Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
13-0635 (AR) Structural Calcs
r R1A TR1 •�C�T UZ AIl El,,%YT r� EER1Ir��G y• 78080 Calle Amigo, Suite 102 Telephone: (760) 771-9930 La Quinta, CA 92253 Cell: (760) 771-9998 Fax: (760) 808-9146 Structural Calculation For Weyand Residence At 79702 Mission Drive East Rancho La Quinta CC La Quinta, .CA. RECEi Type_ Of Proiect: Residential MAY 15 2013 Remodel/Addition CITY OF LA QuINTA COMMUNITY DEVELOPMENT Designer: Curtis R. Shupe Design y Q�pFEss. N0. C 616.13 CITY OF LA QUINTA W BUILDING & SAFETY DEPT. Date: April 17; 2012 APPROVED FORrONSTRUCTIONDesign by: R.A. !-i-2 3 -13 JN: 130431 -DAT & 3 BY ZEs6I REAR ff CST R1AL E�1'GIr� EER1Ir��G TABLE OF CONTENTS. 1. Design Criteria....................................................................................1 2. Beam Design.......................................:......................:........................2-20 3. Post Design..........:..................:........................ ..................................... 21-25 4. Foundation Design.......... :........................................... ............................. 26-30' 5. Lateral Design Loads (Seismic And Wind).............................. :............ 31-36 • 6. Shear Wall Design............ . ................................................................. 37-46 r • t CLIENT: we`(ar 2&.jehze RA Structural Enzineering SHEET: SUBJECT: StA Rdd►f``K JOB NO: 1304'5\ DESIGN BY: R fr DATE: 4 DESIGN LOADS Roof Loads - Slopedi Roof Loads - Flat �ClayTile- ^ - _15�psf 2.5 - Roofing _ i Framing 6 psf 2.5 t psf :Framing psf _ __ _ ___ _ Sheathingr(1/2�' CDX)�Y�� 1 51 psf � _ ^Sheathing (1/2" CDX,) �� 1.5 psf Ceiling 2 psf Insulation 1.51 psf Ceiling - � - , Insulation 2.5,1 psf 1.5, psf _._....�._ �� Y � � Misc. 41 psf _ _ _ `�. - - j Misc. 6, psf Total Dead Load ?71 psf Dead Load _ _ _20 psf _� !Total Live Load t 201psf Total Live Load _ - _ _ _ 4 20 psf ;Total Roof Load 47 s psf ITod tal Roof Load_ E 40; psf _ Floor Loads Deck Loads Framing I'Plywood) _ 3.5psf _ ^Fr_a_m_in_g-� Sheathing 3/4" PM�ood) Sheathing ,'psf 2.5'psf (3/4 _42.5 ps - - - -- --3.5 2.5 Ceiling 2. ps-f psf _ Lt Conc./Flooring Tile 15psf _ _. _~ Lt. Wt. Conc./Flooring Tile 15 psf + _Wt. _ .l _ I Misc. - _—_ _ _ -3.5; psf _ j_Lt. W_t. Conc./Flooring Tile_ 10, psf Total Dead Load 271 psf` 11 Misc. w €Y �3.5; psf 'Total Live LoadT- _ 40 psf ITotal Dead Load _ i__ 37 psf Total Floor Load j _. _ _-- _-� 671 psf -- .----r - --. - Total Live Load _- a � �^M� �[Total 60psf i Deck Load 97 psf Exterior Wall _ ; Interior Wall _ 7/8" Stucco ' 101 psf ~ }psf Insulation ^ 1 5 Insulation1 Drywall W ysf psf i Studs _ _^� 1 psf ;Studs _2.5 11 psf 3. psf Misc. � � Y 1 2.51 psf _Misc. Total Wall Weight I T 10, psf -Total Wall Weight 17tpsf _ _ f i !�C'LlEivi': Weyav+t4$1'SHEET: f,,� RA Structural Engineering J B NO: r 3 0 k'3 1 SUBJECT: S,c� �}a I DESIGN BY: If h- I DA G-1 l7f (3.-- G1 v 0(e_v Cs 1: , ,� L C2�►�s )C 25)(1o). 16 Z 2 (.2o psi) ( S )�!® P.L. c�-7 z C g) s 702 2 P.L. (2o p5e 3��, 520 .@b 6m1 L._ 3o w, p (27ps45 SLK, w' C•G �. (2 o �5 � 4 =- 3 W° PLS, 1688 9 �. c. = 125 0 t6 P. 7r �1 D RA Structural Engineering Title: Weyand Residence Job # 130431 78080 Calle Amigo, Suite #102 Dsgnr: Reza Asgharpour, P.E. ,La Quinta,.CA. 92253 Project Desc.: Side -Yard Addition (760)771-9993 Project Notes : Printed: 17 APR 2013. 2:28PM .ENFRCACC'`INC 1983-2011:Build:6.11.4.5, Ver.6.11.4.1 Description : B101 Material Properties Calculations per AISC 360.05, IBC 2009, CBC 2010, ASCE 7-05 Analysis Method: Allowable Stress Design Fy : Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral -torsion buckling E: Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending Load Combination 2006 IBC & ASCE 7-05 __,Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weiqht calculated and added to loads Load for Span Number 1 Uniform Load : D = 0.4590, Lr = 0.340 k/ft, Extent = 0.0 ->> 22.0 ft, Tributary Width =1.0 ft, (Roof) Uniform Load: D = 0.230, Lr = 0.170 k/ft, Extent = 22.0 ->> 30.0 ft, Tributary Width =1.0 ft, (Roof) Point Load: D =1.688, Lr =1.250 kan 22.0 ft, (Girder (G1)) .DESIGN SUMMARY S_ ' --- _ _. _- - _ -- - ._ . _ ... ---- - - Bending Stress Ratio = 0.433:1 Maximum +Section -- - ----- Shear Stress Ratio = 0.141: 1 •Maximum ! used for this span WI 2X65 Section used for this span WI 2X65 Mu: Applied 102.643 k -ft Vu: Applied 13.318 k Mn / Omega: Allowable 237.004 k -ft Vn/Omega : Allowable 94.380 k Load Combination +D+Lr+H Load Combination +D+Lr+H Location of maximum on span 15.450ft Location of maximum on span 0.000 ft Span # where maximum occurs Span # 1 Span # where maximum occurs Span # 1 Maximum Deflection 1 Max Downward L+Lr+S Deflection 0.429 in Ratio= 839 Max Upward L+Lr+S Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 1.085 in Ratio= 331 Max Upward Total Deflection 0.000 in Ratio= 0 <240 Maximum Forces & Stresses for, Load Combinations _ Load Combination v-� Max Stress Ratios Summary of Moment Values Summary of Shear Values Segment Length Span # M V Mmax + Mmax . Ma - Max Mnx Mnx/Omega Cb Rm Va Max Vnx Vnx/Omega Overall MAXimum Envelope Dsgn. L = 30.00 ft 1 0.433 0.141 102.64 102.64 395.80 237.00 1.00 1.00 13.32 141.57 94.38 +D Dsgn. L = 30.00 It 1 0.262 0.085 62.08 62.08 395.80 237.00 1.00 1.00 8.07 141.57 94.38 +D+Lr+H Dsgn. L = 30.00 ft 1 0.433 0.141 102.64 102.64 395.80 237.00 1.00 1.00 13.32 141.57 94.38 +D+0.750Lr+0.750L+H Dsgn. L = 30.00 ft 1 0.390 0.127 92.50 92.50 395.80 237.00 1.00 1.00 12.01 141.57 94.38 +D+0.750Lr+0.750L+0.750W+H Dsgn. L = 30.00 It 1 0.390 0.127 92.50 92.50 395.80 237.00 1.00 1.00 12.01 141.57 94.38 +D+0.750Lr+0.750L+0.5250E+H Dsgn. L = 30.00 ft 1 0.390 0.127 92.50 92.50 395.80 237.00 1.00 1.00 12.01 141.57 94.38 Overall MaximumlDeflections-.Unfactored Loads Load Combination Span Max. " Def! Location in Span Load Combination Max. "+" Dell Location in Span D+Lr 1 1.0847 15.150 0.0000 0.000 Deflections Combinations - Unfactored Loads _Maximum _fo_r.Loa_d_ Load Combination _ Span Max. Downward Def! Location in Span Max. Upward Defl Location in Span D Only 1 0.6560 15.150 0.0000 0.000 Lr Only 1 0.4286 15.150 0.0000 0.000 D+Lr 1 1.0847 15.150 0.0000 0.000 O RA Structural Engineering Title: Weyand Residence Job # 130431 78080 Calle Amigo, Suite #102 Dsgnr: Reza Asgharpour, P.E. ,La Quinta,,CA. 92253 Project Desc.: Side -Yard Addition (760)771-9993 Project Notes: Title Block Line 6 Pd"ted: n APR 2013. 2:28P0 Steel Beam y �" ,r ENERCALC. INC.,19n2011, Build:6.t1.4.5 Ver.6.11.4.1 Description: BM#1 Vertical Reactions +`Unfactored.' Support notation: Far left is #1 Values in KIPS Load Combination Support 1 Support 2 Com: Distance (ft) Overall MAXimum 13.318 12.348 D Only 8.066 7.510 Lr Only 5.252 4.838 D+Lr 13.318 12.348 Section Properties : W12X65 _Steel Depth = 12.100 in I xx = 533.00 in"4 J = 2.180 in "4 Web Thick = 0.390 in S xx 87.90 in"3 Cw = 5,780.00 in"6 Flange Width = 12.000 in R xx = 5.280 in Flange Thick = 0.605 in Zx = 96.800 in"3 Area = 19.100 in"2 1 y = 174.000 in"4 Weight = 65.016 plf S yy = 29.100 in"3 Wno = 34.500 in"2 Kdesign = 1.200 in R yy = 3.020 in Sw = 62.600 in"4 K1 = -1.000 in Zy = 44.100 in"3 Qf = 20.200 in"3 rts = 3.380 in rT = 3.280 in Qw = 47.500 in"3 Yog = 6.050 in I 105 n Y 52 Oil 26 BEAM--.. 2.85 5.85 SAS 11.85 - 14.8S 17.85 20.85 23.85 26.85 29.85 1 _ _- _ o�(rt) _ - ■ +D \ +D+L�+M � iD+D.750L•+0.75 D1+M � +D+D.75 7S0LDL-+D.7501+D.75DW+N A +O+D.75D1•+D.7501+D.525 DE+M t { 147 IBEAM-> 1� i { 13 I BEAM -••> I .0.3 •0.6 to •0.8 66� t 2.85 SRS 8.85 1IRS 14 mb 1�.tlD eu.4a •' o Distance (Ft) ■ Da+lyly 8L-LSO+y 0.D+L- 23.85 26.85 29.85 0 Com: Distance (ft) i t 2.85 SRS 8.85 1IRS 14 mb 1�.tlD eu.4a •' o Distance (Ft) ■ Da+lyly 8L-LSO+y 0.D+L- 23.85 26.85 29.85 0 q �I ,CLIEivC: �✓eyur R�5I0����__v ? tiF.:F : - --- II SUBJECT: sidQ t4dJ� oh ! RA Structural Engineering ; SOB NO: {3o43 1 WESIGN BY: ' DArF.:at--_IZ-I: _�. ,Bol #2- L= 13-5 I �o--(27p5f 27 } X65� �u►ar,, auF-��-� ►! Lk � II Po l 702 Qb -7 P,,,L,- 52o =r x -1.5 I F G✓a•c = C�7p5 F)(3') t X17 psi) /o (�7Pf�� C 11 )+ � IFPS; 3/J = 200 � �F• �� Wo.C. Z f! (� Ito o S —)\\o (JLf. CIE 6x8 .�c� II ��•� - z �- 7 8m #5 : — r2 17 S (�,2�1�.115 ptF use 6x6 oll • • 9 Reza PROJECT: BM#2 CLIENT : Weyand Residence, ACJ harpour Jpg NO.: 130431- DATE: 4/1Zl2013 PAGE DESIGN BY: R.A ' REVIEW BY: R.A. .664 46 Desi'` n` B e`,6h'N0S;2005. INPUT DATA & DESIGN SUMMARY L, T AL2 MEMBER SIZE GLB 5 1/2'k 12 . Glulam 24F -1.8E MEMBER SPAN L = 13.5 ft . . P°1 1 Pox UNIFORMLY DISTRIBUTED DEAD LOAD WD= , 365',lbs / It l UNIFORMLY DISTRIBUTED LIVE LOAD WL = 270 �, lbs/ft II W` CONCENTRATED DEAD LOADS PD, ="',1222. ' Ibs . ; WD (0 for no concentrated load) L, = 7.5 ft ' PDZ = ,:0' lbs L2 _ 0, , ft ; DEFLECTION LIMIT OF LIVE LOAD d L = L / 360 Camber => 0.41 inch DEFLECTION LIMIT OF LONG-TERM dKC, D. L = L /240 „ THE BEAM DESIGN IS ADEQUATE. Does member have continuous lateral support by top diaphragm ? (1= yes, 0= no) 0 No Code Duration Factor, Cn Condition 1 0.90 Dead Load 2 1.00 Occupancy Live Load c 3 1.15 Snow toad 4 1.25 Construction Load 5 1.60 Wind/Earthquake Load 6 2.00 Impact Load Choice => 4 Construction Load ANALYSIS DETERMINE REACTIONS, MOMENT, SHEAR , wseirw" = 16 lbs / It RLefl = 4.94 kips RR"en1= 5.07 kips ` VMax = 4.42 kips, at 12 inch from right end MMax = 18.71 ' ft -kips, at 7.50 ft from left end DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES b = 5.50 in E'min = 930 ksi E = Ex = • 1800 ksi Fb = 3000 psi d = 12.00 in FbE = 9376 psi Fb = 2,400 psi F = FbE / Fp 3.13 A = 66.0 int 1 = 792 in 'Fv = 265 psi Fe = 2,933 psi Sx = 132.0 in3 R8 = 10.910 < 50 E' _ 1,800 ksi Fv' = 331 psi - ti /.E = 25.0 (ft, Tab 3.3.3 footnote 1) ! CD CM C1 Ci CL CF Cv C, Cr 1.25 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 CHECK BENDING AND SHEAR CAPACITIES fb = MMax / Sx = 1701 psi < Fb = 2933 psi [Satisfactory] f, = 1.5 VMax / A = 100 psi < F; [Satisfactory], ' CHECK DEFLECTIONS A (L, Max) = 0.14 in, at 6.750 ft from left end, < d L = L / 360 [Satisfactory]' A (Kcr 0 . L. Max) = 0.55 in, at 6.825 ft from left end < d Ker D . L = L / 240 [Satisfactory] Where Ku = 1.50 , (NDS 3.5.2) DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) A (1.50, Max) = 0.41 in, at 6.825 ft from left end • • • CHECK THE BEAM CAPACITY WITH AXIAL LOAD AXIAL LOAD F = 2 kips i 1 1 THE ALLOWABLE COMPRESSIVE STRESS IS n-7-17,7, F, = F, Co CP CF = 755 psi v v v Where Fc = 1600 psi r _ ' F IF F Co = 1.60 CF = 1.00 (Lumber only) CP = (1+F) / 2c - [(1+F) / 2c)? - F / C11.5 _ 0.295 . Fc* = Fc Co CF = 2560 psi Le = K8 L = 1.0.L = 162 in b = 5.5 in SF =slenderness ratio = 29.5 < 50 [Satisfies NDS 2005 Sec. 3.7.1.4] FIE = 0.822 E'min / SF = 786 psi - E'min = 830 ksi F = FIE / Fc' = 0.307 C = 0.9 THE ACTUAL COMPRESSIVE STRESS IS fc = F / A = 30 psi < Fc' [Satisfactory] THE ALLOWABLE FLEXURAL STRESS IS Fp 3755 psi, [ for Co = 1.6 ] THE ACTUAL FLEXURAL STRESS IS fp = (M + Fe) / S = 1785 psi < Fo [Satisfactory] CHECK COMBINED STRESS [NDS 2005 Sec. 3.9121 - (fc / Fc' )2 + fb / [Fp 0 - f, / F.E)] = 0.496 < -1 [Satisfactory] • 0 0 Reza PROJECT: BM#.3 PAGE: Asghar„„MOUr CLIENT: Weyand Residence DESIGN BY: R.A JOB NO.: 130431 DATE: 4/17/2013 REVIEW BY: R.A. INPUT DATA & DESIGN SUMMARY L MEMBER SIZE "`6 z 6 '. No. 1, Douglas Fir -Larches MEMBER SPAN L = ft PoRs �t-�l�(�1T� UNIFORMLY DISTRIBUTED DEAD LOAD wo = 115' lbs/ft-I-�i UNIFORMLY DISTRIBUTED LIVE LOAD WL =. 60. lbs/ft CONCENTRATED DEAD LOADS Po, = 0 lbs (0 for no concentrated load) L, = 0 ft PD2 = D lbs 1 1 L2 = 0 ft ; DEFLECTION LIMIT OF LIVE LOAD dL= L! 360 Camber=> 0.03 inch DEFLECTION LIMIT OF LONG-TERM d Kc,o. L = L / 240 .' • THE BEAM DESIGN IS ADEQUATE. Does member have continuous lateral support by top diaphragm ? (1= yes, 0= no) 0 No Code Duration Factor, Cr, Condition Code Designation 1 0.90 Dead Load 1 - Select Structural, Douglas Fir -Larch . 2 1.00 Occupancy Live Load 2 No. 1, Douglas Fir -Larch 3 1.15 Snow Load 3 No. 2, Douglas Fir -Larch 4 1.25 Construction, Load 4 Select Structural, Southern Pine 5 1.60 Wind/Earthquake Load 5 No. 1, Southern Pine 6 2.00 Impact Load ` 6 No. 2, Southern Pine Choice => 4 Construction Load Choice => 2 r' ANALYSIS DETERMINE REACTIONS, MOMENT, SHEAR ; wsairmn = 7 lbs / ft RLafl = 0.50 kips RR;9M = 0.50 kips VMax = 0.42 kips, at 5.5 inch from left end - MM. = 0.69 ft -kips, at 2.75 ft from left end DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES b = 5.50 in E',,,i„ = 580 ksi E = Ex = 1600 ksi Fb = 1687.5 psi d = 5.50 in FbE = 30851 psi Fb = 1,350. psi F = FbE / Fb 18.28 A = 30.3 int 1 = 76 in Fv = 170 psi Fe = 1,683 psi• Sx = 27.7 in RB = 4.750 -50 E' = 1,600 ksi F,' = 213 psi /E = 10.3 (ft, Tab 3.3.3 footnote 1) Co CM C, CI CL CF Cv Cc Cr 1.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 CHECK BENDING AND SHEAR CAPACITIES _ fb = MMax / Sx = 297 psi < Fb = 1683 psi [Satisfactory] - f, = 1.5 VMax / A = 21 psi < F,' [Satisfactory] CHECK DEFLECTIONS d tL, Max, = 0.01 in, at 2.750 ft from left ends < d L = L / 360 [Satisfactory] d (Kcr o . L, Max) = 0.04 in, at 2.750 ft from left end < d K, D.- L = L / 240 [Satisfactory] Where Kc, = 1.50 , (NDS 3:5.2) , DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) d (1.50, Max) = 0.03 in, at 2.750 ft from left end • • CHECK THE BEAM CAPACITY WITH AXIAL LOAD _ AXIAL LOAD F = 2 kips THE ALLOWABLE COMPRESSIVE STRESS IS F,' = Fc Co CP CF = 1309 psi f b b y 4 Where Fe = 925 psi, F F CD = 1.60�— CF = 1.00 (Lumber only) CP = (1+F) / 2c - [(1+F) / 2c)2 - F / cj" = 0.884 Fc* = Fc Co CF = 1480 psi Le Ke L = 1.0 L = 66 in b = 5.5 in SF = slenderness ratio- 12.0 < 50 [Satisfies NDS 2005 Sec. 3.7.1.41 FIE = 0.822 E'mj„ / SF = 3311 psi E'min = 580 ksi F = FIE IF,* = 2.237 C = 0.8 THE ACTUAL COMPRESSIVE STRESS IS fc = F / A = 66 psi < F, [Satisfactory] THE ALLOWABLE FLEXURAL STRESS 1S F; = 2154 psi, [ for Co = 1.6 ], ` THE ACTUAL FLEXURAL STRESS IS fp = (M + Fe) / S = 694 psi < F; (Satisfactory] CHECK COMBINED STRESS [NDS 2005 Sec. 3.9.21 (fc / F.')' + fp / [F; (1 - fc / FcE)] = 0.331 < 1 [Satisfactory] • • 0 Reza PROJECT: BM#4 PAGE: CLIENT: Weyand Residence - As harpour JOB NO.: .130431 ". DATE: 4117/2013 DESIGN BY: R.A REVIEW BY: R.A. Wood., -6-06d ii,Basedi NDs 200.5 ' e d INPUT DATA DESIGN SUMMARY L MEMBER SIZE :6 x 8 "'- No. 1, Douglas Fir -Larch MEMBER SPAN L r ft PD, , + P07., UNIFORMLY DISTRIBUTED DEAD LOAD WD 200Yti lbs / ft UNIFORMLY DISTRIBUTED LIVE LOAD wL = lbs / ft- CONCENTRATED DEAD LOADS PDi = �0;•' Itis WD (0 for no concentrated load), L, 0. ft Poz = 0 •` lbs L2= '0 - ft DEFLECTION LIMIT OF LIVE LOAD d L = L / 360 Camber => 0.15 inch DEFLECTION LIMIT OF LONG-TERM dKcrD*L = L /,240-. s , THE BEAM DESIGN IS ADEQUATE. Does member have continuous lateral support by top diaphragm ? (1= yes, 0= no) 0 No Code Duration Factor, Cn Condition Code Designation 1 0.90 Dead Load 1 Select Structural, Douglas Fir -Larch 2 1.00 Occupancy Live Load 2 No. 1, Douglas Fir -Larch 3 1.15 Snow Load 3 • No. 2, Douglas Fir -Larch 4 1.25 Construction Load -.,41 Select Structural, Southern Pine 5 1.60 Wind/Earthquake Load 5 No. 1, Southern Pine 6 2.00 Impact Load " 6' No. 2, Southern Pine Choice => 4 Construction Load Choice => 2 ANALYSIS DETERMINE REACTIONS, MOMENT, SHEAR Wseu" = 9 lbs/ft RLeft = 1.44 kips RRigm _ 1.44 kips VMax = 1.24 kips, at 7.5 inch from left end MMax = 3.23 ft -kips, at 4.50 ft from left end _ DETERMINE SECTION PROPERTIES&ALLOWABLE STRESSES ' b = 5.50 in E'min = 580 ksi E = Ex.= 1600 ksi Fb = 1687.5 psi d = 7.50 in FbE = 14139 psi Fb = 1,350 psi F = FbE / Fe = 8.38 ' A = 41.3 • in' 1 = 193 in F„ 170 psi .Fb' = 1,676 psi Sx = 51.6 in3 R8 = 7.016 <50 E' = 1,600 ksi F„'' = 213 psi 1,E = 16.5 (ft, Tab 3.3.3 footnote 1) - CD CM Cr Ci CL CF Cv Cc Cr `i 1.25 1.00 1.00 1.00. 0.99 1.00 1.00 1.00 1.00 , CHECK BENDING AND SHEAR CAPACITIES fb = MMax / Sx = 752 psi < Fb,= 1676 psi [Satisfactory] , f, = 1.5 VMax / A = 45 psi < Fv' [Satisfactory] CHECK DEFLECTIONS d(L.Max) = 0.05 in, at 4.500 ftfrom left end, <. A = L /. 360 [Satisfactory] •. -- d (Kcr D - L. Max) = 0.20 in, at 4.500 ft from left end < d Kcr D .L = L / 240 [Satisfactory] Where Ku 1.50 , (NDS 3.5.2) - DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) A (1.5D. Max) = 0.15 . in, at 4.500 ft from left end • CHECK THE BEAM CAPACITY WITH AXIAL LOAD AXIAL LOAD F = 2 kips THE ALLOWABLE COMPRESSIVE STRESS 1SI�— .F,' = F, Cp CP CF = 926 psi b Where Fc = 925 psi F Co = 1.60 CF = 1.00 (Lumber only) Ca = (1+F) / 2c - [(1+F) / 2c)2 - F / C]os = 0.626 Fc' FC Co CF = 1480 psi Le = Ke L = 1.0 L = 108 in b = 5.5 in SF = slenderness ratio = 19.6 < 50 [Satisfies NDS 2005 Sec. 3.7.1.4] FcE = 0.822 E'mtn / SF2 = 1236 psi E'min = 580 ksi F = FcE / Fc = 0.835 , C = 0.8 THE ACTUAL COMPRESSIVE STRESS IS . f, = F / A = 48 psi < Fc [Satisfactory] THE ALLOWABLE FLEXURAL STRESS IS ' Fb = 2146 psi, [ for CD = 1.6 ] , THE ACTUAL FLEXURAL STRESS IS fb = (M + Fe) / S = 965 psi <. Fb [Satisfactory] CHECK COMBINED STRESS [NDS 2005 Sec. 3.9:21 - (fc / F. )2 + fb / [Fp 0 - fc / F.E)] = 0.471 < 1 [Satisfactory] • 0 Reza PROJECT: BM#5 PAGE:' {� CLIENT: Weyand Residence DESIGN BY : R.A As harpour JOB NO.: 130431 DATE:A/17/20133, REVIEW BY: R.A. G1C'.7Ar1'SR>'i..-- INPUT DATA & DESIGN SUMMARY L 'l L2 ' MEMBER SIZE 6 z:6 No. 1, Douglas,Fir-Larch� MEMBER SPAN L- 7�ft , Pot UNIFORMLY DISTRIBUTED DEAD LOAD WD 115"_ lbs / ft UNIFORMLY DISTRIBUTED LIVE LOAD wi 60' lbs/ft CONCENTRATED DEAD LOADS PD1 - . 0." •' lbs WD (0 for no concentrated load) L, _ ` 0 ft PDz = 0 lbs L2 = 0 ft DEFLECTION LIMIT OF LIVE LOAD d L = L / 360 Camber =>'0.08 inch DEFLECTION LIMIT OF LONG-TERM dKcrD.L = L / 240.,. THE BEAM DESIGN IS ADEQUATE. Does member have continuous lateral support by top diaphragm ? (1= yes, 0= no) 0 No Code Duration Factor, Cr) Condition Code Designation 1 0.90 Dead Load 1 Select Structural, Douglas Fir -Larch 2 1.00 Occupancy Live Load 2 No. 1, Douglas Fir -Larch 3 1.15 Snow Load 3 No. 2, Douglas Fir -Larch 4 1.25 Construction Load 4 Select Structural, Southern Pine 5 1.60 Wind/Earthquake Load ., 5 No. 1, Southern Pine 6 2.00 Impact Load 6 No. 2, Southern Pine Choice => 4 Construction Load Choice => 2 ANALYSIS ' DETERMINE REACTIONS, MOMENT, SHEAR wsen vin = 7 lbs / ft RLafl = 0.64 kips RRieM = 0.64 kips VMax = 0.55 kips, at 5.5 inch from left end MMax.= 1:11 ft -kips, at 3.50 ft from left end DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES J b = 5.50 in E'min = 580 ksi E = Ex = 1600-- ksi FID = 1687.5 psi d = 5.50 in FIDE = 24951 psi Fb = 1,350 psi F = FbE / Fb' = 14.79 A = 30.3 int 1 = 76 in F1; = 170 psi Fe = 1,681. psi Sx = 27;7 in RB = 5.282 < 50 E' = 1,600 ksi Fv' = 213 psi / E = 12.8 (ft, Tab 3.3.3 footnote 1) CD CM Ci Ci CL CF Cv C, Cr 1:25 1.00 1:00 1.00 1.00 1.00 1.00 1.00 1.00 CHECK BENDING AND SHEAR CAPACITIES ` fb = MMax / Sx = 481 psi < Fb = 1681. psi [Satisfactory] f,; = 1.5 VMax / A = 27 psi < F, [Satisfactory] CHECK DEFLECTIONS d (L. Max) = 0.03 in, at 3.500 ft from left end, < d L = L / 360 [Satisfactory] d (Kcr D • L . Max) = 0.11 in, at 3.500 ft from left end < d K« o . L =,L/240 [Satisfactory] Where Kcr = 1.50' , (NDS 3.5.2) ' DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) Y d (1.5D. Max) = 0.08 in, at 3.500 ft from left end • 0 t CHECK THE BEAM CAPACITY WITH AXIAL LOAD AXIAL LOAD F = 2 kips THE ALLOWABLE COMPRESSIVE STRESS IS - Fc = Fc Co Cp CF = 1168 psi Where Fc = 925 psi F F Cp = 1.60 —� CF = 1.00 (Lumber only) Cp = (1+F) / 2c - [(1+F) / 2c)2 - F / c]os = - 0.789 Fc = Fc Co CF = . 1480 psi {. Le = K,'L = 1.0 L 84 in" b = 5.5 in SF = slenderness ratio = 15.3 < 50, [Satisfies NDS 2005 Sec. 3:7.1.4] FcE = 0.822 E'min / SFZ = 2044 psi _ E'min = 580 ksi y F = FcE / Fc* = 1.381 C = 0.8 THE ACTUAL COMPRESSIVE STRESS IS % = F / A = 66 psi < Fe' [Satisfactory] THE ALLOWABLE FLEXURAL STRESS IS Fo = 2152 psi, [ for Cc> = 1.6 ] THE ACTUAL FLEXURAL STRESS IS fp = (M + Fe) / S = 878 psi < Fe [Satisfactory] CHECK COMBINED STRESS [NDS 2005 Sec. 3.9.21 ' (fc / F,' )2 + fb / [Fp (1 - fc / FcE)] = 0.425 < 1 [Satisfactory] 'CLIE:N - G✓eyar6( �eS%d am �Sl IIa-'(. z I s SUBJECT: srr�e Add,. o n RA Structural Engineering JOB NO: 13o 4 31 i ADESIGN BY ,lZ.f}�_ E i DA"I r: y-17-/3 ;i /. 1n # Q 7: �=5•g� �, G'DL 9'+2- alo PCF x 6 L� 5" 5 C.✓o.G. = 2/o F. 6x6 13 121/0 7o 2 �� > OG.t. = Z o1/0 X = J • 5 a I • 0 Reza PROJECT: BM#6 PAGE: As har„ OUt' CLIENT : Weyand Residence DESIGN BY: R.A M JOB.NO.: 130431 DATE: 4/_17/2013 - REVIEW BY : R.A. Wood:Bearn.Des�'nhBase`ori N. DS 20G&I'> INPUT DATA & DESIGN SUMMARY L MEMBER SIZE 6 x,6e"; ' No. 1, Douglas Fir -Larch MEMBER SPAN . L = `4.5 - .'ft Po i Poa UNIFORMLY DISTRIBUTED DEAD LOAD WD = x21&lbs/ft < - UNIFORMLY DISTRIBUTED LIVE LOAD WL =. •130,. - lbs / ft t -t CONCENTRATED DEAD LOADS Pp, _ -0 lbs W0 (0 for no concentrated load) L, _ :0 ft j PD2 = 0. lbs L2 = -0 ft , DEFLECTION LIMIT OF LIVE LOAD d L = L / 360 Camber => 0.02 inch DEFLECTION LIMIT OF LONG-TERM dKwo+L = L /:240: THE BEAM DESIGN IS ADEQUATE. , Does member have continuous lateral support by top diaphragm ? (1= yes, 0= no) 0 No Code Duration Factor. CD Condition Code Designation 1 0.90 Dead Load 1 Select Structural, Douglas Fir -Larch 2 1.00 Occupancy Live Load 2 No. 1, Douglas Fir -Larch 3 1.15 Snow Load 3 No. 2, Douglas Fir -Larch 4 1.25 Construction Load 4 Select Structural, Southern Pine 5 1.60 Wind/Earthquake Load 5 No. 1, Southern Pine 6 2.00 Impact Load 6 No. 2, Southern Pine Choice => 4 Construction Load Choice => 2 ANALYSIS DETERMINE REACTIONS, MOMENT, SHEAR wseif wt = 7 lbs /ft RLaft = 0.78 kips RR;9ft, = 0.78 kips VMax = 0.62 kips, at 5.5 inch from left end MMax = 0.88 ft -kips, at 2.25 ft from left end DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES b = 5.50 in E'min 580 ksi E = Ex= 1600 ksi Fb = 1687.5 psi . d = 5.50 in FbE = 36625 psi Fb = 1,350 psi F = FbE / Fb = 21.70 A = 30.3 in2 I = 76 in F� 170 psi' Fe = .1,683 psi Sx = 27.7 in Re = 4.359 <50 E' = 1,600 ksi F, = 213 psi /E = 8.7 (ft, Tab 3.3.3 footnote 1) CD CM C( Ci CL CF Cv Cc Cr 1.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 CHECK BENDING AND SHEAR CAPACITIES fb = MMax / Sx = 380 psi < Fb = 1683 psi [Satisfactory] IV, = 1.5 VMax / A = 31 psi < F, [Satisfactory] CHECK DEFLECTIONS d (L, Max) = 0.01 in, at 2.250 ft from left end, < d L = L / 360 [Satisfactory] d (Kcr 0 + L. Max) = 0.03 in, at 2.250 ft from left end < d K« D + L = L / 240 [Satisfactory] Where Ku 1,50 , (NDS 3.5.2) DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) d (1sD. Max) = 0.02 in, at 2.250 ft from left end • • 0 CHECK THE BEAM CAPACITY WITH AXIALLOAD AXIAL LOAD F = 2 kips l l THE ALLOWABLE COMPRESSIVE STRESS IS��_ Fc' = F� Co CP CF = 1374 psi Where Fc = 925 psi F � L I i I F Co = 1.60 — CF = 1.00 (Lumber only) CP = (1+F) / 2c - [(1+F) / 2c)'- F / c]o.e = 0.929- F,* F, CD CF = 1480 psi Le = Ke L 1.0 L = 54 in b 5.5 in SF slenderness ratio = 9.8 < 50 [Satisfies NDS 2005 Seca 3.7.1.41 F,, . _ 0.822 E'min / -SF2 = . 4946 psi .. - E'min = 580 ksi F = FCE / Fc* = 3.342 C = 0.8 THE ACTUAL COMPRESSIVE STRESS IS fc = F / A = 66 psi < " F,. [Satisfactory] " THE ALLOWABLE FLEXURAL STRESS IS Fp- _ 2155 "psi, [ for Co = 1.6 THE ACTUAL FLEXURAL STRESS IS fb (M + Fe) / S = 776 psi < Fb," [Satisfactory] CHECK COMBINED STRESS [NDS 2005 Sec. 3.9.21 (fb / F.' )2 + % / [Fe (1 fb / FCE)1 = 0.367 < 1 [Satisfactory) • 9 • Reza PROJECT: BM#7 PAGE: CLIENT: Weyand Residence, As harpour JOB NO.: 130431 -``. DATE: 4/ 17/2013` DESIGN BY: R:A REVIEW BY: R.A.' Wdbrcf,136ainnDesitIWB"ii_ �NDS'20W g' -{- INPUT DATA & DESIGN SUMMARY x MEMBER SIZE 6 6t�� No. 1, Douglas Fir -Larch MEMBER SPAN L = 5 6' • ft I PD1 ; +' P02 UNIFORMLY DISTRIBUTED DEAD LOAD wD = a ,210 • r lbs / ft UNIFORMLY DISTRIBUTED LIVE LOAD WL = 130 ` lbs / ft W` CONCENTRATED DEAD LOADS PD1 = ."0,', ylbs W0 7� (0 for no concentrated load) + L1 = 0 ft P02 = 0 lbs 1. L2 = 0 ft DEFLECTION LIMIT OF LIVE LOAD d L = L / 360. Camber => 0.05 inch DEFLECTION LIMIT OF LONG-TERM dKcrD*L = L / THE BEAM DESIGN IS ADEQUATE. Does member have continuous lateral support by top diaphragm ? (1= yes, 0= no) 0 No , Code Duration Factor, Co Condition Code Designation 1 0.90 Dead Load 1 Select Structural, Douglas Fir -Larch - 2 1.00 Occupancy Live Load 2 No. 1, Douglas Fir -Larch 3 1.15 Snow Load 3 No. 2, Douglas Fir -Larch 4 1.25 Construction Load 4 Select Structural, Southern Pine 5 1.60 Wind/Earthquake Load 5 ' " No.,!, Southern Pine 6 2.00 Impact Load 1'.6 No. 2, Southern Pine Choice => 4 Construction Load Choice => 2 ANALYSIS . DETERMINE REACTIONS, MOMENT, SHEAR wsen wt = 7 lbs / ft RLee = 0.95 kips RRigat = 0.95 kips, VMax = 0.79 kips, at 5.5 inch from left end MMax =" •1.31 ft -kips, at 2.75 ft from left end DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES w b = 5.50 in E'mi„ = 580 ksi E = Ex = 1600 ksi Fb. = 1687.5 psi d = 5.50 in FbE = 30851 psi Fb = 1,350 psi F = FbE / Fb' = 18.28 A = 30.3 int 1 = 76 in F„ 170 psi Fe = 1,683 psi Sx = 27.7 in3 ,Re = 4.750 <50 E' _ 1,600, ksi F,; _ 213 psi I -E = 10.3 (ft, Tab 3,3.3 footnote 1) Co CM C1 Ci CL CF Cv Cc Cr 1.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 CHECK BENDING AND SHEAR CAPACITIES fb = MMax / Sx = 567 psi < Fb = 1683 psi [Satisfactory] f, = 1.5 VMax / A = 39 psi < F, [Satisfactory] CHECK DEFLECTIONS Id (L, Max) = 0.02 in, at 2.750 ft from left end, < b d L = L / 360 [Satisfactory] Q (Kcr D -.L, Max) = 0.08 in, at "2.750 ft from left end < - d Kar D . L = L / 240 [Satisfactory] y Where Kcr = 1.50 , (NDS 3.5.2) DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT)" d (1.50, Max) _' 0.05 in, at 2.750 ft from left end s • • 0 CHECK THE BEAM CAPACITY WITH AXIAL LOAD r AXIAL LOAD F = 2 kips i 1 THE ALLOWABLE COMPRESSIVE STRESS IS -,FT F,'= Fo CD CP CF = 1309 psi Where Fe = 925 psi F F CD = 1.60 CF = 1.00 (Lumber only) CP = (1+F) / 2c - [(1+F) / 2c)Z - F /.c]o.s '= 0.884 Fc' =' F� CD CF =- 1480 psi - Le=K,L=1.0L = 66 in f b = 5.5 in SF =slenderness ratio = 12.0 < 50 [Satisfies NDS 2005 Sec. 3.7.1.41 FCE = 0.822 E'min / SF' = 3311 psi E'min = 580 ksi F = FCE / Fc = 2.237 r C = 0.8 THE ACTUAL COMPRESSIVE STRESS IS f, = F / A = 66 psi < Fc' [Satisfactory] f . THE ALLOWABLE FLEXURAL STRESS IS Fb = 2154 psi, [ for CD = 1.6 ) THE ACTUAL FLEXURAL STRESS IS fb = (M + Fe) / S = 964 psi < Fe [Satisfactory] CHECK COMBINED STRESS [NDS 2005 Sec. 3.9.2] (f, / F.' )Z + fb / [Fp (1 - fc / FbE)] = 0.459 < 1 [Satisfactory] 0 • 0 Reza PROJECT: BM#& PAGE: As harpour CLIENT: Weyand Residence " , r DESIGN BY: R.A t JOB NO.: 130431 ;~ji . DATE 4/17/2013 REVIEW BY: R.A. Wood. Beam. Desi" n_Base onNDS' 200:5������„-.��� ' INPUT DATA DESIGN SUMMARY L MEMBER SIZE 6,z 6 ` c , ;+,. No. 1, Douglas Fir-Larch-� Lx MEMBER SPAN, L5 5'r: ft i I Po, ; UNIFORMLY DISTRIBUTED DEAD LOAD WD 210 ` lbs / ft r130; ;Pox m UNIFORMLY DISTRIBUTED LIVE LOAD wL - lbs / ft CONCENTRATED DEAD LOADS Po, 1222, lbs WO a• (0 for no concentrated load) L, 15, ft P02 O. lbs L2= 0'- -ft DEFLECTION LIMIT OF LIVE LOAD d L = L V360 Camber => 0.12 inch DEFLECTION LIMIT OF LONG-TERM d11,D.L = L /-240 ' THE BEAM DESIGN IS ADEQUATE. Does member have continuous lateral support by top -diaphragm ? r (1= yes, 0= no) 0 No Code Duration Factor, Cr, Condition Code Designation 1 0.90 -Dead Load 1 Select Structural, Douglas Fir -Larch 2 1.00 Occupancy Live Load * . 2 No. 1, Douglas Fir -Larch 3 1.15 Snow Load 3 No. 2, Douglas Fir -Larch 4 1.25 Construction Load 4 Select Structural, Southern Pine 5 1.60 Wind/Earthquake Load 5 No. 1, Southern Pine 6 2.00 Impact Load i 6 No. 2, Southern Pine Choice => 4 Construction Load Choice => 2 ANALYSIS ` DETERMINE REACTIONS, MOMENT, SHEAR wse,rwl= 7 Ibs7 ft RLaft = 1.84 kips RRieh1 = 1.29 kips VMS = 1.68 kips, at 5.5 inch from left end MMax = 2.39 ft -kips, at 1.75 ft from left end DETERMINE SECTION PROPERTIES& ALLOWABLE STRESSES b = 5.50 in E'min = 580 ksi E= E%= 1600 ksi Fb = 1687.5 psi d = 5.50 in FbE = 30851 psi Fb = 1,350 psi F = FbE / Fb. = 18.28 A = 30.3 int 1 = 76 in' F„ = 170 psi Fe = 1,683 psi Sx = 27.7 in R8 = 4.750 < 50 E'. = 1,600 ksi F1; = 213 psi /E = 10.3 (ft, Tab 3.3.3 footnote 1) Co CM C, Ci CL CF Cv Cc Cr 1.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1,.00 CHECK BENDING AND SHEAR CAPACITIES fb = MMax / S. = 1033 psi < Fb = 1683 psi .[Satisfactory] f, = 1.5 VMax / A = 83 psi < F, [Satisfactory] CHECK DEFLECTIONS Id (L. Max) = 0.02 1n, at 2.750 ft from left end, < d L = L 1360 [Satisfactory] d (K« D - L • Max) = 0.14 in, at 2.625 ft from left end < d Kcr D . L = L 1240 [Satisfactory] Where Ku = 1.50 , (NDS 3.5.2) DETERMINE CAMBER AT 1.5 (DEAD + SELF WEIGHT) d (1.51), Max) - 0.12 in, at 2.625 ft from left end • • 0 CHECK THE BEAM CAPACITY WITH AXIAL LOAD AXIAL LOAD F _ 2 kips y THE ALLOWABLE COMPRESSIVE STRESS IS F, = Fc Co CP CF _ 1309 psi v Where Fc = .925 psi Co = 1.60, CF = 1.00 (Lumber only) 4 Cp, = (1+F) / 2c - [(1+F) / 2c)2 - F / c]0.5 = 0.884 Fc' = Fc Co CF. = 1480 psi Le = K. L = 1.0 L = 66 in b = 5.5 in SF = slenderness ratio = 12.0 < 50 [Satisfies NDS 2005 Sec. 3.7.1.4] FoE 0.822 E'min /"SFZ 3311 .psi E'min = 580 ksi F = F,.E / Fc: = 2.237 C = 0.8 THE ACTUAL COMPRESSIVE STRESS IS fc = F / A = 66 psi < Fc' [Satisfactory] . THE ALLOWABLE FLEXURAL STRESS IS Fb = 2154 . psi, [ for Co = 1.6 1 THE ACTUAL FLEXURAL STRESS IS fb. = (M + Fe) / S = 1430 psi. < Fb [Satisfactory] CHECK COMBINED STRESS [NDS 2005 Sec. 3.9.2] - (fc / Fr )Z + fb / [Fe (1 - fc / FcE)] 0.680 < 1 [Satisfactory] • • Reza PROJECT: Wood Post Design PAGE: CLIENT: Weyand Residence DESIGN BY: R.A. As h a r 0 u r JOB NO.: 130431 DATE: 4/17/2013 REVIEW BY: R.A. Tables for Wood Post Design Based on NDS 2005 DURATION FACTOR (1.0, 1.15, 1.25, 1.6) Co = 1.00 , (NDS 2.3.2) COMMERCIAL GRADE (# 1 or # 2) # 2 anof evial Canarifv for nnnnias Fir -Larch # 2. (kips) Height^ Section Size ft 4x4 4x6 4x8 4x10 4x12 6x6 I 6x8 6x10 6x12 8x8 8x10 6 10.89 16.85 21.84 27.34 33.25 19.59 26.72 33.85 40.97 37.92 48.03 7 8.68 13.51 17.62 22.21 27.01 18.89 25.76 32.63 39.49 37.33 47.28 8 6.96 10.87 14.22 18.00 21.89 17.99 24.54 31.08 37.63 36.59 46.34 9 5.66 8.85 11.60 14.72 17.90 16.91 23.06 29.21 35.35 35.69 45.21 10 4.67 7.31 9.59 12.19 14.82 15.66 21.35 27.05 32.74 34.61 43.84 11 3.90 6.12 8.04 10.23 12.44 14.32 19.52 24.73 29.93 33.34 42.23 12 3.31 5.19 6.83 8.69 10.57 12.96 17.67 22.39 27.10 31.87 40.37 13 2.84 4.46 5.86 7.46 9.08 11.67 15.91 20.15 24.39 30.23 38.30 14 2.46 3.86 5.08 6.47 7.87 10.47 14.28 18.09 21.90 28.46 36.05 15 2.15 3.38 4.45 5.67 6.89 9.41 12.83 16.25 19.67 26.62 33.72 16 1.90 2.98 3.92 5.00 6.08 8.46 11.54 14.62 17.70 24.76 31.37 17 1.69 2.65 3.49 4.44 5.40 7.63 10.41 13.19 15.96 22.96 29.08 18 1.51 2.37 3.12 3.97 4.83 6.91 9.42 1 11.93 14.44 1 21.23 26.89 19 1.36 2.13 2.80 3.57 4.35 6.27 8.55 1 10.83 13.12 1 19.62 24.85 20 1.23 1.92 2.53 3.23 3.93 5.72 7.79 9.87 11.95 1 18.13 22.96 21 1.11 1.75 2.30 2.94 3.57 5.22 7.12 9.02 10.92 16.76 21.23 22 1.02 1.59 2.10 2.68 3.26 4.79 6.53 8.28 10.02 15.52 19.66 23 0.93 1.46 1.92 2.45 2.98 4.41 6.01 7.62 9.22 14.39 18.23 24 0.85 1.34 1.77 2.26 2.74 4.07 5.55 7.03 8.51 13.36 16.93 25 0.79 1.24 1.63 2.08 2.53 3.77 5.13 6.50 7.87 12.43 15.75 26 0.73 1.15 1.51 1.92 2.34 3.49 4.76 6.03 7.30 11.59 14.68 27 0.68 1.06 1.40 1.79 2.17 3.25 4.43 5.61 6.80 10.82 13.71 28 0.63 0.99 1.30 1.66 2.02 3.03 4.13 5.23 6.34 10.13 12.83 29 0.59 0.92 1.22 1.55 1.89 2.83 3.86 4.89 5.92 9.49 12.02 30 0.55 0.86 1.14 1.45 1.76 2.65 3.62 4.58 5.54 8.91 11.29 0-4- A.. -1 f`- ;#M fnr Cnu4hnrn Dinn It 9 lleincl Height Section Size ft 4x4 4x6 4x8 4x10 4x12 6x6 6x8 6x10 6x12 8x8 8x10 6 11.10 17.27 22.54 28.44 34.17 14.96 20.41 25.85 31.29 28.68 36.32 7 8.79 13.73 17.98 22.77 27.49 14.57 19.87 25.16 30.46 28.33 35.89 8 7.02 10.98 14.41 18.30 22.15 14.07 19.18 24.30 29.42 27.91 35.36 9 5.69 8.91 11.71 14.89 18.05 13.45 18.35 23.24 28.13 27.41 34.72 10 4.69 7.35 9.66 12.30 14.91 12.72 17.35 21.98 26.61 26.80 33.95 11 3.92 6.15 8.09 10.30 12.50 11.90 16.22 20.55 24.87 26.09 1 33.05 12 3.32 5.21 6.86 8.74 10.61 11.00 15.00 19.00 23.00 25.26 32.00 13 2.85 4.47 5.88 7.50 9.10 10.09 13.76 17.42 21.09 24.32 30.81 14 2.47 3.87 5.10 6.50 7.89 9.20 12.54 15.88 19.23 23.27 29.47 15 2.16 3.39 4.46 5.69 6.91 8.36 11.40 1 14.44 17.48 22.12 28.02 16 1.90 2.99 3.93 5.01 6.09 1 7.59 10.35 1 13.11 15.87 20.91 26.48 17 1.69 2.65 3.49 4.45 5.41 6.89 9.40 1 11.91 14.42 19.66 24.91 18 1.51 2.37 3.12 3.98 4.84 6.27 8.56 1 10.84 13.12 1 18.42 23.33 19 1.36 2.13 2.81 3.58 4.35 5.72 7.80 1 9.88 11.96 17.21 21.80 20 1.23 1.93 2.54 3.24 3.93 5.23 7.13 1 9.04 10.94 16.05 20.33 21 1.11 1.75 2.30 2.94 3.57 4.80 6.54 8.28 10.03 14.95 18.94 22 1 1.02 1.60 2.10 2.68 3.26 4.41 6.01 7.62 9.22 13.93 17.65 23 0.93 1.46 1.93 2.46 2.99 1 4.06 5.54 7.02 8.50 12.98 16.45 24 0.86 1.34 1.77 2.26 2.74 3.76 5.12 6.49 7.86 12.11 15.34 25 0.79 1.24 1.63 2.08 2.53 3.48 4.75 6.01 7.28 11.31 14.33 26 0.73 1.15 1.51 1.93 2.34 3.23 4.41 5.59 6.76 10.58 13.40 27 0.68 1.06 1.40 1.79 2.17 3.01 4.11 5.20 6.30 9.90 12.54 28 0.63 0.99 1.30 1.66 2.02 2.81 1 3.83 4.85 5.88 9.28 11.76 29 1 0.59 0.92 1.22 1 1.55 1.89 2.63 3.58 4.54 5.50 8.72 11.04 1 30 1 0.55 0.86 1.14 1 1.45 1.76 1 2.46 3.36 4.25 1 5.15 8.20 10.39 Note: 1. The bold values require steel bearing plate based on, Fel, 625 psi. 2. The table values are from Wood Column software at www.Engineering-Internationahcom . RA Structural Engineering Title: Weyand Residence Job # 130431 78080 Calle Amigo, Suite #102 Dsgnr: Reza Asgharpour, P.E. La Quinta, CA. 92253 Project Desc.: Side -Yard Addition (760)771-9993 Project Notes Block Line 6 Printed: 17 APR 2013. 4:38PM 'Title WOOd'COIUI1ltl . File C1UsersVsandyslDocumentslENERCALCData Fileslweyandside-yard addition.ec6 INC:1983 2017 :Build:6.11.4.5, Ver.6.11.4.1 Applied Axial -., „.,m Licensee: RA STRUCTURAL ENGINEERIN 0.8085 k -ft KW -06005737 Description : 2x6 DF41 Stud•@ 16° 0/C (1-144 ft.) g E General Information Calculations per 2005 NDS, IBC 2009, CBC 2010, ASCE 7-05 Analysis Method : Allowable Stress Design Wood Section T a' me 2x6 End Fixities Top Pinned, Bottom Fixed Wood Grading/Manuf. Graded Lumber Overall Column Height 14.0 ft Wood Member Type Sawn ( Used for non -slender calculations) Exact Width 1.50 in Allowable Stress Modification Factors Wood Species Douglas Fir - Larch Exact Depth 5.50 in Cf or Cv for Bending 1.30 Wood Grade No.1 Area 8.250 in^2 - Cf or Cv for Compression 1.10 Fb - Tension 1200 psi Fv' 170 psi Ix 20.787 in^4 Cf or Cv for Tension 1.30 Fb - Compr 1200 psi Ft 825 psi ly 1.547 in^4 Cm: Wet Use Factor 1.0 Fc - PdI 1000 psi Density 32.21 pcf Ct :Temperature Factor 1.0 Fc Perp 625 psi Cfu : Flat Use Factor 1.0 E : Modulus of Elasticity ... x -x Bending y -y Bending Axial Kf : Built-up columns 1.0 NDS ,_,. .� 2 Basic 1600 1600 1600 ksi Use Cr: Repetitive ? Yes (noi;-gtr�:)nlyt Minimum 580 580 Brace condition for deflection (buckling) along columns : Load Combination 2006 IBC & ASCE 7-05 X -X (width) axis : Unbraced Length for X -X Axis buckling = 6 ft, K =1.0 +D+0.750L+0.750S+0.750W+H Y -Y (depth) axis : Unbraced Length for Y -Y Axis buckling =14 ft, K =1.0 Applied Loads Service loads entered. Load Factors will be applied for calculations. Column self weight included : 25.835 lbs' Dead Load Factor AXIAL LOADS ... Roof: Axial Load at 14.0 ft, D = 0.3510, Lr = 0.260 k BENDING LOADS ... Wind: Lat. Uniform Load creating Mx -x, W = 0.0330 k/ft • DESIGN SUMMARY Bending & Shear Check Results Maximum Axial + Bending PASS Max. Axial+Bending Stress Ratio = 0.8671 :1 Load Combination +D+W+-H Goveming NDS Formla Comp + Mxx, NDS Eq. 3.9-3 Location of max.above base 0.0 ft At maximum location values are.. . Status Location Applied Axial 0.3768 k Applied Mx 0.8085 k -ft Applied My 0.0 k -ft Fc: Allowable 199.67 psi Maximum SERVICE Lateral Load Reactions . . Top along Y -Y 0.1733 k Bottom along Y - Top along X -X 0.0 k Bottom along X- Maximum SERVICE Load Lateral Deflections ... Along Y -Y -0.3566 in at 8.175 ft for load combination : W Only Along X -X 0.0 in at 0.0 ft for load combination : n/a Other factors used to calculate allowable stresses ... Y 0.2888 k X 0.0 k above base above base PASS Maximum Shear Stress Ratio = 0.2059:1 Bending Compression Load Combination +D+W+H Cf or Cv : Size based factors 1.300 1.100 Location of max.above base 0.0 ft Applied Design Shear 35.0 psi Allowable Shear 170.0 psi Load Combination Results Tension D Only k k 0.377 k Maximum Axial + Bending Stress Ratios Maximum Shear Ratios Load Combination Stress Ratio Status Location Stress Ratio Status Location +D 0.2288 PASS 0.0 ft 0.0 PASS 14.0 ft +D+Lr+H 0.3866 PASS 0.0 ft 0.0 PASS 14.0 ft +D+0.750Lr+0.750L+H 0.3471 PASS 0.0 ft 0.0 PASS 14.0 ft +D+W+H 0.8671 PASS 0.0 ft 0.2059 PASS 0.0 ft +01+0.750Lr+0.750L+0.750W+H 0.7640 PASS 0.0 ft 0.1544 PASS 0.0 ft +D+0.750L+0.750S+0.750W+H 0.6634 PASS 0.0 ft 0.1544 PASS 0.0 ft +D+0.750Lr+0.750L+0.5250E+H 0.3471 PASS 0.0 ft 0.0 PASS 14.0 ft +0.60D+W+H 0.8031 PASS 0.0 ft 0.2059 PASS 0.0 ft Maximum Reactions - UnfactOred, Note: Only non -zero reactions are listed • _ X -X Axis Reaction Y -Y Axis Reaction Axial Reaction Load Combination @ Base @ Top @ Base @ Top @ Base D Only k k 0.377 k RA Structural Engineering Title: Weyand Residence Job # 130431 78080 Calle Amigo, Suite #102 Dsgnr. Reza Asgharpour, P.E. La Quinta; CA. 92253. Project Desc.: Side -Yard Addition (760)771-9993 Project Notes : Printed: 17 APR 2013, 4:38M Description : 2x6 DF#1 Stud @ 16" O/C (H=14 ft.) Loads are total entered value. Arrows do not reflect absolute direction. ,,MaximuntReaction"s - Unfactored - Note: Only non -zero reactions are listed. _ _ X -X Axis Reaction Y -Y Axis Reaction Axial Reaction Load Combination @ Base @ Top @ Base @ Top @ Base Lr Only k k 0.260 k W Only k -0.289 -0.173 k k D+Lr k k 0.637 k D+W k -0.289 -0.173 k 0.377 k D+Lr+W k -0.289 -0.173 k 0.637 k Maximum Deflections for Load Combinations - Unfactored Loads __ _ Load Combination Max. X -X Deflection Distance 'Max. Y -Y Deflection Distance D Only 0.0000 in 0.000 It 0.000 in 0.000 ft Lr Only 0.0000 in 0.000 ft 0.000 in 0.000 ft W Only 0.0000 in 0.000 ft -0.357 in 8.174 ft D+Lr 0.0000 in 0.000 ft 0.000 in 0.000 ft D+W 0.0000 in 0.000 ft -0.357 in 8.174 ft D+Lr+W 0.0000 in 0.000 ft -0.357 in 8.174 ft Sketches —_ v 4d1'ai'Loads 5 � � 1 I • .. .• Zf(6 ,,I (�Jso;, Loads are total entered value. Arrows do not reflect absolute direction. • Reza PROJECT: "Steel Column PAGE: CLIENT Weyand Residence r i DESIGN BY: R.A. As har OUr R JOB NO :130431 DATE -4/17/2013 r REVIEW BY: R.A. Tube./ Ri ?Cbllufnn'; • • • Reza LONGITUDINAL _ .. 'TRANSVERSE d 1GN LOADS (IBC SEC.16053.2 & ACI 318-05 SEC.9.2.1) . 8.50 ' • r 42 PROJECT : Max -Load For 3 5 sgft`Pad Footing (:1500ps� `� `: 1..2 DL + 1.6 LL 11.2 PAGE Asgharpour CLIENT: :_A`__ 4 r u �' r: ssr E 3: 0.9 OL + E / 1.4 P = 8 DESIGN BY R A'. .1 - Joe No. < r DATE : , - " �t ` REVIEW BY: Pad Footm :DesP "n BasedionACt 318.=05M�. I CASE 2 CASE 3 ' + 1.43 BL. INPUT DATA 1.43 ksf.'0.66 ksf 4 # 4 @ 12 in o.c. DESIGN SUMMARY 4 MAX -< ' k Q a , • [Satisfactory]. 0.019 - COLUMN WIDTH c, _ +`.Oiin FOOTING WIDTH B = 3.50 f1 COLUMN DEPTH c, _ ^ Orin FOOTING LENGTH L = 3,50 ft. BASE PLATE WIDTH b, _ + 4�`in FOOTING THICKNESS T = 12 in. BASE PLATE DEPTH b2 _ ti 4' t in �. LONGITUDINAL REINF. 4 # 4 @ _ 12 fin o c FOOTING CONCRETE STRENGTH f� _ ,+ 2.5 " +ksi TRANSVERSE-REINF. 4 - # 4 @ 12 in o.c REBAR YIELD STRESS fy =--AiO Lksi (P t AXIAL DEAD LOAD Pci B S k , AXIAL LIVE LOAD P-� _8 5: �,: k LATERAL LOAD (O=WIND. 1=SEISMIC) _ itr, Seismic,SD SEISMIC AXIAL LOAD _^0 PLO', k. SD. SURCHARGE 9e = y j O ksf t#. c`a•#<•.:: o`i • a,— , SOIL WEIGHT ws = 0 11, kcf FOOTING EMBEDMENT DEPTH! Df' _ !�--12 ft FOOTING THICKNESS T = ALLOW SOIL PRESSURE Qa = a� 5 ok ksf �1 FOOTING WIDTH FOOTING LENGTH L = 35�,.- m( ✓y%%i r L BOTTOM REINFORCING # 4n" THE PAD DESIGN IS ADEQUATE. 4LYSIS LONGITUDINAL _ .. 'TRANSVERSE d 1GN LOADS (IBC SEC.16053.2 & ACI 318-05 SEC.9.2.1) . 8.50 ' b 42 E 1: DL + LL P = 17 kips 1..2 DL + 1.6 LL 11.2 Pu = 24 kips E 2: DL + LL + E / 1.4 P = 17 kips DL + 1.0 LL + 1,0 E Pu = 19 kips E 3: 0.9 OL + E / 1.4 P = 8 kips - 0.9 DL + 1.0 E Pu • = 8 kips ' CK SOIL BEARING CAPACITY (ACI 318-05 SEC. 15.2.2) Ab 0.46 ` p CASE 1 3 # 4 CASE 2 CASE 3 ' + 1.43 BL. ksf, 1.43 ksf.'0.66 ksf 4 # 4 @ 12 in o.c. • 4 MAX -< ' k Q a , • [Satisfactory]. 0.019 - « Check pproa ` Pmax where k = 1 for gravity loads, 4/3 for lateral loads. IGN FOR FLEXURE (ACI 318-05 SEC. 15.4.2. 10.2. 10.3.5, 10.5.4, 7.12.2. 12.2, & 12.5) I— pwy 0.0019d 3 1 LONGITUDINAL _ .. 'TRANSVERSE d 8.75 . 8.50 ' b 42 ^42 4 u,max ., 1.94 1:94 9.44.. P 0.001 _ Pmin _0.001 0.001 0.001 Ab 0.46 X0.50 ^Reg0 3 # 4 _3 # 4 Max. Spacing , 18• in o.c. , 18 in o.c. USE 4 # 4 @ 12 in o.c. 4 # . 4_ @ 12 in o.c. + Pmax « 0.019 0.019 - « Check pproa ` Pmax [Satisfactory] [Satisfactory] r • 0 (cont'd) CHECK FLEXURE SHEAR (ACI 318-05 SEC:9.3.2.3, 15:5.2. 11.1.3.1. & 11.3) a 20bclF- tONGITl1O1NAL TRANSVERSE x Vu 6.38 - 0.75 0.75 Wn 27.6 26.8 Check V„ (Satisfactory] [Satisfactory] CHECK PUNCHING SHEAR (ACI 318-05 SEC.15.5.2, 11.12.1.2. 11.12.6, & 13.5:3.2) ' �I (2 54.98 i�• Ilr = 54.98 kips where o 0.75 (ACI 318-05, Section 9.3.2.3 ) Ise ratio of long side to short side of concentrated load = 1.00 bo = C1 + C2 + b, + b2 + 40 = 42.5 in AP = bo d = 366.6 in' Y = MIN(2. 4 / )3C . 40d/bo) = 2.0 I' u - Pu, nlae (I —� rl r cl J� = 22.28 kips [Satisfactory] L 81.. ' x <pV„ • - • • 0 Reza PROJECT : Max Load Fori4 0 sq ft:1Pad Footing (13O0psf) .� t•T"5 PAGE: CLIENT: .�.h_ s•� x� pt��"wzr DESIGN BY: R Asgharpour ) JOB NO.:, 1r,' rt § DATE : . REVIEW BY: Padlii: ,6W nYBbi16nrACf,318 0519: ZIOWS =I'�� �f INPUT DATA LONGITUDINAL TRANSVERSE DESIGN SUMMARY 8.75 COLUMN WIDTH C, _ -Or in FOOTING WIDTH B = 4.00 ft, COLUMN DEPTH c-2 = a,``+0 8;.y in FOOTING LENGTH L = 4.00 :h BASE PLATE WIDTH b, _ 4 in FOOTING THICKNESS T = 12' in, BASE PLATE DEPTH b2 = v y 4 L' in LONGITUDINAL REINS ' 4 # 4 . ® to m c.0 , FOOTING CONCRETE STRENGTH f� _ •` 2.5 ; ksi TRANSVERSE REINF 4 # 4 @ 14 in o c, ^ USE - 4 # 4 @ 14 in o.c. _ 4 _ # 4 @,14 in o.c. •0.019 •_ Pmax • 0.019 REBAR YIELD STRESS (y = !-40)j ksi r• _ - , AXIAL DEAD LOAD Pp. - -,1.15.1 k AXIAL LIVE LOAD PLL = X11 `5, k r'.- LATERAL LOAD (O=WIND, 1=SEISMIC) _ 1511;�1f t Seismic,SO - �^ - SEISMIC AXIAL LOAD PLAT = 0 k. SD y } SURCHARGE Qs _ 0)ksf T, WEIGHT ws ` kcf 0 11.__r+ SOIL FOOTING EMBEDMENT DEPTHi O "'•`' 4 2 ft + FOOTING THICKNESS T = I; 12 in ALLOW SOIL PRESSURE Qa = ypi rrlSfiSksf ` t - FOOTING WIDTH B =r4� ft co( f}} +• I f/ �f' FOOTING LENGTH L = + 4 - jft BOTTOM REINFORCING # THE PAD DESIGN IS ADEQUATE. 1 ANALYSIS + . a DESIGN LOADS (IBC SEC.1605;3.2 & ACI 318-05 SEC.9.2.1) i CASE 1: DL + LL P = 23 kips 1.2 DL + 1.6 LL Pu = '32 kips CASE 2: DL + LL + E / 1.4 P = 23 kips 1.2 DL + 1,0 LL + 1.0 E Pu = 25 kips CASE 3: 0.9 DL + E 11.4 P = 10 kips 0.9 OL + 1.0 E Pu = 10 kips CHECK SOIL BEARING CAPACITY (ACI 318-05 SEC. 15.2.2) - j , ' CASE 1 CASE 2 CASE 3 q•,rn.a= -+-tj .•ti(U.15-jr•,)% = 1.48 ksf. 1.48 ksf. 0.69 ksf 13 q mAx < k Q a . [Sati'sfactory) where k= 1 for gravity loads. 4/3 for lateral loads. DESIGN FOR FLEXURE (ACI 318-05 SEC. 15.4.2, 10.2, 10.3.5. 10.5.4. 7.12.2, 12.2. & 12.5) ` 0.8513je C11 � � Y ^ 1 r � O..,S36,/�, P ua,• = � • Psu�� = dd/iV�(LQII ^- 111d 3I o LONGITUDINAL TRANSVERSE d 8.75 - 8:50 b L 4848 x., qumax 2.01 2.01'* Mi, 14.79 14.79 r � 0.001a --0.002 - . 0:001 • Pmin 0.002 AS _ " 0.76 - i ` . 0.78 2 - _ RegD • • 4 # 4 4 # 4 Max. Spacing -18 in o_.c. 18 in o.c. ^ USE - 4 # 4 @ 14 in o.c. _ 4 _ # 4 @,14 in o.c. •0.019 •_ Pmax • 0.019 _ _ Check p ,'o ` nmax - [Satisfactory] 1.[Satisfactory] CHECK FLEXURE SHEAR (ACI 318-05 SEC:9.3.2.3. 15.5.2, 11.1.3.1, & 11.3) Q�► = 20hdj CHECK PUNCHING SHEAR (ACI 318-05 SEC.15.5.2, 11,12.1.2. 11.12.6. & 13.5.3.2) oI°rr=(2+ u)o./c,:I'P = 54.98 kips where 0. = 0.75 • (ACI 318-05, Section 9.3.2.3 ) 13� = ratio of. long side to short side of concentrated load = 1.00 bo = ci + c2'' bi + b2 + 4d = 42.5 in Ap = bo d = 366.6 int ` Y MIN(2 . 4 / iii, 40 d / bp) = 2.0 i'(:c. < (Satisfactory) Liu=Trr.ma�h+•-r �l'._I d+l - c/�I= 30.62 kips � V - n � rYl , itt B l 2 it 2 �1 . LONGITUDINAL TRANSVERSE VU 9.56 9.73 F . 0.75 Z. 0.75 _ Wn 31.5 _ 30.6 Check V. < dV,, [Satisfactory] [Satisfactory] CHECK PUNCHING SHEAR (ACI 318-05 SEC.15.5.2, 11,12.1.2. 11.12.6. & 13.5.3.2) oI°rr=(2+ u)o./c,:I'P = 54.98 kips where 0. = 0.75 • (ACI 318-05, Section 9.3.2.3 ) 13� = ratio of. long side to short side of concentrated load = 1.00 bo = ci + c2'' bi + b2 + 4d = 42.5 in Ap = bo d = 366.6 int ` Y MIN(2 . 4 / iii, 40 d / bp) = 2.0 i'(:c. < (Satisfactory) Liu=Trr.ma�h+•-r �l'._I d+l - c/�I= 30.62 kips � V - n � rYl , itt B l 2 it 2 �1 . CLIENT': Wei Av%! ►2esf moi— t SFI} f_ 1": i suB�h:cl: sr�e ddr RA Structural Engineering OB NO: 13oy-31 AbDESIGN BY: (?_{� _� f.. -I%- _ `Pad Fpm¢'" 0,ogn J �) 3 l pLF. x I Lj' } C21 p si x T 53 a c- A> (� 2— c7 �t2 Xio - foo Qb �._ 9666 Q� > ��.c = 525z�� ii di �t 56— 6P G �.� %tea ' �{ �oc,/ ,✓e✓�o x� x I Z Tib { � i h 0 i-onvening naaresses toltrom Latitude/Longitude/Altitude in One Ste... 1/1 at Ion. hi Converting Addresses to/from Latitude/Longitude/Altitude in One Step Stephen P.: Morse, San Francisco Batch Wde (Forward) Batch Mode (Reverse),. Batch Mode (Altitude) Deg/Min/Sec..to pecimal Computing Distances .Frequently Asked Questions My Other wl by es . address , 79702 Mission Drive E Ilatitude city La4Quinta longitude j state Ca, above ratites muse he in. clec•ithal Zip 92253 With minas signs./or south and ivesi country United States 1 DeterminertLat/Lon Get:Altitudes reset. I Determine Address reset i — J Access geocoder.us / geocoder.ca (takes a relatively long time) ,' lfrom��oole latitudelongitude ^�altitudel •decimal 3,3.69061 116.273619 i deg -min -sec F)3041'26.0196" -116° 1.6' 2.0284" (from tamu �latitudey �Pongitude ___� {altitude decimal 133.6905610, 1-116:27 3618742187. deg -min -sec 33° 4.1' 26.0197" ;Fl 16° 16 25.0275",�! 79702 MISSION DR E .La Quinta CA Ifromtvahoo Ilatitude �Iongitude [all titude decittnal 133.689919 J-116.272468 - deg -Min -sec. 33 41 2.7084 116 16 20.8848 r_�, 79702.Mission Dr E. La Quinta, California 922 53) Data presented here comes from the following websites: og ogle. (all. addresses) geocoder.ca. (US and Canadian addresses only) • geocoder us. (US addresses only) epsvisualirer. (for altitudes) locatienet. (European addresses only) 2 of I t1/7/2012 11:11 M Conterminous 48 States 2005 ASCE 7 Standard Latitude = 33.690561 Longitude = -116.27361900000001 Spectral Response Accelerations Ss and S1 - -. Ss and S1 = Mapped Spectral Acceleration Values Site Class B - Fa = 1.0,Fv= 1.0 Data are based on a 0.01 deg grid spacing Period Sa (sec) (g) 0.2 1.500 (Ss, Site Class B) 1.0 0.600 (S1, Site Class ,B) ' Conterminous 48 States 2005 ASCE 7 Standard Latitude = 33.690561 ' Longitude = -116.27361900'000001 Spectral Response Accelerations SMs and SM1 ; SMs = Fa x Ss and SM1 = Fwx S1 r Site Class D - Fa = 1;.0 ,Fv = �1.5 Period Sa (sec) (g) 0.2 1.500 (SMs, Site Class D) - 1.0 0.900 (SMI, Site Class D) Conterminous 48 States 2005 ASCE 7 Standard Latitude = 33.690561 ' F. . Longitude = -116.27361900000001 Design Spectral Response Accelerations SDs and SD1 SDs = 2/3 x SMs and SD1 = 2/3 x SM1 Site Class D - Fa = 1'0 ,Fv = 1.5 Period Sa (sec) (g) 7 ' 0.2 1.000 (SDs, Site Class D)- 1.0 0.600 (SD1, Site Class D) y:. -a 0 • Reza PROJECT: { Seismic Load -Diaphragm A:(Rt6 5) r . , PAGE: CLIENT .Weyand Residence ;' ' -',� j '; _ 4r DESIGN BY : R.N. .S.g Cp0 106 NO;.I ]30431 `,k DATE T'4/17/2013' REVIEW BY: ;R'A. One, Story Seisniic;Anal sis,Based on .IBC. 06'1 CBC 07. ,'�. Determine Base Shear (Derived from ASCE 7-05 Sec. 12.8) f r V = MAX{ MINI SDI 1 / (RT) , SDS I / R ] , 0.01 _0.5S1 I bR-} W = MAX{ MIN[ 0.64W , 0:15W ] , 0.01W*, 0.05W } A ' = 0.15 W, (SD) (for S, z 0.6 g only) 0.11 W, (ASD) = 1.87 kips Where SDS = 11 (ASCE 7-05 Sec 11.4.4) SD1 = ; 0;& (ASCE 7-05 Sec 11.4.4) S1 = 0:6- (ASCE 7-05 Sec 11.4.1)'- - R = i .6.5.' (ASCE 7-05 Tab 12.2-1) 1 = •1. (IBC 06 Tab 1604.5 & ASCE 7-05 Tab 11.5-1) - Ct= ,0 02 (ASCE 7-05 Tab 12.8--} ) hn = 14.0 ft X 0.75 (ASCE 7-05 Tab 12.8-2) T = Ct (hn)X = 0.145 sec, (ASCE 7.05 Sec 12.8.2.1) Calculate Vertical Distribution of Forces & Allowable Elastic Drift (ASCE 7-05, Sec 12.8.3 & 12.8.6) Level Wx hx hxk Wxhxk Fx , ASD (12.8-11) 8mallowable, ASD Roof 17: �.: rt 14 14.0 238 1.9 (0.1 1 Wx) 0.6 17.0 238 1.9 Where k = 1 - for T <= 0.5 ke,allowable, Aso = �a 1 / (1.4 Cd), (ASCE 7-05 Sec 12.8.6) k = 0.5 T+ 0.75 for T @ (0.5 , 2.5) Cd = *4 ,(ASCE 7-05 Tab 12.2-1) k = 2 for T >= 2.5 I Aa = ' 0:02 hsx, (ASCE 7-05 Tab 12.12-1) Calculate Diaphragm Forces (ASCE 7-05, Sec 12.10.1.1) Level Wx EWX Fx EFx Fpx , ASD, (12.10-1) Roof 17.0 17.0 1.9 1.9 2.3 (0.13M) 17.0 1.9 Where Fmin = 0.2'SDS I Wx / 1.5 , ASD Finax = 0.4 SDS I Wx / 1.5 , ASD t r � �i • • Reza PROJECT: Wind Load, PAGE: CLIENT: Weyand Residence, DESIGN BY: R.A. As harpour JOB NO.: '180431 DATE : :04/17/13 REVIEW BY: •R.A: ( INPUT DATA Exposure category (e, C or D) Importance factor, pg 77, (0.87, 1.0 or 1.15) 1 -ea=. 1 00 '' Category II Basic wind speed (IBC Tab 1609.3.1 Vys) V = ;'85 mph Topographic factor (Sec.6.5.7.2, pg 26 a 45) Kr = 1 ) Flat r t Building height to eave he - 14 ft Building height to ridge hr 20 ft Building Building length L = 60 . tv ft B 1 Building width B = 36 ft Effective area of components A = 20 `rft2 DESIGN SUMMARY Max horizontal force normal to'building length, L, face = 12.00 kips Max horizontal force normal topbuilding length, B, face = 6.30 kips Max total horizontal torsional load = 74.91 ft -kips Max total uoward force 1 _ = 23.47 kips ANALYSIS Velocity oressure qh = 0.00256 K„ Krt Kd VZ 1 t = 13.68 psf where: qh = velocity pressure at mean roof height, h. (Eq. 6-15, page 27) Kh = velocity pressure exposure coefficient evaluated at height, h, (Tab. 6-3, Case 1,pg'79) = 0.87 Kd = wind directionality factor. (Tab. 6-4, for building, page 80) = 0.86 h = mean roof height . ' = 17.00 ft < 60 ft, [Satisfactory] < Min (L, B), [Satisfactory] Desion oressures for MWFRS p = qh [(G Cpr )-(G Cp1)] t where: p = pressure in appropriate zone. (Eq. 6-18, page 28). Amin = 10 psf (Sec. 6.1.4.1 & 6.1.4.2) G Cp T = product of gust effect factor and external pressure coefficient, see table below. (Fig. 6-10, page 53 & 54) G Cp 1 = product of gust effect factor and internal pressure coefficient. (Fig. 6-5, Enclosed Building, page 47) = 0.18( or 4.18 a = width of edge strips, Fig 6-10, note 9, page 54, MAX[ MIN(0.1 B, 0.4h), 0.04B,3] 3.60 ft Mat Prascurws /ncfl. Racir_ Lead Cagan Net Pressures losfl. Torsional Load Cases 3E 3 2E 2. 3 2E" 2 3 2 ZONE 2/3 BOUNDARY 3 4 \_ 6 41 i� 6 4F.`` 0 4E- 1 S 1 y I REFERENCE CORNER - IE IE REFERENCE CORNER ° WIND DIRECTION ° Q WIND DIRECTION Transverse Direction I Longitudinal Direction Basic Load Cases Roof angle 9 =1 18.43 Roof an, le 0 = 0.00 Surface G Cp r Net Pressure with G Cp T Net Pressure with (+GCp I) (-GCp I) (+GCp I ). (-GCp I ) 1 0.52 4.601 9.53 0.40 3.01 7.93 2 -0.69 -11.90 -6.98 -0.69 -11.90 -6.98 3 -0.47 -8.87! -3.95 -0.37 -7.52 -2.60 4 -0.42 -8.14 � -3.22 -0.29 -6.43 -1.50 1 E 0.78 8.21 f 13.13 0.61 5.88 10.81 2E -1.07 -17.10 -12.17 -1.07 -17.10 -12.17 3E -0.67 -11.67 -6.75 -0.53 -9.71 -4.79 4E -0.62 -10.92 -5.99 -0.43 -8.34 -3.42 5 -0.45 -8.62 -3.69 -0.45 -8.62 -3.69 6 -0.45 1 -8.62 ` -3.69 1 -0.45 1 -8.62 1 -3:69 3E 3 2E 2. 3 2E" 2 3 2 ZONE 2/3 BOUNDARY 3 4 \_ 6 41 i� 6 4F.`` 0 4E- 1 S 1 y I REFERENCE CORNER - IE IE REFERENCE CORNER ° WIND DIRECTION ° Q WIND DIRECTION Transverse Direction I Longitudinal Direction Basic Load Cases } 2E 2 31 3E } ST 2T TE 2T 2E 2 . 6 4 4T ' 6 4E�0 4E�_ 0 IT IT 5 IE I REFERENCE CORNER IE I 'REFERENCE CORNER WIND. DIRECTION ° wOND DIRECTION Transverse Direction Longitudinal Direction Torsional Load Cases Roof an Ile 0 = 18.43 GCT p Net Pressure with Surface (*GCp I) (-GCp I ) 1T 0.52 1.15 2.38 2T -0.69 -2.97 -1.74 3T -0.47 -2.22 -0.99 4T -0.42 1 -2.04 -0.80 Roof an Ile 0 = 0.00 G Cp T Net Pressure with Surface (+GCp I) (-GCp I ) 1T 0.40 0.75 1.98 2T -0.69 -2.97 -1.74 3T -0.37 -1.88 -0.65 4T -0.29 1 -1.61 0.38 } 2E 2 31 3E } ST 2T TE 2T 2E 2 . 6 4 4T ' 6 4E�0 4E�_ 0 IT IT 5 IE I REFERENCE CORNER IE I 'REFERENCE CORNER WIND. DIRECTION ° wOND DIRECTION Transverse Direction Longitudinal Direction Torsional Load Cases • • Basic Load Cases in Transverse Direction Basic Load Cases in Longitudinal Direction Torsional Load Cases In Transverse Direction Torsional Load Cases in Lon itudinal Direction Design pressures for components and cladding P = 4h[ (G Cp) -'(G Cpl)] s i 5 lay o l 5 2000 + 1 a'- I Z Z I - I v- 1 .` I Z where: p =pressure on component. (Eq. 6-22, pg 28) s i 2 N N tN Nt N Pmin = 10.00 % psf (Sec. 6.1.4.2, pg 21) G Cp = external pressure coefficient. Walls see table below. (Fig. 6-11, page 55-58) Roof Roof >> i i i Area Pressure k with (ftz) (+GCP t1)(-GCP � ) 1 739 3.401 7.04 2 1002 -11.92; -6.99 3 1002 -8.89 ` -3.95 4 739 -6.02 ; -2.38 1 E 101 0.83 , 1.32 2E 137 -2.34 4 -1.66 3E 137 -1.59 c -0.92 4E 101 -1.10! -0.60 r Horiz. 10.1'6$ 10.16 -" Sec. 6.1.4.1 Vert Vert. -23.47 -12.83 Surface "Area Pressure k with • Surface {ft?) , - (+GCp i) (-GCP i ) 1 503 1.51 3.99 2 911 -10.84 -6.35 3 911 -6.85 -2.37 4 503 -3.23 -0.76 1 E 109 + 0.64 -1.18 2E 228 -3.89 -2.77 ' ' 3E 228' -2.21 -1.09 4E 109 -0.91 -0.37 137 Horiz. 6.30 6.30 L 101 -1.10 j -0.60 29 16 . -21.60- -21.60 Surface "Area Pressure k with • Surface {ft?) , - (+GCp i) (-GCP i ) 1 503 1.51 3.99 2 911 -10.84 -6.35 3 911 -6.85 -2.37 4 503 -3.23 -0.76 1 E 109 + 0.64 -1.18 2E 228 -3.89 -2.77 ' ' 3E 228' -2.21 -1.09 4E 109 -0.91 -0.37 137 Horiz. 6.30 6.30 L 101 -1.10 j -0.60 29 16 2T 569 -1.69 -0.99 8 5 (ft=) (+GCP r) (-GC,,) i) (+GCP t) (-GCP Area Pressure k with Torsion. ft -k Surface Zone 3 Zone 4 Zone 5 i ) Area (ft2) GCp • GC GC - GC GC - GC 2 433 -5.151 -3.02 -2:1 -13 3 433 -3.84 ; -1.71 16 7 4 319 -2.60 j -1.03 34 14 1 E 101 0.831 1.32 22 35 3E 137 -1..59 � -0.92 13 8 4E 101 -1.10 j -0.60 29 16 2T 569 -1.69 -0.99 8 5 � Total Horiz. Torsional Load, MT 75 75 SurfaceArea (+GCP i) (-GCP i) (+GCP i) (-GCP i ) 1 319 1.47 � 3.04 19 40. 1 197 0.59 1.56 F 3 8 2 683 -8.13 -4.76 39 23 3 683 - -5.14 -1.78 -24 -8 4 197 -1:26 -0.30 7 2 1 E 109 0.64 1.18 • .9 17 2E 137 -2.34. -1.66 -19 -14 2E 228 -3.89 2.77 18 13 3E 228 2:21 -1.09 -10 -5 4E 109 • -0.91 -0.37 13 5 1T 420 0.48 i 1.00 -7 -15 1T 306 0.23 0.61 -2 -5 .2T 911 -2.71 -1.59 -26 -15 3T 569 -1.26 -0.56 -6 -3 3T 911 -1-.71 -0.59 16 6 4T 420 -0.86 -0.34 -13 -5 4 T .306 -0.49 -0.12 -4 -1 ' Total Horiz. Torsional Load, MT 38.5 38.5 Area Pressure k with Torsion ft -k Zone 2 Zone 3 Zone 4 Zone 5 10.00 Area (ft2) GCp • GC GC - GC GC - GC GC - GC GC • GC Comp. 20 t 0.44 -0.87 0.44 -1.55 0.44 -2.42 0.95 -1.05 0.95 -1.29 Comp. 8 Cladding i Pf888Uf0 It Effective Zone 1 Negative Positve Zone 2 Zone 3 Zone 4 Zone 5 10.00 Area (ft2) GCp • GC GC - GC GC - GC GC - GC GC • GC Comp. 20 t 0.44 -0.87 0.44 -1.55 0.44 -2.42 0.95 -1.05 0.95 -1.29 Comp. 8 Cladding i Pf888Uf0 It Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Positive Negative Positve Negative Positive 'Ne 41ve Positive- Negative Positive Ne alive • f pst) j 10.00 -14.36 10.00 -23.66. 10.00. " -35.55 15.41 -16.78 15.41 -20.16 CLIENT': we yUr,d /acs %dehze RA Structural Engineering "' ' ' I SUBJEC"F: srd4 Ad di, ti or 1.1013 NO 13o u3 � :DESIGN BY: 2•%}---- -- _.-' ; ['>A'Tt::: y -1I- -. a �27PS- i) I�)�4S") Q�Pj )�i JCS �(2)t(I©P54)� z _ e7�28 -fib 648 , LA Lk •use 5{44rma� �145 GY(a (__ it 5��_ sir P� n rY r -e Ci5o Gob�- �d / S w� o h c rl'� Q t h 0' �S W L= 8� FF , I o ��2 5, Q X L,LA, *r/ • • • Reza PROJECT: SW#3 PAGE: As har our CLIENT: Weyand Residence DESIGN BY: R.A. t JOB NO.: 130431 DATE : 4/17/2613 REVIEW BY: R.A. Shear Wall Desicin Based on IBC 061 CBC -07 / NDS 05` i .. T DATA vda (plo Min. Min. Blocked Nail Spacing Panel Grade !AL FORCE ON DIAPHRAGM: Vma, wlNp = 30 plf,for wind 179 Nail (in) (in) 6 4 1 3 1 2 W 8d Vdia, SEISMIC = 38 pff,for seismic �I t' 1 TY LOADS ON THE ROOF:. WDA = 81 plf,for dead load tl 1 r t t t E = 1.7E+06 psi f A = 16.50 in` h = W, = 60 plf,for live load I = 0.221 in e„ = V. da = 0.15 in h° SIONS: Lw = 8 ft , In = 14 ft �F� t (ASCE 7-05 Tab 12.12-1) L = 8 ft, hp= 0 ft GRADE (0 or 1) _ 1 <= Sheathing and Single -Floor r;' h JM NOMINAL PANEL THICKNESS = 3/8 in ON NAIL SIZE (0=6d, 1=8d, 2=10d) 1 8d FIC GRAVITY OF FRAMING MEMBERS 0.5 STUD SECTION 1 pcs, b = 4 in, h = 6 in V. SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH GRADE ( 1, 2, 3, 4, 5, or 6) 4 No. 2 Lw f OPTION ( 1=ground level, 2=upper level) 1 ground level shear wall THE SHEAR WALL DESIGN IS ADEQUATE. GN SUMMARY BLOCKED 3/8 SHEATHING WITH 8d COMMON NAILS @ 6 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. HOLD-DOWN FORCES :� TL = 0.00 k TR = 0.00 k (HOLD-DOWN NOT REQUIRED) DRAG STRUT FORCES: F = 0.00 k EDGE STUD: 1 - 4" is 6" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.29 in _YSIS ( MAX SHEAR WALL DIMENSION RATIO L / B = 1.8 < 3.5 [Satisfactory] IMINE REQUIRED CAPACITY vb = 38 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = 6 in) THF SHFAR CAPACITIES PFR IRC T.N. 9AnR d 1 Note: I ne Inolcalea snear numbers nave reaucea by specmc gravity tactor per IBG note a. VE DRAG STRUT FORCE: F = (L -Lw) MAX( vdla. WIND, Oovda. SEISMIC) = 0.00 k (Oo 1 = ) (Sec. 1633.2.6) VE MAX SPACING OF.5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) 5/8 in DIA. x 10 in LONGANCHOR BOLTS @ 48 in O.C. THE HOLD-DOWN FORCES- vda (plo Min. Min. Blocked Nail Spacing Panel Grade Common Penetration Thickness Boundary & All Edges 179 Nail (in) (in) 6 4 1 3 1 2 Sheathing and Single -Floor 8d 1 1/2 3/8 220 1 320 1 410 1 530 Note: I ne Inolcalea snear numbers nave reaucea by specmc gravity tactor per IBG note a. VE DRAG STRUT FORCE: F = (L -Lw) MAX( vdla. WIND, Oovda. SEISMIC) = 0.00 k (Oo 1 = ) (Sec. 1633.2.6) VE MAX SPACING OF.5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11 E) 5/8 in DIA. x 10 in LONGANCHOR BOLTS @ 48 in O.C. THE HOLD-DOWN FORCES- 1 vda (plo ;Wall Seismic at mid -story Ibs Overturning Moments ft -lbs Resisting Safety Net Uplift Moments (ft -lbs) Factors. Ibs) Holddown SIMPSON SEISMIC 38 179 5510 Left 6176 0.9 T 0 '� 9� y0 Right 6176 0.9 TR = . 0" t WIND 30 � • 3360 Left 6176 2/3 T = 0. `t Right ' 6176 2/3 TR = 0 1 1 (Ti & TR values should include upper level UPLIFT forces if applicable) ECK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) t :, i 8wh3 hd" �• A -OHC,C/ti,x+OS/ror+ONai/ x/ip+OC/r,nl ,�aY..�;/, = + +0.75he,,+= 0.293 in, ASD < EA( EA L,,. fit t L,,. Sxe.awwable, Aso = 0,600 in Where: vb = 38 plf, , ASD L„, = 8 ft E = 1.7E+06 psi [Satisfactory] (ASCE 7-05 12.8.6) A = 16.50 in` h = 14 ft G = 9.0E+04 psi Cd = 4 1 = 1 I = 0.221 in e„ = 0.000 in da = 0.15 in (ASCE 7-05 Tab 12.2-1 & Tab 11.5-1) Aa = 0.02 ham, (ASCE 7-05 Tab 12.12-1) CHECK EDGE STUD CAPACITY Pmax = 0.97 kips, (this value should include upper level DOWNWARD loads if applicable) Fc = 1350 psi CD= 1.60 C, = 0.20 A = 19.25 in' E= 1600 ksi , CF = 1.10 F, _- 486 psi > fc = 51 psi [Satisfactory] C.'LIET`l'. �e�raY►cl /1CSia�Ch �., j SHEI suB.{ c r: s•°d-Q 4d, ¢�' RA Structural. Engineering !I Ota NO: t 3 o u 3 1 Dk:SIG`N BY�'2'/}^ Dn'I'{.:.c.p—l7—� t�'� Q `� � st�nr Wr,,�l p' � � � 2 s6300��� Z -1L � 3 P7L CJ 2 7/-Z, b F= �3oox= 2363 =Q 3 6' i I U Reza PROJECT: 'SW#4' I CLIENT : ,Weyand Residence_4 4 A$gharpour JOB NO.: .130431 ._ DATE I PAGE: DESIGN BY: R.A: REVIEW BY: R.A. V dio COMMON NAIL SIZE (0=6d, 1=8d, 2=10d) f"::;1 ed THE SHEAR WALL DESIGN IS ADEQUATE. SPECIFIC GRAVITY OF FRAMING MEMBERS 0.5' STORY OPTION ( 1=ground level, 2=upper level) - 1;' • r ground level shear wall ' DESIGN SUMMARY BLOCKED 3/8 SHEATHING WITH 8d COMMON NAILS ' @ 6 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. HOLD-DOWN FORCES: TL = 0.93 k , TR = 0.93 k (USE PHD2-SOS3 SIMPSON HOLD-DOWN) MAX STRAP FORCE: F = 0.27 k (USE SIMPSON CS22 OVER WALL SHEATHING WITH FLAT BLOCKING) KING STUD: 'yt - 2" x 6” DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT.. EDGE STUD: 2 - 2" x 6' DOUGLAS FIR -LARCH No. 2, CONTINUOUS,FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.27 in P Z r r I 1 V L1 + 0.5 L2 I 1 TL TR PASSUME INFLECTION POINT AT MIDDLE OF WINDOW ' r L1 L2I2 .jam 1-2/2 L3 F1 F2 I F2 fi F3 F4 I -2 F4 F4 I 4 r f f J f. FS v F6 F7 IF9 F10 _ - Ft F12 FS _ r F6 I F5 .. F8 T rF13 - .F14 �. F5 _ F8 _ - I F5 fi F8 T )F15 -F16 - r F17 FIB ( F5 — `I -F19 F20 F8 9 F21TI:, :01 Flt I 1. 1" F211. 2, F22 F23 F23 1 _ F7.4 TL FREE—BODY INDIVIDUAL PANELS OF WALL r T'R �D i INPUT DATA r LATERAL FORCE ON DIAPHRAGM: vaa. WINO 611,,',. plt,torvAnd (SERVICE LOADS) vw. SFJSWIC .:-55' , pfl,tor seismic STRAP DIMENSIONS: L, 1 4' ; ft, Lz = 4' fl. Ls 5:• ft H, 105 , fl, Hz = 2.5:ft, Hy t,ar'ft KING STUD SECTION ' ,;1. ; pcs, b „j 2 � •+. in , h . 6,,_y; in SPECIES (1 = DFL, 2 = SP) "1 , DOUGLAS FIR -LARCH. GRADE(1,2,3,)4,5,or6) ',4 No.2 EDGE STUD SECTION `, 2 ,pcs,b ;'2,1 in, h';',.6 -'„:,v in SPECIES (1 = DFL. 2 = SP) 1 DOUGLAS FIR -LARCH GRADE 11, 2, 3„ 4, 5, or 6) 1 `r 1 4.. No. 2 PANEL GRADE (0 or 1) _ - ' 1 <= Sheathing and Single -Floor ` MINIMUM NOMINAL PANEL THICKNESS = 3/8' ` in I PAGE: DESIGN BY: R.A: REVIEW BY: R.A. V dio COMMON NAIL SIZE (0=6d, 1=8d, 2=10d) f"::;1 ed THE SHEAR WALL DESIGN IS ADEQUATE. SPECIFIC GRAVITY OF FRAMING MEMBERS 0.5' STORY OPTION ( 1=ground level, 2=upper level) - 1;' • r ground level shear wall ' DESIGN SUMMARY BLOCKED 3/8 SHEATHING WITH 8d COMMON NAILS ' @ 6 in O.C. BOUNDARY & ALL EDGES / 12 in O.C. FIELD, 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. HOLD-DOWN FORCES: TL = 0.93 k , TR = 0.93 k (USE PHD2-SOS3 SIMPSON HOLD-DOWN) MAX STRAP FORCE: F = 0.27 k (USE SIMPSON CS22 OVER WALL SHEATHING WITH FLAT BLOCKING) KING STUD: 'yt - 2" x 6” DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT.. EDGE STUD: 2 - 2" x 6' DOUGLAS FIR -LARCH No. 2, CONTINUOUS,FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.27 in P Z r r I 1 V L1 + 0.5 L2 I 1 TL TR PASSUME INFLECTION POINT AT MIDDLE OF WINDOW ' r L1 L2I2 .jam 1-2/2 L3 F1 F2 I F2 fi F3 F4 I -2 F4 F4 I 4 r f f J f. FS v F6 F7 IF9 F10 _ - Ft F12 FS _ r F6 I F5 .. F8 T rF13 - .F14 �. F5 _ F8 _ - I F5 fi F8 T )F15 -F16 - r F17 FIB ( F5 — `I -F19 F20 F8 9 F21TI:, :01 Flt I 1. 1" F211. 2, F22 F23 F23 1 _ F7.4 TL FREE—BODY INDIVIDUAL PANELS OF WALL r T'R �D • • D Panel Grade Common Nail Min. Penetratio (in) Min. Thickness in Blocked Nail Spacing Boundary & All Edges COW ANALYSIS 3 Sheathing and Single -Floor 8d 1 1/2 " CHECK MAX SHEAR WALL DIMENSION RATIO h / w = 0.6 < '3.5 `, A (Satisfactory) 1 410 1 530 DETERMINE FORCES &S HEAR STRESS OF FREE -BODY INDIVIDUAL PANELS OF WALL ti Q�p Right 0 2/3 T77 854 INDIVIDUAL PANEL W (fl) H (ft) • MAX SHEAR STRESS (p10 NO. FORCE (lot) NO. FORCE'(Ibf) " 1 4.00 1.00 23 FI 92 F13 137 2 2.00 1.00 137 F2 275 F14 137 3 2.00 1.00 137 F3 153 F15 252 4 5.00 1.00 31 - F4 137 F16 114 5 4.00 1.25 92 FS 366 F17 107 6 5.00 1.25 85 F6 275 FIB 244 7 4.00 1.25 92 F7 275 F19 109 8 5.00 1.25 85 FB . 427 F20 102 9 4".00 10.50 64 F9 23 F21 790 10 2.00 10.50 .75 F10 114 F22 257 11 2.00 10.50 75 Fit ' 107 F23 109 12 5.00 10.50 65 F12 31 F24 325 i DETERMINE REQUIRED CAPACITY Tuc CNCAD rADAr.TICC oco IQr T-ue vp = 137 plf, ( 1 �zne w I I I mrT.W. 1II_u i_4 Side Panel Required, the Max. Nail Spacing = 6 in) " Panel Grade Common Nail Min. Penetratio (in) Min. Thickness in Blocked Nail Spacing Boundary & All Edges 6 1 4 3 Sheathing and Single -Floor 8d 1 1/2 " 3/8 220 320 1 410 1 530 Note: I he indicated shear numbers have reduced by specdic gravity factor per IBC note a. i DETERMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab. 11E) - 1 5/8 in DIA. x 10 iii LONG ANCHOR BOLTS @ 48 in O.C. TNF Wr11 n-nr%%AIN Cn Dr CC• (Ti & TR values should include upper level UPLIFT forces if applicable) CHECK MAXIMUM SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) 0=Ax&-,m,x+Ashy+Amal up+Acrxmi.,#k, s11,= 8veh'+veh „ +0.75he+hd4 0.267 in, ASD < EAL . C1 L btte,allowabie,ASD = 0.600 in Where: vp= 137 plf, , ASD I.,,, = 13 ft E = 1.7E+06 psi (Satisfactory) (ASCE 7-05 12.8.6) A = 16.50 in` h = 14 it G = 9.0E+04 psi Ca = 4 1 = 1 t = 0.221 in e„ = 0.000 in d, = 0.15 in ,(ASCE 7-05 Tab 12.2-1 & Tab 11.5-1) 0.02 h„ (ASCE 7-05 Tab 12.12-1) CHECK KING STUD CAPACITY Pmax = 0.11 kips + i F. = 1350 psi Co = 1.60 CP= 0.20 A = 8.25 in' E = 1600 ksi CF = 1.10 F, = 486 psi > f, = 14 psi [Satisfactory) CHECK EDGE STUD CAPACITY w Pmax = 0.93 kips, (this value should include upper level DOWNWARD loads if applicable) F,= 1350 psi Co = 1.60 Cp = 0.20 A = 16.50 in' E= 1600 ksi CF = 1.10 F, = 486 psi > f, = 56 psi [Satisfactory) vo; ( I Wall Seismic at mid -story Ibs Overturning Moments ft -lbs Resisting Safety Net Uplift Moments ft -lbs Factors Ibs Holadown SIMPSON SEISMIC I 55;291 I 12048 Left 0 0.9 T = 927 y5 y0 Right 0 0.9 T = 927 WIND 611 11102 Left 0 2/3 T = 854 ti Q�p Right 0 2/3 T77 854 (Ti & TR values should include upper level UPLIFT forces if applicable) CHECK MAXIMUM SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) 0=Ax&-,m,x+Ashy+Amal up+Acrxmi.,#k, s11,= 8veh'+veh „ +0.75he+hd4 0.267 in, ASD < EAL . C1 L btte,allowabie,ASD = 0.600 in Where: vp= 137 plf, , ASD I.,,, = 13 ft E = 1.7E+06 psi (Satisfactory) (ASCE 7-05 12.8.6) A = 16.50 in` h = 14 it G = 9.0E+04 psi Ca = 4 1 = 1 t = 0.221 in e„ = 0.000 in d, = 0.15 in ,(ASCE 7-05 Tab 12.2-1 & Tab 11.5-1) 0.02 h„ (ASCE 7-05 Tab 12.12-1) CHECK KING STUD CAPACITY Pmax = 0.11 kips + i F. = 1350 psi Co = 1.60 CP= 0.20 A = 8.25 in' E = 1600 ksi CF = 1.10 F, = 486 psi > f, = 14 psi [Satisfactory) CHECK EDGE STUD CAPACITY w Pmax = 0.93 kips, (this value should include upper level DOWNWARD loads if applicable) F,= 1350 psi Co = 1.60 Cp = 0.20 A = 16.50 in' E= 1600 ksi CF = 1.10 F, = 486 psi > f, = 56 psi [Satisfactory) LJ • • Reza :PROJECT: SW#5 PAGE: ' As har Our CLIENT: t JOB NO. ; I Weyand Residence 130431 DATE : 4/17/2013 DESIGN BY REVIEW BY : R.A. R.A. Shear WaII.Desian:Based on IBC 06 / CBC 07 / NDS 05 plf,for live load (in) INPUT DATA LATERAL FORCE ON DIAPHRAGM: vdia. WIND = 295 pN,for wind ' Vdia, SEISMIC ' 260 plf,for seismic GRAVITY LOADS ON THE ROOF: Wog = 297 plf,for dead load wLL = 220 plf,for live load (in) (in) 6 4 1 3 2 i DIMENSIONS: Lw = 1 8 ft, h= 14 ft L = 8 ft, hp= 0 ft PANEL GRADE (0 or 1) = ' 1 <= Sheathing and Single -Floor MINIMUM NOMINAL PANEL THICKNESS = 3/8 in COMMON NAIL SIZE (0=6d, 1=8d,f2=10d) 1 8d SPECIFIC GRAVITY OF FRAMINGMEMBERS 0.5 EDGE STUD SECTION 1 1 pcs, b = 4 in, h = 6 in SPECIES (1 = DFL, 2 = SP) 1 DOUGLAS FIR -LARCH W , h, ------------- j �.- i I I h T. � V. w l T. GRADE ( 1, 2, 3, 4, 5, or ) 4 No. 2 Lw STORY OPTION ( 1=ground level, 2=upper level) 1 ground level shear wall THE SHEAR WALL DESIGN IS ADEQUATE. DESIGN SUMMARY BLOCKED 3/8 SHEATHING WITH 8d COMMON NAILS @ 4 in O.C. BOUNDARY & ALL EDGES 112 in O.C. FIELD, 5/8 in DIA. x 10 in LONG;ANCHOR BOLTS @ 36 in O.C. E HOLD-DOWN FORCES' 'L= 3.04 k TR = 3.04 k (USE PHD2-SDS3 SIMPSON HOLD-DOWN) DRAG STRUT FORCES' F = 0.00 k EDGE STUD: 1 - 4"x' 6" DOUGLAS FIR -LARCH No. 2, CONTINUOUS FULL HEIGHT. SHEAR WALL DEFLECTION: A = 0.54 in ANALYSIS CHECK MAX SHEAR WALL DIMENSION RATIO L / B = 1.8 < ,3;5^ ! [Satisfactory] DETERMINE REQUIRED CAPACITY Vb = 295 plf, ( 1 Side Diaphragm Required, the Max. Nail Spacing = ' ,t; 4 in) THF SHFAR CAPACITIFS PFR IRC Tahlp 93nS 4 1 - Note: The indicated shear numbers have reduced by specltic gravity Tactor per itis note a. I DETERMINE DRAG STRUT FORCE: F = (L -Lw) MAX( Vdis. WIND, SkoVdia, SEISMIC) 0.00 k i t DETERMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11E) 5/8 in DIA. x 10 in LONG¢ANCHOR BOLTS @ 36 in O.C. THF Hr1I r)-nr)WN Fr)pCFS• ( no = 1 1 ) (Sec. 1633.2.6) Vdia (plo Min. Min. Blocked Nail Spacing Resisting `Safety - Net Uplift Moments ft -lbs Factors (III S) Holddown SIMPSON Panel Grade i Common Penetration Thickness Boundary & All Edges 30374 Left - 13088 0.9 Tt = 2324 I Nail (in) (in) 6 4 1 3 2 i I Sheathing and Single -Floor 8d 1 1/2' 3/8 220 320 1 410 530 8 ft Note: The indicated shear numbers have reduced by specltic gravity Tactor per itis note a. I DETERMINE DRAG STRUT FORCE: F = (L -Lw) MAX( Vdis. WIND, SkoVdia, SEISMIC) 0.00 k i t DETERMINE MAX SPACING OF 5/8" DIA ANCHOR BOLT (NDS 2005, Tab.11E) 5/8 in DIA. x 10 in LONG¢ANCHOR BOLTS @ 36 in O.C. THF Hr1I r)-nr)WN Fr)pCFS• ( no = 1 1 ) (Sec. 1633.2.6) I Vdia (plo #Wall Seismic at mid -story Ibs Overturning Moments (ft -lbs Resisting `Safety - Net Uplift Moments ft -lbs Factors (III S) Holddown SIMPSON SEISMIC 260 I 179 S 30374 Left - 13088 0.9 Tt = 2324 0 Right 13088 0.9 TR = 2324; WINO 295 I 33040 Left 13088 2/3 T = 3039,: p`t S Q Right 13088 2/3' TR = 3039 .• I (Tt. & TR values should include upper level UPLIFT forces if applicable) ECK SHEAR WALL DEFLECTION: ( IBC Section 2305.3.2) r t 8vbh1 1v eh hd° + + + — = Or�,><r;„r; Osr.•d. ON�,;r .,rr, �cMrtr .,•rra,; .J;r, — + +0.75h + = e,l 0.536 in, ASD' . < r EAL,,,, Ct L sxe,allowable, Aso = 0.600 in Where: vb = 1295 plf, , ASD Lw = 8 ft E = 1.7E+06 psi [Satisfactory] (ASCE 7-05 12.8.6) A = 16.50 in` h = 14 ft G = 9.0E+04 psi Cd = 4 - I = 1 t = 0.221 in ea = 0.004 in da = 0.15 in (ASCE 7-05 Tab 12.2-1 & Tab 11.5-1) Aa = 0.02 hu (ASCE 7-05 Tab 12.12-1) t , EDGE STUD CAPACITY Pmax = 3.84 kips, (this value should include upper level DOWNWARD loads if applicable) F� = 1350 psi' Co = 1.60 Cp = 0.20 A = 19.25 _ in E= 1600 ksi ` CF = 1.10 F� = 486 psi > % _. 200 psi [Satisfactory] L u �1 i f -1 M5�' y8 strupv✓/��) �/Z i ITin/ max layolc (- f 3o5o k6 Page 1 of Anchor Calculations • Anchor Selector (Version 4.7.0.0) Job Name: Radi Residence > Datelfime :3/16/2012 1:38:55 PM i Calculation Summary - ACI 318 Aoaendix D For Cracked Concrete Per ACI 318-08. Anchor I ,� Anchor Steel Itt of Anchors I Embedment Depth (in) .Category. 1 11/2" Titen HD I N/A, 12 14 1 Concrete It' Concrete Cracked pc(psi) �c;v Normal weight 1 Yes 2500.0 1:00 Condition 11thicknets (in)Suppl. £dge-Reinforcement '?' -1 B tension and shear 118 No Anchor Layout Dimensions ! `• Factored Loads ! Nua (Ib) Vuax (lb) , Vu (lb) Mux (lb -ft) Mu (lb -ft) 0 13044 10 10 10 ex(in) ey(in) Mod/high seismic I I Apply entire shear @ front row 0 10 1 Yes No • Individual Anchor Tension Loads i ( N ual (lb) N ua2 (lb) 0.00 10.00 e.Nx(in) e'Ny(in) 0.00 10.00 1 i Individual Anchor Shear Loads V uat (lb) V ua2 (lb) 1522.00 11522.00 elvx(in) e'vy(in) I 0.00 10.00 i Tension Strengths Steel (m = 0.70) t j Nsa(lb) 4)Nsa(lb) Nue(lb) Nua /(DNsa 20130 114091.00 0.00 ;0.0000 i i I - Concrete Breakout ((D = 0.75 , (1)seis = 0.75 ) Ncpg(b) mNcb9(lb) S NUe(Ib) A Nua /(DNcbg 5509.18 13098.91 0.00` 10.0000 Pullout (m = 0.75 , Oseis = 0.75i) _ Npn(lb) QDNpn(lb) Nj1a(Ib) Nua /4)Np,, 7195.00 10.00 10.60 lNaN • d 43 about:blank ( 3/16/2012 ti<s cxz 15, cy2 bxl..bx2 by1 bye Sx't J)310 (in) (in) (in) (in) (in) (in) (in) (in) 1100110011.511.511.1511Z15' Factored Loads ! Nua (Ib) Vuax (lb) , Vu (lb) Mux (lb -ft) Mu (lb -ft) 0 13044 10 10 10 ex(in) ey(in) Mod/high seismic I I Apply entire shear @ front row 0 10 1 Yes No • Individual Anchor Tension Loads i ( N ual (lb) N ua2 (lb) 0.00 10.00 e.Nx(in) e'Ny(in) 0.00 10.00 1 i Individual Anchor Shear Loads V uat (lb) V ua2 (lb) 1522.00 11522.00 elvx(in) e'vy(in) I 0.00 10.00 i Tension Strengths Steel (m = 0.70) t j Nsa(lb) 4)Nsa(lb) Nue(lb) Nua /(DNsa 20130 114091.00 0.00 ;0.0000 i i I - Concrete Breakout ((D = 0.75 , (1)seis = 0.75 ) Ncpg(b) mNcb9(lb) S NUe(Ib) A Nua /(DNcbg 5509.18 13098.91 0.00` 10.0000 Pullout (m = 0.75 , Oseis = 0.75i) _ Npn(lb) QDNpn(lb) Nj1a(Ib) Nua /4)Np,, 7195.00 10.00 10.60 lNaN • d 43 about:blank ( 3/16/2012 ti<s Pageof Side -Face Blowout does not apply Shear Strengths • Steel (0) = 0.65 ) Veq(lb) 4)V (lb) VUe(lb) V ua /(DVeq ` 4790 13113.50 11522.00 10.4888 Concrete Breakout (case 1) (m = 0.75. mseis = 0.75 ) Vcbx(lb) (DVcbx(Ib) Vuax(Ib) Vuax /Q>Vcbx 11191.63 6295.29 11522.0010.2418 € r Vcbgy(lb) 4>Vcbgy(lb) f Vuay(Ib) I ' Vuay /kDVcbgY I I Vua /4>Vcbg 5516.92 3103.27 0.00 10.0000i 0.2418 Concrete Breakout (case 2) (4±= 0.75 ,mseis = 0.75 ) Vcbx(lb) <DVcbx(lb) ` Vuax(Ib) z Vuax /�Vcbx ` 18389.72110344.2213044.00 0.2943 i Vcb (Ib) q>V (lb) `' V ''`(Ib) V [OVZ1 ">V 9Y ebgy vay uay r cbgy. ua cbg 5516.92 13103.27 16.00 10.0000 10.2943 �. Concrete Breakout (case 3) (dL= 0.75 , mseis = 0.75 ) exi edge VC(lb)OVCey(lb) Vuay(lb) Vuay /mVcbY a 3677.94 2068.84 0.00 0,,'.0600 ' cy' edge ( I Vcbgx(Ib) NVcbgx(Ib) '- VUBX(Ib) Vu /mVcbgx • 14711.78 8275.37 3044.00; 0.3678 i + C.2 edge i t I Vcby(lb) mVcbY(lb) Vuay(lb)3Vuay /cDVcpy 22383.26 12590.58 10.00 10.6000 ; cy2 edge i 1 Vcbgx(Ib) NVcbgx(Ib) E Vuax(Ib) `Vuax �mVcbgx =Vua /(DViceg + 14711.78 8275.37 1304.4.061 ]0.3678i 0.3678 i Pryout (cD = 0.75 . a'seis = 0.75) Vcpg(lb) NVcpg(lb) ]z V6.(Ib) = Vuax /mVcpg r 11018.36 16197.83 113044 _ 1 10.4911 Vcpe(lb) W (lb) `, V (Ib) V /mV. : V /mV cpg uay uay cpg U. cpg 11018.36 16197.83 10 16.0000 10.4911 Interaction check k Note: Ratios in the equation below have been divided by 0.5 factor for brittle failure. t. T.Max(0) - 0.2 and V.Max(0.98) <= 1.0 [Sec 0.7.21 Interaction check: PASS ; Use 1/2" diameter Titen HD arichor(s) with 4 in. embedment abouvblank. - 3/16/2012 0 L' Reza PROJECT : S1N#1: Footing PAGE CLIENT: Weyand Residence. DESIGN BY: R.A. Asghar.po,ur . , JOB`NO :,,130431 __ DATE ;#, REVIEW BY: 'R.A.. i Pr DL ; :0 1 P, INPUT DATAol LIVE LOAD AT TOP WALL { Pr LL } 0 1 "kips . L i — CL WALL LENGTH + Lw = "1":75'- • ft 0.75 . ft WALL HEIGHT h = ` '-14 ft Pw = F - kips WALL THICKNESS t = ',6'- " in o f FOOTING LENGTH L t .12. '> it F = 0:65.'.- ' kips Pw L, :'2 ft In ft -kips FOOTING WIDTH ) ( B ='e `',18 2.5 ksi REBAR YIELD STRESS [ FOOTING THICKNESS T= ^ in ksi PF l FOOTING EMBEDMENT DEPTH D ='-":1.5' . ft # 4 atl.: -'1 Ir '" ' i 1 I ALLOWABLE SOIL PRESSURE i qa - _ 1 5' 'ksf _ DEAD LOAD AT TOP WALL r Pr DL ; :0 1 kips LIVE LOAD AT TOP WALL { Pr LL } 0 1 "kips . L i — Lw TOP LOAD LOCATION a = 0.75 . ft L WALL SELF WEIGHT Pw = 0.1 kips LATERAL LOAD TYPE (0=wind,I=seismic) o wind WIND LOADS AT WALL TOP ( F = 0:65.'.- ' kips THE FOOTING DESIGN IS ADEQUATE. M = 0. ft -kips CONCRETE STRENGTH fc' = 2.5 ksi REBAR YIELD STRESS [ f ="! 60 ksi TOP BARS, LONGITUDINAL 1 # 4 atl.: -'1 Ir '" ' i 1 BOTTOM BARS, LONGITUDINAL 2 # 5 BOTTOM BARS, TRANSVERSE # 3 @ 12 in o.c. < _= Not Required ANALYSIS t CHECK OVERTURNING FACTOR (IBC 06 1605.2.1, 1801.2.1, & ASCE 7-05 12.13.4) F = MR / Mo = 2.00 > 1.610.9 for wind [Satisfactory] Where Pf = 3.2625 kips (footing self weight) Mo = F (h + D) + M = 10 ft -kips (overturning moment) MR = (Pr,DL) (L, + a) + Pf (0.5 L) + Pw (1-1 + 0.51-w) = 20 ft -kips (resisting moment without live load) f f - CHECK SOIL CAPACITY (ALLOWABLE, STRESS DESIGN) Ps = 2,25 kips (soil weight in footing size) 1 P = (Pr DL + Pru) + Pw + (Pf Ps) = 1.31 kips (total vertical net load) MR = (Pr,DL + Pr, LL) (1-1 + a) Pf (0.5 L) + Pw (1-1 + 0.51-w) = 20 ft -kips (resisting moment with live load) e = 0.5 L - (MR - //Ma) / P = -1.88 ft (eccentricity from middle of footing) 111111 BL .for e < L 6 4na,u• 2 P i L _ 0.01 ksf < 4/ 3 qa e for >— 3B(0.5L—e)" b [Satisfactory] Where e = -1.88' ft, < (L / 6) y , CHECK FOOTING CAPACITY (STRENGTH DESIGN) MU.R = 1.2 IPr.DL (1-1 + a) + Pf (0.5 L) + Pw (L, + 0.51Lw)I + 0.5 Pr, LL(L1 + a) = 24 ft -kips Mu.o = 1,6 [F(h + D) + M] 16 ft -kips t PU = 1.2 (Pr,DL + Pf + Pw ) + 0.5 Pr, LL = 4 kips eU = 0.51-- (MU,R - MU.0) / PU 4.05 ft C P I + iI) L or 5 C/,,.Aen.1• _ BL i' ' f e„ 6 = 1.15 ksf 2 P„ L 0 3 B(().5 L - e.J ' .ror e„ > 6 qu,max ME (0 0 BENDING MOMENT & SHEAR AT EACH FOOTING SECTION Section 0 1/10 Q 2/10 L 3/10 L 4/10 L 5/10 L 6/10 L 7/10 L 8/10 L 9/10 L L Xu (ft) 0 1.20 f 2.40 3.60 4.80 6.00 7.20 8.40 9.60 10.80 12.00 Pu,,,,r (klf) 0.0 0.0 t 17.3 -26.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Mu,W (ft -k) 0 r 0 f -2 -16 -17 -17 -17 -18 -18 -18 -19 Vu.w (kips) 0 0 -10 -5 0 0 0 0 0 0 0 Pu,f (ksf) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 . 0.3 0.3 0.3 0.3 Mu,f (ft -k) 0 0 -1 -2 -4 -6 -8 -12 -15 -19 -23 Vuf(kips) 0 0 { -1 -1 -2 -2 -2 -3 -3 -4 -4 qu (ksf) -1.2 -0.9 f -0.7 -0.4 -0.2 0.0 0.0 0.0 0.0 0.0 0.0 Mu.q (ft -k) 0 1 4 7 12 17 22 27 32 37 42 VU.q (kips) 0 2 3 4 4 4 4 4 4 4 4 Y Mu (ft -k) 0 1 0 -11 -8 -6 -4 -2 -1 0 0 £ Vu (kips) 0 1 1 -8 -2 2 2 2 1 1 0 0 5 0 -5 -10 -15 j 5� 0 •� 5 -10 Location i Mu,max d (in) PregD PprovD Vu,max OV, = 2 0 b d (f.')q' Top Longitudinal -11 ft -k 14.75 0.0007. 0.0009 8 kips 19 kips Bottom Longitudinal 1 ft -k 14.69 0.0018 0.0028 8 kips 19 kips Bottom Transverse 0 ft -k / ft 14.19 0.0000 0.0000 0 kips / ft 14 kips / ft f 0:85 1- 1- M„ f` 0.383bd2f' Where P= f ` Pmin = 0.0018 f.. 0.85Q,f� eu PA.U%, ( , �u = 0.0129 [Satisfactory) j Y +et F OM OV