Loading...
BRES2015-0445 Revision 1 Structural Calcs ReconstructionSTRUCTURAL CALCULATIONS RECONSTRUCTION OF A FIRE DESTROYED RESIDENCE CITY OF U� QUINTA. BUILDING & SAFETY DEPT. APPROVED FOR CONSTRUCTION FOR: DATE 11 VE & DEBBY PFANKUCHE 52523 AVENIDA RAMIREZ LA QUINTA9 CALIFORNIA C�l CHARLES D. GARLAND, ARCHITECT LICENSE NO. 11991 EXP 10/31/17 74-991 JONI DR. SUITE #9 PALM DESERT CA 92260 PHONE:760/340-3528 FAX:760/340-3728 ;_�¢� ��.�, RECEIVE[ t * ( i No. ci1s91 1 *I, APR 0 3 2017 101311209 �f y� F. BRTE . f CITY OF LA QUINTA, COMMUNITY DEYELOPM] STRUCTURAL CALCULATIONS ❖ GOVERNING CODES.....................page 3 ❖ LOAD .......................................................Page 4 ❖ BEAM .................................................... Page 5 ❖ LATERAL ANALYSIS ........................ Page 9 ❖ SEISMIC ZONE ............................ Page 10 ❖ SHEAR WALL REQUIREMENTS.... Page 15 ❖ FOUNDATION ............................... Page 18 STRUCTURAL CALCULATIONS GOVERNING CODES A- IBC 2015 OR CBC 2016 B- DESIGN LOADS a. ROOF LIVE LOAD 20, PSF b. ROOF DEAD LOAD 19 PSF c. WIND IMPORTANCE FACTOR 1.00 WIND ZONE 110 MPH EXPOSURE C d. SITE CLASS DEFINITION (D) e. OCCUPANCY CATEGORY II f. SEISMIC DESIGN CATEGORY (E) g. COEFFICIENT Cs 0.15 h. SEISMIC Ss1.5g i. SEISMIC S10.6g j. FACTOR R 6.5 k. SEISMIC SDs 1.00 I. SEISMIC SD10.60 STRUCTURAL CALCULATIONS LOADS FLAT ROOF PSF TAPERED SPRAY FOAM 4 30# ROOFING FELT 1 5/8" PLYWOOD SHEATHING 3 2X12 ROOF JOIST @24" O.0 3 R-38 INSULATION 2 5/8" INSULATION 3 5/8" GYP. BD. CEILING 2 D.L.= 18 L.L= 20 TOTAL LOAD = 38 PSF ROOF ROOF TILE = 9 ROOFING FELT 0.6 5/8 OSB/ RADIAN BARRIER 2.2 TRUSSES @24" O.0 2.6 R-38 INSULATION = 1.8 5/8" GYP. BD. = 2.8 D. L = 19 L. L = 20 EXTERIOR WALLS: PSF WOOD STUDS = 2 1/2" GYP BD. = 2 7/8" STUCCO = 10 INSULATION= . 1 D.L.= 15 PSF INTERIOR WALLS: WOOD STUDS = 1/2 GYP.BD.2SIDES = INSULATION = PSF 2 3 D. L = 7 PSF STRUCTURAL CALCULATIONS BEAM DESIGN HDR#1 SPAN = 5.0 ft TRIB. AREA = 16.0 ft D.L = 19.0 lb/ft L.L = 20.0 ibM TOTAL 39.0 lb/ft DOUGLAS FIR -LARCH No 1= Load Factor Co = Wet. Service Factor CM = Temperature Factor Ct = Size Factor CF = Repetitive m. Fact. Cr = Incising Factor Ci = Shear stress Factor CH = �rffrrririiirriifrrrirriirrrrrrrroirrsumrfrarmirs�isu�.crriisrirrrriirrrirrrrr� 6.00 it BENDING F'b = Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci) F'b = 1250 psi Req' d S= M I F'b S= 18.72 i n"3 f b = M/S ALLOW F'b = ACT. f b = 1250 psi > 843.9 psi SHEAR F'v = Fv(CD)(CM)(Ct)(CH) F'v = 119 psi DEFLECTION 5WLL"4 0.07 in 384 E'I fv- 1.5V/A > f v = 77.36 psi E'= E (C-)(C,)(C•) 1700000 psi BEAM d max = L 1240 = 0.25 in Fb = 1000 psi Fv = 95 psi E = 1700000 psi 1.25 1.00 1.00 1.06 1.00 1.00 1.00 W = 624.0 lb/ft M= WxLz/8 M= 1950.0 ft-lb N�= 23400 in -lb V= W xLl2 V- 1560 lb USE 6 x 6 Area = 30.3 in"2 Section= 27.7 in"3 Moment of Inertia- 76.3 in"4 ❑K [a]:1 OK 6x 6 STRUCTURAL CALCULATIONS BEAM DESIGN HDR #2 SPAN = 6.0 h TRIB. AREA = 6.0 ft D.L = 19.0 Ib/ft 20.0 Ib/ft TOTAL 39.0 Ib/ft DOUGLAS FIR -LARCH No 1= Load Factor Co = Wet. Service Factor CM = Temperature Factor Ct = Size Factor CF = Repetitive m. Fact. Cr= Incising Factor Ci = Shear stress Factor CH _ frrrrrrriiirrrrririiirrrirrrrrirrirriirrrrrrrirrrrr�riirrrrrrrrrnrrrrrrrrrrrrErrrEriiiii� r 6.00 It BENDING F'b=Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci) F'b = 1250. psi Req'd S = M / F'b S= 10.11 in43 f b = M/S ALLOW F'b = ACT. f b = 1250 psi > 455.7 psi SHEAR F'v = Fv(CD)(CM)(Ct)(CH) F'v = 119 psi DEFLECTION 5WLL"4 0.05 in 384 E'I fv= 1.5V/A > f v = 34.81 psi E'= E (C.)(C)(C•) 1700000 psi BEAM d max = L / 240 = 0.30 in Fb = 1000 psi Fv = 95 psi E = 1700000 psi 1.26 1.00 1.00 1.06 1.00 1.00 1.00 W = 234.0 Ib/ft M= WxLZ/8 M= 1053.0 ft-lb M= 12636 in -lb V= WxL/2 V= 702lb USE 6 X 6 Area = 30.3 in"2 Section= 27.7 in"3 Moment of Inertia= 76.3 in"4 OK C�I:I OK 6 X 6 STRUCTURAL CALCULATIONS BEAM DESIGN HDR #3 SPAN = 3.0 ft TRI B. AREA = 13.0 ft ❑. L = 19.0 lb/ft L.L = 20.0 lb/ft TOTAL 39.0 lb/ft DOUGLAS FIR -LARCH No 1= Load Factor Co = Wet. Service Factor CM = Temperature Factor Ct = Size Factor CF = Repetitive m. Fact. Cr = Incising Factor Ci = Shear stress Factor CH = !llffJlJIJJIJ//Jf1YflIYIIMIll O/.Uf//ff/!////7/f19YffHf/Hf19SUl fflf/!ff!/!f!f!f//fJl IN ri BENDING F'b= Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci) F'b = 1250 psi Req' d S= M/ F'b S= 5.48 i n^3 f b = M/S ALLOW F'b = ACT. f b = 1250 psi > 246.8 psi SHEAR F'v = Fv(CD)(CM)(Ct)(CH) F'v = 1191 psi DEFLECTION 5WLL^4 0.01 in 384 E'I fv= 1.5V/A > f v = 37.71 psi E'= E (C-)(C)(G) 1700000 psi BEAM d max = L / 240 = 0.15 in Fb = 1000 psi Fv = 95 psi E = 1700000 psi 1.25 1.00 1.00 1.0[] 1.00 1.00 1.00 W = 507.0 lb/ft M= WxLZ/8 M= 570.4 ft-lb M= 6844.5 in -lb V= xL/2 V= 760.51lb USE 6 X 6 Area = 30.3 in A 2 Section= 27.7 inA3 Moment of Inertia= 76.3 in"4 OK M aK 6 X 6 STRUCTURAL CALCULATIONS 1 BEAM DESIGN HDR #4 SPAN = 4.0 ft TRI B. AREA = 14.0 ft D. L = 19.0 lb/ft L.L = 20.0 lb/ft TOTAL 39.0 lb/ft DOUGLAS FIR -LARCH No 1= Load Factor Co = Wet- Service Factor C.+ _ Temperature Factor Ct = Size Factor CF = Repetitie m. Fact. Cr = Incising Factor Ci Shear stress Factor CH BENDING F"b = Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci) F' b = 1250 psi Req' d S = M / F' b S= 10.48 in"3 f b = M/S ALLOW F' b = ACT. f b 1250 psi a 472.E psi SHEAR F'v = Fv(CD)(CM)(Ct)(CH) F'v = 119 psi DEFLECTION 5WLLA4 0.02 in 384 E'I f v = 1.5V/A > f v = 54.15 psi E'= E (CM)(C-)(C,) 1700000 psi BEAM max = L / 240 = 0.20 in Fb = 1000 psi Fv = 95 psi E = 1700000 psi 1.25 1.00 1.00 1.00 1.00 1.00 1.00 W = 546.0 lb/ft M= WxL2/8 M= 1092.0 ft-lb M= 13104 in -lb V= WxL12 V= 1092 lb USE 6 X 6 Area = 30.3 inA2 Section= 27.7 in^3 Moment of Inertia= 76.3 in"4 OK OK OK 6X 6 STRUCTURAL CALCULATIONS 'BEAM DESIGN HDR #5 SPAN = 6.0 FI TRI B. AREA = 15.0 ft D.L= 19.0 Ib/ft L. L = 20.0 Ib/ft TOTAL 39.0 Ib/ft DOUGLAS FIR -LARCH No 1= Load Factor Co = Wet. Service Factor CM = Temperature Factor Ct Size Factor CF = Repetitive m. Fact. Cr = Incising Factor Ci = Shear stress Factor CH = iiiiiirirrrrrrriiiirfrrrrrrrrrrrrrrrrrrriiiiirirfrsrfrrirrrrririrrirrrrrrfrrrrirrrrrrrrrri coo- n BENDING F"b = FbxtCD)(CM)(Ct)(CF)(Cr)(Ci) F'b = 1250 psi Req'd S = M / F'b S= 25.27 in"3 f b = WS ALLOW F'b = ACT. f b = 1250 psi a 612.7 psi SHEAR F'v = Fv(CD)(CM)(Ct)(CH) F'v = 119 psi DEFLECTION 5WLL14 0,05 in 384 E' I fv= 1.5V/A > f v = 63.82 psi E'= E (C-)(C)(C) 1700000 psi BEAM L max = L / 240 = 0.30 in Fb = 1000 psi Fv = 95 psi E = 1700000 psi 1.25 1.00 1.00 1.06 1.00 1.00 1.00 W = 585.0 Ib/ft M= WxL2/8 M= 2632.5 ft-lb M= 31590 in -lb V= WxL/2 V= 1755 !b USE 6 X 8 Area = 41.3 in"2 Section= 51.6 in"3 Moment of Inertia= 193 in"4 OK M OK 6X 8 STRUCTURAL CALCULATIONS BEAM DESIGN BEAM #1 SPAN = 16. ❑ ft lR[B. AREA = 6.0 ft D.L = 19.0 lb/ft L. L = 20.0 lb/ft TOTAL 39.0 lb/ft I010111t]W_149lliaW 19-0 C■d" O e Load Factor Cr, = Wet. Service Factor Chi _ Temperature Factor Ct = Size Factor CF = Repefitive m. Fact. Cr = Incising Factor Ci = Shear stress Factor CH �,tlD it BENDING F'b = Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci) F'b = 1250 : psi Req'd S = M / F'b S= 71.88 in^3 f b = M/S ALLOW F'b = ACT. f b = 1250.psi > 741.4 psi SHEAR F'v = Fv(CD)(CM)(Ct)(CH) F'v = 119 psi DEFLECTION 5WLL"4 029 in 384 E' I fv=.1.5V/A v = 44.40 psi E'= E (CM)(C-)(0) 1700000 psi BEAM d max = L / 240 = 0.80 in Fb = 1000 psi Fv = 95 psi E = 1700000 psi 1.25 1.00 1.00 1.00 1.00 1.00 1.00 W = 234.0 lb/ft M=WxL7/8 M= 7488.0 ft-lb M= 89856 in -lb V= W xL/2 V= 1872 lb USE 6 X 12 Area = 63.3 inA2 Section- 121 in"3 Moment of Inertia= 697 in"4 OK OK OK 6X 12 STRUCTURAL CALCULATIONS BEAM DESIGN BEAM #2 SPAN = 9.0 ft TRI B. AREA = 22.0 ft D.L = 19.0 lb/ft L.L = 20.0 lb/ft TOTAL 39.0 lb/ft f7i!tic Z461ty- 121c(al17,&wry 110111C tie Load Factor Co = Wet. Service Factor CM = Temperature Factor Ct = Size Factor Cr = Repetitive m. Fact. Cr = Incising Factor Ci = Shear stress Factor CH = a$a-mni 9.d0 it BENDING F"b = Fbx(CD)(CM)(Ct)(CF)(Cr)(Ci) F'b = 1250 psi Req'd S. = M I F"b S= ALLOW F'b = 1250 ps' QF# 135-0 ��> — cv SHEAR �6 F"v = Fv(CD)(CM)(Ct)(Cl-� Akck L�O F"v = 119 psi DEFLECTION C3CA"HJ 83.40 in^3 f b = M/S ACT. f b = Fb = 1000 psi Fv = 95 psi E = 1700000 psi 1.25 1.00 1.00 1.0d 1.00 1,00 1.00 W = 858.0 lb/ft M= WxLr/8 M= 8687.3 ft-lb al2•q •-15!61 M= 104247 in -lb V= WxL/2 V= 3981`Ib S 5Cr f b 711Xti- 44w}v'r ' USE 5vJy. W/N)(41005'-0f 6 X 12 Area = 63.3 in^2 ineAJ'C"�- Section= 121 in^3 Moment of Inertia= 697 in^4 > 9Y"' ' psi OK > ! zK0 Vr+y cksf— Coe) vf ;11c4* Stli wcl?k y fv= 1.5V/A > f v = 91.57 psi OK 5WLL^4 = 0.11 in 384 E'I E"= E (CM)(C)(C) 1700000 psi d. max = L / 240 = 0.45 in OK BEAM 6 X 12 ❑k STRUCTURAL CALCULATIONS COLUMN DESIGN 800 Column = DOUGLAS FIR -LARCH No 2- -le = 8.0 LOAD 3861 lb Load Factor Co = 1.25 Wet. Sery Factor CM = 1.00 TOTAL 3861.0 lb Bucking Stiffeners Ct= 1.00 P Size Factor CF = 1.00 Incising Factor Ci = 1.00 KIE = 0.30 Buckling and Crushing Interaction c = 0.80 Fc* = z Fc(CD)(CM)(Ct)(CF)(Cr)(Ci) Fc* = 781.25 psi Euler Critical Buckling Stress for Columns FCE = KCE E = 638.0208 psi (le / d)^2 Column Stability Factor Cp= Cp = 1 + FCE /Fc* — I 1 + FCE/Fc* A 2c 2c Cp = 0.6174 F'c = Fc (CP)(CD)(CM)(Ct)(CF)(Cr)(Ci) F'c = 482 psi P = F'c *A = 9285.17 Fc = 625 psi E = -1600000 psi USE 4 X 6 Area =, 19.3 inA2 d = 3.51 in FCE/ Fc* c OK P =' 3861.0 COLUMN 4 X 6 STRUCTURAL CALCULATIONS COLUMN DESIGN Column = DOUGLAS FIR -LARCH No 2= Fc 625 psi le = 8.0 ft E 600000 psi LOAD 5372 lb Load Factor CD = 1.25 Wet. Sery Factor CM = 1.00 TOTAL 5372.0 lb Bucking Stiffeners Ct= 1.00 P Size Factor CF = 1.00 Incising Factor Ci = 1.00 K.E = 0.30' Buckling and Crushing Interaction c = 0.86, Fc*=,Fc(CD)(CM)(Ct)(CF)(Cr)(Ci) Fc* = 781.25 psi Euler Critical Buckling Stress for Columns F,,E = KBE E = 638.0208 psi (le / d)"2 Column Stability Factor Cp= Cp = 1 + FCE /Fc* — 1 + FEE/Fc* ^2 2c fXr2c Cp = 0.6174 USE 4 X 6 Area = 19.3 in^2 d = 3.51 in FCE/ Fc* c F'c = Fc (CP)(CD)(CM)(Ct)(CF)(Cr)(Ci) F'c = 482 psi P = F'c *A = 9285,17 OK P = 5372.0 COLUMN 4 X 6 STRUCTURAL CALCULATIONS F14 Wind Analysis for Low-rise Building, Based on ASCE 7-2010 IBC 2015 CBC 2016 ASCE 7-10. WIND: 110 mph Exposu re C ENCLOSED qz= 0.00256X Kz Kzt Kd V12 I INPUT DATA Exposure category (8, C or D, ASCE 7-10 26.7.3) Importance factor (ASCE 7-10 Table 1.5-2) Iw = 1.00 Basic wind speed (ASCE 7-10 26.5.1 or 2012 IBC) V = 110 ` Topographic factor (ASCE 7-1026.8 &Table 26.8-1) Kt = 1.00 Building height to eave he = 8 Building height to ridge hr = 12 10'-0" qh = velocity pressure at mean roof height, h. (Eq. 28.3-1 page 298 & Eq. 30.3-1 page 316) K;, = velocity pressure exposure coefficient evaluated at height, h, (Tab. 28.3-1, pg 299) - 0.85 K,. = wind directionality factor. (Tab. 26.6-1, for building, page 250) = 0.85 h = mean roof height = 10.00 qz= 22.38 PSF WIND LOAD = q;e`(1Ef2E+3E+4E+0.181F92 ANALYSIS WIND LOAD= 186 # ft p = qh I(G Cpf )-(G Cpi )] Owe: p = pressure in appropriate zone. (Eq. 28.4-1, page 298) Amin = 16 psf (ASCE 7-10 28.4.4) G Cpf = product of gust effect factor and external pressure coefficient, see table below. (Fig. 28.4-1, page 300 & 301) G Cp i = product of gust effect factor and internal pressure coefficient.(Tab. 26.11-1, Enclosed Building, page 258) a = width of edge strips, Fig 28.4-1, note 9, page 301, MAX[ MIN(0.1 B, 0.1L, 0.4h), MIN(0,04B, 0.04L), 3] = Net Pressures Roof Surface G Cpf 1 0.49 2 -0.69 3 -0.45 4 -0 39 , Basic Load Case ile 0 = 15.64 Net Pressure with (+GCp;) (-GCp; ) 6.68 14.37 -18,60 -10.90 -13.43 -5.73 -12.17 -4.48 Roof an le 0 = 0.00 Net Pressure with GCp' (-GC.,) (-GC ;; -0.45 -13.47 -5.77 -0.69 -18.60 -10.90 -0.37 -11.76 -4,06 -0.45 -13.47 -5.77 0.40 4.70 12.40 -0.29 -10.05 -2.35 1E 1 0.74 12.08 19.77 1 -0.48 -14.11 -6.41 2E 1 -1.07 -26.73 1 -19.03 1 -1.07 -26.73 -19.03 a u r� rk 1!lrnKMY C}MC1 1r Rjplp([COMM ��4 0nariP' $° � lelrl 0�lCCn(M Net Pressures (psf), Torsional Load Cases I Roof an Surface G Cpf 3le 0 = 15.64 Net Pressure with (+GC i) (-GCp, ) 1T 2T 3T 4T 0.49 -0.69 -0.45 -0.39 1.67 -4,65 -3.36 j -3.04 3.59 -2.73 -1.43 -1.12 Surface Roof an jle 6 = 0.00 GCpf Net Pressure with (+GCpi) (-GC i) 5T 0.40 1.18 3.10 h •_+fir d F it prt(p>�C( OOMR RETFOR�CI O=�IEI� n �tr04rCi�Y 7i 00 a:SC1gN Load Case A (Transverse) Load Case B (Longitudinal) Load Case A (Transverse) Load Case 8 (Longitudinal) Basic Laod Cases TorsionaLLoad Cases STRUCTURAL CALCULATIONS �il Basic Load Case A(Transverse Direction) Area Pressure (k) with Surface (rt) (+GCpi) (-GCpi) 1 990 6.61 14M 2 2337 -43.46 -25.48 3 2337 -31,38 -13.39 4 990 -12.05 -4.43 1E 110 1.33 2.18 2E 260 -6.94 -4.94 3E 260 -4.57 -2.57 4E 110 -1.79 -0-94 Horiz- 17.88 17.88 £ Vert -83.15 -44.67 Min, wind Horiz, 28.80 28.80 28.44 Vert -80.00 -80.00 Rnair I Hari raea R I nnn it. Ed in al nirartinnl Area Pressure (k) with Surface (rtz) (+GCpi) (-GCpi ) 2 2337 -43.46 -25.48 3 2337 -27.48 -9 49 5 608 2.86 7.54 6 608 -611 -143 2E 260 -6 94 -4.94 3E 260 -3.94 -194 5E 117 1.08 1.98 6E 117 1 -1,53 -0.63 Horiz. 11.57 11.57 Vert. -68.75 -32,37 Min wind Horiz. 11.60 11,60 2844 Vert -80.00 -80.00 T-innal I narf race A trmnsuamp nfvnrfS n1 Torsional Load Case H fLonaitudinal Direciionl Area Pressure (k) with Torsion (ft-k) Surface 1 440 2.94 6.32 66 142 2 1038 -19.32 -11.32 -117 -69 3 1038 -13.94 -5-95 85 36 4 440 -5.36 -1-97 121 44 1 E 110 1.33 2.18 60 98 2E 260 -6.94 -4.94 -84 -60 3E 260 -4 57 -2.57 55 31 4E 110 -1.79 -0.94 80 42 1T 550 0.92 1.98 -23 -49 2T 1298 -6.04 -3.54 41 24 3T 1298 -4.36 -1.86 -29 -13 4T 1 550 1 -1.67 1 -0.62 -42 -15 Total Horiz. Torsional Load, MT 212 212 Area Pressure (k) with Torsion (rt-k) Surface (rt') (+GCpi) (-GCoi) (+GCoi) (-GCpi) 2 2337 -43.46 -25.48 -29 1 -17 3 2337 -27.48 -9.49 19 6 5 246 1.15 3.04 11 29 6 246 -2.47 -0.58 23 5 2E 260 -6.94 -4.94 89 63 3E 260 -3.94 -1.94 -50 -25 5E 117 1.08 1.98 24 44 6E 117 -1.53 -0.63 34 14 5T 363 0.43 1.12 5 -13 6T 363 -0.91 1 -0.21 -10 -2 Total Horiz. Torsional Load, MT 104.6 1 104.E Design pros suresfor eomponents andclad din q r L4 'r'-r 1t3�' p= qhI (G Cp) - (G Cpi)] g 1' f 1 l I 1 r where: p = pressure on component. (Eq. 30.4-1, pg 318) '° I : s t �°"`; g �; a Z; 2 Amin = 16.00 psf (ASCE 7-10 30 2.2) G Cp= external pressure coefficient. Wa113 see table below. (ASCE 7-10 30.4.2) Roof Roof Zone 4 1 Zone 5 Comp. S Cladding Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Pressure Positive Ne alive Posibw Negatiya Positive Negative Positive Negatiwl Positive Wgative ( par ) 16.00 -22.14 16.00 -35.42 16.00 -53.70 23.54 -25.68 23.54 -30.41 STRUCTURAL CALCULATIONS CALIFORNIA BUILDING CODE MAXIMtJM CONSIDERED EARTHQUAKE GROUND MOTION FOR REGION �b! i STRUCTURAL CALCULATIONS Design Maps Summary ReportZ SGS View Detailed Re0art User -Specified Input Building Code Reference Document 2012 International Building Code (w,hkh utilizes USGS hazard data available in 2DC8) Site Coordinates 33.72932°N, 116.38154°W Site Soil Classification Site Class D - "Stiff Soil - Risk Category IJII/III aum Rancho Mirage O alm Desert mapquest USGS-Provided Output r rmuda CIA E R I CA VO L � C: 02e14t'� 0 NAPQ;jMrt Ss = 1.500 g S,,, = 1.500 g Sus = 1.000 g S, = 0.644 g SM, = 0.966 g SD3 = 0.644 g For information on how the SS and S1 values above have been calculated from probabilistic (risk -targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the'2009 NEHRP" building code reference document. MCEe Response Spectrum 1.65 1 50 1.35 1.20 1.05 a 0 90 y 0.75 p 60 0.45 0 30 0.15 0.00 0.00 0.20 OAD 0.60 0.90 1.00 1.20 1.40 1.60 1.80 z00 Period, T (sec) Design Response Spectrum 0-00 0.70 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 Period, T (sec) Although this information is a product of the U.S. Geological Survey, vie provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject -matter knoWedge. STRUCTURAL CALCULATIONS SITE CLASS DEFINITION= D OCCUPANCY CATEGORY = II SEISMIC DESIGN CATEGORY = D PALM DESERT CALIFORNIA _ 92201 0.2 seg Ss=150%g 1.0 seg S1 60%g SDs= 2/3 X SMS SDI = 2/3 X SM1 t - SDs = 1.07 SDI = 0.6 R = 6.5 TABLE 12.2 ASCE 7-11 IE = 1.0 t= 0.2 ASCE BASE SHEAR V=CsW 0.165W (12.8-1) Cs = SDS / (R/IE) 0.165 (12.8-2) NOT EXCEED Cs = SDI / T( R/IE) 0.462 (12.8-3) NOT LESS THAN Cs =0.01 0.010 (12.8-5) V= 0.16 W STRUCTURAL CALCULATIONS SEISMIC (CONTINUED) D. L. ROOF 19 psi REDUNDANCY FACTOR 1.3 SEISMIC. V,= 0.21 DIAPH=42x30 TRANSVERSEL WORST 42 FT WORST 30 ROOF = 798 1 Walls = 67.5 865.5 X 0.208 180 # ft ( MAX) EXT. WALLS '15 WALL HT = 9 ft LONGITUDINAL FT ROOF = 570 1 Walls = 67.5 638 X 0.21 133 # ft (MAX) EISMIC=180PLF >186= WIND W= 186 T= C= W L A 2/ 8 b L= 30 = 498.2142857 B = 42 NAIL = TABLE 23-III-C-2 TOTAL NAIL = LOAD /NAIL= 2.657 PROVIDE (8 PAIR) 16 d COMMON @ E.A 4'-0" SPACE @ TOP CHORDS STRUCTURAL CALCULATIONS SHEAR WALL REQUIREMENTS ROOF D L = 19 FT _ WALLS D L = 15_ WALL HT,,1 = 95 ... .. LIP41FF FORMULA: APPENDDI D (NiP3(WU L^212)+(WMnffl/L STRENGTH REDUCTION FACT SHEAR= e05 0.85' 850.1.33.121shear Force Sr MR WALL UT.FORCE TMB AREA TOTAL FORCE TOTAL RESGT,WALL SHEAR FORCE LOAD (V) UPLIFT FORCE +VEnR WAii MOIDOVYN A35 Y4'90LT STRUC M. PLF F[ LB WALL IFII FT L #/11 WALL-SEG B TYPE TYPE EA BLOCK SPACING (iry NDIFS A 186 11 2046 21 17 97 1656 •312 1 HALQ 1 48 1 ik 11!s 11 20AG 21 4 97 390 Ube 1 KDl12 1 48 T B 186 12 2232 14 85 159 1355 614 1 HDm 1 40 1 B 186 12 2232 14 55 159 877 11147 1 HDU2 1 49 1 C 106 32 5962 _ _ 31 20 192 _ 3840 .2297. 1 HOW i 48 1 C 186 32 5952 31 11 192 2112 -464 1 HDICI 1 48 1 U 1WS 2A 4464 165 3.5 271 947 198E 2 HDL72 c 48 1 * 185 24 4464 165 6.5 271 1759 1530 2 HDLq 1 48 1 1135 24 4464 165 6.5 271 1759 1530 2 11IDL2 1 4B 1 E HIS 4 744 4 4 186 744 1617 1 Hom 1 48 1 F 1@6 8 1488 7.5 7.5 198 1488 1455 1 }0H 1 48 1 G 186 19 1660 9 4.5 207 930 1629 1 HOL2 1 48 1 G 186 10 1860 9 4.5 207 930 1629 1 HO12 1 48 H 1B6 21 _ 3906 36 12 _ 109 :. 1302, .. -621 .. 1 FdIR i H 186 21 31im 36 12 109 1302 b21 1 HDU2 1 48 1 H 106 21 39M 36 12 109 1302 -621 1 "%q 1 48 1 1 186 15 2790 21 4 133 531 833 1 FJOU2 1 48 1 1 185 15 Va6 21 5 133 664 737 1 FOLQ 1 48 1 1 185 15 27X it 7.5 133 996 498 1 Kxn 1 48 1 1 186 15 2790. 21 5 133 664 737 1 HDL12 1 48 1 K 186 12 2272 4 8 279 2232 1992 2 HDLr2 1 4B T L 186 12 7237 S 9 246 2232 1621 1 HOW 1 48 4 M 106 12 2232 10 5 223 1116 1691 1 HDU2 1 48 1 M 185 12 2232 10 5 223 1116 1691 1 HDL12 1 48 1 STRUCTURAL CALCULATIONS a FT WALL HT,1 = 9.5 UPLI F7 FORMULA: (Vh-(213 (wb LA2/2)+(WwU2)))/ L TOTAL RE5IST,WALL SHEAR FORCE LOAD (V) WALL Vh Wb 213(WbL^2)2) WwLl2 UPLIFT. FORCE WALL (Ft, FT L. # I _ WALL- SEG NO. # 21 17 97 1656 A 15735 209 20234 1211 -312 21 4 97 390 A 3702 209 1120 285 598 14 8.5 159 1355 B 12874 228 5518 606 818 14 5.5 159 877 B 8330 228 2310 392 1047 31 20 192 3840 C 36480 608 81472 1425 -2297 31 11 192 2112 C 20064 608 24645 784 -464 16.5 3.5 271 947 D 8996 456 1871 249 1988 16.5 6.5 271 175% D 16706 456 6454 463 1530 16.5 6.5 271 1759 D 15706 456 6454 463 1530 4 4 186 744 E 7068 76 407 285 1617 7.5 7 5 198 1488 F 14136 152 2864 534 1455 9 4.5 207 930 G 8835 190 1289 321 1629 9 4 5 207 930 G 8835 190 1289 321 1629 36 12 109 1302 H 12369 399 19248 855 -621 36 12 109 1302 H 12369 399 19248 855 -621 36 12 109 1302 H 12369 399 19248 855 -621 21 4 133 531 1 5049 285 1528 285 833 21 5 133 664 1 6311 285 2387 356 737 21 7.5 133 996 1 9466 285 5370 534 498 21 5 133 664 1 6311 285 2387 356 737 8 8 279 2232 K 21204 228 4888 570 1992 9 9 248 2232 L 21204 228 6187 641 1621 10 5 223 1116 M 10602 228 1910 356 1691 10 5 223 ilia M 10602 228 1910 356 1691 STRUCTURAL CALCULATIONS SHEAR WALL CONSTRUCTION D1/2" GYPSUM WALL BOARD APPLIED DIRECTLY TO 2x STUDS WITH STANDARD WALL BOARD NAILS (1 1/2" x 0.12" DIAMETER w/ 3/8" HEADS) OR 5d COOLER NAILS AT 7" O/C MAX. TO ALL STUDS, SILLS, PLATES AND BLOCKING. ANCHOR w/ 5/8" DIAMETER x 10" LONG ANCHOR BOLTS (w/ 3" x 3" x 0.229" THICK PLATE WASHERS BETWEEN NUT AND WOOD SILL) @ 6'-0" O/C MAX 16" O.C. FRAMING ALLOWABLE LOAD: 75 pif — PER CBC 2016 TABLE 2306.3(3) 7/8" PORTLAND CEMENT PLASTER ON WOVEN WIRE OR EXPANDED METAL LATH NAILED AT EACH STUD, SILL AND PLATE @ 6" O/C MAX. w/ No. 11 x 1%" GALVANIZED NAILS WITH 7/16' DIAMETER HEADS OR ATTACHED w/ No. 16 GAUGE STAPLES HAVING 7/8" LONG LEGS. ANCHOR w/ 5/8" DIAMETER x 10" LONG ANCHOR BOLTS 7" EMBED MIN (w/ 3" x 3" x 0.229" THICK PLATE WASHERS —SDC D ,BETWEEN NUT AND WOOD SILL) @ 48" O/C MAX. 16" O.C. FRAMING ALLOWABLE LOAD: 180 plf — PER 2016 CBC TABLE 2306.3(3) THE NEXT THREE (3) SHEAR WALL TYPES SHALL ALL HAVE THE FOLLOWING IDENTICAL STRUCTURAL I WOOD PANEL DIAPHRAGM: (WALL1 , 2 & 3 ONLY) 3/8" C-D EXPOSURE I APA PLYWOOD OR 3/8" ORIENTED STRAND BOARD APPLIED DIRECTLY TO THE STUDS, WITH THE LONG DIMENSION OF FULL PANELS LAID PARALLEL OR PERPENDICULAR TO THE LENGTH OF THE STUDS, ALL EDGES OF EACH PANEL SUPPORTED ON STUDS, SILLS, PLATES OR BLOCKING AND NAILED AND ANCHORED AS FOLLOWS: 1 D8d COMMON NAILS @ 6" O/C AT ALL PANEL EDGES AND 8d COMMON NAILS @ 12" O/C AT ALL FIELDS. ANCHOR WITH 5/8" DIAMETER BY 12" LONG ANCHOR BOLTS AT 481, O/C. (ALLOWABLE LOAD: 280 plf — PER 2016 CBC TABLE 2306.3) * CONSTRUCTION NOTE(S) 1 & 2 APPLY (NOTES 3,4 AND 6 APPLY ONLY WHEN DIAPHRAGM AT BOTH SIDES ) 2 D8d COMMON NAILS @ 4" O/C AT ALL PANEL EDGES AND 8d COMMON NAILS @ 12" O/C AT ALL FIELDS. ANCHOR WITH 5/8" DIAMETER BY 12" ANCHOR BOLTS AT 32" O/C. (CALCULATE TO MAXIMUM OF 349 plf — PER 2016 CBC TABLE 2306.3) STUDS @16" O.0 CONSTRUCTION NOTE(S) 1 & 2 APPLY (NOTES 3, 4, 5 AND 6 APPLY WHEN DIAPHRAGM AT BOTH SIDES) 3 D8d COMMON NAILS @ 3" O/C AT ALL PANEL EDGES AND 8d COMMON NAILS @ 12" O/C AT ALL FIELDS. ANCHOR WITH 5/8" DIAMETER BY 12" LONG ANCHOR BOLTS AT 32" O/C. (ALLOWABLE LOAD: 550 plf — PER 2016 CBC TABLE 2306.3) CONSTRUCTION NOTE(S) 1, 2, 3 & 6 APPLY (NOTES 4 & 5 APPLY WHEN DIAPHRAGM AT BOTH SIDES) NOTE VALUES ARE APPLICABLE TO DOUGLAS FIR LARCH FRAMING @ 16" O.0 STRUCTURAL CALCULATIONS 4 D15/32" STRUCT. I APA PLYWOOD OR 15/32" ORIENTED STRAND BOARD (OSB) APPLIED DIRECTLY TO THE STUDS, WITH THE LONG DIMENSION OF FULL PANELS PARALLEL OR PERPENDICULAR TO THE LENGTH OF THE STUDS, ALL EDGES SUPPORTED ON STUDS, SILLS, PLATES OR BLOCKING AND NAILED AND ANCHORED AS FOLLOWS: 8d COMMON NAILS @ 2" O/C AT ALL PANEL EDGES AND 8d COMMON NAILS @ 12" O/C AT ALL FIELDS. ANCHOR WITH 3/4' DIAMETER ANCHOR BOLTS AT 16" 0/C. —STATE EMBEDDED DISTANCE 7" MIN (ALLOWABLE LOAD: 730 plf — PER 2016 CBC TABLE 2306.3) * CONSTRUCTION NOTE(S) 1, 2, 3, & 6 APPLY (4 AND 5 APPLY WHEN DIAPHRAGM AT BOTH SIDES) CONSTRUCTION NOTES: 1 3" x 3" x 0.229" PLATE WASHERS SHALL BE PROVIDED BETWEEN ALL ANCHOR BOLT NUTS AND THE WOOD SILL. 2 SEE ANCHOR BOLT CALCULATIONS FOLLOWING THESE NOTES IN THE CALCULATIONS. 3 EDGE NAILING AT ABUTTING PANEL EDGES FOR WALLS LOADED IN EXCESS OF 350 plf SHALL BE APPLIED TO 3x OR WIDER STUDS. 4 APPLYING EQUAL THICKNESS STRUCTURAL WOOD PANELS TO BOTH STUD FACES OF A SHEAR WALL AND WITH MATCHING NAILING FOR BOTH SIDES SHALL PROVIDE DOUBLE THE LOAD CAPACITY OF WALLS HAVING THE SAME PANELS AND NAILING APPLIED TO ONLY ONE FACE. 5 STRUCTURAL WOOD PANEL SHEAR WALLS WITH PANELS APPLIED TO BOTH FACES AND WITH EDGE NAILING LESS THAN 6" O/C SHALL HAVE ABUTTING PANEL EDGES FOR ONE SIDE OFFSET ONE STUD SPACE FROM THE OTHER SIDE (NOTE No. 3 ALSO APPLIES) 6 ALL SHEAR WALLS HAVING A LOAD CARRYING CAPACITY IN EXCESS OF 350 plf SHALL BE PROVIDED WITH 3x P.T.D.F. SILL PLATES AND 12" LONG ANCHOR BOLTS OF THE DIAMETER PROSCRIBED FOR THAT WALL CONSTRUCTION TYPE (ALL ANCHOR BOLTS SHALL BE SET 7" INTO CONCRETE) 7 WHERE THE CONTRACTOR DESIRES TO CONSTRUCT THE SLAB -ON -GRADE AND THE FOOTINGS AND FOUNDATION IN A TWO POUR SYSTEM, ALL ANCHOR BOLTS SHALL HAVE A MINIMUM LENGTH OF 14", SETTING THEM A MINIMUM OF 4" INTO THE TOP OF THE FOUNDATIONS BEFORE POURING THE SLAB. 8 ALL ANCHOR BOLTING, HOLDOWN BOLTS OR STRAPS AND OTHER FORMS OF CONCRETE INSERTS SHALL BE SECURELY HELD IN PLACE WITH JIGS OR OTHER SUCH DEVISES PRIOR TO REQUESTING FOUNDATION INSPECTION, DURING INSPECTION AND DURING ACTUAL POURING OF CONCRETE. 9 ALL ANCHOR BOLTS AND HOLDOWN BOLTS SHALL BE BROUGHT PLUMB PRIOR TO THE CONCRETE HARDENING. MECHANICAL STRAIGHTENING OF BOLTS AFTER THE CONCRETE HAS HARDENED THAT RESULTS IN SLAB EDGE BREAKING SHALL RESULT IN REJECTION OF A PORTION OF THE SLAB AND FOUNDATION BY THE ARCHITECT OR STRUCTURAL DESIGNER OF RECORD AS HE DEEMS NECESSARY, IT'S REMOVAL AND REPOURING OF THAT PORTION OF THE CONCRETE. 10 HOLDOWN STRAP HOOKS SHALL BE STABLIZED DURING THE CONCRETE POUR IN ORDER TO ENSURE THEY REMAIN AT THE MANUFACTURER'S PROSCRIBED ANGLE OF INSERTION. 11 ATTACHMENT OF A 3x SILLPLATE TO FLOOR FRAMING BELOW SHALL BE MADE WITH THE USE OF SIMPSON SDS'/<x6 WOOD SCREWS AT 3" o/c. 12 ATTACHMENT OF A 2x SILL PLATE TO FLOOR FRAMING BELOW SHALL BE MADE WITH THE USE OF 16d @ SPACING INDICATED AT THE SHEAR WALL TABULATION. STRUCTURAL CALCULATIONS F24 TABLE 23N2.1(1) ALLOWABLE SHEAR (POUNDS PER FOOT} FDA WOW STRUCTURAL PANEL DIAPHRAGMS WITH FRAMING OF DOUGLAS FIR -LARCH. OR SOUTHERN PINE- FOR WIND OR SEISMIC LOADING" BLOC%EDDIAPHO.. llNBLUCKIDDIAP}IRA(IMs PANEL I GRADE Structural) MINIMUM COMMON NAIL = FASTENER SRE OR STAPLE' ' PENETRATION LENGTH AND IN FRAMING GAGE (i-chea7 8df2'I"x0,131"7 1'!e NOMINAL Fwbnnap i giirwhu)etdWpMegmbounderi"(elloawI. WIDTH OF at 0WInuo" PenA edge t pemilal In load FRAMING MEMBERS AT '..:.-•�C°se. 41, and alas! pnnel,.edgda.: Cawi•fi,_6y' MINIMUM ADJOINING a 4 7'a` _. 7° NOMINAL PANEL Featerler ypaeinq {ixaes)atok7ar I edges PANEL EDOES AND pa"° T1gG1INE8B BOUNDARIES. {C aaea 1.2 9 and a - finds IneMa 6 •�d i f 2 27D 360 530 60() Fat .ry, ad 6" mes. at.qu ad ed�ae C— Y (No unblocked edges All other or conHou! Mats oonNu* qetiona ml rasa W to le!D (C!�ea 2i 9 4. 6 and 6 240 180 3 3(N) �40() 600 677 265 155 206 ..... 115 1112 16 Gage i 175 235 ?SD 400_ 3 2fX) 265 395 . 450 175 130 grades .._....�._.......�..� IV, 16 Gage 1 "/,2 2 � 320 36. 42 480 64U � ---� ......-zD _. 730 8zn 285 215 —. 3, o..:.............., . - 2a1 2 Y 175 23S 350 4(10 135 120 130 3 200 265 795 450 175. . 6d°f2"x0-1130 1It 2 3 185 Z10 2,50 280 --- 375 42f] 420 1 ^475 165 12-5 _ 140 185 8d(2'/� x0.131") 1'Jr / s 2 24f1. .. 320 .480 I. 545 Y _ 3 ,...._. 270 ........................... 360_ _ •'T••2J0 ....... 540 ......:: 610 �.... s 240 1R0 Il/,16Gage 1 2 160 315 3611 ! i40 105 3 1fi0 235 353 400 160 120 Sheathing, single 0oorandother 86(2112"x011311) 13IL 7. /ie 2 .._.._., 255 34D O5 ... S75 230 170 3 285 380 570 645 255 190 1 I/� 16 Gage1 2 165 225 335 380 1% .110 3 190 250 375 425 1 165 1:21 grades covered. in I)(.KPS1and PS 2 (2'lr"x0.13Y) 1% 2 270 -w .. .._._ .: 530 _.._. fi0fl I 240 }dD. -- 3 300 . 40U 600 675 2bS 200 10di5 (3" x 0-148") 1'/2 __ 2 290 395 575 655 ...................... 255 190 Is/.0 3 325 430 650 735 290 215 131216Gage - 1 2 i6l) 210 315 360 140 105 3 .,_,. 180 235 355 405 160 120 _ w13t 320 425 480 640 _1 73 R20 ....... 3 :w 720 320 _____,._.......�� 240 L�hi[iCage 1 —2 3 17 335 •_• 265 350 .395 400 155 115 200 450 l _ 175 130 eonfinued STRUCTURAL CALCULATIONS FOUNDATION SOIL PRESSURE = 1000 'PSF LOADING ROOF = 35 EXT. WALLS = 15 H-1 = 13 ft TYPICAL PERIMETER FOOTING AT 1 STORY Trib. Area (ft)=, 18 LOADING: ROOF = 630 #1 WALL = 195 #1 W = 825 #1 REQ"D WIDTH = 0.825 FT / FT LENDTH 12" WIDE x 12" CONTIN PERIM FT, ,AND- 2 # 4 BARS, CONTIN . FOOTING FOR POST 4x6 LOADING: W= 3861 lb AREA = 3.86 sf 24" SQ x12" THK FOOTING WI 4- # 4 EA. W AY FOOTING FOR POST 4x6 LOADING W= 5372 lb AREA = 5.37 sf 30" SQ x12" THK FOOTING WI 4- # 4 EA.WAY STRUCTURAL CALCULATIONS FOUNDATION 12" 40" X 12" = 480SQ IN 3.3333 144 SQ IN SOIL PRESSURE = 1000 PSF TOTAL LOAD = 3,300.# >2925# OK STRUCTURAL CALCULATIONS 5/8" SET-XP EPDXY ADHESIVE ANCHOR ASTEM 193 GRADE B7 hef= 1 0" calculate static steel strength tension per AC 1 318-05 sect D 5.1. 0 SA N sa = 0.75x 27900= 20925# calculate static concrete breakout strength in tension per ACI 318-05 sect D 5.2. 0 SA N sa = 0.65x 6000 = 3900# calculate static pullout strength in tension per ACI 318-08 SECT D.5.3 as amended in section 4.1.4 of this repost 0, Na = 0.65x 25175 = 16360# ACI 318-08 SECT D.4.1.2 0 N n = 3900# co=1.48 3900/1.48 = 2635 # STRUCTURAL CALCULATIONS m 314 CLEF iI,91 IERE OCCURS -IDU2 DIAM. x 14" ALL THREAD TG W/ SET-XP (ICC 2508) EPDXY OR 3X PLATE EXIST CONC EPDXY ONLY@ UPLIFT SITUATIONS EPDXY REQUIRES OBSERVATION OF LIC DEPUTY INSPECTOR