Loading...
2419752 IE -- -1 DRAINAGE STUDY March 5, 2001 Monticello Project # 2512 Tract No. 24197 Dudek & Associates 75 -150 Sheryl Avenue, Suite C Palm Desert, California 92260 (760) 341 -6660 a.. RJ . T hisAminage stud was prepared under the direction of J.J. on i,: 24069, Exp. 12 -31 -01 Date 'i -FM zq I q- -i - ttb0 -0 Lo A-L 5 F—= F— No. 24069 01 R 12- 31 -20 ",, PURPOSE: The following preliminary storm drainage analysis has been prepared to model the 100 year storm over a 24 hour period and provide the necessary information for the design of onsite retention basins for Tract # 24197. The proposed development will be designed to retain one - hundred percent of the design storm on site. Additionally, the proposed retention basin at the north end of the property will be designed to contain historic runoff volume from Fred Waring Drive at the northwest corner of the Triad Pacific development (Tract No. 22982). SITE LOCATION: The proposed subdivision is bordered on the west by the Triad Pacific (Tract No. 22982) and the Cactus Flower (Tract No. 24208) developments, on the north by Fred Waring Drive, on the east by Jefferson Street and on the south by Miles Avenue, in the City of La Quinta, California. The project location is also shown on the attached Vicinity Map. SITE DESCRIPTION: Existing Site: The existing site is undeveloped open desert and consists of undulating sand with sparse desert vegetation. The property falls from the northwest to the southeast corners of the property approximately thirty feet with an existing slope along the west border that varies from 7 feet to 10 feet high. Proposed Development: The proposed development consists of a single family subdivision with 208 single family lots, two narrow lots along the. east border reserved for landscaping, seventeen lots for private, and four lots for retention basins with the northernmost one also being used as a city park, on approximately 61.11 acres. METHODOLOGY: Criteria for this study is based on the. hydrology manual of the Riverside County Flood Control and Water Conservation District (RCFC&.WDC). A computer program was used for the unit hydrograph method (FLOODSCx, Ver. 6.11 Advanced Engineering Software, Copyright 1989 -98) to determine flood volumes, for the rational method (RATRVSD, Ver. 1.5A, Advanced Engineering Software, Copyright 1982 -98) to determine surface flows (100 yr storm for pipe sizing, 10 yr storm for catch basin sizing), and for catch basin calculations (HYDRAULIC ELEMENTS - I, Ver. 7.1, Advanced Engineering Software, Copyright 1982 -98) to determine minimum catch basin sizes. This program also conforms to the Riverside County Flood Control and Water Conservation District. RESULTS: Flood Volume: The total flood volume of the 100 year 24 -hour storm for AREA -1 was determined to be 3.59 acre -feet. The total flood volume of the 100 year 24 -hour storm for AREA -2 was determined to be 3.78 acre -feet. The total flood volume of the 100 year 24 -hour storm for historic runoff volume from Fred Waring Drive at the northwest corner of the Triad Pacific development (Tract No. 22982) was determined to be 3.40 acre -feet. Surface Flow: The highest street flows were determined to be 23.91 CFS for the 10 year 1 -hour storm, 29.93 CFS for the 25 year 1 -hour storm, and 41.48 CFS for the 100 year 1- hour storm. Pipe Flow /Catch Basin Sizing: NODE # 10 -YR Q 25 -YR Q 100 -YR Q CB SIZE CB TYPE .. Designed For .104 17.96 cfs 22.32 cfs 30.54 cfs 34' Flowby 25 -YR 204 33.97 cfs 42.53 cfs 58.84.cfs 20' Sum 25 -YR 304 2.46 cfs 2.95 cfs 4.32 cfs 4' Sump 100 -YR 604 8.70 cfs 10.84 cfs 14.92 cfs 7' .Sump 100 -YR 704 2.09 cfs 2.60 cfs 2.95. cfs 4' sump 100 -YR 804 20.19 cfs 25.19 cfs 34.84 cfs 38' Flowby 25 -YR 904 3.44 cfs 4.28 cfs 5.88 cfs 7' Flowby . 25 -YR 1004 10.07 cfs 12.61 cfs 17.45 cfs . 8' Sum 100 -YR 3004 .4:09 cfs 5.09 cfs 7.06 cfs 4' Sump 100-.YR 4004 3.90 cfs 4.86 cfs 6.74 cfs 4' Sump 100-YR. 5004 14.36 cfs 18.12 cfs 25:34 cfs 9' Sum 25 -YR 7004 23.38 cfs 29.41 cfs 40.72 cfs 14' Sum 25 -YR *See note on next .page for CB's at Node 104 and 804... Note: Catch Basins at Nodes 104 and 804 to be combination curb /grate inlet with three grates per Riverside County Flood Control & Water Conservation District Standard Drawing No. CB101— "Catch Basin No.4" sheets 1 & 2 - reducing the width to 9.85' yet retaining enough opening area (26.2 SF) to handle the required Q (22.67 SF for Node 104 and 25.33 SF for Node 804). INDIAN WELLS t3 BERMUDA � EK SI TE DUNES FRED WARING DR. 0 c� z LP 3 50TH. CiI..AVENUE VICINITY MAP NOT TO SCALE INDID ON -SITE RUNOFF VOLUME. 100 -YR I I I 116 � I I _121 SO 1 i I i I I i I I I I II II II I I I I I II I II j II I I 6�II n II 6 II III N o0. 20'20•• � I II 2652.98' II I W I II 00 II _.. 21 I II w I I II — z — — — I l o l l — — I I� II III _ _ ILO CN I II II I -9" 1255.05' s s iW I I III I II s CO �I co I I I I II 1397,93 Flo, I �I 112C is 20' LANDSCAPE LOT Q'I I I I II I II I it J E F F E R SO N S T R E E T N o0. 20'20•• w (•JDD, 2652.98' (2652.98') _.. 21 -— — — — — — — — - — — — — — —— — — — _ _ _ -9" 1255.05' s s s s NODE 201 1397,93 o iO 112C is 20' LANDSCAPE LOT N00'20'20 " "W 775.05' i UO' r »' W' I - ENt70 /C4 21.09' 46 "W 189 g t90 g^ \Oa �•(f,N� I F 100' t5 tta 113 112 17, 110 109 108 107 106 105 ,04 103 . 2. ® ❑ 21.09 low a9., 52., O WELL I I 129 RETENTION IT SITE _ as. BASIN >Y n• n• )r )1• )x' »' 12' n• ]3' Ie > ° ' DD• a 4r a� 208 I 00' - I I .l.00 y b SI.Jr ' •= 188 I 'D 8 191 `- roo• I 128 I S _ — • --+ —t — — - - — --a- — - - - — - - — — —o — — -- - -1 - -e— -- -- — 6 1r0ot• 2 207 : ea' 9 e—. r• e. s e: . . r n ' I or , ,to 162 II I 149 I ,aa 139 I I 55't LO o• 127 t 7 6 I 7e3 , 72 , 7, g z. - ,—, COMMERCIAL 7 " 2 I 1 101 206 QED SITE 7 ' 169 163 150 138 126 W roo• I 117 I >Y Iz �O§ � I _ 147 I I 186 I 193 98.0 9e0.. 175 '� a> IUI a aY oo oo II 100 205 rar roo' I o O.1 1� 76 R e e I " m rw' i rao' ae. oo I I I "I x, Sa• ]s �'' ,68 D. .� 764 [ 151 161 Iv ,00• 1® I I ,oy >1 ,C� AREA -2 00 z 1as I I I 194 I I 49a s Q r R TUND °° ar IU 7 as ar I I 99 I WATERSHED AREA = 29.05 Ac t I °' 204 I „D )o, • rar .a. ap• � II WATERCOURSE LENGTH = 1763.72' Iw" rar I „ — rJR�LE— a• 1' s. 152 I I �. 136 I I LENGTH PC TO CENTROID = 886.45' '� 195 Iw .124 49. 119 ti ,y 177 , 67 165 O Oe I 145 I 980 zo3 b� 00' 00' w ,79 a - s ,66 = AH = 11.00' M. Itll 100' a9. ® t7a 0. 1.6 1® f„ 00' 135 ros I., r 'v 123 t 20 (¢� 5. I N00'20'20 °W 789.48' 1 183 796 f; °® 51., I I >r I' F42' ee >r n JD' >r Is reo' >x• w .a• , V 144 rar Iq 97 o 202 — — — — — — — — — — — — - rW' I reo• p®, I ,00' 100• 121 61 $ 160 $ 159 $ 158 $ 157 ; 156 154 ® , h 10,. 1® 134 I� C 182 I 197 3 i 22 _ i - <QC> - © © QED $ ,00' 96 b 51 1 201 I 0 ^ >, >_ >, .a < 6.a „> 133 a3 I PROPOSED D,• /�/ �' 1 ,ss a © SI I CITY PARK /RETENTION ;, ,® � ,® °•' _' 30.83 Jx >• i 3 , 42 I 965 I I 200 I q,e � — _ � ¢'© • a- / 132 . AREA NODE 101 5.06 ACRES lo• tao II Ia y 49 »• 62 63 � � 75 o x r 141 � I I V) W 199 94 2x5' —w- — i •S'— ' ' ' B\ m 8 .I I — — I I a' I ti I I I I 7 0 2 A -q, 6 9.0 o hljl O 3 � I 62. � t, ax• B �ry I 3 5 r 4 11 I.IJ I R —I I I I I I I I I I I I I I i I I '$ 6.0 7.0 J•!4® ,x V 2a ^ 11 1 I>0' r,D' i I ® ® \\ a 131 ��� 7 'd' ,. 1 61 64 d 1a0y I at f 50 1 © I �� ar I 3 z ,%' eo - - -'�• — ''�` - -- '.— -- — — —' /,p 1 47 I „D r,o' i 77 J y. _ NODE ]. '�,x, e• er �. T er >r _ >x' n• s' 37 1 m . „i - I I° 74 0 zO 730 'os` I 60 65 I� a7 Sr a6 16 17 51 © - 32 _ 33 34 _ 35 _ 36 _ I g no• no• nc qtr D,. I ea Ioo• I I = -J.o n 38 a 59 66 73 eoi 'EJ/ \ x`r „• e• I nr 8 m n• >r >r m 52 9.a 6,., C ^”' ® VENUE 15 18 Ior ae• _ Ixv I 45 roa• rar 31 30 29 28 39 _ "o• 58 67 _ I� - 72 79 pU 86 1 i vJ• s• I I I _ 53 �I ' Q <� 8a I 11 ( 91 27 I 14 19 Io• 1144 vv vv' R or q Jr s.o n R z4 I ar s, ,,r 2' r I e• ee• roo• er• n• 1 • v' J\ q n 40 aJ. °0• I 57 68 I • yl I I I to _ HERMITAGE o na CIRCLE m• _ S k, I 3 83 90 ¢j I.J9 63.Je I ee. 71 60 I a 87 13 20 U .00x 1 _ a� a3 54 - _ fl �� Q I I I 12' J,. >r I v 47 56 69 70 82 12 22 23 24 © 6 42 55 81 88 I 21 _ = 25 $. _ 'a $ I 89 I SSA I 1.I I U1 ux' rar )T )2, n' W' BO' 10Y 1a9' ^ ree' ,DI' 113' IJS' pe' RS' 12Y % 'I 'PDIII (74.91 00 78'44" W 2651.97' (2657.9x] m NODEI -100 II AREA -1 WATERSHED AREA = 27.56 Ac WATERCOURSE LENGTH = 2053.43' LENGTH PC TO CENTROID = 1200.70' AH = 24.50' OI.L3NOVW ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** F L 0 0 D R O U T I N G A N A L Y S I S ACCORDING TO RIVERSIDE COUNTY FLOOD CONTORL AND WATER CONSERVATION DISTRICT (RCFC &WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1989 -98 Advanced Engineering Software (aes) Ver. 6.1 Release Date: 01/01/98 License ID 1419 Analysis prepared by: DUDEK & ASSOCIATES 75 -150 Sheryl Avenue, Suite C Palm Desert, CA 92211 760 - 341 -6660 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • JOB # 2512 Monticello • September 27, 2000 • 100 -YR RUNOFF, AREA -1 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 2339VOL.DAT TIME /DATE OF STUDY: 8:17 9/27/2000 FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 1 ---------------------------------------------------------------------------- »» >UNIT- HYDROGRAPH ANALYSIS<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- (UNIT - HYDROGRAPH ADDED TO STREAM #1) WATERCOURSE LENGTH = 2053.430 FEET LENGTH FROM CONCENTRATION POINT TO CENTROID = 1200.'700 FEET ELEVATION VARIATION ALONG WATERCOURSE .= 24.500 FEET BASIN FACTOR = .015 WATERSHED AREA = 27.560 ACRES BASEFLOW = .000 CFS /SQUARE -MILE . WATERCOURSE• "LAG "TIME = 065 HOURS CAUTION: LAG TIME IS LESS THAN .50 HOURS. .THE 5- MINUTE PERIOD UH MODEL (USED IN THIS.COMPUTER PROGRAM) MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES. DESERT S -GRAPH SELECTED UNIFORM.MEAN SOIL- LOSS(INCH /HOUR) _ .200 LOW SOIL -LOSS RATE•PERCENT(DECIMAL) _ .800 MINIMUM SOIL -LOSS RATE(INCH /HOUR) _ 1.1.00 USER - ENTERED RAINFALL = 4.00 INCHES RCFC &WCD 24 -Hour Storm (15- Minute period) SELECTED RCFC &WCD DEPTH -AREA ADJUSTMENT FACTOR(PLATE E -5.8) = 1.0000 UNIT HYDROGRAPH TIME UNIT = 15.000 MINUTES UNIT INTERVAL PERCENTAGE OF LAG -TIME = 383.515 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- UNIT HYDROGRAPH DETERMINATION ------------------------------7--------------------------------------------- INTERVAL "S" GRAPH UNIT HYDROGRAPH NUMBER MEAN VALUES ORDINATES(CFS) ---------------------------------------------------------------------- 1 63.749 - - - - -- 70.826 2 97.598 37.607 3 99.953 2.616 4 99.981 .031 5 99.995 .016 6 100.000 .005 TOTAL STORM RAINFALL(INCHES) = 4.00 TOTAL SOIL- LOSS(INCHES) = 2.44 TOTAL EFFECTIVE RAINFALL(INCHES) = 1.56 ---------------------------------------------------------------------------- TOTAL SOIL -LOSS VOLUME(ACRE -FEET) = 5.5939 TOTAL STORM RUNOFF VOLUME(ACRE -FEET) = 3.5905 ---------------------------------------------------------------------------- 1 2 4 - H O U R S T 0 R M R U N O F F H Y D R 0 G R A P H ---------------------------------------------------------------------------- ----------------------------------------------------------------------------- HYDROGRAPH IN FIVE - MINUTE INTERVALS(CFS) ---------------------------------------------------------------------------- TIME(HRS) VOLUME(AF) Q(CFS) 0. 5.0 10.0 15.0 2.0:0 •083 .0008 :11 Q 1.67 .0016 .I1 Q .250 0.023 .11 Q ..333 .0039 .23 Q .417. .0055 .23 Q .500 .0071 .23 Q ..583 .0089 .26 Q .667 .0107 .26 Q .750 .0126 .•26 Q 833 .0148 .32 Q .:917 .0170 .32 Q 1:000 .0192. .32 Q 1.083 .0213' .30 Q 1.167 .0233 .30. Q 1':250 .0254 .30 Q 1.333 .0272 .27 Q 1.417 .0291 .27 Q 1:500 .0309 .27 Q 1.583 .0328 .27 Q 1.667 .0346 .27 Q 1.750 .0364 .27 Q 1.833 .0387 .32 Q 1.917 .0409 .32 Q 2.000 .0431 .32 Q 2.083 .0455 .35 Q 2.167 .0480 .35 Q 2.250 .0504 .35 Q 2.333 .0529 .36 Q 2.417 .0553 .36 Q 2.500 .0578 .36 Q 2.583 .0606 .41 Q 2.667 .0634 .41 Q 2.750 .0663 .41 Q 2.833 .0693 .44 Q 2.917 .0724 .44 Q 3.000 .0754 .44 Q 3.083 .0785 .44 Q 3.167 .0815 .44 Q 3.250 .0846 .44 Q 3.333 .0876 .44 Q 3.417 0907 .44 QV 3.500 .0938 .44 QV 3.583 .0968 .44 QV 3.667 .0999 .44 QV 3.750 .1029 .44 QV 3.833 .1064 .50 Q 3.917 .1099 .50 Q 4.000 .1133 .50 Q 4.083 .1170 .53 Q 4.167 .1206 .53 Q 4.250 .1243 .53 Q 4.333 .1283 .59 Q 4.417 .1324 .59 Q 4.500 .1365 .59 Q 4.583 .1407 .62 Q 4.667 .14.50 .62 Q 4.750 .1.493 .62 Q 4.833 .1539 .68 Q 4.917 .1586 .68 Q 5.000 ..1633. .68 Q 5.083 .1674 .60 .,Q 5.167 .1715 .60 Q 5.250 .1756 .60 Q 5.333 .1797 .59 QV 5.417 .1838 .59 Qv 5.500 .1879 .59 Qv 5.583 .1925: .68 QV 5.667 .1972 .68 QV 5.750 .2019 .68 Qv 5.833 .2067 .71 Qv 5.917 .2116 .71 QV 6.000 .2165 .71 QV 6.083 .2218 .77 QV 6.167 .2271 .77 QV 6.250 .2324 .77 Qv 6.333 .2379 .80 Qv 6.417 .2434 .80 QV 6.500 .2488 .80 Qv 6.583 .2547 .86 QV 6.667 .2606 .86 Qv 6.750 .2665 .86 Qv 6.833 .2726 .89 Q V 6.917 .2788 .89 Q V 7.000 .2849 .89 Q V 7.083 .2910 .89 Q V 7.167 .2971 .89 Q V 7.250 .3032 .89 Q V 7.333 .3097 .95 Q V 7.417 .3162 .95 Q V 7.500 .3228 .95 Q V 7.583 .3299 1.03 QV 7.667 .3370 1.03 QV 7.750 .3441 1.03 QV 7.833 .3518 1.12 QV 7.917 .3595 1.12 Q V 8.000 .3672 1.12 Q V 8.083 .3760 1.27 Q V 8.167 .3847 1.27 Q V 8.250 .3934 1.27 Q V 8.333 .4026 1.33 Q V 8.417 .4117 1.33 Q V 8.500 .4209 1.33 Q V 8.583 .4304 1.39 Q V 8.667 .4400 1.39 Q V 8.750 .4496 1.39 Q V 8.833 .4597 1.48 Q V 8.917 .4699 1.48 Q V 9.000 .4801 1.48 Q V 9.083 .4939 2.00 QV 9.167 .5077 2.00 QV 9.250 .5215 2.00 QV 9.333 .5395 2.61 QV 9.417 .5574 2.61 QV 9.500 .5754 2.61 QV '9.583 .5971 3.15 Q 9.667 .6187 3.15' Q 9.750 .6404 3.15 QV 9.833 .6657 3.68 Q 9.917 .6910 3.68 Q 10.000 .7164 3.68. Q 10.083 .7318 2.24 Q V . 10.167 .7473 2.24 Q V . 10.250 .7627 2.24 Q V . 10.333 .7723 1.39 Q. V . 10.417 .7819 1.39 Q V . 10.500 .7915 1.39 Q V . 10.583 .8091 2.55 Q V. 10.667 .82.67 2.55 Q V. 10.750 .8443 2.55 Q V. 10.833 .8667 3.25 Q V. 10.917 ..8891 3.25 Q V. 11.000 .9115 3.25 Q V 11.083 .9328 3.09 Q V 11.167 .9541 3.09 Q V 11.250 .9754 3.09 Q V 11.333 .9963 3.03 Q v 11..417 1.0171 3.03 Q v 11.500 1.0379 3.03 Q v 11.583 1.0553 2.53 Q v 11.667 1.0728 2.53 Q v 11.750 1.0902 2.53 Q V 11.833 1.1080 2.59 Q V 11.917 1.1259 2.59 Q V 12.000 1.1437 2.59 Q V 12.083 1.1766 4.78 Q. V 12.167 1.2096 4.78 Q. V 12.250 1.2425 4.78 Q. V 12.333 1.2853 6.21 Q V 12.417 1.3280 6.21 Q V 12.500 1.3707 6.21 Q V 12.583 1.4194 7.07 QV 12.1667 1.4682 7.07 Q V 12.750 1.5169 7.07 Q V 12.833 1.5702 7.74 Q V 12.917 1.6235 7.74 Q V . 13.000 1.6769 7.74 Q V . 13.083 1.7417 9.41 QV. 13.167 1.8064 9.41 Q V 13.250 1.8712 9.41 Q .V 13.333 1.9418 10.24 QV 13.417 2.0123 10.24 Q V 13.500 2.0829 10.24 Q V 13.583 2.1329 7.25 Q V 13.667 2.1828 7.25 Q V 13.750 2.2328 7.25 Q V 13.833 2.2718 5.67 Q V 13.917 2.3109 5.67 Q V 14.000 2.3500 5.67 Q V 14.083 2.3965 6.76 Q V 14.167 2.4431 6.76 Q V 14.250 2.4897 6.76 Q V 14.333 2.5389 7.15 Q. V . 14.417 2.5881 7.15 Q. V . 1.500. 4 2.6374 7.15 Q V. 14.583 2.6863 7.11 Q V. 14.667 2.7353 7.11 Q V 14.750. 2.7842 7.11 Q V 14.833 2.8316 6.88 Q v 14.917 2.8790 6.88 Q V 15.000 2.9264 6.88 Q V 15.083 2.9713 6.52 Q V 15.167 3.,0162 6.52 Q V 15.250 3.0611 6.52 Q V 15.333 3.1034 6.14 Q V 15.417 3.1456 6.14 Q V 15.500 3.1879 6.14 Q V 15.583 3.2217 4.91 Q. V 15.667 3.2555 4.91 Q. V 15.750 3.2894 4.91 Q. V 15.833 3.3194 4.36 Q V 15.917 3.3494 4.36 Q V 16.000 3.3795 4.36 Q V 16.083 3.3919 1.80 Q V 16.167 3.4043 1.80 Q V 16.250 3.4167 1.80 Q V . 16.333 3.4198 .45 Q V . 16.417 3.4229 .45 Q V . 16.500 3.4260 .45 Q V . 16.583 3.4281 .30 Q V . 16.667 3.4301 .30 Q V . 16.750 3.4322 .30 Q V . 16.833 3.4341 .27 Q V . 16.917 3.4359 .27 Q V , 17.000 3.4378 .27 Q V , 17.083 3.4404 .38 Q V . 17.167 3.4430 .38 Q V . 17.250 3.4456 .38 Q V . 17.333 3.4487 .44 Q V . 17.417 3.4517 .44 Q V . 17.500 3.4547 .44 Q V . 17.583 3.4578 .44 Q V . 17.667 3.4608 .44 Q V . 17.750 3.4639 .44 Q V . 17.833 3.4666 .39 Q V . 17.917 3.4692 .39 Q V . 18.000 3.4719 .39 Q V . 18.083 3.4744 .36 Q V . 18.167 3.4768 .36 Q V . 18.250 3.4793 .36 Q V . 18.333 3.4818 .36 Q V . 18.417 3.4842 .36 Q V . 18.500 3.4867 .36 Q V . 18.583 3.4887 .30 Q V . 18.667 3.4908 .30 Q V . 18.750 3.4928 .30 Q V . 18.833 3.4943 .21 Q V . 18.917 3.4957 .21 Q V . 19.000 3.4972 .21 Q V . 19.083 3.4988. .24 Q V , 19.167 3.5005 .24 Q V . 19.250 3.5021 .24. Q V. 19.333 3.5043 .32 Q V. 19.417 3.5065 .32 Q V. 19.500 3.5087 .32 Q V. 19.583 3.5108 .30 Q V. 19.667 3.5128 .30 Q V. 19.750 3.5149 .30 Q V. 19.833 3.5163 ..21 Q V. 19.917 3.5178 .21 Q V. 20.000 3.5192 .21 Q V. 20.083 3.5209 .24 Q V. 20.167 3.5225 .24 Q V. 20.250 3.5241 .24 Q V. 20.333 3.5260 .26 Q V. 20.417 3.5278 .26 Q V. 20.500 3.5296 .26 Q V. 20.583 3.5314 .27 Q 20.667 3.5333 .27 Q 20.750 3.535I .27 Q 20.833 3.5366 .2I Q 20.917 3.5380 .21 Q 21.000 3.5394 .21 Q 21.083 3.5411 .24 O 21.167 3.5427 .34 0 2I.250 3'5443 ,24 0 21.333 3.5458 .21 Q 2I.417 3.5472-. '21 Q 21,500 3'5486 ,21 Q 21.583 3.5503 '24 Q 21.667 3.5519 '24 O 21.750 3.5535 .24 0 21'833 3.5549 '21 0 21.9I7 3.5564 .21 0 22.000 3.5578 .21 Q 22.083 3.5594 .24 Q 22.167 3.5611 .24 Q 22.250 3.5627 -24 Q 22.333 3'5641 .21 Q 22.417 3.5656 .21 Q 22.500 3.5670 .2I Q 22.583 3'5682 .I8 Q 22.667 3.5695 .I8 0 22.750 3.5707 'lO O 22.833 3.5719 .18 Q 22.917 3.5732 .18 U 23'000 3.5744 'I8 Q 23.083 3.5756 .I8 Q 23'166 3.5768 .18 O 23.250 3.5781 .I8 O 23.333 3.5793 .I8 O 23.416 3.5805 .18 O 23'500 3.5817 .18 Q 23.583 3.5829 .I8 O 23.666 3.5842 .18 0 23.750 3.5854 .I8 U 23.833 3.5866 .18 Q 23.916 3.5878 '18 Q 24.000 3.5891 .18 O 24.083 3'5895 .06 O 24.166 3.5900 '06 O 24.250 3.5904 .06 Q 24.333 3.5904 .00 O 24'416 3.5905 .00 U 24.500 3.5905 .00 Q 24.583 3.5905 .00 Q 24.666 3.5905 .00 Q. 24.750 3.5905 .OU Q END OF FLOODSCx ROUTING ANALYSIS v' v' v' . . . v. v' v' v' v' v' v' v' . . . v. v' v' . . . n. v' v' . . . v. v' v' . . . n. v' v' . . . v' v' v' v' v' v' v' . . . n. v' . . . v. . . . v. v' . . . v. v' ' . . v. v' v' v' v' v_ v' . . . v' v' v' v' v' v' ' ' ' v' ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** F L 0 0 D R 0 U T I N G A N A L Y S I S ACCORDING TO RIVERSIDE COUNTY FLOOD CONTORL AND WATER CONSERVATION DISTRICT (RCFC &WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1989 -98 Advanced Engineering Software (aes) Ver. 6.1 Release Date: 01/01/98 License ID 1419 Analysis prepared by: DUDEK & ASSOCIATES 75 -150 Sheryl Avenue, Suite.0 Palm Desert, CA 92211 760 - 341 -6660 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • JOB # 2512 Monticello • September 27, 2000 • 100 -YR STORM RUNOFF, AREA -2 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 2339V2.DAT TIME /DATE OF STUDY: 8:24 9/27/2000 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 1 ---------------------------------------------------------------------------- » » >UNIT- HYDROGRAPH ANALYSIS « «< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- (UNIT - HYDROGRAPH ADDED TO STREAM #1) WATERCOURSE LENGTH = 1763.720 FEET LENGTH FROM CONCENTRATION POINT TO CENTROID = 886.450 FEET ELEVATION VARIATION ALONG WATERCOURSE = 11.000 FEET BASIN FACTOR = .015 WATERSHED AREA = 29.050 ACRES BASEFLOW = .000 CFS /SQUARE -MILE WATERCOURSE "LAG" TIME = .062 HOURS CAUTION: LAG TIME IS LESS THAN .50 HOURS. THE 5- MINUTE PERIOD UH MODEL (USED IN THIS COMPUTER PROGRAM) MAY BE TOO LARGE FOR PEAK FLOW ESTIMATES. DESERT S -GRAPH SELECTED UNIFORM MEAN SOIL- LOSS(INCH /HOUR) _ .200 LOW SOIL -LOSS RATE PERCENT(DECIMAL).= .800 MINIMUM SOIL -LOSS RATE(INCH /HOUR) = .100 USER - ENTERED RAINFALL = 4.00 INCHES RCFC &WCD 2.4 -Hour Storm (15- Minute period) SELECTED RCFC &WCD DEPTH -AREA ADJUSTMENT FACTOR(PLATE E -5.8) = .9999 UNIT HYDROGRAPH TIME UNIT = 15.000 MINUTES UNIT INTERVAL PERCENTAGE OF LAG -TIME = 403.117 UNIT 8YDROGRAPB DETERMINATION ---------------------------------------------------------------------------- INTERVAL "S" GRAPH UNIT BYDDOGRAP8 NUMBER MEAN VALUES 0RDI0ATES(CFS) ---------------------------------------------------------------------------- l 65.201 76'355 2 98.011 38.424 3 99.969 2.293 4 99.088 .022 5 99.997 .01I 6 I00.000 .004 TOTAL STORM RAINFALL(INCHES) ~ 4.00 TOTAL SOIL-LOSS(INCHES) = 2.44 TOTAL EFFECTIVE RAINFALL(INCHES) = 1.56 ---------------------------------------------------------------------------- TOTAL SOIL-LOSS VOLOME<ACRE-FEET) = 5.8963 TOTAL STORM RUNOFF nOLOME(ACDD-FEET) 3.7846 --------------- ------------------------------------------------------------ l 24 -80 U R ST0BM RD00F F 8YDRVGDAP8 aronOGDAPa IN FIVE-MINUTE ImTERvAL8<CFS> ---------------------------------------------------------------------------- TIBO(8BS) VOLUME(AF) O<CFS> O. 5.0 10.0 15.0 20.0 ------------_--------------------------------------------------------------- .083 .0008 .12 0 . . . . .167 .0017 .I2 Q . . . . .250 .0025 .I2 Q . . . . '533 '0042 .24 Q . . . . .417 '0059 .24 Q . . . . .500 '0076 '24 0 .583 '0095 .28 0 .667 .0114 .28 0 . . . . .750 '0133 .28 0 .833 .0157 ,34 0 .9I7 .0181 '34 0 1'000 .0204 '34 O . . . . I.083 '0226 .31 O . . . . 1.I67 .0247 .3I O 1.250 .0269 .31 0 . . . . 1'333 .0288 .28 Q 1'4I7 '0308 .28 O . . . . 1'500 .0327 .28 O 1.583 .0346 .28 Q 1.667 .0366 .28 Q 1.750 .0385 .28 Q 1.833 .0409 .34 Q 1.917 .0432 .34 Q 2.000 .0456 .34 Q 2.083 .0481 .37 Q 2.167 .0507 .37 Q 2.250 .0533 .37 Q 2.333 .0559 .37 Q 2.417 .0584 .37 Q 2.500 .0610 .37 Q 2.583 .0640 .44 Q 2..667 .0670 .44 Q 2.750 .0700 .44 Q 2.833 .0732 .47 Q 2.917 .0765 .47 Q 3.000 .0797 .47 Q 3.083 .0829 .47 Q 3.167 .0861 .47 Q 3.250 .0893 .47 Q 3.333 .0926 .47 Q 3.417 .0958 .47 QV 3.500 .0990 .47 QV 3.583 .1022 .47 QV 3.667 .1055 .47 QV 3.750 .1087 .47 QV 3.833 .1123 .53 Q 3.917 .1160 .53 Q 4.000 .1196 .53 Q 4.083 .1235 .56 Q 4.167 .1274 .56 Q 4.250 .1312 .56 Q 4.333 .1355 .62 Q 4.417 .1398 .62 Q 4.500 .1441 .62 Q 4.583 .1486 .65 Q 4.667 .1531 .65 Q 4.750 .1576 .65 Q 4.833 .1625 .72 Q 4.917 .1675 .72 Q 5.000 .1724 .72 Q 5.083 .1767 .63 Q 5.167 .1810 .63 Q 5.250 .1853 .63 Q 5.333 .1896 .63 Qv 5.417 .1940 .63 QV 5.500 .1983 .63 QV 5.583 .2032 .72 Qv 5.667 .2081 .72 QV 5.750 .2131 .72 QV 5.833 .2182 .75 QV 5.917 .2234 .75 QV 6.000 .2285 .75 QV 6.083 .2341 .81 QV 6.167 .2397 .81 QV 6.250 .2452 .81 QV 6.333 .2510 .84 QV 6.417 .2568 .84 QV 6.500 .2626 .84 QV 6.583 .2689 .90 Qv 6.667 .2751 .90 QV 6.750 .2813 .90 Qv 6.833 .2877 .93 Q V 6.917 .2942 .93 Q V 7.000 .3006 .93 Q V 7.083 .3071 .94 Q V 7.167 .3135 .94 Q V 7.250 .3200 .94 Q V 7.333 .3269 1.00 Q V 7.417 .3337 1.00 Q V 7.500 .3406 1.00 Q V 7.583 .3481 1.09 QV 7.667 .3556 1.09 QV 7.750 .3631 1.09 QV 7.833 .3713 1.18 QV 7.917 .3794 1.18 Q V 8.000 .3876 1.18 Q V 8.083 .3968 1.34 Q V 8.167 .4060 1.34 Q V 8.250 .4152 1.34 Q V 8.333 .4249 1.40 Q V 8..417 .4345 1.40 Q V 8.500 .4442 1.40 Q V 8.583 .4543 1.47 Q V 8.667 .4644 1.47 Q V 8.750 .4745 1.47 Q V 8.833 .4852 1.56 Q V 8.917 .4959 1.56 Q V 9.000 .5067 1.56 Q V 9.083 .5213 2.13 QV 9.167 .5359 2.13 QV 9.250 .5506 2.13 QV 9.333 .5696 2.76 QV 9.417 .5886 2.76 QV 9.500 .6076 2.76 QV 9.583 .6305 3.33 Q 9.667 .6534 3.33 Q 9.750 .6763 3.33 QV 9.833 .7031 3..89 Q 9.917 .7299 3.89 Q 10.000 .7566 3.89 Q 10.083 .7727 2.33 Q V . 10.167 .7887 2.33 Q V . 10.250 .8047 2.33 Q V . 10.333 .8148 1.46 Q V . 10.417 .8248 1.46 Q V . 10.500 .8349 1.46 Q V . 10.583 .8536 2.72 Q V. 10.667 .8723 2.72 Q V. 10.750 .8911 2.72 Q V. 10.833 .9148 3.44 Q V. 10.917 .9384 3.44 Q V. 11.000 .9621 3.44 Q V 11.083 .9845 3.26 Q V 11.167 1.0070 3.26 Q V 11.250 1.0294 3.26 Q V 11.333 1.0514 3.19 Q V 11.417 1.0733 3.19 Q V 11.500 1.0953 3.19 Q V 11.583 1.1136 2.65 Q V 11.667 1.1318 2.65 Q V 11.750 1.1501 2.65 Q V 11.833 1.1690 2.74 Q V 11.917 1.1878 2.74 Q V 12.000 1.2066 2.74 Q V 12.083 1.2417 5.09 Q V 12.167 1.2768 5.09 Q V 12.250 1.3118 5.09 Q V 12.333 1.3570 6.56 QV 12.417 1.4022 6.56 QV 12.500 1.4474 6.56 Q V 12.583 1.4989 7.47 QV 12.667 1.5504 7.47 Q V 12.750 1.6018 7.47 Q V 12.833 1.6581 8.18 QV 12.917 1.7144 8.18 Q V . 13.000 1.7707 8.18 Q V . 13.083 1.8393 9.95 Q. 13.167 1.9078 9.95 QV 13.250 1.9764 9.95 QV 13.333 2.0508 10.81 Q 13.417 2.1253 10.81 QV 13.500 2.1997 10.81 Q V 13.583 2.2519 7.57 Q V 13.667 2.3040 7.57 Q V 13.750 2.3562 7.57 Q V 13.833 2.3972 5.96 Q V 13.917 2.4383 5.96 Q V 14.000 2.4793 5.96 Q V 14.083 2.5286 7.15 Q V 14.167 2.5779 7.15 Q V 14.250 2.6271 7.15 Q V 14.333 2.6790 7.54 Q V . 14.417 2.7309 7.54 Q V . 14.500 2.7829 7.54 Q V. 14.583 2.8345 7.49 Q V. 14.667 2.8861 7.49 Q V 14.750 2.9377 7.49 Q V 14.833 2.9876 7.25 Q v 14.917 3.0375 7.25 Q V 15.000 3.0875 7.25 Q V 15.083 3.1347 6.86 Q V 15.167 3.1820 6.86 Q V 15.250 3.2292 6.86 Q V 15.333 3.2737 6.46 Q V 15.417 3.3182 6.46 Q V 15.500 3.3628 6.46 Q V 15.583 3.3982 5.15 Q V 15.667 3.4337 5.15 Q V 15.750 3.4691 5.15 Q V 15.833 3.5007 4.59 Q. V 15.917 3.5323 4.59 Q. V 16.000 3.5639 4.59 Q• V 16.083 3.5766 1.84 Q V 16.167 3.5892 1.84 Q V 16.250 3.6019 1.84 Q V , 16.333 3.6051 .46 Q V , 16.417 3.6082 .46 Q V . 16.500 3.6114 .46 Q V , 16.583 3.6135 .31 Q V , 16.667 3.6157 .31 Q V , 16.750 3.6179 .31 Q V . 16.833 3.6198 .28 Q V , 16.917 3.6218 .28 Q V , 17.000 3.6237 .28 Q V . 17.083 3.6265 .40 Q V . 17.167 3.6293 .40 Q V . 17.250 3.6321 .40 Q V . 17.333 3.6353 .46 Q V . 17.417 3.6385 .46 Q V . 17.500 3.6417 .46 Q V , 17.583 3.6449 .47 Q V , 17.667 3.6481 .47 Q V , 17.750 3:6513 .47 Q V . 17.833 3.6541 .41 Q V . 17.917 3.6570 .41 Q V . 18.000 .3.6598 .41 Q V . 18.083 3.6624 .38 Q V . 18.167 3.6649 .38 Q V . 18.250 3.6675 .38 Q V . 18.333 3.6701 .37 Q V . 18.417 3.6727 .37 Q V , 18.500 3.6753 .37 Q V . 18.583 3.6774 .31 Q V . 18.667 3.6796 .31 Q V . 18.750 3.6818 .31 Q V . 18.833 3.6833 .22 Q V . 18.917 3.6848 .22 Q V . 19.000 3.6863 .22 Q V . 19.083 3.6881 .25 Q V . 19.167 3.6898 .25 Q V . 19.250 3.6915 .25 Q V. -19.333 3.6939 .34 Q V. 19.417 3.6962 .34 Q V. 19.500 3.6985 .34 Q V. 19.583 3.7007 .31 Q V. 19.667 3.7028 .31 Q V. 19.750 3.7050 .31 Q V. 19.833 3.7065 .22 Q V. 19.917 3.7080 .22 Q V. 20.000 3.70.96 .22 Q V. 20.083 3.7113 .25 Q V. 20.167 3.7130 .25 Q V. 20.250 3.7147 .25 Q V. 20.333 3.7167 .28 Q V. 20.417 3.7186 .28 Q V. 20.500 3.7205 .28 Q V. 20.583 3.7224 .28 Q V. 20.667 3.7244 .28 Q V. 20.750 3.7263 .28 Q V. 20.833 3.7278 .22 Q V. 20.917 3.7293 .22 Q V. 21.000 3.7309 .22 Q V. 21.083 3.7326 .25 Q V. 21.167 3.7343 .25 Q V. 21.250 3.7360 .25 Q V. 21.333 3.7375 .22 Q V. 21.417 3.7390 .22 Q V. 21.500 3.7405 .22 Q V. 21.583 3.7423 .25 Q V. 21.667 3.7440 .25 Q V. 21.750 3.7457 .25 Q V. 21.833 3.7472 .22 Q V. 21.917 3.7487 .22 Q V. 22.000 3.7502 .22 Q V. 22.083 3.7519 .25 Q V. 22.167 3.7537 .25 Q V. 22.250 3.7554 .25 Q V. 22.333 3.7569 .22 Q V. 22.417 3.7584 .22 Q V. 22.500 3.7599 .22 Q V. 22.583 3.7612 .19 Q V. 22.667 3.7625 .19 Q V. 22.750 3.7638 .19 Q V. 22.833 3.7651 .19 Q V. 22.917 3.7664 .19 Q V. 23.000 3.7677 .19 Q V. 23.083 3.7690 .19 Q V. 23.166 3.7703 .19 Q V. 23.250 3.7716 .19 Q V. 23.333 3.7728 .19 Q V. 23.416 3.7741 .19 Q V. 23.500 3.7754 .19 Q V. 23.583 3.7767 .19 Q V. 23.666 3.7780 .19 Q V. 23.750 3.7793 .19 Q V. 23.833 3.7806 .19 Q V. 23.916 3.7819 .19 Q V. 24.000 3.7832 .19 Q V. 24.083 3.7836 .07 Q V. 24.166 3.7841 .07 Q V. 24.250 3.7845 .07 Q V. 24.333 3.7845 .00 Q V. 24.416 3.7846 .00 Q V. 24.500 3.7846 .00 Q V. 24.583 3.7846 .00 .Q V. 24.666 3.7846 .00 Q V. 24.750 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- 3.7846 .00 Q V. END OF FLOODSCx ROUTING ANALYSIS 1 OFFSITE RUNOFF VOLUME 100 YR SUMMARY OF EXISTING FLOWS TO THE NORTHWEST CORNER OF TRIAD PACIFIC BOUNDARY DRAINAGE AREA TO NORTHWEST CORNER OF TRIAD PACIFIC PROPERTY 36.5 AC La Quinta Palms runoff (undeveloped conditions analyzed) This assumes La Quinta Palms retain onsite the increase runoff from the undeveloped to the developed state: We have assumed the undeveloped runoff.is conveyed to Fred Waring Drive. 8:5 ': AC Developed street runoff (includes 1/.2 street plus .landscape area of Fred Waring 'Drive) 45.0 AC Total Total runoff =3..4 ac. -ft. Q100 =68,9 cfs rn� Z7A g4 . rf. 0 aw R V. 'At: , -4s I pl, �'.l L '7'. 41 J�ANLAU A bROZ 00Y, R F C., aw-� ee, 0 -MEeTHOI "HW: -C RATIONAL: 'rf-'- pi �'u PR0JE.CT-!:':` Q T e �'7,1 3 XY FF771 M b" heck Yll: a I..; DRAINAGE So(( a SLOPE SECTION L. RREMAR C Deveopmen ---AR Z7 tj q. YF.. p F. p �F- r.y T. 3Z -89 75— :A.. FRO vvAsZit.J& DrZiVe A Co ryien' ST 80. -4 �js v J .... ..... 4A �-7 G. •i,� _.3.,5_ r -::.. .6� .a� 10 z.os ,, 5.3�. ,35 %;• ��� °�'••,� ,�.9: -.1 FS3 .. A -3 C Frc-D vvAQmkj OaVE r 00 14. 03:1 1 0 o' PALrn s Ro .61 bat ;- 3. 1&1, cl. --7 CLA ?ViAJrA r*LMS) �TJYDP eV p TATt �ss 5 Lq L^".,,Jr4 PA&-ths) T, .6, ApJvj-r)j& 5. ...................... 4 Z' 00: I Ql 1.36 9 - 6. 1 .05 po 627 O 10 0 8 45 S. 3. fy r WAP)aee RRO M T46C. 5 T.: - ?im 747. 5.9 6 q. YF.. p F. p �F- r.y T. 3Z . .... ..., r.. .. ... -.. ...:.. .- .1:' tai :.,`2•c_.yr. .:.6Y":•w•--��a� it • • • � i f yy 1 • 1 L ,1 • _a Water .• 18 „ .. � r .� cr 144'• DAR Y • • RQAD..:.... Water • •' .�,� ; • :O O o CI, '. o t. co ss p O 5 at v �• Ai 1 to + �; PAL e, �O \: o, - Trailer / y Pa rli If "• 1 4D 80 0 '•,• . . . so D: A N A -. ;Q ............... O ,•Y.' H �• .. se r .s _, _T:; . %� •;its •�'� ;g;.. ,: ° KEY 150 E 9 L--H Tc- -K-�Tc o S 30 EXAMPLE: E 7 (1) L-5.50', H =5.0; K= Single Family(I /4Ac.) 35 Development , Tc =12.6 min. 6 100 (2) L =550 ; H =5.0, K = Commercial 40 Development , Tc = 9.7 min. /-5 1` 4 RCFC a WCD HYDROLOGY J\/JANUAL Reference: Bibliography item No. 35. PLATE D -3 TC' LIMITATIONS: L 100 1. Maximum length =1000'. TC 1000 90 2. Maximum area = 10 Acres- _ 5 900 80 a 70 H 6. 800 Y o aoo' a 60 c o' o •300 700. , _ �o > ' 200 7 . ,. oCi N' o E '= 100 .. (1) 600. Ea 50 0 .� ,. .60 8 CX 0 0 0 50 ° E °' v, 30 20 - 9 a>i ' 500:. o Q 35 o ° a 10 ' K Ai 6 400 •° 30 Undeveloped'. 0 Good Cover y, 2 12 d 350 ° 25 Undevelo ed c 0 1.0 ° _= Fair Cover 8 14 ,° v :- 300 E Undeveloped z %G 0 .3 .Zj 15 m _ c - 20 19 Poor C er. 0 l .2 16 17 Ingle Family ( 50 _ / 17 'E J 250 �. (1/4. 'Acre) 18 E 1 L o: 15 Commercia 0 ~ 19 C" ;6 14 (PCV 20 200 13 C, 12 2 1 °' " ° 25 0 ° KEY 150 E 9 L--H Tc- -K-�Tc o S 30 EXAMPLE: E 7 (1) L-5.50', H =5.0; K= Single Family(I /4Ac.) 35 Development , Tc =12.6 min. 6 100 (2) L =550 ; H =5.0, K = Commercial 40 Development , Tc = 9.7 min. /-5 1` 4 RCFC a WCD HYDROLOGY J\/JANUAL Reference: Bibliography item No. 35. PLATE D -3 • O t Z cM z m _� M -- { D c!� .o ° D n ° c m --D-� D ° O +Z N Q1 CATHEDRAL CITY. CHERRY VALLEY CORONA ` DESERT HOT SPRINGS El52NORE - MILO04AR DURATION FREQUENCY DURATION FREQUENCY DURATION FREQUENCY DURATION FREQUENCY DURATION FREQUENCY MINUTES MINUTES MINUTES MINUTES MINUTES 10 100, 10 100 10 100 10 100 10 100 YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR 5 4.14. 6•76 5 3.65 5. t9 5 3.10 4.78 5 4.39 6.76 5 3.23 4.94 6 3.73 6.08 6 3.30 4.97 6 2.84 4.38 6 3.95 6.08 6 2.96 4.53 7 3..41 5.56. 7 3.03 4.56 7 2.64 4•07 7 3.62 5.56 7 2.T5 4.21 B 3.15 5.15 B 2.82 4.24 B 2' .4T 3.81 8 3.35 5.15 B 2.58 3.95 9 2.95 4.81 9 2.64 3.97 9. 2.34 3.60 9 3.13 4.81 9 2.44 3.73 10 2.T7 4.52 10 2.49 3.7b 10 2.22 3.43 10 2.94 4.52 10 2.32 3.54 it 2.62 4.2 B'. it 2.36 3.56 11 2.12 3:27 11 2.78 4.28 11 2.21 3.39 12 2.49 4.07 12 2.25 3.19 12 2.04 3.14 12 2.65 4.07 12 2.12 3.25 13 2.38 3.88 13. 2.16 3.25. 13 1.96 3.02 13 2.53 3.88 13 2.04 3.13 14 2.28 3.72 It 2.07 3.12 14 1.89 2.92 10 2.42 3.72 14 1.97 3.02 15 2.19 3.58 IS 1.99 3.00 IS 1.83 2.82 15 2.32 3.58 15 1.91 2.92 16 2.1.1 3.4♦ 16 1.92 2.90 16 1.77 2.73 lb 2.24 3.44 16 1.85 2.83 17 2.04 3.32 17 1.86 2.80 17 1.72 2.66 17 2.16 3.32 17 1.80 2.75 18 1.9T ,3.22 18 1.80 2.71 18 1.68 2.58 18 2.09 3.22 18 1.75 2.67 19 1.91 3.12 19 1.75 2.64 19 1.63 2.52 19 2.03 3.32 19 1.70 2.60 20 1.85 -3.03 20 1.70 2.56 20 1.59 2.46 20 1.97 3.03 20 1.66 2.54 22 1.75 2.86 22 1.61 2.43 22 1.52 2.35 22 1.86 2.86 22 1.59 2.43 24 1.67 2.72 24 1.54 2.32 24 1.46 2.25 24 1.77 2.72 24 1•52 2.33 26 1.59 2.60 26 1.47 2.22 26 1.40 2.17 26 1.69 2.60 26 1.46 2.24 28 1.52 2.49 28 1.41 2.13 28 1.36 2.09 28 1.62 2.49 28 1.41 2.16 30 1.46 2.39 30 1.36 2.05 30 1.31 2.02 30 1.55 2.39 30 1.37 2.09 32 1.41 2.30 32 1.31 1.98 32 1.27 1.96 32 1.50 2.30 32 1.33 2.03 34 1.36 2.22 30 1.27 1.91 34 1.23 1.90 34 1.45 2.22 34 1.29 1.97 36 1.32 2.15 36 1.23 1.85 36 1.20 1.85 36 1.40 2.15 36 1.25 1.92 38 1.28 2.09 38 1.20 1.80 38 1.17 1.81 38 1.36 2.09 38 1.22 1.87 40 1.24 2.02 40 1.16 1.7.5 40 1.14 1.76 40 1.32 2.02 40 1.19 1.82 45 1.16 1.89 45 1.09 1.64 45 1.08 1.66 45 1.23 1.89 45 1.13 1.72 50 1.09 1.78 50 1.03 1.55 50 1.03 1.58 50 1.16 1.78 50 1.07 1.64 55 1.03 1.68 55 .99 1.47 55 .98 1.51 55 1.09 1.68 55 1.02 1.56 60 .98 •1.60 60 .93 1.40 60 .94 1.45 60 1.04 1.60 60 .98 1.50 65 .94 1.53 65 .89 1.34 65 .90 1.40 65 .99 1.53 65 •94 1,44 70 .90 1.46 70 .85 1.29 70 .87 1.35 70 .95 1.46 70 •91 1.39 75 .86 1.41 75 .82 1.20 75 .84 1.30 75 .91 1.41 75 .88 1.35 80 .83 1.35 BO .79 1.20 80 .82 1.26 BO .88 1.35 80 •BS 1.31 BS .86 1.31 85 .77 1.16 85 .80 1.23 85 .85 1.31 85 •83 1.27 SLOPE _ .580 SLOPE _ .550 SLOPE _ .OBO SLOPE _ .580 SLOPE _ .480 t I _ RAINFALL I INTENSITY - - INCHES P PER H HOUR � ♦ ♦I C'1 C) C D v . D r CATHEDRAL CITY. CHERRY VALLEY CORONA ` DESERT HOT SPRINGS El52NORE - MILO04AR DURATION FREQUENCY DURATION FREQUENCY DURATION FREQUENCY DURATION FREQUENCY DURATION FREQUENCY MINUTES MINUTES MINUTES MINUTES MINUTES 10 100, 10 100 10 100 10 100 10 100 YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR 5 4.14. 6•76 5 3.65 5. t9 5 3.10 4.78 5 4.39 6.76 5 3.23 4.94 6 3.73 6.08 6 3.30 4.97 6 2.84 4.38 6 3.95 6.08 6 2.96 4.53 7 3..41 5.56. 7 3.03 4.56 7 2.64 4•07 7 3.62 5.56 7 2.T5 4.21 B 3.15 5.15 B 2.82 4.24 B 2' .4T 3.81 8 3.35 5.15 B 2.58 3.95 9 2.95 4.81 9 2.64 3.97 9. 2.34 3.60 9 3.13 4.81 9 2.44 3.73 10 2.T7 4.52 10 2.49 3.7b 10 2.22 3.43 10 2.94 4.52 10 2.32 3.54 it 2.62 4.2 B'. it 2.36 3.56 11 2.12 3:27 11 2.78 4.28 11 2.21 3.39 12 2.49 4.07 12 2.25 3.19 12 2.04 3.14 12 2.65 4.07 12 2.12 3.25 13 2.38 3.88 13. 2.16 3.25. 13 1.96 3.02 13 2.53 3.88 13 2.04 3.13 14 2.28 3.72 It 2.07 3.12 14 1.89 2.92 10 2.42 3.72 14 1.97 3.02 15 2.19 3.58 IS 1.99 3.00 IS 1.83 2.82 15 2.32 3.58 15 1.91 2.92 16 2.1.1 3.4♦ 16 1.92 2.90 16 1.77 2.73 lb 2.24 3.44 16 1.85 2.83 17 2.04 3.32 17 1.86 2.80 17 1.72 2.66 17 2.16 3.32 17 1.80 2.75 18 1.9T ,3.22 18 1.80 2.71 18 1.68 2.58 18 2.09 3.22 18 1.75 2.67 19 1.91 3.12 19 1.75 2.64 19 1.63 2.52 19 2.03 3.32 19 1.70 2.60 20 1.85 -3.03 20 1.70 2.56 20 1.59 2.46 20 1.97 3.03 20 1.66 2.54 22 1.75 2.86 22 1.61 2.43 22 1.52 2.35 22 1.86 2.86 22 1.59 2.43 24 1.67 2.72 24 1.54 2.32 24 1.46 2.25 24 1.77 2.72 24 1•52 2.33 26 1.59 2.60 26 1.47 2.22 26 1.40 2.17 26 1.69 2.60 26 1.46 2.24 28 1.52 2.49 28 1.41 2.13 28 1.36 2.09 28 1.62 2.49 28 1.41 2.16 30 1.46 2.39 30 1.36 2.05 30 1.31 2.02 30 1.55 2.39 30 1.37 2.09 32 1.41 2.30 32 1.31 1.98 32 1.27 1.96 32 1.50 2.30 32 1.33 2.03 34 1.36 2.22 30 1.27 1.91 34 1.23 1.90 34 1.45 2.22 34 1.29 1.97 36 1.32 2.15 36 1.23 1.85 36 1.20 1.85 36 1.40 2.15 36 1.25 1.92 38 1.28 2.09 38 1.20 1.80 38 1.17 1.81 38 1.36 2.09 38 1.22 1.87 40 1.24 2.02 40 1.16 1.7.5 40 1.14 1.76 40 1.32 2.02 40 1.19 1.82 45 1.16 1.89 45 1.09 1.64 45 1.08 1.66 45 1.23 1.89 45 1.13 1.72 50 1.09 1.78 50 1.03 1.55 50 1.03 1.58 50 1.16 1.78 50 1.07 1.64 55 1.03 1.68 55 .99 1.47 55 .98 1.51 55 1.09 1.68 55 1.02 1.56 60 .98 •1.60 60 .93 1.40 60 .94 1.45 60 1.04 1.60 60 .98 1.50 65 .94 1.53 65 .89 1.34 65 .90 1.40 65 .99 1.53 65 •94 1,44 70 .90 1.46 70 .85 1.29 70 .87 1.35 70 .95 1.46 70 •91 1.39 75 .86 1.41 75 .82 1.20 75 .84 1.30 75 .91 1.41 75 .88 1.35 80 .83 1.35 BO .79 1.20 80 .82 1.26 BO .88 1.35 80 •BS 1.31 BS .86 1.31 85 .77 1.16 85 .80 1.23 85 .85 1.31 85 •83 1.27 SLOPE _ .580 SLOPE _ .550 SLOPE _ .OBO SLOPE _ .580 SLOPE _ .480 t I _ t I _ INSTRUCTIONS FOR RATIONAL METHOD HYDROLOGY CALCULATIONS (Based on the Rational Formula, Q = CIA) 1. On map of drainage area, draw drainage system and block off subareas tributary to it. 2. Determine the initial time of concentration, "T ", using Plate D-3. The initial area should be less than 10 acres, have a flow ,path of less than 1,000 feet; and be the most upstream subarea. 3. Using the time of concentration, determine "I ", intensity of rain - fall in inches per hour, from the appropriate intensity - duration curve for the particular area under study. For areas where stan- dard curves are available, use Plates D -4.1 and D -4.2' to reproduce the standard curve. For areas where curves have not been published by the District, use Plates D -4.3 through D -4.7 to develop a suit- able intensity - duration .curve_ 4. Determine "C ", the coefficient of runoff, using the runoff coeffi= cient curve which corresponds as closely as possible with the soil, cover type and development of the drainage area. Standard curves (Plates D -5.1 through D -5.4) have been developed by the District for the common case of urban landscaping type cover. Where these curves are not applicable, curves may be developed using Plates D-5.5 through D-5.8. 5. Determine "A ", the area of the subarea in acres. 6. Compute Q = CIA for the subarea. 7. Measure the length of flow to the point of inflow of the next sub- area downstream. Determine the velocity of flow in this reach for the peak Q in the.type of conveyance being considered (natural channel, street, pipe, or open channel), using the tabling aids on Plates D-6 through D -9. Using the reach length and velocity determined above, compute the. travel time, and add this time to the time of concentration for the previous subarea to determine,a new time of concentration. 8. Calculate Q for the new subarea, using steps 3 through 6 and the new time of concentration. Determine "QV", the peak Q for all sub- areas tributary to the system to this point by adding.Q for the new subarea to the summation of,Q for all upstream subareas. Deter- mine the time of concentration for the next.subarea downstream using Step 7: Continue tabling downstream in similar fashion until a .junction with a lateral drain is reached. RCFC & WCD I'iYDROLOGY MANUAL PLATE D -1 0 of 2 ) 9. Start at the upper end of the lateral and.table its Q down to the junction with the main line, using the methods outlined in the previous steps. 10. Compute the peak Q at the junction. Let QA, TA, IA correspond to the tributary area with the longer time of concentration, and QB, TB, Ig correspond to the tributary area with the shorter time of concentration and Qp, Tp correspond to the peak Q and time of concentration. a. If the tributary areas have the same time of concentration, the tributary Q's are added directly to obtain the combined peak Q. ` QB = T I. - . . A - .TB -...-- -- - - - - -• -- .. b. If the tributary.areas have different times of concentration, the smaller of the tributary Q's must be corrected as follows: (1) The usual case is where the tributary area with the lon- ger time of concentration has the larger Q. in this case, the smaller Q is corrected by a ratio of the intensities and added to the larger Q to obtain the combined peak Q. The tabling is then continued downstream using the longer time of concentration. Qp = QA + QB IA. Tp = TA ID (2) In some cases, the tributary area with the shorter time of concentration has the larger Q.. In this case, the smaller.Q is corrected by -a. ratio of the. times of concen- tration and added to the larger Q to obtaiii the combined ..peak Q. The tabling is then continued downsteam using the shorter time of concentration. QP — QB + QA TB Tp = TB TA RCFC ek wco 1-JYOROLOGY MANUAL PLATE D -1 (2 of 2 ) OLT 1 a IN prop— a I MIE LI MEN ON ....■■.. OMEN �i� =iiG� ,+''; ■..■ ■ ■ �, %NI..■ . IN .M:.INii..GG.. Gii'G';i�ii' G rR■ aii' GG:GG ■■ .. ... . .1r�■ .. / ■ ■■� . ; an- Am a 0 I IN ' NAME :GG': ;C ._1�� MMI IN IMON . .. ;. MINE■ WIN oil E. E G :E::C ■ ■.■ZS..■■ ■..i■ GCGC�:::CG'GGMGI��::GG ::�:::::E:': �... ... :::::E::.E,.a:::::: ... ■� .E:E:G� ■�■..■..�i... ■�■ ■ ■ ■■ .:■■..■ :GG'G :GCCGC" •• GCG M G "'GGC:Ga GGMG n :::: G..G �. E.G..G. ■,....... Up :: ::::G:�.'�.GE;:GEC:Z�:M:GG ■R . .. ;=G.. ':GE' :'=GG::='GG' ■.....■■ �... ■.■.G Monica .. ■ .:E . G.GG . .... GMCGCG' ::::::G:CCU.:: nommon KIN .'..� :Cs G: ;C'i'.�iiGM�= .'::a:: E ...�.�..... :GG.�.''.::'.'G'..aC. G:: ■E:EG::GEGEC:EEOON: G:G::C•Gii1;■. ......:CG... ; ; : ;CE::: n ■■ GG ..... :.■■.■ ■E■ �..� ■ER\ ■.. ■..■■.���,l:� ..,,......■�•.��...;.GaE:.. /�.�n ...■��� ■......... ■■ ■ ■ ..:: .■ G■ .■.■ . . . G;■.G.a.■ - -momm■ ' G'::::::i�- i:::G■:'�i'ii::- i :G■■n ::■ ■IN mom min '::CGG'.0 i mom:::: : R C F C& W C D HYDROLOGY MANUAL SYNTHETIC UNIT HYDROGRAPH METHOD Basic Data Calculation Form Project 0FF5IT& rtvloFC To N E PeoPeer- o:- I-rzoo PAUP Sheet By l,CARmoKJA Dote f2 -I+-90 Checked Date _ PH`(SICAL DATA 0 ] CONCENTRATION POINT [2] AREA DESIGNATION C33 AREA -SO INCHES A _ �5. 0, a� (4) AREA ADJUSTMENT FACTOR. 151 AREA -50 MILES (C33*[43) OZS (6) L- )NCHES --- - - - - -- —_ -- —C7] L ADJUSTMENT FACTOR, _- - - - - -- - -- - - C81 L -MILES (16 39[71) I LCA = -L538 •- --- •---- - - - -- -- -_ -- - - - [9] LCA- INCHES — C I 0 ] LCA -MILES (C7 ]c L -9 ]) -- -- ----------- - -. - -- _.• -- -- -- 01 ] ELEVA710N Of HEADWATER - - -- —221 • - - -- -• -- -_ C 12 ] ELEVATION OF CONCENTRATION POINT d N = _ - - -- -- - ` -- - [13] H -FEET (01] -02)) - [14] S- FEET /MILE ((133/C8J) __._ - (151 S96.5 C161 L.LCA /59#.5 ((B.rCIO] /CIS)) [17] AVERAGE MANNINGS 'N' — — (18) LAG TIME- HOURS 124cC17]sC16]vt.38) (?LATE E•-3) - - -- — -- ------- - - - - -- — Y - - - -- -- - - - - -• -• - - - -- ----- • - ---- C i 9 ] LAG T I ME-.11, ! •l :) T c c r 60 L. [ 18 �) - - -- — - C 2 0] 25Z OF LAG-MINUTES (. 2 S* ( 1 9 ]) ---- -- - - - - -- �- ------ -------- --- ... - - - -- - - -- --- -- - - - - -- - - - --- -- - C 21 ] 4 0 % OF LAG MINUTES (. 4 0 • C 19 J) - -- -- - -~ - - -- — _ — - -- _- — [22] UNIT T)ME- MINUTES 125 -4C% OF LAG) — ' - RAINFALL.-DATA 11) SOURCE 12 ] FP,EOUENCY- :'EARS — 100 Ylz — — - [3] DURATION: ? H 3 -HOURS 6- HOURS 24-HOURS 143 RAINT INCHES (5) ISOEIN C63 414 173 POINTGE PAIN INCHES Ce] PAINT INCHES (93 +SOEIN C10) 111] POINT GE PAIN INCHES [123 PAINT INCHES 11-33 SOEIN E141 M-ST 1153 POIN ?GE. RAIN. INCHES — T- -- 4'S� - -- YES ]- EC7 ]- 'C9 ]- fC I I ]- 11-33- iC 15 )- C16) AREAL ADJ FACTOR, J([163&XL7].ETC) (SEE PLATE E-•5.8) - 117] ADJ AVG POINT PAIN ' 01 A-rc, c,-9 1 Is -4r 71- AVERAGE ADJUSTED LOS. RATE CIJ 123 E3 C43 153 C63 C7) C83 191 1103 � C7 SOIL GROUP COVER TYPE RI NUMBER PERVIOUS AREA LAND USE DECIMAL ADJUSTED AREA PERCENT INFILTRATION SC INCHES 1111- 1181 AVERAGE ADJUSTED y `� -n J> lJ C7 (PLATE C —I) (PLATE E-6.1) INFILTRATION OF AREA RATE —IN /HR INFILTRATION ;a RATE —IN /HR c PLATE E-6.2) IMPERVIOUS 14)c1— .916)1 ( PLATE E-6.3) RATE —IN /HR 17 )r E9 ) Z C � QD 0 iY PE A vRliA�3 32 • �'4 1 -41JCI5 rG . °J 1406 8,4°I I a�� • o26S r- C-' K n v cn Tt'Pe A ,, �-,. 62 q5 Ur106V. D Q5 36.5 8I)3 • 3G5 z x — -� o m 0 0 z o a -� (j) o cn 0 o x o 0 �. 0 D D o x �� rn x 0 � G W -- D =r o c �X CL EC81 —_ 44.�°J IC103 - 3 9t (p VARIABLE LOSS RATE CURVE (24 —HOUR STORM ONLY) Fm= Minimum Loss Rate = F/2 =7- 1107/2 = • 1 58 IN. /HR. 0 0 C = (F -Fm) / 54 = (7- E103 - Fm) /54 = D01 (o FT =C(24-(T/60)) 1 55 +Fm = , 003 6 (24 - (T/60)) 1.55 + IN. /HR. Where: T =Time in minutes.To get an average--value for each unit time period;Use T= 2 the unit time for the first time 0eriod,T =12 unit time.-for the second period,etc. 1 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** U N I T- H Y D R O G R A P H A N A L Y S I S ACCORDING TO RIVERSIDE COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT (RCFC &WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982 -88 Advanced Engineering Software (aes) Ver. 2.OA Release Date: 8/07/88 Serial # DE1742 Especially prepared for: J. F. DAVIDSON * * * * * * * ** *DESCRIPTION OF RESULTS************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * TRIADO.DAT_ Q100 -YEAR 24 -HOUR STORM EVENT FOR THE DRAINAGE AREA TO THE * NORTHWEST CORNER OF TRIAD PACIFIC 45.0.ACRES * * TIME /DATE OF STUDY: 17:12 29- AUG -91 WATERCOURSE LENGTH = 4025.000 FEET LENGTH FROM CONCENTRATION POINT TO CENTROID = 2538.00.0 FEET ELEVATION VARIATION ALONG WATERCOURSE = 22.000 FEET M.A.NNING' S FRICTION FACTOR ALONG WATERCOURSE = 0.015 WATERSHED AREA = 45.000 ACRES UNIT HYDROGRAPH TIME UNIT = 15.000 MINUTES DESERT S -GRAPH SELECTED UNIFORM MEAN SOIL- LOSS(INCH /HOUR) = 0.390 LOW SOIL -LOSS RATE PERCENT(DECIMAL) = 0.900 MINIMUM SOIL -LOSS RATE(INCH /HOUR) = 0.200 BASEFLOW = 0.000 CFS /SQUARE -MILE USER - ENTERED RAINFALL = 4.50 INCHES RCFC &WCD 24 -Hour Storm (15- Minute period) SELECTED WATERCOURSE "LAG" TIME = 0.130 HOURS UNIT INTERVAL PERCENTAGE OF LAG -TIME = 192.653 HYDROGRAPH BASEFLOW = 0.000 CFS RCFC &WCD AREA ADJUSTMENT FACTOR(PLATE E -5.8.) =-O..99.99 UNIT HYDROGRAPH DETERMINATION ----=----------------------------------------------------------------------- INTERVAL . "S "GRAPH UNIT HYDROGRAPH NUMBER MEAN VALUES 'ORDINATES(CFS). 1: 4q.850 74..105'. 2. 86.922 83.577 3. 96.188 16.809 4 99.090 5..2,66 5 99.922 1.509 6 100.000 0.141 UNIT UNIT UNIT EFFECTIVE PERIOD RAINFALL SOIL-LOSS RAINFALL (NUMBER) --------------------------------------------------------------- (INCHES) (INCHES) (INCHES) 1 0.0090 0.0081 0.0009 2 0.0135 0.0121 0.0013 3 0.6135 0.0121 0.0013 4 0.0180 0.0162 0.0018 5 0.0135 0.0121 0.0013 6 0.0135 0.0121 0.0013 7 0.0135 0.0121 0.0013 8 0.0180 0.0162 0.0018 9 0.0180 0.0162 0.0018 10 0.0180 0.0162 0.0018 11 0.0225 0.0202 0.0022 '12 0.0225 0.0202 0.0022 13' 0.0225 0..0202 0.0022 14- 0.0225 0.0202 0.0022 15 0.0225 0.0202 0.0022 16 0.0270 0.0243 0.0027 "17 0.0270 0.0243 0.0027 18 0.0315 0.0283 0.003.1 .19 0.0315 0.0283 0.0031 20 0.0360 0.0324 0.0036 21 u.v27v 0.0243 0.0027 22 0.0315 0.0283 0.0031 23 0.0360 0.0324 0.0036 24 0.0360 0.0324 0.0036 25 0.0405 0.0364 0.0040 26 0.0405 0:0364 0.0040 27 0.0450 0.0405 0.0045 28 0.0450 0.0405 0.0045 29 0.0450 0.0405 0.0045 30 0.0495 0.0445 0.0049 31 0.0540 0.0486 0.0054 32 0.0585 0.0526 0.0058 33 0.0675 0.0607 0..0067 34 0.0675 0.0607 0.0067 35 0.0720 0.0648 0.0072 36 0.0765 0.0688 0.0076 37 0:0855 0.0769 0.0085 3.8 0.0900 0.0810 0.0090 39 0.0945 0.0850 0.0094 40 0.0990 0.0891 0.0099 41 0.0675 0.0607 0.0067 42 0.0675 .0.0607 0.0067 43 0..0900 0.0.810 0.0090 44 0.0900 .0.0810 0.0090 45 0.0855, 0.0769 0.0085 46 0.0855 0.0769 0.0085 47 0.0765 0.0688 0..0076 48 0.0810 0.0729 0.0081 4.9 0.1125 0.0907 0.0218 50 0.1170 0.0894 0.0276 51 0.1260 0.0881 0.0379 52 0.1305 0.0868 0.0437 53 0.1530 0.0855 0.0674 54 0.1530 0.0843 0.0.68.7 55 0.1035 0.0830 0.0204 56 0.1035 0.0818 0.0217 57 0.1215 0.0806 0.0409 58 0.1170 0.0794 0.0376 59 0.1170 0.0782 0.0388 60 0.1125 0.0771 0.0354 61 0.1080 0.0759 0.0321 62 0.1035 0.0748 0.0287 63 0.0855 0.0737 0.0118 64 0.0855 0.0726 0.0129 65 0.0180 0.0162 0.0018 66 0.0180 0.0162 0.0018 67 0.0135 0.0121 0.0013 68 0.0135 0.0121 0.0013 69 0.0225 0'.0202 0.0022 70 0.0225 0.0202 0.0022 71 0.0225 0.0202 0.0022 72 0.0180 0.0162 0.0018 73 0.0180 0.0162 0.0018 - _ 74 0.0180 0.0162 0.0018 75 0.0135 0 .'012'1 0.0013. 76 0.0090 0.0081 0.0009 77 0.0135 0.0121 0.0013 78 0.0180 0.0162 0.0018 79 0.0135 0.0121 0.0013 80 0.0090 0.0081 0.10009 8 1 ^,�= V. V 1 J J 0.0121 0.0013 82 0.0135 0.0121 0.0013 83 0.0135 0.012.1 0.'0013 84 0.0090 0.0081 0.0009 85 0.0135 0.0121 0.0013 86 0.0090 0.0081 0.0009 87 0.0135 0.0121 0.0013 88 0.0090 0.0081 0.0009 89 0.0135 0.0121 0.0013 90 0.0090 0.0081 0.0009 91 0.0090 0.0081 0.0009 92 0.0090 0.0081 0.0009 93 0.0090 0.0081 0.0009 94 0.0090 0.`0081- 0:,0009 95 0.0090 0:0081 0:0009 96 0.0090 0.0081, 0.0009 TOTAL STORM RAINFALL(INCHES) = 4.50 TOTAL. - SOIL- LOSS(INCHES) = 3.69 TOTAL EFFECTIVE RAINFALL(INCHES) = 0.81 TOTAL SOIL- LOSS' VOLUME (ACRE -FEET) 13.8280.' TOTAL STORM RUNOFF VOLUME (ACRE-FEET) 3.04.41 RCFC &WCD 24 -HOUR STORM RUNOFF HYDROGRAPH HYDROGRAPH IN FIFTEEN - MINUTE INTERVALS(CFS) ----------------------------------------------------- INTERVAL# ----------------------------------------------------- VOLUME(AF) Q(CFS) 0. 5.0 10.0 1 0.0014 0.07 Q 2 0.0050 0.18 Q 3 0.0097 0.23 Q 4 0.0154 0.27 Q 5 0.0212 0.28 Q 6 0.0264 0.25 Q 7 0.0315 0.25 Q 8 0.0373 0.28 Q 9 0'.04'38' 0.32 Q 10 0.0505 0.32 Q 11 0.0579 0.36 Q 12 0.0661 0.40 Q 13 0.0745 0.41 Q 14 0..0829 0.41 QV 15 0.0913 0 =41 QV _ 16 0.1004 0.44 QV 17 0.1103 0.48 QV 18 0.1211 0.52 .Q 19 0.1327 0.56 .Q 20 0.1451 0.60 ..Q 21 0.1570 0.57 .QV 22 0.1681 0.54 .QV 23 0.1805 0.60 .QV 24 0.1938 0.64 .QV 25 0.2079 0.68 .QV 26 0.2228 0.72 .QV 27 0.2386 0.7.6 .Q V 28 0.2552 .0.80 :Q V 29 0..2720 0.81 .Q''V 30 0.2896 0.85 .Q V 31 0.3086 0.92 .Q V 32' 1.00 ..Q V 33 0.3522 1.11 . Q V. 34 0.3770 1.20 . 'Q V 35 0.4029 1.25 . Q V 36 0.14303 1.33 . Q V 37 0..4600 .1..44 . Q V . 38 0.4923 1.56 Q V 39 0.5263- :1..:65 Q ,. V 40. 0.5621 1.73 Q V. 41 0.5941 1.55 Q.. V 42 0.6208 1.30 . Q V . 43 0.6500 1.41 . Q V o 44 0.6827 1.58 Q V . 45 0.7155 1.58 . Q V. 46 0.7477 1.56 Q V. 4.7 0.7784 1.49 . Q V 48 0.8082 1.44 . Q V --------------- - - - -- 15.0 20.0 -------------- - - - - -- 49 0.8594 2.48 Q .V . 50 0.9431 4.05 Q • V 51 1.0574 5.53 •Q V 52 1.2019 6.99, Q V - 53 1.3974 9.46 Q - 54 1.6393 11.71 •V Q 55 1.8187 8.68 . Q V - 56 1.9198 4.90 Q. V 57 2.0367 5.65 -Q V 58 2.1769 6.79 Q - V - 59 2.3185 6.85 Q V - 60 2.4579 6.75 Q V 61 2.5870 6.25 Q V 62 2.7040 5.67 .Q V 63 2.7879 4.06 Q V - 64 2.8426 2.65 o e V - 65 2.8759 1.61 Q - V 66 2.8885 0.61 .Q V 67 2.8961 0.37 Q V 68 2.901_8 0.27 Q V 69- -- 9083 . 2-908j' 0.32 Q 70 2.9163 0.39 Q V:• 71 2.9246 0.40 Q V 72 2.9324 0.37 Q V 73 2.9393 0.34 Q - V '74 2.9461 0.33 Q V e 7 5 2.9522 n. la Q- = e V. 76 2.9568 0.22 Q - V 77 2.9611 0.21 Q - - V.- 78 2.9668 0.27 Q V 79 2.9725 0.28 Q V. 80 2.9771 0.22 Q V. 81 2.9814 0421 Q V- 82 2.9863 0.24 Q N. 83 2.9913 0.24 Q - - V- 84 2.9957 0.21 Q - V. 85 2.9999 0.21 Q - V. 86 3.0042 0.20 Q - - V- 87 3.0084' 0.20 Q - V. 88 .3.0126 0.20 89 3.0168 0.20 Q •. V: 9'0 3.0210 0..20 Q V- 91 3.0246 0..17 Q. V 92 3:0280 0.17 Q - V- 93 3.0314 0.16 o o e V= 94' 3.0348 0..16 Q - V. 95 3.0381 0.16 Q V: 96 3.0415 0.16 Q V• 97 3.0435 0.10 Q V. 98 3.04 39 0..02 o V 99 3.0441 0..01 Q V 100 3.0441 0.00 Q. - V•- 101 3.0441 0.00 Q V U N I T- N Y D R 0 G R A P N A N A L Y S I S ACCORDING TO RIVERSIDE COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT (RCFCBWCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982 -88 Advanced Engineering Software (aes) Ver. 2.OA Release Date: 8/07/88 Seriat # DE1742 Especially prepared for: J. F. DAVIDSON DMN)JhIrt ?____M -N AY%. - CQ 9XV�;R-A't_ _5XI Sin �bD Y�acc 3Na►rc --------------- - TIME /DATE OF STUDY: 11:33 30- SEP-91 xwwrrrwrrxrwxxxxr, txxwxxxxxxxxxx,► xrwwxx,► wwrrxxwxx ,errw,►xwwxxwwx ; *xrwwwwwwww :,rw WATERCOURSE LENGTH = 4025.000 FEET LENGTH FROM CONCENTRATION POINT TO CENTROID = 2538.000 FEET ELEVATION VARIATION ALONG WATERCOURSE = 22.000 FEET MANNING'S FRICTION FACTOR ALONG WATERCOURSE = 0.015 WATERSHED AREA = 45.000 ACRES _. UNIT HYDROGRAPH.TIME UNIT = 5.000 MINUTES DESERT S -GRAPH SELECTED UNIFORM MEAN SOIL- LOSS(INCH /HOUR) = 0.390 LOW SOIL-LOSS RATE PERCENT(DECIMAL) = 0.900 BASEFLOW = 0.000 CFS/SQUARE -MILE USER - ENTERED RAINFALL = 2.00 INCHES RCFCBWCD 3 -Hour Storm (5- Minute period) SELECTED WATERCOURSE "LAG" TIME = 0.130 HOURS UNIT INTERVAL PERCENTAGE OF LAG-TIME = 64.218 HYDROGRAPH'BASEFLOW = 0.000 CFS RCFCBWCD AREA ADJUSTMENT FACTOR(PL(TE E-5.8) = 0.9998 wxxxwwaerwrrnxwwteawxxrrre, trrrrnx+ ewrrrsserwxxtrrrtrrrr *rxrwr *,rr + rwrrw *trx,t,►arxw UNIT HYDROGRAPH DETERMINATION INTERVAL "S" GRAPH UNIT HYDROGRAPH NUMBER MEAN VALUES ORDINATES(CFS) ------------------------------------------------------------- 1 6.426 34:972 2 45:554 212:944 3 70.570 136.140, 4 81.359' 58.717 5 87.708 34:552 6 91.698 21.711 7 94.475 15.117 8 96.411 10:533' 9 97.677 6:889 10 98.428 '4:091 11 99:189 4'139 12 99:689- `2:721 13 100.000 .1•:693 wxr; e* rrr** x:* esa► reaxrir: xwxsrxiewwrwrx** xr. wwwwr ,►ewiw * *+►wrwwwrwrr *r *e *wwwarxe TOTAL.`STORM RAIHfALL(INCHES) = 2.00 TOTAL;.SOIL- LOSS( INCHES) = 1.09 TOTAL.EFF.ECTJ -VE RAINFALL(INCHES) = 0.91 TOTAL - SOIL.LOSS'VOLUME (ACRE = FEET) = 4.0914 TOTAL. STORM' RUNOFF. VOLUME (ACRE -FEET) = 3.4056 1 UNIT UNIT UNIT EFFECTIVE PERI00 RAINFALL SOIL -LOSS RAINFALL (NUMBER) (INCHES) (INCHES) (INCHES) ---------------------------------------------------------------------------- 1 0.0260 0.0234 0.0026 2 0.0260 0.0234 0.0026 3 0.0220 0.0198 0.0022 4 0.0300 0.0270 0.0030 5 0.0300 0.0270 0.0030 6 0.0360 0.0324 0.0036 7 0.0300 0.0270 0.0030 8 0.0360 0.0324 0.0036 9 0.0360 0.0324 0.0036 10 0.0300 0.0270 0.0030 1.1 0.0320 0.0288 0.0032 12 0.0360 0.0324 0.0036 13 0.0440 0.0325 0.0115 -- .14. 0.0440 0.0325 0.0115 15 0.0440 0.0325 0.,0115 16 0.0400 0.0325 0.0075 17 0.0520 0.0325 0.0195 .18 0.0540 0.0325 0.0215 -19 0.0480 0.0325 0.0155 20 0.0540 0.0325 0.0215 21 0.0660 0.0321 3.0335 22 0.0620 0.0325 0.0295 23 0.6580 0.0325 0.0255 24 0:0600 0.0325 0.0275 .25 0.0620 0.0325 0.0295 26 0.0840 0.0325 0.0515 27 0.1000 0.0325 0.0675 28 0.0700 0.0325 0.0375 29 0.1360 0.0325 0.1035 30 0.1460 0.0325 0.1135 31 0.1640 0.0325 0.1315 32 0.1180 0.0325 0.0855 33: 0.0400 0.0325 0.0075 34 0.0360 0.0324 0.0036 35 0.0360 0.0324 0.0036 36.. 0.0120 0.0108 0.0012 TOTAL.`STORM RAIHfALL(INCHES) = 2.00 TOTAL;.SOIL- LOSS( INCHES) = 1.09 TOTAL.EFF.ECTJ -VE RAINFALL(INCHES) = 0.91 TOTAL - SOIL.LOSS'VOLUME (ACRE = FEET) = 4.0914 TOTAL. STORM' RUNOFF. VOLUME (ACRE -FEET) = 3.4056 1 RCFC&WCD 3-HOUR STORM RUNOFF HYDROGRAPH HYDROGRAPH IN FIVE-MINUTE INTERVALS(CFS) ---------------------------------------------------------------------------- INTERVAL# ---------------------------------------------------------------- VOLUME W) Q(CFS) 0. 15.0 30.0 45.0 60.0 ----------- 1 0.0006 0.09 0 2 0.0051 0.64 a 3 0.0118 0.98 Q 4 0.0193 1.08 Q 5 0.0281 1.20 a 6 0.0381 1.45 Q 7 0.0493 1.63 VQ 8 0.0607 1.65 VQ 9 0.0728 1.74' 'Vo" 10 0.0854 1.82 Q 11 0.0974 1.75 Q 12 0.1694 1.75 a 13 0.1240 2.12 Q 14 0.1506 3.85 VQ 15 On. l&4 7 4.95 VC 16 0.2211 5.29 va 17 0.2565 5.14 Q 18 0-3075 7.40 VQ 19 0.3704 9.13 v Q 20 0.4323 8-.99 Q 21 0.5037 10.37 vo 22 0.5970 13.55 V 0. 23 0.6973 14.56 VQ. 24 0.7948. 14.16 Q. 25 0.8942 14.41 QV 26 1.0035 15:86 ov 27 1.1517 21.52 VQ 28 1.3383. 27.'09• V. 0 29 1.5214 14 26.60. Q 30 - 1.7878 38.68. V Q. 3.1 2.1305 49..75 V Q 215224 56i;90 V. Q 33 2.8635 49..54 0 .34 3.0648* 29.23 o. V 35 3.1806 *16.81 Q V 36 3.2579 111.23 0 V . 37 33102 739 0 V.. .38, 3.3444 , 4.97 a V. 39' 3.3672 ..3.30, a V. 40 3.3823 2.19 Q V. 41 3.3929 1.55 :Q V. *42 •3.3999 1.02 Q* V. 43 3.4036, 0.54 -Q V. 44 3.4050 0.20 a V. 45 3.4053 0.04 Q V. 46 3.4055 0.02 Q V. 47 3.4055 oeol Q, V. 48 3.4056 0.00 a V. sNlsvff NOUNIlan 0.50X A O.SOX o.2sx 11 a5X I\ 86.54' - - Ur ° to 72.00- J. x e} tn 3:1. I ryb Wit: 126 Z O 6 RETENTION g BASIN .lo 43..2 0 RIM 40.70 HWL 39.70 j (u I GB STA 6 +86. d j TTOM 34.70 �e C/L TP 41.73. TC 41.75 3:1 W II FL 41.25 I 72.00' �{ 0.50X A O.SOX o.2sx 11 a5X N In In U STA. 8 +21.37 (E)= STAI 23+96.45 (N) RETENTION BASIN CALCULATIONS AREA - 2: NORTH BASIN AREA AT HWL = 6,791.35 SF AREA A.T BOTTOM = 2,600 SF Vol = 112 (6,791.35 + 2,600)(5) 23, 478.38 CF = 0.54 Acre -Ft Perc. Vol = 2%hr x 24 hrs x 1112 FT /inch x 6,791.35 SF 27,165.40 CF = 0.62 Acre -Ft SOUTH BASIN AREA AT HWL = 20,204.98 SF AREA AT BOTTOM = 10, 950 SF Vol = 112 (20,204.98 + 10,950)(5) 77,887.45 CF = 1.79 Acre -Ft Perc Vol = 2%hr x 24 hrs x 1112 FT /inch x 20,204.98 SF 80, 819.92 CF = 1.86 Acre -Ft Total Basin Volume = 0.54 + 1.79 = 2.33 Acre -Ft Runoff Vol (100YR) = 3.78 Acre -Ft Total Perc. Vol = 0.62 + 1.86 = 2.48 Acre -Ft Required Vol = 3.78 - 2.48 = 1.30 Acre -Ft I\ I ° to J. x e} tn Wit: 126 .lo (u *v W II I RETENTION 77.00' _ BASIN "i RIM 40.70 h HWL 39.70 ID BOTTOM 34.70 127 N ° 1 43.0 I C. L. CB STA TC 41.21 FL 40.71 II � I cv 3: 7 o 97.62' 100.12' ' k1�G 113 N In In U STA. 8 +21.37 (E)= STAI 23+96.45 (N) RETENTION BASIN CALCULATIONS AREA - 2: NORTH BASIN AREA AT HWL = 6,791.35 SF AREA A.T BOTTOM = 2,600 SF Vol = 112 (6,791.35 + 2,600)(5) 23, 478.38 CF = 0.54 Acre -Ft Perc. Vol = 2%hr x 24 hrs x 1112 FT /inch x 6,791.35 SF 27,165.40 CF = 0.62 Acre -Ft SOUTH BASIN AREA AT HWL = 20,204.98 SF AREA AT BOTTOM = 10, 950 SF Vol = 112 (20,204.98 + 10,950)(5) 77,887.45 CF = 1.79 Acre -Ft Perc Vol = 2%hr x 24 hrs x 1112 FT /inch x 20,204.98 SF 80, 819.92 CF = 1.86 Acre -Ft Total Basin Volume = 0.54 + 1.79 = 2.33 Acre -Ft Runoff Vol (100YR) = 3.78 Acre -Ft Total Perc. Vol = 0.62 + 1.86 = 2.48 Acre -Ft Required Vol = 3.78 - 2.48 = 1.30 Acre -Ft ;0O'ZZ _ 00' l9 0 C' I V C = 1 0.00 ��' 0.50 op +D.�PVI .47 48 I i. 0.50% 00 +2 I I I I I ci C) c) m . -� C Cf) r � T I.I' (-n 9? 0) 0 00 I I �- � II i I I C0 0 'I I I I N o °I R), o �- U) 00 +ZZ 160' lZ l OO +�:Z _ _________ _ ------- ___________________ 1/ 5 3:1 5-1 r- C) C) rn� r C0 7 W W C) I � D -A D V v-I O -NI D --4 n r-n u) O N J J Jay p ° + CA �U� o° cn J 0 w I�^ ° _ CO --I OFD D K - P. �ul U, o z 0 0 z cli cn 0 1.90% CD CD O 5:1 �— — — — — _ - -- _ — _ - - - - - -_ _ - -- I � J I Ul o I ----------------------------------- -D G D D D Co m 0 �o �u �Q m mm m ' 0 DD D m II II c Q a D D < I --I 0 II II 0 rnN co = ° CD w ^ O co I I N\ ° o 0o W —+ r 07 O 0-) n0) z 00 J a' x II II II II 0) II II D I r D c,i + W W C-) C n W Ul ZJ 00 W r- QO m �(Om NN J D cn D W 0 —I D + D- 0) I� II x c,l cn O w 0' z �\ J+ I �� CD m � 0') m D n � I (D \ -i 0 I� m I m n m �:T x CA O 00 m i % 10 -YR FLOW CALCULATIONS V r -�i m v ,A N 0 RAINFALL INTENSITY- INCHES PER HOUR CATHEDRAL CITY CHERRY VALLEY CORONA DESERT NOT SPRINGS ELSINORE - MILDOMAR DURATION FREQUENCY DURATION FREQUENCY DURATION FREQUENCY C DURATION FREQUENCY DURATION FREQUENCY t C MINUTES MINUTE'S MINUTES MINUTES MINUTES 0 10 100 10 100 10 100 10 100 10 100 YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR 5 4.14 6.7'6 5 3.65 5.49 5 3.10 4.78 5 4.39 6.76 5 3.23 4.94 6 3.73. 6.06 6 3.30 4.97 6 2.84 4.38 6 3.95 6.08 6 2.96 4.53 7 3.41 5.56 7 3.03 4.56 7 2.64 4.07 7 3.62 5.56 7 2.75 4.21 - e 3.15 S.15 8 2.82 4.24 a 2.47 3.81 8 3.35 5.15 8 2.58 3.95 C) 9 2.95 4.61 9 2.64 3.97 9 2.34 3.60 9 3.13 4.81 9 2.44 3.73 C® 10 2.77. 1Q 2.49 3.75 10 2.22 3.43 10 2.94 4.52 10 2.32 3.54 D .62 4.26 1 1" 2.36 3.56 11 2.12 3:27 11 2.78 4.28 11 2921 3.39 r 12 13 2.49 2.38 4.07 3.88 12 13 2.25 2.16 3.39 3.25 12 13 2.04 1.96 3.14 3.02 12 13 2.65 2.53 4.07 3.88 12 13 2.12 2.04 3.25 3.13 14 2.28 3.72 14 2.07 3.12 14 1.89 2.92 14 2.42 3.72 14 1.97 3.02 15 2.19 3.58. 15 1.99 3.00 15 1.83 2.82 15 2.32 3.58 15 1.91 2.92 16 2.11 3.44 16 2.92 2.90 16 1.77. 2.73 16 2.24 3.44 16 1.85 2.83 17 2.04 3.32 17 1.86 2.80 17 1.72 2.66 17 2.16 3.32 IT 1.60 2.75 18 1.97 3.22 18 1.80 2.71 18 1.68 2.58 18 2.09 3.22 18 1.75 2.67 19 1.91 3.12 19 L.TS 2.64 19 1.63 2.52 19 2.03 3.12 19 1.70 2.60 20 1.85 3.03 20 1.70 2.56 20 1.59 2.46 20 1.97 3.03 20 1.66 2.54 22 1.75 2.86 .22 1.61 2.43 22 1.52 2.35 22 1.86 '2.86 22 1.59 2.43 24 .1.67 2.72 24 1.54 2.32 24 1.46 2.25 24 1.77 2.72 24 1.52 2.33 26 1.59 2.60 26 1.47 2.22 26 1.40 2.17 26 1.69 2.60 26 1.46 2.24 28 1.52 2.49 28 1.41 2.13 26 1.36 2.09 28 1.62 2.49 28 1.41 2.16 30 1.46 2.39 30 1.36 2.05 30 1.31 2.02 30 1.55 2.39 30 1.37 2.09 32 1.41 2.30 32 1.31 1.98 32 1.27 1.96 32 1.50 2.30 32 1.33 2.03 34 1.36 2.22 34 1.27 1.91 34 1.Z3 1.90 34 1.45 2.22 34 1.29 1.97 36 1.32 2.15 36 1.23 1.85 36 1.20 1.85 36 1.40 2.15 36 1.25 1.92 M 38 1.26 2.09 38 1.20 1.80 38 1.17 1.81 38 1.36 2.09 38 1.22 1.87 C z 40 1.24 2.02 40 1.16 1.75 40 1.14 1.76 40 1.32 2.02 40 1.19 1.82 (n (n 45 1.16 1.89 45 1.09 1.64 45 1.08 1.66 45 1.23 1.89 45 1.13 1.72 s0 1.09 1.78 40 1.03 1.55 50 1.03 1.58 50 1.16 1.78 50 1.07 1.64 m D 55 1.03 1.68 55 .98 1.47 55 .98 1.51 55 1.09 1.68 55 1.02 1.56 Z 60 1.60' 60 .93 1.40 60 .94 1.45 60 1.04 1.60 60 .98 1.50 I 0 6S .94 1.53 65 .89 1.34 65 .90 1.40 65 .99 1.53 65 .94 1.44 D 70 .90 1.46 70 as 1.29 70 .87 1.35 70 .95 1.46 70 .91 1.39 C ;u 75 .86 1.41 75 .82 1.24 75 .84 1.30 75 .91 1.41 75 .88 1.35 x 0 80 .83 1.35 80 .79 1.20 80 .82 1.26 80 .88 1.35 80 .85 1.31 DD es .80 1.31 85 .77 1.16 85 .80 1.23 85 .85 1.31 85 .83 1.27 Q SLOPE s .580 SLOPE _ .550 SLOP17 s .480 SLOPE ■ .580 SLOPE _ .480 .Z 2 40 30 20 10 9 8 7 6 5 4 3 2 1 0.9 0.8 0.7 0:6 0.5 O 4 1/4 "per ft. O �_ 5 % 2.0 0 2.0 /0 1 1 1 /4" per f I- 3 4 5 6 8 10 n - 0.015 TYPICAL SECTION 15 20 25 30 40 50 60 80 100 150 200 300 400 500 600 800 1000 20. 10 9 8 7 6 ' 5 4 3 0 2 1 0,9 O.S. 0.7 0.6 0.5 ll—— 0.4 2 3 4 5 6, 6 10 15 20,V �5 30 40 50 60 80 100 I50 200 300 400 500 600 600 1000 DISCHARGE — C.F S. ( TOTAL FLOW IN STREET) RCFC a WC® J-IYDRO 00`t 1� /J;��yIJr1�. RIVERSIDE WATER COUNTY FLOOD CONTROL AND CONSERVATION DISTRICT VELOCITY DISCHARGE CURVES COUNTY STANDARD No. 105 36f ROADWAY 6 1 a 8° CURBS d � � • .` � �q � �i�n n i Bra �u!� p��li i� �iin�°%� d F-mr 1 4P- RM u . • t�� , �IIN NWId�Igplry�I 1 IWI ism � '�' • a MIIMI Nyq ;�'s-'- =3.G�_r. Le'IMMEM Y "6�1S7CY�°"��Gr c" . z„'0. �9- � s'e.w'�F'El..u'3�•F".a .,�c"c,.,�.,— .f!>;y.m :C W . �' �. ' +G,,�.7t �CGwL' L s• W .. �'� : I {"w •S`L�.c5�' S 1YL'>e'9 IdiiL'f0' 1�9��afuf C�..� �°' �_.C� �i�"..7�-� OEM -yC Moi.¢B.`'r q��"��{1��:i:',^��•��C��E.7CO�MaGS:> �_,.•_6 �^Ai�� CpYN EMS _ � Him •1}` � ' � �� �L ��I f>6a —:ass ._ :!y }}1°1w°MfiF'�o 1. aaii�w� °iir.:.v.foiRiiiwl'�� = =�7�� ti'�imu . r itann W • - ®e ' r1Pi� �M. o' i- , �� �o qa MEMO BE ON :-. i iS r s"i a i9i.��3:R'z i�iwr. -�.2�� 20. 10 9 8 7 6 ' 5 4 3 0 2 1 0,9 O.S. 0.7 0.6 0.5 ll—— 0.4 2 3 4 5 6, 6 10 15 20,V �5 30 40 50 60 80 100 I50 200 300 400 500 600 600 1000 DISCHARGE — C.F S. ( TOTAL FLOW IN STREET) RCFC a WC® J-IYDRO 00`t 1� /J;��yIJr1�. RIVERSIDE WATER COUNTY FLOOD CONTROL AND CONSERVATION DISTRICT VELOCITY DISCHARGE CURVES COUNTY STANDARD No. 105 36f ROADWAY 6 1 a 8° CURBS PLATE D-7.6 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC &WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982 -98 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/98 License ID 1419 Analysis prepared by: Dudek & Associates, Inc. 75 -150 Sheryl Avenue, Suite C Palm Desert, CA 92211 (760) 341 -6660 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * JOB # 2512 Monticello * February 2, 2001 * 10 YR STORM, FLOW STUDY *. FILE NAME: 2512- 10Y.DAT TIME /DATE OF STUDY: 23: 7 2/ 1/2001 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:' ---------------------------------------------------------------------------- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .95 10 -YEAR STORM 10- MINUTE INTENSITY(INCH /HOUR) = 2.770 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = .980 100 -YEAR STORM 10- MINUTE INTENSITY(INCH /HOUR) = 4.520 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.600 SLOPE OF 10 -YEAR INTENSITY - DURATION CURVE _ .5799047 SLOPE OF 100 -YEAR INTENSITY - DURATION CURVE _ .5796024 COMPUTED•RAINFALL INTENSITY DATA: STORM EVENT = 10.00 1 -HOUR INTENSITY(INCH /HOUR) = .9898 SLOPE OF INTENSITY DURATION CURVE = .5799 RCFC &WCD HYDROLOGY MANUAL "C "- VALUES USED NOTE: COMPUTE CONFLUENCE.VALUES ACCORDING TO RCFC &WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES FLOW PROCESS FROM NODE 100.00 TO NODE 102.00 IS CODE = 21 »» > RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ASSUMED INITIAL SUBAREAlUNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[( LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH'= 500.00 UPSTREAM ELEVATION 63.40 DOWNSTREAM ELEVATION = 58•.32 ELEVATION DIFFERENCE = 5.08 TC = .393 *[( 500.00 * *3) /( 5.08)] * *.2 = 11.808 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.541 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7686 SUBAREA RUNOFF(CFS) = 16.60 TOTAL AREA(ACRES) = 8.50 TOTAL RUNOFF(CFS) = 16.60 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 102.00 TO NODE 104.00 IS CODE = 6 ---------------------------------------------------------------------- - - - - -- >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA« «< ----------------------------------------------------------------- ----------------------------------------------------------------- UPSTREAM ELEVATION = 58.32 DOWNSTREAM ELEVATION = 54.94 STREET LENGTH(FEET) = 361.16 CURB HEIGHT(INCHES) = 8. STREET HALFWIDTH(FEET) = 39.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 37.00 INTERIOR STREET CROSSFALL(DECIMAL) = .740 OUTSIDE STREET CROSSFALL(DECIMAL) = .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 17.28 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) = 1.09 HALFSTREET FLOODWIDTH(FEET) = 3.20 AVERAGE FLOW VELOCITY(FEET /SEC.) = 6.80 PRODUCT OF DEPTH &VELOCITY = 7.39 STREETFLOW TRAVELTIME(MIN) = .89 TC(MIN) = 12.69 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.436 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7647 SUBAREA AREA(ACRES) _ .73 SUBAREA RUNOFF(CFS) = 1.36 SUMMED AREA(ACRES) = 9.23 TOTAL RUNOFF(CFS) = 17.96 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = 1.10 HALFSTREET FLOODWIDTH(FEET) = 3.22 FLOW VELOCITY(FEET /SEC.) = 6.95 DEPTH *VELOCITY = 7.65 FLOW PROCESS FROM NODE 200.00 TO NODE 202.00 IS CODE = 21 ---------------------------------------------------------------------- - - - - -- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ---------------------------------------------------------------------- - - - - -= ---------------------------------------------------------------------- - - - - -- ASSUMED INITIAL'SUBAREA-UNIFORM DEVELOPMENT IS'SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *.3) /(ELEVATION CHANGE)] * *.2 . INITIAL SUBAREA FLOW- LENGTH = 101.96 UPSTREAM •ELEVATION = 63.00 DOWNSTREAM ELEVATION = 59.70 ELEVATION DIFFERENCE = 3.30 TC = .393 *[( 101.96 * *3) /( 3.30)] * *.2 = 4.958 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.182 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8099 SUBAREA RUNOFF(CFS) _ .88 TOTAL AREA(ACRES) = .26 TOTAL RUNOFF(CFS) _ .88 FLOW PROCESS FROM NODE ------------------------- >>>>>COMPUTE STREETFLOW ------------------------- ------------------------- UPSTREAM ELEVATION = STREET LENGTH(FEET) _ STREET HALFWIDTH(FEET) k******************* * * * * * * * * * ** * * * * * * * * * * * * * * * * * * ** 202.00 TO NODE 204.00 IS CODE = 6 --------------------------------------------------- TRAVELTIME THRU SUBAREA<<<<< --------------------------------------------------- --------------------------------------------------- 59.70 DOWNSTREAM ELEVATION = 47.07 844.80 CURB HEIGHT(INCHES) = 6. = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) = .320 OUTSIDE STREET CROSSFALL(DECIMAL) = .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 12.56 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) = .79 HALFSTREET FLOODWIDTH(FEET) = 3.72 AVERAGE FLOW VELOCITY(FEET /SEC.) = 6.78 PRODUCT OF DEPTH &VELOCITY = 5.33 STREETFLOW TRAVELTIME(MIN) = 2.08 TC(MIN) = 7.08 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.419 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7944 SUBAREA AREA(ACRES) = 8.48 SUBAREA RUNOFF(CFS) = 23.03 SUMMED AREA(ACRES) = 8.74 TOTAL RUNOFF(CFS) = 23.91' END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = 1.05 HALFSTREET FLOODWIDTH(FEET) = 4.53 FLOW VELOCITY(FEET /SEC.) = 8.17 DEPTH *VELOCITY = 8.55 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 300.00 TO NODE 302.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY .(1/4 ACRE) TC = K *[(LENGTH' * *3)i(EZEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 128.49 UPSTREAM ELEVATION = 55.00 DOWNSTREAM'ELEVATION = 51.90 ELEVATION DIFFERENCE = 3.10 TC = .393 *[( 128.49 * *3) /( 3.10)] * *.2 = 5.768 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.849 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8037 SUBAREA RUNOFF(CFS) _ .12 TOTAL AREA(ACRES) = .04 TOTAL RUNOFF(CFS) _ .12 * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE ------------------------- >>>>>COMPUTE STREETFLOW ------------------------- ------------------------- UPSTREAM ELEVATION = STREET LENGTH(FEET) _ STREET HALFWIDTH(FEET) k******************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 302.00 TO NODE 304.00 IS CODE = 6 --------------------------------------------------- TRAVELTIME THRU SUBAREA<<<<< --------------------------------------------------- --------------------------------------------------- 51.90 DOWNSTREAM ELEVATION = 47.07 623.65 CURB HEIGHT(INCHES) = 6. 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) = .320 OUTSIDE STREET CROSSFALL(DECIMAL) = .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) _ .66 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .25 HALFSTREET FLOODWIDTH(FEET) = 2.03 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.19 PRODUCT OF DEPTH &VELOCITY = .54 STREETFLOW TRAVELTIME(MIN) = 4.74 TC(MIN) = 10.51 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.718 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7748 SUBAREA AREA(ACRES) _ .49 SUBAREA RUNOFF(CFS) = 1.03 SUMMED AREA(ACRES) _ .53 TOTAL RUNOFF(CFS) = 1.16 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .31 HALFSTREET FLOODWIDTH(FEET) = 2.22 FLOW VELOCITY(FEET /SEC.) = 2.70 . DEPTH *VELOCITY = .83 .FLOW PROCESS FROM NODE 400:00 TO NODE 402.00 IS CODE = 21 >>>RATIONAL METHOD: INITIAL SUBAREA ANALYSIS <<<<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC. =..K *[(LENGTH * *3) /(ELEVATION CHANGE)] *.2 INITIAL SUBAREA FLOW- LENGTH = 182 -:33 UPSTREAM ELEVATION = 63.50 ..DOWNSTREAM ELEVATION 59. -85 ELEVATION DIFFERENCE'-- 3.:65 TC = .393 *[( 182.33 * *3) /( 3.65)] * *.2 = 6.887 10 YEAR RAINFALL I"NTENSITY(INCH /HOUR) = 3.473 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7957 SUBAREA RUNOFF(CFS) = .88 TOTAL AREA(ACRES) = .32 TOTAL RUNOFF(CFS) = .88 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 402.00 TO NODE 204.00 IS CODE = 6 ---------------------------------------------------------------------------- »» >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- UPSTREAM ELEVATION = 59.85 DOWNSTREAM ELEVATION = 47.07 STREET LENGTH(FEET) = 827.70 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) = .320 OUTSIDE STREET CROSSFALL(DECIMAL) = .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 5.47. STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) = .53 HALFSTREET FLOODWIDTH(FEET) = 2.91 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.52 PRODUCT OF DEPTH &VELOCITY = 2.90 STREETFLOW TRAVELTIME(MIN) = 2.50 TC(MIN) = 9.39 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.902 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7806 SUBAREA AREA(ACRES) = 4.05 SUBAREA RUNOFF(CFS) = 9.18 SUMMED AREA(ACRES) = 4.37 TOTAL RUNOFF(CFS) = 10.06 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .71 HALFSTREET FLOODWIDTH(FEET) = 3.47 FLOW VELOCITY(FEET /SEC.) = 6.43 DEPTH *VELOCITY = 4.54 FLOW:PROCESS FROM NODE 500.00 TO NODE 502.00 IS CODE = 21 ». >RATIONAL METHOD INITIAL SUBAREA ANALYSIS«« < ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC.= K *[(LENGTH * *3) /(ELEVATION C•HANGE)) * *.2 INITIAL.SUBAREA FLOW- LENGTH = 193.37 UPSTREAM ELEVATION = 49.10 .DOWNSTREAM ELEVATION = 47.31 ELEVATION DIFFERENCE = 1.79 TC = .393 *[( 193.37 * *3) /( 1.79)] * *.2 = 8.226 10 YEAR RAINFALL INTENS.ITY(INCH /HOUR) = 3.133 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7872 SUBAREA RUNOFF(CFS) = .64 TOTAL AREA(ACRES) _ .26 TOTAL RUNOFF(CFS) _ .64 * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE ------------------------- >>>>>COMPUTE STREETFLOW ------------------------- ------------------------- UPSTREAM ELEVATION = STREET LENGTH(FEET) _ STREET HALFWIDTH(FEET) k******************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 502.00 TO NODE 304.00 IS CODE = 6 --------------------------------------------------- TRAVELTIME THRU SUBAREA <<<<< --------------------------------------------------- --------------------------------------------------- 47.31 DOWNSTREAM ELEVATION = 47.07 412.16 CURB HEIGHT(INCHES) = 6. 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .320 OUTSIDE STREET CROSSFALL(DECIMAL) _ .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) _ .98 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) _ .53 HALFSTREET FLOODWIDTH(FEET) = 2.91 AVERAGE FLOW VELOCITY(FEET /SEC.) _ .99 PRODUCT OF DEPTH &VELOCITY = .52 STREETFLOW TRAVELTIME(MIN) = 6.94 TC(MIN) = 15.17 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.197 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7547 SUBAREA AREA(ACRES) _ .40 SUBAREA RUNOFF(CFS) _ .66 SUMMED AREA(ACRES) _ .66 TOTAL RUNOFF(CFS) = 1.30 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .59 HALFSTREET FLOODWIDTH(FEET) = 3.09 FLOW VELOCITY(FEET /SEC.) = 1.11 DEPTH *VELOCITY = .65 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 600.00 TO NODE 602.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 .INITIAL SUBAREA FLOW - LENGTH 224.:82 UPSTREAM ELEVATION = 65.70 DOWNSTREAM ELEVATION = 62.58 ELEVATION DIFFERENCE = 3.12 TC = .393 *[( 224.82 * *3) /( 3.12)] * *.2 = 8.058 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.171 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7882 SUBAREA RUNOFF(CFS) _ .80 TOTAL AREA(ACRES) _ .32 TOTAL RUNOFF(CFS) _ .80 * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE ------------------------- >>>>>COMPUTE STREETFLOW ------------------------- UPSTREAM ELEVATION = STREET LENGTH(FEET) _ STREET HALFWIDTH(FEET) 602.00 TO NODE 604.00 IS CODE = 6 --------------------------------------------------- TRAVELTIME THRU SUBAREA<<<<< 62.58 DOWNSTREAM ELEVATION = 46.76 604.76 CURB HEIGHT(INCHES) = 6. 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .320 OUTSIDE STREET CROSSFALL(DECIMAL) _ .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 4.76 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .44 HALFSTREET FLOODWIDTH(FEET) = 2.64 AVERAGE FLOW VELOCITY(FEET /SEC.) = 6.29 PRODUCT OF DEPTH &VELOCITY = 2.78 STREETFLOW TRAVELTIME(MIN) = 1.60 TC(MIN) = 9.66 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.854 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7792 SUBAREA AREA(ACRES) = 3.55 SUBAREA RUNOFF(CFS) = 7.90 SUMMED AREA(ACRES) = 3.87 TOTAL RUNOFF(CFS) = 8.70 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .59 HALFSTREET FLOODWIDTH(FEET) = 3.09 FLOW VELOCITY(FEET /SEC.) = 7.42 DEPTH *VELOCITY = 4.35 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 700.00 TO NODE 702.00 IS CODE = 21 ------------------------------------------------=-------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA.ANALYSIS ««< ASSUMED INITIAL SUBAREA.UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[(.LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 45.84 UPSTREAM ELEVATION = 50.80 DOWNSTREAM ELEVATION = 49.22 >ELEVATION.DIFFERENCE.= 1.58 TC = .393* ['( 45'.84 * *3) / ( 1.58)1 * *.2 = 3.55.6 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. l0 YEAR °RAINFALL INTENSITY(INCH /HOUR) = 9:182 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8099 SUBAREA RUNOFF(CFS) _ .75 TOTAL.AREA(ACRES) _ .22 TOTAL RUNOFF(CFS) _ .75 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 702.00 TO NODE 704.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- UPSTREAM ELEVATION = 49.22 DOWNSTREAM ELEVATION = 46.76 STREET LENGTH(FEET) = 361.74 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) = .320 OUTSIDE STREET CROSSFALL(DECIMAL) = .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 1.42 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .35 HALFSTREET FLOODWIDTH(FEET) = 2.34 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.73 PRODUCT OF DEPTH &VELOCITY = .95 STREETFLOW TRAVELTIME(MIN) = 2.21 TC(MIN) = 7.21 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.383 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7936 SUBAREA AREA(ACRES) _ .50 SUBAREA RUNOFF(CFS) = 1.34 SUMMED AREA(ACRES) _ .72 TOTAL RUNOFF(CFS) = 2.09 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .41 HALFSTREET FLOODWIDTH(FEET) = 2.53 FLOW VELOCITY(FEET /SEC.) = 3.14 DEPTH *VELOCITY = 1.27 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 800.00 TO NODE 802.00 IS CODE = 21 --------------------------------------------------------------------=-----=- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<< ---------------------------------------------------------------------- - - - - =- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[( LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 184.64 UPSTREAM ELEVATION = 73.70 DOWNSTREAM ELEVATION = 70.57 ELEVATION DIFFERENCE = 3.13 TC = .393 *[( 184.64 * *3) /( 3.13)] * *.2 = 7.155 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.397 SOIL.CLASSIFICATION.IS "B" SINGLE- FAMILY(1 /4• "ACRE LOT). RUNOFF COEFFICIENT = .7939 SUBAREA RUNOFF(CFS) _ .73 TOTAL AREA(ACRES) .27. TOTAL RUNOFF(CFS) _ .73 . FLOW PROCESS FROM NODE 802.00 TO NODE 804.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- UPSTREAM ELEVATION = 70.57 DOWNSTREAM ELEVATION = 49.29 STREET LENGTH(FEET) = 926.13 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) = .320 OUTSIDE STREET CROSSFALL(DECIMAL) = .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 10.47 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) = .65 HALFSTREET FLOODWIDTH(FEET) = 3.28 AVERAGE FLOW VELOCITY(FEET /SEC.) = 7.68 PRODUCT OF DEPTH &VELOCITY = 4.96 STREETFLOW TRAVELTIME(MIN') = 2.01 TC(MIN) = 9.16 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.943 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7819 SUBAREA AREA(ACRES) = 8.46 SUBAREA RUNOFF(CFS) = 19.47 SUMMED AREA(ACRES) = 8.73 TOTAL RUNOFF(CFS) = 20.19 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .89 HALFSTREET FLOODWIDTH(FEET) = 4.03 FLOW VELOCITY(FEET /SEC.) = 9.01 DEPTH *VELOCITY = 7.99 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 900.00 TO NODE 901.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS «« < ---------------------------------------------------------------------- - - - - -- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 184.64 UPSTREAM ELEVATION = 57.00 DOWNSTREAM ELEVATION = 55.08 ELEVATION DIFFERENCE = 1.92 TC = .393 *[( 184.64 * *3) /( 1.92)] * *.2 = 7.890 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.210 SOIL CLASSIFICATION IS "B" 8INGLE= FAMILY(1 /4 ACRE LOT), RUNOFF COEFFICIENT = .7893 SUBAREA RUNOFF(CFS) TOTAL AREA(ACRES) = 1 .28 TOTAL RUNOFF(CFS) _ .71 FLOW PROCESS FROM NODE 901.00 TO NODE 904.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- UPSTREAM ELEVATION = 55.08 DOWNSTREAM ELEVATION = 49.29 STREET LENGTH(FEET) = 435.42 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) = .320 OUTSIDE STREET CROSSFALL(DECIMAL) = .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 2.07 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .35 HALFSTREET FLOODWIDTH(FEET) = 2.34 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.99 PRODUCT OF DEPTH &VELOCITY = 1.38 STREETFLOW TRAVELTIME(MIN) = 1.82 TC(MIN) = 9.71 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.846 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7789 SUBAREA AREA(ACRES) = 1.23 SUBAREA RUNOFF(CFS) = 2.73 SUMMED AREA(ACRES) = 1.51 TOTAL RUNOFF(CFS) = 3.44 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .45 HALFSTREET FLOODWIDTH(FEET) = 2.67 FLOW VELOCITY(FEET /SE-C.) = 4.39 DEPTH *VELOCITY = 1.98 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1000.00 TO NODE 1002.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 161.31 UPSTREAM ELEVATION = 48.30 DOWNSTREAM ELEVATION = 46.46 ELEVATION DIFFERENCE = 1.84 TC = .393 *[( 161.31 * *3) /( 1.84)] * *.2 = 7.338 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.348 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7927 SUBAREA RUNOFF(CFS) _ .50 TOTAL AREA(ACRES) = .19 TOTAL RUNOFF(CFS) _ .50 * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE ------------------------- >> » >COMPUTE STREETFLOW UPSTREAM ELEVATION = STREET LENGTH(FEET) _ STREET HALFWIDTH(FEET) k * * ***:k * * * * * * ** *' * * ** * ** **** * * * * * ** * ** * ****:k :k:k * * * * ** 1002.00 TO NODE .1004:00 IS -CODE = 6 TRAVELTIME THRU SUBAREA<<<<< 46.46 DOWNSTREAM ELEVATION = 40.76 648.87 CURB HEIGHT(INCHES) = 6. = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .320 OUTSIDE STREET CROSSFALL(DECIMAL) _ .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 3.18 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .47 HALFSTREET FLOODWIDTH(FEET) = 2.73 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.80 PRODUCT OF DEPTH &VELOCITY = 1.79 STREETFLOW TRAVELTIME(MIN) = 2.84 TC(MIN) = 10.18 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.768 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7765 SUBAREA AREA(ACRES) = 2.47 SUBAREA RUNOFF(CFS) = 5.31 SUMMED AREA(ACRES) = 2.66 TOTAL RUNOFF(CFS) = 5.81 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .63 HALFSTREET FLOODWIDTH(FEET) = 3.22 FLOW VELOCITY(FEET /SEC.) = 4.48 DEPTH *VELOCITY = 2.80 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2000.00 TO NODE 2002.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 156.16 UPSTREAM ELEVATION = 48.40 DOWNSTREAM ELEVATION = 46.46 ELEVATION DIFFERENCE = 1.94 TC = .393 *[( 156.16 * *3) /( 1.94)] * *.2 = 7.121 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.407 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7942 SUBAREA RUNOFF(CFS) _ .49 TOTAL AREA(ACRES) _ .18 TOTAL RUNOFF(CFS) _ .49 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2002.00 TO NODE 1004.00 IS CODE = 6 ---------------------------------------------------------------------------- »» >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< UPSTREAM ELEVATION = 46.46 DOWNSTREAM ELEVATION = 40.76 STREET LENGTH(FEET) = 577:04 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00. DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .320 OUTSIDE STREET CROSSFALL(DECIMAL) _ .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 2.40 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .41 HALFSTREET FLOODWIDTH(FEET) = 2.53 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.60 PRODUCT OF DEPTH &VELOCITY = 1.46 STREETFLOW TRAVELTIME(MIN) = 2.67 TC(MIN) = 9.79 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.832 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7785 SUBAREA AREA(ACRES) = 1.71 SUBAREA RUNOFF(CFS) = 3.77 SUMMED AREA(ACRES) = 1.89 TOTAL RUNOFF(CFS) = 4.26 END OF SUBAREA STREETFLOW'HYDRAULICS: DEPTH(FEET) = .53 HALFSTREET FLOODWIDTH(FEET) = 2.91 FLOW VELOCITY(FEET /SEC.) = 4.29 DEPTH *VELOCITY = 2.26 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3000.00 TO NODE 3002.00 IS CODE = 21 ---------------------------------------------------------------------------- »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS «« < ---------------------------------------------------------------------- - - - - -- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 147.63 UPSTREAM ELEVATION = 48.20 DOWNSTREAM ELEVATION = 45.96 ELEVATION DIFFERENCE = 2.24 TC = .393 *[( 147.63 * *3) /( 2.24)] * *.2 = 6.690 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.532 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7971 SUBAREA RUNOFF(CFS) _ .53 TOTAL AREA(ACRES) = .19 TOTAL RUNOFF(CFS) _ .53 FLOW PROCESS FROM NODE >COMPUTE STREETFLOW UPSTREAM ELEVATION = .STREET LENGTH(FEET) _ STREET;HALFWIDTH(FEET) 3002.00 TO NODE 3004:00 IS CODE = 6 TRAVELTIME THRU SUBAREA<<<<< 45.96 DOWNSTREAM ELEVATION = 41.25 549.41 CURB HEIGHT(INCHES) = 6. = 18.00 DISTANCE FROM CROWA TO 'CROSSFALL.GRADEBREAK = 16.00 :STREET, CROSSFALL {'DECIMAL) = 320 OUTSIDE STREET CROSSFALL(DECIMAL) .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 2.32 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .41 HALFSTREET FLOODWIDTH(FEET) = 2.53 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.49 PRODUCT OF DEPTH &VELOCITY = 1.42 STREETFLOW TRAVELTIME(MIN) = 2.63 TC(MIN) = 9.32 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.915 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7810 SUBAREA AREA(ACRES) = 1.56 SUBAREA RUNOFF(CFS) = 3.55 SUMMED AREA(ACRES) = 1.75 TOTAL RUNOFF(CFS) = 4.09 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .53 HALFSTREET FLOODWIDTH(FEET) = 2.91 FLOW VELOCITY(FEET /SEC.) = 4.12 DEPTH *VELOCITY = 2.17 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NCDE 4000.00 TO NODE 4002.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 162.89 UPSTREAM ELEVATION = 48.00 DOWNSTREAM ELEVATION = 44.87 ELEVATION DIFFERENCE = 3.13 TC = .393 *[( 162.89 * *3) /( 3.13)] * *.2 = 6.637 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.548 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7974 SUBAREA RUNOFF(CFS) _ .71 TOTAL AREA(ACRES) = .25 TOTAL RUNOFF(CFS) _ .71 FLOW PROCESS FROM NODE ------------------------- >>>>>COMPUTE STREETFLOW UPSTREAM ELEVATION = STREET LENGTH(FEET) _ STREET HALFWIDTH(FEET) 4002.00 TO NODE 4004.00 IS CODE = 6 --------------------------------------------------- TRAVELTIME THRU SUBAREA <<<<< 44.87 DOWNSTREAM ELEVATION = 41.25 515.38 CURB HEIGHT(INCHES) = 6. 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET_. CROSS-FALL(DECIMAL) = .320 OUTSIDE STREET CROSSFALL(DECIMAL) = .160 SPECIFIED NUMBER OF HALFSTREETS'CARRYING.RUNO -FF 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS.) = 2.31 STREETFLOW MODEL RESULTS.. STREET FLOWDEPTH(FEET) _ .43 HALFSTREET FLOODWIDTH(FEET) = 2.59 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.22 PRODUCT OF DEPTH &VELOCITY = 1.37 STREETFLOW TRAVELTIME;MIN) = 2.66 TC(MIN) = 9.30 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.918 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7811 SUBAREA AREA(ACRES) = 1.40 SUBAREA RUNOFF(CFS) = 3.19 SUMMED AREA(ACRES) = 1.65 TOTAL RUNOFF(CFS) = 3.90 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .55 HALFSTREET FLOODWIDTH(FEET) = 2.97 FLOW VELOCITY(FEET /SEC.) = 3.71 DEPTH *VELOCITY = 2.03 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 5000.00 TO NODE 5002.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS «« < ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 160.96 UPSTREAM ELEVATION = 48.00 DOWNSTREAM ELEVATION = 46.17 ELEVATION DIFFERENCE = 1.83 TC = .393 *[( 160.96 * *3) /( 1.83)] * *.2 = 7.337 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.348 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7928 SUBAREA RUNOFF(CFS) _ .53 TOTAL AREA(ACRES) = .20 TOTAL RUNOFF(CFS) _ .53 * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE ------------------------- >>>>>COMPUTE STREETFLOW ------------------------- UPSTREAM ELEVATION = STREET LENGTH (.FEET) _ STREET HALFWIDTH(FEET) 5002.00 TO NODE 5004.00 IS CODE = 6 --------------------------------------------------- TRAVELTIME THRU SUBAREA<<<<< --------------------------------------------------- --------------------------------------------------- 46.17 DOWNSTREAM ELEVATION = 40.71 410.48 CURB HEIGHT(INCHES) = 6. 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) = .320 OUTSIDE STREET CROSSFALL(DECIMAL) = .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 2.05 STREETFLOW MODEL RESULTS: STREET.FLOWDEP.TH(FEET) .35 HALFSTREET FLOODW.I-DTH(FEET) = 2.34 AVERAGE FLOW VELOCITY(.FEET /SEC.) = 3.95 PRODUCT OF DEPTH &VELOCITY = 1.37 STREETFLOW TRAVELTIME(MIN) = 1.73 TC(MIN) = 9.07 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.961 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7824 SUBAREA AREA(ACRES) = 1.31 SUBAREA RUNOFF(CFS) = 3.03 SUMMED AREA(ACRES) = 1.51 TOTAL RUNOFF(CFS) = 3.57 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .45 HALFSTREET FLOODWIDTH(FEET) = 2.67 FLOW VELOCITY(FEET /SEC.) = 4.55 DEPTH *VELOCITY = 2.06 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6000.00 TO NODE 6002.00 IS CODE = 21 ---------------------------------------------------------------------------- »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS «« < ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /;ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 164.24 UPSTREAM ELEVATION = 62.50 DOWNSTREAM ELEVATION = 60.71 ELEVATION DIFFERENCE = 1.79 TC = ..393 *[( 164.24 * *3) /( 1.79)] * *.2 = 7.459 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.316 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7920 SUBAREA RUNOFF(CFS) _ .55 TOTAL AREA(ACRES) _ .21 TOTAL RUNOFF(CFS) _ .55 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6002.00 TO NODE 5004.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- UPSTREAM ELEVATION = 60.71 DOWNSTREAM ELEVATION = 40.71 STREET LENGTH(FEET) = 1715.69 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .320 OUTSIDE STREET CROSSFALL(DECIMAL) _ .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 5.83 'STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT'NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) _ .59 HALFSTREET FLOODWIDTH(FEET) = 3.09 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.98 PRODUCT OF DEPTH &VELOCITY = 2.92 STREETFLOW TRAVELTIME(MIN) = 5.75 TC(MIN) = 13.21 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.381 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7625 SUBAREA AREA(ACRES) = 5.64 SUBAREA RUNOFF(CFS) = 10.24 SUMMED AREA(ACRES) = 5.85 TOTAL RUNOFF(CFS) = 10.79 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .77 HALFSTREET FLOODWIDTH(FEET) = 3.66 FLOW VELOCITY(FEET /SEC.) = 6.06 DEPTH *VELOCITY = 4.65 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 7000.00 TO NODE 7002.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW - LENGTH = 159.18 UPSTREAM ELEVATION = 49.22 DOWNSTREAM ELEVATION = 44.48 ELEVATION DIFFERENCE = 4.74 TC = .393 *[( 159.18 * *3) /( 4.74)] * *.2 = 6.025 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.753 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8018 SUBAREA RUNOFF(CFS) _ .60 TOTAL AREA(ACRES) = .20 TOTAL RUNOFF(CFS) _ .60 * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE ------------------------- >>>>>COMPUTE STREETFLOW ------------------------- ------------------------- UPSTREAM ELEVATION = STREET LENGTH(FEET) _ STREET HALFWIDTH(FEET) 7002.00 TO NODE 7004.00 IS CODE = 6 --------------------------------------------------- TRAVELTIME THRU SUBAREA<<<<< --------------------------------------------------- --------------------------------------------------- 44.48 DOWNSTREAM ELEVATION = 41.05 366.30 CURB HEIGHT(INCHES) = 6. = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) = .320 OUTSIDE STREET CROSSFALL(DECIMAL) = .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 2.91 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .45 HALFSTREET FLOODWIDTH(FEET) = 2.67 AVERAGE =FLOW VELOCI.TY(F &ET /SEC.) = 3.72 PRODUCT OF DEPTH &VELOCITY = 1.68 STREETFLOW TRAVELTIME(MIN) = 1.64 TC.(MIN) = 7.66 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.264 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7907 SUBAREA AREA(ACRES) = 1.78 SUBAREA RUNOFF(CFS) = 4.59 SUMMED AREA(ACRES) = 1.98 TOTAL RUNOFF(CFS) = 5.20 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .59 HALFSTREET FLOODWIDTH(FEET) = 3.09 FLOW VELOCITY(FEET /SEC.) = 4.43 DEPTH *VELOCITY = 2.60 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8000.00 TO NODE 8002.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *((LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 156.28 UPSTREAM ELEVATION = 60.50 DOWNSTREAM ELEVATION = 58.64 ELEVATION DIFFERENCE = 1.86 TC = .393 *[( 156.28 * *3) /( 1.86)] * *.2 = 7.184 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.389 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7937 SUBAREA RUNOFF(CFS) _ .75 TOTAL AREA(ACRES) _ .28 TOTAL RUNOFF(CFS) _ .75 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8002.00 TO NODE 7004.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- UPSTREAM ELEVATION = 58.64 DOWNSTREAM ELEVATION = 41.05 STREET LENGTH(FEET) = 1532.40 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .320 OUTSIDE STREET CROSSFALL(DECIMAL) _ .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 9.61 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) _ .73 HALFSTREET FLOODWIDTH(FEET) = 3.53 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.87 PRODUCT OF DEPTH &VELOCITY = 4.27 STREETFLOW TRAVELTIME(MIN) = 4.35. TC(MIN) = 11.53 10. YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.576 SOIL•CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7699 SUBAREA AREA(ACRES) = 8.79 SUBAREA RUNOFF(CFS) = 17.43 SUMMED AREA(ACRES) = 9.07 TOTAL RUNOFF(CFS) = 18.18 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .99 HALFSTREET FLOODWIDTH(FEET) = 4.34 FLOW VELOCITY(FEET /SEC.) = 6.84 DEPTH *VELOCITY = 6.74 END OF STUDY SUMMARY: PEAK FLOW RATE(CFS) = 18.18 Tc(MIN.) = 11.53 TOTAL AREA(ACRES) = 9.07 END OF RATIONAL METHOD ANALYSIS : ....... .................. :...................................... ............. .............. :::.:::: 'O.R......L. W.... STUDIES * .......... :: ........ : : ....... . ...... W......,.:::........ ........... ................ .. - ...... ............ .......... 25 YR-,-.----FLO'WS 25 -YR FLOW CALCULATIONS 'O r m a N 0 RAINFALL INTENSITY-INCHES PER HOUR < A CATHEDRAL CITY CHERRY VALLEY CORONA DESERT HOT SPRINGS ELSINORE - MILDOMAR C) DURATION FREQUENCY DURATION FREQUENCY DURATION FREQUENCY DURATION FREQUENCY DURATION FREQUENCY I° MINUTES MINUTES MINUTES MINUTES MINUTES 10 100 10 100 10 100 10 100 10 100 YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR Si 4.14 6.76 5 3.65 5.49 5 3.10 4.78 5 4.39 6.76 5 3.23 4.94 6 3.73. 6.08 6 3.30 4.97 6 2.84 4.38 6 3.95 6.08 6 2.96 4.53 7 3:41 .5.56 7 3.03 4.56 7 2.64 4.07 7 3.62 5.56 7 2.75 4.21 `-' 8 3.1S 5.15 6 2.82 4.24 8 2.47 3.81 B 3.35 5.15 8 2.58 3.95 D 9 2.95 4.81 9 2.64 3.97 9 2.34 3.60 9 3.13 4.81 9 2.44 3.73 v 10 2.77. 10 2.49 3.75 10 2.22 3.43 10 2.94 4.52 10 2.32 3.54 .62 4.26 11 2.36 3.S6 11 2.12 3:27 11 2.78 4.28 11 2.21 3.39 D 12 2.49 4.07 12 2.25 3.39 12 2.04 3.14 12 2.65 4.07 12 2.12 3.25 r 13 2.38 3.88 13 2.16 3.25 13 1.96 3.02 13 2.53 3.88 13 2.04 3.13 14 2.28 3.72 14 2.07 3.12 14 1.89 2.92 14 2.42 3.72 14 1.97 3.02 15 2.19 3.58 15 1.99 3.00 15 1.83 2.82 15 2.32 3.58 15 1.91 2.92 16 2.11 3. ,k4 16 1.92 2.90 16 1.77 2.73 16 2.24 3.44 16 1.85 2.83 17 2.04 3.32 17 1.86 2.80 17 1.72 .2.66 17 2.16 3.32 17 1.80 2.75 18 1.97 3.22 18 1.80 2.71 18 1.68 2.58 18 2.09 3.22 18 1.75 2.67 19 1.91 3.12 19 1.75 2.64 19 1.63 2.52 19 2.03 3.12 19 1.70 2.60 20 1.85 3'.03 20 1.70 2.56 20 1.59 2.46 20 1.97 3.03 20 1.66 2.54 22 1.75 2.66 22 1.61 2.43.. 22 1.52 2.35 22 1.86 2.86 22 1.59 2.43 24 1.67 2.72 24 1.54 2.32 24 1.46 2.25 24 1.77 2.72 24 1.52 2.33 26 1.59 2.60 26 1.47 2.22 26 1.40 2.17 26 1.69 2.60 26 1.46 2.24 28 1.52 2.49 28 1.41 2.13 28 1.36 2.09 28 1.62 2.49 28 1.41 2.16 30 1.46 2.39 30 1.36 2.05 30 1.31 2.02 30 1.55 2.39 30 1.37 2.09 32 1.41 2.30 32 1.31 1.98 32 1.27 1.96 32 1.50 2.30 32 1.33 2.03 z 34 1.36 2.22. 34 1.27 1.91 34 1.23 1.90 34 1.45 2.22 34 1.29 1.97 36 1.32 2.15 36 1.23 1.85 36 1.20 1.85 36 1.40 2.15 36 1.25 1.92 38 1.28 2.09 38 1.20 1.80 38 1.17 1.81 38 1.36 2.09 38 1.22 1.87 rn C Z 40 1.24 2.02 40 1.16 1.75 40 1.14 1.76 40 1.32 2.02 40 1.19 1.82 U) (n 45 1.16 1.89 45 1.09 1.64 4S 1.08 1.66 45 1.23 1.69 45 1.13 1.72 -..I 50 1.09 1.78 50 1.03 1.55 50 1.03 1.58 50 55 1.16 1.09 1.78 50 55 1.07 1.64 55 1.03 1.68 55 .99 1.47 55 .98 1.51 1.68 1.02 1.56 Z 60 :4� 1.60 60 .93 1.40 60 .94 1.45 60 1.04 1.60 60 .98 1.50 U) ' 0 65 .94 1.53 65 .89 1.34 65 .90 1.40 65 .99 1.53 65 .94 1.44 D 70 .90 1.46 70 .85 1.29 70 .87 1.35 70 .95 1.46 70 .91 1.39 C X 75 .86 1.41 7.5 .62 1.24 75 .84 1.30 75 .91 1.41 75 .88 1.35 > ;o 0 80 .83 1.35 80 .79 1.20 80 .82 1.26 80 .68 1.35 80 .85 1.31 DD 85 .80 1.31 85 .77 1.16 85 .80 1.23 85 .85 1.31 85 .83 1.27 0 SLOPE s .580 SLOPE _ .550 SLOPE : .480 SLOPE m .580 SLOPE a .480 z ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC &WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982 -98 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/98 License ID 1419 Analysis prepared by: Dudek & Associates, Inc. 75 -150 Sheryl Avenue, Suite C Palm Desert, CA 92211 (7 60) 341 -6660 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * JOB # 2512 Monticello * February 2, 2001 * 25 YR STORM, FLOW STUDY FILE NAME: 2512- 10Y.DAT TIME /DATE OF STUDY: 21:51 3/ 4/2001 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------- - - - - -- USER SPECIFIED STORM EVENT(YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .95 10 -YEAR STORM 10- MINUTE INTENSITY(INCH /HOUR) = 2.770 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = .980 100 -YEAR STORM 10- MINUTE INTENSITY(INCH /HOUR) = 4.520 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.600 SLOPE OF 10 -YEAR INTENSITY - DURATION CURVE _ .5799047 SLOPE OF 100 -YEAR INTENSITY - DURATION CURVE _ .5796024 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 25.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.2027 SLOPE OF INTENSITY DURATION CURVE = .5799 RCFC &WCD HYDROLOGY MANUAL "C "- VALUES USED NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC &WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 100.00 TO NODE 102.00 IS CODE = 21 ---------------------------------------------------------------------------- » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< --------------------------------------------------------------------------=- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA.UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH_= 500.00 UPSTREAM ELEVATION = 63.40 DOWNSTREAM ELEVATION = 58.32 ELEVATION DIFFERENCE = 5.08 TC = .393 *[( 500.00 * *3) /( 5.08)] * *.2 = 11.808 25 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.087 SOIL CLASSIFICATION IS SINGLE- FAMILY(1 /4 ACRE SUBAREA RUNOFF(CFS) _ TOTAL AREA(ACRES) = * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE ------------------------- » » >COMPUTE STREETFLOW --------=---------- - - - - -= ------------------------- UPSTREAM ELEVATION = STREET LENGTH(FEET) _ STREET HALFWIDTH(FEET) „B„ LOT) RUNOFF COEFFICIENT = .7860 20.62 8.50 TOTAL RUNOFF(CFS) = 20.62 k******************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** q 102.00 TO NODE 104.00 IS CODE = 6 --------------------------------------------------- TRAVELTIME THRU SUBAREA«« < --------------------------------------------------- --------------------------------------------------- 58.32 DOWNSTREAM ELEVATION = 54.94 361.16 CURB HEIGHT(INCHES) = 8. 39.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 37.00 INTERIOR STREET CROSSFALL(DECIMAL) = .740 OUTSIDE STREET CROSSFALL(DECIMAL) = .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 21.47 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) = 1.21 HALFSTREET FLOODWIDTH(FEET) = 3.36 AVERAGE FLOW VELOCITY(FEET /SEC.) = 7.31 PRODUCT OF DEPTH &VELOCITY = 8.83 STREETFLOW TRAVELTIME(MIN) = .82 TC(MIN) = 12.63 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.969 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7826 SUBAREA AREA(ACRES) _ .73 SUBAREA RUNOFF(CFS) = 1.70 SUMMED AREA(ACRES) = 9.23 TOTAL RUNOFF(CFS) = 22.32 END OF SUBAREA.STREETFLOW HYDRAULICS: DEPTH(FEET) = 1.23 HALFSTREET FLOODWIDTH(FEET) = 3.40 FLOW VELOCITY(FEET /SEC.) = 7.37 DEPTH *VELOCITY = 9.10 PLOW PROCESS FROM NODE 200.00 TO NODE 202.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS «« < --------------------------=------------------------------------------- - - - - -= ---------------------------------------------------------------------------- ASSUMED-INITIAL-SUBAREA UNIFORM. DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *.[(LENGTH * *.3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW-LENGTH.--' 101.96 UPSTREAM.ELEVATION = 63.00 DOWNSTREAM ELEVATION = 59.70 ELEVATION DIFFERENCE = 3.30 TC = .393 *(( 101.96 * *3) /( 3.30)] * *.2 = 4.958 COMPUTED.TIME OF CONCENTRATION INCREASED TO 5 MIN. 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.081 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8231 SUBAREA RUNOFF(CFS) = 1.09 TOTAL AREA(ACRES) _ .26 TOTAL RUNOFF(CFS) = 1.09 * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE ------------------------- >>>>>COMPUTE STREETFLOW ------------------------- ------------------------- UPSTREAM ELEVATION = STREET LENGTH(FEET) _ STREET HALFWIDTH(FEET) k******************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 202.00 TO NODE 204.00 IS CODE = 6 --------------------------------------------------- TRAVELTIME THRU SUBAREA««< --------------------------------------------------- --------------------------------------------------- 59.70 DOWNSTREAM ELEVATION = 47.07 844.80 CURB HEIGHT(INCHES) = 6. 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) = .320 OUTSIDE STREET CROSSFALL(DECIMAL) = .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 15.62 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) = .87 HALFSTREET FLOODWIDTH(FEET) = 3.97 AVERAGE FLOW VELOCITY(FEET /SEC.) = 7.23 PRODUCT OF DEPTH &VELOCITY = 6.26 STREETFLOW TRAVELTIME(MIN) = 1.95 TC(MIN) = 6.95 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.199 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8101 SUBAREA AREA(ACRES) = 8.48 SUBAREA RUNOFF(CFS) = 28.84 SUMMED AREA(ACRES) = 8.74 TOTAL RUNOFF(CFS) = 29.93 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = 1.15 HALFSTREET FLOODWIDTH(FEET) = 4.84 FLOW VELOCITY(FEET /SEC.) = 8.82 DEPTH *VELOCITY = 10.11 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 300.00 TO NODE 302.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS« « < ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE.) TC ='K *[(LENGTH * *3) /'(ELEVATION CHANGE)'] 2* INITIAL SUBAREA FLOW- LENGTH = 128.49 UPSTREAM ELEVATION = 55.00 DOWNSTREAM ELEVATION = 51.90 ELEVATION DIFFERENCE = 3.10 TC = .393 *[( 128.49 * *3) /( 3.10)] * *.2 = 5.768 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.677 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8176 SUBAREA RUNOFF(CFS) _ .15 TOTAL AREA(ACRES) = .04 TOTAL RUNOFF(CFS) _ .15 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 302.00 TO NODE 304.00 IS CODE = 6 ---------------------------------------------------------------------------- » » >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- UPSTREAM ELEVATION = 51.90 DOWNSTREAM ELEVATION = 47.07 STREET LENGTH(FEET) = 623.65 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) = .320 OUTSIDE STREET CROSSFALL(DECIMAL) = .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) _ .82 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .27 HALFSTREET FLOODWIDTH(FEET) = 2.11 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.33 PRODUCT OF DEPTH &VELOCITY = .63 STREETFLOW TRAVELTIME(MIN) = 4.47 TC(MIN) = 10.23 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.354 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7929 SUBAREA AREA(ACRES) _ .49 SUBAREA RUNOFF(CFS) = 1.30 SUMMED AREA(ACRES) _ .53 TOTAL RUNOFF(CFS) = 1.46 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .35 HALFSTREET FLOODWIDTH(FEET) = 2.34 FLOW VELOCITY(FEET /SEC.) = 2.80 DEPTH *VELOCITY = .97 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 400.00 TO NODE. 402.00 IS CODE = 21 ----------------7----------------------------------------------------------- »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ASSUMED 'INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[( LENGTH * *3) /(ELEVATION.CHANGE)] * *.2 INITIAL SUBAREA FLOW - LENGTH-= 182:.33 UPSTREAM ELEVATION = 63.50 DOWNSTREAM ELEVATION = 59.85 ELEVATION DIFFERENCE.= 3.65 TC = .393 *[( 182.33 * *3) /( 3.65)] * *.2 = 6.887 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.220 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8105 SUBAREA RUNOFF(CFS) = 1.09 TOTAL AREA(ACRES) = .32 TOTAL RUNOFF(CFS) = 1.09 ********************************************* * * * * * * * * * * * * * * ** * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 402.00 TO NODE 204.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION = 59.85 DOWNSTREAM ELEVATION = 47.07 STREET LENGTH(FEET) = 827.70 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) = .320 OUTSIDE STREET CROSSFALL(DECIMAL) = .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 6.89 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION .THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) = .59 HALFSTREET FLOODWIDTH(FEET) = 3.09 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.88 PRODUCT OF DEPTH &VELOCITY = 3.45 STREETFLOW TRAVELTIME;MIN) = 2.35 TC(MIN) = 9.23 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.560 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7977 SUBAREA AREA(ACRES) = 4.05 SUBAREA RUNOFF(CFS) = 11.50 SUMMED AREA(ACRES) = 4.37 TOTAL RUNOFF(CFS) = 12.60 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .79 HALFSTREET FLOODWIDTH(FEET) = 3.72 FLOW VELOCITY(FEET /SEC.) = 6.80 DEPTH *VELOCITY = 5.34 FLOW PROCESS FROM.NODE. 500.00 TO.NODE 502.00 IS CODE = 21 >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[( LENGTH * *3) /(ELEVATION.CHANGE)] * *.2 INITIAL SUBAREA-FLOW-LENGTH- 193.37 UPSTREAM ELEVATION = 49:10 DOWNSTREAM ELEVATION = 47.31 ELEVATION DIFFERENCE.'- 1.7.9 TC .393 *[( 193.37 * *3.). /(. 1.79)] * *.2 = 8.226 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.807 SOIL CLASSIFICATION IS "B" 'SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8029 SUBAREA RUNOFF(CFS) = .79 TOTAL AREA(ACRES) = .26 TOTAL RUNOFF(CFS) = .79 * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE ------------------------- »» >COMPUTE STREETFLOW ------------------------- ------------------------- UPSTREAM ELEVATION = STREET LENGTH(FEET) _ STREET HALFWIDTH(FEET) k******************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 502.00 TO NODE 304.00 IS CODE = 6 --------------------------------------------------- TRAVELTIME THRU SUBAREA«« < --------------------------------------------------- --------------------------------------------------- 47.31 DOWNSTREAM ELEVATION = 47.07 412.16 CURB HEIGHT(INCHES) = 6. 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) = .320 OUTSIDE STREET CROSSFALL(DECIMAL) = .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 1.22 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) = .57 HALFSTREET FLOODWIDTH(FEET) = 3.03 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.10 PRODUCT OF DEPTH &VELOCITY = .62 STREETFLOW TRAVELTIME;MIN) = 6.23 TC(MIN) = 14.46 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.745 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7757 SUBAREA AREA(ACRES) _ .40 SUBAREA RUNOFF(CFS) _ .85 SUMMED AREA(ACRES) _ .66 TOTAL RUNOFF(CFS) = 1.65 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .65 HALFSTREET FLOODWIDTH(FEET) = 3.28 FLOW VELOCITY(FEET /SEC.) = 1.21 DEPTH *VELOCITY = .78 FLOW PROCESS FROM NODE 600.00 TO NODE 602.00 IS CODE = 21 --------------------------------------- 7 ------------------------------------ »» >RATIONAL METHOD INITIAL SUBAREA-ANALYSIS « «< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[( LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW-LENGTH­ 224:82' UPSTREAM ELEVATION = 65.70 DOWNSTREAM ELEVATION = 62.58 ELEVATION DIFFERENCE = 3.12' TC .393 *[( 224_.82 * *3) /( 3.12)] * *.2 = 8.058 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.853 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8038 SUBAREA RUNOFF(CFS) = .99 TOTAL AREA(ACRES) = .32 TOTAL RUNOFF(CFS) = .99 * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE ------------------------- >>>>>COMPUTE STREETFLOW ------------------------- ------------------------- UPSTREAM ELEVATION = STREET LENGTH(FEET) _ STREET HALFWIDTH(FEET) k******************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 602.00 TO NODE 604.00 IS CODE = 6 --------------------------------------------------- TRAVELTIME THRU SUBAREA<<<<< --------------------------------------------------- --------------------------------------------------- 62.58 DOWNSTREAM ELEVATION = 46.76 604.76 CURB HEIGHT(INCHES) = 6. 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) = .320 OUTSIDE STREET CROSSFALL(DECIMAL) = .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 5.93 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .49 HALFSTREET FLOODWIDTH(FEET) = 2.80 AVERAGE FLOW VELOCITY(FEET /SEC.) = 6.65 PRODUCT OF DEPTH &VELOCITY = 3.27 STREETFLOW TRAVELTIME(MIN) = 1.52 TC(MIN) = 9.57 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.486 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7960 SUBAREA AREA(ACRES) = 3.55 SUBAREA RUNOFF(CFS) = 9.85 SUMMED AREA(ACRES) = 3.87 TOTAL RUNOFF(CFS) = 10.84 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .65 HALFSTREET FLOODWIDTH(FEET) = 3.28 FLOW VELOCITY(FEET /SEC.) = 7.95 DEPTH *VELOCITY = 5.14 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 700.00 TO NODE 702.00 IS CODE = 21 ----------- 7 ---------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 45.84 UPSTREAM ELEVATION = 50.80 DOWNSTREAM ELEVATION = 49.22 ELEVATION DIFFERENCE = 1.58 TC = 393 *[( 45.84 * *3) /( 1.58)] * *.2 = 3:55.6 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 25 YEAR ;RAINFALL IN.TENSITY(INCH /HOUR) = 5.081 SOIL CLASSIFICATION IS "B" ' SINGLE7FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8231 SUBAREA.RUNOFF(CFS) = 92 TOTAL AREA(ACRES) _ .22 TOTAL RUNOFF(CFS) _ .92 * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE ------------------------- » » >COMPUTE STREETFLOW ------------------------- ------------------------- UPSTREAM ELEVATION = STREET LENGTH(FEET) _ STREET HALFWIDTH(FEET) 702.00 TO NODE 704.00 IS CODE = 6 --------------------------------------------------- TRAVELTIME THRU SUBAREA<<<<< --------------------------------------------------- --------------------------------------------------- 49.22 DOWNSTREAM ELEVATION = 46.76 361.74 CURB HEIGHT(INCHES) = 6. 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) = .320 OUTSIDE STREET CROSSFALL(DECIMAL) = .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 1.76 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .39 HALFSTREET FLOODWIDTH(FEET) = 2.47 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.86 PRODUCT OF DEPTH &VELOCITY = 1.11 STREETFLOW TRAVELTIME;MIN) = 2.11 TC(MIN) = 7.11 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.144 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8092 SUBAREA AREA(ACRES) _ .50 SUBAREA RUNOFF(CFS) = 1.68 SUMMED AREA(ACRES) _ .72 TOTAL RUNOFF(CFS) = 2.60 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .46 HALFSTREET FLOODWIDTH(FEET) = 2.70 FLOW VELOCITY(FEET /SEC.) = 3.21 DEPTH *VELOCITY = 1.48 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 800.00 TO NODE 802.00 IS CODE = 21 ---------------------------------------------------------------------------- »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 184.64 UPSTREAM ELEVATION = 73.70 DOWNSTREAM ELEVATION = 70.57 ELEVATION DIFFERENCE = 3.13 TC = .393 *[( 184.64 - *3)/( 3.13)] * *.2 = 7.155 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.127 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8089 SUBAREA RUNOFF(CFS) _ .90 TOTAL AREA(ACRES) _ .27 TOTAL.RUNOFF(CFS) _ .90 FLOW PROCESS FROM NODE 802.00 TO NODE 804.00 IS CODE = 6 ---------------------------------------------------------------------------- »» >COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< UPSTREAM ELEVATION = 70.57 DOWNSTREAM ELEVATION = 49.29 STREET LENGTH(FEET) = 926.13 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TC CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CRCSSFALL(DECIMAL) = .320 OUTSIDE STREET CROSSFALL(DECIMAL) = .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 13.13 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. 'THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) = .73 HALFSTREET FLOODWIDTH(FEET) = 3.53 °AVERAGE FLOW VELOCITY(FEET /SEC.) = 8.02 PRODUCT OF DEPTH &VELOCITY = 5.83 STREETFLOW TRAVELTIME(MIN) = 1.92 TC(MIN) = 9.08 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.595 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7985 SUBAREA AREA(ACRES) = 8.46 SUBAREA RUNOFF(CFS) = 24.29 SUMMED.AREA(ACRES) = 8.73 TOTAL RUNOFF(CFS) = 25.19 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .97 HALFSTREET FLOODWIDTH(FEET) = 4.28 FLOW VELOCITY(FEET /SEC.) = 9.79 DEPTH *VELOCITY = 9.46 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 900.00 TO NODE 901.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL.SUBAREA FLOW- LENGTH = 184.64 .UPSTREAM ELEVATION = 57.00 DOWNSTREAM ELEVATION = 55.08 ELEVATION DIFFERENCE = 1.92 TC = .393 *[( 184.64 * *3) /( 1.92)] * *.2 = 7.890 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.900 SOIL CLASSIFICATION IS "B" SINGLE= FAMILY(1 /9 ACRE LOT) RUNOFF COEFFICIENT. _ .8047 SUBAREA RUNOFF(CFS) _ .88 TOTAL- AREA(ACRES) _ .28 TOTAL:RUNOFF(CFS) = .88 FLOW PROCESS FROM NODE 901.00 TO NODE 904.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA«« < ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- UPSTREAM ELEVATION = 55.08 DOWNSTREAM ELEVATION = 49.29 STREET LENGTH(FEET) = 435.42 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) = .320 OUTSIDE STREET CROSSFALL(DECIMAL) = .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 2.58 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .39 HALFSTREET FLOGDWIDTH(FEET) = 2.47 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.19 PRODUCT OF DEPTH &VELOCITY = 1.62 STREETFLOW TRAVELTIME(MIN) = 1.73 TC(MIN) = 9.62 25'YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.476 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7958 SUBAREA AREA(ACRES) = 1.23 SUBAREA RUNOFF(CFS) = 3.40 SUMMED AREA(ACRES) = 1.51 TOTAL RUNOFF(CFS) = 4.28 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .49 HALFSTREET FLOODWIDTH(FEET) = 2.80 FLOW VELOCITY(FEET /SEC.) = 4.80 DEPTH *VELOCITY = 2.36 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1000.00 TO NODE 1002.00 IS CODE = 21 ---------------------------------------------------------------------------- »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 161.31 UPSTREAM ELEVATION = ..48.30 DOWNSTREAM ELEVATION = 46.46 ELEVATION DIFFERENCE = 1.84 TC.= .393 *[( 161.31 * *3) /( 1.84)] * *.2 = 7.338 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.068 SOIL CLASSIFICATION IS "B" SINGLE= FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8078 SUBAREA RUNOFF(CFS) _ .62 TOTAL AREA(ACRES) = .19 TOTAL RUNOFF(CFS) _ .62 FLOW. PROCESS : FROM' NODE ------------ ------------- >>>>>COMPUTE.STREETFLOW UPSTREAM ELEVATION = STREET LENGTH(FEET) _ STREET HALFWIDTH(FEET) 1002.00 TO NODE 1004.00 IS.CODE 6 --------------------------------------------------- TRAVELTIME THRU SUBAREA<<<<< 46.46 DOWNSTREAM ELEVATION = 40.76 648.87 CURB HEIGHT(INCHES) = 6. 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .320 OUTSIDE STREET CROSSFALL(DECIMAL) _ .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING. RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 3.98 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) _ .53 HALFSTREET FLOODWIDTH(FEET) = 2.91 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.01 PRODUCT OF DEPTH &VELOCITY = 2.11 STREET-FLOW TRAVELTIME(MIN) = 2.70 TC(MIN) = 10.03 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.392 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7938 SUBAREA AREA(ACRES).= 2.47 SUBAREA RUNOFF(CFS) = 6.65 SUMMED AREA(ACRES) = 2.66 TOTAL RUNOFF(CFS) = 7.28 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .69 HALFSTREET FLOODWIDTH(FEET) = 3.41 FLOW VELOCITY(FEET /SEC.) = 4.86 DEPTH *VELOCITY = 3.34 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2000.00 TO NODE 2002.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 156.16 UPSTREAM ELEVATION = 48.40 DOWNSTREAM ELEVATION = 46.46 ELEVATION DIFFERENCE = 1.94 -TC = .393 *[( 156.16 * *3) /( 1.94)] * *.2 = 7.121 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.139 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8091 SUBAREA RUNOFF(CFS) _ .60 TOTAL AREA(ACRES) _ .18 TOTAL RUNOFF(CFS) _ .60 * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE >>>>>COMPUTE STREETFLOW UPSTREAM ELEVATION = STREET LENGTH(FEET) _ STREET HALFWIDTH(FEET) k******************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 2002.00 TO NODE 1004..0.0 IS CODE = 6 TRAVELTIME THRU SUBAREA « «< 46.46 DOWNSTREAM ELEVATION = 40.76 577.04 CURB HEIGHT(INCHES) = 6. 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .320 OUTSIDE STREET CROSSFALL(DECIMAL) _ .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 2.98 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .45 HALFSTREET FLOODWIDTH(FEET) = 2.67 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.81 PRODUCT OF DEPTH &VELOCITY = 1.72 STREETFLOW TRAVELTIME(MIN) = 2.52 TC(MIN) = 9.64 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.472 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7957 SUBAREA AREA(ACRES) = 1.71 SUBAREA RUNOFF(CFS) = 4.72 SUMMED AREA(ACRES).= 1.89. TOTAL RUNOFF(CFS) = 5.33 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .59 HALFSTREET FLOODWIDTH(FEET) = 3.09 FLOW VELOCITY(FEET /SEC.) = 4.54 DEPTH *VELOCITY = 2.66 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3000.00 TO NODE 3002.00 IS CODE = 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ---------------------------------------------------------------------- - - - - -= ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION C.HANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 147.63 UPSTREAM ELEVATION = 48.20 DOWNSTREAM ELEVATION = 45.96 ELEVATION DIFFERENCE = 2.24 TC = .393 *[( 147.63 * *3) /( 2.24)] * *.2 = 6.690 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.292 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8117 SUBAREA RUNOFF(CFS) _ .66 TOTAL AREA(ACRES) _ .19 TOTAL RUNOFF(CFS) _ .66 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3002.00 TO NODE 3004.00 IS CODE = 6 ---------------------------------------------------- 7 -------------- --------- >>>COMPUTE STREETFLOW'T.RAVELTIME THRU SUBAREA« «< UPSTREAM'ELEVATION = 45..96 DOWNSTREAM ELEVATION- 41.25 STREET LENGTH(FEET) = 549.41 CURB HEIGHT(INCHES) -- 6. STREET HALFWIDTH(FEET.) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .320 OUTSIDE STREET CROSSFALL(DECIMAL) _ .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 2.90 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .46 HALFSTREET FLOODWIDTH(FEET) = 2.70 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.58 PRODUCT OF DEPTH &VELOCITY = 1.65 STREETFLOW TRAVELTIME(MIN) = 2.56 TC(MIN) = 9.25 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.557 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7976 SUBAREA AREA(ACRES) = 1.56 SUBAREA RUNOFF(CFS) = 4.43 SUMMED AREA(ACRES) = 1.75 TOTAL RUNOFF(CFS) = 5.09 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .59 HALFSTREET FLOODWIDTH(FEET) = 3.09 FLOW VELOCITY(FEET /SEC.) = 4.34 DEPTH *VELOCITY = 2.54 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4000.00 TO NODE 4002.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 162.89 UPSTREAM ELEVATION = 48.00 DOWNSTREAM ELEVATION = 44.87 ELEVATION DIFFERENCE = 3.13 TC = .393 *[( 162.89 * *3) /( 3.13)] * *.2 = 6.637 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.311 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8120. SUBAREA RUNOFF(CFS) _ .88 TOTAL AREA(ACRES) = .25 TOTAL RUNOFF(CFS) _ .88 * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE » » >COMPUTE STREETFLOW UPSTREAM ELEVATION = STREET LENGTH(FEET) _ STREET HALFWI•DTH ( FEET ) 4002.00 TO NODE 4004.00 IS CODE = 6 TRAVELTIME THRU SUBAREA<<<<< 44.87 DOWNSTREAM ELEVATION = 41.25 515.38 CURB.HEI.GHT(INCHES) = 6. = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK•= 16.00 INTERIOR'STREET CROSSFALL(DECIMAL) = .320 OUTSIDE STREET CROSSFALL(DECIMAL) = .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 2.88 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .48 HALFSTREET FLOODWIDTH(FEET) = 2.77 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.34 PRODUCT OF DEPTH &VELOCITY = 1.61 STREETFLOW TRAVELTIME(MIN) = 2.58 TC(MIN) = 9.21 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.565 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7978 SUBAREA AREA(ACRES) = 1.40 SUBAREA RUNOFF(CFS) = 3.98 SUMMED AREA(ACRES) = 1.65 TOTAL RUNOFF(CFS) = 4.86 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .61 HALFSTREET FLOODWIDTH(FEET) = 3.16 FLOW VELOCITY(FEET /SEC.) = 3.93 DEPTH *VELOCITY = 2.39 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 5000.00 TO NODE 5002.00 IS CODE = 21 ---------------------------------------------------- - ------------------------ >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS«« < ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 160.96 UPSTREAM ELEVATION = 48.00 DOWNSTREAM ELEVATION = 46.17 ELEVATION DIFFERENCE = 1.83 TC = .393 *[( 160.96 * *3) /( 1.83)] * *.2 = 7.337 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.068 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8078 SUBAREA RUNOFF(CFS) _ .66 TOTAL AREA(ACRES) = .20 TOTAL RUNOFF(CFS) _ .66 * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE » >>>COMPUTE STREETFLOW UPSTREAM ELEVATION = STREET-LENGTH(FEET) _ STREET. HALFWIDTH(FEET) 5002.00 TO NODE 5004.00.IS CODE = 6 TRAVELTIME THRU SUBAREA ««< 46.17 DOWNSTREAM ELEVATION = 40.71 410.48 CURB HEIGHT(INCHES) = 6. = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR•STREET CROSSFALL(DECIMAL) = .3.20 OUTSIDE STREET CROSSFALL(DECIMAL) = .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *.TRAVELTIME COMPUTED USING-MEAN FLOW(CFS) = 2.55 STREETFLOW MODEL RESULTS: STREET. FLOWDEPTH(FEET) _ .39 HALFSTREET FLOODWIDTH(FEET) = 2.47 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.15 PRODUCT OF DEPTH &VELOCITY = 1.60 STREETFLOW TRAVELTIME(MIN) = 1.65 TC(MIN) = 8.99 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.617 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7989 SUBAREA AREA(ACRES) = 1.31 SUBAREA RUNOFF(CFS) = 3.79 SUMMED AREA(ACRES) = 1.51 TOTAL RUNOFF(CFS) = 4.44 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .50 HALFSTREET FLOODWIDTH(FEET) = 2.83 FLOW VELOCITY(FEET /SEC.) = 4.83 DEPTH *VELOCITY = 2.42 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6000.00 TO NODE 6002.00 IS CODE 21 ---------------------------------------------------------------------------- »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *((LENGTH * *3) /(ELEVATION CHANGE)) * *.2 INITIAL SUBAREA FLOW- LENGTH = 164.24 UPSTREAM ELEVATION = 62.50 DOWNSTREAM ELEVATION = 60.71 ELEVATION DIFFERENCE = 1.79 TC = .393 *[( 164.24 * *3) /( 1.79)] * *.2 = 7.459 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.029 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8071 SUBAREA RUNOFF(CFS) _ .68 TOTAL AREA(ACRES) = .21 TOTAL RUNOFF(CFS) _ .68 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6002.00 TO NODE 5004.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA <<<<< --------------------------------------------------------------------------=- ---------------------------------------------------------------------------- UPSTREAM ELEVATION = 60.71 DOWNSTREAM ELEVATION = 40.71 STREET LENGTH(FEET) = 1715.69 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) = .320 OUTSIDE STREET CROSSFALL(DECIMAL) = .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME.COMPUTED.USING MEAN FLOW(CFS) 7.31 STREETFLOW MODEL RESULTS: .NOTE: STREET.FLOW.EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE-FLO.W OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS; ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) _ .65 HALFSTREET FLOODWIDTH(FEET) = 3.28 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.36 PRODUCT OF DEPTH &VELOCITY = 3.46 STREETFLOW TRAVELTIME(MIN) = 5.33 TC(MIN) = 12.79 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.947 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7820 SUBAREA AREA(ACRES) = 5.64 SUBAREA RUNOFF(CFS) = 13.00 SUMMED AREA(ACRES) = 5.85 TOTAL RUNOFF(CFS) = 13.68 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .87 HALFSTREET FLOODWIDTH(FEET) = 3.97 FLOW VELOCITY(FEET /SEC.) = 6.33 DEPTH *VELOCITY = 5.48 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 7000.00 TO NODE 7002.00 IS CODE = 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW - LENGTH = 159.18 UPSTREAM ELEVATION = 49.22 DOWNSTREAM ELEVATION = 44.48 ELEVATION DIFFERENCE = 4.74 TC = .393 *(( 159.18 * *3) /( 4.74)] * *.2 = 6.025 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.560 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8159 SUBAREA RUNOFF(CFS) _ .74 TOTAL AREA(ACRES) = .20 TOTAL RUNOFF(CFS). _ .74 * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE ------------------------- »» >COMPUTE STREETFLOW ------------------------- ------------------------- UPSTREAM ELEVATION = STREET LENGTH(FEET) _ STREET HALFWIDTH(FEET) 7002.00 TO NODE 7004.00 IS CODE = 6 --------------------------------------------------- TRAVELTIME THRU SUBAREA««< --------------------------------------------------- --------------------------------------------------- 44.48 DOWNSTREAM ELEVATION = 41.05 366.30 CURB HEIGHT(INCHES) = 6. 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) = .320 OUTSIDE STREET CROSSFALL(DECIMAL) = .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 . * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 3.62 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF..CURB. THE'. FOLLOWING STREETFLOW•RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) _ .50 HALFSTREET, FLOODWIDTH(FEET) = 2.83 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.94 PRODUCT OF DEPTH &VELOCITY = 1.97 STREETFLOW TRAVELTIME(MIN) = 1.55 TC(MIN) = 7.57 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.993 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8065 SUBAREA AREA(ACRES) = 1.78 SUBAREA RUNOFF(CFS) = 5.73 SUMMED AREA(ACRES) = 1.98 TOTAL RUNOFF(CFS) = 6.48 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .65 HALFSTREET FLOODWIDTH(FEET) = 3.28 FLOW VELOCITY(FEET /SEC.) = 4.75 DEPTH *VELOCITY = 3.07 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8000.00 TO NODE 8002.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS «« < ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- .ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 156.28 UPSTREAM ELEVATION = 60.50 DOWNSTREAM ELEVATION = 58.64 ELEVATION DIFFERENCE = 1.86 TC = .393 *[( 156.28 * *3) /( 1.86)] * *.2 = 7.184 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.118 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8087 SUBAREA RUNOFF(CFS) _ .93 TOTAL AREA(ACRES) = .28 TOTAL RUNOFF(CFS) _ .93 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8002.00 TO NODE 7004.00 IS CODE = 6 -----------------=---------------------------------------------------------- >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA «« < ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- UPSTREAM ELEVATION = 58.64 DOWNSTREAM ELEVATION = 41.05 STREET LENGTH(FEET) = 1532.40 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) = .320 OUTSIDE STREET CROSSFALL(DECIMAL) = .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 12..10 STREETFLOW MODEL RESULTS: NOTE:.STREETFLOW:EXCEEDS TOP OF CURB.. THE .FOLLOWING'STHE'ETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLI•BLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) = .81 HALFSTREET FLOODWIDTH(FEET) = 3.78 AVERAGE FLOW VELOCITY(FEET /SEC.) = 6.27 PRODUCT OF DEPTH &VELOCITY = 5.06 STREETFLOW TRAVELTIME(MIN) = 4.07 TC(MIN) = 11.26 25 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.174 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7883 SUBAREA AREA(ACRES) = 8.79 SUBAREA RUNOFF(CFS) = 21.99 SUMMED AREA(ACRES) = 9.07 TOTAL RUNOFF(CFS) = 22.93 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = 1.09 HALFSTREET FLOODWIDTH(FEET) = 4.66 FLOW VELOCITY(FEET /SEC.) = 7.37 DEPTH *VELOCITY = 8.01 END OF STUDY SUMMARY: PEAK FLOW RATE(CFS) = 22.93 Tc(MIN.) = 11.26 TOTAL AREA(ACRES) = 9.07 END OF-RATIONAL METHOD ANALYSIS 100 -YR FLOW CALCULATIONS V r m v N 0 m CATHEDRAL CITY CHERRY VALLEY RAINFALL INTENSITY-, PER HOUR DESERT NOT SPRINGS ELSINORE - MiLDOgAR DURATION FREQUENCY DURATION FREQUENCY DURATION FREQUENCY OUR4TION FREQUENCY DURATION FREQUENCY MINUTES MINUTES MINUTES MINUTES MINUTES 30 100 10 100 10 100 10 100 10 100 YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR 5 4.14 6'.76 5 3665 5.49 C) 3.10 4.78 5 4.39 6.76 5 3.23 4.94 6 J. 73. 6.08 6 3.70 4.97 6 2.80 4,38 6 3.95 6.08 6 2.96 4.53 7 3.41 5.56 7 3.03 e.56 7 2.64 0.07 �i 3.62 5.56 1 2.75 4.21 B 3.15 5.15 6 2.82 0.24 8 2.47 3.81 8 3.35 5.15 8 2.58 3.95 9 2.95 4.01 9 2.64 3.97 9 2.34 3.60 9 3.13 4.81 9 2.44 3.73 10 2.7 10 2.49 3.T5 10 2.22 3.43 10 2.94 4.52 10 2.32 3.54 .62 4.26 11 2.36 3.56 11 2.12 3:27 11 2.78 4.28 11 2.21 3.39 12 2.49 ♦.07 12 2.25 3,39 12 2.04 3.14 IZ 2.65 4.07 12 2.12 3.25 13 2.36 3.88 13 2.16 3.25 13 1.96 3.02 13 2.53 3.88 13 2.04 3.13 14 2.28 3.72 14 2.07 3.12 14 1.89 2.92 14 2.42 3.72 14 1.97 3.02 15 2.19 3.56 15 1.99 3.00 15 1.83 z � 2.32 3.58 15 1.91 2.92 16 2.11 3.44 16 1.92 2,90 16 1.77 2.73 16 2.24 3.46 16 1.85 2.83 17 2.04 3.32 17 1..86 2.60 17 1.72 2.66 17 2.16 3.32 17 1.60 2.75 18 1.97 3.22 I8 1.80 2.71 18 1.68 2.58 18 2.09 3.22 18 1.75 2.67 19 1.91 3.12 19 1.75 2.64 19 1.63 2.52 19 2.03 3.12 19 1.70 2.60 20 D 3.03 20 1.70 2.56 20 1.59 2.46 20 1.97 3.03 20 1.66 2.54 22 1.75' 2.66 r 1.61 2.43 22 1.52 2.35 22 1.86 2.86 22 1.59 2.43 24 1.67 2.72 24 1.54 2.32 24 1.46 2.25 24 1.77 2.72 24 1.52 2.33 26 1.59 2.60 26 1,47 2.22 26 1.40 2.17 26 1.69 2.60 26 1.46 2.24 28 1.52 2.49 28 1.41 2.13 28 1.36 2.09 28 1.62 2.49 28 1.41 2.16 30 1.46 2.39 30 1.36 2.05 30 1.31 2.02 30 1.55 2.79 30 1.37 2.09 32 1.41 2.30 32 1.31 1.98 32 1.27 1.96 32 1.50 2.30 32 1.33 2.03 34 1.36 2.22 34 1.27 1.91 34 1.23 1.90 34 1.45 2.22 34 1.29 1.97 36 1.32 2.15 36 1.23 1.8S 36 1.20 1.85 36 1.40 2.15 36 1.25 1.42 38 1.26 2.09 38 1.20 1.80 38 1.17 1.81 38 1.36 2.09 38 1.22 1.67 40 1.24 2.02 40 1.16 1.75 40 1.14 1.76 40 1.32 2.02 40 1.19 1.82 45 1.16 1.69 45 1.09 1.64 45 1.08 1.66 45 1.23 1.89 45 1.13 1.72 50 1.09 1.78 50 1.03 1.55 50 1.03 1.58 50 1.16 1.78 50 1.07 1.64 55 1.03 1.,68 55 .99 1.47 55 .98 1.51 55 1.09 1.68 55 1.02 1.56 60 - 1.60 I 60 .93 1.40 60 .94 1.45 60, 1.00 1.60 60 .98 1.50 65 .94 1.53 65 .89 1.34 65 .90 1.40 65 .99 1.53 65 .94 1.44 70 .90 1.46 70 .85 1.29 70 .87 1,35 70 .95 1.46 70 .91 1.39 75 .86 3.47 75 .62 1.24 75 .84 1.30 75 .91 1.41 75 .88 1.35 80 .83 1.35 BO .79 1.20 80 .82 1.26 BO .80 1.35 80 .85 1.31 85 .00 1.31 85 .77 1.16 85 .80 1.23 BS .85 1.31 85 .83 1.27 SLOPE a .580 SLOPE � .550 SLOPE .480 a .400 SLOPE g .580 SLOPE � .460 C Z U) D O 0 D D D v D -� O Z CATHEDRAL CITY CHERRY VALLEY CORONA DESERT NOT SPRINGS ELSINORE - MiLDOgAR DURATION FREQUENCY DURATION FREQUENCY DURATION FREQUENCY OUR4TION FREQUENCY DURATION FREQUENCY MINUTES MINUTES MINUTES MINUTES MINUTES 30 100 10 100 10 100 10 100 10 100 YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR 5 4.14 6'.76 5 3665 5.49 5 3.10 4.78 5 4.39 6.76 5 3.23 4.94 6 J. 73. 6.08 6 3.70 4.97 6 2.80 4,38 6 3.95 6.08 6 2.96 4.53 7 3.41 5.56 7 3.03 e.56 7 2.64 0.07 7 3.62 5.56 1 2.75 4.21 B 3.15 5.15 6 2.82 0.24 8 2.47 3.81 8 3.35 5.15 8 2.58 3.95 9 2.95 4.01 9 2.64 3.97 9 2.34 3.60 9 3.13 4.81 9 2.44 3.73 10 2.7 10 2.49 3.T5 10 2.22 3.43 10 2.94 4.52 10 2.32 3.54 .62 4.26 11 2.36 3.56 11 2.12 3:27 11 2.78 4.28 11 2.21 3.39 12 2.49 ♦.07 12 2.25 3,39 12 2.04 3.14 IZ 2.65 4.07 12 2.12 3.25 13 2.36 3.88 13 2.16 3.25 13 1.96 3.02 13 2.53 3.88 13 2.04 3.13 14 2.28 3.72 14 2.07 3.12 14 1.89 2.92 14 2.42 3.72 14 1.97 3.02 15 2.19 3.56 15 1.99 3.00 15 1.83 2.82 15 2.32 3.58 15 1.91 2.92 16 2.11 3.44 16 1.92 2,90 16 1.77 2.73 16 2.24 3.46 16 1.85 2.83 17 2.04 3.32 17 1..86 2.60 17 1.72 2.66 17 2.16 3.32 17 1.60 2.75 18 1.97 3.22 I8 1.80 2.71 18 1.68 2.58 18 2.09 3.22 18 1.75 2.67 19 1.91 3.12 19 1.75 2.64 19 1.63 2.52 19 2.03 3.12 19 1.70 2.60 20 1.65 3.03 20 1.70 2.56 20 1.59 2.46 20 1.97 3.03 20 1.66 2.54 22 1.75' 2.66 22 1.61 2.43 22 1.52 2.35 22 1.86 2.86 22 1.59 2.43 24 1.67 2.72 24 1.54 2.32 24 1.46 2.25 24 1.77 2.72 24 1.52 2.33 26 1.59 2.60 26 1,47 2.22 26 1.40 2.17 26 1.69 2.60 26 1.46 2.24 28 1.52 2.49 28 1.41 2.13 28 1.36 2.09 28 1.62 2.49 28 1.41 2.16 30 1.46 2.39 30 1.36 2.05 30 1.31 2.02 30 1.55 2.79 30 1.37 2.09 32 1.41 2.30 32 1.31 1.98 32 1.27 1.96 32 1.50 2.30 32 1.33 2.03 34 1.36 2.22 34 1.27 1.91 34 1.23 1.90 34 1.45 2.22 34 1.29 1.97 36 1.32 2.15 36 1.23 1.8S 36 1.20 1.85 36 1.40 2.15 36 1.25 1.42 38 1.26 2.09 38 1.20 1.80 38 1.17 1.81 38 1.36 2.09 38 1.22 1.67 40 1.24 2.02 40 1.16 1.75 40 1.14 1.76 40 1.32 2.02 40 1.19 1.82 45 1.16 1.69 45 1.09 1.64 45 1.08 1.66 45 1.23 1.89 45 1.13 1.72 50 1.09 1.78 50 1.03 1.55 50 1.03 1.58 50 1.16 1.78 50 1.07 1.64 55 1.03 1.,68 55 .99 1.47 55 .98 1.51 55 1.09 1.68 55 1.02 1.56 60 - 1.60 I 60 .93 1.40 60 .94 1.45 60, 1.00 1.60 60 .98 1.50 65 .94 1.53 65 .89 1.34 65 .90 1.40 65 .99 1.53 65 .94 1.44 70 .90 1.46 70 .85 1.29 70 .87 1,35 70 .95 1.46 70 .91 1.39 75 .86 3.47 75 .62 1.24 75 .84 1.30 75 .91 1.41 75 .88 1.35 80 .83 1.35 BO .79 1.20 80 .82 1.26 BO .80 1.35 80 .85 1.31 85 .00 1.31 85 .77 1.16 85 .80 1.23 BS .85 1.31 85 .83 1.27 SLOPE a .580 SLOPE � .550 SLOPE .480 a .400 SLOPE g .580 SLOPE � .460 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC &WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982 -98 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/98 License ID 1419 Analysis prepared by: Dudek & Associates, Inc. 75 -150 Sheryl Avenue, Suite C Palm Desert, CA 92211 (760) 341 -6660 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * JOB # 2512 Monticello * February 2, 2001 * 100 YR STORM, FLOW STUDY ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 2512- 100.DAT TIME /DATE OF STUDY: 1:31 2/ 2/2001 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .95 10 -YEAR STORM 10- MINUTE INTENSITY(INCH /HOUR) = 2.770 10 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) _ .980 100 -YEAR STORM 10- MINUTE INTENSITY(INCH /HOUR) = 4.520 100 -YEAR STORM 60- MINUTE INTENSITY(INCH /HOUR) = 1.600 SLOPE OF 10 -YEAR INTENSITY - DURATION CURVE _ .5799047 SLOPE OF 100 -YEAR INTENSITY - DURATION CURVE _ .5796024 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.6000 SLOPE OF INTENSITY DURATION CURVE _ .5796 RCFC &WCD HYDROLOGY MANUAL "C"- VALUES USED NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC &WCD HYDROLOGY MANUAL. AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 100.00 TO NODE 102.00 IS CODE = 21 >>>>> RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC =.K *[(LENGTH * *3) /(ELEVATION CHANGE)) * *.2 INITIAL SUBAREA FLOW- LENGTH = 500.00 UPSTREAM ELEVATION = 63.40 DOWNSTREAM ELEVATION = 58.32 ELEVATION DIFFERENCE = 5.08 TC = .393 *[( 500.00 * *3) /( 5.08)] * *.2 = 11.808 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.105 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8085 SUBAREA RUNOFF(CFS) = 28.21 TOTAL AREA(ACRES) = 8.50 TOTAL RUNOFF(CFS) = 28.21 * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE ------------------------- >>>>>COMPUTE STREETFLOW ------------------------- ------------------------- UPSTREAM ELEVATION = STREET LENGTH(FEET) _ STREET HALFWIDTH(FEET) 102.00 TO NODE 104.00 IS CODE = 6 --------------------------------------------------- TRAVELTIME THRU SUBAREA «« < --------------------------------------------------- --------------------------------------------------- 58.32 DOWNSTREAM ELEVATION = 54.94 361.16 CURB HEIGHT(INCHES) = 8. 39.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 37.00 INTERIOR STREET CROSSFALL(DECIMAL) = .740 OUTSIDE STREET CROSSFALL(DECIMAL) = .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 29.38 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) = 1.41 HALFSTREET FLOODWIDTH(FEET) = 3.64 AVERAGE FLOW VELOCITY(FEET /SEC.) = 8.07 PRODUCT OF DEPTH &VELOCITY = 11.37 STREETFLOW TRAVELTIMEMIN) = .75 TC(MIN) = 12.55 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.962 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8059 SUBAREA AREA(ACRES) _ .73 SUBAREA RUNOFF(CFS) = 2.33 SUMMED AREA(ACRES) = 9.23 TOTAL RUNOFF(CFS) = 30.54 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = 1.43 HALFSTREET FLOODWIDTH(FEET) = 3.67 FLOW VELOCITY(FEET /SEC.) = 8.17 DEPTH *VELOCITY = 11.73 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** "FLOW PROCESS FROM NODE 200.00 TO NODE 202.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ------------------ ASSUMED INITIAL SUBAREA UNIFORM. DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC K* [" ( LENGTH* * 3) / ("ELEVA•T:ION CHANGE) ] * * . 2 INITIAL SUBAREA 'FLOW.- LENGTH = 101:96 UPSTREAM ELEVATION = 63.00 DOWNSTREAM ELEVATION 59:70 ELEVATION DIFFERENCE = 3.30 TC = .393 *[( 101.96 * *3) /( 3.30)] * *.2 = 4.958 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 6.755 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8396 SUBAREA RUNOFF(CFS) = 1.47 TOTAL AREA(ACRES) _ .26 TOTAL RUNOFF(CFS) = 1.47 * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE ------------------------- >>>>>COMPUTE STREETFLOW ------------------------- ------------------------- UPSTREAM ELEVATION = STREET LENGTH(FEET) _ STREET HALFWIDTH(FEET) k******************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 202.00 TO NODE 204.00 IS CODE = 6 --------------------------------------------------- TRAVELTIME THRU SUBAREA<<<<< --------------------------------------------------- --------------------------------------------------- 59.70 DOWNSTREAM ELEVATION = 47.07 844.80 CURB HEIGHT(INCHES) = 6. 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .320 OUTSIDE STREET CROSSFALL(DECIMAL) _ .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 21.61 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) _ .99 HALFSTREET FLOODWIDTH(FEET) = 4.34 AVERAGE FLOW VELOCITY(FEET /SEC.) = 8.12 PRODUCT OF DEPTH &VELOCITY = 8.01 STREETFLOW TRAVELTIME(MIN) = 1.73 TC(MIN) = 6.73 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.685 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8300 SUBAREA AREA(ACRES) = 8.48 SUBAREA RUNOFF(CFS) = 40.01 SUMMED AREA(ACRES) = 8.74 TOTAL RUNOFF(CFS) = 41.48 END OF SUBAREA STREET-FLOW HYDRAULICS: DEPTH(FEET) = 1.33 HALFSTREET FLOODWIDTH(FEET) = 5.41 FLOW VELOCITY(FEET /SEC.) = 9.61 DEPTH *VELOCITY = 12.74 FLOW. PROCESS FROM NODE 300.00 TO NODE 302.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL.SUBAREA FLOW- LENGTH = 128.49 'UPSTREAM ELEVATION = 55.00 DOWNSTREAM ELEVATION = 51.90 ELEVATION DIFFERENCE = 3.10 TC = .393 *(( 128.49 * *3) /( 3.10)] * *.2 = 5.768 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 6.218 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8351 SUBAREA RUNOFF(CFS) _ .21 TOTAL AREA(ACRES) _ .04 TOTAL RUNOFF(CFS) _ .21 * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE ------------------------- >>>>>COMPUTE STREETFLOW ------------------------- ------------------------- UPSTREAM ELEVATION = STREET LENGTH(FEET) _ STREET HALFWIDTH(FEET) 302.00 TO NODE 304.00 IS CODE = 6 --------------------------------------------------- TRAVELTIME THRU SUBAREA«« < --------------------------------------------------- --------------------------------------------------- 51.90 DOWNSTREAM ELEVATION = 47.07 623.65 CURB HEIGHT(INCHES) = 6. 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .320 OUTSIDE STREET CROSSFALL(DECIMAL) _ .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 1.15 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .31 HALFSTREET FLOODWIDTH(FEET) = 2.22 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.67 PRODUCT OF DEPTH &VELOCITY = .82 STREETFLOW TRAVELTIME(MIN) = 3.89 TC(MIN) = 9.65 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.613 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8167 SUBAREA AREA(ACRES) _ .49 SUBAREA RUNOFF(CFS) = 1.85 SUMMED AREA(ACRES) _ .53 TOTAL RUNOFF(CFS) = 2.05 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .41 HALFSTREET FLOODWIDTH(FEET) = 2.53 FLOW VELOCITY(FEET /SEC.) = 3.08 DEPTH *VELOCITY = 1.25 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 400.00 TO NODE 402.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 182.33 UPSTREAM ELEVATION = 63.50 DOWNS.TREAM,ELEVATION = 59.85 ELEVATION-DIFFERENCE = 3.65 TC` =_'.393 *[( 182.33 * *3) /( 3.65)] * *.2 = 6.887 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.611• SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8292 SUBAREA RUNOFF(CFS) = 1.49 TOTAL AREA(ACRES) _ .32 TOTAL RUNOFF(CFS) = 1.49 * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE ------------------------- >>>>>COMPUTE STREETFLOW UPSTREAM ELEVATION = STREET LENGTH(FEET) _ STREET HALFWIDTH(FEET) 402.00 TO NODE 204.00 IS CODE = 6 --------------------------------------------------- TRAVELTIME THRU SUBAREA<<<<< ----------------------------------------=---------- 59.85 DOWNSTREAM ELEVATION = 47.07 827.70 CURB HEIGHT(INCHES) = 6. 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .320 OUTSIDE STREET CROSSFALL(DECIMAL) _ .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 9.49 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) _ .69 HALFSTREET FLOODWIDTH(FEET) = 3.41 AVERAGE FLOW VELOCITY(FEET /SEC.) = 6.34 PRODUCT OF DEPTH &VELOCITY = 4.35 STREETFLOW TRAVELTIME(MIN) = 2.18 TC(MIN) = 9.06 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.785 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8192 SUBAREA AREA(ACRES) = 4.05 SUBAREA RUNOFF(CFS) = 15.88 SUMMED AREA(ACRES) = 4.37 TOTAL RUNOFF(CFS) = 17.36 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .91 HALFSTREET FLOODWIDTH(FEET) = 4.09 FLOW VELOCITY(FEET /SEC.) = 7.48 DEPTH *VELOCITY = 6.78 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 500.00 TO NODE 502.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS «« < ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 193.37 UPSTREAM ELEVATION = 49.10 DOWNSTREAM ELEVATION = 47.31 ELEVATION-DIFFERENCE­ 1.79 TC = ...1393 *[( 193.37 * *3) /( 1.79)] * *.2 = 8.226 100 YEAR'RAINFALL INTENSITY(INCH /HOUR) = 5.062 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8228 SUBAREA RUNOFF(CFS) = 1.08 TOTAL AREA(ACRES) = .26 TOTAL RUNOFF(CFS) = 1.08 * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE ------------------------- >>>>>COMPUTE STREETFLOW ------------------------- ------------------------- UPSTREAM ELEVATION = STREET LENGTH(FEET) _ STREET HALFWIDTH(FEET) 502.00 TO NODE 304.00 IS CODE = 6 --------------------------------------------------- TRAVELTIME THRU SUBAREA <<<<< --------------------------------------------------- --------------------------------------------------- 47.31 DOWNSTREAM ELEVATION = 47.07 412.16 CURB HEIGHT(INCHES) = 6. = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) = .320 OUTSIDE STREET CROSSFALL(DECIMAL) = .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 1.68 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) = .67 HALFSTREET FLOODWIDTH(FEET) = 3.34 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.18 PRODUCT OF DEPTH &VELOCITY = .78 STREETFLOW TRAVELTIME(MIN) = 5.83 TC(MIN) = 14.06 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.710 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8009 SUBAREA AREA(ACRES) _ .40 SUBAREA RUNOFF(CFS) = 1.19 SUMMED AREA(ACRES) _ .66 TOTAL RUNOFF(CFS) = 2.27 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .75 HALFSTREET FLOODWIDTH(FEET) = 3.59 FLOW VELOCITY(FEET /SEC.) = 1.33 DEPTH *VELOCITY = .99 FLOW PROCESS FROM NODE 600.00 TO NODE 602.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL'SUBAREA ANALYSIS<<<<< ' ------------------------=--------------------------------------------- - - - - -- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(.ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 224.82 UPSTREAM ELEVATION = 65.70 DOWNSTREAM.ELEVATION = 621.58 ELEVATION DIFFERENCE = 3.12 TC = .393 *[( 224.82 * *3) /( 3.12)] * *.2 = 8.058 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.123 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8236 SUBAREA RUNOFF(CFS) = 1.35 TOTAL AREA(ACRES) _ .32 TOTAL RUNOFF(CFS) = 1.35 * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE ------------------------- >>>>>COMPUTE STREETFLOW ------------------------- ------------------------- UPSTREAM ELEVATION = STREET LENGTH(FEET) _ STREET HALFWIDTH(FEET) k******************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 602.00 TO NODE 604.00 IS CODE = 6 --------------------------------------------------- TRAVELTIME THRU SUBAREA<<<<< --------------------------------------------------- --------------------------------------------------- 62.58 DOWNSTREAM ELEVATION = 46.76 607.76 CURB HEIGHT(INCHES) = 6. 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .320 OUTSIDE STREET CROSSFALL(DECIMAL) _ .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 8.15 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) _ ..57 HALFSTREET FLOODWIDTH(FEET) = 3.03 AVERAGE FLOW VELOCITY(FEET /SEC.) = 7.34 PRODUCT OF DEPTH &VELOCITY = 4.15 STREETFLOW TRAVELTIME(MIN) = 1.38 TC(MIN) = 9.44 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.674 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8176 SUBAREA AREA(ACRES) = 3.55 SUBAREA RUNOFF(CFS) = 13.57 SUMMED AREA(ACRES) = 3.87 TOTAL RUNOFF(CFS) = 14.92 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .75 HALFSTREET FLOODWIDTH(FEET) = 3.59 FLOW VELOCITY(FEET /.SEC.) = 8.74 DEPTH *VELOCITY = 6.52 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 700.00 TO NODE 702.00 IS CODE = 21 ---------------------------------------------------------------------------- »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ---------------------=------------------------------------------------------ ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL'SUBAREA FLOW - LENGTH = 145.84 UPSTREAM ELEVATION = 50.80 DOWNSTREAM ELEVATION= 4.9.22 ELEVATION DIFFERENCE = 1.58 TC = .393 *[( 14.5.84 * *3) /( 1.58)] * *.2 = 7.121 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.503 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8280 SUBAREA RUNOFF(CFS) = 1.00 TOTAL AREA(ACRES) _ .22 TOTAL RUNOFF(CFS) = 1.00 * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE ------------------------- >>>>>COMPUTE STREETFLOW ------------------------- ------------------------- UPSTREAM ELEVATION = STREET LENGTH(FEET) _ STREET HALFWIDTH(FEET) 702.00 TO NODE 704.00 IS CODE = 6 --------------- ------------------------------------ TRAVELTIME THRU SUBAREA<<<<< --------------------------------------------------- --------------------------------------------------- 49.22 DOWNSTREAM ELEVATION = 46.76 361.74 CURB HEIGHT(INCHES) = 6. 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .320 OUTSIDE STREET CROSSFALL(DECIMAL) _ .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 1.98 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .41 HALFSTREET FLOODWIDTH(FEET) = 2.53 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.97 PRODUCT OF DEPTH &VELOCITY = 1.21 STREETFLOW TRAVELTIME(MIN) = 2.03 TC(MIN) = 9.15 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.758 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8188 SUBAREA AREA(ACRES) _ .50 SUBAREA RUNOFF(CFS) = 1.95 SUMMED AREA(ACRES) _ .72 TOTAL RUNOFF(CFS) = 2.95 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .49 HALFSTREET FLOODWIDTH(FEET) = 2.80 FLOW-VELOCITY(FEET /SEC.) = 3.31 DEPTH *VELOCITY = 1.62 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 800.00 TO NODE 802.00 IS CODE = 21 --------------------------------------------------------------------------=- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 184.64 UPSTREAM ELEVATION = 73.70 DOWNSTREAM ELEVATION = 70.57 ELEVATION DIFFERENCE _ .3.13 TC = .393 *[( 184.64 * *3) /( 3.13)] * *.2 = 7.155_ 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.488 SOIL CLASSIFICATION IS "B" SINGLE- .FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT= .8279 SUBAREA.RUNO.FF(CFS) = 1.23 TOTAL AREA(ACRES) _ .27 TOTAL RUNOFF(CFS) = 1.23 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 802.00 TO NODE 804.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA <<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- UPSTREAM ELEVATION = 70.57 DOWNSTREAM ELEVATION = 49.29 STREET LENGTH(FEET) = 926.13 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) = .320 OUTSIDE STREET CROSSFALL(DECIMAL) = .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 18.06 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) = .83 HALFSTREET FLOODWIDTH(FEET) = 3.84 AVERAGE FLOW VELOCITY(FEET /SEC.) = 9.01 PRODUCT OF DEPTH &VELOCITY = 7.44 STREETFLOW TRAVELTIMEMIN) = 1.71 TC(MIN) = 8.87 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.846 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8200 SUBAREA AREA(ACRES) = 8.46 SUBAREA RUNOFF(CFS) = 33.62 SUMMED AREA(ACRES) = 8.73 TOTAL RUNOFF(CFS) = 34.84 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = 1.13 HALFSTREET FLOODWIDTH(FEET) = 4.78 FLOW VELOCITY(FEET /SEC.) = 10.56 DEPTH *VELOCITY = 11.90 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 900.00 TO NODE 902.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 184.64 UPSTREAM ELEVATION = 57.00 DOWNSTREAM ELEVATION = 55.08 ELEVATION DIFFERENCE = 1.92 TC = .393 *[( 184.64 * *3) /( 1.92)] * *.2 = 7.890 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.185 .SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8244 SUBAREA RUNOFF(CFS) = 1.20 TOTAL AREA(ACRES) = .28 TOTAL RUNOFF(CFS) = 1.20 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 902.00 TO NODE 904.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA <<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- UPSTREAM ELEVATION = 55.08 DOWNSTREAM ELEVATION = 49.29 STREET LENGTH(FEET) = 435.42 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .320 OUTSIDE STREET CROSSFALL(DECIMAL) _ .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 3.54 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .45 HALFSTREET FLOODWIDTH(FEET) = 2.67 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.52 PRODUCT OF DEPTH &VELOCITY = 2.04 STREETFLOW TRAVELTIME(MIN) = 1.60 TC(MIN) = 9.49 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.658 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8174 SUBAREA AREA(ACRES) = 1.23 SUBAREA RUNOFF(CFS) = 4.68 SUMMED AREA(ACRES) = 1.51 TOTAL RUNOFF(CFS) = 5.88 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .57 HALFSTREET FLOODWIDTH(FEET) = 3.03 FLOW VELOCITY(FEET /SEC.) = 5.29 DEPTH *VELOCITY = 3.00 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1000.00 TO NODE 1002.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) 'TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 161.31 UPSTREAM ELEVATION = 48.30 DOWNSTREAM ELEVATION = 46.46 ELEVATION DIFFERENCE = 1.84 TC = .393 *[( 161.31 * *3) /( 1.84)] * *.2 = 7.338 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.408 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8270 SUBAREA RUNOFF(CFS) _ .85 TOTAL AREA(ACRES) _ .19 TOTAL RUNOFF(CFS) _ .85 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1002.00 TO NODE 1004.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- UPSTREAM ELEVATION = 46.46 DOWNSTREAM ELEVATION = 40.76 STREET LENGTH(FEET) = 648.87 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET} = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .320 OUTSIDE STREET CROSSFALL(DECIMAL) _ .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 5.50 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) _ .61 HALFSTREET FLOODWIDTH(FEET) = 3.16 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.46 PRODUCT OF DEPTH &VELOCITY = 2.70 STREETFLOW TRAVELTIME(MIN) = 2.43 TC(MIN) = 9.76 100 YEAR RAINFALL IN'?ENSITY(INCH /HOUR) = 4.583 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8163 SUBAREA AREA(ACRES) = 2.47 SUBAREA RUNOFF(CFS) = 9.24 SUMMED AREA(ACRES) = 2.66 TOTAL RUNOFF(CFS) = 10.09 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .81 HALFSTREET FLOODWIDTH(FEET) = 3.78 FLOW VELOCITY(FEET /SEC.) = 5.23 DEPTH *VELOCITY = 4.22 FLOW PROCESS FROM NODE 2000.00 TO NODE 2002.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD - NITIAL SUBAREA ANALYSIS<<<<< ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW - LENGTH = 156.16 UPSTREAM ELEVATION = 48.40 DOWNSTREAM ELEVATION = 46.46 ELEVATION DIFFERENCE = 1.94 TC = .393 *[( 156.16 * *3) /( 1.94)] * *.2 = 7.121 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.503 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8280 SUBAREA..RUNOFF(CFS) _ .82 TOTAL AREA(ACRES) _ .18 TOTAL RUNOFF(CFS) _ .82 FLOW PROCESS FROM NODE 2002.00 TO NODE 1004.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< ----------------------------------------------------------------------- - - - - -- UPSTREAM ELEVATION = 46.46 DOWNSTREAM ELEVATION = 40.76 STREET LENGTH(FEET) = 577.04 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET.CROSSFALL(DECIMAL) _ .320 OUTSIDE STREET CROSSFALL(DECIMAL) _ .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 4.13 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. 'STREET FLOWDEPTH(FEET) _ .53 HALFSTREET FLOODWIDTH(FEET) = 2.91 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.16 PRODUCT OF DEPTH &VELOCITY = 2.19 STREETFLOW TRAVELTIME(MIN) = 2.31 TC(MIN) = 9.43 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.676 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8176 SUBAREA AREA(ACRES) = 1.71 SUBAREA RUNOFF(CFS) = 6.54 SUMMED AREA(ACRES) = 1.89 TOTAL RUNOFF(CFS) = 7.36 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .67 HALFSTREET FLOODWIDTH(FEET) = 3.34 FLOW VELOCITY(FEET /SEC.) = 5.15 DEPTH *VELOCITY = 3.43 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3000.00 TO NODE 3002.00 IS CODE = 21 ----------------------------------------------------------------7----------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *((LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 147.63 UPSTREAM ELEVATION = 48.20 DOWNSTREAM ELEVATION = 45.96 ELEVATION DIFFERENCE = 2.24 TC = .393 *(( 147.63 * *3) /( 2.24)] * *.2 = 6.690 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.706 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8302 SUBAREA RUNOFF(CFS) _ .90 TOTAL AREA(ACRES) _ .19 TOTAL RUNOFF(CFS) = .90 FLOW PROCESS FROM NODE 3002.00 TO NODE 3004.00 IS CODE = 6 -----=---------------------------------------------------------------------- >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA <<<<< ----------------------------------------------------------------------------- UPSTREAM ELEVATION = 45.96 DOWNSTREAM ELEVATION = 41.25 STREET LENGTH(FEET) = 549.41 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .320 OUTSIDE STREET CROSSFALL(DECIMAL) _ .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 3.99 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) _ .53 HALFSTREET FLOODWIDTH(FEET) = 2.91 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.02 PRODUCT OF DEPTH &VELOCITY = 2.12 STREETFLOW TRAVELTIME(MIN) = 2.28 TC(MIN) = 8.97 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.815 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8196 SUBAREA AREA(ACRES) = 1.56 SUBAREA RUNOFF(CFS) = 6.16 SUMMED AREA(ACRES) = 1.75 TOTAL RUNOFF(CFS) = 7.06 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .69 HALFSTREET FLOODWIDTH(FEET) = 3.41 FLOW VELOCITY(FEET /SEC.) = 4.71 DEPTH *VELOCITY = 3.23. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NOCE 4000.00 TO NODE 4002.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW - LENGTH = 162.89 UPSTREAM ELEVATION = 48.00 DOWNSTREAM ELEVATION = 44.87 ELEVATION DIFFERENCE = 3.13 TC = .393 *[( 162.89 * *3) /( 3.13)] * *.2 = 6.637 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.732 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8305 SUBAREA RUNOFF(CFS) _ - 1.19 TOTAL AREA(ACRES) _ .25 TOTAL RUNOFF(CFS) = 1.19 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 4002.00 TO NODE 4004.00 IS CODE = 6 ---------------------------------------------------------------------- - - - - -- >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< UPSTREAM ELEVATION = 44.87 DOWNSTREAM ELEVATION = 41.25 STREET LENGTH(FEET) = 515.38 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) = .320 OUTSIDE STREET CROSSFALL(DECIMAL) = .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 3.97 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) = .55 HALFSTREET FLOODWIDTH(FEET) = 2.97 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.78 PRODUCT OF DEPTH &VELOCITY = 2.07 STREETFLOW TRAVELTIME(MIN) = 2.27 TC(MIN) = 8.91 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.833 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8198 SUBAREA AREA(ACRES) = 1.40 SUBAREA RUNOFF(CFS) = 5.55 SUMMED AREA(ACRES) = 1.65 TOTAL RUNOFF(CFS) = 6.74 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = .71 HALFSTREET FLOODWIDTH(FEET) = 3.47 FLOW VELOCITY(FEET /SEC.) = 4.30 DEPTH *VELOCITY = 3.04 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 5000.00 TO NODE 5002.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<< ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 160.96 UPSTREAM ELEVATION = 48.00 DOWNSTREAM ELEVATION = 46.17 ELEVATION DIFFERENCE = 1.83 TC = .393 *[( 160.96 * *3) /( 1.83)] * *.2 = 7.337 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.409 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8270 SUBAREA RUNOFF(CFS) _ .89 TOTAL AREA(ACRES) _ .20 TOTAL RUNOFF(CFS) _ .89 FLOW'PROCESS FROM-NODE 5002.00 TO NODE 5004.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<<<<< ---------------------------------------------------------------------- - - - - -- UPSTREAM ELEVATION = 46.17 DOWNSTREAM ELEVATION = 40.71 STREET LENGTH(FEET) = 410.48 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .320 OUTSIDE STREET CROSSFALL(DECIMAL) _ .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 3.50 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) _ .45 HALFSTREET FLOODWIDTH(FEET) = 2.67 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.48 PRODUCT OF DEPTH &VELOCITY = 2.02 STREETFLOW TRAVELTIME(MIN) = 1.53 TC(MIN) = 8.87 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.847 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8200 SUBAREA AREA(ACRES) = 1.31 SUBAREA RUNOFF(CFS) = 5.21 SUMMED AREA(ACRES) = 1.51 TOTAL RUNOFF(CFS) = 6.10 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .59 HALFSTREET FLOODWIDTH(FEET) = 3.09 FLOW VELOCITY(FEET /SEC.) = 5.21 DEPTH *VELOCITY = 3.05 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6000.00 TO NODE 6002.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS «« < ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW - LENGTH = 164.24 UPSTREAM ELEVATION = 62.50 DOWNSTREAM ELEVATION = 60.71 ELEVATION DIFFERENCE = 1.79. TC = .393 *[( 164.24 * *3) /( 1.79)] * *.2 = 7.459 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.357 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8264 SUBAREA RUNOFF(CFS) _ .93 TOTAL AREA(ACRES) _ .21 TOTAL RUNOFF(CFS) _ .93 FLOW PROCESS FROM NODE 6002.00 TO NODE 5004.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE'STREETFLOW TRAVELTIME THRU SUBAREA« <<< ---------------------------------------------------------------------------- UPSTREAM ELEVATION = 60.71 DOWNSTREAM ELEVATION = 40.71 STREET LENGTH(FEET) = 1715.69 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .320 OUTSIDE STREET CROSSFALL(DECIMAL) _ .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 10.24 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) _ .75 HALFSTREET FLOODWIDTH(FEET) = 3.59 AVERAGE FLOW VELOCITY(FEET /SEC.) = 6.00 PRODUCT OF DEPTH &VELOCITY = 4.48 STREETFLOW TRAVELTIME(MIN) = 4.76 TC(MIN) = 12.22 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.023 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8070 SUBAREA AREA(ACRES) = 5.64 SUBAREA RUNOFF(CFS) = 18.31 SUMMED AREA(ACRES) = 5.85 TOTAL RUNOFF(CFS) = 19.24 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = 1.01 HALFSTREET FLOODWIDTH(FEET) = 4.41 FLOW VELOCITY(FEET /SEC.) = 7.01 DEPTH *VELOCITY = 7.05 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 7000.00 TO NODE 7002.00 IS CODE = 21 ---------------------=------------------------------------------------------ »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *[(LENGTH * *3) /;ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 159.18 UPSTREAM ELEVATION = 49.00 DOWNSTREAM ELEVATION = 44.48 ELEVATION DIFFERENCE = 4.52 TC = .393 *[( 159.18 * *3) /( 4.52)] * *.2 = 6.082 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 6.030 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8334 SUBAREA RUNOFF(CFS) = 1.01 TOTAL AREA(ACRES) _ .20 TOTAL RUNOFF(CFS) = 1.01 * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE ------------------------- >>>>>COMPUTE STREETFLOW UPSTREAM ELEVATION = STREET LENGTH(FEET) _ STREET HALFWIDTH(FEET) 7002.00 TO NODE 7004.00 IS CODE = 6 --------------------------------------------------- TRAVELTIME THRU­SUBAREA<<<<< 44.48 DOWNSTREAM ELEVATION = 41.05 366.30 CURB HEIGHT(INCHES) = 6. = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) = .320 OUTSIDE STREET CROSSFALL(DECIMAL) = .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 4.95 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) = .57 HALFSTREET FLOODWIDTH(FEET) = 3.03 AVERAGE FLOW VELOCITY(FEET /SEC.) 4.45 PRODUCT OF DEPTH &VELOCITY = 2.52 STREETFLOW TRAVELTIME(MIN) = 1.37 TC(MIN) = 7.45 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.359 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8264 SUBAREA AREA(ACRES) = 1.78 SUBAREA RUNOFF(CFS) = 7.88 SUMMED AREA(ACRES) = 1.98 TOTAL RUNOFF(CFS) = 8.89 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) _ .75 HALFSTREET FLOODWIDTH(FEET) = 3.59 FLOW VELOCITY(FEET /SEC.) = 5.21 DEPTH *VELOCITY = 3.89 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8000.00 TO NODE 8002.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< -----------------------------------=---------------------------------------- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC = K *((LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 156.28 UPSTREAM ELEVATION = 60.50 DOWNSTREAM ELEVATION = 58.64 ELEVATION DIFFERENCE = 1.86 TC = .393 *[( 156.28 * *3) /( 1.86)] * *.2 = 7.184 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.475 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8277 SUBAREA RUNOFF(CFS) = 1.27 TOTAL AREA(ACRES) = .28 TOTAL RUNOFF(CFS) = 1.27 FLOW PROCESS FROM NODE 8002.00 TO NODE 7004.00 IS CODE = 6 ---------------------------------------------------------------------- - - - - -- >> » >COMPUTE STREET.FLOW- TRAVELTIME THRU SUBAREA«« < UPSTREAM ELEVAT -ION = 58.64 DOWNSTREAM ELEVATION = 41.05 STREET LENGTH(FEET) = 1532.40 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.00 INTERIOR STREET CROSSFALL(DECIMAL) _ .320 OUTSIDE STREET CROSSFALL(DECIMAL) _ .160 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 * *TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 16.78 STREETFLOW MODEL RESULTS: NOTE: STREETFLOW EXCEEDS TOP OF CURB. THE FOLLOWING STREETFLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOWDEPTH(FEET) _ .95 HALFSTREET FLOODWIDTH(FEET) = 4.22 AVERAGE FLOW VELOCITY(FEET /SEC.) = 6.74 PRODUCT OF DEPTH &VELOCITY = 6.38 STREETFLOW TRAVELTIME(MIN) = 3.79 TC(MIN) = 10.97 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.283 SOIL CLASSIFICATION IS "B" SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8116 SUBAREA AREA(ACRES) _ 8.79 SUBAREA RUNOFF(CFS) = 30.56 SUMMED AREA(ACRES) = 9.07 TOTAL RUNOFF(CFS) = 31.83 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = 1.25 HALFSTREET FLOODWIDTH(FEET) = 5.16 FLOW VELOCITY(FEET /SEC.) = 8.17 DEPTH *VELOCITY = 10.18 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- END OF STUDY SUMMARY: PEAK FLOW RATE(CFS) = 31.83 Tc(MIN.) = 10.97 TOTAL AREA(ACRES) = 9.07 ---------------------------------------------------------------- ---------------------------------------------------------------- END OF RATIONAL METHOD ANALYSIS N _ .......................... ............:.................. D-RAINAOE.: A:REA.S.:OR ::I=.L.O,W <...STU�DIE-S .. ...................... FLOWS CATCH BASIN CALCULATIONS 10 -YR t. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -98 Advanced Engineering Software (aes) Ver. 7.1 Release Date: 01/01/98 License ID 1419 Analysis prepared by: Dudek &.Associates 75 -150 Sheryl Avenue, Suite C Palm Desert, CA 92211 (760) 341 -6660 ---------------------------------------------------------------------------- TIME /DATE OF STUDY: 23:20 2/ 1/2001 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** CB @ 104 (WEST) * FLOWBY * JOB # 2512 Monticello >>>>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION<<<< ---------------------------------------------------------------------- - - - - -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 17.96 GUTTER FLOWDEPTH(FEET) _ .67 BASIN LOCAL DEPRESSION(FEET) _ .33 FLOWBY BASIN WIDTH(FEET) = 27.20 » »CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 27.2 »CALCULATED ESTIMATED INTERCEPTION(CFS) = 17.9 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * CB @ NODE'204 * SUMP * * .» »SUMP TYPE 'BASIN INPUT INFORMATION <.<<< Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 33.97 BASIN OPENING(FEET) _ .67 DEPTH OF WATER(FEET) _ .83 >>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 15.90 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * CB @ NODE 304 * SUMP * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >>>>SUMP•TYPE BASIN INPUT INFORMATION«« ---------------------------------------------------------------------- - - - - -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 2.46 BASIN OPENING(FEET) _ .67 DEPTH OF WATER(FEET) _ .83 >>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 1.15 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • CB @ NODE 604 • SUMP * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >>>>SUMP TYPE BASIN INPUT INFORMATION«« Curb Inlet _Capacities-are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS). 8.70 BASIN OPENING(FEET) .67 DEPTH'. OF: WATER (FEET), = 83 >>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 4.07 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • CB @ NODE 704 • SUMP * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >>>>SUMP TYPE BASIN INPUT INFORMATION<<<< ---------------------------------------------------------------------- - - - - -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 2.09 BASIN OPENING(FEET) _ .67 DEPTH OF WATER(FEET) _ .83 >>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = .98 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • CB @ NODE 804 • FLOWBY * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >>>>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION «« ---------------------------------------------------------------------- - - - - -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 20.19 GUTTER FLOWDEPTH(FEET) = .67 BASIN LOCAL DEPRESSION(FEET) = .33 FLOWBY BASIN WIDTH(FEET) = 30.60 » »CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 30.6 >>CALCULATED ESTIMATED INTERCEPTION(CFS) = 20.2 DESCRIPTION OF STUDY. * CB @ NODE 904 * FLOWBY * * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >>>>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION <<<< ---------------------------------------------------------------------- - - - - -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 3.44 GUTTER FLOWDEPTH(FEET) _ .67 BASIN LOCAL DEPRESSION(FEET) _ .33 FLOWBY BASIN WIDTH(FEET) = 5.20 >>>>CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 5.2 >>>>CALCULATED ESTIMATED INTERCEPTION(CFS) = 3.4 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • CB @ NODE 1004 • SUMP * * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >>>>SUMP TYPE BASIN INPUT INFORMATION<<<< ---------------------------------------------------------------------- - - - - -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 10.07 BASIN OPENING(FEET) _ .67 DEPTH OF WATER(FEET) _ .83 >>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 4.71 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • CB @ NODE 3004 • SUMP * * >>>>SUMP TYPE BASIN INPUT INFORMATION<<<< Curb Inlet Capacities are approximated based.on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 4.09 BASIN OPENING(FEET) _ .67 DEPTH OF WATER(FEET) _ .83 >>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 1.91 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • CB @ NODE 4004 • SUMP * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >>>>SUMP TYPE BASIN INPUT INFORMATION<<<< ---------------------------------------------------------------------- - - - - -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 3.90 BASIN OPENING(FEET) _ .67 DEPTH OF WATER(FEET) _ .83 >>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 1.83 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • CB @ NODE 5004 • SUMP * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >>>>SUMP TYPE BASIN INPUT INFORMATION«« ------------------------------------------------------------------- - - - - -- -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 14.36 BASIN OPENING(FEET) _ .67 DEPTH OF WATER(FEET) _ .83 >> »CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 6.72 * * * * * * * * * * * * * * * * * * *. * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * CB.@ NODE 7004 * SUMP * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »» SUMP TYPE BASIN INPUT INFORMATION<<<< ---------------------------------------------------------------------- - - - - -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 23.38 BASIN OPENING(FEET) _ .67 DEPTH OF WATER(FEET) _ .83 >>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 10.94 NY -SZ ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -98 Advanced Engineering Software (aes) Ver. 7.1 Release Date: 01/01/98 License ID 1419 Analysis prepared by: Dudek & Associates 75 -150 Sheryl Avenue, Suite C Palm Desert, CA 92211 (760) 341 -6660 -----------------------------------------------------------------=---------- TIME /DATE OF STUDY: 22:21 3/ 4/2001 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • CB @ 104 WEST • FLOWBY • JOB # 2512 Monticello ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >>>>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« ---------------------------------------------------------------------- - - - - -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 22.32 GUTTER FLOWDEPTH(FEET) _ .67 BASIN LOCAL DEPRESSION(FEET) _ .33 FLOWBY BASIN WIDTH(FEET) = 33.00 >>>>CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 33.9 >>CALCULATED ESTIMATED INTERCEPTION(CFS) = 22.1 DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * CB @ NODE 2'04 * SUMP * * »SUMP TYPE BASIN INPUT INFORMATION<<<< --------------- ------------------------------------------------------------- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 42.53 BASIN OPENING(FEET) _ .67 DEPTH OF WATER(FEET) _ .83 » »CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 19.91 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * CB @ 304 * SUMP * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >>>>SUMP TYPE BASIN INPUT INFORMATION «« ---------------------------------------------------------------------- - - - - -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 2.95 BASIN OPENING(FEET) _ .67 DEPTH OF WATER(FEET) _ .83 »»CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 1.38 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • CB @ 604 • SUMP * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >>>>SUMP TYPE BASIN INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public. Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 10:84. BASIN OPENING(FEET) _ .67 DEPTH OF WATER(FEET),= .83 > >>> CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 5.07 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • CB @ NODE 704 • SUMP * * »» SUMP TYPE BASIN INPUT INFORMATION«« ---------------------------------------------------------------------- - - - - -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump-basins. BASIN INFLOW(CFS) = 2.60 BASIN OPENING(FEET) _ .67 DEPTH OF WATER(FEET) _ .83 »»CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 1.22 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • CB @ 804 • FLOWBY * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >>>>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« ---------------------------------------------------------------------- - - - - -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 25.19 GUTTER FLOWDEPTH(FEET) _ .67 BASIN LOCAL DEPRESSION(FEET) _ .33 FLOWBY BASIN WIDTH(FEET) = 38.20 >>>>CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 38.2 >>>>CALCULATED ESTIMATED INTERCEPTION(CFS) = 25.2 DESCRIPTION OF S• TUDY * CB @ NODE 904 * . FLOWBY * * >>>>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« ----------------------------------------------------------------------- - - - - -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots.for flowby basins and sump basins. STREETFLOW(CFS) = 4.28 GUTTER FLOWDEPTH(FEET) _ .67 BASIN LOCAL DEPRESSION(FEET) _ .33 FLOWBY BASIN WIDTH(FEET) = 6.49 » »CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 6.5 >>>>CALCULATED ESTIMATED INTERCEPTION(CFS) = 4.3 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * CB @ NODE 1004 * SUMP * * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >>>>SUMP.TYPE BASIN INPUT INFORMATION<<<< ---------------------------------------------------------------------- - - - - -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 12.61 BASIN OPENING(FEET) _ .67 DEPTH OF WATER(FEET) _ .83 >>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 5.90 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * CB @ NODE 3004 * SUMP ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** »»SUMP.TYPE BASIN INPUT..INFORMATION«« Curb Inlet Capacities ar.e'approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 5.09 BASIN OPENING(FEET) _ .67 DEPTH OF WATER(FEET) = .83 » »CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 2.38 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * CB @ NODE 4004 * SUMP * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >>>>SUMP TYPE BASIN INPUT INFORMATION <<<< ---------------------------------------------------------------------- - - - - -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 4.86 BASIN OPENING(FEET) _ .67 DEPTH OF WATER(FEET) _ .83 >>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 2.27 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • CB @ NODE 5004 • SUMP * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >>>>SUMP TYPE BASIN INPUT INFORMATION«« ----------------------------------------------------------------------- - - - -,- Curb Inlet Capacities are approximated based on the Bureau of Public.Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 18.12 BASIN OPENING(FEET) _ .67 DEPTH OF WATER(FEET) _ .83 >>CALCULATED ESTIMATED'SUMP BASIN WIDTH(FEET) = 8.48 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** CB @ NODE 7004 * SUMP * * » »SUMP TYPE BASIN INPUT INFORMATION<<<< ---------------------------------------------------------------------- - - - - -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 29.41 BASIN OPENING(FEET) _ .67 DEPTH OF WATER(FEET) _ .83 >>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 13.77 CATCH BASIN CALCULATIONS Mille ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -98 Advanced Engineering Software (aes) Ver. 7.1 Release Date: 01/01/98 License ID 1419 Analysis prepared by: Dudek & Associates 75 -150 Sheryl Avenue, Suite C Palm Desert, CA 92211 (760) 341 -6660 ---------------------------------------------------------------------------- TIME /DATE OF STUDY: 22:30 3/ 4/2001 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • CB @ NODE 104 (WEST) • FLOWBY • JOB #,2512 Monticello ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >>>> FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« ---------------------------------------------------------------------- - - - - -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 30.54 GUTTER FLOWDEPTH(FEET) _ .67 BASIN LOCAL DEPRESSION(FEET) _ .33 FLOWBY BASIN WIDTH(FEET) = 46.30 >>>>CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 46.3 » »CALCULATED ESTIMATED INTERCEPTION(CFS) = 30.5 * * * * * * * * * * * * * * * * * * * * * * * ** *DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** *'.CB @ NODE 204 * SUMP * * »»S.UMP.*. T.YPE`';BASIN INPUT. INFORMATION «« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and-sump basins. BASIN INFLOW(CFS) = 58.84 BASIN OPENING(FEET) _ .67 DEPTH OF WATER(FEET) _ .83 >>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 27.54 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • CB @ NODE 304 • SUMP * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » »SUMP TYPE BASIN INPUT INFORMATION <<<< ---------------------------------------------------------------------- - - - - -- Curb•Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 4.32 BASIN OPENING(FEET) _ .67 DEPTH OF WATER(FEET) _ .83 » »CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 2.02 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • CB @ NODE 604 • SUMP * * » »SUMP TYPE BASIN INPUT INFORMATION <<<< ------------------- --------------------------------------------------------- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW.(CFS) 14 92- BASIN OPENING..('FEET) _ .67 DEPTH OF.WATER(FEET) t83 »CALCULATED; ESTIMATED SUMP BASIN WIDTH(FEET) = 6.98 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • CB @ NODE 704 • SUMP * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >>SUMP TYPE BASIN INPUT INFORMATION«« ---------------------------------------------------------------------- - - - - -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 2.95 BASIN OPENING(FEET) _ .67 DEPTH OF WATER(FEET) _ .83 » »CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 1.38 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • CB @ NODE 804 • FLOWBY * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >>>>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« ---------------------------------------------------------------------- - - - - -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 34.84 GUTTER FLOWDEPTH(FEET) = .67 BASIN LOCAL DEPRESSION(FEET) = .33 FLOWBY BASIN WIDTH(FEET) = 52.80 »»CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 52.9 >>CALCULATED ESTIMATED INTERCEPTION(CFS) = 34.8 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION'OF STUD. Y: * CB @ NODE 904 * FLOWBY >>>>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION <<<< ---------------------------------------------------------------------- - - - - -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 5.88 GUTTER FLOWDEPTH(FEET) = .67 BASIN LOCAL DEPRESSION(FEET) = .33 FLOWBY BASIN WIDTH(FEET) = 8.90 » »CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 8.9 >>>>CALCULATED ESTIMATED INTERCEPTION(CFS) = 5.9 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * CB @ NODE 1004 * SUMP * * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » »SUMP'TYPE BASIN INPUT INFORMATION<<<< ---------------------------------------------------------------------- - - - - -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 17.45 BASIN.OPENING(FEET) _ .67 DEPTH OF WATER(FEET) _ .83 » »CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 8.17 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * CB @ NODE 3004 * SUMP * * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » »SUMP TYPE BASIN INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 7.06 BASIN OPENING(FEET) _ .67 e DEPTH OF WATER(FEET) _ .83 >>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 3.30 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * CB @ NODE 4004 * SUMP * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >>>>SUMP TYPE BASIN INPUT INFORMATION<<<< ---------------------------------------------------------------------- - - - - -- Curb. Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 6.74 BASIN OPENING(FEET) _ .67 DEPTH OF WATER(FEET) _ .83 >>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 3.15 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * CB @ NODE 5004 * SUMP * * ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** >>>>SUMP TYPE BASIN INPUT INFORMATION«« ---------------------------------------------- ------------------------ - - - - -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BAS.IN.INFLOW(CFS) = 25.34 BASIN OPENING(FEET) _ .67 DEPTH OF WATER(FEET) _ .83 »»CALCULATED ESTIMATED-SUMP BAS.IN,WIDTH(FEET)' 11.86 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** NODE 7004 * SUMP * * ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** f• x >>>>SUMP TYPE BASIN INPUT INFORMATION«« ---------------------------------------------------------------------------- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 40.72 BASIN OPENING(FEET) _ .67 DEPTH OF WATER(FEET) _ .83 » »CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) 19.06 ANALYSIS OF EMERGENCY OVERFLOW THROUGH JEFFERSON SQUARE, TENTATIVE PARCEL MAP No. 33908 THE EXISTING NORTHERLY RETENTION OF THE MONTICELLO RESIDENTIAL SUBDIVISION, TRACT MAP NO. 24197, HAS EMERGENCY OVERFLOW DESIGNED TO PASS THROUGH THE PERIMETER WALL EASTERLY AND ACROSS JEFFERSON SQUARE, TENTATIVE TRACT 33908 (SEE OVERFLOW PROFILE). THE PERIMETER WALL WAS DESIGNED ON THE ROUGH GRADING PLAN TO OMIT EVERY THIRD (BASE) BLOCK FOR 70 L.F. ALONG THE RETENTION BASIN. THE RESULTING OVERFLOW OPENING SIZE IS CALCULATED BY 70 L.F. x 1/3 x 8" HIGH BLOCK OR 70'x 0.333 X 0.666'= 15.55 SQ. FT. OF OPENING. TO APPLY THIS SERIES OF WALL OPENINGS TO RIVERSIDE COUNTY HYDROLOGY MANUAL TOOLS, THE OPENING AREA IS TRANSLATED TO PIPE SIZE AND RADIUS AS FOLLOWS: : ,rr RZ = 15.55 s: EQUALLING A PIPE DIAMETER IN INCHES OF 53 1/4" FOR THE PURPOSE OF CONSERVATIVE HYDROLOGIC CALCULATION THE 53 1/4" PIPE IS ASSUMED TO FUNCTION AT MINIMUM SLOPE OF 2% USING R.C.F.C. & W.C.D PLATE D -8.1 ( #1), THE EMERGENCY OVERFLOW THROUGH THE WALL PROVIDES FOR A FACTOR OF SAFETY EIGHT TIMES THE CURRENT FRED WARING DRIVE FLOW OF 33 C.F.S. AT THIS POINT EMERGENCY OVERFLOW IS DIRECTED TO OVERSIZED 36" STORM DRAIN PIPE FROM THE ON -SITE SURFACE RETENTION BASIN TO THE ON -SITE UNDERGROUND RETENTION. USING R.C.F.C. & W.C.D. PLATE D -8.1 ( #2), THE EMERGENCY OVERFLOW 36" STORM DRAIN SLOPED AT '10% (MINIMUM) PROVIDES OVER SIX TIMES FACTOR OF SAFETY OVER FRED WARING DRIVE EXPECTED 33 C.F.S. FLOW. STORM DRAINS OF 36" DIAMETER ALSO CONNECT TO CATCH BASINS AT THE PUBLIC STREET LOW POINT AT THE INTERSECTION OF JEFFERSON STREET AND FRED WARING DRIVE.: THE EMERGENCY OVERFLOW INTO PUBLIC STREETS HAS THE SAME SIX TIMES FACTOR OF SAFETY PER PLATE P -8.1 ( #2). REDUNDANT SURFACE OVERFLOW CAPACITY IS ESTIMATED ON R.C.F.C. & W.C.D. PLATE D -7.7 ( 0) HISTORIC FLOW RUNS EAST ALONG FRED WARING DRIVE UNTIL REACHING THE STORM WATER CHANNEL LEVEE AT AN ELEVATION 10 FEET BELOW THE TOP OF CURB LOW POINT (SEE COMPOSITE STREET PLAN PROFILE). EMERGENCY OVERFLOW TO PUBLIC STREETS OCCURS FOUR FEET BELOW ANY ON -SITE PAD ELEVATIONS. ANOTHER MARGIN OF SAFETY FOR THIS SYSTEM'S EMERGENCY OVERFLOW CAPACITY IS THE FACT THAT STORM WATERS COMING EAST ON FRED WARING DRIVE INTO THE CITY PARK RETENSION BASIN VIA MONTICELLO AVENUE WOULD CONTINUE EAST ON FRED WARING AND ONLY PARTIALLY ENTER THIS SYSTEM AT SOME LEVEL OF EXTREME STORM FLOW. ON -SITE HYDROLOGY PROVIDES FOR THIS PROJECT'S 100 -YEAR STORM WATER RETENTION AND EMERGENCY OVERFLOW CAPACITY TO HISTORIC FLOW ROUTES PROTECT ALL PADS ON -SITE. 10/12/2005 W.O. 4308-51 s bw<l V bld ,{ 1.l •� iw'H 2�� -40/ 'M r' o'»- 7/'� i►O ,t �r39���9 ��► fD �� .7)l /v 0 144 57,�,�1N / M 07� vr;lil 0 olce- �7 '4 i►') y /V' 4 voki f %z Jb nV 9 749 w 4NeoovvW?lPN)o7 ��+CPnbg ivo s7�'aJ��� C 0 V 1 a^ IV Of e. �� •� -i5 i''e s 7r'����5 01 ^' ° -z:vl V �?ll Q 0 -7& Q-Fld /11?0 44�? STA. 24+52.00 (N)= STA. 0 +00.00 (W) , , U T T o PARK O Z °° GB 0 48.00 \ Ni • \; -- --------------------------------------- o SURPLUS BASIN VOLUME DURING EMERGENCY OVERFLOW - -------------------------------- - - - - -_ i AXIMUM WATER LINE 47 ff - AREA 76,800 S.F. 0 AREA 48 800 S F: I VOLUME 188,100 C.F. OR 4.318 AC. FT. ROUGHLY 5090 RETENTION AND 5096 DETENTION a�;(G aO�Q I O I 71.95' - 1'S j .••�.•• ..�... 66 17 jb �1.o I Z TC 48.35 �E . �1 _ _ � i I Him 42.00 j 48.25 STA. 21 +37.59 (N)- 47. 5 I 47.93 _ 47.43 32 50.5 al I I .24 j 50. 8 qI �E . �1 _ _ � i I Him 42.00 3:1 IGB It- �, + I GB TC 47.65 2 p - I GB FL 47.15 48. i 46.9 0 0 S I" 0 I cn to c 0 I I I I I I I I I I I 1 STEP TW do TF TW 53.00 I I I I I - - - - -Jl TW 53.00 TF 45.67 FG 46.1 FOR 70 LF. -OMIT EVERY IRD BLOCK OF BASE COURSE TW 53.67 TF 47.00 FG 47.5 3 4 46.0 i 45.5 ICA IN I °o_ to I 45.1 I I� IN j STA. 21 +37.59 (N)- I STA. 0 +00.00 • RETENTION BASIN • GB C/L TP 47.63 \� GB TC 47.65 • N GB FL 4715 • RIM 45.50 o j LP CATCH BASIN HWL 44.50 ( 4 ' FL 47.07 BOTTOM 39.50 I • • LP CATCH BASIN (3) STD. SAND FILTERS • ; TC 47.57 LLL = 65' TOTAL I FL 47.07 3:1 IGB It- �, + I GB TC 47.65 2 p - I GB FL 47.15 48. i 46.9 0 0 S I" 0 I cn to c 0 I I I I I I I I I I I 1 STEP TW do TF TW 53.00 I I I I I - - - - -Jl TW 53.00 TF 45.67 FG 46.1 FOR 70 LF. -OMIT EVERY IRD BLOCK OF BASE COURSE TW 53.67 TF 47.00 FG 47.5 3 4 46.0 i 45.5 ICA IN I °o_ to I 45.1 I I� IN I z 77 TRA z�' 9 Now W~ J.F. Oavidson Associates, Inc. ENGINEERING PLANNING SURVEYING NOW XNAW MMW M~ maw mmw ARCHITECTURE LANDSCAPE ARCHITECTURE err ASHOMMMO.W 73-080 El Paseo, Suite 103, Palm Desert, CA 92260 (619) 346-5691 WO. 3007031-1,3 Hydraulics Analysis April 11, 2002 Monticello Project # 2512 Tract No. 24197 -5 Dudek & Associates 75 -156 Sheryl Avenue, Suite C Palm Desert, California 92260 (760) 341 -6660 This dr ') age study.was prepared under the direction'01. 'U 4= cr -o 2 J.J. S, &eji 10C.E. 24069, Exp. 12 731 -05 Date 03 g; YY s E R 112- 3)1-�i %1i.' f Op c;�uFo Y /.• Otis : - X1,4 Yo /= 2 X, r• vo 2.b, A-- -7t 3.sy P� Vol � // ,� x 3 . �2 lerG Y C� ��. K ._ 2 /duo" rS " l {� � � 4131 /6 $ = 2. 22 Ac -� Ac -Tt 2 . Fr za.)3;70: S5`� �- - 2 S o 2� �o 1 2.Dv PROJECT: — JOB NO. 2 �s k A S .S 0 C 1 A T S BY DATE 1 CHK'D BY DATE SHEET OF I.CaliJ.ra i. C., p. —Ii.a - r PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) (c) Copyright 1982 -98 Advanced Engineering Software (aes) Ver. 7.1 Release Date: 01/01/98 License ID 1419 Analysis prepared by: Dudek & Associates, Inc. 75 -150 Sheryl Avenue, Suite C Palm Desert, CA 92211 (760) 341 -6660 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** r. * PHASE - 5 NORTH MONTICELLO AVENUE FILE NAME: MON- 2- 25.DAT - TIME /DATE OF STUDY: 9: 2 2/25/2002 NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 100.00 FLOWLINE ELEVATION = 39.53 PIPE DIAMETER(INCH) = 24.00 PIPE FLOW(CFS) = 32.88 ASSUMED DOWNSTREAM CONTROL HGL = 42.000 L.A. THOMPSON'S EQUATION IS USED FOR JUNCTION ANALYSIS NODE 100.00 : HGL= < 42.000>;EGL= < 43.701>;FLOWLINE= < 39.530> PRESSURE FLOW PROCESS FROM NODE 100.00 TO NODE 200.00 IS CODE = 1 UPSTREAM NODE 200.00 ELEVATION = 40.41 -------------------------------7-------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 32.88 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 96.38 FEET MANNINGS N = .01000 SF= (Q /K) * *2 = (( 32.88)/( 294.091)) * *2 = .0124997 HE =L *SF = ( 96.38) *( .0124997) = 1.205 NODE 200.00 HGL= < ' 43.205 >;EGL = < 44.906 >; FLOWLINE = < 40.410> PRESSURE FLOW PROCESS -FROM NODE 200.00 TO NODE 300.00 IS CODE = 2 UPSTREAM NODE 300.00 ELEVATION = 40.46 -,--------------------------------------------------------------------------- CALCULP_TE PRESSURE FLOW MANHOLE LOSSES(LACFCD): PIPE FLOW = 32.88 CFS PIPE DIAMETER = 24.00 INCHES PRESSURE FLOW AREA = 3.14.2 SQUARE FEET 11' .�' FLOW VELOCITY = 10.47 FEET PER SECOND VELOCITY HEAD = 1.701 HMN = .05 *(VELOCITY HEAD) _ .05 *( 1.701) _ .085 NODE 300.00 : HGL= .< 43.290 >;EGL = < 44.991 >;FLOWLINE = < 40.460> ' PRESSURE FLOW PROCESS FROM NODE 300.00 TO NODE 400.00 IS CODE = 1 UPSTREAM NODE 400.00 ELEVATION = 42.24 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 32.88 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 204.37 FEET MANNINGS N = .01000 SF= (Q /K) *. *2 = (( 32.88)/( 294.091)) * *2 = .0124997 HF =L *SF = ( 204.37) *( .0124997)•= 2.555 NODE 400.00 : HGL= < 45.844 >;EGL = < 47.545 >;FLOWLINE = < 42.240> PRESSURE FLOW PROCESS FROM NODE 400.00 TO NODE 500.00 IS CODE = 2 -j �I UPSTREAM NODE ---------------------------------------------------------------- 500.00 ELEVATION = 42.44 CALCULATE PRESSURE FLOW MAN -HOLE LOSSES(LACFCD): PIPE FLOW = 32.88 CFS PIPE DIAMETER = 24.00 INCHES PRESSURE FLOW AREA = 3.142 SQUARE FEET FLOW VELOCITY = 10.47 FEET PER SECOND VELOCITY HEAD = 1.701 HMN = .05 *(VELOCITY HEAD) _ .05 *( 1.701) _ .085 �f NODE 500.00 : HGL= < 45.929 >;EGL = < 47.630 >;FLOWLINE = < 42.440> I PRESSURE FLOW PROCESS FROM NODE 500.00 TO NODE 600.00 IS CODE = 1 ` UPSTREAM NODE 600.00 ELEVATION = 46.53 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 30.54 CFS PIPE DIAMETER- = 24.00 INCHES PIPE LENGTH = 460.50 FEET MANNINGS N = .01000 SF= (Q /K) * *2 = (( 30.54)/( 294.091)) * *2 = .0107839 HF =L *SF = ( 460.50) *( .0107839) 4.966 i NODE 600.00 HGL= < 51.129 > -EGL= < 52.596 >;FLOWLINE = < 46.530> PRESSURE FLOW PROCESS FROM NODE 600.00 TO NODE 700.00 IS CODE _ 2 UPSTREAM NODE 700.00 ELEVATION = 46.67 CP?�CULATE PRESSURE -----------------------------=-- FLOW MANHOLE LOSSES(LACFCD): PIPE FLOW = 30.54 CFS PIPE DIAMETER = 24.00 INCHES PRESSURE FLO:? AREA = 3.142 .SQUARE FEET FLOW VELOCITY = 9.72 FEET PER SECOND. VELOCITY HEAD = 1.467 HMN = .05 *(VELOCITY HEAD) _ .05 *( 1.467) _ .073 NODE 700.00 : HGL= < 51.20.2 >;EGL = < 52.670 >;FLOWLINE = < 46.670> i PRESSURE FLOW PROCESS FROM NODE 700.00 TO NODE 800.00 IS CODE = 1 UPSTREAM NODE 800.00 ELEVATION = 50.61 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 30.54 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 154.21 FEET MANNINGS N = .01000 SF= (Q /K) * *2 = (( 30.54)/( 294.091)) * *2 = .0107839 HF =L *SF = ( 154.21) *( .0107839) = 1.663 NODE 800.00 : HGL= < 52.865 >;EGL = < 54.333 >;FLOWLINE = < 50.610> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM r PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) j (c) Copyright 1982 -98 Advanced Engineering Software (aes) Ver. 7.1 Release Date: 01/01/98 License ID 1419 Analysis prepared by: Dudek & Associates, Inc. 75 -150 Sheryl Avenue, Suite C Palm Desert, CA 92211 (7 60) 34 1- 6660 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * PHASE - 5 CITY PARK LINE * * FILE NAME: MON- PARK.DAT TIME /DATE OF STUDY: 13:52 2/25/2002 NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 400.00 FLOWLINE ELEVATION = 42.24 PIPE DIAMETER(INCH) = 24.00 PIPE FLOW(CFS) = 32.88 ASSUMED DOWNSTREAM CONTROL HGL = 45.840 L.A. THOMPSON'S EQUATION IS USED FOR JUNCTION ANALYSIS NODE 400.00 : HGL= < 45.840>;EGL= < 47.541 >;FLOWLINE = < 42.240> PRESSURE FLOW PROCESS FROM NODE 400.00 TO NODE 1500.00 IS CODE = 2 UPSTREAM NODE 1500.00 ELEVATION = 42.34 CALCULATE PRESSURE FLOW MANHOLE.LOSSES(LACFCD): .PIPE FLOW = 32`.88 CFS PIPE DIAMETER 24.00 INCHES PRESSURE FLOW AREA 3.142 SQUARE FEET FLOW VELOCITY = 10.47 FEET PER SECOND VELOCITY HEAD = 1.701 HMN = .05* (VELOCITY HEAD) = .05 *( 1.701) .085 " NODE 1500.00 : HGL'= < : 45.925 >;EGL = < 47:626 >;FLOWLINE = < 42.340> PRESSURE FLOW PROCESS FROM-NODE 1500.00 TO NODE 1600.00 IS CODE = 4 UPSTREAM NODE 1600.00 ELEVATION = 42.34 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW SUDDEN PIPE ENLARGEMENT LOSSES(LACRD): PIPE FLOW = 2.34 CFS DOWNSTREAM PIPE DI_AMETER = 24.00 INCHES UPSTREAM PIPE DIAMETER = 18.00 INCHES UPSTREAM PRESSURE FLOW VELOCITY = 1.32 FEET /SEC. DOWNSTREAM PRESSURE FLOW VELOCITY = .74 FEET /SEC. SUDDEN PIPE -FLOW ENLARGEMENT LOSSES = ((V1 -V2)* *2)/64.4 = (( 1.324- .745)* *2/64.4 .005 NODE 1600.00 : HGL= < 47.604>;EGL= < 47.631 >;FLOWLINE = < 42.340> PRESSURE FLOW PROCESS FROM NODE 1600.00 TO NODE 1700.00 IS CODE = 1 UPSTREAM NODE 1700.00 ELEVATION = 43.67 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 2.34 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 254.92 FEET MANNINGS N = .01000 SF= (Q /K) * *2 = (( 2.34)/( 136.556)) * *2 = .0002936 HF =L *SF = ( 254.92) *( .0002936) = .075 NODE 1700.00 : HGL= < 47.679>;EGL= < 47.706 >;FLOWLINE ='< 43.670> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM I i I I i I I i I I l I II I I I I I I t� I I 1700— I I ' � I I f 1 4 .00 200 300 1500 400 A VE-MU E ,1 1600 — — — 500 600 TsCEy ► —� �— I l CO l l� tic - -l�LT HYDRAULIC NODE POINT KEY MAP SEAL APPROVED Iry THE "arty of [Moto Palm Desert IN THE dTY OF l.A IX11NTA, CALIFORNIA C CF CONSTRIXIM ONSTRUCT= RWTDR BEREDA AaTO A71wrN 1 AND 03 LU COERMI.I'M FORDoe sn cIt7M PRACTICES. mailWJRSE Palm D Sheryl Avenue, BE 7`�E�PRIM. s�METrE RT+ aMO�m rf Offiee: SHEET NO. -' NOEL ow9:EY. DEPUTY aTY ETIaNEER I - Suite C mw 10 MI PLY CONTKOXW MO MOT BE ILRD TO N7CML Vmm Ha NO CMG MX" OOImcm RATHER " AOCM ro IEFDO, THE PERF Mo loto I m THIS PRD . OU L M I MA ML 1FROM T fEJL a M1Em. RCE 39827 E1P. f1 -31 —OS ; &ASS 0 C I A T E •S FOR Palm Desert, ca e22so HYDRAULJCS KEY MAP W �Etivl: rIM > RRraaMMS OF I= a na P1r. D¢[rl.c UIBUrc w+aK R7a nE sac M911aMfE - Tel. 760.341 .6660 TRACT Na 24197 -5 OF D ®I Pa7TE �' 12/JT/= PREPARED UNDER *E SUPERMSiON OF Fax 760.346.61 18 1 SMs FOR. OR LMZ FOR. UwUDGt+l� OWKFS 10 CR USES OF 716E RN6 Ml OIVRS 7o THE RAM - MIST SE N ELI W NO M6T" BE is OF }FDJeC10�E1 %m,li 4PFOO 91 THE PREPA E" OF THESE RMIi DATE BY IMARK APPR. DATE CIYI ' - BEIMC A SLOCIMSION OF A PORTION OF THEE 1/2 of NO 1/4, ENGNEER REVISIONS "COl1NTY DAT- SCALE NTS BENCHMARK OF SECTION 20. L 5 5., R 7 E. A 8. a k Y. DRLA BY.- OAK OES70NED,BY: RAR CHEECKED BY: JJS J.J.. SONEJt RCE 21069 E7P. 12 -31-05 OA,E Septam6er, 2001 SEE �� I FOR CENTURY— CROWELL. COMMUNITIES INC. w.o. 3107 xt. RAU � �a cn o CA C.B. #1 �� M SO STA. 1+00.00 AI + 55.40 TC lq =., O SO STA. 1+02.50/53.64 HGL �SD STA. 1+03.00 O �� 1 54.48 INV CB INLET SD STA. 1+08.79 54.89 EP I SO STA. 1+37.43 J 54.67 CL MONTICELLO AVE = o I SD STA. 1+60.68 � p° z 53.95 EP >w A $ V) p M SD STA. 1+65.07 A m o c it 54.21 TC/53.71 FL 0 PI m n o ru I r �•- N mO A I m n ' D� L +O Z 1-n i In to SD STA. 2 +12.71 AAA 53.64 RW o ` ! SD STA. 2+17.52 > M $ I 53.00 FG 4 rn, SD STA. 2+35.52 m K Z I 52.00 FG SD STA. 2+56.71/51.19 HGL L I m '�l -i •O UI V '0 �? " 3m!3 J J V, OOm 1700 D i'wo No mm0 ?0 �m D < OOO ii N CO Ol O 0 s °z A rZ O z om)n• O0xPr m ZZ 0 0°a cn N 0 0 ot3IR 0 D 8�$ co o z + q =C Q me O O 0 m <. �A Z 4 Z N^ m=1 O n E N F� 0 � y u S t r� o 0 $ e 0 uo QQ: �. z u o P P EI Y cn V] o a � o I H '�l -i •O UI V '0 �? " 3m!3 J J V, OOm 1700 D i'wo No mm0 ?0 �m D < OOO ii N CO Ol O 0 w t 0 O + 0 O O O O O + O O x I D N O 0 x D z 0 0 0 D z x I 0 0 D Z 1 x °z A rZ O z om)n• O0xPr ZZ 0 0°a cn N 0 0 ot3IR 0 D $. co o z + q =C Q me O O 0 4 Z N^ m=1 n E N F� 0 � y u S t o w t 0 O + 0 O O O O O + O O x I D N O 0 x D z 0 0 0 D z x I 0 0 D Z 1 x SO: STA. 7 +39.56 END FLARED SECTION A rZ O z om)n• O0xPr ZZ 0 0°a cn N 0 0 1 o co o z + me O O 0 n � •O v m FILETER AS SHOWN IN DETAIL ON SHEET NO. 9 m m c < r W o P O LO A 51.39 TOP MH SD STA. 2 +72.30 51.00 FG / � SD STA. 3+57.10 C 50.00 FG z ,- -3m STA. 41 00 FG 4. 4 +25 TOP MH I c I D A I I i ;u I � ° i SO STA. 5+23.50 D z 48.00 FG j x 0 r 7 C I Z I I I ISD STA. 6+10.04 47.00 FG SO STA. 6 +35.93 CA MH #3 46.56 TOP MH SD STA. 6 +65.60 n 46.00 FG A !SD STA. 6+81.94 0 r1 45.00 F.G z r v = u A O DZ 0 < •D DX N o" ° o m �7: x r C Z �m 0 x I I o � o C m n II II D W � m O m In b '=J 8 cn co x 0 x D z MER 1-+ w o iv CD 00 O Co Inw MR �+ W o iV O co O OD b i En En 50 — 45 — 40 — I i i i 07'STRVCR'N WKIRICm Am=,TiAT N AMMIDAICE 1RN QDVJUY ALQPIED C06TNY. m PIMC= CMGTRJ70 WrtRACM WILL R= FED M TO ASSIRE SOLE AND OMDE RC" MM FOR JOB SITE CMVITIO S NIi7D THE CQfbE OF OC167R1CIDN OF,DE PTD,= VCUJO C SVDY OF ALL FSWIS AND 1RJPOW . THAT THIS REOATOe1T. SMALL BE :. WOE TO APPLY CWVAU 3Y AM NOT BE LVRD ID Na,AL W=3C IDUG AND D76TRlILT10N,KNTRACTIR Dm1ER . AGREES TD OUDD. 100W AND VOID DESOI WSSIWK Wja1ESS F1DN ANY AID ALL LY13101Y. RBA OR ALL D. . N CONIEC" WOW TIE.MFOIWICE OF WOW.0( M PRUXT-CMUM LMM ARSW FROM THE S1E ND=DiCE OF DEg01 PRwC;gDIw_ JllYdlDKi✓m fJWA25 a tSFS 1 E DCREER - PE3WlD THESE PLANS 111. NOT BE RAE FIR OR LANE FOR "t OMlR1KtDFD , CIW11If55' TO Ot IIgS OF ilEg RA16 ILL OW4iS A TIE PVIIS 1187 N W?= AND MSF I£ APAKTm BY DE FiEP,YER F Tj RANS: DATE BY, MARK FNdNQt _ REVISIONS DRAWN BY: DAK DES1CNED BY:'RAR J 2 m O N f` O Q H O N 1 +00 HI -0 STORM DRAIN 2 +00 3 +00 55 — 50 45 HYDRAULIC GRADE LINE SEAL A°PR�VED BY THE cTrY OF iNDIO" IN THE CITY OF LA OUINTA. CALIFORNIA gjc�7 N0. I . Palm Desert Office: . + 75 -150 Sheryl Avenue, NOEL ows.EY: DEPUTY CITY FxaNE>:T: Sutte C HYDRAUL.IC3 KEY MAP 2 R•C.E'39827 DY. 12 -31 -05 l&. A S S O C I A 'T E S Palm Desert, CA 92260 F� "` _� Tel. 760-341.6660 TRACT N0. 24187 -5 �' T��° PREPAR ED UNDER THE SUPERvTSON OF ` FaX 760:346.611 8 a- 2 �. AoPR. DATE IvL RvjlmaTC{ femu Jlr Conmic PrlAPC4 /2 BETNC A SUWINSIOI OF A'PORiION OF THE E 1/2 NO 1/4, COUNTY DATE SCALE NTS 9ENCNNARK � SECTION ZO; T. 'S i R 7 E S & & k LL CHECKED BY: ,1,5 - J- J. -SDNEd R.C.E. DATE ,September, 20D1 5EE �� 1 24089 Ems. 12 -31 -D5 FoRC£TITURY- CROWE7:l CJMMUNITI(3 INC. W�0" �QJ ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** HYDRArJLIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982 -98 Advanced Engineering Software (aes) Ver: 7.1 Release Date: 01/01/98 License ID 1419 Analysis prepared by: Dudek & Associates 75 -150 Sheryl Avenue, Suite C Palm Desert, CA 92211 (7 60) 341 -6660 ---------------------------------------------------------------------------- TIME /DATE OF STUDY: 14: 4 2/25/2002 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • CB @ NODE 104 • PHASE - 5 * FLOWBY ******************************************* *********** * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** » »FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION «« ---------------------------------------------------------------------- - - - - -- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump .basins. STREETFLOW(CFS) = 22.32 GUTTER FLOWDEPTH(FEET) _ .67 BASIN LOCAL DEPRESSION(FEET) _ .33 FLOWBY BASIN WIDTH(FEET) = 33.86 >>CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 33.9 » »CALCULATED ESTIMATED INTERCEPTION-(CFS) = 22.3 CATCH BASIN SIZING @ NODE 104 PHASE — 5 MONTICELLO Required X- Sectional Area ' (Q25 = 22.32 CFS') = 0.64'x 33.90' = 22.71 SF Combination Inlet Catch Basin No. 1 Riverside County Std, No. 301 Curb Inlet Area = 14.00'x 0.67' = 9.38 SF . Grate Inlet Area = 4.50'x 3.00' i���. = 13.50 SF Total Inlet Area = 22.88 SF j SCORING I o ANCHOR B i r � L_ LINE FOR TIE SPACING � :, `_/J�I �# 4 -BARS lil J QQ I nv B r- 1 r J ANCHOR SCORING LINE —ADDITIONAL ANCHOR BOLT IN SEE STD_ 304 FOR CURB SUPPORT DETAIL STD. 305 FOR FRAME & GRATING Y [SEE W I ANCHOR BOLTS O p iv �I. y EXIST. ST.. v �* _; ANCHOR ' 4. -0., BOLT = T T { 3" RADIUS / T'A 1 NO FRAME 1�3' -0" —; NOTE 5 THE OUTER EDGES OF THE WALLS SHALL CONFORM TO THE STREET OR LOCAL DEPRESSION SURFACE THE GRATING SHALL BE LAID IN THE PLANE OF THIS SURFACE, SEE STD. NO. 312 CASE B FOR GUTTER DEPRESSION. PLAN CD r B� SLOPE TO OUTLET FROM ALL DIRECTIONS SECTION "A -A" CURB w TOP OF ADDITIONAL FACE CURBS ANCHOR BOLT 8" ., `%o 90° N y cr) F6"RADIUS 3 #3 BAR FLOL DETAIL OF DOWEL T LINE NOTES: W 1. DIMENSIONS UNLESS OTHERWISE SPECIFIED Y W T H 2' 3" ' 6 "* 4' 6 "* 3' -0" 6" 5' OR LESS 8" 5 TO 8' SECTION "B -B" 10" V OR GREATER 2. CONCRETE SHALL BE CLASS "A" PORTLAND CEMENT CONCRETE (6 SACK). 3. THE REINFORCING STEEL SHALL BE NUMBER 4 DEFORMED BARS. CLEARANCE SHALL BE 1 1Y2" FROM j - THE BOTTOM OF THE SLAB. 4. THE SURFACE OF ALL EXPOSED CONCRETE SHALL CONFORM TO SLOPE, GRADE.COLOR, FINISH; -AND: SCORING IN THE EXISTING OR PROPOSED CURB AND WALK ADJACENT TO THE BASIN. THE BASIN FLOOR SHALL BE GIVEN A TIGHT WOOD M IGOOD FLOAT FINISH. CURVATURE OF THE °LIP AND SIDEWALLS ATTHE GUTTER OPENING SHALL NOT BE MADE BY PLASTERING. THE OUTLET PIPE SHALL BE TRIMMED TO FINAL SHAPE AND LENGTH BEFORE THE CONCRETE IS POURED. 5. STEPS: 314" PLAIN ROUND.NON- GALVANIZED STEEL STEPS, OR MATERIAL.AS APPROVED'BY DIRECTOR . OF. TRANSPORTATION, SHALL BE INSTALLED 16 INCHES APART WHEN H EXCEEDS 4 FEET-6 INCHES. THE TOP STEP SHALL BE 6 INCHES BELOW THE TOP SURFACE AND SHALL BE 2 1/2 INCHES CLEAR FROM THE WALL ALL OTHER STEPS' SHALL BE 4 INCHES CLEAR OF THE WALL ONLY ONE STEP 12 INCHES FROM THE BOTTOM'SHALL BE INSTALLED IF H IS 4 FEET 6 INCHES OR LESS. ALL STEPS SHALL. .BE ANCHORED NOT LESS THAN 4 INCHES INTO THE WALL OFTTHE BASIN. / C OUNTY OF RIVERSIDE DATE: 12115/9712115/97 DIRECTOR OF TRANSPORTATION COMBINATIONINLET DAVID -E. BARNHART, RCE 19776 °pry �'° �~ CATCH BASIN NO.1 REVISIONS REV. BY: APR'D ' DATE REV. BY: APR'D DATE &-2471 1 4 2 5 STANDARD NO. 301 115c:uargc naXs lcr MMU01 rEUUUULs Figure 3 -1 Discharge Rates for Hancor Sure -Loki and Hi -Q® Pipe Products n O Q 1D 0 D D D a o. ° O Dl Go arpn Rate In r P I p o Flo �,!Ing Fu (6a cad on a DeclOn Man nln0'c n= 0.010) Vt 91u pe ofplpe In feetp er 100Tt( %dope) .-. r Ad r Ta 9 r'O .a a� sro S. rcp 2? QY 2 srd�� J �d J 2 r� T �d dJ � rQ` .n �d rs Ts �� rs' � dJ 16F = 010202m% iws = 030400 m/s Note: Based on a design Manning'S." n'' of Q:010. Sure -Lbk® may not be available in all: diameters shown. Solid lines indicate pipe diameters. Dashed lines indicate approximate flow velocity. rajc 1 or 1 file: //E: \web \dh32_discharg,e_chartl .html 1/24/02 1141P ���i■ O! �� I I N MENNEN ..ICJ` ��������■ =NEI ��1�� ���i�r� ■�����9 ■�S��ISiI SIMEON 0 tw Iii ■■ �! 0�� ■�I�r ■�t�RGr11' I1►0f1 ■ ■_Rl�� '. won MMMION �■�MMINE►�rsi —1001100 M1 ' ! mill 11=1 . !! mill ■!ingiii gl= ®l11111M ®!!1111! 1E, , Vt 91u pe ofplpe In feetp er 100Tt( %dope) .-. r Ad r Ta 9 r'O .a a� sro S. rcp 2? QY 2 srd�� J �d J 2 r� T �d dJ � rQ` .n �d rs Ts �� rs' � dJ 16F = 010202m% iws = 030400 m/s Note: Based on a design Manning'S." n'' of Q:010. Sure -Lbk® may not be available in all: diameters shown. Solid lines indicate pipe diameters. Dashed lines indicate approximate flow velocity. rajc 1 or 1 file: //E: \web \dh32_discharg,e_chartl .html 1/24/02 1)iscAarge Kates for kiancor Products Figure 3 -2 Discharge Rates for Hancor AASHTO and Heavy Duty Pipe Discharge Rafe for Hancor Heavy Dom• and AA SHT O Pip e im 5( 4( 3( 2( 10 w 5 4 3 2 0.5 0.4 0.3 0.2 0.1 I 1 I 1 / . o ra v Cn 0 9 0 o o C o 0 6 lcfs = 0 A2032 m315 lids = 0.304 0 mis N 1 t a A °o °o ^' ry m v° �r,�i °. o o - 0 6 0 0 — ry ri 4 h ■ ■ ■ ■ ■�11� ■ ■ ■■ ■111 ■ ■■■� 60-01 I ��� ■� ■ ■�� ®�� ■ ■ ■ ■,���� ■� ■iii ■ Il��i ■��■l11� ■■ ■lill i 0.1 I 1 I 1 / . o ra v Cn 0 9 0 o o C o 0 6 lcfs = 0 A2032 m315 lids = 0.304 0 mis Slope of pipe in feet per 100ft (Ohslope) Note: Basedon a design Manning's "n" described in Table 3 -1. Pipe may not be available in all diameters shown. Solid lines indicate pipe diameters. I= rage i of L file: //E: \web \dh32_discharge_chart2.html 1/24/02 N 1 t a A °o °o ^' ry m v° �r,�i °. o o - 0 6 0 0 — ry ri 4 h Slope of pipe in feet per 100ft (Ohslope) Note: Basedon a design Manning's "n" described in Table 3 -1. Pipe may not be available in all diameters shown. Solid lines indicate pipe diameters. I= rage i of L file: //E: \web \dh32_discharge_chart2.html 1/24/02 Hl -Q PIPE Specs file: //E: \web\HIQspecs.htm1 Paje 1 of 2 HANCCR Hi -Q® PIPE SPECIFICATION Scope This specification describes 4 30" (100 - 750 mm) Hancor Hi -Q pipe for use in nonpressure drainage applications. Pipe Requirements Hi -Q pipe shall have a smooth interior and annular exterior corrugations. 0 4" - 10" (100 to 250 mm) shall meet AASHTO M252, Type S. 12" - 30" (300 to 750 mm) shall meet AASHTO M294, Type S. Manning's "n" value for use in design shall not be less than 0.010. Joint Performance Pipe shall be joined with coupling bands or snap couplers covering at least two full corrugations. on each end of the pipe. Standard (non- gasketed) connections shall meet the soil-tightness. requirements of the AASHTO Standard Specification for Highway Bridges, Section 26, paragraph 26.4.2.4 (e)..Silt- tight ( gasketed) connections shall be available in F, - ,3Q" (qnn -7! (n mm) diarn.eters and shall incorporate a closed -cell synthetic expanded rubber gasket meeting the requirements of ASTM D1056 Grade 2A2. Gaskets. shall .be installed by the pipe manufacturer. Fittings 1/24/02 HI -Q PIPE Specs rage L of L 4" - 10" (100 -250 mm) fittings shall conform to AASHTO U252, while 12" - 30" (300 - 750 mm) fittings shall conform to AASHTO M294. Fabricated fittings shall be welded on the interior and exterior at all junctions. Material Properties Pipe and fitting material shall be high density polyethylene meeting ASTM D3350 minimum cell classification 3244200 for 4" - 10" (100 -250 mm) diameters or 335420C for 12" - 30" (300 -750 mm) diameters. Installation Installation shall be in accordance with ASTM D2321 with the-exception that minimum cover in trafficked areas shall be one foot (0.3 m). T �' 1 Check with sales representative for availability file: //E: \web\HIQspecs.html 1/24/02 Nominal Diameter, in (mm) Pipe I.D.; in: • 4 • 6 8 10 12 15 18 24 30 (mm) (100). '(150) (200) (250) (300) (375) (450) -(600) '.(750) Pipe O:D., 4.7 6.9 9.4 ' 11.9 14.2 17.7 21.5 2.8:4 36.0 in. (mm) (119) (175) (239) (303) (361) (450) (546) (721) (914) Pitch, in. 0.64' 0.73 1.02 1.67 2.0 2.4. 3.0 . 4.0 4.0 (mm) (16.2) (18.5) (25:9) (43) . {51) (61) (76) (102) . (102) Appro x. V.44 1.V3' 1.0 2 :1 "3.3' 4.7 0.2 1V.7 15.0' Weight,. (6;4) (15.1) (23.3) (30:7) (48.2) (68:6) (90.7 (156.1) (227.7) Corrugation Annular Perforations All I diameters available with or without perforations Check with sales representative for availability file: //E: \web\HIQspecs.html 1/24/02 1 'a AA�in lv t rate 1 oz L RANCOR AASHTO PIPE SPECIFICATION Scope This specification describes 3" - 24" (75 -600 mm) Hancor AASHTO pipe for use in nonpressure drainage applications. Pipe Requirements Hancor AASHTO Pipe shall have annular interior and exterior corrugations. 3" - 10" (75 -250 mm) pipe shall meet AASHTO M252 Type C, and 12" - 24" (300 -600 mm) shall meet AASHTO M294 Type C. Joint Performance Pipe shall be joined with internal or external couplers, or coupling bands covering at least two full corrugations on each end of the pipe. Standard (non - gasketed) connections shall meet the soil - tightness requirements of the AASHTO Standard Specification for Highway Bridges, Section 26, paragraph 26,4.2.4(e). Silt -tight (gasketed) connections shall incorporate a closed -cell synthetic expanded rubber gasket meeting the requirements of ASTM D1056 Grade 2A2. Gaskets shall be installed on the connection by the pipe manufacturer. Fittings Fittings shall conform to AASHTO M252 or AASHTO M294. i j file: //E: \web \aashtospecs.html 1/24/02 xA�iri l u rlrh �r rage z oz Material Properties Pipe and fitting material shall be high density polyethylene meeting ASTM D3350 minimum cell classification 324420C for 3" - 10" (75 -250 mm) diameters or 335420C for 12" - 24" (300 -600 mm). Installation Installation shall be in accordance with ASTM D2321 with the exception that minimum cover in trafficked areas shall be one foot (0.3m). FI7GF6 !F r !!! i I a, D. Nominal iameter,.in. mm) ine ., in. - - (mm) I (75) r (100) r (150) r (206) (250) (300) (375).(450 (600): Pipe ., 3.6 4.6 1 7.0- . in. (mm) (91) (117) (178) (241) (305) (361) (450) (546) :(721) Fitch, in. . (mm) (18.) (18)1(18).' (25) (41) 1 (51) : (61) `(76);' (102) Weight, . lb /ft (N /m) (2.9) (4.4)1(10.2)1(-16.1) (23.3)1(49i6) (61:3) (86:1.) (144:5) orrugation TEEM er orations ameters availkble wit ,or wi out per orations. file: //E: \web \aashtospecs.html 1/24/02 i �. � � � - l 7 � ' �- j �� '� i, .. ,. �� - 1;. I I Ma.TVW_"W* -,-- - � I sw-��dz' , "Im - 1��,' 1­1�1__i­ , 7GR-7 ! . — Irm - � - - ;wr � ­- 40 . _ "I A - I I — --------- I -- _mm -i -4, —,,, i ------ �.,Mafvl - __� —'00 . If W-910fle - -, -_i�w,i� I ,; _1 — 11 , -7rw —1wir 7 IF" ­M�09:,__T, 7-:j5 �14' - I I . 1, orww � 7 ­­�- O i �a - acup _- = w- �,7 _%f $ � � _ � , � Wag � _ ��2 MAI 4i 1 - i. — - I I-It 2ii; � i"l- - i, _U4 _7W,_11 I , ---- "' . , q OV34 . ja;-F- - ­ �--T Z.11 - � , - 1.� - � (11, - - __ , I I --v - : 1 I'­­RIP �-i,i#,, � 'i, NI-i I I 1 I Mr I' , �, � f trl J ­ .. .. 1­1 I - _�_ , ,! - -1 � it I � ' Ar qF W N� ' 1 - - I 4 W,vQVF I 1, ___ � I .VR I , - � ,, __ � - ­1 - I i I I 6 � i - , ­ , � I . ­_­1_ -1 I I 11­1 _�_ T, I' -11 , , I I � f TWO-0 10-9 . 2-00 4 � . 6.211 a ­1 - ___ - � L � . m QV4a,Qa!E 7 -f# _ ,r[tjj::,l,�' _ jVW7jal ': ' � , ,��_ 13"ii-14 1 ­1 io_:rra I I i�­. , 7�17___ i- j I I I I ----.. i I - ­1_v ­7-7�'r 1-_'i� -i __ i ­1 — I to _­.___­f 't,­­ -��,- ,_ ,,, �­ 1 , . L � ' ...... X-M ... f -A - - . _j_­-­--­--�- f I � I . 1 : , , , , 1. � � � I , - , I t I � I I � I � ­ , �. - . , I- k I � i ! , __ L� I- __ i . � i I I , ; ; - � I . t j�� .� �� �� . I I � � 1. , I I " I i; c . o , j !3P I- '' I � � � , ! Jl�iwou-w-_] 4)"'Do auu,41 �, 34 C�n ; � t , I i, � u-, , �U. I : _ � � : � I I . - x , - - , I .� . . . I I I - 'L �, . I � � f I I � ; I , I A, � I , f 1� , 1*:LTA,�mt� kX04% , , "I 4AA1__ � � ! j i i i ­­ ___ ­­­ _­ - -- � � . , 1 � - 1�11 _�_�11_1�p_?L'1'3__ __ __ .4 I ilzl, if, ---I-- .7',�____� ,"-,-----, �Vsl�lial ,�� �!" V_ I _0� _F 5 - I, -L AR I `Vl� _J�_ AA" ; I I "' " ­ I-11-f , -, ,-" 1. ­_­ , "� '�" __­_1­__­1_._­35` _ 5SIAII_W� I 1 4 1 - I— ___ I­ I - - , ` � I W V ��,.q,, �t-3.,-��- I'll I------,- iv E 4 � 1­� -11 _,­­� 11 ­11 �T­T­ I i �,��,,­Tr � � � - �' -t--7- -,-- 4 __.H.��.��'_-_g ,_IL _,_ _,:�'__ - i .. , I , - , "i � ;,I ,� 1'��'A�­,_I­ 1 1 '-f- - __ ,­__., i - __ — ;A-J'- �-r�,�_= I --- - L:, ., _ �:,� - -- 11. I � _f­______,_ - - ­_ -, W�VW��l, F 7 17 � i 2� Is _-, . . 47 T,----­­-­--------L_ , , � ! I i ' �'11_ I ­ . W f T- - I �,�E - -."- 'j'-�.-r'W:W�+--- 7-T--� � - 21�1�F­T­­­_ T I I , I -1 ,- �� ,� - I � I , � & � ,=, � IMMM""111111 1�i UAW I � i 1 � , 1 ! f I � � i . I i : � . I i � I 1 I I ! 1 � � � ! j i i i t i I I I � I 1 � � 1 1 : i � l � � � �i i � t i i ; ! i I I I i I ­1_.11_.­._1­11 I .11 , � 111i� � � I I � 1-1 I *_.WMWWM"""` � 1 i I ; i I I I i i � --wA.O..""...*"i`,""`� _L , - ! - � � I � � I i I i i � 1 5 � � I � I � - I IW411�­W�I . W.14`"iA`...� I � � i 1 4 1 � , ­ � . , __ t, ; i —� - - �— 1 - —i!, - - =,l — - = -_ � I f3, , - -a .1 � ­11- - ____ � ,,- __ � 1 1, ; 1i i I i 7777 i I,- 'i I " I ! i :i � I __ , 1 -,: �, I � � J�, -- - .Ji 1 ,_ I ,_� , , i - !_ 1 t ],`t4,,,,__ � I N­ � . I 1.11 --- I I i0 ----- - � I , I , , I ­­' ­ _­ . ,�it � I - ,� .,-,-- - - t P�',r --ril, ," - ___CY1_ -i _11-'I"', �� - J�� - �: I ,I , ­ J _01 L , i O � I i i " I , � t 1--__ _. -- . -_ -- ­1 - - - I "I '11-T --- I -_ � ,i, ., ., � i �, 'i� , v 1- , , - -, I � - -1 I ; � ", IT-3 , `___ � — _'r_­_—r_7777`77­ ­ , I �' I � -I-----.- ­-T.- - - , , * , ! - , , - I - - --- -�_t .- , e` 1 " I -� I I wi,f) .1 - -tt . �q ­ 1� L� I � � 41 -7-�­--r-r-1---ei,�­11 ­­17= I _� 11� ------ _i�f_ -1 14"',_ .____­1, -,----.,--, I � i I , I 11:4, m i, &u; ill - -.- ­��i�ii - ,,, � _-, �,_ __ �� �;;_i� ,i,qpi-�--g , �, � . ­­ ,, : __ ��'L , 11 �'L­ ­ I ,,1 4 ��'L "L ��'L t'O _ i � I, xl-� I f . ,.:T.__.___ 11- 1 4�� , !�!! : I , It A ­ � ` - - - rf,"� 7',,,---, 1 _n I 11 j- � , 31 _ . I I ­_ - � 1­ i-- -- ­­_ 11 - - �. I : I I I - ,.�,­� I i � I __ ,- , , - � ��O,; ., i , .- - ! � i 4 U, E i ,� - , _f i _ ", _ ­i ­­­ � .. .... 1-_ . - , i ,� , - ', � I _42 I .1- 41.0 V_ , ­rr, - . , . I ,r'��,: I - -11 7, -_ ,i , I I , "I i , -11 , i i - � .. � - - ,� I I , 3 -, --,--- - - i - ii �, I fM i - __ - I�1�� . -----I; I - =n 77, Y - I - - I 'A f J.- -_ ­ ,_,�_ .j _��, _� �� 1 __­I_ - if 4 , n liuglulp-2--f. �_. ­ � I _�" _f.jfffjL­Tjr4 - - if 1 . ____ I , I j!j1ik C11 -1� _ ­1 � �__ .- J;;� -j � � - i, � ], � �,___ � , . ;_ � _ -d ", ��_] 1 , I ­- .1 I �v �j - f - jo-q�-__!, qApq,_ I , ", " � _.'i " I 1� .11, � .-i I � , - �' - � - I ]'\[ -,.,-- [_4__� _.-A -1 - - , - , �, 1" !� i I 7 1 _ - �j ,Z��i 11 .,- I - -" - � - � ­­' , 11 __ , .1-1I �, � i - � 1 5' j j � i � � - -- - - - __! � --- . � , , . � ,, i � 411_ - ,� - � - __ , I � � J, I � I i I I I ­,�' 1 -, 1- - , - -- I - _VF , - - T 111,_ �-4P - - - nE�!__ 1_ - "; , - .1', �� - E ,xU'L - - I "' I � - �, -,--f.,--- - Y R ­­ 121, - I -1 i - r. 07 v 'i ­�7 --j;��'+,Y'�Lt,t�--,�--.;;4�"",-7"�;i - � t - �_afr,' - F 1, - Lk'� - fla L '.� i - _____.=____.:n1'___ � ;­ I --,-,, -�rll� i'' ,,� ,", - � I IRNIR I .11 A -1 �, j, ­ -Ij -I , .­ �� 4 IL -.,,--. -, A��'. 3, � : ! - � - _ -, - �_. ,-,,I ". �� I i i 4 � .3 � :,_ , - _11 - - 14 ;;; -1 - � �� ��w__ I I �i�­ ��.t�,,�,;,. �_4 ; ; I ? i � _� 1- i- - _ �` 1- - 1-, 1_1 I I � I . 1 _­ I 11 - li � i �i't I I ,f [ , _21 __ , _L - - - __ -1 1, / - ut, " � , f,-,!�- 71 �1� I , __ ,n�� -- �V 1 J- i� ... 4 -�, - - - , -� ­�g,� � - , , , , - ��.�'. � - 2 , '� ­­ 1, ��, - ­­I-k __1 !� . 1 '71 �' ­ - d! I . - 1 � � , 1 � -1-1, - __ ------ - I �1� - - " - , , - �- i I ­ - I r � 3 , I I 1 � , , I I I � . - -----,--, i .� - ­ ]t ­-, ___� --- __ � ­1 _� ­ i i 4­_,_4 , Ill I , --- )� , 3 __ " q __ . F �!, , , .7L_�­�­ __ - - � -.r ; � - __ , _., � I—, -1i . � __ I __ _ P11, I, � I I I ­ i � � --,I- � - I i , III -� , wt.br L�� , "' _* , , , "I /-, - � ­`:7 - ,_ - '�,-p , Ij - ­i� ,�.� ", _ '1--n, - �__t] I= ,2'Lo �_q -.-- - - 'I' - , i _41 1:� , 4 - I 'k. , , , � - ,�� iol,,�F�x - u,uj If, �Ij ­_­­v1 , � , I i M, A, !i1___2L___LL_ -_ _,"Ll, t_-_ I , i 'L , __ - -, --, , - I ­ � , � I ­.f F f f FIAVK�tEN� � i I �, ! i � I ­ I , � - - I .j - �_ ; I 11 � I ­,.__!_.__, flII; ­__.__L _� 3 � -. �a,f _;1 - i � . - " 11 i ! 11 -­­ .- �_ � � I'll, i I,V,i I F", r wi� - - ��, 1 i ,39! i . 7 * I I 1 i , r­`,,'­�-­ � 4 I i i 1.3 41 __ - I i .1-1-- . ...... ­ - " t­ � ; - I t L - - � -, 7- ------ - __ - , � �� (c , _� ,:,v V_Q R ,_ , i , � U,L__j4f .5 - 1_._L_____.L_ _ - -� I ;, 'n, L � I i j- IT, r - ; , I_ _-A I L 11" - - J � I - � , - 1.� - � (11, - - __ , I I --v - : 1 I'­­RIP �-i,i#,, � 'i, NI-i I I 1 I Mr I' , �, � f trl J ­ .. .. 1­1 I - _�_ , ,! - -1 � it I � ' Ar qF W N� ' 1 1- I V- , ", � � - - I - - _... --- - � -I- I t ! l I � -1 ... - ---.-I - - ­ -� -- ­-.1--j- 7 , - _�r T __ 1­1 - � __ - I I 7T4 -r- — " __L 11 - , ­­­ -_ ­_ �- ­ - - , - - - , , I- �_ --- I—- � ___A - � , _. 11 --I'- � - -_ - � ` ` . T � 11 . , ", - ­­_ __ ­ � - , m, - ____ -1 I- L_ -_��L-,,-,� ­ , ­ ': I I - - ­1 ... I � I I , � _� 1 J-- -��jp, - i - , � ; ; ! , I t - - 9­11-1 .!_f3�4 , ­1 I 11 I �_l l . , - �j - I � I _j'� i � -11.11 I - � , g"171 't. ­ . i- � j __ � ! 11 f , I ; � . , - � I � ­ , I , � " "r, , - - A 11 . � � r I \ I I I , " - .1 1-1-1-1 I � i 11 I � : -i- i - � - r � ; ,. � I i I I I �,, 11 `� , - � ,, __ � - ­1 - I i I I 6 � i - , ­ , � I . ­_­1_ -1 I I 11­1 _�_ T, I' -11 , � _-'T_J,_-J - , __11- tj -, - . 1 I L- I - I , -1 1 - - , _�� ; -,-q. P�iy!�mp �_-_ :_ a I ,,�'Jr_.�_, _,i__!,_, - I _­ - ; �:­_ I. ____� .... ... --- - - f � - . , ,'� 4 U-7 ,?,,� I �1?f '"r, -' � � I " _PA� _!it . a � i �' - -- , , � .. 11 , � ? � , " I 32 �, I � � � I - � _ � -11 I � 7 � �� . I "", i - ,� i � s 11 I 'A�j i I. . a f", __ __ 1 , - � ��� _ I I I- I I � - I � - . L � � - . -_ .1 - , , j � � I � - �i L��, -Yl- _4 I !4 -11 -4 it � 1;_� - ­- __._ l ��� .11 I'll, - I - - �i --------,,,I-. , - - - , , , __ f I i _. � - ­77-, — i -- ­ ' �`N-T - I � � - � i i MP IPF EX15U114 PAVDfWf�­ 11 1 I ­+ -- � ,-,!--,, � L I " , , . - -, I V11, ­1 .7"o� �,!_ -J) ,, ___ -- L - —) �__ , I 1 I ,-"-r---.-- � J � �� �­'_l ­_( 'L I I_ ­_11-1­1111 11 � ­ ­1­ - -r�-­ � 'A __­1.111 ) �, 1­­- I ... I - ­ I.S� , ­.. . "" , - _L L-If . I I;, j I , u --- , - 1 , ,,,, " p w-� �i WiflfiijiT t­ ­ ­7 , - I . 11 ... . , � �-t F zi,IN � ___,__, I � - t: 1 - � � I - I ,­ , I --- ,_1 "�_f _1�k' 11 ­ - ----,,- � i - , , - - ___ T i / � I , � i �� 1 I � , I I � � � I j 1 [ l-- - I " . � - . -_ -f3(j . , I I � �: , F, I � I ` , � , , _ I -, -1 I ­.- � I - -, I I 1 � ! . '�_ � Tli_ FITi I , - 11 ­ ___ , � i, I � L I I - I ' ' �',, � � A f -4-11 '�,�� 1NO � - � .1 � _­___ � '14: I ­ - ' ' ;_ - , __1_,____ �1`1 � ­- � _____ __,__,_,_,1 I i, , � I , ", I - I - ­�4- __7 ` , - -1- '! ------ - I TT'' 7 I - _._j � J�1411_1 -- I � , ­1 : � ! I � 1 ' f _' ­_ ' ; i ' ' '_ - ­ I ""' -11, .1; I ti iiiilk�� 77 ";� I - ,__ i I - , , -_ . , - _' I -_ - . . i ,; � 1 ; '-pi I I I I ----.. i I - ­1_v ­7-7�'r 1-_'i� -i __ i ­1 — I to _­.___­f 't,­­ -��,- ,_ ,,, �­ 1 , . L � ' ...... X-M ... f -A - - . _j_­-­--­--�- f I � I . 1 : , , , , 1. � � � I , - , I t I � I I � I � ­ , �. - . , I- k I � i ! , __ L� I- __ i . � i I I , ; ; - � I . t j�� .� �� �� . I I � � 1. , I I " I i; c . o , j !3P I- '' I � � � , ! �, I­ 1 � -�, - i 1 1 , I �r I I , ­ �_j�u � ; ; ­,fA - � �� - - - ­_ ,- j,-n 016 � I I " r NtE, - . o / I r ��!! pF 9 � _­_­ -- , - , i 't . -i ... t_,­,�., � ­ ­ il -�__!___ __ I I _W11 ­�11.11_1 KN" -7t: , , , il � U_,Qfj'AVQ Ij I-- � I , _- 1-1 - ��_I. Lim, " i i�,,, i , I i, Ii. ,_ j ,-,- _!_ I r __� 111..__­­ I I ­ ; , � I 17__�_ 1 � ­ ­ I—! , I 1 �,, I . � t­ --I--- . � I -7.1-1-1 . I � � . I � - _1­1 � , .11--11.1 I . 4 - I - � ' �f I 4 t i 1- _', � , 1 � - � ,� " _ , , �.­__ - �,, ,- __ ,,,, , ,__�y I ,-z,:, _., "r-711 , 4 I I I - 7_-, -,r_q;-�� ,_I_j____4jR. - � 1. I . �: 1, ! , 1, I i I � 1-11, ", l ,I - " 3, � Al - �,' � 1 � � - ` I I l 1 ,11 - A I I -, � -3�O -a�, - I � 11­ - ­­ - I I i�_,. 117r..'­ _f;t- I . t, `� - 11-11. I— I e , , I , � . ' L I I -1 ��­ - - ��� , T - ­­ --- � IT! - � , w 't , - - - yp- -�,­ -- -- .". ,­ - -, � _��, i - " - -1 , I �­'. � !- , I I-- -1 -1 �. _� . - - - -1 , '�_ ��:-_ � ,� 1 - 'f_'� ­ ��i_ ; ,.� _" i -, ­ ;---- ­ , -1 ­­ - I �� _- f - � � - - -, -,�" - ­f - ,� - , � i ` " " - I 1 , , " L, . - - - - � - ­ - , - " ,0; _. ,.�7" ­, ,p , 0 __�� �;, " flf� , ;___�,�­ � � - : F ; 'k ,_ l n, , _� --- - � I i , I i 14 ­ � - i � � I , - 41,; � I i i'! , , , � ,-, - i , , , - , - ` i i ; � s I - I _ I � ': _i, __ : L-1 � : 1 , � , , �,__. ; ,-,, Ili :1 .J, I I - VT i � i - - . i � � � I i I � ,�, I . I , -----, , T � i , __ , I! �, I � i -1 - � I—' L' �7� -1 � � � � -_z - --p- .- ,- _;� - , I- � I , �- ".1 ­_P� - WAK._fRQ[_1Q3Ef!A!�, , J, � i I U, I ll , W 1 � � I ,,- _� --- -L, ll I ! I " _ � .- � ­_­1 Ir I � 1, 4 � , I � xorf , _!f,uRR7,.,7-1_-- rt�,,- ,�gE 1 � 1 'P � iCl t I ! I I i � , � � -, I � 1 1 1 , [- I , - - - . , ` - � , i -1. I - � L-L � - I ., - __, ., "I'! --i.-I. ­ ­ -1 , ii --- — ,-- __�11_11_ ---- T-1_1 , I �� - I � - ; . � , I '. � R , t , . 11, I -;I . 11 'i i - - , I ': � , 1- , I H __ j. � ___�;jl .1 J,L � A - I _ , _ I - I . , �'l _ - � i I . I I ! , ! I �� . I i-, 1 , � 1, , - _'T � , 1 . -, I i I 1�11�zl� - �_ 7 � �. �� I , t , � 1,1,�­­ - I I � 1- i ­ -1. _� � � I ­1 � , , � I I ­- I ll 1� I I � j , I � 1-11, '&I �J,� ,Z,-, I,, , i 4 � 1 � a,4,,, S ­ .1- � , t`� I . __ . I � , �, - - I ,� 4­: ---- ��ol t ,'� U �,­, 1, 't ­ ­ � ��, , - _20�E , X � Ple �, -1 il � R , i� , M wggi�� , " �w :�,,� , , , -11-1 - � 'm , '. -M - , ".. ., _� � , ,,, � -� ­ - - - I . -, _� �,�,,,�,� 1 ,VA, 7 .4 . I - � - -1 t 'r - i ­ i W I t , 'I � � " - ,_ ­ �­ � ��, � ; - ,1- - "il - , I - I -� - �,�r - \ � � 1 _r � _1 __ - - i.K �_ - i _! J-114 " -.0 A , 6 - , , kkm_� Z§TifT�5�41 1'4`9�1 , -T, , "' M -,� aw __� , � t - - - imA� -,i�wt ,� ,,' ,f, ,�Fq_ .- j 11. , ­, �t I -, � " , i 1 � p I , ­ , i - d ;__-L - I- Iff � .... !__i____,j, ­ " 1 1 : I� , �11 � �� 1 !� � � z � , ____ � _ ,- _ � , " , I --- - _11- � _1. - , " �,.I � � -114 Im, no 11 �q W, . - - - _,_;_,_; ­1 --n 1­6._'�' _' I I -�-i,-!::�. � - � �t ,_4 _; _t , : ,�, . 11 _� I * I � f ! i I _� I ­�� -1 f I ( .. . .... -f ­f I A - Hl_ ___ - , t - I, . � � r. - 11 11�' I T'11 " I � 1 ;-1 � , , Ili '� 1 ! - I .-,; I i 1 1� 1 , ,- 7- , - ", - - ", , - , i I , Il ,�', 1 - � i , _-_-, 'J,,� '�'& " t' ' - �� - ��. "'�j�j�A�, I -11 ,4�f _ - - - � �_I, i , __J, ,,, I ; _ , � 1 , � � � _ ,, )_ j ; t ­_ ­ - i� . "I I 1 jL' i ---- E � � .., , I'll 1. I i - _ - i ___ � � I � 11 .-- -1 I - - . , ,i _ , __ " , �i -- , �jf� , ! ii� 1 , � - j J_ , ,,i 1­1 ­� " -, "! � I i f _��vii�-�­ ___ ­ , � " __ ? T' t-_-, �­ I " f ; li" I- � - , - --- L _-_ � P A:4 __ ­t,, --j:= --,o __ ;�4L i�,l. 1. "', � L .. 1 61 . I ,!,., � p� f I "__ ;0A fol"1177 " . � �i - ,KN: q, -";u-� ��.,____V,%- - -�r- � _ - I , � '� : ­114-.1- ; , _, �, 1-',, � "' - .zu - - , _g I - * I I , '-=-f - r "I -�­ �_ ,� =P� - . ,;:: _ � '. --: 1 - :.!�T_ - � � , , 121_1� I kl! '.ii4l �'i I , I - - � I - - ­1 �r, ,; � _�L ; i - I I -1- - I -1- I I -, __ X4 __ , � _111-1-1, " *� ___ %�� f� � , I - - .. - I - , , � I I L 1. [ Lj � - L �". _ I� �, . , � W�o 'j; I ,-, , , ,� I ­ ,� ,2 Q­ ­ ��­­: - ! . Ile �, �� r ­��4 "" �11_ �T, Tr­1111-�W! I , � I I � 'i � I i � If ­11 -.11- , ��, � I ­ - ,L_.____L__��,�J, J. . 1­3�,P I ­1- - �1�li ­1 - - . -11 � i "i � � � i � L_r � - ill 1 �zi�,� .. '' - 11. � �A �1� - L �, , I ii. : f � I I � I I I A � " - I 11 ­1 � I - .- I _1 , , � I -I t -- , �,_11�"i - , ____ " � �_ _ " i ,-I �, , '4� - , - �-- , - I I ��-1 t, I i _!'I� -.111 �,�_ I -1, . -. -, Ap 1p. � � I �, ­ - � � � � ­_ ' ' .' - _1� __", �,�� 41-1 . _� "r-If ,��;­�_ - - , il 'r " ­ , i , I ! , -� - : , -jq 1v I , 1 1 � " � �',' ", � __ !_�'i. ; I � �-- , I ": __111 17!_ I j�, ; �,I, � -1 , "r , , � I . 1 1- 1 I . ; � I , : !� �,-� � : I ,iIr� [ � t t i I � , L - - 11� � 111� ­q ­1 ­­ - ­�Ap,45.'eit � . - 1; . ,, , � , , I I L I � I 1 I c I A: 1 :`1 � I 'i � ,,, , - 1 ; i,,,��,, i � - f�-- F_ - + - � I � i � I2 I � i � 1 0- . - � __ - _ ,_q ! _ 1. � -,-- �kl q­ - ,., I i , : , , 1-1-11-11 � 5 * ,_ �,��:, 7 ,� " - 'L: ; I jj� ;'R i� !pt 1, 1, � . ­,-", -- t­ ,.. 4 - v ____ 1--, I � 11_9 1 V I �1" I , . I . � _�� _. , .. I � IlY � I 1 1 ­­-, ­_ ----- ! , � ; �, f - ,�J 3 � � �fl_ : -,,-,, 4 � ­7­ 's____f_­l`_ --- � -I ­1­11_­_�l 1-- �, _­­­1 ­ " 5 I � - �; I I � ­1 . _-, - ­�, ­ . --------- I-,---- � : i ; I I " A_T____; - � I i I � , I I � - f : . 1.� � - I ... i i I I � I � r- - .11 I - � - 1­1 j I : � 1 5 . I i I � I W ­ � . l, , , � t f I I - , i � I , : " ,, A i I I -, - I i ! I I � . ! � � , - I � I . ­v.. I ­-T -1 - ____ IF - - - t I ­11- ­ ­11L j­­ - I i ­ I �__ I i I __ I— . 1, V -1 , , PMFT�l 1 � "I'll � " I "." I j - I � ; , , , , I L .... ,7, -, ,,L_j._,_lU 1­1 - � f �, 4 . A , 1-1 - - - I AN _� ­1 � v r , " _7 ie ��, �­'_ A , ! I i � -1 - .. - - __ l I-.-------- I ' _' ­__ 1 i - It- It I- L-r-777' �!t ( 115CALE -- " i , - , " E� : , ­ �­ � I I __ ,�J� , , I I , � � 1, . -jj_ , �,4_ � � � , � " - .., _ ,, 11. - k" _[ - kP_:________1y ­1 � , I- -, ­_­­ , ", - , - -, ­______,t.7_ , � � , r � ___c�! , _4 'I - --- ---- -, '! v I _ii i F 0 411111055-J) G WTTP� -1 __ - f - , - s---- _ " - - � _ I". � 1 � - � I .� 11 11-1 , , , I -1 _1 __ jf� 1. 1 I- - f I � ­­ 1­- f - �i,_____A - , 1, 1- I - , " , �! � .1 - " 4 j ­�­ -- �- �� - ­ ­-, 1-111 �. ,- . I , + I I ­._j -1- 1 - -- 4-4-i , 1 , i 1, - � - 1� I L I ! I I � . � � ; I . I � I , L , j -� .11" A 7 � ­ '. I - , � � - I i. � I , 1 : ; �� 1! I � I I � ; i . � I , � 1 1 - 11. I 11 I ­­ _f, - - - ­ - __­ � "" � � �', - ': , � , � - - , ; I I - � ! � ii 'If - __ I I I ­ -4 - - - , - _4! I i Mi , ____ � I -It-- �_­ V_ - - If- 1T­___ L I � � � , i : _ _ ��, - ­ f, - I , T U ZGNtAL; It'-40' I_ I .11____.__, - A y I C� L., ,!'-,I' - -,-,-r - , I 1. L"M 1-i". ­1 : ) I t F , I - -, - - 1 1 i � - - � _1 - - ;_ � [_!,�,,_ � --- � ; i � � __ - - I � .1.1-1. �_. --- - - 1� � � I i-i I - �. � ­ I � j ; j t - I- I � �­ -- - 4 , i 1 I I � , .- ; � i -1--7- -­�­­­­­, , I , , I I � : I 1 i � I I i I - - .�, 11 �,­ ­... - -.-.I-,-- - I ­1­1_ .I,,,- --..-.,..., i _� I i i I � I ) ; r I I I 9 I I I - : , = — -11 , � I I i - ---­t . F_____r �_ 1 � t i , , I I i I 1 I I- , ---�_-, ! ! P I I 4 , , __ �__�_ r, 4 I i5f) i 00 ; ; �i I � G -1) I 5P+00 I � i I I I I l__ � 3 5 3 � () 0 I f 54 � 00 i � i ! ,55 t0o I ­ __ � bp4_00 57+041 —1 .�__'�__7 -,.-. _­­,­.__­i, : ­ � - T_", 9 4 1) o i i � !7)q­uo � � i : : ; � I � I I I L I � � : i I � I i i i : A I i Z,.�tI ­­ I i - i /-- , - -. T L(Y-rK-- I "ILE , I ILN I �� I � ," / i j L � j � I" T ..'All j ca vit,'w? ,�,i ic'. i �1 ,, a - -i, - im�_� I � n i - I I I i . z . ! i � .- .. , - - ,F,-; , I _ " , �.% _% , � t t - - � ", fl"� SHECT � sz N11" 1 Mil / � RU�",Titgi iiLAA ,r,�� tu Im W-41L 91.1-fAlf: !T ; - ; � � 1 �__ � I t ; L;j . Iff : r :F � i I i � �__3_T14 ,!Q'�`-­W —11'itT' I I i � i - 1, 1 ;1 t ��, � � " I ill I � A , d , , i I ­ I I � I - ­- ­ I - I I 1-,.,� 11, - N ,­­5. -- - _. - - � _1� , � 1 - I � I I , �, C� ,,�,, 1 I . . r36 � 5- --q 3 AFZA 11 _. I 11, . / , I G;-� � - .I- I ; -, - ,� i _�) v­ � � - - t�: , C n�q � r .! . �, ­­ � '�!' � f­_ , ,:, . I �_ I _ - I - � I , I - 7i* aN; � �3 : VACAN i I I I 65 T 1 1 � ! 1 I : �5 .11 i A " I i . �� � !�,�P - J, jj ,, � ; I _Iai,4� '- , ""i � . , � 4 ,, L. -, .., , -. t�., �,_,, ti, V , rlA,� ; ,� - , - , I5- ? 2 "f, ;�i� J, - tEn ". A i - ;;; � P, !fj � - - / . - , , j - 7 i - - �, I 1� I I , � " I I 00 UU � i I . . � Uj � i i � I i I . I , , I ;. .. -1 , I I i I �� ,,.,� I , �, I �Ip I ,- 10, V i -�,, ,,,-,, � � (11 � � � � ) �� � . - rc_'� W""I"K ,61 I qj,�_, ��,,,I ,,� I �4 - _-M / 1�kl -, , , I I � , i.11_ , I - ,4 ?1�'� I , � ,_ �,I, il`.L�C�1. Nl%�,_ ill - ; ­E:-.i,�, � EA. P"P. � __� ", ___ - __ _ -1 c I .­___ .- _ ____�_._� ; - ­­­ - - - ____Y_ I � , � I I � Fv N I I ­1 __ - _ .C1 - 7 -1 I N a .. I , %% I �,., ---,. i ,�, � ! I t, 1:% , I , ", ,� ­,�,� if lq -, ­ � , I 1, , 4 rL J� r,'�� jA�- \"', , I ,/, 1, � r , � ­ i I- �Y�L , " `�� , , � 1/11/1 ­11 r"A '--�­ ;r7�- C', .1a ­��­-.,-, � _, / i,p X j--, ., C F " `� 19 , I / f, I - "­­­;,�', ­,*­_4'� ----: z_­ ` I,-— i,I r1y) Af. JC-1. ____ . _�_ " . - ­111--.1-1 ­ , 11-11, ­_­ -­ ­­­­­ ­- � �­­ - -- - 1 �L_ 11 ` I e� - 0 7 IN ,�:;�;71,pw� ­ �;­_ 'L I - - __ � __ ,_­ - ,�, ­ �4;F;7:W�,- �- - ,-- "': -­ ­�'�� ;r-- - _�.! �, --- L � , __O__ � " ,_ _�;�, �r ;�.P , - - � t;, x , " tf __,.­:_,_-,, --l-, ­­-"g . _� —, ,:;- -,�?, V I ?� I -I- ,,-�) ___:1_!1 - _T -7—I " � V.- � ­ � F_ -I., �, --,� - � - ,,, b ,_ Q� - 7�- c7, � 4P - * :� '7_-�!T i, � , ,j .,� � ��i7_ _ I ,, - - , 7 , , -Ik - , ;, , I 1, - , _ _ ­4 40 f� ��-- 74 M t __ - ,;2n 7�-- ) k . rr- I t ­ -_,,-� — _IT' - - - --- 7 I , �i I hp Fi�,""Z,�J�t,'�-,,.-�i Mg I ... t­ ­ , �'-i.,- -V�,tv � � ­14" � 'w "'. --- � , �_, , , , ,�f ;,�-- ,�� � , :,;_ � - V� , , , , ,;I , , � ___ �Ai - _. ` 2 ­514�1 - �P;,,.,-Zr-- � ,-- "I"­­ - Z­ , - k -. - �A,_ , , ., z, '� " , �? , � -i -,,,' , , � _, , y "I"Ix-Z 11 ­ , , �74 " 11, - - I I a d il. 4 , � �� , i -�� " , ,, - � � ,� I "�_, , ,�,�,,��, , , " � L - I �, -�,-:­,i-L5 I % j , - J. - I � - - ­ ­ - - , ­j � - -r­ ­ -- \ - __ .- 1��­' ��!e&�-�­�-TF­­­ ­__V� � _11- 0 I � , � I � � _. ­_1 , _�W W 1 el> - -1. �v--.,Lil Tr , _`f � ­ �i I , _P ­­ �41i_; �, - - - I 1.1-1 -, _ - �, �. � . � _�_z � V�� . -11 �,I I , - , � " '­N;", �:`4� 11 1, "'I" 1� I'V1.1 �� �,: A." , I - � , k,N , f�, , �, - , , ". "',��tl:,��n! ­'7\"-r ,-. � �j,#, I � A I.." - - - I I ,-,, 6; ­_ ­ -, N - , - Aqw.41-Ap 'k�', 11 ­1� , , �,�7 :: , _,', , ­i . � ,_ ­1111 \ __11 - ,.7Z44ry , Xll� I _,) ':' � M - , , Z�_,� II N , ­ - -I ,, ,� " - -01 ,3�,Z�N_`� i 4� � , \ I - 'A E ,E , VE � " " : , , "n t4`L1r____" I : �_�,�, I � i5�1;__�11';�_ I � - � V A 1� *4 F �!�_' q I ', I I , , 1� , I" � , I- _ V a I I'MY ,i tk�'x,1'1'1';:717_%9_p � PA I � 11 I - pz, " _� ;-7,�,7`-: I , � �,i`�,,;"��"'j '­� � �- - � t 6,1,� 40 I xl,,�� � I ", , - " . ,!4 Z'�`L , , Hr , , _j, � " 'i' �� -_� k'I � I I L I � 0 � . ,�- ��, I ­ - - - I ,_ C�q 1 - i . ,;i __ C1.) ., .. ­111-1/ ., x ,_ -1 � __ -- , , I" , If- � '. � ��, ` 'L _' I , - ��, i, ­ . �, � I ­1 ,� ,.q , �i __ , �" 11.�, �6 1- . �� , , I � � I �, I I 7, �, , - 1. ;-_, 1, � , ­ - � 1� , ,. , ,� , , , � � , ,�:� - lhg , ,,,�l ,��,, I , , I. � I , " , 1_�� " , , _ . I , � - I , � , . , ­N,n�.', , "1111`1�, . - , - ­�- . I , "I - , w 6, � "'�_ ��, �, ` 7_ _4 . -, I I , - - "I ­11� .11� __ -� ,,,­,,��' 11 - __ ­4,3�, � L ­7p , I � , � ''.1 . 11 11 _�, . ". 011, _., L _.� " , !�� 1 , ., , _ .. ,,,, 'i - I " - , � __ . ��,%, 'I, T 15 "I I "—,IL _,� , ; Il ., "' ��:_7-,,%,-� , � 'A , �,�_� I 1, ��1111111�17'1`1'111'� , , " -, Z, I - -,S,,,�,':-� �, , - 1'��_, . ,.�­',,,� , �, .�Z. - ,�,N ,,,�'­4- � , _7.�, T, � � 4Z:7, ,-,, -_­-'_j-- � " x I i � I I ".,� �,V, i �I!'<-��,� . I , �-,, 's . I - -1 ,Z, "T, (1) . __ I I , � _! f7'_ 1 -It f ! 'F ; f " I r-)�-" . 1� I ­1 ". , . - 1_� � � 1 �� 1 1 11 ­� - - " ��, 1, Z_ Z_ . 1. � � - : j;`;, ;,�,,, � 'i Z_11 , , , " '-�',� �, �1_ I : "I � _: , � I ,� A _�- , - 11�­ I I i�,11_ _ . ,_,� 111'r-1-11 11�'11 - - , I I - i:�,i,;,� 4 , - * � '_. � ,t,z�, 101 � �_ � � I__ " *=7�!,�L,A""L-r_,., , - 1 " _ "L ", , I , " -n , .. 14 11 - t, - :�c 0, � . F 1 ��__1_1­7 'if) �4 i , 4 - , , V, � / , �112 � � I'.---,- I .... ­­11-1-- _', J I -, - A - �� 1-tI.- � ,-! tl __.L --T-. - - , � :.-- � IAL __ _' 1_ 4FIA: )it tT- ____'__L­_ T 11 �� 4" R, I - 4� '� " ­_11 ­ - 1�, 1- . ". � �; .1, . I I . I - �_ i11(_.k141_ - -1 I !�� ,- - - _... ; _._,; _�.,. ,___�T 1� - � �"-,771� 1 '!_'�� '-.71�41­ 4'-� _,_j_,_'._,__ � ____'. ­,,- 7"e" 1 L- � . _. -, �_. ltlll,�.__ - I � , � I ��l I � , � �_3� I., �.kji �, - ­7 -_ .,. �, ,t, , . ��A,,',�� ,-. � � - � , _ - " , "i .. � - � LL' ,,� I - ­46-Y � ; � _ "' Z,_�W,"�j�g_ .. " , l, .'l '. � 4��4_ 2 .- :-�4la4 t r- -, � 7 f It L11111 - � "FT ___ I ­ _.___ - �I,t�_ , - , , _T -,-.. _ _;l�__. _� � t, � -1 , , " i-I , � ­-, I -, -r,�":::­___­,_:_, -_-_-�__�_,�,-,:_-� - - � --- _1" - � L, p , -,�!?", �,(�a::- -V' I ,/ - -, '71 ,-�- -,� q � � ,�, , ->� -A � ..... - � . f!5,y ( _� , ;:� - ,`I,,��­__­ , , __ "---. , v .1 _1 11-1.­ j r" . -�� "', - 11 ­t 1_i� --- -- - u , I T ,� C,-�ON ,_� r Ex" 7 ,� ;�Fp',;,i ,,� 4 _?:�,, - 1-11 �_ , - _,fx ,,_,-_t_,__ - J.,;��, - - ! i ­11- , - , ,--�­ � �L 2.1w --- 710- � - - ; / � _� _', � -, -----------,----,-,-- 1 -1 ...... ­ _f I --- I V .� I �, 1 j I : / I : 9 " �� i , �, � `!�-�4 V11 "X , 0 � �� ! 1 I � � � ­ ,f� - - - � r-4 -- I-A --I-- - _____ I "t z � i_ � - m ----- - ----- �D;:� \ , ,�� -k �� �, , ,3 �'111' � I ­1 I _,4", 4 I -V , 14 . " -,' � - �1. I I -11 I - � , 4- 1 -d" .__,,�� - �i _�,�":: �`�;!� " ", '�' � - 7 �� __- 1Z �� 31 E-1 �1. ,� -I . - -1- �.E ef 11 ­1 I ­ � `� , -�,-, -� � , ,,� 7�-?. i,: ; , .- - -,, f � " z ,� I v, -.1 " � I 1�. v 1." I -1 �11­� I t­ ! �, , t � -, ,I� �`, _ e , ,�; � ­-, -, :"r . .� �.� � ­'j -y i -'P 'U've- ,� O ., . � ,; I Pic , 11, ! � �;!; ,-� ,�. �, A I ,-;-,� I j, ��j� rury . Y it � �,., " � 'A -1 � ` DW, �.�IAGF 9 % , � �;�� - , :,, ,_4 1 ,1 �� _ i � . I _ 111 � i '­� I I I : _! � i :r "I - , I, �,' I, T_ -,- 1 , , 1 "I � I '! -� �7;: " ,� " ,,I ii It -,i� r ; < � , - : / ,� .1, - - I ", ­K� , � I � \ �-,,,,'V, �,g� , , V " 4V �� I 11 , 11 - mi �', ��n','f I, � � , 4 i � -i �� -, "i N ,� '; !%" , z � �_", 11 �� , " i t .1ill IlM A , , 2, � !i ! jm_ ,-� ( " ,� "', , - li, A i ", I I I , I "I", , ,� j ,4 .- �� " , " � I li I. L , 1�; I ,�, j L,!'i,1,11_'_-1e� � I ,,,,, - ' / " - _` ,t\, -1 I t - I � Q � I "i" I � I I ! �_ � � - I � x i I . I ! r . i � I - C TRACI W 28043 �ki , i I I - , I ��;�,;� 1 , -j ;1k, ��;�, i 1 ,-,J ,�W,_ � , � _`I� - - I�V_ Tl�-/' C1. `�'31 - " �,�, " _t k­! I I 11 W, , It I- ", / L RX. M � 1.4 --l"'. pi�'- M 'MF.... _. - � I , , A I I � . If . \ - x � 'I 'IS i f ir,� T . x �� !_ I i : I : � , [-� I - IT 1 1 4 I . I a I I I L i if � M r g i � . ,J,� - K, �. i�, � , � / ME SHU J��,j' t 4 L_lw ` %C1111 &11zC � IS I 1--i-f r J_'m'U - 71i, No,t6 I f ,1�1.11 I ,- � DATE-1 11_'e 1_4 I � i � I _ ,. , I � J � ; � i � ,,, �� i , � L \11! I 4 T I I j__ f I " � 4 I � ! t 2TE: I j ; 11- M I I �,,T � I I ; I L :r1*U_` tuu*;j,EAf,f I I , I I i;y . I ajmo $RiU3Y ; 1 1 �Ll - �`i` 12.0, %a* Cow,AAJ � I � I . i i I I � I � ; \ �- , , , )� 1 FOR GIRW _, , ­ � � I 4 I * I. �'� I - ­ � / �41 _-� 1, "" � �, ", - �` ., � I I � � !-�-- mo IF. ______ i � Rms IYV i , i RIFWA, �'AU -C �� fi, I _�S! (A - : - _ , - W1, ftl%t -3. 11 i , I � � 4��r, - -.1 I - , , � ,�,V, `�"� I "a I , �J, �­ I -1 En, 3 13 1� �,� - ,��-a * � r. �*_ � ORCIIA I D � i ; � . � - 'Z!,�_ I i i I ­1 I � : I I ! F7 . b - i I _-, P � I . . L '1� ji-fl, ' ' — f ; ­ � - U.V,- � , v , t " . I � jWMff-s,*WA%W--,",M1t9WArjV'- CAININ fir � I I .___,So __ 4MOMI" � _�!! , _ UfliAly SIEPV�'3� I i �t�', 1�0 �- V,'A L L I - -�, O' i � , 4 I � I i L I � I i t 5 1 . I I I . �A;Pfd) PAILM Kir SOUD I , i � NORIHCAV OQMMY. OF i � i � xpr'ptj,wli� ,�,-Ft� cm f KIL ( I I . " I - � . - .�, , A ,�, , , .1 ,,� 4 slivEr ID. , ­ (4� 1;�i:�, - .. �� - - . � ; � 1:0� � ,�� ! i ! � � ;, 1 - - - - -- - ___ - _-, - ___ ----. I I ________­_ I � I __ I I 1144.11� I ,_�,�, ,-I- , Vii 2-1 1 u, i � t-,v � i 1 � 124 �$1,11�VIF�4,'d','�'�Iffilri�4i.�'VI) 4 k0j , --I-- ­­71­11-1. k0i Ir- 11-�-.-------L-,-----,,;--117,��1-1 ';� I ,,­iF� ��? ,kr �, �F`v !,- �, ­1 i k __ -.---,. .- _ I i I 1 V4' ­'P, DT �­�, I fiv, I I AS,�YOVMTE PAVICnIva /If-ii I emee,morivo / 1-4m � 1. . I- I I I __________ ______ 1W �W� L U, Ti MFFIT L'i - J11 live;. " - i Sm3r,A;K,sc'I . . : �,."t�,11 _=­­,_1.1 1­11--ky-,li� � . _qnb� ., Y � , � , , , , MI! I 11 c 2 *11A 0 i - �,t 4 i&, F',f--rw­ Celt,��_,�L-4�1t,__! - - ­i1j.,�)r­_ -1-- A� [: ; I . I.. - 49"=*� ­,,i,,,,,, , ul -C , . � I Y OF t NJ) ---"-- � , �4,, �,,I­j �­­­­l - ------ - ­­---­-­- I I i CHY Pima, ___ ----ff---` ­­ - 1­110N, !)r .F ­M,',,-�Tl _Fi_g_,, I � -TitlFE 1 AeI!� -, IL�'.5 Ay��,,U_ , , ___.,_te_�z_�w?,tqw,. �-, - � I �177 A� T`44017,z f4I 1 1 -I SO 'P.Aar .TPRpii'qs, v4u 11011GIM4 . ;1147 azopfroNe NO) 11316-yoff / FLY � , A rE 301. _j 6a � R i ! ;, L7 - , f N�K3_ ly , , �il �,"� , � -1 I - '6Fa­, "": - I i , , ,., �,' �`,` .,/ , ,�, , - , " .- I "t"'M I �� 11._�_ L , ,� _ �",_,;, f I � � "--­7,2` - NIOVEMEN1 "o z lL, U, - I I I , if� ___ I � UTREX ,[A I ­,­.-,-­i.i;;, �. di I *�___ 11 I- - __ � I ___ __ ___ , - , , I __ — - - - - __ 4 I i­� *.14-4i. 1, ,W�_­ "A" I�,�,q i�lv�,,� k wlw�v" �1`tl' - I � I - wm� * = "� 0101��_ � � � ! � I � f I � � ; I I i , I I � i i � e � � � : 4 1 � i I — t t � � I N I i , I \ I I ; � I 1 l i I I I I I 1 � � I ! I I 1 � 1, " - I 11 I � !�1_1_ � I T i, -.Il� I - , � i � I � z I � I : � � � ! I I . I — I TC 35.3 — 11P "' , ­��i�' , A , - , , � -� ��-1 , -, , � � i, [11,'111; i,,�,,�Ji �_',',,", .,,,;' I �,'� ­'� . .. a,- I ROM 1, ) I Am r . I i i � � i � I � I � I ; I i 4 � ; i i i i � I . i I , I i ; I . � I I � j ! I - I � � i 1 ! � . I ; I ! � I I I � � I i I I I ,.r,..I.. I I ,"*r"4",�-"---�..�--"-&��VA-4��� �rw"ko�.W...�--�.��.�.,*��-k""-",�,,�. i i i 1 i __ ����l.-I-1v��.�,����IM-�-1-�,�l..-"—,"� I I . I �,�,�,4'4-�-----,-�-�--,�,,�,!4-��-'r,�,�,,�'-"�-� I I I ! I I . � � I I I I I � : I i � ; i I I ; . I i ")­T`�-_ __ ­­­1 ­1 - 1.1 I I - Ti . __ ­,_ , � � 1, F, � ­ ,� _,­­L­­'4,­___ _., f � "" _ -�,��--.,."r-----.-,�!�-�-�-"�--";�,.",- . I I I . � I I I : I � T �' f 7 111� . ­ I.. � ­ - I " I i i I � � 1 � � � ? ; I i , . I "t 1� , �, ,I -T—, _,_­_`­ _­ ­__,__­__­­___ ­­1__ - I I . L, !- - �---i I It �­ � - _­­ ­j____ � � 1-1.1 .1­1 . L I - I - I " , , � � j i t, I I � - ­ ­ , I I - ; i , I f � � � $ i � ! I , , 11 � � - i � � i , . I � I ! ­ T I I 1 , : i" _ I . I � 1 I ,j , I z I I � I ! ! I �� F � , 1 t , i 1 i � . . ; . I I , � - � - [ � .7 - - I � ; , I , � , . i � , 1 �4 �� � ; , � ! . 11 i ! i ­­t - �_, .1 - t . I � i � � - ; . - -� t I ; I � I � i - � - 11-1. - I, - I . 1- u 1 ,, - I � � . I c I I � , I l � � , , I f � 3 - � I I . i � - I ­­ 1 �o , - - I - I � -, I I � , � - j ; 1:� �. � � � L_ : 11 ­- i E�_N f � � TNE � I I I � . � � , i ; I I . I I � i � _g T � , L I' . - - � � .. . ... 1� ! I ! i - i - � -1 I- . � - 1 4 1 : I I , i ; � I � 1 I � 1 : i � i I � i , 1 - - - I ; I I - � , ,i,,�,, I I � z . ; I I �i - - , '+­ -­ l - ,� r, � � , - I , � I I � i i � � , � I_ , . I . I :1, � - � � I H 7 - ... ;-, �� '%%! - �.. I � - - I - � �,,,, I � , � , �. - ".""Z� -� - - �, , - , '_ � I � � �i � I i , � � I �11'1. i - �_ k , , - , , - - , , -,� : "I � � � - �­ I - ;-, "I , 11- � ��',7 " -- , I � � i I ! I - � � I , I - , _. , 'z '1� �, " _4 �,.,7 -3 I � i � I I . , F, t - ----- ---- , ,­ --- ­,L, V,� "All �, - - � � 1 � , I � - � � � f 'T - : 11x � - �- I I!' , , I# __ 3 i � � - _- - .2-i - A t '111 I I I ­ .. I , - - - � i - '�'��i-i, � . _'�' - � �7,�L I I i I � i , ! ,.;I;,� t � Y� r I ­1 I _� -1 . - I , , -,-,. - � ,�� � __ _ - � ­111.1 - __­__ ", -11, "I 1, I I i _­ , ---,-- � I - -1-­­11'111 : , _ i - - � I I . I I , ­ � - I I I . ;z f ­;1 I --r-,.- ­ ­_­ ­­­­ , ­--j- i � ­1 ;_-, L --------- - � "I _* I I - - -11 11 . I I r I ; w L I , I I 1� ­.- I .- - - �, "I . _____1__­ __I,l�� I I I`— �;­ j � . I ii � _1___1_1____ -1 ­­­ I---- 11 I I ­_­­ ____-, - 41 ---- "-- , , �_____ _'.- I'_ __ � '� --­­--­, � , . ! - __ . � - - - --- �-- -- 111II-i_ 1 -, . I__ , - 1 - oF ,x �, 1, I I , - - _1­1 I-- - . I I � 7" " -4-1 1 w ; I - '�__ - ; i I ; �, � I I � I I � ! i . � I �, _:: .'� � F ,:q�pj;i if jr - . I I � f ji ­,imiv�. A-,t I y - I �, � - � I � r � - I I , � � I i . ! I . . I I I il �� � � ;, I . � �, ,, - � � 11 � A � ! I i , i � - I : - I I I i . I I � ;� I � I I �, � I l , -1, :, � I � l 11 � . � i i � � , , - I r- - .� - -1. ­1 ­­,_ 11 11 ­­, .. 11 4- _1� � 11 -1- ­ I I ! . , : - - - I . ) i �� " 7 - I - , - I ­ _1 � � � I � I . � I . �� � I I I I . : ; I , 7­ 3-4 , - , . � I - ! I i �z.;-�4 m I . � � I I I ; - , � __ 1 4 �?_, i - - - � I , . I I ; : 4i I 1011 , _LL;__­ '-E', � � ­11­ ��� � I I 7 , I I 1 � � I � ; _­ , �- ,,�_,z;" , , � , � __ I __ - � , , , - 1 - ,. ,,-- - _-1."­ - -­-,�. _�_�_,-,;.J_ - - � � - __ _1__ � - �, I ­­, I . P -3,1 ,-. � ,� i j 2� ,mf , , I I =-.1 � � i;j, 1 , , [ , , ;­ - I . � I � I � ii ­ .- ­ ­ ... � '. I ! " - � � ­ ­r , ­1-1. I—— ­­t� ,1. X - I �11" - I - I 1�11 � � I : �� C "I 1- 1 11 , - 1.� '! I - I - I i I i I ­ 11. 't , I � i � I ,u I . - , t I I - - f !�� __ �- �i, I i , � " i i- : -L--. , " ; 1 - -�p� - 7"", �,4 , . � �� I - . I �, - i __ - � I , I'll, I i 7 � , , __ I I I � ­ I �� - � 14 - , � , _; I i � " � 1� � : : - I I , _, - _ , ,4, - J­ ­ - - , . - I- __ 7' , I Z - - , �' ;4 X � i I r . � �. L 1" - , _� - ; 11,`_1.:--­­- . �,��,i . '�!,, , Z - , , 'I'll", , �� L , 11, � I I 5 i 7 , , � - ­ "I qpvr,-�p �"��oiiqqi �; � r : ,- r. . � I � i -f -- , � . - �A i�� " ­ -�Z­ I -!� �, T ! - I � , - I , � �T , 15" � ..��, I 11 L 0 ; i � ; I f , I k,.i� I W � I L' I 11 11 . 1 i, . - . I I I I I ; I � _,�� � � � I !1­ - , I'll. I I I i L i I 1�;�� �­l , � - "-, 1_1�i __­ ll� 4 i i ".. - . 1-1 .Rf.i� - -11, ,_�� i � 1 1 � I � ��ii I � 1� , , m - %.. -4 ­1- ll�­ ­-_ �,_ ­",j i-o I I I : � I T � i� - I j I F , �� I—- 't , it ;j ,, ,j , - --- , � ; I � � - ,�-� , � I I � ; � � I A ­1 _11c_1 , , ­4.i _P ." - --- _!w ,t:��,,�, _`it!_' WEPIL �, i I � � L , --,-.- - ­11- 1­1­11 I-— . ....... _­_­,_­_11 _­ --- ­­­­ ­­­�__1 _I � --- _i I I �, � � T"", i 1 ,--- - -­��!Ii ItH " I : I ­1 �. _� - ____ _L_._ i___ _,�_ --- ----- , _�i___ � I ... - i , I I I I , � lir 1-fi, i'l 4f, _ ____11_.___11 - 1-1- _­- � I I -1 - I � i � i!_ I , I/ i" i , I t; I z � . If I � ---- I - - . I i : � 1 , , , , - , ., i - � � I I I � . t I I I I I � � . I I I 1 , : , � I I i I � , . I � i i� I i � -1 . I I - I : I I 11 � � I , I I I I I i I -1 I I I , �; ; . : � e : 'I I , j - I 1, � ! �, , , � . I I " -- I -1 � I - I I - - I t i - I - I I . � 11 : I � I I i � ­7 ; � i , _ �__4 � � , I . t I . � I I I I I I : � . ­­ ­­_ � � � I � � 1� 1, " ­i- ­­� - ­. �­, � , - - , i� � I �i - i_ I . ,. ,, � 1 � j i i , I �' 1 ! � I I ... � ­ 111� � / I I __ I � � "I , , � I I . , � � I I . I I , : , - i I � ��� - ­7, , ,­ I - I I � I i . � , I i I �__ i I - ;� : , , I I . � ! I I I I I - i I . � I - , -, --v � I I ; - I - :,�, � I � �' - -T�� — ­, --,-- 1--- :--- --­ ­_ - �30 i I i � I I f I � t I I � I I - ­­ __ - L � I ; I i � � � i I il � - I z I ! I 1. I I � _ i L - . I I I I I I .­ I.- � I I I � ;_ t­ 1� I j I -­ ,,,, I I � � ­ ­. . 1. - . 4 - � - ­-, , I - I 1. I I , I . I J I , Ir � �.- _1 I �, . I - . . , , � . � I � 11 : I.- , � ! . � I I I ;� i i � I I - I I I z I I �f I . I � � I i 11 . I � , . ; � � : I � � ii � __ - I I I 1 � � z ! � . I I �� � t i I . I 11 1. I zi I I I I �­ : i - i - i � % i '! " � P d , � - 1 I , � ­ i . - � � 1, � � i i � 2 � 1 - ­ � ­1 , ,".- - ;� � ­ . -� - I - . t . �, I I i : I I ;�,-/ i -, _� . i � ; I I i - I , J_,i 1 i " - i . I i. I � . I . ­ I I I =maw�_- W,i -__� ... i- _� i � , .- I I I - i - , � - �� �­ -1 Q, t I , f 11 1�, �, � , war_A+� I I vm_ J-D : . 11 I �..­ 'i � , i . I � i i I I I . -1 , ,'T�� � I I : i c ` , I KrUM i I i � L, 1!!_�i�z---,,�, �� --- - , I - , - _____ -, . ­ . . � , r 11 4i ; � - I �, I I I.. i y,j t I , - ,4 1 ,�, t . , i _ I �� � � , : � - � I I I .11 'I �! , ; j ! I I � !­� : I ; I I � ] � - __ �_ �­ Z� - 11 . ! - i , I " -.- Z� ­_71 1� 1- � -1 ��4K I ­,i4_ ------- _­&k ______:__ -1 � i I I �__ �. I�l � ,� , __ I _ L , I � 1 ; : - __ _ I - 11 i - � , � � ­ �. ­ _-4- ­­ - � _L-j"___� I ­ ­_!_,,,� I I - r - I -- � . - ___T" _ - - , ___ I I � 11 ___,._______ � � - 11 - . - ,11 - �, � �," � . �, , ; : I 1 i j L I f - - , ­ - - _. --- __= - � I . � ! , I , r-, - � — __ I ' I � f L 2 , . I ; � �ii -1 ! i ­ . � ; 1, - � I , - � 4 , I I � I I ;- . � I � , � - --- _ I �, : , ; __ I , , - �, I I � __� __'­­_�_ I - - ­. I � � , ; I ; I , � � i j � � , I - - ­ - I— ­1 �(. I q I , I I � � . t i I z 11 �, 11 ; -!\� - . � J , � � , �I . � I I I l - -- ,--- � - ­_­______ I I � - , -- - � I I I I � A . i � - I I I � , I - - i, I -,il -­ ­ I - "", � � � ; � 1 i ; I i i �- L 1; � ri ,�,� � I ; r I ,­ --f�i a4 ", " i i I i 4,fi ! �,,,,, ,, li, . � I I � , , � V ww,k,-,'o)-,i�u,t -. �,, 1 , _ : � � 1 , : - I � � , . - l - �4 � � � . " I I ; , I � I , , 4 i i I I I I , , , . � I fiffj�ii (W cfA u I i t­ j ,,,� !, e, I 0 , I 11 I _ � : I I I � L I ' ' I ' ­ ' I , �', _, ,,, I 11 �, -1 I � I - 1. 11 I ; , j �Ii �., . ? I � - ;� � I I 1 1 " � ; I I � I , � � 1. . ; i i I i I I � � � I � 11, , _. � _ . . t , i- � I ! I I I , , , i � I ! I � 1 ; � : , i I I ��­ _­­­ I � _ I I I . I : � I � , , — i I - i � : � I & � I I i I I I 11 ! , I I __ , i_ � _1 - �� i .11 I l ; I ! 1 2 s I � , i - ' . - I J I I 11 - I- , . I I ; I - � 4 -3 � �, � I i 10FTt f- SCA1 E , , ' � I I ,� � I i � i i I � I , j 11 I i ' 11 � I i � I I � I A I � � , , I I I,- - rl , I i - I � : I � � 11 I � � -1 I I I I I ! � , � P. I � I I I �� I � 7 1.1 � I I ,.!,e,�L� 11.1��.�14i) 1 � , I I I ; I - I , , � - � � I i I I � I � � A .." �, I _4 , . , , i I I - I , , - I � � . I I . - I I 1. , . - , � , : ! : � ; i , I � j t � i � I VER ,I , ­__ , . I \ , � � I I , I - L -1 : � � �--"�-,-�,�".-.�--�,�.,A.-.--- � I : . I I I I ­111­11_1 -).-----­­­I-_ - 4 ,-- I x � __ I 61+0 I : � I I r b2iOO ' - 1�bo , -: � :�. 11 �. - � . ! I � __,_,_,_1'I1_­ ___ - 60 �00 ; I z i 6 4 +()a , Fig ioo 1­�,__�.___l �, I i � I - - L i i � ; 11 .- - ; - �� I - . � - I � , I ,; I I I i 7 I i � � , I . I I f . i 11 ; F I j I I I , r 11 ; I I � � L I '�-i; � i I i I I ��i �' - I t , " I I I I L ! � 4 ! I I I Ui � i5 i 4.uo I I i i � 4 1 1 .cf, 1 iz�lo 'N t I I I ! Tr, 291 LP: i � ­,ii I i : ! z : ! � I I I I 'tE ia .-— _�_, —, � i I I : I i i � .� i ! I � ; � � � I k- ; i . :11, I , I i , U`A"�P 11 I ��'� `;�`,ci,_ , __ , L � i I I , I i I ,� , I _Ivo F�l 1�- --�,_A Ql',"A­­,� I - EA. IPA I,7�1 R I �' �1. ol�,;, - ', I I ( l � �,�,� 'f�� I . u __ ii� ... I-\ I �1' "� . I " - I " I � i no ,� -1 i-I l,E UNNT i / ll `� I '�E"!��t H­ ", \ " ­`I�I,Vl�_� �, l I �� 1 2�__ , I '_ �," ,_ I, I - E I �, � 0" I EVE j 1. � -I'.. fz"E, EV-, , , . ; I I I � I I - I ! I I I . - I - , " " .�� �i_ �/ ,, � 11 --- I - I � I ; i � 1- I ,� � , " \�,� , ; I � ! I I , Y - . I , . I � , � I j '­ '­ _' t , ,-­ ", . � .-� lL---- _- i; I 1, : . I ­�!"_ - _:_�� � � - - � 1� � - � , � . - ­:� ­- � , ,," � -11 � I � __11 � - - I ,,E,L I 1. I " � . ­ � I I - � � � i I � - � 1: , " I- I . , I I I I � ��'k - \ I 11.1( I lul' ____ - - - I _- � I : ITARINC, I-) R-Tivip, I, 0 S I �ip�l l­,t T i4 i �,j�-�_L �IU5111_ �J'A,_-j p ,��_, L I . I � I I � I - ­ 1111111­ 1. ­A� , ", ___ "I ­Fl, 1�­­,�­",i, ....... 3i, -_­­_,­,­,­,1 - � ,� - I t � � �-_,-P'R-44' , -, �­ - r­ - ___1 . ­ , 4 -,-,­ ,� ­ �1­ � --- n I � _' '�'Z�il,� 7,:��_ "' I , � . , i _,1zg!:',' " , � T I I -,_, ,,,,'- -'�'-`,-'," ... � ,:,� , -�'-`,`,'�`,I-_,',l!, '� ',,,-,' 1, I I ,� t'­�,,, -�,5�li,�, �, TE,��I� � . �-,'- , � . �.,T,:�, -1 � , 1,1��, , \ ,,-­�',` �-:--�,­:\,�J, -F," -��,­ ,,, a 1��, ,�- ` ,�, , q� i I i"Ak`�i-_, �-��-��!��,�.��l,i�-"-,�'::,-,-.""�,��-,,,��, , 'I", " "", 'r , �,7, ?, , ,i­ l4 v��,,, i � � I �1 :11 1� - � 1, , -, . I __ ___1___­ ,1,_� �-_'-,-'��,�--�'-�j. -, �,"WRI,�-, 7 I '11, -,,, -2, -,� I�'!'��44�,f_Lz I I � I � 7 L_ I � ­_\, � �_ , - ; - , �t I ","; n � I .4tc-'11 ,!­­,J4k, 4 _ , , U, I - __ __ ,�7' - 1� - �, I I i ­ I I I ., i..q_ - ___i 11�y­ _�­�': 7 -1 I` - % I � - V11-1 I __ .1- ,.�i - - � ­ ��7 _� - 4 �! _. -Iii�,-; ,__ I,- _ I ,�,, - * � d ,�, 1 1 1 I., " -.1 i �, �­­ ci,fc. ,9 1 ; 1, ­­ ,�� " -,;N F­ ,;,--- , 1, �,'Iq " �- ;, .1, U.- X " � i` - �� _�, p ; � e " ,, , � I : i o I �, _ . i ,_t,�­­­_­'Al� 1�="_­�_i__Jt - FN'i � I - . � , ,­-_ L �_ _41rl- ,,,, I I - ­.r.­_ ___- �F_� LL 11 - - . , I �-1- -, , ; I � ­1�1___ .T.___ ,��= ­ 1­111__­__­V�4T�_ �� �­ t� . ,­ _-, - ..... ___ 1­1 I— .- __ ___�_­­ - ,, 1�­ ­1 ­­-1. ­ __ I f - . - � i i I � 2 ,� --- � I ­11­ - -1 11' - ­-E- " - " , . " .1 - � I 1 ; ; I � I " - ,� ---I\-,- - -g, _'I�;,,_ ,��J 1L. -1-,-, �, __ -, - _ _, I � � . .( __L_______,,f, , , '-�,­',-- (_1 ,,, -1- �_­ i 11. l% � i I I I ­ . i ? i I , � - . � I - n I f .;�: '_ r % " , �_ G_ i I I .- - _­ ). , � � , z , n tc -, I , t.;, -i'd ! X � P", A ME; . I ,,,, - ,,�, ,�, -, , , , " ­ P1111 410 -, , ­­I-XI, ��/10 I-r � , v, ,_ I ? - . I � b" - . , `��,,,, i,: ;,e� i) �'., - � � l�! ,� 'ui I � 11 , !" ., - _ , I L ��;;; �* 1 - " �� , i I I ! i I I j - � , / " , , - , , ,� ,�'. I I I n , 1 �:i.lcel .; --s.l4 � v� � � I - , � I �i,� I k 111'�'11, I ! I ; � ,_T " ,-- 4 �, � .1 * � � L.'l. , ,;aT .,; , I w!tz , ­'��_v_ P44 "d � - , �, � I I - I I , : �, I I 1, 11 � i � � � � , I iPL'E',�_.' ,"- ,1 i �� I I I , , li 4kJ t11 I � O 1�lE 1AM, "I'l VE�,�� ,�" , , �; 'i' LI " J": � I I I ,� � I � . �� I I J��r�, . , , i � I I I �� � , , � "I � I � ,� :, I � - �. � � I � 11 , ! , , � I t ,k,,� ,�!­ �,,, � � I l i � , I i �, FIX I �.; T I t'qc' ,,�-� I, " -, > I't %;O * ­1 - j I , : , I I � i � : I I 1: � I 1--_-­-­­ � I ,, ­ �f �-. 61 - � ; -1 I i I GITY&4AQUINTA I l I _` I - ,� � . I I A�t I , _� i i I E ",', A LM �`�'j - , S. .1 - � I . I 3 I , I 'IF" ­_ � 1 3 � plaii �­­ I - - 11! �, I / � , . R " �_­ � � 1 . � I , t : I I � �i f,- o � %, ; i � i --� -��M!11, f L 1,�, I � I i I (A 1AM) �'�RU �,� ,"j�� �, - : 131 1 ", � �. ;Off-'�­,�, ,.e- - 'l, " _- _ I I U I ? ,,�' ., ­ - 'r ! i --- -"--,--! I - -, 4 - I I � 7, " , - --- -, ; �� noli:i`M,1�4�1, ,e""qliM'1�4 _,l!"'. I I , t W, I 1! -, " ,� , I I - I '_ _­ __ ,��,-----------������������ ............ i',�_�_L!'! �.'__f � " �, i 1 3 1 1 t �T_ F ,'I ,,,,,,I I. 4 Y,':�`,_� 1 -­ I i ) � ,;, _,A, - � I - I------,--- 2 ! ,� �,��r� t 4 I -1 ­­,_1____­ 1"... ­-lbz.L= � " 'j� , t,A ,�g'xqr,Z I i I ! �4�4,F, �- i I � �', - _ I - I, I I `, ! f ...... I A , -j,�­­­-­11 � //417 4 1 ; I", p � - � ��` e � � 'v ::- - I ,I , � I �,` A1,4 A��4Wx -'l.,­ ­­­ ---- ­­­1 ­�� I �j "i A, � I I M �, -i I:�� I " _�­�-____ ­_ _­_­�,.___­, 1 ;­ -0, 1� - ,, �pl!4 e4o' I , I1'16j�,,& J!, � I I , - I'd V� N 11 � " F,�, ,j � " I - � � I 1 I P (7 " ,,, " I I III 1 ,�,,-, , I i - �s J__�'jj � � : i r - � ! I I M, . I � I I "'" I I I I I 11 � . 1, �_ o,� ­, , 12:� : �'j, �Ia5, I ',­ , �_­`, , �, . , �. 1 )1114� , � 4iI � ` I ­ I'll, 11 - " ', ------- I'M%_jT- 1­1 I - � � ,4# . I % , I i I � , 11-i ! � C", q %, ,fW - , � I L i It �i�� ��". " _ Q�� I I I A, I i I i : I - ., �_ V � — L - - I � ; � -i I � I � � I . T I I � I - I I .I I I I I- � I f ,_ I . � "i'm f __ I I � I-1 i I i i � � i 1� A� - 1'�4Q' 1 1 .i*­.* .w4".00.ow,� ..... ... r�., - � I �C I - � � i I . I p .�.,o� , - I � I , - -,4!-,f--,F- _.., I , I , A -nf [A , � `� "I �, 4.1 �1�� ri I., 11-1.7­ 1�1( �11� Ii �_.�-,Aa�­I_ft - ---a,% , � , � 11 HAINTA,'R -,Af, ­1 i1w) 1,=q,, ;�r�,�E�.. - _­ ; -I. -���K�,�%.�—,,—,,�'..'��.qk-,��.��� - . I Amlpxc� , ­ , " � , I I -, i c IL' 1­11, ul- DICID'i 04(1-IFURN A I -:- �, -4 I OUIL � , , � , P14"094"'W", / Qvt,t P,' , / 1"'k o swir7yao I 1.1-11 4, , , ,� 1, , I - , I _ � � -f! , I .�!Fl tol ,,c,,,,j,. - I ­�,":,��!� -_i�",�_ ".. 0- ­,­ !�i � ,� �-,-.-�IT-1�--.,�,-�-����-,-------" '- ­­�'­-­�-­' ­­­. 1, wm ­­­ - - ­__ ." 1113, ;., ­__ ____ I � '_ ----- - � �__ fili��r� I -f emLLLL ` I r � , , 1 "" O's 7 SnOr �� ! I'/, � �, ,� f . --",----- - , - _� ... 1". _ 1_. , 1 01 53T � ict � ,,'�,i5 - Ob i � � � , I r - I.,. QVMX;i�A,Vftl,� w4y, !; iFi _34 ­1 __ a - 4 ;�., 1'�_l r,"�, : 11 I I ; I , 1:i�Alvi`olv w4y - I I , I-,O!-- _a� - " i ----------- � - � " (PHOVEMEN I' L 1 .13 - IV �L .. " , " � 6 - `I4111'e'. i ,kf � - -- II'ED � , I . I . 11,11 � - _� - V: M,4� r', WA � p � o"Aft, , - � ,S,. ly�,,,�;, 1�vg;vy!,,4� u --,o,qq i !!!/�,�Y-,q��; ,,ian,l - `�_ ,�[,F,e I)f j­kci orhvv A I , _ " , Cq �) ,-i,j r ZZ11 3�?Zt -IM19J, L I T , - . W­ _" ..� ��., P,V. - I _ , � w._,__t�­w�.. - �5­4,A�___ - �, - 4x- -i ,��, �i,, A �!I-:")�, " 1,,x�u4 � - I I,�l,�_ ,,,, ,,,;-,,! ju �-� zzj, , ,�'� �, �F, l�3A, ­ I . 1.1, � Ili- ,"r 1�,-� L .. L � I'll 1� I I 1bw .­_��, 3-t71"-,w_.­4"i­�_1__".` I 1� L � l; �, �_ � ,� �' - . lwcn,�+__ , " i I , I � I i � � ,:­ -­nT---rr---­Ip- , , ,�� , . I � I I I � i ! , I I ! I � I � � � i . : �- i � 1:� 11 i I � � - � I � I ; ! � i I � I I I - - i I . I 1 1 . ; � � tF , .9 I ��". _']�_11 - _� , i:vl ­,­� " m;6-41 q� t