BCOM2019-0029 - Structural CalcsDESIGN CALCULATIONS
FOR:
12' WIDE COMMERCIAL MODULAR BUILDING w/ OUTRIGGER CHASSIS
PAD/PIER/ANCHOR SYSTEM
(130 MPH / EXP'C' WIND)
BCOM2019-0029
CITY OF LA QUINTA
BUILDING DIVISION
REVIEWED FOR
CODE
COMPLIANCE
DIT108/14/2019 , JF-
SILVERROCK / TWO (2) HCD REGULATED
MODULAR STRUCTURES TO BE USED AS
PRO SHOP AND RESTROOM FACILITY (1,368
SF TOTAL). VB/B-OCC/7-OL/NON-SPRINKLED.
11450 MISSION BLVD.
MIRA LOMA, CALIFORNIA 91752
(951) 360-6600
PROJECT:
Yl+n a C rr � i 7155
PREPARED FOR:
mobile
modular,
Your Project - Our Commitment
PREPARED BY:
ACUMEN
Engineering, Inc.
APR 1 9 2019
5700 LAS POSITAS RD.
LIVERMORE, CALIFORNIA 94551
(925) 606 - 9000
12808 SOUTH 600 EAST
DRAPER, UT. 84020
(801) 571- 9877
FAX (801) 571- 9951
COVER SHEET
1
ROOF LIVE LOAD:
20 PSF
DESIGN CODE:
2016 CBC
DESIGN LOADS
2
FLOOR LIVE LOAD:
50 PSF
IMPORTANCE FACTOR:
1.0
'PAD CAPACITY
7
PARTITION LOAD:
15 PSF
RISK CATEGORY:
II
PAD/PIER SPACING
8
WIND SPEED /
130 MPH,
SPECTRAL RESPONSE
ANCHOR QUANTITY
9
EXPOSURE:
EXP'C'
ACCELERATION: (Ss)
1.50 g
OVERTURNING
11
ALLOWABLE SOIL
(S1)
0.60 g
BEARING PRESSURE:
1500 PSF
SITE CLASS:
D
Title to these calculations remains with ACUMEN ENGINEERING, INC. The information herein is for the sole use
of MOBILE MODULAR MANAGEMENT CORP. and shall be held confidential. Re -use or reproduction in whole or
in part is prohibited.
Acumen Engineering, Inc.
JOB TITLE 12' Wide Commercial Modular'
12808 South 600 East
Pad/Pier/Anchor Plans
Draper, UT 84020
JOB NO. SHEET NO. c/
801571-9877
CALCULATED BY DATE
acumenengemsn. com
CHECKED BY DATE
www.struware.com
Code Search
Code: ASCE 7 - 10
Occupancy:
Occupancy Group = B Business
Risk Category & Importance Factors:
Risk Category = II
Wind factor= 1.00
Snow factor = 1.00
Seismic factor = 1.00
Type of Construction:
Fire Rating:
Roof= 0.0hr
Floor= 0.0hr
Building Geometry:
Roof angle (e)
0.25 / 12 1.2 deg
Building length (L)
44.0 ft
Least width (B)
12.0 ft
Mean Roof Ht (h)
13.0 ft
Parapet ht above grd
0.0 ft
Minimum parapet ht
0.0 ft
Live Loads:
Roof 0 to 200 st 20 psf
200 to 600 sf. 24 - 0.02Area, but not less than 12 psf
over 600 sf: 12 psf
Floor:
Typical Floor 50 psf
Partitions 15 psf
Acumen Engineering, Inc. JOB TITLE 12' Wide Commercial Modular
12808 South 600 East Pad/Pier/Anchor Plans
Draper, UT 84020 JOB NO. SHEET NO. F 3
801-571-9877 CALCULATED BY DATE
acumeneng@msn.00m CHECKED BY DATE
Wind Loads:
ASCE 7- 10
Ultimate Wind Speed
130 mph
Nominal Wind Speed
100.7 mph
Risk Category
II
Exposure Category
C
Enclosure Classif.
Enclosed Building
Internal pressure
+/-0.18
Directionality (Kd)
0.85
Kh case 1
0.849
Kh case 2
0.849
Type of roof
Gable
•,,-(-y
{{
+ /-5p dkp
Topographic Factor
(Kzt)
- p`•^'}dj bjs •u and
Topography
Flat
Hill Height (H)
0.0 it
H< 15ft;exp
Half Hill Length (Lh)
0.0 it
:. Kzt=1.0 Lh Sri
Actual H/Lh =
0.00
Use H/Lh =
0.00
Modified Lh =
0.0 ft
ESCARPMENT
From top of crest: x =
50.0 It
Bldg up/downwind?
downwind
z
H/Lh= 0.00
K, = 0.000
x/Lh=0.00
K2= 0.000
_,.-
z/Lh = 0.00
K3 = 1.000
4- -
At Mean Roof Ht:
! I t
f
Kzt = (1+KIK2K3)42 = 1.00
2D RIDGE or AXISYMMETRICAL HILL
Gust Effect Factor
h = 13.0 ft
B = 12.0 it
/z (0.6h) = 15.0 It
Rinid Structure
e =
0.20
t =
500 It
zmin =
15 It
c =
0.20
90, 9V =
3.4
Lz =
427.1 It
Q =
0.95
Iz =
0.23
G=
0.90 use G=0.85
ReAble structure if natural frequency < 1 Hz (T > 1 second).
However, if bump hIB < 4 then probably rigid structure (rule of thumb).
h/B = 1.08 Therefore, probably rigid structure
G = 0.85 Using rigid structure default
Flexible or Dvnarnically Sensitive Structure
Natural Frequency (rl,) =
0.0 Hz
Damping ratio (P) =
0
/b =
0.65
/a =
0.15
Vz =
109.8
Ni =
0.00
Kn =
0.000
Rh =
- 28.262 q = 0.000
RB =
28282 r) = 0.000
Rr =
28.282 q = 0.000
9R =
0.000
R =
0.000
G =
0.000
h = 13.0 ft
Acumen Engineering, Inc.
12808 South 600 East
Draper,. UT 84020
801-571-9877
acumeneng@msn.com
JOB TITLE 12' Wide Commercial Modular'___
Pad/Pier/Anchor Plans
JOB NO. SHEET NO.
CALCULATED BY _ DATE
CHECKED BY DATE
Wind Loads - MWFRS all h (Enclosed/Dartially enclosed onl
Kh (case 2) =
0.85
h =
13.0 ft GCpi = +/-0.18
Base pressure.(gh) =
311 psf
ridge ht =
13.1 fit G = 0.85
Roof Angle (6) =
1.2 deg
L =
44.0 ft qi = qh
Roof tributary area - (h/2)"L:
286 at
B =
12.0It
(h/2)'B:
78 sf
Ultimate Wind Surface Pressures loan
Surface
Wind Normal to Ridge
B/L = 0.27 h/L = 1.08
- Wind Parallel to Ridge
L/B = 3.67 h/L = 0.30
Cp ghGCP w/+q GCP, w/-ghGCpi
Disc Cp ghGCP w/+giGCai w/-ghGCpi
Windward Well (WW)
0.80
21.2
see table below
0.80
21.2
see table below
Leeward Wall (LW)
-0.50
-13.3
-18.9
-7.6
-0.22
-5.7
-11.4 -0.1
Side Wall (SW)
-0.70
-18.6
-24.2
-13.0
-0.70
-18.6
-24.2 -13.0
Leeward Roof (LR)
"`
Included in windward
roof
Windward Roof: 0 to h/2"
-1.16
-30.7
-36.3
-25.1
0 to h/2"
-0.90
-23.9
-29.5 -18.3
> h/2"
-0.70
-18.6
- -24.2
-13.0
h/2 to h"
-0.90
-23.9
-29.5 -18.3
In to 2h"
-0.50
-13.3
-18.9 -7.6
> 2h`
-0.30
-8.0
-13.6 -2.3
"Hoot angle < I degrees. I heretore, leeward root
is included in windward roof pressure zones.
'Horizontal distance from windward edge
dward Wall Pressures at "z" (Dsfl lCombined W W + LW
Windward Wall Normal Parallel
z I Kz I K- q�GCP w/+giGCpi w1-ghGCp1 to Ridge I to Ridge
h= 0 to 15' 0.85 1.00 212 15.6 26.8 \ 34.5 27.0
PpwoJAee�L0 y(iz9'1y�i Iihd'- 214'L; (D.6 / -- 2a�7 Parr"
NOTE:
See figure in ASCE7 for the application of full and partial loading
of the above wind pressures. There are 4 different loading cases.
Para et
z Kz IKzt qP (Psf)
0.0 ft 0.85 1.00 0.0
Windward parapet: 0.0 psf (GCpn = +1.5)
Leeward parapet: 0.0 psi (GCpn = -1.0)
Windward roof overhangs ( add to windward roof pressure) : 212 psf (upward)
VMM MMUL TO MGE
VTR \..
Lj
� w
.fig ti
am
Q2ECTT011
WIlJp PA Ln TO RMOE
vmro
w.>(rz rrcl�r
llwu umm rnrnarc
Acumen Engineering, Inc. JOB TITLE 17 Wide Commercial Modular
12808 South 600 East PadlPier/Anchor Plans
Draper, UT 84020 JOB NO. SHEET NO.
801-571-9877 CALCULATED BY - DATE
acumeneng@nIsn.com CHECKED BY DATE
Seismic Loads: ASCE 7-10
Risk Category : II
Importance Factor (1) : 1.00
Site Class: D
Ss (0.2 sec) = 150.00 %g
S1 (1.0 sec) = 60.00 %g
Strength Level Forces
Fa = 1.000
Sms = 1.500 S. = 1.000 Design Category = D
Fv = 1.500
Sm1 = 0.900 Sol = 0.600 - Design Category = D
Seismic Design Category =
D
Number of Stories:
1
Structure Type:
All other building systems
Horizontal Struct Irregularities:
No plan Irregularity -
Vertical Structural Irregularities:
I ) Stiffness Irregularity —Soft Story
Flexible Diaphragms:
Yes
Building System:
Bearing Wall Systems
Seismic resisting system:
Light framed wall system using flat strap bracing
System Structural Height Limit
65 ft
Actual Structural Height (hn) =
13.1 ft
See ASCE7 Section 12.2.5 for exceptions and other system limitations
DESIGN COEFFICIENTS AND FACTORS
Response Modification Coefficient (R) =
4
Over -Strength Factor (Do) =
2
Deflection Amplification Factor (Cd) =
3.5
boa =
1.000
Sol =
OADD
p = redundancy coefficient
Seismic Load Effect (E) =
p QE +l - 0.2Sm D = p QE +l- 0.200D QE = horizontal seismic force
Special Seismic Load Effect (Em) =
DO QE +/- 0.28m D = 2.0 QE +/- 0.200D D = dead load
PERMITTED ANALYTICAL PROCEDURES
Simplified Analysis - Use Equivalent Lateral Force Analysis
Equivalent Lateral -Force Analysis
- Permitted
Building period coat. (CT) =
OM20
Cu = 1.40
Approx fundamental period (Ta) _
Crha" =
0.138 sec x= 0.75 Tmax = CuTa = 0.193
User calculated fundamental period (T) _
0 sec Use T = 0.138
Long Period Transition Period (TL) =
ASCET map =
10
Seismic response coef. (Cs) =
Scel/R =
0.250
need not exceed Cs =
Sol I IRT
1.089
but not less than Cs =
0.5•S11/R =
0.075
USE Cs =
0.250
Design Base Shear V = 0.25OW
Model & Seismic Response Analysis
- Permitted (see code for procedure)
ALLOWABLE STORY DRIFT
Structure Type: All other strictures
Allowable story drift = 0.020hsx where hsx is the story height below level x
C/0
SEISMIC LOAD EFFECTS FOR ANCHOR DESIGN
(Simplified Design Procedure - ASCE 7-10)
Input:
Design Base Shear: (V) 0.250 W
Calculations:
Maximum Seismic Load Effect:
(no gravity loads on anchors)
Seismic Load Effect:
(no gravity loads on anchors)
Governing Earthquake Load:
Allowable Stress Design:
Em = Qo(Qe) + 0 (Eq. 12.4-7)
Overstrength Factor: (00) = 2.0
Earthquake Load Due to Base Shear: (Qe) = V
Em = 0.500 W
E = p(Qe) + 0 (Eq. 12.4-3)
Redundancy Factor. (p) = 1.3
Earthquake Load Due to Base Shear: (Qe) = V
E = 0.325 W
E = 0.500 W
0.7E (Section 2.4.1)
Earthquake Load Used in Lateral Design: 0.350 W
PI
Single Pad Configuration Calculations:
Bearing Pad Capacity Calculations:
Assumed Bearing Capacity: (Bj 1500 psf
Pad Specifications (Tp) x (Wp) x (Lp)
Nominal: 2 x 12 x 24
Actual: 1.5 x 11.25 x 24
Species: P.T DF-L #2
Cross Sectional Area: (Ap) 16.9 in
Section Modulus: (Sx.P) 4.2 in
Assume Load on Pad is Centered
Load Width on Pad: (Lw) 10 in
Pad Cantilever: (Cp) 7 in
Fe = 900 x 1.2 x 1.25 x 0.8 = 1080 psi
(CD) (Cf.) P)
F, = 180 x 1.25 x 0.8 = 180 psi
(CD) (C)
Uniform Distributed Load: W = (B� / 144) x Wp 117 pli
Maximum Moment: Mmax = 0.5 x W x Cp2 2871 Ibs
Allowable Bending Stess: fb = Mm,, / Sx; p 681 psi < Fe => OK in Bending
Maximum Shear: Vmax = W x Cp 820 Ibs
Allowable Shear Stess: fv = 1.5 x (V, . / Ad 72.9 psi < F ' _> OK in Shear
_> Capacity of Each Pad is: 3000 Ibs
PAD/PIER SPACING
Input Data
Roof Live Load: (RI)
20 psf
Roof Dead Load: (Rd)
6 psf
Exterior Wall Dead Load: (Wd)
5 psf
Floor Live Load: (A)
50 psf
Floor Partition Load: (Fp)
15 psf
Floor Dead Load: (Fd)
7 psf
Module Width: (W)
11.67 feet
Sidewall Height: (H)
8 feet
Pad Capacity: (P)
3000 Ibs (GOVERNS)
Pier Capacity: (P)
4000 Ibs
Calculations:
Weight of Exterior Wall: We = (Wd x H) 40 plf
Load Acting on Outside Chassis
Main Rails:
Wo = ((RI+Rd+FI+Fp+Fd)(W/2))+We 612 plf
Maximum Spacing of Piers on Outside
Main Rails: S = P/Wo 4.90 feet
ANCHOR DESIGN - 12' Wide Buildings
Input Data:
Design Wind Pressure: (P)
20.7 psf
Seismic Load Factor: (SI)
0.35 W
Roof Dead Load: (Rd)
6 psf
Floor Dead Load: (Fd)
7 psf
Exterior Wall Dead Load: (Wd)
5 psf
Roof Live Load used in Seismic
Calculation: (RI)
0 psf
Partition / Fixture Load used in
Seismic Calculation: (Pd)
5 psf
Floor Live Load used in Seismic
Calculations: (FI)
0 psf
Building Depth: (D)
11.67 feet
Exterior Wall Height: (H)
8 feet
Roof Depth: (R)
1.5 feet
Floor Depth: (F)
0.67 feet
Skirting / Foundation Height: (S)
3.33 feet
Miscellaneous Loads: (MI)
500 Ibs
Lateral Load Resistance of Anchor/Strap
Assembly: VL
2962 Ibs
Building Length: (L)
32 feet 40 feet 42 feet 44 feet
Calculations:
Transverse Load:
Base Shear Due to Wind:
Vw = P x (R + F + H + S/2) x L 7840 Ibs 9799 Ibs 10289 Ibs 10779 Ibs
Base Shear Due to Seismic:
Vs = (Si)(((LxD)(Rd+Fd+RI+Pd+FI))+
((L+D)x2xHxWd))+MI) 3750lbs 4563lbs 4766lbs 4969lbs
Governing Transverse Base Shear(V) 7840 Ibs 9799 Ibs 10289 Ibs 10779 Ibs
Longitudinal Load:
Base Shear Due to Wind:
Vw = P x (R + F + H + S/2) x D 2859 Ibs 2859 Ibs 2859 Ibs 2859 Ibs
Base Shear Due to Seismic: (Vs) 3750 Ibs 4563 ibs 4766 Ibs 4969 Ibs
Governing Longitudinal Base Shear:OM 3750 Ibs 4563 Ibs 4766 Ibs 4969 Ibs
Ground Anchor Quantity:
In Each Transverse Direction: Nt = V/VL 2.65 say 3 3.31 say 4 3.47 say 4 3.64 say 4
In Each Longitudinal Direction: Nt = VI/VL 1.27 say 2 1.54 say 2 1.61 say 2 1.68 say 2
Total Quantity of Anchors Required: 10 Anchors 12 Anchors 12 Anchors 12 Anchors
R
ANCHOR DESIGN - 12' Wide Buildings
Input Data:
Design Wind Pressure: (P)
20.7 psf
Seismic Load Factor: (SI)
0.35 W
Roof Dead Load: (Rd)
6 psf
Floor Dead Load: (Fd)
7 psf
Exterior Wall Dead Load: (Wd)
5 psf
Roof Live Load used in Seismic
Calculation: (RI)
0 psf
Partition / Fixture Load used in
Seismic Calculation: (Pd)
5 psf
Floor Live Load used in Seismic
Calculations: (FI)
0 psf
Building Depth: (D)
11.67 feet
Exterior Wall Height: (H)
8 feet
Roof Depth: (R)
1.5 feet
Floor Depth: (F)
0.67 feet
Skirting / Foundation Height: (S)
3.33 feet
Miscellaneous Loads: (MI)
500 Ibs
Lateral Load Resistance of Anchor/Strap
Assembly: VL
2962 Ibs
Building Length: (L)
52 feet 60 feel
Calculations:
Transverse Load:
Base Shear Due to Wind:
Vw = P x (R + F + H + S/2) x L 12739 Ibs 14699 Ibs
Base Shear Due to Seismic:
Vs = (SI)(((LxD)(Rd+Fd+RI+Pd+FI))+
((L+D)x2xHxWd))+MI) 5781 Ibs 6593lbs
Governing Transverse Base Shear:(V) 12739 Ibs 14699 Ibs
Longitudinal Load:
Base Shear Due to Wind:
Vw = P x (R + F + H + S/2) x D 2859 Ibs 2859 Ibs
Base Shear Due to Seismic: (Vs) 5781 Ibs 6593 Ibs
Governing Longitudinal Base Shear:(VI) 5781 Ibs 6593 Ibs
Ground Anchor Quantity:
In Each Transverse Direction: Nt = V/VL 4.30 say 5 4.96 say 6
In Each Longitudinal Direction: Nt = VI/VL 1.95 say 2 2.23 say 3
Total Quantity of Anchors Required: 14 Anchors 18 Anchors
ANCHOR DESIGN (OVERTURNING)- 12' x 32' Building
- CHECK FOR OVERTURNING
- BY OBSERVATION, WIND IN TRANSVERSE DIRECTION IS CRITICAL.
- CHECK OVERTURNING ABOUT POINT W TO ENSURE ADEQUATE GROUND ANCHOR QUANTITY.
Input Data:
Module Width: (D)
11.67 ft
Module Length: (L)
32 ft
Main Rail Spacing: (MRS) .
6.29 A _
Roof Depth: (R)
1.5 ft
Wall Height: (H)
8 ft
Floor Depth: (F)
0.67 ft
Chassis Depth: (C)
0.83 ft
Roof Dead Load: (Rd)
7 Ibs
Wall Dead Load: (Wd)
5 Ibs
Floor Dead Load: (Fd)
6 Ibs
Uplift Pressure: (Pu)
21.8 psf
Horizontal Pressure: (PH)
20.7 psf
Anchor Capacity: (Ac)
2962 Ibs
H
MEMEMEMS
tY
MRS/2
WW
t
"s
MRS
u-
1 1IT A-�
Calculations:
Module Height: �Mh) = R + Wh + F =
Distributed Horizontal Load: (H) = PH x L x Mh =
Distributed Uplift: (U) = Pu x D x L =
Dead Load: (W)=((Rd+Fd)x(DxQ)+(2xHxWdx(D+L))_
Overturning Moment: (Mo)
Mo = H x ((Mh / 2) + C) + (U x (MRS / 2))
Qty of Anchors to Resist Overturning Moment: (Ar)
Ar = ((1.5 x Mo) - (W x (MRS / 2)) / (Ac x MRS) =
10.17 ft
6734 Ibs
8131 Ibs
8347 Ibs
65402 Ibs-ft
3.86 say 5 (3 Transverse &
2 Longitudinal)
Z"
ANCHOR DESIGN (OVERTURNING) -12' x 44' Building
- CHECK FOR OVERTURNING
- BY OBSERVATION, WIND IN TRANSVERSE DIRECTION IS CRITICAL.
- CHECK OVERTURNING ABOUT POINT W TO ENSURE ADEQUATE GROUND ANCHOR QUANTITY.
Input Data:
Module Width: (D)
11.67 ft
Module Length: (L)
44 ft
Main Rail Spacing: (MRS)
6.29 ft
Roof Depth: (R)
1.5 ft
Wall Height: (H)
8 ft
Floor Depth: (F)
0.67 ft
Chassis Depth: (C)
0.83 ft
Roof Dead Load: (Rd)
7 Ibs
Wall Dead Load: (Wd)
5 Ibs
Floor Dead Load: (Fd)
6 Ibs
Uplift Pressure: (Pu)
21.8 psf
Horizontal Pressure: (PH)
20.7 psf
Anchor Capacity: (Ac)
2962 Ibs
H
==19
msmmmmmm
awe---
MRS/2
1W
r
MRS
u_
IT A U
Calculations:
Module Height: (Mh) = R + Wh + F =
Distributed Horizontal Load: (H) = PH x L x Mh =
Distributed Uplift: (U) = Pu x D x L =
Dead Load: (W) = ((Rd + Fd) x (D x L)) + (2 x H x Wd x (D + L)) _
Overturning Moment: (Mo)
Mo = H x ((Mh / 2) + C) + (U x (MRS / 2)) =
Qty of Anchors to Resist Overturning Moment: (Ar)
Ar = ((1.5 x Mo) - (W x(MRS /2))/(AcxMRS) =
10.17 ft
9260 Ibs
11180 Ibs
11127 Ibs
89928 Ibs-ft
5.36 say 6 (4 Transverse &
2 Longitudinal)
ANCHOR DESIGN (OVERTURNING) - 12' x 52' Building
- CHECK FOR OVERTURNING
- BY OBSERVATION, WIND IN TRANSVERSE DIRECTION IS CRITICAL.
- CHECK OVERTURNING ABOUT POINT'A' TO ENSURE ADEQUATE GROUND ANCHOR QUANTITY.
Input Data:
Module Width: (D)
11.67 ft
Module Length: (L)
52 ft
Main Rail Spacing: (MRS)
6.29 ft
Roof Depth: (R)
1.5 ft
Wall Height: (H)
8 ft
Floor Depth: (F)
0.67 ft
Chassis Depth: (C)
0.83 ft
Roof Dead Load: (Rd)
7 Ibs
Wall Dead Load: (Wd)
5 Ibs
Floor Dead Load: (Fd)
6 Ibs
Uplift Pressure: (Pu)
21.8 psf
Horizontal Pressure: (PH)
20.7 psf
Anchor Capacity: (Ac)
2962 Ibs
H
MRS/2
1W
r
MRS
u_
IT A U
Calculations:
Module Height: (Mh) = R + Wh + F =
Distributed Horizontal Load: (H) = PH x L x Mh =
Distributed Uplift: (U) = Pu x D x L =
Dead Load: (W) = ((Rd + Fd) x (D x L)) + (2 x H x Wd x (D + L)) _
Overturning Moment: (Mo)
Mo = H x ((Mh 12) + C) + (U x (MRS / 2)) =
Qty of Anchors to Resist Overturning Moment: (Ar)
Ar=((1.5xMo) -(Wx(MRS /2))/(AcxMRS) =
10.17 ft
10943 Ibs
13213 Ibs
12980 Ibs
106278 Ibs-ft
6.36 say 7 (5 Transverse &
2 Longitudinal)
ANCHOR DESIGN (OVERTURNING) - 12' x 60' Building
- CHECK FOR OVERTURNING
- BY OBSERVATION, WIND IN TRANSVERSE DIRECTION IS CRITICAL.
- CHECK OVERTURNING ABOUT POINT W TO ENSURE ADEQUATE GROUND ANCHOR QUANTITY.
Input Data:
Module Width: (D)
11.67 ft
Module Length: (L)
60 ft
Main Rail Spacing: (MRS)
6.29 ft
Roof Depth: (R)
1.5 It
Wall Height: (H)
8 ft
Floor Depth: (F)
0.67 ft
Chassis Depth: (C)
0.83 ft
Roof Dead Load: (Rd)
7 Ibs
Wall Dead Load: (Wd)
5 Ibs
Floor Dead Load: (Fd)
6 Ibs
Uplift Pressure: (Pu)
21.8 psf
Horizontal Pressure: (PH)
20.7 psf
Anchor Capacity: (Ac)
2962 Ibs
2
MRS/2
1W
MRS
u_
IT
4 ;>
A O
Calculations:
Module Height: (Mh) = R + Wh + F =
Distributed Horizontal Load: (H) = PH x L x Mh =
Distributed Uplift: (U) = Pu x D x L =
Dead Load: (W) = ((Rd + Fd) x (D x L)) + (2 x H x Wd x (D + L)) _
Overturning Moment: (Mo)
Mo H x ((Mh / 2) + C) + (U x (MRS / 2)) =
Qty of Anchors to Resist Overturning Moment: (Ar)
Ar=((1.5xMo) -(Wx(MRS /2))/(AcxMRS)
=
10.17 ft
12627 Ibs
15246 Ibs
14833 Ibs
122629 Ibs-ft
7.37 say 8 (6 Transverse &
2 Longitudinal)
DESIGN CALCULATIONS
FOR:
24' WIDE COMMERCIAL MODULAR BUILDING w/ OUTRIGGER CHASSIS
PAD/PIER/ANCHOR SYSTEM
(130 MPH / EXP'C' WIND)
PROJECT:
-� c n7,q �h rnrlison Lm,�:
11450 MISSION BLVD.
MIRA LOMA, CALIFORNIA 91752
(951)360-6600
PREPARED FOR:
mobile
modular P.1
Your Project • Our Commitment
PREPARED BY:
ACUMEN
Engineering, Inc.
FEB 2 5 201
5700 LAS POSITAS RD.
LIVERMORE, CALIFORNIA 94551
(925) 606 - 9000
12808 SOUTH 600 EAST
DRAPER, UT. 84020
(801) 571- 9877
FAX (801) 571- 9951
COVER SHEET
1
ROOF LIVE LOAD:
20 PSF
DESIGN CODE:
2016 CBC
DESIGN LOADS
2
FLOOR LIVE LOAD:
50 PSF
IMPORTANCE FACTOR:
1.0
PAD CAPACITY
7
PARTITION LOAD:
15 PSF
RISK CATEGORY:
II
PAD/PIER SPACING
8
WIND SPEED /
130 MPH,
SPECTRAL RESPONSE
COLUMN SUPPORTS
9
EXPOSURE:
EXP'C'
ACCELERATION: (Ss)
1.50 g
ANCHOR QUANTITY
15
ALLOWABLE SOIL
(S1)
0.60 g
BEARING PRESSURE:
1500 PSF
SITE CLASS:
D
Title to these calculations remains with ACUMEN ENGINEERING, INC. The information herein is for the sole use
of MOBILE MODULAR MANAGEMENT CORP. and shall be held confidential. Re -use or reproduction in whole or
in part is prohibited.
Acumen Engineering, Inc.
JoBTrrLE 24' Wide Commercial Modular
12808 South 600 East
Pad/Pier/Anchor Plans
Draper, UT 84020 _
JOB NO. SHEET NO. �r
801-571-9877
CALCULATED BY DATE
acumeneng@msn.com
CHECKED BY DATE
www.struware.com
Code Search
Code: ASCE 7 - 10
Occupancy:
Occupancy Group = B Business
Risk Category & Importance Factors:
Risk Category = II
Wind factor = 1.00
Snow factor = 1.00
Seismic factor = 1.00
Type of Construction:
Fire Rating:
Roof = 0.0 hr
Floor = 0.0 hr
Building Geometry:
Roof angle (0)
0.25 / 12 1.2 deg
Building length (L)
65.0 ft
Least width (B)
24.0ft
Mean Roof Ht (h)
14.0 It
Parapet ht above grd
0.0 ft
Minimum parapet ht
0.0 ft
Live Loads:
Roof 0 to 200 st 20 psf
200 to 600 st 24 - 0.02Area, but not less than 12 psf
over 600 sf. 12 psf
Floor:
Typical Floor 50 psf
Partitions 15 psf
Acumen Engineering, Inc.
12808 South 600 East
Draper, UT 84020
801-571-9877
acumeneng@msn.com
JOBTm_E 24' Wide Commercial Modular'
Pad/Pier/Anchor Plans
JOB NO. SHEET NO.
CALCULATED BY DATE
CHECKED BY DATE
Wind Loads: ASCE 7- 10
Ultimate Wind Speed 130 mph
Nominal Wind Speed 100-7 mph
Risk Category II
Exposure Category C
Enclosure Classif. Enclosed Building
Internal pressure +/-0.18
Directionality (Kd) 0.85
Kh easel 0.849
Kh case 2 0.849
Type of roof Gable
„y y
Topographic Factor (Kzt)
`'t"'
1 j .F.•.;; J7 fldc%r,..:ndl
Topography Flat
1. -
Hill Height (H) 0.0 ft
H< 15ft;exp C
I H
Half Hill Length (Lh) 0.0 ft
:. Kzl 1-0 /
if µ,_ *
Actual H/Lh = 0.00
-- j
----t—�
Use H/Lh = 0.00
Modified Lh = 0.0 It
ESCARPMENT
From top of crest: x = 50.0 ft
Bldg up/down wind? downwind
i
H/Lh= 0.00 Ki = 0.000
,l
x/Lh = 0.00 K2 = 0.000ir-;Ire+i.
z/Lh = 0.00 K3 = 1.000
< H/ , I i
At Mean Roof Ht:
Kzt = (1+K,KZK3)A2 = 1.00
2D RIDGE or 3D ARISYMMETRICAL HILL
Gust Effect Factor
h = 14.0 it
B = 24.0 ft
/z (0.6h) = 15.0 It
Rigid Structure
C. =
0.20
t =
500 It
Zmin =
15 It
c=
020
go, 9V =
3.4
Li =
427.1 It
Q =
0-94
h =
0.23
G=
0.89 use G=0.85
Flewble structure if natural frequency < 1 Hz IT > 1 second).
However, if building hlB < 4 then probably rigid structure (rule of thumb).
h/B = 0.58 Rigid structure
G = 0.85 Using rigid structure default
Flexible or Dynamically Sensitive Structure
Natural Frequency (qj) = 0.0 Hz
Damping ratio (P) = 0
/b = 0.65
/a= 0.15
Vz= 109.8
Nt = 0.00
Kn = 0.000
Rh = 28.282
RB = 26.282
RL = 28.282
gR = 0.000
R = 0.000
G - 0.000
= 0.000
= 0.000
q = 0.000
h = 14.0 It
Acumen Engineering, Inc.
12808 South 600 East
Draper, LIT 84020
801-571-9877
acumeneng@msn.com
JOB Tn-LE 24'. Wide Commercial Modular
Pad/Pier/Anchor Plans
JOB NO. SHEET NO.
CALCULATED BY DATE
CHECKED BY DATE
Wind Loads - MWFRS hs60' (Low-rise Buildinas) Enclosed/partially enclosed only
Kz = Kh (case 1) = 0.85 Edge Strip (a) = 3.0 ft
Base pressure (qh) = 31.2 psf End Zone (2a) = 6.0 it
GCpi = +/-0.18 Zone 2 length = 12.0 ft
Wind Pressure Coefficients
CASE A
CASE B
e = 1.2 deg
Surface
GCpf
w/-GCpi
w/+GCpi
GCpf
w/-GCpi
w/+GCpi
1
0.40
0.58
022
-0.45
-0.27
-0.63
2
-0.69
-0.51
-0.87
-0.69
-0.51
-0.87
3
-0.37
-0.19
-0.55
-0.37
-0.19
-0.55
4
-0.29
-0.11
-0.47
-0.45
-027
-0.63
5
0.40
0.68
0.22
6
-0.29
-0.11
-0.47
1 E
0.61
0.79
0.43
-0.48
-0.30
-0.66
2E
-1.07
-0.89
-1.26
-1.07
-0.89
-1.25
3E
-0.53
-0.35
-0.71
-0.53
-0.35
-0.71
4E
-0.43
-0.25
-0.61
-0.48
-0.30
-0.66
5E
0.61
0.79
0.43
6E
1
-0.43
-0.25
-0.61
Ultimate Wind Surface Pressures (psf)
1
18A 6.9
-8.4 -19.7
2
-15.9 -27.2
-15.9 -27.2
3
-5.9 -172
-5.9 -17.2
4
-3.4 -14.7
-8.4 -19.7
5
18.1 6.9
6
-3.4 -14.7
1 E
24.7 13.4
-9.4 -20.6
2E
-27.8 -39.0
-27.8 -39.0
3E
-10.9 -222
-10.9 -22.2
4E
-7.8 -19.0
-9.4 -20.6
5E
24.7 13.4
6E
-7.8 -19.0
Parapet
Windward parapet= 0.Opsf (GCpn'=+1.5)
Leeward parapet = 0.0 psf (GCpn = -1.0)
Horizontal MWFRS Simple Diaphragm Pressures
Transverse direction (normal to L)
Interior Zone: Wall
21.5 psf
Roof
-10.0 psf "
End Zone: Wall
32.5 psf
Roof
-16.9 psf "
Longitudinal direction (parallel to L)
Interior Zone: Wall 21.5 psf
End Zone: Wall 32.5 psi
"• NOTE: Total horiz force shall not be less than that determined
by neglecting roof forces (except for MWFRS moment frames).
The code requires the MWFRS be designed for a min ultimate
force of 16 psf multiplied by the wall area plus an 8 psf force
applied to the vertical projection of the roof.
Pa,U�ee hi'o-'r44 O%I *N : 27t.V (�, v, r 9,5 PS )`
Windward roof
overhangs = 21.9 psf (upward) add to
windward roof pressure
i- i
Acumen Engineering, Inc. JoB TITLE 24 Wide Commercial Modular
128DO South 600 East Pad/Pier/Anchor Plans
Draper, UT 84020 JOB NO. SHEET NO.
801-571-9877 CALCULATED BY DATE
acumeneng@msn_com CHECKED BY DATE
Seismic Loads: ASCE 7-1 O
Risk Category: II
Importance Factor (1) : 1.00
Site Class: D
Ss (02 sec) = 150.00 %g
S1 (1.0 sec) = 60.00 %g
Fa = 1.000 Sms = 1.500
Fv = 1.500 Sm1 = 0.900
Seismic Design Category = D
Number of Stories: 1
Structure Type: All other building systems
Horizontal Struct Irregularities: No plan Irregularity
Vertical Structural Irregularities: to )Stiffness Irregularity —Soft Story
Strength Level Forces
S. = 1.000 Design Category = D
SDI = 0.600 Design Category = D
Flexible Diaphragms:
Yes
Building System:
Bearing Wall Systems
Seismic resisting system:
Light framed wall system using flat strap bracing
System Structural Height Limit:
65 ft
Actual Structural Height (hn) = 14.3.ft
See ASCE7 Section 12.2.5 for exceptions and other system limitations
DESIGN COEFFICIENTS AND FACTORS
Response Modification Coeffx:ierd (R) = 4
Over -Strength Factor (Do) = 2
Deflection Amplification Factor (Cd) = 3.5
CDs = 1.000
SDI = 0.600
Seismic Load Effect (E) = p QE +/- 0.2SnsD
Special Seismic Load Effect (Em) = Qo QE +/- 0.2SM D
PERMITTED ANALYTICAL PROCEDURES
Simplified Analysis - Use Equivalent Lateral Force Analysis
Equivalent Lateral -Force Analysis
Building period coat. (Cr) =
Approx fundamental period (Ta) =
User calculated fundamental period (T) =
Long Period Transition Period (TL) =
Seismic response coef. (Cs) =
need not exceed Cs =
but not less than Cs =
USE Cs =
Model & Seismic Response Analysis
ALLOWABLE STORY DRIFT
ZY-PUTIMM
p = redundancy coefficient
= p QE +1- 0.200D QE = horizontal seismic force
= 2.0 QE +/- 0.200D D = dead load
0.020
Cu = 1.40
Grhn'=
0.147 sec x= o.75 Tmax = CuTa = 0.206
O sec Use T = 0.147
ASCE7 map=
10
Swl/R =
0.250
sdrl rRr=
1.020
0.5•S11/R=
0.075
0250
Design Base Shear V = 0.250W
- Permitted (see code for procedure)
Structure Type: All other structures
Allowable story drift = 0.020hsx where hsx is the story height below level x
E
SEISMIC LOAD EFFECTS FOR ANCHOR DESIGN
(Simplified Design Procedure - ASCE 7-10)
Input:
Design Base Shear: M 0.250 W
Calculations:
Maximum Seismic Load Effect:
(no gravity loads on anchors)
Seismic Load Effect:
(no gravity loads on anchors)
Governing Earthquake Load:
Allowable Stress Design:
Em = Qo(Qe) + 0 (Eq. 12.4-7)
Overstrength Factor: (Do) = 2.0
Earthquake Load Due to Base Shear: (Qe) = V
Em = 0.500 W
E = p(Qe) + 0 (Eq. 12.4-3)
Redundancy Factor. (p) = 1.3
Earthquake Load Due to Base Shear: (Qe) = V
E = 0.325 W
E = 0.500 W
0.7E
(Section 2.4.1)
Earthquake Load Used in Lateral Design: 0.350 W
Single Pad Configuration Calculations:
Bearing Pad Capacity Calculations:
Assumed Bearing Capacity: (B.) 1500 psf
Pad Specifications (Tp) x (Wp) x (Lp)
Nominal: 2 x 12 x 24
Actual: 1.5 x 11.25 x 24
Species: P.T DF-L #2
Cross Sectional Area: (Ad 16.9 in
Section Modulus: (Sx,p) 4.2 in3
Assume Load on Pad is Centered
Load Width on Pad: (LH,) 10 in
Pad Cantilever: (Cp) 7 in
Fti = 900 x 1.2 x 1.25 x 0.8 = 1080 psi
(CD) (Cfu) (CO
Fv' = 180 x 1.25 x 0.8 = 180 psi
(CD) (C)
Uniform Distributed Load: W = (B� / 144) x Wp 117 pli
Maximum Moment: Mmax = 0.5 x W x Cp2 2871 Ibs
Allowable Bending Stess: fb = Mm / Sx, p 681 psi < Fti => OK in Bending
Maximum Shear: Vmax = W x Cp 820 Ibs
Allowable Shear Stess: fv = 1.5 x (V,u. / Ad 72.9 psi < F,' _> OK in Shear
_> Capacity of Each Pad is: 3000 Ibs
PAD/PIER SPACING
Input Data:
Roof Live Load: (RI)
20 psf
Roof Dead Load: (Rd)
6 psf
Exterior Wall Dead Load: (Wd)
5 psf
Floor Live Load: (FI)
50 psf
Floor Partition Load: (Fp)
15 psf
Floor Dead Load: (Fd)
7 psf
Module Width: (W)
11.83 feet
Sidewall Height: (H)
8 feet
Pad Capacity: (P)
3000 Ibs (GOVERNS)
Pier Capacity: (P)
4000 Ibs
Calculations:
Weight of Exterior Wall: We = (Wd is H) 40 plf
Load Acting on Outside Chassis
Main Rails:
Wo = ((RI+Rd+FI+Fp+Fd)(W/2))+We 620 plf
Maximum Spacing of Piers on Outside
Main Rails: S = P/Wo 4.84 feet
Load Acting on Inside Chassis
Main Rails:
Wi = ((FI+Fp+Fd)(W/2)) 426 plf
Maximum Spacing of Piers on Inside
Main Rails: S = P/Wi 7.04 feet
I
Column Support (END COLUMM:
Input Data
Tributary Width: (Tw)
End Column Tributary Length: (Te)
Live Load: (LLr)
Dead Load: (DLr)
Calculations:
Roof Tributary Area: Ar 0.5 x Tw x Te
=> Ar > 200 :. Live Load (Rle) is Reducible: 24 - 0.02Ar
Column Load: (Pe)
Pe = (Rle + Rd) x Ar
Pier Capacity: (Cpier)
Qty of Piers: Npiers = Pe I Cpier
11.83 ft
32.5 ft
20 psf
6 psf
384 sq. ft.
16 psf
8578 Ibs
6000 lbs
1.43 � Use 2
Try (1) 2x12x24 Spreader Over (2) 2x12x24 Bearing Pads Placed Transverse to Spreader at Each Pier
Bearing Pad Capacity Calculations:
Actual Bearing Pressure: (BP)
BP = 0.25Pe / ((Wp x Lp)/144) = 1144 psf
Pad Specs (Tp) x (Wp) x (Lp)
Nominal: 2 x 12 x 24
Actual: 1.5 x 11.25 x 24
Species: P.T DF-L #2
Cross Sectional Area: (AP) 16.9 in
Section Modulus: (Sz,p) 4.2 in
Assume Load on Pad is Centered
Load Width on Pad: (Lw) 12 in
Pad Cantilever: (CP) 6 in
Fti = 900 x 1.25 x 1.25 x 0.8 = 1125 psi
(CD) (Cf.) (CI)
F,' = 180 x 1.25 x 0.8 = 180 psi
(CD) (CI)
Allowable Pressure: W = (BP / 144) x Wp
Maximum Moment: Mmax = 0.5 x W x CPz
Allowable Bending Stess: fb = Mmax / Sx, P
Maximum Shear: Vmax = W x CP
Allowable Shear Stess: fv = 1.5 x (Vmax / AP)
Assumed Bearing Capacity: (Bc)
Spreader Capacity Calculations:
89 pli
1608 Ibs
381 psi
536 Ibs
Lp
V
< Fe => OK in Bending
47.7 psi < F, => OK in Shear
1500 psf > Bp => OK in Bearing
Species: P.T DF-L #2
Actual Pad Pressure: (Pc) Cross Sectional Area: (AP) 16.9 in
P = C / W x 0.5L /144 2287 psf Section Modulus: S 4.2 in
c _ by (( P p) ) = P ( z.P)
Pad Specs
(Tp)
x (Wp) x
(Lp)
Assume Load on Pad is Centered
Nominal:
2
x 12 x
24
Load Width on Pad: (Lw) 10 in
Actual:
1.5
x 11.25 x
24
Pad Cantilever: (CP) 7 in
Fb' = 900 x 1.25 x 1.25 x 0.8 = 1125 psi
(CD) (CO (CI)
F, = 180 x 1.25 x 0.8 = 180 psi
(CD) (CI)
Allowable Pressure: W = (P, / 144) x Wp 179 pli
Maximum Moment: Mmax = 0.5 x W x CP2 4378 Ibs
Allowable Bending Stess: fb = Mmax / Sx, p 1038 psi
Maximum Shear: Vmax = W x CP 1251 Ibs
Allowable Shear Stess: fv = 1.5 x (Vmax / AP) 111 psi
Lp
ul
< Fti => OK in Bending
< F,' => OK in Shear
INTERIOR COLUMN SUPPORT
(Spreader Design - 12000 # Column Load)
Input Data:
Live Load: (LL)
Load Duration Factor: (Idf)
Dead Load: (DL)
Tributary Width: (Tw)
Span: (L)
Point Load: (P)
Distance From End of Beam to Point Load: (B)
Distance from Opposite End of Beam to
Point Load: C = L - B
Material: 6x8 DF-L #1
Basic Allowable Bending Stress: (Fb)
Modification for Moisture Content: (Mc)
Size Factor. CF = (12 / d)A0.111
Modified Bending Stress: Fb' = (Fb)(Idf)(Mc)(CF)
Basic Allowable Shear Stress: (fv)
Shear Stress Factor: (Ch)
Modified Shear Stress: Fv' = (Fv)0d0(Ch)
Modulus of Elasticity: (E)
Member Width: (b)
Member Depth: (d)
Calculations:
Cross Sectional Area of Member. A=bxd
Section Modulus; Sx = b(dA2)/6
Moment of Inertia: Ix = b(dA3)/12
Distributed Floor Load: wf = (Tw x (LL+DL))/12
Distributed Roof / Wall Load: wr
Total Distributed Load: w = wf + wr
20 psf
1.25
6 psf
0 feet
24 inches
12000 Ibs
12 inches
12 inches
(B <= L/2)
1200 psi
1
1.00
1500 psi
85 psi
2 (No Splits)
213 psi
1600000 psi
5.5 inches
7.5 inches
41.25 tnA2
51.56 W3
193.36 104
0.00 pit
0.00 pii
0.00 pli
(coat.)
INTERIOR COLUMN SUPPORT
(Spreader Design - 12000 # Column Load)
Maximum Moment:
M = (w x (LA2))/8 + (P x B x (L-B))/L 72000 in-Ibs
Actual Bending Stress: fb = M / Sx 1396 psi
fb<Fb' Member O.K. in Bending
Maximum Shear. V = (w x ((U2)-d))+(P x (L-B))/l 6000 HIS
Actual Shear Stress: fv = 1.5(V/A) 218.2 psi
fv>Fv' (2% Overstressed) —17 *Ay O,
Allowable Deflection: D = U240 0.10 inches
Actual Deflection: D=(5 x w x (LA4))/(384EI) +
(PxBxCx(B+2C)x(3Bx(B+2C))A.5) / (27EI x L) 0.01 inches
D<Da Member O.K. in Deflection
**********************************************************************
* CAST -UTILITY BY CAST INC.
* TIME: 10/24/95 12:47:04 PAGE:
* SUMMARY OF THE INPUT INFORMATION
TYPE
OF THE PROBLEM : AISC CODE CHECK FOR TS6X6X1/4
*
Yielding Stress
36
KSI
*
Maximum Axial Force
0
KIP
*
Effective Length in major axis
24
INCH
*
Effective Length Factor(major)
1
*
Effective Length in minor axis
24
INCH
*
Effective Length Factor(minor)
1
*
Maximum Major Axis Bending Moment
72
KIP -INCH
*
Unbraced Length (Comp. flange)
24
INCH
*
Maximum Minor Axis Bending Moment
0
KIP -INCH
*
Shear acting in local Y
6
KIP
*
Shear acting in local X
0
KIP
*
Factor of Safty (for member sizing):
2
*
Cb (Section F1.3)
1
*
Cmx (Formula 1.6-1a)
1
*
Cmy (Formula 1.6-1a)
1
* The web and the flange of this member is continuously connected.
* This is not a Hybrid member.
* SECTION TO BE CHECKED TS6X6X1/4
**************************************************************
***** SUMMARY *****
* SECTION : TS6X6X1/4 INTERACTION FORMULA RATIO : 0.3000
Fa 0.000 FbX 7.129 Fby 0.000
Fa_allow : 0.001 Fbx_allow : 23.760 Fby_allow : 0.001
ANCHOR DESIGN - 24' Wide Buildings
Input Data:
Design Wind Pressure: (P)
19.5 psf
Seismic Load Factor: (SI)
0.35 W
Roof Dead Load: (Rd)
6 psf
Floor Dead Load: (Fd)
7 psf
Exterior Wall Dead Load: (Wd)
5 psf
Roof Live Load used in Seismic
Calculation: (RI)
0 psf
Partition / Fixture Load used in
Seismic Calculation: (Pd)
5 psf
Floor Live Load used in Seismic
Calculations: (FI)
0 psf
Building Depth: (D)
23.67 feet
Exterior Wall Height: (H)
8 feet
Roof Depth: (R)
2.5 feet
Floor Depth: (F)
0.67 feet
Skirting / Foundation Height: (S)
3.33 feet
Miscellaneous Loads: (MI)
1000 Ibs
Lateral Load Resistance of Anchor/Strap
Assembly: VL
2962 Ibs
Building Length: (L)
40 feet 60 feet 65 feet
Calculations:
Transverse Load:
Base Shear Due to Wind:
Vw = P x (R + F + H + S/2) x L 10011 Ibs 15017 Ibs 16268 Ibs
Base Shear Due to Seismic:
Vs = (Si)(((LxD)(Rd+Fd+RI+Pd+FI))+
((L+D)x2xHxWd))+MI) 8098lbs 11640lbs 12526lbs
Governing Transverse Base Shear:(V) 10011 Ibs 15017 Ibs 16268 Ibs
Longitudinal Load:
Base Shear Due to Wind:
Vw = P x (R + F + H + S/2) x D 5924 Ibs 5924 Ibs 5924 Ibs
Base Shear Due to Seismic: (Vs) 8098 Ibs 11640 Ibs 12526 Ibs
Governing Longitudinal Base Shear.(VQ 8098 Ibs 11640 Ibs 12526 Ibs
Ground Anchor Quantity:
In Each Transverse Direction: Nt = VNL 3.38 say 4 5.07 say 6 5.49 say 6
In Each Longitudinal Direction: Nt = VWL 2.73 say 3 3.93 say 4 4.23 say 5
Total Quantity of Anchors Required: 14 Anchors 20 Anchors 22 Anchors
Salvatore R. Granata. P.E., C.E.
�r+ Phone: (678) 367-3151 146 Lee Road 2012 Fax: (866) 815-4682
Cell: (770) 301-5817 Opelika, AL 36804 sal(a�srgpe.net
Toll Free: (877)346-5126 salgranata.com
STRUCTURAL
CALCULATIONS
Project No: 18161
4' -0" Wide Ramp Calculations
For
Quick -Deck
137 Pine Forest Drive
Locust, NC 28097
704-888-0327
Designed by: S. Granata
Date: 09/20/18
QQRof- ESSioti
OF 'CA
L"'�Pa��
09/20/18
Expires: 06/30/20
Page 1 of 44
Salvatore Ray Granata, PE, CE
146 Lee Road 2012
Opelika, AL 36804
678-367-3151
salgranata.com salgranata@att.net
Wind Loads:
Ultimate Wind Speed
Nominal Wind Speed
Risk Category
Exposure Category
Enclosure Classif.
Internal pressure
Directionality (Kd)
Kh case 1
Kh case 2
Type of roof
ASCE 7- 10
200 mph
154.9 mph
C
Enclosed Building
+/-0.18
0.85
0.849
0.849
Monoslope
ToDoaraDhic Factor (Kzt
Topography
Flat
Hill Height (H)
0.0 ft
Half Hill Length (Lh)
0.0 ft
Actual H/Lh =
0.00
Use H/Lh =
0.00
Modified Lh =
0.0 ft
From top of crest: x =
0.0 ft
Bldg up/down wind?
downwind
H/Lh= 0.00
K, =
x/Lh = 0.00
KZ =
z/Lh = 0.00
K3 =
At Mean Roof Ht:
Kzt = (1+KjK2K3)12
=
Gust Effect Factor
h = 10.0 ft
B = 4.0 ft
/z (0.6h) = 15.0 ft
Rigid Structure
e =
0.20
f =
500 ft
Zmin =
15 ft
c =
0.20
go, 9v =
3.4
LZ =
427.1 ft
Q =
0.97
IZ =
0.23
G=
0.91 use G=0.85
0.000
0.000
1.000
1.00
JOB TITLE
JOB NO. SHEET NO.
CALCULATED BY SRG DATE 4/13/14
CHECKED BY DATE
H< 15ft;exp C
.•. Kzt=1.0
z
ESCARPMENT
V(Z)
Speed-up
V(Z) x(upwind) x(downwind)
Hl2 H
I
2D RIDGE or 3D AXISYMMETRICAL HILL
Flexible structure if natural frequency < 1 Hz (T > 1 second).
However, if building h/B < 4 then probably rigid structure (rule of thumb).
h/B = 2.50 Therefore, probably rigid structure
G = 0.85 Using rigid structure default
Flexible or Dvnamically Sensitive Structure
Natural Frequency (qj) =
0.0 Hz
Damping ratio ((3) =
0
/b =
0.65
/a =
0.15
Vz =
168.9
N, =
0.00
Rn =
0.000
Rh =
28.282 n = 0.000
RB =
28.282 n = 0.000
RL =
28.282 n = 0.000
9R =
0.000
R =
0.000
G =
0.000
h = 10.0 ft
Page 2 of 44
Salvatore Ray Granata, PE, CE
146 Lee Road 2012
Opelika, AL 36804
678-367-3151
salgranata.com salgranata@att.net
JOB TITLE
JOB NO.
CALCULATED BY SRG
CHECKED BY
Wind Loads - MWFRS all h (Enclosed/partially enclosed onl
Kh (case 2) =
0.85
h = 10.0 ft GCpi = +/-0.18
Base pressure (qh) =
73.9 psf
ridge ht = 10.0 ft G = 0.85
Roof Angle (8) =
0.0 deg
L = 20.0 ft qi = qh
Roof tributary area - (h/2) `L:
100 sf
B = 4.0 ft
(h/2)"B:
20 sf
Ultimate Wind Surface Pressures (Dsf)
h=
SHEET NO.
DATE 4/13/14
DATE
Surface
B/L
Wind Normal to Ridge
= 0.20 h/L =
2.50
Wind Parallel to Ridge
L/B = 5.00 h/L = 0.50
Cp ghGCP w/+q;GCp; w/-ghGCpi
Dist." Cp ghGCP w/ +q;GCp; w/ -ghGCP;
Windward Wall (WW)
0.80
50.2
see table below
0.80
50.2
see table below
Leeward Wall (LW)
-0.50
-31.4
-44.7
-18.1
-0.20
-12.6
-25.9
0.7
Side Wall (SW)
-0.70
-44.0
-57.3
-30.7
-0.70
-44.0
-57.3
-30.7
Leeward Roof (LR)
Included in windward
roof
Windward Roof: 0 to h/2'
-1.30
-81.6
-94.9
-68.3
0 to h/2°
-0.90
-56.5
-69.8
-43.2
> h/2'
-0.70
-44.0
-57.3
-30.7
h/2 to h"
-0.90
-56.5
-69.8
-43.2
h to 2h'
-0.50
-31.4
-44.7
-18.1
"Root angle < 10 degrees. Theretore, leeward root "Horizontal distance trom windward edge
is included in windward roof pressure zones.
For monoslope roofs, entire roof surface is
either windward or leeward surface.
Windward Wall Pressures at'Y' (psf) Combined WW + LW
Windward Wall Normal Parallel I�
z I Kz I Kzt I q,GCP w/+q;GCp; w/-ghGCP; to Ridge to Ridge
NOTE:
See figure in ASCE7 for the application of full and partial loading
of the above wind pressures. There are 4 different loading cases.
Parapet
z Kz Kzt qp (psf)
0.0 ft 0.85 1.00 0.0
Windward parapet: 0.0 psf (GCpn = +1.5)
Leeward parapet: 0.0 psf (GCpn = -1.0)
Windward roof overhangs ( add to windward roof pressure)
50.2 psf (upward)
Ww
Sw
wa�
Page 3 of 44
Salvatore Ray Granata, PE, CE
146 Lee Road 2012
Opelika, AL 36804
678-367-3151
salgranata.com salgranata@att.net
JOB TITLE
JOB NO.
CALCULATED BY SRG
CHECKED BY
Wind Loads - MWFRS h!!M' (Low-rise Buildings) Enclosed/partially enclosed only
SHEET NO.
DATE 4/13/14
DATE
Kz = Kh (case 1) = 0.85 Edge Strip (a) = 3.0 ft
Base pressure (qh) = 0.0 psf h>B - can't use low-rise method End Zone (2a) = 6.0 ft
GCpi = +/-0.18 Zone 2 length = 2.0 ft
Wind Pressure Coefficients
CASE A
CASE B
0=0deg
Surface
GCpf
w/-GCpi
w/+GCpi
GCpf
w/-GCpi
w/+GCpi
1
0.40
0.58
0.22
-0.45
-0.27
-0.63
2
-0.69
-0.51
-0.87
-0.69
-0.51
-0.87
3
-0.37
-0.19
-0.55
-0.37
-0.19
-0.55
4
-0.29
-0.11
-0.47
-0.45
-0.27
-0.63
5
0.40
0.58
0.22
6
-0.29
-0.11
-0.47
1 E
0.61
0.79
0.43
-0.48
-0.30
-0.66
2E
-1.07
-0.89
-1.25
-1.07
-0.89
-1.25
3E
-0.53
-0.35
-0.71
-0.53
-0.35
-0.71
4E
-0.43
-0.25
-0.61
-0.48
-0.30
-0.66
5E
0.61
0.79
0.43
6E
-0.43
-0.25
-0.61
Ultimate Wind Surface Pressures (psf)
1
0.0 0.0
0.0 0.0
2
0.0 0.0
0.0 0.0
3
0.0 0.0
0.0 0.0
4
0.0 0.0
0.0 0.0
5
0.0 0.0
6
0.0 0.0
1 E
0.0 0.0
0.0 0.0
2E
0.0 0.0
0.0 0.0
3E
0.0 0.0
0.0 0.0
4E
0.0 0.0
0.0 0.0
5E
0.0 0.0
6E
0.0 0.0
Parapet
Windward parapet = 0.0 psf (GCpn = +1.5)
Leeward parapet = 0.0 psf (GCpn = -1.0)
Horizontal MWFRS Simale Diaohraam Pressures (osf
Transverse direction (normal to L)
Interior Zone: Wall
0.0 psf
Roof
0.0 psf
End Zone: Wall
0.0 psf
Roof
0.0 psf
Longitudinal direction (parallel to L)
Interior Zone: Wall 0.0 psf
End Zone: Wall 0.0 psf
The code requires the MWFRS be designed for a min ultimate
force of 16 psf multiplied by the wall area plus an 8 psf force
applied to the vertical projection of the roof.
Windward roof
overhangs = 0.0 psf (upward) add to
windward roof pressure
�wQo�wran acxx
r�wu1�1 xoop
vaKrrai_
aMAICSV
sass E1.avwzzorr
�.,I OEfiiiiiii
Location of MWFRS Wind Pressure Zones
Page 4 of 44
Salvatore Ray Granata, PE, CE
JOB TITLE
146 Lee Road 2012
Opelika, AL 36804
JOB NO. SHEET NO.
678-367-3151
CALCULATED BY SRG DATE 4/13/14
salgranata.com salgranata@att.ne
CHECKED BY DATE
Seismic Loads: IBC 2015
Strength Level Forces
Risk Category : 11
Importance Factor (1) : 1.00
Site Class : D
Ss (0.2 sec) = 330.00 %g
S1 (1.0 sec) = 100.00 %g
Fa = 1.000 Sms = 3.300 SDS = 2.200 Design Category = E
Fv = 1.500 Sm1 = 1.500 SW = 1.000 Design Category = E
Seismic Design Category = E
Number of Stories 2
Structure Type: Light Frame
Horizontal Struct Irregularities:No plan Irregularity
Vertical Structural Irregularities:No vertical Irregularity
Flexible Diaphragms: No
Building System: Building Frame Systems
Seismic resisting system: Steel special concentrically braced frames
System Structural Height Limit: 160 ft
Actual Structural Height (hn) =10.0 ft
See ASCE7 Section 12.2.5 for exceptions and other system limitation
DESIGN COEFFICIENTS AND FACTORS
Response Modification Coefficient (R) - 6
Over -Strength Factor (0o) = 2
Deflection Amplification Factor (Cd) = 5
5DS = 1.000 (Sds modified for Cs calculation since
SD1 = 1.000 regular structure, T-0.5 and — 5 stories
p = redundancy coefficien
Seismic Load Effect (E) = p QE +/- 0.2SDS D = p QE +/- 0.440D QE = horizontal seismic forc(
Special Seismic Load Effect (Em) = Oo QE +/- 0.2SDS D = 2.0 QE +/- 0.440D D = dead loac
PERMITTED ANALYTICAL PROCEDURES
Simplified Analysis - Use Equivalent Lateral Force Analysi.
Equivalent Lateral -Force Analysis - Permitted
Building period coef. (CT) =
0.020
Cu = 1.40
Approx fundamental period (Ta) =
CThr,"=
0.112 sec x= 0.75 Tmax = CuTa = 0.157
User calculated fundamental period (T)
0 sec Use T = 0.112
Long Period Transition Period (TL) =
ASCE7 map =
12
Seismic response coef. (Cs) =
SDSI/R =
0.167
need not exceed Cs =
Shc I /RT =
1.482
but not less than Cs =
0.5*S1 I/R =
0.083
USE Cs =
0.167
Design Base Shear V = 0.167W
Model & Seismic Response Analysis
- Permitted (see code for procedure
ALLOWABLE STORY DRIFT
D = 4' * 6' * 5 psf / 2 = 60 Ibs
V = 0.167 * 60 Ibs = 10 Ibs per Brace
Structure Type: All other structures
Allowable story drift = 0.020hsx where hsx is the story height below level
Page 5 of 44
Salvatore Ray Granata, PE, CE
146 Lee Road 2012
Opelika, AL 36804
678-367-3151
salgranata.com salgranata@att.net
JOB TITLE
JOB NO.
CALCULATED BY SRG
CHECKED BY
SHEET NO.
DATE
DATE
Seismic Loads - cont.: Strength Level Forces Seismic Design Category (SDC)= E
I = 1.00
CONNECTIONS Sds = 2.200
Force to connect smaller portions of structure to remainder of structure
Fp = 0.133Sdswp = 0.293 wp
or Fp = 0.05wp = 0.05 wp Use Fp = 0.29 wp wp = weight of smaller portion
Beam, girder or truss connection for resisting horizontal force parallel to member
Fp = no less than 0.05 times dead plus live load vertical reaction
Anchorage of Structural Walls to elements providing lateral support
Fp = 0.20Ww = 0.20 Ww or
See ASCE7 Sect 12.11.2.1 for flexible diaphrams
Fp=0.4SdslWw = 0.88 Ww (for rigid diaphragm) Fp = 0.88 Ww
but Fp shall not be less than 5 psf
MEMBER DESIGN
Bearing Walls and Shear Walls (out of plane force)
Fp = 0.4SdslWw = 0.880 wW
but not less than 0.10 wW Use Fp = 0.88 wW
Diaphragms
Fp = (Sum Fi / Sum Wi)Wpx + Vpx = (Sum Fi / Sum Wi)Wpx + Vpx
need not exceed 0.4 SdslWpx + Vpx = 0.880 Wpx + Vpx
but not less than 0.2 SdslWpx + Vpx = 0.440 Wpx + Vpx
ARCHITECTURAL COMPONENTS SEISMIC COEFFICIENTS
A/1 V1A
Architectural Component: Cantilever Elements (Unbraced or Braced to Structural Frame Below Its Center of Mass):
Chimneys and stacks when laterally braced or supported by the structural frame
Importance Factor (Ip) : 1.0
Component Amplification Factor (ap) = 2.5 h= 10.0 feet
Comp Response Modification Factor (Rp) = 2.5 z= 13.9 feet z/h = 1.00
Fp = 0.4apSdslpWp(1+2z/h)/Rp = 2.640 Wp
not greater than Fp = 1.6SdslpWp = 3.520 Wp
but not less than Fp = 0.3SdslpWp = 0.660 Wp use Fp = 2.640 Wp
MECH AND ELEC COMPONENTS SEISMIC COEFFICIENTS
Mech or Electrical Component : Wet -side HVAC, boilers, furnaces, atmospheric tanks and bins, chillers, water heaters, et
plus other mechanical components constructed of high-deformability materials.
Importance Factor (Ip) : 1.5
Component Amplification Factor (ap) = 1 h= 10.0 feet
Comp Response Modification Factor (Rp) = 2.5 z= 13.9 feet z/h = 1.00
Fp = 0.4apSdslpWp(1+2z/h)/Rp = 1.584 Wp
not greater than Fp = 1.6SdslpWp = 5.280 Wp
but not less than Fp = 0.3SdslpWp = 0.990 Wp use Fp = 1.584 Wp
Page 6 of 44
CFS Version 8.0.5
Section: Section 2.sct
Tube 1.25x1.25-16 Gage
Rev. Date: 1 /25/2017 12:09:02 PM
Printed: 1/25/2017 12:11:08 PM
Section Inputs
Page 1
TUBE 1.25x1.25 - 16 ga
Item #17 Top Rail, Sheet S-2
Hand Rails Top Rails - 6 ft Length
w = 50 Of or P = 200 Ibs
M = w ` Lz / 8 = 50 Ibs' (6)2 / 8 = 225 ft- Ibs = 2700 in-Ibs = 2.7 in -kips
Material: A653 SS Grade 50/1
Apply strength increase from cold work of forming.
Modulus of Elasticity, E 29500 ksi
Yield Strength, Fy 50 ksi
Tensile Strength, Fu 65 ksi
Warping Constant Override, Cw 0 in^6
Torsion Constant Override, J 0 in^4
Tube, Thickness 0.0566 in (16 Gage)
Placement of Part from Origin:
X to
center of
gravity
0 in
Y to
center of
gravity
0 in
Outside
dimensions,
Closed
shape
Length
Angle
Radius
Web
k
Hole Size
Distance
(in)
(deg)
(in)
Coef.
(in)
(in)
1
1.2500
0.000
0.084900
Single
0.000
0.0000
0.6250
2
1.2500
90.000
0.084900
Single
0.000
0.0000
0.6250
3
1.2500
180.000
0.084900
Single
0.000
0.0000
0.6250
4
1.2500
-90.000
0.084900
Single
0.000
0.0000
0.6250
Page 7 of 44
CFS Version 8.0.5
Page 2
Section: Section 2.sct
Tube 1.25x1.25-16 Gage
Rev. Date: 1 /25/2017 12:09:02 PM
Printed: 1/25/2017 12:11:08
PM
Full Section Properties
Area 0.25919 in^2
Wt.
0.00088123
k/ft
Width
4.5793
in
Ix 0.06008 in^4
rx
0.48147
in
Ixy
0.00000
in^4
Sx(t) 0.096133 in^3
y(t)
0.62500
in
a
0.000
deg
Sx(b) 0.096133 in^3
y(b)
0.62500
in
Height
1.25000
in
Iy 0.06008 in^4
ry
0.48147
in
Xo
0.00000
in
Sy(1) 0.096133 in^3
x(l)
0.62500
in
Yo
0.00000
in
Sy(r) 0.096133 in^3
x(r)
0.62500
in
jx
0.00000
in
Width
1.25000
in
jy
0.00000
in
I1 0.06008 in^4
rl
0.48147
in
I2 0.06008 in^4
r2
0.48147
in
Ic 0.12017 in^4
rc
0.68090
in
Cw
0.000009
in^6
Io 0.12017 in^4
ro
0.68090
in
J
0.098740
in^4
Fully Braced Strength - 2012 North American Specification - US (ASD)
Material Type: A653 SS Grade 50/1, Fy=50 ksi
Compression
Positive
Moment
Positive
Moment
Pao
7.7673
k
Maxo
3.2711
k-in
Mayo
3.2711
k-in
Ae
0.25919
in^2
Ixe
0.060083
in^4
Iye
0.060083
in^4
Sxe(t)
0.096133
in^3
Sye(l)
0.096133
in^3
Tension
Sxe(b)
0.096133
in^3
Sye(r)
0.096133
in^3
Ta
8.3720
k
Negative
Moment
Negative
Moment
Maxo
3.2711
k-in
Mayo
3.2711
k-in
Shear
Ixe
0.060083
in^4
Iye
0.060083
in^4
Vay
2.0525
k
Sxe(t)
0.096133
in^3
Sye(l)
0.096133
in^3
Vax
2.0525
k
Sxe(b)
0.096133
in^3
Sye(r)
0.096133
in^3
Page 8 of 44
CFS Version 8.0.5
Analysis: Analysis 3.anl
6 ft Span Simple Beam
Rev. Date: 1/25/2017 12:09:37 PM
Printed: 1/25/2017 12:11:08 PM
Page 1
Analysis Inputs
Members
Section File Revision Date and Time
1 Section 2.sct 1/25/2017 12:09:02 PM
Start Loc.
End Loc. Braced R k� Lm
(ft)
(ft) Flange (k) (ft)
1 0.0000
6.0000 None 0.0000 0.0000 20.0000
ex
ey
(in)
(in)
1 0.0000
0.0000
Supports
Type Location Bearing Fastened K
(ft) (in)
1 XYT 0.0000 2.000 Yes 1.0000
2 XYT 6.0000 2.000 Yes 1.0000
Loading: Live Load
Type Angle Start Loc. End Loc. Start End
(deg) (ft) (ft) Magnitude Magnitude
1 Distributed 90.000 0.0000 6.0000-0.050000-0.050000 k/ft
Load Combination: D
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Beam Self Weight 1.0000
2 Dead Load 1.0000
Load Combination: D+L
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Beam Self Weight 1.0000
2 Dead Load 1.0000
3 Live Load 1.0000
4 Product Load 1.0000
Page 9 of 44
CFS Version 8.0.5
Analysis: Analysis 3.anl
6 ft Span Simple Beam
Rev. Date: 1/25/2017 12:09:37 PM
Printed: 1/25/2017 12:11:08 PM
Load Combination: D+0.75(L+Lr)
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Beam Self Weight 1.0000
2 Dead Load 1.0000
3 Live Load 0.7500
4 Product Load 0.7500
5 Roof Live Load 0.7500
Load Combination: D+0.7E
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Beam Self Weight 1.0000
2 Dead Load 1.0000
3 Earthquake Load 0.7000
Load Combination: D+0.75(0.7E+L+Lr)
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Beam Self Weight 1.0000
2 Dead Load 1.0000
3 Earthquake Load 0.5250
4 Live Load 0.7500
5 Product Load 0.7500
6 Roof Live Load 0.7500
Load Combination: 0.6D+0.6W
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Beam Self Weight 0.6000
2 Dead Load 0.6000
3 Wind Load 0.6000
Load Combination: 0.6D+0.7E
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Beam Self Weight 0.6000
2 Dead Load 0.6000
3 Earthquake Load 0.7000
Page 2
Page 10 of 44
CFS Version 8.0.5 Page 3
Analysis: Analysis 3.anl
6 ft Span Simple Beam
Rev. Date: 1/25/2017 12:09:37 PM
Printed: 1/25/2017 12:11:08 PM
Member Check - 2012 North American Specification - US (ASD)
Load Combination: D+L
Design Parameters at 3.0000 ft:
Lx 6.0000 ft Ly 6.0000 ft Lt 6.0000 ft
Kx 1.0000 Ky 1.0000 Kt 1.0000
Section: Section 2.sct
Material Type: A653 SS Grade 50/1, Fy=50 ksi
Cbx
1.1364
Cby
1.0000
ex
0.0000
in
Cmx
1.0000
Cmy
1.0000
ey
0.0000
in
Braced Flange:
None
k�
0 k
Red. Factor,
R: 0
Lm
20.0000 ft
Loads:
P
Mx
Vy
My
Vx
(k)
(k-in)
(k)
(k-in)
(k)
Total
0.0000
2.7476
0.0000
0.0000
0.0000
Applied
0.0000
2.7476
0.0000
0.0000
0.0000
Strength
1.6441
3.2711
2.0525
3.2711
2.0525
Effective
section properties at
applied loads:
Ae
0.25919 in^2
Ixe
0.060083 in^4
Iye
0.060083
in^4
Sxe(t)
0.096133 in^3
Sye(1)
0.096133
in^3
Sxe(b)
0.096133 in^3
Sye(r)
0.096133
in^3
Interaction Equations
NAS
Eq.
C5.2.1-1
(P, Mx,
My)
0.000 + 0.840 +
0.000 =
0.840
<= 1.0
NAS
Eq.
C5.2.1-2
(P, Mx,
My)
0.000 + 0.840 +
0.000 =
0.840
<= 1.0
NAS
Eq.
C3.3.1-1
(Mx,
Vy)
Sgrt(0.706 +
0.000)=
0.840
<= 1.0
NAS
Eq.
C3.3.1-1
(My,
Vx)
Sgrt(0.000 +
0.000)=
0.000
<= 1.0
Page 11 of 44
CFS Version 8.0.5
Analysis: Analysis 4.anl
6 ft Span Simple Beam
Rev. Date: 1 /25/2017 12:18:18 PM
Printed: 1/25/2017 12:19:15 PM
Load Combination: D+L, Y Direction
Reaction
(k)
0.15264 0.15264
0.15264
Shear
(k)
Moment
(k-in)
Deflection
(in)
2.7476
-0.83709
-0.15264
Page 12 of 44
CFS Version 8.0.5
Section: 4 Item #3 Deck Channel.sct
Channel 4.375x0.75-16 Gage
Rev. Date: 1/25/2017 12:21:23 PM
Printed: 1/30/2017 7:44:24 PM
Section Inputs
Material: A653 SS Grade 50/1
Apply strength increase from cold work of forming.
Modulus of Elasticity, E 29500 ksi
Yield Strength, Fy 50 ksi
Tensile Strength, Fu 65 ksi
Warping Constant Override, Cw 0 in^6
Torsion Constant Override, J 0 in^4
Channel, Thickness 0.0566 in (16 Gage)
Placement of Part from Origin:
Page 1
16 ga Deck Channel
Item 3, Sheet S-2
w = 100 psf Live Load
X to
center of
gravity
0 in
Y to
center of
gravity
0 in
Outside
dimensions,
Open
shape
Length
Angle
Radius Web
k
Hole Size
Distance
(in)
(deg)
(in)
Coef.
(in)
(in)
1
0.7500
90.000
0.084900 Single
0.000
0.0000
0.3750
2
4.3750
360.000
0.084900 Cee
0.000
0.0000
2.1875
3
0.7500
270.000
0.084900 Single
0.000
0.0000
0.3750
Page 13 of 44
CFS Version 8.0.5
Page 2
Section: 4 Item #3 Deck Channel.sct
Channel 4.375x0.75-16 Gage
Rev. Date: 1/25/2017 12:21:23
PM
Printed: 1/30/2017 7:44:24 PM
Full Section Properties
Area 0.32062 in^2
Wt.
0.0010901
k/ft
Width
5.6646
in
Ix 0.01153 in^4
rx
0.1896
in
Ixy
0.00000
in^4
Sx(t) 0.09568 in^3
y(t)
0.1205
in
a
90.000
deg
Sx(b) 0.01831 in^3
y(b)
0.6295
in
Height
0.7500
in
Iy 0.73479 in^4
ry
1.5139
in
Xo
0.0000
in
Sy(1) 0.33591 in^3
x(1)
2.1875
in
Yo
0.2786
in
Sy(r) 0.33591 in^3
x(r)
2.1875
in
jx
0.0000
in
Width
4.3750
in
jy
-3.4997
in
I1 0.73479 in^4
rl
1.5139
in
I2 0.01153 in^4
r2
0.1896
in
Ic 0.74632 in^4
rc
1.5257
in
Cw
0.039916
in^6
Io 0.77121 in^4
ro
1.5509
in
J
0.00034237
in^4
Fully Braced Strength - 2012 North American Specification - US (ASD)
Material Type: A653 SS Grade 50/1, Fy=50 ksi
Compression
Positive
Moment
Positive
Moment
Pao
5.9508
k
Maxo
0.5482
k-in
Mayo
9.9769
k-in
Ae
0.21423
in^2
Ixe
0.01153
in^4
Iye
0.73084
in^4
Sxe(t)
0.09568
in^3
Sye(1)
0.33497
in^3
Tension
Sxe(b)
0.01831
in^3
Sye(r)
0.33323
in^3
Ta
9.9053
k
Negative
Moment
Negative
Moment
Maxo
0.5482
k-in
Mayo
9.9769
k-in
Shear
Ixe
0.01153
in^4
Iye
0.73084
in^4
Vay
1.2915
k
Sxe(t)
0.09568
in^3
Sye(1)
0.33323
in^3
Vax
3.3716
k
Sxe(b)
0.01831
in^3
Sye(r)
0.33497
in^3
Page 14 of 44
CFS Version 8.0.5
Analysis: Analysis 1.anl
3-Span Continuous Beam
Rev. Date: 1/30/2017 7:42:36 PM
Printed: 1/30/2017 7:44:24 PM
Page 1
Analysis Inputs
Members
Section File Revision Date and Time
1 4 Item #3 Deck Channel.sct 1/25/2017 12:21:23 PM
Start Loc.
End Loc. Braced
R
k� Lm
(ft)
(ft) Flange
(k) (ft)
1
0.0000
6.0000 None
0.0000
0.0000 20.0000
ex
ey
(in)
(in)
1
0.0000
0.0000
Supports
Type Location Bearing
Fastened
K
(ft) (in)
1
XYT
0.0000 2.750
No
1.0000
2
XYT
2.0000 2.750
No
1.0000
3
XYT
4.0000 2.750
No
1.0000
4
XYT
6.0000 2.750
No
1.0000
Loading: Dead Load
Type
Angle Start
Loc.
End
Loc. Start
End
(deg)
(ft)
(ft) Magnitude
Magnitude
1
Distributed
90.000 0.0000
6.0000
-0.001823
-0.001823 k/ft
Loading: Live Load
Type
Angle Start
Loc.
End
Loc. Start
End
(deg)
(ft)
(ft) Magnitude
Magnitude
1
Distributed
90.000 0.0000
6.0000
-0.036460
-0.036460 k/ft
Load Combination: D
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Beam Self Weight 1.0000
2 Dead Load 1.0000
Page 15 of 44
CFS Version 8.0.5
Analysis: Analysis 1.anl
3-Span Continuous Beam
Rev. Date: 1/30/2017 7:42:36 PM
Printed: 1/30/2017 7:44:24 PM
Load Combination: D+L
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Beam Self Weight 1.0000
2 Dead Load 1.0000
3 Live Load 1.0000
4 Product Load 1.0000
Load Combination: D+0.75(L+Lr)
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Beam Self Weight 1.0000
2 Dead Load 1.0000
3 Live Load 0.7500
4 Product Load 0.7500
5 Roof Live Load 0.7500
Load Combination: D+0.7E
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Beam Self Weight 1.0000
2 Dead Load 1.0000
3 Earthquake Load 0.7000
Load Combination: D+0.75(0.7E+L+Lr)
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Beam Self Weight 1.0000
2 Dead Load 1.0000
3 Earthquake Load 0.5250
4 Live Load 0.7500
5 Product Load 0.7500
6 Roof Live Load 0.7500
Load Combination: 0.6D+0.6W
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Beam Self Weight 0.6000
2 Dead Load 0.6000
3 Wind Load 0.6000
Load Combination: 0.6D+0.7E
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Beam Self Weight 0.6000
2 Dead Load 0.6000
3 Earthquake Load 0.7000
Page 2
Page 16 of 44
CFS Version 8.0.5 Page 3
Analysis: Analysis 1.anl
3-Span Continuous Beam
Rev. Date: 1/30/2017 7:42:36 PM
Printed: 1/30/2017 7:44:24 PM
Member Check - 2012 North American Specification - US (ASD)
Load Combination: D+L
Design Parameters at 2.0000 ft, Left side:
Lx 2.0000 ft Ly 0.4000 ft Lt 0.4000 ft
Kx 1.0000 Ky 1.0000 Kt 1.0000
Section: 4 Item #3 Deck Channel.sct
Material Type: A653 SS Grade 50/1, Fy=50 ksi
Cbx
1.6667
Cby
1.0000
ex
0.0000
in
Cmx
1.0000
Cmy
1.0000
ey
0.0000
in
Braced Flange:
None
k�
0 k
Red. Factor,
R: 0
Lm
20.0000 ft
Loads:
P
Mx
Vy
My
Vx
(k)
(k-in)
(k)
(k-in)
(k)
Total
0.0000
-0.1890
-0.0472
0.0000
0.0000
Applied
0.0000
-0.1890
-0.0472
0.0000
0.0000
Strength
2.5307
0.5482
1.2915
9.9769
3.3716
Effective
section properties at
applied loads:
Ae
0.32062 in^2
Ixe
0.01153 in^4
Iye
0.73479
in^4
Sxe(t)
0.09568 in^3
Sye(1)
0.33591
in^3
Sxe(b)
0.01831 in^3
Sye(r)
0.33591
in^3
Interaction Equations
NAS
Eq.
C5.2.1-1
(P, Mx,
My)
0.000 + 0.345 +
0.000 =
0.345
<= 1.0
NAS
Eq.
C5.2.1-2
(P, Mx,
My)
0.000 + 0.345 +
0.000 =
0.345
<= 1.0
NAS
Eq.
C3.3.1-1
(Mx,
Vy)
Sgrt(0.119 +
0.001)=
0.347
<= 1.0
NAS
Eq.
C3.3.1-1
(My,
Vx)
Sgrt(0.000 +
0.000)=
0.000
<= 1.0
Page 17 of 44
CFS Version 8.0.5
Analysis: Analysis 1.anl
3-Span Continuous Beam
Rev. Date: 1/30/2017 7:42:36 PM
Printed: 1/30/2017 7:43:21 PM
Load Combination: D+L, Y Direction
Reaction
(k)
0.031498
0.03
Shear
(k)
Moment
(k-in)
0.086621 0.086621
0.047248
-0.047248
0.15119 0.15119
-0.18899-0.18899
Deflection 0.0013339 0.0013339
(in) -0.0016674
-0.022039-0.022039
0.031498
1498
Page 18 of 44
CFS Version 8.0.5 Page 1
Section: Section 4.sct
Channel 4x2.75-16 Gage
Rev. Date: 1/25/2017 12:36:47 PM 16ga Cross -bracing Channel
Printed: 1/25/2017 12:40:47 PM Item 2 Sheet S-2
DL = 5psf
+ ILL = 100psf
Trtib Width = 2'-0"
Span = 4'-0"
Section Inputs
Material: A653 SS Grade 50/1
No strength increase from cold work of forming.
Modulus of Elasticity, E 29500 ksi
Yield Strength, Fy 50 ksi
Tensile Strength, Fu 65 ksi
Warping Constant Override, Cw 0 in^6
Torsion Constant Override, J 0 in^4
Channel, Thickness 0.0566 in (16 Gage)
Placement of Part from Origin:
X to
center of
gravity
0 in
Y to
center of
gravity
0 in
Outside
dimensions,
Open
shape
Length
Angle
Radius Web
k
Hole Size
Distance
(in)
(deg)
(in)
Coef.
(in)
(in)
1
2.7500
90.000
0.084900 Single
0.000
0.0000
1.3750
2
4.0000
360.000
0.084900 Cee
0.000
0.0000
2.0000
3
2.7500
270.000
0.084900 Single
0.000
0.0000
1.3750
Page 19 of 44
CFS Version 8.0.5
Page 2
Section: Section 4.sct
Channel 4x2.75-16 Gage
Rev. Date: 1/25/2017 12:36:47 PM
Printed: 1/25/2017 12:40:47
PM
Full Section Properties
Area 0.52579 in^2
Wt.
0.0017877
k/ft
Width
9.2896
in
Ix 0.4264 in^4
rx
0.9005
in
Ixy
0.0000
in^4
Sx(t) 0.51628 in^3
y(t)
0.8258
in
a
90.000
deg
Sx(b) 0.22159 in^3
y(b)
1.9242
in
Height
2.7500
in
Iy 1.4654 in^4
ry
1.6694
in
Xo
0.0000
in
Sy(1) 0.73270 in^3
x(1)
2.0000
in
Yo
1.9080
in
Sy(r) 0.73270 in^3
x(r)
2.0000
in
jx
0.0000
in
Width
4.0000
in
jy
-2.7613
in
I1 1.4654 in^4
rl
1.6694
in
I2 0.4264 in^4
r2
0.9005
in
Ic 1.8918 in^4
rc
1.8968
in
Cw
1.1417
in^6
Io 3.8059 in^4
ro
2.6904
in
J
0.0005615
in^4
Fully Braced Strength - 2012 North American Specification - US (ASD)
Material Type: A653 SS Grade 50/1, Fy=50 ksi
Compression
Positive
Moment
Positive
Moment
Pao
6.533
k
Maxo
6.408
k-in
Mayo
11.737
k-in
Ae
0.23518
in^2
Ixe
0.39663
in^4
Iye
0.97098
in^4
Sxe(t)
0.44231
in^3
Sye(1)
0.63750
in^3
Tension
Sxe(b)
0.21402
in^3
Sye(r)
0.39202
in^3
Ta
15.742
k
Negative
Moment
Negative
Moment
Maxo
0.374
k-in
Mayo
11.737
k-in
Shear
Ixe
0.03173
in^4
Iye
0.97098
in^4
Vay
5.537
k
Sxe(t)
0.14932
in^3
Sye(1)
0.39202
in^3
Vax
3.372
k
Sxe(b)
0.01250
in^3
Sye(r)
0.63750
in^3
Page 20 of 44
CFS Version 8.0.5
Analysis: Analysis 6.anl
4 ft Span Simple Beam
Rev. Date: 1/25/2017 12:37:53 PM
Printed: 1/25/2017 12:40:47 PM
Page 1
Analysis Inputs
Members
Section File Revision Date and Time
1 Section 4.sct 1/25/2017 12:36:47 PM
Start Loc.
End Loc. Braced R k� Lm
(ft)
(ft) Flange (k) (ft)
1 0.0000
4.0000 None 0.0000 0.0000 4.0000
ex
ey
(in)
(in)
1 0.0000
0.0000
Supports
Type Location Bearing Fastened K
(ft) (in)
1 XYT 0.0000 0.500 No 1.0000
2 XYT 4.0000 0.500 No 1.0000
Loading: Live Load
Type Angle Start Loc. End Loc. Start End
(deg) (ft) (ft) Magnitude Magnitude
1 Distributed 90.000 0.0000 4.0000-0.20000-0.20000 k/ft
Load Combination: D
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Beam Self Weight 1.0000
2 Dead Load 1.0000
Load Combination: D+L
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Beam Self Weight 1.0000
2 Dead Load 1.0000
3 Live Load 1.0000
4 Product Load 1.0000
Page 21 of 44
CFS Version 8.0.5
Analysis: Analysis 6.anl
4 ft Span Simple Beam
Rev. Date: 1/25/2017 12:37:53 PM
Printed: 1/25/2017 12:40:47 PM
Load Combination: D+0.75(L+Lr)
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Beam Self Weight 1.0000
2 Dead Load 1.0000
3 Live Load 0.7500
4 Product Load 0.7500
5 Roof Live Load 0.7500
Load Combination: D+0.7E
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Beam Self Weight 1.0000
2 Dead Load 1.0000
3 Earthquake Load 0.7000
Load Combination: D+0.75(0.7E+L+Lr)
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Beam Self Weight 1.0000
2 Dead Load 1.0000
3 Earthquake Load 0.5250
4 Live Load 0.7500
5 Product Load 0.7500
6 Roof Live Load 0.7500
Load Combination: 0.6D+0.6W
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Beam Self Weight 0.6000
2 Dead Load 0.6000
3 Wind Load 0.6000
Load Combination: 0.6D+0.7E
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Beam Self Weight 0.6000
2 Dead Load 0.6000
3 Earthquake Load 0.7000
Page 2
Page 22 of 44
CFS Version 8.0.5 Page 3
Analysis: Analysis 6.anl
4 ft Span Simple Beam
Rev. Date: 1/25/2017 12:37:53 PM
Printed: 1/25/2017 12:40:47 PM
Member Check - 2012 North American Specification - US (ASD)
Load Combination: D+L
Design Parameters at 2.0000 ft:
Lx 4.0000 ft Ly 4.0000 ft Lt 4.0000 ft
Kx 1.0000 Ky 1.0000 Kt 1.0000
Section: Section 4.sct
Material Type: A653 SS Grade 50/1, Fy=50 ksi
Cbx
1.0000
Cby
1.0000
ex
0.0000
in
Cmx
1.0000
Cmy
1.0000
ey
0.0000
in
Braced Flange:
None
k�
0 k
Red. Factor,
R: 0
Lm
4.0000 ft
Loads:
P
Mx
Vy
My
Vx
(k)
(k-in)
(k)
(k-in)
(k)
Total
0.0000
4.843
0.0000
0.000
0.0000
Applied
0.0000
4.843
0.0000
0.000
0.0000
Strength
4.6303
6.408
5.5365
11.598
3.3716
Effective
section properties at
applied loads:
Ae
0.52579 in^2
Ixe
0.4264 in^4
Iye
1.4654
in^4
Sxe(t)
0.51628 in^3
Sye(1)
0.73270
in^3
Sxe(b)
0.22159 in^3
Sye(r)
0.73270
in^3
Interaction Equations
NAS
Eq.
C5.2.1-1
(P, Mx,
My)
0.000 + 0.756 +
0.000 =
0.756
<= 1.0
NAS
Eq.
C5.2.1-2
(P, Mx,
My)
0.000 + 0.756 +
0.000 =
0.756
<= 1.0
NAS
Eq.
C3.3.1-1
(Mx,
Vy)
Sgrt(0.571 +
0.000)=
0.756
<= 1.0
NAS
Eq.
C3.3.1-1
(My,
Vx)
Sgrt(0.000 +
0.000)=
0.000
<= 1.0
Page 23 of 44
CFS Version 8.0.5
Analysis: Analysis 6.anl
4 ft Span Simple Beam
Rev. Date: 1 /25/2017 12:37:53 PM
Printed: 1/25/2017 12:42:28 PM
Load Combination: D+L, Y Direction
Reaction
(k)
0.40358 0.40358
0.40358
Shear
(k)
Moment
(k-in)
Deflection
(in)
4.8429
-0.092408
Allowable Deflection : L / 240 = 48" / 240 = 0.20" OK
-0.40358
Page 24 of 44
CFS Version 8.0.5
Section: Section 5.sct
Tube 1.25x1.25-16 Gage
Rev. Date: 1 /25/2017 12:55:38 PM
Printed: 1/25/2017 12:57:57 PM
Section Inputs
Page 1
TUBE 1.25x1.25-16ga
Item 15 Hand Rail Posts S-2
Material: A653 SS Grade 50/1
Apply strength increase from cold work of forming.
Modulus of Elasticity, E 29500 ksi
Yield Strength, Fy 50 ksi
Tensile Strength, Fu 65 ksi
Warping Constant Override, Cw 0 in^6
Torsion Constant Override, J 0 in^4
Tube, Thickness 0.0566 in (16 Gage)
Placement of Part from Origin:
X to
center of
gravity
0 in
Y to
center of
gravity
0 in
Outside
dimensions,
Closed
shape
Length
Angle
Radius
Web
k
Hole Size
Distance
(in)
(deg)
(in)
Coef.
(in)
(in)
1
1.2500
0.000
0.084900
Single
0.000
0.0000
0.6250
2
1.2500
90.000
0.084900
Single
0.000
0.0000
0.6250
3
1.2500
180.000
0.084900
Single
0.000
0.0000
0.6250
4
1.2500
-90.000
0.084900
Single
0.000
0.0000
0.6250
Page 25 of 44
CFS Version 8.0.5
Page 2
Section: Section 5.sct
Tube 1.25x1.25-16 Gage
Rev. Date: 1 /25/2017 12:55:38
PM
Printed: 1/25/2017 12:57:57
PM
Full Section Properties
Area 0.25919 in^2
Wt.
0.00088123
k/ft
Width
4.5793
in
Ix 0.06008 in^4
rx
0.48147
in
Ixy
0.00000
in^4
Sx(t) 0.096133 in^3
y(t)
0.62500
in
a
0.000
deg
Sx(b) 0.096133 in^3
y(b)
0.62500
in
Height
1.25000
in
Iy 0.06008 in^4
ry
0.48147
in
Xo
0.00000
in
Sy(1) 0.096133 in^3
x(1)
0.62500
in
Yo
0.00000
in
Sy(r) 0.096133 in^3
x(r)
0.62500
in
jx
0.00000
in
Width
1.25000
in
jy
0.00000
in
I1 0.06008 in^4
rl
0.48147
in
I2 0.06008 in^4
r2
0.48147
in
Ic 0.12017 in^4
rc
0.68090
in
Cw
0.000009
in^6
Io 0.12017 in^4
ro
0.68090
in
J
0.098740
in^4
Fully Braced Strength - 2012 North American Specification - US (ASD)
Material Type: A653 SS Grade 50/1, Fy=50 ksi
Compression
Positive
Moment
Positive
Moment
Pao
7.7673
k
Maxo
3.2711
k-in
Mayo
3.2711
k-in
Ae
0.25919
in^2
Ixe
0.060083
in^4
Iye
0.060083
in^4
Sxe(t)
0.096133
in^3
Sye(1)
0.096133
in^3
Tension
Sxe(b)
0.096133
in^3
Sye(r)
0.096133
in^3
Ta
8.3720
k
Negative
Moment
Negative
Moment
Maxo
3.2711
k-in
Mayo
3.2711
k-in
Shear
Ixe
0.060083
in^4
Iye
0.060083
in^4
Vay
2.0525
k
Sxe(t)
0.096133
in^3
Sye(1)
0.096133
in^3
Vax
2.0525
k
Sxe(b)
0.096133
in^3
Sye(r)
0.096133
in^3
Square Handrail Posts
Handrail Post Stress :
M=3.5'* 12" * 0.2 kips = 8.4 in - kips
fb = M / S = 0.82 * 8.4 in - kips / 0.10907 in3 = 63.15 ksi
Fb = 0.66 * 50 ksi = 33 ksi Say OK Based on Testing
Handrail Deflection:
Deflection: d = p * L3 / (3 * E * I)
Deflection: d = 0.82 * 200 lbs * (4211)3 / (3 * 29,000,000 psi * 0.06817 in4) = 2.05" OK
Page 26 of 44
CFS Version 8.0.5
Section: Section 1.sct
Angle 12x12-12 Gage
Rev. Date: 2/3/2017 10:11:41 AM
Printed: 2/3/2017 10:14:27 AM
Section Inputs
Material: A653 SS Grade 50/1
Apply strength increase from cold work of forming.
Modulus of Elasticity, E 29500 ksi
Yield Strength, Fy 50 ksi
Tensile Strength, Fu 65 ksi
Warping Constant Override, Cw 0 in^6
Torsion Constant Override, J 0 in^4
Angle, Thickness 0.1017 in (12 Gage)
Placement of Part from Origin:
Page 1
Stair Treads
Item 5, Sheet S-2
X to center of
gravity
0 in
Y to center of
gravity
0 in
Outside dimensions,
Open
shape
Length
Angle
Radius Web
k
Hole Size
Distance
(in)
(deg)
(in)
Coef.
(in)
(in)
1 12.000
360.000
0.15250 Single
0.000
0.000
6.000
2 12.000
270.000
0.15250 Single
0.000
0.000
6.000
Page 27 of 44
CFS Version 8.0.5
Page 2
Section: Section 1.sct
Angle 12x12-12 Gage
Rev. Date: 2/3/2017 10:11:41
AM
Printed: 2/3/2017 10:14:27 AM
Full Section Properties
Area 2.4216 in^2
Wt.
0.0082334
k/ft
Width
23.811
in
Ix 36.07 in^4
rx
3.8594
in
Ixy
-21.77
in^4
Sx(t) 11.829 in^3
y(t)
3.0492
in
a
45.000
deg
Sx(b) 4.030 in^3
y(b)
8.9508
in
Height
12.0000
in
Iy 36.07 in^4
ry
3.8594
in
Xo
2.9972
in
Sy(1) 4.030 in^3
x(1)
8.9508
in
Yo
2.9972
in
Sy(r) 11.829 in^3
x(r)
3.0492
in
jx
-4.1860
in
Width
12.0000
in
jy
-4.1860
in
I1 57.84 in^4
rl
4.8872
in
I2 14.30 in^4
r2
2.4300
in
Ic 72.14 in^4
rc
5.4580
in
Cw
0.00005
in^6
Io 115.65 in^4
ro
6.9106
in
J
0.0083487
in^4
Fully Braced Strength - 2012 North American Specification - US (ASD)
Material Type: A653 SS Grade 50/1, Fy=50 ksi
Compression
Positive
Moment
Positive
Moment
Pao
9.351
k
Maxo
89.354
k-in
Mayo
89.354
k-in
Ae
0.33665
in^2
Ixe
20.184
in^4
Iye
20.184
in^4
Sxe(t)
3.8543
in^3
Sye(1)
2.9844
in^3
Tension
Sxe(b)
2.9844
in^3
Sye(r)
3.8543
in^3
Ta
72.996
k
Negative
Moment
Negative
Moment
Maxo
0.543
k-in
Mayo
0.543
k-in
Shear
Ixe
0.214
in^4
Iye
0.214
in^4
Vay
7.969
k
Sxe(t)
1.1643
in^3
Sye(1)
0.0181
in^3
Vax
7.969
k
Sxe(b)
0.0181
in^3
Sye(r)
1.1642
in^3
Angle
element 1
w/t
exceeds 60.
Angle
element 2
w/t
exceeds 60.
Page 28 of 44
CFS Version 8.0.5
Analysis: Analysis 1.anl
4 ft Span Simple Beam
Rev. Date: 2/3/2017 10:12:42 AM
Printed: 2/3/2017 10:14:27 AM
Analysis Inputs
Members
Page 1
Section File
Revision Date and Time
1 Section l.sct
2/3/2017 10:11:41
AM
Start Loc. End Loc. Braced R
k� Lm
(ft) (ft) Flange
(k) (ft)
1 0.0000 4.0000 None 0.0000
0.0000 20.0000
ex ey
(in) (in)
1 0.0000 0.0000
Supports
Type Location Bearing Fastened
K
(ft) (in)
1 Y 0.0000 2.000
No 1.0000
2 XT 0.0000 2.000
No 0.0000
3 Y 4.0000 2.000
No 1.0000
4 XT 4.0000 2.000
No 0.0000
Loading: Dead Load
Type Angle Start Loc.
End Loc. Start
End
(deg) (ft)
(ft) Magnitude
Magnitude
1 Distributed 90.000 0.0000
4.0000 0.00000
0.00000 k/ft
Loading: Live Load
Type Angle Start Loc.
End Loc. Start
End
(deg) (ft)
(ft) Magnitude
Magnitude
1 Distributed 90.000 0.0000
4.0000-0.10000
-0.10000 k/ft
Load Combination: D
Specification: 2012 North American Specification
- US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Beam Self Weight 1.0000
2 Dead Load 1.0000
Page 29 of 44
CFS Version 8.0.5
Analysis: Analysis 1.anl
4 ft Span Simple Beam
Rev. Date: 2/3/2017 10:12:42 AM
Printed: 2/3/2017 10:14:27 AM
Load Combination: D+L
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Beam Self Weight 1.0000
2 Dead Load 1.0000
3 Live Load 1.0000
4 Product Load 1.0000
Load Combination: D+0.75(L+Lr)
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Beam Self Weight 1.0000
2 Dead Load 1.0000
3 Live Load 0.7500
4 Product Load 0.7500
5 Roof Live Load 0.7500
Load Combination: D+0.7E
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Beam Self Weight 1.0000
2 Dead Load 1.0000
3 Earthquake Load 0.7000
Load Combination: D+0.75(0.7E+L+Lr)
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Beam Self Weight 1.0000
2 Dead Load 1.0000
3 Earthquake Load 0.5250
4 Live Load 0.7500
5 Product Load 0.7500
6 Roof Live Load 0.7500
Load Combination: 0.6D+0.6W
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Beam Self Weight 0.6000
2 Dead Load 0.6000
3 Wind Load 0.6000
Load Combination: 0.6D+0.7E
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Beam Self Weight 0.6000
2 Dead Load 0.6000
3 Earthquake Load 0.7000
Page 2
Page 30 of 44
CFS Version 8.0.5 Page 3
Analysis: Analysis 1.anl
4 ft Span Simple Beam
Rev. Date: 2/3/2017 10:12:42 AM
Printed: 2/3/2017 10:14:27 AM
Member Check - 2012 North American Specification - US (ASD)
Load Combination: D+L
Design Parameters at 2.0000 ft:
Lx 4.0000 ft Ly 4.0000 ft Lt 4.0000 ft
Kx 1.0000 Ky 0.0000 Kt 0.0000
Section: Section l.sct
Material Type: A653 SS Grade 50/1, Fy=50 ksi
Cbx
1.0000
Cby
1.0000
ex
0.0000
in
Cmx
1.0000
Cmy
1.0000
ey
0.0000
in
Braced Flange:
None
k�
0 k
Red. Factor,
R: 0
Lm
20.0000 ft
Loads:
P
Mx
Vy
My
Vx
(k)
(k-in)
(k)
(k-in)
(k)
Total
0.0000
2.598
0.0000
0.000
0.0000
Applied
0.0000
2.598
0.0000
0.000
0.0000
Strength
9.2931
89.354
7.9689
89.354
7.9689
Effective
section properties at
applied loads:
Ae
2.42158 in^2
Ixe
36.069 in^4
Iye
36.069
in^4
Sxe(t)
11.829 in^3
Sye(1)
4.030
in^3
Sxe(b)
4.030 in^3
Sye(r)
11.829
in^3
Interaction Equations
NAS
Eq.
C5.2.1-1
(P, Mx,
My)
0.000 + 0.029 +
0.000 =
0.029
<= 1.0
NAS
Eq.
C5.2.1-2
(P, Mx,
My)
0.000 + 0.029 +
0.000 =
0.029
<= 1.0
NAS
Eq.
C3.3.1-1
(Mx,
Vy)
Sgrt(0.001 +
0.000)=
0.029
<= 1.0
NAS
Eq.
C3.3.1-1
(My,
Vx)
Sgrt(0.000 +
0.000)=
0.000
<= 1.0
Angle element 1 w/t exceeds 60.
Angle element 2 w/t exceeds 60.
Page 31 of 44
CFS Version 8.0.5
Analysis: Analysis 1.anl
4 ft Span Simple Beam
Rev. Date: 2/3/2017 10:12:42 AM
Printed: 2/3/2017 10:13:24 AM
Load Combination: D+L, Y Direction
Reaction
(k)
0.21647 0.21647
0.21647
Shear
(k)
Moment
(k-in)
Deflection
(in)
2.5976
-0.00058591
Allowable Deflection : L / 240 = 48" / 240 = 0.20" OK
-0.21647
Page 32 of 44
CFS Version 8.0.5
Section: Section 7.sct
Tube 1.5x1.5-16 Gage
Rev. Date: 1/25/2017 1:12:48 PM
Printed: 1/25/2017 1:15:51 PM
Section Inputs
Page 1
TUBE 1.5x1.5 - 16 ga
Item 10 Posts, Sheet S-2
Material: A653 SS Grade 50/1
Apply strength increase from cold work of forming.
Modulus of Elasticity, E 29500 ksi
Yield Strength, Fy 50 ksi
Tensile Strength, Fu 65 ksi
Warping Constant Override, Cw 0 in^6
Torsion Constant Override, J 0 in^4
Tube, Thickness 0.0566 in (16 Gage)
Placement of Part from Origin:
X to
center of
gravity
0 in
Y to
center of
gravity
0 in
Outside
dimensions,
Closed
shape
Length
Angle
Radius
Web
k
Hole Size
Distance
(in)
(deg)
(in)
Coef.
(in)
(in)
1
1.5000
0.000
0.084900
Single
0.000
0.0000
0.7500
2
1.5000
90.000
0.084900
Single
0.000
0.0000
0.7500
3
1.5000
180.000
0.084900
Single
0.000
0.0000
0.7500
4
1.5000
-90.000
0.084900
Single
0.000
0.0000
0.7500
Page 33 of 44
CFS Version 8.0.5 Page 2
Section: Section 7.sct
Tube 1.5x1.5-16 Gage
Rev. Date: 1/25/2017 1:12:48 PM
Printed: 1/25/2017 1:15:51 PM
Full Section Properties
Area
0.31579
in^2
Wt.
0.0010737
k/ft
Width
5.5793
in
Ix
0.10758
in^4
rx
0.58367
in
Ixy
0.00000
in^4
Sx(t)
0.14344
in^3
y(t)
0.75000
in
a
0.000
deg
Sx(b)
0.14344
in^3
y(b)
0.75000
in
Height
1.50000
in
Iy
0.10758
in^4
ry
0.58367
in
Xo
0.00000
in
Sy(1)
0.14344
in^3
x(1)
0.75000
in
Yo
0.00000
in
Sy(r)
0.14344
in^3
x(r)
0.75000
in
jx
0.00000
in
Width
1.50000
in
jy
0.00000
in
I1
0.10758
in^4
rl
0.58367
in
I2
0.10758
in^4
r2
0.58367
in
Ic
0.21516
in^4
rc
0.82544
in
Cw
0.00002
in^6
Io
0.21516
in^4
ro
0.82544
in
J
0.17428
in^4
Fully Braced Strength - 2012 North American Specification - US (ASD)
Material Type: A653 SS Grade 50/1, Fy=50 ksi
Compression
Positive
Moment
Positive
Moment
Pao
9.340
k
Maxo
4.7876
k-in
Mayo
4.7876
k-in
Ae
0.31579
in^2
Ixe
0.10758
in^4
Iye
0.10758
in^4
Sxe(t)
0.14344
in^3
Sye(1)
0.14344
in^3
Tension
Sxe(b)
0.14344
in^3
Sye(r)
0.14344
in^3
Ta
10.067
k
Negative
Moment
Negative
Moment
Maxo
4.7876
k-in
Mayo
4.7876
k-in
Shear
Ixe
0.10758
in^4
Iye
0.10758
in^4
Vay
2.583
k
Sxe(t)
0.14344
in^3
Sye(1)
0.14344
in^3
Vax
2.583
k
Sxe(b)
0.14344
in^3
Sye(r)
0.14344
in^3
Member Check - 2012 North American Specification - US (ASD)
Material Type: A653 SS
Grade
50/1, Fy=50
ksi
Design Parameters:
Lx 6.000 ft
Ly
0.000
ft
Lt
0.000 ft
Kx 1.0000
Ky
1.0000
Kt
1.0000
Cbx 1.0000
Cby
1.0000
ex
0.0000 in
Cmx 1.0000
Cmy
1.0000
ey
0.0000 in
Braced Flange: None
k�
0
k
Red. Factor, R: 0
Lm
20.000
ft
Loads:
P
Mx
Vy
My
Vx
(k)
(k-in)
(k)
(k-in)
(k)
Entered
2.6000
0.0000
0.0000
0.0000
0.0000
Applied
2.6000
0.0000
0.0000
0.0000
0.0000
Strength
2.9438
4.7876
2.5831
4.7876
2.5831
Effective
section properties at
applied loads:
Ae
0.31579 in^2
Ixe
0.10758 in^4
Iye
0.10758 in^4
Sxe(t)
0.14344 in^3
Sye(1)
0.14344 in^3
Sxe(b)
0.14344 in^3
Sye(r)
0.14344 in^3
Interaction Equations
Page 34 of 44
CFS Version 8.0.5 Page 3
Section: Section 7.sct
Tube 1.5x1.5-16 Gage
Rev. Date: 1/25/2017 1:12:48 PM
Printed: 1/25/2017 1:15:51 PM
NAS
Eq.
C5.2.1-1
(P, Mx,
My)
0.883 + 0.000
+ 0.000 =
0.883
<= 1.0
NAS
Eq.
C5.2.1-2
(P, Mx,
My)
0.278 + 0.000
+ 0.000 =
0.278
<= 1.0
NAS
Eq.
C3.3.1-1
(Mx,
Vy)
Sgrt(0.000
+ 0.000)=
0.000
<= 1.0
NAS
Eq.
C3.3.1-1
(My,
Vx)
Sgrt(0.000
+ 0.000)=
0.000
<= 1.0
Page 35 of 44
CFS Version 8.0.5
Section: Section 1.sct
Tube 1.5x1.5-16 Gage
Rev. Date: 1/30/2017 8:14:59 PM
Printed: 1/30/2017 8:20:09 PM
Section Inputs
Material: A653 SS Grade 33
No strength increase from cold work of forming.
Modulus of Elasticity, E 29500 ksi
Yield Strength, Fy 33 ksi
Tensile Strength, Fu 45 ksi
Warping Constant Override, Cw 0 in^6
Torsion Constant Override, J 0 in^4
Tube, Thickness 0.0566 in (16 Gage)
Placement of Part from Origin:
Page 1
Item 4 - Stair Stringer
Sheet S-2
Stringer Calc - (2) Each Side
Max Stringer Span: L = 4'-0"
Max Stair Width: W = 4'-0"
DL = 5 psf = 2.5 psf per Stringer
LL = 100 psf = 50 psf per Stringer
X to
center of
gravity
0 in
Y to
center of
gravity
0 in
Outside
dimensions,
Closed
shape
Length
Angle
Radius
Web
k
Hole Size
Distance
(in)
(deg)
(in)
Coef.
(in)
(in)
1
1.5000
0.000
0.084900
Single
0.000
0.0000
0.7500
2
1.5000
90.000
0.084900
Single
0.000
0.0000
0.7500
3
1.5000
180.000
0.084900
Single
0.000
0.0000
0.7500
4
1.5000
-90.000
0.084900
Single
0.000
0.0000
0.7500
Page 36 of 44
CFS Version 8.0.5
Page 2
Section:
Section 1.sct
Tube 1.5x1.5-16
Gage
Rev. Date: 1/30/2017 8:14:59 PM
Printed:
1/30/2017 8:20:09 PM
Full Section Properties
Area
0.31579
in^2
Wt.
0.0010737
k/ft
Width
5.5793
in
Ix
0.10758
in^4
rx
0.58367
in
Ixy
0.00000
in^4
Sx(t)
0.14344
in^3
y(t)
0.75000
in
a
0.000
deg
Sx(b)
0.14344
in^3
y(b)
0.75000
in
Height
1.50000
in
Iy
0.10758
in^4
ry
0.58367
in
Xo
0.00000
in
Sy(1)
0.14344
in^3
x(1)
0.75000
in
Yo
0.00000
in
Sy(r)
0.14344
in^3
x(r)
0.75000
in
jx
0.00000
in
Width
1.50000
in
jy
0.00000
in
I1
0.10758
in^4
rl
0.58367
in
I2
0.10758
in^4
r2
0.58367
in
Ic
0.21516
in^4
rc
0.82544
in
Cw
0.00002
in^6
Io
0.21516
in^4
ro
0.82544
in
J
0.17428
in^4
Fully Braced Strength - 2012 North American Specification - US (ASD)
Material Type: A653 SS Grade 33, Fy=33 ksi
Compression
Positive
Moment
Positive
Moment
Pao
5.7894
k
Maxo
2.8344
k-in
Mayo
2.8344
k-in
Ae
0.31579
in^2
Ixe
0.10758
in^4
Iye
0.10758
in^4
Sxe(t)
0.14344
in^3
Sye(1)
0.14344
in^3
Tension
Sxe(b)
0.14344
in^3
Sye(r)
0.14344
in^3
Ta
6.2401
k
Negative
Moment
Negative
Moment
Maxo
2.8344
k-in
Mayo
2.8344
k-in
Shear
Ixe
0.10758
in^4
Iye
0.10758
in^4
Vay
1.7048
k
Sxe(t)
0.14344
in^3
Sye(1)
0.14344
in^3
Vax
1.7048
k
Sxe(b)
0.14344
in^3
Sye(r)
0.14344
in^3
Page 37 of 44
CFS Version 8.0.5
Analysis: Analysis 5.anl
4 ft Span Simple Beam
Rev. Date: 1/30/2017 8:19:26 PM
Printed: 1/30/2017 8:20:09 PM
Analysis Inputs
Members
Page 1
Section File
Revision Date and Time
1 Section l.sct
1/30/2017 8:14:59
PM
Start Loc. End Loc. Braced R
k� Lm
(ft) (ft) Flange
(k) (ft)
1 0.0000 4.0000 None 0.0000
0.0000 20.0000
ex ey
(in) (in)
1 0.0000 0.0000
Supports
Type Location Bearing Fastened
K
(ft) (in)
1 Y 0.0000 1.500
No 1.0000
2 XT 0.0000 1.500
No 0.0000
3 Y 4.0000 1.500
No 1.0000
4 XT 4.0000 1.500
No 0.0000
Loading: Dead Load
Type Angle Start Loc.
End Loc. Start
End
(deg) (ft)
(ft) Magnitude
Magnitude
1 Distributed 90.000 0.0000
4.0000-0.00500
-0.00500 k/ft
Loading: Live Load
Type Angle Start Loc.
End Loc. Start
End
(deg) (ft)
(ft) Magnitude
Magnitude
1 Distributed 90.000 0.0000
4.0000-0.10000
-0.10000 k/ft
Load Combination: D
Specification: 2012 North American Specification
- US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Dead Load 1.0000
Page 38 of 44
CFS Version 8.0.5
Analysis: Analysis 5.anl
4 ft Span Simple Beam
Rev. Date: 1/30/2017 8:19:26 PM
Printed: 1/30/2017 8:20:09 PM
Load Combination: D+L
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Dead Load 1.0000
2 Live Load 1.0000
3 Product Load 1.0000
Load Combination: D+0.75(L+Lr)
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Dead Load 1.0000
2 Live Load 0.7500
3 Product Load 0.7500
4 Roof Live Load 0.7500
Load Combination: D+0.7E
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Dead Load 1.0000
2 Earthquake Load 0.7000
Load Combination: D+0.75(0.7E+L+Lr)
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Dead Load 1.0000
2 Earthquake Load 0.5250
3 Live Load 0.7500
4 Product Load 0.7500
5 Roof Live Load 0.7500
Load Combination: 0.6D+0.6W
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Dead Load 0.6000
2 Wind Load 0.6000
Load Combination: 0.6D+0.7E
Specification: 2012 North American Specification - US (ASD)
Inflection Point Bracing: Yes
Loading Factor
1 Dead Load 0.6000
2 Earthquake Load 0.7000
Page 2
Page 39 of 44
CFS Version 8.0.5 Page 3
Analysis: Analysis 5.anl
4 ft Span Simple Beam
Rev. Date: 1/30/2017 8:19:26 PM
Printed: 1/30/2017 8:20:09 PM
Member Check - 2012 North American Specification - US (ASD)
Load Combination: D+L
Design Parameters at 2.0000 ft:
Lx 4.0000 ft Ly 4.0000 ft Lt 4.0000 ft
Kx 1.0000 Ky 0.0000 Kt 0.0000
Section: Section l.sct
Material Type: A653 SS Grade 33, Fy=33 ksi
Cbx
1.0000
Cby
1.0000
ex
0.0000
in
Cmx
1.0000
Cmy
1.0000
ey
0.0000
in
Braced Flange:
None
k�
0 k
Red. Factor,
R: 0
Lm
20.0000 ft
Loads:
P
Mx
Vy
My
Vx
(k)
(k-in)
(k)
(k-in)
(k)
Total
0.0000
2.5200
0.0000
0.0000
0.0000
Applied
0.0000
2.5200
0.0000
0.0000
0.0000
Strength
4.2005
2.8344
1.7048
2.8344
1.7048
Effective
section properties at
applied loads:
Ae
0.31579 in^2
Ixe
0.10758 in^4
Iye
0.10758
in^4
Sxe(t)
0.14344 in^3
Sye(1)
0.14344
in^3
Sxe(b)
0.14344 in^3
Sye(r)
0.14344
in^3
Interaction Equations
NAS
Eq.
C5.2.1-1
(P, Mx,
My)
0.000 + 0.889 +
0.000 =
0.889
<= 1.0
NAS
Eq.
C5.2.1-2
(P, Mx,
My)
0.000 + 0.889 +
0.000 =
0.889
<= 1.0
NAS
Eq.
C3.3.1-1
(Mx,
Vy)
Sgrt(0.790 +
0.000)=
0.889
<= 1.0
NAS
Eq.
C3.3.1-1
(My,
Vx)
Sgrt(0.000 +
0.000)=
0.000
<= 1.0
Page 40 of 44
CFS Version 8.0.5
Analysis: Analysis 6.anl
4 ft Span Simple Beam
Rev. Date: 1/30/2017 8:21:03 PM
Printed: 1/30/2017 8:21:30 PM
Load Combination: D+L, Y Direction
Reaction
(k)
0.21 0.21
0.21
Shear
(k)
Moment
(k-in)
Deflection
(in)
2.52
-0.19057
-0.21
Page 41 of 44
�-+ Salvatore R. Granata P . E . , C . E .
Date
1 /25/2017
Phone: (678) 367-3151 146 Lee Road 2012 Fax: 866-815-4682
Cell: (770) 301-5817 Opelika, AL 36804 sal@srgpe.net
Toll Free: (877)346-5126 salgranata.com
By
SRG
Plywood Deck:
Plywood Deck
DWG. S-2
3/4" APA Rated A-B Grade Plywood
Fb =
1,430
psi
Fv =
190
psi
E = 1,800,000 psi
Assume 1 ft Wide Strip with Face Grain Parralel
Plywood Width: b = 12
Plywood Thickness: t = 0.75
Direction
in
of Ramp
in
Plywood Area : A = 12" * t =
Live Load : L =
9.0
in
100
psf
Dead Load: D =
5
psf
w = L + D =
105
psf
Span: S =
2.0
ft
V=0.5*S*w=
105.0
Ibs
v=V/A=
11.667
psi
OK
Bending Moment: M = w * S2 / 8 =
52.5
ft-Ibs =
630
in-Ibs
Sx=b*t2/6=
1.13
in
fb = M / Sx =
560.0
psi
OK
Ix = b * t3 / 12 =
0.422
in4
* E * I)
Deflection : d = 5 * (w / 144) * (S * 12)4 / (384
Deflection : d = 0.004 in
OK
Page 42 of 44
Q m U O U 2
O
� LL
ao 0
O O O
O � ffic
L a M �
r N r
O 0 OD
NKN nU O NZ
�C
W u ai W
O > �oa=
0 N
L N O Z
O o 00
p 1�1 c Y
c� o aN H �'a U w w a
W
� o
Ln a z
M z a
W U rn F
Q U C>
W U cn
LL`w
t z O >
E. m
co 0 Y .21 o �
O O
O C
Lu
W '^
O � z�
z + + + +i -HLU
o<G�
n FOW�o
O ty O' O w z o ho
LU
—0— 2& Z Q¢ o-d� ka
rn c° ~O m m LL d IESHHO
O N gaC�=�o n
W w�wFs�
100J
z N O 6w€o
� >
m�S¢
O O N +I +I +I +I +I
O 0 0O W FaQo:;w
O ® ° L, O Z ao�w
O ^ O
®000 M C
N 0 0 O N LU
J ��CC 0000 >2 X X 8,m��3= m
®®® 0
0
0
0®®®
0®0
0 O
a ®0°o a
r 0®°0 ~
w o ®0®® o
O N 0®N O
0 0 0
0
X 00®0 X
O
O 0®®® O C) o
p 0000 N O
Go M C >
O 00 ®0®0 O Ix1� J a
C ®0 ®0 O Q Q
a r' ^ ®0®® ^ N W v
®0®0 O 0
000 (n
0 0
® ® O
0u N G
O 000 O p p W
0 0®0 u U
0®00 W m
0O
O ®°
0 OLO O d w
LO ® 0® 0 LO
M O
0®0® Ln
® ® N 0
0 ® 00®00 0 �
a w
0 Lr) 000 Q LL
O N 000® Ln OO U
(.0
O 000® M O �a 0
N 0 0 O N
0
LF
® ®® z
—0--0 ° _o
L M � U
L
N
a a m
Q
LL
Q m U O I
Wz 1X3 LMI-8£b-008-6 W0O•310MO NHONnaS
Page 43 of 44
Typical Screws
TEKS` SELF -DRILLING FASTENERS Product Report No. 02701
.....................................................................................................................................
Selector
For #10 Screws:
Guide AISI Section E4.1 - Minimum Spacing = 3 * (0.190") = 0.57" sories
AISI Section E4.2 - Minimum Edge Distance = 1.5 * (0.190") = 0.285"
Use 3/8" Minimum
1196200 8-18 x 1/2" HWH #2 .036-.100 .205 10,000 • Hat channel to stud
1199200 8-18 x 5/8" HWH #2 .036-.100 .330 10,000 . Stud splicing
1200200 8-18 x 3/4" HWH #2 .036-.100 .455 10,000
1202200 8-18 x 1" HWH #2 .036-.100 .705 8,000
1204200 8-18 x 1-1/2" HWH #2 .036-.100 1.205 4,000
1107053 10-16 x 3/4" HWH #1 .018-.095 .220 5,000 . Stitching roof deck, wall panel
1109053 12-14 x 3/4" HWH #1 .018-.095 .205 4,000
1399053 1/4-14 x 7/8" HWH #1 .018-.095 .380 5,000 sidelaps or duct work
1398000 10-16 x 1/2" Pan #3 .036-.175 .150 10,000
VA"
1541000 10-16 X 5/8" Pan #3 .036-.175 .200 5,000 • Clips, duct straps, brick ties or
1224000 10 16 x 3/4" Pan #3 .036 .175 .325 5,000 accessories to steel framing
1542000 10-16 x 3/4" Oval #3 .036-.175 .325 5,000
1397000 10-16 x 1/2" HWH #3 .036-.175 .150 5,000
1127000 10-16 x 5/8" HWH #3 .036-.175 .200 5,000
1128000 10-16 x 3/4" HWH #3 .036-.175 .325 5,000
Use # 10-16 TEK Screws
Tension Capacity = 708 lbs / 3 = 236 lbs in 16 gage Steel Studs
With serration Shear Capacity = 1540 lbs / 3 = 513 lbs in 16 gage Steel Studs
under head.
t Electro-zinc inrs . x
Pe,f—mance Data
i
PUL T VALUES (average lbs. ultima
e)
Fastener
Steel Gauge
Dia.
Pt.
26
24
22
20
18
16
14
1 12
#6
2
120
183
248
296
471
679
847
-
#8
2
119
193
265
298
491
703
959
-
1
148
241
311
357
565
826
1111
1796
#10-16
3
124
208
266
299
499 1
708 1
967
1474
#12
1
159
261
338
390
649
908
1259
1949
1/4
1 1
1 208
1 329
1 428
1 562
1 800
1151 1
-
-
SHEET STEEL GAUGES
Gauge No.
12
14
16
18
20
22
24
26
Decimal Equivalent
.105"
.075" .060"
.048"
.036"
.030"
024"
018"
The values listed are ultimate averages achieved under laboratory conditions
and apply to Buildex manufactured fasteners only. Appropriate safety factors
should be applied to these values for design purposes.
FASTENER
VALUES
Fastener
(dia-tpi)
Tensile
(lbs. min.)
Shear
(av . lbs. ult.)
Torque
(min. in. lbs.)
6-20
1285
750
25
8-18
1545
1000
42
10-16
1936
1400
61
10-24
2702
1500
65
12-14
2778
2000
92
1/4-14
4060
2600
150
SHEAR VALUES (average lbs. ultimate)
Fastener
Steel
Gauge (lapped)
NV
Dia.
Pt.
26
24
22
20
18
16
14
#6
2
278
466
526
758
845
-
-
#8
2
294
496
560
740
1060
-
-
#10
1
398
584
659
884
1374
-
-
3
-
455
526
728
1266
1540
1552
#12
1
432
703
753
1018
1452
-
-
1/4
1 1
1 511
1 849
1 885
1 1244
1764
-
-
S ......................................................................................................................................
Installation Guidelines
_AL A standard screwgun with a depth sensitive nosepiece should be The fastener is fully seated when the head is flush with the
used to install Teks. For optimal fastener performance, the work surface.
screwgun should be a minimum of 4 amps and have a RPM
range of 0-2500. Overdriving may result in torsional failure of the fastener or
AIL Adjust the screwgun nosepiece to properly seat the fastener.
AL New magnetic sockets must be correctly set before use
Remove chip build-up as needed.
k is/TwBuildex
1349 West Bryn Mawr Avenue
Itasca, Illinois 60143
630-595-3500 Fax:630-595-3549
www.itwbuildex.com
stripout of the substrate.
The fastener must penetrate beyond the metal structure a
minimum of 3 pitches of thread.
Teks° and Climaseall are trademarks of ITW Buildex and Illinois Tool Works, Inc.
0 2010 ITW Buildex and Illinois Tool Works, Inc.
6
Page 44 of 44