Loading...
FSEV2022-0004ADDITIONAL SITES CHRONOLOGY CONTACTS NAME TYPE NAME ADDRESS1 CITY STATE ZIP PHONE FAX EMAIL APPLICANT Andrew Madura 6664 S Dateland Drive Tempe AZ 85283 (602)616-9820 amadura@616gc.com BILL TO Murray Hamilton 6664 S Dateland Drive Tempe AZ 85283 (602)616-9820 mhamilton@616gc.co m OWNER Murray Hamilton 6664 S Dateland Drive Tempe AZ 85283 (602)616-9820 mhamilton@616gc.co m CHRONOLOGY TYPE STAFF NAME ACTION DATE COMPLETION DATE NOTES REFUND ELIZABETH MOLINA 10/26/2022 10/26/2022 APPROVED REFUND OF DUPLICATE PAYMENT IN THE AMOUNT OF $443.83 PROCESSED VIA CARDKNOX ON 10/10/22 REF#738629480 -APPROVAL BY TOMMI SANCHEZ 10/21/22 CONDITIONS Description: NEW YORK LIFE - 100' x 164' Tent Structure Type: FIRE SPECIAL EVENT (WEB)Subtype: Status: FINALED Applied: 9/9/2022 EPRS Parcel No: 658190011 Site Address: 49499 EISENHOWER DR LA QUINTA,CA 92253 Approved: 10/5/2022 KHET Subdivision: TR 28545-3 Block: Lot: 30 Issued: ONLINE Lot Sq Ft: 0 Building Sq Ft: 0 Zoning: Finaled: 10/24/2022 KHET Valuation: $248,000.00 Occupancy Type: Construction Type: Expired: No. Buildings: 0 No. Stories: 0 No. Unites: 0 Details: The installation of the 100' x 164' structure is for an overflow dining area Printed: Monday, March 06, 2023 2:07:02 PM 1 of 4 Permit Details City of La Quinta PERMIT NUMBER FSEV2022-0004 INSPECTIONS SEQID INSPECTION TYPE INSPECTOR SCHEDULED DATE COMPLETED DATE RESULT REMARKS NOTES FIRE FINAL**KHET 10/24/2022 10/24/2022 APPROVED REVIEWS REVIEW TYPE REVIEWER SENT DATE DUE DATE RETURNED DATE STATUS REMARKS NOTES 1ST PERMIT TECH (1 DAY) PERMIT TECH BUCKET 9/9/2022 9/12/2022 9/12/2022 COMPLETE PARENT PROJECTS FINANCIAL INFORMATION DESCRIPTION ACCOUNT QTY AMOUNT PAID PAID DATE RECEIPT #CHECK #METHOD PAID BY CLTD BY FIRE SPECIAL EVENT 101-0000-42421 0 $250.00 $250.00 10/10/22 WEB13282 738630452 CREDIT Andrew Madura EPRS FIRE SPECIAL EVENT PC 101-0000-42420 0 $167.00 $167.00 10/10/22 WEB13282 738630452 CREDIT Andrew Madura EPRS Total Paid for FIRE FEES: $417.00 $417.00 12/16/2022: FSEV2022- 0004 / ANDREW MADURA / OP 101-0000-20330 0 $443.83 $443.83 10/10/22 R72671 738629480 CREDIT Andrew Madura EMO PAYMENT OVER COLLECTED 101-0000-20330 0 $443.83 $443.83 10/10/22 R72671 738629480 CREDIT Andrew Madura EMO Total Paid for PAYMENT OVER COLLECTED: $887.66 $887.66 RECORDS MANAGEMENT FEE 101-0000-42416 0 $11.00 $11.00 10/10/22 WEB13282 738630452 CREDIT Andrew Madura EPRS Total Paid for RECORDS MANAGEMENT FEE: $11.00 $11.00 TECHNOLOGY ENHANCEMENT FEE 502-0000-43611 0 $5.00 $5.00 10/10/22 WEB13282 738630452 CREDIT Andrew Madura EPRS Total Paid for TECHNOLOGY ENHANCEMENT FEE: $5.00 $5.00 TOTALS:$1,320.66 $1,320.66 Printed: Monday, March 06, 2023 2:07:02 PM 2 of 4 Permit Details City of La Quinta PERMIT NUMBER FSEV2022-0004 ATTACHMENTS Attachment Type CREATED OWNER DESCRIPTION PATHNAME SUBDIR ETRAKIT ENABLED DOC 9/9/2022 Etrakit Public Registration 1ST SUBMITTAL Tent Fabric Flame Certificate Duraskin California F- 53001 NFPA 701-96 2022.pdf 1 DOC 9/9/2022 Etrakit Public Registration 1ST SUBMITTAL Tent Layout, Emergency Route, and Interior Layout New York Life 2022 Fire Permit Plan R2.pdf 1 DOC 9/9/2022 Etrakit Public Registration 1ST SUBMITTAL Tent Structure Technical Specifications Uniflex P2 20-30M 400 CA.PDF 1 DOC 9/9/2022 Etrakit Public Registration 1ST SUBMITTAL Staking Diagram for Structure Base Plate and Stake Layout 30m x 50m (P2N).pdf 1 DOC 9/9/2022 Etrakit Public Registration 1ST SUBMITTAL LQ Special Event Application Comleted Fire Special Event Application_616GC_NYL Event_La Quinta.pdf 1 DOC 9/16/2022 Etrakit Public Registration Tent Layout, Emergency Route, and Interior Layout New York Life 2022 Fire Permit Plan R3.pdf 1 DOC 9/20/2022 Etrakit Public Registration Overview_Description of Project Fire Marshal Overview_NYL La Quinta.pdf 1 DOC 9/20/2022 Etrakit Public Registration Maximum Seating Diagram La Quinta New York Life MAXIMUM Seating Diagram.pdf 1 BOND INFORMATION 1ST FIRE (2 WK)KOHL HETRICK 9/9/2022 9/23/2022 10/5/2022 APPROVED COA IN ATTACHMENTS Printed: Monday, March 06, 2023 2:07:02 PM 3 of 4 Permit Details City of La Quinta PERMIT NUMBER FSEV2022-0004 ATTACHMENTS Attachment Type CREATED OWNER DESCRIPTION PATHNAME SUBDIR ETRAKIT ENABLED DOC 9/22/2022 Etrakit Public Registration Tent Layout, Emergency Route, and Electrical Diagram V4 New York Life Fire Permit Plans R4.pdf 1 DOC 10/5/2022 KOHL HETRICK FSEV2022-0004 - COA AND JOB CARD.pdf FSEV2022-0004 - COA AND JOB CARD.pdf 1 Printed: Monday, March 06, 2023 2:07:02 PM 4 of 4 Permit Details City of La Quinta PERMIT NUMBER FSEV2022-0004 616GC, LLC6664 S. Dateland DriveTempe, AZ 85283Phone: (520) 477-9616Fax: (520) 385-6106www.616GC.comemail: info@616GC.comPROPRIETARY INFORMATIONTHE DATA AND DETAILS SHOWN IN THIS DRAWING SHALL NOT BE USED, DISCLOSED, OR DUPLICATED, IN WHOLE OR IN PART, FOR ANY REASON, EXCEPT FOR THE EVALUATION TOWARDS PURCHASE, WITHOUT THE PERMISSION OF 616GC, LLC. ALL DIMENSIONS SHOWN ARE APPROXIMATE.DISCLAIMERDRAWINGS AND/OR RENDERINGS ARE FURNISHED TO 616GC, LLC CLIENTS AS A ROUGH APPROXIMATION OF THE PRODUCT TO BE PROVIDED. COLORS SHOWN MAY VARY FROM ACTUAL. CERTAIN STRUCTURAL ELEMENTS MAY OR MAY NOT BE SHOWN.REVISION:DATE: DRAWN:CHECKED:VB AM SCALE:n/aPROFILE:P1New York Life 2022 - La Quinta Resort, La Quinta CA 30m x 50m x 4m A-Frame Structure 409/22/2022 GENERATORN FIRE LANE GENERATORAVENIDA FERNANDO25 ton HVAC 25 ton HVAC 25 ton HVAC 25 ton HVAC 25 ton HVAC 25 ton HVAC 25 ton HVAC 30m x 50m 6m x 9mSITE LAYOUT 616GC, LLC6664 S. Dateland DriveTempe, AZ 85283Phone: (520) 477-9616Fax: (520) 385-6106www.616GC.comemail: info@616GC.comPROPRIETARY INFORMATIONTHE DATA AND DETAILS SHOWN IN THIS DRAWING SHALL NOT BE USED, DISCLOSED, OR DUPLICATED, IN WHOLE OR IN PART, FOR ANY REASON, EXCEPT FOR THE EVALUATION TOWARDS PURCHASE, WITHOUT THE PERMISSION OF 616GC, LLC. ALL DIMENSIONS SHOWN ARE APPROXIMATE.DISCLAIMERDRAWINGS AND/OR RENDERINGS ARE FURNISHED TO 616GC, LLC CLIENTS AS A ROUGH APPROXIMATION OF THE PRODUCT TO BE PROVIDED. COLORS SHOWN MAY VARY FROM ACTUAL. CERTAIN STRUCTURAL ELEMENTS MAY OR MAY NOT BE SHOWN.REVISION:DATE: DRAWN:CHECKED:VB AM 09/22/2022 4 SCALE:n/aPROFILE:P1New York Life 2022 - La Quinta Resort, La Quinta CA 30m x 50m x 4m A-Frame Structure ELECTRICAL DIAGRAM FIRE EXTINGUISHER LIGHTED EXIT SIGN WITH BATTERY BACKUP NO SMOKING SIGN 8’ DOUBLE GLASS DOOR LEGEND 80w HIGH BAY LED LIGHT N 164.04 ft 98.82 ft25 ton HVAC 25 ton HVAC 25 ton HVAC 25 ton HVAC 25 ton HVAC 25 ton HVAC 25 ton HVAC12/3 light stringer4/0 4-wire cable 480V all generators >50 ft from structure300kW generator451A @480V150kW generator521A @208V150kW generator521A @208Vin parallel 480V / 400A 3ph disconnect4/0 5-wire cable120/208V120V / 208V 3ph 400A disconnect 6m x 9m200A 120/208V distro panel 200A 120/208V distro panel 10/5 cable 120/208V 200A 120/208Vdisconnect for A/V 616GC, LLC6664 S. Dateland DriveTempe, AZ 85283Phone: (520) 477-9616Fax: (520) 385-6106www.616GC.comemail: info@616GC.comPROPRIETARY INFORMATIONTHE DATA AND DETAILS SHOWN IN THIS DRAWING SHALL NOT BE USED, DISCLOSED, OR DUPLICATED, IN WHOLE OR IN PART, FOR ANY REASON, EXCEPT FOR THE EVALUATION TOWARDS PURCHASE, WITHOUT THE PERMISSION OF 616GC, LLC. ALL DIMENSIONS SHOWN ARE APPROXIMATE.DISCLAIMERDRAWINGS AND/OR RENDERINGS ARE FURNISHED TO 616GC, LLC CLIENTS AS A ROUGH APPROXIMATION OF THE PRODUCT TO BE PROVIDED. COLORS SHOWN MAY VARY FROM ACTUAL. CERTAIN STRUCTURAL ELEMENTS MAY OR MAY NOT BE SHOWN.REVISION:DATE: DRAWN:CHECKED:VB AM 9/22/2022 SCALE:n/aPROFILE:P1New York Life 2022 - La Quinta Resort, La Quinta CA 30m x 50m x 4m A-Frame Structure N 4 INTERIOR LAYOUT 5m 16'4 78 " 5.065m16'7716" 5m16'478" 5m16'478" 30.130m98'1014" 50m 164'12 " gable base plates (10x) leg base plates (26x) Gable Base Plate top view 1m3'338" side view Leg Base Plate iso view 1m x 30mm steel anchor (6x) per leg base plate iso view 1m x 30mm steel anchor (4x) per gable base plate top view 1m3'338" side view Staking Diagram 616GC, LLC6664 S. Dateland DriveTempe, AZ 85283Phone: (520) 477-9616Fax: (520) 385-6106www.616GC.comPROPRIETARY INFORMATION THE DATA AND DETAILS SHOWN IN THIS DRAWING SHALL NOT BE USED, DISCLOSED, OR DUPLICATED, IN WHOLE OR IN PART, FOR ANY REASON, EXCEPT FOR THE EVALUATION TOWARDS PURCHASE, WITHOUT THE PERMISSION OF 616GC, LLC. ALL DIMENSIONS SHOWN ARE APPROXIMATE.DISCLAIMER DRAWINGS AND/OR RENDERINGS ARE FURNISHED TO 616GC, LLC CLIENTS AS A ROUGH APPROXIMATION OF THE PRODUCT TO BE PROVIDED. COLORS SHOWN MAY VARY FROM ACTUAL. CERTAIN STRUCTURAL ELEMENTS MAY OR MAY NOT BE SHOWN.DRAWN:9/9/20221:200 0VBSCALE:DATE:REVISION:CLIENT NAME:LOCATION:New York Life JOB NAME:La Quinta, CA30m x 50m Base Plate Layout (P2N) 20M-30M Uniflex P2N Frame Structure for various combinations of widths and 4m leg height Analyzed in accordance with IBC 2018, CBC 2019 and ASCE 7-16 with factors applied per ASCE37 for nominal wind design pressures This document was compiled based on design information provided by Losberger De Boer, therefore it is only valid for the structure that is erected with 100% original Losberger De Boer parts and components. The information and illustrations contained within this document remain the sole property of Losberger De Boer, and shall be treated as confidential. All data, designs, technical representations, engineering calculations and illustrations whether written or implied may not be reproduced in whole or in part nor distributed, used in manufacturing, design or display without the express written consent of Losberger De Boer. Retention of this document shall constitute acceptance of these terms and conditions. Losberger De Boer 285 Bucheimer Rd, Suite A Frederick, MD 21701 (800) 964-8368 This page intentionally left blank 01-Introduction.xmcd 2 of 10 Losberger De Boer 285 Bucheimer Rd, Suite A Frederick, MD 21701 (800) 964-8368 Disclaimers Design Professional's seal affixed on the cover page refers to the calculation sheets contained within the document and to any Appendix or Table sheets that support the document. Any other drawings or documents may require a separate seal for coverage not provided here. Design Professional's electronic or digital seal or signature is effective only as to that version of this document as originally published by Design Professional. Design Professional is not responsible for any subsequent modification, corruption, or unauthorized use of such document or copies of such document. To verify the validity or applicability of the seal or signature, contact Design Professional. Design Professional's seal is only valid for the original document to which the seal was affixed. Original paper documents are those that display the actual embossed or wet-seal of the Design Professional. Original electronic or digital documents are the locked verifiable electronic media file. Any other document, whether printed from a scan or electronic document is considered to be a copy of the document. Certification of this document only shows that the Design Professional of that particular jurisdiction is in agreement with the report's contents. It does not, however, imply that the structure is generally suitable for use within the entire jurisdiction, or that every installation of this structure is covered by this report. Design Professional's seal signifies a review for the structural adequacy of the design of the structure in the completed project. The content contained within this document does not encompass means and methods of construction. This document, based on technical background information as provided by Losberger De Boer, covers the structural evaluation of the aluminum frame style structure in accordance with U.S. Building Code requirements. The specifications outlined in the Structural Engineering Institute / American Society of Civil Engineers (SEI/ASCE 7) "Minimum Design Loads for Buildings and Other Structures" were followed in determining the integrity of the structure. This document is intended to serve as a basis for the acceptability this stand-alone, enclosed structure under standard design wind loads. Lightweight Design Inc. compiled this document based on the existing frame tent system with reference to the applicable building codes in the U.S. This report includes the load cases and combinations used in the analysis and gives an indication as to the wind exposure for which the structure is suitable. Computer-aided structural frame analysis were involved in the course of the investigation. Different load combinations were considered to identify the critical aspects of the design. Member and detail checks were established to derive the conclusions for the entire report. 01-Introduction.xmcd 3 of 10 Losberger De Boer 285 Bucheimer Rd, Suite A Frederick, MD 21701 (800) 964-8368 This page intentionally left blank 01-Introduction.xmcd 4 of 10 Losberger De Boer 285 Bucheimer Rd, Suite A Frederick, MD 21701 (800) 964-8368 Table of Contents 1. Summary 2. Determination of Loads 3. Load Combinations 4. Profile Design 5. Splice Design 6. Base Plate Design 7. Miscellaneous Appendix A - Sketches Appendix B - Computer Model INPUT Appendix C - Computer Model OUTPUT Revision Log Rev 0 Rev. Date 29 Jan 20 Description - Original Issue 01-Introduction.xmcd 5 of 10 Losberger De Boer 285 Bucheimer Rd, Suite A Frederick, MD 21701 (800) 964-8368 This page intentionally left blank 01-Introduction.xmcd 6 of 10 Losberger De Boer 285 Bucheimer Rd, Suite A Frederick, MD 21701 (800) 964-8368 1. Design Criteria 1.1 Dead load data 1.1.1 Hanging Dead Loads Hanging loads for this analysis are based upon the manufacturers recommendations as noted below: Suspension load per point is the maximum load which can be applied as a point load at any point per truss. width/leg height (m)Suspension load per truss is the maximum total load which can be applied as equal point loads to at least five (5) suspension points on the truss which are equally distributed over the complete span width. These values were defined by static calculations of load-bearing capacity, based on a fully enclosed structure, assembled according to regulations, and installed on an even terrain meeting all requiremnets. Possible restrictions resulting from occurring deformations were not examined. 1.2 Live load data 1.2.1 Floor Live Loads Floor live loads were not considered in this analysis. 1.2.2 Roof Live Loads Due to the nature of construction of this structure,500 lbf roof live loads were considered in this analysis. 1.2.3 Flood Loads Due to the temporary nature of the structure, it is assumed that it will not be subject to flooding conditions. Therefore, flood loads were not considered. 1.3 Snow load data Flat-roof snow load,pf 0 psf= Snow exposure factor,Ce 1= Snow load importance factor,Is 1= Thermal factor,Ct 1= 01-Introduction.xmcd 7 of 10 Losberger De Boer 285 Bucheimer Rd, Suite A Frederick, MD 21701 (800) 964-8368 1.4 Wind design data Width 20m mph 25m mph 30m mph Ultimate Design Wind Speed 120 105 95 4.0m Leg Risk category,Cat "II"= Wind exposure,Exposure "B"= Reduction Factor:Rn 0.75= Internal pressure coefficient,GCpi 0.18= Velocity pressure,qh.ult 7.74 psf=evaluated at the mean roof height 1.5 Earthquake design data Due to the lightweight construction of these style structures, seismic loading was not considered for this analysis as wind loading govens the design.. 01-Introduction.xmcd 8 of 10 Losberger De Boer 285 Bucheimer Rd, Suite A Frederick, MD 21701 (800) 964-8368 1.6 Base Reactions The maximum reactions at the foundations/supports due to the rated loads and exposure category are given in the table below 20M400 "20M400 (lbs)" "Side Frame" "Gable Frame" "Downward" 1143 959 "Uplift" 5456 3666 "Shear" 3602 1370 = 25M400 "25M400 (lbs)" "Side Frame" "Gable Frame" "Downward" 1423 662 "Uplift" 5116 2759 "Shear" 3682 1067 = 30M400 "30M400 (lbs)" "Side Frame" "Gable Frame" "Downward" 2147 1084 "Uplift" 7357 4651 "Shear" 4225 1061 = 1.7 Installation Requirements It is understood that the responsibility of proper installation according to the plans rests upon the installation contractor. This includes, but is not limited to, ensuring the following: that the cables are always held taut,· that the fabric is stretched tight enough to prevent the development of pockets and to· maintain the prescribed roof gradient, that purlins are installed securely against rafters to resist calculated loads,· that base plates are secured to the grade/foundation using anchors. The manufacturer· provides a base plate and anchoring plan for the structure as a base starting point for average soil conditions. It is the installers responsibility to ensure that the anchorage provided will resist the reaction loads as indicated in the tables found in this document. 01-Introduction.xmcd 9 of 10 Losberger De Boer 285 Bucheimer Rd, Suite A Frederick, MD 21701 (800) 964-8368 This page intentionally left blank 01-Introduction.xmcd 10 of 10 Losberger U.S., LLC 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 2a. Determination of Loads Dead Load : The structure dead loads consist of the self weight of the structure's components with addition of uniform distributed loads for fabric roofing, side wall materials, and minor components. Various calculated weights are shown below for reference and use in the static computer model analysis. Maximum Fabric Weight for analysis:AreaWtfabric 24.00 oz per sq yard⋅= Dead Loads - Ancillary Suspension load per point is the maximum load which can be applied as a point load at any point per truss. width/leg height (m)Suspension load per truss is the maximum total load which can be applied as equal point loads to at least five (5) suspension points on the truss which are equally distributed over the complete span width. These values were defined by static calculations of load-bearing capacity, based on a fully enclosed structure, assembled according to regulations, and installed on an even terrain meeting all requiremnets. Possible restrictions resulting from occurring deformations were not examined. Live Load - Floor : Live loads loads produced by the use and occupancy of the building are found on Table 1607.1. In the case of this structure, there are no additional live loads. Live Load - Roof : A load on a roof produced (1) during maintenance by workers, equipment, and materials and (2) during the life of the structure by movable objects, such as small decorative appurtenances that are not occupancy related. Due to the nature of construction of this structure, 500 lbf roof live loads were considered in this analysis.Cleaning maintenance of the roof must be done from a manlift supported above the roof due to the slippery nature of the fabric when it gets wet. Repair maintenance likewise is typically done from a manlift supported above the roo Flood Loads Due to the temporary nature of the structure, it is assumed that it will not be subject to flooding conditions. Therefore, flood loads were not considered. Miscellaneous The structure is designed to support the loads shown in this calculations. It may, or may not, be capable of supporting additional collateral loads. The owner of the structure shall not hand, or otherwise affix, additional loads to this structure without a review by an engineer qualified to make said review. Additionally, prior to adding load to this structure, the owner shall get a written confirmation by the qualified engineer as to the magnitude and location of the load, or loads, being applied. 02a-Determination of loads-Dead and 1 of 2 Losberger U.S., LLC 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 This page intentionally left blank 02a-Determination of loads-Dead and 2 of 2 Losberger DeBoer 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 02b.Snow Load - ASCE 7-16 Chapter 7 See Table 7.2-2 for Colorado, 7.2-3 for Idaho, 7.2-4 for Montana, 7.2-5 for Washingon, 7.2-6 for New Mexico, 7.2-7 for Oregon, or 7.2-8 for New Hampshire Ground Snow Load :p g 0 psf[Fig. 7-1, Table 7-1] Terrain Category:Exposure "B"[Section 26.7] Exposure Factor :Ce 1[Table 7-2] Description of exposure type "Roof exposure condition = Partially Exposed" Thermal Factor :Ct 1[Table 7-3] Description of thermal condition "Thermal Condition = All structures except those as indicated in Table 7.3-2" Building Risk Category: Cat "II"[Table 1.5-1] Occupancy of Building "All building and other structure except those listed in Risk Categories I, III, and IV" Importance Factor :[Table 1.5-2] Flat Roof Snow Load : p f 0.7 CeCtIspg=p f 0 psf[Eq. 7.3-1] Is 1.0 Design Parameters 02b-Determination of Loads-Snow.xmcd 1 of 2 Losberger DeBoer 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 Per ASCE 7-16 Section 7.3.4, minimum roof snow load, pm, shall only apply to monoslope, hip and gable roofs with slopes less than 15°, and to curved roofs where the vertical angle from the eaves to the crown is less than 10°. This minimum roof snow load is a separate uniform load case. It need not be used in determining or in combination with drift, sliding, unbalanced, or partial loads. Check for Minimum Snow Load "minimum values for low-slope roof need not to be considered " Sloped Roof Snow Load Roof Slope Factor :Cs 0.80[Figure 7-2a] Sloped Roof Load :p s Cs pf=[Eq. 7.4-1] p s 0 psf Per ASCE 7-16 Section 7.10, for locations where pg is 20 psf or less, but not zero, all roofs with slopes (in degrees) less than W/50 with W in feet shall include a 5 psf rain-on-snow surcharge load. This additional load applies only to the sloped roof (balanced) load case and need not be used in combination with drift, sliding, unbalanced, minimum, or partial loads. Rain-on-Snow Surcharge Load "surchage load need not be applied"[Section 7.10] Design Balanced Snow Load : S0 ps Lbay= S0 0 pli Per ASCE 7-16 Section 7.6.1, for hip and gable roofs with a slope exceeding 7 on 12 (30.2°) or with a slope less than 2.38° (1/2 on 12) unbalanced snow loads are not required to be applied. θroof 18 deg[Section 7.6.1] Check unbalanced load requirement "snow loads are 0, unbalanced loads are not considered" Design Unbalanced Snow Load Design Check: Rain-on-Snow Surcharge Load: Minimum Snow Load for Low-Slope Roofs : 02b-Determination of Loads-Snow.xmcd 2 of 2 Losberger U.S., LLC 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 02c.Wind Loads - Low Rise Buildings Design Parameters Risk Category: Cat "II"[Table 1-1] Basic Wind Speed:V 95 mph[Section 26.5.1] Exposure Category:Exposure "B"[Section 26.7.3] Expected Length of Installation:Installation Period 0.11 yr Reduction Factor:Rn 0.75Period "Less than 6 weeks"[ASCE37] Effective Wind Speed:Vr 71.25 mph Wind Directionality Factor:Kd 0.85 Topographic Factor:Kzt 1[Section 26.8.2] Ground Elevation Factor:Ke 1Grade 0 ft[Section 26.9] Gust Effect Factor:G 0.85[Section 26.9.1] Per ASCE 7-16 Section 26.11.1, the gust-effect factor for Low-Rise Buildings as defined in Section 26.2, are permitted to be taken as 0.85. [Table 26.6-1] 02c-Determination of Loads-Wind (Low-1 of 4 Losberger U.S., LLC 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 Kz 2.01 15ft zg   2 α =Kz 2.01 z zg   2 α = Envelope Procedure for Low Rise Buildings - ASCE 7-16 Chapter 28 Per ASCE 7-16 Section 26.2, buildings with mean roof height h less than or equal to 60 ft, and with mean roof height h does not exceed least horizontal dimension are considered as low-rise building. Check Low Rise Criteria "both low-rise conditions are satisfied" Per ASCE 7-16 Section 28.1.4, no reduction to the velocity pressure is taken due to apparent shielding. Velocity Pressure : q z 0.00256 KzKztKdKeVr 2=velocity pressure evaluated at peak height [Eq 26.10-1] q h 0.00256 KhKztKdKeVr 2=velocity pressure evaluated at mean roof height for 15ft zzg for z15ft [Table 26.10-1] *Note: z shall not be taken less than 30 feet in exposure B. zg 1200 ft[Table 26.11-1] Kz 0.7velocity pressure exposure coefficient evaluated at peak height (z 28.51 ft) Kh 0.7velocity pressure exposure coefficient evaluated at mean roof height (h 20.54 ft) q z 7.74 psfvelocity pressure evaluated at building height, z q h 7.74 psfvelocity pressure evaluated at mean roof height, h where : 02c-Determination of Loads-Wind (Low-2 of 4 Losberger U.S., LLC 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 Design Wind Pressure pqh GCpfGCpi=[Equation 28.3-1] External Pressure Coefficients (GC pf) Transverse Direction (Load Case A) GCpf.A "1" "2" "3" "4" "1E" "2E" "3E" "4E" 0.51 -0.69 -0.46 -0.41 0.77 -1.07 -0.67 -0.61 a 8.22 ft 2a16.43 ft (interpolated to the roof slope at: θroof 17.88 deg) Longitudinal Direction (Load Case B) GCpf.B "1" "2" "3" "4" "5" "6" "1E" "2E" "3E" "4E" "5E" "6E" -0.45 -0.69 -0.37 -0.45 0.4 -0.29 -0.48 -1.07 -0.53 -0.48 0.61 -0.43  Application of Pressures on Building Surfaces 2 and 3 Per note 8 in ASCE 7-16 Fig. 28.3-1, the roof pressure coefficient (GCpf), when negative in Zone 2 and 2E, shall be applied in Zone 2/2E for a distance from the edge of the roof equal to 0.5*horizontal dimension of the building parallel to the direction of the MWFRS being desig ned or 2.5* the eave height at the windward wall, whichever is less; the remainder of Zone 2/2E extending to the ridge line shall use the pressure coefficient (GCpf) for Zone 3/3E. Zone 2/2E Distance CaseA 31.41 ft Zone 2/2E Distance CaseB 31.41 ft Internal Pressure Coefficients (GC pi) GCpi 0.18[Table 26.13-1] 02c-Determination of Loads-Wind (Low-3 of 4 Losberger U.S., LLC 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 Wind at Transverse Direction (Load Case A) p A "1" "2" "3" "4" "1E" "2E" "3E" "4E" 2.57 -6.73 -4.99 -4.57 4.59 -9.67 -6.56 -6.12 5.35 -3.95 -2.20 -1.78 7.38 -6.89 -3.77 -3.33 psf top line = overpressure, bottom line = underpressure Wind at Longitudinal Direction (Load Case B) p B "1" "2" "3" "4" "5" "6" "1E" "2E" "3E" "4E" "5E" "6E" -4.88 -6.73 -4.26 -4.88 1.7 -3.64 -5.11 -9.67 -5.49 -5.11 3.33 -4.72 -2.09 -3.95 -1.47 -2.09 4.49 -0.85 -2.32 -6.89 -2.71 -2.32 6.11 -1.93 psf Design Wind Pressure on Gable p gable "5" "6" "5E" "6E" 1.7 -3.64 3.33 -4.72 4.49 -0.85 6.11 -1.93 psf Minimum Design Wind Loads Per ASCE 7-16 Section 28.3.4, the wind load to be used in the design of the MWFRS for an enclosed or partially enclosed building shall not be less than 16 psf multiplied by the wall area of the building and 8 psf multiplied by the roof area of the building projected onto a vertical plane normal to the assumed wind direction. Minimum Wall Pressure 8 psf(projected onto windward and leeward walls) Minimum Roof Pressure 4 psf(projected onto windward and leeward roofs) 02c-Determination of Loads-Wind (Low-4 of 4 Losberger U.S., LLC 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 3. LRFD Load Combinations : ASCE 7-16 Section 2.2 : SYMBOLS AND NOTATION D = dead load Di = weight of ice E = earthquake load F = load due to fluids with well-defined pressures and maximum heights Fa = flood load H = load due to lateral earth pressure, ground water pressure, or pressure of bulk materials L = live load Lr = roof live load R = rain load S = snow load T = self-straining force W = wind load Wi = wind-on-ice determined in accordance with Chapter 10 ASCE Section 2.3 : COMBINING FACTORED LOADS USING STRENGTH DESIGN Section 2.3.2 : Basic Combinations. Structures, components, and foundations shall be designed so that their design strength equals or exceeds the effects of the factored loads in the following combinations: 1. 1.4D 2. 1.2D + 1.6L + 0.5(Lr or S or R) 3. 1.2D + 1.6(Lr or S or R) + (L or 0.5W) 4. 1.2D + 1.0W + L + 0.5(Lr or S or R) 5. 0.9D + 1.0W 03-Load Combinations.xmcd 1 of 2 Losberger U.S., LLC 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 Symbols as used in calculations D1 = dead load; W1 = lateral wind (perpendicular to ridge line with overpressure) D2 = dead load - ancillary; W 2 = lateral wind (perpendicular to ridge line with underpressure) Lr = roof live load; W 3 = longitudinal wind (parallel to ridge line with overpressure) Lr = roof live load; W 4 = longitudinal wind (parallel to ridge line with underpressure) S1 = balanced snow W' = minimum wind per section 28.4.4. S2 = unbalanced snow Combinations as applied in calculations : 1.01 1.4D1 1.02 1.4D1 + 1.4D2 4.01 1.2D1 + 1.0Lf + 0.5Lr + 1.0W1a .03 1.2D1 + 1.0Lf + 0.5Lr + 1.0W2a .05 1.2D1 + 1.0Lf + 0.5Lr + 1.0W3a .07 1.2D1 + 1.0Lf + 0.5Lr + 1.0W4a .09 1.2D1 + 1.0Lf + 0.5Lr + 1.0W' .37 1.2D1 + 1.2D2 + 1.0Lf + 0.5Lr + 1.0W1a .39 1.2D1 + 1.2D2 + 1.0Lf + 0.5Lr + 1.0W2a .41 1.2D1 + 1.2D2 + 1.0Lf + 0.5Lr + 1.0W3a .43 1.2D1 + 1.2D2 + 1.0Lf + 0.5Lr + 1.0W4a .45 1.2D1 + 1.2D2 + 1.0Lf + 0.5Lr + 1.0W' 5.01 0.9D1 + 1.0W1a .03 0.9D1 + 1.0W2a .05 0.9D1 + 1.0W3a .07 0.9D1 + 1.0W4a .09 0.9D1 + 1.0W' .13 0.9D1 + 1.2D2 + 1.0W1a .15 0.9D1 + 1.2D2 + 1.0W2a .17 0.9D1 + 1.2D2 + 1.0W3a .19 0.9D1 + 1.2D2 + 1.0W4a .21 0.9D1 + 1.2D2 + 1.0W' 2.01 1.2D1 + 1.6Lf + 0.5Lr .04 1.2D1 + 1.2D2 + 1.6Lf + 0.5Lr 3.01 1.2D1 + 1.6Lr + 1.0Lf .02 1.2D1 + 1.6Lr + 0.5W1a .04 1.2D1 + 1.6Lr + 0.5W2a .06 1.2D1 + 1.6Lr + 0.5W3a .08 1.2D1 + 1.6Lr + 0.5W4a .10 1.2D1 + 1.6Lr + 0.5W' .40 1.2D1 + 1.2D2 + 1.6Lr + 1.0Lf .41 1.2D1 + 1.2D2 + 1.6Lr + 0.5W1a .43 1.2D1 + 1.2D2 + 1.6Lr + 0.5W2a .45 1.2D1 + 1.2D2 + 1.6Lr + 0.5W3a .47 1.2D1 + 1.2D2 + 1.6Lr + 0.5W4a .49 1.2D1 + 1.2D2 + 1.6Lr + 0.5W' 03-Load Combinations.xmcd 2 of 2 Losberger U.S., LLC 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 4a. Profile Design - Rafter and Leg Section Properties : d 9.843 in⋅=b 4.724 in⋅=Shape dimensions b w 7.717 in⋅=tw 0.157 in⋅= b f 2.547 in⋅=tf 0.22 in⋅= Ag 5.544 in 2⋅=Cross-sectional area of Shape Ix 77.18 in 4⋅=Iy 20.02 in 4⋅=Moment of inertia Sx 15.68 in 3⋅=Sy 8.47 in 3⋅=Section Modulus rx 3.73 in⋅=ry 1.90 in⋅=Radius of Gyration J 42.9 in 4⋅=Torsional constant Kx 1=Ky 1=Factor for buckling Lx 577 in⋅=Ly 150 in⋅=Length for buckling Lb Ly:=Length between Bracing Points Selected Ratios : b w tw 49= b f tf 11.8= Kx Lx⋅ rx 154.6= Ky Ly⋅ ry 78.9= The following allowable stresses are based on values from the "2015 Aluminum Design Manual" : Modulus of Elasticity :E 10100 ksi⋅= Design Axial Strengths: Design Tensile Strength :ϕPn.D 150.23 kip⋅=[Section D] Design Compressive Strength :ϕPn.E 17.68 kip⋅=[Section E] Design Flexural Strengths: Design Flexural Strength - Closed Section :ϕMnx 511 kip in⋅⋅=[Section F] ϕMny 281 kip in⋅⋅= Design Shear Strengths: Design Shear Strength :ϕVnx 40.63 kip⋅=[Section G] ϕVny 18.86 kip⋅= 04a-Profile Design-250x120.xmcd 1 of 2 Losberger U.S., LLC 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 Actual Stress: Member ID "ms105"=Load Case "6.12-0.9D1+0.9D2+1.0W3 Second Order"= Mrx 123.87−kip in⋅⋅=Mry 0.13 kip in⋅⋅=Pr 7.25−kip⋅= Mcx 510.68 kip in⋅⋅=Mcy 281.41 kip in⋅⋅=Pc 17.68 kip⋅= Eq. H.1-1 :Eq1 Pr Pc M rx M cx + Mry Mcy +0.65=:=Eq1 is less than or equal to 1.0 "OK"= Member ID "ms405"=Load Case "6.01-0.9D1+1.0W1 Second Order"= Mrx 443.67 kip in⋅⋅=Mry 0.06 kip in⋅⋅=Pr 4.47 kip⋅= Mcx 510.68 kip in⋅⋅=Mcy 281.41 kip in⋅⋅=Pc 150.23 kip⋅= Eq. H.1-1 :Eq2 Pr Pc M rx M cx + Mry Mcy +0.9=:=Eq2 is less than or equal to 1.0 "OK"= 04a-Profile Design-250x120.xmcd 2 of 2 Losberger U.S., LLC 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 4b. Profile Design - Gable 200x120 Section Properties : d 7.874 inb 4.724 inShape dimensions b w 5.709 intw 0.157 in b f 2.531 intf 0.18 in Ag 4.850 in 2Cross-sectional area of Shape Ix 43.74 in 4Iy 17.02 in 4Moment of inertia Sx 11.11 in 3Sy 7.21 in 3Section Modulus rx 3inry 1.87 inRadius of Gyration J 29.29 in 4Torsional constant Kx 1Ky 1Factor for buckling Lx 340 inLy 340 inLength for buckling Lb LyLength between Bracing Points Selected Ratios : b w tw 36.3b f tf 14.3Kx Lx rx 113.2Ky Ly ry 181.5 The following allowable stresses are based on values from the "2015 Aluminum Design Manual" : Modulus of Elasticity :E 10100 ksi Design Axial Strengths: Design Tensile Strength :ϕPn.D 130.45 kip[Section D] Design Compressive Strength :ϕPn.E 11.23 kip[Section E] Design Flexural Strengths: Design Flexural Strength - Closed Section :ϕMnx 335 kip in[Section F] ϕMny 234 kip in Design Shear Strengths: Design Shear Strength :ϕVnx 30.75 kip[Section G] ϕVny 15.34 kip 04b-Profile Design-200x120.xmcd 1 of 2 Losberger U.S., LLC 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 Actual Stress: Member ID "gvl001"Load Case "3.33-1.2D1+1.2D2+1.6Lr+0.5W4 Second Order" Mrx 43.32kip inMry 17.29 kip inPr 0.16kip Mcx 335.09 kip inMcy 234.42 kip inPc 11.23 kip Eq. H.1-1 :Eq1 Pr Pc M rx M cx Mry Mcy 0.22Eq1 is less than or equal to 1.0 "OK" Member ID "gvl001"Load Case "6.13-0.9D1+0.9D2+1.0W4 Second Order" Mrx 80.43kip inMry 27.02 kip inPr 2.4 kip Mcx 335.09 kip inMcy 234.42 kip inPc 130.45 kip Eq. H.1-1 :Eq2 Pr Pc M rx M cx Mry Mcy 0.37Eq2 is less than or equal to 1.0 "OK" 04b-Profile Design-200x120.xmcd 2 of 2 Losberger U.S., LLC 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 4c. Profile Design - Gable 150x120 Section Properties : d 5.906 inb 4.724 inShape dimensions b w 4.006 intw 0.177 in b f 2.825 intf 0.12 in Ag 3.324 in 2Cross-sectional area of Shape Ix 15.78 in 4Iy 11.97 in 4Moment of inertia Sx 5.34 in 3Sy 5.07 in 3Section Modulus rx 2.18 inry 1.90 inRadius of Gyration J 15.33 in 4Torsional constant Kx 1Ky 1Factor for buckling Lx 278 inLy 278 inLength for buckling Lb LyLength between Bracing Points Selected Ratios : b w tw 22.6b f tf 23.9Kx Lx rx 127.6Ky Ly ry 146.5 The following allowable stresses are based on values from the "2015 Aluminum Design Manual" : Modulus of Elasticity :E 10100 ksi Design Axial Strengths: Design Tensile Strength :ϕPn.D 85.99 kip[Section D] Design Compressive Strength :ϕPn.E 11.81 kip[Section E] Design Flexural Strengths: Design Flexural Strength - Closed Section :ϕMnx 171 kip in[Section F] ϕMny 160 kip in Design Shear Strengths: Design Shear Strength :ϕVnx 24.27 kip[Section G] ϕVny 11.41 kip 04c-Profile Design-150x120.xmcd 1 of 2 Losberger U.S., LLC 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 Actual Stress: Member ID "gvs004"Load Case "6.13-0.9D1+0.9D2+1.0W4 Second Order" Mrx 28.94 kip inMry 29.12kip inPr 0.97kip Mcx 171.38 kip inMcy 159.96 kip inPc 11.81 kip Eq. H.1-1 :Eq1 Pr Pc M rx M cx Mry Mcy 0.43Eq1 is less than or equal to 1.0 "OK" Member ID "gvs002"Load Case "6.13-0.9D1+0.9D2+1.0W4 Second Order" Mrx 57.42 kip inMry 22.96kip inPr 0.57 kip Mcx 171.38 kip inMcy 159.96 kip inPc 85.99 kip Eq. H.1-1 :Eq2 Pr Pc M rx M cx Mry Mcy 0.49Eq2 is less than or equal to 1.0 "OK" 04c-Profile Design-150x120.xmcd 2 of 2 Losberger U.S., LLC 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 4d. Profile Design - Purlin 80x100 Section Properties : d 3.150 inb 3.937 inShape dimensions b w 2.358 intw 0.118 in b f 1.472 intf 0.12 in Ag 1.779 in 2Cross-sectional area of Shape Ix 2.28 in 4Iy 3.36 in 4Moment of inertia Sx 1.26 in 3Sy 1.71 in 3Section Modulus rx 1.13 inry 1.37 inRadius of Gyration J 3.24 in 4Torsional constant Kx 1Ky 1Factor for buckling Lx 186 inLy 186 inLength for buckling Lb LyLength between Bracing Points Selected Ratios : b w tw 20b f tf 12.5Kx Lx rx 164.2Ky Ly ry 135.4 The following allowable stresses are based on values from the "2015 Aluminum Design Manual" : Modulus of Elasticity :E 10100 ksi Design Axial Strengths: Design Tensile Strength :ϕPn.D 44.87 kip[Section D] Design Compressive Strength :ϕPn.E 5.03 kip[Section E] Design Flexural Strengths: Design Flexural Strength - Closed Section :ϕMnx 47 kip in[Section F] ϕMny 56 kip in Design Shear Strengths: Design Shear Strength :ϕVnx 9.53 kip[Section G] ϕVny 5.95 kip 04d-Profile Design-80x100.xmcd 1 of 2 Losberger U.S., LLC 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 Actual Stress: Member ID "pl3"Load Case "6.03-0.9D1+1.0W3 Second Order" Mrx 0 kip inMry 0 kip inPr 4.82kip Mcx 47.43 kip inMcy 55.59 kip inPc 5.03 kip Eq. H.1-1 :Eq1 Pr Pc M rx M cx Mry Mcy 0.96Eq1 is less than or equal to 1.0 "OK" Member ID "pl402"Load Case "6.01-0.9D1+1.0W1 Second Order" Mrx 0kip inMry 0kip inPr 5.29 kip Mcx 47.43 kip inMcy 55.59 kip inPc 44.87 kip Eq. H.1-1 :Eq2 Pr Pc M rx M cx Mry Mcy 0.12Eq2 is less than or equal to 1.0 "OK" 04d-Profile Design-80x100.xmcd 2 of 2 Losberger U.S., LLC 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 4e. Profile Design - Purlin 60x60 Section Properties : d 3.150 inb 3.150 inShape dimensions b w 2.047 intw 0.108 in b f 2.815 intf 0.11 in Ag 1.472 in 2Cross-sectional area of Shape Ix 2.01 in 4Iy 2.06 in 4Moment of inertia Sx 1.22 in 3Sy 1.31 in 3Section Modulus rx 1.17 inry 1.18 inRadius of Gyration J 2.5 in 4Torsional constant Kx 1Ky 1Factor for buckling Lx 186 inLy 186 inLength for buckling Lb LyLength between Bracing Points Selected Ratios : b w tw 18.9b f tf 26Kx Lx rx 159.1Ky Ly ry 157.4 The following allowable stresses are based on values from the "2015 Aluminum Design Manual" : Modulus of Elasticity :E 10100 ksi Design Axial Strengths: Design Tensile Strength :ϕPn.D 36.6 kip[Section D] Design Compressive Strength :ϕPn.E 4.43 kip[Section E] Design Flexural Strengths: Design Flexural Strength - Closed Section :ϕMnx 41 kip in[Section F] ϕMny 41 kip in Design Shear Strengths: Design Shear Strength :ϕVnx 7.58 kip[Section G] ϕVny 10.42 kip 04e-Profile Design-80x80.xmcd 1 of 2 Losberger U.S., LLC 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 Actual Stress: Member ID "ps4"Load Case "6.13-0.9D1+0.9D2+1.0W4 Second Order" Mrx 0kip inMry 0 kip inPr 2.63kip Mcx 40.63 kip inMcy 41.07 kip inPc 4.43 kip Eq. H.1-1 :Eq1 Pr Pc M rx M cx Mry Mcy 0.59Eq1 is less than or equal to 1.0 "OK" Member ID "ps108"Load Case "6.03-0.9D1+1.0W3 Second Order" Mrx 0 kip inMry 0 kip inPr 2.83 kip Mcx 40.63 kip inMcy 41.07 kip inPc 36.6 kip Eq. H.1-1 :Eq2 Pr Pc M rx M cx Mry Mcy 0.08Eq2 is less than or equal to 1.0 "OK" 04e-Profile Design-80x80.xmcd 2 of 2 Losberger DeBoer 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 05. Splice Design Straight Splice Design : Section Properties : Ealu 10100 ksiTable 3.3-1 Main Section Splice Section Cross-sectional area Ag1 5.544 in 2Ag2 7.766 in 2 Web length of Shape b w1 9.843 inb w2 9.331 in Web thickness tw1 0.157 intw2 0.256 in Flat flange b f1 4.724 inb f2 4.331 in Flange thickness tf1 0.217 intf2 0.394 in Moment of inertia about strong axis Ix1 77.18 in 4Ix2 84.16 in 4 Moment of inertia about weak axis Iy1 20.02 in 4Iy2 19.63 in 4 Section Modulus about strong axis Sx1 15.68 in 3Sx2 18.06 in 3 Section Modulus about weak axis Sy1 8.47 in 3Sy2 9.09 in 3 Radius of Gyration abt stong axis rx1 3.73 inrx2 3.29 in Radius of Gyration abt weak axis ry1 1.90 inry2 1.59 in Stresses in Splice :The connection splice is considered to carry the entire moment where the main profiles meet. Member ID "ms524"Mx 106.97 kip inV 0.36 kipC 0.57kip Load Case "1.02-1.4D1+1.4D2 Second Order" Stress on the connection splice :σ C Ag2 V Ag2 Mx Sx2 σ 6 ksiOK by inspection Member ID "ms524"Mx 113.4 kip inV 0.25 kipT 0.22 kip Load Case "3.33-1.2D1+1.2D2+1.6Lr+0.5W4 Second Order" Stress at the connection splice :σ T Ag2 V Ag2 Mx Sx1 σ 7.3 ksiOK by inspection 05-Splice Design.xmcd 1 of 8 Losberger DeBoer 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 Bolts : M20 Bolt Area :AM20 0.49 in 2 Yield Stress :FyM20 92.8 ksi Tensile Strength :FutM20 116 ksi d1 300mm 2 Allowable Shear Stress in bolt : Fv 0.22( ) FutM20Fv 176 N mm2Fv 25.5 ksi Actual Shear Stress in bolt : Member ID "ms524" Load Case "3.33-1.2D1+1.2D2+1.6Lr+0.5W4 Second Order"Mx 113.4 kip inV 0.25 kipA 0.22 kip Considering only the 1 bolt on either side of splice resist the full forces, the resulting force on 1 bolt is : FT AFT 0.22 kip FV VFV 0.25 kip FB1 Mx d1 d12FB1 19.2 kip Fres FB1 FT 2 FV 2Fres 19.5 kip Shear Stress on Bolt taking Double Shear into account : fres Fres 2()AM20fres 20.06 ksi fres is less than or equal to Fv "OK" Bearing on Splice and Profile from the Bolts : The splice fits the profile so that the splice will bear on the profile before the bolts will bear on the bolt holes, therefore the bearing is okay by inspection. 05-Splice Design.xmcd 2 of 8 Losberger DeBoer 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 Eave Splice Design : Section Properties : Splice Section Number of splice plates :n2 Web length of Shape b w 13.189 in Web thickness tw 0.394 in Cross-sectional area Ag 10.385 in 2 Plastic Modulus about strong axis Zx 34.24 in 3 Section Modulus about strong axis Sx 22.83 in 3 Compressive Strength : Flexural Buckling : Fcr 0.658 FyS355 Estl  FyS35551.45 ksi Pn1 Fcr Ag534311 lbf Allowable : Pallowable ϕc Pn1454164 lbf Flexural Strength : Yielding : Mn1 min FyS355 Zx1.6 FyS355Sx1763.06 kip in Lateral-Torsional Buckling : Lb 120 mmCb 1 Fcr 1.9 EstlCb Lb bw tw 2 137.06 ksiratio Lb bw tw 2 402 Mn2 if ratio 1.9 Estl FyS355 Fcr SxCb 1.52 0.274 ratio() FyS355 Estl    FyS355Sx   1556.71 kip in Allowable : Mallowable ϕb min Mn1 Mn21323.2 kip in 05-Splice Design.xmcd 3 of 8 Losberger DeBoer 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 Stresses in Splice : The connection splice is considered to carry the entire moment where the roof and column profiles meet. Member ID "mr403"Mx 502.91 kip inV 3.16 kipC 4.81 kip Load Case "6.01-0.9D1+1.0W1 Second Order" Stress interaction on the splice :IE C Pallowable Mx M allowable 0.39 Bolts : M20 Bolt Area :AM20 314 mm 2AM20 0.49 in 2 Yield Stress :FyM20 640 N mm2FyM20 92.8 ksi Tensile Strength :FutM20 800 N mm2 FutM20 116 ksid1 58 mm()2 235 mm()2d1 242 mmd1 9.5 in Allowable Shear Stress in bolt : Fv 0.22( ) FutM20Fv 176 N mm2Fv 25.5 ksi Actual Shear Stress in bolt : Member ID "mr403" Load Case "6.01-0.9D1+1.0W1 Second Order"Mx 502.91 kip inV 3.16 kipA 4.81 kip Considering only the 4 bolts in the middle to resist the full moment and forces, the resulting force on 1 bolt is : FT A 4 1.2 kipFV V 4 0.79 kipFB1 Mx d1 4d12 13.19 kip Fres FB1 FT 2 FV 2Fres 14.6 kip Shear Stress on Bolt taking Double Shear into account : fres Fres 2()AM20fres 15.02 ksi fres is less than or equal to Fv "OK" 05-Splice Design.xmcd 4 of 8 Losberger DeBoer 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 Bearing on Splice and Profile from the Bolts : Splice : Wall thickness :tsplice 10 mm Diameter in Splice :d splice 22 mm Allowable Bearing Pressure :Fp 1.2 FtualuFp 54 ksi Actual Bearing Pressure :fp Fres 2()dsplicetsplicefp 21.45 ksi fp is less than or equal to Fp "OK" Profile : Wall thickness :tw1 4mm Diameter in Profile :d profile 30 mm Allowable Bearing Pressure :Fp 1.2 Ftualu Actual Bearing Pressure :fp Fres 2()dprofiletw1fp 39.33 ksi fp is less than or equal to Fp "OK" 05-Splice Design.xmcd 5 of 8 Losberger DeBoer 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 Peak Splice Design : Section Properties : Ealu 10100 ksiTable 3.3-1 Main Section Splice Section Cross-sectional area Ag1 4.610 in 2Ag2 6.200 in 2 Web length of Shape b w1 7.874 inb w2 7.441 in Web thickness tw1 0.157 intw2 0.236 in Flat flange b f1 4.724 inb f2 4.331 in Flange thickness tf1 0.177 intf2 0.394 in Moment of inertia about strong axis Ix1 40.37 in 4Ix2 46.09 in 4 Moment of inertia about weak axis Iy1 16.4 in 4Iy2 14.27 in 4 Section Modulus about strong axis Sx1 10.26 in 3Sx2 12.39 in 3 Section Modulus about weak axis Sy1 6.94 in 3Sy2 6.59 in 3 Radius of Gyration abt stong axis rx1 2.96 inrx2 2.73 in Radius of Gyration abt weak axis ry1 1.89 inry2 1.52 in Torsional constant J1 36.76 in 4J2 55.57 in 4 Stresses in Splice : The connection splice is considered to carry the entire moment where the main profiles meet. Member ID "mr211"Mx 43.33kip inV 0.55 kipC 1.02kip Load Case "1.02-1.4D1+1.4D2 Second Order" Stress on the connection splice :σ C Ag2 V Ag2 Mx Sx2 σ 3.7 ksiOK by inspection Member ID "mr211"Mx 264.05 kip inV 3.28 kipT 8.1 kip Load Case "6.03-0.9D1+1.0W3 Second Order" Stress at the connection splice :σ T Ag2 V Ag2 Mx Sx1 σ 27.6 ksiOK by inspection 05-Splice Design.xmcd 6 of 8 Losberger DeBoer 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 Bolts : M20 Bolt Area :AM20 0.49 in 2 Yield Stress :FyM20 92.8 ksi Tensile Strength :FutM20 116 ksi d1 260mm Allowable Shear Stress in bolt : Fv 0.22( ) FutM20Fv 176 N mm2Fv 25.5 ksi Actual Shear Stress in bolt : Member ID "mr210" Load Case "6.03-0.9D1+1.0W3 Second Order"Mx 132.02 kip inV 3.28 kipA 8.1 kip Considering only the 1 bolt on either side of splice resist the full forces, the resulting force on 1 bolt is : FT AFT 8.1 kip FV VFV 3.28 kip FB1 Mx d1 d12FB1 12.9 kip Fres FB1 FT 2 FV 2Fres 21.6 kip Shear Stress on Bolt taking Double Shear into account : fres Fres 2()AM20fres 22.22 ksi fres is less than or equal to Fv "OK" Bearing on Splice and Profile from the Bolts : The splice fits the profile so that the splice will bear on the profile before the bolts will bear on the bolt holes, therefore the bearing is okay by inspection. 05-Splice Design.xmcd 7 of 8 Losberger DeBoer 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 This page intentionally left blank 05-Splice Design.xmcd 8 of 8 Losberger DeBoer 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 06. Base plate Design Material : S235 FyAE235 34.08 ksi FutAE235 49.31 ksi EAE235 30457.92 ksi Vert. Plates : 120 x 18 x 86.5 mm b v 120 mmtv 18 mmd v 86.5 mm Base Plate : 490 x 12 x 490 mm b b 490 mmtb 12 mmd b 490 mm 06-Baseplate Design.xmcd 1 of 4 Losberger DeBoer 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 Vertical plates : Section Properties (single vertical plate) : Av b v tv3.35 in 2 Svx tv bv 2 6 2.64 in 3Svy bv tv 2 6 0.4 in 3 Allowable Stress : σallowable 0.6()FyAE23520.45 ksi Actual Stress : Moment arm above Section :d B 5.39 in LoadCase0 "6.01-0.9D1+1.0W1 Second Order"H0 3.69kipV0 4.81kip σ V0 2Av 0.5 H0dB 2Svy13.3 ksiσ is less than or equal to σallowable "OK" LoadCase1 "6.03-0.9D1+1.0W3 Second Order"H1 2.69 kipV1 3.78kip σ V1 2()Av 0.5 H1d B 2Svy9.75 ksiσ is less than or equal to σallowable "OK" 06-Baseplate Design.xmcd 2 of 4 Losberger DeBoer 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 Bending of Plate : The Base Plate has the following dimensions. Length :L 490 mm Width :W 490 mm Thickness :T12mm Surface area :ALW372.16 in 2 The reaction forces act on a distance "d" above the bottom side of plate:d 137 mm LoadCase0 "6.03-0.9D1+1.0W3 Second Order"H0 1.02 kipV0 1.98 kip These forces result in the following pressure under the baseplate: fmax V0 A H0 d6() LW2 fmax 68.36 kN m2 fmax 0.01 ksi fmin V0 A H0 d6() LW2 fmin 5.16 kN m2 fmin 0.001 ksi The pressure fA equals:fA fmax fmax fmin120 mm 490 mmfA 50.4 kN m2fA 0.01 ksi The moment resulting from the pressure under the plate equals : MA fmax fA 2  120mm120 mm 2 490mm MA 0.21 kN mMA 1.9 kip in The actual stress equals :σA M A 6 LT2 σA 17.8 N mm2σA 2.6 ksi σA is less than or equal to σallowable "OK" 06-Baseplate Design.xmcd 3 of 4 Losberger DeBoer 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 The mean pressure equals :fmean fmax fmin 2fmean 36.8 kN m2fmean 0.01 ksi The moment at section equals : MB fmean 108mm153 mm 2490 mm()MB 0.15 kN mMB 1.3 kip in The actual stress equals :σB M B 6 WT2 σB 12.7 N mm2σB 1.8 ksi σB is less than or equal to σallowable "OK" 06-Baseplate Design.xmcd 4 of 4 Losberger DeBoer 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 07. Bracing Cable Assemblies - Roof The roof bracing cables are constructed of 6x19 IWRC Class A galvanized steel wire rope. The max factored load in a roof wind brace is Tmax 6.15tonf. The nominal strength of ϕ 0.551in wire rope is Tallow 16.17tonf. Safety Factor Tallow 90% Tmax 2.37 USE a 6x19 IWRC Class A Wire Rope with a minimum diameter of ϕ 0.5512in . Adjustment of the roof bracing cables is through turnbuckles. The max factored load in a roof wind brace is Tmax 12300lbf. The working strength of ϕ 0.750in turnbuckle is Twork 5200lbf. The nominal strength of ϕ 0.750in turnbuckle is Tallow 26000lbf . Safety Factor Tallow Tmax 2.11 USE a turnbuckle with a minimum thread diameter of ϕ 0.7500in . 07-Bracing Cables 6x19 IWRC.xmcd 1 of 2 Losberger DeBoer 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 This page intentionally left blank 07-Bracing Cables 6x19 IWRC.xmcd 2 of 2 Losberger DeBoer 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 APPENDIX A FIGURES AND SKETCHES A1 - Appendix A.xmcd Losberger DeBoer 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 This page intentionally left blank A1 - Appendix A.xmcd /26%(5*(5 /26%(5*(5 /26%(5*(5 /26%(5*(5 /26%(5*(5 /26%(5*(5 /26%(5*(5 /26%(5*(5 /26%(5*(5 Losberger DeBoer 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 This page intentionally left blank A1 - Appendix A.xmcd Losberger DeBoer 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 APPENDIX B COMPUTER MODEL INPUT A2 - Appendix B.xmcd Losberger DeBoer 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 This page intentionally left blank A2 - Appendix B.xmcd 8QLIOH[37DEOHRI&RQWHQWV1RGHV1RGDO6XSSRUWV0DWHULDOV6HUYLFH/RDG&DVHV5HVXOW&DVHV1RGHV1DPH;P<P=P)L[';)L['<)L['=)L[5;)L[5<)L[5=   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R8QLIOH[31RGHV1DPH;P<P=P)L[';)L['<)L['=)L[5;)L[5<)L[5=   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R 8QLIOH[31RGHV1DPH;P<P=P)L[';)L['<)L['=)L[5;)L[5<)L[5=   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R   1R 1R 1R 1R 1R 1R1   1R 1R 1R 1R 1R 1R1   1R 1R 1R 1R 1R 1R1   1R 1R 1R 1R 1R 1R1   1R 1R 1R 1R 1R 1R1   1R 1R 1R 1R 1R 1R1   1R 1R 1R 1R 1R 1R1   1R 1R 1R 1R 1R 1R1   1R 1R 1R 1R 1R 1R1   1R 1R 1R 1R 1R 1R1   1R 1R 1R 1R 1R 1R8QLIOH[31RGHV1DPH;P<P=P)L[';)L['<)L['=)L[5;)L[5<)L[5=J   <HV<HV<HV 1R 1R 1RJ   <HV<HV<HV 1R 1R 1RJ   <HV<HV<HV 1R 1R 1RJ   <HV<HV<HV 1R 1R 1RJ   <HV<HV<HV 1R 1R 1RJ   <HV<HV<HV 1R 1R 1RJ   <HV<HV<HV 1R 1R 1RJ   <HV<HV<HV 1R 1R 1RJ   <HV<HV<HV 1R 1R 1RJ   <HV<HV<HV 1R 1R 1RV   <HV<HV<HV 1R 1R 1RV   <HV<HV<HV 1R 1R 1RV   <HV<HV<HV 1R 1R 1RV   <HV<HV<HV 1R 1R 1RV   <HV<HV<HV 1R 1R 1RV   <HV<HV<HV 1R 1R 1RV   <HV<HV<HV 1R 1R 1RV   <HV<HV<HV 1R 1R 1RV   <HV<HV<HV 1R 1R 1RV   <HV<HV<HV 1R 1R 1RV   <HV<HV<HV 1R 1R 1RV   <HV<HV<HV 1R 1R 1RV   <HV<HV<HV 1R 1R 1RV   <HV<HV<HV 1R 1R 1RV   <HV<HV<HV 1R 1R 1RV   <HV<HV<HV 1R 1R 1R1RGDO6XSSRUWV1DPH)L[';)L['<)L['=)L[5;)L[5<)L[5=J<HV<HV<HV 1R 1R 1RJ<HV<HV<HV 1R 1R 1RJ<HV<HV<HV 1R 1R 1RJ<HV<HV<HV 1R 1R 1RJ<HV<HV<HV 1R 1R 1RJ<HV<HV<HV 1R 1R 1RJ<HV<HV<HV 1R 1R 1RJ<HV<HV<HV 1R 1R 1RJ<HV<HV<HV 1R 1R 1RJ<HV<HV<HV 1R 1R 1RV<HV<HV<HV 1R 1R 1RV<HV<HV<HV 1R 1R 1R1RGDO6XSSRUWV FRQWLQXHG V<HV<HV<HV 1R 1R 1RV<HV<HV<HV 1R 1R 1RV<HV<HV<HV 1R 1R 1RV<HV<HV<HV 1R 1R 1RV<HV<HV<HV 1R 1R 1RV<HV<HV<HV 1R 1R 1RV<HV<HV<HV 1R 1R 1RV<HV<HV<HV 1R 1R 1RV<HV<HV<HV 1R 1R 1RV<HV<HV<HV 1R 1R 1RV<HV<HV<HV 1R 1R 1RV<HV<HV<HV 1R 1R 1RV<HV<HV<HV 1R 1R 1RV<HV<HV<HV 1R 1R 1R0DWHULDOV1DPH(ODVWLFLW\(3D3RLVVRQnj'HQVLW\DŽ1PA7KHUPDOĮPPGHJ&6KHDU0RGXOXV*3D7($OO    ( $670$    ( :HLJKWOHVV6WHHO )\ NVL    ( 6HUYLFH/RDG&DVHV1DPH6RXUFH6HOI:HLJKW' 2WKHU/RDGV ([FOXGH 8QLIOH[36HUYLFH/RDG&DVHV1DPH6RXUFH6HOI:HLJKW' 2WKHU/RDGV ([FOXGH/U 5RRI/RDGV ([FOXGH: 2WKHU/RDGV ([FOXGH: 2WKHU/RDGV ([FOXGH: 2WKHU/RDGV ([FOXGH: 2WKHU/RDGV ([FOXGH5HVXOW&DVHV1DPH,''6HFRQG2UGHU''6HFRQG2UGHU'/U:6HFRQG2UGHU'/U:6HFRQG2UGHU'/U:6HFRQG2UGHU'/U:6HFRQG2UGHU5HVXOW&DVHV FRQWLQXHG ''/U:6HFRQG2UGHU''/U:6HFRQG2UGHU''/U:6HFRQG2UGHU''/U:6HFRQG2UGHU':6HFRQG2UGHU':6HFRQG2UGHU':6HFRQG2UGHU':6HFRQG2UGHU'':6HFRQG2UGHU'':6HFRQG2UGHU'':6HFRQG2UGHU'':6HFRQG2UGHU Losberger DeBoer 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 This page intentionally left blank A2 - Appendix B.xmcd Losberger DeBoer 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 APPENDIX C COMPUTER MODEL OUTPUT A3 - Appendix C.xmcd Losberger DeBoer 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 This page intentionally left blank A3 - Appendix C.xmcd 8QLIOH[37DEOHRI&RQWHQWV5HVXOW&DVHV0HPEHU)RUFHV1RGH5HDFWLRQV1RGH5HVXOWV5HVXOW&DVHV1DPH,''6HFRQG2UGHU''6HFRQG2UGHU'/U:6HFRQG2UGHU'/U:6HFRQG2UGHU'/U:6HFRQG2UGHU'/U:6HFRQG2UGHU''/U:6HFRQG2UGHU''/U:6HFRQG2UGHU''/U:6HFRQG2UGHU''/U:6HFRQG2UGHU':6HFRQG2UGHU':6HFRQG2UGHU':6HFRQG2UGHU':6HFRQG2UGHU'':6HFRQG2UGHU'':6HFRQG2UGHU'':6HFRQG2UGHU'':6HFRQG2UGHU0HPEHU)RUFHV0HPEHU)[0LQOE)[0D[OE9\OE0]0LQOELQ0]0D[OELQIPV           IPV           IPV           IPV           IPV           IPV           IPV           IPV           IPV           IPV           IPV           IPV           IPV           IPV           IPV           IPV           IPV           IPV           IPV           IPV           IPV           IPV           IPV           IPV           JK           JK           JK           JK           JK           JK           JK           JK           JK           JK           JK           JK           JYO           JYO           JYO           JYO           JYV           8QLIOH[30HPEHU)RUFHV0HPEHU)[0LQOE)[0D[OE9\OE0]0LQOELQ0]0D[OELQJYV           JYV           JYV           JYV           JYV           JYV           JYV           JYV           JYV           JYV           JYV           JYV           JYV           JYV           JYV           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PU           PV           PV           PV           PV           8QLIOH[30HPEHU)RUFHV0HPEHU)[0LQOE)[0D[OE9\OE0]0LQOELQ0]0D[OELQPV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           8QLIOH[30HPEHU)RUFHV0HPEHU)[0LQOE)[0D[OE9\OE0]0LQOELQ0]0D[OELQPV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           PV           SO           SO           SO           SO           SO           SO           SO           SO           SO           SO           SO           SO           SO           SO           SO           SO           SO           SO           8QLIOH[30HPEHU)RUFHV0HPEHU)[0LQOE)[0D[OE9\OE0]0LQOELQ0]0D[OELQSO           SO           SO           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           SV           8QLIOH[30HPEHU)RUFHV0HPEHU)[0LQOE)[0D[OE9\OE0]0LQOELQ0]0D[OELQSV           SV           SV           SV           SV           SV           UE           UE           UE           UE           UE           UE           UE           UE           UE           UE           UE           UE           UE           UE           UE           UE           ZE           ZE           ZE           ZE           ZE           ZE           ZE           ZE           1RGH5HDFWLRQV H[WUHPHURZVPD[DQGPLQ 1RGH5HVXOW&DVH);OE)<OE)=OE0;OELQ0<OELQ0=OELQV ':6HFRQG2UGHU    V ':6HFRQG2UGHU    V '':6HFRQG2UGHU    V ':6HFRQG2UGHU    V ':6HFRQG2UGHU    V ':6HFRQG2UGHU    1RGH5HVXOWV H[WUHPHURZVPD[DQGPLQ 1RGH5HVXOW&DVH';LQ'<LQ'=LQ ':6HFRQG2UGHU  ':6HFRQG2UGHU  ':6HFRQG2UGHU ''/U:6HFRQG2UGHU  '':6HFRQG2UGHU 1 ':6HFRQG2UGHU  Losberger DeBoer 285 Bucheimer Rd, Suite A Frederick, MD 21701 800-964-8368 This page intentionally left blank A3 - Appendix C.xmcd New York Life / La Quinta, CA / Tent Installation PROJECT OVERVIEW This document serves as an overview of the clear span structure that 616GC has been contracted to install at La Quinta Resort and Club. The structure is being utilized by New York Life as a location for overflow dining space during the NYL conference at La Quinta. Use details are as follows: 10/24: Structure open for snack stations for NYL employees to grab a snack and take to their rooms 10/25 – 10/28: Daily Breakfast – seating for approx. 500 – not all at one time. Guest will dine from 6:00am – 9:30am. 10/25 Lunch along with Flores Ballroom, Patio and Veranda 10/25 Dinner – Hoping to only use ballroom but may use tent for overflow if needed 10/27 Annual Dinner - Hoping to only use ballroom but may use tent for overflow if needed PERTINANT DATES: Install Dates: October 18-23, 2022 Event Date: October 24-28, 2022 Strike Dates: October 28th – November 2, 2022 Address: La Quint Resort & Club 49499 Eisenhower Drive, La Quinta, CA 92253 Main Tented Event Space Consists of the following: 1 30m x 50m (100’ x 164’) A-Frame Structure • White Soft Wall, Roof Covers, and Gables • Tent to be staked into the ground 1 Laydown Wood Flooring System • Will follow the lay of the land • Made with 4”x6” Stringers and ¾” of plywood • Assume cutting around diamond medians 1 Event Grade Carpet 6 Double Doors 6 Emergency Kits 1 General Lighting Kit 7 HVAC Units 3 Generators 1 Power Distro for HVAC, Lights, and exit signs • Includes 6: 20A Duplex Receptacles • Includes 2: 200A Panels CALIFORNIA DEPARTMENT OF FORESTRY and FIRE PROTECTION OFFICE OF THE STATE FIRE MARSHAL REGISTERED FLAME RESISTANT PRODUCT Product: DURASKIN Product Marketed By: VERSEIDAG INDUTEX GMBH INDUSTRIESTR 56 47803 KREFELD GERMANY Registration No. F-53001 This product meets the minimum requirements of flame resistance established by the California State Fire Marshal for products identified in Section 13115, California Health and Safety Code, and passes NFPA 701-96. The scope of the approved use of this product is provided in the current edition of the CALIFORNIA APPROVED LIST OF FLAME RETARDANT CHEMICALS AND FABRICS, GENERAL AND LIMITED APPLICATIONS CONCERNS published by the California State Fire Marshal. Expire: 12/30/2022 FR-8 Deputy State Fire Marshal OFFICE OF THE FIRE MARSHAL – LA QUINTA 78495 Calle Tampico, La Quinta, CA 92253 • Phone (760) 777-7074 • www.rvcfire.org October 5, 2022 616 GC Adrew Madura S. Dateland Drive Tempe, AZ 85283 Re: Special Event / Tent / Canopy – Construction and Operational Fire Plan Review – NEW YORK LIFE @ LA QUINTA RESORT FSEV2022-0004 / 10/24 THROUGH 10/28/2022 49499 EISENHOWER DRIVE, LA QUINTA, CA 92253 The plans you submitted for the above referenced project have been reviewed by Riverside County Fire Department - Office of the Fire Marshal personnel and are approved with the following conditions. FIRE LANES/ACCESS [CFC 503] No designated fire lanes, fire hydrants or any other Fire Department appliances shall be blocked or obstructed. Fire lanes shall be clearly identified in an approved manner throughout the event grounds by posting “NO PARKING FIRE LANE” or other approved means. All motor vehicles shall be parked in designated parking areas. GENERATORS AND INTERNAL COMBUSTION POWER SOURCES Generators (and/or internal combustion power sources) shall be separated from temporary membrane structures, tents, canopies by a minimum of 20 feet and be isolated from contact with the public [CFC 3107.16]. Additional fuel containers will not be allowed to be stored with the generator. Each generator will need to have a 10BC fire extinguisher, with a current service tag (within one year). Combustible material (including trash) shall be kept clear of the generators. EXTENSION CORDS Extension cords shall be over-current protected and/or ground-fault interrupter protected. No additional taps are to be in any device. All extension cords shall be of 12/3 gauge wire or greater with approved connectors. HEATING AND COOKING EQUIPMENT [CFC 3107.12] At least one 2A10BC fire extinguisher, with a current service tag (within one year), shall be provided at all vendor booths that are cooking. One Class K type fire extinguisher, with a current service tag (within one year), shall be provided for each vendor booth with a deep fat fryer. Deep fat fryers shall be located outside tents and protected from the public, unless otherwise directed or approved by The Department of Environmental Health and the Fire Department. All L.P.G. tanks (empty or full) shall be secured with a chain or other approved device to prevent tipping over/unintentional movement and kept a safe distance from open flame. The pressure relief vent should be pointed away from any open flame. COMBUSTIBLE MATERIAL [CFC 3107.19] Accumulation of combustible material (including trash) will be prohibited near any ignition sources within 30-feet of the perimeter of tents and membrane structures. Such waste shall be stored in approved containers and removed from the premises not less than once a day. TENTS AND CANOPY(S) [CFC Chapter 31] Tents over 400 square feet and canopies over 700 square feet shall comply with the following conditions: [1] Extinguishers- At least one 2A10BC fire extinguisher, with a current service tag (within one year), shall be provided within every 75 feet of travel distance. [CFC 3107.9] [2] Exit Signs and Egress Lighting- Tents with side walls shall have illuminated exit signs and means of egress lighting pursuant to CFC Chapter 31 when the tent has an occupant load of 50 or more. [CFC 3103.12.6 & .7] [3] Seating Configuration- Seating configuration needs to comply with CFC Chapter 10 and California Code of Regulations (CCR) Title 19. [4] No Smoking- Smoking shall not be permitted in any tent or canopy or in any adjacent area where hay, sawdust or any other combustible materials are stored. NO SMOKING signs shall be conspicuously posted in all tents and canopies open to the public. [CFC 3107.3] [5] Obstructing exits- Furnishings, decorations or other objects shall not be placed so as to obstruct exits, access thereto, egress therefrom, or visibility thereof. Hangings and draperies shall not be placed over exit doors or otherwise be located to conceal or obstruct an exit. [CFC 3107.20] [6] Decorative Materials- Curtains, draperies, hangings and other decorative materials suspended from walls or ceilings shall meet the flame propagation performance criteria of CCR Title 19 in accordance with section 807.2 or be non-combustible, when the tent has an occupant load of 50 or more. [Ref CFC 807.1] [7] High-Wind Evacuation Plan – The tent supplier and event coordinator shall understand that the use of the tent or canopy in winds at 40 mph or greater is not permitted. Event coordinator is responsible to take necessary actions to stop occupancy and use of the tent or canopy when winds of 40 mph or greater are observed or expected. FOOD TRUCKS All food truck apparatus shall be of the motorized type to provide easy relocating and evacuation in the event of an emergency or where otherwise required. All food trucks shall have their own compliment of a minimum 2A10BC (5lb) fire extinguisher under current service tag. All food trucks that have fuel-fire equipment shall be provided with adequate ventilation and a commercial kitchen hood extinguishing system. The hood, plenum and duct shall be maintained in a clean and safe operation. The hood suppression system shall be operational and provided with current service tag DESIGNATED SMOKING AREAS [CFC 3106.4.5] Smoking shall be permitted only in designated areas. Other areas shall have approved “No Smoking” signs conspicuously posted and maintained. FIREWORKS/PYRO/FIRE PERFORMERS Fireworks, pyrotechnics or fire performers shall require an additional permit and approval. FIRE INSPECTION Prior to this Special Event, you must be cleared by the Fire Department by way of a Pre-Event Fire Safety Inspection. Applicant/installer shall be responsible to contact the Fire Department to schedule inspections. Requests for inspections are to be made at least 48 hours in advance and may be arranged by calling (760)777-7131. All questions regarding the meaning of these conditions should be referred to the Office of the Fire Marshal staff at (760)777-7074. Kohl Hetrick - Fire Safety Specialist 78495 CALLE TAMPICO, LA QUINTA, CA 92253 / 760-777-7000 / INSPECTION HOTLINE: 760-777-7131 RIVERSIDE COUNTY FIRE PROTECTION PLANNING RECORD OF INSPECTIONS / PERMIT CARD THIS CARD IS TO REMAIN ON SITE AT ALL TIMES. INSTALLING CONTRACTOR MUST BE PRESENT FOR ALL INSPECTIONS. SEE NOTES ON REVERSE SIDE. JOB ADDRESS: 49499 EISENHOWER DRIVE PERMIT#: FSEV2022-0004 DATE ISSUED: 10/5/2022 DESCRIPTION: NEW YORK LIFE – TENT CONTRACTOR: 616 GC – ANDY MADURA HYDRANT SYSTEM DATE INITIALS SPECIAL SUPPRESSION DATE INITIALS Thrust block pre-pour Door fan test UG rough piping Abort test UG hydro Mechanical shutdown Flush Detector test Final E F Deluge/pre-action SPRINKLER U.G. Final E F Thrust block pre-pour UST/AST TANK UG rough piping Installation UG hydro Removal Flush Emergency shut off Final E F Primary piping FIRE SPRINKLER Secondary piping Weld inspection Dispensers & shear valves Overhead rough piping Final E F Overhead hydro MISC. INSPECTIONS UG flush / OK to connect Spray booths Main drain/inspectors’ test Hood/duct extinguishing High pile storage High pile rack storage In-rack sprinklers H.P. vents/access/corridors Hose racks Tract access/hydrant verification Final E F Access & Address verification HOOD EXTINGUISHING OTHER CONST. PERMIT Detection system Function test Gas/electrical shut-off Nozzle model/placement Fire alarm connection Final E F SPRAY BOOTHS FIRE CODE PERMIT(S) Installation OUTDOOR PUBLIC EVENT Air flow test SPEC. AMUSEMENT STRUCTURE Mechanical interlock TENT/CANOPY Extinguishing system PYROTECHNIC Fire alarm connection OPEN FLAME DEVICE Final E F FIRE ALARM KNOX SYSTEM Rough-wire inspection Building Knox box Function test Gate access Knox box/padlock Duct detectors/velocity BUILDING INSPECTIONS 24 hr. battery test T/I final Sprinkler monitoring Shell final Final E F Final for occupancy FINAL INSPECTION DATE: INSPECTORS SIGNATURE: **WHEN CALLING FOR AN INSPECTION PLEASE HAVE PERMIT NUMBER READY. SEE NOTES ON REVERSE SIDE** 78495 CALLE TAMPICO, LA QUINTA, CA 92253 / 760-777-7000 / INSPECTION HOTLINE: 760-777-7131 INSPECTION NOTES 1. Sway bracing and hangers will be inspected at the time of rough piping inspection. 2. All required hydrostatic pressure tests shall maintain 200 psi for a 2-hour duration. (EX: Residential Fire Sprinkler Systems) 3. Fire sprinkler system remodels: if indicated on plans or this card, a hydrostatic pressure test shall be required. 4. All underground joints and thrusts blocks shall be exposed and readily visible during the hydrostatic test. 5. Contractor shall supply all testing equipment, access and operating instructions at time of test. 6. All systems shall be inspected, tested, and approved by a Fire Inspector before any work is started that may cause the affected system to be covered or hidden. POLICIES ON FIELD INSPECTIONS A. INSPECTION REQUESTS: Inspections are made subject to availability. Please have the permit number available when scheduling inspections. For City of La Quinta inspections call: (760) 777-7131. B. APPROVED PLANS: Shall be kept on the job site at all times that work is in progress. Work shall NOT commence without approved plans. C. INSPECTION REQUESTS: As required by the California Fire Code, the appropriate installing contractor shall be required to schedule the necessary inspections and be present on site for inspections. D. RE-INSPECTIONS: Will be charged against a permit when an inspection has failed, is not ready, the responsible party not on site or where previously noted corrections have not been completed. E. COMMODITIES: Unless otherwise noted on approved plans or letter of conditions, no commodities shall be entered into the structure until clearance has been granted by the Fire Dept and Building Official. F. OCCUPANCY: Buildings shall NOT be occupied by persons other than construction workers until a Final Fire Clearance has been granted by the Fire Dept and a Certificate for Occupancy has been issued by the Building Official. INSPECTION NOTES: THIS CARD IS REQURIED TO BE POSTED AT THE CONSTRUCTION SITE. THIS CARD AND APPROVED PLANS MUST BE AVAILABLE AT THE CONSTRUCTION SITE FOR ALL INSPECTIONS. THIS PERMIT SHALL EXPIRE AND BECOME NULL AND VOID IF THE WORK AUTHORIZED IS NOT COMMENCED WITHIN 180 DAYS OR IF THE WORK IS SUSPENDED OR ABANDONED FOR A PERIOD OF 180 DAYS OR MORE. THIS PERMIT IS FOR FIRE DEPARTMENT APPROVAL ONLY AND DOES NOT INTEND TO ABROGATE MORE RESTRICTIVE REQUIREMENTS OF OTHER AGENCIES HAVING RESPONSIBILITY.