Loading...
SP 2001-051 Companion Technical Appendices Vol. II (2002)La Quinta Village Apartments : 11 , , 11! I '/''94 COMPANION TECHNICAL APPENDICES Volume II da _// '�g:� r wed to • 6- �3 Planning Commission 1 'city C nc t3 Com . Dept.--� --- Initial$ ---� --- Case No.� Exhibit Lq'4ith orzditions �-- Prepared for: The City of La Quinta, California Community Development Department Prepared by: MORSI "-MoMmw n . b0. CA"M ROR1cx s c x uL T z sax: 766.M4013FILE COPY P PLANNlRS lNOINEERS SURVEYORS Date: June 28, 2002 Id U JUL 2 6 2002 N si La Qul*nta Village Apartments Volume II MDS Hydrology Report P 1} VILLAGE USE PERMIT LA OUNITA VILLAGE APARTMENTS PRELIMINARY HYDROLOGY AND HYDRAULICS REPORT EESS r0 4 p J. { No. 052496 m * Exp. n12'-31-03 IVIL CAL\'i JULY 23, 2002 M o R 5 E 79-799 Old Avenue 57 . L. Quint., CA 91253 D O N I C H Voice: 760.771.4013 5 C H 0 L T 7 FAX: 760-771-4073 PLANNERS ENGINEERS SURVEYORS VILLAGE USE PERMIT LA QUINTA VILLAGE APARTMENTS INDEX Proiect Location Pro`ect Description / Narrative Appendices Section A: Rational Method Hydrology Calculations 1. Q100 Calculations Section B: Unit Hydrograph Hydrology Calculations 1. Q100 Calculations a. Storage Requirements b. Retention Basin Capacity Section C: Hydraulic Calculations 1. Hydraulic Calculations a. Calculations b. Node Map Section D: Reference Chart 1. AMC Adjustment Relationship 2. Runoff Index Numbers for Pervious Area 3. Impervious Cover for Developed Areas 4. Cover Type Descriptions 5. Infiltration Rate for Pervious Areas versus Runoff Index Numbers Chart 6. 2 -year / 1 -Hour Precipitation 7. 100 -year/ 1 -Hour Precipitation 8. 2 -year / 24 -Hour Precipitation 9. 100 -year / 24 -Hour Precipitation 10. Slope of Intensity Duration Curve Pocket Map Exhibits 1. Plate 1 -Rational Method Hydrology Map 2. Plate 2 -Unit Hydrology Method Map PROJECT LOCATION AVENIDA FERNANDO z z a LA QUINTA C) HOTEL GOLF & cn TENNIS RESORT o a J � Q � m W- 50 0 p,VEN�E 3 W 0 x a VILLAGE USE PERMIT W LA QUINTA VLLAGE APARTMENTS W PROJECT LOCATIONirmot T--.E CALLE TAMPICO VICINITY MAP NOT TO SCALE PREPARED BY: MOR 5 E 79-799 Old Avenue 52 . W Ouinla, CA 92253 naxlcu 5 C H U L T Z Voka: FAX: 760-771-4013 760-771-4073 PLANNERS INGINaERS SURVEYORS 11 PROJECT DESCRIPTION / NARRATIVE The following hydrologic analysis is provided for preliminary justification of storm drain and retention basin improvements proposed for the Village Use Permit for La Quinta Village Apartments in the City of La Quinta, County of Riverside, State of California. The site is currently used for agricultural purposed. Currently drainage is sheet flow in a Northerly/northeasterly direction. The site slopes at approximately 0.5% undulates due to crop rows. Onsite storm flow will be directed to storm drain inlets on the east end of the project site where they will then be routed to a retention basin. The storage requirement for the site is 4.17 ac -ft. The retention basin capacity at the 100 -year storm as proposed is 6.05 ac -ft. The total volume of the retention basin is 8.26 ac -ft. The onsite retention requirement volume does take into account the current volume requirement necessary to meet the storage requirements already existing for the storm drain located at the neighboring site on the east. This report proved an analysis of the retention storage requirement, storm drain hydraulic analysis, catch basin inlet analysis, and onsite storm flow analysis. Each of these analyses were prepared using AES modeling software for Riverside County. Section A PREPARED BY: M O 1 S E 79-799 Old Avenue 51 . Lo O.W., CA 91153 op yrc>r Wk.: 760-771-4013 S C R U L T 7 FAX: 760-771-4073 PLANNERS ENGINEERS SURVEYORS r i **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/99 License ID 1269 Analysis prepared by: I MDS CONSULTING 79-799 Old Avenue 52 La Quinta, CA 92253' �F Tel: 760-771-4013 Fax: 760-771-4073 FILE NAME: 0001.DAT TIME/DATE OF STUDY: 13:58 7/24/2002 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 2 -YEAR, 1 -HOUR PRECIPITATION(INCH) = 0.500 100 -YEAR, 1 -HOUR PRECIPITATION(INCH) = 1.600 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH/HOUR) = 1.6000 SLOPE OF INTENSITY DURATION CURVE = 0.5900 RCFC&WCD HYDROLOGY MANUAL "C" -VALUES USED NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES **************************************************************************** FLOW PROCESS FROM NODE 0.00 TO NODE 1.00 IS CODE = 21 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< i ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS APARTMENT TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW -LENGTH = 865.00 UPSTREAM ELEVATION = 49.89 DOWNSTREAM ELEVATION = 39.35 ELEVATION DIFFERENCE = 10.54 TC = 0.323*[( 865.00**3)/( 10.54)]**.2 = 11.653 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.208 SOIL CLASSIFICATION IS "A" APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8276 SUBAREA RUNOFF(CFS) = 12.29 TOTAL AREA(ACRES) = 3.53 TOTAL RUNOFF(CFS) = 12.29 FLOW PROCESS FROM NODE 1.00 TO NODE 5.00 IS CODE = 3 -------------------------------------------------------------------------_--_ i_ _ >>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««< DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.1 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 7.1 UPSTREAM NODE ELEVATION = 34.35 (o' DOWNSTREAM NODE ELEVATION = 32.77 FLOWLENGTH(FEET) = 157.50 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES 1 r' PIPEFLOW THRU SUBAREA(CFS) = 12.29 I TRAVEL TIME(MIN.) = 0.37 TC(MIN.) = 12.02 r� **************************************************************************** FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1 ---------------------------------------------------------------------------- --»»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 12.02 RAINFALL INTENSITY(INCH/HR) = 4.13 TOTAL STREAM AREA(ACRES) = 3.53 PEAK FLOW RATE(CFS) AT CONFLUENCE = 12.29 i FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 21 ------- ------------------------------------------------------------------------ »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS APARTMENT TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW -LENGTH = 88.00 UPSTREAM ELEVATION = 39.85 DOWNSTREAM ELEVATION = 39.35 ELEVATION DIFFERENCE = 0.50 TC = 0.323*[( 88.00**3)/( 0.50)]**.2 = 5.441 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.594 SOIL CLASSIFICATION IS "A" APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8459 SUBAREA RUNOFF(CFS) = 2.18 TOTAL AREA(ACRES) 0.39 TOTAL RUNOFF(CFS) = 2.18 **************************************************************************** FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1 »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< { TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.44 RAINFALL INTENSITY(INCH/HR) = 6.59 TOTAL STREAM AREA(ACRES) = 0.39 Il IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ************************************************************************** r RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 7.74 5.44 6.594 2 13.65 12.02 4.131 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 13.65 Tc(MIN.) = 12.02 TOTAL AREA(ACRES) = 3.92 **************************************************************************** FLOW PROCESS FROM NODE 5.00 TO NODE 3.00 IS CODE = 3 --------------------------------------------------------------------------- »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««< DEPTH OF FLOW IN 21.0 INCH PIPE IS 15.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 7.3 UPSTREAM NODE ELEVATION = 32.77 DOWNSTREAM NODE ELEVATION = 31.26 FLOWLENGTH(FEET) = 150.50 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES 1 PIPEFLOW THRU SUBAREA(CFS) = 13.65 TRAVEL TIME(MIN.) = 0.35 TC(MIN.) = 12.37 **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 12.37 RAINFALL INTENSITY(INCH/HR) = 4.06 TOTAL STREAM AREA(ACRES) = 3.92 PEAK FLOW RATE(CFS) AT CONFLUENCE = 13.65 �= PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.18 R ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 12.29 12.02 4.131 3.53 2 2.18 5.44 6.594 0.39 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ************************************************************************** r RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 7.74 5.44 6.594 2 13.65 12.02 4.131 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 13.65 Tc(MIN.) = 12.02 TOTAL AREA(ACRES) = 3.92 **************************************************************************** FLOW PROCESS FROM NODE 5.00 TO NODE 3.00 IS CODE = 3 --------------------------------------------------------------------------- »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««< DEPTH OF FLOW IN 21.0 INCH PIPE IS 15.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 7.3 UPSTREAM NODE ELEVATION = 32.77 DOWNSTREAM NODE ELEVATION = 31.26 FLOWLENGTH(FEET) = 150.50 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES 1 PIPEFLOW THRU SUBAREA(CFS) = 13.65 TRAVEL TIME(MIN.) = 0.35 TC(MIN.) = 12.37 **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 12.37 RAINFALL INTENSITY(INCH/HR) = 4.06 TOTAL STREAM AREA(ACRES) = 3.92 PEAK FLOW RATE(CFS) AT CONFLUENCE = 13.65 t FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 21 ---------------------------------------------------------------------------- »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS APARTMENT TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW -LENGTH = 988.00 UPSTREAM ELEVATION = 49.89 DOWNSTREAM ELEVATION = 39.35 ELEVATION DIFFERENCE = 10.54 TC = 0.323*[( 988.00**3)/( 10.54)]**.2 = 12.621 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.014 SOIL CLASSIFICATION IS "A" APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8255 SUBAREA RUNOFF(CFS) = 25.42 TOTAL AREA(ACRES) = 7.67 TOTAL RUNOFF(CFS) = 25.42 **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.62 RAINFALL INTENSITY(INCH/HR) = 4.01 TOTAL STREAM AREA(ACRES) = 7.67 PEAK FLOW RATE(CFS) AT CONFLUENCE = 25.42 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 13.65 12.37 4.063 3.92 2 25.42 12.62 4.014 7.67 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ************************************************************************** RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 38.56 12.37 4.063 2 38.91 12.62 4.014 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 38.91 Tc(MIN.) = 12.62 TOTAL AREA(ACRES) = 11.59 FLOW PROCESS FROM NODE 3.00 TO NODE 6.00 IS CODE = 3 ---------------------------------------------------------------------------- »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER -ESTIMATED PIPESIZE (NON -PRESSURE FLOW) ««< DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.7 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 10.8 UPSTREAM NODE ELEVATION = 31.26 DOWNSTREAM NODE ELEVATION = 29.00 FLOWLENGTH(FEET) = 160.01 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 38.91 TRAVEL TIME(MIN.) = 0.25 TC(MIN.) = 12.87 -----------------�_=--- _—_--_--_- END OF STUDY SUMMARY: PEAK FLOW RATE(CFS) = 38.91 Tc(MIN.) = 12.87 TOTAL AREA(ACRES) = 11.59 END OF RATIONAL METHOD ANALYSIS 1 Section B PRFPARFn RV - M a 6 1 E 71-711011 Avenue 54 . La Ouinla, CA 94453 aaaicw Voice: 760-771-4013 S C w U l T 4 FAX: 760-777-4073 PLANNERS ENGINEERS SURVEYORS 9 F L 0 0 D R 0 U T I N G A N A L Y S I S ACCORDING TO RIVERSIDE COUNTY FLOOD CONTORL AND WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1989-99 Advanced Engineering Software (aes) Ver. 7.0 Release Date: 01/01/99 License ID 1269 Analysis prepared by: MDS CONSULTING 19-799 Old Avenue 52 La Quinta, CA 92253 Tel: 760-771-4013 Fax: 760-771-4073 ! T------------------------------------------------------------------------------_---- 4 FILE NAME: 0002.DAT TIME/DATE OF STUDY: 09:58 07/24/2002 FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 1 ----------------------------------------------------------------------------- »»>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ««< (UNIT-HYDROGRAPH ADDED TO STREAM #1) WATERCOURSE LENGTH = 1096.000 FEET LENGTH FROM CONCENTRATION POINT TO CENTROID = 513.000 FEET ELEVATION VARIATION ALONG WATERCOURSE = 10.540 FEET BASIN FACTOR = 0.020 WATERSHED AREA = 11.500 ACRES BASEFLOW = 0.000 CFS/SQUARE-MILE WATERCOURSE "LAG" TIME = 0.052 HOURS CAUTION: LAG TIME IS LESS THAN 0.50 HOURS. THE 5 -MINUTE PERIOD UH MODEL (USED IN THIS COMPUTER PROGRAM) MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES. DESERT S -GRAPH SELECTED UNIFORM MEAN SOIL-LOSS(INCH/HOUR) = 0.210 LOW SOIL -LOSS RATE PERCENT(DECIMAL) = 0.850 MINIMUM SOIL -LOSS RATE(INCH/HOUR) = 0.110 USER -ENTERED RAINFALL = 5.00 INCHES RCFC&WCD 24 -Hour Storm (15 -Minute period) SELECTED RCFC&WCD DEPTH -AREA ADJUSTMENT FACTOR(PLATE E-5.8) = 1.0000 UNIT HYDROGRAPH TIME UNIT = 15.000 MINUTES UNIT INTERVAL PERCENTAGE OF LAG -TIME = 484.177 UNIT HYDROGRAPH DETERMINATION r ----------------------------- "S" GRAPH -------------------- MEAN VALUES INTERVAL ------------------------------------------------------- 70.244 NUMBER 99.106 ------------------- 1 99.642 2 3 99.911 4 100.000 5 r ----------------------------- "S" GRAPH ------------------------- UNIT HYDROGRAPH MEAN VALUES ORDINATES(CFS) ------------------------------------------------------- 70.244 32.565 99.106 13.380 99.642 0.249 99.911 0.124 100.000 0.041 0 I UNIT UNIT UNIT EFFECTIVE PERIOD RAINFALL SOIL -LOSS RAINFALL (NUMBER) ---------------------------------------------------------------------------- (INCHES) (INCHES) (INCHES) 1 0.0100 0.0085 0.0015 2 0.0150 0.0127 0.0022 3 0.0150 0.0127 0.0022 4 0.0200 0.0170 0.0030 5 0.0150 0.0127 0.0022 6 0.0150 0.0127 0.0022 7 0.0150 0.0127 0.0022 8 0.0200 0.0170 0.0030 9 0.0200 0.0170 0.0030 10 0.0200 0.0170 0.0030 11 0.0250 0.0212 0.0037 12 0.0250 0.0212 0.0037 13 0.0250 0.0212 0.0037 14 0.0250 0.0212 0.0037 15 0.0250 0.0212 0.0037 16 0.0300 0.0255 0.0045 17 0.0300 0.0255 0.0045 18 0.0350 0.0297 0.0052 19 0.0350 0.0297 0.0052 20 0.0400 0.0340 0.0060 21 0.0300 0.0255 0.0045 22 0.0350 0.0297 0.0052 23 0.0400 0.0340 0.0060 24 0.0400 0.0340 0.0060 25 0.0450 0.0382 0.0067 26 0.0450 0.0382 0.0067 27 0.0500 0.0425 0.0075 28 0.0500 0.0425 0.0075 29 0.0500 0.0425 0.0075 30 0.0550 0.0467 0.0082 31 0.0600 0.0510 0.0090 32 0.0650 0.0552 0.0097 33 0.0750 0.0611 0.0139 34 0.0750 0.0603 0.0147 35 0.0800 0.0595 0.0205 36 0.0850 0.0587 0.0263 37 0.0950 0.0579 0.0371 38 0.1000 0.0571 0.0429 39 0.1050 0.0563 0.0487 40 0.1100 0.0556 0.0544 41 0.0750 0.0548 0.0202 42 0.0750 0.0540 0.0210 43 0.1000 0.0533 0.0467 44 0.1000 0.0525 0.0475 45 0.0950 0.0518 0.0432 46 0.0950 0.0511 0.0439 47 0.0850 0.0504 0.0346 48 0.0900 0.0496 0.0404 49 0.1250 0.0489 0.0761 50 0.1300 0.0482 0.0818 51 0.1400 0.0476 0.0924 52 0.1450 0.0469 0.0981 53 0.1700 0.0462 0.1238 54 0.1700 0.0455 0.1245 55 0.1150 0.0449 0.0701 56 0.1150 0.0442 0.0708 57 58 0.1350 0.1300 0.0436 0.0430 0.0914 0.0870 59 0.1300 0.0424 0.0876 60 0.1250 0.0418 0.0832 61 0.1200 0.0412 0.0788 62 0.1150 0.0406 0.0744 63 0.0950 0.0400 0.0550 64 0.0950 0.0394 0.0556 65 0.0200 0.0170 0.0030 66 0.0200 0.0170 0.0030 67 0.0150 0.0127 0.0022 68 0.0150 0.0127 0.0022 69 0.0250 0.0212 0.0037 70 0.0250 0.0212 0.0037 71 0.0250 0.0212 0.0037 72 0.0200 0.0170 0.0030 73 0.0200 0.0170 0.0030 74 0.0200 0.0170 0.0030 75 0.0150 0.0127 0.0022 76 0.0100 0.0085 0.0015 77 0.0150 0.0127 0.0022 78 0.0200 0.0170 0.0030 79 0.0150 0.0127 0.0022 80 0.0100 0.0085 0.0015 81 0.0150 0.0127 0.0022 82 0.0150 0.0127 0.0022 83 0.0150 0.0127 0.0022 84 0.0100 0.0085 0.0015 85 0.0150 0.0127 0.0022 86 0.0100 0.0085 0.0015 87 0.0150 0.0127 0.0022 88 0.0100 0.0085 0.0015 89 0.0150 0.0127 0.0022 90 0.0100 0.0085 0.0015 91 0.0100 0.0085 0.0015 92 0.0100 0.0085 0.0015 93 0.0100 0.0085 0.0015 94 0.0100 0.0085 0.0015 95 0.0100 0.0085 0.0015 96 0.0100 0.0085 0.0015 1 TOTAL STORM RAINFALL(INCHES) = 5.00 TOTAL SOIL-LOSS(INCHES) = 2.87 TOTAL EFFECTIVE RAINFALL(INCHES) = 2.13 --------------------------------------------------------------------------- TOTAL SOIL -LOSS VOLUME(ACRE-FEET) = 2.7481 TOTAL STORM RUNOFF VOLUME(ACRE-FEET) = 2.0424 0 2 4- H O U R S T 0 R M R U N O F F H Y D R 0 G R A P H �_---_! AYDROGRAPH-IN FIVE-MINUTE UNIT INTERVALS (CFS) (Note: Time indicated is at END of Each Unit Intervals) TIME(HRS) VOLUME(AF) Q(CFS) 0. 2.5 5.0 7.5 10.0 ------------------------------------------------------------------------ 0.083 0.0003 0.05 Q , 0.167 0.0007 0.05 Q 0.250 0.0010 0.05 Q 0.333 0.0017 0.09 Q , 0.417 0.0023 0.09 Q , 0.500 0.0029 0.09 Q 0.583 0.0037 0.10 Q , 0.667 0.0044 0.10 Q 0.750 0.0051 0.10 Q 0.833 0.0060 0.13 Q 0.917 0.0069 0.13 Q 1.000 0.0077 0.13 Q , 1.083 0.0085 0.11 Q 1.167 0.0093 0.11 Q , 1.250 0.0101 0.11 Q 1.333 0.0108 0.10 Q 1.417 0.0115 0.10 V ` Q 1.500 0.0123 0.10 Q 1.583 0.0130 0.10 Q 1.667 0.0137 0.10 Q 1.750 0.0144 0.10 Q 1.833 0,0153 0.13 Q 1.917 0.0162 0.13 Q �- 2.000 0.0171 0.13 Q 2.083 0.0180 0.14 Q 2.167 0.0190 0.14 Q 2.250 0.0199 0.14 Q 2.333 0.0209 0.14 Q 2.417 0.0219 0.14 Q 2.500 0.0228 0.14 Q 2.583 0.0239 0.16 Q 2.667 0.0251 0.16 Q 2.750 0.0262 0.16 Q 2.833 0.0274 0.17 Q 2.917 0.0286 0.17 Q 3.000 0.0298 0.17 Q 3.083 0.0310 0.17 Q 3.167 0.0322 0.17 Q , 3.250 0.0334 0.17 Q 3.333 0.0346 0.17 Q 3.417 0.0358 0.17 Q , 3.500 0.0370 0.17 Q 3.583 0.0382 0.17 Q 3.667 0.0394 0.17 Q 3.750 0.0405 0.17 Q , 3.833 0.0419 0.20 Q 3.917 0.0433 0.20 Q 4.000 0.0446 0.20 Q 4.083 0.0461 0.21 Q 4.167 0.0475 0.21 Q 4.250 0.0489 0.21 Q , 4.333 0.0506 0.23 Q , 4.417 0.0522 0.23 QV 4.500 0.0538 0.23 QV 4.583 0.0554 0.24 QV 4.667 0.0571 0.24 QV , 4.750 0.0588 0.24 QV , 4.833 0.0606 0.27 Q 4.917 0.0625 0.27 Q 5.000 0.0643 0.27 Q , 5.083 0.0659 0.23 QV 5.167 0.0675 0.23 QV 5.250 0.0690 0.23 QV 5.333 0.0707 0.23 QV 5.417 0.0723 0.23 QV 5.500 0.0739 0.23 QV 5.583 0.0757 0.27 Q 5.667 0.0776 0.27 Q 5.750 0.0794 0.27 Q , 5.833 0.0813 0.28 Q 5.917 0.0832 0.28 Q , 6.000 0.0851 0.28 Q 6.083 0.0872 0.30 Q 6.167 0.0893 0.30 Q , 6.250 0.0914 0.30 Q 6.333 0.0935 0.31 Q , 6.417 0.0957 0.31 Q 6.500 0.0978 0.31 Q , 6.583 0.1002 0.34 Q 6.667 0.1025 0.34 QV , 6.750 0.1048 0.34 QV , 6.833 0.1072 0.35 QV , 6.917 0.1096 0.35 QV , 7.000 0.1120 0.35 QV 7.083 0.1144 0.35 QV , 7.167 0.1168 0.35 QV 7.250 0.1192 0.35 QV , 7.333 0,1217 0.37 QV , 7.417 0.1243 0.37 QV 7.500 0.1269 0.37 QV 7.583 0.1297 0.41 QV , 7.667 0.1325 0.41 QV , 7.750 0.1353 0.41 QV , 7.833 0.1383 0.44 QV , 7.917 0.1413 0.44 QV 8.000 0.1444 0.44 QV 8.083 0.1484 0.59 Q 8.167 0.1524 0.59 Q 8.250 0.1565 0.59 QV , 8.333 0.1611 0,67 QV 8.417 0,1657 0.67 QV 8.500 0.1703 0.67 QV , 8.583 0.1763 0.87 Q 8.667 0.1823 0.87 Q 8.750 0.1882 0.87 Q 8.833 0.1961 1.14 VQ 8.917 0.2039 1.14 VQ 9.000 0.2117 1.14 Q 9.083 0.2225 1.57 V Q 9.167 0.2333 1.57 V Q 9.250 0.2441 1.57 V Q 9.333 0.2572 1.90 V Q 9.417 0.2703 1.90 V Q 9.500 0.2834 1.90 V Q , 9.583 0.2984 2.17 V Q . 9.667 0.3133 2.17 V Q . 9.750 0.3283 2.17 V Q , 9.833 0.3451 2.44 V Q. , 9.917 0.3619 2.44 V Q. 10.000 0.3787 2.44 V Q. , 10.083 0.3884 1.41 Q V 10.167 0.3981 1.41 Q V 10.250 0.4078 1.41 Q V 10.333 0.4145 0.97 Q V . 10.417 0.4212 0.97 Q V . 10.500 0.4279 0.97 , Q V . 10.583 0.4404 1.82 QV . 10.667 0.4529 1.82 QV . 10.750 0.4654 1.82 Q V. 10.833 0.4804 2.18 QV. 10.917 0.4954 2.18 QV. 11.000 0.5105 2.18 QV. 11.083 0.5246 2.06 Q V 11.167 0.5388 2.06 Q V 11.250 0.5530 2.06 Q V 11.333 0.5669 2.03 Q .v 11.417 0.5809 2.03 Q .V 11.500 0.5948 2.03 Q .V 11.583 0.6068 1.73 Q .V , 11.667 0.6187 1.73 Q . V 11.750 0.6307 1.73 Q . V 11.833 0.6430 1.80 Q V 11.917 0.6554 1.80 Q V 12.000 0.6678 1.80 Q V 12.083 0.6887 3.03 QV 12.167 0.7095 3.03 QV 12.250 0.7304 3.03 Q V 12.333 0.7559 3.70 Q , 12.417 0.7813 3.70 QV 12.500 0.8068 3.70 QV 12.583 0.8352 4.13 Q 12.667 0.8637 4.13 Q 12.750 0.8921 4.13 QV 12.833 0.9229 4.46 QV . 12.917 0.9536 4.46 QV . 13.000 0.9843 4.46 Q V. 13.083 1.0214 5.38 VQ 13.167 1.0584 5.38 VQ 13.250 1.0955 5.38 Q i r 13.333 1.1351 5.75 Q 13.417 1.1747 5.75 QV 13.500 1.2143 5.75 QV 13.583 1.2418 3.99 Q V 13.667 1.2693 3.99 Q V 13.750 1.2968 3.99 Q V 13.833 1.3195 3.29 Q V 13.917 1.3422 3.29 Q V 14.000 1.3648 3.29 Q V 14.083 1.3921 3.96 Q V 14.167 1.4194 3.96 Q V 14.250 1.4467 3.96 Q V . 14.333 1.4748 4.09 Q V . 14.417 1.5030 4.09 Q V. 14.500 1.5311 4.09 Q V. 14.583 1.5590 4.05 Q V 14.667 1.5870 4.05 Q V 14.750 1.6149 4.05 Q V 14.833 1.6419 3.92 Q , V 14.917 1.6688 3.92 Q V 15.000 1.6958 3.92 Q , V 15.083 1.7214 3.72 Q V 15.167 1.7470 3.72 Q V 15.250 1.7727 3.72 Q V 15.333 1.7969 3.51 Q , V 15.417 1.8211 3.51 Q V 15.500 1.8453 3.51 Q V 15.583 1.8647 2.82 Q V 15.667 1.8841 2.82 ,Q V 15.750 1.9035 2.82 ,Q V 15.833 1.9213 2.58 Q V 15.917 1.9391 2.58 Q V 16.000 1.9568 2.58 Q V . 16.083 1.9628 0.87 Q V . 16.167 1.9688 0.87 Q V . 16.250 1.9747 0.87 Q V . 16.333 1.9759 0.16 Q , V . 16.417 1.9770 0.16 Q , V , 16.500 1.9781 0.16 Q V , 16.583 1.9789 0.12 Q V . 16.667 1.9798 0.12 Q V . 16.750 1.9806 0.12 Q V . 16.833 1.9814 0.11 Q V . 16:917 1.9821 0.11 Q , V . 17.000 1.9828 0.11 Q V . 17.083 1.9839 0.15 Q V . 17.167 1.9850 0.15 Q V . 17.250 1.9860 0.15 Q V . 17.333 1.9872 0.17 Q , V . 17.417 1.9884 0.17 Q V . 17.500 1.9896 0.17 Q V . 17.583 1.9908 0.17 Q , V . 17.667 1.9920 0,17 Q V. 17.750 1.9932 0.17 Q , V. 17.833 1.9942 0.15 Q V. 17.917 1.9952 0.15 Q V. 18.000 1.9963 0.15 Q V. 18.083 1.9972 0.14 Q V. 18.167 1.9982 0.14 Q V, 18.250 1.9991 0.14 Q , V. 18.333 2.0001 0.14 Q , V. 18.417 2.0011 0.14 Q V. 18.500 18.583 2.0020 2.0028 0.14 0.11 Q Q , V, , V. 18.667 2.0036 0.11 Q , V. 18.750 2.0044 0.11 Q V. j' 18.833 2.0049 0.08 QR V, 18.917 2.0055 0.08 Q V. 19.000 2.0060 0.08 Q , V. 19.083 2.0067 0.09 Q , V. 19.167 2.0073 0.09 Q V. 19.250 2.0080 0.09 Q V. 19.333 2.0089 0.13 Q V. r 19.417 2.0098 0.13 Q , V. 19.500 2.0106 0.13 Q , V. I 19.583 2.0114 0.11 Q V. 19.667 2.0122 0.11 Q , V. 19.750 2.0130 0.11 Q , V. y 19.833 2.0136 0,08 Q V. 19.917 2.0141 0.08 Q V. 20.000 2.0147 0.08 Q V. 20.083 2.0153 0.09 Q V. 20.167 2.0160 0.09 Q V. 20.250 2.0166 0.09 Q V. 20.333 2.0173 0.10 Q V. 20.417 2.0180 0.10 Q V. 20.500 2.0188 0.10 Q V. 20.583 2.0195 0,10 Q V, 20.667 2.0202 0.10 Qi V. 20.750 2.0209 0.10 Q V, 20.833 2.0215 0.08 Q , V. 20.917 2.0220 0.08 Q V. I 21.000 2.0226 0.08 Q V. 21.083 2.0232 0.09 Q V. 21.167 2.0239 0.09 Q V, 21.250 2.0245 0.09 Q V. 21.333 2.0251 0.08 Q , V. 21.417 2.0256 0.08 Q V. 21.500 2.0262 0.08 Q= V. 21.583 2.0268 0.09 Q V. 21.667 2.0275 0.09 Q V. 21.750 2.0281 0.09 Q V. 21.833 2.0287 0.08 Qr V. 21.917 2.0292 0.08 Q V. 22.000 2.0298 0.08 Q V. 22.083 2.0304 0.09 Q V, 22.167 2.0311 0.09 Q V. 22.250 2.0317 0.09 Q V. 22.333 2.0322 0.08 Q , V. 22.417 2.0328 0.08 Q V. 22.500 2.0333 0.08 Q V. 22.583 2.0338 0.07 Q , , V. 22.667 2.0343 0.07 Q , V. 22.750 2.0348 0.07 Q V. d **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ««< (UNIT-HYDROGRAPH ADDED TO STREAM #2) WATERCOURSE LENGTH = 2898.000 FEET LENGTH FROM CONCENTRATION POINT TO CENTROID = 748.000 FEET ELEVATION VARIATION ALONG WATERCOURSE = 17.130 FEET BASIN FACTOR = 0.020 WATERSHED AREA = 12.000 ACRES 6 BASEFLOW = 0.000 CFS/SQUARE-MILE WATERCOURSE "LAG" TIME = 0.095 HOURS CAUTION: LAG TIME IS LESS THAN 0.50 HOURS. THE 5 -MINUTE PERIOD UH MODEL (USED IN THIS COMPUTER PROGRAM) MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES. DESERT S -GRAPH SELECTED UNIFORM MEAN SOIL-LOSS(INCH/HOUR) = 0.210 LOW SOIL -LOSS RATE PERCENT(DECIMAL) = 0.850 MINIMUM SOIL -LOSS RATE(INCH/HOUR) = 0.110 USER -ENTERED RAINFALL = 5.00 INCHES RCFC&WCD 24 -Hour Storm (15 -Minute period) SELECTED RCFC&WCD DEPTH -AREA ADJUSTMENT FACTOR(PLATE E-5.8) = 1.0000 UNIT HYDROGRAPH TIME UNIT = 15.000 MINUTES UNIT INTERVAL PERCENTAGE OF LAG -TIME = 264.324 ***> NOTE: RATIO OF (AREA IN SQUARE FEET) / (WATERCOURSE LENGTH SQUARED) IS NOT BETWEEN [.10] AND [1.0] 22.833 2.0353 0.07 Q V. 22.917 2.0357 0.07 Q V. 23.000 2.0362 0.07 Q V. 23.083 2.0367 0.07 Q V. 23.166 2.0372 0.07 Q V. 23.250 2.0377 0.07 Q V. 23.333 2.0381 0.07 Q , V. 23.416 2.0386 0.07 Q . V. 23.500 2.0391 0.07 Q V. 23.583 2.0396 0.07 Q V. 23.666 2.0401 0.07 Q V. 23.750 2.0405 0.07 Q V. 23.833 2.0410 0.07 Q . V, 23.916 2.0415 0.07 Q V. 24.000 2.0420 0.07 Q V. 24.083 2.0421 0.02 Q . V. 24.166 2.0423 0.02 Q V. 24.250 2.0424 0.02 Q V. 24.333 2.0424 0.00 Q , V. 24.416 2.0424 0.00 Q V. ( 24.500 2.0424 0.00 Q V. **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 1 ---------------------------------------------------------------------------- »»>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ««< (UNIT-HYDROGRAPH ADDED TO STREAM #2) WATERCOURSE LENGTH = 2898.000 FEET LENGTH FROM CONCENTRATION POINT TO CENTROID = 748.000 FEET ELEVATION VARIATION ALONG WATERCOURSE = 17.130 FEET BASIN FACTOR = 0.020 WATERSHED AREA = 12.000 ACRES 6 BASEFLOW = 0.000 CFS/SQUARE-MILE WATERCOURSE "LAG" TIME = 0.095 HOURS CAUTION: LAG TIME IS LESS THAN 0.50 HOURS. THE 5 -MINUTE PERIOD UH MODEL (USED IN THIS COMPUTER PROGRAM) MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES. DESERT S -GRAPH SELECTED UNIFORM MEAN SOIL-LOSS(INCH/HOUR) = 0.210 LOW SOIL -LOSS RATE PERCENT(DECIMAL) = 0.850 MINIMUM SOIL -LOSS RATE(INCH/HOUR) = 0.110 USER -ENTERED RAINFALL = 5.00 INCHES RCFC&WCD 24 -Hour Storm (15 -Minute period) SELECTED RCFC&WCD DEPTH -AREA ADJUSTMENT FACTOR(PLATE E-5.8) = 1.0000 UNIT HYDROGRAPH TIME UNIT = 15.000 MINUTES UNIT INTERVAL PERCENTAGE OF LAG -TIME = 264.324 ***> NOTE: RATIO OF (AREA IN SQUARE FEET) / (WATERCOURSE LENGTH SQUARED) IS NOT BETWEEN [.10] AND [1.0] UNIT HYDROGRAPH DETERMINATION ----------------------------------------------------------------------------- INTERVAL "S" GRAPH UNIT HYDROGRAPH NUMBER MEAN VALUES ORDINATES(CFS) ---------------------------------------------------------------------------- 1 51.946 25.129 2 93.043 19.881 3 98.911 2.839 4 99.953 0.504 5 99.981 0.014 6 99.995 0.007 7 100.000 0.002 J�t *********************************************************************** UNIT UNIT UNIT EFFECTIVE PERIOD RAINFALL SOIL -LOSS RAINFALL (NUMBER) (INCHES) (INCHES) (INCHES) ------------------------------------------------------------------------------ 1 0.0100 0.0085 0.0015 2 0.0150 0.0127 0.0022 3 0.0150 0.0127 0.0022 4 0.0200 0.0170 0.0030 I 5 0.0150 0.0127 0.0022 6 0.0150 0.0127 0.0022 7 0.0150 0.0127 0.0022 8 0.0200 0.0170 0.0030 i 9 0.0200 0.0170 0.0030 10 0.0200 0.0170 0.0030 11 0.0250 0.0212 0.0037 ! 12 0.0250 0.0212 0.0037 13 0.0250 0.0212 0.0037 14 0.0250 0.0212 0.0037 C 15 0.0250 0.0212 0.0037 16 0.0300 0.0255 0.0045 17 0.0300 0.0255 0.0045 18 0.0350 0.0297 0.0052 19 0.0350 0.0297 0.0052 20 0.0400 0.0340 0.0060 21 0.0300 0.0255 0.0045 22 0.0350 0.0297 0.0052 23 0.0400 0.0340 0.0060 24 0.0400 0.0340 0.0060 25 0.0450 0.0382 0.0067 26 0.0450 0.0382 0.0067 27 0.0500 0.0425 0.0075 28 0.0500 0.0425 0.0075 29 0.0500 0.0425 0.0075 30 0.0550 0.0467 0.0082 31 0.0600 0.0510 0.0090 32 0.0650 0.0552 0.0097 33 0.0750 0.0611 0.0139 34 0.0750 0.0603 0.0147 35 0.0800 0.0595 0.0205 36 0.0850 0.0587 0.0263 37 0.0950 0.0579 0.0371 38 0.1000 0.0571 0.0429 39 0.1050 0.0563 0.0487 40 0.1100 0.0556 0.0544 41 0.0750 0.0548 0.0202 42 0.0750 0.0540 0.0210 43 0.1000 0.0533 0.0467 44 0.1000 0.0525 0.0475 45 0.0950 0.0518 0.0432 46 0.0950 0.0511 0.0439 47 0.0850 0.0504 0.0346 48 0.0900 0.0496 0.0404 49 0.1250 0.0489 0.0761 50 0.1300 0.0482 0.0818 J 51 0.1400 0.0476 0.0924 TOTAL STORM RAINFALL(INCHES) = 5.00 TOTAL SOIL-LOSS(INCHES) = 2.87 TOTAL EFFECTIVE RAINFALL(INCHES) = 2.13 ---------------------------------------------------------------------------- TOTAL SOIL -LOSS VOLUME(ACRE-FEET) = 2.8676 TOTAL STORM RUNOFF VOLUME(ACRE-FEET) = 2.1312 5 52 0.1450 0.0469 0.0981 53 0.1700 0.0462 0.1238 54 0.1700 0.0455 0.1245 55 0.1150 0.0449 0.0701 56 0.1150 0.0442 0.0708 57 0.1350 0.0436 0.0914 58 0.1300 0.0430 0.0870 59 0.1300 0.0424 0.0876 60 0.1250 0.0418 0.0832 61 0.1200 0.0412 0.0788 62 0.1150 0.0406 0.0744 63 0.0950 0.0400 0.0550 64 0.0950 0.0394 0.0556 65 0.0200 0.0170 0.0030 66 0.0200 0.0170 0.0030 67 0.0150 0.0127 0.0022 68 0.0150 0.0127 0.0022 69 0.0250 0.0212 0.0037 70 0.0250 0.0212 0.0037 71 0.0250 0.0212 0.0037 72 0.0200 0.0170 0.0030 73 0.0200 0.0170 0.0030 74 0.0200 0.0170 0.0030 75 0.0150 0.0127 0.0022 76 0.0100 0.0085 0.0015 77 0.0150 0.0127 0.0022 78 0.0200 0.0170 0.0030 79 0.0150 0.0127 0.0022 80 0.0100 0.0085 0.0015 81 0.0150 0.0127 0.0022 82 0.0150 0.0127 0.0022 83 0.0150 0.0127 0.0022 84 0.0100 0.0085 0.0015 85 0.0150 0.0127 0.0022 86 0.0100 0.0085 0.0015 87 0.0150 0.0127 0.0022 88 0.0100 0.0085 0.0015 89 0.0150 0.0127 0.0022 90 0.0100 0.0085 0.0015 91 0.0100 0.0085 0.0015 92 0.0100 0.0085 0.0015 93 0.0100 0.0085 0.0015 94 0.0100 0.0085 0.0015 95 '0.0100 0.0085 0.0015 96 0.0100 0.0085 0.0015 TOTAL STORM RAINFALL(INCHES) = 5.00 TOTAL SOIL-LOSS(INCHES) = 2.87 TOTAL EFFECTIVE RAINFALL(INCHES) = 2.13 ---------------------------------------------------------------------------- TOTAL SOIL -LOSS VOLUME(ACRE-FEET) = 2.8676 TOTAL STORM RUNOFF VOLUME(ACRE-FEET) = 2.1312 2 4- H O U R S T O R M R U N O F F H Y D R 0 G R A P H ------------- �­== ---------==�­- ---- HYDROGRAPH IN FIVE-MINUTE UNIT INTERVALS(CFS) (Note: Time indicated is at END of Each Unit Intervals) TIME(HRS) --------------------------------------------------------------------------- VOLUME(AF) Q(CFS) 0, 2.5 5.0 7.5 10.0 0.083 0.0003 0.04 Q , i^ 0.167 0.0005 0.04 Q 0.250 0.0008 0.04 Q 0.333 0.0014 0.09 Q , 0.417 0.0020 0.09 Q 0.500 0.0026 0.09 Q (1 0.583 0.0033 0.11 Q 0.667 0.0040 0.11 Q 0.750 0.0047 0.11 Q , 0.833 0.0056 0.13 Q , 0.917 0.0065 0.13 Q 1.000 0.0074 0.13 Q , 1.083 0.0082 0.12 Q , 1.167 0.0091 0.12 Q , 1.250 0.0099 0.12 Q , 1.333 0.0107 0.11 Q 1.417 0.0115 0.11 Q 1.500 0.0122 0.11 Q , 1.583 0.0130 0.11 Q , 1.667 0.0137 0.11 Q , 1.750 0.0145 0.11 Q 1.833 0.0154 0.13 Q , 1.917 0.0162 0.13 Q , 2.000 0.0171 0.13 Q 2.083 0.0181 0.14 Q 2.167 0.0191 0.14 Q 2.250 0.0201 0.14 Q 2.333 0.0211 0.14 Q 2.417 0.0221 0.14 Q f 2.500 0.0231 0.14 Q 2.583 0.0242 0.16 Q [[ 2.667 0.0253 0.16 Q , 2.750 0.0264 0.16 Q 2.833 0.0277 0.18 Q 2.917 0.0289 0,18 Q 3.000 0.0301 0.18 Q , 3.083 0.0314 0.18 Q , 3.167 0.0326 0.18 Q 3.250 0.0339 0,18 Q 3.333 0.0351 0.18 Q 3.417 0.0364 0,18 Q , 3.500 0.0376 0.18 Q , 3.583 0.0389 0.18 Q 3.667 0.0401 0.18 Q , l 1_. 3.750 0.0414 0.18 Q , 8.583 0.1800 0.85 . Q 8.667 0.1858 0.85 . Q 8.750 0.1917 0.85 Q 8.833 0.1994 1.12 VQ 8.917 0.2071 1.12 VQ 9.000 0.2148 1.12 Q , 9.083 0.2252 1.52 V Q 9.167 0.2357 1.52 V Q Y Y 9.250 0.2462 1.52 V Q 9.333 0.2593 1.90 V Q 9.417 0.2724 1.90 V Q 9.500 0.2855 1.90 V Q , 9.583 0.3006 2.19 V Q . i` 9.667 0.3157 2.19 V Q 9.750 0.3308 2.19 V Q . ; 9.833 0.3479 2.48 , V Q. , 9.917 0.3649 2.48 V Q. , 10.000 0.3820 2.48 V Q. 10.083 0.3940 1.75 Q 10.167 0.4061 1.75 Q 10.250 0.4181 1.75 , Q 10.333 0.4258 1.11 Q V 10.417 0.4334 1.11 Q V , 10.500 0.4411 1.11 Q V . 10.583 0.4526 1.68 Q V 10.667 0.4641 1.68 Q V . 10.750 0.4757 1.68 Q V , S 10.833 0.4908 2.19 QV. 10.917 0.5059 2.19 QV. `f 11.000 0.5210 2.19 QV. , 11.083 0.5360 2.17 Q V 11.167 0.5509 2.17 Q V , 11.250 0.5659 2.17 Q V , 11.333 0.5805 2.12 Q V , 11.417 0.5951 2.12 Q V 11.500 0.6097 2.12 Q V , 11.583 0.6227 1.89 Q .V 11.667 0.6358 1.89 Q ,V ( 11.750 0.6488 1.89 Q V }V 11.833 0.6615 1.85 Q , V 11.917 0.6743 1.85 Q V , 12.000 0.6870 1.85 Q V 12.083 0.7065 2.83 .Q V 12.167 0.7261 2.83 ,Q V i 12.250 0.7456 2.83 .Q V , 12.333 0.7711 3.70 Q 12.417 0.7965 3.70 Q 12.500 0.8220 3.70 , QV , 12.583 0.8508 4.19 VQ , d 12.667 0.8797 4.19 Q 12.750 0.9085 4.19 QV , 12.833 0.9400 4.57 , VQ . 12.917 0.9715 4.57 , Q , 13.000 1.0030 4.57 Q . 13.083 1.0400 5.37 , V.Q 13.167 1.0769 5.37 VQ , 13.250 1.1139 5.37 . , VQ , r 13.333 1.1546 5.92 .V Q 13.417 1.1954 5.92 VQ 13.500 1.2361 5.92= Q 13.583 1.2680 4.64 Q V 13.667 1.3000 4.64 Q . V 13.750 1.3319 4.64 Q V 13.833 1.3567 3.59 Q V 13.917 1.3814 3.59 Q V 14.000 1.4061 3.59 Q . V 14.083 1.4334 3.97 Q V 14.167 1.4608 3.97 Q V 14.250 1.4881 3.97 Q V 14.333 1.5173 4.24 Q V , 14.417 1.5465 4.24 Q V. 14.500 1.5757 4.24 Q V. 14.583 1.6049 4.23 Q . V 14.667 1.6340 4.23 Q V 14.750 1.6631 4.23 Q V 14.833 1.6915 4.13 Q .V 14.917 1.7200 4.13 Q V 15.000 1.7484 4.13 Q V 15.083 1.7755 3.93 Q V 15.167 1.8026 3.93 Q V 15.250 1.8296 3.93 Q V 15.333 1.8553 3.72 Q V 15.417 1.8809 3.72 Q V + 15.500 1.9065 3.72 Q V 15.583 1.9281 3.13 Q V 15.667 1.9496 3.13 Q M1 V ; 15.750 1.9712 3.13 Q V 15.833 1.9901 2.74 . Q V 15.917 2.0090 2.74w Q V 16.000 2.0279 2.74 Q = V . 16.083 2.0373 1.38 Q V . 16.167 2.0468 1.38 Q V . 16.250 2.0563 1.38 Q V . 16.333 2.0585 0.32 Q V . 16.417 2.0607 0.32 Q V . i 16.500 2.0630 0.32 Q V . 16.583 2.0640 0.15 Q V . 16.667 2.0651 0.15 Q V . 16.750 2.0661 0.15 Q V . 16.833 2.0669 0.11 Qi V . 16.917 2.0677 0.11 Q V . 17.000 2.0685 0.11 Q V . 17.083 2.0695 0.15 Q V . 17.167 2.0705 0.15 Q V . 17.250 2.0715 0.15 Q V . 17.333 2.0727 0.18 Q V , 17.417 2.0739 0.18 QY V . n 17.500 2.0752 0.18 Q F V . 17.583 2.0764 0.18 Q V . 17.667 2.0776 0.18 Q . V . 4 17.750 2.0789 0.18 Q V. 17.833 2.0800 0.16 Q . V. 17.917 2.0811 0.16 Q V. 1 18.000 2.0822 0.16 Q V. J 18.083 2.0833 0.15 Q V. 18.167 2.0843 0.15 Q V. 18.250 2.0853 0.15 Q V. 18.333 2.0863 0.15 Q V. 18.417 2.0873 0.15 Q V. 18.500 2.0883 0.15 Q V, 18.583 2.0892 0.13 Q V. = 18.667 2.0900 0.13 Q V. 18.750 2.0909 0.13 Q V. r 18.833 2.0916 0.09 Q V. I 18.917 2.0922 0.09 Q V. 19.000 2.0928 0.09 Q V. 19.083 2.0935 0.09 Q V. j 19.167 2.0941 0.09 Q V. 19.250 2.0948 0.09 Q V. 19.333 2.0956 0.13 Q V. 19.417 2.0965 0.13 Q V. 19.500 2.0974 0.13 Q V. 19.583 2.0982 0.12 Q , V. 19.667 2.0991 0.12 Q V. 19.750 2.0999 0.12 Q V. 19.833 2.1006 0.09 Q V. 19.917 2.1012 0.09 Q V. 20.000 2.1018 0.09 Q . V. 20.083 2.1025 0.09 Q V. 20.167 2.1031 0.09 Q V. 20.250 2.1038 0.09 Q V. 20.333 2.1045 0.11 Q V. 20.417 2.1052 0.11 Q • V. 20.500 2.1060 0.11 Q V. 20.583 2.1067 0.11 Q V. 20.667 2.1075 0.11 Q V. 20.750 2.1082 0.11 Q V. 20.833 2.1088 0.09 Q V. 20.917 2.1095 0.09 Q V. 21.000 2.1101 0.09 Q V. 21.083 2.1107 0.09 Q V. 21.167 2,1114 0.09 Q V. 21.250 2.1120 0.09 Qe V. 21.333 2.1126 0.09 Q V. 21.417 2.1132 0.09 Q . . V. 21.500 2.1138 0.09 Q . . V. 21.583 2.1145 0.09 Q V. 21.667 2.1151 0.09 Q V. 21.750 2.1158 0.09 Q . . V. 21.833 2.1164 0.09 Q V. 1 21.917 2.1170 0.09 Q V. 22.000 2.1176 0.09 Q V. 22.083 2.1182 0.09 Q V. 22.167 2.1189 0.09 Q V. 22.250 2.1195 0.09 Q V. 22.333 2.1201 0.09 Q V. j 22.417 2.1207 0.09 Q V. 1 22.500 2.1213 0.09 Q V. 22.583 2.1218 0.07 Q V. 22.667 2.1224 0.07 Q V. 22.750 2.1229 0.07 Q V. 22.833 2.1234 0.07 Q . V. 22.917 2.1239 0.07 Q . V. 23.000 2.1244 0.07 Q V. 23.083 2.1249 0.07 Q , V. 23.166 2.1254 0.07 Q V. 23.250 2.1259 0.07 Q . V. 23.333 2.1264 0.07 Q . V. 23.416 2.1269 0.07 Q . V. 23.500 2.1274 0.07 Q . V. 23.583 2.1279 0.07 Q V. 23.666 2.1284 0.07 Q V. 23.750 2.1289 0.07 Q . V. 23.833 2.1294 0.07 Q , V. 23.916 2.1299 0.07 Q . V. 24.000 2.1304 0.07 Q V. 24.083 2.1306 0.03 Q V. 24.166 2.1309 0.03 Q V. 24.250 2.1311 0.03 Q V. 24.333 2.1311 0.01 Q V. 24.416 2.1312 0.01 Q V. 24.500 2.1312 0.01 Q V. END OF FLOODSCx ROUTING ANALYSIS TRACT 30043 AVERAGE ADJUSTED LOSS RATE [1] A Soil Group [Plate C-1] [2] Commercial Fm=Minimum Loss Rate—F/2=Sum[10] /2 = 0.105 IN\HR. Cover = 0.11 IN/HR Type C=(F-Fm) / 54 = (SUM [10] — Fm) 154 = 0.0019 [3] 32 RI 1.55 1.55 Number Ft = C(24 -(T/60)) + Fm = 0.0019(24-(T/60)) + 0.11 IN/HR [Plate E-6.1] [4] 0.74 T=Time in minutes. To get an average value for each unit time Pervious period, Use T='/Z .the unit time for the first time period, T = %2 Area unit time for the second period, etc. Infiltration [Plate E-6.2] [5] Commercial Land Use [6] 0.80 Decimal Percent Of Area Impervious [Plate E-6.3] [7] 0.21 Adjusted Infiltration Rate -I N\H R [4](1-.9[6]) [8] 1 Area Acres [9] 1 [8] Sum of [8] [10] 0.21 Average Adjusted Infiltration Rate- IN\HR [7] X [9] 1 RETENTION VOLUME REQUIREMENTS VOLUME REQUIREMENT STREAM #1 2.04 AC -FT STREAM #2 2.13 AC -FT TOTAL VOLUME REOUIRED 4.17 AC -FT VOLUME PROPOSED 6.05 AC -FF ELEVATION AREA ACRES SLOPE BASIN VOLUME 100 -YR VOLUME (FT.) (SF.) (AC.) (FT:FT.) (AC -FT.) (AC -FT.) 29.00 18067 0.41 --- -- -- 30.00 19998 0.46 3:1 0.44 0.44 31.00 21984 0.50 3:1 0.48 0.48 32.00 24028 0.55 3:1 0.53 0.53 33.00 26128 0.60 3:1 0.57 0.57 34.00 28285 0.65 3:1 0.63 0.63 34.00 34312 0.79 0.:0 0.79 0.79 35.00 36677 0.84 -- 0.82 0.82 36.00 39097 0.90 3:1 0.87 0.87 36.80 W.S. 41074 0.94 3:1 0.92 0.92 37.00 41574 0.95 3:1 0.19 -- 38.00 44108 1.01 3:1 0.98 -- 39.00 F.S. 46698 1.07 3:1 1.04 -- 8.26 6.05 Section PREPARED BY: M O E 5 E 79.799 Old A-9 52 . La quint., CA 92253 O K I C H ..K' Vatic 760.771-4013 S C H u L T Z FAX: 760.771-4073 PLANNERS ENGINEERS SURVEYORS PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1269 Analysis prepared by: MDS CONSULTING 79-7999 Old Avenue 52 La Quinta, CA 92253 Tel: 760-771-4013 Fax: 760-771-4073 ------------------------------------------------------------------------------ FILE NAME: 0009.DAT TIME/DATE OF STUDY: 16:41 7/24/2002 NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 0.00 FLOWLINE ELEVATION = 29.00 PIPE DIAMETER(INCH) = 42.00 PIPE FLOW(CFS) = 38.91 ASSUMED DOWNSTREAM CONTROL HGL = 36.800 L.A. THOMPSON'S EQUATION IS USED FOR JUNCTION ANALYSIS =- ���_---------- - ---------------- NODE 0.00 : HGL= < 36.800>;EGL= < 37.054>;FLOWLINE= < 29.000> PRESSURE FLOW PROCESS FROM NODE 0.00 TO NODE 1.00 IS CODE = 1 UPSTREAM NODE 1.00 ELEVATION = 30.74 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): ( PIPE FLOW = 38.91 CFS PIPE DIAMETER = 42.00 INCHES II PIPE LENGTH = 160.00 FEET MANNINGS N = 0.01300 SF=(Q/K)**2 = (( 38.91)/( 1006.096))**2 = 0.0014957 HF=L*SF = ( 160.00)*( 0.0014957) = 0.239 NODE 1.00 : HGL= < 37.039>;EGL= < 37.293>;FLOWLINE= < 30.740> ---------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 5 UPSTREAM NODE 2.00 ELEVATION = 30.78 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 13.6 24.00 3.142 4.329 66.110 0.291 2 38.9 42.00 9.621 4.044 -- 0.254 3 25.3 24.00 3.142 8.053 23.890 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0===Q5 EQUALS BASIN INPUT=== 0 LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.1) UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00361 DOWNSTREAM FRICTION SLOPE = 0.00150 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00255 JUNCTION LENGTH(FEET) = 4.00 FRICTION LOSS = 0.010 ENTRANCE LOSSES = 0.051 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = -0.257+ 0.291- 0.254+( 0.010)+( 0.051) = -0. ** CAUTION: TOTAL ENERGY LOSS COMPUTED USING (PRESSURE+MOMENTUM) ** COMPUTER CHOOSES ZERO ENERGY LOSS FOR TOTAL JUNCTION NODE 2.00 : HGL= < 37.002>;EGL= < 37.293>;FLOWLINE= < 159 IS NEGATIVE. LOSS. 30.780> PRESSURE FLOW PROCESS FROM NODE 2.00 TO NODE 5.00 IS CODE = 1 UPSTREAM NODE 5.00 ELEVATION = 32.65 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 13.60 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 150.50 FEET MANNINGS N = 0.01300 SF=(Q/K)**2 = (( 13.60)/( 226.224))**2 = 0.0036141 HF=L*SF = ( 150.50)*( 0.0036141) = 0.544 NODE 5.00 : HGL= < 37.546>;EGL= < 37.837>;FLOWLINE= < 32.650> PRESSURE FLOW PROCESS FROM NODE 5.00 TO NODE 7.00 IS CODE = 5 UPSTREAM NODE 7.00 ELEVATION = 32.67 ---------------------------------------- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA 4 1 12.3 24.00 3.142 3.915 0.000 2 13.6 24.00 3.142 4.329 -- 3 1.3 18.00 1.767 0.736 90.000 4 0.0 0.00 0.000 0.000 0.000 5 0.0===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) HV 0.238 0.291 UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00296 DOWNSTREAM FRICTION SLOPE = 0.00361 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00329 JUNCTION LENGTH(FEET) = 4.00 FRICTION LOSS = 0.013 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 0.106+ 0.238- 0.291+( 0.013)+( 0.000) = 0.066 NODE 7.00 : HGL= < 37.665>;EGL= < 37.903>;FLOWLINE= < 32.670> PRESSURE FLOW PROCESS FROM NODE 7.00 TO NODE 10.00 IS CODE = 1 UPSTREAM NODE 10.00 ELEVATION = 34.32 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 12.30 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 174.00 FEET MANNINGS N = 0.01300 SF=(Q/K)**2 = (( 12.30)/( 226.224))**2 = 0.0029562 HF=L*SF = ( 174.00)*( 0.0029562) = 0.514 NODE 10.00 : HGL= < 38.180>;EGL= < 38.418>;FLOWLINE= < 34.320> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM 1 11 **************************************************************************** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1269 Analysis prepared by: MDS CONSULTING 79-799 Old Avenue 52 La Quinta CA 92253 Tel: 760-771-4013 Fax: 760-771-4073 TIME/DATE OF STUDY: 14:30 7/24/2002 ************************** DESCRIPTION OF STUDY ************************** * CATCH BASIN #1 * * * * ************************************************************************** **************************************************************************** »» FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« ---------------------------------------------------------------------------- 1 Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 12.29 GUTTER FLOWDEPTH(FEET) = 0.83 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN WIDTH(FEET) = 14.88 »»CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 14.9 »»CALCULATED ESTIMATED INTERCEPTION(CFS) = 12.3 **************************************************************************** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1269 Analysis prepared by: MDS CONSULTING 79-799 Old Avenue 52 La Quinta CA 92253 Tel: 760-771-4013 Fax: 760-771-4073 ---------------------------------------------------------------------------- TIME/DATE OF STUDY: 14:31 7/24/2002 -------------------- ************************** DESCRIPTION OF STUDY ************************** * CATCH BASIN #2 * * * * **************************************************************************** »»FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« ---------------------------------------------------------------------------- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 2.18 GUTTER FLOWDEPTH(FEET) = 0.83 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN WIDTH(FEET) = 2.63 >>CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 2.6 »»CALCULATED ESTIMATED INTERCEPTION(CFS) = 2.2 1 7 -II i HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1269 Analysis prepared by: MDS CONSULTING j 79-799 Old Avenue 52 i. La Quinta CA 92253 Tel: 760-771-4013 Fax: 760-771-4073 --------- -------------------.._--------------------------------_-----_-_--------- TIME/DATE OF STUDY: 14:35 7/24/2002 f ************************** DESCRIPTION OF STUDY ************************** * CATCH BASIN #3 * * * * »» FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« ---------------------------------------------------------------------------- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 25.42 GUTTER FLOWDEPTH(FEET) = 0.83 BASIN LOCAL DEPRESSION(FEET) = 0.33 FLOWBY BASIN WIDTH(FEET) = 30.78 »»CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 30.8 >>CALCULATED ESTIMATED INTERCEPTION(CFS) = 25.4 1 HYDRAULIC NODE MAP NOT TO SCALE Section D PREPARED BY: MORSE 79-799 Old Avenue 51 . La OUinlu, CA 91453 OORICR V.,- 760-771-4013 S C H U L 7 z FAX: 760-771-4073 PLANNERS ENGINEERS SURVEYORS r RUNOFF COEFFICIENT CURVE DATA The data in the following tables may be used to -develop runoff coefficient (C) curves for any combination of runoff index (RI) number and antecedent mositure condition (AMC). For an RI number with an AMC of II (freest Plate D-5.5) enter the tables on the following pages and plot the "C" curve data directly on Plate D-5.8. "C" curve data is given for even RI numbers only, but values may easily be.interpolated for odd RI numbers. For an AMC of I or III enter the tabulation on this page with the RI for AMC II, and read the appropriate RI for AMC I or III. Use this revised RI to enter the tables on the following pages to deter- mine "C". For example if RI - 40 for Xmic II, then RI - 22 for AW. I and RI - 60 for AMC III. AMC ADJUSTMENT RELATIONSHIPS sI ►MsI FOR OTW sI IM 111 IM OTII[ SK A 11 AMC CSwlTI:W, AMC Il ANCM COITI:Wl AMC I AMC III AMC I AMC lit » _! f! Is ]S 74 Il » to s• 111 75 It — I'll f7 31 7S I] » 27 ss H 16 14 » is fs at 77 if -- >• N •• 7/ 1/ » al Al •1 1! I1 » al 12 12 TO 10 » a• N a N 1• Tr N ♦• 111 11 111 K •S 1t 11 1/ 118 M 411 12 RR toas N N 111 1] 11 At N •s N !t 11 61 N N s• of ItN is 91 s! N 11 64 71!1 N 17 la 411 11 S] N Z• l• •1 711 S4 ■1 a 1• 1.1 71 !s ss >• )! f0 1! S7 N 1/ ss N at 16st 77 S1 01 as 11 1111 1s N N 1! 114 11 62 .91 - �_� _..I ._!f N 17 !1 a 19 Y at /1 OR 31 is s/ st N !t ]! Is! q Al •1 Is I 11 N 11 •] N ` 2t AO 1111 1/ N Al 21 11 N 72 N 41 241t 17 73 N Aa as �] 1s TS �! 44 is N so T• w 4s 6 Go 7:17 N t/ M •1 41 is 17 !2 sl :7 As a• N N sS 91 N al 7s sf /7 N 91 n 1! N �� n !t k 11 1/ fl S] 1111 7t N N M S4 H 711 N 97 -- RCFC I& WCD }HYDROLOGY MANUAL PLATE 0-5.7 (I of 12) RUNOFF INDEX NUbMERS OF HYDROLOGIC SOIL -COVER COMPLEXES FOR PERVIOUS AREAS II' Cover Type (3) Quality of Soil Group A 8 C D Cover (2) )RATURAL COVERS - Barren 78 86 91 93 (Rockland, eroded and graded land) Chaparral, Broadleaf Poor 53 70 80 85 (Manzonita, ceanothus and scrub oak) Fair 40 63 75 81 Good 31 57 71 78 Chsparrrl, Narrowleaf Poor 71- 82 88 91" (Chastise and redshank) Fair 55 72 81 86 Grass, Annual or Perennial Poor 67 78 86 89 Fair 50 69 79 84 Good 38 61 74 80 Meadows or Cienegas Poor 63 77 85 88 (Areas with seasonally high water table, Fair 51 70 80 84 principal vegetation is sod formLing grass) Good 30 58 72 78 Open Brush Poor 62 76 84 88 (Soft wood shrubs - buckwheat, sage, etc.) Fair 46 66 77 83 Good 41 63 75 81 Woodland Poor 45 66 77 83 (Coniferous or broadleaf trees predminate. Fair 36 60 73 79 Canopy density is at least 50 porcent) Good 28 55 70 77 Woodland, Grass Poor 57 73 82 86 (Coniferous or broadleaf trees with canopy Fair 44 65 77 82 density from 20 to 50 percent) Good 33 58 72 79 URBAN COVERS - Residential or Comercial Landscaping Good 32 56 69 75 (Lawn, shrubs, etc.) Turf Poor 58 74 83 87 (Irrigated and mowed grass) Fair 44 65 77 82 Good 33 58 72 79 AGRICULTURAL COVERS - Fallow 76 85 90 92 (Land plowed but not tilled or seeded) R c F C 15 w C D RUNPFF INDEX NUMBERS HYDROLOGY MANUAL FOR PERVIOUS AREA PLATE D-5.5 0 of 2) RUNOFF INDEX NUMBERS OF HYDROLOGIC SOIL-COVER COKPLEXES FOR PERVIOUS AREAS-AMC II Quality of Soil Group Cover Type (3) Cover (2) A B C D AGRICULTURAL COVERS (cont.) - Legumes, Close Seeded Poor 66 77 85 89 (Alfalfa, sweetclover, timothy, etc.) Good 58 72 81 85 Orchards, Deciduous See Note 4 ,(Apples, apricots, pears, walnuts, etc.) Orchards, Evergreen Poor 57 73 82 86 (Citrus, avocados, etc.) Fair 44 65 77 82 Good 33 58 72 79 Pasture, Dryland Poor 67 78 86 89 (Annual grasses) Fair 50 69 79 84 Good 38 61 74 80 Pasture, Irrigated Poor 58 74 83 87 (Legumes and perennial grass) Fair 44 65 77 82 Good 33 58 72 79 Row Crops Poor 72 81 88 91 (Field crops - tomatoes, sugar beets, etc.) Good 67 78 85 89 Small Grain Poor 65 76 84 88 (Wheat, oats, barley, etc.) Good 63 75 83 87 Vineyard See Note 4 Notes: 1. All runoff index (RI) numbers are for Antecedent Moisture Condition (AMC) II. 2. Quality of cover definitions: Poor-Heavily grazed or regularly burned areas. Less than 50 per- cent of the ground surface is protected by plant cover or brush and tree canopy. Fair-Moderate cover with 50 percent to 75 percent of the ground sur- face protected. , Good-Heavy or dense cover with more than 75 percent of the ground surface protected. 3. See Plate C-2 for a detailed description of cover types. 4. Use runoff index numbers based on ground cover type. See discussion under "Cover Type Descriptions" on Plate C-2. 5. Reference Bibliography item 17. R C F G Ok w C Q , RUNOFF INDEX NUMBERS HYDROLOGY MANUAL FOR PERVIOUS AREA PLATE D-S.S (2 of 2) rj1 A(.TUILL IMPSWIOUS COWIt Recommended Value Land Use (1) PAnge-Percent For Average Conditions-Psrcent(2 Natural or Agriculture 0 - 10 0 Single Family PAmidential: (3) 40,000 S. F. (1 Acre) Lots 20,000 S. F. (% Acre) Leta 7,200 - 10,000 S. F. Lots 10 - 25 20 30 - 45 40 45 - 55 , 50 Multiple Family Residential: Condominium 45 - 70 65 Apartments 65 - 90 80 Mobile Hume Park 60 - 85 75 C mimarcial, Downtown 80 -100 90 Nosiness or Industrial Notes: 1. Land use should be based on ultimate development of the watershed. Lang range master plans for the County and incorporated cities should be reviewed to insure reasonable land use assumptions. 2. Recommended values are based an average conditions which may not apply to a particular study area. The percentage impervious may vary greatly even on comparable sized lots due to•differenees in dwelling size, improvements, etc. Landscape practices should also be ommidered as it is common in some areas to use ornmental grav- els underlain by impervious plastic materials in place of lawns and shrubs. A field investigation of a study area should always be made, and a review of aerial photos, where available may assist in estimat- ing the percentage of impervious cover in developed areas. 3. For typical horse ranch subdivisions increase impervious area 5 per- cent over the values reccumended in the table above. RCFC Ok WCO ,HYDROLOGY MANUAL IMPERVIOUS COVER FOR DEVELOPED AREAS PLATE D-5.6 r COVER TYPE DESCRIPTIONS (NATURAL COVERS - Barren - Areas with 15 percent or less of the ground surface covered by plants or. 1 Iter. It includes rockland, eroded land, -and shaped or graded land. Barren land does not include fallow land. Cha arral, Broadleaf - Areas on which the principal vegetation consists of ever- green shrubs with broad, hard, stiff leaves such as manzonita, ceanothus and scrub oak. The brush cover is usually dense or moderately dense. ChAparral, Narrowleaf - Land on which the principal vegetation consists of dif- fusely branched evergreen shrubs with fine needle-like leaves such as chamise and redshank. The shrubs are usually widely spaced and low in growth. -If the narrowleaf chaparral shrubs are dense and high; the land should be included with broadleaf chaparral cover. Grass, Annual - Land on which the principal vegetation consists of annual grass and weeds such as annual bromes, wild barley, soft chess, ryegrass and filaree. Grass, Perennial - Areas on which the principal vegetation consists of perennial grass, either native or introduced, and which grows under normal dryland condi- tions. Examples are Stipa or needle grass, Harding grass and wheat grass. It does not include irrigated and meadow grasses. Meadow - Land areas with seasonally high water table, often called cienegas. Principal vegetation consists of sod -forming grasses, interspersed with other-, plants. Open Brush - Principal vegetation consists of soft wood shrubs, usually grayish in color. Examples include California buckwheat, California sagebrush, black sage, white sage and purple sage. It also includes vegetation on desert facing slopes where broadleaf chaparral predominate in an open shrub cover. Woodland - Areas on which coniferous or broadleaf trees predominate. The crown or canopy density, the amount of ground surface shaded at high noon, is at least 50 percent. Open areas may have a cover of annual or perennial grasses or of brush. Plant cover under the trees is usually sparse because of leaf or needle litter accumulation. Woodland, Grass - Areas with an open cover of broadleaf or coniferous trees usu- ally live oak and pines, with the intervening ground space occupied by annual grasses or weeds. The trees may occur singly or in small clumps. Canopy den- sity,the amount of ground surface shaded at high noon,is from 20 to 50 percent. URBAN COVERS - Residential or Commercial Landscaping - The pervious portions of commercial establishments, single and multiple family'dwellings; trailer parks and schools where the predominant land cover is lawn, shrubbery and trees. RCFC & WCD t-JYDROLOGY MANUAL PLATE C-2 0 of 2) COVER TYPE DESCRIPTIONS JURHAN COVERS (cont.) - r IL Turf - Golf courses, parks, cemeteries, and similar lands where the predominant cover is irrigated mowed close -grown turf grass., Parks in which trees are dense ray be classified as woodland. COVER - Fallow - Fallow land is land plowed but not yet seeded or tilled. It is more effq,ctive than barren land in reducing storm runoff. Legumes, `lose Seeded -Alfalfa, sweetclover, timothy, etc. and combinations, - either planted in close rows or broadcast. Orchards, Deciduous - Land planted to such deciduous trees as apples, apricots, pears, walnuts and almonds. The ground cover during the rainy reason alters the hydrologic response to storm rainfall. Ground cover may be annual grass or perennial grass with or without legumes. Occasionally legumes are used alone. Use runoff index numbers which apply to the land use or the kind and condition of cover during storm periods. If orchards are kept bare by disking, or through the use of herbicides, fallow applies. Orchards, Evergreen - Land planted to evergreen trees which include citrus and avocado orchards and coniferous plantings. The effectiveness of this kind of land use is in part determined by the tree, the litter and the ground cover. In these groves the ground cover may be legumes alone or annual or perennial grasses with or without legumes. The ground cover may be entirely litter if the tree canopy is sufficiently dense to produce a substantial quantity of fallen leaves or needles. As with deciduous orchards, management practices affect the runoff potential of evergreen orchards. Pasture, Dryland - Equivalent to annual grass. Land on which the principal veg- etation consists of annual grasses and weeds such as annual bromes, wild barley, soft chess, ryegrass and filaree. Pasture, Irrigated - Irrigated land planted to perennial grasses and legumes for production of forage and which is cultivated only to establish or renew the stand of plants. Row Crops - Lettuce, tomatoes, sugar beets, tulips or any field crop planted in rows far enough apart that most of the soil surface is exposed to rainfall im- pact throughout the growing season. At plowing, planting and harvest times it is equivalent to fallow. Small Grain - Wheat, oats, barley, flax, etc. planted in rows close enough that Ge soil surface is not exposed except during planting and shortly thereafter. Vineyards - As with orchards, ground cover and land condition must be consider- ed in estimating runoff potential. Use runoff index numbers which apply to the kind and condition of cover. For example either annual grass or fallow may apply. Reference: Bibliography item No. 17 R G F C 81 W C D COVER TYPE HYDROLOGY MANUAL DESCRIPTIONS PI ATF r_9 (9 of 91 .- -5. ?kA r I ti •.�.S F • yy," •e.1.�' 7L r r.ir�, ,A' y:"S_RiF'„ .#„ ?_. a''l.r �i"f _ _, �_;.'_,. . I.rY ►+•tir.• .... .. e F 1t - , ,.. , r h.b L e '•�� - ';f• �. 8 ,� +` vr'�� p,. _ r� .T e3 r 4tir`�yy_ t ��� .,_...,{ nn�,_.i , • i a _ ( 1.• r J� 1 ! A I 1 4N,T' '.' T.- ~I r I 1 IIyM dW _h 'i l I •� _ " - •;_ Y •' �, - , .r'r.. •,:r. r $`[[7 I .r; `.,� N,GRlfifr+SAR- . i I di,.u, k,,.h. p xl�'P`•�. - - 1 „ r pv1 P I� i •r:4.•� 4v`'t '} ' ... M4d.. ,1 r w�-, 7 ,rv, ¢n.. lny.ye R. r ... r rr • _ AYro f . ' •'r _. ilY._ •wl,F, H -•.r {.rl 1y �wsroero-NMlrwwnT3;:�/ A� _ �N' Ri A113 .r .... - „t�� y•.a Iq 1,4 �-yt,. ° .i i, aii'�,� � � "A le r '? _ uw�i ..S .,{tti„�'n-.. �,.- r� I �y �� _ a, r.- . fir..,.. ( ..{ _ 1 i. � �v T d c •C'' - . �Ft a i' yy i ! 1 a, •+] �.;e r•'-1V*I. f �,• f,l{ - r,� .,., .i r `�, f' 1.. WICfr^ :..:+:+., `_i 1};� ,M,•. t .. i , i _ _ _ -_ ` -1 :, _ ,. T ( 5 .[ :' ! 1. .. � ira, •M.Mane R1ci' :ti Y , a " I, �, . J • , I .r s r' . I,r 1 �.... • k �Acl,� r-ja-� f I 1 TRE' I N M 0 N �J E '.T M R � r ,•°w.- ell, °s n. 3 '` r- >J O S fi A , WDM N►" - I N 7 '0 . A t rk _y - �, a r 4, ! i yak *sYL 4 .r S{r f 1 s F.r p 1 ` rc a • ! wo ur in.o' •eur,,,�or� //••��, 1„ t.. 4T 7�i . �:�. 4� 'ii;' ' r: •. - r. �• ,'4- ' ,} •"' HP -V Q `r;x •s - t.. ` ."t ,'•".`. I Vii:'•: f{, l r.,c_ f �.:t•': Lf1il.E 51.1�M 's•e„ _ , _ - f �nnu JeHI� niae�1rnl i manor rf v, ..S' ter, r' u _ ,�,� Y < r,,,?i" rt;riI : -... .,,.w ,,.. _. . �� .. . i'�` a• t,v.-,a �-�++• a l .y ' r� ' rn F rg e_fa`+�"C�., n{ '1�YI 'R'z"raa_T• .P N�^�N.[�IN �'i' ::, . •o ,n,ye ? Pena. - u,tr!� M�r. R, ` ,•,. •IJ.. pn{rjrwp na;/I�iKAG1S + ° .;- ii � r�'f •�,.r.. �.r- �:�.. , ' ! r _ , x_• � r1 ,,(, �1�..iiO;Y� •!-' �r - i--v`O ALfi i^ ? LZ S5 _$E?t NOVNiAiN oS r.s P .e T 2 Sc Tit JNAI ? U7•{iAfY�15 Y.i 't ' r 65 1 cb M.. .fir I+ _ s.n, rr k . I R E lJ r !' e �Y`'i • S .: R+�F" om T a* " c '� 'P 1 t I'~ea _i s- f* r�"A. •1,- w `-'i st .r '1S'•' _., _ <'rlrlr„ e,r.jWGvey,' r _ L.�,xr, ' , i:..�r. . � - P*d ";;,, er �e ,�;` I ist;.r 1 », e •I -r . �,,.)r itS7n t , _ y .. � 1"f{�tY�I�I�&, "_L �-•1 r`r� � •',-.• !`e r.r.nn(� ,.� t - l - w >✓. x s . �+ • F'� t k� n,i.,, :>(, aa•e� \ � L••�i.,.. T ^•�. ' r• ` ..�1.� i,M'�. r,•y .71; IV A. r (� �N l� i , y"� P � r. - I.v_�Ylw- y.-�.•�..'i it,Tr a "y'r• � a ° � '1' •' 1 e ''' ' _ \ [� pp -• fl. .. ON1 ...70 Y M° rl r !i1 n nr;. r t ?.. • 1 <• + ar. •- . �,•, _ •� I _ d., �� - Y 5„ r,n., nm.x.i 'r a { ',� ,P- s` , 4'`. +k „ ry 1Y e es, r4 � { „ aM 0 fY L , +yt „°l° af•J+rr+(jr `r y . _f .p , f `�a� �'� I, r }^ r } .. �.i.,,., 'r , ,_ ,, t • i �§ r 1�` !` tr ._ ,' i- ..+ - r.r+ '�. I p'R. - ix 5 r.7 �, •. r 7 ?R ` rr - 4j,� , ., . ,• "• - I _.. ., ,.. ,r ,. � LJ A-` "-v IV 0 J� Y •t ! T 1 1 � 4'` _ f .eI s Ir Gr:d.n+ .' t §I?,,+ _ w _ ! �;� t,; + na c '�• i«. ..�. 4, p �Y ! _ n T7 Y} 1 L - ' "- -tom—� t' 1 '�'•` r -. •r. I r. [-. ' } y l ... - m ,l,r, ,., _�, ,� _ I. ..; •YY - { RF`, till v�� R�--- IV I 6*e.••R.„ y �p„niiTt r N - �.• , '4 M1 '- t• Y A, '(„ i {n ,.,t ? . +3 t `f$. .{ i 'P'• r ,• :'x}I 1 .`..�'�, �, _ I A - 1: ..'� Y f: { ►•Pa O ,,,J x 1 • Y `f 1 +�' l _..... ',:,' •rr! _ - , . #' - a. `^'�. I i ''*% ^''!"- 1 f Y ' , '1 f a,.. - , .T r'� .' } 7: k•, red ` la .n 1 ! i I. ,iy;.+., k' i y...., it 4y,i l , v , r - q.. :#,. ..i .'~s 44 {i-+ , i-' - :� '• rr}'' 'v'j'. •' ,n« �L,.. t-ru»tw�-`.-..Y-.Fit.R7 - I :% y 3rS�L ' Y+'rv. _,r 6•Ma*t b a ° w Y• r ��. s 1 $ v -- - ° y a. - rPy j. `�Ir .. �".. {..I,• 1 f .. - 4.x,• t'.�. i d✓'� - 1 �I�Y I • ti,y. � ]. _ I _ , G� Y n NT}�P- ,.�r',-• J+.`� '�ww. ° { r.'-•.,, ._jV F;t� "�,':' • Ffyr' i ;.� +{" �. 3nA`' h 'I •1W 't'�r Y....{ r i {• ..� J:J �� h' ;,e , °?M r•.n,y rJrtr'rl.' -; +I•. - �*V Iwyl,iil,ry,. r '1 -}ii.. �r �•.\: j �)rl+ - r• 1__ ,¢_ .-_ *. u_. ''Y ..-.,.__ __ - ._ ".^I + i'}'"'. y.vi,,\ .. �k < }-•`' 1, ' 1 .�f. f �`� lC�r � I•!iP r�.l.-I �� k.vn Yl.,,x, r , ° -_ �-•-.5 `_, •._ � .' ,•„r riPtL+'+..;>.�-^ J:• '�,: ""'a4 -'-- -- ,. .r -• ,t - `7 �`•}r,; - - I - - � i. - Pi..,• _ ,y,, � `t,'•� , j� I , y .. I``'�r�-... . � - - `- ---`-- , f • eRn, V � ' _ r... Mr. { ° _ ,fi ,1y7 , A.Y �'r%.I. ,z., c.r k.r.GN ,. • .j I . ..q • , ;n�;wa r 'CYar i _ 1 "ei'h+ v.kk'r}i'..-rl�*. ` - yl'.. r t i.�. r. ,: „!,Y ,}✓ r �r .+ y /_ kc mcr n#x: ! 1 fi i I y '��r - i - `�, ' PHY! +' ,,'• *L o%.. >,' �'�.�, `"tt, wy +y rr '''c�,Ps•- r�ior,4 I , { .�+*+' � �. Y .I 1,•'.e.L �•. f _ _ Y�.�Fu7ry De.vll r T f� � '�� 1��a•. IAr w � �, .i'� Fj'.N� " �- z i ..r.' k „5 ` w�`i. . q "mak � y .,.,. � � may' �'r ,. -!_y�° 1 ;��,.�.� « ,.. �•�� i" ! !OR 't'_ P, 'e h '�'..,�..,� h f .7 { ly:-,:` -/f ke •i _5 - _ 1 ^ a. - - {`+.. �•k,;, , W[ * J.50 -- i a rl t �sc ;*ny. r : s ro ,s , t -{,P•^. 1 W.w f4 J's' .I f _ ~I d • i i�IIY' :r . -4 �' �, t ""1 F�' ` � r;.._ 1 , .e ,.,•. p. _ - '+Y•- -- ri'r i T -� `Y" .� t.....�L - - - •1`�r'u 4.f r �_a-r _ ' ? ` 6Pchllln `t • +been 7!,- i, r 1 µ -. �.,'.—. �.-rt.. i �, ? ?�. • a - x,11• •••' iI .rapt r " •�' r p 4 - 'I Y T• 'r �+? . a Jy: r �- t*>•n .'_vf , _� x -Yr. - `_ -.t*7 V Yl r " r t•`' ; �•t' f • -`-< -�' '- �pP�; r x /''L•, r r.Is '� xnl.{i �sdN rvIN PYAP_` r N ,..yr r7=. f.*r ltr•rdt .. +:e -..a 0- •' A F E rJ Z+ 4 Crk ! y} 4. ♦ p� rr n� $ A • 8 11 17 I7 I �'. 11 I�1. �• Hyl,, I :. e... • d - ',y`\_"'!� ,�"r, �..'• .! f-F,'_+e N`I O f .,y�' t'•a I -' i �Ir. S c� It in>.4 - 3 ' � es I. i',• r�„i` "alp.•• �¢u• r� n.J.! •�r�• T' -fes. fr 1�; - p ~t 1 Wn, �' :L A a s: n n 4Yi �yil : •I. 3!Y. _ nri' N'*°„— ,1. .y� ,� 1 I.. . •'1� *•Frry Y �y, 'fix, r-, '' 1• ' X �(l ioPP_ '�-•J' eF.^:Mi�� `�� Y r M4. ,vr'rv+hk.r.. 4! ... Wv Qi4 \' - ,itrha,s..++X+'+°. tr: a:i ?.?d_ tl y,..r Yvi`*�lnp.�' ,.l Y .`J_•'1. _ -... 4- a� ,� '-}sib - _Y - j' '�y�; �t •, .� L*= .yn �l'1 .' Y �.` ,� # J'"r 1 i - , I u ' � '� .��I • •et,c. Molm •a,r - f �' ! , i _ t'7'"'9. i , . ".^.-+�'' • , !, k e'A f,x ivw. - i4'y �;yi ,,�. �J. J - {' * ,`�, . Yr S k k- �i,)': • �l r. �,� ` rl. Ar,P+kvn. A. 1 •�•1. 1 § To H A� r , !w :� r�xv •. _.-! " _ ��T1CN til. � � { r • ' � 1 - .. s � . 4 - s n 7 � •; �. cw{rv1'4xwTr,-•. c `ti i•�� s,r k � I I �tlR* :'y Ln 14C'R,".41Pv 4 � r I. f} ! � � ti, r• • 1 r� . �( r ?. a Lr ` }• ... _.. •� /q �'{y��y nr�'(' ��`l�^[�-� yq �r• .. aar •dry �l ;1, • P ,'y 'j .b SA.F]5 #ali �- " I , /' sµM� - 1YeiY - - - .4 - d.v. ' .Y"t iT ' - r _ _•.t k A '.l� S`- ,.. ry"A . N{k*•n,iYe dVyL'�d4'r GY.7lfy r1t� ° _> x '*�-� 26') g ,F _.,�'~ y' w S.,-r•,.� ,;.yT,r, (r . _-� - �.«,: ` r.,,.,,, f'_ -?•:., f",. Lref Si Ar4wM7ird _ `t y {.•`' ' .r*I. 1 * - ' t N 'S•_ _.l dwa,r "p.. - ,: • 3*'K..� �'�a �.r: � ..,n; _ 3.1 '. A f e.. � � ..d - e '�°� o h t, . � ,� `. 1r , Y*e',:.,e•,� y�r. •.1' 'x',3 g. +�' i `aPo '•) 4 '.{. P '.1 '3ra l} I,rx j` p 1+ `•L- -'.6 t:n., �-�i. ��q yyW �.„}, y ., .p ,}P r"k rr .SY Y'� Y• '�'r'nl"zAcPc"vA-etOSFd +� ___ -x.•••+, r ! . ty, /irY • A • _ S rr °.d." is { :CR ,,.,y. , . I i"r..-.. 1'Fryi yN S 7, - r.. _,, •� + {,°` a` ti . ... r r°�"`..� 1O+A -. .urr -�' .a, -,e j 1 �g ♦. J*, lu,.,t C,�+� - / 1 ti ' J �}s+}+'a 1-:. D,.'s ��� 1 Xro. .} i• -t I {,/�*.�*-• -L:,t nvatrslPrr"; r.,. * �'-'Gx.r. .r - - {.,`,I•,•, 7. J'" �1 .,"� "•,/ �I� .J1! _ , 1 .1�-'- s,3h •,.r f - ,� i d, w'r _- I.... �,.,.. _�..,a. _ - r- .l r r - CiF 4_ 4 1 ' S r. v w ,r w•N' I i' I y. Y y p,, �:.. .- "I � ".�tf InteflSir{ DUfatiF7 r'r, ``',>sMrY, 11• +"" `, -•,. ,✓ .,� ren •n. } • .Y yy`r-v. t I -s r.�'O ji. a l A` errhrY�,rnww * � >,-!'`; t •"4 - - rR?,, - S I. jytid,:� _ 4 ' % Ei 1.; i _ ,'I "rna.+�.; i`< , I S r .Y' 'u r..,. ry k ri ikttict anal S%s pf autQnl tiG yY tri , 4 < r , r '� ' i' r� v ,1i>-. 1 T •r• e+ 1 L _ 'it% ;'f . f j t r •., [ I _ �1 _ ,i •A A A i s rl T r q T I {' ,Y k i ecor s r i '� .� re in ra e i " k` 1 _ ",. ,,.•L .r.• ��7� ...• .. -� - � � _ ,.,, •+•i " ,ntr« �f` _ ._-..ait� _ '- - i. , n _ i.. t� , 1Y'�� t 1 ,a` ! ww-•n y'S4pr �„ .� - k# - - - -' r�rrW'°ifh r ^yV1716�f -§��G� :�k i• - --'i*' �{a"�'i _`, -•!i[ �v+s--F nP,• f' ,'•• •+ - wrwxt r-^!'ty{� , /' -t. _ L`Ar. . ”. S . rwj��\/ .1--- .;Y .i ,_ I - e_ • __ e \fin . PM,v{ 1 #, ■ ' �A 1 r� I i r , �^-•.4-�.. o ,' l`._�---._. ,.. '"'u►ee,. �..�p'. _"r �l� -- .e t n I -. :t _ _ �..�- _ - - ;xl+_:: :.5.,• w, r - i r - , M! �(A'•'iT Y 7k.,M'Y IiCY f. +, i6•R -.�M' , nN. I+ - ,% _ {L. AIe., 3 ' .�;.•v.G� • !\iNHk$ "rCAH { s TSI + s ., t t R�r'i _ .. + I '�': ['ei•rMM1 . W+..1: 'Y b .N \ , i ,SYe.tyr -'x�,V,. '• .'• �',,_,�,l,S ..�sl nr.'./- - Y Yf t _ _ a 1�'' - - e' 5 .4"51f re`r \ r.• • -!I "° A• { \ i .A'"� W.nw .. , ' / • ry r �'! ? +,. 1 _* "r .� }. 1 ti .-�} r I v71rr•, f tJ +J I '• r ' ��' _ r ,%" � r .s 9rt ` y.. v � � .tyY Y r.�, *,•,a• Y* r.�•I+r a•I - - „�„ 1 _ , _ � �. - ��7 �L.. � � !,• -J � 1"i�4J��i .. • • • - - -. off �`' _ t ti• 6 { rf ;, j1, .p .' . r f ,�sA n'� . + ` •R:.� , �, "-'l r '°a•+f'{„� .;* F «y,kr '.r i t • .. 1 . , . �.�V yx ., r„ % �,�'• ,_� ,_. � . 7/� I .� xl ��, '� . �. Y.v Y :..•• ^� ,,, I , :I :r, i t ;;�, � � �, f p : w� �: ti � .fi ` { t . s'� I -• - -' I S r _ } •v + - ,F: a p+.r *.r�l[_'s 'Y•` t1 % 1" �nGc4 '.lMft) tl ry 5 �A�" :,� • kv.e�kyr+rleiA Y y r J ,.P _ r" w r _ i. , - tr �i' ,+W,�e_' - r 117Iy •:i 1• ~'., •i,.. I j •,� • •, '.{�'�'P'" e t w,• :"_ :.D1ArT •rixa „arr''� �. ` _�fn.... - r:.• t,': rlAy,,. *.}t _ � I +� �• ''r' + �^•, , NTn'enr `Y 1��^ �+. i•'* i + �.7'1. 'r. i„ M4'+ ° `Irr r 4 'IY­�!+ryA. .ftiwl ' kr4'F, +i!sIL1i% ' a± i fRY#!, ! ,. .. \. _ Y • • d.,,. 1 41 svM a : L.., • ..�,. rY....; �'l,yr.,..�i.o..r. �r+l.�r�+.� '�'r'*!"[- c_i _ fi� _ f \ c. .:^ *:"'`t r=- `- �r� f, 4 y { w*K. '"� t 71��.,,«wY.r C " 4.,.s•,r Yn_ ,i { RIVERSIDE COUNTY FLOOD CONTROL 55 r f rtimsx4ri r • r� A N D WATER CONSERVATION DISTRICT rL,,y1,.�,, I \'• �, Ap, iNnA T,y. �4 „taF sr"° e1> > ,st'I' ., : �,.rre r AYFY-YAia[s .►rit�i yl PilH14t ,y, f p j ,. I ., r h' s pw'* :; 4 °�• ;'„ �T.I r•r��fl .Ry" fr-� ! r k. Is"� I iA l�• t�i -. 1�' 1 �, If � �� Q € 'S"" T s SLOPE OF `*' '9y,ru.,uNtiVn fyi�`1 pit, i3O •�S J,•l ^.Y,5;11,1.n:h��YfwI ,�.,.....'>v �" '° t'� �' INTENSITY DURATION ;.. , _ 1 ,.,.. O . •; , ,� t - ''C; tir• f•e•r - : } "F5. • _.. 1 i r _ k1 i ✓' 'ea f + �41I r1 M A k ( A "1 1` YI 1 r r tai Y 't rk,a y„.•an.: •, k, •;fever r,` y .. r•r .`Z.., ;dr 1 's.. navnY iIr 1 -� i ' r° ! + tir. `SL�c!)yJ 1 E G ,`�, . i • .¢' .e 6,. & �r !} CURVE L•.i"Y°r ?.•`ten r ''1¢+ , ! 1 r'�+ 111 P ' •S, A, //I k1L'je' ATl �,p, .\ _..Tia- f Fi:K °.Y • •µ”-•il;. .� �!C'• " �yK ` •. ..1 . -..,.1t7,;'.'. a �i 1 ! r iM "ap `.,•tll,.- I ff t .�-- , 'i A " , ,r .. • r � »,... Ayr, i . r Yb�'.Y f-�}Y S 1 i 1 Si`atS. ? :'V 1r Yu,ikl�. x.'117, A r W M„ _; �o `"I' '� e� �1 •t, - - "Iki' 1• 1 N YI•. S �y.Ai. - � r ` r!Lis4AYA4,u[v'r. `k'y� 4 r rI ' rr,r §1 Js \ A.pl.§,. � I � j` •IJr If," R2E R3 `' palµPLATE D-4.6 R — ii11Y .r,.' FJw% E k .. rs y:• , W � by �.f •t i rr .. l^ _ ..,�. 1eFl FP R7W - _ �^�C[- :�i ,'� •,7 �a�•, I __ {r,u•'"` ,'�V,'RT I S1nl�. _ I L „ _ i - , ti •s r I � •I. Yl r � �V lvo lr.e ` r �,� ,.M.IA n. Yr°w: .R. �., h . l.$ w+Y.+[ , .,1: }41 l /r .. , c3.+•. L . r�;r _ _ �, _ i - - . , - �I r ,v'• �--, �. ,._. �, - .� T ..., Yr �. - fi `_ _ ,r. i a * ! is E 4 r ..d.. r.,.) ��! 'r.r r -� `•y . ' - . r.Ir.n.. 1 „ , c,� �Irre �• fr.. err: ? 'war.. •! � -�'�� r i:*� .�` J -„74s. - w� � 1 <. ... _ , ,,-..1, _ .aWa:.� r _ W,+r, .. _ �_ . , .,• '_+„ ry,ta«.:'di;-" .� LhrCi !, :. .. - .L_ "v -. �3' r3y.S__ r r-�'��''''' �, .1 In rr t7i.:i .- 6`' ., - 'f •''J «-1T + .�� � '" ..ns � � IHi t .:!• ��``P . f- °Y °.a�rr` 171yv 3LI>:t,[:rru Y., 7° .' %Ii 4�: •.� 17 � r r`t �+'� _ _ i. „� 'e• "1 tY , w _ _ . ,. qrj .I'1 - T!.? - .1 _. '• I r .E ,�T. ;st-"'s.i'r tee_ r,9'!er-. >, "f� +. ,r.t-Sr--{a ': ;qr:. r -J `I 9 I it _ � ' gam._ � ,,". , . • ,..�.' :,: _ r►r . �. `�_ �� rA ry r -1 `0 raA 4 In ., rq )Lw,rlE r Si ' •L l.s;z.• :1. ,.{ ,^s. - , 4 R y r Y„ ��r rraraiArn.r k i lc.+,r.°?"'o� .:.- J�„ .. "-r-•I . , . - �" 4�.. •- -`�� .t�,,.+.r �nW+ I I 1.• • - t Z•,��� �� � r y ., %. I' , 1 +'I'' 'G ••f"4 L -�; ,j � y�p '�w�r,T�,� 1- �i _ .�5. _. - zs� .. e.Ll1, si . ' c. [omo ..I { � ��a+a-. r � yC°" _ +.►' _ .+r� � sr 4. �S.- Irrrr Y °pui _+,lir .jyY,1 ^Itr'-o i+ slp f' A+ 1 '0 •r ` ! .. i � %dln� s l,. .I..AN tr.w r e ,r'�f.S .S .� {,I r'[`�, 'S'`;• - lL I •,� -L w.�r' � r rr .` L•_�r `. I sL r� ii5l[] ar*a W:C pl t Lr3tT p - t.�n�bu r.l� ,• l • .. - , °� -. , .:• .. - --- �. r- s....l. x. . r'�r- �r-., - w, f"•.w . r �� rrS�q, . -v n 3 �y ti r3 °� ,.I�'• � 4 -� . • rro man,. iFr+ ILr # •Y;u'Gr}.I c '�# !'1 6 � UNfr,rFrS ; 1 1 Imo; . T2 i;«.r ,,� wr. P w+�r ```; - sk i"r 5'"k'. :; n; 1 s,l r�.A► eiakx l: S,q ! .', _ I' .Nb°e+ - �$ i f 1 u S' 9�t1Ul L u S 'lv^� tomo .1 Y .! J�*n,F + . t .+ f .«:.` -: lL° �r �•a, "-. .,I-'-�„ra Ghe+tY•�^ • f . n„ ""9• - r. ��rf` i r'., A, `•��T1 . '•..-�, ( At r _ . CArwr N -.,. r r„. -a t._ "I! -.I.ti yf -, 4,y 5S+•)!, Sl o £Y!i f4 i ''S 'I .I Y 'PHar, r 3p L .:. rr...,_. , •rr. as. t 'rr U -- -f.. �++ 1 'n- ; : r• i J x.. s . I 1 +' f ,. e . no', , 1 - 4r: 'ti•. '�r's •yt �� ,. t - F, 'K "r 'I I 1.3'. - ,:l°''St - r •r, --1^'-_•-r•.%'.,_- .�s` r 4 Js t9 Ir� 7 � ,e _ I _5, 'r` .,.�.�-r - 'f'°'4'.' i � _ .�` 1R - 'f11 l4' T V r w.r` `!' _ ,a -2 '`",s ',�,a• '�i:� 1.., 4� � _- +� 6'+ • � ` Yianrr .�s ..r_ •' , rd. Rr, ,Hnw'cl Dd,nn,n� 'Se ',� {� � i..,.� a,�'.` •:,ai : .: " \ _ • � �-� _ --- } •M,a lm..le `jt -d si �,. �:J,r 1,1 ,r. 1 t "} ■•- - I y L - - 1 ,',� , _ 3 _ L 9 • rt. * n, rI�•. ! rt .T .Y . .., -:+'-t .. ''+. .. rt. +.,. }'mjr' r�. p ..�r1. V.° I _�� I •� 1:. 1'. 91 ,•JYn I - i\ Il ,. aj ''ro,-so,.en n:w - . rt—•� v r �.� .n - �,• - } �.. ` -�, ,. ..,.� `� .I urs. �•,1 - r I -�..,i � � - r• .J'`-rj,r' �. • ..,. F+ti<• N,..[M ©(_ krcpr"„Ar L1 +h'� .,• 1 }x+ +F '�. . ..• S- r. �-�....- -F ._',.: h"" y`� - !-,~ q �l..�.,?I�rll, rl>,1`` .. ;" ji `'.- l'" - '.. r. .h °f»..[a-. rr,i - � , r 1+r. L.. ,, , - .I �.A� � t� • i `v, .rr +.+�.�+ a "r' .r iF4 ..1, . +Y -,ter. - �-�, "• r'+: r .!n t _. <, •1- _ - _4 C - :7el,r.• r n 19 ` . P 1.' ^1 . '�4+_ - 4 •4 1 13 ,r I i' I<l IIM1 ,� .F M Y ,. d: '� _- �r*:I . • ' a � - ...e •„I •'- - «�I r �, k� ,��y� �d . _ ' S _ - � � _ I .xr..b ' ri' A Q • �`` ^� - �. r/ 1 Qi . - _ .•�t1.''`k .,C"'' •. '^� - til`.- I _ +,. rr. � . r• �I. •f: - i ✓ i.• ::� _a Tom•" 1,s �`� � k .{.. 4 5- 3 1L1+}, ,µ, f. 1 L °r 'frii.• r ��•M'\,'.e 'e� v, •,. •� ,;} • � Y �_ _ '} R� Y� 1 p,.k.. ''t r lld;,{� l aSl+r°�` ,:•+ ��,V� �•Y ,.q i ,r•. �t f -1' r'. :�. ..)'- µi.E R(LI •,4.:._:r1I- T• _... r. a+SFo-l� l i j� -••-_ �( r I.y. "" �rW,':• !��'_ �+ 1� _ �'1 N.� � ....1• .r-�•i _„I ,. dy-. rk+.'FCTlrrl ��. A"I ...fes } lii ri, E S• � Y Jam. .� ry --�'°^Y'*! �' 1r "Y� °S „a.- '1' eT• _ � ....1 F,,.,�:"J�'(* \ t ,y - : �•y .�A °.'.�,� '�•,n5 ! r a.. F+wi � ,,.r. � ^� ,s't ��r �l1. •.\-• 'L dri I s' Y � '�'y- O •+. •1 -:;'�s 1 r S �., L_� - '°I' ^`, y. i, r, ;i (,��• ,�� er S r I Otl 1 , - 'y •,u-r�, 1 -•.,," t _ [jJ �• 11.`i .! -' } �”. -v' .+WAGmr . 1JY r= -^I' ___ l 1 °r.1 ,5. w , at .,'1' I'1, „ f •i' ,� I 1.. ''� ''3, Pi -',[ __ i�':•r F4 - . ..VA 4. l il' 'y,' I- "{IS:, ! ri•. .S /fd I `� \ \ - �. `1tl •� � � '.� Y .,T..rm ! ,w -. TM' r; a is \! r'�, I .5 .. � �' _ �• i7'1- �r tF�i,.. d,t ?I'1° If L: ti r+vh: .,ry r ` _ '-,,. u_. Y r � � .' , ,. �. a'; .. • ;.: }wdNne.4rlr r1l+F`- 1• �' �� � `... y'rsrr: !! r ,;� ..` wu„r � ter•, ;?.. � . -. r+n+M a'Satael `! 4f _ � - 1 � ' r i , { t :•, ,E Y -rte L'• --•r' „-l.;n `� ...�- 4` L., ; M �_i :{wi'' _ '�.q[ycrw�. �, 'f i s �y 'f' �°`` ti'3 '''ruianefbl '�r-.�A.�._�.- •. _- _-,•_--•-�--_•:-a.�.— r yLj _ - ---__ - . 'rtv :. l ;.'" •Y`o r, . i, 4 •.. • ! .5 : '"+, ... }al€ . Yv M ururARaYi - - - :,•v,'.'''"i i r 1 s'rap`=` e!.q •.4- r' i.'^. , ,', t , •_" _ � „rl _ -••r-� € ^IW/ji� ' x. t h _ 'k/� I� ^x ._ '• -';...i , n -- 9 s F I �`I L d i ,A•Y'R _• r,i. . c.n �w ri"^,r , � f ^'" ,� _}. ,,.:m ,. ,YtC. i, ,.i r '� Fs,� ..t -1 A��' j- r,:, fl�. r.� } -1 er- d s..- ,j :. .1•r - /� j r '� , y ':r`r , ,, r. lig aK+c • ,. r', { l; .r . tf r 'rtcmee i�, . rr,ia r - l �•1 `l 'I +J `��- e. �}^ �l . • � r •� 1 4 .tiyr,. 1•- _ �v ,.r o. 1, r,¢ :s. r�-,t.° s ,,� r . i. � n ( , ''� _`+�p'�'�'�e. , 'yy. M i. r I i ,'i~'f`"� :+•* - ,r' t' - - � par,. • , ` `- vnn ue, ,k cl,;i l S,ryeNR-+ '.r. ^'.'+t L - i,r�". .I'll' ]q4 'A o :*.r,. ,�,r„w` .s ! l' r `; t e'� -l•r t ,r'r i1[,aai '•T . - �t' d s �y r''! rul�n Dt... � V 'gyp,,. • t? �.' `S' ''++ .4, .3 ,.'r,J .�' rF _-�,, f wtl, ' / a s im.,�.,, +1,.'j t Wr'P~ _•i f �h _ _'.F•�'? r I �,^$ 41 -In}a' ,�.�• max-. r:,'. .ill '-1`,-r �'r" t?° ";r` -'. "L,., .rwe. 1 y•- "`'C"`•" L - ! x jj 4 r r F V n r r �� .;• F,�.,G_-� . '_ .b '; �C ,k. 1 �':y.:. r tu> j h.�'s. ,. tt rr . ia.: y^•.r i.', , - • % /. _ "-�' `„` S.`--:8 :►'•4... ,wl nls f % , r' +yw.. , �. L 7 �. �:.-. Jat - _ ISr d;r • ! w,.gna „ v:,,:t.r •,I - `-. 'C+Iyr%. fi', >` `�'.! r',", I - I %J" �'r )[ ,/ter ., F� � 1 S ,.''S, 'xiLy.r� 1 �' - I i ,} k • '.i r � � r r. ' � 1 ' 2:y, , ,J. ,! : l,M1 •#,., !.'�`'`°,y Or ,,,/ I ..dp.s.r f. �N _ ++ a,r,. w.iu t`�. "s.:-' t +- n. .[.1 . t r n+rryw _ _ _ . , , J �'c. l "k'S7: • _-�� ,+•r .} — -t; `•r.Y-, AiJ r ' - , 43 u- [lam. Y ? ! !' f woAr4ur+ y L� I 1 J.! .�'s".,a } r'�- � 'F.t, , y,'�•F, ,,.c.. _ .r ll ;Ir +'!ti' '��— ,�.. �.r r .+, r r� .i.: � � r' f r.urJ•s ogll.r'InY, - A, -xYra . __ -�_'C i•'L _ eYy t• _ • W.,, Vw.. Il � I '4T �� •r �, IAi Ml1F, - '`` � •}- ... of •�-' "Y" - _ �� I �V' _ ✓, N., P I 4r InrAl , r, 1 ,.rt/ter. .. i L.e 1 �.-•�..�,-' ��, � L�ir.�:,: ., +r -" t _., •�trii�s .... '' -a ,� ',,.' 'Yrt �I. r'4:r;. . .:� .U.P�. -C.U.!°M` k {? `L_ ;F O � �- 1. •: � _ f,, ,. -.. - - nt-, .. Y 1 0 - ,t a?'G'%'I% I� {• r t >. �M - ° .,, 1- ryvl S R' 1 q -a"\ _ �{p ♦Y o> xr�r''. 'rTr, �,r�E='rti ..., _ ',. r.r .. re. _,°, _ 'i+Y""" •r .t I 'r - xka. •' f L+i?r du OS • • r , ,; {.ti' 'Y 'J' ' rY.,.�r .,nIF `• ,.r" r _ r' •__. } (, - .. ': � o ' 3[ ,'-. .,` .ir •4 fir` `-.J.A LaG lb• ..K1-n,'rt •}, "' n.n - ,f-. r,. '4 .^,�•' _ir x �° [sw r• .t Y i • I. - ra14.: -8 r' G -� �« - - f �w t+rri . f . _ .�;, , t. 33� dnivt ' i -.r rL�1� 1�* ,i ,_ /� '11: ' 1 +1[n�>«o u f`,,, , _rk ` �< _ - •� S r'.' � 5 � {�/ '�^ r 1 3rha S. ru. 'l' ,l �.r,.,. t+ f' "y �". ��, ��. �, :�.,.1... jj '��. ¢ , u�,-.•.. 1 �r / j :I • P ,yE'; r r ti ,•F' 'a°"�r,�I `�{[ T i' ✓.r l [ o� f•r ,.-., +�;LAP, r�. ,1 •45r f. ,r+:' \ p +'• 1_� I ll -`r'!•` ,,! i l \ :.l'Ct _ ._+a,4 i � t ^S I Cts" rFI WwNa BiA(K 11h'frr, fit..r-'. F -..n :• Y 11 4 .^ ¢ 7 ! ,-r_`y, }} ,+'i•r'•�s •' - ! �J k. -- F .=.1,`�y},� - .rwr •` ��+j+1 .ttw A.a[ ,trNw ty - i 1 J aL 7 �Y KM i. K,l" _ S ti 1 .6 ^� k/'n' •5 I4 NI Y 4 "1 St i 7 1 !, a r , a � i 4 V I r Jew " ! ° I . 1' , li .,i I .. . �' \. s MM{{ i I �"N..�. �GiJ' `f - .,.�`r - ...e1;' -- • - y� - ... �.. - - -- _ .,. ,.. _ .�� �,��` �'�'i :8f��r '. :•.,. , X7..1 - i _--4•r^� - .,.�.... �, 'ry, ,r .:�°�, r , 'C7+�17`• oLj . � I .. uGcr+r,{re . ���V�� 1 i 1• 4 P�dl.. .. '� '^*' 'K/'C _'� ^5y1Rfy� r' .ww�"^-, .-_'"'rr- : i' . i �_ wj`' 1 •, ,- t !u urs. k �tn„i ' �'?` ' .. `- � _ ';,rw...�`� k f34.. - ' .. >wra ,. ' M1 l !. �1: {,T1i„. . ,. `_. '° ` .I.A{ °'• ` ,, 'K,""'.A' ..s• t t ; '•it-,rl ~ '�a�i• ft., hr.7a1 r%'t ..I'-tt' .- -. ro - al 1 ,' '_` ••l... , e,�rb. 1- J , • .• ' .•L..<_ _ :'�. ',oy rf7xr.;� �'-�-��r: ,,'+ • 3 `[ 4 I •PA •'" r. f, - ,-I j' w '4...v^" \ l t� p� 'I. i i .' 1„I tCl i ,r,t,,,, ■��,�-. i • y ,. 411 7a.;.y c . it _ :}' ' '`lY lir�iif 1,�,♦®`!1 .'t{•}% �U �i *�' !, 1a...hli i,., > ♦'� ^J f . `Iv rr;.r r' I,/s'ar •, _ '' r, ''t "' 3r.,; t, - 1 t c 'xr., ..ice �„`•, I _ _ f b A� �,r� 4 } f I' J I.A `fQls451i�:_V NQA iris \' ` f r' IJ wcsaw' .,r r. I Y, - �'Y _r` 'r; r' •' -� {� ��: - - y '..,r �>,.nrM 'k I yn�e6 y• - _ ,'� ri ul Ae: ,�I •.,,sfr_r {� a . - �_ +t - - '• I L� • - , . 9 +M+r tti r. a I 'O r I �yy �y T rrr � �'' � ' •f'".n*' �,' ,� r � a�.: 7, �� ',' • Krrl _ - - -- 4F , _ Ilr.. � C,r.t .''!.• . 4�a�Y '�r��ume:�i �l][tf�3rCll0, �' li r. r• ' • � eat Md•.�. 1 it •' A � ��p '� tl. �p�.; ..-•,.• .. - �a•F,4 �% '' _. x 1 ; RI'rcr .;. Y' >a ' `� U 51 •'?` ' 4 ,' Tr er U / .c. �+ :x.-„u�a:-_. '+ ,r! �q.. v t ” _ • r l pl SIC: Y. r£1Cr' i - ,� K.....` al I,Ya 1� w,st. I - .,,•�p.wa+•l� '1 yx L f�:,,' d . 'rY ti•`, _. �" `' .,r S!.'}i4 e,, ,rr,. K i ..'1� -.i ,.',tr1Ul5 I:,:.ra.W uaval;.rn, _ s" .. - --- _ 'd4(� __k,-. ,..�.A,•...�F ..�rN,.. -. r .� _`Ee ..[R4Lv 4 '`,,.• { -�' , _- P r . f :t f...x �, * wr a _ d""' , rk �'' -- -,r_.-., , '��� -�: 'Lt"'>,r`_"..,,�....-. I -'-r-- • ,:: - ,, .s- - � i . ry . - n,Yw `-� r_ _may. • r. ui` r-- -'+., "• L , A- + fw'IW Y �'. `,',F __`ls ' '7 if,7,y+' ,i\'" e•- . �-z rt .. �-: _ - - ' 1�[-_ M.5 nrlr �• •_ ' f' - �i 1 ``�-'-- r r _ ° �+:j •, 1j..(Ar' ,,, { '"r"I'1 155' 1':' �r . � , �: 4r�rrl.i _,�'Z coal V'I�.,t 'r'• r•-r°1Sw 'I ��� �, ,i° rvNkes'k::rrn�c �. ipa •-• ., .,-,, -- 1 - Vin' r � , - 'y. � «'er ,,. L �-5�'F_' i 'r rr.5, E� C k' I 7 y.: '`,c. L ��`, ,. v`' .P 1°' }^ d gd ,•r �_ 7"T, A� �y�1 I� {LF` ,nxlun Q� 1 j F r •yr .+ fi•^.5- !A r -''�, �"'nr 5a•. w. w' ,r e•�r,.,. 'y. d I •�. - �l, ..-,V Vii f^J �.F�i31 LJ/--) _1'-! _r},,r ;L•; lq 1`1,1YiL '" u,.a.>� `.i. ! s •;°'4.••1-'"% a� v.u.! , - If •r v-,, r gg 0 r ry.. •x ' -.y .. L. .�� R _ "•4i '--._ , :. 4 f y :. 1} 1 - r - �+� f ,:%'� 3 . . - i'rrr�,.,- . ---�•i?r� '- � i'^.t °ki r _. ^',�,1 � r - '- _ I -Y`r• �' I . Y.„Yl , r -s., h. M. 1. V r � I•` F' r' �•� �" - kt- 1 �pi�'d � � �. .t�7{ r , _ - I1;I L _� .`� •1 1 S 0' Arq F�[ l •�+� .. ,;rr , a �,.. . .!.. :CayiN I: \ .,.. .. it •., • 1� s IY [:. _ C,etp A' , , " ;,d -•1 .l _ 1...,1f d ,_„"ftf--.,.. ,r�,. 7 .'r-. .;,r+,:l '.y-, i?� s ,...a T {�.'� w • �:f' ,ralr.. _ .I.:s� :�r w 1 r� l ',a: 4• . �t•�Y r. � 'i� ��� r 5.,: r_t' 'a.ier. _ rr(c'y><.''a _ �1 ' ,e.lsa.n .rj ' L•''fi-`s y.., l• -fie � r, v Ld � � � - - �I 1_` �F! ri illr :Au!!ew+.: _ .. YAII J 0 14 urF( rT RIVERSIDE COUNTY FLOOD CONTROL bra-- xl.. - rl``fm t'! '� • y .r. 'Y i, O `' I^, r, �i, _ 4r �r> ,� t>r :r rr .,•aw:' 1,. ti r •, .�.. s 4; ' _v .I. �,,r 1.r- yj' E F A N D "r - ,� ��°j,->} y. - _ [�ir'. ,+ � .c+�`'_ c I` r 7 WATER CONSERVATION DISTRICT '�fxl ��.'.yt'' V p3-• I wl,.lr l"7r rr •., ... 4_ y s -.•I , +, f !1 .• *1'. x ,r+l , Y i r+InQ, •,y,;r'1...+w7k�{ : ss�.. �•lr'' .Fwd +JILFVF'1,AHtl #t,p�,� i(?R}ST,..'r-a�1 �5.r' rf .s Tr` !,- ••��y ` ! 7• L "'t°' I i, 74« k f . 'em,lr 5' rte} .l ry .,c 'r .,r:°irT ;.• 1 `"+l, . k. K '@`- r. f .7 ��°i ' r• - �1. :'�, '` ,'o -t r.M reF �M; h 1!,. _..tE,- - I': { ./�, A � .1 "�. 1, ,.. '; $ i ya r - ,� r1 � "''. 'NI,i �. • L. P���T� �, R1.. -yc . ., aal! ! � -,'� - 1. 7,...'b➢tN r e '! -- � ryy � ..� ,• �. ' I � I. �i S 2 R '�• ! irr,. = ' r., °°� _.'� - i ..(, ,+T•, ;�.r .I..yr'-: •i5�i•�r. tree, kq± f +d..+w _ f s „'-:` �/ �J • rACl 1 1 �AR I l 10U J+1 A k: , A P" N.-. I.d 1' >n d }�Y..„ ��•1a ` ?k 'l�L;, 3 I' dnSH 1 t f 5.,.'+, I 1 vl t'y. aiR�i�_ 1 �` Sf .._••+.'( ."gAk7'aF+4i`', i�`�$6iNAt �IRrS 1�� I h, I - r'. t'f".�_ y. 1 , `,1hr1r,:- •'° rit' y" ' l 4 '�_• 41f x41 f �' ; > PRECIPITATION i '� F �•4 �'" r y ,4 + ! t' F, fs yn• i-' srr.' r; s.I't� 5 ,Arr�iNt J p+J}J a Iw ' s'� y ! _-s .L .. °l'yy .�,Y,.?r-'.i--'r'.P°_la'�4 F, _ V 'M-_...1. 1-�ig� _4 ms.µ rMi-�-r..�,.. i]l-� � 'xIT.S• ihfY�Y 4`:�.�'"'•"""" j' -_f:` '`3 q,s .�u.h.'w„ � f,,l.rf , �} "-�' l .- � .r o.. �, .,a '� ■ aro _ YX, �AS 1.., ,. ! 6i Ms}hyl FiA7F 'it.r �.'�\ ' Agra `yd. rr� w.A,yNw, t1..u: L'r , ,1' . I ° • 1*P*�y !?a .}RYA '- rI . •,� � ra.,rl-1'4yfIA' 1 a,. � -`''jj]; r:' F � ' l r , d' K• w 1. .Y -� r� Y f$r„ 1 �T• ,1 }' % IiN" ''3.}7'LL':1. } `. • 1 "S f�� - R r • xY� '1.� " ! 1r Y .!. 'S ' . r, 1 "r,rLY - 1 °9+� ♦ •l r i•i 5 PLATE D �.. -e 1 ,. •` ,.- F,R i ,r J'e`N _ ;�:'„�'�+" :Rte• n N° Uzi �c I'!i L�"E _ _ F"�Ei : _I"{ 1 R _, t r I d �. it •..' ,n.u' ,r • �7F �+� R"+� may•. .+ - ,.•rdn •' , SSSS •••• ` •` � 7 1 ,_': ��. ,} rt r` I P 4: -`k•'+ '- "mit , s t.' ,� y`?'1 �v '-� I I .�x. �,:.,-•.: .np I #; •► I � w r,.E r -s-• - i.� �„ d,,]+ 4 1 � r�;rV} �C f •. {�,jjj�rrr 4,. tia Y i�, k\ � 5 r,feds r s _ J^ � y �`.y, r, '� • ?',�"�!f'>r�`' �. � . * +'r�'�r °_'�jr,....�,,i'., � - � 7G, y{ 14t I �fr�r.:,. .- �" °� .s, : t,• �- %Y i' +• r^ kll4rn N,I -^,• f - i , '4• �•'�_ ''.r,f "p �' ., i 1. -' �:! - ^t a•- '�� P �.t f .. T ,— r•r K, '1 '• h4.. �-,• .r , ,j,f i. _ - - - ,o j,t,MnP--+ Sri` C ' �; _ r - - „wr 1. µ "41 Im a ��// •. , t .• I�i r g,�.lrn ',fr.. Gi r+_[-%; • , -. ::'.. ,`_^s : •/+(, - _ .•'^ Y 4; ' r'. -1 ' L TT - ii '- crm - ., - , ', m r-:k,-yI -., ..7F - •�: Y'r'A•� s , r7 �`� ouw"I\ _ ,;�, I GT' �t - , .!, t t I�e � � _,.. I.._ s � -,d, -, rte. .{;: Itx r' "� Fes, l' ,w"wyr� �y�Ti'•�~ '�{ -•�-,- N© i f\f-l3 xl^I@9 '"`i!✓ `" }r _ �..- g ,r' Y' y *e•ys r r •._. v.r,'M _r4 -•`.". ` " !it s < rasp ry. ♦ - ` s `'k • _- - ' ,--. _ .�„ I I ,G � -� , • : �: f� � r. 3R - f ilil4 pY.", ,ea � _t., r _ � � .� �3" 5 ''k �� a• (• � � 'M: , �.a •Sry � 1 y - � .I -.�:l+n] y .. 1. r TIS w I, I .ti , , � r..r •'ti r1,.,. n., xz. �" r �' .. ,F��'... r�,, _� � - - - ..r'- -•3� • .._wry. .. ;, •--_ ��e� I ,nse� � yf.rll ., - Rne' MYoroni�` R�'�° tiel' ��� ,� - - • - - i''-xl ,r'l I. . •i. - tom.t..:., •..a�:.�. ,; ,, s"' {.. ,. ^�'� -`i': N'7� �` IQ' .Fy#, OrY � U ME N; T: I f -.. ,. .. r .,e4,rr. f. �►ti. } - _... - .� 'y�s, .r �: 4 e? • - ,r. - ` 1 I , ,n� w+rl ,_-,., tle,: ''i "v- '++rn n _� e..:' 41 r3'%t I." •,.7• 'i. '".. �,; ''�?k 3 - ..+a: y �'` � �r, �' ,ra�l.eaF wrx .I - .at ; i .. t ..- ! I \ „+ ... �Y, ii� k - �• 14: rg .` i ,>, z M sr c i `. - 1 , hyrn "F' r[,Nr.. � •.�� ,y � - ,..-• �, � ��: l f . ..,-c- SaMf-_snn t�e,HnnH„Ihn r - E` - "w a. / ,, .: �, ..w+ s.'- _.F Rra., • f �.] , rpm .I. • R -_ "� r•',r -:., '}'.t { 1 I,ry" 21+tie•.' hl • 1 - `3 S co „ '���. �` P _.] a l�ti. .f (1 ]. Jr •.y- '��• �J-4 ,,y.y+..: �1 f l - 1!A 1 x '1 I - by`�+, .!?WUV -I 4 Y!. ,".l+.x•. 4,. .S sY.,� •L � S'•T4Y .`� •� u fai"'.:., r,0' t r ( � 1 r -i' �, i.'�rt., nye =�:, I �j � .� p .1 -.,�.. - � s {. a «„."- - . a i ,' .•. y-_ r ' -_ , -s. a•r� 1R . A h �4 ti � i r _ -•_.-• i;rge.•_ y � : ;A ti U.III h ora , �.:, t, "I •, ••, t.4 •t. - `�RU�}(iH4 .i �'; r" f a _ ! a t y,,• � n.l w . � 'I 4i II"}'f i-�,�•iawas {iif'i { ''rri�w" `' �a�' ..,.�. �N7 w R+Iry Wawrr.nr ru.' ..1. :' .. d t_ . `" ""`'may .r, -, r •., »}r•m,•' Eie. nY, L1Ft 'r�.4+^w - NTArF1$ r - Ia _, / ,. ., N. UMno _ :*:rl: r; _ 1 'fl IL[..11A I,I, '1 F�,IiF•� ;"•:rl • I - - }f �/�C � 2 S• "�(•„n .. �ryi w.., �.Psaf Lwno� .t ^' h�eI �. � � ,• L� .,m,,� t - �' :�'-¢, '�7 .-. :+.Li+a+”, s�` r r - •� [ ry s f P+•r re I 'bs, 5 ry .� 1 •,.1. _ ft { !' r ' f f semi y +. r A k •Y k _ _ xh ` •• : riNl+h. h, _ x :)1. - - ...;�..4;».�. - J^' 9 r 4• 3.5-t , • i 'i i - - ' ,: - Ea' I 9 tf.,iru,'r• - rx„, t _ r{ -,. .-�� 7. .z - .' - 6-5 •" T t n,+o••R.. . M_. r t.7- VY S 1] »,„yam t *� ''. r w e 3 �'.`` _ - ll 3s `r f [ , J - x• rntx_ V . , i , � Y fn �, j � V�.. Ni 'tr i r'� - '� -'T" A.r, . f n..i i i�I � 4,. }uj •t Ft > 911 rl fro • fr f 1 4 r••c�l[- ., d"i� t ,ti, F { �` t r �. i 9afaQsl+�t'}'r u M1 sic ,; r�. �r «�, �r �+. -” \ : • A"r,3._F. ,. ! x .S � •?4v. _i M+: . ;, , ,{4. •_._r. '• , -'+,•� af, f.. . .� ( r Ci_}?` -Jt`ni\e.. 4. ' `f k' ..c`F`-...rdr;Y•re,_ ' 4 '. +. .7 • 1yy 'Sf. � rk. �`Jrn. n -.'I, 1, t _ x r.. `r I �4 a '� �..u;�` .. '� i�.t� ,.��rF ,a@ G� e"'4;- +. ' • -- j` � - �.., - '�.'_."*. ��r.�" - •1� -«�. (aw - "1"��J I'�'''Ky�• �"C-J p,�•� �•� � r• .A 'L l 'I� r� E �d 9xprt• ,.n' 1', 4 .1 1, tkrr,1:. • a r ,.. - ,. Y ern, � - -,..,. 6 .:.. r.,.,7, -., r .. � :%' __ I tr' _ .. � V }` - - .r'. � • � _ , Y„ i' r. t [ .'.: '� ,- - . - ,. J ` 1..»,.+r t„.r v.. ek.. .. -�-S•a.. >•% •.r'` •rx•. �,.- '.'' �4 !t •+�: ! !` - ! ''° :r {' .tF • . ♦ `� n. p,p�� LA ..' -fir.:.. r , _ - '-w . _,. ' Y ;,., ' k=. `r.- e ?x "t _ + • _ ,'r • •r, r+ :•i'. A ,- s +r- , .. , -” br,t , C t r rl e• I eG .� -- � -- ._ .a.. ti x• . r t ,•,r4: - µ:' r,:: aY- ��. , srn r :,.ok.r'"r ';F;s -t � . , ..-- /'j +:'i iS+ �{ ., ,- ,; - - � 1, I •I ,. ,�1. II a + I .-'., t\'- ��`"` "I z 'I� '3' `'' ��}''" r- _ HA� n y,:. G,� 3. N f �`_ is c I },s @ ' �1 ,a - r tr '� '� I y -��°` � ,• il'cy...� • • F' Vf•`d` j}•�Y/a4. R _ it n Ise1C+ Y '.yr['' } � i - _ ..• -►+� � \ �' :s"Id+• 4 .;e4ucrtn r r..l, i �. I ".r - s . r .:f f ,EHr',--•� r ]e�f > s ,7•� Cni1P7A11 c r. _ �.t . j 'c a fi 4. _, ..;� ♦ r •t'I " 1 IefVrfW wl�flfrlAN#� 1 T ' • r f' _I a 4- � - . - _ - - rN' Li. . �c. .- .;P w'1 r `', - � ^ , -�' l.._.�.. '1 -'',l .,�.. I. y„ .i 1.,-_ Sr•• � -t ,y,,, "-• `.y-"¢,i"c' ' A-� - °. ? - nf4F "t .� _ .S x. j e' 1• c.. a , , ,� rrt' i� r..l a �_ �r 'w -n r�[ JAW; r - > '� I •4 '� 'F! v., �1-, -,_ L�. - :L'� - ar ,4 _ � .,... - t •- �1• ' -'� mal .1 't r'� i, _ �, . .,s . �,r'Pe.. {Srta4 ... i r°' � }i � 3 L . „j rrrpn�"+; - l,..t;. + � I� _ '.-T-. ,�_`�. °� •ti . _ • _ - � , !. max» irrr• t 3 - y «, �:. d � y -Hr+rE � 1.. - I admr•,r �."•`. "''s �r ry.. x a (� jjY �`' pJ,M•4. , �• � tel- ...r" I l •: � �• � �\ '/ar e I st•., ,*. - dt `,:•_F r.d _ I 1'`I .1 v ' x+ ,..r a,-�r ' r. ,.we.- -«'.�• � .� .a I .. i ,•,' t a 1i.r`•' j r ' ! - .r- .R° ' kr:.�..ra�'._• r t :,j,Kr i • .1 _ i rdm 9.wIP t L4.µ:. f xe f d 4r - �- w• � S•,�, rr t.rx_ t`'r.. ��i - � tA{ ,f �, � ...., •fi,` 11� ',+'? r y,, f - i. dru .:R� ', f' „� t r . - Q. Y t S. yn.i s { rh.'', -f. a..,0.ia I '•. y r ry:. f M L t i' t• ' � ci�. �. -.4 R t n�n�. .-1 i' C' �5:,: i �:t - �. - .l'+N „a 'roars j ,,,• V+,� -•a '•I.. � '1 - 'j. 1 i - >k : _ .4 �7' 1 i • r '�Ir n /1 t 3Lr f it 6 a, ., i'' �' I� I , ...A. r , 1- r- '•' n • -'r-.. a t` a sUirl �i { '� � wY e '�-,T _ - � V � !:. • ti.x• .S- �, rlh t +� 1 f'` \ - -M r �I 4' x:5., �, {,,,, _ �- S N Y,ri , 1_`°t _. ,. ..f i i ki lu r ''� 1 � _�� �'YI �"` .,4- - r �,e, " r,o>J, ucxtil.w l-• t� _ 4 S ' AF 0 ear,, • y r a .. 1 �•il�t r r... :,;r r s Lxf �4 � '.,.--• y.. � lrr4^ ` L - Cu-!dS»In _- al r.Y} - {v, S'". 3 14ek'�`r _ i t +r > Ok111 ,o '1, .1- , -. - C..-' ,. 1,.+ :� �' „!wP r+ •� ,. .,�; •�:'�7=.. _ .;' Pl'i4 I' {'��X}` �ry° 1. jr � .,}., 1 c.. +'- ., .. � .'� ,,.� 5 r r..•1-. �',{Iv ,, ,.. � .",+jfl C _ w \ ,i r ,.}_ .I i 4 l r� d6s 4 i 1- .ry +•� ' Iz+r .A r. N a r..« � � " � � - 4 ti ` vi y fS �+• (':.f .. ' t T :,4 �.� yb,. .;.' �fn.•rl u,ra~�,. - '4. M ti' _ •a s�� - �t '<' •w I .1,. 1 nr,Pi,+r `` y ran .rrx• p i•3 I J - ,s 'J' C( 1 ,•, L , I; ...tom .••• . :. o t ._ ».. i .i r,, a �_=r.k._, .- Y - pclye. l .'S7/. ..� i -•�� - _ - PAr .tYr.. Shy v -L -h �-.-�r,-'ti r :"f-'r*1'!. , �� 4i\-.., sr � ;, ,,/ -� rr--9[.x,>M�iyl,y �i°�`t�'-T�' ' ' .- �, .. :; '. .- - '' �`, ;r.•�-�. •..,1• '!: •4- � ,r - .- 9 4`. In "V�ThJ1i(V ep�n•. `•'w �cl •. ....,_ i.,..y,• .,4.,r __.,.e.S ._. �- .- '�: _ J ;.:, w _ {A )nx1 r hF,. I � •�f. { ,r ■ YUw s r,y, ', t'`K : " f '•' .tlM '_�' 'rla9rM1 1 - •� -_ - ", e • , -^. - : + _ "S.. e(j I _ '^'ti"�.'i"" _ -{.' i T(1FMfY • a• ' - ", .r. ... ,�' t e, '- a ' {�` <°� ,aa rA�s.•f s. _ .I _ i �. t `pwr • _ a v. �. "`I'¢,/nn e c { 1 I •_ C'� 'r` _ {i4.5CN t4,.'1' - - -`{ J ^: I"� ..,ti ,:? �Ml, - t �I I ..�' r [• Inolnrt 7 S :/ 1 .•'•i r' 'a > I }J��-�•� 1 r _ •e. run. . AA j _ _ o r •N ,fes / � `� �•. I I - �E. Qp,� .. [�f f.V •�# fw ' II 4 �f * .,• �„ .:ti-._ �^ +. . ' 0. wr v�w.�+ a.\ Y .. �' - • y' ••,`1 ��. ��, � Y A" �IPrx " • ' ,. � :. •` i _ -.• ,u.s , f. hs�"'? � 1 . '.1 � I f . ! %%, - > - "r \ F .. r d^f':r�`, ' i ' 'i • '1. y,e dI•ar., Y „ r f r I v.ar,n .,er ` _ _ ,A J![ r_ �p44r �i }�Ci11Q # 19� k 9r`- - '+•j•t ��' - - I "&I;}y A [� A :I, ..; rt j'l. T 9•. U I,• - .. ^ �+ "»,»a..`• i4 n 1 i t S 444. £3U � � p� �f• i / r •C� *y' '•� ,r� �� � :.7`� 1�. tial 1 1 ! r r S�st 2r'+ t")rr° s r Pm. p r 1 r i:. � �•r irY � ?S. r0.�j w. }N, µ'.. l rd. N ` - -,. I� .a /� a+t ,aYrP. r i »ra«. I +:ArrUrL `Ir141T_ Ft- rxtl _..-.. �4,,-..- + - { , _W : � r r- F.. �71__`• 1' �_t _' 'rrl� � �� � i ♦ Wlfr0.ad?A/ I '-� rfr•r� rF.J __•.._ - - �l�. i _ _ _�.. ,:3 _�_ _ -• - •�;t. -yf° r_ „-. -� r .., L.� s+.4:rSl" /'• f- , - ,., �In, r- i ,t,.,:+,,r -_-_--�rY�`'•` - w. I'�: • •, .r�' r 0' a._ly .� .- �' •�.,._a arr '9 �y ' •w A LA ;r � - - :� - t... � r- Ylrrs •uL •rr•- rrr.- i. � , P •A, _,-'v • �1 _ -.-.ar y Y- _-,.,-.' - .p -a '� 4, ' ,; . - ,c ,,.. . , .»..: - + l a" �-'�'.,,r ,`N'•Ld lr -�,'. � ,I,•R'� ! ;'`s� �:-r-- � ',�t� � 2 - _ �n.l' ^ _ �. ��,y�yyLL.. .I. 1 r -�a Y �i. ! .�. , a ♦ g.., .f+�:, f , cwrrM .,'+`''• "r ,. . � '�I^'u a _ ,I x� .( n+rrt 'i- '�'rF •T• i. �i�y 1- 'i^ � .� �.# d Ir. .. ,r+11•y �•'_ S .�•jW`` `` '.'^ "'T•r s �o a s } -j ' � i - � ,.r i � I et ,•atrcaH- `'+� ,}kfl r' 'C (, r!, 1 �•r • .f-. ,/ •'� ,� rr, w ti�9n, Mf �r i r. i. L7 i;• -J Jll� � r.. i -I' '4 1 ,'1 Y .. r .,4. {Y , �'9..,. ++ Er 7 f ' _ � `:•i -a,N. y ♦ n ` �� \ ..v5 .y: J` IR Vrr V:'M1, I f � i ! •/ �..1 R�Y ':$. � A. ^ 1, ''^ .{. _ 1 A�� ''1' �:.r l ,t`4F ;.f'� f" 5Y .ti•' ,,. a.:' •�..�r"=-s "4Y I � .r'- t _. _'♦.- •�. .f. r. r' Y p rr;;: ,� _. •LY V~' tali:, •+.-.1 .rc- S -l. '�,- r .�.:4�•-.+�' Z -�. •.�^ , i o ar•r �G _ e , 1 J4wr4 .�, »> � � � t �+ + to • V I . +:w 1 c �[): �, ,-v S k,. I '•�r4r / 4 .r � � r �` r�''rt va�` axy� '�? '!I ,r:'!�r, Iry plA "� Wrr9 u'� a � �..' 'Er `Yrl diirh•. d Y `. ! R ti.L - d•,.. ''', I , 7t r7 r xr +. •r ki i N,.xne 't r r" .- ("r�f• ry'��,. ,. � `_-� .' .r ; n •Lr r'h..Y A.:.A �i St° �.envn lyrrr f:i r'� 1 +air I {, � _ � k ■n _ �' �"� F,' ,I: y +dn. '}' a, >'> w �. r�•F Nt ".. i RIVERSIDEY COUNTY FLOOD CONTROL _ 'f>'r4 ^. 4�- `i'r•t..G ��, ti�Vy, 1-1i'1 "` ?'; � �. �,- r'y,i aa` � r ";h.yt 'S f' _ '♦ �><: t� 1. K A N D ,♦ \ ., i' �. rr, .r:,.�;� :�� T` r,rfe9?l •. r n•-.. ,L '1. •'•r � .f>erY r'a.,,r � t.l ... i :�•`" �� • „;''�""� 'p",t''i�,,. E•' t,�1,. i ..w� p': V a ,+ ,,;„,s y,. r - WATER CONSERVATION DISTRICT \\\'•, �� een. c+lJSS ,y�y .+,ar'rrf�r�e, �nlr. •7i .Lp •°' ''d r4i + r+iar _ sTe it 'moi zlp� rt�us �` � \ , air'.• r. A� �. �'n, I 4. i' - ✓;• •sJ�•- P i M” _ .r 4.q,L1 "• h �: _ J "t` "S [] 3 ` S•rr i f p Uzi .'�`� ria 9 JN S 6' 4i� yi.,.` sl{P 1. _'i j. s✓pN •i y 100—YEAR 2 7 i�'� -• U,+la!}: � , ,,` .,}� �� -. , ,i. j0''rg{,i u+. n r .JI-� , t. fY �. ” �.-v ..;A+ie4yfu4 eeeia*'Y. ,?.. 'w• z: ��, e = .i� U � EAR 4 HOUR X R Ay}\ *a F;.: Is r , tCla ' q I' 9 "&, r•i°i� .. �: � >. ,'r .na , .� �•;., ,: f r _ 4 s r ,, 74 •.r } r. !r,� P R EC I P I TAT I O N r.•xk } } t t, r, i 3 . - �'•''YY • , f,�I4 Iu _ - -_ g Y •1 .4h nilSr wr jf L jj •� �i 1, A .'.. , ,A'r.'..'a r. ."`' .�' .r HES Atr�aw r�,b., �'• rt'nl ,{, rt � ,I.'t• �i. - --'a -�i 'rcl' #,n � i �...--��ncers•-.� {�- 5 _ IG : ..-,I---a "b a, `- �f,� _ t7r:,a .. ...t.�.- .rrtr -i"3,� (. `�.•wG -I�u.tn' =-'iV.. ,',: �t •'ro4reyl • kt. _ - [I'+- r'��'.r, O �_ - AC. Y., :r,�•rs" } 1'� ����t F ­Tri41 Mt hSi leAiF L. 'lA lOhl� , -F ;. ,, I'd� �e £1 ,�`. � '.r- ,��r: � iyr..y. i.. sir_,_-.,.�rd 1:, •nSi •♦4' � �7y' � I '� .r✓*.,- .1 ..w,. sr ena.a. no ,t� � yypp1 .+�.,.. .I._P t ,�'li .SVF A 3Yd 1�'SO+i� I e,e •, �IMi +� - I � S, 5 ' �+-' ,� It.as �' II - -u ,.r tr . 1 f rr .. > r.`_, ", $ i srr'-11•'+,., r p _i S .•,.,,y., r M(y{sry . .a ... c,,.s.ra ll. • 5 - _ • RAE -^ 't • Fi W ' M �' , ' A�5 Yf�.'�. w, r rd ,, +�• t.e - ..... '�I � ...PLATE E-5.6 _ .i- - ti"'A'i!'i 'i-•„rylr. FW ti! ` `' „`y „jrj,7 "'Lr r� 1.- " -' -- - '�iE ��3 - - �6E .�"L fa 2 . Ktit f '} W �1W rtJ w i - u�c+rFrr Y�'!`�� A* r' 4.+3., ' �r :i 8'.' r R p - } { 7a '•}} is `'l,. .,_.. .7 R g r r y• LIm3r+S�',.4iik �s �^"f 77, -' I •J r.r :�-+ I. - v:.-., ..r(s�Rt Irrr,+- i-_ I �� 4, , '.'•I„ -+S/r r � rr 4 llpp iia, M. Jt i; 4. LYf, /i[, .y ,'~..f } / 'lu,eeu moi• "N ari• j., M •'•S ww �- r ... �• ta,. -�' l I - � "* /•( •V'y- 1 �'y E54•, 1 '. _ .. _ __ . p .,! i J - "' `..� +w.ilrr}:.Hr r+hf 'VT _ :L1; �•-.•- _ , T.edl,wii. l: i. .]��}.Im •e ..Ir " ' Y/ 'I +s . .�' may. - _ ,j .K.!•i. ],,. Rr '-rryrP aYl. oI •s., ';.{� � _ f ' r - w - 4 u y3• T�. 11��%'� ;�ral,i r': <� r� .. s'rr; T �� ,; �"Zdti«M .o•t. `. • % i.._ Y � ', IIr..0 .+ L i' �' • fi s l I S • , ,.� r,, - > 11rr J. -[.• f .. ! l i :�„'Iv.• - r _. .T, 1•k� 'a X•r '.'r1`.YyY _ - - _ r' �1�T '!. I TIS In r, Y C _ 5,1. , .• - � S'•s � 'n } +r l -r 7,e,T a ,e++ "4l%, yy F f N 7IoNAt M(}NUVV}EN'� a n .� - .I~ �r fit .';'. ���. u, �O S }i�U ,Ari vii+ Y I r ■ . ar , tMoM na,.-e'ly:.'•Z , ,.#>•�„ rs.{ iy r. M aw. orr�rar - ' - .. .i I Y rnfsa.rY + i:. Y. [a , �`.' ::- ..,hk _ `' \> `z , •=+r�+irti's•� °■. �" _ n` {fiilE 'ja '• SAN flr vn.. ;y. -._-:-f , - +,, v'7 1 a, S■ana `' R i � �9y • Yx 7 StYIY°`r r _ . a - - ,....,-.-.I`.V;•' R r��Ia k. V1 •.'�,! - .: T ..1Nir!" 1111 .s:e - '7 y. i u � t; y :�^ - � 9 � _1 3.. , * : a—,� [' ...• rr •iiia :o :'r . '"• '9 j'r-`.'iyFt�' -- •'.'�ri. tt;. 1,�' .R1 r,1,,arr 1 -. r ,:5. ' s4 _ s>, s. ', i f )'b+� . 1 W�, -,7 AN F :E '•;R q I .> Dl7fr{p /•.[Y [ 74r[ Ty• J ', r .I y ,•A ]I • , ,.4' .{r "=' „d_ a ,' [ilrx�e Nuufira - :.`.irly.'I-';K•._ .,H f _ F.T •, •.d - �� V t y{"• , . d .-�'1 , . ��� .� �C'µrlr• 7�A I, p•` etr'''� 1 �l;C1Rl)h[9 €+�INI}r'�dii [(s:,87 i,.i _ - •. _ .--- 7 r 1 r , d.^'C' Ya+tM1r,,,. IX y.:i Y �.^ ^�.:. � SF '� -i a4� '`5 Go b.me. �. i'i'i' ! c � - , T, S�i `, i+�:�:,•+,.> p .'� Iu Y ? > TG S f �,} Vit_'. , e • `ar.R'y,!1rr�w,,y. �y,a t I:f. na�,rF Is1(iS.i' 6l �.� 'fY aY.t I:hrfr'J 1'arr� ''':r 'gipv, 6 T , _• 1 , ,� j x+,11 ,. - r .X I'C � ' , PPP Is• ri'.. �ai,s `� .ro.� > '1 }^'y, •1 1VV g.. X +�r:YeiY r�r So n'..; I.. UI. t LI I L7.!• f7r�A #runt F. i '^� M1.I �'tii-;i f' } 1 LI It It # 1 -`. r, s. . f Iqp ` r •=r.f if} , ry.n - �., �" ! , t. L IP.h.�ntyC r1 ..,r. I �. '. t'. - . YY,r.,. a a•' ' •.,' .. '''- ""{ __ _. _ - �II�1`-- - r. ':�.ti. -.. ._ _ .. - ... •� ,. y ry • aw? a} * ...tom `-„:..I+ag ".* �'” _ ', y;r,,__ _ - 1 fs•«" • . 1 rr �.� N Y • k x,aes• .. s Ir, 'to '"-EC _ Be�umon�l.8 .rr , .. a , K -- 1'r y7l7_ 1 "{.., A- I I \ ' „ {Fd rm.wA :'e , r tttJi M` {.i r �"'}... _tr .-.. `•,1' . 14. - . lA� Fr.. _ '...r +rr f I •r *.. ■ :. , ;P - •' - �' s !._ �...f-.11�t-�_..,. 2fi° - r r - II l� "I _ A'} 4 p �� "3 J �S .Y v'� { .� r'ti. S, .�� 1' i `I. .t •.-. '�w-i ,tem* � �Mr: �Yl -��cg '.i .,,�i�r7� , d/� �«L ..-rr�•...%:' 7 - ,I'��`... ,,.r ., c7. _� 'M.. ,. r u.' k c«� �!`J IY 1., n kl�h Y.ev _ 'l`� "'X.t' ti ?: i„�r,� i 1 ,t t• - t _ ;.. , ~ - 1 ! � t < ><' i 4. f I.w - i; Il , - '` •r � � "� .,_iii '�'W �' �' $ l��(, .1 .._ „r'yiHuw j ;�tnfs�- rtt's-I ._ !. „1F^.4h � 1' - ��1• i.+ f } •4., r.,p Yn a4 � � ^3, ' ame,. �. �' 7 "4�; �. V', �+ d - �` ; ! r .. . �.1:7 _ „ � ti - �.5° _ (� r .�.. :; .. _ 1. a , j T j'� :. -.'-_, I ��. - -'y`. :•'\ 1 �,./ y a. ,r d• r l,. ...k �•+y�� _.�."r ..r -.�5. .e'' .'4., •r,a r a rrli.fa .,rr �. tri [ '4 i•y ]".. { . • r .'1- , - - . V if i y i' Y �i UII S. L .:% H If .-i .I. J. �..-. J _r~;'rw�3r%y{;r-~ i -•a-�, ; �� �.- ..> .-.r.}'.; . 1 t era•..7Cy�el, rrer} iTl { t (• .:v . !>,-.y i1, �` 1. .t - y.lr-•e«. _.i- Yon s - Yr...,l:..�r'tM•.,..d• ��I� ! �.�- Y ''�”` - [. � Q [ `'Y- R. ml r,._ JF r. �" tbr: "w. } ...�. � a4 \ 5 't t. , s� - '., .. r .,.,a - • w. � ✓ r • -+r p� - :riAY, .✓,i, t..PY r.,7r_. �,.. pp. C." _ - ,� i .YMd3Ys'•„•. 4 y;.,•c^ 4 '� +” - .r .-a..�„..s y�r yf` .Ri.: y..w- �.,y /'� �.�, !I I c'-. •y �,,., .'1 7 4• :p:}"4 :h[. 1.1,'i - - N} �"'^6n.rri - _ a 1Y(� -tf r`T'.. r. l r .'..y f' 1 }1 '`!' •.,�'• ,fr. rtl a ... f Ai{ Fe,1°jYAry y4 . n , .. ,,'�` ,� •�_ , _ s l� I , 1.4 I fF, i' 3 - r .. ,{.� -F -.,,, ,C _� .. of ..: I ,G. ` ,'•t*- L-'', � ..or,'"`' ��' }., `�"- <" . 'A1 .: 1-1 ,[ '•1, '{ 1 j„ ; . y...;'- i' + L .il'rF®•id MI4 -•I II of 3• 7,I�r -r i' 'r .I y-• _a?irx,W n1,ll.;:{;rr..- jl 1� Y.1�"` - t' I I 'G 7 , - Ya .I 1.7Y'i; • -1 r - t °�ap.'1. pY. .. �.-, .�� - - ,�'i �a. ,tre:'� .,,a+. { �' I' .,5f.7"`^ •`, , � r. I - � .I.e° '.iN..: ' �:� t 7 v N4�J fa 7� r t JI ,��� �: �. -wt-� J'; ' :. 9r '<!Ir •-°1"" r- ,-i.£. -'-_`t`.�Y`. r,-. ,�. s >J. t. I '" i. �{ ,.. { 1 ! i � ...wx:. p' :'"` \ • i ? { - , ... r , ,r - ;_�•f r• 7 0_. _ !� �1•.`.� { . r R t r. r, 1 • L _� [ --q_+` / 1 r !N 1' 7.. I'N,'1 .Sa. a.IM', ._. I r l I cqp% r50,:d r V• ai _" "�'- 7 �.:"i ' ' { '�; X ♦ ,� .• ' T; . , .3_- � : � � � �.'�'"� rr,a, Y. f :Ls]rl41rN" M llN[AiNC ,,� ';,,,. �ra } �, r ,f \ t '?r � `.• .,� ]. {- . I- '], .• I g i" Y � -- 4T"aIv i rte }.- h G - iC•Y-�`-�:' i .:.-.r ir-'.P �T" y '#., ,1!_ •`. -, y..rr. I' a'i' 1 �. J` f _ - �1`..r ,r�..y< '�f+.n C.«a '```... r 7 t.W tf L _ •y:+ t _, Y X :�` � ;'h. sri, ry]• i �-\.'' 4 .A 4f. ��_,.<,. I ..R ,Nod y ,•,. f ��`"��'"�:::�:r'? - `'°f y..l• I,,�I�_ J �,,,., ..�6 [�r. .,�...r �•E'.r , c "4. - .. '�y r. s�,'� , ,. _ .�' �d13"`-;\ , ivip,,. r. �, ��,^-�--..',k� R7• C l ' r r,,■ .: lr r 6 ^. r i ..'�.--+'�'o-.,p, ,+v.r : et -� ..",Fw:r. � � r $ � ' �'- - _ ' !. '4a _� , �. r r'4, qi� ,� .3l )� s. j ,, �.. ,.. r •.i, r� ,e •. � �./ - }.Yti � ■ �J •- P!; k roll. Dervl]t "1, ;� -0� .��� ✓� - Y '� ` S. f n Lily I � Inn"•i, ,Ix I 'lr A+1 - !r . -fes' 111 � � . � 1 'J"• •[ l _ p -V: G •~� i°■ I � 1 �'i r Fi77 .� �[ r.�r.r : .F', . A « ,� 1 r 1• r .� ''�- ^-f,-;,, _J-. !;'rrl, r } _ h,a. ZS .i. 'r,r .: , y,,:n - YI' _ . , 11` .i - r 7i r i z 'Y� { •�.,... ��. 1w ,r 13•.rt ii r.�f T^' '' 'j 4 Y �r}i s6U ili �' i.. 1 I 6 � 1•�:WI 7 r r.� � _ ,_ v4." , t�. 'yt._ i � 1 „fK„a s• • �”( - W+sJ+ra�r_ !w-. a - _ _-i'Ni.�. �.. �--ii _ e� 4.. T "I.a#+, r .� _ '� - >-- .- - _- _-•.. sG. , . , s.u,• ...�, i,. w `..; uthalln .L, ; ti ; v •; r"'} ,. c, , .' �, 4�i1 - ' -•� -='I -7 I ta., i._.... `Y 5 `.t+ "'X .ry} _ _ _ +tR+s+lYsw I r H• 4 ! i .+ ! '+ 1, 7 _• � t. mi rdr«e,r �y t +' r Y r- , 1.o. u< r+ t . x } .J.r-�•al f r s _1--Yaa,.,�.r°` Ira;. ,yr .,, �3 _ 1 ..�},. i` F Q kt r w iSi] r� Y,� I !, v 1 •]ra+Y rat' 9 �nN Aa 6r �. R fi A R' [4 1 f 1: rC ' g.,.r'rrR"/7'rrr �s. S•a�C L ka,�.. _' - }1 . -tA Ar.�, I. 1 4�•'' �"• d 'rj .� o. gin'.' W"•►• f ... I.v, e. , .4o I,i}„ �Ir,i° •'-{ �_ - -',, y"•'y e J,. /F _ ?;�,•, _ q: .7. r u:• i..a *., .a... `qtr' � _ , 1 •yp�n. Iwl'��nl..,-a€p� 7ir , -e rl { � - s rd, hr'.,t �,.. { J "' i• ,r .�,�\}7LiIjTjff>?4 A--Ifr3ra u. ti.t• s)�a t`r.'F�+ i �, �'f •� r,� � ,Y PI i : h1- •� �.r;�,- --- ,-� -:t. 3w' ... , __ K•r..•vw - :�. _I ♦ -rAi..h4•''.d�,�`.a>I "]Ix,e,r; .uaa .�na - cam I • rr � �a _ Jr. .19�'L ru•'- I, 1 ' 1 ,rrri il,4� , �. i", i•nra�r': _-r.,.� _ ,s.ra �,- r� a>•, >rl to •Nyu.i ,sw,,rr. .•,.5. - ..- �{' -%L , �,`. ' tI �(S , r! +r„r_- t _ ,{ - r a\,fisrt,.; •'t -r-. r , _ 'Il �1�. e-; ."+r I q?y ' i.� w1 Id, �'•'',e LW6r�+e,a Y, �%3 - `-, . • •r 11 f # ,sr ,. ._. __ s - r`fl .. _11 :. _ y... _ _ _ ,.-r. -- -. -•- ! �'� j�,.�{ - �v ,�y�. ' +.,uw�, .. „y Y, 1. ,+.. /. ,.`-.` { !, � t' �.. - :a ..•. „ ,1.�. • _ a �' __. x�. '_-�`"-_.. - »:-1. � �' v. sure+r rru f�t-��J:�`Q4fV'i��[.7, ISJi. �� {.}r ��ean�-t'-- � aj F Ir _ ,j�..a 'i -a ice; �••dY~ .# ,r ylt ,* .iie `�^ � r� r..:.. I' , ��'c,r rytur _Hbvirinv:. �I.. _ ,;sxz' �+1! ii.� f' ...,_�;'d jF �s'• - . r roan„ Ys• (�j']A�Yty TI ura r"r' vw•,{ 3 - ,.1.. rpr,ai 7'v� `"`..ti _ •� f� �. " -%':^ ._ 1F.: , �. - - II ',� -r.. +:, - "°` V ti ,1 .:... p... - . u \ 1 `r �'+ ,i. 7 :1 0� !. '*P7Al� +'rte ( fD( tlrkl .�` ..'[ i. ,i . C 11 ! +r•Y'1 5.•y'S Rose, 1 P f r • �.•y. • I- r. r' � F' SJ.{ 7" }, y. 7 � I, +_,� 4 ,h„•o1. /"` �' ••=: []:r=� - , �f fqu 1 }FAHIr,.I. . m.. �•S 11 _ - f■�� 11 _j` ,9 `i- � A + l+ ti�i i P i', YY,. r a. � p . • >' p , 7 J I I 1 � • r f IYL_cliv.' :�1� r t'r _' _ •, I,.. •. ! r, Ar/��r i.I 1. r•i 1.�ts S►r1$ ti $` '� `'Nn NO A �a � " wm Ml l.an rey, i r3 ,p wnda9 y: a I, / i �. ... A.,.Y. i Y I 7 �, 1 f \ °? t s s • � r _ Y - I ��yy ! ` v •�+� r� I ..¢r 4,.L/ • r li�P.AL! Cali fjii 197 /' .. M r �.{ S t rl4r. r f" 3lr .s{� rr• •„' , r 1'a ? �: to I'd T A •y�ft+ Cw F Q' it I. A i q,�t b, ! f• �I - 1•� 1.3 - _, S"., .., -Y - 7 i. ,�. 11 71'-J` Y '.Y,w•..., _ V�1<.r ! y F M11p•'[i'-T�' .. 9' _ ;ti...r J .`.'. yrs r .''. R v,• ) .e,�a„w' 'Fy .rJ Rh r'� I ■t � 7 _ ,r.. a� •J_� -�. t ,� C,;In 1. Iri17rA.�. ;7►dtva't Q'� -[' IT: - A,( ,+t, _ ...- 4r Z •� �i .sr� r � t' in _ � ' rwr,'vnr.w '-;1-'}', r �. � w`• -- -' -_. _._.. _ .. 'Y` - Vit- - -, - �' .7 i - t+, _�.. I - .� >� �_ Alai � � I'-.�tl.•, ^,. _ :+��'A -- .r ■ �`.$ ��•� - i - 3. :� £1L" drTy _ '''� _i Gir$�. Z. ! ..i; ,J ,' `fir _ �' • C - es_ "•'-' � •arr. Y. FC,"Ek C Ar - l. 3ro'r•tw..i ti.: 1 F.r,.. r � j (>" r F •:. - '''� � "wi- -' I ,� _ 'T' �,Y -y _ .tq ra-.�.�•.r . � '`i - � - -i - rlr. �' j kk I 11 �w n ,i' 1•'x.•!4 a .rt• '� ¢ ' Ha,- r,,t rli,. i .-.+ro'I..f, • ` r' t ' r ''I - q"^c. - ri,-wqt •NtrOK _1 13. y t''�"r i � v} i t r a• , 1 • ^ t4{ + \ 31, e.l r r, , f I i L �piJy' ]rux Ar +A .\,�. P.•f,;j.sl�J' 1 y ,^y+ramY�•1•Y`,3M '. . 1 •f. .'ir ^ I.z'M`h ! x,t r ! fr _�{' rd + f[ [`. 5�r. . 4 .i< `-' t-} _III�^ "r'1{'-'' w- tIw.'.-�ti�`A_H-'_1.3�lx?.a.flIe..�n,T.hv.'"'rl'-- .Wi, �• tjdis'- �_F ._ r:*:f>wla/.4.1� ' ��P7 {�t^•�r ,te, r-�n`rit, : .a r] a r �/y1. ',ia—F� ^ � P•fa,,P,r: Yr-.. l,i .. r.ia,,r,,4tr •.'.r s Ir«,,.. °,c•L{.` .. �yA_" r�,�..�•4."fi'.f0t'rr-^'i•n. • 4 •_-; •a v �:!A'.'y"'.n7aLfI l' f>� - s. ,!PI 'k„..•J�3 •- ' r�Xt ::'I �,! 4r ..r it k4 11fiif!4rlJt '�3 �+?'a,'Yr,.,',1X1{. I r - .. :gar- *• LT_V..G• \ . I J�C [U A- .vF srV N„ai0wQG .. Y LN71 r,j ]- �G::'.:'+Af•a .-_L:�.. '.�":t _ I;>_ _ .,,M._ - .[ +1:: ` ._ , [,•`'�� .n,,Ia; .,..:iH a": `. ,{ "`..-.. rr i- y!y�i$„ RIVERSIDE COUNTY FLOOD CONTROL Ieri'G3�mYr7�r� tr''r y�,.. �� YYwy >•°r' rcr. A r r � y\� A N D , arw xi j�r .[ 1. rk,i+`"+ I \ i.,R .k•• • wi.. Ory ud�'Cl]lJIP.._rrQ �+• . • } 1' f' WATER CONSERVATION DISTRICT "+ � ■•; .Lti' '' yT-. �!! 1 , ..[ � 'I.A:te� .tw a[�y,tV1(- ri7lxt. T '", I • _ P I Aaa fiwi �. •,��.ar[ I r.,, ..r� - r ••tlr �F s �ler1 � r :R C:i ,'�. (SVF.11.lt)14 !w: .,a!1rc ,:- ll' J,r , F, i, a ; - llll { +iuLr FYIrOyh I 1 e ..�� sx •] � � ♦rtti't 3u {nr� .a7�'t HOUR S•• NAIJA ” - !t. r,n. J i` "LMa :yi 4 ,r�Taw` � 4 I }.- tib VR , ' 1 _ ,iialn,,,. i -•L,, .1 I� , , f: � t � �`� r'.',gQrJ� ) - .. _ , 1.� Ir . I . t d' , .., 0 YEAR HO }. �L PRECIPITATION I v,ri". ° I r 'rnrw•'XI •7•`• ✓7, t rltvr r.,•u n}Is �.' ,: ryst� _ — L a-� ] ••�'411� i I :i � I S,t 4 :/; ft5t M.. r, -'..��.'1 Y'. t,'!.>,IL. � r - : -. _ , ',� 1 -. ;h - { -. 7 Fy- y ' Y Y lT ' i f 'fi i ?3TI r } ,{r r a.?f •- I r. ,. ir.ti.nn S r' r `' +`*/' i 0 icr+• 'Mla.. '# I I 1• nt (�r1-.l rrFlF .}' a .+I Sj _ r l� ;i• rr ` •.' . Q r,.., Ho r. +w , I I 7 Y •" hr'1,r kvwtl[1ri T,...«( y1a� i .. 1 1UkM 4+, °rn� 71 kr�r "`�r�`�w, It A'`h.1�r ( � rF.rr54 1 2E ( rsK:J ,..r� . r.... I~tW R6VY ��° `5 +^' 1H' fY�V - '. Vlf - b..'.,� Ilp { r . ., �, PLATE D-4.4 '" a' 'r r►' �! 1r. _ R�11�t:- err, -'RAW b pp rk'i', Jli' 4a - Po. „1� $ i i r Ic�rFP• £��, ",P,1« i,_f l'♦�,i..p CIO p r[ i j r E R �4 44 JIi..t. , 4 . _ a- r�'!Y w : l7 � , I x t. I � .taxa-�a,i.Gt'rct • /,�` n I' r� +rK '•»,� r ten+.. • :.- y 1 .��_ _ _ _ L ,.. 11 _ y.!•'F.."1. S'r, [..,, c'{ „�„ `� 4 ,.f l . ..._)., - ;.. rf ' T y lrn . Tree `1» jr s - ' r �f. �, - •.. t' ' f �' _: yi ,i -Nt r} ,vr �i ,i. ,. � t ..i • � "�,-.. I •.tis. '' I,... •...-e 71 '{i-u.,.c 'y., 1`+ °�:.s,'' ;, ..;_-•.. A.,.,t# r ^+t .',y ,�. _', I� '.. . Mr., q is ''' '.I .rsval.v �".9 I ,fr.''. I� - vJ._ 7' F. { x�� "'{ .. . �' �t1ia '�' y . r.� ss r r ' d• :..',..{ +''' 14p1o.4 tM.Nlati _itq�,, ,^ � � 4:� F,r JF`� + .. � _ - _ _ , b} ✓ TIS 3 �• ...; ^--.ra. � y, it ` �, _ .� ,__ , - *'�" ! .,r • _ / �' " r• �<,rr � .; +;t :- ��' r• _ _ N � 7.1' „IV.:A NI- IV`T ..r {. t N �1 �Mra .. _ t _ -� _� �rf�_ }Y � _ t � � r; '.. ..: :.. S. 'I qra i _.,j f � •`�+} F.,:.r r a a uRd�r lM , - 'rl ".y .".•� r _ �1'�.jf.6 _ _ sner ntv:nnHllu+rrt yyrI 1. • t• f ,y4.,.,tq _� ' E - r.w•+. .. .. :,41LV- .. � - �i rbm . � y Hlvl r••egrt fxtte n " F -'I`tl Ce '. > _ ! `' ,tF.s -_ '#+k - 1�n. - <+ ' ..�- l„�. . _.,� '1 . •'Y;• _., � - � '� i, c ,F,� p• � � `` . n ,, _s.,,. ".E��a s. w . A+4rM . .:•,.. : L�� ...=;� �'r� :.:_ ".' l •�.^..,-. "sac".,. �. .. I. s?' J,._ `_ li� >�: _ k �A ti 1� nt f r t i�..1�.AHJ . y +rM� S, � � ID 80uWngr+1' �nit1l+� '`r .• �t - - I .., , `.:' wcil' I f r. ,••11 . d I,.a I I b i •:yi , 7 - �, .f ,�,� 7� °i y 1I ?.x.. - - •, r A! - i : �� r' ',vr,. n�.a, `tib �:. fV i,�� ..0 r4 •�o "r 1,� I ,er ai'`.-- �t - - - -f .q _ r �,-T' _ �__ I iv.� I r. f.� �� - 11. LZ p ��,d;_ I.-- � _'.r• � ' .` ,{.` ..u���,,•r.r 1,-_L .. - .. i �' r,� r, '1r ".. y'`., �i '-" .« .,"t9l Is-,.., � I,.,,,• � s� . .� - r_ r1 .rf, t ;n .�abRueri: rntr IaPS.. i / � ..,4 �^�y + . ' 7� ° I i(7r IC^1,. .. II'I 1 ,3;.. } •;`. I, _ ! -«�7 .rt db•fi - 'ai:enr. %�, ! - r ) '� � �. _ ^'�'. 1 � . 2 '':.� "ir„v +,� ' + r , • s. _ raw .. � `+i+. _ I - ��4h' h '.t P. L t B 5f f ft , � i e I ,-.� `i , � r, } _ L. - .-w-r _ ..�. 7�-+ �•- �w � +!!. i" ,� • i .A y .ipi,t r: ,.• ..d .+Ir xglel �.ly � �_ J .,' `. �1-... �F. ,� ..its .. i-•, 1, Y � �y.. •f y,••, ..�-t���i'ti ����. 4,. I � `"r-� i � m { .�� I I �t � � _. Y w'"�-'�J ...r � 1 rl V I . 4 .. r , "a /� `+"r �� r - �� �� ,i `�-, �, 1•K ,� -r.Pe ....�f i r,. .y , •' 1 , r'1;�.r � ` r i' - ' ,i. ,. i ". n;.t.. .... ' Y that' ,%r .r ��y, 4/ nY �,n r _ di I i. -k-..r `f ^�.. _,. 1 ydN+ ,,'4a -{J+ - � � {i'I'; :y t"•At y (* �. f . "moi } 3 5 y..4. yt . • . . T•3 'J` Illy r le'I e� '��' �' Mer.+ '4"� .�.7•e _ I ,I � I _'a' 4 j I'i 5J i1 J..i FVX.E L. V > '"7. I , I ,t �r+• 1.� -cS .�� -^� � r _•,1,, � ly �. �:- .>�:, !:: - r� ) i , mr+ ,.,.c_ •r_ � - `�_ ' j * _ _ rw p �! 1 i . , .�� �..1 1 3_ i ^-.0 UW _• 1 1 - 6 t [.ilh rarrhl J I 'r p - � :>t' � -`s°•i ", orf' ,� w.. 1 j, 6.1fI1flEW Ai uNir<I14�(� � ' ••,' ,.l _ _ � _._rr.,�c: _. . _ _ a �„ w,r � � ��_, �� .� . � Irl .•h , f - � �� , r '�1 --dfJ� .7 f .f4.r uv#h,< % j i A• •Hemet' I. _ . L.. sc•',� �i t. d.. S •Y,°... `�.. T.` .y t '� � y.a, f• �.. I ea n'r•'� glWf�� � i-' .._ .�� ?� _,ar I• 1 1 r , f L� d,� ;" -r3�. ti r.r 0 ;eaPr , ., ',�. : � .:hU " f"' cr i- t• - --`''�-t _ '-`��' a�, �7.,". ! - S- r i � .y yr -.3 s-- .;,� .F. !"iµr� }. - ~"f rC ��YF�- - h T �•;F -'F�rrw \ •.-r^".n""'1�" - Ifidt y - r.^., - •.. ,,hit^a ,,, .. ;1hM.,e:,- r .. ,{ : !l i. '•. °..' y.�' w y rr 1` wKr .-5t9.r_. .e r - ,. - 1 • a. ,} i .:.}, .Jn:- c r+ r ,_ ., r Rs .`�}. 41 � rr ;. ' .x: ° .r riF. ' -.r; .+ _ '''� •. �r I'k •. ; i � .� s ff 'i -: "'.,rjrurm v.e.nl I p T5r}�+ >'•. -r. .:f-""`' �'"" Ia, �,, f ! - r v ,I�� •-�" - •l' � � ti° I :I. r F,� i. f, y.��' `5 , •� r3a .r tA_ f -.r ne,n `t i. .. r y' �' l,'.." ,: _ - _ J... .. '� , I s,6 ' ; 4y. p vn, ' 7 I , S n. • y. , i`+� , 'L t.t, . '.,y _ � , , . r 't" ^I ' °r� �1 t y ,� :: .. -. rf� ,; +t ,_ ..";. 4 r�i' � •� '`}•°`�' - - .�; •�v.. r1,r S4,_I+r V"�.h.�''a, 'I �, :.• - 'R I �r � �.' 1"ri'�l � �y� u '7is�et. y, � I J t •r; r.�%� -�' '_II - 5. -W`- �, i i ,r� I' 1 � � �f �• I � I t,.. .Y .. �. _ -._,fit. , yy I ` n � , 'e •v � � ,. y. .,... C n F,trf•oif r.. `°' �-P, ,y. `n .�y•Wr w., ,. +s t ,�- - � ' i , � ... - � ++�F rIe_.. - I r _ r� "�. � /t ...••. :✓'.' ..., ..`. 1„4. �- ._ ,_ a w+d_ wrrth, '�. �il° .�..� n ^e A' �Q'� i3��@i .r�,.. °�. •i ia'� .`,� .F"'{] t'. {k. 'r, � '--�il-. r ya: r•:w `'9d�fi� „S� _77�*fCi7"-•, '.$r.• ahn / �,�w w.,« SB-., r' - r-� I ,,... 'b . i -, {•' 1 -', ,Y '�. AGUNF ' '0. ''[' rce. { it ,1 '�w `�,�w �`�l � r ..�..I �., ,•' {- ��S F'?�J. � f, '/ 1 _ +. % y ,. •7eG 6, (Frs. Y .h 'ry,. \i , y'f 1.. p. _ '•1 . I ..� 1• t� I '�«�C .•f�� rh' �y' (}� ,y,SxkarSl - - n :. ,"S ..{ `t�,�[�fa ;R+ I, •Y {' - Spi 7Wr i r .,•r Y MP'M i.t+f•� #tr , T' r' V 14 +�`: , t .nm �71. ,1�' jCy9,g11S ,! T '� +,�fL'�r. i , ,,. r !r �.•r ^,�k .a,s.gl, •,�'1-•,4. �rWl. ' ", f' fir. lNT..�a. - - � ofw „ r. �� 3 eJ,4• My;n,lus ,+ RfP a 5; I ,r�nr` 4 , l r } A .• t i� - 'i{-"' , urnil:f r .na-ln.lti,rcs xr. `.�.., , '� �� � r • _ . ' moo. 'J �vr.},i rte si4r... '•� t , 7 u y7 H. J "•'r [ �"E`'' ) :lurti r y - $•r I. -.I .7, `��„ I -M [trc' �� ,., l- x I'' P <I,r a-'��..�1�+(tG _ �.5. � 1 I� 1'_ I 4 �• �nr'w . °24, N� I��• 1 11 .l .'I: �S- / R.� �w. � 1- f` � -l� , 'rte �yn w.y.,..!_y-. •..;� � - - =vawr-��---��� ! -'9r 'yr -"1 1 ^ 11 41i " 4A• �`.sk.r„ r 4,'I n •- `rv, ,�^+ zJ'' s i,alyxrrdw re fe„1 '. I. • - V' r r `4 K t e ! + r - $ � i«• - � ` r�, ,� � �- A L" ••.ri- �. is "f kk.. x. : Y ' \ r I . e i„ y,' �`j�-i`�� m � .,y., t y , y F "raM1d Jylt r J, � I f ��`] r r i it i 9 �;'.' ..t.7., h f � / ;d 7. t �'-•'! 1' A11►"• i "`I r'�, l 7 '3= Y- f 7, d M C'- r^1.- '1 1•-. fl f JORN! , p,� ' - �- ,. r , r 41-�f- .•..'^t /.} C J . s.. 'I .1 _4_1 _ r �'I i. •Jx I,r �,� ! .l •4: 6L� .; 1, \ - S ,: ' tl ryr 'x'K.r� r{., '� { `? °,- A'." �' 'r } '3" ``{•.7 p a.•F1$'.liQ 4^e►1OA /� .J� ++rll•F+' • `ij, i� .I..^" w+ w.,rti.�_--. 7. �i SM. >. ho -J i' 134�Y.� 1 3 ,! 9}.` - _ J. ��;,'� ,k �i '�ki I,Y •,"i -iJ M , , r .� xtr.}'� �:` � : t�• .fir r ter;'° ,' �. ', ., ••-. � �v+ �_�y� � e.rr•.^ i�I ,. ,I" _ i,, 4, iY �. '+iri r 1 _ .r �r.i ,,1 r,-� I };� ,.w r r ;• r rr.: `'-t ,�. nia 19, r„ .f �; •.:tiM o r474'1 r'r'1Fl }y R+-tt•r, :i. - -..'..a ' r . _...S r :.L {A.1N `\ _„� sy v P 1' •'t.. '-1 ..1 . �A.-.. ':, S F`- ,. t G/ rrl � ./ .. ...,, y { .. ,.- U v.,�wm •+ µr:. sraesk� .i �* M ,.,i"� .� i''4., ,.�� - 1�,- �ssL�:�Tro - ,n.'•._ � t.� 1 fur,rY `.:• �inFe�i 'Y • ' • }sW:+K { . ( R4kOlG, - 4-'` + c,.a. +nm .,a CAH III INr,r ; .N.r• "!w _•„* r <,,,. F i.• �J•?' I'S' ._. "' .' rxat*a1.M,i'Eti,- P , r V- lrkAS.0 - � � - _ t V :�r_- r<.. •• -� .. � Y, I ^ 4..i... .• �l't-.l�.r. r , .fin„ I .,t , r< ., 7 a �lnn.n �. ... � : _� J �-.r---1- _ •r-__"^.-'^--; • �'\\ „r� .iK`'-- -�`,�- ._}-- xrtp'+ x:n, me,r 1 _{ Q'. !.,>r�h'. .. •� /"+i'��T-- - - - _ - x .'i"._ T {� ,s ■,� ��+r }¢� I 1 !. I��•p ,E .i"' • k,l r5+ ' r ; sa,n -. v ~ , 5fi. [ - 1i r`fiif• . _ 1 +yIVi. '�"�'° t -1° :{ ..7 I1 .Y'.+'q l •~t •I :+EH S*+' SV`./ moi' I wt :.of,. 1' -.\ ^'i�'!Y'• �I Lf "r^f, -•i r r ` { t ! ° 1•cr fir / � ,4 ., �1, �. .. « w ,: .. .. � i. M• y+�� H, -'�-.s!'"' �i `rF�� vui. I_ } +-ti I, r;aaES •M.,wiTlfE .rl t I• , r• . r. Sa +' *`yi '��.`� ^S �" ��,� t. F. �'ti„i+ .�} •1 .i. � Pryv_��. sl„., 1. o F •,.4r �� - y` 1 �• �.. i i 'l: °+�c f \ \/ { I ,q. I vn tlOFa. iy �.LJ, 1 l }LJ p ,. •� ..,trl N , , „ � ,�., •°# ,. .. t,rr" �S! .^^• - - ;• > .,�` r"' .. " �•� �,�,{+, �r,_ io .1 .i'. .,J'�. wra,h rllh,ar. F� � L % 1f ��. v .•„,y at` '� -.-' -' ?� e,..rsls.. r r� it �'' -` . � _ .Sra•_ v .;:,f •'•`•y ,t61 , ,�.- - r, I ,i • ? '• 1i s � �� .. - .A_r • ..... nr 11 t. �. 4 r � _. L. i Jr:- Y �w � �.. I- .! � G. � -i- � _ .',: � 1 {_ {nom• .r- }' y'� �.ha / `� } ,aea:. , �}': ♦ n•+�r:' rh c.Il/rrvcA `i - �r,'�a, � Sr,4, , t ^,�4 �.� " I • '`,� rTk'• I \'. }'�. °_. .--, nr { ° .• t Y�/,i1,,~. - �,J. �1.'.. w A`'t - r'F','*rr,r.,,a 1,:, :[I y r �. ;T,. '?.• .:--r e:e..,.`_ ,"�1',Syt`V`.i..7,1;, F.,' . I' •. c., 1tr•[u7.�{`,1. {+,•', •.`r a°' I'IL. =,Yf„■r•.('7l,Fy'. �.'OP't,t7V!« e, +, -I,ul :Srrrymoalk�ltryat7d9. y !+ - :�1wta roar+ , ,S `"I �'_i�F.„i�Y.,r>war. ' '1.,� r y1C�,;.1 _ r .rrn i' Jrtiir, tnrRocril1�7 4d Ii , d _ i1 : �i2�'.t. I. 1.. _I"'ri.•%'rt t .s N_r1I •`IvIr '_! wl ! N t "' N { �. 1 �hrer<„�. �:`� RIVERSIDE COUNTY FLOOD CONTROL \ �J,1Y l,• t f:', ...,f.*'+.`t ' Ire fi.,...: ::,•: rM ✓ } „s.. !I r. e A N D elle. .Fir .hii•F Iw I 5� IV rj�"'&_: _ -• ? -i ,.rr rwarF �°1;w;_" C4I'i i - a>•..r J r,,.� 4-! ti 'k;A, 3 ,,„ WATER CONSERVATION DISTRICT K' r 7 �I - - - . •', °;1 `^ GIL C 11 !{RL YouF;57, 7 • r t• s� w ``p _ s,M .,ypt p� c-.r{,11�1' ' • . ..i' ' .1,�,,y�,. wae,�Fs '� 'P . I •i�•,�,�rr- - I � a�'a.-r •1 J. i IS- 9�or �'n S - - . 5,: /� `}Y���� "�Ti.6l''' 9S1 14 r s. _..� b Cy RYw.Ce. i roPr / :� "r.,,s! 1 r.y� 1 -„~� 1 J ``�.l SL. �4.r, r_ '`e+ _ i;'.. • f r r ti -f T. I , t ,,,t r _ 'G >a• 2 -YEAR 2 4 HOU R A 'e. m ? R A NP� F,. �. �"r I uspr4" � � �..rn. w� � '. `1.. f r : "ter' a r $4 lr. nur(�r' I s,�,, ,K ma�� q a ay 1 I \ S ..-`'F" 1/ NAVAS � •}i, its / _ ."•�,. �,,- `Ai 4 .,t F, �Tf', 7 _ i y;:ti I f''I r.•.?. �1., ri'" .� . r 17 N � v,r , n, PRECIPITATION ��.� �.. toy .y.G-,�. � �i75ri^._ ,F, ,Fjyt143 nr r•^ ,k"' _.-iRIP�,,` �""' q �I nI F, �" !] .,.,r ..�. - S - t u.e •,tUNO rtes S. nrAi_ rJll -�` �, 7�..tLrt � f ' - +. ,, Av •_� WS•.�• T��-Jx� 7 ur�� 5 1 i r�N5'l khiF r..e } .F � , Yq, ,. ,�,.s 'z. � , • •y ...._,a. -+ a :Iiir �+l+igs"=°" 1 i Pw n rwi.rl}I �c+7Mw '� �G ,�., „p .� � �,. f �. ee41� s.T t•'Ea'+1'�" ,- vwr irn' `'-,y`3 � , •'r�J 'l;'` „ Y 1 Wkw rw` L'. i `v, .. :.r•,^ - E - t '. #,�.... . •S 12•'';' '„ ." n..aaP o... •o o PLATE E-5.5 0 ............ LA QUINTAVILLAGE UN T HYDROGRAPH MAP mum L�1 NOT TO SCALE DRAINAGE AREA DESIGNATION DRAINAGE AREA (AC.) DRAINAGE DIRECTION OF FLOW NODE NUMBER BY: M 0 R S E 0 0 K I c H S C H U L T Z PLANNERS ENGINEERS 79-7" Old Avesum 52 La Quint*, CA 92253 Yom: 760-771-4013 FAX 760-7714073 p � 1. V I� AVENIDA FERNANDO NOT TO SCALE sp /A7N1--DRAINAGE AREA DESIGNATION G . 7 DRAINAGE AREA (AC.) DRAINAGE DIRECTION OF FLOW NODE NUMBER CAMEO HOMES/RG(";' Mr. Harold Lynch 20 Corporate Plaza Nemport Beach, CA 92660 mc== •:: FJO-Al M 0 R S E D 0 K I C H SCHULTZ ENGINEERS PLATE 1 "-7"Oki A%"tw52 1A suint®, CA 92253 Veww. 760-7714013 FAX 760-771-4073 SURVEYORS Quinta Viliag Apartments —A 1.00 COMPANION TECHNICAL APPENDICES Prepared for: The City of La Quinta, California Community Development Department Prepared by: r.:., • rf . , tORRt5T K. HAAG, A5LA, INC. LAND5CAP1 ARCHITECTURE - LAND PLANNING 1251 N. COAST HIGHWAY LAGUNA BEACH, CA 92651 (949) 576-9066 fAX: (949) 576-9067 rORREST@rKHMAIL.COM MEMBER ASLA Date: June 28, 2002 Vista Montana TECHNICAL APPENDICES CRM TECH • Historical/Archaeological Resources Survey Endo Engineering • Traffic Study LSA Associates, Inc. • Biological Report • Technical Noise Analysis RECORO'COPY 00 NOT DESTROY TABLE OF CONTENTS MANAGEMENTSUMMARY...........................................................................................................1i INTRODUCTION............................................................................................................................... SETTING..............................................................................................................................................3 Current Natural Setting EnvironmentalOverview...........................................................................................................3 GeologicalEnvironment............................................................................................................4 CulturalSetting...............................................................................................................................4 Prehistoric Context ...................... ..4 HistoricContext...........................................................................................................................5 METHODS...........................................................................................................................................6 RecordsSearch......................................................................................................,......,...................6 HistoricalResearch.........................................................................................................................6 aField Survey.....................................................................................................................................6 Backhoe Test Trenching •6 RESULTSAND FINDINGS...............................................................................................................8 RecordsSearch Results...................................................................................................................8 HistoricalResearch Results............................................................................................................8 Field Survey Results BackhoeTest Trenching Results...........................................,....,....,....,......................................11 Trench1.........................................................................,......,..,..................................................11 Trench1 Pot Hole, North End.................................................................................................12 Trench1 Pot Hole, South End.................................................................................................12 Trench2......................................................................................................................................12 Trench2 Pot Hole, North End.................................................................................................12 Trench2 Pot Hole, South End.................................................................................................12 Interpretation of Trenching Results........................................................................................13 DISCUSSION.....................................................................................................................................13 RECOMMENDATIONS...................................................................................................................14 CONCLUSION..................................................................................................................................15 REFERENCES....................................................................................................................................16 APPENDIX 1: PERSONNEL QUALIFICATIONS.......................................................................17 LIST OF FIGURES Figure1. Project vicinity....................................................................................................................1 Figure2. Project area..........................................................................................................................2 Figure 3. View of the current setting of the project area..............................................................3 Figure 4. Location of trenches in the project area..........................................................................7 Figure 5. Previous cultural resources studies in the vicinity.......................................................9 Figure 6. The project area in 19+01..................................................................................................10 Figure 7. The project area in 1903..................................................................................................10 Figure 8. The project area in 1941..................................................................................................10 Figure 9. The project area in the 1950s..........................................................................................10 Figure 10. Typical sidewall profiles...............................................................................................11 11 - n'_,„i',-moi- ~vaweli let `�, �'¢. �. -; Uj` 1' to I' :. .b; 41 Project area 41, r 1' • r - vim' A d WAS, -o i e; \tI`i La Qi inta :i��p L SCALE 1:24,000 0 1/2 1 mile 1000 0 1000 2000 3000 4000 feet a Figure 2. Project area. (Based on USGS La Quinta, Calif., 1:24,000 quadrangle [USGS 1980]) 2 Geological Environment The Coachella Valley occupies the northwestern portion of the Colorado Desert Geomorphic province (Jenkins 1980:40-41). The Colorado Desert province is bounded on the southwest by the Peninsular ranges province, on the north by the eastern Transverse Ranges province, and on the northeast by the southern portion of the Mojave Desert province (ibid.). The province widens to the southeast through the Imperial Valley and into Mexico. One of the major features to be found within the Colorado Desert province is the Salton Trough, a 290 -kilometer -long (ca. 180 miles) structural depression containing the present- day Salton Sea. This depression extends from the Banning Pass area southward into Mexico. During Pleistocene and Holocene times, the northwestern portion of this trough was filled with over 4,000 feet of sediments (Proctor 1968). While the term "Salton Trough" refers to the entire structural depression from the San Gorgonio Pass to the Gulf of California, the term" Salton Basin" is used to describe that portion of the area that drains directly into the Salton Sea. The Salton Sea, therefore, occupies the Salton Basin portion of the Salton Trough. Holocene Lake Cahuilla occupied a much larger portion of the Salton Basin than the present-day Salton Sea (Rogers 1965). The shoreline of the last ancient lake to fill the basin can be seen today as a line along the base of the Santa Rosa Mountains at an elevation of about 42 feet above sea level (Waters 1984; Wilke 1978). The lake is known to have had a re-entrant, or embayment, in the area of present-day La Quinta (Rogers 1965). The surface soil in the project area has been mapped as Is (Knecht 1980:Map Sheet 11). This is part of the Indio Series soils, in particular the Indio very fine sandy loam (Knecht 1980:20-21). This very fine sandy loam is shown to be highly micaceous, to be stratified with silt and silty loam, and to commonly contain freshwater shells (ibid.). The Is portion of the Indio Series soils is shown on map sheets to be confined almost exclusively to areas that were under water when Holocene Lake Cahuilla was present. CULTURAL SETTING Prehistoric Context The Coachella Valley is a historical center of Native American settlement, where a large number of Indian villages and rancherfas, occupied by the Cahuilla people, were observed in the mid -19th century. The Cahuilla, a Takic-speaking people of hunters and gatherers, are generally divided by anthropologists into three groups, according to their geographic setting:. the Pass Cahuilla in the San Gorgonio Pass -Palm Springs area, the Mountain Cahuilla in the San Jacinto and Santa Rosa Mountains and the Cahuilla Valley, and the Desert Cahuilla in the eastern Coachella Valley. The Cahuilla did not have a single name that referred to an all-inclusive tribal affiliation. Instead, membership was in terms of lineages or clans. Each lineage or clan belonged to one of two main divisions of the people, known as moieties. Members of clans in one �1! METHODS RECORDS SEARCH CRM TECH archaeologist Michael Hogan (see App. 1 for qualifications) conducted the historical/ archaeological resources records search at the Eastern Information Center (EIC), located at the University of California, Riverside. During the records search, Hogan examined maps and records on file at the EIC for previously identified cultural resources inside or within a half -mile radius of the project area, and existing cultural resources reports pertaining to the vicinity. Previously identified cultural resources include properties designated as California Historical Landmarks, Points of Historical Interest, or Riverside County Landmarks, as well as those listed in the National Register of Historic Places, the California Register of Historical Resources, or the California Historical Resource Information System. HISTORICAL RESEARCH Historical background research for this study was conducted by CRM TECH historian Bai "Tom" Tang (see App. 1 for qualifications) on the basis of published literature in local and regional history and historic maps depicting the La Quinta area. Among maps consulted for this study were the U.S. General Land Office's (GLO) township plat maps dated 1903- 1905, and the U.S. Geological Survey's (USGS) topographic maps dated 1904,1941, and 1959. These maps are collected at the Science Library of the University of California, Riverside, and/or the California Desert District of the U.S. Bureau of Land Management, also located in Riverside. FIELD SURVEY On December 13, 2000, lead archaeological surveyors Harry M. Quinn and Adrian Sdnchez Moreno (see app. 1 for qualifications) completed the intensive -level on -foot survey of the project area. During the survey, Quinn and Moreno walked parallel east -west transects spaced 15 meters (ca. 50 feet) apart over the entire area, and carefully inspected the ground surface for any evidence of human activities dating to the prehistoric or historic periods (i.e., 50 years ago or older). BACKHOE TEST TRENCHING On January 2 and 3, 2001, Quinn and Moreno directed and monitored the trenching operations on the subject property to investigate the potential for subsurface cultural remains. Two 50 -meter -long (170 feet) trenches were excavated to a maximum depth of 1.8 meters (6 feet) on the property, The soil from these trenches was visually inspected as it was excavated and piled along the side the trenches. One trench (Trench 1) was in the area of the proposed western lake and the other (Trench 2) in the area of the proposed eastern lake (Fig. 4). Detailed stratigraphic information from each trench was recorded along the length of the trenches. After straticgraphic information from each trench was recorded, the backhoe dug a "pot hole" to a depth of 2.6 meters(8.6 feet) or more at each end of each trench to look for any deeper cultural deposits. The soil from these pot holes was also visually inspected as it was excavated, the side walls examined from the surface, and stratigraphic information recorded. RESULTS AND FINDINGS RECORDS SEARCH RESULTS (^ According to records on file at the Eastern Information Center, the project area was not previously surveyed for cultural resources, and no archaeological sites or other potential historical resources have been recorded within or adjacent to the project area. Within a half -mile radius of the project area, eight area -specific cultural resources studies have been conducted on various parcels of land or linear features (Fig. 5). As a result of these studies and a 1980s county -wide historical resources reconnaissance, two prehistoric archaeological sites, four historic -era structures, and three isolates have been identified and recorded within the half -mile radius. The archaeological sites consist of ceramic and lithic scatters, habitation debris, and one cremation. The four historic -era structures are buildings in the cove area of La Quinta that date to the 1930s -1940s. None of these previously recorded cultural resources is located in the immediate vicinity of the project area, and thus none of them requires further consideration during this study. HISTORICAL RESEARCH RESULTS Historic maps consulted for this study indicate that, as with the La Quinta area in general, the project area remained largely untouched by human activities in the early 1900s (Figs. 6, 7). At that time, the only man-made feature in the general vicinity was a road that traversed along the base of the Santa Rosa Mountains, approximately a mile to the east of the project area (ibid.). judging from its course, this road was undoubtedly a part of the historic Cocomaricopa-Bradshaw Trail (Johnston 1987:115). By the early 1940s, in the wake of the advent of the La Quinta Hotel and the cove development, the project area and its environs had taken on a very different look. The project area, on the northern edge of the budding town of La Quinta, now hosted a building and two roads that intersected nearby, and both present-day Eisenhower Drive and Calle Tampico had been laid out along the project boundaries (Fig. 8). Some 10-15 years later, two buildings were observed within the project area, surrounded by an orchard that extended across the entire area (Fig. 9), presumably the date palm garden that still occupied portions of the property until recently. All of the date palms have since been removed, and neither of the buildings left any identifiable remains to be discovered today, as noted during the field survey for this study (see below). FIELD SURVEY RESULTS The results of the field survey are negative. During the survey, palm fronds were observed scattered over most of the southern portion of the project area, and a concentration of domestic trash and some concrete rubble was noted in the same area. The trash was determined to be less than 50 years old and of no historical/archaeological interest. At the locations of the buildings recorded in the 1940s -1950s, the field survey encountered no foundations, footings, construction debris, or any other tangible remains that could be considered an archaeological site. In sum, no buildings, structures, objects, sites, features, artifacts, or other evidence of historic or prehistoric human activities were found anywhere within the project area during the walk -over field inspection. tr Project 3 c +¢f area 40 Sol -- W SCALE 1:125,000 0 1 2 miles y' Figure 6. The project area in 1901. (Source: USGS Figure 7. The project area in 1903. (Source: GLO 1904) 1903;1905) -` 1 a • 4,� iJ for P ro j ect ��----- -� area , wtr'•. i'Of '1Ntaltl 1 'I: 4L: "+ La Quinta r P _ 5d_. .7 SCALE 1:62,500 0• 1 mile' Figure 8. The project area in 1941. (Source: USGS Figure 9. The project area in the 1950s. (Source: 1941) USGS 1959) 10 192 jl r r r' -- iii ,,r�"` ^�F:'�`• SCALE 1:62,500 1 mile -` 1 a • 4,� iJ for P ro j ect ��----- -� area , wtr'•. i'Of '1Ntaltl 1 'I: 4L: "+ La Quinta r P _ 5d_. .7 SCALE 1:62,500 0• 1 mile' Figure 8. The project area in 1941. (Source: USGS Figure 9. The project area in the 1950s. (Source: 1941) USGS 1959) 10 Trench 1 Pot Hole, North End The pot hole at the north end of the trench was excavated to a maximum depth of 3 meters (10 feet). This excavation found the silty sand that was exposed in the bottom of the trench extending down to the 3 -meter mark. Of interest here was a cut -and -fill structure exposed in the wall at the extreme north end of the trench. This feature was filled with an off white sand that appeared to be crossbedded. This sand appears to be of fluvial origin. Most of the silty sand exposed below the silty clay is rather massive with a few flat, nearly parallel silty clay stringers. This sandy zone appears to be lacustrine in origin, containing a few scattered hmorutic stains indicative of decayed plant debris, and had some scattered palm roots. Trench 1 Pot Hole, South End The pot hole excavated at the south end of the trench was excavated to a maximum depth of 3 meters (10 feet). This excavation found that the sandy silt exposed at the base of the trench was underlain by a thin silty clay and then by silty sand to at least 3 meters. The zone appears to be massive with no clear sedimentary structures visible and had no palm roots. Trench 2 Trench 2 had a surface zone of disturbed soil that contained a few scattered citrus roots in the northern portion and some scattered palm roots throughout and clustered palm roots along the basal contact. This was a hard silty clay soil and not a fine sandy loam like that encountered in Trench 1. Below this disturbed zone was a silty clay that extended the entire length of the trench. In two areas there was a thin layer of clayey silt between the disturbed zone and the silty clay zone. This silty clay zone was the basal zone exposed from the 21 -meter mark to the south end of the trench. Below this silty clay in the northern portion of the trench is a silty sand. Trench 2 Pot Hole, North End The pot hole excavated at the north end of this trench was dug to a maximum depth of 2.6 meters (8.6 feet) before the end caved in. This excavation found that the silty sand exposed in the bottom of the trench extended down to the bottom of the pot hole. This silty sand zone contained two mappable thin silty clay stringers and a few scattered limonitic stains like those found from rotted plant debris. This material appears to be of lacustrine origin. Trench 2 Pot Hole, South End The pot hole at the south end of this trench was dug to a maximum depth of 3.1 meters (10.2 feet). This excavation found that the silty clay exposed in the bottom of the trench extended to 1.6 meters (5.3 feet) turning to silty sand from there to total depth. The zone appears to be massive with no clear sedimentary structures visible and no palm roots. 12 A local register of historical resources, as defined by PRC §5020.1(k), "means a list of properties officially designated or recognized as historically significant by a local government pursuant to a local ordinance or resolution." For properties within the City of La Quinta, the City's Historic Preservation Ordinance (Title 7, La Quinta Municipal Code) provides for the establishment of a historic resources inventory as the official local register. A historic resource may be considered for inclusion in the historic resources inventory based on one of more of the following: A. It exemplifies or reflects special elements of the city's cultural, social, economic, political, aesthetic, engineering or architectural history; or B. It is identified with persons or events significant in local, state or national history; or C. It embodies distinctive characteristics of a style, type, period or method of construction, is a valuable example of the use of the indigenous materials or craftsmanship or is representative of a notable work of an acclaimed builder, designer or architect; or D. It is an archaeological, paleontological, botanical, geological, topographical, ecological or geographical site which has the potential of yielding information of scientific value; or E. It is a geographically definable area possessing concentration of sites, buildings, structures, improvements or objects linked historically through location, design, setting, materials, workmanship, feeling and/or association, in which the collective value of the improvements may be greater than the value of each individual improvement. (LQMC §7.06.020) As stated above, development activities were evident in the project area at least by 1941, and virtually the entire area was cultivated as a date palm garden until recently. However, all remnants of these developments have been removed today, and the buildings observed in the project area in the 1940s -1950s left no identifiable remains to be found. Furthermore, the subsurface testing on the property did not detect any buried cultural deposits or a likelihood of such finds. In short, the archaeological field procedures implemented during this study encountered no buildings, structures, objects, sites, features, or artifacts more than 50 years of age within the project boundaries. Therefore, in light of the criteria listed above, this study concludes that no historical resources exist within or adjacent to the project area. RECOMMENDATIONS CEQA establishes that "a project that may cause a substantial adverse change in the significance of a historical resource is a project that may have a significant effect on the environment" (FRC §210$4.1). "Substantial adverse change," according to PRC +§5020.1(q), "means demolition, destruction, relocation, or alteration such that the significance of an historical resource would be impaired." Since no historical resources were encountered during the course of this study, CRM TECH offers the following recommendations to the City of La Quinta: No historical resources exist within or adjacent to the project area, and therefore no substantial adverse change to a historical resource will be caused by the project as currently proposed. No further cultural resources investigation is necessary for the proposed project unless project plans undergo such changes as to include unstudied areas. 14 REFERENCES y GLO (General Land Office, U.S. Department of the Interior) 1903 Plat Map: Township No. 6 South Range No. 7 East, San Bernardino Meridian, California; surveyed in 1903. 1905 Plat Map: Township No. 6 South Range No. 6 East, San Bernardino Meridian, California; surveyed in 1903. Jenkins, Olaf P. 1980 Geomorphic Provinces Map of California. In California Geology, Vol. 32, No. 2, pp. 40-41. California Division of Mines and Geology, Sacramento. Johnston, Francis J. 1987 The Bradshaw Trail; revised edition. Historical Commission Press, Riverside. Knecht, Arnold A. 1980 Soil Survey of Riverside County, California; Coachella Valley Area. U.S. Department of Agriculture Soil Conservation Service Report. Government Printing Office, Washington, D.C. Proctor, Richard J. With a 1968 Geology of the Desert Hot Springs -Upper Coachella Valley Area, California; Selected Bibliography of the Coachella Valley, Salton Sea, and Vicinity. Special Report 94. California Division of Mines and Geology, Sacramento. Rogers, T.H. 1965 Map: Geologic Map of California, Santa Ana Sheet (1:250,000). California Division of Mines and Geology, Sacramento. USGS (United States Geological Survey, U.S. Department of the Interior) 1904 Map: Indio, Calif. (30",1:125,000); surveyed in 1901. 1941 Map: Toro Peak, Calif. (15',1:62,500); aerial photographs taken in 1941. 1959 Map: Palm Desert, Calif. (15`,1:62,500); aerial photographs taken in 1954; field checked in 1957 and 1959. 1979 Map: Santa Ana, Calif. (1:250,000);1959 edition revised. 1980 Map: La Quinta, Calif. (7.5',1:24,000);1959 edition photo -revised in 1978. Waters, Michael R. 1980 Lake Cahuilla: Late Quaternary Lacustrine History of the Salton Trough, California. Master's thesis, University of Arizona. Wilke, Philip J. 1978 Late Prehistoric Human Ecology at Lake Cahuilla Coachella Valley, California. Contributions of the University of California Archaeological Research Facility. University of California, Berkeley. 10 PROJECT HISTORIAN Bai "Tom" Tang, M.A. Education 1988-1993 Graduate Program in Public History/ Historic Preservation, UC Riverside. 1987 M.A., American History, Yale University, New Haven, Connecticut. 1982 B.A., History, Northwestern University, Van, China. 2000 "Introduction to Section 106 Review," presented by the Advisory Council on Historic Preservation and the University of Nevada, Reno. 1994 "Assessing the Significance of Historic Archaeological Sites," presented by the Historic Preservation Program, University of Nevada, Reno. Professional Experience 1993- Project Historian, CRM TECH, Riverside, California. 1993-1997 Project Historian, Greenwood and. Associates, Pacific Palisades, California. 1991-1993 Project Historian, Archaeological Research Unit, UC Riverside. 1990 Intern Researcher, California State Office of Historic Preservation, Sacramento. 1990-1992 Teaching Assistant, History of Modern World, UC Riverside. 1988-1993 Research Assistant, American Social History, UC Riverside. 1985-1988 Research Assistant, Modern Chinese History, Yale University. 1985-1986 Teaching Assistant, Modern Chinese History, Yale University. 1982-1985 Lecturer, History, Van Foreign Languages Institute, Van, China. Honors and Awards 1988-1990 University of California Graduate Fellowship, UC Riverside. 1985-1987 Yale University Fellowship, Yale University Graduate School. 1980, 1981 President's Honor List, Northwestern University, Van, China. Cultural Resources Management Reports Preliminary Analyses and Recommendations Regarding California's Cultural Resources Inventory System (With Special Reference to Condition 14 of NPS 1990 Program Review Report). California State Office of Historic Preservation working paper, Sacramento, September 1990. Approximately 350 cultural resources management reports with the Archaeological Research Unit, Greenwood and Associates, and CRM TECH, since October 1991. Membership California Preservation Foundation. 18 LEAD ARCHAEOLOGICAL SURVEYOR Michael Hogan, Ph.D. Education 1991 Ph.D., Anthropology, University of California, Riverside. 1981 B.S., Anthropology, University of California, Riverside. 1980-1981 Education Abroad Program, Lima, Peru. 1992 "Southern California Ceramics Workshop," presented by Jerry Schaefer. 1992 "Historic Artifact Workshop," presented by Anne Duffield -Stoll. Professional Experience 1999- Project Archaeologist/ Field Director, CRM TECH, Riverside. 1996-1998 Project Director and Ethnographer, Statistical Research, Inc., Redlands. 1992-1995 Project Director, Archaeological Research Unit, University of California, Riverside. • Duties: supervision of all aspects of projects including communicating with clients and/or public agencies to determine appropriate scope of work and scheduling of tasks; arranging logistics, including transportation, food, and lodging; organizing crew people into appropriate tasks and directing field work; overseeing laboratory analysis of findings, including sending samples to outside researchers for analysis and cataloguing/organizing all data recovered by the fieldwork; producing final reports, including background research, description of fieldwork, discussion of study results, preparation of site records, and formulation of final recommendations. 1991-1992 Crew Chief, Archaeological Research Unit, University of California, Riverside. 1984-1998 Part-time technician for various cultural resources management firms, including CRM TECH; Archaeological. Research Unit, University of California, Riverside; Cultural Resource Facility, California State University, Bakersfield; Greenwood and Associates; RMW Paleo Associates; and WESTEC Services, Inc. Publications Author, co-author, and contributor to more than 85 archaeological publications and CRM reports, including "Yuma Area Office Sediment Project: Contact with Native Americans" (1998), "Early Hunter -Gathers and Historic Settlers along San Sevaine Creek: Data Recovery Efforts at the Hunter's Ridge Community Development Project" (1998), "Continuity and Change: 8,500 Years of Lacustrine Adaptation on the Shores of Lake Elsinore" (1997), and "Historic Properties Management Report for the Whittier Narrows Flood Control Basin" (1997). 20 ADDENDUM TO HISTORICAL/ARCHAEOLOGICAL RESOURCES SURVEY AND TESTING REPORT VISTA MONTANA DEVELOPMENT Eisenhower Drive and Calle Tampico, City of La Quinta Riverside County, California Submitted to: S. Chevis Hosea, Vice President Land and Commercial Development KSL Development Corporation PGA West Office 55-920 PGA Boulevard La Quinta, California 92253 Submitted by: Bruce Love, Principal Bai "Tom" Tang, Historian CRM TECH 2411 Sunset Drive Riverside, CA 92506 May 23, 2001 CRM TECH Contract #619 Approximately 33.1 Acres La Quinta, Calif., 7.5' Quadrangle Section 1, T6S R6E, San Bernardino Base Meridian INTRODUCTION The present report is a supplement to the original historical/ archaeological resources survey and testing report for the Vista Montana project, which was completed by CRM TECH in January, 2001 (Love et al. 2001). It is compiled specifically for the purpose of addressing the City of La Quinta's concerns that the project area (Fig. 1) encompasses the former location of Hunt's Date Garden, a historic site recognized by the City and by the La Quinta Historical Society (Sawa 2001:2). Due to these concerns, the City implemented the following condition upon accepting the previously completed report: Prior to issuance of a building permit for the first building on the study area the report shall be revised to include historic significance of the residences, the original owners, and date grove, and historical ownership of the property, including any homesteading. (Ibid.:3) The supplement study, carried out between January and May, 2001, was conducted pursuant to the condition cited above, and in compliance with the California Environmental Quality Act (CEQA) and the City's Historic Preservation Ordinance (Title 7, La Quinta Municipal Cade). A complete account of the methods, results, and final conclusion of the study is presented below. J - r•4; .Q� a i •��9t�� roject -- - , area Iry f - jp9 .I W'a lair `h•� •" - .1 11 _ 4f � ' f `I `�`. �,� +!� ` tl�:t6:il• •. •�. 'a,i hArl.,r�7,. { ! _.�--; :a. --- SCALE 1:24,004 1000 0 1000 20fl0 feet ' 01 well. Figure 1. The Vista Montana project area. (Based on USGS La Quinta, Calif., 1:24,000 quadrangle, 1980 edition). 1 Figure 1. The Vista Montana project area. (Based on USGS La Quinta, Calif., 1:24,000 quadrangle, 1980 edition). 1 RESEARCH METHODS RECORDS SEARCH In order to ascertain the status of previous recordation on Hunt's Date Garden in the California Historical Resource Information System, CRM TECH pursued a follow-up records search at the Eastern Information Center, University of California, Riverside, the State of California's official cultural resource records repository for Riverside County. When the follow-up records search produced negative results, CRM TECH consulted the files of the Riverside County Parks Department, which maintains all records, including preliminary field notes, that were generated from a countywide historic resources reconnaissance conducted in the early 1980s under the auspices of the Riverside County Historical Commission. Findings from these sources are discussed in further detail in the sections to follow. HISTORICAL RESEARCH In conjunction with the pursuit of existing records, CRM TECH performed focused historical research in order to clarify conflicting claims in local historical accounts and to reconstruct accurately the history of Hunt's Date Garden. Sources consulted during the research, in addition to those cited in the original report, include the archives of the U.S. Bureau of Land Management and the County of Riverside, pertinent documents on file at the City of La Quinta Community Development Department, and oral historical interviews with Lillian Hunt, former owner and occupant of Hunt's Date Garden, and Barbara Irwin of the La Quinta Historical Society, among other persons knowledgeable in local history. RESULTS AND FINDINGS RECORDS SEARCH RESULTS As mentioned above, records of the Eastern Information Center contain no reference to Hunt's Date Garden, nor any other known cultural resources within or adjacent to the project area. However, Riverside County Parks Department records yielded a field recordation form, dated April 24,1981, on what was identified as Hunt's Date Garden. The form describes the main resource being recorded as a flat -roofed residential building constructed of adobe bricks, and reports that it was built in 1904, making it "the oldest ranch house in La Quinta" (Carpenter 1981). In the 1940s, according to the form, local residents attended community meetings in the patio of the house (ibid.). The source of the information is credited to Frances Hack, a long-time local resident and real estate agent who has since passed away. Along with the residence, a cistern was recorded at the same location, although no details are provided on that feature (Carpenter 1981). The location was indicated in the form as "so. of Avenue 50 btw. Serra [present-day Eisenhower Drive] & [?]" (ibid.). For some reason, the information in the field recordation form was apparently never compiled into a final site record form and submitted to the California Office of Historic Preservation. As a result, unlike hundreds of other properties covered by the countywide reconnaissance 2 survey, Hunt's Date Garden was never included in what has now become the California Historical Resource Information System, which explains its absence from the Eastern f� Information Center records. In 1997, during a citywide historical resources survey initiated by the City of La Quinta, (� Mellon and Associates visited the former Hunt's Date Garden in the project area, and I reported that no buildings or building remains were found. (Roth 1997). A site record compiled during that survey states: The Hunts Date Garden is now abandoned, with approximately 4 acres of untended date palm grove remaining from a former ranch. The City of La Quinta Historic Context Statement, dated September 1996, mentions an adobe house once located on the property and demolished after 1981 without benefit of documentation. The Statement also indicates that foundations of the house—the oldest ranch house in La Quinta, constructed in 1904— remained, but none were found during a recent site visit. Also said to exist on the property at one time were workers housing, a storage building, and a cistern. Records indicate that local residents attended community meetings on the patio of the house in the 1940's. The surviving date garden can be considered a cultural landscape. (Roth 1997) As noted in CRM TECH's original report (Love et al. 2001:8), the date palms have now also been removed. The workers housing and the storage building mentioned by Roth (1997) and by the City of La Quinta (1997:25), incidentally, probably reflect a misinterpretation of Carpenter's (1981) remarks that the adobe residence was being used in the early 1980s for storage and a "help house." At the present time, no records of Hunts Date Garden have been entered into the California Historical Resource Information System. HISTORICAL RESEARCH RESULTS Archival sources indicate that Section 1 of T6S R6E, in which the project area is located, was included in a railroad land grant issued to the Southern Pacific in 1906 (BLM n.d.). By the late 1920x, the Vaiden brothers, Earl and Mead, had acquired from Southern Pacific the south half of the north half of the section, including the project area, on which no buildings were reported at that time (County Assessor 1927-1932:27; Hunt 2001). In the early 1930s, Clinton S. Hunt, a Cornell -trained civil engineer, came to visit the Vaiden brothers in La Quinta after losing his job in the aftermath of the Depression (Hunt 2001). Shortly after his arrival, Hunt built a rammed -earth house for his family on the Vaiden brothers' property west of present-day Eisenhower Drive and north of Via Tampico, outside the project area (ibid.). The house was later occupied by the Montoya family, who grew vegetables in the vicinity, but was demolished sometime prior to 1955 (ibid.). In the mid -1930s, the Vaiden brothers deeded to Clinton Hunt approximately 20 acres of land in the southern portion of the project area in lieu of a loan payment (County Assessor 1933-1938:27; Hunt 2001). By that time, the Vaidens had already planted much of the 20 acres in date palms, although more trees were added later (Hunt 2001). After acquiring the 3 property, probably in 1936-1937, Hunt built a reinforced concrete house in his date garden, within the present project boundaries, and moved his family to the new home (County Assessor 1933-1938:27; Hunt 2001). Clinton Hunt's house in the project area was first shown in the 1941 USGS map covering this location, where no buildings or any other man-made features were noted in 1901 and 1903 (USGS 1904; 1941; GLO 1905; see Love et al. 2001:10). The 1959 USGS map shows two buildings in close proximity to each other, evidently reflecting the presence of a wood - frame date packing house that Hunt built near his home (USGS 1959; Hunt 2001). In addition to these two principal buildings, Hunt's Date Garden also hosted various small sheds and a cistern/ reservoir in the 1940s -1950s (Hunt 2001). Many of these features survived well into the modern period, and the concrete house that Hunt built in 1936-1937 was apparently what the City of La Quinta demolished on the property around 1988 (City of La Quinta 1996:25). After acquiring the 20 -acre parcel in the mid -1930s, Clinton Hunt spent the next 20 years cultivating his date garden in the project area (Hunt 2001). Around 1945, the northern portion of the project area was also added to his holdings (County Assessor 7.939-1950). Then in 1954, the Hunt family sold the entire property to Glenn and Florence Shermer, who in turn deeded it to Ray Patterson a few years later (County Assessor 1951-1959:27). A portion of the property was subsequently converted into citrus groves (Hunt 2001). Nevertheless, that locality remained widely known as Hunt's Date Garden among long- time local residents. SUMMARY In summary of the information presented above, the first land development attempt in the project area probably took place in the 1920s, when Earl and Mead Vaiden planted date palms on the property. But the earliest construction activities in the area evidently did not occur until 1936-1937, when Clinton S. Hunt built a reinforced concrete home for his family. There is no evidence that any building or build=house ay have existed in the project area prior to the mid -1930s, nor was the presence of an in the area reliably established by any of the sources consulted for this study. In fact, Lillian Hunt (2001), who lived in the project area from 1936 or 1937 to 1954, clearly states that no adobe house ever existed on the Hunt property during that period. The identity and, indeed, the exact location of the adobe structure recorded by Carpenter (1981) as Hunt's Date Garden in 1981, therefore, remains a mystery at this time. Had Clinton Hunt's house, its structural remains, or the date palm garden survived to the present, CEQA guidelines would require that they be evaluated as a potential historic building, an archaeological site, or a cultural landscape, respectively. However, prior to the commencement of this and the original studies, all of these features were removed from the landscape, and no identifiable archaeological remains of any potential significance, prehistoric or historic, were found during the intensive -level field survey (Love et al. 2001:8). Hunt's Date Garden, as remembered by local residents, or even as noted during the 1997 survey (Roth 1997), has completely lost its historic integrity today, and retains no characteristics to relate to its heyday in the 1930s -1950s. al CONCLUSION Based on the findings discussed in this report, CRM TECH reiterates the conclusion of the original study (Love et al. 2001.14-15) that no historical resources, as defined by CEQA, exist within or adjacent to the project area, and thus the project as currently proposed will cause no substantial adverse change to any known historical resources. I" i REFERENCES BLM (Bureau of Land Management, U.S. Department of the Interior) n.d. Historical Index, Land Status Records, T56S R6E, SBBM. Microfiches on file, Bureau of Land Management, California Desert District, Riverside. Carpenter, A. 1981 Hunt's Date Garden. Architectural Survey Form, Riverside County Historic Resources Survey. On file, Riverside County Parks Department, Riverside. City of La Quinta 1996 City of La Quinta Historic Context Statement; draft dated May 18, 1996. Prepared by Laslie J. Mouriquand, Associate Planner. On file, City of La Quinta Community Development Department, La Quinta. 1997 City of La Quinta Historic Context Statement; draft dated October, 1997. Prepared by Laslie J. Mouriquand, Associate Planner. On file, City of La Quinta Community Development Department, La Quinta. County Assessor, Riverside 1927-1938 Real property tax assessment records, Book 25. Microfiches on file, Riverside County Assessor's Office, Riverside. 1939-1959 Real property tax assessment records, Book 25A. Microfiches on file, Riverside County Assessor's Office, Riverside. GLO (General Land Office, U.S. Department of the Interior) 1905 Plat Map: Township No. 6 South Range No. 6 East, San Bernardino Meridian, California; surveyed in 1903. Hunt, Lillian 2001 Oral historical interview conducted on May 22, 2001. Love, Bruce, Bai "Tom" Tang, Harry Quinn, Mariam Dandul, and Adrian Sanchez Moreno 2001 Historical/Archaeological Resources Survey and Testing Report: Vista Montana Development, Eisenhower Drive and Calle Tampico, City of La Quinta, Riverside County, California. Manuscript report on file, Eastern Information Center, University of California, Riverside. Roth, Marcy 1997 Hunt's Date Garden. Primary Record, Riverside County Historic Resources Survey. On file, City of La Quinta Community Development Department, La Quinta. Sawa, Stan B. 2001 Historic Preservation Commission Staff Report, City of La Quinta, dated January 18, 2001. USGS (United States Geological Survey, U.S. Department of the Interior) 1904 Map: Indio, Calif. (30',1:125,000); surveyed in 1901. 1941 Map: Toro Peak, Calif. (15', 1:62,500); aerial photographs taken in 1941. 1959 Map: Palm Desert, Calif. (15',1:62,500); aerial photographs taken in 1954; field checked in 1957 and 1959. G r � I OFF _ R ip / Prepared by: Endo Engineering January 2001 TRAFFIC IMPACT STUDY Vista Montana Village Use Permit I NORTH OF CALLE TAMPICO BETWEEN EISENHOWER DRIVE AND AVENIDA BERMUDAS CITY OF LA QUINTA January 16, 2001 Prepared For: Forrest K. Haag ASLA, INC. 1254 North Coast Highway Laguna Beach, California 92651 Phone: (949) 376-9066 Fax: (949) 376-9067 email: fkhasla@earthhnk.net Prepared By: ENDO ENGINEERING 28811 Woodcock Drive Laguna Niguel, CA 92677 Phone: (949) 362-0020 Fax: (949) 362-0015 email: endoengr@home.com Endo Engineering Traffic Engineering Air Quality Studies January 16, 2001 Mr. Forrest K. Haag Forrest K. Haag ASLA, Inc. 1254 North Coast Highway Laguna Beach, California 92651 Noise Assessments SUBJECT: Vista Montana Village Use Permit - Traffic Impact Study Dear Mr. Haag; Enda Engineering is pleased to submit this analysis of the circulation impacts associated with the Vista Montana Village Use Permit in the City of La Quinta. The project site is comprised of 33 acres located north of Calle Tampico, between Eisenhower Drive and Avenida Bermudas. The proposed development includes up to 227 multiple family attached dwelling units, 20,625 square feet of corporate office space, 20,000 square feet of retail space, and a distribution center for hotel supplies with 40,000 square feet of floor space. In addition, the existing 250 -space employee parking area associated with the La Quinta Resort will be relocated to the project site, where 630 parking spaces will be made available for employees. This study follows the format and methodology specified by Riverside County in their November 1991 Traffic Impact Study Report Preparation Guide. It details in graphic and narrative forth: (1) existing circulation conditions; (2) conditions with and without project buildout in the year 2003; (3) post 2020 conditions with and without the project; and (4) recommended mitigation measures. We trust that the information provided herein will be of value to City staff in their review of the impacts and conditions of approval associated with the project. Should questions or comments develop regarding the findings and recommendations within this report, please do not hesitate to contact our offices at (949) 362-0020. Cordially, ENDO ENGINEERING wRw 94 4K4 Vicki Lee Endo Registered Professional Traffic Engineer TR 1161 TR 1161 OR CAL Ot� 28811 Woodcock Drive, Laguna Niguel, CA 92677-1330 Phone: (949) 362-0020 FAX: (949) 362-0015 Table of Contents I Section Title Page i I INTRODUCTION AND SUMMARY ................................ I-1 A. Purpose and Objectives B. Executive Summary II PROPOSED DEVELOPMENT ....................................... II -1 A. Summary of Development III AREA CONDITIONS ................................................. III -1 A. Study Area B. Study Area Land Use C. Site Accessibility IV PROJECTED TRAFFIC ............................................... IV -1 A. Site Traffic B. Through Traffic C. Total Traffic V TRAFFIC ANALYSIS ................................................ V-1 A. Site Access B. Capacity and Level of Service and Improvement Analysis VI FINDINGS AND CONCLUSIONS ................................. VI -1 A. Site Accessibility B. Traffic Impacts C. Off -Site Improvements Needed D. Compliance with General Plan Circulation Policies E. CMP System Improvements Needed VII RECOMMENDATIONS............................................... VII -1 A. Site Access/Circulation Plan B. Roadway Improvements C. Transportation System Management Actions APPENDICES 1. Peak Hour Traffic Count Data 2. Unsignalized Intersection Methodology and Worksheets 4. Signalized Intersection Methodology and Worksheets 3. Traffic Signal Warrants and Worksheets a List of Figures Number Title Following Page I II -1 Site Location............................................................ II -1 II -2 Conceptual Master Development Plan ............................... II -1 III -1 Existing Transportation System ...................................... III -1 III -2 Anticipated Transportation System (City of La Quinta) ........... III -2 III -3 Typical Street Cross -Sections (City of La Quinta) ................. III -2 III -4 Current Traffic Volumes (Year 2000 Peak Season) ............... III -4 IV -1 Directional Distribution of Site Traffic (Year 2003) ............... IV -1 IV -2 Directional Distribution Associated With Parking Change ........ IV -2 IV -3 Site Traffic Volumes ................................................... IV -2 IV -4 Estimated Non -Site Traffic (Year 2003) ............................ IV -3 IV -5 Estimated Non -Site Traffic (Post 2020) ............................. IV -3 IV -6 Estimated Total Future Traffic (Year 2003) .. . ...... . .............. IV -3 IV -7 Estimated Total Future Traffic (Post 2020) ........................ IV -3 VI -1 Existing Lane Geometrics............................................. VI -2 VI -2 Required Year 2003 Lane Geometrics ............................... VI -2 VI -3 Required Post 2020 Lane Geometrics ..... . ......................... VI -2 6 List of Tables Number Title Page H-1 Proposed Land Use ................................................... II -2 IV -1 Estimated Site Traffic Generation ................................... IV -2 V-1 Existing Unsignalized Intersection Peak Hour Delay and LOS Summary .............................. V-3 V-2 Existing Signalized Intersection Peak Hour Delay and LOS Summary .............................. V-5 V-3 Year 2003 Unsignalized Intersection Peak Hour Delay and LOS Summary .............................. V-7 V-4 Year 2003 Signalized Intersection Peak Hour Delay and LOS Summary .............................. V-8 V-5 Post 2020 Unsignalized Intersection Peak Hour Delay and LOS Summary .............................. V-10 V-6 Post 2020 Signalized Intersection Peak Hour Delay and LOS Summary .............................. V-11 I. INTRODUCTION AND SUMMARY I.A PURPOSE AND OBJECTIVES The purpose of this report is to provide in graphic and narrative farm: (1) existing roadway and traffic conditions; (2) probable traffic changes related to the proposed project; and (3) mitigation measures required to meet City of La Quinta minimum level of service requirements and traffic engineering design standards. The scope of the study complies with Riverside County specifications as set forth in the Novenibeir 1991 Traffic Impact Study Report Preparation Guide developed by the Transportation Planning and Development Review Division. The analysis herein employs the 1998 update to the Highway Capacity Manual (HCM) to analyze levels of service via the Hizhway Capacity Software (HCS) package prepared under FHWA sponsorship and maintained by the McTrans Center at the University of Florida Transportation Research Center. I.B EXECUTIVE SUMMARY Site Location and Study Area The site is located north of Calle Tampico, between Eisenhower Drive and Avenida Bermudas, in the City of La Quinta. The six key intersections include: (1) Eisenhower Drive @ Calle Mazatlan/Avenue 50; (2) Eisenhower Drive @ Calle Tampico; (3) Calle Tampico @ Avenida Mendoza; (4) Calle Tampico @ Avenida Bermudas; (5) Calle Tampico @ Desert Club Drive; and (6) Calle Tampico @ Washington Street. Although future traffic volumes at the site access point on Eisenhower Drive were provided, delay and LOS evaluations were not required by the City of La Quinta at the northern site access, because this access point will not allow left -turn egress. Development Description The proposed project includes 227 multi -family attached dwellings, 20,625 square feet of corporate office space, 20,000 square feet of retail space, and a distribution center for hotel supplies with 40,000 square feet of floor space. In addition, the existing 250 -space employee parking area associated with the La Quinta Resort will be relocated to the project site, where 630 parking spaces will be made available for employees, as shown in Figure II -2, the Conceptual Master Development Plan. Build -out of the project site is anticipated to occur by the year 2003. Principal Findings The City of La Quinta General Plan circulation policies require a minimum Level of Service "D". All of the key intersections will operate at acceptable levels of service, under all scenarios based upon the minimum required lane configurations shown in Figures VI -2 and VI -3. The site access point on Calle Tampico at Avenida Mendoza will not meet traffic signal warrants and will not require signalization to provide acceptable levels of service. I-1 Existing Conditions (Year 2000 Peak Season) All of the key intersections are currently operating at acceptable levels of service during the peak travel hours. Year 2003 Ambient Conditions All of the key intersections are projected to provide acceptable levels of service in the year 2003 without site traffic, assuming existing intersection approach lanes and traffic controls, with two exceptions. The intersection of Calle Tampico and Avenida Bermudas is scheduled for signalization in 2001, and was assumed to be signalized in the year 2003. The intersection of Eisenhower Drive and Calle Tampico appears to currently meet rural peak hour signal warrants and was assumed to be signalized in the year 2003. Year 2003+Project Conditions The key intersections will provide acceptable levels of service in the year 2003 following the addition of site traffic. Site traffic is projected to drop the peak hour levels of service at the intersection of Calle Tampico and Avenida Bermudas from LOS A to LOS B during the morning peak hour and from LOS B to LOS C during the evening peak hour. No other changes in levels of service are projected to occur in the year 2003 when site traffic is added to the street system in the study area. No intersection improvements will be required to provide acceptable levels of service, other than those proposed with the project at the site access points. Post 2020 Ambient Conditions The key intersections are projected to provide acceptable levels of service for post 2020 conditions without site traffic. The intersection improvements shown in Figure VI -3 will be required to provide acceptable levels of service. On-site improvements are those proposed for site access. The only off-site improvement shown in Figure VI -3 is the addition of a second eastbound left -turn lane at the intersection of Washington Street and Calle Tampico. Post 2020+Project Conditions The key intersections will provide acceptable levels of service for post 2020 plus project conditions. Site traffic is projected to increase the average control delay during peak hours at key signalized intersections by up to 17.8 seconds/vehicle. It will also cause the peak hour LOS to drop from LOS B to LOS C during the evening peak hour at two of the five signalized key intersections (Eisenhower Drive @ Calle Tampico and Avenida Bermudas @ Calle Tampico). The intersection improvements shown in Figure VI -3 will be required to provide acceptable levels of service. On-site improvements are those proposed for site access. The only off-site improvement shown in Figure VI -3 is the addition of a second eastbound left -turn lane at the intersection of Washington Street and Calle Tampico. Conclusions All of the key intersections will provide acceptable levels of service with the proposed project and existing intersection improvements upon project buildout. The proposed project appears to provide adequate site access and internal circulation. All of the key intersections will operate at acceptable levels of service for post 2020 conditions with the proposed project and existing intersection improvements. The addition of a second I-2 eastbound left -turn lane at the intersection of Washington Street and Calle Tampico will be necessary to accommodate post 2020 traffic with or without site traffic. Recommendations Areawide improvements to the circulation network will not be required with or without the proposed project to accommodate future peak hour travel demands. The following mitigation measures are recommended to reduce potential circulation impacts associated with the proposed project and site access. 1. The proposed internal circulation layout shall be subject to the review and approval of the City Traffic Engineer during the development review process to insure: cumpliance with City of La Quinta minimum access and design standards. 2. Adequate off-street parking shall be provided per the parking requirements of the City of La Quinta. 3. Eisenhower Drive and Calle Tampico will be fully improved to their master planned half -widths adjacent to the project site. 4. A STOP sign will control exiting site traffic and clear unobstructed sight distances shall be provided at the site driveway proposed on Eisenhower Drive and the site driveway on Calle Tampico at Avenida Mendoza. 5. The site driveway on Eisenhower Drive shall be designed prohibit left -turn egress. 6. The intersection of Eisenhower Drive and Calle Tampico currently appears to meet peak hour rural traffic signal warrants, and will require signalization to adequately serve future traffic volumes. 7. The project proponent shall provide (at a minimum) the lane geometries shown in Figure VI -2 at the site access locations in conjunction with development on-site. 8. The intersection of Washington Street and Calle Tampico should be improved to include dual eastbound left -turn lanes to provide adequate levels of service with post 2020 traffic volumes, as shown in Figure VI -3. 9. The project proponent may be required to participate in a traffic mitigation fee program which would ensure that a "fair -share" contribution is made to future roadway improvements within the project vicinity. I-3 r H. PROPOSED DEVELOPMENT II.A SUMMARY OF DEVELOPMENT Project Location The project site is generally located north of Calle Tampico, between Eisenhower Drive and Avenida Bermudas, in the City of La Quinta. It is roughly square in shape and comprised of 33± acres. Regional access is primarily provided by Eisenhower Drive and Washington Street. Local access is provided by Calle Tampico. The project site has approximately 1300 feet of frontage on Calle Tampico, which permits direct site access to this master planned roadway at two points (opposite Avenida Mendoza and opposite Avenida Bermudas). A single site access point is also proposed onto Eisenhower Drive that will be restricted to prohibit left turn egress. Figure II -1 depicts the location of the project site, the study area and the key intersections analyzed. The six key intersections include: (1) Eisenhower Drive @ Calle Mazatlan/Avenue 50, (2) Eisenhower Drive @ Calle Tampico, (3) Calle Tampico @ Avenida Mendoza, (4) Calle Tampico @ Avenida Bermudas, (5) Calle Tampico @ Desert Club Drive, and (6) Calle Tampico @ Washington Street. Delay and LOS evaluations were not required at the proposed site access point on Eisenhower Drive, since no left -turn egress will be permitted. Future traffic volumes at this location were provided herein for informational purposes. Project Land Use and Circulation Plan The proposed project includes 227 multi -family attached dwellings, 20,625 square feet of corporate office space, 20,000 square feet of retail space, and a distribution center for hotel supplies with 40,000 square feet of floor space. In addition, the existing 250 -space employee parking area associated with the La Quinta Resort will be relocated to the project site, where 630 parking spaces will be made available for employees, as shown in Figure II -2, the Conceptual Master Development Plan. Build -out of the project site is anticipated to occur by the year 2003. The project will be accessed via two driveways on Calle Tampico, connected by an internal loop. The Eisenhower Drive site access would be restricted to right -turn access and left - turn ingress only. The two Calle Tampico site access points would permit full access. The eastern site access on Calle Tampico (at Avenida Bermudas) will be signalized in the year 2001. The site access on Calle Tampico at Avenida Mendoza is not projected to meet signal warrants. Calle Mazatlan Gate Avenue 50 Figure II -1 Site Location Legend Key Intersection Proposed Site Access K D m`I� Im c CI � D0 CL. N CD m m endoEngineering Scale: 1" = 650' endo Engineering Figure II -2 Conceptual Master Development Plan Source: Forrest K. Haan, ASLA, Inc. No Scale I The traffic generated by the proposed 630 employee parking spaces represent a relocation of existing employee trips to the remote parking lot at this location. The proposed lot is greater than the existing employee parking lot on Eisenhower Drive, and will result in the relocation of those employee trips to the parking lot on Eisenhower Drive, as well as other employee trips to the La Qurnta Hotel. A shuttle will take the employees from the parking r lot to the hotel entrance on Avenida Fernando. Zoning and Land Use Category The existing zoning on-site includes 1 i acres designated RMH (Residential Medium High) and 22 acres designated VC (Village Commercial). The adopted General Plan Land Use designations on-site include I 1 acres as MHDR (Medium High Density Residential) and 22 acres as VC (Village Commercial). The proposed project includes a General Plan Amendment and zone change. Table 2-1 shows the proposed land use, zoning, acreage and units on-site. Table II -1 Proposed Land Use Vista Montana Village Use Permit General Plan/Land Use Acres Units VC Village Commercial Residential 21.0 227 Dwellings VC Village Commercial Retail 2.5 20,000 Square Feet VC Village Commercial Parking 6.5 630 Spacesa VC Village Commercial Office 3.0 20,625 Square Feet a. Includes a distribution facility building that incorporates 40,000 square feet of storage space for La Quinta Resort supplies. II -2 III. AREA CONDITIONS III. A STUDY AREA The study area was developed through coordination with City of La Quinta staff. As shown in Figure II -1, the six key intersections include: (1) Eisenhower Drive @ Calle Mazatlan/Avenue 50, (2) Eisenhower Drive @ Calle Tampico, (3) Calle Tampico @ Avenida Mendoza, (4) Calle Tampico @ Avenida Bermudas, (5) Calle Tampico @ Desert Club Drive, and (6) Calle Tampico @ Washington Street. The project will take access from one point on Eisenhower Drive (where left -turn egress will be prohibited) and from two points on Calle Tampico (opposite Avenida Mendoza and opposite Avenida Bermudas). Private roadways are proposed in the residential area, with a minimum pavement width of 28 feet. An internal loop road will connect the access point on Eisenhower Drive to that on Calle Tampico, opposite Avenida Mendoza (which will permit left -turn ingress/egress). III. B STUDY AREA LAND U S E The project site is currently vacant. The only cumulative project, the Santa Rosa Plaza development, is proposed east of the project site. The land west of the project site is part of the La Quinta Resort and Club Mountain Golf Course. North of the project site is the Oleander Reservoir and the La Quinta Resort and Club Dunes Golf Course. An apartment complex is located south of the project site. III. C SITE ACCESSIBILITY Area Roadway System Figure III -1 illustrates the existing transportation system in the study area. Regional access is currently available from Eisenhower Drive, Avenue 50 and Washington Street. Direct project access is proposed from Calle Tampico and Eisenhower Drive. Traffic control devices and mid -block lane geometrics are shown, based upon a field survey. As shown therein, three of the key intersections are currently signalized. Two of the key intersections are controlled by four-way stop signs. The remaining key intersection is controlled by a stop sign on the minor leg. It should be noted that the intersection of Calle Tampico and Avenida Bermudas will be signalized in the year 2001. Washington Street is a six -lane divided arterial and designated truck route in the study area. The posted speed limit is 50 mph. There are bike lanes on both sides of Washington Street. A bus stop is located on the east side of the roadway, north of Calle Tampico. AW Figure III -1 Existing Transportation System Calle 2D 4D Avenue Mazatlan 150 Gate ij Legend M2U Number of Through Lanes + D = Divided U = Undivided a� 0 STOP Sign `-° ❑ All -way Stop Q O Signalized Intersection c0 Designated Truck Route .� . . --- Project Boundary . Project Site 1 v(D EOS N n 0 N �C C N Cr 4Dc 4€7 Calle Tampico 2U 4D 4D N C N C N C v K� C rn v p= CL ww d Q O N" S TRW W Endo Engineering 0) Scale: 1 " = 650' r Eisenhower Drive is a four -lane divided roadway in the study area, except where it narrows to two lanes across a bridge, located just north of the project site. The posted speed limit on Eisenhower Drive is 45 mph north of Calle Tampico and 35 mph south of Calle Tampico. Eisenhower Drive is a designated truck route in the study area.1 Calle Tampico is a four -lane divided roadway and a designated truck route, between Eisenhower Drive and Washington Street. The posted speed limit is 45 mph in this area, except then children are present and the posted limit is 25 mph. Calle Tampico provides access to a school on Desert Club Drive, north of Calle Tampico. There are currently bike lanes on both sides of the roadbed. There are three bus stops along Calle Tampico between Desert Club Drive and Washington Street. Avenida Bermudas is a two-lane roadway with a bus stop near Calle Tampico. A four-way stop controls the intersection of Avenida Bermudas and Calle Tampico. The stop signs will be replaced with a traffic signal within the year. Observed speeds are typically 25 mph along this roadway. Avenida Bermudas is a designated truck route, south of Avenue 52. Avenue 50 is a master planned primary arterial in the project vicinity. Avenue 50 is also a designated truck route, east of Eisenhower Drive. The posted speed limit is 45 mph. There are bike lanes and bus stops on both sides of Avenue 50, east of Eisenhower Drive. Calle Mazatlan extends east of Eisenhower Drive, opposite Avenue 50, and provided a gated access to the La Quinta Resort Hotel. Avenida Mendoza is currently under construction as a two-lane street, south of Calle Tampico. A stop sign controls northbound traffic on Avenida Mendoza at Calle Tampico. Average speeds are typically 25 mph along this type of roadway. Adopted Circulation Element Figure III -2 depicts the future transportation system in the project vicinity, based upon the currently adopted Circulation Element of the La Quinta General Plan (October 1992). Figure III -3 provides typical master planned street cross-sections for roadways in the City of La Quinta, including right-of-way requirements. As shown therein, Washington Street is master planned as a major arterial in the study area, Major arterials typically have six through lanes, a 120 foot right-of-way with a 96 -foot roadbed, and an 18 -foot median. Eisenhower Drive, Avenue 50 and Calle Tampico are master planned as primary arterials in the study area. Primary arterials have 100 to 110 -foot rights--of-way. They provide four travel lanes and a 12 to 18 -foot median. Avenida Bermudas is a master planned collector street. Collector streets provide two travel lanes within a roadbed that is typically 40 to 50 feet in width. The required right-of-way is typically 64 to 74 feet wide. 1. Truck routes determined by telephone communication with La Quinta Engineering Department staff on January 11, 2001. III -2 Calle Mazatlan Gate VREndo Engineering Avenue 00000000060 50 Figure III -2 Anticipated Transportation System (City of La Quinta) rLegend l ■■■■■ Major Arterial (61D) v ••••• PrimaryArterial (41D) CD •oma♦ Collector (2U) Source: City of La Quinta General Plan Circulation Element 1992 W .-r CD (D (D Scale: 1 " = 650' Project I m Site I o ■ CD 0 Cr a •r�rirraaa•••aarr• ■ Calle Tampico raaaa■rrrr■rrraaaaaaaa•••arrrraraaaras•aarrrararaaa �+r+r+i�r�rirrrrr ♦ � ♦ an ♦ on W♦ Cy � , ♦ i =3 m 3 *CD an c ■ ■ N a N N 0 N ■ iS Source: City of La Quinta General Plan Circulation Element 1992 W .-r CD (D (D Scale: 1 " = 650' Figure 111-3 Typical Street Cross -Sections (City of La Quinta) Major Arterial RIW R/W 120' 18, � $9, 12' Z Pkwy 3 Lanes Median Lanes Pkwy -4`71 Primary Arterial R R NV 1001-110, 32'-34' J 2'-11L. 32'-34' 12 Pkwy 2 Lanes Median 2 Lanes lizy_ Secondary Arterial R/W R IW 88, so - 12' 64' -1 2'_ Pkwy k Collector RI, 64'-74' 40'-50' Pkwy 2 Lanes kwy endo Engineering Source: City of La Quinta General Plan (10/92) r Preferred General Plan Alternative l The future transportation system in the project vicinity, may ultimately be based upon the I Preferred General Plan Alternative shown in the March 20, 2000 "Traffic Study For The Circulation Element Update of the La Quinta General Plan" (RKJK), rather than the currently adopted General Plan Circulation Element. IAs shown therein, Washington Street is master planned as a major arterial in the study area. r Avenue 50 is master planned as a primary arterial in the study area. Eisenhower Drive is shown as a master planned secondary arterial (88 -foot right-of-way and a 64 -foot roadbed). Calle Tampico is shown as a master planned collector street. Avenida Bermudas is not shown as a master planned roadway, north of Avenue 52. Traffic Volumes Area traffic volumes exhibit a marked seasonal variation, with the late winter -early spring months representing the peak tourist season and exhibiting the highest traffic volumes. To analyze peak hour conditions at the key intersections, morning and evening pear hour traffic counts were made by Counts Unlimited, Inc. on December 19, 20 and 21, 2000. Two-hour manual traffic counts were made between 7:00 AM and 9:00 AM and between 4:00 PM and 6:00 PM. At that time, the portion of Avenida Mendoza south of Calle Tampico was under construction. Figure M-4 depicts the current peak season peak hour traffic volumes on roadway links in the study area. Current daily peak season volumes were taken, when available, from the CVAG "1999 Traffic Census Report". When unavailable from CVAG, the current daily volumes were taken from recent 24-hour counts taken in the area or estimated from the peak hour volumes at the key intersections by assuming that 10 percent of the daily traffic volume occurs during the evening peak hour. This assumption was consistent with the "La Quinta Resort SPA #4 Traffic Impact Analysis" (prepared by Endo Engineering and dated August 1997) and verified with available traffic count data. Traffic Signal Warrants Three existing key intersections are currently controlled by STOP signs. The all -way stop intersection of Eisenhower Drive and Calle Tampico appears to meet peak hour rural signal warrants with existing traffic volumes. The all -way stop intersection of Avenida Bermudas and Calle Tampico does not appear to meet signal warrants, but is scheduled to be signalized before the end. of the year 2001. Avenida Mendoza is currently under construction (south of Calle Tampico), and does not warrant signalization at the intersection with Calle Tampico under existing conditions. The Eisenhower Drive site driveway proposed on-site will not permit left -turn egress and will never be signalized. The site access proposed onto Calle Tampico opposite Avenida Mendoza will carry insufficient traffic to warrant signalization. The site access proposed onto Calle Tampico, opposite Avenida Bermudas, will utilize the traffic signal to be installed during 2001. Transit Service Transit service is provided by the SunLine Transit Agency. Bus service is provided along Washington. Street, Eisenhower Drive, Avenue 50, Calle Tampico, and Avenida Bermudas. Buses stop at the intersection of Calle Tampico and Avenida Bermudas twice III -3 Figure III -4 Current Traffic Volumes (Year 2000 Peak Season) Calle (750) Avenue Mazatlan d (1450) 50 Gate Legend -37/17 NJ N Z10/20 AM/PM Peak Hour Count N � s/s 26/60 Q � 1,000 CVAG Winter 1999 16/20J r' m 0 24 -Hour Volume 17/7 se 1 10/15 0 C m (1,000] August 2000 24 -Hour Count (1,000) Estimated Peak Season Year 2000 ADT From Peak Hour Count N O r,.,�j4 4 133/438 fF 48!103 Pro)ect I` 0k117 ? r' Site ! Q 9 c o to Cr ... .- ..gip O Q55143 [7931] Calle Tampico zt Ln 83 1/1 [3319] (3570) (7050] (2550) 431143 1/1 ,_ � � zt ,0 4 .__. !2 � � 1 1� N rn cmc 1 `-46132 ^717) 1/2ym O �D > en 37158 rnrna CD �m 3� 22122 CI �. Q 1371185J # w w �, 43/153 w cn t-1/9 � 45154 n9 � m �-75/191 ; w to- 77/177 CO w m 3J8 �j i ti 821240 co 3 ' 5/12- 4 F' 0 L; fie118/138-* aQ or 1 76/117 � En 319 23/31 Z N VV Endo Engineering Scale: 1 " = 650' each hour from 6:30 AM until 6:30 PM seven days per week. Line 70 also includes stops on Eisenhower Drive at the La Quinta Hotel seven time per day on seven days per week. Existing Relevant TSM Programs There are no Transportation System Management plans in effect in the study area at present. However, the City of La Quznta has adopted a Transportation Demand Management Ordinance (Municipal Code Chapter 9.162). III -4 IV. PROJECTED TRAFFIC IV. A SITE TRAFFIC Project -Related Trip Generation The trip generation potential of on-site development was determined from the average trip generation rates published by the ITE in the "Trip Generation" manual (Sixth Edition; 1998), as shown in Table IV -1. The retail uses proposed on-site are most appropriately categorized as Specialty Retail Center (ITE Code 814). However, the peak hour data for this category is incomplete in the ITE "Trip Generation" manual. Therefore, the trip generation for this use was based upon the "San Diego Traffic Generators, July 1998." The anticipated use of the distribution center is not well defined, but was assumed to be primarily to store materials and supplies for the hotel and/or golf course operations. Therefore, trip generation rates for a warehouse land use were assumed for the distribution center. The proposed employee parking lot (630 spaces) is not a new trip generator, but a relocation of existing employee parking. The employees currently park at an off-site lot located adjacent to the east side of Eisenhower Drive, south of Avenue 50, or on the La Quinta Hotel grounds (north of Avenue 50, between Calle Mazatlan and Avenida Obregon). The traffic study assumed the relocation of 250 parking spaces from the existing remote parking lot and 380 parking spaces from the hotel grounds to the remote employee parking lot proposed with the project. As shown in Table IV -1, the proposed project could generate up to 4,370 daily trips, of which 317 would occur during the morning peak hour (209 inbound and 108 outbound) and 451 would occur during the evening peak hour (166 inbound and 285 outbound). However, the trip generation from the proposed project site will also include the redistribution of 1,630 existing daily employee trips, of which 116 would occur during the morning peak hour (113 inbound and 3 outbound) and 128 would occur during the evening peak hour (23 inbound and 105 outbound), from other existing parking areas in the project vicinity, as discussed above. Project -Related Trip Distribution and Assignment Traffic distribution is the determination of the directional orientation of traffic. It is based upon the geographical location of the site and land uses which will serve as trip origins and destinations. Traffic assignment is the determination of which specific routes project - related traffic will use, once the generalized traffic distribution is determined. The basic factors affecting route selection are minimizing time and distance. Other considerations might be the aesthetic quality of alternate routes, the number of turning maneuvers, the avoidance of congestion, site access locations and turn restrictions at site driveways that can directly affect the site traffic assignment. Site traffic volumes in the study area included the distribution of new traffic from development of the project site and the subtraction of existing employee traffic currently accessing the remote parking lot on the La Quinta Hotel grounds. Figure IV -t presents the percentage of project -related traffic projected to utilize the roadway links and key intersections in the study area, based upon the existing distribution of land uses, turning IV -1 -7 Figure IV -1 rQ Directional Distribution 4 Calle 09+o Avenue of Site Traffic (Year 2003) Mazatlan d 1% 50 Gate Legend m En CD 10% Percent of Proposed Site Traffic o CD N CO K D I zt Col., o m � 3 m OL N Cl d w w rwn e 1 " ndo Engineering Scale. 1 = 650, movements at intersections, and distributions shown in traffic studies for nearby projects. Figure IV -2 provides the percentage of existing employee traffic that utilizes the roadway links and key intersections in the study area that will be redistributed to access the new employee parking lot at the project site. Table IV -1 Trip Generation Forecasta Land Use Category Land Use AM Peak Hour PM Peak Hour Daily (ITE Code) Quantity In Out Total In Out Total 2 -Way PROPOSED PROJECT MFA (230) 227 DU 17 83 100 82 40 122 1,330 Retail (SD) 20 TSF 14 10 24 36 36 72 800 Parking 630 Spaces 110 0 110 20 102 122 1,610 Shuttle 6 6 12 6 6 12 40 General Office (7 10) 20.625 TSF 47 6 53 17 85 102 390 Distribution Center (150) 40 TSF 15 3 18 5 16 21 200 Total Project 209 108 317 166 285 451 4,370 RELOCATED PARKING Existing Parking Lot 250 Spaces 44 0 44 8 41 49 640 Shuttle 3 3 6 3 3 6 20 Subtotal 47 3 �50 11 44 55 660 Existing Employee 380 Spaces 66 0 66 12 61 73 970 Parking at La Quinta Hotel Total Existing Employee 113 3 116 23 105 128 1,630 Trip Generation to be Relocated CUMULATIVE PROJECT (SANTA ROSA PLAZA) Hotel (310) 145 Room 50 32 82 47 42 89 1,190 Restaurant (832) 6.8 TSF 33 30 63 44 30 74 890 MFA (230) 72 DU 5 26 31 26 13 39 420 Office Park (750) 10.8 TSF 17 2 19 2 14 16 120 Restaurant (832) 6 TSF 29 27 56 39 26 65 780 Office Park (750) 13.5 TSF 21 3 24 3 17 20 150 Specialty Retail (SD) 12 TSF 9 6 15 22 22 44 480 Total Cumulative Project 164 126 290 183 164 347 4,030 a. Source: ITE "Trip Generation" manual (Sixth Edition; 1998) Figure IV -3 presents the net project -related (year 20013) peak hour turning movement volumes at the project driveways and key intersections in the study area. Daily site traffic volumes on the links throughout the study area are shown in Figure IV -3. N-2 Figure IV -2 w Directional Distribution Associated Calle q o% Avenue With Parking Change Mazatlan 36% 50 Gate Legend m rn 10% Percent of Existing Employee 0 0 Parking Traffic m ndo Engineering Scale: 1 " = 650' ICD N �y CDD =3CD m CL =3 c �. SD w Cn Q7 W s ndo Engineering Scale: 1 " = 650' Figure IV -3 Site Traffic Volumes t a Calle q 0 Avenue Mazatlan d -540 50 Gate Legend -311-6+_10/20 AM/PM Weekday Peak Hour N o/o P_ jZ5O"� m Turning Volume 1/3 CD 1,000 Daily Traffic Volume 0 0/0-a -R `' ; Note: Negative numbers reflect existing traffic volumes eliminated when hotel employee trips were redirected to the new off-site parking lot. w +_28f23 m � i �� • r ? 1!..� b 10706 ..: 01! Project 0 O/OS Site O (D 43/165 d <010 � o CD o t-5120 2180 Calle Tampico N m i10 i2gp 2180 370 0 1 � 18146 810 ^' 010 f f N o 1't �� pp o 010 18113 Z �D �m � 0/O C ?. 3m a n .i 271104 N 7128 moo g N 1t3�1�50y t Z 1116/31 93 to W N (O N X1211 - L. a o pW��h4 �f Ll� WU 5/18-` v ? 45112) 4 r` v 45110 0 0 0 39130-. !VEndo 0101 0,0_ Engineering Scale: 1 " = 650' IV. B THROUGH TRAFFIC Year 2003 non -site peak hour traffic volurn.es are provided in Figure IV -4. They were developed by increasing existing (year 2000) traffic volumes by a proportionate amount of the General Plan Traffic Model projected growth, and adding traffic from the adjacent cumulative project. The year 2003 non -site daily traffic estimates are also shown in Figure IV -4. They were developed from projected peak hour volumes by assuming that 10%n of the daily traffic occurs during the evening peak hour. Post 2020 non -site traffic volume projections are shown in Figure IV -5. The post 2020 projections were derived from the General Plan Preferred Alternative traffic projections (Exhibit 4-A) in the "Traffic Study For the La Quinta General Plan Update" (RKJK; 3/20/00). Although the "Traffic Study For the La Quinta General PIan Update" has not been reviewed or approved by the City of La Quinta, city staff specified that these projections be used herein, as they were the best information available. Along those roadway links where the General Plan Traffic Model projections were less than the existing -plus -cumulative project traffic, post 2020 non -site traffic volumes were assumed to be equal to existing volumes plus cumulative traffic plus a future traffic growth factor of 10 percent. The post 2020 traffic projection for Avenue 50, between Eisenhower Drive and Washington Street, was 29,300 ADT. Since this projection is clearly not appropriate to use along Avenue 50, west of Eisenhower Drive, a post 2020 non -site traffic projection of 4,310 ADT' was assumed. The post 2020 General Plan Update traffic projections were assumed to include the traffic from the cumulative project (Santa Rosa Plaza) since that project is generally consistent with the current zoning. However, the Vista Montana site traffic was not assumed to be incorporated within the post 2020 General Plan Update traffic projections, and was added to the General Plan Traffic Model projections to ensure a "worst-case" assessment of post 2020 traffic conditions. IV. C TOTAL TRAFFIC Figure IV -6 shows the year 2003 total traffic volumes within the study area upon project completion. The year 2003 total volumes shown in Figure IV -6 were developed by adding the site traffic (shown in Figure IV -3) to the 2003 non -site traffic (depicted in Figure IV -4). Figure IV -7 shows the post 2020 total traffic volumes within the study area. The post 2020 total volumes shown in Figure IV -7 were developed by adding the site traffic (shown in Figure IV -3) to the post 2020 non -site traffic (depicted in Figure IV -5). 1. This buildout projection was based upon the total daily traffic projection from the "La Quinta Resort Specific Plan Amendment #4 Traffic Impact Analysis," Endo Engineering, August 1997, plus the daily traffic projection from the cumulative project. IV -3 Figure IV -4 CO Estimated Non -Site Traffic -91 Cm CD (Year 2003) Calle q 950 Avenue Mazatlan 1710 50 Gate Legend 42119 +_10/20 AM/PM Weekday Peak Hour morn 1 w 7110 m Turning Volume w J `4 CO 00168 (D (D � 1,000 Daily Traffic Volume 19124.E f r' � � 21/9 -,,.ATN 11/17 Es " cc CA --- �. 'o/o Lref rcw--4170315 CD 01 50/108 - { Project a 71J3/4 4 r- Site 196/a am " m O CD r0 ? 0 O X85180 __ _ 9200 Calle Tampico re21 w 1/1 3740 3860 7370 2950 cn 931'213 1/1 c3 �+ o roP. a 53137 1!2 ru A `� D > o �rn 58/84 26/26 � m CL �•—CL m .1 4 186!261 CL � N 57/71 4-0/0 '-1/9 (n 154/303 156/285 3 o L. 3/9 .871254 co 5112 197/226.•,. o 1501202- 3110 C3 W5/33 Ch � Endo Engineering Scale: 1 " = 650' Figure IV -5 Estimated Non -Site Traffic (Post 2020) Calle q3680 Avenue 2141631 MazaKlan4310 50 651139 O O _ Legend N � +_10/20 AM/PM Weekday Peak Hour Ln A m C Cr Turning Volume � 00Cn 11,910 yt0 L. 1,000 Daily Traffic Volume 46/59)0v71/30m23135 Project Site i T 186/362 L„ ,0 20/354 5112) G, t 181/252 4 37150 w rn C=, 0 Calle Tampico 0 rn ACn - +_117/83 N o m o 86/129 63!64 2801398-f 1 1 90/113 rn CO w 991122 o, C) Scale: 1 " = 650' N 2141631 651139 O O _ •� +_0/0 � •' j C Cr 11,910 Project Site i C:) 0 C, �r1 ,o p CO +_110/99 zt o N 1/1 L. 102/251 5850 + r ; cJ CDZ, in 1/2 cD <a� �o N - t-0/0 a 195/412 ..j" 0Lw f 5114 2631805, 5115 IV ndo Engineering T 186/362 L„ ,0 20/354 5112) G, t 181/252 4 37150 w rn C=, 0 Calle Tampico 0 rn ACn - +_117/83 N o m o 86/129 63!64 2801398-f 1 1 90/113 rn CO w 991122 o, C) Scale: 1 " = 650' 2141631 651139 70/92 253/306 415 n C Cr 11,910 T 186/362 L„ ,0 20/354 5112) G, t 181/252 4 37150 w rn C=, 0 Calle Tampico 0 rn ACn - +_117/83 N o m o 86/129 63!64 2801398-f 1 1 90/113 rn CO w 991122 o, C) Scale: 1 " = 650' CO CO O Figure IV -6 - - T�ff Estimated Total Future Traffic (Year 2003) Calle 950 Avenue Mazatlan 1170 50 Gate Legend - N N '-11/14 L10/20 AM/PM Weekday Peak Hour 7/10 CA Turning Volume ,�-'� 31(11 O(D 1,000 Daily Traffic Volume 191245 ter' 0 2119 " CD 11/17, CO CO O - - - T�ff _ 28/23 0 I in 00 �. t 70/73 II r.J4 2851577 IL.' 50/108 M Rro�ect v 71/92" 4 r' Site 238/402-. c m m 3/4i co m C) cn O U E A L79/100 11380 Calle Tampico 011 4550 5150 9550 3320 111/259 liv 4 o Nt037" w m< a) D o N 77/97 � m m CO . + t. 26/26 o a CL a 213/365-f I iv 0' y �' 64/99--1,. 1 A 2 n, w 13/50 L 117/40 701108 CO 143/350 1 rn N � 147/330 ta ...i L 87/254CD CD 51385 4 50/24-# 3 r' �o 241/236--. v, 189/232 'N' CC' 3110 _a 25/33 O N 'iFV'Enrh Engineering Scale. 1 = 650, Figure IV -7 Estimated Total Future Traffic (Year 2020) Calle q 3680 Avenue Mazatlan 3820 50 Gate Legend N CO -55135 +-10/20 AM/PM Weekday Peak Hour W � A 25134CO m u, Turning Volume w o J i `L Owl23 a 1,000 Daily Traffic Volume 46159) 0 1 If ,f- 71130-. 23/35 a CD N O 28123 y } ws9n2 -322(707 �� ff i �4 651139 CO Project rr C] 70/92) � Site :.i ® 2961471 4/5-i N Ca a ; CD 0 0 CCD - C Cr N C7 47' O 1! 105/119 :. ' 14,090 Calle Tampico � 0 7260 11,700 7460 120/297CO 6660 1 /1 1 N 0 ca 112�wm� D - b rn � 117/83 o -4Gow 104/141 D CD m 6T64 CL 7 C 307/503, f CL 97/141 m 13/50 +-117/40 108/155D 1 COo ��" w w 183/459 1 rn iii Ea 178/407 4C. N LF 5/14 N C. N � 120/354 L. 5/18 r' 50/24 J r' 308/314-t.. A o 220/282-. s 51151 37150, 7 Enda Engineering Scale: 1"= 650' 11 V. TRAFFIC ANALYSIS R The traffic analysis summarized below evaluates the key intersections at several points in time with and without the proposed project. These scenarios include: • existing (year 2000) conditions; • year 2003 ambient conditions; • year 2003 -plus -project buildout conditions; • post 2020 ambient conditions; and • post 2020 -plus -project conditions. Both of the year 2003 scenarios include one cumulative project (Santa Rosa Plaza) that is currently undergoing development review. For each scenario, peak season average weekday morning and evening peak hour conditions were evaluated to establish whether or not mitigation would be required to achieve the City of La Quinta traffic performance standard for planning and design purposes. V.A SITE ACCESS The proposed project is bounded on the south by Calle Tampico. Site access is proposed onto Calle Tampico at two points; opposite the existing alignment of Avenida Mendoza and opposite Avenida Bermudas. These two site access points are key intersections that are evaluated in detail below. Eisenhower Drive extends along the western site boundary. The project proposes access to Eisenhower Drive, but will not permit left -turn egress at this access point. Although this access was not identified as a key intersection, the average approach control delay was evaluated for all future scenarios with the project, based upon the 1998 HCM methodology for unsignalized intersections. This was undertaken to ensure that the peak hour levels of service would be acceptable without signalization at this access. It was determined that all movements with all future scenarios would operate at LOS B or better during peak hours, without signalization being warranted. V.B CAPACITY AND LEVEL OF SERVICE AND IMPROVEMENT ANALYSIS Roadway capacity has been defined as the maximum number of vehicles that can pass over a given roadway during a given time period under prevailing roadway and traffic condi- tions. By comparison, levels of service are a relative measure of driver satisfaction, with values ranging from A (free flow) to F (forced flow). Levels of service (LOS) reflect a number of factors such as speed and travel time, traffic interruptions, vehicle delay, freedom to maneuver, driver comfort and convenience, safety and vehicle operating costs. Peak hour traffic creates the heaviest demand on the circulation system and the lane configuration at intersections is the limiting factor in roadway capacity; consequently, peak hour intersection capacity analyses are useful indicators of "worst-case" conditions, The relationship between peak hour intersection capacity and levels of service is provided in Appendix 2 (Table A-2) for unsignalized intersections and Appendix 3 (Table A-3) for signalized intersections. The City of La Quinta has defined Level of Service °D" as the minimum adequate intersection service level during peak hours for planning and design purposes. V-1 Existing Traffic Conditions Unsignalized Intersection Analysis Three of the six existing key intersections in the project vicinity are currently unsignalized and controlled by STOP signs. The measure of effectiveness for unsignalized intersections is the average approach control delay per vehicle. The 1998 update to the Highway Capacity Manual (TRB Special Report 209) includes an unsignalized intersection „ operational methodology which is the basis for determining unsignalized intersection delay. One of the key unsignalized intersections (Calle Tampico @ Avenida Mendoza) was evaluated with the methodology outlined in the 1998 Highway Capacity Manual (HCM). A general discussion of this methodology and the LOS criteria that apply are included in Appendix 2. The Highway Capacity Software (HCS) package is a direct computerized implementation of the 1998 HCM procedures, prepared under FHWA sponsorship and maintained by the McTrans Center at the University of Florida Transportation Research Center. HCS Release 3.1b was employed to assess the intersection of Calle Tampico and Avenida Mendoza. Computerized HCS worksheets for the intersection analyzed are included in Appendix 2. Existing peak hour average approach control delay per vehicle values and the corresponding level of service values for this unsignalized key intersection are provided in Table V-1, assuming an eight percent truck mix and existing lane geometrics (as shown in Figure VI -1). It can be seen from Table V-1, that the delay at this intersection on the major left ranges from 7.5 to 7.6 seconds per vehicle, which corresponds to LOS A. The northbound approach has the most delay (9.1 to 9.4 seconds/vehicle). This corresponds to LOS A during the peak hours. Two of the three unsignalized key intersections could not be analyzed with the 1998 HCM methodology, Eisenhower Drive at Calle Tampico and Calle Tampico at Avenida Bermudas are all -way stop -controlled (AWSC) intersections with approaches that include more than two lanes. The 1998 HCM methodology for unsignalized intersections can evaluate one -lane or two-lane approaches, but cannot be used to address three -lane approaches. Therefore, the methodology set forth in TRB Circular 373 was employed to evaluate these two key intersections.1 The type of delay determined with Circular 373 is average stopped vehicle delay. It is the total elapsed time from when a vehicle enters the end of the queue until it departs from the stopped line. The LOS criteria that correspond to average stopped delay are as follows. LOS A is less than 5 seconds/vehicle. LOS B is between 5 and 10 seconds/vehicle. LOS LOS C is between 10 and 20 seconds/vehicle. LOS D is between 20 and 30 seconds per vehicle. LOS E is between 30 and 45 seconds/vehicle. LOS F corresponds to more than 45 seconds/vehicle. The average stopped vehicle delay for the intersections of Calle Tampico with Eisenhower Drive and with Avenida Bermudas ranges from 2 to 8 seconds per vehicle. The resulting peak hour level of service is LOS B at the intersection of Calle Tampico and Eisenhower Drive and LOS A at the intersection of Calle Tampico and Avenida Bermudas. The approaches with the most average stopped vehicle delay are currently operating with 3 to 11 seconds/vehicle of delay. This corresponds to LOS C or better operation. 1. TRB; Interim Materials on Unsignalized Intersection Capacity; Transportation Research Circular 373; July 1991. V-2 Table V-1 Existing Unsignalized Intersection Peak Hour Delay and LOS Summary (Peak Season Average Weekday) a. Intersection delay and LOS are shown for this all -way stop controlled intersection, based upon the methodology in TRB Circulaz 373. (See Appendix 2 for worksheets). b. Delay=Average Approach Control Delay (seconds/vehicle). Assumes intersection geometrics shown on Figure VI -1 and an eight percent truck mix. Based upon the 1998 Highway Capacity Manual Unsignalized Operation Methodology implemented by the latest release (Version 3.1b) of the Highway Capacity Software (1998). NB=northbound lane. SB=southbound lane. LOS was determined from the delay (LOS A=510 sec./veh.; LOS B=>10 and <_15 sec./veh.; LOS C=>15 and <_ 25 sec./veh.; LOS D=>25 and <_ 35 sec./veh.; LOS E=>35 and _< 50 sec./veh.; LOS F=>50 sec./veh.) per 1998 HCM page 10-25. Appendix 2 includes all of the HCS unsignalized intersection peak hour worksheets. V-3 Existing Condition (2000 No Project) Major Left I A2proach With The Most Dela Unsignalized Intersection Delaya Level of Service Move Delay TLevel of Service Eisenhower Drive @ Calle Tampicoa - AM Peak Hour - PM Peak Hour 7 8 B B NB SB 9 11 B C Avenida Mendoza @ Calle Tampicob - AM Peak Hour - PM Peak Hour 7.5 7.6 A A NB NB 9.1 9.4 A A Avenida Bermudas @ Calle Tampicoa - AM Peak Hour 2 A NB 3 A - PM Peak Hour 4 A NB 5 B a. Intersection delay and LOS are shown for this all -way stop controlled intersection, based upon the methodology in TRB Circulaz 373. (See Appendix 2 for worksheets). b. Delay=Average Approach Control Delay (seconds/vehicle). Assumes intersection geometrics shown on Figure VI -1 and an eight percent truck mix. Based upon the 1998 Highway Capacity Manual Unsignalized Operation Methodology implemented by the latest release (Version 3.1b) of the Highway Capacity Software (1998). NB=northbound lane. SB=southbound lane. LOS was determined from the delay (LOS A=510 sec./veh.; LOS B=>10 and <_15 sec./veh.; LOS C=>15 and <_ 25 sec./veh.; LOS D=>25 and <_ 35 sec./veh.; LOS E=>35 and _< 50 sec./veh.; LOS F=>50 sec./veh.) per 1998 HCM page 10-25. Appendix 2 includes all of the HCS unsignalized intersection peak hour worksheets. V-3 Signalized Intersection Analysis Both capacity and levels of service must be considered to evaluate the overall operational characteristics of signalized intersections. Capacity at intersections is defined for each lane group. It is the maximum rate of flow that may pass through the intersection under prevailing traffic, roadway and signalization conditions. It is generally measured or projected for a 15 -minute period and stated in terms of vehicles per hour. A separate capacity and volume -to -capacity (V/C) ratio is computed for each lane group approaching the intersection. A composite V/C ratio for the sum of the critical lane groups within the intersection is computed. The level of service is based on the average control delay per vehicle for various intersection movements. The following parameters affect levels of service: (1) V/C ratio; (2) quality of progression; (3) length of green phases; (4) cycle lengths; and (5) average control delay. Delay is a measure of the quality of service to the road user. An intersection cannot operate beyond its capacity indefinitely without experiencing excessive delay. For planning purposes, it is critical that adequate future capacity be provided in terms of geometric design features. Delay may be improved significantly through coordination of signals and improved signal design. The measures of effectiveness for signalized intersections are: V/C ratios, average control delay per vehicle, and levels of service. The 1998 update to the Highway Capacity Manual includes a signalized intersection operational methodology which is the basis for determining signalized intersection delay. The Highway Capacity Software (HCS) package is a direct computerized implementation of the 1998 HCM procedures. HCS -3 Release 3. lb was utilized herein to evaluate the key signalized intersection in the project vicinity. A general discussion of this methodology and the computerized HCS worksheets for the signalized intersections analyzed are included in Appendix 3. The 1998 Highway Capacity Manual (HCM) signalized intersection capacity and level of service methodology addresses the capacity, V/C ratio, and level of service of intersection approaches as well as the level of service of the intersection as a whole. The analysis is undertaken in terms of the ratio of demand flow rate to capacity (V/C ratio) for individual movements or approach lane groups during the peak hour and the composite V/C ratio for the sum of critical movements or lane groups within the intersection. The composite V/C ratio is an indicator of whether or not the physical geometry and signal design provide sufficient capacity for the movements. The level of service is based upon the average control delay per vehicle. Average control delay is the total time vehicles are stopped in an intersection approach during a specified time interval divided by the volume departing from the approach during the same time period. It does not include queue follow-up time (i.e. the time required for the vehicle to travel from the last -in -queue position to the first -in -queue position). A critical V/C ratio less than 1.00 indicates that all movements at the intersection can be accommodated within the defined cycle length and phase sequence by proportionally allocating green time. In other words, the total available green time in the phase sequence is adequate to handle all movements, if properly allocated. 1m It is possible to have unacceptable delays (LOS F) while the V/C ratio is below 1.00 (when the cycle length is long, the lane group has a long red time because of signal timing and/or the signal progression for the subject movements is poor). Conversely, a saturated approach (with V/C ratio ? 1.00) may have low delays if the cycle length is short and/or the signal progression is favorable. Therefore, an LOS F designation may not necessarily mean that the intersection, approach or lane group is overloaded and LOS A to LOS E does not automatically imply available unused capacity. The peak hour average control delay and corresponding levels of service were determined at the three signalized key intersections with the methodology outlined in the 1998 HCM. The peak hour intersection delay, volume -to -capacity ratios, and level of service values at the three key intersections evaluated are provided in Table V-2. As shown therein, the existing peak hour average control delay ranges from 7.5 to 21.5 seconds per vehicle at the signalized key intersections. This corresponds to LOS C or better operation. Table V-2 Existing Signalized Intersection Peak Hour Delay and LOS Summary (Peak Season Average Weekday) a. Average Delay = Average Control Delay (seconds per vehicle). Assumes intersection geometrics shown on Figure VI -1 and an eight percent truck mix. Based upon the 1998 Highway Capacity Manual Signalized Operation Methodology implemented by the latest release (Version 3.1b) of the Highway Capacity Software (1998). See Appendix 3 for the signalized intersection HCS worksheets. b. LOS was determined from the delay (<_10 sec./veh.=LOS A; >10 and 520 sec./veh.=LOS B; >20 and :535 sec./veh.=LOS C; >35 and 1555 sec./veh.=LOS D; >55 and :580 sec./veh.=LOS E; >80 sec./veh. _ LOS F) per 1998 HCM page 9-7. Traffic Signal Warrants The justification for the installation of a traffic signal at an intersection is based on the warrants adopted by Caltrans and the Federal Highway Administration. There are 11 types of traffic signal warrants including one for minimum vehicular volume, interruption of continuous traffic, minimum pedestrian volume, school crossings, progressive movement, accident experience, systems organization, a combination of warrants, a four-hour volume warrant, a peak hour delay warrant, and a peak hour volume warrant. V-5 Existing (Year 2000) Signalized Intersection Avg. Delaya V/C LOSb (Sec./Veh.) Ratio Eisenhower Drive @ Avenue 50 - AM Peak Hour 7.5 0.25 A - PM Peak Hour 11.5 0.24 B Desert Club Drive @ Calle Tampico - AM Peak Hour 14.6 0.15 B - PM Peak Hour 1 14.7 0.25 B Washington Street @ Calle Tampico - AM Peak Hour 17.7 0.31 B - PM Peak Hour 21.5 0.44 C a. Average Delay = Average Control Delay (seconds per vehicle). Assumes intersection geometrics shown on Figure VI -1 and an eight percent truck mix. Based upon the 1998 Highway Capacity Manual Signalized Operation Methodology implemented by the latest release (Version 3.1b) of the Highway Capacity Software (1998). See Appendix 3 for the signalized intersection HCS worksheets. b. LOS was determined from the delay (<_10 sec./veh.=LOS A; >10 and 520 sec./veh.=LOS B; >20 and :535 sec./veh.=LOS C; >35 and 1555 sec./veh.=LOS D; >55 and :580 sec./veh.=LOS E; >80 sec./veh. _ LOS F) per 1998 HCM page 9-7. Traffic Signal Warrants The justification for the installation of a traffic signal at an intersection is based on the warrants adopted by Caltrans and the Federal Highway Administration. There are 11 types of traffic signal warrants including one for minimum vehicular volume, interruption of continuous traffic, minimum pedestrian volume, school crossings, progressive movement, accident experience, systems organization, a combination of warrants, a four-hour volume warrant, a peak hour delay warrant, and a peak hour volume warrant. V-5 The installation of a traffic signal should be considered if one or more of the warrants is met; however, the satisfaction of a warrant is not necessarily sufficient justification in and of itself for the installation of signals. Delay, congestion, approach conditions, driver confusion, future land use or other evidence of the need for right-of-way assignment beyond that which could be provided by stop suns must be demonstrated. Improper or unwarranted signal installations may cause: (1) excessive delay; (2) disobedience of the signal indications; (3) circuitous travel on alternate routes; and (4) increased accident frequency.2 Rural volume warrants (70 percent of the urban warrants) apply when the 85th percentile speed of traffic on the major street exceeds 40 mph in either an urban or a rural area, or when the intersection lies within the built-up area of an isolated community with a population under 10,000. Given this criteria, rural warrants were applied to the currently unsignalized key intersections. It was determined (see Appendix 4 for worksheets) that one of the key intersections, Eisenhower Drive at Calle Tampico, appears to meet peak hour signal warrants with existing traffic volumes. Year 2003 Traffic Conditions Unsignalized Intersection Analysis Table V-3 provides the unsignalized intersection average approach control delay per vehicle and LOS for the left -turn from the major street and the worst-case minor street approach at the intersection of Calle Tampico and Avenida Mendoza. Year 2003 conditions are shown with and without the proposed project. An eight percent truck mix and the lane geometrics shown in Figure VI -2 were assumed to develop the delay and LOS values in Table V-3. The lane geometrics assumed are existing intersection geometrics with the proposed improvements for site access. Before site traffic is added to the street network in the year 2003, this unsignalized key intersection will provide LOS A operation during peak hours on the "worst-case" minor street approach. Once project -related traffic volumes are added to year 2003 non -site volumes, the average approach control delay at the intersection will increase. Peak hour traffic associated with the proposed project will increase the average approach control delay by up to 0.7 seconds per vehicle during the morning peak hour and up to 1.7 seconds per vehicle during the evening peak hour at the intersection of Calle Tampico and Avenida Mendoza. It can be seen from Table V-3 that the increased average approach control delay during peak hours will be sufficient to change the levels of service on the minor street approach. When the proposed project is completed in the year 2003, the morning and evening pear hour level of service on the minor street approach of the intersection of Calle Tampico and Avenida Mendoza will drop from LOS A to LOS B. Signalized Intersection Analysis The peak hour delay and levels of service were determined for the five signalized key intersections with the methodology outlined in the 1998 HCM. The peak hour intersection delay, volume -to -capacity ratios, and level of service values at the key intersections evaluated are provided in Table V-4 for conditions with and without project -related traffic. 2. Caltrans; Traffic Manual; Revised 3/1/95; pg. 9-1 and 9-2. V-6 Unsignalized Intersection Calle Tampico @ Avenida Mendoza' - AM Peak Hour - PM Peak Hour a. Table V-3 Year 2003 Unsignalized Intersection Peak Hour Delay and LOS Summarya No -project With Project Change In Major Left Minor Approach Major Left Minor Approach Minor Approach Delay/LOS Move Delay/LOS Dela /LOS Move Dela /LOS Delay LOS 7.7/A NB 9.4/A 7.8/A SB 10.1B 0.7 A B 7.8/A NB 9.9/A 8.3/A SB 11.6B 1.7 A B Delay=Average Approach Control Delay (seconds/vehicle). Assumes intersection geometrics shown on Figure VI -2 and an eight percent truck mix. Based upon the 1998 Highway Capacity Manual Unsignalized Operation Methodology implemented by the latest release (Version 3.1b) of the Highway Capacity Software (1998). NB=northbound lane. SB=southbound lane. LOS was determined from the delay (LOS A=<_10 sec./veh.; LOS B=>10 and <_15 sec./veh.; LOS C=>15 and <_ 25 sec./veh.; LOS D=>25 and <_ 35 sec./veh.; LOS )r>35 and 5 50 sec./veh.; LOS F=>50 sec./veh.) per 1998 HCM page 10-25. Appendix 2 includes all of the HCS unsignalized intersection peak hour worksheets. V-7 Table V-4 Year 2003 Signalized Intersection Peak Hour Delay and LOS Summary' (Peak Season Average Weekday) Signalized Intersection Eisenhower Drive @ Avenue 50 - AM Peak Hour - PM Peak Hour Eisenhower Drive @ Calle Tampico - AM Peak Hour - PM Peak Hour Avenida Bermudas @ Calle Tampico - AM Peak Hour - PM Peak Hour Desert Club Drive @ Calle Tampico - AM Peak Hour - PM Peak Hour Washington Street @ Calle Tampico - AM Peak Hour - PM Peak Hour No -Project With Project _LOS Change In Avg. Delay (Sec./Veh.) Critical V/C LOS Avg. Delay (Sec./Veh.) Critical V/C Avg. Delay (Sec./Veh.) LOS 7.8 0.28 A 7.9 0.28 A 0.1 No 10.3 0.28 B 9.4 0.27 A -0.9 B -A 11.8 0.37 B 14.4 0.40 B 2.6 No 16.1 0.44 B 18.3 0.48 B 2.2 No 9.9 0.14 A 13.8 0.16 B 3.9 A -B 12.5 0.27 B 20.1 0.45 C 7.6 B -C 19.1 0.22 B 17.3 0.25 B -1.8 No 19.3 0.39 B 18.2 0.42 B -1.1 No 21.7 0.39 C 22.9 0.44 C 1.2 No 25.2 0.56 C 29.7 0.66 C 4.5 No a. Average Delay = Average Control Delay (seconds per vehicle). Assumes intersection geometrics shown on Figure VI -2 anti an eignt percent trucx mix. Based upon the 1998 Highway Capacity Manual Signalized Operation Methodology implemented by the latest release (Version 3.1b) of the Highway Capacity Software (1998). LOS was determined from the delay (5_10 sec./veh.=LOS A; >10 and 5_20 sec./veh.=LOS B; >20 and !05 sec./veh.=LOS C; >35 and 5_55 sec./veh.=LOS D; >55 and 5580 sec./veh.=LOS E; >80 sec./veh. = LOS F) per 1998 HCM page 9-7. See Appendix 3 for the signalized intersection HCS worksheets. V-8 �l An eight percent truck mix and the intersection approach lane geornetrics depicted in Figure VI -2 were assumed to develop the delay and LOS values in Table V-4. As shown therein, average control delay is projected to increase at three key intersections (Calle Tampico at Eisenhower Drive, at Avenida Bermudas and at Washington Street) and decrease at one key intersection (Desert Club Drive at Calle Tampico) when site traffic is added to ambient traffic. At the intersection of Eisenhower Drive and Avenue 50, the delay will increase slightly during the morning peak hour and decrease by 0.9 seconds per vehicle during the evening peak hour. This decrease in intersection delay will improve the evening peak hour level of service from LOS B to LOS A at this intersection. The projected increase in average control delay at the intersection of Calle Tampico and Avenida Bermudas will drop the peak hour level of service from LOS A to LOS B during the morning peak hour and from LOS B to LOS C during the evening peak hour. No other changes in levels of service are projected to occur in the year 2003 when site traffic is added to the street system in the study area. Without improvements ether than those proposed for site access, the key intersections will operate at acceptable levels of service during peak hours in the year 2003 with and without the proposed project. Post 2020 Traffic Conditions Unsignalized Intersection Analysis Table V-5 provides the unsignalized intersection average approach control delay per vehicle and the corresponding LOS for the left -turn from the major street and the "worst-case" minor street approach at the intersection of Calle Tampico and Avenida Mendoza. Post 2020 traffic volumes with and without the proposed project and an eight percent truck mix were assumed. Existing intersection lane geometries were assumed for the post 2020 No - Project scenario, as shown in Figure VI -3. The post 2020+project scenario included the proposed improvements at this site access point. Without site traffic, the unsignalized intersection of Calle Tampico and Avenida Mendoza will provide acceptable levels of service (LOS B or better operation) during peak hours on the "worst-case" minor street approach. Once project -related traffic volumes are added to post 2020 non -site volumes, the average approach control delay at this intersection will increase. Traffic associated with the proposed project will increase peak hour delay on the minor approach by 0.6 seconds/vehicle during the morning peak hour and 2.3 seconds/vehicle during the evening peak hour. It can be seen from Table V-5 that the increased average approach control delay during peak hours will be sufficient to change the level of service on the minor street approach from LOS A to LOS B during the morning peak hour. No change in LOS is projected to occur during the evening peak hour at this intersection. Signalized Intersection Analysis The peak hour levels of service were determined at the five signalized key intersections with the methodology outlined in the 1998 HCM. The peak hour intersection delay, volume -to -capacity ratios, and level of service values at the key intersections evaluated are provided in Table V-6 for conditions with and without site traffic. V-9 Table V-5 Post 2020 Unsignalized Intersection Peak Hour Delay and LOS Summarya (Peak Season Average Weekday) Unsignalized Intersection No -Project With Project Change In Major Left I Minor Approach Major Left I Minor Approach Minor Approach Delay/LOS Move Delay/LOS Delay/LOS i Move Delay/LOS Delay LOS Calle Tampico @ Avenida Mendoza - AM Peak Hour 7.9/A NB 9.8/A 8.0/A SB 10.4B 0.6 A -B - PM Peak Hour 8.0/A NB 10.5B 8.6/A SB 12.8B 2.3 No a. Delay=Average Approach Control Delay (seconds/vehicle). Assumes intersection geometrics shown on Figure VI -3 and an eight percent truck mix. Based upon the 1998 Highway Capacity Manual Unsignalized Operation Methodology implemented by the latest release (Version 3.1b) of the Highway Capacity Software (1998). NB=northbound lane. SB=southbound lane. LOS was determined from the delay (LOS A=510 sec./veh.; LOS B=>10 and <_15 sec./veh.; LOS C=>15 and <_ 25 sec./veh.; LOS D=>25 and <_ 35 sec./veh.; LOS E=>35 and <_ 50 sec./veh.; LOS F=>50 sec./veh.) per 1998 HCM page 10-25. Appendix 2 includes all of the HCS unsignalized intersection peak hour worksheets. V-10 Table V-6 Post 2020 Signalized Intersection Peak Hour Delay and LOS Summary' (Peak Season Average Weekday) a. Average Delay = Average Control Delay (seconds per vehicle). Assumes intersection geometries shown on Figure VI -3 and an eight percent truck mix. Based upon the 1998 Highway Capacity Manual Signalized Operation Methodology implemented by the latest release (Version 3.1b) of the Highway Capacity Software (1998). LOS was determined from the delay (:510 sec./veh.=LOS A; >10 and <_20 sec./veh.=LOS B; >20 and !05 sec./veh.=LOS C; >35 and <_55 sec./veh.=LOS D; >55 and <_80 sec./veh.=LOS E; >80 sec./veh. = LOS F) per 1998 HCM page 9-7. See Appendix 3 for the signalized intersection HCS worksheets. V-11 No -Project With Project Change In Avg. Delay Critical LOS Avg. Delay Critical LOS Avg. Delay LOS Signalized Intersection (Sec.Neh.) V/C (Sec.Neh.) V/C (Sec./Veh.) Eisenhower Drive @ Avenue 50 - AM Peak Hour 11.4 0.44 B 11.5 0.45 B 0.1 No - PM Peak Hour 14.7 0.45 B 13.5 0.44 B -1.2 No Eisenhower Drive @ Calle Tampico - AM Peak Hour 12.7 0.44 B 14.5 0.46 B 1.8 No - PM Peak Hour 18.1 0.52 B 20.4 0.56 C 2.3 B -C Avenida Bermudas @ Calle Tampico - AM Peak Hour 10.3 0.18 B 12.5 0.21 B 2.2 No - PM Peak Hour 12.4 0.36 B 20.5 0.54 C 8.1 B -C Desert Club Drive @ Calle Tampico - AM Peak Hour 18.8 0.24 B 17.3 0.28 B -1.5 No - PM Peak Hour 19.6 0.45 B 18.8 0.48 B -0.8 No Washington Street @ Calle Tampico (Assumes Dual Eastbound Left Lanes) (Assumes Dual Eastbound Lefts) - AM Peak Hour 21.5 0.63 C 23.0 0.67 C 1.5 No - PM Peak Hour 36.0 0.91 D 53.8 0.97 D 17.8 No a. Average Delay = Average Control Delay (seconds per vehicle). Assumes intersection geometries shown on Figure VI -3 and an eight percent truck mix. Based upon the 1998 Highway Capacity Manual Signalized Operation Methodology implemented by the latest release (Version 3.1b) of the Highway Capacity Software (1998). LOS was determined from the delay (:510 sec./veh.=LOS A; >10 and <_20 sec./veh.=LOS B; >20 and !05 sec./veh.=LOS C; >35 and <_55 sec./veh.=LOS D; >55 and <_80 sec./veh.=LOS E; >80 sec./veh. = LOS F) per 1998 HCM page 9-7. See Appendix 3 for the signalized intersection HCS worksheets. V-11 Existing intersection lane geometrics were assumed for the post 2020 No -Project scenario, as shown in Figure VI -3. The post 2020+project scenario included the proposed improvements at the site access points as well as mitigation at one key intersection (as noted in Table V-6). Year 2020 No -Project average control delay values during peak hours are projected to range from 10.3 seconds/vehicle to 36.0 seconds/vehicle with the lane geometries shown in Figure VI -3. Year 2020 No -Project LOS values indicate that all of the signalized key intersections will provide acceptable levels of service (Level of Service D or better operation) during the morning and evening peak hours with the lane geometries shown in Figure VI -3. The addition of a second eastbound left -turn lane on Calle Tampico at the intersection of Washington Street is required to achieve LOS D operation during peak hours. The addition of project -related traffic volumes to year 2020 non -site volumes will increase the average control delay during peak hours at key signalized intersections by up to 17.8 seconds/vehicle. It will also cause the peak hour LOS value to drop from LOS B to LOS C during the evening peak hour at two of the five key intersections (Eisenhower Drive @ Calle Tampico and Avenida Bermudas @ Calle Tampico). V-12 fi VI. FINDINGS AND CONCLUSIONS VI.A SITE ACCESSIBILITY The project has adequate access to serve the proposed land uses. No improvements beyond those proposed with the project are required to accommodate site traffic at acceptable levels of service. Access to the western portion of the site includes a driveway on Eisenhower Drive that. would allow right -turn movements and left -turn ingress, but prohibit left -turn egress. Left - turn egress is not proposed at this location because the bridge on Eisenhower Drive, near the northwest corner of the property, limits sight -distance to the north.. The project proposes a full -turn access on Calle Tampico opposite Avenida Mendoza. Avenida Mendoza is located between Eisenhower Drive and Avenida Bermudas, approximately 600 feet east of Eisenhower Drive. This intersection is not projected to warrant signalization in the future. Calle Tampico is designated as a primary arterial in the currently adopted La Quinta General Plan Circulation Element which specifies a minimum of 1200 feet between intersections on primary arterials. This design standard is to insure that traffic signals will be spaced to promote good signal progression. Although the proposed site access does not comply with this City access design standard, it is proposed opposite an existing intersection (Calle Tampico at Avenida Mendoza) that currently permits full access. Full access was allowed at this intersection because future traffic volumes were not projected to ever warrant signalization. Similarly, the proposed project will never generate sufficient traffic volumes to warrant signalization at this intersection. A full site access is proposed onto Calle Tampico, opposite Avenida Bermudas. This intersection is currently controlled by an all -way stop, but is scheduled for signalization in the year 2001. VI.B TRAFFIC IMPACTS The following are the circulation impacts associated with the proposed project: 1. The intersection of Eisenhower Drive and Calle Tampico appears to currently meet rural peak hour traffic signal warrants. 2. The trip generation associated with build -out of the proposed project site would total 4,370 daily trips, of which 317 would occur during the morning peak hour (209 inbound and 108 outbound) and 451 would occur during the evening peak hour (166 inbound and 285 outbound). 3. The change in traffic associated with the proposed project includes the redistribution of 1,630 existing daily employee trips; therefore the net project trip generation would total 2,740 daily trips, of which 201 would occur during the morning peak hour (96 inbound and 105 outbound) and 323 would occur during the evening peak hour (143 inbound and 180 outbound). VI -1 I Rj4. The key intersections will provide acceptable levels of service in the year 2003 with and without site traffic. 5. No intersection improvements will be required in the year 2003 to ensure acceptable levels of service at the key intersections, other than the site access improvements proposed. 6. The site access point proposed on Eisenhower Drive will not meet traffic signal warrants and will not require signalization to provide acceptable levels of service for year 2003 or post 2020 conditions. 7. The site access point on Calle Tampico at Avenida Mendoza will not meet traffic signal warrants and will not require signalization to provide acceptable levels of service for year 2003 or post 2020 conditions. 8. The key intersections will provide acceptable levels of service for post 2020 conditions witli and without site traffic, provided one off-site intersection improvement is made at the intersection of Calle Tampico and Washington Street. 9. The intersection improvements shown in Figure VI -3 include a second eastbound left -turn lane at the intersection of Calle Tampico and Washington Street, to accommodate post 2020 traffic volumes with or without site traffic at acceptable levels of service. VI.0 OFF-SITE IMPROVEMENTS NEEDED Figure VI -1 depicts the existing approach lane geometries at the key intersections. All of the off-site key intersections currently operate at acceptable levels of service during peak hours. The unsignalized intersection of Eisenhower Drive and Calle Tampico, located adjacent to the corner of the project site, currently appears to meet rural peak hour signal warrants. The existing eastbound left -turn lane at the intersection of Washington Street and Calle Tampico is approximately 100 feet long. During the peak hour of the peak season, the current average storage length demand is approximately 120 feet, and the recommended storage length is approximately 180 feet. During peak travel times, the queue for the left - turning vehicles overflows the left -turn lane and extends into the eastbound through travel lane. Figure VI -2 illustrates the minimum lane requirements to accommodate year 2003 traffic volumes with the proposed project at acceptable levels of service. None of the key intersections require additional lanes (other than those proposed for site access) to provide acceptable levels of service for year 2003+project traffic volumes. Figure VI -3 illustrates the minimum lane requirements to accommodate post 2020 traffic volumes with the proposed project at acceptable levels of service. All of the key intersections will operate at acceptable levels of service with existing lane geometries and the improvements proposed on-site to provide access, except one (the intersection of Washington Street and Calle Tampico). Since the post 2020 traffic projections for Washington Street at Calle Tampico are almost three times greater than existing traffic volumes, this intersection will require the addition of a second eastbound left -turn lane to provide acceptable levels of service, with or without the proposed project. The length of the existing left -turn pocket is inadequate to serve VI -2 Calle LI L Avenue Mazatlan 50 Gate 7r Figure VI -1 Existing Lane Geometrics �– Exclusive Right -Turn Lane F— Through Lane ,`— Exclusive Left -Turn Lane E� Optional Through/Right Lane E� Optional Through/Left Lane Project Site rn CD ID CD 0 C Calle Tampico Ca CDD < =3 CD - 3ED < N w 7 N N �E N -� T N. endo Engineering Scale: 1 " = 650' FF Figure VI -2 Required Year 2003 Lane Geometrics Calle Avenue Mazatlan 50 Gate Legend L �-- Exclusive Right -Turn Lane p Through Lane m Exclusive Left -Turn Lane E� Optional Through/Right Lane �— Optional Through/Left Lane ' --- Additional Lane Required Project site p CD CD C7 — �> CD C Cr Calle Tampico L �D m�CD CL 7 tD C::3. WN SD SD Cn EC N f__ (D 5- (D A �S �Vndo Engineering Scale: 1"= 650' Calle n Mazatlan Gate Y TV Endo Engineering Avenue 50 0 CD Figure VI -3 Required Year 2020 Lane Geometrics (Legend 1 Exclusive Right -Turn Lane .E Through Lane Exclusive Left -Turn Lane F� Optional Through/Right Lane <� Optional Through/Left Lane --- Additional Lane Required Calle Tampico -- ��D CD D •c' 1l y E— �-- CD < `D3 CL =1 cD C0 A _ 1 Scale: 1 " = 650' n ' J current peals traffic volumes. Consideration should be given to increasing the eastbound left -turn storage length by adding a second left -turn lane. The dual eastbound left -turn pockets should provide a desirable design length of 235 feet (1.5 times the length of the I average storage demand). Eisenhower Drive narrows to two lanes at a bridge located near the northwest corner of the project site. Although Eisenhower Drive is currently master planned as a 4 -lane primary arterial, General Plan Update Traffic Model projections do not appear to exceed the daily capacity of a 2 -lane facility. 'Therefore it may not be necessary to improve this bridge to four lanes. VI.D COMPLIANCE WITH GENERAL PLAN CIRCULATION POLICIES The proposed circulation system is generally consistent with the La Quinta Circulation Element policies. The project appears to comply with General Plan policies except for the proposed full -turn access on Calle Tampico at Avenida Mendoza. This access does not comply with the 1200 -foot minimum intersection spacing standard for primary arterials. However, the proposed access is located at an existing full -turn intersection, and will never generate sufficient traffic to meet traffic signal warrants. The driveway on Eisenhower Drive (no left -turn egress allowed) also appears to comply with Circulation Policy 3-3.1.3 by maintaining 250 feet between the curb returns from the nearest intersection. VI.E CMP SYSTEM IMPROVEMENTS NEEDED No improvements are necessary to any CMP roadways to accommodate site traffic. VI -3 VII. RECOMMENDATIONS VILA SITE ACCESS/CIRCULATION PLAN Adequate site access for the western portion of the proposed project is provided by the site access on Eisenhower Drive and the site access at the intersection of Calle Tampico and Avenida Mendoza that will be connected by an internal loop. The site access on Eisenhower Drive will prohibit left -turn egress. The proposed site access at the intersection of Calle Tampico and Avenida Mendoza will provide full access, but will not have sufficient traffic volumes on the minor leg to ever meet signal warrants. The access to the eastern portion of the proposed project is proposed at the intersection of Calle Tampico and Avenida Bermudas. This intersection is scheduled for signalization in 2001. The following mitigation measures are recommended to reduce potential circulation impacts associated with the proposed project and ensure adequate site access. 1. The proposed internal circulation layout shall be subject to the review and approval of the City Traffic Engineer during the development review process to insure compliance with City of La Quinta minimum access and design standards. 2. Adequate off-street parking shall be provided per the parking requirements of the City of La Quinta. 3. Eisenhower Drive and Calle Tampico will be fully improved to their master planned half -widths adjacent to the project site. 4. A STOP sign will control exiting site traffic and clear unobstructed sight distances shall be provided at the site driveway proposed on Eisenhower Drive and the site driveway on Calle Tampico at Avenida Mendoza. 5. The site driveway on Eisenhower Drive shall be designed prohibit left -turn egress. 6. The intersection of Eisenhower Drive and Calle Tampico currently appears to meet peak hour rural traffic signal warrants, and will require signalization to adequately serve future traffic volumes. 7. The project proponent shall provide (at a minimum) the lane geometrics shown in Figure VI -2 at the site access locations in conjunction with development on-site. 8. The intersection of Washington Street and Calle Tampico should be improved to include dual eastbound left -turn lanes to provide adequate levels of service with post 2020 traffic volumes, as shown in Figure VI -3. 9. The project proponent may be required to participate in a traffic mitigation fee program which would ensure that a "fair -share" contribution is made to future roadway improvements within the project vicinity. VII -1 VII.B ROADWAY IMPROVEMENTS On -Site Eisenhower Drive and Calle Tampico will be fully improved to their master planned roadway standards adjacent to project site. The intersection of Eisenhower Drive and Calle Tampico should be signalized to adequately serve future traffic volumes. Off -Site None of the key intersections require signalization or additional lanes to ensure acceptable levels of service for projected traffic volumes upon project buildout. The intersection of Washington Street and Calle Tampico will require improvements shown in Figure VI -3 to adequately serve citywide buildout traffic volumes. The project should participate in any improvements of area wide benefit on a "fair share" basis, based upon established fee programs (e.g. Traffic Signal Mitigation Fee). VII.0 TRANSPORTATION SYSTEM MANAGEMENT ACTIONS The project will not have a significant impact on any Congestion Management Plan roadways and no TSM actions are planned or proposed. Appendices 1. Peak Hour Traffic Count Data 2. Unsignalized Intersection Methodology and Worksheets 4. Signalized Intersection Methodology and Worksheets 3. Traffic Signal Warrants and Worksheets- Appendix I PEAK HOUR TRAFFIC COUNTS Counts Unlimited, Inc CITY OF LA QUINTA 6 36 25424 Jaclyn Avenue Site Code : 000976LQ NQS: EISENHOWER DRIVE 16 Moreno Valley, CA 92557 Start Date: 12/19/ , EDW: AVENUE 50 909-247-6716 File I.D. LQEI50l WEATHER: SUNNY Page 1 TOTAL VOLUME ...................................... ._.-... -------------------------- -......................................................... � EISENHOWER DRIVE AVENUE 50 EISENHOWER DRIVE CALLE MAZATLAN Southbound Westbound Northbound Eastbound Left Thru Right Left Thru Right Left Thru Right Left Thru Right Total Date12/19/00 --------------------------------- -..--------------- ------------_----- ---------------------------- Peak Hour Analysis By Entire Intersection for the Period: 07:00 to 09:00 on 12/19/00 Peak start 07:30 07:30 07:30 07:30 Volume 23 157 22 26 6 37 8 599 13 16 17 10 Percent 114 784 114 384 94 544 14 971 24 374 404 234 Pk total 202 69 620 43 Highest 08:15 07:30 07:30 07:45 Volume 4 49 5 it 1 10 2 188 3 6 8 0 Hi total 58 22 193 14 PHF .87 .78 .80 .77 I 1EISENHOWER DRIVE I CALLE MAZATLAN 8 6 36 22 16 10 16 17 17 10 10 22 157 - 23 16 599 37 22 157 23 652 ' 202 ' ' 854 ' 37 37 TOTAL VOLUME 6 69 6 26 122 26 Intersection Total 23 934 53 17 13 AVENUE 50 813 620 - 26 8 599 157 10 193 8 599 EISENHOWER DRIV Counts Unlimited, Inc CITY OF LA QUINTA 07:45 07:00 25424 Jaclyn Avenue 07:00 Site Code : 00097606 NIS: EISENHOWER DRIVE Volume 21 Moreno Valley, CA 92557 23 10 44 Start Date: 12/19/00 E/W: AVENUE 50 19 10 16 909-247-6716 104 781 121 301 File I.D. LQEI50AM WEATHER: SUNNY 961 31 421 221 361 Pk total 211 Page 1 642 TOTAL VOLUME Highest 08:15 EISENHOWER DRIVE 07:00 AVENUE 50 07:30 EISENHOWER DRIVE CALLB MAZATLAN 08:45 Southbound 4 Westbound 5 5 Northbound Bastbound 2 188 3 8 4 Left Thru Right Left Thru Right Left Thru Right Left Thru Right Total Date12/19/00 ------------------------------------------------------------------------------------------------------------- PHF ' .91 .74 .83 07:00 7 24 4 5 6 15 1 131 5 3 2 0 203 Intersection for 07:15 5 31 1 3 1 6 0 124 6 2 2 0 181 07:30 5 27 3 11 1 10 2 188 3 6 5 1 262 Volume 23 7.41 6 42 6 e 213 37 2 7 599 13 16 269 10 Hr Total 23 124 14 23 10 44 5 618 19 17 17 1 915 371 404 08:00 8 39 8 3 2 8 2 122 2 2 3 5 204 08:15 4 49 5 8 1 6 2 114 3 2 1 4 199 07:30 08:30 3 35 6 7 3 5 2 113 7 7 2 2 192 11 1 Hr Total 26 156 23 22 10 32 9 436 19 19 10 16 778 ---------------- +TOTAL+ 49 280 37 1 45 20 76 1 14 1054 38 ---------------------------- 1 36 27 17 I 1693 PHF .87 Peak Hour Analysis By Individual Approach for the Period: 07:00 to 09:00 on 12/19/00 Peak start 07:45 07:00 07:00 08:00 Volume 21 165 25 23 10 44 5 618 19 19 10 16 Percent 104 781 121 301 131 574 11 961 31 421 221 361 Pk total 211 77 642 45 Highest 08:15 07:00 07:30 08:45 Volume 4 49 5 5 6 15 2 188 3 8 4 5 Hi total 58 26 193 17 PHF ' .91 .74 .83 .66 ------------------------------------------------------------------------------------------------- Peak Hour Analysis By Entire Intersection for the Period: 07:00 to 09:00 on 12/19/00 Peak start 07:30 07:30 07:30 07:30 Volume 23 157 22 26 6 37 8 599 13 16 17 10 Percent 111 781 111 381 91 541 14 971 21 371 404 231 Pk total 202 69 620 43 Highest 08:15 07:30 07:30 07:45 Volume 4 49 5 11 1 10 2 188 3 6 8 0 Hi total 58 22 193 14 PHF .87 .78 .80 .77 Counts Unlimited, Inc CITY OF LA QUINTA 17 8 33 13 25424 Jaclyn Avenue 20 Site Code : 0009760b HIS: EISENHOWER DRIVE 60 34 Moreno Valley, CA 92557 Start Date: 12/19/ E/W: AVENUE 50 909-247-6716 File I.D. LQEI50 ! WEATHER: SUNNY Page 1 TOTAL VOLUME EISENHOWER DRIVE AVENUE 50 EISENHOWER DRIVE CALLE MAZATLAN Southbound Westbound Northbound Eastbound Left Thru Right Left Thru Right Left Thru Right Left Thru Right Total Date 12/19/00 Peak Hour Analysis By Entire Intersection for the Period: 16:00 to 18:00 on 12/19/00 Peak start 16:45 16:45 16:45 16:45 Volume 34 480 13 60 8 17 12 309 19 20 7 15 Percent 61 91w 2t 7A 9t 200 91t 61 48t 17$ 361 Pk total 527 85 340 42 Highest 17:30 16:45 16:45 16:45 Volume 10 139 1 20 4 5 4 82 6 4 4 5 Hi total 150 29 92 13 PHF .88 .73 .92 .81 CALLE MAZATLAN 12 17 8 33 13 8 20 15 20 7 17 17 7 15 8 8 15 EISENHOWER DRIVE 13 480 34 20 309 17 13 480 34 346 527 ' TOTAL VOLUME Intersection Total 994 F— 895 85 145 F— 340 - 60 12 309 480 15 555 12 309 EISENHOWER DRIV AVENUE 50 17 17 8 8 60 60 34 60 7 19 AVENUE 50 Counts Unlimited, Inc ` CITY OF LA QUINTA 16:30 25424 Jaclyn Avenue 16:30 Site Code : 00097606 NIS: EISENHOWER DRIVE Volume 34 480 13 Moreno Valley, CA 92557 22 13 313 Start Date: 12/19/00 15 E/W: AVENUE 50 Percent 61 91 909-247-6716 65k 12W 231 0 File I.D. LQEI50PM 481 WEATHER: SUNNY 25$ Pk total 527 94 Page 1 56 Highest TOTAL VOLUME 16:45 16:45 ............. - EISENHOWER DRIVE --_-•--_----------------_--------------•---------.._.--.-__--.-.--......... AVENUE 50 EISENHOWER DRIVE CALLE MAZATLAN 1 _----------------- ------------ 5 4 Southbound 6 Westbound 4 3 Northbound Eastbound 150 29 Left Thru Right Left Thru Right Left Thru Right Left Thru Right Total .81 Date 12/19/00 ----------------------------------•--...------------------------------ .96 .88 ............................ Analysis By Entire 16:00 9 110 8 10 2 6 4 74 7 7 4 2 243 Peak start 16:45 16:15 2 105 9 8 5 10 1 61 4 9 4 3 221 Volume 34 16:30 5 116 2 8 3 6 2 76 11 7 3 4 243 15 Percent 1.6:45 91W 21 71k 98 4 82 6 11 91% 6% 481 171 M Hr Total 24 444 26 46 14 27 11 293 28 27 15 14 969 42 17:00 9 110 4 15 1 6 3 78 5 8 1 2 242 16:45 17;15 7 118 1 18 3 5 4 77 5 5 0 3 246 82 6 4 17:30 10 139 1 7 0 1 1 72 3 3 2 5 244 92 17 4s5 104 0 1 j 2 1 74 9 d .73 .92 Hr Total 31 471 6 44 7 14 9 301 22 20 5 10 940 *TOTALt 55 915 32 1 90 21 41 --------------------- 1 20 594 50 I 47 20 -.............. 24 1 1909 ------------------------------------------------------------------------------------ Peak Hour Analysis By Individual Approach for the Period: 16:00 to 18:00 on 12/19/00 Peak start 16:45 16:30 16:30 16:00 Volume 34 480 13 61 11 22 13 313 27 27 15 14 Percent 61 91 2% 65k 12W 231 0 89k 81 481 271 25$ Pk total 527 94 353 56 Highest 17:30 16:45 16:45 16:15 Volume 10 139 1 20 4 5 4 82 6 9 4 3 Hi total 150 29 92 16 PHF .88 .81 .96 .88 Peak Hour Analysis By Entire Intersection for the Period: 16:00 to 18:00 on 12/19/00 Peak start 16:45 16:45 16:45 16:45 Volume 34 480 13 60 8 17 12 309 19 20 7 15 Percent 61 91W 21 71k 98 201 4% 91% 6% 481 171 M Pk total 527 85 340 42 Highest 17:30 16:45 16:45 16:45 Volume 10 139 1 20 4 5 4 82 6 4 4 5 Hi total 150 29 92 13 PRF .88 .73 .92 .81 Peak Hour Analysis By Individual Approach for the Period: 07:00 to 09:00 on 12/20/00 Peak start 08:00 08:00 07:00 08:00 Volume 54 136 1 Counts Unlimited, Inc 52 0 576 49 1 0 CITY OF LA QUINTA Percent 28$ 711 25424 Jaclyn Avenue 40 1$ 53t Site Code : 00097600 81 NIS: EISENHOWER DRIVE 0% 0t Pk total Moreno Valley, CA 92557 99 Start Date: 12/20/ H/W: CALLH TAMPICO 1 909-247-6716 Highest 08:30 File I.D. LQEITA WEATHER: SUNNY 08:45 Volume 16 40 Page : 1 0 17 0 203 10 1 TOTAL VOLUME 0 Hi total 56 EISENHOWER DRIVE CALLS TAMPICO EISENHOWER DRIVE CALLS TAMPICO PHF .85 Southbound Westbound Northbound Eastbound .25 Left Thru Right Left Thru Right Left Thru Right Left Thru Ri ht Total on 12/20/00 ' F Date 12/20/00 -----------------------------------------------------------------------------g------------------------------------- Peak start 07:30 07:30 07:30 -- 07:00 4 29 0 8 0 13 0 111 12 0 0 0 111 0 567 07:15 7 36 0 9 0 5 0 125 14 0 0 0 196 0$ 561 07:30 9 22 0 12 0 14 0 203 10 0 0 0 270 98 1' 4 7 29 0 5 Q 12 0 137 13l? 9 — —0--4 Highest 08:15 r Hr Total 27 107 0 34 0 44 0 576 49 0 0 0 837 Volume 08:00 15 27 0 13 0 17 0 110 11 0 0 0 193 0 0 08:15 13 41 1 13 0 12 0 117 17 0 0 0 214 0 08:30 16 40 0 9 0 12 0 110 15 0 0 0 2.02 .73 Hr Total 54 136 1 46 1 52 7 1 401 60 1 0 0 753 *TOTAL+ 81 243 1 1 80 1 96 ----------------- 1 1 977 109 1 1 ----------------- 0 0 I - -- 1590 Peak Hour Analysis By Individual Approach for the Period: 07:00 to 09:00 on 12/20/00 Peak start 08:00 08:00 07:00 08:00 Volume 54 136 1 46 1 52 0 576 49 1 0 0 Percent 28$ 711 it 40 1$ 53t 01 921 81 loot 0% 0t Pk total 191 99 625 1 Highest 08:30 08:00 07:30 08:45 Volume 16 40 0 13 0 17 0 203 10 1 0 0 Hi total 56 30 213 1 PHF .85 .82 .73 .25 Peak Hour Analysis By Entire Intersection for the Period: 07:00 to 09:00 on 12/20/00 ' Peak start 07:30 07:30 07:30 07:30 Volume 44 110 1 43 0 55 0 567 51 0 0 0 Percent 28t 71t 11 44% 0$ 561 01 92t 8% 0t 0t 0k Pk total 155 98 618 0 Highest 08:15 08:00 07:30 07:00 Volume 13 41 1 13 0 17 0 203 10 0 0 0 Hi total 55 30 213 0 PHF .70 .82 .73 .0 f P, E Counts Unlimited, Inc CITY OF LA QUINTA 25424 Jaclyn Avenue Site Code : 00097606 NIS: EISENHOWER DRIVE Moreno Valley, CA 92557 Start Date: 12/20/00 H/W: CALLH TAMPICO 909-247-6716 File I.D. LQEITAAM WEATHER: SUNNY Page 1 TOTAL VOLUME EISENHOWER DRIVE CALLS TAMPICO EISENHOWER DRIVE CALLS TAMPICO Southbound Westbound Northbound Eastbound Left Thru Right Left Thru Right Left Thru Right Left Thru Right Total Date12/20/00 ---------------------------------------------------------------------------------------------------------------------- Peak Hour Analysis By Entire Intersection for the Period: 07:00 to 09:00 on 12/20/00 Peak start 07:30 1 07:30 07:30 1 07:30 Volume 44 110 1 43 0 55 0 567 51 0 0 0 Percent 28t 71t 1t 40 04 50 Ot 921 8t 04 01 01 Pk total 155 98 618 0 Highest 08:15 08:00 07:30 07:00 Volume 13 41 1 13 0 17 0 203 10 0 0 0 Hi total 55 30 213 0 PHF .70 .82 .73 .0 IEISENHOWER DRIVE I 110 0 567 55 1 110 44 622 ' 155 ' ' 777 ' 55 CALLS TAMPICO 0 0 1 1 0 0 1 0 0 0 0 0 55 TOTAL VOLUME 0 98 0 43 193 43 Intersection Total 44 871 95 0 51 CALLE TAMPICO r 771 618 - 43 0 567 5 110 0 153 0 567 5 rTe'rRll Inl am Mr) Tl/r Counts Unlimited, Inc CITY OF LA QUINTA 25424 Jaclyn Avenue Site Code : 000976,, NIS: EISENHOWER DRIVE Moreno Valley, CA 92557 Start Date: 12/20/0( E/W: CALLS TAMPICO 909-247-6716 File I.D. : LQEITi WEATHER: SUNNY Page 1 TOTAL VOLUME EISENHOWER DRIVE CALLS TAMPICO EISENHOWER DRIVE CALLS TAMPICO Southbound Westbound Northbound Hastbound Left Thru Right Left Thru Right Left Thru Right Left Thru Right Total Date12/20/00-----------------•-------------------------------------------------------------------------- --------- Peak -------------- -----------.---------Peak Hour Analysis By Entire Intersection for the Period: 16:00 to 18:00 on 12/20/00 Peak start 16:45 16:45 16:45 16:45' Volume 36 556 1 143 0 43 3 285 88 0 1 2 Percent 61 90 0 714 01 23k 1$ 70 23k 01 31 67t Pk total 593 186 376 3 Highes, 11'-5 159 0 1 47 0 12 1 82 27 0 00 1700 1645 Volume 1 1 Hi total 166 59 110 2 PHF .89 .79 .85 .38 CALLE TAMPICO 3 0 4 1 0 0 1 2 EISENHOWER DRIVE 1 556 36 0 285 43 1 556 36 328 ' 593 ' ' 921 ' TOTAL VOLUME 186 7 311 1 3 Intersection Total 1,158 2 1 077 143 3 285 556 2 701 3 285 EISENHOWER DRIV 43 43 0 0 143 143 36 125 1 88 CALLE TAMPICO Counts Unlimited, Inc CITY OF LA QUINTA 25424 Jaclyn Avenue Site Code : 0009160E NIS: EISENHOWER DRIVE Moreno Valley, CA 92557 Start Date: 12/20/0( E/W: CALLS TAMPICO 909-247-6716 File I.D. ; LQEITAPP WEATHER: SUNNY Page 1 TOTAL VOLUME EISENHOWER DRIVE CALLS TAMPICO EISENHOWER DRIVE CALLS TAMPICO Southbound Westbound Northbound Eastbound Left Thru Right Left Thru Right Left Thru Right Left Thru Right Total Date12/20/00 ---------------------------------------------------------------------------------------------------------------------- 16:00 19 108 0 31 0 19 0 52 20 0 2 0 251 16:15 19 106 0 35 1 20 0 67 19 0 0 1 268 16:30 17 96 0 35 0 22 0 58 23 0 0 0 251 16:45 11 119 __ 1____.,_ _3.313 0_ i 0 1 Hr Total 66 429 1 134 1 74 0 243 02 0 3 2 1035 17:00 7 135 0 47 0 12 1 82 27 0 0 1 312 17:15 7 159 0 32 0 8 1 70 17 0 0 0 294 17;30 11 143 0 31 0 10 1 67 24 0 0 0 287 17:45 10 101 0 31 9 7 1 74 2 Hr Total 35 538 0 141 0 37 4 293 89 0 0 1 1138 ....................... ----------------------- --- *TOTAL+ 101 967 1 1 275 1 111 1 4 536 171 1 0 3 3 I 2173 Peak Hour Analysis By Individual Approach for the Period: 16:00 to 18:00 on 12/20/00 Peak start 16:45 16:15 17:00 16:00 Volume 36 556 1 150 1 67 4 293 69 0 3 2 Percent 64 941 04 691 04 314 11 761 231 01 601 401 Pk total 593 218 386 5 Highest 17:15 17:00 17:00 16:00 Volume 7 159 0 47 0 12 1 82 27 0 2 0 Hi total 166 59 110 2 PHF .89 .92 .88 .62 Peak Hour Analysis By Entire Intersection for the Period: 16:00 to 18:00 on 12/20/00 Peak start 16:45 16:45 16:45 16:45 Volume 36 556 1 143 0 43 3 285 88 0 1 2 Percent 64 944 04 714 0% 231 14 764 234 04 334 674 Pk total 593 186 376 3 Highest 17:15 17:00 17:00 16:45 Volume 7 159 0 47 0 12 1 82 27 0 1 1 Hi total 166 59 110 2 PHF .89 .79 .85 .38 CITY OF LA QUINTA NIS: AVENIDA MENDOZA BCW: CALLE TAMPICO WEATHER: SUNNY Counts Unlimited, Inc 25424 Jaclyn Avenue Moreno Valley, CA 92557 909-247-6716 TOTAL VOLUME Site Code : 0009760,, Start Date: 12/21/0C, File I.D. : LQMETAA Page 1 CALLS TAMPICO AVENIDA MENDOZ CALLS TAMPICO Westbound Northbound Eastbound Left Thru Left Right Thru Right Total Date12/21/00------------------------------------------------------------------------------ -- Peak Hour Analysis By Entire Intersection for the Period: 07:00 to 09:00 on 12/21/00 Peak start 08:00 08:00 08:00 Volume 3 75 3 3 118 3 Percent 41 96$ 501 501 98t 2t Pk total 78 6 121 Highest 08:30 08:00 08:30 Volume 1 25 2 0 32 2 Hi total 26 2 34 PHF .75 .75 .89 0 0 CALLE TAMPICO 0 3 TOTAL VOLUME - 75 78 75 0 78 75 0 3 199 199 3 118 118 121 Intersection Total 0 205 121 118 3 3 3 CALLE TAMPICO 3 0 3 12 1 6 31 I, 3 AVENIDA MENDOZA 0 F Counts Unlimited, Inc 1 CITY OF LA QUINTA 25424 Jaclyn Avenue Site Code : 00097606 NIS: AVBNIDA MENDOZA Moreno Valley, CA 92557 Start Date: 12/21/00 B/W: CALLB TAMPICO 909-247-6716 File I.D. LQMETAAM WEATHER: SUNNY 19 Page 1 07:30 TOTAL VOLUME 31 1 ----------------------------------------------------------------------- CALLS TAMPICO AVBNIDA MENDOZ CALLB TAMPICO -------------------------------------------------- 0 - Westbound Northbound Eastbound 0 21 1 Left Thru j Left Right I Thru Right I Total Date12/21/00--------------------------------------------------_------------------------------------------------------------------ 07:00 2 18 0 1 15 0 36 07:15 1 22 1 0 19 0 43 07:30 1 31 1 2 24 0 59 7 4 5 0 21 1 1 25 0 4 Hr Total 4 92 3 4 83 0 186 08:00 1 15 2 0 26 1 45 08:15 0 19 0 0 29 0 48 08:30 1 25 1 1 32 2 62 Hr Total 3 75 3 3 118 3 205 *TOTAL* 7 167 1 6 7 I 201 3 I 391 Peak Hour Analysis By Individual Approach for the Period: 07:00 to 09:00 on 12/21/00 Peak start 07:00 07:15 08:00 Volume 4 92 5 3 118 3 Percent 41 961 621 38% 98t 2t Pk total 96 8 121 Highest 07:30 07:30 08:30 Volume 1 31 1 2 32 2 Hi total 32 3 34 PHP .75 .67 .89 ------------------------------------------------------ Peak Hour Analysis By Entire Intersection for the Period: 07:00 to 09:00 on 12/21/00 Peak start 08:00 08:00 08:00 Volume 3 75 3 3 118 3 Percent 41 96W 50% 50t 98k 21 Pk total 78 6 121 Highest 08:30 08:00 08:30 Volume 1 25 2 0 32 2 Hi total 26 2 34 PHP .75 .75 .89 0 X CALLE TAMPICO 0 8 TOTAL VOLUME 191 199 191 0 199 191 0 346 343 8 g 138 138 9 9 147 Intersection Total 360 r � i r 8 8 0 9' 17 8 AVENIDA MENDOZA 14 � 0 0 144 138 6 CALLE TAMPICO Counts Unlimited, Inc CITY OF LA QUINTA 25424 Jaclyn Avenue Site Code : 000976uc HIS: AVENIDA MENDOZA Moreno Valley, CA 92557 Start Date: 12/20/ B/W: CALLE TAMPICO 909-247-6716 File I.D. : LQMET y� WEATHER: SUNNY Page 1 TOTAL VOLUME ----................................................. CALLB TAMPICO AVENIDA MENDOZ CALLS TAMPICO ...---..-,,....------------------- -----..._--- Westbound Northbound Hastbound Left Thru Left Right Thru Right Total F Date12/20/00--------------------------------------------------------..------.-.------------------------------------------------.. Peak Hour Analysis By Entire Intersection for the Period: 16:00 to 18:00 on 12/20/00 Peak start 16:15 16:15 16:15 Volume 8 191 8 6 138 9 Percent 44 964 574 434 944 64 Pk total 199 14 147 r Highest 16:30 17:00 16:30 Volume 1 53 3 2 38 2 Hi total 54 5 40 PHF .92 .70 .92 0 X CALLE TAMPICO 0 8 TOTAL VOLUME 191 199 191 0 199 191 0 346 343 8 g 138 138 9 9 147 Intersection Total 360 r � i r 8 8 0 9' 17 8 AVENIDA MENDOZA 14 � 0 0 144 138 6 CALLE TAMPICO Counts Unlimited, Inc Peak Hour Analysis By Individual Approach for the Period: 16:00 to 18:00 on 12/20/00 Peak start CITY OF LA QUINTA 16:15 25424 Jaclyn Avenue Site Code : 00097606 Volume NIS: AVENIDA MENDOZA 203 8 6 Moreno Valley, CA 92557 Start Date: 12/20/00 Percent E/W: CALLS TAMPICO 961 57k 43$ 909-247-6716 File I.D. ; LQMHTAPM Pk total WEATHER: SUNNY 14 151 Page 1 Highest 17:15 17:00 TOTAL VOLUME Volume --------------------------------------------------------------------------------�--------------------..-----.------------------------ CALLE TAMPICO AVENIDA MENDOZ CALLS TAMPICO 38 2 Hi total Westbound Northbound Eastbound 40 Left Thru Left Right Thru Right Total .94 Date12/20/00 -- Analysis By ---------------------------------- -- -__.......... - --------------------------------- Period: 16:00 to 18:00 on 12/20/00 16:00 3 43 0 2 38 1 87 16:15 16:15 2 46 2 1 37 2 90 138 9 16:30 1 53 1 2 38 2 97 94$ 0 ��•n 2 1i 2 1 30 3 74 147 Hr Total 8 183 5 6 143 8 353 16:30 17:00 3 51 3 2 33 2 94 38 2 17:15 2 58 1 2 25 1 89 40 17:30 2 42 2 1 34 2 83 .92 17:45 1 44 0 2 7 I Hr Total 8 195 6 7 122 6 344 ------------------------------ +TOTAL+ 16 378 1 11 ------------ 13 I 265 14 1 697 Peak Hour Analysis By Individual Approach for the Period: 16:00 to 18:00 on 12/20/00 Peak start 16:30 16:15 16:00 Volume 8 203 8 6 143 8 Percent 4% 961 57k 43$ 95t 5t Pk total 211 14 151 Highest 17:15 17:00 16:30 Volume 2 58 3 2 38 2 Hi total 60 5 40 PHF .88 .70 .94 ------------------------------------------------------ Peak Hour Analysis By Entire Intersection for the Period: 16:00 to 18:00 on 12/20/00 Peak start 16:15 16:15 16:15 Volume 8 191 8 6 138 9 Percent 0 96% 571 43% 94$ 0 Pk total 199 14 147 Highest 16:30 17:00 16:30 Volume 1 53 3 2 38 2 Hi total 54 5 40 PHF .92 .70 .92 Counts Unlimited, Inc CITY OF LA QUINTA 0 3 25424 Jaclyn Avenue 7 Site Code : 00097;u, HIS: AVENIDA BERMUDAS 82 Moreno Valley, CA 92557 Start Date: 12/21/17 E/W: CALLS TAMPICO 909-247-6716 File I.D. LQBETA WEATHER: SUNNY Page 1 TOTAL VOLUME ------------------------- ._..... .... .--- ------- ------- ------ ------ .-----_ AVENIDA BERMUDAS CALLS TAMPICO AVENIDA BERMUDAS CALLS TAMPICO Southbound Westbound Northbound Hastbound Left Thru Right Left Thru Right Left Thru Right Left Thru Right Total Date12/21/00------------------------- --------------......--------------..-.-------_.------..-_.---------.--------_ . -� Peak Hour Analysis By Entire Intersection for the Period: 07:00 to 09:00 on 12/21/00 Peak start 07:30 07:3007:30 07:30 Volume 2 3 0 82 77 0 21 2 125 5 76 23 Percent 40t 60t Ot 521 48% 01 10 It 841 5t 73t 22t Pk total 159 148 104 r Highest 07:45 08:15 07:45 07:30 Volume 1 2 0 21 24 0 7 1 39 1 21 7 Hi total 3 45 47 29 PHF .42 .88 .79 .90 IAVENIDA BERMUDAS I CALLE TAMPICO 21 77 98 0 5 5 76 76 23 23 0 3 2 5 2 0 0 0 3 ------ 2 7 �— 5 82 82 12 202 104 �------• 256 �---- 148 - 82 21 2 3 23 108 21 2 AVENIDA BERMUDA TOTAL VOLUME Intersection Total 416 159 362 2 203 76 125 CALLE TAMPICO 0 0 77 77 82 82 2 203 76 125 CALLE TAMPICO Counts Unlimited, Inc CITY OF LA QUINTA 17:00 17:00 25424 Jaclyn Avenue 16:00 Site Code : 00097623 HIS: AVENIDA BERMUDAS Volume 1 Moreno Valley, CA 92557 184 7 22 Start Date: 12/21/00 E/W: CALLS TAMPICO 120 28 Percent 331 909-247-6716 Ot 50 431 2A File I.D. LQBETAPM WEATHER: SUNNY 81 79 181 Pk total 3 431 Page 1 160 TOTAL VOLUME 17:15 17:15 AVENIDA BERMUDAS CALLS TAMPICO 17:15 AVENIDA BERMUDAS CALLS TAMPICO 1 0 0 -- Southbound 1 Westbound 1 Northbound 5 Eastbound 6 Hi total 1 Left Thru Right Left Thru RightLeft 55 Thru. Right Left Thru Right Total PHF Date12/21/00 --------------------- ------- ---------------------- .75 --------------- .91 ------------------------------ 16:00 0 1 0 52 39 2 5 1 49 2 19 5 175 16:15 0 0 1 57 41 1 6 2 15 3 23 7 156 16:45 16:30 0 0 0 47 47 0 6 1 41 1 34 7 184 112 12 165_ 0 0p_ 31 52 3.5__-4..__ 50t 50t �3 21 56$ 24 6 161 9 818 Er Total 0 1 1 208 162 7 22 0 137 7 100 25 676 138 17:00 0 0 0 57 47 4 5 2 23 2 30 9 179 16:45 17:15 1 0 0 62 53 1 5 1 29 5 33 6 196 53 1 17:30 0 1 0 69 42 0 4 2 28 4 30 10 190 116 39 44 7 1 PHF .50 .92 Hr Total 1 2 0 240 184 7 16 6 97 12 120 28 713 *TOTAL* 1 3 1 1 448 346 14 1 38 --------------------------------------- 12 234 ' 19 220 53 1 1389 Peak Hour Analysis By Individual Approach for the Period: 16:00 to 18:00 on 12/21/00 Peak start 17:00 17:00 16:00 17:00 Volume 1 2 0 240 184 7 22 6 137 12 120 28 Percent 331 611 Ot 50 431 2A 13t 41 83t 81 79 181 Pk total 3 431 165 160 Highest 17:15 17:15 16:00 17:15 Volume 1 0 0 62 53 1 5 1 49 5 33 6 Hi total 1 116 55 44 PHF .75 .93 .75 .91 Peak Hour Analysis By Entire Intersection for the Period: 16:00 to 18:00 on 12/21/00 Peak start 16:45 16:45 16:45 16:45 Volume 1 1 0 240 177 9 19 7 112 12 117 31 Percent 50t 50t 0t 56$ 42$ 21 141 9 818 A 73$ 191 Pk total 2 426 138 160 Highest 17:15 17:15 16:45 17:15 Volume 1 0 0 62 53 1 5 2 32 5 33 6 Hi total 1 116 39 44 PHF .50 .92 .88 .91 Counts Unlimited, Inc CITY OF LA QUINTA 25424 Jaclyn Avenue Site Code : 000976; NIS: AVENIDA BERMUDAS Moreno Valley, CA 92557 Start Date: 12/21/,Ir E/W: CALLE TAMPICO 909-247-6716 File I.D. LQBETA WEATHER: SUNNY Page : 1 t TOTAL VOLUME ---............................._..._............._........_....................----.................---...................----... AVENIDA BERMUDAS CALLE TAMPICO 1 AVBNIDA BERMUDAS CALLE TAMPICO Southbound 177 Westbound Northbound Eastbound 9 1 Left Thru Right Left Thru Right Left Thru Right Left Thru Right Total Date12/21/00---------------------------------------- -------------.----- ------..-------------------------------- Peak Hour Analysis By Entire Intersection for the Period: 16:00 to 18:00 on 12/21/00 Peak start 16:45 16:45 16:45 16:45 Volume 1 1 0 240 177 9 19 7 112 12 117 31 Percent 501 50% ' 0t 50 421 21 141 5t Bit H 73t 19t Pk total 2 426 138 160 r - Highest 17:15 17:15 16:45 17:15 Volume 1 0 0 62 53 1 5 2 32 5 33 6 Hi total 1 116 39 44 PHF .50 .92 .88 .91 CALLE TAMPICO 19 177 196 0 12 12 117 117 31 31 0 AVENIDA BERMUDAS 1 9 1 12 177 177 .7 240 9 1 1 28 � 2 30 TOTAL VOLUME 356 160 Intersection Total 726 �— 410 240 19 1 31 272 19 AVENIDA BERMUDA CALLE TAMPICO 9 9 177 177 240 240 1 230 117 112 CALLE TAMPICO Counts Unlimited, Inc CITY OF LA QUINTA 07:15 07:00 25424 Jaclyn Avenue 07:30 Site Code : 00097608 NIS: AVENIDA BERMUDAS Volume Moreno Valley, CA 92557 1 89 Start Date: 12/21/00 E/W: CALLS TAMPICO 2 125 2 81 909-247-6716 Percent 43W File I.D. LQBETAAM WEATHER: SUNNY 471 It 141 1t 841 21 71% 21 Page 1 7 172 TOTAL VOLUME 148 114 ........................... AVENIDA BERMUDAS CALLS .................. TAMPICO ........................................................... AVBNIDA BERMUDAS CALLS TAMPICO - -------- Southbound 08:45 Westbound Northbound Eastbound 2 0 30 20 Left Thru Right Left Thru Right Left Thru Right Left Thru Right Total 3 Date 12/21/00 ------------------ 51 ------------.--. 47 - - ---------------------- 31 -----------------..-------- 07:00 1 0 0 30 20 1 1 0 21 0 15 2 91 .92 07:15 1 0 1 15 20 1 2 0 25 1 15 4 85 the Period: 07:00 07:30 0 1 0 19 25 0 9 0 28 1 21 7 111 07:30 07:45 , a 07:30 7 7 113 Volume 2 Hr Total 3 3 1 89 81 2 19 1 113 5 63 20 400 76 23 08:00 1 0 0 17 12 0 3 0 33 1 23 4 94 1% 84% 08:15 0 0 0 21 24 0 2 1 25 0 20 5 98 08:30 1 0 0 23 16 3 6 0 24 0 20 10 103 00-.45 0 1 0 j 1 07:30 Volume f Hr Total 2 0 f 0 79 66 3 16 1 113 2 81 31 394 1 21 ------------- *TOTAL* 5 3 1 1 168 147 5 -------- --------------------------------- 1 35 2 226 1 7 144 51 I 794 47 Peak Hour Analysis By Individual Approach for the Period: 07:00 to 09:00 on 12/21/00 Peak start 07:15 07:00 07:30 08:00 Volume 3 3 1 89 81 2 21 2 125 2 81 31 Percent 43W 43% 14$ 52t 471 It 141 1t 841 21 71% 21 Pk total 7 172 148 114 Highest 07:45 07:00 07:45 08:45 Volume 1 2 0 30 20 1 7 1 39 1 18 12 Hi total 3 51 47 31 PHF .58 .84 .79 .92 Peak Hour Analysis By ------------------------------------------------------------------------ Entire Intersection for the Period: 07:00 to 09:00 on 12/21/00 Peak start 07:30 07:30 07:30 07:30 Volume 2 3 0 82 77 0 21 2 125 5 76 23 Percent 40t 601 0t 521 481 0t 141 1% 84% 51 73$ 223 Pk total 5 159 148 104 Highest 07:45 08:15 07:45 07:30 Volume 1 2 0 21 24 0 7 1 39 1 21 7 Hi total 3 45 47 29 PHF .42 .88 .79 .90 Counts Unlimited, Inc CITY OF'LA QUINTA 25424 Jaclyn Avenue Site Code : 0009761. NIS: DESERT CLUB DRIVE Moreno Valley, CA 92557 Start Date: 12/21/00 H/W: CALLE TAMPICO 909-247-6716 File I.D. LQDCTAA WEATHER: SUNNY Page 1 TOTAL VOLUME --------------------------------------------- •.................. ................................ .................................. DESERT CLUB DRIVH �CALLE TAMPICO CLUB DRIVE ICALLI TAMPICO Southbound Westbound IDESERT NorthboundEastbound Left Thru Right I Left Thru Right I Left Thru Right { Left Thru Right I Total Date12/21/00 -------------------------------------------------------------------------------------------------------------------- Peak Hour Analysis By Entire Intersection for the Period: 07:00 to 09:00 on 12/21/00 Peak start 07:45 07:45 07:45 07:45 Volume 14 0 4 48 133 5 5 0 59 5 187 3 Percent 784 01 224 264 724 34 84 01 924 34 964 24 Pk total 18 186 64 195 Highest 07:45 08:30 08:30 07:45 Volume 4 0 2 14 39 0 2 0 18 1 51 2 Hi total 6 53 20 54 PHF .75 .88 .80 .90 DESERT CLUB DRIVE 4 0 14 5 3 0 51 5 5 4 0 14 10 i 18 28 CALLE TAMPICO 5 TOTAL VOLUME 133 142 4 186 5 5 337 446 187 187 195 Intersection Total 463 3 3 r-- 115 I 64 48 5 0 0 3 51 5 0 DESERT CLUB DRIVE 5 5 133 133 48 48 14 187 59 CALLE TAMPICO r Counts Unlimited, Inc CITY OF LA QUINTA 07:00 07:45 25424 Jaclyn Avenue 07:15 Site Code : 00097619 HIS: DESERT CLUB DRIVE Volume 23 0 Moreno Valley, CA 92557 133 5 4 Start Date: 12/21/00 H/W: CALLS TAMPICO 188 3 Percent 72$ 909-247-6716 28% 26k 721 3� File I.D. : LQDCTAAM WEATHER: SUNNY 31 961 29 Pk total 32 186 Page 1 196 TOTAL VOLUME 07:00 08:30 DESERT CLUB DRIVE CALLS TAMPICO 07:45 DESERT CLUB DRIVE CALLE TAMPICO Volume 9 0 1 Southbound 39 0 Westbound 0 21 Northbound Hastbound 2 Hi total 10 Left Thru Right Left Thru Right Left Thru Right Left Thru Right Total PHF Date12/21/00------------------------------------------------------------------------------------------------------ .88 .76 .91 ----- 07:00 9 0 1 4 38 1 3 0 12 0 40 0 108 07:15 4 0 3 5 30 2 2 0 13 1 38 0 98 07:45 07:30 6 0 3 1 39 0 1 0 21 1 47 0 119 59 5 187 3 Percent 78t 01 221 20 72t 31 81 01 92t Hr Total 23 0 9 25 138 3 7 0 59 3 176 2 445 64 08:00 4 0 0 6 27 4 0 0 16 2 47 0 106 08:30 08:15 2 0 1 13 36 1 2 0 12 1 43 1 112 39 0 08:30 4 0 1 14 39 0 2 0 18 1 46 0 125 53 4 0 3 19, 2 PHF .75 .88 Hr Total 14 0 5 52 124 5 6 1 59 5 179 2 452 - - - *TOTAL* 31 ------1 0 14 77 262 8 1 13 1 118 1 8 355 - 4 -- 897 Peak Hour Analysis By Individual Approach for the Period: 07:00 to 09:00 on 12/21/00 Peak start 07:00 07:45 07:15 07:30 Volume 23 0 9 48 133 5 4 0 63 5 188 3 Percent 72$ 01 28% 26k 721 3� 61 0W 94$ 31 961 29 Pk total 32 186 67 196 Highest 07:00 08:30 07:30 07:45 Volume 9 0 1 14 39 0 1 0 21 1 51 2 Hi total 10 53 22 54 PHF .80 .88 .76 .91 Peak Hour Analysis By Entire Intersection for the Period: 07:00 to 09:00 on 12/21/00 Peak start 07:45 07:45 07:45 07:45 Volume 14 0 4 48 133 5 5 0 59 5 187 3 Percent 78t 01 221 20 72t 31 81 01 92t 31 961 2t Pk total 18 186 64 195 Highest 07:45 08:30 08:30 07:45 Volume 4 0 2 14 39 0 2 0 18 1 51 2 Hi total 6 53 20 54 PHF .75 .88 .80 .90 Counts Unlimited, Inc CITY OF LA QUINTA 2 20------ 25424 Jaclyn Avenue Site Code : 0009762 NIS: DESERT CLUB DRIVE Moreno Valley, CA 92557 Start Date: 12f20/cp HAW: CALLS TAMPICO 909-247-6716 File I.D. LQDCTA, WEATHER: SUNNY Page 1 TOTAL VOLUME DESERT CLUB DRIVE CALLS TAMPICO DESERT CLUB DRIVE CALLS TAMPICO Southbound Westbound Northbound Hastbound Left Thru Right Left Thru Right Left Thru Right Left Thru Right Total Date12/20/00--------------------------------------------------------------------------------•-----------------•-------------- -- Peak Hour Analysis By Entire Intersection for the Period: 16:00 to 18:00 on 12/20/00 Peak start 16:15 16:15 16:15 16:15 Volume 20 2 11 103 438 2 10 0 90 16 226 4 Percent 614 64 334 194 814 04 104 04 904 74 924 24 Pk total 33 543 100 246 Highest 16:45 17:00 16:45 16:30 Volume 7 0 3 29 133 0 4 0 24 7 63 1 Hi total 10 162 28 71 PHF .82 .84 .89 .87 i IDESERT CLUB DRIVE I CALLE TAMPICO 111 2 20 16 0 2 11 2 20------ 18 33 ' 10 TOTAL VOLUME 438 459 11 16 16 705 226 226 246 Intersection Total 922 4 4 r- 209 r----- 100 - 103 10 0 2 4 109 10 0 DESERT CLUB DRIVE 2 543 438 879 103 9 9 336 CALLE TAMPICO 2 438 103 20 226 90 Peak Hour Analysis By Individual Approach for the Period: 16:00 to 18:00 on 12/20/00 Peak start 17:00 16:15 Counts Unlimited, Inc 16:00 Volume CITY Ok LA QUINTA 4 13 103 438 2 25424 Jaclyn Avenue 1 93 17 244 Site Code ; 00097623 Percent NQS: DESERT CLUB DRIVE 101 32t 19% 811 Moreno Valley, CA 92557 1$ 89t R Start Date: 12/20/00 (� BCW: CALLS TAMPICO 40 543 909-247-6716 104 264 File I.D. LQDCTAPM I WEATHER: SUNNY 17:15 17:00 16:00 16:30 Page 1 Volume 7 0 7 29 133 TOTAL VOLUME 2 1 27 7 63 1 -------- - -.----------------------------------------------------------------------------------------------- DESERT CLUB DRIVE CALLB TAMPICO 162 DESERT CLUB DRIVE CALLS TAMPICO 30 ------------- ----- Southbound PHF .71 Westbound .84 Northbound Eastbound .87 .93 Left Thru Right Left Thru Right Left Thru Right Left Thru Right Total 18:00 on 12/20/00 Date12/20/00 ------------------------------------------------------------------------------------------------------------------ Peak start 16:15 16:15 16:15 16:15 16:00 7 1 1 18 101 1 2 1 27 2 68 0 229 90 16 226 16:15 3 0 4 21 110 0 3 0 18 3 58 2 222 90% 71 92% 16:30 4 0 2 25 100 1 1 0 24 7 63 1 228 246 16:45 7 0 Highest 21 4._ --_0_24 __�S�_�Z 16:45 16:30 Hr Total 21 1 10 92 406 3 10 1 93 17 244 3 901 0 24 7 11:00 6 2 2 29 133 0 2 0 24 1 50 1 250 71 17:15 7 0 7 27 91 1 0 0 11 6 55 0 205 .87 17:30 3 0 0 15 91 0 0 0 20 2 46 0 177 17 :4 7 2 4 13 87 0 2 0 15 2 52 0 A4 Hr Total 23 4 13 84 402 1 4 0 70 11 203 1 816 *TOTAL* 44 5 23 1 176 808 4 1 14 1 163 1 28 447 4 1 1717 Peak Hour Analysis By Individual Approach for the Period: 16:00 to 18:00 on 12/20/00 Peak start 17:00 16:15 16:00 16:00 Volume 23 4 13 103 438 2 10 1 93 17 244 3 Percent 581 101 32t 19% 811 01 10$ 1$ 89t R 921 it Pk total 40 543 104 264 Highest 17:15 17:00 16:00 16:30 Volume 7 0 7 29 133 0 2 1 27 7 63 1 Hi total 14 162 30 71 PHF .71 .84 .87 .93 Peak Hour Analysis By Entire Intersection for the Period: 16:00 to 18:00 on 12/20/00 Peak start 16:15 16:15 16:15 16:15 Volume 20 2 11 103 438 2 10 0 90 16 226 4 Percent 611 61 33t 19$ 811 01 10% 0t 90% 71 92% 2% Pk total 33 543 100 246 Highest 16:45 17:00 16:45 16:30 Volume 7 0 3 29 133 0 4 0 24 7 63 1 Hi total 10 162 28 71 PHF .82 .84 .89 .87 Counts Unlimited, Inc CITY OF LA QUINTA 46 46 25424 Jaclyn Avenue Site Code : 00097-- N/S: WASHINGTON STREET 22 Moreno Valley, CA 92557 Start Date: 12/211+00 B/W: CALLH TAMPICO 909-247-6716 File I.D. LQWAT� WEATHER: SUNNY Page 1 TOTAL VOLUME WASHINGTON STREET CALLS TAMPICO WASHINGTON STREET CALLB TAMPICO Southbound Westbound Northbound Eastbound Left Thru Right Left Thru Right Left Thru Right Left Thru Right Total Date 12/21/00----------------------- -------------------------------------------------------------------------------------------- Peak flour Analysis Ey Entire Intersection for the Period: 07:00 to 09:00 on 12/21/00 Peak start 07:30 07:30 07:30 07:30 Volume 19 389 156 22 37 46 49 477 43 137 43 45 Percent 31 69t 28% 211 35% 44$ 9% 80 8t 61t 191 20% Pk total 564 105 569 225 Highest 08:15 08:00 07:45 07:30 Volume 6 92 56 7 12 9 13 134 9 42 16 8 Hi total 154 28 156 66 PHF .92 .94 .91 .85 WASHINGTON STREET 156 389 19 137 477 46 156 389 19 660 ' 564 ' 1,224 ' CALLE TAMPICO 49 TOTAL VOLUME 37 242 156 105 137 137 467 210 43 43 225 Intersection Total 19 1,463 105 43 43 45 45 CALLE TAMPICO -- 1,025 r--- 22 49 ~ 477 389 45 456 49 477 WASHINGTON STRE T 46 46 37 37 22 22 43 43 225 Intersection Total 19 1,463 105 43 43 45 45 CALLE TAMPICO -- 1,025 r--- 22 49 ~ 477 389 45 456 49 477 WASHINGTON STRE T Counts Unlimited, Inc CITY OF LA QUINTA 25424 Jaclyn Avenue Site Code : 00097611 N/S: WASHINGTON STREET Moreno Valley, CA 92557 Start Date: 12/21/00 B/W: CALLB TAMPICO 909-247-6716 File I.D. LQWATAAM WEATHER: SUNNY Page 1 TOTAL VOLUME WASHINGTON STREET CALLB TAMPICO WASHINGTON STREET CALLS TAMPICO Southbound Westbound Northbound Eastbound Left Thru Right Left Thru Right Left Thru Right Left Thru Right Total Date12/21/00 ---------------------------------------------------------------------------------------------------------------------- 07:00 5 116 32 4 8 7 7 74 10 34 9 7 313 07:15 4 87 28 2 6 3 7 106 13 39 6 4 305 07:30 3 102 34 4 6 14 9 133 10 42 16 8 381 07:45 B 100 __8 .8 _l 13 134 9 31 10 _ s 181, Hr Total 17 405 137 18 28 35 36 447 42 146 41 34 1386 08:00 5 95 23 7 12 9 11 97 12 39 9 14 333 08:15 6 92 56 3 11 12 16 113 12 25 8 8 362 08:30 3 63 39 3 10 16 14 112 2 38 11 17 328 HAL 6 60 25 4 1 105 7 31 6 14 W Hr Total 20 310 143 1 17 41 46 52 427 33 133 34 53 1309 .......................... ......................... *TOTAL* 37 715 280 I 35 69 81 I 88 874 75 I 279 75 87 I 2695 Peak Hour Analysis By Individual Approach for the Period: 07:00 to 09:00 on 12/21/00 Peak start 07:30 07:45 07:30 07:15 Volume 19 389 156 21 41 48 49 477 43 151 41 41 Percent 31 691 28t 191 311 40 91 80 B% 651 181 181 Pk total 564 110 569 233 Highest 08:15 08:30 07:45 07:30 Volume 6 92 56 3 10 16 13 134 9 42 16 8 Hi total 154 29 156 66 PHP .92 .95 .91 .88 Peak Hour Analysis By Entire Intersection for the Period: 07:00 to 09:00 on 12/21/00 Peak start 07:30 07:30 07:30 07:30 Volume 19 389 156 22 37 46 49 477 43 137 43 45 Percent 3t 69$ 28t 21t 35$ 441 9t 84$ 81 61% 19t 201 Pk total 564 105 569 225 Highest 08:15 08:00 07:45 07:30 Volume 6 92 56 7 12 9 13 134 9 42 16 8 Hi total 154 28 156 66 PHF .92 .94 .91 .85 Counts Unlimited, Inc CITY OF LA QUINTA 32 32 25424 Jaclyn Avenue Site Code : 00097623 NIS: WASHINGTON STREET 22 Moreno Valley, CA 92557 Start Date: 12/19rj"� 53 E/W: CALLS TAMPICO 36 909-247-6716 File I.D. LQWATA WEATHER: SUNNY Page 1 TOTAL VOLUME WASHINGTON STREET CALLS TAMPICO WASHINGTON STREET CALLS TAMPICO Southbound Westbound Northbound Eastbound Left Thru Right Left Thru Right Left Thru Right Left Thru Right Total Date12/19/00----------------------------------------------------------------------------------------------- --------------------- Peak Hour Analysis By Entire Intersection for the Period: 16:00 to 18:00 on 12/19/00 Peak start 16:45 16:45 16:45 16:45 Volume 54 556 226 22 58 32 72 465 36 195 53 54 Percent 6% 67t 271 20t 521 29% 131 81% 61 65t 10 10 Pk total 836 112 573 302 Highest 17:15 17:15 17:00 17:00 Volume 15 156 58 6 23 6 23 128 11 61 17 10 Hi total 229 35 162 Be PHF .91 .80 .88 .86 CALLE TAMPICO 72 58 356 226 195 195 WASHINGTON STREET 226 556 54 195 465 32 226 556 54 692 ' 836 ' 1 1,528 ' 658 53 53 302 54 - 54 TOTAL VOLUME Intersection Total 1,823 o 1,205 573 - 22 72 465 556 54 632 72 465 WASHINGTON STRE T 112 255 CALLE TAMPICO 32 32 58 58 22 22 54 143 53 36 CALLE TAMPICO Counts Unlimited, Inc CITY OF LA QUINTA 16:45 16:45 25424 Jaclyn Avenue 16:15 Site Code : 00097623 N/S: WASHINGTON STREET Volume 54 Moreno Valley, CA 92557 22 58 32 Start Date: 12/19/00 H/W: CALLS TAMPICO 202 59 62 909-247-6716 64 671 271 204 File I.D. : LQWATAPM WEATHER: SUNNY 824 74 634 181 194 Pk total 836 Page 1 592 TOTAL VOLUME Highest 17:15 WASHINGTON STREET CALLS TAMPICO WASHINGTON STREET CALLH TAMPICO 17:00 Southbound Westbound 15 156 Northbound Eastbound 23 6 18 134 13 Left Thru Right Left Thru Right Left Thru Right Left Thru Right Total 165 Date12/19/00 ----------------------------------------------------------------------------------------------------------------------- 88 PRF .91 .80 16:00 9 119 69 12 9 8 17 103 5 50 13 14 428 By Entire 16:15 12 130 60 3 20 6 18 134 13 45 14 it 466 Peak start 16:45 16:30 15 108 53 3 14 7 16 115 8 46 16 21 422 12n 54 556 226 22 58 SA 12 20 01 195 53 Hr Total 50 486 239 24 49 29 57 460 38 191 55 66 1744 814 64 17:00 11 138 50 4 10 9 23 128 11 61 17 10 472 573 17:15 15 156 58 6 23 6 27 113 6 43 11 11 475 17:15 17:30 14 133 61 6 19 9 16 116 7 41 13 13 448 156 58 7 23 6 7 5 7 88 4 61 17 10 4 Hi total 229 Hr Total 52 553 214 20 59 29 73 445 28 175 50 42 1740 ------ *TOTAL* 102 1039 453 1 44 108 58 1 130 905 66 1 366 105 108 1 3484 .86 Peak Hour Analysis By Individual Approach for the Period: 16:00 to 18:00 on 12/19/00 Peak start 16:45 16:45 16:15 16:15 Volume 54 556 226 22 58 32 63 485 44 202 59 62 Percent 64 671 271 204 521 291 114 824 74 634 181 194 Pk total 836 112 592 323 Highest 17:15 17:15 16:15 17:00 Volume 15 156 58 6 23 6 18 134 13 61 17 10 Hi total 229 35 165 88 PRF .91 .80 .90 .92 Peak Hour Analysis By Entire Intersection for the Period: 16:00 to 18:00 on 12/19/00 Peak start 16:45 16:45 16:45 16:45 Volume 54 556 226 22 58 32 72 465 36 195 53 54 Percent 64 674 274 204 524 294 134 814 64 654 184 181 Pk total 836 112 573 302 Highest 17:15 17:15 17:00 17:00 Volume 15 156 58 6 23 6 23 128 11 61 17 10 Hi total 229 35 162 88 PHF .91 .80 .88 .86 Appendix 2 1998 HCM UNSIGNALIZED INTERSECTION METHODOLOGY AND WORKSHEETS HCM Methodology Circular 373 Worksheets HCS Worksheets Existing (Year 2000) Worksheets Year 2003 Ambient (No Project) Worksheets Year 2003+Project Worksheets Post 2020 No Project Worksheets Post 2020+Project Worksheets El I- Appendix 2 Highway Capacity Manual Unsignalized Intersection Methodology Some of the key intersections in the study area are unsignalized and controlled by stop signs on one or more of the approaches. To evaluate the ability of these intersections to serve traffic demands during peak hours, the capacity was determined for each minor approach movement and the left turns onto the minor street, and then compared to the demand for each movement. In this manner, the probable delay and level of service were estimated during the peak hour from Table A-2. The methodology utilized to determine the maximum capacity of the minor approach movements and the left turn onto the minor street (in passenger car equivalents per hour or PCPH) accounts for approach grade and speed, traffic mix, lane configuration, and type of traffic control. It allows the maximum potential capacity to be determined from the conflicting volumes and the critical gap associated with each type of vehicle maneuver. Once the capacity of each of the critical movements is calculated, the anticipated delay and the level of service for each of the critical movements can be evaluated. Typically, the movement with the longest average total delay or worst level or service defines the overall evaluation; however, this may be tempered by engineering judgment, when conditions warrant it. For example, left turns from the minor leg may experience delay consistent with LCIS F operation, but the major through movements will experience no delay. If we reduce the delay for the traffic on the minor leg by installing a traffic signal, we may increase the overall intersection delay. For this reason, excessive delays on the minor legs of two-way stop intersections are only mitigated with a traffic signal when traffic signal warrants are met. This eliminates the situation where a large number of cars are delayed for the benefit of only a few cars. Table A-2 1998 HCM Unsignalized Intersection Level of Service Criteria Minor Movement Minor Movement Average Control Delay Level of Service (SecondsNehicle) A :_ 10.0 B >10.0 and :_15.0 C >15.0 and :_25.0 D >25.0 and !05.0 E >35.0 and :550.0 F > 50.0 Source: "Highway Capacity Manual, Special Report 209", Transportation Research Board, 1998; pp. 10-25. AWSC Intersection Analysis TRB Circular 373 Intersection: Eisenhower Drive and Calle Tampico - Existing AM Peak Input Worsheet Capacity Analysis Worksheet LOS Worksheet Intersection Turn Turn Lanes Pk Hr Distib & Turn Mvmt Approach V/C Delay Level of Average Level of Movement Vol Prop Lt Factor Lane Effects Effects Capacity Ratio (seconds) Service Delay Service SR 1 0 l Flow Rate Opp A Opp A Conf A Conf A ST 110 2 1 977 52 1029 0.15 2 A SL 44 1 1 WR 55 1 1 0.55 110 WT 1 1 1 410 -30 380 0.26 3 A WL 43 0 1 0.28 7 B NR 51 0 1 0.00 0.43 NT 567 2 1 1136 -46 1090 0.57 9 B NL 1 1 1 1 99 3 774 876 ER 1 0 1 0.00 0.88 ET 1 1 1 77 -14 63 0.05 1 A EL 1 0 1 0.06 51 0.08 Intersection: Eisenhower Drive and Calle Tampico s Existing AM Peak Date: 1/12/01 Volume Summary Worksheet Flow Sub App Prop Prop Opposing Conflicting Total Inter Prop Sub A Prop Opp A Prop Conf A Prop Lt Prop Rt Prop Lt Prop Rt Rate Flow Rate Lt Rt Approach Approach Flow Rate Flow Rate Flow Rate Flow Rate Opp A Opp A Conf A Conf A (>0.2,<0.5) (>0.0,<0.5) (>0.2,<0.5) (need to be less than 0.35) 1 0.01 0.08 0.55 110 155 619 102 876 0.18 0.71 0.12 44 0.28 0.00 0.43 55 0.56 0.33 0.07 1 99 3 774 876 0.11 0.00 0.88 43 0.43 0.33 0.06 51 0.08 0.01 0.55 567 619 155 102 876 0.71 0.18 0.12 1 0.00 0.28 0.43 1 0.33 0.56 0.07 1 3 99 774 876 0.00 0.11 0.88 1 0.33 0.43 0.06 Date: 1/12/01 AWSC Intersection Analysis TRB Circular 373 Intersection: Eisenhower Drive and Calle Tampico - Existing PM Peak Intersection: Eisenhower Drive and Calle Tampico - Existing PM Peak Input Worsheet Capacity Analysis Worksheet LOS Worksheet Volume Summary Worksheet Intersection Turn Turn Lanes Pk Hr Distib & Turn Mvmt Approach V/C Delay Level of Average Level of Movement Vol Prop Conf A Factor Lane Effects Effects Capacity Ratio (seconds) Service Delay Service SR 1 0 1 Flow Rate Flow Rate Opp A Opp A Conf A Conf A ST 556 2 1 1034 -110 924 0.64 H C 1 SL 36 1 1 0.23 WR 43 1 1 0.24 556 593 WT 1 1 1 460 40 500 0.37 4 A WL 143 0 1 8 B NR 88 0 1 43 0.23 NT 285 2 I 977 -171 806 0.47 6 B NL 3 1 i 0.00 0.84 143 ER 2 0 ! 0.25 ET 1 1 1 112 -167 -55 -0.07 1 A EL 1 0 1 0.24 285 376 593 191 Intersection: Eisenhower Drive and Calle Tampico - Existing PM Peak Date: 1/12/01 Volume Summary Worksheet Flow Sub App Prop Prop Opposing Conflicting Total Inter Prop Sub A Prop Opp A Prop Conf A Prop Lt Prop Rt Prop Lt Prop Rt Rate Flow Rate Lt Rt Approach Approach Flow Rate Flow Rate Flow Rate Flow Rate Opp A Opp A Conf A Conf A (>0.2,<0.5) (>0.0,<0.5) (>0.2,<0.5) (need to be less than 0.35) 1 0.00 0.23 0.24 556 593 376 191 1160 0.51 0.32 0.16 36 0.06 0.01 0.75 43 0.23 0.50 0.09 1 187 4 969 1160 0.16 0.00 0.84 143 0.76 0.25 0.04 88 0.23 0.00 0.24 285 376 593 191 1160 0.32 0.51 0.16 3 0.01 0.06 0.75 2 0.50 0.23 0.09 1 4 187 969 1160 0.00 0.16 0.84 1 0.25 0.76 0.04 Date: 1/12/01 HCS: Unsignalized Intersections Release 3.1b WO -WAY STOP CONTROL(TWSC) ANALYSIS Analyst: Greg Intersection: Avenida Mendoza @ Calle Tampico Count Date: Existing Time Period: AM Peak Intersection Orientation: East-West Major St. Vehicle Volume Data: Movements: 2 3 4 5 7 9 -----------------------------------------------------_-------_ Volume: 118 3 3 75 3 3 HFR: 118 3 3 75 3 3 PHF: 1.00 1.00 1.00 1.00 1.00 1.00 PHV: 0.08 0.08 0.08 0.08 0.08 0.08 Pedestrian Volume Data: Movements: Flow: Lane width: Walk speed: % Blockage: Median Type: Raised Curb # of vehicles: 2 Flared approach Movements: # of vehicles: Northbound 0 # of vehicles: Southbound 0 Lane usage for movements 1,20 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T rR ----------------------- --- N Y N N Y Y N N N Channelized: N Grade: 0.00 Lane usage for movements 4,5&6 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R ------------------------------------------ Y N N N Y N N Y N Channelized: N Grade: 0.00 Lane usage for movements 7,8&9 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R ------------------------------------------- Y N Y N N N N N N Channelized: N Grade: 0.00 Lane usage for movements 10,11&12 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R ----------------_----------------------------- N N N N N N N N N Channelized: N Grade: 0.00 Data for Computing Effect of Delay to Major Street Vehicles: Follow Up Time Calculations: Movement 4 7 Eastbound Westbound 2.2 Shared In volume, major th vehicles: 0 0 1.0 Shared In volume, major rt vehicles: 0 0 0.08 Sat flow rate, major th vehicles: 1700 1700 830 Sat flow rate, major rt vehicles: 1700 1700 Number of major street through lanes: 2 2 Length of study period, hrs: 0.25 Worksheet 4 Critical Gap and Follow-up time calculation. Critical Gap Calculations: Movement 4 7 9 t c,base }_----------------- 4.1 7.5 6.9 --------------------------------- t c,hv 2.0 2.0 2.0 P by 0.08 0.08 0.08 t c,g 0.2 0.1 G 0.00 0.00 0.00 t 3,lt 0.0 0.7 0.0 t c,T: 1 stage 0.00 0.00 0.00 2 stage 0.00 1.00 0.00 t c 1 stage 4.3 7.0 7.1 2 stage 4.3 6.0 7.1 Follow Up Time Calculations: Movement 4 7 9 ------------------ t f,base 2.2 3.5 ---------------------------------- 3.3 t f,HV 1.0 1.0 1.0 P by 0.08 0.08 0.08 t f ----------------------------------------------------------------------------------------------- 2.3 3.6 3.4 Worksheet 6 Impedance and capacity equations Step 1: RT from Minor St. 9 12 Conflicting Flows 61 Potential Capacity 973 Pedestrian Impedance Factor 1.00 Movement Capacity 973 Probability of Queue free St. 1.00 ----------------------------------------------------------------------------------------------- Step 2: LT from Major St. 4 1 Conflicting Flows 121 Potential Capacity 1421 Pedestrian Impedance Factor 1.00 Movement Capacity 1421 Probability of Queue free St. 1.00 ----------------------------------------------------------------------------------------------- Worksheet 7a - Computation of the effect of Two-stage gap acceptance Step 3: TH from Minor St. 8 11 Part 1- First Stage -------------------------------- Conflicting Flows ------•---------------------------------------- 120 81 Potential Capacity 801 832 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 1.00 Movement Capacity 801 830 Probability of Queue free St. ----------------------------------------------------------------------------------------------- 1.00 1.00 Part 2- Second Stage Conflicting Flows 81 121 Potential Capacity 832 800 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 1.00 Movement Capacity 830 800 ----------------------------------------------------------------------------------------------- Part 3- Single Stage --------------------------------------------------_------------------------------------------- Conflicting Flows 201 202 Potential Capacity 699 698 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 1.00 Movement Capacity 698 696 ---------------------_------------__-------_----_--_--------------------------------------- -- Result for 2 stage process: a 0.95 0.95 y 0.78 1.33 C t 735 733 Probability of Queue free St. 1.00 1.00 ----------------------------------------------------------------------------------------------- Worksheet 7b - Computation of the effect of Two-stage gap acceptance Step 4: LT from Minor St. 7 10 Part 1- First Stage ----------------------------------- ------------------------------------- Conflicting Flows 120 81 Potential Capacity 875 939 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 1.00 Movement Capacity ----------------------------------------------------------------------------------------------- 875 937 Part 2- Second Stage -- --_-------------------------_--__-- __------------------------------ Conflicting Flows 44 59 Potential Capacity 956 962 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 1.00 Movement Capacity ----------------------------------------------------------------------------------------------- 954 959 Part 3- Single Stage ---_-----------_---------_-_- --------------------------------------- Conflicting Flows 163 140 Potential Capacity 795 845 Pedestrian Impedance Factor 1.00 1.00 Maj. L, Min T Impedance factor 1.00 1.00 Maj. L, Min T Adj. Imp Factor. 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 1.00 Movement Capacity ----------------------------------------------------------------------------------------------- 794 841 Result for 2 stage process: ------------------ ---------------------- a 095 ------------------- 095 y 0.51 0.83 C t ----------------------------------------------------------------------------------------------- 819 864 Worksheet 8 Shared Lane Calculations Shared Lane Calculations Movement 7 8 9 10 11 12 --------------------------------------I------ -- -------il---------------------------------�-- v(vph) 3 3 Movement Capacity 819 973 Shared Lane Capacity 890 ----------------------------------------------------------------------------------------------- Worksheet 10 delay,queue length, and LOS Movement 1 4 7 8 9 10 11 12 ----------_---------------------------------- - ---- -------�- -- _ --------------------------- v(vph) 3 6 C m(vph) 1421 890 v/c 0.00 0.01 958 queue length Control Delay 7.5 9.1 LOS A A Approach Delay 9.1 Approach LOS A HCS: Unsignalized Intersections Release 3.1b TWO-WAY STOP CONTROL(TWSC) ANALYSIS Analyst: Greg Intersection: Avenida Mendoza @ Calle Tampico Count Date: Existing Time Period: PM Peak Intersection Orientation: East-West Major St. Vehicle Volume Data: Movements: 2 3 4 5 7 9 --------------------------------_----------- Volume: 138 9 8 191 8 6 HFR: 138 9 8 191 8 6 PHF: 1.00 1.00 1.00 1.00 1.00 1.00 PHV: 0.08 0.08 0.08 0.08 0.08 0.08 Pedestrian Volume Data: Movements: Flow: Lane width: Walk speed: 8 Blockage: Median Type: Raised Curb # of vehicles: 2 Flared approach Movements: # of vehicles: Northbound 0 # of vehicles: Southbound 0 Lane usage for movements 1,2&3 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R N Y N N Y Y N N N Channelized: N Grade: 0.00 Lane usage for movements 4,5&6 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R ------------- N ------N N ---- Y Y N N Y N Channelized: N Grade: 0.00 Lane usage for movements 7,8&9 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R ----------------------------------------------------------------------------------------------- Y N Y N N N N N N Channelized: N Grade: 0.00 Lane usage for movements 10,11&12 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R ----------------------------------------------------------------------------------------------- N N N N N N N N N Channelized: N Grade: 0.00 Data for Computing Effect of Delay to Major Street Vehicles: Length of study period, hrs: 0.25 Worksheet 4 Critical Gap and Follow-up time calculation. Critical Gap Calculations: Movement 4 Eastbound Westbound Shared In volume, major th vehicles: 0 0 Shared In volume, major rt vehicles: 0 0 Sat flow rate, major th vehicles: 1700 1700 Sat flow rate, major rt vehicles: 1700 1700 Number of major street through lanes: 2 2 Length of study period, hrs: 0.25 Worksheet 4 Critical Gap and Follow-up time calculation. Critical Gap Calculations: Movement 4 7 9 --~_-____ t c,base _-- 4.1 7.5 _ _ - 6.9 t c,hv 2.0 2.0 2.0 P by 0.08 0.08 0.08 t c,g 2.3 0.2 0.1 G 0.00 0.00 0.00 t 3,lt 0.0 0.7 0.0 t c,T: 1 stage 0.00 0.00 0.00 2 stage 0.00 1.00 0.00 t c 1 stage 4.3 7.0 7.1 2 stage 4.3 6.0 7.1 Follow Up Time Calculations: Movement 4 7 9 - --------------- t f,base 2.2 3.5 --------_------------------- 3.3 t f,HV 1.0 1.0 1.0 P by 0.08 0.08 0.08 t f ----------------------------------------------------------------------------------------------- 2.3 3.6 3.4 Worksheet 6 Impedance and capacity equations Step 1: RT from Minor St. 9 12 Conflicting Flows 74 Potential Capacity 954 Pedestrian Impedance Factor 1.00 Movement Capacity 954 Probability of Queue free St. 0.99 ----------------------------------------------------------------------------------------------- Step 2: LT from Major St. 4 1 Conflicting Flows 147 Potential Capacity 1390 Pedestrian Impedance Factor 1.00 Movement Capacity 1390 Probability of Queue free St. 0.99 ------------------------------------------------------------------------------------------------ worksheet 7a - Computation of the effect of Two-stage gap acceptance Step 3: TH from Minor St. 8 11 Part 1- First Stage -------------------------- Conflicting Flows -----------------------------------------------_ 143 207 Potential Capacity 783 734 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 0.99 Movement Capacity 783 730 Probability of Queue free St. ----------------------------------------------------------------------------------------------- 1.00 1.00 Part 2- Second Stage Conflicting Flows 207 147 Potential Capacity 734 779 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 0.99 1.00 Movement Capacity 730 779 ----------------------------------------------------------------------------------------------- Part 3- Single Stage -------------------------------------------__--------------------------------------- ---- Conflicting Flows 350 354 '. Potential Capacity 578 574 Pedestrian Impedance Factor 1.00 1.00 ------- 207 _ _-- - - Cap. Adj. factor due to Impeding mvmnt 0.99 0.99 Pedestrian Impedance Factor Movement Capacity -----574------_---- - 571 1.00 Result for 2 stage process: -------------------------------------------------------___--__---:--------------------------__ Movement Capacity 852 809 a 0.95 0.95 Conflicting Flows -- ---------- y 1.34 0.79 883 C t 657 654 1.00 Probability of Queue free St. ----------------------------------------------------------------------------------------------- 1.00 1.00 Worksheet 7b - Computation of the effect of Two-stage gap acceptance Step 4: LT from Minor St. 7 10 Part 1- First Stage .----•---------------------- Conflicting Flows 143 ------- 207 _ _-- - - Potential Capacity 852 814 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 0.99 Movement Capacity 852 809 Part 2- Second Stage --------------------------------____------. Conflicting Flows -- ---------- 112 69 Potential Capacity 883 952 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 0.99 0.99 Movement Capacity ----------------------------------------------------------------------------------------------- 878 946 Part 3- Single Stage ----------------------- Conflicting Flows 254 ------------------------------------- 276 Potential Capacity 696 696 Pedestrian Impedance Factor 1.00 1.00 Maj. L, Min T Impedance factor 0.99 0.99 Maj. L, Min T Adj. Imp Factor. 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 0.99 Movement Capacity ----------------------------------------------------------------------------------------------- 693 689 Result for 2 stage process: - ------------------------ a ---------------------•-------------------- 0.95 0.95 y 0.86 0.48 C t ----------------------------------------------------------------------------------------------- 766 752 Worksheet 8 Shared Lane Calculations Shared Lane Calculations Movement 7 8 9 10 11 12 v(vph) 8 6 Movement Capacity 766 954 Shared Lane Capacity 837 ------------------------------------------------------------------------------------------ Worksheet 10 delay,queue length, and LOS Movement 1 4 7 8 9 10 11 12 ----- ----- --------------------------------- v(vph) 8 14 C m(vph) 1390 837 v/c 0.01 0.02 95% queue length Control Delay 7.6 9.4 LOS A A Approach Delay 9.4 Approach LOS A AWSC Intersection Analysis TRB Circular 373 Intersection: Avenida Bermudas and Calle Tampico - Existing AM Peak Intersection: Avenida Bermudas and Calle Tampico - Existing AM Peak In ut Worsheet Capacity Analysis Worksheet LOS Worksheet Intersection Turn Turn Lanes Pk Hr Distib & Turn Mvmt Approach V/C Delay Level of Average Level of Movement Vol Prop Lt Factor Lane Effects Effects Capacity Ratio (seconds) Service Delay Service SR 1 0 1 Flow Rate Opp A Opp A Conf A Conf A ST 3 1 1 255 54 309 0.02 1 A 1 SL 2 0 1 0.84 WR 1 0 1 0.09 3 WT 77 2 1 855 230 1085 0.15 2 A WL 82 1 1 0.33 2 A NR 125 1 1 0.14 NT 2 1 1 657 -137 520 0.28 3 A NL 21 0 1 0.82 77 160 104 154 ER 23 0 1 0.38 0.25 ET 76 2 1 816 50 866 0.12 2 A EL 5 1 I 0.05 0.15 125 Intersection: Avenida Bermudas and Calle Tampico - Existing AM Peak Date: 1/13/01 9 Volume Summary Worksheet Flow Sub App Prop Prop Opposing Conflicting Total Inter Prop Sub A Prop Opp A Prop Conf A Prop Lt Prop Rt Prop Lt Prop Rt Rate Flow Rate Lt Rt Approach Approach Flow Rate Flow Rate Flow Rate Flow Rate Opp A Opp A Conf A Conf A (>0.2,<0.5) (>0.0,<0.5) (>0.2,<0.5) (need to be less than 0.35) 1 0.17 0.84 0.09 3 6 148 264 418 0.01 0.35 0.63 2 0.33 0.14 0.33 1 0.01 0.22 0.82 77 160 104 154 418 0.38 0.25 0.37 82 0.51 0.05 0.15 125 0.84 0.17 0.09 2 148 6 264 418 0.35 0.01 0.63 21 0.14 0.33 0.33 23 0.22 0.01 0.82 76 104 160 154 418 0.25 0.38 0.37 5 0.05 0.51 0.15 Date: 1/13/01 9 AWSC Intersection Analysis TRB Circular 373 Intersection: Avenida Bermudas and Calle Tampico - Existing PM Peak Intersection: Avenida Bermudas and Calle Tampico • Existing PM Peak Input Worsheet Capacity Analysis Worksheet LOS Worksheet Intersection Turn Turn Lanes Pk Hr Distib & Turn Mvmt Approach V/C Delay Level of Average Level of Movement Vol Prop Lt Factor Lane Effects Effects Capacity Ratio (seconds) Service Delay Service SR 1 0 1 Flow Rate Opp A Opp A Conf A Conf A ST I 1 1 133 12 145 0.02 1 A SL 1 0 1 0.81 WR 9 0 1 l 3 WT 177 2 1 1044 212 1256 0.34 4 A WL 240 1 1 4 A NR 112 l 1 0.43 9 NT 7 1 1 490 -141 349 0.40 5 B 0.19 NL 19 0 1 160 141 727 0.59 0.22 ER 31 0 1 ET 117 2 1 933 34 967 0.17 2 A EL 12 1 1 112 0.81 Intersection: Avenida Bermudas and Calle Tampico • Existing PM Peak Date: 1/13/01 Volume S mmary Worksheet Flow Sub App Prop Prop Opposing Conflicting Total Inter Prop Sub A Prop Opp A Prop Conf A Prop Lt Prop Rt Prop Lt Prop Rt Rate Flow Rate Lt Rt Approach Approach Flow Rate Flow Rate Flow Rate Flow Rate Opp A Opp A Conf A Conf A (>0.2,<0.5) (>0.0,<0.5) (>0.2,<0.5) (need to be less than 0.35) 1 0.33 0.81 0.07 l 3 138 586 727 0.00 0.19 0.81 1 0.33 0.14 0.43 9 0.02 0.19 0.80 177 426 160 141 727 0.59 0.22 0.19 240 0.56 0.08 0.14 112 0.81 0.33 0.07 7 138 3 586 727 0.19 0.00 0.81 19 0.14 0.33 0.43 31 0.19 0.02 0.80 117 160 426 141 727 0.22 0.59 0.19 12 0.08 0.56 0.14 Date: 1/13/01 HCS: Unsignalized Intersections Release 3.1b TWO-WAY STOP CONTROL(TWSC) ANALYSIS Analyst: Greg Intersection: Avenida Mendoza g Calle Tampico Count Date: Year 2003 Ambient Time Period: AM Peak Major St. Intersection Orientation: East-West Vehicle Volume Data: Movements: 3 4 5 7 9 ---------------__-____-_------_ ----2- Volume: 197 3 3 154 3 __r ___ 3 HFR: 197 3 3 154 3 3 PHF: 1.00 1.00 1.00 1.00 1.00 1.00 PHV: 0.08 0.08 0.08 0.08 0.08 ---------------------------------------------------- 0.08 --_---..--------_-__--_------------------- t ! Pedestrian Volume Data: Movements: Flow: Lane width: Walk speed: % Blockage: Median Type: Raised Curb # of vehicles: 2 Flared approach Movements: # of vehicles: Northbound 0 # of vehicles: Southbound 0 Lane usage for movements 1,20 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R -- - ---- - ----------_-- N YNN Y Y N N N Channelized: N Grade: 0.00 Lane usage for movements 4,5&6 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R ---------------•--_------- Y N N N Y N N Y N Channelized: N Grade: 0.00 Lane usage for movements 7,8&9 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R ------------------------- Y N Y N N N N N N Channelized: N Grade: 0.00 Lane usage for movements 10,11&12 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R ------------------------ N N N N N N N N N Channelized: N Grade: 0.00 Data for Computing Effect of Delay to Major Street Vehicles: Length of study period, hrs: 0.25 Worksheet 4 Critical Gap and Follow-up time calculation. Critical Gap Calculations: Movement 4 Eastbound Westbound Shared In volume, major th vehicles: 0 0 Shared In volume, major rt vehicles: 0 0 Sat flow rate, major th vehicles: 1700 1700 Sat flow rate, major rt vehicles: 1700 1700 Number of major street through lanes: 2 2 Length of study period, hrs: 0.25 Worksheet 4 Critical Gap and Follow-up time calculation. Critical Gap Calculations: Movement 4 7 9 ------------------- t c,base 4.1 7.5 -4 -------------------------------------------- 6.9 t c,hv 2.0 2.0 2.0 P by 0.08 0.08 0.08 t c,g 2.3 0.2 0.1 G 0.00 0.00 0.00 t 3,lt 0.0 0.7 0.0 t c,T: 1 stage 0.00 0.00 0.00 2 stage 0.00 1.00 0.00 t c 1 stage 4.3 7.0 7.1 2 stage 4.3 6.0 7.1 Follow Up Time Calculations: Movement 4 7 9 ------------------------ t f,base 2.2 3.5 _-------------------------------------------- 3.3 t f,HV 1.0 1.0 1.0 P by 0.08 0.08 0.08 t f 2.3 3.6 3.4 worksheet 6 Impedance and capacity equations Step 1: RT from Minor St. 9 12 Conflicting Flows 100 Potential Capacity 917 Pedestrian Impedance Factor 1.00 Movement Capacity 917 Probability of Queue free St. 1.00 ----------------------------------------------------------------------------------------------- Step 2: LT from Major St. 4 1 Conflicting Flows 200 Potential Capacity 1327 Pedestrian Impedance Factor 1.00 Movement Capacity 1327 Probability of Queue free St. 1.00 ----------------------------------------------------------------------------------------------- Worksheet 7a - Computation of the effect of Two-stage gap acceptance Step 3: TH from Minor St. 8 11 Part 1- First Stage -------------------------------------------------------------------------------------------- Conflicting Flows 199 160 Potential Capacity 741 769 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 1.00 Movement Capacity 741 768 Probability of Queue free St. 1.00 1.00 ----------------------------------------------------------------------------------------------- Part 2- Second Stage Conflicting Flows 160 200 Potential Capacity 769 739 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 1,00 Movement Capacity 768 739 ----------------------------------------------------------------------------------------------- Part 3- Single Stage ---------------------------------------------------------------------- Conflicting Flows 359 360 Result for 2 stage process: a 0.95 0.95 y 0.86 1.19 C t 657 655 Probability of Queue free St. 1.00 1.00 ----------------------------------------------------------------------------------------------- Worksheet 7b - Computation of the effect of Two-stage gap acceptance Step 4: LT from Minor St. 7 10 Part 1- First Stage Potential Capacity 571 570 199 Pedestrian Impedance Factor 1.00 1.00 858 Cap. Adj. factor due to Impeding mvmnt 1 00 1.00 Cap. Adj. factor due to Impeding mvmnt Movement Capacity 1.00 Movement Capacity ----------------------------------------------------------------------------------------------- 798 _______________________________________-_____-____--_--_-____-____- __570_ -__________569____® ---------------------------------------- - Result for 2 stage process: a 0.95 0.95 y 0.86 1.19 C t 657 655 Probability of Queue free St. 1.00 1.00 ----------------------------------------------------------------------------------------------- Worksheet 7b - Computation of the effect of Two-stage gap acceptance Step 4: LT from Minor St. 7 10 Part 1- First Stage 913 --- Conflicting Flows- _ 199 ------------------------------- 160 Potential Capacity 798 858 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 1.00 Movement Capacity ----------------------------------------------------------------------------------------------- 798 856 Part 2- Second Stage Conflicting Flows 83 99 Potential Capacity 913 920 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 1.00 Movement Capacity ----------------------------------------------------------------------------------------------- 911 917 Part 3- Single Stage Conflicting Flows 282 259 Potential Capacity 669 714 Pedestrian Impedance Factor 1.00 1.00 Maj. L, Min T Impedance factor 1.00 1.00 Maj. L, Min T Adj. Imp Factor. 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 1.00 Movement Capacity ----------------------------------------------------------------------------------------------- 668 710 Result for 2 stage process: ---------------------------------------- a -- _------- 0.95 0 95 y 0.53 0.72 C t ----------------------------------------------------------------------------------------------- 738 781 worksheet 8 Shared Lane Calculations Shared Lane Calculations Movement 7 8 9 10 11 12 ------------------------------------------------------- ------------- -- I ------ ______II 1 v(vph) 3 3 Movement Capacity 738 917 Shared Lane Capacity 818 ----------------------------------------------------------------------------------------------- Worksheet 10 delay,queue length, and LOS Movement 1 4 7 8 9 10 11 12 µ----------------------------------------------------------------------------i--------------- ------ ------ii II I v(vph) 3 6 C m(vph) 1327 818 v/c 0.00 0.01 95% queue length Control Delay 7.7 9.4 LOS A A Approach Delay 9.4 Approach LOS A HCS: Unsignalized Intersections Release 3.1b TWO-WAY STOP CONTROL(TWSC) ANALYSIS Analyst: Greg Intersection: Avenida Mendoza @ Calle Tampico Count Date: Year 2003 Ambient Time Period: PM Peak Intersection Orientation: East-West Major St. Vehicle Volume Data: Movements: 2 3 4 5 7 9 ___------___-_____------------r_____-_ Volume: 226 10 9 303 9 6 HFR: 226 10 9 303 9 6 PHF: 1.00 1.00 1.00 1.00 1.00 1.00 PHV: ----------------------------------------------------------------------------------------------- 0.08 0.08 0.08 0.08 0.08 0.08 Pedestrian Volume Data: Movements: Flow: Lane width: Walk speed: % Blockage: Median Type: Raised Curb # of vehicles: 2 Flared approach Movements: # of vehicles: Northbound 0 # of vehicles: Southbound 0 Lane usage for movements 1,2&3 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R -------------- - 7- --------------------------------- ---------------- N YN N Y Y N N N Channelized: N Grade: 0.00 Lane usage for movements 4,5&6 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R ----------------------------------------------------------------------------------------------- Y N N N Y N N Y N Channelized: N Grade: 0.00 Lane usage for movements 7,8&9 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R --------------------- Y N Y N N N N N N Channelized: N Grade: 0.00 Lane usage for movements 10,11&12 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R ----------------------------------------------------------------------------------------------- N N N N N N N N N Channelized: N Grade: 0.00 Data for Computing Effect of Delay to Major Street Vehicles: Follow Up Time Calculations: Movement Eastbound Westbound 9 Shared In volume, major th vehicles: 0 0 - 3.3 Shared In volume, major rt vehicles: 0 0 1.0 Sat flow rate, major th vehicles: 1700 1700 0.08 Sat flow rate, major rt vehicles: 1700 1700 3.4 Number of major street through lanes: 2 2 i. Length of study period, hrs: 0.25 ----------------------- - ---- --------------- __-----_--__---_------------------------------------- Worksheet 4 Critical Gap and Follow-up Worksheet time calculation. Critical Gap Calculations: Movement 4 7 9 -------------------------- t c,base 4.1 7.5 6.9 `* t c,hv 2.0 2.0 2.0 P by 0.08 0.08 0.08 t c,g 0.2 0.1 G 0.00 0.00 0.00 t 3,lt 0.0 0.7 0.0 t c,T: 1 stage 0.00 0.00 0.00 2 stage 0.00 1.00 0.00 t c 1 stage 4.3 7.0 7.1 2 stage 4.3 6.0 7.1 Follow Up Time Calculations: Movement 4 7 9 ------------------.-------------- t f,base 2.2 3.5 - 3.3 t f,HV 1.0 1.0 1.0 P by 0.08 0.08 0.08 t f ----------------------------------------------------------------------------------------------- 2,3 3.6 3.4 Worksheet 6 Impedance and capacity equations Step 1: RT from Minor St. 9 12 Conflicting Flows 118 Potential Capacity 893 Pedestrian Impedance Factor 1.00 Movement Capacity 893 Probability of Queue free St. 0.99 ----------------------------------------------------------------------------------------------- Step 2: LT from Major St. 4 1 Conflicting Flows 236 Potential Capacity 1286 Pedestrian Impedance Factor 1.00 Movement Capacity 1286 Probability of Queue free St. 0.99 Worksheet 7a - Computation of the effect of Two-stage gap acceptance Step 3: TH from Minor St. 8 11 Part 1- First Stage -------------------------------------- - _------------------------------------ Conflicting Flows 231 321 Potential Capacity 717 655 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 0.99 Movement Capacity 717 651 Probability of Queue free St. 1.00 1.00 ----------------------------------------------------------------------------------------------- Part 2- Second Stage Conflicting Flows 321 236 Potential Capacity 655 713 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 0.99 1.00 Movement Capacity 651 713 ----------------------------------------------------------------------------------------------- Part 3- Single Stage ---- ----------------------------- Conflicting Flows-_-- - 552 557 i �: Potential Capacity 444 442 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 0.99 0.99 Movement Capacity 441 438 Result for 2 stage process: ( -------------------------:--------------------------------------------- � a 0.95 0.95 i1 y 1.32 0.80 C t 568 565 Probability of Queue free St. 1.00 1.00 ----------------------------------------------------------------------------------------------- Worksheet 7b - Computation of the effect of Two-stage gap acceptance Step 4: LT from Minor St. 7 10 Part 1- First Stage _-- -------------,...__--____.,_-__-_------ _ _Y___ ConflictingFlows 231 321 Potential Capacity 768 714 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 0.99 Movement Capacity ----------------------------------------------------------------------------------------------- 768 709 Part 2- Second Stage 749 ..--------------------------__----_-__-_ Conflicting -Flows---- - _-- 170 113 Potential Capacity 825 905 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 0.99 0.99 Movement Capacity 820 899 Part 3- Single Stage _-___ ----------------------------------------- C m(vph) ConflictingFlows-' -____ 401 434 Potential Capacity 562 555 Pedestrian Impedance Factor 1.00 1.00 Maj. L, Min T Impedance factor 0.99 0.99 Maj. L, Min T Adj. Imp Factor. 0.99 0.99 Cap. Adj. factor due to Impeding mvmnt 0.99 0.99 Movement Capacity ----------------------------------------------------------------------------------------------- 559 549 Result for 2 stage process: --------------_-_.----------------------------- -------------------------- a 0.95 0.95 y 0.80 0.47 C t ----------------------------------------------------------------------------------------------- 677 653 Worksheet 8 Shared Lane Calculations Shared LaneCalculations Movement ______________ 7 8 9 10 11 12 ----___------________---------_-___-_- ------ v(vph) I____-_ 9 EE I 6 Movement Capacity 677 893 Shared Lane Capacity ----------------------------------------------------------------------------------------------- 749 Worksheet 10 delay,queue length, and LOS Movement 1 4 7 ------ 8 9 10 11 12 ------------------------------- ------ v(vph) 9 15 i C m(vph) 1286 749 v/C 0.01 0.02 95% queue length Control Delay 7.8 9.9 LOS A A Approach Delay 9.9 Approach LOS A HCS: unsignalized Intersections Release 3.1b TWO-WAY STOP CONTROL(TWSC) ANALYS Analyst: Greg Intersection: Avenida Mendoza @ Calle Tampico Count Date: Year 2003 W/ Proj Time Period: AM Peak Intersection Orientation: East-West Major St. Vehicle Volume Data: Movements: 1 2 3 4 5 6 7 8 9 10 11 12 ------------------------------------------------------------------------------ Volume: 5 241 3 3 143 13 3 1 3 39 3 23 HFR: 5 241 3 3 143 13 3 1 3 39 3 23 PHF: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 PHV: ----------------------------------------------------------------------------------------------- 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 Pedestrian Volume Data: Movements: Flow: Lane width: Walk speed: % Blockage: Median Type: Raised Curb # of vehicles: 2 Flared approach Movements: # of vehicles: Northbound 0 # of vehicles: Southbound 0 Lane usage for movements 1,20 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R ------------------------- Y N N N Y N N Y Y Channelized: N Grade: 0.00 Lane usage for movements 4,5&6 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R -------------- N ------_ IV N Y N N Y Y Channelized: N Grade: 0.00 Lane usage for movements 7,8&9 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R ----------------------- -- ----__ Y Y Y N N N N N N Channelized: N Grade: 0.00 Lane usage for movements 10,11&12 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R - ------------------------------------------------ Y --- - ----------- Y Y Y N N N N N N Channelized: N Grade: 0.00 Data for Computing Effect of Delay to Major Street Vehicles: Worksheet 4 Critical Gap and Follow-up time calculation. Critical Gap Calculations: Movement 1 4 Eastbound Westbound 9 Shared In volume, major th vehicles: 0 0 4.1 Shared In volume, major rt vehicles: 0 0 ------------------------------------------- 7.5 Sat flow rate, major th vehicles: 1700 1700 2.0 Sat flow rate, major rt vehicles: 1700 1700 2.0 Number of major street through lanes: 2 2 0.08 Length of study period, hrs: 0.25 0.08 0.08 Worksheet 4 Critical Gap and Follow-up time calculation. Critical Gap Calculations: Movement 1 4 7 8 9 10 11 12 ------------------------------------------ t c,base 4.1 4.1 7.5 6.5 6.9 ------------------------------------------- 7.5 6.5 6.9 t c,hv 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 P by 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 t c,g 2.3 2.3 0.2 0.2 0.1 0.2 0.2 0.1 G 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 t 3,lt 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 t c,T: 1 stage 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 stage 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 t c 1 stage 4.3 4.3 7.7 6.7 7.1 7.7 6.7 7.1 2 stage 4.3 4.3 6.7 5.7 7.1 6.7 5.7 7.1 Follow Up Time Calculations: Movement 1 4 7 8 9 10 11 12 -----__------------------------------- t f,base 2.2 2.2 3.5 4.0 3.3 3.5 ---------------------------------- 4.0 3.3 t f,HV 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 P by 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 t f ----------------------------------------------------------------------------------------------- 2.3 2.3 3.6 4.1 3.4 3.6 4.1 3.4 worksheet 6 Impedance and capacity equations Step 1: RT from Minor St. 9 12 Conflicting Flows 122 78 Potential Capacity 887 948 Pedestrian Impedance Factor 1.00 1.00 Movement Capacity 887 948 Probability of Queue free St. 1.00 0.98 ----------------------------------------------------------------------------------------------- Step 2: LT from Major St. 4 1 Conflicting Flows 244 156 Potential Capacity 1277 1379 Pedestrian Impedance Factor 1.00 1.00 Movement Capacity 1277 1379 Probability of Queue free St. 1.00 1.00 Worksheet 7a - Computation of the effect of Two-stage gap acceptance Step 3: TH from Minor St. 8 11 Part 1- First Stage _------------------- -- Conflicting Flows 253 ------------------------------ 156 Potential Capacity 682 754 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 1.00 Movement Capacity 680 752 Probability of Queue free St. 1.00 1.00 Part 2- Second Stage Conflicting Flows 162 254 Potential Capacity 749 681 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 1.00 Movement Capacity 747 679 ----------------------------------------------------------------------------------------------- Part 3- Single Stage _------------ ----------------------------------------- Conflicting Flows 415 410 Potential Capacity 514 517 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 0.99 0.99 Movement Capacity --_---------------------------__--_----------------------- 511 - 514 -_----------------------------------- i Result for 2 stage process: ---------------------------------------------------------- 1.00 ¢ a 0.95 0.95 y 0.73 1.47 C t 607 608 ° Probability of Queue free St. ----------------------------------------------------------------------------------------------- 1.00 1.00 Worksheet 7b - Computation of the effect of Two-stage gap acceptance Step 4: LT from Minor St. 7 10 Part 1- First Stage 583 _-_-------------„„___--__---- Conflicting Flows 253 -__--- 156 Potential Capacity 713 814 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 1.00 Movement Capacity ----------------------------------------------------------------------------------------------- 710 812 Part 2- Second Stage Conflicting Flows 79 131 Potential Capacity 903 842 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 0.97 0.99 Movement Capacity 876 835 ----------------------------------------------------------------------------------------------- Part 3- Single Stage Conflicting Flows 332 287 Potential Capacity 583 628 Pedestrian Impedance Factor 1.00 1.00 Maj. L, Min T Impedance factor 0.99 0.99 Maj. L, Min T Adj. Imp Factor. 0.99 0.99 Cap. Adj. factor due to Impeding mvmnt 0.97 0.99 Movement Capacity ------------------------------------------------------------------------------------------------ 564 622 Result for 2 stage process: ------------------------------------------------- ------- a 0.95 0.95 y 0.48 0.91 C t ----------------------------------------------------------------------------------------------- 656 717 worksheet 8 Shared Lane Calculations Shared Lane Calculations Movement 7 8 9 10 11 12 --------------------------------------i - ------------------------------------------------------ v(vph) 3 1 3 39 3 23 Movement Capacity 656 607 887 717 608 948 Shared Lane Capacity 729 777 ----------------------------------------------------------------------------------------------- Worksheet 10 delay,queue length, and LOS Movement ---------------------------------------- 1 4 7 8 9 10 11 12 ---------------------------�--------------------------- v(vph) 5 3 i 7 65 C m(vph) 1379 1277 729 777 v/c 0.00 0.00 0.01 0.08 95% queue length Control Delay 7.6 7.8 10.0 10.1 LOS A A A B Approach Delay 10.0 10.1 Approach LOS A B HCS: Unsignalized Intersections Release 3.1b TWO-WAY STOP CONTROL(TWSC) ANALYSIS Analyst: Greg Intersection: Avenida Mendoza @ Calle Tampico Count Date: Year 2003 W/ Proj Time Period: PM Peak Intersection Orientation: East-West Major St. Vehicle Volume Data: Movements: 1 2 3 4 5 6 7 8 9 10 11 12 -_-_--------------------------------------------------------------------- Volume: 18 236 10 9 350 50 9 4 6 32 3 19 HFR: 18 236 10 9 350 50 9 4 6 32 3 19 PHF: 1.00 1.00 1.00 1.00 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1.00 PHV: ----------------------------------------------------------------------------------------------- 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 Pedestrian Volume Data: Movements: Flow: Lane width: Walk speed: % Blockage: Median Type: Raised Curb # of vehicles: 2 Flared approach Movements: # of vehicles: Northbound 0 # of vehicles: Southbound 0 Lane usage for movements 1,2&3 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R -------_----- N-------- ------- YY N N Y Y Channelized: N Grade: 0.00 Lane usage for movements 4,5&6 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R ----------------------------- Y N N N Y N N Y Y Channelized: N Grade: 0.00 Lane usage for movements 7,8&9 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R ----__-Y- Y_---_- Y -- N -__--- N N N N N Channelized: N Grade: 0.00 Lane usage for movements 10,11&12 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R ------------- Y---- Y----` Y N N N N N N Channelized: N Grade: 0.00 Data for Computing Effect of Delay to Major Street Vehicles: Shared In volume, major th vehicles: Shared In volume, major rt vehicles: Sat flow rate, major th vehicles: Sat flow rate, major rt vehicles: Number of major street through lanes: Length of study period, hrs: 0.25 Eastbound westbound 0 0 0 0 1700 1700 1700 1700 2 2 Worksheet 4 Critical Gap and Follow-up time calculation. Critical Gap Calculations: Movement 1 4 7 8 9 10 11 12 -----_------------------------------ t c,base 4.1 4.1 7.5 6.5 6.9 7.5 _---------------------------_------ 6.5 6.9 t c,hv 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 P by 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 t c,g 2.3 2.3 0.2 0.2 0.1 0.2 0.2 0.1 G 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 t 3,lt 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 t c,T: 1 stage 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 stage 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 t c 1 stage 4.3 4.3 7.7 6.7 7.1 7.7 6.7 7.1 2 stage 4.3 4.3 6.7 5.7 7.1 6.7 5.7 7.1 Follow Up Time Calculations: Movement 1 4 7 8 9 10 11 12 --------------------------- t f,base 2.2 2.2 3.5 4.0 3.3 3.5 -------------------------------- 4.0 3.3 t f,HV 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 P by 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 t f ----------------------------------------------------------------------------------------------- 2.3 2.3 3.6 4.1 3.4 3.6 4.1 3.4 Worksheet 6 Impedance and capacity equations Step 1: RT from Minor St. 9 12 Conflicting Flows 123 200 Potential Capacity 886 789 Pedestrian Impedance Factor 1.00 1.00 Movement Capacity 886 789 Probability of Queue free St. 0.99 0.98 ----------------------------------------------------------------------------------------------- Step 2: LT from Major St. 4 1 Conflicting Flows 246 400 Potential Capacity 1274 1113 Pedestrian Impedance Factor 1.00 1.00 Movement Capacity 1274 1113 Probability of Queue free St. 0.99 0.98 ----------------------------------------------------------------------------------------------- Worksheet 7a - Computation of the effect of Two-stage gap acceptance Step 3: TH from Minor St. 8 11 Part 1- First Stage -----------°------- Conflicting Flows ------------------------------------------- 277 393 Potential Capacity 665 589 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 0.98 0.99 Movement Capacity 654 585 Probability of Queue free St. ----------------------------------------------------------------------------------------------- 0.99 0.99 Part 2- Second Stage Conflicting Flows 418 282 Potential Capacity 574 662 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 0.99 0.98 Movement Capacity 570 651 ----------------------------------------------------------------------------------------------- Part 3- Single Stage ----------------------------------- ---------------------------------- .-------------------------- Conflicting Flows 695 675 Potential Capacity 352 362 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 0.98 0.98 Movement Capacity 344 354 ------------------------------------------------------ ------------------------------------------- Result for 2 stage process: ----------------- a 0.95 0.95 y 1.49 0.80 C t 482 498 Probability of Queue free St. 0.99 0.99 ----------------------------------------------------------------------------------------------- worksheet 7b - Computation of the effect of Two-stage gap acceptance Step 4: LT from Minor St. 7 10 Part 1- First Stage 8 _------.._----_ _ __ ___ Conflicting Flows -- - -- 277 393 Potential Capacity 689 587 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 0.98 0.99 Movement Capacity ----------------------------------------------------------------------------------------------- 678 583 Part 2- Second Stage 482 ------------------ - - ---------------------------------- conflicting Flows 195 156 Potential Capacity 772 813 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 0.96 0.97 Movement Capacity ----------------------------------------------------------------------------------------------- 744 790 Part 3- Single Stage -------------------------------- Conflicting Flows 472 549 Potential Capacity 462 406 Pedestrian Impedance Factor 1.00 1.00 Maj. L, Min T Impedance factor 0.97 0.97 Maj. L, Min T Adj. Imp Factor. 0.98 0.98 Cap. Adj. factor due to Impeding mvmnt 0.95 0.97 Movement Capacity ----------------------------------------------------------------------------------------------- 441 393 Result for 2 stage process: ------------------------------------------------------------ 1274 622 a 0 .95 0.95 y 0.83 0.49 C t ----------------------------------------------------------------------------------------------- 582 528 Worksheet 8 Shared Lane Calculations Shared Lane Calculations Movement ------------_-----------------------------_--_--_------------ll1--------------__-_------_-_-------- 7 8 9 10 11 12 -� v(vph) 9 4 6 II 32 3 19 Movement Capacity 582 482 886 528 498 789 Shared Lane Capacity ----------------------------------------------------------------------------------------------- 622 596 Worksheet 10 delay,queue length, and LOS Movement ----------------------------------------------------------------------------------------------- 1 4 7 8 9 10 ------------------- 11 12 v(vph) 18 9 I------------------- 19 E � 54- C m(vph) 1113 1274 622 596 v/c 0.02 0.01 0.03 0.09 95% queue length Control Delay 8.3 7.8 11.0 11.6 LOS A A B B Approach Delay 11.0 11.6 Approach LOS B B HCS: Unsignalized Intersections Release 3.1b TWO-WAY STOP CONTROL(TWSC) ANALYST Analyst: Greg Intersection: Avenida Mendoza @ Calle Tampico Count Date: Year 2020 Ambient Time Period: AM Peak Intersection Orientation: East-West Major St. Vehicle Volume Data: Movements: 2 3 4 5 7 9 -------------------------- Volume: 263 5 5 195 5 ---_-------------------------------------- 5 HFR: 263 5 5 195 5 5 PHF: 1.00 1.00 1.00 1.00 1.00 1.00 PHV: ----------------------------------------------------------------------------------------------- 0.08 0.08 0.08 0.08 0.08 0.08 Pedestrian Volume Data: Movements: Flow: Lane width: Walk speed: % Blockage: Median Type: Raised Curb # of vehicles: 2 Flared approach Movements: # of vehicles: Northbound 0 # of vehicles: Southbound 0 Lane usage for movements 1,2&3 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R ------------------------------------------- N Y N N Y Y N N N Channelized: N Grade: 0.00 Lane usage for movements 4,5&6 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R --------------------------------- Y N N N Y N N Y N Channelized: N Grade: 0.00 Lane usage for movements 7,8&9 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R ------------------------------------------ Y N Y N N N N N N Channelized: N Grade: 0.00 Lane usage for movements 10,11&12 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R -------------^_------------------------------- N N N N N N N N N Channelized: N Grade: 0.00 Data for Computing Effect of Delay to Major Street Vehicles: Length of study period, hrs: 0.25 Worksheet 4 Critical Gap and Follow-up time calculation. Critical Gap Calculations: Movement 4 Eastbound Westbound Shared In volume, major th vehicles: 0 0 Shared In volume, major rt vehicles: 0 0 Sat flow rate, major th vehicles: 1700 1700 Sat flow rate, major rt vehicles: 1700 1700 Number of major street through lanes: 2 2 Length of study period, hrs: 0.25 Worksheet 4 Critical Gap and Follow-up time calculation. Critical Gap Calculations: Movement 4 7 9 -___-_------------------------_ t c,base 4.1 7.5 6.9 t c,hv 2.0 2.0 2.0 P by 0.08 0.08 0.08 t c,g 2.3 0.2 0.1 G 0.00 0.00 0.00 t 3,lt 0.0 0.7 0.0 t c,T: 1 stage 0.00 0.00 0.00 2 stage 0.00 1.00 0.00 t c 1 stage 4.3 7.0 7.1 2 stage 4.3 6.0 7.1 Follow Up Time Calculations: Movement 4 7 9 - - ------------------_ t f,base 2.2 3.5 _a_____._ 3.3 t f,HV 1.0 1.0 1.0 P by 0.08 0.08 0.08 t f 2.3 3.6 3.4 Worksheet 6 Impedance and capacity equations Step 1: RT from Minor St. 9 12 Conflicting Flows 134 Potential Capacity 872 Pedestrian Impedance Factor 1.00 Movement Capacity 872 Probability of Queue free St. 0.99 ----------------------------------------------------------------------------------------------- Step 2: LT from Major St. 4 1 Conflicting Flows 268 Potential Capacity 1250 Pedestrian Impedance Factor 1.00 Movement Capacity 1250 Probability of Queue free St. 1.00 --------------------------------------------------------------------------------------------- Worksheet 7a - Computation of the effect of Two-stage gap acceptance Step 3: TH from Minor St. 3 11 Part 1- First Stage ^-__---__ ----__ Conflicting Flows- 266 ---------------..________-___---_____ 205 Potential Capacity 693 736 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 1.00 Movement Capacity 693 733 Probability of Queue free St. ----------------------------------------------------------------------------------------------- 1.00 1.00 Part 2- Second Stage Conflicting Flows 205 268 Potential Capacity 736 691 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 1.00 Movement Capacity 733 691 ----------------------------------------------------------------------------------------------- Part 3- Single Stage ----------------------.._-__-----________-_-__----__________---____--__--__--m.,__-_ Conflicting Flows 471 473 Potential Capacity 494 493 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 1.00 Movement Capacity 492 491 ----------------------------------------------------------------------------------------------- Result for 2 stage process: a 0.95 0.95 y 0.83 1.24 C t 605 602 Probability of Queue free St. ----------------------------------------------------------------------------------------------- 1.00 1.00 Worksheet 7b - Computation of the effect of Two-stage gap acceptance Step 4: LT from Minor St. 7 10 Part 1- First Stage 9.8 - -------- Conflicting Flows 266 ------------------------ ------- 205 Potential Capacity 737 815 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 1.00 Movement Capacity ----------------------------------------------------------------------------------------------- 737 812 Part 2- Second Stage ---------------------------- Conflicting Flows - ---------------------------------------------- 108 132 Potential Capacity 887 887 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 0.99 Movement Capacity ----------------------------------------------------------------------------------------------- 884 881 Part 3- Single Stage ---------------------------------------------------_---------------------_------------ Conflicting Flows 373 337 Potential Capacity 585 639 Pedestrian Impedance Factor 1.00 1.00 Maj. L, Min T Impedance factor 1.00 1.00 Maj. L, Min T Adj. Imp Factor. 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt, 1.00 0.99 Movement Capacity 583 633 Result for 2 stage process: a 0.95 ------------------------------------ 0.95 y 0.51 0.74 C t ----------------------------------------------------------------------------------------------- 678 730 Worksheet 8 Shared Lane Calculations Shared Lane Calculations Movement 7 8 9 10 11 12 v(vph) 5 5 Movement Capacity 678 872 Shared Lane Capacity 763 Worksheet 10 delay,queue length, and LOS Movement 1 4 7 8 9 10 11 12 ---------------------------------- . -- ��----------------- ------- ----- v(vph) 5 10 C m(vph) 1250 763 v/c 0.00 0.01 95% queue length Control Delay 7.9 9.8 LOS A A Approach Delay 9.8 Approach LOS A HCS: Unsignalized Intersections Release 3.1b TWO-WAY STOP CONTROL(TWSC) ANALYST Analyst: Greg Intersection: Avenida Mendoza @ Calle Tampico Count Date: Year 2020 Ambient Time Period: PM Peak Intersection Orientation: East-West Major St. Vehicle Volume Data: Movements: 2 3 4 5 7 9 ------- _____________________________________ Volume: 305 15 14 412 14 10 HFR: 305 15 14 412 14 10 PHF: 1.00 1.00 1.00 1.00 1.00 1.00 PHV: ----------------------------------------------------------------------------------------------- 0.08 0.08 0.08 0.08 0.08 0.08 Pedestrian Volume Data: Movements: Flow: Lane width: Walk speed: 8 Blockage: Median Type: Raised Curb # of vehicles: 2 Flared approach Movements: # of vehicles: Northbound 0 # of vehicles: Southbound 0 Lane usage for movements 1,20 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R ---------_---------------------- - N Y N N Y Y N N N Channelized: N Grade: 0.00 Lane usage for movements 4,5&6 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R -------YNN N _---__ --____ Y N N Y N Channelized: N Grade: 0.00 Lane usage for movements 7,8&9 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R ------------------- - ----- Y N Y N N N N N N Channelized: N Grade: 0.00 Lane usage for movements 10,11&12 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R _-__-__-____-----_ __- -___..----- N N N N N N N N N Channelized: N Grade: 0..00 Data for Computing Effect of Delay to Major Street Vehicles: Length of study period, hrs: 0.25 Worksheet 4 Critical Gap and Follow-up time calculation. Critical Gap Calculations: Westbound 0 0 1700 1700 2 Movement 4 7 Eastbound Shared In volume, major th vehicles: 0 Shared In volume, major rt vehicles: 0 Sat flow rate, major th vehicles: 1700 Sat flow rate, major rt vehicles: 1700 Number of major street through lanes: 2 Length of study period, hrs: 0.25 Worksheet 4 Critical Gap and Follow-up time calculation. Critical Gap Calculations: Westbound 0 0 1700 1700 2 Movement 4 7 9 ------------------------- t c,base 4.1 7.5 6.9 t c,hv 2.0 2.0 2.0 P by 0.08 0.08 0.08 t c,g 2.3 0.2 0.1 G 0.00 0.00 0.00 t 3,lt 0.0 0.7 0.0 t c,T: 1 stage 0.00 0.00 0:00 2 stage 0.00 1.00 0.00 t c 1 stage 4.3 7.0 7.1 2 stage 4.3 6.0 7.1 Follow Up Time Calculations: Movement 4 7 9 t Y - f,base -^^- 2.2 _- 3.5 3.3 t f,HV 1.0 1.0 1.0 P by 0.08 0.08 0.08 t f ----------------------------------------------------------------------------------------------- 2.3 3.6 3.4 Worksheet 6 Impedance and capacity equations Step 1: RT from Minor St. 9 12 Conflicting Flows 160 Potential Capacity 838 Pedestrian Impedance Factor 1.00 Movement Capacity 838 Probability of Queue free St. 0.99 ----------------------------------------------------------------------------------------------- Step 2: LT from Major St. 4 1 Conflicting Flows 320 Potential Capacity 1194 Pedestrian Impedance Factor 1.00 Movement Capacity 1194 Probability of Queue free St. 0.99 Worksheet 7a - Computation of the effect of Two-stage gap acceptance Step 3: TH from Minor St. 8 11 Part 1- First Stage --------------- ------------------------ Conflicting Flows 313 440 Potential Capacity 661 581 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 0.99 Movement Capacity 661 574 Probability of Queue free St. ----------------------------------------------------------------------------------------------- 1.00 1.00 Part 2- Second Stage Conflicting Flows 440 320 Potential Capacity 581 656 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 0.99 1.00 Movement Capacity 574 656 ----------------------------------------------------------------------------------------------- Part 3- Single Stage __.._-_--------------------------------- Conflicting Flows 753 760 Potential Capacity 341 338 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 0.99 0.99 Movement Capacity 337 334 Result for 2 stage process: ------------------_-__--------------__-______r-----____--_ _ f a 0.95 0.95 ` y 1.37 0.78 C t 492 487 Probability of Queue free St. 1.00 1.00 ----------------------------------------------------------------------------------------------- Worksheet 7b - Computation of the effect of Two-stage gap acceptance Step 4: LT from Minor St. 7 10 Part 1- First Stage 453 442 ------------------------------------------------------v Conflicting Flows 313 440 Potential Capacity 697 622 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 0.99 Movement Capacity ----------------------------------------------------------------------------------------------- 697 615 Part 2- Second Stage Conflicting Flows 234 153 Potential Capacity 765 866 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 0.99 0.99 Movement Capacity 756 855 ----------------------------------------------------------------------------------------------- Part 3- Single Stage Conflicting Flows 547 593 Potential Capacity 453 442 Pedestrian Impedance Factor 1.00 1.00 Maj. L, Min T Impedance factor 0.99 0.99 Maj. L, Min T Adj. Imp Factor. 0.99 0.99 Cap. Adj. factor due to Impeding mvmnt 0.99 0.98 Movement Capacity 449 433 Result for 2 stage process: a 0.95 0.95 y 0.81 0.45 C t 599 563 ----------------------------------------------------------------------------------------------- Worksheet 8 Shared Lane Calculations Shared Lane Calculations Movement 7 8 9 10 11 12 ------------------- ------------------------------------------------- ---- ----11 1 v(vph) 14 10 Movement Capacity 599 838 Shared Lane Capacity 680 ----------------------------------------------------------------------------------------------- Worksheet 10 delay,queue length, and LOS Movement --------------------------------------I------------------------------------------- 1 4 7 8 9 10 11 12 ------ ------ v(vph) 14 24 C m(vph) 1194 680 v/c 0.01 0.04 95% queue length Control Delay 8.0 10.5 LOS A B Approach Delay 10.5 Approach LOS B HCS: Unsignalized Intersections Release 3.1b TWO-WAY STOP CONTROL(TWSC) ANALYSIS Analyst: Greg Intersection: Avenida Mendoza @ Calle Tampico Count Date: Year 2020 W/ Proj Time Period: AM Peak Intersection Orientation: East-West Major St. Vehicle Volume Data: Movements: 1 2 3 4 5 6 7 8 9 10 11 _ 12 --------------------------------------_--------------------------------------------- Volume: 5 308 5 5 183 13 5 1 5 39 3 23 HFR: 5 308 5 5 183 13 5 1 5 39 3 23 PHF: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 PHV: 0.08 ----------------------------------------------------------------------------------------------- 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 Pedestrian Volume Data: Movements: Flow: Lane width: Walk speed: % Blockage: Median Type: Raised Curb # of vehicles: 2 Flared approach Movements: # of vehicles: Northbound 0 # of vehicles: Southbound 0 Lane usage for movements 1,20 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R ------------- N------N------NY ------ Y N N Y Y Channelized: N Grade: 0.00 Lane usage for movements 4,5&6 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R ---------- N------ N ------N --- Y Y N N Y Y Channelized: N Grade: 0.00 Lane usage for movements 7,8&9 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R ------------------------------- Y Y Y N N N N N N Channelized: N Grade: 0.00 Lane usage for movements 10,11&12 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R ---------------------------- - Y Y Y N N N N N N Channelized: N Grade: 0.00 Data for Computing Effect of Delay to Major Street Vehicles: r, Calculations: Eastbound Westbound Shared In volume, major th vehicles: 0 0 Shared In volume, major rt vehicles: 0 0 Sat flow rate, major th vehicles: 1700 1700 Sat flow rate, major rt vehicles: 1700 1700 J Number of major street through lanes: 2 2 Length of study period, hrs: 0.25 Worksheet 4 Critical Gap and Follow-up time calculation. Critical Gap Calculations: 11 Part 1- First Stage ______________________________________________ Conflicting Flows 321 Movement 1 4 7 8 9 10 11 12 -------------------------------------------------- t c,base 4.1 4.1 7.5 6.5 6.9 7.5 6.5 6.9 t c,hv 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 P by 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 t c,g 0.2 0.2 0.1 0.2 0.2 0.1 G 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 t 3,lt 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 t c,T: 1 stage 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 stage 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 t c 1 stage 4.3 4.3 7.7 6.7 7.1 7.7 6.7 7.1 2 stage 4.3 4.3 6.7 5.7 7.1 6.7 5.7 7.1 Follow Up Time Calculations: Movement 1 4 7 8 9 10 ---------------------------------------------- 11 12 ------------------------------------------------ t f,base 2.2 2.2 3.5 4.0 3.3 3.5 4.0 3.3 t f,HV 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 P by 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 t f ----------------------------------------------------------------------------------------------- 2.3 2.3 3.6 4.1 3.4 3.6 4.1 3.4 Worksheet 6 Impedance and capacity equations Step 1: RT from Minor St. 9 12 Conflicting Flows 157 98 Potential Capacity 843 920 Pedestrian Impedance Factor 1.00 1.00 Movement Capacity 843 920 Probability of Queue free St. 0.99 0.97 ----------------------------------------------------------------------------------------------- Step 2: LT from Major St. 4 1 Conflicting Flows 313 196 Potential Capacity 1202 1331 Pedestrian Impedance Factor 1.00 1.00 Movement Capacity 1202 1331 Probability of Queue free St. 1.00 1.00 ----------------------------------------------------------------------------------------------- Worksheet 7a - Computation of the effect of Two-stage gap acceptance Step 3: TH from Minor St. 8 11 Part 1- First Stage ______________________________________________ Conflicting Flows 321 200 Potential Capacity 636 720 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 1.00 Movement Capacity 633 717 Probability of Queue free St. ----------------------------------------------------------------------------------------------- 1.00 1.00 Part 2- Second Stage Conflicting Flows 206 323 Potential Capacity 716 634 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 1.00 Movement Capacity 713 632 ----------------------------------------------------------------------------------------------- Part 3- Single Stage __--_-----------------------___-__------------__------------_-_--.._----------------------------_.._-_ Conflicting Flows 527 523 Potential Capacity 442 445 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 0.99 0.99 Movement Capacity 439 441 Result for 2 stage process: a 0.95 0.95 y 0.72 1.49 C t 558 557 Probability of Queue free St. 1.00 0.99 --------------------------------------------------------------------- Worksheet 7b - Computation of the effect of Two-stage gap acceptance Step 4: LT from Minor St. 7 10 Part 1- First Stage -----.- 65 C m(vph) .._________________________________ Conflicting Flows 321 200 Potential Capacity 649 766 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 1.00 1.00 Movement Capacity ----------------------------------------------------------------------------------------------- 647 763 Part 2- Second Stage 8.0 10.4 ------------------------- --------------- Conflicting Flows 103 165 Potential Capacity 874 804 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 0.97 0.99 Movement Capacity ----------------------------------------------------------------------------------------------- 845 795 Part 3- Single Stage -_ - - ---------------------------------------- Conflicting Flows 424 364 Potential Capacity 500 552 Pedestrian Impedance Factor 1.00 1.00 Maj. L, Min T Impedance factor 0.99 0.99 Maj. L, Min T Adj. Imp Factor. 0.99 0.99 Cap. Adj. factor due to Impeding mvmnt 0.97 0.99 Movement Capacity ----------------------------------------------------------------------------------------------- 483 545 Result for 2 stage process: - ------------ ---------------------- --------------------------------------- a 0 .95 0.95 y 0.46 0.89 C t ----------------------------------------------------------------------------------------------- 594 663 Worksheet 8 Shared Lane Calculations Shared Lane Calculations Movement 7 8 9 10 11 12 -------__•-----t--------------------__-�------__-__-__------------ --- I ------------------- II ------------------- I v(vph) 5 1 5 39 3 23 Movement Capacity 594 558 843 663 557 920 Shared Lane Capacity 682 729 ----------------------------------------------------------------------------------------------- Worksheet 10 delay,queue length, and LOS Movement 1 4 7 8 9 10 11 12 v(vph) 5 5 11 65 C m(vph) 1331 1202 682 729 v/c 0.00 0.00 0.02 0.09 95% queue length Control Delay 7.7 8.0 10.4 10.4 LOS A A B B Approach Delay 10.4 10.4 Approach LOS B B HCS: Unsignalized Intersections Release 3.1b TWO-WAY STOP CONTROL(TWSC) ANAL Analyst: Greg Intersection: Avenida Mendoza @ Calle Tampico Count Date: Year 2020 W/ Proj Time Period: PM Peak Intersection Orientation: East-West Major St. Vehicle Volume Data: Movements: 1 2 3 4 5 6 7 8 9 10 11 12 --------------------------------------------- Volume: 18 314 15 14 459 50 14 4 10 32 3 19 HFR: 18 314 15 14 459 50 14 4 10 32 3 19 PHF: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 PHV: ----------------------------------------------------------------------------------------------- 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 Pedestrian Volume Data: Movements: Flow: Lane width: Walk speed: % Blockage: Median Type: Raised Curb # of vehicles: 2 Flared approach Movements: # of vehicles: Northbound 0 # of vehicles: Southbound 0 Lane usage for movements 1,20 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R -------------- ------ Y NN N Y N N Y Y Channelized: N Grade: 0.00 Lane usage for movements 4,5&6 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R -------Y ----- --- - N N N Y N N Y Y Channelized: N Grade: 0.00 Lane usage for movements 7,8&9 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R -------YY - -- ----�-- Y---- -N _ N N N N N Channelized: N Grade: 0.00 Lane usage for movements 10,11&12 approach: Lane 1 Lane 2 Lane 3 L T R L T R L T R ----------------------- -- -------------------- Y Y Y N N N N N N Channelized: N Grade: 0.00 Data for Computing Effect of Delay to Major Street Vehicles: Length of study period, hrs: 0.25 Worksheet 4 Critical Gap and Follow-up time calculation. Critical Gap Calculations: Eastbound Westbound Shared In volume, major th vehicles: 0 0 Shared In volume, major rt vehicles: 0 0 Sat flow rate, major th vehicles: 1700 1700 Sat flow rate, major rt vehicles: 1700 1700 Number of major street through lanes: 2 2 Length of study period, hrs: 0.25 Worksheet 4 Critical Gap and Follow-up time calculation. Critical Gap Calculations: 4 7 8 9 10 11 Movement 1 4 7 8 9 10 11 12 -------------------------------------------- t c,base 4.1 4.1 7.5 6.5 6.9 7.5 6.5 6.9 t c,hv 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 P by 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 t c,g 0.2 0.2 0.1 0.2 0.2 0.1 G 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 t 3,lt 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 t c,T: 1 stage 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 stage 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 t c 1 stage 4.3 4.3 7.7 6.7 7.1 7.7 6.7 7.1 2 stage 4.3 4.3 6.7 5.7 7.1 6.7 5.7 7.1 Follow Up Time Calculations: Movement 1 4 7 8 9 10 11 12 ---------------___.---_--.------ t f,base 2.2 2.2 3.5 4.0 3.3 3.5 4.0 -------------------- 3.3 t f,HV 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 P by 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 t f ----------------------------------------------------------------------------------------------- 2.3 2.3 3.6 4.1 3.4 3.6 4.1 3.4 Worksheet 6 Impedance and capacity equations Step 1: RT from Minor St. 9 12 Conflicting Flows 165 255 Potential Capacity 833 727 Pedestrian Impedance Factor 1.00 1.00 Movement Capacity 833 727 Probability of Queue free St. 0.99 0.97 ----------------------------------------------------------------------------------------------- Step 2: LT from Major St. 4 1 Conflicting Flows 329 509 Potential Capacity 1185 1011 Pedestrian Impedance Factor 1.00 1.00 Movement Capacity 1185 1011 Probability of Queue free St. 0.99 0.98 ----------------------------------------------------------------------------------------------- Worksheet 7a - Computation of the effect of Two-stage gap acceptance Step 3: TH from Minor St. 8 11 Part 1- First Stage -----------------_---------------- Conflicting Flows 358 -_---------___-___--_-------__- 512 Potential Capacity 612 520 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 0.98 0.99 Movement Capacity 601 514 Probability of Queue free St. ----------------------------------------------------------------------------------------------- 0.99 0.99 Part 2- Second Stage Conflicting Flows 537 365 Potential Capacity 506 607 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 0.99 0.98 Movement Capacity 500 596 ----------------------------------------------------------------------------------------------- Part 3- Single Stage __ 4 '---'___________________ Conflicting Flows 895 877 Potential Capacity 268 275 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 0.97 0.97 Movement Capacity 260 267 Result for 2 stage process: ------------------------------------------------------__ a 0.95 0.95 y 1.53 0.78 C t 415 428 Probability of Queue free St. 0.99 0.99 ----------------------------------------------------------------------------------------------- worksheet 7b - Computation of the effect of Two-stage gap acceptance Step 4: LT from Minor St. 7 10 Part 1- First Stage ---------------------------------------- Conflicting Flows 358 512 Potential Capacity 617 498 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 0.98 0.99 Movement Capacity 606 492 ----------------------------------------------------------------------------------------------- Part 2- Second Stage Conflicting Flows 259 195 Potential Capacity 706 771 Pedestrian Impedance Factor 1.00 1.00 Cap. Adj. factor due to Impeding mvmnt 0.96 0.96 Movement Capacity 676 743 ----------------------------------------------------------------------------------------------- Part 3- Single Stage Conflicting Flows 617 707 Potential Capacity 362 311 Pedestrian Impedance Factor 1.00 1.00 Maj. L, Min T Impedance factor 0.96 0.96 Maj. L, Min T Adj. Imp Factor. 0.97 0.97 Cap. Adj. factor due to Impeding mvmnt 0.95 0.96 Movement Capacity ----------------------------------------------------------------------------------------------- 343 298 Result for 2 stage process a 0.95 0.95 y 0.83 0.45 C t 506 444 ----------------------------------------------------------------------------------------------- Worksheet 8 Shared Lane Calculations Shared Lane Calculations Movement 7 8 9 10 11 12 I------------ ------ E 1-__-____----------- v(vph) 14 4 10 32 3 19 Movement Capacity 506 415 833 444 428 727 Shared Lane Capacity 568 513 ----------------------------------------------------------------------------------------------- Worksheet 10 delay,queue length, and LOS Movement 1 4 7 8 ---------------__------------------------------------ __--_--_--____---_-� 9 10 11 12 v(vph) 18 14 28 E-------------------, 54 C m(vph) 1011 1185 568 513 v/c 0.02 0.01 0.05 0.11 95% queue length Control Delay 8.6 8.1 11.7 12.8 LOS A A B B Approach Delay 11.7 12.8 Approach LOS B B Appendix 3 1998 HCM SIGNALIZED INTERSECTION METHODOLOGY AND WORKSHEETS HCM Methodology HCS Worksheets Existing (Year 2000) Worksheets Year 2003 No Project Worksheets Year 2003+Project Worksheets Post 2020 No Project Worksheets Post 2020+Project Worksheets r Appendix 3 Highway Capacity Manual Signalized Intersection Methodology The 'Highway Capacity Manual" (HCM) signalized intersection capacity and level of service methodology addresses the capacity and level of service of intersection approach lane groups as well as the level of service of the intersection as a whole. The analysis is undertaken in terms of the ratio of demand flow rate to capacity (V/C ratio) for individual movements during a peak 15 -minute interval and the composite V/C ratio for the sum of critical movements or lane groups within the intersection. The level of service is determined based upon average control delay per vehicle, as shown in Table A-3 below. Table A-3 1998 HCM Signalized Intersection LOS Criteria Level of Traffic Flow Average Control Delay Service Characteristics (Seconds/Vehicle) A Extremely favorable progression with very low control delay. <_ 10 Most vehicles arrive during the green phase and do not stop. B Good progression and short cycle lengths. More vehicles stop > 10 and:5 20 than with LOS A, causing higher levels of average delay. C Satisfactory operation with fair progression and longer > 20 and <_ 35 cycle lengths. Individual cycle failures may begin to appear. A significant number of vehicles stop but many pass through without stopping. D Tolerable delay where congestion becomes more noticeable and > 35 and <_ 55 many vehicles stop. The proportion of vehicles not stopping declines. Individual cycle failures are noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, or high V/C ratios. E Unstable flow with poor progression, frequent cycle failures, > 55 and <_ 80 long cycle lengths and high V/C ratios. Individual cycle failures are frequent occurrences. This is considered the limit of acceptable delay by many agencies. F Oversaturation with arrival flow rates exceeding the capacity > 80 of the intersection and many individual cycle failures. Poor progression and long cycle lengths as well as high V/C ratios occur at LOS F. Considered unacceptable to most drivers. Source: "Highway Capacity Manual, Special Report 209", Transportation Research Board, 3rd Edition,1998; pp. 9-7. Inter: Existing Conditions Analyst: Greg Date: 11/3/2000 E/W St: Avenue 50 Eastbound L T R HCS: Signals Release 3.1b City/St: La Quinta Proj #: Vista Montana Period: Morning Peak Hour NIS St: Eisenhower Drive SIGNALIZED INTERSECTION SUMMARY Westbound Northbound L T R L T R Southbound L T R No. Lanes 1 1 0 1 1 1 1 2 0 1407 1 2 0 0.056 LGConfig L TR L T R L TR D L TR Volume 16 17 10 26 6 37 8 599 13 0.056 23 157 22 D Lane Width 12.0 12.0 12.0 12.0 12.0 12.0 12.0 1495 12.0 12.0 1.000 RTOR Vol A 0 0 0 0 1671 0.09 0.056 42.2 D TR 2518 3332 0.24 Duration 1.00 Area Type: All other areas Signal Operations Phase Combination 1 2 3 4 5 6 7 8 EB Left A NB Left P Thru A Thru A Right A Right A Peds X Peds X WB Left A SB Left A Thru A Thru A Right A Right A Peds X Peds X NB Right EB Right SB Right WB Right A A Green 5.0 5.0 68.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance Summary Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Delay LOS Eastbound L 80 1407 0.20 0.056 41.8 D TR 92 1662 0.29 0.056 42.6 D Westbound L 80 1407 0.32 0.056 43.3 D T 98 1759 0.06 0.056 40.5 D R 1495 1495 0.02 1.000 0.0+ A Northbound L 93 1671 0.09 0.056 42.2 D TR 2518 3332 0.24 0.756 3.3 A Southbound L 93 1671 0.25 0.056 42.1 TR 2479 3281 0.07 0.756 2.9 Intersection Delay = 7.5 (sec/veh) 42.3 D 19.8 B 3.8 A D A 7.3 A Intersection LOS = A Sum (v/s) critical = 0.22 Lost Time/Cycle, L = 12.00 sec Critical v/c(X) = 0.25 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C d1 Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.20 0.056 40.6 CAPACITY ANALYSIS WORKSHEET 80 0.11 1.2 0.0 Adj Adj Sat Flow Green --Lane Group-- 40.8 Appr/ Lane Flow Rate Flow Rate Ratio Ratio Capacity v/c Mvmt Group (v) (s) (v/s) (g/C) (c) Ratio Eastbound L 0.32 0.056 40.9 1.000 Pri. 0.11 2.4 0.0 43.3 D T 0.06 Sec. 40.3 1.000 98 0.11 0.3 0.0 40.5 Left L 16 1407 0.01 0.056 80 0.20 Thru TR 27 1662 0.02 0.056 92 0.29 Right Westbound 0.056 40.3 1.000 93 0.50 1.8 0.0 Pri. D TR 0.24 0.756 3.3 1.000 2518 Sec. 0.1 0.0 3.3 A 3.8 A Southbound Left L 26 1407 # 0.02 0.056 80 0.32 Thru T 6 1759 0.00 0.056 98 0.06 Right R 37 1495 0.02 1.000 1495 0.02 Northbound 0.11 0.0 0.0 2.9 A 7.3 A Pri. Sec. Left L 8 1671 0.00 0.056 93 0.09 Thru TR 612 3332 # 0.18 0.756 2518 0.24 Right Southbound Pri. Sec. Left L 23 1671 # 0.01 0.056 93 0.25 Thru TR 179 3281 0.05 0.756 2479 0.07 Right Sum (v/s) critical = 0.22 Lost Time/Cycle, L = 12.00 sec Critical v/c(X) = 0.25 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C d1 Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.20 0.056 40.6 1.000 80 0.11 1.2 0.0 41.8 D TR 0.29 0.056 40.8 1.000 92 0.11 1.8 0.0 42.6 D 42.3 D Westbound L 0.32 0.056 40.9 1.000 80 0.11 2.4 0.0 43.3 D T 0.06 0.056 40.3 1.000 98 0.11 0.3 0.0 40.5 D 19.8 B R 0.02 1.000 0.0 1.000 1495 0.11 0.0 0.0 0.0+ A Northbound L 0.09 0.056 40.3 1.000 93 0.50 1.8 0.0 42.2 D TR 0.24 0.756 3.3 1.000 2518 0.11 0.1 0.0 3.3 A 3.8 A Southbound L 0.25 0.056 40.7 1.000 93 0.11 1.4 0.0 42.1 D TR 0.07 0.756 2.8 1.000 2479 0.11 0.0 0.0 2.9 A 7.3 A Intersection Delay = 7.5 (sec/veh) Intersection LOS = A No. Lanes LGConfig Volume Lane Width RTOR Vol Eastbound L T R 1 1 0 L TR 20 7 15 12.0 12.0 0 IGNALIZED INTERSECTION SUMMARY Westbound Northbound L T R L T R 1 1 1 L T R 60 8 17 12.0 12.0 12.0 0 1 2 0 L TR 12 309 19 12.0 12.0 0 Southbound L T R 1 2 0 L TR 34 480 13 12.0 12.0 0 Duration 1.00 HCS: Signals Release 3.1b Inter: Existing Conditions City/St: La Quinta Analyst: Greg Proj #: Vista Montana 3 4 Date: 11/3/2000 Period: Evening Peak Hour �~ E/W St: Avenue 50 NIS St: Eisenhower Drive No. Lanes LGConfig Volume Lane Width RTOR Vol Eastbound L T R 1 1 0 L TR 20 7 15 12.0 12.0 0 IGNALIZED INTERSECTION SUMMARY Westbound Northbound L T R L T R 1 1 1 L T R 60 8 17 12.0 12.0 12.0 0 1 2 0 L TR 12 309 19 12.0 12.0 0 Southbound L T R 1 2 0 L TR 34 480 13 12.0 12.0 0 Duration 1.00 Area Type: All other areas Signal Operations 1407 0.25 Phase Combination 1 2 3 4 5 6 7 8 EB Left A NB Left P D Thru A Thru A Right A Right L 80 A Peds X Peds E X WB Left A SB Left A 40.7 Thru A Thru 1495 A Right A Right A Peds X Peds X NB Right L 93 EB Right 0.13 0.056 SB Right D WB Right A A Green 5.0 3.0 5.0 68.0 Yellow 3.0 3.0 3.0 All Red 1.0 L 93 1.0 1.0 Cycle Length: 90.0 secs D TR 2515 3329 Intersection Performance Summary 3.2 Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Delay LOS Eastbound L 80 1407 0.25 0.056 42.4 D TR 88 1579 0.25 0.056 42.2 D 42.3 D Westbound L 80 1407 0.75 0.056 79.9 E T 98 1759 0.08 0.056 40.7 D 60.2 E R 1495 1495 0.01 1.000 0.0+ A Northbound L 93 1671 0.13 0.056 43.3 D TR 2504 3314 0.13 0.756 3.0 A 4.4 A Southbound L 93 1671 0.37 0.056 43.4 D TR 2515 3329 0.20 0.756 3.2 A 5.8 A Intersection Delay = 11.5 (sec/veh) Intersection LOS = B Appr/ Lane Mvmt Group Eastbound Pri. critical Sec. Left L Thru TR Right Critical Westbound Pri. Sec. Left L Thru T Right R Northbound Pri. Sec. Ratios Left L Thru TR Right Lane Group Southbound Pri. Sec. Del Left L Thru TR Right CAPACITY ANALYSIS WORKSHEET__ Adj Adj Sat Flow Green --Lane Group -- Flow Rate Flow Rate Ratio Ratio Capacity v/c (v) (s) (v/s) (g/C) (c) Ratio 20 1407 0.01 0.056 80 0.25 22 1579 0.01 0.056 88 0.25 60 1407 # 0.04 0.056 80 0.75 8 1759 0.00 0.056 98 0.08 17 1495 0.01 1.000 1495 0.01 12 1671 0.01 0.056 93 0.13 328 3314 0.10 0.756 2504 0.13 34 1671 # 0.02 0.056 93 0.37 493 3329 # 0.15 0.756 2515 0.20 Intersection Delay = 11.5 (sec/veh) Intersection LOS = B Sum (v/s) critical = 0.21 Lost Time/Cycle, L = 12.00 sec Critical v/c(X) = 0.24 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C d1 Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.25 0.056 40.7 1.000 80 0.11 1.6 0.0 42.4 D TR 0.25 0.056 40.7 1.000 88 0.11 1.5 0.0 42.2 D 42.3 D Westbound L 0.75 0.056 41.9 1.000 80 0.31 38.0 0.0 79.9 E T 0.08 0.056 40.3 1.000 98 0.11 0.4 0.0 40.7 D 60.2 E R 0.01 1.000 0.0 1.000 1495 0.11 0.0 0.0 0.0+ A Northbound L 0.13 0.056 40.4 1.000 93 0.50 2.9 0.0 43.3 D TR 0.13 0.756 3.0 1.000 2504 0.11 0.0 0.0 3.0 A 4.4 A Southbound L 0.37 0.056 41.0 1.000 93 0.11 2.4 0.0 43.4 D TR 0.20 0.756 3.2 1.000 2515 0.11 0.0 0.0 3.2 A 5.8 A Intersection Delay = 11.5 (sec/veh) Intersection LOS = B Inter: Existing Analyst: Greg Date: 1/13/2001 E/W St: Calle Tampico Eastbound L T R HCS: Signals Release 3.1b City/St: La Quinta Proj #: Vista Montana Period: Morning Peak Hour NIS St: Desert Club Drive SIGNALIZED INTERSECTION SUMMARY Westbound Northbound Southbound L T R L T R L T R No. Lanes 1 2 0 1 2 0 0 1 0 1 1 0 LGConfig L TR L TR LTR L TR Volume 5 187 3 48 133 5 5 1 59 14 1 4 I Lane Width 12.0 12.0 12.0 12.0 l 12.0 12.0 12.0 RTOR Vol 0 0 0 0 Duration 1.00 Area Type: All other areas Signal Operations Phase Combination 1 2 3 4 5 6 7 8 EB Left A NB Left A Thru A Thru A Right A Right A Peds X Peds X WB Left A A SB Left A Thru A A Thru A Right A A Right A Peds X Peds X NB Right EB Right SB Right WB Right Green 5.0 4.0 58.0 11.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance Summary Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Delay LOS Eastbound L 93 1671 0.05 0.056 40.5 D TR 2149 3335 0.09 0.644 6.1 A 6.9 A Westbound L 241 1671 0.20 0.144 34.3 C TR 2290 3324 0.06 0.689 4.6 A 12.2 B Northbound LTR 165 1347 0.39 0.122 38.0 D 38.0 D Southbound L 122 1002 0.11 0.122 35.6 D TR 189 1548 0.03 0.122 34.8 C 35.4 D Intersection Delay = 14.6 (sec/veh) Intersection LOS = B YI Appr/ Lane �• Mvmt Group Eastbound { Pri. l Sec. Left L Thru TR Right Westbound Pri. Sec. Left L Thru TR Right Northbound Pri. Sec. Left Thru LTR Right Southbound Pri. Sec. Left L Thru TR Right CAPACITY ANALYSIS WORKSHEET Adj Adj Sat Flow Green --Lane Group -- Flow Rate Flow Rate Ratio Ratio Capacity v/c (v) (s) (v/s) (g/C) (c) Ratio 5 1671 0.00 0.056 93 0.05 190 3335 # 0.06 0.644 2149 0.09 48 1671 # 0.03 0.144 241 0.20 138 3324 0.04 0.689 2290 0.06 65 14 5 1347 # 0.05 0.122 165 0.39 1002 0.01 0.122 122 0.11 1548 0.00 0.122 189 0.03 Intersection Delay = 14.6 (sec/veh) Intersection LOS = B Sum (v/s) critical = 0.13 Lost Time/Cycle, L = 8.00 sec Critical v/c(X) = 0.15 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C dl Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.05 0.056 40.3 1.000 93 0.11 0.2 0.0 40.5 D TR 0.09 0.644 6.0 1.000 2149 0.11 0.0 0.0 6.1 A 6.9 A Westbound L 0.20 0.144 33.9 1.000 241 0.11 0.4 0.0 34.3 C TR 0.06 0.689 4.5 1.000 2290 0.11 0.0 0.0 4.6 A 12.2 B Northbound LTR 0.39 0.122 36.4 1.000 165 0.11 1.6 0.0 38.0 D 38.0 D Southbound L 0.11 0.122 35.2 1.000 122 0.11 0.4 0.0 35.6 D TR 0.03 0.122 34.8 1.000 189 0.11 0.1 0.0 34.8 C 35.4 D Intersection Delay = 14.6 (sec/veh) Intersection LOS = B 0 Duration 1.00 HCS: Signals Release 3.1b Type: All Inter: Existing City/St: La Quinta 0.633 Analyst: Greg Proj #: Vista Montana Date: 1/13/2001 Period: Evening Peak Hour E/W St: Calle Tampico NIS St: Desert Club Drive 4 SIGNALIZED INTERSECTION SUMMARY 9� Eastbound Westbound Northbound Southbound L T R L T R L T R L T R No. Lanes 1 2 0 1 2 0 0 1 0 1 1 0 LGConfig L TR L TR LTR L TR Volume 16 226 4 103 438 2 10 1 90 2 11 Lane Width 12.0 12.0 12.0 12.0 �20 12.0 12.0 12.0 RTOR Vol 0 0 0 0 Duration 1.00 0.17 Area Type: All other 3334 areas 0.633 6.5 A 8.8 A 1671 Signal Operations 36.3 D Phase Combination 1 2 3 4 5 6 7 8 EB Left A NB Left A Thru A Thru A Right A Right A Peds X Peds X WB Left A A SB Left A Thru A A Thru A Right A A Right A Peds X Peds X NB Right EB Right SB Right WB Right Green 5.0 4.0 57.0 12.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs Appr/ Lane Lane Group Grp Capcity Eastbound L 93 TR 2112 Westbound L 241 TR 2264 Northbound LTR 179 Southbound L 100 TR 205 _Intersection Performance Summary Adj Sat, Ratios Lane Group Flow Rate (s) v/c g/C Delay LOS Approach Delay LOS 1671 0.17 0.056 41.4 D 3334 0.11 0.633 6.5 A 8.8 A 1671 0.43 0.144 36.3 D 3340 0.19 0.678 5.4 A 11.3 B 1340 0.56 0.133 40.7 D 40.7 D 750 0.20 0.133 35.7 D 1536 0.06 0.133 34.2 C 35.1 D Intersection Delay = 14.7 (sec/veh) Intersection LOS = B Sum (v/s) critical = 0.22 Lost Time/Cycle, L = 12.00 sec Critical v/c(X) = 0.25 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Lane Del Adj Grp Factor Del Del Grp v/c g/C dl Fact Cap k d2 d3 Delay LOS Eastbound L 0.17 0.056 40.5 CAPACITY ANALYSIS WORKSHEET 93 0.11 0.9 0.0 Adj Adj Sat Flow Green --Lane Group-- 2112 Appr/ Lane Flow Rate Flow Rate Ratio Ratio Capacity v/c Mvmt Group (v) (s) (v/s) (g/C) (c) Ratio Eastbound 1.000 241 0.11 1.2 0.0 36.3 TR 0.19 Pri. 5.4 1.000 2264 0.11 0.0 0.0 5.4 Sec. Left L 16 1671 # 0.01 0.056 93 0.17 Thru TR 230 3334 0.07 0.633 2112 0.11 Right L 0.20 0.133 34.7 1.000 100 Westbound 1.0 0.0 35.7 TR 0.06 0.133 34.1 1.000 Pri. 0.11 0.1 0.0 34.2 Sec. Left L 103 1671 0.06 0.144 241 0.43 Thru TR 440 3340 # 0.13 0.678 2264 0.19 Right Northbound Pri. Sec. Left Thru LTR 101 1340 # 0.08 0.133 179 0.56 Right Southbound Pri. Sec. Left L 20 750 0.03 0.133 100 0.20 Thru TR 13 1536 0.01 0.133 205 0.06 Right Sum (v/s) critical = 0.22 Lost Time/Cycle, L = 12.00 sec Critical v/c(X) = 0.25 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Lane Del Adj Grp Factor Del Del Grp v/c g/C dl Fact Cap k d2 d3 Delay LOS Eastbound L 0.17 0.056 40.5 1.000 93 0.11 0.9 0.0 41.4 TR 0.11 0.633 6.5 1.000 2112 0.11 0.0 0.0 6.5 Westbound L 0.43 0.144 35.1 1.000 241 0.11 1.2 0.0 36.3 TR 0.19 0.678 5.4 1.000 2264 0.11 0.0 0.0 5.4 Northbound LTR 0.56 0.133 36.5 1.000 179 0.16 4.1 0.0 40.7 Southbound L 0.20 0.133 34.7 1.000 100 0.11 1.0 0.0 35.7 TR 0.06 0.133 34.1 1.000 205 0.11 0.1 0.0 34.2 D A D A Approach Delay LOS 8.8 A 11.3 B D 40.7 D D C 35.1 D Intersection Delay = 14.7 (sec/veh) Intersection LOS = B Inter: Existing Analyst: Greg Date: 1/12/2001 E/W St: Calle Tampico Eastbound L T R HCS: Signals Release 3.1b City/St: La Quinta Proj #: Vista Montana Period: Morning Peak Hour NIS St: Washington Street IGNALIZED INTERSECTION SUMMARY __ l Westbound Northbound Southbound L T R L T R L T R No. Lanes 1 1 1 1 1 1 1 3 0 1 2 1 LGConfig L T R L T R L TR B 8.7 A R 1262 1495 L T R 0.844 1.3 Volume 137 43 45 22 37 46 49 477 43 19 389 156 Lane Width 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 RTOR Vol 0 0 0 0 Duration 1.00 Area Type: All other areas Signal Operations Phase Combination 1 2 3 4 5 6 7 8 EB Left A NB Left P Thru A Thru A Right A Right A Peds X Peds X WB Left A SB Left A Thru A Thru A Right A Right A Peds X Peds X NB Right EB Right A A SB Right A A WB Right A A Green 11.0 7.0 6.0 50.0 Yellow 3.0 3.0 3.0 3.0 All Red 1.0 1.0 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance Summary Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Delay LOS Eastbound L 204 1671 0.67 0.122 46.4 D T 137 1759 0.31 0.078 40.6 D 36.4 D R 1179 1495 0.04 0.789 2.1 A Westbound L 204 1671 0.11 0.122 35.4 D T 137 1759 0.27 0.078 40.2 D 22.5 C R 1179 1495 0.04 0.789 2.1 A Northbound L 111 1671 0.44 0.067 53.0 D TR 2635 4743 0.20 0.556 10.0+ B 13.7 B Southbound L 111 1671 0.17 0.067 40.4 D T 1857 3343 0.21 0.556 10.1 B 8.7 A R 1262 1495 0.12 0.844 1.3 A Intersection Delay = 17.7 (sec/veh) Intersection LOS = B Appr/ Lane Mvmt Group Eastbound 0.67 Pri. 1671 Sec. 0.067 Left L Thru T Right R Westbound 0.556 Pri. 0.21 Sec. 1.000 Left L Thru T Right R Northbound Pri. R Sec. 0.789 Left L Thru TR Right 0.0 Southbound Pri. = 0.25 Sec. Westbound CAPACITY ANALYSIS WORKSHEET Adj Adj Sat Flow Green --Lane Group -- Flow Rate Flow Rate Ratio Ratio Capacity v/c (v) (s) (v/s) (g/C) (c) Ratio 137 1671 # 0.08 0.122 43 1759 # 0.02 0.078 45 1495 0.03 0.789 22 1671 0.01 0.122 37 1759 0.02 0.078 46 1495 0.03 0.789 49 1671 # 0.03 0.067 520 4743 0.11 0.556 204 0.67 137 0.31 1179 0.04 204 0.11 137 0.27 1179 0.04 111 2635 0.44 0.20 Left L 0.67 19 1671 0.01 0.067 111 0.17 Thru T 46.4 389 3343 # 0.12 0.556 1857 0.21 Right R 1.000 156 1495 0.10 0.844 1262 0.12 36.4 D R 0.04 0.789 2.1 1.000 1179 0.11 0.0 0.0 Sum (v/s) critical = 0.25 Westbound Lost Time/Cycle, L = 16.00 sec Critical v/c(X) = 0.31 LEVEL OF SERVICE WORKSHEET 0.122 35.1 1.000 Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del 1.000 137 0.11 Grp v/c g/C d1 Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.67 0.122 37.8 1.000 204 0.24 8.7 0.0 46.4 D T 0.31 0.078 39.2 1.000 137 0.11 1.3 0.0 40.6 D 36.4 D R 0.04 0.789 2.1 1.000 1179 0.11 0.0 0.0 2.1 A Westbound L 0.11 0.122 35.1 1.000 204 0.11 0.2 0.0 35.4 D T 0.27 0.078 39.1 1.000 137 0.11 1.1 0.0 40.2 D 22.5 C R 0.04 0.789 2.1 1.000 1179 0.11 0.0 0.0 2.1 A Northbound L 0.44 0.067 40.4 1.000 111 0.50 12.7 0.0 53.0 D TR 0.20 0.556 10.0 1.000 2635 0.11 0.0 0.0 10.0+ B 13.7 B Southbound L 0.17 0.067 39.7 1.000 111 0.11 0.7 0.0 40.4 D T 0.21 0.556 10.1 1.000 1857 0.11 0.1 0.0 10.1 B 8.7 A R 0.12 0.844 1.2 1.000 1262 0.11 0.0 0.0 1.3 A Intersection Delay = 17.7 (sec/veh) Intersection LOS = B Inter: Existing Analyst: Greg Date: 1/12/2001 E/W St: Calle Tampico No. Lanes LGConf ig Volume Lane Width RTOR Vol Eastbound L T R 1 1 1 L T R 195 53 54 12.0 12.0 12.0 0 HCS: Signals Release 3.1b City/St: La Quinta Proj #: Vista Montana Period: Evening Peak Hour NIS St: Washington Street IGNALIZED INTERSECTION SUMMARY Duration 1.00 Westbound Northbound Southbound L T R L T R L T R Phase Combination 1 2 3 4 5 1 1 1 1 3 0 1 2 1 P L T R L TR L T R 0.067 22 58 32 72 465 36 54 556 226 D 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 0.744 0 0 0 Duration 1.00 Area Type: All other areas Signal Operations Phase Combination 1 2 3 4 5 EB Left A NB Left P Thru A Thru 0.067 Right A Right D Peds X Peds 0.744 WB Left A SB Left A Thru A Thru Right A Right Peds X Peds 0.167 NB Right C EB Right A SB Right A A WB Right A Green 15.0 6.0 29.8 6.0 Yellow 3.0 3.0 0.03 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance Summary__ Appr/ Lane Adj Sat Ratios Lane Group Lane Group Flow Rate 0.067 69.6 Grp Capcity (s) v/c g/C Delay LOS 6 7 8 A A X A A X A A 47.0 3.0 1.0 Approach Delay LOS Eastbound L 279 1671 0.70 0.167 43.2 D T 117 1759 0.45 0.067 43.2 D 36.0 D R 1113 1495 0.05 0.744 3.1 A Westbound L 279 1671 0.08 0.167 31.8 C T 117 1759 0.50 0.067 43.9 D 29.8 C R 1113 1495 0.03 0.744 3.0 A Northbound L 111 1671 0.65 0.067 69.6 E TR 2481 4751 0.20 0.522 11.5 B 18.8 B Southbound L 111 1671 0.49 0.067 43.9 D T 1746 3343 0.32 0.522 12.4 B 11.5 B R 1262 1495 0.18 0.844 1.4 A Intersection Delay = 21.5 (sec/veh) Intersection LOS = C Appr/ Mvmt Lane Group CAPACITY ANALYSIS WORKSHEET Adj Adj Sat Flow Green Flow Rate Flow Rate Ratio Ratio (v) (s) (v/s) (g/C) --Lane Group-- Capacity v/c (c) Ratio Eastbound 279 0.27 7.8 0.0 43.2 D Pri. T 0.45 0.067 40.4 1.000 117 0.11 Sec. 0.0 43.2 D 36.0 D R 0.05 Left L 195 1671 # 0.12 0.167 279 0.70 Thru T 53 1759 0.03 0.067 117 0.45 Right R 54 1495 0.04 0.744 1113 0.05 Westbound 0.167 31.7 1.000 279 0.11 0.1 0.0 Pri. C T 0.50 0.067 40.5 Sec. 117 0.11 3.3 0.0 43.9 D 29.8 Left L 22 1671 0.01 0.167 279 0.08 Thru T 58 1759 # 0.03 0.067 117 0.50 Right R 32 1495 0.02 0.744 1113 0.03 Northbound L 0.65 0.067 41.0 1.000 Pri. 0.50 28.6 0.0 69.6 E Sec. 0.20 0.522 11.5 1.000 2481 0.11 0.0 Left L 72 1671 # 0.04 0.067 ill 0.65 Thru TR 501 4751 0.11 0.522 2481 0.20 Right L 0.49 0.067 40.5 1.000 111 0.11 Southbound 0.0 43.9 D T Pri. 0.522 12.3 1.000 1746 0.11 0.1 0.0 Sec. B 11.5 B R 0.18 0.844 1.3 Left L 54 1671 0.03 0.067 111 0.49 Thru T 556 3343 # 0.17 0.522 1746 0.32 Right R 226 1495 0.15 0.844 1262 0.18 Sum (v/s) critical = 0.36 Lost Time/Cycle, L = 16.00 sec Critical v/c(X) = 0.44 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Lane Del Adj Grp Factor Del Del Grp v/c g/C dl Fact Cap k d2 d3 Delay LOS Eastbound Approach Delay LOS L 0.70 0.167 35.4 1.000 279 0.27 7.8 0.0 43.2 D T 0.45 0.067 40.4 1.000 117 0.11 2.8 0.0 43.2 D 36.0 D R 0.05 0.744 3.0 1.000 1113 0.11 0.0 0.0 3.1 A Westbound L 0.08 0.167 31.7 1.000 279 0.11 0.1 0.0 31.8 C T 0.50 0.067 40.5 1.000 117 0.11 3.3 0.0 43.9 D 29.8 C R 0.03 0.744 3.0 1.000 1113 0.11 0.0 0.0 3.0 A Northbound L 0.65 0.067 41.0 1.000 111 0.50 28.6 0.0 69.6 E TR 0.20 0.522 11.5 1.000 2481 0.11 0.0 0.0 11.5 B 18.8 B Southbound L 0.49 0.067 40.5 1.000 111 0.11 3.4 0.0 43.9 D T 0.32 0.522 12.3 1.000 1746 0.11 0.1 0.0 12.4 B 11.5 B R 0.18 0.844 1.3 1.000 1262 0.11 0.1 0.0 1.4 A Intersection Delay = 21.5 (sec/veh) Intersection LOS = C Eastbound L T R SIGNALIZED INTERSECTION SUMMARY Westbound Northbound 1 L T R L T R Southbound L T R No. Lanes LGConfig Volume Lane Width RTOR Vol 1 L �11 12.0 1 0 TR 21 11 12.0 0 1 L 30 12.0 1 1 T R 7 42 12.0 12.0 0 1 L 9 12.0 HCS: Signals Release 3.1b Duration 1.00 Inter: Year 2003 No Project City/St: La Quinta TR 93 Analyst: Greg Proj #: Vista Montana` D Phase Combination Date: 11/3/2000 Period: Morning Peak Hour 5 6 7 8 E/W St: Avenue 50 NIS St: Eisenhower Drive Left Eastbound L T R SIGNALIZED INTERSECTION SUMMARY Westbound Northbound 1 L T R L T R Southbound L T R No. Lanes LGConfig Volume Lane Width RTOR Vol 1 L �11 12.0 1 0 TR 21 11 12.0 0 1 L 30 12.0 1 1 T R 7 42 12.0 12.0 0 1 L 9 12.0 2 0 TR 664 16 12.0 0 1 2 0 L TR 26 190 26 12.0 12.0 0 1407 Duration 1.00 Area Type: All other areas TR 93 1669 0.34 Signal Operations 43.2 D Phase Combination 1 2 3 4 5 6 7 8 EB Left A 1407 NB Left P D Thru A 1759 0.07 Thru 40.6 A Right A 1495 0.03 Right 0.0+ A Peds X Peds X WB Left A 1671 SB Left A D Thru A 3331 0.27 Thru 3.4 A Right A Right A Peds X 1671 0.28 Peds 42.4 X NB Right TR 2480 3282 EB Right 2.9 A SB Right WB Right A A Green 5.0 5.0 68.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance Summary Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Delay LOS Eastbound L 80 1407 0.24 0.056 42.2 D TR 93 1669 0.34 0.056 43.2 D 42.8 D Westbound L 80 1407 0.38 0.056 44.0 D T 98 1759 0.07 0.056 40.6 D 20.3 C R 1495 1495 0.03 1.000 0.0+ A Northbound L 93 1671 0.10 0.056 42.4 D TR 2517 3331 0.27 0.756 3.4 A 3.9 A Southbound L 93 1671 0.28 0.056 42.4 D TR 2480 3282 0.09 0.756 2.9 A 7.1 A Intersection Delay = 7.8 (sec/veh) Intersection LOS = A Appr/ Lane Mvmt Group Eastbound Sum (v/s) Pri. 0.24 Sec. Left L Thru TR Right = Westbound Pri. Sec. Left L Thru T Right R Northbound Pri. Prog Sec. Incremental Left L Thru TR Right Del Southbound Pri. Factor Sec. Del Left L Thru TR Right dl CAPACITY ANALYSIS WORKSHEET Adj Adj Sat Flow Green --Lane Group -- Flow Rate Flow Rate Ratio Ratio Capacity v/c (v) (s) (v/s) (g/C) (c) Ratio 19 1407 0.01 0.056 80 0.24 32 1669 0.02 0.056 93 0.34 30 1407 # 0.02 0.056 80 0.38 7 1759 0.00 0.056 98 0.07 42 1495 0.03 1.000 1495 0.03 9 1671 0.01 0.056 93 0.10 680 3331 # 0.20 0.756 2517 0.27 26 1671 # 0.02 0.056 93 0.28 216 3282 0.07 0.756 2480 0.09 Intersection Delay = 7.8 (sec/veh) Intersection LOS = A Sum (v/s) critical = 0.24 Lost Time/Cycle, L = 12.00 sec Critical v/c(X) = 0.28 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C dl Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.24 0.056 40.7 1.000 80 0.11 1.5 0.0 42.2 D TR 0.34 0.056 40.9 1.000 93 0.11 2.2 0.0 43.2 D 42.8 D Westbound L 0.38 0.056 41.0 1.000 80 0.11 3.0 0.0 44.0 D T 0.07 0.056 40.3 1.000 98 0.11 0.3 0.0 40.6 D 20.3 C R 0.03 1.000 0.0 1.000 1495 0.11 0.0 0.0 0.0+ A Northbound L 0.10 0.056 40.4 1.000 93 0.50 2.1 0.0 42.4 D TR 0.27 0.756 3.4 1.000 2517 0.11 0.1 0.0 3.4 A 3.9 A Southbound L 0.28 0.056 40.8 1.000 93 0.11 1.7 0.0 42.4 D TR 0.09 0.756 2.9 1.000 2480 0.11 0.0 0.0 2.9 A 7.1 A Intersection Delay = 7.8 (sec/veh) Intersection LOS = A Westbound L 116 1302 HCS: Signals Release 3.1b 0.089 Inter: Year 2003 No Project City/St: La Quinta Analyst: Greg 0.06 Proj #: Vista Montana Date: 11/3/2000 D 36.9 D Period: Evening Peak Hour E/W St: Avenue 50 1.000 NIS St: Eisenhower Drive A SIGNALIZED INTERSECTION SUMMARY Eastbound Westbound Northbound L 93 Southbound 0.15 0.056 L T R L T R L T R 0.16 L T R 4.0 No. Lanes 1 1 1 1 2 0 1 2 0 1 1 0 LGConfig L TR L T R L TR L TR Volume 24 9 17 10 19 14 362 23 39 539 15 Lane Width 12.0 �18 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 RTOR Vol 0 0 0 0 Duration 1.00 Area Type: All other areas Signal Operations Phase Combination 1 2 3 4 5 6 7 8 EB Left A NB Left P Thru A Thru A Right A Right A Peds X Peds X WB Left A SB Left A Thru A Thru A Right A Right A Peds X Peds X NB Right EB Right SB Right WB Right A A Green 8.0 5.0 65.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance Summary Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Delay LOS Eastbound L 117 1321 0.21 0.089 38.9 D TR 141 1587 0.18 0.089 38.6 D 38.8 D Westbound L 116 1302 0.59 0.089 47.1 D T 156 1759 0.06 0.089 37.7 D 36.9 D R 1495 1495 0.01 1.000 0.0+ A Northbound L 93 1671 0.15 0.056 43.9 D TR 2393 3313 0.16 0.722 4.0 A 5.4 A Southbound L 93 1671 0.42 0.056 44.2 D TR 2404 3329 0.23 0.722 4.2 A 6.8 A Intersection Delay = 10.3 (sec/veh) Intersection LOS = B Appr/ Lane Mvmt Group Eastbound Pri. critical = Sec. Left L Thru TR Right Critical Westbound = Pri. Sec. Left L Thru T Right R Northbound Pri. Sec. Ratios Left L Thru TR Right Lane Group Southbound Pri. Sec. Del Left L Thru TR Right CAPACITY ANALYSIS WORKSHEET Adj Adj Sat Flow Green --Lane Group -- Flow Rate Flow Rate Ratio Ratio Capacity v/c (v) (s) (v/s) (g/C) (c) Ratio 24 1321 0.02 0.089 117 0.21 26 1587 0.02 0.089 141 0.18 68 1302 # 0.05 0.089 116 0.59 10 1759 0.01 0.089 156 0.06 19 1495 0.01 1.000 1495 0.01 14 1671 0.01 0.056 93 0.15 385 3313 0.12 0.722 2393 0.16 39 1671 # 0.02 0.056 93 0.42 554 3329 # 0.17 0.722 2404 0.23 Intersection Delay = 10.3 (sec/veh) Intersection LOS = B Sum (v/s) critical = 0.24 Lost Time/Cycle, L = 12.00 sec Critical v/c(X) = 0.28 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C d1 Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.21 0.089 38.0 1.000 117 0.11 0.9 0.0 38.9 D TR 0.18 0.089 38.0 1.000 141 0.11 0.6 0.0 38.6 D 38.8 D Westbound L 0.59 0.089 39.4 1.000 116 0.18 7.7 0.0 47.1 D T 0.06 0.089 37.6 1.000 156 0.11 0.2 0.0 37.7 D 36.9 D R 0.01 1.000 0.0 1.000 1495 0.11 0.0 0.0 0.0+ A Northbound L 0.15 0.056 40.5 1.000 93 0.50 3.4 0.0 43.9 D TR 0.16 0.722 3.9 1.000 2393 0.11 0.0 0.0 4.0 A 5.4 A Southbound L 0.42 0.056 41.1 1.000 93 0.11 3.1 0.0 44.2 D TR 0.23 0.722 4.2 1.000 2404 0.11 0.0 0.0 4.2 A 6.8 A Intersection Delay = 10.3 (sec/veh) Intersection LOS = B SIGNALIZED INTERSECTION SUMMARY Eastbound Westbound Northbound Southbound L T R L T R L T R L T R No. Lanes As 1 HCS: Signals Release 3.1b Inter: Year 2003 W/ Project City/St: La Quinta 2 Analyst: Greg Proj #: Vista Montana L TR Date: 11/3/2000 Period: Morning Peak Hour L E/W St: Avenue 50 NIS St: Eisenhower Drive 31 SIGNALIZED INTERSECTION SUMMARY Eastbound Westbound Northbound Southbound L T R L T R L T R L T R No. Lanes 1 1 1 0 1 1 1 2 0 1 2 0 LGConfig L TR L T R L TR L TR Volume 19 21 11 31 7 11 9 679 17 126 217 26 Lane Width 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 RTOR Vol 0 0 4 0 0 Duration 1.00 Area Type: All other areas Signal Operations Phase Combination 1 2 3 4 5 6 7 8 EB Left A NB Left P Thru A Thru A Right A Right A Peds X Peds X WB Left A SB Left A Thru A Thru A Right A Right A Peds X Peds X NB Right EB Right SB Right WB Right A A Green 5.0 5.0 68.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance Summary Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Delay LOS Eastbound L 80 1407 0.24 0.056 42.2 D TR 93 1669 0.34 0.056 43.2 D 42.8 D Westbound L 80 1407 0.39 0.056 44.1 D T 98 1759 0.07 0.056 40.6 D 33.7 C R 1495 1495 0.01 1.000 0.0+ A Northbound L 93 1671 0.10 0.056 42.4 D TR 2516 3330 0.28 0.756 3.5 A 4.0 A Southbound L 93 1671 0.28 0.056 42.4 D TR 2485 3289 0.10 0.756 2.9 A 6.7 A Intersection Delay = 7.9 (sec/veh) Intersection LOS = A Appr/ Lane Mvmt Group Eastbound 0.24 Pri. 1669 Sec. 0.056 Left L Thru TR Right 0.056 Westbound 0.39 Pri. 1759 Sec. 0.056 Left L Thru T Right R Northbound Pri. 9 Sec. 0.01 Left L Thru TR Right # 0.21 Southbound Pri. 0.28 Sec. 1671 Left L Thru TR Right 3289 CAPACITY ANALYSIS WORKSHEET Adj Adj Sat Flow Green --Lane Group -- Flow Rate Flow Rate Ratio Ratio Capacity v/c (v) (s) (v/s) (g/C) (c) Ratio 19 1407 0.01 0.056 80 0.24 32 1669 0.02 0.056 93 0.34 31 1407 # 0.02 0.056 80 0.39 7 1759 0.00 0.056 98 0.07 11 1495 0.01 1.000 1495 0.01 9 1671 0.01 0.056 93 0.10 696 3330 # 0.21 0.756 2516 0.28 26 1671 # 0.02 0.056 93 0.28 243 3289 0.07 0.756 2485 0.10 Intersection Delay = 7.9 (sec/veh) Intersection LOS = A Sum (v/s) critical = 0.25 Lost Time/Cycle, L = 12.00 sec Critical v/c(X) = 0.28 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C dl Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.24 0.056 40.7 1.000 80 0.11 1.5 0.0 42.2 D TR 0.34 0.056 40.9 1.000 93 0.11 2.2 0.0 43.2 D 42.8 D Westbound L 0.39 0.056 41.0 1.000 80 0.11 3.1 0.0 44.1 D T 0.07 0.056 40.3 1.000 98 0.11 0.3 0.0 40.6 D 33.7 C R 0.01 1.000 0.0 1.000 1495 0.11 0.0 0.0 0.0+ A Northbound L 0.10 0.056 40.4 1.000 93 0.50 2.1 0.0 42.4 D TR 0.28 0.756 3.4 1.000 2516 0.11 0.1 0.0 3.5 A 4.0 A Southbound L 0.28 0.056 40.8 1.000 93 0.11 1.7 0.0 42.4 D TR 0.10 0.756 2.9 1.000 2485 0.11 0.0 0.0 2.9 A 6.7 A Intersection Delay = 7.9 (sec/veh) Intersection LOS = A Inter: Year 2003 W/ Project Analyst: Greg Date: 11/3/2000 E/W St: Avenue 50 Eastbound L T R HCS: Signals Release 3.1b City/St: La Quinta Proj #: Vista Montana Period: Evening Peak Hour NIS St: Eisenhower Drive IGNALIZED INTERSECTION SUMMARY, Westbound Northbound L T R L T R Southbound L T R 0 No. Lanes LGConfig Volume Lane Width RTOR Vol 1 L 24 12.0 1 TR 9 12.0 0 17 0 1 L 71 12.0 1 T 10 12.0 1 R 14 12.0 0 1 L 14 12.0 2 TR 377 12.0 0 8 0 1 L 10 12,0 2 0 TR 567 15 12.0 0 1302 Duration 1.00 43.4 Area Type: All other areas 0.100 36.8 D 36.3 D 1495 0.01 1.000 Signal Operations 1671 0.15 0.056 43.9 Phase Combination 1 2 3 4 0.711 4.3 A 5 6 7 8 EB Left D A 3330 0.25 0.711 NB Left P Thru A Thru A Right A Right A Peds X Peds X WB Left A SB Left A Thru A Thru A Right A Right A Peds X Peds X NB Right EB Right SB Right WB Right A A Green 9.0 5.0 64.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs Appr/ Lane Lane Group Grp Capcity Eastbound L 132 TR 159 Westbound L 130 T 176 R 1495 Northbound L 93 TR 2369 Southbound L 93 TR 2368 _Intersection Performance Summary_ Adj Sat Ratios Lane Group Flow Rate (s) v/c g/C Delay LOS Approach Delay LOS 1321 0.18 0.100 37.8 D 1587 0.16 0.100 37.5 D 37.7 D 1302 0.55 0.100 43.4 D 1759 0.06 0.100 36.8 D 36.3 D 1495 0.01 1.000 0.0+ A 1671 0.15 0.056 43.9 D 3332 0.16 0.711 4.3 A 5.7 A 1671 0.11 0.056 40.9 D 3330 0.25 0.711 4.6 A 5.2 A Intersection Delay = 9.4 (sec/veh) Intersection LOS = A Sum (v/s) critical = 0.24 Lost Time/Cycle, L = 12.00 sec Critical v/c(X) = 0.27 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C d1 Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.18 0.100 37.1 CAPACITY ANALYSIS WORKSHEET 132 0.11 0.7 0.0 Adj Adj Sat Flow Green --Lane Group-- 37.1 Appr/ Lane Flow Rate Flow Rate Ratio Ratio Capacity v/c Mvmt Group (v) (s) (v/s) (g/C) (c) Ratio Eastbound L 0.55 0.100 38.6 1.000 Pri. 0.15 4.8 0.0 43.4 D T 0.06 Sec. 36.7 1.000 176 0.11 0.1 0.0 36.8 Left L 24 1321 0.02 0.100 132 0.18 Thru TR 26 1587 0.02 0.100 159 0.16 Right Westbound 0.056 40.5 1.000 93 0.50 3.4 0.0 Pri. D TR 0.16 0.711 4.2 1.000 2369 Sec. 0.0 0.0 4.3 A 5.7 A Southbound Left L 71 1302 # 0.05 0.100 130 0.55 Thru T 10 1759 0.01 0.100 176 0.06 Right R 14 1495 0.01 1.000 1495 0.01 Northbound 0.11 0.1 0.0 4.6 A 5.2 A Pri. Sec. Left L 14 1671 # 0.01 0.056 93 0.15 Thru TR 385 3332 0.12 0.711 2369 0.16 Right Southbound Pri. Sec. Left L 10 1671 0.01 0.056 93 0.11 Thru TR 582 3330 # 0.17 0.711 2368 0.25 Right Sum (v/s) critical = 0.24 Lost Time/Cycle, L = 12.00 sec Critical v/c(X) = 0.27 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C d1 Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.18 0.100 37.1 1.000 132 0.11 0.7 0.0 37.8 D TR 0.16 0.100 37.1 1.000 159 0.11 0.5 0.0 37.5 D 37.7 D Westbound L 0.55 0.100 38.6 1.000 130 0.15 4.8 0.0 43.4 D T 0.06 0.100 36.7 1.000 176 0.11 0.1 0.0 36.8 D 36.3 D R 0.01 1.000 0.0 1.000 1495 0.11 0.0 0.0 0.0+ A Northbound L 0.15 0.056 40.5 1.000 93 0.50 3.4 0.0 43.9 D TR 0.16 0.711 4.2 1.000 2369 0.11 0.0 0.0 4.3 A 5.7 A Southbound L 0.11 0.056 40.4 1.000 93 0.11 0.5 0.0 40.9 D TR 0.25 0.711 4.6 1.000 2368 0.11 0.1 0.0 4.6 A 5.2 A Intersection Delay = 9.4 (sec/veh) Intersection LOS = A SIGNALIZED INTERSECTION SUMMARY 1 Eastbound Westbound Northbound Southbound L T R L T R L T R L T R No. Lanes 0 1 0 0 1 1 1 2 0 1 2 0 LGConfig LTR LT R L TR L TR Volume 1 1 1 93 1 851 584 99 71 113 1 Lane Width 12.0 12.0 12.0 12.0 12.0 12.0 12.0 RTOR Vol 0 0 0 0 Duration 1.00 Area Type: All other areas Signal Operations Phase Combination 1 2 3 4 5 6 7 8 EB Left A NB Left P Thru A Thru A Right A Right A Peds X Peds X WB Left A SB Left A Thru A Thru A Right A Right A Peds X Peds X NB Right EB Right SB Right WB Right A A Green 11.0 7.0 60.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance Summary Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Delay LOS Eastbound LTR 172 1410 0.02 0.122 34.8 C 34.8 C Westbound LT 156 HCS: Signals Release 3.1b Inter: Year 2003 No Project City/St: La Quinta Analyst: Greg Proj #: Vista Montana Date: 11/3/2000 Period: Morning Peak Hour E/W St: Calle Tampico NIS St: Eisenhower Drive SIGNALIZED INTERSECTION SUMMARY 1 Eastbound Westbound Northbound Southbound L T R L T R L T R L T R No. Lanes 0 1 0 0 1 1 1 2 0 1 2 0 LGConfig LTR LT R L TR L TR Volume 1 1 1 93 1 851 584 99 71 113 1 Lane Width 12.0 12.0 12.0 12.0 12.0 12.0 12.0 RTOR Vol 0 0 0 0 Duration 1.00 Area Type: All other areas Signal Operations Phase Combination 1 2 3 4 5 6 7 8 EB Left A NB Left P Thru A Thru A Right A Right A Peds X Peds X WB Left A SB Left A Thru A Thru A Right A Right A Peds X Peds X NB Right EB Right SB Right WB Right A A Green 11.0 7.0 60.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance Summary Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Delay LOS Eastbound LTR 172 1410 0.02 0.122 34.8 C 34.8 C Westbound LT 156 1279 0.60 0.122 44.0 D 23.1 C R 1495 1495 0.06 1.000 0.0+ A Northbound L 130 1671 0.01 0.078 38.4 D TR 2180 3270 0.31 0.667 6.4 A 6.4 A Southbound L 130 1671 0.55 0.078 44.8 D TR 2225 3338 0.05 0.667 5.2 A 20.4 C Intersection Delay = 11.8 (sec/veh) Intersection LOS = B Appr/ Lane Mvmt Group Eastbound Sum (v/s) Pri. 0.32 Sec. Left Lost Time/Cycle, Thru LTR Right v/c(X) Westbound 0.37 Pri. Sec. Left Thru LT Right R Northbound Pri. Sec. Unf Left L Thru TR Right Approach Southbound Pri. Del Sec. Grp Left L Thru TR Right CAPACITY ANALYSIS WORKSHEET Adj Adj Sat Flow Green --Lane Group -- Flow Rate Flow Rate Ratio Ratio Capacity v/c (v) (s) (v/s) (g/C) (c) Ratio 3 1410 0.00 94 1279 # 0.07 85 1495 0.06 1 1671 0.00 683 3270 # 0.21 71 1671 # 0.04 114 3338 0.03 0.122 172 0.02 0.122 156 0.60 1.000 1495 0.06 0.078 130 0.01 0.667 2180 0.31 0.078 130 0.55 0.667 2225 0.05 Intersection Delay = 11.8 (sec/veh) Intersection LOS = B Sum (v/s) critical = 0.32 Lost Time/Cycle, L = 12.00 sec Critical v/c(X) = 0.37 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C dl Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound LTR 0.02 0.122 34.7 1.000 172 0.11 0.0 0.0 34.8 C 34.8 C Westbound LT 0.60 0.122 37.4 1.000 156 0.19 6.6 0.0 44.0 D 23.1 C R 0.06 1.000 0.0 1.000 1495 0.11 0.0 0.0 0.0+ A Northbound L 0.01 0.078 38.3 1.000 130 0.50 0.1 0.0 38.4 D TR 0.31 0.667 6.3 1.000 2180 0.11 0.1 0.0 6.4 A 6.4 A Southbound L 0.55 0.078 40.0 1.000 130 0.15 4.8 0.0 44.8 D TR 0.05 0.667 5.2 1.000 2225 0.11 0.0 0.0 5.2 A 20.4 C Intersection Delay = 11.8 (sec/veh) Intersection LOS = B Inter: Year 2003 No Project Analyst: Greg Date: 11/3/2000 E/W St: Calle Tampico Eastbound L T R HCS: Signals Release 3.1b City/St: La Quinta Proj #: Vista Montana Period: Evening Peak Hour NIS St: Eisenhower Drive IGNALIZED INTERSECTION SUMMARY Westbound Northbound Southbound L T R I L T R L T R No. Lanes LGConfig Volume Lane Width RTOR Vol 0 1 1 0 LTR 1 2 12.0 0 0 1 1 LT R 213 1 80 12.0 12.0 0 1 L 3 12.0 2 TR 294 12.0 0 143 0 1 L �15 12.0 2 0 TR 573 1 12.0 0 Duration 1.00 Area Type: All other areas Northbound Signal Operations L 111 Phase Combination 1 2 3 4 39.7 5 6 7 8 EB Left A NB Left P B Southbound Thru A Thru A L 111 Right A 0.067 Right D A TR 1820 Peds X 0.544 Peds B 15.2 X Intersection WB Left A SB Left A Thru A Thru A Right A Right A Peds X Peds X NB Right EB Right SB Right WB Right A A Green 23.0 6.0 49.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance Summary Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Delay LOS Eastbound LTR 361 Westbound 1412 0.01 0.256 25.0 C 25.0 C LT 326 1276 0.66 0.256 34.8 C 25.4 C R 1495 1495 0.05 1.000 0.0+ A Northbound L 111 1671 0.03 0.067 39.7 D TR 1731 3179 0.25 0.544 10.9 B 11.1 B Southbound L 111 1671 0.59 0.067 48.8 D TR 1820 3342 0.32 0.544 11.4 B 15.2 B Intersection Delay = 16.1 (sec/veh) Intersection LOS = B Sum (v/s) critical = 0.38 Lost Time/Cycle, L = 12.00 sec Critical v/c(X) = 0.44 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C dl Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound LTR 0.01 0.256 25.0 1.000 361 0.11 0.0 0.0 25.0 C 25.0 C Westbound LT 0.66 0.256 30.0 CAPACITY ANALYSIS WORKSHEET 326 0.23 4.9 0.0 Adj Adj Sat Flow Green --Lane Group-- 1.000 Appr/ Lane Flow Rate Flow Rate Ratio Ratio Capacity v/c Mvmt Group (v) (s) (v/s) (g/C) (c) Ratio Eastbound L 0.03 0.067 39.3 1.000 111 0.50 0.5 Pri. 39.7 D TR 0.25 0.544 10.8 1.000 1731 Sec. 0.1 0.0 10.9 B 11.1 B Southbound Left L 0.59 Thru LTR 4 1412 0.00 0.256 361 0.01 Right TR 0.32 0.544 11.3 1.000 1820 0.11 0.1 Westbound 11.4 B 15.2 B Pri. Sec. Left Thru LT 214 1276 # 0.17 0.256 326 0.66 Right R 80 1495 0.05 1.000 1495 0.05 Northbound Pri. Sec. Left L 3 1671 0.00 0.067 ill 0.03 Thru TR 437 3179 0.14 0.544 1731 0.25 Right Southbound Pri. Sec. Left L 65 1671 # 0.04 0.067 111 0.59 Thru TR 574 3342 # 0.17 0.544 1820 0.32 Right Sum (v/s) critical = 0.38 Lost Time/Cycle, L = 12.00 sec Critical v/c(X) = 0.44 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C dl Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound LTR 0.01 0.256 25.0 1.000 361 0.11 0.0 0.0 25.0 C 25.0 C Westbound LT 0.66 0.256 30.0 1.000 326 0.23 4.9 0.0 34.8 C 25.4 C R 0.05 1.000 0.0 1.000 1495 0.11 0.0 0.0 0.0+ A Northbound L 0.03 0.067 39.3 1.000 111 0.50 0.5 0.0 39.7 D TR 0.25 0.544 10.8 1.000 1731 0.11 0.1 0.0 10.9 B 11.1 B Southbound L 0.59 0.067 40.8 1.000 111 0.18 8.0 0.0 48.8 D TR 0.32 0.544 11.3 1.000 1820 0.11 0.1 0.0 11.4 B 15.2 B Intersection Delay = 16.1 (sec/veh) Intersection LOS = B HCS: Signals Release 3.1b Inter: Year 2003 W/ Project City/St: La Quinta Analyst: Greg Proj #: Vista Montanan Date: 11/3/2000 Period: Morning Peak Hour E/W St: Calle Tampico NIS St: Eisenhower Drive SIGNALIZED INTERSECTION SUMMARY a,. Eastbound Westbound Northbound Southbound L T R L T R L T R L T R r No. Lanes 0 1 1 0 1 0 1 2 0 1 2 0 LGConfig LTR LT R L TR L TR Volume 1 1 1 111 0 79 1 536 130 89 113 1 Lane Width 12.0 12.0 12.0 12.0 12.0 12.0 12.0 RTOR Vol 0 0 0 0 Duration 1.00 Area Type: All other areas Signal Operations Phase Combination 1 2 3 4 5 6 7 8 EB Left A NB Left P Thru A Thru A Right A Right A Peds X Peds X WB Left A SB Left A Thru A Thru A Right A Right A Peds X Peds X NB Right EB Right SB Right WB Right A A Green 17.0 9.0 52.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance Summary Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Delay LOS Eastbound LTR 271 1435 0.01 0.189 29.7 C 29.7 C Westbound LT 241 1275 0.46 0.189 33.8 C 19.8 B R 1495 1495 0.05 1.000 0.0+ A Northbound L 167 1671 0.01 0.100 36.5 D TR 1875 3245 0.36 0.578 10.2 B 10.2 B Southbound L 167 1671 0.53 0.100 41.8 D TR 1929 3338 0.06 0.578 8.3 A 23.0 C Intersection Delay = 14.4 (sec/veh) Intersection LOS = B Intersection Delay = 14.4 (sec/veh) Intersection LOS = B CAPACITY ANALYSIS WORKSHEET Sum (v/s) critical = 0.35 Adj Adj Sat Flow Green --Lane Group-- 12.00 sec Appr/ Lane Flow Rate Flow Rate Ratio Ratio Capacity v/c Mvmt Group (v) (s) (v/s) (g/C) (c) Ratio Eastbound Appr/ Ratios Unf Prog Lane Incremental Res Pri. Approach Lane Del Adj Grp Factor Sec. Del Grp v/c g/C Left Fact Cap k d2 d3 Delay LOS Thru LTR 3 1435, 0.00 0.189 271 0.01 Right LTR 0.01 0.189 Westbound 1.000 271 0.11 0.0 0.0 29.7 C Pri. C Westbound Sec. LT 0.46 0.189 Left 1.000 241 0.11 1.4 0.0 33.8 C Thru LT 111 1275 # 0.09 0.189 241 0.46 Right R 79 1495 0.05 1.000 1495 0.05 Northbound Pri. L 0.01 0.100 36.5 1.000 167 Sec. 0.1 0.0 36.5 D TR 0.36 Left L 1 1671 0.00 0.100 167 0.01 Thru TR 666 3245 # 0.21 0.578 1875 0.36 Right L 0.53 Southbound 38.5 1.000 167 0.14 3.3 0.0 Pri. D TR 0.06 0.578 8.3 1.000 Sec. 0.11 0.0 0.0 8.3 A 23.0 C Left L 89 1671 # 0.05 0.100 167 0.53 Thru TR 114 3338 0.03 0.578 1929 0.06 Right Intersection Delay = 14.4 (sec/veh) Intersection LOS = B Sum (v/s) critical = 0.35 Lost Time/Cycle, L = 12.00 sec Critical v/c(X) = 0.40 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C dl Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound LTR 0.01 0.189 29.7 1.000 271 0.11 0.0 0.0 29.7 C 29.7 C Westbound LT 0.46 0.189 32.4 1.000 241 0.11 1.4 0.0 33.8 C 19.8 B R 0.05 1.000 0.0 1.000 1495 0.11 0.0 0.0 0.0+ A Northbound L 0.01 0.100 36.5 1.000 167 0.50 0.1 0.0 36.5 D TR 0.36 0.578 10.1 1.000 1875 0.11 0.1 0.0 10.2 B 10.2 B Southbound L 0.53 0.100 38.5 1.000 167 0.14 3.3 0.0 41.8 D TR 0.06 0.578 8.3 1.000 1929 0.11 0.0 0.0 8.3 A 23.0 C Intersection Delay = 14.4 (sec/veh) Intersection LOS = B HCS: Signals Release 3.1b Inter: Year 2003 W/ Project City/St: La Quinta Analyst: Greg Proj #: Vista Montana Date: 11/3/2000 Period: Evening Peak Hour E/W St: Calle Tampico NIS St: Eisenhower Drive SIGNALIZED INTERSECTION SUMMARY Eastbound Westbound Northbound Southbound L T R L T R L T R L T R No. Lanes LGConf ig Volume Lane Width RTOR Vol 0 1 0 0 1 1 LTR LT R 1 1 2 259 1 100 12.0 12.0 12.0 0 1 0 1 2 0 L TR 3 293 157 12.0 12.0 0 Duration 1.00 Area Type: All other areas 1495 0.07 Northbound Signal Operations D Phase Combination 1 2 3 4 TR 1584 5 EB Left A NB Left P Thru A TR 1671 Thru 0.33 Right A Right Peds X Peds WB Left A SB Left A Thru A Thru Right A Right Peds X Peds NB Right EB Right SB Right WB Right A Green 26.0 7.0 Yellow 3.0 3.0 All Red 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance Summary_ Appr/ Lane Adj Sat Ratios Lane Group Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Eastbound LTR 408 1412 0.01 Westbound LT 368 1275 0.71 R 1495 1495 0.07 Northbound 38.7 D L 130 1671 0.02 TR 1584 3168 0.28 Southbound 13.6 B 17.9 B L 130 1671 0.61 TR 1671 3342 0.33 6 A A X A A X A 45.0 3.0 1.0 1 2 0 L TR 79 553 1 12.0 12.0 0 7 8 Approach Delay LOS 0.289 22.8 C 22.8 C 0.289 34.9 C 25.2 C 1.000 0.0+ A 0.078 38.7 D 0.500 13.2 B 13.4 B 0.078 48.4 D 0.500 13.6 B 17.9 B Intersection Delay = 18.3 (sec/veh) Intersection LOS = B Appr/ Lane Mvmt Group Sum (v/s) Eastbound = 0.42 Pri. Sec. Lost Time/Cycle, Left 12.00 sec Thru LTR Right = 0.48 Westbound Pri. Sec. Left SERVICE Thru LT Right R Northbound Pri. Unf Sec. Lane Left L Thru TR Right Southbound Pri. Grp Sec. Del Left L Thru TR Right Grp v/c CAPACITY ANALYSIS WORKSHEET Adj Adj Sat Flow Green --Lane Group -- Flow Rate Flow Rate Ratio Ratio Capacity v/c (v) (s) (v/s) (g/C) (c) Ratio 4 1412 0.00 0.289 408 0.01 260 1275 # 0.20 0.289 368 0.71 100 1495 0.07 1.000 1495 0.07 3 1671 0.00 0.078 130 0.02 450 3168 0.14 0.500 1584 0.28 79 1671 # 0.05 0.078 130 0.61 554 3342 # 0.17 0.500 1671 0.33 Intersection Delay = 18.3 (sec/veh) Intersection LOS = B Sum (v/s) critical = 0.42 Lost Time/Cycle, L = 12.00 sec Critical v/c(X) = 0.48 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C dl Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound LTR 0.01 0.289 22.8 1.000 408 0.11 0.0 0.0 22.8 C 22.8 C Westbound LT 0.71 0.289 28.6 1.000 368 0.27 6.3 0.0 34.9 C 25.2 C R 0.07 1.000 0.0 1.000 1495 0.11 0.0 0.0 0.0+ A Northbound L 0.02 0.078 38.3 1.000 130 0.50 0.3 0.0 38.7 D TR 0.28 0.500 13.1 1.000 1584 0.11 0.1 0.0 13.2 B 13.4 B Southbound L 0.61 0.078 40.2 1.000 130 0.19 8.2 0.0 48.4 D TR 0.33 0.500 13.5 1.000 1671 0.11 0.1 0.0 13.6 B 17.9 B Intersection Delay = 18.3 (sec/veh) Intersection LOS = B Inter: Year 2003 No Project Analyst: Greg Date: 1/13/2001 E/W St: Calle Tampico HCS: Signals Release 3.1b City/St: La Quinta Proj #: Vista Montana Period: Morning Peak Hour NIS St: Avenida Bermudas SIGNALIZED INTERSECTION SUMMARY Eastbound Westbound Northbound L T R I L T R L T R Southbound L T R No. Lanes LGConfig Volume Lane Width RTOR Vol 1 L 5 12.0 2 TR 150 12.0 0 25 0 1 L 87 12.0 2 TR 156 12.0 0 1 0 0 23 1 LT 2 12.0 1 R 132 12.0 0 0 1 0 LTR 2 3 1 12.0 0 Duration 1.00 241 Area Type: All other areas Signal Operations Phase Combination 1 2 3 4 5 6 7 8 EB Left A NB Left A Thru A Thru A Right A Right A Peds X Peds X WB Left A A SB Left A Thru A A Thru A Right A A Right A Peds X Peds X NB Right A A A EB Right SB Right WB Right Green 5.0 4.0 64.0 5.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs Appr/ Lane Lane Group Grp Capcity Eastbound L 93 TR 2326 Westbound L 241 TR 2523 Northbound LT 75 R 1495 Southbound LTR 76 _Intersection Performance Summary_ Adj Sat Ratios Lane Group Flow Rate (s) -v/c g/C Delay LOS 1671 0.05 0.056 40.5 D 3271 0.08 0.711 4.0 A 1671 0.36 0.144 35.7 D 3339 0.06 0.756 2.8 A Approach Delay LOS 5.0 A 14.5 B 1351 0.33 0.056 43.5 D 7.0 A 1495 0.09 1.000 0.0+ A 1376 0.08 0.056 40.8 D 40.8 D Intersection Delay = 9.9 (sec/veh) Intersection LOS = A Appr/ Lane Mvmt Group r Eastbound Sum (v/s) Pri. = 0.12 Sec. Left L Thru TR Right v/c(X) Westbound = 0.14 Pri. Sec. Left L Thru TR Right Northbound Pri. Sec. Unf Left Lane Thru LT Right R Southbound ` Pri. Del Sec. Grp Left Del Thru LTR Right CAPACITY ANALYSIS WORKSHEET Adj Adj Sat Flow Green --Lane Group -- Flow Rate Flow Rate Ratio Ratio Capacity v/c (v) (s) (v/s) (g/C) (c) Ratio 5 1671 0.00 0.056 93 0.05 175 3271 # 0.05 0.711 2326 0.08 87 1671 # 0.05 0.144 241 0.36 157 3339 0.05 0.756 2523 0.06 25 1351 # 0.02 0.056 75 0.33 132 1495 0.09 1.000 1495 0.09 6 1376 0.00 0.056 76 0.08 Intersection Delay = 9.9 (sec/veh) Intersection LOS = A Sum (v/s) critical = 0.12 Lost Time/Cycle, L = 8.00 sec Critical v/c(X) = 0.14 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C d1 Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.05 0.056 40.3 1.000 93 0.11 0.2 0.0 40.5 D 9 TR 0.08 0.711 4.0 1.000 2326 0.11 0.0 0.0 4.0 A 5.0 A Westbound L 0.36 0.144 34.8 1.000 241 0.11 0.9 0.0 35.7 D TR 0.06 0.756 2.8 1.000 2523 0.11 0.0 0.0 2.8 A 14.5 B Northbound LT 0.33 0.056 40.9 1.000 75 0.11 2.6 0.0 43.5 D 7.0 A R 0.09 1.000 0.0 1.000 1495 0.11 0.0 0.0 0.0+ A 4 Southbound LTR 0.08 0.056 40.3 1.000 76 0.11 0.4 0.0 40.8 D 40.8 D Intersection Delay = 9.9 (sec/veh) Intersection LOS = A HCS: Signals Release 3.1b Inter: Year 2003 No Project City/St: La Quinta Analyst: Greg Proj #: Vista Montana Date: 1/13/2001 Period: Evening Peak Hour E/W St: Calle Tampico NIS St: Avenida Bermudas SIGNALIZED INTERSECTION SUMMARY Eastbound Westbound Northbound Southbound L T R L T R L T R L T R No. Lanes 1 2 0 1 2 0 0 1 1 0 LGConfig L TR L TR LT R Volume 12 202 33 254 285 9 20 7 119 1 Lane Width 12.0 12.0 12.0 12.0 12.0 12.0 RTOR Vol 0 0 0 Duration 1.00 Area Type: All other areas Signal Operations Phase Combination 1 2 3 4 5 6 7 EB Left A NB Left A Thru A Thru A Right A Right A Peds X Peds X WB Left A A SB Left A Thru A A Thru A Right A A Right A Peds X Peds X NB Right A A A EB Right SB Right WB Right Green 7.0 17.0 49.0 5.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs I tersection Perf S Appr/ Lane Grp Lane Group Capcity Eastbound L 130 TR 1781 Westbound L 520 TR 2440 Northbound LT 76 R 1495 Southbound _ n ormance ummary Adj Sat Ratios Lane Group Flow Rate (s) v/c g/C Delay LOS 1671 0.09 0.078 38.9 D 3272 0.13 0.544 10.1 B 1671 0.49 0.311 25.9 C 3327 0.12 0.733 3.5 A 1373 0.36 0.056 43.8 D 1495 0.08 1.000 0.0+ A Approach Delay LOS 11.5 B 13.9 B 8.1 A 1 0 LTR 1 1 12.0 0 LTR 75 1347 0.04 0.056 40.4 D 40.4 D Intersection Delay = 12.5 (sec/veh) Intersection LOS = B r; Southbound LTR 0.04 0.056 40.2 1.000 75 0.11 0.2 0.0 40.4 D 40.4 D Intersection Delay = 12.5 (sec/veh) Intersection LOS = B CAPACITY ANALYSIS WORKSHEET Sum (v/s) critical = Adj Adj Sat Flow Green --Lane Group-- Time/Cycle, Appr/ Lane Flow Rate Flow Rate Ratio Ratio Capacity v/c Mvmt Group (v) (s) (v/s) (g/C) (c) Ratio Eastbound Appr/ Ratios Unf Pri. Lane Incremental Res Lane Group Approach Lane Sec. Del Adj Grp Factor Del Del Left L 12 1671 0.01 0.078 130 0.09 Thru TR 235 3272 # 0.07 0.544 1781 0.13 Right Westbound L 0.09 0.078 38.5 Pri. 130 0.11 0.3 0.0 38.9 D Sec. TR 0.13 0.544 10.1 1.000 1781 0.11 Left L 254 1671 # 0.15 0.311 520 0.49 Thru TR 294 3327 0.09 0.733 2440 0.12 Right L 0.49 0.311 25.2 1.000 520 Northbound 0.7 0.0 25.9 C Pri. 0.•12 0.733 3.5 1.000 2440 0.11 0.0 Sec. 3.5 A 13.9 B Northbound Left Thru LT 27 1373 # 0.02 0.056 76 0.36 Right R 119 1495 0.08 1.000 1495 0.08 Southbound 0.0 1.000 1495 0.11 0.0 0.0 Pri. A Sec. Left Thru LTR 3 1347 0.00 0.056 75 0.04 Right Southbound LTR 0.04 0.056 40.2 1.000 75 0.11 0.2 0.0 40.4 D 40.4 D Intersection Delay = 12.5 (sec/veh) Intersection LOS = B Sum (v/s) critical = 0.24 Lost Time/Cycle, L = 8.00 sec Critical v/c(X) = 0.27 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C dl Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.09 0.078 38.5 1.000 130 0.11 0.3 0.0 38.9 D TR 0.13 0.544 10.1 1.000 1781 0.11 0.0 0.0 10.1 B 11.5 B Westbound L 0.49 0.311 25.2 1.000 520 0.11 0.7 0.0 25.9 C TR 0.•12 0.733 3.5 1.000 2440 0.11 0.0 0.0 3.5 A 13.9 B Northbound LT 0.36 0.056 40.9 1.000 76 0.11 2.9 0.0 43.8 D 8.1 A R 0.08 1.000 0.0 1.000 1495 0.11 0.0 0.0 0.0+ A Southbound LTR 0.04 0.056 40.2 1.000 75 0.11 0.2 0.0 40.4 D 40.4 D Intersection Delay = 12.5 (sec/veh) Intersection LOS = B No. Lanes LGConfig Volume Lane Width RTOR Vol Eastbound L T R 1 2 0 L TR 50 189 25 12.0 12.0 0 IGNALIZED INTERSECTION SUMMARY Westbound Northbound Southbound L T R I L T R L T R 1 2 0 L TR 87 147 117 12.0 12.0 0 0 1 1 LT R 23 20 132 12.0 12.0 0 0 1 0 LTR 6 5 11 12.0 0 Duration 1.00 HCS: Signals Release 3.1b Inter: Year 2003 W/ Project City/St: La Quinta Analyst: Greg Proj #: Vista Montana Date: 1/13/2001 Period: Morning Peak Hour E/W St: Calle Tampico NIS St: Avenida Bermudas No. Lanes LGConfig Volume Lane Width RTOR Vol Eastbound L T R 1 2 0 L TR 50 189 25 12.0 12.0 0 IGNALIZED INTERSECTION SUMMARY Westbound Northbound Southbound L T R I L T R L T R 1 2 0 L TR 87 147 117 12.0 12.0 0 0 1 1 LT R 23 20 132 12.0 12.0 0 0 1 0 LTR 6 5 11 12.0 0 Duration 1.00 Area Type: All other areas C TR 1941 3120 Signal Operations 0.622 7.0 Phase Combination 1 2 3 4 5 6 7 8 EB Left A LT 237 NB Left A 33.4 Thru A A 1495 Thru A 0.0+ Right A Right A Peds X 1388 Peds X 32.8 WB Left A A Intersection SB Left A Intersection Thru A A Thru A Right A A Right A Peds X Peds X NB Right A A A EB Right SB Right WB Right Green 8.0 17.0 39.0 14.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance Summary Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Delay LOS Eastbound L 149 1671 0.34 0.089 39.8 D TR 1423 3284 0.15 0.433 15.5 B 20.1 C Westbound L 538 1671 0.16 0.322 22.0 C TR 1941 3120 0.14 0.622 7.0 A 10.7 B Northbound LT 237 1526 0.18 0.156 33.4 C 8.2 A R 1495 1495 0.09 1.000 0.0+ A Southbound LTR 216 1388 0.10 0.156 32.8 C 32.8 C Intersection Delay = 13.8 (sec/veh) Intersection LOS = B Appr/ Lane Mvmt Group Eastbound Pri. critical Sec. Left L Thru TR Right Critical Westbound Pri. Sec. Left L Thru TR Right WORKSHEET Northbound Pri. Sec. Ratios Left Prog Thru LT Right R Southbound Pri. Sec. Del Left Grp Thru LTR Right CAPACITY ANALYSIS WORKSHEET Adj Adj Sat Flow Green --Lane Group -- Flow Rate Flow Rate Ratio Ratio Capacity v/c (v) (s) (v/s) (g/C) (c) Ratio 50 1671 0.03 214 3284 # 0.07 87 1671 # 0.05 264 3120 0.08 43 1526 # 0.03 132 1495 0.09 22 1388 0.02 0.089 149 0.34 0.433 1423 0.15 0.322 538 0.16 0.622 1941 0.14 0.156 237 0.18 1.000 1495 0.09 0.156 216 0.10 Southbound LTR 0.10 0.156 32.6 1.000 216 0.11 0.2 0.0 32.8 C 32.8 C Intersection Delay = 13.8 (sec/veh) Intersection LOS = B Sum (v/s) critical = 0.15 Lost Time/Cycle, L = 8.00 sec Critical v/c(X) _ 0.16 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C dl Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.34 0.089 38.5 1.000 149 0.11 1.3 0.0 39.8 D TR 0.15 0.433 15.5 1.000 1423 0.11 0.0 0.0 15.5 B 20.1 C Westbound L 0.16 0.322 21.8 1.000 538 0.11 0.1 0.0 22.0 C TR 0.14 0.622 7.0 1.000 1941 0.11 0.0 0.0 7.0 A 10.7 B Northbound LT 0.18 0.156 33.0 1.000 237 0.11 0.4 0.0 33.4 C 8.2 A R 0.09 1.000 0.0 1.000 1495 0.11 0.0 0.0 0.0+ A Southbound LTR 0.10 0.156 32.6 1.000 216 0.11 0.2 0.0 32.8 C 32.8 C Intersection Delay = 13.8 (sec/veh) Intersection LOS = B Eastbound L T R IGNALIZED INTERSECTION SUMMARY Westbound Northbound Southbound L T R L T R L T R No. Lanes 1 HCS: Signals Release 3.1b Inter: Year 2003 W/ Project City/St: La Quinta Analyst: Greg Proj #: Vista Montana Date: 1/13/2001 Period: Evening Peak Hour E/W St: Calle Tampico NIS St: Avenida Bermudas Eastbound L T R IGNALIZED INTERSECTION SUMMARY Westbound Northbound Southbound L T R L T R L T R No. Lanes 1 2 0 1 2 0 0 1 1 0 1 0 LGConfig L TR 11.6 L TR Northbound LT R LTR Volume 24 232 33 254 330 40 20 12 119 137 22 53 Lane Width 12.0 12.0 1495 12.0 12.0 0.0+ A 12.0 12.0 12.0 RTOR Vol 0 0 LTR 333 1197 0 0.278 32.6 C 32.6 C Intersection Delay = 20.1 (sec/veh) Intersection LOS = C 0 Duration 1.00 Area Type: All other areas Signal Operations Phase Combination 1 2 3 4 5 6 EB Left A NB Left A 7 8 Thru A Thru A Right A Right A Peds X Peds X WB Left A A SB Left A Thru A A Thru A Right A A Right A Peds X Peds X NB Right A A A EB Right SB Right WB Right Green 6.0 17.0 30.0 25.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs I Appr/ Lane Lane Group Grp Capcity Eastbound L 111 TR 1093 Westbound _ ntersection Performance Summary Adj Sat Ratios Lane Group Flow Rate (s) v/c g/C Delay LOS Approach Delay LOS 1671 0.22 0.067 40.8 D 3280 0.24 0.333 21.9 C 23.4 C L 501 1671 0.51 0.300 26.9 C TR 1717 3288 0.22 0.522 11.6 B 17.8 B Northbound LT 400 1439 0.08 0.278 24.1 C 5.1 A R 1495 1495 0.08 1.000 0.0+ A Southbound LTR 333 1197 0.64 0.278 32.6 C 32.6 C Intersection Delay = 20.1 (sec/veh) Intersection LOS = C Appr/ Mvmt Lane Group CAPACITY ANALYSIS WORKSHEET Adj Adj Sat Flow Green Flow Rate Flow Rate Ratio Ratio (v) (s) (v/s) (g/C) --Lane Group-- Capacity v/c (c) Ratio Eastbound 0.11 1.0 0.0 40.8 TR 0.24 0.333 21.8 Pri. 1093 0.11 0.1 0.0 21.9 Westbound Sec. L 0.51 Left L 24 1671 0.01 0.067 111 0.22 Thru TR 265 3280 # 0.08 0.333 1093 0.24 Right Northbound Westbound LT 0.08 0.278 24.0 1.000 400 0.11 Pri. 0.0 24.1 R 0.08 1.000 0.0 1.000 1495 Sec. 0.0 0.0 0.0+ Southbound Left L 254 1671 # 0.15 0.300 501 0.51 Thru TR 370 3288 0.11 0.522 1717 0.22 Right Northbound Pri. Sec. Left Thru LT 32 1439 0.02 0.278 400 0.08 Right R 119 1495 0.08 1.000 1495 0.08 Southbound Pri. Sec. Left Thru LTR 212 1197 # 0.18 0.278 333 0.64 Right Sum (v/s) critical = 0.41 Lost Time/Cycle, L = 8.00 sec Critical v/c(X) = 0.45 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Lane Del Adj Grp Factor Del Del Grp v/c g/C dl Fact Cap k d2 d3 Delay LOS Eastbound L 0.22 0.067 39.8 1.000 111 0.11 1.0 0.0 40.8 TR 0.24 0.333 21.8 1.000 1093 0.11 0.1 0.0 21.9 Westbound L 0.51 0.300 26.0 1.000 501 0.12 0.9 0.0 26.9 TR 0.22 0.522 11.6 1.000 1717 0.11 0.1 0.0 11.6 Northbound LT 0.08 0.278 24.0 1.000 400 0.11 0.1 0.0 24.1 R 0.08 1.000 0.0 1.000 1495 0.11 0.0 0.0 0.0+ Southbound LTR 0.64 0.278 28.5 1.000 333 0.22 4.1 0.0 32.6 D C C B C A Approach Delay LOS 23.4 C 17.8 B 5.1 A C 32.6 C Intersection Delay = 20.1 (sec/veh) Intersection LOS = C Cycle Length: 90.0 secs Appr/ Lane HCS: Signals Release 3.1b Grp Inter: Year 2003 No Project City/St: La Quinta 149 Analyst: Greg 1890 Westbound Proj #: Vista Montana 297 Date: 1/13/2001 1956 Period: Morning Peak Hour E/W St: Calle Tampico NIS St: Desert Club Drive SIGNALIZED INTERSECTION SUMMARY Eastbound Westbound Northbound Southbound L T R L T R L T R L T R r No. Lanes 1 2 0 1 2 0 0 1 0 1 1 0 LGConfig L TR L TR LTR L TR Volume 71 196 3 50 177 70 5 5 62 71 6 30 Lane Width 12.0 12.0 12.0 12.0 12.0 1 12.0 12.0 RTOR Vol 0 1 0 0 0 Duration 1.00 Area Type: All other areas Signal Operations Phase Combination 1 2 3 4 5 6 7 8 EB Left A NB Left A Thru A Thru A Right A Right A Peds X Peds X WB Left A A SB Left A Thru A A Thru A Right A A Right A Peds X Peds X NB Right EB Right SB Right WB Right Green 8.0 4.0 51.0 15.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs Appr/ Lane Lane Group Grp Capcity Eastbound L 149 TR 1890 Westbound L 297 TR 1956 Northbound LTR 227 _intersection Performance Summary_ Adj Sat Ratios Lane Group Flow Rate (s) v/c g/C Delay LOS 1671 0.48 0.089 41.4 D 3335 0.11 0.567 9.0 A 1671 0.17 0.178 31.6 C 3200 0.13 0.611 7.4 A 1361 0.32 0.167 33.8 C Southbound L 175 1051 0.41 0.167 35.1 TR 257 1539 0.14 0.167 32.2 Intersection Delay = 19.1 (sec/veh) D C Approach Delay LOS 17.5 B 11.5 B 33.8 C 34.1 C Intersection LOS = B _ Appr/ Mvmt Lane Group CAPACITY ANALYSIS WORKSHEET Adj Adj Sat Flow Green Flow Rate Flow Rate Ratio Ratio (v) (s) (v/s) (g/C) --Lane Group-- Capacity v/c (c) Ratio Eastbound Sum (v/s) critical = 0.19 Lost Time/Cycle, Pri. 12.00 sec Critical v/c(X) = 0.22 Sec. LEVEL OF SERVICE WORKSHEET Left L 71 1671 # 0.04 0.089 149 0.48 Thru TR 199 3335 0.06 0.567 1890 0.11 Right Del Del Grp v/c Westbound d1 Fact Cap k d2 d3 Delay Pri. Delay LOS Eastbound Sec. L 0.48 Left L 50 1671 0.03 0.178 297 0.17 Thru TR 247 3200 # 0.08 0.611 1956 0.13 Right 0.0 0.0 9.0 A 17.5 B Westbound Northbound Pri. L 0.17 0.178 31.4 1.000 Sec. 0.11 0.3 0.0 31.6 C Left 0.611 7.4 1.000 1956 0.11 0.0 0.0 Thru LTR 72 1361 0.05 0.167 227 0.32 Right Southbound 0.167 33.0 1.000 227 0.11 0.8 Pri. 33.8 C 33.8 C Southbound Sec. Left L 71 1051 # 0.07 0.167 175 0.41 Thru TR 36 1539 0.02 0.167 257 0.14 Right 257 0.11 0.3 0.0 32.2 C 34.1 Intersection Delay = 19.1 (sec/veh) Intersection LOS = B Sum (v/s) critical = 0.19 Lost Time/Cycle, L = 12.00 sec Critical v/c(X) = 0.22 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C d1 Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.48 0.089 39.0 1.000 149 0.11 2.4 0.0 41.4 D TR 0.11 0.567 9.0 1.000 1890 0.11 0.0 0.0 9.0 A 17.5 B Westbound L 0.17 0.178 31.4 1.000 297 0.11 0.3 0.0 31.6 C TR 0.13 0.611 7.4 1.000 1956 0.11 0.0 0.0 7.4 A 11.5 B Northbound LTR 0.32 0.167 33.0 1.000 227 0.11 0.8 0.0 33.8 C 33.8 C Southbound L 0.41 0.167 33.5 1.000 175 0.11 1.5 0.0 35.1 D TR 0.14 0.167 32.0 1.000 257 0.11 0.3 0.0 32.2 C 34.1 C Intersection Delay = 19.1 (sec/veh) Intersection LOS = B Duration 1.00 Area Type: All other areas Signal Operations Phase Combination 1 2 3 4 5 EB Left A NB Left A Thru A Thru A Right A Right A Peds X Peds X WB Left A A SB Left A Thru A A Thru A Right A A Right A Peds X Peds X NB Right EB Right SB Right WB Right Green 9.0 5.0 46.0 18.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance Summary_ Appr/ Lane Adj Sat Ratios Lane Group Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Eastbound L 167 TR 1704 Westbound L 334 TR 1858 Northbound LTR 271 Southbound 6 7 8 Approach Delay LOS 1671 HCS: Signals Release 3.1b 42.5 Inter: Year 2003 No Project City/St: La Quinta 0.14 Analyst: Greg Proj #: Vista Montana Date: 1/13/2001 Period: Evening Peak Hour E/W St: Calle Tampico NIS St: Desert Club Drive 0.567 SIGNALIZED INTERSECTION SUMMARY Eastbound Westbound Northbound Southbound L T R L T R L T R L T R No. Lanes 1 2 0 1 2 0 0 1 0 1 1 0 LGConf ig L TR L TR LTR L TR Volume 92 236 4 108 501 73 10 6 94 95 9 46 Lane Width 12.0 12.0 12.0 12.0 12.0 12.0 12.0 RTOR Vol 0 0 1 0 0 Duration 1.00 Area Type: All other areas Signal Operations Phase Combination 1 2 3 4 5 EB Left A NB Left A Thru A Thru A Right A Right A Peds X Peds X WB Left A A SB Left A Thru A A Thru A Right A A Right A Peds X Peds X NB Right EB Right SB Right WB Right Green 9.0 5.0 46.0 18.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance Summary_ Appr/ Lane Adj Sat Ratios Lane Group Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Eastbound L 167 TR 1704 Westbound L 334 TR 1858 Northbound LTR 271 Southbound 6 7 8 Approach Delay LOS 1671 0.55 0.100 42.5 D 3334 0.14 0.511 11.6 B 20.2 C 1671 0.32 0.200 31.4 C 3279 0.31 0.567 10.3 B 13.7 B 1353 0.41 0.200 32.3 C 32.3 C L 182 910 0.52 0.200 34.9 TR 308 1539 0.18 0.200 30.1 Intersection Delay = 19.3 (sec/veh) C C 33.2 C Intersection LOS = B Appr/ Mvmt Lane Group CAPACITY ANALYSIS WORKSHEET Adj Adj Sat Flow Green Flow Rate Flow Rate Ratio Ratio (v) (s) (v/s) (g/C) --Lane Group-- Capacity v/c (c) Ratio Eastbound Sum (v/s) critical = 0.33 Lost Time/Cycle, Pri. 12.00 sec Critical v/c(X) = 0.39 Sec. LEVEL OF SERVICE WORKSHEET___ Left L 92 1671 # 0.06 0.100 167 0.55 Thru TR 240 3334 0.07 0.511 1704 0.14 Right Del Del Grp v/c Westbound dl Fact Cap k d2 d3 Delay Pri. Delay LOS Eastbound Sec. L 0.55 Left L 108 1671 0.06 0.200 334 0.32 Thru TR 574 3279 # 0.18 0.567 1858 0.31 Right 0.0 0.0 11.6 B 20.2 C Westbound Northbound Pri. L 0.32 0.200 30.8 1.000 Sec. 0.11 0.6 0.0 31.4 C Left 0.567 10.2 1.000 1858 0.11 0.1 0.0 Thru LTR 110 1353 0.08 0.200 271 0.41 Right Southbound 0.200 31.3 1.000 271 0.11 1.0 Pri. 32.3 C 32.3 C Southbound Sec. Left L 95 910 # 0.10 0.200 182 0.52 Thru TR 55 1539 0.04 0.200 308 0.18 Right 308 0.11 0.3 0.0 30.1 C 33.2 Intersection Delay = 19.3 (sec/veh) Intersection LOS = B Sum (v/s) critical = 0.33 Lost Time/Cycle, L = 12.00 sec Critical v/c(X) = 0.39 LEVEL OF SERVICE WORKSHEET___ Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C dl Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.55 0.100 38.6 1.000 167 0.15 3.9 0.0 42.5 D TR 0.14 0.511 11.6 1.000 1704 0.11 0.0 0.0 11.6 B 20.2 C Westbound L 0.32 0.200 30.8 1.000 334 0.11 0.6 0.0 31.4 C TR 0.31 0.567 10.2 1.000 1858 0.11 0.1 0.0 10.3 B 13.7 B Northbound LTR 0.41 0.200 31.3 1.000 271 0.11 1.0 0.0 32.3 C 32.3 C Southbound L 0.52 0.200 32.2 1.000 182 0.13 2.7 0.0 34.9 C TR 0.18 0.200 29.9 1.000 308 0.11 0.3 0.0 30.1 C 33.2 C Intersection Delay = 19.3 (sec/veh) Intersection LOS = B SIGNALIZED INTERSECTION SUMMARY Eastbound Westbound Northbound Southbound L T R L T R L T R L T R No. Lanes HCS: Signals Release 3.1b Inter: Year 2003 W/ Project City/St: La Quinta Analyst: Greg Proj #: Vista Montana Date: 1/13/2001 Period: Morning Peak Hour E/W St: Calle Tampico NIS St: Desert Club Drive SIGNALIZED INTERSECTION SUMMARY Eastbound Westbound Northbound Southbound L T R L T R L T R L T R No. Lanes 0 0 1 2 0 1 2 0 1 1 1 0 LGConfig L TR L TR LTR L TR Volume 71 238 3 50 285 70 5 5 62 71 6 30 Lane Width 12.0 12.0 12.0 12.0 1 12.0 12.0 12.0 RTOR Vol 0 0 0 0 Duration 1.00 Area Type: All other areas Signal Operations Phase Combination 1 2 3 4 5 6 7 8 EB Left A NB Left A Thru A Thru A Right A Right A Peds X Peds X WB Left A A SB Left A Thru A A Thru A Right A A Right A Peds X Peds X NB Right EB Right SB Right WB Right Green 8.0 4.0 51.0 15.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance Summary Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Delay LOS Eastbound L 149 1671 0.48 0.089 41.4 D TR 1890 3336 0.13 0.567 9.1 A 16.5 B Westbound L 297 1671 0.17 0.178 31.6 C TR 1982 3244 0.18 0.611 7.7 A 10.6 B Northbound LTR 227 1361 0.32 0.167 33.8 C 33.8 C Southbound L 175 1051 0.41 0.167 35.1 D TR 257 1539 0.14 0.167 32.2 C 34.1 C Intersection Delay = 17.3 (sec/veh) Intersection LOS = B 0 r Appr/ Lane Mvmt Group Eastbound 0.17 Pri. 3244 Sec. 0.611 Left L Thru TR Right 0.167 Westbound 0.32 Pri. 1051 Sec. 0.167 Left L Thru TR Right 0.167 Northbound Pri. Sec. Unf Left Lane Thru LTR Right Approach Southbound Pri. Del Sec. Grp Left L Thru TR Right CAPACITY ANALYSIS WORKSHEET Adj Adj Sat Flow Green --Lane Group -- Flow Rate Flow Rate Ratio Ratio Capacity v/c (v) (s) (v/s) (g/C) (c) Ratio 71 1671 # 0.04 0.089 149 0.48 241 3336 0.07 0.567 1890 0.13 50 1671 0.03 0.178 297 0.17 355 3244 # 0.11 0.611 1982 0.18 72 1361 0.05 0.167 227 0.32 71 1051 # 0.07 0.167 175 0.41 36 1539 0.02 0.167 257 0.14 Intersection Delay = 17.3 (sec/v.eh) Intersection LOS = B Sum (v/s) critical = 0.22 Lost Time/Cycle, L = 12.00 sec Critical v/c(X) = 0.25 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C dl Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.48 0.089 39.0 1.000 149 0.11 2.4 0.0 41.4 D TR 0.13 0.567 9.1 1.000 1890 0.11 0.0 0.0 9.1 A 16.5 B Westbound L 0.17 0.178 31.4 1.000 297 0.11 0.3 0.0 31.6 C TR 0.18 0.611 7.6 1.000 1982 0.11 0.0 0.0 7.7 A 10.6 B Northbound LTR 0.32 0.167 33.0 1.000 227 0.11 0.8 0.0 33.8 C 33.8 C Southbound L 0.41 0.167 33.5 1.000 175 0.11 1.5 0.0 35.1 D TR 0.14, 0.167 32.0 1.000 257 0.11 0.3 0.0 32.2 C 34.1 C Intersection Delay = 17.3 (sec/v.eh) Intersection LOS = B HCS: Signals Release 3.1b Inter: Year 2003 W/ Project City/St: La Quinta Analyst: Greg Proj #: Vista Montana Date: 1/13/2001 Period: Evening Peak Hour E/W St: Calle Tampico NIS St: Desert Club Drive SIGNALIZED INTERSECTION SUMMARY Eastbound Westbound Northbound Southbound L T R L T R L T R L T R No. Lanes 1 2 0 1 2 0 1 1 0 0 1 0 LGConfig L TR L TR LTR L TR Volume 92 402 4 108 577 73 10 6 94 95 9 46 Lane Width 12.0 12.0 12.0 12.0 12.0 12.0 12.0 RTOR Vol 0 0 0 0 Duration 1.00 Area Type: All other areas Signal Operations Phase Combination 1 2 3 4 5 6 7 8 EB Left A NB Left A Thru A Thru A Right A Right A Peds X Peds X WB Left A A SB Left A Thru A A Thru A Right A A Right A Peds X Peds X NB Right EB Right SB Right WB Right Green 9.0 5.0 47.0 17.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs intersection Performance Summary Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Delay LOS Eastbound L 167 1671 0.55 0.100 42.5 D TR 1743 3338 0.23 0.522 11.8 B 17.4 B Westbound L 334 1671 0.32 0.200 31.4 C TR 1899 3286 0.34 0.578 10.1 B 13.1 B Northbound LTR 255 1352 0.43 0.189 33.4 C 33.4 C Southbound L 167 883 0.57 0.189 37.8 D TR 291 1539 0.19 0.189 31.0 C 35.3 D Intersection Delay = 18.2 (sec/veh) Intersection LOS = B Appr/ Lane Mvmt Group Eastbound 0.32 Pri. 3286 Sec. 0.578 Left L Thru TR Right 0.189 Westbound 0.43 Pri. 883 Sec. 0.189 Left L Thru TR Right 0.189 Northbound Pri. Sec. Unf Left Lane Thru LTR Right Approach Southbound Pri. Del Sec. Grp Left L Thru TR Right CAPACITY ANALYSIS WORKSHEET Adj Adj Sat Flow Green -Lane Group -- Flow Rate Flow Rate Ratio Ratio Capacity v/c (v) (s) (v/s) (g/C) (c) Ratio 92 1671 # 0.06 0.100 167 0.55 406 3338 0.12 0.522 1743 0.23 108 1671 0.06 0.200 334 0.32 650 3286 # 0.20 0.578 1899 0.34 110 1352 0.08 0.189 255 0.43 95 883 # 0.11 0.189 167 0.57 55 1539 0.04 0.189 291 0.19 Intersection Delay = 18.2 (sec/veh) Intersection LOS = B Sum (v/s) critical = 0.36 Lost Time/Cycle, L = 12.00 sec Critical v/c(X) = 0.42 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C dl Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.55 0.100 38.6 1.000 167 0.15 3.9 0.0 42.5 D TR 0.23 0.522 11.7 1.000 1743 0.11 0.1 0.0 11.8 B 17.4 B Westbound L 0.32 0.200 30.8 1.000 334 0.11 0.6 0.0 31.4 C TR 0.34 0.578 10.0 1.000 1899 0.11 0.1 0.0 10.1 B 13.1 B Northbound LTR 0.43 0.189 32.2 1.000 255 0.11 1.2 0.0 33.4 C 33.4 C Southbound L 0.57 0.189 33.2 1.000 167 0.16 4.6 0.0 37.8 D TR 0.19 0.189 30.7 1.000 291 0.11 0.3 0.0 31.0 C 35.3 D Intersection Delay = 18.2 (sec/veh) Intersection LOS = B No. Lanes LGConf ig Volume Lane Width RTOR Vol HCS: Signals Release 3.1b Inter: Year 2003 No Project City/St: La Quinta Analyst: Greg Proj #: Vista Montana Date: 1/12/2001 Period: Morning Peak Hour E/W St: Calle Tampico NIS St: Washington Street No. Lanes LGConf ig Volume Lane Width RTOR Vol Duration 1.00 Area SIGNALIZED INTERSECTION SUMMARY areas 0.25 Eastbound Westbound Northbound Southbound L T R L T R L T R L T R 1 1 1 1 1 1 1 3 0 1 2 1 L T R L T R L TR L T R 186 57 61 26 58 5375 554 50 22 452 236 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 0 0 0 0 Duration 1.00 Area Type: All other areas 0.25 0.542 11.7 B 9.3 A R 1261 1495 0.19 0.844 1.5 Signal Operations Intersection Delay = 21.7 (sec/veh) Phase Combination 1 2 3 4 5 6 7 8 EB Left A NB Left P Thru A Thru A Right A Right A Peds X Peds X WB Left A SB Left A Thru A Thru A Right A Right A Peds X Peds X NB Right EB Right A A SB Right A A WB Right A A Green 14.0 7.0 7.0 52.0 Yellow 3.0 3.0 3.0 3.0 All Red 1.0 1.0 1.0 1.0 Cycle Length: 96.0 secs Intersection Performance Summary Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Delay LOS Eastbound L 244 1671 0.76 0.146 53.8 D T 128 1759 0.45 0.073 45.1 D 41.9 D R 1152 1495 0.05 0.771 2.6 A Westbound L 244 1671 0.11 0.146 35.8 D T 128 1759 0.45 0.073 45.2 D 27.0 C R 1152 1495 0.05 0.771 2.6 A Northbound L 122 1671 0.61 0.073 66.0 E TR 2569 4743 0.24 0.542 11.6 B 17.6 B Southbound L 122 1671 0.18 0.073 42.5 D T 1811 3343 0.25 0.542 11.7 B 9.3 A R 1261 1495 0.19 0.844 1.5 A Intersection Delay = 21.7 (sec/veh) Intersection LOS = C Appr/ Ratios Unf Prog CAPACITY ANALYSIS WORKSHEET Incremental Res Lane Group Lane Del Adj Adj Sat Flow Green --Lane Group-- d1 Appr/ Lane Flow Rate Flow Rate Ratio Ratio Capacity v/c Mvmt Group (v) (s) (v/s) (g/C) (c) Ratio Eastbound 1152 0.11 0.0 0.0 2.6 A Pri. Westbound Sec. L 0.11 0.146 Left L 186 1671 # 0.11 0.146 244 0.76 Thru T 57 1759 0.03 0.073 128 0.45 Right R 61 1495 0.04 0.771 1152 0.05 Westbound 0.771 2.6 1.000 1152 0.11 0.0 0.0 Pri. A Northbound Sec. Left L 26 1671 0.02 0.146 244 0.11 Thru T 58 1759 # 0.03 0.073 128 0.45 Right R 53 1495 0.04 0.771 1152 0.05 Northbound B Southbound Pri. L Sec. 0.073 41.8 1.000 122 0.11 0.7 0.0 Left L 75 1671 # 0.04 0.073 122 0.61 Thru TR 604 4743 0.13 0.542 2569 0.24 Right R 0.19 0.844 1.4 1.000 1261 0.11 Southbound 0.0 1.5 A Pri. Sec. Intersection Delay = 21.7 (sec/veh) Intersection LOS = C Left L 22 1671 0.01 0.073 122 0.18 Thru T 452 3343 # 0.14 0.542 1811 0.25 Right R 236 1495 0.16 0.844 1261 0.19 Sum (v/s) critical = 0.32 Lost Time/Cycle, L = 16.00 sec Critical v/c(X) = 0.39 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Lane Del Adj Grp Factor Del Del Grp v/c g/C d1 Fact Cap k d2 d3 Delay LOS Eastbound Approach Delay LOS L 0.76 0.146 39.4 1.000 244 0.31 14.4 0.0 53.8 D T 0.45 0.073 42.6 1.000 128 0.11 2.5 0.0 45.1 D 41.9 D R 0.05 0.771 2.6 1.000 1152 0.11 0.0 0.0 2.6 A Westbound L 0.11 0.146 35.6 1.000 244 0.11 0.2 0.0 35.8 D T 0.45 0.073 42.7 1.000 128 0.11 2.6 0.0 45.2 D 27.0 C R 0.05 0.771 2.6 1.000 1152 0.11 0.0 0.0 2.6 A Northbound L 0.61 0.073 43.2 1.000 122 0.50 22.8 0.0 66.0 E TR 0.24 0.542 11.6 1.000 2569 0.11 0.0 0.0 11.6 B 17.6 B Southbound L 0.18 0.073 41.8 1.000 122 0.11 0.7 0.0 42.5 D T 0.25 0.542 11.7 1.000 1811 0.11 0.1 0.0 11.7 B 9.3 A R 0.19 0.844 1.4 1.000 1261 0.11 0.1 0.0 1.5 A Intersection Delay = 21.7 (sec/veh) Intersection LOS = C HCS: Signals Release 3.1b Inter: Year 2003 No Project City/St: La Quinta Analyst: Greg Proj #: Vista Montana Date: 1/12/2001 Period: Evening Peak Hour E/W St: Calle Tampico NIS St: Washington Street No. Lanes LGConfig Volume Lane Width RTOR Vol SIGNALIZED INTERSECTION SUMMARY Eastbound Westbound Northbound Southbound areas L T R L T R L T R L T R d 1 1 l 1 1 1 1 3 0 1 2 1 1 L T R L T R L TR L T R 5 261 71 7526 84 37 103 541 42 62 647 321 T 137 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 Thru 0 0 0 0 Thru Duration 1.00 0.42 Area Type: All other areas 1671 0.74 0.211 T 137 1759 Signal Operations 0.078 R 1046 Phase Combination 1 2 3 4 5 6 7 8 EB Left A 0.211 T 137 NB Left P R 1046 Thru 0.04 A Northbound Thru A Right 0.69 A TR 2112 4751 Right 0.444 A Peds X Peds X WB Left A SB Left A Thru A Thru A Right A Right A Peds X Peds X NB Right EB Right A A SB Right A A WB Right A A Green 19.0 7.0 8.0 40.0 Yellow 3.0 3.0 3.0 3.0 All Red 1.0 1.0 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance Summary, Appr/ Lane Adj Sat Ratios Lane Group Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Eastbound 0.42 0.089 40.7 D L 353 1671 0.74 0.211 T 137 1759 0.52 0.078 R 1046 1495 0.07 0.700 Westbound L 353 1671 0.07 0.211 T 137 1759 0.61 0.078 R 1046 1495 0.04 0.700 Northbound L 149 1671 0.69 0.089 TR 2112 4751 0.28 0.444 Southbound 41.6 D 43.4 D 4.3 A 28.5 C 48.3 D 4.2 A Approach Delay LOS 35.0+ D 33.7 C 65.6 E 15.9 B 23.4 C L 149 1671 0.42 0.089 40.7 D T 1486 3343 0.44 0.444 17.4 B 14.0 B R 1229 1495 0.26 0.822 1.9 A Intersection Delay = 25.2 (sec/veh) Intersection LOS = C Eastbound L 0.74 CAPACITY ANALYSIS WORKSHEET 33.2 1.000 353 0.30 Adj Adj Sat Flow 41.6 Green --Lane Group-- Appr/ Lane Flow Rate Flow Rate Ratio 1.000 Ratio Capacity v/c Mvmt Group (v) (s) (v/s) 35.0+ D (g/C) (c) Ratio Eastbound 1.000 1046 0.11 0.0 0.0 4.3 A Pri. Westbound Sec. L 0.07 0.211 28.4 Left L 261 1671 # 0.16 0.211 353 0.74 Thru T 71 1759 0.04 0.078 137 0.52 Right R 75 1495 0.05 0.700 1046 0.07 Westbound 1046 0.11 0.0 0.0 4.2 A Pri. Sec. L 0.69 0.089 39.8 1.000 Left L 26 1671 0.02 0.211 353 0.07 Thru T 84 1759 # 0.05 0.078 137 0.61 Right R 37 1495 0.02 0.700 1046 0.04 Northbound L Pri. 0.089 38.8 1.000 149 0.11 1.9 0.0 Sec. D T 0.44 0.444 17.2 1.000 Left L 103 1671 # 0.06 0.089 149 0.69 Thru TR 583 4751 0.12 0.444 2112 0.28 Right A Intersection Delay = 25.2 (sec/veh) Southbound LOS = C Pri. Sec. Left L 62 1671 0.04 0.089 149 0.42 Thru T 647 3343 # 0.19 0.444 1486 0.44 Right R 321 1495 0.21 0.822 1229 0.26 Sum (v/s) critical = 0.46 Lost Time/Cycle, L = 16.00 sec Critical v/c(X) = 0.56 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C dl Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.74 0.211 33.2 1.000 353 0.30 8.4 0.0 41.6 D T 0.52 0.078 39.9 1.000 137 0.12 3.5 0.0 43.4 D 35.0+ D R 0.07 0.700 4.3 1.000 1046 0.11 0.0 0.0 4.3 A Westbound L 0.07 0.211 28.4 1.000 353 0.11 0.1 0.0 28.5 C T 0.61 0.078 40.2 1.000 137 0.20 8.2 0.0 48.3 D 33.7 C R 0.04 0.700 4.2 1.000 1046 0.11 0.0 0.0 4.2 A Northbound L 0.69 0.089 39.8 1.000 149 0.50 25.8 0.0 65.6 E TR 0.28 0.444 15.8 1.000 2112 0.11 0.1 0.0 15.9 B 23.4 C Southbound L 0.42 0.089 38.8 1.000 149 0.11 1.9 0.0 40.7 D T 0.44 0.444 17.2 1.000 1486 0.11 0.2 0.0 17.4 B 14.0 B R 0.26 0.822 1.8 1.000 1229 0.11 0.1 0.0 1.9 A Intersection Delay = 25.2 (sec/veh) Intersection LOS = C 11, No. Lanes LGConfig Volume Lane Width RTOR Vol Eastbound L T R 1 1 1 L T R 213 64 70 12.0 12.0 12.0 0 IGNALIZED INTERSECTION SUMMARY Westbound l Northbound I L T R I L T R 1 1 1 L T R 26 77 53 12.0 12.0 12.0 0 1 3 0 L TR 97 554 50 12.0 12.0 0 Duration 1.00 HCS: Signals Release 3.1b Inter: Year 2003 W/ Project City/St: La Quinta Analyst: Greg Proj #: Vista Montana Date: 1/12/2001 Period: Morning Peak Hour E/W St: Calle Tampico NIS St: Washington Street No. Lanes LGConfig Volume Lane Width RTOR Vol Eastbound L T R 1 1 1 L T R 213 64 70 12.0 12.0 12.0 0 IGNALIZED INTERSECTION SUMMARY Westbound l Northbound I L T R I L T R 1 1 1 L T R 26 77 53 12.0 12.0 12.0 0 1 3 0 L TR 97 554 50 12.0 12.0 0 Duration 1.00 Area Type: All other areas 334 T 137 Signal Operations 1063 Phase Combination 1 2 3 4 5 EB Left A NB Left P Thru A Thru 2161 Right A Right 3.9 A Peds X Peds 61.4 E WB Left A SB Left A Thru A Thru Right A Right Peds X Peds NB Right EB Right A SB Right A A WB Right A Green 18.0 7.0 8.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance Summary_ Appr/ Lane Adj Sat Ratios Lane Group Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Eastbound 0.64 L 334 T 137 R 1063 Westbound L 334 T 137 R 1063 Northbound L 149 TR 2161 Southbound 1671 0.64 0.200 37.1 D 1759 0.47 0.078 42.2 D 1495 0.07 0.711 4.0 A 1671 0.08 0.200 29.4 C 1759 0.56 0.078 45.3 D 1495 0.05 0.711 3.9 A 1671 0.65 0.089 61.4 E 4743 0.28 0.456 15.4 B Southbound L T R 1 2 1 L T R 22 452 304 12.0 12.0 12.0 0 6 7 8 A A X A A X A A 41.0 3.0 1.0 Approach Delay LOS 31.4 C 28.6 C 21.7 C L 149 1671 0.15 0.089 38.3 D T 1523 3343 0.30 0.456 15.5 B 10.8 B R 1229 1495 0.25 0.822 1.9 A Intersection Delay = 22.9 (sec/veh) Intersection LOS = C CAPACITY ANALYSIS WORKSHEET Adj Adj Sat Flow Green --Lane Group-- Appr/ Lane Flow Rate Flow Rate Ratio Ratio Capacity v/c Mvmt Group (v) (s) (v/s) (g/C) (c) Ratio Eastbound Pri. Sec. Left L 213 1671 # 0.13 0.200 334 0.64 Thru T 64 1759 0.04 0.078 137 0.47 Right R 70 1495 0.05 0.711 1063 0.07 Westbound Pri. Sec. Left L 26 1671 0.02 0.200 334 0.08 Thru T 77 1759 # 0.04 0.078 137 0.56 Right R 53 1495 0.04 0.711 1063 0.05 Northbound Pri. Sec. Left L 97 1671 # 0.06 0.089 149 0.65 Thru TR 604 4743 0.13 0.456 2161 0.28 Right Southbound Pri. Sec. Left L 22 1671 0.01 0.089 149 0.15 Thru T 452 3343 # 0.14 0.456 1523 0.30 Right R 304 1495 0.20 0.822 1229 0.25 Sum (v/s) critical = 0.36 Lost Time/Cycle, L = 16.00 sec Critical v/c(X) = 0.44 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C dl Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.64 0.200 33.0 1.000 334 0.22 4.1 0.0 37.1 D T 0.47 0.078 39.7 1.000 137 0.11 2.5 0.0 42.2 D 31.4 C R 0.07 0.711 3.9 1.000 1063 0.11 0.0 0.0 4.0 A Westbound L 0.08 0.200 29.3 1.000 334 0.11 0.1 0.0 29.4 C T 0.56 0.078 40.0 1.000 137 0.16 5.3 0.0 45.3 D 28.6 C R 0.05 0.711 3.9 1.000 1063 0.11 0.0 0.0 3.9 A Northbound L 0.65 0.089 39.6 1.000 149 0.50 21.8 0.0 61.4 E TR 0.28 0.456 15.3 1.000 2161 0.11 0.1 0.0 15.4 B 21.7 C Southbound L 0.15 0.089 37.9 1.000 149 0.11 0.5 0.0 38.3 D T 0.30 0.456 15.4 1.000 1523 0.11 0.1 0.0 15.5 B 10.8 B R 0.25 0.822 1.8 1.000 1229 0.11 0.1 0.0 1.9 A Intersection Delay = 22.9 (sec/veh) Intersection LOS = C No. Lanes LGConfig Volume Lane Width RTOR Vol SIGNALIZED INTERSECTION SUMMARY Eastbound Westbound Northbound L T R L T R L T R 1 1 1 L T R 365 99 108 12.0 12.0 12.0 0 1 1 1 L T R 26 97 37 12.0 12.0 12.0 0 1 3 0 L TR 118 541 42 12.0 12.0 0 Southbound L T R 1 2 1 L T R 62 647 369 12.0 12.0 12.0 0 Duration HCS: Signals Release 3.1b Inter: Year 2003 W/ Project City/St: La Quinta Analyst: Greg Proj #: Vista Montana ( Date: 1/12/2001 Period: Evening Peak Hour I E/W St: Calle Tampico NIS St: Washington Street No. Lanes LGConfig Volume Lane Width RTOR Vol SIGNALIZED INTERSECTION SUMMARY Eastbound Westbound Northbound L T R L T R L T R 1 1 1 L T R 365 99 108 12.0 12.0 12.0 0 1 1 1 L T R 26 97 37 12.0 12.0 12.0 0 1 3 0 L TR 118 541 42 12.0 12.0 0 Southbound L T R 1 2 1 L T R 62 647 369 12.0 12.0 12.0 0 Duration 1.00 Area Type: All other 43.5 areas T 156 1759 0.63 Signal Operations 48.1 D 37.3 Phase Combination 1 2 3 4 0.11 0.644 5 6 7 8 EB Left A Westbound NB Left P Thru A 1671 0.06 Thru 24.6 A Right A 1759 0.62 Right 47.2 A Peds C X 1495 0.04 Peds 5.8 X WB Left A Northbound SB Left A Thru A 1671 0.71 Thru 64.0 A Right A 4751 0.33 Right 20.7 A Peds C X Peds X NB Right L 167 1671 EB Right A A SB Right A A 3343 WB Right A A Green 24.0 8.0 1495 0.30 0.811 9.0 33.0 Yellow 3.0 3.0 Delay = 29.7 (sec/veh) Intersection 3.0 3.0 All Red 1.0 1.0 1.0 1.0 Cycle Length: 90.0 secs Appr/ Lane Lane Group Grp Capcity Eastbound intersection Performance Summary Adj Sat Ratios Lane Group Approach Flow Rate (s) v/c g/C Delay'LOS Delay LOS L 446 1671 0.82 0.267 43.5 D T 156 1759 0.63 0.089 48.1 D 37.3 D R 963 1495 0.11 0.644 6.2 A Westbound L 446 1671 0.06 0.267 24.6 C T 156 1759 0.62 0.089 47.2 D 34.0 C R 963 1495 0.04 0.644 5.8 A Northbound L 167 1671 0.71 0.100 64.0 E TR 1742 4751 0.33 0.367 20.7 C 28.0 C Southbound L 167 1671 0.37 0.100 39.3 D T 1226 3343 0.53 0.367 22.8 C 16.7 B R 1213 1495 0.30 0.811 2.3 A Intersection Delay = 29.7 (sec/veh) Intersection LOS = C 0 r Appr/ Mvmt Lane Group CAPACITY ANALYSIS WORKSHEET Adj Adj Sat Flow Green Flow Rate Flow Rate Ratio Ratio (v) (s) (v/s) (g/C) --Lane Group-- Capacity v/c (c) Ratio Eastbound Incremental Res Lane Group Approach Lane Pri. Adj Grp Factor Del Del Sec. Grp v/c g/C dl Fact Cap Left L 365 1671 # 0.22 0.267 446 0.82 Thru T 99 1759 # 0.06 0.089 156 0.63 Right R 108 1495 0.07 0.644 963 0.11 Westbound L 0.82 Pri. 31.0 1.000 446 0.36 12.6 0.0 43.5 Sec. T 0.63 0.089 39.6 1.000 Left L 26 1671 0.02 0.267 446 0.06 Thru T 97 1759 0.06 0.089 156 0.62 Right R 37 1495 0.02 0.644 963 0.04 Northbound Pri. L 0.06 0.267 24.6 1.000 Sec. 0.11 0.1 0.0 24.6 C Left L 118 1671 # 0.07 0.100 167 0.71 Thru TR 583 4751 0.12 0.367 1742 0.33 Right 1.000 963 0.11 0.0 0.0 5.8 A Southbound Northbound Pri. L Sec. 0.100 39.2 1.000 167 0.50 24.8 0.0 Left L 62 1671 0.04 0.100 167 0.37 Thru T 647 3343 # 0.19 0.367 1226 0.53 Right R 369 1495 0.25 0.811 1213 0.30 Sum (v/s) critical = 0.54 Lost Time/Cycle, L = 16.00 sec Critical v/c(X) = 0.66 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C dl Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.82 0.267 31.0 1.000 446 0.36 12.6 0.0 43.5 D T 0.63 0.089 39.6 1.000 156 0.21 8.5 0.0 48.1 D 37.3 D R 0.11 0.644 6.1 1.000 963 0.11 0.1 0.0 6.2 A Westbound L 0.06 0.267 24.6 1.000 446 0.11 0.1 0.0 24.6 C T 0.62 0.089 39.5 1.000 156 0.20 7.7 0.0 47.2 D 34.0 C R 0.04 0.644 5.8 1.000 963 0.11 0.0 0.0 5.8 A Northbound L 0.71 0.100 39.2 1.000 167 0.50 24.8 0.0 64.0 E TR 0.33 0.367 20.6 1.000 1742 0.11 0.1 0.0 20.7 C 28.0 C Southbound L 0.37 0.100 37.9 1.000 167 0.11 1.4 0.0 39.3 D T 0.53 0.367 22.4 1.000 1226 0.13 0.4 0.0 22.8 C 16.7 B R 0.30 0.811 2.1 1.000 1213 0.11 0.1 0.0 2.3 A Intersection Delay = 29.7 (sec/veh) Intersection LOS = C Inter: Year 2020 No Project Analyst: Greg Date: 11/3/2000 E/W St: Avenue 50 HCS: Signals Release 3.1b City/St: La Quinta Proj #: Vista Montana Period: Morning Peak Hour NIS St: Eisenhower Drive Appr/ Lane Lane Group Grp Capcity Eastbound L 130 TR 170 Westbound L 116 SIGNALIZED INTERSECTION SUMMARY R 1495 Northbound Eastbound Westbound Northbound 2367 LOS Southbound 0.35 0.100 L T R L T R L T R 42.5 L T R 1162 No. Lanes 0.100 40.9 1 1 1 1 0.14 0.100 37.3 D 2 0 0.06 1 2 0 1 1 0 LGConfig L TR L T R L TR L TR Volume 46 71 23 25 87 18 955 27 54 265 63 Lane Width 12.0 12.0 �52 12.0 12.0 12.0 12.0 12.0 12.0 12.0 RTOR Vol 0 0 0 0 Duration 1.00 Area Type: All other areas Signal Operations Phase Combination 1 2 3 4 5 6 7 8 EB Left A NB Left P Thru A Thru A Right A Right A Peds X Peds X WB Left A SB Left A Thru A Thru A Right A Right A Peds X Peds X NB Right EB Right SB Right WB Right A A Green 9.0 5.0 64.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance S Appr/ Lane Lane Group Grp Capcity Eastbound L 130 TR 170 Westbound L 116 T 176 R 1495 Northbound L 93 TR 2367 Southbound L 93 TR 2308 Adj Sat Ratios ummary_ Lane Group Flow Rate (s) v/c g/C Delay LOS 1304 0.35 0.100 39.5 D 1695 0.55 0.100 42.5 D 1162 0.45 0.100 40.9 D 1759 0.14 0.100 37.3 D 1495 0.06 1.000 0.0+ A 1671 3329 1671 3246 0.19 0.056 45.2 D 0.41 0.711 5.4 A Approach Delay LOS 41.5 D 18.7 B 6.2 A 0.58 0.056 50.6 D 0.14 0.711 4.2 A 10.8 B Intersection Delay = 11.4 (sec/veh) Intersection LOS = B Appr/ Mvmt Lane Group CAPACITY ANALYSIS WORKSHEET Adj Adj Sat Flow Green Flow Rate Flow Rate Ratio Ratio (v) (s) (v/s) (g/C) --Lane Group-- Capacity v/c (c) Ratio Eastbound critical = 0.38 Lost Time/Cycle, L = 12.00 sec Critical Pri. 0.44 Westbound 0.4 LEVEL OF SERVICE WORKSHEET 18.7 B Sec. Unf Prog Lane Incremental Res Lane Group Approach Lane Del Left L 46 1304 0.04 0.100 130 0.35 Thru TR 94 1695 # 0.06 0.100 170 0.55 Right L 0.19 0.056 40.6 1.000 Westbound 0.50 TR 0.41 0.711 5.3 1.000 2367 Pri. Southbound L Sec. 0.056 41.5 1.000 93 0.17 TR 0.14 Left L 52 1162 0.04 0.100 116 0.45 Thru T 25 1759 0.01 0.100 176 0.14 Right R 87 1495 0.06 1.000 1495 0.06 Northbound Pri. Sec. Left L 18 1671 0.01 0.056 93 0.19 Thru TR 982 3329 # 0.29 0.711 2367 0.41 Right Southbound Pri. Sec. Left L 54 1671 # 0.03 0..056 93 0.58 Thru TR 328 3246 0.10 0.711 2308 0.14 Right Eastbound L 0.35 0.100 37.8 Sum (v/s) critical = 0.38 Lost Time/Cycle, L = 12.00 sec Critical v/c(X) = 0.44 Westbound 0.4 LEVEL OF SERVICE WORKSHEET 18.7 B Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del 176 Grp v/c q/C d1 Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.35 0.100 37.8 1.000 130 0.11 TR 0.55 0.100 38.6 1.000 170 0.15 Westbound 0.4 0.0 37.3 D 18.7 B L 0.45 0.100 38.2 1.000 116 0.11 T 0.14 0.100 37.0 1.000 176 0.11 R 0.06 1.000 0.0 1.000 1495 0.11 Northbound 4.2 A 10.8 B L 0.19 0.056 40.6 1.000 93 0.50 TR 0.41 0.711 5.3 1.000 2367 0.11 Southbound L 0.58 0.056 41.5 1.000 93 0.17 TR 0.14 0.711 4.2 1.000 2308 0.11 1.7 0.0 39.5 D 3.9 0.0 42.5 D 41.5 D 2.8 0.0 40.9 D 0.4 0.0 37.3 D 18.7 B 0.0 0.0 0.0+ A 4.6 0.0 45.2 D 0.1 0.0 5.4 A 6.2 A 9.2 0.0 50.6 D 0.0 0.0 4.2 A 10.8 B Intersection Delay = 11.4 (sec/veh) Intersection LOS = B HCS: Signals Release 3.1b Inter: Year 2020 No Project City/St: La Quinta Proj #: Vista Montana Analyst: Greg Period: Evening Peak Hour Date: 11/3/2000 NIS St: Eisenhower Drive E/W St: Avenue 50 SIGNALIZED INTERSECTION SUMMARY Southbound Eastbound Westbound Northbound R L T R L, T R L T R L T 1 1 0 1 2 0 1 2 0 1 1 1 No. Lanes L T R L TR L TR LGConfig L TR 30 35 119 34 41 28 516 39 81 779 38 Volume 59 Width 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 0 Lane 0 0 0 RTOR Vol Duration 1.00 Area Type: All other areas Signal Operations Phase Combination 1 2 3 4 NB 5 Left P 6 7 8 EB Left A Thru A Thru A Right A Right A Peds X Peds X SB Left A WB Left A Thru A Thru A Right A Right A Peds X Peds X EB Right NB Right WB Right A A SB Right 7.0 59.0 Green 12.0 3.0 0 3 3.0 . Yellow 3.0 1.0 1.0 All Red 1.0 Cycle Length: 90.0 secs Intersection Performance Summary Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Capcity Flow Rate (s) v/c g/C Delay LOS Delay LOS Grp Eastbound 172 1293 0.34 0.133 36.6 D L 216 1617 0.30 0.133 36.0 D 36.3 D TR Westbound 168 1257 0.71 0.133 51.1 D L T 235 1759 0.14 0.133 34.7 C 37.5 D R 1495 1495 0.03 1.000 0.0+ A Northbound 130 1671 0.22 0.078 42.7 D L TR 2168 3307 0.26 0.656 6.5 A 8.2 A Southbound 130 1671 0.62 0.078 49.5 D L TR 2176 3319 0.38 0.656 7.2 A 11.0 B Intersection Delay = 14.7 (sec/veh) Intersection LOS = B (` I Appr/ Mvmt Lane Group CAPACITY ANALYSIS WORKSHEET Adj Adj Sat Flow Green Flow Rate Flow Rate Ratio Ratio (v) (s) (v/s) (g/C) --Lane Group-- Capacity v/c (c) Ratio Eastbound critical = 0.39 Lost Time/Cycle, L = 12.00 sec Pri. v/c(X) = 0.45 Sec. LEVEL OF SERVICE WORKSHEET Appr/ Ratios Left L 59 1293 0.05 0.133 172 0.34 Thru TR 65 1617 0.04 0.133 216 0.30 Right Grp v/c g/C d1 Fact Cap k d2 Westbound Delay LOS Delay LOS Eastbound Pri. L 0.34 0.133 Sec. 1.000 172 0.11 1.2 0.0 36.6 D Left L 119 1257 # 0.09 0.133 168 0.71 0.0 Thru T 34 1759 0.02 0.133 235 0.14 Right R 41 1495 0.03 1.000 1495 0.03 37.3 Northbound 168 0.27 13.8 0.0 51.1 D Pri. 0.14 0.133 34.5 1.000 235 0.11 0.3 0.0 Sec. C 37.5 D R 0.03 1.000 0.0 1.000 1495 Left L 28 1671 0.02 0.078 130 0.22 Thru TR 555 3307 0.17 0.656 2168 0.26 L Right 0.078 38.9 1.000 130 0.50 3.8 0.0 42.7 Southbound TR 0.26 0.656 6.4 1.000 2168 Pri. 0.1 0.0 6.5 A 8.2 A Southbound Sec. L Left L 81 1671 # 0.05 0.078 130 0.62 49.5 Thru TR 817 3319 # 0.25 0.656 2176 0.38 0.11 Right 0.0 7.2 A 11.0 B Intersection Delay = 14.7 (sec/veh) Intersection LOS = B Sum (v/s) critical = 0.39 Lost Time/Cycle, L = 12.00 sec Critical v/c(X) = 0.45 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C d1 Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.34 0.133 35.4 1.000 172 0.11 1.2 0.0 36.6 D TR 0.30 0.133 35.2 1.000 216 0.11 0.8 0.0 36.0 D 36.3 D Westbound L 0.71 0.133 37.3 1.000 168 0.27 13.8 0.0 51.1 D T 0.14 0.133 34.5 1.000 235 0.11 0.3 0.0 34.7 C 37.5 D R 0.03 1.000 0.0 1.000 1495 0.11 0.0 0.0 0.0+ A Northbound L 0.22 0.078 38.9 1.000 130 0.50 3.8 0.0 42.7 D TR 0.26 0.656 6.4 1.000 2168 0.11 0.1 0.0 6.5 A 8.2 A Southbound L 0.62 0.078 40.2 1.000 130 0.21 9.3 0.0 49.5 D TR 0.38 0.656 7.1 1.000 2176 0.11 0.1 0.0 7.2 A 11.0 B Intersection Delay = 14.7 (sec/veh) Intersection LOS = B HCS Inter: Year 2020 W/ Project Analyst: Greg Date: 11/3/2000 E/W St: Avenue 50 No. Lanes LGConf ig Volume Lane Width RTOR Vol Signals Release 3.1b City/St: La Quinta Proj #: Vista Montana Period: Morning Peak Hour NIS St: Eisenhower Drive SIGNALIZED INTERSECTION SUMMARY. Eastbound Westbound `` Northbound L T R L T R i L T R 1 1 0 L TR 46 71 23 12.0 12.0 0 `1 1 1 L T R 53 25 55 12.0 12.0 12.0 0 1 2 0 L TR 18 969 28 12.0 12.0 0 Southbound L T R 1 2 0 L TR 54 292 63 12.0 12.0 0 Duration 1.00 Area Type: All Signal other areas Operations Phase Combination 1 2 3 4 NB Left 5 P 6 7 8 EB Left A Thru A Thru A Right A Right A Peds X Peds X SB Left A WB Left A Thru A Thru A Right A Right A Peds X Peds X EB Right NB Right WB Right A A SB Right 6.0 63.0 Green 9.0 3.0 3.0 Yellow 3.0 1.0 1.0 All Red 1.0 Cycle Length: 90.0 secs Intersection Performance Summary Adj Sat Ratios Lane Group App roach Appr/ Lane Lane Group Flow Rate (s) v/c g/C Delay LOS Delay LOS Grp Capcity Eastbound 130 1304 0.35 0.100 39.5 D L 170 1695 0.55 0.100 42.5 D 41.5 D TR Westbound 116 1162 0.46 0.100 41.1 D L 176 1759 0.14 0.100 37.3 D 23.4 C T R 1495 1495 0.04 1.000 0.0+ A Northbound 111 1671 0.16 0.067 42.8 D L TR 2330 3329 0.43 0.700 5.9 A 6.6 A Southbound 111 1671 0.49 0.067 43.9 D L 2278 3254 0.16 0.700 4.6 A 9.8 A TR Intersection Delay = 11.5 (sec/veh) Intersection LOS = B Appr/ Lane Mvmt Group Eastbound Pri. critical = Sec. Left L Thru TR Right Critical Westbound = Pri. Sec. Left L Thru T Right R Northbound Pri. Sec. Ratios Left L Thru TR Right Lane Group Southbound Pri. Sec. Del Left L Thru TR Right CAPACITY ANALYSIS WORKSHEET Adj Adj Sat Flow Green --Lane Group -- Flow Rate Flow Rate Ratio Ratio Capacity v/c (v) (s) (v/s) (g/C) (c) Ratio 46 94 53 25 55 18 997 54 355 1304 0.04 0.100 130 1695 # 0.06 0.100 170 1162 0.05 0.100 116 1759 0.01 0.100 176 1495 0.04 1.000 1495 1671 0.01 3329 # 0.30 1671 # 0.03 3254 0.11 0.067 111 0.700 2330 0.067 111 0.700 2278 0.35 0.55 0.46 0.14 0.04 0.16 0.43 0.49 0.16 Intersection Delay = 11.5 (sec/veh) Intersection LOS = B Sum (v/s) critical = 0.39 Lost Time/Cycle, L = 12.00 sec Critical v/c(X) = 0.45 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C dl Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.35 0.100 37.8 1.000 130 0.11 1.7 0.0 39.5 D TR 0.55 0.100 38.6 1.000 170 0.15 3.9 0.0 42.5 D 41.5 D Westbound L 0.46 0.100 38.2 1.000 116 0.11 2.9 0.0 41.1 D T 0.14 0.100 37.0 1.000 176 0.11 0.4 0.0 37.3 D 23.4 C R 0.04 1.000 0.0 1.000 1495 0.11 0.0 0.0 0.0+ A Northbound L 0.16 0.067 39.6 1.000 111 0.50 3.1 0.0 42.8 D TR 0.43 0.700 5.8 1.000 2330 0.11 0.1 0.0 5.9 A 6.6 A Southbound L 0.49 0.067 40.5 1.000 111 0.11 3.4 0.0 43.9 D TR 0.16 0.700 4.5 1.000 2278 0.11 0.0 0.0 4.6 A 9.8 A Intersection Delay = 11.5 (sec/veh) Intersection LOS = B r - No. Lanes LGConf ig Volume Lane Width RTOR Vol Eastbound L T R 1 1 0 L TR 59 30 35 12.0 12.0 0 IGNALIZED INTERSECTION SUMMARY HCS: Signals Release 3.1b Inter: Year 2020 W/ Project City/St: La Quinta Analyst: Greg Proj #: Vista Montana Date: 1/12/2001 Period: Evening Peak Hour E/W St: Avenue 50 NIS St: Eisenhower Drive r - No. Lanes LGConf ig Volume Lane Width RTOR Vol Eastbound L T R 1 1 0 L TR 59 30 35 12.0 12.0 0 IGNALIZED INTERSECTION SUMMARY Duration 1.00 Westbound Northbound Southbound areas L T R L T R L T R 1 1 1 1 2 0 1 2 0 L T R L TR L TR 1 2 123 34 35 28 530 24 52 807 38 5 12.0 12.0 12.0 112.0 12.0 12.0 12.0 A 0 0 0 Duration 1.00 Area Type: All other areas Signal Operations Phase Combination 1 2 3 4 5 6 7 8 EB Left A NB Left P Thru A Thru A Right A Right A Peds X Peds X WB Left A SB Left A Thru A Thru A Right A Right A Peds X Peds X NB Right EB Right SB Right WB Right A A Green 13.0 5.0 60.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance Summary Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Delay LOS Eastbound L 187 1293 0.32 0.144 35.5 D TR 234 1617 0.28 0.144 35.0- C 35.2 D Westbound L 182 1257 0.68 0.144 46.5 D T 254 1759 0.13 0.144 33.8 C 35.8 D R 1495 1495 0.02 1.000 0.0+ A Northbound L 93 1671 0.30 0.056 49.1 D TR 2214 3321 0.25 0.667 6.1 A 8.1 A Southbound L 93 1671 0.56 0.056 49.0 D TR 2213 3320 0.38 0.667 6.8 A 9.3 A Intersection Delay = 13.5 (sec/veh) Intersection LOS = B Intersection Delay = 13.5 (sec/veh) Intersection LOS = B CAPACITY ANALYSIS WORKSHEET Sum (v/s) critical = Adj Adj Sat Flow Green --Lane Group-- L = 12.00 Appr/ Lane Flow Rate Flow Rate Ratio Ratio Capacity v/c Mvmt Group (v) (s) (v/s) (g/C) (c) Ratio Eastbound Appr/ Ratios Unf Prog Lane Incremental Res Pri. Approach Lane Del Adj Grp Sec. Del Del Grp v/c Left L 59 1293 0.05 0.144 187 0.32 Thru TR 65 1617 0.04 0.144 234 0.28 Right L 0.32 0.144 Westbound 1.000 187 0.11 1.0 0.0 35.5 D Pri. TR 0.28 0.144 34.3 1.000 234 0.11 Sec. 0.0 35.0- C 35.2 D Westbound Left L 123 1257 # 0.10 0.144 182 0.68 Thru T 34 1759 0.02 0.144 254 0.13 Right R 35 1495 0.02 1.000 1495 0.02 Northbound 254 0.11 0.2 0.0 33.8 C Pri. R 0.02 1.000 0.0 1.000 1495 0.11 Sec. 0.0 0.0+ A Northbound Left L 28 1671 0.02 0.056 93 0.30 Thru TR 554 3321 0.17 0.667 2214 0.25 Right 49.1 D TR 0.25 0.667 6.0 Southbound 2214 0.11 0.1 0.0 6.1 A Pri. Southbound Sec. L 0.56 0.056 41.4 Left L 52 1671 # 0.03 0.056 93 0.56 Thru TR 845 3320 # 0.25 0.667 2213 0.38 Right 6.8 A 9.3 A Intersection Delay = 13.5 (sec/veh) Intersection LOS = B Sum (v/s) critical = 0.38 Lost Time/Cycle, L = 12.00 sec Critical v/c(X) = 0.44 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C dl Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.32 0.144 34.5 1.000 187 0.11 1.0 0.0 35.5 D TR 0.28 0.144 34.3 1.000 234 0.11 0.7 0.0 35.0- C 35.2 D Westbound L 0.68 0.144 36.5 1.000 182 0.25 10.0 0.0 46.5 D T 0.13 0.144 33.6 1.000 254 0.11 0.2 0.0 33.8 C 35.8 D R 0.02 1.000 0.0 1.000 1495 0.11 0.0 0.0 0.0+ A Northbound L 0.30 0.056 40.8 1.000 93 0.50 8.3 0.0 49.1 D TR 0.25 0.667 6.0 1.000 2214 0.11 0.1 0.0 6.1 A 8.1 A Southbound L 0.56 0.056 41.4 1.000 93 0.16 7.6 0.0 49.0 D TR 0.38 0.667 6.7 1.000 2213 0.11 0.1 0.0 6.8 A 9.3 A Intersection Delay = 13.5 (sec/veh) Intersection LOS = B Duration 1.00 1279 HCS: Signals Release 3.1b areas 39.6 D 19.1 Inter: Year 2020 No Project City/St: La Quinta Signal Operations 0.07 1.000 Analyst: Greg 1 Proj #: Vista Montana Northbound 5 6 Date: 11/3/2000 A Period: Morning Peak Hour Left P 1671 E/W St: Calle Tampico NIS St: Eisenhower Drive A Right A 0.633 Right A 8.2 A Peds X SIGNALIZED INTERSECTION SUMMARY X WB Left A SB Left Eastbound 46.9 Westbound Northbound Southbound Thru 0.06 A Right L T R C L T R L T R L T R X No. Lanes Peds X NB Right 1 Right 0 1 1 SB Right 0 1 0 1 2 0 2 0 LGConfig A LTR 13.0 LT R L TR L TR Yellow Volume1 1 1 3.0 102 1 110 1 693 110 91 134 1 Lane Width 1.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 RTOR Vol 0 0 0 0 Duration 1.00 1279 Area Type: All other areas 39.6 D 19.1 B R 1495 Signal Operations 0.07 1.000 Phase Combination 1 2 3 4 Northbound 5 6 EB Left A NB Left P 1671 Thru A 37.5 Thru A Right A 0.633 Right A 8.2 A Peds X Peds X WB Left A SB Left A 46.9 Thru A TR 2115 Thru 0.06 A Right A C Right Delay A Peds X LOS = B Peds X NB Right EB Right SB Right WB Right A A Green 13.0 8.0 57.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance Summar Appr/ Lane Lane Group Grp Capcity Eastbound LTR 205 Westbound y- Adj Sat Ratios Lane Group Flow Rate (s) v/c g/C Delay LOS - 7 8 Approach Delay LOS 1420 0.01 0.144 33.0 C 33.0 C LT 185 1279 0.56 0.144 39.6 D 19.1 B R 1495 1495 0.07 1.000 0.0+ A Northbound L 149 1671 0.01 0.089 37.5 D TR 2074 3274 0.39 0.633 8.1 A 8.2 A Southbound L 149 1671 0.61 0.089 46.9 D TR 2115 3339 0.06 0.633 6.3 A 22.6 C Intersection Delay = 12.7 (sec/veh) Intersection LOS = B Appr/ Lane Mvmt Group Eastbound Sum (v/s) Pri. 0.38 Sec. Left Lost Time/Cycle, Thru LTR Right v/c(X) Westbound 0.44 Pri. Sec. Left Thru LT Right R Northbound Pri. Sec. Unf Left L Thru TR Right Approach Southbound Pri. Del Sec. Grp Left L Thru TR Right CAPACITY ANALYSIS WORKSHEET Adj Adj Sat Flow Green --Lane Group -- Flow Rate Flow Rate Ratio Ratio Capacity v/c (v) (s) (v/s) (g/C) (c) Ratio 3 1420 0.00 0.144 205 0.01 103 1279 # 0.08 0.144 185 0.56 110 1495 0.07 1.000 1495 0.07 1 1671 0.00 0.089 149 0.01 803 3274 # 0.25 0.633 2074 0.39 91 1671 # 0.05 0.089 149 0.61 135 3339 0.04 0.633 2115 0.06 Intersection Delay = 12.7 (sec/veh) Intersection LOS = B Sum (v/s) critical = 0.38 Lost Time/Cycle, L = 12.00 sec Critical v/c(X) = 0.44 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C dl Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound LTR 0.01 0.144 33.0 1.000 205 0.11 0.0 0.0 33.0 C 33.0 C Westbound LT 0.56 0.144 35.8 1.000 185 0.15 3.8 0.0 39.6 D 19.1 B R 0.07 1.000 0.0 1.000 1495 0.11 0.0 0.0 0.0+ A Northbound L 0.01 0.089 37.4 1.000 149 0.50 0.1 0.0 37.5 D TR 0.39 0.633 8.0 1.000 2074 0.11 0.1 0.0 8.1 A 8.2 A Southbound L 0.61 0.089 39.5 1.000 149 0.20 7.4 0.0 46.9 D TR 0.06 0.633 6.3 1.000 2115 0.11 0.0 0.0 6.3 A 22.6 C Intersection Delay = 12.7 (sec/veh) Intersection LOS = B Inter: Year 2020 No Project Analyst: Greg Date: 11/3/2000 E/W St: Calle Tampico HCS: Signals Release 3.1b City/St: La Quinta Proj #: Vista Montana Period: Evening Peak Hour NIS St: Eisenhower Drive Eastbound LTR 392 Westbound LT 354 R 1495 Northbound L 149 TR 1591 1411 0.01 0.278 23.5 C 1275 0.71 0.278 36.1 D 1495 0.07 1.000, 0.0+ A 23.5 C 25.9 C 1671 0.02 0.089 37.7 D 3182 0.32 0.500 13.5 B 13.7 B Southbound L 149 1671 0.55 0.089 43.7 D TR 1671 3342 0.41 0.500 14.3 B 17.4 B Intersection Delay = 18.1 (sec/veh) Intersection LOS = B SIGNALIZED INTERSECTION SUMMARY Eastbound Westbound Northbound Southbound L T R L T R L T R L T R No. Lanes 0 1 1 0 0 1 0 1 2 1 2 0 LGConfig LTR LT R L TR L TR Volume 1 1 2 251 1 993 349 165 82 681 1 Lane Width 12.0 12.0 12.0 12.0 12.0 12.0 12.0 RTOR Vol 0 0 0 0 Duration 1.00 Area Type: All other areas Signal Operations Phase Combination 1 2 3 4 5 6 7 8 EB Left A NB Left P Thru A Thru A Right A Right A Peds X Peds X WB Left A SB Left A Thru A Thru A Right A Right A Peds X Peds X NB Right EB Right SB Right WB Right A A Green 25.0 8.0 45.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance Summary Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Delay LOS Eastbound LTR 392 Westbound LT 354 R 1495 Northbound L 149 TR 1591 1411 0.01 0.278 23.5 C 1275 0.71 0.278 36.1 D 1495 0.07 1.000, 0.0+ A 23.5 C 25.9 C 1671 0.02 0.089 37.7 D 3182 0.32 0.500 13.5 B 13.7 B Southbound L 149 1671 0.55 0.089 43.7 D TR 1671 3342 0.41 0.500 14.3 B 17.4 B Intersection Delay = 18.1 (sec/veh) Intersection LOS = B Appr/ Mvmt Lane Group CAPACITY ANALYSIS WORKSHEET Adj Adj Sat Flow Green Flow Rate Flow Rate Ratio Ratio (v) (s) (v/s) (g/C) --Lane Group-- Capacity v/c (c) Ratio Eastbound 354 R 0.07 1.000 0.0 1.000 1495 Pri. 0.1 0.0 13.5 0.15 L 0.02 0.089 Sec. 1.000 149 TR 0.32 0.500 13.4 1.000 Left Southbound L 0.55 Thru LTR 4 1411 0.00 0.278 392 0.01 Right 1671 Westbound Pri. Sec. Left Thru LT 252 1275 # 0.20 0.278 354 0.71 Right R 99 1495 0.07 1.000 1495 0.07 Northbound Pri. Sec. Left L 3 1671 0.00 0.089 149 0.02 Thru TR 514 3182 0.16 0.500 1591 0.32 Right Southbound Pri. Sec. Left L 82 1671 # 0.05 0.089 149 0.55 Thru TR 682 3342 # 0.20 0.500 1671 0.41 Right Sum (v/s) critical = 0.45 Lost Time/Cycle, L = 12.00 sec Critical v/c(X) = 0.52 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental• Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C d1 Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound LTR 0.01 0.278 23.5 1.000 392 0.11 0.0 0.0 23.5 C 23.5 C Westbound LT 0.71 0.278 29.3 1.000 354 R 0.07 1.000 0.0 1.000 1495 Northbound 0.1 0.0 13.5 0.15 L 0.02 0.089 37.4 1.000 149 TR 0.32 0.500 13.4 1.000 1591 Southbound L 0.55 0.089 39.3 1.000 149 TR 0.41 0.500 14.1 1.000 1671 0.28 6.8 0.0 36.1 0.11 0.0 0.0 0.0+ 0.50 0.2 0.0 37.7 0.11 0.1 0.0 13.5 0.15 4.4 0.0 43.7 0.11 0.2 0.0 14.3 D 25.9 C A D B 13.7 B D B 17.4 B Intersection Delay = 18.1 (sec/veh) Intersection LOS = B Inter: Year 2020 W/ Project Analyst: Greg Date: 11/3/2000 E/W St: Calle Tampico Eastbound L T R HCS: Signals Release 3.1b City/St: La Quinta Proj #: Vista Montana Period: Morning Peak Hour NIS St: Eisenhower Drive IGNALIZED INTERSECTION SUMMARY Westbound Northbound L T R ! L T R Southbound L T R No. Lanes 0 1 0 0 1 1 1 2 0 1 2 0 0.0+ A LGConfig LTR LT R L TR 1671 L TR 35.6 D Volume 1 1 1 120 0 105 1 645 142 109 134 1 Lane Width 12.0 12.0 12.0 12.0 12.0 12.0 12.0 RTOR Vol 0 0 0 0 Duration 1.00 Area Type: All other areas Signal Operations Phase Combination 1 2 3 4 5 6 7 8 EB Left A NB Left P Thru A Thru A Right A Right A Peds X Peds X WB Left A SB Left A Thru A Thru A Right A Right A Peds X Peds X NB Right EB Right SB Right WB Right A A Green 13.0 10.0 55.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance Summary Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Delay LOS Eastbound LTR 205 1417 0.01 0.144 33.0 C Westbound LT 184 1275 0.65 0.144 44.6 D R 1495 1495 0.07 1.000 0.0+ A Northbound L 186 1671 0.01 0.111 35.6 D TR 1987 3252 0.40 0.611 9.1 A Southbound L 186 1671 0.59 0.111 42.9 TR 2040 3339 0.07 0.611 7.1 Intersection Delay = 14.5 (sec/veh) 33.0 C 23.8 C 9.1 A D A 23.1 C Intersection LOS = B Appr/ Lane Mvmt Group Eastbound Sum (v/s) Pri. = 0.40 Sec. Left Lost Time/Cycle, Thru LTR Right v/c(X) Westbound = 0.46 Pri. Sec. Left Thru LT Right R Northbound Pri. Sec. Unf Left L Thru TR Right Approach Southbound Pri. Del Sec. Grp Left L Thru TR Right CAPACITY ANALYSIS WORKSHEET Adj Adj Sat Flow Green --Lane Group -- Flow Rate Flow Rate Ratio Ratio Capacity v/c (v) (s) (v/s) (g/C) (c) Ratio 3 1417 0.00 0.144 205 0.01 120 1275 # 0.09 0.144 184 0.65 105 1495 0.07 1.000 1495 0.07 1 1671 0.00 0.111 186 0.01 787 3252 # 0.24 0.611 1987 0.40 109 1671 # 0.07 0.111 186 0.59 135 3339 0.04 0.611 2040 0.07 Intersection Delay = 14.5 (sec/veh) Intersection LOS = B Sum (v/s) critical = 0.40 Lost Time/Cycle, L = 12.00 sec Critical v/c(X) = 0.46 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C d1 Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound LTR 0.01 0.144 33.0 1.000 205 0.11 0.0 0.0 33.0 C 33.0 C Westbound LT 0.65 0.144 36.4 1.000 184 0.23 8.3 0.0 44.6 D 23.8 C R 0.07 1.000 0.0 1.000 1495 0.11 0.0 0.0 0.0+ A Northbound L 0.01 0.111 35.6 1.000 186 0.50 0.1 0.0 35.6 D TR 0.40 0.611 9.0 1.000 1987 0.11 0.1 0.0 9.1 A 9.1 A Southbound L 0.59 0.111 38.0 1.000 186 0.18 4.8 0.0 42.9 D TR 0.07 0.611 7.1 1.000 2040 0.11 0.0 0.0 7.1 A 23.1 C Intersection Delay = 14.5 (sec/veh) Intersection LOS = B HCS: Signals Release 3.1b Inter: Year 2020 W/ Project City/St: La Quinta Analyst: Greg Proj #: Vista Montana Date: 11/3/2000 Period: Evening Peak Hour E/W St: Calle Tampico NIS St: Eisenhower Drive SIGNALIZED INTERSECTION SUMMARY Eastbound Westbound Northbound Southbound L T R L T R L T R L T R No. Lanes 0 1 0 0 1 1 1 2 0 1 2 0 LGConfig LTR LT R L TR L TR Volume 1 1 2 297 1 119 3 348 179 95 661 1 Lane Width 12.0 12.0 12.0 12.0 12.0 .12.0 12.0 RTOR Vol 0 1 0 0 0 Duration 1.00 Phase Combination 1 EB Left A Thru A Right A Peds X WB Left A Thru A Right A Peds X NB Right Thru SB Right A Green 29.0 Yellow 3.0 All Red 1.0 Area Type: All other areas 0.73 R 1495 Signal Operations 0.08 Northbound 2 3 4 L 167 5 6 TR 1410 NB Left P Southbound 0.100 Thru L 167 A 0.57 Right 3342 A (sec/veh) Peds LOS = C X SB Left A Thru A Right A Peds X EB Right WB Right A A 9.0 40.0 3.0 3.0 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance Summary_ Appr/ Lane Adj Sat Ratios Lane Group Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Eastbound LTR 455 1412 0.01 Westbound LT 411 1275 0.73 R 1495 1495 0.08 Northbound 0.100 L 167 1671 0.02 TR 1410 3172 0.37 Southbound 0.100 43.3 L 167 1671 0.57 TR 1485 3342 0.45 Intersection Delay = 20.4 7 8 Approach Delay LOS 0.322 20.7 C 20.7 C 0.322 33.5 C 23.9 C 1.000 0.0+ A 0.100 36.7 D 0.444 16.8 B 16.9 B 0.100 43.3 D 0.444 17.5 B 20.8 C (sec/veh) Intersection LOS = C Appr/ Lane Mvmt Group Eastbound 0.01 Pri. 1275 Sec. 0.322 Left 0.73 Thru i LTR Right 1.000 Westbound 0.08 Pri. Sec. Left Thru LT Right R Northbound Pri. Sec. Unf Left L Thru TR Right Approach Southbound Pri. Del Sec. Grp Left L Thru TR Right CAPACITY ANALYSIS WORKSHEET Adj Adj Sat Flow Green --Lane Group -- Flow Rate Flow Rate Ratio Ratio Capacity v/c (v) (s) (v/s) (g/C) (c) Ratio 4 1412 0.00 0.322 455 0.01 298 1275 # 0.23 0.322 411 0.73 119 1495 0.08 1.000 1495 0.08 3 1671 0.00 0.100 167 0.02 527 3172 0.17 0.444 1410 0.37 95 1671 # 0.06 0.100 167 0.57 662 3342 # 0.20 0.444 1485 0.45 Intersection Delay = 20.4 (sec/veh) Intersection LOS = C Sum (v/s) critical = 0.49 Lost Time/Cycle, L = 12.00 sec Critical v/c(X) = 0.56 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C d1 Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound LTR 0.01 0.322 20.7 1.000 455 0.11 0.0 0.0 20.7 C 20.7 C Westbound LT 0.73 0.322 27.0 1.000 411 0.29 6.5 0.0 33.5 C 23.9 C R 0.08 1.000 0.0 1.000 1495 0.11 0.0 0.0 0.0+ A Northbound L 0.02 0.100 36.5 1.000 167 0.50 0.2 0.0 36.7 D TR 0.37 0.444 16.7 1.000 1410 0.11 0.2 0.0 16.8 B 16.9 B Southbound L 0.57 0.100 38.6 1.000 167 0.16 4.6 0.0 43.3 D TR 0.45 0.444 17.3 1.000 1485 0.11 0.2 0.0 17.5 B 20.8 C Intersection Delay = 20.4 (sec/veh) Intersection LOS = C '4Y HCS: Signals Release 3.1b R Inter: Year 2020 No Project City/St: La Quinta Analyst: Greg Proj #: Vista Montana { Date: 1/13/2001 Period: Morning Peak Hour E/W St: Calle Tampico NIS St: Avenida Bermudas SIGNALIZED INTERSECTION SUMMARY Eastbound Westbound Northbound Southbound L T R L T R L T R L T R No. Lanes 1 2 0 1 2 0 0 1 1 0 1 0 LGConfig L TR L TR LT R LTR Volume 5 181 37 120 186 1 34 2 183 2 3 1 Lane Width 12.0 12.0 12.0 12.0 12.0 12.0 12.0 RTOR Vol 0 P 0 0 0 Duration 1.00 Area Type: All other areas Signal Operations Phase Combination 1 2 3 4 5 6 7 8 EB Left A NB Left A Thru A Thru A Right A Right A Peds X Peds X WB Left A A SB Left A Thru A A Thru A Right A A Right A Peds X Peds X NB Right A A A EB Right SB Right WB Right Green 8.0 18.0 47.0 5.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs intersection Performance Summary Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Delay LOS Eastbound L 149 1671 0.03 0.089 37.6 D TR 1701 3257 0.13 0.522 11.0 B 11.6 B Westbound L 557 1671 0.22 0.333 21.7 C TR 2412 3340 0.08 0.722 3.7 A 10.7 B Northbound LT 76 1368 0.47 0.056 45.9 D 7.6 A R 1495 1495 0.12 1.000 0.0+ A Southbound LTR 76 1370 0.08 0.056 40.8 D 40.8 D Intersection Delay = 10.3 (sec/veh) Intersection LOS = B Appr/ Lane Mvmt Group Eastbound 0.22 Pri. 3340 Sec. 0.722 Left L Thru TR Right 0.056 Westbound 0.47 Pri. 1495 Sec. 1.000 Left L Thru TR Right LEVEL OF Northbound Pri. Sec. Left Appr/ Thru LT Right R Southbound Pri. Lane Group Sec. Lane Left Thru LTR Right Factor CAPACITY ANALYSIS WORKSHEET Adj Adj Sat Flow Green --Lane Group -- Flow Rate Flow Rate Ratio Ratio Capacity v/c (v) (s) (v/s) (g/C) (c) Ratio 5 1671 0.00 0.089 149 0.03 218 3257 # 0.07 0.522 1701 0.13 120 1671 # 0.07 0.333 557 0.22 187 3340 0.06 0.722 2412 0.08 36 1368 # 0.03 0.056 76 0.47 183 1495 0.12 1.000 1495 0.12 6 1370 0.00 0.056 76 0.08 Southbound LTR 0.08 0.056 40.3 1.000 76 0.11 0.4 0.0 40.8 D 40.8 D Intersection Delay = 10.3 (sec/veh) Intersection LOS = B Sum (v/s) critical = 0.17 Lost Time/Cycle, L = 8.00 sec Critical v/c(X) = 0.18 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C d1 Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.03 0.089 37.5 1.000 149 0.11 0.1 0.0 37.6 D TR 0.13 0.522 11.0 1.000 1701 0.11 0.0 0.0 11.0 B 11.6 B Westbound L 0.22 0.333 21.5 1.000 557 0.11 0.2 0.0 21.7 C TR 0.08 0.722 3.7 1.000 2412 0.11 0.0 0.0 3.7 A 10.7 B Northbound LT 0.47 0.056 41.2 1.000 76 0.11 4.7 0.0 45.9 D 7.6 A R 0.12 1.000 0.0 1.000 1495 0.11 0.0 0.0 0.0+ A Southbound LTR 0.08 0.056 40.3 1.000 76 0.11 0.4 0.0 40.8 D 40.8 D Intersection Delay = 10.3 (sec/veh) Intersection LOS = B HCS: Signals Release 3.1b Inter: Year 2020 No Project City/St: La Quinta Analyst: Greg Proj #: Vista Montana Date: 1/13/2001 Period: Evening Peak Hour E/W St: Calle Tampico NIS St: Avenida Bermudas SIGNALIZED INTERSECTION SUMMARY Eastbound Westbound Northbound Southbound L T R L T R L T R L T R No. Lanes 1 2 0 1 2 0 0 1 1 0 1 .0 LGConfig L TR L TR LT R LTR Volume 12 252 50 354 362 9 30 7 165 1 1 1 Lane Width 12.0 12.0 12.0 12.0 12.0 12.0 12.0 RTOR Vol 0 0 0 0 Duration 1.00 Area Type: All other areas Signal Operations Phase Combination 1 2 3 4 5 6 7 8 EB Left A NB Left A Thru A Thru A Right A Right A Peds X Peds X WB Left A A SB Left A Thru A A Thru A Right A A Right A Peds X Peds X NB Right A A A EB Right SB Right WB Right Green 8.0 28.0 37.0 5.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance Summary Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Delay LOS Eastbound L 149 1671 0.08 0.089 37.9 D TR 1340 3260 0.23 0.411 17.3 B 18.1 B Westbound L 743 1671 0.48 0.444 18.1 B TR 2405 3330 0.15 0.722 3.9 A 10.9 B Northbound LT 75 1345 0.49 0.056 46.4 D 8.5 A R 1495 1495 0.11 1.000 0.0+ A Southbound LTR 75 1342 0.04 0.056 40.4 D 40.4 D Intersection Delay = 12.4 (sec/veh) Intersection LOS = B r Appr/ Mvmt Lane Group CAPACITY ANALYSIS WORKSHEET Adj Adj Sat Flow Green Flow Rate Flow Rate Ratio Ratio (v) (s) (v/s) (g/C) --Lane Group-- Capacity v/c (c) Ratio Eastbound Res Lane Group Approach Lane Del Adj Pri. Factor Del Del Sec. g/C d1 Fact Cap k d2 d3 Left L 12 1671 0.01 0.089 149 0.08 Thru TR 302 3260 # 0.09 0.411 1340 0.23 Right 0.089 37.6 1.000 149 0.11 0.2 0.0 Westbound D TR 0.23 0.411 17.2 1.000 Pri. 0.11 0.1 0.0 17.3 B 18.1 B Sec. Left L 354 1671 # 0.21 0.444 743 0.48 Thru TR 371 3330 0.11 0.722 2405 0.15 Right 0.722 3.9 1.000 2405 0.11 0.0 0.0 Northbound A 10.9 B Northbound Pri. Sec. LT 0.49 0.056 41.3 1.000 75 0.11 5.1 Left 46.4 D 8.5 A R 0.11 1.000 0.0 Thru LT 37 1345 # 0.03 0.056 75 0.49 Right R 165 1495 0.11 1.000 1495 0.11 Southbound LTR 0.04 0.056 Pri. 1.000 75 0.11 0.2 0.0 40.4 D Sec. D Left Thru LTR 3 1342 0.00 0.056 75 0.04 Right Sum (v/s) critical = 0.33 Lost Time/Cycle, L = 8.00 sec Critical v/c(X) = 0.36 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C d1 Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.08 0.089 37.6 1.000 149 0.11 0.2 0.0 37.9 D TR 0.23 0.411 17.2 1.000 1340 0.11 0.1 0.0 17.3 B 18.1 B Westbound L 0.48 0.444 17.6 1.000 743 0.11 0.5 0.0 18.1 B TR 0.15 0.722 3.9 1.000 2405 0.11 0.0 0.0 3.9 A 10.9 B Northbound LT 0.49 0.056 41.3 1.000 75 0.11 5.1 0.0 46.4 D 8.5 A R 0.11 1.000 0.0 1.000 1495 0.11 0.0 0.0 0.0+ A Southbound LTR 0.04 0.056 40.2 1.000 75 0.11 0.2 0.0 40.4 D 40.4 D Intersection Delay = 12.4 (sec/veh) Intersection LOS = B Eastbound L T R IGNALIZED INTERSECTION SUMMARY Westbound Northbound L T R L T R Southbound L T R No. Lanes 1 2 U 1 u HCS: Signals Release 3.1b E Inter: Year 2020 W/ Project City/St: La Quinta Analyst: Greg Proj #: Vista Montana Date: 1/13/2001 Period: Morning Peak Hour E/W St: Calle Tampico NIS St: Avenida Bermudas Eastbound L T R IGNALIZED INTERSECTION SUMMARY Westbound Northbound L T R L T R Southbound L T R No. Lanes 1 2 U 1 u u 1 1 u 1 u LGConfig L TR L TR 0.078 39.9 D 39.9 D LT R LTR Intersection LOS = B Volume 50 220 37 120 178 117 20 183 6 5 11 Lane Width 12.0 12.0 12.0 12.0 �14 12.0 12.0 12.0 RTOR Vol 0 0 0 0 Duration 1.00 Area Type: All other areas Signal Operations Phase Combination 1 2 3 4 5 6 7 8 EB Left A NB Left A Thru A Thru A Right A Right A Peds X Peds X WB Left A A SB Left A Thru A A Thru A Right A A Right A Peds X Peds X NB Right A A A EB Right SB Right WB Right Green 9.0 16.0 46.0 7.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance Summary Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Delay LOS Eastbound L 167 1671 0.30 0.100 38.6 D TR 1671 3270 0.15 0.511 11.7 B 16.1 B Westbound L 538 1671 0.22 0.322 22.5 C TR 2166 3144 0.14 0.689 4.8 A 9.9 A Northbound LT 109 1400 0.50 0.078 43.4 D 9.9 A R 1495 1495 0.12 1.000 0.0+ A Southbound LTR 104 1342 0.21 0.078 39.9 D 39.9 D Intersection Delay = 12.5 (sec/veh) Intersection LOS = B Sum (v/s) critical = 0.19 Lost Time/Cycle, L = 8.00 sec Critical v/c(X) = 0.21 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog CAPACITY ANALYSIS WORKSHEET Incremental Res Lane Group Approach Lane Del Adj Adj Sat Flow Green --Lane Group-- d1 Appr/ Lane Flow Rate Flow Rate Ratio Ratio Capacity v/c Mvmt Group (v) (s) (v/s) (g/C) (c) Ratio Eastbound 22.3 1.000 538 0.11 0.2 TR 0.14 0.689 Pri. 1.000 2166 0.11 0.0 Northbound Sec. LT 0.50 0.078 39.8 1.000 Left L 50 1671 0.03 0.100 167 0.30 Thru TR 257 3270 # 0.08 0.511 1671 0.15 Right Westbound Pri. Sec. Left L 120 1671 # 0.07 0.322 538 0.22 Thru TR 295 3144 0.09 0.689 2166 0.14 Right Northbound Pri. Sec. Left Thru LT 54 1400 # 0.04 0.078 109 0.50 Right R 183 1495 0.12 1.000 1495 0.12 Southbound Pri. Sec. Left Thru LTR 22 1342 0.02 0.078 104 0.21 Right Sum (v/s) critical = 0.19 Lost Time/Cycle, L = 8.00 sec Critical v/c(X) = 0.21 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C d1 Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound 38.6 D 0.0 11.7 B 0.0 22.5 C 0.0 L 0.30 0.100 37.6 1.000 167 0.11 1.0 TR 0.15 0.511 11.7 1.000 1671 0.11 0.0 Westbound L 0.22 0.322 22.3 1.000 538 0.11 0.2 TR 0.14 0.689 4.8 1.000 2166 0.11 0.0 Northbound LT 0.50 0.078 39.8 1.000 109 0.11 3.6 R 0.12 1.000 0.0 1.000 1495 0.11 0.0 Southbound LTR 0.21 0.078 38.9 1.000 104 0.11 1.0 0.0 38.6 D 0.0 11.7 B 0.0 22.5 C 0.0 4.8 A 0.0 43.4 0.0 0.0+ 0.0 39.9 16.1 B 9.9 A D 9.9 A A D 39.9 D Intersection Delay = 12.5 (sec/veh) Intersection LOS = B HCS: Signals Release 3.1b Inter: Year 2020 W/ Project City/St: La Quinta Analyst: Greg Proj #: Vista Montana { Date: 1/13/2001 Period: Evening Peak Hour E/W St: Calle Tampico NIS St: Avenida Bermudas SIGNALIZED INTERSECTION SUMMARY Eastbound Westbound Northbound Southbound L T R L T R L T R L T R No. Lanes 1 2 0 1 2 0 0 1 1 0 1 0 LGConfig L TR L TR LT R LTR Volume 24 282 50 354 407 40 30 12 165 .137 22 53 Lane Width 12.0 12.0 12.0 12.0 12.0 12.0 12.0 RTOR Vol 0 0 0 0 Duration 1.00 Area Type: All other areas Signal Operations Phase Combination 1 2 3 4 5 6 7 8 EB Left A NB Left A Thru A Thru A Right A Right A Peds X Peds X WB Left A A SB Left A Thru A A Thru A Right A A Right A Peds X Peds X NB Right A A A EB Right SB Right WB Right Green 5.0 22.0 29.0 22.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance Summary Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Delay LOS Eastbound L 93 1671 0.26 0.056 42.2 D TR 1053 3267 0.32 0.322 23.2 C 24.5 C Westbound L 576 1671 0.61 0.344 26.5 C TR 1869 3298 0.24 0.567 9.8 A 17.2 B Northbound LT 298 1221 0.14 0.244 26.8 C 5.5 A R 1495 1495 0.11 1.000 0.0+ A Southbound LTR 290 1187 0.73 0.244 40.9 D 40.9 D Intersection Delay = 20.5 (sec/veh) Intersection LOS = C Appr/ Lane Mvmt Group Eastbound 0.14 Pri. 1495 Sec. 1.000 Left L Thru TR Right 0.244 Westbound 0.73 Pri. = 0.54 Sec. Left L Thru TR Right LEVEL OF Northbound Pri. Sec. Left Appr/ Thru LT Right R Southbound Pri. Lane Group Sec. Lane Left Thru LTR Right Factor CAPACITY ANALYSIS WORKSHEET Adj Adj Sat Flow Green --Lane Group -- Flow Rate Flow Rate Ratio Ratio Capacity v/c (v) (s) (v/s) (g/C) (c) Ratio 24 1671 0.01 0.056 93 0.26 332 3267 # 0.10 0.322 1053 0.32 354 1671 # 0.21 0.344 576 0.61 447 3298 0.14 0.567 1869 0.24 42 1221 0.03 0.244 298 0.14 165 1495 0.11 1.000 1495 0.11 212 1187 # 0.18 0.244 290 0.73 Southbound LTR 0.73 0.244 31.3 1.000 290 0.29 9.6 0.0 40.9 D 40.9 D Intersection Delay = 20.5 (sec/veh) Intersection LOS = C Sum (v/s) critical = 0.49 Lost Time/Cycle, L = 8.00 sec Critical v/c(X) = 0.54 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C d1 Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.26 0.056 40.7 1.000 93 0.11 1.5 0.0 42.2 D TR 0.32 0.322 23.0 1.000 1053 0.11 0.2 0.0 23.2 C 24.5 C Westbound L 0.61 0.344 24.5 1.000 576 0.20 2.0 0.0 26.5 C TR 0.24 0.567 9.8 1.000 1869 0.11 0.1 0.0 9.8 A 17.2 B Northbound LT 0.14 0.244 26.6 1.000 298 0.11 0.2 0.0 26.8 C 5.5 A R 0.11 1.000 0.0 1.000 1495 0.11 0.0 0.0 0.0+ A Southbound LTR 0.73 0.244 31.3 1.000 290 0.29 9.6 0.0 40.9 D 40.9 D Intersection Delay = 20.5 (sec/veh) Intersection LOS = C No. Lanes LGConfig Volume Lane Width RTOR Vol Duration Eastbound L T R 1 2 0 1 2 0 0 1 0 L TR L TR LTR 70 253 4 65 214 69 7 5 80 12.0 12.0 12.0 12.0 12.0 0 0 0 IGNALIZED INTERSECTION SUMMARY Westbound l Northbound 1 Southbound L T R L T R i L T R 1.00 Area Type: All other areas Signal Operations Phase Combination HCS: Signals Release 3.1b Inter: Year 2020 No Project City/St: La Quinta Analyst: Greg Proj #: Vista Montana Date: 1/13/2001 Period: Morning Peak Hour E/W St: Calle Tampico NIS St: Desert Club Drive No. Lanes LGConfig Volume Lane Width RTOR Vol Duration Eastbound L T R 1 2 0 1 2 0 0 1 0 L TR L TR LTR 70 253 4 65 214 69 7 5 80 12.0 12.0 12.0 12.0 12.0 0 0 0 IGNALIZED INTERSECTION SUMMARY Westbound l Northbound 1 Southbound L T R L T R i L T R 1.00 Area Type: All other areas Signal Operations Phase Combination 1 2 3 4 3220 5 EB Left A NB Left A Thru A L 154 Thru A Right 1539 A Intersection Right A Peds X Peds X WB Left A A SB Left A Thru A A Thru A Right A A Right A Peds X Peds X NB Right EB Right SB Right WB Right Green 7.0 4.0 52.0 15.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance Summary_ Appr/ Lane Adj Sat Ratios Lane Group Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Eastbound L 130 1671 0.54 0.078 44.4 D TR 1927 3335 0.13 0.578 8.7 A Westbound L 279 1671 0.23 TR 2004 3220 0.14 Northbound LTR 226 1355 0.41 Southbound L 154 926 0.47 TR 257 1539 0.14 Intersection Delay = 18.8 1 1 0 L TR 72 6 30 12.0 12.0 0 6 7 8 Approach Delay LOS 16.4 B 0.167 32.9 C 0.622 7.1 A 11.9 B 0.167 34.7 C 34.7 C 0.167 36.1 D 0.167 32.2 C 34.8 C (sec/veh) Intersection LOS = B 711 Intersection Delay = 18.8 (sec/veh) Intersection LOS = B Sum (v/s) critical = 0.21 T`t Lost Time/Cycle, L = 12.00 sec Critical v/c(X) = 0.24 CAPACITY ANALYSIS WORKSHEET LEVEL OF Adj Adj Sat Flow Green --Lane Group-- Appr/ Lane Flow Rate Flow Rate Ratio Ratio Capacity v/c Mvmt Group (v) (s) (v/s) (g/C) (c) Ratio Eastbound Grp v/c g/C dl Pri. Cap k d2 d3 Delay LOS Delay Sec. Eastbound Left L 70 1671 # 0.04 0.078 130 0.54 Thru TR 257 3335 0.08 0.578 1927 0.13 Right TR 0.13 0.578 8.7 1.000 1927 0.11 0.0 Westbound 8.7 A 16.4 B Westbound Pri. Sec. L 0.23 0.167 32.5 1.000 279 0.11 0.4 Left L 65 1671 0.04 0.167 279 0.23 Thru TR 283 3220 # 0.09 0.622 2004 0.14 Right Northbound Northbound l LTR 0.41 0.167 Pri. 1.000 226 0.11 1.2 0.0 34.7 C Sec. C Southbound } Left L 0.47 0.167 Thru LTR 92 1355 0.07 0.167 226 0.41 Right TR 0.14 0.167 32.0 1.000 257 0.11 Southbound 0.0 32.2 C 34.8 C Pri. Sec. Left L 72 926 # 0.08 0.167 154 0.47 Thru TR 36 1539 0.02 0.167 257 0.14 Right Intersection Delay = 18.8 (sec/veh) Intersection LOS = B Sum (v/s) critical = 0.21 Lost Time/Cycle, L = 12.00 sec Critical v/c(X) = 0.24 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C dl Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.54 0.078 39.9 1.000 130 0.14 4.5 0.0 44.4 D TR 0.13 0.578 8.7 1.000 1927 0.11 0.0 0.0 8.7 A 16.4 B Westbound L 0.23 0.167 32.5 1.000 279 0.11 0.4 0.0 32.9 C TR 0.14 0.622 7.0 1.000 2004 0.11 0.0 0.0 7.1 A 11.9 B Northbound l LTR 0.41 0.167 33.5 1.000 226 0.11 1.2 0.0 34.7 C 34.7 C Southbound L 0.47 0.167 33.9 1.000 154 0.11 2.3 0.0 36.1 D TR 0.14 0.167 32.0 1.000 257 0.11 0.3 0.0 32.2 C 34.8 C Intersection Delay = 18.8 (sec/veh) Intersection LOS = B SIGNALIZED INTERSECTION SUMMARY HCS: Signals Release 3.1b Inter: Year 2020 No Project City/St: La Quinta Analyst: Greg Proj #: Vista Montana Date: 1/13/2001 Period: Evening Peak Hour E/W St: Calle Tampico NIS St: Desert Club Drive SIGNALIZED INTERSECTION SUMMARY Eastbound Westbound Northbound Southbound L T R L T R L T R L T R No. Lanes 0 1 2 0 1 2 0 1 0 1 1 0 LGConfig L TR L TR LTR L TR Volume 92 306 5 139 631 72 14 6 122 96 9 47 E Lane Width 12.0 12.0 12.0 12.0 12.0 12.0 12.0 RTOR Vol 0 0 0 0 Duration 1.00 Area Type: All other areas Signal Operations Phase Combination 1 2 3 4 5 6 7 8 EB Left A NB Left A Thru A Thru A Right A Right A Peds X Peds X WB Left A A SB Left A Thru A A Thru A Right A A Right A Peds X Peds X NB Right EB Right SB Right WB Right Green 9.0 4.0 47.0 18.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance Summary Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Delay LOS Eastbound L 167 1671 0.55 0.100 42.5 D TR 1742 3335 0.18 0.522 11.4 B 18.5 B Westbound L 316 1671 0.44 0.189 33.3 C TR 1865 3291 0.38 0.567 10.9 B 14.6 B Northbound LTR 269 1346 0.53 0.200 34.2 C 34.2 C Southbound L 153 766 0.63 0.200 41.1 D TR 308 1538 0.18 0.200 30.2 C 37.1 D Intersection Delay = 19.6 (sec/veh) Intersection LOS = B Appr/ Lane Mvmt Group Eastbound Sum (v/s) Pri. = 0.39 Sec. Left L Thru TR Right v/c(X) Westbound = 0.45 Pri. Sec. Left L Thru TR Right Northbound Pri. Sec. Unf Left Lane Thru LTR Right Approach Southbound Pri. Del Sec. Grp Left L Thru TR Right CAPACITY ANALYSIS WORKSHEET Adj Adj Sat Flow Green --Lane Group -- Flow Rate Flow Rate Ratio Ratio Capacity v/c (v) (s) (v/s) (g/C) (c) Ratio 92 1671 # 0.06 0.100 167 0.55 311 3335 0.09 0.522 1742 0.18 139 1671 0.08 0.189 316 0.44 703 3291 # 0.21 0.567 1865 0.38 142 96 56 1346 766 1538 0.11 0.200 269 # 0.13 0.200 153 0.04 0.200 308 0.53 0.63 0.18 Intersection Delay = 19.6 (sec/veh) Intersection LOS = B Sum (v/s) critical = 0.39 Lost Time/Cycle, L = 12.00 sec Critical v/c(X) = 0.45 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C dl Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.55 0.100 38.6 1.000 167 0.15 3.9 0.0 42.5 D TR 0.18 0.522 11.3 1.000 1742 0.11 0.0 0.0 11.4 B 18.5 B Westbound L 0.44 0.189 32.3 1.000 316 0.11 1.0 0.0 33.3 C TR 0.38 0.567 10.7 1.000 1865 0.11 0.1 0.0 10.9 B 14.6 B Northbound LTR 0.53 0.200 32.2 1.000 269 0.13 2.0 0.0 34.2 C 34.2 C Southbound L 0.63 0.200 32.9 1.000 153 0.21 8.2 0.0 41.1 D TR 0.18 0.200 29.9 1.000 308 0.11 0.3 0.0 30.2 C 37.1 D Intersection Delay = 19.6 (sec/veh) Intersection LOS = B Inter: Year 2020 W/ Project Analyst: Greg Date: 1/13/2001 E/W St: Calle Tampico SI( Eastbound L T R HCS: Signals Release 3.1b City/St: La Quinta Proj #: Vista Montana Period: Morning Peak Hour NIS St: Desert Club Drive 7NALIZED INTERSE( Westbound L T R ;TION SUMMARY Northbound L T R Southbound L T R No. Lanes 1 2 0 1 2 0 0 3336 0 0.589 8.4 1 1 1 0 LGConfig L TR L TR 1671 LTR 0.167 L TR C Volume 70 296 4 65 322 69 7 5 80 72 6 30 Lane Width 12.0 12.0 12.0 12.0 12.0 12.0 12.0 RTOR Vol 0 0 0 0 Duration 1.00 Area Type: All other areas Signal Operations Phase Combination 1 2 3 4 5 6 7 8 EB Left A NB Left A Thru A Thru A Right A Right A Peds X Peds X WB Left A A SB Left A Thru A A Thru A Right A A Right A Peds X Peds X NB Right EB Right SB Right WB Right Green 7.0 4.0 53.0 14.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance Summary Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Delay LOS Eastbound L 130 1671 0.54 0.078 44.4 D TR 1965 3336 0.15 0.589 8.4 A 15.2 B Westbound L 279 1671 0.23 0.167 32.9 C TR 2061 3254 0.19 0.633 6.9 A 10.6 B Northbound LTR 211 1355 0.44 0.156 35.9 D 35.9 D Southbound L 139 894 0.52 0.156 38.3 D TR 239 1539 0.15 0.156 33.2 C 36.6 D Intersection Delay = 17.3 (sec/veh) Intersection LOS = B _ Appr/ Mvmt Lane Group CAPACITY ANALYSIS WORKSHEET Adj Adj Sat Flow Green Flow Rate Flow Rate Ratio Ratio (v) (s) (v/s) (g/C) --Lane Group-- Capacity v/c (c) Ratio Eastbound Sum (v/s) critical = 0.24 Lost Time/Cycle, Pri. 12.00 sec Critical v/c(X) = 0.28 Sec. LEVEL OF SERVICE WORKSHEET Left L 70 1671 # 0.04 0.078 130 0.54 Thru TR 300 3336 0.09 0.589 1965 0.15 Right Del Del Grp v/c Westbound dl Fact Cap k d2 d3 Delay Pri. Delay LOS Sec. Eastbound Left L 65 1671 0.04 0.167 279 0.23 Thru TR 391 3254 # 0.12 0.633 2061 0.19 Right 4.5 0.0 44.4 D TR 0.15 Northbound 8.4 1.000 1965 0.11 0.0 0.0 Pri. A 15.2 B Westbound Sec. Left 0.167 32.5 1.000 279 0.11 0.4 0.0 Thru LTR 92 1355 0.07 0.156 211 0.44 Right 0.11 0.0 0.0 6.9 A 10.6 B Southbound Pri. LTR 0.44 0.156 34.4 Sec. 211 0.11 1.4 0.0 35.9 D 35.9 Left L 72 894 # 0.08 0.156 139 0.52 Thru TR 36 1539 0.02 0.156 239 0.15 Right 139 0.12 3.4 0.0 38.3 D Intersection Delay = 17.3 (sec/veh) Intersection LOS = B Sum (v/s) critical = 0.24 Lost Time/Cycle, L = 12.00 sec Critical v/c(X) = 0.28 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C dl Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.54 0.078 39.9 1.000 130 0.14 4.5 0.0 44.4 D TR 0.15 0.589 8.4 1.000 1965 0.11 0.0 0.0 8.4 A 15.2 B Westbound L 0.23 0.167 32.5 1.000 279 0.11 0.4 0.0 32.9 C TR 0.19 0.633 6.9 1.000 2061 0.11 0.0 0.0 6.9 A 10.6 B Northbound LTR 0.44 0.156 34.4 1.000 211 0.11 1.4 0.0 35.9 D 35.9 D Southbound L 0.52 0.156 34.9 1.000 139 0.12 3.4 0.0 38.3 D TR 0.15 0.156 32.9 1.000 239 0.11 0.3 0.0 33.2 C 36.6 D Intersection Delay = 17.3 (sec/veh) Intersection LOS = B HCS: Signals Release 3.1b Inter: Year 2020 W/ Project City/St: La Quinta Analyst: Greg Proj #: Vista Montana Date: 1/13/2001 Period: Evening Peak Hour E/W St: Calle Tampico NIS St: Desert Club Drive SIGNALIZED INTERSECTION SUMMARY Eastbound Westbound Northbound Southbound L T R L T R L T R L T R No. Lanes 1 2 0 1 2 0 0 1 0 LGConfig L TR L TR LTR Volume 92 471 5 139 707 72 14 6 122 Lane Width 12.0 12.0 12.0 12.0 12.0 RTOR Vol 0 0 0 Duration 1.00 Area Type: All other areas 0.42 Northbound Signal Operations LTR 269 Phase Combination 1 2 3 4 5 EB Left A 0.63 NB Left A Thru = 18.8 A Thru A Right A Right A Peds X Peds X WB Left A A SB Left A Thru A A Thru A Right A A Right A Peds X Peds X NB Right EB Right SB Right WB Right Green 9.0 4.0 47.0 18.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance Summary_ Appr/ Lane Adj Sat Ratios Lane Group Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Eastbound L 167 1671 0.55 0.100 42.5 D TR 1743 3337 0.27 0.522 12.1 B Westbound L 316 1671 0.44 TR 1868 3296 0.42 Northbound LTR 269 1346 0.53 Southbound L 153 766 0.63 TR 308 1538 0.18 Intersection Delay = 18.8 0.189 33.3 C 0.567 11.2 B 0 1 1 0 L TR 96 9 47 12.0 12.0 0 7 8 Approach Delay LOS 17.0 B 14.6 B 0.200 34.2 C 34.2 C 0.200 41.1 D 0.200 30.2 C 37.1 D (sec/veh) Intersection LOS = B Appr/ Lane Mvmt Group Eastbound Sum (v/s) Pri. = 0.42 Sec. Left L Thru TR Right v/c(X) Westbound = 0.48 Pri. Sec. Left L Thru TR Right Northbound Pri. Sec. Unf Left Lane Thru LTR Right Approach Southbound Pri. Del Sec. Grp Left L Thru TR Right CAPACITY ANALYSIS WORKSHEET Adj Adj Sat Flow Green --Lane Group -- Flow Rate Flow Rate Ratio Ratio Capacity v/c (v) (s) (v/s) (g/C) (c) Ratio 92 1671 # 0.06 0.100 167 0.55 476 3337 0.14 0.522 1743 0.27 139 1671 0.08 0.189 316 0.44 779 3296 # 0.24 0.567 1868 0.42 142 96 56 1346 766 1538 0.11 0.200 269 # 0.13 0.200 153 0.04 0.200 308 0.53 0.63 0.18 Intersection Delay = 18.8 (sec/veh) Intersection LOS = B Sum (v/s) critical = 0.42 Lost Time/Cycle, L = 12.00 sec Critical v/c(X) = 0.48 LEVEL OF SERVICE WORKSHEET_ Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C dl Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.55 0.100 38.6 1.000 167 0.15 3.9 0.0 42.5 D TR 0.27 0.522 12.0 1.000 1743 0.11 0.1 0.0 12.1 B 17.0 B Westbound L 0.44 0.189 32.3 1.000 316 0.11 1.0 0.0 33.3 C TR 0.42 0.567 11.1 1.000 1868 0.11 0.2 0.0 11.2 B 14.6 B Northbound LTR 0.53 0.200 32.2 1.000 269 0.13 2.0 0.0 34.2 C 34.2 C Southbound L 0.63 0.200 32.9 1.000 153 0.21 8.2 0.0 41.1 D TR 0.18 0.200 29.9 1.000 308 0.11 0.3 0.0 30.2 C 37.1 D Intersection Delay = 18.8 (sec/veh) Intersection LOS = B Inter: Post 2020 No Project Analyst: Greg Date: 1/12/2001 E/W St: Calle Tampico No. Lanes LGConfig Volume Lane Width RTOR Vol Eastbound L T R HCS: Signals Release 3.1b City/St: La Quinta Proj #: Vista Montana Period: Morning Peak Hour NIS St: Washington Street SIGNALIZED INTERSECTION SUMMARY Westbound Northbound L T R L T R 2 1 1 L T R 280 90 99 12.0 12.0 12.0 0 1 1 1 L T R 63 86 117 12.0 12.0 12.0 0 1 3 0 L TR 116 1288 123 12.0 12.0 0 Duration 1.00 Area Type: All other areas D 1759 0.58 Signal Operations 44.7 Phase Combination 1 2 3 4 0.778 5 EB Left A NB Left P Thru A 0.55 Thru 43.5 Right A 0.10 Right 2.4 Peds X 0.69 Peds 62.7 WB Left A SB Left A Thru A Thru Right A Right Peds X Peds NB Right EB Right A SB Right A A WB Right A Green 12.0 8.0 9.0 Yellow 3.0 3.0 3.0 All Red 1.0 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance Summary, Appr/ Lane Adj Sat Ratios Lane Group Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Eastbound L 432 T 156 R 1163 Westbound L 223 T 156 R 1163 Northbound L 167 TR 2370 Southbound Southbound L T R 1 2 1 L T R 48 1050 341 12.0 12.0 12.0 0 6 7 8 A A X A A X A A 45.0 3.0 1.0 Approach Delay LOS 3242 0.65 0.133 40.4 D 1759 0.58 0.089 44.7 D 33.2 C 1495 0.09 0.778 2.4 A 1671 0.28 0.133 35.8 D 1759 0.55 0.089 43.5 D 23.6 C 1495 0.10 0.778 2.4 A 1671 0.69 0.100 62.7 E 4740 0.60 0.500 16.4 B 19.9 B L 167 1671 0.29 0.100 38.5 D T 1672 3343 0.63 0.500 17.2 B 14.3 B R 1213 1495 0.28 0.811 2.2 A Intersection Delay = 21.5 (sec/veh) Intersection LOS = C CAPACITY ANALYSIS WORKSHEET Appr/ Mvmt Lane Group Adj Flow Rate (v) Adj Sat Flow Rate (s) Flow Ratio (v/s) Green Ratio (g/C) --Lane Group-- Capacity v/c (c) Ratio Eastbound 0.0 40.4 D T 0.58 Pri. 39.4 1.000 156 0.17 5.3 0.0 44.7 Sec. 33.2 C R 0.09 0.778 2.4 1.000 Left L 280 3242 # 0.09 0.133 432 0.65 Thru T 90 1759 # 0.05 0.089 156 0.58 Right R 99 1495 0.07 0.778 1163 0.09 Westbound 223 0.11 0.7 0.0 35.8 D Pri. T 0.55 0.089 39.3 1.000 156 0.15 Sec. 0.0 43.5 D 23.6 C R 0.10 Left L 63 1671 0.04 0.133 223 0.28 Thru T 86 1759 0.05 0.089 156 0.55 Right R 117 1495 0.08 0.778 1163 0.10 Northbound 0.100 39.2 1.000 167 0.50 23.5 Pri. 62.7 E TR 0.60 0.500 Sec. 1.000 2370 0.18 0.4 0.0 16.4 B Left L 116 1671 # 0.07 0.100 167 0.69 Thru TR 1411 4740 0.30 0.500 2370 0.60 Right 37.5 1.000 167 0.11 1.0 0.0 38.5 Southbound T 0.63 0.500 16.4 Pri. 1672 0.21 0.8 0.0 17.2 B 14.3 Sec.. R 0.28 0.811 2.1 1.000 1213 0.11 Left L 48 1671 0.03 0.100 167 0.29 Thru T 1050 3343 # 0.31 0.500 1672 0.63 Right R 341 1495 0.23 0.811 1213 0.28 Sum (v/s) critical = 0.52 Lost Time/Cycle, L = 16.00 sec Critical v/c(X) = 0.63 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C dl Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.65 0.133 37.0 1.000 432 0.23 3.4 0.0 40.4 D T 0.58 0.089 39.4 1.000 156 0.17 5.3 0.0 44.7 D 33.2 C R 0.09 0.778 2.4 1.000 1163 0.11 0.0 0.0 2.4 A Westbound L 0.28 0.133 35.1 1.000 223 0.11 0.7 0.0 35.8 D T 0.55 0.089 39.3 1.000 156 0.15 4.2 0.0 43.5 D 23.6 C R 0.10 0.778 2.4 1.000 1163 0.11 0.0 0.0 2.4 A Northbound L 0.69 0.100 39.2 1.000 167 0.50 23.5 0.0 62.7 E TR 0.60 0.500 16.0 1.000 2370 0.18 0.4 0.0 16.4 B 19.9 B Southbound L 0.29 0.100 37.5 1.000 167 0.11 1.0 0.0 38.5 D T 0.63 0.500 16.4 1.000 1672 0.21 0.8 0.0 17.2 B 14.3 B R 0.28 0.811 2.1 1.000 1213 0.11 0.1 0.0 2.2 A Intersection Delay = 21.5 (sec/veh) Intersection LOS = C Inter: Post 2020 No Project Analyst: Greg Date: 1/12/2001 E/W St: Calle Tampico No. Lanes LGConfig Volume Lane Width RTOR Vol HCS: Signals Release 3.1b City/St: La Quinta Proj #: Vista Montana Period: Evening Peak Hour NIS St: Washington Street SIGNALIZED INTERSECTION SUMMARY Eastbound ! Westbound Northbound I Southbound L T R L T R L T R L T R 2 1 1 L T R 398 113 122 12.0 12.0 12.0 0 1 1 1 L T R 64 129 83 12.0 12.0 12.0 0 1 3 0 L TR 165 1278 105 12.0 12.0 0 1 2 1 L T R 139 1528 479 12.0 12.0 12.0 0 Duration 1.00 Area Type: All other areas Signal Operations Phase Combination 1 2 3 4 5 6 7 8 EB Left A NB Left P Thru A Thru A Right A Right A Peds X Peds X WB Left A SB Left A Thru A Thru A Right A Right A Peds X Peds X NB Right EB Right A A SB Right A A WB Right A A Green 12.0 8.0 10.0 44.0 Yellow 3.0 3.0 3.0 3.0 All Red 1.0 1.0 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance Summary Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Delay LOS Eastbound L 432 3242 0.92 0.133 73.0 E T 156 1759 0.72 0.089 56.6 E 56.5 E R 1163 1495 0.10 0.778 2.5 A Westbound L 223 1671 0.29 0.133 35.9 D T 156 1759 0.83 0.089 76.4 E 44.7 D R 1163 1495 0.07 0.778 2.4 A Northbound L 186 1671 0.89 0.111 98.4 F TR 2321 4748 0.60 0.489 17.0 B 25.7 C Southbound L 186 1671 0.75 0.111 55.5 E T 1634 3343 0.94 0.489 34.5 C 28.8 C R 1196 1495 0.40 0.800 2.9 A Intersection Delay = 36.0 (sec/veh) Intersection LOS = D Eastbound L 0.92 CAPACITY ANALYSIS WORKSHEET 38.5 1.000 432 0.44 Adj Adj Sat Flow 73.0 Green --Lane Group-- Appr/ Lane Flow Rate Flow Rate Ratio Ratio Capacity v/c Mvmt Group (v) (s) (v/s) (g/C) (c) Ratio Eastbound 0.10 0.778 2.4 1.000 1163 0.11 0.0 Pri. 2.5 A Westbound Sec. Left L 398 3242 # 0.12 0.133 432 0.92 Thru T 113 1759 0.06 0.089 156 0.72 Right R 122 1495 0.08 0.778 1163 0.10 Westbound 44.7 D R 0.07 0.778 2.4 1.000 Pri. 0.11 0.0 0.0 2.4 A Sec. Left L 64 1671 0.04 0.133 223 0.29 Thru T 129 1759 # 0.07 0.089 156 0.83 Right R 83 1495 0.06 0.778 1163 0.07 Northbound 0.0 17.0 B 25.7 C Southbound Pri. Sec. L 0.75 0.111 38.8 1.000 Left L 165 1671 # 0.10 0.111 186 0.89 Thru TR 1383 4748 0.29 0.489 2321 0.60 Right 34.5 C 28.8 C R 0.40 0.800 Southbound 1.000 1196 0.11 0.2 0.0 2.9 Pri. Intersection Delay = 36.0 (sec/veh) Sec. LOS = D Left L 139 1671 0.08 0.111 186 0.75 Thru T 1528 3343 # 0.46 0.489 1634 0.94 Right R 479 1495 0.32 0.800 1196 0.40 Sum (v/s) critical = 0.75 Lost Time/Cycle, L = 16.00 sec Critical v/c(X) = 0.91 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c q/C dl Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.92 0.133 38.5 1.000 432 0.44 34.4 0.0 73.0 E T 0.72 0.089 39.9 1.000 156 0.28 16.7 0.0 56.6 E 56.5 E R 0.10 0.778 2.4 1.000 1163 0.11 0.0 0.0 2.5 A Westbound L 0.29 0.133 35.1 1.000 223 0.11 0.7 0.0 35.9 D T 0.83 0.089 40.3 1.000 156 0.37 36.1 0.0 76.4 E 44.7 D R 0.07 0.778 2.4 1.000 1163 0.11 0.0 0.0 2.4 A Northbound L 0.89 0.111 39.4 1.000 186 0.50 58.9 0.0 98.4 F TR 0.60 0.489 16.6 1.000 2321 0.18 0.4 0.0 17.0 B 25.7 C Southbound L 0.75 0.111 38.8 1.000 186 0.30 16.7 0.0 55.5 E T 0.94 0.489 21.7 1.000 1634 0.45 12.9 0.0 34.5 C 28.8 C R 0.40 0.800 2.6 1.000 1196 0.11 0.2 0.0 2.9 A Intersection Delay = 36.0 (sec/veh) Intersection LOS = D Inter: Year 2020 W/ Project Analyst: Greg Date: 1/12/2001 E/W St: Calle-Tampico No. Lanes LGConf ig Volume Lane Width RTOR Vol HCS: Signals Release 3.1b City/St: La Quinta Proj #: Vista Montana Period: Morning Peak Hour NIS St: Washington Street SIGNALIZED INTERSECTION SUMMARY EastboundWestboundNorthd Northbound LR LR L 2 1 1 L T R 307 97 108 12.0 12.0 12.0 0 1 1 1 L T R 63 104 117 12.0 12.0 12.0 0 1 3 0 L TR 137 1288 123 12.0 12.0 0 Southbound L T R 1 2 1 L T R 48 1050 409 12.0 12.0 12.0 0 Duration 1.00 Area Type: All other areas 0.63 0.500 17.2 B 17.6 B R 748 1495 0.55 Signal Operations B L 396 Phase Combination 1 2 3 4 48.2 D 5 6 7 8 EB Left A 0.62 0.089 NB Left P D Thru 1495 A 0.789 2.2 Thru A Right A Right A Peds 1671 X 0.122 36.9 Peds X WB Left A 0.67 0.089 SB Left A C Thru 1495 A 0.789 2.2 Thru A Right A Right A Peds 1671 X 0.111 64.4 Peds X NB Right 4740 0.60 0.500 EB Right A A SB Right WB Right A A Green 11.0 8.0 10.0 45.0 Yellow 3.0 3.0 3.0 3.0 All Red 1.0 1.0 1.0 1.0 Cycle Length: 90.0 secs Appr/ Lane Lane Group Grp Capcity Intersection Performance Adj Sat Ratios Flow Rate (s) v/c g/C Summary Lane Group Delay LOS Approach Delay LOS Eastbound 0.63 0.500 17.2 B 17.6 B R 748 1495 0.55 0.500 16.3 B L 396 3242 0.78 0.122 48.2 D T 156 1759 0.62 0.089 47.2 D 38.3 D R 1179 1495 0.09 0.789 2.2 A Westbound L 204 1671 0.31 0.122 36.9 D T 156 1759 0.67 0.089 50.6 D 27.6 C R 1179 1495 0.10 0.789 2.2 A Northbound L 186 1671 0.74 0.111 64.4 E TR 2370 4740 0.60 0.500 16.4 B 20.7 C Southbound L 186 1671 0.26 0.111 37.3 D T 1672 3343 0.63 0.500 17.2 B 17.6 B R 748 1495 0.55 0.500 16.3 B Intersection Delay = 23.0 (sec/veh) Intersection LOS = C CAPACITY ANALYSIS WORKSHEET Adj Adj Sat Flow Green --Lane Group-- Appr/ Lane Flow Rate Flow Rate Ratio Ratio Capacity v/c Mvmt Group (v) (s) (v/s) (g/C) (c) Ratio Eastbound Pri. Sec. Left L 307 3242 # 0.09 0.122 396 0.78 Thru T 97 1759 0.06 0.089 156 0.62 Right R 108 1495 0.07 0.789 1179 0.09 Westbound Pri. Sec. Left L 63 1671 0.04 0.122 204 0.31 Thru T 104 1759 # 0.06 0.089 156 0.67 Right R 117 1495 0.08 0.789 1179 0.10 Northbound Pri. Sec. Left L 137 1671 # 0.08 0.111 186 0.74 Thru TR 1411 4740 0.30 0.500 2370 0.60 Right Southbound Pri. Sec. Left L 48 1671 0.03 0.111 186 0.26 Thru ' T 1050 3343 # 0.31 0.500 1672 0.63 Right R 409 1495 0.27 0.500 748 0.55 Sum (v/s) critical = 0.55 Lost Time/Cycle, L = 16.00 sec Critical v/c(X) = 0.67 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C dl Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 0.78 0.122 38.3 1.000 396 0.32 9.9 0.0 48.2 D T 0.62 0.089 39.5 1.000 156 0.20 7.7 0.0 47.2 D 38.3 D R 0.09 0.789 2.2 1.000 1179 0.11 0.0 0.0 2.2 A Westbound L 0.31 0.122 36.0 1.000 204 0.11 0.9 0.0 36.9 D T 0.67 0.089 39.7 1.000 156 0.24 10.9 0.0 50.6 D 27.6 C R 0.10 0.789 2.2 1.000 1179 0.11 0.0 0.0 2.2 A Northbound L 0.74 0.111 38.7 1.000 186 0.50 25.7 0.0 64.4 E TR 0.60 0.500 16.0 1.000 2370 0.18 0.4 0.0 16.4 B 20.7 C Southbound L 0.26 0.111 36.6 1.000 186 0.11 0.7 0.0 37.3 D T 0.63 0.500 16.4 1.000 1672 0.21 0.8 0.0 17.2 B 17.6 B R 0.55 0.500 15.5 1.000 748 0.15 0.8 0.0 16.3 B Intersection Delay = 23.0 (sec/veh) Intersection LOS = C Inter: Year 2020 W/ Project Analyst: Greg Date: 1/12/2001 E/W St: Calle Tampico No. Lanes LGConfig Volume Lane Width RTOR Vol Eastbound L T R 2 1 1 L T R 503 141 155 12.0 12.0 12.0 0 HCS: Signals Release 3.1b City/St: La Quinta Proj #: Vista Montana Period: Evening Peak Hour NIS St: Washington Street IGNALIZED INTERSECTION SUMMARY Westbound Northbound L T R L T R 1 1 1 L T R 64 141 83 12.0 12.0 12.0 0 1 3 0 L TR 180 1278 105 12.0 12.0 0 Southbound L T R 1 2 1 L T R 139 1528 527 12.0 12.0 12.0 0 Duration 1.00 0.25 Area Type: All other areas 1759 0.90 0.089 107.2 F 60.8 E Signal Operations 0.07 0.756 Phase Combination 1 2 3 4 0.111 143.8 5 6 7 8 EB Left A 18.6 B 33.0 C NB Left P Thru A Thru A Right A Right A Peds X Peds X WB Left A SB Left A Thru A Thru A Right A Right A Peds X Peds X NB Right EB Right A A SB Right A A WB Right A A Green 14.0 8.0 10.0 42.0 Yellow 3.0 3.0 3.0 3.0 All Red 1.0 1.0 1.0 1.0 Cycle Length: 90.0 secs Intersection Performance Summary_ Appr/ Lane Adj Sat Ratios Lane Group Lane Group Flow Rate Grp Capcity (s) v/c g/C Delay LOS Eastbound L 504 T 156 R 1130 Westbound L 260 T 156 R 1130 Northbound L 186 TR 2216 Southbound 3242 1.00 0.156 116.2 F 1759 0.90 0.089 107.2 F 1495 0.14 0.756 3.1 A Approach Delay LOS 92.7 F 1671 0.25 0.156 33.9 C 1759 0.90 0.089 107.2 F 60.8 E 1495 0.07 0.756 2.9 A 1671 0.97 0.111 143.8 F 4748 0.62 0.467 18.6 B 33.0 C L 186 1671 0.75 0.111 55.5 E T 1560 3343 0.98 0.467 53.2 D 41.3 D R 1196 1495 0.44 0.800 3.0 A Intersection Delay = 53.8 (sec/veh) Intersection LOS = D CAPACITY ANALYSIS WORKSHEET Adj Adj Sat Flow Green --Lane Group-- Appr/ Lane Flow Rate Flow Rate Ratio Ratio Capacity v/c Mvmt Group (v) (s) (v/s) (g/C) (c) Ratio Eastbound Pri. Sec. Left L 503 3242 # 0.16 0.156 504 1.00 Thru T 141 1759 0.08 0.089 156 0.90 Right R 155 1495 0.10 0.756 1130 0.14 Westbound Pri. Sec. Left L 64 1671 0.04 0.156 260 0.25 Thru T 141 1759 # 0.08 0.089 156 0.90 Right R 83 1495 0.06 0.756 1130 0.07 Northbound Pri. Sec. Left L 180 1671 # 0.11 0.111 186 0.97 Thru TR 1383 4748 0.29 0.467 2216 0.62 Right Southbound Pri. Sec. Left L 139 1671 0.08 0.111 186 0.75 Thru T 1528 3343 # 0.46 0.467 1560 0.98 Right R 527 1495 0.35 0.800 1196 0.44 Sum (v/s) critical = 0.80 Lost Time/Cycle, L = 16.00 sec Critical v/c(X) = 0.97 LEVEL OF SERVICE WORKSHEET Appr/ Ratios Unf Prog Lane Incremental Res Lane Group Approach Lane Del Adj Grp Factor Del Del Grp v/c g/C d1 Fact Cap k d2 d3 Delay LOS Delay LOS Eastbound L 1.00 0.156 38.0 1.000 504 0.50 78.2 0.0 116.2 F T 0.90 0.089 40.6 1.000 156 0.42 66.6 0.0 107.2 F 92.7 F R 0.14 0.756 3.0 1.000 1130 0.11 0.1 0.0 3.1 A Westbound L 0.25 0.156 33.4 1.000 260 0.11 0.5 0.0 33.9 C T 0.90 0.089 40.6 1.000 156 0.42 66.6 0.0 107.2 F 60.8 E R 0.07 0.756 2.8 1.000 1130 0.11 0.0 0.0 2.9 A Northbound L 0.97 0.111 39.8 1.000 186 0.50 104.0 0.0 143.8 F TR 0.62 0.467 18.1 1.000 2216 0.21 0.6 0.0 18.6 B 33.0 C Southbound L 0.75 0.111 38.8 1.000 186 0.30 16.7 0.0 55.5 E T 0.98 0.467 23.6 1.000 1560 0.48 29.6 0.0 53.2 D 41.3 D R 0.44 0.800 2.8 1.000 1196 0.11 0.3 0.0 3.0 A Intersection Delay = 53.8 (sec/veh) Intersection LOS = D Appendix 4 TRAFFIC SIGNAL WARRANTS Rural Peak Hour Volume Signal Warrant Signal Warrants Worksheets Intersection: Eisenhower Drive @ Calle Tampico Major Approach: 2 Lanes Peak Hour Volume Warrant Minor Approach: 2 Lane Rural Approach AM Pk Hr Existing 2003 2003 Ambient +Project 2020 2020 Ambient +Project PM Pk Hr Existing 2003 2003 Ambient +Pro_ ject 2020 2020 Ambient +Pr_oject Northbound 619 315 376 347 Southbound 155 201 593 523 Westbound 99 65 47 54 Meets 1 -Hr. Warrant No No Yes No Intersection: Avenida Mendoza @ Calle Tampico Major Approach: 2 Lanes Minor Approach: 1 Lane Rural Approach AM Pk Hr Existing 2003 2003 Ambient +Project 2020 2020 Ambient +Project PM Pk Hr Existing 2003 2003 Ambient +Project 2020 2020 Ambient +Project Eastbound 315 347 Westbound 201 523 Southbound 65 54 Meets 1 -Hr. Warrant No No a > 400 2 w a Lu cc 300 �a Na a cc w z n 200 � J 0 0 100 0 300 endo Engineering Peak Hour Volume Warrant (Rural Areas) 2 OR MORE LANES (MAJOR) & 2 OR MORE LANES (MINOR) 2 OR MORE LANES (MAJOR) & 1 LANE (MINOR) OR 1 LANE (MAJOR) & 2 OR MORE LANES (MINOR) 1 LANE (MAJOR) & 1 LANE (MINOR) 400 500 600 700 800 900 1000 1100 MAJOR STREET - TOTAL OF BOTH APPROACHES - VPH * NOTE: 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 75 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE. Source: California Department of Transportation Traffic Manual 1200 1300 LSA January 17, 2001 LSA ASSOCIATES, INC. OTHER OFFICES: 3403 10TH STREET, SUITE 520 909.781.9310 TEL BERKELEY PT. RICHMOND RIVERSIDE, CALIFORNIA 92501 909.781.4277 FAX IRVINE ROCKLIN Forest K. Haag, ASLA, Inc. 1254 N. Coast Highway Laguna Beach, CA 92651 Subject: Vista Montana - 33 -acre parcel in La Quinta, California Biological Resources Assessment Dear Mr. Haag: The letter report documents the results of the biological resources assessment that was conducted on a 33 -acre parcel in the City of La Quinta, California. The parcel is located west of Avenida Bermudas, east of Eisenhower Drive, north of Calle Tampico and south of La Quinta Hotel Golf Club. The parcel is located in the northeast quarter of section 1 in T6S, R6E as shown on the Palm Springs 1:100,000 scale metric USGS topographic map and on the La Quinta 7.5 minute USGS topographic map. A biological resources assessment includes a review of scientific literature resources and a field survey of the project site. Prior to the field survey, the California Natural Diversity Data Base and the California Native Plant Society's Electronic Inventory of Sensitive Biological Elements within the La Quinta USGS 7.5 minute topographic map were reviewed. In addition, natural resource agency federal register notices were researched for applicable determinations of threatened and endangered species and the designation of critical habitat. A field survey was conducted on January 16, 2001. Plant communities were identified and an inventory of plant species was collected. Animal species observed or their presence detected by other sign, such as burrows, scat, tracks, and herbivory were recorded. During the field survey, the suitability of existing site conditions were evaluated for the likelihood of sensitive resources that were listed as potentially occurring in region in the scientific literature. Also, the site was searched for areas which may be considered wetlands, waters of the U.S., and stream beds as defined by the U.S. Army Corps of Engineers (Corps) or the California Department of Fish and Wildlife (CDFG). The parcel is bounded by undeveloped land to the east. This adjacent area is covered by a dense stand of tamarisk (Tamarix sp.), goldenbush (Isocoma acradenia), and desert baccharis (Baccharis cf. sergiloides). A convenience store is located at the southeast corner of the 33 -acre parcel. Calle Tampico, a four -lane highway, is located along the southern parcel boundary. Eisenhower Drive, another four -lane highway, and a golf course is on the west side. To the north, an earthen berm separates the parcel from a golf course. 1/16/01(RAFKH130\bio res assessmpd) PLANNING I ENVrRONMENTAL SCIENCES I DESIGN LSA ASSOCIATES. INC. Existing site conditions show that the site has recently been disced. Remnants of the former land use, date palm groves, are evident as palm fronds and stumps scattered through out the parcel, The 1975 aerial photograph used as the base map for the La Quinta quad soil survey report shows the parcel as completely occupied by groves (MRCS 1980). A small patch (10,000 sq. ft.) of mesquite sprouts are establishing along the western boundary and a stand of scattered palo verde is near the eastern boundary. Vegetative cover in the tree stands is 25%, otherwise the parcel contains less than 5 percent. The site is level and flat with no indications of wetlands, waters, or streambed features which would be under the jurisdiction of the U.S. Army Corps of Engineers, Water Quality Control Board, or the CDFG. The surface soils characteristics observed are described as silty. The soil series is mapped as Indio very fine sandy loam by the Soil Conservation Service in the Soil SUnLey of Riverside County California Coachella Valley Area (1980). The soil survey reports that the surface layer of this soil type as typically silt loam and the substratum as silty clay loam, as observed. Common wildlife species were observed on site, such as mourning doves, Brewer's blackbirds, pocket gophers, and ground squirrels. The sparse vegetation found on site includes plant species adapted to the site's alkaline soils. Representative species include four wing salt bush, allscale, heliotrope, and desert baccharis. Refer to the attached page for a complete list of species observed which includes the scientific nomenclature. Only two sensitive animal species were listed in the scientific literature as potentially present within the La Quinta quad, 7.5 minute series. These were the desert pupfish (Cyprinodon macularius) listed as endangered by the USFWS and CDFG and the Coachella Valley fringe -toed lizard (Uma inornata) which is listed as threatened by the USFWS and endangered by CDFG. There is no aquatic habitat present on site. The desert pupfish is not found on the site and there is no potential for the fish to be present on site because of the lack of suitable habitat. As stated above, the site was previously used for date production, currently is disced, of flat topography, and the soil is described as silty clay loam. The fringed -toed lizard is highly adapted for living in fine, loose sand of the sand dunes in the Coachella Valley. The 33 -acre parcel does not contain any areas of fine loose sand which could harbor the fringe -toed lizard. The lizard is highly unlikely to be present on the site. The 33 -acre parcel is located outside of the proposed critical habitat for the peninsular bighorn sheep per the proposed rule, Proposed Determination of Critical Habitat for the Peninsular Bighorn Sheep, posted on July 5, 2000 in the Federal Register Vol. 65 No. 129, pp. 414405-41424. The subject property is considered to be of very low value for biological resources. This conclusion is due to the past disturbances of the site associated with agricultural operations, the virtual lack of native vegetation and habitat from the site, and the location of the site within a developed area and its isolation from any areas of native habitat. The site does support habitat for any threatened or endangered species, does not support riparian habitat or other sensitive natural communities, does not contain wetlands, and does not provide wildlife corridor values. Further, development of the site will not conflict with any local policies or ordinances protecting biological resources and would not conflict with any provisions of adopted 1/]6/01(R:\FKH130\bio res assessmpd) 2 LSA ASSOCIATES. INC. conservation plans. Therefore, development of the site will not result in significant impact to biological resources. Please do not hesitate to contact me if you require further information or have any questions regarding the biological resources of the Vista Montana project site. Sincerely, LSA ASSOCIATES,tINC. k Lack Easton -Associate/Biologist Attachment: Vista Montana List of Species Observed 1/16/01(RAFK14130\bi0 res assess.wpd) LSAASSOCIATES. INC. VISTA MONTANA LIST OF SPECIES OBSERVED VASCULAR PLANT SPECIES PLANTAE Asteraceae Baccharis sergiloides Encelia californica Isocoma acradenia Boraginaceae Heliotropium curassavicum Chenopodiaceae Artiplex canescens Atriplex polycarpa Suaeda moquind Fabaceae Cercidium floridum Prosopis glandulosa var. torreyana Tamaricaceace Tamarix sp. Poaceae Cynodon dactylon* ANIMAL SPECIES AVES Charadriidae Charadrius vociferus Columbidae Zenaida macroura Aegithalidae Psaltriparus minimus Icteridae Euphagus cyanocephalus MAMMALIA RODENTIA Sciuridae Spermophilus beecheyi Geomyidae Thomomys mazama 1/16/01 (RAFMI 30\species.wpd) PLANTS Sunflower family Desert baccharis California encelia Goldenbush Borage family Wild heliotrope Saltbush family Four -winged saltbush Allscale Bush seepweed Pea family Blue palo verde Mesquite Tamarisk family Tamarisk Grass family Bermuda grass BIRDS Plovers and Lapwings Killdeer Pigeons and Doves Mourning dove Bushtits Bushtit American Orioles and Blackbirds Brewer's blackbird MAMMALS RODENTS Squirrels California ground squirrel Pocket Gophers Western pocket gopher SENT BY: 1-17- 1 ; 8:56A1M L S A 97713503+# 2/45 VISTA MONTANA DEVELOPMENT NOISE IMPACT ANALYSIS SENT BY: 1-17- 1; 8:56AM ; L S A- 97719503:# 9/45 VISTA MONTANA DEVELOPMENT NOISE IWACT ANALYSIS January 16, 2001 Prepared for: Forrest K Haag, ASLA, Inc. 1254 N. Coact Highway Laguna, Beach, California 92651 (949) 376-9066 Prepared hy: LSA Associates, Inc. One Park Plaza, Suite 500 hvine. California 92614 (949) 553-0666 Tung -66 Chung, PhD.,1 oard Certified UA Project #F'XH130 SINE BY: 1-17- 1 ; 8:57AM ; L S A - 97713503;0 4/45 i.rwwf600lATlf. INC. TABLE OF CONTENTS PAGE INTRODUCTION..................................................... ......... I EXISTING CONDITIONS ......................................... ........... ..... 6 IMPACTS AND M.MGATION MEASURES ................................ ..... • • 11 REFERWCPS................................................................. 19 APPENDIX A - FHWA'I'RAFFIC NOISE MODEL PRINTOUTS 1/16/01<(P:%h 1301hquk ftw pd» 11 SENT BY: 1-17- 1; 8:57AM ; L S A- 97713503+# 5/45 LSA AIIOACIAT/N. INC. LIST OF FIGURES PAGE 1 . project Location Map ....................................................... 2 2 - Site Plan ............... ...........................,................... ... 3 LIST OF TABLES PAGE A- Definitions of Acoustical Terms 7 .................................................. B- Common Sound Levels and Their Noise Sources ....................... • • ... • • ....... 8 C - Land Use Compatibility for Exterior Community Noise ................................ 9 U - Exterior Noise Standards .............................. ........................ 10 E - Typical Construction Equipment Noise levels Before and After Mitigation.................................................12 F - Future Baseline Traffic Noise ........................................... .......14 G- Future With Project Traffic Noise ................................................ is 1/16/01<(P:\Rhl30Uikquinu,wpd)) lil -9m BY: 1-17- 1 ; 8:57AM ; L S A 977195094 6/45 IAA AsanCIATV.S. INC. VISTA MONTANA DEVELOPMENT NOISE IMPACT ANALYSIS INTRODUCTION This noise impact analysis has been prepared to evaluate the potential noise impacts and mitigation measures associated with the Vista Montana development in the City of La Quinta, California. This report is intended to satisfy the City of La Quinta's requirement for a project specift final noise impact analysis by examining the impacts of existing and proposed noise sensitive uses on and adjacent to the project site and by evaluating the mitigation measures incorporated as part of the project designs. Project Dimeripthm Figure 1 illustrates the regional location of the proposed residential development. The project site is located in the City of La Quinta and is generally bounded by Eisenhower Drive to the west, Callc Tampico to the south, and vacant land to the cast and north. East of the project site is the proposed Santa Rosa Plaza development. The land west of the project site is part of the La Quints Resort and Club Mountain Course. North or the project site is the Oleander Reservoir and the La Quinta Resort and Club Dunes Course. An apartment complex is located south of the project site. Figure 2 illustrates the project site plan. The proposed plan includes development of 227 residential units on 21 acres, retail uses on 5 acres, parking on 6.5 acres, and office uses on 3 acres of land. As this plan illustrates, direct access to the proposed development site will be via access roads from Calle Tampico and Eisenhower Drive. Methodology Related to Noise Impact Assessment Evaluation of noise impacts associated with a proposed residential project typically includes the following: Determine the noise impacts associated with short-term construction of the proposed project on adjacent uses; Determine the longterm traffic Iroise impacts on on-site and off-gite noise 4encitive lyses; and Determine the required mitigation measures to reduce short-term and long -tern noise impacts. This noise impact analysis follows the City of La Quinta's guidelines for the preparation of noise studies, which include the City's Noise Element and Zoning Ordinance. 1116/01 «P:Ukhl3oVaqulnul.wpd» SM BY: 1-17- 1 ; 8:57AN L S A - 977135034 7/45 Riverside CM►rty lit t +j4s�,� + t 1 r r ljt 1 r 4i .'• } !+} rf - �.',' r" i t�M1 g r�n��y�SJs�"` �;F r� t ,�1 r, �_'-�.•e^ � llyR\ ��` i ! 1�i �1� } ]Yw�f r� yX' ^ J +1 �~ ~y {� 7g m Pak 74 10 74 !!1 Rl�L Tv t ' rJr �., iq.s <,., tt M, 1,., rJ ,; wtF- PitQJEI;"I LOCA m •e t� 4` Lt .f J(//I Diego ' ll� tlflil %Oflltty 47 s �t r41 ..r \y; t5 fj 1`s 1 VC .w+,rK wail ' i " i no ,,� .��..... ...,.�. x �\�i�r�r415ryE°�:aj _ �� u � � t. ,,l �i i.\ /` ^+`t t]^V�• _..f�r 6 . Lt a,w �� � \� r r'•k ! ' ;,4Ii1 , �� _ }ji�� ' +;5: :W �•: tr � .-:..... + r "�. ia3sk , �"Y� 11 ,; l . � �• rS�� ". , q �v.' Li Y PROJECT IIN LOCATION $4't - eaIIIr]r \•L�ilr �� �:raw+•�, ,�r' LTie.\°:-.,4'! rI. a1'L\f'1,�.`ti ';. ?.•� ° • } f' 4.�j;x:Ji�f�' { i�•°i i .G �i�y�Fr!1 11011<Z . ' •hesr Lt,7 . elil JZ, `}1 i,y1,► Vle,�rl- " "�6` tet•: 1 k15J� �:�` i``t ti t zn,r \ � y+ , S } r f 1 -+til,{ �.._�I ,r•�• i ' "` • •k�",gS..7� . _ � �J � \. y t, ''i t,�� +illi �. ' ,,' • I'�.i � f P �+� e" �, Y'+ ��, �ir�. ti 1, �,R`���r '? �f'ti��I 1:)���, r i ' y. • P` - 1j,;•vl 71 air , n` } +1 elt ` ...K(, tL; FJ ti% Lq� ri }�, � � r r + .} r � �•s�� p� i99 4 i{ Z4M„K %.w.P+ �C' ti Llik4'f �'Y• Xfn. f t r�°I ' �� �.•,� \`' r t l , ' ❑ ,j � � 4i,r'.fP+ e�:,,Y� f 1 .;,�{ a' r —2^ 'R',�1f•r,�'{'. 1 ,+..: \ L. ,C I ski tx. r.! r °� �•. i4 +r �- j + of .1 r,/ � \i `•.�; (af I may= 1�� . I k }� 1 •*� P j�`ir�� ° 'r � Svtsroc: USGS 715' Topographic :dean a '"Le ii ra Calif. �: .�'1 i •'I`: a �' '�t � l ° ;s ' +�,tt �;;: ' } 1/1S/01(FM130) N L Scale in Feet t� 1000 2000 Figure 1 Project Location SENT BY. 1-17- 1; 8:59AM : L S A 97713503+# 9/45 1.eA Assoctnir.8. ING Characteriatic s of Sound Sound is increasing to such disagreeable levels in our environment that it can threaten our quality of life. Noise is usually defined as unwanted sound. Noise consists of any sound that may produce physiological or psychological damage and/or intcrfiere with communication, work. rest, recreation, and sleep. To the human ear, sound has two significant characteristics: pitch and loudness. Pitch is generally an annoyance, while Loudness can affect our ability to hear. Pitch is the number of complete vibrations, or cveles per second, of a wave resulting in the tone's range from high to low. Loudnem is the strength of a sound that describes a noisy or quiet environment and is measured by the amplitude of the sound wave. Loudness is determined by the intensity of the sound waves, combined with the reception characteristics of the human car. Sound intensity refers to how hard the sound wave strikes an object, which in turn produces the sound's effect. This characteristic of sound can he precisely measured with instruments. The analysis of a project defines the noise environment of the project area in terms of sound intensity and its effect on adjacent sensilivu Itutd uses. Measurement of Sound Sound intensity is measured through the A -weighted scale to correct for the relative frequency response of the human car. That is, an A -weighted noise level do -emphasizes low and very high frequencies of sound similar to the human car's de -emphasis of these frequencies. Unlike linear units, such as inches or pounds, dccibcls are measured on a logaritlunic scale representing points on a sharply rising curve. For example, ten decibels (dB) are ten limes more intense than one decibel, 20 decibels are 100 times more intense, and 30 decibels arc 1,000 times more intense. Thirty decibels represent 1,000 times as much acoustic energy as one decibel. The decibel scale increases as the square of the change, representing the sound pressure energy. A sound as soft as humor breathing is about ten times greater than zero decibels. The decibel system of measuring sound gives a rough connection between the physical intensity of sound and its perceived loudtless to the human ear. A ten -decibel increase in sound level is perceived by the human oar as only a doubling; of the loudness of the sound. Ambient sounds generally range from 30 dBA (very quiet) to 100 dBA (very loud). Sound levels are generated from a source, and their decibel level decreases as the distance from that source increases. Sound dissipates exponentially with distance from the noise source. For a single point source, sound levels decrease approximately six decibels for each doubling of distance from the source. This drop-off rate is appropriate for noise generated by stationary equipment. if noise is produced by a line source, such as highway traffic or railroad operations, the sound decreases three decibels for each doubling of distance in a hard site environment. Line source, noise in a relatively flat environment with absorptive vegetation decreases four and one-half decibels for each doubling of distance. There arc many ways to rate noise for various time periods, but an appropriate rating of ambient noise affecting humans also accounts for the annoying elTeets of sound. Equivalent continuous sound level (L,,) is the total sound energy of time -varying noise over a sample period. I Inwever, the IA6/01«P:\fkhI30\I.quinlawOO 4 71 SENT BY 1-17- 1 ; 3:00AM ; LSA AssuUTATIFS, L S A - 97713503;010/45 predominant rating scales for human communities in the State of California are the Lcq and community noise equivalent level (CNEL) or the day -night average level (L&) based on A -weighted dee ibcl5 (dBA). C1�lEL ►s the time varying noise over a 24-hour period. with a live dBA weighting factor applied to the hourly L. for Horses occurring from 7.04 p.m. 10 10�QQ p.ltn. (dciinad as 00 relaxation hours) and ten dBA weighting factor applied to 1101 le, e, occurring wit from 10adj sm. n for a.m. (defined as sleeping fours). 1,,, is similar to the CNFL scale, but without the adjustment far events occurring during the evening hours, CNE, L. and Ld„ are within one dBA of each other and aro normally cxchagcable. The noise adjustments are added to the noise events occurring during the more sensitive hours. The City of Li Quinta uses the CNEL noise scale for long-term noise impact assessment. Other noise rating scales of importance when assessing tete annoyance factor include the maximum noise level (L.), which is the highest exponential time averaged sound level that occurs during n stated time period. The noise environments di in this analysis are specified in terms of maximum levels denoted by L,,. for short-term noise impacts. Lrc£lectS peak operating cond itinns :und addresses the annoying aspects of intermittent noise. Another noise scale often used, together with the L.,. in noise ordinances for enforcement purposes arc noise standards in terms of percentile noise levels. For example, the L,p noise level represents the noise level exceeded ten percent of the time during a stated period. The Lx, noise level represents the median noise level. Half the time the noise level exceeds this level, and half the time it is less than illis level. The L90 noise level represents the noise level exceeded 90 percent of the time, and is considered the background no! -w level during a monitoring period. For a relatively constant noise source, the L,4 acid L, arc approximately the same. 'Noise impacts can lac deficribed ill three categories. The first is audible impacts that refer to increascs in noise levels noticeable to humans. Audible increases in noise levels generally refer to a change of 3.0 dB or greater since this level has been found to be basely perceptible in exterior environments. The second category, potentially audible, refers to a change in the noise leve] betwecn 1.o and 3.0 dB. This range of noise levels has been found to be noticeable only in laboratory environments. The last category is changes in noise level of less than 1.0 dB, which are inaudible to the humnn ear. only audible changes in existing ambient or background noise levels Are considered potentinily significant. psychological and Physiological Effects of Noive Physical damage to hum.en hearing begins at prolonged exposure to noise levels higher than 95 dBA. Exposure to figh noise levels affects our entire systcrn, with prolonged noise exposure in excess of 75 dBA increasing body tensions, and thereby attectffig blood pressure and functions of the heart and the nervous system. In c;amparison, extended periods of noise exposure above 90 dBA would result in permanent cell damage. When the noise level reaches 120 dBA, a tickling sensation occurs in the human car even with short -tenni exposure. This level of noise is called the threshold of feeling. As the sound reaches 140 dBA, the tickling sensation is replaced by the feeling of pain in the ear. This is called the threshold of pain. A sound level of 190 dBA will rupture the eardrum and pernsanently damage the inner ear. 1/161010 P-.Mkhl 10\1aqukM,Wp& SENT By: 1-17- 1; 9:01M ; L S A- 97713503411/45 LAA A350i" A7'"' 1"U' -rhe ambient or background noise problem is widespread and generally more conoentrated in urban areas than in outlying less developed ams. Table A lists "Definitions of Acoustical Terms," and Table B shows "Common Sound Levels and Their Sources." FXS17NG COND177ONS Sensitive Land VMS in tkt Project VkinitY There are existing residential uses to the sots of the project sie. These sensitive uses would be potentially affected by the construction of the proposed project. Overview of the FxLtting Naive EnvironmOttt The primary existing noise sources in the project Area arc tr,.utsportation f ccilities. Traffic on Eisenhower Drive and Calle Tampico is the dominant source contributing to area ambient noise levels. Thresholds of Sign yicance A project will normally have a significant elect on the cliviron tment related to noise if it will substantially increase the ambient noise tevels for adjoining areas or conflict with adopted environmental plans, and Souls of the community in which it is located. The applicable noise standards governing the project site are the criteria in the City's Noise Element and Zoning. Ordinance. City of La Qainta Noise Smndards Noise Element of the General Plan The City in its General Plan has an Environmental Hazards Element that contains n "Noise flazards" section in which the effects of noise, noise conditions in the City, and land use planning implications are discussed. it indicates that, fr�vm long-term transportation sources such as vehicular traffic, residential uses are compatible in areas with an exterior noise level of 60 dBA CNEL or lower in outdoor living areas. Interior noise standard u 45 dBA CNEL. For commercial, employment, and manufacturing uses, 75 dBA CNEL, or lower in exterior noise is acceptable. The land use noise standard-. are shown in Table C. I/ 16mJ((PUkht30\Iz4UhftwPd)) 6 SENT BY: 1-17- 1; 9:01AM ; L S A- 97713503#12!45 1.3AAR:OCIAI'M 114c" Table A - Definitions of Acoaeticsl Terms Teres Definitions Decibel, dB A unit of level that denotes the ratio between two quantities that arc decibels is ten times the logarithm (to proportional to power; the number of the base ten) of this ratio. Frequency, Hz Of a function periodic in time, the number of times that the quantity repeats itself in one second (i.e., number of cycles per second). A -Weighted Sound The sound ighting. The ter de - high by use of 5�equency components of the !sound Lcvcl, dBA emphasizes lhovery low very in a manner similar to the frequency response of the human ear and correlates well with subjective reactions to noise. All sound levels in this report are A -weighted, unless reported otherwise. 419 Llo, LIN ligo The fast A -weighted noise levels that are equaled or exceeded g y ercent of a i 0 50 1 fluctuating sound level 1 percent, percent, percent, stated time period. Equivalent The level of a steady sound that, in a stated time period and at a stated Continuous Noise location, has the same A sound energy as the time varying sound. I.evel, L, Community Noise -weighted The 24 hour A -weighted average sound level from midnight to midnight, Equivalent Level, obtained after the addition of five decibels to sound levels occurring in the to 10:00 and after the addition of ten decibels CNEL, everting from 7.00 p.111. p.m. levels occurring in the night between l0:oo p.m. and 7.00 a.m. Day/NightNoise to sound The 24 hour A -weighted averragc sound level from midnight to midnight, Level, L& obtained after the addition of ten decibels to sound levels occurring in the night between 10:00 p.m. and 7:00 a.m. L. 1,.j. The maximum and Ininimum A -weighted sound levek measured on a sound level meter, during a designated time interval, using fast time averaging. Ambient Noise The all-encompassing noise associated with a given environment at a Level specif+cd linie, usually a composite of sound from many sources at many directions, near and far, no particular sound is dominant. Intrusive The noise that intrudes over and above the existing ambient noise m a giver' location. The relative intrusiveness of a sound depends upon its amplitude, durl.tion, frequency, and time of occurrence and tonal or informational content as well as the prevailing ambient noise level. Source: Handbook of Acoustical Measurements and Noise Control, 1991. 1116101 IIP -.%h 130\I&qutnwwpd» SENT BY r r 1.11n ngsOCiATKI. INP 1-17- 1 ; 3:01M ; L S A - 97713503413/45 Table B - Common Sound Levels and Their Nolse Sour Source: Compiled by LSA Associates, Inc. 2001. 1/16/01 cIFAM130\19413lntl-WOO 8 A.Weighted Sound Noise Subjeedve Nobe Source Level in Decibels Environments Evaluations 140 Deafening 128 times as loud Near Jet Engine Civil Defense Siren 130 Threshold of Pain 64 times as loud Hard Rock Band 120 Threshold of Feeling 32 times as loud Accelerating Motorcycle at a 110 Very Loud 16 times as loud few feet away Pile Driver, Noisy Urban 100 Very Loud 8 times as loud Street/Heavy City Traffic Ambulance Siren; Food 95 Very Loud Blonder Garbage Disposal 90 Very Loud 4 times as loud Freight Cars; Living Room 85 Moderately Loud MUSIC Pneumatic Drill; Vacuum 80 Moderately Loud 2 times as loud Cleaner Busy Restaurant 75 Moderately Loud Near Freeway Auto Traffic 70 Moderately Loud Average Office 60 Quiet '/2 times as loud Suburban Street 55 Quiet Light Traffic; Soft Radio Music 50 Quiet 1/4 times as loud in Apartment Large Transformer 45 Quiet Average Residence Without 40 Faint 1/8 times as loud Stereo Playing Soft Whisper 30 Faint Rustling Leaves 20 Very Faint Human Breathing 10 Very Faint 'Threshold of Hearing 0 Very Faint Source: Compiled by LSA Associates, Inc. 2001. 1/16/01 cIFAM130\19413lntl-WOO 8 SEND By: 1-17- 1; 9:02AN ; L S A 97713503414/45 LiA A3joC1ATV.e, INn Table C - Land Use Compatibility for Ezterlor Community Noise Residential --mu Itifam i ly Transient lodging --motels, hotels Schools, libraries, churches, hospitals, nursing homes Actively used open spaces --playgrounds, neighborhood patios Golf courses, riding stables, water recreation, cemeteries office buildings, business commercial and Professional Industrial, manufacturing, utilities, agriculture 50-60 Noise Range (LAID or CNEL), dB 70-75 I 11 M IV Land Use Category 80+ 50-60 60-70 70-80 50 50-55 55-70 70+ passively used open spaces 73+ 50-70 --- Auditorium%, concert halls, amphitheaters 45-50 50-65 65-70 70+ Residential --low density single family, duplex, 50-55 55-70 70-75 75+ mobile homes --- Residential --mu Itifam i ly Transient lodging --motels, hotels Schools, libraries, churches, hospitals, nursing homes Actively used open spaces --playgrounds, neighborhood patios Golf courses, riding stables, water recreation, cemeteries office buildings, business commercial and Professional Industrial, manufacturing, utilities, agriculture 50-60 60-70 70-75 75+ 50-60 60-70 70-80 80+ 50-60 60-70 70-80 80+ 50-67 --- 67-73 73+ 50-70 --- 70-80 80+ 50-67 67-75 75+ --- 50-70 70-75 75+ --- Noise 1t2n9c 1--NnrrnnllY Mcclrtable: SpcciCted land ux is satiafric:tnrY, basal upon the Nssumption that any buildings involved arc 01' nMlal emventionkl con. rucaoll, without any spc jal nom insulation requirements, Noiw Mange i]--conditionpliy Accepublc: Now cnostruetion or duvtlopmrnl should lx: undertaken only after u detailed analysis of the noise reduction rcquirrmeAM is made and acedcd noise insulation features are included in the dcsip. Conventional wnsmction, but with closed windows and fresh air suppty systc=n or air s; t,,ttclitioninp will normally suf(icc- Noiac Rttoge III- Nnrmally unt}cceptable: New construction or developillent should genenilly be discouraged. If new coilatruction or development does proc:ctxi, a detailed analysis of the noise reduction requirements must be made and needed noise insulation features Included in the design. Noise Range 1V—Cloudy Unauceptablc: New construction or development should generally not be undcriaken, Source: Office of Noise Control, (:allfomia Depar nrent of Hoaltli, 1976. t / 16A t (tP:Nkh lMlaquinmwpd» 9 SENT BY. r 1-17- 1 ; 9:02AM LMA Al;:oal Ter. INC. Zonvig Ordmonce L S A - 97713503415/45 Section 9.100.210, Noise Control, of the City's Zoning Ordinance, establishes exterior noise standards, from stationary sources other than construction activities, for both noise sensitive, including residential property, schools, hospitals, and churches, and other nonresidential uses. Table D lists the exterior noise standards for these uses. Table D - Exterior Noise Standards Receiving Land Use (Yal=e Standard Time Period Noise Sensitive 60 dBA 7:00 am. - 10:00 p.m. 50 dBA 10:00 p.m. - 7:00 a.m. Other Nonresidential 75 dBA 7:00 a.m. - 10:00 p.m. 65 dBA 10:00 p.m. - 7:00 am. If tilt noise consists entirely of impact mime, simple tnae noise, speech or music, or any combination thereof, each of the noise levels specified in the table shall be reduced by five (5) dBA. Source: City of LA Quinb. Zoning Ordinance. It shall be unlawful for any person at any location within the City to create any noise or to allow the creation of any noise on property owned, leased, occupied or otherwise control led by such person when such noise causes the noisc level, when measured on any adjacent property, to cxcced: • The noise shandard for a cumulative period of more than 30 minutes in any hour; • The noise standard plus five dBA for a cumulative period of more than 15 minutes in any hour: • The noise standard plus ten dBA for a cumulative period of more than live minutes in any hour; • The noise standard plus 15 dBA for u cumulative period of more than one minute in any hour; or • The noise standard plus 20 dBA for any period of time. If the ambient, or background, noise level exceeds any of the preceding noise categories, no increase above such prevailing ambient noise level shall be permitted. Construction activities regulated by Section 6.08 of the La Quints Municipal Code are exempt from the noise restrictions of the Zaning Ordinance. 1/16101((FA h131111egUhUwP& 10 SENT BY: 1-17- 1; 9:02AM ; L S A 97713503; 16/45 TAA naaOCIA'rv..r. INC. Municipal Code Section 6.08, Nuisances, of the La Quints Municipal Code specifies noise nuisances and disturbances by construction noise. The permitted hours of construction work arc from 7:00 a.m. to 5:30 p.m. Monday through Friday, and from 8:00 a.m. to 5:00 p.m. Saturday during the period of October 1 through April 30. No construction is permitted on Sundays and government code holidays. During the period of May 1 through September 30, the permitted hours of construction for weekdays (Monday through Friday) are from 6:00 a.m. to 7:00 p.m. Perm itted construction hours for Saturdays are from 8:00 a.m, to 5:00 p.m. IMPACTS AND MITIGATION MEASURES Steal -Terre Com&ucdon Related Impacts Noise levels from grading and other construction activities for the proposed project may range up to 88 dBA at the closest resldenccs south of the project .site for very limited times when construction occurs near the projeei s southern boundary. Construction related noise impacts from the proposed project would be potentially adverse; however, with implementation of applicable mitigation measures, the impact can be reduced to a less than significant level, Short-term noise impacts would be associated with excavation, grading, and erecting of buildings on site during construction of the proposed project. Construction related short-term noise levels would be higher than existing ambient noise levels in the project area today, but would no longer occur once construction of the project is completed. Two types of short-term noise impacts could occur during the construction of the proposed project. First, construction crew commutes and the transport of colnntnlction equipment and materials to the site for the proposed project would incrementally increase noise levels on access roads leading to the site. Although there would be a relatively high single event noise exposure potential causing intermittent noise nuisance (passing truck at 50 feet would generate up to a maximum of 87 dBA), the effect in long-term ambient noise levels would be small when averaged over a longer period of time. Therefore, short-term construction related impacts associated with worker commute and equipment transport to the project site would be less than significant. The second type of short-term noise impact is related to noise generated during excavation, grading, and building erection on the project site. Construction is performed in discrete steps, each of which has its own mix of equipment and, consequently, its own noise characteristics. These various sequential phases would change the character of the noise generated on the site and, therefore, the noise levels surrounding the site as construction progresses. Despite the variety in the type and size of construction equipment, similarities in the dominant noise sources and patterns of operation allow construction related noise ranges to be categorized by work phase. 'fable E lists typical construction equipment noise levels recommended for noise impact assessments, based on a distance or 50 feet between the equipment and a noise raptor. Typical noise levels range up to 91 dBA at 50 feet during the noisiest construction phases. The site preparation phase, which includes excavation and grading of the site, 1/ 16/01((P:Uth 111111squ1ni&wpd)> 1 I SENT By: 1-17- 1; 9:03AM ; L S A 97713503:#17/45 I.11SAADAUCIAT►{ WU. Table E - Typical Consfracdon Equipment Noise Levels Before *ad Anter Mitigation Source; Noise Control for Buildings end Manufacturing Plane. Dull, Beranek do Newrnen, 19x7. tends to generate the highest noise levels, because the noisiest construction equipment is earthmoving equipment. Earthmoving equipment includes excavating machinery such as backl'illers, bulldozers, draglines, and front loaders. Earthmoving and compacting equipment includes compactors, scrapers, and graders. 'typical operating cycles for these types of construction equipment may involve one or two minutes of full power operation followed by three to four minutes at lower power settings. Construction of the propogcd project is expected to require the use of earthmovers, bulldozers, and water and Pickup trucks. This equipment would be used on the project site. Based on Table E, the maximum noise level generated by each earthmover on the proposed project site iq assumed to be 88 dBA at 50 feet from the earthmover. Each bulldozer would also generate 88 dBA at 50 feet. The maximum noise level generated by water and pickup trucks is approximately 86 dBA at 50 feet from these vehicles. F,ach doubling of the sound sources with equal strength increases the noise level by three dBA. Assuming that each piece of construction equipment operates at some distance from the other equipment, the worst case combined noise level at each individual residence during this phase of construction would be 91 dBA L...,, at a distance of 50 feet from the; active construction area. 1/16/01 K P;Itkh13011aquinlr.wpd» 12 Range of Sound Suggested Sound Levels Measured Levels for Analysis Type of Equipment (dBA at 50 feet) (dBA at 50 feet) Pile Drivers, 12,000 to 18,000 ft-lb/blow 81 to 96 93 Rock Drills 8.3 to 99 96 Jack Hammers 75 to 85 82 Pneumatic Tools 78 to 88 85 Pumps 68 to 80 77 Dozers 85 to 90 88 Tractors 77 to 92 80 Front -End Loaders 86 to 90 88 Hydraulic Backhoc 811090 86 ]Hydraulic Excavators 81 to 90 86 Graders 79 to 89 86 Air Compressors 76 to 86 86 Tnlcks 81 to 87 86 Source; Noise Control for Buildings end Manufacturing Plane. Dull, Beranek do Newrnen, 19x7. tends to generate the highest noise levels, because the noisiest construction equipment is earthmoving equipment. Earthmoving equipment includes excavating machinery such as backl'illers, bulldozers, draglines, and front loaders. Earthmoving and compacting equipment includes compactors, scrapers, and graders. 'typical operating cycles for these types of construction equipment may involve one or two minutes of full power operation followed by three to four minutes at lower power settings. Construction of the propogcd project is expected to require the use of earthmovers, bulldozers, and water and Pickup trucks. This equipment would be used on the project site. Based on Table E, the maximum noise level generated by each earthmover on the proposed project site iq assumed to be 88 dBA at 50 feet from the earthmover. Each bulldozer would also generate 88 dBA at 50 feet. The maximum noise level generated by water and pickup trucks is approximately 86 dBA at 50 feet from these vehicles. F,ach doubling of the sound sources with equal strength increases the noise level by three dBA. Assuming that each piece of construction equipment operates at some distance from the other equipment, the worst case combined noise level at each individual residence during this phase of construction would be 91 dBA L...,, at a distance of 50 feet from the; active construction area. 1/16/01 K P;Itkh13011aquinlr.wpd» 12 SENT BY: 1-17- 1 : 8: 03AM ; L S A -• 97713503 418/45 LHAASICO IATIIS. {NG. The nearest residences to the project site are approximately 75-100 feet to the south of the project boundary. These residences may be subject to short-term, interm incnt, maxiinuln noise reaching 98 dBA L..„ generated by construction activities on the project site. Compliance with the construction hours specified in the City's Municipal Code would be required. Lung -Tents Traffic Noise Impacts Project related long-term vehicular trip increases are anticipated to be moderate. The incremental traffic noise level increases would be less than significant. Nu signifteara traffic noise impacte on of(f- site? sensitive uses erre anticipated. However, proposed on-site residential uses would be potentially expased to traffic noise levels exceeding the 60 d8A CNE, L standard in outdoor activity areas. Mitigation measures would be required. The FHWA highway traffic noise prediction model (FHWA RD -77-108) was used to evaluate highway traffic related noise conditions in the vicinity of the project site. The noise impact analysis was conducted using the traffic volumes provided by Endo Engineering (January 16, 2001). The resultant noise levels are weighted and sumnied over 24 hour periods to determine the CNEL values. Table F provides the future baseline condition noise levels adjacent to roads near i11c proposed project site. These noise levels represent the worst case scenario, which assumes that no shielding is provided between the traffic and the location where the noise contours are drawn. The specific assumptions used in developing these noise levels and model printouts are provided in Appendix A. Data in Table I' show that traffic noise in the project vicinity in year 2020 would be moderate, with the 70 dBA CNEL confined within the roadway right-of-way for all roadway links analyzed. Off -Site Traffic Noise Impacts To determine the impact of the project on the other residential properties in the area, the daily trips generated by the project were determined and added to the baseline levels (Endo Engineering, January 16, 2001). Using these traffic volumes and the FHWA Highway Traffic Noise Prediction Model, the future with project traftie related noise conditions were determined. Table G provides the noise levels under the future with project scenario adjacent to the roads near the project site. 1/] 6101 KP:Mkh 130Uagtdnta wpd» 13 SENT BY. 1-17- 1; 8;(14VA L b A biili)Du0;4lb/4o LIA AARflAIAI'Li. INC. Table F - Future lllaiwNue Trafflc Noise Suurcc: LSA Associates, Inc., August 2000. The data in Table G chow that there is very little change in the traffic related noise levels associated with the implementation of the project. The greatest inercasc in traffic related noise is on Calle Tampico, which has a 0.9 dBA increase over the no -build scenario. This is small and normally not discernible by the human car. Since the project does not create a significant increase in traffic noise, no mitigation is required for off-site residential areas. On -Site Traffic Noise Impacts Residential properties on the project site, however, may be exposed to potentially significant traffic noise impacts. Depending on the location of the units, mitigation measures may be required. Typically, there are three types of traffic noise impacts that require measures to reduce the noise level: I Traffic noise within 50 feet of roadway centerline requires site specific study. 1116/01((PAIM1304aquintampO 14 Centerline Centerline Centerline CNEL (dBA) to 70 CNEL to 65 CNEL to 60 CNEL 50 feet from Roadway Se meat ADT feet (reef) (feet) outermost hae Eisenhower Drive n/o Avenue 50 14,900 <50, 100 210 67.1 Avenue 50 to Site Access 12,000 <50 87 182 66.2 Site Access to Calle 12,000 <50 84 181 67.7 Tampico s/o Calle Tampico 12,000 <50 60 122 63.5 Calle Tampico Eisenhower Drive to 5,850 X50 57 114 63.1 Avenida Mendoza Avenida Mendoza to 6,660 <50 62 124 63.6 Avenida Bermudas Avenida Bermudas to 9,520 <50 76 157 65.2 Desert Club Drive Desert Club Drive to 11,910 <50 87 181 66.1 Washington Street c/o Washington Street 6,740 450 58 123 65.2 Suurcc: LSA Associates, Inc., August 2000. The data in Table G chow that there is very little change in the traffic related noise levels associated with the implementation of the project. The greatest inercasc in traffic related noise is on Calle Tampico, which has a 0.9 dBA increase over the no -build scenario. This is small and normally not discernible by the human car. Since the project does not create a significant increase in traffic noise, no mitigation is required for off-site residential areas. On -Site Traffic Noise Impacts Residential properties on the project site, however, may be exposed to potentially significant traffic noise impacts. Depending on the location of the units, mitigation measures may be required. Typically, there are three types of traffic noise impacts that require measures to reduce the noise level: I Traffic noise within 50 feet of roadway centerline requires site specific study. 1116/01((PAIM1304aquintampO 14 RNT BY: 1-17- 1 ; 3 : 04AN ; L S A - M13503420/45 1.%AA119nf:1ATC5, INC. Table G - Future With Project TmfGc Noise Centerline Centerline Centerline (NTL (dBA) bwxettse to 70 to 65 to 60 50 feet from f vm CNEL MEL CNEL outermost Baseline Roadway Sctmcut ADT (feet) (feet) (feet) lane (dBA) Eisenhower Drive No Avenue 50 14,840 <50' 100 209 67.1 0.0 Avenue 50 to Site 12,380 <50 89 185 66.3 0.1 Access Site Access to 11,750 450 83 178 67.6 -0.1 Callc Tampico s/o Calle Tampico 12,180 <50 61 123 63.6 0.1 Calle Tampico Eisenhower Drive 5,970 <50 58 116 63.I 0.0 to Avenida Mendoza Avenida Mendoza 7,260 <SO 65 131 64.0 0.4 to Avenida Bermudas Avenida Bermudas 11,700 <50 86 179 66.1 0.9 to Desert Club Drive Desch Club Drive 14,090 <50 % 202 66.9 0,8 to Washington Street e/o Washington 7,460 ASO 61 132 65.6 0.4 Slruct Source: LSA Assuciates, Inc., January 2001. • Group A: Areas that would be exposed to traffic noise exceeding 70 dBA CNEL. Residential homes with outdoor use areas exposed to traffic noise would require a freestanding sound wall or sound wall and berm combination with an effective height of ten feet above grade along the property line. This ten foot sound wall or sound walVberm combination would provide more than 10 dBA in noise reduction for ground floor receptors when the direct line of sight to the traffic is blocked. Ground floor bedrooms facing the road would receive more than 10 dBA in noise attenuation provided by the sound wall or sound wall/berm combination. With a combination of walls, doors, and windows, standard constriction for Southern California residential buildings would provide more than 20 dBA in exterior to interior noise reduction with windows closed and ' Traffic noise within 50 feet of roadway centerline requires site specific study. 1/16/01((1',1nd1130Uaqu1ntawpd)) 15 SENT By: 1-17- 1; 9:04AM ; L S A 97713503;#21/45 LORA! MOCIAI►N. 1Nr. 12 dBA or more with windows open (national average is 25 dBA with windows closed and 15 dBA with windows open). With windows closed, interior noise level in ground fkwr units would be 45 dBA CNEL or lower. Therefore, no building facade upgrades would be required. However, with windows open, there is a potential for interior noise in the ground floor units to exceed the 45 dBA CNEL standard (e.g., 70 dBA - 10 dBA -12 dBA = 48 dBA). Therefore, an air conditioning system, a form of mechanical ventilation, would be required to ensure that windows can remain closed for a prolonged period of time. Vor second story bedrooms exposed to 70 dBA CNEL or higher traffic noise, the ten foot sound wall alone would not provide sufficient noise mitigation. Therefore, second story bedrooms with windows exposed to the traffic require building facade upgrades, such as double paned (or dual glazing) windows. In addition, mechanical ventilation, such as an air conditioning system, would be required. • Group B: Areas that would be exposed to traffic noise between 65 and 70 dBA CNEL. Residential homes with outdoor active use areas exposed to the traffic would require a freestanding sound wall or sound wall and berm cumbination with an effective height of eight feet above grade along the property line. 11his night foot sound wall or sound wall/berm combination would provide up to 10 dBA in noise reduction for ground floor receptors when the direct line of sight to the traffic is blocked. Uround floor bedrooms facing the road would receive up to 10 dBA in noise attenuation provided by the sound wall or sound wall/berm combination. With a combination of walls, doors, and windows, standard construction for Southern Californ is residential buildings would provide more than 20 dBA in exterior to interior noise reduction with windows closed and 12 dBA or more with windows open. With windows closed, interior noise level in ground floor units would be 45 dBA CNEL or lower. Therefore, no building facade upgrades would be required. However, with windows open, there is a potential for interior noise in the ground floor units to exceed the 45 dBA CNEL Standard (e.g., 68 dBA - 10 dBA - 12 dBA = 46 dBA). 'therefore, an air conditioning system, a form of mechanical ventilation, should be provided to ensure that windows can remain closed for a prolonged period of time. For second story bedrooms exposed to 65 to 70 dBA CNEL traffic noise, the eight foot sound wall alone would not provide sufficient noise mitigation. Therefore, second story bedrooms with windows exposed to the traffic require building facade upgrades, such as double paned (or dual glazing) windows. In addition, an air conditioning system, a font, of mechanical ventilation, would be required. Group C: Areas that would be exposed to traffic noise between 57 and 65 dRA CNEL. Residential homes with outdoor active use areas exposed to the traffic would require a freestanding sound wall or sound wall and berm combination with an effective height of six feet above grade along the property line. This six foot sound wall or sound wall/berm combination would provide more than 5 dRA in noise; reduction for ground floor receptors wben the direct line of sight to the traffic is blocked. Ground floor bedrooms facing the; road would receive more than 5 dBA in noise attenuation provided by the sound wall or sound wall/bcnm combination. With a combination of walls, doors, and windows, standard construction for Southern California residential buildings would provide more than 20 dBA in exterior to interior noise reduction with windows closed and 12 dBA or more with windows open. With windows closed, interior noise level in ground floor units would be 45 dBA CNEL or lower. Therefore, no building facade 1/16/01 «PAM I7OMNUlnal WPO) 16 SEW BY 1-1-j- 1 - b-UDAM • L J A - ill iAJJUU'Wr ."*W LOAASSOC1AT13. 14C. upgrades would be required. However, with windows open, them is a potential for interior noise in the ground fluor units to exceed the 45 dBA CNEL standard (e.g., 64 dBA - 5 dHA - 12 dBA = 47 dBA). 7lterefore, an air conditioning system, a form of mechanical ventilation, should be provided to ensure that windows can remain cloyed for a prolonged period of time. For second story bedrooms exposed to 57 to 65 dBA CNEL traffic noise, tllc six foot sound wall alone would not provide sufficient noise mitigation. Therefore, second story bodmoms with windows exposed to the traffic require a form of mechanical ventilation to ensure that windows can remain closed for a prolonged period of time. Hec:ause the proposed residential uses would have 190 feet or more buffer zone from both Eisenhower Drive and Calle Tampico, no homes would be exposed to the City's exterior noise standard of 60 dBA CNEL. In addition, with staudard building construction for residential structures in Southern California, interior noise levels would be 45 dBA CNEL or lower. No significant traffic noise impacts would occur. Mitigation Measw-es Construction Impacts Construction of the proposed project would potentially result in relatively high noise levels and annoyance at the closest residences. The following measures, as required by the City's Development Code, would reduce short-term construction related noise impacts associated with the proposed project: I . During all project site excavation and grading on site, the project contractors shall equip all construction equipment, fixed or mobile, with properly operating and maintained mufflers consistent with manufacturers' standards. 2. The project contractor shall place all stationary construction equipnlcut so that emitted noise is directed away from sensitive receptors nearest the project site. 3. The construction contractor shall locate equipment staging in areas that will create the greatest distance between construction related noise sources and noise sensitive receptors nearest the project site during all project construction. 4. During all project site construction, the construction contractor shall limit all construction related activities that would result in high noise levels to between the hours of 7:00 a.m. to 5:30 p.m. Monday through Friday, and from 8,00 a.m. to 5:00 p.m. Saturday during the period of October 1 through April 30. No constriction is permitted on Sundays and government code holidays. During the period of May 1 through September 30, the permitted hours of construction for weekdays (Monday through friday) are from 6:00 a.m. to 7:00 p.m. Permitted constriction hours for Saturdays are from 8:00 a.m. to 5:00 p.m - 1116/01 ((I'Atldi .m_ 1116/01((I':ltidi 130Umpointexpd)) 17 _qW BY: 1-17- 1 ; 9:05AM ; L S A - 97713503;#23/45 I.AA A 11110171 IPr Ha. INC . Trac Noise Inepacts No mitigation is required. Level of Sign trwance after Mitigation With implementation of the identified mitigation measures, potential short-term noise impacts would be reduced to below the level of significance. 1/1 6A)1«PAIkhI Mlaqulnta,wpd» 18 SENT BY: 1-17- 1 9:05M ; L S A -. 97713503424/45 LSA A$SOC1ATtit. INC. REFERS CM Bolt, Beranek & Newman, Noise Control for Buildings and Manufacturing Plants, 1987. City of La Quints, Noise Element. City of L& Quinta, Zoning Ordinance. Federal Highway Administration, Highway Traffic Noise Prediction Model, FRWA RD -77-108, 1977_ 1/16/0WP-.=13MW gWflU,wpd» 19 SENT BY: 1-17- 1 9:06M ; L S A- 97713503:#25/45 t.M ASNUU nTKI.INC. APPENDIX A FHWA TRAFFIC NOISE MODEL PRINTOUTS 1/16/01KP W13"uh"wpW) sm BY: 1-17- 1; 9: 06M ; L S A- 97713503426/45 VISTA MONTANA DEVELOPMENT PLAN FHWA HIGIjWAY TRAMC NOISE MODEL OUTPUTS 2020 BASELINE CONDITIONS SENT BY., 1-17- 1; S;06AN : L 5 A- 377135U3;927145 TABLE VISTANPI FHWA ROADWAY NOISE LEVEL ANALYSIS RLnq DAA ! 1116101 ROADWAY SEGMEr: EISSNHOWER DR N/0 AVE 50 NOTES: 2020 BASELINE * * ASSUMPTIONS • AVERAGE DAILY TRAFFIC: 14900 SPEED (MPH): 45 GRADE: .5 TRAFFIC DISTRIBUTION PERCENTAGES DAY EVENING NIGHT AUTOS 75.51 12.57 M -TRUCKS 1.56 0.09 H -TRUCKS 0.64 0.02 ACTIVE HALF -WIDTH (FT): 24 9.34 0.19 0.08 SITE CHARACTERISTICS: SOFT * * CALCULATED NOISE LEVELS * * CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTWRLINE (dB) DISTANCE (FEET) FROM ROADWAY�CENTERLINSESTo CCNEL -- CNSL 65 CNEL0.0CNEL -Y99-7' ---_--------- --_-- 209.9 449.7 SENT BY: 1-17- 1; 9:06AM + L S A 97713503428!45 TABLE VISTA2NP FWA RC ADWAY NOISE LEVEL ANALYSTS f RUN DATE: 1/16/01 ROADWAY SEGMOT: EISENHOWER DR AVE 50 TO SITE ACCESS NOTES. 2020 BASELINE * ASSUMPTIONS * i AGE DAILY TRAFFIC: 12000 SPEED (MPH): 45 GRADE: .5 TRAFFIC DISTRIBUTION PERCSNTAGES DAY EVENING NIGHT AUTOS 12.57 75.51 M -TRUCKS 0.09 1,56 H -TRUCKS 0.02 0.64 ACTIVE HALF -WIDTH (FT): 24 9.34 0.19 0.08 SITE CHARACTERISTICS: SOFT * * CALCULATED NOISE LEVELS * * CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (dB) = 66.17 DISTANCE (FEET) FROM ROADWAY CENTERLINE TO CNEL 70 CNEL 65 CNEL60 CNEL 55-CNEL ___0.0 -_87-2- ------- --182.1 389.5 SENT BY: 1-17- 1; 9:06AM ; L S A -+ 97713503429/45 TALE VISTA3NP FHWA ROADWAY NOISE LEVEL ANALYSIS RUN DATE: 1/16101 ROADWAY SEGMENT; EISMMOWER DR SITE ACCESS TO CALLE TAMPICO NOTES: 2020 BASELINE * * ASSUMPTIONS AV13RAGE DAILY TRAFFIC: 12000 SPEED (NPH) : 45 GRADE: .5 TRAFFIC DISTRIBUTION PERCENTAGES DAY EVENING NIGHT AUTOS 75.51 12.57 M -TRUCKS 1.56 0.09 H -TRUCKS 0.64 0.02 ACTIVE HALF -WIDTH (FT): 6 9.34 0.19 0.08 SITE CHARACTERISTICS: SOFT * * CALCULATED NOISE LEVELS * * CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (CIS) a 67.68 DISTANCE (FEET)�LM ROADOAYyCENTERLINE TO CNEL 70 CNEL 65 L 55 CNEL -~- _-8 -- 0.0 4.2 180.9 389.5 SENT BY: 1-17- 1 ; 9:06AN ; L S A - 97713503+#30!45 TABLE VISTA4NP FMA ROADWAY NOISE LEVEL ANALYSIS RUN DAT$: 146/01 ROADWAY SEGMWT: EISENHOWER DR S/0 CALLE TAMPICO NOTES: 2020 BASELINE ASSUMPTIONS AVERAGE DAILY TRAFFIC: 12000 SPED (MPH): 35 GRADE: .5 TRAFFIC DISTRIBUTION PERCENTAGES DAY EVENING NIGHT AUTOS 75.51 12.57 M -TRUCKS 1.56 0.09 H -TRUCKS 0.64 0.02 ACTIVE HALF -WIDTH (FT)s 24 9.34 0.19 0.08 SITE CFJMCTERISTICS: SOFT * * CALCULATED NOISE LEVELS * * CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (dB) = 63.48 DISTANCE (FEET) FROM ROADWAY CENTERLINE TO CNEL 70 CNEL 65 CNEL 60 CNEL 55 CNEL 0.0 60.4 121.8 258.3 SENT BY: 9:06AM ; L S A 97713503 431/45 TABLE VISTASNP pHWA ROADWAY NOISE LE L aunt PSIS RUN DATE: 1/16/01 ROADWAY SEGMENT: CALLS TAMFiCo EISBNHOWER TO AVE MENDOZA NOTES; 2020 BASELINE * * ASSUMPTIONS AVERAGE DAILY TRAFFIC: 5850 SpE= (MPH): 45 GRADE: -5 TRAFFIC DISTRIBUTION EVENINGNIGHTDAY AUTOS 75.51 12.57 M -TRUCKS 1.56 0.09 H -TRUCKS 0.64 0.02 ACTIVE HALF -WIDTH (FT): 24 9.34 0.19 0. OB SITE CHARACTERISTICS: SOFT * * CALCULATED NOISE LEVELS * * CNEL AT 50 FT FROM NFaR TRAVEL LANE CMITERLINE (dB) r 63.05 DISTANCE (FEET)�LM ROADWAY c E'RLI60 CNEL 55 TOO CNEL 70 CNEL CNEL _^ ..__--Y_ �_�0.0 --57.2 114.3 242.0 i SEM BY 1-17- 1 ; 9:07AM L S A - 97713503432/45 TABLE VISTA6NP FHWA ROADWAY NOISE LEVEL ANALYSIS RUN DATE: 1/16/01 ROADWAY SEGMENT: CALLE TAMPiCO AVE MENDOZA TO AVE BERMUDAS NOTES: 2020 BASELINE * * ASSUMPTIONS AVERAGE DAILY TRAFFIC: 6660 SPEED (MPH): 45 GRADE: .5 TRAFFIC DISTRIBUTION PERCENTAGES DAY EVENING NIGHT AUTOS 75.51 12.57 M -TRUCKS 1.56 0.09 H -TRUCKS 0.64 0.02 ACTIVE HALF -WIDTH (FT): 24 9.34 0.19 0.08 SITE CHARAC =ISTICS: SOFT * * CALCULATED NOISE LEMS * * CKEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (W . 63.62 DISTANCE (FEET) FROM ROADWAY CENTERLINE TO CNEL 70 CNEL 65 CNEL 60 CNEL 55 CNEL --0.0 -61.Sr --124.2 263.6 SENT BY: 1-17- 1 ; 9:07AN ; L S A - M13503433/45 TABLE VISTA7NP FHWA ROADWAY NOISE LEVEL ANALYSIS RUN DATE: 1/16/01 ROADWAY SEGMENT: CALLS TAMPICO AVE BERMUDAS TO DESERT CLUB DR NOTES: 2020 BASELINE * * ASSUMPTIONS AVERAGE DAILY TRAFFIC: 9520 SPEED (MPH): 45 GRADE: .5 TRAFFIC DISTRIBUTION PERCENTAGES DAY gVMUNG NIGHT AUTOS 75.51 12.57 M -TRUCKS 1.56 0.09 H -TRUCKS 0.64 0.02 ACTIVE HALF -WIDTH (FT): 24 9.34 0.19 0.08 SXTE CHARACTERISTICS: SOFT * * CALCULATED NOISE LEVELS * * CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (dB) - 65.17 DISTANCE (FEET) FROM ROADWAY CBMERLINE TO CNEL 70 CNEL 65 CNEL 60 CNEL 55 CNEL - -- 0.0 75.7 156.5 334.0 SENT BY r 1-17- 1 ; 8:07AM L S A - M13503434/45 TABU viSTASNP FHM► ROADWAY NOISE LEVEL ANALYSIS 1 RUN DATE: 1/16/()' ROADWAY SEGMENT: CnLE TAMPICO DESERT CLUB DR TO WASHINGTON ST ( NOTES: 2020 BASELINE * * ASSUMPTIONS AVERAGE DAILY TRAFFIC: 11910 SPEED (MPH): 45 GRADE: .5 TRAFFIC DISTRIBUTION PERCENTAGES DAY BVENING NIGHT AUTOS 75.51 12.57 M -TRUCKS 1.56 0.09 H -TRUCKS 0.64 0.02 ACTIVE HALF -WIDTH (FT): 24 9.34 0.19 0.08 SITE CHARACTERISTICS: SOFT * * CALCULATED NOISE LEVELS CNEL AT 50 FT nM NEAR TRAVEL LANE CENTERLIKE (dB) ` 66.14 DISTANCE (FEET) FROM ROADWAY CENTERLINE TO CNEL 70 CNEL 65 CNEL 60 CNEL 55 CNEL - -� --- 0.0 86.7 181.2 387.5 L . SENT BY: 1-17- 1; 9;07AM ; L S a 5111t7JUJ+RJJ/�J TABLE V I STAs9NP FWRUADWAY NOISE I.EVEL ANALYSIS i RUN DATE: 1/16/01CALLE TAMPICO E/O WASHINGTON ST ROADWAY S$OKENT: NOTES; 2020 BASELINE * * ASSUMPTIONS AVERAGE DAILY TRAFFIC: 6740 SPEED (MPH): 45 GRADE: .5 TRAFFIC DISTRIBUTION PERCENTAGES DAY EVENING NIGHT AUTOS 12.57 75.51 M -TRUCKS 1.56 0.09 H -TRUCKS 0.64 0.02 ACTIVE HALF -WIDTH (FT): 6 9.34 0.19 0.08 SITE CHARACTERISTICS: SOFT * * CALCULATED NOISE LEVELS * * CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (dB) - 65.17 DISTANCE (FEET) FROM ROADWAY CENTBRLINT T 55 TOCNEL 70 CNEL 65 CNEL 60- 0.0 57.5 L _.- ..- --123.2 265.2 SENT BY: 1-17- 1 9:07AM ; L S A -• 97713503436/45 VISTA MONTANA DEVELOPMENT PLAN FHWA HIGHWAY TRAFFIC NOISE MODEL OUTPUTS 2020 PLUS PROJECT CONDITIONS Fl.. sm BY: r 1-17- 1 ; 9:07AM L S A -• M13303437/45 TABLE 'VISTAW71 pWA ROADWAY NOISE L74= ANALYS I S ( RUN DATE: 1/16/01 Ii ROADWAY SEGMENT: EISENHOWER DR N/0 AVE 50 NOTES: 2020 WITH PROJECT * * ASSUNPTIONS AVERAGE DAILY TRAFFIC: 14840 SPEED (Mpg): 45 GRADE: .5 TRAFFIC DISTRIBUTION PERCENTAGES DAY EVENING NIGHT AUTOS 75.51 12.57 M -TRUCKS 1.56 0.09 H -TRUCKS 0.64 0.02 ACTIVE HALF -WIDTH (FT): 24 9*. 34 0.19 0.08 SITE CHARACTERISTICS: SOFT sr * CALCULATED NOISE LEVELS * * CNEL AT 50 FT FROM NBAR TRAVEL LANE CENTERLINE (dB) = 67.09 DISTANCE (FEET)pRROK ROADWAY CC60 LNTERLINE TO -- CNEL65 ------- ----- ------- 0.0 99.5 209.3 448.5 SENT BY: 1-17- 1; 9:08AN ; L S A- 97713503:#38/45 TABLE VISTA2WP FHKA ROADWAY NOISE LFM ANALYS I S RUN DATE: 1/16%01 j ROADWAY SEOMMT: EISENHOWER DR AVE SO TO SITE ACCESS 4' NOTES. 2020 WITH PROJECT + + ASSUMPTIONS AVERAGE DAILY TRAFFIC: 12330 SPEED (MPH): 45 GSE: .5 TRAFFIC DISTRIBUTION PERCgNTAGES DAY EVENING NIGHT AUTOS 75.51 12.57 M -TRUCKS 1.56 0.09 H -TRUCKS 0.64 0.02 ACTIVE HALF -WIDTH (FT): 24 9.34 0.19 0.08 SITE CHARACTERISTICS: SOFT * * CALCULATED NOISE LEVELS * + CNEL AT 50 FT FROM NEAR TRAVEL VANE CENTERLINE (dB) - 66.29 DISTANCE (FEET) FROM ROADWAY CENTERLINE TO MEL 70 CNEL 65 CNEL 60 CNEL 55 CNEL --A - -µ 0.0 88.6 185.3 396.5 sm BY: 1-17- 1 ; 9: 08M ; L S A - M13503439/43 TABLE VISTA3WP FHM ROADWAY NOISE LEVEL ANALYSIS RUN DATE: 1/16/01 ROADWAY SEGMENT: EISENliOW'ER DR SITE ACCESS TO CALLE TAMPICO NOTES: 2020 WITH PROJECT * * ASSUMPTIONS °e AVERAGE DAILY TRAFFIC: 11750 SPEED (MPH): 45 GRADE: .5 TRAFFIC DISTRIBUTION PERCENTAGES DAY EVENING NIGHT AUTOS 75.51 12.57 M -TRUCKS 1.56 0.09 H -TRUCKS 0.64 0.02 ACTIVE HALF -WIDTH (FT): 6 9.34 0.19 0.08 SITE CHARACTERISTICS: SOFT * * CALCULATED NOISE LEVELS * * CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (dB) = 67.58 DISTANCE (FEET) FROM ROADWAY CENTERLINE TO CNEL 70 CNEL 65 CNEL 60 CNEL 55 CNEL 0.0 83.0 178.4 384.1 SEW BY: 1-17- 1; 9:08AN ; L S A- M13503440/45 TABLE VISTA4WP FHWA ROADWAY NOISE LEVEL ANALYSIS RUN DATE: 1/16/01 ROADWAY SEGMENT: EISENHOWER DR S/0 CALLE TAMPICO NOTES: 2020 WITH PROJECT * * ASSUMPTIONS * * AVERAGE DAILY TRAFFIC: 12180 SPEED (MPH): 35 GRADE: .5 TRAFFIC DISTRIBUTION PERCMMGBS DAY EVENING NIGHT AUTOS 75.51 12.57 M -TRUCKS 1.56 0.09 H -TRUCKS 0.64 0.02 ACTIVE HALF -WIDTH (FT): 24 9.34 0.19 0.08 SITE CHARACTERISTICS: SOFT * * CALCULATED NOISE LEVELS * * CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (0) - 63.55 DISTANCE (FEET) FROM ROADMAY CENTERLINE TO CNEL 70 CNEL 65 CNEL 60 CNE1, 55 CNEL 0.0 60.9 123.0 260.9 SENT BY: 1-17- 1; 9:08AM ; L S A- 97713503441/45 TABLE VISTASWP FHWA ROADWAY NOISE LEVEL ANALYSIS RUN DATE: 1/16/01 ROADWAY SEGMENT: CALLS TAMPICO EISENHOWER TO AVE MENDOZA NOTES: 2020 WITH PROJECT * * ASSUMPTIONS * * AVERAGE DAILY TRAFFIC: 5970 SPEED (MPH): 45 GRADE-. .5 TRAFFIC DISTRIBUTION PERCENTAGES DAY EVENTING NIGHT AUTOS 75.51 12.57 M -TRUCKS 1.56 0.09 H -TRUCKS 0.64 0.02 ACTIVE HALF -WIDTH (FT): 24 9.34 0.19 0.08 SITE CHARACTERISTICS: SOFT * * CALCULATED NOISE LEVELS * * CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (dB) = 63.14 DISTANCE (FEET) FROM ROADWAY CENTERLINE TO CNEL 70 CNEL 65 CNEL 60 CNEL 55 CNSL 0.0 57.8 115.8 245.2 SENT BY: 1-17- 1; 9:08AN ; L S A M13503442/45 TABLE VISTA6WP FHWA ROADWAY NOISE LEM ANALYSIS RUN DATE: 1/16/01 ROADWAY SEGMENT: CALLE TAMPICO AVE b0NDOZA TO AVE BERMUDAS NOTES: 2020 WM PROJECT * * ASSUMPTIONS * " AVERAGE DAILY TRAFFIC: 7260 SPEED (MPH): 45 GRADE: .5 TRAFFIC DISTRIBUTION PERCENTAGES DAY EVENING NIGHT AUTOS 75.51 12.57 M -TRUCKS 1.56 0.09 H -TRUCKS 0.64 0.02 ACTIVE HALF -WIDTH (FT): 24 9.34 0.19 0.08 SITE CHARACTERISTICS: SOFT " * CALCULATED NOISE LEVELS CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (dB) - 63.99 DISTANCE (FEET) FROM ROADWAY CENTERLINE TO CNEL 70 CNEL 65 CNEL 60 CNEL 55 CNEL 0.0 64.6 131.3 279.1 I c e � 97713503;444/46 SENT BY: 1-17— 1; 9:08AM ; L S A 97713503443145 TABLE VISTA7WP FHWA ROADWAY NOISE LEVEL ANALYSIS RUN DATE: 1/16/01 ROADWAY SEAT: CALLE TAMPICO AVE BERMUDAS TO DESERT CLUB DR NOTES: 2020 KITH PROJECT * * ASSUMPTIONS + + ^u AVERAGE DAILY TRAFFIC: 11700 SPEED (MPH): 45 GRADE: ,5 TRAFFIC DISTRIBUTION PERCENTAGES DAY SVENING NIGHT AUTOS 75.51 12.57 M—TRUCKS 1.56 0.09 H—TRUCKS 0.64 0.02 ACTIVE HALF—WIDTH (FT): 24 9.34 0.19 0.08 SITE CHARACTERISTICS: SOFT + + CALCULATED NOISE LEVEL; • MM AT 50 FT FROM NEAR TRAVEL LANE CF,'NTERLiNE (cB) 66.06 DISTANCE (FEET) FROM ROADWAY CENTERLINE TO CNEL 70 —CNEL 65—CNEL 60 CNEL 55 CNEL 0.0 85.8 179.1 383.0 SENT BY: 1-17- 1; 9:09AM ; L S A 97713503:#45/45 TABLE VISTA9WP FEWA ROADWAY NOISE LEVEL ANALYSIS RUN DATE: 1/16/01 ROADWAY SEGMENT: CALLS TAMPICO E/O WASHINGTON ST NOTES: 2020 WITH PROJECT * * ASSUMPTIONS * * AVERAGE DAILY TRAFFIC: 7460 SPEED (MPH): 45 GRADE: .5 TRAFFIC DISTRIBUTION PERCENTAGES DAY EVENING NIGHT AUTOS 75.51 12.57 M -TRUCKS 1.56 0.09 H -TRUCKS 0.64 0.02 ACTIVE HALF -WIDTH (FT): 6 9.34 0.19 0.08 SITE CHARACTERISTICS: SOFT * * CALCULATED NOISE LEVELS * * CNEL AT 50 FT FROM NEAR TRAVEL LANE CENTERLINE (dB) . 65.61 DISTANCE (FEET) FROM ROADWAY CENTERLINE TO CNEL 70 CNEL 65 CNEL 60 CNEL 55 CNEL 0.0 61.4 131.8 283.7 VISTA MONTANA PRELIMINARY HYDROLOGY REPORT January 17, 2001 PREPARED BY: MDS Consulting Planners * Engineers * Surveyors 17320 Redhill Avenue, Suite 350 Irvine, CA 92614 Phone 949/ 251-8821 Fax 949/ 251-0516 Morse Dokich Schultz M O R S E 17920 Redhill Ave. M ry350 D S D O K I C H Irvine, CA 92614 C O N S U L T I N G V.—: 949251-8821 S C H U E i Z FAX: 949-251-0516 G:\513\28\VISTAMONTANA.docl 1 r F INDEX . Project Desci tion 1 Narrative Section A: Hydrology Calculation 1. Q100 Hydrology Calculation 2. Hydrology Map for Rational Method Analysis Section B: Unit Hydrograph Calculation 1. Q1oo / 24 Hour 2. Hydrology Map for Unit Hydrograph Analysis PROJECT DESCRIPTION / NARRAT The following hydrologic analysis is ,provided for preliminary justification ofstorm drain improvements proposed for the Vista Montana General Plan Amendment, Zone Change, Specific Plan, and Village Use permit in the City of La Quita, County of Riverside, State of California. The site is currently used for agricultural purposes. Current drainage is in a northerly { northeasterly direction via over land sheet flow. The site slopes at approximately 0.5% undulates due to crop rows. Proposed storm drain improvements will provide 100 year runoff retention on site. Residential area storm drain storage will be provided above the base water surface elevation of the lake located in the center of the project and below curb flow line of the surrounding streets. Commercial areas runoff retention will be provided within the individual commercial lots. Commercial retention is anticipated within landscape area depressions, leach fields or a combination iiieleof. Stora} drain improvements will consist of several storm drain lines internal to the project with off site storm drain improvement within Eisenhower drive. Each line will be fitted with a bubbler to prevent lake waters from backflowing into the system and drywells to collect nuisance flows prior to entering the lake. Storm drain Rational Meted and Unit Hydrograph analysis is prepared using AES modeling software for Riverside County. SECTION A RATIONAL METHOD HYDROLOGY RIVERSIDE COUNTY FLOOD CONTROLS &WATER CONSERVATION DISTRICT (RCFC&WCD) j (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/99 License ID 1269 Analysis prepared by: MDS CONSULTING 17320 REDHILL AVENUE SUTIE 350 IRVINE CA. 92614 949-251-8821 ************************** DESCRIPTION OF STUDY ************************** * * TENTATIVE TRACT NO. 29858 * DEVELOPED HYDROLOGY - RATIONAL METHOD * AREA A ************************************************************************** FILE NAME: HYDRO-A.DAT TIME/DATE OF STUDY: 09:38 01/18/2001 ---------------------- USER- SPECIFIEDHYDROLOGY - ANDHYDRAULICMODELINFORMATION: ---------- --- ------------------------------------------------------------ USER SPECIFIED STORM EVENT(YEAR) - 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 2 -YEAR, 1 -HOUR PRECIPITATION(INCH) = 0.500 100 -YEAR, 1 -HOUR PRECIPITATION(INCH) r 1.600 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH/HOUR) 1.600 SLOPE OF INTENSITY DURATION CURVE = 0.5900 RCFC&WCD HYDROLOGY MANUAL "C" -VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) _ (FT) SIDE -/_ SIDE/ rWAY - _ (FT) - ! (FT) _ (FT) - (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE 21 - _--------------------------- >> >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS CONDOMINIUM TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW -LENGTH = 599.40 UPSTREAM ELEVATION = 44.00 DOWNSTREAM ELEVATION = 42.00 ELEVATION DIFFERENCE = 2.00 TC0.359*(( 5Ay,�, INTENSIT'Y' (INCH/HOUR) * 2 4.513 100 YEAR RAI=3 .697NF CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .7633 SOIL CLASSIFICATION IS "All 3.67 ,SUBAREA RUNOFF(CFS) = 3.67 TOTAL AREA(ACRES) _ 1.30 TOTAL RUNOFF(CFS) _ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 1.30 TC(MIN.) = 14.51 PEAK FLOW RATE(CFS) = 3.67 END OF RATIONAL METHOD ANALYSIS 1 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/99 License ID 1269 Analysis prepared by: MDS CONSULTING 17320 REDHILL AVENUE SUTIE 350 IRVINE CA. 92614 949-251-8821 ************************** DESCRIPTION OF STUDY ************************** * * TENTATIVE TRACT NO. 29858 * DEVELOPED HYDROLOGY - RATIONAL METHOD * AREA B ************************************************************************** FILE NAME: HYDRO-A.DAT TIME/DATE OF STUDY: 09:39 01/18/2001 --------------------- - USER - SPECIFIED HYDROLOGYANDHYDRAULICMODELINFORMATION: -USER- --------------------------------------------------------------- SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 2 -YEAR, 1 -HOUR PRECIPITATION(INCH) = 0.500 100 -YEAR, 1 -HOUR PRECIPITATION(INCH) = 1.600 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH/HOUR) = 1.600 SLOPE OF INTENSITY DURATION CURVE = 0.5900 RCFC&WCD HYDROLOGY MANUAL "C" -VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) __- (FT) -� SIDE -/_SIDE/ -WAY - - (FT) ' - (FT) _ (FT) ^ (FT) ! �- (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21 _--�.__-_--_- _>> >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS CONDOMINIUM TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW -LENGTH = 201.00 UPSTREAM ELEVATION = 43.00 DOWNSTREAM ELEVATION = 42.00 ELEVATION DIFFERENCE = 1.00 = g.655 TC = 0.359*[( 201.00**3)/( 1.00)]**.2 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.015 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .7863 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF(CFS) = 3.15 TOTAL AREA(ACRES) = 0.80 TOTAL RUNOFF(CFS) = 3.15 END OF STUDY SUMMARY: 0,80 TC(MIN.) = 8.65 TOTAL AREA(ACRES) _ PEAK FLOW RATE(CFS) = 3.15 END OF RATIONAL METHOD ANALYSIS 1 *PROG*RAM*BASED*ON************* RATIONAL METHOD HYDROLOGY COMPUTER RIVERSIDE COUNTY FLOOD CONTROL HYDROLR CONNSERVLTION DISTRICT (RCFC&WCD) 1978 f (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/99 License ID 1269 Analysis prepared by: MDS CONSULTING 17320 REDHILL AVENUE SUTIE 350 IRVINE CA. 92614 949-251-8821 ************************** DESCRIPTION OF STUDY ************************** * * TENTATIVE TRACT NO. 29858 * DEVELOPED HYDROLOGY - RATIONAL METHOD * AREA C ************************************************************************** FILE NAME: HYDRO-A.DAT TIME/DATE OF STUDY: 09:34 01/18/2001 ------------------_ ------------------------------------------------------- USER SPECIFIED HYDROLOGY -AND -HYDRAULIC -MODEL -INFORMATION --- -- - - -- -- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 2 -YEAR, 1 -HOUR PRECIPITATION(INCH) = 0.500 100 -YEAR, 1 -HOUR PRECIPITATION(INCH) = 1.600 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH/HOUR) = 1.600 SLOPE OF INTENSITY DURATION CURVE = 0.5900 RCFC&WCD HYDROLOGY MANUAL "C" -VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE/-SIDE/lWAY- - (FT) - - (FT) - (FT) _ (FT) _ (n) _w 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE 21 ----------------------- >> >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS CONDOMINIUM TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW -LENGTH = 200.00 UPSTREAM43.00 DOWNSTREAM ELEVATION T 42.00 DOWNSTREAM ELEVATION = ELEVATION DIFFERENCE = 1.00 TC = 0.359*[( 200.00**3)/( 1.00)l**•2 = 8.629 100 YEAR RAINFALL NRi7NOFFNCOEFFICIENT 5.07864 ( CONDOMINIUM DEVELOPMENT I; SOIL CLASSIFICATION IS "All SUBAREA RUNOFF(CFS) = 7.90 TOTAL AREA(ACRES) = 2.00 TOTAL RUNOFF(CFS) = 7.90 END OF STUDY SUMMARY: 2.00 TC(MIN.) = 8.63 TOTAL AREA(ACRES) = 7.90 PEAK FLOW RATE(CFS) _ END OF RATIONAL METHOD ANALYSIS 1 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/99 License ID 1269 Analysis prepared by: MDS CONSULTING 17320 REDHILL AVENUE SUTIE 350 IRVINE CA. 92614 949-251-8821 ************************** DESCRIPTION OF STUDY ************************** * * TENTATIVE TRACT NO. 29858 * DEVELOPED HYDROLOGY - RATIONAL METHOD * AREA D ************************************************************************* FILE NAME: HYDRO-A.DAT TIME/DATE OF STUDY: 09:36 01/18/2001 --------------------- 4 - - USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: - --- vUSER SPECIFIEDSTORMEVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 2 -YEAR, 1 -HOUR PRECIPITATION(INCH) = 0.500 100 -YEAR, 1 -HOUR PRECIPITATION(INCH) = 1.600 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH/HOUR) = 1.600 SLOPE OF INTENSITY DURATION CURVE = 0.5900 RCFC&WCD HYDROLOGY MANUAL ,C" -VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) T' SIDE -/ SIDE/ ^WAY ! - (FT) - - (FT) (FT) _ (FT) _ - (n) 1 30.0 -T20.0 _ 0.018/0'018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** - @^-^ FLOW PROCESS FROM NODE - -- 100TONODE -`---Y2_ - y 00ISCODE 21- --- -_-_ >> >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS CONDOMINIUM TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW -LENGTH = 687.20 UPSTREAM ELEVATION = 45.50 DOWNSTREAM ELEVATION = 42.00 ELEVATION DIFFERENCE 3.503.50)]**.2 = 14.086 TC = 0.359*[( 687.20** 3)/( 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.762 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .7647 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF(CFS) = 11.80 TOTAL AREA(ACRES)4.10 = 4.10 TOTAL RUNOFF(CFS) 11.80 A( END OF STUDY SUMMARY TOTAL AREA(ACRES) = 4.10 TC (MIN.) = 14.09 PEAK FLOW RATE(CFS) = 11.80 END OF RATIONAL METHOD ANALYSIS 1 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/99 License ID 1269 Analysis prepared by: MDS CONSULTING 17320 REDHILL AVENUE SUTIE 350 IRVINE CA. 92614 949-251-8821 ************************** DESCRIPTION OF STUDY ************************** * * TENTATIVE TRACT NO. 29858 * DEVELOPED HYDROLOGY - RATIONAL METHOD * AREA E ************************************************************************** FILE NAME: HYDRO-A.DAT TIME/DATE OF STUDY: 09:41 01/18/2001 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -USER SPECIFIED` STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 2 -YEAR, 1 -HOUR PRECIPITATION(INCH) = 0.500 100 --YEAR, 1 -HOUR PRECIPITATION(INCH) = 1.600 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH/HOUR) = 1.600 SLOPE OF INTENSITY DURATION CURVE = 0.5900 RCFC&WCD HYDROLOGY MANUAL ,C" -VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) -- SIDE-/-SIDE/-WAY- - (FT) - - (FT) - (FT) - (FT) _ == (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE 21 -------------------------------------------------------------- >> >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS CONDOMINIUM TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW -LENGTH = 328.50 UPSTREAM ELEVATION = 45.20 DOWNSTREAM ELEVATION = 43.50 1,70 ELEVATION DIFFERENCE = TC = 0.359*L( 328.50**31.70)]**. )/( 2 = 10.451 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.487 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .7781 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF(CFS) = 6.63 TOTAL AREA(ACRES)1.90 _ 1.90 TOTAL RUNOFF (CFS) = 6.63 A( END OF STUDY SUMMARY: 1.90 TC(MIN.) = 10.45 TOTAL AREA(ACRES) _ PEAK FLOW RATE(CFS) = 6.63 END OF RATIONAL METHOD ANALYSIS 1 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROLS HYDROLR CONNSERVATION DISTRICT (RCFC&WCD) Y MANUAL (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/99 License ID 1269 Analysis prepared by: MDS CONSULTING 17320 REDHILL AVENUE SUTIE 350 IRVINE CA. 92614 949-251-8821 ************************** DESCRIPTION OF STUDY ************************** * * TENTATIVE TRACT NO. 29858 * DEVELOPED HYDROLOGY - RATIONAL METHOD * AREA F ************************************************************************** FILE NAME: HYDRO-A.DAT TIME/DATE OF STUDY: 09:43 01/18/2001 --------- ' USER SPECIFIEDHYDROLOGYANDHYDRAULICMODEL INFORMATION: ----------------- ----------------------------------------------------------- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 2 -YEAR, 1 -HOUR PRECIPITATION(INCH) = 0.500 100 -YEAR, 1 -HOUR PRECIPITATION(INCH) r 1.600 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH/HOUR) = 1.600 SLOPE OF INTENSITY DURATION CURVE = 0.5900 RCFC&WCD HYDROLOGY MANUAL "C" -VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE=/SIDE/ WAY_ - (FT) - ' (FT) _ (FT) _ (FT) _ (n) 1 30.0 _ 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE 21 ------------------------- -- >> >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS CONDOMINIUM TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW -LENGTH = 338.30 UPS'T'REAM ELEVATION 45.20 DOWNSTREAM ELEVATION = 43.50 1.70 ELEVATION DIFFERENCE ** 1.70)l**•2 = 10.637 k TC = 0.359*[( 338.30 3)/( 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.440 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .7773 SOIL CLASSIFICATION ISA ,r u SUBAREA RUNOFF(CFS)= 0 3011 TOTAL RUNOFF (CFS) = 3.11 P TOTAL AREA(ACRES) _ END OF STUDY SUMMARY: 0.90 TC(MIN.) = 10.64 TOTAL AREA(ACRES) _ PEAK FLOW RATE(CFS) = 3.11 END OF RATIONAL METHOD ANALYSIS 1 *ir*•k*it*'IF**Ir*iritIr**+k**ir*�ktk**iF*ilrkitkdr* RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-99 Advanced Engineering Software (aes) IVer. 1.5A Release Date: 01/01/99 License ID 1269 Analysis prepared by: MDS CONSULTING 17320 REDHILL AVENUE SUTIE 350 IRVINE CA. 92614 949-251-8821 ************************** DESCRIPTION OF STUDY ************************** * * TENTATIVE TRACT NO. 29858 * DEVELOPED HYDROLOGY - RATIONAL METHOD * AREA H ************************************************************************** FILE NAME: HYDRO-A.DAT TIME/DATE OF STUDY: 09:44 01/18/2001 ------------- ----------------------------- -----------------------USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: USER SPECIFIED ^ STORM`EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 f 2 -YEAR, 1 -HOUR PRECIPITATION(INCH) = 0.500 100 -YEAR, 1 -HOUR PRECIPITATION(INCH) = 1.600 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH/HOUR) = 1.600 SLOPE OF INTENSITY DURATION CURVE = 0.5900 RCFC&WCD HYDROLOGY MANUAL ,C" -VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER --DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER --GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) -- SIDE -/_ SIDE/ -WAY - - (FT) _ _ (FT) - (FT) - (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE -1_ - - ----®- 00TONODE2_---- 2.00 IS CODE=21--- - >> >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS CONDOMINIUM TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW -LENGTH = 544.60 UPSTREAM ELEVATION = 4441040 DOWNSTREAM ELEVATION = 2,60 ELEVATION DIFFERENCE = TC = 0.359*[( 544 . 60**1,) / ( 2,60)]**• 2 = 13.001 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.944 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .7683 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF(CFS) = 4.85 TOTAL AREACRES) _ 1.60 TOTAL RUNOFF(CFS) = 4.85 A ( END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 1.60 TC (MIN.) = 13.00 PEAK FLOW RATE(CFS) = 4.85 END OF RATIONAL METHOD ANALYSIS 1 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/99 License ID 1269 Analysis prepared by: MDS CONSULTING 17320 REDHILL AVENUE SUTIE 350 IRVINE CA. 92614 949-251-8821 ************************** DESCRIPTION OF STUDY ************************** * * TENTATIVE TRACT NO. 29858 * DEVELOPED HYDROLOGY - RATIONAL METHOD * AREA J ************************************************************************** FILE NAME: HYDRO-A.DAT TIME/DATE OF STUDY: 10:11 01/18/2001 --------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ------------ USER SPECIFIEDSTORMEVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 2 -YEAR, 1 -HOUR PRECIPITATION(INCH) = 0.500 100 -YEAR, 1 -HOUR PRECIPITATION(INCH) = 1.600 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH/HOUR) = 1.600 SLOPE OF INTENSITY DURATION CURVE = 0.5900 RCFC&WCD HYDROLOGY MANUAL "C" -VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) -= SIDE/!SIDE/-WAY- _ (FT) _ - (FT) a (FT) _ (FT) y =� (n) _! 1 30.0 _ 20.0 0018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21 ---------------------------------------- >> >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW -LENGTH = 323.10 UPSTREAM ELEVATION = 44.00 DOWNSTREAM ELEVATION = 42.40 ELEVATION DIFFERENCE = 1.60 TC = 0.303*I( 323.10**3)/( 1.60)]**.2 = 8.838 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.953 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8673 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF(CFS) = 4.30 TOTAL AREA(ACRES) = 1.00 TOTAL RUNOFF(CFS) = 4.30 END OF STUDY SUMMARY: 1 0 TC(MIN.) = 8.84 TOTAL AREA(ACRES) _ PEAK FLOW RATE(CFS) = 4.30 END OF RATIONAL METHOD ANALYSIS 1 **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/99 License ID 1269 Analysis prepared by: MDS CONSULTING 17320 REDHILL AVENUE SUTIE 350 IRVINE CA. 92614 949-251-8821 ************************** DESCRIPTION OF STUDY ************************** * * TENTATIVE TRACT NO. 29858 * DEVELOPED HYDROLOGY - RATIONAL METHOD * AREA L ************************************************************************** FILE NAME: HYDRO-A.DAT TIME/DATE OF STUDY: 10:09 01/18/2001 -USER SPECIFIEDHYDROLOGYAND -HYDRAULIC -MODEL INFORMATIONltl______ ______ __ --USER- - - SPECIFIED STORM EVENT(YEAR) 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 2 -YEAR, 1 -HOUR PRECIPITATION(INCH) = 0.500 100 -YEAR, 1 -HOUR PRECIPITA.TION(INCH) = 1.600 COMPUTED RAINFALL INTENSI'T'Y DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH/HOUR) = 1.600 SLOPE OF INTENSITY DURATION CURVE = 0.5900 RCFC&WCD HYDROLOGY MANUAL "C" -VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE 21 _>>>>>RATIONALYMETHOD INITIAL SUBAREA ANALYSIS<< <<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW -LENGTH = 276.20 UPSTREAM ELEVATION = 42.90 DOWNSTREAM ELEVATION = 41.50 ELEVATION DIFFERENCE = 1.40 TC = 0.303*[( 276.20**3)/( 1.40)]**_2 5.1548.262 100 YEAR RAINFALL INTENSITY(INCH/HOUR) COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8681 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF (CFS) = 5.82 TOTAL AREA(ACRES) = 1.30 TOTAL RUNOFF(CFS) = 5.82 END OF STUDY SUMMARY: 1.30 TC(MIN.) = 8.26 TOTAL AREA(ACRES) _ PEAK FLOW RATE(CFS) = 5.82 END OF RATIONAL METHOD ANALYSIS 1 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/99 License ID 1269 Analysis prepared by: MDS CONSULTING 17320 REDHILL AVENUE SUTIE 350 IRVINE CA. 92614 949-251-8821 ************************** DESCRIPTION OF STUDY ************************** * * TENTATIVE TRACT NO. 29858 * DEVELOPED HYDROLOGY - RATIONAL METHOD * AREA K ************************************************************************** FILE NAME: HYDRO-A.DAT TIME/DATE OF STUDY: 10:06 01/18/2001 --- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: USER SPECIFIEDSTORMEVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 SPECIFIED PERCENT 2 -YEAR, 1 -HOUR PRECIPITATION(INCH) = 0.500 100 -YEAR, 1 -HOUR PRECIPITATION(INCH) = 1.600 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH/HOUR) _ 1.600 SLOPE OF INTENSITY DURATION CURVE = 0.5900 RCFC&WCD HYDROLOGY MANUAL "C" -VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 L2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21 >>>>>RATIONALrMETHOD INITIAL SUBAREA ANALYSIS<< <<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW -LENGTH = 463.50 UPSTREAM ELEVATION = 40.70 DOWNSTREAM ELEVATION = 38.40 ELEVATION DIFFERENCE = 2.30 TC = 0.303*[( 463.50**3)/( 2.30)]**.2 = 10.206 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.550 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8655 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF(CFS) = 13.78 TOTAL AREA(ACRES) = 3.50 TOTAL RUNOFF(CFS) = 13.78 **************************************************************************** FLOW PROCESS FROM NODE 2.00 TO NODE -200-IS-CODE_=-_1_-__------- - >>>>>DESIGNATE-INDEPENDENT-STREAM_FOR-CONFLUENCE« «<__---_- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.21 RAINFALL INTENSITY(INCH/HR) = 4.55 TOTAL STREAM AREA(ACRES) = 3.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 13.78 **************************************************************************** FLOW PROCESS FROM NODE_P _ ^ __ -� 3.00TONODE2__ 00IS- CODE '= 21 --__ _ - _-_------------------------------------------- _____________ >> >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW -LENGTH = 680.00 UPSTREAM ELEVATION = 42.30 DOWNSTREAM ELEVATION = 38.40 ELEVATION DIFFERENCE = 3.90 TC = 0.303*[( 680.00**3)/( 3.90)]**.2 = 11.558 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.228 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8639 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF(CFS) = 15.34 TOTAL AREA(ACRES) = 4.20 TOTAL RUNOFF(CFS) = 15.34 **************************************************************************** FLOW PROCESS FROMNODE 2.00 TO NODE2.00 IS CODE'= 1-- -^ --- ------------------------------------------------------ >> >>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< >> >>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<< <<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.56 RAINFALL INTENSITY(INCH/HR) = 4.23 TOTAL STREAM AREA(ACRES) = 4.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 15.34 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 13.78 10.21 4.550 3.50 2 15.34 11.56 4.228 4.20 in1ARNING IN THIS COMPUTER PROGRAM= THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 27.33 10.21 4.550 l 2 28.15 11.56 4.228 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 28.15 Tc(MIN.) = 11.56 TOTAL AREA(ACRES) = 7.70 LONGEST FLOWPATH FROM NODE 3.00 TO NODE 2.00 = 680.00 FEET. END OF STUDY SUMMARY TOTAL AREA(ACRES) = 7.70 TC (MIN.) = 11.56 f PEAK FLOW RATE ( CFS ) = 28.15 END OF RATIONAL METHOD ANALYSIS 1 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/99 License ID 1269 Analysis prepared by: MDS CONSULTING 17320 REDHILL AVENUE SUTIE 350 IRVINE CA. 92614 949-251-8821 ************************** DESCRIPTION OF STUDY ************************** * * TENTATIVE TRACT NO. 29858 * DEVELOPED HYDROLOGY - RATIONAL METHOD * AREA M ************************************************************************ FILE NAME: HYDRO-A.DAT TIME/DATE OF STUDY: 10:14 01/18/2001 --------------------- ------------ --_ --_------ ^-- USER SPECIFIED HYDROLOGYAND HYDRAULIC MODEL INFORMATION: -- - -- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 2 -YEAR, 1 -HOUR PRECIPITATION(INCH) = 0.500 100 -YEAR, 1 -HOUR PRECIPITATION(INCH) = 1.600 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH/HOUR) = 1.600 SLOPE OF INTENSITY DURATION CURVE = 0.5900 RCFC&WCD HYDROLOGY MANUAL "C" -VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE /vSIDE/ -WAY - -(FT) (FT) _(FT)f (FT)T _ (n)_� 1 J30.0 �^ 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21 -------------------------- >> >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW -LENGTH = 803.50 UPSTREAM ELEVATION = 55.60 DOWNSTREAM ELEVATION = 44.50 ELEVATION DIFFERENCE = 11.10 TC = 0.303*[( 803.50**3)/( 11.10)]**.2 = 10.364 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.509 ( COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8653 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF(CFS) = 8.58 TOTAL AREA(ACRES) = 2.20 TOTAL RUNOFF(CFS) = 8.58 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 2.20 TC (MIN.) = 10.36 PEAK FLOW RATE(CFS) = 8.58 END OF RATIONAL METHOD ANALYSIS RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/99 License ID 1269 Analysis prepared by: MDS CONSULTING 17320 REDHILL AVENUE SUTIE 350 IRVINE CA. 92614 949-251-8821 ************************** DESCRIPTION OF STUDY ************************** * * TENTATIVE TRACT NO. 29858 * DEVELOPED HYDROLOGY - RATIONAL METHOD * AREA N ************************************************************************** FILE NAME: HYDRO-A.DAT TIME/DATE OF STUDY: 10:48 01/18/2001 _----------- USER -SPECIFIED -HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --USER-SPECIFIED STORM-EVENT(YEAR) - 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 2 -YEAR, 1 -HOUR PRECIPITATION(INCH) = 0.500 100 -YEAR, 1 -HOUR PRECIPITATION(INCH) = 1.600 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH/HOUR) = 1.600 SLOPE OF INTENSITY DURATION CURVE = 0.5900 RCFC&WCD HYDROLOGY MANUAL "C" -VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER -DEFINED STREET -SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER -GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT -/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0 020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE 21 --- ----------------------- >> >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**•2 INITIAL SUBAREA FLOW -LENGTH = 164.60 UPSTREAM ELEVATION = 44.00 DOWNSTREAM ELEVATION = 43.20 ELEVATION DIFFERENCE = 0.80 TC = 0.303*[( 164.60**3)/( 0.80)]**•2 = 6.774 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.795 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8704 SOIL CLASSIFICATION IS "All 50. 0 ,SUBAREA RUNOFF(CFS) = 0.50 TOTAL AREA (ACRES ) = 0.10 TOTAL RUNOFF ( CFS ) _ ==END -OF STUDY SUMMARY: 0.10 TC(MIN.) = 6.77 TOTAL AREA (ACRES) = PEAK FLOW RATE(CFS) = 0.50 END OF RATIONAL METHOD ANALYSIS 1 Q 55.6 A=4.1 AC A=2.0 AC P.E.=47.0 *D 42 . (PT I I P.E�4�4,33 2 � � ; 0- RE =43.0 1 1 ,y � r o c ---� --�. - - A--3.5 AC Y 4-3-0, ' � I P.E.-42 0 I I P E =42.0 I I P.E=42.0 I t o i L -------J- L -------J L -------j i � i 4_ Q=4.8 _ a II C2K) `3;4 Q=7.90. 1 Fc 0 28.1.5 A=2.2 AC I 1 A=O; IAC, 1. P.E 0f, r1 I -I 42.0. L! I I L _ � IF t� Q C IW W I 10 A�4.2AC - iJ A -� 0=3.67 f 0- I r- L_ f 2 � I � N � I O la1 d W II C Lq - J e' Q=6,3L_ 4. 1.9 I W - N © I L_ L=27 A-1. C I c 42.0 N _ a A=1r:3r 1 11 L 42.9 1i P.E=42.0 I P.E=42.0'` [ .0 _I Lo 1 - L= - _f.0 =8 0 - - -, rE=42.0- - KSi CORP. OMCE BUJU.NNG "` 8 (I f)E P.E: 42.0 I I 44.0 1A 4- `! REFENMN AM .30 .2 a)4 'z r J f 4.�L� •t t A�=0.1 IT,; P.E-45.0 I 2J C2. P.E.=45.5 E_ Q=8.58 �N Q=3.11 Q=G.*5U ()N Am _ � r�- 2N 43.2 � _- � Il (ice 93, r OK 40.7 SCALE 1"=150' r DRAINAGE AREA BOUNDARY 4A 34.5 NODE AND AREA DESIGNATION - SURFACE ELEVATION Q=10.0 Q 100 (CFS) A=2.2 AC AREA (ACRES) 42.3 = DEVELOPMENT CORPORATION 55-920 PGA Boulevard (760) 564-8000 La Quinta, CA 92253 FAX (760) 564-8005 DEVELOPED HYDROLOGY TENTATIVE TRACT No. 29858 CITY OF LA QUINTA 1151J26 HY9R01MraA,9c.9WG 1-17-0, MORSE 1732D Re dbill Ave. Suite 350 oPtANENERSENOINEERS D O K 1 C H Irvine, CA 92614 wine: 949-251-9921 S C H U L r z FAX; 949-251-0516 SURVEYORS" DEVELOPED HYDROLOGY TENTATIVE TRACT No. 29858 CITY OF LA QUINTA 1151J26 HY9R01MraA,9c.9WG 1-17-0, SECTION B F L 0 0 D R 0 U T I N G A N A L Y S I S ACCORDING TO RIVERSIDE COUNTY FLOOD CONTORL AND WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1989-99 Advanced Engineering Software (aes) Ver. 7.0 Release Date: 01/01/99 License ID 1269 Analysis prepared by: MDS CONSULTING Planners * Engineers * Surveyors 17320 Redhill Avenue, Suite 350 Irvine, CA 92614 ************************** DESCRIPTION OF STUDY ************************** * TENTATIVE TRACT NO. 30043 * Q100 / 24 HOURS STORM * AREA GC1 ++++++++++++++*++++++++++++++++++++++++++*+++*++++++++++++++++++++++++++++ FILE NAME: C:\AES99\HYDROSFT\FLOODX\30043\30043UH.100 TIME/DATE OF STUDY: 17:08 01/16/2001 +*+*++++++++++++*+*+*++++++*+++**+++++++++++++++++++++++++++++++++++++++++++ FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ««< (UNIT-HYDROGRAPH ADDED TO STREAM #1) WATERCOURSE LENGTH = 1000.000 FEET LENGTH FROM CONCENTRATION POINT TO CENTROID = 500.000 FEET ELEVATION VARIATION ALONG WATERCOURSE = 8.500 FEET BASIN FACTOR = 0.015 WATERSHED AREA = 20.000 ACRES BASEFLOW = 0.000 CFS/SQUARE-MILE WATERCOURSE "LAG" TIME = 0.038 HOURS CAUTION: LAG TIME IS LESS THAN 0.50 HOURS. THE 5 -MINUTE PERIOD UH MODEL (USED IN THIS COMPUTER PROGRAM) MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES. DESERT S -GRAPH SELECTED UNIFORM MEAN SOIL-LOSS(INCH/HOUR) = 0.065 LOW SOIL -LOSS RATE PERCENT(DECIMAL) = 0.850 MINIMUM SOIL -LOSS RATE(INCH/HOUR) = 0.032 USER -ENTERED RAINFALL = 5.00 INCHES RCFC&WCD 24 -Hour Storm (15 -Minute period) SELECTED RCFC&WCD DEPTH -AREA ADJUSTMENT FACTOR(PLATE E-5.8) = 1.0000 UNIT HYDROGRAPH TIME UNIT = 15.000 MINUTES UNIT INTERVAL PERCENTAGE OF LAG -TIME = 659.357 RUNOFF HYDROGRAPH LISTING LIMITS: MODEL TIME(HOURS) FOR BEGINNING OF RESULTS = 10.00 MODEL TIME(HOURS) FOR END OF RESULTS = 18.00 UNIT HYDROGRAPH DETERMINATION ---------------------------------------------------------------------------- INTERVAL "S" GRAPH UNIT HYDROGRAPH NUMBER MEAN VALUES ORDINATES(CFS) ---------------------------------------------------------------------------- 1 77.601 62.566 2 99.887 17.969 3 99.955 0.055 4 99.989 0.027 5 100.000 0.009 TOTAL STORM RAINFALL(INCHES) = 5.00 TOTAL SOIL-LOSS(INCHES) = 1.41 TOTAL EFFECTIVE RAINFALL(INCHES) = 3.59 ---------------------------------------------------------------------------- TOTAL SOIL -LOSS VOLUME(ACRE-FEET) = 2.3457 TOTAL STORM RUNOFF VOLUME(ACRE-FEET) = 5.9843 --------------------------------------------------------------------------- D 2 4- H O U R S T O R M R U N O F F H Y D R 0 G R A P H ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- HYDROGRAPH IN FIVE-MINUTE UNIT INTERVALS(CFS) (Note: Time indicated is at END of Each Unit Intervals) ---------------------------------------------------------------------------- TIME(HRS) VOLUME(AF) Q(CFS) 0. 5.0 10.0 15.0 20.0 ---------------------------------------------------------------------------- 10.083 1.6535 5.30 QV 10.167 1.6900 5.30 QV 10.250 1.7266 5.30 QV 10.333 1.7589 4.69 Q.V 10.417 1.7912 4.69 Q.V 10.500 1.8236 4.69 Q. V 10.583 1.8668 6.28 Q 10.667 1.9100 6.28 Q 10.750 1.9532 6.28 QV 10.833 1.9997 6.74 Q 10.917 2.0462 6.74 Q 11.000 2.0926 6.74 Q 11.083 2.1370 6.45 Q V 11.167 2.1815 6.45 Q V 11.250 2.2259 6.45 Q V 11.333 2.2699 6.38 Q V 11.417 2.3138 6.38 Q V 11.500 2.3578 6.38 Q V 11.583 2.3976 5.78 Q V 11.667 2.4373 5.78 Q V 11.750 2.4771 5.78 Q V 11.833 2.5179 5.93 Q V 11.917 2.5587 5.93 Q V 12.000 2.5996 5.93 Q V 12.083 2.6562 8.22 QV 12.167 2.7129 8.22 Q V . 12.250 2.7695 8.22 Q V . 12.333 2.8327 9.18 Q . 12.417 2.8960 9.18 QV. 12.500 2.9593 9.18 QV. 12.583 3.0276 9.92 QV 12.667 3.0959 9.92 QV 12.750 3.1642 9.92 Q V 12.833 3.2361 10.43 QV 12.917 3.3079 10.43 Q V 13.000 3.3797 10.43 Q V 13.083 3.4631 12.10 VQ 13.167 3.5465 12.10 VQ 13.250 3.6298 12.10 Q 13.333 3.7164 12.57 VQ 13.417 3.8030 12.57 Q 13.500 3.8896 12.57 Q 13.583 3.9526 9.15 Q V 13.667 4.0156 9.15 Q V 13.750 4.0786 9.15 Q V 13.833 4.1349 8.18 Q V 13.917 4.1913 8.18 Q V . 14.000 4.2476 8.18 Q V . 14.083 4.3126 9.44 Q V . 14.167 4.3777 9.44 Q V. 14.250 4.4427 9.44 Q V. 14.333 4.5082 9.51 Q. V 14.417 4.5736 9.51 Q. V 14.500 4.6391 9.51 Q. V 14.583 4.7041 9.43 Q .V 14.667 4.7690 9.43 Q .V 14.750 4.8340 9.43 Q V 14.833 4.8969 9.14 Q V 14.917 4.9598 9.14 Q V 15.000 5.0227 9.14 Q V 15.083 5.0830 8.75 Q V 15.167 5.1432 8.75 Q V 15.250 5.2035 8.75 Q V 15.333 5.2611 8.36 Q V 15.417 5.3187 8.36 Q V 15.500 5.3763 8.36 Q V 15.583 5.4247 7.04 Q V 15.667 5.4732 7.04 Q V 15.750 5.5216 7.04 Q V 15.833 5.5677 6.69 Q V 15.917 5.6138 6.69 Q V 16.000 5.6599 6.69 Q V 16.083 5.6737 2.01 Q V 16.167 5.6876 2.01 Q V . 16.250 5.7014 2.01 Q V . 16.333 5.7061 0.68 Q V . 16.417 5.7108 0.68 .Q V . 16.500 5.7155 0.68 .Q V . 16.583 5.7180 0.38 Q V . 16.667 5.7206 0.38 Q V . 16.750 5.7232 0.38 Q V . 16.833 5.7253 0.30 Q V . 16.917 5.7273 0.30 Q V , 17.000 5.7294 0.30 Q V , 17.083 5.7358 0.94 .Q V . 17.167 5.7423 0.94 .Q V . 17.250 5.7487 0.94 .Q V . 17.333 5.7565 1.13 Q . V . 17.417 5.7643 1.13 Q V . 17.500 5.7720 1.13 Q V , 17.583 5.7799 1.14 Q V . 17.667 5.7878 1.14 Q V . 17.750 5.7956 1.14 Q V . 17.833 5.8015 0.84 Q V 17.917 5.8073 0.84 Q V 18.000 5.8131 0.84 Q V . END OF FLOODSCx ROUTING ANALYSIS F L O O D R O U T I N G A N A L Y S I S ACCORDING TO RIVERSIDE COUNTY FLOOD CONTORL AND WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1989-99 Advanced Engineering Software (aes) Ver. 7.0 Release Date: 01/01/99 License ID 1269 Analysis prepared by: MDS CONSULTING Planners * Engineers * Surveyors 17320 Redhill Avenue, Suite 350 Irvine, CA 92614 ************************** DESCRIPTION OF STUDY ************************** * TENTATIVE TRACT NO. 30043 * Q100 / 24 HOURS STORM * GC2 AREA **#**#**#***#********#*##****#*****#*******##*##*****#********#**#*******# FILE NAME: C:\AES99\HYDROSFT\FLOODX\30043\GC2UH.100 TIME/DATE OF STUDY: 10:55 01/17/2001 #*#*##*#*****#************#**#*******##***#**********##********************* FLOW PROCESS FROM NODE 10.00 TO NODE 20.00 IS CODE = 1 ------------- ---------------------------------------------------------------- »» >SUBAREA RUNOFF (UNIT-HYDROGRAPH ANALYSIS) ««< ---------------------------------------------------------------------------- (UNIT-HYDROGRAPH ADDED TO STREAM #1) WATERCOURSE LENGTH = 1560.000 FEET LENGTH FROM CONCENTRATION POINT TO CENTROID = 1075.000 FEET ELEVATION VARIATION ALONG WATERCOURSE = 10.000 FEET BASIN FACTOR = 0.015 WATERSHED AREA = 17.000 ACRES BASEFLOW = 0.000 CFS/SQUARE-MILE WATERCOURSE "LAG" TIME = 0.063 HOURS CAUTION: LAG TIME IS LESS THAN 0.50 HOURS. THE 5 -MINUTE PERIOD UH MODEL (USED IN THIS COMPUTER PROGRAM) MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES. DESERT S -GRAPH SELECTED UNIFORM MEAN SOIL-LOSS(INCH/HOUR) = 0.065 LOW SOIL -LOSS RATE PERCENT(DECIMAL) = 0.850 MINIMUM SOIL -LOSS RATE(INCH/HOUR) = 0.032 USER -ENTERED RAINFALL = 5.00 INCHES RCFC&WCD 24 -Hour Storm (15 -Minute period) SELECTED RCFC&WCD DEPTH -AREA ADJUSTMENT FACTOR(PLATE E-5.8) = 1.0000 UNIT HYDROGRAPH TIME UNIT = 15.000 MINUTES UNIT INTERVAL PERCENTAGE OF LAG -TIME = 394.570 RUNOFF HYDROGRAPH LISTING LIMITS: MODEL TIME(HOURS) FOR BEGINNING OF RESULTS = 10.00 MODEL TIME(HOURS) FOR END OF RESULTS = 18.00 UNIT HYDROGRAPH DETERMINATION ---------------------------------------------------------------------------- INTERVAL "S" GRAPH UNIT HYDROGRAPH NUMBER MEAN VALUES ORDINATES(CFS) ---------------------------------------------------------------------------- 1 64.580 44.258 2 97.840 22.793 3 99.964 1.456 4 99.986 0.015 5 99.996 0.007 6 100.000 0.002 TOTAL STORM RAINFALL(INCHES) = 5.00 TOTAL SOIL-LOSS(INCHES) = 1.41 TOTAL EFFECTIVE RAINFALL(INCHES) = 3.59 ---------------------------------------------------------------------------- TOTAL SOIL -LOSS VOLUME(ACRE-FEET) = 1.9938 TOTAL STORM RUNOFF VOLUME(ACRE-FEET) = 5.0867 ---------------------------------------------------------------------------- 2 4- H O U R S T 0 R M R U N O F F H Y D R O G R A P H ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- HYDROGRAPH IN FIVE-MINUTE UNIT INTERVALS(CFS) (Note: Time indicated is at END of Each Unit Intervals) ---------------------------------------------------------------------------- TIME(HRS) ---------------------------------------------------------------------------- VOLUME(AF) Q(CFS) 0. 5.0 10.0 15.0 20.0 10.083 1.3879 4.81 QV , 10.167 1.4211 4.81 Q V 10.250 1.4542 4.81 Q V 10.333 1.4820 4.04 Q .V 10.417 1.5098 4.04 Q .V , 10.500 1.5376 4.04 Q . V 10.583 1.5728 5.11 Q V 10.667 1.6080 5.11 Q V 10.750 1.6432 5.11 Q V 10.833 1.6824 5.70 Q V , 10.917 1.7216 5.70 Q V , 11.000 1.7609 5.70 Q V , 11.083 1.7989 5.53 Q V , 11.167 1.8370 5.53 Q V 11.250 1.8751 5.53 .Q V 11.333 1.9125 5.43 Q V , 11.417 1.9498 5.43 Q V 11.500 1.9872 5.43 Q V 11.583 2.0216 5.00 Q. V 11.667 2.0561 5.00 Q. V 11.750 2.0905 5.00 Q. V 11.833 2.1249 5.01 Q V 11.917 2.1594 5.01 Q V 12.000 2.1939 5.01 Q V 12.083 2.2398 6.67 Q V 12.167 2.2857 6.67 Q V 12.250 2.3317 6.67 Q V . 12.333 2.3848 7.71 Q V 12.417 2.4379 7.71 Q V. 12.500 2.4910 7.71 Q V. 12.583 2.5484 8.33 Q V 12.667 2.6058 8.33 Q V 12.750 2.6632 8.33 Q V 12.833 2.7238 8.81 Q .V 12.917 2.7845 8.81 Q .V 13.000 2.8451 8.81 Q . V 13.083 2'.9144 10.06 Q V 13.167 2.9836 10.06 Q V 13.250 3.0529 10.06 Q V 13.333 3.1262 10.65 .Q V 13.417 3.1996 10.65 .Q V 13.500 3.2729 10.65 .Q V 13.583 3.3298 8.27 Q V 13.667 3.3867 8.27 Q V 13.750 3.4437 8.27 Q V 13.833 3.4921 7.03 Q V 13.917 3.5405 7.03 Q V 14.000 3.5888 7.03 Q V . 14.083 3.6429 7.85 Q V . 14.167 3.6969 7.85 Q V. 14.250 3.7510 7.85 Q V. 14.333 3.8067 8.09 Q V. 14.417 3.8624 8.09 Q V 14.500 3.9182 8.09 Q V 14.583 3.9734 8.02 Q V , 14.667 4.0287 8.02 Q V 14.750 4.0840 8.02 Q V 14.833 4.1377 7.81 Q V 14.917 4.1915 7.81 Q V 15.000 4.2453 7.81 Q V 15.083 4.2968 7.49 Q V 15.167 4.3484 7.49 Q V 15.250 4.4000 7.49 Q V 15.333 4.4492 7.16 Q V 15.417 4.4985 7.16 Q V 15.500 4.5478 7.16 Q V 15.583 4.5903 6.16 Q V 15.667 4.6327 6.16 Q V 15.750 4.6752 6.16 Q V 15.833 4.7145 5.71 Q V 15.917 4.7539 5.71 Q V 16.000 4.7932 5.71 Q V , 16.083 4.8096 2.38 Q V 16.167 4.8260 2.38 Q V 16.250 4.8423 2.38 Q V . 16.333 4.8470 0.68 .Q V , 16.417 4.8517 0.68 .Q V , 16.500 4.8564 0.68 .Q V , 16.583 4.8589 0.36 Q V . 16.667 4.8614 0.36 Q V . 16.750 4.8639 0.36 Q V , 16.833 4.8656 0.26 Q , V , 16.917 4.8674 0.26 Q V , 17.000 4.8692 0.26 Q V , 17.083 4.8741 0.70 Q V . 17.167 4.8789 0.70 Q V , 17.250 4.8838 0.70 Q V , 17.333 4.8903 0.94 Q V , 17.417 4.8968 0.94 Q V , 17.500 4.9033 0.94 Q V 17.583 4.9100 0.97 Q V . 17.667 4.9166 0.97 Q V . 17.750 4.9233 0.97 Q V . 17.833 4.9285 0.76 Q V . 17.917 4.9338 0.76 Q V . 18.000 4.9390 0.76 Q V . END OF FLOODSCx ROUTING ANALYSIS s L CCI = CENTROID 500' DEVELOPMENT CORPORATION 55-920 PGA Boulevard (760) 564-8000 la Quint:, CA 92259 FAX (760) 564-8005 PREPAREfI BY MO!Si 7v7" III A—"57 2a O.:na C4 ,1257 !OlIiH 0 5 i M V -. v.i.: 760-771 4013 FAX: 7b M -W73 PLANNIMS INGINIIRS SURVEYORS ' LAKEA2 TOS: 17~0 =AC. WF vtitUA -REQ -' 6.0 AC -FT 45.5 . Al TOT =20.0 AC. + A21 =7.34 AC. 1 + VOLUME REO. T 2.2 AC -FT A--22 =2.56 AC: - —�- { VOLUME REO. �� 0.77 AC—Ff 11 A 24 =5,34 AC. j A 23 =1.76 AC. —' VOLUMREQ. VOLUME REO. ISA -FT :. -T- 0.53 AC-Ff CALLS TAMPICO 0 100 200 400 800 LEGEND TRIBUTARY AREA RETENTION BASIN, LAKE PREPARED FOR: DEVELOPMENT CORPORATION 55-920 PGA Boulevard (760) 564-8000 la Quint:, CA 92259 FAX (760) 564-8005 PREPAREfI BY MO!Si 7v7" III A—"57 2a O.:na C4 ,1257 !OlIiH 0 5 i M V -. v.i.: 760-771 4013 FAX: 7b M -W73 PLANNIMS INGINIIRS SURVEYORS 1W HYMOGIUM ANALYSIS TENTATIVE TACT No. 30043 CRY OF LA QMTA 1:/51328/HYDRO/UNlTLHYD 01 /1 7/200