Loading...
BCOM2019-0029 - Structural CalcsDESIGN CALCULATIONS FOR: 12' WIDE COMMERCIAL MODULAR BUILDING w/ OUTRIGGER CHASSIS PAD/PIER/ANCHOR SYSTEM (130 MPH / EXP'C' WIND) BCOM2019-0029 CITY OF LA QUINTA BUILDING DIVISION REVIEWED FOR CODE COMPLIANCE DIT108/14/2019 , JF- SILVERROCK / TWO (2) HCD REGULATED MODULAR STRUCTURES TO BE USED AS PRO SHOP AND RESTROOM FACILITY (1,368 SF TOTAL). VB/B-OCC/7-OL/NON-SPRINKLED. 11450 MISSION BLVD. MIRA LOMA, CALIFORNIA 91752 (951) 360-6600 PROJECT: Yl+n a C rr � i 7155 PREPARED FOR: mobile modular, Your Project - Our Commitment PREPARED BY: ACUMEN Engineering, Inc. APR 1 9 2019 5700 LAS POSITAS RD. LIVERMORE, CALIFORNIA 94551 (925) 606 - 9000 12808 SOUTH 600 EAST DRAPER, UT. 84020 (801) 571- 9877 FAX (801) 571- 9951 COVER SHEET 1 ROOF LIVE LOAD: 20 PSF DESIGN CODE: 2016 CBC DESIGN LOADS 2 FLOOR LIVE LOAD: 50 PSF IMPORTANCE FACTOR: 1.0 'PAD CAPACITY 7 PARTITION LOAD: 15 PSF RISK CATEGORY: II PAD/PIER SPACING 8 WIND SPEED / 130 MPH, SPECTRAL RESPONSE ANCHOR QUANTITY 9 EXPOSURE: EXP'C' ACCELERATION: (Ss) 1.50 g OVERTURNING 11 ALLOWABLE SOIL (S1) 0.60 g BEARING PRESSURE: 1500 PSF SITE CLASS: D Title to these calculations remains with ACUMEN ENGINEERING, INC. The information herein is for the sole use of MOBILE MODULAR MANAGEMENT CORP. and shall be held confidential. Re -use or reproduction in whole or in part is prohibited. Acumen Engineering, Inc. JOB TITLE 12' Wide Commercial Modular' 12808 South 600 East Pad/Pier/Anchor Plans Draper, UT 84020 JOB NO. SHEET NO. c/ 801571-9877 CALCULATED BY DATE acumenengemsn. com CHECKED BY DATE www.struware.com Code Search Code: ASCE 7 - 10 Occupancy: Occupancy Group = B Business Risk Category & Importance Factors: Risk Category = II Wind factor= 1.00 Snow factor = 1.00 Seismic factor = 1.00 Type of Construction: Fire Rating: Roof= 0.0hr Floor= 0.0hr Building Geometry: Roof angle (e) 0.25 / 12 1.2 deg Building length (L) 44.0 ft Least width (B) 12.0 ft Mean Roof Ht (h) 13.0 ft Parapet ht above grd 0.0 ft Minimum parapet ht 0.0 ft Live Loads: Roof 0 to 200 st 20 psf 200 to 600 sf. 24 - 0.02Area, but not less than 12 psf over 600 sf: 12 psf Floor: Typical Floor 50 psf Partitions 15 psf Acumen Engineering, Inc. JOB TITLE 12' Wide Commercial Modular 12808 South 600 East Pad/Pier/Anchor Plans Draper, UT 84020 JOB NO. SHEET NO. F 3 801-571-9877 CALCULATED BY DATE acumeneng@msn.00m CHECKED BY DATE Wind Loads: ASCE 7- 10 Ultimate Wind Speed 130 mph Nominal Wind Speed 100.7 mph Risk Category II Exposure Category C Enclosure Classif. Enclosed Building Internal pressure +/-0.18 Directionality (Kd) 0.85 Kh case 1 0.849 Kh case 2 0.849 Type of roof Gable •,,-(-y {{ + /-5p dkp Topographic Factor (Kzt) - p`•^'}dj bjs •u and Topography Flat Hill Height (H) 0.0 it H< 15ft;exp Half Hill Length (Lh) 0.0 it :. Kzt=1.0 Lh Sri Actual H/Lh = 0.00 Use H/Lh = 0.00 Modified Lh = 0.0 ft ESCARPMENT From top of crest: x = 50.0 It Bldg up/downwind? downwind z H/Lh= 0.00 K, = 0.000 x/Lh=0.00 K2= 0.000 _,.- z/Lh = 0.00 K3 = 1.000 4- - At Mean Roof Ht: ! I t f Kzt = (1+KIK2K3)42 = 1.00 2D RIDGE or AXISYMMETRICAL HILL Gust Effect Factor h = 13.0 ft B = 12.0 it /z (0.6h) = 15.0 It Rinid Structure e = 0.20 t = 500 It zmin = 15 It c = 0.20 90, 9V = 3.4 Lz = 427.1 It Q = 0.95 Iz = 0.23 G= 0.90 use G=0.85 ReAble structure if natural frequency < 1 Hz (T > 1 second). However, if bump hIB < 4 then probably rigid structure (rule of thumb). h/B = 1.08 Therefore, probably rigid structure G = 0.85 Using rigid structure default Flexible or Dvnarnically Sensitive Structure Natural Frequency (rl,) = 0.0 Hz Damping ratio (P) = 0 /b = 0.65 /a = 0.15 Vz = 109.8 Ni = 0.00 Kn = 0.000 Rh = - 28.262 q = 0.000 RB = 28282 r) = 0.000 Rr = 28.282 q = 0.000 9R = 0.000 R = 0.000 G = 0.000 h = 13.0 ft Acumen Engineering, Inc. 12808 South 600 East Draper,. UT 84020 801-571-9877 acumeneng@msn.com JOB TITLE 12' Wide Commercial Modular'___ Pad/Pier/Anchor Plans JOB NO. SHEET NO. CALCULATED BY _ DATE CHECKED BY DATE Wind Loads - MWFRS all h (Enclosed/Dartially enclosed onl Kh (case 2) = 0.85 h = 13.0 ft GCpi = +/-0.18 Base pressure.(gh) = 311 psf ridge ht = 13.1 fit G = 0.85 Roof Angle (6) = 1.2 deg L = 44.0 ft qi = qh Roof tributary area - (h/2)"L: 286 at B = 12.0It (h/2)'B: 78 sf Ultimate Wind Surface Pressures loan Surface Wind Normal to Ridge B/L = 0.27 h/L = 1.08 - Wind Parallel to Ridge L/B = 3.67 h/L = 0.30 Cp ghGCP w/+q GCP, w/-ghGCpi Disc Cp ghGCP w/+giGCai w/-ghGCpi Windward Well (WW) 0.80 21.2 see table below 0.80 21.2 see table below Leeward Wall (LW) -0.50 -13.3 -18.9 -7.6 -0.22 -5.7 -11.4 -0.1 Side Wall (SW) -0.70 -18.6 -24.2 -13.0 -0.70 -18.6 -24.2 -13.0 Leeward Roof (LR) "` Included in windward roof Windward Roof: 0 to h/2" -1.16 -30.7 -36.3 -25.1 0 to h/2" -0.90 -23.9 -29.5 -18.3 > h/2" -0.70 -18.6 - -24.2 -13.0 h/2 to h" -0.90 -23.9 -29.5 -18.3 In to 2h" -0.50 -13.3 -18.9 -7.6 > 2h` -0.30 -8.0 -13.6 -2.3 "Hoot angle < I degrees. I heretore, leeward root is included in windward roof pressure zones. 'Horizontal distance from windward edge dward Wall Pressures at "z" (Dsfl lCombined W W + LW Windward Wall Normal Parallel z I Kz I K- q�GCP w/+giGCpi w1-ghGCp1 to Ridge I to Ridge h= 0 to 15' 0.85 1.00 212 15.6 26.8 \ 34.5 27.0 PpwoJAee�L0 y(iz9'1y�i Iihd'- 214'L; (D.6 / -- 2a�7 Parr" NOTE: See figure in ASCE7 for the application of full and partial loading of the above wind pressures. There are 4 different loading cases. Para et z Kz IKzt qP (Psf) 0.0 ft 0.85 1.00 0.0 Windward parapet: 0.0 psf (GCpn = +1.5) Leeward parapet: 0.0 psi (GCpn = -1.0) Windward roof overhangs ( add to windward roof pressure) : 212 psf (upward) VMM MMUL TO MGE VTR \.. Lj � w .fig ti am Q2ECTT011 WIlJp PA Ln TO RMOE vmro w.>(rz rrcl�r llwu umm rnrnarc Acumen Engineering, Inc. JOB TITLE 17 Wide Commercial Modular 12808 South 600 East PadlPier/Anchor Plans Draper, UT 84020 JOB NO. SHEET NO. 801-571-9877 CALCULATED BY - DATE acumeneng@nIsn.com CHECKED BY DATE Seismic Loads: ASCE 7-10 Risk Category : II Importance Factor (1) : 1.00 Site Class: D Ss (0.2 sec) = 150.00 %g S1 (1.0 sec) = 60.00 %g Strength Level Forces Fa = 1.000 Sms = 1.500 S. = 1.000 Design Category = D Fv = 1.500 Sm1 = 0.900 Sol = 0.600 - Design Category = D Seismic Design Category = D Number of Stories: 1 Structure Type: All other building systems Horizontal Struct Irregularities: No plan Irregularity - Vertical Structural Irregularities: I ) Stiffness Irregularity —Soft Story Flexible Diaphragms: Yes Building System: Bearing Wall Systems Seismic resisting system: Light framed wall system using flat strap bracing System Structural Height Limit 65 ft Actual Structural Height (hn) = 13.1 ft See ASCE7 Section 12.2.5 for exceptions and other system limitations DESIGN COEFFICIENTS AND FACTORS Response Modification Coefficient (R) = 4 Over -Strength Factor (Do) = 2 Deflection Amplification Factor (Cd) = 3.5 boa = 1.000 Sol = OADD p = redundancy coefficient Seismic Load Effect (E) = p QE +l - 0.2Sm D = p QE +l- 0.200D QE = horizontal seismic force Special Seismic Load Effect (Em) = DO QE +/- 0.28m D = 2.0 QE +/- 0.200D D = dead load PERMITTED ANALYTICAL PROCEDURES Simplified Analysis - Use Equivalent Lateral Force Analysis Equivalent Lateral -Force Analysis - Permitted Building period coat. (CT) = OM20 Cu = 1.40 Approx fundamental period (Ta) _ Crha" = 0.138 sec x= 0.75 Tmax = CuTa = 0.193 User calculated fundamental period (T) _ 0 sec Use T = 0.138 Long Period Transition Period (TL) = ASCET map = 10 Seismic response coef. (Cs) = Scel/R = 0.250 need not exceed Cs = Sol I IRT 1.089 but not less than Cs = 0.5•S11/R = 0.075 USE Cs = 0.250 Design Base Shear V = 0.25OW Model & Seismic Response Analysis - Permitted (see code for procedure) ALLOWABLE STORY DRIFT Structure Type: All other strictures Allowable story drift = 0.020hsx where hsx is the story height below level x C/0 SEISMIC LOAD EFFECTS FOR ANCHOR DESIGN (Simplified Design Procedure - ASCE 7-10) Input: Design Base Shear: (V) 0.250 W Calculations: Maximum Seismic Load Effect: (no gravity loads on anchors) Seismic Load Effect: (no gravity loads on anchors) Governing Earthquake Load: Allowable Stress Design: Em = Qo(Qe) + 0 (Eq. 12.4-7) Overstrength Factor: (00) = 2.0 Earthquake Load Due to Base Shear: (Qe) = V Em = 0.500 W E = p(Qe) + 0 (Eq. 12.4-3) Redundancy Factor. (p) = 1.3 Earthquake Load Due to Base Shear: (Qe) = V E = 0.325 W E = 0.500 W 0.7E (Section 2.4.1) Earthquake Load Used in Lateral Design: 0.350 W PI Single Pad Configuration Calculations: Bearing Pad Capacity Calculations: Assumed Bearing Capacity: (Bj 1500 psf Pad Specifications (Tp) x (Wp) x (Lp) Nominal: 2 x 12 x 24 Actual: 1.5 x 11.25 x 24 Species: P.T DF-L #2 Cross Sectional Area: (Ap) 16.9 in Section Modulus: (Sx.P) 4.2 in Assume Load on Pad is Centered Load Width on Pad: (Lw) 10 in Pad Cantilever: (Cp) 7 in Fe = 900 x 1.2 x 1.25 x 0.8 = 1080 psi (CD) (Cf.) P) F, = 180 x 1.25 x 0.8 = 180 psi (CD) (C) Uniform Distributed Load: W = (B� / 144) x Wp 117 pli Maximum Moment: Mmax = 0.5 x W x Cp2 2871 Ibs Allowable Bending Stess: fb = Mm,, / Sx; p 681 psi < Fe => OK in Bending Maximum Shear: Vmax = W x Cp 820 Ibs Allowable Shear Stess: fv = 1.5 x (V, . / Ad 72.9 psi < F ' _> OK in Shear _> Capacity of Each Pad is: 3000 Ibs PAD/PIER SPACING Input Data Roof Live Load: (RI) 20 psf Roof Dead Load: (Rd) 6 psf Exterior Wall Dead Load: (Wd) 5 psf Floor Live Load: (A) 50 psf Floor Partition Load: (Fp) 15 psf Floor Dead Load: (Fd) 7 psf Module Width: (W) 11.67 feet Sidewall Height: (H) 8 feet Pad Capacity: (P) 3000 Ibs (GOVERNS) Pier Capacity: (P) 4000 Ibs Calculations: Weight of Exterior Wall: We = (Wd x H) 40 plf Load Acting on Outside Chassis Main Rails: Wo = ((RI+Rd+FI+Fp+Fd)(W/2))+We 612 plf Maximum Spacing of Piers on Outside Main Rails: S = P/Wo 4.90 feet ANCHOR DESIGN - 12' Wide Buildings Input Data: Design Wind Pressure: (P) 20.7 psf Seismic Load Factor: (SI) 0.35 W Roof Dead Load: (Rd) 6 psf Floor Dead Load: (Fd) 7 psf Exterior Wall Dead Load: (Wd) 5 psf Roof Live Load used in Seismic Calculation: (RI) 0 psf Partition / Fixture Load used in Seismic Calculation: (Pd) 5 psf Floor Live Load used in Seismic Calculations: (FI) 0 psf Building Depth: (D) 11.67 feet Exterior Wall Height: (H) 8 feet Roof Depth: (R) 1.5 feet Floor Depth: (F) 0.67 feet Skirting / Foundation Height: (S) 3.33 feet Miscellaneous Loads: (MI) 500 Ibs Lateral Load Resistance of Anchor/Strap Assembly: VL 2962 Ibs Building Length: (L) 32 feet 40 feet 42 feet 44 feet Calculations: Transverse Load: Base Shear Due to Wind: Vw = P x (R + F + H + S/2) x L 7840 Ibs 9799 Ibs 10289 Ibs 10779 Ibs Base Shear Due to Seismic: Vs = (Si)(((LxD)(Rd+Fd+RI+Pd+FI))+ ((L+D)x2xHxWd))+MI) 3750lbs 4563lbs 4766lbs 4969lbs Governing Transverse Base Shear(V) 7840 Ibs 9799 Ibs 10289 Ibs 10779 Ibs Longitudinal Load: Base Shear Due to Wind: Vw = P x (R + F + H + S/2) x D 2859 Ibs 2859 Ibs 2859 Ibs 2859 Ibs Base Shear Due to Seismic: (Vs) 3750 Ibs 4563 ibs 4766 Ibs 4969 Ibs Governing Longitudinal Base Shear:OM 3750 Ibs 4563 Ibs 4766 Ibs 4969 Ibs Ground Anchor Quantity: In Each Transverse Direction: Nt = V/VL 2.65 say 3 3.31 say 4 3.47 say 4 3.64 say 4 In Each Longitudinal Direction: Nt = VI/VL 1.27 say 2 1.54 say 2 1.61 say 2 1.68 say 2 Total Quantity of Anchors Required: 10 Anchors 12 Anchors 12 Anchors 12 Anchors R ANCHOR DESIGN - 12' Wide Buildings Input Data: Design Wind Pressure: (P) 20.7 psf Seismic Load Factor: (SI) 0.35 W Roof Dead Load: (Rd) 6 psf Floor Dead Load: (Fd) 7 psf Exterior Wall Dead Load: (Wd) 5 psf Roof Live Load used in Seismic Calculation: (RI) 0 psf Partition / Fixture Load used in Seismic Calculation: (Pd) 5 psf Floor Live Load used in Seismic Calculations: (FI) 0 psf Building Depth: (D) 11.67 feet Exterior Wall Height: (H) 8 feet Roof Depth: (R) 1.5 feet Floor Depth: (F) 0.67 feet Skirting / Foundation Height: (S) 3.33 feet Miscellaneous Loads: (MI) 500 Ibs Lateral Load Resistance of Anchor/Strap Assembly: VL 2962 Ibs Building Length: (L) 52 feet 60 feel Calculations: Transverse Load: Base Shear Due to Wind: Vw = P x (R + F + H + S/2) x L 12739 Ibs 14699 Ibs Base Shear Due to Seismic: Vs = (SI)(((LxD)(Rd+Fd+RI+Pd+FI))+ ((L+D)x2xHxWd))+MI) 5781 Ibs 6593lbs Governing Transverse Base Shear:(V) 12739 Ibs 14699 Ibs Longitudinal Load: Base Shear Due to Wind: Vw = P x (R + F + H + S/2) x D 2859 Ibs 2859 Ibs Base Shear Due to Seismic: (Vs) 5781 Ibs 6593 Ibs Governing Longitudinal Base Shear:(VI) 5781 Ibs 6593 Ibs Ground Anchor Quantity: In Each Transverse Direction: Nt = V/VL 4.30 say 5 4.96 say 6 In Each Longitudinal Direction: Nt = VI/VL 1.95 say 2 2.23 say 3 Total Quantity of Anchors Required: 14 Anchors 18 Anchors ANCHOR DESIGN (OVERTURNING)- 12' x 32' Building - CHECK FOR OVERTURNING - BY OBSERVATION, WIND IN TRANSVERSE DIRECTION IS CRITICAL. - CHECK OVERTURNING ABOUT POINT W TO ENSURE ADEQUATE GROUND ANCHOR QUANTITY. Input Data: Module Width: (D) 11.67 ft Module Length: (L) 32 ft Main Rail Spacing: (MRS) . 6.29 A _ Roof Depth: (R) 1.5 ft Wall Height: (H) 8 ft Floor Depth: (F) 0.67 ft Chassis Depth: (C) 0.83 ft Roof Dead Load: (Rd) 7 Ibs Wall Dead Load: (Wd) 5 Ibs Floor Dead Load: (Fd) 6 Ibs Uplift Pressure: (Pu) 21.8 psf Horizontal Pressure: (PH) 20.7 psf Anchor Capacity: (Ac) 2962 Ibs H MEMEMEMS tY MRS/2 WW t "s MRS u- 1 1IT A-� Calculations: Module Height: �Mh) = R + Wh + F = Distributed Horizontal Load: (H) = PH x L x Mh = Distributed Uplift: (U) = Pu x D x L = Dead Load: (W)=((Rd+Fd)x(DxQ)+(2xHxWdx(D+L))_ Overturning Moment: (Mo) Mo = H x ((Mh / 2) + C) + (U x (MRS / 2)) Qty of Anchors to Resist Overturning Moment: (Ar) Ar = ((1.5 x Mo) - (W x (MRS / 2)) / (Ac x MRS) = 10.17 ft 6734 Ibs 8131 Ibs 8347 Ibs 65402 Ibs-ft 3.86 say 5 (3 Transverse & 2 Longitudinal) Z" ANCHOR DESIGN (OVERTURNING) -12' x 44' Building - CHECK FOR OVERTURNING - BY OBSERVATION, WIND IN TRANSVERSE DIRECTION IS CRITICAL. - CHECK OVERTURNING ABOUT POINT W TO ENSURE ADEQUATE GROUND ANCHOR QUANTITY. Input Data: Module Width: (D) 11.67 ft Module Length: (L) 44 ft Main Rail Spacing: (MRS) 6.29 ft Roof Depth: (R) 1.5 ft Wall Height: (H) 8 ft Floor Depth: (F) 0.67 ft Chassis Depth: (C) 0.83 ft Roof Dead Load: (Rd) 7 Ibs Wall Dead Load: (Wd) 5 Ibs Floor Dead Load: (Fd) 6 Ibs Uplift Pressure: (Pu) 21.8 psf Horizontal Pressure: (PH) 20.7 psf Anchor Capacity: (Ac) 2962 Ibs H ==19 msmmmmmm awe--- MRS/2 1W r MRS u_ IT A U Calculations: Module Height: (Mh) = R + Wh + F = Distributed Horizontal Load: (H) = PH x L x Mh = Distributed Uplift: (U) = Pu x D x L = Dead Load: (W) = ((Rd + Fd) x (D x L)) + (2 x H x Wd x (D + L)) _ Overturning Moment: (Mo) Mo = H x ((Mh / 2) + C) + (U x (MRS / 2)) = Qty of Anchors to Resist Overturning Moment: (Ar) Ar = ((1.5 x Mo) - (W x(MRS /2))/(AcxMRS) = 10.17 ft 9260 Ibs 11180 Ibs 11127 Ibs 89928 Ibs-ft 5.36 say 6 (4 Transverse & 2 Longitudinal) ANCHOR DESIGN (OVERTURNING) - 12' x 52' Building - CHECK FOR OVERTURNING - BY OBSERVATION, WIND IN TRANSVERSE DIRECTION IS CRITICAL. - CHECK OVERTURNING ABOUT POINT'A' TO ENSURE ADEQUATE GROUND ANCHOR QUANTITY. Input Data: Module Width: (D) 11.67 ft Module Length: (L) 52 ft Main Rail Spacing: (MRS) 6.29 ft Roof Depth: (R) 1.5 ft Wall Height: (H) 8 ft Floor Depth: (F) 0.67 ft Chassis Depth: (C) 0.83 ft Roof Dead Load: (Rd) 7 Ibs Wall Dead Load: (Wd) 5 Ibs Floor Dead Load: (Fd) 6 Ibs Uplift Pressure: (Pu) 21.8 psf Horizontal Pressure: (PH) 20.7 psf Anchor Capacity: (Ac) 2962 Ibs H MRS/2 1W r MRS u_ IT A U Calculations: Module Height: (Mh) = R + Wh + F = Distributed Horizontal Load: (H) = PH x L x Mh = Distributed Uplift: (U) = Pu x D x L = Dead Load: (W) = ((Rd + Fd) x (D x L)) + (2 x H x Wd x (D + L)) _ Overturning Moment: (Mo) Mo = H x ((Mh 12) + C) + (U x (MRS / 2)) = Qty of Anchors to Resist Overturning Moment: (Ar) Ar=((1.5xMo) -(Wx(MRS /2))/(AcxMRS) = 10.17 ft 10943 Ibs 13213 Ibs 12980 Ibs 106278 Ibs-ft 6.36 say 7 (5 Transverse & 2 Longitudinal) ANCHOR DESIGN (OVERTURNING) - 12' x 60' Building - CHECK FOR OVERTURNING - BY OBSERVATION, WIND IN TRANSVERSE DIRECTION IS CRITICAL. - CHECK OVERTURNING ABOUT POINT W TO ENSURE ADEQUATE GROUND ANCHOR QUANTITY. Input Data: Module Width: (D) 11.67 ft Module Length: (L) 60 ft Main Rail Spacing: (MRS) 6.29 ft Roof Depth: (R) 1.5 It Wall Height: (H) 8 ft Floor Depth: (F) 0.67 ft Chassis Depth: (C) 0.83 ft Roof Dead Load: (Rd) 7 Ibs Wall Dead Load: (Wd) 5 Ibs Floor Dead Load: (Fd) 6 Ibs Uplift Pressure: (Pu) 21.8 psf Horizontal Pressure: (PH) 20.7 psf Anchor Capacity: (Ac) 2962 Ibs 2 MRS/2 1W MRS u_ IT 4 ;> A O Calculations: Module Height: (Mh) = R + Wh + F = Distributed Horizontal Load: (H) = PH x L x Mh = Distributed Uplift: (U) = Pu x D x L = Dead Load: (W) = ((Rd + Fd) x (D x L)) + (2 x H x Wd x (D + L)) _ Overturning Moment: (Mo) Mo H x ((Mh / 2) + C) + (U x (MRS / 2)) = Qty of Anchors to Resist Overturning Moment: (Ar) Ar=((1.5xMo) -(Wx(MRS /2))/(AcxMRS) = 10.17 ft 12627 Ibs 15246 Ibs 14833 Ibs 122629 Ibs-ft 7.37 say 8 (6 Transverse & 2 Longitudinal) DESIGN CALCULATIONS FOR: 24' WIDE COMMERCIAL MODULAR BUILDING w/ OUTRIGGER CHASSIS PAD/PIER/ANCHOR SYSTEM (130 MPH / EXP'C' WIND) PROJECT: -� c n7,q �h rnrlison Lm,�: 11450 MISSION BLVD. MIRA LOMA, CALIFORNIA 91752 (951)360-6600 PREPARED FOR: mobile modular P.1 Your Project • Our Commitment PREPARED BY: ACUMEN Engineering, Inc. FEB 2 5 201 5700 LAS POSITAS RD. LIVERMORE, CALIFORNIA 94551 (925) 606 - 9000 12808 SOUTH 600 EAST DRAPER, UT. 84020 (801) 571- 9877 FAX (801) 571- 9951 COVER SHEET 1 ROOF LIVE LOAD: 20 PSF DESIGN CODE: 2016 CBC DESIGN LOADS 2 FLOOR LIVE LOAD: 50 PSF IMPORTANCE FACTOR: 1.0 PAD CAPACITY 7 PARTITION LOAD: 15 PSF RISK CATEGORY: II PAD/PIER SPACING 8 WIND SPEED / 130 MPH, SPECTRAL RESPONSE COLUMN SUPPORTS 9 EXPOSURE: EXP'C' ACCELERATION: (Ss) 1.50 g ANCHOR QUANTITY 15 ALLOWABLE SOIL (S1) 0.60 g BEARING PRESSURE: 1500 PSF SITE CLASS: D Title to these calculations remains with ACUMEN ENGINEERING, INC. The information herein is for the sole use of MOBILE MODULAR MANAGEMENT CORP. and shall be held confidential. Re -use or reproduction in whole or in part is prohibited. Acumen Engineering, Inc. JoBTrrLE 24' Wide Commercial Modular 12808 South 600 East Pad/Pier/Anchor Plans Draper, UT 84020 _ JOB NO. SHEET NO. �r 801-571-9877 CALCULATED BY DATE acumeneng@msn.com CHECKED BY DATE www.struware.com Code Search Code: ASCE 7 - 10 Occupancy: Occupancy Group = B Business Risk Category & Importance Factors: Risk Category = II Wind factor = 1.00 Snow factor = 1.00 Seismic factor = 1.00 Type of Construction: Fire Rating: Roof = 0.0 hr Floor = 0.0 hr Building Geometry: Roof angle (0) 0.25 / 12 1.2 deg Building length (L) 65.0 ft Least width (B) 24.0ft Mean Roof Ht (h) 14.0 It Parapet ht above grd 0.0 ft Minimum parapet ht 0.0 ft Live Loads: Roof 0 to 200 st 20 psf 200 to 600 st 24 - 0.02Area, but not less than 12 psf over 600 sf. 12 psf Floor: Typical Floor 50 psf Partitions 15 psf Acumen Engineering, Inc. 12808 South 600 East Draper, UT 84020 801-571-9877 acumeneng@msn.com JOBTm_E 24' Wide Commercial Modular' Pad/Pier/Anchor Plans JOB NO. SHEET NO. CALCULATED BY DATE CHECKED BY DATE Wind Loads: ASCE 7- 10 Ultimate Wind Speed 130 mph Nominal Wind Speed 100-7 mph Risk Category II Exposure Category C Enclosure Classif. Enclosed Building Internal pressure +/-0.18 Directionality (Kd) 0.85 Kh easel 0.849 Kh case 2 0.849 Type of roof Gable „y y Topographic Factor (Kzt) `'t"' 1 j .F.•.;; J7 fldc%r,..:ndl Topography Flat 1. - Hill Height (H) 0.0 ft H< 15ft;exp C I H Half Hill Length (Lh) 0.0 ft :. Kzl 1-0 / if µ,_ * Actual H/Lh = 0.00 -- j ----t—� Use H/Lh = 0.00 Modified Lh = 0.0 It ESCARPMENT From top of crest: x = 50.0 ft Bldg up/down wind? downwind i H/Lh= 0.00 Ki = 0.000 ,l x/Lh = 0.00 K2 = 0.000ir-;Ire+i. z/Lh = 0.00 K3 = 1.000 < H/ , I i At Mean Roof Ht: Kzt = (1+K,KZK3)A2 = 1.00 2D RIDGE or 3D ARISYMMETRICAL HILL Gust Effect Factor h = 14.0 it B = 24.0 ft /z (0.6h) = 15.0 It Rigid Structure C. = 0.20 t = 500 It Zmin = 15 It c= 020 go, 9V = 3.4 Li = 427.1 It Q = 0-94 h = 0.23 G= 0.89 use G=0.85 Flewble structure if natural frequency < 1 Hz IT > 1 second). However, if building hlB < 4 then probably rigid structure (rule of thumb). h/B = 0.58 Rigid structure G = 0.85 Using rigid structure default Flexible or Dynamically Sensitive Structure Natural Frequency (qj) = 0.0 Hz Damping ratio (P) = 0 /b = 0.65 /a= 0.15 Vz= 109.8 Nt = 0.00 Kn = 0.000 Rh = 28.282 RB = 26.282 RL = 28.282 gR = 0.000 R = 0.000 G - 0.000 = 0.000 = 0.000 q = 0.000 h = 14.0 It Acumen Engineering, Inc. 12808 South 600 East Draper, LIT 84020 801-571-9877 acumeneng@msn.com JOB Tn-LE 24'. Wide Commercial Modular Pad/Pier/Anchor Plans JOB NO. SHEET NO. CALCULATED BY DATE CHECKED BY DATE Wind Loads - MWFRS hs60' (Low-rise Buildinas) Enclosed/partially enclosed only Kz = Kh (case 1) = 0.85 Edge Strip (a) = 3.0 ft Base pressure (qh) = 31.2 psf End Zone (2a) = 6.0 it GCpi = +/-0.18 Zone 2 length = 12.0 ft Wind Pressure Coefficients CASE A CASE B e = 1.2 deg Surface GCpf w/-GCpi w/+GCpi GCpf w/-GCpi w/+GCpi 1 0.40 0.58 022 -0.45 -0.27 -0.63 2 -0.69 -0.51 -0.87 -0.69 -0.51 -0.87 3 -0.37 -0.19 -0.55 -0.37 -0.19 -0.55 4 -0.29 -0.11 -0.47 -0.45 -027 -0.63 5 0.40 0.68 0.22 6 -0.29 -0.11 -0.47 1 E 0.61 0.79 0.43 -0.48 -0.30 -0.66 2E -1.07 -0.89 -1.26 -1.07 -0.89 -1.25 3E -0.53 -0.35 -0.71 -0.53 -0.35 -0.71 4E -0.43 -0.25 -0.61 -0.48 -0.30 -0.66 5E 0.61 0.79 0.43 6E 1 -0.43 -0.25 -0.61 Ultimate Wind Surface Pressures (psf) 1 18A 6.9 -8.4 -19.7 2 -15.9 -27.2 -15.9 -27.2 3 -5.9 -172 -5.9 -17.2 4 -3.4 -14.7 -8.4 -19.7 5 18.1 6.9 6 -3.4 -14.7 1 E 24.7 13.4 -9.4 -20.6 2E -27.8 -39.0 -27.8 -39.0 3E -10.9 -222 -10.9 -22.2 4E -7.8 -19.0 -9.4 -20.6 5E 24.7 13.4 6E -7.8 -19.0 Parapet Windward parapet= 0.Opsf (GCpn'=+1.5) Leeward parapet = 0.0 psf (GCpn = -1.0) Horizontal MWFRS Simple Diaphragm Pressures Transverse direction (normal to L) Interior Zone: Wall 21.5 psf Roof -10.0 psf " End Zone: Wall 32.5 psf Roof -16.9 psf " Longitudinal direction (parallel to L) Interior Zone: Wall 21.5 psf End Zone: Wall 32.5 psi "• NOTE: Total horiz force shall not be less than that determined by neglecting roof forces (except for MWFRS moment frames). The code requires the MWFRS be designed for a min ultimate force of 16 psf multiplied by the wall area plus an 8 psf force applied to the vertical projection of the roof. Pa,U�ee hi'o-'r44 O%I *N : 27t.V (�, v, r 9,5 PS )` Windward roof overhangs = 21.9 psf (upward) add to windward roof pressure i- i Acumen Engineering, Inc. JoB TITLE 24 Wide Commercial Modular 128DO South 600 East Pad/Pier/Anchor Plans Draper, UT 84020 JOB NO. SHEET NO. 801-571-9877 CALCULATED BY DATE acumeneng@msn_com CHECKED BY DATE Seismic Loads: ASCE 7-1 O Risk Category: II Importance Factor (1) : 1.00 Site Class: D Ss (02 sec) = 150.00 %g S1 (1.0 sec) = 60.00 %g Fa = 1.000 Sms = 1.500 Fv = 1.500 Sm1 = 0.900 Seismic Design Category = D Number of Stories: 1 Structure Type: All other building systems Horizontal Struct Irregularities: No plan Irregularity Vertical Structural Irregularities: to )Stiffness Irregularity —Soft Story Strength Level Forces S. = 1.000 Design Category = D SDI = 0.600 Design Category = D Flexible Diaphragms: Yes Building System: Bearing Wall Systems Seismic resisting system: Light framed wall system using flat strap bracing System Structural Height Limit: 65 ft Actual Structural Height (hn) = 14.3.ft See ASCE7 Section 12.2.5 for exceptions and other system limitations DESIGN COEFFICIENTS AND FACTORS Response Modification Coeffx:ierd (R) = 4 Over -Strength Factor (Do) = 2 Deflection Amplification Factor (Cd) = 3.5 CDs = 1.000 SDI = 0.600 Seismic Load Effect (E) = p QE +/- 0.2SnsD Special Seismic Load Effect (Em) = Qo QE +/- 0.2SM D PERMITTED ANALYTICAL PROCEDURES Simplified Analysis - Use Equivalent Lateral Force Analysis Equivalent Lateral -Force Analysis Building period coat. (Cr) = Approx fundamental period (Ta) = User calculated fundamental period (T) = Long Period Transition Period (TL) = Seismic response coef. (Cs) = need not exceed Cs = but not less than Cs = USE Cs = Model & Seismic Response Analysis ALLOWABLE STORY DRIFT ZY-PUTIMM p = redundancy coefficient = p QE +1- 0.200D QE = horizontal seismic force = 2.0 QE +/- 0.200D D = dead load 0.020 Cu = 1.40 Grhn'= 0.147 sec x= o.75 Tmax = CuTa = 0.206 O sec Use T = 0.147 ASCE7 map= 10 Swl/R = 0.250 sdrl rRr= 1.020 0.5•S11/R= 0.075 0250 Design Base Shear V = 0.250W - Permitted (see code for procedure) Structure Type: All other structures Allowable story drift = 0.020hsx where hsx is the story height below level x E SEISMIC LOAD EFFECTS FOR ANCHOR DESIGN (Simplified Design Procedure - ASCE 7-10) Input: Design Base Shear: M 0.250 W Calculations: Maximum Seismic Load Effect: (no gravity loads on anchors) Seismic Load Effect: (no gravity loads on anchors) Governing Earthquake Load: Allowable Stress Design: Em = Qo(Qe) + 0 (Eq. 12.4-7) Overstrength Factor: (Do) = 2.0 Earthquake Load Due to Base Shear: (Qe) = V Em = 0.500 W E = p(Qe) + 0 (Eq. 12.4-3) Redundancy Factor. (p) = 1.3 Earthquake Load Due to Base Shear: (Qe) = V E = 0.325 W E = 0.500 W 0.7E (Section 2.4.1) Earthquake Load Used in Lateral Design: 0.350 W Single Pad Configuration Calculations: Bearing Pad Capacity Calculations: Assumed Bearing Capacity: (B.) 1500 psf Pad Specifications (Tp) x (Wp) x (Lp) Nominal: 2 x 12 x 24 Actual: 1.5 x 11.25 x 24 Species: P.T DF-L #2 Cross Sectional Area: (Ad 16.9 in Section Modulus: (Sx,p) 4.2 in3 Assume Load on Pad is Centered Load Width on Pad: (LH,) 10 in Pad Cantilever: (Cp) 7 in Fti = 900 x 1.2 x 1.25 x 0.8 = 1080 psi (CD) (Cfu) (CO Fv' = 180 x 1.25 x 0.8 = 180 psi (CD) (C) Uniform Distributed Load: W = (B� / 144) x Wp 117 pli Maximum Moment: Mmax = 0.5 x W x Cp2 2871 Ibs Allowable Bending Stess: fb = Mm / Sx, p 681 psi < Fti => OK in Bending Maximum Shear: Vmax = W x Cp 820 Ibs Allowable Shear Stess: fv = 1.5 x (V,u. / Ad 72.9 psi < F,' _> OK in Shear _> Capacity of Each Pad is: 3000 Ibs PAD/PIER SPACING Input Data: Roof Live Load: (RI) 20 psf Roof Dead Load: (Rd) 6 psf Exterior Wall Dead Load: (Wd) 5 psf Floor Live Load: (FI) 50 psf Floor Partition Load: (Fp) 15 psf Floor Dead Load: (Fd) 7 psf Module Width: (W) 11.83 feet Sidewall Height: (H) 8 feet Pad Capacity: (P) 3000 Ibs (GOVERNS) Pier Capacity: (P) 4000 Ibs Calculations: Weight of Exterior Wall: We = (Wd is H) 40 plf Load Acting on Outside Chassis Main Rails: Wo = ((RI+Rd+FI+Fp+Fd)(W/2))+We 620 plf Maximum Spacing of Piers on Outside Main Rails: S = P/Wo 4.84 feet Load Acting on Inside Chassis Main Rails: Wi = ((FI+Fp+Fd)(W/2)) 426 plf Maximum Spacing of Piers on Inside Main Rails: S = P/Wi 7.04 feet I Column Support (END COLUMM: Input Data Tributary Width: (Tw) End Column Tributary Length: (Te) Live Load: (LLr) Dead Load: (DLr) Calculations: Roof Tributary Area: Ar 0.5 x Tw x Te => Ar > 200 :. Live Load (Rle) is Reducible: 24 - 0.02Ar Column Load: (Pe) Pe = (Rle + Rd) x Ar Pier Capacity: (Cpier) Qty of Piers: Npiers = Pe I Cpier 11.83 ft 32.5 ft 20 psf 6 psf 384 sq. ft. 16 psf 8578 Ibs 6000 lbs 1.43 � Use 2 Try (1) 2x12x24 Spreader Over (2) 2x12x24 Bearing Pads Placed Transverse to Spreader at Each Pier Bearing Pad Capacity Calculations: Actual Bearing Pressure: (BP) BP = 0.25Pe / ((Wp x Lp)/144) = 1144 psf Pad Specs (Tp) x (Wp) x (Lp) Nominal: 2 x 12 x 24 Actual: 1.5 x 11.25 x 24 Species: P.T DF-L #2 Cross Sectional Area: (AP) 16.9 in Section Modulus: (Sz,p) 4.2 in Assume Load on Pad is Centered Load Width on Pad: (Lw) 12 in Pad Cantilever: (CP) 6 in Fti = 900 x 1.25 x 1.25 x 0.8 = 1125 psi (CD) (Cf.) (CI) F,' = 180 x 1.25 x 0.8 = 180 psi (CD) (CI) Allowable Pressure: W = (BP / 144) x Wp Maximum Moment: Mmax = 0.5 x W x CPz Allowable Bending Stess: fb = Mmax / Sx, P Maximum Shear: Vmax = W x CP Allowable Shear Stess: fv = 1.5 x (Vmax / AP) Assumed Bearing Capacity: (Bc) Spreader Capacity Calculations: 89 pli 1608 Ibs 381 psi 536 Ibs Lp V < Fe => OK in Bending 47.7 psi < F, => OK in Shear 1500 psf > Bp => OK in Bearing Species: P.T DF-L #2 Actual Pad Pressure: (Pc) Cross Sectional Area: (AP) 16.9 in P = C / W x 0.5L /144 2287 psf Section Modulus: S 4.2 in c _ by (( P p) ) = P ( z.P) Pad Specs (Tp) x (Wp) x (Lp) Assume Load on Pad is Centered Nominal: 2 x 12 x 24 Load Width on Pad: (Lw) 10 in Actual: 1.5 x 11.25 x 24 Pad Cantilever: (CP) 7 in Fb' = 900 x 1.25 x 1.25 x 0.8 = 1125 psi (CD) (CO (CI) F, = 180 x 1.25 x 0.8 = 180 psi (CD) (CI) Allowable Pressure: W = (P, / 144) x Wp 179 pli Maximum Moment: Mmax = 0.5 x W x CP2 4378 Ibs Allowable Bending Stess: fb = Mmax / Sx, p 1038 psi Maximum Shear: Vmax = W x CP 1251 Ibs Allowable Shear Stess: fv = 1.5 x (Vmax / AP) 111 psi Lp ul < Fti => OK in Bending < F,' => OK in Shear INTERIOR COLUMN SUPPORT (Spreader Design - 12000 # Column Load) Input Data: Live Load: (LL) Load Duration Factor: (Idf) Dead Load: (DL) Tributary Width: (Tw) Span: (L) Point Load: (P) Distance From End of Beam to Point Load: (B) Distance from Opposite End of Beam to Point Load: C = L - B Material: 6x8 DF-L #1 Basic Allowable Bending Stress: (Fb) Modification for Moisture Content: (Mc) Size Factor. CF = (12 / d)A0.111 Modified Bending Stress: Fb' = (Fb)(Idf)(Mc)(CF) Basic Allowable Shear Stress: (fv) Shear Stress Factor: (Ch) Modified Shear Stress: Fv' = (Fv)0d0(Ch) Modulus of Elasticity: (E) Member Width: (b) Member Depth: (d) Calculations: Cross Sectional Area of Member. A=bxd Section Modulus; Sx = b(dA2)/6 Moment of Inertia: Ix = b(dA3)/12 Distributed Floor Load: wf = (Tw x (LL+DL))/12 Distributed Roof / Wall Load: wr Total Distributed Load: w = wf + wr 20 psf 1.25 6 psf 0 feet 24 inches 12000 Ibs 12 inches 12 inches (B <= L/2) 1200 psi 1 1.00 1500 psi 85 psi 2 (No Splits) 213 psi 1600000 psi 5.5 inches 7.5 inches 41.25 tnA2 51.56 W3 193.36 104 0.00 pit 0.00 pii 0.00 pli (coat.) INTERIOR COLUMN SUPPORT (Spreader Design - 12000 # Column Load) Maximum Moment: M = (w x (LA2))/8 + (P x B x (L-B))/L 72000 in-Ibs Actual Bending Stress: fb = M / Sx 1396 psi fb<Fb' Member O.K. in Bending Maximum Shear. V = (w x ((U2)-d))+(P x (L-B))/l 6000 HIS Actual Shear Stress: fv = 1.5(V/A) 218.2 psi fv>Fv' (2% Overstressed) —17 *Ay O, Allowable Deflection: D = U240 0.10 inches Actual Deflection: D=(5 x w x (LA4))/(384EI) + (PxBxCx(B+2C)x(3Bx(B+2C))A.5) / (27EI x L) 0.01 inches D<Da Member O.K. in Deflection ********************************************************************** * CAST -UTILITY BY CAST INC. * TIME: 10/24/95 12:47:04 PAGE: * SUMMARY OF THE INPUT INFORMATION TYPE OF THE PROBLEM : AISC CODE CHECK FOR TS6X6X1/4 * Yielding Stress 36 KSI * Maximum Axial Force 0 KIP * Effective Length in major axis 24 INCH * Effective Length Factor(major) 1 * Effective Length in minor axis 24 INCH * Effective Length Factor(minor) 1 * Maximum Major Axis Bending Moment 72 KIP -INCH * Unbraced Length (Comp. flange) 24 INCH * Maximum Minor Axis Bending Moment 0 KIP -INCH * Shear acting in local Y 6 KIP * Shear acting in local X 0 KIP * Factor of Safty (for member sizing): 2 * Cb (Section F1.3) 1 * Cmx (Formula 1.6-1a) 1 * Cmy (Formula 1.6-1a) 1 * The web and the flange of this member is continuously connected. * This is not a Hybrid member. * SECTION TO BE CHECKED TS6X6X1/4 ************************************************************** ***** SUMMARY ***** * SECTION : TS6X6X1/4 INTERACTION FORMULA RATIO : 0.3000 Fa 0.000 FbX 7.129 Fby 0.000 Fa_allow : 0.001 Fbx_allow : 23.760 Fby_allow : 0.001 ANCHOR DESIGN - 24' Wide Buildings Input Data: Design Wind Pressure: (P) 19.5 psf Seismic Load Factor: (SI) 0.35 W Roof Dead Load: (Rd) 6 psf Floor Dead Load: (Fd) 7 psf Exterior Wall Dead Load: (Wd) 5 psf Roof Live Load used in Seismic Calculation: (RI) 0 psf Partition / Fixture Load used in Seismic Calculation: (Pd) 5 psf Floor Live Load used in Seismic Calculations: (FI) 0 psf Building Depth: (D) 23.67 feet Exterior Wall Height: (H) 8 feet Roof Depth: (R) 2.5 feet Floor Depth: (F) 0.67 feet Skirting / Foundation Height: (S) 3.33 feet Miscellaneous Loads: (MI) 1000 Ibs Lateral Load Resistance of Anchor/Strap Assembly: VL 2962 Ibs Building Length: (L) 40 feet 60 feet 65 feet Calculations: Transverse Load: Base Shear Due to Wind: Vw = P x (R + F + H + S/2) x L 10011 Ibs 15017 Ibs 16268 Ibs Base Shear Due to Seismic: Vs = (Si)(((LxD)(Rd+Fd+RI+Pd+FI))+ ((L+D)x2xHxWd))+MI) 8098lbs 11640lbs 12526lbs Governing Transverse Base Shear:(V) 10011 Ibs 15017 Ibs 16268 Ibs Longitudinal Load: Base Shear Due to Wind: Vw = P x (R + F + H + S/2) x D 5924 Ibs 5924 Ibs 5924 Ibs Base Shear Due to Seismic: (Vs) 8098 Ibs 11640 Ibs 12526 Ibs Governing Longitudinal Base Shear.(VQ 8098 Ibs 11640 Ibs 12526 Ibs Ground Anchor Quantity: In Each Transverse Direction: Nt = VNL 3.38 say 4 5.07 say 6 5.49 say 6 In Each Longitudinal Direction: Nt = VWL 2.73 say 3 3.93 say 4 4.23 say 5 Total Quantity of Anchors Required: 14 Anchors 20 Anchors 22 Anchors Salvatore R. Granata. P.E., C.E. �r+ Phone: (678) 367-3151 146 Lee Road 2012 Fax: (866) 815-4682 Cell: (770) 301-5817 Opelika, AL 36804 sal(a�srgpe.net Toll Free: (877)346-5126 salgranata.com STRUCTURAL CALCULATIONS Project No: 18161 4' -0" Wide Ramp Calculations For Quick -Deck 137 Pine Forest Drive Locust, NC 28097 704-888-0327 Designed by: S. Granata Date: 09/20/18 QQRof- ESSioti OF 'CA L"'�Pa�� 09/20/18 Expires: 06/30/20 Page 1 of 44 Salvatore Ray Granata, PE, CE 146 Lee Road 2012 Opelika, AL 36804 678-367-3151 salgranata.com salgranata@att.net Wind Loads: Ultimate Wind Speed Nominal Wind Speed Risk Category Exposure Category Enclosure Classif. Internal pressure Directionality (Kd) Kh case 1 Kh case 2 Type of roof ASCE 7- 10 200 mph 154.9 mph C Enclosed Building +/-0.18 0.85 0.849 0.849 Monoslope ToDoaraDhic Factor (Kzt Topography Flat Hill Height (H) 0.0 ft Half Hill Length (Lh) 0.0 ft Actual H/Lh = 0.00 Use H/Lh = 0.00 Modified Lh = 0.0 ft From top of crest: x = 0.0 ft Bldg up/down wind? downwind H/Lh= 0.00 K, = x/Lh = 0.00 KZ = z/Lh = 0.00 K3 = At Mean Roof Ht: Kzt = (1+KjK2K3)12 = Gust Effect Factor h = 10.0 ft B = 4.0 ft /z (0.6h) = 15.0 ft Rigid Structure e = 0.20 f = 500 ft Zmin = 15 ft c = 0.20 go, 9v = 3.4 LZ = 427.1 ft Q = 0.97 IZ = 0.23 G= 0.91 use G=0.85 0.000 0.000 1.000 1.00 JOB TITLE JOB NO. SHEET NO. CALCULATED BY SRG DATE 4/13/14 CHECKED BY DATE H< 15ft;exp C .•. Kzt=1.0 z ESCARPMENT V(Z) Speed-up V(Z) x(upwind) x(downwind) Hl2 H I 2D RIDGE or 3D AXISYMMETRICAL HILL Flexible structure if natural frequency < 1 Hz (T > 1 second). However, if building h/B < 4 then probably rigid structure (rule of thumb). h/B = 2.50 Therefore, probably rigid structure G = 0.85 Using rigid structure default Flexible or Dvnamically Sensitive Structure Natural Frequency (qj) = 0.0 Hz Damping ratio ((3) = 0 /b = 0.65 /a = 0.15 Vz = 168.9 N, = 0.00 Rn = 0.000 Rh = 28.282 n = 0.000 RB = 28.282 n = 0.000 RL = 28.282 n = 0.000 9R = 0.000 R = 0.000 G = 0.000 h = 10.0 ft Page 2 of 44 Salvatore Ray Granata, PE, CE 146 Lee Road 2012 Opelika, AL 36804 678-367-3151 salgranata.com salgranata@att.net JOB TITLE JOB NO. CALCULATED BY SRG CHECKED BY Wind Loads - MWFRS all h (Enclosed/partially enclosed onl Kh (case 2) = 0.85 h = 10.0 ft GCpi = +/-0.18 Base pressure (qh) = 73.9 psf ridge ht = 10.0 ft G = 0.85 Roof Angle (8) = 0.0 deg L = 20.0 ft qi = qh Roof tributary area - (h/2) `L: 100 sf B = 4.0 ft (h/2)"B: 20 sf Ultimate Wind Surface Pressures (Dsf) h= SHEET NO. DATE 4/13/14 DATE Surface B/L Wind Normal to Ridge = 0.20 h/L = 2.50 Wind Parallel to Ridge L/B = 5.00 h/L = 0.50 Cp ghGCP w/+q;GCp; w/-ghGCpi Dist." Cp ghGCP w/ +q;GCp; w/ -ghGCP; Windward Wall (WW) 0.80 50.2 see table below 0.80 50.2 see table below Leeward Wall (LW) -0.50 -31.4 -44.7 -18.1 -0.20 -12.6 -25.9 0.7 Side Wall (SW) -0.70 -44.0 -57.3 -30.7 -0.70 -44.0 -57.3 -30.7 Leeward Roof (LR) Included in windward roof Windward Roof: 0 to h/2' -1.30 -81.6 -94.9 -68.3 0 to h/2° -0.90 -56.5 -69.8 -43.2 > h/2' -0.70 -44.0 -57.3 -30.7 h/2 to h" -0.90 -56.5 -69.8 -43.2 h to 2h' -0.50 -31.4 -44.7 -18.1 "Root angle < 10 degrees. Theretore, leeward root "Horizontal distance trom windward edge is included in windward roof pressure zones. For monoslope roofs, entire roof surface is either windward or leeward surface. Windward Wall Pressures at'Y' (psf) Combined WW + LW Windward Wall Normal Parallel I� z I Kz I Kzt I q,GCP w/+q;GCp; w/-ghGCP; to Ridge to Ridge NOTE: See figure in ASCE7 for the application of full and partial loading of the above wind pressures. There are 4 different loading cases. Parapet z Kz Kzt qp (psf) 0.0 ft 0.85 1.00 0.0 Windward parapet: 0.0 psf (GCpn = +1.5) Leeward parapet: 0.0 psf (GCpn = -1.0) Windward roof overhangs ( add to windward roof pressure) 50.2 psf (upward) Ww Sw wa� Page 3 of 44 Salvatore Ray Granata, PE, CE 146 Lee Road 2012 Opelika, AL 36804 678-367-3151 salgranata.com salgranata@att.net JOB TITLE JOB NO. CALCULATED BY SRG CHECKED BY Wind Loads - MWFRS h!!M' (Low-rise Buildings) Enclosed/partially enclosed only SHEET NO. DATE 4/13/14 DATE Kz = Kh (case 1) = 0.85 Edge Strip (a) = 3.0 ft Base pressure (qh) = 0.0 psf h>B - can't use low-rise method End Zone (2a) = 6.0 ft GCpi = +/-0.18 Zone 2 length = 2.0 ft Wind Pressure Coefficients CASE A CASE B 0=0deg Surface GCpf w/-GCpi w/+GCpi GCpf w/-GCpi w/+GCpi 1 0.40 0.58 0.22 -0.45 -0.27 -0.63 2 -0.69 -0.51 -0.87 -0.69 -0.51 -0.87 3 -0.37 -0.19 -0.55 -0.37 -0.19 -0.55 4 -0.29 -0.11 -0.47 -0.45 -0.27 -0.63 5 0.40 0.58 0.22 6 -0.29 -0.11 -0.47 1 E 0.61 0.79 0.43 -0.48 -0.30 -0.66 2E -1.07 -0.89 -1.25 -1.07 -0.89 -1.25 3E -0.53 -0.35 -0.71 -0.53 -0.35 -0.71 4E -0.43 -0.25 -0.61 -0.48 -0.30 -0.66 5E 0.61 0.79 0.43 6E -0.43 -0.25 -0.61 Ultimate Wind Surface Pressures (psf) 1 0.0 0.0 0.0 0.0 2 0.0 0.0 0.0 0.0 3 0.0 0.0 0.0 0.0 4 0.0 0.0 0.0 0.0 5 0.0 0.0 6 0.0 0.0 1 E 0.0 0.0 0.0 0.0 2E 0.0 0.0 0.0 0.0 3E 0.0 0.0 0.0 0.0 4E 0.0 0.0 0.0 0.0 5E 0.0 0.0 6E 0.0 0.0 Parapet Windward parapet = 0.0 psf (GCpn = +1.5) Leeward parapet = 0.0 psf (GCpn = -1.0) Horizontal MWFRS Simale Diaohraam Pressures (osf Transverse direction (normal to L) Interior Zone: Wall 0.0 psf Roof 0.0 psf End Zone: Wall 0.0 psf Roof 0.0 psf Longitudinal direction (parallel to L) Interior Zone: Wall 0.0 psf End Zone: Wall 0.0 psf The code requires the MWFRS be designed for a min ultimate force of 16 psf multiplied by the wall area plus an 8 psf force applied to the vertical projection of the roof. Windward roof overhangs = 0.0 psf (upward) add to windward roof pressure �wQo�wran acxx r�wu1�1 xoop vaKrrai_ aMAICSV sass E1.avwzzorr �.,I OEfiiiiiii Location of MWFRS Wind Pressure Zones Page 4 of 44 Salvatore Ray Granata, PE, CE JOB TITLE 146 Lee Road 2012 Opelika, AL 36804 JOB NO. SHEET NO. 678-367-3151 CALCULATED BY SRG DATE 4/13/14 salgranata.com salgranata@att.ne CHECKED BY DATE Seismic Loads: IBC 2015 Strength Level Forces Risk Category : 11 Importance Factor (1) : 1.00 Site Class : D Ss (0.2 sec) = 330.00 %g S1 (1.0 sec) = 100.00 %g Fa = 1.000 Sms = 3.300 SDS = 2.200 Design Category = E Fv = 1.500 Sm1 = 1.500 SW = 1.000 Design Category = E Seismic Design Category = E Number of Stories 2 Structure Type: Light Frame Horizontal Struct Irregularities:No plan Irregularity Vertical Structural Irregularities:No vertical Irregularity Flexible Diaphragms: No Building System: Building Frame Systems Seismic resisting system: Steel special concentrically braced frames System Structural Height Limit: 160 ft Actual Structural Height (hn) =10.0 ft See ASCE7 Section 12.2.5 for exceptions and other system limitation DESIGN COEFFICIENTS AND FACTORS Response Modification Coefficient (R) - 6 Over -Strength Factor (0o) = 2 Deflection Amplification Factor (Cd) = 5 5DS = 1.000 (Sds modified for Cs calculation since SD1 = 1.000 regular structure, T-0.5 and — 5 stories p = redundancy coefficien Seismic Load Effect (E) = p QE +/- 0.2SDS D = p QE +/- 0.440D QE = horizontal seismic forc( Special Seismic Load Effect (Em) = Oo QE +/- 0.2SDS D = 2.0 QE +/- 0.440D D = dead loac PERMITTED ANALYTICAL PROCEDURES Simplified Analysis - Use Equivalent Lateral Force Analysi. Equivalent Lateral -Force Analysis - Permitted Building period coef. (CT) = 0.020 Cu = 1.40 Approx fundamental period (Ta) = CThr,"= 0.112 sec x= 0.75 Tmax = CuTa = 0.157 User calculated fundamental period (T) 0 sec Use T = 0.112 Long Period Transition Period (TL) = ASCE7 map = 12 Seismic response coef. (Cs) = SDSI/R = 0.167 need not exceed Cs = Shc I /RT = 1.482 but not less than Cs = 0.5*S1 I/R = 0.083 USE Cs = 0.167 Design Base Shear V = 0.167W Model & Seismic Response Analysis - Permitted (see code for procedure ALLOWABLE STORY DRIFT D = 4' * 6' * 5 psf / 2 = 60 Ibs V = 0.167 * 60 Ibs = 10 Ibs per Brace Structure Type: All other structures Allowable story drift = 0.020hsx where hsx is the story height below level Page 5 of 44 Salvatore Ray Granata, PE, CE 146 Lee Road 2012 Opelika, AL 36804 678-367-3151 salgranata.com salgranata@att.net JOB TITLE JOB NO. CALCULATED BY SRG CHECKED BY SHEET NO. DATE DATE Seismic Loads - cont.: Strength Level Forces Seismic Design Category (SDC)= E I = 1.00 CONNECTIONS Sds = 2.200 Force to connect smaller portions of structure to remainder of structure Fp = 0.133Sdswp = 0.293 wp or Fp = 0.05wp = 0.05 wp Use Fp = 0.29 wp wp = weight of smaller portion Beam, girder or truss connection for resisting horizontal force parallel to member Fp = no less than 0.05 times dead plus live load vertical reaction Anchorage of Structural Walls to elements providing lateral support Fp = 0.20Ww = 0.20 Ww or See ASCE7 Sect 12.11.2.1 for flexible diaphrams Fp=0.4SdslWw = 0.88 Ww (for rigid diaphragm) Fp = 0.88 Ww but Fp shall not be less than 5 psf MEMBER DESIGN Bearing Walls and Shear Walls (out of plane force) Fp = 0.4SdslWw = 0.880 wW but not less than 0.10 wW Use Fp = 0.88 wW Diaphragms Fp = (Sum Fi / Sum Wi)Wpx + Vpx = (Sum Fi / Sum Wi)Wpx + Vpx need not exceed 0.4 SdslWpx + Vpx = 0.880 Wpx + Vpx but not less than 0.2 SdslWpx + Vpx = 0.440 Wpx + Vpx ARCHITECTURAL COMPONENTS SEISMIC COEFFICIENTS A/1 V1A Architectural Component: Cantilever Elements (Unbraced or Braced to Structural Frame Below Its Center of Mass): Chimneys and stacks when laterally braced or supported by the structural frame Importance Factor (Ip) : 1.0 Component Amplification Factor (ap) = 2.5 h= 10.0 feet Comp Response Modification Factor (Rp) = 2.5 z= 13.9 feet z/h = 1.00 Fp = 0.4apSdslpWp(1+2z/h)/Rp = 2.640 Wp not greater than Fp = 1.6SdslpWp = 3.520 Wp but not less than Fp = 0.3SdslpWp = 0.660 Wp use Fp = 2.640 Wp MECH AND ELEC COMPONENTS SEISMIC COEFFICIENTS Mech or Electrical Component : Wet -side HVAC, boilers, furnaces, atmospheric tanks and bins, chillers, water heaters, et plus other mechanical components constructed of high-deformability materials. Importance Factor (Ip) : 1.5 Component Amplification Factor (ap) = 1 h= 10.0 feet Comp Response Modification Factor (Rp) = 2.5 z= 13.9 feet z/h = 1.00 Fp = 0.4apSdslpWp(1+2z/h)/Rp = 1.584 Wp not greater than Fp = 1.6SdslpWp = 5.280 Wp but not less than Fp = 0.3SdslpWp = 0.990 Wp use Fp = 1.584 Wp Page 6 of 44 CFS Version 8.0.5 Section: Section 2.sct Tube 1.25x1.25-16 Gage Rev. Date: 1 /25/2017 12:09:02 PM Printed: 1/25/2017 12:11:08 PM Section Inputs Page 1 TUBE 1.25x1.25 - 16 ga Item #17 Top Rail, Sheet S-2 Hand Rails Top Rails - 6 ft Length w = 50 Of or P = 200 Ibs M = w ` Lz / 8 = 50 Ibs' (6)2 / 8 = 225 ft- Ibs = 2700 in-Ibs = 2.7 in -kips Material: A653 SS Grade 50/1 Apply strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi Yield Strength, Fy 50 ksi Tensile Strength, Fu 65 ksi Warping Constant Override, Cw 0 in^6 Torsion Constant Override, J 0 in^4 Tube, Thickness 0.0566 in (16 Gage) Placement of Part from Origin: X to center of gravity 0 in Y to center of gravity 0 in Outside dimensions, Closed shape Length Angle Radius Web k Hole Size Distance (in) (deg) (in) Coef. (in) (in) 1 1.2500 0.000 0.084900 Single 0.000 0.0000 0.6250 2 1.2500 90.000 0.084900 Single 0.000 0.0000 0.6250 3 1.2500 180.000 0.084900 Single 0.000 0.0000 0.6250 4 1.2500 -90.000 0.084900 Single 0.000 0.0000 0.6250 Page 7 of 44 CFS Version 8.0.5 Page 2 Section: Section 2.sct Tube 1.25x1.25-16 Gage Rev. Date: 1 /25/2017 12:09:02 PM Printed: 1/25/2017 12:11:08 PM Full Section Properties Area 0.25919 in^2 Wt. 0.00088123 k/ft Width 4.5793 in Ix 0.06008 in^4 rx 0.48147 in Ixy 0.00000 in^4 Sx(t) 0.096133 in^3 y(t) 0.62500 in a 0.000 deg Sx(b) 0.096133 in^3 y(b) 0.62500 in Height 1.25000 in Iy 0.06008 in^4 ry 0.48147 in Xo 0.00000 in Sy(1) 0.096133 in^3 x(l) 0.62500 in Yo 0.00000 in Sy(r) 0.096133 in^3 x(r) 0.62500 in jx 0.00000 in Width 1.25000 in jy 0.00000 in I1 0.06008 in^4 rl 0.48147 in I2 0.06008 in^4 r2 0.48147 in Ic 0.12017 in^4 rc 0.68090 in Cw 0.000009 in^6 Io 0.12017 in^4 ro 0.68090 in J 0.098740 in^4 Fully Braced Strength - 2012 North American Specification - US (ASD) Material Type: A653 SS Grade 50/1, Fy=50 ksi Compression Positive Moment Positive Moment Pao 7.7673 k Maxo 3.2711 k-in Mayo 3.2711 k-in Ae 0.25919 in^2 Ixe 0.060083 in^4 Iye 0.060083 in^4 Sxe(t) 0.096133 in^3 Sye(l) 0.096133 in^3 Tension Sxe(b) 0.096133 in^3 Sye(r) 0.096133 in^3 Ta 8.3720 k Negative Moment Negative Moment Maxo 3.2711 k-in Mayo 3.2711 k-in Shear Ixe 0.060083 in^4 Iye 0.060083 in^4 Vay 2.0525 k Sxe(t) 0.096133 in^3 Sye(l) 0.096133 in^3 Vax 2.0525 k Sxe(b) 0.096133 in^3 Sye(r) 0.096133 in^3 Page 8 of 44 CFS Version 8.0.5 Analysis: Analysis 3.anl 6 ft Span Simple Beam Rev. Date: 1/25/2017 12:09:37 PM Printed: 1/25/2017 12:11:08 PM Page 1 Analysis Inputs Members Section File Revision Date and Time 1 Section 2.sct 1/25/2017 12:09:02 PM Start Loc. End Loc. Braced R k� Lm (ft) (ft) Flange (k) (ft) 1 0.0000 6.0000 None 0.0000 0.0000 20.0000 ex ey (in) (in) 1 0.0000 0.0000 Supports Type Location Bearing Fastened K (ft) (in) 1 XYT 0.0000 2.000 Yes 1.0000 2 XYT 6.0000 2.000 Yes 1.0000 Loading: Live Load Type Angle Start Loc. End Loc. Start End (deg) (ft) (ft) Magnitude Magnitude 1 Distributed 90.000 0.0000 6.0000-0.050000-0.050000 k/ft Load Combination: D Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 Load Combination: D+L Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Live Load 1.0000 4 Product Load 1.0000 Page 9 of 44 CFS Version 8.0.5 Analysis: Analysis 3.anl 6 ft Span Simple Beam Rev. Date: 1/25/2017 12:09:37 PM Printed: 1/25/2017 12:11:08 PM Load Combination: D+0.75(L+Lr) Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Live Load 0.7500 4 Product Load 0.7500 5 Roof Live Load 0.7500 Load Combination: D+0.7E Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Earthquake Load 0.7000 Load Combination: D+0.75(0.7E+L+Lr) Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Earthquake Load 0.5250 4 Live Load 0.7500 5 Product Load 0.7500 6 Roof Live Load 0.7500 Load Combination: 0.6D+0.6W Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 0.6000 2 Dead Load 0.6000 3 Wind Load 0.6000 Load Combination: 0.6D+0.7E Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 0.6000 2 Dead Load 0.6000 3 Earthquake Load 0.7000 Page 2 Page 10 of 44 CFS Version 8.0.5 Page 3 Analysis: Analysis 3.anl 6 ft Span Simple Beam Rev. Date: 1/25/2017 12:09:37 PM Printed: 1/25/2017 12:11:08 PM Member Check - 2012 North American Specification - US (ASD) Load Combination: D+L Design Parameters at 3.0000 ft: Lx 6.0000 ft Ly 6.0000 ft Lt 6.0000 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: Section 2.sct Material Type: A653 SS Grade 50/1, Fy=50 ksi Cbx 1.1364 Cby 1.0000 ex 0.0000 in Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: None k� 0 k Red. Factor, R: 0 Lm 20.0000 ft Loads: P Mx Vy My Vx (k) (k-in) (k) (k-in) (k) Total 0.0000 2.7476 0.0000 0.0000 0.0000 Applied 0.0000 2.7476 0.0000 0.0000 0.0000 Strength 1.6441 3.2711 2.0525 3.2711 2.0525 Effective section properties at applied loads: Ae 0.25919 in^2 Ixe 0.060083 in^4 Iye 0.060083 in^4 Sxe(t) 0.096133 in^3 Sye(1) 0.096133 in^3 Sxe(b) 0.096133 in^3 Sye(r) 0.096133 in^3 Interaction Equations NAS Eq. C5.2.1-1 (P, Mx, My) 0.000 + 0.840 + 0.000 = 0.840 <= 1.0 NAS Eq. C5.2.1-2 (P, Mx, My) 0.000 + 0.840 + 0.000 = 0.840 <= 1.0 NAS Eq. C3.3.1-1 (Mx, Vy) Sgrt(0.706 + 0.000)= 0.840 <= 1.0 NAS Eq. C3.3.1-1 (My, Vx) Sgrt(0.000 + 0.000)= 0.000 <= 1.0 Page 11 of 44 CFS Version 8.0.5 Analysis: Analysis 4.anl 6 ft Span Simple Beam Rev. Date: 1 /25/2017 12:18:18 PM Printed: 1/25/2017 12:19:15 PM Load Combination: D+L, Y Direction Reaction (k) 0.15264 0.15264 0.15264 Shear (k) Moment (k-in) Deflection (in) 2.7476 -0.83709 -0.15264 Page 12 of 44 CFS Version 8.0.5 Section: 4 Item #3 Deck Channel.sct Channel 4.375x0.75-16 Gage Rev. Date: 1/25/2017 12:21:23 PM Printed: 1/30/2017 7:44:24 PM Section Inputs Material: A653 SS Grade 50/1 Apply strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi Yield Strength, Fy 50 ksi Tensile Strength, Fu 65 ksi Warping Constant Override, Cw 0 in^6 Torsion Constant Override, J 0 in^4 Channel, Thickness 0.0566 in (16 Gage) Placement of Part from Origin: Page 1 16 ga Deck Channel Item 3, Sheet S-2 w = 100 psf Live Load X to center of gravity 0 in Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size Distance (in) (deg) (in) Coef. (in) (in) 1 0.7500 90.000 0.084900 Single 0.000 0.0000 0.3750 2 4.3750 360.000 0.084900 Cee 0.000 0.0000 2.1875 3 0.7500 270.000 0.084900 Single 0.000 0.0000 0.3750 Page 13 of 44 CFS Version 8.0.5 Page 2 Section: 4 Item #3 Deck Channel.sct Channel 4.375x0.75-16 Gage Rev. Date: 1/25/2017 12:21:23 PM Printed: 1/30/2017 7:44:24 PM Full Section Properties Area 0.32062 in^2 Wt. 0.0010901 k/ft Width 5.6646 in Ix 0.01153 in^4 rx 0.1896 in Ixy 0.00000 in^4 Sx(t) 0.09568 in^3 y(t) 0.1205 in a 90.000 deg Sx(b) 0.01831 in^3 y(b) 0.6295 in Height 0.7500 in Iy 0.73479 in^4 ry 1.5139 in Xo 0.0000 in Sy(1) 0.33591 in^3 x(1) 2.1875 in Yo 0.2786 in Sy(r) 0.33591 in^3 x(r) 2.1875 in jx 0.0000 in Width 4.3750 in jy -3.4997 in I1 0.73479 in^4 rl 1.5139 in I2 0.01153 in^4 r2 0.1896 in Ic 0.74632 in^4 rc 1.5257 in Cw 0.039916 in^6 Io 0.77121 in^4 ro 1.5509 in J 0.00034237 in^4 Fully Braced Strength - 2012 North American Specification - US (ASD) Material Type: A653 SS Grade 50/1, Fy=50 ksi Compression Positive Moment Positive Moment Pao 5.9508 k Maxo 0.5482 k-in Mayo 9.9769 k-in Ae 0.21423 in^2 Ixe 0.01153 in^4 Iye 0.73084 in^4 Sxe(t) 0.09568 in^3 Sye(1) 0.33497 in^3 Tension Sxe(b) 0.01831 in^3 Sye(r) 0.33323 in^3 Ta 9.9053 k Negative Moment Negative Moment Maxo 0.5482 k-in Mayo 9.9769 k-in Shear Ixe 0.01153 in^4 Iye 0.73084 in^4 Vay 1.2915 k Sxe(t) 0.09568 in^3 Sye(1) 0.33323 in^3 Vax 3.3716 k Sxe(b) 0.01831 in^3 Sye(r) 0.33497 in^3 Page 14 of 44 CFS Version 8.0.5 Analysis: Analysis 1.anl 3-Span Continuous Beam Rev. Date: 1/30/2017 7:42:36 PM Printed: 1/30/2017 7:44:24 PM Page 1 Analysis Inputs Members Section File Revision Date and Time 1 4 Item #3 Deck Channel.sct 1/25/2017 12:21:23 PM Start Loc. End Loc. Braced R k� Lm (ft) (ft) Flange (k) (ft) 1 0.0000 6.0000 None 0.0000 0.0000 20.0000 ex ey (in) (in) 1 0.0000 0.0000 Supports Type Location Bearing Fastened K (ft) (in) 1 XYT 0.0000 2.750 No 1.0000 2 XYT 2.0000 2.750 No 1.0000 3 XYT 4.0000 2.750 No 1.0000 4 XYT 6.0000 2.750 No 1.0000 Loading: Dead Load Type Angle Start Loc. End Loc. Start End (deg) (ft) (ft) Magnitude Magnitude 1 Distributed 90.000 0.0000 6.0000 -0.001823 -0.001823 k/ft Loading: Live Load Type Angle Start Loc. End Loc. Start End (deg) (ft) (ft) Magnitude Magnitude 1 Distributed 90.000 0.0000 6.0000 -0.036460 -0.036460 k/ft Load Combination: D Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 Page 15 of 44 CFS Version 8.0.5 Analysis: Analysis 1.anl 3-Span Continuous Beam Rev. Date: 1/30/2017 7:42:36 PM Printed: 1/30/2017 7:44:24 PM Load Combination: D+L Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Live Load 1.0000 4 Product Load 1.0000 Load Combination: D+0.75(L+Lr) Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Live Load 0.7500 4 Product Load 0.7500 5 Roof Live Load 0.7500 Load Combination: D+0.7E Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Earthquake Load 0.7000 Load Combination: D+0.75(0.7E+L+Lr) Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Earthquake Load 0.5250 4 Live Load 0.7500 5 Product Load 0.7500 6 Roof Live Load 0.7500 Load Combination: 0.6D+0.6W Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 0.6000 2 Dead Load 0.6000 3 Wind Load 0.6000 Load Combination: 0.6D+0.7E Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 0.6000 2 Dead Load 0.6000 3 Earthquake Load 0.7000 Page 2 Page 16 of 44 CFS Version 8.0.5 Page 3 Analysis: Analysis 1.anl 3-Span Continuous Beam Rev. Date: 1/30/2017 7:42:36 PM Printed: 1/30/2017 7:44:24 PM Member Check - 2012 North American Specification - US (ASD) Load Combination: D+L Design Parameters at 2.0000 ft, Left side: Lx 2.0000 ft Ly 0.4000 ft Lt 0.4000 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: 4 Item #3 Deck Channel.sct Material Type: A653 SS Grade 50/1, Fy=50 ksi Cbx 1.6667 Cby 1.0000 ex 0.0000 in Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: None k� 0 k Red. Factor, R: 0 Lm 20.0000 ft Loads: P Mx Vy My Vx (k) (k-in) (k) (k-in) (k) Total 0.0000 -0.1890 -0.0472 0.0000 0.0000 Applied 0.0000 -0.1890 -0.0472 0.0000 0.0000 Strength 2.5307 0.5482 1.2915 9.9769 3.3716 Effective section properties at applied loads: Ae 0.32062 in^2 Ixe 0.01153 in^4 Iye 0.73479 in^4 Sxe(t) 0.09568 in^3 Sye(1) 0.33591 in^3 Sxe(b) 0.01831 in^3 Sye(r) 0.33591 in^3 Interaction Equations NAS Eq. C5.2.1-1 (P, Mx, My) 0.000 + 0.345 + 0.000 = 0.345 <= 1.0 NAS Eq. C5.2.1-2 (P, Mx, My) 0.000 + 0.345 + 0.000 = 0.345 <= 1.0 NAS Eq. C3.3.1-1 (Mx, Vy) Sgrt(0.119 + 0.001)= 0.347 <= 1.0 NAS Eq. C3.3.1-1 (My, Vx) Sgrt(0.000 + 0.000)= 0.000 <= 1.0 Page 17 of 44 CFS Version 8.0.5 Analysis: Analysis 1.anl 3-Span Continuous Beam Rev. Date: 1/30/2017 7:42:36 PM Printed: 1/30/2017 7:43:21 PM Load Combination: D+L, Y Direction Reaction (k) 0.031498 0.03 Shear (k) Moment (k-in) 0.086621 0.086621 0.047248 -0.047248 0.15119 0.15119 -0.18899-0.18899 Deflection 0.0013339 0.0013339 (in) -0.0016674 -0.022039-0.022039 0.031498 1498 Page 18 of 44 CFS Version 8.0.5 Page 1 Section: Section 4.sct Channel 4x2.75-16 Gage Rev. Date: 1/25/2017 12:36:47 PM 16ga Cross -bracing Channel Printed: 1/25/2017 12:40:47 PM Item 2 Sheet S-2 DL = 5psf + ILL = 100psf Trtib Width = 2'-0" Span = 4'-0" Section Inputs Material: A653 SS Grade 50/1 No strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi Yield Strength, Fy 50 ksi Tensile Strength, Fu 65 ksi Warping Constant Override, Cw 0 in^6 Torsion Constant Override, J 0 in^4 Channel, Thickness 0.0566 in (16 Gage) Placement of Part from Origin: X to center of gravity 0 in Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size Distance (in) (deg) (in) Coef. (in) (in) 1 2.7500 90.000 0.084900 Single 0.000 0.0000 1.3750 2 4.0000 360.000 0.084900 Cee 0.000 0.0000 2.0000 3 2.7500 270.000 0.084900 Single 0.000 0.0000 1.3750 Page 19 of 44 CFS Version 8.0.5 Page 2 Section: Section 4.sct Channel 4x2.75-16 Gage Rev. Date: 1/25/2017 12:36:47 PM Printed: 1/25/2017 12:40:47 PM Full Section Properties Area 0.52579 in^2 Wt. 0.0017877 k/ft Width 9.2896 in Ix 0.4264 in^4 rx 0.9005 in Ixy 0.0000 in^4 Sx(t) 0.51628 in^3 y(t) 0.8258 in a 90.000 deg Sx(b) 0.22159 in^3 y(b) 1.9242 in Height 2.7500 in Iy 1.4654 in^4 ry 1.6694 in Xo 0.0000 in Sy(1) 0.73270 in^3 x(1) 2.0000 in Yo 1.9080 in Sy(r) 0.73270 in^3 x(r) 2.0000 in jx 0.0000 in Width 4.0000 in jy -2.7613 in I1 1.4654 in^4 rl 1.6694 in I2 0.4264 in^4 r2 0.9005 in Ic 1.8918 in^4 rc 1.8968 in Cw 1.1417 in^6 Io 3.8059 in^4 ro 2.6904 in J 0.0005615 in^4 Fully Braced Strength - 2012 North American Specification - US (ASD) Material Type: A653 SS Grade 50/1, Fy=50 ksi Compression Positive Moment Positive Moment Pao 6.533 k Maxo 6.408 k-in Mayo 11.737 k-in Ae 0.23518 in^2 Ixe 0.39663 in^4 Iye 0.97098 in^4 Sxe(t) 0.44231 in^3 Sye(1) 0.63750 in^3 Tension Sxe(b) 0.21402 in^3 Sye(r) 0.39202 in^3 Ta 15.742 k Negative Moment Negative Moment Maxo 0.374 k-in Mayo 11.737 k-in Shear Ixe 0.03173 in^4 Iye 0.97098 in^4 Vay 5.537 k Sxe(t) 0.14932 in^3 Sye(1) 0.39202 in^3 Vax 3.372 k Sxe(b) 0.01250 in^3 Sye(r) 0.63750 in^3 Page 20 of 44 CFS Version 8.0.5 Analysis: Analysis 6.anl 4 ft Span Simple Beam Rev. Date: 1/25/2017 12:37:53 PM Printed: 1/25/2017 12:40:47 PM Page 1 Analysis Inputs Members Section File Revision Date and Time 1 Section 4.sct 1/25/2017 12:36:47 PM Start Loc. End Loc. Braced R k� Lm (ft) (ft) Flange (k) (ft) 1 0.0000 4.0000 None 0.0000 0.0000 4.0000 ex ey (in) (in) 1 0.0000 0.0000 Supports Type Location Bearing Fastened K (ft) (in) 1 XYT 0.0000 0.500 No 1.0000 2 XYT 4.0000 0.500 No 1.0000 Loading: Live Load Type Angle Start Loc. End Loc. Start End (deg) (ft) (ft) Magnitude Magnitude 1 Distributed 90.000 0.0000 4.0000-0.20000-0.20000 k/ft Load Combination: D Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 Load Combination: D+L Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Live Load 1.0000 4 Product Load 1.0000 Page 21 of 44 CFS Version 8.0.5 Analysis: Analysis 6.anl 4 ft Span Simple Beam Rev. Date: 1/25/2017 12:37:53 PM Printed: 1/25/2017 12:40:47 PM Load Combination: D+0.75(L+Lr) Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Live Load 0.7500 4 Product Load 0.7500 5 Roof Live Load 0.7500 Load Combination: D+0.7E Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Earthquake Load 0.7000 Load Combination: D+0.75(0.7E+L+Lr) Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Earthquake Load 0.5250 4 Live Load 0.7500 5 Product Load 0.7500 6 Roof Live Load 0.7500 Load Combination: 0.6D+0.6W Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 0.6000 2 Dead Load 0.6000 3 Wind Load 0.6000 Load Combination: 0.6D+0.7E Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 0.6000 2 Dead Load 0.6000 3 Earthquake Load 0.7000 Page 2 Page 22 of 44 CFS Version 8.0.5 Page 3 Analysis: Analysis 6.anl 4 ft Span Simple Beam Rev. Date: 1/25/2017 12:37:53 PM Printed: 1/25/2017 12:40:47 PM Member Check - 2012 North American Specification - US (ASD) Load Combination: D+L Design Parameters at 2.0000 ft: Lx 4.0000 ft Ly 4.0000 ft Lt 4.0000 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Section: Section 4.sct Material Type: A653 SS Grade 50/1, Fy=50 ksi Cbx 1.0000 Cby 1.0000 ex 0.0000 in Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: None k� 0 k Red. Factor, R: 0 Lm 4.0000 ft Loads: P Mx Vy My Vx (k) (k-in) (k) (k-in) (k) Total 0.0000 4.843 0.0000 0.000 0.0000 Applied 0.0000 4.843 0.0000 0.000 0.0000 Strength 4.6303 6.408 5.5365 11.598 3.3716 Effective section properties at applied loads: Ae 0.52579 in^2 Ixe 0.4264 in^4 Iye 1.4654 in^4 Sxe(t) 0.51628 in^3 Sye(1) 0.73270 in^3 Sxe(b) 0.22159 in^3 Sye(r) 0.73270 in^3 Interaction Equations NAS Eq. C5.2.1-1 (P, Mx, My) 0.000 + 0.756 + 0.000 = 0.756 <= 1.0 NAS Eq. C5.2.1-2 (P, Mx, My) 0.000 + 0.756 + 0.000 = 0.756 <= 1.0 NAS Eq. C3.3.1-1 (Mx, Vy) Sgrt(0.571 + 0.000)= 0.756 <= 1.0 NAS Eq. C3.3.1-1 (My, Vx) Sgrt(0.000 + 0.000)= 0.000 <= 1.0 Page 23 of 44 CFS Version 8.0.5 Analysis: Analysis 6.anl 4 ft Span Simple Beam Rev. Date: 1 /25/2017 12:37:53 PM Printed: 1/25/2017 12:42:28 PM Load Combination: D+L, Y Direction Reaction (k) 0.40358 0.40358 0.40358 Shear (k) Moment (k-in) Deflection (in) 4.8429 -0.092408 Allowable Deflection : L / 240 = 48" / 240 = 0.20" OK -0.40358 Page 24 of 44 CFS Version 8.0.5 Section: Section 5.sct Tube 1.25x1.25-16 Gage Rev. Date: 1 /25/2017 12:55:38 PM Printed: 1/25/2017 12:57:57 PM Section Inputs Page 1 TUBE 1.25x1.25-16ga Item 15 Hand Rail Posts S-2 Material: A653 SS Grade 50/1 Apply strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi Yield Strength, Fy 50 ksi Tensile Strength, Fu 65 ksi Warping Constant Override, Cw 0 in^6 Torsion Constant Override, J 0 in^4 Tube, Thickness 0.0566 in (16 Gage) Placement of Part from Origin: X to center of gravity 0 in Y to center of gravity 0 in Outside dimensions, Closed shape Length Angle Radius Web k Hole Size Distance (in) (deg) (in) Coef. (in) (in) 1 1.2500 0.000 0.084900 Single 0.000 0.0000 0.6250 2 1.2500 90.000 0.084900 Single 0.000 0.0000 0.6250 3 1.2500 180.000 0.084900 Single 0.000 0.0000 0.6250 4 1.2500 -90.000 0.084900 Single 0.000 0.0000 0.6250 Page 25 of 44 CFS Version 8.0.5 Page 2 Section: Section 5.sct Tube 1.25x1.25-16 Gage Rev. Date: 1 /25/2017 12:55:38 PM Printed: 1/25/2017 12:57:57 PM Full Section Properties Area 0.25919 in^2 Wt. 0.00088123 k/ft Width 4.5793 in Ix 0.06008 in^4 rx 0.48147 in Ixy 0.00000 in^4 Sx(t) 0.096133 in^3 y(t) 0.62500 in a 0.000 deg Sx(b) 0.096133 in^3 y(b) 0.62500 in Height 1.25000 in Iy 0.06008 in^4 ry 0.48147 in Xo 0.00000 in Sy(1) 0.096133 in^3 x(1) 0.62500 in Yo 0.00000 in Sy(r) 0.096133 in^3 x(r) 0.62500 in jx 0.00000 in Width 1.25000 in jy 0.00000 in I1 0.06008 in^4 rl 0.48147 in I2 0.06008 in^4 r2 0.48147 in Ic 0.12017 in^4 rc 0.68090 in Cw 0.000009 in^6 Io 0.12017 in^4 ro 0.68090 in J 0.098740 in^4 Fully Braced Strength - 2012 North American Specification - US (ASD) Material Type: A653 SS Grade 50/1, Fy=50 ksi Compression Positive Moment Positive Moment Pao 7.7673 k Maxo 3.2711 k-in Mayo 3.2711 k-in Ae 0.25919 in^2 Ixe 0.060083 in^4 Iye 0.060083 in^4 Sxe(t) 0.096133 in^3 Sye(1) 0.096133 in^3 Tension Sxe(b) 0.096133 in^3 Sye(r) 0.096133 in^3 Ta 8.3720 k Negative Moment Negative Moment Maxo 3.2711 k-in Mayo 3.2711 k-in Shear Ixe 0.060083 in^4 Iye 0.060083 in^4 Vay 2.0525 k Sxe(t) 0.096133 in^3 Sye(1) 0.096133 in^3 Vax 2.0525 k Sxe(b) 0.096133 in^3 Sye(r) 0.096133 in^3 Square Handrail Posts Handrail Post Stress : M=3.5'* 12" * 0.2 kips = 8.4 in - kips fb = M / S = 0.82 * 8.4 in - kips / 0.10907 in3 = 63.15 ksi Fb = 0.66 * 50 ksi = 33 ksi Say OK Based on Testing Handrail Deflection: Deflection: d = p * L3 / (3 * E * I) Deflection: d = 0.82 * 200 lbs * (4211)3 / (3 * 29,000,000 psi * 0.06817 in4) = 2.05" OK Page 26 of 44 CFS Version 8.0.5 Section: Section 1.sct Angle 12x12-12 Gage Rev. Date: 2/3/2017 10:11:41 AM Printed: 2/3/2017 10:14:27 AM Section Inputs Material: A653 SS Grade 50/1 Apply strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi Yield Strength, Fy 50 ksi Tensile Strength, Fu 65 ksi Warping Constant Override, Cw 0 in^6 Torsion Constant Override, J 0 in^4 Angle, Thickness 0.1017 in (12 Gage) Placement of Part from Origin: Page 1 Stair Treads Item 5, Sheet S-2 X to center of gravity 0 in Y to center of gravity 0 in Outside dimensions, Open shape Length Angle Radius Web k Hole Size Distance (in) (deg) (in) Coef. (in) (in) 1 12.000 360.000 0.15250 Single 0.000 0.000 6.000 2 12.000 270.000 0.15250 Single 0.000 0.000 6.000 Page 27 of 44 CFS Version 8.0.5 Page 2 Section: Section 1.sct Angle 12x12-12 Gage Rev. Date: 2/3/2017 10:11:41 AM Printed: 2/3/2017 10:14:27 AM Full Section Properties Area 2.4216 in^2 Wt. 0.0082334 k/ft Width 23.811 in Ix 36.07 in^4 rx 3.8594 in Ixy -21.77 in^4 Sx(t) 11.829 in^3 y(t) 3.0492 in a 45.000 deg Sx(b) 4.030 in^3 y(b) 8.9508 in Height 12.0000 in Iy 36.07 in^4 ry 3.8594 in Xo 2.9972 in Sy(1) 4.030 in^3 x(1) 8.9508 in Yo 2.9972 in Sy(r) 11.829 in^3 x(r) 3.0492 in jx -4.1860 in Width 12.0000 in jy -4.1860 in I1 57.84 in^4 rl 4.8872 in I2 14.30 in^4 r2 2.4300 in Ic 72.14 in^4 rc 5.4580 in Cw 0.00005 in^6 Io 115.65 in^4 ro 6.9106 in J 0.0083487 in^4 Fully Braced Strength - 2012 North American Specification - US (ASD) Material Type: A653 SS Grade 50/1, Fy=50 ksi Compression Positive Moment Positive Moment Pao 9.351 k Maxo 89.354 k-in Mayo 89.354 k-in Ae 0.33665 in^2 Ixe 20.184 in^4 Iye 20.184 in^4 Sxe(t) 3.8543 in^3 Sye(1) 2.9844 in^3 Tension Sxe(b) 2.9844 in^3 Sye(r) 3.8543 in^3 Ta 72.996 k Negative Moment Negative Moment Maxo 0.543 k-in Mayo 0.543 k-in Shear Ixe 0.214 in^4 Iye 0.214 in^4 Vay 7.969 k Sxe(t) 1.1643 in^3 Sye(1) 0.0181 in^3 Vax 7.969 k Sxe(b) 0.0181 in^3 Sye(r) 1.1642 in^3 Angle element 1 w/t exceeds 60. Angle element 2 w/t exceeds 60. Page 28 of 44 CFS Version 8.0.5 Analysis: Analysis 1.anl 4 ft Span Simple Beam Rev. Date: 2/3/2017 10:12:42 AM Printed: 2/3/2017 10:14:27 AM Analysis Inputs Members Page 1 Section File Revision Date and Time 1 Section l.sct 2/3/2017 10:11:41 AM Start Loc. End Loc. Braced R k� Lm (ft) (ft) Flange (k) (ft) 1 0.0000 4.0000 None 0.0000 0.0000 20.0000 ex ey (in) (in) 1 0.0000 0.0000 Supports Type Location Bearing Fastened K (ft) (in) 1 Y 0.0000 2.000 No 1.0000 2 XT 0.0000 2.000 No 0.0000 3 Y 4.0000 2.000 No 1.0000 4 XT 4.0000 2.000 No 0.0000 Loading: Dead Load Type Angle Start Loc. End Loc. Start End (deg) (ft) (ft) Magnitude Magnitude 1 Distributed 90.000 0.0000 4.0000 0.00000 0.00000 k/ft Loading: Live Load Type Angle Start Loc. End Loc. Start End (deg) (ft) (ft) Magnitude Magnitude 1 Distributed 90.000 0.0000 4.0000-0.10000 -0.10000 k/ft Load Combination: D Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 Page 29 of 44 CFS Version 8.0.5 Analysis: Analysis 1.anl 4 ft Span Simple Beam Rev. Date: 2/3/2017 10:12:42 AM Printed: 2/3/2017 10:14:27 AM Load Combination: D+L Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Live Load 1.0000 4 Product Load 1.0000 Load Combination: D+0.75(L+Lr) Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Live Load 0.7500 4 Product Load 0.7500 5 Roof Live Load 0.7500 Load Combination: D+0.7E Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Earthquake Load 0.7000 Load Combination: D+0.75(0.7E+L+Lr) Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 1.0000 2 Dead Load 1.0000 3 Earthquake Load 0.5250 4 Live Load 0.7500 5 Product Load 0.7500 6 Roof Live Load 0.7500 Load Combination: 0.6D+0.6W Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 0.6000 2 Dead Load 0.6000 3 Wind Load 0.6000 Load Combination: 0.6D+0.7E Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Beam Self Weight 0.6000 2 Dead Load 0.6000 3 Earthquake Load 0.7000 Page 2 Page 30 of 44 CFS Version 8.0.5 Page 3 Analysis: Analysis 1.anl 4 ft Span Simple Beam Rev. Date: 2/3/2017 10:12:42 AM Printed: 2/3/2017 10:14:27 AM Member Check - 2012 North American Specification - US (ASD) Load Combination: D+L Design Parameters at 2.0000 ft: Lx 4.0000 ft Ly 4.0000 ft Lt 4.0000 ft Kx 1.0000 Ky 0.0000 Kt 0.0000 Section: Section l.sct Material Type: A653 SS Grade 50/1, Fy=50 ksi Cbx 1.0000 Cby 1.0000 ex 0.0000 in Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: None k� 0 k Red. Factor, R: 0 Lm 20.0000 ft Loads: P Mx Vy My Vx (k) (k-in) (k) (k-in) (k) Total 0.0000 2.598 0.0000 0.000 0.0000 Applied 0.0000 2.598 0.0000 0.000 0.0000 Strength 9.2931 89.354 7.9689 89.354 7.9689 Effective section properties at applied loads: Ae 2.42158 in^2 Ixe 36.069 in^4 Iye 36.069 in^4 Sxe(t) 11.829 in^3 Sye(1) 4.030 in^3 Sxe(b) 4.030 in^3 Sye(r) 11.829 in^3 Interaction Equations NAS Eq. C5.2.1-1 (P, Mx, My) 0.000 + 0.029 + 0.000 = 0.029 <= 1.0 NAS Eq. C5.2.1-2 (P, Mx, My) 0.000 + 0.029 + 0.000 = 0.029 <= 1.0 NAS Eq. C3.3.1-1 (Mx, Vy) Sgrt(0.001 + 0.000)= 0.029 <= 1.0 NAS Eq. C3.3.1-1 (My, Vx) Sgrt(0.000 + 0.000)= 0.000 <= 1.0 Angle element 1 w/t exceeds 60. Angle element 2 w/t exceeds 60. Page 31 of 44 CFS Version 8.0.5 Analysis: Analysis 1.anl 4 ft Span Simple Beam Rev. Date: 2/3/2017 10:12:42 AM Printed: 2/3/2017 10:13:24 AM Load Combination: D+L, Y Direction Reaction (k) 0.21647 0.21647 0.21647 Shear (k) Moment (k-in) Deflection (in) 2.5976 -0.00058591 Allowable Deflection : L / 240 = 48" / 240 = 0.20" OK -0.21647 Page 32 of 44 CFS Version 8.0.5 Section: Section 7.sct Tube 1.5x1.5-16 Gage Rev. Date: 1/25/2017 1:12:48 PM Printed: 1/25/2017 1:15:51 PM Section Inputs Page 1 TUBE 1.5x1.5 - 16 ga Item 10 Posts, Sheet S-2 Material: A653 SS Grade 50/1 Apply strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi Yield Strength, Fy 50 ksi Tensile Strength, Fu 65 ksi Warping Constant Override, Cw 0 in^6 Torsion Constant Override, J 0 in^4 Tube, Thickness 0.0566 in (16 Gage) Placement of Part from Origin: X to center of gravity 0 in Y to center of gravity 0 in Outside dimensions, Closed shape Length Angle Radius Web k Hole Size Distance (in) (deg) (in) Coef. (in) (in) 1 1.5000 0.000 0.084900 Single 0.000 0.0000 0.7500 2 1.5000 90.000 0.084900 Single 0.000 0.0000 0.7500 3 1.5000 180.000 0.084900 Single 0.000 0.0000 0.7500 4 1.5000 -90.000 0.084900 Single 0.000 0.0000 0.7500 Page 33 of 44 CFS Version 8.0.5 Page 2 Section: Section 7.sct Tube 1.5x1.5-16 Gage Rev. Date: 1/25/2017 1:12:48 PM Printed: 1/25/2017 1:15:51 PM Full Section Properties Area 0.31579 in^2 Wt. 0.0010737 k/ft Width 5.5793 in Ix 0.10758 in^4 rx 0.58367 in Ixy 0.00000 in^4 Sx(t) 0.14344 in^3 y(t) 0.75000 in a 0.000 deg Sx(b) 0.14344 in^3 y(b) 0.75000 in Height 1.50000 in Iy 0.10758 in^4 ry 0.58367 in Xo 0.00000 in Sy(1) 0.14344 in^3 x(1) 0.75000 in Yo 0.00000 in Sy(r) 0.14344 in^3 x(r) 0.75000 in jx 0.00000 in Width 1.50000 in jy 0.00000 in I1 0.10758 in^4 rl 0.58367 in I2 0.10758 in^4 r2 0.58367 in Ic 0.21516 in^4 rc 0.82544 in Cw 0.00002 in^6 Io 0.21516 in^4 ro 0.82544 in J 0.17428 in^4 Fully Braced Strength - 2012 North American Specification - US (ASD) Material Type: A653 SS Grade 50/1, Fy=50 ksi Compression Positive Moment Positive Moment Pao 9.340 k Maxo 4.7876 k-in Mayo 4.7876 k-in Ae 0.31579 in^2 Ixe 0.10758 in^4 Iye 0.10758 in^4 Sxe(t) 0.14344 in^3 Sye(1) 0.14344 in^3 Tension Sxe(b) 0.14344 in^3 Sye(r) 0.14344 in^3 Ta 10.067 k Negative Moment Negative Moment Maxo 4.7876 k-in Mayo 4.7876 k-in Shear Ixe 0.10758 in^4 Iye 0.10758 in^4 Vay 2.583 k Sxe(t) 0.14344 in^3 Sye(1) 0.14344 in^3 Vax 2.583 k Sxe(b) 0.14344 in^3 Sye(r) 0.14344 in^3 Member Check - 2012 North American Specification - US (ASD) Material Type: A653 SS Grade 50/1, Fy=50 ksi Design Parameters: Lx 6.000 ft Ly 0.000 ft Lt 0.000 ft Kx 1.0000 Ky 1.0000 Kt 1.0000 Cbx 1.0000 Cby 1.0000 ex 0.0000 in Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: None k� 0 k Red. Factor, R: 0 Lm 20.000 ft Loads: P Mx Vy My Vx (k) (k-in) (k) (k-in) (k) Entered 2.6000 0.0000 0.0000 0.0000 0.0000 Applied 2.6000 0.0000 0.0000 0.0000 0.0000 Strength 2.9438 4.7876 2.5831 4.7876 2.5831 Effective section properties at applied loads: Ae 0.31579 in^2 Ixe 0.10758 in^4 Iye 0.10758 in^4 Sxe(t) 0.14344 in^3 Sye(1) 0.14344 in^3 Sxe(b) 0.14344 in^3 Sye(r) 0.14344 in^3 Interaction Equations Page 34 of 44 CFS Version 8.0.5 Page 3 Section: Section 7.sct Tube 1.5x1.5-16 Gage Rev. Date: 1/25/2017 1:12:48 PM Printed: 1/25/2017 1:15:51 PM NAS Eq. C5.2.1-1 (P, Mx, My) 0.883 + 0.000 + 0.000 = 0.883 <= 1.0 NAS Eq. C5.2.1-2 (P, Mx, My) 0.278 + 0.000 + 0.000 = 0.278 <= 1.0 NAS Eq. C3.3.1-1 (Mx, Vy) Sgrt(0.000 + 0.000)= 0.000 <= 1.0 NAS Eq. C3.3.1-1 (My, Vx) Sgrt(0.000 + 0.000)= 0.000 <= 1.0 Page 35 of 44 CFS Version 8.0.5 Section: Section 1.sct Tube 1.5x1.5-16 Gage Rev. Date: 1/30/2017 8:14:59 PM Printed: 1/30/2017 8:20:09 PM Section Inputs Material: A653 SS Grade 33 No strength increase from cold work of forming. Modulus of Elasticity, E 29500 ksi Yield Strength, Fy 33 ksi Tensile Strength, Fu 45 ksi Warping Constant Override, Cw 0 in^6 Torsion Constant Override, J 0 in^4 Tube, Thickness 0.0566 in (16 Gage) Placement of Part from Origin: Page 1 Item 4 - Stair Stringer Sheet S-2 Stringer Calc - (2) Each Side Max Stringer Span: L = 4'-0" Max Stair Width: W = 4'-0" DL = 5 psf = 2.5 psf per Stringer LL = 100 psf = 50 psf per Stringer X to center of gravity 0 in Y to center of gravity 0 in Outside dimensions, Closed shape Length Angle Radius Web k Hole Size Distance (in) (deg) (in) Coef. (in) (in) 1 1.5000 0.000 0.084900 Single 0.000 0.0000 0.7500 2 1.5000 90.000 0.084900 Single 0.000 0.0000 0.7500 3 1.5000 180.000 0.084900 Single 0.000 0.0000 0.7500 4 1.5000 -90.000 0.084900 Single 0.000 0.0000 0.7500 Page 36 of 44 CFS Version 8.0.5 Page 2 Section: Section 1.sct Tube 1.5x1.5-16 Gage Rev. Date: 1/30/2017 8:14:59 PM Printed: 1/30/2017 8:20:09 PM Full Section Properties Area 0.31579 in^2 Wt. 0.0010737 k/ft Width 5.5793 in Ix 0.10758 in^4 rx 0.58367 in Ixy 0.00000 in^4 Sx(t) 0.14344 in^3 y(t) 0.75000 in a 0.000 deg Sx(b) 0.14344 in^3 y(b) 0.75000 in Height 1.50000 in Iy 0.10758 in^4 ry 0.58367 in Xo 0.00000 in Sy(1) 0.14344 in^3 x(1) 0.75000 in Yo 0.00000 in Sy(r) 0.14344 in^3 x(r) 0.75000 in jx 0.00000 in Width 1.50000 in jy 0.00000 in I1 0.10758 in^4 rl 0.58367 in I2 0.10758 in^4 r2 0.58367 in Ic 0.21516 in^4 rc 0.82544 in Cw 0.00002 in^6 Io 0.21516 in^4 ro 0.82544 in J 0.17428 in^4 Fully Braced Strength - 2012 North American Specification - US (ASD) Material Type: A653 SS Grade 33, Fy=33 ksi Compression Positive Moment Positive Moment Pao 5.7894 k Maxo 2.8344 k-in Mayo 2.8344 k-in Ae 0.31579 in^2 Ixe 0.10758 in^4 Iye 0.10758 in^4 Sxe(t) 0.14344 in^3 Sye(1) 0.14344 in^3 Tension Sxe(b) 0.14344 in^3 Sye(r) 0.14344 in^3 Ta 6.2401 k Negative Moment Negative Moment Maxo 2.8344 k-in Mayo 2.8344 k-in Shear Ixe 0.10758 in^4 Iye 0.10758 in^4 Vay 1.7048 k Sxe(t) 0.14344 in^3 Sye(1) 0.14344 in^3 Vax 1.7048 k Sxe(b) 0.14344 in^3 Sye(r) 0.14344 in^3 Page 37 of 44 CFS Version 8.0.5 Analysis: Analysis 5.anl 4 ft Span Simple Beam Rev. Date: 1/30/2017 8:19:26 PM Printed: 1/30/2017 8:20:09 PM Analysis Inputs Members Page 1 Section File Revision Date and Time 1 Section l.sct 1/30/2017 8:14:59 PM Start Loc. End Loc. Braced R k� Lm (ft) (ft) Flange (k) (ft) 1 0.0000 4.0000 None 0.0000 0.0000 20.0000 ex ey (in) (in) 1 0.0000 0.0000 Supports Type Location Bearing Fastened K (ft) (in) 1 Y 0.0000 1.500 No 1.0000 2 XT 0.0000 1.500 No 0.0000 3 Y 4.0000 1.500 No 1.0000 4 XT 4.0000 1.500 No 0.0000 Loading: Dead Load Type Angle Start Loc. End Loc. Start End (deg) (ft) (ft) Magnitude Magnitude 1 Distributed 90.000 0.0000 4.0000-0.00500 -0.00500 k/ft Loading: Live Load Type Angle Start Loc. End Loc. Start End (deg) (ft) (ft) Magnitude Magnitude 1 Distributed 90.000 0.0000 4.0000-0.10000 -0.10000 k/ft Load Combination: D Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Dead Load 1.0000 Page 38 of 44 CFS Version 8.0.5 Analysis: Analysis 5.anl 4 ft Span Simple Beam Rev. Date: 1/30/2017 8:19:26 PM Printed: 1/30/2017 8:20:09 PM Load Combination: D+L Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Dead Load 1.0000 2 Live Load 1.0000 3 Product Load 1.0000 Load Combination: D+0.75(L+Lr) Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Dead Load 1.0000 2 Live Load 0.7500 3 Product Load 0.7500 4 Roof Live Load 0.7500 Load Combination: D+0.7E Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Dead Load 1.0000 2 Earthquake Load 0.7000 Load Combination: D+0.75(0.7E+L+Lr) Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Dead Load 1.0000 2 Earthquake Load 0.5250 3 Live Load 0.7500 4 Product Load 0.7500 5 Roof Live Load 0.7500 Load Combination: 0.6D+0.6W Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Dead Load 0.6000 2 Wind Load 0.6000 Load Combination: 0.6D+0.7E Specification: 2012 North American Specification - US (ASD) Inflection Point Bracing: Yes Loading Factor 1 Dead Load 0.6000 2 Earthquake Load 0.7000 Page 2 Page 39 of 44 CFS Version 8.0.5 Page 3 Analysis: Analysis 5.anl 4 ft Span Simple Beam Rev. Date: 1/30/2017 8:19:26 PM Printed: 1/30/2017 8:20:09 PM Member Check - 2012 North American Specification - US (ASD) Load Combination: D+L Design Parameters at 2.0000 ft: Lx 4.0000 ft Ly 4.0000 ft Lt 4.0000 ft Kx 1.0000 Ky 0.0000 Kt 0.0000 Section: Section l.sct Material Type: A653 SS Grade 33, Fy=33 ksi Cbx 1.0000 Cby 1.0000 ex 0.0000 in Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: None k� 0 k Red. Factor, R: 0 Lm 20.0000 ft Loads: P Mx Vy My Vx (k) (k-in) (k) (k-in) (k) Total 0.0000 2.5200 0.0000 0.0000 0.0000 Applied 0.0000 2.5200 0.0000 0.0000 0.0000 Strength 4.2005 2.8344 1.7048 2.8344 1.7048 Effective section properties at applied loads: Ae 0.31579 in^2 Ixe 0.10758 in^4 Iye 0.10758 in^4 Sxe(t) 0.14344 in^3 Sye(1) 0.14344 in^3 Sxe(b) 0.14344 in^3 Sye(r) 0.14344 in^3 Interaction Equations NAS Eq. C5.2.1-1 (P, Mx, My) 0.000 + 0.889 + 0.000 = 0.889 <= 1.0 NAS Eq. C5.2.1-2 (P, Mx, My) 0.000 + 0.889 + 0.000 = 0.889 <= 1.0 NAS Eq. C3.3.1-1 (Mx, Vy) Sgrt(0.790 + 0.000)= 0.889 <= 1.0 NAS Eq. C3.3.1-1 (My, Vx) Sgrt(0.000 + 0.000)= 0.000 <= 1.0 Page 40 of 44 CFS Version 8.0.5 Analysis: Analysis 6.anl 4 ft Span Simple Beam Rev. Date: 1/30/2017 8:21:03 PM Printed: 1/30/2017 8:21:30 PM Load Combination: D+L, Y Direction Reaction (k) 0.21 0.21 0.21 Shear (k) Moment (k-in) Deflection (in) 2.52 -0.19057 -0.21 Page 41 of 44 �-+ Salvatore R. Granata P . E . , C . E . Date 1 /25/2017 Phone: (678) 367-3151 146 Lee Road 2012 Fax: 866-815-4682 Cell: (770) 301-5817 Opelika, AL 36804 sal@srgpe.net Toll Free: (877)346-5126 salgranata.com By SRG Plywood Deck: Plywood Deck DWG. S-2 3/4" APA Rated A-B Grade Plywood Fb = 1,430 psi Fv = 190 psi E = 1,800,000 psi Assume 1 ft Wide Strip with Face Grain Parralel Plywood Width: b = 12 Plywood Thickness: t = 0.75 Direction in of Ramp in Plywood Area : A = 12" * t = Live Load : L = 9.0 in 100 psf Dead Load: D = 5 psf w = L + D = 105 psf Span: S = 2.0 ft V=0.5*S*w= 105.0 Ibs v=V/A= 11.667 psi OK Bending Moment: M = w * S2 / 8 = 52.5 ft-Ibs = 630 in-Ibs Sx=b*t2/6= 1.13 in fb = M / Sx = 560.0 psi OK Ix = b * t3 / 12 = 0.422 in4 * E * I) Deflection : d = 5 * (w / 144) * (S * 12)4 / (384 Deflection : d = 0.004 in OK Page 42 of 44 Q m U O U 2 O � LL ao 0 O O O O � ffic L a M � r N r O 0 OD NKN nU O NZ �C W u ai W O > �oa= 0 N L N O Z O o 00 p 1�1 c Y c� o aN H �'a U w w a W � o Ln a z M z a W U rn F Q U C> W U cn LL`w t z O > E. m co 0 Y .21 o � O O O C Lu W '^ O � z� z + + + +i -HLU o<G� n FOW�o O ty O' O w z o ho LU —0— 2& Z Q¢ o-d� ka rn c° ~O m m LL d IESHHO O N gaC�=�o n W w�wFs� 100J z N O 6w€o � > m�S¢ O O N +I +I +I +I +I O 0 0O W FaQo:;w O ® ° L, O Z ao�w O ^ O ®000 M C N 0 0 O N LU J ��CC 0000 >2 X X 8,m��3= m ®®® 0 0 0 0®®® 0®0 0 O a ®0°o a r 0®°0 ~ w o ®0®® o O N 0®N O 0 0 0 0 X 00®0 X O O 0®®® O C) o p 0000 N O Go M C > O 00 ®0®0 O Ix1� J a C ®0 ®0 O Q Q a r' ^ ®0®® ^ N W v ®0®0 O 0 000 (n 0 0 ® ® O 0u N G O 000 O p p W 0 0®0 u U 0®00 W m 0O O ®° 0 OLO O d w LO ® 0® 0 LO M O 0®0® Ln ® ® N 0 0 ® 00®00 0 � a w 0 Lr) 000 Q LL O N 000® Ln OO U (.0 O 000® M O �a 0 N 0 0 O N 0 LF ® ®® z —0--0 ° _o L M � U L N a a m Q LL Q m U O I Wz 1X3 LMI-8£b-008-6 W0O•310MO NHONnaS Page 43 of 44 Typical Screws TEKS` SELF -DRILLING FASTENERS Product Report No. 02701 ..................................................................................................................................... Selector For #10 Screws: Guide AISI Section E4.1 - Minimum Spacing = 3 * (0.190") = 0.57" sories AISI Section E4.2 - Minimum Edge Distance = 1.5 * (0.190") = 0.285" Use 3/8" Minimum 1196200 8-18 x 1/2" HWH #2 .036-.100 .205 10,000 • Hat channel to stud 1199200 8-18 x 5/8" HWH #2 .036-.100 .330 10,000 . Stud splicing 1200200 8-18 x 3/4" HWH #2 .036-.100 .455 10,000 1202200 8-18 x 1" HWH #2 .036-.100 .705 8,000 1204200 8-18 x 1-1/2" HWH #2 .036-.100 1.205 4,000 1107053 10-16 x 3/4" HWH #1 .018-.095 .220 5,000 . Stitching roof deck, wall panel 1109053 12-14 x 3/4" HWH #1 .018-.095 .205 4,000 1399053 1/4-14 x 7/8" HWH #1 .018-.095 .380 5,000 sidelaps or duct work 1398000 10-16 x 1/2" Pan #3 .036-.175 .150 10,000 VA" 1541000 10-16 X 5/8" Pan #3 .036-.175 .200 5,000 • Clips, duct straps, brick ties or 1224000 10 16 x 3/4" Pan #3 .036 .175 .325 5,000 accessories to steel framing 1542000 10-16 x 3/4" Oval #3 .036-.175 .325 5,000 1397000 10-16 x 1/2" HWH #3 .036-.175 .150 5,000 1127000 10-16 x 5/8" HWH #3 .036-.175 .200 5,000 1128000 10-16 x 3/4" HWH #3 .036-.175 .325 5,000 Use # 10-16 TEK Screws Tension Capacity = 708 lbs / 3 = 236 lbs in 16 gage Steel Studs With serration Shear Capacity = 1540 lbs / 3 = 513 lbs in 16 gage Steel Studs under head. t Electro-zinc inrs . x Pe,f—mance Data i PUL T VALUES (average lbs. ultima e) Fastener Steel Gauge Dia. Pt. 26 24 22 20 18 16 14 1 12 #6 2 120 183 248 296 471 679 847 - #8 2 119 193 265 298 491 703 959 - 1 148 241 311 357 565 826 1111 1796 #10-16 3 124 208 266 299 499 1 708 1 967 1474 #12 1 159 261 338 390 649 908 1259 1949 1/4 1 1 1 208 1 329 1 428 1 562 1 800 1151 1 - - SHEET STEEL GAUGES Gauge No. 12 14 16 18 20 22 24 26 Decimal Equivalent .105" .075" .060" .048" .036" .030" 024" 018" The values listed are ultimate averages achieved under laboratory conditions and apply to Buildex manufactured fasteners only. Appropriate safety factors should be applied to these values for design purposes. FASTENER VALUES Fastener (dia-tpi) Tensile (lbs. min.) Shear (av . lbs. ult.) Torque (min. in. lbs.) 6-20 1285 750 25 8-18 1545 1000 42 10-16 1936 1400 61 10-24 2702 1500 65 12-14 2778 2000 92 1/4-14 4060 2600 150 SHEAR VALUES (average lbs. ultimate) Fastener Steel Gauge (lapped) NV Dia. Pt. 26 24 22 20 18 16 14 #6 2 278 466 526 758 845 - - #8 2 294 496 560 740 1060 - - #10 1 398 584 659 884 1374 - - 3 - 455 526 728 1266 1540 1552 #12 1 432 703 753 1018 1452 - - 1/4 1 1 1 511 1 849 1 885 1 1244 1764 - - S ...................................................................................................................................... Installation Guidelines _AL A standard screwgun with a depth sensitive nosepiece should be The fastener is fully seated when the head is flush with the used to install Teks. For optimal fastener performance, the work surface. screwgun should be a minimum of 4 amps and have a RPM range of 0-2500. Overdriving may result in torsional failure of the fastener or AIL Adjust the screwgun nosepiece to properly seat the fastener. AL New magnetic sockets must be correctly set before use Remove chip build-up as needed. k is/TwBuildex 1349 West Bryn Mawr Avenue Itasca, Illinois 60143 630-595-3500 Fax:630-595-3549 www.itwbuildex.com stripout of the substrate. The fastener must penetrate beyond the metal structure a minimum of 3 pitches of thread. Teks° and Climaseall are trademarks of ITW Buildex and Illinois Tool Works, Inc. 0 2010 ITW Buildex and Illinois Tool Works, Inc. 6 Page 44 of 44