Loading...
Coral Mountain Resort Final EIR Appendices 2022-03-08 CORAL MOUNTAIN RESORT FINAL EIR SCH# 2021020310 TECHNICAL APPENDICES Applicant:  THE WAVE DEVELOPMENT, LLC  2440 Junction Place, Suite 200  Boulder, CO 80301    Lead Agency:  CITY OF LA QUINTA   78495 Calle Tampico  La Quinta, CA 92253    Preparer:    MSA CONSULTING INC.  34200 Bob Hope Drive  Rancho Mirage, California 92270      February 2022  CORAL MOUNTAIN RESORT FINAL EIR SCH# 2021020310 TECHNICAL APPENDICES Lighting Memo Appendix B.1     January 2022                      Musco Lighting has had a strong commitment to the control of light. Over the past 40 years Musco has developed better ways to  light sporting events, airports, and shipping ports, with LED, or light emitting diode fixtures. In addition to greatly reducing light  spill and glare, Musco’s current light fixtures reduce energy demand and maintenance.   LED produce a more focused and intense source of light than older technology, including the lights historically used to light parks  and other recreation facilities as shown in the figure below. LED fixtures can be designed to focus LED light to provide adequate  light while avoiding light overspill and minimizing glare. The figure below shows the evolution of Musco’s lighting design from the  type of lights and fixtures typically used decades ago to the Total Lighting Control (TLC) for LED technology fixtures proposed for  the Coral Mountain Wave basin. The TLC for LED fixture shown below has 3 LED fixtures at the top of the pole. Also shown to the  right of the Musco TLC for LED fixture is the typical LED fixture from other companies. As shown, the TLC for LED fixture focuses  the light down in a manner that prevents direct view of the LED lights. As noted at the bottom of this figure, these are photographs  of light fixtures taken 100 feet from the edge of the field these fixtures are installed at. The amount of glare, measured in candela  is also identified for each pole.           MEMORANDUM  Date:  October 22, 2021  Subject:  Proposed Lighting Design – Coral Mountain Wave Basin, La Quinta California  From:  Matt Pearson, Engineering Manager               Tim Newendorp, Project Engineer          As shown above, the newest LED technology is better than the Metal Halide technology from 2005 as it provides full  cutoff of the light source from 100 ft from edge of the area being lighted. With the TLC for LED light fixture essentially  no (7 candela) of direct light is visible 100 feet from the fixture. Other typical LED fixtures can generate direct light  levels similar to, or more intense, than older metal halide light fixtures.  The Bagdouma Sports Park in Coachella, contains a combination of light fixtures from Musco, including the 2005 lights  and 1989 unshielded lights, with respective candela ratings of 11,858 and 21,400. As portrayed in this figure, these  values far exceed the candela rating of the TLC for LED lights that will be used at the Coral Mountain Wave Pool, which  are measured at 7 candela.    Another major factor in controlling light is the mounting height of the light fixtures. Mounting height can help control  both coverage of the area to be lit and cutoff of light from spilling over into adjacent areas. The figure below shows  how light is cutoff from a fixture on an 80 ft pole similar to those proposed at Coral Mountain. Each fixture on top of  the pole can be aimed as needed to cutoff light. As shown in this figure and in the previous figure, This picture above  also shows that there will no light above the visor cut‐off line, resulting in no uplighting. As shown in this figure and  the previous figure, light from the fixture is aimed well below the horizon line from the fixture, which is why little  direct light is visible from these fixtures. The cut off in light from these fixtures results in a dark skies compliant fixture.        To reduce light spill, the cut off angle is optimized by calculating the appropriate mounting height for the fixtures  considering the distance from the pole the fixture needs to light. The proposed lighting plan for Coral Mountain  Wave Pool includes two‐to‐four TLC for LED light fixtures on 80‐foot poles. A total of 17 poles are proposed  around the wave basin, which will have a total of 70 fixtures. The full design of the lighting system is shown in  Appendix B to the Draft EIR.   The figure below shows how the lighting for the wave basin and off‐site glare will be controlled to avoid affecting  any adjacent areas. As shown, the light is focused on the wave basin itself and is cut off from spilling into any  adjacent area. If shorter poles were used, the light cut off angle would need to be increased to cast light across  the wave basin. This would result in more direct light and glare being visible and not less. 80 foot poles are the  optimal height to allow for adequate lighting of the wave basin while maximizing the cut off angle to minimize  the visibility of direct light, avoid uplighting and light spill to adjacent areas.           CORAL MOUNTAIN RESORT FINAL EIR SCH# 2021020310 TECHNICAL APPENDICES Musco Lighting Technical Memo Appendix B.2     January 2022    Page 1 TECHNICAL! MEMORANDUM!! DATE:&January 26, 2022! PROJECT:&Coral Mountain Wave Project SUBJECT:&Musco Lighting Test Test Logistics( A demonstration of the Musco LED lights, which are proposed to light the wave basin that is planned for La Quinta, was performed Wednesday, November 17th, 2021 from 7:00 PM to 8:00 PM. There are 17 pole locations in the lighting design for the basin. Two locations were selected for the test, pole 8 and pole 16. These locations represent the light sources closest to Coral Mountain (P8), and closest to the nearest residential area (P16). The test fixtures for pole 8 were able to be staged at the exact location dictated in the project design, the fixtures for pole 16 were staged approximately 135' south of the original location due to access restraints. This placed the light fixtures closer to the residential area, not farther away. Pole locations for the project are seen in Figure 1 and Figure 2. Executive Summary The outcome of the test performed verifies the accuracy of Musco's light plotting software and validates the lighting plot for the full system, which shows no light overspill outside the wave basin area. Tests performed with the staged lights show baseline light levels 120' behind the fixtures. This means at 120' behind the fixtures there is zero light contribution from the Musco lights. Figure 1. Pole Locations on Property Page 2 The pole heights in the project design are 80'. With elevation changes due to excavation for the project taken into consideration, the test fixtures were set at a height of 74.2' at pole 8 and 71.2' at pole 16. This elevation change is shown in Figure 3. Figure 3. Elevation of poles Light Fixtures There are several fixture configurations used for the lighting design of the full system. Poles 1-7 have 6 fixtures, broken down into four 1200 Watt fixtures and two 600 Watt fixtures. Poles 8, 9, 16, and 17 have two 600 Watt fixtures. Poles 10, 12, 13, and 15 have three 600 Watt fixtures. Poles 11 and 14 have four 600 Watt fixtures. Note that the staging sites at P8 and P16 both have only two fixtures in the lighting plan for the actual project, meaning the output of light at these locations will be less than what was observed at the test. To test different configurations, the demonstration included running at four fixtures and running at two fixtures. To represent the worst case scenario for perceived light overspill, all light level readings were taken with four 1200 Watt fixtures on. Four fixtures were running for the majority of the test duration. The test locations were reduced from four fixtures to two fixtures at approximately 7:45 PM. At pole 8 lights were returned to four fixtures at approximately 7:50 PM. At pole 16 conditions were returned to four fixtures at 7:55 PM. The two fixture test was at the request of the KSWC personnel onsite. This was to gather data and recording of more realistic light levels for that location. Generalized fixture aiming angles for the project are shown in Appendix A. Figure 2. Test Pole Locations Page 3 Light Level Readings Light intensity can be measured with a light meter and described with the unit foot-candles, or FC. This unit is defined as one lumen per square foot, or one candela at a distance of one foot. Lux is the metric version of FC and describes one lumen per square meter. A lumen is a unit that measures the total quantity of visible light emitted by a source per unit time. A candela is the amount of light a source emits in a particular direction. Table 1 shows the conversion between foot-candles, lumens, lux and candela. Light Conversions 1 Lumen (lm)lm = cd x (2πsr) 1 Candela(cd) 1 Foot-Candle (FC) 1 Lux (lx) cd = lm ÷ (2πsr) lm = FC x Area in ft2 lm = lx x Area in m2 Horizontal light readings were taken at approximately 6:45 PM with fixtures turned off. Due to the light from the full moon, light levels in the area were measured consistently at 0.01 FC. At 7:00 PM lights were turned on at both locations. At approximately 7:15 PM light readings were taken at 30' intervals behind the pole locations. Readings ranged from 0.01 to 0.03 FC consistently at a distance of 90’ from the ground level plumb point of the fixtures. Four readings were taken on each side, and one reading was taken directly behind the fixtures, for a total of nine in each row. This test area extended a total of 120' to each side of the pole location. At a distance of 120’ from the plumb point of the fixtures, and 120’ to each side of the pole location, the readings were consistently at 0.01 FC. This is equal to the readings taken prior to lights being turned on. This indicates that there was zero light being contributed to those locations by the fixtures at 120' behind the pole. Spot readings taken in front of the pole location to measure light levels within the boundaries of the wave basin. The readings consistently matched the readings in the single pole lighting design provided by Musco software. This further verifies the accuracy of Musco's light plotting software and validates the lighting plot for the full system, which shows no light overspill outside the wave basin area. The single pole lighting plot is shown in Figure 4. This plot was generated with Musco software. The full system lighting plot is shown in Figure 5 and Figure 6, also generated with Musco software. Light level readings taken at the test match those generated by Musco, proving the accuracy of the full system plots. These light level readings are shown in Appendix B. Appendix C shows the full site with marked locations for where light levels drop below 0.5 FC and 0.01 FC. cd = 0.09FC x m2/sr FC = 10.76cd x sr/m2 cd = lx x m2/sr FC = lx x 10.76 lx = FC ÷ 10.76lx = cd x sr/m2lx = lm ÷ Area in m2 FC = 10.76 lm ÷ Area in m2 *sr = Steradians = solid angle of beam = 2π(1 - cos(θπ / 360)) where θ is the beam angle in degrees Table 1. Conversion table for lumen, candela, foot-candles, and lux. Page 4 Figure 5. Full System Light Plots Figure 4. Single pole Light Plot Page 5 Perceived Light Overspill( Light level readings proved no perceivable light overspill which is consistent with light plots for the entire system. This lack of overspill is further supported by photography taken of the test. Figure 8 shows examples of some of the photography taken the night of the test. Water Reflection Light reflection on stationary water has been studied extensively and has been taken into consideration with the current design. As shown in Figure 6, the reflectance is a function of light angle, with larger angles corresponding to a larger reflectance. Given the aiming angle and mounting height of the current design, shown in Figure 7, 10% or less of the fixture's light is reflected back into the atmosphere. Note that when mounting height decreases, as with a shorter pole, aiming angle will increase and create more light reflectance. There is no information available for light reflectance in turbulent water. Figure 6. Reflectance value given light angle Figure 7. Light angle of luminaire diagram Page 6 Figure 8. Photography of tests. Taken with 4 fixtures lit. Page 7 Appendix A Page 8 Appendix B Page 9 Appendix C CORAL MOUNTAIN RESORT FINAL EIR SCH# 2021020310 TECHNICAL APPENDICES Update Focused Bat Surveys Appendix D.3     January 2022    CARLSBAD FRESNO IRVINE LOS ANGELES PALM SPRINGS POINT RICHMOND RIVERSIDE ROSEVILLE SAN LUIS OBISPO 20 Executive Park, Suite 200, Irvine, California 92614 949.553.0666 www.lsa.net November 3, 2021 Garret Simon CM Wave Development, LLC 2440 Junction Place, Suite 200 Boulder, Colorado 80301 Subject: Results of Focused Bat Surveys for the Proposed Wave at Coral Mountain Development Project in La Quinta, Riverside County, California Dear Mr. Simon: This letter documents the results of focused bat surveys performed by LSA Associates, Inc. (LSA) for the proposed Wave at Coral Mountain Project (project). The study area for the proposed project site comprises approximately 385 acres and is situated south of 58th Avenue and directly west of Madison Street in the City of La Quinta, in Riverside County, California. In order to determine whether the proposed project could result in potential adverse effects to bat species, a daytime bat-roosting habitat assessment was conducted to locate any suitable bat-roosting habitat within the study area. Follow-up nighttime acoustic and emergence surveys were performed in April and June 2021 at locations that were identified as having the potential to house roosting bats. An earlier version of this document (dated May 6, 2021) presented the results of the habitat assessment and the April 2021 maternity season nighttime surveys, along with preliminary recommendations to minimize potential adverse effects to roosting bats. This document has been updated to include the results of the June 2021 surveys and provides more comprehensive recommendations to minimize potential project-related adverse effects to roosting bats. BAT NATURAL HISTORY AND REGULATORY CONTEXT Bats that occur in Southern California are the primary predators of nocturnal flying insects and are largely adapted to a variety of habitats. Bat populations are generally declining throughout Southern California due to various factors, including loss of natural roosting and foraging habitats, exposure to pesticides and pathogens, and extermination (Miner and Stokes 2005). Because bats have low reproductive turnover (most species have only one young per year and only a few species have twins or multiple births) and high juvenile mortality, it can take many years for a population of bats to recover from any impacts that result in mortality or even a decrease in reproductive ability. As natural roost sites become scarcer due to urban development and changes in land use, the use of human-made structures (e.g., buildings) for roost sites by some bat species has increased as bats seek alternative roosting options. However, these human-made roosting sites are also highly vulnerable because bats may be driven out or killed once they are discovered occupying these structures. Therefore, as urban and suburban development occurs across the landscape, many of these areas may act as habitat “sinks”1 where bats may at first appear to be relatively common and may even be attracted to human-made structures, but then decrease in abundance over time as urbanization of that area continues (Miner and Stokes 2005). The protection of bat-roosting habitat, particularly habitat identified as maternity or nursery sites, is vitally important to prevent adverse effects to, and further loss of, remaining bat populations. Day roosts protect bats from predators and the elements during the day while they are resting and/or rearing their young. Examples of day-roosting sites include, but are not limited to, human-made 1 A habitat sink refers to an area where the productivity of a given species is insufficient to offset mortality. 11/3/21 «P:\CWV1901\CoralMountainWave_MaternityBatSurveys.docx» 2 structures, trees, caves, and cliff or rock crevices. Some types of day roosts where bats are particularly vulnerable to disturbance include: maternity colonies, where female bats congregate in the spring and summer months to give birth and raise young, and hibernacula, where bats enter a period of hibernation during the winter months. A night roost, on the other hand, refers to a structure or structural feature (natural or human-made) in which bats roost during the evening between foraging bouts. Examples of night roosts include crevices, cavities, corners, and recessed open spaces that are sheltered from the wind. Night roosts are typically situated in or near a foraging area and play an important role in the energetics and social interaction of bats. When a night roost is eliminated, the energetics needed for bats to successfully use the surrounding foraging area may be negatively affected. Day roosts may also double as night roosts, particularly if they are situated in or near a foraging area. Many bat species, particularly those that roost in relatively permanent features, have a high degree of fidelity to roost sites (Lewis 1995). Because bats have separate roosting and foraging habitat requirements, it is expected that some bats may use one area for foraging and another for roosting. While more extensive and direct impacts to bats occur through removal, destruction, or disturbance of roosts, indirect impacts (e.g., decline of the prey base due to loss or modification of foraging habitat) can also be substantial. Therefore, when assessing an area with regard to proposed alterations to habitat, a landscape-level approach is required to adequately determine potential impacts to bats. Various regulations afford protections to bats, which are classified as indigenous nongame mammal species, regardless of their status under the California or Federal Endangered Species Acts. These regulations include Title 14, Section 251.1 of the California Code of Regulations, which prohibits harassment (defined in that section as an intentional act that disrupts an animal’s normal behavior patterns, including breeding, feeding, or sheltering) of nongame mammals (e.g., bats), and California Fish and Game Code Section 4150, which prohibits “take”1 or possession of all nongame mammals or parts thereof. Any activities resulting in bat mortality (e.g., the destruction of an occupied bat roost that results in the death of bats), disturbance that causes the loss of a maternity colony of bats (resulting in the death of young), or various modes of nonlethal pursuit or capture may be considered “take” as defined in Section 86 of the California Fish and Game Code. In addition, impacts to bat maternity colonies, which are considered native wildlife nursery sites, could be considered potentially significant under the California Environmental Quality Act. METHODS The focused bat surveys comprised two parts. The first part consisted of a daytime bat-roosting habitat assessment conducted on November 13 and 14, 2020. The second component consisted of nighttime acoustic and emergence surveys conducted at locations that were identified as containing suitable maternity-roosting habitat during the bat-roosting habitat assessment. One round of nighttime surveys were performed early in the bat maternity season (March 15–August 31 in the Coachella Valley) on April 27 and 29, 2021, while another round was performed later in the maternity season on June 28 and 29, 2021. Because the maternity season covers a wide variety of bat species, some of which give birth at different times within that season, performing the nighttime acoustic and emergence surveys during two different parts of the maternity season maximized the probability of detection for all bat species that may maternity roost within the study area. All aspects of the focused bat surveys were conducted and/or 1 Take is defined in Section 86 of the Fish and Game Code as “hunt, pursue, catch, capture, or kill, or attempt to hunt, pursue, catch, capture, or kill.” 11/3/21 «P:\CWV1901\CoralMountainWave_MaternityBatSurveys.docx» 3 directly supervised by LSA Senior Biologist and bat specialist Jill Carpenter, and detailed methods for each survey component are described below. Bat-Roosting Habitat Assessment During the afternoons of November 13 and 14, 2020, LSA Senior Biologist and bat specialist Jill Carpenter conducted a daytime bat-roosting habitat assessment at the study area. During this assessment, potential bat-roosting sites (e.g., trees, rock outcrops, and buildings) were visited on foot and examined for features such as crevices or recessed spaces that may be suitable for use as day- and/or night- roosting habitat. Where potential roosting features were accessible, Ms. Carpenter also inspected those features for the presence of bats or any bat sign (e.g., guano, urine staining, or vocalizations) indicating current or past use of an area by roosting bats. Any feature containing suitable day-roosting habitat was also assessed for its potential to be used as a maternity roost. Trees were also assessed for their potential to serve as roosting habitat for foliage-roosting bat species such as hoary bats (Lasiurus cinereus), western red bats (Lasiurus blossevillii), and western yellow bats (Lasiurus xanthinus); however, this type of roosting is difficult to confirm during a daytime assessment because foliage-roosting species tend to roost singly, beneath leaves, and may roost in a different location each night. Nighttime Acoustic and Emergence Surveys Follow-up nighttime acoustic and emergence surveys were performed at potential bat-roosting sites (e.g., trees with crevices or cavities, rock outcrops, and buildings) identified during the habitat assessment to determine whether any of these sites are occupied by maternity colonies. These surveys also served to assess the level of bat foraging and roosting activity at each location, and to visually estimate the approximate number of any bats utilizing each feature. Two rounds of surveys were performed: the first round was conducted on April 27 and 29, 2021, to collect data during the early part of the bat maternity season (March 15–August 31 in the Coachella Valley), and the second round was conducted on June 28 and 29, 2021, to collect data later in the maternity season. Each nighttime acoustic and emergence survey was initiated approximately 20 minutes before sunset and continued until at least one full hour after sunset to determine whether a given roost feature was used by bats for roosting. All nighttime surveys were performed under warm weather conditions appropriate for the season, winds were below 5 miles per hour (mph), and there was no risen moon. Biologists from LSA assisted the bat specialist in performing the exit counts, operating acoustic equipment, and documenting observations to correlate with the acoustic recordings collected during the surveys. The bat specialist directly supervised all surveys and maintained constant communication and oversight with all biologists participating in the given nighttime surveys. During the emergence period, each observer used night vision goggles (military grade PVS-7, Generation 3) with auxiliary infrared lights and was positioned at a vantage point that optimized visibility of any bats that could exit or enter the roost feature (e.g., tree, snag, or rock outcrop) being observed. The number of bats exiting or entering a given roost feature during the emergence period was recorded using handheld tally counters, and species were identified using a combination of visual and acoustic techniques. Anabat Express and Swift (Titley Scientific) ultrasound detectors were used to collect acoustic data to aid in identifying any bat species roosting within the trees or that occur in the vicinity, and secure digital (SD) memory cards were used to record the call files. To gather more complete information about bat activity throughout the evenings, acoustic detectors were left on site overnight on April 27, April 28, and June 28. Some of these detectors were then moved to new locations on the afternoons of April 29 and June 29 before being retrieved at the conclusion of the April 29 and June 29 surveys. It is important to note that 11/3/21 «P:\CWV1901\CoralMountainWave_MaternityBatSurveys.docx» 4 not all bats recorded next to potential roost sites are those exiting or entering the roost feature in question. Some are foraging bats en route to or from other areas. It is essential, therefore, to have observers on site in order to correlate calls with visual observations. It is also important to note that the species composition and activity levels recorded during a single nighttime visit to any site may not necessarily reflect long-term patterns of use (e.g., seasonal and nightly use of an area). Acoustic data were subsequently analyzed using AnalookW (for echolocation call sequences recorded on the Expresses) or SonoBat DataViewer 4.5 acoustic analysis software (for full-spectrum call sequences recorded on the Swifts). Species identifications of acoustic data, where possible, were made by comparing call recordings with a library of “voucher” calls from known hand-released bats. Some limitations are inherent in acoustic monitoring and in the analysis of acoustic data; these include (but are not limited to) human bias and past experience in data interpretation, as well as the fact that some species are not equally detectable or may not be recorded at all. Some bats (e.g., Mexican free-tailed bats [Tadarida brasiliensis mexicana]) emit loud low-frequency echolocation calls that can be recorded from great distances and will be overrepresented in the data, while “whispering” bats (e.g., Townsend’s big-eared bats [Corynorhinus townsendii]) emit faint calls that may not be recorded at all. Some bat species such as pallid bat (Antrozous pallidus) and California leaf-nosed bat (Macrotus californicus) frequently do not echolocate and instead listen for prey-produced sounds; consequently, these species are often not detected even when present in an area. In addition, not all echolocation call sequences are identifiable because different bat species may use similar types of echolocation calls, or the same species may use different types of echolocation calls based on the perceptual task and the immediate environment or habitat. Multi-species acoustic groups are often used to categorize echolocation calls that cannot be definitively identified to species. The acoustic groups relevant to the biological study area include 50 kilohertz (kHz) Myotis (steep echolocation calls terminating near 50 kHz that could belong to California myotis [Myotis californicus] or Yuma myotis [Myotis yumanensis]), Q25 (variable echolocation calls terminating between 25 and 35 kHz that can be produced by multiple species including Mexican free-tailed bat, big brown bat (Eptesicus fuscus), and pallid bat), and the LACI/NYFE group (relatively flat echolocation calls at 16–18 kHz that could be produced by hoary bats [LACI] or pocketed free-tailed bats [NYFE]). Because the flight behavior and foraging patterns can differ between species, visual observation during the survey often aids in making more definitive identifications. RESULTS Suitable day-roosting habitat for a variety of bat species was observed in trees, rock outcrops associated with Coral Mountain, and an abandoned adobe within the study area. Vegetation within the study area includes desert saltbush scrub, tamarisk scrub, and mesquite hummock, with most of the site characterized as open desert scrub. Two large stands of blue palo verde (Parkinsonia florida) are present in the western portion of the study area. Dominant plant species include fourwind saltbush (Atriplex canescens), bush seepweed (Suaeda nigra), athel (Tamarix aphylla), and common Mediterranean grass (Schismus barbatus). Although some of the land is disturbed in the southern and northeast portions of the study area, these different vegetation types and their associated insect fauna provide foraging habitat for a variety of bat species. In addition to providing potential roosting habitat for several bat species, the palo verde stands in the western portion of the study area may also serve as foraging habitat for species such as the California leaf-nosed bat and pallid bat. A total of eight bat species were confirmed as present during the nighttime surveys in April 2021, and a ninth bat species was detected during the June 2021 surveys. An additional five bat species were not detected during either round of surveys but have the potential to occur in the study area. These species 11/3/21 «P:\CWV1901\CoralMountainWave_MaternityBatSurveys.docx» 5 are listed in Table A, below, with descriptions of their corresponding roosting habitat characteristics as well as the probability of that species roosting within the study area. All identified potential roosting locations are mapped on Figure 1, and representative photos are shown on Figure 2 (figures are provided as an attachment to this report). More detailed descriptions of each of the potential roost sites (i.e., trees, rock outcrops, and adobe building) observed within the study area are provided below. Table A: Bat Species That Occur or May Occur in Study area Species Name (Scientific/Common) Status1 Description of Roosting Habitat Probability of Occurrence within Study Area FAMILY: PHYLLOSTOMIDAE Macrotus californicus California leaf-nosed bat US: FSS CA: SSC WBWG: H Day roosts primarily in caves and mines, but occasionally roosts in anthropogenic structures such as bridges. Foraging habitat is predominantly in desert washes containing palo verde, ironwood, or smoke trees. Diet consists primarily of large arthropods (e.g., katydids and sphinx moths) that they glean from vegetation. This species has also been documented consuming lizards. Examples of prey include antlions, beetles, centipedes, cicadas, crickets, grasshoppers, Jerusalem crickets, katydids, moths, and scorpions (Brown and Berry 1994). High. Suitable caves for day roosting present in the rock outcrops on the western edge of the study area. Known to occur in natural caves along the shoreline of Lake Cahuilla in the vicinity (Brown and Berry 1994). Palo verde stands in western portion of study area provide preferred foraging habitat, and it is likely that this species is present within the study area. FAMILY: VESPERTILIONIDAE Antrozous pallidus Pallid bat US: FSS CA: SSC WBWG: H Roosts in crevices in rocky outcrops and cliffs, caves, mines, hollows or cavities of large trees, and anthropogenic structures such as bridges and buildings; may also roost near the ground in rock piles. Foraging habitat includes grassland, open scrub, open forest, and gravel roads. Diet composition varies among populations, but considered opportunistic generalists. Glean a variety of arthropod prey from surfaces, but also capture insects on the wing. Examples of prey include antlions, beetles, centipedes, cicadas, crickets, grasshoppers, Jerusalem crickets, katydids, moths, and scorpions (Rambaldini 2005). Detected. Suitable trees and rock outcrops for day roosting present in study area. Suitable foraging habitat in open desert scrub. Visually observed emerging from roosts in rock outcrops, as well as foraging in palo verde stands at the western portion of the study area. Eptesicus fuscus Big brown bat US: – CA: – WBWG: L Roosts in trees, caves, and crevices in cliff faces and in anthropogenic structures such as bridges, buildings, and mines. Typically forages for heavy- bodied insects along tree canopies, over meadows, or along water courses within a few kilometers of roost sites. Primarily beetle (coleopteran) specialists, but diet also includes hemipterans, dipterans, lepidopterans, trichopterans and hymenopterans (Perkins 2005). Detected. Suitable trees and rock outcrops for day roosting present in study area. Crevices in adobe building are also suitable for roosting. Forages in study area. Lasiurus blossevillii Western red bat US: FSS CA: SSC WBWG: H Typically solitary. Roosts in the foliage of broad- leafed trees or shrubs within streams or fields, in orchards, and occasionally urban areas; commonly roosts in mature cottonwoods and sycamores. Also documented roosting in mature Low. Typically more associated with riparian habitats, but has been documented in desert scrub habitats. May occur in study 11/3/21 «P:\CWV1901\CoralMountainWave_MaternityBatSurveys.docx» 6 Table A: Bat Species That Occur or May Occur in Study area Species Name (Scientific/Common) Status1 Description of Roosting Habitat Probability of Occurrence within Study Area eucalyptus trees and palm trees. Strongly associated with riparian corridors, but has also been observed foraging around street lights and flood lights in urban settings. Examples of prey include homopterans, coleopterans, hymenopterans, dipterans, and lepidopterans. (Bolster 2005a). area. Lasiurus cinereus Hoary bat US: – CA: – WBWG: M Solitary. Roosts in the foliage of coniferous, deciduous, and evergreen trees and shrubs, often at the edge of a clearing. Typically roosts near the ends of branches approximately 3–12 meters above the ground. Generally considered to prefer moths, but also consumes beetles, flies, grasshoppers, termites, dragonflies, and wasps. Migratory wintering sites have not been well documented, and specific migration routes are not known (Bolster 2005b). Low. Suitable large trees present for day roosting, including athel tamarisk (Tamarix aphylla). Unlikely to be present during the summer months. May forage in study area. Lasiurus xanthinus Western yellow bat US: – CA: SSC WBWG: H Roosts hanging from the underside of leaves in trees. Commonly roosts in the dead fronds of native and nonnative palm trees, though has also been documented roosting in cottonwood trees. Foraging areas include natural and non-natural water features, canyons, riparian areas, orchards, and residential areas. Diet includes Coleoptera, Diptera, Hemiptera, Homoptera, Lepidoptera, and Orthoptera (Williams 2005). Detected. Suitable palm tree for day roosting present at northern edge of the study area. Forages in study area. Myotis californicus California myotis US: – CA: – WBWG: L Roosts in crevices within caves, mines, and rocky hillsides, as well as under tree bark and in buildings. Forages in a variety of habitats. Typically consumes moths and flies, but is known to eat other insects (Bogan et al. 2005a). Detected. Suitable trees and rocky outcrops present for day roosting. Crevices in adobe building are also suitable for roosting. Forages in study area. Myotis ciliolabrum Western small-footed myotis US: – CA: SA WBWG: M Individuals are known to roost singly or in small groups in cliff and rock crevices, caves, mines, culverts, and buildings. Forages on small insects over desert, scrub, chaparral, and riparian habitats (Bogan et al. 2005b). Detected. Suitable rock outcrops present for day roosting. Forages in study area. Myotis yumanensis Yuma myotis US: – CA: SA WBWG: LM Roosts in crevices within bridges, buildings, culverts, cliff crevices, caves, mines, and trees, typically near a perennial water source. Also documented roosting in swallows nests. Forages primarily on aquatic emergent insects; example prey items include caddis flies, flies, midges, small moths, and small beetles (Bogan et al. 2005c). High. Suitable trees for day roosting present. Crevices in adobe building are also suitable for roosting. May forage over open water in golf courses and water impoundments immediately adjacent to the study area. 11/3/21 «P:\CWV1901\CoralMountainWave_MaternityBatSurveys.docx» 7 Table A: Bat Species That Occur or May Occur in Study area Species Name (Scientific/Common) Status1 Description of Roosting Habitat Probability of Occurrence within Study Area Parastrellus hesperus Western canyon bat US: – CA: – WBWG: L Roosts in small crevices in rocky canyons, caves, mines, bridges, culverts, and outcrops; may roost under rocks or in small burrows. Feeds on small swarming insects such as flying ants, mosquitoes, fruit flies, leafhoppers, and ants (Brown 2005a). Detected. Suitable rock outcrops present for day roosting. Observed foraging in study area. FAMILY: MOLOSSIDAE Eumops perotis Western mastiff bat US: – CA: SSC WBWG: H Primarily a cliff-dwelling species, roosting under exfoliating rock slabs and in crevices in boulders and buildings. May forage considerable distances from roost sites, and foraging habitat includes dry desert washes, flood plains, chaparral, oak woodland, open ponderosa pine forest, grassland, and agricultural areas. Consumes primarily large moths, but also eats beetles, crickets, and katydids (Siders 2005). Detected. Suitable rock outcrops for day roosting present. Heard foraging over study area. Nyctinomops femorosaccus Pocketed free-tailed bat US: – CA: SSC WBWG: M Primarily in crevices in cliffs, high rocky outcrops, and slopes. Consumes mainly large moths, but also eats grasshoppers, beetles, crickets, leafhoppers, and flying ants (Navo 2005a). Detected. Suitable rock outcrops for day roosting present. Heard foraging over study area. Nyctinomops macrotis Big free-tailed bat US: – CA: SSC WBWG: MH Roosts mainly in crevices in cliffs, although there is some documentation of roosting in buildings, caves, and tree cavities. Found in desert shrub, woodlands, and evergreen forests. Consumes mainly large moths, but also eats grasshoppers, beetles, crickets, leafhoppers, and flying ants (Navo 2005b). Moderate. Suitable rock outcrops for day roosting present. May forage in study area. Tadarida brasiliensis Mexican free-tailed bat US: – CA: – WBWG: L Roosts in caves, rock crevices on cliff faces, and anthropogenic structures such as mines, culverts, tunnels, and bridges. Also documented roosting in swallows nests. Highly colonial. Forages over a variety of habitats; consuming mostly moths, but also flying ants, weevils, stink-bugs and ground beetles (BCI 2005). Detected. Suitable rock outcrops for day roosting present. Crevices in adobe building are also suitable for roosting. Forages in study area. 1 All bat species are protected under the California Fish and Game Code; status categories include California Department of Fish and Wildlife (CDFW) Species of Special Concern (SSC) and Special Animal (SA), as well as Western Bat Working Group (WBWG) conservation priority designations of High (H), Medium (M), and Low (L) FSS = Forest Service Sensitive species. Taxa identified by the U.S. Forest Service in Region 5 (Pacific Southwest Region) that are not listed or proposed for listing under the federal Endangered Species Act but receive special management consideration within the National Forest. Tree/Snag Roosts Suitable cavities and crevices for roosting bats, including those found in broken limbs and beneath exfoliating bark, were observed in snags and in several of the mature palo verde trees present in the western portion of the study area. Bat species that occur or may occur in the study area and are known to commonly utilize crevices and cavities in trees or snags as day roosts (including maternity roosts) include pallid bat, big brown bat, California myotis, and Yuma myotis. 11/3/21 «P:\CWV1901\CoralMountainWave_MaternityBatSurveys.docx» 8 Bats may also day roost in the dead frond “skirt” of the palm tree (Washingtonia sp.) near the northern boundary of the study area. The western yellow bat, a California Department of Fish and Wildlife (CDFW) Species of Special Concern (SSC), is a foliage-roosting species that is considered an obligate palm-roosting bat and is found throughout the Coachella Valley (Mumford and Zimmerman 1963; Ortiz and Barrows 2014). In addition to western yellow bat, at least seven other bat species that may occur in the study area have also been documented using palm trees as roosts, including western mastiff bat (Eumops perotis), Mexican free-tailed bat, big brown bat, western red bat, hoary bat, pallid bat, and canyon bat (Parastrellus hesperus). It is presumed based on their roosting ecology that any Myotis species (Myotis spp.) is likely to use palm trees for roosting. Big brown bats and some myotis species have also been documented using palm trees as maternity roosts, so it is possible that any of the palm trees could be used for maternity roosting by species other than western yellow bat. Foliage-roosting bats such as hoary bats and western red bat may roost in the foliage of the palo verde and athel trees within the study area; however, it is unlikely that either of these species would maternity roost within the study area. The presence of foliage-roosting bats is difficult to confirm during surveys due to the nature of this roosting behavior (these species tend to roost singly, beneath leaves, and may roost in a different location each night). Extensive foraging activity by various bat species, including pallid bat, was observed in the vicinity of the palo verde tree stands during the April and June 2021 emergence surveys. Although no bats were observed roosting in the palm tree or in any of the palo verde trees during any of the emergence surveys, bats may occupy these suitable roost features at any time. Rock Crevice and Cave Roosts The western portion of the study area includes rock outcrops associated with Coral Mountain. Crevices and caves suitable for roosting were observed along this rocky hillside; these could be used by a variety of bat species for roosting, including pallid bat, big brown bat, California myotis, canyon bat, pocketed free-tailed bat (Nyctinomops femorosaccus), big free-tailed bat (Nyctinomops macrotis), western mastiff bat, and Mexican free-tailed bat. During the nighttime acoustic and emergence surveys in April and June 2021, over a hundred bats were observed emerging from one section of the rock outcrops at Coral Mountain. The emerging bats that were identified using a combination of visual and acoustic techniques included canyon bats, California myotis, and pallid bats, confirming that these species roost within the study area. Building Roosts An abandoned adobe building associated with a former citrus ranch is present near the middle of the site. This building is in a state of disrepair, and has sustained fire damage and is missing a substantial portion of its roof. Nonetheless, this structure contains crevices suitable for use by day- and night- roosting bats at various interfaces between the adobe bricks and wooden window frames and doors, as well as at the edges of the roof. Bat species with potential to roost in these crevices include pallid bat, big brown bat, California myotis, western small-footed myotis, and Mexican free-tailed bat. Although no bats were observed roosting in the abandoned adobe during the April or June 2021 emergence surveys, bats change their roost sites seasonally and it is possible that this structure could be used for roosting at other times of the year. 11/3/21 «P:\CWV1901\CoralMountainWave_MaternityBatSurveys.docx» 9 CONCLUSIONS AND RECOMMENDATIONS Suitable roosting habitat that could be used by day-roosting bats, including bat maternity colonies, was observed in trees, rock outcrops, and an abandoned adobe building within the study area. Maternity season (March 15–August 31 in the Coachella Valley) surveys were conducted gather information on numbers and species of any bats present in suitable roost features identified during the habitat assessment. Two rounds of surveys were performed to maximize the probability of detection of maternity roosts: the first round during the early part of the bat maternity season in April 2021, and a second round in June 2021 during the peak period of the maternity season when all local bat species can be expected to occupy their maternity roosts. During those surveys, large numbers of bats consistent with the presence of maternity colonies were observed emerging from the crevices and small caves along the rock outcrops within a portion of Coral Mountain within the study area. The presence of roosting bats was not confirmed in any other type of roost feature during the emergence surveys. Although no construction will occur at the rock outcrops at Coral Mountain, where occupied bat roosts were identified during the April and June 2021 surveys, bats roosting in that area could be subject to potential adverse effects from an increase in artificial lighting from the proposed project. Multiple studies indicate that ongoing night lighting, in particular, can be very disruptive to foraging and roosting behaviors. Stone et al. (2009) found that light pollution can negatively impact bats’ selection of flight routes by limiting the options for flyways, and can even eliminate bats’ abilities to use certain roosts and/or foraging areas. Rydell et al. (2017) and Voigt et al. (2018) note that maintaining darkness at maternity roosts is particularly important because at these types of roosts, aggregations of bats are present consistently over a long period of time, individual bats emerge from predictable locations, and juvenile bats are learning how to fly. Illumination of a maternity roost renders the colony more vulnerable to opportunistic predators such as raptors and owls, and predator-avoidance behaviors such as delayed emergence times reduce their foraging opportunities, thereby lowering juvenile survivorship. The following measure is recommended to reduce potential adverse effects to bats from artificial lighting: • To avoid permanent impacts to roosting bats from the installation of new light fixtures associated with the proposed development, all lighting fixtures should have light shields or similar devices (e.g., dark sky compliant lighting) installed to reduce illuminance and minimize light trespass on to Coral Mountain and any open space areas to levels that are below 0.1 lux. Although no bats were observed emerging from the palm tree near the northern edge of the study area, western yellow bat was acoustically detected within the study area during the April 2021 nighttime surveys, and it is possible that this species may roost within the study area. The palm tree may also be used by a variety of other bat species for roosting (including maternity roosting). Bats were also not observed emerging from any of the palo verde trees with crevices or cavities during the April and June 2021 emergence surveys; however, it is possible that these trees could be used for roosting at other times of the year. If the palm tree or any of the palo verde trees identified as having crevice or cavity habitat are removed or trimmed for the project, the following measures are recommended to avoid “take” of adult and juvenile bats: • Removal of trees (including palm trees) shall occur during the fall months (September or October) to the greatest extent feasible, and will avoid the bat maternity season (March 15–August 31 in the Coachella Valley), which coincides with the bird nesting season, to avoid the potential for “take” of nonvolant (flightless) young. Trees and snags that have been identified as confirmed or potential 11/3/21 «P:\CWV1901\CoralMountainWave_MaternityBatSurveys.docx» 10 roost sites require a two-step removal process and the involvement of a bat biologist to ensure that no roosting bats are killed during this activity. This two-step removal shall occur over two consecutive days as follows: on Day 1, branches and limbs not containing cavities, as identified by a qualified bat biologist, will be removed. On Day 2, the remainder of the tree may be removed without supervision by a bat biologist. The disturbance caused by limb or frond removal, followed by an interval of one evening, will allow bats to safely abandon the roost. Although no bats were observed roosting in the abandoned adobe during the April or June 2021 emergence surveys, bats change their roost sites seasonally and it is possible that this structure could be used for roosting at other times of the year. If any roosting bats are present during demolition of the abandoned adobe building, those bats would be subject to direct impacts including potential mortality. The following measure is recommended to avoid “take” of bats during removal of the adobe: • A qualified bat biologist shall confirm the absence of roosting bats prior to removal of the adobe. If bats are found or if the absence of bats cannot be confirmed, the bat biologist will install or directly supervise installation of humane eviction devices and exclusionary material to prevent bats from roosting in the building. Implementation of the humane eviction/exclusions is typically performed in the fall (September or October) preceding construction activity at each structure to avoid impacts to hibernating bats during the winter months or during the maternity season (March 15–August 31 in the Coachella Valley), when nonvolant (flightless) young are present. Any humane eviction/exclusion devices must be installed at least 10 days prior to the demolition of a structure housing bats to allow sufficient time for the bats to vacate the roost(s). In addition to roosting habitat, foraging habitat supporting multiple special-status bat species was identified within the study area. To minimize potential adverse effects to bats from loss of foraging habitat, the following measure is recommended: • Existing native vegetation, particularly palo verde trees, will be retained where feasible. Landscaping shall include native desert species. The above actions will reduce the potential for project-related impacts to bats to the greatest extent feasible. If you have questions regarding this report or would like to discuss the project further, please contact me at (949) 337-6103. Sincerely, LSA Associates, Inc. Jill Carpenter Senior Biologist Bat Specialist Attachments: A: References B: Figures: Figure 1: Locations of Suitable Roosting Habitat Figure 2: Representative Site Photos R ESULTS OF F OCUSED B AT S URVEYS N OVEMBER 2021 W AVE AT C ORAL M OUNTAIN D EVELOPMENT P ROJECT L A Q UINTA, R IVERSIDE C OUNTY, C ALIFORNIA P:\CWV1901\CoralMountainWave_MaternityBatSurveys.docx (11/03/21) ATTACHMENT A REFERENCES R ESULTS OF F OCUSED B AT S URVEYS N OVEMBER 2021 W AVE AT C ORAL M OUNTAIN D EVELOPMENT P ROJECT L A Q UINTA, R IVERSIDE C OUNTY, C ALIFORNIA P:\CWV1901\CoralMountainWave_MaternityBatSurveys.docx (11/03/21) A-1 REFERENCES Bat Conservation International (BCI). 2005. Proceedings of the Western Bat Working Group workshop on ecology, conservation and management of western bat species – updated species account, Mexican free-tailed bat (Tadarida brasiliensis). March 31–April 2, 2005. Portland, Oregon. Bogan, M.A., E.W. Valdez, and K.W. Navo. 2005a. Proceedings of the Western Bat Working Group workshop on ecology, conservation and management of western bat species – updated species account, California myotis (Myotis californicus). March 31–April 2, 2005. Portland, Oregon. _____. 2005b. Proceedings of the Western Bat Working Group workshop on ecology, conservation and management of western bat species – updated species account, Western small-footed myotis (Myotis ciliolabrum). March 31–April 2, 2005. Portland, Oregon. _____. 2005c. Proceedings of the Western Bat Working Group workshop on ecology, conservation and management of western bat species – updated species account, Yuma myotis (Myotis yumanensis). March 31–April 2, 2005. Portland, Oregon. Bolster, B.C. 2005a. Proceedings of the Western Bat Working Group workshop on ecology, conservation and management of western bat species – updated species account, western red bat (Lasiurus blossevillii). March 31–April 2, 2005. Portland, Oregon. _____. 2005b. Proceedings of the Western Bat Working Group workshop on ecology, conservation and management of western bat species – updated species account, hoary bat (Lasiurus cinereus). March 31–April 2, 2005. Portland, Oregon. Boldogh, S.D., D. Dobrosi, and P. Samu. 2007. The Effects of the Illumination of Buildings on House- Dwelling Bats and Its Conservation Consequences. Acta Chiropterologica 9:527–534. doi:10.3161/1733-5329 (2007)9[527:TEOTIO]2.0.C;2. Brown, P.E., and R.D. Berry. 1994. The Status and Range of the California Leaf-nosed Bat, Macrotus californicus, in California. Report prepared for the Bird and Mammal Conservation Program, California Department of Fish and Game. Brown, P.E. 2005a. Proceedings of the Western Bat Working Group workshop on ecology, conservation and management of western bat species – updated species account, western pipistrelle (Pipistrellus hesperus). March 31–April 2, 2005. Portland, Oregon. _____. 2005b. Proceedings of the Western Bat Working Group workshop on ecology, conservation and management of western bat species – species account, California leaf-nosed bat (Macrotus californicus). March 31–April 2, 2005. Portland, Oregon. Kunz, T.H., and L.F. Lumsden. 2003. Ecology of Cavity and Foliage Roosting Bats, pp. 3-89, in Bat Ecology (T.H. Kunz and M.B. Fenton eds.). University of Chicago Press, Chicago and London. Lewis, S.E. 1995. Roost Fidelity of Bats: A Review. Journal of Mammalogy 76:481–496. R ESULTS OF F OCUSED B AT S URVEYS N OVEMBER 2021 W AVE AT C ORAL M OUNTAIN D EVELOPMENT P ROJECT L A Q UINTA, R IVERSIDE C OUNTY, C ALIFORNIA P:\CWV1901\CoralMountainWave_MaternityBatSurveys.docx (11/03/21) A-2 Miner, K.L., and D.C. Stokes. 2005. Bats in the South Coast Ecoregion: Status, Conservation Issues, and Research Needs. United States Department of Agriculture Forest Service General Technical Report PSW-GTR-195. Mumford, R.E. and D.A. Zimmerman. 1963. The southern yellow bat in New Mexico. Journal of Mammalogy 44:417–418. Navo, K.W. 2005a. Proceedings of the Western Bat Working Group workshop on ecology, conservation and management of western bat species –species account, pocketed free-tailed bat (Nyctinomops femorosaccus). March 31–April 2, 2005. Portland, Oregon. _____. 2005b. Proceedings of the Western Bat Working Group workshop on ecology, conservation and management of western bat species –species account, big free-tailed bat (Nyctinomops macrotis). March 31–April 2, 2005. Portland, Oregon. Ortiz, D.D., and C.W. Barrows. 2014. Occupancy patterns of western yellow bats (Lasiurus xanthinus) in palm oases in the lower Colorado Desert. The Southwestern Naturalist, 59(3), 381-388. Perkins, M. 2005. Proceedings of the Western Bat Working Group workshop on ecology, conservation and management of western bat species – updated species account, big brown bat (Eptesicus fuscus). March 31–April 2, 2005. Portland, Oregon. Piaggio, A. 2005. Proceedings of the Western Bat Working Group workshop on ecology, conservation and management of western bat species – updated species account, Townsend’s big-eared bat (Corynorhinus townsendii). March 31–April 2, 2005. Portland, Oregon. Original account by R. Sherwin, 1998. Pierson, E.D., and W.E. Rainey. 1998. Distribution, habitat associations, status, and survey methodologies for three Molossid bat species (Eumops perotis, Nyctinomops femorosaccus, Nyctinomops macrotis) and the Vespertilionid (Euderma maculatum). California Department of Fish and Game, Wildlife Management Division Contract #FG2328WM, Sacramento, CA. 61 p. Pierson, E.D., W.E. Rainey and C. Corben. 2006. Distribution and status of Western red bats (Lasiurus blossevillii) in California. California Department of Fish and Game, Habitat Conservation Planning Branch, Species Conservation and Recovery Program Report 2006-04, Sacramento, CA. 45 pp. Rambaldini, D.A. 2005. Proceedings of the Western Bat Working Group workshop on ecology, conservation and management of western bat species – updated species accounts, pallid bat (Antrozous pallidus). March 31–April 2, 2005. Portland, Oregon. Original account by R. Sherwin, 1998. Rydell, J., J. Eklöf, and S. Sánchez-Navarro. 2017. Age of Enlightenment: Long-Term Effects of Outdoor Aesthetic Lights on Bats in Churches. Royal Society Open Science 4(8):161077. http://dx.doi.org/10.1098/rsos.16107 7. Stone, E.L., G. Jones, and S. Harris. 2009. Street Lighting Disturbs Commuting Bats. Current Biology 19: 1123-1127. R ESULTS OF F OCUSED B AT S URVEYS N OVEMBER 2021 W AVE AT C ORAL M OUNTAIN D EVELOPMENT P ROJECT L A Q UINTA, R IVERSIDE C OUNTY, C ALIFORNIA P:\CWV1901\CoralMountainWave_MaternityBatSurveys.docx (11/03/21) A-3 Siders, M.S. 2005. Proceedings of the Western Bat Working Group workshop on ecology, conservation and management of western bat species – updated species account, western mastiff bat (Eumops perotis). March 31–April 2, 2005. Portland, Oregon. Original account by E.D. Pierson, 1998. Voigt, C.C., et al. 2018. Guidelines for Consideration of Bats in Lighting Projects. EUROBATS Publication Series No. 8. Bonn, Germany: UNEP/EUROBATS Secretariat. 62 pp. Williams, J.A. 2005. Proceedings of the Western Bat Working Group workshop on ecology, conservation and management of western bat species – updated species account, western yellow bat (Lasiurus xanthinus). March 31–April 2, 2005. Portland, Oregon. Original account by B.C. Bolster, 1998. R ESULTS OF F OCUSED B AT S URVEYS N OVEMBER 2021 W AVE AT C ORAL M OUNTAIN D EVELOPMENT P ROJECT L A Q UINTA, R IVERSIDE C OUNTY, C ALIFORNIA P:\CWV1901\CoralMountainWave_MaternityBatSurveys.docx (11/03/21) ATTACHMENT B FIGURES !( !( !( !( !( !( !(!(MADISONSTARCHINE LN60TH AV 58TH AV CL CONCHITA LEGEND Study Area Rock Crevice/Cave Roost Suitable Roosting Habitat Locations !(Potential Tree Roost (Eucalyptus S nag) !(Potential Tree Roost (Palm Tree) !(Potential Tree Roost (Palo Verde) !(Potential Tree Roost (S nag) SOURCE: Nearmap (9/23/2020) I:\CWV1901\GIS\MXD\Bio\SuitableBatRoostingHab.mxd (5/3/2021) FIGURE 1 The Wave at Coral MountainFocused Bat Surveys Locatio ns of Su itable Roosting Habitat 0 375 750 FEET ProjectLocation RiversideCounty ÃÃ74 ÃÃ195 ÃÃ111 ÃÃ111 ÃÃ86 §¨¦10 Project Vicinity R ESULTS OF F OCUSED B AT S URVEYS M AY 2021 W AVE AT C ORAL M OUNTAIN D EVELOPMENT P ROJECT L A Q UINTA, R IVERSIDE C OUNTY, C ALIFORNIA \\vcorp12\projects\CWV1901\CoralMountainWave_AprilBatSurveys.docx (05/06/21) B-2 Figure 2: Representative Site Photos Representative view of palo verde trees and snags that provide suitable crevice and/or cavity roosting habitat for bats. Representative view of foraging habitat between palo verde stands in the western portion of the study area. Representative view of the crevices and caves along the portion of Coral Mountain that is situated within the study area. Representative view of crevice habitat suitable for day-roosting bats and maternity colonies at the abandoned adobe. R ESULTS OF F OCUSED B AT S URVEYS N OVEMBER 2021 W AVE AT C ORAL M OUNTAIN D EVELOPMENT P ROJECT L A Q UINTA, R IVERSIDE C OUNTY, C ALIFORNIA P:\CWV1901\CoralMountainWave_MaternityBatSurveys.docx (11/03/21) B-2 Figure 2: Representative Site Photos Representative view of palo verde trees and snags that provide suitable crevice and/or cavity roosting habitat for bats. Representative view of foraging habitat between palo verde stands in the western portion of the study area. Representative view of the crevices and caves along the portion of Coral Mountain that is situated within the study area. Representative view of crevice habitat suitable for day-roosting bats and maternity colonies at the abandoned adobe. CORAL MOUNTAIN RESORT FINAL EIR SCH# 2021020310 TECHNICAL APPENDICES Update Biological Resources Assessment and CVMSHCP Consistency Analysis Appendix D.4     January 2022    May November 2021    BIOLOGICAL RESOURCES ASSESSMENT AND  CVMSHCP CONSISTENCY ANALYSIS    CORAL MOUNTAIN SPECIFIC PLAN  CITY OF LA QUINTA  RIVERSIDE COUNTY, CALIFORNIA  May November 2021    BIOLOGICAL RESOURCES ASSESSMENT AND  CVMSHCP CONSISTENCY ANALYSIS    WAVE AT CORAL MOUNTAIN DEVELOPMENT RESORT PROJECT  CITY OF LA QUINTA  RIVERSIDE COUNTY, CALIFORNIA  Prepared for:  Mr. Garret Simon  CM Wave Development, LLC  2440 Junction Place, Suite 200  Boulder, Colorado 80301  Prepared by:  LSA Associates, Inc.  901 E. Tahquitz Canyon Way, Suite B200  Palm Springs, California 92262  (760) 416‐2075  LSA Project No. CWV1901  B IOLOGICAL R ESOURCES A SSESSMENT AND   CVMSHCP C ONSISTENCY A NALYSIS  N OVEMBERM AY 2021  W AVE AT C ORAL M OUNTAIN R ESORTD EVELOPMENT P ROJECT C ITY OF L A Q UINTA, C ALIFORNIA   R:\2553\Departments\Environmental\Final EIR\2022‐02‐07 Submittal to City\Appendix\D.4 ‐ Revised Biological Report_LSA 2021‐11‐08.docxP:\CWV1901\BRA\May  2021\CWV1901_BRA_050621_revised.docx (02/28/2211/08/2111/03/21) i  EXECUTIVE SUMMARY  LSA was retained by CM Wave Development, LLC to prepare a Biological Resources Assessment and  to conduct a Coachella Valley Multiple Species Habitat Conservation Plan (CVMSHCP) Consistency  Analysis. This report has been prepared for compliance with the California Environmental Quality  Act, the CVMSHCP, and the Federal and California Endangered Species Acts. A few revisions and  clarifications have been made to this document based upon comment letters on the Draft  Environmental Impact Report (DEIR), including a comment letter from the California Department of  Fish and Wildlife (CDFW). These revisions include modifications to some of the mitigation measures  as requested by CDFW.    The study area lies within the planning boundaries of the CVMSHCP. The CVMSHCP provides take  coverage for covered species, which include both listed and non‐listed species that are adequately  conserved by the CVMSHCP. To ensure adequate conservation of covered species, CVMSHCP  Conservation Areas provide habitat and other ecological elements. The study area does not lie  within a CVMSHCP Conservation Area.  The study area contains suitable habitat for the burrowing owl (Athene cunicularia hypugaea) and  other nesting birds protected by the Migratory Bird Treaty Act and the California Fish and Game  Code. A burrowing owl pre‐construction survey will be required to ensure any direct impacts to this  species will be avoided. In addition, it is recommended that vegetation removal be conducted  between September 1 and January 15 (outside the general bird nesting season) to avoid impacts to  nesting birds. If vegetation cannot be removed outside the bird nesting season, a pre‐construction  nesting bird surveys by a qualified biologist areis required prior to vegetation removal.  Although the study area does not contain suitable habitat for peninsular bighorn sheep (Ovis  canadensis nelson), current and historic use of Coral Mountain has been documented by CDFW and  was noted in the comment letter to the DEIR. To avoid take of peninsular bighorn sheep, specific  measures will be implemented, including, but not limited to, the installation of barrier fencing.  The study area contains suitable roosting and foraging habitat for multiple bat species. Suitable  roosting sites are present in native and non‐native ornamental palms, rock outcrops associated with  Coral Mountain, and an abandoned adobe structure. Although no occupied maternity roosts were  identified within the project footprint, rRoosting bats were confirmed in the Coral Mountain rock  outcrops within the study area during early‐maternity season surveys performed in April and June  2021. Additional maternity‐season surveys will be performed in June 2021 to maximize the  probability of detection of maternity roosts for all bat species that may occur in the proposed  project area and to gather more precise data on numbers and species of bats in roosts identified  during the April 2021 survey. It is possible that suitable maternity roost sites within the project area  could be occupied by maternity colonies in the future. Therefore, a CDFW‐approved bat If maternity  roosts are identified within the project area, the biologist will coordinate with the California  Department of Fish and Wildlife (CDFW) to implement avoidance measures during the bat maternity  season in accordance with CDFW’s established standards. With implementation of this and other  mitigation measures, impacts to roosting bats will be less than significant. B IOLOGICAL R ESOURCES A SSESSMENT AND   CVMSHCP C ONSISTENCY A NALYSIS  N OVEMBERM AY 2021  W AVE AT C ORAL M OUNTAIN R ESORTD EVELOPMENT P ROJECT C ITY OF L A Q UINTA, C ALIFORNIA   R:\2553\Departments\Environmental\Final EIR\2022‐02‐07 Submittal to City\Appendix\D.4 ‐ Revised Biological Report_LSA 2021‐11‐08.docxP:\CWV1901\BRA\May  2021\CWV1901_BRA_050621_revised.docx (02/28/2211/08/2111/03/21) ii  At least one year prior to construction, a qualified bat biologist will conduct a habitat assessment  and acoustic surveys for roosting bats. If maternity roosts or hibernacula are found, the biologist will  coordinate with CDFW to implement avoidance measures where possible. If avoidance of the  roost(s) is not feasible, the biologist will prepare a site‐specific bat avoidance and mitigation plan  and coordinate with CDFW. This avoidance and mitigation plan would include mitigation strategies  to minimize and/or mitigate adverse effects to bats, post‐implementation monitoring, and  performance standards.  No potential jurisdictional waters regulated pursuant to the Federal Clean Water Act by the U.S.  Army Corps of Engineers or the Regional Water Quality Control Board, and no lake, rivers, or  streambeds regulated pursuant to the California Fish and Game Code by the California Department  of Fish and Wildlife are present within the study area.  B IOLOGICAL R ESOURCES A SSESSMENT AND   CVMSHCP C ONSISTENCY A NALYSIS  N OVEMBERM AY 2021  W AVE AT C ORAL M OUNTAIN R ESORTD EVELOPMENT P ROJECT C ITY OF L A Q UINTA, C ALIFORNIA   R:\2553\Departments\Environmental\Final EIR\2022‐02‐07 Submittal to City\Appendix\D.4 ‐ Revised Biological Report_LSA 2021‐11‐08.docxP:\CWV1901\BRA\May  2021\CWV1901_BRA_050621_revised.docx (02/28/2211/08/2111/03/21) iii  TABLE OF CONTENTS  EXECUTIVE SUMMARY ............................................................................................................................. i  TABLE OF CONTENTS ............................................................................................................................. iii  Figures ............................................................................................................................................. iii  Appendices ...................................................................................................................................... iii  INTRODUCTION ...................................................................................................................................... 1  PROJECT DESCRIPTION ........................................................................................................................... 1  METHODS ............................................................................................................................................... 1  Literature Review ............................................................................................................................. 1  Field Survey ...................................................................................................................................... 1  RESULTS .................................................................................................................................................. 3  Existing Site Conditions .................................................................................................................... 3  Coachella Valley Multiple Species Habitat Conservation Plan ........................................................ 4  Special‐Status Species ...................................................................................................................... 4  Critical Habitat ................................................................................................................................. 8  Jurisdictional Waters ........................................................................................................................ 8  IMPACTS AND RECOMMENDATIONS ..................................................................................................... 8  Threatened and Endangered Species .............................................................................................. 9  Non‐Listed Special‐Interest Species ................................................................................................. 9  Critical Habitat ............................................................................................................................... 10  Jurisdictional Waters ...................................................................................................................... 10  Habitat Fragmentation and Wildlife Movement ........................................................................... 10  Local Policies and Ordinances ........................................................................................................ 11  MITIGATION MEASURES ....................................................................................................................... 11  CUMULATIVE IMPACTS ......................................................................................................................... 13  REFERENCES CITED ............................................................................................................................... 14    Figures  Figure 1: Regional and Project Location Map ......................................................................................... 2  Figure 2: Vegetation and Photograph Key Location Map ...................................................................... 4  Figure 3: Site Photographs ..................................................................................................................... 6    Appendices  A:  PLANT AND ANIMAL SPECIES OBSERVED  B:  SPECIAL‐INTEREST SPECIES SUMMARY    B IOLOGICAL R ESOURCES A SSESSMENT AND   CVMSHCP C ONSISTENCY A NALYSIS  N OVEMBERM AY 2021  W AVE AT C ORAL M OUNTAIN R ESORTD EVELOPMENT P ROJECT C ITY OF L A Q UINTA, C ALIFORNIA   R:\2553\Departments\Environmental\Final EIR\2022‐02‐07 Submittal to City\Appendix\D.4 ‐ Revised Biological Report_LSA 2021‐11‐08.docxP:\CWV1901\BRA\May  2021\CWV1901_BRA_050621_revised.docx (02/28/2211/08/2111/03/21) 1  INTRODUCTION  LSA was retained by CM Wave Development, LLC to prepare a Biological Resources Assessment and  Coachella Valley Multiple Species Habitat Conservation Plan (CVMSHCP) Consistency Analysis. This  report evaluates the approximately 385‐acre proposed Wave at Coral Mountain Development  Project (project) located in the City of La Quinta, Riverside County, California. Specifically, the  project lies south of 58th Avenue and directly west of Madison Street. The project study area is  depicted on the United States Geological Survey (USGS) La Quinta, Indio, Martinez Mountain, and  Valerie, California 7.5‐minute topographic quadrangles in Sections 27 and 28, Township 6 South,  Range 7 East (Figure 1).  PROJECT DESCRIPTION  The project proposes mixed‐use residential, resort, and recreational development.  METHODS  Literature Review  A literature review was conducted to assist in determining the existence or potential occurrence of  special‐interest plant and animal species within the study area and in the project vicinity. A records  search of the California Department of Fish and Wildlife (CDFW) Natural Diversity Data Base (NDDB)  Rarefind 5 (2019), and California Native Plant Society’s Online Inventory of Rare and Endangered  Plants (California Native Plant Society [CNPS] v7‐18) for the La Quinta, Indio, Martinez Mountain,  and Valerie, California USGS 7.5‐minute quadrangles was conducted on August 16, 2019.  Additionally a subsequent literature search was conducted on April 27, 2021. A review of the Final  Recirculated CVMSHCP (CVAG 2007) was also conducted in order to determine CVMSHCP  consistency and conservation measures that apply to the proposed project, and to reference  vegetation types within the study area. Geographic Information System software was used to map  the project location, habitat types, land uses, etc.  Field Survey  LSA Biologist Jodi Ross‐Borrego conducted a general field survey within the study area on  September 11, 2019, from 8:00 am to 1:35 pm. Weather conditions consisted of clear skies,  temperatures ranging from 73 to 91 degrees Fahrenheit, and winds ranging from 3 to 5 miles per  hour. Additionally, a follow up general biological field survey was conducted on April 28, 2021 from  6:00 am to 12:40 p.m. Weather conditions consisted of clear skies, temperatures ranging from 58 to  89 degrees Fahrenheit, and winds ranging from 3 to 5 miles per hour. The entire study area was  surveyed on foot. Notes were taken on general site conditions, vegetation, and suitability of habitat  for various special‐interest elements. A bat habitat assessment was performed in November 2020 by  LSA bat specialist Jill Carpenter, and focused nighttime acoustic and emergence surveys were  conducted by LSA biologists in April and June 2021. The detailed results of the focused bat surveys  are provided in a separate report. All plant and animal species observed or otherwise detected  during all field surveys were noted and are listed in Appendix A. Appendix B summarizes the special‐ interest plant and animal species potentially present within the study area.  SOURCE: USGS 7.5' Quad., La Quinta, CA (1980); Indio, CA (1972); Martinez Mtn, CA (1988); Valerie, CA (1972) I:\CWV1901\GIS\MXD\Project_Location.mxd (10/9/2019) FIGURE 1 The Wave at Coral MountainRegional and Project Location Map 0 1000 2000 FEET LEGEND Study Area RiversideCounty ÃÃ74 ÃÃ195 ÃÃ111 ÃÃ111 ÃÃ86 ProjectLocation §¨¦10 Project Vicinity B IOLOGICAL R ESOURCES A SSESSMENT AND   CVMSHCP C ONSISTENCY A NALYSIS  N OVEMBERM AY 2021  W AVE AT C ORAL M OUNTAIN R ESORTD EVELOPMENT P ROJECT C ITY OF L A Q UINTA, C ALIFORNIA   R:\2553\Departments\Environmental\Final EIR\2022‐02‐07 Submittal to City\Appendix\D.4 ‐ Revised Biological Report_LSA 2021‐11‐08.docxP:\CWV1901\BRA\May  2021\CWV1901_BRA_050621_revised.docx (02/28/2211/08/2111/03/21) 3  RESULTS  Existing Site Conditions  The study area is south of 58th Avenue and west of Madison Street. Other surrounding land uses  include residential development to the north and east, vacant land to the west, and settling ponds  to the south. The project falls within the boundaries of the CVMSHCP, as discussed in further detail  below.  Topography and Soils  The study area is situated on relatively flat land within elevations ranging from approximately 72  feet below mean sea level to 65 feet above mean sea level.  A mosaic of soils occurs within the study area and is mapped by the Soil Conservation Service  (Knecht 1980) as the following types:   CdC: Carsitas gravelly sand, 0 to 9 percent slopes;   CpA: Coachella fine sand, 0 to 2 percent slopes;   CsA: Coachella fine sand, 0 to 2 percent slopes;   GaB: Gilman loamy fine sand, 0 to 5 percent slopes;   GbA: Gilman find sandy loam, 0 to 2 percent slopes;   Ip: Indio fine sandy loam;   Ir: Indio fine sandy loam, wet;   Is: Indio very fine sandy loam;   It: Indio very fine sandy loam, wet;   MaB: Myoma fine sand, 0 to 5 percent slopes; and   RO: Rock outcrop.  Vegetation  Vegetation within the study area is best described as Desert Saltbush scrub, Tamarisk scrub, and  Mesquite Hummock (CVMSHCP 2007). Land is disturbed in southern and northeast portions of the  study area and a stand of blue palo verde (Parkinsonia florida) is present in the eastern portion of  the study area. Dominant species include fourwind saltbush (Atriplex canescens), bush seepweed  (Suaeda nigra), athel (Tamarix aphylla), and common Mediterranean grass (Schismus barbatus).  The majority of the study area was previously agricultural land. As a result, the Desert Saltbush  scrub is fairly disturbed throughout the study area.  B IOLOGICAL R ESOURCES A SSESSMENT AND   CVMSHCP C ONSISTENCY A NALYSIS  N OVEMBERM AY 2021  W AVE AT C ORAL M OUNTAIN R ESORTD EVELOPMENT P ROJECT C ITY OF L A Q UINTA, C ALIFORNIA   R:\2553\Departments\Environmental\Final EIR\2022‐02‐07 Submittal to City\Appendix\D.4 ‐ Revised Biological Report_LSA 2021‐11‐08.docxP:\CWV1901\BRA\May  2021\CWV1901_BRA_050621_revised.docx (02/28/2211/08/2111/03/21) 4  Wildlife  Common wildlife species observed within the study area during the field survey include common  raven (Corvus corax), mourning dove (Zenaida macroura), house finch (Haemorhous mexicanus),  and greater roadrunner (Geococcyx californianus).  Figure 2 shows vegetation and photograph key locations. Figure 3 shows site photographs. A  complete list of plant and wildlife species observed is provided in Appendix A.  Coachella Valley Multiple Species Habitat Conservation Plan  The CVMSHCP is a comprehensive, multi‐jurisdictional habitat conservation plan focusing on  conservation of species and their associated habitats in the Coachella Valley region of Riverside   County. The overall goal of the CVMSHCP is to maintain and enhance biological diversity and  ecosystem processes within the region, while allowing for future economic growth. The CVMSHCP  covers 27 sensitive plant and wildlife species (Covered Species) as well as 27 natural communities.  Covered Species include both listed and non‐listed species that are adequately conserved by the  CVMSHCP. The overall provisions for the plan are subdivided according to specific resource  conservation goals that have been organized according to geographic areas defined as Conservation  Areas.  The proposed project is within the boundaries of the CVMSHCP; however, it is not within any  conservation areas identified in the CVMSHCP.  Special‐Status Species  This section discusses special‐status species observed or potentially occurring within the limits of the  study area. Legal protection for special‐interest species varies widely, from the comprehensive  protection extended to listed threatened/endangered species, to no legal interest at present. The  CDFW, U.S. Fish and Wildlife Service (USFWS), local agencies, and special‐interest groups, such as  the CNPS, publish watch lists of declining species. Species on watch lists can be included as part of  the special‐interest species assessment. Species that are candidates for State and/or Federal listing  and species on watch lists are included in the special‐interest species list. Inclusion of species  described in the special‐interest species analysis is based on the following criteria:   Direct observation of the species or its sign in the study area or immediate vicinity during  previous biological studies;   Sighting by other qualified observers;   Record reported by the NDDB, published by the CDFW;   Presence or location information for specific species provided by private groups (e.g., CNPS);  and/or   Study area lies within known distribution of a given species and contains appropriate habitat.  LEGEND Study Area !Photo Locations Vegetation Desert Saltbush Scrub Disturbed Mesquite Hummock Paloverde Stand Tamarisk ScrubSOURCE: Bing Aerial (09/2017) I:\CWV1901\GIS\MXD\Vegetation_and_Photo_Key.mxd (10/9/2019) FIGURE 2 The Wave at Coral MountainVegetation, Land Use, andPhotograph Key Location Map 0 375 750 FEET I:\CWV1901\G\Site_Photos.cdr (10/9/2019) FIGURE 3 Site Photographs The Wave at Coral Mountain Photo1.Viewofdesertsaltbushscrubasseenfacingsouth.Photo 2.View of the proposed project site as seen facing southeast. Photo3.Viewofanaccessroadasseenfacingnorth.Photo 4.View of desert saltbush scrub as seen facing northwest. Sheet 1 of 2 B IOLOGICAL R ESOURCES A SSESSMENT AND   CVMSHCP C ONSISTENCY A NALYSIS  N OVEMBERM AY 2021  W AVE AT C ORAL M OUNTAIN R ESORTD EVELOPMENT P ROJECT C ITY OF L A Q UINTA, C ALIFORNIA   R:\2553\Departments\Environmental\Final EIR\2022‐02‐07 Submittal to City\Appendix\D.4 ‐ Revised Biological Report_LSA 2021‐11‐08.docxP:\CWV1901\BRA\May  2021\CWV1901_BRA_050621_revised.docx (02/28/2211/08/2111/03/21) 7  The special‐interest species analysis revealed 5049 special‐interest species with the potential to  occur within the limits of the study area. Appendix B lists these species with a data summary and  determination of the likelihood of each species occurring within the study area.  Threatened/Endangered Species  The following seven federally/State listed species were identified as potentially present (Appendix B)  in the project vicinity:   Coachella Valley milkvetch (Astragalus lentiginosus var. coachellae [CVMV]): Federally listed as  Endangered and CVMSHCP covered species;   Triple‐ribbed milkvetch (Astragalus tricarinatus): Federally listed as Endangered and CVMSHCP  covered species;   Casey’s June beetle (Dinacoma caseyi): Federally listed as Endangered;   Desert pupfish (Cyprinodon macularius): Federally and State‐listed as Endangered and CVMSHCP  covered species;   Desert slender salamander (Batrachoseps major aridus) Federally and State‐listed as  Endangered;   Coachella Valley fringe‐toed lizard (Uma inornata): Federally listed as Threatened, State listed as  Endangered, and CVMSHCP covered species; and   Peninsular bighorn sheep (Ovis Canadensis nelsonii) (peninsular Distinct Population Segment):  Federally listed as Endangered, State listed as threatened, California Fully Protected Species, and  CVMSHCP covered species.  Habitat within the study area is considered unsuitable for six of the seven species identified above;  however, habitat used by one of the six species, peninsular bighorn sheep, is present along the  western boundary of the study area on Coral Mountain. Marginally suitable habitat for CVMV was  found to be present within the study area.  Non‐Listed Special‐Interest Species  Of the 432 other non‐listed special‐interest species identified and discussed in Appendix B, 18  species are considered absent based on lack of suitable habitat, seven species are considered to  have a low probability of occurrence, seven species are considered to have a moderate probability  of occurrence, five species are considered to have a high probability of occurrence, and sixfive  species were detected within the study area during field surveys. The following non‐listed special‐ interest species have a moderate to high probability to occur, or were detected, within the study  area:   Slender cottonheads (Nemacaulis denudata var gracilis);   Flat‐tailed horned lizard (Phryosoma macalli);   Burrowing owl (Athene cunicularia);   Ferruginous hawk (Buteo regalis);  B IOLOGICAL R ESOURCES A SSESSMENT AND   CVMSHCP C ONSISTENCY A NALYSIS  N OVEMBERM AY 2021  W AVE AT C ORAL M OUNTAIN R ESORTD EVELOPMENT P ROJECT C ITY OF L A Q UINTA, C ALIFORNIA   R:\2553\Departments\Environmental\Final EIR\2022‐02‐07 Submittal to City\Appendix\D.4 ‐ Revised Biological Report_LSA 2021‐11‐08.docxP:\CWV1901\BRA\May  2021\CWV1901_BRA_050621_revised.docx (02/28/2211/08/2111/03/21) 8   Prairie falcon (Falco mexicanus);   Black‐tailed gnatcatcher (Polioptila melanura);   Le Conte’s thrasher (Toxostoma lecontei);   California leaf‐nosed bat (Macrotus californicus);   Western yellow bat (Lasiurus xanthinus);   Western small‐footed myotis (Myotis ciliolabrum);   Yuma myotis (Myotis yumanensis);   Pallid bat (Antrozous pallidus);   Western mastiff bat (Eumops perotis);   Pocketed free‐tailed bat (Nyctinomops femorosaccus);   Big free‐tailed bat (Nyctinomops macrotis);   Pallid San Diego pocket mouse (Chaetodipus fallax pallidus); and   Palm Springs round‐tailed ground squirrel (Xerospermophilus tereticaudus chlorus).  Nesting bird species, including special‐interest species identified in Appendix B, with potential to  occur are protected by California Fish and Game Code Sections 3503, 3503.5, and 3800, and by the  Migratory Bird Treaty Act (MBTA) (16 USC 703–711). These laws regulate the take, possession, or  destruction of the nest or eggs of any migratory bird or bird of prey. However, the USFWS has  recently determined that the MBTA should apply only to “… affirmative actions that have as their  purpose the taking or killing of migratory birds, their nests, or their eggs” and will not be applied to  incidental take of migratory birds pursuant to otherwise lawful activities.  Critical Habitat  The study area does not lie within federally designated critical habitat.  Jurisdictional Waters  No potential jurisdictional waters regulated pursuant to the Federal Clean Water Act (CWA) by the  U.S. Army Corps of Engineers (USACE) or the Regional Water Quality Control Board (RWQCB), and no  lake, rivers, or streambeds regulated pursuant to the California Fish and Game Code by the CDFW  are present within the limits of the proposed project.  IMPACTS AND RECOMMENDATIONS  Following is a discussion of potential disturbances and recommendations for avoidance,  minimization, and mitigation measures per applicable local, State, and Federal policy.  B IOLOGICAL R ESOURCES A SSESSMENT AND   CVMSHCP C ONSISTENCY A NALYSIS  N OVEMBERM AY 2021  W AVE AT C ORAL M OUNTAIN R ESORTD EVELOPMENT P ROJECT C ITY OF L A Q UINTA, C ALIFORNIA   R:\2553\Departments\Environmental\Final EIR\2022‐02‐07 Submittal to City\Appendix\D.4 ‐ Revised Biological Report_LSA 2021‐11‐08.docxP:\CWV1901\BRA\May  2021\CWV1901_BRA_050621_revised.docx (02/28/2211/08/2111/03/21) 9  Threatened and Endangered Species  Coachella Valley Milkvetch  CVMV is a covered species under the CVMSHCP. The CVMSHCP does not require avoidance and  minimization measures for CVMV. Through participation in the CVMSHCP via payment of  development fees, the project would mitigate for any impacts to CVMV.  Peninsular Bighorn Sheep  Peninsular bighorn sheep is federally listed as Endangered, State listed as threatened, and is a  California Fully Protected Species. Although peninsular bighorn sheep is a covered species under the  CVMSHCP, covered activities must avoid any actions that will result in violations of the Fully  Protected Species provisions, and take for this species cannot be provided under the CVMSHCP.  However, CDFW acknowledges in their comment letter to the DEIR that if the project fully complies  with and properly implements all CVMSHCP measures, the covered activities are not likely to result  in take of peninsular bighorn sheep. A qualified biologist specializing in this species will coordinate  with CDFW and the USFWS to develop and implement measures to minimize potential adverse  effects to peninsular bighorn sheep. These measures include, but are not limited to, the  construction of a barrier fence along the boundary of the development.  Non‐Listed Special‐Interest Species  The 432 special‐interest species identified in Appendix B as having a low to high probability of  occurrence in the study area have limited population distribution in Southern California and  development is further reducing their ranges and numbers. These species have no official State or  Federal protection status, but they merit consideration under the California Environmental Quality  Act (CEQA). Due to the disturbed nature of the site, surrounding development, and through  compliance with the CVMSHCP, impacts from the project are anticipated to have a less than  significant effect on these non‐listed special‐interest species.  In addition, to ensure compliance with California Fish and Game Code and to avoid potential impacts  to nesting birds, it is recommended that the vegetation removal activities be conducted outside the  general bird nesting season (January 15 through August 31). If vegetation cannot be removed  outside the bird nesting season, a pre‐construction nesting bird survey by a qualified biologist is  required prior to vegetation removal.  Burrowing Owl  A minimum of two surveys, occurring at least three weeks apart, shall be completed in advance of  any site disturbance activities.  If disturbance activities are expected to start during the burrowing  owl breeding season, three surveys shall be completed. The final burrowing owl survey shall be  completed within three days prior to initiation of any site disturbance activities. The pre‐ construction survey shall be conducted following accepted protocol and the requirements specified  in the CVMSHCP (see pp. 4‐168 & 4‐169). A pre‐construction burrowing owl survey would be  required using an accepted protocol (as determined by the Coachella Valley Conservation  Commission in coordination with the permittees and the wildlife agencies). Prior to construction, a  qualified biologist will survey the construction area and, an areaas feasible, up to a 500 fee‐foot  B IOLOGICAL R ESOURCES A SSESSMENT AND   CVMSHCP C ONSISTENCY A NALYSIS  N OVEMBERM AY 2021  W AVE AT C ORAL M OUNTAIN R ESORTD EVELOPMENT P ROJECT C ITY OF L A Q UINTA, C ALIFORNIA   R:\2553\Departments\Environmental\Final EIR\2022‐02‐07 Submittal to City\Appendix\D.4 ‐ Revised Biological Report_LSA 2021‐11‐08.docxP:\CWV1901\BRA\May  2021\CWV1901_BRA_050621_revised.docx (02/28/2211/08/2111/03/21) 10  buffer outside the project limits for burrows that could be used by burrowing owls. If a burrow is  located, the biologist will determine whether an owl is present in the burrow. If the burrow is  determined to be occupied, the burrow will be flagged and a 160‐foot diameter buffer will be  established during the non‐breeding season or a 250‐foot diameter buffer during the breeding  season. The buffer area will be staked and flagged. No development activities will be permitted  within the buffer until the young are no longer dependent on the burrow and have left the burrow.  Bats  NEarly season nighttime acoustic and emergence surveys in April and June 2021 confirmed the  presence of at least eight nine bat species, including four with special status, within the study area.  Additional The nighttime surveys were performed during the early and later portions of the  maternity season (March 15–August 31 in the Coachella Valley) maternity‐season surveys will be  performed in June 2021 to maximize the probability of detection of maternity roosts, which are  native wildlife nursery sites, for all bat species that may occur in the proposed project area. The  nighttime surveys also enabling the gathering of  and to gather more precise data on numbers and  species of bats in any confirmed roost sites identified during the April 2021 survey. Although noIf  occupied maternity roosts werare identified within the project areafootprint, occupied maternity  roosts were identified along the edge of the project area in rock outcrops on Coral Mountain. In  addition, suitable maternity roost sites within the project area could be occupied by maternity  colonies in the future. Therefore, a CDFW‐approved bat the biologist will coordinate with the project  team and CDFW to implement avoidance measures during the bat maternity season in accordance  with CDFW’s established standards. If maternity‐roosting bats are discovered during project  construction, nNo construction will occur within a 300‐foot buffer of maternity roost sites during the  bat maternity season unless concurrence is received from CDFW to reduce that buffer distance  based upon the bat species present and the activities occurring. Other mitigation measures that will  be implemented include two‐step tree removal protocols, minimization of light overspilltrespass,  and humane bat exclusion.   Critical Habitat  No federally designated critical habitat is present within the study area; therefore, there will be no  project‐related effects to critical habitat.  Jurisdictional Waters  No potential jurisdictional waters of the United States regulated by the USACE or RWQCB, or CDFW  jurisdictional lakes, rivers, or streams are present on the proposed project site. Thus, there will be  no project‐related effects to jurisdictional waters.  Habitat Fragmentation and Wildlife Movement  Wildlife movement and habitat fragmentation are important issues in assessing effects to wildlife.  Habitat fragmentation occurs when a proposed action results in a single, unified habitat area being  divided into two or more areas such that the division isolates the two new areas from each other.  Isolation of habitat occurs when wildlife cannot move freely from one portion of the habitat to  another or from one habitat type to another. An example is the fragmentation of habitats within  and around “checkerboard” residential development. Habitat fragmentation can also occur when a  B IOLOGICAL R ESOURCES A SSESSMENT AND   CVMSHCP C ONSISTENCY A NALYSIS  N OVEMBERM AY 2021  W AVE AT C ORAL M OUNTAIN R ESORTD EVELOPMENT P ROJECT C ITY OF L A Q UINTA, C ALIFORNIA   R:\2553\Departments\Environmental\Final EIR\2022‐02‐07 Submittal to City\Appendix\D.4 ‐ Revised Biological Report_LSA 2021‐11‐08.docxP:\CWV1901\BRA\May  2021\CWV1901_BRA_050621_revised.docx (02/28/2211/08/2111/03/21) 11  portion of one or more habitats is converted into another habitat, as when scrub habitats are  converted into annual grassland habitat because of frequent burning.  Because the study area does not lie within a CVMSHCP‐designated wildlife corridor and the study  area is adjacent to commercial development, the proposed project is not anticipated to have  significant impacts related to habitat fragmentation and regional wildlife movement.  Local Policies and Ordinances  With participation in the CVMSHCP, the project would not conflict with any local policies or  ordinances.  Coachella Valley Multiple Species Habitat Conservation Plan  The study area lies within the planning area of the CVMSHCP; however, it does not lie within a  Conservation Area identified in the CVMSHCP. The proposed project is subject to the requirements  of the CVMSHCP (e.g., development fees and demonstrating that proposed actions are consistent  with the CVMSHCP).  MITIGATION MEASURES  BIO‐1: BA burrowing owl clearance surveys shall be performed by a qualified biologist approved by  the  City  not  more  than  30  days prior  to  any  site  disturbance activities(grubbing,  grading,  and  construction). A minimum of two surveys, occurring at least three weeks apart, shall be completed in  advance of any site disturbance activities.  If disturbance activities are expected to start during the  burrowing owl breeding season, three surveys shall be completed. The final burrowing owl survey  shall be completed within three days prior to initiation of any site disturbance activities. The pre‐ construction survey shall be conducted following accepted protocol and the requirements specified  in the CVMSHCP (see pp. 4‐168 & 4‐169).  Prior to construction, a qualified biologist will survey the  construction area and an area up to 500 feet outside the project limits for burrows that could be used  by burrowing owls. The pre‐construction survey is required to use accepted protocol (as determined  CDFW). Prior to construction, a qualified biologist will survey the construction area and an area up to  a 500‐feet outside the project limits for burrows that could be used by burrowing owls. If the burrow  is determined to be occupied, the burrow will be flagged, and a 160‐foot diameter buffer will be  established during non‐breeding season or a 250‐foot diameter buffer during the breeding season.  The buffer area will be staked and flagged. No development activities will be permitted within the  buffer until the young are no longer dependent on the burrow and have left the burrow.       If  the  burrow  is found  to  be unoccupied,  the  burrow  will  be  made  inaccessible  to  owls,  and  construction may proceed. If either a nesting or escape burrow is occupied, owls shall be relocated  pursuant  to  accepted  Wildlife  Agency  protocols.    Determination  of  the  appropriate  method  of  relocation, such as eviction/passive relocation or active relocation, shall be based on the specific site  conditions (e.g., distance to nearest suitable habitat and presence of burrows within that habitat) in  coordination with the Wildlife Agencies. A burrow is assumed occupied if records indicate that, based  on surveys conducted following protocol, at least one burrowing owl has been observed occupying a  burrow on site during the past three years. If there are no records for the site, surveys must be  B IOLOGICAL R ESOURCES A SSESSMENT AND   CVMSHCP C ONSISTENCY A NALYSIS  N OVEMBERM AY 2021  W AVE AT C ORAL M OUNTAIN R ESORTD EVELOPMENT P ROJECT C ITY OF L A Q UINTA, C ALIFORNIA   R:\2553\Departments\Environmental\Final EIR\2022‐02‐07 Submittal to City\Appendix\D.4 ‐ Revised Biological Report_LSA 2021‐11‐08.docxP:\CWV1901\BRA\May  2021\CWV1901_BRA_050621_revised.docx (02/28/2211/08/2111/03/21) 12  conducted to determine, prior to construction, if burrowing owls are present. Determination of the  appropriate method of relocation, such as eviction/passive relocation or active relocation, shall be  based on the specific site conditions (e.g., distance to nearest suitable habitat and presence of  burrows  within  that  habitat)  in  coordination  with  the  Wildlife Agencies.  Active  relocation  and  eviction/passive relocation require the preservation and maintenance of suitable burrowing owl  habitat determined through coordination with the Wildlife Agencies.If burrowing owls are observed  within the Project site during construction activities, CDFW shall be notified immediately and provided  with  proposed  avoidance  and  minimization  measures,  consistent  with  the  requirements  of  the  CVMSHCP.  BIO‐2: In June 2021, a qualified bat biologist will conduct a second round of focused nighttime surveys  for roosting bats at locations where suitable roosting habitat is identified. The nighttime survey will  include a combination of acoustic and exit count methods, and will take place during the bat maternity  season (March 15–August 31 in the Coachella Valley) to enable detection of maternity‐roosting bats.  If maternity roosts are identified within the project area, the biologist will coordinate with CDFW to  implement  avoidance  measures  during  the  bat  maternity  season  in  accordance  with  CDFW’s  established standards. No construction activities will occur within a 300‐foot buffer of maternity roost  sites during the bat maternity season unless concurrence is received from CDFW to reduce that buffer  distance based upon the bat species present and the activities occurring. BIO‐3: Removal of trees (including palm trees) shall occur outside the maternity season (March 15– August 31 in the Coachella Valley), which coincides with the bird nesting season, to avoid the potential  for “take” of nonvolant (flightless) young. Trees and snags that have been identified as confirmed or  potential roost sites require a two‐step removal process and the involvement of a bat biologist to  ensure that no roosting bats are killed during this activity. Consistent with CDFW protocols this two‐ step removal shall occur over two consecutive days as follows: on Day 1, branches and limbs not  containing cavities, as identified by a qualified bat biologist, will be removed. On Day 2, the remainder  of the tree may be removed without supervision by a bat biologist. The disturbance caused by limb  removal, followed by an interval of one evening, will allow bats to safely abandon the roost.    BIO‐4: Although no construction will occur at the rock outcrops where occupied bat roosts were  identified during the April 2021 surveys, bats roosting in that area could be subject to potential  adverse effects from project‐related light overspill. To avoid permanent impacts to roosting bats from  the installation of new light fixtures associated with the proposed development, all lighting fixtures  shall have light shields or similar devices (ie.eg., dark sky compliant lighting) installed to ensure that  there is nominimize light trespassoverspill on to Coral Mountain and surrounding open space. A  supplemental light study will be performed to collect nighttime lighting measurements and confirm  that no light trespass onto Coral Mountain is occurring; this will be submitted for City approval prior  to issuance of any permit for occupancy or use of the Wave Basin.     BIO‐5: A qualified bat biologist shall confirm the absence of roosting bats prior to any removal of the  adobe. If bats are found or if the absence of bats cannot be confirmed, the bat biologist will install or  directly supervise installation of humane eviction devices and exclusionary material to prevent bats  from  roosting  in  the  building.  Implementation  of  the  humane  eviction/exclusions  is  typically  performed in the fall (September or October) preceding construction activity at each structure to  B IOLOGICAL R ESOURCES A SSESSMENT AND   CVMSHCP C ONSISTENCY A NALYSIS  N OVEMBERM AY 2021  W AVE AT C ORAL M OUNTAIN R ESORTD EVELOPMENT P ROJECT C ITY OF L A Q UINTA, C ALIFORNIA   R:\2553\Departments\Environmental\Final EIR\2022‐02‐07 Submittal to City\Appendix\D.4 ‐ Revised Biological Report_LSA 2021‐11‐08.docxP:\CWV1901\BRA\May  2021\CWV1901_BRA_050621_revised.docx (02/28/2211/08/2111/03/21) 13  avoid impacts to hibernating bats during the winter months or during the maternity season (March  15–August 31 in the Coachella Valley), when nonvolant (flightless) young are present. Any humane  eviction/exclusion devices must be installed at least 10 days prior to the demolition of a structure  housing bats to allow sufficient time for the bats to vacate the roost(s).    BIO‐6: To ensure compliance with California Fish and Game Code and the MBTA and to avoid  potential  impacts  to  nesting  birds,  vegetation  removal and  ground‐disturbing activities  shall  be  conducted outside the general bird nesting season (January 15 through August 31). Any vegetation  removal, ground disturbance, and/or construction activities that occur during the nesting season  (February 1–August 31) will require that all suitable habitats be thoroughly surveyed for the presence  of nesting birds by a qualified biologist approved by the City. Prior to commencement of clearing, a  qualified biologist shall conduct preconstruction surveys within 14 days and repeated 3 days prior to  ground‐disturbing activities.  . If any active nests are detected a buffer of 300 feet (500 feet for raptors)  around the nest adjacent to construction will be delineated, flagged, and avoided until the nesting  cycle  is  complete. During  construction  activities,  the  qualified  biologist  shall  continue  biological  monitoring activities at a frequency recommended by the qualified biologist using his or her best  professional judgment. If nesting birds are detected, avoidance and minimization measures may be  adjusted and construction activities stopped or redirected by the qualified biologist using his or her  best professional judgment to avoid any take of nesting birds.    BIO‐7: To ensure that the Project will avoid any significant construction or operational noise impacts  on wildlife using Coral Mountain, noise monitoring will occur for (1) all construction activities within  150 feet of the base of Coral Mountain, and (2) operational noise levels during any special events and  at least once annually during regular Wave Basin operations, or as determined appropriate by the City  Manager or his/her designee.  If noise levels exceed 75 dBA, construction and/or operational changes  shall be made, as applicable, to reduce the noise levels at Coral Mountain to below 75 dBA.   The buffer may be modified and/or other recommendations proposed as determined appropriate by  the biologist to minimize impacts.    CUMULATIVE IMPACTS  According to Section 15130 of the CEQA Guidelines, “cumulative impacts” refers to incremental  effects of an individual project when viewed in connection with the effects of past projects, current  projects, and probable future projects. Due to the relatively disturbed nature of the study area, its  proximity to residential development, and through compliance with the CVMSHCP, impacts are not  considered to be cumulatively significant.  B IOLOGICAL R ESOURCES A SSESSMENT AND   CVMSHCP C ONSISTENCY A NALYSIS  N OVEMBERM AY 2021  W AVE AT C ORAL M OUNTAIN R ESORTD EVELOPMENT P ROJECT C ITY OF L A Q UINTA, C ALIFORNIA   R:\2553\Departments\Environmental\Final EIR\2022‐02‐07 Submittal to City\Appendix\D.4 ‐ Revised Biological Report_LSA 2021‐11‐08.docxP:\CWV1901\BRA\May  2021\CWV1901_BRA_050621_revised.docx (02/28/2211/08/2111/03/21) 14  REFERENCES CITED  California Department of Fish and Game. March 2012. Staff Report on Burrowing Owl Mitigation.  The Resources Agency. Sacramento, California.  California Department of Fish and Wildlife. Natural Diversity Data Base. 2019. RareFind 5. The  Resources Agency, Sacramento, California.  California Fish and Game Code. http://www.leginfo.ca.gov/cgi‐bin/calawquery?codesection=fgc.  California Native Plant Society (CNPS). 2019. Inventory of Rare and Endangered Plants (online  edition, v7‐19). California Native Plant Society. Sacramento, California.  http://cnps.site.aplus.net/cgi‐bin/inv/inventory.cgi.  Coachella Valley Association of Governments. September 2007. Final Recirculated Coachella Valley  Multiple Species Habitat Conservation Plan.  Knecht, A. 1980. Soil Survey, Coachella Valley Area, California, Coachella Valley Area. United States  Department of Agriculture, Soil Conservation Service. Washington, D.C.  U.S. Fish and Wildlife Service. 2000. Recovery Plan for Bighorn Sheep in the Peninsular Ranges,  California. https://www.fws.gov/carlsbad/SpeciesStatusList/RP/20001025_RP_PBS.pdf    B IOLOGICAL R ESOURCES A SSESSMENT AND   CVMSHCP C ONSISTENCY A NALYSIS  N OVEMBERM AY 2021  W AVE AT C ORAL M OUNTAIN R ESORTD EVELOPMENT P ROJECT C ITY OF L A Q UINTA, C ALIFORNIA   R:\2553\Departments\Environmental\Final EIR\2022‐02‐07 Submittal to City\Appendix\D.4 ‐ Revised Biological Report_LSA 2021‐11‐08.docxP:\CWV1901\BRA\May  2021\CWV1901_BRA_050621_revised.docx (02/28/2211/08/2111/03/21)  APPENDIX A  PLANT AND ANIMAL SPECIES OBSERVED  B IOLOGICAL R ESOURCES A SSESSMENT AND   CVMSHCP C ONSISTENCY A NALYSIS  N OVEMBERM AY 2021  W AVE AT C ORAL M OUNTAIN R ESORTD EVELOPMENT P ROJECT C ITY OF L A Q UINTA, C ALIFORNIA   R:\2553\Departments\Environmental\Final EIR\2022‐02‐07 Submittal to City\Appendix\D.4 ‐ Revised Biological Report_LSA 2021‐11‐08.docxP:\CWV1901\BRA\May  2021\CWV1901_BRA_050621_revised.docx (02/28/2211/08/2111/03/21) A‐1  SPECIES OBSERVED LIST   EUDICOT FLOWERING PLANTS     Scientific Name Common Name  Asteraceae  Sunflower family   Dicoria canescens   Bugseed    Isocoma acradenia   Alkali goldenbush    Palafoxia arida var. arida  Desert palafox   Pluchea sericea   Arrowweed    Stephanomeria exigua    Small wreath‐plant  Bignoniaceae  Bignonia family   Chilopsis linearis   Desert willow  Boraginaceae  Borage family    Cryptantha sp.  Cryptantha   Tiquilia plicata   Fanleaf crinklemat  Brassicaceae  Mustard family    Brassica tournefortii* Sahara mustard Chenopodiaceae  Saltbush family    Atriplex canescens   Fourwing saltbush    Salsola tragus*  Russian thistle   Suaeda nigra   Bush seepweed  Elaeagnaceae  Oleaster family    Elaeagnus angustifolia* Russian olive Fabaceae  Pea family    Parkinsonia florida   Blue palo verde    Prosopis glandulosa var. torreyana  Honey mesquite   Prosopis sp.*   Mesquite (non‐native)  Tamaricaceae  Tamarisk family    Tamarix aphylla*  Athel   Tamarix ramosissima*   Mediterranean tamarisk  Zygophyllaceace  Caltrop family    Larrea tridentata  Creosote bush MONOCOTS FLOWERING PLANTS     Poaceae  Grass family    Schismus barbatus* Common Mediterranean  grass    Scientific Name Common Name  REPTILES    Phrynosomatidae  Phrynosomatid Lizards  B IOLOGICAL R ESOURCES A SSESSMENT AND   CVMSHCP C ONSISTENCY A NALYSIS  N OVEMBERM AY 2021  W AVE AT C ORAL M OUNTAIN R ESORTD EVELOPMENT P ROJECT C ITY OF L A Q UINTA, C ALIFORNIA   R:\2553\Departments\Environmental\Final EIR\2022‐02‐07 Submittal to City\Appendix\D.4 ‐ Revised Biological Report_LSA 2021‐11‐08.docxP:\CWV1901\BRA\May  2021\CWV1901_BRA_050621_revised.docx (02/28/2211/08/2111/03/21) A‐2  Scientific Name Common Name    Uta stansburiana   Common side‐blotched  lizard  Teiidae  Whiptails   Aspidoscelis hyperythra   Orange‐throated whiptail    Scientific Name Common Name  BIRDS    Tytonidae  Barn Owls   Tyto alba  Barn owl Tyrannidae  Tyrant Flycatchers    Myiarchus cinerascens Ash‐throated flycatcher  Columbidae  Pigeons and Doves   Zenaida macroura   Mourning dove  Caprimulgidae  Goatsuckers   Chordeiles acutipennis  Lesser nighthawk   Phalaenoptilus nuttallii   Common poorwill  Apodidae  Swifts   Chaetura vauxi  Vaux’s swift Cuculidae  Cuckoos and Roadrunners    Geococcyx californianus  Greater roadrunner  Corvidae  Crows and Ravens   Corvus corax   Common raven  Troglodytidae  Wrens   Salpinctes obsoletus  Rock wren Thryomanes bewickii  Bewick’s wren  Mimidae  Mockingbirds and Thrashers    Mimus polyglottos  Northern mockingbird  Sturnidae  Starlings  Sturnus vulgaris  European starling Fringillidae  Finches   Haemorhous mexicanus   House finch       Scientific Name Common Name  MAMMALSBIRDS    TytonidaeVespertilionidae Evening BatsBarn Owls    Antrozous pallidus  Pallid batBarn owl   Eptesicus fuscus    Big brown bat    Lasiurus xanthinus    Western yellow bat  B IOLOGICAL R ESOURCES A SSESSMENT AND   CVMSHCP C ONSISTENCY A NALYSIS  N OVEMBERM AY 2021  W AVE AT C ORAL M OUNTAIN R ESORTD EVELOPMENT P ROJECT C ITY OF L A Q UINTA, C ALIFORNIA   R:\2553\Departments\Environmental\Final EIR\2022‐02‐07 Submittal to City\Appendix\D.4 ‐ Revised Biological Report_LSA 2021‐11‐08.docxP:\CWV1901\BRA\May  2021\CWV1901_BRA_050621_revised.docx (02/28/2211/08/2111/03/21) A‐3    Myotis californicus   California myotis  Tyrannidae Tyrant Flycatchers    Myiarchus cinerascensMyotis  ciliolabrum  Ash‐throated  flycatcherWestern small‐ footed myotis    Parastrellus hesperus Canyon bat ColumbidaeMolossidae Pigeons and DovesFree‐ tailed Bats    Zenaida macrouraEumops perotis  californicus   Western mastiff bat  Caprimulgidae Goatsuckers    Nyctinomops femorosaccus  Pocketed free‐tailed bat    Chordeiles acutipennisTadarida  brasiliensis mexicana      Lesser nighthawkMexican  free‐tailed bat  B IOLOGICAL R ESOURCES A SSESSMENT AND   CVMSHCP C ONSISTENCY A NALYSIS  N OVEMBERM AY 2021  W AVE AT C ORAL M OUNTAIN R ESORTD EVELOPMENT P ROJECT C ITY OF L A Q UINTA, C ALIFORNIA   R:\2553\Departments\Environmental\Final EIR\2022‐02‐07 Submittal to City\Appendix\D.4 ‐ Revised Biological Report_LSA 2021‐11‐08.docxP:\CWV1901\BRA\May  2021\CWV1901_BRA_050621_revised.docx (02/28/2211/08/2111/03/21)  APPENDIX B  SPECIAL‐STATUS SPECIES SUMMARY  B IOLOGICAL R ESOURCES A SSESSMENT AND   CVMSHCP C ONSISTENCY A NALYSIS  N OVEMBERM AY 2021  W AVE AT C ORAL M OUNTAIN R ESORTD EVELOPMENT P ROJECT C ITY OF L A Q UINTA, C ALIFORNIA   R:\2553\Departments\Environmental\Final EIR\2022‐02‐07 Submittal to City\Appendix\D.4 ‐ Revised Biological Report_LSA 2021‐11‐08.docxP:\CWV1901\BRA\May  2021\CWV1901_BRA_050621_revised.docx (02/28/2211/08/2111/03/21) B‐1  Special‐Status Species Summary  Species  Status  Habitat and Distribution  Activity Period  Occurrence Probability  Plants  Abronia villosa var.  aurita    Chaparral sand‐ verbena  US: –  CA: 1B  Sandy areas (generally flats and  benches along washes) in  chaparral and coastal sage scrub,  and improbably in desert dunes  or other sandy areas, below  1,600 meters (5,300 feet)  elevation. In California, reported  from Riverside, San Diego,  Imperial, Los Angeles, and  Ventura Counties. Believed  extirpated from Orange County.  Also reported from Arizona and  Mexico (Baja California). Plants  reported from desert  communities are likely  misidentified.  Blooms mostly  March through  August  (annual or  perennial herb)  Absent. Suitable habitat  (washes in chaparral and  coastal sage scrub) is  not present within the  study area.  Astragalus  lentiginosus var.  coachellae    Coachella Valley  milk‐vetch  US: FE  CA: 1B  CVMSHCP: C  Sandy areas, typically in coarse  sands in active sand fields,  adjacent to dunes, along  roadsides in dune areas, or along  the margins of sandy washes, in  Sonoran Desert scrub at 60 to  655 meters (200 to 2,150 feet)  elevation. Known only from  Riverside County in the Coachella  Valley between Cabazon and  Indio, and in the Chuckwalla  Valley northeast of Desert  Center.  Blooms  February  through May   (annual or  perennial herb)  Low. Suitable habitat  (some coarse sand  areas) is present within  the study area.  Astragalus preussii  var. laxiflorus    Lancaster milk‐ vetch  US: –  CA: 1B  Alkaline clay flats, gravelly or  sandy washes, and along draws  in gullied badlands, in chenopod  scrub below about 700 meters  (2,300 feet) elevation. Known in  California only from near  Lancaster and Edwards Air Force  Base in Los Angeles, Kern, and  San Bernardino Counties, and  from one historical occurrence  (1928) near La Quinta in  Riverside County. Also occurs in  Nevada and Arizona.  Blooms March  through May  (perennial herb)  Absent. Suitable habitat  (clay flats, gravelly or  sandy washes, and along  draws in gullied  badlands, in chenopod  scrub) is not present  within the study area.  Astragalus  tricarinatus    Triple‐ribbed milk‐ vetch  US: FE  CA: 1B  CVMSHCP: C  Metamorphic rock outcrops  weathering into gravelly soil in  semi‐desert chaparral, or  (probably as waifs) at the edges  of boulder‐strewn desert washes  and adjacent slopes in rocky  incised canyons in Joshua tree  woodland and Sonoran Desert  Blooms  February  through May  (perennial herb)  Absent. Suitable habitat  (metamorphic rock  outcrops) is not present  within the study area.  B IOLOGICAL R ESOURCES A SSESSMENT AND   CVMSHCP C ONSISTENCY A NALYSIS  N OVEMBERM AY 2021  W AVE AT C ORAL M OUNTAIN R ESORTD EVELOPMENT P ROJECT C ITY OF L A Q UINTA, C ALIFORNIA   R:\2553\Departments\Environmental\Final EIR\2022‐02‐07 Submittal to City\Appendix\D.4 ‐ Revised Biological Report_LSA 2021‐11‐08.docxP:\CWV1901\BRA\May  2021\CWV1901_BRA_050621_revised.docx (02/28/2211/08/2111/03/21) B‐2  Special‐Status Species Summary  Species  Status  Habitat and Distribution  Activity Period  Occurrence Probability  scrub; known from west edge of  desert at 450 to 1,200 meters  (1,500 to 3,900 feet) elevation in  Riverside and extreme southern  San Bernardino Counties.  Ayenia compacta    California ayenia  US: –  CA: 2B  Rocky canyons and sandy and  gravelly washes from 150 to  1,095 meters (500 to 3,600 feet)  elevation in desert scrub. In  California, occurs in Providence  Mountains, Eagle Mountains,  and west edge of Sonoran  Desert.  Blooms March  through April  (subshrub)  Absent. Suitable habitat  (rocky canyons and  sandy and gravelly  washes) is not present  within the study area.  Bursera  microphylla    Little‐leaf elephant  tree  US: –  CA: 2B  Rocky slopes and washes in  Sonoran Desert scrub at 200 to  700 meters (600 to 2,300 feet)  elevation. In California, known  only from Riverside, Imperial,  and San Diego Counties.  Blooms June  through July  (deciduous tree)  Absent. Suitable habitat  (rocky slopes and  washes) is not present  within the study area.  Ditaxis claryana    Glandular ditaxis  US: –  CA: 2B  Sandy soils in creosote bush  scrub of the Sonoran and Mojave  deserts at 0 to 465 meters (0 to  1,500 feet) elevation. Imperial,  Riverside, and San Bernardino  Counties, and Arizona and  northern Mexico.  Blooms October  through March  (perennial herb)  Low. Suitable habitat  (sandy soils) is present  within the study area.  Ditaxis serrata var.  californica    California ditaxis  US: –  CA: 3.2  Sandy washes and alluvial fans in  Sonoran desert scrub at 30 to  1,000 meters (100 to 3,300 feet)  elevation. In California, known  from Imperial, Riverside, San  Bernardino, and San Diego  Counties. Also occurs in Mexico.  Blooms March  through  December  (perennial herb)  Absent. Suitable habitat  (sandy washes and  alluvial fans) is not  present within the study  area.  Eriastrum  harwoodii    Harwood’s  eriastrum  US: –  CA: 1B  Desert dunes, 125 to 915 meters  (410 to 3,002 feet) elevation  (CNPS).  Blooms March  through June  (annual herb)  Absent. Suitable habitat  (desert dunes) is not  present within the study  area.  Leptosiphon  floribundus ssp.  hallii    Santa Rosa  Mountains  leptosiphon  US: –  CA: 1B  Sonoran desert scrub in desert  canyons at 900 to 1,280 meters  (2,950 to 4,190 feet) elevation.  Known only from Riverside and  San Diego Counties.  Blooms May  through July  (perennial herb)  Absent. Suitable habitat  (Sonoran desert scrub) is  not present within the  study area.  B IOLOGICAL R ESOURCES A SSESSMENT AND   CVMSHCP C ONSISTENCY A NALYSIS  N OVEMBERM AY 2021  W AVE AT C ORAL M OUNTAIN R ESORTD EVELOPMENT P ROJECT C ITY OF L A Q UINTA, C ALIFORNIA   R:\2553\Departments\Environmental\Final EIR\2022‐02‐07 Submittal to City\Appendix\D.4 ‐ Revised Biological Report_LSA 2021‐11‐08.docxP:\CWV1901\BRA\May  2021\CWV1901_BRA_050621_revised.docx (02/28/2211/08/2111/03/21) B‐3  Special‐Status Species Summary  Species  Status  Habitat and Distribution  Activity Period  Occurrence Probability  Marina orcuttii var.  orcuttii    California marina  US: –  CA: 1B  Rocky soils and gravelly hillsides  in pinyon and juniper woodlands,  Sonoran desert scrub, and  chaparral at 1,050 to 1,160  meters (3,400 to 3,800 feet)  elevation. In California, known  only from Riverside County.   Blooms May  through  October  (perennial herb)  Absent. Suitable habitat  (rocky soils and gravelly  hillsides) is not present  within the study area.  Matelea parvifolia    Spear‐leaf matelea  US: –  CA: 2B  Rocky ledges and slopes in  Mojavean and Sonoran desert  scrub at 430 to 1,095 meters  (1,400 to 3,600 feet) elevation. In  California, known only from  Riverside, San Bernardino, and  San Diego Counties.  Blooms March  through May  (perennial herb)  Absent. Suitable habitat  (rocky ledges in  Mojavean and Sonoran  desert scrub) is not  present within the study  area.  Nemacaulis  denudata var.  gracilis    Slender  cottonheads  US: –  CA: 2B  Coastal or desert dunes, sandy  mesquite hummocks, or similar  sandy sites at ‐50 to 400 (560)  meters (‐160 to 1,300 [1,800]  feet) elevation. Known from  Imperial, Riverside, San  Bernardino, and San Diego  Counties in California, and from  Arizona and Mexico.  Blooms mostly  late March to  mid‐May  (annual herb)  Moderate. Suitable  habitat (sandy mesquite  hummocks) is present  within the study area.  Phaseolus filiformis    Slender‐stem bean  US: –  CA: 2B  Annual or perennial vine in  Sonoran desert scrub found in  gravelly washes bordered by  Creosote bush‐dominated rocky  slopes; 125 meters (410 feet)  elevation. Known only from one  site in California: Coachella  Valley, Riverside County.  Blooms April  (annual herb)  Absent. Suitable habitat  (gravelly washes  bordered by Creosote  bush‐dominated rocky  slopes) is not present  within the study area.  Pseudorontium  cyathiferum    Deep Canyon  snapdragon  US: –  CA: 2B  Rocky sites in Sonoran Desert  scrub at 0 to 800 meters (0 to  2,600 feet) elevation. In  California, known only from the  Deep Canyon area of Riverside  County.  Blooms  February  through April  (annual herb)  Absent. The study area  is outside of the species  geographic range.  Selaginella  eremophila    Desert spike‐moss  US: –  CA: 2B  Shaded sites in gravelly soils and  among rocks or in crevices from  200 to 900 (2,425?) meters (700  to 3,000 [8,000?] feet) elevation  in Sonoran desert scrub.  Reproductive  mostly in June   (perennial herb)  Absent. Suitable habitat  (shaded sites in gravelly  soils and among rocks or  in crevices) is not  present within the study  area.  B IOLOGICAL R ESOURCES A SSESSMENT AND   CVMSHCP C ONSISTENCY A NALYSIS  N OVEMBERM AY 2021  W AVE AT C ORAL M OUNTAIN R ESORTD EVELOPMENT P ROJECT C ITY OF L A Q UINTA, C ALIFORNIA   R:\2553\Departments\Environmental\Final EIR\2022‐02‐07 Submittal to City\Appendix\D.4 ‐ Revised Biological Report_LSA 2021‐11‐08.docxP:\CWV1901\BRA\May  2021\CWV1901_BRA_050621_revised.docx (02/28/2211/08/2111/03/21) B‐4  Special‐Status Species Summary  Species  Status  Habitat and Distribution  Activity Period  Occurrence Probability  Senna covesii    Coves’s cassia  US: –  CA: 2B  Dry, sandy desert washes and  slopes in Sonoran desert scrub at  200 to 1,070 meters (700 to  3,500 feet) elevation. In  California, known only from  Imperial, Riverside, San  Bernardino, and San Diego  Counties.  Blooms March  through June  (perennial herb)  Absent. Suitable habitat  (dry, sandy desert  washes and slopes) is  not present within the  study area.  Stemodia  durantifolia    Purple stemodia  US: –  CA: 2B  Sonoran Desert scrub, mostly in  mesic sandy areas, at 180 to 300  meters (600 to 1,000 feet)  elevation. In California, known  from San Diego and possibly  Riverside Counties. Also occurs in  Arizona, Texas, Mexico, and  South America.  Blooms January  through  December  (perennial herb)  Absent. Suitable habitat  (Sonoran Desert scrub,  mostly in mesic sandy  areas) is not present  within the study area.  Thelypteris  puberula var.  sonorensis    Sonoran maiden  fern  US: –  CA: 2B  Seeps and along streams in  meadows at 50 to 610 meters  (170 to 2,000 feet) elevation.  Known from western Riverside,  southwest San Bernardino, Santa  Barbara, and Los Angeles  Counties.  Blooms January  through  September  (perennial herb)  Absent. Suitable habitat  (seeps and along  streams in meadows) is  not present within the  study area.  Xylorhiza cognata    Mecca aster  US: –  CA: 1B  CVMSHCP: C  Steep slopes of arid canyons in  sandstone and clay in Sonoran  desert scrub at 20 to 400 meters  (70 to 1,300 feet) elevation.  Known only from Riverside, San  Diego, and Imperial Counties,  California, principally in the Indio  and Mecca hills of Riverside  County.   Blooms January  through June  (perennial herb)  Absent. Suitable habitat  (steep slopes of arid  canyons in sandstone  and clay) is not present  within the study area.  Invertebrates  Dinacoma caseyi    Casey’s June  beetle  US: FE  CA: SA  Associated with alluvial  sediments, typically in Carsitas  gravelly sand (CdC), riverwash, or  possibly Carsitas cobbly sand  (ChC) of broad, gently sloping  alluvial fans at the base of the  Santa Rosa Mountains. Known  distribution is an area of less  than 324 hectares (800 acres) in  southern Palm Springs within the  Palm Canyon alluvial floodplain  and eastward to East Palm  Canyon Drive.  Spring (late  March through  June)  Absent. The study area  is outside of the species  known geographic  range.  B IOLOGICAL R ESOURCES A SSESSMENT AND   CVMSHCP C ONSISTENCY A NALYSIS  N OVEMBERM AY 2021  W AVE AT C ORAL M OUNTAIN R ESORTD EVELOPMENT P ROJECT C ITY OF L A Q UINTA, C ALIFORNIA   R:\2553\Departments\Environmental\Final EIR\2022‐02‐07 Submittal to City\Appendix\D.4 ‐ Revised Biological Report_LSA 2021‐11‐08.docxP:\CWV1901\BRA\May  2021\CWV1901_BRA_050621_revised.docx (02/28/2211/08/2111/03/21) B‐5  Special‐Status Species Summary  Species  Status  Habitat and Distribution  Activity Period  Occurrence Probability  Macrobaenetes  valgum    Coachella giant  sand treader  cricket   US: –  CA: SA  CVMSHCP: C  Wind‐swept sand dune ridges,  spring‐dampened sandy areas.  Restricted to Coachella Valley.  Absent. Suitable habitat  (Wind‐swept sand dune  ridges, spring‐dampened  sandy areas) is not  present within the study  area.  Oliarces clara    Cheeseweed moth  lacewing  US: –  CA: SA  Associated with creosote bush  (Larrea tridentata) in desert  scrub. Known in California from  Imperial, Riverside, and San  Bernardino Counties. This species  is rarely observed in the field due  to the short flight season of  adults (up to 3 or 4 days) and the  indeterminate timing of adult  emergence.  Low. Suitable habitat  (creosote bush) is  present within the study  area.  Fish  Cyprinodon  macularius    Desert pupfish  US: FE  CA: SE  CVMSHCP: C  Desert backwater areas, springs,  streams, and pools. In California,  found in the Salton Sea and some  of its tributaries (San Felipe  Creek, San Sebastian Marsh, and  Salt Creek) in Riverside and  Imperial Counties.  Absent. Suitable habitat  (desert backwater areas,  springs, streams, and  pools) is not present  within the study area.  Amphibians  Batrachoseps  major aridus    Desert slender  salamander  US: FE  CA: SE  Inhabits steep‐walled desert  canyons with permanent water  seeping from fractured bedrock.  Known from only two canyons  the Santa Rosa Mountains, in the  Coachella Valley of Riverside  County.  Active year‐ round (peak  possibly  February to  April).  Absent. Suitable habitat  (steep‐walled desert  canyons with permanent  water seeps) is not  present within the study  area.  Reptiles  Phrynosoma mcalli    Flat‐tailed horned  lizard  US: –  CA: SSC  CVMSHCP: C  Fine sand in desert washes and  flats with vegetative cover and  ants, generally below 180 meters  (600 feet) elevation in Riverside,  San Diego, and Imperial  Counties.  May be active  year‐round in  mild weather,  but peak  activity occurs  in spring, early  summer, and  fall.  Moderate. Suitable  habitat (fine sand in flats  with vegetative cover) is  present within the study  area.  Uma inornata    Coachella Valley  fringe‐toed lizard  US: FT  CA: SE  CVMSHCP: C  Fine, loose, windblown sand  (dunes), interspersed with  hardpan and widely spaced  desert shrubs; known only from  the Coachella Valley.  April through  October (May is  peak).  Absent. Suitable habitat  (Fine, loose, windblown  sand [dunes],  interspersed with  hardpan) is not present  within the study area.  B IOLOGICAL R ESOURCES A SSESSMENT AND   CVMSHCP C ONSISTENCY A NALYSIS  N OVEMBERM AY 2021  W AVE AT C ORAL M OUNTAIN R ESORTD EVELOPMENT P ROJECT C ITY OF L A Q UINTA, C ALIFORNIA   R:\2553\Departments\Environmental\Final EIR\2022‐02‐07 Submittal to City\Appendix\D.4 ‐ Revised Biological Report_LSA 2021‐11‐08.docxP:\CWV1901\BRA\May  2021\CWV1901_BRA_050621_revised.docx (02/28/2211/08/2111/03/21) B‐6  Special‐Status Species Summary  Species  Status  Habitat and Distribution  Activity Period  Occurrence Probability  Birds  Athene cunicularia   (burrow sites)    Burrowing owl  US: –  CA: SSC  (breeding)  CVMSHCP: C  Open country in much of North  and South America. Usually  occupies ground squirrel burrows  in open, dry grasslands,  agricultural and range lands,  railroad rights‐of‐way, and  margins of highways, golf  courses, and airports. Often  utilizes man‐made structures,  such as earthen berms, cement  culverts, cement, asphalt, rock,  or wood debris piles. They avoid  thick, tall vegetation, brush, and  trees, but may occur in areas  where brush or tree cover is less  than 30 percent.  Year‐round High. Suitable habitat  (ground squirrel  burrows) is present  within the study area.  Buteo regalis   (wintering)    Ferruginous hawk  US: –  CA: SA  Forages in open fields, grasslands  and agricultural areas, sagebrush  flats, desert scrub, fringes of  pinyon‐juniper habitats, and  other open country in western  North America. Not known to  breed in California.  Mid‐September  through mid‐ April  Moderate. Suitable  foraging habitat (open  desert scrub habitat) is  present within the study  area.  Falco mexicanus   (nesting)    Prairie falcon  US: –  CA: SA  Open country in much of North  America. Nests in cliffs or rocky  outcrops; forages in open arid  valleys and agricultural fields.  Rare in southwestern California.  Year‐round  diurnal  Moderate. Suitable  foraging habitat (open  arid valley) is present  within the study area.  Polioptila melanura    Black‐tailed  gnatcatcher  US: –  CA: SA  Nests in wooded desert wash  habitat containing mesquite,  palo verde, ironwood, and  acacia. May also occur in areas  with salt cedar, especially when  adjacent to native wooded  desert wash habitat. Also occurs  in desert scrub habitat in winter.  High. Suitable nesting  habitat (mesquite  hummocks and salt  cedar [tamarisk]) is  present within the study  area.  B IOLOGICAL R ESOURCES A SSESSMENT AND   CVMSHCP C ONSISTENCY A NALYSIS  N OVEMBERM AY 2021  W AVE AT C ORAL M OUNTAIN R ESORTD EVELOPMENT P ROJECT C ITY OF L A Q UINTA, C ALIFORNIA   R:\2553\Departments\Environmental\Final EIR\2022‐02‐07 Submittal to City\Appendix\D.4 ‐ Revised Biological Report_LSA 2021‐11‐08.docxP:\CWV1901\BRA\May  2021\CWV1901_BRA_050621_revised.docx (02/28/2211/08/2111/03/21) B‐7  Special‐Status Species Summary  Species  Status  Habitat and Distribution  Activity Period  Occurrence Probability  Pyrocephalus  rubinus   (nesting)    Vermilion  flycatcher  US: –  CA: SSC  (breeding)  A rare, local, year‐long resident  along the Colorado River,  especially in vicinity of Blythe,  Riverside County. Sporadic  breeder in desert oases west and  north to Morongo Valley and the  Mojave Narrows, San Bernardino  County. Formerly bred in coastal  San Diego County. Nesters  inhabit cottonwood, willow,  mesquite, and other vegetation  in desert riparian habitat  adjacent to irrigated fields,  irrigation ditches, pastures, and  other open, mesic areas. Rare fall  and winter visitor throughout the  lowlands of Southern California  from Santa Barbara and Inyo  Counties south. Formerly much  more common and widespread,  but has disappeared entirely  from Imperial and Coachella  Valleys.  Fall or winter  visitor or rare  and local  breeder  Absent. Suitable habitat  (desert oases) is not  present within the study  area.  Toxostoma crissale    Crissal thrasher  US: –  CA: SSC  (year round)  CVMSHCP: C  Dense thickets of shrubs or low  trees in desert riparian and  desert wash habitats.  Southeastern California to Texas  and northern Mexico.  Year‐round Low. Suitable habitat  (Dense thickets of  shrubs) is present within  the study area.  B IOLOGICAL R ESOURCES A SSESSMENT AND   CVMSHCP C ONSISTENCY A NALYSIS  N OVEMBERM AY 2021  W AVE AT C ORAL M OUNTAIN R ESORTD EVELOPMENT P ROJECT C ITY OF L A Q UINTA, C ALIFORNIA   R:\2553\Departments\Environmental\Final EIR\2022‐02‐07 Submittal to City\Appendix\D.4 ‐ Revised Biological Report_LSA 2021‐11‐08.docxP:\CWV1901\BRA\May  2021\CWV1901_BRA_050621_revised.docx (02/28/2211/08/2111/03/21) B‐8  Special‐Status Species Summary  Species  Status  Habitat and Distribution  Activity Period  Occurrence Probability  Toxostoma lecontei    Le Conte’s  thrasher  US: –  CA: SA  CVMSHCP: C  Inhabits sparsely vegetated desert  flats, dunes, alluvial fans, or gently  rolling hills having a high  proportion of saltbush (Atriplex  spp.) or cholla (Cylindropuntia  spp.), often occurring along small  washes or sand dunes. Prefers  dense thorny shrubs (most often  saltbush or cholla) for nesting.  Uncommon and local resident in  low desert scrub throughout most  of the Mojave Desert, extending  up into the southwestern corner  of the San Joaquin Valley.  Breeding range in California  extends from these areas into  eastern Mojave, north into the  Owens Valley and south into the  lower Colorado Desert and  eastern Mojave. Only the San  Joaquin Valley population of this  species is considered a Bureau of  Land Management Sensitive  Species or California Species of  Concern.  Year‐round High. Suitable habitat  (sparsely vegetated  desert flat having a high  proportion of saltbush  [Atriplex spp.]) is  present within the study  area.  Mammals  Antrozous pallidus    Pallid bat  US: –  CA: SSC  Roosts in crevices in rocky  outcrops and cliffs, caves, mines,  hollows or cavities of large trees,  and anthropogenic structures  such as bridges and buildings;  may also roost near the ground  in rock piles. Foraging habitat  includes grassland, open scrub,  open forest, and gravel roads.  Year‐round;  nocturnal  Detected. Suitable trees  and rock outcrops for  day roosting present in  study area. Suitable  foraging habitat in open  desert scrub. Visually  observed emerging from  roosts in rock outcrops  in the study area, as well  as foraging in palo verde  stands at the western  portion of the study  area.  Eumops perotis  californicus    Western mastiff  bat  US: –  CA: SSC  Occurs in many open, semi‐arid  to arid habitats, including conifer  and deciduous woodlands,  coastal scrub, grasslands,  chaparral, etc.; roosts in crevices  in vertical cliff faces, high  buildings, and tunnels, and  travels widely when foraging.  Year‐round;  nocturnal  Detected. Suitable  roosting present in rocky  outcrops within study  area. Suitable foraging  habitat present.  B IOLOGICAL R ESOURCES A SSESSMENT AND   CVMSHCP C ONSISTENCY A NALYSIS  N OVEMBERM AY 2021  W AVE AT C ORAL M OUNTAIN R ESORTD EVELOPMENT P ROJECT C ITY OF L A Q UINTA, C ALIFORNIA   R:\2553\Departments\Environmental\Final EIR\2022‐02‐07 Submittal to City\Appendix\D.4 ‐ Revised Biological Report_LSA 2021‐11‐08.docxP:\CWV1901\BRA\May  2021\CWV1901_BRA_050621_revised.docx (02/28/2211/08/2111/03/21) B‐9  Special‐Status Species Summary  Species  Status  Habitat and Distribution  Activity Period  Occurrence Probability  Lasiurus blossevillii    Western red bat  US: –  CA: SSC  Typically solitary, but sometime  found in small groups. Roosts in  the foliage of broad‐leafed trees  or shrubs within streams or  fields, in orchards, and  occasionally urban areas;  commonly roosts in mature  cottonwoods and sycamores.  Also documented roosting in  mature eucalyptus trees and  palm trees. Strongly associated  with riparian corridors, but has  also been observed in desert  scrub.  Year‐round;  nocturnal  Low. Typically more  associated with riparian  habitats, but has been  documented in desert  scrub habitats. May  occur in study area.  Lasiurus cinereus    Hoary bat  US: –  CA: SA  Solitary. Roosts in the foliage of  coniferous, deciduous, and  evergreen trees and shrubs,  often at the edge of a clearing.  Typically roosts near the ends of  branches approximately 3–12  meters above the ground.  Migratory wintering sites have  not been well documented, and  specific migration routes are not  known  Primarily fall,  winter, and  spring;  nocturnal  Low. Suitable large trees  present for day roosting,  including athel (Tamarix  aphylla). Unlikely to be  present during the  summer months. May  forage in study area.  Lasiurus xanthinus    Western yellow  bat  US: –  CA: SSC  Found mostly in desert and  desert riparian areas of the  southwest U.S., but also  expanding its range with the  increased usage of native and  non‐native ornamental palms in  landscaping. Individuals typically  roost amid dead fronds of palms  in desert oases, but have also  been documented roosting in  cottonwood trees. Forages over  many habitats.  Year‐round;  nocturnal  Detected. Native and  non‐native ornamental  palms surrounding the  study area could provide  suitable roosting  habitat. Suitable  foraging habitat is also  found within the study  area.  Myotis ciliolabrum    Western small‐ footed myotis  US: –  CA: SA  Roosts singly or in small groups  in cliff and rock crevices, caves,  mines, culverts, and buildings.  Forages on small insects over  desert, scrub, chaparral, and  riparian habitats.  Year‐round;  nocturnal  Detected. Suitable rock  outcrops present for day  roosting. Forages in  study area.  B IOLOGICAL R ESOURCES A SSESSMENT AND   CVMSHCP C ONSISTENCY A NALYSIS  N OVEMBERM AY 2021  W AVE AT C ORAL M OUNTAIN R ESORTD EVELOPMENT P ROJECT C ITY OF L A Q UINTA, C ALIFORNIA   R:\2553\Departments\Environmental\Final EIR\2022‐02‐07 Submittal to City\Appendix\D.4 ‐ Revised Biological Report_LSA 2021‐11‐08.docxP:\CWV1901\BRA\May  2021\CWV1901_BRA_050621_revised.docx (02/28/2211/08/2111/03/21) B‐10  Special‐Status Species Summary  Species  Status  Habitat and Distribution  Activity Period  Occurrence Probability  Myotis yumanensis    Yuma myotis  US: –  CA: SA  Roosts in crevices within bridges,  buildings, culverts, cliff crevices,  caves, mines, and trees, typically  near a perennial water source.  Also documented roosting in  swallows nests.   Year‐round;  nocturnal   High. Suitable trees for  day roosting present.  Crevices in adobe  building are also suitable  for roosting. May forage  over open water in golf  courses and water  impoundments  immediately adjacent to  the study area.   Macrotus  californicus    California leaf‐ nosed bat    US: –  CA: SSC  Day roosts primarily in caves and  mines, but occasionally roosts in  anthropogenic structures such as  bridges. Foraging habitat is  predominantly in desert washes  containing palo verde, ironwood,  or smoke trees.  Year‐round;  nocturnal  High. Suitable roosting  present in rocky  outcrops within study  area. Known roosting  sites in project vicinity.  Suitable foraging habitat  present.  Nyctinomops  femorosaccus    Pocketed free‐ tailed bat  US: –  CA: SSC  Usually associated with cliffs,  rock outcrops, or slopes. May  roost in buildings (including roof  tiles) or caves. Rare in California,  where it is found in Riverside,  San Diego, Imperial and possibly  Los Angeles Counties. More  common in Mexico.  Year‐round;  nocturnal  Detected. Suitable rock  outcrops for day  roosting present in rocky  outcrops within study  area. Heard foraging  over study area.  Nyctinomops  macrotis    Big free‐tailed bat  US: –  CA: SSC  Roosts mainly in crevices in cliffs,  although there is some  documentation of roosting in  buildings, caves, and tree  cavities. Found in desert shrub,  woodlands, and evergreen  forests.  Year‐round;  nocturnal  Moderate. Suitable rock  outcrops for day  roosting present. May  forage in study area.  Chaetodipus fallax  pallidus  Pallid San Diego  pocket mouse  US: –  CA: SSC  Found in sandy herbaceous  areas, usually associated with  rocks or coarse gravel in desert  wash, desert scrub, desert  succulent scrub, pinyon‐juniper  woodlands, etc. in desert border  areas of Southern California into  Mexico.  Nocturnal,  active year‐ round  Moderate. Suitable  habitat (sandy  herbaceous areas) is  found within the study  area.  B IOLOGICAL R ESOURCES A SSESSMENT AND   CVMSHCP C ONSISTENCY A NALYSIS  N OVEMBERM AY 2021  W AVE AT C ORAL M OUNTAIN R ESORTD EVELOPMENT P ROJECT C ITY OF L A Q UINTA, C ALIFORNIA   R:\2553\Departments\Environmental\Final EIR\2022‐02‐07 Submittal to City\Appendix\D.4 ‐ Revised Biological Report_LSA 2021‐11‐08.docxP:\CWV1901\BRA\May  2021\CWV1901_BRA_050621_revised.docx (02/28/2211/08/2111/03/21) B‐11  Special‐Status Species Summary  Species  Status  Habitat and Distribution  Activity Period  Occurrence Probability  Perognathus  longimembris  bangsii    Palm Springs  pocket mouse  US: –  CA: SSC  Primary habitat in the Coachella  Valley is dunes and mesquite  hummocks associated with  honey mesquite (Prosopis  glandulosa var. torreyana) and,  to a lesser extent, dunes and  hummocks associated with  creosote (Larrea tridentata) or  other vegetation. Its range in the  Coachella Valley extends from  Joshua Tree National Park  southward, west to San Gorgonio  Pass, and south to Borrego  Springs and the east side of San  Felipe Narrows, in Riverside, San  Diego, and Imperial Counties.  Results of recent morphological  and genetic studies indicate that  this species also ranges  northward at least to Hinkley  Valley and Death Valley in San  Bernardino County.  Spring through  fall  Low. Although suitable  habitat (mesquite  hummocks associated  with honey mesquite  (Prosopis glandulosa  var. torreyana) is found  within the study area,  these areas are limited  in size and isolated  within the study area.  Xerospermophilus  tereticaudus  chlorus    Palm Springs  round‐tailed  ground squirrel  US: –  CA: SSC  CVMSHCP: C  Desert succulent scrub, desert  wash, desert scrub, alkali scrub;  will burrow in man‐made levees;  prefers open, flat, grassy areas in  fine textured, sandy soil.  Restricted to Coachella Valley.  February  through August  (hibernates  September  through  January)  Moderate. Suitable  habitat (alkali scrub  associated with fine  textured, sandy soil) is  found within the study  area.  Taxidea taxus    American badger  US: –  CA: SSC  Primary habitat requirements  seem to be sufficient food and  friable soils in relatively open  uncultivated ground in  grasslands, woodlands, and  desert. Widely distributed in  North America.  Year‐round Low. Suitable habitat  (friable soils) is found  within the study area.   Ovis canadensis  nelsonii (peninsular  Distinct Population  Segment)    Peninsular bighorn  sheep  US: FE  CA: ST/CFP  CVMSHCP: C  Occurs on open desert slopes  below 1,220 meters (4,000 feet)  elevation from San Gorgonio  Pass south into Mexico; optimal  habitat includes steep‐walled  canyons and ridges bisected by  rocky or sandy washes, with  available water.  Absent. Suitable habitat  (steep‐walled canyons  and ridges bisected by  rocky or sandy washes)  is not present. within  the study area;  however, the adjacent  Coral Mountain provides  limited foraging habitat  and limited escape cover  for this species.    B IOLOGICAL R ESOURCES A SSESSMENT AND   CVMSHCP C ONSISTENCY A NALYSIS  N OVEMBERM AY 2021  W AVE AT C ORAL M OUNTAIN R ESORTD EVELOPMENT P ROJECT C ITY OF L A Q UINTA, C ALIFORNIA   R:\2553\Departments\Environmental\Final EIR\2022‐02‐07 Submittal to City\Appendix\D.4 ‐ Revised Biological Report_LSA 2021‐11‐08.docxP:\CWV1901\BRA\May  2021\CWV1901_BRA_050621_revised.docx (02/28/2211/08/2111/03/21) B‐12  LEGEND  US: Federal Classifications  –  No applicable classification  FE  Taxa listed as Endangered.  FT  Taxa listed as Threatened.  CA: State Classifications  SE  Taxa State‐listed as Endangered.  ST  Taxa State‐listed as Threatened.  SSC  California Species of Special Concern. Refers to animals with vulnerable or seriously declining populations.  CF P  California Fully Protected. Refers to animals protected from take under Fish and Game Code Sections 3511, 4700, 5050, and  5515.  SA  Special Animal. Refers to any other animal monitored by the Natural Diversity Data Base, regardless of its legal or protection  status.  1B  California Rare Plant Rank 1B: Rare, threatened, or endangered in California and elsewhere. 2B  California Rare Plant Rank 2B: Rare, threatened, or endangered in California, but more common elsewhere.  3  California Rare Plant Rank 3: A review list of plants about which more information is needed.   California Rare Plant Rank Extensions    0.2  Fairly endangered in California (20 to 80% occurrences threatened).  CVMSHCP: Coachella Valley MSHCP Status  C  Species is adequately conserved under the CVMSHCP.    CORAL MOUNTAIN RESORT FINAL EIR SCH# 2021020310 TECHNICAL APPENDICES Biological Resources Assessment ELMT Consulting Appendix D.5     January 2022    2201 N. Grand Avenue #10098 | Santa Ana, CA 92711-0098 | (714) 716-5050 www.ELMTConsulting.com November 3, 2021 CORAL MOUNTAIN Attention: John Gamlin SUBJECT: Biological Resources Assessment of the Coral Mountain Site and Adjacent BLM Lands Suitability Assessment 1. At the request of Coral Mountain, Dr. McGill of ELMT Consulting assessed the Coral Mountain Project site and adjacent US Bureau of Land Management (BLM) federally managed lands to assess the suitability of these lands to support Peninsular Bighorn Sheep (PBS). Dr. McGill has been working with bighorn sheep since 1979. As the lead biologist for the Navy’s Installation at China Lake, CA, he worked closely with CDFW in 1986 to capture and relocate 75 Desert Bighorn Sheep from Old Dad Mountain to the Eagle Craig in the southern portion of the 1.1-million-acre base in the Mojave Desert. The relocation followed the removal of 5,000 feral burros, an exotic or introduced species from the Eagle Craigs, which were out competing bighorn sheep, a native species. Dr. McGill closely monitored the bighorn sheep population on the base over the next ten years, when he left the federal government and entered the private sector. One of his first jobs in the private sector was to develop a Multiple Species Habitat Conservation Plan (Tribal HCP) for the Agua Caliente Band of Cahuilla Indians in Palm Spring. The Agua Caliente Reservation encompasses most of the east facing slopes of the San Jacinto Mountains in Coachella Valley. The primary species covered in the Tribal HCP was PBS. Dr. McGill worked extensively with Jim DeForge of the Bighorn Institute to develop a conservation program that would preserve habitat in the San Jacinto Mountains for PBS, while permitting compatible uses of tribal land for the Agua Caliente. The Agua Caliente adopted the Tribal HCP in 2002 as tribal law as the first Tribal HCP, which is still in place today. 2. The Coral Mountain project site and adjacent portions of Coral Mountain and BLM lands west of the site were walked to evaluate the suitability of the project site and adjacent land to support PBS. PBS are restricted to the rugged terrain along the east-facing slopes, below 4,000 feet, of the Peninsular Ranges. Above 4,000 feet, the vegetation become denser, decreasing visibility and, therefore, increasing the risk of predation to PBS. The elevational patterns of vegetative associations, in combination with predator avoidance behavior, has resulted in PBS using a narrow band of elevation, from 800 to 3,400 feet, on the lower slopes of the San Jacinto and Santa Rosa Mountains. The population of PBS in the Peninsular Ranges was listed as endangered in 1998. At the lowest elevation of their range, PBS movement onto the valley floor is very limited because of the typical hesitancy to venture far from escape terrain. Their habitat can be visualized as a long, narrow band that runs north to south along the lower elevations of the San Jacinto and Santa Rosa Mountains but still within areas of steep terrain. November 3, 2021 Page 2 3. Habitat modification that can attract PBS creates threats in the form of collisions with vehicles, poisoning by toxic landscape plants, entanglement in wire fences, harassment by dogs, increased predation by native predators, coyote and mountain lion, and exposure to toxins such as herbicides and insecticides. The conservation needs for PBS in the Santa Rosa Mountains include: • Steep topography for lambing and rearing habitat and for escaping predators; • Open terrain with good visibility to allow PBS to detect predators visually; and • Alluvial fans and washes for forage during cooler months and for water during the summer months. 4. Based on observation made during the site visit, the southwestern side of Coral Mountain and some of the hilly habitat between the southern end of Coral Mountain and the eastern slopes of the Santa Rosa Mountains areas, where there is a potential for PBS to move from the Santa Rosa Mountains into the hilly habitat and then over to Coral Mountain. The collar data from CDFW seems to suggest this. Venturing off Coral Mountain onto the valley floor area on the east side at the west boundary of the project site would subject PBS to the threats mentioned above. A well-designed and maintained fence will eliminate these potential threats to PBS from site development The project site does not offer the steep topography needed for lambing, rearing habitat or escape cover to avoid predators. Without these features, the project does not provide suitable PBS habitat. Coral Mountain, adjacent to the project site, does provide limited foraging habitat and limited escape cover. Plus, the intervening area between Coral Mountain and the Santa Rosa Mountains (hilly terrain) that constitutes BLM Lands, while providing some escape cover, does expose those PBS venturing out of the Santa Rosas to predation by coyotes and other large predators. The fence will prevent PBS from exiting Coral Mountain onto the site, where there is no escape cover and where they would be very vulnerable to predation and exposure to toxic plants, herbicides and insecticides. PBS will still be able to transverse the open space associated with the BLM lands between the Santa Rosas and Coral Mountain but will not be able to migrate off Coral Mountain onto the valley floor area of the project site. Escape cover is limited but present in the intervening area between the Santa Rosas and Coral Mountain. The collar data does show that the movement from the Santa Rosas to Coral Mountain is very limited compared to movement within the Santa Rosa Mountains. Coachella Valley MSHCP Consistency Analysis 5. PBS in the San Jacinto and Santa Rosa Mountain ranges is a covered species under the Coachella Valley Association of Governments (CVAG) CVMSHCP. PBS Habitat within these two mountain ranges are part of the Santa Rosa and San Jacinto Mountains Conservation Area, one of twenty- one Conservation Areas that comprise the Reserve System identified in the CVAG CVMSHCP. There are 211,070 acres within this Conservation Area, 55,890 of which are considered Essential Habitat for PBS. The City of La Quinta’s requirement is to contribute 2,545 acres of PBS habitat within the City’s boundaries as part of the Conservation Area to the Reserve. 6. The Coral Mountain Project Site is not within the boundaries of the Santa Rosa and San Jacinto Mountains Conservation Area and, therefore, is not obligated to set aside land as part of the City’s conservation requirements under the Habitat Acquisition and Negotiation Strategy (HANS) November 3, 2021 Page 3 process. Although the Project is 0.62 mile east of the Conservation Area’s boundary (see Exhibit 1, CVMSHCP Conservation Areas), due to the occasional use of Coral Mountain by PBS, I recommend including the following Avoidance and Minimization Measures and Land Use Adjacency Guidelines in the Conditions of Approval to avoid or minimize indirect impacts to PBS. 7. Avoidance and minimization measures identified for PBS habitat include: a. Covered Activities (permitted activities under the CVMSHCP) in PBS habitat within the designated conservation areas will be conducted outside of January 1 through June 30, PBS lambing season unless authorized under a minor amendment to the Plan and with concurrence from the Wildlife Agencies. This measure does not apply because no development activities are proposed within the CVMSHCP Conservation Area (see CVMSHCP p. 4-176). b. New projects within or adjacent to CVMSHCP Conservation Areas shall not use toxic or invasive plant species in landscaping. Table 4-112 in the CVMSHCP provides a list of acceptable plant species, while Table 4-113 lists prohibited plant species. This measure applies to the western boundary of the project that is adjacent to Coral Mountain and other BLM open space land. 8. Land Use Adjacency Guidelines require that projects adjacent to a Conservation Area adhere to the following guidelines: a. Drainage- The proposed development shall include plans to ensure that the quality and quantity of runoff discharged to the Conservation Area is not altered in an adverse way when compared to pre-project conditions. Stormwater systems will be designed to prevent the release of toxins, chemicals, petroleum products, exotics plant material or other elements that might degrade or harm biological resources, i.e., PBS habitat, with the Conservation Area; b. Toxics- Land uses that use chemicals or generated byproducts that are potentially toxic or may adversely affect wildlife habitat or water quality shall incorporate measures to ensure that applications of the chemicals do not discharge into the adjacent Conservation Area. c. Lighting- Lighting shall be shielded and directed towards developed areas. Landscaping shielding or other methods shall be incorporated in project design to minimize effects of lighting adjacent to or within the Conservation Area in accordance with guidelines to be included in an Implementation Manual. d. Noise- Proposed Development adjacent to the Conservation Area that generate noise in excess of 75 dBA shall incorporate setbacks, berms or walls, as appropriate, to minimize the effects of noise on the Conservation Area, in accordance with guidelines made available in the Implementation Manual. e. Barriers- The development shall incorporate barriers in project design to minimize unauthorized public access, domestic animals, predators, illegal trespass or dumping in a Conservation Area. Barriers may include native landscape, rocks/boulders, fencing, walls November 3, 2021 Page 4 and use/or signage. Exhibit 2, Sheep Protection Plan, is a conceptual fencing plan for the project site. f. Grading/Land Development- Manufactured slopes shall not extend into a Conservation Area. g. Invasives- The Specific Plan plant palette (Table 3 in Section 4.4.3) will include approved plant species listed as “Coachella Valley Native Plants Recommended for Landscaping” (CVMSHCP Table 4-112) and will avoid plant species listed as “Prohibited Invasive Ornamental Plants” (MSHCP Table 4-113) in certain open space areas and on lots adjoining the sheep barrier (refer to Exhibit 2) consistent with the CVMSHCP Land Use Adjacency Guidelines. Restricting the plant palette on the open space areas and lots on the western boundary of the site, as defined in Exhibit 2, will avoid potential impacts to individual PBS that may access this portion of the site. 9. The applicable Avoidance/Minimization Measures and project design features included to be consistent with the Land Use Adjacency Guidelines discussed above will be memorialized as part of the Specific Plan included as part of the project or incorporated into the Conditions of Approval for the project and used to guide development activities, and operational and maintenance programs throughout the life of the development. Adherence to this guidance in Specific Plan and Conditions of Approval will ensure that development and operation of the project is consistent with the conservation goals and objectives for PBS identified in the CVMSHCP and that the project does not result in indirect impacts to the Conservation Area or any essential habitat identified for the PBS. As a result, the project will not result in impacts on PBS. Please do not hesitate to contact Tom McGill at (951) 285-6014 or tmcgill@elmtconsulting.com should you have any questions. Sincerely, Thomas J. McGill, Ph.D. Managing Director Attachments: Exhibit 1: CVMSHCP Conservation Areas Exhibit 2: Sheep Protection Plan CVMSHCP Conservation AreasCORAL MOUNTAIN Exhibit 3 O Source: ESRI Aerial Imagery, CVMSHCP, Riverside County Santa Rosa and San Jacinto Mountains Conservation A rea 0 1 20.5 Miles Legend Project Site Santa Rosa and San Jacinto Mountains Conservation Area 0.62 mile Coral Mountain Resort Specific Plan CORAL MOUNTAIN RESORT SPECIFIC PLAN 35 2.5 SHEEP PROTECTION PLAN The project includes specific measures to ensure that Peninsular Bighorn Sheep (PBS) are restricted from entering the project and to promote proper human interactions between residents/guests and PBS. 2.5.1 Barrier Plan The Specific Plan will incorporate fencing and walls along the entire project perimeter as shown on Figure 13 Conceptual PBS Barrier Plan. This will serve as a physical barrier to prevent Peninsular bighorn sheep (PBS) from accessing the site. The fence/wall design will be approved by the City of La Quinta in consultation with the California Department of Fish and Wildlife (CA DFW). It will draw from the prototypical fencing types described in the Coachella Valley Conservation Commission (CVCC) “PBS Barrier Project” as shown in Figure 14 Typical PBS Fence Cross Section and Figures 15a & b Representative PBS Fence Photos, and will be consistent with the Coachella Valley Multi-Species Habitat Conservation Plan. Additionally, Tribal monitoring will apply to the fence construction and trail alignment in any areas containing Tribal cultural resources per City of La Quinta requirements. 2.5.2 Plant Palette The Specific Plan plant palette (Table 3 in Section 4.4.3) will include approved specimens listed as “Coachella Valley Native Plants Recommended for Landscaping” (CVMSHCP Table 4-112) and will avoid specimens listed as “Prohibited Invasive Ornamental Plants” (MSHCP Table 4-113) in certain open spaces areas and on lots adjoining a sheep barrier as shown on Figure 13. In addition, the approved project plant palette will be referenced in the Project CC&Rs and will be enforceable by the property owners’ association for the life of the project. 2.5.3 Education Program The project will prepare collateral materials for dissemination to buyers and hotel guests that educate and inform regarding the local environmental setting, including proper interactions with PBS. Additionally, Coral Mountain intends to collaborate with the Desert Recreation District regarding the planned public trail connection through the property. DRD’s master plan envisions interpretative materials on the trail and markers intended to educate and inform experiences regarding the local setting, including desert flora and fauna. A V E N U E 5 8A V E N U E 6 0M A D I S O N S T R E E TOPTIONAL GATE25' MIN. WIDTHCORAL MOUNTAIN RESORT SPECIFIC PLANExhibit Date: November 30, 2021MSACONSULTINGINC.MSACONSULTINGINC.COM,>PLANNING>CIVIL ENGINEERING>LAND SURVEYINGNORTHCONCEPTUAL PBS BARRIER PLANSource: MSA Consulting, Inc.FIGURE 13PAGE 36N.T.S.Legend:Project BoundaryProposed 6' CMU Community Perimeter WallProposed 8' Sheep BarrierAlternative Barrier AlignmentNotes:1.Information shown is conceptual only.Final alignment may be adjusted toaccommodate ground features andother design and/or environmentalconsiderations.2.Perimeter Wall & Sheep Barrier asapproved by City of La Quinta.3.Sheep barrier to consist of 8' high fencingas shown in approved CVCC "PBS BarrierProject" (see Figure XX) or equivalentcombination of 6' CMU and 2' decorativewrought iron or tubular steel view fenceas appropriate.4.See Table 3 of Section 4.4.3 for plantrestrictions.Restricted Plant PaletteAdditional Restricted Plant PaletteFor Alternative Barrier Alignment Coral Mountain Resort Specific Plan CORAL MOUNTAIN RESORT SPECIFIC PLAN 96 4.4.3 Plant Material Palette Table 3, Plant Material Palette, provides a list of compatible trees, shrubs, and groundcovers to be incorporated as part of the landscape design. Landscape architecture for the Specific Plan is intended to create a lush desert character of visual variety and textural interest while complying with water conserving techniques based on plant selection and technical irrigation system design. Consistent with this goal, use of drought tolerant plant material is a primary consideration in the development of the plant palette to further aid in the conservation of water while promoting this lush desert theme in the prevailing landscape image. To provide guidance to the builders and designers of future projects within the Project, the plant material palette gives guidance to builders and developers within the Project. Species in addition to those listed are to be considered in order to provide diversity; however, the plant material in the list provided is relatively successful in the unique soil and climactic conditions of Project site. TABLE 3: PLANT MATERIAL PALETTE BOTANICAL NAME COMMON NAME Trees Acacia Aneura Acacia salicina* Acacia saligna* Acacia smalli* Acacia stenophylla* Albizia julibrissin Bauhinia purpurea Brahea armata Brachychiton populneus Caesalpinia cacalaco Callistemon viminalis Cercidium floridum Cercidium hybrid Cercidium praecox Chamerops humilis Chilopsis linearis Chitalpa tashkentenis Chorisia linearis Chorisia speciosa Mulga Native Willow* Blue Leaf Wattle* Desert Sweet Acacia* Shoestring Acacia* Mimosa Tree Purple Orchid Tree Mexican Blue Palm Bottle Tree Cascalote Bottlebrush Tree Blue Palo Verde Desert Museum Palo Brea Med. Fan Palm Desert Willow Chitalpa Desert Willow Silk Floss Tree Coral Mountain Resort Specific Plan CORAL MOUNTAIN RESORT SPECIFIC PLAN 97 Citrus Species Cupressus sempervirens Dalbergia sissoo Eysenhardtia orthocarpa Fraxinus Uhdei 'Majestic Beauty' Fraxinus velutina Geijera parviflora Humilis Jacaranda mimosifolia Koelreuteria bipinnata Lagerstroemia indica Lysiloma microphylla var. thomberri Melaleuca quinquenervia Olea europaea* Olneya Tesota Parkinsonia aculeata* Phoenix dactylifera* Pinus canariensis Pinus eldarica Pinus halepensis Pistacia chinensis Pithecellobium mexicanum Pithecellobium spinosa Prosopis chilensis Prosopis glandulosa Quercus agrifolia Quercus suber Quercus virginiana Rhus lancea Tipuana tipu Thevetia peruviana Ulmus parvifolia “Drake” Vitex agnus-castus Washingtonia filifera Washingtonia robusta* Citrus Italian Cypress Indian Indian Rosewood Kidneywood Evergreen Ash Arizona Ash Australian Willow Med. Fan Palm Jacaranda Chinese Lantern Tree Crape Myrtle Feather Bush Cajeput Tree Olive*, ** Desert Ironwood Mexican Palo Verde* Date Palm* Canary Island Pine Afghan Pine Aleppo Pine Chinese Pistache Mexican Ebony Texas Ebony Chilean Mesquite Texas Honey Mesquite Coast Live Oak Crok Oak Southern Live Oak African Sumac Tipu Tree Yellow Oleander Drake Elm Chase Tree California Fan Palm Mexican Fan Palm* Coral Mountain Resort Specific Plan CORAL MOUNTAIN RESORT SPECIFIC PLAN 98 SHRUBS Acacia farnesiana* Bucida buceris Prosopis species Caesalpinia pulcherrima Carissa grandiflora Cassia nemophilla Chrysactinia mexicana Chrysothamnus nauseosus Dietes vegeta Dodonaea viscosa Hemerocallis hybrid Heteromeles arbutifolia Hibiscus species Justicia califomica Leucophyllum Species Myrtus communis 'Compacta' Nandina domestica Photinia fraseri Phormium tenax Pittosporum tobira Prunus caroliniana Rhaphiolepis indica Rosmarinus officinalis Ruellia brittonia 'Katie' Ruellia californica Simmondsia chinensis Sophora secundiflora Tecoma stans 'Angustata' Tecomaria capensis Xlyosma congestum Sweet Acacia* Black Olive Mesquite Red Bird of Paradise Natal Plum Desert Cassia Chamisa Damianita Daisy Fortnight Lily Green Hopseed Bush Daylily Toyon Hibiscus Chuparosa Texas Ranger Compact Myrtle Heavenly Bamboo Photinia New Zealand Flax 'Wheeler's Dwarf' Carolina Laurel Cherry India Hawthorn Rosemary Compact Ruellia Ruellia Jojoba Texas Mountain Laurel Yellow Bells Cape Honeysuckle N.C.N. GROUND- COVER Acacia redolens ‘Desert Carpet’* Baccharis x Centennial Bougainvillea Species Dalea greggii Lantana camara ‘New Gold Lantana montevidensis Myoporum parvifolium Pyracantha fortuneana Rosmarinus officinalis ‘Prostratus’ Turf Verbena species Prostrate Acacia* Centennial Coyote Brush Bougainvillea Trailing Indigo Bush New Gold Lantana Purple Trailing Lantana Prostrate Myoporum Firethorn Creeping Rosemary Turf Verbena Coral Mountain Resort Specific Plan CORAL MOUNTAIN RESORT SPECIFIC PLAN 99 VINES Antigonon leptopus Bougainvillea species Clytostoma callistegioides Ficus pumila Macfadyena unguis-cati Rosa banksiae Coral Vine 'Barbara Karst' Violet Trumpet Vine Creeping Fig Cat’s Claw Creeper Lady Bank’s Rose ACCENTS Annual Color Agave americana Agave deserti Agave desmettiana Agave parryi Agave victoriae-reginae Aloe barbadensis Dasylirion wheeleri Echinocactus grusonii Festuca glauca Fouquieria splendens Hesperaloe parviflora Muhlenbergia emersylleyi 'Regal Mist' Muhlenbergia rigens Nolina bigelovii Nolina microcarpa Phormium tenax Yucca rostrata Century Plan Desert Agave Agave Parry’s Agave Queen Victoria Agave Aloe Vera Desert Spoon Golden Barrel Cactus Common Blue Fescue Ocotillo Red Yucca Bull Grass Deer Grass Nolina Bear Grass New Zealand Flax Big Bend Yucca *Species that are prohibited within certain areas of the project as depicted on Exhibit 13, Conceptual PBS Barrier Plan. **Fruiting varieties limited to trees designated for active farm-to-table growing at least 500 feet from any western project boundary; ornamental use is prohibited. “Responsible Planning Through Environmental Leadership” Tom McGill Page 1 Thomas J. McGill, Ph.D. Managing Director, Senior Biologist, Senior Regulatory Specialist Since 1978, Dr. McGill has been involved in nearly every facet of environmental planning, natural resource management, special status species surveys, regulatory permitting, and construction monitoring throughout Southern California. He is well versed with the processes of numerous State and federal regulatory agencies such as US Fish and Wildlife Service (USFWS), Bureau of Land Management (BLM), Federal Highways Administration (FHWA), Federal Emergency Management Agency (FEMA), Department of Homeland Security (DHS), Federal Airport Authority (FAA), U.S. Army Corps of Engineers (Corps), U.S. Fish and Wildlife Service (USFWS), State Water Board (SWB), State Revolving Fund (SRF), California Public Utilities Commission (CPUC), Regional Water Quality Control Board (RWQCB), CDFW, etc. In addition to managing numerous CEQA and NEPA documents, Dr. McGill has been deeply involved in preparing resource management plans, habitat conservation plans (HCP), multi-species habitat conservation plans (MSHCP), sensitive species surveys, and biological assessments and permitting under Section 7 of the federal endangered species act. He provides the unique combination of being an environmental consultant as well as an attorney having passed the California State Bar in 1990. Throughout his career, prior to forming ELMT in 2018, Dr. McGill managed environmental divisions for various consulting firms, directed numerous habitat conservation planning, land use planning, and environmental efforts throughout the Inland Empire, including the cities of Chino, Ontario, Rancho Cucamonga, Fontana, Rialto, San Bernardino, Highland, Redlands, Riverside, San Jacinto, and Hemet. Prior to his entry into private consulting, Dr. McGill worked for the U.S. Department of the Navy for 15 years as head of environmental management in the Mojave Desert at China Lake. Dr. McGill is also one of the authors of the multiple award-winning first ever Tribal Multi-Species Habitat Conservation Plan prepared for the Agua Caliente Band of Cahuilla Indians which established the benchmark for all future similar documents for Sovereign Nations. KEY PROJECT EXPERIENCE Agua Caliente Indian Tribal Habitat Conservation Plan – Lead Biologist. Agua Caliente Band of Cahuilla Indians. 2000-2005. Dr. McGill was the lead biologist for assessing conservation needs of threatened and endangered species on Tribal lands, developing a conservation strategy and preparing a habitat conservation plan. The Agua Caliente Reservation is 32,000 acres that occupies portions of the San Jacinto and Santa Rosa Mountains, as well as portion of the valley floor in the Palm Springs area. Conservation requirements centered on the Peninsular Bighorn Sheep but also included such species as the Coachella Valley fringe-toed lizards, desert tortoise, least Bell’s vireo, southwestern willow flycatcher, California red-legged frog and Mountain yellow-legged frog, and Casey’s June beetle. The protection Skills and Specialties •Environmental documentation preparation and management •Endangered Species Permits •Mitigation Implementation Education Ph.D., 1978, Genetics, University of California at Santa Barbara M.A., 1974, Ecology, University of California at Santa Barbara B.A., 1971, Biology, Harvard University “Responsible Planning Through Environmental Leadership” Tom McGill Page 2 of all these species were balanced against recreation uses and land development requirements. His work resulted in the first ever Tribal HCP. This project won both the State Association of Environmental Professionals (AEP) and State American Planning Association (APA) awards for excellence in Natural Resources Management in 2003. North Cathedral City Improvements Project, Phase 1 – Lead Biologist/Environmental Project Manager. Coachella Valley Water District (CVWD). 2015-2017. The CVWD proposed to re-establish a regional stormwater drain that would convey stormwater flows from north of the Union Pacific Railroad (UPRR) Bridge in a southerly direction to the Whitewater River Stormwater Channel (WWRSC). The UPRR Bridge was constructed over the project site but was backfilled pending future channel improvements downstream of the bridge as part of the build out of the North Cathedral City Stormwater Master Plan. This project provides a reliable and engineered channel under the bridge that will provide a long-term solution for conveying flows downstream to the WWRSC. Dr. McGill was the lead biologist that oversaw the preparation of the Habitat Assessment and Coachella Valley MSHCP Consistency Analysis, Delineation of State and Federal Jurisdictional Waters Report, Burrowing Owl Focused Survey and Special-Status Plant Focused Survey. In addition, Dr. McGill drafted and successfully processed a Coachella Valley MSHCP Equivalency Analysis through the Coachella Valley Conservation Commission since the project was located within a designated conservation area. China Lake – Naval Weapons Center – Environmental Manager. As the wildlife hazard manager at the Naval Air Weapons Station at China Lake, Dr. McGill practiced a number of both lethal and non-lethal wildlife management techniques and trained airfield personnel to manage populations of wild burros, pigeons, and migratory birds. China Lake is located within the Pacific Flyway for migrating birds and over 300 avian species a year, including numerous waterfowl species, stop at water sources on the base. The airfield is located on the edge of China Lake, a dry lakebed, but cumulates water during the winter and spring months attracting migrating avian species. Large native avian species such as raven and raptors are also common. Most of the migrating birds utilized a large brackish marsh system on the lakebed, Lark Seep, located approximately 2 miles from the airfield and did not create wildlife hazards. Following large storm events, however, water would pond around the airfield. Dr. McGill would work closely with airfield personnel to monitor the use of the ponded areas by avian species. While the ponded water typically evaporated quickly and usually was not an attractant, Dr. McGill monitored the pond and had it drained when it was becoming an attractant. However, the water removal had to be strictly monitored due to the potential for fairy shrimp to be within the ponds. Dr. McGill also successfully managed the population of non-native wild burros. During the winter months, burros would gather on the runways for warmth, interfering with landing aircraft. During Dr. McGill’s first year at China Lake, two F- 18s were damaged after colliding with burros while landing. Working closely with the base commander, Dr. McGill implemented a lethal reduction program to cull 650 burros, followed by organizing a live removal/roundup program where approximately 15,000 burros were placed in the Bureau of Land Management’s adoption program. Following this effort, no burros returned to the base. For these activities, Dr. McGill conducted training of airfield personnel, prepared annual reports of wildlife hazards management efforts, and maintained the database on the management efforts and incidents. At the time, the FAA did not have formal wildlife hazards management training, therefore, wildlife management techniques depended on Dr. McGill’s extensive knowledge of wildlife, their habits, and an ability to match wildlife sensitivity with airport safety. Relocation and Management of Desert Bighorn Sheep at the Navy’s China Lake Naval Weapons Center. Following the removal of 10,000 feral burrows from the base’s Eagle Craigs between 1986 and 1990, Dr. McGill working closely with Dick Weaver of CDFW to capture and relocate 75 bighorn sheep from the Old Dad Mountains back into the Eagle Craigs on the base. Feral burrows had displaced the desert bighorn sheep from its native habitat Following the relocation, and the herd was closely managed for the next five years to ensure it successfully adapted to its new home. Diversified Pacific Residential Development, Redlands, California – Environmental Department Manager. Diversified Pacific. 2015-2017. The City of Redlands approved the Diversified Pacific Residential development of 81 residential units and four common lots, located on two adjacent Tentative Tracts. Based on surveys conducted for San “Responsible Planning Through Environmental Leadership” Tom McGill Page 3 Bernardino kangaroo rat (SBKR) and a field survey with the USFWS, it was determined that SBKR occupied 7.7 acres of the Tentative Tracts, TT 16465. Dr. McGill prepared and processed a Low-Effect Habitat Conservation Plan (HCP), an Incidental Take Permit (Permit) under Section 10(a)(1)(B) of the Endangered Species Act, authorizing the loss of 7.7 acres of SBKR occupied habitat on the project site. In addition, Dr. McGill helped negotiate the mitigation requirements for the project and the SBKR Translocation Plan to remove SBKR from the project site into an offsite conservation bank. During the removal of SBKR from the project site, an additional 9.7 acres of habitat was determined to be occupied by SBKR. As a result, and in coordination with the USFWS, Dr. McGill amended the Low-Effect HCP to ensure mitigation covered all occupied habitats. To support the federal action of the Low-Effect HCP, Dr. McGill prepared a draft Environmental Assessment in cooperation with the USFWS to assess the direct, indirect, and cumulative impacts of the proposed residential development project associated with the Low-Effect HCP. Clean Water Factory Environmental Impact Statement and Environmental Impact Report, San Bernardino, California – Environmental Manager and EIR Team Member. City of San Bernardino Municipal Water Department (SBVMWD). 2013-2015. The Clean Water Factory Project proposed by the SBMWD would reduce secondary effluent that was being discharged into the Santa Ana River, conveyed from the City’s San Bernardino Water Reclamation Plant (SBWRP) to the Rapid Infiltration and Extraction (RIX) Facility, to instead treat it and use it for customer use and groundwater recharge. The practice of discharging into the river had created ideal conditions for several State and federally listed species to thrive, namely the federally threatened Santa Ana sucker (Catostomus santaanae). Dr. McGIll, while working with a consulting firm prior to forming ELMT, oversaw multiple field surveys to document baseline flow velocities, sediment composition, and stream profile measurements within the Santa Ana River and several of its tributaries. Dr. McGill presented the data and collaborated with the Project team to support the adaptive management plan and Section 7 Consultation with the USFWS to address potential impacts to the Santa Ana sucker. Additionally, Dr. McGill provided key support in the preparation of the Environmental Impact Report (EIR) by assisting in the evaluation of potentially significant, adverse and beneficial impacts on the human and physical environment resulting from implementation of the project. Desert Conservation Program Multi-Species Habitat Conservation Plan (HCP) – Project Manager. Clark County, Nevada. Dr. McGill led his team in providing Clark County with biological expertise and technical support to review and amend the Multi-species Habitat Conservation Plan (MSHCP) and Environmental Impact Statement (EIS) to obtain a revised Endangered Species Act (ESA) Section 10(a) Incidental Take Permit. In revising the MSHCP, Dr. McGill assisted the County to provide a more realistic and manageable Desert Conservation Program (DCP), which allowed the County to accomplish the goals of the MSHCP more effectively. DARPA Grand Challenge Section 7 and NEPA Compliance Projects, Mohave Desert, California – Lead Biologist. Dr. McGill managed the preparation of an Environmental Assessment (EA) and a Biological Assessment for the Bureau of Land Management (BLM) and the Defense Advanced Research Projects Agency (DARPA) for the DARPA Grand Challenge which involved a field test of unmanned autonomous vehicle technology on BLM lands. The impacts to desert tortoise were a primary concern. In support of a race of autonomous vehicles across BLM lands between Barstow and Las Vegas, he prepared an Environmental Assessment (EA) under NEPA and a Biological Assessment under the Federal Endangered Species Act. Both documents were approved - the EA was issued a FONSI and the USFWS issued the BLM and DOD a Biological Opinion approving the race. Hawes Radio Relay Station – Project Manager. San Bernardino County, California. The Hawes Radio Relay Station was an abandoned Air Force facility on BLM lands withdrawn for military purposes. Dr. McGill prepared an EA under NEPA and conducted a Section 7 Consultation on behalf of the BLM and DOD with USFWS regarding the demolition of all structures on this property and its return to open public lands to be administered by the BLM. The EA was issued a FONSI and the USFWS issued the BLM a Biological Opinion approving both the demolition of structures and the return of the land to BLM management. “Responsible Planning Through Environmental Leadership” Tom McGill Page 4 Wine Country Community Plan Program Environmental Impact Report – EIR Team/Contributor. Riverside County Transportation Commission. 2011-2013. Since the Temecula Valley Wine Country region was experiencing an unprecedented level of development interest, with more than 30 new projects in process with the County of Riverside, it was necessary for the County to initiate a comprehensive review of the region's vision, policies, and development standards. The proposed project objectives included goals to guide development in the Temecula Valley Wine Country region to preserve and enhance the region’s viticulture potential and rural and equestrian lifestyle and to allow for appropriate levels of commercial development. The resulting Temecula Valley Wine Country Community Plan provides a blueprint for growth to ensure that future development activities will enhance the quality of life for current and future residents. Dr. McGill was responsible for preparing the biological resources section of the EIR which focused on ensuring compliance with the Western Riverside County Multiple Species Habitat Conservation Plan (MSHCP). The MSHCP was reviewed for specific species survey requirements, riparian/riverine habitat, and urban wildlands interface guidelines. Dr. McGill was also a key contributor to the planning effort to find solutions to avoid sensitive resources and a key contributing author to the EIR biological resources section. Sycamore Canyon Business Park Project, Riverside – Environmental Project Manager. Hillwood Investment Properties. 2015-Current. The project would include the construction of two commercial warehouse buildings and associated infrastructure. In addition, multiple detention basins would be construction along the perimeter of the project site to treat surface runoff prior to being discharges off-site. Dr. McGill managed the preparation of the Delineation of State and Federal Jurisdictional Waters Report, Least Bell’s Vireo focused survey, and led the negotiation efforts with the U.S. Army Corps of Engineers, Regional Water Quality Control Board, and California Department of Fish and Wildlife for impacts to on-site jurisdictional features. Dr. McGill oversaw the preparation of the Habitat Mitigation and Monitoring Plan and Long-Term Management Plan for the project and is overseeing the first five years of restoration activities within the onsite conservation site to ensure the habitat within the conservation site meets the approved success criteria. Long-term Management Plans (LTMPs) for Various Projects. Inland Empire, California. Dr. McGill prepared LTMPs in compliance with CEQA mitigation requirements for the following projects/ areas with non-listed special-status species: "The Preserve" development project in the City of Chino; Glen Helen Specific Plan area in San Bernardino County; and the P&V Development area in the Mojave Desert near Barstow. The Chino LTMP provided detailed methodology for implementing mitigation measures for the Santa Ana River and the Prado Basin that addressed burrowing owl, least Bell's vireo, southwestern willow flycatcher, Santa Ana sucker, waters of the U.S., raptor foraging habitat, migratory bird and waterfowl habitat. The Chino LTMP was awarded four AEP and APA awards in 2003 and 2004 based on the uniqueness and creativity of the approach undertaken. Lytle Creek Levee Repair and Interim Protection Project, Rialto – Environmental Project Manager. CEMEX Construction Materials Pacific, LLC. 2015-Current. The project included the reconstruction of a 100-year levee that was damaged as a result of severe storm events and the placement of riprap along existing levees to provide protection from significant storm flows within the Lytle Creek Wash. Dr. McGill led the coordination efforts for the endangered species permit (Biological Assessment) in support of the Section 7 Consultation with U.S. Fish and Wildlife Service to address potential impacts to San Bernardino kangaroo rat and Santa Ana River woollystar, both federally listed species. In addition, Dr. McGill managed the biological monitoring for construction activities within the Lytle Creek Wash to ensure compliance with the Terms and Conditions of regulatory approvals. Dr. McGill is currently negotiating the Section 2081 State Incidental Take Permit for impacts to San Bernardino kangaroo rat, which was recently listed under the California Endangered Species Act. CORAL MOUNTAIN RESORT FINAL EIR SCH# 2021020310 TECHNICAL APPENDICES Noise Memo Urban Crossroads Appendix K.3     January 2022    12642-14 Noise Memo September 9, 2021 Mr. Garrett Simon CM Wave Development LLC 2440 Junction Place, Suite 200 Boulder, CO 80301 SUBJECT: THE WAVE AT CORAL MOUNTAIN REFERENCE NOISE LEVEL MEASUREMENTS Dear Mr. Garrett Simon: Urban Crossroads, Inc. is pleased to submit this summary of the Surf Ranch Reference Noise Level Measurements in support of The Wave at Coral Mountain (“Project”), which is in the City of La Quinta. The purpose of this memo is to present updated reference noise level measurements from the existing Surf Ranch located at 18556 Jackson Avenue in the City of Lemoore, California. The Surf Ranch is a private facility with a proprietary wave machine technology capable of generating waves every 3 to 4 minutes. To create each wave, a large “sled” is pulled through the water using a cable system on metal rollers. Two buildings at each end of the cable system house the mechanical equipment and cable system. Throughout each wave event, the primary noise source is simply the movement of water from each wave in the lagoon. APRIL 13, 2020, SURF RANCH MEASUREMENTS Over a period of 53 minutes, ten wave events were measured at different locations at the Surf Ranch on April 13, 2020, as shown on Exhibit A. The noise level measurement locations were selected to identify the unique noise characteristics associated with different stages of each wave. Prior to each wave, the control tower announces the event over the public address system. This is followed by the noise generated from the movement of the sled and an increase in noise levels from the mechanical equipment buildings. As the sled moves through the lagoon, noise from the cable and metal rollers is clearly audible. However, throughout each wave event, the primary noise source is simply the movement of water from each wave in the lagoon . The reference noise levels suggest that during peak wave events, the Surf Ranch generates noise levels ranging from 62.6 dBA Leq at end of the lagoon, 73.8 dBA Leq in the lifeguard tower and 75.7 dBA Leq near the cable roller system. To describe the worst-case reference noise level conditions, the highest reference noise level describing each peak wave noise event of 75.7 dBA Leq at 12 feet was used to describe the wave basin/wave machine activity for the proposed The Wave at Coral Mountain Project. The wave basin/wave machine activities will be limited to the daytime hours of 7:00 a.m. to 10:00 p.m. with no planned nighttime activities. The April 13, 2020, reference noise level measurements describe the original cable roller system design that placed the wheel/cable assembly above the water surface. The noise level measurements collected on April 13, 2020, represented empty sets with no surf activity or jet ski rescue sleds. However, each wave was announced over the public address system. Mr. Garrett Simon CM Wave Development LLC September 9, 2021 Page 2 of 4 12642-14 Noise Memo EXHIBIT A: SURF RANCH NOISE LEVEL MEASUREMENT LOCATIONS Mr. Garrett Simon CM Wave Development LLC September 9, 2021 Page 3 of 4 12642-14 Noise Memo AUGUST 15, 2021 SURF RANCH MEASUREMENTS To describe to improvements to the wave basin/wave machine design, additional reference noise level measurements were collected at the Surf Ranch on August 15, 2021, at the same locations previously measured on April 13, 2020. Over a period of 56 minutes, fifteen wave events were measured at different locations at the Surf Ranch. The noise level measurements collected on August 15, 2021, represented active surf activity with surfers in the water with the jet ski rescue sled and wave announcements over the public address system. These additional reference noise level measurements were collected to measure the reduction in noise levels associated with improvements to the design of the original cable roller system. The reduce the operation noise source levels from the wave basin/wave machine, the Surf Ranch modified the cable roller system. This design modification placed the existing above water cable roller system assembly measured on April 13, 2020, to an underwater cable roller system assembly that was measured on August 15, 2021. This design improvement effectively eliminates the cable roller system operating noise source activities. Table 1 shows that with the cable roller system improvements, the reference noise levels suggest that during peak wave events, the Surf Ranch generates noise levels ranging from 62.4 dBA Leq at end of the lagoon, 71.6 dBA Leq in the lifeguard tower and 73.5 dBA Leq near the cable roller system. While the cable roller system improvements reduced the peak wave event noise levels, the primary noise source is simply the movement of water from each wave in the lagoon. TABLE 1: NOISE LEVEL MEASUREMENT SUMMARY Location1 Peak Wave Noise Event (dBA Leq)2 4/13/2020 8/15/2021 L1 73.8 71.6 L2 69.3 71.0 L3 62.6 62.4 L4 71.6 73.5 L5 75.7 71.4 Peak Wave Event 75.7 73.5 1 See Exhibit 5-A for the noise level measurement locations. 2 Energy (logarithmic) average levels. The long-term 24-hour measurement worksheets are included in Appendix 5.2. "Daytime" = 7:00 a.m. to 10:00 p.m.; "Nighttime" = 10:00 p.m. to 7:00 a.m. Mr. Garrett Simon CM Wave Development LLC September 9, 2021 Page 4 of 4 12642-14 Noise Memo FINDINGS The August 15, 2021, Surf Ranch noise measurements show that wave machine cable roller system improvements reduced the peak wave event noise levels from 75.7 to 73.5 dBA Leq. This represents a noise level reduction of approximately 2.2 dBA Leq. The updated noise level measurements suggest that the peak noise levels outlined in the March 17, 2021, Coral Mountain Specific Plan Noise Impact Analysis conservatively overstate the Project related wave machine by approximately 2.2 dBA L eq. Respectfully submitted, URBAN CROSSROADS, INC. Bill Lawson, P.E., INCE Principal CORAL MOUNTAIN RESORT FINAL EIR SCH# 2021020310 TECHNICAL APPENDICES Revised Traffic Impact Analysis Appendix L.1     January 2022                      Coral Mountain Specific Plan  TRAFFIC IMPACT ANALYSIS  CITY OF LA QUINTA      PREPARED BY:    John Kain, AICP  jkain@urbanxroads.com  (949) 336‐5990    Marlie Whiteman, P.E.  mwhiteman@urbanxroads.com  (949) 336‐5991        Janette Cachola  jcachola@urbanxroads.com  (949) 336‐5989       OCTOBER 18, 2021 (REVISED)  OCTOBER 27, 2020 (REVISED)   APRIL 1, 2020 (REVISED)   MARCH 9, 2020 (REVISED)   NOVEMBER 15, 2019          12615‐03 TIA Report.docx     Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  iv  TABLE OF CONTENTS  TABLE OF CONTENTS ........................................................................................................................... IV  APPENDICES ........................................................................................................................................ VI  LIST OF EXHIBITS ............................................................................................................................... VIII  LIST OF TABLES .................................................................................................................................... X  LIST OF ABBREVIATED TERMS ............................................................................................................ XII  1 EXECUTIVE SUMMARY ................................................................................................................ 1  1.1  Introduction .................................................................................................................................. 1  1.2  Description of Proposed Project ................................................................................................... 1  1.3  Study Area and Analysis Scenarios ................................................................................................ 3  1.4  Criteria for Determining Significant Impacts ................................................................................ 5  1.5  Summary of Findings ..................................................................................................................... 7  2 PROPOSED DEVELOPMENT........................................................................................................ 16  2.1  Location ....................................................................................................................................... 16  2.2  Land Use and Phasing ................................................................................................................. 16  2.3  Site Plan and Project Access ....................................................................................................... 16  3 AREA CONDITIONS .................................................................................................................... 18  3.1  Study Area ................................................................................................................................... 18  3.2  Area Roadway System ................................................................................................................. 18  3.3  Transit Service ............................................................................................................................. 18  3.4  Pedestrian and Alternative Facilities .......................................................................................... 18  3.5  Traffic Volumes and Conditions .................................................................................................. 22  3.6  Level of Service Definitions and Analysis Methodologies ........................................................... 22  3.7  Required Intersection Level of Service ....................................................................................... 27  3.8  Existing Intersection Level of Service .......................................................................................... 28  3.9  Required Roadway Segment Level of Service ............................................................................. 28   3.10  Existing Roadway Segment Level of Service ............................................................................... 29  3.11  Existing Traffic Signal Warrant Analysis ...................................................................................... 29  4 PROJECTED FUTURE TRAFFIC ..................................................................................................... 32  4.1  Project Trip Generation ............................................................................................................... 32  4.2  Project Trip Distribution .............................................................................................................. 33  4.3  Modal Split .................................................................................................................................. 37  4.4  Trip Assignment .......................................................................................................................... 37  4.5  Cumulative Growth Traffic .......................................................................................................... 37  5 TRAFFIC IMPACT ASSESSMENT METHODOLOGY ........................................................................ 54  5.1  Scenarios ..................................................................................................................................... 54  5.2  Potentially Significant Traffic Impact Criteria ............................................................................. 55  5.3  Traffic Signal Warrant Analysis Methodology ............................................................................. 57  5.4  Queuing Analysis ......................................................................................................................... 57  5.5  Project Fair Share Calculation Methodology .............................................................................. 58  6 NEAR TERM CONDITIONS TRAFFIC ANALYSIS ............................................................................ 60  6.1  E+P Conditions ............................................................................................................................ 60  6.2  EAP Conditions ............................................................................................................................ 60   Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  v  6.3  EAPC Phase 1 (2021) Conditions ................................................................................................. 72  6.4  EAPC Phase 2 (2023) Conditions ................................................................................................. 78  6.5  EAPC Project Buildout (2026) Conditions ................................................................................... 84  7 YEAR 2040 CONDITIONS TRAFFIC ANALYSIS .............................................................................. 94  7.1  General Plan Buildout (Year 2040) Without Project Conditions ................................................. 94  7.2  General Plan Buildout (Year 2040) With Project Conditions .................................................... 105  8 SPECIAL EVENTS ...................................................................................................................... 108  8.1  Weekend Traffic Volumes and Conditions ................................................................................ 108  8.2  Weekend Special Event Project Land Use and Trip Generation ............................................... 108  8.3  Weekend Special Event Analysis ............................................................................................... 112  8.4  Special Event Traffic Management ........................................................................................... 112  9 SUMMARY AND RECOMMENDATIONS .................................................................................... 122  9.1   Project Access ........................................................................................................................... 122  9.2   Potentially Significant Impact Assessment Results ................................................................... 124   9.3  Fair Share Contribution ............................................................................................................. 126  9.4  Vehicle Miles Traveled .............................................................................................................. 127  10 REFERENCES ............................................................................................................................ 132        Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  vi  APPENDICES  APPENDIX 1.1:  APPROVED TRAFFIC STUDY SCOPING AGREEMENT  APPENDIX 3.1:  EXISTING TRAFFIC COUNTS  APPENDIX 3.2:  EXISTING (2019) CONDITIONS INTERSECTION OPERATIONS ANALYSIS WORKSHEETS  APPENDIX 3.3:  EXISTING (2019) CONDITIONS TRAFFIC SIGNAL WARRANT ANALYSIS WORKSHEETS  APPENDIX 6.1:  E+P CONDITIONS INTERSECTION OPERATIONS ANALYSIS WORKSHEETS  APPENDIX 6.2:  E+P CONDITIONS TRAFFIC SIGNAL WARRANT ANALYSIS WORKSHEETS  APPENDIX 6.3:  EA WITHOUT AND WITH PROJECT CONDITIONS                        INTERSECTION OPERATIONS ANALYSIS WORKSHEETS  APPENDIX 6.4:  EA WITHOUT AND WITH PROJECT CONDITIONS                       TRAFFIC SIGNAL WARRANTS ANALYSIS WORKSHEETS  APPENDIX 6.5:  EAC (2021) WITHOUT AND WITH PROJECT                       PHASE 1 CONDITIONS INTERSECTION OPERATIONS ANALYSIS WORKSHEETS  APPENDIX 6.6:  EAC (2021) WITHOUT AND WITH PROJECT                        PHASE 1 CONDITIONS TRAFFIC SIGNAL WARRANTS ANALYSIS WORKSHEETS  APPENDIX 6.7:  EAC (2023) WITHOUT AND WITH PROJECT                        PHASE 2 CONDITIONS INTERSECTION OPERATIONS ANALYSIS WORKSHEETS  APPENDIX 6.8:  EAC (2023) WITHOUT AND WITH PROJECT                        PHASE 2 CONDITIONS TRAFFIC SIGNAL WARRANTS ANALYSIS WORKSHEETS  APPENDIX 6.9:  EAC (2026) WITHOUT AND WITH PROJECT BUILDOUT PHASE 3 CONDITIONS                        INTERSECTION OPERATIONS ANALYSIS WORKSHEETS AND                        PROJECT ACCESS QUEUEING ANALYSIS WORKSHEETS  APPENDIX 6.10:  EAC (2026) WITHOUT AND WITH PROJECT BUILDOUT PHASE 3 CONDITIONS                         TRAFFIC SIGNAL WARRANTS ANALYSIS WORKSHEETS  APPENDIX 7.1:  GENERAL PLAN BUILDOUT (YEAR 2040) CONDITIONS                       INTERSECTION OPERATIONS ANALYSIS WORKSHEETS  APPENDIX 7.2:  GENERAL PLAN BUILDOUT (YEAR 2040) CONDITIONS                       TRAFFIC SIGNAL WARRANTS ANALYSIS WORKSHEETS  APPENDIX 7.3:  GENERAL PLAN BUILDOUT (YEAR 2040) WITH PROJECT CONDITIONS                        INTERSECTION OPERATIONS ANALYSIS WORKSHEETS AND                        PROJECT ACCESS QUEUEING ANALYSIS WORKSHEETS  APPENDIX 7.4:  GENERAL PLAN BUILDOUT (YEAR 2040) WITH PROJECT CONDITIONS                       TRAFFIC SIGNAL WARRANTS ANALYSIS WORKSHEETS  APPENDIX 8.1:  EAPC PROJECT BUILDOUT (2026) WEEKEND SPECIAL EVENT CONDITIONS                       INTERSECTION OPERATIONS ANALYSIS WORKSHEETS AND                        PROJECT ACCESS QUEUEING ANALYSIS WORKSHEETS          Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  vii  This Page Intentionally Left Blank       Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  viii  LIST OF EXHIBITS  EXHIBIT 1‐1: PRELIMINARY SITE PLAN .................................................................................................. 2  EXHIBIT 1‐2: LOCATION MAP ................................................................................................................ 3  EXHIBIT 1‐3: SUMMARY OF RECOMMENDED IMPROVEMENTS BY PHASE ............................................ 5  EXHIBIT 3‐1: EXISTING NUMBER OF THROUGH LANES AND INTERSECTION CONTROLS ....................... 19  EXHIBIT 3‐2: CITY OF LA QUINTA GENERAL PLAN CIRCULATION ELEMENT .......................................... 20  EXHIBIT 3‐3: CITY OF LA QUINTA GENERAL PLAN ROADWAY CROSS‐SECTIONS ................................... 21  EXHIBIT 3‐4: EXISTING (2019) AVERAGE DAILY TRAFFIC VOLUMES                  (WITH PEAK SEASON ADJUSTMENT) ............................................................................... 23  EXHIBIT 3‐5: EXISTING (2019) AM PEAK HOUR INTERSECTION VOLUMES                  (WITH PEAK SEASON ADJUSTMENT) ............................................................................... 24  EXHIBIT 3‐6: EXISTING (2019) PM PEAK HOUR INTERSECTION VOLUMES                  (WITH PEAK SEASON ADJUSTMENT) ............................................................................... 25  EXHIBIT 4‐1: PROJECT RESIDENTIAL AND RESORT EXTERNAL TRIP DISTRIBUTION ............................... 38  EXHIBIT 4‐2: PROJECT SHOPPING CENTER EXTERNAL TRIP DISTRIBUTION .......................................... 39  EXHIBIT 4‐3: PROJECT PHASE 1 (2021) AVERAGE DAILY TRAFFIC (ADT) VOLUMES ............................... 40  EXHIBIT 4‐4: PROJECT PHASE 1 (2021) AM PEAK HOUR INTERSECTION VOLUMES .............................. 41  EXHIBIT 4‐5: PROJECT PHASE 1 (2021) PM PEAK HOUR INTERSECTION VOLUMES ............................... 42  EXHIBIT 4‐6: PROJECT PHASE 2 (2023) AVERAGE DAILY TRAFFIC (ADT) VOLUMES ............................... 43  EXHIBIT 4‐7: PROJECT PHASE 2 (2023) AM PEAK HOUR INTERSECTION VOLUMES .............................. 44  EXHIBIT 4‐8: PROJECT PHASE 2 (2023) PM PEAK HOUR INTERSECTION VOLUMES ............................... 45  EXHIBIT 4‐9: PROJECT BUILDOUT (2026) AVERAGE DAILY TRAFFIC (ADT) VOLUMES ........................... 46  EXHIBIT 4‐10: PROJECT BUILDOUT (2026) AM PEAK HOUR INTERSECTION VOLUMES ......................... 47  EXHIBIT 4‐11: PROJECT BUILDOUT (2026) PM PEAK HOUR INTERSECTION VOLUMES ......................... 48  EXHIBIT 4‐12: CUMULATIVE DEVELOPMENT LOCATION MAP ............................................................. 51  EXHIBIT 6‐1: E+P AVERAGE DAILY TRAFFIC (ADT) VOLUMES ............................................................... 61  EXHIBIT 6‐2: E+P AM PEAK HOUR TRAFFIC VOLUMES ......................................................................... 62  EXHIBIT 6‐3: E+P PM PEAK HOUR TRAFFIC VOLUMES ......................................................................... 63  EXHIBIT 6‐4: EAP AVERAGE DAILY TRAFFIC (ADT) VOLUMES ............................................................... 66  EXHIBIT 6‐5: EXISTING PLUS AMBIENT PLUS PROJECT AM PEAK HOUR INTERSECTION VOLUMES ....... 67  EXHIBIT 6‐6: EXISTING PLUS AMBIENT PLUS PROJECT PM PEAK HOUR INTERSECTION VOLUMES ....... 68  EXHIBIT 6‐7: EAPC PHASE 1 (2021) AVERAGE DAILY TRAFFIC (ADT) ..................................................... 73  EXHIBIT 6‐8: EAPC PHASE 1 (2021) AM PEAK HOUR INTERSECTION VOLUMES .................................... 74  EXHIBIT 6‐9: EAPC PHASE 1 (2021) PM PEAK HOUR INTERSECTION VOLUMES .................................... 75  EXHIBIT 6‐10: EAPC PHASE 2 (2023) AVERAGE DAILY TRAFFIC (ADT) ................................................... 79  EXHIBIT 6‐11: EAPC PHASE 2 (2023) AM PEAK HOUR INTERSECTION VOLUMES .................................. 80  EXHIBIT 6‐12: EAPC PHASE 2 (2023) PM PEAK HOUR INTERSECTION VOLUMES .................................. 81  EXHIBIT 6‐13: EAPC PHASE 3 (2026) AVERAGE DAILY TRAFFIC (ADT) VOLUMES .................................. 85  EXHIBIT 6‐14: EAPC PHASE 3 (2026) AM PEAK HOUR INTERSECTION VOLUMES .................................. 86  EXHIBIT 6‐15: EAPC PHASE 3 (2026) PM PEAK HOUR INTERSECTION VOLUMES .................................. 87  EXHIBIT 7‐1: GENERAL PLAN BUILDOUT (YEAR 2040)                  WITHOUT PROJECT AVERAGE DAILY TRAFFIC (ADT) ........................................................ 95  EXHIBIT 7‐2: GENERAL PLAN BUILDOUT (YEAR 2040)                  WITHOUT PROJECT AM PEAK HOUR TRAFFIC VOLUMES ................................................. 96  EXHIBIT 7‐3: GENERAL PLAN BUILDOUT (YEAR 2040)                  WITHOUT PROJECT PM PEAK HOUR TRAFFIC VOLUMES ................................................. 97     Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  ix  EXHIBIT 7‐4: GENERAL PLAN BUILDOUT (YEAR 2040) WITH PROJECT                  AVERAGE DAILY TRAFFIC (ADT) ...................................................................................... 98  EXHIBIT 7‐5: GENERAL PLAN BUILDOUT (YEAR 2040) WITH PROJECT                  AM PEAK HOUR TRAFFIC VOLUMES ............................................................................... 99  EXHIBIT 7‐6: GENERAL PLAN BUILDOUT (YEAR 2040) WITH PROJECT                  PM PEAK HOUR TRAFFIC VOLUMES .............................................................................. 100  EXHIBIT 8‐1: EXISTING (2020) WEEKEND PEAK HOUR INTERSECTION VOLUMES ............................... 110  EXHIBIT 8‐2: PROJECT BUILDOUT (2026) WEEKEND SPECIAL EVENT                  AVERAGE DAILY TRAFFIC (ADT, PROJECT ONLY) ........................................................... 113  EXHIBIT 8‐3: PROJECT BUILDOUT (2026) WEEKEND SPECIAL EVENT                  ARRIVAL PEAK HOUR INTERSECTION VOLUMES (PROJECT ONLY) ................................. 114  EXHIBIT 8‐4: PROJECT BUILDOUT (2026) WEEKEND SPECIAL EVENT                  DEPARTURE PEAK HOUR INTERSECTION VOLUMES (PROJECT ONLY) ............................ 115  EXHIBIT 8‐5: EAPC PHASE 3 (2026) WEEKEND SPECIAL EVENT                  ARRIVAL PEAK HOUR INTERSECTION VOLUMES ........................................................... 116  EXHIBIT 8‐6: EAPC PHASE 3 (2026) WEEKEND SPECIAL EVENT                  DEPARTURE PEAK HOUR INTERSECTION VOLUMES ...................................................... 117  EXHIBIT 8‐7: EVENT OPERATIONS PLANNING SCHEDULE .................................................................. 121  EXHIBIT 9‐1: SITE ADJACENT ROADWAY AND SITE ACCESS RECOMMENDATIONS ............................. 123        Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  x  LIST OF TABLES  TABLE 1‐1: INTERSECTION ANALYSIS LOCATIONS ................................................................................. 3  TABLE 1‐2: ROADWAY SEGMENT ANALYSIS LOCATIONS ....................................................................... 5  TABLE 1‐3: IMPACT CRITERIA FOR INTERSECTIONS ALREADY OPERATING AT LOS E OR LOS F ............... 6  TABLE 1‐4: SUMMARY OF EXISTING AND EXISTING PLUS PROJECT INTERSECTION OPERATIONS ........... 1  TABLE 1‐5: SUMMARY OF PHASED INTERSECTION OPERATIONS .......................................................... 2  TABLE 1‐6: SUMMARY OF GENERAL PLAN BUILDOUT (2040) INTERSECTION OPERATIONS .................... 3  TABLE 1‐7: SUMMARY OF ROADWAY SEGMENT ANALYSIS ................................................................... 4  TABLE 3‐1: SIGNALIZED INTERSECTION LOS THRESHOLDS ................................................................... 26  TABLE 3‐2: UNSIGNALIZED INTERSECTION DESCRIPTION OF LOS ........................................................ 27  TABLE 3‐3: INTERSECTION ANALYSIS FOR EXISTING (2019) CONDITIONS ............................................ 30  TABLE 3‐4: ROADWAY SEGMENT ANALYSIS FOR EXISTING (2019) CONDITIONS .................................. 31  TABLE 4‐1: PROJECT PHASE 1 (2021) TRIP GENERATION SUMMARY ................................................... 34  TABLE 4‐2: PROJECT PHASE 2 (2023) TRIP GENERATION SUMMARY ................................................... 35  TABLE 4‐3: PROJECT BUILDOUT (2026) TRIP GENERATION SUMMARY ................................................ 36  TABLE 4‐4: CUMULATIVE DEVELOPMENT LAND USE SUMMARY ......................................................... 49  TABLE 5‐1: IMPACT CRITERIA FOR INTERSECTIONS ALREADY OPERATING AT LOS E OR LOS F ............. 56  TABLE 6‐1: INTERSECTION ANALYSIS FOR EXISTING PLUS PROJECT CONDITIONS ................................ 64  TABLE 6‐2: ROADWAY VOLUME/CAPACITY ANALYSIS FOR EXISTING PLUS PROJECT CONDITIONS ...... 65  TABLE 6‐3: INTERSECTION ANALYSIS FOR EXISTING PLUS AMBIENT               WITHOUT AND WITH PROJECT CONDITIONS ..................................................................... 70  TABLE 6‐4: ROADWAY SEGMENT ANALYSIS FOR EXISTING PLUS AMBIENT               WITHOUT AND WITH PROJECT CONDITIONS ..................................................................... 71  TABLE 6‐5: INTERSECTION ANALYSIS FOR PHASE 1 (2021)               WITHOUT AND WITH PROJECT CONDITIONS ..................................................................... 76  TABLE 6‐6: ROADWAY SEGMENT ANALYSIS FOR PHASE 1 (2021)               WITHOUT AND WITH PROJECT CONDITIONS ..................................................................... 77  TABLE 6‐7: INTERSECTION ANALYSIS FOR PHASE 2 (2023)               WITHOUT AND WITH PROJECT CONDITIONS ..................................................................... 82  TABLE 6‐8: ROADWAY SEGMENT ANALYSIS FOR PHASE 2 (2023)               WITHOUT AND WITH PROJECT CONDITIONS ..................................................................... 83  TABLE 6‐9: INTERSECTION ANALYSIS FOR PHASE 2 (2026)               WITHOUT AND WITH PROJECT CONDITIONS ..................................................................... 88  TABLE 6‐10: ROADWAY SEGMENT ANALYSIS FOR PHASE 2 (2026)                 WITHOUT AND WITH PROJECT CONDITIONS ................................................................... 90  TABLE 6‐11: PROJECT ACCESS TURN LANE STORAGE LENGTHS                 FOR EAPC PHASE 3 (2026) CONDITIONS .......................................................................... 92  TABLE 7‐1: INTERSECTION ANALYSIS FOR GENERAL PLAN BUILDOUT (YEAR 2040)               WITHOUT PROJECT CONDITIONS .................................................................................... 101  TABLE 7‐2: ROADWAY SEGMENT ANALYSIS FOR GENERAL PLAN BUILDOUT (YEAR 2040)               WITHOUT PROJECT CONDITIONS .................................................................................... 102  TABLE 7‐3: INTERSECTION ANALYSIS FOR GENERAL PLAN BUILDOUT (YEAR 2040)               WITH PROJECT CONDITIONS ........................................................................................... 103  TABLE 7‐4: ROADWAY SEGMENT ANALYSIS FOR GENERAL PLAN BUILDOUT (YEAR 2040)               WITH PROJECT CONDITIONS ........................................................................................... 104  TABLE 7‐5: PROJECT ACCESS TURN LANE STORAGE LENGTHS FOR GENERAL PLAN BUILDOUT (2040)               WITH PROJECT CONDITIONS .......................................................................................... 107   Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  xi  TABLE 8‐1: WEEKEND INTERSECTION COUNT LOCATIONS ................................................................. 108  TABLE 8‐2: EXISTING 2019 WEEKDAY PM PEAK HOUR & 2020 SATURDAY MID‐DAY PEAK HOUR              COMPARISON ................................................................................................................. 109  TABLE 8‐3: PROJECT TRIP GENERATION SUMMARY ‐ WEEKEND SPECIAL EVENT ............................... 111  TABLE 8‐4: INTERSECTION ANALYSIS FOR EAPC PHASE 3 (2026)               WEEKEND SPECIAL EVENT CONDITIONS .......................................................................... 118  TABLE 8‐5: PROJECT ACCESS TURN LANE STORAGE LENGTHS FOR EAPC PHASE 3 (2026)               WEEKEND SPECIAL EVENT CONDITIONS .......................................................................... 120  TABLE 9‐1: PROJECT FAIR SHARE CALCULATIONS .............................................................................. 128  TABLE 9‐2: SUMMARY OF PHASED INTERSECTION IMPROVEMENTS ................................................. 129      Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  xii  LIST OF ABBREVIATED TERMS  (1)  Reference  ADT  Average Daily Traffic  Av  Avenue  Caltrans  California Department of Transportation  CEQA  California Environmental Quality Act  CIP  Capital Improvement Program  CMP  Congestion Management Program  CVAG   Coachella Valley Association of Governments  DIF  Development Impact Fee  Dr  Drive     E+P  Existing Plus Project  EAP      Existing plus Ambient Growth plus Project  EAPC  Existing plus Ambient Growth plus Project plus Cumulative  FAR  Floor to Area Ratio  FHWA  Federal Highway Administration  HCM  Highway Capacity Manual  Hwy  Highway  ITE  Institute of Transportation Engineers  LOS  Level of Service  MUTCD  Manual on Uniform Traffic Control Devices  NEV  Neighborhood Electric Vehicle  PHF  Peak Hour Factor  Project  Coral Mountain Specific Plan  RCTC  Riverside County Transportation Commission  RTP  Regional Transportation Plan  SCAG  Southern California Association of Governments  SCS  Sustainable Communities Strategy  sf  Square Feet  St  Street  TIA  Traffic Impact Analysis  TUMF  Transportation Uniform Mitigation Fee  V/C  Volume‐to‐Capacity  VPH  Vehicles per Hour      Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  xiii  This Page Intentionally Left Blank        Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  1 1  EXECUTIVE SUMMARY  1.1  INTRODUCTION  This  report  presents  the  results  of  the  traffic  impact  analysis (TIA) for the proposed Coral  Mountain Specific Plan (“Project”) located in the City of La Quinta.  The Project is generally  located on the southwest corner of re‐aligned Madison Street at 58th Avenue as shown on  Exhibit 1‐1.   The purpose of this TIA is to evaluate the potential circulation system deficiencies that may  result  from  the  development  of  the  proposed  Project,  and  recommend  improvements  to  achieve acceptable circulation system operational conditions.  As coordinated with City of La  Quinta staff, this TIA has been prepared in accordance with the City of La Quinta’s Traffic Study  Guidelines (Engineering Bulletin #06‐13, dated July October 2313, 20152017) and Engineering  Bulletin #10‐01 (dated August 9, 2010).  To ensure that this TIA satisfies the City of La Quinta’s  traffic study requirements, Urban Crossroads, Inc. prepared a traffic study scoping package for  review by City staff prior to the preparation of this report.  The Agreement provides an outline  of the Project study area, trip generation, trip distribution, and analysis methodology.  The  Agreement approved by the City is included in Appendix 1.1.  1.2  DESCRIPTION OF PROPOSED PROJECT  The Project consists of a master planned themed resort comprised of a wave basin, a 150‐key  hotel (with 1,900 square feet bar, 1,400 square feet restaurant, 4,200 square feet kitchen,  1,100 rooftop bar, 1,200 pool bar & grill, and 4,200 square feet spa), 104 attached dwelling  units, 496 detached dwelling units, 60,000 square feet of retail, wave village area (with 900  square feet shape studio, 1,600 square feet surf shop, 3,000 square feet board room, 1,800  square feet surf lounge/living room, 800 square feet surf classroom, a fitness pavilion, 1,400  square feet high performance center, and 5,500 square feet beach club), the farm area (with  2,100 square feet barn, 2,500 square feet greenhouse, 1,400 square feet equipment barn, 300  square feet tool shed, 1,200 square feet family camp, 4,500 square feet gym, 2,000 square feet  outfitters, and 2,000 square feet locker rooms).  In addition, back of house complex consists of  9,500 square feet resort operations, 1,500 square feet wave operations, and 1,000 square feet  guardhouses.  The  wave basin is a private facility.  The preliminary Project land use plan is  presented on Exhibit 1‐1.    The Project is anticipated to be constructed in phases, with Phase 1 (2021) including resort  (wave basin, hotel uses, and 57,000 square feet of commercial ancillary uses), 104 attached  dwelling units, 26 detached dwelling units, and 10,000 square feet of retail. Project Phase 2  (2023) adds 25,000 square feet of retail. Project Phase 3 (2026) adds 470 detached dwelling  units and 25,000 square feet of retail.       2  Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  3 The  Coral  Mountain  Specific  Plan  Project  is  proposed  to  be  served  by  the  Project  access  locations listed below:  •  Madison Street / Main Access (full access)  •  South Access / Avenue 60 (full access)  •  Project Access 1 / Avenue 58 (full access)  •  Project Access 2 / Avenue 58 (right‐in/right‐out access)  •  Madison Street / Project Access 3 (right‐in/right‐out access)   It should be noted that both Avenue 58 and Madison Street are classified as Secondary Arterials  adjacent to the site.  The separation standards for a Secondary Arterial are 250 feet between  driveways, and 600 feet between street intersections based upon the City of La Quinta Public  Works  Department  Development  Engineering  Handbook).    The  separation  between  Project  driveways along Avenue 58 and Madison Street are over 250 feet and separation between  Avenue 58 and the Project’s main access point (future signalized location) is over 600 feet.   Therefore,  the  location  of  each  Project  access  points  meets  City  of  La  Quinta’s  separation  standards criteria.  The proposed Project is anticipated to generate a net total of approximately 6,994 external trip‐ ends  per  day  on  a  typical  weekday  with  447  external  vehicles  per  hour  (VPH)  during  the  weekday AM peak hour and 638 external VPH during the weekday PM peak hour.    1.3  STUDY AREA AND ANALYSIS SCENARIOS  1.3.1  INTERSECTIONS  The following 22 study area intersections shown on Exhibit 1‐2 and listed in Table 1‐1 were  selected for this TIA based on consultation with City of La Quinta staff.    TABLE 1‐1: INTERSECTION ANALYSIS LOCATIONS  ID Intersection Location ID Intersection Location  1  Madison Street at Avenue 58  12  Monroe Street at Avenue 58  2  Madison Street at Avenue 56  13  Monroe Street at Airport Boulevard   3  Madison Street at Avenue 54  14  Monroe Street at Avenue 54  4  Madison Street at Avenue 52  15  Monroe Street at Avenue 52  5  Madison Street at Avenue 50  16  Monroe Street at 50th Avenue  6  Jefferson Street at Avenue 54  17  Jackson Street at 58th Avenue   7  Jefferson Street at Avenue 52  18  South Access at Avenue 60 ‐ (Future Intersection)  8  Jefferson Street at Pomelo  19 Madison Street at Main Access‐ (Future Intersection)  9  Jefferson Street at Avenue 50  20  Project Access 1 at Avenue 58‐ (Future Intersection)  10  Madison Street at Avenue 60  21  Project Access 2 at Avenue 58‐ (Future Intersection) 11  Monroe Street at Avenue 60  22  Madison Street at Project Access 3‐ (Future Intersection)     4  Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  5 1.3.2  ROADWAY SEGMENTS  Through  consultation  with  City  staff,  daily  volume‐to‐capacity (V/C)  roadway  analyses  have  been evaluated for the following roadway segments as shown on Table 1‐2:  TABLE 1‐2: ROADWAY SEGMENT ANALYSIS LOCATIONS  Roadway Segment  1  Avenue 58, west of Madison Street  4  Madison Street, south of Airport Boulevard  2  Avenue 58, west of Monroe Street  5  Avenue 60, west of Monroe Street  3  Avenue 58, west of Jackson Street  6  Monroe Street, south of Airport Boulevard    1.3.3  ANALYSIS SCENARIOS  In  accordance  with  the  City  of  La  Quinta’s  traffic  study  guidelines  and  as  documented  in  Appendix 1.1 of this TIA, this study has analyzed the following scenarios:   Existing (2019)   Existing Plus Project (E+P)    Existing Plus Ambient Growth Plus Project (EAP)   Existing Plus Ambient Growth Plus Cumulative Projects without and with Project for  each of the following phases (EAC and EAPC):  o Project Phase 1 (2021)  o Project Phase 2 (2023)  o Project Buildout (Phase 3, 2026)  o Project Buildout (Phase 3, 2026) – Special Event   General  Plan  buildout  (2040)  Without  Project  Conditions  –  establishes  future  year  baseline to evaluate the proposed Project   General Plan buildout (2040) With Project Conditions – represents future year baseline  traffic conditions with the proposed Project  Detailed descriptions of each analysis scenario can be found in Section 5.1 Scenarios of this TIA.   1.4  CRITERIA FOR DETERMINING SIGNIFICANT IMPACTS  Potentially  significant  Project  traffic  impacts  are  divided  separately  into  intersection  and  roadway segment traffic impacts.  Intersections and roadway segments are evaluated for both  potentially significant Project and cumulative impacts. The potentially significant Project and  cumulative impact criteria described below for both intersection and roadway segments per the  City of La Quinta’s traffic study guidelines.       Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  6 1.4.1  INTERSECTIONS  Potentially Significant Project Impacts  Pursuant to the criteria outlined for the analysis of study area intersections using the Highway  Capacity Methodology (HCM), a potentially significant Project impact is defined to occur at any  signalized intersection if the addition of Project trips will result in the level of service (LOS) for  that intersection to exceed the criteria established in Table 1‐3 for E+P traffic conditions.    TABLE 1‐3: IMPACT CRITERIA FOR INTERSECTIONS ALREADY OPERATING AT LOS E OR LOS F  Significant Changes in LOS  LOS E An increase in delay of 2 seconds or more  LOS F  An increase in delay of 1 second or more  Source: City of La Quinta Engineering Bulletin #06‐13 Table 4.0 A potentially significant Project impact at an unsignalized study area intersection is defined to  occur when an intersection has a projected LOS F on a side street for a two‐way stop control or  LOS E or worse for the intersection an all‐way stop controlled intersection and the addition of  Project traffic results in an addition of 3 seconds or more of delay for any movement.   Potentially Significant Cumulative Impacts  A potentially significant cumulative impact is defined to occur at any signalized intersection if  the addition of Project trips will result in the LOS for that intersection to exceed the criteria  established in Table 1‐3 for Existing Plus Ambient Growth Plus Project Plus Cumulative Projects  (EAPC) traffic conditions.    A potentially significant cumulative impact at an unsignalized study area intersection is defined  to occur when, with Project traffic included, an intersection has a projected LOS F on a side  street for a two‐way stop control or LOS E or worse for the intersection  an  all‐way  stop  controlled intersection and the addition of Project traffic results in an addition of 3 seconds or  more of delay for any movement.   1.4.2  ROADWAY SEGMENTS  Potentially Significant Project Impacts  A potentially significant Project impact is defined to occur at any study area roadway segment if  the segment is projected to be operating at LOS E or LOS F and the volume‐to‐capacity (V/C)  ratio increases by 0.02 or more with the addition of Project traffic for E+P traffic conditions.   Potentially Significant Cumulative Impacts  A  potentially  significant  cumulative  impact  is  defined  to  occur  at  any  study  area  roadway  segment if the Project would cause the Existing LOS to fall to worse than LOS D for Existing Plus  Ambient  Growth  Plus  Cumulative  Projects  traffic  conditions.    A potentially  significant  cumulative impact is also defined to occur on any study area roadway segment that is already  operating at LOS E or LOS F, if the Project traffic will increase the V/C ratio by more than 0.02  for EAPC traffic conditions.    Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  7 1.5  SUMMARY OF FINDINGS  The results of the potentially significant Project and cumulative impacts for the study area  intersections for E+P and EAPC traffic conditions are summarized in Tables1‐4 and 1‐5.  As  shown on Table 1‐4 and discussed in detail on Section 6 Near Term Conditions Traffic Analysis,  the development of the proposed Project is not anticipated to result in a potentially project  specific  impact.    However,  potentially  significant  cumulative  impacts are anticipated at the  following study area intersections, with the addition of the Project traffic as summarized in  Table 1‐5:   #1 ‐ Madison Street at Avenue 58   #3 ‐ Madison Street at Avenue 54.   #6 ‐ Jefferson Street at Avenue 54   #7 ‐ Jefferson Street at Avenue 52   #9 ‐ Jefferson Street at Avenue 50   #11 – Monroe Street at Avenue 60   #12 – Monroe Street at Avenue 58   #13 – Monroe Street at Airport Boulevard   #14 ‐ Monroe Street at Avenue 54   #15 – Monroe Street at Avenue 52  As shown in Table 1‐5, the project’s cumulative impact at the abovementioned intersections  are  mitigated  to  operate  at  an  acceptable  level  of  service  (LOS “D” or better) with the  implementation of the improvements shown on Exhibit 1‐3 and described in detail in Sections 6  and 9.  Project  access  improvements,  fully  funded  CIP  improvements  and added  improvements  (if  necessary) are shown on Exhibit 1‐3.  The results of the General Plan Buildout (2040) conditions and recommended improvements  are summarized in Table 1‐6.    A  summary  of  roadway  segment  volume‐to‐capacity  analysis  is  provided  on  Table  1‐7.   Intersection  recommendations  to  provide  acceptable  operations  for  Year  2040  for  various  network scenarios are also documented.  1.5.1  EXISTING (2019) CONDITIONS  As shown in Table 1‐4, the intersection analysis for Existing conditions indicates that the 17  existing study area intersections are currently operating at an acceptable LOS during the peak  hours.   As shown on Table 1‐7, all study area roadway segments analyzed are currently operating at  acceptable LOS.  1.5.2  E+P AND EAP CONDITIONS  The  22  (17  existing  +  5  Project  intersections)  study  area  intersections  are  anticipated  to   operate at acceptable LOS with the addition of Project traffic for E+P traffic conditions.         AM PM AM PM AM PM AM PM 1Madison St. / Avenue 58 AWS 8.5 9.3 A A 10.0 12.8 A B No 2Madison St. / Airport Blvd.TS 8.8 8.4 A A 8.8 9.9 A A No 3Madison St. / Avenue 54 AWS 12.9 15.9 B C 15.2 23.5 C C No 4Madison St. / Avenue 52 TS 27.9 28.5 C C 29.1 30.0 C C No 5Madison St. / Avenue 50 TS 28.6 29.4 C C 29.1 29.8 C C No 6 Jefferson St. / Avenue 54 AWS 12.2 16.9 B C 13.2 20.1 B C No 7 Jefferson St. / Avenue 52 RDB 9.4 9.7 A A 10.6 11.2 B B No 8 Jefferson St. / Pomelo TS 8.4 14.3 A B 8.8 14.3 A B No 9 Jefferson St. / Avenue 50 TS 46.3 49.4 D D 46.5 49.4 D D No 10 Madison St. / Avenue 60 AWS 8.2 9.1 A A 8.7 9.5 A A No 11 Monroe St. / Avenue 60 AWS 8.1 8.3 A A 8.5 8.9 A A No 12 Monroe St. / Avenue 58 AWS 8.1 9.4 A A 8.9 11.0 A B No 13 Monroe St. / Airport Blvd.AWS 8.5 9.2 A A 9.0 10.0 A B No 14 Monroe St. / Avenue 54 AWS 14.3 12.7 B B 16.3 32.9 C D No 15 Monroe St. / Avenue 52 AWS 14.7 25.3 B D 16.8 34.3 C D No 16 Monroe St. / 50th Avenue TS 16.6 18.0 B B 16.6 18.5 B B No 17 Jackson St. / 58th Avenue AWS 7.5 8.2 A A 7.7 8.6 A A No 18 S. Access / Avenue 60 CSS 8.9 8.9 A A No 19 Madison St. / Main Access CSS 12.7 15.6 B C No 20 Project Access 1 / Avenue 58 CSS 9.2 9.8 A A No 21 Project Access 2 / Avenue 58 CSS 8.6 9.0 A A No 22 Madison St. / Project Access 3 CSS 8.9 10.1 A B No 1 Per the Highway Capacity Manual 6th Edition (HCM6), overall average intersection delay and level of service are shown for intersections with a traffic signal or all way stop control. For intersections with cross street stop control, the delay and level of service for the worst individual movement (or movements sharing a single lane) are shown. BOLD = LOS does not meet the applicable jurisdictional requirements (i.e., unacceptable LOS). 2 CSS = Cross‐street Stop; TS = Traffic Signal;  AWS = All‐way Stop;  RDB = Roundabout; 1 = Improvement 3 R:\UXRjobs\_12600‐13000\12615\Excel\[12615 ‐ Report.xlsx]1‐4 E+P TABLE 1‐4: SUMMARY OF EXISTING AND EXISTING PLUS PROJECT INTERSECTION OPERATIONS Future Intersection Future Intersection Future Intersection Future Intersection Delay (secs)1 Level of Service1 Delay (secs)1 Level of Service1 Future Intersection A potentially significant project traffic impact is defined to occur at any signalized intersection if the intersection is operating at LOS E and the project causes the delay to increase by 2  seconds or more. If the signalized intersection is operating at LOS F, a potentially significant project specific traffic impact is defined to occur if the project causes the delay to increase by 1  second or more.  For cross‐street stop controlled intersections, a potentially significant project specific traffic impact is defined to occur if the  intersection is operating at LOS  F on the side  street and the addition of project traffic results in an increase of 3 seconds or more of delay for any movement.  #Intersection Traffic Control2 Potentially Significant  Project Specific Impact3 Existing (2019) 8 AM PM AM PM AM PM AM PM AM PM AM PM AM PM AM PM AM PM AM PM AM PM AM PM1Madison St. / Avenue 58 AWS 10.9 14.2 B B 11.4 15.6 B C 11.4 15.9 B C 12.0 18.2 B C 12.7 20.8 B C 17.357.9CF‐ With ImprovementsTS‐ ‐ ‐‐ ‐ ‐ ‐‐ ‐ ‐ ‐‐ ‐ ‐ ‐‐ ‐ ‐ ‐‐27.4 32.1 C C No2Madison St. / Airport Blvd. TS 8.8 10.2 A B 8.9 10.2 A B 9.0 10.4 A B 9.2 10.4 A B 9.6 10.9 A B 9.6 10.9 A B No3Madison St. / Avenue 54 AWS 21.347.6CE22.653.0CF33.9>80DF 36.9 >80 E F 79.2 >80 F F >80 >80 F F‐ With ImprovementsTS31.4 31.6 C C 31.5 31.7 C C 34.5 38.5 C D 34.8 38.8 C D 41.2 43.6 D D 41.6 50.3 D D No4Madison St. / Avenue 52 TS 30.2 30.0 C C 30.5 30.2 C C 30.8 30.8 C C 31.0 31.1 C C 31.6 32.3 C C 32.2 33.1 C C No5Madison St. / Avenue 50 TS 29.9 31.3 C C 30.0 31.3 C C 30.7 32.1 C C 30.8 32.1 C C 31.9 33.4 C C 32.2 33.6 C C No6 Jefferson St. / Avenue 54 AWS 18.849.7CE19.352.1CF24.179.4CF25.2>80DF 40.6 >80 E F 54.2 >80 F F‐ With ImprovementsTS36.1 39.9 D D 36.2 40.3 D D 42.7 41.6 D D 43.0 42.3 D D 22.7 22.5 C C 22.9 22.6 C C No7 Jefferson St. / Avenue 52 RDB42.8 78.7 E F 44.3 >80 E F 59.8 >80 F F 61.7 >80 F F >80 >80 F F >80 >80 F F‐ With Improvements RDB 10.2 12.8 B B 10.3 13.0 B B 11.7 16.6 B C 11.8 16.9 B C 15.1 28.3 C D 16.8 34.3 C D No8 Jefferson St. / PomeloTS 9.3 34.4 A C 9.4 34.4 A C 15.6 34.8 B C 15.6 34.8 B C 19.4 35.4 B D 19.5 35.8 B D No9 Jefferson St. / Avenue 50 TS 52.4 50.6 D D 52.5 50.7 D D 52.3 53.3 D D 52.4 53.4 D D 52.458.8DE53.060.3DE‐ With Improvements‐ ‐ ‐‐ ‐ ‐ ‐‐ ‐ ‐ ‐‐ ‐ ‐ ‐‐51.4 51.0 D D 51.8 51.6 D D No10 Madison St. / Avenue 60 AWS 8.8 10.6 A B 8.9 10.8 A B 9.0 11.2 A B 9.2 11.7 A B 9.4 12.8 A B 10.2 14.8 B B No11 Monroe St. / Avenue 60 AWS 10.4 12.0 B B 10.5 12.3 B B 13.0 18.0 B C 13.3 19.1 B C 25.976.4DF30.9>80DF‐ With Improvements‐ ‐ ‐‐ ‐ ‐ ‐‐ ‐ ‐ ‐‐ ‐ ‐ ‐‐33.3 34.9 C C 34.4 37.7 C D No12 Monroe St. / Avenue 58 AWS 10.8 23.8 B C 11.0 26.8 B D 15.7>80CF16.4>80CF 52.2 >80 F F >80 >80 F F‐ With ImprovementsTS‐‐‐‐‐‐‐‐17.3 21.7 B C 18.1 22.9 B C 23.2 33.3 C C 25.9 38.1 C D No13 Monroe St. / Airport Blvd. AWS 11.1 13.8 B B 11.3 14.1 B B 15.6 27.7 C D 16.2 29.1 C D47.3 >80 E F 70.4 >80 F F‐ With ImprovementsTS‐ ‐ ‐‐ ‐ ‐ ‐‐ ‐ ‐ ‐‐ ‐ ‐ ‐‐24.0 24.9 C C 24.6 25.8 C C No14 Monroe St. / Avenue 54 AWS 31.135.7DE33.035.9DE >80 >80 F F >80 >80 F F >80 >80 F F >80 >80 F F‐ With ImprovementsTS23.5 23.0 C C 23.7 23.2 C C 24.4 24.0 C C 24.5 24.0 C C 34.7 37.0 C D 35.0 37.7 C D No15 Monroe St. / Avenue 52 AWS50.3 >80 F F 53.1 >80 F F >80 >80 F F >80 >80 F F >80 >80 F F >80 >80 F F‐ With ImprovementsTS13.0 14.7 B B 13.0 14.7 B B 13.9 15.5 B B 13.9 15.5 B B 33.7 41.2 C D 34.1 44.1 C D No16 Monroe St. / 50th Avenue TS 16.3 20.4 B C 16.3 20.4 B C 16.6 21.5 B C 16.6 21.5 B C 17.7 25.0 B C 17.9 25.8 B C No17 Jackson St. / 58th Avenue AWS 8.1 9.8 A A 8.1 9.8 A A 8.5 11.3 A B 8.6 11.5 A B 9.5 16.9 A C 9.9 21.5 A C No18 S. Access / Avenue 60CSS8.6 8.6 A A8.6 8.6 A A8.9 8.9 A A No19 Madison St. / Main AccessCSS11.2 12.6 B B11.5 13.5 B B17.4 24.3 C C No20 Project Access 1 / Avenue 58CSS9.9 10.6 A B10.1 10.9 B B10.2 11.1 B B No21 Project Access 2 / Avenue 58CSS9.3 9.8 A A9.3 9.9 A A9.4 10.0 A B No22 Madison St. / Project Access 3CSS9.0 9.7 A A9.1 9.9 A A9.6 11.3 A B No1Per the Highway Capacity Manual 6th Edition (HCM6), overall average intersection delay and level of service are shown for intersections with a traffic signal or all way stop control.  For intersections with cross street stop control, the delay and level of service for the worst individual movement (or movements sharing a single lane) are shown.  BOLD = LOS does not meet the applicable jurisdictional requirements (i.e., unacceptable LOS).2CSS = Cross‐street Stop; TS = Traffic Signal;  AWS = All‐way Stop;  RDB = Roundabout; 1 = Improvement3R:\UXRjobs\_12600‐13000\12615\Excel\[12615 ‐ Report.xlsx]1‐5TABLE 1‐5: SUMMARY OF PHASED INTERSECTION OPERATIONS#IntersectionTrafficControl2Potentially Significant Cumulative Impact3Delay 1Future IntersectionFuture IntersectionDelay 1LOS1Future IntersectionA potentially significant cumulative traffic impact is defined to occur at any signalized intersection if the intersection is operating at LOS E and the project causes the delay to increase by 2 seconds or more. If the signalized intersection is operating at LOS F, a potentially significant cumulative traffic impact is defined to occur if the project causes the delay to increase by 1 second or more.  For cross‐street stop controlled intersections, a potentially significant cumulative  traffic impact is defined to occur if the  intersection is operating at LOS  F on the side street and the addition of project traffic results in an increase of 3 seconds or more of delay for any movement. Delay 1LOS1Future IntersectionFuture IntersectionFuture IntersectionFuture IntersectionLOS1Future IntersectionFuture IntersectionFuture IntersectionFuture IntersectionFuture IntersectionDelay 1LOS1Future IntersectionFuture IntersectionFuture IntersectionDelay 1LOS1PHASE 3 (2026)Without ProjectWith ProjectWithout Project With ProjectPHASE 1 (2021)PHASE 2 (2023)Without ProjectWith ProjectDelay (secs)1LOS19 AM PM AM PM AM PM AM PM 1Madison St. / Avenue 58 ‐ With GPCE Update Improvements TS 40.1 63.2 D E 41.5 70.3 D E ‐ With Modified GPCE Improvements TS 34.5 45.5 C D 35.1 53.0 D D 2Madison St. / Airport Blvd.TS 23.2 28.6 C C 23.7 29.7 C C 3Madison St. / Avenue 54 TS 42.9 49.0 D D 44.2 53.3 D D 4Madison St. / Avenue 52 TS 38.8 52.0 D D 39.5 53.8 D D 5Madison St. / Avenue 50 TS 36.7 53.2 D D 37.6 54.8 D D 6 Jefferson St. / Avenue 54 TS 24.0 43.5 C D 24.2 48.4 C D 7 Jefferson St. / Avenue 524 RDB 5.8 8.3 A A 5.9 9.1 A A 8 Jefferson St. / Pomelo TS 6.3 21.2 A C 6.4 21.4 A C 9 Jefferson St. / Avenue 50 TS 41.5 52.8 D D 42.2 54.6 D D 10 Madison St. / Avenue 60 TS 50.9 48.0 D D 49.6 53.1 D D 11 Monroe St. / Avenue 60 ‐ With GPCE Update Improvements TS 45.1 98.8 D F 46.1 103.9 D F ‐ With Added GPCE Improvements TS 36.7 50.3 D D 37.2 53.0 D D 12 Monroe St. / Avenue 58 ‐ With GPCE Update Improvements TS 47.8 72.0 D E 50.1 75.9 D E ‐ With Added GPCE Improvements TS 38.0 48.6 D D 39.5 52.0 D D 13 Monroe St. / Airport Blvd.TS 33.3 44.1 C D 37.8 45.4 D D 14 Monroe St. / Avenue 54 TS 31.5 52.5 C D 31.6 54.5 C D 15 Monroe St. / Avenue 52 TS 39.0 52.7 D D 39.0 54.3 D D 16 Monroe St. / 50th Avenue TS 34.5 53.3 C D 34.1 54.5 C D 17 Jackson St. / 58th Avenue TS 29.7 36.7 C D 29.7 38.0 C D 18 S. Access / Avenue 60 CSS 0.0 0.0 0 0 34.2 34.8 D D 19 Madison St. / Main Access ‐ With Cross‐Street Stop Control CSS 113.2 91.7 F F ‐ With Traffic Signal TS 7.6 9.0 A A 20 Project Access 1 / Avenue 58 CSS 12.9 14.5 B B 21 Project Access 2 / Avenue 58 CSS 10.2 10.4 B B 22 Madison St. / Project Access 3 CSS 13.6 14.4 B B 1 Per the Highway Capacity Manual 6th Edition (HCM6), overall average intersection delay and level of service are shown for intersections with a traffic signal or all way stop control.  For intersections with cross street stop control, the delay and level of service for the worst  individual movement (or movements sharing a single lane) are shown. BOLD = LOS does not meet the applicable jurisdictional requirements (i.e., unacceptable LOS). 2 CSS = Cross‐street Stop; TS = Traffic Signal;  AWS = All‐way Stop;  RDB = Roundabout; 1 = Improvement R:\UXRjobs\_12600‐13000\12615\Excel\[12615 ‐ Report.xlsx]1‐6 Future Intersection Delay (Secs)1 Level of Service1 Future Intersection Future Intersection Future Intersection TABLE 1‐6: SUMMARY OF GENERAL PLAN BUILDOUT (2040) INTERSECTION OPERATIONS #Intersection Traffic Control2 Without Project With Project Delay (Secs)1 Level of Service1 10 ADT3V/C ADT3V/CADT3V/C ADT3V/CADT3V/C ADT3V/CWest of Madison St. Secondary 3 21,000  41,600  0.08 2,300  0.11 No 5,700     0.27 6,300     0.30 No428,000  11,800  0.42 12,500  0.45 West of Monroe St. Secondary 4 28,000  2,300  0.08 4,100  0.15 No 5,900     0.21 7,800     0.28 No 4 28,000  12,100  0.43 14,000  0.50 West of Jackson St. Secondary 2 14,000  41,800  0.13 2,700  0.19 No 4,900     0.35 5,700     0.41 No428,000  18,200  0.65 19,000  0.68 Madison St. South of Airport Bl. Primary 4 42,600  6,700  0.16 9,700  0.23 No 14,300  0.34 17,400  0.41 No 4 42,600  30,900  0.73 34,000  0.80 Avenue 60 West of Monroe St. Secondary 3 21,000  43,200  0.15 4,500  0.21 No 6,900     0.33 8,200     0.39 No428,000  22,700  0.81 24,000  0.86 Monroe St. South of Airport Bl. Primary 3 31,950  53,400  0.11 4,400  0.14 No 12,100  0.38 13,100  0.41 No442,600  24,900  0.58 26,000  0.61 1 These maximum roadway capacities have been extracted from the City of La Quinta Engineering Bulletin #06‐13 (October 2017).R:\UXRjobs\_12600‐13000\12615\Excel\[12615 ‐ Report.xlsx]1‐77 1 = Existing number of lanes; 1 = City of La Quinta General Plan Buildout number of lanes4 Capacity was calculated as a ratio of 4‐lane Secondary capacity.5 Capacity was calculated as a ratio of 4‐lane Primary capacity.These roadway capacities are "rule of thumb" estimates for planning purposes.  The LOS E service volumes are estimated maximum daily capacity for respective classifications.  Capacity is affected by such factors as intersections (spacing, configuration and control features), degree of access control, roadway grades, design geometrics (horizontal and vertical alignment standards), sight distance, vehicle mix (truck and bus traffic) and pedestrian and bicycle traffic.2 A potentially significant project traffic impact is defined to occur on any road segment if the segment is projected to be operating at LOS E or LOS F  with project traffic included and the V/C is increased 3 A potentially significant cumulative  traffic impact is defined to occur on any road segment if the project would cause the existing LOS to fall to worse than LOS D for EAPC (2026) With Project volumes.  A potentially significant cumulative traffic impact is also defined to occur if the segment is projected to be operating at LOS E or LOS F  with project traffic included and the V/C is increased by 0.02 or more by addition of project traffic. Avenue 58Potentially Significant CumulativeImpact3# of Lanes72040Capacity1Existing (2019) E+PWithout Project With ProjectTABLE 1‐7: SUMMARY OF ROADWAY SEGMENT ANALYSISRoadway SegmentRoadwayDesignation# of Lanes7Existing Capacity1Potentially Significant Project Specific Impact2PHASE 3 (2026)Without Project With ProjectGPBO (2040) 11 12 13 14 15 16 17  Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  11 For EAP traffic conditions, the following five study area intersections are anticipated to require  installation of a traffic signal (which is funded in the CIP) in order to maintain acceptable LOS  under EAP conditions:     #3   ‐ Madison Street at Avenue 54    #6   ‐ Jefferson Street at Avenue 54   #12 ‐ Monroe Street at Avenue 58   #14 ‐ Monroe Street at Avenue 54   #15 ‐ Monroe Street at Avenue 52  EAP  analysis  results  indicates  that  the  intersection  of  Jefferson Street at Avenue 52 (#7)  experiences  deficient  operations  under  cumulative  “without  project” conditions.  Jefferson  Street at Avenue 52 requires reconstruction of the current roundabout design to incorporate 2  circulating  lanes  around  the  center  island.    This  effectively  accommodates  an  additional  through lane in the northbound and southbound directions to provide acceptable LOS.    All study roadway segments analyzed are anticipated to operate at acceptable LOS for E+P and  EAP  traffic conditions, consistent with Existing traffic conditions.   1.5.3  EAPC PHASE 1 (2021) CONDITIONS  For EAPC Phase 1 (2021) traffic conditions, the following four study area intersections are anticipated to  require installation of a traffic signal (which is funded in the CIP) in order to maintain acceptable LOS  under EAPC (2021) conditions:     #3   ‐ Madison Street at Avenue 54    #6   ‐ Jefferson Street at Avenue 54   #14 ‐ Monroe Street at Avenue 54   #15 ‐ Monroe Street at Avenue 52  EAPC Phase 1 (2021) analysis results indicates that the intersection of Jefferson Street at  Avenue  52  (#7)  experiences  deficient  operations  under  cumulative  “without  project”  conditions.  Jefferson Street at Avenue 52 requires reconstruction of the current roundabout  design  to  incorporate  2  circulating  lanes  around  the  center  island.    This  effectively  accommodates an additional through lane in the northbound and southbound directions to  provide acceptable LOS.  The improvements are needed with or without the Project, so a fair  share contribution is appropriate.  All study roadway segments analyzed are anticipated to operate at acceptable LOS for EAPC  Phase 1 (2021) traffic conditions, consistent with Existing traffic conditions.   1.5.4  EAPC PHASE 2 (2023) CONDITIONS  For  EAPC  Phase  2(2023)  traffic  conditions,  the  following  five  study  area  intersections  are  anticipated to require installation of a traffic signal (which is funded in the CIP) in order to  maintain acceptable LOS:     Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  12  #3   ‐ Madison Street at Avenue 54    #6   ‐ Jefferson Street at Avenue 54   #12 ‐ Monroe Street at Avenue 58   #14 ‐ Monroe Street at Avenue 54   #15 ‐ Monroe Street at Avenue 52  EAPC Phase 2 (2023) analysis results indicates that the intersection of Jefferson Street at  Avenue  52  (#7)  experiences  deficient  operations  under  cumulative  “without  project”  conditions.  Jefferson Street at Avenue 52 requires reconstruction of the current roundabout  design  to  incorporate  2  circulating  lanes  around  the  center  island.    This  effectively  accommodates an additional through lane in the northbound and southbound directions to  provide acceptable LOS.  The improvements are needed with or without the Project, so a fair  share contribution is appropriate.  All study roadway segments analyzed are anticipated to operate at acceptable LOS for EAPC  Phase 2 (2023) traffic conditions, consistent with Existing traffic conditions.   1.5.5  EAPC PHASE 3 (2026) CONDITIONS  For EAPC Phase 3 (2026) traffic conditions, the following eight study area intersections are  anticipated to require installation of a traffic signal  in order to maintain acceptable LOS under  EAPC (2026) conditions:     #1   ‐ Madison Street at Avenue 58    #3   ‐ Madison Street at Avenue 54    #6   ‐ Jefferson Street at Avenue 54   #11 ‐ Monroe Street at Avenue 60   #12 ‐ Monroe Street at Avenue 58   #13 ‐ Monroe Street at Airport Boulevard   #14 ‐ Monroe Street at Avenue 54   #15 ‐ Monroe Street at Avenue 52  In addition, for Jefferson Street at Avenue 50 (#9), a second westbound  through  lane  is  necessary to maintain acceptable level of service.  EAPC analysis results in one cumulatively  impacted  intersection  (Jefferson  Street  at  Avenue  52).  Similar to  EAPC  Phase  2  conditions,  Jefferson Street at Avenue 52 (#7) requires reconstruction of the current roundabout design to  incorporate 2 circulating lanes around the center island.  This effectively accommodates an  additional through lane in the northbound and southbound directions to provide acceptable  LOS.     For the intersection of Madison Street at Avenue 58 (#1), addition of Project traffic requires the  installation of the traffic signal.  Therefore, the required signal will be installed by the Project,  and reimbursement to the Project developer may be provided for all but the Project’s fair share  by future developments, or CIP, or DIF.     Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  13 For the remaining deficient study area intersections, the improvements are needed for with or  without the Project, so a fair share contribution is appropriate for these locations.   All study roadway segments analyzed are anticipated to operate at acceptable LOS for EAPC  Phase 3 (2026) traffic conditions.   1.5.6  EAPC PHASE 3 (2026) WEEKEND SPECIAL EVENT CONDITIONS  The applicant anticipates the potential occurrence of special events at this location involving  attendance of not‐to‐exceed 2,500 guests per day arriving or departing on Saturdays (up to 4  events per year).   The proposed Project is anticipated to generate a net total of 8,932 trip‐ends per day on a  Saturday during a special event with 906 vehicles per hour (VPH) during the arrival peak hour  and 884 vph during the departure peak hour.  Improvement recommendations identified in Chapter 8 of this report for weekend special event  conditions are consistent with the improvements identified  in Section 1.5.5 above for EAPC  Phase 3 weekday typical operations.  1.5.7  YEAR 2040 CONDITIONS  General Plan Buildout (Year 2040) conditions includes the Travertine project currently under  consideration in the City of La Quinta that proposes to eliminate the connection of Madison  Street as a General Plan roadway south of Avenue 60.  Therefore, the General Plan Buildout  (Year  2040)  conditions  analysis  assumes  elimination  of  this  connection.    Intersection  lane  recommendations determined in Chapter 7 of this report and shown on Exhibit 1‐3 provide  acceptable LOS under Year 2040 traffic conditions (i.e., LOS D or better).    1.5.8  SITE ACCESS AND ON‐SITE CIRCULATION  The  recommended  site  access  improvements  and  on‐site  circulation  for  the  Project  are  described below and illustrated on Exhibit 9‐1.  The Coral Mountain Specific Plan Project is  proposed to be served by the Project access locations listed below:  •  Madison Street / Main Access (full access)  •  South Access / Avenue 60 (full access)  •  Project Access 1 / Avenue 58 (full access)  •  Project Access 2 / Avenue 58 (right‐in/right‐out access)  •  Madison Street / Project Access 3 (right‐in/right‐out access)  The separation between Project driveways along Avenue 58 and Madison Street are over 250  feet and separation between Avenue 58 and the Project’s main access point (future signalized  location) is over 600 feet.  The location of each Project access points meets City of La Quinta  intersection spacing standards.     Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  14 For Project Phase 1 conditions, the following improvements are recommended:  Avenue 58 should be constructed to its ultimate half‐section width as a Secondary along the  commercial portion of the Project.    Madison Street should be constructed to its ultimate half‐section width as a Secondary along  the commercial portion of the Project.  Avenue 60 should be constructed as a 2‐lane roadway  along the Project boundary.    For  Project  Access  1  &  Avenue  58 (intersection  20),  provide  northbound  cross‐street  stop  control.  Construct south leg with one shared northbound left‐right turn lane. Accommodate  westbound left turn lane within two‐way left turn lane (TWLTL) striping.  Northbound cross‐street stop control should be provided for Project Access 2 & Avenue 58  (intersection 21).  Construct south leg with one right turn outbound lane. Left turns should not  be accommodated at this intersection.  For Madison Street & Project Access 3 (intersection 22), provide eastbound cross‐street stop  control.    Construct  west  leg  with  one  right  turn  outbound  lane. Left turns should not be  accommodated at this intersection.  Eastbound cross‐street  stop  control  should  be  provided for  Madison Street & Main Access  (intersection 19).  Construct west leg with one left turn outbound and one right turn outbound  lane. The main Project driveway is located on Madison Street south of Avenue 58.  It is a full  access location, serving left and right turns to and from Madison Street.  With the Project, the  northbound left turn lane serving the main Project driveway is recommended to provide 150  feet of vehicle queuing.  For South Access & Avenue 60 (intersection 18), provide southbound cross‐street stop control.   Construct north leg with one shared left‐right turn outbound lane. Construct west leg with one  shared left‐through lane. Construct east leg with one shared through‐right lane.   For  Project  Phase  2  conditions, the  same  improvements  are  recommended  as  for  Project  Phase 1 (see above).  For Project Buildout (Phase 3) conditions, the following improvements are recommended:  Avenue 58 should be constructed to its ultimate half‐section width as a Secondary along the  residential / remaining portion of the Project.    Madison Street should be constructed to its ultimate half‐section width as a Secondary along  the residential / remaining portion of the Project.    Construct traffic signal for the intersection of Madison Street & Main Access when warranted.  On‐site  traffic  signing  and  striping  should  be  implemented  in  conjunction  with  detailed  construction plans for the project site.   Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  15 Sight distance at the project access driveways should be reviewed with respect to City of La  Quinta sight distance standards at the time of preparation of final grading, landscape and street  improvement plans.    1.5.9  VEHICLE MILES TRAVELED  Project VMT (Vehicle Miles Traveled) has been evaluated and provided in a separate letter:  “Coral Mountain Specific Plan Vehicle Miles Traveled (VMT) Analysis”, dated October 27, 2020.     Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  16 2  PROPOSED DEVELOPMENT  2.1  LOCATION  The proposed Project is located on the southwest corner of re‐aligned Madison Street at 58th  Avenue in the City of La Quinta.  2.2  LAND USE AND PHASING  The Project consists of a master planned themed resort and comprised of a wave basin, a 150‐ key hotel (with 1,900 square feet bar, 1,400 square feet restaurant, 4,200 square feet kitchen,  1,100 rooftop bar, 1,200 pool bar & grill, and 4,200 square feet spa), 104 attached dwelling  units, 496 detached dwelling units, 60,000 square feet of retail, wave village area (with 900  square feet shape studio, 1,600 square feet surf shop, 3,000 square feet board room, 1,800  square feet surf lounge/living room, 800 square feet surf classroom, a fitness pavilion, 1,400  square feet high performance center, and 5,500 square feet beach club), the farm area (with  2,100 square feet barn, 2,500 square feet greenhouse, 1,400 square feet equipment barn, 300  square feet tool shed, 1,200 square feet family camp, 4,500 square feet gym, 2,000 square feet  outfitters, and 2,000 square feet locker rooms).  In addition, back of house complex consists of  9,500 square feet resort operations, 1,500 square feet wave operations, and 1,000 square feet  guardhouses.  The wave basin is a private facility.  The Project is anticipated to be constructed in phases, with Phase 1 (2021) including resort  (wave basin, hotel uses, and 57,000 square feet of commercial ancillary uses), 104 attached  dwelling units, 26 detached dwelling units, and 10,000 square feet of retail.  Project Phase 2  (2023) adds 25,000 square feet of retail. Project Phase 3 (2026) adds 470 detached dwelling  units and 25,000 square feet of retail.    The current General Plan land use and zoning designated for the site is Low Density Residential,  Open Space Recreation, and General Commercial.   2.3  SITE PLAN AND PROJECT ACCESS  The  preliminary  Project  land  use plan  was  previously  presented on Exhibit 1‐1.  The Coral  Mountain Specific Plan Project is proposed to be served by the Project access locations listed  below:  •  Madison Street / Main Access (full access)  •  South Access / Avenue 60 (full access)  •  Project Access 1 / Avenue 58 (full access)  •  Project Access 2 / Avenue 58 (right‐in/right‐out access)  •  Madison Street / Project Access 3 (right‐in/right‐out access)   Both Avenue 58 and Madison Street are classified as Secondary Arterials adjacent to the site.   The separation standards for a Secondary Arterial are 250 feet between driveways, and 600   Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  17 feet between street intersections (based upon the City of La Quinta Public Works Department  Development Engineering Handbook).  The Project Main Driveway on Madison Street is located approximately 666 feet south of the  Madison Street / Avenue 58 intersection.  Both of these intersections (Madison Street / Avenue  58 and Madison Street / Project Main Access) are projected to eventually meet traffic signal  warrants.    A Project commercial driveway (Project Access 3) is proposed to be located approximately 280  feet south of the Madison Street / Avenue 58 intersection.  Project Access 3 is limited to right‐ turns in and out only (RIRO).  It is located approximately 386 ft. north of the Madison Street /  Project Main Access intersection.   Along Avenue 58, two Project commercial driveways are proposed.  Project Access 2 is located  approximately 273 feet west of Madison Street / Avenue 58 intersection, and is limited to right‐ turns in and out only (RIRO).  Project Access 1 is located approximately 297 feet west of Project  Access 2 / Avenue 58 intersection, and approximately 255 ft. east of S. Valley Lane.          Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  18 3  AREA CONDITIONS  This section provides a summary of the existing study area, the City of La Quinta General Plan  Circulation  Network,  and  a  review  of  existing  peak  hour  intersection  operations,  roadway  segment capacity, and traffic signal warrant analyses.  3.1  STUDY AREA  Pursuant to the agreement with City of La Quinta staff (Appendix 1.1), the study area includes  22 study area intersections.  The locations of these intersections were shown previously on  Exhibit 1‐2.    3.2  AREA ROADWAY SYSTEM  Exhibit  3‐1  illustrates  the  study  area  intersections  located  near  the  proposed  Project  and  identifies the number of through traffic lanes for existing roadways and intersection traffic  controls.    Exhibit  3‐2  shows  the  City  of  La  Quinta  General  Plan  Circulation Element, and Exhibit 3‐3  illustrates the City of La Quinta General Plan roadway cross‐sections.    3.3  TRANSIT SERVICE  The City of La Quinta is currently served by the SunLine Transit Agency, but current bus services  are not located within the Project study area.  Transit service is reviewed and updated by the  SunLine  Transit  Agency  periodically  to  address  ridership,  budget  and  community  demand  needs.  Changes in land use can affect these periodic adjustments which may lead to either  enhanced or reduced service where appropriate.    3.4  PEDESTRIAN AND ALTERNATIVE FACILITIES  The  study  area  has  existing  pedestrian  /  bicycle  paths  along  sections  of  Jefferson  Street,  Madison Street, Monroe Street, Avenue 50, Avenue 52, Avenue 54, Airport Boulevard, and  Avenue 58.    The City of La Quinta General Plan Update Future Class I golf cart/NEV path is proposed along  Jefferson Street from Avenue 50 to Avenue 54.  Jefferson Street south of Avenue 58, along with  sections of Madison Street, Monroe Street, Jackson Street, Avenue 50, Avenue 52, Avenue 54,  Airport Boulevard, Avenue 58, avenue 60, and Avenue 62 are planned to be a Class II Golf  Cart/NEV path and multi‐use path.       26 27 28  Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  22 3.5  TRAFFIC VOLUMES AND CONDITIONS  The intersection LOS analysis is based on the traffic volumes observed during the peak hour  conditions using traffic count data collected on August 15th, 2017, April 9th, 2019, May 7th, 2019,  and September 10, 2019.  Based on discussions with City staff, the following peak hours were  selected for analysis:   Weekday AM Peak Hour (peak hour between 6:00 AM and 8:30 AM)   Weekday PM Peak Hour (peak hour between 2:30 PM and 5:30 PM)  A 20% increase is applied to counts taken in August, 5% increase is applied to counts taken in  April, and 10% increase is applied to counts taken in May per City of La Quinta’s EB#06‐13.  The  raw manual peak hour turning movement traffic count data sheets are included in Appendix  3.1.  There were no observations made in the field that would indicate  atypical  traffic  conditions  on  the  count  dates,  such  as  construction  activity  that  would  prevent  or  limit  roadway access and detour routes.  The average AM/PM peak hour intersection  growth  between  2017  and  2019  counts  data  at  selected  study  area  and  nearby  intersections  is  approximately  2.66%.    The  additional  2.66%  growth  rate  is  applied to the study area  intersections with 2017 counts to reflect 2019 conditions.  The raw traffic count data provided  in Appendix 3.1 was adjusted to maintain flow conservation between applicable study area  intersections (i.e., no unexplained loss of vehicles between no or limited access intersections).   Existing traffic volumes with seasonal adjustments are shown on Exhibits 3‐4 through 3‐6.  Existing weekday average daily traffic (ADT) volumes on arterial highways throughout the study  area are shown on Exhibit 3‐4.  ADT volumes are estimated using the formula below for each  intersection leg (consistent with 2018 TIA) and compared to the 2017 ADT’s with 2.66% growth  to reflect 2019 conditions, where 2019 counts are unavailable:  Weekday PM Peak Hour (Approach Volume + Exit Volume) x 9.753 = Leg Volume    For those roadway segments which have 24‐hour tube count data available in close proximity  to the study area, a comparison between the PM peak hour and daily traffic volumes indicated  that the peak‐to‐daily relationship of approximately 9.30 percent would sufficiently estimate  average daily traffic (ADT) volumes for planning‐level analyses.  As such, the above equation  utilizing a factor of 9.753 estimates the ADT volumes on the study area roadway segments  assuming a peak‐to‐daily relationship of approximately 9.30 percent (i.e., 1/0.0930 = 9.753).    3.6  LEVEL OF SERVICE DEFINITIONS AND ANALYSIS METHODOLOGIES  3.6.1  SIGNALIZED INTERSECTIONS  The  City  of  La  Quinta  requires  signalized  intersection  operations  analysis  based  on  the  methodology described in the HCM.  Intersection LOS operations are based on an intersection’s  average control delay.  Control delay includes initial deceleration delay, queue move‐up time,  stopped delay, and final acceleration delay.  For signalized intersections LOS is directly related  to the average control delay per vehicle and is correlated to a LOS designation as described in  Table 3‐1.   30 31 32  Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  26 TABLE 3‐1: SIGNALIZED INTERSECTION LOS THRESHOLDS  Description  Average Control  Delay (Seconds),  V/C ≤ 1.0  Level of Service,  V/C ≤ 1.0  Level of Service,  V/C > 1.0  Operations with very low delay occurring with  favorable progression and/or short cycle length.  0 to 9.00 A  F Operations  with  low  delay  occurring  with  good  progression and/or short cycle lengths.  9.01 to 20.00 B  F Operations  with  average  delays  resulting  from  fair  progression  and/or  longer  cycle  lengths.    Individual  cycle failures begin to appear.  20.01 to 35.00 C  F Operations with longer delays due to a combination of  unfavorable progression, long cycle lengths, or high V/C  ratios.  Many vehicles stop and individual cycle failures  are noticeable.  35.01 to 55.00 D  F Operations  with  high  delay  values  indicating  poor  progression,  long  cycle  lengths,  and  high  V/C  ratios.   Individual cycle failures are frequent occurrences.  This  is considered to be the limit of acceptable delay.  55.01 to 80.00 E  F Operation  with  delays  unacceptable  to  most  drivers  occurring due to over saturation, poor progression, or  very long cycle lengths  80.01 and up F  F Source:  HCM    Study area intersections have been analyzed using the software package Synchro (Version 9.1).  Synchro is a macroscopic traffic software program that is based on the signalized intersection  capacity analysis as specified in the HCM.  Macroscopic level models represent traffic in terms  of aggregate measures for each movement at the study intersections.  Equations are used to  determine measures of effectiveness such as delay and queue length. The level of service and  capacity analysis performed by Synchro takes into consideration optimization and coordination  of signalized intersections within a network.  The LOS analysis for signalized intersections has  been  performed  using  optimized  signal  timing  for  existing  traffic  conditions.    Signal  timing  optimization has considered pedestrian safety and signal coordination requirements.  Appropriate  time for pedestrian crossings has  also  been  considered  in  the  signalized  intersection  analysis.   Signal timing for study area intersections have been requested and utilized.  Where signal timing  was unavailable, the local accepted standards were utilized in lieu of actual signal timing.  The peak hour traffic volumes have been adjusted using a peak hour factor (PHF) to reflect peak 15  minute volumes.  Common practice for LOS analysis is to use a peak 15‐minute rate of flow.   However, flow rates are typically expressed in vehicles per hour.  The PHF is the relationship  between the peak 15‐minute flow rate and the full hourly volume (e.g. PHF = [Hourly Volume] /  [4 x Peak 15‐minute Flow Rate]).  The use of a 15‐minute PHF produces a more detailed analysis  as compared to analyzing vehicles per hour.  Existing PHFs have been used for all analysis  scenarios.  Per the HCM, PHF values over 0.95 often are indicative of high traffic volumes with  capacity  constraints  on  peak  hour  flows  while  lower  PHF  values are  indicative  of  greater  variability of flow during the peak hour.   Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  27 3.6.2  UNSIGNALIZED INTERSECTIONS  The City of La Quinta requires the operations of unsignalized intersections be evaluated using  the methodology described in the HCM. The LOS rating is based on the weighted average  control delay expressed in seconds per vehicle (see Table 3‐2).    TABLE 3‐2: UNSIGNALIZED INTERSECTION DESCRIPTION OF LOS  Description Average Control Delay Per  Vehicle (Seconds)  Level of Service, V/C ≤  1.0  Level of Service,  V/C > 1.0  Little or no delays. 0 to 9.00  A  F  Short traffic delays. 9.01 to 15.00  B  F  Average traffic delays. 15.01 to 25.00  C  F  Long traffic delays. 25.01 to 35.00  D  F  Very long traffic delays. 35.01 to 50.00  E  F  Extreme traffic delays with intersection  capacity exceeded. > 50.00  F  F  Source:  HCM   At side‐street stop‐controlled intersections, LOS is calculated for each controlled movement  and for left turns from the major street, as well as for the whole intersection.  For approaches  served by a single lane, the delay computed is the average for all movements in that lane.   3.7  REQUIRED INTERSECTION LEVEL OF SERVICE  Per City of La Quinta traffic study guidelines, the following LOS criteria have been utilized for  the purposes of this analysis.  Intersection Type City of La Quinta LOS Criteria  Signalized Intersection or All‐Way Stop Controlled Intersection LOS D or better  Cross‐Street Stop Controlled Intersection LOS E or better for the side street  For the City of Indio, it was considered that a significant impact would occur (a) if the proposed  Project causes the level of service to degrade to below LOS D, or (b) if the proposed Project  causes the level of service to change from LOS E to LOS F.  Additionally, significant impact would  occur at the intersection level if the proposed Project causes an increase in delay of 2 seconds  or more to an intersection already operating at LOS E; or 1 second or more to an intersection  operating at LOS F, as indicated in the table below:   CITY OF INDIO IMPACT CRITERIA FOR INTERSECTIONS ALREADY OPERATING AT LOS “E” OR LOS “F”  Significant Changes in LOS  LOS “E” An increase in delay of 2 seconds or more  LOS “F”  An increase in delay of 1 second or more   Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  28 3.8  EXISTING INTERSECTION LEVEL OF SERVICE  Existing  peak  hour  traffic  operations  have  been  evaluated  for  the  study  area  intersections  based on the analysis methodologies presented in Section 3.6 Level of Service Definitions and  Analysis  Methodologies of this report.  The intersection operations analysis results are  summarized in Table 3‐3 which indicates that all of the 17 existing study area intersections are  currently operating at an acceptable LOS during the peak hours.  The intersection operations  analysis worksheets are included in Appendix 3.2 of this TIA.  3.9  REQUIRED ROADWAY SEGMENT LEVEL OF SERVICE  The City of La Quinta has established LOS D as the minimum level of service for its roadway  segments. Therefore, any study area roadway segment operating at LOS E or LOS F will be  considered deficient for the purposes of this analysis.  Consistent with City guidelines, the level of service E capacity has been established as the limit  of acceptable capacity threshold for roadway segments.  The capacities utilized for this analysis  are consistent with the maximum daily capacity thresholds provided in the City of La Quinta  traffic study guidelines and are summarized in the table below:   ROADWAY SEGMENT CAPACITY THRESHOLDS  Roadway Classification Lane Configuration Capacity (Vehicles per Day)  Local  2‐Lane Undivided 9,000  Collector  2‐Lane Undivided 14,000  Modified Secondary  2‐Lane Divided 19,000  Secondary  4‐Lane Undivided 28,000  Primary  4‐Lane Divided 42,600    It should be noted that although the ADT values are suitable for planning purposes, it is not a  precise measure of capacity.  The ultimate capacity of a roadway is based upon a number of  factors. These factors include the relationships between peak hour and daily traffic volumes,  intersections (spacing, configuration and control features), degree of access control, roadway  grades, design geometrics (horizontal and vertical alignment standards), sight distance, vehicle  mix (truck and bus traffic) and pedestrian bicycle traffic.  As such, where the peak hour roadway  segment analysis indicates a deficiency (unacceptable LOS), a review of the more detailed peak  hour intersection analysis is undertaken.  The more detailed peak hour intersection analysis  explicitly  accounts  for  factors  that  affect  roadway  capacity.   Therefore,  roadway  segment  widening is typically only recommended if the peak hour intersection analysis indicates the  need for additional through lanes.   These roadway capacities are “rule of thumb” estimates for planning purposes and are affected  by such factors as intersections (spacing, configuration and control features), degree of access  control, roadway grades, design geometrics (horizontal and vertical alignment standards), sight  distance, vehicle mix (truck and bus traffic) and pedestrian bicycle traffic.  As such, where the   Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  29 ADT  volume  based  roadway  segment  analysis  indicates  a  deficiency  (unacceptable  LOS),  a  review  of  the  more  detailed  peak  hour  intersection  analysis  and  progression  analysis  are  undertaken.  The more detailed peak hour intersection analysis explicitly accounts for factors  that affect roadway capacity.  Therefore, for the purposes of this analysis, roadway widening is  typically  only  recommended  if  the  peak  hour  intersection  analysis  indicates  the  need  for  additional through lanes.   3.10  EXISTING ROADWAY SEGMENT LEVEL OF SERVICE  The roadway segment capacities are approximate figures only, and are used at the General Plan  level to assist in determining the roadway functional classification (number of through lanes)  needed to meet traffic demand. Table 3‐5 provides a summary of the  Existing  conditions  roadway  segment  capacity  analysis  based  on  the  roadway  segment capacity  thresholds  identified on Table 3‐4.  As shown on Table 3‐5, all study area roadway segments analyzed are  currently operating at acceptable LOS.   3.11  EXISTING TRAFFIC SIGNAL WARRANT ANALYSIS  Traffic  signal  warrants  for  Existing  traffic  conditions  are  based  on  existing  peak  hour  intersection turning volumes.  Based on the peak hour volume based Warrant #3 of the 2012  Federal Highway Administration’s (FHWA) Manual on Uniform Traffic Control Devices (MUTCD),  as amended for use in California, the following 4 unsignalized study area intersections currently  warrant a traffic signal:   Madison Street at Avenue 54    Jefferson Street at Avenue 54   Monroe Street at Avenue 54   Monroe Street at Avenue 52  The traffic signal warrant worksheets for Existing traffic conditions are included in Appendix 3.3  of this TIA.          L T R L T R L T R L T R AM PM AM PM 1 Madison St. / Avenue 58 AWS 12112d1111218.59.3 A A 2 Madison St. / Airport Blvd. TS 1 2 d 1200001018.88.4 A A 3 Madison St. / Avenue 54 AWS 22112012d12112.9 15.9 B C 4 Madison St. / Avenue 52 TS 22122d12d12127.9 28.5 C C 5 Madison St. / Avenue 50 TS 22122112112128.6 29.4 C C 6 Jefferson St. / Avenue 54 AWS0.510.522112011112.2 16.9 B C 7 Jefferson St. / Avenue 52 RDB 0.5 0.5 1>> 0.5 0.5 1>> 0.5 0.5 1>> 0.5 0.5 1>> 9.4 9.7 A A 8 Jefferson St. / Pomelo TS 1301300.50.510.50.518.414.3 A B 9 Jefferson St. / Avenue 50 TS 13123112111146.3 49.4 D D 10 Madison St. / Avenue 60 AWS 0001010.50.500118.29.1 A A 11 Monroe St. / Avenue 60 AWS 1101110.50.5101!08.18.3 A A 12 Monroe St. / Avenue 58 AWS 0 1! 0 0.5 0.5 1 0 1! 0 0 1! 0 8.1 9.4 A A 13 Monroe St. / Airport Blvd. AWS 11012d11101!08.59.2 A A 14 Monroe St. / Avenue 54 AWS 01!00.50.5111001!014.3 12.7 B B 15 Monroe St. / Avenue 52 AWS 01!012011112d14.7 25.3 B D 16 Monroe St. / 50th Avenue TS 120120111111>16.6 18.0 B B 17 Jackson St. / 58th Avenue AWS 0 1! 0 0 1! 0 0 1! 0 0 1! 0 7.5 8.2 A A 18 S. Access / Avenue 60 19 Madison St. / Main Access 20 Project Access 1 / Avenue 58 21 Project Access 2 / Avenue 58 22 Madison St. / Project Access 3 1  When a right turn is designated, the lane can either be striped or unstriped.  To function as a right turn lane there must be sufficient width for right turning vehicles to travel outside the through lanes. 2 Per the Highway Capacity Manual 6th Edition (HCM6), overall average intersection delay and level of service are shown for intersections with a traffic signal or all way stop control. For intersections with cross street stop control, the delay and level of service for the worst individual movement (or movements sharing a single lane) are shown. Delay and level of service is calculated using Synchro 10.1 analysis software. 3 TS = Traffic Signal; CSS = Cross‐street Stop; AWS = All‐Way Stop; RDB = Roundabout R:\UXRjobs\_12600‐13000\12615\Excel\[12615 ‐ Report.xlsx]3‐3 Intersection Does Not Exist Intersection Does Not Exist TABLE 3‐3: INTERSECTION ANALYSIS FOR EXISTING (2019) CONDITIONS #Intersection Traffic Control3 Intersection Approach Lanes1 Delay2 (Secs) Level of  Service2Northbound Southbound Eastbound Westbound Intersection Does Not Exist Intersection Does Not Exist          L  =  Left;  T  =  Through;  R  =  Right; > = Right‐Turn Overlap Phasing;  >> = Free‐Right Turn Lane; d= Defacto Right Turn Lane Intersection Does Not Exist 37 Roadway Segment Roadway Designation Through  Travel  Lanes1 ADT3 Volume/ Capacity  Ratio West of Madison Street Secondary 3 21,000        4 1,600       0.08          West of Monroe Street Secondary 4 28,000        2,300       0.08          West of Jackson Street Secondary 2 14,000        4 1,800       0.13          Madison Street South of Airport Boulevard Primary 4 42,600        6,700       0.16          Avenue 60 West of Monroe Street Secondary 3 21,000        4 3,200       0.15          Monroe Street South of Airport Boulevard Primary 3 31,950        5 3,400       0.11          R:\UXRjobs\_12600‐13000\12615\Excel\[12615 ‐ Report.xlsx]3‐4 Avenue 58 1 Existing Number of Through lanes 2 Source: City of La Quinta Engineering Bulletin #06‐13 (Oct 2017) TABLE 3‐4: ROADWAY VOLUME/CAPACITY ANALYSIS FOR EXISTING (2019) CONDITIONS Capacity2 3 Average Daily Traffic (ADT) expressed in vehicles per day. 4 Capacity was calculated as a ratio of 4‐lane Secondary capacity. 5 Capacity was calculated as a ratio of 4‐lane Primary capacity. 38  Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  32  4  PROJECTED FUTURE TRAFFIC  This section presents the traffic volumes estimated to be generated by the Project, as well as  the Project’s trip assignment onto the study area roadway network.  The Project consists of a  master planned themed resort comprised of a wave basin, a 150‐key hotel (with 1,900 square  feet bar, 1,400 square feet restaurant, 4,200 square feet kitchen, 1,100 rooftop bar, 1,200 pool  bar & grill, and 4,200 square feet spa), 104 attached dwelling units, 496 detached dwelling  units, 60,000 square feet of retail, wave village area (with 900 square feet shape studio, 1,600  square feet surf shop, 3,000 square feet board room, 1,800 square feet surf lounge/living room,  800 square feet surf classroom, a fitness pavilion, 1,400 square feet high performance center,  and 5,500 square feet beach club), the farm area (with 2,100 square feet barn, 2,500 square  feet greenhouse, 1,400 square feet equipment barn, 300 square feet tool shed, 1,200 square  feet family camp, 4,500 square feet gym, 2,000 square feet outfitters, and 2,000 square feet  locker  rooms).    In  addition,  back  of  house  complex  consists  of 9,500 square feet resort  operations, 1,500 square feet wave operations, and 1,000 square feet guardhouses.    The wave  basin is a private facility.  For the purposes of this analysis, it is assumed that the Project will be  constructed in three phases, as follows:   Phase 1 (2021) – 12‐acre wave basin facility, a 150‐key hotel, 96 multifamily attached dwelling  units, 26 single family detached dwelling units, 10,000 square feet of retail, and 57,000 square  feet of commercial ancillary uses   Phase 2 (2023) – additional 25,000 square feet of retail for a total of 12‐acre wave basin facility,  a 150‐key hotel, 104 multifamily attached dwelling units, 26 single family detached dwelling  units, and 35,000 square feet of retail   Phase 3 (2026) – additional 25,000 square feet of retail and 470 single family detached dwelling  units  for  a  total  of  12‐acre  wave  basin  facility,  a  150‐key  hotel,  104  multifamily  attached  dwelling units, 496 single family detached dwelling units, 60,000 square feet of retail  The  Coral  Mountain  Specific  Plan  Project  is  proposed  to  be  served  by  the  Project  access  locations listed below:   Madison Street / Main Access (full access)   South Access / Avenue 60 (full access)   Project Access 1 / Avenue 58 (full access)   Project Access 2 / Avenue 58 (right‐in/right‐out access)   Madison Street / Project Access 3 (right‐in/right‐out access)   4.1  PROJECT TRIP GENERATION  Trip generation represents the amount of traffic which is both attracted to and produced by a  development.  Determining traffic generation for a specific project is therefore based upon  forecasting the amount of traffic that is expected to be both attracted to and produced by the  specific land uses being proposed for a given development.  In  accordance  with  the  City  of  La  Quinta’s  Engineering  Bulletin  #06‐13,  the  Project  trip  generation rates to be used for the traffic impact analysis will be based on the Institute of   Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  33  Transportation Engineers (ITE) Trip Generation manual, 10th Edition (2017).  Trip generation  estimates for the Project have been determined by utilizing the published rates for the peak  hour of the generator rather than for the peak hour of adjacent street traffic, where possible.    Trip generation rates are presented on Tables 4‐1 through 4‐3 for Phase 1 through Project  buildout  conditions,  respectively.    ITE  trip  generation  rates  for  Single  Family  Detached  Residential (Code 210), Multifamily Housing (Code 220), Resort Hotel (Code 330), and Shopping  Center (Code 820) are used.  The wave basin is a private facility.  As indicated in the original  approved TIA scope for this Project, trip generation rates for the Wave Basin Facility from the  San  Diego  Association  of  Governments  recreational  park  (developed)  rates  appropriately  account for this private facility.  For the Wave Village area, ITE land use code 861 (sporting  goods  store)  has  been  utilized  and    the  Farm  area,  ITE  land  use  code  495  (recreational  community center) has been utilized.   The project area land uses includes a unique mix of commercial retail, resort, recreation and  residential uses, so reasonable assumptions regarding internal/pass‐by interactions between  these uses are included in the trip generation calculations.  The wave basin facility will be  utilized by hotel guests, but outside trip generation is also included for things like off‐site lunch,  wave basin employees, etc.  Area residents and visitors will use the commercial retail area  facilities (which typically include merchandise, service station and restaurant land uses).  The  total internal/pass‐by trip ends have been adjusted in a manner to ensure that no “double‐ counting” occurs before assigning the project trips to the roadway network.  As shown on Table 4‐1, Phase 1 of the proposed Project is anticipated to generate a net total of  2,227 external trip‐ends per day on a typical weekday with 114 external vehicles per hour (VPH)  during the weekday AM peak hour and 151 external VPH during the weekday PM peak hour.   Table 4‐2 shows trip generation for Phase 2 of the proposed Project, which is anticipated to  generate a net total of 2,778 external trip‐ends per day on a typical weekday with 123 external  vehicles per hour (VPH) during the weekday AM peak hour and 208 external VPH during the  weekday PM peak hour.  As shown on Table 4‐3, at Project buildout, the site is anticipated to generate a net total of  6,994 external trip‐ends per day on a typical weekday with 447 external vehicles per hour (VPH)  during the weekday AM peak hour and 638 external VPH during the weekday PM peak hour.   4.2  PROJECT TRIP DISTRIBUTION  The trip distribution patterns for the proposed Project residential and resort components are  graphically depicted on Exhibit 4‐1.  Exhibit 4‐2 shows the trip distribution patterns for the  proposed Project shopping center components.  The trip distributions have been developed  based on RivTAM and local knowledge in the vicinity of the Project site and refined to reflect  the roadway network and the surrounding uses in the vicinity of the proposed Project as they  exist today and are planned for the future.      In Out Total In Out Total Single Family Detached 210 26 DU 0.19 0.55 0.74 0.62 0.37 0.99 9.44 Multifamily Housing (Low‐Rise) 220 104 DU 0.11 0.35 0.46 0.35 0.21 0.56 7.32 Resort Hotel5 (with bar, restaurant, kitchen, rooftop bar, pool bar & grill, and  spa.  Back of house resort operations included) 330 150 RM 0.27 0.10 0.37 0.20 0.27 0.47 7.87 Shopping Center 820 10 TSF 0.58 0.36 0.94 1.83 1.98 3.81 37.75 Wave Basin Facility6 (Back of house wave operations included)‐4 12 AC 1.20 0.80 2.00 2.40 1.60 4.00 50.00 Wave Village (Studio/Retail)7 (with shape studio, surf shop, board room, surf lounge/living  room, surf classroom, fitness pavilion, high performance center,  & beach club) 861 15 TSF 0.27 0.07 0.34 0.97 1.05 2.02 28.75 The Farm (Recreational Area/Clubhouse)8 (with Barn, Greenhouse, Equipment Barn, Tool Shed, Family  Camp, Gym, Outfitters, & Locker Rooms) 495 16 TSF 1.16 0.60 1.76 1.09 1.22 2.31 28.82 In Out Total In Out Total Single Family Detached 210 26DU5 1419161026245 Multifamily Housing (Low‐Rise) 220 104 DU 11 36 47 36 22 58 761 Internal to Retail/Resort (6) (9) (15) (19) (16) (35) (417) 10 41 51 33 16 49 589 Shopping Center 820 10 TSF 6 4 10 18 20 38 378     Pass‐By (25%)(1) (1) (2) (5) (5) (10) (95) Internal to Residential/Resort (3) (3) (6) (4) (4) (8) (88) 20291120195 Resort Hotel 330 150 RM 41 15 56 30 41 71 1,181 Internal to Residential/Retail (10) (12) (22) (19) (24) (43) (516) 31 3 34111728665 Wave Basin Facility ‐4 12 AC 14 10 24 29 19 48 600 Internal to Residential/Retail/Resort (8) (6) (14) (16) (12) (28) (306) 6 4 10 13 7 20 294 Wave Village 861 15 TSF 3 2 5 16 15 31 431 Internal to Residential/Resort (1) (1) (2) (7) (7) (14) (168) 2139817263 The Farm 495 16TSF181129181937461 Internal to Residential/Resort (9) (6) (15) (9) (11) (20) (240) The Farm External Trips 9 5149 817221 98 92 190 163 146 309 4,057 Internal Capture Subtotal (37) (37) (74) (74) (74) (148) (1,735) Pass‐By (Shopping Center) (1) (1) (2) (5) (5) (10) (95) 60 54 114 84 67 151 2,227 4   Since ITE does not have trip rates for a wave pool facility, similar use based on SANDAG's recreation park (developed) peak hour and daily rates are utilized. 5   Hotel trip rates account for 23.5 tsf of ancillary facilities which include bar, restaurant, kitchen, rooftop bar, pool bar & grill, spa, and back of house resort operations. 6   The Wave Basin Facility trip rates account for pool area and 1.5 tsf of back of house wave operations. 7   Wave Village trip rates account for 15 tsf of ancillary facilities which include shape studio, surf shop, board room, surf lounge/living room, surf classroom,      fitness pavilion, high performance center, & beach club. 8   The Farm trip rates account for 16 tsf of ancillary facilities which include Barn, Greenhouse, Equipment Barn, Tool Shed, Family Camp, Gym, Outfitters, & Locker Rooms. 9   The 1 tsf  back of house guardhouse use is accounted for in the Project rates. C:\UXRjobs\_12600‐13000\12615\Excel\[12615 ‐ Report.xlsx]Ph1 TG_20201015 2  DU = Dwelling Unit; RM = Occupied Room; TSF = Thousand Square Feet 3  Pass‐By Source: Shops at Coral Mountain TIA, prepared by Urban Crossroads, Inc. (November 2009). Shopping Center External Trips Resort Hotel External Trips Wave Basin Facility External Trips Project Subtotal Project Total External Trips 1  Trip Generation Source:  Institute of Transportation Engineers (ITE), Trip Generation Manual, 10th Edition (2017). Daily Wave Village External Trips Residential External Trips Trip Generation Results Land Use ITE LU Code Quantity 2 AM Peak Hour PM Peak Hour TABLE 4‐1: PROJECT PHASE 1 (2021) TRIP GENERATION SUMMARY Trip Generation Rates1 Land Use ITE LU Code Quantity 2 AM Peak Hour PM Peak Hour Daily 41 In Out Total In Out Total Single Family Detached 210 26 DU 0.19 0.55 0.74 0.62 0.37 0.99 9.44 Multifamily Housing (Low‐Rise) 220 104 DU 0.11 0.35 0.46 0.35 0.21 0.56 7.32 Resort Hotel5 (with bar, restaurant, kitchen, rooftop bar, pool bar & grill, and  spa.  Back of house resort operations included) 330 150 RM 0.27 0.10 0.37 0.20 0.27 0.47 7.87 Shopping Center 820 35 TSF 0.58 0.36 0.94 1.83 1.98 3.81 37.75 Wave Basin Facility6 (Back of house wave operations included)‐4 12 AC 1.20 0.80 2.00 2.40 1.60 4.00 50.00 Wave Village (Studio/Retail)7 (with shape studio, surf shop, board room, surf lounge/living  room, surf classroom, fitness pavilion, high performance center,  & beach club) 861 15 TSF 0.27 0.07 0.34 0.97 1.05 2.02 28.75 The Farm (Recreational Area/Clubhouse)8 (with Barn, Greenhouse, Equipment Barn, Tool Shed, Family  Camp, Gym, Outfitters, & Locker Rooms) 495 16 TSF 1.16 0.60 1.76 1.09 1.22 2.31 28.82 In Out Total In Out Total Single Family Detached 210 26DU5 1419161026245 Multifamily Housing (Low‐Rise) 220 104 DU 11 36 47 36 22 58 761 Internal to Retail/Resort (6) (11) (17) (20) (17) (37) (431) 10 39 49 32 15 47 575 Shopping Center 820 35 TSF 20 13 33 64 69 133 1,321     Pass‐By (25%)(4) (4) (8) (16) (16) (32) (330) Internal to Residential/Resort (5) (4) (9) (8) (8) (16) (161) 11 5 16404585830 Resort Hotel 330 150 RM 41 15 56 30 41 71 1,181 Internal to Residential/Retail (11) (12) (23) (21) (26) (47) (564) 3033391524617 Wave Basin Facility ‐4 12 AC 14 10 24 29 19 48 600 Internal to Residential/Retail/Resort (9) (7) (16) (17) (13) (30) (328) 5 3 8 12 6 18 272 Wave Village 861 15 TSF 3 2 5 16 15 31 431 Internal to Residential/Resort (1) (1) (2) (7) (7) (14) (168) 2139817263 The Farm 495 16TSF181129181937461 Internal to Residential/Resort (9) (6) (15) (9) (11) (20) (240) The Farm External Trips 9 5149 817221 112 101 213 209 195 404 5,000 Internal Capture Subtotal (41) (41) (82) (82) (82) (164) (1,892) Pass‐By (Shopping Center) (4) (4) (8) (16) (16) (32) (330) 67 56 123 111 97 208 2,778 4   Since ITE does not have trip rates for a wave pool facility, similar use based on SANDAG's recreation park (developed) peak hour and daily rates are utilized. 5   Hotel trip rates account for 23.5 tsf of ancillary facilities which include bar, restaurant, kitchen, rooftop bar, pool bar & grill, spa, and back of house resort operations. 6   The Wave Basin Facility trip rates account for pool area and 1.5 tsf of back of house wave operations. 7   Wave Village trip rates account for 15 tsf of ancillary facilities which include shape studio, surf shop, board room, surf lounge/living room, surf classroom,      fitness pavilion, high performance center, & beach club. 8   The Farm trip rates account for 16 tsf of ancillary facilities which include Barn, Greenhouse, Equipment Barn, Tool Shed, Family Camp, Gym, Outfitters, & Locker Rooms. 9   The 1 tsf  back of house guardhouse use is accounted for in the Project rates. C:\UXRjobs\_12600‐13000\12615\Excel\[12615 ‐ Report.xlsx]Ph2 TG_20201015 2  DU = Dwelling Unit; RM = Occupied Room; TSF = Thousand Square Feet 3  Pass‐By Source: Shops at Coral Mountain TIA, prepared by Urban Crossroads, Inc. (November 2009). Shopping Center External Trips Resort Hotel External Trips Wave Basin Facility External Trips Project Subtotal Project Total External Trips 1  Trip Generation Source:  Institute of Transportation Engineers (ITE), Trip Generation Manual, 10th Edition (2017). Daily Wave Village External Trips Residential External Trips Trip Generation Results Land Use ITE LU Code Quantity 2 AM Peak Hour PM Peak Hour TABLE 4‐2: PROJECT PHASE 2 (2023) TRIP GENERATION SUMMARY Trip Generation Rates1 Land Use ITE LU Code Quantity 2 AM Peak Hour PM Peak Hour Daily 42 In Out Total In Out Total Single Family Detached 210 496 DU 0.19 0.55 0.74 0.62 0.37 0.99 9.44 Multifamily Housing (Low‐Rise) 220 104 DU 0.11 0.35 0.46 0.35 0.21 0.56 7.32 Resort Hotel5 (with bar, restaurant, kitchen, rooftop bar, pool bar & grill, and  spa.  Back of house resort operations included) 330 150 RM 0.27 0.10 0.37 0.20 0.27 0.47 7.87 Shopping Center 820 60 TSF 0.58 0.36 0.94 1.83 1.98 3.81 37.75 Wave Basin Facility6 (Back of house wave operations included)‐4 12 AC 1.20 0.80 2.00 2.40 1.60 4.00 50.00 Wave Village (Studio/Retail)7 (with shape studio, surf shop, board room, surf lounge/living  room, surf classroom, fitness pavilion, high performance center,  & beach club) 861 15 TSF 0.27 0.07 0.34 0.97 1.05 2.02 28.75 The Farm (Recreational Area/Clubhouse)8 (with Barn, Greenhouse, Equipment Barn, Tool Shed, Family  Camp, Gym, Outfitters, & Locker Rooms) 495 16 TSF 1.16 0.60 1.76 1.09 1.22 2.31 28.82 In Out Total In Out Total Single Family Detached 210 496 DU 94 273 367 308 184 492 4,682 Multifamily Housing (Low‐Rise) 220 104 DU 11 36 47 36 22 58 761 Internal to Retail/Resort (14) (26) (40) (50) (38) (88) (771) 91 283 374 294 168 462 4,672 Shopping Center 820 60 TSF 35 22 57 110 119 229 2,265     Pass‐By (25%)(7) (7) (14) (28) (28) (56) (566) Internal to Residential/Resort (9) (7) (16) (21) (35) (56) (560) 19 8 27 61 56 117 1,139 Resort Hotel 330 150 RM 41 15 56 30 41 71 1,181 Internal to Residential/Retail (17) (14) (31) (23) (28) (51) (612) 2412571320569 Wave Basin Facility ‐4 12 AC 14 10 24 29 19 48 600 Internal to Residential/Retail/Resort (12) (8) (20) (26) (17) (43) (470) 224325130 Wave Village 861 15 TSF 3 2 5 16 15 31 431 Internal to Residential/Resort (1) (1) (2) (7) (7) (14) (168) 2139817263 The Farm 495 16TSF181129181937461 Internal to Residential/Resort (9) (6) (15) (9) (11) (20) (240) The Farm External Trips 9 5149 817221 216 369 585 547 419 966 10,381 Internal Capture Subtotal (62) (62) (124) (136) (136) (272) (2,821) Pass‐By (Shopping Center) (7) (7) (14) (28) (28) (56) (566) 147 300 447 383 255 638 6,994 4   Since ITE does not have trip rates for a wave pool facility, similar use based on SANDAG's recreation park (developed) peak hour and daily rates are utilized. 5   Hotel trip rates account for 23.5 tsf of ancillary facilities which include bar, restaurant, kitchen, rooftop bar, pool bar & grill, spa, and back of house resort operations. 6   The Wave Basin Facility trip rates account for pool area and 1.5 tsf of back of house wave operations. 7   Wave Village trip rates account for 15 tsf of ancillary facilities which include shape studio, surf shop, board room, surf lounge/living room, surf classroom,      fitness pavilion, high performance center, & beach club. 8   The Farm trip rates account for 16 tsf of ancillary facilities which include Barn, Greenhouse, Equipment Barn, Tool Shed, Family Camp, Gym, Outfitters, & Locker Rooms. 9   The 1 tsf  back of house guardhouse use is accounted for in the Project rates. C:\UXRjobs\_12600‐13000\12615\Excel\[12615 ‐ Report.xlsx]Ph3 TG_20201015 TABLE 4‐3: PROJECT BUILDOUT (2026) TRIP GENERATION SUMMARY Trip Generation Rates1,9 Land Use ITE LU Code Quantity 2 AM Peak Hour PM Peak Hour Daily Residential External Trips Trip Generation Results Land Use ITE LU Code Quantity 2 AM Peak Hour PM Peak Hour Shopping Center External Trips Resort Hotel External Trips Wave Basin Facility External Trips Project Subtotal Project Total External Trips 1  Trip Generation Source:  Institute of Transportation Engineers (ITE), Trip Generation Manual, 10th Edition (2017). Daily Wave Village External Trips 2  DU = Dwelling Unit; RM = Occupied Room; TSF = Thousand Square Feet 3  Pass‐By Source: Shops at Coral Mountain TIA, prepared by Urban Crossroads, Inc. (November 2009). 43  Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  37  4.3  MODAL SPLIT  Although the use of public transit, walking, and/or bicycling have  the  potential  to  reduce  Project‐related traffic, such reductions have not been taken into considerations in this traffic  study in order to provide a conservative analysis of the Project’s potential to contribute to  circulation system deficiencies.  4.4  TRIP ASSIGNMENT  The assignment of traffic from the Project area to the adjoining roadway system is based upon  the Project trip generation, trip distribution, and the arterial highway and local street system  improvements that would be in place by the time of initial occupancy of the Project.  Based on  the identified Project traffic generation and trip distribution patterns, Project Phase 1 ADT and  weekday AM and PM peak hour intersection turning movement volumes are shown on Exhibits  4‐3  through  4‐5,  respectively.  Project  Phase  2  ADT  and  weekday AM  and  PM  peak  hour  intersection turning movement volumes are shown on Exhibits 4‐6 through 4‐8, respectively.   Exhibits 4‐9 through 4‐11 show Project buildout ADT and weekday AM and PM peak hour  intersection turning movement volumes, respectively.  4.5  CUMULATIVE GROWTH TRAFFIC   4.5.1  AMBIENT GROWTH   To  account  for  background  growth, an  ambient  growth  rate  is  estimated  for  each  turning  movement between existing 2019 and each cumulative year (2021 for Project Phase 1, 2023 for  Project Phase 2, and 2026 for Project Buildout) conditions.  This background growth is based  upon the relationship between existing traffic volumes and long range projections, interpolated  to reflect the incremental growth calculated from the projections of the RivTAM.  This ambient  growth rate is added to existing traffic volumes to account for area‐wide growth not reflected  by cumulative development projects.    Ambient growth has been added to daily and peak hour traffic volumes on study area  roadways, in addition to traffic generated by the development of future projects that have  been approved but not yet built and/or for which development applications have been filed  and are under consideration by governing agencies.  4.5.2  CUMULATIVE DEVELOPMENT TRAFFIC  California  Environmental  Quality  Act  (CEQA)  guidelines  require that  other  reasonably  foreseeable development projects which are either approved or being processed concurrently  in the study area also be included as part of a cumulative analysis scenario.  A cumulative  project list was developed for the purposes of this analysis through consultation with planning  and engineering staff from the City of La Quinta.  Table 4‐4 provides a summary of the  cumulative  development  land  uses.    Exhibit  4‐12  shows  the  location  of  the  cumulative  development projects.     45 46 47 48 49 50 51 52 53 54 55 Page 1 of 2 # Project/Location Land Use 1 Quantity Units 2 LQ1 Desert Club Apartments Apartments 16 DU LQ2 La Quinta Penthouses Condo/Townhouse 8 DU LQ3 Mountain Village Residences Apartments 6 DU Apartments 104.000 TSF Medical Office 130.450 TSF LQ6 Washington Apartments Apartments 26 DU Multifamily Housing (Low‐Rise) 66 DU Hotel 108 Rooms Shopping Center 305.000 TSF LQ8 Codorniz SFDR 142 DU LQ9 Estate Collection at Coral Mountain SFDR 57 DU LQ10 Villas at Indian Springs SFDR 15 DU LQ11 Bellesera SFDR 320 DU Luxury Hotel 140 Rooms Condo/Townhouse 29 DU Lifestyle Hotel 200 Rooms Condo/Townhouse 66 DU LQ14 American Tire Depot Automobile Parts 6.720 TSF LQ15 Estates at Griffin Lake SFDR 78 DU LQ16 Monterra SFDR 40 DU LQ17 Andalusia at Coral Mountain SFDR 39 DU LQ18 Floresta SFDR 82 DU LQ19 California Desert Museum of Art Museum 18 TSF LQ20 Walsh Urology Medical Office 1.09 AC LQ21 Crabpot Restaurant 1.800 TSF LQ22 Residence Club @ PGA West SFDR 11 DU LQ23 Signature at PGA West SFDR 230 DU LQ24 Casa Mendoza Expansion Restaurant 1.053 TSF LQ25 Pavilion Palms Shopping Center Shopping Center 125.000 TSF LQ26 Griffin Ranch Amendment SFDR 4 DU LQ27 Andalusia Village SFDR 71 DU SFDR 1,200 DU Hotel 100 Rooms SFDR 152 DU Hotel 125 Rooms LQ31 Silverrock Temporary Clubhouse Recreational Facility 3.886 TSF LQ32 Canyon Ridge SFDR 74 DU LQ33 Shops at Coral Mountain Shopping Center 40.7 TSF LQ34 Coral Canyon SFDR 219 DU LQ29 Centre at La Quinta TABLE 4‐4: CUMULATIVE DEVELOPMENT LAND USE SUMMARY City of La Quinta LQ4 Mayer Villa Capri LQ7 The Dune Palms Specific Plan LQ12 SilverRock ‐ Phase I LQ13 SilverRock ‐ Phase II LQ28 Travertine 56 Page 2 of 2 # Project/Location Land Use 1 Quantity Units 2 TABLE 4‐4: CUMULATIVE DEVELOPMENT LAND USE SUMMARY SFDR 230 DU Equestrian Way Station 1.4 AC IW1 TTM No. 37467 SFDR 18 DU Condo/Townhouse 70 DU Hotel 263 Rooms Quality Restaurant 5.500 TSF Health Club 38.000 TSF Shopping Center 15.000 TSF Restaurant 6.300 TSF Retail 350.000 TSF Office 200.000 TSF Hotel 370 Rooms Condo/Townhouse 516 DU I4 La‐Z‐Boy Gallery Retail 15.600 TSF I5 Polo Community Senior & SFDR 560 DU 1 SFDR = Single Family Detached Residential 2 AC = Acres; TSF = Thousand Square Feet; DU = Dwelling Unit R:\UXRjobs\_12600‐13000\12615\Excel\[12615 ‐ Report.xlsx]Cumulatives I3 Polo Square City of Indian Wells IW2 Hotel Development County of Riverside RC1 Vista Soleada City of Indio I1 Jefferson and Hwy. 111 57 LQ19 I3 I2 IW2 LQ29 I1 LQ28 IW1 LQ17 LQ6 LQ4 LQ7 LQ22 LQ13 LQ25 LQ11 LQ9 LQ31 LQ8 LQ15 LQ12 LQ18 LQ23 LQ27 LQ26 LQ32 LQ10 LQ24 LQ16 I4 LQ2 LQ14 I5 SITE RC1MONROE STJACKSON STJEFFERSON STMADISONSTIN D I O BLV D 50TH AVEWASHI N G T O NSTAVENUE 52 AIRPORT BLVD FRED WARING DR 62ND AVE HIGHWAY111 AVENUE 46 EISENHOWER DRAVENUE 48 60TH AVE AVENUE 50 52ND AVE 54TH AVEAVENIDA BERMUDASWASHINGTONSTIN D I O B L V D JEFFERSON STMILES AVE 58TH AVE 54TH AVE RI VI E R A 62ND AVE MADISON STADAMS ST61ST AVE 60TH AVE LIGA CLINTON STAVENUE 44 DUNE PALMS RDPGABLVD51ST AVE REQUA AVE AVENIDA RUBIO53RD AVE 55TH AVEWINGED FOOTHJORTH STWARNER TRLO DLUM D R IROQUOIS DR BURR STDARBY RD AVENUE 45 ME RION H E R M I T A G E MANDARINA C A L I FOR N IA DRMI SSION D R WCLUB DRPARKAVEAVENUE 53 VIA SAV O NAAVENUE 49 WEISKOPF ELLA AVE FAZIO LNN VILLA G E D R DO CTOR CARREON BLVD F A Z I O L N S CALHOUN STCREST AVE CO A CHEL L A D R JEREZA R A CENA NEW YOR K A V E KINGSTON DR YOUNGS LNUL R I C HDRA V EN ID A M O N T E Z U MA ALBION DRQUAILRUNL NAVENUE 43 FIRESTONECALLE QUITOVIAC A R M E L GRANT DR RUSTIC C A N Y O N D R L O M A VIS VIA PE S SARO BAFFINAV E CALLE TEMECULA GABLE DR VIA TESORO YAVAPA MUIRFIELD DR PLUM LN ALMONTEDESERT GROVE DRLAG O D R VECINO WAY PEARRY PL ADAM'S LNLA QUINTA INDIO INDIAN WELLS PALM DESERT I3 LQ34 IW2 LQ29 I1 LQ33 IW1 LQ17 LQ6 LQ4 LQ7 LQ22 LQ13 LQ25 LQ11 LQ1 LQ9 LQ31 LQ8 LQ15 LQ12 LQ23 LQ18 LQ27 LQ26 LQ20 LQ10 LQ24 LQ16 I4 LQ2 LQ14 LQ3LQ21 Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community 1840 The Wave at Coral Mountain EXHIBIT 4-12: CUMULATIVE DEVELOPMENT MAP _N 12615 - CD.mxd 58  Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  52  If applicable, the traffic generated by individual cumulative projects was manually added to the  Cumulative forecasts to ensure that traffic generated by the listed cumulative development  projects are reflected as part of the background traffic.  4.5.3  NEAR‐TERM TRAFFIC FORECASTS  The “buildup” approach combines existing traffic counts with a background ambient growth  factor to forecast EAP (2026) traffic conditions.  Existing Plus Ambient Growth Plus Cumulative  Projects traffic volume forecasts are developed, with and without Project for each of the  following phases:  o Project Phase 1 (2021)  o Project Phase 2 (2023)  o Project Buildout (Phase 3, 2026)  An ambient growth factor is estimated for each turning movement to be utilized in estimating  the  compounded  growth  between  existing  and  Near  Term  Year  (2021,  2023,  and  2026)  conditions, accounting for background (area‐wide) traffic increases that occur over time from  year 2019.    Project traffic is added to assess EAP, EAPC (Phase 1 2021), EAPC (Phase 2 2023), and EAPC  (Project Buildout 2026) traffic conditions.  Cumulative development projects traffic volumes are  not included in EAP traffic conditions.  The near‐term traffic analysis includes the following  traffic conditions, with the various traffic components:   EAP   o Existing 2019 volumes  o Ambient growth traffic for 7 years  o Project Traffic   EAPC (2021)  o Existing 2019 volumes   o Ambient growth traffic  o Cumulative Development traffic  o Project Phase 1 Traffic   EAPC (2023)  o Existing 2019 volumes   o Ambient growth traffic  o Cumulative Development traffic  o Project Phase 2 Traffic   EAPC (2026)  o Existing 2019 volumes   o Ambient growth traffic  o Cumulative Development traffic  o Project Buildout Traffic   Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  53  E+P, EAP (2026), and EAPC (2021, 2023, and 2026) ADT and peak hour traffic volumes are  presented in Section 6 Near Term Conditions Traffic Analysis of this TIA.   4.5.4  YEAR 2040 TRAFFIC FORECASTS  The Year 2040 forecast volumes are based upon an updated version of the Riverside County  Transportation Analysis Model (RivTAM) which became available in the CVAG region during  2016.  It is consistent with the SCAG draft 2016 RTP for the Transportation Project Prioritization  Study (TPPS) 2040 project.        Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  54  5  TRAFFIC IMPACT ASSESSMENT METHODOLOGY  This section discusses the criteria used to determine potentially significant Project impacts and  potentially significant cumulative impacts.    5.1  SCENARIOS  In  accordance  with  the  City  of  La  Quinta’s  traffic  study  guidelines  and  as  documented  in  Appendix 1.1 of this TIA, this study has analyzed the following scenarios:   Existing (2019)   Existing Plus Project (E+P)    Existing Plus Ambient Growth Plus Project (E+A+P)   Existing  Plus  Ambient  Growth  Plus  Cumulative  Projects  Plus  Project  for  each  of  the  following phases:  o Project Phase 1 (2021)  o Project Phase 2 (2023)  o Project Buildout (Phase 3, 2026)  o Project Buildout (Phase 3, 2026) – Special Event   General  Plan  buildout  (2040)  Without  Project  Conditions  –  establishes  future  year  baseline to evaluate the proposed Project   General Plan buildout (2040) With Project Conditions – represents future year baseline  traffic conditions with the proposed Project  5.1.1  EXISTING (2019) CONDITIONS  Existing physical conditions have been disclosed to represent the baseline traffic conditions as  they existed at the time this report was prepared.   5.1.2  E+P CONDITIONS  The  Existing  plus  Project  (E+P)  traffic  conditions  analysis  determines  circulation  system  deficiencies that would occur on the existing roadway system in the scenario of the Project  being placed upon Existing traffic conditions.  For the purposes of this analysis, the E+P analysis  scenario was utilized to determine potentially significant Project impacts associated solely with  the  development  of  the  proposed Project  and  the  corresponding  mitigation  measures  necessary to mitigate these impacts.    5.1.3  EAP CONDITIONS  The Existing plus Ambient Growth plus Project (EAP) conditions analysis determines the traffic  impacts based on a comparison of the EAP traffic conditions to Existing conditions (i.e., baseline  conditions).  To account for background traffic growth, ambient growth from Existing conditions  is included for EAP (2026) traffic conditions.  Cumulative development projects are not included  as part of the EAP analysis.   Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  55  5.1.4  EAPC (2021) CONDITIONS  To account for background traffic, other known cumulative development projects in the study  area were included in addition to ambient growth is included for EAPC Project Phase 1 (2021)  traffic conditions in conjunction with traffic associated with the proposed Project.    The  EAPC  traffic  conditions  analysis  will  be  utilized  to  determine  if  improvements  funded  through local and regional transportation mitigation fee programs such as the Transportation  Uniform  Mitigation  Fee  (TUMF)  program,  City  of  La  Quinta  Development  Impact  Fee  (DIF)  program, or other approved funding mechanism can accommodate the near‐term cumulative  traffic at the target LOS identified in the City of La Quinta’s traffic study guidelines.    5.1.5  EAPC (2023) CONDITIONS  To account for background traffic, other known cumulative development projects in the study  area were included in addition to ambient growth is included for EAPC Project Phase 2 (2023)  traffic conditions in conjunction with traffic associated with the proposed Project.    The  EAPC  traffic  conditions  analysis  will  be  utilized  to  determine  if  improvements  funded  through local and regional transportation mitigation fee programs such as the Transportation  Uniform  Mitigation  Fee  (TUMF)  program,  City  of  La  Quinta  Development  Impact  Fee  (DIF)  program, or other approved funding mechanism can accommodate the near‐term cumulative  traffic at the target LOS identified in the City of La Quinta’s traffic study guidelines.    5.1.6  EAPC (2026) CONDITIONS  To account for background traffic, other known cumulative development projects in the study  area were included in addition to ambient growth is included for EAPC Project buildout (2026)  traffic conditions in conjunction with traffic associated with the proposed Project.    The  EAPC  traffic  conditions  analysis  will  be  utilized  to  determine  if  improvements  funded  through local and regional transportation mitigation fee programs such as the Transportation  Uniform  Mitigation  Fee  (TUMF)  program,  City  of  La  Quinta  Development  Impact  Fee  (DIF)  program, or other approved funding mechanism can accommodate the near‐term cumulative  traffic at the target LOS identified in the City of La Quinta’s traffic study guidelines.    5.1.7  YEAR 2040 CONDITIONS  The Year 2040 analysis determines if the City of La Quinta Circulation Element is adequate to  accommodate future traffic at the target LOS, or if additional mitigation is necessary.  This  section provides recommended intersection and segment lanes to provide acceptable levels of  service for three roadway network scenarios.    5.2  POTENTIALLY SIGNIFICANT TRAFFIC IMPACT CRITERIA  Potentially  significant  Project  traffic  impacts  are  divided  separately  into  intersection  and  roadway segment traffic impacts.  Intersections and roadway segments are evaluated for both  potentially significant Project and cumulative impacts.    Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  56  The  potentially  significant  Project  and  cumulative  impact  criteria  described  below  for  both  intersection and roadway segments per the City of La Quinta’s traffic study guidelines.  5.2.1  INTERSECTIONS  Potentially Significant Project Impacts  Pursuant to the criteria outlined for the analysis of study area intersections using the HCM  methodology, a potentially significant Project impact is defined  to  occur  at  any  signalized  intersection if the addition of Project trips will result in the LOS for that intersection to exceed  the criteria established in Table 5‐1 for E+P and EAP traffic conditions.    TABLE 5‐1: IMPACT CRITERIA FOR INTERSECTIONS ALREADY OPERATING AT LOS E OR LOS F  Significant Changes in LOS  LOS E An increase in delay of 2 seconds or more  LOS F  An increase in delay of 1 second or more  Source: City of La Quinta Engineering Bulletin #06‐13 Table 4.0 A potentially significant Project impact at an unsignalized study area intersection is defined to  occur when an intersection has a projected LOS F on a side street for a two‐way stop control or  LOS E or worse for the intersection an all‐way stop controlled intersection and the addition of  Project traffic results in an addition of 3 seconds or more of delay for any movement.   Potentially Significant Cumulative Impacts  A potentially significant cumulative impact is defined to occur at any signalized intersection if  the addition of Project trips will result in the LOS for that intersection to exceed the criteria  established in Table 5‐1 for EAPC traffic conditions.    A potentially significant cumulative impact at an unsignalized study area intersection is defined  to occur when, with Project traffic included, an intersection has a projected LOS F on a side  street for a two‐way stop control or LOS E or worse for the intersection  an  all‐way  stop  controlled intersection and the addition of Project traffic results in an addition of 3 seconds or  more of delay for any movement.   5.2.2  ROADWAY SEGMENTS  Potentially Significant Project Impacts  A potentially significant Project impact is defined to occur at any study area roadway segment if  the segment is projected to be operating at LOS E or LOS F and the V/C ratio increases by 0.02  or more with the addition of Project traffic for E+P and EAP traffic conditions.   Potentially Significant Cumulative Impacts  A  potentially  significant  cumulative  impact  is  defined  to  occur  at  any  study  area  roadway  segment if the Project would cause the Existing LOS to fall to worse than LOS D for EAPC traffic  conditions.  A potentially significant cumulative impact is also defined to occur on any study   Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  57  area roadway segment that is already operating at LOS E or LOS F, if the Project traffic will  increase the V/C ratio by more than 0.02 for EAPC traffic conditions.   5.3  TRAFFIC SIGNAL WARRANT ANALYSIS METHODOLOGY  The term "signal warrants" refers to the list of established criteria used by Caltrans and other  public agencies to quantitatively justify or ascertain the potential need for installation of a  traffic signal at an otherwise unsignalized intersection.  This TIA uses the signal warrant criteria  presented in the latest edition of the Federal Highway Administration’s (FHWA) Manual on  Uniform  Traffic  Control  Devices (MUTCD),  as  amended  by the  MUTCD  2012  California  Supplement, for all study area intersections.   The signal warrant criteria for Existing conditions are based upon several factors, including  volume of vehicular and pedestrian traffic, frequency of accidents, and location of school areas.   Both  the  FHWA’s MUTCD  and  the MUTCD  2012  California  Supplement  indicate  that  the  installation of a traffic signal should be considered if one or more of the signal warrants are  met.  Specifically, this TIA utilizes the Peak Hour Volume‐based Warrant 3 as the appropriate  representative traffic signal warrant analysis for existing traffic conditions.  Warrant 3 criteria  are basically identical for both the FHWA’s MUTCD and the MUTCD 2012 California Supplement.   Warrant 3 is appropriate to use for this TIA because it provides specialized warrant criteria for  intersections with rural characteristics (e.g. located in communities with populations of less  than 10,000 persons or with adjacent major streets operating above 40 miles per hour).  For the  purposes of this study, the speed limit was the basis for determining whether Urban or Rural  warrants were used for a given intersection.     Future intersections that do not currently exist have been assessed regarding the potential  need for new traffic signals based on future average daily traffic (ADT) volumes, using the  Caltrans planning level ADT‐based signal warrant analysis worksheets.  It is important to note that a signal warrant defines the minimum condition under which the  installation of a traffic signal might be warranted.  Meeting this threshold condition does not  require that a traffic control signal be installed at a particular location, but rather, that other  traffic factors and conditions be evaluated in order to determine whether the signal is truly  justified.  It should also be noted that signal warrants do not necessarily correlate with LOS.  An  intersection may satisfy a signal warrant condition and operate at or above acceptable LOS or  operate below acceptable LOS and not meet a signal warrant.    5.4  QUEUING ANALYSIS  For the purpose of this analysis, the 95th percentile queuing of vehicles has been assessed at  Project access locations.    The traffic progression analysis tool and HCM intersection analysis program, Synchro, has been  used to assess the potential deficiencies/needs of the intersections with traffic added from the  proposed Project.  Storage (turn‐pocket) length recommendations have been based upon the  95th  percentile  queue  resulting  from the  Synchro  progression  analysis.  The queue length  reported is for the lane with the highest queue in the lane group.   Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  58  A vehicle is considered queued whenever it is traveling at less than 10 feet/second.  A vehicle  will only become queued when it is either at the stop bar or behind another queued vehicle.   Although only the 95th percentile queue has been reported in the tables, the 50th percentile  queue can be found in the appendix alongside the 95th percentile queue for each ramp location.   The 50th percentile maximum queue is the maximum back of queue on a typical cycle during the  peak hour, while the 95th percentile queue is the maximum back of queue with 95th percentile  traffic volumes during the peak hour.  In other words, if traffic were observed for 100 cycles,  the 95th percentile queue would be the queue experienced with the 95th busiest cycle (or 5% of  the time).  The 50th percentile or average queue represents the typical queue length for peak  hour traffic conditions, while the 95th percentile queue is derived from the average queue plus  1.65 standard deviations.  The 95th percentile queue is not necessarily ever observed, it is  simply based on statistical calculations.  5.5  PROJECT FAIR SHARE CALCULATION METHODOLOGY  In cases where this TIA identifies that the proposed Project would have a significant cumulative  impact to a roadway facility, the following methodology was applied to determine the fair share  contribution.  A project’s fair share  contribution  at  an  off‐site  study  area  intersection  is  determined based on the following equation, which is the ratio of Project traffic to total traffic:  Project Fair Share % = Project Traffic / (EAPC With Project Traffic)  The  Project  fair  share  contribution  calculations  are  presented in Section 9.4 Fair  Share  Contribution of this TIA.   Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  59  This Page Intentionally Left Blank      Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  60  6  NEAR TERM CONDITIONS TRAFFIC ANALYSIS  This section discusses the results of the near‐term HCM intersection  analysis  and  roadway  segment capacity analysis.  This section also identifies any potentially significant Project and  cumulative traffic impacts to the study area intersections and roadway segments.   6.1  E+P CONDITIONS  E+P ADT, weekday AM and weekday PM peak hour volumes are shown on Exhibits 6‐1 through  6‐3, respectively.  6.1.1  INTERSECTION OPERATIONS ANALYSIS  LOS calculations were conducted for the study intersections to evaluate their operations under  E+P  traffic  conditions  with  roadway  and  intersection  geometrics  consistent  with  those  described in Section 5.1.2 E+P Conditions.  The intersection analysis results are summarized in  Table  6‐1,  which  indicates  that  the  study  area  intersections  are  projected  to  operate  at  acceptable level of service, with existing geometry.  The  intersection  operations  analysis  worksheets  for  E+P  traffic  conditions  are  included  in  Appendix 6.1 of this TIA.  6.1.2  ROADWAY SEGMENT CAPACITY ANALYSIS  The roadway segment capacities are approximate figures only, and are typically used at the  General Plan level to assist in determining the roadway functional classification (number of  through lanes) needed to meet future forecasted traffic demand. Table 6‐2 provides a summary  of the E+P traffic conditions roadway segment capacity analysis based on the City of La Quinta  roadway segment capacity thresholds identified previously.  As shown on Table 6‐2, all study  roadway  segments  analyzed  are  anticipated  to  operate  at  acceptable  LOS  for  E+P  traffic  conditions.   6.1.3  TRAFFIC SIGNAL WARRANT ANALYSIS  Traffic signal warrant analyses have been performed at all applicable unsignalized study area  intersections for E+P traffic conditions (see Appendix 6.2).  No additional intersections (beyond  the four that satisfy signal warrants for Existing conditions) are projected to satisfy traffic signal  warrants for E+P conditions.  6.2  EAP CONDITIONS  EAP ADT, weekday AM, and weekday PM peak hour volumes are shown on Exhibits 6‐4 through  6‐6, respectively.  The Existing plus Ambient plus Project scenario includes the entire Project  and seven years of background growth.       68 69 70 LTRLTRLTRLTRAMPMAMPM 1Madison St. / Avenue 58 AWS 12112d11112110.012.8 A B 2Madison St. / Airport Blvd. TS 12d1200001018.89.9 A A 3Madison St. / Avenue 54 AWS 22112012d12115.223.5 C C 4Madison St. / Avenue 52 TS 22122d12d12129.130.0 C C 5Madison St. / Avenue 50 TS 22122112112129.129.8 C C 6 Jefferson St. / Avenue 54 AWS0.510.522112011113.220.1 B C 7 Jefferson St. / Avenue 52 RDB 0.5 0.5 1>> 0.5 0.5 1>> 0.5 0.5 1>> 0.5 0.5 1>> 10.6 11.2 B B 8 Jefferson St. / Pomelo TS 1301300.50.510.50.518.814.3 A B 9 Jefferson St. / Avenue 50 TS 13123112111146.549.4 D D 10 Madison St. / Avenue 60 AWS 0001010.50.500118.79.5 A A 11 Monroe St. / Avenue 60 AWS 1101110.50.5101!08.58.9 A A 12 Monroe St. / Avenue 58 AWS 0 1! 0 0.5 0.5 1 0 1! 0 0 1! 0 8.9 11.0 A B 13 Monroe St. / Airport Blvd. AWS 11012d11101!09.010.0 A B 14 Monroe St. / Avenue 54 AWS 01!00.50.5111001!016.314.4 C B 15 Monroe St. / Avenue 52 AWS 01!012011112d16.834.3 C D 16 Monroe St. / 50th Avenue TS 120120111111>16.618.5 B B 17 Jackson St. / 58th Avenue AWS 0 1! 0 0 1! 0 0 1! 0 0 1! 0 7.7 8.6 A A 18 S. Access / Avenue 60 CSS 00001!001 001 08.98.9 A A 19 Madison St. / Main Access CSS 1 200201 0 1 0 0 0 12.7 15.6 B C 20 Project Access 1 / Avenue 58 CSS 0 1!00000101*209.29.8 A A 21 Project Access 2 / Avenue 58 CSS 001 0000100208.69.0 A A 22 Madison St. / Project Access 3 CSS 020020001 0 0 0 8.9 10.1 A B 1  When a right turn is designated, the lane can either be striped or unstriped.  To function as a right turn lane there must be sufficient width for right turning vehicles to travel outside the through lanes. 2 Per the Highway Capacity Manual 6th Edition (HCM6), overall average intersection delay and level of service are shown for intersections with a traffic signal or all way stop control. For intersections with cross street stop control, the delay and level of service for the worst individual movement (or movements sharing a single lane) are shown. Delay and level of service is calculated using Synchro 10.1 analysis software. 3 TS = Traffic Signal; CSS = Cross‐street Stop; AWS = All‐Way Stop; RDB = Roundabout R:\UXRjobs\_12600‐13000\12615\Excel\[12615 ‐ Report.xlsx]6‐1  L  =  Left;  T  =  Through;  R  =  Right; > = Right‐Turn Overlap Phasing;  >> = Free‐Right Turn Lane; d= Defacto Right Turn Lane;  1 = Improvement Eastbound Westbound  * =  Left turn lane accommodated within two‐way left turn lane TABLE 6‐1: INTERSECTION ANALYSIS FOR EXISTING PLUS PROJECT CONDITIONS Delay2 (Secs) Level of  Service2Northbound Southbound #Intersection Traffic Control3 Intersection Approach Lanes1 71 Roadway Segment Roadway Designation Through  Travel  Lanes1 ADT3 Volume/ Capacity  Ratio West of Madison Street Secondary 3 21,000        4 2,300       0.11          West of Monroe Street Secondary 4 28,000        4,100       0.15          West of Jackson Street Secondary 2 14,000        4 2,700       0.19          Madison Street South of Airport Boulevard Primary 4 42,600        9,700       0.23          Avenue 60 West of Monroe Street Secondary 3 21,000        4 4,500       0.21          Monroe Street South of Airport Boulevard Primary 3 31,950        5 4,400       0.14          R:\UXRjobs\_12600‐13000\12615\Excel\[12615 ‐ Report.xlsx]6‐2 TABLE 6‐2: ROADWAY VOLUME/CAPACITY ANALYSIS FOR EXISTING PLUS PROJECT CONDITIONS Capacity2 Avenue 58 5 Capacity was calculated as a ratio of 4‐lane Primary capacity. 1 Existing Number of Through lanes 2 Source: City of La Quinta Engineering Bulletin #06‐13 (Oct 2017) 3 Average Daily Traffic (ADT) expressed in vehicles per day. 4 Capacity was calculated as a ratio of 4‐lane Secondary capacity. 72 73 74 75  Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  69  6.2.1  INTERSECTION OPERATIONS ANALYSIS  LOS calculations were conducted for the study intersections to evaluate their operations under  EAP  traffic  conditions  with  roadway  and  intersection  geometrics  consistent  with  those  described in Section 5.1.3 EAP Conditions.  The intersection analysis results are summarized in  Table 6‐3, which indicates that the following five study area intersections are anticipated to  require  installation  of  a  traffic  signal  (which  is  funded  in  the  CIP)  in  order  to  maintain  acceptable LOS under EAP conditions:     Madison Street at Avenue 54    Jefferson Street at Avenue 54   Monroe Street at Avenue 58   Monroe Street at Avenue 54   Monroe Street at Avenue 52  EAP analysis results indicates that the intersection of Jefferson Street at Avenue 52 experiences  deficient operations under cumulative “without project” conditions.  Jefferson Street at Avenue  52 requires reconstruction of the current roundabout design to incorporate 2 circulating lanes  around the center island.  This effectively accommodates an additional through lane in the  northbound and southbound directions to provide acceptable LOS. The intersection operations  analysis worksheets for EAP traffic conditions are included in Appendix 6.3 of this TIA.  6.2.2  ROADWAY SEGMENT CAPACITY ANALYSIS  Roadway  segment  capacity  analysis  based  upon  approximate  capacities  used  to  assist  in  determining the roadway functional classification (number of through lanes) needed to meet  future forecasted traffic demand is summarized on Table 6‐4 for EAP traffic conditions.  As  shown on Table 6‐4, study roadway segments analyzed are anticipated to operate at acceptable  LOS under EAP traffic conditions.    The addition of Project traffic is not anticipated to result in  any roadway segment capacity deficiencies.  6.2.3  TRAFFIC SIGNAL WARRANT ANALYSIS  Traffic signal warrant analyses have been performed at all applicable unsignalized study area  intersections for EAP traffic conditions (see Appendix 6.4).  Additional intersections (beyond the  eight that satisfy signal warrants for Existing or E+P conditions) that are projected to satisfy  traffic signal warrants for EAP conditions are:   Madison Street at Avenue 58   Madison Street at Main Access   Monroe Street at Avenue 58   Monroe Street at Airport Boulevard       L T R L T R L T R L T R AM PM AM PM AM PM AM PM 1Madison St. / Avenue 58 AWS 12112d1111219.712.1AB11.919.9B C 2Madison St. / Airport Blvd. TS 12d12000010110.011.4AB10.011.4AB 3Madison St. / Avenue 54 ‐ Without Improvements AWS 22112012d12141.4 >80 E F 57.7 >80 F F ‐ With Improvements TS 22112012d12135.636.1DD36.938.2DD 4Madison St. / Avenue 52 TS 22122d12d12130.231.3C C31.032.2C C 5Madison St. / Avenue 50 TS 22122112112131.032.1C C31.332.4C C 6 Jefferson St. / Avenue 54 ‐ Without Improvements AWS0.510.522112011118.772.4 C F 22.2 >80 C F ‐ With Improvements TS 0.510.5221120111>24.4 25.0 C C 24.7 25.5 C C 7 Jefferson St. / Avenue 52 ‐ Without Improvements RDB 0.5 0.5 1>> 0.5 0.5 1>> 0.5 0.5 1>> 0.5 0.5 1>> 18.5 36.7 C E 21.9 40.4 C E ‐ Without Improvements RDB 0.5 1.5 1>> 0.5 1.5 1>> 0.5 0.5 1>> 0.5 0.5 1>> 7.8 8.6 A A 8.3 9.5 A A 8 Jefferson St. / Pomelo TS 1301300.50.510.50.518.014.0AB10.614.4B B 9 Jefferson St. / Avenue 50 TS 13123112111146.650.4DD46.850.4DD 10 Madison St. / Avenue 60 AWS 0001010.50.500118.911.0AB9.511.9AB 11 Monroe St. / Avenue 60 AWS 1101110.50.5101!09.510.9AB10.012.1B B 12 Monroe St. / Avenue 58 ‐ Without Improvements AWS 0 1! 0 0.5 0.5 1 0 1! 0 0 1! 0 9.8 20.1 A C 11.2 39.8 B E ‐ With Improvements TS 0 1! 0 0.5 0.5 1 0 1! 0 0 1! 0 22.1 23.0 C C 24.4 24.5 C C 13 Monroe St. / Airport Blvd. AWS 11012d11101!010.615.4B C11.518.8B C 14 Monroe St. / Avenue 54 ‐ Without Improvements AWS 01!00.50.5111001!050.7 70.1 F F 66.1 >80 F F ‐ With Improvements TS 01!00.50.5111001!025.425.9C C25.425.9C C 15 Monroe St. / Avenue 52 ‐ Without Improvements AWS 01!012011112d39.4 >80 E F 50.4 >80 F F ‐ With Improvements TS 01!012011112d12.615.4B B12.916.1B B 16 Monroe St. / 50th Avenue TS 120120111111>17.121.8B C17.221.8B C 17 Jackson St. / 58th Avenue AWS 0 1! 0 0 1! 0 0 1! 0 0 1! 0 8.4 11.3 A B 8.8 12.4 A B 18 S. Access / Avenue 60 CSS 00001!001 001 08.98.9AA 19 Madison St. / Main Access CSS 1 200201 0 1 0 0 0 14.8 19.2 B C 20 Project Access 1 / Avenue 58 CSS 0 1!00000101*2 0 9.3 10.0 A B 21 Project Access 2 / Avenue 58 CSS 001 000010020 8.69.2AA 22 Madison St. / Project Access 3 CSS 020020001 0 0 0 9.3 10.6 A B 1  When a right turn is designated, the lane can either be striped or unstriped.  To function as a right turn lane there must be sufficient width for right turning vehicles to travel outside the through lanes. 2 Per the Highway Capacity Manual 6th Edition (HCM6), overall average intersection delay and level of service are shown for intersections with a traffic signal or all way stop control. For intersections with cross street stop control, the delay and level of service for the worst individual movement (or movements sharing a single lane) are shown. Delay and level of service is calculated using Synchro 10.1 analysis software. BOLD = LOS does not meet the applicable jurisdictional requirements (i.e., unacceptable LOS).   3 TS = Traffic Signal; CSS = Cross‐street Stop; AWS = All‐Way Stop; RDB = Roundabout R:\UXRjobs\_12600‐13000\12615\Excel\[12615 ‐ Report.xlsx]6‐3  L  =  Left;  T  =  Through;  R  =  Right; > = Right‐Turn Overlap Phasing;  >> = Free‐Right Turn Lane; d= Defacto Right Turn Lane;  1 = Improvement  * =  Left turn lane accommodated within two‐way left turn lane Future Intersection Future Intersection Future Intersection Future Intersection Future Intersection TABLE 6‐3: INTERSECTION ANALYSIS FOR EXISTING PLUS AMBIENT WITHOUT AND WITH PROJECT CONDITIONS Delay2 (Secs) Level of  Service2Northbound Southbound Delay2 (Secs) Level of  Service2 #Intersection Traffic Control3 Intersection Approach Lanes1 EA (2026) Without Project EA (2026) With Project Eastbound Westbound 77 ADT3 Volume/ Capacity  Ratio ADT 3 Volume/ Capacity  Ratio West of Madison Street Secondary 3 21,000        4 2,900       0.14          3,500       0.17           West of Monroe Street Secondary 4 28,000        3,700       0.13          5,600       0.20           West of Jackson Street Secondary 2 14,000        4 3,900       0.28          4,700       0.34           Madison Street South of Airport Boulevard Primary 4 42,600        10,700     0.25          13,700     0.32           Avenue 60 West of Monroe Street Secondary 3 21,000        4 6,000       0.29          7,300       0.35           Monroe Street South of Airport Boulevard Primary 3 31,950        5 6,000       0.19          7,100       0.22           R:\UXRjobs\_12600‐13000\12615\Excel\[12615 ‐ Report.xlsx]6‐4 Avenue 58 5 Capacity was calculated as a ratio of 4‐lane Primary capacity. 1 Existing Number of Through lanes 2 Source: City of La Quinta Engineering Bulletin #06‐13 (Oct 2017) 3 Average Daily Traffic (ADT) expressed in vehicles per day. 4 Capacity was calculated as a ratio of 4‐lane Secondary capacity. TABLE 6‐4: ROADWAY VOLUME/CAPACITY ANALYSIS FOR EXISTING PLUS AMBIENT WITHOUT AND WITH PROJECT CONDITIONS Without Project With Project Capacity2 Through  Travel  Lanes1 Roadway DesignationSegmentRoadway 78  Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  72  6.3  EAPC PHASE 1 (2021) CONDITIONS  EAPC  Project  Phase  1  (2021)  ADT,  weekday  AM,  and  weekday  PM  peak  hour  volumes  are  shown on Exhibits 6‐7 through 6‐9, respectively.  6.3.1  INTERSECTION OPERATIONS ANALYSIS  LOS calculations were conducted for the study intersections to evaluate their operations under  EAPC Project Phase 1 (2021) traffic conditions with roadway and  intersection  geometrics  consistent  with  those  described  in  Section  5.1.4 EAPC  (2021)  Conditions.  The intersection  analysis results are summarized in Table 6‐5, which indicates that the following four study area  intersections are anticipated to require installation of a traffic signal (which is funded in the CIP)  in order to maintain acceptable LOS under EAPC conditions:     Madison Street at Avenue 54    Jefferson Street at Avenue 54   Monroe Street at Avenue 54   Monroe Street at Avenue 52  EAPC analysis results in a cumulatively impacted intersection for Jefferson Street at Avenue 52.   The  intersection  operations  analysis  worksheets  for  EAPC  Project  Phase  1  (2021)  traffic  conditions are included in Appendix 6.5 of this TIA.  Table 6‐5 also documents conditions with improvements to attain acceptable LOS.  Jefferson  Street at Avenue 52 requires reconstruction of the current roundabout design to incorporate 2  circulating  lanes  around  the  center  island.    This  effectively  accommodates  an  additional  through lane in the northbound and southbound directions to provide acceptable LOS.   6.3.2  ROADWAY SEGMENT CAPACITY ANALYSIS  The roadway segment capacities are approximate figures only, and are typically used at the  General Plan level to assist in determining the roadway functional classification (number of  through lanes) needed to meet future forecasted traffic demand. Table 6‐6 provides a summary  of the EAPC Project Phase 1 (2021) traffic conditions roadway segment capacity analysis based  on the City of La Quinta roadway segment capacity thresholds identified previously in Table 3‐4.   As shown on Table 6‐6, all study roadway segments analyzed are anticipated to operate at  acceptable LOS under EAPC Project Phase 1 (2021) traffic conditions.   6.3.3  TRAFFIC SIGNAL WARRANT ANALYSIS  Traffic signal warrant analyses have been performed at all applicable unsignalized study area  intersections  for  EAPC  Project  Phase  1  (2021)  traffic  conditions  (see  Appendix  6.6).  Three  additional intersections are projected to satisfy traffic signal warrants beyond the four that  satisfy signal warrants for E+P conditions:   Madison Street at Avenue 58    Monroe Street at Avenue 58   Monroe Street at Airport Boulevard  80 81 82 L T R L T R L T R L T R AM PM AM PM AM PM AM PM 1Madison St. / Avenue 58 AWS 12112d11112110.914.2B B11.415.6B C 2Madison St. / Airport Blvd. TS 12d1200001018.810.2AB8.910.2AB 3Madison St. / Avenue 54 ‐ Without Improvements AWS 22112012d12121.347.6 C E 22.6 53.0 C F ‐ With Improvements TS 22112012d12131.431.6C C31.531.7C C 4Madison St. / Avenue 52 TS 22122d12d12130.230.0C C30.530.2C C 5Madison St. / Avenue 50 TS 22122112112129.931.3C C30.031.3C C 6 Jefferson St. / Avenue 54 ‐ Without Improvements AWS0.510.522112011118.849.7 C E 19.3 52.1 C F ‐ With Improvements TS 0.510.522112011136.139.9DD36.240.3DD 7 Jefferson St. / Avenue 52 ‐ Without Improvements RDB 0.5 0.5 1>> 0.5 0.5 1>> 0.5 0.5 1>> 0.5 0.5 1>>42.8 78.7 E F 44.3 >80 E F ‐ Without Improvements RDB 0.5 1.5 1>> 0.5 1.5 1>> 0.5 0.5 1>> 0.5 0.5 1>> 10.2 12.8 B B 10.3 13.0 B B 8 Jefferson St. / Pomelo TS 1301300.50.510.50.519.334.4AC9.434.4AC 9 Jefferson St. / Avenue 50 TS 13123112111152.450.6DD52.550.7DD 10 Madison St. / Avenue 60 AWS 0001010.50.500118.810.6AB8.910.8AB 11 Monroe St. / Avenue 60 AWS 1101110.50.5101!010.412.0B B10.512.3B B 12 Monroe St. / Avenue 58 AWS 0 1! 0 0.5 0.5 1 0 1! 0 0 1! 0 10.8 23.8 B C 11.0 26.8 B D 13 Monroe St. / Airport Blvd. AWS 11012d11101!011.113.8B B11.314.1B B 14 Monroe St. / Avenue 54 ‐ Without Improvements AWS 01!00.50.5111001!031.135.7 D E 33.0 35.9 D E ‐ With Improvements TS 01!00.50.5111001!023.523.0C C23.723.2C C 15 Monroe St. / Avenue 52 ‐ Without Improvements AWS 01!012011112d50.3 >80 F F 53.1 >80 F F ‐ With Improvements TS 01!012011112d13.014.7B B13.014.7B B 16 Monroe St. / 50th Avenue TS 120120111111>16.320.4B C16.320.4B C 17 Jackson St. / 58th Avenue AWS 0 1! 0 0 1! 0 0 1! 0 0 1! 0 8.1 9.8 A A 8.1 9.8 A A 18 S. Access / Avenue 60 CSS 00001!001 001 08.68.6AA 19 Madison St. / Main Access CSS 1 200201 0 1 0 0 0 11.2 12.6 B B 20 Project Access 1 / Avenue 58 CSS 0 1!00000101*2 0 9.9 10.6 A B 21 Project Access 2 / Avenue 58 CSS 001 000010020 9.39.8AA 22 Madison St. / Project Access 3 CSS 020020001 000 9.09.7AA 1  When a right turn is designated, the lane can either be striped or unstriped.  To function as a right turn lane there must be sufficient width for right turning vehicles to travel outside the through lanes. 2 Per the Highway Capacity Manual 6th Edition (HCM6), overall average intersection delay and level of service are shown for intersections with a traffic signal or all way stop control. For intersections with cross street stop control, the delay and level of service for the worst individual movement (or movements sharing a single lane) are shown. Delay and level of service is calculated using Synchro 10.1 analysis software. BOLD = LOS does not meet the applicable jurisdictional requirements (i.e., unacceptable LOS).   3 TS = Traffic Signal; CSS = Cross‐street Stop; AWS = All‐Way Stop; RDB = Roundabout R:\UXRjobs\_12600‐13000\12615\Excel\[12615 ‐ Report.xlsx]6‐5 Eastbound Westbound TABLE 6‐5: INTERSECTION ANALYSIS FOR PHASE 1 (2021) WITHOUT AND WITH PROJECT CONDITIONS Delay2 (Secs) Level of  Service2Northbound Southbound  L  =  Left;  T  =  Through;  R  =  Right; > = Right‐Turn Overlap Phasing;  >> = Free‐Right Turn Lane; d= Defacto Right Turn Lane;  1 = Improvement  * =  Left turn lane accommodated within two‐way left turn lane Future Intersection Delay2 (Secs) Level of  Service2 #Intersection Traffic Control3 Intersection Approach Lanes1 Without Project Future Intersection Future Intersection With Project Future Intersection Future Intersection 83 ADT3 Volume/ Capacity  Ratio ADT 3 Volume/ Capacity  Ratio West of Madison Street Secondary 3 21,000        4 4,700       0.22         5,100       0.24          West of Monroe Street Secondary 4 28,000        4,800       0.17         5,300       0.19          West of Jackson Street Secondary 2 14,000        4 2,700       0.19         2,900       0.21          Madison Street South of Airport Boulevard Primary 4 42,600        11,200     0.26         12,100     0.28          Avenue 60 West of Monroe Street Secondary 3 21,000        4 4,700       0.22         5,100       0.24          Monroe Street South of Airport Boulevard Primary 3 31,950        5 6,600       0.21         6,900       0.22          R:\UXRjobs\_12600‐13000\12615\Excel\[12615 ‐ Report.xlsx]6‐6 Avenue 58 5 Capacity was calculated as a ratio of 4‐lane Primary capacity. 1 Existing Number of Through lanes 2 Source: City of La Quinta Engineering Bulletin #06‐13 (Oct 2017) 3 Average Daily Traffic (ADT) expressed in vehicles per day. 4 Capacity was calculated as a ratio of 4‐lane Secondary capacity. TABLE 6‐6: ROADWAY VOLUME/CAPACITY ANALYSIS FOR PHASE 1 (2021) WITHOUT AND WITH PROJECT CONDITIONS Roadway Segment Roadway Designation Through  Travel  Lanes1 Capacity2 Without Project With Project 84  Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  78  6.4  EAPC PHASE 2 (2023) CONDITIONS  EAPC  Project  Phase  2  (2023)  ADT,  weekday  AM,  and  weekday  PM  peak  hour  volumes  are  shown on Exhibits 6‐10 through 6‐12, respectively.  6.4.1  INTERSECTION OPERATIONS ANALYSIS  LOS calculations were conducted for the study intersections to evaluate their operations under  EAPC Project Phase 2 (2023) traffic conditions with roadway and  intersection  geometrics  consistent  with  those  described  in  Section  5.1.5 EAPC  (2023)  Conditions.  The intersection  analysis results are summarized in Table 6‐7, which indicates that the following five study area  intersections are anticipated to require installation of a traffic signal (which is funded in the CIP)  in order to maintain acceptable LOS under EAPC Phase 2 conditions:     Madison Street at Avenue 54    Jefferson Street at Avenue 54   Monroe Street at Avenue 58   Monroe Street at Avenue 54   Monroe Street at Avenue 52  EAPC analysis results in one cumulatively impacted intersection (Jefferson Street at Avenue 52).   The  intersection  operations  analysis  worksheets  for  EAPC  Project  Phase  2  (2023)  traffic  conditions are included in Appendix 6.5 of this TIA.  Table 6‐7 also documents conditions with improvements to attain acceptable LOS.  Similar to  EAPC (2021) conditions, Jefferson Street at Avenue 52 requires reconstruction of the current  roundabout design to incorporate 2 circulating lanes around the center island.  This effectively  accommodates an additional through lane in the northbound and southbound directions to  provide acceptable LOS.  6.4.2  ROADWAY SEGMENT CAPACITY ANALYSIS  The roadway segment capacities are approximate figures only, and are typically used at the  General Plan level to assist in determining the roadway functional classification (number of  through lanes) needed to meet future forecasted traffic demand. Table 6‐8 provides a summary  of the EAPC Project Phase 2 (2023) traffic conditions roadway segment capacity analysis based  on the City of La Quinta roadway segment capacity thresholds identified previously in Table 3‐4.   As shown on Table 6‐8, all study roadway segments analyzed are anticipated to operate at  acceptable LOS under EAPC Project Phase 2 (2023) traffic conditions.   6.4.3  TRAFFIC SIGNAL WARRANT ANALYSIS  Traffic signal warrant analyses have been performed at all applicable unsignalized study area  intersections for EAPC Project Phase 2 (2023) traffic conditions  (see  Appendix  6.6).  One  additional  intersection  (Monroe  Street  at  Avenue  60)  is  projected  to  satisfy  traffic  signal  warrants beyond the seven that satisfy signal warrants for EAPC (2021) conditions.  86 87 88 L T R L T R L T R L T R AM PM AM PM AM PM AM PM 1Madison St. / Avenue 58 AWS 12112d11112111.415.9B C12.018.2B C 2Madison St. / Airport Blvd. TS 12d1200001019.010.4AB9.210.4AB 3Madison St. / Avenue 54 ‐ Without Improvements AWS 22112012d12133.9>80 D F 36.9 >80 E F ‐ With Improvements TS 22112012d12134.538.5CD34.838.8CD 4Madison St. / Avenue 52 TS 22122d12d12130.830.8C C31.031.1C C 5Madison St. / Avenue 50 TS 22122112112130.732.1C C30.832.1C C 6 Jefferson St. / Avenue 54 ‐ Without Improvements AWS0.510.522112011124.179.4 C F 25.2 >80 D F ‐ With Improvements TS 0.510.522112011142.741.6DD43.042.3DD 7 Jefferson St. / Avenue 52 ‐ Without Improvements RDB 0.5 0.5 1>> 0.5 0.5 1>> 0.5 0.5 1>> 0.5 0.5 1>>59.8 >80 F F 61.7 >80 F F ‐ Without Improvements RDB 0.5 1.5 1>> 0.5 1.5 1>> 0.5 0.5 1>> 0.5 0.5 1>> 11.7 16.6 B C 11.8 16.9 B C 8 Jefferson St. / Pomelo TS 1301300.50.510.50.5115.634.8B C15.634.8B C 9 Jefferson St. / Avenue 50 TS 13123112111152.353.3DD52.453.4DD 10 Madison St. / Avenue 60 AWS 0001010.50.500119.011.2AB9.211.7AB 11 Monroe St. / Avenue 60 AWS 1101110.50.5101!013.018.0B C13.319.1B C 12 Monroe St. / Avenue 58 ‐ Without Improvements AWS 0 1! 0 0.5 0.5 1 0 1! 0 0 1! 0 15.7 >80 C F 16.4 >80 C F ‐ With Improvements TS 0 1! 0 0.5 0.5 1 0 1! 0 0 1! 0 17.3 21.7 B C 18.1 22.9 B C 13 Monroe St. / Airport Blvd. AWS 11012d11101!015.627.7CD16.229.1CD 14 Monroe St. / Avenue 54 ‐ Without Improvements AWS 01!00.50.5111001!0>80 >80 F F >80 >80 F F ‐ With Improvements TS 01!00.50.5111001!024.424.0C C24.524.0C C 15 Monroe St. / Avenue 52 ‐ Without Improvements AWS 01!012011112d>80 >80 F F >80 >80 F F ‐ With Improvements TS 01!012011112d13.915.5B B13.915.5B B 16 Monroe St. / 50th Avenue TS 120120111111>16.621.5B C16.621.5B C 17 Jackson St. / 58th Avenue AWS 0 1! 0 0 1! 0 0 1! 0 0 1! 0 8.5 11.3 A B 8.6 11.5 A B 18 S. Access / Avenue 60 CSS 00001!001 001 08.68.6AA 19 Madison St. / Main Access CSS 1 200201 0 1 0 0 0 11.5 13.5 B B 20 Project Access 1 / Avenue 58 CSS 0 1!00000101*2 0 10.1 10.9 B B 21 Project Access 2 / Avenue 58 CSS 001 000010020 9.39.9AA 22 Madison St. / Project Access 3 CSS 020020001 000 9.19.9AA 1  When a right turn is designated, the lane can either be striped or unstriped.  To function as a right turn lane there must be sufficient width for right turning vehicles to travel outside the through lanes. 2 Per the Highway Capacity Manual 6th Edition (HCM6), overall average intersection delay and level of service are shown for intersections with a traffic signal or all way stop control. For intersections with cross street stop control, the delay and level of service for the worst individual movement (or movements sharing a single lane) are shown. Delay and level of service is calculated using Synchro 10.1 analysis software. BOLD = LOS does not meet the applicable jurisdictional requirements (i.e., unacceptable LOS).   3 TS = Traffic Signal; CSS = Cross‐street Stop; AWS = All‐Way Stop; RDB = Roundabout R:\UXRjobs\_12600‐13000\12615\Excel\[12615 ‐ Report.xlsx]6‐7 TABLE 6‐7: INTERSECTION ANALYSIS FOR PHASE 2 (2023) WITHOUT AND WITH PROJECT CONDITIONS Delay2 (Secs) Level of  Service2Northbound Southbound #Intersection Traffic Control3 Intersection Approach Lanes1 Without Project With Project Eastbound Westbound Delay2 (Secs) Level of  Service2 Future Intersection Future Intersection Future Intersection Future Intersection Future Intersection  L  =  Left;  T  =  Through;  R  =  Right; > = Right‐Turn Overlap Phasing;  >> = Free‐Right Turn Lane; d= Defacto Right Turn Lane;  1 = Improvement  * =  Left turn lane accommodated within two‐way left turn lane 89 ADT3 Volume/ Capacity  Ratio ADT 3 Volume/ Capacity  Ratio West of Madison Street Secondary 3 21,000        4 5,100       0.24         5,600       0.27          West of Monroe Street Secondary 4 28,000        5,200       0.19         5,800       0.21          West of Jackson Street Secondary 2 14,000        4 3,500       0.25         3,800       0.27          Madison Street South of Airport Boulevard Primary 4 42,600        12,300     0.29         13,300     0.31          Avenue 60 West of Monroe Street Secondary 3 21,000        4 5,500       0.26         5,900       0.28          Monroe Street South of Airport Boulevard Primary 3 31,950        5 9,100       0.28         9,300       0.29          R:\UXRjobs\_12600‐13000\12615\Excel\[12615 ‐ Report.xlsx]6‐8 Avenue 58 5 Capacity was calculated as a ratio of 4‐lane Primary capacity. 1 Existing Number of Through lanes 2 Source: City of La Quinta Engineering Bulletin #06‐13 (Oct 2017) 3 Average Daily Traffic (ADT) expressed in vehicles per day. 4 Capacity was calculated as a ratio of 4‐lane Secondary capacity. TABLE 6‐8: ROADWAY VOLUME/CAPACITY ANALYSIS FOR PHASE 2 (2023) WITHOUT AND WITH PROJECT CONDITIONS Roadway Segment Roadway Designation Through  Travel  Lanes1 Capacity2 Without Project With Project 90  Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  84  6.5  EAPC PROJECT BUILDOUT (2026) CONDITIONS  EAPC Project Buildout (2026) ADT, weekday AM, and weekday PM peak hour volumes are  shown on Exhibits 6‐13 through 6‐15, respectively.  6.5.1  INTERSECTION OPERATIONS ANALYSIS  LOS calculations were conducted for the study intersections to evaluate their operations under  EAPC  Project  Buildout  (2026)  traffic  conditions  with  roadway  and  intersection  geometrics  consistent  with  those  described  in  Section  5.1.6 EAPC  (2026)  Conditions.  The intersection  analysis results are summarized in Table 6‐9, which indicates that the following eight study area  intersections  are  anticipated  to  require  installation  of  a  traffic  signal  in  order  to  maintain  acceptable LOS under EAPC Project Buildout conditions:     Madison Street at Avenue 58    Madison Street at Avenue 54    Jefferson Street at Avenue 54   Monroe Street at Avenue 60   Monroe Street at Avenue 58   Monroe Street at Airport Boulevard   Monroe Street at Avenue 54   Monroe Street at Avenue 52  In addition, for Jefferson Street at Avenue 50, a second westbound through lane is necessary to  maintain acceptable level of service.  EAPC analysis results in  one  cumulatively  impacted  intersection (Jefferson Street at Avenue 52).  The intersection operations analysis worksheets  for EAPC Project Buildout traffic conditions are included in Appendix 6.5 of this TIA.  Table 6‐8 also documents conditions with improvements to attain acceptable LOS.  Similar to  EAPC (2021) and EAPC (2023) conditions, Jefferson Street at Avenue 52 requires reconstruction  of the current roundabout design to incorporate 2 circulating lanes around the center island.   This effectively accommodates an additional through lane in the northbound and southbound  directions to provide acceptable LOS.  6.5.2  ROADWAY SEGMENT CAPACITY ANALYSIS  The roadway segment capacities are approximate figures only, and are typically used at the  General Plan level to assist in determining the roadway functional classification (number of  through  lanes)  needed  to  meet  future  forecasted  traffic  demand. Table 6‐10 provides a  summary  of  the  EAPC  Project  Buildout  (2026)  traffic  conditions roadway  segment  capacity  analysis  based  on  the  City  of  La  Quinta  roadway  segment  capacity  thresholds  identified  previously in Table 3‐4.  As shown on Table 6‐9, all study roadway segments analyzed are  anticipated to operate at acceptable LOS under EAPC Project Buildout (2026) traffic conditions.     92 93 94 Page 1 of 2 L T R L T R L T R L T R AM PM AM PM AM PM AM PM 1Madison St. / Avenue 58 ‐ Without Improvements AWS 12112d11112112.7 20.8 B C 17.3 57.9 C F ‐ With Improvements TS 12112d11112127.4 32.0 C C 27.4 32.1 C C 2Madison St. / Airport Blvd. TS 12d1200001019.6 10.9 A B 9.6 10.9 A B 3Madison St. / Avenue 54 ‐ Without Improvements AWS 22112012d12179.2 >80 F F >80 >80 F F ‐ With Improvements TS 22112012d12141.2 43.6 D D 41.6 50.3 D D 4Madison St. / Avenue 52 TS 22122d12d12131.6 32.3 C C 32.2 33.1 C C 5Madison St. / Avenue 50 TS 22122112112131.9 33.4 C C 32.2 33.6 C C 6 Jefferson St. / Avenue 54 ‐ Without Improvements AWS 0.510.522112011140.6 >80 E F 54.2 >80 F F ‐ With Improvements TS 0.510.5221120111>22.7 22.5 C C 22.9 22.6 C C 7 Jefferson St. / Avenue 52 ‐ Without Improvements RDB 0.5 0.5 1>> 0.5 0.5 1>> 0.5 0.5 1>> 0.5 0.5 1>>>80 >80 F F >80 >80 F F ‐ Without Improvements RDB 0.5 1.5 1>> 0.5 1.5 1>> 0.5 0.5 1>> 0.5 0.5 1>> 15.1 28.3 C D 16.8 34.3 C D 8 Jefferson St. / Pomelo TS 1301300.50.510.50.5119.4 35.4 B D 19.5 35.8 B D 9 Jefferson St. / Avenue 50 ‐ Without Improvements TS 13123112111152.4 58.8 D E 53.0 60.3 D E ‐ With Improvements TS 13123112112 1 51.4 51.0 D D 51.8 51.6 D D 10 Madison St. / Avenue 60 AWS 0001010.50.500119.4 12.8 A B 10.2 14.8 B B 11 Monroe St. / Avenue 60 ‐ Without Improvements AWS 1101110.50.5101!025.9 76.4 D F 30.9 >80 D F ‐ With Improvements TS 1101110.50.5101!033.3 34.9 C C 34.4 37.7 C D 12 Monroe St. / Avenue 58 ‐ Without Improvements AWS 0 1! 0 0.5 0.5 1 0 1! 0 0 1! 0 52.2 >80 F F >80 >80 F F ‐ With Improvements TS 1 101 101 101 1023.2 33.3 C C 25.9 38.1 C D 13 Monroe St. / Airport Blvd. ‐ Without Improvements AWS 11012d11101!047.3 >80 E F 70.4 >80 F F ‐ With Improvements TS 11012d11101!024.0 24.9 C C 24.6 25.8 C C 14 Monroe St. / Avenue 54 ‐ Without Improvements AWS 01!00.50.5111001!0>80 >80 F F >80 >80 F F ‐ With Improvements TS 1 101 101101 1034.7 37.0 C D 35.0 37.7 C D 15 Monroe St. / Avenue 52 ‐ Without Improvements AWS 01!012011112d>80 >80 F F >80 >80 F F ‐ With Improvements TS 01!012011112d33.7 41.2 C D 34.1 44.1 C D 16 Monroe St. / 50th Avenue TS 120120111111>17.7 25.0 B C 17.9 25.8 B C 17 Jackson St. / 58th Avenue AWS 01!001!001!001!0 9.5 16.9 A C 9.9 21.5 A C Traffic Control3Intersection TABLE 6‐9: INTERSECTION ANALYSIS FOR PHASE 3 (2026) WITHOUT AND WITH PROJECT CONDITIONS Delay2 (Secs) Level of  Service2 Without Project With Project # Northbound Southbound Eastbound Westbound Delay2 (Secs) Level of  Service2 Intersection Approach Lanes1 95 Page 2 of 2 L T R L T R L T R L T R AM PM AM PM AM PM AM PM Traffic Control3Intersection TABLE 6‐9: INTERSECTION ANALYSIS FOR PHASE 3 (2026) WITHOUT AND WITH PROJECT CONDITIONS Delay2 (Secs) Level of  Service2 Without Project With Project # Northbound Southbound Eastbound Westbound Delay2 (Secs) Level of  Service2 Intersection Approach Lanes1 18 S. Access / Avenue 60 CSS 00001!001 001 0 8.9 8.9 A A 19 Madison St. / Main Access CSS 1 200201 0 1 000 17.4 24.3 C C 20 Project Access 1 / Avenue 58 CSS 0 1!00000101*20 10.2 11.1 B B 21 Project Access 2 / Avenue 58 CSS 001 000010020 9.4 10.0 A B 22 Madison St. / Project Access 3 CSS 020020001 000 9.6 11.3 A B 1  When a right turn is designated, the lane can either be striped or unstriped.  To function as a right turn lane there must be sufficient width for right turning vehicles to travel outside the through lanes. 2 Per the Highway Capacity Manual 6th Edition (HCM6), overall average intersection delay and level of service are shown for intersections with a traffic signal or all way stop control. For intersections with cross street stop control, the delay and level of service for the worst individual movement (or movements sharing a single lane) are shown. Delay and level of service is calculated using Synchro 10.1 analysis software. BOLD = LOS does not meet the applicable jurisdictional requirements (i.e., unacceptable LOS).   3 TS = Traffic Signal; CSS = Cross‐street Stop; AWS = All‐Way Stop; RDB = Roundabout R:\UXRjobs\_12600‐13000\12615\Excel\[12615 ‐ Report.xlsx]6‐9 Future Intersection Future Intersection Future Intersection Future Intersection Future Intersection  L  =  Left;  T  =  Through;  R  =  Right; > = Right‐Turn Overlap Phasing;  >> = Free‐Right Turn Lane; d= Defacto Right Turn Lane;  1 = Improvement  * =  Left turn lane accommodated within two‐way left turn lane 96 ADT3 Volume/ Capacity  Ratio ADT 3 Volume/ Capacity  Ratio West of Madison Street Secondary 3 21,000        4 5,700       0.27         6,300       0.30          West of Monroe Street Secondary 4 28,000        5,900       0.21         7,800       0.28          West of Jackson Street Secondary 2 14,000        4 4,900       0.35         5,700       0.41          Madison Street South of Airport Boulevard Primary 4 42,600        14,300     0.34         17,400     0.41          Avenue 60 West of Monroe Street Secondary 3 21,000        4 6,900       0.33         8,200       0.39          Monroe Street South of Airport Boulevard Primary 3 31,950        5 12,100     0.38         13,100     0.41          R:\UXRjobs\_12600‐13000\12615\Excel\[12615 ‐ Report.xlsx]6‐10 Avenue 58 5 Capacity was calculated as a ratio of 4‐lane Primary capacity. 1 Existing Number of Through lanes 2 Source: City of La Quinta Engineering Bulletin #06‐13 (Oct 2017) 3 Average Daily Traffic (ADT) expressed in vehicles per day. 4 Capacity was calculated as a ratio of 4‐lane Secondary capacity. TABLE 6‐10: ROADWAY VOLUME/CAPACITY ANALYSIS FOR PHASE 3 (2026) WITHOUT AND WITH PROJECT CONDITIONS Roadway Segment Roadway Designation Through  Travel  Lanes1 Capacity2 Without Project With Project 97  Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  91  6.5.3  TRAFFIC SIGNAL WARRANT ANALYSIS  Traffic signal warrant analyses have been performed at all applicable unsignalized study area  intersections  for  EAPC  Project  Buildout  (2026)  traffic  conditions  (see  Appendix  6.6).  Two  additional  intersections  (Jackson  Street  at  Avenue  58  and  Madison  Street  at  Main  Access)  are  projected to satisfy traffic signal warrants beyond the eight that satisfy signal warrants for EAPC  (2023) conditions.  6.5.4  QUEUING ANALYSIS  A queuing analysis was performed for With Project Conditions to assess the adequacy of turn  bay lengths to accommodate vehicle queues at the Project entries.  Queuing analysis findings  are presented in Table 6‐11 for EAPC (2026) traffic conditions.  Queueing analysis worksheets  for EAPC (2026) are also provided in Appendix 6.5.     AM PM Peak Hour Volume AM 18 S. Access / Avenue 60 SBL/SBR 72 45 AM 72 >300 56 49 19 Madison St. / Main Access NBL 19 45 PM 45 150 22 45 EBL 207 150 AM 207 150 101 115 EBR 15 13 AM 15 >150 37 36 20 Project Access 1 / Avenue 58 NBL/NBR 7 35 PM 35 >50 25 43 WBL 16 27 PM 27 >50 15 21 21 Project Access 2 / Avenue 58 NBR 3 15 PM 15 >50 20 44 22 Madison St. / Project Access 3 EBR 6 29 PM 29 >50 28 40 R:\UXRjobs\_12600‐13000\12615\Excel\[12615 ‐ Report.xlsx]‐ NOT USED ‐‐ TABLE 6‐11:  PROJECT ACCESS TURN LANE STORAGE LENGTHS FOR EAPC PHASE 3 (2026) CONDITIONS ID Intersection Turning Movement Lane EAPC (2026)Storage  Length2 (ft.) 95th Percentile1 Queue Length PM 1 Queue length calculated using SimTraffic. 2  Existing Storage Length = 100 ; Proposed Storage Length = 100 99  Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  93  This Page Intentionally Left Blank      Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  94  7  YEAR 2040 CONDITIONS TRAFFIC ANALYSIS  This section discusses the results of the General Plan Buildout (Year 2040) HCM intersection  analysis and roadway segment capacity analysis.  This analysis will determine if the City of La  Quinta Circulation Element is adequate to accommodate future traffic at the target LOS, or if  additional  mitigation  is  necessary.    This  section  provides  recommended  intersection  and  segment lanes to provide acceptable levels of service for three roadway network scenarios.   7.1  GENERAL PLAN BUILDOUT (YEAR 2040) WITHOUT PROJECT CONDITIONS  General Plan Buildout (Year 2040) ADT, weekday AM and weekday PM peak hour volumes are  shown on Exhibits 7‐1 through 7‐3, respectively.  7.1.1  INTERSECTION OPERATIONS ANALYSIS  The lane configurations and traffic controls assumed to be in place for General Plan Buildout  (Year 2040) conditions are consistent with the City of La Quinta General Plan buildout (2035)  intersection configurations (May 2012).  LOS calculations were conducted for the study intersections to evaluate their operations under  General  Plan  Buildout  (Year  2040)  traffic  conditions.    The  intersection  analysis  results  are  summarized in Table 7‐1.    The intersection operations analysis worksheets for General Plan Buildout (Year 2040) traffic  conditions  are  included  in  Appendix  7.1  of  this  TIA.    All  intersections  are  anticipated  to  experience  acceptable  operations  under  General  Plan  Buildout  (Year  2040)  conditions  with  improvements.  7.1.2  ROADWAY SEGMENT CAPACITY ANALYSIS  The roadway segment capacities are approximate figures only, and are typically used at the  General Plan level to assist in determining the roadway functional classification (number of  through  lanes)  needed  to  meet  future  forecasted  traffic  demand.    Table  7‐2  provides  a  summary of the General Plan Buildout (Year 2040) traffic conditions roadway segment capacity  analysis  based  on  the  City  of  La  Quinta  roadway  segment  capacity  thresholds  identified  previously in Table 3‐4.  As shown on Table 7‐2, The study roadway segments analyzed are anticipated to operate at  acceptable LOS for General Plan Buildout (Year 2040) traffic conditions.  However, one roadway  segment along Madison Street, between Avenue 54 and Airport Boulevard (as shown on Exhibit  7‐1) appears to exceed the theoretical daily segment LOS thresholds.  As mentioned previously in Section 3.11, where the peak hour roadway  segment  analysis  indicates a deficiency (unacceptable LOS), a review of the more detailed peak hour intersection  analysis is undertaken.  Further review of the more detailed peak hour intersection analysis  indicates that the recommended improvements at adjacent study area intersections provide  acceptable level of service.  Therefore, roadway segment widening is not anticipated.  102 103 104 105 106 107 LTRLTRLTRLTRAMPMAMPM 1Madison St. / Avenue 58 ‐ With GPCE Update Improvements TS 12112d12 0121>40.1 63.2 D E ‐ With Modified GPCE Improvements TS 12112d2 1 0121>34.5 45.5 C D 2Madison St. / Airport Blvd.TS 12d12000010123.228.6 C C 3Madison St. / Avenue 54 TS 221120121>>121>42.9 49.0 D D 4Madison St. / Avenue 52 TS 221221 1 2 d 1 2 1 38.8 52.0 D D 5Madison St. / Avenue 50 TS 2 3 1221121121>36.7 53.2 D D 6 Jefferson St. / Avenue 54 TS 1 2 1 221111112>24.0 43.5 C D 7 Jefferson St. / Avenue 524 RDB 0.5 2.5 1>> 0.5 2.5 1>> 0.5 2.5 1>> 0.5 2.5 1>> 5.8 8.3 A A 8 Jefferson St. / Pomelo TS 1 3 0 1 3 0 0.5 0.5 1 0.5 0.5 1 6.3 21.2 A C 9 Jefferson St. / Avenue 50 TS 1312312 212 2 1 41.5 52.8 D D 10 Madison St. / Avenue 60 TS 0 1!0 2 1 1>2 201 2 1 50.9 48.0 D D 11 Monroe St. / Avenue 60 ‐ With GPCE Update Improvements TS 1 2 012 112 1 1 1 1>45.1 98.8 D F ‐ With Added GPCE Improvements TS 1 2 012 112 1>1 2 1>36.7 50.3 D D 12 Monroe St. / Avenue 58 ‐ With GPCE Update Improvements TS 1 2 1 1 2 0 1 2 0 1 2 0 47.8 72.0 D E ‐ With Added GPCE Improvements TS 2 2 1>2 2 0 1 2 1 1 2 0 38.0 48.6 D D 13 Monroe St. / Airport Blvd.TS 1 2 012d12 0 1 2 1>33.3 44.1 C D 14 Monroe St. / Avenue 54 TS 1 2 1 1 2 1 2 2 1 1 2 1 31.5 52.5 C D 15 Monroe St. / Avenue 52 TS 2 2 1 2 2012 1121 39.0 52.7 D D 16 Monroe St. / 50th Avenue TS 2 2 1 2 2012 112 1> 34.5 53.3 C D 17 Jackson St. / 58th Avenue TS 1 2 0 1 2 0 1 2 0 1 2 0 29.7 36.7 C D 18 S. Access / Avenue 60 19 Madison St. / Main Access 20 Project Access 1 / Avenue 58 21 Project Access 2 / Avenue 58 22 Madison St. / Project Access 3 1  When a right turn is designated, the lane can either be striped or unstriped.  To function as a right turn lane there must be sufficient width for right turning vehicles to travel outside the through lanes. 2 Per the Highway Capacity Manual 6th Edition (HCM6), overall average intersection delay and level of service are shown for intersections with a traffic signal or all way stop control. For intersections with cross street stop control, the delay and level of service for the worst individual movement (or movements sharing a single lane) are shown. Delay and level of service is calculated using Synchro 10.1 analysis software. BOLD = LOS does not meet the applicable jurisdictional requirements (i.e., unacceptable LOS).   3 TS = Traffic Signal; CSS = Cross‐street Stop; AWS = All‐Way Stop; RDB = Roundabout 4 Since roundabout analysis in Synchro is limited to a maximum of 2 lanes per approach, traffix has been utilized at this location (similar to the City of La Quinta General Plan Buildout TIA worksheets). R:\UXRjobs\_12600‐13000\12615\Excel\[12615 ‐ Report.xlsx]7‐1 TABLE 7‐1: INTERSECTION ANALYSIS FOR GENERAL PLAN BUILDOUT (2040) WITHOUT PROJECT CONDITIONS #Intersection Traffic Control3 Intersection Approach Lanes1 Delay2 (Secs) Level of  Service2Northbound Southbound Eastbound Westbound Intersection Does Not Exist Intersection Does Not Exist Intersection Does Not Exist Intersection Does Not Exist Intersection Does Not Exist          L  =  Left;  T  =  Through;  R  =  Right; > = Right‐Turn Overlap Phasing;  >> = Free‐Right Turn Lane; d = Defacto Right Turn Lane; 1 = Improvement          1 = Improvement per City of La Quinta General Plan Circulation Element Update Traffic Impact Analysis (May 2012) 108 Roadway Segment Roadway Designation Through  Travel  Lanes1 ADT3 Volume/ Capacity  Ratio West of Madison Street Secondary 4 28,000        11,800     0.42          West of Monroe Street Secondary 4 28,000        12,100     0.43          West of Jackson Street Secondary 4 28,000        18,200     0.65          Madison Street South of Airport Boulevard Primary 4 42,600        30,900     0.73          Avenue 60 West of Monroe Street Secondary 4 28,000        22,700     0.81          Monroe Street South of Airport Boulevard Primary 4 42,600        24,900     0.58          R:\UXRjobs\_12600‐13000\12615\Excel\[12615 ‐ Report.xlsx]7‐2 Avenue 58 TABLE 7‐2: ROADWAY VOLUME/CAPACITY ANALYSIS FOR GENERAL PLAN BUILDOUT (2040) WITHOUT PROJECT CONDITIONS Capacity2 1 Existing Number of Through lanes; 1 = City of La Quinta General Plan Buildout number of lanes 2 Source: City of La Quinta Engineering Bulletin #06‐13 (Oct 2017) 3 Average Daily Traffic (ADT) expressed in vehicles per day. 109 LTRLTRLTRLTRAMPMAMPM 1Madison St. / Avenue 58 ‐ With GPCE Update Improvements TS 12112d12 0121>41.5 70.3 D E ‐ With Modified GPCE Improvements TS 12112d2 1 0121>35.1 53.0 D D 2Madison St. / Airport Blvd.TS 12d12000010123.729.7 C C 3Madison St. / Avenue 54 TS 221120121>>121>44.2 53.3 D D 4Madison St. / Avenue 52 TS 221221 1 2 d 1 2 1 39.5 53.8 D D 5Madison St. / Avenue 50 TS 2 3 1221121121>37.6 54.8 D D 6 Jefferson St. / Avenue 54 TS 1 2 1 221111112>24.2 48.4 C D 7 Jefferson St. / Avenue 524 RDB 0.5 2.5 1>> 0.5 2.5 1>> 0.5 2.5 1>> 0.5 2.5 1>> 5.9 9.1 A A 8 Jefferson St. / Pomelo TS 1 3 0 1 3 0 0.5 0.5 1 0.5 0.5 1 6.4 21.4 A C 9 Jefferson St. / Avenue 50 TS 1312312 212 2 1 42.2 54.6 D D 10 Madison St. / Avenue 60 TS 0 1!0 2 1 1>2 201 2 1 49.6 53.1 D D 11 Monroe St. / Avenue 60 ‐ With GPCE Update Improvements TS 1 2 012 112 1 1 1 1>46.1 103.9 D F ‐ With Added GPCE Improvements TS 1 2 012 112 1>1 2 1>37.2 53.0 D D 12 Monroe St. / Avenue 58 ‐ With GPCE Update Improvements TS 1 2 1 1 2 0 1 2 0 1 2 0 50.1 75.9 D E ‐ With Added GPCE Improvements TS 2 2 1>2 2 0 1 2 1 1 2 0 39.5 52.0 D D 13 Monroe St. / Airport Blvd.TS 1 2 012d12 0 1 2 1>37.8 45.4 D D 14 Monroe St. / Avenue 54 TS 1 2 1 1 2 1 2 2 1 1 2 1 31.6 54.5 C D 15 Monroe St. / Avenue 52 TS 2 2 1 2 2012 1121 39.0 54.3 D D 16 Monroe St. / 50th Avenue TS 2 2 1 2 2012 112 1> 34.1 54.5 C D 17 Jackson St. / 58th Avenue TS 1 2 0 1 2 0 1 2 0 1 2 0 29.7 38.0 C D 18 S. Access / Avenue 60 CSS 00001!001 001 0 34.2 34.8 D D 19 Madison St. / Main Access ‐ With Cross‐Street Stop Control CSS 1 200201 0 1 000113.2 91.7 F F ‐ With Traffic Signal TS 1 200201 0 1 0007.69.0 A A 20 Project Access 1 / Avenue 58 CSS 0 1!000002 0 1*2 0 12.9 14.5 B B 21 Project Access 2 / Avenue 58 CSS 001 00002 0 0 2 0 10.2 10.4 B B 22 Madison St. / Project Access 3 CSS 020020001 0 0 0 13.6 14.4 B B 1  When a right turn is designated, the lane can either be striped or unstriped.  To function as a right turn lane there must be sufficient width for right turning vehicles to travel outside the through lanes. 2 Per the Highway Capacity Manual 6th Edition (HCM6), overall average intersection delay and level of service are shown for intersections with a traffic signal or all way stop control. For intersections with cross street stop control, the delay and level of service for the worst individual movement (or movements sharing a single lane) are shown. Delay and level of service is calculated using Synchro 10.1 analysis software. BOLD = LOS does not meet the applicable jurisdictional requirements (i.e., unacceptable LOS).   3 TS = Traffic Signal; CSS = Cross‐street Stop; AWS = All‐Way Stop; RDB = Roundabout 4 Since roundabout analysis in Synchro is limited to a maximum of 2 lanes per approach, traffix has been utilized at this location (similar to the City of La Quinta General Plan Buildout TIA worksheets). R:\UXRjobs\_12600‐13000\12615\Excel\[12615 ‐ Report.xlsx]7‐3 TABLE 7‐3: INTERSECTION ANALYSIS FOR GENERAL PLAN BUILDOUT (2040) WITH PROJECT CONDITIONS #Intersection Traffic Control3 Intersection Approach Lanes1 Delay2 (Secs) Level of  Service2          * =  Left turn lane accommodated within two‐way left turn lane          L  =  Left;  T  =  Through;  R  =  Right; > = Right‐Turn Overlap Phasing;  >> = Free‐Right Turn Lane; d = Defacto Right Turn Lane; 1 = Improvement          1 = Improvement per City of La Quinta General Plan Circulation Element Update Traffic Impact Analysis (May 2012) Northbound Southbound Eastbound Westbound 110 Roadway Segment Roadway Designation Through  Travel  Lanes1 ADT3 Volume/ Capacity  Ratio West of Madison Street Secondary 4 28,000        12,500     0.45          West of Monroe Street Secondary 4 28,000        14,000     0.50          West of Jackson Street Secondary 4 28,000        19,000     0.68          Madison Street South of Airport Boulevard Primary 4 42,600        34,000     0.80          Avenue 60 West of Monroe Street Secondary 4 28,000        24,000     0.86          Monroe Street South of Airport Boulevard Primary 4 42,600        26,000     0.61          R:\UXRjobs\_12600‐13000\12615\Excel\[12615 ‐ Report.xlsx]7‐4 Avenue 58 TABLE 7‐4: ROADWAY VOLUME/CAPACITY ANALYSIS FOR GENERAL PLAN BUILDOUT (2040) WITH PROJECT CONDITIONS Capacity2 1 Existing Number of Through lanes; 1 = City of La Quinta General Plan Buildout number of lanes 2 Source: City of La Quinta Engineering Bulletin #06‐13 (Oct 2017) 3 Average Daily Traffic (ADT) expressed in vehicles per day. 111  Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  105  7.1.3  TRAFFIC SIGNAL WARRANT ANALYSIS  Traffic signal warrant analyses have been performed at all applicable unsignalized study area  intersections for General Plan Buildout (Year 2040) traffic conditions (see Appendix 7.2).  One  additional study area intersections are anticipated to warrant a traffic signal beyond those  warranted for EAPC (2026) conditions (Madison at Avenue 60).  7.2  GENERAL PLAN BUILDOUT (YEAR 2040) WITH PROJECT CONDITIONS  General Plan Buildout (Year 2040) ADT, weekday AM and weekday PM peak hour volumes are  shown on Exhibits 7‐1 through 7‐3, respectively.  7.2.1  INTERSECTION OPERATIONS ANALYSIS  The lane configurations and traffic controls assumed to be in place for General Plan Buildout  (Year 2040) conditions are consistent with the City of La Quinta General Plan buildout (2035)  intersection configurations (May 2012).  LOS calculations were conducted for the study intersections to evaluate their operations under  General  Plan  Buildout  (Year  2040)  traffic  conditions.    The  intersection  analysis  results  are  summarized in Table 7‐3.    The intersection operations analysis worksheets for General Plan Buildout (Year 2040) traffic  conditions  are  included  in  Appendix  7.3  of  this  TIA.    All  intersections  are  anticipated  to  experience  acceptable  operations  under  General  Plan  Buildout  (Year  2040)  conditions  with  improvements.  7.2.2  ROADWAY SEGMENT CAPACITY ANALYSIS  The roadway segment capacities are approximate figures only, and are typically used at the  General Plan level to assist in determining the roadway functional classification (number of  through lanes) needed to meet future forecasted traffic demand. Table 7‐4 provides a summary  of the General Plan Buildout (Year 2040) with project traffic conditions  roadway  segment  capacity analysis based on the City of La Quinta roadway segment capacity thresholds identified  previously in Table 3‐4.  As shown on Table 7‐4, the study roadway segments analyzed are  anticipated to operate at acceptable LOS for General Plan Buildout  (Year  2040)  traffic  conditions.   7.2.3  TRAFFIC SIGNAL WARRANT ANALYSIS  Traffic signal warrant analyses have been performed at all applicable unsignalized study area  intersections for General Plan Buildout (Year 2040) traffic conditions (see Appendix 7.4).  One  additional study area intersections are anticipated to warrant a traffic signal beyond those  warranted for General plan Buildout (Year 2040) conditions (Madison Street at Main Access).   Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  106  7.2.4  QUEUING ANALYSIS  A queuing analysis was performed for With Project Conditions to assess the adequacy of turn  bay lengths to accommodate vehicle queues at the Project entries.  Queuing analysis findings  are presented in Table 7‐5 for General Plan Buildout (Year 2040) With Project traffic conditions.   Queueing analysis worksheets are provided in Appendix 7.3.    AM PM Peak Hour Volume AM 18 S. Access / Avenue 60 SBL/SBR 73 46 AM 73 >300 97 232 19 Madison St. / Main Access NBL 19 45 PM 45 150 43 76 EBL 207 150 AM 207 150 141 130 EBR 15 13 AM 15 >150 93 41 20 Project Access 1 / Avenue 58 NBL/NBR 7 35 PM 35 >50 22 52 WBL 16 27 PM 27 >50 23 38 21 Project Access 2 / Avenue 58 NBR 3 15 PM 15 >50 18 52 22 Madison St. / Project Access 3 EBR 6 29 PM 29 >50 32 57 R:\UXRjobs\_12600‐13000\12615\Excel\[12615 ‐ Report.xlsx]‐ NOT USED ‐‐ 2  Existing Storage Length = 100 ; Proposed Storage Length = 100 TABLE 7‐5:  PROJECT ACCESS TURN LANE STORAGE LENGTHS FOR GENERAL PLAN BUILDOUT (2040) WITH PROJECT CONDITIONS ID Intersection Turning Movement Lane General Plan Buildout (2040) With Project Storage  Length2 (ft.) 95th Percentile1 Queue Length PM 1 Queue length calculated using SimTraffic. 114  Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  108  8  SPECIAL EVENTS  The applicant anticipates the potential occurrence of special events at this location involving  attendance of not‐to‐exceed 2,500 guests per day arriving or departing on Saturdays (up to 4  events per year).   8.1  WEEKEND TRAFFIC VOLUMES AND CONDITIONS  The weekend special event intersection LOS analysis is based on the traffic volumes observed  during the weekend peak hour conditions using traffic count data collected on February 22,  2020.  Based on discussions with City staff, the Saturday peak hour is selected from this period  between 10:00 AM and 2:00 PM.  A sample comparison of the PM weekday data and weekend counts focuses on key locations (4  intersections), as listed in Table 8‐1.  The raw manual Saturday peak period turning movement  traffic count data sheets are included in Appendix 3.1.    TABLE 8‐1: WEEKEND INTERSECTION COUNT LOCATIONS  ID Intersection Location ID Intersection Location  1  Madison Street at Avenue 58  11  Monroe Street at Avenue 58  5  Madison Street at Avenue 50  13  Monroe Street at Avenue 54  Volume changes at these locations are extrapolated to the remaining study area locations as  identified in the TIA.  The average peak hour intersection change between weekday pm peak  hour and weekend peak hour count data at selected study area and nearby intersections is a  decrease of approximately 17.20% (see Table 8‐2).  The ‐17.20% rate is applied to the study  area intersections with weekday counts to reflect weekend conditions.  Existing weekend peak  hour intersection volumes are shown on Exhibit 8‐1.  8.2  WEEKEND SPECIAL EVENT PROJECT LAND USE AND TRIP GENERATION  Trip generation rates used to estimate weekend Project traffic and a summary of the Project’s  trip generation are shown in Table 8‐3.  The ITE Trip Generation Manual does not provide  weekend trip generation rates for special events at a wave basin facility since the use is very  specific.  As such, vehicle trips are calculated based on estimated number of guests anticipated  for these special events and a vehicle occupancy of 2.4.  Table 8‐3 shows the Weekend Project trip generation during a special event based on 2,500  guests per day at the Wave Basin facility and approximately 25% of the guests arriving or  departing during the arrival or departure peak hours.  Weekend rates for other on‐site land  uses  represent  typical  Saturday  rates.    As  shown  on  Table  8‐3, the  proposed  Project  is  anticipated to generate a net total of 8,932 trip‐ends per day on a Saturday during a special  event with 906 vehicles per hour (VPH) during the arrival peak hour and 884 vph during the  departure peak hour.  N/S1 E/W2 TOTAL N/S 1 E/W2 TOTAL 1 Madison St. / Avenue 58 432 169 601 365 224 589 5 Madison St. / Avenue 50 577 798 1,375 570 732 1,302 12 Monroe St. / Avenue 58 285 192 477 160 109 269 14 Monroe St. / Avenue 54 418 403 821 303 248 551 1,712 1,562 3,274 1,398 1,313 2,711 ‐18.34%‐15.94%‐17.20% 1 Northbound and Southbound Approach Volumes 2 Eastbound and Westbound Approach Volumes R:\UXRjobs\_12600‐13000\12615\Excel\[12615 ‐ Report.xlsx]8‐2 Summary_(Existing Sat Comp) Weekday  PM Peak Hour  Saturday  Mid‐Day Peak Hour TOTAL ADJUSTMENT FACTORS (to be applied to the remaining study intersections  with Weekday PM volumes to reflect Saturday mid‐ day conditions) TABLE 8‐2: EXISTING 2019 WEEKDAY PM PEAK HOUR & 2020 SATURDAY MID‐DAY PEAK HOUR COMPARISON ID Intersection Peak Hour Intersection Volumes 116 117 In Out Total Single Family Detached 210 0.50 0.43 0.93 Multifamily Housing (Low‐Rise)2206 0.38 0.32 0.70 Resort Hotel7 (with bar, restaurant, kitchen, rooftop bar, pool bar & grill,  and spa.  Back of house resort operations included) 3105 0.40 0.32 0.72 Shopping Center 820 2.34 2.16 4.50 Wave Basin Facility8 (Back of house wave operations included)‐4 Wave Village (Studio/Retail)9 (with shape studio, surf shop, board room, surf lounge/living  room, surf classroom, fitness pavilion, high performance  center, & beach club) 861 2.15 2.06 4.21 The Farm (Recreational Area/Clubhouse)10 (with Barn, Greenhouse, Equipment Barn, Tool Shed, Family  Camp, Gym, Outfitters, & Locker Rooms) 495 0.54 0.53 1.07 In Out Total In Out Total Single Family Detached 210 496 DU 248 213 461 248 213 461 4,732 Multifamily Housing (Low‐Rise)2206 104 DU 40 33 73 40 33 73 847 Internal to Retail/Resort (29) (52) (81) (65) (36) (101) (777) 259 194 453 223 210 433 4,802 Shopping Center 820 60 TSF 140 130 270 140 130 270 2,767     Pass‐By (26%)(35) (35) (70) (35) (35) (70) (719) Internal to Residential/Resort (25) (33) (58) (35) (26) (61) (501) 80 62 142 70 69 139 1,547 Resort Hotel 3105 150 RM 60 48 108 60 48 108 1,229 Internal to Residential/Retail (28) (37) (65) (33) (27) (60) (720) 32 11 43 27 21 48 509 Wave Basin Facility ‐4 2,500 Guests 260 14 274 14 260 274 2,084 Internal to Residential/Retail/Resort (42) (4) (46) (4) (46) (50) (547) 218 10 228 10 214 224 1,537 Wave Village 861 15 TSF 32 31 63 31 32 63 871 Internal to Residential/Resort (14) (15) (29) (15) (14) (29) (348) 18 16 34 16 18 34 523 The Farm 495 16 TSF 9 8 17 8 9 17 146 Internal to Residential/Resort (7) (4) (11) (4) (7) (11) (132) The Farm External Trips 24642614 789 477 1,266 541 725 1,266 12,676 Internal Capture Subtotal (145) (145) (290) (156) (156) (312) (3,025) Pass‐By (Shopping Center)(35) (35) (70) (35) (35) (70) (719) 609 297 906 350 534 884 8,932 4  Vehicle trips are calculated based on estimated number of guests during special events and vehicle occupancy of 2.4. 5  Saturday data for Hotel (ITE Land Use 310) has been utilized. 6  Since Saturday peak hour in/out ratio is not available for ITE Land Use 220, the in/out Saturday split for ITE LU 210 (Single Family Detached Residential) has been utilized. 7   Hotel trip rates account for 23.5 tsf of ancillary facilities which include bar, restaurant, kitchen, rooftop bar, pool bar & grill, spa, and back of house resort operations. 8   The Wave Basin Facility trip rates account for pool area and 1.5 tsf of back of house wave operations. 9   Wave Village trip rates account for 15 tsf of ancillary facilities which include shape studio, surf shop, board room, surf lounge/living room, surf classroom,      fitness pavilion, high performance center, & beach club. 10   The Farm trip rates account for 16 tsf of ancillary facilities which include Barn, Greenhouse, Equipment Barn, Tool Shed, Family Camp, Gym, Outfitters, & Locker Rooms. 11   The 1 tsf  back of house guardhouse use is accounted for in the Project rates. C:\UXRjobs\_12600‐13000\12615\Excel\[12615 ‐ Report.xlsx]Ph3‐SE_20201015 TABLE 8‐3: PROJECT BUILDOUT (2026) TRIP GENERATION SUMMARY ‐ WEEKEND SPECIAL EVENT Trip Generation Rates1,11 DU 9.54 DU 8.14 RM 8.19 Land Use ITE LU Code Units 2 Saturday Mid‐Day Peak Hour  Weekend Daily  TSF 46.12 Guests See Below Trip Generation Results 58.09 9.10 TSF TSF Residential External Trips Shopping Center External Trips Resort Hotel External Trips Land Use ITE LU Code Quantity 2 Arrival Peak Hour Departure Peak Hour  Weekend Daily  Wave Basin Facility External Trips Project Subtotal Project Total External Trips 1  Trip Generation Source:  Institute of Transportation Engineers (ITE), Trip Generation Manual, 10th Edition (2017). 2  DU = Dwelling Unit; RM = Room; TSF = Thousand Square Feet 3  Source: Trip Generation Handbook, 3rd Edition (2017). Wave Village External Trips 118  Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  112  The  trip  distribution  patterns  for  the  special  event  components of the proposed Project is  consistent with the typical weekday operation.  Based on the identified Project traffic generation and trip distribution patterns, Project (Special  Event) weekend traffic volumes are shown on Exhibits 8‐2 through 8‐4.  8.3  WEEKEND SPECIAL EVENT ANALYSIS  EAPC  Project  Buildout  (2026),  weekend  special  event  arrival  and departure peak hour  intersection volumes are shown on Exhibits 8‐5 and 8‐6, respectively.  The intersection analysis results are summarized in Table 8‐4, which indicates that the following  study area intersections are anticipated to operate at an unacceptable LOS conditions:    Madison Street at Avenue 58    Madison Street at Avenue 54    Jefferson Street at Avenue 54   Jefferson Street at Avenue 52   Monroe Street at Avenue 60   Monroe Street at Avenue 58   Monroe Street at Airport Boulevard   Monroe Street at Avenue 54   Monroe Street at Avenue 52  Improvement recommendations identified in Tables 8‐4 are consistent with the improvements  for EAPC Phase 3 weekday typical operations.  The intersection operations analysis worksheets  for  EAPC  Project  Buildout  (2026)  Weekend  Special  Event  traffic conditions  are  included  in  Appendix 8.1 of this TIA.  A queuing analysis was performed for With Project Weekend Special Event Conditions to assess  the  adequacy  of  turn  bay  lengths  to  accommodate  vehicle  queues at the Project entries.   Queuing analysis findings are presented in Table 8‐5 for EAPC (2026) Weekend Special Event  traffic conditions.  Queueing analysis worksheets for EAPC (2026) are also provided in Appendix  8.1.  8.4  SPECIAL EVENT TRAFFIC MANAGEMENT  Special events of up to 2,500 guests are anticipated to generate approximately 2,084 daily trips  to  and  from  the  wave  basin  facility  alone,  of  which  1,604  are  from  outside  the  Project  residential, retail, and resort hotel.  During the arrival and departure peak hours, approximately  624 guests are anticipated to arrive or depart per hour, with an average of 2.4 persons per  vehicle.        120 121 122 123 124 Page 1 of 2 LTRLTRLTRLTRArrival Departure Arrival Departure 1Madison St. / Avenue 58 ‐ Without Improvements AWS 12112d11112141.6 37.8 E E ‐ With Improvements TS 12112d11112129.9 30.9 C C 2Madison St. / Airport Blvd. TS 12d12000010110.5 10.8 B B 3Madison St. / Avenue 54 ‐ Without Improvements AWS 22112012d12145.9 39.3 E E ‐ With Improvements TS 22112012d12142.6 41.4 D D 4Madison St. / Avenue 52 TS 22122d12d12132.3 32.0 C C 5Madison St. / Avenue 50 TS 22122112112132.5 32.5 C C 6 Jefferson St. / Avenue 54 ‐ Without Improvements AWS 0.510.5221120111 >80 >80 F F ‐ With Improvements TS 0.510.5221120111>21.9 21.8 C C 7 Jefferson St. / Avenue 52 ‐ Without Improvements RDB 0.5 0.5 1>> 0.5 0.5 1>> 0.5 0.5 1>> 0.5 0.5 1>>>80 >80 F F ‐ Without Improvements RDB 0.5 1.5 1>> 0.5 1.5 1>>0.5 0.5 1>> 0.5 0.5 1>>13.5 13.4 B B 8 Jefferson St. / Pomelo TS 1301300.50.510.50.5129.0 28.9 C C 9 Jefferson St. / Avenue 50 ‐ Without Improvements TS 13123112111148.1 48.1 D D ‐ With Improvements TS 13123112112 1 47.3 47.3 D D 10 Madison St. / Avenue 60 AWS 0001010.50.5001112.7 13.9 B B 11 Monroe St. / Avenue 60 ‐ Without Improvements AWS 1101110.50.5101!047.0 45.2 E E ‐ With Improvements TS 1101110.50.5101!035.3 35.4 D D 12 Monroe St. / Avenue 58 ‐ Without Improvements AWS 0 1! 0 0.5 0.5 1 0 1! 0 0 1! 0 >80 >80 F F ‐ With Improvements TS 1 101 101 101 1030.2 30.4 C C 13 Monroe St. / Airport Blvd. ‐ Without Improvements AWS 11012d11101!066.3 66.4 F F ‐ With Improvements TS 11012d11101!022.9 22.8 C C 14 Monroe St. / Avenue 54 ‐ Without Improvements AWS 01!00.50.5111001!0 >80 >80 F F ‐ With Improvements TS 1 101 101101 1032.6 32.6 C C 15 Monroe St. / Avenue 52 ‐ Without Improvements AWS 01!012011112d >80 >80 F F ‐ With Improvements TS 01!012011112d34.3 34.3 C C 16 Monroe St. / 50th Avenue TS 120120111111>20.7 20.7 C C 17 Jackson St. / 58th Avenue AWS 01!001!001!001!0 14.6 14.6 B B TABLE 8‐4: INTERSECTION ANALYSIS FOR  EAPC PHASE 3 (2026) WEEKEND SPECIAL EVENT CONDITIONS Northbound Southbound Eastbound Westbound #Intersection Traffic Control3 Intersection Approach Lanes1 With Project Delay2 (Secs) Level of Service2 125 Page 2 of 2 LTRLTRLTRLTRArrival Departure Arrival Departure TABLE 8‐4: INTERSECTION ANALYSIS FOR  EAPC PHASE 3 (2026) WEEKEND SPECIAL EVENT CONDITIONS Northbound Southbound Eastbound Westbound #Intersection Traffic Control3 Intersection Approach Lanes1 With Project Delay2 (Secs) Level of Service2 18 S. Access / Avenue 60 CSS 00001!001 001 0 8.9 8.9 A A 19 Madison St. / Main Access CSS 1 200201 0 1 00030.9 32.2 D D 20 Project Access 1 / Avenue 58 CSS 0 1!00000101*2012.6 12.1 B B 21 Project Access 2 / Avenue 58 CSS 001 000010020 9.9 10.3 A B 22 Madison St. / Project Access 3 CSS 020020001 00011.0 11.1 B B 1  When a right turn is designated, the lane can either be striped or unstriped.  To function as a right turn lane there must be sufficient width for right turning vehicles to travel outside the through lanes. 2 Per the Highway Capacity Manual 6th Edition (HCM6), overall average intersection delay and level of service are shown for intersections with a traffic signal or all way stop control. For intersections with cross street stop control, the delay and level of service for the worst individual movement (or movements sharing a single lane) are shown. Delay and level of service is calculated using Synchro 10.1 analysis software. BOLD = LOS does not meet the applicable jurisdictional requirements (i.e., unacceptable LOS).   3 TS = Traffic Signal; CSS = Cross‐street Stop; AWS = All‐Way Stop; RDB = Roundabout R:\UXRjobs\_12600‐13000\12615\Excel\[12615 ‐ Report.xlsx]SAT_EAPC  * =  Left turn lane accommodated within two‐way left turn lane  L  =  Left;  T  =  Through;  R  =  Right; > = Right‐Turn Overlap Phasing;  >> = Free‐Right Turn Lane; d= Defacto Right Turn Lane;  1 = Improvement 126 AM PM Peak Hour Volume Arrival 18 S. Access / Avenue 60 SBL/SBR 52 56 PM 56 >300 44 53 19 Madison St. / Main Access NBL 110 53 AM 110 150 89 61 EBL 175 229 PM 229 150 107 137 EBR 15 27 PM 27 >150 41 42 20 Project Access 1 / Avenue 58 NBL/NBR 29 94 PM 94 >50 20 69 WBL 106 39 AM 106 >50 44 37 21 Project Access 2 / Avenue 58 NBR 18 51 PM 51 >50 52 44 22 Madison St. / Project Access 3 EBR 34 78 PM 78 >50 43 42 R:\UXRjobs\_12600‐13000\12615\Excel\[12615 ‐ Report.xlsx]‐ NOT USED ‐‐ Departure 1 Queue length calculated using SimTraffic. 2  Existing Storage Length = 100 ; Proposed Storage Length = 100 TABLE 8‐5:  PROJECT ACCESS TURN LANE STORAGE LENGTHS FOR EAPC PHASE 3 (2026) WEEKEND SPECIAL EVENT CONDITIONS ID Intersection Turning Movement Lane EAPC (2026)  WEEKEND SPECIAL EVENT Storage  Length2 (ft.) 95th Percentile1 Queue Length 127  Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  121  Approximately 260 total inbound trips to the wave basin facility alone are anticipated during  the arrival peak hour (of which 214 are from outside the Project residential, retail, and resort  hotel), with a similar quantity occurring in the outbound direction during the departure peak  hour.  These special event attendee vehicles are anticipated to access the wave basin facility via the  Project Main Entry.  For large special event venues, traffic control typically includes special  event flaggers, law enforcement personnel, online or transmitted event information (suggested  routes, parking, etc.), and portable changeable message signs (CMS).  In the case studied here,  with  appropriate  wayfinding  signage,  these  special  event  traffic  control  measures  are  not  currently  anticipated  to  be  necessary.   However,  if  at  a  later date  these  measures  are  determined to be desirable / necessary, the facility management should coordinate with the  City staff to develop a traffic management plan prior to the Special Event. Exhibit 8‐7 shows a  potential generalized schedule of special event operation planning.    EXHIBIT 8‐7: EVENT OPERATIONS PLANNING SCHEDULE    Source: Managing Travel for Planned Special Events Handbook: Executive Summary (June 2007) prepared by Federal Highway Administration  (FHWA)      Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  122  9  SUMMARY AND RECOMMENDATIONS  9.1  PROJECT ACCESS  The  Coral  Mountain  Specific  Plan  Project  is  proposed  to  be  served  by  the  Project  access  locations listed below:  •  Madison Street / Main Access (full access)  •  South Access / Avenue 60 (full access)  •  Project Access 1 / Avenue 58 (full access)  •  Project Access 2 / Avenue 58 (right‐in/right‐out access)  •  Madison Street / Project Access 3 (right‐in/right‐out access)  The separation between Project driveways along Avenue 58 and Madison Street are over 250  feet and separation between Avenue 58 and the Project’s main access point (future signalized  location) is over 600 feet.  The location of each Project access points meets City of La Quinta  intersection spacing standards.  Exhibit  9‐1  shows  Project  access  and  site‐adjacent  improvements to be constructed in  conjunction with development.    For Project Phase 1 conditions, the following improvements are recommended:  Avenue 58 should be constructed to its ultimate half‐section width as a Secondary along the  commercial portion of the Project.    Madison Street should be constructed to its ultimate half‐section width as a Secondary along  the commercial portion of the Project.  Avenue 60 should be constructed as a 2‐lane roadway  along the Project boundary.    For  Project  Access  1  &  Avenue  58 (intersection  20),  provide  northbound  cross‐street  stop  control.  Construct south leg with one shared northbound left‐right turn lane. Accommodate  westbound left turn lane within two‐way left turn lane (TWLTL) striping.  Northbound cross‐street stop control should be provided for Project Access 2 & Avenue 58  (intersection 21).  Construct south leg with one right turn outbound lane. Left turns should not  be accommodated at this intersection.  For Madison Street & Project Access 3 (intersection 22), provide eastbound cross‐street stop  control.    Construct  west  leg  with  one  right  turn  outbound  lane. Left turns should not be  accommodated at this intersection.  Eastbound cross‐street  stop  control  should  be  provided for  Madison Street & Main Access  (intersection 19).  Construct west leg with one left turn outbound and one right turn outbound  lane. Construct a northbound left turn inbound lane with a minimum turn bay length of 150’.  130  Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  124  For South Access & Avenue 60 (intersection 18), provide southbound cross‐street stop control.   Construct north leg with one shared left‐right turn outbound lane. Construct west leg with one  shared left‐through lane. Construct east leg with one shared through‐right lane.   For  Project  Phase  2  conditions, the  same  improvements  are  recommended  as  for  Project  Phase 1 (see above).  For Project Buildout (Phase 3) conditions, the following improvements are recommended:  Avenue 58 should be constructed to its ultimate half‐section width as a Secondary along the  residential / remaining portion of the Project.    Madison Street should be constructed to its ultimate half‐section width as a Secondary along  the residential / remaining portion of the Project.    Construct traffic signal for the intersection of Madison Street & Main Access when warranted.  9.2  POTENTIALLY SIGNIFICANT IMPACT ASSESSMENT RESULTS  Existing intersection operations were presented in Section 3.10 of this TIA.  All of the 17 existing  study area intersections are currently operating at an acceptable LOS during the peak hours.  The following 4 unsignalized study area intersections currently warrant a traffic signal:   Madison Street at Avenue 54    Jefferson Street at Avenue 54   Monroe Street at Avenue 54   Monroe Street at Avenue 52  9.2.1  E+P CONDITIONS  For Existing + Project conditions, the intersection analysis results were previously presented on  Table 6‐1, which indicates that two study area intersections require installation of a traffic  signal (which is funded in the CIP) in order to maintain acceptable LOS under E+P conditions:    Jefferson Street at Avenue 54 (#6) – Install CIP‐funded traffic signal control   Monroe Street at Avenue 52 (#15) – Install CIP‐funded traffic signal control   9.2.2  EAP  CONDITIONS  EAP intersection analysis results were previously presented on Table 6‐3, which indicates that  the following five study area intersections are anticipated to require installation of a traffic  signal (which is funded in the CIP) in order to maintain acceptable LOS under EAP conditions:      Madison Street at Avenue 54 (#3) – Install CIP‐funded traffic signal control     Jefferson Street at Avenue 54 (#6) – Install CIP‐funded traffic signal control   Monroe Street at Avenue 58 (#11) – Install CIP‐funded traffic signal control   Monroe Street at Avenue 54 (#13) – Install CIP‐funded traffic signal control   Monroe Street at Avenue 52 (#14) – Install CIP‐funded traffic signal control    Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  125  EAP analysis results indicates that the intersection of Jefferson Street at Avenue 52 experiences  deficient operations under cumulative “without project” conditions.  Jefferson Street at Avenue  52 requires reconstruction of the current roundabout design to incorporate 2 circulating lanes  around the center island.  This effectively accommodates an additional through lane in the  northbound and southbound directions to provide acceptable LOS.   9.2.3  EXISTING PLUS AMBIENT GROWTH PLUS CUMULATIVE PROJECTS (2021) CONDITIONS   EAPC intersection analysis results were previously presented on Table 6‐5, which indicates that  the following four study area intersections are anticipated to require installation of a traffic  signal (which is funded in the CIP) in order to maintain acceptable LOS under EAPC Phase 1  conditions:    Madison Street at Avenue 54 (#3) – Install CIP‐funded traffic signal control   Jefferson Street at Avenue 54 (#6) – Install CIP‐funded traffic signal control   Monroe Street at Avenue 54 (#13) – Install CIP‐funded traffic signal control   Monroe Street at Avenue 52 (#14) – Install CIP‐funded traffic signal control   EAPC analysis results in a cumulatively impacted intersection for Jefferson Street at Avenue 52.  Jefferson Street at Avenue 52 requires reconstruction of the current roundabout design to  incorporate 2 circulating lanes around the center island.  This effectively accommodates an  additional through lane in the northbound and southbound directions to provide acceptable  LOS. The improvements are needed with or without the Project, so a fair share contribution is  appropriate.  9.2.4  EXISTING PLUS AMBIENT GROWTH PLUS CUMULATIVE PROJECTS (2023) CONDITIONS   EAPC intersection analysis results were previously presented on Table 6‐7, which indicates that  the following five study area intersections are anticipated to require installation of a traffic  signal (which is funded in the CIP) in order to maintain acceptable LOS under EAPC Phase 2  conditions:    Madison Street at Avenue 54 (#3) – Install CIP‐funded traffic signal control   Jefferson Street at Avenue 54 (#6) – Install CIP‐funded traffic signal control   Monroe Street at Avenue 58 (#12) – Install CIP‐funded traffic signal control   Monroe Street at Avenue 54 (#13) – Install CIP‐funded traffic signal control   Monroe Street at Avenue 52 (#14) – Install CIP‐funded traffic signal control   EAPC analysis results in one cumulatively impacted intersection (Jefferson Street at Avenue 52).  Similar to EAPC Phase 1 conditions, Jefferson Street at Avenue 52 requires reconstruction of the  current roundabout design to incorporate 2 circulating lanes around the center island.  This  effectively  accommodates  an  additional  through  lane  in  the  northbound  and  southbound  directions  to  provide  acceptable  LOS.  The  improvements  are  needed  with  or  without  the  Project, so a fair share contribution is appropriate.   Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  126  9.2.5  EXISTING PLUS AMBIENT GROWTH PLUS CUMULATIVE PROJECTS (2026) CONDITIONS   EAPC intersection analysis results were previously presented on Table 6‐9, which indicates that  the following eight study area intersections are anticipated to require installation of a traffic  signal in order to maintain acceptable LOS under EAPC conditions:    Madison Street at Avenue 58 (#1) – Install CIP‐funded traffic signal control   Madison Street at Avenue 54 (#3) – Install CIP‐funded traffic signal control   Jefferson Street at Avenue 54 (#6) – Install CIP‐funded traffic signal control   Monroe Street at Avenue 60 (#11) – Install CIP‐funded traffic signal control  Monroe Street at Avenue 58 (#12) – Install CIP‐funded traffic signal control   Monroe Street at Airport Boulevard (#13) – Install CIP‐funded traffic signal control   Monroe Street at Avenue 54 (#14) – Install CIP‐funded traffic signal control   Monroe Street at Avenue 52 (#15) – Install CIP‐funded traffic signal control   In addition, for Jefferson Street at Avenue 50, a second westbound through lane is necessary to  maintain acceptable level of service.  EAPC analysis results in  one  cumulatively  impacted  intersection (Jefferson Street at Avenue 52). Similar to EAPC Phase 1 and Phase 2 conditions,  Jefferson Street at Avenue 52 requires reconstruction of the current roundabout design to  incorporate 2 circulating lanes around the center island.  This effectively accommodates an  additional through lane in the northbound and southbound directions to provide acceptable  LOS. The improvements are needed with or without the Project, so a fair share contribution is  appropriate.  The main Project driveway is located at on Madison Street south of Avenue 58.  It is a full access  location, serving left and right turns to and from Madison Street with traffic signal control.   With  the  Project,  the  northbound left  turn  lane  serving  the  main  Project  driveway  is  recommended to provide 150 feet of vehicle queuing.  9.2.6  GENERAL PLAN BUILDOUT (YEAR 2040) CONDITIONS  All  intersections  are  anticipated  to  experience  acceptable  operations  under  General  Plan  Buildout (Year 2040), based upon improvements indicated in the City of La Quinta General Plan  Circulation Element Update Traffic Impact Analysis.    The main Project driveway is located at on Madison Street south of Avenue 58.  It is a full access  location, serving left and right turns to and from Madison Street with traffic signal control.   With  the  Project,  the  northbound left  turn  lane  serving  the  main  Project  driveway  is  recommended to provide 150 feet of vehicle queuing.  9.3  FAIR SHARE CONTRIBUTION  Project mitigation may include a combination of fee payments to  established  programs,  construction of specific improvements, payment of a fair share contribution  toward  future  improvements  or  a  combination  of  these  approaches.    Improvements  constructed  by   Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  127  development should be eligible for a fee credit or reimbursement through the program where  appropriate (to be determined at the City’s discretion).  Table 9‐1 shows the project fair share percentages at cumulatively impacted intersections and  CIP  funded  locations  (for  EAPC  and  2040  conditions).    However, these  percentages  are  an  approximation only as they are intended only for discussion purposes and do not imply any  legal responsibility or formula for contributions or mitigation.  In addition, a summary of study area improvements needed to address intersection operational  deficiencies  and  corresponding  funding  sources  for  near‐term  and  General  Plan  Buildout  conditions are summarized in Table 9‐2.  9.4  VEHICLE MILES TRAVELED   Project VMT (Vehicle Miles Traveled) has been evaluated and provided  in  a  separate  letter “Coral  Mountain Specific Plan Vehicle Miles Traveled (VMT) Analysis”, dated October 27, 2020.     Phase 1 (2021) Phase 2  (2023) Phase 3 Buildout (2026) Phase 1 (2021) Phase 2  (2023) Phase 3 (2026) EAPC Phase 1 (2021)1 EAPC Phase 2  (2023)2 EAPC Phase 3 (2026)3 2040 With  Project4 1 Madison St. / Avenue 58 •AM Peak Hour 339 1,455 3,235 23% 10% •PM Peak Hour 464 2,034 4,690 23% 10% 3 Madison St. / Avenue 54 •AM Peak Hour 36 38 182 1,469 1,679 2,165 5,224 2% 2% 8% 3% •PM Peak Hour 43 52 240 1,845 2,130 2,769 6,689 2% 2% 9% 4% 4 Madison St. / Avenue 52 •AM Peak Hour 98 4,330 2% •PM Peak Hour 129 5,452 2% 5 Madison St. / Avenue 50 •AM Peak Hour 58 1,967 4,587 1% •PM Peak Hour 72 2,594 6,410 1% 6 Jefferson St. / Avenue 54 •AM Peak Hour 12 13 61 1,331 1,443 1,669 3,135 1% 1% 4% 2% •PM Peak Hour 15 17 80 1,604 1,749 2,044 3,871 1% 1% 4% 2% 7 Jefferson St. / Avenue 52 •AM Peak Hour 12 12 76 2,792 2,965 3,301 5,035 0.4% 0.4% 2% 2% •PM Peak Hour 13 13 97 3,233 3,462 3,900 6,097 0.4% 0.4% 2% 2% 9 Jefferson St. / Avenue 50 •AM Peak Hour 77 3,213 3,344 3,622 4,954 2% 2% •PM Peak Hour 96 3,853 4,054 4,440 6,161 2% 2% 10 Madison St. / Avenue 60 •AM Peak Hour 125 2,875 4% •PM Peak Hour 169 3,853 4% 11 Monroe St. / Avenue 60 •AM Peak Hour 82 685 941 1,334 3,094 6% 3% •PM Peak Hour 111 840 1,194 1,733 4,863 6% 2% 12 Monroe St. / Avenue 58 •AM Peak Hour 29 141 695 919 1,320 3,311 3% 11% 4% •PM Peak Hour 37 185 1,007 1,334 1,914 4,733 3% 10% 4% 13 Monroe St. / Airport Blvd. •AM Peak Hour 76 640 854 1,218 3,200 6% 2% •PM Peak Hour 97 864 1,163 1,654 4,442 6% 2% 14 Monroe St. / Avenue 54 •AM Peak Hour 12 12 76 1,120 1,349 1,738 3,987 1% 1% 4% 2% •PM Peak Hour 13 13 97 1,250 1,566 2,108 5,384 1% 1% 5% 2% 15 Monroe St. / Avenue 52 •AM Peak Hour 12 12 76 1,589 1,769 2,113 4,174 1% 1% 4% 2% •PM Peak Hour 13 13 97 1,932 2,190 2,673 5,664 1% 1% 4% 2% 16 Monroe St. / 50th Avenue •AM Peak Hour 9 9 58 1,561 1,734 2,067 4,319 1% 1% 3% 1% •PM Peak Hour 10 9 72 2,137 2,378 2,839 6,011 0% 0% 3% 1% 17 Jackson St. / 58th Avenue •AM Peak Hour 13 13 61 370 464 670 2,594 4% 3% 9% 2% •PM Peak Hour 13 17 81 559 700 995 3,735 2% 2% 8% 2% 1 Project Fair Share % = ("Project Only Phase 1 (2021) Traffic" / "EAPC Phase 1 (2021) Peak Hour Traffic") 2 Project Fair Share % = ("Project Only Phase 2 (2023) Traffic" / "EAPC Phase 2 (2023) Peak Hour Traffic") 3 Project Fair Share % = ("Project Only Phase 3 Buildout (2026) Traffic" / "EAPC Phase 3 (2026) Peak Hour Traffic") 4 Project Fair Share % = ("Project Only Phase 3 Buildout (2026) Traffic" / "2040 With Project Peak Hour Traffic") C:\UXRjobs\_12600‐13000\12615\Excel\[12615 ‐ Report.xlsx]9‐1 Fair Share N/A N/A N/A N/A ID Intersection N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A TABLE 9‐1: PROJECT FAIR SHARE CALCULATIONS Project Only Traffic EAPC Peak Hour Traffic 2040 With Project Peak Hour  Traffic Fair Share (%) N/A N/A N/A N/A N/A N/A N/A N/A N/AN/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/AN/A N/A N/A N/A 135 (Page 1 of 3)IDJurisdiction Without Project With Project Without Project With Project Without Project With ProjectWithout Project With Project1NoneNoneNoneNoneNone• Install TSDIF / CIP2• Same• Same• 2nd EBL, WBR Ovl • Same3• Install TS • Same• Same• Same• Same• SameDIF / CIP • Same• Same• 1 EB free RT • Same• WBR OVL• Same4City of La Quinta/City of IndioNoneNoneNoneNoneNoneNoneDIF / CIP • 1 SBR• Same5NoneNoneNoneNoneNoneNoneDIF / CIP • 3rd NBT• Same• WBR OVL• Same6• Install TS • Same• Same• Same• Same• SameDIF / CIP • Same• Same• WBR OVL • Same• Same, 2nd WBR • Same• 1 NBL, 1 NBR • Same7• 2 lane RDB • Same• Same• Same• Same• SameDIF / CIP • 3 lane RDB• Same• 2nd NBT • Same• Same• Same• Same• Same• Same, 3rd NBT • Same• 2nd SBT • Same• Same• Same• Same• Same• Same, 3rd SBT • Same• 2nd EBT, 3rd EBT • Same• 2nd WBT, 3rd WBT • Same9NoneNoneNoneNone• 2nd WBT • Same• Same, 2nd WBL • Same• 2nd EBL• Same10NoneNoneNoneNoneNoneNone‐‐• Install TS• Same• 1 Shared NB L/T/R • Same• 2nd SBL,  1 SBT, • Same    SBR OVL• 2 EBL• Same• 1 WBL, 2nd WBT • Same11NoneNoneNoneNone• Install TS • Same• Same• Same• 2nd NBT• Same• 2nd SBT• Same• 1 EBL, 2nd EBT, • Same   EBR OVL• 1 WBL, 2nd WBT • Same   1 WBR w/ OVLPhase 1 (2021)1Phase 2 (2023)1Jefferson St. / Avenue 54Jefferson St. / Avenue 52City of La Quinta/County of RiversideCity of La Quinta/City of IndioTABLE 9‐2: SUMMARY OF PHASED INTERSECTION IMPROVEMENTS City of La QuintaCity of La QuintaMadison St. / Avenue 54City of La Quinta/City of IndioJefferson St. / Avenue 50Madison St. / Avenue 60Madison St. / Avenue 50Madison St. / Avenue 52Phase 3 (2026)1Madison St. / Avenue 58La Quinta CIPLa Quinta CIPIntersectionFunding Source?2040 Conditions1City of La QuintaCity of La QuintaCity of La QuintaMonroe St. / Avenue 60136 (Page 2 of 3)IDJurisdiction Without Project With Project Without Project With Project Without Project With ProjectWithout Project With ProjectPhase 1 (2021)1Phase 2 (2023)1TABLE 9‐2: SUMMARY OF PHASED INTERSECTION IMPROVEMENTS Phase 3 (2026)1IntersectionFunding Source?2040 Conditions112NoneNone• Install TS • Same• Same• SameDIF / CIP • Same• Same• 1 NBL, 1 SBL, • Same• Same• Same• 1 EBL, 1 WBL • Same• Same• Same• 2nd NBL, 2nd NBT, • Same    1 NBR w/ OVL• 2nd SBL, 2nd SBT • Same• 2nd EBT, 2nd EBR • Same• 2nd WBT• Same13NoneNoneNoneNone• Install TS • SameDIF / CIP • Same• Same• 2nd NBT• Same• 2nd EBT• Same• 1 WBL, 2nd WBT, • Same    1 WBR w/ OVL14• Install TS • Same• Same• Same• Same• SameDIF / CIP • Same• Same• 1 NBL, 1 SBL, 1 WBL• Same• Same• Same• 2nd NBT, 1 NBR • Same• 2nd SBT, 1 SBR • Same• 2nd EBL, 2nd EBT, • Same   1 EBR• 1 WBL, 2nd WBT, • Same   1 WBR15• Install TS • Same• Same• Same• Same• SameDIF / CIP • Same• Same• 2 NBL, 1NBT, 1 NBR • Same• 2nd SBL• Same• 2nd EBT• Same• 2nd WBR• Same16NoneNoneNoneNoneNoneNone‐‐• 2nd NBL, 1 NBR • Same• 2nd SBL• Same• 2nd EBT• Same• 2nd WBT• SameMonroe St. / Avenue 58Monroe St. / Airport Blvd.Monroe St. / Avenue 52Monroe St. / 50th AvenueCity of La Quinta/City of Indio/County of RiversideCity of La Quinta/County of RiversideCity of La Quinta/County of RiversideCity of La Quinta/County of RiversideMonroe St. / Avenue 54City of Indio137 (Page 3 of 3)IDJurisdiction Without Project With Project Without Project With Project Without Project With ProjectWithout Project With ProjectPhase 1 (2021)1Phase 2 (2023)1TABLE 9‐2: SUMMARY OF PHASED INTERSECTION IMPROVEMENTS Phase 3 (2026)1IntersectionFunding Source?2040 Conditions117NoneNoneNoneNoneNoneNone‐‐• Install TS• Same• 1 NBL, 2nd NBT • Same• 1 SBL, 2nd SBT • Same• 1 EBL, 2nd EBT • Same• 1 WBL, 2nd WBT • Same18N/A• Install SB CSS N/A• SameN/A• SameProject N/A• Same• 1 shared SBL/R• Same• Same• Same• 1 shared EBL/T• Same• Same• Same• 1 shared WBT/R• Same• Same• Same19N/A• Install EB CSS N/A• SameN/A• SameProject N/A• Install TS• 1 NBL• Same• Same• Same• 1 EBL & 1 EBR• Same• Same• Same20N/A• Install NB CSS N/A• SameN/A• SameProject N/A• Same• 1 shared NBL/R• Same• Same• Same• 2nd EBT21N/A• Install NB CSS N/A• SameN/A• SameProject N/A• Same• 1 NBR• Same• Same• Same• 2nd EBT1TS = Traffic Signal;  RDB = Roundabout; CSS = Cross‐Street Stop Control; OVL = Overlap Phase2The required signal will be installed by the Project, and reimbursement may be provided for all but the Project’s fair share by future developments, or CIP, or DIF.C:\UXRjobs\_12600‐13000\12615\Excel\[12615 ‐ Report.xlsx]9‐2 Imp SummaryS. Access / Avenue 60Madison St. / Main AccessJackson St. / 58th AvenueProject Access 1 / Avenue 58Project Access 2 / Avenue 58City of La QuintaCity of La QuintaCity of La QuintaCity of La QuintaCounty of Riverside138  Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  132  10  REFERENCES  1. Iteris. City of La Quinta General Plan Circulation Element Update Traffic Impact Analysis. Prepared for  City of La Quinta, May 14, 2012.  2. City of La Quinta. Engineering Bulletin #06‐13. s.l. : City of La Quinta, July October 2313, 20152017.  3. City of La Quinta. Engineering Bulletin #10‐01 Intersection Sight Distance Guidelines. City of La Quinta  Public Works/Engineering Department, 2010.  4. Institute of Transportation Engineers. Trip Generation. 9th 10th Edition. 20122017.  5. Riverside  County  Transportation  Commission. 2011  Riverside  County  Congestion  Management  Program. County of Riverside : RCTC, December 14, 2011.  6. City of La Quinta. City of La Quinta Municipal Code. City of La Quinta.  December 1996.  7. Transportation Research Board. Highway Capacity Manual (HCM). National Academy of Sciences,  2010.  8. California  Department  of  Transportation. Guide  for  the  Preparation  of  Traffic  Impact  Studies.  December 2002.  9. Federal Highway Administration. Manual on Uniform Traffic Control Devices (MUTCD). [book auth.]  California  Department  of  Transportation. California  Manual  on  Uniform  Traffic  Control  Devices  (CAMUTCD). 2014.  10. Southern California Association of Governments. 2016 Regional Transportation Plan/Sustainable  Communities Strategy. April 2016.  11. City  of  La  Quinta. Resolution  No.  2012‐12:  Fiscal  Year  2012/2013  through  2016/2017  Capital  Improvement Plan. City of La Quinta, 2012.  12. KOA Corporation. CVAG Transportation Project Prioritization Study ‐ 2010 Update. Coachella Valley  Association of Governments,  2010.      Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx  133  This Page Intentionally Left Blank  Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    APPENDIX 1.1:    APPROVED TRAFFIC STUDY SCOPING AGREEMENT      Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    This Page Intentionally Left Blank      Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    APPENDIX 3.1:    EXISTING TRAFFIC COUNTS      Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    This Page Intentionally Left Blank      Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    APPENDIX 3.2:    EXISTING (2019) CONDITIONS INTERSECTION OPERATIONS ANALYSIS WORKSHEETS      Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    This Page Intentionally Left Blank      Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    APPENDIX 3.3:    EXISTING (2019) CONDITIONS TRAFFIC SIGNAL WARRANT ANALYSIS WORKSHEETS      Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    This Page Intentionally Left Blank     Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    APPENDIX 6.1:    E+P CONDITIONS INTERSECTION OPERATIONS ANALYSIS WORKSHEETS      Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    This Page Intentionally Left Blank      Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx      APPENDIX 6.2:    E+P CONDITIONS TRAFFIC SIGNAL WARRANT ANALYSIS WORKSHEETS   Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    This Page Intentionally Left Blank      Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    APPENDIX 6.3:    EA WITHOUT AND WITH PROJECT CONDITIONS   INTERSECTION OPERATIONS ANALYSIS WORKSHEETS   Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    This Page Intentionally Left Blank      Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    APPENDIX 6.4:    EA WITHOUT AND WITH PROJECT CONDITIONS  TRAFFIC SIGNAL WARRANTS ANALYSIS WORKSHEETS   Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    This Page Intentionally Left Blank      Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx      APPENDIX 6.5:    EAC (2021) WITHOUT AND WITH PROJECT PHASE 1 CONDITIONS  INTERSECTION OPERATIONS ANALYSIS WORKSHEETS     Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    This Page Intentionally Left Blank     Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    APPENDIX 6.6:    EAC (2021) WITHOUT AND WITH PROJECT PHASE 1 CONDITIONS  TRAFFIC SIGNAL WARRANTS ANALYSIS WORKSHEETS     Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    This Page Intentionally Left Blank     Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    APPENDIX 6.7:    EAC (2023) WITHOUT AND WITH PROJECT PHASE 2 CONDITIONS  INTERSECTION OPERATIONS ANALYSIS WORKSHEETS     Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    This Page Intentionally Left Blank     Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    APPENDIX 6.8:    EAC (2023) WITHOUT AND WITH PROJECT PHASE 2 CONDITIONS  TRAFFIC SIGNAL WARRANTS ANALYSIS WORKSHEETS     Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    This Page Intentionally Left Blank     Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    APPENDIX 6.9:    EAC (2026) WITHOUT AND WITH PROJECT BUILDOUT PHASE 3 CONDITIONS  INTERSECTION OPERATIONS ANALYSIS WORKSHEETS AND  PROJECT ACCESS QUEUEING ANALYSIS WORKSHEETS     Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    This Page Intentionally Left Blank     Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    APPENDIX 6.10:    EAC (2026) WITHOUT AND WITH PROJECT BUILDOUT PHASE 3 CONDITIONS  TRAFFIC SIGNAL WARRANTS ANALYSIS WORKSHEETS     Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    This Page Intentionally Left Blank     Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    APPENDIX 7.1:    GENERAL PLAN BUILDOUT (YEAR 2040) CONDITIONS  INTERSECTION OPERATIONS ANALYSIS WORKSHEETS     Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    This Page Intentionally Left Blank     Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    APPENDIX 7.2:    GENERAL PLAN BUILDOUT (YEAR 2040) CONDITIONS  TRAFFIC SIGNAL WARRANTS ANALYSIS WORKSHEETS        Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    This Page Intentionally Left Blank      Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    APPENDIX 7.3:    GENERAL PLAN BUILDOUT (YEAR 2040) WITH PROJECT CONDITIONS  INTERSECTION OPERATIONS ANALYSIS WORKSHEETS AND  PROJECT ACCESS QUEUEING ANALYSIS WORKSHEETS     Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    This Page Intentionally Left Blank     Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    APPENDIX 7.4:    GENERAL PLAN BUILDOUT (YEAR 2040) WITH PROJECT CONDITIONS  TRAFFIC SIGNAL WARRANTS ANALYSIS WORKSHEETS          Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    This Page Intentionally Left Blank      Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    WITHOUT PROJECT CONDITIONS    Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    WITH PROJECT CONDITIONS      Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    APPENDIX 8.1:    EAPC PROJECT BUILDOUT (2026) WEEKEND SPECIAL EVENT CONDITIONS  INTERSECTION OPERATIONS ANALYSIS WORKSHEETS AND  PROJECT ACCESS QUEUEING ANALYSIS WORKSHEETS      Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx    This Page Intentionally Left Blank      Coral Mountain Specific Plan Traffic Impact Analysis  L.1 ‐ TIA Report_UXR 2021‐10‐28.docx      CORAL MOUNTAIN RESORT FINAL EIR SCH# 2021020310 TECHNICAL APPENDICES Revised Vehicle Miles Traveled Evaluation Appendix L.2     January 2022      12615‐12 Revised VMT Eval.docx   February 8, 2021    Mr. Garret Simon  CM Wave Development, LLC   2440 Junction Place, Suite 200  Boulder, CO 81301    SUBJECT: CORAL MOUNTAIN SPECIFIC PLAN VEHICLE MILES TRAVELED (VMT) ANALYSIS  Dear Mr. Garret Simon:  The following vehicle miles traveled (VMT) analysis has been prepared for the proposed Coral Mountain  Specific Plan (Project) in the City of La Quinta.  For VMT analysis purposes, the Project consists of a  master planned themed resort comprised of the following land uses:   The Wave Basin (a private recreation facility)..   A 150‐key hotel (with 1,900 square feet bar, 1,400 square feet restaurant, 4,200 square feet  kitchen, 1,100 rooftop bar, 1,200 pool bar & grill, and 4,200 square feet spa)   104 attached dwelling units   496 detached dwelling units   60,000 square feet of retail   Wave village area (with 900 square feet shape studio, 1,600 square feet surf shop, 3,000  square feet board room, 1,800 square feet surf lounge/living room, 800 square feet surf  classroom, a fitness pavilion, 1,400 square feet high performance center, and 5,500 square  feet beach club)   The farm area (with 2,100 square feet barn, 2,500 square feet greenhouse, 1,400 square feet  equipment barn, 300 square feet tool shed, 1,200 square feet family camp, 4,500 square feet  gym, 2,000 square feet outfitters, and 2,000 square feet locker rooms)  In addition, the back of house complex consists of 9,500 square feet resort operations, 1,500 square feet  wave operations, and 1,000 square feet guardhouses.  These back of house uses are also accounted for  in the Project trip rates utilized in the Coral Mountain Specific Plan Traffic Impact Analysis (October 27,  2020).    BACKGROUND  Changes to California Environmental Quality Act (CEQA) Guidelines were adopted in December 2018,  which require all lead agencies to adopt VMT as a replacement for automobile delay‐based level of  service (LOS) as the new measure for identifying transportation impacts for land use projects.  This  Mr. Garret Simon  CM Wave Development, LLC   February 8, 2021  Page 2    12615‐12 Revised VMT Eval.docx   statewide mandate was implemented on July 1, 2020. To aid in this transition, the Governor’s Office of  Planning and Research (OPR) released a Technical Advisory on Evaluating Transportation Impacts in  CEQA (December of 2018) (Technical Advisory). (1)   Based on OPR’s Technical Advisory, the City of La Quinta has prepared their Vehicle Miles Traveled  Analysis Policy (City Guidelines). (2)  This analysis has been prepared based on the adopted City  Guidelines.  VMT ANALYSIS METHODOLOGY   The Vehicle Miles Traveled Analysis Policy (June 2020) (La Quinta Guidelines) are consistent with the  VMT analysis methodology recommended by OPR.  As outlined in the La Quinta Guidelines, a Mixed‐Use  project such as Coral Mountain, which includes both residential and non‐residential uses has each type  of uses analyzed independently, applying the following significance thresholds for each land use  component:    For Residential Uses, VMT per resident exceeding a level of (1) 15 percent below the Citywide per resident  VMT OR (2) 15 percent below regional VMT per resident, whichever is more stringent   For Retail Uses (Includes Hotels), a net increase in the total existing VMT for the region.  PROJECT SCREENING   The La Quinta Guidelines provide details on appropriate “screening thresholds” that can be used to  identify when a proposed land use project is anticipated to result in a less‐than‐significant impact  without conducting a more detailed analysis. Screening thresholds are broken into three types:   Transit Priority Area (TPA) Screening   Low VMT Area Screening   Project Type Screening  A land use project need only to meet one of the above screening thresholds to result in a less‐than‐ significant impact.   For the purposes of this analysis, the initial VMT screening process has been conducted using the  Riverside County Transportation Analysis Model (RIVTAM).   TPA SCREENING   Consistent with guidance identified in the Technical Advisory, projects located within a Transit Priority  Area (TPA) may be presumed to have a less than significant impact.  A TPA is defined as within ½ mile of:   1) an existing “major transit stop” (containing a rail transit station served by either bus services or  rail transit service, or the intersection of two or more major bus routes with a frequency of service  interval of 15 minutes or less during the morning and afternoon peak commute periods) or   2 Mr. Garret Simon  CM Wave Development, LLC   February 8, 2021  Page 3    12615‐12 Revised VMT Eval.docx   2) an existing stop along a “high‐quality transit corridor” (a corridor with fixed route bus service  with service intervals no longer than 15 minutes during peak commute hours)   The Project site is not located within ½ mile of an existing major transit stop, or along a high‐quality  transit corridor.    The TPA screening threshold is not met.    LOW VMT AREA SCREENING   The La Quinta Guidelines also states that, “residential and office projects located within a low VMT‐ generating area may be presumed to have a less than significant impact absent substantial evidence to  the contrary. In addition, other employment‐related and mixed‐use land use projects may qualify for the  use of screening if the project can reasonably be expected to generate VMT per resident, per worker, or  per service population that is similar to the existing land uses in the low VMT area.”  The sub‐regional  Riverside County Transportation Analysis Model (RIVTAM) is used to measure VMT performance within  individual traffic analysis zones (TAZs).  An estimate of the VMT in the Project’s physical location was  calculated to determine the relevant TAZ’s VMT as compared to the jurisdictional average (see  Attachment A).  The Project is located in TAZ 4742 and would not appear to be within a low VMT  generating TAZ.  Exhibit 1 shows the Project area RIVTAM traffic analysis zones.  The Low VMT Area screening threshold is not met.   PROJECT TYPE SCREENING   The retail component of the Project is anticipated to serve the local area.  The La Quinta Guidelines allow  retail projects of less than 50,000 square feet to be screened out if the project is serving the local area.   Because the retail component of the Project is more than 50,000 square feet, the retail portion of the  Project is not screened out.  The La Quinta Guidelines identify projects that are local serving by nature,  or that generate fewer than 110 daily vehicle trips be presumed to have a less‐than‐significant impact  on VMT. Based on the Project’s trip generation, the Project is not considered a local serving or small  enough to not warrant assessment, therefore, the Project would not be eligible to screen out based on  project type screening.   The Project Type screening threshold is not met.   Since none of the project level screening criteria were met, a project level VMT analysis has been  prepared.   PROJECT VMT ASSESSMENT  The VMT projections are based upon an updated version of the Riverside County Transportation Analysis  Model (RIVTAM) which became available in the CVAG region during 2016.  RIVTAM is consistent with  the SCAG draft 2016 RTP for the CVAG Transportation Project Prioritization Study (TPPS) 2040 project.    3 Mr. Garret Simon  CM Wave Development, LLC   February 8, 2021  Page 4    12615‐12 Revised VMT Eval.docx   Travel Demand Models such as RIVTAM are broadly considered to be amongst the most accurate of  available tools to assess regional and sub‐area VMT.  While the Southern California Association of  Governments (SCAG) maintains the regional travel demand model as a part of the Regional  Transportation Plan/Sustainable Communities Strategy program (RTP/SCS), Riverside County maintains  RIVTAM as a focused version of the regional model in support of travel forecasting needs of the various  agencies and jurisdictions within the County.  The latest available version of RIVTAM has been  determined to be the best fit for developing the VMT thresholds as it has the most up to date land use  information for the County, as well as refined zonal structure within the County.  The 2040 Future Year model scenario is used for the cumulative conditions in the County.  The five other  counties included in the model (Ventura County, Los Angeles County, Orange County, San Bernardino  County, and Imperial County) are contributors to the trips to/from Riverside County during a typical  weekday.  Socioeconomic data (SED) and other model inputs are associated with each TAZ.  Out of several different  variables in the model SED, the VMT analysis mainly focused on population, households and employment  that are used in the trip generation component.  The model runs a series of complex steps to estimate  daily trip productions and attractions by various trip purposes for each TAZ.  The trip purposes are listed  below.  1. Home‐Based Work Direct (HBWD)  2. Home‐Based Work Strategic (HBWS)  3. Home‐Based School (HBSC)  4. Home‐Based College and University (HBCU)  5. Home‐Based Shopping (HBSH)  6. Home‐Based Serving‐Passenger (HBSP)  7. Home‐Based Other (HBO)  8. Work‐Based Other (WBO)  9. Other‐Based Other (OBO)  Productions and attractions are computed by RIVTAM for each trip purpose, and trip lengths are derived  for each zone pair from the respective skim matrices in the model to compute the production and  attraction VMT by purpose.  RIVTAM is therefore a useful tool to estimate VMT as it considers interaction between different land  uses based on socio‐economic data such as population, households, income, and employment. The La  Quinta Guidelines identifies RIVTAM as the appropriate tool for conducting VMT analysis for land use  projects in Riverside County.   Project VMT has been calculated using the most current version of RIVTAM.  Adjustments in socio‐ economic data (SED) (i.e., population and employment) have been made to a separate TAZ within the  RIVTAM model to reflect the Project’s proposed population and employment uses. Separate TAZs are  used to isolate the Project’s VMT.  4 Mr. Garret Simon  CM Wave Development, LLC   February 8, 2021  Page 5    12615‐12 Revised VMT Eval.docx   Table 1 summarizes the service population (population and employment) estimates for the Project. It  should be noted that the employment estimates have been developed from land use to employment  generation factors from the Riverside County General Plan but modified for the specific Project  characteristics and then confirmed with the Client. The wave basin and ancillary resort land uses are  private, for use of residents and resort hotel guests.  Although the Project employment is a mix of service  and retail employment, the City of La Quinta guidelines are explicit indicating that the hotel land uses  are categorized as retail uses for the purposes of VMT analysis.  TABLE 1: POPULATION AND EMPLOYMENT ESTIMATES  Land Use Estimated Service Population  Residential 1,698 Residents Hotel & Wave Basin 434 Employees Commercial Retail 240 Employees Hotel 300 Hotel Occupants Total:2,672 Service Population    Adjustments to population and employment factors for the Project TAZ were made to the RIVTAM base  year model (2012) and the cumulative year model (2040). Each model was then run with the updated  SED factors included for the Project TAZ.   PROJECT RESIDENTIAL VMT CALCULATION  Consistent with recommendations contained in the La Quinta Guidelines, the residential calculation of  VMT is based upon the home‐based project‐generated VMT per population.  This calculation focuses on  the occupants of dwelling units within the Project land uses, whereas hotel occupants, wave basin  visitors and retail patrons are evaluated separately using the boundary method discussed below.  Table  2 shows the home‐based VMT associated with the Project for both baseline and cumulative conditions.   VMT estimates are provided for both the base year model (2012) and cumulative year model (2040), and  linear interpolation was used to determine the Project’s home‐based baseline (2020) VMT.  TABLE 2: BASELINE AND CUMULATIVE PROJECT RESIDENTIAL HOME‐BASED VMT     Project 2012 Project 2040 Project 2020  (interpolated)  Residents 1,698 1,698 1,698  VMT 19,437 20,642 19,773  VMT / Resident 11.45 12.14 11.64    5 Mr. Garret Simon  CM Wave Development, LLC   February 8, 2021  Page 6    12615‐12 Revised VMT Eval.docx   For baseline (2020) conditions, the residential portion of the Project generates 19,773 Home‐Based VMT.   There are an estimated 1,698 Project residents.  The result is approximately 11.64 home‐based VMT /  Capita for the 2020 Baseline with Project conditions.  In addition, the cumulative (2040) Project scenario  results in approximately 12.14 VMT / SP.    For comparison purposes, Citywide home‐based VMT estimates have been also developed from the  “with Project” RIVTAM model run for baseline conditions.  Once total home‐based VMT for the area is  calculated, total area VMT is then normalized by dividing by the population as shown on Table 3.  TABLE 3: BASE YEAR CITYWIDE HOME‐BASED VMT     Category City of La Quinta VMT  544,993 Population 42,000 VMT / Resident  12.98   The estimates of baseline residential home‐based Project VMT / Capita are compared to the City of La  Quinta VMT of 12.98 home‐based VMT / Capita.  The City of La Quinta guidelines indicate that residential  VMT exceeding the threshold of 15 percent below the Citywide VMT per resident (11.03 VMT / capita)  represents a Project impact.  The Project home‐based VMT / Capita of 11.64 is greater than the City VMT  / Capita threshold, indicating a potentially significant VMT.  The Project home‐based VMT / Capita of 11.64 equates to an average home‐based VMT / Dwelling Unit  of 32.94.  As a private resort, home based travel to and from the Project includes less of the commute  activity associated with typical suburban homes.  Some Project vehicle trips will be longer and some  shorter than the average Project home‐based VMT / Dwelling Unit of 32.94.  With restaurant and  recreation and retail and service functions available on site, some of the home‐based Project trips are  shorter or even captured as pedestrian or bicycle interactions.  However, this is balanced by the  occurrence of “resort area arrival” and “resort area departure” trips, which are on the lengthier side of  the range of home‐based trips included in the average trip length data for the Project residential units.  On any given day, some of the Project residential units will generate departures or arrivals to and from  locations outside of Coachella Valley.  These “resort area arrival” and “resort area departure” trips for  out‐of‐valley travelers often make intermediate stops (auto fuel, restroom break, food for travel, food  for the resort stay, etc) while traveling to or from a resort property from locations far away.  In such  cases, VMT is appropriately measured to the intervening commercial or service stop location.  Considering the unique trip making characteristics of the residential portion of this proposed  development, the Project home‐based VMT datasets derived from RIVTAM appear to be reasonable  estimates of average daily activity associated residential units in the Project, separate from the Project  non‐residential uses.  6 Mr. Garret Simon  CM Wave Development, LLC   February 8, 2021  Page 7    12615‐12 Revised VMT Eval.docx   PROJECT EMPLOYMENT IMPACT ON VMT  As noted above, the VMT analysis methodology for retail uses (including hotels) focuses on the net  increase in the total existing VMT for the region.  The project consists of approximately 674 employees,  including 240 employees associated with the 60,000 square feet of neighborhood shopping center retail  uses and 434 employees associated with the hotel and wave basin uses.   Travel activity associated with total link‐level VMT was extracted from the “without Project  employment” and “with Project employment” RIVTAM model run for 2012 and 2040 conditions, then  interpolated for baseline (2020) conditions.  This methodology is commonly referred to as “boundary  method” and includes the total VMT for all vehicle trips with one or both trip ends within a specific  geographic area.  The “boundary method” VMT per service population for the CVAG subregion is utilized to normalize VMT  into a standard unit for comparison purposes, focusing on the total population and employment in the  Coachella Valley.   Once total VMT for the area is calculated, total area VMT is then normalized by  dividing by the respective service population (i.e., population and employment of the Coachella Valley)  as shown on Table 4.  To determine whether there is a significant impact using the boundary method, CVAG area VMT with  the project employment is compared to without project conditions.    TABLE 4: BASE YEAR SUB‐REGIONAL LINK‐LEVEL VMT      Without Project Employment  With Project  Employment  VMT Interacting with CVAG Area 15,173,739 15,166,580  CVAG Area Population 510,550 510,550  CVAG Area Employment 193,090 193,764  VMT / Service Population  21.56 21.53    The CVAG subregion VMT / SP without Project employment is estimated at 21.56, whereas with the  Project employment, the CVAG subregion VMT is estimated at 21.53. The project’s effect on VMT (for  non‐residential uses) is not considered significant because it results in a cumulative link‐level boundary  CVAG VMT per service population decrease under the plus project condition compared to the no project  condition.  PROJECT DESIGN FEATURES FOR VMT REDUCTION   Transportation demand management (TDM) strategies have been evaluated for the purpose of reducing  VMT impacts determined to be potentially significant. Quantifying Greenhouse Gas Mitigation Measures  (CAPCOA, 2010) provides information on individual measures for potential reduction in VMT.  Of the 50  transportation measures presented by CAPCOA, approximately 41 are applicable at a building and site  7 Mr. Garret Simon  CM Wave Development, LLC   February 8, 2021  Page 8    12615‐12 Revised VMT Eval.docx   level. The remaining 9 measures are functions of, or depend on, site location and/or actions by local and  regional agencies or funders.  On page 58 of the CAPCOA 2010 document, ten percent is referenced as the maximum reduction when  combining multiple mitigation strategies for the suburban place type (characterized by dispersed, low‐ density, single‐use, automobile dependent land use patterns) and requires a project to contain a diverse  land use mix, workforce housing, and project‐specific transit. The maximum percent reductions were  derived from a limited comparison of aggregate citywide VMT performance rather than based on data  comparing the actual performance of VMT reduction strategies in the place type.   Even under the most favorable circumstances, projects located within a suburban context, such as the  proposed Project evaluated here, can realize a maximum 10 percent reduction in VMT through  implementation of feasible TDM measures. The Project incorporates design features and attributes  promoting trip reduction.  Because these features/attributes are integral to the Project, and/or are regulatory requirements, they  are not considered to be mitigation measures.  However, the RIVTAM does not incorporate modeling of  these features, so they are considered after the VMT data is extracted from the traffic model.  Project vehicle miles traveled (VMT) are reduced by the following Project design features/attributes,  which are anticipated to collectively reduce Project home‐based VMT by approximately 6%:      Having different types of land uses near one another can decrease VMT since trips between  land use types are shorter and may be accommodated by non‐auto modes of transport. For  example, when residential areas are in the same neighborhood as commercial and resort land  uses, a resident does not need to travel outside of the neighborhood to meet his/her  recreational and retail needs. The Project’s mixed‐use environment could provide for a  potential reduction in Project residential VMT of 3%.   The project will include improved design elements to enhance walkability and connectivity.  Improved street network characteristics within the Project include sidewalk coverage,  building setbacks, street widths, pedestrian crossings, presence of street trees, and a host of  other physical variables that differentiate pedestrian‐oriented environments from auto‐ oriented environments. The Project would provide a pedestrian access network that  internally links all uses and connects to all existing or planned external streets and pedestrian  facilities contiguous with the project site. The Project would minimize barriers to pedestrian  access and interconnectivity. The Project includes sidewalk connections, particularly to / from  the retail areas interacting with residential and resort uses on‐site. The Project’s  implementation of this measure could provide for a potential reduction in Project residential  VMT of 2%.  8 Mr. Garret Simon  CM Wave Development, LLC   February 8, 2021  Page 9    12615‐12 Revised VMT Eval.docx    The project will implement marketing strategies to optimize on‐site resort and residential  uses. Information sharing and marketing are important components to successful trip  reduction strategies. Marketing strategies may include:  o Resident member benefits that include use of the resort amenities  o Event promotions  o Publications  The Project’s implementation of this measure could provide for a potential reduction in  Project residential VMT of 1%.  In summary, travel demand modeling of VMT for the Project based upon City of La Quinta guidelines  indicates a potential impact for residential uses while also indicating the Project’s non‐residential uses  do not exceed VMT thresholds. Project design features (taken into account after the modeling process)  reduce residential VMT from 11.64 VMT per resident to 10.94 VMT per resident, which is less than the  City’s VMT residential threshold of 11.03 VMT per resident.  The unique mixed‐use characteristics of the  Project, combined with walkability and connectivity design elements, optimize on‐site interaction and  result in a lower VMT than standalone uses.  If you have any questions, please contact us at (949) 375‐2435 for John or (714) 585‐0574 for Marlie.  Respectfully submitted,    URBAN CROSSROADS, INC.       John Kain, AICP      Marlie Whiteman, PE     Principal        Senior Associate   9 Mr. Garret Simon  CM Wave Development, LLC   February 8, 2021  Page 10    12615‐12 Revised VMT Eval.docx   REFERENCES  1. Office of Planning and Research. Technical Advisory on Evaluating Transportation Impacts in CEQA.  State of California : s.n., December 2018.  2. City of La Quinta. Vehicle Miles Traveled Aanlysis Policy. June 23, 2020.  3. County of Riverside. Appendix E: Socioeconomic Build‐Out Assumptions and Methodology. County of  Riverside : s.n., April 2017.      10 4713 4722 4738 4729 4725 4724 4741 4737 4754 47874771 4791 47904776 4753 4775 4774 4788 4773 4769 47514736 4755 4711 4642 4705 4756 4809 4786 4740 4806 4810 4803 4813 48124747 4721 4757 4772 47984783 4743 4764 4792 4801 4777 4692 4767 4781 4766 4731 4758 4709 48044708 4808 47854734 4780 4752 4784 4761 4704 4799 4746 4814 4765 4796 4797 4807 4702 4745 4759 4699 4816 4742 4739 Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community EXHIBIT 1: PROJECT AREA RIVTAM TRAFFIC ANALYSIS ZONES Coral Mountain Specific Plan Vehicle Miles Traveled (VMT) Analysis _N 12615 - 01 - TAZ.mxd LEGEND EXAMPLE OF RIVTAM LOW VMT TAZ RiVTAM TAZ ENCOMPASSING CORAL MOUNTAIN PROJECT SEPARATE TAZ ADDED FOR PROJECT REPRESENTATION IN RIVTAM 11 This Page Intentionally Left Blank  12   12615‐12 Revised VMT Eval.docx   ATTACHMENT A    LOW VMT AREA SCREENING CALCULATIONS                    RivTAM TAZ 4742Vehicle Flow OD Total 3902Automobiles363Trucks26VMT OD Total5,1196VMT OD Automobiles 4,114VMT OD Trucks1,005Trip Length Total13.143Automobiles11.32Trucks38.42TAZ 4742HB536Trip Length Total22.738OD VMT/SP10PA HB VMT/POP11VMT HB 727Emp5096.5824.08SP531 OD = Origin‐Destination2 Vehicle Flow OD  = Automobiles + Trucks3 Trip Length = VMT OD Total/Vehicle Flow OD Total4 PA = Production‐Attraction5 HB = Home‐Based6 2012 home‐based vehicle trips  generated by TAZ 4742 based upon RIVTAM7 2012 home‐based vehicle miles traveled  generated by TAZ 4742 based upon RIVTAM8 Trip Length = VMT PA Total/Vehicle Flow PA Total9 SED = Socio‐Economic Data10 OD VMT/SP = Total Origin‐destination vehicle miles traveled per service population11 PA HB VMT/POP = Total production‐attraction vehicle miles traveled per residentC:\UXRjobs\_12600‐13000\12615\Excel\[12615 VMT Matrix Method Summary.xlsx]4742 HB VMTSUMMARYTAZ 4742 ‐ No Project 2012Trip LengthSED9TAZ 4742Base Year (2012)Base Year (2012)Base Year (2012)TAZ 4742TAZ 4742TAZ 4742Base Year (2012)Vehicle Flow OD Method1 OD Method Vehicle Miles Traveled1 Base Year (2012)Trip LengthTAZ 4742TAZ 4742Base Year (2012)Base Year (2012)Vehicle Flow PA Method4PA Method Vehicle Miles Traveled4A-1 CORAL MOUNTAIN RESORT FINAL EIR SCH# 2021020310 TECHNICAL APPENDICES Traffic Response to Comments Appendix L.3     January 2022    Date: November 8, 2021  Subject: Responses to August 3, 2021 Coral Mountain Specific Plan Comments – Expert Review of Traffic  Report (Appendix L.1), VMT (Appendix L.2), Trip Generation Comparison (Appendix N) & Draft EIR  (Section 4.13 Transportation) for the Coral Mountain Resort Specific Plan, SCH#2021020310, in the  City of La Quinta, CA    The following responses are provided for the comments/questions from Fred Minagar (Minagar & Associates,  Inc.):  Traffic Report (Appendix L.1), June 2021  1. Page 1/140, Section 1.1, & Page 139/140 References, the City of La Quinta's Traffic Study Guidelines  (Engineering Bulletin #06‐13, dated October 13, 2017) should also be included.  Response  ‐ The date on the document reference has been updated.   2. Various available General Plan Circulation Element documents prepared by lteris and by Terra Nova for  the City of La Quinta (prepared July 2012 and adopted in 2013) refer to La Quinta 2035, while the General  Plan Buildout 2040 is used in the subject DEIR. What is the source of 2040 GP Circulation data in the  reports?    Response  ‐ Two sources were used to develop the 2040 General Plan Buildout traffic projections: (1) the available  General Plan Circulation Element documents prepared by Iteris for the City of La Quinta, and (2) an  updated version of the Riverside County Transportation Analysis Model (RivTAM) which became  available in the CVAG region during 2016. The RivTAM model is consistent with the SCAG draft 2016  RTP for the Transportation Project Prioritization Study (TPPS) 2040 project. Although the City GP  traffic projections prepared by Iteris referred to “La Quinta 2035”, this was the title used for the  General Plan buildout scenario at the time. The City GP data prepared by Iteris generally exceeds the  2040 RivTAM projections, because buildout of all City land uses can be anticipated to occur beyond  typical 20‐year planning horizons.   3. Page 9/140, on Table 1‐5: Summary of Phased Intersection Operations, for the Intersection #9, under  Phase 2 (2023) "Without Project" scenario, the intersection delay values cannot be lower than Phase 1  (2021) during the AM peak hour.    Response  ‐ Delay values fluctuate due to changes in traffic volumes, signal timing, etc. which can vary over time.  A slight decrease in intersection delay values reflecting additional traffic volumes in certain traffic  movements (e.g., right or left turn movements) in an intersection is not unusual or unreasonable. It  is possible for the average delay to decrease with an increase in traffic volumes if these volume  increases occur in movements with less than the average delay. Even with increases in more than  one movement on an approach to an intersection, the net effect can still be a decrease in average  delay if the movements with less than average delay increase sufficiently. The .01 difference between  November 8, 2021  Page 2      12615 ‐ Response to comments (2021.11.08).docx  Phase 1 and Phase 2 for intersection 9 is negligible and basically indicates no effective change to the  delay value between these two phases at this location.  4. Page 10/140, on Table 1‐6: Summary of General Plan Buildout (2040) Intersection Operations, for the  Intersection #16, under "With Project" scenario, the intersection delay values cannot be lower than  "Without Project" during the AM peak hour.    Response  ‐ As discussed above in the response to Comment #3, minor changes such as this in intersection delay  values are not unusual. The .04 difference between without and with Project for intersection 16 is  negligible and basically indicates no effective change to the delay value between these two scenarios  at this location.  5. Page 11/140, on Table 1‐7, there are missing results for Phases I (2021) & II (2023).    Response  ‐ Table 1‐7 is summarizes buildout of the Project for Interim Year conditions (2026) as well as buildout  of the Project for long range conditions (2040).  The Phase 1 analysis is shown on Table 6‐6 and Phase  2 analysis is shown on Table 6‐8.  6. Page 11/140, on Table 1‐7, LOS results need to be shown for each segment in order to easily determine  level of significance.    Response  ‐ Roadway segment LOS is considered acceptable if the V/C is 0.90 or less.  In addition, roadway  segments are not typically recommended for widening unless peak hour intersection analysis  indicates further upstream or downstream segment improvements are necessary. For this reason,  daily roadway capacities provide "rule of thumb" estimates for planning purposes. Actual daily  capacity is affected by such factors as intersections (spacing, configuration and control features),  degree of access control, roadway grades, design geometrics (horizontal and vertical alignment  standards), sight distance, vehicle mix (truck and bus traffic) and pedestrian and bicycle traffic.  Because the V/C ratio is 0.90 or less for all roadway segments, the level of service for all segments  will be acceptable.  7. Page 11/140, on Table 1‐7, a column needs to be added to show potential impact/level of significance.    Response  ‐ As discussed above in the response to Comment #6, roadway segment LOS is considered acceptable  if the V/C is 0.90 or less.  In addition, roadway segments are not typically recommended for widening  unless peak hour intersection analysis indicates improvement is necessary.  The V/Cs shown are  within the acceptable range and, therefore, the level of service for these segments is acceptable and  no significant impacts were identified.  November 8, 2021  Page 3      12615 ‐ Response to comments (2021.11.08).docx  8. Page 26/140, on Exhibit 3‐1, for the Intersection #1, southbound approach, per the existing geometry,  one shared thru‐right, one thru and one left turn lanes configuration should be used rather than one  right, two‐thru and one left turn lanes.    Response  ‐ The DEF label indicates the right turn lane is defacto, meaning that the right turn capability exists  although not formally designated. An unstriped/defacto right turn lane exists where there is  sufficient width for right turning vehicles to travel outside the through lanes. Because this defacto  right turn lanes exists and is currently in use, it is appropriate to use this intersection configuration  in the analysis.   9. Page 26/140, on Exhibit 3‐1, for the Intersection #4, eastbound approach, per the existing geometry,  one shared thru‐right, one thru and one left turn lanes configuration should be used rather than one  right, two‐thru and one left turn lanes.    Response  ‐ As discussed above in the response to Comment #8, this intersection also has a functional defacto  right turn lane and, for this reason, it is appropriate to use this intersection configuration in the  analysis.   10. Page 26/140, on Exhibit 3‐1, for the Intersection #7, for all approaches of the roundabout, per the  existing geometry, one exclusive right and one shared thru‐ left configuration should be used rather than  one shared thru‐right and one shared thru‐left lanes.    Response  ‐ Exhibit 3‐1 shows one shared left‐through lane and one free right turn lane on each movement, which  is consistent with current lane approaches.    11. Page 29/140, Traffic Volumes and Conditions: While in overall the Traffic Impact Study has conformed  with the City of La Quinta TIA Guidelines EB#06‐13, the fact that for this very sensitive mega project  various historic traffic volumes from Thursday, August 15, 2017, Tuesday, April 9, 2019, Tuesday, May 7,  2019 and Tuesday, September 10, 2019 have been used, is troublesome! The cost associated with  collecting fresh counts for 17 intersections right after the approval of the Scoping Agreement on  February 12, 2020 (Appendix 1.1, Page 1.1‐1) was very low prior to the start of COVID‐19 pandemic on  March 15, 2020. Traffic volumes are the foundation of each traffic impact study. Furthermore, for this  mega project, the traffic volumes for 9 major intersections were estimated while they could have been  freshly counted! In order to establish public trust, the most current traffic volumes ought to be used.  Since the City of La Quinta is a growing dynamic city (per Table 4‐4, Page 56/140 there are 41 ambient  new developments within the project boundaries), therefore, the overall validity of the traffic volumes  is questionable!    Response  ‐ Acceptability of the traffic count data was confirmed during the scoping agreement process with City  staff, as documented in the Traffic Study Scoping Agreement attached as Appendix 1.1 to the TIA.   November 8, 2021  Page 4      12615 ‐ Response to comments (2021.11.08).docx  Traffic counts were increased as described in the scoping agreement “A 20% increase is applied to  counts taken in August, 5% increase is applied to counts taken in April, 10% increase is applied to  counts taken in May, and 15% increase is applied to counts taken in September as required per City  of La Quinta’s Traffic Study Guidelines (EB#06‐13).  As explained on page 29 of the revised TIA appended to the Final EIR, the average AM/PM peak hour  intersection growth between 2017 and 2019 counts data at selected study area and nearby  intersections is approximately 2.66%.  The additional 2.66% growth rate is applied to the study area  intersections with 2017 counts to reflect 2019 conditions.”  Accordingly, the traffic counts accurately  reflect 2019 conditions and properly take into account seasonal differences in traffic levels.   12. Page 38/140, on Table 3‐4, LOS results need to be shown for each segment in order to easily determine  level of significance.    Response  ‐ See Response #6    13. Pages 41‐43/140, Tables 4‐1, 4‐2, 4‐3, percentages and source(s) of each of internal and pass‐by (in some  cases) reduction should be shown for each land use category.    Response  ‐ Internal trips were calculated by considering potential interactions between the different uses (e.g.,  residential, commercial, etc.) on the site, rather than utilization of an overall percent reduction.  Therefore, presentation of the internal trip values is more accurate. Internal interactions vary by peak  hour and by land use.  For example, in Table 4‐1, the shopping center interacts internally more in the  morning with residential / resort uses than the overall or daily interaction for these uses.  14. Page 43, Table 4‐3, at the bottom, the last row, the totals for AM In and AM Out ought to be 143 & 304  rather than 147 & 300 respectively.    Response  ‐ The Table 4‐3 totals for AM in and AM out are correct as shown in the TIA.   15. Page 60/140, why wasn't SCAG's 2020 RTP utilized?    Response  ‐ The RivTAM used in the analysis is consistent with the SCAG draft 2016 RTP for the Transportation  Project Prioritization Study (TPPS) 2040 project.  This version of RivTAM, which is consistent with the  SCAG 2016 RTP, is the source of traffic projections indicated in the Riverside County guidelines  (December 2020). During 2021, the Western Riverside County Council of Governments (WRCOG)  developed the Riverside County Transportation Model (RIVCOM) which is consistent with the SCAG  2020 RTP. RIVCOM is using base year data for 2018 and a future year of 2045.  However, the County  of Riverside has not yet accepted RIVCOM for use in traffic studies.   November 8, 2021  Page 5      12615 ‐ Response to comments (2021.11.08).docx  16. Page 109/140, on Table 7‐2, LOS results need to be shown for each segment in order to easily determine  level of significance.    Response  ‐ See Response #6.    17. Page 111/140, on Table 7‐4, LOS results need to be shown for each segment in order to easily determine  level of significance.    Response  ‐ See Response #6.   18. Page 114, Table 7‐5, for Intersections #20, 21 & 22, why the exact Storage Lengths are not shown while  the 95th Percentage Queue Lengths are?    Response  ‐ Precise design of the commercial area has not yet been completed and will be subject to the City’s  SPD process, including CEQA compliance and public hearings. Intersections 20, 21, and 22 are  locations where on‐site driveway are anticipated to interface with adjacent roadways. As the  locations of these commercial site driveways have not yet been determined, on‐site driveway lengths  consider the 95th percentile queue lengths indicated in Table 7‐5.  19. Page 115/140, Section 8.2, while it is understandable that for the Special Events, the ITE Trip Generation  Manual does not provide the weekend rates, how come a survey or data of a similar facility wasn’t used  as opposed to estimating? Where is the source of 2.4 vehicle occupancy?    Response  ‐ The unique land use types and quantities for the Project were presented in the approved scoping  agreement, which represents trip generation specifically related to anticipated Project usage.  The  2.4 vehicle occupancy factor (included in the approved scoping agreement) reflects the tendency of  event attendees to arrive in pairs or small groups, rather than primarily solo. Since there is no  comparable existing private facility available to conduct counts, conservative assumptions as  reviewed and approved by the City were used.  20. Page 118/140, Table 8‐3, Trip Generation Results for 2,500 Guests for Wave Basin Facility, are those AM  & PM estimated traffic generation numbers realistic?.    Response  ‐ Table 8‐3 shows Arrival Peak Hour and Departure Peak Hour, rather than typical AM and PM  weekday peak hours.  It is realistic that the Arrival and Departure Peak Hour volumes are each  approximately 14% to 15% of the weekend daily volume whereas on a typical weekday (see Table 4‐ 3) the peak hour volumes for this use are less than 4%.  These trip generation calculations are  considered conservative because they assume there will be 1,537 additional daily trips for the special  events, in addition to the 8 external daily trips per residence and nearly 4 external daily trips per hotel  November 8, 2021  Page 6      12615 ‐ Response to comments (2021.11.08).docx  room, even though many attendees of the special events will be staying in the Project residences and  hotel rooms.      21. Page 127, Table 8‐5, for the Intersection #20, show the exact Storage Length for NBL/NBR for the  Departure.    Response  ‐ See response #18.  22. Page 128/140, for the special events, in addition to the preparation of Traffic Management Plan, an  additional Traffic Control Plan must be prepared and signed by a registered Traffic and/or Civil Engineer  in California to assure public safety and smooth traffic navigation when 2,500 guests show up at the  Wave Basin Facility during special events during weekends.    Response  ‐ Mitigation measures TRA‐9 through TRA‐14 are intended to address traffic operations with events  involving up to 2,500 guests.  The special event traffic management plan will include Traffic Control  Plans as necessary as determined by the City and the Police Department.   23. Page 139/140, ITE Trip Generation, 10th Edition, 2017 ought to be cited not 9th edition, 2012!    Response  ‐ Text has been corrected as requested.  Draft EIR, June 2021  24. Page 1‐6, why only 12 acres of the Wave Facility has been used for trip generation purposes, while the  Proposed Land Use Summary does list quite different acreages?    Response  ‐ As explained on pp. 3‐19 and 3‐20 of the Draft EIR, the Wave Basin facility is approximately 16.62  acres, with the water body footprint itself being approximately 12.14 acres.  The Wave Basin subarea  in Planning Area III totals approximately 31.2 acres, and includes the equipment, storage and related  facilities required to operate the Wave Basin.  The wave basin is a unique private recreation facility  that does not have an established ITE trip generation rate.  As indicated in the original approved TIA  scope for this Project, trip generation rates for the Wave Basin Facility are derived from the San Diego  Association of Governments for a developed 12‐acre recreational park, which generates a total of 48  peak hour trips and 600 daily trips.  All other visitors to the Wave Basin Area are captured by the  other Planning Area III uses, including the Wave Club, the Resort Hotel and the Farm (see Table 4‐3  of the TIA).  These trip generation rates are consistent with the City of La Quinta Traffic Study  Guidelines (EB # 06‐13) and confirmed in the Traffic Study Scoping Agreement approved by the City  of La Quinta and included as Appendix 1.1 of the TIA.   ‐ The project area land uses include a unique mix of commercial retail, resort, recreation and  residential uses, so reasonable assumptions regarding internal/pass‐by interactions between these  November 8, 2021  Page 7      12615 ‐ Response to comments (2021.11.08).docx  uses are also included in the trip generation calculations.  The wave basin facility will be utilized by  hotel guests, but outside trip generation is also included for things like off‐site lunch, wave basin  employees, etc.  Area residents and visitors will use the commercial retail area facilities (which  typically include merchandise and restaurant land uses).  The total internal/pass‐by trip ends have  been adjusted in a manner to ensure that no “double‐counting” occurs before assigning the project  trips to the roadway network.     25. Page 1‐30, TRA‐9, line 4, the word "not" should not be there!    Response  ‐ Mitigation Measure TRA‐9 is correct as currently worded.  Either the traffic improvements required  for Phase 3 of the Project need to be completed prior to holding any special events, or a focused  traffic analysis must be completed to show that any such improvements are not required to maintain  acceptable levels of service.  26. There should be an additional condition/clause/TRA listed for the subject project, stipulating that  upon the completion of the last phase of the project (6‐ 12 months later), the City of La Quinta at  the expense of the project developer, should monitor the traffic conditions surrounding the project  site for any potential abnormality during a random weekend special event and assess the traffic  Level of Service and propose appropriate mitigation measures    Response  ‐ Mitigation Measure TRA‐11 gives the City the authority to require the special event traffic monitoring  consistent with the suggestion in this comment and to impose additional requirements to the extent  warranted to avoid any significant traffic or parking impacts.  27. Page 3‐17, why only 12 acres of the Wave Facility has been used for trip generation purposes, while  the Proposed Planning Area Summary does list quite different acreages?    Response  ‐ See response #24.  28. Page 4.13‐2, Proposed Project, why only 12 acres of the Wave Basin has been used for trip generation  purposes, while in the Proposed Project description does list quite different acreages?    Response  ‐ See response #24.   29. Page 4.13‐18, Table 4.13‐10 Trip Generation Summary, why are there discrepancies for the quantities  for Shopping Center, Wave Basin Facility, Wave Village and The Farm as compared with the similar tables  in the Traffic Study?    Response  November 8, 2021  Page 8      12615 ‐ Response to comments (2021.11.08).docx  ‐ Table 4.3‐10 on page 3.13‐18 of the Draft EIR is identical to Table 4‐3 [Project Buildout Trip  Generation Summary], except that there is a typo in the number of square feet of the shopping center  use, which has been corrected to 60 TSF in the Final EIR.  The hourly peak hour and daily trip  generation rates are identical in both tables for all uses.  30. Page 4.13‐21, Table 4.13‐13 Trip Generation Rates, why are there discrepancies for the quantities for  Wave Basin Facility and Wave Village as compared with the similar Table 4‐3 in the VMT Report  (Appendix L.2)?    Response  ‐ The total peak hour and daily external trips are accurate and consistent in both Table 4.13‐13 on  page 4.13‐21 of the Draft EIR and Table 4‐3 in the TIA.  Although certain of the other quantities  appear to have been incorrectly inserted into Table 4.13‐13 in the Draft EIR, these discrepancies did  not affect the Project totals, and thus did not affect the assessment of traffic impacts.  A corrected  Table 4.13‐13 has been included in the Final EIR.  The VMT Report does not include Table 4‐3, and  there are no discrepancies between the VMT Report and the Draft EIR.  31. Page 4.13‐41, Table 4.13‐24 Project Phase 3 Fair Share Contributions, why are locations #16 & 17  missing? (not the same as Table 9‐1 the Traffic Report)?    Response  ‐ Table 9‐1 in the TIA is identical to Table 4.13‐29 on page 4.13‐51 of the Draft EIR, which show the  Project’s fair share percentages to project area intersections, and both include Intersection #16 and  #17.  Table 4.13‐24 of the Draft EIR (referenced in the comment) focuses is Specific to Phase 3 and is  not intended to match Table 9‐1 in the TIA.  32. Page 4.13‐26 Weekend Special Event Trip Generation, show percentages and source(s) of reductions for  the internal and pass‐by trips    Response  ‐ See response #13.  33. Page 4.13‐59, the growth factors for traffic volumes for the Horizon Year 2040 for with and without  project conditions ought to be documented    Response  ‐ See response #2 for explanation of how the 2040 volumes were developed, which was based upon  General Plan buildout projections, rather than growth factors.   34. Page 4.13‐62, TRA‐9, line 3, the word "not" should not be there!    Response  ‐ Mitigation Measure TRA‐9 is correct as currently worded.  Either the traffic improvements required  for Phase 3 of the Project need to be completed prior to holding any special events, or a focused  November 8, 2021  Page 9      12615 ‐ Response to comments (2021.11.08).docx  traffic analysis must be completed to show that any such improvements are not required to maintain  acceptable levels of service.   35. Page 4.13‐62, a new TRA to be added to state that the TMP and TCP must be signed by a registered  Traffic and/or Civil Engineer in California.    Response  ‐ See response #22.  VMT Evaluation, June 2021  The VMT Analysis was updated in February 2021. It is our understanding that information from the February  analysis was utilized in the DEIR. However, a prior version of the VMT assessment letter was inadvertently  attached as Appendix L.1 to the DEIR. The February 2021 version is attached to these responses and our responses  below refer to this version.   36. The TAZ and low VMT maps for the subject project should be included in the VMT report.    Response  ‐ The TAZs are shown on Exhibit 1 of the February 2021 VMT evaluation. Low VMT data is included in  Attachment 1. The February 2021 VMT evaluation was performed consistent with La Quinta VMT  guidelines at the time, rather than County of Riverside guidelines which include low VMT maps.  37. Page 4 of 9, Table 1, why is the title different than the corresponding Table 4.13‐ 30 in the DEIR  document?    Response  ‐ Table 1 in the February 2021 VMT evaluation is identical to Table 4.13‐30 in the Draft EIR.  38. Why does the City of La Quinta’s VMT Guidelines categorizes Hotel Land Use as Retail, while other cities  in California assume as Service?    Response  ‐ The City of LA Quinta adopted its VMT Guidelines in accordance with OPR’s December 2018 Technical  Advisory on Evaluating Transportation Impacts in CEQA, which includes recommended thresholds of  significance for residential, office, and retail uses for consideration by local agencies in developing  their own thresholds, which may address other land use types (see pp. 15 – 17 of OPR Technical  Advisory).   ‐ The City of La Quinta’s adopted VMT Guidelines expressly includes hotel uses within the retail use  category and adopted the retail threshold of significance recommended in the OPR Technical  Advisory.  A retail business, for the purposes of the employment standards act (ESA) is a business  that sells goods or services directly to consumers or end‐users.  Such services include restaurants,  hospitality, barber shops, and other services for the comfort and convenience of the public. The  November 8, 2021  Page 10      12615 ‐ Response to comments (2021.11.08).docx  hospitality sector includes food and beverages, lodging, recreation, travel & tourism, and meetings  & events.  39. Project Service/Retail VMT Calculations need to be explicitly shown in the VMT report.    Response  ‐ As indicated on Page 4 of the February 2021 VMT report, VMT is calculated for the Project based  upon the Riverside County Transportation Analysis Model (RivTAM), as required under the City of La  Quinta’s adopted VMT Guidelines. The model runs a series of complex steps to estimate daily trip  productions and attractions by various trip purposes for each TAZ.  The trip purposes include Home‐ Based Work Direct (HBWD), Home‐Based Work Strategic (HBWS), Home‐Based School (HBSC),  Home‐Based College and University (HBCU), Home‐Based Shopping (HBSH), Home‐Based Serving‐ Passenger (HBSP), Home‐Based Other (HBO), Work‐Based Other (WBO), and Other‐Based Other  (OBO).  ‐ Productions and attractions are computed by RivTAM for each trip purpose, and trip lengths are  derived for each zone pair from the respective skim matrices in the model to compute the production  and attraction VMT by purpose.   40. Page 6 of 9, Table 4: the title needs to be clarified, Base Year or Base Year Model or Base line or Cum  Year Model?    Response  ‐ Table 4 of the February 2021 VMT document is entitled “Base Year Sub‐Regional Link‐Level VMT”. As  indicated in the text above Table 4, the base year is 2020.    41. Page 7 of 9, for the three (3) sources of VMT reductions of 3%, 2% & 1% each corresponding source from  CAPCOA must be documented.    Response  ‐ The first VMT reduction factor applied recognizes the proximity of different land uses. The CAPCOA  measure is LUT‐3 which indicates a range of 9‐30% VMT reduction is applicable for a mixed‐use  project.  A conservative reduction of only 3% was assumed in the Project’s VMT analysis.  It is likely  that the mix of uses in the Project will result in a greater reduction in vehicle trips and VMT.  ‐ The second VMT reduction factor applies recognizes the design elements that allow for connectivity  between different uses and areas that will reduce the need to use a vehicle for short trips.  The  CAPCOA measure is SDT‐1, which indicates a range of 0‐2% applicable VMT reduction, and SDT‐2,  which indicates a range of .25‐1.00% applicable VMT reduction.  A reduction of 2% was applied in  recognition of the high‐level of multi‐modal connectivity that will be provided based on the design of  the Project.  ‐ The third VMT reduction is the marketing strategies for commute trip reductions. The CAPCOA  measure is TRT‐7, which indicates a range of 0.8 – 4.0%applicable VMT reduction  A conservative  reduction of 1% was assumed in the Project’s VMT analysis.  November 8, 2021  Page 11      12615 ‐ Response to comments (2021.11.08).docx  42. Table 4‐3, Project Buildout (2026) Trip Generation Summary, percentages and source(s) of each of  internal and pass‐by (in some cases) reduction should be shown for each land use category.    Response  ‐ The prior Table 4‐3 in the November 2020 draft version of the VMT evaluation provided a recap of  the LOS report trip generation.  This table was redundant and not directly relevant to the VMT  assessment and was removed from the February 2021 VMT evaluation. See response to comment 13  above for information related to Table 4‐3.   43. Table 4‐3, Project Buildout (2026) Trip Generation Summary, why is the Farm Land Use missing?    Response  ‐ See response #42.   44. Table 4‐3, Project Buildout (2026) Trip Generation Summary, why is this table different than Table 4 .13‐ 13on Page 4.13‐21of the DEIR?    Response  ‐ See response #42.  45. For the Wave Pool Facility, since the ITE Trip Generation Manual, 10th Edition 2017 does not provide any  rates, SANDAG’s Manual for Recreation Park (Developed) from April 2002 has been used for the VMT,  DEIR & Traffic Report.  The aforementioned source is from over 20 years ago, how come surveys of two  similar facilities were not used?    Response  ‐ See responses #19 and #24.     CORAL MOUNTAIN RESORT FINAL EIR SCH# 2021020310 TECHNICAL APPENDICES Average Surfer Population Kelly Slater Wave Company Appendix L.4     January 2022     /D&LHQHJD3ODFH/RV$QJHOHV&$.6:DYH&RFRP 7KHLQIRUPDWLRQFRQWDLQHGLQWKLVWUDQVPLVVLRQPD\FRQWDLQSULYLOHJHGDQGFRQILGHQWLDOLQIRUPDWLRQ,WLVLQWHQGHGRQO\IRUWKHXVHRIWKHSHUVRQ V QDPHGDERYH,I\RXDUHQRWWKHLQWHQGHG UHFLSLHQW\RXDUHKHUHE\QRWLILHGWKDWDQ\UHYLHZGLVVHPLQDWLRQGLVWULEXWLRQRUGXSOLFDWLRQRIWKLVFRPPXQLFDWLRQLVVWULFWO\SURKLELWHG,I\RXDUHQRWWKHLQWHQGHGUHFLSLHQWSOHDVHFRQWDFWWKH VHQGHUE\UHSO\HPDLODQGGHVWUR\DOOFRSLHVRIWKHRULJLQDOPHVVDJH   EŽǀĞŵďĞƌϬϰ͕ϮϬϮϭ DĞŵŽ͗ŽƌĂůDŽƵŶƚĂŝŶǀĞƌĂŐĞĂŝůLJ^ƵƌĨĞƌWŽƉƵůĂƚŝŽŶ  dŽƚĂůĂǀĞƌĂŐĞŵĂdžŝŵƵŵƐƵƌĨĞƌƐĂƚŽƌĂůDŽƵŶƚĂŝŶŝŶtĂǀĞĂƐŝŶƉĞƌĚĂLJŝƐϭϯϬ͕ǁŝƚŚƐƵƌĨĞƌƐĚŝƐƚƌŝďƵƚĞĚĂĐƌŽƐƐϯĚŝƐƚŝŶĐƚ ǁĂǀĞnjŽŶĞƐ͖ϭϴƐƵƌĨĞƌƐƚŚƌŽƵŐŚŽƵƚƚŚĞĚĂLJŽŶƚŚĞDĂŝŶtĂǀĞ͕ĂŶĚϱϲƐƵƌĨĞƌƐƚŚƌŽƵŐŚŽƵƚƚŚĞĚĂLJŽŶĞĂĐŚŽĨƚŚĞŶĚĂLJ tĂǀĞƐ͘dŚĞŵĂdžŝŵƵŵĐĂƉĂĐŝƚLJŝŶƚŚĞtĂǀĞĂƐŝŶĂƚĂŶLJŐŝǀĞŶƚŝŵĞŝƐϲƐƵƌĨĞƌƐŽŶƚŚĞDĂŝŶtĂǀĞĂŶĚϭϮƐƵƌĨĞƌƐŝŶĞĂĐŚŽĨ ƚŚĞŶĚĂLJtĂǀĞƐ͘  &/'͘ϭ  &ŝŐƵƌĞϭĚĞƉŝĐƚƐĂƚŚĞŽƌĞƚŝĐĂůƐƵƌĨƐĐŚĞĚƵůĞƚŽŵĂƉŽƵƚĂǀĞƌĂŐĞĚĂŝůLJƐƵƌĨĞƌƉŽƉƵůĂƚŝŽŶŽŶƐŝƚĞ͘ tĞĞdžƉĞĐƚƚŽŵĂŝŶƚĂŝŶƚŚĞƐĞƐĂŵĞŵĂdžŝŵƵŵĐĂƉĂĐŝƚŝĞƐĚƵƌŝŶŐƐƉĞĐŝĂůĞǀĞŶƚƐ͕ĂůƚŚŽƵŐŚǁĞĞdžƉĞĐƚĨĞǁĞƌƐƵƌĨĞƌƐǁŝůůďĞŝŶ ƚŚĞǁĂƚĞƌĂƚŽŶĞƚŝŵĞĚƵƌŝŶŐƚŚĞƐƉĞĐŝĂůĞǀĞŶƚƐďĞĐĂƵƐĞƚŚĞƉƌŽŐƌĂŵŵŝŶŐǁŝůůďĞĨŽĐƵƐĞĚŽŶƚŚĞDĂŝŶtĂǀĞ͕ƌĂƚŚĞƌƚŚĂŶ ƚŚĞďĞŐŝŶŶŝŶŐƐƵƌĨĞƌĐůĂƐƐĞƐŝŶƚŚĞŶĚĂLJƐ͘^ƚĂĨĨĐŽƵŶƚƉĞƌĚĂLJƚŽƚĂůƐĂƉƉƌŽdžŝŵĂƚĞůLJϱϬǁŝƚŚĂĚŝƐƚƌŝďƵƚŝŽŶĂĐƌŽƐƐ^ƵƌĨ KƉĞƌĂƚŝŽŶƐ͕ǁŚŝĐŚŝƐĨŽĐƵƐĞĚŽŶĨƌŽŶƚŽĨŚŽƵƐĞƐƵƉƉŽƌƚĂŶĚtĂǀĞKƉĞƌĂƚŝŽŶƐ͕ǁŚŝĐŚŝƐĨŽĐƵƐĞĚŽŶďĂĐŬŽĨŚŽƵƐĞƐƵƉƉŽƌƚ͘  +DUROG-3RUWLOOR 93:DYH3URMHFW'HVLJQ .HOO\6ODWHU:DYH&RPSDQ\  /D&LHQHJD3ODFH/RV$QJHOHV&$  0 :ZZZNVZDYHFRFRP  CORAL MOUNTAIN RESORT FINAL EIR SCH# 2021020310 TECHNICAL APPENDICES Wave Basin Areas Kelly Slater Wave Company Appendix M.1     January 2022      REQUEST FOR INFORMATION Project: Coral Mtn. RFI Number: 104-005 Date RFI Submitted: 9/29/2020 Submitted By: Garrett Simon Date Response Required: 9/29/2020 Submitted To: Harold Portillo Date Responded: 9/29/2020 Plan Sheet No Detail: Attachments check one Yes No Datasheets Drawings Calculations REQUEST: As received in an email from Garrett on September 29: What is the current acreage of the (1) wave basin perimeter and (2) water area when stagnant? RESPONSE: See corresponding attachment RFI 104-005 Wave Basin Areas Analysis.pdf for graphic information : • Basin Footprint: 16.62 Acres (72,4210.69 sf) • Basin Perimeter: 5,741 ft • Water Body Footprint: 12.14 Acres (52,8711.86 sf) • Water Body Perimeter (Footprint): 5,516 ft • Water Body Perimeter (combined): 10,364 ft GENERAL NOTES: 1) General Information derived from 3d model: CoralMountain- OptionA_RoughGrading_20200806_x.3DM, which excludes some bathymetric features 2) Information included for Water metrics is preliminary during Concept Design phase and subject to change during Detailed Design phase By: Harold Portillo Signature: Date: 9/29/2020 After reviewing the response, does the vendor anticipate: That a change order will be required? Yes No If redesign required That there will be an increase in the cost of the project? Yes No If redesign required CORAL MOUNTAIN RESORT FINAL EIR SCH# 2021020310 TECHNICAL APPENDICES Kelly Slater Wave Company Responses Appendix M.2     January 2022    REQUEST FOR INFORMATION Project: Coral Mtn. RFI Number: 104-015 Date RFI Submitted: 01/24/2022 Submitted By: John Gamlin Date Response Required: 01/26/2022 Submitted To: Harold Portillo Date Responded: 01/26/2022 Plan Sheet No Detail: Attachments check one Yes No Datasheets Drawings Calculations Per your request, here is the additional information for the following comments received via the Draft EIR: REQUEST / RESPONSE: Comment 42-g: Vibration/Seismic Activity: “I am also concerned about the constant vibrations caused by the waves due to the tremendous weight and force of 18 million gallons of water. I am only around 600 feet from the wave pool. All the seismic records were done at the wave pool at Lemoore California which has totally different soil composition. We are above the aquifer on sandy soil. So the developer has no idea of the impact of the wave motion to our area.” Response: The wave basin does not contribute to any measurable seismic activity. An Accelerometer test for seismic force during wave activity was conducted in Lemoore, CA on April 5th, 2021. To test for any measurable impact of force resulting from wave system operation, an accelerometer was placed on the concrete wall at the edge of the basin prior to and during wave operations. The accelerometer readings show no measurable change in readings during wave runs. The accelerometer readings vary by less than 0.0001g throughout the analysis, which suggests that any increase of force at the edge of the basin is for less than 0.0001g and therefore far more than an order of magnitude less than the minimum acceleration to reach the instrumental intensity associated with perceived shaking and more than 2 orders of magnitude less than the acceleration required to cause any potential damage. Based on this test measuring acceleration at the edge of the wave basin and verifying that there is no measurable acceleration, we can conclude that there is no measurable seismic activity caused by the wave system. Vibration spectrum analysis. Lemoore California, 14:19 April 5, 2021. Position on east wall approximately 10 feet north of the control tower. "ShakeMap Scientific Background. Rapid Instrumental Intensity Maps". Earthquake Hazards Program. U. S. Geological Survey. Archived from the original on 23 June 2011. Retrieved 22 March 2011. Comment 53-e: Water Use: “What happens when the pool repairs are needed and the pool has to be drained?” Response: The basin and wave system equipment are designed for a 20-year minimum service life without significant overhaul. The wave system design elevates all items that require regular maintenance to be located above the water line with maintenance platforms in place so that all routine maintenance and wear items are able to be maintained and replaced without removing water from the basin. Through these design efforts we’ve minimized any probability of need to drain the basin. In the unlikely event the basin does need to be fully drained, prior to the 20-year period described above, the water will be drained into the large retention basin on-site, which is unlined to allow percolation of the water into the ground. Comment 71-c: Noise: “Here is just one example- the Wave Basin requires an audible (not visual) 30- second alarm if there is an emergency, followed by another 30-second audible alarm to signal the emergency has ended. California State mandated Alarm can be as loud as it needs to be in order to be heard over “The Tub and The Train,” (nickname given to the Wave Basin by Kelly Slater’s peers), the screaming and cheering crowds, the crashing of waves onto concrete flooring, and the jet skis zipping up and down the Basin. As the Tub is geared for the Novice Surfer Tourist, the alarms could be going off several times a day. Response: There is no alarm system associated with the basin. Safety is maintained by controlling access to the site and the basin. Surfer safety is addressed with lifeguards and the rescue jet ski. Comment : Water temperature: “Also, water will be so hot during the summer months because it is only six feet deep at its maximum on a concrete pool.” Response: Water temperatures have been evaluated using similar open bodies of water in the Coachella Valley and our facility in Lemoore CA. Benchmarked data of similar open bodies of water demonstrate the cooling effect of natural geothermal cooling and the lower temperatures at night help maintain a water temperature significantly lower than ambient air temperature. Given the size of the Wave Basin and the movement of the water throughout the day, water temperatures are not anticipated to reach unsafe or uncomfortable levels, including during the hotter summer months, but the project will comply with all applicable State of California and County of Riverside health requirements to ensure the safety of surfers, and if water temperatures do become unsafe, the Wave Basin operations will be suspended until safe conditions are restored. Comment: Water Treatment: “This proposed development will require massive amounts of hazardous chemicals that will be used and stored on site (DEIR 4.8-18).” Response: We treat water through Filtration, UV treatment, and Chlorine treatment to maintain pH 7.2-7.8 and Free Available Chlorine 0.5 - 3.0 ppm. We use a media filtration system capable of filtering down to 2 microns. (See figures on next page for system information) By: Harold Portillo Signature: X Digital Signature Date: 01/26/2022 After reviewing the response, does the vendor anticipate: That a change order will be required? Yes No If redesign required That there will be an increase in the cost of the project? Yes No If redesign required CORAL MOUNTAIN RESORT FINAL EIR SCH# 2021020310 TECHNICAL APPENDICES Desert Recreation District Letter Letter of Agreement Appendix P     January 2022