Loading...
25237T 11111111 IIII�IIIII 'Zs z Si V SVPP1"KM�IJT TQ TH@ ' I ROLOQY 8TWX F OR CITY OF LA QUINTA RN 8007031 -6 (ofo" 9ToRrn bRAIA A'T GOLF GhRT ' PATH $ItZPARED ZOR: LA QUINTA JOINT VENTURE 77350 AVENIDA FERNANDO P.O. BOX 780 Q%0FEs�Ib 1;A QUINTA, CA 92253 O@ t, SGETT�y (619) 564 -I3I5 No. 25178 • - Dec.-31,1693 cIV11 PREPARED AY: ' J, F. DAVIDSON ASSOCIATES, YNC. • a K m m 0 1699-9ti£ (619) 99ZZ6 VIN2[O -41WD. `-UM30 MVJ LI8ZI XO8 'O'd 3AlaU p ' 3vni.7y.7nr 3rrsSaw� �e�4a7uN7isv '.1'v�3�b�K 7�u•:ry j'aya7B�N3 _ .,._ -out °se�efaof3s� vo9p!neC3 •�'(` _ ja /o e � 4 � � f� 3 ob 3 � � v► T a _a N r j � d � V cQ G � >s Z cS� d 7� o Y K m m 0 1699-9ti£ (619) 99ZZ6 VIN2[O -41WD. `-UM30 MVJ LI8ZI XO8 'O'd 3AlaU p ' 3vni.7y.7nr 3rrsSaw� �e�4a7uN7isv '.1'v�3�b�K 7�u•:ry j'aya7B�N3 _ .,._ -out °se�efaof3s� vo9p!neC3 •�'(` _ /o e 1 V >s Z CA d o Y N V A o U d i1 9 li 2 .9 ri 2 V j 4- a - v o Q 0 O � V 9fl .fti 0 f 4 9 LL K m m 0 1699-9ti£ (619) 99ZZ6 VIN2[O -41WD. `-UM30 MVJ LI8ZI XO8 'O'd 3AlaU p ' 3vni.7y.7nr 3rrsSaw� �e�4a7uN7isv '.1'v�3�b�K 7�u•:ry j'aya7B�N3 _ .,._ -out °se�efaof3s� vo9p!neC3 •�'(` _ f P-j MIRS OF IRRHQIAAR SECTION 21.78 21 -47. Broad- Croeted Welt This Is a wait with it horizontal or nearly horizontal crest.'Tho crest must bo suMcicnlly long in the dircctlon of now that Ilia nappe Is supported and hydrostatic pressure dcvcloljcd on the crest for at Icast a short distance. A broad - crested wait ls.noarly rectangular In cross section. Unless otherwise noted, it will be assumed to have vertical faces, a plane horizontal crest, and f ' sharp right-angled edges. ' Flgure 21.70 shows a broad- crestod wait that, bccAuse of Its sharp upstroam edge, has con• traction- of the nappe. This causes a zone of reduced pressure at the leading edge, When the head M on'a broad- crestad wait reaches one to two . times Its breadth b, the Hoppe springs free, and the 7pNE OF REDUCED PRESSURE wait acts as a sharp4rested wait; n Discharge over a broad•crosted weir is given by N _ war R suRiatE 1'q. (2t•1 t5) since the voloclty of approach was ignored in experiments performed to determine the coclilclont of dischargo. These cocmcicnts probably �1 a apply more accurately, therefore, where the voloc• Ity of approach Is not high. Values or the dlaehargo Fig, 21.70. lfroad•eratod weir. eocMelent, compiled by King, appear in Table 21• 15 (H, W. King and L, F. Dreier. "Handbook of Hydraulics," McGraw -Hill Book Company, Now York). • 21.48. Weirs of Irrooular Section This group Includes those weirs whose cross section deviates from typical broad•eremcd or ogco- ; crested weirs. Weirs of irregular section, fairly common In waterworks projects, arc used as spillways and control structures. Experlmental data arc available on tho more common shapes. (Scc, for example, H. W. King and E. F. Draw, "Handbook of Hydraulics," McGraw -Hill Dook Company. Now York,) • TABLE 21.16 Values of C In Q CL11111 for Droad•Crested Wclrs • ' • • • , tired nri•,i�hl� oren•�1 un,•alr. n 0.30 0.16 I -M 1,311 11.00 2.30 0,00 4.1x1 b.lxl Ib,llu Ia.UO U.I 2.►Hi 2.71 2.Iro 9.112 2.111 4.44 2.4.1 1.:18 2.34 2.40 11.4 - 2.112 2.1K1 11.:11 1.61 1.01 2.1X1 2.M 1.34 1.30 t.ba' 2.70 0.6 3.119 2.811 1.7E 11. &1 1.61 2.60 2.a4 1.00 1.70 2.70 9,70 0A 1.30 1,o{ 1.K5 1.611 4.60 1.110 ' I.A. 2.88 1.04 1.09 1.44 1.0 1.32 1.14 1.04 2.1i 1. (A 2.04 1.65 2.07 2.08 2.Aa 2.03 . 1.2 3.12 :1.20 1.114 2.7X1 4.70 2.0 1.61 I.AT I.60 ' 11.60 2.61 1,4 7.92 1.20 1.20 1.112 I-T? 2.011 2.61 2 -as 9.01 2.07 2.61, 8.:12 1.211 1.1x1 1.07 1.101 2.13 I'm 2.r,(# 4.115 9.04 2.0.1 LH 7.12 1.12 1.31 9.07 2.M 4.74 11 ,64 11.64 I'M 2.61 2.0J 2.0 7.:12 9.91, 3.70 3.13 3.83 2.74 1.72 1.1111 2.07 1.04 1.3 9.9.2 112 :1.91 3.24 3.111 1.80 4.81 1.12 2.67 1.61 2.ra 9.0 9.92 172 .1. .11 1.11 3.111 9.td 1.112 2.19 11,40 2.61 2.61 9.3 1.12 :1.12 1.72 1.92 1.31 3.10 CUT 4.70 4.08 9.61 1.61 4.0 9.32 9.32 :1.73 J.32 9.92 3.32 9.117 2.70 1.70 9.04 1.67 4.3 3.12 3.12 8.92 7.32 9.32 7.92 9.82 I.b4 1.7) 9104 I.6) 5.0 9.12 3.32 :1.12 1.12 3.72 1.71 3.72 1.11: 1.711 9.bi 1.111 3.3 1.92 9.14 3.32 1.12 1.71 3.72 3.33 8,32 I.M4 1.64 4.ra ti. 390 Mow Through Hydraulic Structures ISO— lea ' 166 6.6 144 ' 4000 6.0 120 2000 108 ' J.0 96 1000 800 64 600 li 600 72 400 2.0 900 •• .. 60 IS 46 100 Illy b 8o U I 60 IIIY I p J6 40 JG 1.0 20 _ .. 24 10 0.6 2 Q* I°5a cF� t s t 0.e MUM, 8.21 'Typical noiuogrupb fur inict•comrolled culvert design. Square-edged en. trance. (Prom Handbook V CcAmIt WPM Piet Hydtaulia, Portland Cemcni AAwlsllon, 1964) the culvert pipe do not influence the discharge. In this case,.tht: pipe is always only partly full although the i1l:Adwatcr may exceed tlic top of the pipe " cntrnnce'and hence the (low enters the pipe under pres:urc.'Figure 9.21 shnws it typical nomograph by which the discharge Q could be detct•nlined fora cttivcrt of D dinmetcr under It hendwaterdopth MV. The nomograph is for n eclunre- cclged entrance in n headwall. Similar nomography arc found ill govcrnmentnl and trade liternture for many other entrance conditions. Short culverts with reintivcly negligible tnilwnter clevatidns almost always• operate undcr inlet control. Outla control occurs when the discllnrge is dcpcndcut oil ull hydraulic vnrlitbics of the structure. Figure 9.22 shows talc notation: relative to these vuriubics. Thcsc include the slope So, length I., diameter D, roughnemn, tallwatcrdcpth TW, ltcndwnterdepth MY. Unless J.F. Davidson A-sC.C3=im3tejs, Inc. EUGINCEPING PLAM wG SAJ"v)?4G AAC"47EC7U.PF tA?qoSC^pC^al_"jrECrVpjE 75-150 SHERYL DRIVE P.O. BOX 12817 PALM DESERT', CALIFORNIA 92255 (619)346-5691 o,4-- V-1 yq. Xo -ft, . 1:�Z:114N- r1% C> 25111; A61-m- 79 70 . t7 I :re, to 154 <X, rA C14A ,v C.- PRO L C- --5: 0 . 0 p am f. r. t E Buena Engineers, Inc.. AN.EAM SYSTEMS, INC. COMPANY. S 79 -811 B COUNTRY CLUB DRIVE • BERMUDA DUNES, CALIFORNIA 92201 PHONE (619) 345 -1588 • FAX (619) 345 -7315 Date 01 1-24 -91 Job No.: B7- 2628 -P9 Report No.: 6930 Client: Ohio Citizens Investment Corp. P.O. Box 780 La Quinta, California 92253 REPORT OF COMPRESSION TEST Tested In Accordance With ASTM C39 Project: Tract #25237 Sample Location: Bearing Wall Made By: K.A.R. Date Cast: 01 -15 -91 Date Received: 01 -16 -91 Supplier: 02 -12 -91 Tarmac Ticket No: 19621 Time In Mixer: 50 min. Water Added On Jobsite: 8 gal. Mix Design: Specified Strength: Admixture: Slump, Inches: Air Content, %: Temp of Samples, °F: Air Temperature, °F: TEST RESULTS 410 4000 PSI - Concrete WRDA -79 3.50 72 Unit Wt., P.CF: 70 Laboratory No. 91 -120 91 -121 91 -122 91 -123 Date Tested: 01 -22 -91 02 -12 -91 02 -12 -91 Hold Age Days: 7 28 28 Size of Specimen, Inches: 6x12 602, 602 Area, Square Inches: 28.27 28.27 28.27 Total Load, Pounds: 108,500 Strength, PSI: 3840 This Is a report of test results only. No opinions guarantees or warranties of the contractor's work Is made or Implied. Remarks: Respecfully Submitted, BUENA ENGINEERS, INC. Copies: 2- OCIC By: 1 - VTA 1 - BD a Buena Engineers, Inc. AN EARTH SYSTEMS, INC. COMPANY 79 -811 B COUNTRY CLUB DRIVE • BERMUDA DUNES, CALIFORNIA 92201 • PHONE (619) 345 -1588 • FAX (619) 345 -7315 Date: 01 -24 -91 Job No.: 137- 2628 -P9 Report No.: 6929 Client: Ohio Citizens Investment Corp. P.O. Box 780 La Quinta, California 92253 REPORT OF COMPRESSION TEST Tested In Accordance With ASTht C39 Project: Tract #25237 Sample Location: Bearing Wall Made By: K.A.R. Date Cast: 01 -14 -91 Date Received: 01 -15 -91 Supplier: Tarmac Ticket No: 19569 Time In Mixer: 35 min. Water Added On Jobsite: 0 gal. Mix Design: Specified Strength: Admixture: Slump, Inches: Air Content, %: Temp of Samples, °F: Air Temperature, °F: TEST RESULTS 410 4000 PSI - Concrete W RDA -79 3.75 78 Unit Wt., PCF: 82 Laboratory No. 91 -116 91 -117 91 -118 91 -119 Date Tested: 01 -21 -91 02 -11 -91 02 -11 -91 Hold Age Days: 7 - -28 – - - - - -2$ - — -- -- – — - Size of Specimen, Inches: 6x12 6x12 6x12 Area, Square Inches: 28.27 28.27 28.27 Total Load, Pounds: 102,000 Strength, PSI: 3610 This Is a report of test results only. No opinions guarantees or warranties of the contractor's work Is made or Implied. Remarks: Respecfully Submitted, BUENA ENGINEERS, INC. Copies: 2- OCIC By: 1 - VTA 1 -BD Buena Engineers, Inc. AN EARTH SYSTEMS, INC, COMPANY 79 -811 B COUNTRY CLUB DRIVE • BERMUDA DUNES, CALIFORNIA 92201 • PHONE (619) 345 -1588 • FAX (619) 345 -7315 Date: 01 -24 -91 Client: Ohio Citizens Investment Corp. P.O. Box 780 La Quinta, California 92.253 Project: Tract #25237 Job No.: B7- 2628 -P9 Report No.: 6922, REPORT OF COMPRESSION TEST Tested In Accordance With ASTM C39 Sample Location: Retaining Wall, Station 28 + 75 Made By: H.W. Date Cast: 01 -09 -91 Date Received: 01-11-91 Supplier: 02 -06 -91 Tarmac Ticket No: Age Days: Time In Mixer: 40 min. Water Added On Jobsite: -0- Mix. Design: Specified Strength: Admixture: Slump, Inches: Air Content, %: Temp of Samples, °F: Air Temperature, °F: TEST RESULTS 410 4000 PSI - Concrete W RDA -79 3.50 70 Unit Wt., PCF: 67 Laboratory No. 91 -95 91 -96 91 -97 91 -98 Date Tested: 01 -16 -91 01 -23 -91 02 -06 -91 02 -06 -91 Age Days: 7 14 28 28 Size of Specimen, Inches: 6x12 6x 12 6x12 6x12 Area, Square Inches: 28.27 28.27 28.27 28.27 Total Load, Pounds: 119,500 134,500 Strength, PSI: 4230 4760 This Is a report of test results' only. No opinions guarantees or warranties of the contractor's work Is made or Implied. Remarks: Copies: 2- OCIC 1 - VTA 1 -BD Respecfully Submitted, BUENA ENGINEERS, INC. By- r, oBuena Engineers, Inc. Z%w7 AN EAM SYSTEMS, INC COMPANY 79 -811 B COUNTRY CLUB DRIVE - BERMUDA DUNES, CALIFORNIA 92201 • PHONE (619) 345 -1588 • FAX (619) 345 -7315 Date: 01- 24 -91. Job No.: B7- 2628 -P9 Report No.: 6859 Client: Ohio Citizens Investment Corp. P.O. Box 780 La Quinta, California 92253 REPORT OF COMPRESSION TEST Tested In Accordance With ASTM C39 Project: Tract #25237 Sample Location: Bearing Wall Made By: K. A. R. Date Cast: 12-24 -90 Date Received: 12 -26 -90 Supplier: 01 -21 -90 Tarmac Ticket No: .1 8319 Time In Mixer: 47 min. Water Added On Jobsite: 5 gal. Mix Design: Specified Strength: Admixture: Slump, Inches: Air Content, %: Temp of Samples, °F: Air Temperature, °F: TEST RESULTS 410 4000PSI - Concrete WRDA - 79 2.50 68 Unit Wt., PCF: 57 Laboratory No. 90 -797 90 -798 90 -799 90 -800 Date Tested: 01 -02 -91 01 -07 -90 01 -21 -90 01 -21 -90 --Age-Days: - 9- -- 14 - 28- 28 Size of Specimen, Inches: 6x12 6x 12 6x12 6x12 Area, Square Inches: 28.27 28.27 28.27 28.27 Total Load, Pounds: 115,000 124,000 150,500 154,000 Oft " mam F) L I E S Strength, PSI: 4070 4390 5320 5450 This Is a report of test results only. No opinions guarantees or warranties of the contractor's work Is made or Implied. Remarks: Copies: 2- OCIC 1 - VTA 1-BD Respecfully Submitted, BUENA ENGINEERS, INC. . By: • • Buena Engineers, Inc. AN EARTH sywEMs, INC. COMPANY . 79 -811 B COUNTRY CLUB DRIVE • BERMUDA DUNES, CALIFORNIA 92201 • PHONE (619) 345 -1588 • FAX (619) 345 -7315 Date: 01 -24 -91 Job No.: B7- 262.8 -P9 Report No.: 6860 Client: Ohio Citizens Investment Corp. P.O. Box 780 La Quinta, California 92253 REPORT OF COMPRESSION TEST Tested In Accordance With ASTM C39 Project: Tract #25237 Sample Location: Bearing Wall Made By: K. A. R. 90 -802 Mix Design: 410 Date Cast: 12-26-90 Date Tested: Specified Strength: 4000 PSI - Concrete Date Received: 12 -27 -90 - Admixture: WRDA - 79 Supplier: Tarmac 28 Slump, Inches: 3.25 Ticket No: 18360 6x12 Air Content, %: 602 Time In Mixer: 45 min. Temp of Samples, °F: 67 Unit Wt., PCF: Water Added On Jobsite: -0- 28.27 Air Temperature, °F: 55 TEST RESULTS Laboratory No. 90 -801 90 -802 90 -803 90 -804 Date Tested: 01 -02 -91 01 -09 -91 01 -23 -91 01 -23 -90 - - - -- Age Days: 7 14 28 28 Size of Specimen, Inches: 6x12 6x 12 602 602 Area, Square Inches: 28.27 28.27 28.27 28.27 Total Load, Pounds: 119,250 137,500 141,500 152,000 uymFUES Strength, PSI: 4220 4860 5010 5380 This Is a report of test results only. ' No opinions guarantees or warranties of the contractor's work Is made or Implied. Remarks: Copies: 2- OCIC 1 - VTA 1 - BD Respecfully Submitted, BUENA ENGINEERS, INC. By: 7'� r � ''TECHNICONm�' ENGINEERING SERVICES INC. CONSULTING MATERIALS TESTING SPECIAL INSPECTIONS January 17, 1991 TES #91 -0034 For: Mr. Thomas Hill JAN 2 5 IN l Ohio Citizens Investment Corporation 77 -350 Avenida Fernando Post Office Box 780 - La Quinta, California 92253 Project: CON /SPAN Reinforced Concrete Culvert S -149 Enclave Development Tract No. .25237 La Quinta, California Engineer: Subject: Supplier: Mix Number: Structure: Location: Sampled By: CON /SPAN Fresno, California Compressive Strength Determination of Cylindrical 6" x 12" Concrete Test Specimens Hydro- Conduit Fresno, California CIS 1, 7.0 Sack /Cu. Yd. Reinforced Concrete Culvert CI No. 4 Jon LeForge -- TECHNICON Delivered By: Jon LeForge -- TECHNICON Test Slump, in.: Concrete Temp.., °F: Ambient Temp., °F: Air Content, % : Unit Weight, pcf: Yield, % : Result 3 -1/4 60 55 Not Performed Not Performed Not Performed Date: January 9, 1991 Date: January 10, 1991 Designation ASTM C143 -78 ASTM C1064 -86 Not Applicable ASTM C173 -84 ASTM C138 -84 ASTM C138 -84 4325 NORTH GOLDEN STATE BLVD. #107 FRESNO, CALIFORNIA 93722 (209) 276 -9311 Ohio Citizens Investment Group Page 2 TES #91 -0034 Concrete Compressive Strength Determinations (ASTM C39 -86) Technician: Jon LeForge -- TECHNICON Identification: SC -1 SC -2 SC -3 SC -4 Test Date: 01116191 02106191 02106191. HOLD Age, days: 7 28 28 * * ** Total Load, Ibf: 104,000 * * ** * * ** * * ** Area, sq. in.: 28.27 * * ** * * ** * * ** Compressive Strength, psi: 3,680 * * ** * * ** * * ** Minimum Design Requirement: 4,000 psi at 28 days Thank you for your valued business. Should you have any 'questions or if we may be of further service to you, please call our office. Sincerely, TECHNICON Engineering 'Services, Inc. Calvin E. Parret, RCE Principal CEP /di TECHNICON- No. 25176 ME �z� Special Assessment #2 City of Reno, Nevada DESIGN NOTES ConlSpan, Culvert Systems Dayton, Ohio Supplied by: Hydro Conduit Corporation J � "ZI L 74� �41 Xr,�--o7' R , . -- ?l 1 1 1 1 1 1 1 1 1 1 October 11,1990 Mr. Karl Boettcher J. F. Davidson Associates P. 0. Box 12817 Palm Desert, CA 92256 SUBJECT: CON /SPAN DESIGN DRAWINGS & CALCULATIONS LA QUINTA TRACT 25237 - B.S.I. 0(. 6515 o 00 Dear Mr. Boettcher, I am enclosing the following documents that you requested to complete the plans for the subject tract. 1. Design Notes for a project in Reno Nevada that are the same as for your LaQuinta tract. 2. Con /Span unit steel reinforcement placement shop dwg. "A ". Design loading of HS -20 -44 is included hereon. 3. Footing design example if you need help to design for the footing reactions, "B ". 4. Con /Span design for the positive connection for Detail A /10, "C". 5. Threaded loop ferrule as provided by DAYTON SUPERIOR. Karl, if you need more, please call. Sincerely, R. H. Scheller An ARC America Company HYDRO CONDUIT CORPORATION L � 4150 North Brawley Fresno, Ca. 93722 -3987 (209) 275 -2241 ' October 11,1990 Mr. Karl Boettcher J. F. Davidson Associates P. 0. Box 12817 Palm Desert, CA 92256 SUBJECT: CON /SPAN DESIGN DRAWINGS & CALCULATIONS LA QUINTA TRACT 25237 - B.S.I. 0(. 6515 o 00 Dear Mr. Boettcher, I am enclosing the following documents that you requested to complete the plans for the subject tract. 1. Design Notes for a project in Reno Nevada that are the same as for your LaQuinta tract. 2. Con /Span unit steel reinforcement placement shop dwg. "A ". Design loading of HS -20 -44 is included hereon. 3. Footing design example if you need help to design for the footing reactions, "B ". 4. Con /Span design for the positive connection for Detail A /10, "C". 5. Threaded loop ferrule as provided by DAYTON SUPERIOR. Karl, if you need more, please call. Sincerely, R. H. Scheller An ARC America Company p �i A4 Con ! Spon TM Culvert Systems 1563 East Dorothy Lane _ i�ayt on, Ohlo 45429 �� •--.� - 0 1966 - - -- - peer l o Stee1- 5 ° shrinkage l Temp , stool- As (03 D d 1 f A2 A2_ - -, -- - - - -._ - - -- - - - -- - — 1 Viz" Clr. 2' Or. 161-04 (rye-) rrYA I Producer: (Fresno) SPAN: ( 16' -Q' ) RISC: t _ �� .—I COVER: ( 1' -0—" _) Hydro Conduit Corporation Area Req'd. Length Area Supl' -d. Cllent: Sheet NO. lin2tf t1 Mesh Size C'�T�z�,� s (End User1 ��E�r,,��r} T /5' 2 1 Al - 0. 66 2`' x �'' 12-0 " _ 6) Project: 91461 2 A2-0.24 2'' x . w4 w �•S g'- 0,24_ S -143 Enclave Development 3 A3-�l.36 2 "'X �" VJ7X Tract 12523.7 f -- - — - Contractor: 4 A4_ 0, 24 2 "n � W4 A w4.'5'— 8' -0'' p. Z4 C�7izc.�s A5-Q. i3 Date; Appr'd. 5 D. 13 Oc- //, /990 lay: { 6 A6_0.13 i3 Con!Spon Is o patented system rrd the `urnishing of this drawing does not Design Loading: HS20 -44 constltute an express or 'mpllod 11c;ense. PATENTED = m m = = m m = = m m m m m = m m m m 1 1 1 1 1 1 1 1 1 1 .1 1 t] .1 ) FOUNDATION DESIGN EXAMPLE FOR CON /SPAN CULVERTS DESIGN DATA= Span = 20'- 0'' Rise = 9'-011 Cover = 6� 0" Loading = (HS20) HS20 14.0' Co �O 0 20 N 21.7' o/o T ".3 = 7.26 Qi C C� Z= Length of Distribution for Live Load= 16'+ 2(7.26')+ 2(2.0) = 34.5' FOOTING REACTIONS (Service Loads): Dead Load: Soil 120 # /ft, 3 x 7.25' x 2� 7 = 9.4 k /ft. (Avg. Cover) Precast Unit = 2.4 k /ft. -- - 64.0 6.83) 64.Ok _ 2.5 k /ft Live Load 34.5 t (20.83/34.5% Reaction to Footing =14.3 '/ft. /O Recommended depth to bottom Of. footing from flow line not less than 310" for scour protection. State or local requirements may exceed 3- 0. FOUNDATION DESIGN Con /Spann. Culvert Systems Sheet No. I of 3 FOUNDATION DESIGN EXAMPLE FOR CON /SPAN CULVERTS USING STRIP FOOTINGS DESIGN DATA: t0 Culvert Leg t" 3 ' 2 N +: a 8 Net A//owob /e Soil Pressure = 3000psf fl C = 3000 psi 28 doy strength fr = 60, 000 psi Footing Reaction = 14.3 %ft. FOOTING WIDTH- 8 = 3 = 4.76 Use 4' 9 Wide FACTORED NET SOIL PRESSURE (AASHTO). WA = 13 (//. 8) f /.3 (/. 67)(2.5) = 20.8 %ft Factored Net Soi/ Pressure = 2 If = 4.37ksf 4.75 CHECK SHEAR THRU SECTION AT A DISTANCE 'd" FROM FACE OF WALL: V/4 _ 4.7520.83) _ / 75'J x 4.37 ksf = 0.92 k 0 V = 0.85 (2)(/=)(I2)(12)(I.75) = 23.5.1( ' (�V > Vk 0. K. Unreinforced for Shear CHECK BENDING IN FOOTING AT FACE OF WALL= 4'75 - 0. g.3 --5) 72= 7 84FI k I� 2 J s 2 ' - CHECK NON - REINFORCED SECT /ON (PER ACI- 9 32f 8 ACI -15. //.2): 4)M = 0.65Fb5 0.65(274 psi)( /2) (2/) 2 _ I3.09 Ft, k 6(12,000) ' (PMn > MA .'. Unreinforced for Moment � o � o Recommend providing #6 bars 12 o. C. bot. and /a O.C. top to provide continuity and bridge across possible weak oreos of s Recommend #4 bons 4 =0Af0. C. to pro- vide support for Iongitudincl burs. FOUNDATION DESIGN Can /Span. Culvert Systems 50 45 •• 35 x v 30 z O 1- d 25 w cr- z 20 O 15 E 5 19 • CON /SPAN CULVERT SYSTEMS FOOTING REACTIONS (SERVICE LOADS) ?k 14' 2,2k 1 2 3 4 5 6 7 8 9 10 II 12 COVER (f0 pan pan )an ion ian )an FOUNDATION DESIGN Con /Spann Culvert Systems Sheet No. 3 of 3 1 1 1 1 1 z z 0 z 4 N S H O W Q Z to _z J 1 1 Lifting and Handling Inserts DAYTON SUPERI®F S -16 Coil Loop Insert Straight Although simple in design and fabrication, the B -16 Coil Loop Insert is highly efficient for lifting and han- dling small precast elements. However, the B -18 single and B -33 double flared coil loop inserts are generally recommended for larger elements. Standard inserts are shown in the chart below. Special inserts for use with larger diameter coil bolts, or with loops having longer lengths and of heavier wire can be furnished, if required, by special order. The objective of higher capacity can usually be obtained, more economically, through the use of other standard inserts as described elsewhere in this handbook. B -16 Coil Loop Insert Straight Selection Chart Bolt Dla. Sale Working Concrete Minimum Dimensions A B C D X Load Strength Edge Insert Length Tension (Ibs.) P si Distance A B C D 1121, x 4" 2,250 2,000 5" 4" 1 L, B" 1'/,6" .223" %2" x 6" 3,750 2,000 7" 6" 1' /,e" 1, /s" .306" 3/'" x 6" 3,750 2.000 7" 6" 15w, 13/." .306" S.W.L. are based on 1/2" setback from face of concrete. S.W.L. provides a factor of safety of approximately 4 to 1 in normal weight concrete. Warninc: Refer to the information on pages 2 through 16 before using the safe working loads shown in the above chart. i — A 44 Is t 3 -16 Coil Loop Insert Straight To Order: Specify (1) quantity, (2) type, (3) bolt dia., (4) length, (5) safe working load, (6) finish (plain or Electro- plated). Example: 500 pcs., B -16 Coil Loop, '/2" dia. x 6" long, 3,750 lbs. S.W.L., Electro- plated. F -53 Thin Sia>b insert The F -53 Insert is designed for lifting thin concrete panels from the casting bed and for handling the panels until they are set into their final position on the building frame. Available in heights up to 51/2 ". F -53 Thin Slab Insert Selection Chart Bolt Dia. X Insert Height Safe W °rn (Ibs.) king Load Tensio Concrete Strength PSI Minimum Edge Distance Dimensions A B C D E 3/4" x 3" 2.000 3,000 a" 3" t `'e" 14 %" .306" 1" x 4" 3,000 3,000 10" 4" 1' /e" 2' /i6' .306" 9?i" 1'4" x 4" 3,000 3,000 10" 4" 2'.' ;" 2':;a" .306" 9Y, 1 %2" x 4" 3,000 3,000 10" 4" 2'12" Vi" .306" 91/6" S.W.L. are based on 1/2" setback from face of concrete. S.W.L. are based on insert being embedded in a slab thickness at least 1" greater than the "A" dimension. S.W.L. provides a factor of safety of approximately 4 to 1 in normal weight concrete. Warning : Refer to the information on pages 2 through 16 before using the safe working loads shown in the above cflart. To Order: F -53 Thin c Specify (1) quantity, (2) type, (3) bolt dia., (4) insert Slab Insert (Coil) I A height, (5) finish (plain or Electro- plated). c y Example: 1$, , 250 pcs. F -53 Thin Slab Insert for 1" bolt, 4" high, A� ,�— A plain. E 1 1 1 J r on/Span ® 1 Dorothy Lane Dayton, on, Ohio 45429 (513) 298 -7726 Q p� (800) 526 -3999 Culvert Syste 1 1 1 6 Fax: (513) 293 -5850 PRECAST CONCRETE CULVERT SYSTEMS November 15, 1989 RE: Requested Design Information on Special Assessment #2. Enclosed is a design packet for your review. The loading reviewed for this design was the AASHTO HS20 with 5' -0" of fill. The culvert used in this design is a single cell 16' -0" span with a 6' -0" rise. The first step in a design, assuming the span, rise, and cover are given, is to determine the lateral distribution of the live load per AASHTO specifications. The assumed width of the structure is one inch for analysis purposes. The load is then applied as a concentrated load at various nodes along the span of the structure. The tool used for analysis of the soil- structure CANDE program. A distinct mesh is developed for accordingly for the various rises and heights of loads and the weight of cover material are input that the design is an ultimate design check. Th safety factors are compared to the reciprocal of ultimate design. interaction is the each span and changed cover. All live as factored loads so final computed the 0 factors used in The CANDE program describes a structure surrounded by the soil elements. The analysis is an iterative process modeling the various stages of construction. The soil descriptions used are an inelastic model as developed by Duncan. The actual description of the soil model used in our typical analysis is described in the enclosed recommendation by Katona. These recommendations are based on our specific application and specifications. ' We feel that our design approach is solid. It has been verified by full scale testing and reviewed by Katona. Con /Span has already demonstrated many times over its usefulness and economy. If you should have any questions during your review, please call. Sincerely, ' Timothy J. each. P.E. Director of Engineering Services Enclosures TJB /ltr CON /SPAN DESIGN EXAMPLE lGf_nn Cnan SPECIAL ASSESSMENT #2 CONTENTS Calculations or Input Data Calculation for Foundation Loads Shop Drawing Graphic Display of Structural Elements Nodal Points Mesh Elements Graphic Display of Moment, Shear and Thrust Diagrams Computer Printout plied Load (HS 20) -0 Cover -0 Rise DESIGN DATA FOR Eproe el ct] CULVERT C❑NFIGURATI ❑N I IMPACT SPAN = 16' -0' }RISE = 6' -0' COVER = 5' -0' DESIGN SPECIFICATI ❑NS AASHT❑ (Current Edition) DESIGN LOADING HS20 -44 MATERIALS Concrete: f'c = 4,000 psi Reinforcing: f = 60,000 psi SOILS In Situ: Youngs Modulus = 2,000 psi Unit Weight = 120 pcf Backfill: Duncan SM100 Unit Weight = 125 pcf Covers Duncan SM90 Unit Weight = 120 pcf Per AASHTO Section 3.8.1. Cover > 3' -0' Impact = 0 DISTRIBUTION OF WHEEL LOADS FOR COVER > 2' -0', WHEEL LOADS ARE DISTRIBUTED AS PER AASHT❑ SECTION 6,4: WHEEL LOADS SHALL BE DISTRIBUTED OVER A WIDTH EQUAL TO 1% TIMES THE DEPTH OF FILL DIRECTI ❑N OF TRAFFIC Normal to the centerline of the culvert, NOMENCLATURE L = length of lateral distribution W = line load per unit length P = axle or wheel loads PAGE 1 OF 3 Producer: Reno NEVADA HYDRO CONDUIT CORP. Client: CITY OF RENO (End User) Project: SPECIAL ASSESSMENT # 2 Contractor: Date: 11/15/89 Appr'd. By: Con /Span Culvert Systems 1563 East Dorothy Lane Dayton, Ohio 45429 Con /Span is a patented system and the furnishing of this drawing does not constitute an express or implied license. DESIGN DATA FOR [project] LOADING HS20 -44:. Axle loads shown 14' -0' T 14' -0' 30' -O' 8.OK 132,OK 132.OK 0 I 7�in Top Stny J Thickness �D o�ndon 16' -0" Span F I D¢ptt,oh CULVERT ELEVATI ❑N 6' -0' 4' -0' 6' -0' CULVERT PROFILE L = 16' + 1.75(5') = 24,75' Putt = (L + I)f p (AASHT❑ Section 3.22) Putt = (2(32K) + 0)(1.3)(1.67) Pult = 138.9 Kips Wult = Pult /L = 138.9K/24,75' Wult = 5.61 K/f t Wult = 467.7 Win MINIMUM REINFORCEMENT Flexural: As min, = 0.002Ag = 0,24 inz /ft Temperature and Shrinkage: As = 0,125 in/ft each face PAGE 2 OF 3 Producer: Reno NEVADA HYDRO CONDUIT CORP, Client: CITY OF RENO (End User) Project: SPECIAL ASSESSMENT # 2 Contractor: Date: 11/15/89 1 Appr'd, By: Con /Span ALA Culvert Systems 1563 East Dorothy.Lane Dayton, Ohio 45429 Con /Span is a patented system and the Turn sl1ng of this drawing does not constitute an express or implied license. DESIGN DATA FOR [pro Jec-t] CRACK CONTROL Fs = 98 olio. 3 - Determine the maximum steel stress permitted to satisfy crack control criteria. @ MIDSPAN wire spacing = 2' c/c d. = 1.5" A = 6 in FS = 98 = 47.1 Ksi ,Ito. 3 @ THE HAUNCH wire spacing = 2' c/c d, = 2.0' A = 8 in' fs = 98 = 38.9 Ksi utto. 3 <2.0)(O 8) FROM NON-FACTORED ANALYSIS (SERVICE LOADS) fs,midspan = 31.5 Ksi fs,haunch = 35.1 Ksi O.K. i SUMMARY OF RESULTS MAXIMUM POSITIVE MOMENT STEEL STRESS UNDER FACTORED LOADS: fs( +) = 48.5 Ksi Fs Z �Fy = 0,9(60Ksi) = 54,0 Ksi ❑.K. MAXIMUM NEGATIVE MOMENT STEEL STRESS UNDER FACTORED LOADS: fs( -) = 50,4 Ksi fs �Fy = 0.9(60Ksi) = 54,0 Ksi MAXIMUM SHEAR STRESS UNDER FACTORED LADS: v = 51,8 psi V �v- = 0,85(2) = 107.5 psi O.K, PAGE 3 OF 3 Producer: Reno NEVADA HYDRO CONDUIT CORP. Client: CITY OF RENO (End User) Project: SPECIAL ASSESSMENT # 2 Contractor: Date: 11/15/89 Appr'd. By: Con /Span Culvert Systems 1563 East Dorothy Lane Dayton, Ohio 45429 Con /Span is a patented system and the furnishing of this drawing does not constitute an express or implied license. m m m m m m m = = m m = = = m m m m m YO�Yr6►lfli . i 1W_R9 C ®n /Span TM Culvert Systems 1563 East Dorothy Lane Dayton, Ohio 45429 ©1986 r Clr. 16'-0' (rya) (ryP.) Producer: SPAN: (_16`9 ) RISE: ( 6'-0" 1 COVER: ( 5'-0" ) Hydro Conduit Corp., Fresno Sheet No, AreazReq'd. Mesh .Size Length Area2Supl'd. Client: (in /ft) (End User) City of Reno 1 A1- 0. 36 Project: 2 A 2- 0.24 Special Assessment #2 3 A3-0. 30 4 A4-0.24 5 A5-0. 13 6 A6-n. I 'I Design Loading: ntractor: Date: IAppr'd. November 15, 89By: Con /Span Is a patented system and the furnishing of this drawing does not constitute an express or Implied license. PATFNTFn = m m m m m � = r m= m m= m= m m m 1 t� e n g i n e e r s a r c h i t e c t 8 1 SPECIAL ASSESSMENT #2 CITY OF RENO, NEVADA C- E- R- T- I- F- I- C- A- T -I -O -N This is to certify that the structure design for ' the Con /Span System conforms to ."Standard Specifications for Highway Bridges" adopted by the American Association of State Highway and Transportation Officials, 1983, including the 1984 ' and 1985 interim specifications. The design is based on a Soil- Reinforced Concrete Structure Interaction System in accordance with the applicable provisions of Section 17 of the ' "Standard Specifications for Highway Bridges ". LOCKWOOD, JONES & -ILS, INC. William D. Lockwoody P.E. Dated, SPAN = 161 -0" 1 RISE 6' -0" LENGTH 64' -0" COVER = 5' -0" ' LOADING = HS20 1563 East Oorothy Lane ' Kettering, Ohio 45429 TEL: 513.293 -6967 ` FAX: 513- 293.5850 1 1 1 1 1 1 1 1 1 1 1 August 10, 1987 Mr. William Lockwood Con /Sean Culvert Systems 1563 East Dorothy Lane Dayton, Ohio 45429 Dear Bill: After thoroughly reviewing all structural design aspects of your Con /Span Avert Systems, I am confident that the design gonoePt is well conceived and provides a safe and structurally robust installation. My judgement is based on a complete review of the Con /Span specification documents, the CANDE design /analysis procedure, and the full scale experimental load test which demonstrated. an ultimate strength several times h.W than the design load. 1 For the record my credentials include; Chairman of the Transportation Research Board Committee on Subsurface Soil- Structure Interaction, developer of the well known CANDE computer program for culvert design, and author of numerous Journal papers on culvert design and analysis. 1 ' Sincer�ely: Dr. Michael G. gatona 1 RECEIVED AUG 17 _ALS, INC. Intl ►'n ----- - - - - -- 3 1 1 � I I I I I I I I I 1' I I IV. COMMENTS ON DESIGN /ANALYSIS PROCEDURES WITH CANDE. Soil models. As a general rule of thumb 1 recommend using the Duncan soil model for fill materials and elastic models for undisturbed soils. The latter category is very difficult to pin down because of the wide variety of insitu conditions that are in existence. A nominal Youngs modulus of 2000 psi is a typical value but this must be tempered with engineering judgement. Fill materials should be structural- quality select materials, preferably granular. The Duncan model SM 100 represents a conservative approximation of a well compacted (100% AASHTO T -99) granular material with good gradation. Based on the compaction requirements set forth in your specifications for backf ill, I think you could adopt the SIai 100 as your design standard to characterize the backfill along the sides of your arch. Soil over the crown acts mainly as a load and is not as structurally signifacant as the side soil. Generally, soil cover may be modeled as SM90. I1 1' 1 INDEX TO COMPUTER PRINTOUT ' DESCRIPTION PAGE Culvert Properties . ..............................3 ' Reinforcing Steel Areas ..........................4 ' Element & Nodal Summary ..........................5 NodalCoordinates .. ..............................6 ' Element Definition . .............................12 Boundary Conditions including Applied Loading ................17 Input Summary ...............18 SoilProperties .... .............................19 *Structural Responses Construction Increment ' 1. Deadload of Structure.. ..- ..... •.• ... .• .21 2. Backfill to Haunch ......................... 27 3. Fill to 1' -0" Cover ........................33 ' 4. Fill to 3' -0" Cover.. .39 5. Fill to 5' -0" Cover ........................45 6. Applied Live Load ..........................51 * Loading for weight of fill over culvert and applied live load are factored loads. 1 1 1 I� 1 1 Fl 1 1 1 11 1 1 n a u u n n n n u n u u n u n u u u zl CL I 47 I im yi II u 1 u uuu u u u' d n u u II M n 11 II II II II II II II u It d u u n . 1 1 1 1 1 L 1 1 r F m m m m m m m m m m m = � m = m m m m PIPE PROPERTIES ARE AS FOLLOWS ... (UNITS ARE INCH -POUND SYSTEM ) CONCRETE' COMPRESSIVE STRENGTH ..... 4000.0000 CONCRETE ELASTIC MODULUS .......... 383425:.0000 CONCRETE POISSON RATIO ............ .. 0.1700 DENSITY OF PIPE (PCF) ............. 150.0000 STEEL YIELD STRENGTH .............. 60O00.0000 STEEL ELASTIC MODULUS ............. 29000000.0000 STEEL POISSON RATIO ............... 0.3000 NONLINEAR CODE (1,2,OR 3) ......... 3 CONC. CRACKING STRAIN (1,2,3) ..... 0.000040 CONC. YIELDING STRAIN (2.3) ....... 0.000507 CONC. CRUSKING STRAIN (2,3) ....... 0.002000 STEEL YIELDING STRAIN (3) ......... 0.001833 SPACING LONGITUDINAL REINFDRCEISENT 6.00 m m m m m m m = = m m = m = = m m = m N ASI(N) NSO(N) TE:1(Ni TEO(N) ^T %' (N) 1 0.0200 0.0250 1.:,000 22.0000 .10.0000 i 2 0.0200 0.0250 1.5OU') '.0000 10.0000 3 0.0200 0.02.,0 1.5000 2.0000 10.0000 4 0.0200 0.0250 1.5000 2.0000 10.0000 ' 5 0.0200 0.0250 :.5000 2.0000 10.9700 6 0.0200 0.0250 1.5000 2.0000 14.0600 7 0.0200 0.0'50 i.5000 2.0..00 20.1200 -� 6 0.0200 0.0250 1.5000_ .2.0000- 14.5000 . 9 0. 0200 L). 0250. 1.5000 .500 10 - 0.0200 0. 0250 1.5000 000D -' 10.0000. 7 11 0.0250 0.0250 1.5000 2.0t ?00 10.0000 12 0.0250 U. 0200 1.5000 2'.0000 10.0000 1;, 0.0250 0.0200 1.5000 2.0000 10.0000 14 0.0250 0.0200 1.5000 2.0000 10.0000 15 0.0250 0.0200 1.5000 2.0000 10.0000 16 0.0250 0.0200 1.5000 10.0000 17 0.0250 0.0200 1.5000 2.0000 10.0000 1B 0.0250 0.0200 1.5000 2.0000 10.0000 19 0.0250 0.0250 1.5000 2.0000 10.0000 i 20 0.0200 0.0250 1.5000 2.0000 10.0000 21 0.0200 0.0250 1.5000 2.0000 11.3500 22 .0.0200 0.0250 1.5000 2.0000 14.5000 J 23 0.0200 0.0250 1.SO0o 2.0000 20.1200 24 0.0200 0. 0250 1.1000 2.ouo0 14.0800 25 0.0200 0.0250 1. 5000 2.0000 10.5700 26 0.0200 0.0.^.50 1.5000 2.CW'oo 10.0000 27 0.0200 0.0250 1.5000 2.00Uo 10.0000 20 0.:200 0.025V ..:,000 .OVUU i0.v0Uv 29 0.0200 ().0250 :.5000 2.0000 10.0000 m m m m m m m = = m = = m � m = m = m THE D4TA TO BE r,U. IS ENTITLED ' CON /SPAN ARCH CULVERT 16' -0" SPAN ® NUMBER OF CONSTRUCTION INCREMENTS - - - - -- 6 PRINT CONTROL FOR FREE' OUTPUT---- - - - - -- 4 7 INPUT DATA CHECK-- -- ------------ - - - - - -- 0 PLOT TAPE GENERATION------------- - - - - -- 1 ENTIRE FINITE ELEMENT RESULTS OUTPUT - -- 0 THE NUMBER OF NODES IS------ ---- - - - - -- -127 THE NUMBER OF ELEMENTS IS-------- - - - - -- 298 THE NUMBER OF BOUNDARY CONDITIONS IS -- 52 M, S. T AT ELEM. END CONTROL IS-- - - - - -- 0 u J m m m m m m m m m m m m m m m m m m m ,.�'•[E•. Ii.,:l� NL,Mi•IEfVi 1iih nr,L' LII♦ •iAD 1Ul; 1 0 - C.2000Z +03 - 0.63.69E +0_ O 0.000 0.00 0 -G. 2000E +03 - 0.59692102 0 0.000 0.00 0 - 0.2000E +03 - 0.4469E +02 O 6.000 0.60 4 0 -0. 2000E +OS - 0.2969E + -02 0 0.000 0.60 5 U - 0.2000E +03 - 6.1979E *U2 U 0.000 0.00 6 0 - 0.2000E +03 - 0.9900E-61 0 0.000 0.00 7 0 - 0.2000E +03 0.00002 +00 O 0.000 0.00 8 O - 0.2000E+03. 0.8670E +61 O 0.000 0.00 9 6 - 0.2000E +03 0.1764E +02 O 0.000 0.00 10 0 - 0.2000E +03 0.2743E+02 0 0.000 0.00 11 O - O.SOOOE +OS 0.3343E +02 0 0.000 0.00 12 O - 0.2000E +03 0.4735E+()2 (1 0.000 0.00 13 0 - 0.2000E +03 0.5931E+02 0 0.000 0.00 14 0 - 0.2000E +03 0.8...31E +02 0 0.000 0.00 15 0 - 0.2000E +07, 0.1073E +03 U 0.000 0.00 16 0 - 0.1760E +03 - 0.8369E +02 O 0.000 0.00 17 0 - 0.1760E +03 - 0.5969E +02 0 0.000 0.00 18 0 -0.1760E +03 - 0.4469E +02 0 0.000 0.00 19 0 - 0.1760E +03 - 0.2969E+02 0 0.000 0.00 20 0 - 0.1760E +03 - 0.1979E +02 0 0.000 0.00 21 U - 0.1760E +03 - 0.9900E+01 0 0.000 0.00 22 0 - 0.1760E +03 O.0000E +00 0 0.000 0.00 23 0 - 0.1760E +03 0.8670E +01 O 0.000 0.00 24 0 - 0.1760E +03 0.1764E +02 0 0.000 0.00 25 0 -0.1760E +03 0.2743E +02 0 0.000 0.00 26 O - 0.1760E +03 0.3343 = +02 0 0.000 0.00 27 0 - 0.1760E +03 0.4735E +02 O 0.000 6.00 2E 0 - 0.1760E +03 0.5931E +02 0 0.000 0.00 29 6 - 0.1760E +03 0.8331E +02 0 0.000 0.00 7, C) O - 0. :7o1c +0, G :G .c +OZ O 0.0:10 0.00' 31 0 -0.1520'x. +03 - 0.87,69E +02 0 0.000 0600 0 - 0.15202 +03 - 0.5969E +02 0 0.000 0.00 SS 0 - 0.1520E +03 - 0.4469E +02 O 0.000 0.00 34 0 - 0.1520E+03 - 0.2969E +U2 0 0.000 0.00 35 0 - 0.1520E +03 - 0.1979E +02 U 0.000 0.00 36 O - 0.1520E +03 - 0.9',100E +0: 0 0.006 0.00 S7 0 -0.1520E+07- O.UUOUE +Up U 0.000 0.00 38 0 - 0.1520E +03 0.8670E +0: 0 0.000 0.00 39 0 - 0.1520E +C?S 0.1764E +02 Cl 0.000 0.00 40 U - 0.15202. +03 0.2743L +02 0 0.600 0.00 41 0 - 0.1520E +03 0. 3-,47,L+02 f! 0.000 0.00 42 0 - C.11-20E *0 0.47Z5E +02 0 O.C.00 0.00 43 0 -0. 1520E,03, 0.2931E *02 0 0.000 0.00 44 G -0.15.0E +V O.L IEt02 O 0.000 0.00 45 U - 0.1520E +03 0.1073E +03. {, 0.000 0.0C1 46 0 - 0.1340E *03 - 0.8369E +02 0 0.000 0.00 47 0 - 0.1340E +OS - C,.5969E +02 0 .0.600 0.00 48 0 - 0.1340E +OS - 0.4469E +02 0 0.000 0.00 49 C - 0.13402 +03 - C1.'965c +02 U 0.000 0.00 50 0 - C.,3 <0E +i, ;': - O.i77cE +02 C, 0.000 0.0 51 - 0.1�.Aq�-•OZ - _.S ° :OGe + : :: C ..Vi,r• . :�G :,� l: - O..JL( : = +' _ V.',IG . :62•`0(, �. Vtiii U.JO !,0 O -L ".: •4 VC�Uf 0. i(:7 E 0 • j 0 ". OVU C•. UG b1 0 - 0.1160E +U3 - U.S;i69E +02 0 0.000 0.00 62 O - 0.11b0E +O3 - 0.5969E +02 j 0 0.000 0.00 6v U - 0.1160E +03 - 0.4469E +02 �' 0 0.000 0.00 64 0 - 0.1160E +03 - 0.2969E +02 0 0.000 C.00 65 0 - 0.1160'2 +03 - O.1S7SE +U2 0 0.000 0. Oct 66 0 - 0.1160E +03 - 0.9900E +01 j I O 0.000 0.00 67 0 - 0.1160E +03 0.0000E +00 j 0 0.000 0.00 68. 0 - 0.1160E +p3 0.8670E +01 O Co. 000 f). 00 69 0 - 0.1160E +03 0.1764E +02 G 0.000 0,00 70 0 - C..1i60E +03 0.274-E +02 C) 0,:)00 0.00 71 0 - 0.1160E +03 0.3ti•43E +02 O 0.000 0.00 72 0 - 0.1160E +03 0.4735E +02 i 0 0.000 0.00 73 0 - 0.1160E +03 0.5931E +02 i 0 U. 000 0.00 74 0 - 0.1160E +03 0.8331EE +02 4 0 0.000 0.00 75 0 - 0.1160E +03 0.3073E+03 0 0.000 0.00 76 0 - 0.1070E +03 - 0.8369E +02 0 0.000 0.00 77 0 - 0.1070E +03 - 0.5969E +02 0 0.000 0.00 78 0 - 0.1070E +03 - 0.4469E +02 0 0.000 0.00 79 U - 0.1070E +03 - 0.2969E +02 I 0 0.000 0.00 80 0 - 0.1070E +03. - 0.1979E +02 I 0 0.000 0.00 81 0 - 0.1070E +03 - 0.9900E +01 0 0.000 0.00 82 0 - 0.1070E +OS 0.0000E +00 0 0.000 0.00 83 0 - 0.1070E +03. 0.8670E +01 j 0 0.000 0.00 84 0 - 0.1070E +03 0.17b4E +02 0 0.000 0.00 85 O - 0.1070E +03 0.2743E +02 0 0.000 0.00 86 0 - 0.1070E +03 0.3343E +02 i 0 0.000 0.00 87 0 - 0.1070E +03 0.4735E +02 j 0 0.060 0.00 Be 0 - 0.1070E +0:; 0.5931E +02 0 0.000 0. 00 89 0 - 0.1070E +03 0.8331E +02 0 C•. 000 0.00 90 0 -G. 1.)70E +Ga 0.:07ac+01 i Q 0.000 i). UU 91 Cl - 0.1010E +03 - 0.8369E +02 i 0 0.000 0.00 92 U - O.SOlOE +03 - 0.5969E +02 i 0 0. (too 0.00 93 U - 0.101Ut +OZ; - 0.44'92 +U2 0 0.000 -0.00 94 O - 0.1010E +03 - 0.2S69c +02 I O 0,000 0.00 95 0 - 0.1010E +03 - 0.1979E +02 0 0.000 0.00 96 0 - 0.10102+03 - 0.990(:)E +01 j 0 0.000 0.00 97 0 - 0.1010 -2 +03 0.0000E +00 0 0.000 0.00 98 0 - 0.1O0bE +03 0.8670E +01 I O 0.000 0.00 99 O - 0.9943E +02 0.: %b4E +G2 0 0. 000 0.00 100 0 - 0.1753E +02 0.2743E +02 0 0.000 0.00 101 0 - 0.9753E +02 0. 343E +02 0 0.000 0.00 102 0 - 0.9753E +02 0.47..5E +02 , C% 0.0010 0.00 103 0 - C:.9753E +012 0.5931E +02 0 0.00O 0.00 104 0 - C'.5753E +02 ti.S-- 31E +02 i 0 6.000 O.OG 105 O - 0.9753E +02 0.1073E +03 0 U. 000 0. 00 1016 0 - 0.9012E +0 =' 0.3167E +02 O 0.004 0,00 107 0 - 0.9012E +02 0,3767F +02 O 0.000 0.00 108 0 - 0.9012E +02 (..47,5E +02 0 U. 000 0.00 108 0 -C, 9012 = +02 0.59= 1E +0, ^: C1 n, t.),)C. .10 O (1. 17111 2E +02 I. Fi� = 1 E TO: l i f ., )(W. i), Oct 1 1 . C, -4. S _ i 3E +0.' ( .1,1 .. C. - .. /3 b(:UC +172 _ :). O.•J : C Y V 0 _ , C'(Il. u. C/0 ate!' Q -.. y.r1L+i -, V.i..--1,-02 O.VUU ..ir" 121 U -O. 6301E +C2 0.1073E +03 O O. (loci 0.00 '22 0 -0.7597E +02 0.3769E +02 0 0.000 0.00 123 O - 0.7597E. +02 0.4369E +02 0 ° 0.000 0.00 124 0 - 0.7597E +02 0.4735E +02 0 0.000 0.00 125 0 - 0.7597E +02 0.5931E +02 0 0.000 0.00 126 O - 0.7597E +02 0.8331E +02 0 0.000 0.00 127 0 - 0.7597E +022 0.1073E +03 0 0.000 U. CIO 128 O - 0.6500E +02 - 0.8369E +02 0 0.000 0.00 129 0 - 0.6500E +02 - 0.5929E +02 0 0.00Kr 0.00 130 0 - 0.6500E +02 - 0.4469E +02. 0 6.000 0.00 131 0 -0.6500E+02 - 0.29.,09E +02 0 0. irOO 0.00 132 O - 0.6000E+02 0.4135E +02 0 0.006 0.00 133 0 - 0.6000E +02 0.475E +02 0 0. OOU 0.00 134 0 - 0.6000E +02 0.5931E +02 0 0.000 0.00 135 0 - 0.6000E +02 0.8331E +02 0 0.000 0.00 136 0 - 0.6000E +02 0.1073E +03 0 0.000 0.00 137 0 - 0.4500E +02 0.4397E +02 U 0.000 0.00 138 O - 0.4500E +02 0.4997E +02. 0 0.000 0.00 139 0 - 0.4500E +02 0.5931E +02 O 0.000 0.00 140 0 - 0.4500E +02 0.8331E +02 0 0.000 0.00 141 0 - 0.4500E +02 0.1073E +03 0 0.000 0.00 142 0 - 0.4400E +02 - 0.8369E +02 O 0.000 0.00 143 0 - 0.4400E +02 - 0.55'b9E +02 0 0.000 0.00 144 0 - 0.4400E +02 - 0.4469E +02 0 0.000 0.00 145 0 - 0.4400E +02 - 0.2969E +02 0 0.000 0.00 146 0 - 0.3000E +02 0.4583E +02 O 0.000 0.00 147 0 - 0.3000E +02 0.5183E +02 0 0.000 0.00 148 0 - 0.3000E +02 0.5931E +02 0 0.000 0.00 149 0 - 0.3000E +02 0.6331E +02 0 0.000 0.00 :50 O - O. :;000E +02 0.1:.73E +06 0 0.000 0.00 151 0 - 0.2300E +02 - 0.8369E +02 0 0..000 0. 00 152 0 - 0.2300E +02 - 0.59692 +02 0 0.000 0.00 153 0 - 0.2--OUE +02 - 0.4469E *02 0 0.000 0.QO 154 0 - 0.2200E +02 -•O.2969E +02 0 0.000 0.00 155 O - 0.1500E +02 0.4694E +Cr2 0 0.000 ir.00 156 0 - 0.1500E +02 0.5294E +02 0 0.000 0.00 157 0 - 0.1500E +02 0.5931E +02 0 0.000 0.00 158 0 - 0.1500E +02 0.8331E +02 0 0.000 0.00 159 O - 0.:500E +02 0.1073E +03 0 0.000 0.00 160 0 0.0000E +OO - 0.8369E +0 - 0 0.000 0.00 161 0 0.0000E +00 - 0.5969E+02 0 0.000 0.00 1622 0 0.00002 +00 - 0.4469E+02 0 0.000 0.00 163 0 0.0000E +OU - 0.2"769Er02 0 0.000 0.00 164 0 0.00UM +00 0.4731E +02 U 0.000 0.00 16`. 0 0.0000E +00 0.533iE +02 0 0. 0,00 0.00 166 0 0.0000E +00 0.5931E +02 0 0.000 0.00 167 0 O.0000E +OO 0.831E +02 0 0.000 0.00 168 U 0.0000E +00 0.1073E +03 O 0.000 0.00 169 4 0.150Or +0_' 0.4!- 94E +02 0 O.00rp 0.00 170 i 0.:.,.i0E +C2 G. 2 5'42 +0 0 O. 0,:.: 0.1500E -C2 C:. :: 1E+0' f, �. 0")v Cr. 0.: b00Ea 02 63:• 1 c +0- it O. ( rCU ) O. i07 E+t•_ 179 0 0.3000E +U2 0.5183E +02 0 0.000 0.00 180 O U.3pO0E4'0? 0.5931E +02 0 0.000 0.00 lei 0 Co. OCIOE +02 C1.8353 E +02 0 Q. 000 0. 00 182 0 0.3000E +02 0.107ZE +03 U 0.000 1.1,00 iE3 O 0.4400E +02 - 0.6369E +02 U 0.000 0.00 134 U 0.4,+C10E +02 - 0.5969E +02 0 0.000 0.00 105 0 0.4400E +02 - 0.4469E +02 0 0.000 0.00 186 O 0. 4400E+02 - 0.2969E +02 O 0.000 ' 0.00 187 O 0.4500E +02 0.4397E +02 O 0.000 0.00 188 0 0.45001.. +02 0.4977E +C2 O 0.000 0.00 189 0 0.4.00E +02 0.59'.iE +02 0 0.000 0.03 190 0 0.4500E +02' 0.G 32E +02 0 0.000 0.00 191 0 0.4500E +02 0.1073E +03 0 0.0CK1 0.001 192 U 0.'60UOE +02 0.4135,E +02 U O.00K) 0.00 193 0 0.6000E +02 0.4735E +02 0 0.000 0.00 194 0 0.6000E +02 0.5931E +02 O 0.000 0.00' 195 0 0.6000E +02 0.8331E +02 0 01.000 0.00 196 O 0.6000E +02 0.1073E +03 0 0.000 0.00 197 O 0.6500E +02 - 0.8369E +02 O 0.000 0.00 198 0 0.6500E +02 - 0.5969E +02 0 0.000 0.00 199 O 0.6500E +02 - 0.4469E +02 0 0.000 0.00 200 0 0.6500E +02 - 0.2969E +02 O 0.000 0.00 201 0 0.7597E +02 0.3769E +02 0 0.000 0.00 202 0 0.7597E +02 0.43692 +02 O 0.000 0.00 203 U 0.7597E +02 0.4735E +02 O 0.000 0.00 204 0 0.7597E +(12 0.5931E +02 0 0.000 0.00 205 0 0.7597E +02 O.E331E +02 0 0.000 0.00 :_'06 0 0.7557E +02 0.1073E +03 0 (1.000 0.00 207 0 O.E3U1E +02 0.3508E +'02 0 0.000 0.00 218 O 0.000 0.00 209 O 0.8301E +02 0.4735E +02 0 0.000 0.00 i(, 0 .o,>O1C4J2 C.- ,I:;12 +02 (.` ').!l0C t1. 00 211 0 0.8301E +02 0.8331E +02 0 0.000 0. 00 112 0 01.8301E+02 0.i073E +03 (I 6.000 0.00 2'.3 0 0.6600E +02 - 0.83617E +02 0 0.000 (".Coto 214 0 0.66COE +02 - 0.596 =E +02 0 0.0(10 Co. 00 2.5 0 01.8600E +02 - 0.4469E +02 0 0.00CI 0.00 216 U 0.8600E +02 -C). 2969E,02 0 (1.000 0.00 217 0 0.9012E+112 0.3167E+02 0 0.000 0. 00 18 co 0.9012E +02 0.3767E +02 0 0.000 0.00 21 S U (), 9012E +02 0.47-•5E +02 U 0.000 0. 00 220 0 0.9012E +O2 0.5931E +02 CI 0.000 0.00 :21 0 0.9C'12E +C2 0.8331E +02 n Q. 000 Co. CIO 222 0 0.9012E,02 0.i073E +03 O 0.000 0.00 __. 0 G.1() 10E +03 - 1.!.8S69E +02 0 0.00(` 0.(10 i 010S +03 - ':1.5909:. +02 U G, 4.100 0.00 "5 0 0.000 0.00 26 C. 0.3010E +0 - 0.2969E +02 U 0.000 0.00 227 O 0.1010,E +0-- - 0.1979E +02 0 U. 006 0.00 X28 0 0.1010E -03 - :).99.OE,01 it 0.000 C`: 00 _::S U Co. 10i('E +03 Co.00:i)0 OO _-fi Sc-70E v. C:.: 7 tiS =402 i` (',t•lii: (:. 1:. "�. .� C.1 !'.,..�.c -f•:. 0.330 -.: +0: (• (:,UOj G.(• 975'. C +i.- 0. 477,, E +02 C) C:. / 1171: C•. (/i • _ U U. S ?__ °:3E +i 1? 0. 59_.1 E +02 0 0.000 0.00 ;0 0 0.975 "iE +02 0.83.- >1c+O2 C1 37 0 C.S7�-3E,02 C:.1vi3E +O:'' 2.M CI :7.;,)7OC- : -. .?Z647,-1j1 0 4(`!: Q.CW 9 239 0 0.1070E +03 - 0.5969E +02 CI 0.000 0.00 240 0 0.1070E +03 - 0.4469E +02 u U. 000 0.00 231 0 0.1070E +03 -0. 2"769E+0.1 0 0.000 p,00 242 0 0.1070E +03 - 0.1979E +0' 0 0.000 0.00 243 0 U. 1070E +03 - 0.9900E +U1 U 0.000 (:.00 244 0 0.1070E +U3 0,0000E +UO (1 0, 000 0.00 245 0 0.1070E +03 0.667C)E +0 1 0 0.000 0.00 246 0 0. 1070E+03 0,1764E +02 0 0.000 0.00 247 0 0.1070E +03 0.22743E +02 0 0,000 U,00 _ 248 0 0.1070E+03 0,3343E +02 0 (:,000 0.00 249 G 0.1Cr70E+03 0.4735E +02 0 0.000 0.0v 250.. 0 0.1070E+03 0.59,,1E +02 (i O,VOO 0.00 251 0 0.1070E +03 0.6331E +02 O Co. 000 0.00 252 0 0.1070E +03 0.1073E +03 0 c.. 000 0.00 253 0 0.1160E +03 - 0.6369E +02 0 G, 000 O.UG 254 0 0.1160E +03 - 0.5969E +02 .0 0.000 0.00 255 U 0.1160E +03 - 0.4469E +02 0 0.000 0.00 256 0 0.1160E +03 - 0,2969E +02 0 0.000 0.00 257 0 0.1160E +03 - 0.1979E +02 0 0.000 0.00 258 0 0.1160E +03 - 0.9900E +01 0 0.000 0.00 259 0 0.1160E +03 0.0000E +00 O 0.000 0.00 260 0 0.1160E +03 0.8670E +01 O 0.000 0.00 261 O 0.3160E +03 0.1764E +02 O 0.000 0.00 262 0 0.1160E +03 0.2743E +02 4 111.000 0.00 263 0 0.1160E +03 0.3343E +02 0 0.000 0.00 264 0 071160E +03 0.4735E +02 0 0.000 0.00 265 0 0.1160E +03 0.591E +02 0 0.000 0.00 266 0 0.1160E +03 O.S331E +02 0 O.GOO 0.00 267 0 0.1160E +03 0.1073E +0'. 0 0.000 0.00 268 0 0.1340E +03 - 0.8369E +02 0 0.000 0.00 269 0 0.1340E +03 - 0.5969E +02 0 (,.000 0.00 271 0 0.1340E +OS - (I. 2969E +02 U 0.000 0.00 272 O 0.1340E +03 - 0.1979E +02 U G. C'00 0.00 273 0 0. 340E +U3 - 0.99001E +O 0 0.000 0.00 274 0 0.1340E +03 v.00pU2 +00 0 1.,,000 0.00 275 0 0. 13401: +03 G. 6670'2 +O1 0 G, 000 0. 00 276 O 0.13402' +03 0.1764E +02 0 0.000 0.00 277 0 0. 134:.)E +03 G. 2743E +02 0 (1.000 0.00 278 0 G. 1340E +0.: 0. 7.7,4 5E +02 (1 0.000 0.00 279 G 0.1340E +0S 0.4735E +0 2 0 0.000 0.01) 280 G 0.i5 =0E +03 0.r931E +02 0 0.000 0.00 281 0 i1.1 40E =OZ 0.E3'•1E +ir2 0 G. 000 0.00 232 - 0 0.1-•40Ei0-. 0.1073 = +03 0 G.000 0.OG 263 0 0.1520E +0:• - 0.8369E +0' U 0.000 0.00 O O, i:,20E +0- -G. 5769E+02 G 0.000 v. 00 2S5 0 0.1520'2 +03 - C.4469E+(; 2 U G.00G 0.00 296 it 0.1520E +03 - ..2969E +C,2 0 0.0)00 -0.00 267 O 0.1520E+07, -0. 1979E +(12 :1 U. 000 0.01 2199 0 G. 1520E +03 - 1,.9900E +01 U G,00':I 0.00 1,20E -0 O. rp:.,0E +:j';, i,, O"Q �.OJ Q. UC: �, U 52, OE C'.7_ =E, G- , 0.00;1 ...'C. G. i JL,/E +fly G. 4 Z �= i". 1 .. 00.1 1.:. CIO 0.15.0E +U, 0,5 ;7.1E +02 (, 0.090 :96 0 U.1`i:'vE +O -1 G.E`.31c +Cr_ fi 0, .07J 0.00 2S7 0 0.1:•2.19 +0,^, 0.11:7'i +G: t OUC1 0.00 296 C, 0. , : oi`E +C: -!'. c:: i+�''u - 0C ...011(1 :. OL 10 1 I 7 i ) 299 0 17 OE*03 0.1760E +03 -0.5969E+02 0 0.000 0.00 300 .0 : 0.1760E +03 -0.4469E+02 0 0.000 0.00 301 0 0.1760E + 0 - 0.2969E +02 0 0:000 0.00 302 0 0.1760E+0:� - C).19-,9E+02 0 0.000 0.00 303 0 0.1760E+03 -0.9900E+01 0 0.000 0.00 304 0 0.1760E+03 0.0000E+00 0 0.000 0.00 305 0 0.176CE*03 0.6670E+01 0 0.000 0.00 306 0 0.1760E+03 0.1764E+02 0 0.000 0.00 ZW 0 0.1760E+03 0.2743E+02 0 0.000 0.00 ZOS 0 0.1760E*03 0.33431E+02 0. 0.000.- 0.00 305 0 0.1760E+03 0.4735E+02 0 0.000 0.00 ,Z. 10 0 0.1760E*03 0.5930E+02 0 0.000 0.00 111 0 0.1760E +03 0.8331E +02 0: n.000 -0.00 0 0.1760E+03 0.1073E+03 0 0.000 0 , 00 313 0 0.2000E+03 -0.8369E+02 0 0.000 0.00 314 0 0.2000E +03 -0.5969E+02 0 0.000 0.00 315 0 0.2000E+03 -0.4469E+02 0 0.000 0.00 316 0 0.2000E+03 -0.2969E+02 0 0.000 0.00 317 0 0.2000E+03 -0.1979E+02 0 0.000 0.00 318 0 0.2000E+03 -0.9900E+01 0 0.000 0.00 319 0 0.2000E+03 0.0000E*00 0 0.000 0.00 320 0 0.2000E+03 0.8670E+01 0 0.000 0.00 321 0 0.2000E+03 0.1764E+02 0 0.000 0.00+ 322 0 0.2000E+03 0.274Z7E+02 0 0.000 0.00 323 0 0.2000E +03 0.3343E+02 0 0.000 0.00 324 0 0.2000E+03 0.4755E+02 0 0.000 0.00 325 0 0.2000E+03 0.5931E+02 0 0.000 0.00 326 0 0.2000E4-03 0.8331E+02 0 0.000 0.00 327 0 0.2000E+03 0.1073E+03 0 0.000 0.00 ELEMENT NODAL CONNECTIVITY MATERIAL CONSTR. ELEMENT BAND WITHIN LAYER NUMBER OF BETWEEN LAYER NOME -ER I J K L NUMBER INCR. TYPE WIDTH NODE INCR. ELEMENT LAYERS NODE INCR. I 1 95 94 O. O 1 1 BEAM 6 O 0 U 1 2 96 95 U O 2 1 EEAM 6 G G 0 1 3 97 96 O 0 3 1 BEAM 6 O U 0 1 4 98 97 U 0 4 1 BEAM 6 0 U U I 5 99 98 O U 5 1 EEAM 6 0 0 O I 6 100 99 O 0 6 1 BEAM 6 0 0 0 I" 7 106 100 O O 7 1 BEAM 21 0 0 0 I 8 116 106 U 0 8 1 BEAM 0 C, 0 I 9 122 116. O 0 9 1 BEAM 21 0 G 0 I 16 ., 132 "122' U 0 10- 1 EEAM -13 U U 0 I 1I 137 -132 U 0 11 1 BEAR 18 0 O U I 12. 146 137' U O 12 1 B EAM 30 0" i U I 13 155 146 0 u 13 1 BEAM 30 0 0 0 .� A' <. %'r a- ..... .. I 14 164 155 0 0 14 1- BEAM 30 O 0 G I 15 169 164 O 0 15 1 BEAM 18 0 0 U I 16 178 169 O 0 16 1 BEAM 30' 0 G U I 17 187 178 0 0 17 1 BEAM 30 0 0 0 I 18 192 187 U 0 18 1 BEAM 18 O 0 O I 19 201 192 O O 19 1 BEAM 30 O 0 O ) I 20 207 201 0 U 20 1 BEAM 21 0 0 0 I 21 217 207 O 0 21 1 BEAM 33 0 O 0 1 22 232 217 0 0 22 1 BEAM 48 O 0 O I 23 231 232 0 0 23 1 BEAM 6 0 0 G I 24 230 231 O O 24 1' BEAM 6 0 0 O I 25 229 230 O 0 25 1 BEAM 6 0 0 O I 226 2228 229 0 0 26 1 BEAM 6 O 0 0 I 27 .227 228 O 0 27 1 BEAM 6 O U U I 28 226 227 O 0 28 1 BEAM 6 0 G U I 29 1 16 17 2 1 1 QUAD ?•4 0 U 0 1 30 2 17 Iii :• 1 1 QUAD _4 U O U ) I 31 3 18 19 4 1 1 QUAD 34 O O 0 I 32 4 19 20 5 1 GGUAD 34 C, 0 0 I 33 5 20 21 6 1 2 QUAD 34 0 0 U 1 34 6 21 22 7 1 2 QUAD 34 0 0 0 I 35 7 22 23 8 1 2 QUAD 34 0 0 C, I 36 8 23 24 9 1 2 QL;AD 34 0 U U I 37 9 24 25 10 1 2 QUAD 34 O O 0 I 38 10 25 26 11 4 3 GOAD 34 0 0 C, I 39 11 26 27 12 4 3 QUAD 34 0 U O i I 40 12 27 28 13 4 .71 QUAD 34 0 0 I 41 13 28 29 14 4 4 QUAD Z4 0 0 0 I 42 14 29 3U 15 4 5 QUAD 34 U U 0 I 43 16 31 _ 17 1 1 QUAD 34 U U G I 44 17 -•2 - 12 1 i GuAD 34 U U 0 I 45 18 33 34 :9 1 1 QUAD =4 0 O 0 I 46 19 34 35 20 i QUAD 34 0 0 0 I 47 20 35 S6 21 1 2 QUAD 34 C, 0 I 48 21 36 37 _ 1 2 QUAD -,4 O 0 U I 49 _ 37 36 _ - - OuAC �4 0 0 C, I 50 _' Be Z5, 2L! _ _ [,UAD .•4 � 1 51 4 9 40 25 2 _ QL-AD -14 C I 2L, 40 <1 26 4 LUAD J 7 41 4- -'7 4 G,JnD . U U U 1 54 T7 -- a3 B 4 _ QUAD 7.4 1 55 2v 4's :4 2, - 4 UUAD 34 0 G O I °,6 :9 44 45 - 0 4 5 QUAD 34 U U O I 57 31 46 47 1 1 QUAD -4 0 U G �Z • I 58 r._ 47 4N T-- 1 I QUAD :14 0 C U j 1 59 33 48 49 34 1 1 QUAD .34 I 60 34 49 50 35 1 i 34 1 59 33 48 49 34 1 1 QUAD .34 I 60 34 49 50 35 1 QUAD 34 I 61 35 50 51 36 2 2 QUAD 34 1 62 36 51 52 37 2 2 QUAD 34 I 63 37 52 53 38 2 2 QJAD Z4 I 64 38 53 54 39 2 2 QUAD 34 I 65 39 54 55 40 2 2 QUAD 34 I 66 40 55 56 41 4 3 QUAD 34 I 67 41 56 57 42 4 3 QUAD 34 1 68 42 57 58 .: 43 4 3 QUAD 34 I 69 43 58 59 44 4 4 QUAD 34 1 70 44 59 60 45 4 5 QUAD 34 '1 71 46 61 62 47 1 1 QUAD 34 I 72 47 62 63 _ 48 1 1 QUAD 34 I 7Z 48 63 64 49 i 1 QUAD 34 I 74 49 64 65 50' 2 2 QUAD 34 1 73 50 65 66 51 2 2 QUAD 34 1 76 51 66 67 52 2 2 QUAD 34 I 77 52 67 68 53 2 2 QUAD 34 I 78 53 68 69 54 2 2 QUAD 34 I 79 54 69 70 55 2 2 QUAD 34 1 80 55 70 71 56 4 3 QUAD 34 I 81 56 71 72 57 4 3 QUAD 34 I 62 57 72 73 58 4 3 QUAD 34 1 83 58 73 74 59 4 4 QUAD 34 I 84 59 74 75 60 4 5 QUAD 34 I 85 61 76 77 62 1 1 QUAD 34 1 86 62 77 78 63 ] QUAD 34 I 87 63 78 79 64 3 1 QUAD 34 1 86 64 79 eG 65 2 2 QUAD 34 I 89 65 80 81 66 2 2 QUAD 34 I 90 66 81 8L 67 2 2 QUAD 34 1 91 67 62 83 68 2 2 QUAD 34 I 92 68 63 64 69 2 2 QUAD 34 I 93 69 64 85 70 2 2 QUAD 34 I 94 70 85 66 71 4 QUAD Z4 I 95 71 86 67 72 4 3 6•UAD 34 1 96 72 87 88 73 4 3 QUAD 34 I 97 73 88 89 74 4 4 QUAD Z4 I 98 74 89 90 75 4 5 QUAD 34 1 99 76 91 92 77 1 1 QJAD 34 1 100 77 92 S3 78 — 1 QUAD 34 I 101 73 93 94 74 I 1 QUAD 34 I 102 79 44 95 BO QUAD S4 I 1O3 80 9ti •96 61 2 2 QUAD 34 I 104 81 90 i7 82 2 2 QUAD :4 1 105 82 97 C?8 83 2 2 QJAD 34 1 106 83 98 99 84 2 ? QUAD 34 1 107 84 99 lO0 85 2 2 QUAD 34 1 108 85 100 :01 86 4 -• QJAD 34 1 109 86 lUi IU2 E7 4 3 QJA1+ 34 1 110 U7 ' •.+2 1 C•3 8E 4 _ QL;AE• ti i 1 1 1 68 : G_. iO4 89 4. 4 Cl-'HD •4 1 11: 8S ] : +4 105 SO — PUAD t t• :7 :'i 2 1,- 2 1 QUAL, 46 1 114 92 i3 114 9:• :1 1 QUAD 46 1 1;5 93 114 115 94 3 1 C LIAD 46 i16 lU0 :06 107, 101 4 3 QUAD 16 I 117 101 107 108 102 < .• QUAD 16. 1 :1E 1G2 :7P 1G9 10"; t QUAI 1 :. O 0 O 0 O O O 0 U G 0 O 0 U 0 0 O 0 0 O 0 O O O O O O O 0 0 0 U u 0 O G G O G 0 U 0 0 0 0 1) U O U U O l+ G n U 1+ U G 0 O 0 0 0 0 0 O 0 0 U O 0 O O U 0 0 O O O O 0 0 0 0 0 0 0 O O U 0 U O U O 0 G 0 U 0 0 0 0 O 0 0 i+ 0 G G C• 0 U O Ij O 0 0 O O 0 O U 0 O 0 O U C+ O 0 0 0 0 0 0 O 0 O O 0 U 0 0 O 0 0 0 O U co 0 G U U 0 U U 0 U O G 0 4-1 �i 0 i+ O U U C• G O 0 0 U O U I 119 103 109 110 104 4 4 QUAD 16 O 0 O 1 120 104 110 111 105 4 5 CUAD 16 0 0 0 1�1 106 116 117 107 4 Z. QUAD 24 U 0 0 1 122 107 117 :1S 106 4 QUAD 24 U ii 0 123 IOS 116 119 109 4 QUAD 24 U f.+ 0 I 124 109 119 120 110 4 4 QUAD 24 U 0 C+ 1 125 110 120 121 111 4 5 QUAD 24 0 U U I 126 112 128 129 "113 1 1 QUAD 36 0 tj O I 127 113 129 130 114 1 1 QUAD 36 0 0 0 " I 128 114 130 131 115 1 1 GOAD 36 0 U 0 I 129 116" 122 123 117 4 QUAD 16 0 0 0 I 130 117 123 124 :16 4 3 QUAD 16 0 U O I 131 116 124 125 119 4 Z QUAD 16 0 U 0 I 132 lls 15 i26 120 4 4 QUAD 16 U tj 0 I 133 120 126 127 121 4 5 QUAD 16 0 0 O I 134 122 1;2 1 -3 123 4 3 QUAD 24 0 0 O I 135 123 133 124 0 4 3. TRI. 22 O 0 0 I 136 124 133 134 125 4 3 QUAD 22 0 O O I 137 125 134 135 126 4 4 QUAD 22 0 0 O I 138 126 135 136 127 4 5 QUAD 22 0 0 0 I 139 12S 142 143 129 1 1 QUAD 32 0 0 O I 140 129 143 144 130 1 1 QUAD 32 0 0 0 I 141 130 144 145 131 1 1 QUAD 32 O 0 0 ) 1 142 132 137 138 133 4 3 QUAD 14 0 0 O I 143 133 138 139 134 4 3 QJAD 14 O 0 U I 144 134 139 140 135 4 4 QUAD 14 U 0 U I 145 :35 140 141 136 4 5 QUAD 14 Ct U 0 I 146 137 146 147 138 4 QUAD 22 0 O U I 147 138 147 14S 139 4 3 QUAD 22 0 0 0 I 148 139 146 149 140 4 4 QUAD 22 0 C. O I 149 140 149 150 141 4 1 CUAD 22 0 0 0 1 15U 142 151 it,2 ;43 1 1 L'JHJ 0 C, (' - ) �. I 151 1 43 152 15 144 1 1 CUAD 22 0 O 0 1 152 144 153 154 145 1 1 LUAD 22 C+ U 0 1 153 146 155 156 147 4 3 QUAD 22 l "+ 0 0 1 154 147 156 157 14'3 4 3 CJAD _ O 0 i+ I 155 148 157 158 149 4 4 QUAD 22 4 0 U 1 156 149 156 159 150 4 5 CUAD 22 it 0 0 I 157 15: 160 161 152 1 1 QUAD 22 0 0 U 1 156 152 161 162 153 1 1 uUAD 22 0 0 0 I 159 153 162 163 154 1 1 QUAD 22 0 0 U 1 160 155 164 165 156 4 QUAD 22 0 O U :... .. I 161 156 165 166 157 4 QUAI; 22 Ct 0 0 I 162 157 166 167 ,5S 4 4 CUAD 22 o U U I 163 158 167 lbS 159 4 5 QUAD 22 0 U 0 1 164. 164 )v9 170 165 4 3 QUAD 14 C'. C+ U I 165 165 170 171 166 ti 3 QUAD 14 O tt 0 I I 166 166 171 172 167 4 4 QUAD 14 G 0 0 I 167 167 )72 173 16S 4 5 CUAD 14 .0 0 0 1 168 1.60 1i4 175 161 i 1 QUAD _ 0 C. I 169 161 175 176 162 1 1 [;JA: 0 G _ 17, 165 i 7C, . i c; ;70 - � '.,A;: __ `j t% i, 170 7 .' 18t; 17- :7i IE,0 16• a - LUAU• " _ S• U U 174 17 :E1 lo:. i7., 4 _, CJAL C (% u • 1 1 1-5 174 iSZ• 1,34 175 1 GJAZI 22 U 0 0 i :E• :75 !64 185 176 1 1 QUAD V 0 V 1 -7 1 :76 10'5 :aE 171 1 r-GAa U 1 17E .78 Io7 )5S i7= CL;1 _ (: U 0 0 I 179 179 188 189 180 4 1 180 180 189 190 181 4 I 161 181 190 191 182 4 I 162 183 197 198 184 1 1 103 1B4 198 199 185 1 1 184 165 199 200 186 1 I im 187 192 193 188 4 1 1B6 188 193 194 189 4 1 187 189 194 195 190 4 I 188 190 195. 196 191 4 I 189 192 201 202 193 4 1 190. 193 202 203 0 --4 1 7 L'- —_ 9 - . 193 203 204 194 4 1 192 "194 204 205 195 4 1 193 195 205 206 196 4 I 194 197 213 214 198 1 I 195 198 214 215 199 1 I 196 199 215 216 200 1 I 197 201 207 208 202 4 1 198 202 208 209 203 4 I 199 203 209 210 204 4 I 200 204 210 211 205 4 I 201 205 211 212 206 4 I 202 207 217 218 208 4 1 203 208 218 219 209 4 I 204 209 219 220 210 4 1 205 210 220 221 211 4 1 206 211 221 222 212 4 1 207 213 223 224 214 1 I 208 214 224 225 215 3 1 209 215 225 226 2216 3 1 210 217 232 0 218 4 1 211 218 233 234 219 4 1 212 219 234 235 220 4 1 213 220 235 236 221 4 I 214 221 236 2 =•7 222 4 1 215 223 238 2=-9 224 1 I 216 224 239 240 225 3 1 217 2225 240 241 226 0 I 218 226 241 242 227 0 1 219 227 242 243 228 5 QUAD 1 220 228 243 244 229 2 I 221 22-9 244 245 230 2 1 222 230 245 246 231 I 223 231 246 247 232 2 1 224 232 247 246 233 4 I 225 233 248 249 234 4 1 226 234 249 250 235 4 1 227 235 250 251 236 4 I :28 2-•6 251 252 2-17 4 1 229 238 25_ 25L 239 1 .30 _'9 2_ ;4 255 240 3 I 231 0 _ . 256 241 I .3? 741 =`t, 257 242 2 242 2f4l 243 I 4 :43 25� 2':9 244 I 244 15Q 245 2 I ^36 245 X60 261 .46 2 1 :37 246 16) 24t.2 247 3 QUAD 22 0 0 0 4 QUAD 22 0 0 O v QUAD 22 0 0 0 1 QUAD 32 0 0. 0 1 QUAD 32 0 O 0 1 QUAD 32 0 O 0 3 QUAD 14 0 0 0 3 QUAD 14 0 0 0 4 QUAD 14 0 0 0 5 QUAD 14 0 0 O 3. QUAD 22 0 0 0 3 TRI. _ 0 .. 0 0 3 QUAD 24 0 = 0 `' 0 4 QUAD 24 0 0 0 5 QUAD 24 0 0 0 1 QUAD 36 0 0 0 1 QUAD 36 0 0 0 1 QUAD 36 0 0 0 3 QUAD 16 0 0 0 3 QUAD 16 0 0 0 3 QUAD 16 0 0 0 4 QUAD 16 0 O 0 5 QUAD 16 0 0 0 3 QUAD 24 0 0 0 3 QUAD 24 0 0 O 3 QUAD 24 0 0 0 4 QUAD 24 0 0 0 5 QUAD 24 0 0 0 1 QUAD 24 0 0 0 1 ' GJAD 2L 0 0 O 1 QUAD 24 0 0 O 3 GJAD 34 0 U 0 3 QUAD 34 0 0 0 3 QUAD 34 0 0 0 QUAD 34 0 0 0 5 QUAD 34 0 0 0 1 QUAD 34 0 0 0 1 QUAD 34 0 0 0 1 QUAD 34 0 U O QUAD 34 0 0 0 2. QUAD 34 0 0 0 2 GUAD 34 0 0 0 2 QUAD 34 0 0 0 GLAD _•4 0 U 0 2 QUAD 34 0 O 0 QUAD 34 0 O O 3 QUAD 34 0 0 0 3 i QUAD 34 .0 0 0 4 QUAD 34 0 0 0 5 QUAD -4 0 U U i QUAD 34 U G 0 1 QUAD 7.4 0 0 is 1 GLAD 0 2 QUAD. 34 U 0 0 GJAD =,4 0 U G 2 LUAU 34 0 U 0. QUAD :4 0 U G 2 I CIJAD 34 0 O 0 241 250 265 266 251 4 4 QUAD 34 V u u 1 242 251 266 267 252 4 5 QUAD 34 0 U i I 243 253 263 269 254 1 1 QUAD 34 C, U G 1 244 25.,4 269 70 255 1 1 QUAD 34 U 0 0 I 245 255 270 271 256 1 1 QUAD 34 0 0 U I 246 256 271 272 257 2 2 QUAD 34 U U 0 I 247 257 272 273 258 2 2 QUAD �54 O O O I 248 258 273 274 259 QUAD 34 0 0 V I 249. 259 2274. 275 2260 2 2 QUAD 34 U 0 O I 250 260 275 2276 261 - 2 QUAD 34 G U t? I 251 261 276 277 262 2 QUAD 34 G 0 0 I 252 262 277 278 263 4 3 QUAD 34 O 0 0 I 253 263 278 279 264 4 3 QUAD 34 0 O G ! I 254 264 279 230 265 4 3 QUAD 34 0 0 0 I 255 265 280 281 266 4 4 QUAD 34 O 0 0 I 256 266 281 282 267 4 5 QUAD 34 0 0 0 1 257 268 283 284 269 1 1 QUAD 34 O 0 0 I 258 269 284 285 270 1 1 QUAD 34 0 0 0 I 259 270 285 286 271 1 1 QUAD 34 0 0 0 I 260 271 286 287 272 1 2 QUAD 34 0 0 0 I 261 272 287 288 273 2 2 QUAD 34 O 0 U I 262 273 288 289 274 2 2 QUAD 34 U 0 0 I 263 274 289 290 275 2 2 QUAD 34 O 0 U 1 264 275 290 291 276 2 2 QUAD 34 0 U 0 I 265 276 291 292 2277 2 2 QUAD 34 O 0 0 7 I 266 277 292 293 278 4 3 QUAD 34 U 0 O I 267 278 229: 294 279 4 3 QUAD 34 O 0 0 1 268' 279 294 2S5 280 4 3 QUAD 34 0 O iu I 269 280 295 296 281 4 4 QUAD 34 O 0 0 I" 270 281 2", 6 25,7 232 5 GLAD -14 U 0 O I 271 263 298 299 284 1 1 QUAD 34 O 0 0 I 2722 284 299 300 265 1 1 QUAD 34 V U O 1 277, Lc5 -•00 301 286 1 1 QUAD v.4 0 0 O I 274 266 301 302 287 1 2 QUAD 34 0 O U I 275 267 302 303 268 1 2 QUAD 34 0 0 O I 276 288 303 5104 289 1 2 QUAD 34 O U 0 I 277 -39 304 305 290 2 2 GOAD 34 U 0 U I 278 290 305 306 291 _ 2 QUAD 34 0 0 U I 279 291 306 1-07 292 2 2 QUAD 34 0 U 0 I 280 2922 3u7 308 293 4 3 QUAD 34 0 0 it I 281 293 --08 309 294 4 QUAD 34 U 0 u I 2282 294 309 --lO 2, S5 4 QUAD :,4 v 0 0 I 283 2. 310 3'11 2?6 4 4 QUAD 34 O U 0 I 284 296 311 -112 2G7 4 5 QUAD 34 O 0 C: I 285 298 313 -•14 299 1 1 QUAD 34 0 U U I 286 2i,9 314 315 ZOO I 1 QUAD 34 0 0 O I 287 300 315 316 301 1 1 CUAD 34 0 0 0 I 288 301 316 x•17 302 1 Z, QUAD :1 ii U O 289 -•0:: 317 7.16 3(.3 1 2 GUAu 34 O U 0 I 290 = .:i8 1-.15 3't4 1. CJ:;D _4 ( f? i 291 i 0 =,i5 ?.t Z722 7 i 2 W ;Z -.4 O 1 .'44 , 07 7.__ PE: 4 z CJAU O !, 2 ?5 _ �24 Z.OS 4 _ OUAD 34 (• 0 O 1 290 3051 r. + -_ .•16 4 QUAD 514 !i 0 O 297 10 :15 -26 --i 1 4 4 QUAD O O U _ 1 29i, 7--1 726 27 -!2 4 m m m m m m m m m m m m m m m m m m = %x*BOUNDARY CONDITIONS... FORCES = LHS DISPLACEMENTS INCHES... iOUNLARY LOAD X -FORCE OR Y -FORCE OR X -Y ROTATION NODE STEP X- DISPLACEMENT Y- DISPLACEMENT DEGREES 2 1 D O. 0000E +00 F = CI.0000E +00 0.0000E -00 3 1 D= 0. OOOOE +GO F 0.6000E+00 U. OOUOE +OO ® 4 1 D 0.0000E +00 F = 0.00OOE +00 O.00OOE +(K) 5 2 D 0.0000E +00 F = 0. 0000E+00 0.0000E +00 6 2 D= 0, 0000E +00 F 0. 0000E +00 U. 0000E +00 ® 7 2 D = '0.0000E -00 F = 1). 0.00K)OE +00 ) 8 2 D = 0. ()i00E +00 F = 0. 0000E +(10 0. 0000--+00 9 D = 0.0000E +00' F.= U. 0000E +00 0.0000E +00 7 10 D = 0. 0000E +00 F = 0.0000E+00 0. (K)00E +00 11 3 D = 0.0000E +00 F = 0.0000E +00 0.0000E +00 12 3 D = 0.0000E +00 F = 0.0000E +00 0.0000E +00 13 3 D = 0.0000E +00 F = 0.0000E +00 0.0000E +00 ' 14 4 D = O.0000E +00 F - 0.0000E+00 0.0000E +00 15 S D = O.0000E +00 F = 0.0000E +00 0.0000E +00 314 1 D = 0.0000E +00 F = 0.0000E+00 0.0000E +00 315 1 D = 0.0000E +00 F = 0.0000E +00 O.OGOOE +00 316 1 D = 0.0000E +00 F - 0.0000E +00 0.0000E +00 317 2 D - 0.0000E +00 F = 0. 0000E+00 O.0000E +00 318 2 D = 0.0000E +00 F - 0.0000E +00 0.0000E +00 x.19 2 D = 0.0000E +00 F = 0.0000E +00 0.0000E +00 320 2 D = 0.0000E +00 F = O.0000E +00 0.0000E +00 x•21 2 D = 0.0000E +00 F = 0.0000E +00 0.0000E *00 322 2 D - 0.00C,0c +00 F = 0.0000E +00 0.0000E +00 J Z-- Z, D = 0.00()OE +00 F = C. 0000Z+00 0. 0000E+00 X24 3 D = 0. 0000E.00 F = 0.0000E +00 0.0000E +00 . 25 :: D = 0.000C)E +OG F = 0.[1000E +00 0.0000E +00 72. 4 D = 0.0000E +00 F 0.0000E +00 0.0000E +00 327 5 D = 0.0000E +00 F = 0.00010E +00 0.0000E +00 1 1 D = 0.0000E *O0 D.= 0.0000E +00 0.0000E +00 16 1 D = O. 0000E +00 D = 1,,0000E *00 0. 0000E+00 > 31 1 D 0.0000E +0[I D = U. 0000E +00 0.0000E +00 46 1 D = 0.0000E +00 D = 0.0000E +00 0.0000E +00 61 1 D = 0.0000E +00 D = 0.0000E +00 0.0000E +00 76 1 D = 0.00110E +00 D = 0. 0000E +00 0. 0000E +00 91 1 D = 0.0000E +00 D = 0.0000E +00 0.00G0E +U0 1 D = 0. 0000E +00 D = i,. 01,00E +00 0. 00O0E +00 126 1 Ii = 0. 0000E+()() D = 0.0000E +00 O. 0000E +00 1t^ 1 D 0.0000E +00 D = 0.0000 = +00 0.00GOc'*00 I D = .1.0000E -00 D = 0.0000E +00 0.0000E +00 160 1 D 0. 0C::JUE +00 1, = 0. 01jf)0E +00 174 - I L = li. in:)00E +0[, D = 0. [K.C)OE +C10 ( +. 04GJE +0i, IE3 1 D = 0. 0000E,00 D = C. 0000E +00 197 1 D = 0.UV00E +00 D = 0.0000E -00 0.0000E +(10 21�. 1 Ii = :,7,(IQ()1iEt[Ilj li= f),l.i()(If,E + %1(1 �1,1[101IE +110 _CC 1 D 0..%:u;:Oc +C;) _ O. [,000_ 00 __:. i D = ..,,i,%ifj;•� +�)[; C; _ (.0i;fu)E�Oi` 0.000:;c +00 _ ll':1.:•[: ['t %,[l =:. %If1:.�OL +iI %, Q. QI :IIiQG +(1';) I _ .41.,00E +00 _ L +c)C, L' = 0.tio0L`c�00. 0.U0:)0E+Oi; _i'i: L• 1i. :11I(.,llC +i/() [i c .. Gi7c.(I� +GI l:. UiJQI :)C+ll(, v. >Z:::::::: ^:: :y..:.. . 0,00(r]c +00 i` _ j.flOJ0c *C,U i1,0OiJO_ +(I[r 1 :,8 F =. 0. 10,10E -00 i = -0. 4678E +0, m m r m m m m == m= m m m m �d t t t s t t FOR MESH GENERATION OF i Y t t t t 7 COt + /SPAU ARCH CULVERT 16' -0" SPAN THE NUMBER OF DATA ERRORS IS----- - - - - -- 0 THE NUMBER OF SOIL MATERIALS IS-- - - - - -- 4 THE NUMBER OF PIPE MATERIALS IS-- -- - - -- ?6 THE NUMBER OF INTERFACE MATERIALS IS - -- C+ BAND WIDTH ESTIMATE (MAX) -------------- 48 " s s t t t t t MESH DATA HAS BEEN SAVED t Y AN ORDERED LIST OF BEAM ELEMENTS AROUND PIPE. 7 ORDERING IS CLOCKWISE FROM TOP TO BOTTOM OR LEFT TO RITE. 1 2 3 4 5 6 7 8 S 10 7 11 12 13 14 15 16 17 i8 14 20 21 __ 23 24 25 26 27 28 7 � �d m m m m m m = m m m = m = m m = = m m eft In W a. O 0 0 0 O• 0 0 0v 0 0 o o o U; O L7 O Eo In cr w « ) 0 tr LL « « w I- z ILI iz z + Ill Ill w lu n W -r -C U !-.I 0 C. 0 IN -4 0 Q 0 I . L 4TJ 0 li %-1 + 0 0 C. CID + 0 - L; p 0 C. W 0 • CA N III E F- CL O W Z Z l i III CO I, C. N r N V 0 a z f r cc Li cc 0 0 -1 (n Ix r 0 1.- x r u W 0- CL m 0 C4 0 1- ILI r C, ul L) <r A En z Ill cc I- a L) u X z W ) z x .. " .1 K w <; S L2 LL (r Ill . 0 a r (I) li W W - -I u :3 U) 73 z 0 La CL Ul . v Cl -i F- ❑ LL :3 a 0 <E Li Ix IAJ Ill I F- Ul z 0 -J n 0 OL r W LO Li E fa cc r 0 r -j uj cr) IT LLI in x IT j A a. w •1 M L) III U) 14 0 UJ X :3 U CC 0 1: b) In CC 0 r 03 <1 2 z r- a z ill 0 Ll. >- z -1 U) 0 a 0 LL >. CC 0 z " -j u 2 2 Q 0 In n LLJ 0 0 0 X L!) rf) — 0 r cc W F- -1 0 W -J Ill LL W la Lt. Lli U J ILI 2 LL -i -) ci ;j Z6, w Z z 000<1 w En Z (1) 4T I- Z 0 0 cz -0 q U 0 11 Z 00 Ill >- O. ILI -j r -i I: Li O m u LL - ir W CL Q cc w n- 0 X F- IM (If YJ ILI O 1 0 z fL cc ft 0 CL L'L u X ti CONFINED MOD.= 0.4121E +07} LATERAL COEFF.= 0.2048E +00 1 PROPERTIES FOR MATERIAL 4 tsttttttSM90 DENSITY 0.15600E +03 CONTROLS FOR DUNCAN SOIL MODEL - - - MAXIMUM ITERATIONS.......... 5 . l ENTERING ELEMENT RATIO....... 0.5000 HYPERBOLIC STRESS - STRAIN PARAMETERS SOIL CLASSIFICATION ........ SM90 COHESION INTERCEPT C....... 0.0000 FRICTI014 ANGLE PHIO......... 0.5580 10-FOLD REDUCTION I14 PHiO... 0.0698 SCALED MODULUS NJMBER ZK .. 300.0000 MODULUS EXPONENT ZN ....... 0.2500 FAILURE RATIO RF .......... 0.7000 BULK MODULUS NUMBER BY, .... 250.0000 SULK MODULUS EXPONENT BM .. 0.0000 i I .21 STRUCTURAL RESPONSE OF CULVERT FOR LOAD INCREMENT I COORDINATES, DISPLACEMENTS AND CRACK DEPTHS ARE IN INCHES PRESSURES ARE IN LB/INX92 MOMENTS ARE IN IN.*LB/IN. THRUST AND SHEAR ARE IN LB/IN. NPPT X-COORD. -N-PRES. -KOMENT SHEAR_.- P*E. 'STRESS Y-COORD. Y-DISP --S-PRES. THRUST CRACK DEPTH -101.00 -0.13693E-01 0.26853E+02 0.3203E-01 0.00000E +00 -0.34717E+02 -29.69 -0.51073E-01 0.00000E+00 -0.13292E+03 0.00000E+00 -0.13292E+03 2 -101.00 -0.+12467E-01 0.32075E-03 -0.34371E+03 0.34715E+02 -0.34713E+02 -19.79 -0.51105E-01 0.86218E+00 -0.12866E+03 0.00000E+00 -0.12439E+03 3 -101.00 -0.11144E-01 -0.34542E-03 -0.68702E+03 0.34715E+02 -0.34717E+02 -9.90 -0.51136E-01 0.87165E+00 -0.12008E+03 0.00000E+00 -0.11577E*03 4 -101.00 -U.96236E-02 -O.IE265E-01 -0.10308E+04 0.32215E+02 -0.34712E+02 0.00 -0.51164E-01 0.87085E+00 -0.11246E+03 0.00000E+00 -0.10767E+03 5 -100.60 -0.80719E-O.- - 0.77132E -01 12886E+04 0.25602E+02 -0,34716E+02 8.67 - 0.51258E -01 0. 862-28E+00 -0.1(;641E+O-- (?.00uQoE+00 -u. i l.:000E+01 6 -99.43 -0.62716E-02 - 0.13874E +00 -0.148Z3E-04 0.19037E+02 -0.34717E+02 17.64 -0.515IIE-01 0.84714E+00 -0. iOli--lE+O:; 0.00000E +00 -0.91636E+02 7 -97.53 -0.41770E-02 - 0.46684E +00 -0.1646eE+04 -0.1952eE+02 -0.34619E+02 27.43 - 0.51937E -01 0.72261E+00 - 0.84211E +02 0.00000E+00 -0.83877E+02 8 -90.12 -0.7,244r)E-02 -0.80402E+00 - 0.11744E +04 -0.54772E+02 -0.174755E4+02 Z71. 67 -0.53530E-01 0.40485E+00 -0.68059E+02 0.00000E +00 -0.76486E+02 9 -63.01 -0.24681E-02 -0.70896E+00 -0.74a5 -E-0Z- -0.53690E402 --0.34759E +02 35.08 -0.5t;221E-01 0.33514E+00 - 0.60657E +02 O.00000E+00 -0.69889E+02 10 -75.97 - !,.185756 -02 -0. -0. -Zz 7--�F +C,7 - 0. '.*. 1 052c 02 - 0.:471;06 +C -2 - i 5E -VI i.,. 22681F+C; -0.5 5 -;E+02 -v. ,6- ,@0 =-0-- E'150861- Q. 41.--s -0. 606t; 1E-01 0. 1,Z,56F+0(, -6.44641E:4C,-- 0. 0000oF+u0 - 0.452.)2E +02 12 -45.00 - 0.34070E -03 -(j. 65742-.-400 0. 10 7 --'-'E E 04 -0.33632E+02 -0.Z4757E+02 4�.!;7 -0. c,,mZ47E-01 0. 12785E+00 -(;.�O:;09E-.) 2' -0. 72t 50E +02 .21 1;• -30.00 - 0.69158E -04 - 0.86414E +00 0.14973E +04 - 0.22552E +C,2 - 0.34752E +02 45.83 - 0.66954E -01 0.85620E -01 - 0.37303E +02 0.00000E +00 - 0.19557E +02 14 - 15.00 0.45825E -04 - 0.86692E +00 0.17522E +04 - 0.11298E +02 - 0.34753E +02 46.94 - 0.68689E-01 0.42656E -01 - 0.35502E +02 0.00000E +00 -0.65172E +01 1 - 15...- "'`' _.'. 0.00 - 0.47754E -04 -- 0.86745E +00 0.18372E +04" - 0.93887E - -02" .- 0..34754E +02. 47.31`` .- 0.69288E -01 70.2720SE_ -04'" =C1 34904E +02 0.'00000E +OO 0.04984E +01 16 15.00 0.49447E -04 - 0.86834E +00 0.17524E +04 0.11290E +02 - 0.34752E +02 ) 46.94 - 0.68698E -01 - 0.42737E -01 - 0.35502E +02 O.O0000E +00 0.19559E +02 17 30.00 0.16373E -03 - 0.66409E +00 0.14975E +04 0.22534E +02 - 0.34753E +02 45.83 - 0.66973E -01 - 0.85558E -01 - 0.37304E +02 0.00000E +00 0.32651E +02 18 45.00 0.48362E -03 - 0.85702E +00 0.30722E +04 0.33631E +02 - 0.34748E +02 43.97 - 0.64277E -01 - 0.12767E +00 - 0.40308E +02 0.00000E +00 0.45797E +02 j 19 60.00 0.10597E -02 - 0.85010E ±00 0.47643E +03 0.44688E +02 - 0.34758E +02 7 41.35 - 0.6088BE -01 - 0.17304E +00 - 0.44641E +02 0.00000E +00 0.59509E +02 20 75.97 0.19401E -02 - 0.83578E +00 - 0.34674E +03 C,.518Z0E +02 -0. 4774E +02 37.69 - u.56962E -01 - 0.22910E +00 -0. 5202,3E+02 1..00000E +00 0.698e1E +O2 21 83.01 0.2.5.562E -02 - 0.79663E +00 - 0,,74796E +03 0.55695E +02 - 0.34838 -c+02 35.08 - 0.55272E -01 - 0.34807E +00 - 0.60689E +02 O.00OOOE +C,O 0.76554E +02 ! 22 90.12 0.,313301E -02 .-0. 78613E,00 - 0.11733E +C4 0.54704E +02 - 0.34748E +02 .1.67 - 0.53635E -01 - 0.40181E +00 - 0.68176E +02 0.00000E +00 0.83803E +02 23 97.53 0.42607E -02 - 0.48465E +00 - 0.16479E +04 0.19440E +02 - 0.34748E +02 27.43 - 0.51991E -01 - 0.73040E +00 - 0.84516E +02 0.00000E +00 6.91916E +02 24 99.45 0.63<98E -02 -0. 14519E +00 - 0.14B24E +04 - C %.'1902,6E +02 - 0.34695E +02 17.64 - 0.51572E -01 - 0.Ut;545G +00 -0. 1003-12+0Z 0.00000E +00 0.10017E ±0:• .^.5 100.60 0.S:4 51. E -0:: - 0.76601E -Oi - u.546c4'al:0'2, S.6% - ..51-- 19 = -01 -0. 853E0E +041 - O.:GoS;; =_+U_ ..00JOi,_ +O0 O. A(j E +03 .G 101.00 C..SLS2:E -02 - 0.;76';15 -Ui - O. 0a 0.Ov - ..ZA22:;E. -U1 -0. 86990E+00 - 0.112`�9E -J3 O.00000E +00 0.11:,85[ +03 27 :01.00 0.11203E -0: 0.24673E -03 - 0.6@6Tl -E +C +3 - 0.34709E +02 - 0.34710E +02 -9.90 -0. ° 1193E -0; -C:. 5.6534E +00 -0. 12(;27E,(,-. v.4U00C: = +:,,. ,.,. i;:a::5_ +i .22 J - 101.00 0.12525E -01 - 0.49346E -03 - 0.-7.4362E +03 - 0.34708E +02 - 0.-47()6E +02 =15.79 - 0.51167E -01 - 0.86849E +00 - 0.12875E +OS 0.00000E +00 0.13305E +03 101.00 0.1v745E -01 - 0.26878E +02 0.14648 2-01 0.00000E+00 1).000OOE +OO -29.69 - 0.51134E -01 0.00000E +00 - 0.13305E +03 O.00000E +00 O.00000E +00 1 23 i m m r m m m m m = � m m= m == m m= STRAINS IN THE INNER AND OUTER FIFER OF THE CULVERT WALL (ONLY STRAINS FOR COMPRESSION 2014ES HAVE PHYSICAL MEANING) NPPT INNER STRAIN OUTER STRAIN -U. 8; 861E -Ob 0. ;6c4 -E -J5 3 -0. 12998E -f•4 C. i0S7`.E -05 4 - ..17040_ -0ti 0. i'-12"&=--1)4 5 -v. IU056E-04 C.1S�JJE- 6 - 0.12733E -04 0.91839E -05 7 -C. 70486E -OS 0.47490E -05 8 - 0.9561E -0S C.70:21E -05 9 - 0.98190E -OS 0.71707E -05 pr .2q STRESSES IN CULVERT WALL (PSI) FOR LOAD iNCREMENT 1 ELLIP. OR NPPT INNER CAGE OUTER CAGE CONCRETE SHEAR STEEL STEEL COMPRESSION STRESS ' 1 - 0.10396E +03 - 0.10398E +03 - 0.12884E +02 O.000OOE +00 2.. - 0.21284E +03' - 0.467'00E +01 - 0.32322E +02 0.42079E +fit 3 '-0.31820E +03 0:97894E +02 '- 0.51 20E +U2.' 0.42079E+01 - 4 .- 0.42446E+03` 0.19983E +O7 -0.704-18E+02- :0.39048E +01 5 - 0.43898E +03 0.24049E +03 - 0.71292E +02 0.27767E +01 6 -0. 33136E +03 0.19Z�46E +03 - 0.50273E +02 0.15440E +01 7 - 0.19612E +03 0.11971E - +03 - 0.27850E +02 - - 0.10630Ea-01 8 - 0.24420E +03 0.15151E +03 - 0.36941E +02 - 0.42958E +01 9 - 0.24136E +03 0.13311E +03 - 0.38769E +02 - 0.55927E +01 10 - 0.15407E +03 0.56269E +02 - 0.25102E +02 - 0.62851E +01 11 0.11931E +03 - 0.16759E +03 - 0.317022E +02 - 0.54179E +01 12 0.31581E+03 - 0.33275E +03 - 0.65950E+02 - 0.40766E +01 13 0.45586E +03 - 0.44981E +03 - 0.90256E +02 - 0.27311E +01 14 0.53983E +03 - 0.52000E +03 - 0.10483E+03 - 0.13695 =E +01 15 0.56783E +03 - 0.54340E+03 - 0.10969E +03 - 0.11380E -02 16 0.53992E +03 - 0.52007E +03 - 0.10484E +03 0.13685E +01 17 0.45592E +03 - 0.44986E +03 - 0.90267E +02 0.27314E +01 18 0.31581E +03 - 0.33275E +03 - 0.65950E +02 0.40765E+01 19 0.11942E +03 - 0.16769E +03 - 0.31722E +02 0.54167E +01 20 - 0.15389E +03 0.56114E +02 - 0.25070E +02 0.62824E +01 21 - 0.224123E +03 0.13295E +03 - 0.38747E +02 0.5593 E +01 22 - 0.24407E +03 0.15127E +03 - 0.36919c+02 0.42905E +01 23 - 0.19607E +03 0.11958E +03 - U.2 'i62:E +02 0.1V502C +V1 24 - 0.03125E +03 0.19324E +03. - 0.50255E +02 - 0.1531E +01 25 - 0.43695E +0Z 0.23027E +03 - 0.71282E +02 - 0.27736E +01 26 - 0.42447E +03 0.19966E +03 -0. 70,;36=+02 - 0.39050E +01 27 - 0.31EZ14E +03 0.97796E +02 - 0.51:24E +02 - G.42072E +01 28' - 0.21288E +03 - 0.47717E +01 - 0.22325E +02 - 0.42070c +01 29 - 0.10407E +03 - 0.10408E +03 - 0.12895E +02 0.00000E +00 STRAINS IN THE INNER AND OUTER FIFER OF THE CULVERT WALL (ONLY STRAINS FOR COMPRESSION 2014ES HAVE PHYSICAL MEANING) NPPT INNER STRAIN OUTER STRAIN -U. 8; 861E -Ob 0. ;6c4 -E -J5 3 -0. 12998E -f•4 C. i0S7`.E -05 4 - ..17040_ -0ti 0. i'-12"&=--1)4 5 -v. IU056E-04 C.1S�JJE- 6 - 0.12733E -04 0.91839E -05 7 -C. 70486E -OS 0.47490E -05 8 - 0.9561E -0S C.70:21E -05 9 - 0.98190E -OS 0.71707E -05 pr .2q 10 - 0.63576E -05 0- 7965E-05 11 0:58214E-05 -0.80291E-05 i2 0.14606E-04 -0.16707,E--04 13 6.20863E -04 -0.22859E-04 14 1):24614E-04 -0.26-55,OE-04 15 6.25865E-04 -0.-778IE-04 16 0.24618E-04 -0.26554E-04 17 0.20866E-04 -0.22862E-04 18 0.14606E-04 -0-16707,F-04 19 0.58265E-05 -0.6034'E-05 20. -0.67495E-05, 0.�,7894E--05 :!I -0.98134E-05 0.71635E-05 22 "0.93504E-05 0.70025E -`05_ 23 -0.70466E-05 0.49444E-05 24 -0. 12728E -04 0.91749E-05 25 -0.18054E-04 0.13246E-04 26 -0.17839E -04 0.12291E-04 27 -0.12999E-04 0.70857E-05 -0.81870E-05 0.18596E-05 29 -0.32655E-05 -0.32660E-05 X. 7 CALCULATED SAFETY FACTORS FOR LOAD If:CREHENT 1 7 STEEL YIELD STRESS / MAX. STEEL STRESS ......... 105.665 CONCRETE STRE14GTH / MAX. COMPRESSIVE STRESS .... Z6.467 WALL SHEAR "CA?ACI -TY.../ MAX. SHEAR .".":":............ 20.126 _... _ PERFORMANCE FACTORS 0.01 INCH / MAX. CRACK WIDTH ................... 10000.000 l 7 7 ) m m m m m m m m m m m m m m m m m m m w� -w� w� � w w■i �w ww ww riwi w� ww � w w r w ww �w l 3 .2 } STRUCTURAL RESPONSE- OF CULVERT FOR LOAD INCREMENT 2 COORDINATES. DISPL-ACEMENTS AND CRACK DEPTHS ARE IN INCHES PRESSURES ARE IN L8 /INtt2 MOMENTS ARE IN IN.SLP /IN. THRUST AND SHEAR ARE IN LH /IN. NPPT. k- COORD,. - X- DISF'. N- PRES.. MOMENT SHEAR PIPE STRESS.. Y- COORD. '`. -.'Y -DISP. S- PRES.' THRUST" CRACK' DEPTH:- _ 1 - 101.00 - 0.15588E -02 0.379422E +02 0.27344E -01 0.00000E +00 - 0.18017E +02 -29.69 - 0.76651E -01 0.00000E +00 - 0.187E1 -E +03 0.00000E +00 - 0.18781E +03 2 - 101.00 - 0.19518E -02 - 0.18658E +01 - 0.17838E +03 0.27248E +02 - 0.36479E +02 -19.79 - 0.76696E -01 0.16849E +01 - 0.17948E +03 0.00000E +00 - 0.17114E +03 3 - 101.00 - 0.22844E -02 - 0.14174E +01 - 0.53915E +03 0.43491E +02 - 0.50504E +02 -9.90 - 0.76738E -01 0.17986E +01 - 0.16224E +03 0.00000E +00 - 0.15334E +03 4 - 101.00 - 0.24560E -02 - 0.86671E +00 - 0.10392E +04 0.51194E +02 - 0.58157E +02 0.00 - 0.76775E -01 0.19794E +01 - 0.14533E +03 0.00000E +00 - 0.171479E+03 5 - 100.60 - 0.23854E -02 - 0.42978E +00 - 6.14896E +04 0.48547E +02 - 0.60283E +02 8.67 - 0.76806E -01 G. 21230E +Ol - 0.12993•E -03 0.00000E -00 - 0.115*;IE +03 6 -99.4: - 0.20887E -O2 0.51277E +00 - 0.18951E +04 0.38762E +02 - 0.52678E +02 i 17.64 - 0.76867E -01 0.18177E +01 - 0.11509E +03 0.00000E +00 - 0.99438E +02 7 -97.53 - 0.16014E -02 0.32122E +00 - 0.22223E +04 - 0.10409E +02 - 0.38804E +02 27.43 - 0.76977E -01 0.22272E-01, - 0.91475E +02 0.00000E -00 - 0.8s906E+02 8 -90.12 - 0.13534E -02 -0. 80875E -00 - 0.17657E +04 - 0.5263iE +02 - 0.38892E +02 31.67 - 0.77429E -Oi 0.4:4,)02 +00 - 0.71742E +02 0.00000E +00 - 0.7644,1E +02 9 -83.01 - 0.11137E -02 - 0.7F:50f,E -00 - 0.13541E +04 - 0.52054E +02 - 0.38889E +02 35.08 - 0.77953E -01 0.33441E +00 - 0.644&6E +02 0.00000E +00 - 0.69878E +02 1)•) -75.9: -U. 89475E-6.J -0. r'-=2E -0. 9[.- 61E +O: -(,. 5: :,o5BiE -'02 -0. 7.a35iE +02 .64 -;. 7560; E -0, 0.229;5E +lii) G. 01)(,()0"2 +0O -l'. 5-, ;-C-E+02 -0.4: +8o;_ +02 - 0.S6o76E"02 4:.2.5 -(o. 8043"E-04 0. 1726 °;E -.00 - 0.45b8�E -02 6.00000E +00 -0.4 ;7:,.E+G2 12 -45.00 - 0.15864E -0', - 0.85729E -00 0.42929E +0 - 0.X300 .lE +Cl2 - 0.388-,E+02 97 - O. E2- 90F..-U7 0.32772E +00 -V. 44389c +0: 0.00000'2 -00 - ^.726: 2E +02 l 3 .2 r i 13 -30.00 0.28250E -04 - 0.86436E +00 0.84639E *03 - 0.22106E +02 - 0.36862E +02 45.83 - 0.84026E -01 0.85648E -01 - 0.41410E +02 G.00OOOE+OCI - 0.19536E +02 14 -15.00 0.94157E -04 - 0.66669E +00 0.10964E+04 - 0.11076E +02 -0.38883E+02 1 46.94 - 0.85118E -01 0.42646E -01 - 0.39625E +02 0.00000E +00 - 0.64997E +01 15 ` 0.00' 0.84289E -04 - 0.66741E +00 0.11796E +04 0.78i08E -02 - 1).38884E+02 47.31 - 0.85503E -01 - 0.34068E -04 - 0.35032E +02 0.00000E +00 0.65154E +07 16 15.00 0.8416-•E -04 - 0.86826E+00 0.10961E +04 0.11103E +02 - 0.38682E +02 46.94 - 0.85128E -01 -0.42707E-01 - 0.39627E +02 0.00000E +00 0.19,-75E+02 17 30.00 0.14928E -03 - 0.86412E +00 0.84547E +03 0.22143E +02 - 0.386B2E +02 45.83 - 0.84047E -01 - 0.65534E -01 - 0.41414E +02 0.00000E +00 0.32668E +02 18 45.00 0.33476E -03 - 0.85669E +00 0.42766E +03 0.33035E +02 - 0.38877E +02 43.97 - 0.82423E -01 - 0.12762E +00 - 0.44393E +02 O.000OOE +00 0.45BVBC +02 19 60.00 0.64791E -03 - 0.85033E +00 - 0.15752E +03 0.43884E +02 - 0.38887E +02 41.35 - 0.80530E -01 - 0.17309E +00 - 0.48690E+02 0.00000E +00 0.59524E +02 20 75.97 0.10554E -02 - 0.83623E +00 - 0.96578E +03 0.50668E +02 - 0.38906E +02 x:.64 - 0.78060E -01 - 0.22YZ;ETOv -V. b546 =c +02 G. ODUOOc +OO 0.6"i663E +02 21 83.01 0.12818E -02 - 0.79896E *00 - 0.13563E +04 0.52101E +02 - 0.39000E +02 _5.08 - 0.78019E -01 - 0.3531iE +00 - 0.64501E +02 0.00000E +00 0.76605E +02 ) 22 90.12 0.15181E -02 - 0.76623E +00 -0. 176-76E+(-.)4 6.52739E +02 - 0.38907E +02 31.67 - 0.775O3C -OI - 0.39124E +00 - 0.716036E +02 0.00000E +00 0.83674E+02 23 97.53 0.17618E -02 0.283052E +00 - 0.222..4E +04 0.10262E +02 - 0.52719E -02 27.43 _ 0.77058E -01 - 0.22642 -c +C11 - 0.91601E +02 0:(101)00E +00 0.99658E +02 24 94.43 0.22391E -02 0. °_0684E +GO - 0.16468E44)4 - 0.36769E +02 - 0.60302E +02 17.64 - 0.76949E -01 - 0.16405E +01 -0. 11543E +03 0.00000 -c +00 0.11615E +03 25 11:x.60 O. =65E -02 - 1,.42676 7400 -.. 14916 _4 {14 - 0.4£33.E +02 - 0.52185E *O2 8.67 -O. 7[.at'OE -U; -!�.2a- 3iE +01 -C. I�.i 1�'E� {,� /. Ivr11C� f 1 C . C .�, �C 1 �� * - ). 13S" -E 0:. 26 14:.0C, v. 25876F-02, -'i.Et,23C;E +O!1 -G. 104; 3E +0.. - 0.5_'31 =,02 E -.02 i..VV - 0.ibS5 ?E -01 -- .1978EiE�Oi - !1'.57vC+ U� (. ()00: ��C +U,1 O. 1 1 /6'--'+U: :...�.. ... 27 101.00 1,,24050E -02 - 0.14262140, - 0.54064E +03 - 0.43566E +02 - 0.36559 = +02 28 -,.s0 - 0.76222E -U; -..171375E +0; - ..1(.= 6'E +0:. O.00Ign;>E +OO 0.17,472 +03 1 N N ' m 1 �oo ' co ce V" V r3 ':.. A " 0.0 mm mm 00 00 00 oc 00 0 O a.ppm ;. ON 0,4 rn + + + + 00 00 eo oe W JV a) CO 41 �0 m° m+ + i + + u° o ' 00 00 00 ON 00 0 41 0c., ON OO O(1) mm mm + + + • 00 00 oN 1 oe 00 mm 11 .1 m U ^. r� ro U 0] ' mm mm + 4 ++ O++ 9n r . 9.. 1 Ij 1 I , pi STRAINS IN THE INNER AND OUTER FIBER OF THE CULVERT WALL (ONLY STRAINS FOR COMPRESSION ZONES HAVE PHYSICAL MEANINS) NPPT INNER STRAIN OUTER STRAIN 1 -0. 4603SE -�* -V.LC 702 - - 0.177 +':E -O5 4 to -.._1009L•- "4 Q. 152 -c -OL 6 - C..160Z3E -0•: O.11S'45E -04 7 - 0.92174E -OS 0.6rE•Z-Z.E-05 E; - 0.17,522E -u4 0.11c,43c -oa 9 - 0.16741E -O4 C.1.,i15E -0» 30 STRESSES IN CULVERT WALL (PSI) FOR LOAD INCREMENT 2. ELLIP. OR NPPT INNER CAGE OUTER CAGE CONCRETE SMEAR STEEL STEEL COMPRESSION STRESS ' 1. - 0.14672E +03 - 0.14673E +03 - 0.18.181E +02 0.00000E *00 " 2 - 0219875E +03 -0.90141E +02 - 0.27730E +02� 0273027E +01 3 - 0.30304E +03 0.24012E +02.. - 0.468i'6E +02 0,52717E +01' -4 - 0.45280E +03 0.1762,7E +03 - 0.74095E +02 -. 0.62053E +Ci1. 5 - 0.51196E +03 0.27277E +03 -0.8295Z-E+02' 0.5243BE +01 6 - 0.41566E +03 0.25406E +03 - 0.63264E +02 0.31453E +01 7 - 0.25537E +03 0.16979E +03 - 0.36394E *02 - 0.56664E+00 8 - 0.34994E +03 0.24393E +03 - 0.53389E +02 - 0.41436E +01 j 9 - 0.40440E +03 0.27129E +03 - 0.66100E +02 - 0.54223E +01 10 - 0.35719E +03 0.22426E +03 - 0.60880E+02 - 0.61403E +01 11 - 0.86954E +02 0.44268E +01 - 0.13386E +02 - 0.53165E +01 12 0.1057SE+03 - 0.15623E +03 - 0229343E +02 - 0.40005E +01 13 0.24321E +03 - 0.27108E +03 - 0.53192E +02 -0.26795E+01 14 0.32560E+03 - 0.33991E +03 - 0.67485E +02 - 0.13425E +01 15 0.35302E +03 - 0.36283E +03 - 0.72243E +02 0.94677E -03 16 0.32552E +03 - 0.33985E +03 - 0.67472E +02 0.13459E +01 17 0.24291E +03 - 0.27083E +03 - 0.53140E +02 0.26840 -c +Ul 18 0.10522E +03 - 0.15577E +03 - 0.29249E +02 0.40043E +01 19 - 0.87542E +02 0.49241E +01 - 0.13490E +02 0.53193E +01 20 - 0.35790E+03 0.2.-435E+03 - 0.61005E +02 0.61L16E+01 7 21 - 0.40501E +03 0.27176E +03 - 0.66202E +02 0.54272 = +01 22 - 0.35032E +03 0.24418E +03 - 0.53448 -c +02 0.41364E +01 23 - 0.25552E-03 0.169S3E +03 - 0.36415E +02 0.558453 +JV �. 24 - 0.41617E +03 0.25416E +03 - 0.63337E +02 - 0.31443 =+01 25 - 0.512S9E +03 0.27299E +C,3 - 0.83097E+02 - 0.52420E +01 26 - 0.45352E +03 0.17681E +03 - 0.74256E +02 - 0.62099E +01 27 - 0.30302E +0:• 0.24128E +02 - 0.47019E +02 - 0.52807E *01 28 - 0.19927E +03 - 0.90228E +02 - 0.27806E +02 - V.33119E +01 29 - 0.14703E +03 - 0.14705E +03 - 0.18219E +02 0.00000E +00 STRAINS IN THE INNER AND OUTER FIBER OF THE CULVERT WALL (ONLY STRAINS FOR COMPRESSION ZONES HAVE PHYSICAL MEANINS) NPPT INNER STRAIN OUTER STRAIN 1 -0. 4603SE -�* -V.LC 702 - - 0.177 +':E -O5 4 to -.._1009L•- "4 Q. 152 -c -OL 6 - C..160Z3E -0•: O.11S'45E -04 7 - 0.92174E -OS 0.6rE•Z-Z.E-05 E; - 0.17,522E -u4 0.11c,43c -oa 9 - 0.16741E -O4 C.1.,i15E -0» 30 3/ 10 - 0.15419E -04 0.12651E- 04. "'` ? ". 11 - 0.35903E -05 0.10212E -05 12 0.52154E -05 - 0.74318E -05 13 0.11356E -04 - O.SJ472E -04 14 0.15036E -04 - 0.17092E -04 15 0.16261E -04 - 0.16297E -04 16 0.15033E -04 - 0.1708SE -04 17 0.11343 -E -04 - 0.13459E -04 18 0.51916E -05 - 0.74080E -05 19 - 0.:4166E -05 0.10473E -05 20 - 0.15451E -04 - 0.12682E -04 - - 21 - 0.16767E -04 0.13936E =04 22 - 0.13537E -04 0.11054E -04 - 23 - 0.92228E -05 0.69355E -05 24 - 0.16041E -04 0.11952E -04 25 - 0.21046E -04 0.15169E -04 26 - 0.18B07E -04 0.11637E -04 27 - 0.11908E -04 0.39235E -05 ) 28 - 0.70424E -05 - 0.17785E -05 29 - 0.46135E -05 - 0.46143E -05 i 3/ CALCULATED SAFETY FACTORS FOR LOAD INCREMENT 2 STEEL YIELD STRESS MAX. STEEL STRESS ......... CONCRETE STRENGTH-/ MAX. COMPRz-SSIVE STRESS .... 4£.17,6 WALL SHEAR CAPACITY MAX. SHEAR ............... PERFORMANCE FACTORS 0.01 INCH / MAX. CRACK WIDTH ................... I C)C)oo. C)C)o 32 I m m m m m m m m m m m m m m m = m = m 1 ti : SU> 6g$ F�.£: fari :,p£r {S•�2sccfiiF�3,a,°YAEc? "r2: 33 STRUCTURAL RESPONSE OF CULVERT FOR LOAD INCREMENT COORDINATES, DISPLACEMENTS AND CRACr: DEPTHS ARE IN INCHES PRESSURES ARE IN LB:INit2 MOMENTS ARE IN IN.ILB /1N. THRUST AND SHEAR ARE IN LB /IN. NPPT X= COORD. X -DiSP. N -PRES: - MOMENT SHEAR PIPE STRESS Y- .000RD. Y -DISP. S -PRES. THRUST CRACK DEPTH 1 - 101.00 - 0.26773'c -02 0.61395E +02 0.43945E -02 0.00000E +00 - 0.38411E +02 -29.69 - 0.12002E +00 0.00000E +00 - 0.40291E +03 0.00000E +00 - 0.40291E+03 2 - 101.00 - 0.37397E -02 - 0.35131E +01 - 0.38031E +03 0.55792E +02 - 0.73174E +02 -19.79 - 0.12012E +00 0.23970E +01 - 0.39105E +03 0.00000E +00 - 0.37919E +03 3 - 101.00 - 0.44761E -02 - 0.32010E +01 - 0.11040E +04 0.89010E +02 - 0.10485E +03 -9.90 - 0.12021E +00 0.25344E +01 - 0.36665E +03 0.00000E +00 - 0.35411E+03. 4 - 101.00 - 0.48829E -02 - 0.26679E +01 - 0.21421E +04 0.10931E +03 - 0.12904E +03 0.00 - 0.12030E +00 0.27275E +01 - 0.34398E +03 0.00000E +00 - 0.322824E +03 5 - 100.60 - 0.47839E -02 - 0.22184E *01 - 0.31297E +04 0.11001E +03 - 0.14623E +03 6.67 - 0.12037E +00 0.30529E +01 - 0..+2490E+0S 21.00000E+00 - 0.29955E +03 6 - 99.43 - 0.421--0E -02 - 0.95024E +00 - 0.40911E +04 0.10125E +Oa - 0.15103E +03 17.64 - 0.12050E +00 0.26795E +01 - 0.30633E +03 0.00000E +00 - 0.27295E +03 7 -97.53 - O.o2J78E -02 - 0.14636E +01 - 0.50514E +04 - 0.17S42E +02 - 0.14049E +03 27.47, - 0.1207.3E +00 0.42653E +01 - 0.26743E +03 O.000OOE +00 - 0.23257E +03 8 -90.12 - 0.27392E -02 - 0.37.245E +01 - 0.35'244E +04 - 0.12673E+0.> - 0.14665E +03 31.67 - - C +.12166E +0:5 0.87027E +00 - 0.22930E +03 0.000OOEi00 - 0.20506E +03 9 - 871.01 -0. 22524E -02 - 0.3027.E +01 - 0.29674E +04 - 0.11554E +03 - 0.15G6Uc +03 ,1,5.0E - 0.12276E +00 0.73557E +00 - 0.21281E+p3 0.00000E+00 - 0.16143E +03 10 -7`.97, -0. 17842E -02 - 0.2767 -c *01 - 0.202386. -G< -G. 1: 70c +03 - 0.153'C4E -03 .64 -V. 12:4: =E+0ij i .50765c +G0 - ..15 " =•6=K _ O.itOUO j ? +OC -ti, i 7i +E +OC• l / -tC . V :. -U. S4�•.7E-0= -0. 4'54Z +01 -.. -2E 636 -i? -0. 95--'4z=-+"l2 -u. 155432-0= ..., - U..- �lOc +GG G.3704GE +U0 -I.. 17735i Q 0.00000Ei00 - U.IO91dE +C3 12 - 4`,.00 - 0.31133E -0 -U. :Bo•E *01 0.94697E+03 - 0.6S7,81E +02 - 0.1'- 590E *U3 4 3.1: - 0.132; 1 E +i)0 - 0.1b797E 00000, +f),' - 0.7:;7i4E +02 ti : SU> 6g$ F�.£: fari :,p£r {S•�2sccfiiF�3,a,°YAEc? "r2: 33 13 14 -15 16 17 18 19 20 21 22 23 24 r.l 2E• 27 1 -30.00 0.513395E -04 - 0.20643E. +01 0.17927E +04 - 0.44387E +02 - 0.15632E +OS 45.83 - 0.13553E +00 0.17672E +00 - 0.16160E +03 0.00000E +00 - 0.44478E +02 1 -15.00 0.16073E -03 - O.i9797E +01 0.22665E +()4 - 0.21835E +02 - 0.15660E +03 46.94 - 6.12780E +00 0.78588E -01 - 0.1805E +03 0.00000E +00 - 0.14716E +02 0.00 0.12290E -03 - 0.19511E +01' 0.24497E +04 - 0.78117E -01 - 0.15664E +Or 47.31 - 0.13960E +00 - 0.22932E -02 - 0.15693E +03 0.00000E +00 0.14560E +02 15.00 0.84336E -04 - 0.19819E +01 0.22687E +04 0.21694E +02 - 0.15644E +03 46.94 - 0.1783E +00 - 0.84346E -01 - 0.15812E +03 0.00000E +00 0.44360E +02 30.00 0.19156E -03 - 0.20635E +01 0.17967E +04 0.44251E+02 - 0.15609E +03 45.83 - 0.13559E +00 - 0.18105E +00 - 0.16174E +03 0.00000E +00 0.75590E +02 45.00 0.55108E -03 - 0.22005E+01 0795307E +03 0.68340E +02 - 0.15544E +03 43.97 - 0.13219E +00 - 0.28528E +00 - 0.16806E +03 0.0000()E +00 0.10925E +03 ) 60.00 0.11624E -02 - 0.24497E +01 - 0.27a37E +03 0.95594E +02 '- 0.15382E +03 41.35 - 0.12821E +00 - 0.39232E +00 - 0.17750E +03 0.00000E +00 0.14843E +03 75.97 0.20155E -02 - 0.27229E +01 -0.20658E +04 0.11394E +03 - 0.15121E +03 37.69 - 0.12425E +UO -0.51 5d-C +VU - (.19356E +03 0.000vuE +OJ 0.i6l 43Er03 63.01 0.24803E -02 - 0.30396E +01 - 0.229667E +04 0.11943E +03 - 0.14730E +03 7,5.OS - 0.12289E +00 - 0.74124E +00 - 0.21316E +03 O.00000E +00 (i.20519E +03 90.12 0.29627E -02 - 0.33672E +01 --0.39240E +04 0.12661E +03 - 0.14C)57E +03 31.67 - 0.12191E +00 - 0.84698E +00 - 0.22964E+03 0.00000E +00 0.23289E +03 97.53 0.3459E -02 - 0.14767E +C)1 -0.50537E +04 0.18015E +02 - 0.15116E +03 27.43 - 0.1203 -9E.00 - 0.42983E +01 - 0.26753E+ -03 0.00()OOE -00 0.27360E +03 99.43 0.441E4E -02 - 0.95999E +60 - 0.4()933E +04 - 0.10126E +03 - 0.14632E +03 17.64 .- 0.12066E +00 - 0.27021E +01 -0.7,0711E +03 0.00000E +00 0.3004 --E +03 100.60 0.4tMoE -02 22224E+01 -0.313 3E +04 - 0.IiGG26 +C)3 - 0..2912E +03 6.67 - ..1205:;Et :)O- 0.(,O(")OZ+0C, C.=-122 +0Z IC.i.i)0 C.SOo49r - :- -0. -c6 4 = +01 -0.21 x4_-!::4 - .10577E +0' O.OV - 0..20452 +00 -V. 272 --1E < -01 0.00000E +00 0.35514E-0. : 211 101.00 0.46442E -0: - O.c20i2F. +C)1 - 0.11056E -04 - (J.a9096E +02 -0. 73258E,02 -9.90 - 0.12077i +00 - C:.'-!:;202E +01 - 0.3676.. E +C 0.00000E +0,:) 0.3800&E +03 r tJ o N m 010 �4 O -4 �0 O O O roo O O 14 °q �nco mm r.ju mm +01 +01 1 O O I 1 O G O W ;j ;I O9m n m + + 00 oN + + 00 �� 1 1 1 a 4! uN co 03 O r.n m mm :3 C. Ln m mm + I u � + + o1 ' o c i o c• 00 0 Li 0 Ln oo co mm OJ OP mm + + 00 C. + + 00\' 0 0 oC. _.C. ,: co 0 ro C.0 O m O W -0 N U +4 0C. oe ++ 00 4!N U, �.j z 1 1 STRESSES IN CULVERT WALL (PSI) FOR LOAD INCREMENT ELLIP. OR NPPT INNER CAGE STEEL 1 - 0.31425E +03 -2 - 0.42900E +03 3 - 0.64556E +03 4 0.96- 50E +03 5 - 0.11100E +04 6 - 0.92776E +03 7 0.60270E +03 8 - 0.81419E +03 9 - 0.93399E +03 10 - 0.82801E +03 11 - 0.22791E +03 12 0.17608E +03 13 0.45411E +03 14 0.61632E +03 15 0.66976E +03 16 0.61698E +03 17 0.45528E +03 18 0.17797E +03 19 - 0.22633E +03 20 - 0.82891E +03 21 - 0.93458E +03 22 - 0.814ZIE +03 23 0.60313E +03 24 - 0.92860E +03 25 - 0.111:4E +04 26 - 0.96707E +03 27 - 0.64665E +03 28 - 0.43003E +03 29 - 0.31495E +03 OUTER CAGE STEEL - 0.31425E +03 - 0.19897E+03 0.-,1590E+02 0.32797E +03 0.57438E +03 0.51465E +03 0.36177E +03 0.50301E +03 0.54414E +03 0.42794E +03 - 0.59932E +02 - 0.39716E +03 - 0.62918E +03 - 0.76477E +03 - 0.80953E +03 - 0.76545E +03 - 0.63( )40E +03 - 0.39894E +03 - 0.61505E +02 0.42825E +03 0.54419E +03 0.50278E +03 ( %. Z617aE,0Z 0.51458E +03 Cl. 5347.0E +03 0.32780E +03 0.21280E +02 - 0.19936E +03 - 0.31497E +0:5 CONCRETE COMPRESSION - 0.38935E +02 - 0.59743E +02 - 0.99061E +02 - 0.15660E +03 - 0.17844E +03 - 0.14028 -E +03 - 0.85458E +02 - 0.12313E +03 - 0.15071E +03 - 0.13850E +03 - 0.33040E +02 - 0.71060E +02 - 0.11925E +03 - 0.14740E +03 - 0.15669E +03 - 0.14754E +03 - 0.11949E +03 - 0.71420E +02 - 0.32754E +02 - 0.13864E +03 - 0..5060E +03 - 0.12314E +03 -G. 8:i:i 16E-02 - 0.14040E+03 -0.17665E+03 - 0.15684E +03 - 0.99245E +02 - 0.59075E +02 - 0.39025E +02 SHEAR STRESS 0.00000E +00 0.67627E +01 0.10789E +02 0. 1 2517E +02 0.1153-2E+02 0.82117E +01 - 0.97669E +00 - 0.99396E +01 - 0.12452E +02 - 0.13792E +02 - 0.11557E +02 - 0.82886E +01 - 0.53803E +01 - 0.26467E +01 - 0.94688E -02 0.26295E +01 0.536.38E+01 0.82837E +01 0.11587E +02 0.13010E +02 0.12441E +02 0.99455E +01 U.92U69L -00 - 0.82127E +01 - 0.13932E +02 - 0.13257E +02 - 0.10600E +02 - 0.67722E +01 0.00000E +00 STRAINS IN THE INNER AND OUTER FIRER OF THE CULVERT WALL (ONLY STRAINS FOR COMPRESSION ZOIJES HAVE PHY-FICAL MEANING) NPPT INNER STRAIN OUTEP STRAIN 1 - (,.9E60'�E-05 - .9E.6i0E -.r (1. 15I3.E -04 TO;-iE 4 -:J. .>•isc�.E ->4 C. 2.:780 = -U4 - (..4619 <c -04 0. .C-334E -C•4 6 -11. 3`i°i:0E -04 0.;47 OtE-04 -0.21 G•44c -04 0.14994E -114 8 - 0.31185E-04 6.=2ti9E -04 9 - 0.3Ei:.73E -04 0. 282�r2E`04 36 'a ' l 10 - 0.35077E-04 0.25555E-04 11 - 0.83679E -05 - 0.25880E -06 12 0.96763E -05 - 0.17997E -04 13 0.2 < ^094E -04 - 0.30203E -04 14 0.29341E-04 - 0.37333E -04 15 0.31729E -04 -O 39685E-04 16 0.29371E -04 - 0.37367E -04 17 0.22148E -04 - 0.30264E -04 18 0.97623E -05 - 0.18089E -04 19 . - 0.82956E -05 - 0.33859E -06 20 - 0.:5114E -04 '0.25576E -04- 21 -0.38153E -04 0.28899E -04 ; 22: - 0.31188E -04 0.23291E -04 23 - 0.21658E -04 0.14996E -04 24 25 - 0.35.,59E -04 - 0.45246E -04 0.24703E -04 0.30593E -04 26 - 0.39723E -04 0.22788E -04 27 - 0.25136E -04 0.71186E -05 28 - 0.15165E -04 - 0.40286E -05 29 - 0.98828E -05 - 0.98838E -05 'a ' CALCULATED SAFETY FACTORS FOR LOAD INCREMENT STEEL YIELD STRESS / MAX. STEEL STRESS ......... 5 --.984 CONCRETE STRENGTH / MAX. COMPRESSIVE STRESS .... 22.390 WALL SHEAR CAPACITY / MAX. SHEAR ............... 5.159 PERFORMANCE FACTORS 0.01 INCH / MAX. CRACK WIDTH .................... 10000.000 1 1 38 m m m m m m m m = m m = m m = = m = m STRUCTURAL RESPONSE OF CULVERT FOR LOAD INCREMENT 4 COORDINATES, DISPLACEMENTS AND CRACK DEPTHS ARE IN INCHES ? PRESSURES ARE IN Lb /INix2 MOMENTS ARE IN IN.ILB /IN. THRUST AND SHEAR ARE IN LB /IN. NPPT X- COCORD. X -DISP. 'N -PRES. MOMENT SHEAR PIPE STRESS - Y- COORD. Y -DISP. S- PEES. THRUST CRACK' DEPTH 1 - 101.00 - 0.16941E -01 0.13313E +03 0.47363E -01 0.00000E +00 - 0.750B6E *02 ) -29.69 -0.16595E+00 0.00000E +00 - 0.65902E +03 0.00600E +00 - 0.65902E +03 2 - 101.00 - 0.21353E -01 - 0.52167E +01 - 0.74333E +03 0.10090E +03 - 0.12671E+03 -19.79 - 0:16611E;00 0.29102E +01 - 0.64462E +03 0.00000E +00 - 0.63022E +03 1 3 - 101.00 - 0.25522E -01 - 0.54923E +01 - 0.19965E +04 0.15388E +03 - 0.18105E +03 1 -9.90 - 0.16626E +00 0.31045E +01 - 0.61486E +03 0.00000E +00 - 0.59950E +03 1 4 - 101.00 - 0.28975E -01 - 0.53628E +01 - 0.37890E +04 0.19241E +03 - 0.23021E +03 0.00 - 0.16643E +00 0.32270E +01 - 0.58898E +03 0.66430E +01 - 0.56846E +03 1 � 5 - 100.60 - 0.29706E -01 - 0.49970E +01 - 0.55577E +04 0.20202E +03 - 0.27156E +03 6.67 -0. 16662E +UO 0.35232E. +01 - L..,°.7127E +UJ U.6127 7E+01 - 0.5-- 3ti3C +V•;. 1 i 6 -99.43 - 0.26653E -01 - 0.33573E +01 - 0.73696E +04 0.19897E +U3 - 0.29845E +03 1 :7.64 - 0.16725E+00 0.297-•3E +01 - 0.55647E +03 0.10675E +02 - 0.50037E +03 i 7 -97.53 - 0.26964E -01 - U.3673ZE +01 - 0.93417E +04 - 0.17695E +02 - 0.30250E +03 27.43 - 0.16345E +00 0.50548E +01 - 0.51491E +03 0.00000E +00 - 0.44157E +03 8 -90.12 - 0.15_'49E -01 - 0.59716E +01 - 0.73517E404 - 0.222547E-03 - 0.31616E +03 1 31.67 - 0.17317E +00 0.12654E +01 - 0.46853E +03 0.111302 +02 - 0.39334E +03 , 9 -63.01 - 0.1566:2E -01 - 0.56620E +01 -0.567-75E404 - 0.21644E +07 - 0.32480E +03 35.08 - O.i7917E +00 0.119112E +01 - G.44064E +fig• 0.86633E +01 -0.- 4965E +03 10 -75.97 5 1967E +01 - 0.40:95E +04 - 0.21034E +0-, - ..32951E +03 Z7. 6? -C:. IE'"'o3c +0: 0.:0(16624'0 1 0. 14 O. 74 J 4_c V: - ('.28boflE *U i -0. -192GL- O:: -C'. 4c -] ] 6 ? +01 -1,. G.4 dCt)t- G. -.. 1790: 4:.:.;, U. 87243E +4•U - u.37364E +03 O. OOOOO +UO') -0." 2 i 3 �4 E +1. 1� - 45.00 - 0.JJ047E -(i2 - 0.429-t5v +O1 6.167202 - 0.12856E +03 -0. 3_ 795E +0:• 4 7..97 - 0.- _5 :12 +0,) G.C:0782E +Ou - 0.3:;'76E,67• C.0U0,)OE +00 lv -30.00 - 0.69174E -03 - 0.40419E +01 0.32550E +04 -0. 82563E+02 -0. 324550. +013 45.83 -0.25805E +00 0.62653E +00 -0.3,666E +03 0.67574E +01 - 0.84620E +02 14 -15.00 0.26235E -03 - 0.37760E +01 0.41641E +04 - 0.40095E +02 -0. 32210E +03 46.94 - 0.27464E +00 0.34988E +00 - 6.32630E +03 0.74372E +01 - 0.27703E +02 15 0.00 0.13487E -03 -0. 36320E +n1 - 0.44605E +04, -0.80175E-01 - 0.32213E +03 47.31 - 0.28054E +00., - 0.22088E -02 - 0.32270E +03 4.75043E +O1 0.27544E +02 26 15.00 - 0.13564E -04 -0. 37777E +01 0.41664E +04 0.39945E +02 - 0.32466E +03 o: 46.94 -0. 27468E +00 - 0.35504E +00 - n. --2637E +03 0.74376E +01 0.84489E +02 17 30.00 0.95776E -03 - 0.40402E +01 0.32592E +04 0.82429E +02 - 0.32813E +03 45.83 - 0.25813E +00 - 0.63113E +00 - 0.33681E +03 0.67587E +01 0.14605E +03 IB 45.00 0.35664E -02 - 0.43058E +01 0.16787E +04 0.12849E +03 - 0.33046E +03 43.97 - 0.23582E+00 - 0.79637E +00 - 0.J5285E +03 0.00000E +00 0.21244E +OS I 19 60.00 0.75486E -02 - 0.46393E +01 - 0.64207E +03 0.17931E +03 - 0.32968E +03 7 41.35 - 0.21224E +00 -C1.83993 -E +00 - O.J7376E +0J O.00000E +00 0.28710E +03 20 75.97 0.12896 = -OS - 0.51504E +01 - 0.40206E +04 0.21051E +03 - 0.32517E +03 37.69 -U. i8s()OE +00 - 0.1G!27E +V1 -U. 4U5%5C +Ua 0.745 +0E+01 0.34905E +UJ 21 83.01 0.15908E -01 - 0.56682E +01 - 0.56337E +04 Cl. 21631E-100.• - 0.31657E +03 35.08 - 0.17935E +O(.) - 0.11961E +01 - 0.44096E -03 0.86628E +01 0.39340E +03 22 90.12 0.18590E -01 - 0.60189E +01 - 0.73496 = °04 0.22552E +03 - 0.30258E +03 31.67 - 0.17336E +00 - 0.12461E +01 - 0.46885E +03 0.11129E +02 0.44189E +03 23 97.53 0.21199E -01 - 0.36949E +01 - 0.93.419E +04 0.17814E +02 - 0.29654E+03 27.43 -U. 16865E +OU - O.5UBO4E +0] - 0.51540E +03 0.000100E +UO 0.50 WOE +U: 24 95.43 0.2L875E -01 - U.3356$E +01 -U. Z705F.. +p4 - 0.19894E +03 - 0.2716ZE +03 17.64 - 0.16745E +00 - 0.29851E +01 - 0.55676E +OZ 0.10677E +02 0.53417E +03 25 101;.60 C•. 217 16E -01 - C :.50041E +011 - C:.5556SE +U4 - 0.2Z;2C11r. +03 6.67 -V. iC'682E +Gl: -U. 5 495 +U. - 11.5721 I 11.81364E +U1 G. SC " %4 c +�:• 26 11:1.Oc. V.2yi -5E-O- -0.:,..6.4: +0i - !1.3•:90 _,rr[_ - 11.19 <<)2E +n5 - 0.161C'S'11 0. Qt:, -U, ib6t3E =UU - 0.323.29E +Oi I I - 0.,3999E +013 0.66411E +01 C1.oU!)S c +nJ :2••.:.'.ni "< °... 40 27 201.00 0.25711E -01 -U. ,4867E +0i {- U.19975t +04 - 0.15-9-E+03 - 0.12677E +0 -=.90 -0.16646 - +00 - t.3Qy66E +GI - 0.61535E +C: - 0.00000E +00 0.63117E +03 ) FJ I + I + 0- 0 cc 00 0 C> + + 00 C, 00 c C. c C. Fi ril m 00 0 00 (A 0 M, O ,o Ll m 1 '. O FJ IJ ' . O + Ln C ' O Lq Lq Yn rJ 00 0 0 Lq III m I III + I + + 00 0 0 I 0 or I a] 00 0 0 00 Ol C, N J J, • L Lq. 0 o ol N Lq 0 0 mm I Ill I 0 M, O ,o Ll m 1 '. O FJ IJ ' . O + Ln C ' O Lq Lq Yn rJ �l 1 i STRESSES IN CULVERT WALL (PSI) FOR LOAD INCREMENT 4 ELLIP. OR NPPT INNER CAGE STEEL 1 - 0.51370E +03 2 - 0.74440E +03 3 - 0.11286E +04 4 - 0.24360E+04 5 - 0.23831E +04 6 - 0.25755E +04 7 - 0.11222E +04 8 - 0.24319E +04 9 - 0.21400E +04 10 -0.16764E +04 11 -0.49753E +03 12 0.26545E +03 13 0.10805E +05 14 0.17234E +05 15 0.18739E +05 16 0.17244E +05 17 0.10B21E +05 1B 0.26754E +03 19 - 0.49554E +03 20 - 0.16773E +04 21 - 0.21406E +04 22 - 0.24317E +04 23 -0.11:24E +04 24 - 0.25763E +04 25 - 0.223849E +04 26 - 0.24373E +04 27 - 0.11297E +04 28 - 0.74530E +03 29 - 0.51450E403 OUTER CAGE STEEL - 0.51373E +03 - 0.29560E +03 0.75990E +02 0.10552E +05 0.16925E +05 0.18851E +05 0.66014E +03 0.19368E +05 0.20448E +05 0.16668E +05 - 0.11103E +03 - 0.74372E +03 - 0.97780E +03 - 0.23810E +03 - 0.16730E +03 - 0.23786E+03 - 0.97847E +03 - 0.74566E +03 - 0.11295E +03 0.16667E +05 0.20442E +05 0.19355E +05 0.65957E +CZ 0.18840E +05 0.189122E +05 0. 10543E +C:5 0.75505E +02 - 0.29625E +03 - 0.1450E +03 CONCRETE COMPRESSION - 0.63651E +02 - C:.10506E +03 - 0.17427E +03 - 0.67317E +03 - 0.62539E +03 - 0.69547E +03 - 0.15897E +03 - 0.66961E +03 - 0.79990E +03 - 0.73220E +03 - 0.72694E +02 - 0.13062E+03 - 0.57034E +03 - 0.69558E +03 - 0.74147E +03 - 0.69592E +03 - 0.57104E +03 - 0.13101E +03 - 0172335E +02 - 0.732230E +03 - 0.79984E +03 - 0.66936E +03 - 0.ia9U0E +03 - 0.69538E +03 - 0.62532E +03 - 0.67309E +03 - 0.17443E +03 - 0.10518E +03 - 0.63746E +02 SHEAR STRESS 0. (K)000E +00 0.12230E +02 0.16652E +02 0.3323E+02 0.221911E +02 0.16137E +02 - 0.96323E +00 - 0.17684E +02 - 0.22545E +02 - 0.25496E +02 - 0.21705E +02 - 0.15583E +02 - 0.10010E +02 - 0.48600E +01 - 0.97182E -02 0.48418E +01 0.99914E +01 0,15574E +02 0.217.4E +02 0.25516E+02 0.22532E +02 0.17688E +02 G.96572E +Uv - 0.16135E +02 - 0.71909E +02 - 0.23324E +02 - C).18658E +02 - 0.12236E +02 0.00000E +00 STRAINS IN THE INNn AND OUTER FIBER OF TriE CULVERT WALL (ONLY STRAINS FOR COMPRESSION 'ZONES HAVE PHYSICAL MEANING) NPPT INNER: STRAIN OUTER STRAIN 16119E -0, -0. i6:21E -04 3 -0.4 =i 7E -C,4 0.iL0lbE -04 5 - J.20705c -07 0.71'2652 -0• 6 0.17614E -0 0.71062E -03 7 - 0.40262L -V4 0.27,-45E -04 0 - 0.165•59E -03 0.73212E -0:. 9 - V.2025'�E-03 0.82222E -03 0 42 1 11 -G.:t�411c-.w 1: 0.15637E -04 13 0.424.9E -03 14 0.66732E -03 15 0.72451E -03 16 0.66770E -03 17 0.42499E -03 18 0.15732E -04 19 - 0.18320 -e -04 20 - 0.18547E -03 21 - 0.20258E -03 22 - Co. 169JSE -OS 23 0.40269E -04 24 - 0.17612E -03 25 - 0.20903E -03 26 - 0:17047E -03 27 - 0.44177E -04 28 - 0.26639E -04 29 - 0.16145E -04 u.t ,80L- -v6 -0.3: 081 E -04 - 0.14445E -03 - 0.17617E -OS - 0.1E779E -03 - 0.17625E -03 - 0.14463E -03 - 0.33181E -04 0.14963E -06 0.70012E -03 1).82199E -031 0. 3163E -03 0.27440E -04 0.71621E -03 0.77236E -03 0.45615E -03 0.14006E -04 - 0.49606E -05 - 0.16145E -CW CALCULATED SAFETY FACTORS FOR LOAD INCREMENT 4 STEEL YIELD STRESS /.MAX. STEEL STRESS ...•...... 2.534 CONCRETE STRENGTH / MAX. COMPRESSIVE STRESS .... 4.646 ® WALL SHEAR CAPACITY ! MAX. SHEAR ............... 4.557 PtRFORMANCE FACTORS 7 1 0.0: INCH / MAX. CRACK WIDTH ................... 1.463 9 = m= m m m m= r m m m= i= = gy m= r� �_. r r �r r rr r r ■� r� r STRUCTURAL RESPONSE OF CULVERT FOR LOAD 111CREMENT 5 COORDINATES. DISPLACEMENTS AND CRACK DEPTHS ARE IN INCHES PRESSURES ARE IN L6 /1NYi2 MOMENTS ARE IN IN.1LR /IN. THRUST AND SHEAR ARE IN LB /IN. NPPT X- COORD. X -DISP. N -PRES. MOMENT SHEAR PIPE STRESS Y- COORD. Y -D:SP. - S -PRES. THRUST CRACK DEPTH 1 - 101.00 - 0.29857E -01 0.18582E +03 0.27832E -01 0.00000E +00 - 0.10846E +03 -29.69 - 0.21205E +00 0.00000E +00 - 0.91960E +03 0.00000E +00 - 0.91980E +03 2 - 101.00 - 0.37603 -E -01 - 0.68560E +01 - 0.10737E +04 0.14238E +03 - 0.17630E +03 -19.79 - 0.21227E +00 0.34250E +01 - 0.90285E +03 0.00000E +00 - 0.88591E +03 3 - 101.00 - 0.45004E -01 - 0.78090E +01 - 0.28173E +04 0.21493E +03 - 0.25357E +03 -9.90 - 0.21249E +00 0.37472E +01 - 0.66737E +03 0.00000E +00 - 0.84863E +03 4 - 101.00 - 0.51330E -01 - 0.81442E +01 - 0.53277E +04 0.27213E +03 - 0.32843E +03 0.00 - 0.21275E +00 0.38909E +01 - 0.83708E +03 0.69231E +01 - 0.81106E +03 5 - 100.60 - 0.52854E -01 - 0.76290E +01 - 0.78508E +04 0.29115E +03 - 0.394'_'5E +03 8.67 - 0.21.',06¢ +OV 0.418c7E -0i - i.tss691ErG 6.63b56E +O1 - 0.7b793E +03 6 - 99.4,. - 0.47468E -01 -0. 54763E +01 0.23265E +03 - 0.44C56E +O3 17.64 - 0.21417E +00 0.33098E +01 - 0.60576E +03 0.10916E +02 - 0.72646E +03 7 -97.53 - 0.37326E -01 - 0.63272E +01 - 0.13418E +05 - 0.21170E +02 - 0.45830E +03 27.43 - 0.21629Er00 0.60673E +01 - 0.75957E +03 0.00000E +00 - 0.64930E +03 8 -90.12 - 0.32714E -01 -0. 87374E +01 - 0.10546E +05 - 0.32546E4O3 - 0.47839E +03 31.67 - 0.^22&58 -E +00 0.187-79EE+0I - 0.70096E +03 0.11346E +02 - 0.57879E +03 9 -83.01 - 0.27963E -01 - 0.84039E +01 -0. 60647E+(14 - 0.v1306E +03 - 0.49101E +03 35.08 -0.2•520E +00 0.17945E +01 - 0.66033E+03 0.66061E +01 - 0:51ZB6E +03 10 -75.97 - 0.225E +0E -01 - 0.77752E +01 - 0.57286E +04 - 0.3047E +0_ - 0.45721E +07 -0. DOG66c -0.41 ]t • -��; :n' -(.. `...7c v: -.- e�::;`� . °`_poi -- -. -'�. ��7.- '6�--� - ..•= 57L7i:+C:7, m 13 -30.00 - 0.13533E-02 - 4.590E2E +01 0.464-15E +04 - 0.1130=E +03 - 0.46669 -E +03 45.83 - 0.37476E +00 4.10130E +01 - 4.50444E +v3 - 0.69925E +01 - 0.11720E +03 i 14 -15.00 .0.38967E -03 - 0.52768E +01 058614E +04 - 0.53.32E +02 - 0.48198E +03 46.94 - 0.40428E +00 0.57381E +00 - 0..48639E +03 0.75723E +01 - 0.37599E +02 >3 15 0.00 0.12733E -03 - 0.49967E +01 0.62471E +04 - 0.97632E -01 - 0.4620E +03 47.31 - 0.41474E +00 - 0.21396E -02 - 0.48278E +03 0.76235E +01 0.37404E +02.' 16 15.00 -0.13639E-03 - 0.52779E +01 0.58642E +04 0.53144E +02 - 0.48676E +03 ) #hra °see �iszsC ES>it >.•<'at 46.94 - 0.40434E +00 - 0.57777E +00 - 0.48844E +03 0.7,726E +01 0.11702E +03 17 30.00 0.16029E -02 - 0.59080E +01 0.46489E +04 0.11284E +03 - 0.49326E +03 45.83 - 0.37487E +00 - 0.10172E+01 - 0.50455E +03 0.69935E +01 0.20718E+03 18 45.00 0.62561E -02 - 0.64686E +01 0.24588E +04 0.18068E +03 - 0.49767E +03 43.97 - 0.33533E +00 - 0.12598E +01 - 0.52905E +03 0.00000E +00 0.30706E +03 19 60.00 0.13305E -01 - 0.69923E +01 - 0.84313E +03 0.25745E +03 - 0.4977.4E +03 7 41.35 - 0.29380E +00 - 0.13965E +01 - 0.56081E +03 0.00000E +00 0.41976E +03 20 75.97 0.22810E -01 - 0.77302E +01 - 0.57265E +04 0.30453E +03 - 0.49132E +03 37.69 - 0.25088E +00 - 0.15a37E +01 - 0.60891E +03 0.76002E +01 0.513ESE +03 21 BS.01 0.28188E-01 - 0.84024E +01 - 0.80618E +04 0.31291E +03 - 0.47875E +03 35.08 - 0.23543E +00 - 0.18004E +01 - 0.66059E +03 0.88055E +01 0.57677E +03 22 90.12 0.32936E -01 - 0.88017E +01 - 4.10,42E +I)5 0.3255.;E +03 - 0.45617E +03 31.67 - 0.22482E +00 - 0.18043E +01 - 0.70117E +03 0.11345E +02 0.64S62E+03 23 97.53 0.37546E -01 - 0.63453E +01 - 0.13414E +05 0.21411E +02 - 0.44045E +03 27.43 - 0.21653 -E +00 - 0.61062E +01 - 0.70004E +07, 0.00000E +00 0.72920E +03 24 99.43 0.47678E -01 - 0.54735E +U1 -Q. 10466E.+05- - 0.29245E-03 - 0.39419E +0 1l7�.64 - 0.21442E +00 - 0.,-,3212E +01 - 0.8,)65:3E+OJ 0.10917E +02 0.76677E +03 25 100.60 0. '-JV60E -01 - 6.7E"•51E +01 - 0.7b497E+C3: -0. 293C,0E +1)7-. - 0..'28.';E -0: a. - 0.21 =,:E +CO - 0.42,67c +,)1 - .0 s6t•E -o 0.2-- L-4,tE +41 Z._.__ •,_ 21. 10:.0` 0.`..1536E-01 -U.ti4 •8_ +C•7 -.. _.27EE�64 -C•.272V2EI0 -. U.VO - 0.39017E +0: - v. F' +03 0.69217L+01 0.a5)02E++03 -. 101.00 0.4°,213E -01 - 0.77991 E4 03 -0.,28 1 6 E +04 - 0.23L89E +03 -0. 17E.[•OE +Jti• 7� -9.90 - 0.21274E +00 - V.3- 3tiE +03 - G.SbE5CE -0 -• O.C:OO)OE4C!O 0.8698E +03 y>z 7 � 1 ' 7 �a 101.00 0.37615E -01 - 0.68468E +01 - 0.10747Ei04 - 0.14242E +03 - O.lOE55E +0 3 =19.79 - 0.21252E +00 - 0.34384E +01 - 0.90400E +03 0.00000E +00 92101E +03 29 101.00 0.30071E-01 -O. 18606E +03 0.64400,E -01 0.00000E+00 O. 00000E +00 -29.69 - 0.21220E +00 0.00000E +00 - 0.92101E +03 0.00000E +00 0.00000E +00 7 y>z m m m m m m m m STRESSES IN CULVERT WALL (PSI) FOR LOAD IN --REMENT 5 ELLIP. OR NPPT INNER CAGE STEEL 1 - 0.71681E +03 2 - 0.10528E +04 3. - 0.15917E +04 4 - 0.36180E +04 5 -0.35222E +04 6 - 0.38649E +04 7 - 0.16194E +04 S. - 0.36861E +04 9 - 0.32388E +04 10 - 0.25430E +04 it - 0.70824E +03 12, 0.37866E +03 13 0.161S7E +05 14 0.25149E +05 15 0.27102E +05 16 0.25162E +05 17 0.16207E +05 18 0.38132E +03 19 - 0.70529E +03 20 - 0.25432E +04 21 = 0.32385E +04 22 - 0.36347E +04 23 - 0.16192E +04 24 - 0.38650E +04 25 - 0.35239E +04 2b - 0.36190E +04 27 - 0.15929E +04 26 - 0.10540E +04 29 - 0.71774E +03 OUTER CAGE STEEL - 0.71683E +03 - 0.40502E +03 0.10715E +03 0.16550E +05 0.28930E +05 0.28862E +05 0.94002E +03 0.29300E +05 0.30701E +05 0.25055E +05 - 0.19959E +03 - 0.10985E +04 - 0.14606E +04 - 0.40699E +03 - 0.31330E +03 - 0.40662E +03 - 0.14613E +04 - 0.11009E +04 - 0.20231E +03 0.25038E +05 0.30681E +05 0.29274E +05 0.93948E +03 0.28S39E +05 0.28905E +05 0.165 -5E +05 0.10655E +03 - 0.40566E +03 - 0.71778E +03 CONCRETE COMPRESSION - 0.88814E +02 - 0.14896E +03 - 0.24578E +03 - 0.10249E +04 - 0.12438E +04 - 0.10537E +04 - 0.22926E +03 - 0.10140E +04 - 0.12048EE +04 - 0.11041E +04 - 0.10229E +03 - 0.192241E +03 - 0.85373E +03 - 0.10247E +04 - 0.10840E +04 - 0.10251E +04 - 0.85462E +03 - 0.19291E +03 - 0.10176E +03 - 0.11037EE +04 - 0.12043E +04 - 0.10134E +04 - 0.221i22ET03 - 0.10533E +04 -0. 124.4E +04 - 0.10246E +04 - 0.24595E +03 - 0.149122E +03 - 0.88913E +02 SHEAR STRESS Cl. 00000E +00 0.1725822 +02 0.26052E +02 0.32956E +02 0.31578L- +02 0.23735E +02 - 0.11524E +01 - 0.25526E *02 - 0.32610E *02 -G. 36893E +02 - 0.31182E +02 - 0.21939E +02 - 0.13701E +02 - 0.64645E +01 - 0.11834E -01 0.64417E +01 0.13678E +02 0.21925E +02 0.31206E +02 0.- 61Z13E *02 0._ 595E +02 0. 255.,2E +02 0.11655E +01 - 0.23719E -02 - 0.31562E -02 - 0.2972E +02 - 0.26047E +02 - 0.17264 -E +r,2 0.00000E +00 STRAINS IN THE INNER AND CUTER FIBER OF THE CULVERT WALL (ONLY STRAINS FOR COMPRESSION ZONES HAVE PHYSICAL MEANING) NPFT INNER STRAIN OUTER STRAIN 1 -u. = S3E-04 -0.224 4E-04 -0.3:'7:6_ CG- - 0.64550E-0E - r•.o224@E -04 0.157,5E -04 V. %14.05= -0- -ii. ::O1E -03 O.IIE04E -02 E -U. 6667=' -U3 0.10958= -0: 7 -U. 58064E -U4 0.C•9162EE -04 E - 0.25682 = -03 0.11076E -02 S - 0.34514E -0:; U. 12347E -02 48 10 - 0.27964E -03 11 - 0.25907E-04 12 0.22579E -04 13 0.63574E -OS 14 0.9742E -03 15 0.10490E -02 16 0.97472E -03 17 0.63652E -03 18 0.22699E -04 19 - 0.25774E -CW 20 -U. 27953E -03 21 -U. 30561E -03 -- -0. 25665E-03 : 2 -C,. 53055E-04 24 - 0.26678E -03 25 - 6.1491E -03 26 - 0.25951E -03 27 - 0.62291E -04 28 - 0.37767E -04 29 - 0.22522E -04 0.105227E -02 - 0.13520E -05 - 0.487=E -04 - 0.21622E -03 - 0.25952E -03 - 0.27453E -U3 - 0.25463E -03 - 0.21645E -03 - 0.48857E -04 - 0.14920E -05 0.10520E -02 0.12b39E -02 0.11066E -02 0.Z9142c-04 0.10989E -02 0.11795 -c -02 0.71345E -03 0.19752E -04 - 0.64696E -05 - 0.22524E -04 �9 ' CA-CULATED SAFETY FACTORS FOR LOAD INCREMENT 5 STEEL YIELD STRESS / MAX. STEEL STRESS ......... CONCRETE STRENoTH / MAX. CONPRESSIVE STRESS .... WALL SHEAR CAPACITY / MAX. SHEAF ............... PERFORMANCE FACTORY 0.01 INCH / MAX. CRACK WIDTH ................... 1.554 216 ,.427 0.879 5o m m m m m r m m m m m m m m m m m= m �1 1 .. �/ i STRUCTURAL RESPONSE OF CULVERT FOR LOAD INCREMENT 6 COORDINATES, DISPLACEMENTS AND CRACK DEFTHS ARE IN INCHES PRESSURES ARE IN LB /INtt2 MOMENTS ARE IN 1N.2LB /IN. THRUST AND SHEAR ARE IN LB /IN. NFPT X- COORD. X -D1SP. N -PRES: MOMENT SHEAR PIPE STRESS Y- COORD. Y -DISP. S -PRES. THRUST CRACK DEPTH I -101.00 -0. 61667E -01 0.22918E +03 0.59062E -01 Q.000OOE +C,O - C'.16967E +03 -29.69 - 0.24075E +00 0.00000E +00 - 0.11344E +04 0.00000E +00 - 0.71344E +04 - 2 - 101.00 - 0.74816E-01 - 0.77625E +01 - 0.16797E +04 0.20807E+03 - 0.24648E +03 -19.79 - 0.24102E +00 0.5790E +01 - 0.11167E +04 0.00000E +00 - 0.30990E +04 3 - 101.00 - 0.67438E -01 - 0.10117E +02 - 0.41172E +04 0.29653E +03 - 0.34659E +03 -9.90. - 0.24129E +00 0.36664E +01 - 0.10799E +04 0.00000E +00 - 0.10608E +04 4 - 101.00 - 0.98427E -01 - 0.11632E +02 - 0.75486E +04 0.37732E +03 - 0.45573E +03 0.00 - 0.24163E +00 0.37181E +01 - 0.105232' +04 0.74163E+01 - 0.10239E +04 5 - 100.60 - 0.10140E *CKO - 0.11959E +02 - 0.11090E +05 0.41743E +03 - 0.55821E +03 E.67 - 0.24205 = +00 0.39399E +01 - 0.10437E -04 0. 857,09E+()! - 0.97870E +03 6 -99.43 - 0.72863E -01 - 0.65295E +01 - 0.14951E +05 0.43500E +03 - 0.63375E +03 17.64 -0.2473E +OC: 0.29304E +01 - 0.10431E +04 0.11126E +02 - 0.9Z•910E +03 7 -97.53 -0. 7522 'E -01 - 0.76137E +Oi - 0.193712 +05 0.144S2E -02 - 0.664568 +03 27.43 - 0.24745E +00 0.55136E+01 - 0.10226E +04 0.15602E +02 - 0.85741E +03 8 -90.12 - 0.66099E -US - 0.96600E -01 - 0.15234E +05 - 0.40995E+03 - 0.68540E +03 31.67 - Q.26 :391F-+0P 0.222CIE +01 - 0.17872E +03 C.11546E +02 - 0.77374E +03 9 -82.01 - 0.56390E -01 - 0.90749E +01 - 0.12635E +05 - 0.41346E +03 - 0.65377E +0_ 35.08 - 0.20524E +00 0.26794E+01 -0. 925422+0-1 0.89724E -01 - 0.706395+03 10 -75.97 -0.457u2E -05 -` E_; 99E +C:1 -G. 1;4726E =04 -i:. 4= 7.92 +C)3 .Y 7. 6) -(. `•: -•5oE't (I. 2'w467Ci'V; -f:. b,, i4t.G+i.3 U.76, >7:7.=+, I -t,. 6f)2- 11 -00..Oct -.. 6- ^ ^'52 = -01 -0.:45 4'c +0i - V.73•4E 17c. +04 - ?j.39Ci14E+f, :Z,, - 0.65952E +03 41.35 - C.95[3E +00 4.31Y.o9E 01 - 0.727:.0_ 02: i %. WOOVE +00 -0. 47 t,37E+03 12 -45.00 - 0.1�023Z -01 - u.77035L +O1 0.7,6636c +04 -Ch. zIs11_ +O1 - 0.62 04E *03 4 -.97 - 0.46076E +00 G..T•448=E +i:1 - O.b9777F4G- C. 5E --o-- �1 1 .. �/ i i 13 -30.00 - 0.35623E -02 - 0.69456E +01 0.72043E +04 - 0.22211E+013 -- 0.68372E+03 45.03 - 0.55564E +00 0.363S2E +01 - 0.6308bE +03 0.75bO:;E +01 - 0.21352E +03 14 -15.00 0.256'75E -03 - 0.94905E +01 u.S7654c +014 - 0.11316E +03 - 0.55675E +03 46.54 - 0.61952E +00 0.22662E +01 - 0.57811E +03 0.78209E +01 - 0.69844E +02 15 0.00 U. 15773E 703 - 0.93005E +01 0.30607E -05 - 0.64201E -01 - 0.55678E +03 47.31 - O.t4087E +00 - 0.19200E -02 - G.55831E +03 u.78659E +01 0.69706E +02 16 15.00 0.55405E -04 - 0.94527E +01 0.97673E +04 0.11305E +03 - 0.58375E +03 46.94 - 0.611757E+00 - 0.22664E +01 - 0.57813E +03 0.7002102 +01 0.21382E +03 17 30.00 0.38927E -02 - 0.89373E +01 0.72078E +04 0.22194E +03 - 0.62510E +03 45.83 - 0.55975E+00 - 0.36405E +01 - 0.63089E +03 0.7507E+01 0.35333E+03 18 45.00 0.13327E -01 - 0.77094E +01 0.30708E +04 0.31493E+03 - 0.65944E +03 43.97 - 0.48094E +00 - 0.34397E +01 - 0.69773E +03 0.000001E +00 0.47671E +03 19 60.00 0.27283E -01 - 0.74928E +01 - 0.23517E +04 0.9530E +03 - 0.66578E +03 7 41.35 - 0.39943E +00 - 0.32200E +01 - 0.767332 +03 0.00000E +00 0.60285E +03 20 75.9: 0.45989E -01 - 0.81680E +01 - 0.94698E +U4 C1.42772E +03 - 0.69406E +03 37.61 - 0.ZI5- /46, +001 - 0.25440E +Oi - 0.84-;i70E +u3 0.7::0 7UE +0i 0.70026E +013 21 E3.01 0.56672E -01 - 0.90797E +01 - 0.12631E +05 0.413.27E +03 - 0.68572E +03 35.08 - 0.20549E +O() - 0.26848E+01 - 0.92562E+03 0.6,9721E +01 0.77868E +03 22 90.12 0.6677E -01 - 0.57232E +01 - C.15827E +05 0.409997E -03 - 0.66442E+03 31.67 - 0.264i7E +00 - 0.219122 +01 - 0.97838E +03 0.11546E +02 0.85770E +03 23 97.::3 0.75497E -0: - 0.74.797E +01 - 0.193.66E +05 - 0.i4245E +02 - 0.6..760E +03 21.4- - u.L477 -7ET00 - 0.55504E +01 - ..102,-•OE +G4 0.:5c0:E +02 C..S398Uz +CG 24 99.43 V.9 129E -:1i G. 55124E +01 - 0.14946E +05 - ;1.47, /5E +O:: - Cs. 558J4E +0-- 17.64 - 0.24400E-00 -0. 2939C•iE +0: - 0.10439E+04 u.1:: <6E +02 0.98049E +u3 25 10(,.6'. 0.1C,I 7E +00 - 1•.111; 4C): -[...1089E _ E+ -C.. -z; !'.Y -C ) .4555/ . ' 6,).6 7, +011 -i1. 3S65:c +111 - i:.li;t- S. +('):. :).:.- 1.12E. +0'. 0.1024'!2 +04 V. 4Ec•;:E -01 C.1 4 C,.- 7'1.'c +U;; - G.Z,;,50E-.ir- 0.241^Oc +00 -u. 37 i1E +Oi -u. 0.741'36,011 C:.1V61 -7EA )4 101. 0- , 1 i 0E -C,1 C. 6 i V -. I Ol I I E. 0 -0i. r 1162_ + 114 -V._ "16456' +O.'• 1 :i464�c O�• . -S. -):.::4 3 566 +u7 -1 •.3601 of +u i - .. 1 0S, ❑ -0- .... 1'U! C`c. +C`f) 0. 1 i r):, I E +04 28 201. 00 0.75067E -01 - 0.77404E +01 - 0.16815E +04 - 0.20816E4 03 - 0.16986E +03 -19. 99 - 0.24129E +00 -0.,- 5900E+01 -0. 11179E +04 C.000OOE +00 0.11256E +04 29 101.00 0.61941E -01 - 0.22942E +03 0.14648E -00 0.00000E +00 0.00000E +00 -29.69 - 0.24102E +00 O.00000E +00 - 0.11556E +04 0.00000E +00 0.00000c +00 E3 1 = m = m = m � = m m = = = = m m m = m 7 � 7 STRESSES IN CULVERT WALL (F•SI) FOR LOAD INCREMENT 6 ELLIP. OR NPPT INNER CAGE STEEL 1 - 0.88398E +03 2 - 0.14160E +04 3 - 0.21792E +04 4 - 0.4257E +04 5 -0.47840E +04 6 - 0.54429E +04 7 - 0.43811E +04 8 - 0.55292E +04 9 - 0.49052E +04 10 - 0.38263E +04 11 - 0.13537E +04 12 0.44453E +03 13 0.29921E +05 14 0.44209E+0S 25 0.48462E +fj5 16 0.44217E +05 17 0.29936E +05 18 0.44690E +03 19 - 0.13506E+04 20 - 0.3B265E +04 21 - 0.49045E +04 22 - 0.55274E +04 23 - 0.43801E +04 24 - 0.54428E +04 25 - 0.47853E +04 26 - 0.42360E +04 27 - 0.21805E +04 28 - 0.14175E +04 29 - 0.88466E +03 OUTER CAGE STEEL - 0.88401E +03 - 0.40343E+03 0.30241E +U3 0.28875E +05 0.43411E +05 0.43451E +05 0.28974E +05 0.45954E +05 0.50374E +05 0.44042E +05 0.58507E +02 - 0.14014E +04 - 0.85365E +03 0.58224E +02 0.28064E +03 0.58513E +02 - 0.85352E +03 - 0.14034E +04 0.55665E +02 0.44021E +05 0.56319E +05 0.45924E +05 0. 28954E+1,5 0.4-1424E-05 0.43325E +U5 0.28857E+05 0.30198E +11.3 - 0.44382E +03 - 0.684972 +03 CONCRETE SHEAR COMPRESSION STRESS - 0.10953E +03 Q.00i)00E +00 - 0.20439E +03 0,25221E +02 -0. 340194&i-0-- U. 5943E +02 - 0.14715E +04 0.45736E +02 - 0.17917E +04 0.45274E +02 - 0.15332E +04 0.352BVE +02 - 0.91578E +03 0.7eE99E +00 - 0.15549E +04 - 0.32153E +02 - 0.19165E +04 - 0.43069E +02 - 0.18427E+04 - 0.51829E +02 - 0.20810E +03 - 0.47896E +02 - 0.224399E +03 - 0.36196E +02 - 0.12790E +04 - 0.26922E +02 - 0.16759E +04 - 0.13718E +02 - 0.18020E +04 - 0.83879E -02 - 0.16762E +04 0.137042 +02 -0.12795E +04 0.26901 -E +02 - 0.24441E+03 0.38173E +02 - 0.20754E +03 0.47915E +02 - O.1B42iE +04 0.51844E +02 - 0.19158E +04 0.43049E +02 - 0.15541E +04 0.32156E +02 - 0.9ib42E +03 -U..-7 46E +00 - 0.15327E +04 - 0.351159E +02 - 0.175'13E +04 - 0.45249E -)22 - 0.14713E +04 - 0.45718E +02 - 0.34114E +03 -0. 35937E+02' - 0.2046:E +0• -0.25231E+02 - 0.10565E +03 0.00000E +00 STRAINS IN THE INNER AND OUTER FILHER OF THE CULVERT WALL (ONLY STRAI143 FOR COMPRESSION ZONES HAVE PHYSICAL hEAI,1(4G) NPPT INNER STRAIN OUTER STRAIN 1 -i,. 27.-SE-1,4 -0. 277411E -04 - C. - 6. -- BE! 25E - 05 4 7<6EZ -0 : V, 1225c�E -V2 5 - 0.4_•--.79E -UZ• 0.17671E -02 6 - 0.ZSF,:;2E -03 0.1G575-- -02 7 S'4E -i,= O, li 35is -i,L 8 - l.3 °- 30E -0. 0,173.58_ -02 9 - 0. 1.;,_02272 -0: 5y I 10 - 0.46670E -03 0.18442E--C,2 = e ° `$ �: •:3 `< 11 - 0.52706E -n4 0.15471E -04 :2 U.273]bE -0 - 0.6i796E -04 73 0.11618E-02 - 0.3L393E -03 14 0.17069E -02 - 0.42445E -03 15 0.18696E -02 - 0.45639E -03 16 0.17073E -02 - 0.42452E -03 17 0.11623E -02 - 0.32406E -03 IS 0.27422E -04 - 0.61901E -04 i 19 - 0.52563E -04 0.15324E -04 20 - 0.46656E -03 0.18433E 702 21 - 0.48520E -03 0.20217E -02 ) - 0.39361E -03 0.17346E -02 23 - 0.233E5E -03 0.1=44E-02 24 - 0.38819E -03 0.16525E -02 , - 0.45365E -03 0.17661E- 02�'`' =?" 26 - 0.37264E -03 0.12251E -02 27 - 0.86400E -04 0.33445E -04 l 28 - 0.51821E -04 - 0.28841E -05 29 - 0.27766E -04 - 0.27771E -04 - i CALCULATED SAFETY FACTORS FOR LGAD INCREMENT 6 STEEL YIELD STRESS / MAX. STEEL STRESS .......... CONCRETE STRENGTH / MAX. E:OMPRESSIVE STRESS .... WALL SHEAR CAPACITY / MAX. SHEAF. ............... PERFORhANCE FACTORS 0.01 INCH ' MAX. CIRACK WIDTH ................... Y* * * NORMAL EXIT FROM CANDE t Y$ * 1.291 ()S7 440 0.44E 56 m m m m m m m m m m m m m m m m m m m zu ��. r• h" ,r. '.III T _ .,:� �1 y - yam; . ,._.; '.`'_, •"%"' -': Y� :fi. +<�; i .f r ?`•rY' 1 T'. .1' .1^ 9 Ar :5p: f. nt r Illllllllllll:,.c ,t .�,.. .�t,,.: =i :aaaaaa 1 JJ�' I 1111 1 1' 1] Jill] J1 _'.F•.r.V't4 J`S.i:S:'� �,Ri:' _ ./ :�. — t,., ,��: _ _ MR ?k it ati.. il .,r ti y ✓ V: N "I i rrr,l - •r!'' ,k . >;ti ?'.,^yaf:: .!y af.:, _ ..L•. 5..'.•_ •d7. ••.i..'�:.:� - ?. : OR StI� }►� IIF- J1 1 1 1 1 1 11 Lower initial cost CON /SPAN shapes up a s your wisest 1 investmerato T. a 20 -foot span and 7 -foot rise. The total structural cost was about $30,000, with the four pre- cast Con /Span sections costing just under $14,000. And that included the monolithic headwalls. The advanced Con /Span design combines the proven technology used for metal arch ® culvert bridge structures with the lifetime benefits of precast concrete. The result? A very 2 Quick installation In any bridge replacement program, you want minimum installation time to ensure the road can be opened up again as promptly as possible. For this particular site in Vandalia, Ohio, the existing rK< culvert structure was removed; the footings and wingwalls were constructed; and the four 24 -foot Con /Span culvert sections were placed and backfilled in just 16 working days. rugged, reinforced concrete arch with substantial structural load capacity and minimal restrictions on cover limitations and backfill requirements. The Con /Span culvert system has ,• � ,.`�'Lr ✓' "fir �,.;,...�; ° „�.� CON /SPAN shapes up a s your wisest 1 investmerato T. a 20 -foot span and 7 -foot rise. The total structural cost was about $30,000, with the four pre- cast Con /Span sections costing just under $14,000. And that included the monolithic headwalls. The advanced Con /Span design combines the proven technology used for metal arch ® culvert bridge structures with the lifetime benefits of precast concrete. The result? A very 2 Quick installation In any bridge replacement program, you want minimum installation time to ensure the road can be opened up again as promptly as possible. For this particular site in Vandalia, Ohio, the existing rK< culvert structure was removed; the footings and wingwalls were constructed; and the four 24 -foot Con /Span culvert sections were placed and backfilled in just 16 working days. rugged, reinforced concrete arch with substantial structural load capacity and minimal restrictions on cover limitations and backfill requirements. The Con /Span culvert system has 1 7ig I I m :0. 1 1 1 1i AIL �J I L:FUFl 1 11 AM I JINX T 7 %IV N Vaults 'Curves Economy, durability, quick Curved alignments car ristallation and load carrying easily accommodated N.apacity make Con/Span the precasting segments N deal choice for underground site requirements. Unit itorage structures. Integral end precast to fit a wide rar ,valls supplied with the precast field conditions. Maint; inits provide an enclosed vault clear spans is particul,-# iFn a slab base. Use with.strip important to reduce se, SY 'ootings for water percolation in build-u and clogging i trainage retention vaults. with culvert bends. S .. ... .... .. ..... .. IT ng ry 1 1 1 1 11 1 1 11 1 1 1 1 Lower maintenance cosh The outstanding corrosion resistance and.built -in durability of concrete Con /Span culverts provide your third benefit— a very lowlife -cycle cost. These. two important features help ensure your maintenance crew will be kept free to handle other assignments. Base your purchasing decision on total cost over the life of the culvert and you will choose Con/Span every time! now permanently reshaped the plans of many engineers involved in bridge replacements ... and private developers involved in property improvements, water retention 4 Attractive appearance OEM Total reliability Your fifth requirement for any small bridge replacement is the technical integrity of the culvert's design and the quality of each . component — a vitally important requirement. The strength of Con /Span culverts was clearly demonstrated by this full -scale load test conducted for Ohio's Department of Transportation. , A fourth requirement of your culvert installations is a good - looking appearance that compliments the surroundings. Con /Span culverts' clear span design doesn't disturb the natural beauty of the creek bed. As you can see, the clean and simple design of Con /Span culverts looks good from every angle! reservoirs, major storm water systems, and other projects. Realizing that your needs and your bridge replacement program are likely to be in some ways special and different from This minimally reinforced Con /Span unit greatly exceeded all standard performance requirements for full highway, loading. other Con /Span users, we are eager to hear from you how and where Con /Span culvert systems might fit your future bridge replacement plans. 1 1 1 1 1 Discover tod.qvhow CON /SPAN' Con /Span culverts cost less initially, install quickly, cost less to maintain, are attractive, and are totally reliable —five strong reasons for.choosing Con /Span for all of your future culvert and short -span bridge replacements. � you loner! Call 1 -800 -526 -3999 Fax 1- 513 - 293 -5850 Your Con /Span supplier is ready to technically assist you and your engineering team. We can provide a wealth of additional information and technical support to help you make the right decisions about your bridge replacements. We are also prepared to discuss with your project management staff the details of specifying, shipping, and installing your Con /Span culverts. rC.N.....RAN., 1563 E. Dorothy Lane, Dayton, OH 45429 We are eager to help you discover all the benefits of Con /Span culvert systems — including total satisfaction and lasting performance. Specify Con /Span culverts . whenever you want a new and better installation that meets your five most important needs... make the choice that will cost you less and serve you longer. Call us today! ©1990 CON /SPAN® IBest.way to eliminate bridge -deck maintenance? Eliminate bridge decks! FA L HYDRO CONDUIT CON /SPAN CULVERT SYSTEM 1 , 1 � 1 . 1 1 , 1 1 , 1 � 1 ; 1 , 1 1 - ; 1 ♦`J 1 1 1 1 � 1� . I 1 1 1 m m m m m m m = m m m m m m m m m m m 1 1_ 1 1 1 1 1 1 1 1 1 V Q (12' Span) 15.34' 13.83' (12' Span) AREA OF CONCRETE SECTION (Square Feet) RISE (ft) SPAN (ft) 12 16 20 24 5 20.6 22.8 6 22.3 24.4 26.5 7 23.9 26.1 28.2- 30.8 g 25.6 27.8 29.9 32.5 9 27.2 31.5 34.2 10 35.8 GEOMETRIC PROPERTIES 24' 48.29' 4.26' 2.75' 3.01' Con Span TM • Culvert System: 1563 East Dorothy Lan Dayton, Ohio 45429 ©1986 a M n CULVERT DIMENSIONS FOR FORM SYSTEM B AREA OF CONCRETE SECTION (Square Feet) RISE (ft) SPAN (ft) 16 20 .24 5 21.6 48.29' 6 23.3 25.8 7 25.0 27.5 29.8 8 26.7 29.2 31.5 9 2.84' 30.9 33.2 d 2.07' 2.63' Span 16' 20' 24' 6 26.26' 37.12 48.29' a 4.02' 3.73' 3.45' b 0.65' 1.30' 2.19' c 2.92' 2.84' 2 74' d 2.07' 2.63' 3.41' (P. 76.85' 71.43' 65.83' e 11.84' 16.75' 21.78' f 0.74' 0.37' 0' L 11.46' 16.20' 21.0" GEOMETRIC PROPERTIES FOR FORM SYSTEM B Con Span T Culvert Systems 1563 East Dorothy Lane Dayton, Ohio 45429 EMS- L I AREA OF CONCRETE SECTION (Square Feet) RISE (ft) SPAN (ft) 28 32 36 8 49.0 51.3 VA 9 51.3 53.6 55.7 10 53.6 55.9 58.0 11 55.9 58.2 60.3 12 N/A 60.5 62 6 13 N/A VA 64.9 GEOMETRIC PROPERTIES LONG SPAN SERIES FORM SYSTEM B Con/ SpanTM Culvert Systems 1563 East Dorothy Lane Dayton, Ohio 45429 01986. 1 3.78' a� - v� B. 5 1' o O P \ 6 O ri• M WEIGHT PER LIN. FT. RISE (Ft.) TONS 2'- 6" o 5 1.15 x �O1 6 1.25 2 I 7 1.35 C? 8 1.45 9 1.55 6' - 0" 8" 12' -0" Spon 8" SHORT SPAN SERIES Con /Span • ! Culvert Systems ✓OC WOL • . m m m m m m m m m m m m m m m m m m m WATERWAY AREA (Square Feet) RISE (ft) SPAN (ft) 12 16 20 24 5 55 71 85 6 57 87 105 119 7 79 103 125 143 g 91 119 145 167 9 103 135 165 191 10 1 1 185 215 WETTED PERIMETER (NOT INCLUDING CHANNEL BOTTOM) (Feet) RISE (ft) SPAN (ft) 12 16 20 24 5 19.2 22.4 25.4 6 21.2 24.4 27.4 30.1 7 23.2 26.4 29.4 32.1 8 25.2 28.4 31.4 34.1 9 27.2 30.4 33.4 36.1 10 35.4 38.1 HYDRAULIC PROPERTIES Con SpQn TM , Culvert System; 1563 East Dorothy Lan Dayton, Ohio 45429 ©19es J 1 1 1 I'] 1 w w w w� . iw w w w w w ww wi ww w w w w w w PLAN VIEW TYPICAL UNIT so rr rd ro so 9 In >C-- TmsSe.d 4 .,o-.r.uw.a' Prwzn 4'.I xIf, TYPICAL SECTION - 1; - - Ew. 5aw • Eqr or r 0- TYPICAL TOP B SIDES OF E- 4&33 ro- CULVERT AT EACH JOINT . � m E.I.. «.m M Cbc. b Ma✓7. Tm d .� Er. um 6.10 SAm S• Plal Ylr Er. }Am I m I •S+ rtn a r.-IIN /Ylifld'v viy. !v rsw,. rr T. rr' Td TT i0 r >Im id TT 7d0 TIa� bd Ev A/i/Nip - SECTION B -B zo.." S.. e. FooT END ELEVATION NOTES- DESIGN 4 DATA 10 Cr CMC �p-T �n�, id �d .)UNTO: MSiO OOT : S.. ui • S W oCCOV- pb/�LS /h C / Nn 3PcCiFicO/ a^i,� p -Ci I 1 I I I I I 1 D..I /..L�w ✓: iw p ♦ Fkrr M1. uiwi0 I I 1 I 1 I 1 I 1 I I I 1 I I 1 1 I 1 j j 1 Lcr�s: 1), 1[i,1Tl, c, i,l7 1 I 1 1 1 1 .b c • 1 �Y/,•. 4 ♦ tAr nu.. i i I 1 I I 1 1 1 I PLAN VIEW TYPICAL UNIT so rr rd ro so 9 In >C-- TmsSe.d 4 .,o-.r.uw.a' Prwzn 4'.I xIf, TYPICAL SECTION - 1; - - Ew. 5aw • Eqr or r 0- TYPICAL TOP B SIDES OF E- 4&33 ro- CULVERT AT EACH JOINT . � m E.I.. «.m M Cbc. b Ma✓7. Tm d .� Er. um 6.10 SAm S• Plal Ylr Er. }Am I m I •S+ rtn a r.-IIN /Ylifld'v viy. !v rsw,. rr T. rr' Td TT i0 r >Im id TT 7d0 TIa� bd Ev A/i/Nip - SECTION B -B zo.." S.. e. FooT END ELEVATION NOTES- DESIGN 4 DATA MATERIALS �p-T �n�, fhrcar /un./��hn/ /Grp c. .)UNTO: MSiO OOT : S.. ui • S W oCCOV- pb/�LS /h C / Nn 3PcCiFicO/ a^i,� p -Ci D..I /..L�w ✓: iw Co•YT/e• �/Yla'tlC! /Viaifp Fkrr M1. uiwi0 d//O / /Gle• �r t wvM ininimuin Lcr�s: 1), 1[i,1Tl, c, i,l7 .b c • lb -rrAc A— A -rl -g C17- 6i �e GO. � m m m w s m m m r m m= m m m� w m 4. MATERIALS - STEEL REINFORCEMENT AND HARDWARE ' All reinforcing steel for the culverts shall be fabricated and placed in accordance with the detailed shop drawings sub- ' witted by the manufacturer. 1 . I A -1 MINOR MODIFICATIONS TO THESE SPECIFICATIONS MAY BE MADE TO FIT LOCAL CONDITIONS CON /SPAN CULVERTS 1. DESCRIPTION This work shall consist of constructing a Con /Span culvert ' in accordance with these specifications and in reasonably close conformity with the lines, grades, design and dimensions ' shown on the plans or as established by the Engineer. 2. TYPES Precast reinforced concrete Con /Span culverts manufactured in accordance with this specification shall be designated by span and rise. MATERIALS - CONCRETE ' The concrete for the culverts shall be air - entrained when installed in areas subject to freeze -thaw conditions, composed of portland cement, fine and course aggregates, admixtures and and water. Concrete shall contain 6 + 2 percent air. The ' air entraining admixture shall conform to AASHTO M154. 3.1 Cement - portland cement shall conform to the require- ments of ASTM Specification C150 -Type I, Type II, or ' Type III cement. 3.2 Coarse Aggregate — Shall consist of stone having a max- ' imum size of 1 inch. Aggregate shall meet requirements for ASTM C33. ' 3.3 Water Reducing Admixture - The manufacturer may submit for approval by,the Engineer, water- reducing admixture for the purpose of increasing workability and reducing ' the water requirement for the concrete. 3.4 Calcium Chloride - The addition to the mix of calcium chloride or admixtures containing calcium chloride will ' not be permitted. 4. MATERIALS - STEEL REINFORCEMENT AND HARDWARE ' All reinforcing steel for the culverts shall be fabricated and placed in accordance with the detailed shop drawings sub- ' witted by the manufacturer. 1 . I 5.5 Storage - The culverts shall be stored in such a manner to prevent cracking or damage. The units shall not be stored in an upright position until the compressive strength is a minimum of 4,000 psi. A -2 ' 4.1 Steel Reinforcement - Reinforcement shall consist of welded wire fabric conforming to ASTM Specification A185 or A497 or-deformed billet -steel bars conforming to ASTM ' Specification A -615, A -6.16, or:A -617, Grade 60. Longitudinal distribution reinforcement may consist of welded wire fabric deformed billet -steel bars. ' 5. MANUFACTURE 5.1 Mixture - The aggregates, cement and water shall be proportioned and mixed in a batch mixer to produce a homogeneous concrete meeting the strength requirements of the specification. The proportion of portland cement ' in the mixture shall not be less than 564 pounds per cubic yard (6 sacks) of concrete. ' 5.2 Curing -- The — precast concrete culvert units shall be cured a sufficient.length of time so that the concrete will develop the' specified compressive strength in 28 ' days or less. Any one of the following methods of curing or combinations there of shall be used: ' 5.2.1. Steam Curing - The culverts may be low pressure, steam cured by a system that will maintain a moist atmosphere. ' 5.2.2. Water Curing - The culverts may be water cured by any method that will keep the sections moist. 5.2.3. Membrane Curing - A sealing.membrane conforming to the requirements of ASTM Specification C -309 may be applied and shall be left intact until the required concrete compressive strength is attained. The concrete temp- ' erature at the time of application shall be withi.n + 10 degrees F of the atmospheric temperature. All surfaces shall be kept moist prior to the application ' of the compounds and shall be damp when the compound is applied. 5.3 Forms - The forms used in manufacture shall be suffi- ciently rigid and accurate to maintain the culvert dimen- sions within the permissible variations given in Section 7. All casting surfaces shall be of smooth material. 5.4 Handling - Handling devices or holes shall be permitted _ in each culvert for the purpose of handling and setting. 5.5 Storage - The culverts shall be stored in such a manner to prevent cracking or damage. The units shall not be stored in an upright position until the compressive strength is a minimum of 4,000 psi. ' A -3 ' 6. DESIGN ' 6.1 The culvert dimensions and reinforcement details shall be as described in the plan and the shop drawings provided by the manufacturer subject to the provisions of Section 7. The minimum.concrete compressive strength shall be ' 4,000 psi. The minimum steel yield strength shall be 60,000 psi. The culverts are designed in accordance with the '.'Standard Specifications for Highway Bridges" adopted by the Ameri- can Association of State Highway and Transportation Offi- cials, 1983, including the 1984 Interim Specifications; and the Alternate Military Loading. A minimum of one foot of cover above the crown of the culvert is required in the installed condition. 6.2 Placement of Reinforcement - The cover of concrete over the outside circumferential reinforcement shall be 2 inches minimum. The cover of concrete over the inside ' circumferential reinforcement shall be 1 1/2 inches minimum. The clear distance of the end circumferential. ' wires shall not be less than one inch nor more than two inches from the ends of the culvert. Reinforcement shall be assembled utilizing single or multiple layers of weld - ed wire fabric, or utilizing a single layer of deformed ' billet -steel bars. The welded wire fabric shall be com- posed of circumferential and longitudinal wires meeting the spacing requirements of 6.4 and shall contain suffi- cent longitudinal wires extending through the culvert to ' maintain the shape and position of reinforcement. Longitudinal distribution reinforcement may be welded ' wire fabric or deformed billet -steel bars and shall meet the spacing requirements of 6.4. The ends of the long- itudinal distribution reinforcement shall be not more than 3 inches from the ends of the culvert. 6.3 Bending of Reinforcement - The outside circumferential reinforcing steel for the corners of the culvert shall be bent to such an angle that is approximately equal to the — ' configuration of the culvert's outside corner. The in- side circumferential reinforcing steel for the inside cor- ner of the culvert shall be bent so that it is approxi- mately equal to the angle of the culvert's inside corner. 6.4 Laps, Welds, and Spacing - Tension spliced in the cir- cumferential reinforcement shall be-made by lapping. Lapping may be tack welded together for assembly purposes. For smooth welded wire fabric, the overlap will meet the ' requirements of ACI 12.9 and 12.20. A -4 For deformed welded wire fabric, the overlap shall meet the requirements of ACI 12.8 and 12.19.. For deformed billet -steel bars, the overlap shall meet the requirements of ACI 12.2. For splices other than tension splices, the overlap shall be a minimum of 12" for welded wire fabric or deformed billet -steel bars. The spacing center-to cen- ter of the circumferential wires in a wire fabric sheet shall not-be less.than 2 inches nor more than 4 inches. For the wire fabric, the spacing center to center of the longitudinal wires shall not be more than 8 inches. The spacing center of the longitudinal distribution steel for either line of reinforcing in the top slab shall not be more than 16 inches. 7. PERMISSIBLE VARIATIONS 7.1 Internal Dimensions - The internal dimension shall vary not more than 1% from the design dimensions nor more than 1 1/2 inches whichever is less. The haunch dimensions shall vary not more than 3/4 inch from the design dimension. 7.2 Slab and Wall Thickness - The slab and wall thickness shall not be less than that shown in the design by more than 1/4 inch. A thickness more than that required in the design shall not be a cause for rejection. 7.3 Length of Opposite Surfaces - Variations' in laying lengths of two opposite surfaces of the culvert shall not be more than 5/8 inch in any culvert section, except where beveled ends for laying of curves are specified by the purchaser. 7.4 Length of Section - The underrun in length of a section shall not be more than 1/2 inch in any culvert. 7.5 Position of Reinforcement - The maximum variation in position of the reinforcement shall be + 1/2 inch. In no case shall the cover over the reinforcement be less than 1 1/2 inch for the outside circumferential steel or be less than 1 inch for the inside circumferential steel as measured to the external of internal surface of the culvert. These tolerances or cover requirements do not apply to mating surfaces of the joints. 7.6 Area or Reinforcement - The areas of steel reinforcement shall be the design steel areas as shown in the manufac- turer's shop drawings. Steel areas greater than those required shall not be cause for rejection. The permis- sible variation in diameter of any reinforcement shall conform to the tolerances prescribed in the ASTM Speci- fication for that type of reinforcement. 1 8. TESTING AND INSPECTION A -5 8.1 Type of Test Specimen - Concrete compressive strength ' shall be determined from compression tests made on cylinders or cores. For cylinder testing a minimum of 4 cylinders shall be taken during each production run. ' For core testing, one core shall be cut from a culvert section selected at random from each group of 15 culverts or less of a particular size and production run. For each continuous production run, each group of 15 culverts �. of a single size or fraction thereof shall be considered separately for the purpose of testing and acceptance. A production run shall be considered continuous if not interrupted for more than 3 consecutive days. 8.2 Compression Testing - Cylinders shall be made and tested ' as prescribed by the ASTM C -39 Specification. Cores shall be- obtained and tested for compressive strength in accordance with the provisions of the ASTM C -497 Specification. 8.3 Acceptability of Cylinder Tests - Failure of any of the ' 28 day test cylinders to meet 90 percent of the minimum compressive strength requirement.can be cause for rejection. ' 8.4 Acceptability of Core Tests - The compressive strength of the concrete in each group of culverts as defined in 8.1 is acceptable when the core test strengths are equal to or greater than the design concrete strength. When the compressive strength of the core tested is less than the design concrete strength, the culvert from which that core was taken may be recored. When the compres- ' sive strength'of the recore is equal to or greater than the design concrete strength, the compressive.strength of the concrete in that group of culverts is acceptable. ' 8.4.1. When the compressive strength of any recore is less than the design concrete strength, the culvert from which that core was--taken sh-all--be- -rej-ected -.;- Two ' culverts from the remainder of the group shall be selected at random and one core shall be taken from each. If the compressive strength of both cores is ' equal to or greater than the design concrete strength, the.compressive strength of the remainder of that group of culverts shall be rejected, or, at the option of the manufacturer, each culvert of the remainder of the group shall be cored and accepted individually, and any of these culverts that have cores with less than the design concrete strength shall be rejected. A -6 8.4.2. Plugging Core Holes - The core holes shall be plugged and sealed by the manufacturer in a manner such that the culvert will meet al of the test requirements of this specification. Culverts so sealed shall be con- sidered satisfactory for use. 8.4.3. Test Equipment - Every manufacturer furnishing culverts under this specification shall furnish all facilities and personnel necessary to carry out the tests required. 9. JOINTS The culverts shall be produced with.flat butt ends. The ends of the culverts shall be such that when the sections are laid together they will make a continuous line of culverts with a smooth interior free of appreciable irregularities, all compatible with the permissible variations in Section 7. The joint width shall not exceed 3/4 inches. 10. WORKMANSHIP AND FINISH The culverts shall be substantially free of fractures. The ends of the culverts shall be normal to the walls and center line of the culvert section, within the limits of variations given in Section 7, except where beveled ends are specified. The surface of the culverts shall be a smooth steel form or troweled surface. Trapped air pockets causing surface defects shall be considered as part of a smooth steel form finish. 11. REPAIRS Culverts may be repaired, if necessary, because imperfec- tions in manufacture or handling damage and will be accept - able if in the opinion of the purchaser, the repairs are sound._, properly finished and cured, and the repaired section conforms to the requirements of this specification.. 12. INSPECTION The quality of materials, the process of manufacture, and the finished culverts shall be subject to inspection by the purchaser. 13. REJECTION Culverts shall be subject to rejection on account of any of the specification requirements. Individual culverts may be rejected because of any of the following: 13.1 Fractures or cracks passing through the wall, except for a single end crack that does not exceed one half the thickness of the wall. 1 A -7 1 13.2 Defects that indicate proportioning, mixing, and molding not in compliance with Section 5. 1 13.3 Honeycombed or open texture, and 13.4 Damaged ends, where such damage would prevent making a 1 satisfactory joint. 1 14. MARKING Each culvert shall be clearly marked by waterproof paint. The following shall be shown on the inside of the vertical 1 leg of the culvert section: Culvert.Section Span X Culvert Rise Date of Manufacture ' Name or Trademark of the manufacturer 1 15. CONSTRUCTION REQUIREMENTS 15.1 Footings - The culverts shall be installed on either precast or cast -in place concrete footings. The design ' size and elevation of the footers shall be as determined by the Engineer. The footings shall be given a smooth float finish and shall reach a compressive strength of e psi before placement of the culvert sections. Q2,000 The completed footing surface shall not vary more than 1/4 inch in 10 feet. If a precast concrete footer is used, the contractor shall prepare a 4 inch thick layer 1 of compacted granular material the full width of the footer prior to placing the precast footer. 15.2 Placement of the Culverts - The culverts shall be placed as shown on the Engineer's plan drawings. Special care shall be taken in setting the culverts to the true line and grade. The culverts shall be set ' on 5" x 5" masonite or steel shims. A minimum of 1/2 -inch gap shall be provided between the footing and the ' bottom of the culvert's vertical - legs.- The ga.p- .s_ha.1.Lb_e - filled with cement grout (cement and water) or cement mortar composed of one part portland cement and three parts of sands by volume, and water. 15.3 External Protection of Joints - The butt joint made by two adjoining culverts shall be covered with a minimum of a 9 inch wide joint wrap. The surface shall be free of dirt before applying the joint material. The external wrap shall be per ASTM C- 877 -77 Specification for External Sealing Bands. One continuous roll of joint wrap shall be extended from the bottom of one culvert section leg, across the top of the arch,-and to the 1I A -8 . opposite section leg. During the backfilling operation, care shall be taken to keep the joint wrap in its proper location over the joint. 15.4 Backfill - Backfill shall be considered as all replaced excavation and new embankment adjacent to the Con /Span culvert and wingwalls. The project construction and material specifications which include the specifications for excavation for structures and roadway excavation and embankment construction shall apply except as modified in this section. Backfill material within four feet of each side of the culvert shall be granular. material. Backfill shall be placed and compacted in layers until the densities meet the following requirement: A minimum of 95% as determined by the California Department of Transporta- tion method 216. The R value and pavement section is to be determined by others. No backfill shall be placed against any structural elements until they have been approved by the Engineer. When waterproofing is required by the Engineer, back - filling against waterproofed surface shall be placed carefully to avoid damage to the waterproofing material. Mechanical tampers or approved compactors shall be used to compact all backfill and embankment immediately adjacent to each side of the culvert and over, the top of the culvert until it is covered to a minimum depth of 2 feet. The backfill within four feet of each side of the culvert shall be placed in 4 inch lifts (loose depth). Heavy equipment may be operated in the four foot zone each side of the culvert but shall not be operated in the area over the culvert until it is covered to the. greater depth of 2 feet or one fourth the span of the culvert with compacted fill. For multiple span culverts the span shall be assumed to be the longest individual span. Lightweight dozers and graders may be operated over culverts having one foot of compaced cover, but heavy earth moving equipment shall require two feet of cover. Any additional fill and subsequent excavation required to provide the minimum cover shall be made at no additional cost to the project.. As a precaution against introducing unbalanced stresses in the culvert and wingwalls, the backfill shall be A -9 placed and compacted to the same elevation on both sides of the culvert and wingwalls before proceeding to the next layer. Backfill in front of wingwalls shall be carried to ground lines shown in the plans. 1 1 1 1 l C--4- PLAN bl II — - — — — — — — — — ------------ — — - - - -I. la 10- 5A— SECTION A•A 10 �" 5,9 A? Is - /-- SECTION B-B "1 7.97-9 SECTION C-C PAVED BOTTOM ALTERNATE SHEET NO. 1 I �" LJ LOCATION PLAN "1 7.97-9 SECTION C-C PAVED BOTTOM ALTERNATE SHEET NO. 1 PLAN r7= e'frcod«.wr 1 evo' e�ro- a, 1 II 11 � �Q lY. Top Typ l Tin S SECTION A-A rY' � e rr• r° �J 3poced t shown G O• SECTION B-e NOTE- - .thleinoraJ /� Loco /.on p /on ------------------------------- siao. r2r,G Iaro/r /un.f SECTION C -C TOP Of f/fl STRIP FOOTING ALTERNATE SHEET NO. 2 T 12 ,9 (2 SHOWN, 20RV.1 01 PLAN 1'•,'0• END VIEW I.. ". s/ P�K0.a /Cu /.sr /On./ 3 -�G ToPlOo /Y drsapl�0'oe --�"- TT'P. CULVERT FTG. SECTION A -A v /teach /v.hngpu/ I �[YeP 5La— 4bi/ - -- h L SM oa ern 4b./ ed/ T . b. b �• -/� f DESIGN DATA h _ u ^—' •' OESIGN LOOOINC N5 Po - AA WL i 95 REINFORCING S:EEL '{t•7 footed � frrcou /Cu /..rte /lln.h- J• N /e. SR Ca+/Soa V as 1 shorn fY. G /Span 3oeriF.eohay JM G1r/o� /I�PoS /A, Ayodro / /Cw..ac /.on 6: 0' f dW��++gg // - dSM dL 13, .�L /G, o. AL 17 �I 6cvcit LO SECTION B -B SECTION C-C (QgCRETE r. ,:a' F• /:o• P Ica., /c e,�./u Ft. C i SPOn �nec//1eo /.m-a f buys ondlYngro // - C/ es C, QLg7Ps/ Cevnp Shrug /h C abut / r.no Cure./ L-1. - .32:0' r•L• OWOBLE SOIL BEARING A000 /ea /// ° JO� e' Face b Facs of Quardro. /a N�oot.v42vn.shid jy Lu /ro./ l ' • I I ----------- 1 m1 zm r C�. Aofo"o- 11 JJ 75 AXE '7 r- I If" FIRST \T �TH 8 SEX! rw WINGWALL VANGWALL %, v FODTPM FOGTIWA o SECTION A-A -delp- A A 'JA4 t tp i LOCATION PLAN r' o- '70 Ar - - f ll, 0-8 SECTION C-C j -- I.*,- DIESMM DATA- A4611A—V Z- Ahb—kArSe 145—g • "YOP4U)LK DATA- 0--"OOCA's; AfW-.9..d' Or cd E. 5 S.W. WI ALLs PLAN rs'e'vaod /r kit GAL Can a, blEscurnE TOMMIAM CROSSIM FIRST STREET NORTH .oa sec 4 --- ----------- Ir END VIEW .6•. rol - - f ll, 0-8 SECTION C-C j -- I.*,- DIESMM DATA- A4611A—V Z- Ahb—kArSe 145—g • "YOP4U)LK DATA- 0--"OOCA's; AfW-.9..d' Covert Systems it Can a, blEscurnE TOMMIAM CROSSIM FIRST STREET NORTH .oa sec TY Wi PLAN I TYPICAL WINGWALL V II II END VIEW I 11 I 11 3 -6 Top f eoF- yp � 1e 7— SECTION A-A 11 SECTION C-C ,el 7y,,) II SECTION B-B SECTION C-C ,el 7y,,) II 11 PIWI, SECTION C-C m � = � m m m = = m m m m m = = = m = rr r r r r r r �r ■r r r rlr r rr �r r rr ri rr J I 1 1 Ij L 9 4,6E I 'Nil QF a O N,D I V N ff Ird Id 1 ii No. 2 Fob -�\ WINGWALL No. 4 PLAN 200" Juan I I n N v It u END Mb/W...oy 0,,o -,- /,100..' SPECIFICATIONS THE XEHTUCXT DEPARTMENT OF'HICMWATS STANDARD SPECIFICATIONS FOR ROAD AND BRIDCE CONSTRUCTION. CURRENT EDITION SMALL APPLY TO THIS PROJECT. DESIGN METHOD ALL REINFORCED CONCRETE MEMBERS ARE DESIGNED BT THE LOAD FACTOR 19TH00 15 SPECIFIED IN THE CURRENT AASHTO SPECIFICATIONS. DESICH LOAD THE PRECAST CULVERT UNITS ARE DESIGNED IN ACCORDANCE WITH THE AASHTO SPECIFIC AT IONS. CURREN T EDITION. THE EFFECTIVE WEIGHT OF FILL MATERIAL IS 120 POUNDS PER CUBIC FOOT AND THE LIVE LOAD IS MS20 -44. DESIGN STRESSES FOR STEEL REINFORCEMENT FT • 60000 PSI:CLASS'A'CONCREIE F'C • 3500 PSI. FOOTINC PRESSURE FOUNDATION MATERIALS ARE REOUIRED TO RESIST A MAXIMUM BEARINC PRESSURE OF ZS00 PSF ON THE BASIS OF 120 POUNDS PER CUBIC FOOT BACXFILL DEAD LOAD. ESTIMATE OF OUANTITIES ITEM ANT. JUNfr CLASS 'A' CONCRETE NOB C.T. PCINFORCEMENT A.A13 1 LBS. STRUCTURE EXCAVATION. COU. C.T. PRECAST CIAVERT UNITS 1 72 Li. CHAn EL CHANCE ISEE RDAD.AI PL1HS1 CONCRT TE CLASS -A- CONCRETE SHALL BE USED THPGUCNDUT FCR ALL CAST IN PLATE CCNCPET -, REINFORCEMENT DIMENSIONS SHo.H FPO. THE FACE CF CCNNCRETE T7 BAPS ARE CLEAR 0:57ANCES U.'/_ESS OTHERWISE SHOWN, SPAC:vC OF BARS IS FRCM CEN :ER TO C"IN:T -IR OF BARS. BEVELED EDGES ALL EXPOSED EDCES SMALL BE BEVELED V,'.1NLESS OTH.RWISE SHOWN. WELDED STEEL FRA3RIC WELDED STEEL WIRE FABRIC SHALL CON+OP. TC SEC. S:: OF THE SPEC :F!CATIC.•1S. THE COST OF 7ME IT :S TO BE :nC;'..EO IN THE Un;: PR :CE 5:0 FOR CLASS 'A' CONCRETE. PRECAST CULVEPT LP: :5 THE MA`U`ACTURE ANO INSTIL, AT ION CG `H- PREC +ST CULVERT uPTS SMALL BE IH STRICT ♦C CORDANCE WITH 1HE _SUPPLIERS S ?E,IFiC : :;O..NS. STANDARD DRAWINGS ISTANOARD CPI.I.NGS LISTED SE -CW ARE CUFRElT EDITION ANC IRE TO BE USED WITH THESE BOX- 006-04 SPECIAL NOTES FOR FIBRI: .R.PPEO =ACA: i__ CRA;NS 72 L: n. F/ 10'0 ".�00.+ i TO "Q.x Alcw /C /wlsU •h JGt6- lJ :G- j I I( l.6oyWr.... %4- Crda.b.... W - I q h4nA o %..DOG .avES a. 1 Mtl. x J.. � 1Z 6H�'. e2N I I '3i�•4.2� f/709 o0\ SHEET Na: '4 dose3 /eb • COMMONWEALTH OF KENTUCKY DEPARTMENT OF HIGHWAYS FR —FORT SECTION ALONG IL CULVERT CCUMTT OF LARUE HODGENVILLE - BARDSTOWN ROAD STATgN P.E.PROJECT H0. m m m m m m m = m � m m m m m = m m m PLAN i� �b porn PLAN 1 .eooe y !jw // P �W.ixJwol/ �oorrci9 Fnohi'y /� �y END VIEW P ecoa /Cu /v<.fU h i Coa /.rnp /occ 6oac 5 /ob BASE SLAB - ALTERNATE C /rte./ i f1'ccoaf Prccos /C /rs. -/U r/ J/ ,p Foo /.nga TRIPLE SPAN LONGITUDINAL SECTION � �7i w// �D r u 5 /aoc rb L'rvin I I Ill; Illi i illii � �ii� illi i illli i illi /—� �� y illi I III— I Ill j111 1 11111 I IIII I I I II i i 1 1 I II I I i 41— PLAN 1 .eooe y !jw // P �W.ixJwol/ �oorrci9 Fnohi'y /� �y END VIEW P ecoa /Cu /v<.fU h i Coa /.rnp /occ 6oac 5 /ob BASE SLAB - ALTERNATE C /rte./ i f1'ccoaf Prccos /C /rs. -/U r/ J/ ,p Foo /.nga TRIPLE SPAN LONGITUDINAL SECTION � �7i w// �D m m m m m m m m m m m m m m m m m m m II � ICI I�- II II 1 II Itl II II 111 II II I11 II It lil tl II I11 II 6a�'"„ TT-7TT 1;t T T T f T T Irt T I r i GuorJ I I j � i I A J FARRIAL PLAN t r is So /��. Q..+ r s♦ A J i.,g 0 Gr.ir tot. A.r i : � Sti«L P. /.:lJ o,.�� //r � I 11 11 II � II 'I 11j �I I _ _.j END I' SCCT/OAI THCU UNpE,PPASS el .,k pct e -YA-F -o �Qai..�, ••.. Zio LLc �L.! io t t� I � SECT /DlV A-A TEMPo.P,l,Z°Y O ✓f�PPASS �o,P /Sor,. E%�,QT�f/ Mor�.UG L- DU /PMENT = m m � � m m = = m m m m m m m � m m S►Ae6 ( _16_Q_) RISE, ( ) COVER, ( ) sheet Mo. r� a Msah Size Lengtn w� Sw I At 2 AZ, 3 A3- e At- S A,- Eeeee, UsdV,O :on Spore T. ,ulvert Systems 563 E*.tt OOrothy Lone layton.ONO 45429 Dius I8ri — t. a * .O" eye". enr M. lot 1M. d o" ee.e net .. •lore•• r l.p"e fee— SPAM, RISU I_) COVER,1 1 Sh"t Mo. �, f 4a. Mesh Size LenOTh w= t I A, - 2 A,- 3 A,- 4 A4- S AS- 6 A- oWer, t�Avert Systems 63 East Dorothy Lane �ytor. Onlo e5e2s use 4 a *at W sW- eM wethe et WA* rwey does t . an eOreU r W.0" ftwu& REINFORCING DETAILS Con Span At yr Culvert Systems p 1563 Eost Dorothy Lw 1 AA OaytotL ONO 456! am A, Az A= 110' r • ar. I r ar. tro rh.) r Qw.) S►AM Ukr-g--) RISE, I_) COVER, 11 oe.cr, 1f*. rwt�ea'a Mesn Size Length eat -, . Gird I Ar *leer, 2 Az- F4Shat 3 Az- F4 A.- antr «tor, A, 6 C. r/ m is e **te"Od q.t- era 'to Dee1Q, LOO&V - iws Mies, emrewear boded s� SPAM, RISU I_) COVER,1 1 Sh"t Mo. �, f 4a. Mesh Size LenOTh w= t I A, - 2 A,- 3 A,- 4 A4- S AS- 6 A- oWer, t�Avert Systems 63 East Dorothy Lane �ytor. Onlo e5e2s use 4 a *at W sW- eM wethe et WA* rwey does t . an eOreU r W.0" ftwu& REINFORCING DETAILS m m = m = m m = m m = m m = = = m m m Inside /0 Inside 104101 Leg of Precosl Unit 2' Leg of Precast Unit I „(Nomino/) 2 Step Pedestal / (Nominal) ~� Grout 4” d Precast Unit Grout Leg of Precast Unit No. 2 Stone Fill Equal 0 / (Nominal) 4 :2-'6 O Grout O LL- � � .i „Ste . • ... /0” 2„ /0 "'4'%O„ Leg of Precast Unit Leg of Precosl Unit Leg of Precosl Unil 4 / „(Nominal) -j 2 Step - Pedestal / °(Nominal) Grout 4 Q Precast Unii No. 2 S /one Fill ,� ” l "(Nominal) Grout 0 Grout r AO O Slob Reinforcing , � Slob Reinforcing � • •; • ;� Slob Reinforcing / -4 v 2 6 1 � V CD i_ N _: N N Q Fooling Reinforcing 'Footing Reinforcing Fooling Reinforcing EXTERIOR LEG INTERIOR LEGS - MULTIPLE SPAN /O Fooling width determihed by o/%wob /e soft bearing O2 Fooling depth determined by scour considerations m m m m m m m m m m m m m m m m m m m F esosf C2� /ie�t Ur, i�` - - 69 -Ozyl / =G„ 115-0- �1 TYPICAL SECTION 4 'U J ,6 Con /Span Culvert Systems RED ROCK CREEK CONDUIT TULSA, OKLAHOMA DESIGNED I CHECKED I OHAWN I CHECKED I AEV.E.EO DATE REVISED m m m m m m m = = m m m m m m m m m = f It J-o _:1��.A17 �n1 ALL _._1` C 1_N �ORC cMENT � RZ� AC!•� ME..1`1T HYDRO CONDUIT CORPORATION DATE DRAWN BY DRAWING NUMBER SCALE CHECKED ■Y A- RCV. a 5 eAR.@ \l" MAX. Bat2 @ iVI Z_ h 1> To.t''- o F .. P RECAST L�IJ R' Co�ST RUC."t'io N '� Na-r .� b l _:1��.A17 �n1 ALL _._1` C 1_N �ORC cMENT � RZ� AC!•� ME..1`1T HYDRO CONDUIT CORPORATION DATE DRAWN BY DRAWING NUMBER SCALE CHECKED ■Y A- RCV. a 9 "O" 2ise PEDESTRIAN U M DERFASS . � � I � e ° I porous 17roin /1i14f O O ' -slab ors 43r--c cie • v. PEDESTRIAN U M DERFASS m m m m m m m = m � m = m m m m m m � Oase S /cab Ai /1/o fe : Cary occommodc�fe �ci // hiyhwoy /ond�i�g over- chc�rr�ber w11h rr�ir7 cover: 0 UNDERGROUND TANK CHAMBER y ie �eigh�s ��r- wished Ur�if '' Wl b�74As 1 .. I 1 1 1 7 1 Con/Span Culverts On Horizontal Curves There has been some in- terest in exploring the use of Con /Span to construct large conduits on horizontal curves. We have had some ex- perience in precasting units with skewed ends. The simplest method is to install a sloping bottom in the form to the required skew angle and depth, then cast the concrete to the top of the form. We can furnish a full scale template of the profile ►f this sloping bottom from our CADD system. Plywood can be cut directly from the template and blocked into position. Horizontal curves can be constructed using pairs of skewed end units. The tab- ulated data (provided on re- quest) provides layout radii and angle changes for all culvert spans, holding a 7' -6" dimension for the long leg and varying the short leg in one inch increments. We would recommend using a paved bottom or base slab for an installation on curves. 7'6 0 o� . L = Lenglh of Shorl Leg ` 9 = Angle change perpoir of Culvert beveled cu /verl units /s ' Rad��s to PLAN l I S �1�� PAIRS OF CULVERT SECTIONS front. - - - - c:ljc)rt.-,cj'lde Angle Radius Angle Radius Arigl e Radius 2 p 6) ---------- 31 6) 1 17.67 ----- ---------- 25.99 21.67 ----- 22.05 ----------- 251.67 2' To 31.10 18.12 25.57 22.22 21.60 x;6.32 2' 8" 30.610 18.58 25.15 22.79 21.33 26. C)9 2' 911 30.10 19.06 24.73 23.38 20. g7 7, 6 -) 27.6: "r 2' 1011 29.510 19.56 24.31 23.99 20. Ei) I s(, , 42 2' 11" 2C) . 0C-) 20. 08 23.80 24.62 20. 25 2C) . I t Oto 28.58 20.61 23.47 25.28 19.89 29.'tA 31 lot 28.07 21.17 23.04 25.96 19.53 L,0.75 3' 2#1 27. 56 21.74 22.62 o 26.67 19.17 1:1 1. . 5c) 17. 05, 22.34 22.20 27 40 18.80 '3 2. 46 VO 26.54 22 S)7 21.77 28. 17 13.44 33 . -�, 7 5 12, 6 . 0 30 2 IQ) cl) 2 21 . 35 nrJ I Ir?, , 08 t 4 . "I 25.52 24.29 20.92 2g. 79 1.7.72 7) 29 1 Tp 25.00) 25.00 20.49 30.66 17.35 ^�, 32 8" 24.48 251.73 20. 07 31.56 16.99 e� , 37.38 ' p V 23 9 7 4, 2G. 50 19.64 32.50 16. 62 118. 50 23.45 27.30 19.21 33.48 16.2:; 39. (57 w to 22.93 28,14 18.78 334.52 15.90 40.89 41 0" 22.41 29.02 18-35 35.60 151.53 42.17 41 1" ^1.89 29.95 17.92 36.73 15.16 43.51 4? 2" 21.37 30. c-)2 17.49 37.92 14.80 44.92 4 0 Q09 20.85 31.94 17.06 "119.17 14.43 .46. 40 4' 401 20.32 ,: )-4,_j . 01 16.63 40.48 14.07 47:96 4' 5" 19 . 80 34.14 16. 20 41.87 13.70 49.60 4' 610 19.28 35.33 15.77 43.33 13.33 51.33 4' 711 18.75 36.60 15.33 44.88 12.97 53.17. 4' 8 18.22 37-93 14.90 46.52 12.60 55.11 4' 911 17,70 39.35 14.47 48.26 12.23 57.17 „ ' 4 1C)" 17.17 40.85 14.03 50. 10 11.86 5 35 4 1119 16 .64 42.46 13 .60 52.07 11 . 49 61 Ct 8 Ot, - .16. 11 44.17 13.16 54.17 11.13 64.17 51 1 $1 15.53 45. 99 12.73 561.41 10.761 0;6.82 5' 211 15. 05 47.95 12.29 58.81 10.30 (5 .6;7 5' 3" It 24. 152 50.06 11.86 61.39 10.02 72.72 5) f 419 13, g8 52.32 11.42 64.17 9 . 6)5 76 . 0 1 1 r' 511 1 415 54.77 10.98 6!7.17 9.28 79.57 5' 6" 12.92 57.42 10.55 70.42 :el. �) 1 83,42 5i' 7ff 12.38 10.11 73.95 8.54 87.60 51 801 11.85 .60.30 63.44 9.67 77.80 8.117 92.17 5' 900 11.31 66.88 9.24 82.02 7.80 97.17 5110" 10.78 70.67 8.80 86.67 7.43 102.67 5'11" 10. 24 74.85 8.36 91 . 80 7.06 108.75 61 001 9.71 79.50 7.92 97.50 61.. 6 9 115.510 6' 6' 1" 211 9.17 8.63 84.70 90.54 7.48 7.04 103.87 111,04 6.32 5.95 123.05 131.54 60 300 8.09 97.17 6.60 119.17 5.98 141.17 6$ 4" 7.56; 104.74 6.16 1.28.45 5.21 152.17 6' To 7.02 113.47 5.72 139.17 4.83 16 4. 86 6' 601 6.48 123.67 5.29 151.67 4.46 179.67 61 711 5.94 135.71 4.85 166.44 4,09 1.97.17 6' 8ff 5.40 1150.17 4.41 184.17 3 I.P.72 218.17 (it g ot 4. 86 167, 83) 3.97 205.83 3.35 243 . 8,31 6 0 1010 4.32 189 - �)2 3.52 232.92 2.98 2715. 92 611190 3.78 218.31 3.08 267.74 2.60 3 li 17.17 71 000 3.24 256.17 .2.64 3.14.17 2.23 372.17 71 lot 2. 70 '109.17 1) 2.20 379.17 1.86 449.17 7' 2" 2. 16 388.67 1 .7E; 4765.67 1 . 44) 564. (i7 70 To 1.62 521.17 1,32 639.17 1.12 757..1.7 �Atcs 0"S8 r No. 25176 Dec. -31, 1993 � y"r OF Cy ��e,r7 �, � . /,� ����, c I4 0 L/.�. \� N .. >'TOCV�r/�,�� .. Q'ue �a.... �c� • _ ✓��ri�i c •- C4 %y�e " ' / .. ��5� 4.'1�s�i 1 1 1 OQ�OFESSj M6.-25176 / r, rn 1993 _ _ - i / At La roe s Bf3 2. p ��Goa�. 1 1 I - / a BOEtT�y� � No. 25176 * c.,31, 1993 c� 03 MISIM i /fir /`g Ile— ' G ( -, s , C/Q �iJ.�✓� )'.7�ii� we ul 2" Ae,7/ hole /W ¢ AP Ch�/� /,� rG- � �� w � moo, � •' 2l2 Z� �¥ w IV 1 � o 1 i / a BOEtT�y� � No. 25176 * c.,31, 1993 c� 03 MISIM i /fir /`g Ile— ' G ( -, s , C/Q �iJ.�✓� )'.7�ii� we ul 2" Ae,7/ hole /W ¢ AP Ch�/� /,� rG- � �� w � moo, � •' 2l2 Z� �¥ w IV 1 � o 1 1 1 1 1 1 r 1 I _ 7C) ;770, 1-15- °) (9a j� J De44/G .. _ �N /�� �'/�. �. ,/1. ,dam �e� c�• 1 1 1 �J 1 1 1 1 I I I � I � I � INK — J.F. Davidson Associates, Inc. ENGINEERING PLANNING SURVEYING ARCHITECTURE LANOSCAREARCHITECTURE s 75 -150 SHERYL DRIVE P.O. BOX 12817 PALM DESERT, CALIFORNIA 92255 (619)346 -5691 \ � N _ v �N oa ..�� 1i +j ►1 1� V1 II W `x co 0 c� O ° m m 0 N v y o �W o z 0 'V c N � m m � m m w m m m = � � � m m m m m= m m m m m m m m m � J.F. Davidson Associates, Inc. C 1! ENGINEERING PLANNING SURVEYING ARCHITECTURE LANDSCAPE ARCHITECTURE O 75 -150 SHERYL DRIVE P.O. BOX 12817 PALM DESERT, CALIFORNIA 92255 (619)346 -5691 9 S ♦' �\ � N f� � II � 1 �� V,� , n� I'1 N, �j Q Sv � � J J °0 r,. ,v /n h J �o 0 ,e G1 0 C L � �R 4t vl- G� e ao pj n DD a-< o ZE mx m Associates Inc C ENGINEERING PLANNING SURVEYING ARCHITECTURE LANDSCAPE ARCHITECTURE 75 -150 SHERYL DRIVE P.O. BOX. 12817 PALM DESERT, CALIFORNIA 92255 (619)346 -5691 _.V... 1 w 7t N J' LN �. n U� � 0 ,o �s \S � V N _d �b D D m o� Vv = ^l 11 V ' _ —_ J.F. Davidson Associates, Inc. ENGINEERING PLANNING SURVEYING ARCHITECTURE LANDSCAPE ARCHITECTURE O 75 -150 SHERYL DRIVE P.O. BOX 12817 PALM DESERT, CALIFORNIA 92255 (619)346 -5691 �f a sy� I m m m i x CD 1 � o D D ry _ a T )1 e � o0 z � r� � w n L• - O�I�•, W N tj s a w t w -4 t, t In v NJ �(, W 03 � �c %,v � 4 w � �f a sy� I m m m i x CD 1 � o D D ry _ a T )1 e � o0 z � r� � w n L• - O�I�•, W N tj s a w t 0 J.F. Davidson Associates, Inc. ENGINEERING PLANNING SURVEYING ARCHITECTURE LANDSCAPEARCHITECIURE O 75 -150 SHERYL DRIVE P.O. BOX 12817 PALM DESERT, CALIFORNIA 92255 (619)346 -5691 6 � • n yw� N h I m a w U yl N x -� N IJ _ Q fi w fi T m D m R1 � N m �'G � rJ 7rI vi L a r1 I fl. �N a � s .. a w U yl N x -� N IJ _ Q fi w fi T m D m R1 � N m J.F. Davidson Associates,� Inc. 0 75 -150 SHERYL DRIVE P.O. BOX 12817 PALM DESERT, CALIFORNIA 92255 (619)346 -5691 5. 14 4. //S faUt ` /L y =% n• N P. aty 4. O n � o � w tiO. I ^rte i a� a \ r - .. , o m v v I o CD a m m -]-I=- Mavidson Associates, Inc. Cl 75-150- SHERYL DRIVE P.O. BOX 12817 PALM DESERT, CALIFORNIA 92255 (619)346-5691 C3 cc cp co coa IN YJ----------- 4. —7--\ 1 `j A 0 I co 0 0 0 m m no 0 N � N4 'F r w b 1) 1 i %j v co 0 0 0 m m no 0 N � J.F. Davidson Associates, Inc. �C ENGINEERING PLANNING SURVEYING ARCHITECTURE LANDSCAPE ARCHITECTURE Cl 75 -150 SHERYL DRIVE P.O. BOX 12817 PALM DESERT, CALIFORNIA 92255 (619)346 -5691 A cv T� V W 'S w -- - —� 4S 1" T' C) m x { 0 D D m m o� I Z O s N O UI cv T� V W 'S w -- - —� 4S 1" T' C) m x { 0 D D m m o� I Z O � m m m m m m = m � � m m m m m = = m M 01 v tn tn N N a% ¢ z W 0 w U H W W ¢ co N X 0 m 0 a W W z 0 tn t- D BY DATE CKD DATE W.O. NO. 3 JOB , /40 via /l �fa�il►� --. ,,pe,r) 3 /�,?s� ��-�t � � BSS j b • f� cs K a -5L %j '7 S lJ6 - f t z - - 4.73 ia,©9'3 e = 4' 73 - -7. ?s = m . 99 92— .�. 44.7 �,t.cn7 -2,32-1 2-- X3,3 W2 !�O Z. 2� �• �2 loa 3_� GG4�a ._.__ ... S 4 2 i f 3- 7 a'' 4(Z � 9 z669 �C- Zo2 5-•33 /S 7-33 �✓ 00 0 3 2 352 Z -?G I'lG Q ►�/� �r.a Z- Z -2 5` 4. 2s 1719 f Z, ` 3 y</ el via /l �fa�il►� --. ,,pe,r) 3 /�,?s� ��-�t � � BSS j b • f� cs K a -5L %j '7 S lJ6 - f t z - - 4.73 ia,©9'3 e = 4' 73 - -7. ?s = m . 99 [a] Ffm 3 � V 0. It r� r• r. r• m mom m r• ■■r. J.F. Davidson Associates, Inc. ENGINEERING PLANNING SURVEYING ARCHITECTURE LANDSCAPE ARCHITECTURE 75 -150 SHERYL DRIVE P.O. BOX 12817 PALM DESERT, CALIFORNIA 92255 (619)346 -5691 A K Q ii 4". rl NZ r w 1) CO tni li r %\N s 0 a• c 3 a Lr a � � e O I� o � v ,N o � o b v � m m o� m O 1 1 1 1 1 1 I W a ' u W r I U 0 uZ J CW MM Q 1 M F u` ' 00 aZ �" '00 mZ ' oQ W LL W Z u W luluu umiq tn tn N N m a A 0 a a U o. �IW M� W N 4 0, U3 1J rn O tn til O BY DATE CKD DATE W.O. NO. JOB , 1 ?-90.3 39 0. 2363 /0 OK r " ADZ!;.,! oss 2 wIQ F y d - �v Z e? 7 ,�� >z,Y�• 33) •�s , '373 IS 7G 1. 51 al.� 2 q �� ok J.F. Davidson Associates, Inc. ENGINEERING PLANNING SURVEYING ARCHITECTURE LANDSCAPEARCHITECTURE - 0 75 -150 SHERYL DRIVE P.O. BOX 12817 PALM DESERT, CALIFORNIA 92255 (619)346 -5691 ti 0 0 n R� Z �R 'V r �c .o` tj nZ J w � � W �b v tN SN 0 I s u, 411 O (W _1 sue, m m Z O m N m 11� 1i N�i C J a `.. �,,,► Q N N ` 7 4CN L �l Q a Z �R 'V r �c .o` tj nZ J w � � W �b v tN SN 0 I s u, 411 O (W _1 sue, m m Z O m N m C Z �R 'V r �c .o` tj nZ J w � � W �b v tN SN 0 I s u, 411 O (W _1 sue, m m Z O m J.F. Devidson Associates, Inc. 4 ENGINEERING PLANNING SURVEYING ARCHITECTURE LANDSCAPE ARCHITECTURE 0 75 -150 SHERYL DRIVE P.O. BOX 12817 PALM DESERT, CALIFORNIA 92255 (619)346 -5691 rz r , m y 0 W v, w v k to o � v a °r m m °w o 0 f m J.F. Davidson Associates, Inc. ENGINEERING PLANNING SURVEYING ARCHITECTURE IANOSCAVE ARCHITECT URE 0 75 -150 SHERYL DRIVE P.O. BOX 12817 PALM DESERT, CALIFORNIA 92255 (619)346 -5691 lk n o ar S rim 7i Al w 3 m n ca x { v 10 .1,. °r °r m m �1 `I w w �j a w oe s� C- 0 ED o ! J.F. Davidson Associates, Inc. ENGINEERING PLANNING SURVEYING ARCHITECTURE LANDSCAPE ARCHITECTURE 0 75 -150 SHERYL DRIVE P.O. BOX 12817 PALM DESERT, CALIFORNIA 92255 (619)346 -5691 --- — m CD 00 m Vp F , \ , m Ito cz tT) I A Illy& jp A� Prwc c o. 23o in N IOU z r Q 6.23v3ih A / ! j o c - o • 3.i9S � � I I � k .� - �. ?r .�.. 1� y Now. = �. GG r, a�] ^ . i': -t.. -. .% .� ��..c �i� -+.;.: .•+{ �,,.+ri`•a+ �' "°'ii - � �.. +5 ! <.� `i+j.'v'�Si' • _ � '.,t t r.,; �' . . f. i< z 0.432 rh y 1 rl '#� - ... .,az 6 •..�, fi Zsc rQj i� ✓. � �A IN _Z .- I �.,;_ ;�,. ��/� , r - i u�. J,. - f L�i�.,rr T.,, v �. '� t '� . .tom `�• L7 fl or 8 m m m m m m m = m m � m = m = m = m m J.F. Davidson Associates, Inc. ' ENGINEERING PLANNING SURVEYING ARCHITECTURE LANDSCAPE ARCHITECTURE O 75 -150 SHERYL DRIVE P.O. BOX 12817 PALM DESERT, CALIFORNIA 92255 (619)346 -5691 r N� O SIW, �w A o t� N o� ' A® S,5 ' s� N� h \I ^\_ S 1 N_ f\ ` a Z� sel;d S � N �1 fi 4.7Z' 11 Ce 1/s w/ 9re•� G 0 � nn tic: 7. S 2 - elf �#� �� A``� �• 41 p �n �i. S r1 t r A n ,1 w oCa D D m m O W 0 ~� O . Yt'ii✓�i L �w A o t� N o� ' A® S,5 ' s� N� h \I ^\_ S 1 N_ f\ ` a Z� sel;d S � N �1 fi 4.7Z' 11 Ce 1/s w/ 9re•� G 0 � nn tic: 7. S 2 - elf �#� �� A``� �• 41 p �n �i. S r1 t r A n ,1 w oCa D D m m O W 0 ~� O m � m m � m m = m = � m m m = m m = = J.F. Davidson Associates, Inc. , C u!_IUCCOIU(: G AMNIN . G11QV VINr. ARf MITFr TIIRF 1 ANf1Cf AGF ARr WiTFCTtIRF b O 75 -150 SHERYL DRIVE P.O. BOX 12817 PALM DESERT, CALIFORNIA 92255 (619)346 -5691 N� J �.E z � a 1 rn v 0 0 a n m m m m O C3 O � W 1 m m m m m m m m m m m m m m m m m m m J.F. Davidson Associates, Inc. ENGINEERING PLANNING SURVEYING ARCHITECTURE LANOSCAPE ARCHITECTURE . 0, 75 -150 SHERYL DRIVE P.O. BOX 12817 PALM DESERT, CALIFORNIA 92255 (619)346 -5691 LIN N, O7 rti fl N L. w N N -- W� a. o (o J �y N- �6 H. 0 I _T1 ti1tL Co w n m A -< vi v Dv O 07 O Z •o m m m m m m m m m m m m m m m m m m m m m =— J.F. Davidson Associates, Inc. ENGINEERING PLANNING SURVEYING ARCHITECTURE LANDSCAPE ARCHITECTURE 0 75 -150 SHERYL DRIVE P.O. BOX 12817 PALM DESERT, CALIFORNIA 92255 (619)346 -5691 e cr! NZ a G r �W i► 1 wn N fi t. Q T o�q o p Ev 7 w 0 co o W m m '01 � El 6 0 co o W m m '01 � El J.F. Davidson Associates, Inc. ENGINEERING PLANNING SURVEYING ARCHITECTURE LANDSCAPE ARCHITECTURE O 75 -150 SHERYL DRIVE P.O. BOX 12817 PALM DESERT, CALIFORNIA 92255 (619)346 -5691 y �N �W r� v l4 � ro h In " 1 tL- L3 c � �4 11 II W � C N � e v rO� W N '3 N .0 W_ -o U .5 A( � 1 i V, y �N �W r� v l4 � ro h In " 1 tL- L3 1 6N. r� Q \ V Q c Q t' � m v v v m m C- 0 m o N z . m ml 1 � �J �4 11 II W � C N � e rO� W N V 1 6N. r� Q \ V Q c Q t' � m v v v m m C- 0 m o N z . m ml 1 � J.F. Davidson Associates, Inc. ENGINEERING PLANNING SURVEYING ARCHITECTURE LANOSCAPEARCHITECTURIE � 0 75 -150 SHERYL DRIVE P.O. BOX 12817 PALM DESERT, CALIFORNIA 92255 (619)346 -5691 � p � ry � •" ,N � N�- �i p � n � � � k1 � � Q 0 li W w� l� Q i_ \r w 9 0 Z y 0 co v � a n° m r`� m L °co 0 ,m m t i ►� w� �4 CN W wj � W ix J W r by W I' -fig w 9 0 Z y 0 co v � a n° m r`� m L °co 0 ,m m J.F. Davidson Associates, Inc. ENGINEERING PLANNING SURVEYING ARCHITECTURE LANOSCAPEARCHITECTURE �- O. 75 -150 SHERYL DRIVE P.O. BOX 12817 PALM DESERT, CALIFORNIA 92255 "(619)346 -5691 I A W w N N �Nj it v A .t I y I � � 0\ J � v Q J Z O)A Ll I�1 a N w w w 0 07 o { v v m m 0 G � O nl, 1 m �. u� LIN -4� ll ISN w N � n 1 r fi O)A Ll I�1 a N w w w 0 07 o { v v m m 0 G � O nl, 1 m J.F. Davidson Associates, Inc. ENGINEERING PLANNING SURVEYING ARCHITECTURE LANOSCAPE ARCHITECTURE 0 75 -150 SHERYL 'DRIVE P.O. BOX 12817 ' PALM DESERT, CALIFORNIA 92255 (619)346 -5691 o� _U Q n• (1 �i N P � cN, Q v j D D m� m 0. I Co O J.F. Davidson Associates, Inc. ENGINEERING PLANNING SURVEYING ARCHITECTURE LANDSCAPE ARCHITECTURE 0 75-150 SHERYL DRIVE P.O. BOX 12817 PALM DESERT, CALIFORNIA 92255 (619)346-5691 O IN JA . 4D rr- z "Alp N m M C- 0 CD .0 rr rr VQ "Alp N m M C- 0 CD .0 rr rr Y I 1 moo. ( $ 0 $ 1 J A rel i �C /G =s- I T j r �stP po A �G Ties @ GG ac-� O- TYP. CULV =rZT FTG. �b SECTION A -A O � � r:V IL i �I 1 I >> SECTION B- B 17G = G" I /.- odwo / /fuc�ishca' wilh cu / ✓cn1 unit (TyA.) 1 V!0 1 �G23GGG(0v11ai ✓o��fSco /(i'Joi iJ I 11 it �; iow L.ne 1 1 Tap /Footing E1ev � I 1 i I I 1 LOCATION PLAN /-- ..G :G" %%s: Luc.' w.no- . Cu /vcn{ Limier - END ELEVATION FiawL.nc�/ . C2e�.Gd inic �ndJ :287. SG(Ouf f41-9 5/0 oe 0.50'e (QOafY. /Unilj 1 ; SECTION C -C X NOTES= DESIGN DATA: ✓cs�gnLooding: iC'S�.^.•LLr /L: Fi // Gc3ign .Y. cfi�a.�: �.�od �o_^^� �- <,CS/J>✓ �'ssumcd A /io.cob /c ,:,oi � 5c��.�g MATERIALS, F'r= 03? Un.is �S oe cansfiuc."cd and inarp / /cd�n oc- vivoncr ...ih Con, /.��opn �ccifcofipns. Concrr/c!br Fccfi�gs and �no..n� //s Sino / /b� C /oss C .�i: i� mi�im�m com- p�css.vc sr�cngfh o!'LGOOPsi: Iccnfo�cing �jcc/ !.5r Foorinos pi7c1 Wing.✓✓iis shp / /canraim ri� .C.ST /A AG /5, AG /G o� .CG /7 - Givoe 6J Con /Span Culvert Svstems PROPOSED CON /SPAN CULVERT FOR x200 SO. OVER JORDAN CANAI CITY OF WEST JORDAN, UTAH +'Dl .tDC w'Ol f'. 87 I Df I 1 I i I 1 I 1 I \ PLAN A �G Ties @ GG ac-� O- TYP. CULV =rZT FTG. �b SECTION A -A O � � r:V IL i �I 1 I >> SECTION B- B 17G = G" I /.- odwo / /fuc�ishca' wilh cu / ✓cn1 unit (TyA.) 1 V!0 1 �G23GGG(0v11ai ✓o��fSco /(i'Joi iJ I 11 it �; iow L.ne 1 1 Tap /Footing E1ev � I 1 i I I 1 LOCATION PLAN /-- ..G :G" %%s: Luc.' w.no- . Cu /vcn{ Limier - END ELEVATION FiawL.nc�/ . C2e�.Gd inic �ndJ :287. SG(Ouf f41-9 5/0 oe 0.50'e (QOafY. /Unilj 1 ; SECTION C -C X NOTES= DESIGN DATA: ✓cs�gnLooding: iC'S�.^.•LLr /L: Fi // Gc3ign .Y. cfi�a.�: �.�od �o_^^� �- <,CS/J>✓ �'ssumcd A /io.cob /c ,:,oi � 5c��.�g MATERIALS, F'r= 03? Un.is �S oe cansfiuc."cd and inarp / /cd�n oc- vivoncr ...ih Con, /.��opn �ccifcofipns. Concrr/c!br Fccfi�gs and �no..n� //s Sino / /b� C /oss C .�i: i� mi�im�m com- p�css.vc sr�cngfh o!'LGOOPsi: Iccnfo�cing �jcc/ !.5r Foorinos pi7c1 Wing.✓✓iis shp / /canraim ri� .C.ST /A AG /5, AG /G o� .CG /7 - Givoe 6J Con /Span Culvert Svstems PROPOSED CON /SPAN CULVERT FOR x200 SO. OVER JORDAN CANAI CITY OF WEST JORDAN, UTAH +'Dl .tDC w'Ol f'. 87 I Df 1 1 1 1 1 1 1 1 1 1 1 1 1 i Q0= 0 ".SAon x 9= O'�P�ae precosf Cu /✓crf Unif- �I �I �F /ow Line �-3- �G Too d Bof. J TYR CULVERT FTG. SECTION A -A ?-C /. 0 os .3hosvn 7-'0- LOCATION PLAN 1--20-,o l\ ew Oi NOTES- DESIGN DATA - Dc--$1g0 Loodiig: x/520- 14 w, 3fL r'.,: Ocsiyn Mcthao': Lood foc %rocr ✓oiir/ 5'eo/ (Typ.J Flow Line E/. 7/7.45 i - - - -- - -1 - -- Con/ Span S an Culvert Systems BAINBRIDGE II SUBDIVISION NORTH ELEVATION SECTION C -C BAINVIEW DRIVE BRIDGE ELEVATION OPP.HAND) 4'_ /co- ! OVER CLEAR: CREEK o... j TJB JDC MAY 'B7 US — I. i AssumendA//owz7b /e .Soil Ceo�, ng: Y SECTION 8- B 3000PSF(fofxvci tics -_ / -o- MATERIALS• f3-ccoU icff icdor�.�' insfo/ %this occoroonce with Cori /sPon Consfrucf win w °// Lim.ls SPccifico /ions. ofYer cu /veil units efe far Foo /i�ys and Wii�g.. v //s �O // be C142--.s C with ininiinum cam- ore set. (TyPico /J 2Q' O- ' I symmefrico /about T -xhall �oxcssi vt Sfrc,�gfh of'QOOOPsi: r I fu /vtrf Gr 'Qe�hTO�'��9 Stec /fbr Footirsy�s orsd 0= /O' 4/codwo // turn. shed with cu /✓crf ursif (T ico /) A,odH py M /cc'-o m lb AST o Grade GO. �A5 A/G /GAG /7F ✓oiir/ 5'eo/ (Typ.J Flow Line E/. 7/7.45 i - - - -- - -1 - -- Con/ Span S an Culvert Systems BAINBRIDGE II SUBDIVISION NORTH ELEVATION SECTION C -C BAINVIEW DRIVE BRIDGE ELEVATION OPP.HAND) 4'_ /co- ! OVER CLEAR: CREEK o... j TJB JDC MAY 'B7 US — I. i i 1 1 1 1 J.F. Davidson Associates, Inc. ENGINEERING PLANNING SURVEYING ARCHITECTURE LANDSCAPE ARCHITECTURE Cl 75 -150 SHERYL DRIVE P.O. BOX 12817 PALM DESERT, CALIFORNIA 92255 (619)346 -5691 r 4 J- "41 '�. W \Q b� V) / ` (� 0 D D rmT m \f CA m m � m m m mm m mm m M- M m m m m m m m 44 J.F. Davidson Associates, Inc. ENGINEERING PLANNING SURVEYING ARCHITECTURE LANDSCAPE ARCHITECTURE C] 75-150 SHERYL DRIVE P.O. BOX 12817 PALM DESERT, CALIFORNIA. 92255 (619)346-5691 A,, AyWe A As Ag- te4. A- pp; a AS AS 1.1L 0 0 0 m C- 0 0 C13 z rn 9 m m m m m m m m m M-M m m m m m 1p, I� J.F. Davidson Associates, Inc. ENGINEERING PLANNING SURVEYING ARCHITECTURE LANDSCAPE ARCHITECTURE ` O 75 -150 SHERYL DRIVE P.O. BOX 12817 PALM DESERT, CALIFORNIA 92255 (619)346 -5691 16, 01 lqlw: w - t 1211 I W- rS� —t� Qi z !A n n � i n M r� a � J } f // �► n w 3 n�w i So /,•d ` ;[[ ql/ cells w rout Q� n,N art 3 a 3 -. b. A d. -... 10 0 w m Q.e w � m m m m m m m m m m m m m m m m m m J ►'✓/NCB kVI44j. -- OF �3/c'lOcs c G➢�!L 1/4'2 T �r Z ii✓ 92 ibI4 7 L✓L = /�D 42/ ? t,J3 !f C> 2Bo �3b ib /.S7- S- l� !s 7. La qy 4;1 W2 is —_�� -��i���) 4 (off � G W4 1 �r Z ii✓ 92 ibI4 7 L✓L = /�D 42/ ? t,J3 !f C> 2Bo �3b ib /.S7- S- l� !s 7. La qy 4;1 W2 is —_�� -��i���) 4 (off � G 1 1 1 1 . /- s Z- 5fa i lit, sue; Pressure- ��M r/ /-,7 k( �= ,O%& lto O rM 20o/ --f- 3 3 L 5-2 9631 z i S 2 -�'S 2. 6 7 Zo t !o '- J y _ 4- 2.67.= 1 33 li. 4& �vu�f ��'C /eys"tstc c� L✓y' �'G-y — !�'.,S 7 -J r�Olp- � .�- � � l,�i 1 _ e4rcjd-- s S, _I 9z 0.0p Fil "6):C:1 �Z-) 6 -1 �33 ' Cc� Lo e& 0 r, ' 'QSl1,. = 1a�,3', "� ? 65 2 �-3 ► "jam ©lam rib 41f He -- . r 3 :—.,� Al 10019 =p 9 3 Ps F lea 17 3 7.5�6y3> r / Z- 1 M= ; 2 3CLZ.' -) - �' � - X'.'s) Aj i �fr k 1 1 1 1 1 I ����PQ �, BDETj y.�� r . . . . . . _ � 9 a - - 190.25176 rn Dec.-31, 1993 CIVI L .. �a Lit�� s' g 27 �1 -44. �s // C. 1 IS —; d ti 1 1 1 1 7 L J.F. Davidson Associates, Inc. ENGINEERING PLANNING SURVEYING ARCHITECTURE LANDSCAPE ARCHITECTURE 75 -150 SHERYL DRIVE P.O. BOX 12817 PALM DESERT, CALIFORNIA 92255 (619)346 -5691 Z: t r N 5 ti 1\ If N Co J fi � rt N U (mil t� A a% Z: t r N 5 ti 1\ If N Co J fi � rt N U (mil t� A r r 1 aj m .m 0 5 p O z 0 y� N� �} W N� v ml r - CA W b y � W V V v r r 1 aj m .m 0 5 p O z 0 y� N� �} W N� v ml � m m m m m m m m m m m m m m m m m m W Q W uZ 6 t SS b 0 U, C 6 W o` 0 m� Q� c 00 IA z 'D �x oq w ILz .3 �w jj�Ulq IIIIIUI �II�IIII IIIIIIII BY - GATE � /G 90 W.O. NO. �pD7O3� SHEET CKD DATE JOBC% A/W6 C'L/LVff 7 elIvIr W, 92 S,4'. ¢97 Ao CN N O� � z ib ib � ft - ib. ft f5 rX49,141r5l a w Q - a �y OTiyJ= ;.7wl of 76 !! Y = 5' - x}3,85 = 1 • �. 8 q.. m ,83L �= -� 00 v� ay Ln .- ,��or- r�s/�E So /G P.eESS. O /000 f 25-2: (4) .oE,P Soil s �EOO.� i rn tn v M O� ko II Lo tn N N CN d 0 a U W W us w Q W a ti� a c W [� y = U` N on x o9 o 0 zQ, vZ i� o w 13 W 4fy lL ? D .0 7 W ..a Illq w IIIII � '� uuuu o IIIIIIII SHEET BY DATE W.O. NO. CKD DATE JOB i C/71EC'/r sL ., 0 0 �Ey .E'EQ Q V= �l2)(� 9i ie 7s) INSPECT /O/\/> Psi o K ToTflL Gi!T. GoA,O = 2,1!8 Ib F.P /CT /oiv 4a ,4O = 16-91 ; b s37 16 To Be reEs 1 s-rED BY n H cee w 27D .P�iwFD,QC'E"MG�N �. 8 ".BG /� !v,LI LL (S. �/' H6iGHT J (CEL[S�?�E'E' SGtL /OLy GiPGUTED� 119 (i.33) 1p i2)(/.33� z (r. ,4)(3.36)Cl - a-26 p,D. G'. �� 3 �� a lsi T2Y #� fqrc �> C. C, 1 1 1 1 J 1 1 1 1 1 1 1 1 1 1 1 1 1 1 tn v M ON .-a �D In N N 01 Z C4 O a V W a U W � Q o � W W Q W [� 00 U eq 0� x Q m o 0 W= a v< W 0Z > �y W /nom W r1 h�l »» tn FOR SHEET BY DATE W.O. NO. /, CKD DATE JOB `�` M 9!P D := 2987 Ids , f%t doff = 6,6,3' FIM • 33) As - 2. 7 = 0.235- 2 ice/ 2352 Q s t*- ,B�,esG� ep Or �vj � e _ 5-8 3 3• lb -ft �,� ,d� <o87S for $ ba r5- ¢o. - 4 6otyl dC-(� B. 6 2,5- •�or bq r5- FSe 33 ) 112- re�Qlr = 4 7�) C �z)C�• 33� "" S rip 6 /.y)�s;�Ci.33) T.PY �'v �a/'t Q d' ii4•C. USA �# S` B.crs © 8:N ©• � 7o BY DATE CKD DATE W.O. NO. JOB FTG, /yEE•L f z 374 �s F -Fz _ pr` s ,�iF 948 P3 �3 = 2- 374 -- 44c9; lei = 2 '33 �(.z3s� = 39 /6 SHEET/ HEEL. DES /GoM ; A4 ft. z r _ Goo3 In � �� t 1, '"1, �B. 7,$) �l • 33� 7'oE dESi�� mil= . /Zo i ZS a78? ,ys _ 3 -l3 c. rj` �/• B -2,5 b 3 3� 187 To 73 2�Ft Ty S .9A & i�o o•c. -1873 i �!% ' en %o role rn N N ' O� ¢ W ' o a W a 1 W W ' w m� MQ ' U N_ O= X °1 m c o oZ 0Z a v � p c� W LC 3 ' � W m I�Iilq llllll� x 1 � �II�IIII o IIIlllll f 7o BY DATE CKD DATE W.O. NO. JOB FTG, /yEE•L f z 374 �s F -Fz _ pr` s ,�iF 948 P3 �3 = 2- 374 -- 44c9; lei = 2 '33 �(.z3s� = 39 /6 SHEET/ HEEL. DES /GoM ; A4 ft. z r _ Goo3 In � �� t 1, '"1, �B. 7,$) �l • 33� 7'oE dESi�� mil= . /Zo i ZS a78? ,ys _ 3 -l3 c. rj` �/• B -2,5 b 3 3� 187 To 73 2�Ft Ty S .9A & i�o o•c. -1873 i �!% r °- J.F. Davidson Associates, 0 75 -150 SHERYL DRIVE P.O. BOX 12817 PALM DESERT, CALIFORNIA 92255 (619)346 -5691 i r 8 L Ty F"6(-< a r J.� m � m v o v . m m m m i o� Co 0 J y ^1 m Ilia J.F. Davidson Associates, Inc. , O 75 -150 SHERYL DRIVE P.O. BOX 12817 PALM DESERT, CALIFORNIA 92255 (619)346 -5691 a °n m I- y- O .�.. _ m p; cy t4l Ft + +Qv`i � is It cc 41 '� �' ®: ' E ! I �I 3 ' 1 : � ii .i n• � w � t w - s_ solid Fill all CeI�S��►IlJ!rovfi'� a , tA a °n m I- y- O .�.. _ m p; cy t4l Ft + +Qv`i � is It cc 41 '� �' ®: ' E ! I �I 3 ' 1 : � ii .i n• � w � t w - s_ m � m m m m m m m m m m m m m m m m m