.94
-50
-25
5E
117
1.08
1.98
24
44
6E
117
-1.53
-0.63
34
14
5T
363
0.43
1.12
5
-13
6T
363
-0.91
1 -0.21
-10
-2
Total Horiz. Torsional Load, MT
104.6
1 104.E
Design pros suresfor eomponents andclad din q r L4 'r'-r 1t3�'
p= qhI (G Cp) - (G Cpi)] g 1' f 1 l I 1 r
where: p = pressure on component. (Eq. 30.4-1, pg 318) '° I : s t �°"`; g �; a Z; 2
Amin = 16.00 psf (ASCE 7-10 30 2.2)
G Cp= external pressure coefficient. Wa113
see table below. (ASCE 7-10 30.4.2) Roof Roof
Zone 4 1 Zone 5
Comp. S Cladding Zone 1 Zone 2 Zone 3 Zone 4 Zone 5
Pressure Positive Ne alive Posibw Negatiya Positive Negative Positive Negatiwl Positive Wgative
( par ) 16.00 -22.14 16.00 -35.42 16.00 -53.70 23.54 -25.68 23.54 -30.41
STRUCTURAL CALCULATIONS
CALIFORNIA BUILDING CODE
MAXIMtJM CONSIDERED EARTHQUAKE
GROUND MOTION FOR REGION
�b!
i
STRUCTURAL CALCULATIONS
Design Maps Summary ReportZ SGS
View Detailed Re0art
User -Specified Input
Building Code Reference Document 2012 International Building Code
(w,hkh utilizes USGS hazard data available in 2DC8)
Site Coordinates 33.72932°N, 116.38154°W
Site Soil Classification Site Class D - "Stiff Soil -
Risk Category IJII/III
aum
Rancho Mirage
O alm Desert
mapquest
USGS-Provided Output
r
rmuda
CIA E R I CA
VO
L �
C:
02e14t'�
0 NAPQ;jMrt
Ss = 1.500 g S,,, = 1.500 g Sus = 1.000 g
S, = 0.644 g SM, = 0.966 g SD3 = 0.644 g
For information on how the SS and S1 values above have been calculated from probabilistic (risk -targeted) and
deterministic ground motions in the direction of maximum horizontal response, please return to the application
and select the'2009 NEHRP" building code reference document.
MCEe Response Spectrum
1.65
1 50
1.35
1.20
1.05
a 0 90
y 0.75
p 60
0.45
0 30
0.15
0.00
0.00 0.20 OAD 0.60 0.90 1.00 1.20 1.40 1.60 1.80 z00
Period, T (sec)
Design Response Spectrum
0-00 0.70 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
Period, T (sec)
Although this information is a product of the U.S. Geological Survey, vie provide no warranty, expressed or implied,
as to the accuracy of the data contained therein. This tool is not a substitute for technical subject -matter
knoWedge.
STRUCTURAL CALCULATIONS
SITE CLASS DEFINITION= D
OCCUPANCY CATEGORY = II
SEISMIC DESIGN CATEGORY = D
PALM DESERT CALIFORNIA _ 92201
0.2 seg Ss=150%g 1.0 seg S1 60%g
SDs= 2/3 X SMS SDI = 2/3 X SM1
t -
SDs = 1.07
SDI = 0.6
R = 6.5 TABLE 12.2 ASCE 7-11
IE = 1.0
t= 0.2
ASCE
BASE SHEAR V=CsW 0.165W (12.8-1)
Cs = SDS / (R/IE) 0.165 (12.8-2)
NOT EXCEED
Cs = SDI / T( R/IE) 0.462 (12.8-3)
NOT LESS THAN
Cs =0.01 0.010 (12.8-5)
V= 0.16 W
STRUCTURAL CALCULATIONS
SEISMIC (CONTINUED)
D. L.
ROOF 19 psi
REDUNDANCY FACTOR 1.3
SEISMIC. V,= 0.21
DIAPH=42x30
TRANSVERSEL
WORST 42 FT WORST 30
ROOF = 798
1 Walls = 67.5
865.5
X 0.208
180 # ft ( MAX)
EXT. WALLS '15
WALL HT = 9 ft
LONGITUDINAL
FT
ROOF = 570
1 Walls = 67.5
638
X 0.21
133 # ft (MAX)
EISMIC=180PLF >186= WIND
W= 186
T= C= W L A 2/ 8 b L= 30 = 498.2142857
B = 42
NAIL = TABLE 23-III-C-2
TOTAL NAIL = LOAD /NAIL= 2.657
PROVIDE (8 PAIR) 16 d COMMON
@ E.A 4'-0" SPACE @ TOP CHORDS
STRUCTURAL CALCULATIONS
SHEAR WALL REQUIREMENTS
ROOF D L = 19
FT
_
WALLS D L = 15_
WALL HT,,1 = 95
...
.. LIP41FF FORMULA:
APPENDDI D
(NiP3(WU L^212)+(WMnffl/L
STRENGTH REDUCTION FACT
SHEAR= e05
0.85' 850.1.33.121shear
Force
Sr
MR
WALL UT.FORCE
TMB AREA
TOTAL FORCE
TOTAL
RESGT,WALL
SHEAR FORCE
LOAD (V)
UPLIFT FORCE +VEnR WAii
MOIDOVYN
A35
Y4'90LT
STRUC
M. PLF
F[
LB
WALL IFII
FT L
#/11
WALL-SEG
B TYPE
TYPE
EA BLOCK
SPACING (iry
NDIFS
A 186
11
2046
21
17
97
1656
•312
1
HALQ
1
48
1
ik 11!s
11
20AG
21
4
97
390
Ube
1
KDl12
1
48
T
B 186
12
2232
14
85
159
1355
614
1
HDm
1
40
1
B 186
12
2232
14
55
159
877
11147
1
HDU2
1
49
1
C 106
32
5962 _
_ 31
20
192 _
3840
.2297.
1
HOW
i
48
1
C 186
32
5952
31
11
192
2112
-464
1
HDICI
1
48
1
U 1WS
2A
4464
165
3.5
271
947
198E
2
HDL72
c
48
1
* 185
24
4464
165
6.5
271
1759
1530
2
HDLq
1
48
1
1135
24
4464
165
6.5
271
1759
1530
2
11IDL2
1
4B
1
E HIS
4
744
4
4
186
744
1617
1
Hom
1
48
1
F 1@6
8
1488
7.5
7.5
198
1488
1455
1
}0H
1
48
1
G 186
19
1660
9
4.5
207
930
1629
1
HOL2
1
48
1
G 186
10
1860
9
4.5
207
930
1629
1
HO12
1
48
H 1B6
21 _
3906
36
12
_ 109 :.
1302,
.. -621 ..
1
FdIR
i
H 186
21
31im
36
12
109
1302
b21
1
HDU2
1
48
1
H 106
21
39M
36
12
109
1302
-621
1
"%q
1
48
1
1 186
15
2790
21
4
133
531
833
1
FJOU2
1
48
1
1 185
15
Va6
21
5
133
664
737
1
FOLQ
1
48
1
1 185
15
27X
it
7.5
133
996
498
1
Kxn
1
48
1
1 186
15
2790.
21
5
133
664
737
1
HDL12
1
48
1
K 186
12
2272
4
8
279
2232
1992
2
HDLr2
1
4B
T
L 186
12
7237
S
9
246
2232
1621
1
HOW
1
48
4
M 106
12
2232
10
5
223
1116
1691
1
HDU2
1
48
1
M 185
12
2232
10
5
223
1116
1691
1
HDL12
1
48
1
STRUCTURAL CALCULATIONS
a
FT
WALL HT,1 = 9.5 UPLI F7 FORMULA:
(Vh-(213 (wb LA2/2)+(WwU2)))/ L
TOTAL
RE5IST,WALL
SHEAR FORCE
LOAD (V)
WALL
Vh
Wb
213(WbL^2)2)
WwLl2
UPLIFT. FORCE
WALL (Ft,
FT L.
# I
_
WALL- SEG
NO.
#
21
17
97
1656
A
15735
209
20234
1211
-312
21
4
97
390
A
3702
209
1120
285
598
14
8.5
159
1355
B
12874
228
5518
606
818
14
5.5
159
877
B
8330
228
2310
392
1047
31
20
192
3840
C
36480
608
81472
1425
-2297
31
11
192
2112
C
20064
608
24645
784
-464
16.5
3.5
271
947
D
8996
456
1871
249
1988
16.5
6.5
271
175%
D
16706
456
6454
463
1530
16.5
6.5
271
1759
D
15706
456
6454
463
1530
4
4
186
744
E
7068
76
407
285
1617
7.5
7 5
198
1488
F
14136
152
2864
534
1455
9
4.5
207
930
G
8835
190
1289
321
1629
9
4 5
207
930
G
8835
190
1289
321
1629
36
12
109
1302
H
12369
399
19248
855
-621
36
12
109
1302
H
12369
399
19248
855
-621
36
12
109
1302
H
12369
399
19248
855
-621
21
4
133
531
1
5049
285
1528
285
833
21
5
133
664
1
6311
285
2387
356
737
21
7.5
133
996
1
9466
285
5370
534
498
21
5
133
664
1
6311
285
2387
356
737
8
8
279
2232
K
21204
228
4888
570
1992
9
9
248
2232
L
21204
228
6187
641
1621
10
5
223
1116
M
10602
228
1910
356
1691
10
5
223
ilia
M
10602
228
1910
356
1691
STRUCTURAL CALCULATIONS
SHEAR WALL CONSTRUCTION
D1/2" GYPSUM WALL BOARD APPLIED DIRECTLY TO 2x STUDS WITH STANDARD WALL BOARD
NAILS (1 1/2" x 0.12" DIAMETER w/ 3/8" HEADS) OR 5d COOLER NAILS AT 7" O/C MAX. TO ALL
STUDS, SILLS, PLATES AND BLOCKING. ANCHOR w/ 5/8" DIAMETER x 10" LONG ANCHOR BOLTS
(w/ 3" x 3" x 0.229" THICK PLATE WASHERS BETWEEN NUT AND WOOD SILL) @ 6'-0" O/C MAX
16" O.C. FRAMING
ALLOWABLE LOAD: 75 pif — PER CBC 2016 TABLE 2306.3(3)
7/8" PORTLAND CEMENT PLASTER ON WOVEN WIRE OR EXPANDED METAL LATH NAILED
AT EACH STUD, SILL AND PLATE @ 6" O/C MAX. w/ No. 11 x 1%" GALVANIZED NAILS WITH
7/16' DIAMETER HEADS OR ATTACHED w/ No. 16 GAUGE STAPLES HAVING 7/8" LONG LEGS.
ANCHOR w/ 5/8" DIAMETER x 10" LONG ANCHOR BOLTS 7" EMBED MIN (w/ 3" x 3" x 0.229"
THICK PLATE WASHERS —SDC D ,BETWEEN NUT AND WOOD SILL) @ 48" O/C MAX. 16" O.C.
FRAMING
ALLOWABLE LOAD: 180 plf — PER 2016 CBC TABLE 2306.3(3)
THE NEXT THREE (3) SHEAR WALL TYPES SHALL ALL HAVE THE FOLLOWING IDENTICAL
STRUCTURAL I WOOD PANEL DIAPHRAGM: (WALL1 , 2 & 3 ONLY)
3/8" C-D EXPOSURE I APA PLYWOOD OR 3/8" ORIENTED STRAND BOARD APPLIED DIRECTLY TO
THE STUDS, WITH THE LONG DIMENSION OF FULL PANELS LAID PARALLEL OR PERPENDICULAR
TO THE LENGTH OF THE STUDS, ALL EDGES OF EACH PANEL SUPPORTED ON STUDS, SILLS,
PLATES OR BLOCKING AND NAILED AND ANCHORED AS FOLLOWS:
1 D8d COMMON NAILS @ 6" O/C AT ALL PANEL EDGES AND 8d COMMON NAILS @ 12" O/C AT ALL
FIELDS. ANCHOR WITH 5/8" DIAMETER BY 12" LONG ANCHOR BOLTS AT 481, O/C.
(ALLOWABLE LOAD: 280 plf — PER 2016 CBC TABLE 2306.3) *
CONSTRUCTION NOTE(S) 1 & 2 APPLY (NOTES 3,4 AND 6 APPLY ONLY WHEN DIAPHRAGM
AT BOTH SIDES )
2 D8d COMMON NAILS @ 4" O/C AT ALL PANEL EDGES AND 8d COMMON NAILS @ 12" O/C AT ALL
FIELDS. ANCHOR WITH 5/8" DIAMETER BY 12" ANCHOR BOLTS AT 32" O/C.
(CALCULATE TO MAXIMUM OF 349 plf — PER 2016 CBC TABLE 2306.3) STUDS @16" O.0
CONSTRUCTION NOTE(S) 1 & 2 APPLY (NOTES 3, 4, 5 AND 6 APPLY WHEN DIAPHRAGM AT
BOTH SIDES)
3 D8d COMMON NAILS @ 3" O/C AT ALL PANEL EDGES AND 8d COMMON NAILS @ 12" O/C AT ALL
FIELDS. ANCHOR WITH 5/8" DIAMETER BY 12" LONG ANCHOR BOLTS AT 32" O/C.
(ALLOWABLE LOAD: 550 plf — PER 2016 CBC TABLE 2306.3)
CONSTRUCTION NOTE(S) 1, 2, 3 & 6 APPLY (NOTES 4 & 5 APPLY WHEN DIAPHRAGM AT
BOTH SIDES)
NOTE VALUES ARE APPLICABLE TO DOUGLAS FIR LARCH FRAMING @ 16" O.0
STRUCTURAL CALCULATIONS
4 D15/32" STRUCT. I APA PLYWOOD OR 15/32" ORIENTED STRAND BOARD (OSB) APPLIED
DIRECTLY TO THE STUDS, WITH THE LONG DIMENSION OF FULL PANELS PARALLEL OR
PERPENDICULAR TO THE LENGTH OF THE STUDS, ALL EDGES SUPPORTED ON STUDS, SILLS,
PLATES OR BLOCKING AND NAILED AND ANCHORED AS FOLLOWS: 8d COMMON NAILS @ 2" O/C
AT ALL PANEL EDGES AND 8d COMMON NAILS @ 12" O/C AT ALL FIELDS. ANCHOR WITH 3/4'
DIAMETER ANCHOR BOLTS AT 16" 0/C. —STATE EMBEDDED DISTANCE 7" MIN
(ALLOWABLE LOAD: 730 plf — PER 2016 CBC TABLE 2306.3) *
CONSTRUCTION NOTE(S) 1, 2, 3, & 6 APPLY (4 AND 5 APPLY WHEN DIAPHRAGM AT BOTH
SIDES)
CONSTRUCTION NOTES:
1 3" x 3" x 0.229" PLATE WASHERS SHALL BE PROVIDED BETWEEN ALL ANCHOR BOLT NUTS AND
THE WOOD SILL.
2 SEE ANCHOR BOLT CALCULATIONS FOLLOWING THESE NOTES IN THE CALCULATIONS.
3 EDGE NAILING AT ABUTTING PANEL EDGES FOR WALLS LOADED IN EXCESS OF 350 plf SHALL
BE APPLIED TO 3x OR WIDER STUDS.
4 APPLYING EQUAL THICKNESS STRUCTURAL WOOD PANELS TO BOTH STUD FACES OF A
SHEAR WALL AND WITH MATCHING NAILING FOR BOTH SIDES SHALL PROVIDE DOUBLE THE
LOAD CAPACITY OF WALLS HAVING THE SAME PANELS AND NAILING APPLIED TO ONLY ONE
FACE.
5 STRUCTURAL WOOD PANEL SHEAR WALLS WITH PANELS APPLIED TO BOTH FACES AND WITH
EDGE NAILING LESS THAN 6" O/C SHALL HAVE ABUTTING PANEL EDGES FOR ONE SIDE OFFSET
ONE STUD SPACE FROM THE OTHER SIDE (NOTE No. 3 ALSO APPLIES)
6 ALL SHEAR WALLS HAVING A LOAD CARRYING CAPACITY IN EXCESS OF 350 plf SHALL BE
PROVIDED WITH 3x P.T.D.F. SILL PLATES AND 12" LONG ANCHOR BOLTS OF THE DIAMETER
PROSCRIBED FOR THAT WALL CONSTRUCTION TYPE (ALL ANCHOR BOLTS SHALL BE SET 7"
INTO CONCRETE)
7 WHERE THE CONTRACTOR DESIRES TO CONSTRUCT THE SLAB -ON -GRADE AND THE
FOOTINGS AND FOUNDATION IN A TWO POUR SYSTEM, ALL ANCHOR BOLTS SHALL HAVE A
MINIMUM LENGTH OF 14", SETTING THEM A MINIMUM OF 4" INTO THE TOP OF THE
FOUNDATIONS BEFORE POURING THE SLAB.
8 ALL ANCHOR BOLTING, HOLDOWN BOLTS OR STRAPS AND OTHER FORMS OF CONCRETE
INSERTS SHALL BE SECURELY HELD IN PLACE WITH JIGS OR OTHER SUCH DEVISES PRIOR TO
REQUESTING FOUNDATION INSPECTION, DURING INSPECTION AND DURING ACTUAL
POURING OF CONCRETE.
9 ALL ANCHOR BOLTS AND HOLDOWN BOLTS SHALL BE BROUGHT PLUMB PRIOR TO THE
CONCRETE HARDENING. MECHANICAL STRAIGHTENING OF BOLTS AFTER THE CONCRETE
HAS HARDENED THAT RESULTS IN SLAB EDGE BREAKING SHALL RESULT IN REJECTION OF A
PORTION OF THE SLAB AND FOUNDATION BY THE ARCHITECT OR STRUCTURAL DESIGNER OF
RECORD AS HE DEEMS NECESSARY, IT'S REMOVAL AND REPOURING OF THAT PORTION OF
THE CONCRETE.
10 HOLDOWN STRAP HOOKS SHALL BE STABLIZED DURING THE CONCRETE POUR IN ORDER TO
ENSURE THEY REMAIN AT THE MANUFACTURER'S PROSCRIBED ANGLE OF INSERTION.
11 ATTACHMENT OF A 3x SILLPLATE TO FLOOR FRAMING BELOW SHALL BE MADE WITH THE USE
OF SIMPSON SDS'/<x6 WOOD SCREWS AT 3" o/c.
12 ATTACHMENT OF A 2x SILL PLATE TO FLOOR FRAMING BELOW SHALL BE MADE WITH THE USE
OF 16d @ SPACING INDICATED AT THE SHEAR WALL TABULATION.
STRUCTURAL CALCULATIONS
F24
TABLE 23N2.1(1)
ALLOWABLE SHEAR (POUNDS PER FOOT} FDA WOW STRUCTURAL PANEL DIAPHRAGMS WITH
FRAMING OF DOUGLAS FIR -LARCH. OR SOUTHERN PINE- FOR WIND OR SEISMIC LOADING"
BLOC%EDDIAPHO..
llNBLUCKIDDIAP}IRA(IMs
PANEL
I GRADE
Structural)
MINIMUM
COMMON NAIL = FASTENER
SRE OR STAPLE' ' PENETRATION
LENGTH AND IN FRAMING
GAGE (i-chea7
8df2'I"x0,131"7 1'!e
NOMINAL Fwbnnap i giirwhu)etdWpMegmbounderi"(elloawI.
WIDTH OF at 0WInuo" PenA edge t pemilal In load
FRAMING
MEMBERS AT '..:.-•�C°se. 41, and alas! pnnel,.edgda.: Cawi•fi,_6y'
MINIMUM ADJOINING a 4 7'a` _. 7°
NOMINAL PANEL Featerler ypaeinq {ixaes)atok7ar I edges
PANEL EDOES AND pa"°
T1gG1INE8B BOUNDARIES. {C aaea 1.2 9 and a
-
finds IneMa 6 •�d i f
2 27D 360 530 60()
Fat .ry, ad 6" mes. at.qu ad ed�ae
C— Y
(No unblocked edges All other
or conHou! Mats oonNu* qetiona
ml
rasa W to le!D (C!�ea 2i 9 4. 6 and 6
240 180
3
3(N)
�40()
600
677
265
155
206 .....
115
1112 16 Gage
i
175
235
?SD
400_
3
2fX)
265
395
.
450
175
130
grades
.._....�._.......�..�
IV, 16 Gage
1
"/,2
2
�
320
36.
42
480
64U
� ---�
......-zD _.
730
8zn
285
215
—.
3, o..:.............., .
-
2a1
2 Y
175
23S
350
4(10
135
120
130
3
200
265
795
450
175.
. 6d°f2"x0-1130
1It
2
3
185
Z10
2,50
280
---
375
42f]
420 1
^475
165
12-5
_ 140
185
8d(2'/� x0.131")
1'Jr
/ s
2
24f1. ..
320
.480
I. 545
Y _
3
,...._.
270
...........................
360_ _
•'T••2J0
.......
540
......::
610
�....
s 240
1R0
Il/,16Gage
1
2
160
315
3611
! i40
105
3
1fi0
235
353
400
160
120
Sheathing, single
0oorandother
86(2112"x011311)
13IL
7.
/ie
2 .._.._.,
255
34D
O5 ...
S75
230
170
3
285
380
570
645
255
190
1 I/� 16 Gage1
2
165
225
335
380
1%
.110
3
190
250
375
425
1 165
1:21
grades covered. in
I)(.KPS1and
PS 2
(2'lr"x0.13Y)
1%
2
270
-w ..
.._._
.: 530
_.._.
fi0fl
I 240
}dD.
--
3
300 .
40U
600
675
2bS
200
10di5 (3" x 0-148")
1'/2
__
2
290
395
575
655
......................
255
190
Is/.0
3
325
430
650
735
290
215
131216Gage
- 1
2
i6l)
210
315
360
140
105
3 .,_,.
180
235
355
405
160
120
_
w13t
320
425
480
640
_1
73
R20
.......
3
:w
720
320
_____,._.......��
240
L�hi[iCage
1
—2
3
17
335
•_• 265
350
.395
400
155
115
200
450
l _ 175
130
eonfinued
STRUCTURAL CALCULATIONS
FOUNDATION
SOIL PRESSURE = 1000 'PSF
LOADING
ROOF = 35
EXT. WALLS = 15
H-1 = 13 ft
TYPICAL PERIMETER FOOTING AT 1 STORY
Trib. Area (ft)=,
18
LOADING:
ROOF =
630 #1
WALL =
195 #1
W =
825 #1
REQ"D WIDTH = 0.825 FT / FT LENDTH
12" WIDE x 12" CONTIN PERIM FT,
,AND- 2 # 4 BARS, CONTIN .
FOOTING FOR POST 4x6
LOADING:
W= 3861 lb
AREA = 3.86 sf
24" SQ x12" THK FOOTING
WI 4- # 4 EA. W AY
FOOTING FOR POST 4x6
LOADING
W= 5372 lb
AREA = 5.37 sf
30" SQ x12" THK FOOTING
WI 4- # 4 EA.WAY
STRUCTURAL CALCULATIONS
FOUNDATION
12"
40" X 12" = 480SQ IN 3.3333
144 SQ IN
SOIL PRESSURE = 1000 PSF
TOTAL LOAD = 3,300.# >2925# OK
STRUCTURAL CALCULATIONS
5/8" SET-XP EPDXY ADHESIVE ANCHOR ASTEM 193 GRADE B7
hef= 1 0"
calculate static steel strength tension
per AC 1 318-05 sect D 5.1.
0 SA N sa = 0.75x 27900= 20925#
calculate static concrete breakout
strength in tension
per ACI 318-05 sect D 5.2.
0 SA N sa = 0.65x 6000 = 3900#
calculate static pullout strength in
tension per ACI 318-08 SECT D.5.3
as amended in section 4.1.4 of this repost
0, Na = 0.65x 25175 = 16360#
ACI 318-08 SECT D.4.1.2
0 N n = 3900# co=1.48
3900/1.48 = 2635 #
STRUCTURAL CALCULATIONS
m
314
CLEF
iI,91
IERE OCCURS
-IDU2
DIAM. x 14" ALL THREAD
TG W/ SET-XP (ICC 2508) EPDXY
OR 3X PLATE
EXIST CONC
EPDXY ONLY@ UPLIFT SITUATIONS
EPDXY REQUIRES OBSERVATION OF LIC
DEPUTY INSPECTOR