Loading...
3042030 L410 i�iuwflit „_. IE 30 L410 UDIER GORY Hydrology Study for La Quinta Sam's Club Parcel Map 30420 La Quinta, CA Prepared For Wal -Mart Stores Inc. 2001 S.E. 10`h Street Bentonville, AR 72716 -0550 Oda CQUDY . Prepared By Nasland Engineering 4740 Ruffner Street San Diego, CA 92111 858- 292 -7770 December 2005 N� are ► -.�;° UDb2 Q%Dr � ,1 TABLE OF CONTENTS I PURPOSE AND SCOPE/ DESIGN CRITERIA II SUMMARY OF CALCULATIONS III RETENTION BASIN CALCULATIONS SYNTHETIC UNIT HYDROGRAPH - 100 YEAR IV RETENTION BASIN SIZING REQUIREMENTS V RATIONAL METHOD CALCULATIONS - 100 YEAR VI PROPOSED CATCH BASIN DESIGN VII STORM DRAIN PIPE DESIGN VIII SAND FILTER DESIGN APPENDIX A RIVERSIDE COUNTY FLOOD CONTROL DISTRICT REFERENCE MATERIAL APPENDIX B HYDROLOGY MAP r sams 24hr.XLS Riverside County Hydrology Manual lipirecipitation Data (La Quinta Only) Calculation of Frequency Duration Precipitation SYNTHETIC UNIT HYDROGRAPH METHOD Lag (hr) = 0.0 1 0.1 min 1 100 3 2.2 SHORTCUT METHOD Less than 100.200 acres 8 Lag Time < 7.6 min ) 100 6 2.75 Data trip ut lboxed Is caice0 1G0 24 4.5 Concentration Point NA Soil Group (Sheet 11/ pp, 78) A 25 3 1.75 Area Designation NA Precipitation Rate PI E5.1 6 -5. 4.5 25 6 2.1 Area acres 1063 0.02 s mi Area Pred Corr E5.8 % 100.00 25 24 363 L (miles) 0.037879 1 Total Atli 1 10 3 1.4 Lca mites 0.208 Runoff Index PI E -6.1 31 10 6 1.75 Elev ® Headwater 64 AMC Condition I, II, or III Sheet E -8)) 2 10 24 2.7 El ev @ Concentration Point S4 In d0' Rate for Pery Areas (PI E -6.2) 0.74 H = 10 Deve Area Cover (PI 6.3) 90% S (ft/mile): ): 264.0 Const Loss Rate 3.6 hr stonn) 0.14 n Ave Mann, Plate E.3 0.0015 Low Loss Rate Sheet E -9 Lao (mlo) 3.6 Stone Frequency 10, 25, 100 100 Results Duration 3, 6,24) 24 75031 Cubic Ft 1.72 Acre - Ft Unit Time Pattern Stone Loss Rates Effective Flood Period Percent Rain Max Used Rate Rain H tlmgre h Volume sin In61 Time vS Flow - 5.0 4.0 '� 3.0 _ 0 2.0 LL 1.0 0.0 15 165 315 465 Time (min) min % iNhr in/h- cis wfl ctlft cub 15 0.2 0.04 0,13 0.15 0.00 0.0 0 0 30 0.3 0.05 0,13 0.15 1 0.00 1 0.0 0 0 45 0.3 0.05 0,13 0.15 0.00 0.0 0 0 60 0.4 0.07 0.13 0.15 0.03 0.0 0 0 75 0.3 0.05 0.13 0.15 0.00 0.0 0 0 90 0.3 0.05 0.13 0.15 0.00 0.0 0 0 105 0.3 0.05 0.13 OAS 0.G0 0.0 0 0 120 0.4 0.07 0.13 0.15 0X0 000 0 0 135 0.4 0.07 0,13 0.15 0.00 0.0 0 0 150 0.4 0.07 0.13 0.15 0400 0.0 0 0 165 0.5 0.09 0.13 0.15 0.00 0.0 0 0 180 0.3 0.09 0.13 0.15 0.00 0.0 0 0 195 0.5 0.09 0.13 0.15 0.00 000 0 0 210 0.5 0.09 0.13 0.15 0.00 0.0 0 0 225 0.5 0.09 0.13 0.15 0.00 O.0 0 0 Volume vs Time 80000 70000 - C 60000 u 50000 30 000 c � 20000 10000 0 0 100 200 300 400 500 600 Time (min) 240 0.6 0.11 0.13 OAS 0.00 0.0 0 0 255 0.6 0.11 0.13 0.15 0.00 0.0 0 0 270 0.7 0.13 0,13 0.15 0.00 0.0 0 0 285 0.7 0.13 0.13 0.15 0.00 0.0 0 0 300 0.8 0.14 0.13 0.15 0.00 0.0 0 0 315 0.6 0.11 0.13 0.15 0.00 0.0 0 0 330 0.7 0.13 0.13 0.15 0.00 0.0 0 0 345 0.6 0.14 0.13 0.15 0.00 0.0 0 0 360 0.8 0414 0.13 0.15 C.00 0.0 0 0 375 0.9 0.16 0.13 0.15 0.01 0.1 111 111 390 0.9 0.16 0.14 OAS 0.01 0.1 111 222 405 1.0 0.18 0.14 0.15 0.03 0.3 276 501 420 1.0 0.16 0.14 0.15 0.03 0.3 278 779 435 1.0 0.18 0.14 0.15 0.03 0.3 278 1057 450 1.1 0.20 0.14 0.15 0.05 0.5 445 1502 465 7.2 0,22 0.14 0.15 0.07 0.7 812 2114 480 1.3 0,23 0.14 0.15 0.08 0.9 779 2892 495 1.5 0.27 0.14 0.15 0.12 1.2 1112 4005 510 1.5 0,27 0.14 0.15 0.12 1.2 1112 5117 525 1.6 0,29 0.14 0.15 0.14 1.4 1279 6396 540 1.7 0,31 0.14 0.15 0.16 1.6 1448 7842 55S 1.9 0,34 0.14 0.15 0.19 2.0 1780 9622 570 2.0 0.36 0.14 0.15 0.21 2.2 1947 11569 585 2.1 0.38 0.14 0.15 0.23 2.3 2114 13683 600 2.2 0.40 0.14 0.15 0425 2.5 2280 15963 615 1.5 0.27 0.14 0.15 0.12 1.2 1112 17075 630 1.5 1 0.27 0.14 0.15 0.12 1.2 1112 18188 645 2,0 0.36 0.14 0.15 0.21 12 1847 20134 660 2,0 0.36 0.14 0.15 0.21 2.2 1947 22081 675 1.9 0.34 0.14 0.15 0.18 2.0 1780 1 23861 690 1,9 0,34 0.14 0.15 0.19 2.0 1780 25641 705 1.7 0.31 0.14 0.15 0.16 1.6 1446 27087 720 1,8 0.32 0.14 0.15 0.17 1.8 1613 28700 735 2.5 0.45 0.14 0.115 0.30 3.1 2781 31481 750 2.6 0.47 0.14 0.15 0432 33 2948 34429 765 2.8 0.50 0.14 0.15 0.35 3.6 3282 37710 780 2.9 0.52 0.14 0.15 0.37 3.8 3448 41159 795 3.4 0.61 0.14 0.15 0.48 4.8 4283 45442 810 3.4 0,61 0.14 0.15 0.46 4.8 4283 49724 825 2.3 0.41 0.14 0.15 0.26 2.7 2447 52172 840 2.3 0.41 0.14 0.15 0.26 2.7 2447 54619 855 2.7 0.49 0.14 0.15 0.34 345 3115 57734 870 2.8 0.47 0.14 0.15 0.32 3.3 2948 60881 885 2.8 0.47 0.14 0.15 0.32 3.3 2948 83829 900 2.5 0.45 0.14 0.15 0.30 3.1 2781 66410 915 2.4 0.43 0.14 OAS 0.28 2.9 2614 69024 930 2.3 0.41 0.15 0.15 0.26 2.7 2447 71472 945 1.9 0.34 0.15 0.15 0.19 2.0 1780 73252 980 1.9 0.34 0.15 0.15 0.19 2.0 1780 75031 975 0.4 0.07 0.15 0.15 0.00 0.0 0 . 75031 990 0.4 0.07 0.15 0.15 0.00 0.0 0 75031 1005 0.3 0.05 0.15 0.15 0.00 040 0 75031 1020 0.3 0.05 0.15 0.15 0.00 0.0 0 75031 1035 0.5 0.09 0.15 0.15 0.00 0.0 0 75031 1050 0.5 0.09 0.15 0.15 0.00 0.0 0 75031 1065 0.5 0.09 0.15 0.15 0.00 0.0 0 75031 0.4 0.07 0.15 0.15 0.00 0.0 0 75031 0.4 0.07 0.15 015 0.00 00 0 75031 0.4 0.07 0.15 015 0.00 0.0 0 75031 Ki2 0.3 0.05 0.15 0.15 0.00 0.0 0 75031 0.2 0.04 0.15 0.15 000 0.0 0 75031 0.3 0.05 0.15 0.15 0.00 0.0 0 0.4 0.07 0.15 0.15 0.00 0.0 0 75031 Page 1 sams 3hr.XLS Riverside County Hydrology Manual I IlPrecipitation Data (La Quinta Only) ' - Calculation of Frequency Duration Precipitation SYNTHETIC UNIT HYDROGRAPH METHOD Lag hr = 1 0.0 0.1 min 100 3 2.2 SHORTCUT METHOD Less than 100.200 acres 8 Lag Time < 7.8 min) 100 6 2.75 Data Inip ut (boxed Is calceA ) 1 100 24 4.5 Concentration Point NA I Soil Group (Sheet 11/ pp 78) B 25 3 1.75 Area Designation NA jPrecipitation Rate PI E5.1 -5.6 2.2 25 8 2.1 rea acres 10.3 0.02 s mi Area Pred Corr E5.8 % 100.00 25 24 3.3 L (miles) 0.037879 Total Acjusted Storm = 2.20 10 3 1.4 Lca miles 0.208 Runoff Index PI E -6.1 32 10 6 1.75 Elev @ Headwater 64 AMC Condition (I, II, or III (Sheet E -8) 2 10 24 1 2.7 Elev @ Concentration Point 54 Infiltr Rate for Pery Areas (PI E -8.2) 0.74 H = 10 Devel Area Cover (P16.3) 909E S (Wmile 264.0 Const Loss Rate (3-6 hr storm) 0.14 n Ave Mann, Plate E.3 0.0015 Low Loss Rate Sheet E -9 0.15 Lag (min) 3.6 Storm Frequency 10, 25, 100 100 Results Duration 3, 6, 24 3 64864 Cubic Ft 1.49 Acre - Ft Unit Time Pattern Storm Loss Rates Effective Flood Period Percent Rain Max Used Rate Rain H dro ra h Volume Sum Vol Basin Infil Time vS Flow 25.0 - 20.0 - 15.0 0 10.0 u 5.0 0.0 law ZED 5 55 105 155 Time (min) min % inthr in/hr ) (cfs) (cub cult cult 5 1.3 0.34 0.14 0.15 0.19 2.0 597 597 10 1.3 0.34 0.14 0.15, 0.19 2.0 597 1194 15 1.1 1 0.29 0.14 0.15 0.14 1.4 434 1628 20 1.5 0.40 0.14 0.15 0.25 2.5 760 2386 25 1.5 0.40 0.14 0.15 0.25 2.5 1 760 3146 30 1.8 0.48 0.14 0.15 0.33 3.3 1005 4153 35 1.5 0.40 0.14 OAS 0.25 2.5 760 4913 40 1.6 0.48 0.14 0.15 0.33 3.3 1005 5918 45 1.8 0.48 0.14 0.15 0.33 3.3 1005 6923 50 1.5 0.40 0.14 0.15 0.25 2.5 760 7683 55 1.6 0.42 0.14 0.15 0.27 2.8 642 8525 60 1.8 0.48 0.14 0.15 0.33 3.3 1005 9530 65 2.2 0.58 0.14 0.15 0.43 4.4 1331 10861 70 2.2 0.58 0.14 0.15 0.43 4.4 1331. 12192 75 2.2 0.58 0.14 0.15 0.43 4.4 1331 13523 Volume vs Time 70000 -- 60000 80 2.0 0.53 0.14 1 0.15 0.38 3.9 1168 14691 85 2.6 0.69 0.14 0.15 0.5e 5.5 1657 16349 90 23 0.71 0.14 0.15 0.58 5.8 1739 18088 95 2.4 0.63 0.14 0.15 0.48 5.0 1494 19582 100 2.7 0.71 0.14 0.15 0.56 5.8 1739 21321 105 3.3 0.87 0.14 0.15 0.72 7.4 2229 23550 50000 110 3.1 0.82 0.14 0.15 0.67 8.9 2065 25815 "' 40000 115 2.9 1 0.77 0.14 0.15 0.62 6.3 27517 S 120 3.0 0.79 0.14 0.15 0.64 6.6 29501 30000 j 20000 10000 125 3.1 0.82 0.14 0.15 0.67 6.9 31566 130 4.2 1.11 0.14 0.15 0.96 8.9 34529 135 5.0 1.32 0.14 0.15 1.17 12.1 R2392 38144 140 3.5 0.92 0.14 0.15 0.71 8.0 40538 0 0 50 100 150 200 Time (min) 145 6.8 1.80 0.14 0.15 1.65 16.9 45620 150 7.3 1.93 0.14 0.15 1.78 18.3 51111 155 8.2 2.18 0.14 0.15 2.01 20.8 57337 1 160 5.9 1.58 0.14 0.15 1.41 14.5 4349 61686 165 2.0 0.53 0.14 0.15 1 0.38 3.9 1168 62854 170 1.8 0.48 0.14 0.15 1 0.33 3.3 1005 63859 175 1.8 0.48 0.14 1 0.15 0.33 1 3.3 1005 64864 180 0.8 0.16 0.14 0.15 0.01 0.1 0 84864 0 0.0 0.00 0.14 0.15 0.00 0.0 0 64864 0 0.0 0.00 0.14 0.15 0.00 0.0 0 64864 0 0.0 0.00 0.14 0.15 0.00 0.0 0 84864 0 0.0 0.00 0.14 0.15 0.00 1 0.0 0 1 64854 0 0.0 0.00 0.14 0.15 0.00 0.0 0 64864 0 0.0 0.00 0.14 0.15 0.00 0.0 0 64864 0 0.0 0.00 0.14 0.15 0.00 0.0 0 64884 0 0.0 0.00 0.14 0.15 0.00 0.0 0 64884 0 0.0 0.00 0.14 0.15 0.00 0.0 0 64864 0 0.0 0.00 0.14 0.15 0.00 0.0 0 64864 0 0.0 0.00 0.14 0.15 O.00 0.0 0 64864 0 0.0 0.00 0.14 0.15 000 0.0 0 64864 0 0.0 0.00 0.14 0.15 0.00 0.0 0 64864 0 0.0 1 0.00 0.14 0.15 0.00 1 1 0.0 0 1 64864 0 0.0 0.00 0.14 0.15 0.00 0.0 0 64864 0 0.0 0.00 0.14 0.15 0.00 0.0 0 64864 0 0.0 0.00 0.14 0.15 0.00 0.0 0 64864 0 0.0 0.00 0.14 0.15 0.00 0.0 0 64864 0 0.0 0.00 0.14 0.15 C.00 0.0 0 64884 0 0.0 0.00 0.14 0.15 0.00 0.0 0 64884 0 0.0 0.00 0.14 0.15 0.00 0.0 0 64864 0 0.0 0.00 0.14 0.15 0.00 0.0 0 64864 0 0.0 0.00 0.14 0.15 0.00 0.0 0 - 64884 0 0.0 1 0.00 0.14 0.15 1 0.00 1 0.0 0 64864 0 0.0 0.00 0.14 0.15 0.00 0.0 0 64804 0 0.0 0.00 0.14 0.15 0.00 0.0 0 64864 0 0.0 0.00 0.14 0.15 0.00 0.0 0 64864 0 0.0 0.00 0.14 OAS 0.00 0.0 0 64864 0 0.0 0.00 0.14 OAS 0.00 0.0 0 64864 0 0.0 DAM 0.14 0.15 3.00 0.0 0 64864 0 0.0 0.00 0.14 0.15 0.00 0.0 0 64864 0 0.0 0.00 0.14 0.15 0.00 0.0 0 64864 0 0.0 0.00 0.14 0.15 0.00 0.0 0 64864 0 0.0 1 0.00 0.14 0.15 1 0.00 0.0 0 64864 0 0.0 1 0.00 0.14 0.15 0.00 0.0 0 64864 0 0.0 0.00 0.14 0.15 0.00 0.0 0 64864 0 0.0 0.00 0.14 0.15 0.00 0.0 0 64884 0 0.0 0.00 0.14 0.15 0.00 0.0 0 64884 0 0.0 0.00 0.14 0.15 0.00 0.0 0 64884 0 0.0 0.00 0.14 0.15 0.00 0.0 0 64864 0 0.0 0.00 0.14 0.15 0.00 0.0 0 64864 0 0.0 0.00 0.14 0.15 0.00 0.0 1 0 1 64864 Page 1 sams 6hr.XLS Riverside County Hydrology Manual Precipitation Data (La Quinta Only) -T T Calculation of I - lFrequency Duration lPrecipitation SYNTHETIC UNIT HYDROGRAPH METHOD La hr) = 0.0 1 0.1 min 100 3 2.2 SHORTCUT METHOD Less than 100.200 acres & Lag Time < 7.8 min) I 100 8 2.75 Data Input boxed is calced too 24 4.5 Concentration Point NA Soil Group (Sheet 11/ pp 78) 1 25 3 1.75 Area Designation NA Precipitation Rate PI E5.1 -5.6 2.8 25 6 2.1 ea acres 10.3 0.02 sgmi Area Pred Corr E5.8 % 100.00 25 24 3.3 L (.i;es) 0.037879 Total AcJusted Storm = 2.75 10 3 1.4 LCa miles 0.208 Runoff Index PI E -6.1 32 10 6 1.75 Elev ® Headwater 64 AMC Condition (I, II, or Itl (Sheet E -8)) 2 10 24 2.7 Elev @ Concentration Point 54 In9lir Rate for Pery Areas (P) E -6.2) 0. 4 77, 10 Devel Area Cover (PI 6.3) 90% S ( mile): 264.0 1 Consl Loss Rate (3-6 hr stone) 0.14 n Ave Mann, Plate E.3 0.0015 Low Loss Rate Sheet E•9 0.15 Lag (min) 3.5 Stone Frequency 10, 25, 100 10o Results Duration 3, 6, 24 8 69015 Cubic Ft 1.58 Acre - Ft Unit Time Pattern Storm Loss Rates Effective Flood Period Percent Rain Max Used Rate Rain H rogra h Votume Sum Vol Basin Infil Time vS Flow 16.0 18 0 14.0 'm 12 0 ti 10.0 u 8.0 G 6.0 4.0 2.0 0.0 M Mal I - - - - - - - 10 110 210 310 Time (min) - min % in/hr (in/hr) cis aft cuh cuff 10 1.1 0.18 0.14 0.15 0.03 0.3 195 195 20 1.2 0.20 0.13 0.15 0.05 0.5 2.37 491 30 1.3 0.21 0.13 0.15 0.06 0.7 399 890 40 1.4 0.23 0.13 0.15 0,08 0.8 501 1391 50 1.4 0.23 0.13 0.15 0.08 0.8 501 1891 60 1.5 0.25 0.13 0.15 0.10 1.0 603 2494 70 1.6 0.26 0.13 0.15 0.11 1.2 705 3198 80 1.6 0.26 0.13 0.15 0411 1.2 705 3903 90 1.6 0.26 0.13 0.15 0.11 1.2 705 4607 100 1.6 0.26 0.13 0.15 0.11 1.2 705 5312 110 1.6 0.26 0.13 0.15 0.11 1 1.2 705 1 6016 120 1.7 0.28 0.13 0.15 0.13 1 1.3 808 1 6823 130 1.7 0.28 0.13 0.15 0.13 1.3 808 7629 140 1.8 0.30 0.13 0.15 0.15 1.5 908 8538 150 1.8 0.30 0.13 0.15 0.15 1.5 908 9446 Volume vs Time 80000 - 70000 160 1.8 0.30 0.13 0.15 0.15 1.5 908 10355 170 2.0 0.33 0.13 0.15 0.18 1.9 1112 11467 180 2.0 0,33 0.13 0.15 0.18 1.9 1112 12579 190 2.1 0.35 0.13 0.15 0.20 240 1214 13794 200 2.2 0,36 0.13 0.15 0.21 2.2 1316 15110 60000 u 50000 - -- - 210 2.5 0.41 0.13 0.15 0.28 2.7 1822 18732 220 2.8 0.46 0.13 0.15 0.31 3.2 1928 18881 230 3.0 0.50 0.13 0.15 0.35 3.8 2132 20793 ` 240 3.2 0.53 0.13 0.15 0.38 3.9 2336 23129 3 250 3.5 0.58 0.13 0.15 0.43 4.4 2842 25771 j 20000 260 3.9 0.64 0.13 0.15 0449 5.1 3050 28820 10000 270 4.2 0.69 0.13 0.15 0.54 5.6 3356 32176 280 4.5 0.74 0.13 0.15 0.59 6.1 3662 35838 0 0 50 100 150 200 250 300 350 400 Time (min) 290 4.8 0479 0.13 0.15 0.64 8.6 3968 39805 300 5.1 0.84 0.13 0.15 0.69 7.1 4273 44079 310 6.7 1.11 0.13 0.15 0.96 9.8 5905 49984 320 8.1 1,34 0.13 0015 1.19 12.2 7333 57316 330 10.3 1.70 0.13 0.15 1.55 16.0 9576 66892 340 2.8 0.46 0.13 0.15 0.31 3.2 1928 88620 350 1.1 0.18 0.13 0.15 0.03 0.3 195 69015 360 0.5 0.08 0.13 0.15 0.00 0.0 0 1 69015 0 0.0 0.00 013 0.15 0.00 0.0 0 69015 0 0.0 0.00 0.13 0.15 0.00 0.0 0 69015 0 0.0 0.00 0.13 0.15 0.00 0.0 0 69015 0 0.0 0.00 0.13 0.15 000 0.0 0 69015 0 0,0 0.00 0.13 0.15 0.00 0.0 0 69015 0 0.0 0.00 0.13 0.15 0.00 0.0 0 69015 0 0.0 0.00 0.13 0,15 0.00 0.0 0 69015 0 0.0 0.00 0.13 0,15 0.00 O.o 0 69015 0 0.0 0.00 0.13 0415 0.00 060 0 69015 0 0.0 0.00 0.13 0,15 G.00 0.0 0 69015 0 0.0 0.00 0.13 0,15 0.00 0.0 0 69015 0 0.0 0.00 0.13 0.15 0.00 0.0 0 69015 0 o.0 0.00 0.13 0.15 0.00 0.0 0 69015 0 0.0 0.00 0.13 0.15 0.00 0.0 0 69015 0 0,0 0.00 0.13 0.15 0.00 0.0 0 69015 0 0.0 0.00 0.13 0,15 0.00 040 0 69015 0 0.0 0.00 0.13 0.15 0.00 0.0 0 69015 0 0.0 0.00 0.13 0.15 0.00 0.0 0 69015 0 0.0 0.00 0413 0.15 0.00 0.0 0 69015 0 0.0 0.00 0.13 0.15 0.00 0.0 0 69015. 0 0.0 0.00 0.13 0.15 0.00 0.0 0 69015 0 0.0 0.00 0.13 0.15 0.00 060 0 69015 0 0.0 0.00 0.13 0.15 0.00 0.0 0 69015 0 0.0 0.00 0.13 0.15 0.00 0.0 0 69015 0 0.0 0.00 0.13 0.15 0.00 0.0 0 69015 ' 0 0.0 0.00 0.13 0.15 11.00 0.0 0 69015 0 0.0 0.00 0.13 0.15 0.00 0.0 0 69015 0 0.0 0.00 0.13 0.15 0.00 0.0 0 69015 0 0,0 0.00 0.13 0415 0.00 0.0 0 69015 0 0,0 0.00 0.13 0.15 0.00 0.0 0 69015 0 040 0.00 0.13 0.15 0.00 0.0 0 69015 0 0,0 0.00 0.13 0.15 0.00 0.0 0 69015 0 0.0 0.00 0.13 0.15 0.00 0.0 0 69015 0 0.0 0.00 0.13 0.15 0.00 0.0 0 69015 0 0.0 0.00 013 0.15 0,00 o.0 0 169015 0 0.0 0.00 0.13 0.15 0.00 0.0 0 69015 0 0.0 0.00 0.13 0.15 0.00 1 0.0 0 69015 0 0.0 0.00 1 0.13 1 0.15 0.00 1 0.0 0 69015 0 0.0 0.00 0.13 0.15 0.00 0.0 0 69015 0 0.0 0.00 0.13 0.15 0.00 0.0 0 69015 0 0.0 0.00 0.13 0.15 0.00 0.0 0 89015 0 0.0 0.00 1 0.13 0.15 0.00 1 1 0.0 0 1 69015 Page 1 ' EXECUTIVE SUMMARY ' The proposed La Quinta. Sam's Club development contains 18.66 acres 'that is . split between 15.66 acres on -site which includes the Sam's Club Parcel, the Gas Parcel, Parcel 1 ' to be developed by Stamko and 3.00 acres of off -site. Both on -site and off -site flows retain the 100 year flow. The following is a breakdown of each basin: ' On -site All 15.66 acres of on -site storm water is conveyed into the existing retention basin located in the south west corner of La Quinta Drive and Auto Centre Way South. ' 5.36 acres of the 15.66 acres have been previously accounted for by the Keith Companies Hydrology report. Therefore, 10.30 acres have been analyzed for the increase in flood volume to the existing retention basin. Area = 10.30 Acres Governing Storm = 100 Year — 24 hour storm (4.5 in) ' Volume Required = 1.59 Acre -feet Volume Provided = 1.77 Acre -feet Factor of Safety = 1..11 ' Max. Water Surface Elevation = 58.92 Elevation at top of Basin = 61.00 ■ Peak Flow = 136.66 cfs Off -site All 3 acres of off -site storm water which includes the area from the property line to the crown of Highway 111 and Dune Palms Road is conveyed into an underground retention basin located near the southern property line. Area = 3.00 Acres Governing Storm = 100 Year — 24 hour storm (4.5 in) Volume Required = 0.47 Acre -feet Volume Provided = 0.50 Acre -feet ' Factor of Safety = 1.06 Max. Water Surface Elevation = 48.77 Elevation at top of Basin = 49.00 ' Peak Flow = 13.59 cfs 1 L I. PURPOSE AND SCOPE: ' The purpose of this report is to provide a hydrology and hydraulic analysis for the proposed 18.66 -acre mixed regional commercial center (La Quinta Sam's Club) located in the City of La Quinta, between La Quinta Drive and Dune Palms Road, off of Highway ' 111. The report incorporates the existing Hydrology & Hydraulic Report by The Keith Companies for "The Centre at La Quinta ", dated December 12, 2002. This report summaries the hydrology and hydraulic calculations for the site. The proposed storm drain system consists of on -site flow and off -site flow. On -site flow incompaces ' 15.66 acres of the 18.66 acre site which are conveyed into an existing retention basin located on the southwest corner of La Quinta Drive and Auto Centre Way South. Off -site flow encompaces 3.00 acres of the 18.66 acre site and is conveyed via a proposed storm ' drain line in Dune Palms Road to a proposed underground Precast Concrete Modular Storm Water Detention facility which will be located south of the Proposed Sam's Club building. For on -site flows the existing retention basin located on the sou_ thwest corner of La Quinta Drive and Auto Centre Way South. The basin was. sized to handle the 100 -year storm event for the existing commercial development known as "The Centre at La Quinta ". The ' retention basin currently receives stormwater from 5.36 acres of the proposed 18.66 acre Sam's Club site via two area drains and two curb inlets. The retention basin will be jincreased by 1.77 acre -feet to 11.75 acre -feet in order to handle the increase in flow ' generated by the additional 10.30 acres which include parts of the proposed Sam's Club, Gas Station and additional commercial parcel. In keeping with the original drainage patterns, water which tops the existing spillway will continue to be conveyed southward toward APN 649 - 030 -069. Due to the increase in flows generated some of the existing storm drain pipes that convey stormwater to the existing retention basin will need to be resized to handle the additional flows from the proposed development. For off -site flows a retention basin is being proposed behind the Sam's Club building. The second basin will be an underground precast concrete modular storm water detention ' facility and has been sized to handle the 100 year flow from the 3.00 acres from Highway 111 and Dune Palms Road. The second basin is being utilized due to site constraints that prevent the flow of storm water to the existing basin. The underground retention basin will ' be sized to store 0.50 acre -feet of storm water. Per City of La Quinta requirements, sizing of the storm drain system and catch basins were ' based on the 100 -year storm event and Retention Basins were designed assuming a percolation rate of zero. ' This report includes: 1) The determination of on -site drainage areas as identified on the hydrology map for the project; 2) Determination of peak flows using the Rational Method (Riverside County) 3) Determination of storm drain pipe sizes utilizing Rational Method (Riverside County) 4) The determination of flood volumes for the retention basin utilizing Riverside ' County Flood Control District (RCFCD) Synthetic Unit Hydrograph (Short-cut Method) for the 100 year storm event. DESIGN CRITERIA The following Riverside County Flood Control District (RCFCD) parameters were used in the preparation of the analyses: • Antecedent Moisture Condition 100year 3 • 2 year — 1 hour Precipitation 0.5" Plate D -4.3 • 100 year — 1 hour Precipitation 1.6" Plate D -4.4 • Slope of.In tensity Duration Curve 0.59 Plate D -4.6 • 2 year — 3 hour Precipitation 0.7" Plate E -5.1 • 100 year — 3 hour Precipitation 2.2" Plate E -5.2 • 2 year — 6 hour Precipitation 0.8" Plate •E -5.3 • 100 year — 6 hour Precipitation 2.75" Plate E -5.4 • 2 year — 24 hour Precipitation 1.1" Plate E -5.5 • 100 year — 24 hour Precipitation 4.5" Plate E -5.6 • Runoff Coefficient 0.90 Plate D -5.6 • Hydraulic Soil Type A Plate C -1.36 The City of La Quinta is assumed to have the same soil type as Cathedral City due to its close proximity to the City of La Quinta, similar sandy soils and the lack of information provided in the Riverside County Flood Control, Hydrology Manual. I I I I I I I I I I I I I I I I 11 I I SUMMARY OF CALCULATIONS 1. 1 1 1 1 SYNTHETIC UNIT HYDROGRAPGH SUMMARY Additional Storage for ]Existing Retention Basin RETENTION BASIN - 100 YEAR STORM EVENT STORM EFFECTIVE FLOOD REQUIRED PEAK DURATION RAIN VOLUME STORAGE FLOW RATE hour in cult ) (acft) (cuft) acft (cfs 3 1.64 60,877 1.40 60,877 1.40 20.37 6 1.66 61,443 1.41 61,443 1.41 17.11 24 1.86 69,102 1.59 69,102 1.59' 4.64 Proposed Underground Retention Basin RETENTION BASIN - 100 YEAR STORM EVENT STORM EFFECTIVE FLOOD REQUIRED PEAK DURATION RAIN VOLUME STORAGE FLOW RATE hour in ) (cuft) (acft) (cuft ) (acft) (cfs 3 1.66 17,939 0.41 17,939 0.41 5.95 6 1.69 18,300 0.42 18,300 0.42 5.00. 24 1.91 20,815 0.47 20,643 0.47 1.37 DRAINAGE INLETS AND CATCH BASIN SIZING All proposed grated inlets and curb inlets were sized.using nomographs from the U.S. Department of Transportation and the weir equation. Proposed .grated inlets will be pre- cast concrete drain boxes (Brooks Products or approved equal) with steel traffic grates. Side opening catch basins will be City of La Quinta Combination, Inlet Catch Basin No. 2, Standard No. 301. A summary is provided below for each inlet. The inlet number can be found on the hydrology drawings found in Appendix `B "- Hydrology Map. 1 RETENTION BASIN SIZING Additional Storage for Existing Retention Basin The existing retention basin is designed to retain the volume generated by the 100 -year storm over The Centre at La Quinta. With the addition of the Sam's Club, gas station, and associated commercial sites, an additional storage requirement is necessary to retain the 100 -year storm runoff. The maximum water surface elevation (WSEL) includes the flows /volumes generated by The Centre at La Quinta. ON -SITE VOLUME REQUIRED vs VOLUME PROVIDED inn YFAR STORM FVFNT STORM VOLUME ADDITIONAL MAXIMUM DURATION REQUIRED VOLUME WSEL 6 18,299.63 PROVDED 24 (hour) cult cuft (ft) 3 60,876.59 77,020 1 58.80 6 61,442.91 58.77 24 1 69,101.55 1 58.92 Proposed Underground Retention Basin The proposed underground retention basin is designed .to retain the volume generated by the 100 -year storm for the area in Highway 111 and Dune Palms Road adjacent to the site from the crown of the roads to the Right of Way. ON -SITE VOLUME REQUIRED vs VOLUME PROVIDED 100 YEAR STORM EVENT STORM DURATION (hour) VOLUME REQUIRED (cuft) VOLUME PROVDED (cuft) MAXIMUM WSEL (ft) 3 17,938.80 21,645 48.11 6 18,299.63 48.23 24 20,642.98 48.77 1 SYNTHETIC UNIT HYDROGRAPH -100 YEAR EXISTING RETENTION BASIN I lit 11, 1, I I RCFCD SYNTHETIC UNIT HYDROGRAPH DATA INPUT SHEET T- WORKSHEET PREPARED BY: PROJECT NAME .I.A'0U T S`,'=$u Vt.- .IN,,A Z NASLAND JOB# 4', `8.V*� , 'P DATE CONCENTRATION POINT DESIGNATION AREA DESIGNATION TRIBUTARY AREAS COMMERCIAL PAVING/HARDSCAPE SF-1 *ACRE SF-1/2 ACRE SF-1/4 ACRE MF-CONDOMINIUM MF-APARTMENT MOBILE HOME PARK* LANDSCAPING RETENTION BASIN GOLF COURSE MOUNTAINOUS LOW LOSS RATE (PERCENT) I I LENGTH OF WATERCOURSE (L) LENGTH TO POINT OPPOSITE CENTROID ca) ooao�-- ELEVATION AT HEAWATER ELEVATION OF CONCENTRATION POINT AVERAGE MANNING'S 'N' VALUE STORM FREQUENCY YEAR own" No POINT RAIN 3-HOUR 6-HOUR 24-HOUR BASIN CHARACTERISTICS: ELEVATION AREAproposed AREAexisting 00 AJ R N. i� MMM5,80" M`6081 D' FW 58 n s 0"01236 M067215 24 M*M693 3 -7 ��M PERCOLATION RATE (in/hr) DRYW ELL DATA. NUMBER USED ,PERCOLATION RATE (cfs) 1 RCFCD SYNTHETIC UNIT HYDROGRAPH DURATION PROJECT LA QUINTA SAM'S CLUB CONECENTRATION POINT SM DATE RETENTION BASIN 11/05/05 BASIC CALCULATION FORM IBY SHORTCUT METHOD PHYSICAL DATA 1.86 FLOOD VOLUME (acre -ft) cu -ft 1.40 60,877 [1] CONCENTRATION POINT [2] AREA DESIGNATION [3] AREA - AREAS [4] L- FEET [5) L- MILES [6] La - FEET [7] La - MILES [8] ELEVATION OF HEADWATER [9] ELEVATION OF CONCENTRATION POINT [10] H - FEET [11] S - FEET /MILE [12) S-0.5 [13] L *Lca/S^0.5 [14] AVERAGE MANNING'S'N' [15] LAG TIME - HOURS [16] LAG TIME - MINUTES [17] 100% OF LAG - MINUTES [181200% OF LAG - MINUTES [19] UNIT TIME - MINUTES (100 % -200% OF LAG) [24] TOTAL PERCOLATION RATE (cfs) 1.59 69,102 REQUIRED STORAGE (acre -ft) (cu -ft) FACTOR OF SAFETY RETENTION BASIN 1.41 1 61,443 LOT "C" 1.27 1.25 1.11 10.3 1.77 77,020 2000 20.37 0.3788 4.64 1100 58.80 0.2083 58.92 67 54 13 34.3 5.86 0.013 0.013 0.06 3.6 3.6 7.3 5.0 0.35 RAINFALL DATA [1 ]SOURCE 2 FREQUENCY - YEARS 100 3 DURATION 3 -HOURS 6 -HOURS 24 -HOURS [4] POINT RAIN INCHES [5] AREA SO IN [6] [5] / 1[5] [7] AVERAGE POINT RAIN INCHES [8) POINT RAIN INCHES [9] AREA SO IN [10) [5] / 1[5] [11) AVERAGE POINT RAIN INCHES [12] POINT RAIN INCHES [13] AREA SO IN [14] [5] / 1[5] [15] AVERAGE POINT RAIN INCHES 2.20 10.3 1.001 2.20 2.75 10.31 1.00 2.75 4.5 10.31 1.00 4.50 1[5)= 10.3 1[7 ]= 2.20 Z[9)= 10.3 Y,[11 ]=l 2.75 1[13 = 10.3 1[15]= 4.50 16 AREAL ADJ FACTOR I 1.00 SEE PLATE E -5.8 1.001 1 1.00 [17] ADJ AVG POINT RAIN I 2.20 16 `1[7], C 2.751 1 4.50 STORM EVENT SUMMARY DURATION 3 -HOUR 6 -HOUR 24 -HOUR EFFECTIVE RAIN in 1.64 1.66 1.86 FLOOD VOLUME (acre -ft) cu -ft 1.40 60,877 1.41 61,443 1.59 69,102 REQUIRED STORAGE (acre -ft) (cu -ft) FACTOR OF SAFETY 1.40 60,877 1.41 1 61,443 1.59 1 69,102 1.27 1.25 1.11 STORAGE PROVIDED (acre -ft) cu -ft 1.77 77,020 PEAK FLOW cfs 20.37 1 17.11 4.64 MAXIMUM WSEL (ft) 58.80 1 58.77 58.92 RCFCD SYNTHETIC UNIT HYDROGRAPH METHOD PROJECT LA QUINTA SAM'S CLUB CONECENTRATION POINT BY SM DATE 11/5/2005 AVERAGE ADJUSTED LOSS RATE [1 ] [2] [3] [4] [5] [6] [71 [8] [9] SOIL GROUP LAND USE RI NUMBER PREVIOUS DECIMAL ADJUSTED AREA [8] / E[8] AVERAGE AREA PERCENT OF INFILTRATION ADJUSTED INFILTRATION AREA RATE INFILTRATION RATE (in /hr) IMPERVIOUS (in /hr) RATE - IN / HR [PLATE E-6.11 [PLATE E -6.2] [PLATE E -6.3] [4] (1 -0.9 [5]) (acre) [6] ' [8] A COMMERCIAL 32 0.74 90% 0.14 9.5 0.92 0.1297 A PAVING /HARDSCAPE 32,7K 0.74 100% 0.07 0 0.00 .0.0000 A SF - 1 ACRE 32 0.74 20% 0.61 0 0.00 0.0000 A SF - 1/2 ACRE 32 0.74 40% 0.47 0 0.00 0.0000 A SF - 1/4 ACRE 32 0.74 50% 0.41 0 0.00 0.0000 A MF - CONDOMINIUMS 32 0.74 65% 0.31 0 0.00 0.0000 A MF - APARTMENTS 32 0.74 80% 0.21 0 0.00 0.0000 A MOBILE HOME PARKS 32 0.74 750/6 0.24 0 0.00 0.0000 A LANDSCAPING 32 0.74 00% 0.74 0.8 0.08 0.0575 A RETENTION BASINS 32 0.74 0%1 0.74 0 0.00 0.0000 A GOLF COURSE 32 0.74 0%1 0.74 0 0.00 0.0000 D MOUNTAINOUS 93 0.95 90%1 0.18 0 0.00 0.0000 E [7] = 10.3 E [9] = 0.1872 64,608,192 VARIABLE LOSS RATE CURVE (24 -HOUR STORM ONLY Fm = Minimum Loss Rate = F/2 = E [9] / 2 = 0.09357767 in /hr C= (F- Fm) /54= (E[9]- Fm) /54= 0.00173 FT = C (24 - (T/60))1.55 + Fm = 0.00173 (24 - (T/60))1.55 + 0.09 in /hr LOW LOSS RATE (80 -90 PERCENT) = 90% T = TIME IN MINUTES. TO GET AN AVERAGE VALUE FOR EACH UNIT TIME PERIOD, USE T =1/2 THE UNIT TIME FOR THE FIRST TIME PERIOD. T = 1 1/2 UNIT TIME FOR THE SECOND PERIOD, ETC. Plate E -2.1 LOSS RATE RCFCD SYNTHETIC UNIT HYDROGRAPH 100 YEAR - 3 HOUR STORM EVENT PROJECT LA QUINTA SAM'S CLUB CONECENTRATION POINT BY SM DATE 11/5/2005 EFFECTIVE RAIN CALCULATION FORM DRAINAGE AREA -ACRES 10.3 ULTIMATE DISCHARGE - (cfs - hr /in) 10.38 i i 0r `3% �� UNIT TIME - MINUTES 5.0 ", LAG TIME - MINUTES 3.6 L a = , 7,0,16 UNIT TIME - PERCENT OF LAG 137.2 TOTAL ADJUSTED STORM RAIN - INCHES 2.20 CONSTANT LOSS RATE - in /hr 0.187 �} LOW LOSS RATE - PERCENT 90% TOTAL PERCOLATION RATE (cfs) 0 FLOOD VOLUME (acft) UNIT HYDROGRAPH EFFECTIVE RAIN FLOOD HYDROGRAPH -x.40 Time Pattern Percent (Plate E -5.9) Storm Rain (in /hr) Loss rate Effective Rain (in /hr) Flood Hydrograph Flow (cfs) Required Storage cf Unit Time Period Minutes Hours Max (in /hr) Low (in/hr) 1 5 0.08 1.3 0.343 0.19 0.31 1 0.16 1.61 482.18 2 10 0.17 1.3 0.343 0.19 0.31 0.16 1.61 482.18 3 15 0.25 1.1 0.290 0.19 0.26 0.10 1.06 319.03 4 20 0.33 1.5 0.396 0.19 0.36 0.21 2.15 645.33 5 25 0.42 1.5 0.396 0.19 0.36 0.21 2.15 645.33 6 30 0.50 1.8 0.475 0.19 0.43 0.29 2.97 890.06 7 35 0.58 1.5 0.396 0.19 0.36 0.21 2.15 645.33 8 40 0.67 1.8 0.475 .0.19 0.43 0.29 2.97 890.06 9 45 0.75 1.8 0.475 0.19 0.43 0.29 2.97 890.06 10 50 0.83 1.5 0.396 0.19 0.36 0.21 2.15 645.33 11 55 0.92 1.6 0.422 0.19 0.38 0.24 2.42 726.91 12 60 1.00 1.8 0.475 0.19 0.43 0.29 2.97 890.06 13 65 1.08 2.2 0.581 0.19 0.52 0.39 4.05 1216.36 14 70 1.17 2.2 0.581 0.19 0.52 0.39 4.05 1216.36 15 75 1.25 2.2 0.581 0.19 0.52 0.39 4.05 1216.36 16 80 1.33 2.0 0.528 0.19 0.48 0.34 3.51 1053.21 17 85 1.42 2.6 0.686 0.19 0.62 0.50 5.14 1542.67 18 90 1.50 2.7 0.713 0.19 0.64 0.53 5.41 1624.24 19. 95 1.58 2.4 0.634 0.19 0.57 0.45 4.60 1379.51 20 100 1.67. 2.7 0.713 0.19 0.64 0.53 1 5.41 1624.24 21 105 1.75' 3.3 0.871 0.19 0.78 0.68 7.05 2113.70 22 110 1.83 3.1 0.818 0.19 0.74 0.63 6.50 1950.55 23 115 1.92 2.9 0.766 0.19 0.69 0.58 5.96 1787.39 24 120 2.00 3.0 0.792 0.19 0.71 0.60 6.23 1868.97 25 125 2.08 1 3.1 0.818 0.19 0.74 0.63 6.50 1950.55 26 130 2.17 4.2 1.109 0.19 1.00 0.92 9.49 2847.88 27 135 2.25 5.0 1.320 0.19 1.19 1.13 11.67 3500.49 28 140 2.33 3.5 0.924 0.19 0.83 0.74 7.59 2276.85 29 145 2.42 6.8 1.795 0.19 1.62 1.61 16.56 4968.86 30 150 2.50 7.3 1.927 0.19 1.73 1.74 17.92 5376.74 31 155 2.58 8.2 2.165 0.19 1.95 1.98 20.37 6110.92 32 160 2.67 5.9 1.558 0.19 1.40 1.37 14.12 4234.67 33 165 2.75 2.0 0.528 0.19 0.48 0.34 3.51 1053.21 34 170 2.83 1.8 0.475 0.19 0.43 0.29 2.97 890.06 35 175 2.92 1.8 0.475 0.19 0.43 0.29 2.97 890.06 36 180 3.00 0.6 T 0.158 1 0.19 1 0.14 1 0.01 0.10 30.90 EFFECTIVE RAIN & FLOOD SUMMARY EFFECTIVE RAIN (in) 1.64 FLOOD VOLUME (acft) 1.40 FLOOD VOLUME (cult) 60,877 REQUIRED STORAGE (acft) -x.40 REQUIRED STORAGE (tuft) 60,877 PEAK FLOW RATE (cfs) 20.37 Plate E -2.2 . 100YR -3,HR L I RCFCD SYNTHETIC UNIT HYDROGRAPH 100 YEAR - 6 HOUR STORM EVENT ° PROJECT LA QUINTA SAM'S CLUB CONECENTRATION POINT BY SM DATE 11/5/2005 EFFECTIVE RAIN CALCULATION FORM DRAINAGE AREA -ACRES 10.3 ULTIMATE DISCHARGE - (cfs - hr /in) 10.38 UNIT TIME - MINUTES 5.0 LAG TIME - MINUTES 3.6 UNIT TIME - PERCENT OF LAG 137.2 TOTAL ADJUSTED STORM RAIN - INCHES 2.75 CONSTANT LOSS RATE - in /hr 0.187 LOW LOSS RATE - PERCENT 90% TOTAL PERCOLATION RATE (cfs) 0 UNIT HYDROGRAPH EFFECTIVE RAIN FLOOD HYDROGRAPH Time Pattern Percent (Plate E -5.9) Storm Rain (in /hr) Loss rate Effective Rain (in /hr) Flood Hydrograph Flow (cfs) Required Storage cf Unit Time Period Minutes Hours Max (in /hr) Low (in /hr) 1 5 0.08 0.5 0.165 0.19 0.15 0.01 0.10 30.90 2 10 0.17 0.6 0.198 1 0.19 0.18 0.01 0.11 33.51 3 15 0.25 0.6 0.198 0.19 0.18 0.01 0.11 •33.51 4 20 0.33 0.6 0.198 0.19 0.18 0.01 0.11 33.51 5 25 0.42 0.6 0.198 0.19 0.18 0.01 0.11 33.51 6 30 0.50 0.7 0.231 0.19 0.21 0.04 0.45 135.48 7 35 0.58 0.7 0.231 0.19 0.21 0.04 0.45 135.48 8 40 0.67 0.7 0.231 0.19 0.21 0.04 0.45 135.48 9 45 0.75 0.7 0.231 0.19 0.21 0.04 0.45 135.48 10 50 0.83 0.7 0.231 0.19 0.21 0.04 0.45 135.48 11 55 0.92 0.7 0.231 0.19 0.21 0.04 0.45 135.48 12 60 1.00 0.8 0.264 0.19 0.24 0.08 0.79 237.45 13 65 1.08 0.8 0.264 0.19 0.24 0.08 0.79 237.45 14 70 1.17 0.8 0.264 0.19 0.24 0.08 0.79 237.45 15 75 1.25 0.8 0.264 0.19 0.24 0.08 0.79 237.45 16 80 1.33 0.8 0.264 0.19 0.24 0.08 0.79 237.45 17 85 1.42 0.8 0.264 0.19 1 0.24 0.08 0.79 237.45 18 90 1.50 0.8 0.264 0.19 0.24 0.08 0.79 237.45 19 95 1.58 0.8 0.264 0.19 0.24 0.08 0.79 237.45 20 100 1.67 0.8 0.264 0.19 0.24 0.08 0.79 237.45 21 105 1.75 0.8 0.264 0.19 0.24 0.08 0.79 237.45 22 110 1.83 0.8 0.264 0.19 0.24 0.08 0.79 237.45 23 115 1.92 0.9 0.297 0.19 0.27 0.11 1.13 339.42 24 120 2.00 0.8 0.264 0.19 0.24 0.08 0.79 237.45 25 125 2.08 0.9 0.297 0.19 0.27 0.11 1.13 339.42 26 130 2.17 0.9 0.297 0.19 0.27 0.11 1 1.13 339.42 27 135 2.25 0.9 0.297 0.19 0.27 0.11 1.13 339.42 28 140 2.33 0.9 0.297 0.19 0.27 0.11 1.13 339.42 29 145 2.42 0.9 0.297 0.19 0.27 0.11 1.13 339.42 30 150 2.50 0.9 0.297 0.19 0.27 0.11 1.13 339.42 31 155 2.58 0.9 0.297 0.19 0.27 0.11 1.13 339.42 32 160 2.67 1.0 0.330 0.19 0.30 0.14 1.47 441.39 33 165 2.75 1.0 0.330 0.19 1 0.30 0.14 1.47 441.39 34 170 2.83 1.0 0.330 0.19 0.30 0.14 1.47 441.39 35 175 2.92 1.0 0.330 0.19 0.30 0.14 1.47 441.39 36 180 3.00 1.0 0.330 0.19 0.30 1 0.14 1.47 441.39 37 185 3.08 1.0 0.330 0.19 0.30 0.14 1.47 441.39 38 190 3.17 1.1 0.363 0.19 0.33 0.18 1.81 543.36 39 195 3.25 1.1 0.363 0.19 0.33 0.18 1.81 543.36 40 200 3.33 1.1 0.363 0.19 0.33 0.18 1.81 543.36 41 205 3.42 1.2 0.396 0.19 0.36 0.21 2.15 645.33 42 210 3.50 1.3 0.429 0.19 0.39 0.24 2.49 747.30 43 215 3.58 1.4 0.462 0.19 0.42 0.27 2.83 849.27 44 220 3.67 1.4 0.462 0.19 0.42 0.27 2.83 849.27 45 225 1 3.75 1.5 0.495 0.19 0.45 0.31 3.17 951.24 46 230 1 3.83 1.5 0.495 0.19 1 0.45 0.31 3.17 951.24 Plate E -2.2 100YR -6 HR t, t ti S ji 1' ') } 1 RCFCD SYNTHETIC UNIT HYDROGRAPH 100 YEAR - 6 HOUR STORM EVENT PROJECT LA QUINTA SAM'S CLUB CONECENTRATION POINT BY SM DATE 11/5/2005 EFFECTIVE RAIN CALCULATION FORM DRAINAGE AREA -ACRES 10.3 ULTIMATE DISCHARGE - (cfs - hr /in) 10.38 UNIT TIME - MINUTES 5.0 LAG TIME - MINUTES 3.6 UNIT TIME - PERCENT OF LAG 137.2 TOTAL ADJUSTED STORM RAIN - INCHES 2.75 ' CONSTANT LOSS RATE - in /hr 0.187 LOW LOSS RATE - PERCENT 90% TOTAL PERCOLATION RATE (cfs) 0 1.41 UNIT HYDROGRAPH EFFECTIVE RAIN FLOOD HYDROGRAPH 1.41 REQUIRED STORAGE (cult) Time Pattern Percent (Plate E -5.9 ) Storm Rain (in /hr) Loss rate Effective Rain (in /hr) Flood Hydrograph Flow (cfs) Required Storage cf Unit Time Period Minutes Hours 1 Max (in /hr) Low (in /hr ) 47 235 3.92 1.6 0.528 0.19 0.48 0.34 3.51 1053.21 48 240 4.00 1.6 0.528 0.19 0.48 0.34 3.51 1053.21 49 245 4.08 1.7 0.561 0.19 0.50 0.37 3.85 1155.18 50 250 4.17 1.8 0.594 0.19 0.53 0.41 4.19 1257.15 51 255 4.25 1.9 0.627 0.19 0.56 0.44 4.53 1359.12 52 260 4.33 2.0 0.660 0.19 0.59 0.47 4.87 1461.09 53 265 4.42 2.1 0.693 0.19 0.62 0.51 5.21 1563.06 54 270 4.50 2.1 0.693 0.19 0.62 0.51 5.21 1563.06 '55 275 4.58 2.2 0.726 0.19 0.65 0.54 5.55 1665.03 56 280 4.67 2.3 0.759 0.19 0.68 0.57 5.89 1767.00 285 4.75 2.4 0.792 0.19 0.71 0.60 6.23 1868.97 58 290 4.83 2.4 0.792 0.19 0.71 0.60 6.23 1868.97 r 295 4.92 2.5 0.825 0.19 0.74 0.64 6.57 1970.94 300 5.00 2.6 0.858 0.19 0.77 0.67 6.91 2072.91 305 5.08 3.1 1.023 0.19 0.92 0.84 8:61 2582.76 62 310 .5.17 3.6 1.188 0.19 1.07 1.00 10.31 3092.61 63 315 5.25 3.9 1.287 0.19 1.16 1.10 11.33 3398.52 64 320 5.33 4.2 1.386 0.19 1.25 1.20 12.35 3704.43 65 325 5.42 4.7 1.551 0.19 1.40 1.36 14.05 4214.28 66 330 5.50 5.6 1.848 0.19 1.66 1.66 17.11 1 5132.01 67 335 5.58 1.9 0.627 0.19 0.56 0.44 4.53 1359.12 68 340 5.67 0.9 0.297 0.19 0.27 0.11 1,13 339.42 69 345 5.75 0.6 0.198 0.19 0.18 0.01 0.11 33.51 70 350 5.83 0.5 0.165 0.19 0.15 0.01 0.10 30.90 71 355 5.92 0.3 0.099 0.19 0.09 1 0.01 0.10 30.90 72 360 1 6.00 1 0.2 0.066 0.19 0.06 1 0.01 0.10 30.90 EFFECTIVE RAIN ,& FLOOD SUMMARY EFFECTIVE RAIN (in) 1.66 FLOOD VOLUME (acft) 1.41 FLOOD VOLUME (cult) 61,443 REQUIRED STORAGE (acft) 1.41 REQUIRED STORAGE (cult) 61,443 PEAK FLOW RATE (cfs) 17.11 Plate E -2.2 100YR -6HR r r. I-- L RCFCD SYNTHETIC UNIT HYDROGRAPH 100 YEAR - 24 HOUR STORM EVENT 1BY PROJECT LA QUINTA SAM'S CLUB CONECENTRATION POINT SM DATE 11/5/2005 EFFECTIVE RAIN CALCULATION FORM DRAINAGE AREA -ACRES 10.3 ULTIMATE DISCHARGE - (cfs - hr /in) 10.38 UNIT TIME - MINUTES 15.0 LAG TIME - MINUTES 3.6 UNIT TIME - PERCENT OF LAG 411.7 TOTAL ADJUSTED STORM RAIN - INCHES 4.50 CONSTANT LOSS RATE - in/hr n/a VARIABLE LOSS RATE (AVG) - in/hr 0.19 MINIMUM LOSS RATE (for var. loss) - in /hr 0.094 LOW LOSS RATE - PERCENT 90% C 0.00173 TOTAL PERCOLATION RATE (cfs) 0 UNIT HYDROGRAPH EFFECTIVE RAIN FLOOD HYDROGRAPH Time Pattern Percent Plate E -5.9 Storm Rain (in /hr ) Loss rate Effective Rain (in/hr) Flood. Hydrograph Flow (cfs) Required Storage cf Unit Time Period Minutes Hours Max (in/hr) Low (in /hr ) 1 1 15 0.25 0.2 0.036 0.330 0.032 0.004 0.04 33.37 2 1 30 0.50 0.3 0.054 0.327 0.049 0.005 0.06 50.06 3 45 0.75 0.3. 0.054 0.323 0.049 0.005 0.06 50.06 4 60 1.00 0.4 0.072 0.319 0.065 0.007 0.07 66.74 5 75 1.25 0.3 0.054 0.315 0.049 0.005 0.06 50.06 6 90 1.50 0.3 0.054 0.312 0.049 0.005 0.06 1 50.06 7 105 1.75 0.3 0.054 0.308 0.049 0.005 0.06 50.06 8 120 2.00 0.4 0.072 0.304 0.065 1 0.007 0.07 66.74 9 135 2.25 0.4 0.072 0.300 0.065 0.007 0.07 66.74 10 1 150 2.50 0.4 0.072 0.297 0.065 0.007 0.07 66.74 11 165 2.75 0.5 0.090 0.293 0.081 0.009 0.09 83.43 12 180 3.00 0.5 0.090 0.290 0.081 0.009 0.09 83.43 13 195 3.25 0.5 1 0.090 0.286 0.081 0.009 0.09 83.43 14 210 3.50 0.5 0.090 0.282 0.081 0.009 0.09 83.43 15 225 3.75 0.5 0.090 0.279 0.081 0.009 0.09 83.43 16 240 4.00 0.6 0.108 0.275 0.097 0.011 0.11 100.12 17 1 255 4.25 0.6 0.108 0.272 0.097 0.011 0.11 100.12 18 270 4.50 0.7 0.126 0.268 0.113 0.013 0.13 116.80 19 285 4.75 0.7 0.126 0.265 0.113 0.013 1 0.13 116.80 20 300 5.00 0.8 0.144 0.262 0.130 0.014 0.15 1 133.49 21 315 5.25 0.6 0.108 0.258 0.097 0.011 0.11 100.12 22 330 5.50 0.7 0.126 0.255 0.113 0.013 0.13 116.80 23 345 5.75 0.8 0.144 0.251 0.130 0.014 0.15 13379 24 360 6.00 0.8 0.144 0.248 0.130 0.014 0.15 133.49 25 375 6.25 0.9 0.162 0.245 0.146 0.016 0.17 150.17 26 1 390 6.50 0.9 0.162 0.242 0.146 0.016 0.17 150.17 27 405 6.75 1.0 1 0.180 0.238 0.162 0.018 0.19 166.86 28 420 7.00 1.0 0.180 0.235 0.162 0.018 0.19 166.86 29 435 7.25 1.0 0.180 0.232 0.162 0.018 0.19 166.86 30 450 7.50 1.1 0.198 0.229 0.178 0.020 0.20 183.55 31 465 7.75 1.2 0.216 0.226 0.194 1 0.022 0.22 200.23 32 480 8.00 1.3 0.234 0.223 0.211 0.023 0.24 216.92 33 1 495 8.25 1.5 0.270 0.219 0.243 0.027 0.28 250.29 34 510 8.50 1.5 0.270 0.216 0.243 0.054 0.55 497.08 35 525 8.75 1.6 0.288 0.213 0.259 0.075 0.77 692.04 36 540 9.00 1.7 0.306 0.210 0.275 0.096 0.99 886.76 37 555 9.25 1.9 0.342 0.207 0.308 0.135 1.39 1248.08 38 570 9.50 2.0 0.360 0.204 0.324 0.156 1.60 1442.29 39 585 9.75 2.1 0.378 0.201 0.340 0.177 1 1.82 1636.25 40 600 10.00 2.2 1 0.396 0.199 0.356 0.197 2.03 1829.95 41 615 10.25 1.5 0.270 0.196 0.243 0.074 0.77 688.50 42 630 10.50 1.5 0.270 0.193 0.243 0.077 0.79 714.82 43 645 10.75 2.0 0.360 0.190 0.324 0.170 1.75 1575.17 44 660 11.00 2.0 0.360 0.187 0.324 0.173 1.78 1600.95 45 675 11.25 1.9 0.342 0.185 0.308 0.157 1.62 1459.61 46 690 11.50 1.9 0.342 0.182 0.308 0.160 1.65 1484.85 47 705 11.75 1.7 0.306 0.179 0.275 0.127 1.31 1176.10 48 1 720 12.00 1.8 0.324 0.176 0.292 0.148 1.52 1367.65 49 735 12.25 2.5 0.450 1 0.174 0.405 0.276 2.84 2560.09 50 750 12.50 2.6 0.468 0.171 0.421 0.297 3.06 2751.09 51 1 765 12.75 2.8 0.504 0.169 0.454 0.335 3.45 3108.66 Plate E -2.2 100YR -24HR r. r r 0 1-1 RCFCD SYNTHETIC UNIT HYDROGRAPH 100 YEAR - 24 HOUR STORM EVENT 1BY PROJECT L4 QUINTA SAM'S CLUB CONECENTRATION POINT SM DATE 11/5/2005 EFFECTIVE RAIN CALCULATION FORM DRAINAGE AREA -ACRES 10.3 ULTIMATE DISCHARGE - (cfs - hr/in) 10.38 UNIT TIME - MINUTES 15.0 LAG TIME - MINUTES 3.0" UNIT TIME - PERCENT OF LAG 411.7 TOTAL ADJUSTED STORM RAIN - INCHES 4.50 CONSTANT LOSS RATE - in /hr n/a VARIABLE LOSS RATE (AVG) - in /hr 0.19 MINIMUM LOSS RATE (for var. loss) - in /hr 0.094 LOW LOSS RATE - PERCENT 90% C 0.00173 TOTAL PERCOLATION RATE (cfs) 0 UNIT HYDROGRAPH EFFECTIVE RAIN FLOOD HYDROGRAPH Time Pattern Percent (Plate E -5.9 ) Storm Rain (in /hr) Loss rate Effective Rain (in/hr) Flood Hydrograph Flow (cfs) Required Storage cf Unit Time Period Minutes Hours Max (in/hr ) Low (in /hr ) 52 780 13.00 2.9 0.522 0.166 0.470 0.356 3.67 3299.08 53 795 13.25 3.4 1 0.612 0.164 0.551 0.448 4.62 1 4156.66 54 1 810 13.50 3.4 0.612 0.161 0.551 0.451 4.64 4179.64 55 825 13.75 2.3 0.414 0.159 0.373 0.255 2.63 2366.87 56 840 14.00 .2.3 0.414 0.156 0.373 0.258 2.65 2389.26 57 855 14.25 2.7 0.486 0.154 0.437 0.332 3.42 3078.78 58 870 14.50 2.6 0.468 0.152 0.421 0.316 3.26 2933.70 59 885 14.75 2.6 0.488 0.149 0.421 0.319 1 3.28 2955.18 60 900 15.00 2.5 1 0.450 0.147 0.405 0.303 3.12 1 2809.47 61 915 15.25 2.4 0.432 0.145 0.389 0.287 2.96 2663.46 62 930 15.50 2.3 0.414 0.142 0.373 0.272 2.80 2517.12 63 945 15.75 1.9 0.342 0.140 0.308 0.202 2.08 1869.88 64 1 960 16.00 1.9 0.342 0.138 0.308 0.204 2.10 1889.75 65 975 16.25 0.4 0.072 0.136 0.065 0.007 0.07 66.74 66 990 16.50 0.4 0.072 0.134 0.065 0.007 0.07 66.74 67 1005 16.75 0.3 O.C54 0.132 0.049 0.005 1 0.06 50.06 68 1020 17.00 0.3 0.054 0.130 0.049 0.005 0.06 50.06 69 1035 17.25 0.5 0.090 0.128 0.081 0.009 0.09 83.43 70 1050 17.50 0.5 0.090 0.126 0.081 0.009 0.09 83.43 71 1065 17.75 0.5 0.090 0.124 0.081 0.009 0.09 8343 72 1080 18.00 0.4 0.072 0.122 0.065 0.007 0.07 66.74 73 1095 18.25 0.4 0.072 0.121 0.065 1 0.007 0.07 1 66.74. 74 1110 18.50 0.4 0.072 0.119 0.065 0.007 0.07 66.74 75 1125 18.75 0.3 0.054 0.117 0.049 0.005 0.06 50.06 76 1140 19.00 0.2 0.036 0.115 0.032 0.004 0.04 33.37 77 1155 19.25 0.3 0.054 0.114 0.049 0.005 0.06 50.06 78 1170 19.50 0.4 0.072 0.112 0.065 0.007 0.07 66.74 79 1185 19.75 0.3 0.054 0.111 0.049 0.005 0.06 50.06 80 1200 20.00 0.2 0.036 0.109 0.032 0.004 0.04 33.37 81 1 1215 20.25 0.3 0.054 0.108 0.049 0.005, 0.06 50.06 82 1230 20.50 1 0.3 0.054 0.106 0.049 0.005 0.06 50.06 83 1245 20.75 0.3 0!54 0.105 0.049 0.005 0.06 50.06 84 1260 21.00 0.2 0.036 0.104 0.032 0.004 0.04 33.37 85 1275 21.25 0,3 0.054 0.102 0.049 0.005 0.06 50.06 86 1290 21.50 0,2 0.036 0.101 0.032 0.004 0.04 33.37 87 1305 21.75 0.3 0.054 0.100 0.049 0.005 0.06 50.06 88 1320 22.00 0.2 0.036 0.099 0.032 0.004 0.04 33.37 89 1335 22.25 0.3 0.054 0.098 0.049 0.005 0.06 50.06 90 1 1350 22.50 0.2 0.036 0:097 0.032 0.004 0.04 33.37 91 1365 22.75 0.2 0.036 0.096 0.032 0.004 0.04 33.37 92 1380 23.00 0.2 0.036 0.096 1 0.032 0.004 0.04 33.37 93 1395 23.25 0.2 1 0.036 0.095 0.032 0.004 0.04 33.37 94 1410 23.50 0.2 0.036 0.094 0.032 0.004 0.04 33.37 95 1425 23.75 0.2 0.036 1 0.094 0.032 0.004 0.04 33.37 96 1440 24.00 0.2 0.036 0.094 0.032 0.004 0.04 33.37 EFFECTIVE RAIN & FLOOD SUMMARY EFFECTIVE RAIN (in) 1.86 FLOOD VOLUME (acft) 1.59 FLOOD VOLUME (cuft) 69,102 REQUIRED STORAGE (acft) 1.59 REQUIRED STORAGE (cuft) 69,102 PEAK FLOW RATE (cfs) 4.64 Plate E -2.2 100YR -24HR r PROJECT LA OUINTA SAM'S CLUB NASLAND JOB NO. 304 -018.1 RETENTION BASIN PROPOSED BASIN CHARACTERISTICS EXISTING BASIN CHARACTERISTICS DEPTH AREA VOLUME CONTOUR INCR TOTAL (ft) (ft) INCR TOTAL (sf) (sf) INCR (cuft) (cult) (acre -ft) 54 0 0 67197 01 0 0.00 55 1 1 3190.660 70388 687931 68793 1.58 56 1 2 3192.900 73581 71984 140777 3.23 57 1 3 3249.440 76830 75206 215983 4.96 58 1 4 3305.750 80136 78483 294466 6.76 59 1 5 3362.530 83499 81817 376283 8.64 60 1 6 3435.380 86934 " 85216 461500 10.59 60 0 6 0 86934 0 511960 11.75 EXISTING BASIN CHARACTERISTICS BOLDED DATA - includes revised retention basin by The Keith Company, 8/02 PERCOLATION CALCULATIONS PERCOLATION RATE 0 in/hr 0 cfs . MAXWELL IV DRYWELLS NUMBER USED 0 RATE/DRYWELL 0.35 cfs TOTAL DISSIPATED 0 cfs TOTAL PERCOLATION RATE 0 cfs BASIN CHARACTERISTICS DEPTH AREA VOLUME CONTOUR INCR TOTAL (h) (ft) INCR TOTAL (sf) (sf). INCR (cuft) (cuft) (acre -ft) 54 0 0 54668 0 0 0.00 55 1 1 3049 57717 56193 56193 1.29 56. 1 2 3093 608101 59264 115456 2.65 57 1 3 3180 63990 62400 177856 4.08 58 1 4 3223 67213 65602 243458 5.59 59 1 5 3311 70524 68869 1 312326 7.17 60 1 6 1 3260 73784 721541 384480 8.83 60 0 6 1 0 73784 01 434940 9.98 BOLDED DATA - includes revised retention basin by The Keith Company, 8/02 PERCOLATION CALCULATIONS PERCOLATION RATE 0 in/hr 0 cfs . MAXWELL IV DRYWELLS NUMBER USED 0 RATE/DRYWELL 0.35 cfs TOTAL DISSIPATED 0 cfs TOTAL PERCOLATION RATE 0 cfs BASIN CHARACTERISTICS ' LA OUINTA SAM'S CLUB NASLAND JOB NO. 304 -018.1 P,i 100 YEAR - 3 HOUR STORM EVENT Time FLOW IN (cts) VOLUME IN (cult) OTAL IN BASIN (cuft) PERC OUT (cuft) TOTAL IN BASIN (cuft) BASIN DEPTH (ft) BALANCE IN BASIN Unit Time Period Minutes (cuft) (acre -ft) 1 5 8.07 2422 2422 0 2422 54.04 2422 0.06 2 10 8.07 2422 4529 0 4529 54.07 4529 0.10 3 15 5.30 1590 6636 0 6636 54.10 6636 0.15 20 10.85 3254 7911 0 7911 54.12 7911 0.18 5 25 10.85 3254 10851 0 10851 54.16 10851 0.25 6 30 15.01 4503 13790 0 13790 54.20 13790 0.32 7 D 35 10.85 3254 17978 0 17978 54.26 17978 0.41 8 40 15.01 4503 20917 0 20917 54.30 20917 0.48 94 45 15.01 4503 25105 0 25105 54.36 25105 0.58 10 1 50 10.85 3254 29293 0 29293 54.43 29293 0.67 11 55 12.24 3671 32233 0 32233 54.47 32233 0.74 12 60 15.01 4503 35588 0 35588 54.52 35568 0.82 13 65 20.56 6168 39776 0 39776 54.58 39776 0.91 14 70 20.56 6168 45629 0 45629 54.66 45629 1.05 15 75 20.56 6168 51481 0 51481 54.75 51481 1.18 16 80 17.78 5335 57334 0 57334 54.83 57334 1.32 17 1 85 26.11 7832 62354 0 62354 54.91 62354 1.43 18 90 27.49 8248 69871 0 69871 55.50 69871 1.60 19 95 23.33 7000 77805 0 77805 55.55 77805 1.79 20 100 27.49 8248 84489 0 84489 55.60 84489 1.94 21 105 35.82 10745 92423 0 92423 55.66 92423 2.12 22 110 33.04 9913 102853 0 102853 55.73 102853 2.36 23 115 30.27 9081 112451 0 112451 55.80 112451 2.58 24 120 31.66 9497 121217 0 121217 55.86 121217 2.78 25 125 33.04 9913 130399 0 130399 55.93 130399 2.99 26 130 48.30 14491 139997 0 139997 55.99 139997 3.21 27 135 59.40 17820 154172 0 154172 57.52 154172 3.54 28 140 38.59 11578 171677 0 171677 57.58 171677 3.94 29 145 84.37 25311 182940 0 182940 57.62 182940 4.20 30 150 91.31 27392 207936 0 207936 57.71 207936 4.77 31 155 103.79 31137 235013 0 235013 58.62 235013 5.40 32 160 71.88 21565 265835 0 265835 58.71 265835 6.10 33 165 17.78 5335 287085 0 287085 58.76 287085 6.59 34 170 15.01 4503 292106 0 292106 58.78 292106 6.71 35 175 15.01 4503 296293 0 296293 1 58.79 296293 6.80 36 180 0.57 170 300481 0 300481 58.80 300481 6.90 BASIN DEPTH ANALYSIS 100YR -3 HR ' LA OUINTA SAM'S CLUB NASLAND JOB NO. 304 -018.1 ' 100 YEAR - 6 HOUR STORM EVENT Time FLOW IN (cfs) VOLUME IN (cult) TOTAL IN BASIN (cult) PERC OUT (cult) TOTAL IN BASIN (cult) BASIN DEPTH (ft) BALANCE IN BASIN Unit Time Period Minutes (cult) (acre -ft) 1 5 0.57 170 170 0 170 54.00 170 0.00 2 10 0.44 133 201 0 201 54.00 201 0.00 3 15 0.44 133 235 0 235 54.00 235 0.01 4 20 0.44 133 268 0 268 54.00 268 0.01 25 0.44 133 302 0 302 54.00 302 0.01 6 30 2.18 653 335 0 335 54.00 335 0.01 7 35 2.18 653 674 0 674 54.01 674 0.02 8 K 40 2.18 653 1012 0 1012 54.01 1012 0.02 9 45 2.18 653 1351 0 1351 54.02 1351 0.03 105 50 2.18 653 1689 0 1689 54.02 1689 0.04 11 55 2.18 653 2027 0 2027 54.03 2027 0.05 12 60 3.91 1174 2366 0 2366 54.03 2366 0.05 3.91 1174 3224 0 3224 54.05 3224 0.07 70 3.91 1174 4083 0 4083 54.06 4083 0.09 75 3.91 1174 4942 0 4942 54.07 4942 0.11 80 3.91 1174 5800 0 5800 54.08 5800 0.13 E2065 85 3.91 1174 6659 0 6659 54.10 6659 0.15 90 3.91 1174 7518 0 7518 54.11 7518 0.17 95 3.91 1174 8376 0 8376 54.12 8376 0.19 100 3.91 1174 9235 0 9235 54.13 9235 0.21 105 3.91 1174 10094 0 10094 54.15 10094 0.23 22 110 3.91 1174 10952 0 10952 54.16 10952 0.25 23 115 5.65 1694 11811 0 11811 54.17 11811 0.27 24 120 3.91 1174 13190 0 13190 54.19 13190 0.30 25 125 5.65 1694 14048 0 14048. 54.20 14048 0.32 26 130 5.65 1694 15427 0 15427 54.22 15427 0.35 27 135 5.65 1694 16806 0 16806 54.24 16806 0.39 28 140 5.65 1694 18185 0 18185 54.26 18185 0.42 29 145 5.65 1694 19564 1 0 19564 54.28 19564 0.45 30 150 5.65 1694 20942 0 20942 54.30 20942 0.48 31 155 5.65 1694 22321 0 22321 54.32 22321 0.51 32 160 7.38 2214 23700 0 23700 54.34 23700 0.54 33 165 7.38 2214 25599 0 25599 54.37 25599 0.59 34 170 7.38 2214 27498 0 27498 54.40 27498 0.63 35 175 7.38 2214 29397 0 29397 54.43 29397 0.67 36 180 7.38 2214 31296 0 31296 54.45 31296 0.72 37 185 7.38 2214 33195 0 33195 54.48 33195 0.76 38 190 9.11 2734 35094 0 35094 54.51 35094 0.81 39 195 9.11 2734 37514 0 37514 54.55 37514 0.86 40 200 9.11 2734 39933 0 39933 54.58 39933 0.92 41 205 10.85 3254 42352 0 42352 54.62 42352 0.97 42 210 12.58 3775 45292 0 45292 54.66 45292 1.04 43 215 14.32 4295 48751 0 48751 54.71 48751 1.12 44 220 14.32 4295 52731 0 52731 54.77 52731 1.21 45 225 16.05 4815 56711 0 56711 54.82 56711 1.30 46 230 16.05 4815 61211 0 61211 54.89 61211 1.41 47 235 17.78 5335 65711 0 65711 54.96 65711 1.51 48 240 17.78 5335 70731 0 70731 55.50 70731 1.62 49 245 19.52 5855 75751 0 75751 55.54 75751 1.74 50 250 21.25 6376 81292 0 81292 55.58 81292 1.87 51 255 22.99 6896 87352 0 1 87352 55.62 87352 2.01 52 260 24.72 7416 93933 0 93933 55.67 93933 2.16 53 265 26.45 7936 101034 0 101034 55.72 101034 2.32 54 270 26.45 7936 108656 0 108656 55.77 108656 2.49 55 275 28.19 8456 116277 0 116277 55.83 116277 2.67 56 280 29.92 8977 124418 0 124418 55.88 124418 2.86 57 285 31.66 9497 133080 0 133080 55.95 133080 3.06 58 290 31.66 9497 142262 0 142262 57.48 142262 3.27 59 295 33.39 10017 151444 0 151444 57.51 151444 3.48 60 300 35.12 10537 161146 0 161146 57.55 161146 3.70 61 305 43.79 13138 171368 0 171368 57.58 171368 3.93 62 310 52.46 15739 184191 0 184191 57.63 184191 4.23 63 315 57.67 17300 199615 0 199615 57.68 199615 1 4.58 BASIN DEPTH ANALYSIS 100YR -6HR LA OUINTA SAM'S CLUB NASLAND JOB NO. 304 -018.1 100 YEAR - 6 HOUR STORM EVENT Time FLOW IN (cfs) VOLUME IN (cult) TOTAL IN BASIN (cult) PERC OUT (cult) TOTAL IN BASIN (cult) BASIN DEPTH (ft) BALANCE IN BASIN Unit Time Period Minutes (cult) (acre -ft) 64 320 62.87 18860 216600 0 216600 58.58 216600 4.97 65 325 71.54 21461 235146 0 235146 58.62 235146 5.40 66 330 87.14 26143 256292 0 256292 58.68 256292 5.88 67 335 22.99 6896 282120 0 282120 58.75 282120 6.48 68 340 5.65 1694 288701 0 288701 58.77 288701 6.63 69 345 0.44 133 290080 0 290080 58.77 290080 6.66 70 350 0.57 170 290113 0 290113 58.77 290113 6.66 71 355 0.57 170 290144 0 290144 58.77 290144 6.66 72 360' 0.57 170 290175 0 290175 58.77 290175 6.66 BASIN DEPTH ANALYSIS 100YR -6 HR LA QUINTA SAM'S CLUB NASLAND JOB NO. 304 -018.1 ' 100 YEAR - 24 HOUR STORM EVENT Time FLOW IN (cfs) VOLUME IN (cult) TOTAL IN BASIN (cult) PERC OUT (cuft) TOTAL IN BASIN (cult) BASIN DEPTH (ft) BALANCE IN BASIN Unit Time Period Minutes (cult) (acre -ft) 1 15 0.20 184 184 0 184 54.00 184 0.00 2 30 0.31 276 217 0 217 54.00 217 0.00 3 45 0.31 276 267 0 267 54.00 267 0.01 4 60 0.41 368 317 0 317 54.00 317 0.01 75 0.31 276 384 0 '384 54.01 384 0.01 90 0.31 276 434 0 434 54.01 434 0.01 V6 105 0.31 276 484 0 484 54.01 484 0.01 120 0.41 368 534 0 .534 54.01 534 0.01 135 0.41 368 601 0 601 54.01 601 0.01 10 1 150 0.41 368 668 0 668 54.01 668 0.02 1 165 0.51 460 735 0 735 54.01 735 0.02 2 180 0.51 460 818 0 818 54.01 818 0.02 3 195 0.51 460 901 0 901 54.01 901 0.02 4 L 210 0.51 460 985 0 985 54.01 985 0.02 5 225 0.51 460 1068 0 1068 54.02 1068 0.02 6 240 0.61 552 1152 0 1152 54.02 1152 0.03 17 255 0.61 552 1252 0 1252 54.02 1252 0.03 18 270 0.72 644 1352 0 1352 54.02 1352 0.03 '19 285 0.72 644 1469 0 1469 54.02 1469 0.03 20 300 0.82 736 1586 0 1586 54.02 1586 0.04 21 315 0.61 552 1719 0 1719 54.02 1719 0.04 22 330 0.72 644 1819 0 1819 54.03 1819 0.04 23 345 0.82 736 1936 0 1936 54.03 1936 0.04 24 360 0.82 736 2069 0 2069 54.03 2069 0.05 25 375 0.92 828 2203 0 2203 54.03 2203 0.05 26 390 0.92 828 2353 0 2353 54.03 2353 0.05 27 405 1.02 920 2503 0 2503 54.04 2503 0.06 28 420 1.02 920 2670 0 2670 54.04 2670 0.06 29 435 1.02 920 2837 0 2837 54.04 2837 0.07 30 450 1.12 1012 3004 0 3004 54.04 3004 0.07 31 1 465 0.58 519 3187 0 3187 54.05 3187 0.07 32 480 1.56 1408 3388 0 3388 54.05 3388 0.08 33 495 3.41 3067 3851 0 3851 54.06 3851 0.09 34 510 3.81 3432 5973 0 5973 54.09 5973 0.14 35 525 5.00 4496 8459 0 8459 54.12 8459 0.19 36 540 6.18 5560 12011 0 12011 54.17 12011 0.28 37 555 8.38 7542 16626 0 16626 54.24 16626 0.38 38 570 9.56 8603 23223 0 23223 54.34 23223 0.53 39 585 10.74 9663 30881 0 30881 54.45 30881 0.71 40 600 11.91 10721 39599 0 39599 54.58 39599 0.91 41 615 4.91 4421 49375 0 49375 54.72 49375 1.13 42 630 5.06 4557 52850 0 52850 54.77 52850 1.21 43 645 10.32 9290 56462 0 56462 -54.82 56462 1.30 44 660 10.47 9423 64806 0 64806 54.94 64806 1.49 45 1 675 9.59 8635 73284 0 73284 55.52 73284 1.68 46 690 9.74 8765 80974 0 80974 55.58 80974 1.86 47 705 7.84 7055 88795 0 88795 55.63 88795 2:04 48 720 9.00 8102 94905 0 94905 55.67 94905 2.18 49 735 16.30 14666 102062 0 102062 55.72 102062 2.34 50 750 17.46 15711 115783 0 115783 55.82 115783 2.66 51 765 19.64 17673 1 130549 0 130549 55.93 130549 3.00 52 780 20.79 18715 147277 0 147277 57.50 147277 3.38 53 795 26.04 23433 165046 0 165046 57.56 165046 3.79 54 810 26.17 23552 187534 0 187534 57.64 187534 4.31 55 825 15.06 13553 210141 0 210141 57.71 210141 4.82 56 840 15.19 13668 222749 0 222749 58.59 222749 5.11 57 855 19.40 17461 235472 0 235472 58.63 235472 5.41 58 870 18.50 16654 251989 0 251989 58.67 251989 5.78 59 885 18.63 16765 267698 0 267698 58.71. 267698 6.15 60 900 17.73 15955 283518 0 283518 58.75 283518 6.51 61 915 16.83 15143 298527 0 298527 58.79 298527 6.85 62 930 15.92 14329 312725 0 312725 58.83 312725 7.18 63 945 11.95 10755 326109 0 326109 58.87 326109 7.49 BASIN DEPTH ANALYSIS 100YR -24HR ' LA CUINTA SAM'S CLUB NASLAND JOB NO. 304 -018.1 t 100 YEAR - 24 HOUR STORM EVENT Time FLOW IN (cfs) VOLUME IN (cult) TOTAL IN BASIN (cult) PERC OUT (tuft) TOTAL IN BASIN (cult) BASIN DEPTH (ft) BALANCE IN BASIN Unit Time Period Minutes (tuft) (acre -ft) 64 960 12.06 10857 335919 0 335919 58.89 335919 7.71 65 975 0.41 368 345831 0 345831 58.92 345831 7.94 66 990 0.41 368 345898 0 345898 58.92 345898 7.94 67 1005 0.31 276 345964 0 345964 58.92 345964 7.94 68 1020 0.31 276 346014 0 346014 58.92 346014 7.94 69 1035 0.51 460 346065 0 346065 58.92 346065 7.94 70 1050 0.51 460 346148 0 346148 58.92 346148 7.95 71 1065 0.51 460 346231 0 346231 58.92 346231 7.95 72 1080 0.41 368 346315 0 346315 58.92 346315 7.95 73 1095 0.41 368 346382 0 346382 58.92 346382 7.95 74 1110 0.41 368 346448 0 346448 58.92 346448 7.95 75 1 1125 0.31 276 346515 0 346515 58.92 346515 7.95 76 1140 0.20 184 346565 0 346565 58.92 346565 7.96 77 1155 0.31 276 346599 0 346599 58.92 346599 7.96 78 1170 0.41 368 346649 0 346649 58.92 346649 7.96 79 1185 0.31 276 346715 0 346715 58.92 346715 7.96 80 1200 0.20 184 346765 0 346765 58.92 346765 7.96 81 1215 0.31 276 346799 0 346799 58.92 346799 7:96 82 1230 0.31 276 346849 0 346849 58.92 346849 7.96 83 1245 0.31 276 346899 0 1 346899 58.92 346899 7.96 84 1260 0.20 184 346949 0 346949 58.92 346949 7.96 85 1275 0.31 276 346982 0 346982 58.92 346982 7.97 86 1290 0.20 184 347032 0 347032 58.92 347032 7.97 87 1305 0.31 276 347066 0 347066 58.92 347066 7.97 88 1320 0.20 184 347116 0 347116 58.92 347116 7.97 89 1335 0.31 276 347149 0 347149 58.92 347149 7.97 90 1350 0.20 184 347199 0 347199 58.92 347199 7.97 91 1365 0.20 184 347233 0 347233 58.92 347233 7.97 92 1380 0.20 184 347266 0 347266 58.92 347266 7.97 93 1395 0.20 184 347299 0 347299 58.92 347299 7.97 94 1410 0.20 184 347333 0 347333 58.92 347333 7.97 95 1 1425 0.20 184 347366 0 347366 58.92 347366 7.97 96 1 1440 0.20 184 347399 0 347399 58.92 347399 7.98 BASIN DEPTH ANALYSIS 100 YR - 24 HR PROJECT LA OUINTA SAM'S CLUE NASLAND JOB NO. 304 -018.1 RETENTION BASIN DATAINPUT TRIANGULAR HYDROGRAPH FLOW 115.7 cfs tc 13.43 min T(max) m1 m2 y -int VOL cu -ft PROPOSED BASIN CHARACTERISTICS Percolation Rate 1 in /hr Weir Data VOLUME Overflow Contour 59 b 100 h(min) 5 Area Ap 01 RI 0.00 BASIN CHARACTERISTICS DEPTH AREA VOLUME CONTOUR INCR TOTAL (ft) (ft) INCR TOTAL (sf) (sf) INCR (cult) (cuft) (acre -ft) 54 0 0 67197 01 0 0.00 55 1 1 3190.000 70387 687921 68792 1.58 56 1 2 3193.000 73580 71984 140776 3.23 57 1 3 3250.000 76830 75205 215981 4.96 58 1 4 3306.000 80136 78483 294464 6.76 59 1 5 3362.000 83498 81817 376281 8.64 60 1 - 6 3435.000 86933 85216 461496 10.59 60 0 6 0 86933 .0 511960 11.75 BASIN CHARACTERISTICS PROPOSED UNDERGROUND RETENTION it � 1, RCFCD SYNTHETIC UNIT HYDROGRAPH DATA INPUT SHEET -T- WORKSHEET PREPARED BY: PROJECT NAME LA-.0 UJIN.T.-A-SAM'S2 CLUB NASLAND JOB# `:--304-`018.1:11`1 DATE CONCENTRATION POINT DESIGNATION IRE-TENTIOWBASlN AREA DESIGNATION 'UNDERGROUND,,- TRIBUTARY AREAS COMMERCIAL .'2' PAVING/HARDSCAPE SF-1 ACRE SF-1/2 ACRE SF-1/4 ACRE MF-CONDOMINIUM MF-APARTMENT MOBILE HOME PARK LANDSCAPING RETENTION BASIN ,GOLF COURSE IMOUNTAINOUS ILOW LOSS RATE (PERCENT) .9 LENGTH OF WATERCOURSE (L) '<1.600::i.: :;; LENGTH TO POINT OPPOSITE CENTROID Lca ) .ELEVATION AT HEAWATER ELEVATION OF CONCENTRATION POINT 1 AVERAGE MANNING'S 'N' VALUE STORM FREQUENCY YEAR POINT RAIN BASIN CHARACTERISTICS: Elev AREAproposed -mmm� :.* 4329:06 .::,.: ­4 -:-'4329.'06 PERCOLATION RATE (in/hr) DRYW ELL DATA NUMBER USED PERCOLATION RATE (cfs) -0;35; 1 1, RCFCD SYNTHETIC UNIT HYDROGRAPH PROJECT LA QUINTA SAM'S CLUB CONECENTRATION POINT SM DATE RETENTION BASIN 11/05/05 BASIC CALCULATION FORM IBY SHORTCUT METHOD EFFECTIVE RAIN in PHYSICAL DATA 1.91 FLOOD VOLUME (acre -ft) cu -ft 0.41 17,939 [1) CONCENTRATION POINT [2] AREA DESIGNATION [3] AREA - AREAS [4] L- FEET [5] L- MILES [6] La - FEET [7] La - MILES [8] ELEVATION OF HEADWATER [9] ELEVATION OF CONCENTRATION POINT [10] H - FEET [11] S - FEET /MILE [12] S-0.5 [13] L'Lca/S^0.5 [14] AVERAGE MANNING'S 'N' [15] LAG TIME - HOURS [16] LAG TIME - MINUTES [17] 100% OF LAG - MINUTES [18] 200% OF LAG - MINUTES [19] UNIT TIME - MINUTES (100 % -200% OF LAG) [24] TOTAL PERCOLATION RATE (cfs) 0.47 20,643 RETENTION BASIN 0.41 17,939 UNDERGROUND 0.47 1 20,643 3 STORAGE PROVIDED (acre -ft) cu -ft 1600 PEAK FLOW cfs 0.3030 5.00 950 MAXIMUM WSEL (ft) - 0.1799 48.23 62.5 54 8.5 28.1 5.30 0.010 0.013 0.05 3.3 3.3 6.6 5.0 0.35 RAINFALL DATA [1 ]SOURCE [21 FREQUENCY - YEARS 100 3 DURATION 3 -HOURS 6 -HOURS 24 -HOURS [4] POINT RAIN INCHES [5] AREA SO IN [6] [5] / E[5] [7] AVERAGE POINT RAIN INCHES [8] POINT RAIN INCHES [9] AREA SQ IN [10] [5]/Z[5] [11] AVERAGE POINT RAIN INCHES [12] POINT RAIN INCHES [13] AREA SQ IN [14] [51/7-[5] [15] AVERAGE POINT RAIN INCHES 2.20 31 1.00 2.20 2.75 31 1.00 2.75 4.5 31 1.00 4.50 Z[5]= 3 Z[7]= 2.20 E (9)= 3 E 11 = 2.75 E[13]= 3 E[15 = 4.50 16 AREAL ADJ FACTOR 1.00 SEE PLATE E -5.8 1.00 1.00 [17] ADJ AVG POINT RAIN 2.20 [16'E[7], E C 2.75 4.50 STORM EVENT SUMMARY DURATION 3 -HOUR 6 -HOUR 24 -HOUR EFFECTIVE RAIN in 1.66 1.69 1.91 FLOOD VOLUME (acre -ft) cu -ft 0.41 17,939 0.42 18,300 0.47 20,643 REQUIRED STORAGE (acre -ft) (cu -ft) FACTOR OF SAFETY 0.41 17,939 0.42 1 18,300 0.47 1 20,643 1.21 1.18 1.05 STORAGE PROVIDED (acre -ft) cu -ft 0.50 21,645 . PEAK FLOW cfs 5.95 5.00 1.37 MAXIMUM WSEL (ft) - 48.11 48.23 48.77 RCFCD SYNTHETIC UNIT HYDROGRAPH METHOD PROJECT LA QUINTA SAM'S CLUB CONECENTRATION POINT BY SM DATE 11/5/2005 AVERAGE ADJUSTED LOSS RATE [1] [2] [3) [4) [5] [6] [7] [8] [9] SOIL GROUP LAND USE RI NUMBER PREVIOUS DECIMAL ADJUSTED AREA [8] / E[8] AVERAGE AREA PERCENT OF INFILTRATION ADJUSTED INFILTRATION AREA RATE INFILTRATION RATE (in /hr) IMPERVIOUS (in /hr) RATE - IN / HR [PLATE E-6.11] [PLATE E -6.21 [PLATE E -6.3] (4] (1 -0.9 [5]) (acre) [6] ' [8] A COMMERCIAL 32 0.74 90% 0.14 2.8 0.93 0.1312 A PAVING /HARDSCAPE 32 0.74. 100% 0.07 0 0.00 0.0000 A SF - 1 ACRE 32 0.74 20% 0.61 0 0.00 0.0000 A SF - 1/2 ACRE 32 0.74 40% 0.47 0 0.00. 0.0000 A SF - 1/4 ACRE 32 0.74 50% 0.41 0 0.00 0.0000 A MF - CONDOMINIUMS 32 0.74 65% 0.31 0 0.00 0.0000 A MF - APARTMENTS 32 .0.74 80% 0.21 0 0.00 0.0000 A MOBILE HOME PARKS 32 0.74 75% 0.24 0 0.00 0.0000 A LANDSCAPING 32 0.74 0% 0.74 0.2 0.07 0.0493 A RETENTION BASINS 32 0.74 0%1 0.74 0 0.00 0.0000 A GOLF COURSE 32 0.74 0%1 0.74 0 0.00 0.0000 D MOUNTAINOUS 93 0.95 90%1 0.18 0 0.00 0.0000 E [7] = 3. E [9] = 0.1806 18,817,920 VARIABLE LOSS RATE CURVE (24 -HOUR STORM ONLY FR, = Minimum Loss Rate = F/2 = E [91/ 2 = 0.09028 in /hr C= (F- Fm) /54= (E[9]- Frt,) /54= 0.00167 FT = C (24 - (T/60)) 1.51 + Fm = 0.00167 (24 - (T/60)) 1.55 + 0.09 in /hr LOW LOSS RATE (80 -90 PERCENT) = 90% T = TIME IN MINUTES. TO GET AN AVERAGE VALUE FOR EACH UNIT TIME PERIOD, USE T =1/2 THE UNIT TIME FOR THE FIRST TIME PERIOD. T = 1 1/2 UNIT TIME FOR THE SECOND PERIOD, ETC. Plate E =2.1 LOSS RATE I RCFCD SYNTHETIC UNIT HYDROGRAPH 100 YEAR - 3 HOUR STORM EVENT PROJECT LA QUINTA SAM'S CLUB CONECENTRATION POINT BY SM DATE 11/5/2005 EFFECTIVE RAIN CALCULATION FORM DRAINAGE AREA -ACRES 3 ULTIMATE DISCHARGE - (cfs - hr /in) 3.02 UNIT TIME - MINUTES 5.0 LAG TIME - MINUTES 3.3 UNIT TIME - PERCENT OF LAG 152.0 TOTAL ADJUSTED STORM RAIN - INCHES'. 2.20 CONSTANT LOSS RATE - in /hr 0.181 LOW LOSS RATE - PERCENT 90% TOTAL PERCOLATION RATE (cfs) 0 0.41 UNIT HYDROGRAPH EFFECTIVE RAIN FLOOD HYDROGRAPH 0.41 REQUIRED STORAGE (cuft) Time PEAK FLOW RATE (cfs) Pattern Percent (Plate E -5.9) Storm Rain (in /hr) Loss rate . Effective Rain (in /hr) Flood Hydrograph Flow (cfs) Required Storage cf Unit Time Period Minutes Hours I Max (in /hr) Low (in /hr) 1 5 0.08 1.3 0.343 0.18 0.31 0.16 0.49 146.38 2 10 0.17 1.3 0.343 0.18 1 0.31 0.16 0.49 146.38 3 15 0.25 1.1 0.290 0.18 0.26 0.11 0.33 98.86 4 20 0.33 1.5 0.396 0.18 0.36 0.22 0.65 193.90 5 25 0:42 1.5 0.396 0.18 0.36 0.22 0.65 193.90 6 30 0.50 1.8 0.475 0.18 0.43 0.29 0.88 265.18 7 35 0.58 1.5 0.396 0.18 0.36 0.22 0.65 193.90 8 40 0.67 1.8 0.475 0.18 0.43 0.29 0.88 265.18 9 45 0.75' 1.8 0.475 0.18 0.43 0.29 0.88 265.18 10 50 0.83 1.5 0.396 0.18 0.36 0.22 0.65 193.90 11 55 0.92 1.6 0.422 .0.18 0.38 0.24, 0.73 217.66 12 60 1.00 1.8 0.475 1 0.18 0.43 0.29 1 0.88 265.18 13 65 1.08 2.2 0.581 0.18 ' 0.52 0.40 1.20 360.22 14 70 1.17 2.2 0.581 .0.18 0.52 0.40 1.20 360.22 15 75 1.25 2.2 0.581 0.18 0.52 0.40 1.20 360.22 16 80 1.33 2.0 0.528 0.18 0.48 0.35 1.04 312.70 17 85 1.42 2.6 0.686 0.18 0.62 1 0.51 1.52 455.26 18 90 1.50 2.7 0.713 0.18 0.64 0.53 1.60 479.02 19 95 1.58 2.4 0.634 0.18 0.57 0.45 1.36 407.74 20 100 1.67 2.7 0.713 0.18 0.64 0.53 1.60 .479.02 21 105 1 1.75 3.3 0.871 0.18 0.78 0.69 2.07 621.58 22 110 1.83 3.1 0.818 0.18 0.74 0.64 1.91 574.06 23 115 1.92 2.9 0.766 0.18 0.69 0.59 1.76 526.54 24 120 2.00 3.0 0.792 0.18 0.71 0.61 1.83 550.30 25 125 2.08 3.1 0.818 0.18 0.74 0.64 1.91 574.06 26 130 2.17 4.2 1.109 0.18 1.00 0.93 2.78 835.42 27 135 2.25 5.0 1.320 0.18 1.19 1.14 3.42 1025.50 28 140 2.33 3.5 0.924 0.18 0.83 0.74 2.23 669.10 29 145 2.42 6.8 1.795 0.18 1.62 1.61 1 4.84 1453.18 30 150 2.50 7.3 1.927 0.18 1.73 1.75 5.24 1571.98 31 155 2.58 8.2 2.165 0.18 1.95 1.98 5.95 1785.82 32 160 2.67 5.9 1.558 0.18 1.40 1.38 4.13 1239.34 33 165 2.75 2.0 0.528 0.18 0.48 0.35 1.04 312.70 34 170 2.83 1.8 0.475 0.18 0.43 0.29 0.88 265.18 35 175 2.92 1.8 0.475 0.18 0.43 0.29 1 0.88 26518 36 1 180 3.00 0.6 0.158 0.18 0.14 0.01 1 0.03 9.00 EFFECTIVE RAIN & FLOOD SUMMARY EFFECTIVE RAIN (in) 1.66 FLOOD VOLUME (acft) 0.41 FLOOD VOLUME (tuft) 17,939 REQUIRED STORAGE (acft) 0.41 REQUIRED STORAGE (cuft) 172939 PEAK FLOW RATE (cfs) 5.95 Plate E -2.2 ' 100YR -3HR U I . I . RCFCD SYNTHETIC UNIT HYDROGRAPH 100 YEAR - 6 HOUR STORM EVENT PROJECT LA QUINTA SAM'S CLUB CONECENTRATION POINT BY SM DATE 11/5/2005 EFFECTIVE RAIN CALCULATION FORM DRAINAGE AREA -ACRES 3 ULTIMATE DISCHARGE - (cfs - hr /in) 3.02 UNIT TIME - MINUTES 5.0 LAG TIME - MINUTES 3.3 UNIT TIME - PERCENT OF LAG 152.0 TOTAL ADJUSTED STORM RAIN - INCHES 2.75 CONSTANT LOSS RATE - in /hr 0.181 LOW LOSS RATE - PERCENT 90% TOTAL PERCOLATION RATE (cfs) 0 UNIT HYDROGRAPH EFFECTIVE RAIN FLOOD HYDROGRAPH Time Pattern Percent (Plate E -5.9) Storm Rain (in /hr) Loss rate Effective Rain (in /hr) Flood Hydrograph Flow (cfs) Required Storage cf Unit Time Period Minutes Hours Max (in /hr) Low (in /hr) 1 5 0.08 0.5 0.165 0.18 0.15 0.01 0.03 9.00 2 10 0.17 0.6 0.198 0.18 0.18 0.02 0.05 15.70 3 15 0.25 0.6 0.198 0.18 0.18 0.02 0.05 15.70 4 20 0.33 0.6 0.198 0.18 0.18 0.02 0.05 15.70 5 25 0.42 0.6 0.198 0.18 0.18 0.02 0.05 15.70 6 30 0.50 0.7 0.231 0.18 0.21. 0.05 0.15 45.40 7 35 0.58 0.7 0.231 0.18 0.21 0.05 0.15 45.40 8 40 0.67 0.7 0.231 0.18 0.21 0.05 0.15 45.40 9 45 0.75 0.7 0.231 0.18 0.21 0.05 0.15 45.40 10 50 0.83 0.7 0.231 0.18 0.21 0.05 0.15 45.40 11 55 0.92 0.7 0.231 0.18 0.21 0.05 0.15 45.40 12 60 1.00 0.8 0.264 0.18 0.24 0.08 0.25 75.10 13 65 1.08 0.8 0.264 0.18 0.24 0.08 0.25 75.10 14 70 1.17 0.8 0.264 0.18 0.24 0.08 0.25 75.10 15 75 1.25 0.8 0.264 0.18 0.24 0.08 0.25 75.10 16 80 1.33 0.8 0.264 0.18 0.24 0.08 0.25 75.10 17 85 1.42 0.8 0.264 0.18 0.24 0.08 0.25 75.10 18 90 1.50 0.8 0.264 0.18 0.24 0.08 0.25 75.10 19 95 1.58 0.8 0.264 0.18 0.24 0.08 0.25 75.10 20 100 1.67 0.8 0.264 0.18 0.24 0.08 0.25 75.10 21 105 1.75 0.8 0.264 0.18 0.24 0.08 0.25 • 75.10 22 110 1.83 1 0.8 0.264 0.18 0.24 0.08 0.25 75.10 23 115 1.92 0.9 0.297 0.18 0.27 0.12 0.35 104.80 24 120 2.00 0.8 0.264 0.18 0.24 0.08. 0.25 75.10 25 125 2.08 0.9 0.297 0.18 0.27 0.12 0.35 104.80 26 130 2.17 0.9 0.297 0.18 0.27 0.12 0.35 104.80 27 135 2.25 0.9 0.297 0.18 0.27 0.12 0.35 104.80 28 140 2.33 0.9 0.297 0.18 0.27 0.12 0.35 104.80 29 145 2.42 0.9 0.297 0.18 0.27 0.12 0.35 104.80 30 150 2.50 0.9 0.297 0.18 0.27 0.12 1 0.35 104.80 31 155 2.58 0.9 0.297 0.18 0.27 0.12 0.35 104.80 32 160 2.67 1.0 0.330 0.18 0.30 0.15 0.45 134.50 33 165 2.75 1.0 0.330 0.18 0.30 0.15 0.45 134.50 34 170 2.83 1 1.0 0.330 0.18 0.30 0.15 0.45 134.50 35 175 2.92 1.0 0.330 0.18 0.30 0.15 0.45 134.50 36 180 3.00 1.0 0.330 0.18 0.30 0.15 1 0.45 134.50 37 185 3.08 1.0 0.330 0.18 0.30 0.15 0.45 134.50 38 190 3.17 1.1 0.363 0.18 0.33 0.18 0.55 164.20 39 195 3.25 1.' 0.363 0.18 0.33 0.18 0.55 164.20 40 200 3.33 1.-. 0.363 0.18 0.33 0.18 0.55 164.20 41 205 3.42 1.2 0.396 0.18 0.36 0.22 0.65 193.90 42 210 3.50 1.3 0.429 0.18 0.39 0.25 0.75 223.60 43 215 3.58 1.4 0.462 0.18 0.42 0.28 0.84 253.30 44 1 220 3.67 1.4 0.462 0.18 0.42 0.28 0.84 253.30 45 225 1 3.75 1 1.5 1 0.495 0.18 0.45 0.31 0.94 283.00 46 '230 1 3.83 1 1.5 1 0.495 0.18 0.45 0.31 0.94 283.00 Plate E -2.2 100YR -6HR RCFCD SYNTHETIC UNIT HYDROGRAPH Minutes PROJECT LA QUINTA SAM'S CLUB 100 YEAR - 6 HOUR STORM EVENT Storm Rain (in /hr) CONECENTRATION POINT 1BY Low (in /hr) Effective Rain (in /hr) SM DATE 11/5/2005 EFFECTIVE RAIN CALCULATION FORM DRAINAGE AREA -ACRES 3 ULTIMATE DISCHARGE - (cfs - hr /in) 3.02 UNIT TIME - MINUTES 5.0 LAG TIME - MINUTES 3.3 UNIT TIME - PERCENT OF LAG 152.0 TOTAL ADJUSTED STORM RAIN - INCHES 2.75 CONSTANT LOSS RATE - in /hr 0.181 LOW LOSS RATE - PERCENT 90% TOTAL PERCOLATION RATE (cfs) 0 rate Unit Time Period Minutes Hours Pattern Percent (Plate E -5.9) Storm Rain (in /hr) Max (in /hr) Low (in /hr) Effective Rain (in /hr) Flood Hydrograph Flow (cfs) Required Storage cf 47 235 3.92 1.6 0.528 0.18 0.48 0.35 1.04 312.70 48 240 4.00 1.6 0.528 0.18 0.48 0.35 1.04 312.70 49 245 4.08 1.7 0.561 0.18 0.50 0.38 1.14 342.40 50 250 4.17 1.8 0.594 0.18 0.53 0.41 1.24 372.10 51 255 4.25 1.9 0.627 0.18 0.56 0.45 1.34 401.80 52 260 4.33 2.0 0.660 0.18 0.59 0.48 1.44' 431.50 53 265 4.42 2.1 0.693 0.18 0.62 0.51 1.54 461.20 54 270 4.50 2.1 0.693 0.18 0.62 0.51 1.54 461.20 55 275 4.58 2.2 0.726 0.18 0.65 0.55 1.64 490.90 56 280 4'.67 2.3 0.759 0.18 0.68 0.58 1.74 520.60 57 285 4.75 2.4 0.792 0.18 0.71 0.61 1.83 550.30 58 290 4.83 2.4 0.792 0.18 0.71 0.61 1.83 550.30 59 295 4.92 2.5 0.825 0.18 0.74 0.64 1.93 580.00 60 300 5.00 2.6 0.858 0.18 0.77 0.68 2.03 609.70 61 305 5.08 3.1 1.023 0.18 0.92 0.84 2.53 758.20 62 310 5.17 3.6 1.188 0.18 1.07 1.01 3.02 906.70 63 315 5.25 3.9 1.287 0.18 1.16 1.11 3.32 995.80 64 320 5.33 4.2 1.386 0.18 1.25 1.21 3.62 1084.90 65 325 5.42 4. 1, 1.551 0.18 1.40 1.37 4.11 1233.40 66 330 5.50 5.6 1.848 0.18 1.66 1.67 5.00 1500.70 67 335 5.58 1.9 0.627 0.18 0.56 0.45 1.34 401.80 68 340 5.67 0.9 0.297 0.18 0.27 0.12 0.35 104.80 69 345 5.75 0.6 0.198 0.18 0.18 0.02 0.05 15.70 70 350 5.83' 0.5 0.165 0.18 0.15 0.01 0.03 9.00 71 355 5.92 0.3 0.099 0.18 0.09 0.01 0.03 9.00 72 1 360 6.00 0.2 0.066 0.18 0.06 0.01 0.03 9.00 EFFECTIVE RAIN & FLOOD SUMMARY EFFECTIVE RAIN (in) 1.69 FLOOD VOLUME (acft) 0.42 FLOOD VOLUME (cuft) 18,300 REQUIRED STORAGE (acft) 0.42 REQUIRED STORAGE (cult)- 18,300 PEAK FLOW RATE (cfs) 5.00 Plate E -2.2 100YR -6 HR I . RCFCD SYNTHETIC UNIT HYDROGRAPH 100 YEAR - 24 HOUR STORM EVENT PROJECT LA QUINTA SAM'S CLUB CONECENTRATION POINT BY SM DATE 11/512005 EFFECTIVE RAIN CALCULATION FORM DRAINAGE AREA -ACRES 3 ULTIMATE DISCHARGE - (cfs - hr /in) 3.02 UNIT TIME - MINUTES 15.0 LAG TIME - MINUTES 3.3 UNIT TIME - PERCENT OF LAG 456.0 TOTAL ADJUSTED STORM RAIN - INCHES 4.50 CONSTANT LOSS RATE - in /hr n/a VARIABLE LOSS RATE (AVG) - in /hr 0.18 MINIMUM LOSS RATE (for var. loss) - in /hr 0.090 LOW LOSS RATE - PERCENT 90% C 0.00167 TOTAL PERCOLATION RATE (cfs) 0 UNIT HYDROGRAPH EFFECTIVE RAIN FLOOD HYDROGRAPH Time Pattern Percent (Plate E -5.9 ) Storm Rain (in /hr) Loss rate Effective Rain (in/hr Flood Hydrograph Flow (cfs) Required Storage cf Unit Time Period Minutes Hours Max (in/hr) Low (in /hr ) 1 1 15 0.25 0.2 0.036 0.319 0.032 0.004 0.01 1 9.72 : 2 30 0.50 0.3 0.054 0.315 0.049 0.005 0.02 14.58 3 45 0.75 0.3 0.054 0.311 0.049 0.005 0.02 14.58 4 60 1.00 0.4 0.072 0.308 0.065 0.007 0.02 19.44 5 75 1.25 0.3 0.054 0.304 0.049 0.005 0.02 14.58 6 90 1.50 0.3 0.054 0.301 0.049 0.005 0.02 14.58 7 105 1.75 0.3 0.054 0.297 0.049 0.005 0.02 14.58 8 120 2.00 0.4 0.072 0.293 0.065 0.007 0.02 19.44 9 135 2.25 0.4 0.072 0.290 0.065 0.007 0.02 19.44 10 150 2.50 0.4 0.072 0.286 0.065 0.007 0.02 19.44 11 165 2.75 0.5 0.090 0.283 0.081 0.009 0.03 24.30 12 180 3.00 0.5 0.090 0.279 0.081 0.009 0.03 24.30 13 195 3.25 0.5 0.090 0.276 0.081 0.009 0.03 24.30 14 1 210 3.50 0.5 0.090 0.272 0.081 0.009 0.03 24.30 5 225 3.75 0.5 0.090 0.269 0.081 0.009 0.03 24.30 6 240 4.00 0.6 0.108 0.266 0.097 0.011 0.03 29.16 7 255 4.25 0.6 0.108 0.262 0.097 0.011 0.03 29.16 8 L20 270 4.50 0.7 0.126 0.259 0.113 0.013 0.04 34.02 9 285 4.75 0.7 0.126 0.256 0.113 0.013 0.04 34.02 300 5.00 0.8 0.144 0.252 0.130 0.014 0.04 38.88 21 1 315 5.25 0.6 0.108 0.249 0.097 0.011 1 0.03 29.16 22 330 5.50 0.7 0.126 0.246 0.113 0.013 0.04 34.02 23 345 5.75 0.8 0.144 0.243 0.130 0.014 0.04 38.88 24 360 6.00 0:8 0.144 0.239 0.130 0.014 0.04 38.88 25 375 6.25 0.9 0.162 0.236 0.146 0.016 0.05 43.74 26 390 6.50 0.9 1 0.162 0.233 0.146 0.016 0.05 43.74 27 405 6.75 1.0 0.180 0.230 0.162 0.018 0.05 1 48.60 28 1 420 7.00 1.0 0.180. 0.227 0.162 0.018 0.05 48.60 29 435 7.25 1.0 0.180 0.224 0.162 0.018 0.05 48.60 30 450 7.50 1.1 0.198 0.221 0.178 0.020 0.06 53.46 31 465 7.75 1.2 0.216 0.218 0.194 0.022 0.06 58.32 32 480 8.00 1.3 0.234 0.215 0.211 0.023 0.07 63.18 33 495 8.25 1.5 1 0.270 0.212 0.243 1 0.027 0.08 72.90 34 510 8.50 1.5 0.270 0.209 0.243 0.061 0.18 165.37 35 525 8.75 1.6 0.288 0.206 0.259 0.082 0.25 221.87 36 540 9.00 1.7 0.306 0.203 0.275 0.103 0.31 278.29 37 555 9.25 1.9 0.342 0.200 0.308 0.142 0.43 383.25 38 570 9.50 2.0 0.360 0.197 0.324 0.163 0.49 439.54 39 585 9.75 2.1 0.378 0.194 0.340. 0.184 0.55 495.75 40 600 10.00 2.2 0.396 0.192 0.356 0.204 0.61 551.89 41 615 10.25 1.5 0.270 0.189 0.243 0.081 0.24 219.16 42 630 10.50 1.5 0.270 0.186 0.243 0.084 0.25 226.55 43 645 10.75 2.0 0.360 0.183 0.324 0.177 0.53 476.87 44 660 11.00 2.0 0.360 0.181 0.324 0.179 0.54 484.12 45 675 11.25 1.9 0.342 0.178 0.308 0.164 0.49 442.69 46 690 11.50 1.9 0.342 0.175 0.308 0.167 0.50 449.78 47 705 11.75 1.7 1 0.306 0.173 0.275 0.133 0.40 359.60 48 720 12.00 1.8 0.324 0.170 0.292 0.154 0.46 415.14 49 735 12.25 2.5 0.450 1 0.168 0.405 0.282 0.85 762.20 50 750 12.50 2.6 0.468 0.165 0.421 0.303 0.91 817.58 51 765 12.75 2.8 0.504 1 0.163 1 0.454 0.341 1.02 1 921.48 Plate E -2.2 100YR -24HR 1 1' RCFCD SYNTHETIC UNIT HYDROGRAPH 100 YEAR - 24 HOUR STORM EVENT 1BY PROJECT LA QUINTA SAM'S CLUB CONECENTRATION POINT SM DATE 11/5/2005 EFFECTIVE RAIN CALCULATION FORM DRAINAGE AREA -ACRES 3 ULTIMATE DISCHARGE - (cfs - hr/in) 3.02 UNIT TIME - MINUTES 15.0 LAG TIME - MINUTES 3.3 UNIT TIME - PERCENT OF LAG 456.0 TOTAL ADJUSTED STORM RAIN - INCHES 4.50 CONSTANT LOSS RATE - in/hr n/a VARIABLE LOSS RATE (AVG) - in/hr 0.18 MINIMUM LOSS RATE (for var. loss) - in/hr 0.090 LOW LOSS RATE - PERCENT 90% C 0.00167 TOTAL PERCOLATION RATE (cfs) 0 UNIT HYDROGRAPH EFFECTIVE RAIN FLOOD HYDROGRAPH Time Pattern Percent (Plate E -5.9) Storm Rain (in /hr) Loss rate Effective Rain ( in/hr ) Flood Hydrograph Flow (cfs) Required . Storage cf Unit Time Period Minutes Hours Max (in/hr) Low (in /hr ) 52 1 780 13.00 2.9 0.522 0.160 0.470 0.362 1.09 976.70 53 795 13.25 3.4 0.612 0.158 0.551 0.454 1.36 1226.24 54 810 13.50 3.4 0.612 0.155 0.551 0.457 1.37 1232.70 55 825 13.75 2.3 0.414 0.153 0.373 0.261 0.78 704.48 56 840 14.00 2.3 0.414 0.151 0.373 0.263 0.79 710.77 57 855 14.25 2.7 0.486 0.148 0.437 0.338 1.01 911.37 58 870 14.50 2.6 0.468 0.146 0.421 0.322 0.97 868.89 59 1 885 14.75 2.6 0.468 0.144 0.421 0.324 0.97 874.93 60 900 15.00 2.5 0.450 0.142 0.405 0.308 0.92 832.27 61 915 15.25 2.4 0.432 0.140 0.389 0.292 0.88 789.53 62 930 15.50 2.3 0.414 0.137 0.373 0.277 0.83 746.70 63 945 15.75 1.9 0.342 0.135 0.308 0.207 0.62 557.97 64 960 16.00 1.9 0.342 0.133 0.308 0.209 0.63 563.56 65 975 16.25 0.4 0.072 0.131 0.065 0.007 0.02 19.44 66 990 16.50 0.4 0.072 0.129 0.065 0.007 0.02 19.44 67 1005 .16.75 0.3 0.054 0.127 0.049 0.005 0.02 14.58 68 1020 17.00 0.3 0.054 0.125 0.049 0.005 0.02 14.58 69 1035 17.25 0.5 0.090 0.123 0.081 0:009 0.03 24.30 70 1050 17.50 0.5 0.090 0.122 0.081 0.009 0.03 24.30 71 1065 17.75 0.5 0.090 0.120 0.081 1 0.009 0.03 24.30 72 1 1080 18.00 0.4 0.072 0.118 0.065 0.007 0.02 19.44 1095 18.25 0.4 0.072 0.116 0.065 0.007 0.02 19.44 74 1110 18.50 .0.4 0.072 0.115 0.065 0.007 0.02 19.44 75 1125 18.75 0.3 0.054 0.113 0.049 0.005 0.02 14.58 76 r 1140 19.00 0.2 0.036 0.111 0.032 0.004 0.01 9.72 77 1155 19.25 0.3 0.054 0.110 0.049 0.005 0.02 14.58 773 8 1170 19.50 0.4 0.072 0.108 0.065 0.007 0.02 19.44 79 1 1185 19.75 0.3 0.054 0.107 0.049 0.005 0.02 14.58 80 1200 20.00 0.2 0.036 0.105 0.032 0.004 0.01 9.72 81 1215 20.25 0.3 1 0.054 0.104 0.049 0.005 0.02 14.58 B2 1230 20.50 0.3 0.054 0.103 0.049 0.005 0.02 1 14.58 83 1245 20.75 0.3 0.054 0.101 0.049 0.005 0.02 14.58 84 1260 21.00 0.2 0.036 0.100 0.032 0.004 0.01 9.72 85 .1275 21.25 0.3 0.054 0.099 0.049 0.005 0.02 14.58 86 1 1290 21.50 0.2 0.036 0.098 0.032 0.004 0.01 9.72 87 1305 21.75 0.3 0.054 0.097 0.049 1 0.005 0.02 14.58 88 1320 22.00 0.2 0.036 0.096 0.032 0.004 0.01 9.72 89 1335 22.25 0.3 0.054 0.095 0.049 0.005 0.02 14.58 90 1350 22.50 0.2 0.036 0.094 0.032 0.004 0.01 1 9.72 91 1365 22.75 0.2 0.036 0.093 0.032 0.004 0.01 9.72 92 1380 23.00 0.2 0.036 0.092 0.032 0.004 0.01 9.72 93 1395 1 23.25 0.2 0.036 0.092 0.032 0.004 0.01 9.72 94 1410 1 23.50 0.2 0.036 0.091 0.032 1 0.004 0.01 9.72 95 1425 1 23.75 1 0.2 1 0.036 1 0.091 0.032 1 0.004 0.01 9.72 96 1440 1 24.00 1 0.2 1 0.036 0.090 0.032 1 0.004 1 0.01 9.72 EFFECTIVE RAIN & FLOOD SUMMARY EFFECTIVE RAIN (in) 1.91 FLOOD VOLUME (acft) 0.47 FLOOD VOLUME (tuft) 20,643 REQUIRED STORAGE (acft) 0.47 REQUIRED STORAGE (cuff) 20,643 PEAK FLOW RATE (cfs) 1.37 Plate E -2.2 100YR -24HR PROJECT LA QUINTA SAM'S CLUB NASLAND JOB NO. 304 -018.1 UNDERGROUND RETENTION BASIN PROPOSED BASIN CHARACTERISTICS PERCOLATION CALCULATIONS PERCOLATION RATE MAXWELL IV DRYWELLS NUMBER USED 0 RATE /DRYWELL 0.35 cfs TOTAL DISSIPATED TOTAL PERCOLATION RATE 0.in /hr 0 cfs 0 cfs 0 cis BASIN CHARACTERISTICS DEPTH AREA VOLUME CONTOUR INCR (ft) TOTAL (ft) ]NCR (sf) TOTAL (sf) INCR (cuft) (cult) (acre -ft) 44 0.00 0.00 4329.060 4329 01 0 0.00 45 1.00 1.00 4329.060 4329 4329 4329 0.10 46 1 1.00 2.00 4329.060 4329 4329 8658 0.20 47 1.00 3.00 4329.060 4329 4329 12987 0.30 48 1.00 4.00 4329.060 4329 4329 17316 0.40 49 1.00 5.00 4329.060 4329 4329 21645 0.50 PERCOLATION CALCULATIONS PERCOLATION RATE MAXWELL IV DRYWELLS NUMBER USED 0 RATE /DRYWELL 0.35 cfs TOTAL DISSIPATED TOTAL PERCOLATION RATE 0.in /hr 0 cfs 0 cfs 0 cis BASIN CHARACTERISTICS ' LA QUINTA SAM'S CLUB NASLAND JOB NO. 304 -018.1 100 YEAR - 3 HOUR STORM EVENT r Time FLOW IN Ids) VOLUME IN (cult) TOTAL IN BASIN (cult) PERC OUT (cuft) TOTAL IN BASIN (cult) BASIN DEPTH (ft) BALANCE IN BASIN Unit Time Period Minutes (cuft) (acre -ft) 1 5 0.00 0 0 0 - 44.00 0.00 2 10 0.49 146 146 0 146 44.03 146 0.00 3 15 0.33 99 245 0 245 44.06 245 0.01 4 20 0.65 194 439 0 439 44.10 439 0.01 5 25 0.65 194 633 0 633 44.15 633 0.01 6 30 0.88 265 898 0 898 44.21 898 0.02 7 35 0.65 194 1092 0 1092 44.25 1092 0.03 8 40 0.88 265 1357 0 1357 44.31 1357 0.03 9 45 0.88 265 1622 0 1622 44.37 1622 0.04 10 50 0.65 194 1816 0 1816 44.42 1816 0.04 11 1 55 0.73 218 2034 0 2034` 44.47 2034 0.05 12 60 0.88 265 2299 0 2299 44.53 2299 0.05 13 65 1.20 360 2659 0 2659 44.61 2659 0.06 14 70 1.20 360 3020 0 3020 44.70 3020 0.07 15 75 1.20 360 3380 1 0 3380 44.78 3380 0.08 16 80 1.04 313 3693 0 3693 44.85 3693 0.08 17' 85 1.52 455 4148 0 4148 44.96 4148 0.10 18 1 90 1.60 479 4627 0 4627 45.07 4627 0.11 19 95 1.36 408 5035 0 5035 45.16 5035 0.12 20 100 1.60 479 5514 0 5514 45.27 5514 0.13 21 105 2.07 622 6135 0 6135 45.42 6135 0.14 22 110 1.91 574 6709 0 6709 45.55 6709 0.15 23 115 1.76 527 7236 0 7236 45.67 7236 0.17 24 120 1.83 550 7786 0 7786 45.80 7786 0.18 25 125 1.91 574 8360 0 8360 .45.93 8360 0.19 26 130 2.78 835 9195 0 9195 46.12 9195 0.21 27 135 3.42 1025 10221 0 10221 46.36 10221 0.23 28 140 2.23 669 10890 0 10890 46.52 10890 0.25 29 145 4.84 1453 12343 0 12343 46.85 12343 0.28 30 150 5.24 1572 13915 0 13915 47.21 13915 0.32 31 155 5.95 1786 15701 0 15701 47.63 15701 0.36 32 160 4.13 1239 16940 0 16940 47.91 16940 0.39 33 1 165 1.04 313 17253 0 17253 47.99 17253 0.40 34 170 0.88 265 17518 0 17518 48.05 17518 0.40 35 175 0.88 265 17783 0 1 17783 48.11 17783 0.41 36 180 0.03 9 17792 0 1 17792 48.11 1 17792 0.41 BASIN DEPTH ANALYSIS ' 100YR -3HR LA OUINTA SAM'S CLUB NASLAND JOB NO. 304 -018.1 ' 100 YEAR - 6 HOUR STORM EVENT i 1 i Time FLOW IN (cfs) VOLUME IN (cult) TOTAL IN BASIN (cuft) PERC OUT (cult) TOTAL IN BASIN (cult) BASIN DEPTH (ft) BALANCE IN BASIN Unit Time Period Minutes (cult) (acre -ft) 1 5 0.03 9 9 0 9 44.00 9 0.00 2 10 0.05 16 25 0 25 44.01 25 0.00 3 1 15 0.05 16 40 0 40 44.01 1 40 0.00 4 20 0.05 16 56 0 56 44.01 56 0.00 5 25 0.05 16 72 0 72 44.02 72 0.00 30 0.15 45 117 0 117 44.03 117 0.00 35 0.15 45 163 0 163 44.04 163 0.00 V7 40 0.15 45 208 0 208 44.05 208 0.00 45 0.15 45 253. 0 253 44.06 253 0.01 50 0.15 45 299 0 299 44.07 299 0.01 11 1 55 0.15 45 344 0 344 44.08 344 0.01 12 60 0.25 75 419 0 419 44.10 419 0.01 13 65 0.25 75 494 0 494 44.11 494 0.01 14 70 0.25 75 569 0 569 44.13 569 0.01 15 75 0.25 75 645 0 645 44.15 645 0.01 16 80 0.25 75 720 0 720 44.17 720 0.02 17 85 0.25 75 795 0 795 44.18 795 0.02 18 1 90 0.25 75 870 0 870 44.20 870 1 0.02 19 95 0.25 75 945 0 945 44.22 945 0.02 20 100 0.25 75 1020 0 1 1020 44.24 1020 0.02 21 105 0.25 75 1095 0 1095 44.25 1095 0.03 22 110 0.25 75 1170 0 1170 44.27 1170 0.03 23 115 0.35 105 1275 0 1275 44.29 1275 0.03 24 120 0.25 75 1350 0 1350 44.31 1350 0.03. 25 125 0.35 105 1455 0 1455 44.34 1455 0.03 26 130 0.35 105 1560 0 1560 44.36 1560 0.04 27 135 0.35 105 1664 0 1664 44.38 1664 0.04 28 140 0.35 105 1769 0 1769 44.41 1769 0.04 29 145 0.35 105 1874 0 1874 44.43 1874 0.04 30 150 0.35 105 1979 0 1979 44.46 1979 0.05 31 155 0.35 105 2084 0 2084 44.48 2084 0.05 32 160 0.45 134 2218 0 2218 44.51 2218 0.05 33 165 0.45 134 2353 0 2353 44.54 2353 0.05 34 170 0.45 134 2487 0 2487 44.57 2487 0.06 35 175 0.45 134 2622 0 2622 44.61 2622 0.06 36 180 0.45 134 2756 0 2756 44.64 2756 0.06 37 185 0.45 134 2891 0 2891 44.67 2891 0.07 38 190 0.55 164 3055 0 3055 44.71 3055 0.07 39 1 195 0.55 164 3219 0 3219 44.74 3219 0.07 40 200 0.55 164 3383 0 3383 44.78 3383 0.08 41 205 0.65 194 3577 0 3577 44.83 3577 0.08 42 210 0.75 224 3801 0 3801 44.88 3801 0.09 43 215 0.84 253 4054 0 4054 44.94 4054 0.09 44 220 0.84 253 4307 0 4307 44.99 4307 0.10 45 225 0.94 283 4590 0 4590 45.06 4590 0.11 46 230 0.94 283 4873 0 4873 45.13 4873 0.11 47 235 1.04 313 5186 0 5186 45.20 5186 0.12 48 240 1.04 313 5499 0 5499 45.27 5499 0.13 49 245 1.14 342. 5841 0 5841 45.35 5841 0.13 50 250 1.24 372 6213 0 6213 45.44 6213 0.14 51 255 1.34 402 6615 0 6615 45.53 6615 0.15 52 260 1.44 431 7046 0 7046 45.63 7046 0.16 53 265 1.54 461 7508 0 7508 45.73 7508 0.17 54 270 1.54 461 7969 0 7969 45.84 7969 0.18 1.64 491 8460 0 8460 45.95 8460 0.19 280 1.74 521 8980 0 8980 46.07 8980 0.21 285 1.83 550 9531 0 9531 46.20 9531 0.22 R6O275 290 1.83 550 10081 0 10081 46.33 10081 0.23 295 1.93 580 10661 0 10661 46.46 10661 0.24 300 2.03 610 11271 0 11271 46.60 11271 0.26 305 2.53 758 12029 0 12029 46.78 12029 0.28 310 3.02 907 12936 0 12936 46.99 12936 0.30 63 315 3.32 996 13931 0 13931 47.22 1 13931 0.32 BASIN DEPTH ANALYSIS 100YR -6HR LA QUINTA SAM'S CLUB NASLAND JOB NO. 304 -018.1 100 YEAR - 6 HOUR STORM EVENT Time FLOW IN Ids) VOLUME IN (cult) TOTAL IN BASIN (cult) PERC OUT (cuft) TOTAL IN BASIN (cuft) BASIN DEPTH (ft) BALANCE IN BASIN Unit Time Period Minutes (cuft) (acre-ft) . 64 320 3.62 1085 15016 0 15016 47.47 15016 0.34 65 325 4.11 1233 16250 0 16250 47.75 16250 0.37 66 330 5.00 1501 17750 0 17750 48.10 17750 0.41 67 335 1.34 402 18152 0 18152 48.19 18152 0.42 68 340 0.35 105 18257 0 18257 48.22 18257 0.4F- 69 345 0'.05 16 18273 0 18273 48.22 18273 0.42 70 350 0.03 9 18282 0 18282 48.22 18282 0.42 71 355 0.03 1 9 18291 0 18291 48.23 18291 0.42 72 360 0.03 9 18300 0 18300 48.23 18300 0.42 BASIN DEPTH ANALYSIS 100YR -6 HR F L u �1 LA QUINTA SAM'S CLUB NASLAND JOB N0. 304 -018.1 100 YEAR - 24 HOUR STORM EVENT Time FLOW IN (cfs) VOLUME IN (cult) TOTAL IN BASIN (cult) PERC OUT (cult) TOTAL IN BASIN (cuff) BASIN DEPTH (ft) BALANCE IN BASIN Unit Time Period Minutes (cuft) (acre -ft) 1 15 0.01 10 10 0 10 44.00 10 0.00 2 30 0.02 15 24 0 24 44.01 24 0.00 3 45 0.02 15 39 0 39 44.01 39 0.00 4 60 0.02 19 58 0 58 44.01 58 0.00 5 75 0.02 15 73 0 73 44.02 73 0.00 6 Z 90 0.02 15 87 0 87 44.02 87 0.00 7 105 0.02 15 102 0 102 44.02 102 0.00 8 120 0.02 19 122 0 1 122 44.03 122 0.00 9 135 0.02 19 141 0 141 44.03 141 1 0.00 10 150 0.02 19 160 0 160 44.04 160 0.00 11 165 0.03 24 185 0 185 44.04 185 0.00 12 180 0.03 24 209 0 209 44.05 209 0.00 13 195 0.03 24 233 0 233 44.05 233 0.01 14 210 0.03 24 258 0 258 44.06 258 0.01 15 225 0.03 24 282 0 1 282 44.07 282. 0.01 16 1 240 0.03 29 311 0 311 44.07 311 0.01 17 255 0.03 29 340 0 340 44.08 340 0.01 16 270 0.04 34 374 0 374 44.09 374 0.01 19 285 0.04 34 408 0 408 44.09 408 0.01 20 300 0.04 39 447 0 447 44.10 447 0.01 21 315 0.03 29 476 0 476 '44.11 476 0.01 22 330 0.04 34 510 0 510 44.12 1 510 0.01 23 345 0.04 39 549 0 549 44.13 549 0.01 24 360 0.04 39 588 0 588 44.14 588 0.01 25 375 0.05 44 632 0 632 44.15 632 0.01 26 390 0.05 44 676 0 676 44.16 676 0.02 27 405 0.05 49 724 0 724 44.17 724 0.02 28 420 0.05 49 773 0 773 44.18 773 0.02 29 435 0.05 49 821 0 821 44.19 821 0.02 30 450 0.06 53 875 0 875 44.20 875 0.02 31 465 0.06 58 933 0 933 44.22 933 0.02 32 480 0.07 63 996 0 996 44.23 996 0.02 33 495 0.08 73 1069 0 1069 44.25 1069 0.02 34 510 0.18 165 1235 0 1235 44.29 1235 0.03 35 525 0.25 222 1456 0 1456 .44.34 1456 0.03 36 540 0.31 278 1735 0 1735 44.40 1735 0.04 37 555 0.43 383 2118 0 2118 44.49 2118 0.05 38 570 0.49 440 2558 0 2558 44.59 2558 0.06 39 585 0.55 496 3053 0 3053 44.71 3053 0.07 40 600 0.61 552 3605 0 3605 44.83 3605 0.08 41 615 0.24 219 3824 0 3824 44.88 3824 0.09 42 630 0.25 227 4051 0 4051 44.94 4051 0.09 43 645 0.53 477 4528 0 4528 45.05 4528 0.10 44 660 0.54 484 5012 0 5012 45.16 5012 0.12 45 675 0.49 443 5455 0 5455 45.26 5455 0.13 46 690 0.50 450 5904 0 5904 45.36 5904 0.14 47 705 0.40 360 6264 0 6264 45.45 6264 0.14 48 720 0.46 415 6679 0 6679 45.54 6679 0.15 49 735 0.85 762 7441 0 7441 45.72 7441 0.17 50 750 0.91 818 8259 0 8259 45.91 8259 0.19 51 765 1.02 921 9180 0 9180 46.12 9180 0.21 52 780 1.09 977 10157 0 10157 46.35 10157 0.23 53 795 1.36 1226 11383 0 11383 46.63 11383 0.26 54 810 1.37 1233 12616 0 12616 46.91 12616 0.29 55 825 0.78 704 13320 0 13320 47.08 13320 0.31 56 840 0.79 711 14031 1 0 14031 47.24 14031 0.32 57 855 1.01 911 14943 0 14943 47.45 14943 0.34 58 870 0.97 869 15811 0 15811 47.65 15811 0.36 59 885 0.97 875 16686 0 16686 47.85 16686 0.38 60 900 0.92 832 17519 0 17519__[_ 48.05 17519 1 0.40 61 915 0.88 790 18308 0 18308 48.23 18308 0.42 62 930 0.83 747 19055 0 19055 48.40 19055 0.44 63 945 0.62 558 19613 0 19613 1 48.53 19613 0.45 BASIN DEPTH ANALYSIS 100YR -24HR i `j LA QUINTA SAM'S CLUB NASLAND JOB NO. 304 -018.1 100 YEAR - 24 HOUR STORM EVENT Time FLOW IN (cfs) VOLUME IN (cult) TOTAL IN BASIN (cuft) PERC OUT (cult) TOTAL IN BASIN (cult) BASIN DEPTH (ft) BALANCE IN BASIN Unit Time Period Minutes (cult) (acre -ft) 64 960 0.63 564' 20176 0 20176 48.66 20176 0.46 65 975 0.02 19 20196 0 20196 48.67 20196 0.46 66 990 0.02 19 20215 0 20215 48.67 20215 0.46 67 1005 0.02 15 20230 0 20230 48.67 20230 0.46 68 1020 0.02 15 20244 0 20244 48.68 20244 0.46 69 1035 0.03 24 20269 0 20269 48.68 20269 0.47 70 1050 0.03 24 20293 0 20293 48.69 20293 0.47 71 1065 0.03 24 20317 0 20317 1 48.69 20317 0.47 72 1080 0.02 19 20337 0 20337 48.70 20337 0.47 73 1095 0.02 19 20356 0 20356 48.70 20356 0.47 74 1110 0.02 19 20376 0 20376 48.71 20376 0.47 75 1125 0.02 15 20390 0 20390 48.71 20390 0.47 76 1140 0.01 10 20400 0 20400 48.71 20400 0.47 77 1155 0.02 15 20415 0 1 20415 48.72 20415 0.47 78 1170' 0.02 19 20434 0 20434 48.72 20434 0.47 79 1185 0.02 15 20449 0 20449 48.72 20449 0.47 80 1200 0.01 10 20458 0 20458 48.73 20458 0.47 81 1215 0.02 15 20473 0 20473 48.73 20473 0.47 82 1230 0.02 15 20487 0 20487 48.73 20487 0.47 83 1245 0.02 15 20502 0 20502 48.74 20502 0.47 84 1260 0.01 10 20512 0 20512 48.74 20512 0.47 85 1275 0.02 15 20526 0 20526 48.74 20526 0.47 86 1290 0.01 10 20536 0 20536 48.74 20536 0.47 87 1305 0.02 15 20551 0 20551 48.75 20551 0.47 88 1320 0.01 10 20560 0 20560 48.75 20560 0.47 89 1335 0.02 15 20575 0 20575 48.75 20575 0.47 90 1350 0.01 10 20585 0 20585 48.75 20585 0.47 91 1365 0.01 10 20594 0 20594 48.76 20594 1 0.47 92 1380 0.01 10 20604 0 20604 48.76 20604 0.47 93 1395 0.01 10 20614 0 20614 48.76 20614 0.47 94 1410 0.01 10 20624 0 20624 48.76 20624 0.47 95 1425 1 0.01 1 10 20633 0 20633 48.77 20633 0.47 96 1440 0.01 10 20643 0 20643 1 48.77 20643 0.47 BASIN DEPTH ANALYSIS 100YR -24HR PROJECT LA QUINTA SAM'S CLUE NASLAND JOB NO. 304 -018.1 RETENTION BASIN DATAINPUT T.RIANGULAR.HYDROGRAPH FLOW 115.7 cfs tc 13.43 min T(max) ml m2 y -int VOL cu -ft PROPOSED BASIN CHARACTERISTICS Percolation Rate 1 in /hr Weir Data AREA Overflow Contour 59 b 100 h(min) 5 Area INCR (sf) Ap INCR (cuft) RI (acre -ft) BASIN CHARACTERISTICS DEPTH AREA VOLUME CONTOUR INCR (ft) TOTAL (ft) INCR (sf) TOTAL (sf) INCR (cuft) (cult) (acre -ft) 44 0 0 4329.060 4329 01 0 0.00 45 1 1 4329.060 4329 4329 4329 0.10 46 1 1 2 4329.060 4329 4329 8658 0.20 47 1 3 4329.060 4329 4329 12987 0.30 48 1 4 4329.060 4329 4329 17316 0.40 49 1 5 4329.060 4329 4329 21645 0.50 BASIN CHARACTERISTICS 1 v P, L C. s RETENTION BASIN SIZING REQUIREMENTS .1 LA QUINTA SAM'S CLUB LA QUINTA, CA RETENTION BASIN RESIZING REQUIREMENTS Nasland Values Area = 46 47 acres Existing Retention Basin Existing Storage Capacity 434940 cult Required Storage (100 yr, 24 hr), TKC 330429 cu ft Excess Storage (100 yr, 24 hr), TKC 104511 cu ft Additional Storage Requirements for the R69,1,02 "i cu ft Excess Storage After Addition 112429 cu ft Aran of axistinn retentinn hasin Elevation 3hr 6hr 24hr Flow 20.37 17.11 4.64 Intensity 1.49 1.49 1.99 Flood Volume 60877 61443 69677 Required Storage 60877 61443 69102 Existing Retention Basin Existing Storage Capacity 434940 cult Required Storage (100 yr, 24 hr), TKC 330429 cu ft Excess Storage (100 yr, 24 hr), TKC 104511 cu ft Additional Storage Requirements for the R69,1,02 "i cu ft Excess Storage After Addition 112429 cu ft Aran of axistinn retentinn hasin Elevation Area 54 67197 55 70388 56 73581 57 76830 58 80136 59 83499 60 86934 La Quinta Sam's Development E AREA = 10.3 acres 10.3 acre Sam's Site Additional volume needed for V of freeboard over HWL Assume circle for volume calc.. At top elevation (60): Il r, 2 = 86934 r, = 166 side slope = 3 horz 1 vertical R, for the lower area of the volume will be a 3:1 slope below the 60' elevation Therefore r2= 163 The volume of the trapizoidai object is: 85381 (1 ft volume of re- graded basin) Additional storage requirement to maintain 1' freeboard over HWL 112429 - 85381 — 27048 cu ft Excess Storage Required Additional Storage above Freeboard Free Board LA QUINTA SAM'S CLUB LA QUINTA, CA RETENTION BASIN RESIZING REQUIREMENTS Additional Volume for Retention Basin Expansion Side Slope = 3:1 Additional Volume Provided = 77.020 ft3 Existing Detention basin ..................•• ......•••- ft Oft NORTH 7.6 ft 18 ft Existing Detention basin 6 ft , 214.2 ft' NORTH LA QUINTA SAM'S CLUB' LA QUINTA, CA UNDERGROUND RETENTION BASIN SIZING REQUIREMENTS Area = 3.00 acres Proposed Underground Retention Basin Area of proposed underground retention basin Elevation 3hr 6hr 24hr. Flow 5.95 • 5.00 1.37 Intensity 1.66 1.69 1.91 Flood Volume 17939 18300 20643 Required Storage 17939 18300 20643 Proposed Underground Retention Basin Area of proposed underground retention basin Elevation Area 44 4329 45 4329 46 4329 47 4329 48 4329 49 4329 Storage Provided = 21645.3 ft3 Required V of freeboard over HWL At top elevation (50.0): HWL Elevation (48.77): Therefore 1.2' of freeboard has been provided TM 0 I �MORPBOX)B2 i. o...o. O ® MORRIS. L 6045D ccju 1- 87- SIORMIRAP PRECAST CONCRETE MODULAR STORM WATER DETENTION ENGINEERINFORMATION: . - NASLAND ENGINEERING a 4740 RUFFNER ST - SAN DIEGO, CA 92111 Phone: 858 292 7770 LA QUINTA SAM'S CLUB LA QUINTA, CA SHEETINDEX PAGE DESCRIPTION REV. 1 TITLE SHEET 1 2 DOUBLE DEPTH INSTALLATION SPECIFICATIONS 1 a LAYOUT DETAIL 1 4 STANDARD- 5'.W SINGLETRAP TYPE 1 5 STANDARD- 5'-0- SINGLETRAP TYPE II 1 8 STANDARD- S'-0' SINOLETRAP TYPE III 1 7 STANDARD- S-0' SINGLETRAP TYPE (v I 8 STANDARD- 5'.W SINGLETRAP TYPE 1 8' -0' SINGLETRAP UNIT QUANTITY: 88 UNITS - 98 TOTAL PIECES JOB SITE INFORMATION DESCRIPTI ON4 . JOB NAME: W QUINTA SAMS CLUB JOB ADDRESS: LA OUINTA. CA ENGINEERING CO: NASLAND ENGINEERING CONTACT NAME: SEAN MCCARTY CONTACT PHONE: 858 - 292.7770 CONTACT FAX: STORM TRAP SUPPLIER: STORMTRAP CONTACT NAME: COLEHERRON CONTACT PHONE: 815. 941.1663 CONTACT FAX: 815. 418.1100 WATER STORAGE RED D: 21,000.00 CUBIC FEET WATER STORAGE PROV: 22.946.00 CUBIC FEET UNIT HEADROOM: 8' -0' SINGLETRAP UNIT QUANTITY: 88 UNITS - 98 TOTAL PIECES n Fax: PROJECT INFORMATION: LA QUINTA SAM'S CLUB LA QUINTA, CA CH- 0894 -CA -05 CURRENT ISSUE DATE: 11/04/05 APPROVED 8Y: ISSUED FOR: PRELIMINARY REV.: DATE: DESC. BY: Q I1 ISSUED FOR CH IIA�I05 PRELIMINARY SCALE: NTS SHEET TITLE: COVER SHEET SHEET NUMBER: it r r� � � ,� � � ;� � r � r � � � � ■r �r ea STORMTRAP INSTALLATION SPECIFICATION STORMTRAP MODULES SHALL BE MANUFACTURED ACCORDING TO SHOP DRAWINGS APPROVED BY THE INSTALLING CONTRACTOR AND ENGINEER. THE SHOP DRAWINGS SHALL INDICATE S1ZE AND LOCATION OF ROOF OPENINGS AND INLET/ OUTLET PIPE OPENINGS. STORMTRAP SHALL BE INSTALLED IN ACCORDANCE WITH ASTM C691.90. STANDARD PRACTICE FOR INSTALLATION OF UNDERGROUND PRE -CAST CONCRETE UTIUTV STRUCTURES. THE POLLOWING ADDITIONS AND /OR EXCEPTIONS SHALL APPLY: A SPECIFICATIONS ON THE ENGINEERS DRAWINGS SHALL TAKE PRECEDENT. S. STORMTRAP MODULES SHALL BE PLACED ON LEVEL FOUNDATION LSEE DETAIL-*Al WITH A 1' -0' OVERHANG ON ALL SIDES THAT SHALL BE POURED IN A PLACE BY INSTALLING CONTRACTOR. C. THE STORMTRAP MODULES SHALL BE PLACED SUCH THAT THE MAXIMUM SPACE BETWEEN ADJACENT MODULES DOES NOT EXCEED 3/4'. IF THE SPACE EXCEEDS 3/4', THE MODULES SHALL BE RESET WITH APPROPRIATE ADJUSTMENT MADE TO LINE AND GRADE TO BRING THE SPACE INTO SPECIFICATION. D. THE PERIMETER HORIZONTAL JOINT OF THE STORMTRAP MODULES SHALL BE SEALED TO THE FOOTINGS WITH PREFORMED MASTIC JOINT SEALER ACCORDING TO ASTM C891.90, 8.8 AND 8.12. E. ALL EXTERIOR JOINTS BETWEEN ADJACENT STORMTRAP MODULES SHALL BE SEALED WITH i' -0" EXTERNAL SEALING BANDS CONFORMING TO ASTM C091.90 AND SHALL BE 1' -0' RUBBER BUTYL SEALANT AS APPROVED BY STORMTRAP. THE JOINT WRAP BUTYL EXTERIOR WRAP SHALL BE INSTALLED ACCORDING TO THE FOLLOWING INSTALLATION INSTRUCTIONS: I. USE A BRUSH OR WET CLOTH TO THOROUGHLY CLEAN THE OUTSIDE SURFACE AT THE POINT WHERE THE JOINT WRAP IS TO BE APPLIED. 2. A RELEASE PAPER PROTECTS THE BUTYL SEALANT SIOE OF THE JOINT WRAP. WRAP THE BUTYL TAPE (BUTYL SIDE DOWN) AROUND THE STRUCTURE, REMOVING THE RELEASE PAPER AS YOU GO. PRESS THE JOINT WRAP FIRMLY AGAINST THE STORMTRAP MODULE SURFACE WHEN APPLYING. F. THE FILL PLACED AROUND THE STORMTRAP UNI7S MUST BE DEPOSITED ON BOTH SIDES AT THE SAME TIME AND TO APPROXIMATELY THE SAME ELEVATION. AT NO TIME SHALL THE FILL BEHIND ONE S1DE WALL BE MORE THAN 2'- .'HIGHER THAN THE FILL ON THE OPPOSITE SIDE. CARE SHALL BE TAKEN 70 PREVENT ANY WEDGING ACTION AGAINST THE STRUCTURE. AND ALL SLOPES BOUNDING OR WITHIN THE AREA TO BE BACK FILLED MUST BE STEPPE. OR SERRATED TO PREVENT WEDGE ACTION. (REFERENCE ARTICLE 502' 10 S.S.R.B.C.) CARE SHALL ALSO BE TAKEN AS NOT TO DISRUPT THE JOINT WRAP FROM THE JOINT DURING THE BACK FILL PROCESS. STORMTRAP SPECIFICATION I. CONCREI E: 6.000 P.B.I. Q 28 DAYS, 5%-6 %ENTRAINED AIR, 4- MAX. SLUMP. 2. REBAR: ASTM A-6 IS GRADE 60. 3, DESIGN CRITERIA: A. ASTM CB58 6. LOADING PER ASTM C857. INCLUDING: I. 70TAL COVER: MIN. 6 MAX. 18'41' 2. CONCRETE CHAMBER DESIGNED FOR AASHTO NS-20 WHEEL LOAD 8 APPLICABLE IMPACT. 3. VERTICAL A LATERAL SOIL PRESSURES DETERMINED USING - GROUNDWATER IS BELOW THE SYSTEM, - REINFORCING COVER PER ACI 316. 4 STORMTRAP IS NOT WATERTIGHT - PLEASE ADVISE IF A WATERTIGHT SOLUTION IS NEEDED DETAIL "A" JOINT TAPE INSTALLATION D THE PERIMETER OF IHE SYSTEM ONLY 5' -0" SINGLETRAP "5(8"712' O.C. IN BOTH DIRECTIONS J /� r 2. 10' L WRAP a5Q100.C. asQlI2. O.C. 10' 1 INTERIOR FOOTING STORM TRAP FOOTING NOTES: 1. 4.000 vv.S.I. @ 28 DAYS, 5 % -8 °b ENTRAINED AIR. 4' MAX. SLUMP. 2. NET ALLOWABLE SOIL PRESSURE GREATER THAN OR EQUAL TO 2.000 p.5.1. 3. SOIL CONDITIONS TO BE VERIFIED ON SITE BY OTHERS. 5. 4.000 p S.I. MUST BE REACHED BEFORE STORMTRAP UNITS CAN BE INSTALLED. PERIMETER FOOTING STORM TRAP FOOTING NOTES: I. 4,000 p.S.I. Q 28 DAYS, 5 % -8% ENTRAINED AIR, 4' MAX. SLUMP. 2. NET ALLOWABLE SOIL PRESSURE GREATER THAN OR EQUAL TO 2,000 p.5.1. 3. SOIL CONDITIONS TO BE VERIFIED ON SITE BY OTHERS. 5. 4.000 p.S.I. MUST BE REACHED BEFORE STORM TRAP UNI7S CAN BE INSTALLED: P.O. BOX 782 MORRIS. IL 60450 1.87- STORMTRAP ENGINEER INFORMATION: NASLAND ENGINEERING 4740 RUFFNER ST SAN DIEGO, CA 92111 Phone: 858.292 -7770 Fax: PROJECT INFORMATION: LA QUINTA SAM'S CLUB LA QUINTA, CA CH- 0894 -CA -05 CURRENT ISSUE DATE: 11/04/05 APPROVED BY: ISSUED FOR: PRELIMINARY REV.: DATE: DESC. BY: iLISSUED FOR Um4AS PRELIMINARY CIL SCALE: NTS SHEET TITLE: DOUBLE TRAP INSTALLATION SPECIFICATIONS SHEET NUMBER: 0 RECOMMENDED PIPE /RISER SPECIFICATION 1. CONNECTING PIPES SHALL BE INSTALLED WITH A 1' -0' CONCRETE COLLAR, AND A CONCRETE CRADLE FOR AT LEAST ONE PIPE LENGTH, AS SHOWN. A STRUCTURAL GRADE CONCRETE OR GROUT WITH A MINIMUM 28 DAY COMPRESSIVE STRENGTH OF 3000 P.0. SHALL BE USED. 2. THE ANNULAR SPACE BETWEEN THE PIPE AND THE HOLE SHALL BE FILLED WITH NONSHRINK GROUT. RECOMMENDED INSTALLATION INSTRUCTIONS 1. CLEAN AND LIGHTLY LUBRICATE ALL OF PIPE TO BE INSETEO INTO STORMTRAP. 2. IF PIPE IS CUT. CARE SHOULD BE TAKEN TO ALLOW NO SHARP EDGES. BEVEL AND LUBRICATE LEAD END OF PIPE. 3. ALIGN CENTER OF PIPE 10 CORRECT ELEVATION AND INSERT INTO OPENING. CONCRETE FOUNDATION SEE DETAIL CONNECTION DETAIL (NOT TO SCALEj ruul%4UHI IVIN PIPE CONNECTION W NON - SHRINK RISER DETAIL P.O. BOX 782 MORRIS, IL 60450 I.87- 31ORh0RAP E14GINEER INFORMATION: NASLAND ENGINEERING 4740 RUFFNER ST SAN DIEGO, CA 92111 Phone: 856- 292 -7770 Fax: PROJECT INFORMATION: LA OUINTA SAM'S CLUB LA QUINTA, CA CH- 0894 -CA -05 CURRENT ISSUE DATE: 1 1/04/05 APPROVED BY: ISSUED FOR: PRELIMINARY REV.: DATE: DESC. BY: SCALE: NTS SHEET TITLE: RECOMMENDED SINGLE TRAP INSTALLATION SPECIFICATIONS SHEET NUMBER: r:■r r r r rr ter. r� rr- r. r: �r rr: rr. �■r: rr; � rr; rr r RECOMMENDED ACCESS OPENING SPECIFICATION I. ATYPICAL ACCESS OPENING FOR THE STORMTRAP SYSTEM RANGES FROM 2 -0- TO 3- -� IN OIAMETER. HOWEVER. STORMTRAP IS CAPABLE OF HAVING OPENINGS LARGER THAN T-W IN DIAMETER. 2. PLASTIC COASTED STEEL STEPS PRODUCED BY M.A. INDUSTRIES PART #PS3 -PFC (SEE DETAIL TO THE RIGHT) ARE TO BE PLACED INSIDE ANY UNIT WHERE DEEMED NECESSARY. THE HIGHEST STEP IN THE UNIT IS TO BE PLACED A DISTANCE OF I.4Y FROM THE INSIDE EDGE OF THE STORMTRAP UNITS. ALL ENSUING STEPS SHALL BE PLACE WITH A MINIMUM DISTANCE OFV - BETWEEN THEM. STEPS MAY SE MOVED OR ALTERED TO AVOID OPENINGS OR OTHER IRREGULARITIES IN THE UNIT. 3. STORMTRAP LIFTING INSERTS MAY BE RELOCATED TO COINCIDE WITH THE ACCESS OPENING OR THE CENTER OF GRAVITY OF THE UNIT AS NEEDED. 4. STORMTRAP ACCESS OPENINGS MAY NOT INTERFERE WITH WITH INLET AND /OR OUTLET OPENINGS. S. STORMTRAP ACCESS OPENINGS MAY NOT EXCEED A DISTANCE OF 504T INBtI EEN WITHOUT A CONSECUTIVE CORRESPONDING ACCESS OPENING. RECOMMENDED PIPE OPENING SPECIFICATION I. MINIMUM EDGE DISTANCE FOR AN OPENING ON THE OUTSIDE WALL SHALL BE NO LESS THAN 1' -01. 2. MINIMUM DISTANCE FROM THE BASE OF THE ROOF SLAB SHALL BE NO LESS THAN 1'A'. 3. ALL OPENINGS MUST RETAIN AT LEAST I' -0' OF CLEARANCE IN ALL DIRECTIONS FROM THE EDGE OF THE STORMTRAP UNITS. 4. OPENING SIZE SHALL NOT EXCEED 020* OR I' -S' l SS THEN THE INSIDE HEIGHT OF THE UNIT. EXAMPLE: 3' -0' UNIT MAXIMUM OPENING - 9D V-6'. S. OPENINGS ARE NOT UMITED TO THE ABOVE PARAMETERS BUT ARE RECOMMENDED. ANY OPENING NEEDEDTHAT DOES NOT FIT THE CRITERIA SHALL BE BROUGHT TO THE ATTENTION OF STORMTRAP FOR REVIEW. 16 L S. I 7' -6' PLAN VIEW I r -- ----- - - - - -- I I I � 17 IL IL I I ELEVATION VIEW ---------- '-- - - ---7 I I I I I I I I I PIPE OPENING o I I I SEE NOTE #4 I OUTSIDE WALL n• MEETS: OPSS 1351.08.02 BNO ASTM CATS -95a ASTM 0. 4101 -95b �-- VA' —� ASTM A -815 AASHTO M -199 1 3/16' 1'•4 3 /A• STAIR DETAIL 6' `i 11' I I SIDE VIEW I I D P.O. BOX 702 MORRIS. IL 60450 1.87- STORMIRAP ENGINEER INFORMATION: NASLAND ENGINEERING 4740 RUFFNER ST SAN DIEGO, CA 92111 Phone: 858- 292.7770 Fax: PROJECT INFORMATION: LA DUINTA SAM'S CLUB LA DUINTA, CA CH- 0894 -CA -05 CURRENT ISSUE DATE: 11/04/05 APPROVED BY: ISSUED FOR: PRELIMINARY REV.: DATE: DESC. BY: IQI �IIWNS =.FOFI ICH SCALE: NTS SHEET TOLE; SINGLE TRAP INSTALLATION SPECIFICATIONS SHEET NUMBER: BILL OF MATERIALS OTY. PART NO. DESCRIPTION 60 TYPE I S-0' SINGLET14AP Ill III TYPE 12 TYPE It 5--0' SINGLETRAP II I TYPE 0 20 TYPE 111 S.R SINGLETRAP I I TYPE III 2 TYPE N S -O- SINGLETRAP II TYPE N 2 TYPE V B'4' SINGLETRAP I I TYPE V 23 JOINT JOINT TAPE -14.5' II TAPE PER ROLL 13 JOINT JOINTVIRAP -150' I WRAP PER ROLL NOTES: I. OIMENSION OF STORMTRAP SYSTEM ALLOW FOR A 3/4- GAP BETWEEN EACH UNIT. 2. ALL DIMENSIONS TO BE VERIFIED IN THE FIELD BY OTHERS. IV III Ili III III III III Ill III 1!I III V II I I I I I I I I I I II II 1 1 I I I I I I 1 I II ' II I I I I I 1 I I I I II II I I I I I I I 1 I I II 63' -1 II II I I I 1 I I I I 1 1 11 II I I 1 ! I I 1 i 1 I II V III 111 111 111 111 III III III III III IV I-- J BS -B 174' LAYOUT DETAIL 5' -0" SINGLETRAP UNITS 22,946.00 C.F. OF STORAGE SEE SHEET 2 FOR INSTALLATION SPECIFICATIONS o P.O. BOX 787 MORRIS, IL 60450 1.87- STORMTRAP ENGINEER INFORMATION: NASLAND ENGINEERING . 4740 RUFFNER ST SAN DIEGO, CA 92111 Phone: 858 .292-7770 Fax: PROJECT INFORMATION: LA OUINTA SAM'S CLUB LA OUINTA, CA CH- 0894 -CA -05 CURRENT ISSUE DATE: 11/04105 APPROVED BY: ISSUED FOR: PRELIMINARY REV.: DATE: DESC. BY: HA)T/OS' PRELIMINARY ICIi SCALE: NTS SHEET TITLE: LAYOUT DETAIL SHEET NUMBER: PLAN VIEW 11' _____________________ _______ 5' ELEVATION VIEW 0' 11 6 11 SIDE VIEW P.O. BOX 782 A10P.RIS. IL 60450 1.87.SIORMIRAP ENGINEER INFORMATION: 14ASLAND ENGINEERING 4740 RUFFNER ST SAN DIEGO, CA 92111 Phone: 858. 292.7770 Fax: PROJECT INFORMATION: LA QUINTA SAM'S CLUB LA OUINTA, CA CH- 0894 -CA -05 rCURRENT ISSUE DATE: L 11/04/05 APPROVED BY: ISSUED FOR: PRELIMINARY REV.: DATE: DESC. BY: LQ I ..1041051 PRELEMINARY IC' SCALE: NTS SHEET TITLE: STANDARD 5-0" SINGLETRAP TYPE SHEET NUMBER: TYPE I UNITS UNIT CUBIC WEIGHT HEIGHT STORAGE TOP (in.) (C.F.) (Ibs.) 60 245.7 11865 11 6 11 SIDE VIEW P.O. BOX 782 A10P.RIS. IL 60450 1.87.SIORMIRAP ENGINEER INFORMATION: 14ASLAND ENGINEERING 4740 RUFFNER ST SAN DIEGO, CA 92111 Phone: 858. 292.7770 Fax: PROJECT INFORMATION: LA QUINTA SAM'S CLUB LA OUINTA, CA CH- 0894 -CA -05 rCURRENT ISSUE DATE: L 11/04/05 APPROVED BY: ISSUED FOR: PRELIMINARY REV.: DATE: DESC. BY: LQ I ..1041051 PRELEMINARY IC' SCALE: NTS SHEET TITLE: STANDARD 5-0" SINGLETRAP TYPE SHEET NUMBER: PLAN VIEW r-------------------------- I I I I I I I I I I I I I I I i s. ELEVATION VIEW lil SIDE VIEW P.O. BOX 782 MORRIS. IL 60450 1.87- STORMIRAP ENGINEER INFORMATION: NASLAND ENGINEERING 4740 RUFFNER ST SAN DIEGO, CA 921 It Phone: 858- 292 -7770 Fax: PROJECT INFORMATION: LA OUINTA SAM'S CLUB LA OUINTA, CA CH- 0894 -CA -05 CURRENT ISSUE DATE: 11/04/05 APPROVED BY: ISSUED FOR: PRELIMINARY REV.: DATE: DESC. BY: LQ I uioousl ISSUED FOR NARY IGI PRELIMI SCALE: NTS SHEET TITLE: STANDARD 6 -0" SINGLETRAP TYPE II SHEET NUMBER: TYPE II UNITS UNIT CUBIC WEIGHT HEIGHT STORAGE TOP (in.) (C.F.) (Ibs.) 60 232.9 17265 SIDE VIEW P.O. BOX 782 MORRIS. IL 60450 1.87- STORMIRAP ENGINEER INFORMATION: NASLAND ENGINEERING 4740 RUFFNER ST SAN DIEGO, CA 921 It Phone: 858- 292 -7770 Fax: PROJECT INFORMATION: LA OUINTA SAM'S CLUB LA OUINTA, CA CH- 0894 -CA -05 CURRENT ISSUE DATE: 11/04/05 APPROVED BY: ISSUED FOR: PRELIMINARY REV.: DATE: DESC. BY: LQ I uioousl ISSUED FOR NARY IGI PRELIMI SCALE: NTS SHEET TITLE: STANDARD 6 -0" SINGLETRAP TYPE II SHEET NUMBER: ----------------------------- r -10' cto --- T- 1 ----------------- - -� -- I I I I I I I I 1• � � 5. � 1• 7' PLAN VIEW 5' -11' ELEVATION VIEW I I' a' ' SIDE VIEW P.O. BOX 782 MORRIS. IL 60450 1- 87.SIORNITRAP ENGINEER INFORMATION: NASLAND ENGINEERING 4740 RUFFNER ST SAN DIEGO, CA 92111 Phone: 858.2927770 Fax: PROJECT INFORMATION: LA OUINTA SAM'S CLUB LA OUINTA. CA CH- 0894 -CA -05 CURRENT ISSUE DATE: 11/04/05 APPROVED BY: ISSUED FOR: PRELIMINARY REV.: DAIE: DESC. BY: QISSUED FOR I lua /0.S pREIiMINARY CH SCALE: I NTS SHEET TITLE: STANDARD 5' -0" SINGLETRAP TYPE III SHEET NUMBER: TYPE III UNITS UNIT CUBIC WEIGHT HEIGHT STORAGE TOP (in.) (C.F.) (Ibs.) 60 227.5 14590 I I' a' ' SIDE VIEW P.O. BOX 782 MORRIS. IL 60450 1- 87.SIORNITRAP ENGINEER INFORMATION: NASLAND ENGINEERING 4740 RUFFNER ST SAN DIEGO, CA 92111 Phone: 858.2927770 Fax: PROJECT INFORMATION: LA OUINTA SAM'S CLUB LA OUINTA. CA CH- 0894 -CA -05 CURRENT ISSUE DATE: 11/04/05 APPROVED BY: ISSUED FOR: PRELIMINARY REV.: DAIE: DESC. BY: QISSUED FOR I lua /0.S pREIiMINARY CH SCALE: I NTS SHEET TITLE: STANDARD 5' -0" SINGLETRAP TYPE III SHEET NUMBER: •� � ;� ,ice F------------------------- I cb I I I I I I I I I I I I I L—�- 1---------------- -r —P -- I1 i I I 5' 7'.6- PLAN VIEW -------------------------- I I I I 1 I 1 1 I I I 1 I I I I I I u 6... 5, ELEVATION VIEW SIDE VIEW 0 P.O. BOX 782 MORRIS. IL 60450 1.87- STORMIRAP ENGINEER INFORMATION: NASLAND ENG114EERING 4740 RUFFNER ST SAN DIEGO, CA 92111 - Phone: 858 - 2927770 Fax: PROJECT INFORMATION: LA QUINTA SAM'S CLUB LA QUINTA' CA CH- 0894 -CA -05 CURRENT ISSUE DATE: I11/04/05 APPROVED BY: ISSUED FOR: PRELIMINARY REV.: DATE: DESC. BY: SSUD FOR TI /off /o5l PRELIMINARY ICH SCALE: NTS SHEET TITLE: STANDARD 5-0" SINGLETRAP TYPE IV SHEET NUMBER: TYPE IV UNITS UNIT CUBIC WEIGHT HEIGHT. STORAGE TOP (n.) (C.F.) (Ibs.) 60 214.8 19990 SIDE VIEW 0 P.O. BOX 782 MORRIS. IL 60450 1.87- STORMIRAP ENGINEER INFORMATION: NASLAND ENG114EERING 4740 RUFFNER ST SAN DIEGO, CA 92111 - Phone: 858 - 2927770 Fax: PROJECT INFORMATION: LA QUINTA SAM'S CLUB LA QUINTA' CA CH- 0894 -CA -05 CURRENT ISSUE DATE: I11/04/05 APPROVED BY: ISSUED FOR: PRELIMINARY REV.: DATE: DESC. BY: SSUD FOR TI /off /o5l PRELIMINARY ICH SCALE: NTS SHEET TITLE: STANDARD 5-0" SINGLETRAP TYPE IV SHEET NUMBER: I 7' 6 II I I II I i I I I I I I I 7'. I I I I I I �----------- - - - - -- PLAN VIEW 11' -------------------------- I I I 1 � 1 I 1 I I I 1 I I 1 S• I I I I I I I I 1 I I I I I I I I I I I I I I 1 I I I I .I ELEVATION VIEW 11' 6 11 SIDE VIEW O P.O. BOX 782 MORRIS. IL 60450 1.87.STORMTRAP ENGINEER INFORMATION: NASIAND ENGINEERING 4740 RUFFNER ST SAN DIEGO, CA 92111 Phone: 858- 292.7770 Fax: PROJECT INFORMATION: CURRENT ISSUE DATE: 11/04/05 APPROVED BY: I. ISSUED FOR: PRELIMINARY REV.: DATE: DESC. BY: IQI IIITOVOSIPRELIMINARY ICH SCALE: NTS SHEET TITLE: STANDARD 5' -0" SINGLETRAP TYPE V SHEET NUMBER: TYPE V UNITS UNIT CUBIC WEIGHT HEIGHT STORAGE TOP (in.) (C.F.) (Ibs.) 60 214.8 19990 11' 6 11 SIDE VIEW O P.O. BOX 782 MORRIS. IL 60450 1.87.STORMTRAP ENGINEER INFORMATION: NASIAND ENGINEERING 4740 RUFFNER ST SAN DIEGO, CA 92111 Phone: 858- 292.7770 Fax: PROJECT INFORMATION: CURRENT ISSUE DATE: 11/04/05 APPROVED BY: I. ISSUED FOR: PRELIMINARY REV.: DATE: DESC. BY: IQI IIITOVOSIPRELIMINARY ICH SCALE: NTS SHEET TITLE: STANDARD 5' -0" SINGLETRAP TYPE V SHEET NUMBER: a ' RATIONAL METHOD CALCULATIONS -100 YEAR La Quinta Sam's Club Riverside County Flood Control's Rational Method Analysis Tc = (0.30)(0/1-1) "' I is determined from Tc by using Plate D -4 for Cathedral City Q = (C)(1) (A) Tt = Distance/Velocity Tc' = Tc + Tt I is determined from Tc by using Plate D -4 for Cathedral City Q = (C)(1) (A) ** see attached spreadsheet for results 11/5/2005 304 -018.1 Q = Discharge (cfs) C =Runoff Coefficient A uniform value of C will be used through this analysis C = 0.90 I = Intensity (in /hr) A = Area (acres) Tc = Time of Concentration (min) L = Length of Watercourse (feet) H = Change in Elevation within the sub basin Tt = Travel time Distance = length of flow to next sub basin Velocity = Velocity of flow along distance Tc' = Time of Concentration including Travel Time La Quinta Sam's Club Riverside County Flood Control Rational Method Anal sis 11/5/2005 304 -018.1 Basin Area (sq ft. Area Acres A Elev. feet Length feet Tc min Intensity in /hr ) Q (cfs) Dist (feet Velocity (fps) Time min Tc' min Intensity (in /hr ) Q' (cfs 1 75,977. 1.74 5.16 272.00 6.32 5.91 9.28 48.50 4.23 0.19 6.51 5.10 8.01 2 80,640 1.85, 3.70 226.00 6.04 6.06 10.10 48.50 7.18 0.11 6.15 5.79 9.65 3 102,663 2.36 8.91 445.60 7.62 5.31 11.26 40.76 6.64 0.10 7.72 3.80 8.06 4 10,232 0.23 2.00 203.90 6.42 5.86 1.24 0.00 0.00 0.00 6.42 5.27 1.11 5 28,952 0.66 .2.83, 207.80 6.06 6.05 3.62 72.01 3.65 0.33 6.39 5.33 3.19 6 8,325 0.19 2.34 121.70 5.00 6.76 1.16 22.05 37.54 0.011 5.01 6.75 1.16 7 34,159 0.78 4.00 264.80 6.54 5.80 4.09 25.45 5.61 0.08 6.62 4.89 3.45 8 38,453 0.88 1.95 150.20 5.37 6.51 5:17 136.61 3.77 0.60 5.98 6.09 4.84 9 63,736 1.46 2.75 185.90 5.70 6.28 8.27 136.61 4.22 0.54 6.24 5.62 7.40 10 2,027 0.05 0.72 72.00 5.00 6.76 0.28 103.65 3.40 0.51 5.51 6.41 0.27 11 3,274 0.08 0.60 59.70 5.00 6.76 0.46 61.99 5.43 0.19 5.19 6.63 0.45 12 8,964 0.21 1.34 122.70 5.13 6.67 1.24 0.00 0.00 0.00 5.13 6.67 1.24 13 2,678 0.06 0.80 80.30 5.00 6.76 0.37 77.99 5.22 0.25 5.25 6.59 0.36 14 1,858 0.04 0.56 55.60 5.00 6.76 0.26 10.62 9.54 0.02 5.02 6.75 0.26 15 840 0.02 0.40 39.70 5.00. 6.76 0.12 10.62 7.69 0.02 5.02 6.75 0.12 16 6,334. 0.15. 1.43 143.10 5.55 6.38 0.83 33.12 9.49 0.06 5.61 6.35 0.83 17 34,349 0.79 2.83 184.40 5.64 6.32 4.49 10.19 20.56 0.01 5.65 6.32 4.49 18 4,820 0.11 0.67 66.50 5.00 6.76 0.67 72.79 6.94 0.17 5.17 6.64 0.66 19 516 0.01 0.53 53.40 5.00 6.76 0.07 68.54 2.06 0.55 5:55 6.39 0.07 20 8,850 0.20 2.05 95.15 5.00 6.76 1.24 5.99 4.97 0.02 5.02 6.75 1.23 21 4,703 0.11 0.81 81.30 5.00 6.76 0.66 44.97 8.38 0.09 5.09 6.70 0.65 22 5,781 0.13 4.29 108.20 5.00 6.76 0.81 20.00 7.64 0.04 5.04 6.73 0.80 23 10,273, 0.24 2.70 97.50. 5.00 6.76 1.43 44.00 4.28 0.17 5.17 6.64 1.41 24 23,913 0.55 2.80 224.85 6.37 5.89 2.91 44.00 6.65 0.11 6.48 5.16 2.55 25 5,299 0.12 1.45 145.20 5.59 6.36 0.70 69.75 6.32 0.18 5.77 6.24. 0.68 26 17,986 0.41 3.24 323.85 7.70 5.27 1.96 1150 15.60 0.01 7.71 3.83 .1.42 27 14,288 0.33 3.27 326.75 7.73 5.26 1.55 11.50 15.69 0.01 7.74 3.76 1.11 28 12,601 0.29 1.50 111.50 5.00 6.76 1.76 24.50 11:00 0.04 5.04. 6.73 1.75 29 18,207 .0.42 3.26 325.90 7.72 5.26 1.98 13.50 16.81 0.01 7.73 3.78 1.42 30 12,674 0.29 3.28 327.85 7.74 5.26 1.38 11.50 16.35 0.01 7.75 3.73 0.98 Standard Intensity Duration Curve Data was used per Plate D -4.1 Cathedral City La Quinta Sam's Club 11/5/2005 Riverside County Flood Control 304 -018.1 Rational AAothnri Analysis Basin Area (sq ft. Area Acres 0 Elev. feet Length (feet). Tc min Intensity in /hr ) Q (cfs) Dist (feet Velocity (fps) Travel Time min Tc' min Intensity in /hr Q' cfs 31 8,269 0.19 3.25 324.65 7.71 5.26 0.90 13.50 13.63 0.02 7.72 3.80 0.65 32 12,431 0.29 3.25 324.65 7.71 5.26 1.35 13.50 15.58 0.01 7.72 3.80 0.98 33 6,968 0.16 3.26 326.20 7.72 5.26 0.76 11.50 14.01 0.01 7.74 3.76 0.54 34 22,738 0,52 3.33 333.25 .7.79 5.24 2.46 13.50 18.81 0.01 7.80 3.61 1.70 35 9,860 0.23 1:50 112.25 5.00 6.76 1.38 24.50 11.54 0.04 5.04 6.73 1.37 36 6,815 0.16 1.74 98.60 5.00 6.76 0.95 22.50 10.63 0.04 5.04 6.73' 0.95 37 75,225 1.73 5.06 730.20 11.47 4.18 6.50 430.76 4.93 1.46 12.93 3.89 6.05 38 32,853 0.75 3.09 415.70 9.03 4.80 3.26 15.50 7.07 0.04 9.06 4.79 3.25 39 43,944 1.01 3.15 437.30 9.27 4.73. 4.29 11.65 11.69 0.02 9.29 4.73 4.29 40 15,890 0.36. 1.10 144.40 5:89 6.15 2.02 47.01 5.31 0.15 6.03 6.02 1.98 41 3,931 0.09 0.54 41.40 5.00 6.76 0.55 6.22 4.89 0.02 5.02 6.75. 0.55 42 1,107 0.03 0.41 76.20 5.00 6.76 0.15 0.00 0.00 0.00 5.00 6.76 0.15 Standard Intensity Duration Curve Data was used per Plate D -4.1 " Cathedral City r� rr r •:.r � iir rr �r r .� r :u 0 ci SP z c l- -�-1 Fri 0 N 4 9 CATHEDRAL CITY DURATION (FREQUENCY MINUTES, 110 100 YEAR YEAR 5 6 7 8 9 10 11 12 13 14 IS 16 17 18 19 20 22 24 26 28 30 32 34 36 38 40 45 50 55 60 65 TO 75. 80 85 4.14 6.76 3.73• 6.08 3.41 5.56 3.15 5.15 2.95 4.81 2.77 4.52 2.62 4.28 2.49 4.07 2.38 '3.88 2.28 3.72 2.19 3.58 2.11 3.44 2..04 3.3.2 1.97 3.22 1.91 3.12 1.85 3.03 1.75 2.86 1.67 2.72 1.59 2.60 1.52 2.49 1.46 2.39 1.41 2.30 1.36 2.22 1.32 2.15 1.28 2.09 1.24 2.02 1.16 1.89 1.09 1.78 1.03 1.68 .98 1.60 .94 1.53 .90 1.46 .86 1.41 .83 1.35 .80 1.31 SLOPE = .580 RAINFALL . INi CHERRY VALLEY DURATION DURATION FREQUENCY MINUTES 10 100 10 10 100 YEAR YEAR YEAR 5 3.65 5.49 6 3.30 4.97 7 3.03 4.56 8 2.82 4.24 9 2.64 3.97 10 2.49 3.75 11 2.36 3.56 12 2.25 3.39 13 2.16 3.25 14 2.07 3.12' 15 1.99 3.00 16 1.92 2.90 17 1.86 2.80 18 1.80 2.71 19 1.75 2.64 20 1.70 2.56 22 1.61 2.43 24 1.54 2.32 26 1.47 2.22 28 1.41 2.13 30 1.36 2.05 32 1.31 1.98 34 1.27 1.91 36 1.23 1.85 38 1.20 1.80 40 1.16 1.75 45 1.09 1.64 SO 1.03 1.55 55 .99 1.47 60 .93 1.40 65 .89 1.34 70 .85 1.29 75 .82 1.24 80 .79 1.20 85 .77 1.16 SLOPE = .SSO 'ENSITY ®INCHI CORONA FREQUENCY DURATION FREQUENCY MINUTES 10 100 10 100 YEAR YEAR YEAR 5 3.10 4.78 6 2.84 4.38 1 .2.64 4.07 8 2.47 3.81 9 '' 2.34 3.60 , 10 2.22 3.43 11 2.12 3:27 12 2.04 3.14 13 1.96 3.02 14 1.89 2.92 15 1.83 2.82 16 ).77 2.73 17 1.72 2.66 18 1.68 2.58 19 1.63 2.52 20 1.59 2.46 22 1.52 2.35 24 1.46 2.25 26 1.40 2.17 28 1.36 2.09 30 1.31 2.02 32 1.27 1.96 34 1.23 1.90 36 1.20 1.85 38 1.17 1.81 40 1.14 1.76 45 1.08. 1.66 50 1.03 1.58 55 .98 1.51 60 .94 1.45 65 .90 1.40 70 .87 1.35 75 .B4 1.30 80 .82 1.26 85 .80 1.23 SLOPE = .480 oS PER HQUI IDESERT HOT SPRINGS DURATION FREQUENCY MINUTES 10 100 YEAR YEAR 5 4.39 6.76 6 3.95 6.08 7 3.62 5.56 8 3.35 5.15 9 3.13 4.81 10 2.94 4.52 11 2.78 .4.28 12 2.65 4.07 13 2.53 3.88 14 .2.42 3.72 15 2.32 3.58 16 2.24 3.44 17 2.1.6 3.32 18 2.09 3.22 19 2.03 3.12 20 1.97 3.03 22 1.86 2.86 24 1.77 2.72 26 1.69 2.60 28 1.62 2.49 36 1.55 2.39 . 32 1.50 2.30 34 1.45 2.22 36 1.40 2.15 38 1.36 2.09 40 1.32 2.02 45 1.23 1.89 50 1.16 1.78 55' 1:09 1.68 60 1.04 .1.60 65 .99 1.53 70 .95 1.46 75 .91 1.41 80 .88 1.35 85 .85 1.31 SLOPE _ .580 ELSINORE - WILO04AR DURATION FREQUENCY MINUTES 10 100 YEAR YEAR 5 3.23 4.94 6 2.96 4.53 7 2.75 4.21 B 2.58 3.95 9 2.44 3.73 10 2.32 3.54 11 2.21 3.39 12 2.12 3.25 13 .2.04 3.13 14 1.97 3.02 15 1.91 2.92 16 1.85 2.83 17 1.80 2.75 10 1.75 2.67 19 1.70 2.60 20 1.66 2.54 22 1.59 2.43 24 1.52 2.33 26 1.46 2.24 28 1.41 2.16 30 1.37 2.09 32 1.33 2.03 34 1.29 1.97 36 1.25 1.92 38 1.22 1.87 40 1.19 1.82 45 1.13 1.72 50 1.07 1.64 55 1.02 1.56 60 .98 1.50 65 .94 1.44 70 .91 1.39 75 .88 1.35 80 .85 1.31 BS .83 1.2T SLOPE = .480 1 1 1� 1' 1' PROPOSED CATCH BASIN DESIGN ,7 1 Grated inlets were sized utilizing Chart 11 as per U.S.. Department of Transportation Circular FHWA PI'S -84 -202 assuming a maximum ponding depth of 0.4 -foot and 50- percent clogging of the grate. The following summaries the capacities for various .inlet sizes: SIZE PERIMETER TOTAL 50% CLOGGED ft ft INLET CAPACITY (cfs) x 2.67 cfs 18" x 18" 2 Grated Inlet Design Inlet Discharge Inlet Size 1 2.67 cfs 18" x 18" 2 2.67 cfs 18" x 18" 3 2.67 cfs 18" x 18" 4 3.22 cfs 18" x 18" 5 3.22 cfs 18" x 18" 6 3.22 cfs 18" x 18" 7 1.11 cfs 18" x 18" 8 3.19 cfs 18" x 18" 9 1.16 cis 18" x 18" 10 3.45 cfs 4' CI er #300 11 1.61 cfs 18" x 18" 12 1.61 cfs 18" x 18" 13 1.61 cfs 18" x 18" 14 2.47 cfs 18" x 18" 15 2.47 cfs 18" x 18" 16 2.47 cfs 18" x 18" 17 1.24 cfs 18" x 18" 18 4.49 cfs 18" x 18" 19 1.23 cfs 18" x 18" 20 0.80 cfs 18" x 18" 21 1.41 cfs 18" x 18" 22 2.55 cfs 18" x 18" 23 1.75 cfs 4' CI er #300 24 1.37 cfs 4' CI er #300 25 0.95 cfs 18" x 18" 26 6.05 cfs 4' CI er #300 27 3.25 cfs 4' CI er #300 28 4.29 cfs 4' CI per #300 29 1.98 cfs 4' CI per #300 30 0.55 cfs 4' CI er #300 31 0.15 cfs 4' CI er #300. 1` See Drainage Map for locations of inlets. I-- 161, CLEAR OPEN AREA 18" x 18" CATCH BASIN 1 B" „ 0. % DIA. BARS 0. C. AREA OF BARS: (18/12 x 18/12) - ( 18/12 x36/1 x 0.2/12) = 1.35 ft2 PERM.ITER: 4x 18/12 =6ft ASSUME FREEBOARD DEPTH OF 0.5' ASSUME 50% CLOGGED, THEREFORE:. OPEN AREA = 1.35 ft2/2 = 0.68 ft2 PERIMETER = 6 ft /2 = 3 ft WIER FLOW: QCAP = CWPd''S = 3.0 (3.Oft)(0.5)''S = 3.18 cfs ORFICE FLOW: - QCAP = C.A(2d)0-5 = 0.67 (0.66 tt2) (2 x32.2 x 0.5)0'5 = 2.59 cfs 0 c t 3 0 W 0 10 8 6 5 4 3 2 I 0.11 0. O. 0. 0. C 0.1 I 2 3 4 5 6' 8 10 DISCHARGE a (FT 3 /S) 20 30 40 50 60 80 100 CHART 11. Grate inlet capacity in sump conditions. 71 . II V I V/ GRATE OPENING RATIO P- 1-7/6 -4 0.8 I Q P —I -7/8 0.9 P -1 0.6 I ry ro Reticuline 0.6 1 I I v h Curved vane 0.35 I 30° tilt -bar 0.34 �O �1 I °jO • Tested I CURB 5 Q c� W 3 es 0 I 0 9 A= CLEAR OPENING AREA P = 2W + L ( WITH CURB) I •P = 2(W +L) (WITHOUT CURB) 0.1 I 2 3 4 5 6' 8 10 DISCHARGE a (FT 3 /S) 20 30 40 50 60 80 100 CHART 11. Grate inlet capacity in sump conditions. 71 . 1 C 1 STORM DRAIN PIPE DESIGN ' La Quinta Sam's Club 11/5/2005 304 -018.1 I. Storm Drain Pipe Design Line Slope Size Q Percent Full 1 0.60% 18 " 2.67 cfs 39.42% 2 0.60% 24 " 2.67; cfs 39.42% 3 0.69% 18 " 2.67 cfs 37.96% 4 0.60% 24 " 5.34 cfs 37.87 % 5 0.79% 18 " 2.67 cfs 36.60% 6 0.60% 24 " 8.01 cfs 47.45% 7 2.33% 18 " 3.22 cfs 30.39% 8 0.60% 24 " 11.23 cfs 58.20% 9 2.42% 18 " 3.22 cfs 30.10% 10 0.60% 24 " 14.43 cfs 69-13% 11 2.52% 181, 3.22 cfs 29.78% 12 0.60% 24 " 17.66 cfs 82.69% 13 1.00% 18 " 8.06 cfs 65.66% 14 1.00% 18 " 8.06 cfs 65.66% 15 1.00% 18 " 9.17 cfs 72-33% 16 0.35 % 18 " 3.19 cfs 50.78% 17 0.35% 18 " 3.19 cfs 50.78% 18 1.18% 12" 1.16 cfs 37.54% 19 0.35% 18" 4.35 cfs 61.65% 20 1.02% 15 " 3.45 cfs 51.69% 21 0.35 % 24 " 7.80 cfs 54.83% 22 1.10% 18 " 1.61 cfs 25.83% 23 1.00 % 18 " 1.61 cfs 26.46% 24 1.70% 18.. 1.61 cfs 23.15% 25 1.00 % 18 " 3.23 cfs 38.06% 26 1.20% 18.1 1.61 cfs 25.27% 27 0.30% 24 " 4.84 cfs 43.40% 28 0.70% 1811 2.47 cfs 36.26% 29 0.70% 18 " 2.47 cfs 36.26 % 30 1.10% 18 " 2.47 cfs 32.18% 31 0.70% 18 ° 4.93 cfs 53.56% 32 0.40% 18 " 2.47 cfs 42.22% 33 0.30 % 24 " 7.40 cfs 55.67% 34 1.97% 12 " 0.27 cfs 15.78% 35 1.84% 12 " 0.27 cfs 16.05% 36 0.40% 48 49.41 cfs 52.57% 37 4.79% 12 " 0.45 cfs 16.30% 38 0.40% 48 " . 49.86 cfs 52.86% 39 0.40% 48 " 67.52 cfs 64.21 % 40 0.40% 48 " 67.52 cfs 64.21 % ' ' See Drainage Map for locations of Storm Drain Lines La Quinta Sam's Club 11/5/2005 304 -018.1 ' Storm Drain Pipe Design Line Slope Size Q Percent Full 41 0.40% 48 " 67.52 cfs 64.21 % 42 29.00% 12 " 1.24 cfs 17.23% 43 0.40% 48 " 68.76 cfs 65.03% 44 5.13 % 12 " 0.36 cfs 14.39% 45 5.13% 12 " 0.36 cfs 14.39% 46 0.40% 48 " 69.12 cfs 65.27 % 47 39.08% 12 " 0.26 cfs 7.59% 48 0.40% 48 " 69.38 cfs 65.44% 49 41.34% 12 " 0.12 cfs 5.21 % 50 0.40% 48 " 69.50 cfs 65.52 % 51 14.19% 12 " 0.83 cfs 16.86% 52 0.40% 48 " 70.33 cfs 66.07% 53 0.40% 48 " 70.33 cfs 66.07% 54 31.60% 12 " 4.49 cfs 32.18% 55 0.40% 48 " 74.82 cfs 69.13% 56 6.99 % 12 " 0.66 cfs 17.92% 57 0.40% 48 " 75.48 cfs 69.59% 58 1.44% 12 " 0:07 cis 8.91 % 59 1.44% 12 " 0.07 cfs 8.91 % 60 1.67% -12 " 1.23 cfs 35.30% 61 0.81 % 12 " 1.30 cfs 44.32% 62 2.58 % 12 " 0.65 cfs 22.76% 63 2.58 % 12 " 0.65 cfs 22.76% 64 0.81 % 12 " 1.95 cfs 56.30% 65 0.81 % 12 " 1.95 cfs 56.30% 66 0.60 % 12 " 0.80 cfs 36.87 67 0.44% 24 " 2.75 cfs 28.99% 68 1.82% 12 " 1.41 cfs 37.11 % 69 0.44% 24 " 4.16 cfs 36.00% 70 2.00% 12 " 2.55 cfs 50.36% 71 0.42 % 24" 6.71 cfs 47.49% 72 0.42 % 24" 6.71 cfs 47.49% 73 5.18 % 12 " 0.68 cfs 19.58% 74 5.18 % 12 " 0.68 cfs 19:58 % 75 0.42% 24 " 7.39 cfs 50.24% 76 28.37 % 12 " 1.42 cfs 18.51 % 77 0.42 % 24 " 8.81 cfs 55.88% 78 35.04 % 12 " 1.11 cfs 15.59% 79 0.42 % 24 " 9.92 cfs 60.28% 80 11.59 % 12 " 1.75 cfs 25.66% See Drainage Map for locations of Storm Drain Lines La Quanta Sam's Club 11/5/2005 304 -018.1 Storm Drain Pipe Design Line Slope Size Q Percent Full 81 0.42 % 36 " 11.67 cfs 35.49 % 82 34.74% 12 " 1.42 cfs 17.61 % 83 0.42% 36 " 13.09 cfs 37.75 % 84 43.48 % 12 " 0.98 cfs 13.93 % 85 0.42% 36 " 14.07 cfs 39.25 % 86 37.19 % 12 " 0.65 cfs 11.87 % 87 0.42% 36 " 14.72 cfs 40.23% 88 38.59 % 12 " 0.98 cfs 14.34% 89 0.42% 36 " 15.70 cfs. 41.68 % 90 46.43% 12 " 0.54 cfs 10.31 % 91 0.42% 36 " 16.24 cfs 42.47% 92 39.93 % 12 " 1.70 cfs 18.59 % 93 0.42 % 36 " 17.94 cfs 44.91 % 94 16.20 % 12 " 1.37 cfs 20.88 % 95 0.42 % 36 " 19.31 cfs 46.83% 96 17.51 % 12 " 0.95 cfs 17.11 % 97 0.42 % 36 " 20.26 cfs 48.15 % 98 0.40% 54 " 95.74 cfs 65.81 % 99 0.40 % 54 " 113.24 cfs 74.90 % 100 2.00-% 18 " 6.05 cfs 44.43% 101 0.50 % 18 " 6.05 cfs 68.56 % 102 0.50 % 18 " 6.05 cfs 68.56% 103 2.19 % 12 " 3.25 cfs 56.78 % 104 0.50% 24" 9.30 cfs 54.57 % 105 0.50 % 24 ° 9.30 cfs 54.57 % 106 0.50 % 24 " 9.30 cfs 54.57,% 107 6.95 % 12 " 4.29 cfs 47.43% 108 0.50 % 24 " 13.59 cfs 70.79% 109 0.50% 2411 13'.59 cfs 70.79 % 110 1.40% 12" 1.98 cfs 48.21 % 111 3.05 % 12 " 0.55 cfs 20.09% 112 1.40% 12" 2.53 cfs 55.84% E1 0.41 % 30 " 6.50 cfs 33.90 % E2 0.41 % 30 " 15.67 cfs 55.63% E3 0.41 % 42 " 36.90 cfs 54.25% E4 0.41 % 4211 41.74 cfs 58.61 % E5 0.41 % 42 " 49.14 cfs 65.38 % E6 0.41 % 60 " 132.44 cfs 67.30% E7 0.41 % 60 " 136.66 cfs 68.87 % " See Drainage Map for locations of Storm Drain Lines i i i j 11 J 'i i La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #1 Given Input Data: .Shape ...... solving for Diameter ... Flowrate ... slope ... manning's n #l.txt Manning Pipe Calculator Circular Depth of Flow 18.0000 in 2.6700 cfs 0.0060 ft /ft 0.0130 Computed Results: Depth ........................... 7.0963 in Area .......................... 1.7671 ft2 wetted Area ..................... 0.6474 ft2 wetted Perimeter ................ 24.4379 in Perimeter ....................... 56.5487 in velocity .... .... ............ 4.1242 fps Hydraulic Radius ................ 3.8148 in Percent Full .................... 39.4238 Full flow Flowrate .............. 8.1366 cfs Full flow velocity .............. 4.6044 fps. Critical Informati Critical depth .................. Critical slope ................. Critical velocity ............... Critical area ................... Critical Perimeter .............. Critical hydraulic radius ....... Critical top width .............. specific energy ..... ........... Minimum energy .................... Froude number ................... Flow condition .................. on 7..4368 in 0.0051 ft /ft 3.8743 fps 0.6892 ft2 25.1320 in 3.9487 in 17.7264 in 0.8557 ft 0.9296 ft. 1.0942 Supercritical Page 1 J 1 #2. txt La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #2 Manning Pipe Calculator Given Input Data: Shape .. Solving for Diameter ... Flowrate ... Slope ... Manning's n Circular Depth of Flow 24.0000 in 2.6700 cfs 0.0060 ft /ft 0.0130 Page 1 III Computed Results: Depth ........................... Area ..... wetted Area ...................... 6.3321 3.1416 0.6625 in ft2 ft2 ' wetted Perimeter ................ Perimeter ....................... velocity ........................ Hydraulic Radius ................ 25.8928 75.3982 4.0299 3.6847 in in fps in Percent Full .................... 26:3836 Full flow Flowrate .............. 17.5232 cfs Full flow velocity .............. 5.5778 Critical Information fps Critical depth .................. Critical slope ................. Critical velocity ............... 6.8312 0.0045 3.6240 in ft /ft fps ' Critical area Critical perimeter .............. Critical hydraulic radius ....... Critical top width .............. Specific energy ................. Minimum energy .................. Froude number ................... 0.7368 27.0118 3.9277 21.6.595 0.7801 0.8539 1.1589 ft2 in in in ft ft Flow condition .................. Supercritical Page 1 III La Quinta Sam's club 100 Year - 24 Hour Storm Evert Storm Drain Line #3 Given Input Data: shape .. Solving for Diameter ... Flowrate ... Slope ... Manning's n #3.txt Manning Pipe Calculator Circular Depth of Flow 18.0000 in 2.6700 cfs 0.0069 ft /ft 0.0130 Computed Results: Depth 6.8324 in Area . 1.7671 ft2 wetted Area 0.6153 ft2 wetted Perimeter ................ 23.8962 in Perimeter ....................... 56.5487 in velocity ... .................. 4.3396 fps Hydraulic Radius ................. 3.7077 in Percent Full .................... 37.9580 Full flow Flowrate .............. 8.7256 cfs Full flow velocity .............. 4.9377 fps Critical Information critical depth .................. 7.4368 in critical slope ................. 0.0051 ft /ft Critical velocity ............ 3.8743 fps Critical area 0.6892 ft2 Critical perimeter .............. 25.1320 in Critical hydraulic radius ....... 3.9487 in Critical top width .............. 17.7264 in Specific energy ................. 0.8620 ft Minimum energy ........ 0.9296 ft Froude number 1.1768 Flow condition .................. supercritical Page 1 La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #4 Given Input Data: Shape ...... solving for Diameter ... F16wrate ... slope .... manning's n #4.txt Manning Pipe Calculator Circular Depth of Flow 24.0000 in 5.3400 cfs 0:0060 ft /ft 0.0130 Computed Results: Depth ........................... 9.0897 in Area .................... .... 3.1416 ft2 wetted Area ..................... 1.0905 ft2 wetted Perimeter ................ 31.8198 in Perimeter ....................... 75.3982 in velocity ........................ 4.8967 fps Hydraulic Radius ................ 4.9352 in Percent Full .................... 37.8736 Full flow Flowrate .............. 17.5232 cfs Full flow velocity ..:........... 5.5778 fps Critical Information Critical depth ........... ........ 9.7820 in critical slope ................. 0.0046 ft /ft Critical velocity ............... 4.4380 fps critical area ................... 1.2032 ft2 Critical perimeter ....... 33.2374 in Critical hydraulic radius ....... 5.2130 in Critical top width .............. 23.5865 in specific energy ................. 1.1301 ft Minimum energy .................. 1.2227 ft Froude number ................... 1.1515 Flow condition .................. supercritical Page 1 La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain. Line #5 Given Input Data: Shape ...... Solving for Diameter .:. Flowrate .:. slope ... manning's n #5.txt Manning Pipe Calculator Circular Depth of Flow 18.0000 in 2.6700 cfs 0.0079 ft /ft 0.0130. Computed Results: critical Information Depth ........................... 6.5884 in Area .......................... 1.7671 ft2 wetted Area ..................... 0.5858 ft2 wetted Perimeter ................ 23.3914 in Perimeter ....................... 56.5487 in velocity ......................... 4.5581 fps Hydraulic Radius ................ 3.6060 in Percent Full . .................... 36.6020 3.9487 Full flow Flowrate .............. 9.3365.cfs top width .............. Full flow velocity .............. 5.2834 fps Page 1 critical Information Critical depth .................. 7.4368 in Critical slope ................... 0.0051 ft /ft Critical velocity ............... 3.8743 fps Critical area ................... 0.6892 ft2 critical perimeter .............. 25.1320 in Critical hydraulic radius ....... 3.9487 in Critical top width .............. 17.7264 in Specific energy ................. 0.8719 ft Minimum energy ................... 0.9296 ft Froude number ................... 1.2622 Flow condition .................. supercritical Page 1 La Quinta sam's Club 100 Year - 24 Hour Storm-Event Storm Drain Line #6 Given Input Data: Shape ...... Solving for Diameter ... Flowrate ... slope . Manning's n #6.txt .Manning Pipe Calculator Circular Depth of Flow 24.0000 in 8.0100 cfs 0.0060 ft /ft 0.0130 Computed Results: depth .................: 12.0903 Depth ........................... 11.3890 in Area .......................... 3.1416 ft2 wetted Area ..................... 1.4690 ft2 wetted Perimeter ..... ......... 36.4765 in Perimeter ....................... 75.3982 in velocity ........................ 5.4527 fps Hydraulic Radius ................. 5.7992 in Percent Full .................... 47.4540 24.0000 Full flow Flowrate .............. 17.5232 cfs Full flow velocity . .............. 5.5778 fps Critical Information Critical depth .................: 12.0903 in Critical slope ................. 0.0049 ft /ft Critical velocity ............... 5.0509 fps Critical area .................... 1.5859 ft2 Critical perimeter .............. 37.8798 in Critical hydraulic radius ....... 6.0286 in Critical top width .............. 24.0000 in Specific energy ................. 1.4111 ft Minimum energy .................. 1.5113 ft Froude number ................... 1.1209 Flow condition .................. Supercritical Page 1 #7.txt La Quinta Sam's Club 100 Year - 24 Hour Storm Evert Storm Drain Line #7 Manning Pipe Calculator Given Input Data: Shape... . . solving for Diameter ... Flowrate ... Slope .... Manning's n Computed Results: Depth ............ Area ........... wetted Area ...... wetted Perimeter . Perimeter ........ velocity ......... Hydraulic Radius . Percent Full ..... Full flow Flowrate Full flow velocity Circular Depth of Flow 18.0000 in 3.2200 cfs 0.0233 ft /ft 0.0130 Critical Information 5.4707 in 1.7671 ft2 0.4540 ft2 21.0210 in 56:5487 in 7.0926 fps 3.1100 in 30.3928 16.0342 cfs 9.0735 fps Critical depth ................ 8.2006 in Critical slope ................. 0.0052 ft /ft Critical velocity ............... 4.1083 fps Critical area ................... 0.7838 ft2 Critical perimeter .............. 26.6734 in Critical hydraulic radius ....... 4.2313 in Critical top width ............... 17.9289 in specific energy ................. 1.2377 ft Minimum energy .................. 1.0251 ft Froude number ................... 2.1799 Flow condition ................... Supercritical Page 1 1, #8.txt La Quinta Sam's Club 100 Year - 24 Hour storm Event Storm Drain Line #8 Manning Pipe Calculator Given Input Data: Shape .. Solving for Diameter ... Flowrate ... Slope ... Manning's.n Computed Results:. Depth ............ Area ........... wetted Area .. wetted Perimeter . Perimeter ........ velocity ... .. Hydraulic Radius . Percent Full ..... Full flow Flowrate Full flow velocity Circular Depth of Flow 24.0000 in 11.2300 cfs 0.0060 ft /ft 0.0130 Critical Information 13.9674 in 3.1416 ft2 1.8972 ft2 41.6518 in 75.3982 in 5.9192 fps 6.5591 in 58.1975 17.5232 cfs 5.5778 fps Critical depth ................... 14.4944 in Critical slope ................. 0.0053 ft /ft Critical velocity ............... 5.6531 fps Critical area ................... 1.9865 ft2 Critical perimeter .............. 42.6879 in in Critical hydraulic radius ....... 6.7012 Critical top width .............. 24.0000 in specific energy ................. 1.7078 ft Minimum.energy ............._ ... 1.8118 ft Froude number ................... 1.0721 Flow condition .................. supercritical Page 1 La Quinta Sam's club 100 Year - 24 Hour Storm Event- storm Drain Line #9 Given Input Data: Shape .. Solving for ' "Diameter ... Flowrate .. Slope ... Manning's n #9.txt Manning Pipe Calculator Circular Depth of Flow 18.0000 in 3.2200 cfs 0.0242 ft /ft 0.0130 Computed Results: Depth ........................... 5.4174 in Area .......................... 1.7671 ft2 wetted Area ..................... 0.4479 ft2 wetted Perimeter ................ 20.9049 in Perimeter ....................... 56.5487 in velocity ........................ 7.1896 fps Hydraulic Radius ................ 3.0851 in Percent Full .................... 30.0964 Full flow Flowrate .............. 16.3409 cfs Full flow velocity .......:...... 9.2471 fps Critical Informati Critical depth .................. Critical slope ................. critical velocity ............... Critical area ................... Critical perimeter .............. Critical hydraulic radius ....... critical top width ... ,...... . Specific energy ................. Minimum energy .................. Froude number ................... Flow condition .................. on 8.2006 in 0.0052 ft /ft 4.1083 fps 0.7838 ft2 26.6734 in 4.2313 in 17.9289 in 1.2547 ft 1.0251 ft 2.2217 Supercritical Page 1 La Quinta Sam's club 100 Year - 24 Hour Storm Event Storm Drain Line #10 Given Input Data: shape ...... Solving for Diameter ... Flowrate ... Slope ... Manning's n #10.txt Manning Pipe calculator Circular Depth of Flow 24.0000 in 14.4300 cfs 0.0060 ft /ft 0.0130 computed Results: Depth ........................... 16.5902 in Area ............................ 3.1416 ft2 wetted Area 2.3167 ft2 wetted Perimeter ................ 47.1195 in Perimeter ......................: 75.3982 in velocity ........................ 6.2286 fps Hydraulic Radius ................ 7.0801 in Percent Full .................... 69.1258 Full flow Flowrate .............. 17.5232 cfs .Full flow velocity .............. 5.5778 fps Page 1 critical Information critical depth .................. 16.6628 in critical slope ................. 1 0.0057 ft /ft critical velocity ............... 6.1458 fps critical area ................... 2.3479 ft2 critical perimeter ................ 47.0248 in critical hydraulic radius......... 7.1899 in critical top width .............. 24.0000 in specific energy ............... 1.9762. ft Minimum energy .................. 2.0829 ft Froude number .................... 1.0283 Flow condition ........ ........... supercritical Page 1 #11.txt La Quinta Sam's club 100 Year - 24 Hour Storm Event Storm Drain Line #11 Manning Pipe calculator Given Input Data: shape .. solving for Diameter .. Flowrate .. Slope Manning 's n computed Results: Depth ............ Area ........... Wetted Area ...... wetted Perimeter . Perimeter ........ velocity ......... Hydraulic Radius . Percent Full ..... Full flow Flowrate Full flow velocity critical Information Circular Depth of Flow 18.0000 in 3.2200 cfs 0.0252 ft /ft 0.0130 5.3610 in 1.7671 ft2 0.4414 ft2 20.7819 in 56.5487 in 7.2947 fps 3.0586 in 29.7834 16.6751 cfs 9.4362 fps Critical depth .................. 8.2006 in Critical slope ................. 0.0052 ft /ft critical velocity ............... 4.1083 fps critical area ................... 0.7838 ft2 critical perimeter .. ......... 26.6734 in critical hydraulic radius ....... .4.2313 in critical top width .............. 17.9289 in specific energy ................. 1.2737 ft Minimum energy .................. 1.0251 ft Froude number ................... 2.2672 Flow condition .:................ Supercritical Page 1 1; r 'i n t r #12.txt La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm. Drai n. Line #12 Manning Pipe Calculator Given Input Data: Shape Solving for Diameter ... Flowrate ... Slope Manning's n Computed Results: Depth ............ Area ........... wetted Area ...... wetted Perimeter . Perimeter ........ velocity ......... Hydraulic Radius . Percent Full ..... Full flow Flowrate Full flow velocity Circular Depth of Flow 24.0000 in 17.6600 cfs 0.0060 ft /ft 0.0130 19.8456 in 3.1416 ft2 2.7781 ft2 54.8014 in 75.3982 in 6.3569 fps 7.2999 in 82.6900.% 17.5232 cfs 5.5778 fps Critical Information Critical depth .................. 18.6936 in Critical slope ................. 0.0061 ft /ft Critical velocity ............... 6:5739 fps Critical area ................... 2.6864 ft2 Critical perimeter .............. 51.0862 in Critical hydraulic radius ....... 7.5723 in Critical top width .............. 24.0000 in Specific energy .................. 2.2295 ft Minimum energy .................. 2.3367 ft Froude number 0.9890 Flow condition ..... Subcritical Page 1 #13.txt La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #13 Manning Pipe Calculator ■ Given.Input Data: Shape .. .... ................. . Circular ' Solving for ..................... Diameter .................... ..... Flowrate ........................ Depth of Flow 18.0000 in 8.0600 cfs Slope ......................... 0.0100 ft /ft manni.ng's n ..................... Computed Results: 0.0130 Depth ........................... Area .......................... wetted Area ..................... 11.8184 in 1.7671 ft2 1.2300 ft2 wetted Perimeter ................ 34.0075 in Perimeter ....................... velocity-... ... 56.5487 in 6.5527 fps Hydraulic Radius ................ Percent Full .................... 5.2084 in 65.6576 Full flow Flowrate .............. 10.5043 cfs Full flow velocity .:............ 5.9442 fps ,! Critical Information Critical depth .................. Critical slope ................. 13.5061 in 0.0066 ft /ft Critical velocity ..... ........ 5.5708 fps Critical area ................... Critical perimeter ............... Critical hydraulic radius ....... Critical top width .............. specific energy ................. Minimum energy .................... Froude number ................... 1.4468 ft2 37.2865 in 5.5877 in 18.0000 in 1.6498 ft 1.6883 ft 1.2813 Flow condition .................. Supercritical � I � I IU Page 1 L7 Page 1 tmp #14.txt La Quinta Sam's Club 100 Year - 24 Hour Storm Event storm Drain Line #14 ' Manning Pipe Calculator Given Input Data: shape ....................... Circular solving for. Depth of Flow Diameter :::::::..:::::::::::: 18.0000 in Flowrate ........................ 8.0600 cfs slope ........................ 0.0100 ft /ft Manning's n ..................... 0.0130 Computed Results: Depth ........................... 11.8184 in Area ............................. 1.7671 ft2 wetted Area .................... . 1.2300 ft2 wetted Perimeter ................ 34.0075 in Perimeter ....................... 56.5487 in velocity ........................ 6.5527 fps Hydraulic Radius 5.2084 in Percent Full .................... 65.6576 Full flow Flowrate .............. 10.5043 cfs Full flow velocity ........:....... 5.9442 fps Critical Information Critical depth .................. 13.5061 in ' critical slope .................. Critical velocity ............... 0.0066 5.5708 ft /ft fps Critical area . 1.4468 ft2 Critical perimeter .............. 37.2865 in Critical hydraulic radius ....... Critical top width .............. 5.5877 18.0000 in in specific energy . 1.6498 ft Minimum energy ........ ......... 1.6883 ft Froude.number .............. Flow condition ... . . 1.2813 Supercritical Page 1 1 ' #15.txt La Quinta Sam's Club ' 100 Year - 24 Hour Storm Event Storm Drain. Line #15 Manning Pipe Calculator Given Input Data: .Shape ...... solving for Diameter ... Flowrate ... Slope .... Manning's n Circular Depth of Flow 18.0000 in 9.1700 cfs 0.0100 ft /ft 0.0130 Computed Results: Depth ........................... 13.0196 in Area .......................... 1.7671 ft2 wetted Area ..................... 1.3688 ft2 wetted Perimeter ..... 36.6082 in Perimeter ....................... 56.5487 in velocity ........................ 6.6994 fps Hydraulic Radius ................ 5.3842 in Percent FUll .................... 72.3314 Full flow Flowrate .............. 10.5043 cfs Full flow velocity .............. 5.9442 fps. Critical Information Critical depth .................. 14.5458 in Critical slope ................. 0.0069 ft /ft Critical velocity ............... 5.8156 fps Critical area ................... 1.5768 ft2 Critical perimeter .............. 39.3659 in Critical hydraulic radius ....... 5.7679 in Critical top width .............. 18.0000 in Specific energy ................. 1.7751 ft Minimum energy ................... 1.8182 ft. Froude number ................... 1.2519 Flow condition .................. Supercritical Page 1 La Quinta Sam's club 100 Year - 24 Hour Storm Event Storm Drain Line #16 Given Input Data: Shape ...... solving for Diameter ... Flowrate ... slope ... Manning's n #16.txt Manning Pipe Calculator Circular Depth of Flow 18.0000 in 3.1900 cfs 0.0035 ft /ft 0.0130 computed Results: Depth ........................... 9.1409 in Area .......................... 1.7671 ft2 wetted Area ..................... 0.9012 ft2 wetted Perimeter ................ 28.5562 in Perimeter ....................... 56.5487 in velocity ... ........... ..... 3.5398 fps Hydraulic Radius ................ 4.5444 in Percent Full .................... 50.7830 Full flow Flowrate .............. 6.2145 cfs Full flow velocity .............. 3.5167 fps critical Informati Critical depth .................. Critical slope ................. Critical velocity ............. Critical area .................... Critical perimeter .............. Critical hydraulic radius ....... Critical top width .............. Specific energy ................. Minimum energy .................. Froude number ................... Flow condition .................. on 8.1606 in 0.0052 ft /ft 4.0961 fps 0.7788 ft2 26.5930 in 4.2171 in 17.9215 in 0.9565 ft 1.0201 ft 0.8051 Subcritical Page 1 La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #17 Given Input Data: shape ..... solving for Diameter . . F1owrate .. slope .. Manning'.s n #17.txt Manning Pipe calculator Circular Depth of Flow 18.0000 in 3.1900 cfs 0.0035 ft /ft 0.0130 computed Results: Depth ........................... 9.1409 in area .......................... 1.7671 ft2 wetted area ..................... 0.9012 ft2 wetted Perimeter 28.5562 in Perimeter ....................... 56.5487 in velocity .... 3.5398 fps Hydraulic Radius ................ 4.5444 in Percent Full .................... 50.7830 Full flow Flowrate .............. 6.2145 cfs Full flow velocity .............. 3.5167 fps critical informati critical depth .................. Critical slope ................. critical velocity ............... critical area ................... Critical perimeter .............. Critical hydraulic radius ....... Critical top width .............. specific energy ................. Minimum .energy .................. Froude number ................... Flow condition .................. on 8.1606 in 0.0052 ft /ft 4.0961 fps 0.7788 ft2 26.5930 in 4.2171 in 17.9215 in 0.9565 ft 1.0201 ft 0.8051 subcritical Page 1 La Quinta Sam's club 100 Year - 24 Hour Storm Event Storm Drain Line #18 Given Input Data: Shape ....... solving for Diameter ... Flowrate ... Slope ... Manning's n #18.txt Manning Pipe calculator Circular Depth of Flow 12.0000 in 1.1600 cfs 0.0118 ft /ft 0.0130 computed Results: Depth ............................ 4.5044 in Area ...... 0.7854 ft2 wetted Area ..................... 0.2694 ft2 wetted Perimeter ................ 15.8265 in Perimeter ....................... 37.6991 in velocity ... 4.3064 fps Hydraulic Radius ................ 2.4509 in Percent Full .................... 37.5366 Full flow Flowrate .............. 3.8702 cfs Full flow velocity .............. 4.9277 fps critical Information critical depth .................. 5.4462 in critical slope ................. 0.0059 ft /ft critical velocity ............... 3.3466 fps critical area ................... 0.3466 ft2 critical perimeter .............. 17.7405 2.8135 in in critical hydraulic radius ....... critical top width .............. 11.9488 in specific energy ................. 0.6636 ft Minimum energy ................... 0.6808 ft Froude number .................... 1.4395 Flow condition .................. supercritical Page 1 L La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #19 Given Input Data: Shape ...... solving for Diameter ... Flowrate ... Slope ... Manning's n #19.txt Manning Pipe Calculator Circular Depth of Flow 18.0000 in 4.3500 cfs 0.0035 ft /ft 0.0130 Computed Results: Depth ................... ...... 11.0966 in Area .......................... 1.7671 ft2 wetted Area ..................... 1.1433 ft2 wetted Perimeter ................ 32.5063 in Perimeter ....................... 56.5487 in velocity ... .............. 3.8049 fps Hydraulic Radius ................ 5.0645 in Percent Full .................... 61.6476 Full flow Flowrate .............. 6.2145 cfs Full flow velocity .............. 3.5167 fps Critical Informati critical depth .................. Critical slope ................. Critical velocity ............... critical area ................... Critical perimeter .. Critical hydraulic radius ....... Critical top width .............. specific energy ................. Minimum energy ................... Froude number ................... Flow condition ................., on 9.6041 in 0.0055 ft /ft 4.5356 fps 0.9591 ft2 29.4824 in 4.6844 in 18.0000 in 1.1477 ft 1.2005 ft 0.7698 subcritical Page 1 i 1, La Quinta sam's Club 100 Year - 24 Hour storm Event storm Drain Line #20 Given Input Data: shape :. Solving for Diameter ... Flowrate ... Slope .. manning's n #20..txt Manning Pipe Calculator Circular Depth of Flow 15.0000 in 3.4500 cfs 0.0102 ft /ft 0.0130 Computed Results: Depth .................... 7.7535 in' Area ...... 1.2272 ft2 wetted Area 0.6400 ft2 wetted Perimeter ................ 24.0691 in Perimeter ....................... 47.1239 in velocity ........................ 5.3907 fps Hydraulic Radius ................ 3.8290 in Percent Full .................... 51.6902 Full flow Flowrate .............. 6.5241 cfs .Full flow velocity .............. 5.3163 fps Page 1 Critical Information critical depth .................. 9.0332 in' Critical slope ................. 0.0062 ft /ft Critical velocity ............... 4.4614 fps Critical area ................... 0.7733 ft2 Critical perimeter .............. 26.6283 in Critical hydraulic radius ....... 4.1818 in Critical top width .............. 15.0000 in specific energy ................. 1.0977 ft Minimum energy .................. 1.1291 ft Froude number ................... 1.3282 Flow condition .................. Supercritical Page 1 #21.txt La Quinta Sam's Club ' 100.Year - 24 Hour Storm Event Storm Drain Line #21 Manning Pipe Calculator Given Input Data: Shape .. solving for Diameter ... Flowrate .. Slope ... manning's n Computed Results: Depth ............ Area ........... wetted Area ...... wetted Perimeter . Perimeter ........ velocity .......... Hydraulic Radius . Percent Full ..... Full flow Flowrate Full flow velocity Circular Depth of Flow 24.0000 in 7.8000 cfs 0.0035 ft /ft 0.0130 13.1595 in 3.1416 ft2 1.7638 ft2 40.0218 in 75.3982 in 4:4224 fps 6.3460 in 54.8314 13.3836 cfs 4.2601 fps Page 1 Critical Information Critical depth .................. 11.9232 in Critical slope :................ 0.0049 ft /ft Critical velocity ............... 5.0064 fps Critical area ................... 1.5580 ft2 Critical perimeter .............. 37.5456 in Critical hydraulic radius ....... 5.9755 in critical top width .............. 23.9995 in Specific energy ................. 1.4004 ft Minimum energy .................. 1.4904 ft Froude number ................... 0.8303 Flow condition .................. Subcritical Page 1 #22.txt La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #22 Manning Pipe Calculator Given Input Data: shape .. .. Solving for Diameter ... Flowrate ... slope .... manning 's n computed Results: Depth ............ Area ........... wetted Area ...... wetted Perimeter . Perimeter ........ velocity ......... Hydraulic Radius . Percent Full ..... Full flow Flowrate Full flow velocity Critical Information Circular Depth of Flow 18.0000 in 1.6100 cfs 0.0110 ft /ft 0.0130 4.6496 in 1.7671 ft2 0.3618 ft2 19.1931 in 56.5487 in 4.4505 fps. 2:7142 in 25.8309 11.0170 cfs 6.2344 fps Critical depth .................. 5.7196 in Critical slope ................. 0.0049 ft /ft Critical velocity ............... 3.3348 fps Critical area ................... 0.4828 ft2 Critical perimeter ............. 21.5588 in Critical hydraulic radius ....... 3.2248 in Critical top width .............. 16.7617 in specific energy ................. 0.6953 ft Minimum energy ................ 0.7150 ft Froude number ................... 1.4949 Flow condition .................. Supercritical Page 1 J La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #23 Given Input Data: Shape .. solving for. Diameter ... Flowrate ... Slope . Manning 's n #23.txt Manning Pipe Calculator Circul ar Depth of Flow 18.0000 in 1.6100 cfs 0.0100 ft /ft 0.0130 Page 1 Computed Results: Depth ........................... Area .......................... wetted area ..... 4.7633 1.7671 0.3743 in ft2 ft2 ' wetted Perimeter ................ 19.4519 in Perimeter ....................... velocity ... ...... .......... 56.5487 4.3019 in fps Hydraulic Radius ................ 2.7705 in ' Percent Full 26.4627 % Full flow Flowrate .............. 10.5043 cfs Full flow velocity .............. 5.9442 fps aCritical Information Critical depth .................. critical slope ................. 5.7196 0.0049 in ft /ft Critical velocity ............... Critical area Critical perimeter .............. 3.3348 fps 0.4828 ft2 21.5588 in Critical hydraulic radius ....... 3.2248 in Critical top width .............. Specific energy Minimum energy .................. Froude number ................... 16.7617 in 0.6845 ft 0.7150 ft. 1.4262 ' Flow condition .................. Supercritical Page 1 La Quinta Sam's Club 100 Year - 24 Hour storm Event storm Drain Line #24 Given Input Data: Shape . solving for Diameter ... Flowrate ... Slope ... Manning's n #24.txt Manning Pipe Calculator Circular Depth of Flow 18.0000 in 1.6100 cfs 0.0170 ft /ft 0.0130 Computed Results: Depth ........................... 4.1672 in Area 1.7671 ft2 wetted Area ..................... 0.3099 ft2 wetted Perimeter ................ 18.0710 in Perimeter ....................... 56.5487 in velocity ... 5.1951 fps Hydraulic Radius ................ 2.4695 in Percent Full .................... 23.1511 Full flow Flowrate .............. 13.6960 cfs Full flow velocity .............. 7.7503 fps Critical information Critical depth .................. 5.7196 in Critical slope ................. 0.0049 ft /ft Critical velocity ............... 3.3348 fps Critical area ................... 0.4828 ft2 critical perimeter .............. 21.5588 in Critical hydraulic radius ....... 3.2248 in Critical top width .............. 16.7617 in specific energy .................. 0.7667 ft Minimum energy ...... ............. 0.7150 ft Froude number ................... 1.8507 Flow condition .................. supercritical Page 1 La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #25 Given Input Data: Shape .. Solving for Diameter ... Flowrate ... Slope ... Manning's n #25.txt Manning Pipe Calculator Circular Depth of Flow 18:0000 in 3.2300 cfs 0.0100 ft /ft 0.0130 Computed Results: Depth ........................... 6.8504 in area .......................... 1.7671 ft2 wetted Area ..................... 0.6175 ft2 wetted Perimeter ................ 23.9332 in Perimeter ....................... 56.5487 in velocity ........................ 5.2312 fps Hydraulic Radius ................ 3.7151 in Percent Full .................... 38.0579 Full flow Flowrate .............. 10.5043 cfs Full flow velocity .............. 5.9442 fps Critical Informati Critical depth . .................. Critical slope ................. Critical velocity ............... Critical area ................... Critical perimeter ............... Critical hydraulic radius ....... Critical top width .............. Specific energy ................. Minimum energy .................. Froude number ................... Flow condition .................. Dn 8.2139 in 0.0052 ft /ft 4.1124 fps 0.7854 ft2 26.7001 in 4.2360 in 17.9312 in 0.9961 ft 1.0267 ft 1.4165 Supercritical Page 1 #26.txt La Quinta Sam`s Club 100 Year - 24 Hour Storm Event Storm Drain Line #26 Manning Pipe Calculator Given Input Data: Shape .. solving for Diameter ... Flowrate ... Slope .... manning 's n Computed Results: Depth........................... area wetted wetted Perimeter ................ Perimeter ....................... velocity......................... Hydraulic Radius ................ Percent Full .................... Full flow Flowrate .............. Full flow velocity .............. Circular Depth of Flow 18.0000 in 1.6100 cfs 0.0120 ft /ft 0.0130 Critical Information 4.5484 in 1.7671 ft2 0.3507 ft2 18.9611 in 56.5487 in 4.5905 fps 2.6636 in 25.2688 % 11.5069 cfs 6.5116 fps Critical depth .................. 5.7196 in Critical slope ................. 0.0049 ft /ft Critical velocity ............... 3.3348 fps Critical area ................... 0.4828 ft2 Critical perimeter ... ......... 21.5588 in Critical hydraulic radius ....... 3.2248 in critical top width .............. 16.7617 in specific energy ................. 0.7065 ft Minimum energy .................. 0.7150 ft Froude number ....:.............. 1.5603 Flow condition .................. supercritical Page 1 La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #27 Given Input Data: Shape . solving for Diameter .. Flowrate .. slope .. manning's n #27.txt Manning Pipe Calculator Circular Depth of Flow 24.0000 in 4.8400 cfs 0.0030 ft /ft 0.0130 Computed Results: Critical Information Depth ........................... 10.4166 in Area .......................... 3.1416 ft2 wetted Area ..................... 1.3077 ft2 wetted Perimeter ................ 34.5231 in Perimeter ....................... 75.3982 in velocity ........................ 3.7013 fps Hydraulic Radius ................ 5.4544 in Percent Full .................... 43.4025 in Full flow Flowrate .............. 12.3908 cfs Full flow velocity .............. 3.9441 fps r Page 1 Critical Information Critical depth .................. 9.2940 in Critical slope ................. 0.0045 ft /ft Critical velocity ............... 4.3074 fps Critical area ................... 1.1236 ft2 Critical perimeter .............. 32.2401 in Critical hydraulic radius ....... 5.0187 in Critical top width .............. 23.3818 in specific energy ......... ...... .1.0809 ft Minimum energy ................... 1.1617 ft Froude number ................... 0.8034 Flow condition .................. subcritical r Page 1 La Quinta Sam's club 100 Year - 24 Hour Storm Event Storm Drain Line #28 Given Input Data: shape .. Solving for Diameter .. Flowrate .. slope Manning's n #28.txt Manning Pipe calculator Circular Depth of Flow 18.0000 in 2.4700 cfs 0.0070 ft /ft 0.0130 computed Results: critical Information Depth ........................... 6.5274 in Area ....... 1.7671 ft2 wetted Area ..................... 0.5784 ft2 wetted Perimeter ............ .. 23.2647 in Perimeter ....................... 56.5487 in velocity ........................ 4.2702 fps Hydraulic Radius ................ 3.5803 in Percent Full .................... 36.2632 3.8327 Full flow Flowrate .............. 8.7886 cfs Full flow velocity .............. 4.9733 fps Page 1 critical Information critical depth .................. 7.1412 in critical slope ................. 0.0050 ft /ft critical velocity ............... 3.7832 fps critical area ................... 0.6529 ft2 critical perimeter .............. 24.5298 in critical hydraulic radius ....... 3.8327 in critical top width .............. 17.6119 in specific energy. ................. 0.8273 ft Minimum energy .................. 0.8927 ft Froude number ................... 1.1888 Flow condition .................. supercritical Page 1 La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #29 Given Input Data: Shape .. Solving for Diameter .. Flowrate .. slope ... Manning's n #29.txt Manning Pipe Calculator Circular Depth of Flow 18.0000 in 2.4700 cfs 0.0070 ft /ft 0.0130 Computed Results: critical Information . . Depth .......................... 6.5274 in area .......................... 1.7671 ft2 wetted Area ..................... 0.5784 ft2 wetted Perimeter ................ 23.2647 in Perimeter ....................... 56.5487 in velocity ... ............... . 4.2702 fps Hydraulic Radius ................ 3.5803 in Percent Full .................... 36.2632 3.8327 Full flow Flowrate .............. 8.7886 cfs Full flow velocity .............. 4.9733 fps Page 1 critical Information . . Critical depth .................. 7.1412 in critical slope .... ........... 0.0050 ft /ft Critical velocity ............... 3.7832 fps Critical area ................... 0.6529 ft2 Critical perimeter .............. 24.5298 in Critical hydraulic radius ....... 3.8327 in' Critical top width .............. 17.6119 in specific energy ................. 0.8273 ft Minimum energy .................. 0.8927 ft Froude number ................... 1.1888 Flow condition .................. Supercritical Page 1 La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #30 Given Input Data: shape :. solving for Diameter ... Flowrate ... slope ... manning's n #30.txt Manning Pipe Calculator Circular Depth of Flow 18.0000 in 2.4700 cfs 0.0110 ft /ft 0.0130 Computed Results: Depth ........................... 5.7931 in Area .......................... 1.7671 ft2 wetted Area ..................... 0.4914 ft2 wetted Perimeter ................ 21.7163 in Perimeter ........................ 56.5487 in velocity ......................... 5.0269 fps Hydraulic Radius ................. 3.2582 in Percent Full ..................... 32.1836 Full flow Flowrate .............. 11.0170 cfs Full flow velocity .............. 6.2344 fps Critical Information Critical depth ................ 7.1412 in Critical slope ................. 0.0050 ft /ft Critical velocity ............... 3.7832 fps Critical area ................... 0.6529 ft2 Critical perimeter .............. 24.5298 in Critical hydraulic radius ....... 3.8327 in Critical top width .............. 17.6119 in Specific energy ................. 0.8755 ft Minimum energy .................. 0.8927 ft Froude number ................... 1.4968 Flow condition .................. supercritical Page 1 F L u La Quinta Sam's club 100 Year - 24 Hour Storm Event Storm Drain Line #31 Given Input Data: shape .. .. Solving.for Diameter ... Flowrate ... slope. .... manning's n #31.txt Manning Pipe calculator Circular Depth of Flow 18.0000 in 4.9300 cfs 0.0070 ft /ft 0.0130 computed Results: depth .................. 10.2717 in Depth ........................... 9.6414 in Area .......................... 1.7671 ft2 wetted Area ..................... 0.9637 ft2 wetted Perimeter ................ 29.5582 in Perimeter ....................... 56.5487 in velocity ........................ 5.1158 fps Hydraulic Radius ................ 4.6948 in Percent Full .................... 53.5633 1.2840 ft Full flow Flowrate .............. 8.7886 cfs Full flow velocity .............. 4.9733 fps critical Information critical depth .................. 10.2717 in critical slope ................. 0.0057 ft /ft critical velocity ............... 4.7288.fps critical area .................... 1.0425 ft2 critical perimeter .. .......... 30.8178 in critical hydraulic radius ....... 4.8714 in critical top width .............. 18.0000 in specific energy ................. 1.2101 ft Minimum energy .................. 1.2840 ft Froude number ................... 1.1253 Flow condition .................. Supercritical Page 1 La Quinta Sam's club 100 Year - 24 Hour storm Event Storm Drain Line #32 Given Input Data: shape ....... Solving for Diameter ... Flowrate ... Slope ... Manning's n #32.txt Manning Pipe Calculator Circular Depth of Flow 18.0000 in 2.4700 cfs 0.0040 ft /ft 0.0130 Computed Results: Depth ........................... 7.6004 in Area ............................. 1.7671 ft2 wetted Area ..................... 0.7093 ft2 wetted Perimeter ................ 25.4638 in Perimeter ....................... 56.5487 in velocity ........................ 3.4821 fps Hydraulic Radius ................ 4.0114 in Percent Full ..................... 42.2247 Full flow Flowrate .............. 6.6435 cfs .Full flow velocity .............. 3.7595 fps Critical Informatii Critical depth .................. Critical slope ................. Critical velocity ............... Critical area ................... Critical perimeter .............. Critical hydraulic radius ... .. Critical top width .............. specific energy ................. Minimum energy .................. Froude number ................... Flow condition .................. m 7.1412 in 0.0050 ft /ft 3.7832 fps 0.6529 ft2 24.5298 in 3.8327 in 17.6119 in 0.8218 ft 0.8927 ft 0.8873 subcritical Page 1 #33.txt La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #33 Manning Pipe Calculator Given Input Data: shape............................. solving for ..................... Diameter ........................ Flowrate ........................ slope........................ Manning's n ....................... Computed Results: Depth ........ Area ......................... .Wetted Area ..................... Wetted Perimeter ................ Perimeter ....................... velocity .......................... Hydraulic Radius ................ Percent Full. ...................... Full flow Flowrate .............. Full flow velocity .............. critical Informati Critical depth .......:.......... critical slope ................. Critical velocity ................ critical area ................... critical perimeter .............. Critical hydraulic radius ....... Critical top width .............. specific energy ................. Minimum energy .................. Froude number ................... Flow, condition .................. Circular Depth of Flow 24.0000 in 7.4000 cfs 0.0030 ft /ft 0.0130 13.3601 in 3.1416 ft2 1.7970 ft2 40.4251 in 75.3982 in 4.1180 fps 6.4011 in 55.6670.% 12.3908 cfs 3.9441 fps :)n 11.5992 in 0.0048 ft /ft 4.9202 fps 1.5040 ft2 36.8973 in 5.8697 in 23.9866 in 1.3766 ft 1.4499 ft 0.7661 subcritical Page 1 La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #34 Given Input,Data: shape. .. . Solving for Diameter .. Flowrate .. Slope ... manning's n #34.txt Manning Pipe Calculator Circular Depth of Flow 12.0000 in 0.2700 cfs 0.0197 ft /ft 0.0130 Computed Results: Depth .......... .. .............. 1.8941 in area 0.7854 ft2 wetted area 0.0795 ft2 wetted Perimeter ................ 9.8055 in Perimeter ....................... 37.6991 in velocity .... 3.3948 fps Hydraulic Radius ................ 1.1680 in Percent Full .................... 15.7840 Full flow Flowrate .............. 5.0006 cfs Full flow velocity 6.3670 fps Critical Information Critical depth ............... 2.5645 in Critical slope ................. 0.0057 ft /ft critical velocity ............... 2.1964 fps Critical area ................... 0.1229 ft2 Critical perimeter .............. 11.5337 in Critical hydraulic radius ....... 1.5348 in Critical top width .............. 9.8382 in specific energy ................. 0.3369 ft Minimum energy ................... 0.3206 ft Fr.oude number ................... 1.8122 Flow condition .................. Supercritical Page 1 #35.txt La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #35 Manning Pipe Calculator Given Input Data: Shape........................... Solving for ........... ........ Diameter ........................ Flowrate ......................... slope........................ manning's n ..................... Computed Results: Depth............................ Area............................. wetted Area ........... . wetted Perimeter ................ Perimeter ....................... velocity ... ..... .............. Hydraulic Radius ....... Percent Full .................... Full flow Flowrate .............. Full flow velocity .............. Critical Informati critical depth ................... critical slope ................. Critical velocity ............... critical area ................... Critical Perimeter .............. critical hydraulic radius ....... critical top width ...... Specific energy ................. Minimum energy ........... ........ Froude number ................... Flow condition .................. Circular Depth of Flow 12.0000 in 0.2700 cfs 0.0184 ft /ft 0.0130 1.9258 in 0.7854 ft2 0.0815 ft2 9.8921. i n 37.6991 in 3.3143 fps 1.1859 in 16..0481 4.8328 cfs 6.1533 fps on 2.5645 in 0.0057 ft /ft .2.1964 fps 0.1229 ft2 11.5337 in 1.5348 in 9.8382 in 0.3312 ft 0.3206 ft 1.7540 .Supercritical Page 1 #36.txt La Quinta Sam.'s club 100 Year - 24 Hour Storm Event. Storm Drain Line #36 Manning Pipe calculator Given Input Data: Shape.. ....................... Solving for ............... .... Diameter ........................ Flowrate ......................... Slope............................ Manning's n ....................... computed Results: Depth........ ................. Area ........ wetted Area ..................... wetted Perimeter ................ Perimeter ....................... velocity ... .................. Hydraulic Radius ................ Percent Full .................... Full flow Flowrate .............. .Full flow velocity .............. critical Informati critical depth .................. critical slope ................. critical velocity ............... critical area ... critical perimeter .............. critical hydraulic radius ....... critical top width .............. Specific energy ................ Minimum energy ................... Froude number .................. Flow condition .................. Circular Depth of Flow 48:0000 in 49.4100 cfs 0.0040 ft /ft 0.0130 25.2333 in 12.5664 ft2 6.6941 ft2 77.8659 in 150.7964 in 7.3811 fps 12:3796 in 52.5693 90.8480 cfs 7.2295 fps :)n 25.3116 in 0.0040 ft /ft 7.3522 fps 6.7204 ft2 78.0215 in 12.4035 in 48.0000 in 2.9494 ft 3.1640 ft 1.0059 Supercritical Page 1 La Quinta Sam's Club 100 Year 24 Hour Storm Event storm Drain Line #37 Given Input Data: shape .. . solving for Diameter ... Flowrate ... Slope . manning's n #37.txt Manning Pipe Calculator Circular Depth of Flow 12.0000 in 0.4500 cfs 0.0479 ft /ft 0.0130 Computed Results: Depth 1.9564 in Area. .... 0.7854 ft2 wetted Area 0.0833 ft2 wetted Perimeter ................ 9.9753 in Perimeter ..... ......... 37.6991 in velocity 5.3992 fps Hydraulic Radius 1.2031 in Percent Full .................... 16.3034.% Full flow Flowrate 7.7976 cfs Full flow velocity ... 9.9282 fps Critical Informati Critical depth .................. Critical slope ................. Critical velocity ............... Critical area ................... Critical perimeter .. ...... Critical hydraulic radius ....... Critical top width .............. specific energy ................. Minimum energy .................. Froude number ..................I Flow condition .................. on 3.3327 in 0.0056 ft /ft 2.5284 fps 0.1780 ft2 13.3215 in 1.9239 in 10.7490 in 0.6161 ft 0.4166 ft 2.8340 supercritical Page 1 La Quinta Sam's Club 100 Year - 24 Hour Storm Event' Storm Drain Line #38 Given Input Data: shape Solving for Diameter ... Flowrate ... slope ... manning's n #38.txt Manning Pipe calculator Circular Depth of Flow 48.0000 in 49.8600 cfs 0.0040 ft /ft 0.0130 computed Results: Depth 25.3718 in Area .......................... 12.5664 ft2 wetted Area ..................... 6.7402 ft2 wetted Perimeter ................ 78.1432 in Perimeter ....................... 150.7964 in velocity 7.3974 fps Hydraulic Radius ................ 12.4206 in Percent Full .................... 52.8578 Full flow Flowrate .............. 90.8480 cfs Full flow velocity .............. 7.2295 fps Critical Information Critical depth .................. 25.4339 in Critical slope 0.0040 ft /ft critical velocity ............... 7.3745-fps Critical area ................. 6.7611 ft2 Critical perimeter ..: ......... :. 78..2659 in critical hydraulic radius ....... 12.4397 in Critical top width .......... 48.0000 in Specific energy 2.9647 ft Minimum energy ......... 3.1792 ft Froude number ......... 1.0047 Flow condition Supercritical Page 1 #39.txt La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #39 Manning Pipe Calculator Given Input Data: shape....................... Solving for ..................... Diameter ........................ Flowrate ........................ Slope........................ manning-'s n ..................... Computed Results: Depth........................... Area.......................... wetted Area ..................... wetted Perimeter ................ Perimeter ....................... velocity ... Hydraulic Radius .. Percent Full .................... Full flow Flowrate .............. Full flow velocity .............. Critical Informatii Critical depth ........:......... Critical slope ................. Critical velocity ............... Critical area ................... Critical perimeter .............. Critical hydraulic radius ....... Critical top width .............. Specific energy ................. Minimum energy .................. Froude. number ................... Flow. condition .................. Circular Depth of Flow 48.0000 in 67.5200 cfs 0.0040 ft /ft 0.0130 30.8203 in. 12.5664 ft2 8.5256 ft2 89.2294 in 150.7964 in 7.9196 fps 13.7588 in 64.2090 90.8480 cfs 7.2295 fps. )n .29.9777 in 0.0043 ft /ft 8.1588 fps 8.2757 .ft2 87.3535 in 13.6423 in 48.0000 in .3.5349 ft 3.7472 ft 0.9595 Subcritical Page 1 La Quinta Sam's club 100 Year - 24 Hour Storm Event Storm Drain Line #40 Given Input Data: Shape ...... solving for Diameter ... Flowrate ... slope ... manning's n tmp #40.txt Manning Pipe calculator Circular Depth of Flow 48.0000 in 67.5200 cfs 0.0040 ft /ft 0.0130 computed Results: Depth ........................... 30.8203 in Area .......................... 12.5664 ft2 wetted Area .................... 8.5256 ft2 wetted Perimeter ................ 89.2294 in Perimeter 150.7964 in velocity .... 7.9196 fps Hydraulic Radius ................ 13.7588 in Percent Full .................... 64.2090 % Full flow Flowrate .............. 90.8480 cfs Full flow velocity .............. 7.2295 fps critical Informati critical depth .................. critical slope .. critical velocity ............... critical area ................. critical perimeter .............. critical hydraulic radius ........ critical top width .............. specific energy ................. Minimum energy ................... Froude number ................... Flow condition ............... . :)n 29.9777 in 0.0043 ft /ft 8.1588.fps 8.2757 ft2 87.3535 in 13.6423 in 48.0000 in 3.5349 ft 3.7472 ft 0.9595 subcritical Page 1 #41.txt La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #41 Manning Pipe.Calculator Given Input Data: Shape .. . solving for Diameter .. Flowrate .. Slope .. Manning's n Computed Results: Depth ............ Area........... Wetted Area ...... wetted Perimeter . Perimeter ........ Velocity ......... Hydraulic Radius Percent Full ..... Full flow Flowrate Full flow velocity Circular Depth.of Flow 48:0000 in 67.5200 cfs 0.0040 ft /ft. 0.0130 30.8203 in 12.5664 ft2 8.5256 ft2 89.2294 in 150.7964 in 7.9196 fps 13.7588 in 64.2090 90.8480 cfs 7.2295 fps Critical Information Critical depth .................. 29.9777 in Critical slope .................. 0.0043 ft /ft Critical velocity ......... ....... 8.1588 fps Critical area ................... 8.2757 ft2 critical perimeter .............. 87.3535 in Critical hydraulic radius ....... 13.6423 in Critical top width .............. 48.0000 in Specific energy ................. 3.5349 ft Minimum energy .................. 3.7472 ft Froude number. ................... 0.9595 Flow condition .................. Subcritical Page 1 La Quinta Sam's club 100 Year - 24 Hour Storm Event Storm Drain Line* #42 Given Input Data: Shape ...... Solving for Diameter ... Flowrate ... Slope ... Manning's n #42.txt Manning Pipe calculator Circular Depth of Flow 48.0000 in 68.7600 cfs 0.0040 ft /ft 0.0130 computed Results: Depth ........................... 31.2133 in Area ............................ 12.5664 ft2 wetted Area .. ................. 8.6509 ft2 wetted Perimeter .............. 90.0514 in Perimeter 150.7964 in velocity..... 7.9483 fps Hydraulic Radius 13.8336 in Percent Full ..................... .65.0277 Full flow Flowrate 90.8480 cfs Full flow velocity 7.2295_fps critical Information critical depth ................... 30.2807 in critical slope ................. 0.0043 ft /ft critical velocity ............... 8.2084 fps critical area ................... 8.3768 ft2 critical perimeter ............... 87.9596 in critical hydraulic radius ....... 13.7137 in critical top width .............. 48.0000 in Specific energy ......:.......... 3.5732.ft Minimum energy .................. 3.7851 ft Froude number ................... 0.9565 Flow condition .................. Subcritical Page 1 #43.txt La Quinta Sam's club 100 Year - 24 Hour Storm Event Storm Drain Line #43 Manning Pipe calculator Given Input Data: shape :. solving for ..................... Diameter ........................ Flowrate ........................ Slope........................... manning's n ..................... computed Results: Depth........................... Area .......................... wetted Area ..................... wetted Perimeter ................ Perimeter ....................... velocity ... .................. Hydraulic Radius ................ Percent Full .................... Full flow Flowrate .............. Full flow velocity .............. critical Informati critical depth ...... Critical slope ................. critical velocity ............... critical area ................... critical perimeter .............. critical hydraulic radius ....... critical top width .............. Specific energy .................. Minimum energy ................... Froude number ................... Flow condition .................. ci rcul ar Depth of Flow 12.0000 in 0.3600 cfs 0.0513 ft /ft 0.0130 1.7268 in 0.7854 ft2 0.0696 ft2 9.3380 in 37.6991 in 5.1757 fps 1.0726 in 14.3900 8.0696 cfs 10.2745 fps )n 2.9716 in 0.0057 ft /ft 2.3762 fps 0.1515 ft2 12.5007 in 1.7452 in 10.3593 in 0.5602 ft 0.3715 ft 2.8988 Supercritical Page 1 #44.txt La Quinta Sam's club 100 Year - 24 Hour Storm Event Storm Drain Line #44 Manning Pipe Calculator Given Input Data: shape ...... solving for Diameter ... Flowrate ... slope ... Manning's n computed Results: Depth ............ Area .....4..... wetted Area ...... wetted Perimeter . Perimeter ......:. velocity ... ... Hydraulic Radius . Percent Full ..... Full flow Flowrate Full flow velocity Circular Depth of Flow 12.0000 in 0.3600 cfs 0.0513 ft /ft 0.0130 1.7268 in 0.7854 ft2 0.0696 ft2 9.3380 in 37.6991 in 5.1757 fps 1.0726 in 14.3900 % 8.0696 cfs 10.2745 fps Critical Information Critical depth ................... 2.9716 in Critical slope ................. 0.0057 ft /ft Critical velocity .............. 2.3762 fps Critical area ................... 0.1515 ft2 Critical perimeter .............. 12.5007 in Critical hydraulic radius ....... 1.7452 in Critical top width .............. 10.3593 in specific energy ....... ......... 0.5602 ft Minimum energy .................. 0.3715 ft Froude number ................... 2.8988 Flow condition .................. Supercritical Page 1 #45.txt La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #45 Manning Pipe Calculator Given Input Data: Shape .. .. Solving for Diameter ... Flowrate ... Slope ... manning's n Computed Results: Depth..........................: Area .......................... Wetted Area ..................... wetted Perimeter ................ Perimeter ....................... velocity ........................ Hydraulic Radius ................ Percent Full .................... Full flow Flowrate .............. Full flow velocity .............. Critical Informatii Critical depth .................. Critical slope ...... ......... Critical velocity ............... Critical area ................... Critical perimeter .............. Critical hydraulic radius ....... Critical top width .............. Specific energy ............. .. Minimum energy .................. Froude'number ................... Flow condition ................... Circular Depth of Flow 48.0000 in 69.1200 cfs 0:0040 ft /ft 0.0130 31.3279 in 12.5664 ft2 8.6873 ft2 90.2919 in 150.7964 in 7.9564 fps 13.8548 in 65.2665 90.8480 cfs 7.2295 fps m 30.3683 in 0.0043 ft /ft 8.2227 fps 8.4060 ft2 88.1349 in 13.7342 in 48.0000 in 3.5843 ft 3.7960 ft 0.9557 Subcritical Page 1 #46.txt ' La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #46 Manning Pipe Calculator Given Input Data: shape . Solving for Diameter ... Flowrate ... slope ... Manning 's n Circular Depth of Flow 48.0000 in 69.1200 cfs 0.0040 ft /ft 0.0130 Computed Results: Depth ........................... 31.3279 in Area .......................... 12.5664 ft2 wetted Area ..................... 8.6873 ft2 wetted Perimeter ................ 90.2919 in Perimeter ....................... 150.7964 in .velocity .... 7.9564 fps Hydraulic Radius ........... 13.8548 in Percent Full .................... 65.2665 Full flow Flowrate 90.8480 cfs Full flow velocity 7.2295 fps Critical Information Critical depth .................. 30.3683 in Critical slope ................. 0.0043 ft /ft Critical velocity ............... 8.2227 fps Critical area 8.4060 ft2 Critical perimeter .. 88.1349 in Critical hydraulic radius ....... 13.7342 in Critical top width .............. 48.0000 in Specific energy ................. 3.5843 ft Minimum energy 3.7960 ft Froude number ................... 0.9557 Flow condition Subcritical Page 1 #47.txt La Quinta Sam's Club 100 Year - 24 Hour Storm Event storm Drain Line #47 Manning Pipe Calculator Given Input Data: Shape ..... Solving for Diameter .. Flowrate .. Slope .. Manning's n Computed Results: .Depth ............ Area ........... wetted Area ...... wetted Perimeter . Perimeter ........ velocity ... ... Hydraulic Radius . Percent Full ..... Full flow Flowrate Full flow velocity Circular Depth of Flow 12.0000 in 0.2600 cfs 0.3908 ft /ft 0.0130 Critical Information 0.9110 in 0.7854 ft2 0.0272 ft2 6.6994.in 37.6991 in 9.5429 fps 0.5856 in 7.5916 22.2725 cfs 28.3582 fps Critical depth .................. 2.5155 in Critical slope ................. 0.0057 ft /ft Critical velocity ............... 2.1741 fps critical area ................... 0.1196 ft2 Critical perimeter .............. 11.4138 in in critical hydraulic radius ....... 1.5088 Critical top width .............. 9.7690 in Specific energy ................. 1.4911 ft Minimum energy ......... ....... 0.3144 ft Froude number ................. 7.4184 Flow condition .................. Supercritical Page 1 1111 J Page 1 #48.txt r' La Qui nta Sam's Club 100 Year - 24 Hour Storm Event storm Drain Line #48 ' Manning Pipe Calculator Given Input Data: Shape ........................... Circular ' solving for Depth of Flow Diameter ::::................. 48.0000 in Flowrate ........................ 69.3800 cfs slope ........................... 0.0040 ft /ft ' Manning's n ..................... 0.0130 Computed Results: Depth ........................... 31.4109 in Area ...... 12.5664 ft2 wetted Area ..................... 8.7136 ft2 wetted Perimeter ................ 90.4662 in Perimeter ....... ....I.......... 150.7964 in velocity ........................ 7.9622 fps Hydraulic.Radius 13.8700 in Percent Full .................... 65.4393 % Full flow Flowrate .............. 90.8480 cfs ' Full flow velocity .............. 7.2295 fps critical Information Critical depth .................. 30.4315 in Critical slope .................. 0.0043 ft /ft ' Critical velocity 8.2330 fps critical area .................... 8.4270 ft2 Critical perimeter .............. 88.2613 in ' Critical hydraulic radius ....... Critical top width 13.7489 in 48.0000 in ............... specific energy ................. 3.5923 ft Minimum energy ................... .3.8039 ft ' Froude number . Flow condition 0.9551 Subcritical ..J .................. 1111 J Page 1 #49.txt La Quinta Sam's club 100 Year - 24 Hour Storm Event Storm Drain Line #49 Manning Pipe calculator Given Input Data: shape ..... Solving for Diameter . Flowrate slope .. Manning's n Computed Results: Depth........................... Area .......................... wetted Area ..................... wetted Perimeter ................ Perimeter ........................ velocity ........................ Hydraulic Radius ................ Percent Full ..................... Full flow Flowrate .............. Full flow velocity .............. critical Informati Critical depth .................. Critical slope ................. Critical velocity ............... critical area ................... Critical perimeter .............. Critical hydraulic radius ....... Critical top width .............. Specific energy ................. Minimum energy .................. Froude number ................... Flow condition ................. Circular Depth of Flow 12.0000 in 0.1200 cfs 0.4134 ft /ft 0.0130 0.6250 in 0.7854 ft2 0.0156 ft2 5.5257. in 37.6991 in 7.6939 fps 0.4065 in 5.2080 22.9075 cfs 29.1667 fps Dn 1.6970 in 0.0061 ft /ft 1.7695 fps 0.0678 ft2 9.2528 in 1.0554 in 8.3628 in 0.9720 ft 0.2121 ft 7.2402 Supercritical Page 1 #50.txt La Quinta Sam's club 100 Year - 24 Hour Storm Event Storm Drain Line #50 Manning Pipe calculator Given Input Data: Shape........................... solving for .................... Diameter ...... ................ Flowrate.......................... Slope ........................ manning's n ..................... computed Results: Depth........................... Area.......................... wetted Area ..................... wetted Perimeter ................ Perimeter ....................... velocity ... .......... Hydraulic Radius ................ Percent Full .................... Full flow Flowrate .............. Full flow velocity .............. critical Informati Critical depth .................. Critical slope ................. Critical velocity ............... critical area .................... Critical perimeter ............... Critical hydraulic radius ....... Critical top width .............. Specific energy ................. Minimum energy ............... Froude number ................... Flow condition .................. Circular Depth of Flow 48.0000 in 69.5000 cfs 0.0040 ft /ft 0.0130 31.4492 in 12.5664 ft2 8.7258 ft2 90.5468 in 150.7964 in 7.9649 fps 13.8769 in 65.5191 90.8480 cfs 7.2295 fps :)n 30'.4607 in 0.0043 ft /ft 8.2378 fps 8.4367 ft2 88.3196 in 13.7556 in 48.0000 in 3.5960 ft 3.8076 ft 0.9548 Subcritical Page 1 #51.txt La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #51 Manning Pipe Calculator Given Input Data: shape . Solving for Diameter .. Flowrate .. Slope .. Manning's n Computed Results: Depth ............ Area ........... wetted Area ...... wetted Perimeter . Perimeter ........ velocity .... Hydraulic Radius . Percent Full ..... Full flow Flowrate Full flow velocity critical Information Circular Depth of Flow 12.0000 in 0.8300 cfs 0.1419 ft /ft 0-0130 2.0235 in 0.7854 ft2 0.0875 ft2 10.1556 in 37.6991 in 9.4855 fps 1.2407 in 16.8622 13.4209.cfs 17.0881 fps Critical depth .................. 4.5742 in Critical slope ................. 0.0057 ft /ft critical velocity ............... 3.0181 fps Critical area ................... 0.2750 ft2 Critical perimeter .............. 15.9703 in Critical hydraulic radius ....... ..2.4797 in Critical. top width ............... 11.6562 in Specific energy ................ 1.5669'ft Minimum energy .............. 0:5718 ft Froude number .............:..... 4.8921 Flow condition .................. Supercritical Page 1 #52.txt La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #52 Manning Pipe Calculator Given Input Data: shape .. Solving for Diameter .. Flowrate .. slope .. Manning's n Computed Results: Depth............................ area .......................... wetted area ..................... wetted Perimeter ................ Perimeter ........................ velocity ... ................ Hydraulic Radius ................ Percent Full .................... Full flow Flowrate ............... Full flow velocity .............. Critical Informati Critical depth .................. Critical slope ................. Critical velocity ............... critical area ................... Critical perimeter .. ......... Critical hydraulic radius ....... Critical top width .. .......... specific energy ................. Minimum energy ................... Froude number ................... Flow condition .................. Circular Depth of Flow 48.0000 in 70.3300 .cfs 0.0040 ft /ft 0.0130 31.7151 in 12.5664 ft2 8.8099 ft2 91.1074 in 150.7964 in 7.9831 fps 13.9245 in 66.0731 % 90.8480 cfs 7.2295 fps Dn 30.6618 in 0.0043 ft /.ft 8.2704 fps 8.5038 ft2 88.7218 in 13.8021 in 48.0000 in 3.6214 ft 3.832.7 ft 0.9528 subcritical Page 1 #53.txt La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #53 Manning Pipe Calculator Given Input Data: Shape ............ Solving for ...... Diameter ......... Flowrate ......... Slope .......... manning's n ...... Computed Results: Depth ............. Area ........... wetted Area .... wetted Perimeter . Perimeter ........ velocity ... Hydraulic Radius . Percent Full ..... Full flow Flowrate Full flow velocity Critical Informatii Critical depth .................. Critical slope ............... ... Critical velocity ............... Critical area ................... Critical perimeter .............. Critical hydraulic radius ....... Critical top width .............. Specific energy ................. Minimum energy .................. Froude number ................... Flow condition .................. Circular Depth of Flow 48.0000 in 70.3300 cfs 0.0040 ft /ft 0.0130 31.7151 in 12.5664 ft2 8.8099 ft2 91.1074 in 150.7964 in 7.9831 fps 13.9245 in 66:0731 90.8480 cfs 7.2295 fps )n 30.6618 in 0.0043 ft /ft 8.2704 fps 8.5038 ft2 88.7218 in 13.8021 in 48 ..0000 in 3.6214 ft 3.8327 ft 0.9528 . Subcritical Page 1 La Quinta Sam's club 100 Year - 24 Hour Storm Event Storm Drain Line #54 Given Input Data: shape ...... solving for Diameter ... Flowrate ... Slope ... Manning's n #54.txt Manning Pipe calculator Circular Depth of Flow 12.0000 in 4.4900 cfs 0.3160 ft /ft 0.0130 computed Results: Depth ................... 3.8619 in Area .......................... 0.7854 ft2 wetted Area ..... .............. 0.2184 ft2 wetted Perimeter ................ 14.4773 in Perimeter ....................... 37.6991 in velocity ......................... 20.5611 fps Hydraulic Radius 2.1721 in Percent Full .................... 32.1828 Full flow Flowrate .............. 20.0279 cfs Full flow velocity 25.5003 fps critical Information .Critical depth .................. 11.5562 in critical slope ................. 0.0088 ft /ft critical velocity ............... 5:2471 fps critical area ................... 0.8557 ft2 critical perimeter .............. 29.9619 in critical hydraulic radius ....... 4.1127 in critical top width .............. 12.0000 in specific energy ................ 6.8917 ft Minimum energy: . ................ 1.4445 ft Froude number ................... 7.4981 Flow condition .................. Supercritical Page 1 I La Quinta Sam's club 100 Year - 24 Hour Storm Evert Storm Drain. Line #55 Given Input Data: Shape solving for Diameter .. Flowrate .. Slope .. manning's n #55.txt Manning Pipe calculator Circular Depth of Flow 48.0000 in 74.8200 cfs 0.0040 ft /ft 0.0130 t Page 1 computed Results: Depth ........................... Area .......................... 33.1833 in 12.5664 ft2 wetted Area ..................... 9.2678 ft2 wetted Perimeter ................ 94.2453 in ' Perimeter ....................... velocity ........................ Hydraulic Radius ................ Percent Full .................... 150.7964 in 8.0731 fps 14.1606 in 69.1318 Full flow Flowrate .............. 90.8480 cfs t Full flow velocity .............. 7.2295 fps critical Information critical depth .................. critical slope ................ critical velocity ............... 31.7363 in 0.0044 ft /ft 8.4428 fps critical area ................... critical perimeter .............. critical hydraulic radius ....... critical top width .............. specific energy ................. 8.8620 ft2 90.8709 in 14.0433 in 48.0000 in 3..7576 ft ' Minimum energy .................. Froude.number ................ . Flow condition 3.9670 ft 0.9424 Subcritical t Page 1 La Quinta Sam's club 100 Year - 24 Hour Storm Event Storm Drain Line #56 Given Input Data: shape ...... Solving for Diameter ... Flowrate .., Slope ... Manning's n #56.txt Manning Pipe calculator Circular Depth of Flow 12.0000 in 0.6600 cfs 0.0699 ft /ft 0.0130 computed Results: Depth ........................... 2.1508 in Area .......................... 0.7854 ft2 wetted Area ..................... 0.0955 ft2 wetted Perimeter ................ 10.4915 in Perimeter ....................... 37.6991 in velocity ........................ 6.9079 fps Hydraulic Radius ................ 1.3114 in Percent Full .................... 17.9230 Full flow Flowrate .............. 9.4196 cfs Full flow velocity .............. 11.9934 fps critical Information critical depth ............... 4.0613 in critical slope ................. 0.0056 ft /ft critical velocity ............... 2.8205 fps critical area ................... 0.2340 ft2 critical perimeter .............. 14.9013 in critical hydraulic radius ....... 2.2613 in critical top width .............. 11.3563 in specific energy ................. 0.9208 ft Minimum energy .................. 0.5077 ft Froude number ................... 3.4508 Flow condition .................. Supercritical Page 1 #57.txt La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #57 Manning Pipe Calculator Given Input Data: Shape .. .. solving for Diameter ... Flowrate .., Slope ... Manning 's n Computed Results: Depth........................... Area .......................... wetted Area ...................... wetted Perimeter ............ Perimeter ....................... Velocity ... .................. Hydraulic Radius ................ Percent Full .................... Full flow Flowrate .............. Full flow velocity _ ........... Critical Informatic Critical depth ................. Critical slope ................. Critical velocity ............... Critical area ................... Critical perimeter... ......... Critical hydraulic radius ....... Critical top width .............. Specific energy ................. Minimum energy .................. Froude number ................... Flow condition ................... Circular Depth of Flow 48.0000 in 75.4800 cfs 0.0040 ft /ft 0.0130 33.4042 in 12.5664 ft2 9.3357 ft2 94.7245 in 150.7964 in 8.0851 fps 14.1922 in 69.5920 90.8480 cfs 7.2295 fps m 31.8925 in 0.0044 ft /ft 8.4676 fps 8.9140 ft2 91.1831 in 14.0773 in 48.0000 in 3.7774 ft 3.9866 ft 0.9409 Subcritical Page 1 1 J 1 #58.txt ' La Quinta• Sam's Club 100 Year - 24 Hour storm Event Storm Drain Line #58 ' Manning Pipe Calculator Given Input Data: ' Shape .. Solving for Circular Depth of Flow Diameter ::::::::::::::::::::: Flowrate ... ................... 12.0000 0.0700 in cfs ' Slope ...... Manning's n ..................... 0.0144 0.0130 ft /ft Computed Results:. 1 Depth .............................. Area . .......................... wetted Area 1.0691 0.7854 0.0345 in ft2 ft2 wetted Perimeter ................ 7.2746 in Perimeter ........................ velocity ........................ 37.6991 in 2.0293 fps Hydraulic Radius ................ 0.6828 in �. Percent Full .................... 8.9095 Full flow Flowrate .............. 4.2754 cfs Full flow velocity .............. 5.4436 fps Critical Information I Critical depth .................. Critical slope .................. Critical velocity ................ Critical area ................... Critical perimeter .............. 1.2916 0.0065 1.5374 0.0455 8.0224 in ft /ft fps ft2 in Critical hydraulic radius ....... 0.8173 in Critical top width .............. Specific energy ............... Minimum energy .................. Froude number ................... Flow condition ................... 7.4381 0.1531 0.1615 1.4540 ercritical - Su P in ft ft Page 1 r-1 #59.txt La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #59 Manning Pipe Calculator Given Input Data: Shape....................... Solving for ..................... Diameter ........................ Flowrate ........................ Slope........................ Manning's n ..................... Computed Results: Depth........................... Area ..... wetted Area ..................... wetted Perimeter ................ Perimeter ....................... velocity ... Hydraulic Radius ................ .Percent Full .................... Full flow Flowrate .............. Full flow velocity .............. critical -Informatii Critical depth .................. Critical slope ................. Critical velocity .......... Critical area ................... Critical perimeter .............. Critical hydraulic radius ....... Critical top width .............. specific energy ................. Minimum energy .......... Froude number ................... Flow condition .................. Circular Depth of Flow 12.0000 in 0.0700 cfs 0.0144 ft /ft 0:0130 1.0691 in 0.7854 ft2 0.0345 ft2 7.2746 in 37.6991 in 2.0293 fps 0.6828" in 8.9095 4.2754 cfs 5.4436 fps m 1.2916 in 0.0065 ft /ft 1.5374 fps 0.0455 ft2 8.0224 in 0.8173 in 7.4381 in 0.1531 ft 0.1615 ft 1.4540 Supercritical Page 1 I 'I La Quinta Sam's club 100 Year - 24 Hour Storm Event Storm Drain Line #60 Given Input Data: shape .. Solving for Diameter ... Flowrate .., slope ... Manning's n #60.txt Manning Pipe calculator Circular Depth of Flow 12.0000 in 1.2300 cfs 0.0167 ft /ft 0.0130 computed-Results- Depth ........................... 4.2356 in Area ........... 0.7854 ft2 Wetted Area ..................... 0.2478 ft2 wetted Perimeter ................ 15.2677 in Perimeter ....................... 37.6991 in velocity ........................ 4.9635 fps Hydraulic Radius ................ 2.3373 in Percent Full .................... 35.2964 Full flow Flowrate .............. 4.6042 cfs Full flow velocity .............. 5.8622 fps critical Informatii critical depth .................. critical slope .................. critical velocity ............... critical area ................... critical perimeter .............. critical hydraulic radius ....... critical top width .............. Specific energy ................. Minimum energy .................. Froude number ................... Flow condition .................. )n 5.6157 in 0.0060 ft /ft 3.4101 fps 0.3607 ft2 18.0804 in 2.8727 in 11.9754 in 0.7358 ft 0.7020 ft 1.7185 Supercritical Page 1 La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #61 Given Input Data: Shape ..... Solving for Diameter .. Flowrate .. Slope .. Manning's n #61.txt Manning Pipe Calculator Circular Depth of Flow 12.0000 in 1.3000 cfs 0.0081 ft /ft 0.0130 Computed Results: Depth ............................ 5.3182 in Area ......................... 0.7854 ft2 wetted Area ..................... 0.3360 ft2 wetted Perimeter 17.4831 in Perimeter ....................... 37.6991 in velocity ........................ 3.8690 fps Hydraulic Radius ................ 2.7675 in Percent Full .................... 44.3187 % Full flow Flowrate .............. 3.2065 cfs Full flow velocity ............... 4.0827 fps Critical Information Critical depth .................. 5.7807 in critical slope ................. 0.0060 ft /ft Critical velocity ............... 3.4720 fps critical area ................... 0.3744 ft2 Critical perimeter .. 18.4108'in critical hydraulic radius .... .... 2.9286 in Critical top width .............. '11.9920 in Specific energy ................. 0.6758 ft Minimum energy .................. 0.7226 ft Froude number ................... 1.1729 Flow condition .................. Supercritical Page 1 La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #62 Given Input Data: shape . Solving for Diameter ... Flowrate ... Slope ... manning's n #62.txt Manning Pipe Calculator Circular Depth of Flow 12.0000 in 0.6500 cfs 0.0258'ft /ft 0.0130 Computed Results: Depth ........................... 2.7308 in Area 0.7854 ft2 wetted Area ..................... 0.1344 ft2 wetted Perimeter 11.9348 in Perimeter ....................... 37.6991 in velocity ... .................. 4.8355 fps Hydraulic Radius ................ 1..6219 in Percent Full .................... 22.7568 % Full flow Flowrate .............. 5.7227 cfs Full flow velocity ............ 7.2864 fps Critical Information Critical depth ................... 4.0293 in Critical slope ................. 0.0056 ft /ft critical velocity ..... ....... 2.8080 fps Critical area ........:.......... 0.2315 ft2 Critical perimeter .............. 14.8337 in Critical hydraulic radius ....... 2.2471 in Critical top width .............. 11.3343 in specific energy .. .. .............. 0:5909 ft Minimum energy ................... 0.5037 ft Froude number .................. 2.1292 Flow condition .................. Supercritical Page 1. Page 1 r #63.txt La Quinta Sam's club 100 Year - 24 Hour Storm Event storm Drain Line #63 ' Manning Pipe calculator Given Input Data: ' Shape .. :::..................... Solving for circular Depth of Flow Diameter 12.0000 in Flowrate ........................ 0.6500 cfs slope ........................ 0.0258 ft /ft ' manning's n ..................... 0.0130 computed Results: Depth ........................... 2.7308 in Area .................. .....• wetted Area 0.7854 ft2 0.1344 ft2 wetted Perimeter ................ 11.9348 in Perimeter ....................... "37.6991 in velocity .............:.......... 4.8355 fps Hydraulic Radius 1.6219 in Percent Full .................... 22.7568 Full flow Flowrate ........:..... 5.7227 cfs Full flow velocity .............. 7.2864.fps + critical -information critical depth .................. 4.0293 in critical slope .................. 0.0056 ft /ft critical velocity ............... 2.8080 fps critical area .................... 0.2315 ft2 critical perimeter .. ......... 14.8337 in critical hydraulic radius ....... 2.2471 in ' critical top width ............... 11.3343 in Specific energy ................. 0.5909 ft Minimum energy .................. 0.5037 ft 'i Froude number ................... Flow condition 2.1292 supercritical .................. Page 1 r 'I Computed Results Depth ............ Area ........... wetted Area ...... wetted Perimeter . Perimeter ........ velocity ......... Hydraulic Radius.. Percent Full ..... Full flow Flowrate Full flow velocity critical.Informatii Critical depth ............... .... Critical slope ................. Critical velocity ............... Critical area ................... Critical perimeter .............. Critical hydraulic radius ....... Critical top width .............. specific energy ................. Minimum energy ................ Froude number ................... Flow condition .................. 6.7560 in 0.7854 ft2 0.4555 ft2 20.3655 in 37.6991 in 4.2807 fps 3.2209 in 56.2996 3.2065 cfs 4.0827 fps in 7.1765 in 0.0067 ft /ft 3.9736 fps 0.4907 ft2 21.2026 in 3.3329 in 12.0000 in 0.8476 ft 0.8971 ft 1.1185 Supercritical Page 1 i #64.txt ' La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #64 ' Manning Pipe Calculator Given Input Data: shape ........................... Circular ' solving.for ..................... Diameter Depth of Flow 12.0000 in Flowrate ........................ 1.9500 cfs slope .......................... 0.0081 ft /ft manning 's n ..................... 0.0130 'I Computed Results Depth ............ Area ........... wetted Area ...... wetted Perimeter . Perimeter ........ velocity ......... Hydraulic Radius.. Percent Full ..... Full flow Flowrate Full flow velocity critical.Informatii Critical depth ............... .... Critical slope ................. Critical velocity ............... Critical area ................... Critical perimeter .............. Critical hydraulic radius ....... Critical top width .............. specific energy ................. Minimum energy ................ Froude number ................... Flow condition .................. 6.7560 in 0.7854 ft2 0.4555 ft2 20.3655 in 37.6991 in 4.2807 fps 3.2209 in 56.2996 3.2065 cfs 4.0827 fps in 7.1765 in 0.0067 ft /ft 3.9736 fps 0.4907 ft2 21.2026 in 3.3329 in 12.0000 in 0.8476 ft 0.8971 ft 1.1185 Supercritical Page 1 La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #65 Given Input Data: Shape ...... solving for Diameter ... Flowrate ... slope ... manning's n #65.txt Manning Pipe Calculator Circular Depth of Flow 12.0000 in 1.9500 cfs 0.0081 ft /ft 0.0130 computed Results: Depth ........................... 6.7560 in Area .......................... 0.7854 ft2 wetted Area ..................... 0.4555 ft2 wetted Perimeter ................ 20.3655 in Perimeter 37.6991 in velocity ......................... 4.2807 fps Hydraulic Radius ................ 3.2209 in. Percent Full .................... 56.2996 Full flow Flowrate .............. 3.2065 cfs Full flow velocity ............... 4.0827 fps Critical Information Critical depth .................. 7.1765 in Critical slope ................. 0.0067 ft /ft Critical velocity ............... 3.9736 fps Critical area ................... 0.4907 ft2 Critical perimeter .............. 21.2026 in Critical hydraulic radius ....... 3.3329 in Critical top width .............. 12.0000 in specific energy ................. 0.8476 ft Minimum energy .................. 0.8971 ft Froude number ................... 1.1185 Flow condition ..... ............ supercritical Page 1 #66.txt La Quinta Sam's club 100 Year - 24 Hour Storm Event Storm Drain Line #66 Manning Pipe calculator Given Input Data: shape....................... solving for ..................... Diameter ........................ Flowrate ........................ slope........................ manning's n .................. computed Results: Depth........................... Area ........................ wetted Area ..................... wetted Perimeter .............. Perimeter ....................... velocity ........................ Hydraulic Radius ................ Percent Full .................... Full flow Flowrate .............. Full flow velocity .............. critical Informati critical depth .................. critical slope ................. critical velocity ............... critical area ................... critical perimeter .............. critical hydraulic radius ....... critical top width ............. Specific energy ................. Minimum energy .................. Froude number-, ................... Flow condition .................. circul ar Depth of Flow 12.0000 in 0.8000 cfs 0.0060 ft /ft 0.0130 4.4243 in 0.7854 ft2 0.2629 ft2 15.6607 in 37.6991 in 3.0428 fps 2.4175 in 36.8691 % 2.7597 cfs 3.5138 fps on 4.4875 in 0.0057 ft /ft 2.9850 fps 0.2680 ft2 15.7915 in 2.4439 in 11.6124 in 0.5126 ft 0.5609 ft 1.0277 Supercritical Page 1 La Quinta Sam's Club 100 Year -'24 Hour storm Event storm Drain Line #67 Given Input Data: shape ...... solving for Diameter Flowrate ... slope .... manning's n #67.txt Manning Pipe Calculator Circular Depth of Flow 24.0000 in 2.7500 cfs 0.0044 ft /ft 0.0130 Computed Results: Depth .. ....... . ................. 6.9580 in Area .......................... 3.1416 ft2 wetted Area ..................... 0.7559 ft2 wetted Perimeter ................ 27.2921 in Perimeter ........................ 75.3982 in Velocity ... 3.6381 fps Hydraulic Radius ........ 3.9883 in Percent Full .................... 28.9918.% Full flow Flowrate ..... ....... 15.0060 cfs Full flow velocity .............. 4.7766 fps Critical informatii Critical depth ................... Critical slope ................. Critical velocity ............... Critical area ................... Critical perimeter .............. Critical hydraulic radius ....... Critical top width .............. specific energy ................. Minimum energy .................. Froude number ................... Flow condition .................. m 6.9359 in 0.0045 ft /ft 3.6543 fps 0.7525 ft2 27.2433 in 3.9777 in 21.7582 in 0.7855 ft 0.8670 ft 0.9938 Subcritical Page 1 La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #68 Given Input Data: Shape . Solving for Diameter .. Flowrate .. slope .. Manning's n #68.txt Manning Pipe Calculator Circular Depth of Flow 12.0000 in 1.4100 cfs 0.0182 ft /ft 0.0130 Computed Results: depth .................. 6.0318 Depth ............................ 4.4526 in Area Are .......................... 0.7854 ft2 wetted Area ..................... 0.2652 ft2 wetted Perimeter ................ 15.7195 in Perimeter ....................... 37.6991 in velocity ........................ 5.3168 fps Hydraulic Radius. ................ 2.4294 in Percent Full .................... 37.1053 12.0000 Full flow Flowrate .............. 4.8065 cfs Full flow velocity .............. 6.1198 fps Critical Information Critical depth .................. 6.0318 in Critical slope ................. 0.0062 ft /ft Critical velocity ................ 3.5665 fps critical area .................... 0.3953 ft2 Critical perimeter .............. 18.9131 in Critical hydraulic radius ....... 3.0101 in Critical top width .............. 12.0000 in specific energy ................. 0.8104 ft Minimum energy; .. ............. 0.7540 ft Froude number ................... 1.7891 Flow condition .................. Supercritical Page 1 0i 1 1: #69.txt La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #69 Manning Pipe Calculator Given Input Data: Shape ...... Solving for Diameter ... Flowrate ... Slope .... Manning's n Computed Results: Depth ............ Area ........... wetted Area ...... wetted Perimeter . Perimeter ..... velocity ... Hydraulic Radius . Percent Full ..... Full f1ow.Flowrate Full flow velocity Circular Depth of Flow 24.0000 in 4.1600 cfs 0.0044 ft /ft 0.0130 8.6397 in 3.1416 ft2 1.0182 ft2 '30.8875 in 75.3982 in 4.0858 fps 4.7467 in 35.9989 15.0060 cfs 4.7766 fps Critical Information critical depth 8.5910 in Critical slope ................ 0.0045 ft /ft Critical velocity ........ 4.1173 fps Critical area 1.0104 ft2 Critical perimeter .. 30.7859 in Critical hydraulic radius ....... 4.7260 in Critical top width .............. 23.0112 in Specific energy ................. 0.9794 ft Minimum energy ...... ............. 1.0739 ft Froude number ................... 0.9892 Flow condition .................. Subcritical Page 1 r i i l 11, 1 J La Quinta Sam's Club 100 Year - 24 Hour storm Event storm Drain Line #70 Given Input Data: Shape ..... Solving for Diameter .. Flowrate .. Slope .. Manning's n #70.txt Manning Pipe Calculator Circular Depth of Flow 12.0000 in 2.5500 cfs 0.0200 ft /ft 0.0130 Computed Results: Critical Information Depth ........................... 6.0431 in Area .......................... 0.7854 ft2 wetted Area ..................... 0.3963 ft2 wetted Perimeter ................ 18.9357 in Perimeter ........ ............. 37.6991 in velocity ........................ 6.4347 fps Hydraulic Radius ................ 3.0136 in Percent Full .................... 50.3588 % Full flow Flowrate .............. 5.0386 cfs Full flow velocity............... 6.4153 fps Page 1 Critical Information Critical depth .................. 8.3298 in Critical slope ................. 0.0072 ft /ft Critical velocity ............... 4.3453 fps Critical area ................... 0.5868 ft2 Critical perimeter .............. 23.5091 in critical hydraulic radius ....... 3.5946 in Critical top width .............. 12.0000 in Specific energy ................. 1.1471 ft Minimum energy .................. 1.0412 ft Froude number ................... 1.8021 Flow condition .................. Supercritical Page 1 #71.txt La Quinta Sam's club 100 Year - 24 Hour Storm Event Storm Drain Line #71 Manning Pipe calculator Given Input Data: shape .. solving for Diameter ... Flowrate . Slope ... Manning's n computed Results: Depth............................ Area.......................... wetted Area ................... wetted Perimeter ................ Perimeter ....................... velocity ... .................. Hydraulic Radius ................ Percent Full .................... Full flow Flowrate ............ Full flow velocity .............. critical Informati critical depth .................. critical slope ................. critical velocity ............... critical area ................... critical perimeter .............. critical hydraulic radius ....... critical top width .............. Specific energy ................. Minimum energy .................. Froude number ................... Flow condition ................., Circular Depth of Flow 24.0000 in 6.7100 cfs 0.0042 ft /ft 0.0130 11.3971 in 3.1416 ft2 1.4704 ft2 36.4929 in 75.3982 in 4.5635 fps. 5.8020 in 47.4881 14.6610 cfs 4.6667 fps M 11.0203 in 0.0047 ft /ft 4.7667 fps 1.4077 ft2 35.7374 in 5.6721 in 23.9199 in 1.2734 ft 1.3775 ft 0.9377 subcritical Page 1 La Quinta Sam's club 100 Year - 24 Hour Storm Event Storm Drain Line #72 Given Input Data: shape ...... Solving for Diameter ... Flowrate ... slope .... manning 's n #72.txt manning Pipe calculator Circular Depth of Flow 24.0000 in 6.7100 cfs 0.0042 ft /ft 0.0130 computed Results: Depth ........................... 11.3971 in Area 3.1416 ft2 wetted Area 1.4704 ft2 wetted Perimeter ................ 36.4929 in Perimeter ....................... 75.3982 in velocity ... 1...11...........1 4.5635 fps Hydraulic Radius 5.8020 in Percent Full .................... 47.4881 Full flow Flowrate 14.6610 cfs Full flow velocity .............. 4.6667 fps critical Informati critical depth ......... critical slope ................. critical velocity ............... critical area ................... critical perimeter .. ......... critical hydraulic radius ....... critical top width .............. Specific energy ................. minimum energy .................. Froude number ................ Flow condition .................. :)n 11.0203 in 0.0047 ft /ft 4.7667 fps 1.4077 ft2 35.7374 in 5.6721 in 23.9199 in 1.2734 ft 1.3775 ft 0.9377 subcritical Page 1 #73.txt La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #73 Manning Pipe Calculator Given Input Data: Shape ...... Solving for Diameter ... Flowrate ... slope ... Manning's n Computed Results: Depth ............ Area ........... wetted Area ...... wetted Perimeter . Perimeter ........ velocity ... ... Hydraulic Radius . Percent Full ..... Full flow Flowrate Full flow velocity Circular Depth of Flow 12.0000 in 0.6800 cfs 0.0518 ft /ft' 0.0130 Critical Information 2.3493 in 0.7854 ft2 0.1085 ft2 11.0002 in 37.6991 in 6.2699 fps 1.4197 in 19.5772 8.1088 cfs 10.3245 fps Critical depth .................. 4.1246 in Critical slope ............ ... 0.0056 ft /ft Critical velocity ............... 2.8452 fps Critical area ................... 0.2390 ft2 Critical perimeter .. ......... 15.0348 in critical hydraulic radius ....... 2.2891 in Critical top width .............. 11.3987 in Specific energy ................. 0.8067 ft Minimum energy ..:............... 0.5156 ft Froude number ................... 2.9901 Flow condition .................. Supercrit-ical Page 1 La Quints Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #74 Given Input Data: Shape . Solving for Diameter .. Flowrate .. Slope .. Manning's n #74.txt Manning Pipe Calculator Circular Depth of Flow 12.0000 in 0.6800 cfs 0:0518 ft /ft 0.0130 Computed Results: depth .................. 4.1246 Depth ........................... 2.3493 in Area .......................... 0.7854 ft2 wetted Area ..................... 0.1085 ft2 wetted Perimeter ................ 11.0002 in Perimeter ....................... 37.6991 in velocity ........................ 6.2699 fps Hydraulic Radius ................ 1.4197 in Percent Full .................... 19.5772 top width .............. Full flow Flowrate .............. 8.1088 cfs Full flow velocity .............. 10.3245 fps Critical Information Critical depth .................. 4.1246 in Critical slope ................. 0.0056 ft /ft Critical velocity ............... 2.8452 fps Critical area ................... 0.2390 ft2 Critical perimeter ........... . 15.0348 in Critical hydraulic radius ....... 2.2891 in Critical top width .............. 11.3987 in Specific energy ................. 0.8067 ft Minimum energy .................. 0.5156 ft Froude number ................... 2.9901 Flow condition .................. Supercritical Page 1 #75.txt La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #75 Manning Pipe Calculator Given Input Data: Shape .. .................:..... solving for ..................... Diameter ........................ Flowrate ........................ Slope manning 's n ...............t...... Computed Results: Depth ............ Area ........... wetted Area ...... wetted Perimeter . Perimeter ........ velocity. .. ... Hydraulic Radius . Percent Full ..... Full flow Flowrate Full flow velocity Ci rcul ar Depth of Flow 24.0000 in 7.3900 cfs 0.0042 ft /ft 0.0130 12.0573 in 3.1416 ft2 1.5804 ft2 37.8138 in 75.3982 in 4.6762 fps 6.0182 in 50.2389 14.6610 cfs 4.6667 fps critical Information Critical depth ..............:... 11.5910 in Critical slope ................. 0.0048 ft /ft Critical velocity ............... 4.9180 fps Critical area ................... 1.5026 ft2 Critical perimeter ....... 36.8809 in Critical hydraulic radius ....... 5.8670 in Critical top width .............. 23.9861 in specific energy ................. .1.3446 ft Minimum energy .................. 1.4489 ft Froude number ................... 0.9274 Flow condition ............... Subcritical Page 1 #76.txt La Quinta Sam's club 100 Year - 24 Hour storm Event Storm Drain Line #76 Manning Pipe calculator Given Input Data: shape - i. . . Solving or Diameter .. Flowrate .. slope manning's n computed Results: Depth ............ area ........... wetted area ...... wetted Perimeter . Perimeter ........ velocity ......... Hydraulic Radius . Percent Full Full flow Flowrate Full flow velocity Circular Depth of Flow 12.0000 in 1.4200 cfs 0.2837 ft /ft 0.0130 2.2212 in 0.7854 ft2 0.1001 ft2 10.6741 in 37.6991 in 14.1892 fps 1.3501 in 18.5101 18.9767 cfs 24.1619 fps critical Information Critical depth ................... 6.0542 in Critical slope ................. 0.0062 ft /ft critical velocity ............... 3.5749 fps critical area ................... 0.3972 ft2 critical perimeter .............. 18.9579 in critical hydraulic radius ....... 3.0171 in critical top width .............. 12.0000 in specific energy ................. 3.3139.ft Minimum energy .................. 0.7568 ft Froude number ................ :.. 6.9692 Flow condition .................. supercritical Page 1 La Quinta Sam's club 100 Year - 24 Hour Storm Event Storm Drain Line #77 Given Input Data: Shape . Solving for Diameter ... Flowrate ... Slope ... Manning's n #77.txt Manning Pipe Calculator Circular Depth of Flow 24.0000 in 8.8100 cfs 0.0042 ft /ft 0.0130 computed Results: Depth ........................... 13.4115 in Area ............................. 3.1416 ft2 wetted Area . 1.8055 ft2 wetted Perimeter ................ 40.5286 in Perimeter ...................... 75.3982 in velocity 4.8795 fps Hydraulic Radius ................ 6.4150 in Percent Full 55.8812 % Full flow Flowrate .............. 14.6610 cfs Full flow velocity 4.6667 fps critical informatii Critical depth .................. Critical slope ............... Critical velocity ............... Critical area ................... critical perimeter .............. Critical hydraulic radius ....... Critical top width .............. Specific energy ................. Minimum energy .................. Froude' number .................... Flow condition .................. )n 12.7138 in 0.0050 ft /ft 5.2138 fps 1.6898 ft2 39.1267 in 6.2189 in 24.0000 in 1.4873 ft 1.5892 ft 0.9056 subcritical Page 1 La Quinta Sam's Club 100 Year - 24 Hour storm Event Storm Drain Line #78 Given Input Data: shape .. solving for Diameter ... Flowrate ... Slope .... Manning's n #78.txt Manning Pipe Calculator Circular Depth of Flow 12.0000 in 1.1100 cfs 0.3504 ft /ft 0.0130 Computed Results: Depth .... 1.8707 in Area .......................... 0.7854 ft2 wetted Area ..................... 0.0781 ft2 wetted Perimeter ................ 9.7413 in Perimeter .. ................... 37.6991 in velocity ....................... 14.2092 fps Hydraulic Radius ................ 1.1548 in Percent Full .................... 15.5895 Full flow Flowrate .............. 21.0899 cfs Full flow velocity .............. 26.8525 fps Critical Information critical depth .................. 5.3223 in Critical slope ................. 0.0059 ft /ft Critical velocity ............... 3.3002 fps Critical area .................... 0.3363 ft2 Critical perimeter .............. 17.4913 in Critical hydraulic radius ........ 2.7690 in Critical top width .............. 11.9232 in specific energy ............ ... 3.2935 ft Minimum energy ................. 0.6653 ft Froude number ................... 7.6342 Flow condition .................. Supercritical Page 1 1 1 1, I La Quinta Sam's Club 100 Year - 24 Hour Storm Event storm Drain Line #79 Given Input Data: shape ....... solving for Diameter ... Flowrate ... slope ... Manning's n #79.txt Manning Pipe Calculator Ci rcul ar Depth of Flow 24.0000 in 9.9200 cfs 0.0042 ft /ft 0.0130 Computed Results: Depth ........................... 14.4670 in Area ............................ 3.1416 ft2 wetted Area ..................... 1.9791 ft2 wetted Perimeter ................ 42.6686 in Perimeter ....................... 75.3982 in velocity ........................ 5.0125 fps Hydraulic Radius ................ 6.6790 in Percent Full .................... 60.2794 Full flow Flowrate .............. 14.6610 cfs Full flow velocity .............. 4.6667 fps Critical Informati Critical depth .................. Critical slope ................. Critical velocity ............... Critical area ................... Critical perimeter .............. Critical hydraulic radius ....... Critical top width .............. specific energy ................. Minimum energy .............. Fr6ude number .... :... .....M... Flow condition .................. Dn 13.5484 in 0.0051 ft /ft 5.4241 fps 1.8289 ft2 40.7960 in 6.4555 in 24.0000 in 1.5944 ft 1.6936 ft 0.8895 Subcritical Page 1 #80.txt La Quinta Sam's club 100 Year - 24 Hour Storm Event Storm Drain Line #80 Manning Pipe calculator Given Input Data: Shape ..... solving for Diameter .. Flowrate .. slope .. manning's n computed Results: Depth........................... Area .......................... wetted Area ..................... Wetted Perimeter ................ Perimeter ....................... velocity ... ... ............. Hydraulic Radius . ................. Percent Full .................... Full flow Flowrate .............. Full flow velocity .............. critical Informati critical depth .................. critical slope ................. critical velocity ............... critical area ................... critical perimeter .............. critical hydraulic radius ....... critical top width .............. Specific energy ................. Minimum energy .................. Froude number ................... Flow condition...... ............. Circular Depth of Flow 12.0000 in 1.7500 cfs 0.1159 ft /ft 0.0130 3.0797 in 0.7854 ft2 0.1593 ft2 12.7496 in 37.6991 in 10.9840 fps 1.7995 in 25.6642 12'.1292 cfs 15.4434 fps on 6.7667 in 0.0065 ft /ft 3.8328 fps 0.4566 ft2 20.3829 in 3.2257 in 12.0000 in 2.1316 ft 0.8458 ft 4.5343 Supercritical Page 1 #81.txt La Quinta Sam's Club 100 Year - 24 Hour storm Event Storm Drain Line #81 Manning Pipe calculator Given Input Data: Shape ..... solving for Diameter .. Flowrate .. slope ... manning's n Computed Results: Depth ............ area ........... wetted area ...... wetted Perimeter . Perimeter ........ velocity ... .. . Hydraulic Radius . Percent Full ..... Full flow Flowrate Full flow velocity Critical Information Circular Depth of Flow 36.0000 in 11.6700 cfs 0.0042 ft /ft 0.0130 12.7781 in 7.0686 ft2 2.2474 ft2 45.9525 in 113.0973 in 5.1927 fps 7.0425 in 35.4947 43.2255 cfs 6.1152 fps Critical depth .................. 13.0064 in Critical slope ................. 0.0039 ft /ft critical velocity ............... 5.0693 fps Critical area ................... 2.3021 ft2 Critical perimeter .............. 46.4287 in Critical hydraulic radius ....... 7.1400 in Critical top width .............. 34.5869 in Specific energy ................. 1.4839 ft Minimum energy .................. 1.6258 ft Froude number ................... 1.0347 Flow condition .................. supercritical Page 1 La Quinta Sam's club 100 Year - 24 Hour Storm Event Storm Drain Line #82 Given Input Data: Shape ...... solving for Diameter ... Flowrate ... Slope ... Manning's n #82.txt Manning Pipe calculator circular Depth of Flow 12.0000 in 1.4200 cfs 0.3474 ft /ft 0.0130 computed Results: Depth ........ ........... 2.1137 in Area 0.7854 ft2 wetted Area ..................... 0.0932 ft2 wetted Perimeter ................ 10.3945 in Perimeter 37.6991 in velocity ........................ 15.2391 fps Hydraulic Radius ................ 1.2909 in Percent Full .................... 17.6140 % Full flow Flowrate .............. 20.9994 cfs Full flow velocity ............ 26.7373 fps critical Informati critical depth .................. critical slope ................. critical velocity ............... critical area ................... critical perimeter ............... critical hydraulic radius ....... critical top width .............. specific energy ................. Minimum energy. .................. Froude number .................... Flow condition ................. in 6.0542 in 0.0062 ft /ft 3.5749 fps 0.3972 ft2 18.9579 in 3.0171 in 12.0000 in 3.7851 ft 0.7568 ft 7.6822 supercritical Page 1 La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #83 Given Input Data: Shape ...... Solving for Diameter ... Flowrate ... slope .... Manning's n #83.txt Manning Pipe Calculator Circular Depth of Flow 36.0000 in 13.0900 cfs 0.0042 ft /ft 0.0130 Computed Results: Depth ......... . ................ 13.5884 in Area ............ ................ 7.0686 ft2 wetted Area ..................... 2.4425 ft2 wetted Perimeter ................ 47.6346 in Perimeter ....................... 113.0973. in velocity ........................ 5.3592 fps Hydraulic Radius ................ 7.3838 in Percent Full .................... 37.7455 Full flow Flowrate .............. 43.2255 cfs Full flow velocity ..... ....... 6.1152 fps Critical informati Critical depth .................. critical slope ................. Critical velocity ............... Critical area ................... Critical perimeter .............. Critical hydraulic radius ....... Critical top width .............. Specific energy ................. Minimum energy ... . ............. Froude number ................... Flow condition .................. k on 13.8058 in 0.0040 ft /ft 5.2458 fps 2.4953 ft2 48.0825 in 7.4731 in 35.0091 in 1.5787 ft 1.7257 ft 1.0310 Supercritical Page 1 La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #84 Given Input Data: shape .. solving for Diameter ... Flowrate ... Slope .... Manning's n #84.txt Manning Pipe Calculator Circular Depth of Flow 12.0000 in 0.9800 cfs 0.4348 ft /ft 0.0130 Computed Results: Depth ........................... 1.6717 in Area 0.7854 ft2 wetted Area ..................... 0.0664 ft2 wetted Perimeter ................ 9.1800 in Perimeter ......... ............. 37.6991 in velocity ........................ 14.7692 fps Hydraulic Radius ................. 1.0408 in Percent Full .................... 13.9309 % Full flow Flowrate .............. 23.4929 cfs Full flow velocity .............. 29.9121 fps Critical Information Critical depth .................... 4.9874 in Critical slope ...... ............ 0.0058 ft /ft Critical velocity ............... 3.1745 fps Critical area ................... 0.3087 ft2 Critical perimeter .............. 16.8145 in Critical hydraulic radius ....... 2.6438 in Critical top width . ........... 11.8279 in specific energy ................. 3.5292 ft Minimum energy .............. :... 0.6234 ft Froude number .................... 8.4119 Flow condition .........:........ supercritical Page 1 La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #85 Given Input Data: Shape . solving for Diameter ... Flowrate ... Slope ... manning's n #85.txt Manning Pipe Calculator Circular Depth of Flow 36.0000 in 14.0700 cfs 0.0042 ft /ft 0.0130 Computed Results: depth ......... :........ Depth ........................... 14.1302 in Area .......................... 7.0686 ft2 wetted Area ..................... 2.5743 ft2 wetted Perimeter ................ 48.7482 in Perimeter ....................... 113.0973 in velocity ........................ 5.4655 fps Hydraulic Radius ............... 7.6045 in Percent Full ...................: 39.2506 Full flow Flowrate .............. 43.2255 cfs Full flow velocity .............. 6.1152 fps Critical Information Critical depth ......... :........ 14.3343 in Critical slope ................. 0.0040 ft /ft Critical velocity ............... 5.3616 fps' Critical area ................... 2.6242 ft2 Critical perimeter .............. .49.1655 in critical hydraulic radius ....... 7.6861 in Critical top width .............. 35.2456 in specific energy ................. 1.6417 ft Minimum energy .................. 1.7918 ft Froude number ................... 1.0279 Flow condition .................. supercritical Page 1 I #86.txt La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #86 Manning Pipe Calculator Given Input Data: shape ...... solving for Diameter ... Flowrate ... slope ... manni.ng's n Computed Results: Depth ............ Area ........... wetted Area ...... wetted Perimeter . Perimeter ........ velocity ......... Hydraulic Radius . Percent Full ..... Full flow Flowrate Full flow velocity Circular Depth of Flow 12.0000 in 0.6500 cfs 0.3719 ft /ft 0.0130 1.4248 in 0.7854 ft2 0.0526 ft2 8.4430 in 37.6991 in 12.3655 fps 0.8965 in 11.8736 21.7273 cfs 27.6640 fps critical Information Critical depth 4.0293 in Critical slope ................. 0.0056 ft /ft critical velocity ............... 2.8080 fps critical area ................... 0.2315 ft2 critical perimeter ...I - - ..... 14.8337 in Critical hydraulic radius ....... 2.2471 in critical top width 11.3343 in Specific energy ................. 2.4950 ft Minimum energy .................. 0.5037 ft Froude number ................... 7.6480 Flow condition ................... Supercritical Page 1 La Quinta Sam's club 100,Year - 24 Hour Storm Event Storm Drain Line #87 Given Input Data: Shape . Solving for Diameter ... Flowrate ... Slope ... Manning's.n #87.txt Manning Pipe calculator Circular Depth of Flow 36.0000 in 14.7200 cfs 0.0042 ft /ft 0.0130 computed Results: .Depth ........................... 14.4828 in area .......................... 7.0686 ft2 wetted area ..................... 2.6606 ft2 wetted Perimeter ............ 49.4688 in Perimeter 113.0973 in velocity ... ......... 5.5325 fps Hydraulic Radius ................ 7.7449 in Percent Full 40.2301 Full flow Flowrate .............. 43.2255 cfs Full.flow velocity 6.1152 fps critical Information critical depth .................. 14.6754 in critical slope ........ ....... 0.0040 ft /ft critical velocity ............... 5.4360 fps critical area ................... 2.7079 ft2 critical perimeter .. ......... 49.8611 in critical hydraulic radius ....... 7.8205 in critical top width .............. 35.3806 in Specific energy ................. 1.6826 ft Minimum energy ................... 1.8344 ft Froude number ................... 1.0257 Flow condition .................. Supercritical Page 1 r t i 1;I., La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #88 Given Input Data: shape ...... Solving for Diameter ... Flowrate. Slope ... manning's n #88.txt Manning Pipe Calculator Circular Depth of Flow 12.0000 in 0.9800 cfs 0.3859 ft /ft 0.0130 Computed Results: depth .................. 4.9874 Depth ........................... 1.7206 in Area .......................... 0.7854 ft2 wetted Area ..................... 0.0692 ft2 wetted.Perimeter ................ 9.3202 in Perimeter ....................... 37.6991 in velocity ........................ 14.1638 fps Hydraulic Radius ................. 1.0690 in Percent Full .................... 14.3380 11.8279 Full.flow Flowrate .............. 22.1324 cfs Full flow velocity .............. 28.1799 fps Critical Information Critical depth .................. 4.9874 in critical slope ................. 0.0058 ft /ft Critical velocity ............... 3.1745 fps Critical area ................... 0.3087 ft2 Critical perimeter .............. 16.8145 in Critical hydraulic radius....... 2.6438 in Critical top width .............. 11.8279 in specific energy .................. 3.2610 ft Minimum energy .................. 0.6234 ft Froude. number ................... 7.9476 Flow condition .................. Supercritical Page 1 ,! #89.txt Critical Lnformati critical depth ........... ...... Critical slope ................. Critical velocity ............... Critical area ................... Critical perimeter .. Critical hydraulic radius ....... Critical top width .............. specific energy ...... . ....... M.. Minimum energy .................. Froude number .................... Flow. condition .................. Dn 15.1768 in 0.0040 ft /ft 5.5449 fps 2.8314 ft2 50.8789 in 8.0136 in 35.5545 in 1.7429 ft 1.8971 ft 1.0220 Supercritical Page 1 La Quinta Sam's club 100 Year - 24 Hour Storm Event Storm Drain Line #89 I Manning Pipe calculator Given Input Data: Shape ........................... Solving for ..................... Circular Depth of Flow ' Diameter ......................... Flowrate ......................... 36.0000 in 15.7000 cfs slope ........................ 0.0042 ft /ft manning's n ...................... 0.0130 computed Results: Depth ............................ Area .......................... wetted Area ..................... 15.0056 in 7.0686 ft2 2.7892 ft2 wetted Perimeter 50.5319 in Perimeter ....................... velocity ........................ 113.0973 in 5.6289 fps Hydraulic Radius ................ Percent Full 7.9482 in 41.6822 Full flow Flowrate .............. 43.2255 cfs Full flow velocity .............. 6.1152 fps Critical Lnformati critical depth ........... ...... Critical slope ................. Critical velocity ............... Critical area ................... Critical perimeter .. Critical hydraulic radius ....... Critical top width .............. specific energy ...... . ....... M.. Minimum energy .................. Froude number .................... Flow. condition .................. Dn 15.1768 in 0.0040 ft /ft 5.5449 fps 2.8314 ft2 50.8789 in 8.0136 in 35.5545 in 1.7429 ft 1.8971 ft 1.0220 Supercritical Page 1 #90.txt t Page 1 La Quinta Sam's club 100 Year - 24 Hour Storm Event �i j Storm Drain Line #90 Manning Pipe calculator Given Input Data: shape ........................... solving for ..................... circular Depth of Flow Diameter ........................ Flowrate ........................ 12.0000 in 0.5400 cfs slope ........................... 0.4643 ft /ft manning's n ...................... 0..0130 Computed Results: Depth ........................... Area .......................... 1.2368 in 0.7854 ft2 wetted Area ..................... 0.0427 ft2 wetted Perimeter ..........:..... 7.8437 in Perimeter ....................... velocity ... .................. 37.6991 in 12.6388 fps Hydraulic Radius *'' *...... 0.7844 in Percent Full :::::: 10.3063 Full flow Flowrate .............. 24.2768 cfs Full flow velocity .............. 30.9102 fps critical Information critical depth .................. critical slope ................. 3.6611 in 0 -.0056 ft /ft 'l } critical velocity ............... critical area critical perimeter .. .... 2.6621 fps 0.2028 ft2 14.0443 in critical hydraulic radius ....... critical top width .............. specific energy ................. Minimum energy .................. 2.0798 in 11.0507 in 2.5855'ft 0.4576 ft Froude number ................... 8.4060 Flow condition .................. Supercritical t Page 1 La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #91 Given Input Data: shape .. solving for Diameter ... Flowrate ... slope ... manning's n #91.txt Manning Pipe Calculator Circular Depth of Flow 36.0000 in 16.2400 cfs 0.0042 ft /ft 0.0130 computed Results: Depth ........................... 15.2895 in Area .......................... 7.0686 ft2 wetted Area ..................... 2.8592 ft2 wetted Perimeter ................ 51.1070 in Perimeter ....................... 113.0973 in velocity ........................ 5.6798 fps Hydraulic Radius ................ .8.0563 in Percent Full .................... 42.4709 Full flow Flowrate .............. 43.2255 cfs Full flow velocity .. 6.1152 fps Critical Information Critical depth .................. 15.4470 in' Critical slope ................. 0.0040 ft /ft Critical velocity ............... 5.6035 fps critical area ................... 2.8982 ft2 critical perimeter .............. 51.4253 in Critical hydraulic radius ....... 8.1154 in Critical top width .............. 35.6360 in Specific energy ................. 1.7755 ft Minimum energy .................. 1.9309 ft Froude number ................... 1.0198 Flow condition .................. supercritical Page 1 La Quinta Sam's Club 100 Year - 24 your Storm Event Storm Drain Line #92 Given Input Data: shape ...... solving for Diameter ... Flowrate ... slope ... Manning.'s n #92.txt Manning Pipe Calculator Circular Depth of Flow 12.0000 in 1.7000 cfs 0.3993 ft /ft 0.0130 Computed Results: Depth ........................... 2.2311 in Area .......................... 0.7854 ft2 wetted Area ................... 0.1007 ft2 wetted Perimeter 10.6996 in Perimeter ....................... 37.6991 in velocity ........................ 16.8788 fps Hydraulic Radius ................ 1.3555 in Percent Full .................... 18.5928 Full flow Flowrate .............. 22.5134 cfs Full flow velocity .............. 28.6650.fps Critical Information Critical depth .................. 6.6618 in Critical slope .................. 0.0064 ft /ft Critical velocity ............... 3.7959 fps Critical area ................... 0.4478 ft2 Critical perimeter .............. 20.1731 in Critical. hydraulic radius ....... 3.1968 in Critical top width .............. 12.0000 in specific energy ................. 4.6133 ft Minimum energy .................. 0.8327 ft Froude number ................... 8.2709 Flow condition .................. Supercritical Page 1 #93.txt La Quinta Sam's club 100 year - 24 Hour Storm Event Storm Drain Line #93 Manning Pipe calculator Given Input Data: Shape ..... solving for Diameter .. Flowrate .. Slope .. manning's n computed Results: Depth ............ area ........... wetted area ...... Wetted Perimeter . .Perimeter ........ velocity ......... Hydraulic Radius . Percent Full ..... Full flow Flowrate Full flow velocity ci rcul ar Depth of Flow 36.0000 in 17.9400 cfs 0.0042 ft /ft 0.0130 16.1670 in 7.0686 ft2 3.0768 ft2 52.8764 in 113.0973 in 5.8306 fps 8.3793 in 44.9084 % 43.2255 cfs 6.1152 fps critical Information critical depth 16.2713 in critical slope ................. 0.0041 ft /ft critical velocity ............... 5.7819 fps critical area 3.1028 ft2 critical perimeter .............. 53.0858 in critical hydraulic radius ....... 8.4165 in critical top width .............. 35.8336 in Specific energy 1.8756 ft Minimum energy .................. 2.0339 ft Froude number ................... 1.0124 Flow condition supercritical Page 1 La Quints Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #94 Given Input Data: shape .. solving for Diameter ... Flowrate ... Slope ... manning's n #94.txt Manning Pipe Calculator Circular Depth of Flow 12.0000 in 1.3700 cfs 0.1620 ft /ft 0.0130 Computed Results: depth ..... .......... 5.9415 in Depth ........................... 2.5056 in Area .......................... 0.7854 ft2 wetted Area ..................... 0.1189 ft2 wetted Perimeter ................ 11.3894 in Perimeter ....................... 37.6991 in velocity ... ................ 11.5202 fps Hydraulic Radius ................ 1.5036 in Percent Full .................... 20.8801 0.7427 ft Full flow Flowrate .............. 14.3400 cfs Full flow velocity .............. 18.2583 fps Critical information Critical depth ..... .......... 5.9415 in Critical slope ................. 0.0061 ft /ft Critical velocity ............... 3.5325 fps Critical area ................... 0.3878 ft2 Critical perimeter .............. 18.7326 in Critical hydraulic radius ....... 2.9813 in Critical top width .............. 11.9994 in Specific energy ................. 2.2713 ft Minimum energy .................. 0.7427 ft Froude number ................... 5.3100 Flow condition ................... Supercritical Page 1 La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #95 Given Input Data: Shape .. solving for Diameter ... Flowrate ... Slope ... Manning's n #95.txt Manning Pipe Calculator Circular Depth of Flow 36.0000 in 19.3100 cfs 0.0042 ft /ft 0.0130 Computed Results: Depth 16.8592 in Area .......................... 7.0686 ft2 wetted Area ..................... 3.2493 ft2 wetted Perimeter ................ 54.2655 in Perimeter ....................... 113.0973 in velocity ... 5.9429 fps Hydraulic Radius ................ 8.6223 in Percent Full .................... 46.8310 Full flow Flowrate .............. 43.2255 cfs Full flow velocity .............. 6.1152 fps Critical Information Critical depth .................. 16.9095 in critical slope ................. 0.0042 ft /ft Critical velocity ............... 5.9200 fps Critical area ................... 3.2618 ft2 Critical perimeter .............. 54.3663 in Critical hydraulic radius ....... 8.6396 in Critical top width .............. 35.9339 in Specific energy ................. 1.9538 ft Minimum energy ................ 2.1137 ft Froude number ................... 1.0057 Flow condition .................. Supercritical Page 1 La Quinta Sam's club 100 Year - 24 Hour Storm Event Storm Drain Line #96 Given Input Data: shape ...... solving for Diameter.... Flowrate ... slope .... manning's n #96.txt Manning Pipe calculator Circular Depth of Flow 12.0000 in 0.9500 cfs 0.1751 ft /ft 0.0130 computed Results: depth .................. 4.9072 Depth ........................... 2.05.32 in Area .......................... 0.7854 ft2 wetted area ..................... 0.0894 ft2 wetted Perimeter ................ 10.2349 in Perimeter ....................... 37'.6991 in velocity ........................ 10.6307 fps Hydraulic Radius ................ 1.2573 in Percent Full .................... 17.1102 % Full flow Flowrate .............. 14.9085 cfs Full flow velocity ............... 18.9821 fps critical Information critical depth .................. 4.9072 in critical slope ................. 0.0058 ft /ft critical velocity ............... 3.1443 fps critical area ................... 0.3021 ft2 critical perimeter .............. 16.6517 in critical hydraulic radius ....... 2.6128 in critical top width .............. 11.7993 in Specific energy ................. 1.9273 ft Minimum energy .................. 0.6134 ft Froude number ................... 5.4410 Flow condition .................. Supercritical Page 1 La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm brain Line #97 Given Input Data: shape .. solving for Diameter ... Flowrate ... slope ... manning's n #97.txt Manning Pipe Calculator Ci rcul ar Depth of Flow 36.0000 in 20.2600 cfs 0.0042 ft /ft 0.0130 Computed Results: Depth ........................... 17.3328 in Area .............. 7.0686 ft2 wetted Area ..................... 3.3675 ft2 wetted Perimeter ................ 55.2139 in Perimeter ..... ................ 113.0973 in velocity ... 6.0163 fps Hydraulic Radius ................ 8.7826 in Percent Full .......... 48.1466 % Full flow Flowrate 43.2255 cfs Full flow velocity .............. 6.1152 fps Critical informati Critical depth .................. Critical slope ................. Critical velocity ............... Critical area ................... Critical perimeter ...... ....... I Critical hydraulic radius ....... Critical top width .............. Specific energy ................. Minimum energy ................. , Froude number ................... Flow condition ................. 3n 17.3397 in 0.0042 ft /ft 6.0132 fps 3.3693 ft2 55.2278 in 8.7849 in 35.9758 in 2.0069 ft 2.1675 ft 1.0008 Critical Page 1 #98.txt La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #98 Manning Pipe Calculator Given Input Data: shape ...... solving for Diameter ... Flowrate ... slope ...... Manning's n Computed Results: Depth ............ Area ........... wetted Area ...... wetted Perimeter . Perimeter ........ velocity ......... Hydraulic Radius . Percent Full ..... Full flow Flowrate Full flow velocity Circular Depth of Flow 54.0000 in 95.7400 cfs 0.0040 ft /ft 0.0130 35.5365 in 15.9043 ft2 11.0992 ft2 102.1940 in. 169.6460 in 8.6259 fps 15.6397 in 65.8083 124.3718 cfs 7.8200 fps Page 1 Critical Information Critical depth .................. 34.7632 in Critical slope ................. 0.0042 ft /ft Critical velocity ............... 8.8131 fps Critical area ................... 10.8634 ft2 Critical perimeter .............. 100.3495 in Critical hydraulic radius ....... 15.5888 in Critical top width .............. 54.0000 in specific energy ................. 4.1052 ft Minimum energy .................. 4.3454 ft Froude number .......... ....... 0.9727 Flow condition .......... ......... subcritical Page 1 #99.txt La Quinta Sam's club 100 Year - 24 Hour Storm Event Storm Drain Line #99 Manning Pipe calculator Given Input Data: Shape ..... solving for Diameter Flowrate .. Slope .. Manni ng'.s n computed Results: Depth ............ area.. ........... wetted area ...... wetted Perimeter . Perimeter ........ velocity ......... Hydraulic Radius . Percent Full ..... Full flow Flowrate Full flow velocity 1; Circular Depth of Flow 54.0000 in 113.2400 cfs 0.0040 ft /ft 0.0130 40.4472 in 15.9043 ft2 12.7779 ft2 112.9756 in 169.6460 in 8.8622 fps 16.2868 in 74.9023 124.3718 cfs 7.8200 fps Page 1 critical Information critical depth .................. 38.1937 in critical slope ................. 0.0044 ft /ft critical velocity ............... 9.3203 fps critical area ................... 12.1498 ft2 critical perimeter .............. 107.2104 in critical hydraulic radius ....... 16.3190 in critical top width .............. 54.0000 in Specific energy ................. 4.5388 ft Minimum energy .................. 4.7742 ft Froude number ................... 0.9433 Flow condition ............. ... Subcritical Page 1 1 Page 1 #100.txt 1 La Quinta Sam's club 100 Year - 24 Hour Storm Event Storm Drain Line #100 Manning Pipe Calculator ' Given Input Data: shape ........................... solving for ..................... Diameter ........................ Flowrate ........................ Circular Depth of Flow 18.0000 in 6.0500 cfs slope ........................ 0.0200 ft /ft 'i manning's n ..... ............. . Computed Results: 0.0130 Depth ........................... Area Wetted Area ..................... 7.9977 in 1.7671 ft2 0.7585 ft2 wetted Perimeter ................ 26.2656 in Perimeter ....................... velocity ........................ Hydraulic Radius ................ 56.5487 in 7.9758 fps 4.1587 in ' Percent Full .................... 44.4317 Full flow Flowrate .............. 14.8554 cfs 1iCritical Full flow velocity .............. 8.4064 fps Information critical depth .................. Critical slope .................. Critical velocity ............... Critical area ................... Critical perimeter .............. Critical hydraulic radius ....... 11.4914 in 0.0060 ft /ft 5.0628 fps 1.1950 ft2 33.2571 in 5.1742 in Critical top width .............. Specific energy ................. Minimum energy .................. Froude number ................... 18.0000 in 1.6551 ft 1.4364 ft 1.9712 Flow condition .................. supercritical 1 Page 1 La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #101 Given Input Data: Shape .. solving for Diameter ... Flowrate ... slope ... .Manning's n #101.txt Manning Pipe calculator Circular Depth of Flow 18.0000 in 6.0500 cfs 0.0050 ft /ft 0.0130 computed Results: Depth ........................... 12.3413 in Area .......................... 1.7671 ft2 wetted Area ..................... 1.2914 ft2 wetted Perimeter ................ 35.1207 in Perimeter ....................... 56.5487 in velocity ... .................. 4.6847 fps Hydraulic Radius ................ 5.2950 in Percent Full .................... 68.5625 Full flow Flowrate .............. 7.4277 cfs Full flow velocity .............. 4.2032 fps Critical informati Critical depth .................. Critical slope ................. critical velocity ............... Critical area ................... Critical perimeter .............. Critical hydraulic radius ....... Critical top width ............ .... Specific energy ................. Minimum energy .................. Froude number ................... Flow condition .................. Dn 11.4914 in 0.0060 ft /ft 5.0628 fps 1.1950 ft2 33.2571 in 5.1742 in 18.0000 in 1.3621 ft 1.4364 ft . 0.8966 subcritical Page 1 La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #102 Given Input Data: Shape .. Solving for Diameter ... Fl owrate... . Slope ... manning's n #102.txt Manning Pipe Calculator ci rcular Depth of Flow 18.0000 in 6.0500 cfs 0.0050 ft /ft 0.0130 computed Results: . Depth 12.3413 in Area ........ 1.7671 ft2 wetted Area ..................... 1.2914 ft2 wetted Perimeter ................ 35.1207 in Perimeter ....................... 56.5487 in velocity ... .......... .. 4.6847 fps Hydraulic Radius ................ 5.2950 in Percent Full ... 68.5625 Full flow Flowrate 7.4277 cfs Full flow velocity 4.2032 fps Page 1 Critical Information critical depth .................. 11.4914 in critical slope ................. 0.0060 ft /ft Critical velocity ............... 5.0628 fps Critical area ................... 1.1950 ft2 Critical ..... perimeter ....... .. 33.2571 in Critical hydraulic radius ....... 5.1742 in critical top width .............. 18.0000 in Specific energy ................. 1.3621 ft Minimum energy .................. 1.4364 ft Froude number ................... 0.8966 Flow condition .................. subcritical Page 1 La Quinta Sam's Club 100 Year - 24 Hour Storm Event storm Drain Line #103 Given Input Data: shape .. solving for Diameter .. Flowrate .. Slope ... manning's n #103.txt Manning Pipe Calculator Ci rcul ar Depth of Flow 12.0000 in 3.2500 cfs 0.0219 ft /ft 0.0130 Computed Results: depth .................. 9.5658 Depth ........................... 6.8135 in Area .......................... 0.7854 ft2 wetted Area ..................... 0.4603 ft2 wetted Perimeter ................ 20.4816 in Perimeter ....................... 37.6991 in velocity .. .............. 7.0609 fps Hydraulic Radius .................. 3.2361 in Percent Full .................... 56.7792 top width .............. Full flow Flowrate .............. 5.2725 cfs Full flow velocity .............. 6.7131 fps Critical Information Critical depth .................. 9.5658 in Critical slope ................. 0.0078 ft /ft Critical velocity ............... 4.7112 fps Critical area ................... 0.6898 ft2 Critical perimeter .............. 25.9811 in Critical hydraulic radius ....... 3.8235 in Critical top width .............. 12.0000 in specific energy ............... . 1.3426 ft minimum energy.... ............... 1.1957 ft Froude number ..................... 1.8355 Flow condition .................. supercritical Page 1 La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #104 Given Input Data: Shape .. solving for Diameter ... Flowrate ... Slope ... Manning's n #104.txt Manning Pipe Calculator Circular Depth of Flow 24.0000 in 9.2500 cfs 0.0050 ft /ft 0.0130 Computed Results: Depth 13.0962 in Area .......................... 3.1416 ft2 wetted Area ..................... 1.7532 ft2 wetted Perimeter ................ 39.8946 in Perimeter ...... .................. 75:3982 in velocity ... .................. 5.2759 fps Hydraulic Radius ................ 6.3283 in Percent Full .................... 54:5675 Full flow Flowrate .............. 15.9965 cfs Full flow velocity 5.0918 fps Critical Information Critical depth 13.0486 in Critical slope ................. 0.0051 ft /ft Critical velocity 5.2991 fps Critical area ................... 1.7456 ft2 critical perimeter .............. 39.7963 in Critical hydraulic radius ....... 6.3162 in Critical top width .............. 24.0000 in Specific energy ................. 1.5238 ft Minimum energy .................. 1.6311 ft Froude number ................... 0.9936 Flow condition .................. Subcritical Page 1 La Quinta Sam's club 100 Year - 24 Hour Storm Event Storm Drain Line #105 Given Input Data: Shape .. Solving for Diameter ... Flowrate ... Slope ... manning's n #105.txt Manning Pipe calculator Circular Depth of Flow 24.0000 in 9.2500 cfs 0.0050.ft /ft 0.0130 computed Results: critical Information Depth ........................... 13.0962 in Area .......................... 3.1416 ft2 wetted Area ..................... 1.7532 ft2 wetted Perimeter ................ 39.8946 in Perimeter ....................... 75.3982 in velocity ... ......... ....... 5.2759 fps Hydraulic Radius ................ 6.3283 in Percent Full .................... 54.5675 6.3162 Full flow Flowrate .............. 15.9965 cfs Full flow velocity .............. 5.0918 fps Page 1 critical Information critical depth .................. 13.0486 in critical slope ................. 0.0051 ft /ft critical velocity ............... 5.2991 fps critical area ................... 1.7456 ft2 critical perimeter .............. 39.7963 in in critical hydraulic radius ....... 6.3162 critical top width .............. 24.0000 in specific energy ................. 1.5238 ft Minimum energy .................. 1.6311 ft Froude number ................... 0.9936 Flow condition .................. Subcritical Page 1 #106.txt La Quinta Sam's club 100 Year - 24 Hour storm Event storm Drain Line #106 Manning Pipe Calculator Given'Input Data: shape ........................... Circular solving for ..................... Depth of Flow Diameter ........................ 24.0000 in F1owrate ........................ 9.2500 cfs slope ........................ 0.0050 ft /ft manning's n ..................... 0.0130 computed Results: Depth ........................... 13.0962 in Area .......................... 3.1416 ft2 wetted Area ..................... 1.7532 ft2 wetted Perimeter ................ 39.8946 in Perimeter ....................... 75.3982 in velocity ........................ 5.2759 fps Hydraulic Radius ................ 6.3283 in Percent Full .................... 54.5675 Full flow Flowrate .............. 15.9965 cfs Full flow velocity .............. 5.0918 fps Critical Information Critical depth .................. 13.0486 in Critical slope ................. 0.0051 ft /ft critical velocity ............... 5.2991 fps critical area ................... 1.7456 ft2 Critical perimeter .. ......... 39.7963 in critical hydraulic radius ....... 6.3162 in critical top width .............. 24.0000 in specific energy ................. 1.5238 ft Minimum energy .................. 1.6311 ft Froude number ................... 0.9936 Flow condition .................. subcritical Page 1 ' #107.txt La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #107 Manning Pipe Calculator ' Given Input Data: shape .. ........................ solving for ..................... Circular Depth of Flow ' Diameter ........................ Flowrate 12.0000 in , 4.2900 cfs Slope ........................ 0.0695 ft /ft manning's n ..................... 0.0130 ' Computed Results: ' Depth ........................... Area .......................... wetted Area ..... wetted Perimeter ................ 5.6919 in 0.7854 ft2 0.3670 ft2 18.2330 in Perimeter ....................... velocity ... 37.6991 in 11.6883 fps Hydraulic Radius ................ Percent Full Full flow Flowrate .............. 2.8987 in 47.4322 9.3926 cfs Full flow velocity .............. 11.9590 fps Critical Information Critical depth .................. Critical slope ................. 11.2490 in 0.0086 ft /ft Critical velocity ............... Critical area Critical perimeter ...: — ,* ..... Critical hydraulic radius ....... 5.1680 fps 0.8301 ft2 29.3475 in 4.0731 in ' Critical top width .............. Specific energy :: ............: Minimum energy Froude number ................... 12.0000 in 2.5974 ft 1.4061 ft 3.3991 Flow condition .................. Supercritical ' Page 1 La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #108 Given Input Data: Shape .. Solving for Diameter ... Flowrate ... Slope ... Manning's n #108.txt Manning Pipe Calculator Circular Depth of Flow 24.0000 in 13.5900.cfs 0.0050 ft /ft 0.0130 computed Results: Depth ........................... 16.9904 in Area .......................... 3.1416 ft2 wetted Area ..................... 2.3779 ft2 wetted Perimeter ................ 47.9927 in Perimeter ....................... 75.3982 in velocity ... ... ............. 5.7151 fps Hydraulic Radius ................ 7.1348 in Percent Full .................... 70.7935 Full flow Flowrate .............. 15.9965 cfs Full flow velocity .............. 5.0918 fps critical Informati Critical depth .................. Critical slope ................. critical velocity ............... Critical area ................... Critical perimeter .............. Critical hydraulic radius ....... Critical top width .............. Specific energy ................. Minimum energy .................. Froude number ................... Flow condition .................. on 16.1107 in 0.0056 ft /ft 6.0242 fps 2.2559 ft2 45.9204 in 7.0742 in 24.0000 in 1.9101 ft 2.0138 ft 0.9334 subcritical Page 1 La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #109 Given Input Data: Shape ...... Solving for Diameter ... Flowrate ... slope . Manning's n #109.txt Manning Pipe Calculator Circular Depth of Flow 24.0000 in 13.5900.cfs 0.0050 ft /ft 0.0130 Computed Results: Critical Information Depth ........................... 16.9904 in Area .......................... 3.1416 ft2 wetted Area ..................... 2.3779 ft2 wetted Perimeter ................ 47.9927 in Perimeter ........................ 75.3982 in velocity ........................ 5.7151 fps Hydraulic Radius ................. 7.1348 in Percent Full .................... 70.7935 % Full flow Flowrate .............. 15.9965 cfs Full flow velocity .............. 5.0918 fps Page 1 Critical Information critical depth .................. 16.1107 in Critical slope ................. 0.0056 ft/ft Critical velocity ............... 6.0242 fps Critical area ................... 2.2559 ft2 Critical perimeter .............. 45.9204 in Critical hydraulic radius ....... 7.0742 in Critical top width .............. 24.0000 in Specific energy ................. 1.9101 ft Minimum energy .................. 2.0138 ft Froude number ................... 0.9334 Flow condition .................. subcritical Page 1 La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #110 Given Input Data: shape ..... Solving for Diameter .. Flowrate .. Slope .. manning's n #110.txt Manning Pipe Calculator Circular Depth of Flow 12.0000 in 1.9800 cfs 0.0140 ft /ft 0.0130 Computed Results: Depth ........................... 5.7846 in Area 0.7854 ft2 wetted Area ..................... 0.3748 ft2 wetted Perimeter ................ 18.4187 in Perimeter ....................... 37.6991 in velocity .... ............... 5.2835 fps Hydraulic Radius ................ 2.9299 in Percent Full .................... 48.2051 Full flow Flowrate .............. 4.2156 cfs Full flow velocity ............... 5.3674 fps Critical Informati Critical depth ............... Critical slope ................. Critical velocity ............... Critical area ................... Critical perimeter .............. Critical hydraulic radius ....... Critical top width .............. Specific energy ................. Minimum energy ...... Froude number ................. Flow condition .................. on 7.2368 in 0.0067 ft /ft 3.9938 fps 0.4958 ft2 21.3231 in 3.3480 in 12.0000 in 0.9159 ft 0.9046 ft 1.5211 Supercritical Page 1 La Quinta Sam's Club 100 Year —24 Hour Storm Event Storm Drain Line #111 Given Input Data: Shape ...... Solving for Diameter ... Flowrate ... Slope ... manning's n #111.txt Manning Pipe calculator Circular Depth of Flow 12.0000 in 0.5500 cfs 0.0305 ft /ft 0.0130 Computed Results: depth .................. 3.6959 Depth ........................... 2.4111 in Area . ......................... 0.7854 ft2 wetted Area ..................... 0.1126 ft2 wetted Perimeter ................ 11.1553 in 'Perimeter ....................... 37.6991 in velocity ......................... 4.8861 fps Hydraulic Radius ............. .... 1.4531 in Percent Full .................... 20.0925 11.0799 Full flow Flowrate .............. 6.2222 cfs Full flow velocity .............. 7.9223 fps critical Information Critical depth .................. 3.6959 in Critical slope ................. 0.0056 ft /ft Critical velocity ............... 2.6761 fps critical area ................... 0.2055 ft2 Critical perimeter .............. 14.1199 in critical hydraulic radius ....... 2.0960 in Critical top width .............. 11.0799 in specific energy .... 0.5719 ft Minimum energy .................. 0.4620 ft .Froude number ................... 2.2984 'Flow condition .................. I Supercritical Page l La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #112 Given Input Data: Shape ..... Solving for Diameter .. Flowrate .. Slope .. manning's n #112.txt Manning Pipe Calculator Circular Depth of Flow 12.0000 in 2.5300 cfs 0.0140 ft /ft 0.0130 Computed Results: depth .................. 8.2929 Depth ........................... 6.7005 in Area .......................... 0.7854 ft2 wetted Area ..................... 0..4509 ft2 wetted Perimeter ................ 20.2537 in Perimeter ....................... 37.6991 in velocity ........................ 5.6105 fps Hydraulic Radius ................ 3.2061 in Percent Full .................... 55.8373 12.0000 Full flow Flowrate .............. 4.2156 cfs Full flow velocity .............. 5.3674 fps Critical Information Critical depth .................. 8.2929 in critical slope ................. 0.0072 ft /ft Critical velocity ................ 4.3339 fps Critical area ................... 0.5838 ft2 Critical perimeter .. ........ 23.4354 in Critical hydraulic radius ....... 3.5870 in Critical top width .............. 12.0000 in specific energy ................. 1.0475 ft Minimum energy .................. 1.0366 ft Froude number ................... 1.4733 Flow condition .................. Supercritical Page 1 La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #E1 Given Input Data: shape ...... solving for Diameter ... Flowrate ... slope ... manning's n #E1.txt Manning Pipe Calculator Circular Depth of Flow 30.0000 in 6.5000 cfs 0.0041 ft /ft 0.0130 Computed Results: Critical Information Depth ........................... 10.1691 in Area .......................... 4.9087 ft2 wetted Area ..................... 1.4656 ft2 wetted Perimeter ................ 37.2867 in Perimeter ....................... 94.2478 in velocity ... ................... 4.4350 fps Hydraulic Radius ................ 5.6601 in Percent Full .................... 33.8969 % Full flow Flowrate .............. 26.2638 cfs Full flow velocity .............. 5.3504 fps Page 1 Critical Information Critical depth .................. 10.1354 in Critical slope ................. .0.0042 ft /ft Critical velocity ............... 4.4552 fps Critical area ................... 1.4590 ft2 Critical perimeter .............. 37.2155 in Critical hydraulic radius ....... 5.6452 in Critical top width .............. 28.3785 in specific energy ................. 1.1531 ft Minimum energy ................... 1.2669 ft Froude number ................. 0.9936 Flow condition .................. subcritical Page 1 La Quinta Sam's Club 100 Year - 24 Hour storm Event Storm Drain Line #E2 Given Input Data: Shape . solving for Diameter .. Flowrate .. slope .. Manning's n #E2.txt Manning Pipe Calculator Ci rcul ar Depth of Flow 30.0000 in 15.6700 cfs 0.0041 ft /ft 0.0130 computed Results: Critical Information Depth ........................... 16.6900 in Area ............................ 4.9087 ft2 wetted ;area ..................... 2.8057 ft2 wetted Perimeter ................ 50.5112 in Perimeter ....................... 94.2478 in velocity ... .......... ...... 5.5850 fps Hydraulic Radius ................ 7.9987 in Percent Full .................... 55.6335 7.8186 Full flow Flowrate .............. 26.2638 cfs Full flow velocity .............. 5.3504 fps Page 1 Critical Information critical depth .................. 16.0453 in Critical slope ................. 0.0047 ft /ft critical velocity ............... 5.8642 fps Critical area ................... 2.6721 ft2 Critical perimeter .............. 49.2144 in critical hydraulic radius ....... 7.8186 in Critical top width .............. 30.0000 in Specific energy ................. 1.8753 ft Minimum energy .................. 2.0057 ft Froude number ................... 0.9296 Flow condition .................. subcritical Page 1 La Quinta Sam's club 100 Year - 24 Hour Storm Event Storm Drain Line #E3 Given Input Data: shape ...... solving for Diameter.... Flowrate ... slope ... manning's n #E3.txt Manning Pipe calculator computed Results: Depth........................... Area .......................... wetted Area ..... wetted Perimeter Perimeter ....................... velocity ......................... 1 Hydraulic Radius ................ Percent Full Full flow Flowrate .............. Full flow velocity .............. critical informati Critical depth ................... Critical slope ................. Critical velocity ............... Critical area ................... critical perimeter .............. Critical hydraulic radius ....... Critical top width .............. Specific energy ................. Minimum energy .................. Froude number ................... Flow condition .................. Circular Depth of Flow 42.0000 in 36.9000 cfs 0.0041 ft /ft 0.0130 22.7852 in 9.6211 ft2 5.3306 ft2 69.5481 in 131.9469 in 6.9223 fps 11.0371 in 54.2504 64.4217 cfs 6.6959 fps on 22.6472 in 0.0042 ft /ft 6.9741 fps 5.2910 ft2 69.2679 in 10.9994 in 42.0000 in 2.6433 ft 2.8309 ft 0.9890 subcritical Page 1 #E4.txt La Quinta Sam's Club 100 Year -.24 Hour Storm Event Storm Drain Line #E4 Manning Pipe Calculator Given Input Data: Shape .. solving for Diameter .. Flowrate... Slope .. mannin.g's n Computed Results: Depth ............ area ........... wetted Area ...... wetted Perimeter . Perimeter ........ velocity ......... Hydraulic Radius . Percent Full ..... Full flow Flowrate Full flow velocity Ci rcul ar Depth of Flow 42.0000 in 41.7400 cfs 0.0041 ft /ft 0.0130 24.6151 in 9.6211 ft2 5.8597 ft2 73.2398 in 131.9469 in 7.1232 fps 11.5211 in 58.6073 64.4217 cfs 6.6959 fps Page 1 Critical Information Critical depth .................. 24.2007 in Critical slope ................. 0.0043 ft /ft Critical velocity ............... 7.2666 fps Critical area ................... 5.7441 ft2 Critical perimeter .. ......... 72.3749 in Critical hydraulic radius ....... 11.4287 in Critical top width ............... 42.0000 in specific energy ..........:...... 2.8382 ft Minimum energy .................. 3.0251 ft Froude number ................... 0.9713 Flow condition .................. subcritical Page 1 La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #E5 Given Input Data: Shape ...... Solving for Diameter ... Flowrate ... slope Manning 's n L #E5.txt Manning Pipe Calculator Circular Depth of Flow 42.0000 in 49.1400 cfs 0.0041 ft /ft 0.0130 Computed Results: Depth ........................... 27.4615 in Area .......................... 9.6211 ft2 wetted Area ..................... 6.6650 ft2 wetted Perimeter ............. . 79.1096 in Perimeter ....................... 131.9469 in velocity .. 7.3728 fps Hydraulic Radius ................ 12.1320 in Percent Full .................... 6.5.3845 % Full flow Flowrate .............. 64.4217 cfs Full flow velocity .............. 6.6959 fps Page 1 Critical Information Critical depth .................. 26.4645 in Critical slope ................. 0.0045 ft /ft Critical velocity ............... 7.6729 fps Critical area ................... 6.4044 ft2 Critical perimeter .............. 76.9025 in Critical hydraulic radius ....... 11.9922 in Critical top width .............. 42.0000 in Specific energy ................. 3.1240 ft Minimum energy .................. 3.3081 ft Froude number ................... 0.9459 Flow condition .................. subcritical Page 1 ' #E6.txt La Quinta Sam's Club I 100 Year - 24 Hour Storm Event Storm Drain Line #E6 Manning Pipe calculator Given Input Data: Shape .. solving for Diameter ... Flowrate ... Slope ... manning's n computed Results: Depth ............ area ........... wetted Area ...... wetted Perimeter . Perimeter ........ velocity ... Hydraulic Radius . Percent Full ..... Full flow Flowrate Full flow velocity Circular Depth of Flow 60.0000 in 132.4400 cfs 0.0041 ft /ft 0.0130 40.3792 in 19.6350 ft2 14.0542 ft2 115.4443 in 188.4956 in 9.4235 fps 17.5306 in 67.2987 % 166.7646 cfs 8.4933 fps Page 1 critical Information Critical depth .................. 39.9638 in Critical slope ................. 0.0041 ft /ft critical velocity ............... 9.4809 fps Critical area ................... 13.9691 ft2 critical perimeter .............. 114.1755 in Critical hydraulic radius ....... 17.6180 in Critical top width .............. 60.0000 in specific energy ................. 4.7272 ft .Minimum energy .................. 4.9955 ft Froude number ................... 0.9968 Flow condition .................. subcritical Page 1 #E7.txt La Quinta Sam's Club 100 Year - 24 Hour Storm Event Storm Drain Line #E7 Manning Pipe Calculator Given Input Data: Shape .. Solving for Diameter .. Flowrate .. Slope .. manning's n Computed Results: Depth ............ Area ........... wetted Area ...... wetted Perimeter . Perimeter ........ velocity ......... Hydraulic Radius . Percent Full ..... Full flow Flowrate Full flow velocity Circular Depth of Flow 60.0000 in 136.6600 cfs 0.0041 ft /ft 0.0130 41.3242 in 19.6350 ft2 14.4213 ft2 117.4719 in 188.4956 in 9.4762 fps 17.6780 in 68.8737 166.7646 cfs 8.4933 fps Page 1 Critical Information Critical depth .................. 40.6723 in Critical slope ................. 0.0042 ft /ft critical velocity .. ........... 9:5806 fps Critical area ................... 14.2643 ft2 Critical perimeter. .............. 115.5923 in Critical hydraulic radius ....... 17.7698 in Critical top width .............. 60.0000 in specific energy ................. 4.8159 ft Minimum energy .................. 5.0840 ft Froude number ................... 0.9912 Flow condition .................. subcritical Page 1 I I I I I I I I I I I I I I I I I I I SAND FILTER DESIGN , La Quinta Sam's Club Retention Basin 304018.1 -5 1� 'i u� i SITE DATA Description Quantity Landscaped Area (A DD'L) 96650 SF Landscaped Area (existing) 174240 SF CITY REQUIREMENTS City of La Quinta's Nuisance Water Sand Filter Criteria (October 12,1998)' Description Quantity Sand Filter (Site) X homes /(40 homes /sand filter) Leach Line Length, X homes x 1.9 LF /home (sandy soil) Leach Line Length X homes x 3.8 LF /home (silty soil) City of La Quinta's Conditions of Approval (December 14, 2004)' Description Quantity Sand Filter (Site). 3 GPH /1000SF Infiltration Rate 5 GPH /100.OSF Leach Lines 1.108 FT of Leach Line/ GPH of Flow San Filter (Capacity) 137.2 .GPH /Filter EXISTING RETENTION BASIN DATA (TKC) Description Sand Filters Leach Lines Each Leach Line Length Filter Capacity Used Sand Filters Used Filteration Capacity Excess Filtration Capacity 1998 METHOD' Quantity 4 Units 100 FT 25 FT 548.8 GPH 2.2 Units 301.84 GPH 247.0 GPH PROPOSED RETENTION BASIN DATA (Nasland) Description Required Filtration Capcity Filter Capacity (each) Required Sand Filters Additional Filters Required Total Units Required Leach Lines Length of Each Leach Line 1998 METHOD' Quantitv 290.0 GPH 137.2 GPH /Fitter 2.1 Units Units 5 Units 421 FT 84 FT 2004 METHOD' Quantity 4 Units 580 FT 145 FT 548.8 GPH 3.8 Units 522.7 GPH 26.1 GPH 2004 METHOD? - Quantity 290.0 GPH 137.2 GPH /Filter 2.1 Units 22 Units 6 Units 901 FT 90 FT 'The Kieth Company (TKC) performed filter.and leach line calculation based upon the City of La Quinta's Nuisance Water Sand Filter Criteria Dated October 12, 1998. 2Nasland's calculations were performed using the City of La Quinta's Conditions of Approval (Planning Commission Resolution 2004, Specific Plan 1997 -029, Centre at La Quinta Conditions of Approval, Recommended, December 14, 2004) 11/5/2005 36" CLEAR SPACE 6" NUISANCE VATER INLET —� FINE SAND, 33" DEEP — FILTER FABRIC . COURSE ROCK FOOTING --� STEEL GRATE, THREE (3) SECTIONS r— W4x13 SUPPORT BEAM GROUND AIR YEW MEXT MODIFIED PRECAST UTILITY.4AULT (TIIO PIECES) _,-4" DRAIN LINE ,—ARCH-TYPE LEACH UNE . ELEVATION VIEW COURSE ROCK BEDDIB6 LENGTH AS SPECIFIED OR PROJECT PLANS PLAN VD 6 REVISIONS:' APPROVED 08 21/01 `b STANDARD CHRIS A. VOGT o. CITY ENGINEER " RCE 44250 SAND FIL TER SHEET 1 OF 7 It r 01 -7 82 7 R L— 61 � 82 PLRN VIEV T 4' -0' 8• SECTION B1-81 J DETAIL 1, PAGE s'-o• DETAIL Z PAGE 3 0 FAIL 3, PAGE 3 OF 6 I a PRECAST UPPER VAULT SECTION - 8' -0" x 6'-0" x 4'-0" I.D. 16 PRECAST LOVER VAULT SECTION - 8' -0" x 6' -0" x 3'-O" I.D O CAST-IN-.PLACE CONCRETE FLOOR O CRST-IN•PLACE CONCRETE FOOTING SECTION B2-82 la ib O REVISIONS: APPROVED STANDARD 08/21/01 s 'CHRIS A. VOGT. `` ' 370 CITY ENGINEER RCE 44250 SAND FILTER SHEET 2 OF 7 DEMTL 1 I a• ar t 4" 32 DETAIL 3 q4- 9. . 16 PRECAST LOVER VALL PIECE OZ CAST- IN-PLACE CONCRETE FLOOR 1520 -C -25001 -03 CAST- IN-PLRCE CONCRETE FOOTING (9-0-C -300) REVISIONS: APPROVED 08 21 /01 /� z �f , ST_ ANDARD CHRIS A. VOGT ^ �`�' 4 CITY ENGINEER SAND FILTER (floor & footing 370 RCE 44250 details ) SHEET 3 OF 7 96' a• 8B' a. DEMTL 1 I a• ar t 4" 32 DETAIL 3 q4- 9. . 16 PRECAST LOVER VALL PIECE OZ CAST- IN-PLACE CONCRETE FLOOR 1520 -C -25001 -03 CAST- IN-PLRCE CONCRETE FOOTING (9-0-C -300) REVISIONS: APPROVED 08 21 /01 /� z �f , ST_ ANDARD CHRIS A. VOGT ^ �`�' 4 CITY ENGINEER SAND FILTER (floor & footing 370 RCE 44250 details ) SHEET 3 OF 7 1� DRILL 5 • 0.5 IN Hmis M UD O .::x. o DETAIL C 4O 1'2. OPEN GRADEO GRAVEL O34' VIDE x 15' HIGH ARCH-TYPE CHASIBER O6 RON -VOVEN GEOTEXTILE ENGINEERING FABRIC 10" OIA. IRRIGATION VALVE BOX BO 1'xlW SCHEDULE 40 PVC TEE 9O SAND xz la 1. ' S'fty - u 0000 O FLOV 10 LFACH nag `00000 s .,. „ts 3i::.•Y;:;:i:.::: DETAIL D DETAIL E 10 2' O.D. SCHEDULE 40 PVC PIPE 11 4'O.D. PERFORATED SCHEDULE 40 PYC PIPE 12 4'O.D. SCHEDULE 40 PYC COUPLING 17 4'0.0. SCHEDULE 40 PYC PIPE 19 45x45¢' SCHEDULE 40 PVC TEE 15 4' SCHEDULE 40 PVC PIPE CAP APPROVED 08/21/ 01 � `� %� /yA �W .C.N O1 CHRIS A. -VOGT D ZP CITY ENGINEER. RCE 44250 SAND FILTER R 0 0 IS I 000 - DETAIL F STANDARD 3.70 SHEET. 4 OF 7. WIVE GRIAM ]. REMMMUEM WIVE 11 a 1 SECTION .. DRILL 5 • 0.5 IN Hmis M UD O .::x. o DETAIL C 4O 1'2. OPEN GRADEO GRAVEL O34' VIDE x 15' HIGH ARCH-TYPE CHASIBER O6 RON -VOVEN GEOTEXTILE ENGINEERING FABRIC 10" OIA. IRRIGATION VALVE BOX BO 1'xlW SCHEDULE 40 PVC TEE 9O SAND xz la 1. ' S'fty - u 0000 O FLOV 10 LFACH nag `00000 s .,. „ts 3i::.•Y;:;:i:.::: DETAIL D DETAIL E 10 2' O.D. SCHEDULE 40 PVC PIPE 11 4'O.D. PERFORATED SCHEDULE 40 PYC PIPE 12 4'O.D. SCHEDULE 40 PYC COUPLING 17 4'0.0. SCHEDULE 40 PYC PIPE 19 45x45¢' SCHEDULE 40 PVC TEE 15 4' SCHEDULE 40 PVC PIPE CAP APPROVED 08/21/ 01 � `� %� /yA �W .C.N O1 CHRIS A. -VOGT D ZP CITY ENGINEER. RCE 44250 SAND FILTER R 0 0 IS I 000 - DETAIL F STANDARD 3.70 SHEET. 4 OF 7. 0 PLAN VIEW OF GRATE VANDAL -PROOF BOLT GRATE FASTENER BEARING BARS (TYPICAL) -BEAM FLANGE C C TACK WELD NUT TO FLANGE UNDERSIDE Q n TYPICAL LOCATION FOR GRATE FASTENER A =A REVISIONS:' APPROVED 08/21/01 CHRIS A. VOGT CITY ENGINEER RCE 44250 °r °v 4 GRATE FRAMING DETAILS B -B STANDARD 370 SHEET 5 OF 7 C C PLAN VIEW OF GRATE VANDAL -PROOF BOLT GRATE FASTENER BEARING BARS (TYPICAL) -BEAM FLANGE C C TACK WELD NUT TO FLANGE UNDERSIDE Q n TYPICAL LOCATION FOR GRATE FASTENER A =A REVISIONS:' APPROVED 08/21/01 CHRIS A. VOGT CITY ENGINEER RCE 44250 °r °v 4 GRATE FRAMING DETAILS B -B STANDARD 370 SHEET 5 OF 7 SANDFILTER SIZING CALCULATIONS Calculation #1 Determines how many standard size sandfilters are needed. No.* of Sandfilters = homes - 40 homeslsandfitter Round all fractions up to the nearest whole number Each sandfilter has 48 sf of filter surface (ie 6' x 8'); assume the incoming nuisance waterwill percolate through the sand at the rate of 4.6 inches per hour. The sandfilter must be sized to handle the "surge inflow rate" of 0.458 cf/house /hour, which is based on the assumption that, on average, each house releases 12 gallons in a 3.5 hour "surge" period. Therefore, each sandirtter is capable of handling 18.4 cf /hour. As a result, each,sandfilter can handle the nuisance water released by 4C homes (18.4/0.458= 40)... Calculation #2 - Determines how long the leach line must be. Leach Line Length* = homes x 1.9 If /home (sandy soil) In feet to be divided evenly between the number of sandfilters Leach Line Length* = homes x 3.8 If /home .(silty soil) 1n feet to be divided evenly between the number of sandfilters The critical aspect in sizing the leach line length is related to its ability to maintain a sustained percolation rate (ie 24-7 -365) in saturated soil, therefore, for the purposes of this calculation, itis assumed that the sustained percolation rate in saturated soil is 0.25 in /hr.(Note: if the soil is silty, more than 5% by weight passing the 200 sieve, the percolation rate shall be reduced to 0.125 in/hr). The leach line arch provides 2.8 sf of percolation surface per lineal foot of leach line length. If the average nuisance water discharge per house in the neighborhood is 20 gallons per day that means each house must have 5.35 sf of percolation area in the leach field to percolate its 24-hr nuisance water discharge. Therefore, the leach line length must be 1.9 If /home. REVISIONS: APPROVED. 08/2 1 /01 STANDARD 4 CHRIS A. VOGT 370 CITY ENGINEER RCE 44250 SAND FI L TER SHEET 6 OF 7 SANDFILTER Materials Specifications • Precast Vault 'StmrfijrP -The vault structure shall be a precast utility vault manufactured in two sections: 1 -36" section, and 1 -48" section, similar to Part No. 608OW7- QTA370 as manufactured by J &R Concrete Products, Inc., of Perris, CA (1- 909 - 943 - 5855), or approved equal. A galvanized steel frame to . accommodate the grate shall be fitted per Sheet 5 of 7 prior to casting the top section. • ;an.dfiltPr (sate -The sandfilter grate shall be galvanized welded steel bar, Model GW -100 with (1 x 3116" bars) and banded ends, as manufactured by the McNichols Co. (1- 800 - 237 - 3820), or approved equal. Four (4) grate panels measuring 37" z 49" shall be provided, (Note: Gross opening size is 8' -3" x 6'- 3"). Use CB saddle type retainer clips as manufactured by McNichols, or an approved alternate method to secure the grates. • y�,itppnrt Ream -The grate support beam shall be W4x1 3, 8' -2" long, Fy =36 ksi steel. • i Parh I inP - The leach line shall be constructed of arch -type chamber sections, High Capacity Infiltrator- model, as distributed by Boyd Tanks Co. (1- 909 -657- 6966), or approved equal. • Fnnineerinn Fahrir. -,The engineering fabric shall be fine spun non - woven, Dupont's Typar Style 3601, as distributed by Aldrich. Supply Co (1- 909 -371- 3018), or approved equal. Filter Sand - The fine filter sand shall be, 100% passing a No. 45 sieve (.35-mm) with a uniformity coefficient between 2 and 3. REVISIONS: APPROVED 00/0000 'CHRIS A. VOGT i CITY ENGINEER RCE 44250 s a N or 4 SAND FILTER STANDARD 370 SHEET 7 OF 7 T4,4f 4 ZfouQalat MEMORANDUM TO: All Interest Persons FROM: Steve Speer, Senior Engin DATE: October 12, 1998 RE: Nuisance Water Sandfilter The La Quinta Nuisance Water Sandfilter is designed to clarify nuisance water before passing the water into a leach line or leach field. Past experience has demonstrated that nuisance water handling systems, such as. °drywells" or "french drains" which typically percolate unfiltered water eventually fail to percolate the water because pores in the soil surrounding the leach line or perdolation chamber become clogged with rnud, silt, cement, and other fine material that falls in the street and is washed into the storm drain system. When this occurs, the useful life of the drywell or french drain has ended and must be replaced if percolation is intended. The La Quinta Nuisance Water Sandfilter utilizes gravity sandfilter technology that was widely used in 19th, and early 201, century municipal water systems. In those simple water treatment systems, the raw water was passed through a 3 to 4 feet thick sandfilter, chlorinated, and introduced to the potable water system. The sand in the sandfilter is very effective in clearing fine material from the water. As a result, only filtered water reaches the leach field, thus keeping the leach field and pores in the.soil from becoming clogged. The sandfilter is easy to maintain. Simply remove the grates from the top of the sandfilter, and remove the upper 6 inches of sand without replacement. This can be repeated a second time without replacing the sand. The third time 6 inches of sand is removed, 18 inches of clean sand should be added to the sandfilter. The 6 -inch sand removal effort should occur whenever the sandfilter is functioning too slow to handle the incoming nuisance water. Note, there should always be at least 21 inches of filtering sand in the sandfilter when_ it is in operation, otherwise the sand filter bedding is too thin and may allow fines to reach the filter fabric laying on top of the course rock at the bottom of the vault If the filter fabric is plugged with fines, it too must be replaced. Never operate the filter without the filter fabric separating the sand from the course rock. Doing so allows the sand and other fine material in the nuisance water to be carried into the course rock and eventually into the leach field. . If you have questions regarding the sandfilter, or its operation, please call me at (760) 777- 7043. REVISIONS: 08/AP 20VEED a � STANDARD CHRIS. A. VOGT ` "° 4 CITY ENGINEER ' 370- RCE 44250 SAND FILTER SHEET 7A OF 7 n r APPENDIX A: RIVERSIDE COUNTY FLOOD CONTROL DISTRICT REFERENCE MATERIAL - _' _ - =; � � � „FIB � 4 �-- �-• "�- y �� M - -�_.• ,.1 °'•. .: 1 ,' •may:... - .- �,„�w, .• ��.. '', 4' 1, nom•- .^"r•�' ^���' 1=-- �"`am" `•�'.'t "T�G�.. `:$!^ .t 1 '" +�'yoalMe' ..V.tYC -.t'-' ., f• ?t. � .J r4}.I iY, =. �'.`C%.W�' `✓`+ �t� .'- ��''� "r A" i+`' _i'!_''.,;g1:. ='_r � COQ t 4 • - - - .1 rte- -�,•3. . _ice- i' `� vn'm'B;:r;` i�',r: � "1�_, - -_ � s� .,� .- "' -'s'� y _ ,-1) f•: +�.`'1` v> -mot, ��� +�-� �•C_t:.':1.: I�'.1 UT.. �:f ^: -:J4 ri.Vd t ) -�ti'r .1 „-�_" . ...�.J�^+' .... +, ' }'.:,;.t,�.r":,. -..:. ;1.t _ _ - ;.�:!:.. �� -• _ em ':gym 'n tl�'�'f:�. .;�l�:L :�ix �:� ,. 1._ -'_p •.�'�. r,.xaxt:i,',: _'�:• :�nl..:" >.rFFlEntn `� �.•4'`� 1'.,.P HnnHi, ,`, �, "cs'^'.- :.fr ctilL- ._ "- 'Y••;; "`1 :(F;`;. �-�. YEH:;IPt' c� '.:'•- '.ice'';, �Z ?a:.' :,'> � *l.L.�C. _ 'id <a - �r11 �•'� al .HI - R6, f4 n .. -- �:r• ,y+ n_ . ', •....:y,, dT:/ 1,%.'aY,T~ ;,`•a :. �,.,.r,'��,.:r �.rc� ;, .. A.'('�..,• �.r _ -�. ,.,. v:-' .;1. ,�,cS ^P � t¢',:..;. '. .a •''tg .n..S':.v:. .:1�..: ;.4� `: ^"Si`.'!' .. -d_,c. •., 1.r' yyvv-... ,._. y .:.. ...; .,a -'mss / clt. -f' r�.M1,,� :O �"> -..: "' yti. �•�tc , •t�.i�' ::.� � ��f.v, `.• .�Y.:: - ,y�„a•; •' <1t� . nl''r`' ��`. �' � +. ,,;, c,•; r�o,N. T2�,a ,','�`a�x'ty`.1��r ��.�;�"',•:� "�.; �...:i:o,'.`F':. +O`' pa,loY.� ^ {'m.,+,,},, w��,� �..c, :� PT/ ,.�I. %� j r .,'�Yt t4 X3 - Mtled .,,t c'V':: ?- :�' {:,dAtL�� I.,Y.�, i<.::te -"' "� I�-O.�„ :t': A .Yt Y+N<r....� ;air tµ•r-- , \...`' : "r ".r; 'F,..yt --•'� .:4 +' .mot'. ,,�... 1 '::•:":z�OZe.r %_. �i3a'=5. r� !? �•urti'�^` �r { 5;7, l'y r _t. :.J.v. xmv ,'C,Y .'.;w'!.- f'a; "i`:.' •`S` .. JNy::i+;... • .. ,u, ,�, - 1 ;AlF,,. ,. r•••:, ^,%73 :�1•�"'S {j(f ` .: G , - : A ,.'� 'i ^�, :.. G -w ' : p, 1 : - . t- '� {,t {� `r y }.; .. � _ r , .fir ..^- e 5 -& • t.C-- y= w.s��.:�is•" - +,;;1! :t �:'i' =�: - '^: "�-t�::L��' ;;�'� - ��';•�..a -. .:�r f.. �?.. _ . -::' ���-• 'i:��''1 ' ".:s= n7>.'^� L3`,. ;.F�=L. -' � i��: •'rte e. (^Jr;:;:K :+�,'�. , .r' '( %F'a�::: `� n,Ycl[:;;.. - _ul. r� r.(. .'' ° -r "'._.^ V: e1.�.. '�t`ei}k _ �r!c:�i N:, }'' .�'. , •1 `��a_ . .:V�•':, . � °9N�, �'�,.� ..:.� • r t , 4 �i�' ,$.ii':?� u� i - v'"aud�- •: +rl�.''zus• t j�It :•'"`•� - s. `F'^ i,, <5 .�,J' �..- , :1 "�` `se'' a' 11 ' - - , Y,,'` r. •d!-'.: �,;y--asi.' '�°,,.. >� .r: N ._� + - ,r•;.:' :: � � {;4„ -.' �j�CC;pu .`� 'c- uf""- L _ r... t L�lt�:_f Hp��' �•� -•.r., Y.;F :,t >:.., '�::5 'l€� .. '! DR,e- - �,��M1`:,i �. /�. apt.,. t� ^'��� �� , _ .p:rq;',��. dl.+-te a^ ar -':, �•`ttrr .v ••t�e+s� •.tt, ,�d� ' . pl I 8 � a •.::1 ' �' � q � 1 �' j. >rt. "j>, r-. r, �. _ � -� , .,: '. `+.; - .. a v. r -'f''+ - 'jY,�.ii':'. a .:1, { {� � p v,�r: � . '^'t..» � W •, 4 „t � ~ ' tom. 1 ct �''�' 7`\.1 � v � r _ � ' � � >. .{ 1 - Si�,µ t 7 4 lk � ' r x�ln -s- �+ @l aen^ { 1 i t .� V . .. I,,s..,,,p�, • t, � J .r -- _ 1 �,.1�t, l ..�N!jti ~nN�l.,.t�- t!': \iwr1'.,� '}VN'W"�'`' i -•. 4t •.'N,:awr{ y ^mT '-1 ,WroLI�. 4�1 ..(..� G� , 4 ' " "i1 `('r{fi<'44 IF ,•Nc:� N,nFn ,^+w` ._. X11 ..8'.\ �T �., E ... -.. , , r_rt ^+Jf•_+.� .,M?a., rte^ wn � r`'r` • � 1 . �i ;� ��.._ �,a "� �i�.� :::.,. '•y;rr,) ' _ r 'r '1'' .+1. '�.• � la'. -+ ;`�:. i. -. -'� 11 t ,.� n vd -e: r- t!C�., ^'� " /. '" -^_•:r ,n'A. KF _ ...,`(jV,_:. �. \. l F¢CS`i, �'r..�',,. t.ry r.+i... �::� r,...V `. ...J,, ., - .a(r. ^, -f,t. It. -y •(_;, � 1 _ �:- .. -(r't ,:: .tir;;y:..•'Cb°'.'.; � ,:1r: ...�'.,'.'".;�' "' el ". ;_',.1. _,,w - .:ai "�'( ` ?t r. ^. •' Y7''a� '+ �f / .Naed•�. .. !t. -`- Y' :V `" •. :. -✓ :'(.,, "v�i':+`: '.: j:�..:.V , ,� "!� ,�.!... ....� ,:', gig.: '. �``✓, 7 ..�•. -t . :vG+,.:'S -: t :'.'�N'+'"•�• '1:... 'I-' _.;i'c'y°^ -.- _ If: �:. d;;i" :��' "�t "- ';•4.5�•`-.' �. ,. 'p�'}.'.'i•}>? .y;:. •J' ' "r • . \ .1;m. �:L, s.3 - - �.`xy'r`''''"; "" srt t= h tic �- _ >v :- • •, .:s;' �,�, ,+ -.,.. = +(�!';:�`::. -X Xh ;Ott :.k.'. G..� , .. M ti�.l 5' _ <... �. ' .. e =` , ,. ; , :�: y y, �" -� .1'nt�_ � �!• - �.r�iJt', h'' ` 1 .d' .- r'.r.-' •1:: M''� "� ~_ •��o .1��, 3! r. ,' .1i�` f .'`'� 1 t'a. +. ,x •?�" t •, • 1 ` .� J• `1 �•� '''p:.: iii- .i' _ '.lira,. (,J � •:t, 1` --�,,. r:� "4. -�� "...mayi�.' r.:� �+ � -c, �. _�::::::�'• -;�~< ^, ',: „°°' , r. ('�;s ��al' .l'_b:'7 "\ - '`•, ..�d {' A '; F�+ -' �. N' y t �•..,M��`'Y '^ - ,1•ir'G1,' - ± ��it �.. • n .r. s' ' :.' t ' d ,KC . _ p, "xa> �F li di _ .� .... :pT'A. - _!ii'� A'Lh 11.-. '� ��- Be•.m,a. bB CTi tee'`` :- --...a ->'... 4�• ��1.a i .....d:,,.. �..1,,.,..._ •�'.'� ;+�;.� .� --f'A• Vin:(, i` -7e'` + _� . }' ^•`'��+..J •(•a +l may. Z' •U- k5` �'t `!� `S: -�''� •J - � C.�"'.�iirii�y� N� 'd�Z:i•'� _ trrarti�� _t �.` P p` `v ��� ,1 �;: •�•(� Vii:: =.�' .y.+,.t,� ,,.�� '_'a6C\ 'T1jY -_pplm pe.+lf ;.,3,' r ` � �': .,t' �dt ti:.r1.4: -�` 'Ar `...,. 'F -. ����':i; ,lr. ':'dam .,fa:::' =...: �� i<.tV��•dAl! S {: R_.,�. �. ,ry lr, ^ <T' �'\ ter' «,w:, \✓t',y',.. -. New .�,._ •:.'>.:: -. _ �. -., ��' } :...�'� - .� 1� ��� y'C- �_ ,t � .) ::Yt °�..h ^La!�^':�iiY�.'+,. •'�'... .. `I �J, f.I a. -, �`` 'a "::�� ':: L:l, -.i :.d 'Nt`_ 1�� ��, `'" ^,;;J:�•�•r 1-11' 110, I. -.J'' _ •�... ��,� ,_..r:rC.l��'•+�t1,1! - _ ::� OC{1 � � ' It :..�,i, , f' 1„ t � : ^t' � , n+ib7H •�: � ` : � � Y -. Yf,-S'u °. _•l :i.. ' .. :- y.: a•� :a` - (t . ..�. _ `j � *:- - - rL.r.. � _ 5' N: :.. :'.; ...: lnotki>•:"' ," ,y'�lx .:4� Ne �- u✓`- '- '.�j'�' �_ '�ltil;� {^• � ,^ ,, UCI'�° ,: ,;, y �." ::*-; i '}� Na 'P ^e,m t' .`w.,a �1�;" ;' ,�'�,y'� _- • -':�,� .'�.. �! •;4,1,� ��•.. MInRd ".:; .Y ;: a",:4..:. ., I. +,: Ty ".:. � ^N' V'>. t ,y'1. ,, nteaa.!� �1: ° '3.:.. .a x '�e.H: -"Iq Y° � : 4 •��t.; �. l ��i•� `, . r • i° 'r .4 J�. _ « u Vii: '�_..• V t(� ` -..,�, �^!•..� r��-t, °�! , \• \'�.:^ ".!''': :'�,� Myi•i � .:4 %J k'r t, j.. -:? .`+„t.'.'R ; 1bs,m�` ,t',. 'Tnw xv� ' �.:,.. L `, L'T F•S' `r�l '.: %;i _ t >'�.., ... � _„ja"' `:,;; \'�.��k,. .1 � 1 : '.ji i.r.ad .. � �4n'1 .1 +. `�-4 -� ,µRy n•B+x� -Y.. _ �F ?k -:: - �:,'„Yy':. :'•^ .: r; .." t�a. w�'n' `° :pan . 1';l:r' 't;< +.I- .';.. "\� ' i1> 'llt " ,:J•: ~'' 1� .''c �uio• --.1• : -: ^?i','` y' 3�t 0 • "ol r' :,U ''r.^`._: d•' I. �..'..1 ,p.mni~.��' �7kri' -'•'i. - _q,'„- '•.1;. ,�tiNt� _ ;�.`. c:'. :' %�� '! � � cr "t� 1 ,_\ a ' f' ^ ' .A.. A', („ : r-+; -`' � .. t'... .. ,7 ay����t�oo�� ., .�a' .-,�. �4:`;i='., : �.'� .� • oNHtA m E_ , � - �, t r. µi =i.,` �ry. "7.. •�'f' °(., .1 _."t'. -,.�;! - L-- rS�`��i'�'.:1' `�t"i(:'. „w �::' <�' : "�, ,�:. `c .� uaal+•+' , .J -0f�f...•:r-•. �,t?.. �i <�`)����7. `,:' +.,+� %," .- ywl,>t:ta+:-�' .: : +�.t, � «n�l�,�tn. .� `.. ....- _. .. "'" pN\ _ - .jl ".; •+ -:'ta - C� -'r�= .+f. _ - ' l Tw. \�"a' � _ ��� -..�'. �- W�DryA:M1� l� - �'T:J� 'YV{;-`ki r'�" � �` � ..!��. ��•�';i' ^' `� ^� •1 - i ;.°'� ;c� '�;r epw +.':'o- u���`:�.t.:... ':L:."' :i• `iti``•7�'�'^ -''" b1S�?�'`c�'�'� �-t '1'�y P,�t '".. :r.- .,.,+- ' - - .: `i'r4 6..Vit� ='_., ••fv . .1 1 • - - '^may �: - ,�';� ,.,Ur '15:�. `ric ''�. �� �� (, », J� rl+e uwu�4� -.ti'. ' �': y.'� � .t:, ' �,� . t t :t: + • : ��gj:`C -t'1!`.:T-,'�y:i `:�`:, :,r• ' �,.e�, � -il� , •t \[ _•,_... w OaJ\\ 'ir''� "- 4'•�!t:. ��'3`t:':,' " 1 � t:� .,,,,_.:;,,•._.._.- ,,lara� .;:p�.:'� � _ "\:.. :.�i , ^ I ' .,a:.;r; > f;Envi` -.' , .� Ae1 _ . %... .. _ 4�' I�u ' •I' t:• -.-•J- H V nt , tv.... �. a�,• a::»' -'.'t ' :r✓; - it, ,, 'f `^ td � 1 •,•,r...ZV(,Sk rY,. %".. _ ,:.;�� iii: :.- 7 ��� :'' -�,,+. :`:�'L` 1 �,tB}tyx .ft ' �. .y. ..y _ ii,in\..�C': -".:.: ' ':.t - ":t ` . Y• ''� -iC" "..`:',i , : "7....�' �-, �` -''•� •N f1 �J : - e✓l � �:! /•� ". "�.h.,,,�'' %�'" - - OFiJ' �•J • - -t �., 'Y �µ • "fit. � �,::r � Ar+c, � '' �p 1.R 'o.; � :D Fi�a 'y. ;`: C-: .^ar• r -`1. ^;%S.J.. .F,`.�� ..::�"• \- +2•C °: .y.., 1 :4:.r, :- 7.':70pRC5 vntlt7N, �, .,u:.1 i �•C -i- ,n-md � �a _ -' y` :rt � .t�✓.r ' '�l: d7d r - a <Gi%' -1 �-�'. � U�. `4l' '4 :; X.' r , , IQ � l � -���.- ,r • ...�_.- F J 1�- r�,.._._.. t. v:'i,'? - . �; "r 1„ >: `,+i�, aby: - 1�E�..: . i . ,t. _ 1 h 1.}' - -YT- "'l.. t.. 5 _ '"�. ., t.�: ` - �u.....m7.+.°v" ._s.�: ,li.::��i::s. �•`�t j•'t.•��'"'-- `.,.,�' �. � �,.. ' � °`: y .- c,.,^'."., .e) �: `i ''O.v;7- �f",✓ . .uMy,_w•t1,,9 ''` '�f'. •., �`^'fl.�'s7.�1 ^:':.. �1 : � r. �` "t._ '1 . ti.• . es- • ,NGtAK:Q -b3� `� . � 4 �' r''y :''t,,:. .,i • ��.. +' _ ,�:..��;.: .':',ri ;i'•�-;�,.r• •11 „j•c�:'�u,..; =-,:,� •g� - 1 � ',�.n t, w i lei. .. `�.,� . - ,.�- :'�'1'`?u�.�.p3t•�y�Q' .: . b..`.S: . , +.f- I.e...,::: -. , \ 1 � ' - �'S� �[f .l;. ait�.. 1 s ��i�( � \' ,,�'t•tl � ..J :' f 1. .Y _ �OIt� ;f ' _ .. �. • { .a" �, pS1DE Ric, - `' � •'��'6. -. _'• •:tea P, - _ :'�._ ;. ER G �S�RV A "- YVk .Ynlleyra ` .+i --v. ._^ �,^"r.^ ✓,'+: \Y .. _ 11�. K.: .� D y . IN A7 _HOUR J',m' ".+,: G•. Cub Veft S 11 �Y:Y ,, `,- 1'1. HIVE. _ ^'\ f,+[.�-' ..Fa`u, , °.1 �_l-(t �..:.: __.mr, ..,, ,, - .:, �aw:. .:9,_4,_,.1,; :-,:.•-.w.Fn�N.- - 'Q..•.. �. �rl'�"`� -. -.-. '`. •':.7: �' .t" :` "� Milt. `. ^ :._� f,.. ,.. � V ptFR�,. r� MOWN ..Nxc.lo _ `.,tom• :::: i:::. .1�'���` Y � . I R 6.E RBE "4 -E I ------ 7-71l;Z co F. 'i- Q ? -1- T '-wo N,7u m M�4 j r�rf -emn .7.7 i. s- er :2uI+T1.F 1c T 2- S". & 91JNTAM�S ARD : *M. 4- - • it_ -,:Af tib"I A, ; Z A 3 '7- 77 " _j it 14 fit ns: 'nAJ1Li:a'vLA _ -_ __. L:_`.1::._- � _ _ m 4:r ��w ,,:._� -__ I. _J'. ` .:+5•�':'... -;.i, ;:.,:�: _ ':� 45- kj( A .............. r. I I—L— it If ik , tl - 1- 1, ` \4 IT'5:S D. U `Q 0; M!. N fI4 � I , - ar as 7 ft-V tCSERVA1 77t iL - , -:_4 + v,.,, t X= T(ZF -(Aw C.. —ILA-00) r T r TORRES A� 4� C, f— � - - -,, - =7'-INE:SE L- - . T-1 7S 21S, M - 9b 4 LL . r 19 u. .7. CAH !77a`� tV 1W, C TA lop nt:S i44 7T lul j 7-- X RW17RE�I, rR RIVERSIDE COUNTY FLOOD CONTROL 7T� A N D WATER CONSERVATION DISTRICT 5N . ..... C�s Y i 100 -Y R ,... f � _ `� .' ^- IiYE1.nND 'N K1.1l7NAly � 1{r{S� _ t '� ' �'rt i —`_ _._ PRECIPITATION SR..dS K_j_g ,-,zt z- 17& ;:I;� R. _ RSE- e i.R6 _ IRBE I >� li, - _ ..:I T' T. E. �.'PkHlC'..; y:e_;y:l� - ii fl.,' _ _ � .:a :=;/^ :'i _ - : i _ r.rcE• .. � .. - - ..:is - .... . VY..QORf�!ll�- MQUMiAb•t,'._' .: II`-�_ it ..:./ _.� 1'.,«°.VdIF .I f.l., - , _ -r . 1 1µ. r / �, ^• :a;al = ". ".,.. ,: ,_;�L,. t. �. '• T: •nE, 'I • p.:.'Y:`+!t '.' � iuk.wr,rnH _ "hnu. , ._,.,._j, _ .,. 4V IT •r., 4.... .Ssj�< . "'� ... �i.:. Auer« {. : ' ,. ..0 .., I. � -�. .; ., .._ •.\ , '_. I.YNI(,ry _ °I. � � ,�r:^ n�' art°.m7e7Y5 ;= c� =_ :�.. ,,., .il ._,.., ;.. •,. .I�•. r, '.• -n: +e- �'�l,7iPi�E: SMV.' - .:1:';.. ".ir. ��`t!'•:;'- ::,��•. .. _. ,���^ , ,, ...• • ,. ,1, :: �L',f. •.:. 1. _ _ - •ELI _ _ AN ,I —m—D' . . ..: •I ,.{'�il?s "n•.....:� •_i _...,.•r ? ^::'ti_ .,.ae.. -_r;. •�r' - "J, - eme _ lavt.H %1 H. I_.d,- - '.`d•.s d.I r ,p1fn. _'tF ..... �- ::'rr :.., ,. .....: ^ �`'" I • - :,.- ._...,I ^ �'�SI::.:'� d. - iapuA(iawntn.l« � 4 , cou, q� i il` '� ,1 ;�11 '`:�'r. _ •1rr •,101wt,w !. " �=. ""q- ,�S•I�FJ'.�8'XN:sR�`11�:1Q. UNLAtM fix,. j' )1 •'�_, .:.�1,':..... ':ir '� :.�'^ rw A*'K-- pN ��',((t I • ".I . ?' 11�� I' I _ .,Iq -`,.- I :J;:O� I,.IJ: A. 'f 'R E• F-',- . r!°y lD m �' ... '2,_•.J`� 't ,7•. t; _ �.. u >. ^iTP .r. l';1' =.1 i'? ! ; :_ r:._'��''..., J•'Mr.) "-(4. «( i `• I j __ _ N �„'! \,: • "'�: ^.tlq I va 4 _ l \ _ 11. . _t s II .,P• :.y,: ofiv, ^;V(n • 1 -Y . 1 Y , p . \, e �^ `•1M1i2 fit 'r ,J -' F,M: w+4rrr 4nir,+Wrler•_ -_ - Ir•r''I •JO .60 f•q_ - f I 'T° ; : friar Na rt � �_i _ 't �.;�.,y. t - •'" )ta'':''.' C� :ir .:. �.� � ,_�_ _ `.` ,� }:: AdunlA i�r `- 7 �r 'ue tI •- 'waN I���.. � '� } ubptl9l•! l� {�_ `i!. <. rs- g Z•1.! ' / -.._ Lf rY ,.5... - I ��'1.- ...i`i ?`.rlLmn :' /. ;.,,.,,. :.\ I.. :, t .:./'1�'...a1 �(1: °�•c 't !ie� 1: -. .!4. �'7a., .� � � �:�lie }�, 1- ,I,I,NYI. l •,: ; .,1, - -�. + .r +. , r4 .� , jj _ ��4 il".:.� _ v.L,. ,�(� :.;���•a� =��i�^ - . -1 � ��,1"_.'�. 'l[ ^' : \. l�r�'!'�� 1� = h !•�' ":'13��ryr'` / 1 ,� �� .I � ��. ��.; d'JI�L�:`.Iti. f•.�+' - �[ {y ^:r hrcy - -',> -. w�:. -- _ m P,lo.9.s ,•o `I' ( may' ``,.: .J• -:R •J j,,J _.�'~h •i!`�• 'I'I.�f, Lr iy;;l -•l j�:1•:• •t;, I ':�t••� .e.rcu y.`��'r...dP.. °M `\: %• �,• 'fir'„ 'y, -. ,Q''�'vi•; .7,r Y, `� \�Ll•.. ieu��mo�!riAm" .�: f:T 1�,^�.;:.� =�`s qty ' ru'4nr.<. C�� ~: 1„�� .. .�: t, "-e+' f,.'; ,,ir.':��' . <:;. ._ 1 �, ,..9 \:=1 :11 /f° "r`•�:r!�:Ve� � : (}._ ;j;,�'. n ",T`i .5: I .,.n tn��nn 1�:•I ��': ;•_! !.; <::. �j4� `�" /.. .. 1 ,...u'.'i ::e;'" : J'� % :i , •`'�:1i')$0 r!'.: ,'Yr.l" > k1,, - _- !l lr`.,_k� ;'...•�Tj.17 '. r.. ..a.,; . <... . ^,;.; ;�'•%rA UPI, cr4 j ,�• �.{ .� � . is } .� - 'vn9 ���\:,,. ;t*t•'r'.�_ :„.;,':,:.', •`�:..(«v %- fir' ".i;.'' _ (!(.�r .l: '- 1.0 1h �m .. iii.cn� - :iS: `U:'.it'.:.:� -. 'i�il� ,. (• -�,• ;`1G., ._':'�', ,.` �2 1t1/,L�: ,� HD1An.,wDy,eGye•�'�':�I: .':''� - :.,••� - ^ ,r!Iti -. ... - :y., `L:'i ,v C .,... ;�,.�^ � ^,:.:.'i� . }.;�:.cl .� ;,.1:'• I)'•:c,`A «:GLI�¢it I �•` :�_. _... : :�•' ,C�. ^ii'�,?�I .er .. _ � • .�i... h^ .. �: `1�.. <!..'� Vii.* �' '� C��� 'N}'s•.�:il. i y .:d -.J}...'], y :.il :_!iii f - :�R7•,`�, «,.y' ''Fm .',•sr "jUi' _���. rr.r .(.'�;!Lt'M t•PDAI;1 : ti. �;- - ..p�:�•, / k.- :I. :r ., ` \,tir _ .. t':1m.,.ii,- :,n,F, �CnH.'.': r,f,.•. r�,q � ..N1Y�R0 1. g I \`''+`[ '1 '•'Z�; .'`1:' t: -( TI f � y urms •s.1 I" ,�`stir rr'� I - G �'�ur:, i 1 = :�.:L.�ir1_ :.: _ ` L ^•...iiivuUi'..muwi `II . � :�,,.,_-'C'.�� '_I 1i I "1 r•..'i�.��c � c. i^_- Ila •i, '1! , k. I: -IG'. U1lAeTl- `` 'NI''• .� YfEW TEAK - 1 - .f .;'' t . • /.j.;- Y e, ''A °R= '=$^`L at'�'� -•{P'• .� 1 :{S!:Ala 'i'G.• cr1R. — ,-'3�: ` t?' '.r:; - ��i'..�x . • I _ II, _ \�' .'. -_`•, •_ r ,.1. - .l:',.T I�'M.u� l/ it .•,oln+ur+�'.:%-4 \ O.�J -•'i1• _ - �. '., !,,,i?4.,� �..� `SYQC.AIanNl,r1+'• •7'+,71:: _ _� \• �:� >:. �,.f t:`, _ n �-�,�� "_faa, I'1 1 ,'` `..:'v. ;�.'3:k.E'i 'y �;•�� •'°E::PI, .:� _ 'r tli`_ :'. _ - - q.; {.• •�. -,.. - Y = �?.I,f. .'F, .'s` . IPrJ': �;� -�_r,� �N�'1__ I_ « �•.,i•i 1 �'� I _ lllTlL•"CMnIYit+ '.1'"!'t'DAMUfVq "`tirlN n. pn ,�41w•r M. Is:l' T.Ni. ^_. �,a.��: _ .• }jl,. .�1'- v \`', 1. 1 •� ' �` =' ��. ,� .;li" uoln,r.(K -u` ';�.. -�; i., •'�1 +.,,!': ia:; ::•.,- T'r.,;: ::;,= _ �. •.,p,.,.- verarr.«lo(.vn:n.� '`�. , -' \.�(: ',D «nts «I xcR' 30 Q ®0' i `l:. -1 „_� 'tiY:.• '1''/ •�,. /+.': > - .1.__., "4. «DIAn e5 Ir - 1 :'ii` y/ • _ j,. .5� 1_ ( 1. I ;'J Iw}' -r -��, c. .,��. �i� ,�pV. : :lJ.: , .� - A7;1!p... ,.:_,�„ .`� .:.� .TUHHL',, I , I�.J - i,f.,''_ -• . y "fsESCHVA �.-1rti'` 1 AH'ItNI ei:�:,� �.Y ^1 .I G •�`( �' •j� �.- � t IY:'� _ .�_, ,7 _.4. :..?.''l':,"'• I \/ wDmr. ( �.urafroft�i,B� .ed s' _— ' w. � ' T L. . - 1� '� l`r�,•, y ', J°.�'L6ef[� y 7C !� ,�,t� ,: : �. r: •. ^�j` • %� r• %y'r „nHUll.ihlND,�n:&ESCa wTI!.rN "•r_. ��ti '�t '��• ,.._f 1, ��!?ltiGr +'~�.q\ �t'.I'1�J. p:UlF 2��.ecOrds'i �. • - 1• -: I - I :• _.. .. "'�'' iMp,m �I c� /. _ ;�':: `, •: (�'„�- "•:nIC...nw Nn:, ,' ,�, �.� I i T- t '�:...., j � f: �' v.,l, i :L, .. ' 4:, :,. ,._';,:. � .. _ w,.wmt •,. 1,,` ,4..,i�s"r'•` _ .... • - -�� - q. I. -- �., ,"• ,,�'�.'._ ? :'_'C:f .:P .. -. r. .S' ?�r` :`. _ `ilr l ivaa[5'`rre�RSaae. �' '\ . _ - _� :�; ' \' ,..� � _ I' :- rid- :,�:y,.' a_,.,•,l :-ti. J ": .�,1,7 J�.:�.• a::,. JJJ-i'_. ,��.�.,. , ��. ,.. �. •r `... /. 4r.. I. .: I : ".•� 'tiff -Ul n'•_;:y. - -,:L' _.�1::' - ,f'4 _ �)!. . _ .HIV ER4TDt CDUNTa � � `..,a 'I �•� %� � - �•,:.. � ^{N'nr_._�� -, i r I : _ - ' l.l:i �' _ • �yr'� M1 : i EX U uu t 1.1 NER6 RIVER SIDE COUNT Y FLOODrDCICf CONTROL WATER CONSERVATION DISTRICT „J'•I','la .'•�L - •'1�_�I:.m4- i,C.., J _ ,::,a:,- SLOPE OF INTENSITY DURATION - �' !f .' C1PVF_LA++17' NA 1Onht- gilt _ .J_ :.•�, ,�1 'w."co� ^ —. �.. L I. .. - °•o CURVE .✓� r`' �: a .- %,Ire!aa"uoid; ..:cwi..n:. �'•1 �riCM'n,tYti.._::�",' :•�4;�; .:� _ ..., � o-._. n �7Q. };i' I :.... «° ., �o•` ' -�`- =- yv�. =_ +x, =�.. �_:�,a =- _\conk.: a -- - �: �, - Lam.. �$ :- .1,•.rn- ..u,...:. -;' �.: ' -' i:.i•. ,';�:Fr:._ -•;� �- _ E -- 'R6E^ - � _7E RBE •.::�Ci }.: �. �. R7A °9A. ;.' - v::1• .I ;�i rjn;0 _. � �, :.1 1- - :_..'ir�� •- __- �-_,. -C J- fir` -e.;. _ 'I:. - _ I.r..rrPt,r. :.;1 . •''4 •�.'. -' -... :... ::..:... • , .1. .,..::. .yl,t - - .:' -9utta •aa eYV ",+�^- .,.� -, � r...... ,. .,., ✓. _.y _.- yi..a..i . -: .. : ^ r:: � ; :.. - r.l i - .��.- '}.:�. Y'�..:1> .° -'T.. - T -r a-e � - r- --- - - -- - rrN®5. .�.�' ') ul� .. -. :.r_..:'. ..�." r^%i:!..:.'`: -:.. •'�1 _ Y.cao..Vd11.y ..I.,'. ._ � � 'CONE... T F. r :4n`•5•• :,T !.. , . ?.': .. .�::.:,.. -, -': :... i.I:. �,...: ^•. J�: /r is - - iF._.� � .,•t_.i T.1 `L'•' :. ,; ? * ,..,::... •r. <;..::� .,. ,.._ ... p A` v =;:.' :. i`f =O . M O'..N'I' K N N N..•: ,., - 'ie.:•: ni - r... �F. U2" JY' I _ ''', I .'A t - 'N.DUerN - ,- ' r � f� . �y. >,k �. I,.�1J. .....:: ..,:'.% -' 'El� • - • �'• i /VV�'' (�I�•1:...: - YDUNFAYrr- �,,: Nnr !VdNL yy ..S.r 1 �.r - ��...- .rte _.. ,,.: -. �.,:' �• r, p�p�' - .. ... .r: •'f�ei jn'.Y, -r '-�•- :I .. �.: ,...r '`� >: 9r. C.. nGw,,y.'i ^7 :f' '. \',i:. '7' ^AN BPi,NPHUINi:'E r Ex v t - ,,,,.. .. ,�. _: -:.. kJ.r >r ... Wn,:,- r ._ r ...,.....T• .><,1 _ •gL�,e 4_ •.�, .,c ! :uu c t ou HI q(L y ' �.. ...'� 4,. a. . e..:��, ..(. rp .. �. -•... �:r �'''.- .. � ..s- ' (� I J , r ' J r II`:1 . m .p ^.. " :"'1_, t�~ .a -.�l J- +1 n1`0Lc - l} -a9' i 4 . -ti �� t 4Ar 1 ;F N{ qrI • I . l{ .n . a N .;� i ,, n �_ G.A, i� '. rr M ., : : .Pr} .: : lI� .J m;r .. �� l,Ctl . IrV 1 I ?V'1�.a i�... ^ . ': I •I '. -wr- l_.a)' ✓t (_ i�V . r j . a� A •r, , . r��. Yj'� +� - �V`✓1�. . _ i� a, 8,-- `. ,1'w:, �•'., i � .�_ 1l .` :;S, . ,` •., ID..rY :I �_ rt . • J ' I , '� i . i, .r' ✓. , 1 . " .,. . . ..l���: y• 'J� . ur% ;- . ; ,e�,.r tQ :.r '�`/' 'y-� . '1-rr ,7 . ,�r:Zv'_.-pp of ^ ;n '�•T N1 r.S b.°J �, •� ( \.0 m i. : .': i-' �, "i L^..�l . . . '. � l r ' u : r� J:: '- :..\ .. ,11 y. ; c 1 NS.�i . -I�� _. l -. f- r• - � : -1 r. 'rn` `_ :._ . l; :. wA- L)- . .rr .. .w . - -.. ., . ..t{ (. . _ 4 a, ,' n'-Il a; _1 .x _ -�/y .r' '. fr-u .: 'u f.i ; s- 1. ,.^ ' � ��4_ ' : 1� V , . Y � . . :- - 1b: .�:_ ��� , "• s^/ ,� 1�pI � 1 _n I '. � 'l l .>i. T� _i:` r , R� •IR.. i./ '"� .�- L. � Y', � : �P" En1 � �A J' Cl'e1 � •= ,;. 7 ••JvJ .n J.•1 6. ' l^ h Y a1 C ': t- ,. , . �, .' I�.•.r � � . : : r' = uN ;:v -1 .`.`f �Fr i - � .' .r-.' D` •,i ., _ v,", ,i J'�- �k�'b , �l1,j.�.n:I I \cr ' r r;� _ rIA ,r i:r __ f r.I }4T r n' /�.;. a'r '. ., �n' , 4� K�> ,pr. .!-- ' 'y J+ _. 'r'� `., ' .,; 7, W •rl: � t -:.' , 1� . , �.N i<r� f.r Hi . .r : Y: , I;- ^ ~ , I -i:.. a )f :, ce !j a •• r-- ., dE.. '_ P r.�' a - .„: '_ - 1�� ' lc � s :,U ., .t :r ,: MY' �V : . . � T : J : ..•F I �. I...v. ;JQi .�r -1:,• '[ . v. .I I' E� ..0 - 7- ^.'� . r � •14. `' ti ^ . s e i` • .t : � �r ; p, . . A. ' ._\ r'. _ : .a- : 4 LN - (. ,w. �.�U '' � _ ' 'L•. .. { n�. . ta� - u. �._aomy ©. C. rl� :� ,• r t ' . --� .•� �. �ti •� !y' " I V_ f.' •� . •_ T �, .� u ki. ..:.t 1 .M . . � ; ] �+.;l Iajr ' � kti ' I :.�.-t: '>: +' +�`, I° + - J `• aTA�: fl ; ; •f+ 11� L r'� . : ' , 1 1 _ .4Q� 'l,' •' . '- ':"�J!i r::h 31 , .1 7- . °'' I {.. : a pp..I - --,�.aa�.Yy .4 ,.ri j ,4:'• �nl: ,� vyy I.�- e j D .�' Y , � : . • f:„; .� u>r, . " , - .. ` ,,�\ ,- •�n-' )"'- . J ! '. !i' _ ,s• - ', � . :C ;• . >4rt .r 1" - .�r 11{ \ : :;r..'�d \t..c J`n', ,1 c- X. ''_y.-. '^ I .y• : y. ^1- y . ` � _ ,i,'L . :N + ��a,` 1 ,Ir . J . - i :.�- . r m. ,.,'` .r :.� I -' z ... . .l .:' � r ()� - i9, -tf;.F1 ` 3/ l .l ,.f":t ' �� •- _ - . }' �•; - `_ ^ '�I'�:' �� .E. O(. y .: .'^_ � . .`t N,1` al�p�. : 1 .\ . '. : , . '.•SI I 4a. 1'' -° f Ai t Jn 1: ' TrJN 'y.T . iI EN�. U�+ r.. C':` _ ti. '' `� r.D i .b 'h' R .ra• `- .' - . .a. . I a -' I : VW fN,,, .A ti,_ 1;�� � I C. �- A , .��! : �:uf .� /:. � •'� : � . r, �r fFo lu .. O�')vP m � �,�. •» - `1 . O� ! , "S__ . � 7i_ L� -.e Ar,.°M 1�✓1 ?°,N�1:c:: • "`.�,�.1: j. C 9,. .I 1: 1 _ ' I1 .y'- ' . - r �l1 , - � _ \r ', � .•y ��r _ i \.:- i'�il• N' .'n r"' '� 9F?�:- - ,✓ r- - � , � I _ .�-/• . ' ln9 a %'? ,. -,s r • • F. 7a iN` -i5' rn •1r' .rl .,_ ..� .: '- � ' r �7c -'r •� �:.tr , ,:: :� .' M � t . :"4r :��: ,: :'> n '_ : • _ � % U .� , � � -.. „.2fl , ✓ tti , • : -.i'\� n:�,7;'' ._ - � ' �I` , rTr'_ l- r �~�^ �G, .- �,A a: � � � .! -- ,1 J' •. C N: ^ : .=:'w�.r '. . ' ' ; a - 4� N'_ i 4 St - i7Io,, n - 4 :'8 +',;-oJ- -'` ,6o'!� r-: - � • i. ,lG, l�- . .it(Ur .•7.:,., r,- ^.:•,n j:+r, :. ' ', . % rC:¢_ U `- ~ l.'=.� _! r L.•. ':M'L ~" -. �r . _ ' �C_ .� - . � ._ _ : _ _�, - iIJr' ,>`!\-. � A '. '- 0°�: � -.i_ ::i 17_ ' a_ '"_I 'L.J_n� . ","- I• I . : :9%' '' ;" �. '`t � n�'.: `�t. : ` } t.' ! -_'-tl+ �r. _,u� :om-': i� ., _L �Y, . :! ✓3i •� . :'' . , rrc: a' s„a^1 ' �� .` _ Y' 7 . • -. a:1.: _ - rc.�F'ri F _ •ti L�N_ ' ���' .Vj ,q Iq . � :I , q . . . rp� .� I.I , ! , r\ ' \. .'. • `'i• ' ._.• t `�^`� rfJ ./r. " r"` . N' - c - -,'_n. . .�' �5• T. . : �i : o cr ti; . 4 �.,� _ -:: :n` �r. " s'_ �.a: .�i)�:'l . S v; i1 . m�- � i( .� �:. `,A ) .t:,� ) Y m�_ _ ,a1:{^: n - r, _ � agir.. ee r , ' . rc: r �n $.mI A�� "F ' /.._ cn L ..0 _ , n � r : Y .-ni ' �a ' � � P .r" .:r,. ' . ..V� ✓ m- ac;..,.��-<.^ ,.�_ � T.� .�'.� 11A;s',;sm , �•f•� ':`. nrw' v _- .� . �J ,l �- + ^-' +'., _ \ ,:. , -D, � K..�1 : :i•'r r �- � �:: ^W7:'-e: � a'te i- Y�:1.. '.:: aN: ':; s �L3 .Y ,r`.'.- .. 1._SN}l •� : sI !4 � � `•y. . :: .r�r � _ M^j .f. S� >� c' '1e'.A�a PU%\q-J:,:P F,,� S �km,`:�.w 'r- ,r:R� .tlt:,:`\- y�. ' - � :- ''� : l' : ',': ;oH�: i 'l1 1 �� , `' " . [,- - . . :,' .� � � " '� '� : ,:: ,I - - "� N � � . � � .Q I -U1 Gr ,�e ; : :C I I d,I � rI• _ r T _�I xr.°.. : • . : aI ; . ' ' : .�� � :_N i,t • J l :•L.,l' ' -. :^ Ji1, ' 'I.. I I'r: a rI r ce :1n1'r N„$n. ' .' 'r :_� cI:T.r :c•'! _ '.l:"3 r•k �r' . i l?� ` . . te 4 ° : r. :r„ `5_ .0 .. .2): . ;'. .-- 'i �: q 1 � ;.� : . .° i: i �ma .. �:4 r a: . - . .N'� , • : %:� l - �_� _y: . Y' %' 1 , y 't;' a�- _ 1r ', .s,I '-•" ., n! J , T �. f^:. . ti .' a �. ,- L1 .. •; i . '. ' J. : . !.{ 1F o .l:-,�,. ,'t_ v::- 1 • n `yrI,.I- ;I , . ' • .• t �''� ` ' :, ' 1' L. �= 0• 1 -P... :',: �� :L- "t _l-i •": L �� �'. r. i.' i .e !L .�-� , ! ` : "� i{ A_ • �+r1:_7s. L_w�1 "+ . A�= °�y..7 , '%� �' T- J.. 9'j. `6 h ]-'l 'i_ . � ..�: ' • . T- 7:s•r. � � u ;\� A � '�•,d^'�' S f :.. G ci ' - � • i . `I r•(�_ . i ; h °� m fr.IN. . _ L. _ •. . r_I l .t< M. c.3 - PJ .`. r., � � :.t . _.N •.r �� \/ •.,��f , - .4, . e , ": �it `, s �_'t � .; . ' •flI . n I Wi/ r' ^: .ssJ: - .` i� M" e. ; .R'>f.A.;c iU . .,_ :II\� •- '. n .W. N r � - R :_ •� N. . i r � :: `� N • ;r ! 7 •�` 1 ^ fMv li R•�, m r' IT'- ` � 1 �'i •�.:': ,\:": G UWAIM� T k Z. A. " ram % to k �"C'` n7- t 1 . 0• ;- :- ' •: r • , • t� = - : :om I ril: . I •�. . . 1s `.!, �(! i :, I If � IN 0 !?`7 p, J7 17 �Lj - ` J ' �e - ` f: :. � v. •:� _. -r = I t :: '� - - �:l•.�!: �,! ii VER »Er RIVERSIDE COUNTY FLOOD CONTROL WATER CONSERVATION DISTRICT c .I S-- . il•C 1• 'rC;•:'a`A: �:` � ; 1 if1/,)..' __ ! ? -YEAR 3 -HOUR _. PRECIPITATION :FUnE'T = -� {:.!, y , y�A" __,•+ -- 1) _ 1P� � "'. j �, : ;.; _:.,!'.Ir ,I'.j 1� ., �,�rr `` :.1 'D .,.. e. X .�G • N ,�^y� I �71�, .: ., 'r raaailuK1--- .•Alwa*aN. :•rw4M•/nF�1:.. �•\'.�d'A :: I . >`M'1 .. -., ., _ .. � �' �fla� �� > -I'. ...... .L. :'er• °. 'alli_ =�. ':fdlr:� "1J' 1' cx... ..ra.r... .. nn ..., rCr...,n n. .tM• .7r - r _ . _ ,.i -' / �,`_ ... _ Wit: _ ..,t `.r.��n ^;��•' / ` - _ -t. I. rl. 1 �.min y •�., ;.yf� ,�1:. :' '' '. ?:;: , t -. '� !J ...+eq .: 7. �.,' _y•' ..: ^.':,x,S1�. "yj "i .. _ ...ir:: .>Ar -P =f :..r'' rr: .. .) i ".r ,.L ...��..r.�. .. _ I,��.•- , �r��,.y�]'1 .;,G,c._c..J- :- ,.:.>,, ,akL: : �: N.I�,., �,J�'T, / .I <rr • `'•t•• ,- - � =1:.�y v,1:.. -}�' I , _ -__ .GRTi'I' �.�..�•M.�._ f�"�313R1 -E "41N � _ _._ ., :iff v� w, ..,' -,,. .. ".: :�I' ^ :'�"?]'C __ �I :� � :i' - ~'.i '- . '... rYr_3 + :?; :: .F tl, ...•. ti, :., ,,,:,}7;"= `T1�'. - '.F `s�_C..:....' %' Iv uw ..1+.r: ��: •1> ._ cc o.ve J , .,. o-,_:. _--c . i. .,, •�l,! � °`9,,,•;37. :, �. a• ..- :: ;li�' iT ':Y:. <" "Lil :. n,nRe la _ . r ...: 'r.� _ '>•.� - °,' ..t' _ 'J,\ . 4-�^ I1' _'.•E`:,� J)}i m v/1111s � . ..,::..,:, . , ^ :- - _1 ."Ff•I:S �. ..: -' , . ?. „, , ..,� - �r�.'� _ ,:,,::- _ - :�ln:,..:... .:^C� ��:.' C,.' �f, til - p ... •d T, 1 4h..•_, -3 ,� _ +!-mar :._ •� -- �� p',,.•. .,T I'I'' ,.'S _'.` :C7C' c : r. ... , .� .fin.... _ . •:.�......C-'� ::, 1::..: '+W •, _ f - -•a. ._�-, �- r'` �.a - 17` A,:: `•;y N�.�..T> =f-'� t�.`A-C.. aryl: t v. [� •�.'... .. h it f% .�_. .t ...:Y,C_ a .N. ......, LLi�., .k.-0f' „ , �rM"Jy, Ab �yr< 1: •: � 4v'•:•'' '�,�Lgi:f: �'v_.,-,. ^'f'� �' - . i • l � rl. ter. .t,/ '/n „- it - ,..J. ;C' ::R:, - _ - • 4..0 "F.. a:RL•. `"pr^ >r. a.,�_'..• .`.: :..: :a:�' .OA�.c,I1{ �_v-`. _ �.u. ---;• _- J ,gfn.J ,3U:' .AUn> :.:1�'• ,..,,. �! - 1 ;� N',i .. ,. f'T�::PiIJQ'..r,r, ;A- �[.,i•:. }•tf�'._L ..r:: ':a _ _:i.'., -- ;:a,' -.y : rT _ f- rr_ ro•• �•:9:! '' ia. I�• ?.F,..a.a, : �0, _ - _ 9/:I:, - �,AILNPU Nr V �' Yi y .... � ....- . .� � �•_..,� :'� ,' t , it . r1 n 1 a >.. + '�' i'1r' „s� '•rl''� ; � ^L. a" � F ��� h' Jam: - /••, NAT:: - R Liryx!'M,,:S�.�4`, _ � I .r wMe IDNA � FC7LWI"1 ' �'T'J'... .. • 'T..' -F. • C �'!' i ' - / �� I �.''_J +'niiKcn u r �>,> = "� 1 •t's_ `'E:' : o ,e J ^arcs •'a X13' %r� '�� °Z,•. - L rv:A n —j .. S Sri:.. :J Illy �` :'I.. • 1 q.(!y, �I" Ipatf9 N f' '` :�i"'•' -- wnrr ,,:CJ' .. u.�. •�S ° :�J 'iT�'crV�•�'i i s 72'x: w.,' R';d;. ct :'1.. r. - •�'L, �'S. i7... I Lr•U:.; �' - ' 1',,• � '.'t. i °ti. y �•, p ' Iv'e 11.x•1 -' A':: I t _i.._, [i:,nn,r•pa�, �'•,1 F .r __ Iir � ���'7T`+ , •, r �' ,- ''s„*i`I�I,,"i I: � I . ,.�1^I,: i ` ::-1 , -1 - J tt 1Q a:�'3C �T•S -N tenon},. ,t}ennlacS`, ":•. - y''7 :F, •s.,- i. C\ II �^tl� ..AS .L...ri - �L'= � :1- ��- ' \�`-- •- ,j::>`A�i}�i��7ro .1' ..11.1 1 — - ,9". rl �' - - +l'ci o:. � t� u • � /9`- . .� ' :,•-� .� J. • ,. �::., G: v,n,nl e„ - m r i. '_ •.♦ '.'. �.__ � �1'„u u, n,0. .._`I ''T .. ....�•''. `[(� V'. �� •.Lq �:.... uti ... -�. ..,�,�V, -. �;•. ! 'tit, �� 'I'\ `II :l A. ?rIJJ!; - :.�” in 'ranch nv '' q♦ , pp� ' - 'i�.,:.1'•'- p � �anxy1J .r _ ).lj�./t:J• �, '-IS '1♦ _ .,, .. . •cee,q7�Y,��c.���-�y•,r .:rr� ce..M, �.� . �7� ?y�� .amee.;J_ •iy_.. ��, I„ `��t.7 _Ir�: �`;T r ,rj',n,,,ls_ „ rr4mn Sb,n: :14•�L�4':. OJ "�,%�" ,��•r >�I r�l /. �, ,. .f. rQL I -�x_.J \ �' ::'YK,9,, :�.� :. letlic�: ':•ri 9r.y -6: Ye _ .:•,'.,:.. -C �� - I r_. .- .i..:9).• .. /:.._, 3.' ,,'.� - ..'b..'r, sd.. - - _j1 \ Tnnucannr ` /�- l::r "�, �•;.ri ,,,_>r deii• X.: ..✓ _ Pv 1.C.q -�.. f�74(fF,. . ' ♦,m 'ar `•_"_1`+-1 n 1.cAnla' I . "'P__ ''1. -.r .,tr- '`:J: _ 7Y M,LJ •!t.T.IID - �:i.i... .JJ, :,�:sWr• .� �%- 'unlAr.' ''�f � ..�' '�,� ''tZi„'r:.t:�:,r_ >:' �:+,.;�. - ui=� 3 I i�� 'Z� / _ - �: �f R: •'L. ; .. _:;III ' _ '� vei �'r.J �= �I'(�. r fJ�.:.;, l � � • r ' -r--• ' 1� `i': '. ':°I'Iv_'r. yr. 3 "..tf F 'i1 '�+,+v,a -�. _ 1 •Y 1 ri :,,t rl''`yy :t� ( :(:i,i.'x:,r, : -i;',. <- a 1 -!. Mrmuri> ,6He,_ , \.�,r��� p •rvT —I:IV �U `"� ..f.. . r •' • 11. , ,.', . •J:: -r�, �, q;• f ,i ','.r '�„Ir„w.;i- ';:L. •Y F'�` ?�`. : '�,,.!%,a'[t':,t .„f 1- ILC1.', -c, t .'•ruim:mvr` ( - _ •, I • _L:.,A. ,ahy:�.. .,rmN;. , Z.n,' lr � r¢I't � _ .3 < di L- ��,•.Y ..'',� „ �'- 1. 1' i� - �'.�'�.__ :% M •. f:F";?'' _.�;.ry�.., '., e',..�_ ���I' D ""r4.l..r ,>-it, vrl _ :...rL..✓TMye.. �- .::.�.".'1" d...: . r:�` �' . L'`-, ,�.:r,�,'':•,�arr,, �" ,. S_LL{!,,:: _,j,: °Y,`�;',':Si�Lp1, -� wail -: Ntt FOL��w111> j,' -. ,;; I �,:.^'' \.�' 'r: '� ter, hluur,le _ .J. Y. �•1'.!, � _ - - ^' '. %:� ...�}F: %'t%j ii` a •' i 4• li Ij INI, -'m cl, d ,� _ J'`L'."L�,t�`}'`°'..r" I; - - a•:��L7�. .•;A,�. :I �t�.'-•:- ;::;�.' ���c�St' %rL � •�:._ L9'c' n'�!C{Izr . �C. -,�., 1" Alf _ : P' _ '..,J,:%- nl r 1. � `' , L. 1 � � 1�r + rl•.. mx dr> rru.9 r ... ;>, ., , - - .�Y�Lr�' 'r. %^ ,^'�C?y: {° y ( ' "'i' tii• �'yo, :... q >'•.:.,,- p r _ ... ..: _': 'ltt:, � _ I,� "`.�-" � uuc..•. _ _::9v::F".: L;'(i. I ',III r,K ��' :. ,y,F::.^ 1 '•A,'a Ilo _I I r�.,.,. - ,,?�,� ' :. ,.::: _ tr1 1[inler:'•y� - '} A' : Yr[+vaK+t� - 4v- - . I c . n't R I` -4rZ, :C �G '.,� "! -0�li. �_ _ �1,�r; �� >'. '- 2, .. -- rrYCV,r •,::,. ,,�,:i - I• , °'7 �llrllt' V,. - �',HA'MU1'IA� 9MN' � \�. ^e• �tl"'. '•_yinn `•4.�. ,� I • ".!uvi'.' .:f _ ^i,�t - ' '!"`• s nvA � - 'i'•I:a_ �` art' _ 'C�• -�i '!'l�` ',� I"'�' .ir+a'= 'I F.. mow. `lt:`- �A.,.V$I F .� � {`•'. �_F� til^'..: ti:.. �.t. , I Tnxnrs w p �/ �.. -'.^ o� 1 ^nrluMr.'rr�uwteml i -t.:. .�. _.ui'S:Xs II �'.i.1 w..:r- •�� �'_�. . \,t. ,� `.p'. I., :I '�'•.I; -INDth .r '.7i. _ h{ a�,),I'., >;C „_ 0.7�i•.: -:. oil — �lef:A - -1'- ;•- : :1.:; rSrd(J - .••Je. ,:y,<<� Mll., t�'-' �?keseRVnt f9r:1. ter.. ^ ✓, ' . t..r; , YS�' jam, V 's µ.m" _ ti � !e:SsLti � __ -c�� ivx : :.'�• ',�A�yi; 'L" �'x � �!' Y,� -r' V -. J , n;p,r�- I �- _ �, '., 4.�.; I'. l' -e '�`� i. . _ � ,.. _ - �•;7: � .. I Vic; Cah - ?' 9191 - \1'•'hIY .I 1...'.. '�w$"�'ti „`�,t_• , _ "r. .i,rr' a. r' 11 "� I fAHl11L INDIq ^!VAST r-r; . ;� J n'a� •>r!N �- �aA3 :.J ,' .�,_ "1 �.. � I' s`�:r' >' " -(` - ter•,.., ._ - �_- - = -_- I 1y !a o \_....`, -' _,e :�f+1e:3 'x,;�`ir;t:•`%6''- _sr::e -'q,f� ".:•ill I .I ":F .: �•wrd \ it _ 'I. -. w.a:,•. n' - ..:i /6 -t. I�:.f.. 11" ._ 1�_ r"_ "�l - ::'��'R:. „ {' •tl..:''^•`•N ;::Y.4:�'. • t .rr, y ./ . ...._ '}- ...- .r.... , . .. ( I - _ .`� I `. 9�� : �.i � ;L'` M'.� `, �� + ::}l. _ � �A�. �y ,,,,r,p.. _ .4r 1 <�'.- • -.;�J. � e6ADw. W4Y, �yrt • - -1�t -'�`. F r_. xrvEp_ ^rt MCI %.�''. '-"-; - '.r-' ,�'•' - ?,. NV': _..' i„•%i:., :•fA:,m.ror• V >Ii. C]ii(rr.'' '. -..._. I LO NAN WILL: RIVERSIDE COUNTY F :.L' 1 '`J . l uo•� • - - -'r: _ -".� , ,ri••�,= - _ . I - - �4 . '��" - �„,.� /_r i . -r �`� A N D " cent RVATI01, ,�,L, , a- WATER CONSE �.,, ``` •G� •IrA IJII>tnf:' ,R`.:L�NAT�P.' __ .I:' .�! ,':I t .Rk p R E r l P ( I A TI ., . _GJ:r K i aivrD+"�. .. CCFxvwr�'j�:� - ^ -f •, „.Its 1 �` ,rvoe es, `,., . _, _ —� +�'_ �-7 Y�- ,'''Vi"..... .,.�: �. -.' � -'- - l;J,,�" -=, ....:T' p.' ,... �!N�r3aa,wdls:.:;,1 _ : ''v.:wr• 1 '-vi,�x°§y`�ir�� � +I - -. ' `aim: -: - � _ '> `'''_;(''•''- ',_.. /• .or'.'�:.' . /;�.r.:'V L {- c.......n �Fi. ,.. .. +?,�liE';> "� >:. ,tZ2F:: ;c.,.`�P,3F ,' +': -: 'w• °��"".' .'""�,,`_,i,.:. 1,;�{>I�'r,'�'i;; . _.J�. .. I _ '. _.__ _::... -.. �, ''�' .�.. _ _ .. _. ,- 1•x:.,....7 1 _ E _ I _ ;r ^i 11 e .dA inn I '�t},.r' .J;,- ' ^� - - '• I - rd �K/:.�: 4 Fla 1 ,. I:I•ti �:.a 'H� e Mg;cy �s.a h_. ,:.. .. ';; _ .. - s "` i i,. "_ .-tr P' !' c -_._....: . '. .: 'C.. 1. ... :. ::' ..I +.H r•'i.�Eac vuu°rA'._- ._•• TT���..-_.... y-.-.,.-. _- .:._.�...- .- „_..- .,.- ..._;.�. ,. '� � � )l'',:� '^�- :'- �';S:' :e��i: : -. �-•., ��:.. •.:L I„'� - - -�'C:: -.G': , 6HN rS.:'i:4 ''}1 ^J. ::'Z,y'� - .:-. .1 .... '' :. \.' `��?!e{A�� .i' .1. •--'F" . � ° _ � �� .I,� 'COWt•`. �, v.lJ - I. IIUn' M ` ••I .. ••��.. .�. •. ..c.�•1.... _... ., err ., . ...:ter -�_... ... , ...... ._- .... _ . ,�' _ . � :. - ,1,:: `- - ,. __... _ .. r r' s - F >U'A. �'• N..X?, T- � ^0 N.:JJ Mf.�.:N!�`,v` - �7' - - rte'. :f:�:.;.1.;.. - - • (' ,'.:„T. 1,?l�, ,. -_•S. :,,.. ,. :. .e `.,, ^a ',,. maul ,.," _ ':�; ��: ':•r', -" -- , I r -r1:•' .ii9•i,i" ..,I. ra. - - - •. 1`: 'I ,j 1, $,. r` ` ... r� ,p �,.4�, _ _ -_ - SAN BEfi Nr.RDINp` •• ` ...•�,. -.....a- .:saS. • :a .al°. ... ... I :_' {. s.. :., N,VER''IDF CO ... tom+. ..�.,.. .__a:k.:'�(•iu .`) ... ,, .'d''7�;'ra' I:`•::'.+?;'� .. �:.I!ti•- •1iR: ..I_.. .•yam.:'- .�.R. :F"',. 0'!: ,.._: z, (1.. _. o,•'s: `.'tJS,I i:S �A. ':t... r,. •;1.. ..:, �h N }. ,... ,, ^:I Ore � .. >:. •... - •+rw,, c('il r 'E 1 1 �,�rylRt ..: �:: ,•ri'�AarM 'V•:i:.srs `• \ .o `'C yl 'ril ..I - y`wwhO'=t'"'^'nu + i^.4iawvr. •' S 'CMYC.'J - �� ,• � p4. � lii`1LAi/Y5:.._f, _ I 1 � ' �' � 1 N - 1 �r rxv �1.. Ntl1AN -:r%v: i 1 ...- ;.��;:.. ; '�• o ., .. I� n^"Crn " „.� ��• � ,•% �' 0 �i•'IP U -A' I ' "c•. I. ' }" .: j. i .. P `N.I�.? 4:i.:rl. .P_ ., .ry, :! .1 ! 'De Se h.n. II__ -• �.i.- ^•`L'rv- t^� : _. S .. .. _ ati,_ I 1� _ 9 J_ JI' ` :j� L -^ '"i` .�� 1.1.. 'Lr \J":�,1' � rn .:.N` 6 'y i ��' J`��_li � - ;v � f;;:' s ':)�'? P'Q°l, ir`L � '�.- <�yCi, 1 `•.�� F _rte -`:n, :Swell: 'l� •.J,1.�`�i 1 j.,• ''Q- - .:..•1,_ .:'r, 1:�:.. ^� _ - - �. It f:- .tr I *ma,xl :t� I "j'R3'..v • -'(y} I __ _ ,����' :'•�' y - I : •cr ' n w 1 - :- •�J:.. _f :w %'1- -•. 1�.�- .,'.- h ,w ;i eye •I.. � :.r `�.;.. , ` .r u _ •n "L 1.. ,+nOltuNl: ••��Ntf'• { RES J - �'^ 1 `� "r•',��r, \. � :.N : MN :+;i ?�. -'-'_ _ '�: "•"� � q:`.. - �U ^ �.1 +' `Z"Nyron .; •.,rv.r. .. ..:� :` '1 A:j': -{'•h. ,- {�'�;:: -- --w7 �. /,, _''\ • -' \., f,j.. �r �`')� 1 1_ .- :.�.N` �'. «.ry `r.� �-. :•�lJ':: -�• :ice_% `.�.�T•`.I ..7>,.:7 ''. •`; I�/':. t'�' - �',i ,�'�:.r -. _ ��, � �rin' ��_ ^w_ '•'yrl.. � ;' � lam, '�� �.1`.T�; �'..�: r -.. ' -' c '. �.* .,, ,, A,. •,-}, r.. ..{,_:dl:( aJ�,:'. .�'� . %. ," P .9? .l. `h� �,r`` .xe�a6:- 'J1`- ! ...e nax•r.l�.ya. \�'��. •�U'1 - .U!•d.r ' ,..1 ,rY e,_ ' 4-;a: I r . • nm, I � � ,. /. � .� -� ,.,t 4, ' J`�, ;'� -J :;''l� •'1 r , . I _ - r '1, 1S _ Ih I� • , . In @gin, r•n�� -atii- ! '� J'':3•: E' T �� .. ..:`.: i' ^•.:'� SIN � r'. ;.: .:�:� .. � - \� 1 � .. �xunca• - `:::Z�n - .:t.+" _`,ati.'` 'n .'>; :IJWI " ... il�, � ;. ..., 1 _. � • wN,LJ , �. r..,+ll - - - /`.'l . r r � :k:'• ..y,. �` �,'�,rJ, ��l� ^= .�:s!:,`f' •ifiC�' %.: ���. _ - :i;J/�*1'' �.. 1 - s�f:..' ✓G -..,. l: "i'= g x.:mmalulln.,_, •� �'��: "- •::. "` °y r ;i S. I - - JtrhLi! .x'`4: �.J'.: -. -yam 'U'Ci�:,•l: �:`" ,0 _ Y68 -fir' - jf •..:," ` Ili 4 7 . II 5_.7:', ..�,,� ti� ��� � 1. t �. �' ,:r. ^F:., ..I q•,� _ 33% r -- � ��' <L�ui .1 . ND ,�� _ `'6:,''Sj,: :;�• - °i.r 1 .J• � x"1,5 -� - -": �.I[ '�olwrli:c':� '�r. ?�k�':.6: �i ���.:�:. YI,. „.a4 i•;•:eunytrouNi l' , \,_ n- '�bj:. ?,'. t'_. ;'+ccr „.g«f' yt g °Atc ach Ila `•"� - �I '' \1�:.,.:`•x;,,: .: _!ir'fx- 4le-' - � i,p, '.., :c + .'wb ,i :. :�.i.. : �'' _ •� -r:: _ �} I 4 - ry' N 0 r.: J In �zla rnD ta.:f`c'"4ld -..�. .•1 '?G -'. i�i.� ,�•''- '.�:�� :y+p. ��pCif1Y' ,y _ ".>>� II i t'Y •:/ _ `� .� i:.. r _%.!•'.9 _ - u' -, v ern � �u1rrF lwvµ'�,,.. 'I' � 'ERWi3.IW ') �. '�i 1, <. L':! ` y.1�.' ''.4 rl - - ''� .^ ^�; _ �' i'.: •'` I'. _ I f: %M1N. :�,:- `<� -• ` s ";/1�. ��. t.u�' + -'F� �'� :` ::vi.e.;f, :, /.,.��. ''_a� "l� ''� I� ,' uxmle Tt>xx1[.S" ct! 3q ' ®O % Wt c CANIIYtAM NTARJ � !� _ L � �I ,tllJ..r. �.` I 1^L:� ` °:` �\ ,� qU. Ala^ �.��.1�., -._ - `•1,!' INUfr:rl ¢5 I . _ T aj.'. Ar - �TONRES J 110 R %.i. -'f _. is I w, ,, I V:.r �.•1� 1' r:; vi :, >:•... \, ' ' rc.m PA.R1 'HE ' I '. -'Z•- - I ,^ - "�` ��tC SERVA'lPlb►L Pa'y1•�- f'Vl \� _ -f_- jam` .1 9 ?! \ _.. I ly.� I•ii -� ) .:r 1'pr� J '^ „ }._ ..1 :r-{. V\ t.:. �?Q q• +1�19_1r��f'VI'1N� BESN ION 173 'I-_._ -L�_ --� +•11wi.:rrv. �----_ { fy'. ); ,.1-"�3ti.�,.;�`, '•,,. - ;� �� .y... _,':, - :,. •��' :✓�.E,.. �L.. __ 1 ,ttl. ✓'\ .,yt :'r11•.: �. ,I';^ "v iy • !�: � sA1 M•`iaie' - r.:•� :;;��� •� °. �'.'d:i'':�::.':_'1 -�'Y; .e. �.-C'ji�1�+J nl'� IQ.. - ` ^ : I - -v r:y ';j o '` 1 rT�6 - "j,` � „`.: ,a:.,�,���r:;;_}'/�• ' „'':;�._ %!" ''I: I � ' CA.Ul, INUTA `1i;E VArtI. - 1� T_T• .. ..'1, ' t '` _ - \,` ;:;71 - �5 ; "^ . (i.l. I -'I- c- '-a«+ --= -=.+- `` -.. _ .y,,.�.,r.- li ".. ".:'. "..';;'`'2b'jfp0 •,:I: I 1 --t- , '! 1 ,:rF. ( � -- �v'- [� i L,',. :,... � _.I,. _ L.4" *a' >f • �.� •�-' :N�-�- �di,, ^�:� 'J(��(�,,�� ::5�� .��,_; .•rte �N�' : -."F'• f'"' --{` '.D,,.:liw, .I �`L. i- °. _ ae al.r ...r;Sr, .�: i�'..$''.'";.r' _ _•�::�'ti' -.a11 .`�.•. _ `_ -.-I r. ' -` fy �'f vmb. I •I .H:_ l' 1. _ _ - -- � :: G„ 1� - Z ,!' i t � - „ r,ller . , _ t- J :. � � ,�'- v ),• _ •� P„ j ' � � : ' 1 _ I .•;a� �:S 1. t .J- ,46lilA'.•� .f:.' _ :.trC�� •Y -.� �.'`l .'T:', y!,..1L vef.1� -•`�\ 1(11,0 N r� �. .RN R6lAE1C RIVERSIDE COUNTY rA FLOOD �. �. A N o :�' ^'p w, :an•r I„ :; --;•? ;r : : %- ` WATER CONSERVATION DISTRICT } • y .Y,. .•i- ;.1� „"�� •i ••'6Am� �'Y, ��CC. t� yI _I+�in. ;l. _.L �`?U� -s ���, %:��,� ,J - - ? 2 -YEAR - 6 -HOUR �.... _ __ 10N .TL NO- 'NA•CIIlNAQ;, y�\.: ,� -..�• r.,• 1 P R EC I P (► AT ORES! �J -._ _ � ! 1 '�C •••'• �fSAPfrrd.0 1w�'� I>UM Mti7.�L Jr.-F`I 4-..:N -. 1- ` •."' °.:...,, °,,........ ...- .°.ae c. , - �, : 1.,.....- - - • � -`f 4E R5— ..: RSE i R o. (t...} 'c' : :� fit' •. _.,�_r �-;!. � ,._ � • i - I ' ri,:dn , r': :: ,.. � :A TE: PNI>pIGS,i i-'_ I_ '' : :. il...:.._ :1 • �'•.�,,,.• .I 1" - _ .b '�.1r_4.,1 ,,:,, �f . � _ __ _�� .c .,..( . I.L..` . ✓nl. _ .;.ira __ .__ _ _ s_,_._ 1.- -_,_W_ - - • ..- ,:,'_;�:�:_1T- .d'r l'' '.L ` : -1��'� L' °� -,'1 ��'. , - 6Jo.r..e �lue `•L —. •1 r lr _ INOAN .am�eun.Mii _,::.1 ....., 76TeN :.a�.,le ...r?e: ,n ��:.,_. y. ::£' - '!,•r -:' - - � j'::no. Val« � _ � � - eoin�.: - ni , I .._. ... ,. ,J,. -,., __ti ,.gyp .,. .I. �. .� - ;ter:•• ' , r, a Vii~ 1. . AU11N ..I {},K IJ �'T'a,4 _..�, .. _� � ': .. i,•��: :: +..:. •:...: ._' :pj'. /� ':J•�A '„9UI,f f. •l: r.{ .,ql" — �,_. ,L4a ui� 'j J'. "t:a': - '�i'ti.. : t ='.� _, - �r ��t:. --� ✓ "�I'.: : �'d�:'Lliii.E" �-5�- 1.,�� - �•�,,� i AN f HN AXOINO'..• y , s . ACDLiN�_ ,.i%YJ1Vi•: ,.: A_;,. `,'r: .. .. ,,_ .,!"r�. •. t�::. atV:4� .G:. - � -�c'_ —Jr �. _ —_ _ —_ _ — _ a :�vSC y IV1B310 f. CUII .. T % ,.. _e.l .., .. 1. ]%� 1:,.., :: .1 ^.v,. :.. � ': . .. � ';r: ,�O.tr .aN 11,,. .. •tE I. , F• .� ::::::. r• ' r ...., 116 .,ryl Nt =�; '� '•M:� jllxne�d: ',i>'~ • �':' I _ y >,.le.hQ • dw+r,n, �1flNAC''(C :. .1 il' wn•Ilnrf -, ( w: - `'`�,.,,- I TL C- . .tipA.le t' 0l:'/1`ctil}Rf•� : ­�77'�' - - .i'_^"' 'At•��IYI`liSRfJ ,5.,.:n.: � :1:•.., 1• N I��4 I q5r< - c,M}RI , �..i`I:" _f'':v_�....K "� r.- Y,luu•.,I:,J�i�'.- _ -._l� I 1 T. �\ I:• .I... �J _ >'�I 1...J a _ .. • o 1 r__ .SIN, __ • ...... _ . a.l , •'.,At12 � '�-';q.` 9AYMFTIIAI�iJf •. i : _ _ J� .. ;a '' !' •:iF'.',•.. max;. :.' .e. -" _ .';,.... Yo,a,.aar vq ./:., a'r' .�R""_��,i,:- ,�I'':;� ���ti, D'�-V,r:,� �J`r`n. -.L � ;� •/ti^ - ?n't rC°`, �,` 'fir' •.r. , e�a ,:ill -:� ���'': :•, '.1.'•_'�': �:,,�:.r � I .- �,� c' aX „' '.0 I w �.I Am ` 'x?` %` r� , P ',•YP:,a< i„ � . : • "- `' .:.a: `.:-'' ::/�1,'�r �,,,•1C -' • ti, \.. ..�X� ,� y�, j . _ t,, 1�1 � I I:.,,»,.e I n:,,:<�,,:I HA::�:. � . �:- - I,'._ Vii:: �: r T� :. -'i'r. ,': :;5; /_•.-c',.,i ��:,.: .fit, r .. �i� IU 1 I`. M. �, .,,��� _`�_ _ 1 'I •jLl 'R ?tiIJIO _ �,' .1 =:\, 5• ..:f, � ,r:.�. <Si�i:�.r:.�J.Y''.`' ✓r :1+ :) .� �' ^•• wit. , cr�a -` _ I _` ;:.i - .+1. ::,r :,f:_.:- .•4.�.:: L t d .w. -`y'- -�•: 'x: - 'p: -��r �,i':C.;`c' .� ?,>.. -'�` '+'�1„�,T� .: F'Y p --- ��._`'..J'h� _ia'.�: �''„'t iyR. ...��. . {.,.i cJ (2, — '.f � r"iT - �,t'L' , :.t,,il'',._�7� _...: !� ` ' 'r�.,g- 11�m °.y �_ 1 I:.' •:M1: .__ / .i0� "' [''� a , :yt., :1:1L•-Y• �x- ,. ^"�' y; {, _ ,. p Eu X111 I'1 -�-, �,:� {'I- ,�� V,A'•.. •,,,, - ,naR: r)ly Le: .,Y_'�r 'L1 h t: P.lm lapin w �w�1ryA5� F' l ND 2E _ d � �� Aw :.YV1u..rV -. rl:tl,�r;!i, I�,T,.•�.r. L. ',... T!� _ '.:��, 7 f_. .i,! - . - `.�..� :wxi�: �' `�; -�1,: �� ~•fmtt'��: �--��`''� , . " „� -; �,Y% ”" N,...,!-: �:' � L� � ':1 ' -tea t;'�y °..I- {TI � u - - .:,..41'`.,E.:'r' _ , akvr.LC ^_ourxuu,. � '..r _ ,�,�• 1 �., V. L- ,.1 `\ 1• -4 ^,r ..'. ,. I,. -�'.,: ; i I Pf "� ;_ �° - .: ,A?' «m«aarr�iy. ' I _ G :_, -. .9 .. -v,� -_. ..._� .:..N,- + <und., r�w+uC_i. - .=� - ��i: �-"' ::T -- i�• :nip _ 1 11� _ ,.1 ' 'E� -;R. ^' Q:�g_ f: �'2)•• ° -tN' ' d' `-� .M � #� tr : 0` B . t f •`'� :1 r...., _ r �. , :r 't: � `,•�:1; ::}cf x.ncn• nE` � �" '.1 `-�i 1,:�:._. �-ii r:�� �r, '�.- L•.5•:._: qQa,�_ -,. •' ^'>•;;::.:::; .J :�' I �Q/ `' I! L.; wS�l�> FP'!,OW y,N., .' ,, h" ~'lii' -. .?-1 �•'.! ,. l _ M b�R1.,1.C' !� ':= . —�• ^— �J vmn. \'Sw Ln„rA4 ... '. _. •' ..,IY` ro..` v _ x � „jii.Y'. "� c I ; .IN I�'I 1 \�� .: ...„ •c . ::1'. ✓�.1' J rai,wl, .r,:_, �y...'. '/1 ,-. I',. I,, .., r,.- ,I 1.,1, �`'iU - �ti. __ _ _ IAmrrJ` i' IrtnB cA i �!�``+ftEtiFN ,Intl L : \ ... .I f - ' I _ -- - it'IC -..:. ,rw]•',�.. -.' `..', `�. ��'. • - _ ~r( -'Y �:• .I '',1.. -,' •:���_: ..;r;_1: _ I IL�:.,I �;^ Anvon� .� -r�J•,} ��?'? .�_L'It �1- .. :.1raxP,_'T - - 1C TOXRLM1N - L 39, , I = IaAnlll� „ovNt„ _ I .. _ .� .� y "�lti:; Il � �.J: -:,r:f �:L. _�� � ,' `'� +.)..��� ` ,) ��.?'• ':.i i.�•:'.. _r:h4.: _�',.'- �.`�: _ "„•- I'�v'' `�:�,:. ' i N61An J ��;1, r'nf '' .: }I- _�- it .,C' a I. • y.44117-P' -2DGAI C - \' ^1_r�- J _.,A ; %TJi`. `.I" J: �'T'r�r �__TOH :A- I RE .� '� - �.�y �.'r- ''�'w _ �•.., y,._, +� '� - - - ) ,P.'. ”` � ( •T(h:J.! 'F y. ✓' `r�I ' it - : (t - ge -ta1 c,0 i i, OAA y : t _ _ _.L- ._._.:jai'•"'*^ _ . --`11` . },�:.4;k` 1 `” /�; •0C" -` Vii; <. _'�. {`,:-ylr „g, :L. .�• J, �;{F'1atxr I fj�,7 t_ {1 , '`� _. 2'. �: . •(4�.. - ❑ (� '� � \.i � (.t:'_ _ sa�eVnoe� �ti'.' -�•, _.,'�!� 13��.- Ga:V n'i a , 17 Y �� 1 \.Ip� 'A:' _ y.- './' �.. a1.0' - -`-- �iO.aCl.'P� ,L.i.r -. �s• +,l'r... •-%. : ✓„ .I �. �i q: ' i7 •� 'I r;'1 -� `A.`,:}> _ of 'Y- :.?,:.�;� ?`!7`.:-:;Z:L”- °': I' T --- -1'.' - : -' •-''fir - ��- -r°`*T ar Jt REe {{ .u„ym nLFU, of ",.. ` a .. 'i`_., ti.. :h' -.�{' r:'t". .,'•- 1' . p -1 , Q'r:�.� •�...' p . RIVF.R6ltiC: f:OiIN �m.•a, V.IIe, y;;q _; iy ; -;,;. N,: :;, RIVERSIDE COUNTY FLOOD CONTROL - ,,- WATER CONSERVATION DISTRICT .,�.� � -:.,,:..... _ •). ' Ica - - _ - i 100 YEAR 6 HO Weer,l, YN;;� vATY)P.r ,�� .t � hf •A��_ .� �r ��'��_ , %rte }. '.�.r P R EC I P I TAT ION r _ _ -_ ___:} _ �II.4ND'N�l( \IUNAI I' 1 ..: 6Ni':_^ �.� � ^•'��C� �.' I '`.:.. 41 •. - .'�. ��: ,.f.: _'�•af _J_ 'Mal'SWwQS- .+OUN. ,N :Y't�l :.. _.. _-- : "' °e~, %' \I '. i . -... ...n,..... .. _n .... �� r _ l i' c� 4 -- -- • E a U PAH i :. v. . .. . s:. ,• -- •' . TI - _ � :� 1. o- °° - _ fir,. Xi' • �g,� - - :f',. :: -: •� . ; .i. lo- rc°7r. R._ 'E N h T M: ' IV' t1 N. .• � .,I: Y:. .. _• ] u.:r.:' .:tee,, - ,l� � Mnr,nyU,�.Y r.,,.- c„r!r� m' {fF.l'ir SMV•Ig "4 y' _ -I unlwrww. -.'. • ^m... t,: . •'I��r.! �'�: �� ,.i:�i�l i 'I�-':.'11 � '1 '�-. ..!- a!L� -. - ` 65,f. �.. �a� � l —' - NReIVF.RSI C. C'1r_pl, Pyn 'yEJTEIfRA1A !x X�+It'�UMI`A7M,5 ` l _ . {!•!'J 1 -� ! v •..• fr6,,"N'�" e.,rN.rac:,.,l,l,: < L'2�: ,,,,7•.1� �••' ..�` 1 '~ ;l,,`_ •fl��dl. I - � � f A - ^•_[;� • .;„ - rI+ t - . I �,l .a. � ' .I ^ 7 to d .7.x), , • � -j ',;IS,:�r '� . t'om:.:x .-^ 7" _. ^'_ i '.. r - _ '• ; ._ —_i= _:_' �_ °, r.. w:,r: = °n;:<n . w�J _ _ ICJ, .rv6K a: Fir .�3 -S Iry J ,�.- .,ri�r,"� -.� r'��_'L:- a:..SXi:' r � -- '�i_ Inl p � j '�. `I' ```•—.`' ''T'�' •�• .7k' /�Ggna;. :,,,�nAxbn' .• '. �i iatr.., �, R.ES -- _ -' - f:'•J' _ i�` \`v /c' :r`_;,,'" _ '�, _ :° - 1 •_ .._mac, �,• _ _ _ l:. � %:.. .. Mi. .. ,., g.:.^.L= �.`_ -r.�ti' :' ��`'`. :e1` it 'rl •`�...\. .. .e P..,.��,:,.o ^~ � �.:_-:.• _ ,.', , .:1.14': :i .� ... xl •. Iw: '.. io:A',C '',,1 .Ir.��i,' ,���: �� �, - ,- l.•p,; ,rti_7S- �:.�,''J -•, fir_ °' 'y _ � °�: ", :' :. �: :.. � ::•; .:;'% ? ..' .. 1 �..x `:,•., a•� r I \ .�. '.rou:.�o:: n.;m�. �r"� ;i..,:. r• _ �.•.`ma?" -fir I y. V,_.,nV \, .': )r' .A �•' . ,: .' ... '.. �. - t�� R VJLT' I I �) "5;� �.T l'Y.;� : _ �i �j. '~:1.:• M �!t: �.. I A l \' ?lf ru :, z ;r� ?��•• _ -�. - -- :���.._,.:�; �'i- ` ion?: _ i9 �- : J � ,.: w • • r i ri.: ' t i� r : J "y � �. b.,m °n.u, °,w_ ��,1^ / _� V ,S . l y;. ^',a . !'c!.'t- a. :'is . -_..Palm De..n, y .•� - ,:`\ .. } � \ =�A, � � � �' •11.°a. -1 � 1 'r :I I j r_' i v 1 �A�1 ..r ..1e�� n I _ ,Ir FMS , , , F I ,11 , .,.y nu ;6 � �' j.''�' : +,.:'' 1!1 _ • "Nn revs:,.. ' ',f y`.,` �. /1. ` a�•I' :. - I ] l" ..I +' K �L14%MOYN '�'� A Ou NM'::.. �I '%. -'!'.,._;'.. .. '_F� � ,•^ti.,c.' ..I Q� A J! •1 CP .. 1 �,:. � � _ a,, . 1. �'_ `�°� �`.)•..• � ', � ��" ',-v�Z :`'J'.i „`:. �' ? IR it I � . ^_i •i vAOUVU:�^51'd ~ � - - ; ?�,z - I' �� ��.y�!\ �` �, ^ ''r•:liv.. -- .: -y_'- •`S; ° 1:�, ,ay - � , ' . 'Y _`��_•_., ;.'_....��.n. 11 •ti h_ Ja�.ntl \.., . r`(- 1 � S -� �. ��. .: � � � rtF'. S-� .$ �3� ,:r ;i �. m 1' 1 urru wwu]r. . 1'`��Q MONA'R al S a ,.]'^ _,..4- •!� y� r`i�f:. �..H i' �" " j . I In.:me!� \, t:.. - n. w•os. C�: /I�Kt£SVOVniJOal `� r .m-.. ;,`:: Y_,. -.�:��� /_.. _ - ".�.� f7 '.0 ._ ti*'�'x .$';•r �I I li II. Ali t.C. +lic lZitt''. IG'wRIIYIw MlvNfMN _ — _ — 'il f!'. / J] W+tfly� L �C Tuna VLS m cl 3(1' (DO `v 1 / 1 : I . c. �'- _ _ ' .- •r'.t`L,J` ::' ^�"_- � Y .. � _ 3'.4 :._. � � ~' of Jly l., - 1>[y y 5i::1 TORR S ', /: '.:Cn ^� :� L -/f • ESE R VAF1014•'Ti :7. ^y ( ,: ' �'J - '•�'G. :'i. ^�`LLI..,....:, r, •` I 1 `�. wRTiNE W\.l •Li ^lr'�I� I �,— .l l,"•. r :T'l �' �..i �iw �: `IJ; IN rJ 7'S - - _ -- ! _ ,,��,. _::�:�� • :e��i5 :,�''D_Fidy'�•.�Q,��a ��< <C.P •ION •.,L�✓. _ ., :!. ?,. �' "•° ".;Qa --,<�_ }` ,�TT• TT 1 `�I.. C a1 f.B.r n i a 19:T13 . — •� IrriRUlLI,R tNO1ri(II.R`.iGNVa .�. � -1y •'[.,: `->:+•J�.. ,.. \. � ..�; -��.x ' .1+1r•si:: - i; ,��:'::- t• - � I ' _ - }- •n:L A 2:10= s�.- j:`•:�/ / ';.. S J. :.f - _.1 • ° "] r,'1' ::: j'S.^r:.: ..i„�'' ,1 r.' - ;•'c.... _ 9,:'I-.. -:' 7•`:J I.J' x_�i'J'+Y -"1'1 �1 `J l'1 _. II[J' V US`. y+ I.• �l n: :mss Y✓ :,'`�.._'. �,:: - j •J .NIA .. ^.OUk ,• _ - �� ;� - � t,l �mU 1 uT.jl:•, - i J..� ='�.,; - u, �✓ '��':'f'5. _;G - -RBE RIVfRF�NEt. ' RIVERSIDE COUNTY FLOOD CONTROL r WATER CONSERVATION DISTRICT - • -. . ' - - 2-YEAR 24 –HOUR '(; ;, 'G1P4EF`DEnsiONA, I ^:rr L�;r— PRECIPITATION k•�� � C _ " n . ` 1 .. I j�'` s I ,,.I _ J _. � O o-.... . i�'Q. .�: I P.... .,o I �''ok'I .. � .� n �- _ .. �• �_ _ _ .. . _ ,®i SAPOiOS..[nw, +eR_. •xi w wrn _,- _ .._..._.., '._ P ACTUAL IMPERVIOUS COVER Recommended Value.' I Land rise (1) Rance- Percent For - Average Conditions -Percent (2 Natural or Agriculture 0 - 10 ` 0 Single Family Residential: (3) 40,000 S. F. (1 Acre) Lots 10 - 25 20 20,000 S.' F. Acre) Lots 30 - 45 40 7,200 - 10,000 S. F. Lots 45 - 55 50 Multiple Family Residential: Condominiums Apartments Mobile Home Park L 45 - 70 65 65 - 90 80 60 - 85 75 Commercial, Downtown 80 -100 I 90 Business or Industrial Notes: 1. Land use should be based on ultimate development of.the watershed. Long range master plans for the County and incorporated cities should be reviewed to insure reasonable land use assumptions. 2. Recommended values are based on average conditions which may not apply to a particular study area. The percentage impervious may vary greatly even on comparable sized lots due to differences in dwelling size, improvements, etc. Landscape practices should also be considered as it is common in some areas to use ornamental arav els underlain by impervious plastic materials in place of lawns and shrubs. A field investigation of a study area should always be made, and a review of aerial photos, where available may assist in estimat- ing the percentage of impervious cover in developed areas. 3. For typical horse ranch subdivisions increase impervious area 5 per- cent over the values recommended in the table above. RCFC 8k WC D HYDROLOGY IMANUAL IMPERVIOUS COVER FOR DEVELOPED AREAS PLATE D- 5.6 R5E 'RG VE- E.' F-T RBE UPI. "'MAI cowr�:- It W. jj a,j f .:TIIS!� 7737"', 1c, -.40 .5 ok . HIW-Nslol coul, Pf 1;7 A, 7 S,-Hf I -u , ��x J Zk Zl' All JL 4 P,,n.g 2 `7 vu -.4711 _k. U T -6 7, z Aml/r1l El. KPA unu 444 ' UI u 4 %L C 39,fflJ: i —i A. 7:7 r to 41 I'1 -" " I mil, PIESE RV 110WI 7 Q.7 AA' Tr 4 1 ail -7 7 _5 Us mA,.v;TT- 70 kI, UAO° IAN A7 RIVERSIDE COUNTY FLOOD CONTROL A N 0 6;C WATER CONSERVATION DISTRICT w 4i, 100—YEAR 24 —HOUR W-7 PRECIPI IATION -0 R E 0 1 1 a 1 APPENDIX B: HYDROLOGY MAP l� ' � �`1 .. ��1; . �.,,; 11 - � _ N. L. .:.� y THE- CENTRE AT -LA QUINTA, PARCEL MAP 30420 HYDROLOGY & HYDRAULIC-S REPORT FOR FOR LA QUINTA DRIVE. & AUTO CENTRE WAY SOUTH PREPARED BY: THE KEITH COMPANIES PREPARED FOR: STAMKO DEVELOPMENT CO. 2205 POINSETTIA MANHATTAN BEACH, CA. 90226 August 16, 2002 Rev. November 18 , 2002 .'A i t. THE CENTRE AT LA QUINTA PARCEL MAP 30420 HYDROLOGY & HYDRAULICS REPORT FOR LA QUINTA DRIVE & AUTO CENTRE WAY SOUTH TABLE OF CONTENTS: I PURPOSE AND SCOPE DESIGN CRITERIA II SUMMARY OF CALCULATIONS III RATIONAL METHOD CALCULATIONS -10 YEAR, 100 YEAR IV STREET ANALYSIS CATCH BASIN DESIGN 7. V STORM DRAIN PIPE DESIGN VI APPENDIX "A" - RCFCD REFERENCE MATERIAL VII APPENDIX "B" - HYDROLOGY MAP PURPOSE AND SCOPE' The purpose of this report is to provide a hydrology and hydraulic analysis for the proposed streets (La Quinta Drive and Auto Centre Way South) adjacent to the proposed Centre at La Quinta commercial development. A separate report has been prepared for The Centre at La Quinta commercial site which includes the retention basin calculations. - The runoff from La Quinta Drive and Auto Centre Way South will be conveyed via street flow to three catch basins located at the intersection of these two streets. The proposed storm drain system will connect the three catch basins and convey the storm flow to the retention basin on Lot "C ". This report includes: 1. 'The determination of drainage areas as identified on the hydrology map in the Appendix.. 2. The determination 'of peak flow rates using the Rational Method (Riverside County) software by Civi1CADD /CivilDesign. Per city requirements, the 100 -Year 1 hour storm flow will be contained within right -of -way, and 10 -Year 1 hour storm flow contained within the curbs. Catch basins will be designed utilizing the 100 -Year peak flow rates. 3. The determination of storm drain pipe sizes utilizing `StormCAD' hydraulic software. DESIGN CRITERIA The following Riverside County Flood Control District (RCFCD) parameters were used in the preparation of the analyses: Antecedant Moisture Condition —100 year. 3 • 2 year —'l hour Precipitation 0.5" Plate D -4.3 • 100 year — 1 hour Precipitation 1.6" Plate D -4.4 • Slope of Intensity Duration Curve 0.59 Plate D -4.6 • 2 year — 3 hour Precipitation 0.7" -Plate E -5.1 • 100 year — 3 hour Precipitation 2.0" Plate E -5.2 • 2 year — 6 hour Precipitation 0.8" Plate E-5, 3 . • 100 year — 6 hour Precipitation 2.5" Plate E -5.4 • 2 year - 24 hour Precipitation 1.1" Plate E -5:5 • 100 year — 24 hour Precipitation 4.5" Plate E -5.6 • Runoff Coefficient 0.90 Plate D -5.6 • Hydrologic Soil Type "A" 'STREET CAPACITY SUMMARY: Per City requirements the 100 year — l hour storm event shall be contained within'the.right- of -way, while the 10-year —1 hour storm shall be contained within the curbs. The analyses were performed utilizing Manning's equation for open channel flow. STREET SLOPE . 100 YEAR 10 YEAR H ft CB 1 FLOW CAPACITY FLOW CAPACITY 6 ft/ft ) (cfs) (cfs) (cfs) - (cfs LA QUINTA DRIVE 0.005 12.1 54.6. 7.0 19.4 AUTO CENTRE WAY S 0.005 12.8 55.3 7.4 19A Note: The total flow along La Quinta Drive was calculated by adding one -half of Catch Basin No. 1 flow with Catch Basin No. 3 flow. The total flow along Auto Centre Way South was calculated by adding one -half of Catch Basin No. 1 flow with Catch Basin No. 2 flow. STORM DRAIN SYSTEM: The proposed catch basins and pipe sizes were determined using RCFCD Rational software for the 100 year =1 hour storm event. Sump catch basins were sized using equations from the U.S. Department of Transportation Report No. FHWA -TS -84 -202. Storm drain pipes were sized utilizing "StormCad" software. The rational software results were compared for each of the catch basins and the 100 -Year flow which resulted in the highest water surface elevation in the retention basin (for its corresponding time of concentration) was utilized for storm drain design.' The individual flows to each basin were also added to provide a total 100 year - 1 hour storm flow. 100 year —1 hour storm flow 24.9 cfs Time of Concentration 15.31 minutes Water Surface Elevation in Basin @ Tc 54.2 CATCH BASIN SUMMARY, CATCH BASIN TYPE FLOW cfs W ft H ft CB 1 SAG 13.4 6 6.34 CB2 SAG 6.1 5 7.44 CB3 I SAG 5.4 1 41 3.83 STORM DRAIN PIPE SUMMARY PIPE FLOW cfs SIZE in TYPE VELOCITY s Pi 13.40 21 - RCP 5.57 P2 5.40 18 RCP 3.06 P3 24.90 24 RCP 7.93 Riverside County'Rational Hydrology Program CIVILCADD /CIVILDESIGN Engineering Sbftware,(c) 1989 - 2000 Version 6:3. Rational Hydrology Study Date:'08 /10/02 File:lga10 • ------------------------------------------------------------------------ The . Centre at La Quinta 10 Year Storm _ Catch Basin No. 1 J 'Auto Centre -Way South * * * * * * * ** Hydrology Study. Control Information * * * * * * * * ** English (in -lb) Units used in input data file -------------------------------7---------------------------------------- Keith Companies, Inc., Palm Desert', California ­SIN 709 - --•- - - - - - - - - - - - - - ---- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - ----- Rational Method Hydrology Program based on I Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition.= 3 2.year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.600(Iri.) Storm event year = 10:0 Calculated rainfall intensity data: 1 hour intensity = 0.953(In /Hr) Slope of intensity duration curve = 0.5900 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 100.000 to Point /Station 101.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 300.000(Ft.) Top (of initial area) elevation = 68.•600(Ft.) Bottom (of initial areaY elevation = 64.800(Ft.) Difference in elevation 3.800(Ft.) Slope = 0.01267 s(percent)= 1.27 TC = k(0.300) *[(length"3) /(elevation change)]"0.2 Initial area time of concentration = 7.038 min. Rainfall intensity = 3.373(In /Hr) for a 10.0 year storm COMMERCIAL subarea type Runoff Coefficient= 0.876 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 1.005(CFS) Total initial stream area = 0.340'(Ac.) Pervious area fraction = 0.100`_ ++++++++++++++++++++++±++++++++++++++++ + ++ + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station' 101.000 to,Point /Station 102.000 ****.STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 64.800(Ft.) End "of street segment elevation Length of street.segment = 940.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) 27.000(Ft.) Distance from crown to crossfall grade break .= 25.500(Ft.) Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on (1] side (s) of the' street 'Distance from curb to property line = 10.000(Ft.) .Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike-from flowline = 1.500(In.) Manning's N in gutter = 0.0130 Manning's_N from gutter to grade-break— 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate•at midpoint of street = 2.585(CFS) Depth of•flow = 0.321(Ft.), Average velocity = 1.925(Ft /s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width 11.276(Ft.) Flow velocity = 1.93(Ft /s) "Travel time = 8.14 min. TC = 15.17- min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0.867 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = ,0.000 Decimal fraction soil group D = 0.000 - RI index for soil(AMC 3.) = 52.00 Pervious area fraction = 0.100; Impervious fraction = .0.900-. Rainfall intensity = 2.144(In /Hr) for a 10.0 year storm Subarea runoff— 1.989(CFS) for 1.070(Ac.) Total runoff 2.993(CFS) Total area = 1.410(Ac.) Street flow at end of•street = 2.993(CFS) Half street flow at end of street = 2.993(CFS) Depth of flow 0.334(Ft.), Average velocity = 1.993(Ft /s) Flow width (from curb towards crown) 11.960(Ft.) +++++++++++++++++++++++ ++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 101.000 to Point /Station 102.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 1 in normal stream number 1 . Stream flow area = 1.410(Ao.) Runoff from this stream = .2.993(CFS) Time of concentration = 15.17 min. Rainfall intensity = 2.144(In /Hr) ++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +_ Process from Point /Station 103.000 to Point /Station 104.000 ****,INITIAL AREA EVALUATION - * * ** Initial area flow distance = 510.000(Ft.) Top (of initial area) elevation = 66.200(Ft.) Bottom (of initial area),elevation = 63.000(Ft.) Difference in elevation = 3.200(Ft.) Slope = 0.00627 s(percent)= 0.63 TC = k (0.300) *[(length"3) %.(elevation change)]^0.2 Initial area time of concentration = 10.015 min. Rainfall intensity = 2.739(In /Hr) for a 10.0 year storm COMMERCIAL• subarea type Runoff Coefficient= 0.872 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) 52.00 Pervious area fraction = 0:100; Impervious fraction = 0.900 Initial subarea runoff = 3.583(CFS) Total initial stream area = 1.500(Ac.) Pervious area fraction = •0.100 +++++++++++++++++++++++++++++++++++++++ + + ++ + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 104.000 to Point /Station 102.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 63.000(Ft.) End of street segment.elevation = - 58.600(Ft.) Length of street segment = 672.000(F-t.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.•) Slope from curb to property line (v /hz) _ .0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter 0.0130 Manning's N from gutter to.grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.372(CFS) Depth of flow = 0.374(Ft.), Average velocity = 2.167(Ft /s) Streetflow hydraulics at midpoint of street travel: _ Halfstreet. flow width Flow velocity = 2.17(Ft /s) Travel time = 5.17 min. TC = 15.18 min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0.867 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0..000 Decimal fraction soil group D = 0.000 RI index f.or soil(AMC 3) = 52.00 Pervious.. area fraction = 0.100; Impervious fraction = 0.900 Rainfall intensity = 2.143(In /Hr) for a 10.0 year storm• Subarea.runoff = 1.226(CFS) for 0.660(Ac.) Total runoff = 4.8.10(CFS) Total- area = 2.160(Ac.) Street flow:at end of street = 4.81.0(CFS) Half street flow at end of street.= 4.810(CFS) Depth of flow = 0•.385(Ft.), Average velocity = 2.218(Ft /s) Flow width (from curb towards crown)= •14.483('Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 104.000 to-Point/Station 102.000 * * ** CONFLUENCE OF MINOR STREAMS Along Miin,Stream number: 1 _Jh normal stream number 2 Stream flow area = 2.160(Ac.) Runoff from this stream = .4.810(CFS) Time of concentration = -15.18 min. Rainfall intensity = 2.143(In /Hr) Summary of stream data: Stream Flow rate. TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 2.993 15.17 2.144 2 4.810 15.18 2.143 Largest stream flow has longer time of concentration Qp = 4.810 + sum of Qb Ia /Ib 2.993 * 1.000 = 2.993 QP' 7.802 - Total of 2 streams to confluence: Flow rates before confluence point: 2.993 4.810 Area of streams before confluence:. 1.410 2.160 Results of confluence: Total flow rate 7.802(CFS) Time of concentration = .15.182 min. Effective stream area after confluence = 3.570(Ac.) End of computations, total study area.= 3.57 (Ac.) The following figures may be used for a unit hydrograph study of the same area. , :Area averaged pervious area fraction(Ap) = 0.100 Area averaged RI index number.= 3.2.0 Riverside County Rational Hydrology Program CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 200b,Version 6.3 Rational Hydrology Study Date: 08/10/02, File:lga100 The Centre at La Quinta 100. Year Storm Catch Basin 'No. 1 Auto Centre Way South -- ---------------------------------------------------------------------- * * * * * * * ** Hydrology Study Control-Information * * * * * * * * ** English-(in-lb) Units used in input data file ------------------------------------------------------------=----------- Keith Companies, Inc., Palm Desert, California - SIN 709 ------------------------------------------------------------------- - - - - -. Rational Method Hydrology Program based on Riverside County Flood Control & Water.Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 3 2 year, 1 hour precipitation = 0.500(In.) 1.00 year, 1 hour precipitation = 1.600(In.) Storm .event year = 100'.0 Calculated rainfall intensity data: 1 hour intensity = 1.600(In /Hr) Slope of intensity duration curve =0.5900 +++++++++++++++++++++++++++++++++++++++ + + + + ± + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point/Station 100.000 to Point /Station 101.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 300.000(Ft.) Top (of initial area) elevation = 68.600(Ft.) Bottom (of'initial area) elevation = 64.800(Ft.) . Difference in elevation = 3.800(Ft.) Slope = 0.01267 s(percent)= 1.27 TC = k(0.300) *[(length^3) /(elevation change)]'0.2 Initial area time of concentration = 7.038 min. , Rainfall intensity = ,5.666.(In /Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.884 Decimal fraction soil group A = 1.000 .Decimal fraction,soil group B = 0.000 .Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 1.703(CFS) Total initial stream area 0.340.(Ac.) Pervious area fraction- 0'.100 ++++++++++ +++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 101.000 to Point /Station -102.000. * * ** STREET FLOW,TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 64..800(Ft.) End of street segment elevation 58.600(Ft.) Length of street segment = 940.000(Ft.) Height of curb above gutter 6.0(-In..) Width of half street (curb to crown) = 27.000(Ft.) Distance from crown to crossfall grade break_ = 25.500(Ft.) Slope from gutter-to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s).of the street Distance from curb to property line. = 10.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 n Estimated -mean flow rate at midpoint of street 4.382(CFS) Depth of flow = 0.37.3(Ft.), Average velocity 2.183(Ft /s•) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 13.914(Ft.)" Flow velocity = 2.18(Ft /s) Travel time = 7.18 min. TC = 14.21 min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0.878 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 - Pervious area fraction = 0.100; Impervious fraction = 0.900 Rainfall intensity = 3.742(In /Hr) for a 100.0 year storm Subarea runoff = .3.515(CFS) for 1.070,(Ac.) Total runoff = 5.217(CFS) Total area = 1.410(Ac.) Street flow at end of street = 5.217(CFS) Half street flow at end of street = 5.217(CFS) Depth of flow = 0.393(Ft.), Average velocity = 2.277(Ft/s) Flow width (from.curb towards crown)= 14.901(Ft.) ++++++++++++++±++++++++++++++++++++++++ + + + + ± + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 101.000 to Point /Station 102.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 1 in normal stream number.l Stream flow area = 1.410(Ac.) Runoff from this stream = 5.217(CFS) Time of concentration = 14.21 min. Rainfall intensity = 3.742(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + ± + + + + + + ++ Process from Point /Station 103.000_•to Point /Station 104.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 510.000(Ft.) Top (of initial area),elevation = 66.200(Ft.) Bottom (of initial area) elevation = 63.000(Ft.) Difference in elevation = •3.200(Ft.) Slope = 0.00627 - s(percent)= 0.63 . TC = k( 0.300),* [ (length'3) / (•elevation change) ] "0.2 Initial area time of concentration = 10.015 min. Rainfall intensity = 4.601(•In /Hr) for a. 100.0 year storm COMMERCIAL subarea type Runoff Coefficient " = 0.881 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 , Decimal fraction.soil group C = 0.000 Decimal fraction soil group D = 0.000. RI index for soil(AMC 3). = 52.00 Pervious area fraction = 0.100; Impervious fraction 0:900 Initial subarea runoff = 6.080(CFS) Total initial stream area = 1.500(Ac.) Pervious area fraction = 0.100 . ++++++++++++++±++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 104.000 to Point /Station 102.000 * * ** STREET. FLOW TRAVEL TIME + SUBAREA FLOW ADDITION Top of street segment elevation = 63.000(Ft.) End of street segment .elevation = 58.600(Ft.) Length of street segment = 672.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width,of half street (curb to crown) = 20.000(Ft.) Distance from crown'to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street. flow is on '[1] side (s) of the street Distance from curb to property line- 10.000(Ft.) Slope from curb to property.line (v /hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline 1.500(In.) Manning's Yin gutter 0.0130 Manning's N from gutter to grade break = 0.0150 " Manning's N from grade break to crown = 0.0150 Estimated mean flow-rate at midpoint of street— 7.418(CFS) Depth of flow = 0.438(Ft.), Average velocity = '2.463(Ft/s). Streetflow. hydraulics at midpoint of_ street travel: Halfstreet flow width = 17.148(Ft.) Flow velocity = 2.46(Ft %s) Travel time = 4.55 min. TC = 14.56 min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0.877 )Decimal fraction soil group A = 1.000 Decimal fraction soil group B.= 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.00.0 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Rainfall intensity = 3.689(In /Hr) for a 100.0 year storm Subarea runoff 2.137(CFS) for 0.660(Ac -.) Total runoff = 8.217(CFS) Total area = 2.160(Ac.) Street flow at end of street 8.217(CFS) Half street flow.at end of street 8.217(CFS) Depth of flow = 0- .452(Ft.), Average - velocity = 2.525(Ft/s) Flow width (from curb towards crown)= 17.841(Ft.) I .............................................................. + ...... Process from Point /Station 104.000.to Point /Station 102.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main :Stream number: 1 in normal stream number 2 Stream flow area Runoff from this stream = 8.217(CFS) Time of concentration = 14.56 min. Rainfall intensity 3.689(In /Hr) - Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 5.217 14.21 3.742 2 8.217 14.56 3.689, Largest stream flow has longer time-of concentration Qp = 8.217 + sum of Qb Ia /Ib 5.217 * 0.986 QP = 13.360 Total of 2 streams to confluence: Flow rates before confluence point: 5.217 8.217 Area of streams before - confluence: 1.410 2.160 Results of confluence: Total flow rate = 13.360(CFS) Time of concentration 14.562 min. Effective stream area after confluence = 3.570(Ac.) End of computations,,total study area 3.57 (Ac.) The.following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.100 Pxea averaged RI index number = 32:0 . Riverside County Rational Hydrology Program CIVILCADD /CIVILDESIGN Engineering.Software,(c) 1989 - 2000 Version 6.3 Rational Hydrology Study Date: 08 /10/02 File:lgb10 The Centre at to Quinta 10 Year Storm Catch-Basin No. 2 Auto Centre Way South ----------------------------------------------------------------------'-- ********* Hydrology Study Control Information * * * * * * * * ** English (in -lb) Units used in input data file ------------------------------------------------------------------------ Keith Companies, Inc., Palm Desert, California - SIN. 709 ------------------- - ----------- ------ - --------------------------------=- Rational Method Hydrology Program based on Riverside County Flood Control. & Water Conservation District .1978 hydrology manual Storm event (year) = 1.0..40 Aintecedent Moisture Condition = 3 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.600(In.) Storm event year = 10.0 Calculated rainfall intensity data: l..hour intensity = 0.953(In /Hr) Slope of intensity duration curve = 0.5900 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 200.000 to Point /Station 201.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 300.000(Ft.) Top (of initial area) elevation = 68.600(Ft.) Bottom (of initial area) elevation = 64.800(Ft.)- " Difference in elevation = 3.800(Ft.) Slope = 0.01267 s(percent)= 1.27 TC = k (0.300) *[(length"3) /(elevation change)]"0.2 Initial area time of concentration = 7.038 min. Rainfall intensity = 3.373(In /Hr) for a 10.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.376 Decimal fraction soil -group A ='1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil,group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 1.093(CFS) Total initial stream area = 0.370(Ac.) Pervious area fraction = 0.100 +++++++++++++++++++++++++ ++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 201.000 to Point /Station 202.000 * * ** STREET FLOW TRAVEL•TIME + SUBAREA'FLOW ADDITION * * ** Top of street segment elevation = 64.800(Ft', End of street segment elevation = 58.600(Ft.), Length of street segment'= 1040.000(Ft.) Height'of curb above gutter - flowline = 6.0(In.) Width of half street'(curb to crown) = 27'.000(Ft.) Distance from crown to crossfall grade break = 25.500(Ft.)' Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1] side(s) of the street _ Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.50,0(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown 0.0150 Estimated mean flow rate at midpoint of street = 3.043(CFS)• Depth. of flow = 0.341(Ft.),_ Average velocity = 1.925(Ft /s) Streetflow hydraulics at midpoint of street travel:; Halfstreet flow width = 12.285(Ft.) " Flow velocity = '1.93(Ft /s) Travel time.= 9.00 min. TC = 16.04 min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0.866 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.0.00 Decimal fraction soil group C = 0.000 Decimal fraction soil group 'D = 0.000 RI index-for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Rainfall intensity = .2.075(In /Hr) for a' ,10..0 year storm Subarea runoff = 2.373(CFS) for 1.320(Ac.) Total runoff = 3.466(CFS) Total area = 1.690(Ac.) Street flow at end of street = 3.466(CFS) Half street flow at end of street = 3.466(CFS) Depth of flow = 0.354(Ft.), Average velocity. 1.986(Ft /s) Flow width (from curb towards crown)= 12.938(Ft.) End of computations, total study'area = 1.69 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.100 Area averaged RI index number = 32.0 Riverside County Rational Hydrology Program CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2000 Version 6.3 Rational Hydrology Study Date: 08/10/02 .File:lgb100 The, Centre. at La Quinta 100 Year Storm Catch Basin No. 2• Auto Centre Way South '-------------------=---------------------------------------------------- * * * * * * * ** Hydrology Study Control Information English (in -lb) Units used in input data file ---------------------------- --------------- - ------------------ -_ --------- Keith Companies, Inc., Palm Desert, California - SIN' 709 ------------------------.---------------,--------------------------------- Rational Method Hydrologv Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 1.00.00 Antecedent. Moisture Condition = 3• 2 year, 1 hour precipitation = 0.500(In.). 100 year, 1 hour precipitation = 1.600(In.) Storm event year— 100.0 Calculated .rainfall.intensity data: 1 hour intensity = .1.600(In /Hr) Slope of intensity duration curve = 0.5900 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 200.000 to Point /Station 201.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 300.000(Ft.) Top (of initial area) elevation = 68.600(Ft.) Bottom (of initial area) elevation Difference in elevation 3.800(Ft.) Slope.= 0.01267 s(percent)= 1,.27 TC = k (0.300) * [ (length'3) / (elevation change) ] "0.2 •Initial area time of concentration 7.038 min. Rainfall intensity 5.666(In /Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient =-0.884 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 . Decimal fraction soil -group C = 0.000 Decimal fraction soil group D = 0.00.0 RI -index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 1.853(CFS) Total initial stream area = 0.370(Ac.) Pervious area fraction = 0.100 ++++++++++++ ++++++++++++++++++++++++++++ + + + + + +. + + + + + + + + + + + + + + + + ++ + + + + ++ Process from Point /Station 201.000 to;Point /Station 202.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION Top of street segment elevation = 64.800(Ft.) End of street segment elevation = 58.6.00(Ft.) . Length of street segment = 1040.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 27.000(Ft.). Distance from crown to crossfall grade break = 25.500(Ft.)" Slope from gutter to grade break (v /hz), _ 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [1]. side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v /hz) 0.020 Gutter width = 1.500(Ft.') Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint.of street = 5.158(CFS) Depth of flow = 0.398(Ft.), Average velocity = -2.185(Ft/•s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 15.131(Ft:) Flow velocity = 2.19(Ft /s) Travel time = 7.93 min. TC = 14.97 min. Adding area flow to street ,COMMERCIAL subarea type Runoff Coefficient = 0.877 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Rainfall intensity = 3.629(In /Hr) for a 100.0 year.storm Subarea runoff 4.203(CFS) for 1:320(Ac.) Total runoff = 6.056(CFS) Total area = 1.690(Ac.) Street flow at end of street = 6.056(CFS) Half street flow at end of street = 6.056(CFS) Depth of flow = 0.417(Ft.), Average velocity = 2.272(Ft/s)' Flow width (from curb towards crown)= 16.108(Ft.) .End of computations,'total study area = 1.69 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.100 Area averaged RI index number = 32.0 Riverside County Rational Hydrology Program CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2000 Version 6.3 Rational Hydrology, Study Date: 08 /10 /b2. Fil_e:lgc10 The Centre at ha Quinta 10 Year Storm r Catch .Basin No. 3 La Quinta Drive * * * * * * * ** Hydrology.Study Control Information * * * * * * * * ** English (in -lb) Units used in input data file Keith Companies, Inc., Palm Desert, California - SIN 709 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm.event (year) = 10.00 Antecedent Moisture Condition = 3 2 year, 1 hour precipitation 0.500(In.) - 100 year, l hour precipitation = 1.600(In.) Storm event year 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.953(In /Hr) Slope of intensity duration curve +++++++++++++++++++++++=++++++++++++++.. ..... + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 300.000 to Point /Station -301.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 525.000(Ft.) Top (of initial area) elevation = 66.'200(Ft.) Bottom (of initial area) elevation = 62.900(Ft.) Difference in elevation = 3.300(Ft.) Slope = 0.00629 s(percent)= ' 0.63 TC = k(0. 300) *[•( length "3) /(elevation change)]'0.2 Initial area time of concentration = 10.128 min. Rainfall intensity = 2.721(In /Hr) for a 10.0 year.storm COMMERCIAL subarea type Runoff Coefficient = 0.872 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000. Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = '0.100; Impervious fraction 0.900 Initial subarea runoff = -1.803(CFS) Total initial stream area = 0.760(Ac.) _ Pervious area fraction = 0.100 - +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process,from Point /Station 301.000 to Point /Station 302.000 * * ** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** .Top of street segment elevation = 62.900(Ft.) End of•street segment elevation = 59.200(Ft'.) Length of street segment = 644.000(Ft.) Height'of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break (v /hz) = 0.0.n Slope from grade -break to crown (v /hz) = 0.020• Street flow is on-[1] side(s) of the street Distance from curb to property line = 10.000.(Ft.) Slope from curb to property line (v /hz),= 0.020 Gutter width = 1.500(Ft.) . Gutter hike from flowline = 1.500(In,) Manning's N in gutter 0.0130 - Manning's N from gutter to grade break = 0.0.150 Manning's N from grade break to-crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.681(CFS) Depth of ' flow = 0.331(Ft.), Average velocity = 1.825(Ft /s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.1.825(Ft.) Flow velocity = 1.82(Ft /s) , Travel .time = 5.88 min. TC = 16.01 mina Adding area flow to street COMMERCIAL subarea -type Runoff Coefficient = 0.867 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000, RI index for soil(AMC 3) = 52.00 Pervious area fraction.= 0.100; Impervious fraction = 0.900 Rainfall intensity = 2.077(In /Hr) for a 10.0 year storm, Subarea runoff.= 1.332(CFS) for 0.740(Ac.) Total runoff = 3.135(CFS.) Total area = 1.500(Ac.) Street flow at end of street = 3.135(CFS) Half street flow at end of street 3.135(CFS) Depth of flow = 0.347(Ft.), Average - velocity = 1.894(Ft /s) Flow width (from curb towards crown )= 12:587(Ft.) End of computations, total study area = 1.50.(Ac.) The.following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = '0.100 . -Area averaged RI index number = 32.0 Riverside County Rational Hydrology Program CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2000 Version 6.3 Rational Hydrology Study Date: 08 /10/02 File:1gc100 ------=-----=----------------------------------------------- =------------- II The Centre at La Quinta 100'Year Storm Catch Basin.No. 3 La Quinta Drive --------------------------------------------------------.---------------- ********* Hydrology Study Control Information * * * * * * * * ** English (in -lb) Units used in input data file ----------------------------------------------------------------------- Keith-Companies, Inc.,.Palm Desert, California - SIN 709 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) _ -100.00 Antecedent Moisture Condition = 3 2 year., 1 hour precipitation 0_.500(In.) 100 year, 1 hour precipitation = 1.600(In.) " ,Storm event year = 100.0 Calculated rainfall intensity data:. 1 hour intensity = ' 1_6C.0 (In /Hr) Slope-of intensity duration curve = 0.5900 t + +t +' ..........t +t + +t•f Ttt+tt+++++ t....- F..... F. F. F. F. F. F... F. F .}..F.f..i..F.+.f.F.f..... Process from Point /Station 300.000 to Point /Station 301.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = . 525.000(Ft.) Top (of initial area) elevation.= 66.200(Ft.) Bottom (of initial area) elevation = 62.900(Ft.) Difference in- elevation = 3.300(Ft.) Slope = 0.00629 s(percent)= 0.63 TC = k(0.300•) * [ (length'3) / (elevation change) ] X0.2 Initial area time of concentration 10.128 min. Rainfall intensity 4.571(In /Hr) 'for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.881 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = .0.000 Decimal fraction soil group C = 0.000 . Decimal fraction soil croup D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = .0.100; Impervious fraction = 0.900 Initial subarea runoff = 3.060(CFS) Total' initial stream area = 0.760.(Ac.) -. Pervious area fraction = 0.100 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 301.000 to Point /Station 302.000, * ** *.STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION * * ** Top of street segment elevation = 62.900(Ft.) End of street segment elevation = 59.200(Ft.) Length of street segment = 644.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = .20.000(Ft:) Distance from crown to crossfall grade break = 18.500(Ft.) Slope from gutter to grade break'(v /hz) 0.020 Slope from grade break'to crown (v /hz) 0.020 Street flow is on [ij side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter 0.0130 Manning's•N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0:0150 Estimated mean flow rate at midpoint of street = 4.550(CFS) Depth of flow = 0.387(Ft.), Average velocity = 2.070(Ft /s) Streetflow hydraulics at midpoint of street travel,: Halfstreet.flow width = 14.582(Ft.) Flow velocity =. 2.07(Ft /s) Travel time = 5.18 min. TC = 15.31 min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0.877 Decimal fraction soil group A = 1:000 Decimal fraction soil group'B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction •0.900 Rainfall intensity = 3.581(In /Hr) for a 100.0 year storm Subarea runoff = 2.324(CFS) for 0.740(Ac.) Total runoff 5.384(CFS) Total area = 1.500(Ac.) Street flow.at end of street = 5.384(CFS) Half street flow at end-of street = 5.384(CFS) Depth of flow = 0.406(Ft.), Average velocity = 2.156(Ft /s) Flow width (from curb towards crown) =' 15.575(Ft.) =End of computations, total study area = 1.50 (Ac.) The following figures may be used for a unit hydrograph study.of the same area. Area averaged pervious area fraction(Ap) = 0.100 Area averaged RI index number = 32.0 ' Auto Centre Way South - 10 Year Worksheet for Irregular Channel Project Description Project File- o: \40382\4038201 \docs \hydro \streets \streets.fm2 Worksheet Auto Centre Way South - -10 Year Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Input Data ft Channel Slope 0.005000 ft/ft Water Surface Elevation 59.43 ft Elevation range: 58.93 ft to 59.62 ft. - Station (ft) Elevation (ft)_ Start Station End Station Roughness -37.00 59.62 -37.00 37.0.0 0.015 -27:50 59.43 - -27.00 59.43 -27.00 58.93 -25.50 - 59.06 - . 0.00 59.57 25.50 59.06 . 27.00. 58.93 27.00 59.43 - 27.50 59.43 -37.00 59.62 Results Wtd. Mannings Coefficient 0.015 Discharge 19.44 cfs Flow Area -8.15 ft2 Wetted Perimeter 41.02 ft Top Width 40.00 ft Height 0.50 ft - Critical Depth 59.42 ft Critical Slope 0.005817 ft/ft Velocity 2.39 ft/s Velocity. Head 0.09 ft Specific Energy 59.52 ft Froude Number 0.93 Flow is subcritical. Flow is divided. 08/10/02 THE KEITH COMPANIES 02:51:34 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755 -1666. .FlowMaster v5.10 Page 1 of 1 I ' Auto Centre Way 'South -.10 Year Cross Section for Irregular Channel Project Description Project File o:\40382 \4038201\docs \hydro \streets \streets.fm2 Worksheet Auto. Centre Way South -10 Year Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Channel Slope U.UU5000 tt/tt Water Surface Elevation 59.43 ft Discharge 19.44 cfs - 59.6 59.5 59.4 C .259.3 co N LU 08/10/02 02:51:16 PM 59.2 59.1 59.0 58.9' ' -40.0 -30.0 -20.0 -10.0 0.0 10.0 20.0 30.0 40.0 Station (ft) THE KEITH COMPANIES FlowMaster v5.10 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755 -1666 Page 1 of 1 ' Auto Centre Way South - 100 Year Worksheet for:lrregular_Channel Project Description ` " Project File o:\ 40382\ 4038201 \docs \hydro \streets \streets.fm2 Worksheet Auto Centre Way South - 100 Year Flow Element Irregular Channel ; Method Manning's Formula Solve For Discharge Input Data Channel Slope 0.005000 ft/ft Water Surface Elevation 59.62 ft Elevation range: 58.93 ft to 59.62 ft. Station (ft) Elevation (ft) Start Station End Station Roughness -37.00 59.62- -37.00 37.00 ' 0.015 -27.50 59.43 -27.00 59.43 -27.00 58.93' ' -25.50 59.06 0.00 59.57 25.50 59.06 27.00 58.93 27.00 59.43 27.50 59.43 37.00 59.62 Results Wtd. Mannings Coefficient 0.015 Discharge 55.27 cfs - Flow Area 19.42 ft2 - Wetted Perimeter 75.03 ft - Top Width 74.00 ft 'Height 0.69 ft Critical Depth 59.62 ft Critical Slope 0.005234 ft/ft Velocity 2.85 ft/s Velocity Head 0.13 ft Specific Energy 59.75 ft Froude Number 0.98 Flow is subcritical. 08/10/02 THEXEITH COMPANIES FlowMaster v5.10 02:53:15 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755 -1666 Page 1 of 1 Auto Centre Way South - 100 Year Cross Section for Irregular Channel Project Description Project File o:\ 40382\ 4038201 \docs \hydro \streets \streets.fm2 Worksheet' Auto Centre Way South - 100 Year Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Wtd._ Mannings Coefficient 0.015 Channel Slope 0.0050. 00 ft/ft Water Surface Elevation 59.62 ft Discharge 55.27 cfs 59.6 59.5 59.4 C .259.3 c>s N W 59.2 59.1 59.0 58.9 -40.0 -30.0 -20.0 -10.0 0.0 10.0 20.0 Station (ft) 08/10/02 THE KEITH COMPANIES 02:53:05 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755 -1666 30.0 40.0 FlowMaster v5.10 Page 1 of 1 Results Wtd. Mannings Coefficient 0.015 Discharge La Quinta Drive - 10 Year cfs Worksheet for Irregular Channel Project Description ftZ Project File o:\ 40382\ 4038201 \docs \hydro \streets \streets.fm2 Worksheet La Quinta Drive -.10 Year Flow Element Irregular Channel Method Manning's Formula Solve For Discharge: Input Data ft Channel Slope 0.005000 ft/ft Water Surface Elevation 60.06 ft Elevation range: 59.56 ft to 60.25 ft. - Station (ft) Elevation (ft) Start Station End Station Roughness -30.00 60.25 - -30.00 30.00 0.015 -20.50 60.06 -20.00 60.06 40.00 59.56 .-18.50 59.69 0.00 60.06 18.50 59.69 20.00 ` 59.56 20.00 60.06 20.50 60.06 30.00 60.25 Results Wtd. Mannings Coefficient 0.015 Discharge 19.44 cfs Flow Area 8.15 ftZ Wetted Perimeter 41.02 ft _ Top Width 40.00 ft Height 0.50 ft Critical Depth 60.05 ft Critical Slope 0.005817 ft/ft Velocity 2'.39 ft/s Velocity Head 0.09 ft Specific Energy 60.15 ft Froude Number 0.93 Flow is subcritical. Flow is divided. 08/10/02 THE KEITH COMPANIES FlowMaster v5.10 - 02:40:48 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755 -1666 Page 1 of 1 La Qu.inta'Drive =,10 Year Cross Section, for Irregular Channel Project Description Project File 0:\40382\ 4038201 \dots \hydro \streets \streets.fm2 Worksheet La Quinta Drive - 10 Year Flow Element Irregular Channel Method Manning's Formula Solve For Discharge Section Data Wtd. Mannings Coefficient 0.015 Channel Slope - 0.005000 ft/ft Water Surface Elevation 60.06 ft Discharge 19.44 cfs .• 60.1 60.0 C .259.S c� N uJ 08/10/02 02:42:07 PM 59.E 59.7 59.E 59.5' ' -30.0 -25.0 -20.0 -15.0 -10.0 -5.0 0.0 5.0 10.0 15.0 20.0 25.0 30.0 Station (ft) THE KEITH COMPANIES FlowMaster v5.10 Haestad Methods, Inc. . 37 Brookside Road Waterbury, CT 06708 (203) 755 -1666 Page 1 of 1 La Quinta Drive - 100 Year Worksheet for Irregular Channel Project Description Project File o:\ 40382\ 4038201 \docs \hydro \streets \streets.fm2 Worksheet La Quinta Drive - 100 Year " Flow Element Irregular. Channel Method Manning's Formula Solve For . Discharge Input Data Channel Slope 0.005000 ft/ft Water Surface Elevation 60.25 ft Elevation range: 59.56 ft to 60.25 ft. Station (ft) Elevation (ft). Start Station End Station Roughness -30.00 60:25 -30.00 30.00. 0.015 -20.50 60.06 : 20.00. 60.06 _ -20.00 59.56 -18.50 59.69 0.00 60.06 18.50 _ 59.69 20.00 59.56 20.00. 60.06 20.50 60.06 30.00 60.25 Results Wtd. Mannings Coefficient 0.015 Discharge 54.56 cfs Flow Area 17.74 ft2 Wetted Perimeter 61.02 ft Top Width 60.00. ft Height 0.69_ ft Critical Depth 60.25 ft Critical Slope 0.005035 ft/ft Velocity 3.07 fus Velocity Head 0.15 ft Specific Energy 60.40 ft Froude Number 1.00 Flow is subcritical. 08/10/02 THE KEITH COMPANIES FlowMaster v5.10 02:40 :13 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755 -1666 Page 1 of 1 La Quinta Drive - 100 Year Cross Section for Irregular Channel :Project Description Project File o: \40382\4038201 \flocs \6ydro \streets \streets.fm2 Worksheet La Quinta Drive - 100 Year Flow Element Irregular Channel - Method Manning's Formula Solve For Discharge Section Data Wtd. Mannings Coefficient 0.015 Channel Slope 0.005000 -ft/ft Water Surface Elevation 60.25 ft " Discharge 54.56 cfs 60.2 60.1 60.0 - ~� 0599 .. m W 59.8 59.7 59.6 59.5 -30.0 -25.0 -20.0 -15.0 40.0 -5.0 0.0` -5.0 10.0 15.0 20.0 25.0 30.0 Station (ft) " 08/10/02 THE KEITH COMPANIES FlowMaster v5.10 02:42:32 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755 -1666 Page 1 of 1 Project. Report The Keith Companies Date: 8 -►� -oz Project: TYe Ce�-4re aA- La G)U' !A C Job No: Re: II)r"\1f- Ce• Aff-- vi C, By: 0.�. Contact: Cc's., 90s�,) OOS. 3 Phone: S. �A Pet P C A-1 C 4 P.�%S (i i C N LC-V, L AT E Q O'�) Fc-,g CIT`( OF t,A QUIOTR S-roRv%,-, .. (f,t�rn1 Rre aut2ErKRriTZ, CA--T-W SA -5 rQS 5P4 -A-LL- BE Sr7-k D . US (r-4G' -m-rr w Ertz FncoA-na,\i !� F ��r ►S R�:E,aw I.0 A-^14 nY r oft.teteE re( 3 5,y CFS i C �. r: r ant r 4 4 P o h o E o wAr; Rr o ri+rr •ro P, oF' c v..ra. I -- t�C�..1r4 -�,�t� Wie7-li . OF- us i'J. 0?EIJ14 (r �A- µE t.G tiT �� PaNq��► c�rA��/� u FaR OTia•r✓R aP��rntCr wroi� t s 301 E - 09/00 VLL �C 'CAE Vtn� wtt_L. 6f W MME " THE CENTRE AT LA QUINTA = OFF - SITE STREETS DEPTH INCR TOTAL (ft) (ft) JOB #: 4038.2.01 VOLUME INCR TOTAL (cuft) (cuft) (acre -ft) 54 RETENTION-BASIN .0 DATA INPUT 0 0 TRIANGULAR HYDROGRAPH PERCOLATION RATE- 1 in /hr FLOW '24.9 WEIR DATA 57717 Tc 15.31 OVERFLOW CONTOUR 59 T ('max) 45.93 b 100 m1 0.0271065 0:0135532. h(min) 5. m2 - 0.013553 - 0.006777 2.7 57 y-int '37.35 AREA 2.18 63990 Ap 0.364 VOL 34309.71, RI 33.8 BASIN CHARACTERISTICS 3223 67213 CONTOUR DEPTH INCR TOTAL (ft) (ft) AREA INCR TOTAL M M VOLUME INCR TOTAL (cuft) (cuft) (acre -ft) 54 0 .0 54668 0 0 0.0 55 1 1. 3049 57717 56193 - 56193- 1.3 56 1 2 3093 60810 59264 115456 2.7 57 1. 3 3180 63990 62400 177856 4.1 58 1 4 3223 67213 65602 243458 5.6 -59 1 5 3311 70524 68869 312326 .7.2 59 0 5 0 70524 0 312326 7.2 59 0 5 0 705241 01 312326 7.2 'THE CENTRE AT LA QUINTA JOB #: 40382.01 DATE 10- Aug -02 RFTFNTinN RARIN TIME FLOW VOLUME TOTAL IN IN IN BASIN min ) (cfs) (cult tuft PERC OUT cult TOTAL IN BASIN BASIN DEPTH cult (ft)- BALANCE IN BASIN cult acre -ft 0 1 1.63 49 49 76 0.0 54.0 0.001 0.00 1 2 3.25 146 146 76 - 70.4 54.0 70.441 0.00 2 3 4.88 244 314 76 238.4 54.0 238.44 0.01 3 4 6.51 342 580 76 504.0 54.0 504.01 0.01 4 5 8.13 439 943 76 867.1 54.0 867.14 0.02 5 6 9.76 537 1404 76 1327.8 54.0 1327.81 0.03 6 7 11.38 634 1962 76 1886.0 54:0 1886.03 0.04 7 8 13.01 732 2618 76 2541.8 54.0 2541.78 0.06 8 9 14.64 829 3371 76 3295.1 54.1 3295.05 0.08 9 10 16.26 927 4222 76 4145.8 54.1 4145.85 0.10 10 11 17.89 1025 5170 76 5094.2 54.1 5094.16 0.12 11 12 19.52 1122 6216 76 6140.0 54.1 6139.97 0.14 12 13 21.14 1220 7360 76 7283.3 54.1 7283.28 0.17 13 14 22.77 1317 8601 77 .8524.1 54.2 8524.07 0.20 14 15 24.40 1415 9939 77 9862.4 9862.36 0.23 15 16 24.34 1478 11340 77 11263.3 54.2 11263.27 0.26 16 17 1 23.53 1436 12699 77 12622.3 54.2 12622.32 0.29 17 18 22.71 1387 14009 77 13932.5 54.2 13932.49 0.32 18 19 21.90 1338 15271 77 • 15193.8 54.3 15193.76 0.35 19 20 21.09 1290 16483 77 16406.2 54.3 16406.15 0.38 20 21 20.27 1241 17647 77 17569.7 54.3 17569.67 0.40 21 22 19.46 1192 18762 77 18684.3 54.3 18684.31 0.43 22 23 18.65 1143 19827 77 19750.1 54.4 19750.07 0.45 23 24 17.83 1094 20844 77 20767.0 54.4 20766.97 0.48 24 25 17.02 1046 21813 78 21735.0 54.4 •21735.00 0.50 25 26 16.21 997 22732 78 22654.21 54.4 22654.18 0.52 26 27 15.39 948 23602 78 23524.5 54.4 23524.49 0.54 27 28 14.58 899 24424 • 78 24346.0 54.4 24345.95 0.56 28 29 13.77 850 25196 78 25118.6 54.4 25118.56 0.58 29 30 12.95 802 25920 78 25842.3 54.5 25842.33 0.59 30 31 12.14 753 26595 78 26517.3 54.5 26517.25 0.61 31 32 11.33 704 27221 78 27143.31 54.5 27143.34 0.62 32 33 10.51 655 27799 78 27720.6 54.5 27720.59 0.64 33 34 9.70 606 28327 78 28249.0 54.5 28249.00 0.65 34 35 8.89 558 28807 78 28728.6 54.5 28728.59 0.66 35 36 8.08 509 29237 78 29159.4 54.5 29159.36 0.67 36 37 7.26 460 29619 78 29541.3 54.5 29541.30 0.68 37 38 6.45 411 29953 78 29874.41 54.5 29874.43 0.69 '38 39 5.64 363 30237 78 30158.7 54.5 30158.75 0.69 39 40 4.82 314 30472 78 30394.3 54.5 30394.25 0.70 40 41 4.01 265 30659 78 30581.0 54.5 30580.95 0.70 41 42 3.20 216 30797 78 30718.9 54.5 30718.85 0.71 42 43 2.38 167 30886 78 30808.0 54.5 30807.95 0.71 43 44 1.57 119 30927 78 30848.31 54.5 30848.26 0.71 44 45 0.76 70 30918 78 30839.8 54.5 30839.77 0.71 45 46 0.00 21 30861 78 30782.5 54.5 30782.50 0.71 46 47 0.00 0 30755 78 30676.4 54.5 30676.44 '0.70 47 48 0.00 0 30600 78 30521.6 54.5 30521.61 0.70 48 49 0.00 0 30396 78 30318.0 54.5 30317.99 0.70 49 50 0.00 0 30144 78 30065.61 54.5 30065.61 0.69 50 51 0.00 0 29843 78 29764.5 54.5 29764.45 0.68 51 52 0.00 0 29493 78 29414.5 54.5 29414.53 0.68 52 53 0.00 0 29094 78 29015.9 54.5 29015.85 0.67 53 54 0.00 0 28646 78 28568.4 54.5 28568.41 0.66 54 55 0.00 0 28150 78 28072.2 54.5 28072.22 0.64 55 56 0.00 0 27605 78 1 27527.3 54.5 27527.27 0.63 56 57 0.00 0 27012 78 26933.6 54.5 26933.58 0.62 57 58 0.00 0 26369 78 26291.1 54.5 26291.15 0.60 58 59 0.00 0 25678 78 25600.0 54.5 25599.981 0.59 59 60 0.00 0 24938 78 24860.1 54.4 24860.07 0.57 Project Title: La Quinta Drive /Auto Centre Way S. Drainage Project Engineer: Doug Franklin o: \40382\ 4038201 \dots \hydro\streets\streets.stm KEITH COMPANIES SformCAD v1.0 '11/20/02 02:53:19 PM • Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755 -1666 Page 1 of 1 Beginning-Calculation-Cycle. ---- , - - - - -7 -Discharge:' 13'. 40 -cfs at node CB -1 Discharge: 5.40 cfs at node CB -3 .- Discharge: 24.90 cfs at node CB -2. Discharge: 24.90 cfs, at node Outlet Beginning iteration 1 Discharge: 13.40 cfs at node. CB -1 Discharge: 5.40 cfs at node CB -3 Discharge: 24.90 cfs at node. CB -2. Discharge: 24.90 cfs at node Outlet Discharge Convergence Achieved in l iterations: relative error: 0.0. ** Warning: Design constraints''not met. Information: Outlet Known.flow propagated from upstream junctions. Information: P -3 Surcharged condition Violation: P -3 does not meet minimum cover constraint at downstream end. Information: P-,1, Surcharged condition --------------- - - - - -- Calculations Complete ---------------- - - - - -- ** Analysis Options ** Friction method:. Manning's Formula HGL Convergence Test: 0.001000 Maximum Network Traversals:, 5 Number of Pipe Profile Steps: 5 Discharge Convergence.Test: 0.001000 Maximum Design Passes: 3 -----=------ - - -- -- . Network Quick View ----------------- - - - - -- I_ Hydraulic Grade I Label 'I Length `I Size I Discharge I Upstream 'I Downstream I P -1 41.00' 21 inch 13.40 57.29 56.99 P -2 .84..42 18 inch. 5..40 57.2-2 56.99 P -3 .15.8.00 24 inch 24.90 56.11 54.20 -- - - - - -- Elevations ---=------ - - - - -- I Label I Discharge I Ground I Upstream HGL I Downstream HGL I CB -1 13.40 58.58 57.58 57.29 CB -2 24.90 58.58 56.99 56.11 C1373 5.40 59.22 57.30 57.22 Outlet 24.90 47.00 54.20 54.20 Elapsed: 0 minute(s) 1 second(s) Project Title: La Quinta Drive /Auto Centre Way S. Drainage Project Engineer: Doug Franklin o:\ 4038244038201 \dots \hydro\streets \streets.stm KEITH COMPANIES StormCAD v1.0 11/20/02 02:54:28 PM Haestad Methods, Inc. 37 Brookside Road . Waterbury, CT 06708 (203) 755 -1666 Page 1 of 1 Node Report Node Additional Known Structure Ground Rim Sump • HGL In HGL Out Flow Flow DischargE Elevation Elevation Elevation (ft) (ft) (cfs) (cfs) (cfs) (ft) (ft) (ft) C13-3 0.00 5.40 5.40 59.22 59.22 55.72 57.30 57.22 CB -1 0.00 13.40 13.40 .58.58 58.58 52.58 57:58 57.29 CB -2 6.10 18.80 24.90 58.58 58.58 51.48 .56.99 56.11 Outle N/A N/A 24.90 47.00 47.00 47.00 54.20 54.20 1 Project Title: La Quinta Drive /Auto Centre Way S. Drainage o:\ 4038244038201 \docs \hydro\streets\streets.stm KEITH COMPANIES 11/20/02 02:57:56 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755 -1666 Project Title: La Quinta Drive /Auto Centre Way S. Drainage o:\ 4038244038201 \docs \hydro\streets\streets.stm KEITH COMPANIES 11/20/02 02:57:56 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755 -1666 Pipe Report Pipe Dn Up Q Cap Length Section Size Roughness S V avg Up Dn Up Dn Node Node (cfs) (cfs) (ft) Material (ft/ft) (ft!s). Invert Invert HGL HGL (ft) (ft.) (ft) ". (ft) P -2 CB -2 CB -3 5.40 23.26 84 "42 Concrete 18 inch 0.013 .049041 3,06 55.72 51.58 57.22 56.99 P -1 CB -2 CB -1 13.40 24.74 41.00 Concrete 21 inch 0 "013 .024390 5:57 52.58 51.58 57.29 56.99 ,P -3 Outlet CB -2 24.90 38.09 158.00 Concrete, 24 inch 0.013 .028354 T93151.48147.001 , 56.1.11 54.20 Project Title: La Quinta Drive /Auto Centre Way S. Drainage Project Engineer: Doug Franklin o:\403824 4038201 \docs\hydro\streets\streets.stm m KEITH COMPANIES StormCAD .v1.0' 11/20/02 02 :58:13.PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755 -1666 Page 1 of 1 of nr r r c z n r aYi Cgt,µ rk i, � _ oats •].� -i21• ` '_ � `�,'.�F it � i J� J J. l R t '+y�.L, vil 4 4fy *.L f x l� P= 7s",� i.t ,� r�Yt. f'-j ` a` tit •:t v^, ` T \vita yne�� r t '' dR} j " I C l • Yi s � , : a `• a 41 �:"t �etyu ` .L.b 1! 1 r_ �7�i�G,. � J; .� i ` �,,,..•9 T "'.•+r � ! s `� ( •-..• -] is ./ .. �--. (' � ..X' 'y'-r�- -x,'7N7,7 '''� t s ^' ✓ f 't _.._ 'r � { � � ir•�. � ' t �,. m�lfa 1 f ir. . �r r �y :s ._ � :. ��. �],� � (J� �..` �iZ� �• 1 r �• � � .1 -t) A 'f � \�' <r � .7�-r, 1. f. !� s''tiK � .J fw �,��.f. �: F a ;(. r `' }��'•"'}1 • nl { C.ra�l Q' � til'r.�.T -� .i _ � - +^i yC. �. ir' / ". �.- "�'i: ". Jy,� -.j± jp rl:]ii t i- I,yby, 1' of '��' n3 .J aF v- r�i� � � r: .•�_ � T,t � iS .� m `U .:3� �aF p,�r �iR r'.] 754. �. I-il� � , �. ~ � / Lf• ': /{ tyi t•. {` a' "` � �s , `7 4 r , f� � �� 1 .�i t, ^.t' At . .Q eA ] �itti' 1 '' \.. 1!' ,f t6C�r. - ty -.; �'. �ti �..rt 1 .N i{i� -'(. } �.� a• � t. �I ` 3,.; f ' -\. •, 1 tls 7 w >, { .j t QYi"t f- �:r�,. tco $fin- c �} �r`.�,, " taus• •r �+-: �.,tr,� s . f ... �( � l�� r .�, kv fr. ?� t S] � �eaiy yp' Ti �MF,Srmv � f. � r.+. '�f' _re i .;,.,�. _ - `'j�•. �[;?:• i `': (`�i. tj ly( "1,�.. r•, -'4 N'b J•r" 1� Nrti/ L 4: "�' v�ti •G•. vc';• n, �? a r "'• i Dsi6 .� -e:_ _ ' 5 ( Y \j J} r� NO•Acr {ry i' y,.: . ?t 'Z �i 'C - .�' ��i a - .• � \ .'4e'`'��p �/ _ iS, ,,,�a! {$. t, � J - x.,.` . `"'`ti.a•t " j � �•: `b ) J `I.�/�_ - •�-5 }\ 1.�•}�h ', 1 �J 1 Y` /•1 l-• { ii�v'dt t tr,., .''t b _ t} %' \" .� +�' t' '. 5 f±+. $AN- g_ERNA ! ) r 3 j, 4 j' . � �.7+ '." J \ .�. �• 41 1 �,,Q4 �e CRg10 k. .y ,_, Ba nA � o{'r�.r :4;��len r1 1 i �.,I 1,�:,,� j, ..� 4.t '�:• i.' i Y .et'i(wL{ I . �.,�t..•iji_{>e, _�'fti� n.,r t y' f j�e� 7µ 1j e`r 7 r , � •.,. �, y �'�.��} /� bs c-' �j r mot[ aa..0 1- YR �-my,}�,�a,.� �] �' s `t R 1 t� l �� �t Y•�r C�ti'�' t:`.i�'- .. � � _ � I-1 � � " =�„ y_4 -./i - 't�. " r7fjt )'��5' � :,:r �. ' / v li��'i� �qy'M �CiYyA iT ,� Y' � .. ]�']ri p:I �•'� � ^= - -�~'� r 't 'S 1- /. v'�+'T A 4 r� t S �11N Z _� T .rYr.l. ' -'+ � NAN ti.•UO,� �y �° .. �., C', .�_ ' 4P f W� 7. { r' ,a+brr. �•�- .� 1- !` tl17 }r ?r L r , .1y: 1. ,Y- C �L' _ en� °iit I;x'f7:,�,�}J -.I'',.r �� --+•_ t..IT.,�s,!e'�`�y;o ..fr3r� "; wai �` -r; -� L' �,{ � � c. -'.�_ 1r.�.� �,J/ � ' "- , ` � x- ` } - � (r r 1('1 - •.;T•y;" <�r.. `* Ce t Ha_nCn `l; - 'V � �r�� 1 • i r. t 1 � r- i wn �. i.. N . Y 1 ^ .f. •e nt -! � .. "•�\ it �� {� �� I,, -v ds $: I �c � , , I �. �? C'-' prim' T x R• �..•' � i': .J.f �/. p.,,���.1.u?�"i� -'�...n'7,t ,3 '�.- � 9 � �� l� � - ��1 I r �'�;`��� �- _ •�,GJ� �"'rn� i � � t 3`�� � "�. �' � �i, 1 -. 5 ~��r fn' 1 Y� 9f 1'�. .J�ft t'.- � "j_,� �I� �S' x. �,M ,-1_ „/ ..'S'.. ey �4 r, � .}.•.� +..... � -' d 1 y f '. lh yr,, � , • . �� g. ; '`7c'r"7,�' Y` Y ; � � : 1.1 ..t : ` ?JY � +. '”` \\ `'` t i �.st? ; 1 �,. v �" ` w�; it. i�i T �... s��' *� r #.� j•'1 ���,.�, � •z � i NV,'q.7. re' f � ; � + � 1 �„ ti'`dpOJ`.'t'"'t�"`�.n'"` �� . �.� >_))° ,�1 � j � �' L � I '-I-•- r I C b� yj � N � �. as v.._ •r- r� y �'' � ,,,,,� -. `�c�t'-• � �. ..t.,t� ^� . r` �' t � �; r]. ) r , i in .. / �.,, � 4 � ;tom, t �. ] u���]R-`lzvF' 1 ,' 1� �f� . W y,� R ,r,;,..••::, , 6» `• �,. ,1 ''r ^� i _ +� ,y �S r,:. ,.✓ .,,,- � \,� I� !..::iG � s ��'• � ,:C }- f �'-----= ,.../1 s {. � r�� � _.' � ' L� t � + v'�j 4 �l��a .., y{��� �'.�� 1 � {'y .a�' �� Z �, y, � � p: ��w,�i w. � i vi +� i. 1 �'•� "_ �..`�+ W6 i,� t r at�+�� , r �r]n �.. • �-• 1 �, ? i r? t -�' ,1 � �-�„' � s•ry t eP,maea \� � `S;�` '' } :�r s .fit r to rYW; f,'r ] C, ' a aac, ..:h fm.•aesan _. _..... na �,: •;:y., .,,: 6e .s �` , �1 l ,�: ' �� ' . � � � t L,,; t `� �; oim o<..,,, PN y {, � • �;�� 1111 a�} i.. •�, -,._�° :P B � � [n � w. ,. 7 fj �'b t�l i C� r. ' jF' r< ( ?(di �i\ '-^•�� y. Lt N °q� � -- i{4kN'� 1, it, _. 7..�i ll 1 '•� �� - tir .r ., - 1¢,,. - ++u� 1„ 'L����.` !1 v ��-... e �- :,...:a aiDS � �' � a 'r,.it�J� ��_.'�';- <'RrnoQ'J� F y- � 1 :{ '44Wvr _.� � "'s•iirs :� +•. rtz v p� ..� "I l .�'•.�` .,�. 't -� ��ewmotFyr "+~,�r^ ,� '\ \` {f � �� •'.,r r I'� f 0'.'7. , � J �5' '��C? { � S�• '.�.�rt t j;tq � ax �s•.� t.+ Z ,,,I sy} 'it { f• t,. t �(� � J. r e -� a, N E t . by ! � -a'' \ ��. � / �c.-+ . °j .�.}=• t�� r t 1:.. � . i... ,g `iY. � t!. R�. �` , a..:c -. t _t � „, �, �� G '�:�' ``''.'r,,,tM ;� . �yi"^�.y'L; _ r5 \v t •, r .i I r,.i,� �h i . $” �K �./ aCh 1(a Ran`° ro.e. ;2 . Y ;. �f -4x.�V i ES {�� � ,�:' � ,, _•,Svl t'• "`�� �'i '•'`r � -_' i t � „n��(y'`�% ^t�� jj _ >. A,r�A „e`"•Jk�. 1 mr k'/:eln ror i7N ) ti '� y�,Al •✓ 'y s!,T t'' f•r:: u Aenr .:ti, -. 4. rs �'� i t. 3;3.� �� '/'� �r4t.. � d �%" ''~ ;`•' � �''.,: " j,'r �� � N4% = t t (j•� !Al f �I�,. ,,,� ,I �J.. � 1-.7 � �.� "� .J� v}t ,° I rwi H,r•.r:'4., 1 f �`. ��;✓_I.,• { =J ' � �'r'?�;' , e. 9 •.:� � t�rC'��.'' r -`' _[' 1--_.n �� i:,w� s�e i. " i ��_t �r' j- �.ar k Q�S FAr4k kljS/ t e�n],rrt;.it`� '!> tia �'; ..9; P �:.,��� .,., � +. i -�- :]�a'rcr �c f� .\ � !'` �'1• �. ,�, -v /Y y.'',,. -F . - .. 1 t ER ho + ?....' ✓.� r .' �,j,�.- ':�•LC ` tORRiSM tIN ��,i� o t�., t ". !( 1(7AF{�j /� � !• ��'�T{ %".�•^ r 1' `.... �,''.1 w t•� � _ `�.1?w> _ IN�IAN Eg`. �� rnN 24N '. txoiA''`� vgft �ql '' °Alt��'1�t� � fi�" t{ h�:•.9t `� `r' �'� �r\ ,�,�' 3Q� . Q ,� r ,2�'. ` i ` �i,,., c .'� I Jj I 7 -'t .• a �}{' '.71.F,1! A .v.,, \ e`� Y r ^Vro -''� �• t "� � �. r�ei f_G;; �, ', �, f , r :`f fy� �•.;7� �013J' #f�� /A�, -� Nay � m�'. 'y-�+� {✓ juie'YOiley{ • �a - ✓✓ ,`�/ r �� � �Y >%;.. �.'4._ `: :'-- <'.i,. \ S -t -+`.rs' �a,� tY .0 - :d'l•;� c hrVJQQ AN f �. / ti7 C)r r s� rr..1✓��:, y iJ/ r. t��K' ."tr. n •, �` "h �.: -t `'. -`t c 11 � � -�:: t I 1 _ �>) • - ^ > t �•, - -.�4 U r - ..v a'�,`� ,��i'� it ' . �} ; , `� -..�h� i } ���}� ft., ir?�.i ,t. � ?4 &aE�'j�aw. i� ' +. Unguh,l,' �•Jrv:.� i .; '+ ?`::- �., iC`w.� ?rls. _a .,�.,t. = �.btr' a! '�t 7 "-° - f.'. '• ,.. •%" `` °'�i f - � �-.1,_ 't �`�.1p' 'n �.�:t `^�` _ C, o.,�;, a�. 1 t `; �� � .� �. ! 1; .r '] `•}. 4° t.� !°r. : �C i` _r � ._ . ,. ; ' -�'� R it y..^ 3'Z., ' , 7 .J-3 t s j� y+ v r, a ••r` Zt'�,`', -�'`°+ � -:,5• ,`°�i''ti`t RI VERSIDE tA �` ? . `' io . .Y.iRQ i R2 , } . I r t J�f d" 1v kJ ii J ` Ct E FTVs E'iI- Li t'A. ' 4 NR6E'��SrotT A,3 F 1 v Y t , N-, g + ank j ; � fi i Ca u/.✓ r / .,� u3 1 Jd . ' i.� � i ,�1Fc 1 �4�t 1- j.. . Y° C O'V ] NA FLOOD CO� N rRR ipYCL d ��N$ERN Q wg Vg c- rl(N oisrRrCr y $ R C . PR ` HpUR ACTUAL IMPERVIOUS COVER Recommended Value Land Use (1.) Range- Percent. For Average Conditions- Percent(2 Natural or.Agriculture 0 - 10 0 Single Family Residential: (3) 40,000 S. F. (1 Acre) Lots 10 - 25 .•20 20,000 S. F. (Ij Acre) Lots 30 - 45 40 7,200 - 10,000 S. F. Lots 45 -'55 50 Multiple Family Residential: Condominiums 45 - 70 65 Apartments 65 - 90 80 Mobile Home Park 60 - 85 75 Commercial, Downtown 80._100 90 Business or'Industrial Notes : . 1. Land use should be based on ultimate development of the watershed. Long-range master plans for the County and incorporated cities should be reviewed to insure reasonable land use assumptions. 2. Recommended values are based on average conditions which may not apply to a particular study area. The percentage impervious may .vary greatly even on comparable sized lots-due to differences in dwelling size, improvements, etc. Landscape practices should also be considered as it is common in some areas'to use ornamental grav- els underlain by impervious plastic materials in place of lawns and shrubs. A field investigation of a study area should always be made, and a review of aerial photos, where available may assist in estimat -• ing the percentage of impervious cover in developed areas. 3. For typical horse ranch subdivisions increase impervious area 5 per- cent over the values recommended in'the table above. R C F C & W C C IMPERVIOUS COVER HYDROLOGY IMANUAL FOR DEVELOPED AREAS PLATE D -5.6 HYDROLOGY STUDY WEN Y' S RES'T'AURANT PARCEL 10 PM 30420 LA QUINTA, California A.J.KOLTAVARY /CIVIL ENGINEERS 17802 Mitchell North Irvine, CA 97614 949.752.5466 Fax 949.752.6455 August 11, 2005 s 3331 T� F* (:filter Table of Content VICINITY MAP SITE DRAINAGE AREA CALCULATION APPENDIX Note: All support information based upon Hydrology & Hydraulics report for THE CENTRE AT LA QUINTA PARCEL MAP 30420 Prepared by The Keith Companies dated: August 22, 2002 Oemude'May 0 LU Sumao St -X: sR R— del 0 10 Lre O LI is Swepv, U > IION P, ool�N P!, '*%te /Washington Si Cameo Palms Dr c rmw 2c U 50- O.A6 NC Nc 0.28 ---�-�-- _ - - - - --_ GE FUTURE .0. STOR VAP Q OA `o @ � 0 � " ` � ' N \\ `o @ � 0 � " ` � CAUC too ARGA Ai Al= AC, Cl A a, 44 c r- s AREN. A-3 0.29�1 AC, GLr CIA 3: N :Ila ARfA A I --l: A? = 0 1! Ac j� - AMN Aga a.,- A Riverside County Rational Hydrology Program CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2000 Version 6.3 Rational Hydrology Study Date: 08/21/02 File:a100.out ------------------------------------------------------------------------ i Line "A" - 100 Year Storm AeEP-S A -1 7NQWG4 A-20 ------------------------------------------------------------------------ ********* Hydrology Study Control Information * * * * * * * * ** English (in -lb) Units used in input data file -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Keith Companies, Inc., Palm Desert, California - SIN 709 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm.event (year) = 100.00 Antecedent Moisture Condition = 3 2 year, 1 hour precipitation = 0.500(In.). 100 year, 1 hour preci2itation = 1.600(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.600(In /Hr) Slope of intensity duration curve = 0.5900 ++++++++++++++ f++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 101.000 to Point /Station 101.000 * * ** USER.DEFINED FLOW INFORMATION AT A POINT * * ** Rainfall intensity = 4.245(In /Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.880 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 User specified values are as follows: TC = 11.48 min. Rain intensity = 4.24(In /Hr) Total area = 1.60(Ac.) Total runoff = 6.00(CFS) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 101.000 to Point /Station 102.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** PI ATF n— 4 ri 3.5 3.5 3 3 cn = 2.5 U Z 2.5 Z = 2 2 CL w 0 J Q 1.5 1.5 / Z_ Q cr- / .3 .5 0 0 2 5 10 25 50 100 RETURN PERIOD IN YEARS NOTE: I. For interrw"ate retwn periods plot 2-year and 100 -rear one hour voluss from maps,tho connect powts and reed vaiue fw desired retwn period. For example given 2 -year one hour= .50 and 100 - yew one how -1.60",25-yeer one hour =1.16" Reference: NOAH At$" 2,Voko a 31- C"fornio,1973. RAINFALL DEPTH VERSUS R C FC & W:C D RETURN. PERIOD FOR HYDROLOGY MANUAL PARTIAL DURATION SERIES PI ATF n— 4 ri +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 113.000 to Point /Station 114.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 300.000(Ft.) Top (of initial area) elevation = 67.000(Ft.) Bottom (of initial area) elevation = 65.600(Ft.) Difference in elevation = 1.400(Ft.) Slope = 0.00467 s(percent)= 0.47 TC = k(0.300) *[(lengthA3) /(elevation change))''0.2 Initial area time of concentration = 8.593 min. Rainfall intensity = 5.036(In /Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.8E2 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil.group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 5.510(CFS) Total initial stream area = 1.240(Ac.) Pervious area fraction = 0.100 A -5 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 114.000 to Point /Station 112.000 * * ** PIPEFLOW TRAVEL'TIME (Program estimated,size) * * ** Upstream point /station elevation = 59.500(Ft.) Downstream point /station elevation = 57.640(Ft.) Pipe length = 200.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.510(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 5.510(CFS) Normal flow depth in pipe— 10.97(In.) Flow top width inside pipe = 13.30(In.) Critical Depth = 11.41(In.) Pipe flow velocity = 5.73(Ft /s) Travel time through pipe = 0.58 min. Time of concentration (TC) = 9.17 min. ......++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 112.000 to Point /Station 112.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: Stream flow area = 1. Runoff from this stream = Time of concentration = Rainfall intensity = 4 Summary of stream data: 1 in normal stream number 2 240(Ac.) 5.510(CFS) 9.17 min. .845(In /Hr) Stream Flow rate TC Rainfall Intensity Addendum #2 to. Hydrology Study for La Quinta Sam's Club Parcel Map 30420 La. Quinta, CA Prepared For Wad -Mart Stores Inc. 2001 S.E. 10`f' Street Bentonville; AR 72716 -0550. Prepared By Nasland Engineering 4740 Ruffner Street San Diego, CA 92111 858- 292 -7770 July. 28, 2006 RETENTION BASIN EXPANSION REVISION WYLAR REVISION #1) The proposed La Quinta Sam's Club development includes regrading of the existing aboveground retention basin west of the Wal -Mart building to create additional volumetric capacity for storm runoff to be routed from the Sam's Club site (see attached Exhibit A for retention basin location). The design for this basin expansion was approved as part of the original onsite Grading Plans and Hydrology Study. This addendum addresses the proposed revision to the basin expansion as proposed in Mylar Revision #1 (Sheet 28 of 31 of the Onsite Grading Plans — Exhibit B of this Addendum). CALCULATIONS According to the calculations in the original Hydrology Study, the required capacity increase for the Sam's development runoff is 69,102 cubic feet (1.59 acre -ft). This value is still correct, as the runoff calculations have not changed. The existing basin is terraced into two 6 -foot deep slopes which creates a main.basin and a deeper subbasin..The original design .proposed an expansion of the outer slope of the main basin to the south and west. The revised design is to expand the slope of the subbasin. to avoid taking up additional land area. Because both slopes are the same height (6'), the required area of expansion should remain the same. It is calculated as follows: Required Volume Increase = 69,102 cu. ft. (1.59 acre -ft) Depth of slope = 6 ft. Required Area of Expansion = 69,102 cu. ft. / 6 ft. = 11,517 sq. ft. An expansion which provides the required area would provide enough capacity to hold the 100 -year storm flow. As illustraied.on the attached Exhibit B, the proposed design creates 12,062 sq.ft. of additional storage area. The existing basin provides approximately 434,728 cu. ft. (9.98 acre -ft) of storage. The approved hydrology report with the previously proposed expansion of the main basin provides 511,830 cu. ft. (11.75 acre -ft) of storage. (See approved Hydrology Study for La Quinta Sam's Club, dated December 2005) The reconfigured basin expansion provides a total storage volume of 525,855 cu. ft. (12.07 acre -ft) as shown in Table 1 below. Therefore, the revised basin expansion creates more than enough required capacity. Table 1: Retention Basin Expansion Storage Table DEPTH ELEVATION CONTOUR AREA INCR. STORAGE TOTAL STORAGE TOTAL STORAGE FT FT SF CF CF (AC -FT) 0 47 11007.57 0.00 0.00 0.00 1 48 13155.94 12082.00 12082.00 0.28 2 49 15266.31 14211.00 26293.00 0.60 3 50 17560.08 16413.00 42706.00 0.98 4 51 20085.75 18823.00 61529.00 1.41 5 52 22842.84 21465.00 82994.00 1.91 6 53 25772.15 24308.00 107302.00 2.46 7 54 54208.99 39991.00 147293.00 3.38 8 55. 57121.55 55666.00 202959.00 4.66 9 56 60036.35 58579.00 261538.00 6.00 10 57 63007.70 61522.00 323060.00 7.42 11 58. 66035.59 64522.00 387582.00 8.90 12 59 69120.03 67578.00 455160.00 10.45 13 60 72273.51. 70697.00 525857.00 12.07 CITY PLAN CHECK COMMENT RESPONSES, MYLAR REVISION #1: Sheet 28, Plancheck Set 05181, Onsite Grading Plans for La Quinta Sam's Club 07/27/06- Redlines were addressed by Chris Williams of Nasland Engineering 1. Typo fixed and contours on the east slope were made to match the existing grade. 3. The original hydrology study by The Keith Companies does not include any land west of the basin as a contributing area. Runoff from that area should not be accounted for because our proposed expansion does not alter the footprint of the original basin, and thus does not change current drainage patterns in that area. Our hydrology calculations include the previously proposed expansion area to the south and west as a contributing area. Therefore, by eliminating the expansion area to the south and west we are decreasing the actual contributing area but including the theoretical runoff generated in this area in our hydrology calculations. The currently proposed basin expansion has adequate storage volume to handle this runoff even though it will not actually flow into the basin. 4. Parcel Map and APN numbers added as requested. A volumetric table has been added to the Hydrology Report Addendum #2 for further clarification of incremental volume. We are not responsible for the abandonment/relocation of the basin which could occur at a later date. A new hydrology report will be necessary for the design of the basin and abandonment, should it be completed by the site owner in the future. However, we cannot control the ultimate design or location of this basin. 6. Miscellaneous comments addressed per plan. (See redlined copy) i Addendum to Hydrology Study for La Quinta Sam's Club Parcel Map 30420 La Quinta, CA Prepared For Wal -Mart Stores Inc. 2001 S.E. 101h Street Bentonville, AR 72716 -0550 Prepared By Nasland Engineering 4740 Ruffner Street San Diego, CA 92111 858- 292 -7770 February 2006 0 CURB INLET CALCULATIONS The proposed La Quinta San-i'§ Club development contains six proposed curb inlets per La QU' inta Standard Drawing 300. Curb Inlets 1 & 2 are located along slopes while the remaining four are in sags (see attached exhibit for Curb Inlet locations). Sloped Curb Inlet Calculations Q = (0.7)(L)(0.33 +Y)(3/2) , L = Length of Clear Opening of Inlet Y = Height of water at curb face (0.4') Maximum Capacity per unit length Q = (0.7)(1)(0.33 +0.4)(3/2) Q = 0.44 cfs/ft of length Sag Curb Inlet Calculations Height of curb opening (h) = 8" Height of ponded water (H) = 4.8" Capacity per unit length See attached Chart 1- 103.6C for calculation. Q = 0.63 cfs /ft of length Curb Inlet Number Site Condition Capacity per foot (cfs /ft) Width of Inlet (ft) Capacity of Inlet (cfs) Flow into Inlet (cfs) 10 Sag " 0.63 6.0 3.78 3.45 23 Sag 0.63 4.0 2.52 1.75 24 Sag 0.63 4.0 2.52 1.37 26 Sloped 0.44 14.0 6.16 6.05 27 Sloped 0.44 8.0 3.52 3.25 28 Sag 0.63 7.0 4.41 4.29 m = r u z 0 Iv HEIGHT OF OPENING (h) IN FEET iv w iu oa 'v is io b W N O N HEIGHT OF OPENING (h) IN INCHES r Z n in t~ 0 Jr 1 " z I O o _ e Z D z CAPACITY PER FOOT ' OF LEN HT OF OPENING (0 /L) IN CFS /FOOT I 1 rn 1,11111 0 b b b b b- N km A U to 5 of w o• W m. � 0 D1 it 1 �a "A D o C) � IN TERMS F HEIGHT OF OPENING PONDER DEPTH (H/ ld A iA 4*0 O U D -{ z G) "' t •n c o �. C o Z ;I �7 rn -� co w- = r u z 0 Iv HEIGHT OF OPENING (h) IN FEET iv w iu oa 'v is io b W j► u O N HEIGHT OF OPENING (h) IN INCHES 7� `. _ CAPACITY PER FOOT ' OF LEN HT OF OPENING (0 /L) IN CFS /FOOT I 1 1,11111 0 b b b b b- N km A U to 5 of w o• W � s� IN TERMS F HEIGHT OF OPENING PONDER DEPTH (H/ ld A iA 4*0 O U P -37 1.73AC DUNE PALMS ROAD .......... _._ ................... _.-- ....... _.._- . ........... ..- ... ........... _._ ............. > P -5 g \\ 0.66AC / 0,= 3.19 CFS \ \\ Tc= 6.39 MIN \ \�� I -7 16 \\ 6� ° PROPOSED GAS PARCEL Tc= 5.( STORM DRAIN INLETS INLET 0 (CFS) SIZE 10 2.67 6' C.I. 2.67 4' C.I. 4 2.67 4' C.I. 6 3.22 14' C.I. 3.22 8' C.I. 8 3.22 7' C.I. 40 0 40 SCALE 1 " = 40' / ,za Z — — > J i !I P -38 i 0.75AC 1 ---- 101- - - - - -- 409 =6.05 CFS 100 Tc =12.93 MIN J 10 / X62 0 —3.45 CFS ° O O Tc= 6.62 MIN yy \\ -12 Egli it 6 CFS H MIN l 9 II \ I -I P -6 n 2ll 63 I I / 0.78AC �65 SHEET 7 OF 4 HYDROLOGY MAP #1 ONASLAND ENGINEERING CML PLANS FOR: CIVIL ENGINEERING SURVEYING • LAND PLANNING PARCEL MAP 30420 47 40 Runner Street. Son Diego. California. 92111 • 85S -292 -7770 LOCATED IN THE N.E. 1/4 OF SEC 29• T5S, R7E, SBM LA .QUINTA SAM'S CLUB #4941 -00 �~ 102 Tc=9.06 MIN | | i i | i \> /\ / Y STORM DRAIN INLETS INLET Q (CFS) SIZE 40 O 40. SCALE 1 ^ = 40' '.40 CFS 6.24 MIN / IPAC Tc=5/02 MIN 61 6 5 Lo 20 UM Tc=5.55 IN rp 95�1 SHEET OF 4 { 7 6.48 MI 9 �/ LL] I � STORM DRAIN INLETS INLET 0 (CFS) SIZE 40. O 40 SCALE 1 ^ = 40' � /u=,').u4 w/m . . {� ^� -J L~745`28L __--- SHEET 3 OF 4 P -10 > > 5_1� > >�> �— > —� > L= 326.75' 0.05AC P -27 ' > Qao °1.11 – - -- - -- — — - j 0.33AC Tc= 7.7 — — — -- — — — INLET 0 (CFS) 17 10 P_29 6' C. 1. Tc- 73 MI _....._— ........ ........ . ..... _. i 4' C. 1. L =325.90' �— > 4' C. 1. 6 3.22 14' C.I. 931 I 3.22 8' C. 1. 8 PROPOSED SAM'S CLUB 4 > > I I> L=327.85' P -30 I , > 0.29AC > Q� =0.98 CFS i > > > T,- 7.75 MIS P -31 —� > > 0 65 CF 4 0.45 CFS I I I 5.19 MIN L= 324.65' i ; —rr-> I > 0.19AC = 7.72 M > - -> I - �00 > I> > —_� 32_4.65' I Qua= 0.9 Tc= 7.' STORM DRAIN INLETS INLET 0 (CFS) SIZE 10 2.67 6' C. 1. 3 2.67 4' C. 1. 4 2.67 4' C. 1. 6 3.22 14' C.I. 931 I 3.22 8' C. 1. 8 3.22 7' C. 1. 40 0 40 SCALE 1 " = 40'. 4 — — > > > >L= 326.20' Tc= 0 7./ I > > P -34 0.52AC -3� 2%> r— II 7 II I\ II Iv II 9 I 8Q 81 , �-- I I II II II �. II �8 II i II II II J 1 186 I I I I IQ 1881111 11 9 . �s �0 U ' -28 29AC 3 II 90 Z 9 2� "? 191 u-i° 931 I '- I 1 I n `= SHEET.4 OF 4 r� THE CENTRE AT LA QUINTA PARCEL MAP 30420 HYDROLOGY & HYDRAULICS REPORT FOR ON -SITE IMPROVEMENTS PREPARED BY: PREPARED FOR: STAMKO DEVELOPMENT CO. 2205 POINSETTIA MANHATTAN BEACH, CA. 90226 August 22, 2002 Revised: October 1, 2002 Revised: October 31, 2002 Final: December 12, 2002 THE CENTRE AT LA QUINTA PARCEL MAP 30420 HYDROLOGY & HYDRAULICS REPORT FOR ON -SITE IMPROVEMENTS PALM DESERT DIVISION 73 -733 FRED WARING DRIVE, SUITE 100 PALM DESERT, CA Prepared Under the Supervision of- Brooks D. Franklin R.C.E. 61887 Expiration Date: Sept 30, 2005 O QRpF ESS /p� w No. 61887 z m Exp. 9/30/05 J�ql CIVIL F pF cA`\F THE CENTRE AT LA QUINTA PARCEL MAP 30420 . HYDROLOGY & HYDRAULICS REPORT FOR ON -SITE IMPROVEMENTS TABLE OF CONTENTS: I PURPOSE AND SCOPE DESIGN CRITERIA II SUMMARY OF CALCULATIONS III RETENTION BASIN CALCULATIONS SYNTHETIC UNIT HYDROGRAPH -100 YEAR NUISANCE WATER SANDFILTER CALCULATIONS IV RATIONAL METHOD CALCULATIONS -100 YEAR V CATCH BASIN DESIGN VI STORM DRAIN PIPE DESIGN VII APPENDIX "A" - RCFCD REFERENCE MATERIAL VIII APPENDIX "B" EXISTING FLOW PATTERN EXHIBIT HYDROLOGY MAP I IPURPOSE AND SCOPE ' ' The purpose of this report is to provide a hydrology and hydraulic analysis for the proposed 40 -acre mixed regional commercial center (The Centre at La Quinta) located in the City of La Quinta, between La Quinta Drive and Dune Palms, off of Highway 111. This report summarizes the hydrology and hydraulics calculations for the site. The proposed ' storm drain system consists of two main lines (Lines "A" and `B ") which convey the on -site flows to a retention basin on Lot "C ". ' The proposed retention basin on Lot "C" was sized for the 100 -year storm event and will handle all site runoff, the street flow from La Quinta Drive and Auto Centre Way South, and approximately 6 cfs off -site flow from Highway 111. In the event of an emergency, an ' overflow spillway has been provided for the retention basin. Water which tops the spillway will be conveyed southward toward APN 649 - 030 -069, in keeping with the original drainage patterns. Per City of La Quinta requirements, sizing of the storm drain system and catch basins was based on the 100 -year storm event. ' This report includes: 1) the determination of on -site drainage. areas as identified on the hydrology map for the project; 2) determination of peak flow rates using the Rational ' Method (Riverside County) software by CivilCADD /CivilDesign; 3) determination of storm drain pipe sizes utilizing `StormCAD' hydraulic software; and 4) the determination of flood volumes for the retention basin utilizing Riverside County Flood Control District (RCFCD) ' Synthetic Unit Hydrograph (Short-cut Method) for the 100 year storm event. ' DESIGN CRITERIA The following Riverside County Flood Control District (RCFCD) parameters were used in the preparation of the analyses: • Antecedant Moisture Condition — 100 year 3 • 2 year — 1 hour Precipitation 0.5" Plate D -4.3 ' • 100 year — 1 hour Precipitation 1.6" Plate D -4.4 • Slope of Intensity Duration Curve 0.59 Plate D -4.6 ' • 2 year — 3 hour Precipitation 0.7" Plate E -5.1 • 100 year — 3 hour Precipitation 2.0" Plate E -5.2 • 2 year — 6 hour Precipitation 0.8" Plate E -5.3 '' • 100 year — 6 hour Precipitation 2.5" Plate E -5.4 • 2 year — 24 hour Precipitation 1.1" Plate E -5.4 ' • 100 year — 24 hour Precipitation • Runoff Coefficient 4.5" 0.90 Plate E -5.6 Plate D -5.6 • Hydrologic Soil Type "A" II SUMMARY OF CALCULATIONS � I � I � I � I � I SYNTHETIC UNIT HYDROGRAPH SUMMARY: RETENTION BASIN —100 YEAR STORM EVENT STORM EFFECTIVE FLOOD REQUIRED PEAK DURATION RAIN VOLUME STORAGE FLOW 57.40 24 330,429 58.57 RATE hour in cult ) (acft) (cult ) (acft) (cfs 3 1.49 250,511 5.75 248,439 5.70 83.42 6 1.49 250,801 5.76 248,727 5.71 70.04 24 1.98 333,183 7.65 330,429 7.59 21.52 RETENTION BASIN SIZING: The proposed retention basin is designed to retain the volume generated by the 100 -year storm event. Sand filters are proposed to minimize nuisance flows to the basin. ON -SITE VOLUME REQUIRED vs VOLUME PROVIDED 100 YEAR STORM EVENT DURATION hour VOLUME REQUIRED c VOLUME PROVIDED c MAXIMUM WSEL ft 3 248,439 434,940 57.39 6 248,727 57.40 24 330,429 58.57 DRAINAGE INLETS AND CATCH BASIN SIZING All proposed inlets and basins are sag type. Grated inlets, hooded curb inlets (combination grate and side opening basin) and side opening catch basins were utilized. They were sized using nomographs from the U.S. Department of Transportation; charts from the FAA Airport Drainage AC- 150/5320 -5B, 1970, page 35; and the weir equation, respectively. Proposed grated inlets will be pre -cast concrete drain boxes (Brooks Products or approved equal) with steel traffic grates. Hooded curb inlets will be combination inlets (Nyloplast Curb Inlet Basin or equivalent). Side opening catch basins will be Riverside County Standard No. 300. A summary is provided below for each inlet. Note that the catch basin number (as shown on-the improvement plan) is in parentheses. INLET INLET TYPE SIZE DISCHARGE Q1o0 (cfs Il Al 2.88 HOODED CURB INLET 24 "x36" Rl 2.14 STUB FOR ROOF DRAIN - INLET INLET DISCHARGE Qioo cfs TYPE SIZE I2 A2 1.34 HOODED CURB INLET 24 "x36" 13 A3.1 15.9 CATCH BASIN W =8' 13 A3.2 5.3 GRATED INLET 36 "x36" 14 A4.1 5.6 GRATED INLET 36 "x36" 14 A4.2 16.6 CATCH BASIN W =8' IS AS 1.77 GRATED INLET 12 "x 12" I6 A6 0.78 HOODED CURB INLET 24 "x36" 17 A7 -9 20.34 GRATED INLET (THREE) 36 "x36" 19 A10 5.51 STUWFOR FUTURE - I10 All 2.25 STUB FOR FUTURE Ill Al2 7.35 STUB FOR FUTURE - I12 A13 4.14 STUB FOR FUTURE - I13 A14 6.00 CATCH BASIN (SEE HWY 111 PLANS ) W =14' I1 1 5.20 HOODED CURB INLET 24 "x36" R1 1.48 STUB FOR ROOF DRAIN - LD1 0.28 STUB FOR LOADING DOCK DRAIN - R2 3.90 STUB FOR ROOF DRAIN - R3 3.32 STUB FOR ROOF DRAIN - R4 2.85 STUB FOR ROOF DRAIN - I2 2 2.85 HOODED CURB INLET 24 "x36" R5 3.10 STUB FOR ROOF DRAIN - R6 2.29 STUB FOR ROOF DRAIN - LD2 0.74 STUB FOR LOADING DOCK DRAIN - I4 3 5.24 HOODED CURB INLET 24 "x36" IS 4 3.11 HOODED CURB INLET 24 "x36" I6 1.47 STUB FOR FUTURE - 17 6.49 STUB FOR FUTURE - I8 6.36 STUB FOR FUTURE - I9 7 3.31 HOODED CURB INLET 24 "x36" 110 11.02 STUB FOR ROOF DRAIN AND WALKWAY - Il 1 2.16 STUB FOR ROOF DRAIN - 112 8 6.51 HOODED CURB INLET 24 "x36" I RETENTION BASIN CALCULATIONS � I � I � I � I � I � I � I A B C D 1 RCFCD SYNTHETIC UNIT HYDROGRAPH 2 DATA INPUT SHEET 3 4 WORKSHEET PREPARED BY: 5 6 PROJECT NAME afHE'CENTREATLA Q,UINTYA.r w� 7 TKC JOB # '`Y40382'r0�n -- 8 9 CONCENTRATION POINT DESIGNATION RETENTION BASI;N,l"_ ;�K" 10 AREA DESIGNATION :LQT 11 12 TRIBUTARY AREAS ACRES 13 14 COMMERCIAL 15 PAVING /HARDSCAPEr 16 SF -1 ACRE EVER� 17 SF - 1/2 ACRE sr; " >R.:r. 18 SF - 1/4 ACRE ���;�- •w�,:� -..,: ��... 19- IMF - CONDOMINIUMS 20 MF - APARTMENTS 21 MOBILE HOME PARK ,22' LANDSCAPING 23 RETENTION BASIN 24' GOLF.COURSE i_l& & 25; MOUNTAINOUS 26. LOW LOSS RATE (PERCENT) 27 28: LENGTH OF WATERCOURSE (L) 29 LENGTH TO POINT OPPOSITE CENTROID (Lca) ,30 31 ELEVATION OF HEADWATER f':= � %����c�����rr;6. *7 32 ELEVATION OF CONCENTRATION POINT_,: tt „r54 33 34 AVERAGE MANNINGS'N' VALUE 35 36 STORM FREQUENCY (YEAR) RM 001 37' 38 POINT RAIN 39 3 -HOUR 40, 6 -HOUR 41 24 -HOUR "42' ;43 °. BASIN CHARACTERISTICS: ELEVATION:.,_• AREA - 45' r,T X55 E I il5 1 577;17 :46 vY X56 "60810' .: :.477 ��57 f'f63990 ,48;,: :.� X58 .:_.r. _.._ 4 *672213 . , u. _.. 49.. ,�T w 59"n" X70524 50s_ `52:: PERCOLATION.RATE.(in1hr). -:. a. 53 E NUMBER USED~ 56DRYWELL'DATA PERCOLATION :RATE cfs ) wv=5s . RCFCD SYNTHETIC UNIT HYDROGRAPH METHOD PROJECT: BASIC DATA CALCULATION FORM TKC JOB # SHORTCUT METHOD BY THE CENTRE AT LA QUINTA 40382.01 DF DATE 11/25/02 DURATION 3 -HOUR PHYSICAL DATA 24 -HOUR EFFECTIVE RAIN (in) 1.49 T11 CONCENTRATION POINT 1.98 FLOOD VOLUME (Cu -ft) (acre -ft) 250,511 5.75 RETENTION BASIN 333,183 7.65 [21 AREA DESIGNATION 248,439 5.70 1.55 248,727 5.71 1.55 330,429 7.59 1.16 LOT "C" PEAK FLOW (cfs) 131 AREA -ACRES 70.04 21.52 MAXIMUM WSEL (ft) 46.470 8 4 L -FEET 1800 5 L -MILES 0.341 [61 La -FEET 704.00 La -MILES 0.133 [81 ELEVATION OF HEADWATER 67 (91 ELEVATION OF CONCENTRATION POINT 54 10 1 H -FEET 13 11 1 S- FEET /MILE 38.1 [1121 S ^0.5 6.18 13 L'LCA/S ^0.5 0.007 [141 AVERAGE MANNINGS'N' 0,015 [151 LAG TIME -HOURS 0.06 [161 LAG TIME - MINUTES 3.3 [171100% OF LAG- MINUTES 3.3 [181200% OF LAG- MINUTES 6.7 f191 UNIT TIME - MINUTES 100 % -200% OF LAG 5 [241 TOTAL PERCOLATION RATE cfs 0.00 RAINFALL DATA [1] SOURCE [2] FREQUENCY -YEARS 100 [3] DURATION: 3 -HOURS 6 -HOURS 24 -HOURS [4] POINT RAIN INCHES Plate E -5.2 [5] AREA [6] [7] AVERAGE POINT RAIN INCHES 181 POINT RAIN INCHES Plate E -5.4 I91 AREA [10] [11] AVERAGE POINT RAIN INCHES [12] POINT RAIN INCHES Plate E -5.6 [13] AREA [14] [15] AVERAGE POINT RAIN INCHES 2.00 46.470 1.00 2.00 2.50 46.4701 1.00 2.50 4.50 46.4701 1.00 4.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 SUM [51 1 46.47 SUM [7] [16] AREA ADJ FACTOR [17] ADJ AVG POINT RAIN 2.00 SUM [9} 1 46.47 SUM [11] 2.50 SUM [13] 1 46.47 SUM [15] 4.50 1.000 1.000 1.000 2.00 2.50 4.50 STORM EVENT SUMMARY DURATION 3 -HOUR 6 -HOUR 24 -HOUR EFFECTIVE RAIN (in) 1.49 1.49 1.98 FLOOD VOLUME (Cu -ft) (acre -ft) 250,511 5.75 250,801 5.76 333,183 7.65 REQUIRED STORAGE (cu -ft) (acre -ft) FACTOR OF SAFETY STORAGE PROVIDED (cu -ft) (acre -ft) 248,439 5.70 1.55 248,727 5.71 1.55 330,429 7.59 1.16 -* f 384,4801 1 8,83 J PEAK FLOW (cfs) 83.42 70.04 21.52 MAXIMUM WSEL (ft) 07 8 5 -* x "0'- 57.3'9 ' 51 .4o - 58.57 4 -ry e rev=se.8 re +en -i;o„ bRsir% wcll Provide ar, 0`4- i4ona[ So, Jf6o cvbic yards of s4ornse, . Thcrr�orc IoF�1 S-Fo�aSe = 38`:,`i8o t So,gao i 'i3+1,9';o c•y.. ( 9.98 ac(e •f+) ' CIE Also, -Fie maximuA,. wc-JIrf s4 -fAace elevv,4jan For 34cr-% "ws+ be. refaced 6y So# 46o 4or .) ws -+he. re+cevW" ba.s;n tS deeper. 73, 78y �s..rFace area of max clr„) Plate E -2.1 ' - - Page 2 of 14 0.68 RCFCD SYNTHETIC UNIT HYDROGRAPH METHOD PROJECT THE CENTRE AT LA QUINTA CONCENTRATION POINT: RETENTION BASIN BY DF DATE 11/25/02 DJUSTED LOSS RATE SOIL GROUP Plate C -1 LAND USE RI NUMBER Plate E-6.1 PERVIOUS AREA INFILTRATION RATE (in /hr) Plate E-6.2 DECIMAL PERCENT OF AREA IMPERVIOUS Plate E-6.3 ADJUSTED INFILTRATION RATE (in /hr) AREA AVERAGE ADJUSTED INFILTRATION RATE (in /hr) A COMMERCIAL 32 0.74 90% 0.14 43.97 0.946 0.1330 A PAVING /HARDSCAPE 32 0.74 100% 0.07 0.00 0.000 0.0000 A SF - 1 ACRE 32 0.74 20% 0.61 0.00 0.000 0.0000 A SF -1/2 ACRE 32 0.74 40% 0.47 0.00 0.000 0.0000 A SF - 1/4 ACRE 32 0.74 50% 0.41 0.00 0.000 0.0000 A MF - CONDOMINIUMS 32 0.74 65% 0.31 0.00 0.000 0.0000 A MF - APARTMENTS 32 0.74 80% 0.21 0.00 0.000 0.0000 A MOBILE HOME PARKS 32 0.74 75% 0.24 0.00 0.000 0.0000 A LANDSCAPING 32 0.74 0% 0.74 2.50 0.054 0.0398 A RETENTION BASINS 32 0.74 0% 0.74 0.00 0.000 0.0000 A GOLF COURSE 32 0.74 0% 0.74 0.00 0.000 0.0000 D MOUNTAINOUS 93 0.95 90% 0.18 0.00 0.000 0.0000 0.00 0.000 0.0000 0.00 0.000 0.0000 0.00 0.000 0.0000 0.00 0.000 0.0000 0.00 0.000 0.0000 0.00 0.000 0.0000 0.00 0.000 0.0000 0.00 0.000 0.0000 0.00 0.000 0.0000 SUMI 46.47 SUMI 0.1728 VARIABLE LOSS RATE CURVE 24 -HOUR STORM ONLY) Fm= 0.086423305 C= 0.00160 Ft= C(24- (T /60)) ^1.55 = 0.00160 (24- (T /60)) ^1.55 + 0.09 in /hr LOW LOSS RATE (80 -90 PERCENT) = 90% Where: T =Time in minutes. To get an average value for each unit time period, Use T =1/2 the unit time for the first time period, T =1 1/2 unit time for the second period, etc. Plate E -2.1 Page 3 of 14 RCFCD SYNTHETIC UNIT HYDROGRAPH METHOD 100 YEAR - 3 HOUR STORM EVENT PROJECT: THE CENTRE AT LA QUINTA CONCENTRATION POINT: RETENTION BASIN BY: DF DATE 11/25/02 EFFECTIVE RAIN CALCULATION FORM DRAINAGE AREA -ACRES 46.47 UNIT TIME- MINUTES 5 LAG TIME - MINUTES 3.34 UNIT TIME - PERCENT OF LAG 149.7 TOTAL ADJUSTED STORM RAIN- INCHES 2.00 CONSTANT LOSS RATE -in /hr 0.17 LOW LOSS RATE - PERCENT 90% TOTAL PERCOLATION RATE (cfs) 0.00 cfs Unit Time Period Time Minutes Hours Pattern Percent Plate E -5.9 Storm Rain in /hr Loss Rate in /hr Max Low Effective Rain in /hr Flood Hydrograph Flow cfs Required Storage cf 1 5 0.08 1.3 0.312 0.17 0.28 0.14 6.47 1939.94 2 10 0.17 1.3 0.312 0.17 0.28 0.14 6.47 1939.94 3 15 0.25 1.1 0.264 0.17 0.24 0.09 4.24 1270.77 4 20 0.33 1.5 0.360 0.17 0.32 0.19 8.70 2609.11 5 25 0.42 1.5 0.360 0.17 0.32 0.19 8.70 2609.11 6 30 0.50 1.8 0.432 0.17 0.39 0.26 12.04 3612.86 7 35 0.58 1.5 0.360 0.17 0.32 0.19 8.70 2609.11 8 40 0.67 1.8 0.432 0.17 0.39 0.26 12.04 3612.86 9 45 0.75 1.8 0.432 0.17 0.39 0.26 12.04 3612.86 10 50 0.83 1.5 0.360 0.17 0.32 0.19 8.70 2609.11 11 55 0.92 1.6 0.384 0.17 0.35 0.21 9.81 2943.69 12 60 1.00 1.8 0.432 0.17 0.39 0.26 12.04 3612.86 13 65 1.08 2.2 0.528 0.17 0.48 0.36 16.50 4951.19 14 70 1.17 2.2 0.528 0.17 0.48 0.36 16.50 4951.19 15 75 1.25 2.2 0.528 0.17 0.48 0.36 16.50 4951.19 16 80 1.33 2.0 0.480 0.17 0.43 0.31 14.27 4282.03 17 85 1.42 2.6 0.624 0.17 0.56 0.45 20.97 6289.53 16 90 1.50 2.7 0.648 0.17 0.58 0.48 22.08 6624.11 19 95 1.58 2.4 0.576 0.17 0.52 0.40 18.73 5620.36 20 100 1.67 2.7 0.648 0.17 0.58 0.48 22.08 6624.11 21 105 1.75 3.3 0.792 0.17 0.71 0.62 28.77 8631.62 22 110 1.83 3.1 0.744 0.17 0.67 0.57 26.54 7962.45 23 115 1.92 2.9 0.696 0.17 0.63 0.52 24.31 7293.28 24 120 2.00 3.0 0.720 0.17 0.65 0.55 25.43 7627.87 25 125 2.08 3.1 0.744 0.17 0.67 0.57 26.54 7962.45 26 130 2.17 4.2 1.008 0.17 0.91 0.84 38.81 11642.87 27 135 2.25 5.0 1.200 0.17 1.08 1.03 47.73 14319.55 28 140 2.33 3.5 0.840 0.17 0.76 0.67 31.00 9300.79 29 145 2.42 6.8 1.632 0.17 1.47 1.46 67.81 20342.06 30 150 2.50 7.3 1.752 0.17 1.58 1.58 73.38 22014.98 31 155 2.58 8.2 1.968 0.17 1.77 1.80 83.42 25026.23 32 160 2.67 5.9 1.416 0.17 1.27 1.24 57.77 17330.80 33 165 2.75 2.0 0.480 0.17 0.43 0.31 14.27 4282.03 34 170 2.83 1.8 0.432 0.17 0.39 0.26 12.04 3612.86 35 175 2.92 1.8 0.432 0.17 0.39 0.26 12.04 3612.86 36 180 3.00 0.6 0.144 0.17 0.13 0.01 0.67 200.75 EFFECTIVE RAIN & FLOOD VOLUMES SUMMARY EFFECTIVE RAIN (in) 1.49 FLOOD VOLUME (acft) 5.75 FLOOD VOLUME (cuft) 250510.64 REQUIRED STORAGE (acft) 5.70 REQUIRED STORAGE (cult) 248439.34 PEAK FLOW RATE (cfs) 83.42 Plate E -2.2 Page 4 of 14 RCFCD SYNTHETIC UNIT HYDROGRAPH METHOD 100 YEAR - 6 HOUR STORM EVENT PROJECT: THE CENTRE AT LA QUINTA CONCENTRATION POINT: RETENTION BASIN BY: DF DATE: 11/25/02 EFFECTIVE RAIN CALCULATION FORM DRAINAGE AREA -ACRES 46.47 UNIT TIME - MINUTES 5 LAG TIME - MINUTES 3.34 UNIT TIME - PERCENT OF LAG 149.7 TOTAL ADJUSTED STORM RAIN- INCHES 2.50 CONSTANT LOSS RATE -in /hr 0.173 LOW LOSS RATE - PERCENT 9G% TOTAL PERCOLATION RATE (cfs) 0.00 cfs Unit Time Period Time Minutes Hours Pattern Percent Plate E -5.9 Storm Rain in /hr Loss Rate in/hr Max Low Effective Rain in /hr Flood Hydrograph Flow cfs Required Storage cf 1 5 0.08 0.5 0.150 0.17 0.14 0.02 0.70 209.12 2 10 0.17 0.6 0.180 0.17 0.16 0.01 0.33 99.73 3 15 0.25 0.6 0.180 0.17 0.16 0.01 0.33 99.73 4 20 0.33 0.6 0.180 0.17 0.16 0.01 0.33 99.73 5 25 0.42 0.6 0.180 0.17 0.16 0.01 0.33 99.73 6 30 0.50 0.7 0.210 0.17 0.19 0.04 1.73 517.96 7 35 0.58 0.7 0.210 0.17 0.19 0.04 1.73 517.96 8 40 0.67 0.7 0.210 0.17 0.19 0.04 1.73 517.96 9 45 0.75 0.7 0.210 0.17 0.19 0.04 1.73 517.96 10 50 0.83 0.7 0.210 0.17 0.19 0.04 1.73 517.96 11 55 0.92 0.7 0.210 0.17 0.19 0.04 1.73 517.96 12 60 1.00 0.8 0.240 0.17 0.22 0.07 3.12 936.19 13 65 1.08 0.8 0.240 0.17 0.22 0.07 3.12 936.19 14 70 1.17 0.8 0.240 0.17 0.22 0.07 3.12 936.19 15 75 1.25 0.8 0.240 0.17 0.22 0.07 3.12 936.19 16 80 1.33 0.8 0.240 0.17 0.22 0.07 3.12 936.19 17 85 1.42 0.8 0.240 0.17 0.22 0.07 3.12 936.19 18 90 1.50 0.8 0.240 0.17 0.22 0.07 3.12 936.19 19 95 1.58 0.8 0.240 0.17 0.22 0.07 3.12 936.19 20 100 1.67 0.8 0.240 0.17 0.22 0.07 3.12 936.19 21 105 1.75 0.8 0.240 0.17 0.22 0.07 3.12 936.19 22 110 1.83 0.8 0.240 0.17 0.22 0.07 3.12 936.19 23 115 1.92 0.8 0.240 0.17 0.22 0.07 3.12 936.19 24 120 2.00 0.9 0.270 0.17 0.24 0.10 4.51 1354.42 25 125 2.08 0.8 0.240 0.17 0.22 0.07 3.12 936.19 26 130 2.17 0.9 0.270 0.17 0.24 0.10 4.51 1354.42 27 135 2.25 0.9 0.270 0.17 0.24 0.10 4.51 1354.42 28 140 2.33 0.9 0.270 0.17 0.24 0.10 4.51 1354.42 29 145 2.42 0.9 0.270 0.17 0.24 0.10 4.51 1354.42 30 150 2.50 0.9 0.270 0.17 0.24 0.10 4.51 1354.42 31 155 2.58 0.9 0.270 0.17 0.24 0.10 4.51 1354.42 32 160 2.67 0.9 0.270 0.17 0.24 0.10 4.51 1354.42 33 165 2.75 1.0 0.300 0.17 0.27 0.13 5.91 1772.65 34 170 2.83 1.0 0.300 0.17 0.27 0.13 5.91 1772.65 35 175 2.92 1.0 0.300 0.17 0.27 0.13 5.91 1772.65 36 180 3.00 1.0 0.300 0.17 0.27 0.13 5.91 1772.65 37 185 3.08 1.0 0.300 0.17 0.27 0.13 5.91 1772.65 38 190 3.17 1.1 0.330 0.17 0.30 0.16 7.30 2190.88 39 195 3.25 1.1 0.330 0.17 0.30 0.16 7.30 2190.88 40 200 3.33 1.1 0.330 0.17 0.30 0.16 7.30 2190.88 41 205 3.42 1.2 0.360 0.17 0.32 0.19 8.70 2609.11 42 210 3.50 1.3 0.390 0.17 0.35 0.22 10.09 3027.34 43 215 3.58 1.4 0.420 0.17 0.38 0.25 11.49 3445.57 44 220 3.67 1.4 0.420 0.17 0.38 0.25 11.49 3445.57 45 225 3.75 1.5 0.450 0.17 0.41 0.28 12.88 3863.80 46 230 3.83 1.5 0.450 0.17 0.41 0.28 12.88 3863.80 47 235 3.92 1.6 0.480 0.17 0.43 0.31 14.27 4282.03 48 240 4.00 1.6 0.480 0.17 0.43 0.31 14.27 4282.03 49 245 4.08 1.7 0.510 0.17 0.46 0.34 15.67 4700.26 50 250 4.17 1.8 0.540 0.17 0.49 0.37 17.06 5118.49 51 255 4.25 1.9 0.570 0.17 0.51 0.40 18.46 5536.72 52 260 4.33 2.0 0.600 0.17 0.54 0.43 19.85 5954.95 53 265 4.42 2.1 0.630 0.17 0.57 0.46 21.24 6373.18 54 270 4.50 2.1 0.630 0.17 0.57 0.46 21.24 6373.18 55 275 4.58 2.2 0.660 0.17 0.59 0.49 22.64 6791.41 56 280 4.67 2.3 1 0.690 0.17 1 0.62 0.52 24.03 7209.64 Plate E -2.2 Page 5 of 14 RCFCD SYNTHETIC UNIT HYDROGRAPH METHOD 100 YEAR - 6 HOUR STORM EVENT EFFECTIVE RAIN (in) PROJECT: CONCENTRATION POINT: BY: DF THE CENTRE AT LA QUINTA RETENTION BASIN DATE: 11/25/02 5.76 FLOOD VOLUME (cult) 250801.09 EFFECTIVE RAIN CALCULATION FORM REQUIRED STORAGE (cult) 248727.38 PEAK FLOW RATE (cfs) DRAINAGE AREA -ACRES UNIT TIME - MINUTES LAG TIME - MINUTES UNIT TIME - PERCENT OF LAG TOTAL ADJUSTED STORM RAIN- INCHES CONSTANT LOSS RATE -in /hr LOW LOSS RATE - PERCENT 46.47 5 3.34 149.7 2.50 0.173 90% TOTAL PERCOLATION RATE (cfs) 0.00 cfs Unit Time Period Time Minutes Hours Pattern Percent Plate E -5.9 Storm Rain in /hr Loss Rate in /hr Max Low Effective Rain in /hr Flood Hydrograph Flow cfs Required Storage cf 57 285 475 2.4 0.720 0.17 0.65 0.55 25.43 7627.87 58 290 4,83 2.4 0.720 0.17 0.65 0.55 25.43 7627.87 59 295 4.92 2.5 0.750 0.17 0.68 0.58 26.82 8046.10 60 300 5.00 2.6 0.780 0.17 0.70 0.61 28.21 8464.33 61 305 5.08 3.1 0.930 0.17 0.84 0.76 .35.18 10555.48 62 310 5.17 3.6 1.080 0.17 0.97 0.91 42.16 12646.63 63 315 5.25 3.9 1.170 0.17 1.05 1.00 46.34 13901.3i- 64 320 5.33 4.2 1.260 0.17 1.13 1.09 50.52 15156.01 65 325 5.42 4.7 1.410 0.17 1.27 1.24 57.49 17247.16 66 330 5.50 5.6 1.680 0.17 1.51 1.51 70.04 21011.23 67 335 5.58 1.9 0.570 0.17 0.51 0.40 18.46 5536.72 68 340 5.67 0.9 0.270 0.17 0.24 0.10 4.51 1354.42 69 345 5.75 0.6 0.180 0.17 0.16 0.01 0.33 99.73 70 350 5.83 0.5 0.150 0.17 0.14 0.02 0.70 209.12 71 355 5.92 0.3 0.090 0.17 0.08 0.01 0.42 125.47 72 360 6.00 0.2 0.060 0.17 0.05 0.01 0.28 83.65 EFFECTIVE RAIN & FLOOD VOLUMES SUMMARY EFFECTIVE RAIN (in) 1.49 FLOOD VOLUME (acft) 5.76 FLOOD VOLUME (cult) 250801.09 REQUIRED STORAGE (acft) 5.71 REQUIRED STORAGE (cult) 248727.38 PEAK FLOW RATE (cfs) 70.04 Plate E -2.2 Page 6 of 14 RCFCD SYNTHETIC UNIT HYDROGRAFH METHOD 100 YEAR - 24 HOUR STORM EVENT PROJECT: THE CENTRE AT LA QUINTA CONCENTRATION POINT: RETENTION BASIN BY: DF DATE: 11/25/02 EFFECTIVE RAIN CALCULATION FORM DRAINAGE AREA -ACRES 46.470 UNIT TIME - MINUTES 15 LAG TIME - MINUTES 3.34 UNIT TIME - PERCENT OF LAG 449.0 TOTAL ADJUSTED STORM RAIN - INCHES 4.50 CONSTANT LOSS RATE -in /hr n/a VARIABLE LOSS RATE (AVG) in /hr 0.1728 MINIMUM LOSS RATE (for var. loss) - in /hr 0.086 LOW LOSS RATE - DECIMAL 0.90 C 0.00160 PERCOLATION RATE cfs 0.00 Unit Time Period Time Minutes Hours Pattern Percent Plate E -5.9 Storm Rain in /hr Loss Rate in /hr Max Low Effective Rain in /hr Flood Hydrograph Flow cfs Required Storage cf 1 15 0.25 0.2 0.036 0.305 0.032 0.004 0.17 150.56 2 30 0.50 0.3 0.054 0.302 0.049 0.005 0.25 225.84 3 45 0.75 0.3 0.054 0.298 0.049 0.005 0.25 225.84 4 60 1.00 0.4 0.072 0.295 0.065 0.007 0.33 301.13 5 75 1.25 0.3 0.054 0.291 0.049 0.005 0.25 225.84 6 90 1.50 0.3 0.054 0.288 0.049 0.005 0,25 225.84 7 105 1.75 0.3 0.054 0.284 0.049 0.005 0.25 225.84 8 120 2.00 0.4 0.072 0.281 0.065 0.007 0.33 301.13 9 135 2.25 0.4 0.072 0.277 0.065 0.007 0.33 301.13 10 150 2.50 0.4 0.072 0.274 0.065 0.007 0.33 301.13 11 165 2.75 0.5 0.090 0.271 0.081 0.009 0.42 376.41 12 180 3.00 0.5 0.090 0.267 0.081 0.009 0.42 376.41 13 195 3.25 0.5 0.090 0.264 0.081 0.009 0.42 376.41 14 210 3.50 0.5 0.090 0.261 0.081 0.009 0.42 376.41 15 225 3.75 0.5 0.090 0.258 0.081 0.009 0.42 376.41 16 240 4.00 0.6 0.108 0.254 0.097 0.011 0.50 451.69 17 1 255 4.25 0.6 0.108 0.251 0.097 0.011 0.50 451.69 18 270 4.50 0.7 0.126 0.248 0.113 0.013 0.59 526.97 19 285 4.75 0.7 0.126 0.245 0.113 0.013 0.59 526.97 20 300 5.00 0.8 0.144 0.242 0.130 0.014 0.67 602.25 21 315 5.25 0.6 0.108 0.238 0.097 0.011 0.50 451.69 22 330 5.50 0.7 0.126 0.235 0.113 0.013 0.59 526.97 23 345 5.75 0.8 0.144 0.232 0.130 0.014 0.67 602.25 24 360 6.00 0.8 0.144 0.229 0.130 0.014 0.67 602.25 25 375 6.25 0.9 0.162 0.226 0.146 0.016 0.75 677.53 26 390 6.50 0.9 0.162 0.223 0.146 0.016 0.75 677.53 27 405 6.75 1.0 0.180 0.220 0.162 0.018 0.84 752.81 28 420 7.00 1.0 0.180 0.217 0.162 0.018 0.84 752.81 29 435 7.25 1.0 0.180 0.214 0.162 0.018 0.84 752.81 30 450 7.50 1.1 0.198 0.211 0.178 0.020 0.92 828.10 31 465 7.75 1.2 0.216 0.208 0.194 0.008 0.35 318.54 32 480 8.00 1.3 0.234 0.206 0.211 0.028 1.32 1191.56 33 495 8.25 1.5 0.270 0.203 0.243 0.067 3.13 2816.36 34 510 8.50 1.5 0.270 0.200 0.243 0.070 3.26 2934.51 35 525 8.75 1.6 0.288 0.197 0.259 0.091 4.23 3804.43 36 540 9.00 1.7 0.306 0.194 0.275 0.112 5.19 4673.32 37 555 9.25 1.9 0.342 0.192 0.308 0.150 6.99 6293.97 38 570 9.50 2.0 0.360 0.189 0.324 0.171 7.96 7160.74 39 585 9.75 2.1 0.378 0.186 0.340 0.192 8.92 8026.45 40 600 10.00 2.2 0.396 0.183 0.356 0.213 9.88 8891.09 41 615 10.25 1.5 0.270 0.181 0.243 0.089 4.15 3732.12 42 630 10.50 1.5 0.270 0.178 0.243 0.092 4.27 3841.77 43 645 10.75 2.0 0.360 0.176 0.324 0.184 8.57 7714.38 44 660 11.00 2.0 0.360 0.173 0.324 0.187 8.69 7821.82 45 675 11.25 1.9 0.342 0.170 0.308 0.172 7.97 7175.32 46 690 11.50 1.9 0.342 0.168 0.308 0.174 8.09 7280.50 47 705 11.75 1.7 0.306 0.165 0.275 0.141 6.53 5878.92 48 720 12.00 1.8 1 0.324 0.163 0.292 0.161 7.48 6734.63 49 735 12.25 2.5 0.450 0.161 0.405 0.289 13.45 12106.06 50 750 12.50 2.6 0.468 0.158 0.421 0.310 14.40 12959.44 51 765 12.75 2.8 0.504 0.156 0.454 0.348 16.18 14564.45 52 780 13.00 2.9 0.522 0.153 1 0.470 0.369 17.13 15415.45 53 795 13.25 3.4 0.612 0.151 0.551 0.461 21.42 19276.50 54 810 13.50 3.4 0.612 0.149 0.551 0.463 21.52 19372.27 55 825 13.75 2.3 0.414 0.147 0.373 0.267 12.43 11185.84 56 840 14.00 2.3 0.414 0.144 0.373 0.270 12.53 11279.13 57 855 14.25 2.7 0.486 0.142 0.437 0.344 15.98 14382.41 58 870 14.50 2.6 0.468 0.140 0.421 0.328 15.24 13720.36 59 885 14.75 2.6 0.468 0.138 0.421 0.330 15.34 13809.82 60 900 15.00 2.5 0.450 0.136 0.405 0.314 14.61 13145.18 61 915 15.25 2.4 0.432 0.134 0.389 0.298 13.87 1 12479.21 Plate E -2.2 Page 7 of 14 RCFCD SYNTHETIC UNIT HYDROGRAPH METHOD 100 YEAR - 24 HOUR STORM EVENT PROJECT: THE CENTRE AT LA QUINTA CONCENTRATION POINT: RETENTION BASIN BY: DF DATE: 11/25/02 EFFECTIVE RAIN CALCULATION FORM DRAINAGE AREA -ACRES 46.470 UNIT TIME - MINUTES 15 LAG TIME - MINUTES 3.34 UNIT TIME - PERCENT OF LAG 449.0 TOTAL ADJUSTED STORM RAIN- INCHES 4.50 CONSTANT LOSS RATE -in/hr n/a VARIABLE LOSS RATE (AVG) in /hr 0.1728 MINIMUM LOSS RATE (for var. loss) - in /hr 0.086 LOW LOSS RATE - DECIMAL 0.90 C 0.00160 PERCOLATION RATE cfs 0.00 Unit Time Period Time Minutes . Hours Pattern Percent Plate E -5.9 Storm Rain in /hr Loss Rate in /hr Max Low Effective Rain in /hr Flood Hydrograph Flow cfs Required Storage cf 62 930 15.50 2.3 0.414 0.132 0.373 0.282 13.12 11811.91 63 945 15.75 1.9 0.342 0.130 0.308 0.212 9.87 8884.81 64 960 16.00 1.9 0.342 0.128 0.308 0.214 9.96 8967.60 65 975 16.25 0.4 0.072 0.126 0.065 0.007 0.33 301.13 66 990 16.50 0.4 0.072 0.124 0.065 0.007 0.33 301.13 67 1005 16.75 0.3 0.054 0.122 0.049 0.005 0.25 225.84 68 1020 17.00 0.3 0.054 0.120 0.049 0.005 0.25 225.84 69 1035 17.25 0.5 0.090 0.118 0.081 0.009 0.42 376.41 70 1050 17.50 0.5 0.090 0.116 0.081 0.009 0.42. 376.41 71 1065 17.75 0.5 0.090 0115 0.081 0.009 ' 0.42 376.41 72 1080 18.00 0.4 0.072 0.113 0.065 0.007 0.33 301.13 73 1095 18.25 0.4 0.072 0.111 0.065 0.007 0.33 301.13 74 1110 18.50 0.4 0.072 0.110 0.065 0.007 0.33 301.13 75 1125 18.75 0.3 0.054 0.108 0.049 0.005 0.25 225.84 76 1140 19.00 0.2 0.036 0.107 1 0.032 0.004 0.17 150.56 77 1155 19.25 0.3 0.054 0.105 0.049 0.005 0.25 225.84 78 1170 19.50 0.4 0.072 0.104 0.065 0.007 0.33 301.13 19 1185 19.75 0.3 0.054 0.102 0.049 0.005 0.25 225.84 80 1200 20.00 0.2 0.036 0.101 0.032 0.004 0.17 150.56 81 1215 20.25 0.3 0.054 0.099 0.049 0.005 0.25 225.84 82 1230 20.50 0.3 0.054 0.098 0.049 0.005 0.25 225.84 83 1245 20.75 0.3 0.054 0.097 0.049 0.005 0.25 225.84 84 1260 21.00 0.2 0.036 0.096 0.032 0.004 0.17 150.56 85 1275 21.25 0.3 0.054 0.095 0.049 0.005 0.25 225.84 86 1290 21.50 0.2 0.036 0.094 0.032 0.004 0.17 150.56 87 1305 21.75 0.3 0.054 0.093 0.049 0.005 0.25 225.84 88 1320 22.00 0.2 0.036 0.092 0.032 0.004 0.17 150.56 89 1335 22.25 0.3 0.054 0.091 0.049 0.005 0.25 225.84 90 1350 22.50 0.2 0.036 0.090 0.032 0.004 0.17 150.56 91 1365 22:75 0.2 1 0.036 0.089 0.032 0.004 0.17 150.56 92 1380 23.00 0.2 0.036 0.088 0.032 0.004 0.17 150.56 93 1395 23.25 0.2 0.036 0.088 0.032 0.004 0.17 150.56 94 1410 23.50 0.2 0.036 .087 0.032 0.004 0.17 150.56 95 1425 23.75 0.2 0.036 .087 fO. 0.032 0.004 0.17 150.56 96 1440 24.00 0.2 0.036 08 6 0.032 0.004 0.17 150.56 EFFECTIVE RAIN & FLOOD VOLUMES SUMMARY EFFECTIVE RAIN (in) 1.98 FLOOD VOLUME (acft) 7.65 FLOOD VOLUME (cult) 333183.40 REQUIRED STORAGE (acft) 7.59 REQUIRED STORAGE (cult) 330428.53 PEAK FLOW cfs 21.52 Plate E -2.2 Page 8 of 14 PROJECT: THE CENTRE AT LA QUINTA TKC JOB # 40382.01 RETENTION BASIN BASIN CHARACTERISTICS CONTOUR DEPTH INCR TOTAL (ft) (ft) AREA INCR TOTAL (so (so VOLUME INCR TOTAL (cult) (cult) (acre -ft) 54 0 0 REJ. Base eaus� 54668 0 0 0.00 55 1 1 3049 57717 56193 56193 1.29 56 1 2 3093 60810 59264 115456 2.65 57 1 3 3180 63990 62400 177856 4.08 58 1 4 3223 67213 65602 243458 5.59 59 1 1 5 3311 1 70524 68869 312326 7.17 60 1 6 3260 73784 72154 384480 8.83 PERCOLATION CALCULATIONS PERCOLATION RATE 0 in /hr 0.00 cfs cf�Iat'TY Lw�p �wu..A�J6 • REJ. Base eaus� MAXWELL IV DRYWELLS NUMBER USED 0 RATE/DRYWELL 0.35 cfs TOTAL DISSIPATED 0 cfs TOTAL PERCOLATION RATE 0.00 cfs Basin Characteristics Page 9 of 14 � I � I � I I I I I THE CENTRE AT LA QUINTA TKC JOB # 40382.01 100 YEAR - 3 HOUR STORM EVENT TIME UNIT (min) PERIOD FLOW IN cfs VOLUME IN (cult TOTAL IN BASIN cult) PERC ' OUT (cuft TOTAL IN BASIN cult BASIN DEPTH ft BALANCE IN BASIN cult (acre -ft 1 5 6.47 1,940 1,940 0 1,940 54.03 1,940 0.04 2 10 6.47 1,940 3,880 0 3,880 54.07 3,880 0.09 3 15 4.24 1,271 5,151 0 5,151 54.09 5,151 0.12 4 20 8.70 2,609 7,760 0 7,760 54.14 7,760 0.18 5 25 8.70 2,609 10,369 0 10,369 54.18 10,369 0.24 6 30 12.04 3,613 13,982 0 13,982 54.25 13,982 0.32 7 35 8.70 2,609 16,591 0 16,591 54.30 16,591 0.38 8 40 12.04 3,613 20,204 0 20,204 54.36 20,204 0.46 9 45 12.04 3,613 23,817 0 23,817 54.42 23,817 0.55 10 50 8.70 2,609 26,426 0 26,426 54.47 26,426 0.61 11 55 9.81 2,944 29,369 0 29,369 54.52 29,369 0.67 12 60 12.04 3,613 32,982 0 32,982 54.59 32,982 0.76 13 65 16.50 4,951 37,933 0 37,933 54.68 37,933 0.87 14 70 16.50 4,951 42,885 0 42,885 54.76 42,885 0.98 15 75 16.50 4,951 47,836 0 47,836 54.85 47,836 1.10 16 80 14.27 4,282 52,118 0 52,118 54.93 52,118 1.20 17 85 20.97 6,290 58,407 0 58,407 55.04 58,407 1.34 18 90 22.08 6,624 65,031 0 65,031 55.15 65,031 1.49 19 95 18.73 5,620 70,652 0 70,652 55.24 70,652 1.62 20 100 22.08 6,624 77,276 0 77,276 55.36 77,276 1.77 21 105 28.77 8,632 85,908 0 85,908 55.50 85,908 1.97 22 110 26.54 7,962 93,870 0 93,870 55.64 93,870 2.15 23 115 24.31 7,293 101,163 0 101,163 55.76 101,163 2.32 24 120 25.43 7,628 108,791 0 108,791 55.89 108,791 2.50 25 125 26.54 7,962 116,754 0 116,754 56.02 116,754 2.68 26 130 38.81 11,643 128,396 0 128,396 56.21 128,396 2.95 27 135 47.73 14,320 142,716 0 142,716 56.44 142,716 3.28 28 140 31.00 9,301 152,017 0 152,017 56.59 152,017 3.49 29 145 67.81 20,342 172,359 0 172,359 56.91 172,359 3.96 30 150 73.38 22,015 194,374 0 194,374 57.25 194,374 4.46 31 155 83.42 25,026. 219,400 0 219,400 57.63 219,400 5.04 32 160 57.77 17,331 236,731 0 236,731 57.90 236,731 5.43 33 165 14.27 4,282 241,013 0 241,013 57.96 241,013 5.53 34 170 12.04 3,613 244,626 0 244,626 58.02 244,626 5.62 35 175 12.04 3,613 248,239 0 248,239 58.07 248,239 5.70 36 180 0.67 201 248,439 0 248,439 58.07 248,439 5.70 Basin Depth Analysis Page 10 of 14 THE CENTRE AT LA QUINTA TKC JOB # 40382.01 100 YEAR - 6 HOUR STORM EVENT TIME UNIT (min) PERIOD FLOW IN cfs VOLUME IN cult TOTAL IN BASIN (cult PERC OUT (cult TOTAL IN BASIN cult BASIN DEPTH ft BALANCE IN BASIN cult acre -ft 1 5 0.70 209 209 0 209 54.00 209 0.00 2 10 0.33 100 309 0 309 54.01 309 0.01 3 15 0.33 100 409 0 409 54.01 409 0.01 4 20 0.33 To- 0 508 0 508 54.01 508 0.01 5 25 0.33 100 608 0 608 54.01 608 0.01 6 30 1.73 518 1,126 0 1,126 54.02 1,126 0.03 7 35 1.73 518 1,644 0 1,644 54.03 1,644 0.04 8 40 1.73 518 2,162 0 2,162 54.04 2,162 0.05 9 45 1.73 518 2,680 0 2,680 54.05 2,680 0.06 10 50 1.73 518 3,198 0 3,198 54.06 3,198 0.07 11 55 1.73 518 3,716 0 3,716 54.07 3,716 0.09 12 60 3.12 936 4,652 0 4,652 54.08 4,652 0.11 13 65 3.12 936 5,588 0 5,588 54.10 5,588 0.13 14 70 3.12 936 6,524 0 6,524 54.12 6,524 0.15 15 75 3.12 936 7,460 0 7,460 54.13 7,460 0.17 16 80 3.12 936 8,397 0 8,397 54.15 8,397. 0.19 17 85 3.12 936 9,333 0 9,333 54.17 9,333 0.21 18 90 3.12 936 10,269 0 10,269 54.18 10,269 0.24 19 95 3:12 936 11,205 0 11,205 54.20 11,205 0.26 20 100 3.12 936 12,141 0 12,141 54.22 12,141 0.28 21 105 3.12 936 13,078 0 13,078 54.23 13,078 0.30 22 110 3.12 936 14,014 0 14,014 54.25 14,014 0.32 23 115 3.12 936 14,950 0 14,950 54.27 14,950 0.34 24 120 4.51 1,354 16,304 0 16,304 54.29 16,304 0.37 25 125 3.12 936 17,241 0 17,241 54.31 17,241 0.40 26 130 4.51 1,354 18,595 0 18,595 54.33 18,595 0.43 27 135 4.51 1,354 19,949 0 19,949 54.36 19,949 0.46 28 140 4.51 1,354 21,304 0 21,304 54.38 21,304 0.49 29 145 4.51 1,354 22,658 0 22,658 54.40 22,658 0.52 30 150 4.51 1,354 24,013 0 24,013 54.43 24,013 0.55 31 155 4.51 1,354 25,367 0 25,367 54.45 25,367 0.58 32 160 4.51 1,354 26,721 0 26,721 54.48 26,721 0.61 33 165 5.91 1,773 28,494 0 28,494 54.51 28,494 0.65 34 170 5.91 1,773 30,267 0 30,267 54.54 30,267 0.69 35 175 5.91 1,773 32,039 0 32,039 54.57 32,039 0.74 36 180 5.91 1,773 33,812 0 33,812 54.60 33,812 0.78 37 185 5.91 1,773 35,585 0 35,585 54.63 35,585 0.82 38 190 7.30 2,191 37,776 0 37,776 54.67 37,776 0.87 39 195 7.30 2,191 39,966 01 39,966 54.71 39,966 0.92 40 200 7.30 2,191 42,157 0 42,157 54.75 42,157 0.97 41 205 8.70 2,609 44,766 0 44,766 54.80 44,766 1.03 42 210 10.09 3,027 47,794 0 47,794 54.85 47,794' 1.10 43 215 11.49 3,446 51,239 0 51,239 54.91 51,239 1.18 44 220 11.49 3,446 54,685 0 54,685 54.97 54,685 1.26 45 225 12.88 3,864 58,549 0 58,549 55.04 58,549 1.34 46 230 12.88 3,864 62,412 0 62,412 55.10 62,412 1.43 47 235 14.27 4,282 66,695 0 66,695 55.18 66,695 1.53 48 240 14.27 4,282 70,977 0 70,977 55.25 70,977 1.63 49 245 15.67 4,700 75,677 0 75,677 55.33 75,677 1.74 50 250 17.06 5,118 80,795 0 80,795 55.42 80,795 1.85 51 255 18.46 5,537 86,332 01 86,332 55.51 86,332 1.98 52 260 19.85 5,955 92,287 0 92,287 55.61 92,287 2.12 53 265 21.24 6,373 98,660 0 98,660 55.72 98,660 2.26 54 270 21.24 6,373 105,033 0 105,033 55.82 105,033 2.41 55 275 22.64 6,791 111,825 0 111,825 55.94 111,825 2.57 Basin Depth Analysis Page 11 of 14 tTHE CENTRE AT LA QUINTA TKC JOB # 40382.01 100 YEAR - 6 HOUR STORM EVENT TIME UNIT (min) PERIOD FLOW IN cfs VOLUME IN cult TOTAL IN BASIN cult PERC OUT cult TOTAL IN BASIN cult BASIN DEPTH ft BALANCE IN BASIN cult acre -ft 56 280 24.03 7,210 119,034 0 119,034 56.06 119,034 2.73 57 285 25.43 7,628 126,662 0 126,662 56.18 126,662 2.91 58 290 25.43 7,628 134,290 0 134,290 56.30 134,290 3.08 59 295 26.82 8,046 142,336 0 142,336 56.43 142,336 3.27 60 300 28.21 8,464 150,800 0 150,800 56.57 150,800 3.46 61 305 35.18 10,555 161,356 0 161,356 56.74 161,356 3.70 62 310 42.16 12,647 174,003 0 174,003 56.94 174,003 3.99 63 315 46.34 13,901 187,904 0 187,904 57.15 187,904 4.31 64 320 50.52 15,156 203,060 0 203,060 57.38 203,060 4.66 65 325 57.49 17,247 220,307 0 220,307 57.65 220,307 5.06 66 330 70.04 21,011 241,318 0 241,318 57.97 241,318 5.54 67 335 18.46 5,537 246,855 0 246,855 58.05 246,855 5.67 68 340 4.51 1,354 248,209 0 248,209 58.07 248,209 5.70 69 345 0.33 100 248,309 0 248,309 58.07 248,309 5.70 70 350 0.70 209 248,518 0 248,518 58.07 248,518 5.71 71 355 0.42 125 248,644 0 248,644 58.08 248,644 5.71 72 360 0.28 84 248,727 0 248,727 58.08 248,727 5.71 Basin Depth Analysis Page 12 of 14 THE CENTRE AT LA QUINTA TKC JOB # 40382.01 100 YEAR - 24 HOUR STORM EVENT TIME UNIT (min) PERIOD FLOW IN cfs VOLUME IN cult TOTAL IN BASIN cult PERC OUT cult TOTAL IN BASIN cult BASIN DEPTH ft BALANCE IN BASIN cult acre =ft 1 15 0.17 151 151 0 151 54.00 151 0.00 2 30 0.25 226 376 0 376 54.01 376 0.01 3 45 0.25 226 602 0 602 54.01 602 0.01 4 60 0.33 301 903 0 903 54.02 903 0.02 5 75 0.25 226 1,129 0 1,129 54.02 1,129 0.03 6 90 0.25 226 1,355 0 1,355 54.02 1,355 0.03 7 105 0.25 226 1,581 0 1,581 54.03 1,581 0.04 8 120 0.33 301 1,882 0 1,882 54.03 1,882 0.04 9 135 0.33 301 2,183 0 2,183 54.04 2,183 0.05 10 150 0.33 301 2,484 0 2,484 54.04 2,484 0.06 11 165 0.42 376 2,861 0 2,861 54.05 2,861 0.07 12 180 0.42 376 3,237 0 3,237 54.06 3,237 0.07 13 195 0.42 376 3,614 0 3,614 54.06 3,614 0.08 14 210 0.42 376 3,990 0 3,990 54.07 3,990 0.09 15 225 0.42 376 4,366 0 4,366 54.08 4,366 0.10 16 240 0.50 452 4,818 0 4,818 54.09 4,818 0.11 17 255 0.50 452 5,270 0 5,270 54.09 5,270 0.12 18 270 0.59 527 5,797 0 5,797 54.10 5,797 0.13 19 285 0.59 527 6,324 0 6,324 54.11 6,324 0.15 20 300 0.67 602 6,926 0 6,926 54.12 6,926 0.16 21 315 0.50 452 7,378 0 7,378 54.13 7,378 0.17 22 330 0.59 527 7,905 0 7,905 54.14 7,905 0.18 23 345 0.67 602 8,507 0 8,507 54.15 8,507 0.20 24 360 0.67 602 9,109 0 9,109 54.16 9,109 0.21 25 375 0.75 678 9,787 0 9,787 54.17 9,787 0.22 26 390 0.75 678 10,464 0 10,464 54.19 10,464 0.24 27 405 0.84 753 11,217 0 11,217 54.20 11,217 0.26 28 420 0.84 753 11,970 0 11,970 54.21 11,970 0.27 29 435 0.84 753 1 12,723 0 12,723 54.23 12,723 0.29 30 450 0.92 828 13,551 0 13,551 54.24 13,551 0.31 31 465 0.35 319 13,869 0 13,869 54.25. 13,869 0.32 32 480 1.32 1,192 15,061 0 15,061 54.27 15,061 0.35 33 495 3.13 2,816 17,877 0 17,877 54.32 17,877 0.41 34 510 3.26 2,935 20,812 0 20,812 54.37 20,812 0.48 35 525 4.23 3,804 24,616 0 24,616 54.44 24,616 0.57 36 540 5.19 4,673 29,289 0 29,289 54.52 29,289 0.67 37 555 6.99 6,294 35,583 0 35,583 54.63 35,583 0.82 38 570 7.96 7,161 42,744 0 42,744 54.76 42,744 0.98 39 585 8.92 8,026 50,771 0 50,771 54.90 50,771 • 1.17 40 600 9.88 8,891 59,662 0 59,662 55.06 59,662 1.37 41 615 4.15 3,732 63,394 0 63,394 55.12 63,394 1.46 42 630 4.27 3,842 67,236 0 67,236 55.19 67,236 1.54 43 645 8.57 7,714 74,950 0 74,950 55.32 74,950 1.72 44 660 8.69 7,822 82,772 0 82,772 55.45 82,772 1.90 45 675 7.97 7,175 89,947 0 89,947 55.57 89,947 2.06 46 690 8.09 7,281 97,228 0 97,228 55.69 97,228 2.23 47 705 6.53 5,879 103,106 0 103,106 55.79 103,106. 2.37 48 720 7.48 6,735 109,841 0 109,841 55.91 109,841 2.52 49 735 13.45 12,106 121,947 0 121,947 56.10 121,947 2.80 50 750 14.40 12,959 134,907 0 134,907 56.31 134,907 3.10 51 765 16.18 14,564 149,471 0 149,471 56.55 149,471 3.43 52 780 17.13 15,415 164,886 0 164,886 56.79 164,886 3.79 53 795 21.42 19,277 184,163 0 184,163 57.10 184,163 4.23 54 810 21.52 19,372 203,535 0 203,535 57.39 203,535 4.67 55 825 12.43 11,186 214,721 0 214,721 57.56 214,721 4.93 56 840 12.53 11,279 226,000 0 226,000 57.73 226,000 5.19 57 855 15.98 14,382 240,383 0 240,383 57.95 240,383 5.52 58 870 15.24 13,720 254,103 0 254,103 58.15. 254,103 5.83 Basin Depth Analysis Page 13 of 14 THE CENTRE AT LA QUINTA TKC JOB # 40382.01 100 YEAR - 24 HOUR STORM EVENT TIME UNIT (min) PERIOD FLOW IN (cfs) VOLUME IN (cult TOTAL IN BASIN cult PERC OUT cult TOTAL IN BASIN cult BASIN DEPTH ft BALANCE IN BASIN cult acre -ft 59 885 15.34 13,810 267,913 0 267,913 58.36 267,913 6.15 60 900 14.61 13,145 281,058 0 281,058 58.55 281,058 6.45 61 915 13.87 12,479 293,537 0 293,537 58.73 293,537 6.74 62 930 13.12 11,812 305,349 0 305,349 58.90 305,349 7.01 63 945 9.87 8,885 314,234 0 314,234 59.03 314,234 7.21 64 960 9.96 8,968 323,202 0 323,202 59.15 323,202 7.42 65 975 0.33 301 323,503 0 323,503 59.15 323,503 7.43 66 990 0.33 301 323,804 0 323,804 59.16 323,804 7.43 67 1005 0.25 226 324,030 0 324,030 59.16 324,030 7.44 68 1020 0.25 226 324,255 0 324,255 59.17 324,255 7.44 69 1035 0.42 376 324,632 0 324,632 59.17 324,632 7.45 70 1050 0.42 376 325,008 0 325,008 59.18 325,008 7.46 71 1065 0.42 376 325,385 0 325,385 59.18 325,385 7.47 72 1080 0.33 301 325,686 0 325,686 59.19 325,686 7.48 73 1095 0.33 301 325,987 0 325,987 59.19 325,987 7.48 74 1110 0.33 301 326,288 0 326,288 59.19 326,288 7.49 75 1125 0.25 226 326,514 0 326,514 59.20 326,514 7.50 76 1140 0.17 151 326,664 0 326,664 59.20 326,664 7.50 77 1155 0.25 226 326,890 0 326,890 59.20 326,890 7.50 78 1170 0.33 301 327,191 0 327,191 59.21 327,191 7.51 79 1185 0.25 226 327,417 0 327,417 59.21 327,417 7.52 80 1200 0.17 151 327,568 0 327,568 59.21 327,568 7.52 81 1215 0.25 226 327,794 0 327,794 59.21 327,794 7.53 82 1230 0.25 226 328,020 0 328,020 59.22 328,020 7.53 83 1245 0.25 226 328,245 0 328,245 59.22 328,245 7.54 84 1260 0.17 151 328,396 0 328,396 59.22 328,396 7.54 85 1275 0.25 226 328,622 0 328,622 59.23 328,622 7.54 86 1290 0.17 151 328,772 0 328,772 59.23 328,772 7.55 87 1305 0.25 226 328,998 0 328,998 59.23 328,998 7.55 88 1320 0.17 151 329,149 0 329,149 59.23 329,149 7.56 89 1335 0.25 226 329,375 0 329,375 59.24 329,375 7.56 90 1350 0.17 151 329,525 0 329,525 59.24 329,525 7.56 91 1365 0.17 151 329,676 0 329,676 59.24 329,676 7.57 92 1380 0.17 151 329,826 0 329,826 59.24 329,826 7.57 93 1395 0.17 151 329,977 0 329,977 59.24 329,9771 7.58 94 1410 0.17 151 330,127 0 330,127 59.25 330,127 7.58 95 1 1425 0.171 151 330,278 1 330,278 1 59.25 330,278 7.58 96 1 1440 0.171 151 1 330,429 1 01 330,429 1 59.25 1 330,429 1 7.59 Basin Depth Analysis Page 14 of 14 ' Project Report' p ' Date• 1)-)5-02 1 Project: TNe Cenlre aA- Lc- Ou;A+a: Re: S4nag-14 i Sizi,%5 Co.lculc. NO-is Contact: 1 The Keith Companies I "Mc Job No: `10382.0! By: Phone: ' Sa�QFttr�2 S► t1�t � c/��c�tra -►-tws ' THE U%LCuLAT,OJS Brcww AitE gA5E0 Ora Tvc CITY of LA awaTAS W15AacE wA-TE2 SaAoFtLrER cktWeA opxko OCTOSE2 12, 1498. ALrl- toO&14 n►E, MiTrcRoA 15 P4k,44EILY r�2 RE5(DENnAL- DEvrtczP r.-)S, wicc t+aurc Maoonsio jr Port ' C9MAo%l KCrAfLJ24T*lL. A.PPC1c4l7w. 1 IJo, o -E JS"Oort.e is = klo %A3 X IVtv NemFS /S•WOF /trfiit ' 13A3e0 04 A TY,P1oeL A27-ir Y*94O 7 2G' X'7S� ^ I9S0 S. F. TF A*f-PILE � 1 ODOE = 195o S.F. ' ' " � AKr� �{o Ib►•& 5 = '1,5SoC4a� :. 7� oo� S.f. ' TIW- c4.,'i ( AT LA OulmTA s ilE IS APP1:a)o*-4T LY -(o /k4XFe5, A49wMF tool. LA^MSC O#lO C- = y A,,"i C tl,(,ZKo S.F. No. OF aLTE�t3 = 174, 2-yo S.F. : 2, 2 7 8,c0,0 S.A. FOOL CMws1EAM4,AS-o. 05E [/ F(LM2s ' LEAC#+ WNF "AIF77f : ' L.FAcH 4-1N4 c -fnC-T>! = IIon,ES 9E 0.6/7 G.F. /Honn>i 51N of y F,Lr�2s ��LL a� v71L /ZED -% 4 F /�ia:a S � J c o HoMEs 1 ' t 4f)-tFt L 1,4c L-6N C r// hv^% s �f 0.6/7 4 •��NoM t 98.72 too ' 02/ 25 QE¢. H LIE tL ' 301 E - 3/02 II 4. MEMORANDUM TO:. All Interest Persons FROM: Steve Speer; Senior Enginee DATE: October 12; 1998 I' RE: Nuisance Water Sandfilter The La Quinta Nuisance Water Sandfilter is designed to clarify nuisance water before' passing the water into a leach line or leach field. Past experience has demonstrated that nuisance water handling systems, such as "drywalls" -or "french drains" which typically percolate unfiltered water. eventually fail to percolate the water because pores in the soil surrounding the leach line or percolation chamber become clogged with mud, silt, cement, 'and other fine material that falls -iii the street and is washed into the storm drain system. ' When this occurs, the useful life of the drywell or french drain has ended and must be replaced if percolation is intended. ' The La Quinta Nuisance Water.Sandfilter utilizes. gravity sandfilter technology that was widely used in1 94, and early 20°i, century municipal water systems. In those simple water, treatment systems, the raw water was passed through a 3 to 4 feet thick sandfilter, ' chlorinated, and introduced to the potable water system. The sand in the sandfilter is very effective In clearing fine material from the water. As a '. result, only filtered water reaches the leach field, thus keeping the leach field and pores in the soil from becoming clogged. ' The sandfilter is easy to maintain. Simply remove the grates from the top of the sandfilter, and remove the upper 6 inches of sand without replacement. This can be repeated a., second time without replacing the sand. The third time 6 inches of sand is removed, 18 ' inches of clean sand should be added to the sandfilter. The 6 -inch sand removal effort should occur whenever the . sandfilter is functioning too slow to handle the incoming nuisance-water. Note, there should always be at least 21 inches of filtering sand in the ' sandfilter when it Is In operation, otherwise the sand filter bedding is too thin and may allow fines to reach the filter fabric laying on top of the course rock at the -bottom of the vault If the filter fabric is plugged with fines, It too must. be replaced. Never operate the ' filter without the filter fabric separating the sand.from the course rock. Doing so allows the sand and other fine material in the nuisance water to be carried into the course rock and eventually into the -leach field. If you have questions regarding the sandfilter, or its operation,.please call me at (760) 777 - ■ 7043. F.VWDEPnSTAFFU' -PE tMEMOW?40Ia.oa � 0 ox t OF Mt II 4. MEMORANDUM TO:. All Interest Persons FROM: Steve Speer; Senior Enginee DATE: October 12; 1998 I' RE: Nuisance Water Sandfilter The La Quinta Nuisance Water Sandfilter is designed to clarify nuisance water before' passing the water into a leach line or leach field. Past experience has demonstrated that nuisance water handling systems, such as "drywalls" -or "french drains" which typically percolate unfiltered water. eventually fail to percolate the water because pores in the soil surrounding the leach line or percolation chamber become clogged with mud, silt, cement, 'and other fine material that falls -iii the street and is washed into the storm drain system. ' When this occurs, the useful life of the drywell or french drain has ended and must be replaced if percolation is intended. ' The La Quinta Nuisance Water.Sandfilter utilizes. gravity sandfilter technology that was widely used in1 94, and early 20°i, century municipal water systems. In those simple water, treatment systems, the raw water was passed through a 3 to 4 feet thick sandfilter, ' chlorinated, and introduced to the potable water system. The sand in the sandfilter is very effective In clearing fine material from the water. As a '. result, only filtered water reaches the leach field, thus keeping the leach field and pores in the soil from becoming clogged. ' The sandfilter is easy to maintain. Simply remove the grates from the top of the sandfilter, and remove the upper 6 inches of sand without replacement. This can be repeated a., second time without replacing the sand. The third time 6 inches of sand is removed, 18 ' inches of clean sand should be added to the sandfilter. The 6 -inch sand removal effort should occur whenever the . sandfilter is functioning too slow to handle the incoming nuisance-water. Note, there should always be at least 21 inches of filtering sand in the ' sandfilter when it Is In operation, otherwise the sand filter bedding is too thin and may allow fines to reach the filter fabric laying on top of the course rock at the -bottom of the vault If the filter fabric is plugged with fines, It too must. be replaced. Never operate the ' filter without the filter fabric separating the sand.from the course rock. Doing so allows the sand and other fine material in the nuisance water to be carried into the course rock and eventually into the -leach field. If you have questions regarding the sandfilter, or its operation,.please call me at (760) 777 - ■ 7043. F.VWDEPnSTAFFU' -PE tMEMOW?40Ia.oa SANDFILTER SIZING CALCULATIONS �C&Wation #1 - How many standard size sandfilters are needed? . No* of Sandilters homes .+ 40 homeslsandfllter Round all fractions up to the nearest whole number Comment: Each sandfifter has 48 sf of filter surface (ie 6 x 6�; assume the Incoming nuisance water. will percolate through the sand at the rate of 4.6 inches per hour. The saridfilter must be sized to handle the °surge inflow rate' of 0.458 cf/house/hour, which is based on the assumption thet, on average, -each house releases 12 gallons in .a 3,5 hour "surge" parlod, Therefore, each sandfilter Is capable of handling 18.4 cffhour. As a result, each sandfllter can. handle the nuisance water released. by 40 homes (18.4/0.458 =40), Calculation #2 - How much leach line length is needed? Leach Line Length" homes z 0.617.If 1home In feet to be divided evenly between the number of sandfifters Comment: Usually, the critical aspect In sizing the leach line length is related to Its storage capacity during the surge.period. During the surge period, the sandfllter delivers filtered nuisance water to the leach line chamber at a rate faster than it percolates Into the soil (the soil . percolation rate Is assumed to be 2 inches per.houo. Therefore, the leach line chamber should be sized to handle the entire 3.5 hour surge flow of 1.604 cf per house. The leach line chamber has a 2.6 cf capacity per lineal foot, therefore, the per house,length'of leach line chamber is 0.617 If/home (1.804!2.6 =0.6T7) NOTE:: The previous calculation Is good for soil conditions where the soil- Infiltration rate is as low as 1.5 inches per hour. If the infiltration rate is less than 1.5 inches per hour, the leach line must be sized using the following formula, which has a 2.0 factor of safety included in the formula. LLL- 2x(2.674x NH) t(5.66xSIR) Where: LLL = Leach Line Length; SIR = Soil Infiltration Rate (In/hr); NH =. Numbef of Houses MMYVATA%WP%F0RMS1F50,e8 9lBB. • Galvanized Welded'Steel Bar Grate, Model GW -100 with (1_x 3/x(6" bars);'with banded ends, as manufactured by the McNichols Co. (213 -566 - 1955), or approved equal. Panel• size; 49" span k 32%" wide (Note: Gross opening size is 8'-2"x6'-2", therefore three (3) .panels are required). Use CS saddle type retainer clips as manufactured by McNichols to secure grates. • . W413 steel support beam for grate panels, 8' -2" tong, Fy;36ksi. • Leach line arch-type chamber section, High Capacity Infiltrator- model, as distributed by Boyd.Tanks Co. (909- 657 - 6966),, or approved equal. • Fine spun non -woven geotextile fabric,.Dupont's Typar. Style 3601, as distributed by Aldrich Supply Co (909- 371 - 3018), or appro ved equal. Note, It is acknowledged that the. 3601 fabric is finer than normally used in most "drainage" situations. However, most drainage situations are.de- watering type situations where the water passes from the soil Into the de- watering'drain, system. .In these Instances, it is ok.ff some of the fines pass through a courser fabric such as the 3401 fabric into the drain system. The eandfilter system, however, works m reverse to most drainage situations;, here the water is passing from an open area (the storm drain outfall into the soil On the leach fine). The 3601 fabric is the 'last line of defense" in the sandfilter system for filtering fines from nuisance water. If the fines pass through the fabric they will enter the leach field and eventually reduce the percolation ability of,the natural soil.. M argument that the 3601 fabric Is more expensive than the 3401 fabric Is not.strong enough to use the lower cost fabric he average sandfi t lter. and leach field Will use 20 yards of fabric which means an additional cost of $15 per system. When one considers the cost of replacing a plugged leach line versus the additional $15 In Initial cost, there Is little doubt that the 3601 fabric should be used. • Fine sand, 100% passing a No. 45 sieve (.35mm) with a uniformity coefficient between 2 and 3. • Precast Utility Vault Sections [6-0" x 8' -0 ": 1 -36". section, and 1-48" section], similar to Quikset Series 450 & 650. as manufactured by Associated Concrete Products, Inc., of Santa Ana, CA (714 -557- 7470), or approved equal: Steel frame for grate must be cast into the top section to accommodate flush fitting grate. Also provide one steel framed notch for lift -out cross beam mid -way on each side of the 8 foot side. • See Standard Drawing 901A through 901 E for other minor components to the sand filter system. C.V"MTAIWMMSN0QrWflh9rMaterla18 U6tw I i i I • u LW v' ;S reit�,2 :__ � ssJ W 2 \ J W N V i 3 .. 1�y� ♦= S Sly+ F W tL •. 1p-- � JJ y • u reit�,2 :__ 2 flPPRDVED DATE '. MR, DATE =:!Ic i ..L 1 AJA r'l CITY 'OF LA QUINTA STANDARD SAND FILTER DRAWING 901 -A 0 BI B2 BI B2 taY n! vN ►� . SECTION R-R PLAN VIEV DETAIL I, Sheet M-C In DETAIL P, Sheet 401-C Ib DETAIL a Sheet 9d) -c SECTION BI -BI SECTION B2 B2. " Ia PRECAST, UPPER VAULT SECTION - B -D' X 6'-O' X 4-(r I.D. I b 'PRECAST LOVER VAULT SECTION. - -r-O' X vii X 3'•O' [,D: 0. CAST- IMACE CONCRETE FLOUR CAST•INTLACF. CONCRETE FOOTING APPROVED DATE CITY OF ".QUINTA cRr ENi:�NEEA .LA SAND FILTER STANDARD DRAU1Nc 901 a "sinNs rm. DAZE 0 DETAIL I lb Ts� dr DETAIL '2 r 'q. DETAIL 3 ss yy. PRECAST LOITER BALL PIECE £;�,�, •.�<»M...���`�.��••- •.�.�, Q2 CAST-IN-PLRCE CONCRETE FLOOR 1520-C•2500! ��a °�'•"''`' ''° • 3 Q3 CAST-]N -PLACE CONCRETE FOOTING 15P6-C-500) DETAIL. 4 APPROVED DATE CITY OF L A Q U I N T A. cm Qflcm - - STANORRD SAND. FILTER ARRUI "G FLOOR L FOOTING DETAILS 901 —c A�Yfs10NS APR DATE 9E . DETAIL I lb Ts� dr DETAIL '2 r 'q. DETAIL 3 ss yy. PRECAST LOITER BALL PIECE £;�,�, •.�<»M...���`�.��••- •.�.�, Q2 CAST-IN-PLRCE CONCRETE FLOOR 1520-C•2500! ��a °�'•"''`' ''° • 3 Q3 CAST-]N -PLACE CONCRETE FOOTING 15P6-C-500) DETAIL. 4 APPROVED DATE CITY OF L A Q U I N T A. cm Qflcm - - STANORRD SAND. FILTER ARRUI "G FLOOR L FOOTING DETAILS 901 —c A�Yfs10NS APR DATE • IO • 11 FtOY TD LEACH MD • la DETAIL. A - • ' o000 O 'I'-2' DPEN GRADED GRAVEL 10 2' D.D. SCHEDULE 40 PVC .PIPE DETAIL. F O 34' VIDE x IS' HIGH ARCH-TYPE CHARBER )) 4' D.D? P&RFORRTED SCHEDULE 40 PVC PIPE 6D NON40VEN GEBTEXTILE ENGINEERING FABRIC 12 4' D.D. SCHEDULE 4D PVC CDUPLINS J Ia DIA. IRRIGATION VALVE "BOX 13 4' O.D. SCHEDULE 40 PVC PIPE O i kl tc2' SCHEDULE 40 PVC -TEE '14 .47-45.2' SCHEDULE 40 PVC TEE O 9ANB 15 4' SCHEDULE 40 PVC PIPE CAP APPROVED DATE CRY. I . Df LA QU.I NT A CITY ENQNM ME STANDARD SAND FILTER nRRdINc 901 -D REVISIONS REPO. DRTE I ' RATIONAL METHOD CALCULATIONS 100 YEAR 1 Riverside County Rational Hydrology Program ' CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2000 Version 6.3 Rational Hydrology Study Date: 08/21/02 File:a100.out ------------------------------------------------------------------------ ' Line "A" - 100 Year Storm A2C-ArS A -1 T %4PWGV+ A-20 1 ------------------------------------------------ ----------- ------------- ********* Hydrology Study Control Information * * * * * * * * ** English (in -lb) Units used in input data file ------------------------------------------------------------------------ Keith Companies, Inc., Palm Desert, California - SIN 709 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 3 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.600(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.600(In /Hr) Slope of intensity duration curve = 0.5900 ++++++++++++++++++++++++......++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 101.000 to Point /Station 101.000 * * ** USER DEFINED FLOW INFORMATION AT A POINT * * ** Rainfall intensity = 4.245(In /Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.880 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 User specified values are as follows: TC = 11.48 min. Rain intensity = 4.24(In /Hr) Total area 1.60(Ac.) Total runoff = 6.00(CFS) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 101.000 to Point /Station 102.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 60..250(Ft.) Downstream point /station elevation = 59.300(Ft.) Pipe length = 175.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.000(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 6.000(CFS) Normal flow depth in pipe = 11.91(In.) Flow top width inside pipe = 17.04(In.) Critical Depth = 11.35(In.) Pipe flow velocity = 4.84(Ft /s) Travel time through pipe = 0.60 min. Time of concentration (TC) = 12.08 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 102.000 to Point /Station 102.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 1 in normal stream number 1 ' Stream flow area = 1.600(Ac.) Runoff from this stream = 6.000(CFS) Time of concentration = 12.08 min. Rainfall intensity = 4.119(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ' Process from Point /Station 103.000 to Point /Station 104.000 * * ** INITIAL AREA EVALUATION * * ** 0 year storm a -� ' Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 4.144(CFS) Total initial stream area = 0.980(Ac.) ' Pervious area fraction = 0.100 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ' Process from Point /Station 104.000 to Point /Station 102.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 59.500(Ft.) Downstream point /station elevation = 59.300(Ft.) Initial area flow distance = 360.000(Ft.) ' Top (of initial area) elevation = 65.600(Ft.) Bottom (of initial area) elevation = 64.000(Ft. Difference in elevation = 1.600(Ft.) Slope = 0.00444 s(percent)= 0.44 ' TC = k(0.300) *[(length'3) /(elevation change)]"0.2 Initial area time of concentration = 9.334 min. Rainfall intensity = 4.796(In /Hr) for a 100 COMMERCIAL subarea type Runoff Coefficient = 0.882 Decimal fraction soil group A = 1.000 ' Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 0 year storm a -� ' Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 4.144(CFS) Total initial stream area = 0.980(Ac.) ' Pervious area fraction = 0.100 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ' Process from Point /Station 104.000 to Point /Station 102.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 59.500(Ft.) Downstream point /station elevation = 59.300(Ft.) I ' Pipe length = 28.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.144(CFS) Nearest computed pipe diameter =_ 15.00(In.) ' Calculated individual pipe flow 4.144(CFS) Normal flow depth in pipe = 9.77(In.) Flow top width inside pipe = 14.29(In.) ' Critical Depth = 9.89(In.) Pipe flow velocity = 4.89(Ft /s) Travel time through pipe = 0.10 min. ' Time of concentration (TC) = 9.43 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 102.000 to Point /Station 102.000 ' * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 1 in normal stream number 2 ' Stream flow area = 0.980(Ac.) Runoff from this stream = 4.144(CFS) Time of concentration = 9.43 min. Rainfall intensity = 4.767(In /Hr) ' Summary of stream data: Stream Flow rate TC Rainfall Intensity t No. (CFS) (min) (In /Hr) 1 6.000 12.08 4.119 ' 2 4.144 9.43 4.767 Largest stream flow has longer time of concentration Qp = 6.000 + sum of ' Qb Ia /Ib 4.144 * 0.864 = 3.580 Qp = 9.580 Total of 2 streams to confluence: Flow rates before confluence point: 6.000 4.144 Area of streams before confluence: 1.600 0.980 Results of confluence: Total flow rate = 9.580(CFS) Time of concentration = 12.083 min. Effective stream area after confluence = 2.580(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 102.000 to Point /Station 105.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 59.300(Ft.) Downstream point /station elevation = 59.130(Ft.) Pipe length = 40.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 9.580(CFS) Nearest computed pipe diameter = 21.00(In.) Calculated individual pipe flow = 9.580(CFS) Normal flow depth in pipe = 15.98(In.) Flow top width inside pipe = 17.91(In.) Critical Depth = 13.83(In.) Pipe flow velocity = 4.88(Ft /s) Travel time through pipe = 0.14 min. Time of concentration (TC) = 12.22 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + ++ + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 105.000 to Point /Station 105.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 2.580(Ac.) Runoff from this stream = 9.580(CFS) Time of concentration = 12.22 min. Rainfall intensity = 4.091(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 106.000 to Point /Station 107.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 405.000(Ft.) Top (of initial area) elevation = 67.000(Ft.) Bottom (of initial area) elevation = 63.800(Ft.) Difference in elevation = 3.200(Ft.) Slope = 0.00790 s(percent)= 0.79 TC = k(0.300) *[(length^3) /(elevation change)]'0.2 Initial area time of concentration = 8.721 min. Rainfall intensity = 4.992(In /Hr) for a 100.0 COMMERCIAL subarea type Runoff Coefficient = 0.882 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction Initial subarea runoff = 7.355(CFS) Total initial stream area = 1.670(Ac.) Pervious area fraction = 0.100 year storm = 0.900 A-Z +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 107:000 to Point /Station 105.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 59.500(Ft.) Downstream point /station elevation = 59.130(Ft.) Pipe length = 85.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 7.355(CFS) Nearest computed pipe diameter = 21.00(In.) Calculated individual pipe flow = 7.355(CFS) Normal flow depth in pipe = 12.98(In.) Flow top width inside pipe = 20.40(In.) Critical Depth = 12.06(In.) Pipe flow velocity = 4.71(Ft /s) Travel time through pipe = 0.30 min. Time of concentration (TC) = 9.02 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 105.000 to Point /Station 105.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.670(Ac.) Runoff from this stream = 7.355(CFS) Time of concentration = 9.02 min. Rainfall intensity = 4.893(In /Hr) Summary of stream data: +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 105.000 to Point /Station 108.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** ' Upstream point /station elevation = 59.130(Ft.) Downstream point /station elevation = 58.480(Ft.) Pipe length = 175.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 15.729(CFS) Nearest computed pipe diameter = 27.00(In.) Calculated individual pipe flow = 15.729(CFS) Normal flow depth in pipe = 18.84(In.) ' Flow top width inside pipe = 24.79(In.) Critical Depth = 16.60(In.) Pipe flow velocity = 5.31(Ft /s) ' Travel time through pipe = 0.55 min. Time of concentration (TC) = 12.77 min. RI ++++++++++++++++++++.+++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ �� I Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 9.580 12.22 4.091 2 7.355 9.02 4.893 ' Largest stream flow has longer time of concentration Qp = 9.580 + sum of Qb Ia /Ib ' 7.355 * 0.836 = 6.150 - Qp 15.729 Total of 2 streams to ccnfluence: ' Flow rates before confluence point: 9.580 7.355, Area of streams before confluence: ' 2.580 1.670 Results of confluence: Total flow rate = 15.729(CFS) Time of concentration = 12.220 min. Effective stream area after confluence = 4.250(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 105.000 to Point /Station 108.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** ' Upstream point /station elevation = 59.130(Ft.) Downstream point /station elevation = 58.480(Ft.) Pipe length = 175.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 15.729(CFS) Nearest computed pipe diameter = 27.00(In.) Calculated individual pipe flow = 15.729(CFS) Normal flow depth in pipe = 18.84(In.) ' Flow top width inside pipe = 24.79(In.) Critical Depth = 16.60(In.) Pipe flow velocity = 5.31(Ft /s) ' Travel time through pipe = 0.55 min. Time of concentration (TC) = 12.77 min. RI ++++++++++++++++++++.+++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ �� I Process from Point /Station 108.000 to Point /Station 108.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 4.250(Ac.)' Runoff from this stream = 15.729(CFS) Time of concentration = 12.77 min. .Rainfall intensity = 3.987(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 109.000 to Point /Station 110.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 230.000(Ft.) Top (of initial area) elevation = 65.900(Ft.) Bottom (of initial area) elevation = 64.900(Ft.) Difference in elevation = 1.000(Ft.) Slope = 0.00435 s(percent)= 0.43 TC = k(0.300) *[(length^3) /(elevation change)]'0.2 Initial area time of concentration = 7.837 min. Rainfall intensity = 5.317(In /Hr) for a 100. COMMERCIAL subarea type Runoff Coefficient = 0.883 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 A -3 0 year storm Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 2.254(CFS) ' Total initial stream area 0.480(Ac.) Pervious area fraction = 0.100 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 110.000 to Point /Station 108.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 59.600(Ft.) Downstream point /station elevation = 58.460(Ft.) Pipe length = 230.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.254(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 2.254(CFS) Normal flow depth in pipe = 8.88(In.) Flow top width inside pipe = 10.52(In.) Critical Depth = 7.71(In.) Pipe flow velocity = 3.61(Ft /s) Travel time through pipe = 1.06 min. Time of concentration (TC) = 8.90 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 108.000 to Point /Station 108.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream numbe Stream flow area = Runoff from this stream Time of concentration = Rainfall intensity = Summary of stream data: 1 in normal stream number 2 0.480(Ac.) 2.254(CFS) 8.90 min. 4.933 (In /Hr) Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 15.729 12.77 3.987 2 2.254 8.90 4.933 Largest stream flow has longer time of concentration Qp = 15.729 + sum of Qb Ia /Ib 2.254 * 0.808 = 1.821 Qp = 17.551 Total of 2 streams to confluence: Flow rates before confluence point: 15.729 2.254 Area of streams before confluence: 4.250 0.480 Results of confluence: Total flow rate = 17.551(CFS) Time of concentration = 12.769 min. Effective stream area after confluence = 4.730(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 108.000 to Point /Station 112.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 58.460(Ft.) Downstream point /station elevation = 57.640(Ft.) Pipe length = 221.00(Ft.) . Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 17.551(CFS) ' Nearest computed pipe diameter 27.00(In.) Calculated individual pipe flow 17.551(CFS) Normal flow depth in pipe = 20.63(In.) Flow top width inside pipe = 22.93(In.) Critical Depth = 17.57(In.) Pipe flow velocity = 5.39(Ft /s) Travel time through pipe = 0.68 min. ' Time of concentration (TC) = 13.45 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 112.000 to Point /Station 112.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** ' Along Main Stream number: 1 in normal stream number 1 Stream flow area = 4.730(Ac.) Runoff from this stream = 17.551(CFS) Time of concentration = 13.45 min. ' Rainfall intensity = 3.866(In /Hr) � I +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 113.000 to Point /Station 114.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 300.000(Ft.) Top (of initial area) elevation = 67.000(Ft.) Bottom (of initial area) elevation = 65.600(Ft.) Difference in elevation = 1.400(Ft.) Slope = 0.00467 s(percent)= 0.47 TC = k (0.300) * [ (length'3) % (elevation change) ]A0 .2 Initial area time of concentration = 8.593 min. Rainfall intensity = 5.036(In /Hr) for a 100. COMMERCIAL subarea type Runoff Coefficient = 0.882 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious Initial subarea runoff = 5.510(CFS) Total initial stream area = 1.240(Ac Pervious area fraction = 0.100 0 year storm fraction = 0.900 A-5 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 114.000 to Point /Station 112.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 59.500(Ft.) Downstream point /station elevation = 57.640(Ft.) Pipe length = 200.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.510(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 5.510(CFS) Normal flow depth in pipe = 10.97(In.) Flow top width inside pipe = 13.30(In.) Critical Depth = 11.41(In.) Pipe flow velocity = 5.73(Ft /s) Travel time through pipe = 0.58 min. Time of concentration (TC) = 9.17 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 112.000 to Point /Station 112.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.240(Ac.) Runoff from this stream = 5.510(CFS) Time of concentration = 9.17 min. Rainfall intensity = 4.845(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 17.551 13.45 3.866 2 5.510 9.17 4.845 Largest stream flow has longer time of concentration Qp = 17.551 + sum of Qb Ia /Ib 5.510 * 0.798 = 4.396 Qp = 21.947 Total of 2 streams to confluence: Flow rates before confluence point: 17.551 5.510 Area of streams before confluence: 4.730 1.240 Results of confluence: Total flow rate = 21.947(CFS) Time of concentration = 13.452 min. Effective stream area after confluence = 5.970(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 112.000 to Point /Station 113.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 57.640(Ft.) Downstream point /station elevation = 57.350(Ft.) Pipe length = 78.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 21.947(CFS) Nearest computed pipe diameter = 30.00(In.) Calculated individual pipe flow = 21.947(CFS) Normal flow depth in pipe = 21.80(In.) Flow top width inside pipe = 26.74(In.) Critical Depth = 19.10(In.) Pipe flow velocity = 5.75(Ft /s) Travel time through pipe = 0.23 min. Time of concentration (TC) = 13.68 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 113.000 to Point /Station 113.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 5.970(Ac.) Runoff from this stream = 21.947(CFS) Time of concentration = 13.68 min. Rainfall intensity = 3.828(In /Hr) Program is now starting with Main Stream No. 2 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 115.000 to Point /Station 116.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 380.000(Ft.) Top (of initial area) elevation = 67.000(Ft.) Bottom (of initial area) elevation = 63.400(Ft.) Difference in elevation = 3.600(Ft.) Slope = 0.00947 s(percent)= 0.95 TC = k(0.300) *[(length"3) /(elevation change)]^0.2 Initial area time of concentration = 8.198 min. Rainfall intensity = 5.178(In /Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.883 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0:100; Impervious fraction = 0.900 Initial subarea runoff = 20.338(CFS) Total initial stream area = 4.450(Ac.) Pervious area fraction = 0.100 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 116.000 to Point /Station 113.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 58.500(Ft.) Downstream point /station elevation = 57.350(Ft.) Pipe length = 175.00(Ft.) Manning's N = 0.013 No, of pipes = 1 Required pipe flow = 20.338(CFS) �.- Nearest computed pipe diameter = 27.00(In.) V Calculated individual pipe flow = 20.338(CFS) Normal flow depth in pipe = 18.45(In.) Flow top width inside pipe = 25.12(In.) Critical Depth = 18.94(In.) Pipe flow velocity = 7.03(Ft /s) Travel time through pipe = . 0.41 min. Time of concentration (TC) = 8.61 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 113.000 to Point /Station 113.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 4.450(Ac.) Runoff from this stream = 20.338(CFS) Time of concentration = 8.61 min. Rainfall intensity = 5.029(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 21.947 13.68 3.828 2 20.338 8.61 5.029 Largest stream flow has longer time of concentration Qp = 21.947 + sum of Qb Ia /Ib 20.338 * 0.761 = 15.481 Qp = 37.428 Total of 2 main streams to confluence: Flow rates before confluence point: 21.947 20.338 Area of streams before confluence: 5.970 4.450 Results of confluence: Total flow rate = 37.428(CFS) Time of concentration = 13.678 min. Effective stream area after confluence = 10.420(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 113.000 to Point /Station 117.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 57.350(Ft.) Downstream point /station elevation = 56.770(Ft.) Pipe length = 234.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 37.428.(CFS) Nearest computed pipe diameter = 39.00(In.) :. Calculated individual pipe flow = 37.428(CFS) Normal flow depth in pipe = 29.20(In.) Flow top width inside pipe = 33.83(In.) Critical Depth = 23.31(In.) Pipe flow velocity = 5.62(Ft /s) Travel time through pipe = 0.69 min. Time of concentration (TC) = 14.37 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 117.000 to Point /Station 117.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 10.420(Ac.) Runoff from this stream = 37.428(CFS) Time of concentration = 14.37 min. Rainfall intensity = 3.718(In /Hr) Program is now starting with Main Stream No. 2 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 118.000 to Point /Station 119.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 235.000(Ft.) Top (of initial area) elevation = 67.700(Ft.) Bottom (of initial area) elevation = 66.900(Ft Difference in elevation = 0.800(Ft.) Slope = 0.00340 s(percent)= 0.34 TC = k (0.300) * [ (length'3) / (elevation change) ] X0.2 �_ Initial area time of concentration = 8.301 min. 7 Rainfall intensity = 5.140(In /Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.883 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 1.270(CFS) Total initial stream area = 0.280(Ac.) Pervious area fraction = 0.100 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 119.000 to Point /Station 119.000 * * ** SUBAREA FLOW ADDITION * * ** COMMERCIAL subarea type Runoff Coefficient = 0.883 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 r Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 8.30 min. Rainfall intensity= 5.140(In /Hr) for a 100.0 year storm Subarea runoff = 0.499(CFS) for 0.110(Ac.) Total runoff = 1.769(CFS) Total area = 0.390(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 119.000 to Point /Station 120.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 63.900(Ft.) ' Downstream point /station elevation = 61.110(Ft.) Pipe length = 11.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.769(CFS) Nearest computed pipe diameter = 6.00(In.) Calculated individual pipe flow = 1.769(CFS) ' Normal flow depth in pipe = 3.44(In.) Flow top width inside pipe = 5.94(In.) Critical depth could not be calculated. Pipe flow velocity = 15.19(Ft /s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 8.31 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 120.000 to Point /Station 120.000 ' * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 2 in normal stream number 1 ' Stream flow area = 0.390(Ac.) Runoff from this stream = 1.769(CFS) Time of concentration = 8.31 min. Rainfall intensity = 5.135(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 120.100 to Point /Station 121.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 120.000(Ft.) t Top (of initial area) elevation = 67.500(Ft.) Bottom (of initial area) elevation = 66.800(Ft.) Difference in elevation = 0.700(Ft.) Slope = 0.00583 s(percent)= 0.58 ' TC = k(0.300) *Hlength"3) /(elevation change)]^0.2 Initial area time of concentration = 5.697 min. Rainfall intensity = 6.418(In /Hr) for a 100.0 year storm ' COMMERCIAL subarea type Runoff Coefficient = 0.886 Decimal fraction soil group A = 1.000 ' Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 ' Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 0.909(CFS) Total initial stream area = 0.160(Ac.) Pervious area fraction = 0.100 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 121.000 to Point /Station 120.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 63.500(Ft.) ' Downstream point /station elevation = 61.110(Ft.) Pipe length = 118.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.909(CFS) ' Nearest computed pipe diameter 9.00(In.) Calculated individual pipe flow 0.909(CFS) Normal flow depth in pipe = 3.88(In.) Flow top width inside pipe = 8.91(In.) ' Critical Depth = 5.24 (In. ) Pipe flow velocity = 4.99(Ft /s) Travel time through pipe = 0.39 min. Time of concentration (TC) = 6.09 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ' Process from Point /Station 120.000 to Point /Station 120.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 2 in normal stream number 2 ' Stream flow area = 0.160(Ac.) � I � I I I +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 120..000 to Point /Station 117.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = . 61.110(Ft.) Downstream point /station elevation = 56.770(Ft.) Pipe length = 160.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = .2.526(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 2.526(CFS) Normal flow depth in pipe = 6.84(In.) Flow top width inside pipe = 7.68(In•.) Critical Depth = 8.33(In.) Pipe flow velocity = 7.00(Ft /s) Travel time through pipe = 0.38 min. Time of concentration (TC) = 8.69 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 117.000 to Point /Station 117.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.550(Ac.) Runoff from this stream = 2.526(CFS) Time of concentration = 8.69 min. Rainfall intensity = 5.001(In /Hr) Summary of stream data: Runoff from this stream = 0.909(CFS) Time of concentration = 6.09 min. Rainfall intensity = 6.170(In /Hr) ' Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 1.769 8.31 5.135 ' 2 0.909 6.09 6.170 Largest stream flow has longer time of concentration Qp = 1.769 + sum of Qb Ia /Ib 0.909 * 0.832 = 0.757 Qp = 2.526 ' Total of 2-streams to confluence: Flow rates before confluence point: 1.769 0.909 Area of streams before confluence: ' 0.390 0.160 Results of confluence: Total flow rate = 2.526(CFS) Time of concentration = 8.313 min. Effective stream area after confluence = 0.550(Ac.) � I � I I I +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 120..000 to Point /Station 117.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = . 61.110(Ft.) Downstream point /station elevation = 56.770(Ft.) Pipe length = 160.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = .2.526(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 2.526(CFS) Normal flow depth in pipe = 6.84(In.) Flow top width inside pipe = 7.68(In•.) Critical Depth = 8.33(In.) Pipe flow velocity = 7.00(Ft /s) Travel time through pipe = 0.38 min. Time of concentration (TC) = 8.69 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 117.000 to Point /Station 117.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.550(Ac.) Runoff from this stream = 2.526(CFS) Time of concentration = 8.69 min. Rainfall intensity = 5.001(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity ' No. (CFS) (min) (In /Hr) 1 37.428 14.37 3.718 2 2.526 8.69 5.001 ' Largest stream flow has longer time of concentration Qp = 37.428 + sum of Qb Ia /Ib ' 2.526 * 0.743 = 1.878 Qp = 39.306 Total of 2 main streams to confluence: Flow rates before confluence point: 37.428 2.526 Area of streams before confluence: 10.420 0.550 Results of confluence: Total flow rate = 39.306(CFS) Time of concentration = 14.373 min. Effective stream area after confluence = 10.970(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 117.000 to Point /Station 122.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 56.770(Ft.) Downstream point /station elevation = 54.340(Ft.) Pipe length = 285.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 39.306(CFS) Nearest computed pipe diameter = 30.00(In.) Calculated individual pipe flow = 39.306(CFS) Normal flow depth in pipe = 25.78(In.) Flow top width inside pipe = 20.86(In.) Critical Depth = 25.36(In.) Pipe flow velocity = 8.76(Ft /s) Travel time through pipe = 0.54 min. Time of concentration (TC) = 14.91 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 122.000 to Point /Station 122.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 10.970(Ac.) Runoff from this stream = 39.306(CFS) Time of concentration = 14.91 min. Rainfall intensity = 3.637(In /Hr) Program is now starting with Main Stream No. 2 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 129.000 to Point /Station 130.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 470.000(Ft.) Top (of initial area) elevation = . 67.500(Ft.) Bottom (of initial area) elevation = 60.400(Ft. Difference in elevation = 7.100(Ft.) Slope = 0.01511 s(percent)= 1.51 TC = k(0.300) *[(length"3) /(elevation change)]^0.2 Initial area time of concentration = 8.131 min. Rainfall intensity = 5.203(In /Hr) for a 100 COMMERCIAL subarea type Runoff Coefficient = 0.883 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 0 year storm Pervious area fraction = 0.100; Impervious fraction = 0.900 ' Initial subarea runoff = 9.462(CFS) Total initial stream area = 2.060(Ac.) Pervious area.fraction =0.100 . +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 130.000 to Point /Station 130.000 * * ** CONFLUENCE OF MINOR STREAMS * * * *. Along Main Stream number: 2 in normal stream number 1 Stream flow area = 2.060(Ac.) Runoff from this stream = 9.462(CFS) Time of concentration = 8.13 min. Rainfall intensity = 5.203(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 131.000 to Point /Station 130.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 380.000(Ft.) Top (of initial area) elevation = 66.500(Ft.) Bottom (of initial area) elevation = 60.400(Ft..) Difference in elevation = 6.100(Ft.) .Slope. = 0.01605 s (percent) = 1.61 TC = k(0.300) * [ (length'3) / (elevation change) ]'0.2 Initial area time of concentration = 7.378 min. Rainfall intensity = 5.510(In /Hr) for a 100. COMMERCIAL subarea type Runoff Coefficient = 0.884 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 0 year storm Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 7.595(CFS) (A- 15 Total initial stream area = 1.560(Ac.) Pervious area fraction = 0.100 +++++++++++++=+++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 130.000 to Point /Station 130.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 2 in normal stream number-2 Stream flow area = 1.560(Ac.) Runoff from this stream = 7.595(CFS) Time of concentration = 7.38 min. Rainfall intensity = 5.510(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 9.462 8.13 5.203 2 7.595 7.38 5.510 ' Largest stream flow has longer time of concentration Qp = 9.462 + sum of Qb Ia /Ib 7.595 * 0.944 = 7.172 Qp = 16.633 Total of 2 streams to confluence: Flow rates before confluence point: 9.462 7.595 Area of streams before confluence: 2.060 1.560 ' Results of confluence: Total flow rate = 16.633(CFS) ' Time of concentration = 8.131 min. Effective stream area after confluence = 3.620(Ac..) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 130.000 to Point /Station 132.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** ' Upstream point /station elevation= 56.600(Ft.) Downstream point /station elevation = 56.500(Ft.) Pipe length = 7.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 16.633(CFS) Nearest computed pipe diameter 21.00(In.) Calculated individual pipe flow = 16.633(CFS) Normal flow depth in pipe = 15.26(In.) ' Flow top width inside pipe = 18.72(In.) Critical Depth = 17.98(In.) Pipe flow velocity = 8.88(Ft /s) ' Travel time through pipe = 0.01 min. Time of concentration (TC) = 8.14 min. ' +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 132.000 to Point /Station 132.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 3.620(Ac.) Runoff from this stream = 16.633(CFS) Time of concentration = 8.14 min. Rainfall intensity = 5.198(In /Hr) ++++++++++++++++++... ...+++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 133.000 to Point /Station 132.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 345.000(Ft.) Top (of initial area) elevation = 66.100(Ft.) Bottom (of initial area) elevation = 60.400(Ft. Difference in elevation = 5.700(Ft.) Slope = 0.01652 s(percent)= 1.65 TC = k (0.300) *[(length^3) /(elevation change))"0.2 Initial area time of concentration = 7.057 min. Rainfall intensity = 5.656(In /Hr) for a 100 COMMERCIAL subarea type Runoff Coefficient = 0.884 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 0 year storm Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 3.500(CFS) Total initial stream area = 0.700(Ac.) Pervious area fraction = 0.100 q-t6 +++++++++++++++++++++++ f+++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 132.000 to Point /Station 132.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.700(Ac.) Runoff from this stream = 3.500(CFS) Time of concentration = 7.06 min. Rainfall intensity = 5.656(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 128.000 to Point /Station 132.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 235.000(Ft.) Top (of initial area) elevation = 64.200(Ft.) Bottom (of initial area) elevation = 60.400(Ft.) Difference in elevation = 3.800(Ft.) Slope = 0.01617 s(percent)= 1.62 TC = k(0.300) *[(length^3) /(elevation change)]'0.2 Initial area time of concentration = 6.079 min. Rainfall intensity = 6.177(In /Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.885 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 2.734(CFS) Total initial stream area = 0.500(Ac.) Pervious area fraction = 0.100 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + ± + ++ Process from Point /Station 132.000 to Point /Station 132.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 2 in normal stream number 3 Stream flow area = 0.500(Ac.) Runoff from this stream = 2.734(CFS) Time of concentration = 6.08 min. Rainfall intensity = 6.177(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 16.633 8.14 5.198 2 3.500 7.06 5.656 3 2.734 6.08 6.177 Largest stream flow has longer time of concentration Qp = 16.633 + sum of Qb Ia /Ib 3.500 * 0.919 = 3.216 Qb Ia /Ib 2.734 * 0.842 = 2.300 Qp = 22.150 Total of 3 streams to confluence: Flow rates before confluence point: 16.633 3.500 2.734 Area of streams before confluence: 3.620 0.700 0.500 Results of confluence: Total flow rate = 22.150(CFS) Time of concentration = 8.144 min. Effective stream area after confluence = 4.820(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 132.000 to Point /Station 126.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 56.500(Ft.) ' Downstream point /station elevation = 55.200(Ft.) ' Pipe length = 187.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 22.150(CFS) Nearest computed pipe diameter =- 27.00(In.) ' Calculated individual pipe flow 22.150(CFS) Normal flow depth in pipe = 19.27(In.) Flow top width inside pipe = 24.41(In.) Critical Depth = 19.76(In.) ' Pipe flow velocity = 7.30(Ft /s) Travel time through pipe = 0.43 min. Time of concentration (TC) = 8.57 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 126.000 to Point /Station 126.000 ' * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 2 in normal stream number 1 ' Stream flow area = 4.820(Ac.) Runoff from this stream = 22.150(CFS) Time of concentration = 8.57 min. Rainfall intensity = 5.044(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + ++ + + + + + + ++ + + + + + + + + + + + ++ ' Process from Point /Station 127.000 to Point /Station 126.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 360.000(Ft.) Top (of initial area) elevation = 68.300(Ft.) Bottom (of initial area) elevation = 60.400(Ft.) Difference in elevation = 7.900(Ft.) Slope = 0.02194 s(percent)= 2.19 TC = k(0.300) *[(length"3) /(elevation change)]'0.2 Initial area time of concentration = 6.782 min. ' Rainfall intensity = 5.791(In /Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.884 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 ' Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 ' Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 3.533(CFS) Total initial stream area = 0.690(Ac.) Pervious area fraction = 0.100 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 126.000 to Point /Station 126.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.690(Ac.) Runoff from this stream = 3.533(CFS) Time of concentration = 6.78 min. Rainfall intensity = 5.791(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 128.000 to Point /Station 126.000 * * ** INITIAL AREA EVALUATION * * ** � I Rainfall Intensity (In /Hr) 5.044 5.791 6.043 concentration Initial area flow distance = 250.000(Ft.) ' Top (of initial area) elevation = 64.200(Ft.) Bottom (of initial area) elevation = 60.400(Ft.) No. Difference in elevation = 3.800(Ft.) Slope = 0.01520 s(percent)= 1.52 A — '3 (min) TC = k(0.300) *[(length'3) /(elevation change)]^0.2 1 Initial area time of concentration = 6.309 min. 8.57 Rainfall intensity = 6.043(In /Hr) for a 100.0 year storm ' COMMERCIAL subarea type 3.533 Runoff Coefficient = 0.885 Decimal fraction soil group A = 1.000 ' Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Largest Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 ' Pervious area fraction = 0.100; Impervious fraction = 0.900 sum of Initial subarea runoff = 2.673(CFS) Total initial stream area = 0.500(Ac.) ' Pervious area fraction = 0.100 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ' Process from Point /Station 126.000 to Point /Station 126.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** ' Along Main Stream number: 2 in normal stream number 3 Stream flow area = 0.500(Ac.) 0.835 = 2.231 Runoff from this stream = 2.673(CFS) Qp = Time of concentration = 6.31 min. Rainfall intensity = 6.043(In /Hr) Summary of stream data: � I Rainfall Intensity (In /Hr) 5.044 5.791 6.043 concentration Stream Flow rate TC ' No. (CFS) (min) ' 1 22.150 8.57 2 3.533 6.78 3 2.673 6.31 Largest stream flow has longer time of ' Qp = 22.150 + sum of Qb Ia /Ib 3.533 * 0.871 = 3.077 ' Qb Ia /Ib 2.673 * 0.835 = 2.231 Qp = 27.458 Total of 3 streams to confluence: Flow rates before confluence point: 22.150 3.533 2.673 ' Area of streams before confluence: � I Rainfall Intensity (In /Hr) 5.044 5.791 6.043 concentration 4.820 0.690 0.500 Results of confluence: Total flow rate = 27.458(CFS) Time of concentration = 8.571 min. Effective stream area after confluence = 6.010(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 126.000 to Point /Station 124.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 55.200(Ft.) Downstream point /station elevation = 55.100(Ft.) Pipe length = 7.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 27.458(CFS) Nearest computed pipe diameter = 24.00(In.) Calculated individual pipe flow = 27.458(CFS) Normal flow depth in pipe = 20.02(In.) Flow top width inside pipe = 17.86(In.) Critical Depth = 21.81(In.) Pipe flow velocity = 9.80(Ft /s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 8.58 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 124.000 to Point /Station 124.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 6.010(Ac.) Runoff from this stream = 27.458(CFS) Time of concentration = 8.58 min. Rainfall intensity = 5.040(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 123.000 to Point /Station 124.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 365.000(Ft.) Top (of initial area) elevation = 68.400(Ft.) Bottom (of initial area) elevation = 60.400(Ft.) Difference in elevation = 8.000(Ft.) Slope = 0.02192 s(percent)= 2.19 TC = k(0.300) *[(length^3) /(elevation change) ]"0.2 Initial area time of concentration = 6.821 min. Rainfall intensity = 5.771(In /Hr) for a 100. COMMERCIAL subarea type Runoff Coefficient = 0.884 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 0 year storm Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 8.725(CFS) E I� 1� ' Total initial stream area = 1.710(Ac.) Pervious area fraction = 0.100 — ' +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 124.000 to Point /Station 124.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 2 in normal stream number 2 t Stream flow area = 1.710(Ac.) Runoff from this stream = 8.725(CFS) Along Main Stream number: 2 in normal stream number 3 Time of concentration = 6.82 min. Rainfall intensity = 5.771(In /Hr) 1 TC = k(0.300) *Hlength"3) /(elevation change )]A0.2 Runoff from this stream = 8.950(CFS) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Time of concentration = 7.59 min. Process from Point /Station 125.000 to Point /Station 124.000 ' * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 360.000(Ft.) Top (of initial area) elevation = 64.900(Ft.) ' Bottom (of initial .area) elevation = 60.400(Ft.) Along Main Stream number: 2 in normal stream number 3 Difference in elevation = 4.500(Ft.) Slope = 0.01250 s(percent)= 1.25 ' TC = k(0.300) *Hlength"3) /(elevation change )]A0.2 Runoff from this stream = 8.950(CFS) Initial area time of concentration = 7.590 min. Time of concentration = 7.59 min. Rainfall intensity = 5.418(In /Hr) for a 100.0 year storm Rainfall intensity = 5.418(In /Hr) COMMERCIAL subarea type ' Runoff Coefficient = 0.883 Stream Flow rate TC Rainfall Intensity Decimal fraction soil group A = 1.000 No. (CFS) (min) (In /Hr) Decimal fraction soil group B = 0.000 ' Decimal fraction soil group C = 0.000 2 8.725 6.82 5.771 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 ' Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 8.950(CFS) Total initial stream area = 1.870(Ac.) Pervious area fraction = 0.100 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 124.000 to Point /Station 124.000 * * ** CONFLUENCE OF MINOR STREAMS * *** Along Main Stream number: 2 in normal stream number 3 Stream flow area = 1.870(Ac.) ' Runoff from this stream = 8.950(CFS) Time of concentration = 7.59 min. Rainfall intensity = 5.418(In /Hr) ' Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 27.458 8.58 5.040 ' 2 8.725 6.82 5.771 1 3 8.950 7.59 5.418 Largest stream flow has longer time of concentration Qp = 27.458 + sum of Qb Ia /Ib 8.725 * 0.873 = 7.620 Qb Ia /Ib 8.950 * 0.930 = 8.325 Qp = 43.403 Total of 3 streams to confluence: Flaw rates before confluence point: 27.458 8.725 8.950 Area of streams before confluence: 6.010 1.710 1.870 Results of confluence: Total flow rate = 43.403(CFS) Time of concentration = 8.583 min. Effective stream area after confluence = 9.590(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 124.000 to Point /Station 122.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 55.100(Ft.) Downstream point /station elevation = 54.340(Ft.) Pipe length = 34.66(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 43.403(CFS) Nearest computed pipe diameter = 27.00(In.) Calculated individual pipe flow = 43.403(CFS) Normal flow depth in pipe = 20.93(In.) Flow top width inside pipe = 22.54(In.) Critical Depth = 25.57(In.) Pipe flow velocity = 13.12(Ft /s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 8.63 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 122.000 to Point /Station 122.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 9.590(Ac.) Runoff from this stream = 43.403(CFS) Time of concentration = 8.63 min. Rainfall intensity = 5.024(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 39.306 14.91 3.637 2 43.403 8.63 5.024 Largest stream flow has longer or shorter time of concentration ' Qp = 43.403 + sum of Qa Tb /Ta 39.306 * 0.578 = 22.734 ' Qp = 66.137 Total of 2 main streams to confluence: Flow rates before confluence point: 39.306 43.403 Area of streams before confluence: ' 10.970 9.590 Results of confluence: Total flow rate = 66.137(CFS) ' Time of concentration = 8.627 min. Effective stream area after confluence = 20.560(Ac.) 1 +++++++++++++++++++++++++++++++++++++++ ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 122.000 to Point /Station 134.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 54.340(Ft.) Downstream point /station elevation = 50.400(Ft.) Pipe length = 435.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 66.137(CFS) Nearest computed pipe diameter = 36.00(In.) Calculated individual pipe flow = 66.137(CFS) Normal flow depth in pipe = 31.13(In.) Flow top width inside pipe = 24.64(In.) Critical Depth = 31.25(In.) Pipe flow velocity = 10.19(Ft /s) ' Travel time through pipe = 0.71 min. Time of concentration (TC) = 9.34 min. ' ++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ + + + + ++ + + + + + + + + + + + + + + ++ Process from Point /Station 134.000 to Point /Station 134.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 20.560(Ac.) Runoff from this.stream = 66.137(CFS) Time of concentration = 9.34 min. Rainfall intensity = 4.795(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 135.000 to Point /Station 136.000 ' * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 205.000(Ft.) Top (of initial area) elevation = 65.500(Ft.) Bottom (of initial area)-elevation = 61.100(Ft.) Difference in elevation = 4.400(Ft.) A-1 � Slope = 0.02146 s(percent)= 2.15 TC = k(0.300) *[(length^3) /(elevation change))'0.2 ' Initial area time of concentration = 5.439 min. Rainfall intensity = 6.596(In /Hr) for a 100.0 year storm ' COMMERCIAL subarea type Runoff Coefficient = 0.886 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 ' Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 ' Initial subarea runoff = 1.344(CFS) Total initial stream area = 0.230(Ac.) Pervious area fraction = 0.100 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Total of 2 streams to confluence: Process from Point /Station 136.000 to Point /Station 134.000 ' * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 54.000(Ft.) Downstream point /station elevation = 50.400(Ft.) ' Pipe length = 72.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.344(CFS) Nearest computed pipe diameter = 9.00(In.) ' Calculated individual pipe flow = 1.344(CFS) Normal flow depth in pipe = 3.75(In.) Flow top width inside pipe = 8.87(In.) Critical Depth = 6.41(In.) Pipe flow velocity = 7.71(Ft /s) Travel time through pipe = 0.16 min. Time of concentration (TC) = 5.59 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 134.000 to Point /Station 134.000 * * ** CONFLUENCE OF MINOR.STREAMS * * ** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.230(Ac.) Runoff from this stream = 1.344(CFS) Time of concentration = 5.59 min. Rainfall intensity = 6.487(In /Hr) ' Summary of stream data: Stream Flow rate TC Rainfall Intensity ' No. (CFS) (min) (In /Hr) 1 66.137 9.34 4.795 ' 2 1.344 5.59 6.487 Largest stream flow has longer time of concentration Qp = 66.137 + sum of Qb Ia /Ib 1.344 * 0.739 = 0.993 Qp = 67.130 Total of 2 streams to confluence: Flow rates before confluence point: 66.137 1.344 Area of streams before confluence: 20.560 0.230 Results of confluence: Total flow rate = 67.130(CFS) Time of concentration = 9.338 min. Effective stream area after confluence = 20.790(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 134.000 to Point /Station 137.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 50.400(Ft.) Downstream point /station elevation = 50.160(Ft.) Pipe length = 44.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow. = 67.130(CFS) Nearest computed pipe diameter = 42.00(In.) Calculated individual pipe flow = 67.130(CFS) Normal flow depth in pipe = 31.27(In.) Flow top width inside pipe = 36.64(In.) Critical Depth = 30.81(In.) Pipe flow velocity = 8.74(Ft /s) Travel time through pipe = 0.08 min. Time of concentration.(TC) = 9.42 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + +...... + + + + + + + + + + + + + + ++ Process from Point /Station 137.000 to Point /Station 137.000 * * ** SUBAREA FLOW ADDITION * * ** COMMERCIAL subarea type Runoff Coefficient = 0.882 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 _�� Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 9.42 min. Rainfall intensity = 4.770(In /Hr) for a 100.0 year storm Subarea runoff = 2.144(CFS) for 0.510(Ac.) Total runoff = 69.275(CFS) Total area = 21.300(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 137.000 to Point /Station 138.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 50.160(Ft.) Downstream point /station elevation = 50.130(Ft.) Pipe length = 6.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 69.275(CFS) Nearest computed pipe diameter = 42.00(In.) Calculated individual pipe flow = 69.275(CFS) ' Normal flow depth in pipe = 33.47(In.) � I Flow top width inside pipe = 33.80(In.) Critical Depth = 31.30(In.) Pipe flow velocity = 8.43(Ft /s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 9.43 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 138.000 to Point /Station 138.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 1 in normal stream number l Stream flow area = 21.300(Ac.) Runoff from this stream = 69.275(CFS) Time of concentration = 9.43 min. Rainfall intensity = 4.766(In /Hr) ++++++++++++.....++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 139.000 to Point /Station 140.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 365.000(Ft.) Top (of initial area) elevation = 64.200(Ft.) Bottom (of initial area) elevation = 61.400(Ft.) Difference in elevation = 2.800(Ft.) Slope = 0.00767 s(percent)= 0.77 TC = k(0.300) * [ (length'3) / (elevation change))'0.2 Initial area time of concentration = 8.415 min. Rainfall intensity = 5.098(In /Hr) for a 100.0 year COMMERCIAL subarea type Runoff Coefficient = 0.882 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0 Initial subarea runoff = 2.880(CFS) Total initial stream area = 0.640(Ac.) Pervious area fraction = 0.100 storm 900 A- 20 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 140.000 to Point /Station 138.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 56.400(Ft.) Downstream point /station elevation = 50.130(Ft.) Pipe length = 31.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.880(CFS,) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 2.880(CFS) Normal flow depth in pipe = 3.88(In.) Flow top width inside pipe = 8.92(In.) Critical depth could not be calculated. Pipe flow velocity = 15.76(Ft /s) ' ' Travel time through pipe = 0.03 min. Time of concentration (TC) = 8.45 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 138.000 to Point /Station 138.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.640(Ac.) ' Runoff from this stream = 2.880(CFS) Time of concentration = 8.45 min. Rainfall intensity = 5.087(In /Hr) Summary of stream data: ' Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) ' 1 69.275 9.43 4.766 2 2.880 8.45 5.087 Largest stream flow has longer time of concentration Qp = 69.275 + sum of Qb Ia /Ib 2.880 * 0.937 = 2.698 QP = 71.973 Total of 2 streams to confluence: ' Flow rates before confluence point: 69.275 2.880 Area of streams before confluence: 21.300 0.640 ' Results of confluence: Total flow rate = 71.973(CFS) Time of concentration = 9.434 min. Effective stream area after confluence = 21.940(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 138.000 to Point /Station 141.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** I I Upstream point /station elevation = 50.130(Ft.) Downstream point /station elevation = 48.000(Ft.) Pipe length = 382.00(Ft.) Manning's N = 0.013 ' No. of pipes = 1 Required pipe flow = 71.973(CFS) Nearest computed pipe diameter 42.00(In.) Calculated individual pipe flow = 71.973(CFS) Normal flow depth in pipe = 32.95(In.) Flow top width inside pipe = 34.53(In.) Critical Depth = 31.89(In.) Pipe flow veloci.ty — 8.89(Ft /s) ' Travel time through pipe = 0.72 min. Time of concentration (TC) = 10.15 min. End of computations, total study area = 21.94 (Ac.) The following figures may be used for a unit hydrograph study of the same area. I I 1 Area averaged pervious area fraction(Ap) = 0.100 ' Area averaged RI index number = 32.0 � I � I � I � I � I n ri Riverside County Rational Hydrology Program CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2000 Version 6.3 Rational Hydrology Study Date: 08/17/02 File:b100.out ------------------------------------------------------------------------ Line "B" - 100 Year Storm - AREAS -- -13-1 -- TKRWG- H - - -8- Z? ---------------------------- ********* Hydrology Study Control Information * * * * * * * * ** English (in -lb) Units used in input data file ------------------------------------------------------------------------ Keith Companies, Inc., Palm Desert, California - SIN 709 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 3 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.600(In.) ' Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.600(In /Hr) Slope of intensity duration curve = 0.5900 +++++++++++++++++++++++= +++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 201.000 to Point /Station 202.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 240.000(Ft.) Top (of initial area) elevation = 67.300(Ft.) Bottom (of initial area) elevation = 64.200(Ft.) Difference in elevation.= 3.100(Ft.) Slope = 0.01292 s(percent)= 1.29 TC = k (0.300) * [ (length'3) / (elevation change) ]'0.2 Initial area time of concentration = 6.412 min. Rainfall intensity = 5.986(In /Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.885 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 3.442(CFS) E B-1 Total initial stream area = 0.650(Ac.) Pervious area fraction = 0.100 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 202.000 to Point /Station 202.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 0.650(Ac.) Runoff from this stream = 3.442(CFS) Time of concentration = 6.41 min. Rainfall intensity = 5.986.(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 203.000 to Point /Station 202.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 235.000(Ft.) Top (of initial area) elevation = 66.800(Ft.) Bottom (of initial area) elevation = 64.200(Ft.) Difference in elevation = 2.600(Ft.) Slope = 0.01106 s(percent)= 1.11 TC = k(0.300) * ((length^3) / (elevation cliange) ]'0.2 Initial area time of concentration = 6.558 min. Rainfall intensity = 5.907(In /Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.884 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 3.135(CFS) Total initial stream area = 0.600(Ac.) Pervious area fraction = 0.100 B-2 +++++++++++++ T+++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 202.000 to Point /Station 202.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.600(Ac.) Runoff from this stream = 3.135(CFS) Time of concentration = 6.56 min. Rainfall intensity = 5.907(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 3.442 6.41 5.986 2 3.135 6.56 5.907 ' Largest stream flow has longer or Qp = 3.442 + sum of ' Qa Tb /Ta 3.135 * 0.978 = Qp = 6.507 shorter time of concentration 3.065 Total of 2 streams to ccnfluence: Flow rates before confluence point: 3.442 3.135 ' Area of streams before confluence: 0.650 0.600 Results of confluence: Total flow rate = 6.507(CFS) ' Time of concentration = 6.412 min. Effective stream area after confluence = 1.250(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 202.000 to Point /Station 202.100 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 61.000(Ft.) Downstream point /station elevation = 60.050(Ft.) Pipe length = 230.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.507(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 6.507(CFS) Normal flow depth in pipe = 14.20(In.) Flow top width inside pipe = 14.69(In.) Critical Depth = 11.84(In.) Pipe flow velocity = 4.35(Ft /s) Travel time through pipe = 0.88 min. Time of concentration (TC) = 7.29 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 202.100 to Point /Station 202.100 * * ** SUBAREA FLOW ADDITION * * ** COMMERCIAL subarea type Runoff Coefficient = 0.884 Decimal _fraction soil group A = 1.000 — Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 7.29 min. Rainfall intensity = 5.548(In /Hr) for a 100.0 year storm Subarea runoff = 2.157(CFS) for 0.440(Ac.) Total runoff = 8.664(CFS) Total area = 1.690(Ac.) +++++++++++++++++++++•++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ .Process from Point /Station 202.100 to Point /Station 204.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 60.050(Ft.) Downstream point /station elevation = 59.710(Ft.) Pipe length = 82.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 8.664(CFS) Nearest computed pipe diameter = 21.00(In.) Calculated individual pipe flow = 8.664(CFS) Normal flow depth in pipe = 14.8.6(In.) Flow top width inside pipe 19.10(In.) Critical Depth = 13.11(In.) Pipe flow velocity = 4.76(Ft /s) Travel time through pipe = 0.29 min. Time of concentration (TC) = 7.58 min. +++++++++++++++++++++++++++++++++++++++ + + ++ + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 204.000 to Point /Station 204.000 * * ** SUBAREA FLOW ADDITION * * ** COMMERCIAL subarea type Runoff Coefficient = 0.883 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Q �1•I Decimal fraction soil group C = 0.000 CJ r J Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 7.58 min. Rainfall intensity = 5.423(In /Hr) for a 100.0 year storm Subarea runoff = 0.287(CFS) for 0.060(Ac.) Total runoff = 8.951(CFS) Total area = 1.750(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 204.000 to Point /Station 204.000 * * ** SUBAREA FLOW ADDITION * * ** COMMERCIAL subarea type Runoff Coefficient = 0.883 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 7.58 min. Rainfall intensity = 5.423(In /Hr) for a 100.0 year storm Subarea runoff = 10.730(CFS) for 2.240(Ac.) Total runoff = 19.681(CFS) Total area = 3.990(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 204.000 to Point /Station 205.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 59.710(Ft.) Downstream point /station elevation = 59.040(Ft.) Pipe length = 162.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 19.681(CFS) Nearest computed pipe diameter = 27.00(In.) Calculated individual pipe flow = 19.681(CFS) Normal flow depth in pipe = 21.84(In.) Flow top width inside pipe = 21.23(In.) Critical Depth = 18.63(In.). Pipe flow velocity = 5.71(Ft /s) Travel time through pipe = 0.47 min. Time of concentration (TC) = 8.05 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 205.000 to Point /Station 205.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 3.990(Ac.) Runoff from this stream = 19.681(CFS) Time of concentration = 8.05 min. Rainfall intensity = 5.233(In /Hr) Program is now starting with Main Stream No. 2 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 206.000 to Point /Station 207.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 260.000(Ft.) Top (of initial area) elevation = 67.800(Ft.) Bottom (of initial area) elevation = 65.600(Ft. Difference in elevation = 2.200(Ft.) Slope = 0.00846 s(percent)= 0.85 TC = k(0.300) *[(length�3) /(elevation change)]"0.2 Initial area time of concentration = 7.205 min. Rainfall intensity = 5.588(In /Hr) for a 100 COMMERCIAL subarea type Runoff Coefficient = 0.884 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 0 year storm Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 1.679(CFS) Total initial stream area = 0.340(Ac.) Pervious area fraction = 0.100 B -5 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 207.000 to Point /Station 207.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 0.340(Ac.) Runoff from this stream = 1.679(CFS) Time of concentration = 7.20 min. Rainfall intensity = 5.588(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 208.000 to Point /Station 207.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 240.000(Ft.) Top (of initial area) elevation = 67.500(Ft.) Bottom (of initial area) elevation = 65.600(Ft.) Difference in elevation = 1.900(Ft.) Slope = 0.00792 s(percent)= 0.79 TC = k (0.300) *H length"3) /(elevation change)]"0.2 Initial area time of concentration = 7.071 min. Rainfall intensity = 5.650(In /Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.884 Decimal fraction soil group A'= 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 1.648(CFS) Total initial stream area = 0.330(Ac.) Pervious area fraction = 0.100 8 -6 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 207.000 to Point /Station 207.000 * * ** CONFLUENCE OF MINOR. STREAMS * * ** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.330(Ac.) Runoff from this stream = 1.648(CFS) Time of concentration = 7.07 min. Rainfall intensity = 5.650(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 1.679 7.20 5.588 2 1.648 7.07 5.650 Largest stream flow has longer time of concentration Qp = 1.679 + sum of Qb Ia /Ib 1.648 * 0.989 = 1.630 Qp = 3.309 Total of.2 streams to confluence: Flow rates before confluence point: 1.679 1.648 Area of streams before confluence: 0.340 0.330 Results of confluence: Total flow rate = 3.309(CFS) Time of concentration = 7.205 min. Effective stream area after. confluence = 0.670(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 207.000 to Point /Station 205.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 59.500(Ft.) Downstream point /station elevation = 59.040(Ft.) Pipe length = 20.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.309(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 3.309(CFS) Normal flow depth in pipe = 6.79(In.) Flow top width inside pipe = 11.90(In.) Critical Depth = 9.35(In.) Pipe flow velocity = 7.22(Ft /s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 7.25 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 205.000 to Point /Station 205.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.670(Ac.) Runoff from this stream = 3.309(CFS) Time of concentration = 7.25 min. Rainfall intensity = 5.567(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) . (In /Hr) 1 19.681 8.05 5.233 2 3.309 7.25 5.567 Largest stream flow has longer time of concentration Qp = 19.681 + sum of Qb Ia /Ib 3.309 * 0.940 = 3.110 Qp = 22.792 Total of 2 main streams to confluence: Flow rates before confluence point: 19.681 3.309 Area of streams before confluence: 3.990 0.670 Results of confluence: Total flow rate = 22.792(CFS) Time of concentration = 8.053 min. Effective stream area after confluence = 4.660(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 205.000 to Point /Station 209.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 59.040(Ft.) Downstream point /station elevation = 58.080(Ft.) Pipe length = 232.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 22.792(CFS) Nearest computed pipe diameter = 30.00(In.) Calculated individual pipe flow = 22.792(CFS) Normal flow depth in pipe = 21.52(In.) Flow top width inside pipe = 27.02(In.) Critical Depth = 19.48(In.) Pipe flow velocity = 6.05(Ft /s) Travel time through pipe = 0.64 min. Time of concentration (TC) = 8.69 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 209.000 to Point /Station 209.000 * * ** SUBAREA FLOW ADDITION * * ** Upstream point /station elevation = 58.080(Ft.) Downstream point /station elevation = 57.290(Ft.) Pipe length = 190.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 29.147(CFS) Nearest computed pipe diameter = 33.00(In.) Calculated individual pipe flow = 29.147(CFS) Normal flow depth in pipe = 23.48(In.) Flow top width inside pipe = 29.90(In.) Critical Depth = 21.53(In.) Pipe flow velocity = 6.45(Ft /s) Travel time through pipe = 0.49 min. Time of concentration (TC) = 9.18 min. COMMERCIAL subarea type Runoff Coefficient = 0.882 Decimal fraction soil group A = 1.000 ' Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 B Decimal fraction soil group D = 0.000 ' RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 8.69 min. Rainfall intensity = 5.002(In /Hr) for a 100.0 year storm Subarea runoff = 6.355(CFS) for 1.440(Ac.) Total runoff = 29.147(CFS) Total area = 6.100(Ac.) +++++++++++++++++++++++++++++++++±+++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 209.000 to Point /Station 210.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 58.080(Ft.) Downstream point /station elevation = 57.290(Ft.) Pipe length = 190.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 29.147(CFS) Nearest computed pipe diameter = 33.00(In.) Calculated individual pipe flow = 29.147(CFS) Normal flow depth in pipe = 23.48(In.) Flow top width inside pipe = 29.90(In.) Critical Depth = 21.53(In.) Pipe flow velocity = 6.45(Ft /s) Travel time through pipe = 0.49 min. Time of concentration (TC) = 9.18 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 210.000 to Point /Station 210.000 * * ** SUBAREA FLOW ADDITION * * ** COMMERCIAL subarea type Runoff Coefficient = 0.882 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 9.18 min. Rainfall intensity = 4.843(In /Hr) for a 100.0 year storm Subarea runoff = 6.490(CFS) for 1.520(Ac.) Total runoff = 35.637(CFS) Total area = 7.620(Ac +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 210.000 to Point /Station 211.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 57.290(Ft.) Downstream point /station elevation = 56.460(Ft.) Pipe length = 205.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 35.637(CFS) Nearest computed pipe diameter = 33.00(In.) Calculated individual pipe flow = 35.637(CFS) Normal flow depth in pipe = 29.25(In.) Flow top width inside pipe = 20.95(In.) Critical Depth = 23.85(In.) Pipe flow velocity = 6.40(Ft /s) Travel time through pipe = 0.53 min. Time of concentration (TC) = 9.72 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 211.000 to Point /Station 211.000 * * ** SUBAREA FLOW ADDITION * * ** COMMERCIAL subarea type Runoff Coefficient = 0.881 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 (� Decimal fraction soil group C = 0.000 — Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 9.72 min. Rainfall intensity = 4.684(In /Hr) for a 100.0 year storm Subarea runoff = 7.471(CFS) for 1.810(Ac.) Total runoff = 43.108(CFS) Total area = 9.430(Ac.). +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 211.000 to Point /Station 212.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 56.460(Ft.) Downstream point /station elevation = 54.340(Ft.) Pipe length = 580.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 43.108(CFS) Nearest computed pipe diameter = 39.00(In.) Calculated individual pipe flow = 43.108(CFS) Normal flow depth in pipe = 27.98(In.) Flow top width inside pipe = 35.11(In.) Critical Depth = 25.08(In.) Pipe flow velocity = 6.77(Ft /s) Travel time through pipe = 1.43 min. Time of concentration (TC) = 11.14 min. ++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + +. + + + + + + + ++ Process from Point /Station 212.000 to Point /Station 212.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** ' ' Along Main Stream number: 1 in normal stream number 1 Stream flow area = 9.430(Ac.) Runoff from this stream = 43.108(CFS) Time of concentration = 11.14 min. Rainfall intensity,= 4.320(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 213.000 to Point /Station 214.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 190.000(Ft.) ' Top (of initial area) elevation = 65.000(Ft.) Bottom (of initial area) elevation = 62.700(Ft.) Difference in elevation = 2.300(Ft.) Slope = 0.01211 s (percent) = 1.21 .' Q ' TC = k(0.300) *[(length"3) /(elevation change))'0.2 Initial area time of concentration = 5.916 min. Rainfall intensity = 6.277(In /Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.885 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 ' Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 ' Initial subarea runoff = 3.112(CFS) Total initial stream area = 0.560(Ac.) Pervious area fraction = 0.100 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from-Point /Station 214.000 to Point /Station 212.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 56.000(Ft.) ' Downstream point /station elevation = 54.340(Ft.) ' Pipe length = 285.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.112(CFS) ' Nearest computed pipe diameter 15.00(In.) Calculated individual pipe flow 3.112(CFS) Normal flow depth in pipe = 8.65(In.) Flow top width inside pipe = 14.82(In.) ' Critical Depth = 8.52(In.) Pipe flow velocity = 4.25(Ft /s) Travel time through pipe = 1.12 min. Time of concentration (TC) = 7.03 min. 1 .+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ' Process from Point /Station 212.000 to Point /Station 212.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 1 in normal stream number 2 . ' Stream flow area = 0.560(Ac.) Runoff from this stream = 3.112(CFS) Time of concentration = 7.03 min. ' Rainfall intensity = 5.667(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) ' 1 .2 Largest Qp = QP = 43.108 11.14 4.320 3.112 7.03 5.667 stream flow has longer time of concentration 43.108 + sum of Qb Ia /Ib 3.112 * 0.762 = 2.372 45.480 Total of 2 streams to confluence: Flow rates before confluence point: 43.108 3.112 Area of streams before confluence: 9.430 0.560 Results of confluence: Total flow rate = 45.480(CFS) Time of concentration = 11.144 min. Effective stream area after confluence = 9.990(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 212.000 to Point /Station 214.100 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 54.340(Ft.) Downstream point /station elevation 54.020(Ft.) Pipe length = 75.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 45.480(CFS) Nearest computed pipe diameter = 36.00(In.) Calculated individual pipe flow = 45.480(CFS) Normal flow depth in pipe = .31.13(In.) Flow top width inside pipe = 24.64(In.) Critical Depth = 26.35(In.) Pipe flow velocity = 6.99(Ft /s) Travel time through pipe = 0.18 min. Time of concentration (TC) = 11.32 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 214.100 to Point /Station 214.100 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 9.990(Ac.) Runoff from this stream = 45.480(CFS) Time of concentration = 11.32 min. Rainfall intensity = 4.280(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 215.000 to Point /Station 216.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 185.000(Ft.) Top (of initial area) elevation = 64.200(Ft.) Bottom (of initial area) elevation = 61.600(Ft.) Difference in elevation = 2.600(Ft.) Slope = 0.01405 s(percent)= 1.41 TC = k(0.300) *[(length'3) /(elevation change)]^0.2 Initial area time of concentration = 5.681 min. Rainfall intensity = 6.429(In /Hr) for a 100.0 COMMERCIAL subarea type Runoff Coefficient.= 0.886 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = .0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction Initial subarea runoff = 5.237(CFS) Total initial stream area = 0.920(Ac.) Pervious area fraction = 0.100 year storm = 0.900 B-I1 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 216.000 to Point /Station 214.100 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 54.500(Ft.) Downstream point /station elevation = 54.020(Ft.) Pipe length = 18.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.237(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 5.237(CFS) Normal flow depth in pipe = 8.91(In.) Flow top width inside pipe = 10.50(In.) Critical Depth = 11.14(In.) Pipe flow velocity = 8.38(Ft /s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 5.72 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 214.100 to Point /Station 214.100 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.920(Ac.) Runoff from this stream = 5.237(CFS) Time of concentration = 5.72 min. Rainfall intensity = 6.405(In /Hr) Summary of stream data: Total of 2 streams to confluence: Flow rates before confluence point: 45.480 5.237 Area of streams before confluence: 9.990 0.920 Results of confluence: Total flow rate = 48.979(CFS) Time of concentration = 11.323 min. Effective stream area after confluence = 10.910(Ac.) ' +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 214.100 to Point /Station 217.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 54.020(Ft.) Downstream point /station elevation = 53.390(Ft.) Pipe length = 150.00(Ft.) Manning's N = 0.013 ' No. of pipes = 1 Required pipe flow = 48.979(CFS) Nearest computed pipe diameter 39.00(In.) Calculated individual pipe flow = 48.979(CFS) Normal flow depth in pipe = 29.34(In.) ' Flow top width inside pipe = 33.67(In.) Critical Depth = 26.78(In.) Pipe flow velocity = 7.31(Ft /s) ' Travel time through pipe = 0.34 min. Time of concentration (TC) = 11.66 min. I+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 45.480 11.32 4.280 2 5.237 5.72 6.405 ' Largest stream flow has longer time of concentration Qp = 45.480 + sum of Qb Ia /Ib 5.237 * 0.668 = 3.499 ' Qp = 48.979 Total of 2 streams to confluence: Flow rates before confluence point: 45.480 5.237 Area of streams before confluence: 9.990 0.920 Results of confluence: Total flow rate = 48.979(CFS) Time of concentration = 11.323 min. Effective stream area after confluence = 10.910(Ac.) ' +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 214.100 to Point /Station 217.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 54.020(Ft.) Downstream point /station elevation = 53.390(Ft.) Pipe length = 150.00(Ft.) Manning's N = 0.013 ' No. of pipes = 1 Required pipe flow = 48.979(CFS) Nearest computed pipe diameter 39.00(In.) Calculated individual pipe flow = 48.979(CFS) Normal flow depth in pipe = 29.34(In.) ' Flow top width inside pipe = 33.67(In.) Critical Depth = 26.78(In.) Pipe flow velocity = 7.31(Ft /s) ' Travel time through pipe = 0.34 min. Time of concentration (TC) = 11.66 min. I+++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 217.000 to Point /Station 217.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 10.910(Ac.) Runoff from this stream = 48.979(CFS) Time of concentration = 11.66 min. Rainfall intensity = 4.205(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 218.000 to Point /Station 219.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 105.000(Ft.) Top (of initial area) elevation = 62.600(Ft.) Bottom (of initial area) elevation = 60.500(Ft.) Difference in elevation = 2.100(Ft.) Slope = 0.02000 s(percent)= 2.00 TC.= k(0.300) *((length'3) /(elevation change)]'0.2 Warning: TC computed to be less than 5 min.; program is assuming time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. Rainfall intensity = 6.932(In /Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.886 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 0.737(CFS) Total initial stream area = 0.120(Ac.) Pervious area fraction = 0.100 V_)Z the +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 219.000 to Point /Station 217.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 54.500(Ft.) ' Downstream point /station elevation = 53.390(Ft.) Pipe length = 65.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.737(CFS) ' Nearest computed pipe diameter 9.00(In.) Calculated individual pipe flow 0.737(CFS) Normal flow depth in pipe = 3..62(In.) Flow top width inside pipe = 8.83(In.) ' Critical Depth = 4.69(In.) Pipe flow velocity = 4.43(Ft /s) Travel time through pipe = 0.24 min. ' Time of concentration (TC) = 5.24 min. +++++++++++++++++++++++++++++++++++++++ + + ++ + + + + + + + + + + + + + + + + + + + + + + + + + ++ ' Process from Point /Station 217.000 to Point /Station 217.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** 1 Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.120(Ac.) Runoff from this stream = 0.737(CFS) Time of concentration = 5.24 min. ' Rainfall intensity = 6.739(In /Hr) Summary of stream data: ' Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) Total of 2 streams to confluence: Flow rates before confluence point: 48.979 0.737 Area of streams before confluence: 10.910 0.120 Results of confluence: Total flow rate = 49.439(CFS) Time of concentration = 11.665 min. Effective stream area after confluence = 11.030(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 217.000 to Point /Station 220.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 53.390(Ft.) Downstream point /station elevation = 52.780(Ft.) Pipe length = 145.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 49.439(CFS) Nearest computed pipe diameter = 39.00(In.) Calculated individual pipe flow = 49.439(CFS) Normal flow depth in pipe = 29.58(In.) Flow top width inside pipe = 33.39(In.) Critical Depth = 26.93(In.) Pipe flow velocity= 7.33(Ft /s) Travel time through pipe = 0.33 min. Time of concentration (TC) = 11.99 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 220.000 to Point /Station 220.000 * * ** SUBAREA FLOW ADDITION * * ** COMMERCIAL subarea type Runoff Coefficient = 0.879 Decimal fraction soil group A = 1.000 1 48.979 11.66 4.205 ' 2 0.737 5.24 6.739 Largest stream flow has longer time of concentration Qp = 48.979 + sum of ' Qb Ia /Ib 0.737 * 0.624 = 0.460 Qp = 49.439 Total of 2 streams to confluence: Flow rates before confluence point: 48.979 0.737 Area of streams before confluence: 10.910 0.120 Results of confluence: Total flow rate = 49.439(CFS) Time of concentration = 11.665 min. Effective stream area after confluence = 11.030(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 217.000 to Point /Station 220.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 53.390(Ft.) Downstream point /station elevation = 52.780(Ft.) Pipe length = 145.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 49.439(CFS) Nearest computed pipe diameter = 39.00(In.) Calculated individual pipe flow = 49.439(CFS) Normal flow depth in pipe = 29.58(In.) Flow top width inside pipe = 33.39(In.) Critical Depth = 26.93(In.) Pipe flow velocity= 7.33(Ft /s) Travel time through pipe = 0.33 min. Time of concentration (TC) = 11.99 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 220.000 to Point /Station 220.000 * * ** SUBAREA FLOW ADDITION * * ** COMMERCIAL subarea type Runoff Coefficient = 0.879 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group .0 = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 .Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 11.99 min. Rainfall intensity = 4.136(In /Hr) for a 100.0 year storm Subarea runoff = 2.292(CFS) for 0.630(Ac.) Total runoff = 51.731(CFS) Total area = 11.660(Ac.) g -13 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 220.000 to Point /Station 221.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 52.780(Ft.) Downstream point /station elevation = 52.450(Ft.) Pipe length = 80.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe-flow = 51.731(CFS) Nearest computed pipe diameter = 39.00(In.) Calculated individual pipe flow = 51.731(CFS) Normal flow depth in pipe = 31.13(In.) Flow top width inside pipe = 31.31(In.) Critical Depth = 27.57(In.) Pipe flow velocity = 7.29(Ft /s) Travel time through pipe = 0.18 min. Time of concentration (TC) = 12.18 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 221.000 to Point /Station 221.000 * * ** SUBAREA FLOW ADDITION * * ** = 0.900 year storm 12.520(Ac.) Q -IN +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ' Process from Point /Station 221.000 to Point /Station 222.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 52.450(Ft.) ' 'Downstream point /station elevation = 51.990(Ft.) Pipe length = 108.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 54.831(CFS) Nearest computed pipe diameter = 39.00(In.) ' Calculated individual pipe flow = 54.831(CFS) � I COMMERCIAL subarea type ' Runoff Coefficient Decimal = 0.879 fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C­ 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction ' Time of Rainfall concentration = 12.18 intensity = 4.100(In min. /Hr) for a 100.0 Subarea runoff = 3.100(CFS) for 0.860(Ac.) Total runoff = 54.831(CFS) Total area = 1 ' = 0.900 year storm 12.520(Ac.) Q -IN +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ' Process from Point /Station 221.000 to Point /Station 222.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 52.450(Ft.) ' 'Downstream point /station elevation = 51.990(Ft.) Pipe length = 108.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 54.831(CFS) Nearest computed pipe diameter = 39.00(In.) ' Calculated individual pipe flow = 54.831(CFS) � I � I � I +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Stat'ion 223.000 to Point /Station 224.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 285.000(Ft.) Top (of initial area) elevation = 64.200(Ft.) Bottom (of initial area) elevation = 62.200(Ft.) Difference in elevation = 2.000(Ft.) Slope = 0.00702 s(percent)= 0.70 TC = k (0.300) * [ (length'3) / (elevation change) ]'0.2 Initial area time of concentration = 7.759 min. Rainfall intensity = 5.349(In /Hr) for a 100. COMMERCIAL subarea type ' Runoff Coefficient = 0.883 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 ' Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 .Pervious area fraction = 0.100; Impervious Initial subarea runoff = 1.512(CFS) Total initial stream area = 0.320(Ac Pervious area fraction = 0.100 0 year storm fraction = 0.900 Q -15 ' +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + ++ + + + + + + + + ++ _Process from Point /Station 224.000 to Point /Station 224.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** ' Along Main Stream number: 2 in normal stream number 1 Stream flow area = 0.320(Ac.) ' Runoff from this stream = 1.512(CFS) Time of concentration = 7.76 min. Rainfall intensity = 5.349(In /Hr) � I Normal flow depth in pipe = 32.63(In.) Flow top width inside pipe = 28.84(In.) Critical Depth = 28.37(In.) ' Pipe flow velocity = 7.40(Ft /s) Travel time through pipe = 0.24 min. 1 Time of concentration (TC) = 12.42 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 222.000 to Point /Station 222.000 ' * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 1 ' Stream flow area = 12.520(Ac.) Runoff from this stream = 54.831(CFS) ' Time of concentration = 12.42 min. Rainfall intensity = 4.052(In /Hr) Program is now starting with Main Stream No. 2 � I � I +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Stat'ion 223.000 to Point /Station 224.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 285.000(Ft.) Top (of initial area) elevation = 64.200(Ft.) Bottom (of initial area) elevation = 62.200(Ft.) Difference in elevation = 2.000(Ft.) Slope = 0.00702 s(percent)= 0.70 TC = k (0.300) * [ (length'3) / (elevation change) ]'0.2 Initial area time of concentration = 7.759 min. Rainfall intensity = 5.349(In /Hr) for a 100. COMMERCIAL subarea type ' Runoff Coefficient = 0.883 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 ' Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 .Pervious area fraction = 0.100; Impervious Initial subarea runoff = 1.512(CFS) Total initial stream area = 0.320(Ac Pervious area fraction = 0.100 0 year storm fraction = 0.900 Q -15 ' +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + ++ + + + + + + + + ++ _Process from Point /Station 224.000 to Point /Station 224.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** ' Along Main Stream number: 2 in normal stream number 1 Stream flow area = 0.320(Ac.) ' Runoff from this stream = 1.512(CFS) Time of concentration = 7.76 min. Rainfall intensity = 5.349(In /Hr) � I +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 225.000 to Point /Station 224.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 225.000(Ft.) Top (of initial area) elevation = 64.200(Ft.) Bottom (of initial area) elevation = 62.200(Ft.) Difference in elevation = 2.000(Ft.) Slope = 0.00889 s(percent)= 0.89 TC = k (0.300) * [ (length''3) / (elevation change) ]'0.2 Initial area time of concentration = 6.733 min. Rainfall intensity = 5.815(In /Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.884 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 1.543(CFS) Total initial stream area = 0.300(Ac.) Pervious area fraction = 0.100 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 224.000 to Point /Station 224.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** I Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.300(Ac.) ' Runoff from this stream = 1.543(CFS) Time of concentration = 6.73 min. Rainfall intensity = 5.815(In /Hr) ' Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) � I � I � I � I 1 1.512 7.76 5.349 2 1.543 6.73 5.815 Largest stream flow has longer or shorter time of concentration Qp = 1.543 + sum of Qa Tb /Ta 1.512 * 0.868 = 1.312 Qp = 2.854 .Total of 2 streams to confluence: Flow rates before confluence point: 1.512 1.543 Area of streams before confluence: 0.320 0.300 .Results of confluence: Total flow rate = 2.854(CFS) Time of concentration = 6.733 min. Effective stream area after confluence = 0.620(Ac.) ' +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 224.000 to Point /Station 222.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 52.500(Ft.) Downstream point /station elevation = 51.990(Ft.) Pipe length = 5.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.854(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 2.854(CFS) Normal flow depth in pipe = 4.71(In.) Flow top width inside pipe = 8.99(In.) Critical depth could not be calculated. Pipe flow velocity = 12..19(Ft /s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 6.74 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 222.000 to Point /Station 222.000 * * ** CONFLUENCE-OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.620(Ac.) Runoff from this stream = 2.854(CFS) Time of concentration = 6.74 min. Rainfall intensity = 5.812(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 54.831 12.42 4.052 2 2.854 6.74 5.812 Largest stream flow has longer time of concentration Qp = 54.831 + sum of Qb Ia /Ib 2.854 * 0.697 = 1.990 Qp = 56.821 Total of 2 main streams to confluence: Flow rates before confluence point: 54.831 2.854 Area of streams before confluence: 12.520 0.620 Results of confluence: ' Total flow rate = 56.821(CFS) Time of concentration = 12.421 min. Effective stream area after confluence = � I 13.140(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 222.000 to Point /Station 226.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 51.990(Ft.) Downstream point /station elevation = 51.980(Ft.) Pipe length = 3.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 56.821(CFS) Nearest computed pipe diameter = 42.00(In.) Calculated individual pipe flow = 56.821(CFS). Normal flow depth in pipe = 33.66(In.) Flow top width inside pipe = 33.52(In.) Critical Depth = 28.32(In.) Pipe flow velocity = 6.88(Ft /s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 12.43 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 226.000 to Point /Station 226.000 * * ** SUBAREA FLOW ADDITION * * ** COMMERCIAL subarea type Runoff Coefficient = 0.879 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 tJ Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 12.43 min. Rainfall intensity = 4.051(In /Hr) for a 100.0 year storm Subarea runoff = 2.849(CFS) for 0.800(Ac.) Total runoff = 59.669(CFS) Total area = 13.940(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 226.000 to Point /Station 227.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 51.980(Ft.) Downstream point /station elevation = 51.700(Ft.) Pipe length = 70.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 59.669(CFS) Nearest computed pipe diameter = 42.00(In.) Calculated individual pipe flow = '59.669(CFS) Normal flow depth in pipe = 32.30(In.) Flow top width inside pipe = 35.41(In.) Critical Depth = 29.04(In.) Pipe flow velocity = 7.52(Ft /s) Travel time through pipe = 0.16 min. Time of concentration (TC) = 12.58 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 227.000 to Point /Station 227.000 * * ** SUBAREA FLOW ADDITION * * ** � I � I COMMERCIAL subarea type Runoff Coefficient = 0.879 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 —� 8 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 12.58 min. Rainfall intensity = 4.021(In /Hr) for a 100.0 year storm Subarea runoff = 3.322(CFS) for 0.940(Ac.) Total runoff = 62.992(CFS) Total area = 14.880(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 227.000 to Point /Station 228.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 51.700(Ft.) .Downstream point /station elevation = 51.110(Ft.) Pipe length = 80.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 62.992(CFS) Nearest computed pipe diameter = 39.00(In.) Calculated individual pipe flow = 62.992(CFS) Normal flow depth in pipe = 28.59(In.) Flow top width inside pipe = 34.50(In.) Critical Depth = 30.38(In.) Pipe flow velocity = 9.66(Ft /s) Travel time through pipe = 0.14 min. Time of concentration (TC) = 12.72 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + ± + + + + + + + + ++ Process from Point /Station 228.000 to Point /Station 228.000 * * ** SUBAREA FLOW ADDITION * * ** COMMERCIAL subarea type Runoff Coefficient = 0.879 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 12.72 min. Rainfall intensity = 3.995(In /Hr) for a 100.0 year storm Subarea runoff = 3.897(CFS) for 1.110(Ac.) Total runoff = 66.8B9(CFS) Total area = 15.990(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 228.000 to Point /Station 229.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 51.110(Ft.) Downstream point /station elevation = 50.690(Ft.) ' Pipe length = 165.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 66.889(CFS) ' Nearest computed pipe diameter 48.00(In.) Calculated individual pipe flow 66.889(CFS) Normal flow depth in pipe = 36.38(In.) Flow top width inside pipe = 41.13(In.) ' Critical Depth = 29.66(In.) Pipe flow velocity = 6.55(Ft /s) Travel time through pipe = 0.42 min. ' Time of concentration (TC) = 13.14 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ' Process from Point /Station 229.000 to Point /Station 229.000 * * ** SUBAREA FLOW ADDITION * * ** COMMERCIAL subarea type Runoff Coefficient = 0.878 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 — O Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 13.14 min. Rainfall intensity = 3.919(In /Hr) for a 100.0 year storm Subarea runoff = 1.481(CFS) for 0.430(Ac.) Total runoff = 68.369(CFS) Total area = 16.420(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 229.000 to Point /Station 230.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 50.690(Ft.) Downstream point /station elevation = 50.570(Ft.) Pipe length = 28.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 68.369(CFS) Nearest computed pipe diameter = 42.00(In.) Calculated individual pipe flow = 68.369(CFS) Normal flow depth in pipe = 36.09(In.) Flow top width inside pipe = 29.20(In.) Critical Depth = 31.07(In.) Pipe flow velocity = 7.78(Ft /s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 13.20 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 230.000 to Point /Station 230.000 * * ** SUBAREA FLOW ADDITION * * ** COMMERCIAL subarea type Runoff Coefficient = 0.878 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 I RI index for soil(AMC 3) = 52.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 13.20 min. Rainfall intensity = 3.909(In /Hr) for a 100.0 year storm Subarea runoff = 0.275(CFS) for 0.080(Ac.) Total runoff = 68.644(CFS) Total area = 16.500(Ac.) +++++++++++++.+++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 230.000 to Point /Station 231.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 50.570(Ft.) Downstream point /station elevation = 49.500(Ft.) Pipe length 270.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 68.644(CFS) Nearest computed pipe diameter = 45.00(In.) Calculated individual pipe flow = 68.644(CFS) Normal flow depth in pipe = 33.42(In.) Flow top width inside pipe = 39.34(In.) Critical Depth = 30.62(In.) Pipe flow velocity = 7.80(Ft /s) Travel time through pipe = 0.58 min. Time of concentration (TC) = 13.78 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 231.000 to Point /Station 231.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** ' Along Main Stream number: 1 in normal stream number 1 Stream flow area = 16.500(Ac.) Runoff from this stream = 68.644(CFS) ' Time of concentration = 13.78 min. Rainfall intensity = 3.812(In /Hr) � I � I � I � I +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 225.000 to Point /Station 231.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 430.000(Ft.) Top (of initial area) elevation = 64.200(Ft.) Bottom (of initial area) elevation = 61.500(Ft.) Difference in elevation = 2.700(Ft.) Slope = 0.00628 s(percent)= 0.63 TC = k(0.300) *[(length^3) /(elevation change)1^0.2 Initial area time of concentration = 9.353 min. Rainfall intensity = 4.790(In /Hr) for a 100. COMMERCIAL subarea type Runoff Coefficient = 0.882 Decimal fraction soil group A = 1.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 52.00 0 year storm e Q -2 2 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 5.195(CFS) Total initial stream area = 1.230(Ac.) Pervious area fraction = 0.100 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 231.000 to Point /Station 231.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.230(Ac.) Runoff from this stream = 5.195(CFS) Time of concentration = 9.35 min. Rainfall intensity = 4.790(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 68.644 13.78 3.812 2 5.195 9.35 4.790 Largest stream flow has longer time of concentration Qp = 68.644 + sum of Qb Ia /Ib 5.195 * 0.796 = 4.133 QP = 72.777 Total of 2 streams to confluence: Flow rates before confluence point: 68.644 5.195 Area of streams before confluence: 16.500 1.230 Results of confluence: Total flow rate = 72.777(CFS) Time of concentration = 13.778 min. Effective stream area after confluence = 17.730(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 231.000 to Point /Station 232.000 * * ** PIPEFLOW TRAVEL TIME (Program estimated size) * * ** Upstream point /station elevation = 49.500(Ft.) Downstream point /station elevation = 49.000(Ft.) Pipe length = 110.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 72.777(CFS,) Nearest computed pipe diameter = 45.00(In.) Calculated individual pipe flow = 72.777(CFS) Normal flow depth in pipe = 33.14(In.) Flow top width inside pipe = 39.65(In.) Critical Depth = 31.54(In.) Pipe flow velocity = 8.35(Ft /s) Travel time through pipe = 0.22 min. Time of concentration (TC) = 14.00 min. End of computations, total study area = 17.73 (Ac.) ' The following figures may be used for a unit hydrograph study of the same area. ' Area averaged pervious area fraction(Ap) = 0.100 Area averaged RI index number = 32.0 F— I L� � I � I �� I CATCH BASIN DESIGN ' Grated inlets were sized utilizing Chart 11 as per U.S. Department of Transportation Circular FHWA -TS -84 -202 assuming a maximum ponding depth of 0.4 -foot and 50- percent clogging of ' the grate. The following summarizes the capacities for various inlet sizes. SIZE PERIMETER TOTAL 50% CLOGGED ft) ft INLET CAPACITY (cfs) 12 "x12" 4 3 2.25 12 "x 18" 5 4 3.00 18 "x18" 6 4.5 3.30 24 "x24" 8 6 4.50 36 "x36" 12 9 7.00 CGYa -4 e� .Lnl cfg 1 V 8 6 ' 5 GRATE OPENING RATIO • P- 1-7/8 -4 -0.8 4 ' 3 2 ' P -I =VS 0.9 • P -I -I/8 0.6 " ? ^) W 1 Reticuline 0.8 t 3" 0.8 h O .. _ .0.6 • Curved vane 0.35 30° tilt -bar 0.34 0 0.5 • Tested 0.4 ' 0.3 0.2 O.1 GRATE OPENING RATIO • P- 1-7/8 -4 -0.8 N �c P -I =VS 0.9 • P -I -I/8 0.6 " ? ^) N Reticuline 0.8 h • Curved vane 0.35 30° tilt -bar 0.34 `O ti 0 • Tested CURB W F� b 51 Qom. A D. 5 � 6 0 �O A = CLEAR OPENING AREA A P = 2W +'L ( WITH CURB) P= 2(W +L) (WITHOUT CURB) Nyloplast Curb Inlet Capacity Chart This chart is based on equations from the FAA Airport Drainage AC 15015320- 513, 1970, Page 35. Certain assumptions have been made and no two . installations will necessarily perform the same way. Safety factors should change with site conditions such that a safety factor 1.25 should be used for an inlet in pavement, and'a safety factor of 2.0 should be used in turf areas. 16.00 14.00 12.00 10.00 C0 8.00 v 6.00 i� .a n 4.00 U 3.00 2.O11 1.00 0.00 Nyloplast TX 3' Diagonal Curb Inlet Grate Hood Settings Highest Lowest + 3' Lowest +2" Lowest + V Lowest 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 Head, Feet Basin Outlet Pipe Size. Flow Rate CFS 4' 0.229 6' 0.662 8' 1.441 10' 2.612 12' 4.152 15' 7.126 18' 12.163 24' : 25.821 * Maximum flow capacity before curb inlet basin begi9s to backfill. Calculation based on an average pipe slope of 1 %. NDie "wQ9i Hoo 5e-WA9 = q. '13 �nc�1e5 L0 w1$4 + 1.2-7 �� = Q. �� c.,lb -Face i here%ra, we gssume o.5' head, Carcwc,4 5.6 cos THIS PRINT DISCLOSES SUBJECT MATTER IN WHICH DRAWN BY AWA MATERIAL 3130 VERONA AVE NYLOPLAST HAS PROPRIETARY RIGHTS. THE RECEIPT BUFORD, GA 30518 OR POSSESSION OF THIS PRINT DOES NOT CONFER, TRANSFER, OR LICENSE THE USE OF THE DESIGN OR DATE 18DEC01 Nyl0;711 ' PHN (770) 932.2443 FAX (770) 932 -2490 TECHNICAL INFORMATION SHOWN HEREIN APPD BY CJA PROJECT NOJN7IME, www.nyloplast.usxom REPRODUCTION OF THIS PRINT OR ANY INFORMATION . TITLE CONTAINED HEREIN, OR MANUFACTURE OF ANY ARTICLE HEREFROM, FOR THE DISCLOSURE TO OTHERS DATE 18DEC01 CURB INLET DRAIN Y X 3' DIAGONAL INLET CAPACITY IS FORBIDDEN, EXCEPT BY SPECIFIC WRITTEN PERMISSION FROM NYLOPLAST. DWG SIZE A SCALE 1:2 SHEET 1 OF 1 DWG N0:. 7002. 110-017 REV A Project Report The Keith Companies ITKO 'Date: 8- 2_O-oZ Project: The Cenlre a•F- Job No: yO382.O1 - qiS ' Re: Qn -5;4e Cokkh basin Colcolw-hay By: D.F. Contact: Phone: SLAM P CAT C li BA5ln1 CALCuLATtorJS e (side- 0Pe►,;r19) YFR C,T*( OF LA QuINTA STOKM MAIN REQL,-.I0FIµQaTS$swmP CATCH BASINS S14AL -- SE SIZED VSI.JG Turn WEIR EGuAllcf1 IF FLOW Is i3ELow T.C. I AND TWE MI FIC1: EQuk?1oN Fop Df-PTNS ASOVI` T:C. I F wE. LwA IT THE PJNDF,D DEPTI{ To TIaE Top of c"-k3 (T.c), WE NAVE i.5 (c 3.33 AAA (w6lrt rqN.� W"kle b = WI 0114 01= SAS IN CPraN1AG N = I;rIG14 T OF "OkiD WAlRR Agovr T4c FLoWLIMIL fOR �APLIOvS (b) AND 4 a Ioh (o1Z 1$ b (FT. Q (c FS) y 8.7 y•5 9.� S ro.8 5.5 I1.9 13.0 6.5 A.1 -7 15.1 301 E - 09/00 STORM DRAIN PIPE DESIGN THE CENTRE AT LA QUINTA - ON -SITE LINE "A" JOB #: 40382.01 RETENTION BASIN DATA INPUT TRIANGULAR HYDROGRAPH PERCOLATION RATE FLOW 71.8 Tc 10.15 T (max) 30.45 ml 0.1178982 0.0589491 m2 - 0.058949 - 0.029475 y -int 107.7 VOL 65589.3 BASIN CHARACTERISTICS WEIR DATA OVERFLOW CONTOUR b h(min) AREA Ap RI 1 in /hr 59 100 5 2.18 0.364 33.8 CONTOUR DEPTH INCR TOTAL (ft) (ft) AREA INCR TOTAL (so (sf) VOLUME INCR TOTAL (cuft) (cuft) (acre -ft) 54 0 0 54668 0 0 0.0 55 1 1 3049 57717 56193 56193 1.3 56 1 2 3093 60810 59264 115456 2.7 57 1 3 3180 63990 62400 177856 4.1 58 1 4 3223 67213 65602 243458 5.6 59 1 5 3311 70524 68869 312326 7.2 59 0 5 0 70524 0 312326 7.2 59 0 5 0 70524 0 312326 7.2 THE CENTRE AT LA QUINTA - ON -SITE LINE "A" JOB #: 40382.01 DATE 17- Aug -02 RETENTION BASIN TIME FLOW VOLUME TOTAL IN IN IN BASIN min ) (cfs) (cult cult PERC OUT cult TOTAL IN BASIN BASIN DEPTH cult ft BALANCE IN BASIN cult acre -ft 0 1 7.07 212 212 76 136.3 54.0 136.27 0.00 1 2 14.15 637 773 76 696.9 54.0 696.94 0.02 2 3 21.22 1061 1758 76 1682.0 54.0 1681.96 0.04 3 4 28.30 1486 3167 76 3091.3 54.1 3091.31 0.07 4 5 35.37 1910 5001 76 4925.0 54.1 4924.96 0.11 5 6 42.44 2334 7259 76 7182.91 54.1 7182.87 0.16 6 7 49.52 2759 9942 77 9865.0 54.2 9865.01 0.23 7 8 56.59 3183 13048 77 12971.3 54.2 12971.35 0.30 8 9 63.67 3608 16579 77 16501.9 54.3 16501.86 0.38 9 10 70.74 4032 20534 77 20456.5 54.4 20456.50 0.47 10 11 68.79 4227 24683 78 24605.3 54.4 24605.27 0.56 11 12 65.26 4022 28627 78 28548.7 28548.69 0.66 12 13 61.72 3809 32358 78 32279.6 54.6 32279.62 0.74 13 14 58.18 3597 35877 79 35798.1 54.6 35798.06 0.82 14 15 54.65 3385 39183 79 39104.0 54.7 39104.04 0.90 15 16 51.11 3173 42277 79 42197.6 54.8 42197.56 0.97 16 17 47.57 2960 45158 79 45078.71 54.8 45078.66 1.03 17 18 44.03 2748 47827 80 47747.31 54.8 47747.33 1.10 18 19 40.50 2536 50283 80 50203.6 54.9 50203.60 1.15 19 20 36.96 2324 52527 80 52447.5 54.9 52447.49 1.20 20 21 33.42 2112 54559 80 54479.0 55.0 54479.01 1.25 21 22 29.89 1899 56378 80 56298.2 55.0 56298.17 1.29 22 23 26.35 1687 57985 80 57905.0 55.0 57905.00 1.33 23 24 22.81 1475 59380 80 59299.5 55.1 59299.52 1.36 24 25 19.28 1263 60562 80 60481.7 55.1 60481.73 1.39 25 26 15.74 1050 61532 81 61451.6 55.1 61451.56 1.41 26 27 12.20 838 62290 81 62209.1 55.1 62209.12 1.43 27 28 8.67 626 62835 81 62754.4 55.1 62754.42 1.44 28 29 5.13 414 63168 81 63087.5 55.1 63087.49 1.45 29 30 1.59 202 63289 81 63208.31 55.1 63208.33 1.45 30 31 0.00 0 63198 81 63117.0 55.1 63116.96 1.45 31 32 0.00 0 62894 81 62813.4 55.1 62813.39 1.44 32 33 0.00 0 62378 81 62297.6 55.1 62297.65 1.43 33 34 0.00 0 61650 81 61569.7 55.1 61569.74 1.41 34 35 0.00 0 60710 80 60629.8 55.1 60629.77 1.39 35 36 0.00 0 59558 80 59477.7 55.1 59477.67 1.37 36 37 0.00 0 58194 80 58113.4 55.0 58113.45 1.33 37 38 0.00 0 56617 80 56537.1 55.0 56537.13 1.30 38 39 0.00 0 54829 80 54748.7 55.0 54748.72 1.26 39 40 0.00 0 52828 80 52748.3 54.9 52748.25 1.21 40 41 0.00 0 50615 80 50535.7 54.9 50535.73 1.16 41 42 0.00 0 48191 80 48111.2 54.9 48111.18 1.10 42 43 0.00 0 45554 79 45474.6 54.8 45474.60 1.04 43 44 0.00 0 42705 79 42626.0 54.8 42626.03 0.98 44 45 0.00 0 39644 79 39565.5 54.7 39565.47 0.91 45 46 0.00 0 36372 79 36292.9 54.6 36292.94 0.83 46 47 0.00 0 32887 78 32808.5 54.6 32808.45 0.75 47 48 0.00 0 29190 78 29112.01 54.5 29112.03 0.67 48 49 0.00 0 25282 78 25203.71 54.4 25203.68 0.58 49 50 0.00 0 21161 78 21083.4 54.4 21083.43 0.48 50 51 0.00 0 16828 77 16751.3 54.3 16751.29 0.38 51 52 0.00 0 12284 77 12207.3 54.2 12207.27 0.28 52 53 0.00 0 7528 76 7451.4 54.1 7451.40 0.17 53 54 0.00 0 2560 76 2483.7 54.0 2483.68 0.06 54 55 0.00 0 -2620 76 0.01 54.0 0.00 0.00 55 56 0.00 0 -5316 76 0.0 54.0 0.00 0.00 56 57 0.00 0 -5528 76 0.0 54.0 0.00 0.00 57 58 0.00 0 -5740 75 0.0 54.0 0.00 0.00 58 59 0.00 0 -5953 75 0.0 54.0 0.00 0.00 59 60 0.00 0 -6165 75 0.0 54.0 0.00 0.00 4w u- rx INN INICT RGL ' THE CENTRE AT LA QUINTA - ON -SITE LINE "B" 'JOB #: 40382.01 RETENTION BASIN DATAINPUT TRIANGULAR HYDROGRAPH PERCOLATION RATE II 1 1 1 1 1 1 1 WEIR DATA OVERFLOW CONTOUR b h(min) AREA Ap RI 1 in /hr 59 100 5 2.18 0.364 33.8 CONTOUR DEPTH [NCR TOTAL (ft) (ft) AREA INCR TOTAL (so M VOLUME INCR TOTAL (cult) (cuft) (acre -ft) FLOW 72.8 0 Tc 14 0 T (max) 42 55 ml 0.0866667 0.0433333 ' m2 - 0.043333 - 0.021667 56193 y -int 109.2 ' VOL 91728 60810 BASIN CHARACTERISTICS.' II 1 1 1 1 1 1 1 WEIR DATA OVERFLOW CONTOUR b h(min) AREA Ap RI 1 in /hr 59 100 5 2.18 0.364 33.8 CONTOUR DEPTH [NCR TOTAL (ft) (ft) AREA INCR TOTAL (so M VOLUME INCR TOTAL (cult) (cuft) (acre -ft) 54 0 0 54668 0 0 0.0 55 1 1 3049 57717 56193 56193 1.3 56 1 2 3093. 60810 59264 115456 2.7 57 1 3 3180 63990 62400 177856 4.1 58 1 4 3223 67213 65602 243458 5.6 59- 1 5 3311 70524 68869 312326 7.2 59 0 5 0 70524 0 312326 7.2 59 0 5 0 70524 0 312326 7.2 THE CENTRE AT LA QUINTA - ON -SITE LINE "B" JOB #: 40382.01 DATE 17- Aug -02 RETENTION BASIN TIME FLOW VOLUME TOTAL IN IN IN BASIN min ) (cfs) (cult cult PERC OUT cult TOTAL IN BASIN BASIN DEPTH cult ft BALANCE IN BASIN cult acre -ft 0 1 5.20 156 156 76 80.1 54.0 80.06 0.00 1 2 10.40 468 548 76 472.1 54.0 472.09 0.01 2 3 15.60 780 1252 76 1176.1 54.0 1176.07 0.03 3 4 20.80 1092 2268 76 2192.0 54.0 2191.97 0.05 4 5 26.00 1404 3596 76 3519.8 54.1 3519.77 0.08 5 6 31.20 1716 5236 76 5159.4 54.1 5159.45 0.12 6 7 36.40 2028 7187 1 76 7111.0 54.1 7110.98 0.16 7 8 41.60 2340 9451 77 9374.3 54.2 9374.34 0.22 8 9 46.80 2652 12026 77 11949.5 54.2 11949.51 0.27 9 10 52.00 2964 14914 77 14836.5 54.3 14836.45 0.34 10 11 57.201 3276 18112 77 18035.2 54.3 18035.16 0.41 11 12 62.40 3588 21623 78 21545.6 54.4 21545.60 0.49 12 13 67.60 3900 25446 78 25367.8 25367.76 0.58 13 14 72.80 4446 29814 78 29735.6 54.5 29735.58 0.68 14 15 70.20 4290 34026 78 33947.1 .6 33947.09 0.78 15 16 67.60 4134 38081 79 38002.3 54.7 38002.29 0.87 16 17 65.00 3978 41980 79 41901.2 54.7 41901.20 0.96 17 18 62.40 3822 45723 79 45643.8 54.8 45643.83 1.05 18 19 59.80 3666 49310 80 49230.2 54.9 49230.19 1.13 19 20 57.20 3510 52740 80 52660.3 54.9 52660.28 1.21 20 21 54.60 3354 56014 80 55934.1 55.0 55934.13 1.28 21 22 52.00 3198 59132 80 59051.8 55.0 59051.76 1.36 22 23 49.40 3042 62094 81 62013.1 55.1 62013.08 1.42 23 24 46.80 2886 64899 81 64817.9 55.1 64817.91 1.49 24 25 44.20 2730 67548 81 67466.6 55.2 67466.56 1.55 25 26 41.60 2574 70041 82 69959.0 55.2 69959.04 1.61 26 27 39.00 2418 72377 82 72295.4 55.3 72295.37 1.66 27 28 36.40 2262 74557 82 74475.5 55.3 74475.54 1.71 28 29 33.80 2106 76582 82 76499.6 55.3 76499.58 1.76 29 30 31.20 1950 78450 82 78367.5 55.4 78367.48 1.80 ` 30 31 28.60 1794 80161 82 80079.3 55.4 80079.28 1.84 31 32 26.00 1638 81717 82 81635.0 55.4 81634.96 1.87 32 33 23.40 1482 83117 82 83034.51 55.5 83034.55 1.91 33 34 20.80 1.326 84361 82 84278.1 55.5 84278.05 1.93 34 35 18.20 1170 85448 83 85365.5 55.5 85365.49 1.96 35 36 15.60 1014 86379 83 86296.9 55.5 86296.85 1.98 36 37 13.00 858 87155 83 87072.2 55.5 87072.17 2.00 37 38 1 10.40 702 87774 83 87691.4 55.5 87691.44 2.01 38 39 7.80 546 88237 83 88154.7 55.5 88154.68 2.02 39 40 5.20 390 88545 83 88461.9 55.5 88461.90 2.03 40 41 2.60 234 88696 83 88613.1 55.5 88613.11 2.03 41 42 0.00 78 88691 83 88608.3 55.5 88608.32 2.03 42 43 0.00 0 88530 83 88447.5 55.5 88447.54 2.03 43 44 0.00 0 88214 83 88130.8 55.5 88130.78 2.02 44 45 0.00 0 87741 83 87658.1 55.5 87658.05 2.01 45 46 0.00 0 87112 83 87029.4 55.5 87029.37 2.00 46 47 0.00 0 86327 83 86244.7 55.5 86244.74 1.98 47 48 0.00 0 85387 83 85304.2 55.5 85304.17 1.96 48 49 0.00 0 84290 82 84207.7 55.5 84207.68 1.93 49 50 0.00 0 83038 82 82955.31 55.5 82955.28 1.90 50 51 0.00 0 81629 82 81547.0 55.4 81546.97 1.87 51 52 0.00 0 80065 82 79982.8 55.4 79982.77 1.84 52 53 0.00 0 78345 82 78262.7 55.4 78262.68 1.80 53 54 0.00 0 76469 82 76386.7 55.3 76386.73 1.75 54 55 0.00 0 74437 82 74354.9 55.3 74354.91 1.71 55 56 0.00 0 72249 82 72167.2 55.3 72167.24 1.66 56 57 0.00 0 69905 82 69823.7 55.2 69823.73 1.60 57 58 0.00 0 1 674061 81 67324.4 55.2 67324.391 1.55 58 59 0.00 0 1 647501 81 64669.2 55.1 64669.24 1.48 59 1 60 1 0.001 01 619391 81 61858.6 55.1 61858.56 1.42 qow RGrL 1 ...I Down1- 5-MC -AM fmrio#q Ww¢ J8 50A UPS7"4,,n tJOrItIDP) LzGJ 4p 'CAP CA-Tr-14 BAsr�1 M AarA A- r IP16 1 u4re <► 17 cA. q7 A -6 c8, AS IP15 P13 J7 P14 18 El LAT. A -S P12 CS. AC LAT. A -9 16 p10 55 p J4 IP11 pp 15 CO. AS Ii -q A -io P8 I A -� C8. Al-I c .J. A1- 2 J3 13 1 -4 A -ry G.B. AK -1 A-rr P6 P7 A -IC C.4. AV -i `fir- a -3 A-18 P3 "� 12 LAT. A -2 1 J2 C.B. A2 P5 PR1 R1 A -19 047. A- I P2 11 C.B. AI P4 J 1 I A-2o P1 Drywell No. 1 1 . Project Title: The Centre at La Quinta - On -site Project Engineer: Doug Franklin o: 44038244038201 \docs\hydro\site\site- al.stm KEITH COMPANIES StormCAD v1.0 08/22/02 10:42:24 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755 -1666 Page 1 of 1 ------------ - - - - -- Beginning Calculation Cycle --------------- - - -- Discharge: 22.15 cfs at node I -4 Discharge: 43.40 cfs at node I3 . Discharge: 1.77 cfs at node I5 Discharge: 0.78 cfs at node I6 Discharge: 2.55 cfs at node J5 Discharge: 10.17 cfs at node I8 Discharge: 10.17 cfs at node I7 Discharge: 20'.34 cfs at node J7 Discharge: 21.95 cfs at node J8 Discharge: 42.29 cfs at node J6 Discharge: 44.84 cfs at node J4 Discharge: 88.24 cfs at node J3 Discharge: 1.34 cfs at node I2 Discharge: 2.14 cfs at node R1 Discharge: 91.72 cfs at node J2 Discharge: 2.88 cfs at node I1 Discharge: 94.60 cfs at node J1 Discharge: 94.60 cfs at node Drywell No. 1 Beginning iteration 1 Discharge: 22.15 cfs at node I -4 Discharge: 43.40 cfs at node I3 Discharge: 1.77 cfs at node I5 Discharge: 0.78 cfs at node I6 Discharge: 2.55 cfs at node J5 Discharge: 10.17 cfs at node I8 Discharge: 10.17 cfs at node I7 Discharge: 20.34 cfs at node J7 Discharge: 21.95 cfs at node J8 Discharge: 42.29 cfs at node J6 Discharge: 44.84 cfs at node J4 Discharge: 88.24 cfs at node J3 Discharge: 1.34 cfs at node I2 Discharge: 2.14 cfs at node R1 Discharge: 91.72 cfs at node J2 Discharge: 2.88 cfs at node I1 Discharge: 94.60 cfs at node Jl Discharge: 94.60 cfs at node Drywell No. 1 Discharge Convergence Achieved in 1 iterations: relative error: 0.0 Information: Drywell No. 1 Known flow propagated from upstream junctions. Information: P1 Surcharged condition Information: J1 Known flow propagated from upstream junctions. Information: P2 Surcharged condition Information: P4 Surcharged condition Information: J2 Known flow propagated from upstream junctions. Information: P3 Surcharged condition Information: P5 Surcharged condition Information: PR1 Surcharged condition Information: J3 Known flow propagated from upstream junctions. Information: P6 Surcharged condition Information: P8 Surcharged condition Information: P7 Surcharged condition Information: J4 Known flow propagated from upstream junctions. Information: P12 Surcharged condition Information: J6 Known flow propagated from upstream junctions. Information: P13 Surcharged condition Information: P16 Surcharged condition Information: J7 Known flow propagated from upstream junctions. Information: P14 Surcharged condition Information: P15 Surcharged condition Information: J5 Known flow propagated from upstream junctions. Project Title: The Centre at La Quinta - On -site Project Engineer: Doug Franklin 0:\40382\4038201\docs \hydro\site\site- al.stm KEITH COMPANIES StormCAD v1.0 12/12/02 08:02:50 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755 -1666 Page 1 of 2 --------------- - - - - -- Calculations Complete ---------------- - - - - -- ** Analysis Options ** Friction method: Manning's Formula HGL Convergence Test: 0.001000 Maximum Network Traversals: 5 Number of Pipe Profile Steps: 5 Discharge Convergence Test: 0.001000 Maximum Design Passes: 3 ----------- - - - - -- Network Quick View ------------------------ I Hydraulic Grade Label I Length I Size I Discharge I Upstream I Downstream I P1 381.58 48 inch 94.60 55.81 .54.40 P2 49.71 48 inch 91.72 56.51 56.34 P3 435.06 48 inch 88.24 58.41 57.01 P4 30.56 12 inch 2.88 56.51 56.34 P5 71.66 8 inch 1.34 57.76 57.01 P6 34.66 36 inch 43.40 58.99 58.87 P7 187.00 36 inch 22.15 59.52 59.34 P8 284.64 36 inch 44.84 59.96 58.87 P9 160.05 12 inch 2.55 61.79 60.34 Pil 11.01 12 inch 1.77 62.57 61.98 P10 117.40 6 inch 0.78 64.44 61.98 P12 156.12 36 inch 42.29 60.87 60.34 P13 206.59 30 inch 20.34 61.64 61.21 P14 38.18 24 inch 10.17 61.87 61.80 P15 27.00 24 inch 10.17 61.85 61.80 PR1 48.00 10 inch 2.14 57.40 57.01 P16 76.83 36 inch 21.95 61.28 61.21 ------- - - - -' Elevations ---------- - - - - -- I Label I Discharge I Ground I Upstream HGL I Downstream HGL I Drywell N 94.60 54.00 54.40 54.40 J1 94.60 62.40 56.34 55.81 J2 91.72 63.40 57.01 56.51 J3 88.24 61.20 58:87 58.41 Il 2.88 61.40 56.63 56.51 I2 1.34 61.08 57.90 57.76 I3 43.40 60.35 59.34 58.99 I -4 22.15 60.35 59.61 59.52 J4 44.84 65.40 60.34 59.96 J5 2.55 67.30 61.98 61.79 I5 1.77 66.90 62.71 62.57 I6 0.78 66.80 64.61 64.44 J6 42.29 66.40. 61.21 60.87 J7 20.34 64.00 61.80 61.64 I8 10.17 63.49 61.96 61.87 I7 10.17 63.22 61.94 61.85 Rl 2.14 64.20 57.40 57.40 J8 21.95 66.20 61.37 61.28 Elapsed: 0 minute(s) 1 second(s) 1 Project Title: The Centre at La Quinta - On -site Project Engineer: Doug Franklin ' o:\40382\ 4038201 \dots \hydro\site\site - al.stm KEITH COMPANIES StormCAD 0.0 12/12/02 08:02:50 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755 -1666 Page 2 of 2 Node Report Node Additional Flow (cfs) Known Flow (cfs) Structure 3ischargE (cfs) Ground Elevation (ft) Rim Elevation (ft) Sump Elevation (ft) HGL In (ft) HGL Out (ft) 11 0.00 2.88 2.88 61.40 61.40 55.00 56.63 56.51 R1 0.00 2.14 2.14 64.20 64.20 50.88 57.40 57.40 12 0.00 1.34 1.34 61.08 61.08 54.00 57.90 57.76 J8 0.00 21.95 21.95 66.20 66.20 57.35 .61.37 61.28 17 0.00 10.17 10.17 63.22 63.22 59.20 61.94 61.85 18 0.00 10.17 10.17 63.49 63.49 59.30 61.96 61.87 J7 N/A N/A 20.34 64.00 64.00 59.00 61.80 61.64 J6 N/A N/A 42.29 66.40 66.40 57.35 61.21 60.87 16 0.00 0.78 0.78 66.80 66.80 64.00 64.61 64.44 15 0.00 1.77 1.77 66.90 66.90 62.00 62.71 62.57 J5 N/A N/A 2.55 67.30 67.30 61.11 61.98 61.79 J4 N/A N/A 44.84 65.40 65.40 56.77 60.34 59.96 1-4 0.00 22.15 22.15 60.35 60.35 55.34 59.61 59.52 13 21.25 22.15 43.40 60.35 60.35 54.48 59.34 58.99 J3 N/A N/A 88.24 61.20 61.20 54.31 58.87 58.41 J2 N/A N/A 91.72 63.40 63.40 50.40 57.01 56.51 J1 N/A N/A 94.60 62.40 62.40 50.13 56.34 55.81 Drywell No. N/A I N/A 1 94.601 54.001 54.001 48.001 54.401 54.40 Project Title: The Centre at La Quinta - On -site o:\ 40382\ 4038201 \docs \hydro\site\site - al.stm KEITH COMPANIES 12/12/02 08:04:07 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755 -1666 Project Engineer: Doug Franklin StormCAD v1.0 Page 1 of 1 Pipe Report Pipe Dn Node Up Node Q (cfs) Cap (cfs) Length (ft) Section Material Size Roughness S (ft/ft) V avg (f /s) Up Invert (ft) Dn Invert (ft) Up HGL (ft) Dn HGL (ft) P4 J1 11 2.88 15.41 30.56 PVC 12 inch 0.012 .159359 3.67 55.00 50.13 56.51 56.34 PR1 J2 R1 2.14 2.37 48.00 PVC 10 inch 0.012 .010000 3.92 50.88 50.40 57.40 57.01 P5 J2 12 1.34 3.66 71.66 PVC 8 inch 0.012 .078147 3.84 56.00 50.40 57.76 57.01 P16 J6 J8 21.95 44.39 76.83 PVC 36 inch 0.012 .003775 3.10 57.64 57.35 61.28 61.21 P15 J7 17 10.17 21.09 27.00 PVC 24 inch 0.012 .007407 3.24 59.20 59.00 61.85 61.80 P14 J7 18 10.17 21.72 38.18 PVC 24 inch 0.012 .007858 3.24 59.30 59.00 61.87 61.80 P13 J6 J7 20.34 39.71 206.59 PVC 30 inch 0.012 .007987 4.14 59.00 57.35 61.64 61.21 P12 J4 J6 42.29 44.04 156.12 PVC 36 inch 0.012 .003715 5.98 57.35 56.77 60.87 60.34 P10 J5 16 0.78 0.95 117.40 PVC 6 inch 0.012 .024617 4.12 64.00 61.11 64.44 61.98 P11 J5 15 1.77 10.97 11.01 PVC 12 inch 0.012 .080836 3.15 62.00 61.11 62.57 61.98 P9 J4 J5 2.55 6.36 160.05 PVC 12 inch 0.012 .027117 3.85 61.11 56.77 61.79 60.34 P8 J3 J4 44.84 67.17 284.64 PVC 36 inch 0.012 .008642 6.34 56.77 54.31 59.96 58.87 P7 13 1-4 22.15 46.06 187.00 PVC 36 inch 0.012 .004064 3.13 55.34 54.58 59.52 59.34 P6 J3 13 43.40 50.60 34.66 PVC 36 inch 0.012 .004905 6.14 54.48 54.31 58.99 58.87 P3 J2 J3 88.24 147.52 435.06 PVC 48 inch 0.012 .008987 7.02 54.31 50.40 58.41 57.01 P2 J1 J2 91.72 114.68 49.71 PVC 48 inch 0.012 .005432 7.30 50.40 50.13 56.51 56.34 P1 I Drywell No. 1 JA 1 94.601 116.261 381.581 PVC 148inch 1 0.0121.0055821 7.53150.13148.001 55.811 54.40 Project Title: The Centre at La Quinta - On -site Project Engineer: Doug Franklin o:\ 40382\ 4038201 \dots \hydro\site \site - al.stm KEITH COMPANIES StormCAD v1.0 12/12/02 08:04:19 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755 -1666 Page 1 of 1 ' LWE A 113 UPSTREAM PoPMOM LAN@ •A' 112 C" CF5 ,A,#®a yEn .Y ►� P24 FoTMae w/ PLO& J10 P20 110 J9 P18 19 Lwr. A A -5 Ce, Al IP17- p�TkRta� �sA►� J8 Project Title: The Centre at La Quinta - On -site Project Engineer: Doug Franklin ' o:\40382\ 4038201 \docs \hydro\site\site- a2.stm KEITH COMPANIES StormCAD v1.0 08/18/02 02:48:10 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755 -1666 Page 1 of 1 fFfDRo R.�AII.T A' 2 P23 111 C.S. AIZ ' J 11 F-7 U04 w/ Pw C� "r. A -4 P22 P21 J10 P20 110 J9 P18 19 Lwr. A A -5 Ce, Al IP17- p�TkRta� �sA►� J8 Project Title: The Centre at La Quinta - On -site Project Engineer: Doug Franklin ' o:\40382\ 4038201 \docs \hydro\site\site- a2.stm KEITH COMPANIES StormCAD v1.0 08/18/02 02:48:10 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755 -1666 Page 1 of 1 ------------ - - - - -- Beginning Calculation Cycle --------------- - - -- Discharge: 2.25 cfs at node I10 Discharge: 7.35 cfs at node Ill Discharge: 4.14 cfs at node 112 Discharge: 6.00 cfs at node I13 Discharge: 10.14 cfs at node Jll Discharge: 17.50 cfs at node J10 Discharge: 19.75 cfs at node J9 Discharge: 5.51 cfs at node I9 Discharge: 25.26 cfs at node J8 Beginning iteration 1 Discharge: 2.25 cfs at node I10 Discharge: 7.35 cfs at node Ill Discharge: 4.14 cfs at node I12 Discharge: 6.00 cfs at node I13 Discharge: 10.14 cfs at node Jll Discharge: 17.50 cfs at node J10 Discharge: 19.75 cfs at node J9 Discharge: 5.51 cfs at node 19 Discharge: 25.26 cfs at node J8 Discharge Convergence Achieved in 1 iterations: relative error: 0.0 ** Warning: Design constraints not met. Information: J8 Known flow propagated from upstream junctions. Information: P18 Surcharged condition Violation: P18 does not meet minimum velocity constraint. Information: P17 Surcharged condition Information: J9 Known flow propagated from upstream junctions. Information: P19 Surcharged condition Information: P20 Surcharged condition Information: J10 Known flow propagated from upstream junctions. Information: P21 Surcharged condition Information: P22 Surcharged condition Information: Jll Known flow propagated from upstream junctions. Information: P23 Surcharged condition Information: P24 Surcharged condition Violation: P24 does not meet minimum cover constraint at upstream end. --------------- - - - - -- Calculations Complete ---------------- - - - - -- ** Analysis Options ** Friction method: Manning's Formula HGL Convergence Test: 0.001000 Maximum Network Traversals: 5 Number of Pipe Profile Steps: 5 Discharge Convergence Test: 0.001000 Maximum Design Passes: 3 ----------- - - - - -- Network Quick View ------------------------ I Hydraulic Grade Label I Length I Size I Discharge ( Upstream I Downstream I P18 220.57 36 inch 19.75 61.53 61.37 P19 230.00 10 inch 2.25 63.68 61.61 P17 200.00 15 inch 5.51 62.61 61.37 P20 180.88 30 inch 17.50 61.89 61.61 P21 70.90 18 inch 7.35 62.30 62.01 P22 31.41 24 inch 10.14 62.06 62.01 P23 30.51 12 inch 4.14 62.51 62.16 P24 179.93 24 inch 6.00 62.28 62.16 ----- - - - - -- Elevations ---------- - - - - -- I Project Title: The Centre at La Quinta - On -site Project Engineer: Doug Franklin o:\40382\4038201\docs \hydro\site\site- a2.stm KEITH COMPANIES StormCAD 0.0 12/12/02 08:24:50 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755 -1666 Page 1 of 2 Label Discharge Ground Upstream HGL I Downstream HGL J8 25.26 66.20 61.37 61.37 J9 19.75 66.50 61.61 61.53 I10 2.25 64.90 63.84 63.68 I9 5.51 65.60 62.61 62.61 J10 17.50 64.70 62.01 61.89 Ill 7.35 63.80 62.30 62.30 J11 10.14 64.50 62.16 62.06 I12 4.14 64.00 62.77 62.51 I13 6.00 63.50 62.32 62.28 Elapsed: 0 minute(s) 0 second(s) Project Title: The Centre at La Quinta - On -site Project Engineer: Doug Franklin ' o:\40382\ 4038201 \docs \hydro\site\site- a2.stm KEITH COMPANIES StormCAD v1.0 12/12/02 08:24:50 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755 -1666 Page 2 of 2 Project Title: The Centre at La Quinta - On -site o:\ 4038244038201 \dots \hydro\site\site- a2.stm KEITH COMPANIES 12112/02 08:25:09 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755 -1666 ■ m m m m Project Engineer: Doug Franklin StormCAD v1.0 Page 1 of 1 � � � � iit• � � � i� [♦ i� i� ir• ir• � it• i� � � Pipe Report Pipe Dn Node Up Node Q (cfs) Cap (cfs) Length (ft) Section Material Size Roughness S (ft/ft) V avg (f /s) Up Invert (ft) Dn Invert (ft) Up HGL (ft) Dn HGL (ft) P17 J8 19 5.51 6.75 200.00 PVC 15 inch 0.012 .009300 4.49 59.50 57.64 62.61 61.37 P24 J11 113 6.00 16.44 179.93 Concrete 24 inch 0.013 .005280 1.91 60.25 59.30 62.28 62.16 P23 J11 112 4.14 3.12 30.51 PVC 12 inch 0.012 .006555 5.28 59.50 59.30 62.51 62.16 P22 J10 J11 10.14 18.03 31.41 PVC 24 inch 0.012 .005412 3.23 59.30 59.13 62.06 62.01 P21 J10 111 7.35 8.22 70.90 PVC 18 inch 0.012 .005219 4.16 59.50 59.13 62.30 62.01 P20 J9 J10 17.50 27.04 180.88 PVC 30 inch 0.012 .003704 3.56 59.13 58.46 61.89 61.61 P19 J9 110 2.25 2.90 230.00 PVC 10 inch 0.012 .014957 4.13 61.90 58.46 63.68 61.61 P18 JJ8 jig 1 19.751 44.051 220.571 PVC 136inch 1 0.0121.0037181 2.79 58.46 157.64 1 61.531 61.37 Project Title: The Centre at La Quinta - On -site Project Engineer: Doug Franklin o:\ 40382\ 4038201 \dots \hydro\site\site- a2.stm KEITH COMPANIES StormCAD v1.0 12/12/02 08:25:29 PM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755 -1666 Page 1 of 1 P1 r; P2 Drywell No. 2 U x-22 R1 LD1 R2 R3 R4 R5 PR1 PLD1 Lo4Vra6 Pogt prtO.w� P3 P4 J1 J2 J3 v � Z n -b 0 Z 13 PR2 PR3 PR4 PR5 PR6 P10 PS P6 P8 P9 t-"4F ��11 J4 JS J6 J7 f LAr 73.1 12 5SE VPSW 4M oP L&-,E of Q,. Project Title: The Centre at La Quinta - On -site Project Engineer: Doug Franklin o:\ 40382 \4b38201 \dots \hydro\site\site - bl.stm KEITH COMPANIES Storm CAD v1.0 08/21/02 09:41:29 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755 -1666 Page 1 of 1 ' ------------ - - - - -- Beginning Calculation Cycle ------------- - - - - -- Discharge: 0.28 cfs at node LD1 Discharge: 3.90 cfs at node R2 Discharge: 3.32 cfs at node R3 Discharge: 2.85 cfs at node R4 Discharge: 2.85 cfs at node I2 Discharge: 3.10 cfs at node R5 Discharge: 2.29 cfs at node R6 Discharge: 49.44 cfs at node I3 Discharge: 51.73 cfs at node J7 Discharge: 54.83 cfs at node J6 Discharge: 60.54 cfs at node J5 Discharge: 63.86 cfs at node J4 Discharge: 67.75 cfs at node J3 Discharge: 68.03 cfs at node J2 Discharge: 1.48 cfs at node R1 Discharge: 69.51 cfs at node J1 Discharge: 74.71 cfs at node Il Discharge: 74.71 cfs at node Drywell No. 2 Beginning iteration 1 Discharge: 0.28 cfs at node LD1 Discharge: 3.90 cfs at node R2 Discharge: 3.32 cfs at node R3 Discharge: 2.85 cfs at node R4 Discharge: 2.85 cfs at node I2 Discharge: 3.10 cfs at node R5 Discharge: 2.29 cfs at node R6 Discharge: 49.44 cfs at node I3 Discharge: 51.73 cfs at node J7 Discharge: 54.83 cfs at node J6 Discharge: 60.54 cfs at node J5 Discharge: 63.86 cfs at node J4 Discharge: 67.75 cfs at node J3 Discharge: 68.03 cfs at node J2 Discharge: 1.48 cfs at node Rl Discharge: 69.51 cfs at node Jl Discharge: 74.71 cfs at node I1 Discharge: 74.71 cfs at node Drywell No. 2 Discharge Convergence Achieved in 1 iterations: relative error: Information: Drywell No. 2 Known flow propagated from upstream Information: P1 Surcharged condition Information: J1 Known flow propagated from upstream junctions. Information: P3 Surcharged condition Information: J2 Known flow propagated from upstream junctions. Information: PLD1 Surcharged condition Information: P4 Surcharged condition Information: J3 Known flow propagated from upstream junctions. Information: P5 Surcharged condition Information: J4 Known flow propagated from upstream junctions. Information: P6 Surcharged condition Information: J5 Known flow propagated from upstream junctions. Information: P7 Surcharged condition Information: P8 Surcharged condition Information: J6 Known flow propagated from upstream junctions. Information: P9 Surcharged condition Information: J7 Known flow propagated from upstream junctions. Information: P10 Surcharged condition --------------- - - - - -- Calculations Complete ------------- - - - - -- ** Analysis Options ** Friction method: Manning's Formula 0.0 junctions. Project Title: The Centre at La Quinta - On -site Project Engineer: Doug Franklin ' o: 440382\ 4038201 \docs\hydro\site\site- bl.stm KEITH COMPANIES StormCAD 0.0 08/21/02 09:41:15 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755 -1666 Page 1 of 2 HGL Convergence Test: 0.001000 Maximum Network Traversals: 5 Number of Pipe Profile Steps: 5 Discharge Convergence Test: 0.001000 Maximum Design Passes: 3 ----------- - - - - -- Network Quick View ------------------------ I Hydraulic Grade I Label I Length I Size I Discharge I Upstream I Downstream I P1 39.34 54 inch 74.71 54.55 54.50 P2 280.68 54 inch 69.51 55.05 54.75 P3 25.40 48 inch 68.03 55.28 55.23 PRl 128.33 10 inch 1.48 60.75 55.23 PLD1 44.17 4 inch 0.28 56.37 55.55 P4 103.58 48 inch 67.75 55.75 55.55 PR2 43.00 10 inch 3.90 61.00 56.02 P5 142.75 48 inch 63.86 56.26 56.02 PR3 43.00 10 inch 3.32 60.97 56.50 P6 70.00 48 inch 60.54 56.61 56.50 PR4 43.00 10 inch 2.85 60.94 56.82 P7 6.50 12 inch 2.85 56.86 56.82 P8 111.83 48 inch 54.83 56.96 56.82 PR5 43.00 10 inch 3.10 60.96 57.14 P9 81.00 48 inch 51.73 57.23 57.14 PR6 43.00 10 inch 2.29 60.88 57.39 P10 149.04 48 inch 49.44 57.54 57.39 ----- - - - - -- Elevations ---------- - - - - -- I Label I Discharge I Ground I Upstream HGL I Downstream HGL Drywell N 74.71 54.00 54.50 54.50 I1 ,74.71 61.38 54.75 54.55 J1 69.51 63.00 55.23 55.05 J2 68.03 63.10 55.55 55.28 R1 1.48 64.20 60.89 60.75 LD1 0.28 59.56 56.46 56.37 J3 67.75 63.50 56.02 55.75 R2 3.90 64.20 61.49 61.00 J4 63.86 62.90 56.50 56.26 R3 3.32 64.20 61.34 60.97 J5 60.54 62.50 56.82 56.61 R4 2.85 64.20 61.23 60.94 I2 2.85 62.40 56.98 56.86 J6 54.83 63.05 57.14 56.96 R5 3.10 64.20 61.29 60.96 J7 51.73 62.95 57.39 57.23 R6 2.29 64.20 61.09 60.88 I3 49.44 62.80 57.68 57.54 Elapsed: 0 minute(s) 1 second(s) Project Title: The Centre at La Quinta - On -site Project Engineer: Doug Franklin ' o:\40382\4038201\docs\hydro\site\site-bl.stm KEITH COMPANIES StormCAD 0.0 08/21/02 09:41:15 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755 -1666 Page 2 of 2 Node Report Node Additional Flow (cfs) Known Flow (cfs) Structure DischargE (cfs) Ground Elevation (ft) Rim Elevation (ft) Sump Elevation (ft) HGL In (ft) HGL Out (ft) R1 0.00 1.48 1.48 64.20 64.20 60.20 60.89 60.75 13 0.00 49.44 49.44 62.80 62.80 53.36 57.68 57.54 R6 0.00 2.29 2.29 64.20 64.20 60.20 61.09 60.88 J7 N/A N/A 51.73 62.95 62.95 52.76 57.39 57.23 R5 0.00 3.10 3.10 64.20 64.20 60.20 61.29 60.96 J6 N/A N/A 54.83 63.05 63.05 52.43 57.14 56.96 12 0.00 2.85 2.85 62.40 62.40 53.00 56.98 56.86 R4 0.00 2.85 2.85 64.20 64.20 60.20 61.23 60.94 J5 N/A N/A 60.54 62.50 62.50 51.98 56.82 56.61 R3 0.00 3.32 3.32 64.20 64.20 60.20 61.34 60.97 J4 N/A N/A 63.86 62.90 62.90 51.69 56.50 56.26 R2 0.00 3.90 3.90 64.20 64.20 60.20 61.49 61.00 J3 N/A N/A 67.75 63.50 63.50 51.11 56.02 55.75 LD1 0.00 0.28 0.28 59.56 59.56 54.50 56.46 56.37 J2 N/A N/A 68.03 63.10 63.10 50.69 55.55 55.28 J1 N/A -N /A 69.51 63.00 63.00 50.57 55.23 55.05 11 5.20 69.51 74.71 61.38 61.38 49.42 54.75 54.55 Drywell No. N/A I N/A 1 74.711 54.001 54.001 47.50 1 54.501 54.50 Project Title: The Centre at La Quinta - On -site Project Engineer: Doug Franklin 0:\ 4038244038201 \docs \hydro\site\site - bl.stm KEITH COMPANIES StormCAD v1.0 08/21/02 09:41:42 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755 -1666 Page 1 of 1 w w w w ww ■w w w ww i w w w w w w w w w■ Pipe Report Pipe Dn Node Up Node Q (cfs) Cap (cfs) Length (ft) Section Material Size Roughness S (fUft) V avg (ft/s) Up Invert (ft) Dn Invert (ft) Up HGL (ft) Dn HGL (ft) PR1 J1 R1 1.48 6.50 128.33 PVC 10 inch 0.012 .075041 3.31 60.20 50.57 60.75 55.23 P10 J7 13 49.44 98.73 149.04 PVC 48 inch 0.012 .004026 3.93 53.36 52.76 57.54 57.39 PR6 J7 R6 2.29 9.87 43.00 PVC 10 inch 0.012 .173023 4.52 60.20 52.76 60.88 57.39 P9 J6 J7 51.73 99.32 81.00 PVC 48 inch 0.012 .004074 4.12 52.76 52.43 57.23 57.14 PR5 J6 R5 3.10 10.09 43.00 PVC 10 inch 0.012 .180698 5.81 60.20 52.43 60.96 57.14 P8 J5 J6 54.83 98.71 111.83 PVC 48 inch 0.012 .004024 4.36 52.43 51.98 56.96 56.82 P7 J5 12 2.85 15.29 6.50 PVC 12 inch 0.012 .156923 3.63 53.00 51.98 56.86 56.82 PR4 J5 R4 2.85 10.38 43.00 PVC 10 inch 0.012 .191163 5.40 60.20 51.98 60.94 56.82 P6 J4 J5 60.54 100.16 70.00 PVC 48 inch 0.012 .004143 4.82 51.98 51.69 56.61 56.50 PR3 J4 R3 3.32 10.56 43.00 PVC 10 inch 0.012 .197907 6.19 60.20 51.69 60.97 56.50 P5 J3 J4 63.86 99.19 142.75 PVC 48 inch 0.012 .004063 5.08 51.69 51.11 56.26 56.02 PR2 J3 R2 3.90 10.91 43.00 PVC 10 inch 0.012 .211395 7.19 60.20 51.11 61.00 56.02 P4 J2 J3 67.75 99.09 103.58 PVC 48 inch 0.012 .004055 5.39 51.11 50.69 55.75 55.55 PLD1 J2 LD1 0.28 0.61 44.17 PVC 4 inch 0.012 .086258 3.21 54.50 50.69 56.37 55.55 P3 J1 J2 68.03 106.95 25.40 PVC 48 inch 0.012 .004724 5.41 50.69 50.57 55.28 55.23 P2 11 J1 69.51 136.36 280.68 PVC 54 inch 0.012 .004097 4.37 50.57 49.42 55.05 54.75 P1 Drywell No. 2 ill 1 74.71 470.611 39.341 PVC 154inch 0.0 12 .048805 1 4.70 149.42147.501 54.551 54.50 Project Title: The Centre at La Quinta - On -site Project Engineer: Doug Franklin 0:\40382\ 4038201 \dots \hydro\site\site - bl.stm KEITH COMPANIES StormCAD v1.0 08/21/02 09:41:56 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755 -1666 Page 1 of 1 1 l'� c I11� UPSTREAM POD ,r.' I12 04 P21 P20 1 16,Y04 AiL E I 11.0 ti -1y 1 A'3-jr- w-mr. k $-7-t 4uAtKa..RN PM►�►S P19 1 1 M 19 c; s. B5 6 -S D-6 1 P18 1 EJ 18 1 P17 �.►N� �.��� ' �vTNR@ Pnaarct -S Z. -H 1317 1 P16 16 -q 1 15 -e. 64 0- l0 1 CAT. -3 P15 P14 1 J10 P13 1 urs, 0.2 C.1�. 33 J9 P12 14 6 -lt g -tom LD2 P11 ►�ocK PLD2 OQ4� 1 J8 Project Title: The Centre at La Quinta - On -site Project Engineer: Doug Franklin o:\ 40382\ 4038201 \does \hydro\site\site- b2.stm KEITH COMPANIES StormCAD v1.0 1 08/21/02 09:42:57 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755 -1666 Page 1 of 1 ------------ - - - - -- Beginning Calculation Cycle --------------- - Discharge: 0.74 cfs at node LD2 Discharge: 3.11 cfs at node I5 Discharge: 6.51 cfs at node I12 Discharge: 8.66 cfs at node Ill Discharge: 19.68 cfs at node I10 Discharge: 22.99 cfs at node 19 Discharge: 29.35 cfs at node I8 Discharge: 35.84 cfs at node I7 Discharge: 43.31 cfs at node I6 Discharge: 46.43 cfs at node J10 Discharge: 5.24 cfs at node I4 Discharge: 51.66 cfs at node J9 Discharge: 52.40 cfs at node J8 Beginning iteration 1 Discharge: 0.74 cfs at node LD2 Discharge: 3.11 cfs at node I5 Discharge: 6.51 cfs at node I12 Discharge: 8.66 cfs at node Ill Discharge: 19.68 cfs at node I10 Discharge: 22.99 cfs at node I9 Discharge: 29.35 cfs at node I8 Discharge: 35.84 cfs at node I7 Discharge: 43.31 cfs at node I6 Discharge: 46.43 cfs at node J10 Discharge: 5.24 cfs at node I4 Discharge: 51.66 cfs at node J9 Discharge: 52.40 cfs at node J8 Discharge Convergence Achieved in 1 iterations: relative error: Information: J8 Known flow propagated from upstream junctions. Information: PLD2 Surcharged condition Information: P11 Surcharged condition Information: J9 Known flow propagated from upstream junctions. Information: P13 Surcharged condition Information: P12 Surcharged condition Information: J10 Known flow.propagated from upstream junctions. F Information: P14 Surcharged condition ' Information: P20 Surcharged condition Information: P21 Surcharged condition --------------- - - - - -- Calculations Complete ---------------- - - - - -- ' ** Analysis Options ** Friction method: Manning's Formula HGL Convergence Test: 0.001000 ' Maximum Network Traversals: 5 Number of Pipe Profile Steps: 5 Discharge Convergence Test: 0.001000 Maximum Design Passes: 3 ----------- - - - - -- Network Quick View ' Label I Length I Size PLD2 64.62 6 inch 'Pll 100.00 42 inch P13 75.00 42 inch P12 19.92 12 inch 'P14 P15 254.72 547.84 12 42 inch inch P16 203.02 42 inch Project Title: The Centre at La Quinta - On -site o:\40382\ 4038201 \docs\hydro\site\site- b2.stm ' 08/21/02 09:49:19 AM Haestad Methods, Inc. Discharge 0.74 51.66 46.43 5.24 3.11 43.31 35.84 Hydraulic Upstream 1 58.64 57.90 58.31 58.54 60.18 59.25 59.58 Grade Downstream 57.68 57.68 58.17 58.17 58.53 58.53 59.51 Project Engineer: Doug Franklin KEITH COMPANIES StormCAD 0.0 37 Brookside Road Waterbury, CT 06708 (203) 755 -1666 Page 1 of 2 ' P17 193.02 42 inch 29.35 59.77 59.85 P18 233.00 36 inch 22.99 60.59 60.16 152.11 30 inch 19.68 61.20 60.96 'P19 P20 99.00 18 inch 8.66 62.14 61.57 P21 229.82 18 inch 6.51 63.12 62.36 ----------- Elevations ---------- - - - - -- I Label I Discharge I Ground I Upstream HGL I Downstream HGL I J8 52.40 64.20 57.68 57.68 LD2 0.74 59.56 58.77 58.64 J9 51.66 62.00 58.17 57.90 J10 46.43 63.20 58.53 58.31 I4 5.24 61.69 58.95 58.54 3.11 62.70 60.33 60.18 'I5 I6 43.31 66.00 59.51 59.25 I7 35.84 66.20 59.85 59.58 29.35 66.50 60.16 59.77 'I8 I9 22.99 65.60 60.96 60.59 I10 19.68 66.65 61.57 61.20 Ill 8.66 67.30 62.36 62.14 6.51 64.23 63.24 63.12 'I12 Elapsed: 0 minute(s) 1 second(s) 1 1 1 Project Title: The Centre at La Quinta - On -site Project Engineer. Doug Franklin o:\ 40382\ 4038201 \docs\hydro\site\site- b2.stm KEITH COMPANIES StormCAD v1.0 08/21/02 09:49:19 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755 -1666 Page 2 of 2 Node Report Node Additional Flow (cfs) Known Flow (cfs) Structure :)ischargE (cfs) Ground Elevation (ft) Rim Elevation (ft) Sump Elevation (ft) HGL In (ft) HGL Out (ft) 14 0.00 5.24 5.24 61.69 61.69 54.50 58.95 58.54 112 0.00 6.51 6.51 64.23 64.23 61.00 63.24 63.12 111 2.16 6.51 8.66 67.30 67.30 60.07 62.36 62.14 110 11.02 6.51 19.68 66.65 66.65 59.67 61.57 61.20 19 3.31 6.51 22.99 65.60 65.60 59.05 60.96 60.59 18 6.36 6.51 29.35 66.50 66.50 58.10 60.16 59.77 17 6.49 6.51 35.84 66.20 66.20 57.32 59.85 59.58 16 7.47 6.51 43.31 66.00 66.00 56.49 59.51 59.25 15 0.00 3.11 3.11 62.70 62.70 56.00 60.33 60.18 J10 N/A N/A 46.43 63.20 63.20 54.27 58.53 58.31 J9 N/A N/A 51.66 62.00 62.00 53.99 58.17 57.90 LD2 0.00 0.74 0.74 59.56 59.56 54.50 58.77 58.64 J8 I N/A I N/A 1 52.401 64.201 64.201 53.361 57.681 57.68 Project Title: The Centre at La Quinta - On -site Project Engineer: Doug Franklin o:\ 40382\ 4038201 \dots \hydro\site\site- b2.stm KEITH COMPANIES StormCAD v1.0 08/21/02 09:49:39 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755 -1666 Page 1 of 1 Pipe Report Pipe Dn Node Up Node Q (cfs) Cap (cfs) Length (ft) Section Material Size Roughness S (ft/ft) V avg (f /s) Up Invert (ft) Dn Invert (ft) Up HGL (ft) Dn HGL (ft) P12 J9 14 5.24 6.18 19.92 PVC 12 inch 0.012 .025602 6.67 54.50 53.99 58.54 58.17 P21 111 112 6.51 7.24 229.82 PVC 18 inch 0.012 .004047 3.68 61.00 60.07 63.12 62.36 P20 110 111 8.66 7.23 99.00 PVC 18 inch 0.012 .004040 4.90 60.07 59.67 62.14 61.57 P19 19 110 19.68 28.37 152.11 PVC 30 inch 0.012 .004076 5.57 59.67 59.05 61.20 60.96 P18 18 19 22.99 46.14 233.00 PVC 36 inch 0.012 .004077 5.35 59.05 58.10 60.59 60.16 P17 17 18 29.35 69.28 193.02 PVC 42 inch 0.012 .004041 5.20 58.10 57.32 59.77 59.85 P16 16 17 35.84 69.69 203.02 PVC 42 inch 0.012 .004088 4.76 57.32 56.49 59.58 59.51 P15 J10 16 43.31 69.38 547.84 PVC 42 inch 0.012 .004052 4.92 56.49 54.27 59.25 58.53 P14 J10 15 3.11 3.18 254.72 PVC 12 inch 0.012 .006792 3.96 56.00 54.27 60.18 58.53 P13 J9 J10 46.43 66.59 75.00 PVC 42 inch 0.012 .003733 4.83 54.27 53.99 58.31 58.17 P11 J8 J9 51.66 86.51 100.00 PVC 42 inch 0.012 .006300 5.37 53.99 53.36 57.90 57.68 PLD2 IJ8 ILD2 1 0.741 0.811 64.621 PVC 16inch 1 0.0121.0176421 3.77 54.50 153.36 1 58.641 57.68 Project Title: The Centre at La Quinta - On -site Project Engineer: Doug Franklin o:\40382\ 4038201 \docs \hydro\site\site- b2.stm KEITH COMPANIES StormCAD v1.0 08/21/02 09:49:49 AM Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 (203) 755 -1666 Page 1 of 1 APPENDIX "A" RCFCD REFERENCE MATERIAL :ar"' �✓` %- ."ts���•�'°��`s..%' \ ''G s� °�-^ 'Jada'i i„tJN� t;�`�- - ;� .:i'- ":C.:i_:. r.u.; .''• r^' i,Jt.. � ?. `�y'�4.a%'• l•'i. 'lip+ C ,�ay.J�..� _ v. :.. '„N.:.n .._ .. •1, y,� ,:�.,�. .'..+:. ��l''- .�•`L� .}� _ .: y.. "•J f>JiJ .. it ,', V".,..,'��:,:'.:�. r, •eew �fc +`i .1 - >r ,J.. ?':Y\ 'j'\ �+`;�..C�Y,.1, •. �t.bt -. ,1 +,.i 't P.: j,,;,,u. rJaliia•r t' ,t,}q.:. H`•Cf `� >i ,z,` :.1 PJCH- ' ?�= `- Y',':r•: �',r..:• >S._ I�7:Sr -. ud lv- C'�... �i� :1'•� 1 .'/•:'•V�~.r-. t9`"•trar "' _Sa:= a.: *.:�.r, ".r _ r,,- �`- �?•tsx - ,s'� -� `f. r..�:s)b�>r ''�.:�gvs --• �- '�..w�� ✓.2'� s. _ l - ..;.�•, ,..�r4: -t' >�„�.;- �!1Yya„ �� -n` 410 __ ('1+^';• �i`'��' •Si. ;t; � ..t f+: ?,..s .t .. l2 -,,�,, 1.+�:,.: = }:°';,. �t' ^d,�'•. _r'�:.>.,. ( tv, .rr� •-•'�, a` `s--� `175�� �. . :J>;�' �,� c-- -:r.:,:s:. .'}'-,�`.:�.�\",���'`• t� �fi �� .t Lion' °i�,�w" ',�- .`,'rly ~�:t"`"`tr=;;' �;'�'��"'.UF't \ ir.. `:i` .: :2 - _ • .3.. l, :r , :�'_i� :'( � -, '- -`1> 3:ri • . ,n.! : \- fcp''.�:t -. �- � - -+'.'r § =i=';a ��`S•['J"`:,'1r`s`�t,�r'''il's� � D; (...= ::.��iv r .,.>�'}w \, tr .:���� -.�,. h fir' .p':L'�'.•;� -!f'. �Y.1 " <t1. � � A �` s.,�•t�`''',''o�` °: � ' �.�-t Sr` '"ti �. ,a.� 5 r.: raur:�`t' ��...+�,•`�:;'. _ = �•-:4�'.. _.»r 9,\..f�" c� : .rfS . � . - ._- _:t+.�^ -:._,. .�, .. t;"'+' )�n;.t.�z-':. .,., ,.:`?Si: r'_`•' . a : r•s-s ,a i'u_- �`���' -F .sa:•,,s; •,i " :arh it`"„''l "' .'h, „- Y1ltt:' `?zq- ry�1*� ;C e•” :;j `�" ,ate' `' � �;, �, t'� • �'•' �� _ > �:t >. � �; , �.,,- �:'` g ', '' �� �.:.•�::. :Y `i:v��,,: :� - ,,T„ +{;.�`•i' .0 rte•` '`."�;�.'' h'+ __ Y �.. \%. ��7 Sr�:,'.�'i�•:{:r� ..ys•.- .�w.v. •�, `Ark'" . -s, ;� }-� f11 A T r f c 2 0 I ATC C' -r. C ACTUAL IMPERVIOUS COVER Recommended Value Land Use (1) Range- Percent For Average. Conditi6ns- Percent(2 Natural or Agriculture 0 - 10 0 Single Family Residential: (3) 40,000-S. F. (1 Acre) Lots 20,000 S. F. ( Acre) Lots 7,200 _10,000 S. F. Lots Multiple Family Residential: Condominiums Apartments Mobile Home Park 10 - 25 30 - 45 45 ­55 45 -.70 65. -90 11-10100D-161 20 40 50 65 80 75 Commercial, Downtown 80 -100 90 Business or Industrial Notes: 1. Land use should be based on ultimate development of.the watershed. Long range master plans for the County.and incorporated cities should be reviewed to insure reasonable land use assumptions. 2. Recommended values are based on average conditions which may not apply to a particular study area. The percentage impervious may vary greatly even on comparable sized lots due to differences in. dwelling size, improvements, etc. Landscape practices should also be considered as it is common in some areas to use ornamental grav els_ underlain by impervious plastic materials in place of lawns and shrubs. A field investigation of a study area should always be made, and a review of aerial photos, where available may assist in estimat- ing the percentage of impervious cover in developed areas. 3. For typical horse ranch subdivisions increase impervious area 5 per - cent over-the values recommended in the table above. RCFC & WC® s-�YDRJLJGY 1\11ANUAL IMPERVIOUS COVER FOR DEVELOPED AREAS PLATE D -5.6 APPENDIX "B" HYDROLOGY MAP Project: 'i-1}E ClEnI1RE A 1,& CJwWr Description: [KIST{ 0, ELOW pATtFp Aj _ The Keith Companies 'i038Z-01 Dote: 11- I-OZ QX Pr +7J )[ i. J Ma'' � .1 r,JJ•'. ; � �" f ; � .id � ,: ;) r;�, if'`{ } f i ♦� i it % 'i ""� t .�• ` .✓� f ` t _ {..,� ° �......f t. '•a. t2 i 1 , 1 .. \, -.•-t " f , C.-. .� (,r tl 1 ( �{ ,. _ �' "`�.. f -..^. ! /- �. %---- "� -mot '�t.f �� � ,`_♦ �, ] tf t %( v K � ,� � } , r � .S' .`-_".'f ��'� +,k2°c3,v�__•{^� `ir-• ,i ;'�? ��..,1.;...___,... / 3j.��I 't••:1 .��- �1 ! E��)(�"7 ?�lt) � /✓ � Ft�~ 'J� .. "-.f i ��`�4�� ♦�;�� � � ry R �'�' (j Flo � � J� , •�•.2Jj +i +y; v'��' ��}�.�tii v1 f s� - 1 � ~-, �; �•l: J �* S V � , i � ,. \R ,, .-i �Jf- '.% V•is 1, tG�"_ t � � st 1 j ' ��- ''iii' \'3 ��i �;� e `•�! 7,. ( \ /�•� -�"'� b . t t� v //3 ra 1 t �'' �Jr ♦ a: `f! {��� C� ln.. ` (� �% �` (A� t �1 ./ R f�. y'•' =�'r' .ten ; fY••,y tJ t= C. - -�� a! Z...'` (� �-• -) afi , s_� AD ...'N ^•.�.,'4 '�• °D `) $':ice v +! ';1s , ♦` �r .� o�� � � s"•+J'+,♦. ?._1 l \ \�N�`�., c 13:1 1 r� a ..r ✓ . �-� r r�'' \I A,r..__,. -%� f r [ dl (� 1 t. -•\'� i' 1 5 -.�. .. `-.-> F'��'f ..i :..✓ l l rl/ `5' t., >'?: "�' fl`= /Y1.�V ...^ j.�♦ !<- q� (s se l"J,•o.� '4% t,, S/ i~ =%i; `�j;,r'�.(' }•r r ,`, a' "*� , r,� � °Simi- m-,`.) • \� �-,. i /lsj /�,�.^, --' { � f'�w t`' e; ,, // jt = �'�.'�'� 1' 1 (" Ja f l` -�^ #✓,``_. tit (F r !" �,Fj r %.U,, j1 jU ':l jrD^ ?7�') vr..` ,".� } ✓ ..{`'• Cl ' J\ f ,i 1�, <L;�!•��, j1S`4 r r `i`21!� `--" ' ; ��. L.^ +'� S(�jr ''u"r �1 •..�}�O 1'r h 'j •` "'.. `•- -.=_w— v t .] r V i4. \l '� � �... ';\ � �.' \•�r � �' \^�'L/ �i .t s ��11. «`f u. ,���� `�,..`i., � �l ♦ � F� Fi} , 1, ✓ c 1 .. k, ♦. ls� �,r •�,,;' �:, r,..,_ -•�� °::` 1' ,A: -% �S. �;} fsss^ - 1 •+,'�•r -.._� �1i {j ^.. :>' %tr if t,'lk t�� '}' C. t`7v a_r; -f r..3 ; C,. i ,i �`� `+i `i_ u '� ! c S [ '• ° `:'/ V { � .� ?�1 ? : � t; �'', l !♦-•^' , }i i (�. , 1 ♦ w \��� �!. "_..ter 1�♦` ��./ ` ^. ,`c�! "i t ~.t� - -�_�'.l jj O (� `t,u •� i0 s" � ��tt ����1 � `�' F ���tt� \ a� ��t -,11. �f �Jl `�i �l�'U)c °�t �ti `tee;• ✓; «:f�; f1{ `l} 5 { tO 1` i�•n r 1, +) _ ~``� J ♦ i i , �� . 4/ J�1 �4``F �4% t, f t -` �l ,1 67j' ".ta k• "J\ L SS J �j,� J' F 1�+� i:'i" \l))lrsc� !�'31' ) 'IA `�^' Z, Qfil ,@�� i�,� \`..";j/:i. �� ^tl� ^ \l iv`, ♦i„ :1�'/1� J�i} 3V.",\ �tY_1 11 ax INC it �� ?'"'Lf S\ \ �1 ` i v> �, �z "t `` ♦'� Sf � �� . itl �': ,/J �, 'ht t..,, k�.l�`,1 � +_ 1 �1:'• ;C'->,! 'tom fi• ♦�•'• � �...,_- \ k ��� 2F l -ti's •. �\ � jj � .l ( � '^ � i "' ;\ r}�.' :_ `^••.. � 7 ,.•-S E`J• - r.. ;, � 1M ; ✓"� {„t1: (J '' \,' �l..J %i: ^f '.-' C. •r ��• i `�.`': �1� .n '`�"_,,,f' a' 't r�� � ,.: +Y:- 3�./ r" '�^ _ ..._ .f} i, .•ti y",. © `- •t � r, � "'' y' y eYt,;'L, ., c,, ` i, 7 s �� �. � E,•.. r_,.� -- - �.r -'•.. -- _%" r.✓ � i � J ��_'�. . c%%t N 'j , -�> i , ,.• - - -• �}\ .� t .i �.� tv`, ♦� t'c, ,L3 •:.c_, ,% _ C � _ ,• --�_? �jv r :i r lt� It ` t 't) « ` ^:; L ' `-" ljstN`N�v \1 \'`• ?i , t } ;n f. r= C' 1 !S, it .7 �„j((��``!\ v ? L�".:� t..� �� �' -, \..J ��,,- cP \. � } i1 .l� ru y „r, i �; .,.�•— S ' `"''ice �L � � m•;c It ., f { �� �L; i '1 :,. '`.��� fi'l`; ^�' '. lk :' `�" � i i f`._..:.? = x,�-'"�i.� .." ._ - ^� °` 1^• �C �?it .1 r� �,�1' ., !ciJJ St` f f 3 0. e^ i, r. G .. I /,... Ili' ` � . ^`. r,'.. (� N' i 4 ._ tit i= SCAI�.rG�. I ( �� \ Sly C `���.(•:"" � �♦ T i \ ;, , � � } 1 ,/ \� i \ ' , , iy +3) r<Aj . I Cl =19.7 CFS T58 MIN say Zj -j 127 HP 74� F r i -rte T �AC� WO .2 Ft FS FS 1W MI N® 20 100= �2 '2 22':: 12A OIN. T — 12. MIK 11A Z58 MI No jJ N.' 3 0 A �mllw In au■l'l� IflH =35.6 CFS El�v 9.18 MIN. =49.4 CFS 940 r I 0 c® • n s II 1 � 11 I I II �� K 0.2OAC - II ®� I ®4.84 CFS 7.40 CF's e = -7 026 i II it 14 II I,I 0.27 CFS II 7 P-10 LO ®VA(� ® O ® m !fl i h f I fi a.A A A �eC 1 1 U �CFS n - 1aI Woe AE' -- _ -- __ — — - -- - - -71 —29.10 Cis i _. 5._ ..... .... .....t ,, _ .. ,... P. II GPs I 1 ED �DS � G J� - - — 1.i4A C ®® I ER r n 0' r. r . rN. y b I a g � lS a q =8.01 CFS s.s5 CFS cm 3 s r a of 3 Il II II 6 , 7 II II � rll II 11 I I® ILA t Ir: IIII III ti V tv, saa.. x,.s`.,.. , -a_ w.., �:r+r, - �..�..G..�...�.. .,.,.A,��.. .....,b� -... .,.,�,,... x.,.o..,,..•. 6 16 r a k a a� W c e 3 a i IS 5 s. ' h riTI RETAIL ! ! y ®/ 4 I £ n I! <X L" I II k I I I I 7 k T 5 9 *E 5 5 h � 4 N 3 e � t' a 3 t. # x 0 .s Via, ry a a v r C 3 [ b & Y g w„ ! i Ilk' 14Fw I rA FS DRAINAGE. AREA DESIGNATION _ ACRES ®RAIN (9 AREA �O�JN ®ARY AG m DIRECTION OF FLOW HP HIGH POINT VC ELEVATION @ NODE Q ioa m2.2CFS FLOWN FOR 100 YEAR STORM (Q'®c ®2.2CFS) FLOW FOR 100 YEAR STORM FROM KIETH CO. F - r LENGTH OF FLOW P TH A A n 1 r i I PVC 1 1. • I -18" J • i - u J MIN 72.48' i R a 16.05% �f. f• s I I _ i r •= I i II I I I mm i" t I I 4 . _- v - 1 a I k r 1 L d I R , m I: • i IR II • ■ 3 R f ` I I III- —R -- - 0.40% _,- --�- _ -'::T� - - - - - -- — - _ -___� _ k II ly { 1 • i J } 1 _ • s f . 1 _ I I _ 0.50% RI _ s _ ®� d � . I a _ _ IR y 51.69% _ E k i! • - . ' .A 70.33 66.07% • y I t - !i J I { 1. ° - t 2" PVC J 1 - i. t - t F R _ R i _ IIVI 1 • ,�� 4 - I I -' - w„ ! i Ilk' 14Fw I I< FS DRAINAGE. AREA DESIGNATION _ ACRES ®RAIN (9 AREA �O�JN ®ARY AG m DIRECTION OF FLOW HP HIGH POINT 64.20FS ELEVATION @ NODE Q ioa m2.2CFS FLOWN FOR 100 YEAR STORM (Q'®c ®2.2CFS) FLOW FOR 100 YEAR STORM FROM KIETH CO. F TIME OF CONCENTRATION r LENGTH OF FLOW P TH A A n CUBIC U C FEET PER SECOND • f I- S 1 3 • � a II I . k J • i u J MIN 72.48' i R a 16.05% �f. s _ i R ,- I mm i" i I I 4 . _- v - 1 a I k r 1 L d I R J m 1 i IR II • ■ 3 R f ` I I III- —R -- - 0.40% _,- --�- _ -'::T� - - - - - -- — - _ -___� _ k II ly 1 } 1 _ s f . _ 0.50% RI a ®� ` 41.34% _ I I I a 1 I� _ a _ E _ i! • 1 . ' .A 70.33 66.07% • y I t - !i J I { 1. ° - t 2" PVC J 1 - i. t - t F R _ R _ IIVI 1 • 4 - -' - �me 9 P I s, P lad #a. 1 cm 1. d T�. �4 s tY Nfi I I< FS DRAINAGE. AREA DESIGNATION _ ACRES ®RAIN (9 AREA �O�JN ®ARY AG m DIRECTION OF FLOW HP HIGH POINT 64.20FS ELEVATION @ NODE Q ioa m2.2CFS FLOWN FOR 100 YEAR STORM (Q'®c ®2.2CFS) FLOW FOR 100 YEAR STORM FROM KIETH CO. TC =5.70 MIN TIME OF CONCENTRATION r LENGTH OF FLOW P TH A CFS CUBIC U C FEET PER SECOND • f I- S 1 3 • � a II I . k J • i u J S 72.48' i R a • �f. i i R ,- Irz mm i" i I I 4 ■ 1 v a I 1 L d I R J m 1 i IR II • ■ 3 R f ` I I III- I f�y� - . _,- --�- _ -'::T� -- ._ -' _ -___� _ k 1 } k R 0.50% a I I a r _ a 1. 1 ■ ✓ f 1 . ' 47.01' • y I t - !i 1 � 4 — • 3.05% ° - t 43.48% 1 - t - t F • -' - �me 9 P I s, P lad #a. 1 cm 1. d T�. �4 s tY STORM Nfi INLETS _ _ `- FS DRAINAGE. AREA DESIGNATION _ ACRES ®RAIN (9 AREA �O�JN ®ARY AG m DIRECTION OF FLOW HP HIGH POINT 64.20FS ELEVATION @ NODE Q ioa m2.2CFS FLOWN FOR 100 YEAR STORM (Q'®c ®2.2CFS) FLOW FOR 100 YEAR STORM FROM KIETH CO. TC =5.70 MIN TIME OF CONCENTRATION r LENGTH OF FLOW P TH A CFS CUBIC U C FEET PER SECOND I- S 1 3 • � a II I . k J • i u J S !r - i R • i I rr i" i I I 4 v a I R J A ■ 3 ` I I III- I f�y� - . _,- --�- _ -'::T� -- ._ -' _ -___� _ k R 0.50% a r a 1 ■ ✓ f 1 . ' 47.01' • y I t - !i 1 � 4 — • 3.05% ° - t • F 1 - t - t F STORM Nfi INLETS _ _ `- FS DRAINAGE. AREA DESIGNATION _ ACRES ®RAIN (9 AREA �O�JN ®ARY AG m DIRECTION OF FLOW HP HIGH POINT 64.20FS ELEVATION @ NODE Q ioa m2.2CFS FLOWN FOR 100 YEAR STORM (Q'®c ®2.2CFS) FLOW FOR 100 YEAR STORM FROM KIETH CO. TC =5.70 MIN TIME OF CONCENTRATION r LENGTH OF FLOW P TH A CFS CUBIC U C FEET PER SECOND I- S 1 3 • � a II I . k J S i R • i rr i" i I II I v R J A 3 I III- I f�y� •— _,- --�- _ -'::T� -- ._ -' _ -___� _ t a g g d I'. s" r b CIVIL ENGINEERING 9 SURVEYING a LAND PLANNING X740 ftra £per Street, San Diego, California, M11 ® 858- 292 -7770 EXISTING -G DRAIN DRAINAGE. AREA DESIGNATION O.3�AC ACRES ®RAIN (9 AREA �O�JN ®ARY AG m DIRECTION OF FLOW HP HIGH POINT 64.20FS ELEVATION @ NODE Q ioa m2.2CFS FLOWN FOR 100 YEAR STORM (Q'®c ®2.2CFS) FLOW FOR 100 YEAR STORM FROM KIETH CO. TC =5.70 MIN TIME OF CONCENTRATION ®3 / L 00 LENGTH OF FLOW P TH A CFS CUBIC U C FEET PER SECOND b CIVIL ENGINEERING 9 SURVEYING a LAND PLANNING X740 ftra £per Street, San Diego, California, M11 ® 858- 292 -7770 EXISTING STORM DRAIN } v L II i I _ IR I` I- S 1 J J _ i R rr t