Loading...
SDP 2011-917 Coral Mountain Apts (3)n6�wc,\N OIL .�uduwiiu • • FINAL HYDROLOGY & HYDRA.ULIC► -S REPORT Located on the SE Corner of Highway 111 and Dune Palms Rd Within a portion of the S.E. 1/4 of Section 29, Township 5 South, Range 7 East. S.B.M. City of La Quinta, California CORAL MOUNTAIN AFFORDABLE HOUSING PARCEL 2 OF LLA 2010 -508 October 6, 2011 Prepared for: Shovlin Companie 46 -753 Adams Street La Quinta; Ca 92253 MSA Job Number: 1920 M I14C. PLANNING ■ C IL ENGI EBRII1a: t LAND SURV ING 34200 BOB Flom DRava.® "RANCxo MIRA9s ■ CA 92270 ID T�gONB (760) 320 -9811 W FAX (760) 323 -7893 1. • TABLE OF CONTENTS PROJECT DESCRIPTION .................................................................. ..............................1 EXISTINGCONDITIONS .................................................................... ..............................1 FloodRate Map ....................:........................................................................ ..............................1 National Cooperative Soil Survey ............................................:.................. ..............................1 ExistingStorm Flows:- ................................................................................ ..............................1 PROPOSED FLOOD CONTROL REQUIREMENTS .......................... ..............................1 HYDROLOGY ANALYSIS DESIGN CRITERIA ................................. ..............................2 HydrologicSoil Group: .............................................................................................................. 2 Antecedent Moisture Condition: ............................................................................................... 2 Land Use Classifications and Runoff Index Numbers: .......................................................... 2 Precipitation Frequency Estimates: ......................................................................................... 2 SUMMARY of RCFCD RATIONAL METHOD PEAK FLOWS ........... ..............................3 ProposedConditions: ................................................................................................................ 3 STREET CAPACITY CALCULATIONS ............................................. ..............................5 CATCH BASINS AND STORM DRAIN SYSTEMS ............................ ..............................5 PRELIMINARY WQMP ANALYSIS .................................................... ..............................9 RESULTS AND CONCLUSIONS ....................................................... ..............................9 LIST OF APPENDICES: A. RIVERSIDE COUNTY TLMA VICINITY MAP B. NFIP FLOOD INSURANCE RATE MAP C. USDA NCSS HYDROLOGIC SOILS MAP • D. NOAA ATLAS 14 & RCFCD REFERENCE PLATES E. RCFCD RATIONAL METHOD ANALYSIS COMPUTER RUNS F. STREET CAPACITY WORKSHEETS G. HYDRAULIC CALCULATIONS H. RCWQMP (White Water River Region) EXHIBIT C WORKSHEETS I. BioClean STORMWATER TREATMENT TECHNOLOGIES PROPOSAL J. HYDROLOGY AND PRELIMINARY GRADING EXHIBITS • Final Hydrology & Hydraulics Report Coral Mountain Affordable Housing • PROJECT DESCRIPTION The Coral Mountain Affordable Housing project is a proposed 176 unit apartment complex located south of Highway 111, east of Dune Palms Road, north of Desert Sands Unified School District and west of the Costco shopping center. The site comprises approximately 10.3 acres and is designated as Parcel 2 of Lot Line Adjustment 2010 -508. The project is within a portion of the SE '/< of Section 29, Township 5 South, Range 7 East, San Bernardino Base and Meridian. Parcel 1 of LLA 2010 -508 (9.4 acres) located to the north of the project site; is proposed to be an future commercial site. A vicinity map obtained from Riverside County TLMA is included in Appendix A. EXISTING CONDITIONS Flood Rate Map The project area is covered by FIRM Panel Number 06065C2243G, revised August 28, 2008, which indicates the project area lies within Zone X (shaded and un- shaded). Zone X (shaded) indicates "areas of 0.2% annual chance flood, areas of 1% annual chance flood with average depths of less than 1 -foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood ", while Zone X (un- shaded) indicates "areas determined to be outside the 0.2% annual chance floodplain" (see attached FEMA map — Appendix B). National Cooperative Soil Survey The existing soil is categorized primarily as hydrologic soil group A with some portions being hydrologic soil group B, as shown on the attached National Cooperative Soil Survey exhibits in Appendix C. For the purposes of this report, hydrologic soil group B will be assumed in • hydrologic calculations. Existing Storm Flows: The project site`is relatively flat except for a hill, approximately 20 -feet high on the northwest side of the site, and generally slopes to the south and east. Storm runoff would be characterized as sheet flow, ponding in the various low points with overflow being directed to the southeast corner (see attached Preliminary Hydrology Map — Appendix 1). Off -site storm flow is negligible as the project is bounded to the north by Highway 111, on the west and east by commercial' development and on the south by Desert Sands Unified School District (DSUSD). PROPOSED FLOOD CONTROL REQUIREMENTS Drainage requirements fall under the jurisdiction of the City of La Quinta. Storm flows are proposed to be directed to the La Quinta Evacuation Channel via a sub - surface storm drain system. The city requires that runoff from the 10 -year storm shall not overtop curbs and the 100 - year runoff shall be contained within the street right -of -way and /or public utility and drainage easements. Additionally, major and primary streets must have one driving lane clear in each direction in the 10 -year storm. • Final Hydrology & Hydraulics Report Coral Mountain Affordable Housing HYDROLOGY ANALYSIS DESIGN CRITERIA Peak storm flows for the 100 -year and 10 -year events were obtained utilizing the Rational Method, as described in the RCFC &WCD Hydrology Manual. The hydrologic data used for the calculations are as follows: Hydrologic Soil Group: As stated above the site is categorized primarily as Soil Group A with a small percentage of Soil Group B. The hydrologic 5oIculations are based on the assumption that all the soil within the project area is Soil GrouO B which is defined by RCFCD as – `Those soils having moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission ". Antecedent Moisture Condition: l AMC II – Moderate runoff potential, an intermediate condition. Per RCFC & WCD Hydrology Manual (Dated: April, 1978): "For the purposes of design hydrology using District methods, AMC II should normally be assumed for both the 10 year and 100 year frequency storm ". Land Use Classifications and Runoff Index Numbers: Runoff Index Numbers were obtained from RCFCD Plate D -5.5 and are summarized below: Proposed Conditions – Commercial Landscaping 56 Proposed open space areas as identified from the site plan were assumed to be 10% impervious. Precipitation Frequency Estimates: 0.40 fly' Precipitation depths were obtained from NOAA Atlas 4 Version 6: 2 Year - 1 Hour Precipitation: 0.36 inches 100 Year – 1 Hour Precipitation:/ .50 i c —he s Slope of Intensity Duration Curve: 0.52 See Appendix D for the NOAA Atlas 14 Point Precipitation Frquency ti mates and respective RCFCD Plates. Final Hydrology & Hydraulics Report Coral Mountain Affordable Housing • SUMMARY of RCFCD RATIONAL METHOD PEAK FLOWS • • The rational method computer runs for the proposed conditions are included in Appendix E and are summarized below. Proposed Conditions: The drainage area was sub - divided into 3 (three) primary areas representing the proposed auto -mall (DA -A), the connecting street (DA -B) and the proposed multi - family complex (DA -C). Each of these areas was further subdivided into distinct areas corresponding to proposed inlet and catch basin locations (refer to the Preliminary Hydrology Map - Appendix J). The total area under consideration is approximately 19.7 acres. Open space areas for the project site were determined from the proposed site plan and assigned a 10% impervious factor. Shown below is a summary of the proposed land use: DA Designation DA Total Area acres DA Open Space acres DA Open Space Adjusted acres DA Impervious Adjusted acres Area Pervious Ap decimal Al 4.63 0.46 0.460 4.170 0.10 A2 4.44 0.44 0.450 3.990 0.10 DA Subtotal 9.07 0.90 0.910 8.160 0.10 B1 0.23 0.08 0.072 0.158 0.31 B2 0.35 0.09 0.081 0.269 0.23 B3 0.25 0.10 0.090 0.160 0.64 B4 0.17 0.05 0.045 0.125 0.26 B5 0.23 0.05 0.045 0.185 0.20 B6 0.17 0.05 0.045 0.125 0.26 DA Subtotal 1.40 0.42 0.378 1.022 0.27 C1 0.34 0.15 0.135 0.205 0.40 C2 0.29 0.14 0.126 0.164 0.43 C3 0.93 0.22 0.198 0.732 0.21 C4 0.34 0.08 0.072 0.268 0.21 C5 2.43 0.56 0.504 1.926 0.21 C6 1.57 0.49 0.441 1.129 0.28 C7 0.65 0.10 0.090 0.560 0.14 C8 0.58 0.05 0.045 0.535 0.08 C9 0.38 0.07 0.063 0.317 0.17 C10 0.54 0.14 0.126 0.414 0.23 C11 1.13 0.28 0.252 0.878 . 0.22 DA Subtotal 9.18 2.28 2.052 7.128 0.22 Total Area 19.65 3.61 3.340 16.310 0.17 Final Hydrology & Hydraulics Report Coral Mountain Affordable Housing Summaries of the RCFCD Rational Runs for the 100 year and 10 year storm events are shown below: 100 Year Storm Event DA Designation Inlet 0100 cfs T. min Intensity in /hr Area acres Al CB -G3 14.77 10.98 3.627 4.63 A2 MH -3 14.31 10.78 3.663 4.44 131 0.85 7.76 4.345 0.23 B2 1.28 8.08 4.255 0.35 Confluence CB -C1 /C2 2.11 8.08 4.255 0.58 B3 0.89 8.09 4.243 0.25 B4 0.69 6.53 4.752 0.17 Confluence CB -G3 /G4 1.51 8.09 4.243 0.42 B5 CB -G1 /G2 0.88 7.48 4.429 0.23 B6 Offsite 0.71 6.24 4.865 0.17 C1 CB -G4 1.17 8.48 4.149 0.34 C2 CB -G1 1.04 7.72 4.356 0.29 C3 I -E.01 3.83 6.52 4.756 0.93 C4 I -F.01 1.56 5.31 5.294 0.34 C5 1 -17.02 8.33 9.17 3.984 2.43 C6 1 -131.01 4.72 11.32 3.570 1.57 C7 I -D.03 3.06 5.20 5.349 0.65 C8 1 -132.01 2.57 5.96 4.986 0.58 C9 I -D.01 1.66 5.94 4.993 0.38 C10 I -D.02 2.14 6.95 4.601 0.54 C11 1 -6.01 4.02 8.51 4.141 1.13 10 Year Storm Event DA Designation Inlet Q10 cfs Tc min Intensity in /hr Area acres Al CB -G3 8.04 10.98 1.997 4.63 A2 MH -3 7.78 10.78 2.017 4.44 61 0.45 7.76 2.393 0.23 B2 0.69 8.08 2.343 0.35 Confluence CB -C1 /C2 1.12 8.08 2.343 0.58 B3 0.47 8.09 2.342 0.25 B4 0.37 6.53 2.617 0.17 Confluence CB -G3 /G4 0.80 8.09 2.342 0.42 B5 CB -G1 /G2 0.48 7.48 2.439 0.23 B6 Offsite 0.38 6.24 2.679 0.17 C1 CB -G4 0.61 8.48 2.285 0.34 C2 CB -G1 0.54 7.72 2.399 0.29 C3 I -E.01 2.06 6.52 2.619 0.93 C4 I -F.01 0.84 5.31 2.915 0.34 C5 I -F.02 4.47 9.17 2.194 2.43 C6 I -D 1.01 2.51 11.32 1.966 1.57 C7 I -D.03 1.66 5.20 2.946 0.65 C8 I -D2.01 1.40 5.96 2.745 0.58 C9 I -D.01 0.90 5.94 2.745 0.38 C10 I -D.02 1.15 6.95 1 2.534 0.54 C11 1 -13.01 2.16 8.51 1 2.280 1.13 4 Final Hydrology & Hydraulics Report Coral Mountain Affordable Housing • STREET CAPACITY CALCULATIONS Street capacities were analyzed utilizing Manning's equation for open channel flow. In accordance with City of La Quinta guidelines the 100 -year storm shall be contained within the right -of -way (public utility and /or drainage easement) and the 10 -year storm shall be contained within the curbs. The majority of the project consists of parking areas and drive aisles rather than public streets. The proposed connecting street, "Street A" has a minimum section width of 30- feet (flowline to flowline). This section based on City of La Quinta guidelines precludes parking on either side of the street; therefore a Manning's 'n- value' of 0.015 was used in the calculations. The calculations were based on a minimum longitudinal slope of 0.55 %. Street Capacity (100 Year Storm): 27.43 cfs Street Capacity (10 Year Storm): 19.98 cfs The maximum 100 year runoff in Street 'A' is less than 3 cfs therefore the street provides sufficient capacity for both the 100 -year and 10 -year events. Street capacity woeksheets are attached as Appendix F. CATCH BASINS AND STORM DRAIN SYSTEMS Catch basins and or drainage inlets and the associated storm drain pipes were analyzed in accordance with Hydraulic Engineering Circular No. 22, utilizing Bentley Systems Inc. and StormCad software. A hydraulic grade line (HGL) elevation of 46 -feet was used in the calculations at the proposed storm drain outflow. This elevation was interpolated from Drawing • Number 10714 -C -401, "Water Surface Profile ", prepared by Bechtel for the Coachella Valley Water District and is attached as Appendix G. is Storm drain pipes located within the public right -of -way and the La Quinta Evacuation Channel right -of -way are proposed to be RCP, Manning's n -value of 0.013 while all on -site storm drain pipe being HDPE (or approved equal), Manning's n -value of 0.012. Grated inlets were assumed to be utilized within the parking fields and have a clogging factor of 50% applied in the calculations. Curb inlet catch basins per City of La Quinta Standard 300 are proposed for Street 'A'. The StormCad calculations are presented as Appendix H. The software will only allow for a maximum of 10 inlets, therefore the analyses was divided into two separate files ( "A" and "B ") with Manhole 5 being the common point for the two analyses. The system flow, time of concentration and CA values from the drainage areas upstream of the manhole (from analysis "B ") were input into analysis "A" as additional external flow and the corresponding HGL was then used as the downstream starting HGL in analysis "B ". From Analysis "B ": Total System Flow: System Flow Time System Intensity: System CA: Input into Analysis "A 26.03 cfs 14.39 min 3.070 in /hr 8.413 acres " as Upstream System Flow From Analysis "A" Manhole 5 HGL,N: 47.12 ft Input into Analysis "B" as beginning HGL. Final Hydrology & Hydraulics Report Coral Mountain Affordable Housing Grated inlets and curb inlet catch basins were sized utilizing FlowMaster Software in accordance with HEC22. The gross area used in the calculations for grate sizing is based on data from Jensen Precast and are shown below: Grate Size Gross Area s 24x24 Grate 3.23 48x48 Grate 12.34 A summary of the proposed inlets is shown below: Inlet No Inlet Type Total Intercepted Flow cfs Rim /FL Elevation ft HGL In ft HGL Out ft HW Depth Gutter Depth ft 1 -13.01 24x24 Grate 4.02 53.86 47.80 47.73 0.38 1 -13.02 External Flow 14.31 -- -- -- -- CB -C1 CLQ Std 300 0.76 54.53 49.37 49.35 0.21 CB -C2 CLQ Std 300 0.76 54.53 50.37 50.35' 0.21 -D.01 24x24 Grate 3.66 53.25 47.06 46.98 0.21 -D.02 24x24 Grate 2.14 53.26 47.11 47.09 0.25 -D1.01 24x24 Grate 4.72 54.70 50.59 50.53 0.42 -D2.01 24x24 Grate 2.57 53.37 47.33 47.30 0.28 -D.03 24x24 Grate 3.06 53.46 47.27 47.21 0.32 -E.01 24x24 Grate 3.83 53.68 47.40 47.34 0.37 -F.01 24x24 Grate 1.56 53.92 47.52 47.48 0.24 -F.02 48x48 Grate 8.33 53.40 48.49 48.43 0.44 CB -G1 CLQ Std 300 0.45 56.56 50.73 50.71 0.24 CB -G2 CLQ Std 300 0.45 56.54 50.80 50.79 0.24 CB -G3 CLQ Std 300 1.05 54.52 48.99 48.93 0.23 CB -G4 CLQ Std 300 1.05 54.52 51.11 51.08 0.23 It should be noted that although area drains and building roof drains have been designed to convey storm flow to the main systems, it was determined to size the grated inlets based on the entirety of the tributary storm flow. Final Hydrology & Hydraulics Report Coral Mountain Affordable Housing • Summaries of the main line and lateral pipe characteristics are shown below: • 11 Pipe Summary Pipe No Pipe m in ) Material Total System Flow (cfs) Full Capacity (cfs) Slope (ft/ft Average Velocity (fps) P -A.01 54 RCP 43.18 107.67 0.0030 2.72 P -A.02 54 HDPE 44.37 1 116.77 0.0030 2.79 P -A.03 54 HDPE 45.16 117.77 0.0030 2.84 P -A.04 54 HDPE 45.99 115.95 0.0030 2.89 P -A.05 54 HDPE 46.09 120.46 0.0030 2.90 P -A.06 54 HDPE 46.19 104.28 0.0030 2.90 P -A.07 54 HDPE 46.30 121.19 0.0030 2.91 P -A.08 54 HDPE 46.48 118.77 0.0030 2.92 P -A.09 54 HDPE 46.58 120.46 0.0030 2.93 P -A.10 54 HDPE 46.68 104.28 1 0.0030 2.94 P -A.11 54 HDPE 46.77 128.99 0.0030 2.94 P -13.01 30 HDPE 17.18 46.53 0.0110 3.50 P -13.02 30 HDPE 17.27 46.60 0.0110 3.52 P -13.03 30 HDPE 17.31 46.60 0.0110 3.53 P -13.04 30 HDPE 18.28 46.53 0.0110 3.72 P -13.05 24 HDPE 15.57 25.66 0.0110 4.96 P -C.01 18 RCP 1.52 10.53 0.0100 0.86 P -D.01 48 HDPE 32.35 125.64 0.0065 2.57 P -D.02 48 HDPE 32.39 115.03 0.0055 2.58 P -D.03 48 HDPE 32.63 122.78 0.0062 2.60 P -D.04 48 HDPE 30.67 122.16 0.0062 2.44 P -D.05 48 HDPE 26.31 121.62 0.0061 2.09 P -D.06 48 HDPE 26.03 121.75 0.0061 2.07 P -E.01 36 HDPE 26.12 72.33 0.0100 3.70 P -E.02 36 HDPE 23.81 73.03 0.0102 3.37 P -E.03 36 HDPE 16.60 76.88 0.0113 2.35 P -E.04 36 HDPE 16.69 74.18 0.0105 2.36 P -E.05 36 HDPE 16.75 72.25'. 0.0100 2.37 P -E.06 36 HDPE 16.81 72.25 1 0.0100 2.38 P -E.07 36 HDPE 17.20 71.45 0.0098 2.43 P -F.01 24 HDPE 9.00 24.28 0.0098 2.87 P -F.02 24 HDPE 8.31 24.50 0.0100 2.65 P -G.01 30 RCP 17.39 29.14 0.0050 3.54 P -G.02 30 RCP 16.33 28.92 0.0050 3.33 P -G.03 30 RCP 17.09J 29.44 0.0052 3.48 P -G.04 30 RCP 17.57 29.04 0.0050 6.19 Final Hydrology & Hydraulics Report Coral Mountain Affordable Housing Lateral Summary Pipe No Pipe (D in ) Material Total System Flow (cfs) Full Capacity (cfs) Slope (ft/ft Average Velocity (fps) L -B.01 12 HDPE 4.02 25.80 0.4470 5.12 L -13.02 24 RCP 14.31 24.00 0.0113 4.56 L -C.01 18 RCP 0.76 52.13 0.2463 10.62 L -C.02 18 RCP 0.76 1 57.48 0.2994 11.37 L -D.01 12 HDPE 3.66 38.26 0.9827 4.65 L -D.02 12 HDPE 2.14 8.82 0.0522 2.72 L -D1.01 18 HDPE 6.25 22.87 0.0404 3.54 L -D1.02 18 HDPE 4.66 22.88 0.0404 2.64 L -D1.03 18 HDPE 4.70 22.89 0.0405 10.19 L -D1.04 18 HDPE 4.71 22.82 0.0402 10.17 L -D1.05 18 HDPE 4.72 23.27 0.0418 10.32 L -D2.01 12 HDPE 2.57 11.93 0.0956 3.27 L -E.01 12 HDPE 3.83 8.96 0.0539 4.87 L -F.01 24 HDPE 8.33 85.11 0.1206 17.21 L -G.01 18 RCP 1.48 55.14 0.2756 13.50 L -G.02 18 RCP 0.45 84.87 0.6529 12.72 L -G.03 24 RCP 15.67 29.14 0.0166 9.44 L -G.04 18 RCP 2.19 42.36 0.1627 12.62 Hydraulic calculations (StormCad analyses) are provided as Appendix G. Final Hydrology & Hydraulics Report Coral Mountain Affordable Housing • PRELIMINARY WQMP ANALYSIS Preliminary design volume and flow for BMP measures were based on Worksheets 1 and 2 from the Riverside County - Whitewater River Region Water Quality Management Plan. Impervious areas for Drainage Areas 'B' and 'C' are derived from the proposed site plan. Drainage Area 'A' (future auto -mall site) is not included in the summary as this area is not a part of the affordable housing project other than for sizing of the proposed storm drain pipes. Once this area has been designed the site will be responsible for mitigation of its portion of the design volume. A summary of the design flow and volumes is presented below with the worksheets attached as Appendix H. Drainage Total Area Impervious Design Design Area Area Volume Flow acres acres cu -ft cfs DA -B 1.40 1.02 1,063 0.20 DA -C 9.18 7.13 7,628 1.38 Note: The impervious areas shown were determined by calculating the open space areas (as shown on the proposed site plan) and reducing the total pervious area by a factor of 10 %. Two proposed stormwater treatment technologies are proposed for the project by BioClean Environmental Services, Inc. The technologies have been specifically designed and sized to treat flow up to and greater than 1.58 cfs and also bypass internally flow rates up to 75 cfs. The Nutrient Separating Baffle Box (NSBB) and Grate Inlet Skimmer Box Media Filter (GISB -MF) have been chosen based upon outstanding performance results from independent third party field data from local sources. These technologies have been proven to provide medium to high level removal capabilities for trash and debris, total suspended solids, particulate and dissolved metals • and pathogens. , A copy of the proposal submitted by BioClean based on the preliminary hydrology report has been attached as Appendix I. In addition, representatives from BioClean have discussed the proposed treatment technologies with the City and have agreed to be available to answer any further questions the City might have. RESULTS AND CONCLUSIONS As the above narrative and summaries confirm, the proposed project meets the hydrologic conditions as set forth by the City of La Quinta. C Final Hydrology & Hydraulics Report Coral Mountain Affordable Housing Appendix A riverside County TLMA Vicinity Map Riverside County GIS mmmmki Page 1 of 1 EM http: / /cvww3.tlma.co. riverside. ca .us /pa/rclis/NoSelectionPrint.htm 3/10/2010 Final Hydrology & Hydraulics Report Coral Mountain Affordable Housing Appendix B =food Insurance Rate Map f• ••. • •' I • • • • ���• ••••• • • •••••�•••�•••�• •••�••P •* ! •••.•..... •' •w • •Y• •♦•••♦•♦ ♦♦•• • it�•�j•A /• • '•his✓ � :� •., +. • •M ••• f • • 'rte` •� • ••••I•. •�••�; F 1T, 9� 4 r ; /yam ZVI ♦ ..•,may • •••• ♦.• • ♦-` • • .• •• • • • •• • h • • • •'• ••• 4� My e... 't?°. • PROJECT •: c:.�:�.•: SITE.......... . . . k 1 • '�+r,- .3�'. .� : . .. ;Z ., •. :. " ice'; �.�t7 -'� •. r��`.. .'.'.'. :� .:� .. •.....•....•.. �..;a�o..•. ; M [�Ww_�r •• +'• ••• • ,� M {4 /.. ♦•.' 6025•• 7���4�1 � V a ate, «.. A • +n r • • • •�i '. tit tu ... 7 , +.•• Ix '. � • •• tLLU F LU '' ` ��,�' f:.' ¢may ✓ t i Q � I.- o 11113 (10 GA . A& MAP SCALE 1" = 500' 50 0 500' "1000 FEET rl,.,l II PANEL 2234G ;FIRM 'p FLOOD INSURANCE RATE MAP I® RIVERSIDE COUNTY, CALIFORNIA AND UNCORPORATED AREAS 'pl PANEL 2234 OF 3605 (SEE MAP INDEX FOR FIRM PANEL LAYOUT) GONr81t{5; p•' r9NAft"rY M1MK -R PAN KI fOD.GnYa► ODOM 2ZN G. u,etvrTA.cmrov o mee 2za4 c , dM I I Mtice. l• User. Th9.NBp Nwrber a0wn below, ..hMM d ® , � V.-V m.p oracs; me co —.dy rarmn• •how above •hwe b- r W on I i q — appkxic— ror:h I MAP NUMBER a r 06065C2234C EFFECTIVE DATE AUGUST 28, 200E I Federal Emergency Maoagem cot, Agency ThIs Is an olflclal copy, or a poRlon or the abovo reWeneod flood map_ It was extractod Wing F-MIT Oft-Une. 1Me map doe: not reelect cWngee Q or amendments which may have been made subsequent to the date on the H title Mock. For the latest product information about National Flood Irmwartc Z Prooram flood maw chock the FEMA Rood Mao Store at www.msc.rtma_t 0 DEFINITIONS OF FEMA FLOOD ZONE DESIGNATIONS • Moderate to Low Risk Areas In communities that participate in the NFIP, flood insurance is available to all property owners and renters in these zones: ZONE DESCRIPTION Areas of 0.2% annual chance flood; areas of 1% annual chance flood X (Shaded) with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood. Insurance purchase is not required in these zones. (X) (Areas determined to be outside the 0.2% annual chance flood lain. High Risk Areas In communities that participate in the NFIP, mandatory flood insurance purchase requirements apply to all of these zones: ZONE DESCRIPTION Areas with a 1 % ' annual chance of flooding and a 26% chance of A flooding over the life of a 30 -year mortgage. Because detailed analyses are not performed for such areas; no depths or base flood elevations are shown within these zones. Areas with a 1% annual chance of flooding and a 26% chance of AE flooding over the life of a 30 -year mortgage. In most instances, base flood elevations derived from detailed analyses are shown at selected intervals within these zones. Areas with a 1 % annual chance of shallow flooding, usually in the form of a pond, with an average depth ranging from 1 to 3 feet. These areas AH have a 26% chance of flooding over the life of a 30 -year mortgage. Base flood elevations derived from detailed analyses are shown at selected intervals within these zones. River or stream flood hazard areas, and areas with a 1% or greater chance of shallow flooding each year, usually in the form of sheet flow, AO with an average depth ranging from 1 to 3 feet. These areas have a 26% chance of flooding over the life of a 30 -year mortgage. Average flood depths derived from detailed analyses are shown within these zones. For areas of alluvial fan flooding, velocities are also determined. Areas with a temporarily increased flood risk due to the building or restoration of a flood control system (such as a levee or a dam). AR Mandatory flood insurance purchase requirements will apply, but rates will not exceed the rates for unnumbered A zones if the structure is built or restored in compliance with Zone AR floodplain management reciulations. Areas with a 1% annual chance of flooding that will be protected by a A99 Federal flood control system where construction has reached specified legal requirements. No depths or base flood elevations are shown within these zones. High Risk — Coastal Areas In communities that participate in the NFIP, mandatory flood insurance purchase requirements apply to all of these zones: ZONE DESCRIPTION Coastal areas with a 1 % or greater chance of flooding and an additional V hazard associated with storm waves. These areas have a 26% chance of flooding over the life of a 30 -year mortgage. No base flood elevations are shown within these zones. Coastal areas with a 1 % or greater chance of flooding and an additional hazard associated with storm waves. These areas have a 26% chance VE of flooding over the life of a 30 -year mortgage. Base flood elevations derived from detailed analyses are shown at selected intervals within these zones. Undetermined Risk Areas ZONE DESCRIPTION Areas with possible but undetermined flood hazards. No flood hazard D analysis has been conducted. Flood insurance rates are commensurate with the uncertainty of the flood risk. Final Hydrology & Hydraulics Report Coral Mountain Affordable Housing Appendix C USDA NCSS Hydrologic Soils Map 0 0 Hydrologic Soil Group— Riverside County, Coachella Valley Area, California (City of La Quinta) 596900 567000 567100 567200 567300 567400 567500 567600 567700 567800 5679)0 n 33° 4T 36" 33° 42' 36" 33° 41' 49" N N 33° 41'49" M 566900 567000 567100 567200 567300 567400 567500 567600 567700 537800 5679C0 n Fa Map Scale: 1:6,930 0 printed on A size (8.5" x 11 ") sheet. N Meters o 0 50 100 200 300 r Feet 0 250 500 1,000 1,500 USA Natural Resources Web Soil Survey 3/18/2010 r Conservaton Services National Cooperative Soil Survey Ammm. Page 1 of 4 L.twomr-war'shm, 218MIN Hydrologic Soil Group — Riverside County, Coachella Valley Area, California (City of La Quinta) MAP LEGEND f+ Rails N Interstate Hic -v US Routes Major Roads .y Local Roads MAP INFORMATION Map Scale: 1:6,930 if printed on A size (8.5" X 11 ") sheet. The soil surveys that comprise your AOI were mapped at 1:24,000 Please rely on the bar scale on each map sheet for accurate map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http : / /websoilsurvey.nres.usda.gov Coordinate System: UTM Zone 11N NAD83 This product is generated from the USDA -NRCS certified data as of the version date(s) listed below. Soil Survey Area: Riverside County, Coachella Valley Area, California Survey Area Data: Version 4, Jan 3, 2008 Date(s) aerial images were photographed: 5/31/2005 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. USDA Natural Resources - ) Soil Survey 3/ 'ii�i Conservation Service Natic operative Soil Survey Pag Area of Interest (AOI) Area of Interest (AOI) Soils u Soil Map Units Soil Ratings 0 A 0 AID IM B 0 BID 0 C CID D Not rated or not available V� W Political Features Cities PLSS Township and Range 0 PLSS Section Water Features Oceans :.., t'' k ra §r......... .rr.. ...rim .,.. ..:, ,...mow':.. ..... .-,-n Streams and Canals f+ Rails N Interstate Hic -v US Routes Major Roads .y Local Roads MAP INFORMATION Map Scale: 1:6,930 if printed on A size (8.5" X 11 ") sheet. The soil surveys that comprise your AOI were mapped at 1:24,000 Please rely on the bar scale on each map sheet for accurate map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http : / /websoilsurvey.nres.usda.gov Coordinate System: UTM Zone 11N NAD83 This product is generated from the USDA -NRCS certified data as of the version date(s) listed below. Soil Survey Area: Riverside County, Coachella Valley Area, California Survey Area Data: Version 4, Jan 3, 2008 Date(s) aerial images were photographed: 5/31/2005 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. USDA Natural Resources - ) Soil Survey 3/ 'ii�i Conservation Service Natic operative Soil Survey Pag Hydrologic Soil Group — Riverside County, Coachella Valley Area, California • Hydrologic Soil Group • City of La Quinta Hydrologic Soil Group— Summary by Map Unit — Riverside County, Coachella Valley Area, California Map unit symbol Map unit name Rating Acres in AOI Percent of AOI CpA Coachella fine sand, 0 to 2 percent slopes A 99.2 49.2% GbA Gilman fine sandy loam, 0 to 2 percent slopes B 0.1 0.0% MaB Myoma fine sand, 0 to 5. percent slopes A 5.9 2.9% MaD Myoma fine sand, 5 to 15 percent slopes A 96.6 47.8% Totals for Area of Interest 201.9 100.0% Description Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long- duration storms. The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B /D, and C /D). The groups are defined as follows: Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. Group'B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. Group C. Soils having a slow infiltration ;rate when thoroughly wet. These consist _ chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission. Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink -swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. If a soil is assigned to a dual hydrologic group (A/D, B /D, or C /D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. • USDA Natural Resources Web Soil Survey 3/18/2010 Pa Conservation Service National Cooperative Soil Survey Page 3 of 4 Hydrologic Soil Group — Riverside County, Coachella Valley Area, California Rating Options Aggregation Method: Dominant Condition Component Percent Cutoff.* None Specified Tie -break Rule: Lower City of La Quinta USDA Natural Resources Web Soil Survey 3/18/2010 am Conservation Service National Cooperative Soil Survey Page 4 of 4 is 0 0 Final Hydrology & Hydraulics Report Coral Mountain Affordable Housing Appendix D NOAA Atlas 14 RCFCD Reference Plates . Precipitation Frequency Data Server CORAL MOUNTAIN AFFORDABLE HOUSING MSA JOB 1920 NOAA Atlas 14, Volume 6, Version 2 2924 Location name: La Quinta, California, US* { Coordinates: 33.7053,-116.2754 } • Elevation: 61ft• ` source: Google Maps POINT PRECIPITATION FREQUENCY ESTIMATES Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hlner, Kazungu Maitarla, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, LiChuan Chen, Tye Parzybok, John Yarchoan NOAA, National Weather Service, Silver Spring, Maryland PF tabular i PF graphical i Maps & aerials • Page 1 of 4 1� Q J'r PF tabular PDS -based point precipitation frequency estimates with 90% confidence intervals in inches Average recurrence interval(years) Duration 1 �������� 2 5 10 25 50 100 200 500 1000 0.065 0.100 0.153 0.202 0.278 0.346 0.424 0.515 0.659 0.792 5 (0.166 - 0.247) (0.221 - 0.353) (0.270 - 0.448) (0.322 - 0.563) (0.380 - 0.704) (0.467 - 0.940) (0.541 -1.17) 0.093 0.144 0.219 0.289 0.399 0.496 0.607 0.738 0.945 1.14 10-min (0.078 - 0.113) (0.120 - 0.174) (0.182 - 0.267) (0.238 - 0.354) (0.317 - 0.506) (0.386 - 0.642) (0.462 - 0.807) (0.545-1.01) (0.669 -1.35) (0.776 -1.68) 0.174 0.265 0.350 0.482 0.599 0.735 0.892 1.14 1.37 1.113 (0.094 - 0.136) (0.145 - 0.210) (0.220 - 0.322) (0.288 - 0.429) (0.384 - 0.611) (0.467 - 0.777) (0.558 - 0.976) (0.659 -1.22) (0.809 -1.63) (0.938 -2.03) 0.164 0.253 0.387 0.510 0.703 0.874 1.07 1.30 1.67 2.00 30 -min (0.137- 0.199) (0.211 - 0.307) (0.321 - 0.470) (0.420 - 0.625) (0.560- 0.891) (0.681 -1.13) (0.814 -1.42) (0.961 -1.78) 1 (1.18 -2.38) (1.37 -2.96) 0.231 0.355 0.543 0.716 0.987 1.23 1.50 1.83 2.34 2.81 80 -min (0.193- 0.280) 0.296 -0.43111(0.451-0.660)1(0.590-0.878)1(0.786-1.25) (0.957 -1.59) 1.14-2.00 (1.35 -2.50) (1.66 -3.34) (1.92 -4.16) F2 hr ]1(0.268-0.389)11(0.395-0.575)1(0.585-0.856)1(0.755-1.12) 0.322 0.474 0.705 0.917 1.25 (0.994 -1.58) 1.54 (1.20 -2.00) 1.67 (1.42 -2.49) 2.26 (1.67 -3.09) 2.85 (2.02 -4.07) 3.39 (2.32 -5.01) 3-hr 0.386 0.562 0.826 ---]F-1-.4-5--j 1.79 2.17 2.60 3.28 3.88 1(0.322-0.468)1(0.468-0.681)1(0.687-1.00) (0.882 -1.31) (1.16 -1.84) (1.39 -2.31) (1.65 -2.88) (1.92 -3.56) (2.32 -4.68) 6 -hr 0.509 1(0.425-0.616)1(0.613-0.892)1(0.893-1.31) 0.736 1.07 1.39 (1.14 -1.70) 1.87 (1.49 -2.37) 2.29 (1.78 -2.96) 2.76 (2.10 -3.67) 3.31 (2.45 -4.53) 4.16 (2.94 -5.93) 4.90 (3.35 -7.24) 135 1.74 234 2.86 3.45 45.99 10.912 (1.12 -1.64) (1.44 -2.14) (1.87 -2.97) (2.23 -3.71) (2.62 -4.58) (3.04 -5.62) (3.62 -7.30) (4.09 -8.85) 0.764 T-1-17-7­1 .75 2.27 3.05 3.72 4.45 5.28 6.53 7.60 24-hr (0.676-0.881) (1.03 -1.35) (1.54 -2.02) (1.98 -2.65) (2.58 -3.67) (3.09 -4.57) (3.61 -5.60) (4.17 -6.83) (4.95 -8.78) (5.58 -10.6) 2<lay 0.881 (0.779 -1.02) 1.36 (1.20 -1.57) 2.06 (1.81 -2.38) 2.67 (2.34 -3.12) 3.59 (3.04-4.33) 4.37 (3.63 -5.37) 5.22 (4.24 -6.57) 6.17 (4.88 -7.98) 7.59 1 (5.76 -10.2) 8.80 (6.46 -12.2) 0.941 1.46 2.22 2.89 3.88 4.72 5.63 6.66 8.18 9.48 F 3 <!ay (0.833 -1.09) (1.29 -1.69) (1.96 -2.57) (2.52 -3.37) (3.29 -4.67) 1 (3.92 -5.79) 1 (4.57 -7.09) (5.26 -8.61) 1 (6.21 -11.0) (6.96 -13.2) Zy 0.994 1.55 2.35 3.05 4.10 4.99 5.96 7.04 8.64 10.0 (0.879 -1.15) (1.37 -1.79) (2.07 -2.72 (2.67 -3.56) ������� (3.48 -4.94) (4.14 -6.13) (4.83 -7.49) (5.56 -9.10) (6.56 -11.6) (7.34 -13.9 1.05 1.63 2.48 3.23 4.34 5.26 6.28 7.40 9.07 10.5 7iley (0.929 -1.21) 1 (1.44 -1.89) 1 (2.19 -2.87) (2.82 -3.77) (3.67 -5.22) (4.37 -6.47) (5.09 -7.90) (5.85 -9.57) 1 (6.88 -12.2) (7.69 -14.6) 1.08 1.68 2.56 3.33 4.48 5.44 6.48 7.63 9.34 10.8 F�dj(0.953-1.24) 1 (1.49 -1.94) 1 (2.26 -2.96) (2.91 -3.89) (3.79 -5.39) (4.51 -6.68) (5.26 -8.15) (6.03 -9.87) 1 (7.09 -12.6) (7.90 -15.0) 1.14 1.81 2.79 3.64 4.92 5.99 7.14 8.41 10.2 11.8 20<tay (1.01 -1.32) 1 (1.60 -2.09) 1 (2.46 -3.22) (3.19 -4.25) (4.17 -5.93) (4.97 -7.36) (5.79 -8.98) (6.64 -10.9) (7.77 -13.8) (8.64 -16.4) 1 '19 1.92 3.00 3.96 5.38 6.56 7.83 9.22 11.2 12.9 E�dj (1.05 -1.37) 1 (1.70 -2.22) 1 (2.65 -3.47) 1 (3.46 -4.62) 1 (4.56 -6.48) 1 (5.45 -8.06) 1 (6.35 -9.86) (7.28 -11.9) (8.51 -15.1 (9.43 -17.9) 2.11 3.33 4.42 6.04 7.40 8.85 10.4 12.7 14.5 [��17-1.28 (1.13 -1.48) 1 (1.87 -2.44) 1 (2.94 -3.85) 1 (3.86 -5.15) 1 (5.12 -7.28) 1 (6.14 -9.09) 1 (7.18 -11.1) 1 (8.23 -13.5) 1 (9.61 -17.0) (10.6 -20.2) 1.34 2.25 3.60 4.80 6.60 ----]]-9.7--1 11.4 13.9 15.9 60�ay 1 ( .19-1.55) (1.99-2.60) (3.17-4.17) (4.20-5.60) (5.59-7.94) L-8-.10 (6.72 -9.95) (7.88 -12.2) (9.03 -14.8) (10.5-18.7) (11.7 -22.1 ) Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS). Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5 %. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information. UaCK to 1 op PF graphical 2?/ ''S 3.Z/ .S http: // hdsc. nws. noaa. gov/ hdsc /pfds /pfds _printpage.html ?lat= 33.7053 &Ion =- 116.2754 &dat... 9/28/2011 Preciptation Frecuency Data Server w 0 e .{, ,... .. I t hV a lle Natona F ,ri k .. Manor DTM, e: a :-. : 1 ' H:n .raaa Hy r I O l a �.. t �. r as VC so t»ti onal Indio Rp rp3h e a ;n _ u .+ee r t .x tl Vintage Ghab a ' t ✓ 'rt 'e ° r, a �: . iri.'"t.a 11i9 dIhl S iC aW` Eerrardino P oYa Palm <° r eQr n� C mU park ° 3each Springs Riverside Q O �.. - ..�. Ha,ta An Indio ut an zri' snrt i o t:t O Temectla La rra San Ave 00 Oceanside oe5condtifa O Erc -vitas 0Pov+ay,', i, rank, o E? Calon'' ` San Oiegoa Mexicali Yuma o S�,aAac 2 rni La t nt. 04 - O Tijuana sanla Isabel '��'° Playas d O e San I ws Ria Rosarto Colorado Ra 100 km ( Wildlife Refuge Ensenada Map data ©2011 Google, INEGI - TeFms of Usd w C>esta n 1,dventwes Indian Wells Indio -5 lath »n We Ave 46 Vintage Ghab 01u try Ghx La San Ave . .. 2 km j S�,aAac 2 rni La t nt. Ma data Google - Tgf Large scale aerial Page 3 of 4 http:// hdsc. nws. noaa. gov/ hdsc /pfds /pfds _printpage.html ?lat= 33.7053 &Ion =- 116.2754 &dat... 9/28/201 Precipitation Frequency Data Server National Weather Service Office of Hydrologic Development 1325 East West Highway Silver Spring, MD 20910 Questions ?: HDSC.Questions()noaa.gov Disclaimer Page 4 of 4 http: // hdsc. nws. noaa. gov /hdsc /pfds /pfds _printpage.html ?lat = 33.7053 &Ion =- 116.2754 &dat... 9/28/2011 • NOAA ATLAS 14 INTENSITY - DURATION WORKSHEET PROJECT NAME Coral Mountain Affordable Housing RAINFALL PROJECT NUMBER 1920 DEPTH STORM EVENT 100 yr 5 5.25 DATE: September 28, 2011 3.66 0.61 DATA FROM NOAA ATLAS 14 0.74 MINUTES RAINFALL RAINFALL 0.85 INTENSITY DEPTH 0.95 (in/hr) in 1.03 5 5.09 0.42 1.11 40 10 3.64 0.61 45 1.68 15 2.94 0.74 1.59 1.32 30 2.14 1.07 1.38 60 60 1.50 1.50 65 1.38 120 0.94 1.87 • 10.00 - - RAINFALL RAINFALL INTENSITY DEPTH (in/hr) (in) 5 5.25 0.44 10 3.66 0.61 15 2.97 0.74 20 2.55 0.85 25 2.27 0.95 30 2.07 1.03 35 1.91 1.11 40 1.78 1.19 45 1.68 1.26 50 1.59 1.32 55 1.51 1.38 60 1.44 1.44 65 1.38 1.50 70 1.33 1.55 75 1.28 1.61 60 1.24 1.66 85 1.20 1.71 90 1.17 1.75 95 1.14 1.80 100 1:11 1.84 105 1.08 1.89 110 1.05 1.93 115 1.03 1.97 120 1.01 2.01 1.00 io 0 0.10 �1- INTENSITY VALUES FROM GRAPH CONSTANT FROM GRAPH 1 12.13 EXPONENT FROM GRAPH 1 -0.52 MINUTES.. RAINFALL RAINFALL INTENSITY DEPTH (in/hr) (in) 5 5.25 0.44 10 3.66 0.61 15 2.97 0.74 20 2.55 0.85 25 2.27 0.95 30 2.07 1.03 35 1.91 1.11 40 1.78 1.19 45 1.68 1.26 50 1.59 1.32 55 1.51 1.38 60 1.44 1.44 65 1.38 1.50 70 1.33 1.55 75 1.28 1.61 60 1.24 1.66 85 1.20 1.71 90 1.17 1.75 95 1.14 1.80 100 1:11 1.84 105 1.08 1.89 110 1.05 1.93 115 1.03 1.97 120 1.01 2.01 NOAA ATLAS 14 INTENSITY - DURATION WORKSHEET PROJECT NAME Coral Mountain Affordable Housing RAINFALL PROJECT NUMBER 1 1920 DEPTH STORM EVENT i 10 yr 5 2.46 DATE: *ptember 28, 2011 1.72 0.29 DATA FROM NOAA ATLAS 14 0.35 MINUTES RAINFALL RAINFALL 0.40 INTENSITY DEPTH 0.44 (inthr) in 0.48 5 2.42 0.20 0.52 40 10 1.73 0.29 45 0.78 15 1.40 0.35 0.74 0.62 30 1.02 0.51 0.65 60 60 0.72 0.72 65 0.65 120 0.46 0.92 0.62 INTENSITY VALUES FROM GRAPH CONSTANT FROM GRAPH 5.68 EXPONENT FROM GRAPH -0.52 MINUTES 10.00 RAINFALL INTENSITY DEPTH (in/hr) (in) 5 2.46 0.20 10 1.72 0.29 Sj LA 1.39 0.35 20 1.20 0.40 25 1.07 0.44 30 0.97 0.48 35 0.89 0.52 40 0.83 0.56 45 0.78 0.59 50 0.74 0.62 55 0.71 0.65 60 0.68 0.68 65 0.65 0.70 70 0.62 0.73 75 0.60 0.75 80 0.58 0.78 85 0.56 0.80 90 0.55 0.82 95 0.53 0.84 100 0.52 0.86 105 0.51 0.88 110 0.49 0.90 115 0.48 0.92 120 0.47 0.94 1.00 0 - 0.10 INTENSITY VALUES FROM GRAPH CONSTANT FROM GRAPH 5.68 EXPONENT FROM GRAPH -0.52 MINUTES RAINFALL RAINFALL INTENSITY DEPTH (in/hr) (in) 5 2.46 0.20 10 1.72 0.29 15 1.39 0.35 20 1.20 0.40 25 1.07 0.44 30 0.97 0.48 35 0.89 0.52 40 0.83 0.56 45 0.78 0.59 50 0.74 0.62 55 0.71 0.65 60 0.68 0.68 65 0.65 0.70 70 0.62 0.73 75 0.60 0.75 80 0.58 0.78 85 0.56 0.80 90 0.55 0.82 95 0.53 0.84 100 0.52 0.86 105 0.51 0.88 110 0.49 0.90 115 0.48 0.92 120 0.47 0.94 F- -I Final Hydrology & Hydraulics Report Coral Mountain Affordable Housing Appendix E kthod Analyses Computer Runs • Riverside County Rational Hydrology Program CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2005 Version 7.1 Rational Hydrology Study Date: 09/30/11 File:1920CMAHFINAL100YR.out ------------------------------------------------------------------------ CORAL MOUNTAIN AFFORDABLE HOUSING FINAL RATIONAL HYDROLOGY 100 YEAR STORM EVENT * * * * * * * ** Hydrology Study Control Information * * * * * * * * ** English (in -lb) Units used in input data file Program License Serial Number 6041 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.355(In.) 100 year, 1 hour precipitation 1.500(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.500(In /Hr) • Slope of intensity duration curve = 0.5200 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + +...... + + + + ++.......... Process from Point /Station 100.000 to Point /Station 105.000 * * ** INITIAL AREA EVALUATION * * ** DA -A1 Initial area flow distance = 630.000(Ft.) Top (of initial area) elevation = 58.800(Ft.) Bottom (of initial area) elevation = 55.000(Ft.) Difference in elevation = 3.800(Ft.) Slope = 0.00603 s(percent)= 0.60 TC = k(0.300) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 10.984 min. Rainfall intensity = 3.627(In /Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.880 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 14.774(CFS) Total initial stream area = 4.630(Ac.) Pervious area fraction = 0.100 C7 Process from Point /Station 100.000 to Point /Station 110.000 * * ** INITIAL AREA EVALUATION * * ** DA -A2 Initial area flow distance = 605.000(Ft.) Top (of initial area) elevation = 58.800(Ft.) Bottom (of initial area) elevation = 55.100(Ft.) Difference in elevation = 3.700(Ft.) Slope = 0.00612 s(percent)= 0.61 TC = k(0.300) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 10.778 min. Rainfall intensity = 3.663(In /Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.880 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 14.311(CFS) Total initial stream area = 4.440(Ac.) Pervious area fraction = 0.100 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + ++ ++ ++ +++ + + ++ + ++ Process from Point /Station 200.000 to Point /Station 210.000 * * ** INITIAL AREA EVALUATION * * ** DA -B1 Initial area flow distance = 190.000(Ft.) Top (of initial area) elevation = 55.900(Ft.) Bottom (of initial area) elevation = 54.500(Ft.) Difference in elevation = 1.400(Ft.) Slope = 0.00737 s(percent)= 0.74 TC = k(0.356) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 7.762 min. Rainfall intensity = 4.345(In /Hr) for a 100.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.846 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.310; Impervious fraction = 0.690 Initial subarea runoff = 0.845(CFS) Total initial stream area = 0.230(Ac.) Pervious area fraction = 0.310 +++++++++++++++++++++++++++++++++++++++ + + ++ + + + + ++ +++ + + + ++ + + ++ + + + + + + +++ Process from Point /Station 200.000 to Point /Station 210.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 0.230(Ac.) Runoff from this stream = 0.845(CFS) Time of concentration = 7.76 min. Rainfall intensity = 4.345(In /Hr) Program is now starting with Main Stream No. 2 0 Process from Point /Station 205.000 to Point /Station 210.000 * * ** INITIAL AREA EVALUATION * * ** DA -B2 Initial area flow distance = 315.000(Ft.) Top (of initial area) elevation = 58.100(Ft.) Bottom (of initial area) elevation = 54.500(Ft.) Difference in elevation = 3.600(Ft.) Slope = 0.01143 s(percent)= 1.14 TC = k(0.331) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 8.078 min. Rainfall intensity = 4.255(In /Hr) for a 100.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.859 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.230; Impervious fraction = 0.770 Initial subarea runoff = 1.280(CFS) Total initial stream area = 0.350(Ac.) Pervious area fraction = 0.230 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 205.000 to Point /Station 210.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.350(Ac.) • Runoff from this stream = 1.280(CFS) Time of concentration = 8.08 min. Rainfall intensity = 4.255(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 0.845 7.76 4.345 2 1.280 8.08 4.255 Largest stream flow has longer time of concentration Qp = 1.280 + sum of Qb Ia /Ib 0.845 * 0.979 = 0.828 Qp = 2.107 Total of 2 main streams to confluence: Flow rates before confluence point: 0.845 1.280 Area of streams before confluence: 0.230 0.350 Results of confluence: Total flow rate = 2.107(CFS) Time of concentration = 8.078 min. Effective stream area after confluence = 0.580(Ac.) • +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 200.000 to Point /Station 220.000 * * ** INITIAL AREA EVALUATION * * ** DA -B3 Initial area flow distance = 190.000(Ft.) Top (of initial area) elevation = 55.900(Ft.) Bottom (of initial area) elevation = 54.500(Ft.) Difference in elevation = 1.400(Ft.) Slope = 0.00737 s(percent)= 0.74 TC = k(0.371) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 8.087 min. Rainfall intensity = 4.253(In /Hr) for a 100. USER INPUT of soil data for subarea Runoff Coefficient = 0.836 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.360; Impervious Initial subarea runoff = 0.889(CFS) Total initial stream area = 0.250(Ac Pervious area fraction = 0.360 0 year storm fraction = 0.640 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + ++ + + + + ++ + + + + + + + + + + + + ++ Process from Point /Station 200.000 to Point /Station 220.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 0.250(Ac.) Runoff from this stream = 0.889(CFS) Time of concentration = 8.09 min. Rainfall intensity = 4.253(In /Hr) Program is now starting with Main Stream No. 2 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + +++ +++++ + + + ++ Process from Point /Station 215.000 to Point /Station 220.000 * * ** INITIAL AREA EVALUATION * * ** DA -B4 Initial area flow distance = 165.000(Ft.) Top (of initial area) elevation = 56.200(Ft.) Bottom (of initial area) elevation = 54.500(Ft.) Difference in elevation = 1.700(Ft.) Slope = 0.01030 s(percent)= 1.03 TC = k(0.339) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 6.533 min. Rainfall intensity = 4.752(In /Hr) for a 100.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.858 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.260; Impervious fraction = 0.740 Initial subarea runoff = 0.693(CFS) Total initial stream area = 0.170(Ac.) Pervious area fraction = 0.260 0 Process from Point /Station 215.000 to Point /Station 220.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 0.170(AC.) Runoff from this stream = 0.693(CFS) Time of concentration = 6.53 min. Rainfall intensity = 4.752(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 0.889 8.087 4.243 2 0.693 6.533 4.752 Largest stream flow has longer time of concentration Qp = 0.89 + sum of Qb Ia /Ib 0.693 * 0.895 = 0.620 Qp = 1.51 Total of 2 main streams to confluence: Flow rates before confluence point: 0.889 0.693 Area of streams before confluence: 0.230 0.350 Results of confluence: Total flow rate = 1.51(CFS) • Time of concentration = 8.087 min. - Effective stream area after confluence 0.42(Ac.) Process from Point /Station 205.000 to Point /Station 225.000 * * ** INITIAL AREA EVALUATION * * ** DA -B5 Initial area flow distance = 220.000(Ft.) Top (of initial area) elevation = 58.100(Ft.) Bottom (of initial area) elevation = 56.500(Ft.) Difference in elevation = 1.600(Ft.) Slope = 0.00727 s(percent)= 0.73 TC = k(0.323) *[(length ^3) /(elevation change)) ^0.2 Initial area time of concentration = 7.479 min. Rainfall intensity = 4.429(In /Hr) for a 100.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.866 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = •0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.200; Impervious fraction = 0.800 Initial subarea runoff = 0.882(CFS) Total initial stream area = 0.230(Ac.) Pervious area fraction = 0.200 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + ++ + + + + + + ++++ + + + + + ++ Process from Point /Station 230.000 to Point /Station 235.000 * * ** INITIAL AREA EVALUATION * * ** DA -B6 Initial area flow distance = 150.000(Ft.) • Top (of initial area) elevation = 57.000(Ft.) Bottom (of initial area) elevation = 55.400(Ft.) Difference in elevation = 1.600(Ft.) Slope = 0.01067 s(percent)= 1.07 TC = k(0.339) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 6.245 min. Rainfall intensity = 4.865(In /Hr) for a 100.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.859 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.260; Impervious fraction = 0.740 Initial subarea runoff = 0.710(CFS) Total initial stream area = 0.170(Ac.) Pervious area fraction = 0.260 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 300.000 to Point /Station 305.000 * * ** INITIAL AREA EVALUATION * * ** DA -C1 Initial area flow distance = 250.000(Ft.) Top (of initial area) elevation = 58.100(Ft.) Bottom (of initial area) elevation = 55.400(Ft.) Difference in elevation = 2.700(Ft.) Slope = 0.01080 s(percent)= 1.08 TC = k(0.377) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 8.481 min. Rainfall intensity = 4.149(In /Hr) for a 100.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.827 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.400; Impervious fraction = 0.600 Initial subarea runoff = 1.167(CFS) Total initial stream area = 0.340(Ac.) Pervious area fraction = 0.400 +++++++++++++++++++++++++++++++++++++++ ++ + + + + +++++ + ++ +++ +++++ + + ++ +++++ Process from Point /Station 310.000 to Point /Station 315.000 * * ** INITIAL AREA EVALUATION * * ** DA -C2 Initial area flow distance = 220.000(Ft.) Top (of initial area) elevation = 58.300(Ft.) Bottom (of initial area) elevation = 55.200(Ft.) Difference in elevation = 3.100(Ft.) Slope = 0.01409 s(percent)= 1.41 TC = k(0.381) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 7.722 min. Rainfall intensity = 4.356(In /Hr) for a 100.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.825 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.430; Impervious fraction = 0.570 • Initial subarea runoff = 1.042(CFS) Total initial stream area = 0.290(Ac.) Pervious area fraction = 0.430 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + +++++ + + + + ++ Process from Point /Station 230.000 to Point /Station 320.000 * * ** INITIAL AREA EVALUATION * * ** DA -C3 Initial area flow distance = 220.000(Ft.) Top (of initial area) elevation = 57.000(Ft.) Bottom (of initial area) elevation = 53.700(Ft.) Difference in elevation = 3.300(Ft.) Slope = 0.01500 s(percent)= 1.50 TC = k(0.326) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 6.523 min. Rainfall intensity = 4.756(In /Hr) for a 100.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.866 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.210; Impervious fraction = 0.790 Initial subarea runoff = 3.830(CFS) Total initial stream area = 0.930(Ac.) Pervious area fraction = 0.210 +++++++++++++++++++++++++++++++++++++++ + + ++ ++ + + + + + + + + + + + + + + + + + + + + + + +++ Process from Point /Station 330.000 to Point /Station 335.000 * * ** INITIAL AREA EVALUATION * * ** DA -05 Initial area flow distance = 380.000(Ft.) Top (of initial area) elevation = 56.500(Ft.) Bottom (of initial area) elevation = 53.400(Ft.) Difference in elevation = 3.100(Ft.) Slope = 0.00816 s(percent)= 0.82 +++++++++++++++++++++++++++++++++++++++ + + + + +++++ + + + + + + + + + ++ ++ + + + + + + + ++ • Process from Point /Station 315.000'to Point /Station 325.000 * * ** INITIAL AREA EVALUATION * * ** DA -C4 Initial area flow distance = 165.000(Ft.) Top (of initial area) elevation = 57.800(Ft.) Bottom (of initial area) elevation = 53.900(Ft.) Difference in elevation = 3.900(Ft.) Slope = 0.02364 s(percent)= 2.36 TC = k(0.326) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 5.308 min. Rainfall intensity = 5.294(In /Hr) for a 100.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.869 Decimal fraction soil group A = 0.000 Decimal fraction soil group•B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.210; Impervious fraction = 0.790 Initial subarea runoff = 1.564(CFS) Total initial stream area = 0.340(Ac.) Pervious area fraction = 0.210 +++++++++++++++++++++++++++++++++++++++ + + ++ ++ + + + + + + + + + + + + + + + + + + + + + + +++ Process from Point /Station 330.000 to Point /Station 335.000 * * ** INITIAL AREA EVALUATION * * ** DA -05 Initial area flow distance = 380.000(Ft.) Top (of initial area) elevation = 56.500(Ft.) Bottom (of initial area) elevation = 53.400(Ft.) Difference in elevation = 3.100(Ft.) Slope = 0.00816 s(percent)= 0.82 TC = k(0.326) *[(length ^3) /(elevation change)) ^0.2 Initial area time of concentration = 9.168 min. Rainfall intensity = 3.984(In /Hr) for a 100.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.861 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.210; Impervious fraction = 0.790 Initial subarea runoff = 8.333(CFS) Total initial stream area = 2.430(AC.) Pervious area fraction = 0.210 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 340.000 to Point /Station 345.000 * * ** INITIAL AREA EVALUATION * * ** DA -C6 Initial area flow distance = 365.000(Ft.) Top (of initial area) elevation = 56.000(Ft.) Bottom (of initial area) elevation = 54.700(Ft.) Difference in elevation = 1.300(Ft.) Slope = 0.00356 s(percent)= 0.36 TC = k(0.346) *[(length ^3) /(elevation change)) ^0.2 Initial area time of concentration = 11.322 min. Rainfall intensity = 3.570(In /Hr) for a 100. USER INPUT of soil data for subarea Runoff Coefficient = 0.843 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.280; Impervious Initial subarea runoff = 4.724(CFS) Total initial stream area = 1.570(AC. Pervious area fraction = 0.280 0 year storm fraction = 0.720 +++++++++++++++++++++++++++++++++++++++ + + + + + ++ ++ +++++ + ++ ++ ++++ + + + + + + ++ Process from Point /Station 350.000 to Point /Station 355.00 * * ** INITIAL AREA EVALUATION * * ** DA -C7 Initial area flow distance = 150.000(Ft.) Top (of initial area) elevation = 56.000(Ft.) Bottom (of initial area) elevation = 53.500(Ft.) Difference in elevation = 2.500(Ft.) Slope = 0.01667 s(percent)= 1.67 TC = k(0.309) *[(length ^3) /(elevation change)) ^0.2 Initial area time of concentration = 5.204 min. Rainfall intensity = 5.349(In /Hr) for a 100.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.879 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.140; Impervious fraction = 0.860 Initial subarea runoff = 3.057(CFS) Total initial stream area = 0.650(Ac.) Pervious area fraction = 0.140 0 Process from Point /Station 360.000 to Point /Station 365.000 * * ** INITIAL AREA EVALUATION * * ** DA -C8 Initial area flow distance = 195.000(Ft.) Top (of initial area) elevation = 55.800(Ft.) Bottom (of initial area) elevation = 53.400(Ft. Difference in elevation = 2.400(Ft.) Slope = 0.01231 s(percent)= 1.23 TC = k(0.300) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 5.958 min. Rainfall intensity = 4.985(In /Hr) for a 100 USER INPUT of soil data for subarea Runoff Coefficient = 0.887 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.080; Impervious Initial subarea runoff = 2.566(CFS) Total initial stream area = 0.580(Ac Pervious area fraction = 0.080 0 year storm fraction = 0.920 +++++++++++++++++++++++++++++++++++++++ + + + + +++ + + + + + + + + + + + + + + + + + + + + + +++ Process from Point /Station 370.000 to Point /Station 375.000 * * ** INITIAL AREA EVALUATION * * ** DA -C9 Initial area flow distance = 185.000(Ft.) Top (of initial area) elevation = 55.900(Ft.) Bottom (of initial area) elevation = 53.200(Ft.) • Difference in elevation = 2.700(Ft.) Slope = 0.01459 s(percent)= 1.46 TC = k(0.316) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 5.941 min. Rainfall intensity = 4.993(In /Hr) for a 100.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.873 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.170; Impervious fraction = 0.830 Initial subarea runoff = 1.657(CFS) Total initial stream area = 0.380(Ac.) Pervious area fraction = 0.170 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + ++++ + + + + + + ++ + + + + + + + + ++ Process from Point /Station 380.000 to Point /Station 385.000 * * ** INITIAL AREA EVALUATION * * ** DA -C10 Initial area flow distance = 220.000(Ft.) Top (of initial area) elevation = 55.800(Ft.) Bottom (of initial area) elevation = 53.200(Ft.) Difference in elevation = 2.600(Ft.) Slope = 0.01182 s(percent)= 1.18 TC = k(0.331) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 6.951 min. Rainfall intensity = 4.601(In /Hr) for a 100.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.862 Decimal fraction soil group A = 0.000 • Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.230; Impervious fraction = 0.770 Initial subarea runoff = 2.141(CFS) Total initial stream area = 0.540(Ac.) Pervious area fraction = 0.230 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 215.000 to Point /Station 390.000 * * ** INITIAL AREA EVALUATION * * ** DA -Cll Initial area flow distance = 300.000(Ft.) Top (of initial area) elevation = 56.200(Ft.) Bottom (of initial area) elevation = 53.900(Ft.) Difference in elevation = 2.300(Ft.) Slope = 0.00767 s(percent)= 0.77 TC = k(0.328) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 8.513 min. Rainfall intensity = 4.141(In /Hr) for a 100.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.860 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.220; Impervious fraction = 0.780 Initial subarea runoff = 4.024(CFS) Total initial stream area = 1.130(Ac.) Pervious area fraction = 0.220 End of computations, total study area = 19.65 (AC.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.170 Area averaged RI index number = 56.0 • Riverside County Rational Hydrology Program CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989• - 2005 Version 7.1 Rational Hydrology Study Date: 09/30/11 File:1920CMAHFINALI0YR.out ------------------------------------------------------------------------ CORAL MOUNTAIN AFFORDABLE HOUSING FINAL RATIONAL HYDROLOGY 10 YEAR STORM EVENT * * * * * * * ** Hydrology Study Control Information * * * * * * * * ** English (in -lb) Units used in input data file Program License Serial Number 6041 -------------7---------------------------------------------------------- Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.355(In.) 100 year, 1 hour precipitation = 1.500(In.) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.826(In /Hr) • Slope of intensity duration curve = 0.5200 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + ++++ + + + + + + + + + + + + + + + ++ Process from Point /Station 100.000 to Point /Station 105.000 * * ** INITIAL AREA EVALUATION * * ** DA -A1 Initial area flow distance = 630.000(Ft.) Top (of initial area) elevation = 58.800(Ft.) Bottom (of initial area) elevation = 55.000(Ft.) - Difference in elevation = 3.800(Ft.) Slope = 0.00603 s(percent)= 0.60 TC = k(0.300) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 10.984 min. Rainfall intensity = 1.997(In /Hr) for a 10.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.869 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 8.037(CFS) Total initial stream area = 4.630(Ac.) Pervious area fraction = 0.100 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 100.000 to Point /Station 110.000 * * ** INITIAL AREA EVALUATION * * ** DA -A2 Initial area flow distance = 605.000(Ft.) Top (of initial area) elevation = 58.800(Ft.) Bottom (of initial area) elevation = 55.100(Ft.) Difference in elevation = 3.700(Ft.) Slope = 0.00612 s(percent)= 0.61 TC = k(0.300) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 10.778 min. Rainfall intensity = 2.017(In /Hr) for a 10.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.869 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 7.785(CFS) Total initial stream area = 4.440(Ac.) Pervious area fraction = 0.100 +++++++++++++++++++++++++++++++++++++++ + ++ + ++ + ++ + + + + + ++ + + + + + + + + + + + + + ++ Process from Point /Station 200.000 to Point /Station 210.000 * * ** INITIAL AREA EVALUATION * * ** DA -B1 Initial area flow distance = 190.000(Ft.) Top (of initial area) elevation = 55.900(Ft.) Bottom (of initial area) elevation = 54.500(Ft.) Difference in elevation = 1.400(Ft.) Slope = 0.00737 s(percent)= 0.74 TC = k(0.356) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 7.762 min. Rainfall intensity = 2.393(In /Hr) for a 10.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.815 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.310; Impervious fraction = 0.690 Initial subarea runoff = 0.449(CFS) Total initial stream area = .0.230(Ac.) Pervious area fraction = 0.310 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 200.000 to Point /Station 210.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 0.230(Ac.) Runoff from this stream = 0.449(CFS) Time of concentration = 7.76 min. Rainfall intensity = 2.393(In /Hr) Program is now starting with Main Stream No. 2 0 Process from Point /Station 205.000 to Point /Station 210.000 * * ** INITIAL AREA EVALUATION * * ** DA -B2 Initial area flow distance = 315.000(Ft.) Top (of initial area) elevation= 58.100(Ft.) Bottom (of initial area) elevation = 54.500(Ft.) Difference in elevation = 3.600(Ft.) Slope = 0.01.143 s(percent)= 1.14 TC = k(0.331) *[(length ^3) /(elevation change)1^0.2 Initial area time of concentration = 8.078 min. Rainfall intensity = 2.343(In /Hr) for a 10.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.836 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.230; Impervious fraction = 0.770 Initial subarea runoff = 0.686(CFS) Total initial stream area = 0.350(Ac.) Pervious area fraction = 0.230 +++++++++++++++++++++++++++++++++++++++ + ++++ ++ + + + + + + + +++ ++++ + + + + + + ++ ++ Process from Point /Station 205.000 to Point /Station 210.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.350(Ac.) • Runoff from this stream = 0.686(CFS) Time of concentration = 8.08 min. Rainfall intensity = 2.343(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 0.449 7.76 2.393 2 0.686 8.08 2.343 Largest stream flow has longer time of concentration Qp = 0.686 + sum of Qb Ia /Ib 0.449 * 0.979 = 0.439 Qp = 1.125 Total of 2 main streams to confluence: Flow rates before confluence point: 0.449 0.686 Area of streams before confluence: 0.230 0.350 Results of confluence: Total flow rate = 1.125(CFS) Time of concentration = 8.078 min. Effective stream area after confluence = 0.580(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 200.000 to Point /Station 220.000 * * ** INITIAL AREA EVALUATION * * ** DA -B3 Initial area flow distance = 190.000(Ft.) Top (of initial area) elevation = 55.900(Ft.) Bottom (of initial area) elevation = 54.500(Ft.) Difference in elevation = 1.400(Ft.) Slope = 0.00737 s(percent)= 0.74 TC = k(0.371) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 8.087 min. Rainfall intensity = 2.342(In /Hr) for a 10.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.800 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.360; Impervious fraction = 0.640 Initial subarea runoff = 0.468(CFS) Total initial stream area = 0.250(Ac.) Pervious area fraction = 0.360 +++++++++++++++++++++++++++++++++++++++ ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 200.000 to Point /Station 220.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 0.250(Ac.) Runoff from this stream = 0.468(CFS) Time of concentration = 8.09 min. Rainfall intensity = 2.342(In /Hr) Program is now starting with Main Stream No. 2 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 215.000 to Point /Station 220.000 * * ** INITIAL AREA EVALUATION * * ** DA -B4 Initial area flow distance = 165.000(Ft.) Top (of initial area) elevation = 56.200(Ft.) Bottom (of initial area) elevation = 54.500(Ft.) Difference in elevation = 1.700(Ft.) Slope = 0.01030 s(percent)= 1.03 TC = k(0.339) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 6.533 min. Rainfall intensity = 2.617(In /Hr) for a 10.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.833 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.260; Impervious fraction = 0.740 Initial subarea runoff = 0.371(CFS) Total initial stream area = 0.170(Ac.) Pervious area fraction = 0.260 0 Process from Point /Station 215.000 to Point /Station 220.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 0.170(Ac.) Runoff from this stream = 0.371(CFS) Time of concentration = 6.53 min. Rainfall intensity = 2.617(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 0.468 8.087 2.342 2 0.371 6.533 2.617 Largest stream flow has longer time of concentration Qp = 0.468 + sum of Qb Ia /Ib 0.371 * 0.893 = 0.330 Qp = 0.80 Total of 2 main streams to confluence: Flow rates before confluence point: 0.468 0.371, Area of streams before confluence: 0.25 0.0.17 Results of confluence: Total flow rate = 0.80(CFS) • Time of concentration = 8.078 min. - Effective stream area after confluence 0.420(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + +++ + + + + + + +++ + + + + +++ + + + + + + ++ Process from Point /Station 205.000 to.Point /Station 225.000 * * ** INITIAL AREA EVALUATION * * ** DA -B5 Initial area flow distance = 220.000(Ft.) Top (of initial area) elevation = 58.100(Ft.) Bottom (of initial area) elevation = 56.500(Ft.) Difference in elevation = 1.600(Ft.) Slope = 0.00727 s(percent)= 0.73 TC = k(0.323) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 7.479 min. Rainfall intensity = 2.439(In /Hr) for a 10.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.846 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000' Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.200; Impervious fraction = 0.800 Initial subarea runoff = 0.475(CFS) Total initial stream area = 0.230(Ac.) Pervious area fraction = 0.200 +++++++++++++++++++++++++++++++++++++++ ++ + + + + + +++ + + + + + ++++ + + + + +++ + + + ++ Process from Point /Station 230.000 to Point /Station 235.000 * * ** INITIAL AREA EVALUATION * * ** DA -B6 • Initial area flow distance = 150.000(Ft.) Top (of initial area) elevation = 57.000(Ft.) Bottom (of initial area) elevation = 55.400(Ft.) Difference in elevation = 1.600(Ft.) Slope = 0.01067 s(percent)= 1.07 TC = k(0.339) *((length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 6.245 min. Rainfall intensity = 2.679(In /Hr) for a 10.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.834 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.260; Impervious fraction = 0.740 Initial subarea runoff = 0.380(CFS) Total initial stream area = 0.170(Ac.) Pervious area fraction = 0.260 +++++++++++++++++++++++++++++++++++++++ + + + + ++ + ++ + + + + + + + + + + + + + + + + + + +y ++ Process from Point /Station 300.000 to Point /Station 305.000 * * ** INITIAL AREA EVALUATION * * ** DA -C1 Initial area flow distance = 250.000(Ft.) Top (of initial area) elevation = 58.100(Ft.) Bottom (of initial area) elevation = 55.400(Ft.) Difference in elevation = 2.700(Ft.) Slope = 0.01080 s(percent)= 1.08 TC = k(0.377) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 8.481 min. Rainfall intensity = 2.285(In /Hr) for a 10.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.787 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.400; Impervious fraction = 0.600 Initial subarea runoff = 0.611(CFS) Total initial stream area = 0.340(AC.) Pervious area fraction = 0.400 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + +++ + +++ Process from Point /Station 310.000 to Point /Station 315.000 * * ** INITIAL AREA EVALUATION * * ** DA -C2 Initial area flow distance = 220.000(Ft.) Top (of initial area) elevation = 58.300(Ft.) Bottom (of initial area) elevation = 55.200(Ft.) Difference in elevation = 3.100(Ft.) Slope = 0.01409 s(percent)= 1.41 TC = k(0.381) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 7.722 min. Rainfall intensity = 2.399(In /Hr) for a 10.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.782 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.430; Impervious fraction = 0.570 • Initial subarea runoff = 0.544(CFS) Total initial stream area = 0.290(Ac.) Pervious area fraction = 0.430 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + ++ + + ++ Process from Point /Station 230.000 to Point /Station 320.000 * * ** INITIAL AREA EVALUATION * * ** DA -C3 Initial area flow distance = 220.000(Ft.) Top (of initial area) elevation = 57.000(Ft.) Bottom (of initial area) elevation = 53.700(Ft.) Difference in elevation = 3.300(Ft.) Slope = 0.01500 s(percent)= 1.50 TC = k(0.326) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 6.523 min. Rainfall intensity = 2.619(In /Hr) for a 10.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.846 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.210; Impervious fraction = 0.790 Initial subarea runoff = 2.061(CFS) Total initial stream area = 0.930(Ac.) Pervious area fraction = 0.210 +++++++++++++++++++++++++++++++++++++++ + + + + + + + +++ + + + + + + + + + + + + ++ + + + + + ++ Process from Point /Station 315.000 to Point /Station 325.000 * * ** INITIAL AREA EVALUATION * * ** DA -C4 • Initial area flow distance = 165.000(Ft.) Top (of initial area) elevation = 57.800(Ft.) Bottom (of initial area) elevation = 53.900(Ft.) Difference in elevation = 3.900(Ft.) Slope = 0.02364 s(percent)= 2.36 TC = k(0.326) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 5.308 min. Rainfall intensity = 2.915(In /Hr) for a 10.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.850 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.210; Impervious fraction = 0.790 Initial subarea runoff = 0.843(CFS) Total initial stream area = 0.340(Ac.) Pervious area fraction = 0.210 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 330.000 to Point /Station 335.000 * * ** INITIAL AREA EVALUATION * * ** DA -CS Initial area flow distance = 380.000(Ft.) Top (of initial area) elevation = 56.500(Ft.) Bottom (of initial area) elevation = 53.400(Ft.) Difference in elevation = 3.100(Ft.) Slope = 0.00816 s(percent)= 0.82 TC = k(0.326) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 9.168 min. Rainfall intensity = 2.194(In /Hr) for a 10.0 year storm • USER INPUT of soil data for subarea Runoff Coefficient = 0.839 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.210; Impervious fraction = 0.790 Initial subarea runoff = 4.473(CFS) Total initial stream area = 2.430(Ac.) Pervious area fraction = 0.210 +++++++++++++++++++++++++++++++++++++++ +++ ++++ ++ + + + + + + + + + + + + + + + + +++ +++ Process from Point /Station 340.000 to Point /Station 345.000 * * ** INITIAL AREA EVALUATION * * ** DA -C6 Initial area flow distance = 365.000(Ft.) Top (of initial area) elevation = 56.000(Ft.) Bottom (of initial area) elevation = 54.700(Ft.) Difference in elevation = 1.300(Ft.) Slope = 0.00356 s(percent)= 0.36 TC = k(0.346) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 11.322 min. Rainfall intensity = 1.966(In /Hr) for a 10.0 USER INPUT of soil data for subarea Runoff Coefficient = 0.812 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.280; Impervious Initial subarea runoff = 2.508(CFS) Total initial stream area = 1.570(Ac Pervious area fraction = 0.280 year storm fraction = 0.720 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + ++ ++++ + + ++ + +++ Process from Point /Station 350.000 to Point /Station 355.000 * * ** INITIAL AREA EVALUATION * * ** DA -C7 Initial area flow distance = 150.000(Ft.) Top (of initial area) elevation = 56.000(Ft.) Bottom (of initial area) elevation = 53.500(Ft.) Difference in elevation = 2.500(Ft.) Slope = 0.01667 s(percent)= 1.67 TC = k(0.309) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 5.204 min. Rainfall intensity = 2.946(In /Hr) for a 10.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.867 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.140; Impervious fraction = 0.860 Initial subarea runoff = 1.660(CFS) Total initial stream area = 0.650(Ac.) Pervious area fraction = 0.140 0 Process from Point /Station 360.000 to Point /Station 365.000 * * ** INITIAL AREA EVALUATION * * ** DA -C8 Initial area flow distance = 195.000(Ft.) Top (of initial area) elevation = 55.800(Ft.) Bottom (of initial area) elevation = 53.400(Ft.) Difference in elevation = 2.400(Ft.) Slope = 0.01231 s(percent)= 1.23 TC = k(0.300) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 5.958 min. Rainfall intensity = 2.745(In /Hr) for a 10.0 USER INPUT of soil data for subarea Runoff Coefficient = 0.880 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.080; Impervious Initial subarea runoff = 1.401(CFS) Total initial stream area = 0.580(Ac Pervious.area fraction = 0.080 year storm fraction = 0.920 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + ++ + + + + + + + + + + ++ Process from Point /Station 370.000 to Point /Station 375.000 * * ** INITIAL AREA EVALUATION * * ** DA -C9 Initial area flow distance = 185.000(Ft.) Top (of initial area) elevation = 55.900(Ft.) Bottom (of initial area) elevation = 53.200(Ft.) • Difference in elevation = 2.700(Ft.) Slope = 0.01459 s(percent)= 1.46 TC = k(0.316) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 5.941 min. Rainfall intensity = 2.749(In /Hr) for a 10.0 USER INPUT of soil data for subarea Runoff Coefficient = 0.858 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.170; Impervious Initial subarea runoff = 0.896(CFS) Total initial stream area = 0.380(Ac Pervious area fraction = 0.170 • year storm fraction— 0.830 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + ++ + + + + + + + + + ++ Process from Point /Station 380.000 to Point /Station 385.000 * * ** INITIAL AREA EVALUATION * * ** DA -C10 Initial area flow distance = 220.000(Ft.) Top (of initial area) elevation = 55.800(Ft.) Bottom (of initial area) elevation = 53.200(Ft.) Difference in elevation = 2.600(Ft.) Slope = 0.01182 s(percent)= 1.18 TC = k(0.331) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 6.951 min. Rainfall intensity = 2.534(In /Hr) for a 10.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.839 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.230; Impervious fraction = 0.770 Initial subarea runoff = 1.149(CFS) Total initial stream area = 0.540(Ac.) Pervious area fraction = 0.230 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 215.000 to Point /Station 390.000 * * ** INITIAL AREA EVALUATION * * ** DA -Cll Initial area flow distance = 300.000(Ft.) Top (of initial area) elevation = 56.200(Ft.) Bottom (of initial area) elevation = 53.900(Ft.) Difference in elevation = 2.300(Ft.) Slope = 0.00767 s(percent)= 0.77 TC = k(0.328) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 8.513 min. Rainfall intensity = 2.280(In /Hr) for a 10.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.838 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.220; Impervious fraction = 0.780 Initial subarea runoff = 2.159(CFS) Total initial stream area = 1.130(Ac.) Pervious area fraction = 0.220 End of computations, total study area = 19.65 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.170 Area averaged RI index number = 56.0 Final Hydrology & Hydraulics Report Coral Mountain Affordable Housing • Appendix F Street Capacity Worksheets 0 0 • Worksheet for Street A (100 Year Storm) Project Description Friction Method Manning Formula Solve For Discharge Input_Data Channel Slope 0.00550 ft/ft Normal Depth 0.60 ft Section Definitions • Station (ft) Elevation (ft) -20 +.000 100.18 -15 +.625 100.09 -15 +.125 100.08 -15 +.000 99.58 -13 +.000 99.74 0 +.000 100.00 13 +.000 99.74 15 +.000 99.58 15 +.125 100.08 15 +.625 100.09 25 +.000 100.28 Roughness Segment Definitions !I Start Station Ending Station. Roughness Coefficient ( -20 +.000, 100.18) ( -15 +.625, 100.09) 0.025 ( -15 +.625, 100.09) (15 +.625, 100.09) 0.015 (15 +.625, 100.09) (25 +.000, 100.28) 0.025 Results Discharge 27.43 ft' /s � Elevation Range 99.58 to 100.28 ft Flow Area 10.72 ft2 Wetted Perimeter 40.87 ft Top Width 40.07 ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.066.00] • 3/10/2011 12:01:03 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 - 755 -1666 Page 1 of 2 Worksheet for Street A (100 Year Storm) Results Normal Depth 0.60 ft Critical Depth 0.57 ft Critical Slope 0.00734 ft/ft Velocity 2.56 ft/s Velocity Head 0.10 ft Specific Energy 0.70 ft Froude Number 0.87 ft Flow Type Subcritical ft/ft GVF Input Data Downstream Depth / 0.00 ft Length 0.00 ft Number Of Steps 0 y LGVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 0.60 ft Critical Depth 0.57 ft Channel Slope 0.00550 ft/ft Critical Slope 0.00734 ft/ft n Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.066.00] 3110/2011 12:01:03 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 - 755 -1666 Page 2 of 2 • Description Worksheet for Street A (10 Year Storm) Project Friction Method Manning Formula Solve For Discharge Input Data Channel Slope 0.00550 ft/ft Normal Depth 0.50 ft Section Definitions • i Station (ft) Elevation (ft) -20 +.000 100.18 -15 +.625 100.09 -15 +.125 100.08 -15 +.000 99.58 -13 +.000 99.74 0 +.000 100.00 13 +.000 99.74 15 +.000 99.58 15 +.125 100.08 15 +.625 100.09 25 +.000 100.28 Roughness Segment Definitions �I Start Station Ending Station Roughness Coefficient ( -20 +.000, 100.18) ( -15 +.625, 100.09) 0.025 ( -15 +.625, 100.09) (15+.625, 100.09) 0.015 (15 +.625, 100.09) (25 +.000, 100.28) 0.025 Results Discharge 19.98 ft3 /s Elevation Range 99.58 to 100.28 ft Flow Area 7.20 ftz Wetted Perimeter 31.05 ft Top Width 30.25 ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.066.001 • 3/10/2011 11:59:37 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -203- 755 -1666 Page 1 of 2 Worksheet for Street A (10 Year Storm) Results Normal Depth 0.50 ft Critical Depth 0.50 ft Critical Slope 0.00548 ft/ft Velocity 2.77 ft/s Velocity Head 0.12 ft Specific Energy 0.62 ft Froude Number 1.00 ft Flow Type Supercritical ft/ft GVF Input Data 0.00548 ft/ft Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 0.50 ft Critical Depth 0.50 ft Channel Slope 0.00550 ft/ft Critical Slope 0.00548 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley Flov&aster [08.01.066.001 3110/2011 11:59:37 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -203- 755 -1666 Page 2 of 2 Final Hydrology & Hydraulics Report Coral Mountain Affordable Housing Appendix G Hydraulic Calculations Bechtel "Water Surface Profile" StormCad Storm Drain Worksheets Inlet & Catch Basin Worksheets C7 •, _i: .. ,. i i ti:i:.ii.i: `i:.i�i �i�.l :i:•a li i. I• I. t i i- Vi 1' 1.4 'fi- -- - iV 1 /CiN H �4 7' 11/ V• C 4N EG• i' is i' I. i:. - -L •9D .: I : - . 'Stan 4• fro� t fIo � - -- cx f/o0ar - i I - $tan o , - -j: •!' •//;9 cFS• • -.s: 'N�! •'�, P R� 0 15 dh. g 5450 CAR 2 k ; Q� charge , .5� g� : j i ° : I ?ti . ;aos$: 5x • : i�l i : ot.: ' ' ..... A - I v • 1. 1 - v �+ Z C I' .. 't/ toy Y lOC/t :Yee.! - — i -' � - P • r I -- 1+ � h •S -d - o ii Q� As - I :F'� 1 i � �a. Ce � th ✓a'rr'est . .. : . .. .. - Orcwd t �7%qq�-���Q/QC i .. ... �.. .::• b i� }•1 ". - - Vii: :i•i I :; _ ° • ; : `-v A. i %.: .. , i 'Qm - 13:� ±D$ L 4pth Aven a �'� `I f .� 0• :4�: i I' t. :i C. ; ... i' d 1 37'+40. :I. 9 _ i_ ;i:'iu__•60 •-t?'• —... _ .. :i. — i0f •- __il- ','. _ �. ... �1t .. ,f.. .. V„ _ _. _•—F-'- -_'y.j a d * . i W4 1 •I, k .. �1 40 ft - _ • 3O � : • .. _; -.:.. _._ '�' - - -- - Qs. .. _ .. . �. • - - -.SYa Jg23;-r -r Ti — — ;_.- =� -- i c.: -- •' : — I' - (23, •cfa"�CYSSn/�j _ _. -I — - 14#+Q8: SDoLrtf ll,. _ ,,.... i3�oa r H L 46,ft, jr ''.i: 511 .; 'o! •ii :.� • - -� - '+,400: I.. — .i:- .... O'er �I' d:• � - - - �� ��• - .. :.' 1 frorn. 8th Avenue to :,; i ON , o pro pp ed storm d ain • � 'i outfa in ll channel :1: n 4 0 t. I: I. !O i o 1 ' -• •ear•�/'eel�:Chtn' Son O%.and•r EJac atlorr Ghanne/ tart/ n ; I :t,;: A IL m s� s t° B E� C, GENERAL PLAN' Scale -- l'= /000" CYSWC Levee, t 594 1237 -40, CNSWC 9 Sea 1227.34, P im 36205 �s/86 Issued for Client Approvol Ott � ltsr/ee' For Approval q 7laN Issued for Client Review /f l me Iera„ w D'e �B.Se /[z m lv BECNTE'L SAN FRANCfSCO COACHELLA VALLEY COUNTY WATER DISTRICT Coachella, Calffornla LA QUINTA STORMWATER PROJECT WATER SURFACE PROFILE NI otJlttNS.Na Rk 10714 10714 -C -4.01 C P im 36205 Scenario: Base CKI 0.1 Title: Coral Mountain Affordable Housing - System A Project Engineer: DLS r: \...\stormcad \1920 cmah final system a.stm StormCAD v5.6 [05.06.012.00] 10/04/11 04:38:26 PM 0 Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1- 203 -755 -1666 Page 1 of 1 • Scenario: Base »» Info: Subsurface Network Rooted by: 0 -1 »» Info: Subsurface Analysis iterations: 3 »» Info: Convergence was achieved. CALCULATION SUMMARY FOR SURFACE NETWORKS Calculation Results Summary I Label I Inlet I Inlet I Total I Total I Capture I Gutter I Gutter I I I Type I I Intercepted I Bypassed I Efficiency I Spread I Depth I I I I I Flow I Flow I M I '(ft) I (ft) I I I- -------- I I--------------- I I (cfs) I (cfs) I 94.89 I I = I MH -5 I Generic Inlet I----------------------- I Generic Upstream I------------- Flow 1 0.00 I---------- I------------ I 0.00 1 100.0 I-------- I 0.00 I--- - - - -I 1 0.00 1 I I -D.03 I Ditch Inlet I Ditch Jensen DI 24x24 1 3.06 1 0.00 1 100.0 1 2.00 1 0.32 1 1 I -D1.01 I Ditch Inlet I Ditch Jensen DI 24x24 1 4.72 I 0.00 I 100.0 1 2.00 1 0.42 1 1 I -D2.01 I Ditch Inlet I Ditch Jensen DI 24x24 1 2.57 1 0.00 1 100.0 1 2.00 1 0.28 1 1 I -D.01 I Ditch Inlet I Ditch Jensen DI 24x24 1 1.66 1 0.00 1 .100.0 1 2.00 1 0.21 1 1 I -D.02 I Ditch Inlet I Ditch Jensen DI 24x24 I 2.14 1 0.00 1 100.0 1 2.00 1 0.25 1 1 I -B.01 I Ditch Inlet I Ditch Jensen DI 24x24 1 4.02 1 0.00 1 100.0 1 2.00 '1 0.38 1 1 CB -C1 I Curb Inlet I Curb COR STD 300 -6CF 1 0.76 1, 0.00 1 100.0 1 3.38 1 0.21 1 1 CB -C2 I Curb Inlet I Curb COR STD 300 -6CF -1 0.76 1 0.00 1 100.0 1 3.38 1 0.21 1 1 I -B.02 ----------------------------------------------------------------------------------------------------- I Generic Inlet I Generic Upstream Flow 1 0.00 1 0.00 1 100.0 1 0.00 1 0.00 1 - - - - -- CALCULATION SUMMARY FOR SUBSURFACE NETWORK WITH ROOT: 0 -1 I Label I Number I Section I Section I Length I I of I Size I Shape I (ft) I I I I Sections I I 46.30 I I I I I 2.92 1 I---------I----------I---------1----------I------- I P -A.01 1 1 1 54 inch I Circular 1 123.40 1 P -A.02 1 1 1 54 inch I Circular 1 139.78 1 P -A.03 I 1 1 54 inch I Circular 1 94.89 1 P -A.04 I 1 1 54 inch I Circular 1 101.26 I P -A.05 1 1 1 54 inch I Circular 1 12.51 1 P -A.06 I 1 1 54 inch I Circular 1 12.52 1 P -A.07 1 1 1 54 inch I Circular 1 12.36 I P -A.08 I 1 1 54 inch I Circular 1 22.52 I P -A.09 I 1 1 54 inch I Circular 1 12.51 1 P -A.10 1 1 1 54 inch I Circular 1 12.52 I P -A.11 1 1 1 54 inch I Circular 1 10.91 1 P -D.01 1 1 1 48 inch I Circular 1 7.67 1 P -B.01 1 1 1 30 inch I Circular 1 14.59 1 P -D.02 1 1 1 48 inch .1 Circular 1 •7.32 1 P -B.02 I 1 1 30 inch I Circular 1 20.00 1 P -D.03 1 1 1 48 inch I Circular 1 36.94 1 P -B.03 1 1 1 30 inch I Circular 1 10.00 I P -D.04 1 1 1 48 inch I Circular 1 43.81 1 L -D.01 I 1 1 12 inch I Circular 1 7.52 1 P -B.04 1 1 1 30 inch I Circular 1 253.54 1 P -D.05 I 1 1 48 inch I Circular 1 134.22 1 L -D1.01 I 1 1 18 inch I Circular 1 21.54 1 L -D.02 1 1 1 12 inch I Circular 1 9.39 1 P -B.05 I 1 1 24 inch I Circular 1 287.21 1 L -B.01 1 1 1 12 inch I Circular 1 10.29 I P -D.06 1 1 1 48 inch I Circular 1 169.88 1 L -D.03 I 1 1 12 inch I Circular 1 8.52 1 L -D1.02 I 1 1 18 inch I Circular 1 119.20 1 L -D2.01 1 1 1 12 inch I Circular 1 42.48 1 P7C.01 I 1 1 18 inch 1 Circular 1 101.40 1 L -B..02 1 1 1 24 inch I Circular 1 17.77 1 L -D1.03 1 1 1 18 inch I Circular 1 116.91 1 L -C.01 1 1 1 18 inch I Circular 1 19.12 1 L -C.02 1 1 1 18 inch I Circular 1 19.27 1 L -D1.04 1 1 1 18 inch I Circular 1 17.91 1 L -131.05 1 1 1 18 inch I Circular 1 38.75 'otal I Average I Hydraulic I Hydraulic I system I Velocity I Grade I Grade I Flow I (ft /s) 1 Upstream 1 Downstream I cfs) I I (ft) I (ft) I ------ I ---------- 43.18 1 I---- 2.72 I 44.37 1 2.79 1 45.16 1 2.84 1 45.99 1 2.89 1 46.09 1 2.90 1 46.19 1 2.90 1 46.30 I 2.91 1 46.48 I 2.92 1 46.58 1 2.93 1 46.68 1 2.94 1 46.77 1 2.94 1 32.35 1 2.57 1 17.18 1 3.50 1 32.39 1 2.58 1 17.27 1 3.52 1 32.63 1 2.60 1 17.31 1 3.53 1 30.67 1 2.44 1 3.66 .I 4.65 1 18.28 1 3.72 I 26.31 1 2.09 I 6.25 1 3.54 I 2.14 1 2.72 I 15.57 1 4.96 I 4.02 1 5.12 I 26.03 1 2.07 I 3.06 1 29.27 1 4.66 1 2.64 I 2.57 1 3.27 I 1.52 1 0.86 1 14.31 1 4.56 1 4.70 1 10.19 1 0.76 1 10.62 1 0.76 1 11.37 1 4.71 1 10.17 1 4.72 1 10.32 1 I Label I Total I Ground I Hydraulic I Hydraulic I I I System I Elevation I Grade I Grade I I I Flow I (ft) I Line In 1 Line Out I' I I (cfs) I I (ft) I (ft) I I---------- 1 0 -1 I-------- I----------- I 42.56 I. I----------- 48.00 I I------ 46.00 - - - - - I 1 46.00 1 1 HB -A.01 1 43.18 1 50.40 1 46.10 1 46.06 1 1 MH -1 1 44.37 1 50.00 1 46.20 1 46.16 1 1 HB -A.02. 1 45.16 1 51.00 1_'_x.,.46.28 47.47 1 1 46.24 1 1 HB -A.03 1 45.99 1 52.40 I- 46.38 1 46.33 1 1 HB -A.04 1 46.09 1 53.10 1 46.43 I 46.39 1 1 HB -A.05 1 46.19 1 55.20 1 46.49 1 46.44 1 1 HB -A.06 1: 46.30 1 55.90 1 46.54 I 46.49 1 1 HB -A.07 1 46.48 1 54.80 1 46.60 1 46.55 1 1 HB -A.08 1 46.58 1 54.70 1 46.66 1 46.61 1 I HB -A.09 1 46.68 1 54.70 1 46.72 1 46.67 1 1 MH -2 1 46.77 1 54.26 1 46.79 1 46.72 1 I HB -D.01 1 32.35 1 53.94 1 46.83 1 46.79 1 1 HB -B.01 1 17.18 1 54.20 1 46.87 1 46.81 1 1 HB -D.02 1 32.39 1 53.82 1 46.87 1 46.83 1 I HB -B.02 1 17.27 1 54.06 1 46.96 I. 46.90 1 1 Y -D.01 1 32.63 1 53.56 1 46.92. 1 46.89 1 1 HB -B.03 1 17.31 1 54.07 1 47.04 1 46.98 1 1 Y -D.02 1 30.67 1 53.82 1 46.99 1 46.93 1 1 I -D.01 1 3.66 1 53.25 1 47.06 1 46.98 1 1 Y -B.01 1 18.28 1 54.23 1 47.62 1 47.47 1 1 Y -D.03 1 26.31 1 53.85 1 47.06 1 47.02 1 1 Y -D1.01 1 6.25 1 53.71 1 47.11 -1 47.05 1 1 I -D.02 1 2.14 1 53.26 1 47.11 1 47.09 1 1 MH -3 1 15.57 1 56.06 1 48.89 1 48.78 1 I I -B.01 1 4.02 1 53.86 1 47.80 1 47.73 1 1 MH -5 1 26.03 1 54.16 1 47.12 1 47.11 1 ------ 1------- 46.06 1 - - - - -1 46.00 1 46.16 1 46.10 1 46.24 1 46.20 1 46.33 1 46.28 I 46.39 1 46.38 I 46.44 I 46.43 I 46.49 I 46.49 1 46.55 1 46.54 1 46.61 1 46.60 1 46.67 1 46.66 1 46.72 1 46.72 1 46.79 1 46.79 1 46.81 1 46.79 1 46.83 1 46.83 1 46.90 1 46.87 1 46.89 1 46.87 1 46.98 1 46.96 1 46.93 1 46.92 1 46.98 1 46.92 1 47.47 1 47.04 1 47.02 1 46.99 1 47.05 1 46.99 1 47.09 1 47.06 1 48.78 1 47.62 1 47.73 1 47.62 1 47.11 1 47.06 1 47.21 1 47.0'6 1 47.31 1 47.11 1 47.30 1 47.11 1 48.91 1 48.89 1 48.96 1 48.89 1 48.19 1 47.37 1 49.35 1 48.91 1 50.35 1 48.91 1 48.91 1 48.33 1 50.53 1 -------------- 49.05 1 - - - - -- Title: Coral Mountain Affordable Housing - System A Project Engineer: OILS r:\... \stormcad \1920 cmah final system a.stm StormCAD v5.6 [05.06.012.00] 10/04/11 04:38:50 PM © Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1- 203 - 755 -1666 Page 1 of 2 Calculation Results Summary I I -D.03 1 3.06 1 53.46 1 47.27 1 47.21 1 1 HB -D1.01 1 4.66 1 54.58 1 47.37 1 47.31 1 1 I -D2.01 1 2.57 1 53.37 1 47.33 1 47.30 1 1 MH -4 1 1.52 1 55.00 1 48.91 1 48.91 1 1 I -B.02 1 14.31 1 56.38 1 49.01 1 48.96 1 1 HB -D1.02 1 4.70 1 55.20 1 48.33 1 48.19 1 1 CB -Cl 1 0.76 1 55.03 1 49.37 1 49.35 1 1' CB -C2 1 0.76 1 55.03 1 50.37 1 50.35 1 1 HB -D1.03 1 4.71 1 55.10 1 49.05 1 48.91 1 1 I -D1.Ol 1 --------------------------------------------------- 4.72 1 54.70 1 50.59 1 50.53 1 - - - - -- Completed: 10/04/201.1 04:38:35 PM Title: Coral Mountain Affordable Housing - System A Project Engineer: DLS r: \... \stormcad \1920 cmah final system a.stm StormCAD v5.6 [05.06.012.00] 10/04/11 04:38:50 PM 0 Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1- 203 - 755 -1666 Page .2 of 2 • 0 Scenario: Base , Inlet Report Label Inlet Clogging Factor M Curb Opening Length (ft) Grate Length . (ft) Ground Elevation (ft) Rim Elev (ft) Sump Elev (ft) Structure Depth (ft) Area (acres) Tc (min) I (in /hr) Inlet C Int Rational Flow (cfs) Ext CA (acres) Ext Tc (min) System CA (acres) System Flow Time (min) System Intensity (in/hr) System Rational Flow (cfs) HGL In (ft) HGL Out (ft) CB -C1 Curb COR STD 300 -6CF 4.00 55.03 54.53 49.03 6.00 0.210 8.09 4.252 0.8462 0.76 0.000 0.00 0.178 8.09 4.252 0.76 49.37 49.35 CB -C2 Curb COR STD 300 -6CF 4.00 55.03 54.53 50.03 5.00 0.210 8.09 4.252 0.8462 0.76 0.000 0.00 0.178 8.09 4.252 0.76 50.37 50.35 -B.01 Ditch Jensen DI 24x24 50.0 1.90 53.86 53.86 43.86 10.00 1.130 8.51 4.142 0.8523 4.02 0.000 0.00 0.963 8.51 4.142 4.02 47.80 47.73 I-B.02 Generic Upstream Flow 56.38 56.38 42.53 13.85 0.000 0.00 0.000 0.0000 0.00 3.876 10.78 3.876 10.78 3.663 14.31 49.01 48.96 -D.01 Ditch Jensen DI 24x24 5U.0 1.90 53.25 53.25 44.31 8.94 0.380 5.94 4.993 0.8680 1.66 0.000 0.00 0.791 7.01 4.583 3.66 47.06 46.98 -0.02 Ditch Jensen DI 24x24' 50.0 1.90 53.26 53.26 44.80 8.46 0.540 6.95 4.601 0.8545 2.14 0.000 0.00 0.461 6.95 4.601 2.14 47.11 47.09 I-D.03 Ditch Jensen DI 24x24 50.0 1.90 53.46 53.46 46.46 7.00 0.650 5.20 5.351 0.8731 3.06 0.000 0.00 0.568 5.20 5.351 3.06 47.27 47.21 1 -131.01 Ditch Jensen DI 24x24 50.0 1.90 54.70 54.70 49.70 5.00 1.570 11.32 3.570 0.8354 4.72 0.000 0.00 1.312 11.32 3.570 4.72 50.59 50.53 I -D2.01 Ditch Jensen DI 24x24 50.0 1.90 53.37 53.37 42.12 11.25 0.580 5.96 4.984 0 -8818 2.57 0.000 0.00 0.511 5.96 4.984 2.57 47.33 47.30 MH -5 Generic Upstream Flow 1 54.161 54.161 37.551 16.611 0.0001 0.001 0.0001 0.00001 0.00 8.413 14.39 87413 14.39 1 3.070 1 26.03 47.12 47.11 Title: Coral Mountain Affordable Housing - System A r: \... \stormcad \1920 cmah final system a.stm 10/04/11 04:39:07 PM © Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1- 203 - 755 -1666 Project Engineer: DLS StormCAD v5.6 (05.06.012.00] Page 1 of 1 Scenario: Base Junction Report Label Ground Elevation (ft) Rim Elevation (ft) Sump Elevation (ft) Stnicture Depth (ft) Structure Diameter (ft) System CA (acres) System Flow Time (min) System Intensity (in /hr) System Rational Flow (cfs) Hydraulic Grade Line In (ft) Hydraulic Grade Line Out (ft) HB -A.01 50.40 50.40 33.53 16.87 2.00 16.789 19.98 2.552 43.18 46.10 46.06 HB -A.02 51.00 51.00 34.26 16.74 2.00 16.789 18.59 2.669 45.16 46.28 46.24 HB -A.03 52.40 52.40 34.56 17.84 2.00 16.789 18.01 2.718 45.99 46.38 46.33 HB -A.04 53.10 5110 34.60 18.50 2.00 16.789 17.93 2.724 46.09 46.43 46.39 HB -A.05 55.20 55.20 34.63 20.57 2.00 16.789 17.86 2.730 46.19 46.49 46.44 HB -A.06 55.90 55.90 34.67 21.23 2.00 16.789 17.79 2.736 46.30 46.54 46.49 HB -A.07 54.80 54.80 34.74 20.06 2.00 16.789 17.66 2.746 46.48 46.60 46.55 HB -A.08 54.70 54.70 34.78 19.92 2.00 16.789 17.59 2.752 46.58 46.66 46.61 HB -A.09 54.70 54.70 34.81 19.89 2.00 16.789 17.52 2.758 46.68 46.72 46.67 HB -B.01 54.20 54.20 36.01 18.19 2.00 5.195 13.09 3.282 17.18 46.87 46.81 HB -B.02 54.06 54.06 36.23 17.83 2.00 5.195 12.99 3.297 17.27 46.96 46.90 HB -B.03 54.07 54.07 36.34 17.73 2.00 5.195 12.95 3.305 17.31 47.04 46.98 HB -D.01 53.94 53.94 35.15 18.79 2.00 11.595 17.41 2.768 32.35 46.83 46.79 HB -D.02 53.82 53.82 35.19 18.63 2.00 11.595 17.36 2.772 32.39 46.87 46.83 HB -D1.01 54.58 54.58 42.63 11.95 2.00 1.312 11.60 3.524 4.66 47.37 47.31 HB -D1.02 55.20 55.20 47.36 7.84 2.00 1.312 11.41 3.555 4.70 48.33 48.19 HB -D1.03 55.10 55.10 48.08 7.02 2.00 1.312 11.38 3.560 4.71 49.05 48.91 MH -1 50.00 50.00 33.95 16.05 6.00 16.789 19.15 2.622 44.37 46.20 46.16 MH -2 54.26. 54.26 34.70 19.56 4.00 16.789 17.46 2.763 46.77 46.79 46.72 MH -3 56.06 56.06 42.27 13.79 5.00 4.231 10.85 3.651 15.57 48.89 48.78 MH-4 55.00 55.00 43.57 11.43 5.00 0.355 8.12 4.244 1.52 48.91 48.91 Y -6.01 54.23 54.23 39.12 15.11 2.00 5.195 11.81 3.490 18.28 47.62 47.47 Y -D.01 53.56 53.56 35.42 18.14 2.00 11.595 17.12 2.792 32.63 46.92 46.89 Y -D.02 53.82 53.82 35.69 18.13 2.00 10.804 16.83 2.817 30.67 46.99 46.93 Y -D.03 53.85 53.85 36.51 17.34 2.00. 8.981 15.76 2.906 26.31 47.06 47.02 Y -131.01 53.71 53.71 37.81 15.90 2.00 1.823 12.36 3.401 6.25 47.11 47.05 Title: Coral Mountain Affordable Housing - System A r: \... \stormcad \1920 cmah final system a.stm 10/04/11 04:39:21 PM 9 Bentley Systems,, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1- 203 - 755 -1666 Project Engineer: DLS StormCAD v5.6 (05.06.012.00] Page 1 of 1 • • Scenario: Base Pipe Report Label. Material Mannings n Section Size Length (ft) Full Capacity (cfs) Total System Flow (cfs) Up Inv Bev (ft) Down Inv Elev (ft) Slope (ft(ft) Avg Vel (ft/s) HGL In (ft) HGL Out (ft) Flow Time (min) Profile Description L -13.01 PVC 0.012 12 inch 10.29 25.80 4.02 44.47 39.87 0.4470 5.12 47.73 47.62 8.51 Pressure L -B.02 Concrete 0.013 24 inch 17.77 24.00 14.31 42.53 42.33 0.0113 4.56 48.96 48.89 10.78 Pressure L -C.01 Concrete 0.013 18 Inch 19.12 52.13 0.76 49.03 44.32 0.2463 10.62 49.35 48.91 8.09 Composite Pressure S1 S2, L -C.02 Concrete 0.013 18 inch 19.27 57.48 0.76 50.03 44.26 0.2994 11.37 50.35 48.91 8.09 Composite Pressure S1 S2 L -13.01 PVC 0.012 12 inch 7.52 38.26 3.66 44.31 36.92 0.9827 4.65 46.98 46.92 7.01 Pressure L -D.02 PVC 0.012 12 inch 9.39 8.82 2A4 44.80 44.31 0.0522 2.72 47.09 47.06 6.95 Pressure L -D.03 PVC 0.012 12 inch 8.52 38.44 3.06 46.46 38.01 0.9918 29.27 47.21 47.06 5.20 Composite Pressure S1 S2 L -D1.01 PVC 0.012 18 inch 21.54 22.87 6.25 37.81 36.94 0.0404 3.54 47.05 46.99 12.36 Pressure L -131.02 PVC 0.012 18 inch 119.20 22.88 4.66 42.63 37.81 0.0404 2.64 47.31 47.11 11.60 Pressure L -131.03 PVC 0.012 18 inch 116.91 22.89 4.70 47.36 42:63 0.0405 10.19 48.19 47.37 11.41 Composite Pressure S1 S2 L -D1.04 PVC 0.012 18 inch 17.91 22.82 4.71 48.08 47.36 0.0402 10.17 48.91 48.33 11.38 Composite S1 S2 L -D1.05 PVC 0.012 18 inch 38.75 23.27 4.72 49.70 48.08 0.0418 10.32 50.53 49.05 11.32 Composite S1 S2 L -132.01 PVC 0.012 12 inch 42.48 11.93 2.57 42.12 38.06 0.0956 3.27 47.30 47.11 5.96 Pressure P -A.01 Concrete 0.013 54 inch 123.40 107.67 43.18 33.53 33.16 0.0030 2.72 46.06 46.00 19.98 Pressure P -A.02 PVC 0.012 54 inch 139.78 116.77 44.37 33.95 33.53 0.0030 2.79 46.16 46.10 19.15 Pressure P -A.03 PVC 0.012 54 inch 94.89 117.77 45.16 34.26 33.97 _ 0.0031 2.84 46.24 46.20 18.59 Pressure P -A.04 PVC 0.012 54 inch 101.26 115.95 45.99 34.56 34.26 0.0030 2.89 46.33 46.28 18.01 Pressure P -A.05 PVC 0.012 54 inch 12.51 120.46 46.09 34.60 34.56 0.0032 2.90 46.39 46.38 17.93 Pressure P -A.06- PVC 0.012 54 inch 12.52 104.28 46.19 34.63 .34.60 0.0024 2.90 46.44 46.43 17.86 Pressure P -A.07 PVC 0.012 54 inch 12.36 121.19 46.30 34.67 34.63 0.0032 2.91 46.49 46.49 17.79 Pressure P -A.08 PVC 0.012 54 inch 22.52 118.77 46.48 34.74 34.67 0.0031 2.92 46.55 46.54 17.66 Pressure P -A.09 PVC 0.012 54 inch 12.51 120.46 46.58 34.78 34.74 0.0032 2.93 46.61 46.60 17.59 Pressure P -A.10 PVC 0.012 54 inch 12.52 104.28 46.68 34.81 34.78 0.0024 2.94 46.67 46.66 17.52 Pressure P -A.11 PVC 0.012 54 inch 10.91 128.99 46.77 34.85 34.81 0.0037 2.94 46.72 46.72 17.46 Pressure P -6.01 PVC 0.012 30 inch 14.59 46.53 17.18 -36.01 35.85 0.0110 3.50 46.81 46.79 13.09 Pressure P -6.02 PVC 0.012 30 inch 20.00 46.60 17.27 36.23 36.01 0.0110 3.52 46.90 46.87 12.99 Pressure P -13.03 PVC 0.012 30 inch 10.00 46.60 17.31 36.34 36.23 0.0110 3.53 46.98 46.96 12.95 Pressure P -13.04 PVC 0.012 30 inch 253.54 46.53 18.28 39.12 36.34 0.0110 3.72 47.47 47.04 11.81 Pressure P -13.05 PVC. 0.012 24 inch 287.21 25.66 15.57 42.27 39.12 0.0110 4.96 48.78 47.62 10.85 Pressure P-C.01 Concrete 0.013 18 inch 101.40 10.53 1.52 43.57 42.55 0.0101 0.86 48.91 48.89 8.12 Pressure P -13.01 PVC 0.012 48 inch 7.67 125.64 32.35 35.15 35.10 0.0065 2.57 46.79 46.79 17.41 Pressure P -D.02 PVC 0.012 48 inch 7.32 115.03 32.39 35.19 35.15 0.0055 2.58 46.83 46.83 17.36 Pressure P -D.03 PVC 0.012 48 inch 36.94 122.78 32.63 35.42 35.19 0.0062 2.60 46.89 46.87 17.12 Pressure P -D.04 PVC 0.012 48 inch 43.81 122.16 30.67 35.69 35.42 0.0062 2.44 46.93 46.92 16.83 Pressure P -D.05 PVC 0.012 48 inch 134.22 121.62 26.31 36.51 35.69 0.0061 2.09 47.02 46.99 15.76 Pressure P -D.06 I PVC 1 0.012 48 inch 1 169.881 121.751 26.031 37.551 36.511 0.00611 2.071 47.111 47.061 14.39 Pressure Title: Coral Mountain Affordable Housing - System A r: \... \stormcad\1920 cmah final system a.stm 10/04/11 04:39:46 PM © Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1- 203 - 755 -1666 Project Engineer: DLS StormCAD v5.6 [05.06.012.00] Page,1 of 1 Scenario: Base Outlet Report Label Ground Rim Sump System Tailwater System System System Hydraulic Hydraulic Elevation Elevation Elevation CA Elevation Flow Time Intensity Rational Grade Grade (ft) (ft) (ft) (acres) (ft) (min) (in /hr) Flow Line In Line Out (cfs) (ft) (ft) 0-1 48.00 48.00 33.00, 16.789 46.00 20.74 2.515 42.56 46.00 46.00 Title: Coral Mountain Affordable Housing - System A r: \... \storrncad \1920 cmah final system a.stm 10/04/11 04:39:33 PM © Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1- 203 -755 -1666 Project Engineer: DLS StormCAD v5.6 [05.06.012.00) Page 1 of 1 • . • CB Scenario: Base CB -G3 LM I -F.02 Title: Coral Mountain Affordable Housing - System B Project Engineer: DLS r: \... \stormcad \1920 cmah final system b.stm StormCAD v5.6 [05.06.012.00) 10/04/11 04:37:01 PM 0 Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1 -203- 755 -1666 Page 1 of 1 Calculation Results Summary ----------------------------------------------------------------- ----------------------------------------------------------------- Scenario: Base »» Info: CB -G2 No bypass target specified. Bypass is assumed to travel to MH -5. »» Info: CB -G1 No bypass target specified. Bypass is assumed to travel to MH -5. »» Info: Subsurface Network Rooted by: MH -5 »» Info: Subsurface Analysis iterations: 3 »» Info: Convergence was achieved. CALCULATION SUMMARY FOR SURFACE NETWORKS I Label I Inlet I Inlet I Total I Total I Capture I Gutter I Gutter I I I Type I I Intercepted I Bypassed I Efficiency I Spread I Depth I I I I I Flow I Flow I M I (ft) I (ft) I I ------- I I I (cfs) I .(cfs) I I I I - - - - - I I- I CB -G4 I------------- I Curb Inlet I----------------------- I Curb COR STD I------------- 300 -6CF I 1.05 I---------- I 0.00 I------------ I 100.0 I-------- 1 3.52 I--- I 0.23 1 I CB -G3 I Curb Inlet I Curb COR STD 300 -6CF I 1.05 I 0.00 1 100.0 I 3.58 1 0.22 1 I I -E.01 I Ditch Inlet I Ditch Jensen DI 24x24 I 3.83 I 0.00 I 100.0 1 2.00 I 0.37 1 I I -F.02 I Ditch Inlet I Ditch Jensen DI 48x48 I 8.33 I 0.00 I 100.0 I 4.00 1 0.40 1 I I -F.01 I Ditch Inlet I Ditch Jensen DI 24x24 I 1.56 1 0.00 1 100.0 I 2.00 1 0.20 1 1 CB -G2 I Curb Inlet I Curb COR STD 300 -6CF I 0.45 I 0.01 1 98.2 I 3.04 1 0.18 1 1 CB -G1 -------------------------------------------------------------------------------------------------- I Curb Inlet I Curb COR STD 300 -6CF I 0.45 1 0.01 1 97.4 1 2.89 1 0.17 1 - - - - -- CALCULATION SUMMARY FOR SUBSURFACE NETWORK WITH ROOT: MH -5 I Label I Number I Section I Section I Length I Total I Average I Hydraulic I Hydraulic I I I of I Size I Shape I (ft) I System I Velocity I Grade I Grade I I I Sections I I I 47.12 I Flow I (ft /s) I Upstream I Downstream I I I I I I 47.32 I (cfs) I I ---------- (ft) I ----------- (ft) I ------- - - - - - I I- ------- I P -E.01 I---------- 1 1 I--------- 136 I---------- inch I I-------- Circular I 13.97 I-------- I 26.12 I I 1 3.70 1 I 47.14 I 47.12 1 I P -E.02 1 1 136 inch I Circular I 27.41 1 23.81 1 3.37 1 47.26 I 47.23 1 I L -E.01 I 1 112 inch I Circular I 11.31 I 3.83 1 4.87 1 47.34 1 47.23 1 I P -F.01 I 1 124 inch I Circular 1 120.20 1 9.00 1 2.87 I 47.48 I 47.32 1 1 P -E.03 I 1 136 inch I Circular I 31.80 1 16.60 1 2.35 1 47.34 1 47.32 1 I P -F.02 I 1 124 inch I Circular 1 159.05 1 8.31 1 2.65 1 47.71 1 47.52 1 I P -E.04 I 1 1 36 inch I Circular I 14.23 I 16.69 1 2.36 1 47.37 1 47.37 1 I L -F.01 1 1 124 inch I Circular 1 46.76 1 8.33 1 17.21 1 48.43 1 47.76 I 1 P -E.05 I 1 1 36 inch I Circular 1 10.00 I 16.75 1 2.37 I 47.41 1 47.41 1 I P -E.06 I 1 1 36 inch I Circular I 10.00 1 16.81 1 2.38 1 47.45 1 47.44 1 I P -E.07 1 1 1 36 inch I Circular 1 66.46 1 17.20 1 2.43 1 47.52 1 47.48 1 I P -G.01 1 1 130 inch I Circular I 45.58 1 17.39 1 3..54 I 47.65 1 47.57 1 I L -G.01 1 1 118 inch I Circular 1 21.59 1 1.48 1 13.50 1 50.71 I 47.70 I I P -G.02 I 1 1 30 inch I Circular 1 14.08 1 16.33 1 3.33 I 47.73 1 47.70 1 I L -G.02 I 1 1 18 inch.1 Circular 1 9.45 I 0.45 1 12.72 1 50.79 I 47.78 I 1 P -G.03 1 1 1 30 inch I Circular 1 289.21 1 17.09 1 3.48 1 48.28 I 47.78 1 I P -G.04 1 1 130 inch I Circular 1 221.48 1 17.57 1 6.19 1 48.70 1 48.33 1 I L -G.03 1 1 1 24 inch I Circular I 11.45 I. 15.67 1 9.44 1 48.93 1 48.89 1 1 L -G.04 ------------------------------------------------------------------------------------------ 1 1 1 18 inch I Circular 1 21.70 I 2.19 I 12.62 1 51.08 1 48.89 1 - - - - -- I Label I Total I Ground I Hydraulic I Hydraulic I I I System I Elevation I Grade I Grade I I I Flow I (ft) I Line In I Line Out I I I (cfs) I I (ft) ----------- I (ft) I ------ - - - - - I I - -------- I MH -5 I-------- 1 26.03 I ----------- I 1 54.16 1 47.12 I I 47.12 1 I Y -E.01 1 26.12 1 53.78 1 47.23 I 47.14 1 I Y -E.02 1 23.81 1 53.85 1 47.32 I 47.26 1 I I -E.01 1 3.83 1 53.68 1 47.40 I 47.34 1 I I -F.01 1 9.00 1 53.92 1 47.52 1 47.48 1 I HB -E.01 1 16.60 1 54.35 1 47.37 1 47.34 1 I Y -F.01 1 8.31 I 54.44 1 47.76 1 47.71 1 I HB -E.02 1 16.69 1 54.58 I 47.41 1 47.37 1 I I -F.02 1 8.33 1 53.40 I 48.49 1 48.43 1 I HB -E.03 1 16.75 1 54.75 1 47.44 1 47.41 1 I HB -E.04 I 16.81 1 54.91 1 47.48 1 47.45 1 I MH -6 1 17.20 1 56.58 1 47.57 I 47.52 1 I JS -G.01 1 17.39 1 56.91 1 47.70 1 47.65 1 1 CB -Gl 1 1.48 1 57.06 1 50.73 I 50.71 1 1 JS -G.02 1 16.33 1 56.90 1 47.78 1 47.73 1 1 CB -G2 I 0.45 I 57.04 1 50.80 1 50.79 1 1 MH -7 I 17.09 I 57.16 I 48.33 I 48.28 1 1 MH8 I 17.57 I 54.83 1 48.89 I 48.70 I 1 CB -G3 I 15.67 1 55.02 I 48.99 I 48.93 1 I CB -G4 -------------------------------------------------- I 2.19 1 55.02 1 51.11 1 51.08 1 - - - - -- Completed: 10/04/2011 04:36:37 PM Title: Coral Mountain Affordable Housing - System B Project Engineer: DLS r: \... \stormcad \1920 cmah final system b.stm StormCAD v5.6 [05.06.012.00] 10/04/11 04:36:47 PM © Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1- 203 - 755 -1666 Page 1 of 1 • • . • Scenario: Base Inlet Report Label Inlet Clogging Curb Grate Ground Rim Sump Structure Area Tc I Inlet Int Ext Ext System System System System HGL HGL Factor Opening Length Elevation Bev Bev Depth (acres) (min) (In /hr) C Rational CA Tc CA Flow Time Intensity Rational In Out M Length (ft) (ft) (ft) (ft) (ft) Flow (acres) (min) (acres) (min) (in /hr) Flow (ft) (ft) (ft) (cfs) (cfs) CB -G1 Curb COR STD 300 -6CF 4.00 57.06 56.56 50.25 6.81 0.120 7.48 4.429 0.8570 0.45 0.237 7.72 0.337 7.72 4.357 1.48 50.73 50.71 CB -G2 Curb COR STD 300 -6CF 4.00 57.04 56.54 50.54 6.50 0.120 7.48 4.429 0.8570 0.45 0.000 0.00 0.101 7.48 4.429 0.45 50.80 50.79 CB -G3 Curb COR STD 300 -6CF 4.00 55.02 54.52 47.02 8.00 0.290 8.08 4.255 0.8442 1.05 4.041 10.98 4.286 10.98 3.627 15.67 48.99 48.93 CB -G4 Curb COR STD 300 -6CF 4.00 55.02 54.52 49.02 6.00 0.290 8.08 4.255 0.8442 1.05 0.279 8.48 0.524 8.48 4.149 2.19 51.11 51.08 I -E.01 Ditch Jensen DI 24x24 50.0 1.90 53.68 53.68 39.82 13.86 0.930 6.52 4.753 0.8590 3.83 0.000 0.00 0.799 6.52 4.753 3.83 47.40 47.34 I -F.01 Ditch Jensen DI 24x24 50.0 1.90 53.92 53.92 40.17 13.75 0.340 5.31 5.293 0.8598 1.56 0.000 0.00 2.367 10.22 3.775 9.00 47.52 47.48 I -F.02 Ditch Jensen DI 48x48 1 50.01 1 3.701 53.401 53.401 47.401 6.001 2.4301 9.171 3.9841 0.85361 8.331 0.0001 0.001 2.0741 9.171 3.9841 8.331 48.49 48.43 Title: Coral Mountain Affordable Housing - System B r: \... \stormcad \1920 cmah final system b.stm 10/04/11 04:37:17 PM 0 © Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1- 203 - 755 -1666 Project Engineer: DLS StormCAD v5.6 [05.06.012.001 Page 1 of 1 Scenario: Base Junction Report Label Ground Elevation (ft) Rim Elevation (ft) Sump Elevation (ft) Structure Depth (ft) Structure Diameter (ft) System CA (acres) System Flow Time (min) System Intensity (in /hr) System Rational Flow (cfs) Hydraulic Grade Line In (ft) . Hydraulic Grade Line Out (ft) HB -E.01 54.35 54.35 38.85 15.50 2.00 5.248 13.97 3.139 16.60 47.37 47.34 HB -E.02 54.58 54.58 39.00 15.58 2.00 5.248 13.87 3.155 16.69 47.41 47.37 HB -E.03 54.75 54.75 39.10 15.65 2.00 5.248 13.79 3.167 16.75 47.44 47.41 HB -E.04 54.91 54.91 39.20 15.71 2.00 5.248 13.72 3.178 16.81 47.48 47.45 JS -G.01 56.91 56.91 43.80 13.11 2.00 5.248 13.06 3.287 17.39 47.70 47.65 JS -G.02 56.90 56.90 43.87 13.03 2.00 4.911 12.98 3.299 16.33 47.78 47.73 MH-6 56.58 56.58 39.85 16.73 6.00 5.248 13.27 3.252 17.20 47.57 47.52 MH -7 57.16 57.16 45.36 11.80 6.00 4.810 11.60 3.525 17.09 48.33 48.28 MI-18 54.83 54.83 46.33 8.50 6.00 4.810 11.00 3.624 17.57 48.89 48.70 Y -E.01 53.78 53.78 38.21 15.57 2.00 8.413 14.33 3.080 26.12 47.23 47.14 Y-E.02 53.85 53.85 38.49 15.36 2.00 7.614 14.19 3.102 23.81 47.32 47.26 Y -F.01 54.441 54.441 41.761 12.681 2.001 2.0741 9.22 3.975 1 8.311 47.761 47.71 Title: Coral Mountain Affordable Housing - System B r: \... \stormcad\1920 cmah final system b.stm 10/04/11 04:37:37 PM © Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1- 203 - 755 -1666 Project Engineer: DLS StormCAD v5.6 [05.06.012.00] Page 1 of 1 1 0 Scenario: Base Pipe Report Label Material Mannings n Section Size Length (ft) Full Capacity (cfs) Total System Flow (cfs) Up Inv Bev (ft) Down Inv FJev (ft) Slope (ft/ft) Avg Vel (fi/s) HGL In (ft) HGL Out (ft) Flow Time (min) Profile Description L -E.01 PVC 0.012 12 inch 11.31 8.96 3.83 39.82 39.21 0.0539 4.87 47.34 47.23 6.52 Pressure L -F.01 PVC 0.012 24 inch 46.76 85.11 8.33 47.40 41.76 0.1206 17.21 48.43 47.76 9.17 Composite Pressure S1 S2 L -G.01 Concrete 0.013 18 Inch 21.59 55.14 1.48 50.25 44.30 0.2756 13.50 50.71 47.70 7.72 Composite Pressure S1 S2 L -G.02 Concrete 0.013 18 inch 9.45 84.87 0.45 50.54 44.37 0.6529 -12.72 50.79 47.78 7.48 Composite Pressure S1 S2 L -G.03 Concrete 0.013 24 inch 11.45 29.14 15.67 47.02 46.83 0.0166 9.44 48.93 48.89 10.98 CompositePressureProflleS1 L -G.04 Concrete 0.013 18 inch 21.70 42.36 2.19 50.52 46.99 0.1627 12.62 51.08 48.89 8.48 Composite Pressure S1 S2 P-E.01 PVC 0.012 36 inch 13.97 72.33 26.12 38.21 38.07 0.0100 3.70 47.14 47.12 14.33 Pressure P -E.02 PVC 0.012 36 inch 27.41 73.03 23.81 38.49 38.21 0.0102 3.37 47.26 47.23 14.19 Pressure P -E.03 PVC 0.012 36 inch 31.80 76.88 16.60 • 38.85 38.49 0.0113 2.35 47.34 47.32 13.97 Pressure . P -E.04 PVC 0.012 36 inch 14.23 74.18 16.69 39.00 38.85 0.0105 2.36 47.37 47.37 13.87 Pressure P -E.05 PVC 0.012 36 inch 10.00 72.25 16.75 39.10 39.00 0.0100 2.37 47.41 47.41 13.79 Pressure P -E.06 PVC 0.012 36 inch 10.00 72.25 16.81 39.20 39.10 0.0100 2.38 47.45 47.44 13.72 Pressure P -E.07 PVC 0.012 36 inch 66.46 71.45 17.20 39.85 39.20 0.0098 2.43 47.52 47.48 13.27 Pressure P -17.01 PVC 0.012 24 inch 120.20 24.28 9.00 40.17 38.99 0.0098 2.87 47.48 47.32 10.22 Pressure P -F.02 PVC 0.012 24 inch 159.05 24.50 8.31 41.76 40.17 0.0100 2.65 47.71 47.52 9.22 Pressure P -G.01 Concrete 0.013 30 inch 45.58 29.14 17.39 43.80 43.57 0.0050 3.54 47.65 47.57 13.06 Pressure P -G.02 Concrete 0.013 30 inch 14.08 28.92 16.33 43.87 43.80 0.0050 3.33 47.73 47.70 12.98 Pressure P -G.03 Concrete 0.013 30 inch 289.21 29.44 17.09 45.36 43.87 0.0052 3.48 48.28 47.78 11.60 Pressure P -G.04 I Concrete 1 0.013 30 inch 1 221.481 29.041 17.571 46.491 45.381 0.00501 6.191 48.701 48.331 11.00 1 CompositePressureProfileS1 � 0 • Title: Coral Mountain Affordable Housing - System B r: \... \stormcad \1920 cmah final system b.stm 10/04/11 04:38:00 PM © Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1- 203 - 755 -1666 Project Engineer: DLS StormCAD.v5.6 [05.06.012.00] Page 1 of 1 Scenario: Base Outlet Report Label Ground Rim Sump System Tailwater System System System Hydraulic Hydraulic Elevation Elevation Elevation CA Elevation Flow Time Intensity Rational Grade Grade (ft) (ft) (ft) (acres) (ft) (min) (In/hr) Flow Line In Line Out (cfs) (ft) (ft) MH -5 54.16 54.16 37.55 8.413 47.12 14.39 3.070 26.03 47.12 47.12 Title: Coral Mountain Affordable Housing - System B r: \...\stormcad \1920 cmah final system b.stm 10/04/11 04:37:47 PM © Bentley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1- 203 - 755 -1666 ' Project Engineer: DLS StormCAD v5.6 [05.06.012.00) Page 1 of 1 • Jensen Precast 24x24 Grated Inlet B.01 (100 Year Storm) roject Description Solve For Spread input Data Discharge 4.02 ft' /s Left Side Slope 25.00 ft/ft (H:V) Right Side Slope 25.00 ft/ft (H:V) Bottom Width 4.00 ft Grate Width 1.9000 ft Grate Length 1.9000 ft Local Depression 0.00 in Local Depression Width 0.00 ft Grate Type P -50 mm (P- 1 -7/8 ") Clogging 50.00 % Results Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.066.00] •0/30120112:14:40 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -203. 755 -1666 Page 1 of 1 Spread 4.03 ft Depth 0.38 ft Wetted Perimeter 4.76 ft Top Width 4.03 ft • Open Grate Area Active Grate Weir Length 1.62 ft2 5.70 ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.066.00] •0/30120112:14:40 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -203. 755 -1666 Page 1 of 1 Worksheet for CB Sag Inlets CB -C1 /C2 (100 Year Storm) Project Description Solve For Spread Input Data Discharge 0.76 ft' /s Gutter Width 2.00 ft Gutter Cross Slope 0.0781 ft/ft Road Cross Slope 0.02 ft/ft Curb Opening Length 4.00 ft Opening Height 0.73 ft Curb Throat Type Inclined Local Depression 4.00 in Local Depression Width 4.00 ft Throat Incline Angle 66.00 degrees Results Spread 3.38 ft Depth 0.21 ft Gutter Depression 0.12 ft Total Depression 0.45 ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.066.001 9/30/2011 1:58:30 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 - 755 -1666 Page 1 of 1 • Jensen Precast 24x24 Grated Inlet D.01 (100 Year Storm) CProject Description Solve For Spread Input Data Discharge 1.66 ft' /s Left Side Slope 25.00 ft/ft (H:V) Right Side Slope 25.00 ft/ft (H:V) Bottom Width 4.00 ft Grate.Width 1.9000 ft Grate Length 1.9000 ft Local Depression 0.00 in Local Depression Width 0.00 ft Grate Type P -50 mm (P- 1 -7/8 ") Clogging 50.00 % FResults Spread 4.02 ft Depth 0.21 ft Wetted Perimeter 4.42 ft Top Width 4.02 ft Open Grate Area • Active Grate Weir Length 1.62 ft2 5.70 ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.066.001 •9/30/20112:16:01 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -203- 755 -1666 Page 1 of 1 Jensen Precast 24x24 Grated Inlet D.02 (100 Year Storm) Project Description Solve For Spread Input Data Discharge 2.14 ft3 /s Left Side Slope 25.00 ft/ft (H:V) Right Side Slope 25.00 ft/ft (H:V) Bottom Width 4.00 ft Grate Width 1.9000 ft Grate Length 1.9000 ft Local Depression 0.00 in Local Depression Width 0.00 ft Grate Type P -50 mm (P- 1 -7/8 ") Clogging 50.00 [Results Spread 4.02 ft Depth 0.25 ft Wetted Perimeter 4.50 ft Top Width 4.02 ft Open Grate Area 1.62 ft2 Active Grate Weir Length 5.70 ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.066.00] 9/30/2011 2:16:43 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 - 755.1666 Page 1 of 1 • Jensen Precast 24x24 Grated Inlet ®1.01 (100 Year Storm) Project Description Solve For Spread Input Data Discharge 4.72 ft3 /s Left Side Slope 25.00 ft/ft (H:V) Right Side Slope 25.00 ft/ft (H:V) Bottom Width 4.00 ft Grate Width 1.9000 ft Grate Length 1.9000 ft Local Depression 0.00 in Local Depression Width 0.00 ft Grate Type P -50 mm (P- 1 -7/8 ") Clogging 50.00 Results Spread 4.03 ft Depth 0.42 ft Wetted Perimeter 4.85 ft Top Width 4.03 ft Open Grate Area 1.62 ft2 Active Grate Weir Length • 5.70 ft Bentley SysteMS,r Inc. Haestad Methods Solution Center Bentley FlowMaster 108.01.066.001 0 1015120118:24:48 AM 27 Siemons Company Drive Suite 200W Watertown, CT 06795 USA +1- 203. 755 -1666 Page 1 of 1 Jensen Precast 24x24 Grated Inlet D2.01 (100 Year Storm) ,Project Description Solve For Spread Input Data Discharge 2.57 ft•' /s Left Side Slope 25.00 ft/ft (H:V) Right Side Slope 25.00 ft/ft (H:V) Bottom Width 4.00 ft Grate Width 1.9000 ft Grate Length 1.9000 ft Local Depression 0.00 in Local Depression Width 0.00 ft Grate Type P -50 mm (P- 1 -7/8 ") Clogging 50.00 % Results Spread 4.02 ft Depth 0.28 ft Wetted Perimeter 4.57 ft Top Width 4.02 ft Open Grate Area 1.62 ft2 Active Grate Weir Length 5.70 ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster 108.01.066.00] 1015120118:26:03 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 - 755 -1666 Page 1 of 1 • Jensen Precast 24x24 Grated Inlet D.03 (100 Year Storm) Project Description Solve For Spread Input Data Discharge 3.06 ft3 /s Left Side Slope 25.00 ft/ft (H:V) Right Side Slope 25.00 ft/ft (H:V) BoGom Width 4.00 ft Grate Width. 1.9000 ft Grate Length 1.9000 ft Local Depression 0.00 in Local Depression Width 0.00 ft Gratte Type P -50 mm (P- 1 -7/8 ") Clogging 50.00 Results Spread 4.03 ft Depth 0.32 ft Wetted Perimeter 4.64 ft Top Width 4.03 ft Open Grate Area 1.62 ft' Actve Grate Weir Length • 5.70 ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.066.00] •9/30120112:17:29 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 66795 USA +1 -203- 755 -1666 Page 1 of 1 Jensen Precast 24x24 Grated Inlet E.01 (100 Year Storm) Project Description Solve For Spread Input Data Discharge 3.83 ft' /s Left Side Slope 25.00 ft/ft (H:V) Right Side Slope 25.00 ft/ft (H:V) Bottom Width 4.00 ft Grate Width 1.9000 ft Grate Length 1.9000 ft Local Depression 0.00 in Local Depression Width 0.00 ft Grate Type P -50 mm (P- 1 -7/8 ") Clogging 50.00 Results Spread Depth Wetted Perimeter Top Width Open Grate Area Active Grate Weir Length 9/30/2011 2:18:12 PM 4.03 ft 0.37 ft 4.74 ft 4.03 ft 1.62 ft2 5.70 ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.066.00] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 - 755 -1666 Page 1 of 1 • Jensen Precast 24x24.Grated Inlet F.01 (100 Year Storm) Project Description Solve For Spread Input Data Discharge 2.01 ft /s Left Side Slope 25.00 ft/ft (H:V) Right Side Slope 25.00 ft/ft (H:V) Bottom Width 4.00 ft Grate Width 1.9000 ft Grate Length 1.9000 ft Local Depression 0.00 in Local Depression Width 0.00 ft Grate Type P -50 mm (P- 1 -7/8 ") Clogging 50.00 Results Spread 4.02 ft Depth 0.24 ft Wetted Perimeter 4.48 ft Top Width 4.02 ft • Open Grate Area Active Grate Weir Length 1.62 ft2 5.70 ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.066.00] • 9130/2011 2:18:47 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 0 Jensen Precast 48x48 F.02 Grated Inlet (100 Year Storm) Project Description Solve For Spread Input Data Discharge 9.89 ft /s Left Side Slope 25.00 ft/ft (H:V) Right Side Slope 25.00 ft/ft (H:V) Bottom Width 4.00 ft Grate Width 3.7470 ft Grate Length 3.7470 ft Local Depression 0.00 in Local Depression Width 0.00 ft Grate Type P -50 mm (P- 1 -7/8 ") Clogging 50.00 Results Spread 4.04 ft Depth 0.44 ft Wetted Perimeter 4.88 ft Top Width 4.04 ft Open Grate Area 6.32 ft2 Active Grate Weir Length 11.24 ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.066.00] 9130/20112:26:41 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 - 755 -1666 Page 1 of 1 11 Worksheet for CB -Grade Inlets CB -G1 /G2 (100 Year Storm) Project Description Solve For Efficiency Input Data Discharge 0.44 ft3 /s Slope 0.00660 ft/ft Gutter Width 2.00 ft Gutter Cross Slope 0.0781 ft/ft Road Cross Slope 0.02 ft/ft Roughness Coefficient 0.015 ft2 ft Curb Opening Length 4.00 ft,- Local Depression 4.00 in Local Depression Width 4.00 ft Length Factor 1.00 Results__ 4.00 ft Efficiency 100.00 % Intercepted Flow 0.44 ft3 /s Bypass Flow 0.00 ft' /s Spread 3.45 ft Depth 0.19 ft • Flow Area Gutter Depression 0.24 0.12 ft2 ft Total Depression 0.45 ft Velocity 1.87 ft/s Equivalent Cross Slope 0.12931 ft/ft Length Factor 1.00 Total Interception Length 4.00 ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.066.00] • 9/30/2011 2:02:17 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203.755 -1666 Page 1 of 1 Worksheet for CB -Sag Inlets CB -G3 /G4 (100 Year Storm) Project Description Solve For Spread Input Data Discharge 1.05 ft3 /s Gutter Width 2.00 ft Gutter Cross Slope 0.0781 ft/ft Road Cross Slope 0.02 ft/ft Curb Opening Length 4.00 ft Opening Height 0.73 ft Curb Throat Type Inclined Local Depression 4.00 in Local Depression Width 4.00 ft Throat Incline Angle 66.00 degrees Results Spread 3.52 ft Depth 0.23 ft Gutter Depression 0.12 ft Total Depression 0.45 ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.066.001 9/30/20112:00:48 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203. 755 -1666 - Page 1 of 1 a Final Hydrology & Hydraulics Report Coral Mountain Affordable Housing is Appendix H RCWQMP Exhibit C Worksheets 0 • Riverside County - Whitewater River Region Water Quality Management Plan Exbibit C Worksheet 1 • • Design Procedure for BMP Design Volume Designer: DLS Company: MSA Consulting Inc. Date: September 28, 2011 Project: Coral Mountain Affordable Housing Drainage Area: DA B - Offsite Street'A' 1. Determine the Tributary Area to the BMP Aft) Abib= 1.40 acres 1 2. Determine the impervious area ratio (i) a. Determine the impervious area within kb Aimp 1.02 acres (2) b. Calculate I = AimdAtdb = (2)1(1) i= 0.73 3 3. Determine Runoff Coefficient C C= 0.858 *i3 - 0.78 *i2 +0.774 *i +0.04 C= 0.52 (4) C= 0.858 *(3 )3- 0.78'(3)2 +0.774'(3) +0.04 4. Determine Unit Storage Volume (V„) V„= 0.40'C= 0.40 *(4) V„= 0.21 acre -in /acre 5 5. Determine Design Storage Volume VBMP = Vu * Atdb = (5) *(1) VBMP= 0.29 acre -in (6) VBMP =(6)/12 VBMP= 0.02 acre -ft (7) VBMP = (7) *43560 VBMP= 1,063 cubic ft 8 Notes: PERVIOUS AREAS (CALCULATED FROM THE SITE PLAN) WERE REDUCED BY A FACTOR OF 10 %. THIS ADJUSTED PERVIOUS AREA WAS SUBTRACTED FROM THE TOTAL AREA TO DETERMINE THE IMPERVIOUS AREA USED IN THESE CALCULATIONS. Riverside County - Whitewater River Region Water Quality Management Plan Exbibit C Worksheet 1 Design Procedure for BMP Design Volume Designer: DLS Company: MSA Consulting Inc. Date: September 28, 2011 Project: Coral Mountain Affordable Housing Drainage Area: DA C 1. Determine the Tributary Area to the BMP ( rib) Athb= 9.18 acres 1 2. Determine the impervious area ratio (i) a. Determine the impervious area within Atdb A;mP 7.13 acres (2) b. Calculate I = A;mdAtdb = (2)/(1) i= 0.78 3 3. Determine Runoff Coefficient C C= 0.858 *i3 - 0.78 *i2 +0.774 *i +0.04 C= 0.57 (4) C= 0.858 *(3)3 - 0.78 *(3)2 +0.774 *(3) +0.04 4. Determine Unit Storage Volume (V„) V„= 0.40 *C = 0.40 *(4) V„= 0.23 acre -in /acre 5 5. Determine Design Storage Volume e VBMP = Vu * ° rib = (5) *(1) VBMP= 2.10 acre -in (6) VBMP = (6)/12 VBMP= 0.18 acre -ft (7) VBMP = (7) *43560 VBMP= 7,628 cubic ft 8 Notes: PERVIOUS AREAS (CALCULATED FROM THE SITE PLAN) WERE REDUCED BY A FACTOR OF 10 %. THIS ADJUSTED PERVIOUS AREA WAS SUBTRACTED FROM THE TOTAL AREA TO DETERMINE THE IMPERVIOUS AREA USED IN THESE CALCULATIONS. • Riverside County - Whitewater River Region Water Quality Management Plan Exbibit C . Worksheet 2 • Design Procedure for BMP Design Flow Uniform Intensity Design Flow Designer: DLS Company: MSA Consulting Inc. Date: September 28, 2011 Project: Coral Mountain Affordable Housing Drainage Area: Drainage Area B - Offsite Street'A' 1. Determine the Tributary Area to the BMP Atdb= 1.40 acres (1) . 2. Determine the impervious area ratio (i) a. Determine the impervious area within k-b A.p 1.02 acres b. Calculate I = pv ^ib (Note: Rounded to nearest 5 %) i= 75% (2) 3. Determine Runoff Coefficient C Use Table 4 and impervious % (2) A Soil Runoff Coefficient Ca 0.69 (3) B Soil Runoff Coefficient Cb= 0.71 (4) C Soil Runoff Coefficient Cc= 0.73 (5) D Soil Runoff Coefficient Cd= 0.74 (6) 4. Determine the Area Decimal Fraction of Each Soil Type A. Area of Soil Type 'A' / (1) 0.00 acres Aa= 0.00 (7) A. Area of Soil Type 'B ' / (1) 1.40 acres Ab= 1.00 (8) A. Area of Soil Type 'C' / (1) 0.00 acres k= 0.00 (9) A. Area of Soil Type 'D' / (1) 0.00 acres Ad= 0.00 (10) 5. Determine Runoff Coefficient C = (3)x(7) + (4)x(8) + (5)x(9) + (6)x(10) = C= 0.71 (11) 6. Determine BMP Design Flow QBMP = C'I'A = (11) x 0.2 x (1) QaMP= 0.20 cfs (12) Notes: PERVIOUS AREAS (CALCULATED FROM THE SITE PLAN) WERE REDUCED BY A FACTOR OF 10 %. THIS ADJUSTED PERVIOUS AREA WAS SUBTRACTED FROM THE TOTAL AREA TO DETERMINE THE IMPERVIOUS AREA USED IN THESE CALCULATIONS. Riverside County - Whitewater River Region Water Quality Management Plan Exbibit C Worksheet 2 Design Procedure for BMP Design Flow Uniform Intensity Design Flow Designer: DLS Company: MSA Consulting Inc. Date: September 28, 2011 Project: Coral Mountain Affordable Housing Drainage Area: Drainage Area, C 1. Determine the Tributary Area to the BMP Ab;b= 9.18 acres (1) 2. Determine the impervious area ratio (i) a. Determine the impervious area within V b A mP 7.13 acres b. Calculate I = Ar,,WAthb (Note: Rounded to nearest 5 %) i= 80% (2) 3. Determine Runoff Coefficient C Use Table 4 and impervious % (2) A Soil Runoff Coefficient Ca= 0.73 (3) B Soil Runoff Coefficient Cb= 0.75 (4) C Soil Runoff Coefficient Cc= 0.77 (5) D Soil Runoff Coefficient Cd= 0.78 (6) 4. Determine the Area Decimal Fraction of Each Soil Type A. Area of Soil Type'A' / (1) 0.00 acres Aa= 0.00 (7) A. Area of Soil Type 'B ' / (1) 9.18 acres Ab= 1.00 (8) A. Area of Soil Type 'C' / (1) 0.00 acres Ac= 0.00 (9) A. Area of Soil Type 'D' / (1) 0.00 acres Ad= 0.00 (10) 5. Determine Runoff Coefficient C = (3)x(7) + (4)x(8) + (5)x(9) + (6)x(10) = C= 0.75 (11) 6. Determine BMP Design Flow QBMP = C'I'A = (11) x 0.2 x (1) QBMP= 1.38 cfs (12) Notes: PERVIOUS AREAS (CALCULATED FROM THE SITE PLAN) WERE REDUCED BY A FACTOR OF 10 %. THIS ADJUSTED PERVIOUS AREA WAS SUBTRACTED FROM THE TOTAL AREA TO DETERMINE THE IMPERVIOUS AREA USED IN THESE CALCULATIONS. n U • • Riverside County - Whitewater River Region Water Quality Management Plan Exhibit C Table 4 Runoff Coefficients for an Intensity = 0.2 in /hr for Urban Soil Types Impervious % 0 (Natural) 5 10 15 20 (1 -Acre) 25 30 35 40 (1/2 -Acre) 45 50 (1/4 -Acre) 55 60 65 (Condominiums) 70 75 (Mobilehomes) 80 (Apartments) 85 90 (Commercial) 95 100 A Soil B Soil C Soil D Soil 11I =32 RI =56 R1 =69 RI =75 0.06 0.14 0.23 0.28 0.10 0.18 0.23 0.31 0.14 0.22 0.29 0.34 0.19 0.26 0.33 0.37 0.23 0.30 0.36 0.40 0.27 0.33 0.39 0.43 0.31 0.37 0.43 0.47 0.35 0.41 0.46 0.50 0.40 0.45 0.50 0.53 0.44 0.48 0.53 0.56 0.48 0.52 0.56 0.59 0.52 0.56 0.60 0.62 0.56 0.60 0.63 0.65 0.61 0.64 0.66 0.68 0.65 0.67 0.70 0.71 0.69 0.71 0.73 0.74 0.73 0.75 0.77 0.78 0.77 0.79 0.80 0.81. 0.82 0.82 0.83 0.84 0.86 0.86 0.87 0.87 0.90 0.90 0.90 0.90 40, 0 40 Final Hydrology & Hydraulics Report Coral Mountain Affordable Housing Appendix BioClean Environmental Services, Inc. Proposed Storm -water Treatment Technologies 0 r� 40 Proj ect: 1920 Coral Mountain Affordable Housing La Quinta — Riverside County, CA Prepared for: Donald Schulze MSA Consulting, Inc. Rancho Mirage, CA Objective: Treatment of Stormwater Runoff: Provides Treatment Train:Integration — High Rate Media Filtration. &.Advanced. Separation and Screening I� a Z; f ENPropos,al1,ENTAL SERVICES, INC. Bio Clean - -- Nutrient Separating Baffle Box (NSBB): Model: NSBB 4- 8 -8 -84 & NSBB 8 -12 -96 Bio Clean — Grate Inlet Skimmer Box Media Filter (GISB - MF): . Model: GISB MF with SmartSponge Plus: R- 22 -24, 24- 24 -24. 18- 18 -18, & 48 -48 -18 NSBB Performance: (based on 3' party local data) 87% TSS Removal >99% Oil & Grease Removal >99% Trash & Debris Removal 40% Copper Removal 47.5% Fecal Coliform GISB Performance: (based on 3rd party local data) 95% Oil & Grease Removal 95% Zinc Removal 95% Copper Removal 87% Lead Removal 79.1 % Bacteria Removal (SmartSponge Plus) Prepared by: Zach J Kent Stormwater Engineer Bio Clean Environmental Services, Inc. Oceanside, CA 760 - 433 -7640 Explanation of Sizing Recommendations and Design Parameters — Nutrient Separating Baffle Box & GISB Media Filter with SmartSponge Plus The two proposed stormwater treatment technologies are being proposed specifically for the Coral Mountain Affordable Housing Project located in the La Quinta Region of Riverside County. The technologies have been specifically designed and sized to treat flow rates up to and greater than 1.53 CFS and also bypass internally flow rates up to 75 CFS. The Nutrient Separating Baffle Box (NSBB) and (GISB -MF) Grate Inlet Skimmer Box Media Filter have been chosen based upon outstanding performance results from independent third part field data from local sources. These technologies have proven to provide medium to high level removal capabilities for the following pollutants: Trash & Debris, TSS, particulate and dissolved Metals and pathogens among others. GISB -MFs are being recommended to be installed in each of the catch basins throughout the site located in hardscape areas. Rectangular GISB -MFs will be installed in each grated inlet and Round GISB -MFs will be mounted in each of the curbed inlets mounted on shelf systems for easy maintenance. All runoff from the site, including from the inlets, will also be treated by two NSBBs located end -of -the -line. This treatment train approach provides performance and maintenance advantages over the implementation of a single end of the line device. NUTRIENT SEPARATING BAFFLE BOX GRATE INLET SKIMMER BOX — MEDIA FILTER with SmartSponge Plus NUTRIENT SEPARATING BAFFLE BOX is• Model # NSBB 4 -8 -84 has been recommended based upon sizing of at least 80% removal at the 50 micron particle size at flow rates up to 1.07 CFS and will treat runoff from the 24" storm drain line. Model # NSBB 8 -12 -96 has been recommended based upon sizing of at least 80% removal at the 50 micron particle size at flow rates up to 3.20 CFS and will treat runoff from the 48" storm drain line. This is using a loading rate that exceeds those set forth in the CASQA manual (24 GPM/SQ FT). • Independent 3`d party testing from the City of Santa Monica proved the NSBB was capable of removing the following: o 87% TSS Removal o >99% Oil & Grease Removal o >99% Trash & Debris Removal 0 40% Copper Removal 0 47.5% Fecal Coliform • The San Francisco Regional Water Quality Board has approved the NSBB for trash full capture which is defined as all particles larger than 5 MM in size. Therefore the NSBB is rated at: o '>99% Trash & Debris Removal GRATE INLET SKIMMER BOX — MEDIA FILTER with SmartSponge Plus • Model #: GISB -MF 24 -24 -24 has a treatment flow rate of .045 CFS each and will be installed in each • of the seven 24 "x 24" grated inlets located in hardscape areas. • Model #: GISB -MF 18 -18 -18 has a treatment flow rate of .O1 CFS each and will be installed in each of the one 18" x 18" grated inlets located in the hardscape areas. • Model #: GISB -MF 48 -48 -18 has a treatment flow rate of .34 CFS each and will be installed in each of the eight 48" x 48" grated inlets located in hardscape areas. • Model #: GISB -MF R- 22 -24 has a treatment flow rate of .12 CFS each and will be installed in each of the six curb inlets located along the street and driveway. • Independent 3`d party testing from the City of El Monte proved the GISB -MF was capable of removing the following: 0 95% Oil & Grease Removal 0 95% Zinc Removal 0 95% Copper Removal 0 87% Lead Removal • The GISB -MF incorporates two types of well proven filtration media, BioMediaGREENTM and Smart Sponge P1usTM which is an EPA approved antimicrobial by AbTech Industries: • o 68% Fecal Coliform Removal (BioMediaGREEN independent third party data) o 79.1% Average E. Coli Removal (Smart Sponge Plus City of Long Beach independent 3rd party field testing). FLOW & BY- -PASS SPECxRG17IONS FOR 610A44SS SEPARATING SCREEN SYSTEM, SEVIMENT COLLECTION CHMMBEM AND SKIMMER SPEC/RG1770NS 1. Pipe Inflow area (Drown as 24' HDPE) J N sq.ft. SCREEN SPEORCATIONS 2. Open orlf ce area In saeen system 19.00 sq.ft. J. Open ortRce area in screen system 9.5 sq.R with 5OX blockage 4. Open orffice area ih screen system 14.30 sq.fL with 75X blockage 5. Minimum by —pass through screen aystem— 5.20 sq.2 below the top surface of the pipe G Minimum by —pass around screen system— .x00 sq.fL below the top surface of the p* 7. Screw system storage volume 35.00 cu.fL SID /MENT SIVRAGE 8. Volume of first sediment chamber 46 cu.fL 9. Volume of second sediment chamber 48 cu.fL 10. Total sed/ment volume 92 cu.fL SKIMMER SPECIRGInONS If. Row area under shimmer 11.00 sq.fL 12. Area of pipe In line with skimmer 1.50 sq.fL 11 Area between the skimmer and the outflow— 4.00 sq.ft. pipe parallel with the surface of the pipe r 6 BIO CLEAN ENVIRONMENTAL MODEL NO. NSBB- 4 -8 -84 030 � REAR VIEW Notes. 1. CONCRETE 28 DAY COMPRESSIVE STRENGTH fc -5, 000 PSI. 2. REINFORCING: ASTM A -615, GRADE 60. J. SUPPORTS AN H2O LOADING AS INDICATED BY AASHTO. 4. JOINT SEALANT.• BUM RUBBER SS —S -00210 5. INFZOW/OUTFZOW PIPE INVERTS MUST BE INSTALLED TO ELEVATIONS SHOWN ON THIS DRAWING /PLANS. 6. INFLOW/OUTFLOW PIPES CANNOT PROTRUDE BEYOND INSIDE WALL OF STRUCTURE. LEFT END VIEW 024 4" BAFFLE TYP k1 SCREENED BOTTOMS HINGED STORM BOOM SKIMMER TURBULENCE —/ DEFLECTOR 69 112 X 24 SCREEN SYSTEM GROUT TYP WITH COVER 24" HDPE TYP PLAN VIEW RISER VARIES 30 20 30 16 GUAGE 304SS PERFORATED PERFORMANCE TREATMENT FLOW RATE 1.07 CFS 32 SO FT SETTLING AREA 15 GPM /SQ FT BOX TSS ® 50 MICRONS INOPEPENDENT 3R0 PARTY WIA 1911 ,mmwoVe �+ PANWW 4 6 46 46 TYP 108 FRONT VIEW PATENTED AAV A4TE iS FER MW r °�1 RIGHT END VIEW BCLEAN® ENVIRONMENTAL SERVICES, INC. BO3AENVIRONMENTAL PO .X 860 OCEANSIDE, A 1920 CMAH 76043. 64 F 760.4.30.01 79 p NUTRIENT SEPARATING BAFFLE BOX NSBB- 4 -8-84 MODEL NO. NSBB- 4 -8 -84 UNIT 'A" DATE: 12/02/07 SCALE: — 60 DRAFTER: T.H.H. UNITS =INCHES • • NSBB Treatment Flow Calculator This calculator computes treatment flows for 80% removal of TSS at different particle sizes. This calculator allows the designer to size a Nutrient Separating Baffle Box to specifically meet the performance requirements of a given area ofjuristiction. A Bio Clean. Representative can, assit you in determining the specific requirement of that juristiction. See notes below for other limitations or restrictions. For Nutrient Separating Baffle Box Model #: 4 — 8.0— 84 1. Enter Interior Width of Nutrient Separating Baffle Box (in Feet): 4.0 2. Enter Interior Length of Nurient Separating Baffle Box (in Feet): 8.0 Area of Settling (Hydrodynamic) Chamber (in Square Feet): 32.0. Treatment Flows for Nutrient Separating Baffle Box (in CFS): TSS of 50 Micron Particle Size - 80% Removal (in CFS) 1.07 TSS of 75 Micron Particle Size - 80% Removal (in CFS) 1.56 TSS of 125 Micron Particle Size - 80% Removal (in CFS) 2.63 TSS of 150 Micron Particle Size - 80% Removal (in CFS) 4.41 TSS of 250 Micron Particle Size - 80% Removal (in CFS) 8.53 Limitations and Restrictions on Use (Assumptions required for calculations to be valid) 1. Flow in outlet -pipe at the exit is critical (no further restrictions down .stream). 2. Tops of sediment partitions, inlet -pipe inverts, and outlet -pipe inverts are at the same;elevation. 3. Baffle -box ceiling height is always above the water level. 4. Sediment in final chamber does not significantly restrict flow under skimmer panel (if present)..: 5. Baffle box is significantly wider than outlet pipe diameter. 6. Baffle box settling chambers are less than 2/3 full of captured sediment. Parameters Used in Calculations: 50 um - 80% 75 um - 80% 125 um - 80% 150 um - 80% 250 um - 80% 15 gpm /sq ft 22 gpm /sq ft 37 gpm /sq ft 62 gpm /sq ft 120 gpm /sq ft FLOW & BY -PASS SPECIRCA77ONS FOR BIOMASS SIPARA77NO SCREEN SYSTEM, SEDIMENT COLLEC77ON CHAMBERS, AND SKIMMER SPECIFIC477ONS 1. Pipe Inflow area (Drown as 48' HDPE) 12.56 sq.ft. SCREEN SPECIFICATIONS: 2. Open orifice area In screen system 45.4 sq.ft. J. Open orifice area in screen system 22.7 sq.ft. with 50X blockage 4. Open orifice area in screen system 11.4 sq.ft. with 75X blockage 5. Minimum by -pass through screen system- 5.61 sq.& below the top surface of the p/pe 6. Minimum by -pass around screen system- 10.2 sq.ft. below the top surface of the pipe 7. Screen system storage volume 91.25 cu.ft. SEDIMENT STORAGE- 8. Volume of first sediment chamber 96 cuff. 9. Volume of second sediment chamber 88 cu.ft. 10. Volume of third sediment chamber 88 cu.ft. 11. Total sediment volume 272 cu.ft. SKIMMER SPECIRCA77ONS: 12. Flow area under skimmer 20.9 sq.ft. 13. Area of pipe in line with skimmer 5.6 sq.ft. 14. Area between the skimmer and the outflow- 2.4 sq.ft. pipe parallel with the surface of the pipe B10 CLEAN ENVIRONMENTAL MODEL NO. NSBB- 8 -12 -96 i 108 SCREENED BOTTOMS HINGED 4" BAFFLE TYP 36" HOLES TURBULENCE -I 109 112 X 48 GROUT TYP DEFLECTORS SCREEN SYSTEM 48" HD) PLAN VIEW �- 36--I 17 [--36-� 17 [--36 -1 STORM BOOM SKIMMER PATENTED Arm PAnNM PVWVM Notes: 1. CONCRETE 28 DAY COMPRESSIVE STRENGTH fc -5, 000 PSI. 2. REINFORCING. ASTM A -615, GRADE 60. J. SUPPORTS AN H2O LOADING AS INDICATED BY AASHTO. 4. JOINT SEALANT. BUM RUBBER SS -S -00210 5. INFLOW /OUTFLOW PIPE INVERTS MUST BE INSTALLED TO ELEVATIONS SHOWN ON THIS DRAWING /PLANS. 6. INFLOW /OUTFLOW PIPES CANNOT PROTRUDE BEYOND INSIDE WAr I ^F STRUCTURE. LEFT END VIEW PERFORMANCE TREATMENT FLOW RATE 3.2 CFS 96 SO FT SETTLING AREA 15 GPM /SQ FT BOX TSS (W 50 MICRONS INOPEPENDENT 3RD PARTY r� 156 - FRONT VIEW 801,.40 CLEAN® ENVIRONMENTAL SERVICES, INC. TSS REMOVAL = 87Z MEETS LEED NUTRIENT SEPARATING E�4FFLE BOX - ^ 0/LS & GREASE REMOVAL = > 99% TRASH &DEBRIS MODEL NO. NSE30 -8- 12 -96 = 100 COPPER REMOVAL = 40X DATE: 1 2/02/07 SCALE: - 60 """"°"° Z ✓K FECAL COLIFORM = 47.5X DRAFTER: T.H.H. UNITS INCHES 1 -11 • • NSBB Treatment Flow Calculator This calculator computes treatment flows for 80% removal of TSS at different particle sizes. This calculator allows the designer to size a Nutrient Separating Baffle Box to specifically meet the performance requirements of a given area of juristiction. A Bio Clean Representative can assit you in determining the specific requirement of that juristiction. See notes below for other limitations or restrictions. For Nutrient Separating Baffle Box Model #: 8 — 12— 84 1 Enter Interior Width of Nutrient Separating Baffle Box (in Feet): 2. Enter Interior Length of Nurient Separating Baffle Box (in Feet): Area of Settling (Hydrodynamic) Chamber (in Square Feet): Treatment Flows for Nutrient Separating Baffle Box (in CFS): TSS of 50 Micron Particle Size - 80% Removal (in CFS) TSS of 75 Micron Particle Size - 80% Removal (in CFS) TSS of 125 Micron Particle Size - 80% Removal (in CFS) TSS of 150 Micron Particle Size - 80% Removal (in CFS) TSS of 250 Micron Particle Size - 80% Removal (in CFS) 8.0 12.0 96.0. - - 3.20 4.69 7.89 13.23 25.60 Limitations and Restrictions on Use (Assumptions required for calculations to be valid) 1. Flow in outlet -pipe at the exit is critical (no further restrictions down stream). 2. Tops of sediment partitions, inlet -pipe inverts, and outlet -pipe inverts are at the same elevation. 3. Baffle -box ceiling height is always above the water level. 4. Sediment in final chamber does not significantly restrict flow under skimmer panel (if present). 5. Baffle box is significantly wider than outlet pipe diameter. 6. Baffle box settling chambers are less than 2/3 full of captured sediment. Parameters Used in Calculations: 50 um - 80% 75 um - 80% 15 gpm /sq ft 22 gpm /sq ft 125 um - 80% 150 um - 80% 250 um - 80% 37 gpm /sq ft 62 gpm /sq ft 120 gpm /sq ft Part # GISB MEDIA FILTER- 18 -18 -18 18 TOP VIEW FLOW SCHEMATIC 1 1 SIDE VIEW Flow Specifications ro& &Vaxw or Percent Total Square now Description Open Square Inches Rate of filter BioMedioGREEN Inches of Total (Cubic opening asi°�,,,°" per Unit Unobstructed Feet per 0ftwla w Openings Second Skimmer protected 100% 50.3 50.3 1.8 cfs By —Pass COARSE SCREEN Coarse Screen 314" x 1-314" stain less steel 62X 50.3 31.2 1.4 cfs flattened expanded BioMedioGREEN 80% (porous blocks) 135.14 N/A 4.24 gpm SMART AbTeci SPONGE PLUS 40% SCREEN TREATED FLOW RATE MEDIA TREATED FLOW RATE Total: 1.4 cfs Total: 4.24 gpm FLOW RATES BASED ON UNOBSTRUCTED OPENINGS GRATE REMOVABLE SCREEN ro& &Vaxw or 859 Total Rmphow 699' of ff=*h" Coconut Mat e - BioMediaWHITE ;a •' ''% Tm BioMedioGREEN Feool Coft m ftb a ® °` AbTech ANTIMICROBIAL I 999 SMART SPONGE PLUS •' .' 6 ' SKIMMER PROTECTED a '' BYPASS COARSE SCREEN a•'' •a. , 4". BOX MANUFACTURED FROM MARINE GRADE FIBERGLASS & GEL COATED FOR UV PROTECTION 5 YEAR MANUFACTURERS WARRANTY PATENTED ALL FILTER SCREENS ARE STAINLESS STEEL CONCRETE STRUCTURE BioMedioGREEN REMOVAL EFFICIENCIES ro& &Vaxw or 859 Total Rmphow 699' of ff=*h" 4190 e 799 a Imo 989 Tm 789 Feool Coft m ftb a 689 n+ I 999 lO CLEAN ENVIRONMENTAL SERVICE SLAVIRfE QUALITY PhY1W/C15 ARE BU/Lr fUR t%1SY (xEA�V /NC AND A� O BOX 869 OCEANSIDE CA 92049 60- 433 -7640 FAX:760- 433 -317 DENGA(D In BE PD W W 1NfR4S7RUCIURE AND SHOULD ^�°•° LAST FOR DEi"i1DfS GRATE INLET SKIMMER BOX FOR MEDIA FILTER TYPE CATCH BASIN INSERTb"O DATE: 04/ 1 2/04 SCALE: SF — 15 Emo!/: info ®bloclacnanvlronmental.net DRAFTER: N.R.B. UN /TS — INCHES • • Hydraulic- Conductivity Flow Calculator Calculates vertically downward flow rates given hydraulic conductivity, media thickness, and water head. 1. Enter the Hydraulic Conductivity (k) of the Filter Material: 1190 ft/day Value accepted. 2. Select the Units for the Hydraulic Conductivity entered in step 1: OE English (Enter "M" for Metric or "E" for English units.) Selection accepted. Hydraulic- Conductivity Conversions Meters per Day: Meters per Hour: Meters per Minute: Meters per Second: Feet per Day: Feet per Hour:. Feet per Minute: Feet per Second: 3. Enter the Thickness of the Filter Media in inches: . Value accepted. 4. Enter the Water Depth above the Media Surface: Value accepted. 5. Enter the Horizontal Surface Area in square feet: Value accepted. Calculated Flow Rates Gallons per Minute: Cubic Feet per Second Optional Reynolds Number Check (Verifies Darcian Flow) 6. Enter the D30 representative grain diameter for the porous media: Value accepted. Calculated Reynolds Number (Should be less than approximately 10): 363 m /day 15.1 m /hr 0.252 m /min 0.0042 m/s 1,190 ft/day 49.6 ft/hr 0.826 ft /min 0.0138 ft/s 0 inches 3.5 inches 0.3164063 sqft 4.24 9pm 0.0094 cfs 20 um 0.045 Notes: 1. Values of hydraulic conductivity greater than 10,000 meters per day (and the equivalent in feet per day) will provide a warning that flow may be exceeding Darcian flow. This warning has no effect on calculator operation. Accordingly, check the Reynolds Number using the provided option. . 2. Values of filter media thickness and water depth above media greater than 100 inches will provide a warning. As with several other warnings, this warning was provided to identify a possible incorrect value entry and does not affect the calculator operation. 3. Values of horizontal surface area that are greater than 10,000 square feet will provide a warning. Again, as with the other warnings, the warning was provided to identify possible incorrect value entries and does not affect calculator operation. 4. The D30 representative grain diameter (often stated d 30) is the grain diameter that allows 30 percent passing as determined by performing a sieve analysis. Copyright Bill Wolf Engineering 2008 © (Original Revision June 25,2008) SKIMMER TURBULENC DEFLECTOR 8 Part # GISB MEDIA FILTER- 24 -24 -24 24 —I 1 FLOW SCHEMATIC STORM BOOM 118 SIDE VIEW Flow Specifica TOP VIEW tions Percent Total Square now Description Open Square Inches Rate of filter Inches of Total (Cubic opening �ed°" s,,,,,, per Unit Unobstructed Feet per DAMI funs Openings Second Skimmer protected 100% 132.1 132.1 5.4 cfs By —Pass Coarse Screen 314" x 1 -314" stain less steel 62% 117 72.6 3.5 cfs flattened expanded B /OMedlaGREEN 80% (porous blocks) 245 N/A 20.3 gpm — Ai bTeCh SMANT 40% SPONGE PLUS SCREEN TREATED FLOW RATE MEDIA TREATED FLOW RATE Total. 3.5 cfs Total. 20.3 gpm FLOW RATES BASED ON UNOBSTRUCTED OPENINGS REMOVABLE SCREEN Coconut Mat BioMediaWHITE BioMediaGREEN AbTech ANTIMICROBIAL SMART SPONGE PLUS SKIMMER PROTECTED BYPASS COARSE SCREEN I�NE SCREEN BOX MANUFACTURED FROM MARINE GRADE FIBERGLASS & GEL COATED FOR UV PROTECTION 5 YEAR MANUFACTURERS WARRANTY PATENTED ALL FILTER SCREENS ARE STAINLESS STEEL GRATE --\ .a CONCRETE STRUCTURE Id BioMediaGREEN REMOVAL EFFICIENCIES 10 s 859 royal ffapfaw 699 01ft Fw 4190 Lie Owff 7990 USS&W Lwe 989' T= 789' Fecd rte, L 689 p'l 1 999 lO CLEAN ENVIRONMENTAL SERVICE "1O"O^ SUNDPfE DILALIIY PRIDDUCIS ARE BU /LT ft7R EASY CLEAN /NG AND ARE O BOX 869 OCEANSIDE CA 92049 60- 433 -7640 FAX:760 -433 -317 DEMO TO BE PfRALWW INFR61RUCTURE AND SHOULD LAST FOR DE(ADlx GRATE INLET SKIMMER BOX FOR MEDIA FILTER TYPE CATCH BASIN INSERT DATE: 04/12/04 SCALE:SF — 15 Emo!/: Info ®bloc /eonenvlronmento /.net DRAFTER: N.R.B. UNITS — INCHES ""1O REMOVABLE SCREEN Coconut Mat BioMediaWHITE BioMediaGREEN AbTech ANTIMICROBIAL SMART SPONGE PLUS SKIMMER PROTECTED BYPASS COARSE SCREEN I�NE SCREEN BOX MANUFACTURED FROM MARINE GRADE FIBERGLASS & GEL COATED FOR UV PROTECTION 5 YEAR MANUFACTURERS WARRANTY PATENTED ALL FILTER SCREENS ARE STAINLESS STEEL GRATE --\ .a CONCRETE STRUCTURE Id BioMediaGREEN REMOVAL EFFICIENCIES 10 s 859 royal ffapfaw 699 01ft Fw 4190 Lie Owff 7990 USS&W Lwe 989' T= 789' Fecd rte, L 689 p'l 1 999 lO CLEAN ENVIRONMENTAL SERVICE "1O"O^ SUNDPfE DILALIIY PRIDDUCIS ARE BU /LT ft7R EASY CLEAN /NG AND ARE O BOX 869 OCEANSIDE CA 92049 60- 433 -7640 FAX:760 -433 -317 DEMO TO BE PfRALWW INFR61RUCTURE AND SHOULD LAST FOR DE(ADlx GRATE INLET SKIMMER BOX FOR MEDIA FILTER TYPE CATCH BASIN INSERT DATE: 04/12/04 SCALE:SF — 15 Emo!/: Info ®bloc /eonenvlronmento /.net DRAFTER: N.R.B. UNITS — INCHES ""1O lO CLEAN ENVIRONMENTAL SERVICE "1O"O^ SUNDPfE DILALIIY PRIDDUCIS ARE BU /LT ft7R EASY CLEAN /NG AND ARE O BOX 869 OCEANSIDE CA 92049 60- 433 -7640 FAX:760 -433 -317 DEMO TO BE PfRALWW INFR61RUCTURE AND SHOULD LAST FOR DE(ADlx GRATE INLET SKIMMER BOX FOR MEDIA FILTER TYPE CATCH BASIN INSERT DATE: 04/12/04 SCALE:SF — 15 Emo!/: Info ®bloc /eonenvlronmento /.net DRAFTER: N.R.B. UNITS — INCHES ""1O Notes: 1. Values of hydraulic conductivity greater than 10,000 meters per day (and the equivalent in feet per day) will provide a warning that flow may be exceeding Darcian flow. This warning has no effect on calculator operation. Accordingly, check the Reynolds Number using the provided option. 2. Values of filter media thickness and water depth above media greater than 100 inches will provide a warning. As with several other warnings, this warning was provided to identify a possible incorrect value entry and does not affect the calculator operation. 3. Values of horizontal surface area that are greater than 10,000 square feet will provide a warning. Again, as with the other warnings, the warning was provided to identify possible incorrect value entries and does not affect calculator operation. 4. The D30 representative grain diameter (often stated d 30) is the grain diameter that allows 30 percent passing as determined by performing a sieve analysis. Copyright Bill Wolf Engineering 2008 © (Original Revision June 25, 2008) • Hydraulic- Conductivity Flow Calculator • Calculates vertically downward flow rates given hydraulic conductivity, media thickness, and water head. 1. Enter the Hydraulic Conductivity (k) of the Filter Material: 1190 ft/day Value accepted. 2. Select the Units for the Hydraulic Conductivity entered in step 1: English (Enter "M" for Metric or T" for English units.) Selection accepted. Hydraulic- Conductivity Conversions Meters per Day: 363 m /day Meters per Hour: 15.1 m /hr Meters per Minute: 0.252 m /min Meters per Second: 0.0042 m/s Feet per Day: 1,190 ft/day Feet per Hour: 49.6 ft/hr Feet per Minute: 0.826 ft/min Feet per Second: 0.0138 ft/s 3. Enter the Thickness of the Filter Media in inches:. 0 inches Value accepted. 4. Enter the Water Depth above the Media Surface: 6.875 inches Value accepted. 5. Enter the Horizontal Surface Area in square feet: sgft Value accepted. • Calculated Flow Rates Gallons per Minute: 20.3 9pm Cubic Feet per Second: 0.0453 cfs Optional Reynolds Number Check (Verifies Darcian Flow) 6. Enter the D30 representative grain diameter for the porous media: 20 um Value accepted. Calculated Reynolds Number (Should be less than approximately 10): 0.045 Notes: 1. Values of hydraulic conductivity greater than 10,000 meters per day (and the equivalent in feet per day) will provide a warning that flow may be exceeding Darcian flow. This warning has no effect on calculator operation. Accordingly, check the Reynolds Number using the provided option. 2. Values of filter media thickness and water depth above media greater than 100 inches will provide a warning. As with several other warnings, this warning was provided to identify a possible incorrect value entry and does not affect the calculator operation. 3. Values of horizontal surface area that are greater than 10,000 square feet will provide a warning. Again, as with the other warnings, the warning was provided to identify possible incorrect value entries and does not affect calculator operation. 4. The D30 representative grain diameter (often stated d 30) is the grain diameter that allows 30 percent passing as determined by performing a sieve analysis. Copyright Bill Wolf Engineering 2008 © (Original Revision June 25, 2008) • 48" Part # - � MEDIA FILTER — GISB- 48 -48 -18 �— Flow Specifications 48" Description Percent Total Square flow of Ater Open Square Inches Rate opening p °" Inches of Total (Cubic 997 per Unit Unobstructed Feet per vk—kr' Openings Second Skimmer protected 100% 324.4 324.4 13.3 cfs By -Pose Fine screen 14 x 18 mesh 68X 249.4 169.6 9.5cfs stainless steel BioMed/oGREEN 80% (porous block&) 1,323 N/A 151 gpm 40% SPONGE PLUS MEDIA TREATED FLOW RATE Total. 151 gpm FLOW RATES BASED ON UNOBSTRUCTED OPENINGS All 859' row P1A"Wo ff ROOM aft 419 ■.12 ■■■% 18" �i 7" i 4" FINE SCREEN SIDE VIEW SKIMMER PROTECTED BYPASS REMOVABLE SCREEN Coconut Mat BioMediaWHITE BioMedioGREEN AbTech ANTIMICROBIAL SMART SPONGE PLUS I.' e I BOX MANUFACTURED FROM MARINE GRADE FIBERGLASS & GEL COATED FOR UV PROTECTION 5 YEAR MANUFACTURERS WARRANTY PATENTED d° 35 -1/2" END VIEW a� a ° . v .. d n °1 a CONCRETE STRUCTURE BioMedioGREEN REMOVAL EFFICIENCIES 859' row P1A"Wo 699' aft 419 e cww 797 awe iwd 987 awmw 2ft 787 Lbdeb 687 997 ALL FILTER SCREENS ARE STAINLESS STEEL BID CLEAN ENVIRONMENTAL SERVICE 2#4W QIIA N PRODUClS ARE DNILr FVR EASY CLEG VC AND ARE P.O. BOX 869, OCEANSIDE, CA. 92049 TEL 760- 433 -7640 FAX:760 -433 -3176 DOM 70 AF AgWNDVr AFR457RDCMBE AND SHOULD LAST FOR D00M GRATE INLET SKIMMER BOX DATE: 05/12/08 SCALE:SF — 15 DRAFTER: D.R.F. UNITS —INCHES 0 • Hydraulic- Conductivity Flow Calculator Calculates vertically downward flow rates given hydraulic conductivity, media thickness, and water head. 1. Enter the Hydraulic Conductivity (k) of the Filter Material: Value accepted. 2. Select the Units for the Hydraulic Conductivity entered in step 1 (Enter "M" for Metric or "E" for English units.) Hydraulic - Conductivity Conversions Meters per Day: Meters per Hour: Meters per Minute: Meters per Second: Feet per Day: Feet per Hour: Feet per Minute: Feet per Second: 3. Enter-the Thickness of the Filter Media in inches: Value accepted. 4. Enter the Water Depth above the Media Surface: Value accepted. 5. Enter the Horizontal Surface Area in square feet: Value accepted. Calculated Flow Rates Gallons per Minute: Cubic Feet per Second Optional Reynolds Number Check (Verifies Darcian Flow) 6. Enter the D30 representative grain diameter for the porous media: Value accepted. Calculated Reynolds Number (Should be less than approximately 10): 1190 ft/day 0 English Selection accepted. 363 m /day 15.1 m /hr 0.252 m /min 0.0042 m/s 1,190 ft/day 49.6 ft/hr 0.826 ft/min 0.0138 ft/s 0 inches 0 inches 9.1254 sqft 150 9pm 0.335 cfs 20 um 0.045 Notes: 1. Values of hydraulic conductivity greater than 10,000 meters per day (and the equivalent in feet per day) will provide a warning that flow may be exceeding Darcian flow. This warning has no effect on calculator operation. Accordingly, check the Reynolds Number using the provided option. 2. Values of filter media thickness and water depth above media greater than 100 inches will provide a warning. As with several other warnings, this warning was provided to identify a possible incorrect value entry and does not affect the calculator operation. 3. Values of horizontal surface area that are greater than 10,000 square feet will provide a warning. Again, as with the other warnings, the warning was provided to identify possible incorrect value entries and does not affect calculator operation. 4. The D30 representative grain diameter (often stated d 30) is the grain diameter that allows 30 percent passing as determined by performing a sieve analysis. Copyright Bill Wolf Engineering 2008 © (Original Revision June 25, 2008) ROUND GISB MEDIA FIL TER WITH EA SY MAINTENANCE SHELF SYSTEM FOR USE IN CURB INLETS R010VABLE STORM BOOM SKIMMER LOCKING LATCH GW ROUND MEDIA FILTER STAINLESS STEEL DRIVE PIN SHELF SYSTEM TROUGH fSHELF SYSTEM ` WI1R FIGURE 1: DETAIL OF PARTS FIGURE 4: DETAIL OF PROFILE GLSB ROUND MLV14 FILTER OUTLET PIPE SHELF SYSTEM POSYTIONS 0058 - RLTER DIRECTLY UNDER MANHOLE OPENING OF EASY MAIWENANLE SHELF SYSTEM:: • x 1ROUGH STAINLESS STEEL DRIVE PIN FIGURE 3.• DETAIL OF MOUNTING DRAWING.` GM MEDIA RLTER SYSTEM TREATMENT FLOW RATE a 12 as WARRANTY 5 YEAR MANUFACTURD 6 8/0 CLEAN DMRONMENTAL SiR = INC. PO BOX 869 OCEWSID& CA 91049 PHONE.•760- 433 -7640 FAX.•760- 433 -3176 DATE SCALE SF = 15 DRAFTER• ✓.R.H. UNITS = INCHES PATEWED MODEL f.• GW -21 24 RND MF ECL• 1920 CMAH r70NS.• LATE r70NS• LATE DATE 01 WIDTH OF INLET WILL VARY FIGURE 2. DETAIL OF CONFIGURATION NOTES- 1. SHELF SYSTEM PROVIDES FOR ENTIRE COVERAGE OF INLET OPDV/NG SO TO DIVERT ALL FLOW TO 84WET. 2. SHELF SYSMW MANUFACTURED FROM MARINE GRADE FIBERGLASS, GEL COALED FOR W PROTECTION. J. SHELF SYSTEM ATTACHED TO THE CATCH BASIN WITH NONCORROSIVE HAROWARE 4. RLIRAIION BASKET STRUCTURE MANUFACTURED OF MARINE GRADE R&ROLASS, GEL C04TM FOR W PROTECTION. 5. FILTRATION BASKET FINE SCREEN AND COARSE CONTAINMENT SCREEN MANUFACTURED FROM STAINLESS STEEL 6 FILTRATION S4SAFT HOLDS BOOM OF ABSORBENT Mm14 TO CAPTURE HYDROCARBONS BOOM LS EASYLY REPLACED WRNOUT REMOVING MOUNTING HARDWARE 7. fX7RA7ION BASKET LOC477ON IS DIRECTLY UNDER hNNHOLE FOR EAST' U41NTDVANCE B. LENGTH OF (ROUGH CAN VARY FROM 2' TO 30' SEN." CLEAN® ENVIRONMENTAL SERVICES, INC. WWW.BIOCLEANENVIRONMENTAL.COM PAGE 1 0 • • MODEL # GISB 22 24 ROUND MEDIA FIL TER MANHOLE OPEN /NC Wl1Fl X2`2 IM, 20 -318' 24' FRAME AND COVER RLTER FIANGE� DA THROUGH HOLE FIGURE 1: DETAIL OF INSTALLATION HYDRRCIRBON STORM BOOM 24 118N TOTAL SUSPENDED SOLIDS B5X U— CO—S/L 106' DETAIL TOTAL PHOSPHORUS 69X ORTHO PHOSOPHORILS a• DISSOLVED COPPER 79X DISSOLVED LEAD Of DISSOLVED ZINC 78X ' a• ''' a••ar r •a r ar .. .: ❖. :r r •aa r • a r aar .!.❖.❖.•.❖.•.❖.•.❖.• r• :rr •r• r•a FIGURE 1: DETAIL OF INSTALLATION HYDRRCIRBON STORM BOOM 24 118N TOTAL SUSPENDED SOLIDS B5X U— CO—S/L 106' DETAIL TOTAL PHOSPHORUS 69X ORTHO PHOSOPHORILS 41X DISSOLVED COPPER 79X DISSOLVED LEAD Of DISSOLVED ZINC 78X DROING` GISB MEDIA FILTER DETAILS TREATMENT ROW RATE a 12 CFS WARRANTY 5 YEAR MANUFACTURERS 810 CLEAN ENVIRONMENTAL SERVICES, INC. PO BOX 869 OXWS/D& C1 92049 PHONE 760 -433 -7640 FAX.760- 433 -3176 DATE SCALE SF = 15 DRAFTER.- J.R,H. UN17S = INCHES FIGURE 4: DETAIL OF MEDIA PACK PATENTED MODEL /.• GISB -22 -24 RND MF ECT7 1920 CMW 70AS• t)A>F iIONS• DATE,• YON&• DATE,• REMOVABLE SCREEN TOP COCONUT ANT 1' THICK B/oMediaWHITE 1' THICK B/oMediaGREEN 2.875' THICK AbTech ANI7M/CROB24L SMART SPONGE PLUS 1' THICK BOTTOM SCREEN UNDERDRA/N FLOW RATES - GISB MEDIA FILTER •AIED14 PACK TREATMENT ROW RATE SURFACE AREA MAX HEAD .12 CFS if ! 75 — 1.76 SF 11.875 IN 2.875 IN 1 363 MID a1R4SH SCREEN TRFATMENr ROW RATE SURFACE AREA MAX HEAD OPEN AREA I = 2.0 CFS 94 SF 1 5.50 IN 62X 1 �CTANGUlAR BMG DENOTES BkMediaGREEN 'FIVER ROW RATE CALCULATED USING A HYDRAULIC— CONDUCTMTY ROW CALCULATOR (MM ROW). HYDRAULIC CONDUCTIVITY OF NaVediaGROY VERIFIED IN LABORATORY EVALUATION. VARIABLES LISTED ABOVE **SCREEN ROW RATE CALCULATED USING THE FOLLOWING EQUATION Q= SO'cd•A 2'g'h cd = 0R r .67 SEE PAGE 1 FOR NOTES isollm CLEAN® ENVIRONMENTAL SERVICES, INC. WWW. BIOCLEANENVIRONMENTAL.COM PAGE 2 172 _--• FIGURE 3.• DETAIL OF PARTS DROING` GISB MEDIA FILTER DETAILS TREATMENT ROW RATE a 12 CFS WARRANTY 5 YEAR MANUFACTURERS 810 CLEAN ENVIRONMENTAL SERVICES, INC. PO BOX 869 OXWS/D& C1 92049 PHONE 760 -433 -7640 FAX.760- 433 -3176 DATE SCALE SF = 15 DRAFTER.- J.R,H. UN17S = INCHES FIGURE 4: DETAIL OF MEDIA PACK PATENTED MODEL /.• GISB -22 -24 RND MF ECT7 1920 CMW 70AS• t)A>F iIONS• DATE,• YON&• DATE,• REMOVABLE SCREEN TOP COCONUT ANT 1' THICK B/oMediaWHITE 1' THICK B/oMediaGREEN 2.875' THICK AbTech ANI7M/CROB24L SMART SPONGE PLUS 1' THICK BOTTOM SCREEN UNDERDRA/N FLOW RATES - GISB MEDIA FILTER •AIED14 PACK TREATMENT ROW RATE SURFACE AREA MAX HEAD .12 CFS if ! 75 — 1.76 SF 11.875 IN 2.875 IN 1 363 MID a1R4SH SCREEN TRFATMENr ROW RATE SURFACE AREA MAX HEAD OPEN AREA I = 2.0 CFS 94 SF 1 5.50 IN 62X 1 �CTANGUlAR BMG DENOTES BkMediaGREEN 'FIVER ROW RATE CALCULATED USING A HYDRAULIC— CONDUCTMTY ROW CALCULATOR (MM ROW). HYDRAULIC CONDUCTIVITY OF NaVediaGROY VERIFIED IN LABORATORY EVALUATION. VARIABLES LISTED ABOVE **SCREEN ROW RATE CALCULATED USING THE FOLLOWING EQUATION Q= SO'cd•A 2'g'h cd = 0R r .67 SEE PAGE 1 FOR NOTES isollm CLEAN® ENVIRONMENTAL SERVICES, INC. WWW. BIOCLEANENVIRONMENTAL.COM PAGE 2 ROUND GISB MEDIA FIL TER WITH EASY MAINTENANCE SHELF SYSTEM FOR USE IN CURB INLETS WITH WINGS REMOVABLE STORM BOOM SKIMMLR STAINLESS STEEL DRNE PIN LOCKING LATCH GISB ROUND M01A RLTER SHELF SYSTEM/ TROUGH TRASH SCREEN FIGURE 1: DETAIL OF PARTS FIGURE 4: DETAIL OF PROFILE DR&IN6% GISB MED14 RLTER SYS/EM TREATMENT FLOW RATE a 12 CFS WARRANTY.• 5 YEAR MPINUFACTURERS PO BOX 869 OCEAAIS/D& CA 91049 DAZE SCALE• Sf = 15 DRAFTER. • J.R.H. UNITS = INCHES 6ERGLASS D/V9t1ER 0 CHANNEL ALL WATER TOM WING TO TROUGH WING WEIR HEIGHT 6W ROUND MED14 RLIER OUTLET PIPE SHELF SYSTEM POSNIDNS GLSB RLTER DIREC71Y UNDER MANHOLE OPENING Of FASY NNNTUMCE RBERGLASS DIVE M 10 ChWhWa ALL WATER FROM BANG TO TROUGH SHELF SYSTEM TROUGH STAINLESS STEEL ' �:�" ,•,' DRNE PIN r FIGURE 3.• DETAIL OF MOUNTING a PAWED MODEL J. GM -22 -24 RND MF WT 1920 CAAAH 70NS ELATE WAS I LWE FIGURE 2. DETAIL OF CONFIGURATION NOTES 1. SHELF SYSTEM PROWDES FOR ENTIRE COVERAGE OF INLET OPENING SO TO DIVERT ALL flOW TO BASKET. 2. SHELF SYSTEM MANUFACTURED FROM MARINE GRADE RBERGLASS, GEL COATED FOR W PROTECTION. 3. SHELF SYSTEM ATTACHED TO THE G11CH &SIN WITH NON- CORROSW HARDWARE 4. RLTRATTON 8ASKET STRUCTURE MANUFACTURED Of MARINE GRADE RBERGLASS, GEL COATED FOR W PROTECTION. 5. RLIRAITON BASKET RNE SCREEIV AND COARSE CONTAINMENT SCREEN AANUFACTURED FROM STAINLESS STEEL. 6 RLTRATION BASKET HOLDS BOOM OF ABSORBENT MED14 TO CAPTURE HYDROCARBONS BOOM IS EASILY REPLACED WITHOUT REMOWNG MOUNTING HARDWARE: 7. RLTR477ON BASKET LOCATION LS DIRECTLY UNDER AMINHOLE FOR EASY MNNT9WCE. & LENGTH OF TROUGH CAN VARY FROM 2' TO 30' BI CLEAN® ENVIRONMENTAL SERVICES. INC. WWW.BIOCLEANENVIRON MENTAL.COM PAGE 3 Notes: 1. Values of hydraulic conductivity greater than 10,000 meters per day (and the equivalent in feet per day) will provide a warning that flow may be exceeding Darcian flow. This warning has no effect on calculator operation. Accordingly, check the Reynolds Number using the provided option. 2. Values of filter media thickness and water depth above media greater than 100 inches will provide a warning. As with several other warnings, this warning was provided to identify a possible incorrect value entry and does not affect the calculator operation. 3. Values of horizontal surface area that are greater than 10,000 square feet Will provide a warning. Again, as with the other warnings, the warning was provided to identify possible incorrect value entries and does not affect calculator operation. 4.. The D30 representative grain diameter (often stated d 30) is the grain diameter that allows 30 percent passing as determined by performing a sieve analysis. Copyright Bill Wolf Engineering 2008 © (Original Revision June 25, 2008) • Hydraulic- Conductivity Flow Calculator • Calculates vertically downward flow rates given hydraulic conductivity, media thickness, and water head. 1. Enter the Hydraulic Conductivity (k) of the Filter Material: 1190 ft/day Value accepted. 2. Select the Units for the Hydraulic Conductivity entered in step 1: OE English (Enter "M" for Metric or "E" for English units.) Selection accepted. Hydraulic- Conductivity Conversions Meters per Day: 363 m /day Meters per Hour: 15.1 m /hr Meters per Minute: 0.252 m /min Meters per Second: 0.0042 m/s Feet per Day: 1,190 ft/day Feet per Hour: 49.6 ft/hr Feet per Minute: 0.826 ft/min Feet per Second: 0.0138 ft/s 3. Enter. the Thickness of the Filter Media in inches: ... 2.875 inches Value accepted. 4. Enter the Water Depth above the Media Surface: 11.875 inches Value accepted. 5. Enter the Horizontal Surface Area in square feet: 1.76 sqft Value accepted. • Calculated Flow Rates Gallons per Minute: 55.8 gpm Cubic Feet per Second: 0.124 cfs Optional Reynolds Number Check (Verifies Darcian Flow) 6. Enter the D30 representative grain diameter for the porous media: 20 um Value accepted. Calculated Reynolds Number (Should be less than approximately 10): 0.045 Notes: 1. Values of hydraulic conductivity greater than 10,000 meters per day (and the equivalent in feet per day) will provide a warning that flow may be exceeding Darcian flow. This warning has no effect on calculator operation. Accordingly, check the Reynolds Number using the provided option. 2. Values of filter media thickness and water depth above media greater than 100 inches will provide a warning. As with several other warnings, this warning was provided to identify a possible incorrect value entry and does not affect the calculator operation. 3. Values of horizontal surface area that are greater than 10,000 square feet Will provide a warning. Again, as with the other warnings, the warning was provided to identify possible incorrect value entries and does not affect calculator operation. 4.. The D30 representative grain diameter (often stated d 30) is the grain diameter that allows 30 percent passing as determined by performing a sieve analysis. Copyright Bill Wolf Engineering 2008 © (Original Revision June 25, 2008) • APPENDIX A Performance Reports ID • City :of Santa MonieW Watershed Management :Section Office. of Sustainability & the Environment . June 22, 2010 20 OS anta Monica Pier, Suite E Santa Monica, CA 90401 (310) 458 -8223 Fax 393 -1279 neal.shapiro @smgov.net ATTN.: Greg Kent, President Bioclean Oceanside, CA From: Neal Shapiro • Subject: Water Quality Results — Centinela =Mar Vista urban runoff treatment project Dear Mr. Kent: The City of Santa Monica installed.a Nutrient Separating Baffle Box to treat wet - weather runoff generated from the City of Santa Monica's .Centinela Sub - Watershed drainage basin and a portion of west Los Angeles. This project received a CASQA award for treatment control /structural BMP Implementation in 2007. Wet - weather .flows are treated by a Nutrient Separating Baffle Box Model; # 8- 12 -96. The system is designed to treat up to 33 CFS. The City of Santa Monica independently gathered and evaluated pollutant removal data for wet and dry - weather: flows. This data was :shared with the. . public at a recent conference, California Water Environment Association's (CWEA) 36`x', Annual Pretreatment, Pollution Prevention, and Stormwater (P3S) Conference and Exhibition: The Many Hats of P3S, Hyatt Regency; Monterey, CA., March 2 -4, 201.0, in a presentation titled "Effectiveness of Dry Weather Diversions ". The presentation was given by Jamie Malpede of the City's Water Resources Protection Program. Following are the: results of the data collected for wet - weather flows: • TSS - avg. influent 366 mg/L, avg. effluent 48 mg/L. Avg. removal of 86.9% 71— • • Oils & Grease = avg. influent 4 mg %L, avg. effluent ND. Avg. removal of >99% O. To Whom It May Concern, � � e r -- ENVIRONMENTAL SERVICES, INC.. In 2002 the City of El Monte hired Environmental Laboratories, Inc. to perform pollutant removal data on the Grate Inlet Skimmer Box located at Longo Toyota. The GISB proved very effective at reducing various metals along with Oils & Grease. Performance Following is list of removal efficiencies from the independent third party testing: • Copper — 93.1 %, 96.8% and 94.2% • Lead— 73%,93.3% and 93.3% • Zinc — 91.2 %, 97.5% and 94.4% • Oils & Grease — 98.6 %, 89.9% and 95.6% In conclusion, the Grate Inlet Skimmer Box (GISB), through third party independent field testing proved to be highly effective at removing large amounts of metals along with oils & grease. If you have any questions regarding the GISB or the information contained in this letter please fell free to contact me directly. Sincerely, Zach J Kent Stormwater Engineer zkent @biocleanenvironmental.net P O Box 869 Oceanside CA 92049 (760) 433 -7640 • Fax (760) 433 -3176 www.BioCleanEnvironmental.net ■ 0 1 B Environmental Laboratories, Inc. 10926 Rush St„ Suite A-168 • South EI MonQCA 91733• Tel: (626)'575-5137 • Fax: (626) 575 -7467 Client: CITY OF EL MON—M PUBLIC WORKSYENGINEERING-DEPARTMENT 11333Vallev Boulevard El Monte,CA91731 -3!93 Report based on Analyses Results: The ci of El Ma to h' povrded ABN Ebvironmeatal Laboratories. Inc. wits four runoff samples which were collected from Longo Toyota Only one sample was collected before . filtration and three samples were collected after filtration. Three samples (after filtration) were collected on three separate. dates. All four samples were tested for metals, :oil & grease, and MBAS (soap ) Based on the analyses results, the following can be deduced: The filtration is efficient in retaining the tested metals as well as oil & grease.. However, filtration is • unable to retain WAS (soap) as indicated by the test results. This report is prepared based on limited runoff samples. Respectfully submitted, i r 'redrick Bet -Pera, Ph D. Jacob (Hacop) Nercessian Laboratory Director Technical Dircctnr • LAS TES t RESULTS - RUNOFF WATER SAMPLES COLLECTED AT LONGO TOYOTA BETWEEN 09/23/02 AND 11107/02 (1310 CLEAN FILTERS) TESTING BY ABN ENV. LABS.. SOUTH EL MONTE, CA NO. POLLUTANT 1011. DEFECTION LIMIT TEST 1 110 RLTER TEST 2 AFB I WEEK VNILTER TEST 3 AFTER 3 WEEKS V49FILTER TEST 4 AFTER 5 VNEK3 WOLTE 1 & GREASE 2.70 i99A0 < 2.7 20.00 8.60 2 SOAP 17.00 10200 185.00 151.00 108.00 3 CHROMIUM 0.08 0.47 < 0.05 < 0.05 < 0.05 4 LEAD 0.10 1.60 0.40 < 0.10 < 0.10 'S COPPER 0.05 1.90 ' 0.13 0.06 0.11 6 11ROM 0.05 218.00 3.70 1.83 125 7 KUMINUM 0.20 103.00 1.99 120 0.80 8 ZINC 0.40 13.70 1.90 0.34 0.76 9 NICKEL 0.10 j 0.70 0.30 < 0.90 0.15 STORMWATER FILTRATION SYSTEMS (760) 433 -7640 FAX (760) 433 -3176 SME5 A ZnTa A 1NFORM4770N C Fecal Coliform - avg. influent >16,000. avg. effluent > 8,400. `Avg. removal 47.5% • c Turbidity - avg. influent 170 NTU, avg. effluent 48 NTU. Avg. removal of 71.70/0 • Copper - avg. influent 7 ug/L, avg. effluent 4.2 ug /L. Avg. removal of 40% Please call me if you have any questions. Sincerely, U?' Nea] Shapiro, Supervisor = Watershed Section Watershed Management Program Coordinator • • DESCRIPTION Smart Sponge® technology has a unique molecular structure based on innovative polymer technologies that are chemically selective to hydrocarbons and can destroy bacteria (figure A). Smart Sponge® recovers and fully encapsulates recovered oil, resulting in a substantially more effective response that prevents absorbed oil from leaching. It is also capa- ble of removing low levels of oil from water, thereby successfully removing sheen. In addition, the Smart Sponge® remains buoyant in calm or agitated water, permitting it to remain in place until fully saturated and resulting in no wasted product. Once oil is absorbed, the Smart Sponge® transforms the pollutants into a stable solid for easy recycling, providing a closed -loop solution to water pollution. Smart Sponge® technology provides a cost - effective BMP with low installation and maintenance labor costs. In comparison to other products, the Smart Sponge® technology also allows for less expensive and less problematic handling and disposal of the waste product since its technology transforms liquid oil and other pollutants into a stable solid. The Smart Sponge® was designed not to deteriorate in water, allowing for a longer product life. ANTIMICROBIAL SMART SPONGE® PLUS Over the past three years, AbTech has developed an antimicrobial technology synergistic with the Smart Sponge® technology. This effort produced Smart Sponge® Plus, which features an antimicrobial agent chemically and perma- nently bound in a proprietary process to the Smart Sponge polymer surface which destroys bacteria on contact. Due to this permanent bond, the antimicrobial agent is active but does not leach or leak, avoiding any downstream toxicity issues. TARGETED MICROORGANISMS • Aspergillus Niger • Enterococcus • Trychophyton Mentagrophytes • Staphylococcus Aureus • Penicillium Pinophilum • Chaetomium Globosum • Trichoderma Virens • Aureobadisium Pullulans • Listeria Monocytogenes • Escherichia Coli • Pseudomonas Aeruginosa • Candida Albicans • Salmonella • Klebsiella Pneumoniae • Fecal Coliforms The Agent used for this innovative technology is an Organosilane derivative which is widely used in a variety of fields including medical, consumables, pool equipment, and consumer goods to destroy bacteria. This Smart Sponge® Plus mode of action, through its bound agent, is very simple (no chlorine or heavy metals involved) and - in surface - bound applications - it neither introduces chemicals into the treated water nor produces toxic metabolites. The antimicrobial mechanism is based on the patented agent's interac- tion with the microorganism cell membrane, causing microorganism inactivation (see Fig- ure B), but no chemical or physical change in the agent. Antimicrobial activity therefore does not reduce the agent's capability or cause its depletion, and maintains long -term effectiveness. Additionally, the hydrocarbon absorption capability is not inhibited. The antimicrobial agent is registered with the EPA for a variety of applications and has a proven performance record specifically in cases where a reduction in harmful bacterial counts in storm water runoff is desired. 9.Uf. MY. r—� irrMarc�acown Qu ',.,N11RCUN MAKEAS OF smartsponge r x000 % r� �J • • SIMPLE IMPLEMENTATION Products incorporating Smart Sponge® technology are non - mechanical, do not.require structural changes to stormwater systems and are easily installed and maintained, often requiring only one person and no machinery. Products such as the Ultra - Urban® Filter with Smart Sponge® Inside fit into most existing catch basins. The Smart Sponge® technology is deployed in products that offer customized solutions for stormwater pollution prevention, oil spill re- sponse, process water filtration and other industrial applications to meet specific environmental needs. AbTech Indus- tries offers an extensive product line that is upgradeable to meet evolving community needs and regulatory require- ments. RIDOT contracted with Crossman Engineering, Inc. to design a treatment system to reduce bacteria concentrations in stormwater runoff dis- charged via outfall pipes on Scarborough Beach. Upon consideration of alternatives, Smart Sponge® Plus was se- lected for implementation and used for retrofitting several Table 1 Smart Sponge Plus Field Location: Scarborough Beach State Park Results: • Source: Rhode Island DOT, U.R.I. 2005 Sampling Location Fecal Coliforms'Removal Effectiveness Enterococcus Removal Effectiveness Dry Weather Sampling Removal Rate Wet Weather Sampling Removal Rate Dry Weather Sampling Removal Rate Wet Weather Sampling Removal Rate 79 % Ma)dmum Average Ma)dmum Average Ma)dmum Average Ma)dmum Average Oulfall1 99.6% 88.6% 97.6% 82.1% 96.2% 80.9% 98.4% 68.9% Outfall2 99.8% 90.2% 91.9% 72.4% 99.8% 84.8% 99.9% 87.9% Oulfall5 96.6% 83.6% 89.4% 89.4% 98.8% 82.4% 98.3% 87.8% outfall pipes. Based on the results of the post construction dry weather and wet weather sampling, the anti - microbial filter systems installed at the Scarborough Beach outfalls significantly reduced the bacteria concentrations (see Table 1) within the stormwater runoff. The City of Norwalk, CT in cooperation with EPA is running one of the largest federally funded projects to date for catch basins. The project is successfully demon- strating the ability of the Smart Sponge® Plus Ultra - Urban® Filter deployed in catch basin inserts to remove trash, debris, sediment, oil and hydrocarbons as well as reduce bacteria concentration from stormwater runoff (see Table 2 —Round One Sampling). Project in pro- gress. AbTech's Smart Sponge® Plus Ultra- Urban® was selected by The City of Long Beach, CA to address existing bac- teria TMDLs. The retrofit project covers a large water- shed and the initial monitoring confirming positive effect of the Smart Sponge° Plus in bacteria reduction (see Table 3— sample data). Project in Progress. Table 3 Table 2 Smart Sponge Plus Results: Catch Basin Insert Norwalk, CT Field Source: City of Norwalk 2006 Sampling Location E. coli %. Removal 1 Control No Filter 2 89% 3 79 % 4 34% 5 >99.9 Table 3 Smart Sponqe Plus Field Results: Catch Basin Insert Location: Long Beach, CA Source: City of Long Beach 2006 Sampling Location E. coil % Reduction 1. 97% 2 83% . 3 94% 4 60% 5 90% 6 84% 7 44% 8 85% 9 84% 10 70% FOR MORE INFORMATION CONTACT: IAA Kr OS 'OF' smart spo�ngi AhTech N D U S T R 1 E S 4110 N Scottsdale Rd., Suite 235 Scottsdale AZ 85251 480.874.4000 1.800.545.8999 www.abtechindustries.com MAINTENANCE REQUIREMENTS • OPERATION & MAINTENANCE Nutrient Separating Baffle Box Maintenance: The Nutrient Separating Baffle Box is designed to allow for the use of vacuum removal of captured materials in the filter screens and sediment chambers, serviceable by centrifugal compressor vacuum units without causing damage to the filter or during normal cleaning and maintenance. Filters can be cleaned and vacuumed from the standard manhole access. Maintenance Notes: 1. Bio Clean Environmental Services, Inc. recommends the Nutrient Separating Baffle Box be inspected a minimum of once every six months. The cleaning and debris removal maintenance should be a minimum of once year and replacement of hydrocarbon booms once a year. The procedure is easily done with the use of any standard vacuum truck. 2. Following maintenance and /or inspection, the maintenance operator shall prepare a maintenance /inspection record. The record shall include any maintenance activities performed, amount and description of debris collected, and condition of filter. 3. The owner shall retain the maintenance /inspection record for a minimum of five years from the date of maintenance. These records shall be made available to the governing municipality for inspection upon request at any time. 4. Any person performing maintenance activities must have completed a minimum of OSHA 24- hour hazardous waste worker (hazwoper) training. And close confinement training if needed. 5. Remove access manholes lid to gain access to filter screens and sediment chambers. • Where possible the maintenance should be performed from the ground surface. Note: entry into an underground stormwater vault such as an inlet vault requires certification in confined space training. 6. Remove all trash, debris, and organics from the Nutrient Separating Screen with the vacuum hose. 7. The Nutrient Separating Screen has 3 hinged panels which will open into an upright position. This will expose the baffles. Using a vacuum hose, remove the sediment in the baffle chambers. 8. Evaluation of the hydrocarbon boom shall be performed at each cleaning. If the boom is filled . with hydrocarbons and oils it should be replaced. Place new booms properly in media cage. 9. Transport all debris, trash, organics and sediments to approved facility for disposal in accordance with local and state requirements. 10. The hydrocarbon boom is classified as hazardous material and will have to be picked up and disposed of as hazardous waste. Hazardous material can only be handled by a certified hazardous waste trained person (minimum 24 -hour hazwoper). • B10 N CLEA P O Box 869, Oceanside, CA 92049 (760 433 -7640 Fax (760) 433 -3176 ENVIRONMENTAL SERVICES, INC. www.biocleanenvironmental.net BioMediaGREEN B1J CLEAN' GISB Media Filter LNYIIIe NMENtAL SE�VIC[f, INC. Maintenance Schedule Media GISB Required Est. Cleaning Time 1) Vacuum Out Accumulated Debris & Sediment from GISB (3-6 Month Intervals) 18 Minutes Year 1 2) Replace BioSorb Hydrocarbon Boom (6 -12 Month Intervals) 5 Minutes 3) Replace BioMediaGREEN + Pretreatment Filter Media (6 -12 month Intervals) 20 minutes 1) Vacuum Out Accumulated Debris & Sediment from GISB (3 -6 Month Intervals) 18 Minutes Year 2 2) Replace BioSorb Hydrocarbon Boom (6 -12 Month Intervals) 5 Minutes 3 Replace BioMediaGREEN + Pretreatment Filter Media 6 -12 month Intervals 20 minutes 1) Vacuum Out Accumulated Debris & Sediment from GISB (3 -6 Month Intervals) 18 Minutes Year 3 2) Replace BioSorb Hydrocarbon Boom (6 -12 Month Intervals) 5 Minutes 3 Replace BioMediaGREEN + Pretreatment Filter Media 6 -12 month Intervals 20 minutes 1) Vacuum Out Accumulated Debris & Sediment from GISB (3-6 Month Intervals) 18 Minutes Year 4 ) Replace BioSorb Hydrocarbon Boom (6 -12 Month Intervals) 5 Minutes 3) Replace BioMediaGREEN + Pretreatment Filter Media (6 -12 month Intervals) 20 minutes 1) Vacuum Out Accumulated Debris & Sediment from GISB (3-6 Month Intervals) 18 Minutes Year 5 ) Replace BioSorb Hydrocarbon Boom (6 -12 Month Intervals) 5 Minutes 3 Replace BioMediaGREEN + Pretreatment Filter Media 6 -12 month Intervals) 20 minutes 1) Vacuum Out Accumulated Debris & Sediment from GISB (3 -6 Month Intervals) 18 Minutes Year 6 2) Replace BioSorb Hydrocarbon Boom (6 -12 Month Intervals) 5 Minutes 3 Replace BioMediaGREEN + Pretreatment Filter Media 6 -12 month Intervals' 20 minutes 1) Vacuum Out Accumulated Debris & Sediment from GISB (3 -6 Month Intervals) 18 Minutes Year 7 ) Replace BioSorb Hydrocarbon Boom (6 -12 Month Intervals) 5 Minutes 3 Replace BioMediaGREEN + Pretreatment Filter Media 6 -12 month Intervals 20 minutes 1) Vacuum Out Accumulated Debris & Sediment from GISB (3 -6 Month Intervals) 18 Minutes Year 8 2) Replace BioSorb Hydrocarbon Boom (6 -12 Month Intervals) 5 Minutes 3 Replace BioMediaGREEN + Pretreatment Filter Media 6 -12 month Intervals) 20 minutes 1) Vacuum Out Accumulated Debris & Sediment from GISB (3 -6 Month Intervals) 18 Minutes Year 9 2) Replace BioSorb Hydrocarbon Boom (6 -12 Month Intervals) 5 Minutes 3 Replace BioMediaGREEN + Pretreatment Filter Media 6 -12 month Intervals) 20 minutes 1) Vacuum Out Accumulated Debris & Sediment from GISB (3-6 Month Intervals) 18 Minutes Year 10 2) Replace BioSorb Hydrocarbon Boom (6 -12 Month Intervals) 5 Minutes 3) Replace BioMediaGREEN + Pretreatment Filter Media (6 -12 month Intervals) 20 minutes Bio Clean Environmental Services, Inc. recommends the GISB Media Filter be inspected and cleaned every 3 to 6 months. Replacement of hydrocarbon boom, BioMediaGREEN, and pretreatment media is recommended every 6 to 12 months. The procedure is easily done with the use of any standard vacuum truck. 1) Identify catch basin. Set up traffic control if required and cone off the working area. 2) Remove grate. Visually, inspect the filter to asses loading and condition of filter components. No entry in required to clean the system. Note: entry into an underground lormwater vault such as catch basins requires certification in confined space training. If the basin is less than 4 Procedure 1 feet are not classified as confined space (applies on in some area based upon local regulations). Vacuum Out 3) Reach into catch basin and remove the deflector shield located on the top portion of the filter basket. The deflector shield holds the hydrocarbon boom in place and is 18 Minutes Accumulated Debris & easily removable. Removing this allows for easy access to the accumulated debris Sediment from GISB I inside the basket. Remove all trash, debris, organics, and sediments collected by the filter basket either manually by hand or with the use of a vacuum truck. 5) If hydrocarbon boom, pretreatment media and BioMediaGREEN are in good condition then replace the deflector shield back into filter basket. Replace grate in proper position. Service is complete. If hydrocarbon boom and /or BioMediaGREEN /pretreatment media are saturated or clogged see procedure 2 for hydrocarbon boom replacement and procedure 3 for BioMediaGREEN /pretreatment media replacement. • • • Procedure 2 Replace BloSorb Hydrocarbon roCarbon Boom Y Bio Clean Environmental Services, Inc. recommends the replacement of hydrocarbon boom every 6 to 12 months. Replacement will require a new hydrocarbon boom, a pair of scissors to cut of zip ties, and new zip ties to secure boom in place. 1) Follow steps 1, 2, and 3 in procedure 1. 2) Evaluate hydrocarbon boom. If the boom is filled with hydrocarbons and oils it should be replaced. 3) To remove cut off zip ties which hold the hydrocarbon boom in place on the deflector shield. The boom lies horizontally around the perimeter of the deflector shield. Properly dispose of old boom. (The hydrocarbon boom may be classified as hazardous material and will have to be picked up and disposed of as hazardous waste). 3) Attach new boom to deflector shield with plastic zip ties through pre drilled holes in deflector shield. Place the deflector shield back into the filter basket. Refer to step 5 in procedure 1. 5 Minutes Bio Clean Environmental Services, Inc. recommends the replacement of BioMediaGREEN and pretreatment media every 6 to 12 months. Replacement will require new blocks of BioMediaGREEN and manufacture specified pretreatment media. Quantities required can be provided by the manufacture. A serrated knife at least 10 inches long may be required to cut the BioMediaGREEN to the appropriate shape and size. The manufacture can provide the pre -cut pieces of BioMediaGREEN and pretreatment media. 1) Follow steps 1, 2, 3 and 4 in procedure 1. 2) Evaluate pretreatment media (Coconut mat and BioMediaWHITE) and BioMediaGREEN. If the media appears very dark in color or clogged it will need to be replaced. 3) To replace the filter media first vacuum out sediment and debris. The basket can be entirely removed or filter replacement can be done with filter in catch basin. All baskets are easily removable. If removing filter basket place filter basket on ground to Procedure 3 start media replacement process. Replace ) Reach into basket and lift the removable screen inside the bottom of the filter p basket. The removable screen holds the filter media in place. This will expose the BioMediaGREEN + media. 20 Minutes Pretreatment Filter 5) By hand or with a vacuum truck remove the pretreatment media. Under this is the Media BioMediaGREEN. Remove BioMediaGREEN filter blocks. They are tightly fitted and may require to be removed by hand. Under the BioMediaGREEN is the under drain media, Expanded Shale. This media will not need to be replaced. (The BioMediaGREEN and pretreatment media may be classed as hazardous material and will have to be picked up and disposed of as hazardous waste). 6) Use the serrated knife to cut the BioMediaGREEN filter blocks to the appropriate size. Install the new BioMediaGREEN filter blocks. The BioMediaGREEN must fit snug into the filter without large gaps. 7) Place the new pretreatment media (BioMediaWHITE first followed by coconut mat) on top of the BioMediaGREEN. Fill to a level equal to the edge of where the removable screen sets. 8) Replace removable screen and secure into place. 9) Replace filter basket back into the catch basin and secure back into position if filter basket was removed. 4) Refer to step 5 in procedure 1. WWW.BIOCLEANENVIRONMENTAL.COM P: 760 -433 -7640 NOI.LVWHOANII A,LNVHHVAt Technologies Inc. 798:Cleadake Road, Sufte # 2, Cocoa, FL 32922 Ph: (321) 637 -7552 Fax (321) 637 -7554 www.sunftotoch.com Product Warranty Suntree products are engineered and manufactured with the intent to be considered as permanent infrastructure. Suntree Technologies warranties its products to be free of manufacturer's defects for a period of 5 years from the date of purchase. Suntree Technologies warranties that the materials used to manufacture its products will be able to withstand and remain durable to environmental conditions for a period of 5 years from the date of purchase. If a warranty claim is made and determined to be valid, Suntree Technologies will either repair or replace the product, at the discretion of Suntree Technologies. Warranty claims must be submitted, evaluated, and approved by Suntree •Technologies for the claim to be determined to be valid. All warranty work and /or corrective action must be authorized by Suntree Technologies prior to beginning the work not covered by this warranty. There are no other warranties either expressed or implied other than what is specifically specified herein. Abusive treatment, neglect, or improper use of Suntree Technologies products will not be covered by this warranty. Below is a list of products covered by this warranty: Grate Inlet Skimmer Box Nutrient Separating Baffle Box Curb Inlet Basket Hydrocarbon Flume Filter Trash Flume Filter Grate Inlet Protector Trench Filter Golf Green Filter All Suntree Products are Exclusively Distributed by: 8,1 CLEAN ENVIRONMENTAL SERVICES, INC. 2972 San Luis Rey Rd., Oceanside, CA 92058 P (760) 433 -7640 F (760) 433 -3176 www.biocleanenvironmental.net • Final Hydrology & Hydraulics Report Coral Mountain Affordable Housing Appendix J Hydrology Exhibits Preliminary Grading Exhibit I x ou.D I/ Do.D - __,_ _/ - - - I .. x - , 55.9 - - - - - - - - - , -57.6 ,�_, -, --I - - - - - - - lr�_ - - - �_ - ��__ - - - - - - - - - - 55.8 . - - - - ______ __ __ I x 61.5 - x 60.7 - - - __ ___ - - - - __�_ - - - - - - - - - - - - - x 61.7 x 61.6 ___� ____ ____ x 60.7 ____l � x 59.8 ____ ___� - - - - - - - - 58.7 x 58.8 x 58.6 - - ___ - ____ ­­­ . (6 ____ 58.6 - ::_ _,__ -,-","," .--- 1-11- _1_111,11- _111_1 __ __ - _______� - - ------ - - ----------- ------ _________ -__ ----.-- .--- ______ _____ ---------- -------- - _ __� ,___l ­ __ �_ ._ . ______ ___ ___ __ __ __ ,--,-,- ____ ____ ___', ___ - __ ___ - __ � ­<­ ---- ------ ---------- -­­- ------- - --------_-,- - -1 lGHWAY -nl __________ ____ lqP - C - - - - � __� pli 9 - - 6i.� - r I I? 4' 1-1. 60.8 . "', ..-. 59.9 ___ -, - 59.1 - -------x 58.9 - - 58.8 - - - - - - - - - - --:D - - x - - 2. _�� = -7�� --- �_x - Z_ - - ____lx - Zc. 5 - - - - - - �4�_Z� lt��L= - as 58.8 ___ x x 62.1 _,m_7=___= _� , - - __= -) -- x- - -.7-7 "t - -,) 7-- - X 58 q - 59 3 ja - ­544- - ­­49-4- ----,' x 60.1 x _____ - 79�___,_. I - I') ____� ___+ _�:_­ ----), __ - ­_11- ­­11-111- ­­­­ll­­_ ­_ ­- ­ � � - , ­­ _­_.- ,___ __7� -_ ,,- l__­. _ ___::�_ -.--- __ ...... --,--- __ __ •___ __. ____ --,--, ,--.-- __ ___ __� __=:z_____ - ___ ,­_ ____ - ___l �__ ____ ___ ---------- ____ ------- _____ - _� __, ------- ­ ____ _ +_ _� - I , - ____ 60.5 ____ 59.6 ___ :__,,_,,,,_ "-,- - - ---- *­, ­ ---- - --- I - - - ----- ­ ------- ­­1 - ------- - - - ______ ______ 1111--_ __ ___ ____ - ___,__ -, __ __', x 58��_ _____ ___ _ _____ _____ ---,-,,. ____ ___ __::�:Z_ ___ ___ D0 x 61.4 ____ ____ x ___ ___ __� x - � __ ___� 100 - - __ __ __ - - - � __ � - x , 58 , .5 ____ _____ __x 58 , .5 _ _____ .--- _____ __ __ - - x 61.6 _� - - - - _ _ x �_ - - -1 xx � � __ 60.7 ___ ___� - EK C&b r- - - - 5". - _� - - ____x - - _6M __� - - - - - - - - - - - - - - - .- - __ - __ ____l N - - - --===- - - _=_ __ __ 5 61.3 ____.�: - - - - - - - - - 57.5 ____ ---' , " --=::- ,__ ,___ __ - - --:-- --__-_-CE- --==- - - � �_ - - _�, - - .�, I ___ -ez- ��� , - - --------4-59-3-- -=-- - - - �11_ _x . �_ I - x 4 / - - --O,o 0 - - �_ _- I -1 CONC - - - - - - ___ - ,=� - __ _�� 58.. ---, x 59.T __ ___ -1 x �, x / - --, , - ----,-- ,-- (5� - I - I" -I-- _� / , \ \_1 -, x _ x 59.4 /__ --- __ :L � I __ x ---=. - - - - - - 0 . - I _\ t ( ___� 11 , - - mommour ls�� - �_�_� - ,5�__�_ � \ \ - - - - - - - � �,_ -.I-- '\ \ '_ -� -) , �_,_-'_U.--CATGFF-BASfN - - __�zl_ /61.8 - - --- - - - ----�-- - \ - - _�� ____ X63.8 ,)))� � � I 7-,_ - �w - - _n,r - ,>:�� - � ��_ - ____ �,� , , x 6j�\ - '� \_1 - � " - , � . I -::I-� --� ___ - - - - \ - - - - - ---_-5 7. * / /� \_ , 1� ��_ � `1� /� �59� - __,� 58.7 /"- EX. C&G - - __ ,_� - _��\ - - � 6�1' /� ==E_ 58.5 ____ � � - - , t x r-, I �1�1__/ 58.6 x -_ _� -_ .--, -_ - - - - - \ ::--- ,--,f- \ -T- I \ � _� o ) r --I- , \_/ x I I -1 -, -, - . , \\� �/� r � � I � - \ �, \, *. 8x�- �_ ,jjj / � -_ -_ -1 1-1 (�� \ :___-:� ,_� ----I- 7. ,--- � ,--, z (,, I '-,, - � X ,�,\\ L ) I/ 1 60 � � I , 58�6 x . __ __l I-, I---,- - __ ( /_1 \-,-, �\ � - s \ � -V ::�� 1-i x \ - - - -_ I I - �7 56. � \1 x ) x - - - - * \�\\,,� 58.5 x ,��E3 � - /� _,_\x\1 ll�� f z ,�) I r \\N\-, � I x 60.6 0 oo,c�- 59.6 1 58.6 -��,\- \ - �� C/ Q 0 * -I- I x " x x - • �� Q, / 1 583 58.9 // , � , � - , /I I\ `,�-,_/ " ) / -\& ---r- _, ___l/ � � 0 x � -\\k 1 58.4 5 3 57.7 x �/� ---�� \,� , �)j 58.6 ( x 0 0 * � ,96 �� -,,-�,,-- ---- __7_��'� - x ,,� * � 1 58.9 ____ll � - ----� -_ -�, I x x - - - - - - - - * - - :E - - - - � x , ) � -, j ., j5s�j --, ,___� � I r / a_ x 51,9 - /� , 0) -_.,� - - 58.6 - __�� 6 A r � hv\l,_l U � k U / , , / x � � , XI 55. � ) \ 5 9 �� ( , 58.5 U) 11 ,� / X N \ �v\� x \ - I 11 , :�/ X � ,_� ,\� V\\ \ ,,_� � 55 x < I Y, � f/� ___y_l X.2 ' � _j �__ ✓ / r- -G0.2' x � / pip�; " -, Ir � I ,__i�l I -� ¢/ i I - - _j 11 - ( \\q\ ,\\� � \ -, �- - /I \ 3, _� i ----5 / \ � � F I \ � � �� ,\ " r-, ---- rl N /// . 6 � -,-- _---� __ --� ,) . -,-- , --,- ( . � I I x / � 1 4. 6 , \\ ,-\ - . ) X\`\` , \ ,_� �J� -'-,, -,�� ,___� � \ " ,/ x \ I . , 1 58 0 8, 1 1 1 , , I I , 9. x 58.2 �� - X , � -,,,- --,-� - � x �9.5 -� -) ,� 58.9 � - �� . ) - � I I , r, - � ) ) - - - l____l `___ - ) , 57.8 �, I I , X:,:b %'l. ��� I I ?:_ � I I ASPH ,I , , - ��-�­ ,�, I " - _ I _. : ��, I I I � � __,,.�_,, ,,� " �, I , I- �, __,�� ,,,�,-,�,, jt�,� , �­� � -,!, , -.'.- : � � ,� . -� ,,�_ � ,, , - ,� I I � r, �, , I %,­ � ­ z " �, I-, . - .. I - - , I _� :� ,� 1.1-;:, ,,, t ,,� -,,� � -,­,�7�:-F, , r , � _ , I � - - , . , :; , � � 21 ,,, " � ,,_� ,� �l ��8 5 , , � �� -, �, � I, �11 e �,. -,,. , , ; �,­q �­ I I ,, � - , � � ?�, , ,,,.,�: "I - , .� " I I � . , I , -1 I . �1, � _ I �, _ � I-. i, , , � _/ z -\' ) \\X �\ 56.7 x � / /,f5y6,, )/// ---- ----\ 57 6 57.7 ' ' : , 1. �\,\.*, I :,,..�i , I , \�\) 1, ,\� �:._ - �,, \ - � I - -', . " � I . , � , � � (16.1 -"- - � W_ � ,,) ,-, - -,� . - . ­1 I I I ,,: 11 I . x , is, ,., - � ­ � - ,;, �, ,11, , ,� � - . e, , ,�, ", � ,7,,� _,�,, , � --,�Z-,_; z , � -, � ,�,� , I . I � I 1 1158.8 ,, � ,F_ l-, ,,�!,� ��.,,, _�_ 1. I : _ ,. " I � , , , i , ,�� � I ", W. ,,:� � ­,­ -'I,-- I , - - I I � r_ , I I � � I ��x � z �, �,� .1 , - I_: ,'I _, �­: I ,, � .1 �� I - . - , � ,��, �., I - � :� I � � "GONG � -_ . � _!� I , ', � . I - ­ - , � - ,, I ,�� � � � ,'I ,: I , I I - 0 , ­ � I "'.1 ,_ - I . " . � � , i� ,"i � �*� � 11 ,_, I � I I I . 11 ­ 7, � I I I , � � " , �, ,,_ ,,,, - , � * - : 1 � `�� , - v � I , I , � , I , , t� ____l , __1 - / I I _J I , , � � - . , ��, __ , � , f /,, , ,l\ , x X 11 " � , 6 \ � ''. , x �\\\\� \\ X - � .- , ,�, � , , ;�� 7:7) " - I- " � , KD I , � , , � , , , �, 'I, ,-.,,, ­,,?� ,,-,,-,, 11, , _ O�3 1 �,-�----�,�il:",.",)� , "ll, ,k -,,,,,­, , I I \\, � .1 � - /, ��­�� �� �,, _,:�.; I " MILES AVENUE 11 w Lu ch U) V) :2 < 0 < HWY 111 0 LAND USE < 0 IMPERVIOUS , AREA ''I ' � I., . (acre) , ' Q� I I, I Ap - � DECIMAL �'� I C/) �obvowrel L :2 -i w th CL F --- co AVENUE 1 48 VICINITY MAP I I I., - I ­ I - � , \�_ I ; a .0 _­l: , I I I � 1, . , -, � I A�,,, I",-, � 1� ` -, ,,,,_.*,�­.�r --_j � I- I , - - I 0 - . I � , , , , v . . 7 ), I . � . -1, I _­1 , - , , - , ,,,,� -- - c , . 1 - :1 : , - , I . -cx (­ -i I �, - , I , -�-r -,�- �z.-,,,, ,­,, �, I - ,,,�,,, ,-,,�,? - ,-,z,, � k ' / 58.6 1 , , �� - ' � � , , \ �_ �� : 5 4 1 ,'x ,/ , ,;- . . I : , - � I 11 , . x59.5 , �A 4 , 8 0-� , :, - 65.4. �, , - , -,, - � - Jll - , /,,/ . - / 11 I I ) �� , \ I . � 58. I , . 0 1 1 I-) --) I 57.4 - . 57, 3 x . . I , - _f NJ 0 - I . 11 I I I 1 59.6 3 .11 � ) , ,__ .� ) � \-) / \ V \ \ I /- ,- ��/,�62.2 1 1 x � x �) . 57.5 1 ✓ / � 0 1 1 - , , -� x x , I I I � ,,x �\� � ,�_ � (-- ----, )\ \ 1� 1/( .-o � � LEGEND 0 1 r - - - - - - - � x 11 \ -1 I . , 1� 11 �, ,\ �,_ � . I . _�� , .1 � I \ K , _/___ - -_ ) \\ /, /J � � i i 57.4 . 58.5 1 1 a I \-:, -_ _____ - 57.9 ul 51s - - - - I / � - - �� 57.9 x x I x L_ - I x I - I - � - - I - � \ �_ ":-- -_ - _ -) � \\ ___� _­_ , I C ) N . I - - 58.5 , - -, - ;;� 58.6 ,--) I \ � ____ ------� 61.5 x 57.4 1 x I ___� COMMERCIAL I I __\ 0 (/'-I\- / ,,- ­', // � x u I ) / � 62.6 � 1­1 �,, � \', - � 60.4 ( � � 58.7 _Y6 ( x 57.9 1 I / I I _ - x 58.8 1 � x ) ) � - I-,- 609 \ \ r---,, � r x I ' I � ] � I / 60.6 ( � \1 -_ I 1. I � ,-�,-- 5E - ,/ � ___ '11) \,-/ � ',- r- - x 59.6 \ x6l L ) I _ - \ 6 . . 58.9 609 2 2 Xi �_ - " li tcx" // ,\Ij . ,,-- 1 57.7 I x Z� - __ - -:5- 1 ) z I ---, ) � I Kj, x ,\, -,,,/ ) / //,- \\\\ - � I \j x 57.8 x 11 � 1�1�___,,_ x 56.7 / 611,7 A2 57,5 F I'-- /I --� I __/ / :�, x � 57,3 x - / �l . _- � I ) L� 3 C_ - ( ��\_�� L-605 I 6 6,( , 1 59.7 59.3 /Ao f ,__, \1 ___/ � - - - - :: ��� x z - � ) 57.9 1 A=4.44 - L 2 __ - \ ,� --_:::, �� -, - )))/ / __\ . � z I , I �. _41 1 I I 1 I y I I --,, = x _, Z__j I � ( � ��/�� H;;) , \ � / , 57.5 _�*w � I X ---�_ j / � / / ��____ , ( I x - x 59 9 �_ � ��59 X 1 1 1 r\, ,,�), ,_N / x55. - \1 � - � �� �� x I", ___ / _-) I � __/ x �,� 57.6 / , -�_--_,_ ____f x 57.5 at _t= 8.7 x - � , _� �� ,*�Z_ I � � 1 57.9 x I . 45 I � r ,--- I--,- lj�(( p \ � �K - �, ,-----, � x - \ . - I A ,,_� IT- \-) � \ � , :� � 57.5 V_ - 4V41� __ ( 62��/ � ) �� x 57.3 , 6. I - - I /I / ---- �_ ---, �__ ­', � �� �-� ,,2�� ._____� \ � 11 . /,� x . I ta . x 59.5 - I- I 1( I � \ � X, 56.4 . 58.7 - I - _,__, \,� I,- \ � . _�K - 70.9 \)� I I I ____ll, -----) 1\ \� \�, I � \ x x x . / \ , )P I �( �_, :::� _t\ ))�) ) ))�� 11 � J 60.8 . 57.6 1 � \ ----\ - -, \�\�K_=�� , 1 57.5 57.6 x x . x 57.2 59.6 _l/, K� � I . ___ x 57.3 --.\ 57.3 ! I - __ - 1 6 �1(0 - 4R I �_/ -,,- X,­ x x58.7 \"� ) ) 4F' ) , �,, I \ --- x It I � I ��� -1 \---,-' \,\ - , \ i - � )�*t��/,4, , OMMERGIAL H x 7 , x , , = x 57.4 ! `�P) 59.7 = I � t ----- \ \ \, H\ SL - I/ 0 III ,\ � ,�\ \\\ / / L I/ �&�� P LLA 20110 508 li I x ��x -) q� /-- 56.8 -_ I / I I - I5,9 1 / x I / 5 , [ f j ,1.9.4 ,\'--,\ \ \, � \\ �1�1_ - L . - x I - -,,,V-- ,-- I -,- ./,j 56.9 . -,-- - - - - , :L__ 1 \ \ �x I I , ) , ✓ , \ � 11 I/ 7, �� � __�, \\,\ � j� �) , -//////, __,, x 57.5 _/_ _/_ f x . 58.2 1 � , _/ , � \_ //// x 56.8 ) x 58.9 x 1. � �, � IX \ � 58.3 1 1 59.6 1 1 I �� ,..•' , , -, 6 7.9 \ \ ��j , � \� � r . . ) 9[---, _( � 57.7 1 x I -,, ,,,� , ... - � I I' \ - -, , I � N 11 I � / , / I �= I ___d 11 � I � I � I , \ , � I - , . � � I , I , , ,- , 'm , - I ­­ I 1, , '_ i- -, , _� � I ,� I ''I - ,_ ======> /,,.�, I � I I ( j \ / 1 56.7 2 ,L ­ �, : � :� - , . � _�,� �11 , ,,, I � . �, �, " , , � - , , , _ , _77��,� 11 . , ; � , -, ) I I I I I 1 =7 7 � � i .1. I � I .: _ I I - �._ : , _,,� =__7 � I I . I, ,.-,,,� � , 5 x I ___ x . 1� �� � I I 'L 1-1 . _': , � ,­ � � � 56 4 ,�� � � PI , - L� J " " � � � :� ­ I .--- 1,,�, � 1� I ", 11, , - . , 575- - -1 �� - ` .. , _ - I I � 11 I . � _ I - 11 11. I . . I I � I � ­ � L -, .. , I 1, - � , �,; I , I I * - I , Z­,� 5�__� � - , � I . I I � I . I �, �, �, - : e I I i X, � . , � , I - I ,,�. �. , 11 ,� - 1 58.4 1 . , , I I - � , :, 1. � � � - . �, _, � " � .1 " , - I \ % \ , �\ , _\ - , � � � � � ___l . :, � , � � � I � x , , 11 57. 3 , " "_ - , , I � , � I - x , , - -,� \ �, \\,\\ (, �\ -,,,�, �� ,� ,,,, � .C.3--" \1 (r 1 567 11 _ ,, / I \ I a . �� ��\\ ,\ � , . . I I . : I ..,o C , 11 ,_ I .. � �) 0 56.7_ \ 0 \ \ --\ \ � - � ( - 56.4 �� - - I I � � I 1 1 ��l N, \ \ 1, I I I I I : , 1 60.5 ' x , - ' I l' . I � . _�:::: =:=, ,�d.b 5 �7 - _� , ' ' 1 . I � I , I I I I I : .11 i 57.8 x -\/x \ � x \ \'-- \,,,-----\ V 06.2 x . 0 C , J';� I � x I - \�� , �,� I ,,� 56.4 < I \ \ I \-, , " � � I � 'i � - I �_ / � C ` � , \� , \\ , I , ,\ ,) :`\_ ?-- �� I I I I � � x ?,/ . x 6. _ _� I , . 57 4 ��) 5 8.6 x \ , x I0 , 's _ �, ,� \ 6 j � , , � I 11 I Ii ) �,�) \ �\\--, ,\ , 1\ \\ \� \ i ,� � , i ,,. " 6. - \ K �� _�/ .//// ) I I �/ _�� 1 56.5 _L I I �� i v -��M\ \\\, \ - , t � \_ \11� \ __-, ��_�� _5x � x . 56.7 x i _____l 11 -0- ==l � , / I 0 . � , - - 1 60. // �---_ =� 56.3 t_j I ,� �\� ��_::�,� A, I j 58.5 -x I 9 r", I � --lo ,,,,A 50.4 �_ -) �� - I - - - - �__ - -1 Iaa x x 0 - - \ , , - I __, ____ I - - _,:r. -r- \ _�_ ___e_l__.!� __Z::::'- A -- _ X, , � 56.6 56.4 r__ \�� , /__� I - ) \ 7. 1' / x 57.3 0 -- - - ___r_ --- 57.5 �� ,\ ,,,�, Z-) : 60.3 �\ , � 1 I � x x /_ I _,___� j " \, , \-I- __ __, K e - --- -- T___7_ \ �\ T� .3 1 cfs 110 6x 001 J. - --- -- _� 110, 58.8 1 - . \ .�4 .. ___ - Qloo= 1 4.3 .9 ____ '17 x - - - .�4 f s _l< __l �Ql ot. J I - L - ASPH ---� ,__ ,--- I I - \, _,_ ,-, .4 wioo=l .77C 1 Qlo=7.78cfs ID I I - - - - .==1 o/ ,-` X , ii- . 4cfs \ 56.1 581 - � I --- , 64 �_ � � 200 K 20 Qloo= -1 ____� < I __ - - - __---- - - - - -- - - - __l) �)/ \\Qi,Q\o=2 lltft I . x .4 xf.,tjl cfs 58.2 �- F I __I_L__ -----I-,-- 55.6 ��o , I 1 *�7) DI cl ( C_-� 1 210 \ .... �� -) - � 56.4 - -_ - - I j = x . 56.4 (3 -I a. �� 0 1. i �Cfs � I \,� \ 55.9 ".- -Q40=". OCfS-- - " 1 6 1 1 x Q7 �9 �5 KAJA _' f ---, \ __ll L__ 56.7 " x 55.4 --- I --I . 54J.5 � ,�,.�X.�, . . . I 111- ----- - �� ._._­.­__- - - . ,,Tw7!,o!07-_-�­__ -�:-�_'_.��,,��-------_",�-�",.�,�� :: 55.8 rzii� x x 1 8 - - - - Z�_,/ . , __ � _� � I . w I - / I F .6 , - . I.. . ..,___!� 54.5 x 0 0 1 1 10. - . \\ \ � rll_ x \ .. . D I +_ I A 0% Am . x \ I �_ I Z L_ - -) , ". 56.4 _ 56.5 11 Lmi 0--__ J� - . I :) 58.. 111. - 0 C, 0 0 1 x \\ � ? - -- .. ,,,a - STRE �!, T rAlp A �^ IDI& = . � . . ­ �___,,� _=�:i_�qt r- \ /, . L 56.7 -, 57,4 ... _:�:_ * - I , - • �** * * * �­ , * * * - t., • * * . . . . - 55,5 --- - - 0 x / � , - . -� .... I ....... I .............. :- :.&ri%%4,&,&-, - . . x im x ,__l I - �, . �� ......... . . . I.- I.- - -.-,&. -..a,& � -1 --- � ...... .. I ................. . . . . . . . ....... - _: ,tv! _: vtl� .: , .. . . . I I . ..... I . ....... .......... . I . . I I - - 57.7 I­- . r \ -.:,-:- - .. ... I. 4� n 58.3 1 1 1 i ____l, � ,__� . . .:.:.:. --.q*m6,* *00.w.--��-7777.-. .. . . . ��. - ....... - - . . . . * -- 6.3 r F,,l .. , .... ******* ....... .. I x . . . . V pq . ................... 0 ........... : ; / ............ I . *. % 1. *. *. *. *...................!. ,/, � ....... ........ . l........... . .... . . ... - - ............. ... I . . . . . . . . . . . . . ....... . . I ... ........ ....... � l . - .......... . ..... ** . .. .... .. I..... : ...... : __J_ . i * * * * , * * * * *. 06� . . . . . . I . ... . . I ... .* .......... ........ .... iii .... ....... . . .... .. �:,�.:. * .*. ...... ........... .... .. + I - - .... ....... .... I I 0 f � \ :. : * - - .::.: 4fto - I 00= I . fs .... **********,** - - - . . ...... +. . . . . .. . 0 --- - - , . .*.%,:.,. ........ ..... . -::::,: f% . :.... .: .: .: -: -: - - _ -7L - (�t , . . � - - , . I---- I --I . Qio=0.61 - , . . - � .... .......... __j � ,--. .'.,.*.,., ....l.........., ..... .....'.... . . . . - � - - I I I - . .. .... * .. � . ........... I I %. . I r- ..:. I :: *:': *: -:: :::: -: - 6. ...... x � � - . .. ........., � ......... I *,­****,, . == I r- ***, .... ..... ..... ... 1 58.7 __j .. I I I . . . . . . ----I F----L ..... ..... .... I I ) 57.5 . IaL� %, ... ... ... , - ---------- f� =-i C= . . - ___ ---- ----- .. I I I I I - ** ... * . / C---- I :-*-*-,-, .. .. \1 r - .... - - - - = ,. J I­ � .. .. .. .*. . ------> , . Q_ - ..... , ... ... �� - - - - I � 57.2 . I .... ­ , V) (�_ ....... ...... .... . x .... ... I .. .... - < ... . .... I ...... ........ . I I I . .. .............. )�-_ - - (_7:+:J_t) / 1, � � C) \ i � I . , . . . .% .............. =: .. .... ....... I I ... . ....... . �> F_ 0 ... ­- :**+.*++ *** . .*.*.*.*.*.*. - ____ . r- 7 . I ...... _. .+.*.*.*.*.*. , � 1 58.1 K:* ... ...... .... (j --.-+--- .. -.+ ......:. ... I ... . x - , .. ....... .... .... ..... ............. -===Fi x .........:: - *:::::: :: * : -: - - - - , , ... .:.:+:.:.l.� ::::::::: ........ ..... ............. 55.8 F==# __i �, ,A.!R- .3# : ............. ....,.,., I ... ''. -::.. .. 1. - I (,,,�� , u L_ .. ,-%,.*.l.*,l,,. . ,�:-:-%* :.:.:+:.: ::::. ...... ... ..- ...... C===i I L� I ..... ... - � / z •I­_ - _: ........ " I ....... .... I . --- - --- - _ . ___l --- ­1­1_11 . , , *, " .... Cil _=� - .... - . . . . . 9 �- 0 ­.­ ..... -_ - ,- ,:::* �-:%� :1 .. � ­`1 ,� L� ,- ..I L� . II I 1� Q� U x r .. I . -Z-� .. . , . I , �,== ... . ... 1, .... ... .. - I ====Z:) T_ ,===]! -_ ,----)\I F (.::-,., ... ".... I . , . :-:-: a_ I I : ... **'' �:_- J__ - J- -L=30( - T U) 1� ==.I I L___, if 57.8 r I . . .,.,. , .... . *-*-*- / . _j / E . ...... "... , I ......... I � .. . L,-� ... ... ... , '' : 0 < C__ - , - F_ - -*-*'-*-* .:. .. .. .. -.-.--) .... : . . __*1_1 w - .. .. I . * ** I I : ..... �_ ........... . I I I � / ....... I ...: , . = ...... ......... : * -A 1 - a_ Icl� I / ........ . . -1. = (� - ��.= ... � � 57.7 . m / . . I - ,= (n L- I­_ :: *-*-*-* . . I ....... . -_ t�f �� < I / I jr- 58.3 11 . . . ...... - I /I I I ... % *., + . 55,9 - * ... .. . x . . .. ... ........ . - - - - - . ... . - =J 57.6 x ::. -:.:.: .......... = . ....... � % . . ....... , :-: 91 r 'CITCIRAGE .... I - **''**+. ......... . �_, __ _.,_J ... [KI C-7.... +..... .:-:-:-:-:- .. \_1 I : ...... :, vz, -, z :: �, ... 1. � I ::: * ..... I I I x L , I- : k ... :.*.,.,.,. .... . . ...... . I._ _F 0 \cll OJITS . . .*, .*.'.* R�N ....... I I ­ 0 1 - . 7 : I • ... ... C5 I .......".. I 0:.".... T*11.11 I R 0 .­_. 40Q- 020-011 . I . � , I 1 . tl � I ­ - . - u I . . � I ." -8.33c �;,,.,. . . 11, , '' I � ===== , _ 0 , z�' .,; -A, ........ , ­'. I I 11 , I I I + , -,, - , . . ::�7,--­ ,_ �,,­ - ­ I _,Villl, 11 r ( I - . . " , �:,,; _� == , Z �7 - 17 �'� - � . a ....... *w --- ,­ � . I I � .,,�� -,_ ,u ,, . . ,,_, ,,,,� . 380Y_ 01- I �� �,� �,,. ,�­,� - .. 4.48cfs ❑ ........ ... - " , , - � �_ , �� ,-, - I ­, I �,v _� � - 11, I . _T� . � ��_;,,,,, ,,� . ". m �, I ,;�� �-) , - - - =-. -- . ­ . . ,,-,` � -5 ,,�,:��-�,,�-! �,,,. - � +;,�V�,�,, -11, ��, 1� ,,,­,j ,,,,,,,,,�,, ,,,�,;� rM I - , I I -1 . .. ........ -.1 . I I CL,;', I � ",_ � I , *12 ,.,.*,,;*.., , I �,. -,, , - , . � - ,�, ", I - � �;�` I __� I ­,;�,, , , � - � �; . , , � , 't-, , 1, - , 11 I I ... w­ I , , . I - - , , ��_ � ''. , � � , , , - _ I , ai_ 1. _f��, V. , 0 N I - , �11 ., � . . - � -11, 2. 1 ..... . ... .... 11. , � :It -, - I­_ , 1,� �. % �,,��, ,:�,­ ,,,-.�, �L47 ,43%.pj�, .-W, . � 1. .,;., .... I (�L_ �; , .. t�� � _14, 1= , -, ,f , - - � "I , ; .... ". C, ) --- 0 , I 1 58.3 _�� - i,,�ze I , _117,Ka,3�5 ��, _� � I ­ �, ,", ", ­,,��i,._,�,: " " _. �`- �,,�,��,_,�, ­�,nt,�,ie� I .. --,-�,:%:.- -- - - , . .8 k 57.9 aw . � � ,- I z +, , I k ­ _. _-,,��,j I �, - � - . . I ... I , - - . .... :� . 11 - - -) M _,Q 2 . I ­ . 1�211, ,I , , " r � ;i� - x 4. I" : , .1, - 55 " x . .i - 1. A CO A I . 11 � , n .. .'.'.'.'.,. ......... - � r - EEO 1310 L-207 A-0.9 DRAINAGE DIRECTION � . � I TRIBUTARY DRAINAGE AREA BOUNDARY DRAINAGE SUB-AREA ID FLOW TRAVEL LENGTH (FT) AREA (AC) NODE NUMBER ELEVATION LANDSCAPED DENOTES (PERVIOUS) AREA DA LAND USE PERVIOUS . AREA .(acre) * , � IMPERVIOUS , AREA ''I ' � I., . (acre) , ' �, TOTAL . = 'AREA " - `( ) - r acre I I, I Ap - � DECIMAL �'� I . v Ai - � � DECIMAL'. I . - I I I Al COMMERCIAL, - 0,46 , r: :4.1 7 1 - 4.63 0.10 , -0.90 A2 COMMERCIAL I I . 0.45 � 3.99 , 4.44 0.10 0.90 Bl USER INPUT 0.08 0.15 � ' 0.23 0.31 0.69,: B2 USER INPUT 1 0.09 0.26 0.35 . 0.23 ,, 0.77 B3 USER INPUT � 0.10 0.15 0.25 0.36 0.64 tj,+ UZ)M INPUT 1 0.05 0.12 0.17 0.26 0.74 B5 USER INPUT 0.05 0.18 0.23 0.20 0.80 B6 USER INPUT 0.05 0.12 0.17 1 0.26 0.74 Cl USER :INPUT 0.15 0.19 0.34 0.40 0.60 C2 USER INPUT 0.14 0.15 0.29 0.43 0.57 C3 USER INPUT 0.22 0.71 0.93 0.21 0.79 C4 USER INPUT - 0.08 0.26 0.34 0.21 0.79 C5 USER INPUT. 0.56 1.87 2.43 0.21 0.79 C6 USER INPUT 0.49 1.08 1.57 0.28 0.72 C7 USER:. INPUT 0.10 0.55 0.65 0.14 0.86 C8 . USER INPUT 0.05 0.53 0.58 0.08 0.92 C9 USER INPUT 0.07 0.31 0.38 0.17 0.83 C10 USER INPUT 0.14 0.40 0.54 0.231 0.771 Cll USER INPUT 0.28 0.85 1.13 0.221 - -:O:::78 M TOTAL . 3.61 16.04 19.65 0.8 NOTE: USER INPUT FOR OPEN SPACE AREA ASSUMED TO BE 10t IMPERVIOUS I PRELIMINARY WOMP SUMMARY DRAINAGE TOTAL IMPERVIOUS DESIGN DESIGN AREA AREA AREA VOLUME FLOW (acres) (acres) (cu-ft) (cf S) DA-B 1.40 1.02 1,063 0.20 DA-C 9.18 7.13 7,628 1.38 NOTE: WQMP CALCULATIONS WERE NOT ANALYZED FOR DRAINAGE AREAS Al AND A2 AS THE TREATMENT OF THE FIRST FLUSH FLOWS FOR THESE AREAS WILL BE THE RESPONSIBILITY OF THE PROPERTY OWNER. i ... i� , . " . I .... ............ . I -.-- . I - ­ : , . - . I ,,� , I 1- � : -1 - - , - . . I .1 . I I . . . . . • -1 . � *** I - .%,..*.,.*. I , , o < 4,..4� 7;f!7!;!!j) : . �r I � 11 . : � � '' -: �, , �� I '� i \!!!�y -N ,I 'I I - - , , .*.*.*.*. � � � 1: I I 0 : 0 1 : I - - f i- 4".'.1 ,, i e -, - 1� I 'P T17 - . 1 ­ . I ... � � I I ' I - .� I 0 I . I 1, I r 58.7 0 � 16 . ................. - . .... r - - - z/ I ...... *:. . . . . . . � . . 0 x : : \ *. *. 1. 1� *. . 'fl--, - *,,/ :-:-:-:- T . I 0 I ) � I - I . 11 * . * .11 � I . ,. , I . I I ''I ­ . - � I I I . I I I .. . . I .. . . . , :.:.; - . I . . ,. I � ,� I­- . 11 ... - I . , . \ I . I I )�J&/ 77, 0 "] � , � lill 11 I I I I . 1. I I �, I I I I - - - - 1 J59 3 1 1 1 . : . , I L .'I � � � � �� (p � H I r- 1. . . ::::: .'.*.*. I 10 1, " 390 Qloo=4.02cfs b�o : * .,. .. 1. ... I - .. , L. '' .. .­ ..... � I I I \ , , * ...,. . . . Qlo=2.16cfs I r - - - - - - - - - - - - - - I- * . . . �� ,0_�. 63.9 1 . . . . . B ..- 57.8 : . ... . rl% ^ * . I 5, *** .... ,\ . .� � . . . . - ,i: , �,;.: . , ....... - - - - - . . . . - , . I • . . . . VIC . . . * , . *5 . I , I I� I I I � 0, � I­_ I­_ . . . Ew - � r 3�< : :-* ,_, : . . % 1. % V/ \ ... . M - 57.9 � �� - _T` 1 ..-.*. m . . � . \ /11_� _ ......Z. ...... - I / j = . 11 ii, I . .. 2 .... - , ,_:___� :-:-: I .*. ............ .*­ , I . .. ..... . . r7-, ....... . . ..,::: I I . I L_ . . .. . ,.", * � . 11 .. . . ... . ...... 0-., 1 8.9 I 0-� _ r .: I . I I.*.,.*. - . . . 0 , ... *. *. � � 6==::, I . * * * - . . . . . . (. . I 1 I I .*.*.. 0. 9 -...-.. -%�� .... ...... .. �- 58.1 .... . * - ....'. . . - . : a 11- I � x :. .. . - / .... ... 1% I __� - - /14 L � V.- I .......... t . .. . u I I . . . I '......... .... *.::. , .. ........ . �,_ I . ...... i I\ \ I .*.*. ., ....... z I = ( ..... I 11 . , . - .. " ..... . 11 . � ? I L_ . 13 C . ..... �-_,-:l - ,,�.. �L I , OONC . __T57.4 k - . .... ... 1*1 ..ifs :' . r.*.,.%* . - �, vi . : 1� . .. ... .. - � - - :5:1 ' * ' * ii � < I I I-, - x � . . .,. \ . . . . 1�;-�. :" � �_ L d.2 \ -, -, -, . . I . . . . 57.8 . . , .*. , , . . . . , . w ..... ... I � . :::: . L 0 . . . . . . . .. 1. . . I ... . , . , . ..:., .... I �l � j I_ � . : :::::;:::::. 100=1 56cfs I I =1 r- / .:- -:-:-:-:- 10 I 1� . : .::: =0. 14cfs � ) I X1 � ... . .... 0 I I I I I 1' , .. . . x 1.04cf I - - -1 1 230 . ..*. . .,. . 0 F_ I . . I I . . . - III I ,� I �11 I . . .: . -_ ..... � +� F, I I / I 1 57.3 . . . - . . . .,. x r, I 56.3 1 1 \9___/ - . . . . - • . . . . . ,�,� 1 55.0, ,_ , 0 . . . . - = , ...... / - - - - .... - �> 0 ___.. ..... I I x I � 0 ) __ . . . . _L 6-- , I r::�D ___ �_ "I . 2 ...... - .._.,-w-�__ \ . _� C0%STCO . . \ :::,� ... . /// q - , . . * -.qAm . .*.*, � \ L=195 0 - * * 57.5 : � ,�, � . � F ".9 ' .... .*. ( - -... - . .*.** \� 7:1 x ,�> CONC x ..... . . . . . . 11 I m . ..4.... /.//. ..... . .... . -_ ( , ... ________j .... . . .:::: ..... .� .-.. \ 0 ip 7 f� A,O \ . - F Soo I III ;, im r'. -. 11 \ I . ........."......,.,.,................I F7 \,� .*.* / W/\ \\\ f=:�� 6.PO Qioo=0.88cf 3 (3 1\ Clo ., 54.9 ff :� .. /,/ \ . . . x : I— 1_11_­­___ 1% . 0 Qlo=0.48cfs . m ::: X I . 6 / . 11 - I . . . . �. / . 0 0 C3 .*. �� Ism, L=2? ` ❑ I . . I ... - ,J,,� 0- I I ... , �: _. F - 63.4 / 0 . - 0 CP I - , - - �� ,-:� - : q .,. +-_ I _�� - __ - . C -u---------� ---_& I \ � - 56.5 1-220 ****,*% A . -=::= __ -5 - - - - ,�.* - I.*. I .%. L: loo=2_14a- ",-\ - I _� --:: 52 _'�= - .'- __�� . - - x! _:_::� ' � �x2_9 . . - . . . X .. _� -!- � I . I I .I.. I . 11 � I I �� I I .... * * _, . ","... / I I I I -1 I- �_ � --J- -- I __ J� A=0.93 . ...:. * *** ,. I I ��_Z:_z ­, - -�� , 0 10=11.Lict, I I .......... .11-11--, _­ - ,�-,,,-�,,,-�-------,-,---,--,,---,,---.,-- - - - - - - ................... ........ � - . *** .....*. ­ - ---------- __­­­1_ .... ...... *.%%*.%*� * * *:* -,- ------- - . ___ - - - w__= - ,\N,---Io\ol 1� .. ff=:=�, \ . . - � I � � ................... . . 85 ..... - ................. . :. � • . - z f (i . - . '.'.'. ... �--.*:: : . . .*. ........ I x // , .... .............. I 1� 0 ,,, 55.8 56.1 56.1 - ` --4:zz-� . . % ... '. _ ....... \ 0 x , . :. . * lk�-�;-`_,., � f . __, " , - - - B : ... I_: . ... '' - L-_� �� - - " � ­ -------= . . - . 4., x � ,, � � 0. � � I ,/ ­� - - �- --\- ,�_ I (( /,- � ­-, -� * * * *.*:,:.:. - - - , - -------- . . . ..... . rc)�.- � . 5?1 f==z---, " x - ' I . �� Qloo=1.66cfs I ... : \� - � �,,\� &00-02(0-0-� \ , , --- , , - 015 ..i:-:,* ,-:-x-:-X . _"� / , ,,,,, 7, Qloo=3.06cf� 355 1 1 .... X� I I '', - .-'---\ - .Qloo=3.83cfs \L3i20 , 1 .1114C." . . . �. - I , ''I , I I I I - 50.3 - ,.,.*.*I � . � �/ _ �, � ,�� Qid=1.66cf I—' �,;, ,� ,� �, '', - ,:,, " � oc s .... ­ .... A� ". �:.� 0 � 11 _�,­ q� I I �: ,, , � - ....... L , . .. �Qlb-.*-;2.0 fl, / - _ 375 ..... .1. I \_-� -Q, lf .... . � I I 1. I ,t.� 1, � Qio=0.9 " " oo= . . - I _ �, \ . ­ � .� 6%7 1 cf� x . I 11 ; - I 1. ­ I � I " ' I I . . ..... . -I 1.11 1, I 1�1 . L - - * _ . ... . I L ­­­. ,. 1. -I - __�_ - I - NP1 w . : ,- /� - - -//, i* .::.:.,k:,:-, S, I I .. .. I I p / /V _____l - = e ,_ Jo J - � - ❑ i . I 9 . I I I V. I I I , : , �� � . I I I . , f<_ _� -, � -�-- I - . / I I I I I- I - '] _. . . . f L - -­­ ­--l- ,_ �:� ": I T �T I I , � Q,107,�61;4816ff��� , I / I , �_.,._,_, ` ; , , . , ,- • - -, I .. I I . 1. � .. __,�,_t!� ­ � . ,_ �, 11 � , , 'I Iq , - I - _� 11 - _. . I - -- I_ I � : �i�� �, �, ,-,, , , - - - , L I I _: I � ..;,, �� � � 3.2 1. . . . . . ­.". � ,. , . �, ,:"; I , , ,. , �,, ,--- I � " �� , ,. ��­ ;� , 'o, � I , , T I'll � _____ll_ .... , �� F�=� I , �, , 11 I . I .... , I _ I � ` _� I I � � - � . I , 't, f,,,� - <�_ �, t- ­ ,­_ 11 , \\ I , i I .. - �, � - � � , �, " ., _ , 1, I � o �,. ; % *, i I , ., - I . � I - ---�, � --- � _�_. - I , I " , , _,�� \ .............. I- --- ..-.- I.-.-.,-.- .... 11 - 1, 11: . . .. I I I � 1 I ........ . ........ I ......... . . .......... l -1, I ..... � * , .- - . ..... * * * * *. * * * *.*.*.*.:.:.*i I ... . . . . � I n I I .1 :;�� ____ , - I I I ::::::::::* ......... ..'......... - - I I 11 I �_4) I 1. 1, �-:-x.:-:-; *. -:.:-:-:..__ - .... , . I I � - ............... a ... ::* ---,� *.*.*.*.* . ..... : I - 11, ... * 5JQ.-,_._.---.--_- I - � I . . . .::T "...*......., , - 1 , - . v I _,___,,�, , I . 9 .... ll.*.*.*.*.*. L-d , . , I , " I .... . . . 0 � 0 I '. � , . �,�� __ - - � • :::::: - - I I .*.*.* I � I _ _ 0 0 1� 0 1 , / I I: . .. I*.*.*.*.* .*.*.*.*.* 1 55.1 4.-9- 1*1 50 : : .",.,. m __�, - :::::: " 55.6 x � _� �_, I I , :_ . . . � I : : : LliT .*.*.*." 55 0 ... I . I .1 6_d j ........... . . . . , , I . � ..... i 56.9 � I I x I 1- -- 5 , - I \ . I � I I I . . ***** ...... I . . . . � ASPH - , - � I I .....'. , 1. . , I . I I � 54.. - - . . I -x- - I I ........ I ..... - - -f- - - - - - . - � - 1 54.9 x 0 0 05 __�� ' i __ - ,_ . . - . . . - . � . _`�._ . .. ' 'L f- . . . . . - . . I . - . . . - . , . I . � I . 51 0 -7 Q> x 54.9 x 55.1 1 x - -) - � * - / \ I I - . . . . \ � -.-,. - -,K-- , ... �)J), - _J, \ � I I - �**,,,* I I - _ _=_--i�i- - __=, , - * -, - JL�L___, C) - - - - - -Z=7 - _____ I- - - - - ,- - - . 54.- - x - - - F5 4.2 - - - 544 - I \ - I x x 54.3 x ­, x 54.2 x 54.2 x 54.2 I I I . 1-1 . __l 54.9 � 54.4 y 54.5 x ____l x 53.6 / 5(.5 /- _- = __::�_ �l - - - - - x __ _� __ CONC , - - A - x - - I .__ - - - - -.7-- ___ - - - - - - - - - / � X - - - - - - z _�� �, , � - - -_ - , _ -.- _� � - - - - - - 5i. - - �. I "J� � 7- - I � // - �11 - . - __C0N_C/' __ x 7-7- . - XR., - - - - - - - - - - - - - - - - 541 53.8 . 53.5 . I I _p -, - - - - -, - __zzzwz__ 7z_11 I - - � x x 45.2 x ,\ -) f- � - __ t��� \ I T 0 -- - x - ------,----5 .b x - /� 53.6 D-E SPER D-S _ 53.7 x .6 _j 0 - ,/,< L - - _-, I t- _x_ - 53.8 x X,�, - _� //_ t ✓ I . I I I #1 I ____ _,,,�__ 11\ ' I UNIF'ft-D ' - 5' - - ,�_\ -1-1, , ----I � � I 44.9 I ___l / 1 -4 1 /r (2 Qo ---, '/-\ .- I I ) \ \\ � . / I / r-0 0 0 5.5 /I,,- - 110 ( � � \j - -1 j I - 53.5 \ - �\ 5 5 x � � �, x44.8 / r 44.8 000 -I- ,_ - - 2 .0 0 \ x \ 51.6 151.1 �1.9 44.9 1 1�1 b /f --- X x 54.9 1--� \ - x 53.3 , X5 .2 --- p - -1 5 x \ I x � 4 .9 � I x x 13 I ASPH L - I , f4 53.5 L- \ 52. \ x 2.7 _l/ x . (D v 0 55.6 x _ ,,- ,\ x x 53.7 4 52.5 x 5 .6 x ---I- x , 6 ----,- - --- N \ � I I I I., 1 52, - � �, _� I I I . \ J, I ( �11 x 11 x - I I f � I mr-1, pr*le* 0 R;l ol 50' 100' 150' 200' SCALE 1"=50' 1 OCTOBER 5, 2011 1 , - I I � 11 , I I , � � - 1 1 1 2 1 1 1 I � , I I _ I � , ­ ., , ! 1� J� I I f I I � I , I I . I I I : .I I � - � I . ,, _­- ��_�_­, � 1 , , , � � tj .9 d) C: U < V) �E , 9 D .0 N :2E < .. 45 � Lo � � 0 -I- - - - - - - - I -L L --- ---- -- - -- - -- J II J _J a o � F- I- I- P -G.01 FUTURE COMMERCIAL PARCEL L 9 ° ILLA 2010°508 L- J ° I I J I o o0 00 o a L 2 W MILES AVENUE PIPE (in) MATERIAL SYSTEM FLOW (cfs) FULL CAPACITY (cfs) SLOPE (ft /ft) o'. A.01 54 U 43.18 107.67 0.0030 o A.02 V) O 44.37 0 a� P -G.01 FUTURE COMMERCIAL PARCEL L 9 ° ILLA 2010°508 L- J ° I I J I o o0 00 o a L 2 W MILES AVENUE AVENUE 1 48 J J JJ -zF I PF=-- J I -B.01 J J J _[l J��► JJ � J JJ �J ,---------- J ------ �L-, r- - -- J � I J COSTCO J J J f= J (PROP. BIOCLEANNS B I It-A. 1 T- L FF 56.1 _ . _.. _ ._ _. _ ................ ....._ ... A.' M Elf FF 6.00 F 0 P -A.07 - - -- -- -_ P 5.4 E -- PROPOSED PIPE SUMMARY PIPE PIPE (in) MATERIAL SYSTEM FLOW (cfs) FULL CAPACITY (cfs) SLOPE (ft /ft) o'. A.01 54 U 43.18 107.67 0.0030 o A.02 V) O 44.37 Q 0.0030 2.79 Q 54 HDPE 45.16 117.77 0.0030 HWY 1 1 1 (~n HDPE j 115.95 p 2.89 o 54 V) o' 46.09 120.46 0.0030 U-1 A.06 54 LL- 46.19 104.28 w 2.90 A.07 54 AVENUE 1 48 J J JJ -zF I PF=-- J I -B.01 J J J _[l J��► JJ � J JJ �J ,---------- J ------ �L-, r- - -- J � I J COSTCO J J J f= J (PROP. BIOCLEANNS B I It-A. 1 T- L FF 56.1 _ . _.. _ ._ _. _ ................ ....._ ... A.' M Elf FF 6.00 F 0 P -A.07 - - -- -- -_ P 5.4 E -- PROPOSED PIPE SUMMARY PIPE PIPE (in) MATERIAL SYSTEM FLOW (cfs) FULL CAPACITY (cfs) SLOPE (ft /ft) AVERAGE VELOCITY (ft /s) A.01 54 RCP 43.18 107.67 0.0030 2.72 A.02 54 HDPE 44.37 116.77 0.0030 2.79 A.03 54 HDPE 45.16 117.77 0.0030 2.84 A.04 54 HDPE 45.99 115.95 0.0030 2.89 A.05 54 HDPE 46.09 120.46 0.0030 2.90 A.06 54 HDPE 46.19 104.28 0.0030 2.90 A.07 54 HDPE 46.30 121.19 0.0030 2.91 A.08 54 HDPE 46.48 118.77 0.0030 2.92 A.09 54 HDPE 46.58 120.46 0.0030 2.93 A.10 54 HDPE 46.68 104.28 0.0030 2.94 A.11 54 HDPE, 46.77 128.99 0.0030 2.94 8.01 30 .• HDPE -,17.18 46.53 0.0110 3.50 B.02 _30 .; _,< HDPE 7.27 : 46.60 0.0539 4.87 8.03' .30 1-" HDPE ' ' 17.31 46.60 ` -'%0.01 10 3.53 B.04 30 HDPE 18.28 46.53 0.0110 3.72 B.05 30 HDPE 15.57 25.66 0.0110 4.96 C.01 18 RCP 1.52 10.53 0.0100 0.86 D.01 48 HDPE 32.35 125.64 0.0065 2.57 D.02 48 HDPE 32.39 115.03 0.0055 2.58 D.03 48 HDPE 32.63 122.78 0.0062 2.60 D.04 48 HDPE 30.67 122.16 0.0062 2.44 D.05 48 HDPE 26.31 121.62 0.0061 2.09 D.06 48 HDPE 26.03 121.75 0.0061 2.07 E.01 36 HDPE 26.12 72.33 0,0100 3.70 E.02 36 HDPE 23.81 73.03 0.0102 3.37 E.03 36 HDPE 16.60 76.88 0.0113 2.35 E.04 36 HDPE 16.69 74.18 0.0105 2.36 E.05 36 HDPE 16.75 72.25 0.0100 2.37 E.06 36 HDPE 16.81 72.25 0.0100 2.38 E.07 36 HDPE 17.20 71.45 0.0098 2.43 F.01 24 HDPE 9.00 24.28 0.0098 2.87 F.02 24 HDPE 8.31 24.50 0.0100 2.65 G.01 30 RCP 17.39 29.14 0.0050 3.54 G.02 30 RCP 16.33 28,92 1 0.0050 3.33 G.03 30 RCP 17.091 29.441 0.0052 3.48 G.04 30 RCP 1 17.571 29.041 0.00501 6.19 PROPOSED LATERAL SUMMARY LAT NO. PIPE 0 (in) MATERIAL SYSTEM FLOW (cfs) FULL CAPACITY (cfs) SLOPE (ft /ft) AVERAGE VELOCITY (ft /s) B.01 12 HDPE 4.02 25.80 0.4470 5.12 B.02 24 RCP 14.31 24.00 0.0113 4.56 C.01 18 RCP 0.76 52.13 0.2463 10.62 C.02 18 RCP 0.76 57.48 0.2994 11.37 D.01 12 HDPE 3.66 38.26 0.9827 4.65 D.02 12 HDPE 2.14 8.82 0.0522 2.72 D1.01 18 HDPE 6.25 22.87 0.0404 3.54 D1.02 18 HDPE 4.66 22.88 0.0404 2.64 D1.03 18 HDPE 4.70 22.89 0.0405 10.19 D1.04 18 HDPE 4.71 22.82 0.0402 10.17 D1.05 18 HDPE 4.72 23.27 0.0418 10.32 D2.01 12 HDPE 2.57 11.93 0.0956 3.27 E.01 12 HDPE 3.83 8.961 0.0539 4.87 F.01 12 HDPE 8.33 85.11 0.1206 17.21 G.01 18 RCP 1.48 55.14 0.2756 13.50 G.02 18 RCP 0.45 84.87 0.6529 12.72 G.03 24 RCP 15.67 29.14 0.0166 9.44 G.04 18 RCP 1 2.191 42.36 0.16271 12.62 PROP OSED : INLET :SUMMARY INLET NO. INLET TYPE TRIBUTARY AREA Q10(0 (cfs,) . ; RIM / FL ELEVATION (ft) HEADWATER DEPTH (ft) GUTTER ,DEPTH (ft) HGL IN (ft) HGL OUT (ft) 1 -B.01 24x24 ''GRATE C11 4.02 53.86 0.38 -N/A= ,47.80 47.73 1 -B.02 EXTERNAL' PIPED FLOW A2 114.31 '-N/A- -N/A -N/A- -N/A- -N A- CB -C1 CLQ STD 300 - SAG B3 B4 10.76 54.53 "N/A- "0.21 -49.37 49.35 CB -C2 CLQ STD 300 - SAG B3 B4 10.76 54.53 -N/A- 0.21 50.37 50.35 I -D.01 24x24 GRATE C9 ;3.66 53.25 0.21 -N/A- 47.06 46.98 I -D.02 1808 GRATE C10 :2.14 53.26 0.25 -N/A- 47.11 47.09 I -D1.01 24x24 GRATE C6 4.72 54.70 0.42 -N/A-1 50.59 50.53 I -D2.01 2424 GRATE C8 2.57 53.37 0.28 -N/A- 47.33 47.30 I -D.03 24x24 GRATE C7 :3.06 53.46 0.32 -N/A- 47.27 47.21 I -E.01 24x24 GRATE C3 :3.83 53.68 0.37 -N/A- 47.40 47.34 I -F.01 2424 GRATE C4 1.56 53.92 0.24 47.52 47.48 I -F.02 24x24 GRATE C5 18.33 53.40 0.44 48.49 48.43 CB -G1 CLQ STD 300 - GRADE B5 10.45 56.56 -N /A- ftA 50.73 50.71 EXTERNAL PIPED FLOW C2 1.04 CB -G2 CLQ STD 300 - GRADE B5 10.45 56.54 -N A- 50.80 50.79 CB -G3 CLQ STD 300 - SAG B5 1.05 54.52 -N /A- 0.23 48.99 48.93 EXTERNAL PIPED FLOW Al 14.77 CB -G4 CLQ STD 300 -SAG B1 B2 1.05 54.52 -N /A- 0.23 51.11 51.08 EXTERNAL PIPED FLOW C1 1.17 NOTE: HEADWATER ELEVATION IS BASED ON THE ORIFACE EQUATION FOR GRATED INLETS ASSUMING A 50% CLOGGING FACTOR. CLEAR OPENING AREAS OF GRATES: 2424 GRATE - 3.23 SF 48x48 GRATE - 12.34 SF GRATES CHARACTERISTICS WERE OBTAINED - FROM JENSEN PRECAST. V O R'C 0' 50' 100' 150' 200' SCALE 1"=50' r� �.N j. OCTOBER 5, 2011 MSA CONSULTING, INC. CITY OF LA QUINT A PLANNING ■ CIVIL ENGINEERING ■ LAND SURVEYING CORAL MOUNTAIN AFFORDABLE HOUSING 34200 BOB HOPE DRIVE ■ RANCHO MIRAGE m CA 92270 FINAL STORM DRAIN EXHIBIT TELEPHONE (760) 320 -9811 ■ FAx (760) 323 -7893 c m ' U Q 7 N a m 0 co 0 N 0 LZ OCTOBER 5, 2011 MSA CONSULTING, INC. CITY OF LA QUINT A PLANNING ■ CIVIL ENGINEERING ■ LAND SURVEYING CORAL MOUNTAIN AFFORDABLE HOUSING 34200 BOB HOPE DRIVE ■ RANCHO MIRAGE m CA 92270 FINAL STORM DRAIN EXHIBIT TELEPHONE (760) 320 -9811 ■ FAx (760) 323 -7893