Loading...
Travertine Madson Ext. at Dike 4TABLE OF CONTENTS I. Introduction ........................................................................................ ..............................A II. Watershed Descriptions ...................................................................... ..............................2 III. Review of Past Studies .........................:................................:............ ........:.....................3 A. December 2006 PACE Report ............................................................ ...............:......::....... 3 B. June.2002 PACE Technical Memorandum .......................................... ........................... ..... 4 IV. Hydrologic Parameters and Methodology .....................................:.... ......................:......4. V. Existing .Condition -100 -Year and Standard Project Peak Flow Rates ................:..........:7 VI. Debris Production Volumes........... ..................................................... .............................:7 VII. Comparison of Results to "Past Studies ............................................. ..............:...............9 . A. December.2006 PACE Report ............................................................ ................ .......:........ 9 B. June 2002 PACE Technical Memorandum ....................................... ............................... 10 VIII. Conclusion .......................................................................................... .............................12 IX. Figures ................................................................................................ ....... :.....................14 X. 'Technical Appendices (Compact Disk) ............................................. ............................:15 XAPmjsds11018 01001E%%TwhDocslReports \1018 0100- HVD_Rpt 060209.aoc 1 1 1 1 I. Introduction The proposed Travertine %Development (Development) is. located in the City of La- Quinta . (City), in Riverside 'County, California. � The .Development is located upstream of Dike. . No. 4 (Dike) of "the Western .Dike System. Generally, the Development: is bounded on the. west -and -east by the respective southerly projections- of Jefferson and Madison:: Streets as they pass over the Dike. The northerly limit of the_- Development is denoted by the southerly training dike of the Guadalupe Dike System. The southerly limit of the.. Development is denoted by the westerly projection of Avenue 64 beyond the Dike-. The -total area of the proposed Development will comprise approximately 960 acres.. 'The future extension of Madison Street to the south, from its present point of terminus, will cross the Dike and will comprise a footprint area of approximately 21 acres. This . extension and the associated roadway. embankment will bifurcate the .Dike's impoundment into-areas located. to the west and the .east of the proposed Madison Street alignment. It is therefore a requirement of the Madison Street extension project that adequate flow. capacity be provided through the -Madison Street embankment. such that.future westerly-and easterly impoundment areas equalize into a balanced water surface without excessive backwater-forming on ether side of the roadway embankment. Both of.the aforementioned projects are located within the City of La Quinta as shown in Figure 'l, Vicinity Map, .and will be affected by flooding /flood:flows that are tributary to the Dike. Therefore, flooding /flood flow management plans will ultimately need to be° developed for bothprojects .to manage flooding /flood flows and debris flows under post project conditions. Flooding /flood flows that are tributary to the Dike originate in four major canyons, namely .Devil; Middle -North, Middle- South, and Toro Canyons. Flooding /flood flows from these canyons progress .through their respective apexes, continue downstream over alluvial fans, and are impounded within the Dike's impoundment area. As such, the Madison Street extension projectwill be affected by flooding /flood flows from all four canyons. The proposed Development is located upstream of the Dike's impoundment area and is situated on 'the alluvial fans of Devil, Middle- North, and Middle -South Canyons. Toro Canyon and its downstream alluvial fan are located .to the south of the Development site. Furthermore, the lowest elevation .within the proposed Development site is higher .than the crest of the Dike. Both the . Dike and the Guadalupe Dike System are Federal Emergency Management Agency (FEMA) certified levees. Both are owned by the US Bureau of Reclamations and are operated and maintained by,the Coachella Valley Water District (CVWD) on behalf of the US Bureau of 'Reclamations. Furthermore, The City is located within the CVWD Stormwater Unit Boundary. As such, CVWD is the regional flood control agency for that portion of Riverside County that is inclusive of the City. Therefore, both City.and CVWD approval of proposed flooding /flood flow management plans for.both projects is required. . X: 1Pmjeds \1018_01001EngkYechDodlReports 11018_0100- HYD_Rpt 060208.doc 1 1 r A This report presents detailed hydrology and debris production analyses to define the 100 -year and Standard Project Flood (SPF) peak flow rates, volumes, and debris. production volumes of flooding /flood flows at the apexes of the alluvial fans tributary to.. . the proposed Development and the future Madison Street extension project at Dike No. 4. As such, 100 -year and SPF flow and debris production data will be. presented for the Devil Canyon, Middle -North, .Middle- South, and Toro Canyons alluvial fan apexes. Flow p�y rate analyses have been performed in accordance with the methodologies described in the joint City /CVWD letter dated March 9, 2009 and revised via e-mail on March. 1T. 2009. t I _.. � "I � I � i _' � III IH Upon approval of the technical analyses and results presented in this report (Report No. R -1), subsequent reports will be prepared in accordance with the approved Project Plan. These reports are summarized in Table 1, below. . Table 1 Anticipated Subsequent Technical Reports Report . No.. Report Title Submittal Schedule R -2 .Existing Condition Off -site Flood Risk Assessment Report Upon R -1 Report Approval R -3 - Travertine Development Conceptual Flood Control Report Upon R -2 Report Approval R-4 Madison Street Off -Site Runoff Management Facilities Design Report Upon R -3 Report.Approval The overall purpose of this report, and the subsequent R -2 and R -3 Reports listed in Table 1, is to obtain approval of the proposed amendment to the Specific Plan for the Travertine Development, SP 94 -026. The purpose of the R -4 Report is to gain approval of . the Madison Street extension project at Dike No. 4. Approval of both projects is contingent upon the successful demonstration that both projects are in compliance with W CVD, City, FEMA, and California Drainage Law requirements during a SPF and 100 - year flooding from the alluvial fans as well as when floodwaters are impounded behind the Dike. II. Watershed Descriptions A review of the USGS topography maps resulted in the delineation of four major watersheds that are tributary to Dike No. 4. Figure .2 shows the locations of these watersheds in relationship to the proposed Development, the proposed Madison Street . Extension Project, and Dike No. 4: Descriptions of these watersheds. are provided. below. • Devil Canyon — This canyon comprises 7.7 square miles. and has a streambed length of 5.4 miles from its headwaters to its alluvial fan apex. Devil Canyon and its internal tributary, the Guadalupe. Creek Canyon, exits the Santa Rosa Mountains on to an alluvial fan that distributes alluvium on to the valley floor downstream of the canyon apex. XTmjecls1 1018_ 0100IEMITechDocMepons 11018_0100+rM_PW_0=08.doc 2 D I I Middle - -North Canyon - This canyon is located to. the south of Devil Canyon and.. comprises a watershed area of 1.2 square miles. :Its streambed length measures 3.3 miles between the canyon headwaters and the apex of the downstream 1 : alluvial fan: • Middle = South - Canyon The. next canyon to the. south of Middle -North Canyon is Middle -South Canyon-, which consists of a 6.2 square -mile watershed and a streambed length of 5.6 miles as measured between the canyon headwaters and the apex of the downstream alluvial fan*. Toro Canyon — The southerly -most watershed is Toro Canyon. Toro Canyon comprises a watershed of 5.0 square -miles and a streambed length of 4.9 miles as measured between the canyon headwaters and the apex of the downstream alluvial fan. . Under pre- Development conditions flooding /flood flows from Devil, Middle -North, and Middle -South Canyons would pass into the Development site as alluvial fan flow. As this flow progresses through the pre- Development site, alluvial fan flow would persist as it r crosses the downstream (easterly) Development boundary. Downstream of the Project site, flooding /flood flows from all four canyons, including Toro Canyon, combine within the impoundment area of Dike No. 4. This impounded flooding /flood' flow volume and the associated debris volume will affect the proposed Madison Street Extension Project. III. Review of Past Studies The preparation of this report referenced two previously prepared reports. The contents of these reports have been reviewed and accepted by the CVWD as representative of the hydrologic conditions in the La Quinta area under the various project scenarios that they define. These reports are listed below. A. December 2006 PACE Report In December of 2006, Pacific Advanced Civil Engineering, Inc. prepared a Hydrology Report entitled "Coral Canyon (TTM #334444) Guadalupe Training Dike Analysis" prepared for Lowe Enterprises (PACE Report). The Coral Canyon project is located north of the Travertine Development and the Guadalupe Dike. The PACE Report contains hydrologic and hydraulic analyses of the Guadalupe Dike System, which consists of the Guadalupe Dike, the parallel training dike located along the northerly Project boundary, and Dike No. 3 of the Guadalupe Dike System. The purpose of the PACE Report was to determine if the Guadalupe Dike System could be certified by CVWD and the Federal Emergency Adi Management Agency (FEMA) as a flood control levee structure. it XTmjeds1 1010_ 01001 En01TechDopXReports11018_0100, I Rpt_060209.doc 3 A ti e M li � 1, i 4- This report was approved by the Coachella. Valley Water District and was submitted to The. Federal - Emergency Management Agency for review and.. - .. approval. B. June .20.02 PACE Technical Memorandum In June 2002, Pacific Advanced Civil Engineering, Inc. (PACE) finalized. a technical memorandum entitled "Technical Memorandum for West Dike System Dike #4 storage analysis" (PACE 'Technical Memorandum). The PACE Technical Memorandum was prepared for the Coachella Valley Water District and defined the 100 -year and Standard Project Flood maximum impoundment water surface elevations upstream .of. Dike #4. The purpose of the PACE Technical Memorandum was to obtain certification of Dike No. 4 from CVWD and FE MA. IV. Hydrologic Parameters and Methodology In response to previous hydrology and hydraulic report submittals the City and .CVWD issued a joint .letter dated March 9_2009, which was subsequently revised. via e-mail on March 17, 2009 (March Letter). The March Letter specified the methodology to be used to compute the 100 - year.and SPF peak discharges and volumes of the. flooding /flood flows at the alluvial fan apexes located downstream of each of the four major canyons. . The March Letter also provided some indication of the hydrologic parameters to be used in these computations. The specified methodology was considered during the preparation of this report and was deemed appropriate for use in developing hydrologic model of the tributary watersheds. The following paragraphs present hydrologic variables and computational methodology that were employed in the preparation of this report. Where applicable, the stated variables and methodology are consistent with the requirements of the .City /CVWD March Letter. Watershed Boundaries Hydrologic boundaries for the four off -site watersheds were based on the topographic contour lines as depicted on USGS topographic maps. The downstream concentration point for each canyon is intended to denote the location of the apex of the downstream alluvial fan. Figure .2 shows the four watersheds, their respective boundaries, and the apexes of the downstream alluvial fans. Loss Rates The soils in the canyon watersheds can be characterized as mainly rock outcrops with minor amounts of alluvial material situated along the bottom of internal watershed flow X1Pmjeds ll D,0_0,001EngITediDomIReports%1018 0100. _RP+_060209.aoc. 4 it The 100 -year peak flooding /flood flow rate computations were based on rainfall depths that were obtained from the National Oceanic and Atmospheric Administration's (NOAH) Rainfall Atlas 14. A weighted. average rainfall depth for each canyon was obtained by overlaying the NOAA 14 1.00 -year isohyetals for a given storm duration. on to the watershed map. The component. watershed area tributary to each isohyetal line of uniform precipitation depth was then measured. The weighted average precipitation depth was then computed for the overall watershed. In all, a weighted average precipitation depth was obtained for each of the four canyons for the 5- minute, 15- minute, '1 -hour, 2 -hour, 3 -hour, and 6 -hour duration, 100 -year storm events. Figures 3 X\Projecta \1018 0100\ ElglTechDoeslReports \1018_0100•HYD_Rpt_060200.doc paths. The. associated' vegetation cover within the .watershed generally consists of . sparse desert: vegetation. The March Letter, recommended a constant loss.-rate of 0.1 inches /hour for this type of and mountainous terrain, which was :subsequently used for the preparation of this report. While not specifically mentioned in the March Letter, an initial abstraction loss rate of 0.0 inches was incorporated into the runoff computations. Lag Time Watershed lag times were computed based on the standard lag time equation as developed by the US Army Corps of Engineers. The .equation uses the --physical . characteristics of a watershed to derive an empirical lag time. .Streambed lengths. and slopes were obtained by following the longest flow course within each watershed as defined by the USGS contours. Watershed centroids were determined by CADD -based anal sis of the areas enclosed within. the watershed boundaries. Streambed.Mannin 's Y Manning 's or roughness coefficients, for.each canyon were assumed to increase. between the downstream canyon terminus and the canyon headwaters. The variables. used. in'' n the lag time analyses are summarized in Table 2 below. Figure 2 shows the four - watersheds and supports the sources of the applied lag time data. Table 2 Lag Time Input Variables Lag Time Variables Longest Longest Flow Path Apex Top Bottom Flow Path Flow Path Centroid Flow Path Node Area Elev. Bev. Length Slope Distance Weighted Canyon No. (Mi) (MSL) (MSL) (Mi) (Ft/Mi) (MI) n -value Devil APEX1 7.7 6,100 600 5.4 1018 2.4 0.048 Middle -N APEX2 1.2 5,000 600 3.3 1333 1.2 0.045 Middle -S APEX3 6.2 6,360 320 5.6 1078 3.0 0.045 Toro APEX4 5.0 4,440 70 4.9 892 2.3 0.042 ' Rainfall Depth it The 100 -year peak flooding /flood flow rate computations were based on rainfall depths that were obtained from the National Oceanic and Atmospheric Administration's (NOAH) Rainfall Atlas 14. A weighted. average rainfall depth for each canyon was obtained by overlaying the NOAA 14 1.00 -year isohyetals for a given storm duration. on to the watershed map. The component. watershed area tributary to each isohyetal line of uniform precipitation depth was then measured. The weighted average precipitation depth was then computed for the overall watershed. In all, a weighted average precipitation depth was obtained for each of the four canyons for the 5- minute, 15- minute, '1 -hour, 2 -hour, 3 -hour, and 6 -hour duration, 100 -year storm events. Figures 3 X\Projecta \1018 0100\ ElglTechDoeslReports \1018_0100•HYD_Rpt_060200.doc 1 1 through 8 present the NOAA .14 100 -.year. isohyetal overlays for the :above= stated . duration onto the watershed maps of the. canyons. Table 3 presents: the weighted average rainfall depths as computed for each canyon 'and entered into the hydrologic model. I� r Rainfall Distribution The 100 -year rainfall distribution was based on a synthetic storm approach. The distribution used the alternating block method to place the highest incremental rainfall depth at the center of a 6 -hour duration storm event with a 5- minute computation interval. The rainfall distribution was performed internal to the HEC -1 software by.. means of an internal subroutine denoted by the use of PH- Cards. The PH -Cards accept the weighted average 5- minute, 15- minute, 1 -hour, 2 -hour, 3 -hour, and 6 -hour duration rainfall depths. for each canyon and HEC_ =1 develops and applies the resulting hyetograph. X\PMjedSII 01801 001Erg1TeChD =\Reports11018_01006 I Rpt_080200.doc 6 Table '3 NOAA 14 Weighted Average 100 -Year Rainfall Depths Apex Node Area 5- Minute 15- Minute 1 -Hour 2 -Hour 3 -Hour 6 -Hour Canyon No. (Mi2) (in) (in) (in) (In) (in) (in) " Devil APEX1 7.7 0.77 - 1.47. 2.45 3.02 3.27 4.02 Middle -N APEX2 1.2 0.74- 1.39 2.31 2.87 3.12 3.78 4 Middle -S APEX3 6.2 0.78 1.46 2.43 2.96 3.22 3.99 .Toro APEX4 " 5.0 0.74. 1.39 2.31 2.79 .3.04. 3.77 The SPF rainfall depth was that of the 6 -hour Indio storm event of September 1939. The rainfall depth for this .event was 6.45 inches. Computer -Based Analyses The synthetic unit hydrograph method of analysis was used to determine peak flooding /flood flow rates. The analyses were performed with the U.S. Army Corps of Engineers' LAPRE -1 and HEC -1 software, which were designed to accept watershed ja data and to perform synthetic unit hydrograph computations. S -Grp . The Whitewater River dimensionless unit hydrograph (S- Graph), as encoded within the LAPRE -1 program, was used for all hydrograph computations. The Whitewater River S- Graph is an average of 9 local S- graphs specific to Southern California. The use of this S -Graph was suggested in the March Letter. 1>f . I� r Rainfall Distribution The 100 -year rainfall distribution was based on a synthetic storm approach. The distribution used the alternating block method to place the highest incremental rainfall depth at the center of a 6 -hour duration storm event with a 5- minute computation interval. The rainfall distribution was performed internal to the HEC -1 software by.. means of an internal subroutine denoted by the use of PH- Cards. The PH -Cards accept the weighted average 5- minute, 15- minute, 1 -hour, 2 -hour, 3 -hour, and 6 -hour duration rainfall depths. for each canyon and HEC_ =1 develops and applies the resulting hyetograph. X\PMjedSII 01801 001Erg1TeChD =\Reports11018_01006 I Rpt_080200.doc 6 e 100 -Yr, 6 -Hr 100 -Yr, 6 -Hr Standard t i Peak V. Project Flood Project Flood The SPF rainfall distribution pattern is equivalent :to the 6 -hour precipitation distribution . that is _ published in the .Riverside County Hydrology Manual (Plate E -5.9, Note 1). The.. . incremental distribution percentages were entered into PI -Cards which are used by HEC -1 to incrementally .distribute the 6.45 rainfall depth over a 6 -hour duration storm event. .Existing Condition 100 - Year and Standard Project Peak Flow Rates The results of the hydrologic analyses are presented in this section. The . peak flooding /flood flow, rates. reported in this.section represent non - bulked peak discharges from each of the analyzed watersheds. Table 4 presents the computed peak discharges for the four canyons at their respective alluvial fan apexes. Approval of this report and-below-stated flow rates will serve as the basis for subsequent reports. prepared in support..of both projects. Table 4 Results of Hydrologic Analyses VI. .Debris Production Volumes The debris production volumes for each watershed were computed in accordance with the methodology prescribed in the U'S. Army Corps of Engineers, Los Angeles District Debris Method (Debris Method). This method is based on empirical analyses of local southern California watersheds and their associated debris generation volumes following significant storm events. The method recommends the use of equations based on the information known about a considered watershed. For this study, Debris Method Equation 2 was used to compute 100 -year debris volume for each watershed. Equation 2 can be used for watersheds that measure between 3 and 10 square -miles in :size, and for watersheds less than 3 square -miles when the unit peak flow rate is known. The analyses use unit peak flow rate; the watershed area; the average watershed slope as computed along the longest flow path; a fire factor to account for the effects of fire on debris production; and an area- transposition factor. X\Pmjods \1018 01001Eig\TechDocs\Repoft \1018_0100- HYD_Rpt_080209.doc 7 100 -Yr, 6 -Hr 100 -Yr, 6 -Hr Standard Standard Peak Storm Project Flood Project Flood Area Discharge Volume Peak Discharge Storm Volume Canyon Node (M12) (cfs) (Ac -Ft) (cfs) (Ac -Ft) Devil APEX 1 7.7 10,358 1,373 10,347 2,402 Middle -North APEX 1.2 2,194 .203 1,966 374 Middle -South APEX 3 6.2 8,319 1,100 8,240 1,933 Toro APEX 4 5.0 7,058 833 7,122 1,559 VI. .Debris Production Volumes The debris production volumes for each watershed were computed in accordance with the methodology prescribed in the U'S. Army Corps of Engineers, Los Angeles District Debris Method (Debris Method). This method is based on empirical analyses of local southern California watersheds and their associated debris generation volumes following significant storm events. The method recommends the use of equations based on the information known about a considered watershed. For this study, Debris Method Equation 2 was used to compute 100 -year debris volume for each watershed. Equation 2 can be used for watersheds that measure between 3 and 10 square -miles in :size, and for watersheds less than 3 square -miles when the unit peak flow rate is known. The analyses use unit peak flow rate; the watershed area; the average watershed slope as computed along the longest flow path; a fire factor to account for the effects of fire on debris production; and an area- transposition factor. X\Pmjods \1018 01001Eig\TechDocs\Repoft \1018_0100- HYD_Rpt_080209.doc 7 1 1 I� � I , I� 1 For purposes of debris generation, fires within the watershed would not significantly alter. the debris generation characteristics of the canyons given their highly rocky makeup .and sparse vegetation.- Therefore, the effects of . watershed fires and their reoccurrence: within the canyons were minimized by, using a Fire Factor of 3.0 .within: the .debris generation calculations. The area - transposition factor was determined based on Technique 4 as stated in Appendix B, Table B -1, of the Debris Method publication. 'This method rates four sub- factors and assigns a fractional area - transposition value to each sub - factor. The sum of, the four fractional area - transposition values is then used as the area- transposition factor for the analyses and was determined to have a value of 0.84. The sub- factor area- transposition values were determined as follows: .0 - Parent.Material Sub - Factor= 0.15 [Moderate Folding, Faulting, Fracturing, and Weathering] • Soils Sub - Factor = 0.25 [Non- Cohesive, Minimal Soil Profile, Much Bare Soil, Few Clay Colloids] • -Channel Morphology = 0.19 [Some Segments in Bedrock, 10 % -30% Banks Eroding, Non - Cohesive Bed and Banks, Poorly Vegetated, Few Headcuts] • , Hill Slope Morphology = 0.25 [Many and Active Rills and Gullies, Many Mass Movements Evident, Many Eroding Debris Deposits] The results of the debris production calculations are summarized in Table 5 below. Printouts of calculations are included in the technical appendices of this report. Table 5 Computed Debris Volumes Travertine Development X:1 Projects% 1018 _01001En9%TechDOw\Repoi1s1101 B-01 00-HYDLRpLO60209.doc 8 100 -Yr, 6 -Hr Standard Project Flood Area Slope Debris Volume Debris Volume Canyon Node (Mi2) (Ft/Mi) (Ac -Ft) (Ac -Ft) Devil APEX 1 7.7 1018 461 461 Middle -North APEX 2 1.2 1333 100 91 Middle -South APEX 3 6.2 1078 379 376 Toro APEX 4 5.0 892 286 288 X:1 Projects% 1018 _01001En9%TechDOw\Repoi1s1101 B-01 00-HYDLRpLO60209.doc 8 VII. i I ., I! Comparison of Results to Past Studies -As:stated intSection III of this report; two previous studies have been performed.for the watersheds tributary to Dike No: 4. This section summarizes the flooding /flood flow rate and debris production results of these previous studies and also provides the results of the analyses performed for the preparation of this report for comparative purposes. A. December.2006 PACE Report Pacific Advanced Civil Engineering, Inc. (PACE) prepared a Hydrology Report entitled "Coral Canyon (TTM #33444) Guadalupe Training Dike Analysis" for Lowe Enterprises. The purpose of the PACE Report was to determine if the Guadalupe Dike System could be certified. by CVWD and the Federal Emergency Management Agency (FEMA) as a flood control levee structure. The report computed 100 -year and SPF peak flow rates and debris volumes at the Devil Canyon alluvial fan apex. . Table 6 below summarizes the. PACE Report results along side the results obtained from the analyses prepared as a part of this report. Table 6 PACE Report Comparison of Results Results This PACE Report Canyon Comparative Element Report Results Devil Watershed Area 7.7 Mil 7.8 Mil 100 -Year, 6 -Hr Peak Discharge 100 -Year Debris Production Volume SPF Peak Discharge 10,358 cfs 4,545 cfs 461 Ac -Ft 63 to 182 Ac -Ft* 10,347 cfs 9,384 cfs SPF Debris Production Volume 461 Ac -Ft 63 to 182 Ac -Ft* * Converted to acre -feet from original results in tons. A review of Table 6 indicates differences between the results of this report and those included in the Pace Report for Devil Canyon. These differences can be attributed to the following factors: 1. The PACE Report used 100 -year rainfall data obtained from National Oceanic and Atmospheric Administration (NOAA) Atlas 2 as published in 1973. This data has subsequently been updated by NOAA in the form of NOAA Atlas 14. The NOAA Atlas 2, 100 -year, 6 -hour point precipitation depth is reported as 3.07 inches in the PACE Report. The weighted .average NOAA At 14, 100 -year, 6 -hour point precipitation depth for Devil Canyon, as computed for this report, is 4.07. inches, or an increase in of approximately 33 percent. The higher NOAA Atlas 14 rainfall depth contributes to the higher 100 -year peak discharge as noted in Table 6 above. XXPoojeds11019 0100 1Erg1 TechDow1Reports11018 _010D-HYD_Rpt_060209.doc 9 2-. The PACE .Report used a 100 -year rainfall distribution pattern for the 100 - year -&hour storm that differs from. the distribution .pattern used, in the preparation of this report. The 100 -year, 6 -hour results obtained in this report used the alternating block method to place the highest incremental rainfall depth at the center of a 6 -hour duration storm event as specified in the March Letter. This difference in distribution patterns probably contributes to the higher '100 -year peak discharge rate for Devil Canyon as computed for this report. 3. The difference in computed debris volumes can be partially attributed to differences in computational methodology. The PACE Report used the MUSLE and Tatum. methods of computation. Both these methods resulted in lower reported computed debris volumes for Devil Canyon than those obtained in this report by the U.S. Army Corps of Engineers, Los Angeles District Debris Method..Furthermore, all three. computational procedures are dependent upon the computed peak discharge. Therefore, a higher computed peak discharge will generally result in a relatively higher debris yield, as rioted in the results of this report. B. June 2002 PACE Technical Memorandum Pacific Advanced . Civil Engineering, Inc. (PACE) finalized a technical memorandum entitled "Technical Memorandum for West Dike System — Dike #4 storage analysis" (PACE Technical .Memorandum) in June 2002. The PACE Technical Memorandum was prepared for the Coachella Valley Water District and defined the 100 -year and Standard Project Flood maximum impoundment water surface elevations upstream of Dike #4. The purpose of the. PACE Technical Memorandum was to obtain certification of Dike No. 4 from CVWD and FEMA. The PACE Technical Memorandum included 100 -year, 6 -hour and SPF hydrograph and debris production volume computation for Devil, Middle, and Toro Canyons. However, the watershed models in the PACE Technical Memorandum included . the alluvial fan area and the minor canyons located downstream of the alluvial fan apexes so that the watersheds would extend downstream to Dike No. 4. Furthermore, the Middle Canyon analyses combined both Middle -North Canyon and Middle -South Canyon into a single watershed. Table 7 below summarizes the PACE Technical Memorandum results alongside the results obtained from the analyses prepared as a part of this report. . . K1Projede1 1018 _01001Eng \TechDocsUteports\1019 0100+IYD_Rpt_060209.dot 10 Table 7 PACE Technical Memorandum. Comparison of Results Results This PACE Technical., Canyon Comparative Element . Report Memo Results*** Devil Watershed Area 7.7 Mi? 10.2 Mil 100 -Year, 6 -Hr Peak Discharge 10,358 cfs 4,043 cfs 100 -Year Debris Production Volume 461 Ac -Ft 200 Ac -Ft SPF Peak Discharge 10,347 cfs 9,032 cfs SPF Debris Production Volume 461 Ac -Ft 395 Ac =Ft Middle N&S Watershed Area 7.4 Miz * 9.2 Mil. 100 -Year, 6 -Hr Peak Discharge 9,609 cfs *" 3,952 cfs 100 -Year Debris Production Volume 479 Ac -Ft * 206 Ac -Ft SPF Peak Discharge _ 9,803 cfs *" 8,618 cfs SPF Debris Production Volume 467 Ac -Ft * 400 Ac -Ft Toro Watershed Area 5.0 Mil 8.3 Mil 100 -Year, 6 -Hr Peak Discharge 7,058 cfs 4090 cfs 100 -Year Debris Production Volume 286 Ac -Ft 192 Ac -Ft SPF Peak Discharge 7,122 cfs 8,372 cfs SPF Debris Production Volume 288 Ac -Ft 353 Ac -Ft * Summation of Middle -North and Middle -South Canyon data from this report. ** Summation of Middle -North and Middle -South Canyon hydrographs from this report (not peak - to- peak). **" Inclusive of alluvial fan and minor canyon area downstream of.alluvial fan apexes. A review of Table 7 indicates differences between the results of this report and those included in the Pace Technical Memorandum. The factors that affected these differences are similar to those that affected the differences between this report and the PACE Report (as described above) and include the following: 1. The watershed. models in the PACE Technical Memorandum included the alluvial fan areas and the minor canyons located downstream of the alluvial fan apexes. This report analyzed the watersheds tributary to the alluvial fan apexes in accordance with the final Project Plan (see Technical Appendices). This difference accounts for the larger watershed areas that are reported in the PACE Technical Memorandum. 2. The PACE Technical Memorandum used 100 -year rainfall data obtained from NOAA Atlas 2 as . published in 1973. This data has subsequently been updated by NOAA in the form of NOAA Atlas 14. The NOAA Atlas .2, 100 - year, 6 -hour point precipitation depth is reported as 2.74 inches in the PACE Technical Memorandum. The weighted average NOAA Atlas 14, 100 -year, 6 -hour point precipitation depth for the four canons analyzed in this report XTmJectMI01B 01001Erg%TechDocs%Reports \1019_01 00- HYD_Rpl_060209.doc 11 range from 3.77 to 4.02 inches or an average increase of approximately 42 %. The. higher NOAA Atlas 14 rainfall depth would result in higher 100 -year peak discharges as indicated in Table 7 above. 3. The PACE Report used a 100 =year rainfall distribution .pattern for the 100 year 6 -hour storm that differs from the distribution pattern used in the preparation of this report. The 100 -year, 6 -hour distribution pattern used for the preparation of this report considered the alternating block method to place the highest incremental rainfall depth at the center of a 6 -hour duration storm event as specified in the March Letter. This difference in distribution patterns probably contributes to the higher 100 -year peak discharge rate -for each of, the canyons analyzed in this report. 4. The difference in computed debris volumes can partially be attributed to differences in the computational results for peak discharges. Both studies, used the U.S. Army Corps of Engineers, .Los Angeles. District Debris Method, which is dependent upon, and somewhat proportional to, the computed peak discharge for each canyon. Therefore, a higher computed peak discharge will generally result in a relatively higher debris yield, as noted in the results of this report. VIII: Conclusion This report presents detailed hydrology and debris production analyses that define the 100 -year and Standard Project Flood (SPF) peak flow rates, storm volumes, and debris production volumes for flooding /flood flows at the apexes of the four alluvial fans that are tributary to the proposed Development and the future Madison Street Extension Project at Dike No. 4. 100 -year and SPF flooding /flood flows and debris production values are presented for the Devil Canyon, Middle -North, Middle- South, and Toro Canyons alluvial fan apexes. Flow rate analyses have been performed in accordance with the methodologies described in the joint City /CVWD letter dated March 9, 2009 and revised via e-mail on March '17, 2009. This report seeks to finalize 100 -year and SPF flooding /flood flow peak discharges, flow volumes, and debris production volumes for use in the preparation of subsequent technical reports as described in the Project Plan. A summary of the results of Jhis. report is provided in Table 8 below. X\Projeds\ 1018_ 0100\ Erg \TechDocs\Reports\101 B_0100- HYD_Rpt_060209.doc 12 Table 8 Summary of Results Peak Discharges, Flow Volumes, and Debris Production Volumes X\PmJects\1018_01001Eng\TedOocs% Reports 11018_0100•HYD_Rpt_080209.dw 13 100 -Yr 100 -Yr 100 -Yr 6 -Hr 6 -Hr 6 -Hr SPF SO SPF Area Peak Storm Debris Peak Storm Debris Canyon Node (Mi2) Discharge Volume Volume Discharge Volume Volume (cfs) (Ac -Ft) (Ac -Ft) (cfs) (Ac -Ft) (Ac -Ft) Devil APEX 1 7.7 10,358 1,373 461 10,347 2,402 461 Middle- North. APEX 2 1.2 2,194 203 100 1,966. • 374. 91 Middle -South APEX 3 6.2 8,319 1,100 379 8,240 .1,933 376 Toro APEX 5.0 7,058 833 286 7,122 1,559 288 X\PmJects\1018_01001Eng\TedOocs% Reports 11018_0100•HYD_Rpt_080209.dw 13 r J I� IX.' Figures Figure 1 - .Vicinity Map. Figure 2 — Hydrology Map' Figure 3 — Rainfall Map,.100 -Yr Win Figure 4 Rainfall Map, 100 15Min — -Yr Figure 5 — Rainfall Map, 100 -Yr 1 Hr Figure 6 — Rainfall Map, 1.00- Yr.2Hr Figure.? - Rainfall Map, 100 -Yr 3Hr Figure 8 — Rainfall Map, 100 -Yr 6Hr Xlpmjeds\ 1018_ 01001EmiTeehD =Reporte11016_0100.H _RM_080200.dw 14 . �a W. u V yO it r r �r r r i +r �r r■� r �r �r �r r r r wr �r �r L �o z n D r r 0 0 CA z _ x 9 W L �o z n D r r 0 0 CA z _- - - - - - - - -- .. __ _ _ _. __ __ .e.. _- - �.,. _- i - - . I - � I I - , . -M �m m,-.m, :M, m m- m - m M, M, I � �m ­m 'm ma , M, m �, ift'..''m . . - fl�,:".", ,� , . , I �. '�,., p q! OST41 is ._i � . , , U - --- " , - 1 WN =400, , . � , , . I _ - . F ", ,,, I .. � ` I %�. -, . . : , , , , , 1. _�.. 1: - v X��",.,�.,�'� �.,,, " . .. "I.. .� 1-'1_F,.­'�: -, -, ..." ., _. il -1120 5.".- li�, -i-, .. � I . , , UST .:1 . � 1 . . 1 ", lt�! ­­ --I- - 1­---�­,-�., �*� ✓�.".. " � - - �_: �:� jam%%yan, � . 02 I . �_ i - " - - - '� 't I � � - "', - , .. .... ". . - . . - - ` -, :�.'m: , "... , I _� , .."', - . I , I -�i -�,,, I -�,� - ", . ".- . . l". , 1 '�­ �. .. - � �,,-,�: � �� - . .. , ,�� ,_;�,, �`, ..." --, 1, . . ., �, .":. , MO. ml­!"`,4,_,.,�� ... ... ��.- i'L�1'51�_",N,� -1 G _;t... -� -, Z , ... , . " . . _ I . - .4 �­,,-T_­ ­1 I � � � � � � _ - .. ­ I T . ,.�] .:,,- ", `­ -,'! -;�. , " , , * - .. I- . I , - ... - � ::` , . j ,­,:- . , .. t , .!� xm- mvmm .... * ­_11-i -.1 _�:t' . §W. I .. p . k , . A- _ .- .;. � �'. - K " "" * ;_-, ".,(,: 1. ; . . I I I ,:.;. - '. ,;'. .�. . . . . .�. I , - - , , - .�.. . ,.. .. ,.. .. ,.. ,.. ,.. .. ,.. .. . -1 � , � , - -, . - � . --N T.My V ­ , . . .,� . . � I . , ,.� _.. 1-I.- � , , �e =W-vWA* ."',-, � ._.. - .�, '".., *�&:. .- . ", 1 0­1­. j .. . �% _. 241 "I -1 , ,�*.�.,,�,'%;�,`.-I,-,. ,`,,',��p � 0 . , ,,'�-,,� '. ", � . � .. ", ., 1 - ';-`�' .atl -',��. i ,,'!�'.S,.-� �1,�-�,.-,M?I;W - , �',.! -.,:,.Y-,* , , " � I . I _" - - " `.�';l­ i '. t. , .1 1. .1. �., .. A-�,�' .-'. ,.� -��..��.:­x I k0j"T"A" ,C:�,:;j,�,�.?, "'., `-: -, " . ..... . . 1 '.-*_'' I.. I., , , . , - . . �.�, �_�r " - . . , , I . "", .. . � ;, ,� . ..".5 - ,;� - " , - j� . ,, - ;�.-",'.""..:f', ��. .1. � , ,� _� 1111 � �_:� �. � , . A , q '... �!-- , � -�_i2l,,�-,.V. -.1 ,X�.�".";-­!;. . . . , �, . �, . '. i . . I - "."i., , .-., 4 .P G - I - . �� �, ,.,: -z , 4 , ,� -� .., , . " ��.­-!' -�­.­­ , -, 4 � ., . � l. . I . � �� .. ,.,, - ": 1� *­ � . . . . . . M , " .:,. " - , � . .. -� -, "S" . .., ., � . -, -'..... %.*.'. - 0 -�,-�,s..g -­.:��.�.,;>,,--,.--,;�.- ..�; I �, ,,� �. I k �, :.", � - �' - - . � i I - 1 A � - ­;. i � , �: . - I � . ', , -, 1­4 -, ­­ �- �� ....� 0 1 , "--,, �, 1%';,l_. - , ..'� . .f f f f f f ,% I 1 , .. , , . . ­ I I ; . I f I . . I It. f... -1 - " i .. ,_,,� - , ... . `��,.��,'I�&., ...:�,�:.,���":",:"",�.-4���t :�',., - .:�.-`�I�,,�:..�:'_.-.; .-- -.,.,.,I 11 1� .- , ,:,;.---� � I - `4.r " ".' � . ; ! � ".. :�Kvvm..- - .. .... . . . I . , - , . "'*'�, I... .. , :: . . . . . - -0- �, ., . - - 'J 7", -Ir. '%: . I I ,Roj)�tj��L�N ;�,�� 014 too"" , -�., � .1 � . 9 . , , �,,, .. - - � � ."F:r �, -..,, U,.W �,1;1;_ �.. � I 1.��f , ... I , , - ­ � ill Z� . " " . . �.! . , �'. .. Y , ,_�'-�"i_4,.- -,i ...... . .. . . ,-�- , , �.-�� i ..: . ... - , . I . "":," " , � 1 4 1. "", , .` , 1: 6" � . '� -­; , - 7.... l - ./ - - , - .., :,.., . .I... 1. , - '. il - - " , I .. . , .. ,.:�- ­'�' , ✓ , . , F ,�, ,_, itl';. 4 - . , I . . .: I - .. . - � , , .: f" � - . ­.-�,,, ... ... � - **�-, ­4j`­'­ , .�j ,*4 :."i" , , 1� �,�, - . , ��-, ­­­,,,­'� 20 N" 11 - Ws f �...'.'�'� ., ­ I � - I I .1 U . .. � :. _ � . ... �.-.. .;\ ,­�,'.-,'-�. ': ',� -, , .'._1­ " .....1--.1 j,,,� .. .1:t,4'.. R. 1 I� -m­tp ,�,'; , .,�;,'� �1�1 "*j", ',:-*. - ,� � � - " ._.'� 4., �: , ." _. ,�� ., .� , . . , .&� ; .: - . : - ,:._1.,!_, -, j .,.,.I ::,`i.�t: )3, ,.k$ -IT11., �'.,. . : �:S. . . ,....i . . . . 1. , , , . t . ' t :' , Q. " � _ _ I - a �A"5. - - ' ' , , ". ,�:.'r . . ­-..: .... � �;�". � T J �:,,.� , - , f 1 .4 1 . , ' ' N , -� �.:: 1,2�'.'.. . �, . V.. .. .. � , W'I, �� � , . I.. , .O�fL .1 P .. ­_ ", " ,.. - . : " I ,�1";."::�".%'�;:1 W�,',i ­'­Z, 'i�t� ]�`f_ �,R-_,.�7� .. . .. . i ....;9 I , , * . j "ho". , . , " "W- � Now , .... ­1 :. ... - . , , i ��. �,� . , . I � "r"' I . "_ ,� , _ �., . . �_ t _ It �i_�-'�,_,_�.�_..� , - " " - - .-,.-1KL- , , - nw _!t� - I... ­ .=;-2 *T' .� - •- ._�� " � 1.4 _i,;�A-'�­­� -, - , - L�-� It, I I - - "I ... ... 1­1 I .... . � I., .. • . 11 ­­­ �To ... 7 -, - _ ". ..m . _ . . _ . � �:Z, ...._ �::L'� "?�.'i___ . :,:_ - '34 F - .. * Y(~ ­ ....­­.... ..... - . ., , 7"� �: , ..� WSOM"W" . . . . .- 1%U-.­-i­1...-..., � . .'.�,%,..,�, I " , , - � �: I - . - - �� _7-W��! �,�--: .,\ . , . . . . .,�. . I � ajoyn Tjm � A ­111 41 , -!-I,. . . N., -'-..-,' ... - ;vl - - , � .1 ..."';: . .1 � � ! - ,;, � e ". -,;�".,z 11-�,\..' �-... , --Z, , , ��­ . � , !.' --- .. -.,- . .� : . ", , I � . , �i:.,Z� .... , I �.: :I. . . _,:.,;-i*4�­.,:_.�,' .1 .. ". I I - ; j , IT_ - - - - , �­.;7". vl�,�� - �i,i,...,;".:j,�'�;,.:;:; �j. V *, .,. ,,'�':: %, - -. � � - .,.! . , . .... .. 1'-::;�...-� ...... � , . . ...'. ,� 4 1--,­- oil ?W &. ra � � I.� . " j. 0 .. .� � �. .;�.. ", i". Nodp! ) ,��,*, : I 1 - , - � � . , 2 , �, 1 A q, -j s ,,A, S - - - - ,�,�-' : V 1�� � I., I F i ­[ .! I -,�,:,� ... :, ,::,; : I - ­1111 . ` ,,, " *�, ,!.'� I a . ': " � !".., :, _ , � `1- - . . �, "'I", , I I I lil , . � � . . , " :,� .. -..� - .... _._, ... 9 , * m . - - " I - "��!_, , S.", � . 1 , ,� `1­ . - MO I -,; , , . .;; . , . , - ,.: , - !�, - , , . %�, . ! , , , i.. .. '. , , . ; � h , I . , . . n �, , ,_ . . "I. .. _.. : . � , ,. . ., i. � . -1. . , ,,, - . ­�'�, * "' - .. f'. �. - .1. 1�.� . � .; . . . " . - . i ., � _ I'm - - .: ,,, ; , 9 W , I 1 1 - I . , . i ,; ­�%­r­­ � " I :�QQ ""Pl. It 'll'! ;: �, � _: V ­� ,­­ ­. .. 1� ....� , - j.,.,; . IE . I : ., I,' !a � . - N : . il. I %..,.-,,:i'. " . -, .... ... I i q1 ;-,iw, t - � . " \ t . .4. ., . , -;�: � .. , , , .- i .... ... , ,'. - " I * , ". ,�!: -b .. . ., . . ........ r ... - _' z -?�!T - 'A:- - i .� I � .� ­0 - 1. .­. ­ -� .,­, - -,, , .. .T.. ..�­** . - � I-z-k.', K ­.n, I ..,! ...,., M -�� � : �- v �. ­­ . I '.. t... - -,-/ - 1'� I ­­­�, " I - �­.�91.�. .'� zl"��. WIN'.. -, �' "'.."'. - - J, ;c ­;­4 �10 , ,-. .1 .� �� $ 1; .. - .­-,--j�.­-::�-. � m..­­>� - - ." = mvnmc­� S Q--foxv. ,. : � _ . 2 I 1. - A, i. � . .- ..'' , -, - F !'r...4, g .vjAqy .� _,", . ._,-.1 � .." I -1 I W " i 1, , : 4 � - . 41,t " , - " � , �,-7�,7,; f..'��.�; ors \ I : -,, � -,I' c I �, .. ... td f * ­ �-�' � -, . , �J­:. - � ,, .. , .. � ty, .. - � - � �i:: .. "..... A, . - ,.-.t..::' ". Q , : ... . ", : ,;Z,:�_-, " , " , " .." --_,,�,_.L';_-_- t. 4 , , , - - - " , � , , , - * �_ itj� -:,�_�i�"j:-,;.�; ,T_�.%, ..��" 'm - . !_�. � ,:, I , :.-_j',.�.:".,. v,.%!.:i�...,1 I " 1, i . . , .1, -�. ., - 1.1-:.: .... . ,,,�,. ,:��.. �,-.,. " �-.-, ��, .." �, m. " . . . . . :�.;;�� t _.�� -.I.-. , .b.... 1,., I : :"f- I ­­f:tvy'�� ", � . . . - � 7_ :_ 4 .il, _,,_�._".1,., ��4:.� .1k �t '/I "... , . �tao : .. ..... : i� - 1� . .. .i- :._�_..�_�, _'.;�. _'.. f.:, ... ly" ­, . :�t �f.� _.­ . I I - ;,i- . , " i...�', , - L .. ;. . � .. � , , I I .1 ,�_.__ 4'' i-, , .1 , .. .:�,.' .- . I ­­.",;�­ .- - U-1 X. 'T - , - , "�%,! ..�, . - I .., - . : .1 . - .�-- -, - .: ... � -Ti . ;, ... , . 17 1 - n 4 . , .1 .. .- ; I ­­­ .�� ?, ',.,. .1., , .. *.� . 11 , .,.,. . .. ­ . , '. .1 - -1. _�' .11. % � - ­ - . ,�: ��, . ., , . . � . I py vmv� It. - , _ . .. .:�. .17 . ;.< . _ . '. . " , , , , . - , - . , < '. . � - :,�-, , .- nyy- 5 . * � �! . I -�,­_.,,� , ..'��_.�J'� � 3 � �.§V' b!"";."�..:-,,..�',�'.�',!.-!I -..�."-.�.,�.­.`_ ' !, ) - -�A�- � ,i �; , M "K - - .. PY, - .. A M '.'. � i 7, '. '' � ... . ... . .��7__ ... _�;t . "�e - -1,; WE I 1:1 . - . ;..�-`;'_'.; -.`��.: �, ,., _�mt, � I I � , . "" 4 t; . ,, �, � '1, -'. -.'.-'.�.' - " . ­ . . . � ,,,,, ,1 Mr. ,,, : ­:, - _ 'k, - . - - ­­ �. - . . . . . - . I . . , �'E , . I ..:__ . . A,`> .:-..'-'��i,*:"-"Os��.r.,..�..., ,� -,.� � '. I.. j . ­.. .). - .... k� � S . F�:_ " . MY, IN' t. - - A F - 1 �; I - .` L.��.-,.�.-..-�;.�:.'!-..'.-�-��....�-..-�:�'. . . 0 --­.I,­. . , .... , .___:J,.: ............. �.',,.".�,_.,., "' :. V. L, - -, - " I - �-A - 2 ,,.,,. � ' :--,t. " . . :, - - .. - mv-4 � I I"'. , " . 1,1­1-::,�v� .%�.­ kt­11:"- . ''., ,,.'*11&1,­ . "g, I-- , ..._ . - - . I.., - , 9 1 1 ..., . ", " - .4.­ - ,,, no: AT), *t . - . - . , . I IN, 11 %�,oll-'.."'.,�TZI., ,, " ­� -­'� - :-, .: .- ..... ! ­�� �: �11_ I. � . ­�r ... _ .: �. ' . . 1' �' , S - _ '!' � �.�i .. , /j '. ". ) , .. �.. :.,:�",:-.",,.":..� s, .t,­ I m.. ,, , . .. , .'.�. ­ . . ,�.. f..,_4 . 0 .. �T I . , : 1 � 1i,;,�­-­' ":,, . �, . _.: ... . . L . ,,-`,':­ [-,!Z"";��.,) ; �% 4 .� , . , -, _:;;� - , . 1> �j .1 . , We4�11111.1'±"'�.e , - .. .. 1q.- ,-, ;jo. . .. -.1-1 " . - , ", , . - � . ---,��!-K"e'N '.'1­,-',V'.,'.'�.e .. �-!'-,.'- �-.! � .. !" .. : _., ..., �_: :- 1. .. , I' ..,-.`t..'.-::,',-,, , . �� ., . .­;.-,";,�: '. .. - X ,,-;! "11.1% , � M - - - -1 - . I : � -, ­ I . . , jr,; 1. . , . .. . ., ... ., � . , 1 117. � _,� .:�.�", ; -�, . I : - ; �,­ �,, ,'. � �, ­. , - .... , 1, -1, I , . . , .1 , v , .�.:_ . , . I - "', 4, � ", c �: . I -j.,-NK�,`t' I ,,., - , ­a. - " !-�:i;-. � . JG�, , 1710 -, ... - � I LK ., . " 1 , , - i -� 1'� I.- - �v -, � �-� , t �- F -;-�� - 1.: 19 Y;�;:--.,' - i.�,,4.i,-,-,� _ _�k_ . ,,� 3" ;�O.' .- -� .- t . ,� - , , :­ , . , , ;: . ..r. . .. .. - . , . .1. ,40L . ..�3­1­ f:, _. .. ll.:. � ).. �;.,!;�!,�-,­_,:"�'. . . . , � �,,� � 11 . .I,'/i-�.:­ : . - ., ".. � ; , f.. , � � ,. �: .. _: 1 -�, .. ... - I - jvj.,�- _� � - .'! . . � .11 1 I - . ,�­,;--` , ; ... . ... ,.,�111 ­11 " .. 11 -11., . , .t4.,-IRR;.��,.�,iii.:S - , , , ". � , Iku I - ��:`.<11 - . I . . . % 1 . , .4 . ­�,, " �'t-; 1.111. �. , : . ,. :�, , , Or: 1.1:1 ,_.,:,� '*-:-,.*, -, ; ... : . 11 . '.. � .1 I ... , -,�,, . .. .. _ 2 . - � I v ju-.:�. - - : � " j."', - " - . ;; ... *1 ." .. ': .., ... z , . . � ,.J.�. ��, .. , . , - -, i ... , . - I . :. * _ - -.r.,�:_ : " . " :.-­ .I , -, j z -�'- i ., , - �,:W-:* .. D, .h . % I I �-, , . . I I I A *., -, .: : - 1'. A, 1 ­1., .4 I'll. i I . . ".., _-,;�'.­.. - % :. ,� , �:;�, .� , -- - I . , . I .7 .. : . W. . . ., ;. , .. 1.17 If-t --i ..4_.�,, - .. " .%t . _ .. . , , ....... -, .. _. .. - . - " , --- . . - -, � 4. ,� - , .� .. m , , I 1� . A ";M 1:.:%1 - , . v . V I `.-I - , * , , . , I , .,.�, - , 4j' .11.t..-., I . . .1 ., I ii , . t� . 1z j � 0 .t , 1 004 .�,; , , , . �.-,J.­ . - 4, . . .'. .1 .� : ." S " . I . * t�., � � _ t ''! 1, . 1­1 - vlt� �, i.- .11 � , "..". . ­ t._:..., �i., , ;--*-�'f�-.­ ." �, � . � . I . . . ... ,]]i I, :t 6. ..-,!�..�"' j­ "": ..I,;, ,4 , .� ... 'i � W I ...k, , ." ,.::... .. .­­, I .,� '. ". - , � ,?,:!. � '. I -� 1. � - . � - I : -� '._V�, "' '� �]'J I - 114 � , , . _ , �::, �'�. ,'-� Mi. 4 , � �, . . . � . . *1 , E ��;: .. I .. f�: �;�,,,,�P-",�,�, ,,'.'.+�' `7.1.:i�. : 1* ­ - .W!.,.;v_1­ I�A. _t, .. 5......! .... ,:7� . 0 , ... I .. - - , 4. J_ ,*­ " - a , . , -_-,­"-.a,-.-_-,.--,-.._-+-. , , - _'.:_.:_.--.'_'L " �.:_1_ 1: . .... .. �_...,._.. L" . . ... � . ... -: _'.. .; _-�,:�_- - - -� � ,,�-:._t,,�,:' 7 - - ­- .'. .J+M. . ­....1.­ ..... %, I ­..� ........ . ..... = .. . . ...... ... .. �� - - ,�_-.-.,�...:L.,� ... �...,..Z_ , 11. %... I I.. !A, � - -- -- . - - -- -- .- . .� � -, . ... 4�7 . I , .. . � '.7. .... ..... _t�. , -, . z�­ - - - - :. , . !-*.t .." . . I , , ` 1� , , '. 1 - .;,' , � 17 ., __- . I , - �.-; ­. I . I +t , , - ""`:�,�:.�k.�:-_` , -:t`--.11;.'_,�.-:.:. '. .�.,.. ..,;1'.;.,. , . , - , 1 _..-.­;":;....-­:� I --..:-.��-. n '14��, I - I ,; � � ... :� ,� � . - __O - 'r . , , , ,;, . . t 1 , . + ., ",;. , , !-;.'_'.-.:. .- .:.: �'�.'V--,`::. :�:..'k;� ,,K , - I , - I - �m --`4 �, .1::...::.. takilantot:�...,. , !-' -: .. lk.�� .li .." ., , -.'�I� � - .: ;,_....: ... 11.,.:a - ,..;,;. %; + � . #' .' _­ . , *.� � .., .. , , - - -,,;,, �� , ,-,. . . . j .. � ­1 ­ -�,:� -r�-­ !­�;"4�; - . . I ,l�� l." �':.' .. Z , ; , 1. - ; - I., . 1.�. � . , .-- •--f•_ !.- --";/, -..I.��,, I f , �: -,i,�-.z"�;�'..�-,-,-.,�,;;,.�� -!.­Z.�-', 4.­;... . ;�.!".-. '­';:,.-%, - . . , , I . �:"�. , P�xm, . � ., .1. . .. �t_--- J � - . � , , - , . Z. � , V. _'+., , IN , , -, . . . # .: t"...:... , .. . , , - . . ... . � _ " , - - *, - , 1 � ­­w I .. I ,� " , , , - ­ . - � - - , , ;k, 1­1 � - :, I S' � - t 4 t.., �_:,, ... ,__ , - - ­ .: . . . - I . A Q. - -"--y ; .:: -, tt, ,.­­ -, - � , i ". � ��. - " , , - k . . . + .":­z", . m - � " ,,,, " ., � ,.�:,.,:: ... r.-I . !� "... � 1­1 + . . �. P �. �!` ",.v ; % i ��- '. I . . . I � , :!-'...�." 'I- .,. ... . ---- " �- !­.,� ." ". � .. .. . * - .,* .. !!. .. ...- . 1 . . . , .. - .:;. ­.,� .., i: : "::, ., **" -, - " c 1 17 I "'; " � I .. - �:�_.., 0 -1111 W�-: ., - .. . 1, , - . I .1 - , �, * ,., t. . "<�­­ .�,_; ,. - "I I � �, 11.1 - .. e : , 11. . 1:. i I ­/ , A I - . P _.�'. . . . A., my " W.<.: ,J"..t� �._­,ij n , , , - -,-. _;3 . . I . . . : �'-.� . . - I., I . , -, - I 111.1 .. "..: ,� .i...., I.,111- ....... ; � . . ': z'\ 1%,.-�,'­.,,;��-,', I '. .. :1! 1; ` * ��i-._..11'1 `1+1 ­A�`,.i� �, *.'�,�,.­,-.` , � - .. +. �t;`.'r I' ­­' �i'-. .." 1, -1. , I I ... - - ... � � .. '-,\. �� . 1, I �;!�.,� .., _ � f: 1­ � . 1. - . _Sq - , . I t - , _< - - - - .. . , - > ... : '. i',,�:.`.,-1:- ­ AIQ . � � ; � - �. ,.; . .. '. . , -1 .. 1 M . .. ... . , '. z 'Jov -,T't��,t� , .120 JAD , . , - , I - - ... . . ,�, ..", , i .. .. : . � .., - - - , _.... . .." � 1 --.�:V, 45t .... , .:: . !. trzz '...."�Z., - I , - . ,.. * .. .. . .. . ,1 . - - � .. . . . . � . . .1. ---.,.­i_.*c, !.�,.' L _.� .,!.**,' .,..'. �i.'.-t� . � - � W.. t -, "-w-W - .1. . N�T ...... * . ..... "" ,. ,'.-.,".;,!­ A .. .j . ­ � - . . , . . :! . ... . ;.. 'I � .. . - I . -1 ..... . i + _7\-.' *-.: '.;'� L, � . --"/�; 0'_­ ; . . � , . , . , . , ..: . ..�. + � .� , , �:.;.". i - � a' I ,...l �.. . 1, tA A!' 114 . . 1. ­ � , r I MP�1.1Gar >:,.t�,�-, - - ...t.: %.�J,' 1W . % N, fit A I , . 11 .1 *.,.,.; �..... � . . . . � . 1 , � > , i... .�. f . R­�- , ,-, \ " 1, " . . - . .1 . .. a . , � � -I !,.. . , - * � . . . I "-: .,1­­,'­. - C %.. '' �--'. , --..:,., 1* I'.. 14 ." .10 j " 1� � 71 .r�.... - .:!�_,.,�.�I.i �_+:,�-_-� - . ­� 'I, � , - 1. -r ­ .. . , . . -Itm,� -, ,--;,-.-.. . + ail. - _ . . I .,**,;" i , �, �nen " '... ­_ _r ..., .... .- . , : W . � , .. . - . .,�. . !::, + ..�.- :1 , 1­ -I " - . . ., - ... �, - I -1 - . .. , , , �, , , , .... ;.,�tl' � , j :::� - r :�',,: 1 1 . , ,** , 22222222222 .10, � . -.- .: , _211 "...., t_.,.;i I - , :�.,�'��)., - \ *1 - * W; - - .: , ,.:. :: .. ­1` I ./ �", - 11 .� . . . . . . :,; - � - - 7f� �, q � ---.;i ,, - .-�"..'-,':,.-..+.-.'I 1".2 ', , -: .. , - . _ 1 " �..... _ �'., � . . WE& - . : , - a. --,...f...', * ....... *1 . ........ . . I " � ." I I . , '�+, , ., k, 5* .. ­� ; ­.. -NQf , I 0 A AW . ' " . . .1 . _. , :,,.I:f: ... 01 Wj Of , - .... : ,-.�_.�!.":...­� . .I . , � ":: OW MO -.:'.,; - " ; 1 - - > . . . , ­_ - .- ,.- . 1 _ --I: •'I ­-,L.*..:�_,:: Y. . , . , .._ � 11., � '. _ - � 'I" 1 ZR�, 1,1"j Q, , gQYQ .. 1 1 ­­ , ", V,.: '.. ....'��-.: - " i :" ;_ - I _- L 1!­.',!';v�,:_:..m;, , . W; " %, 'k, - -, �.::: ': " . I . . - �_ # _. .1 ... - ..., . � � . �'. . , . . . 'k. I . - - . ,.--� . . , I � �. :;v �, .�.: . ., - ­,�, .. , , .., O .1. . '...., .,... . . �'. , Q AZT, A , � I 0 v it is "I . I . - . � � . . - , I " I. ­ . ... . .. "... .. i ­"W ­1:jUf.­t I '2. 1�.,k,� . . ... �� .:ii-i-�;,. 1. ";:iq.`.!,:_. . MO , '. .,%. - M f-I '.. e- ,.1.,....*..'j"' :!,I-`L'k-. !�:-., -:"-- � j; ... I , ;,*. - ::: . . . I " , , 0 I I , :­ - ­ 4. . , , : I- .. M A �"-.-, `��":va ". ... ',., !+.�. i ., 51 - - I " , � .. - , � . I ­­ ."-- 'J - ,.:.�, ­1 - ....... �:.�! - . ,..-L'.�-__�.. - .. . ..;�..6,�:::�.� . ........ ...:;:_..�� ....... glatt? , - ., - I -J,I,�-i'��.,.,...;�.�.'-'.,,i.*--.-- - �_i�... � � _ �+ ��-�,-!,: ... �'4,'-. k . 4�--:-,��.at: �v - .., -,,�.2.... * :.. , - , -, I i.'; .IT... . . �, 1 Ww" I ,.;.;;�r.. _.. . 4, , �..; :.: '. . ­t_ 'I. .."'t ­ y T,�n,' ',�- � ­�,: . --- � . .4, � -'.., , , . , 7 , 77 ­-: " - .: I. . ID 9 i - ---. r,�� " L.,L�::.­:-L .... �; f . 0 _/ - . ­.� ., ..i. _,I-_�,�z.-� -.,.,:��.' . , I � ­ , - . .... 7 ` . - '. . . � �' , " ,11 ..... I . . :.-, � . .. �, 7 �. - e-, r, a - 1 t . , .. , _.. .. .1 ­ . ­a­ .­.- - � . , , - - - I .+ � n ""O .. , " I'- �., . .. ... ..."I'l.- ,8 \ , : ....%.: .. ...... -- :--`;�-,`,.,f:�'t,�... . .. -, . ..�t.;J.:;. 11, X. ..1'."', . ''i- ..- - .; ,-.� .. - - I .. , , ,-� _.: I t ��' :. ..'. . ­­ t � :. . , - - -:� , �:�­ - . . I ..,. �.;.�­ i &N. . .. z� , 1 !1­;n­­f" r:I .� 1, . - - .. ... il - ._.-.:��_ 1'.1r, ., .. . ,",., .,.:. , .� . �,--` -j ­lt!! - - . �. , ! !, J! , J!, * "' , , V. � 1H. ..-; " f'. . . ,,­.. , "', t�`.....!,�, '� �', , t . 11 .,� . , - , . . - - . , . , . . . !'!f.'t;:.-.;.f!, .: ..7. .", I -1. - , * � y 005"Al: - .1101,01.1y . , ,'­_ . . .. ._­­­..__m,.-­�.j ... ... .��k�­ .... i-Z'? - - A - 1',. .. .,. j-.-:-'�+-..,.-'���-,�,.,--,-:--��.+'..+- t .... .. -:!, , . ­ . 1, 1 '....'. - '­'It.�...: -,i- ^ ... * . .... .I....1. ­­_.4'. r_ , - - . __...:._ ,.,: \ ­ . . - ..". 1-1 1 �. � .. . _ _ � � ','-'] : - . .! . . � .... 11's .'.',2. • I .i a I , "'. O + , � . 11 1- , I , "l, :If 1. .. . �� Lll.... ._ '. . .�:.,.,.� . - ...-_!.,v.,--"+,. � ­.'.'.,� - _._]� ., 90 ..10) - 2.-_�.,, _,_....� . ... .. .:--,.�--;-;..��.,.4,..,.,,.,-.. :,;; ..'� ... �:...Z " I , . . A . .._ . _..__.__...___._._F.__1: ... . � - . . iF- M CO �--.!-­v ........ _4 ".; - . .-- -t._,_: .... .... .. :.i M.-*.'_. .,.�!.!`l ......,..: .... i ___ - ­..­__­_... � .i _..... -� - _. f . . .. , . .- •- , T�- -, .1 .. . .., - . , ..., ­­­ 4'..... 0 .'.,:�;_ ., .,_.�..�� �. . . ­'h�­- -!it'' .!:-�,--I.,�-,�: I ..;. .., . ­< -L , ,, - � I . . , . Q,.. -*-1'--­": . t. ..!., , , . " I ��'t,,t',!-:$�.".L"'�.:.��'�," m .In.. .. . . ., , - , , .; ., . A( . . , , - ,%. , , , I L z .. 'I is N . '.�. - - _ - � "I , i -, ,,, : , , , . I I .... ... L,. ,7!; , �-;* - ." M � i . . ­ ­ . . , *1 "I . , Z­,­�, '.. , , ...' . !.. . . .� , I . � - .. , . 1 . ­'. - . � - _%. . %., - " - . " . ;..,., '. . '. .. .+ ... - . A AQ I . I - It .1 . - ... . � I - I , "..". , �;: ;-.. "'. t I ., .. . -0 ". ,-" , . . ­�' ,\ .1 - !"­:". :. .. �,--, %. � " , , W1. 11 , - - I ., . ,., 11 I ­..� 1. ......."11 g. , . � A - ,- -� . - ) �-W ; ., .. :-;'�," Q�AATYT . V , O i" . � ., - .. .....) - . ! C�. " , ,.,:. ., 1 ,,� \ � O> jM±507'. .11� - . .vq Y, �, i..;, : . . , " - � � * , - . .;, - ­-'. -, - - - 11-1 1 ,- -1 - O 6 - ! ? .. . -;�, . .!.:.;, �. ._/ W - ,,� F:j, . - .. ... ..'! 11 � V 1 +41 �--, i : 1 � 4� - � � . . " _ : , ,.­'�.,L.�. 1:: 5�*' - t" :.+ �__ h, - I ; �i", _:�'. �.. , ! � . L� t _ . ­ , , ' =1 8 !'_," . ....., A il �+ ­­.. �, %.....,... � .. -_ .... ... ­.. �. .........I.... ­.. ....... .... .....- . ..... I . . I il-111. � �­ :% I . ... � - 0 ... - . .- ...... ­1 ... . : ..... _'._',_,_' _1­1­ - - --v .. z m . 1-0. .1 .. . . ........ ; ... 7 . ­... r4 -.,4 ,,+--,,, .", "A K" . ... 11"F"'.., I . .,!.,. - I 1`1� - - ; - I ,� 1 .1'. .... - . . __ *�- im�� "'_­. ;;it,: 0 . �MOT I , , .. ­ . � . , .. , ... . _ .... "�:.: ..� .� .. '1- % 1 .0 A -� , -� ­­:!�*.',�,,,'�:��,i, . CVVWD . k I I , . 7%. j - I ,­., -.�� - - '.. . . ., � _t� . , , : -�� 1 - 1 p .. , , . . ", ,.� ::..,:,, ­.­�. _': � ­ -� "­_,Itt�,�,,�',', ...1 . : /..., �� . I - "" W , ­j . I Vol � - 1 1 i". ". g, �--;.!. .:.:..+. - - ,­�t �:f,+4-;� � .; , IA. Y 1, WA, ., �� . , . I . ­.". . � - . - 1. I 1q; '; z " : I ... . , .. : - ­ :.. � ;_ N. .p" ,� - 0 1., WLTRATION, . " ._-..,,­,-1:-1 _., . ....,:,t.,,.,.;""�:::Ii.�r�:�l::.".,.�,�- ,�:�',­ ; FACI MY ".1 L 1% , 1'. � i � : *1 V LIU; 1: W, - momt-, ­Q! � 0 � i �i - , I.. - . , � 1. - . , I I I . !,:. ,� N";-: ":.., .. --�_ . % �'r lo-" 4" ., i: . . - I , � �, I . -i , - -­ - W! I in& 1 .. - .�.-'-.-t-,I.�-.'�: I 'I - . , I' -, ��'.' ,�. . . � . 1 -.4 9 1, i - "" 1: . . -, .1111 P " L ... :4:.��,��:_,,._.� ��wt_-..... ... � �. - . .. - _ .. . 7 .1 _ +. ". , 7: . -1 2 . . L . ,�:.. 4 -­ --;, i�,��: I _ . ..... � _1 �;*_��' ie_ , . .. �-1,�44q�,�"7.�.�.--.-��.i,L-,.!"��,�- �F 1 - . . . 9 I 0 . 1 : . . - + . I . 7-- .., ,��,w.i..­r;6mwvy , .." -_` - -1-1- V( , -- � � �... - . .. � � �� j' -, ti� k;. I !�,-' , I � . -..: , ..: " . .,%. , :�..W. . - ". 1. :1. '.. - �. I - � . .. J­ I "�. ­...- j__ _;,­,".1:%�..� , * �,. - , � i . 1. . 0 1; A' , . ;�� ; . , � , � "R-,�. ,qti� ,; :. , I : Q , , 'N I i� OJW�Qyj' 0 -_ � 1� ., :�r k. W 1. 0: i - - 7 7 . . I - .., - I ­­7:�,;� � �, �,`, . .11"... � . 0 " .. ;.ke"'�.'�%, . .. , . .. " . , - : 11 I .. - . . .: . . +. " - ,,, - - .",A , ". .. . . ; . - - - . . , .... � , . . , , I , -� �-,- .,,5411 . ... .. 7". . �, "i i'�­ ,'�..., � A ��.ff ;.. , , / �7� i , , - " '" _��-_o­lk 11 I �! ., -, - � . . _ - ;, . - I ; ., - � " t . 1,04. i � ,; ". r,'� � -. . :1 �.�: � - !� - t7 t z . - - . , .. _Y�.11 :�' m. � _� - , , :. Y" " .", . .�­ ­ I . ;�; Y., 14, - - -, . � I . "N " I.%, � I - . , , � -..*;�I,j . I ... - .I.,. �� �% I , - . . , � � - - � -,-- . . -',�.' . . - � . .1r::. I � ., .6 :. . - '- - � . ..... :-: ------ � �, ..-, ..", '�__ . .,� , - . t.� -, �, 1. . . _.. , I f .. . - .,.;;I;. ,�-�-- I , ;;ja� � I � ;;ja � +A, .' . R a 11;� , I 1 ­1,<111­­ �. I - - , - `�\­ I'L ". -, - " :. .­ '­.. - " ,..$)­�! . -, �, .. "I � . ... 11.1 ...... . - _', . _ I...... .-.1 _-;�-. ,�",.­*.," - . *"A.. W91 ­� `- v � )QU, I.- , -, _A=WK "Ant I " 0 " RM h . . � '. :. , I., ,.---: �*. .I �1­ - -1 ........ _Q_ t: - ,;��,��- 'J"' � i . . I-V � .. 1. I I ft I- iill, ­ , _-;�- . �:,;.,.,..�;­ . . -.1; I �_ zi � . ,,_ --momm, � - ;- ., : I?, .�:-­ �! i4 -) ..", I "I , , 1. 1�­ _.,. 1, I , 'i". 1... ... ,,� , � , .,I , , t�-L`-- . j _� , . , - -! - I , , - i - , - t ! '. ! ", il -.,, � r, . , . , , , . ,� . . .." .4m f * � '.', , , i , . L­ . :,, V.-::.-..'- � @ 8 i%� *.P� � i I - .. - -MM 3Q .020 I I , . . ....;.." 4 z��' . " ... I ,;"T.z,t ;­,k; �, 1, �. I" ."?I , .. j '. - �. ­ r ­.' W", v"O, . . I , -.1-11 , . ;,; .... .. , . . ..: . . .. j _�, I �­,?'� ­,..;-�"_ � ...,.-- ` " 4, -u , I . 11­j�;.S;:�:�.­ , � . - - � - 1­1 . .,-. :, t. . , . . :.::, (I � , , , - ­ : " ., .. I ;V. t" -.1 - ',+, k t. - I I .: .._ :!�, : - �4 ,:--.-'_, . . . . . . , '" 01 �._..i! `� ., . . . . - I , , . , , ;�,i`,; , ", :f. . . . :: �,., .. l. - , . ..%z:i v. , ,,A� -, , '. ,�t � K I -�:� T,-�r � .. , CD " . - " ..t _Q � VIST � .-.-Q,�, � ,� - ,�. W. .. � . F, �. , i:�:.­ .., , , '%. .. Lm j. , 11::l.�, - , :!.. . - ?". . , I 4 10 i " , ; I M., ,i .1111,11 .- - - �,_l . 11.1m,z, Z , 8 M� z; - I... � - ", . " 1. . . . . - "�V,�­ j�_'...;f�,,, . . . . 04 . . : " - ,"I -_ "" 11 Y"vj . , . - - , ;, , ♦ I �- 0 , , ­ .1 1 �,­­ �.­` �,�.' - . ,..- i , I ,�, %.:N,v�. . �� t �'- " " i,! " j " 1: ? -;­�:.,; . .­..i - . I .,...,,,- I , - " ,Z Fi i ;, .- . . . ;� . �, � " AR, , - * . . ;� ­ . I 14'Wt _:.. r � . .,:�� : . .... .;i I �, ,,, , . . I.' ;�Oi,Yt..�,� .., " ! : , , !! t�. . - . . !t, . , , .11.0-1 I -- - . . , , i ,�011 , � . _4�t_ . . .,�� I ,�K. .. . I . . - � k; . .0 I I �M,.*.' , ,v 114 �;);� �­,, � , - , ­�Vv*, -1 - � , , -;',. �. W . ­, I I �. 1. .."'. , 1 I - I ..... - __'. - - _ 1� ,; - - ,.; '6 - -, ­V 1. .I..- - , ... . I , " � . . � .I:,.,. "'. , - , - . ... � - I ': "; U .;, .i., -: , . ,�, - " ,-...-.-- 41.­i : .,-----.--'--­-­­ ­- '' ­ - 11.�/, - , , I t, Ot; , _�_�,�t -_t::117.-�-,:,-- .�_ I - . 7 m ,;��t;_ . 1 i 1 .,�+Uv! . - il, �!�:" . . � .. It -­..;.,I � TNMNO a " , D I " ,�. .. ... ,� � , % . -4 6., V�,% `.. . , " .,:,:,�,. . Z, '. .,�t ) , - I 11,4U., I . JA �M- --- I - - A ',t'` y C, - ^ ' I , , - t . . ,0_6 n . . : �-� ,' 11 . % , - W lot W. - 1 .. " I YA 4 " 74 AM , ' I - 1 1; '-ZN�",�+.'�� . , � . ". ,!L . :;, • , . .1 � • - g W , I T , AR MI M i . ". I T, M It 0 V, . 0, ..' ,..:. I . .� . wqmq. .� : , 1� ", * & W : '. . � - m M If . I .,.III. _­.., - 1, 10, a ", �. j _�,..,':'. � ,�, ,,I " � . mt," " , AM ., - \ - � , '..", .. * ­ : - I I I .:qrg - � .. . . I , I , ILI , , 1.11 I 11 I , I I T .1 I I I a I I � i I I I I i , O� � i � I �V 4 i i 11 I I , I i i I . , " . I - 'i.*..�:,'T4, I'�,' jr.zW-j.., ,41 .1 1. t �: 0:§� 1 - " - � .!,�_: !. I .. 1 -0 W .1 . � �� J " . "A I an A Z V 1 1 1 1 uAva- 1 , .0 .,"" AnAM I 1. .. �, . lk , . 4 ,.,�,�:�-:.%'fi. � � O 2 1 . n :.1 J_ ..... ,'.i,,M m - . .,. .- , ! I .'.,.�-.--­J.­ I n1004WAS & W, - .. L" _� . , , ­_3 . - W P1 .1 RaWsm " � _i �. ; 4 ., . * , , ,v L;7 ". :�­�4'�� , I—; 4 i'�___16:.,- 1�?*'P;:.; -1 ,,,+, , .1. - � I � . t � . "..; 1, I'll"H � , � . �1:0�i+,4'..' " . . J, - r - ., i ". . lot. �. "%.. . ­.�­* xx 100, '�* �:-+ - . � . - . � ,.. .- � �i ,`�. "; ,J�-.'Q -,"4;.� . " ,­:,-:­�t: . � . r . -11 I .- .,; , 1�_ � , to, , P. �; - - 1 , :I I... . . I I., - & 1: !A:'Y , , " 111511 m '4 � �, I :'��­.��- �,..,.­�­.; .... �, � 11.0"O . .: , - .,.,. - � �` , -,!?,,-�,; �_ . � , '�, � . " A , , . , ­ " , . '.4 � I * � n I . J .. � 4. - z .. ,';� - JA ,�! , ... - - �., le O .0 - %X, . I... xmm� I - 1. . - . 15 .. ! I % � ­ .1z f, OW a ys , _... .. yy,,,,� , �� * , ,. CQI � W, '", ^ * R.i. . ': ��%�,, .,-. -'.1*,-� - ­�+­ -: F; e-,7- ,7� 0 . �� i 1* -`.� . - . . , , , . ... . ,*V1,�+1­1 7t, .7 1 11, ,.!� �."-:, , . ;,N , � .? �. .. � .. f , - � .,: ** - , 117.1 I !. � Ilv. I J, + . 'A - I.... A A ; �', " is To -;�' '.!.'-i':!. " , . ... *,11 � , !.�. - , - , , . ,; ­ 'i,: ; I .,�­ _ , . I �_. n_ . jill son v �- - ". I A, �:.: . �J-:--, .L' i *;! . 1­ � �. '. . , - - F V - I low, "I , . , I " .:, i. �,.�l , �, ,- . , - 11 I .- � -, � ," ..D?.�� � ,:*. ­.. 1_(� . I W , . .�. - - - I � . . . ", - " : . .. ,z \ _�, ` i��'_ . - .. .. , , ..., .. - - I � - j; ! , '..", � - . - I 1 1 . :.. , . . 070 n� ., Q .� !, 11111 , . yy' . . . I Q 00". � ... ­ - , �v & .01 , - - - , , " - �', *� � - .,. . , ;.j k.;f .,; . . . .. 4 . H4 = _X Q - � I . � -i ;Ih. - .. "I"k . . � 1 - ,I - . ,�. .� lf,f* , " �: , . - -�'- 1 * A . ! , . .. I , 1 - 1.�, , I " �: N �500W'�",k�,,:'­--.,k -, i -.,, .,* , I , .1'1;kx_>W� $4,", ," ii , ;� . - . 11 I L I I L . I . I . . r r m = == r r m m m m r m= m ■r = m � s �F Y NI L •, 3 , , , m f'jj ��S�jJ � , 4� Z '11 D r r -v j 1 V 1 2 :r t' 4� Z '11 D r r -v j 1 V 1 2 ^ � r` ''. '- -`� ~+-- �- �' - '�~ ~ - .,��-- _ F r aL-brc JLWCMC.,10,a O, GO:E oGY IEPaRT l 2m" 04aaa.wml._n".. .,O kp,OPFpgH1Y LmP ,Q L.,-: lq,JU:.1 R W: M. ti/p =11. IM t :fr.. -f.v :Y�" Y X t. '� '; -tt 't'j >?t f -.rst ..f ,.3f�'.t '�' , .`: i . :3. , 3 ,�- j \ ; rnP t1\ Y t 1 ; \ i :� t f _ % !,_ . t 3 r I 1 1Z xi► 1 ♦ () t r, }l, A 7 1 C) -S rs .. -. ,{' O `N 3r V' J' i \� .I . .io - t! rt'j' y�' 3 : ;� r�(' �� y� -- ♦. tD 1 ' ' •1 . xr Y , r L. 1t.i { : :-,' y ``�.rts.,ry f- .i. �;y., ",b .tip . l.. > . #,, >,S�s` � -ss ' !' �• }'C p , rJ . i w.`v `I .Xit } - s J n! p .' .. 1 ,y,• '.,,t _ - - I -I ,7, la t . ;i�°,�'S, .as : 7` "k hr {XYr/ $'.. R, x} ).%`:�t $ I . .y < ,'. \ -`-, .1.. y a - �' k S It.S =.L'• -:-f :i-f', !•CIS; -'-", '! ' , 'Y' `..s,.,.d$:sc..�;. - `tic --_-:, .j.,. ,w..,<' ✓ -4 '}- . atr,::• ->:,...,.= • ..=..s=d:.:�:.4.::...:_ , r.`i _. ,fi•- t �' _ , % ,,, Y. '- s% r §'1 Y L s ).cy z d ♦ - �.' �•.. =t U -i S L t , -�. - -,_ ' , R. < i`f 1 z s f f iy zr -Ij ? f"t I \ {.7a ,€ At! fr•% $ �., Z f_ ``u �1yt i,.Ti a s }.r j i t r'4't.tt �., \r :..� \I , / :V fs3ae{ - $ - ra i :. , r , i xtwa, F `' - , - t 3 . r t . ? �} 5 2 tttnnn < - • , , i S''i� .� A' ' •I i , »F.» r\'I,.r t;i4 .kT..ly (�j, T t 1 >, `j �� } L{j !. . 'Z .iX g' ,S. ,,l.ir_ .b`r' -:c ':r 1 61 \;, ?'_ _: t �.SX .•. j ;� .. I;,, I .n .. 4 Y +. % 1 .� ` k . „ rx;•• ii L. a: s 1 =i!- :`I.' 111..' 1' ;: .' g F__ »_. t _ r, _i c , :c.. ,.. ary. --.[ -- - ^� - --.5 _ . »»fit. x, L" s (s: ( Jf x „� I , }t .ty\,'.)?•" 1t I /'_ y r'lr`2'k ��4L'{ ' x,%'�. K 1 t s.li '' . <:- x' _ (i : ..: t *, t lF l r', -I r ^ )n` /.t'� 1 viz" �� Z a l., , , y T+ / _ y ;yS ,y{:, 4 - f •'�'k t y .Yr. 7�!�,i �j ot. t' -?r .'_ n .:�,ta ., r. t..: %`tyii'i!7 r}, \fe. ::.. ' ,.;".'3 _ , , 1 ;.,� f � r: _ i 'i' '� ;; ",__ }` ,. " �J... I •+ii�'� •.r`" i.x7:z:s. �...._.. :. k�` j +r �. ��,+rvz -- - i _ , t 1 :..'.F.,, K"- \'t\'G' +�rf' ! I.. t r ".. r: Y l t' -� s 'x='= >i,.� r r:ya::t.. ,.-.Yl r ty I ' e < {o r•�r' ''k ` -k -© S',•. .'.i I '•� 1:.45. \ ;' + ' , . r =•. �, xt'v1x• t:.;' 'x ,:. ,rr "' 'r ,: Eke}: ` : ' . l • � ;,,. ! .�•',.1: .7'y Sa c 'r \. _ �T t 1. :, � i. d �•iCi' ` .xa i we a� _ :� ac. 1 _�.'� f� ` ` ♦� < k �: Y' n �; .�- C t':A4 G 1 _ s.t - k -- ' f .. S:: L.Z €€ \. k +a 3 3 : x 3 r -'''� t_ �(:�'. x.�� . `'._�a r"r' {'�`s `j'i ,TY \ r fit. \�/ \ _[rte I, `-.. / r 1 ' t _ -!. r �!� . ,_ R rt:{ : , 6 t (D 1 tc.. _v. . 1t c, `: ., - , ! - 1. r ai _ ; {j{} iii 1. ' j ! '�' . 'Z ,..,S. I.jS �... k. .%. I. , t.-5 _�`.",»,f,r Z� �r f_ -"' t ' ' '✓.. '�../. Y'`qt �'4 / .`� �i, }r_'. _ '!, �\. ti�� - - :i'z' w:,,% t. k5� Uwr. "„ t y- '� . •r.` 3. 1. I i r �. k 1 1.4 r ! _ ,. . 1 i K r 7 ft i `.. .i :,. t - 4 ..Ii t�. ,' 't ! .4�, `'9(t4' :`� -.1 I G` .�`�• ,W ,.' -'. �' ` { .tl' 1 n t; • i~, a c , "n / 1 I oy 't 1 /, ; Y. f;Y 1. -� , • ! - ,r, = - jj - . 1. + �' 1 \�,'•j I I \ 3 ' �' .I `, -. �i Y.n'+•i.r`' '1. .1 t r ' "' � L ' ' v "'' i : /?"' t, r•"F -1 ,...`, .:I �` \x l +� i ;�x / \S.:•', ,f :I ,. .J; ' -n 1t c,A :t.,• !• rt :� t .� .yt r�. y.r q ,�; .a 5 ;x. ,. L 1,,: , F;, l2� I i' �I. V 4y - �•l �'J \ I ; �. i # �' ,� js x�'�' �. �.. _x i i j O -� :: �. .1 :c ' {• 1 - t7. ` 1�i <Q (y j -' itr/ i -rt Ow �. r ; l` ` ii: . I .� BAs. �a. , J..1 \ _ ..�'. _ . I -h: i, ,€ i , �, t I. v6 no I �3 _ N ® ,''i � ` �r .lam ■ \ 'k C' �Y `J \i. . €j �.- - i ..'f. ' ' y co t� z S. \ , € j \ , i ! S t ! I Z ;. :. !1 t ! r j` G 1 \ y i �� j! i' 1 I r. a - ' 1. r t ✓i 1. ° _ 1 \ �, :, i O O a': :.... „- .. ♦ z ... Z �% , ...., _ , . , . 1 yw . Y - _:, , . 1,` �`. s x. • i � 1. D i - `` - 1 - I 9 /.f LAS .' \. 3 ? i / ^ .,. bz O { i\ Z 1, ✓ ... t�' t - - - k. ,: I,{ . 1 i ``t:.':' 'i9 - t I 1 1 Y '� t 1 ' i 'y, 1 �w , - 1. P( C ,'' i„ t I . i \ s. . i i i J i FACLlTY �� I .........., `•....:1 f . �✓ , 3 1 . w++t �^•a•:';...t.•+A t > aY i..� j, ".;,� -�rs-, c.•^,. F.. I;: ' _ -.>? r? ;. t� +�,7.t�.,j� • 8e ICS :i y. tS T 't I'� 'rx ->41 r1 ?; 3:i ) oQ 3",� T - •! ✓.�', ^' F W. a` .3'_ ,� '� A I �•• 'y P � \ 'o, , t - t ✓ins. a' Stay »'y�: rl t �r � t B _ 8 1, r '` Fr -.c 1 F S 3 :oy `Mt"n . , r :; i... F I -:-A' -e I� �� /•, - r i , i. -'. ^/; ♦ { '2•% Y it;•'t? 1' _ I t t i yx b s 3 d S T" '`•yA,,. .. -, ( ,L ,w �' • . , •5 -- � } r r k X y O � i �' . 4 �' r'"' f•,,y^ t J D t Y ;; � _ I \.r, '` \ 2 "t"N . -r� ^:r „ �,,•'. yM f �t Y �5 4. W. (/ .I ��I tti y T ° 4. k r . ��'.r Y r ., . , { / r i Ci� t i t' kJ Z >: 1 t a ?, t 3�(""`Q : 2 -nl e Z, 23 3� t 4 a < f tt iGt `1,7 z -(� , x':i: y+ r `tf t•,,- '+�•'° r'34 X'. \ r {3 > ••�4 13i MI c: Q t, - 1. , p x N": rL", ' c _ t\1 i 7 r t F'r 4 tJc Y\ , �'1 7 1'ir G Z T ; t"F,wF: ' tF, 't \'\i. t'- ." t ✓ 5 \ �'$` J'� // - -' -- <t r'3 t A•:.. `.vtiw�,7 - D` .� t''.i, x t , i.. lx >t' �� _j t'"' r•k�~r _r .\ y -j I c x, j'. .. - ' .�. li ABC "i t .+ r+, r♦ ii f. f: x > b '+rr^ y�T + J *' ' /'. /. C' : t D 'i A' ';Y 7 1 t•. 1. ,LZ N `xv'.: s.l... =•' \ r ^�r'r4 r I. N.`f' �`S,�f _q 1, a L1~.i VIr. r ..:�•.S r. � .!I v� t '•i'�t r4 ,, - - , M I. ✓v t a�- yy r - z' w .'•3'w y "I .y y, d ' " ' i : r+, 5 ,:k b. r- y '? ,t a 3 €fit' > [ r t`t, • , „ ft •Y,.0 iH �. j, t"w .S i �y I . �'i &1:I , j, } ¢ ­.­'­t­.'. r € - is _,;si YYY 'Lt (fn�'`:x yY ,.r• i nS� � tj;4iz 5fifi � I _o A....Z r - ; €ik�V <Yxl > 5. Y. ;E S>�,ijr ,'w <�t , +�'.. 1. V- �i 121 4 ut 4 Y� \\ y) to xN1 ;' O t :<<.... tr € „t •x z. T�'Y B ✓ ( ^ i\ t t t .4. i s �X .`rte 'l: t I :,� i..t rrT,iY ;1- i . O • r';ti+I� 1, }} �� �;I J, 4L I st. "X�( s r? ��' € <r ( 5= z# j n iiif,� A ; z� •' " +{ I / t of .0 •t__ -t '5w x L 'r Y�3`�,+, �•.r'I e L '1',' .r. ..A. ...... _., • ". ......_ ... . r� � . ' T {`1 3 H , k,i a}yci7!'`ri` r e bf /' " i .L A . , / I 1. . I L I r - • I , e,., I • I , . {, r _ r _. - 5 . ' • 5, • Y .4 I .1 - • ` .is + f .. ' 't . .. _ L. . 7 I - . .. . ' .. • 'i < }: .. .. . . . - - ff4` rr rr r rr r� � r� rri +r rr r r r r r � rr rr rr 00 }T t, r t' R 1 11 tl l Y !Rv T. k I 4 s j t` cb i I i all, .5._..:y _ .�:• - {.:,..+�- I:.::.Q - � i a,«.�,�. i4'... .i�. ,�.' ��.Y,.�.... ` rVS -j cf,'. J.[�e ;- y1,]- Y e>.'� it i` / ! r 4 Q _....: l � mow% ,. _.r f < :, . 'J . _ ». :. - .:. / ... - v4 .1... . ',y a ,. ` . _. - t •'c:.t*^^�' :r.. .... (` f LA sf 1 11, O Fn DOD CA) ca r r ,6j. Ow, 2z i 1 to 2 r ,6j. Ow, L O AV84t r 2z i 1 2 r, L O AV84t r = == m m= m r == = m m= r == i s ° I o m s S ., m M �0 �z D TZ '1 D r r D 0 0 V 1 2 f •!• r �S� a ... } {{ (1j r ,Y; �. 1. it. � r � ,t is, .x ;•..: D TZ '1 D r r D 0 0 V 1 2 ' CD DIRECTORY AND FILE STRUCTURE [DIR] PDF— :Report, Figures, and Calculations • Full_Report_and_Calculations.pdf [DIR] Calculations ' [SUB -DIR] Rainfall Weighted Averages Excel Spreadsheets ' [SUB -DIR] Hydrograph Calculations ri• Flow. (LAPRE1 Input File) .• O (LAPRE1. Output File) ' D (LAPRE1 Generated HEC -1 Input File) Flow.o (HEC -1 Output File) _ [SUB -DIR] 'Debris Production Calculations • Devil ' 100 ' • Devil_SPF _• Middle-North-100 • MiddleNorth _SPF '- • Middle-South '100 Middle- South _SPF - Toro "100 ' . Toro_SPF _• Table B -1 [DIR] CADD — Figures ' [SUB -DIR] Figure 1 [SUB -DIR] Figure.2 [SUB -DIR] Figure 3 ' [SUB -DIR] Figure 4 [SUB -DIR] Figure "5 [SUB-'DIR] Figure 6 ' [SUB =DIR] Figure '7 [SUB -DIR] Figure 8 [DIR] Referenced Review Letters • Joint City /CVWD .Letter Dated March 9,.2009 • CVWD Email Dated March 17,2009 ' [DIR] Final Project Plan • 'Final 'Project _Plan.pdf [DIR] VA Consulting Response to Comments Letter Dated June 4,.2009 • LET05_Response to Comments R- 1_060409.pdf XA Projects %1016_0100\Eng\TechDomkReports \1018_0100- HYD_Rpt_060209.doc 16 a ti 1 !' ' > - %s'Sf"i�1'++�a. �. w,rr;,r... q#.a�at ;\ ^:. J`_ a ♦ _• . • a ' .•i— a r' ,�_ � � ,z � f . u fig, ti • y W )p ( County sion_ .Irvine, C• I Yon. Sail . — y•. _ , .� ' LUNt. Fn`r. (949) l 7q Gla) e5p �•4 �• i. +w RN SUIT /j�G 9) 261.y48) Y � OR 4B PT (O�6 N� DR C0f POR 'NIF FbTENT RW ACT ON M y. UNGEDd( Y OEIRFROVOI I, ,L +•.f- 1 Y •• RONIC � OS eROIORpMpp FC o F, C TVgE Y l USf OR `z •' . �. • i - NC ER THAN h1FOlA ey A TNIS • i .. 1 w ' TM OF SV PV AT ONSU TryGE t+ ' •I - i GAIouT LABIUUS Rf qO�E ja • . • . - - . - t A CONSUL TkP�SURF oNRO ! v I INC. TO f CONS,, T _ V. �. r FRO eiv ` `iJ w �9 ,� QTwtRAD any oleo 4. (5IjjDjjjj,jj 1, � � ' , ,. •. - °'` a •` + t. •+ • F.I. ._ ! • w ='.l ,vy , � �1 S'�r '1- ,,A 3 �' - + , fi _ t