Loading...
33444� t PACIFIC ADVANCED CIVIL ENGINEERING, INC. 17S20 Newhope Street, Suite 200 ■ Fountain Valley, California 92708 • 714.481.7300 • fax: 714.481.7299 September 17, 2007 Mr. Ed Wimmer City of La Quinta 78 -495 Calle Tampico La Quinta, CA 92253 -1504 Phone: (760) 777 -7075 RE: Response to Comments for Coral Mountain Trails #8528E in City of La Quinta, California Tract No. 33444 Dear Mr. Wimmer: In response to comments and /or questions received by Stantec regarding the above referenced project, I would like to confirm that the statements contained on page -4, section 4.4, item 2 in the hydrology report prepared by PACE, dated April 2007 are accurate. Based upon the Tentative Tract Map for Coral Mtn. Trails Tract 33444 prepared by Stantec, dated January 2006, the main drainage channels which will convey runoff through and around the project site will be naturalized channels utilizing local rock and boulders to stabilize side slopes and invert where necessary. These channels will most likely include rock grade stabilizers or drop structures and /or channel roughening elements. such as riprap to reduce flow velocities to non - erodible levels ( <5fps). Where velocities exceed 5 fps channel armoring and toe down protection will be provided to reduce the likelihood of erosion and undermining of structures. The grade stabilizers and drop structures may require concrete grouting to minimize erosion. The drop structures will have small drops ranging from 2 to 5 feet in height. These statements indicate the necessary measures that will be implemented by the site developer for the long term stability of the site stormwater drainage channels. If you.have any questions regarding this information please feel free to give me a call at (714) 481 -7300. - Sincerely, PACIFIC ADV CED CIVIL ENGINEERING, INC. JCS /mr P.18528E15- AdministrativelLetterslOutlWimmer, Ed Response Letter 9- 17- 07.docx CO m W � vW//►►O/���ppcc.��.,,�, � W�77 F: J Jrq OFC Watershed Hydrology and Hydraulic Analysis Coral Mountain Trails Tract -33444 City of La Quinta, California May 2007 December 2006 (Revised) Prepared For: Coral Mountain Trails, LLC 74 -001 Reserve Drive Indian Wells, CA 92210 • Prepared by: Pacific Advanced Civil Engineering, Inc. 17520 Newhope Street, Suite 200 Fountain Valley, CA 92708 Telephone: 714.481.7300 Fax: 714.481.7299 s� Contact Person: Jonis C. Smith, P.E. Saila Potukuchi; P.E: • • • Table of Contents 1 Introduction .......................................................................................................... ..............................1 2 Purpose ................................................................................................................ ..............................1 3 Scope or General Objective ................................................................................. ..............................1 4 Previous Studies ................................................................................................. ............................... 2 4.1 Project Site Description .........................................................................:....... ............................... 2 4.2 Offsite Existing Drainage Features and Facilities ........................................... ............................... 2 4.3 Existing Drainage .......................................................................................... ............................... 3 4.4 Proposed Drainage ....................................................................................... ............................... 3 4.5 Hydrology Study ........................................................................................... ............................... 4 5 Methodology ......................................................................................................... ..............................4 5.1 Analysis Procedure for HEC- HMS ................................................................. ............................... 5 6 Debris Production ............................................................................................... ............................... 9 6.1 Riverside County Bulking Factor ................................................................. ............................... 11 7 Debris Basins ...................................................................................................... .............................12 8 Onsite Hydrology ................................................................................................ .............................13 8.1 Methodology ............................................................................................... ............................... 14 9 Channel Hydraulics ............................................................................................. .............................19 9.1 North Boundary Channel (Quarry Ranch Channel) ...................................... ............................... 19 9.2 Jefferson Road Culvert ............................................................................... ............................... 21 10 Summary .......................................................................................................... ............................... 22 Tables Table 1 — Calculated Lag Time ( hour) ....................................................................... ............................... 5 Table 2 - Calculated Lag Time ( hour) ........................................................................ ............................... 6 Table 3 - Average Adjusted Loss Rate for Existing Condition .................................... ............................... 8 Table 4 - Average Adjusted Loss Rate for Proposed Condition ................................. ............................... 9 Table 5 - Debris Volume Calculation ....................................................................... ............................... 10 Table 6 - Unit Hydrograph Hydrology Summary Table for Existing Condition ........... ............................... 12 Table 7 - Hydrology Summary Table for Proposed Condition .................................. ............................... 13 Table 8 - Summary Table for Rational Method Hydrology Using AES Software ....... ............................... 15 Table 9 - Onsite Hydrology Land Use Calculations ................................................. ............................... 16 Table 10 - Coral Mountain Trails North Channel (SPF) HEC -RAS Hydraulic Model Results ................... 20 Table 11 - Coral Mountain Trails Culvert Hydraulic Model Results .......................... ............................... 22 Hydraulic Analysis - Coral Mountain Trails i OM a _ • Figures Figure 1 - Regional Vicinity Map Figure 2 — Existing Condition Hydrology Map Figure 2.1 — Regional Watershed Boundary Map Figure 2.2 — Dike # 2 Quarry Basin Watershed Boundary Map Figure 3 — Proposed Condition Hydrology Map Figure 4 — Hydrologic Soil Groups with Existing Condition Map Figure 5 - Hydrologic Soil Groups with Existing Condition Map Figure 6 — Proposed Land Use Figure 7 — Proposed Debris Yield Map Figure 8 — Existing Condition Hydrology Summary Map Figure 9 — Proposed condition Hydrology Summary Map Figure 10 — Rational Method Summary Map Figure 11 — Hydrologic Soil Groups with Rational Method Watersheds Figure 12 — Proposed Land Use with Rational Method Watersheds Figure 13 — Proposed condition Rational Method Summary Map • Figure 14 — Basin Schematic for Basin 1 and 2 Figure 15 — Basin Schematic for Basin 3 and 4 Figure 16 — Existing Condition HEC -RAS Model Workmap for North Channel Figure 17 — Proposed Condition HEC -RAS Model Workmap for North Channel Figure 18 — Plan and Profile for Coral Canyon North Channel, Appendix A — Offsite Hydrology Appendix B — Onsite Hydrology Appendix C — Detention Basin Stage Storage Data Appendix D — Channel Hydraulics Appendix E — Stantec Grading Plan Hydraulic Analysis - Coral Mountain Trails ii OR(, • Appendix A — Offsite Hydrology • Existing HEC -HMS 100 yr - 24 hr Results • Proposed HEC -HMS 100 yr.- 24 hr Results • Existing HEC -HMS 100 yr - 6 hr Results • Proposed HEC -HMS 1.00 yr - 6 hr Results • Existing HEC -HMS 100 yr - 3 hr Results • Proposed HEC -HMS 100 yr - 3 hr Results • Existing HEC -HMS SPF Results • Proposed HEC -HMS SPF Results • Whitewater River Average S- Graph & Rainfall Patterns • Meteorological Model for 100 yr -24 hr (Precipitation or Rainfall Data) • Meteorological Model for 100 yr -6 hr (Precipitation or Rainfall Data) • Meteorological Model for 100 yr -3 hr (Precipitation or Rainfall Data) • Meteorological Model for SPF (Precipitation or Rainfall Data) • Basin Model for Existing Condition (runoff parameters) • Basin Model for Existing Condition (runoff parameters) Appendix B — Onsite Hydrology • AES Model for 100 -Year storm event • • AES Model for 10 - Year storm event Appendix C — Det. Basin Stage Storage Discharge • Pond 1 • Pond 2 • Pond 3 • Pond 4 Appendix D — Hydraulics • Details and Channel Hydraulics • North Channel HEC -RAS output ■ Existing Condition ■ Proposed Channel Grading Appendix E — Stantec Grading Plans -Tract Map - Jefferson Street Culvert improvement plans 0' 1 Introduction The Coral Mountain Trails development is located within the Santa Rosa Mountains approximately 3 miles southeast of the City of La Quinta, in Riverside County, California. The Tentative Tract Map for this project (TTM 33444) is composed of approximately 318 acres of land, consisting of approximately 224 acres of open space. The proposed developed area will consist of low density residential and includes the Jefferson Street extension south of Dike No.2. The site is located immediately north of the Bureau of Reclamation (BOR) training dike (Devil Canyon Dike); a.k.a. Guadalupe Training Dike, south of BOR Dike # 2 and immediately south of existing Quarry and Quarry Ranch developments (see location map, Figure 1). The proposed development, Tract 33444, will consist of 219 single - family dwellings and all supporting infrastructure at completion. Stantec (formerly known as The Keith Company) prepared the tentative tract map, rough grading plan, street improvement plans, and storm drain and utility improvement plans. This report provides the hydrology analyses and preliminary channel system hydraulics for the basis of design of the proposed channel and debris basin system, complete with supporting hydrograph hydrology and basin feature hydraulic calculations. 2 Purpose The purpose of this report is to summarize the site watershed hydrology in support of the grading plan for the Coral Mountain development, Tract 33444 in La Quinta. This study will be basis of design for site storm drainage system that will include within the infrastructure improvement plans such as debris/ detention/ retention Basins and flood control channels to mitigate increase in runoff due to the proposed development (so as not to impact Dike No. 2 storage volume). 3 Scope or General Objective • Pacific Advanced Civil Engineering, Inc. (PACE) has been retained by Coral Mountain LLC, to provide a technical storm water management engineering study that will evaluate the design level local flood protection required for the proposed Coral Mountain development. The primary objectives of this report are as follows: Identify the required storm drain and detention and or retention facilities for the site improvements based on the drainage area tributary to each proposed basin, which is based on the proposed site topography, grading, and drainage boundaries. 2. Provide verification that any increase in the 100 -year rainfall runoff, due to site development is mitigated so that the capacity of downstream facilities and the existing condition retention Basin to be captured in the Dike #2 impoundment area is not increased. This was accomplished by verifying that the proposed flood control facilities will limit the peak design runoff flowrate and storm volume discharged from the project site to equal or less than the existing condition. 3. Perform a hydrologic analysis to provide the design flowrate based on drainage patterns, ground slope, land use, soil type, both onsite and offsite contributory areas, and the County of Riverside Synthetic Unit Hydrograph Method. 4. Calculate the debris volume for the offsite watershed and develop a debris - bulking factor for analysis of the system and verification of the peak flowrate discharged to the downstream receiving watershed. 5. Provide hydraulic calculations to verify the operation of the spillways and outlet storm drain facilities, • and ensure that the required level of flood protection is achieved. 6. Provide text to support and explain the design and analysis procedure. Hydraulic Analysis - Coral Mountain Trails 1 O ® _ , All hydrologic calculations for the design of the storm drain facilities associated with the Coral Mountain project were performed in accordance with the guidelines established in the Riverside County Hydrology Manual. 4 Previous Studies The most current hydrologic investigation was prepared by PACE to update previous investigations and provide design hydrology information specifically for this watershed. PACE's analysis was reviewed and approved by CVWD, Bechtel Corporation, and FEMA. The analysis was prepared in June 2002 and titled, "Technical Memo for West Dike System — Dike #4 Storage Analysis." The foundation of PACE's June 2002 analysis was a study previously completed by US Army Corps of Engineers in May 1980 titled "Quarry Ranch Channel Basin Feasibility Report for Flood Control and Allied Purposes, San Bernardino and Riverside Counties, CA. Appendix 1: Hydrology." Although extremely conservative, PACE has assumed 100% of the SPF and 100 -year peak flow rates, 9,032 cfs and 4,043 cfs respectively, are conveyed through this watershed. 4.1 Project Site Description The Coral Mountain project site is located within the Santa Rosa Mountains approximately 3 miles southwest of the City of La Quinta, Riverside County, California. The project site is southwest of Dike # 2 and northwest of Guadalupe training Dike. The project site is located on southern half of section 29 of the USGS just south of existing Quarry Ranch Development. PACE conducted a site visit, conducted in depth research and study for Dike # 2 and Dike #4 watersheds. The tributary watershed of the proposed development area of the Coral Mountain project site (approximately 265 ac) is bordered by natural ridgelines to the east and west and a man made BOR training dike (Devil Canyon Dike) to the south. The watersheds consist of arid, mountainous terrain that remains mostly unaltered by development. The interior margins of the watershed have steep craggy rock • terrain. The interior of the watershed is shallower with several natural dry streams that drain storm runoff to the northeast. Additionally, all of the runoff from the proposed Coral Mountain project and the undeveloped mountainside drainage area is routed to and captured by existing quarry basin and BOR Dike # 2. The proposed development is situated at a valley floor that is surrounded by steep slopes of the foothills. The elevation difference from peak to base for the watershed varies approximately from 1050 to 545. The contour information provided by TKC included elevations below sea level. To avoid the use of negative contour values, PACE adjusted the elevations by adding 500 feet to the topographic datum. Thus an elevation of 20 feet above sea level is reported here as 520 feet. 4.2 Offsite Existing Drainage Features and Facilities The proposed Coral Mountain development lies within a 2,390 -acres watershed that is tributary to BOR Dike #2. The major existing drainage features are as follows: (see Figures 2 and 2.1 for locations of these existing drainage facilities) a. BOR Dike #2 — Approximately 5,000 -feet in length and 20 -feet in height, this dike and resulting retention basin (t 700 AF maximum storage volume) captures, retains, and percolates the runoff from the tributary 2,390 -acre watershed which includes the proposed Coral Mountain development site. As part of Coral Mountain development, Jefferson Street will extend from the development, over Dike #2, and meet existing alignment. The integrity of the dike will be maintained and storage availability will remain unchanged as a result of the proposed Jefferson Street extension. As part of the Coral Mountain final drainage analysis, a detailed geotechnical and storage volume analyses (certification) of Dike 92 was prepared and provided to CVWD for review and approval. • b. BOR "Devil Canyon" Training Dike — is located to the south of the Coral Mountain development and is approximately 2,200 -feet long (north side only) and approximately 6 -feet in height. This dike was Hydraulic Analysis - Coral Mountain Trails 2 OR � _ constructed by the BOR to serve several functions: (1) contain and direct flows from the 10.2 square mile Devil Canyon watershed into the larger Dike #4 retention area (2) to keep Devil Canyon flows from going into the Dike #2 retention basin and over taxing the capacity of the Dike #2 and the associated retention basin. Through field observation and review of current topographic mapping (for the past 40 years of history), the self - scouring dike confines the flow into a single channel therefore performing as it was designed. As part of the Coral Mountain final drainage analysis, a detailed geotechnical analysis, hydraulic capacity and slope stability analysis was prepared for the Devil Canyon Training Dike and provided to CVWD for review and approval. The Keith Companies' 2002 Quarry Report Drainage Analysis provided preliminary Training Dike evaluation and determined that the facility is competent and satisfactorily conveys the standard project flood (SPF) Devil Canyon watershed flows without over- topping or eroding the Training Dike, thus protecting the Coral Mountain project site from the Devil Canyon flows. c. Existing Quarry Retention Basin — Because of years of quarry excavation, a large manmade retention basin now exists within the "Quarry Ranch Project Golf Course" area located immediately to the north of the proposed Coral Mountain development. This manmade retention basin (Quarry Basin) has a storage volume in excess of 500 -acre feet, which is more than the 460 AF of runoff (SPF storm event) from drainage watershed area "B" (see Figure 2.2). This is significant as the Quarry Basins at 500 AF has nearly as much storage capacity as the Dike #2 storage volume of t 700 AF. The SPF runoff volume to the Dike #2 basin from watershed Al and A2 (see Figure 2.2) is t 491 AF. The Quarry Basin captures runoff from 1,152 acres of the 2,390 acre total drainage area (nearly 50% of the drainage area never makes it to the Dike #2 basin as it is captured in the Quarry Basin). . d. Quarry Ranch Proiect Diversion Channel — Excavated with the construction of the Quarry (TTM 30651) Development project entry road, a trapezoidal channel with a t 20 -foot bottom exist along the north boundary of the Coral Mountain project. The existing earthen channel starts (downstream end) at the northeast corner of the Coral Mountain boundary and extends west, running just north of the Coral Mountain property line for a distance of approximately 2000 -feet. The channel was designed by the Keith Companies with the Quarry Development Project to route the runoff from the area south of the channel (Coral Mountain site) to the Dike #2 retention basin without going through the Quarry Development Project. The Quarry and Coral Mountain development parties have an agreement to share the use of the channel when the final design of the Coral Mountain project is completed. 4.3 Existing Drainage The drainage area associated with the proposed development area of the Coral Mountain project.is approximately 265 acres. The natural watershed associated with Coral Mountain project drains runoff from steep mountainous terrains to and natural desert (Canyon) as a sheet flow and some minor incised dry creeks less than 1 -foot deep. The washes confluence at the northeast part of the watershed and all stormwater runoff from the watershed concentrates at the northerly extent of the project and discharges to the existing offsite Quarry Road Channel, just north of the project boundary and captured at retention basin A at dike no # 2, except 20.6 ac of southeast portion of the watershed (sub -basin "D ") which will drain toward the southeast corner of Devil Canyon Dike and Basin in a low -lying area (see Figure 2 for the sub - watersheds). 4.4 Proposed Drainage The preliminary proposed drainage facilities and drainage subareas comprising of Coral Mountain, Tract # 33344 study areas are presented in Figure 3. PACE received Tentative Tract Map 33444 from Stantec in January of 2006. This land plan presented the preliminary grading, proposed improvement such as lot lay out, roads, dedicated open space, drainage easements and debris/ detention facilities, see Figure 5. Proposed drainage improvements will include: 1) Upstream sediment/ debris basins to capture sediment from debris laden flows. Hydraulic Analysis - Coral Mountain Trails 3 OROS • 2) The main drainage channels to convey runoff through the site will be naturalized channels utilizing local rock and boulders to stabilize side slopes and invert where necessary. These channels will most likely include rock grade stabilizers or drop structures and or channel roughening elements such as riprap to reduce flow velocities to non - erodable levels ( <5fps). Where velocities exceed 5 fps channel armoring and toe down protection will be provided to reduce the likelihood of erosion and undermining of structures. The grade stabilizers and drop structures may require concrete grouting to minimize erosion. The drop structures will have small drops ranging from 2 to 5 feet in height. See Appendix D for preliminary channel design. 3) Minor collection channels at the toe of the mountain to collect runoff prior to entering rear yards. 4) The project channels include trail systems that will be located in channel invert where possible and adjacent to the channel elsewhere. 4.5 Hydrology Study All hydrologic calculations for design of the storm drain facilities associated with the Coral Mountain project (Tract # 33444) were performed in accordance with the guidelines established in Riverside County Hydrology Manual. The Rational Method is commonly accepted for such a small watersheds ( <640 ac). Hydrograph analysis was performed to account for the detention and retention basin routing in order to meet the conditions of approval, which state that in the proposed condition, the peak flowrates and volumes must be equal to, or less than the existing condition at the project boundary; since the project site is tributary to the Dike #2 Impoundment Pool. Therefore, the hydrograph method was utilized to provide the results of detention and channel routing of the watershed. Using the Riverside County Synthetic Hydrograph Method, design discharges were computed for the 100 -year storms using the 3 -, 6- , and 24 -hour rainfall patterns. The standard project flood (SPF) was analyzed also. The rainfall pattern and time distributed volume for the SPF event was obtained from USACOE report on Quarry Ranch • Channel Basin Feasibility Report for Flood Control and Allied Purposes San Bernardino and Riverside Counties, California. The storm that occurred at Indio on September 1939 was considered the most severe local storm that can reasonably be expected to occur in the area. Therefore, this storm was used to determine the standard project flood for the smaller areas. An analysis was performed on the delineated subareas using Riverside County synthetic hydrograph method via Army Corps of Engineers (ACOE) computer program HEC -HMS v.3.0.0 (2005). The onsite local storm drainage facilities associated with the development of Coral Mountain project (Tract # 33444) were designed based upon rational method hydrology using AES software. 5 Methodology The watershed tributaries to Coral Mountain were delineated and hydrologic parameters established for the existing and proposed condition land uses. The methodology utilizes the Unit Hydrograph theory, developed by L. K. Sherman in 1932, and is based on the rainfall runoff relationship of a gaged drainage basin. In 1938, F. F. Snyder developed the synthetic unit hydrograph principle making it possible to transpose rainfall -runoff data from gaged drainage basins to ungaged basins, and considers the differences in physical basin characteristics such as shape, area, slope, etc. An unit hydrograph for a given concentration point within a drainage area is a curve showing the time distribution of runoff that would result at the concentration point from unit storm effective rainfall over the drainage area above that point. Because there is little observational data available concerning rainfall -runoff relationships in Riverside County, the Los Angeles Section of the Army Corps of Engineers (LAACOE) developed relationships from areas considered to be physiographically and hydrologically similar to western Riverside County and transposed the characteristic time distribution of runoff from drainage areas with known characteristics to nearby drainage areas with unknown characteristics. Adjustments were made to consider the physical • differences. This is accomplished by using S- graphs to adjust for the terrain and adjusting for the time response of the watershed with a lag factor. Hydraulic Analysis - Coral Mountain Trails 4 OR a _ 6.1 Analysis Procedure for HEC -HMS • The HEC -HMS computer program was used to simulate the rainfall /runoff process for the existing and proposed hydrologic conditions. Hydrologic parameters were established by utilizing the topographic information (obtained from TKC with 1 -foot contour intervals), aerial photographs, and supplemented by subsequent field reconnaissance surveys. 1. For this project, user defined S- Graphs method in HEC -HMS was utilized for the development of the rainfall runoff hydrograph. The Quarry Ranch Channel S -graph (the average of nine S- graphs) was used for this analysis (Appendix A). 2. Hydrologic Routing and Channel Routing was performed using Kinematic Wave Channel Routing. Kinematic Wave routing assumes that discharge can be based upon flow depth alone in channels where flow is one - dimensional and there is a balance between gravitational and frictional forces (normal depth). Kinematic Wave procedure requires the input of the channel geometry, slope, and roughness coefficients. For purposes of routing, we assumed that each channel would be trapezoidal with an 8 -ft basewidth, 4:1 side - slopes, minimum 4 -ft depth, and a Manning's n -value of 0.030. The slope used was specific to the channel as depicted in the proposed site grading. The slope was assumed to be constant and represents the average slope of the channel from headworks to terminus. (See Tract 33444 Grading Plan provided in Appendix -E). 3. The LAACOE developed the Lag equation shown on page E -4 of the Riverside County Hydrology Manual for use in computing watershed lag time. r L13/8 Lag (hrs) = 24W L `° 5112 I� • Where: n = mean Manning's n for all streams and channel in the watershed L = Length of longest watercourse (mi) LCe = Length of longest watercourse measured upstream to the centroid (mi) S = Slope of the longest watercourse (ft/mi) Existing Watershed: The calculated lag time varies between 2 min to 9 min. The factors utilized to calculate the lag time are the hydrological parameters such as slope, longest watercourse length and the length along the watercourse to the centroid of the area were summarized in Table 1. Table 1 - Calculated Lag Time (hour) • Watershed L (mi) Lca (mile) Slope ( ft/mi) Mannings n LAG (hr) Al 0.208 0.079 1679.0 0.04 0.05 A2 0.266 0.137 1596.1 0.04 0.07 A3 0.283 0.128 209.6 0.04 0.10 A4 0.246 0.110 210.7 0.04 0.09 A5 0.319 0.158 781.4 0.04 0.09 A6 0.212 0.126 1808.9 0.04 0.06 B1 0.413 0.198 478.4 0.04 0.11 B2 0.267 0.155 190.1 0.04 0.11 B3 0.323 0.188 192.2 0.04 0.12 C1 0.253 0.145 1161.6 0.04 0.07 C2 0.267 0.140 • 670.6 0.04 0.08 C3 0.138 0.033 1420.3 1 0.04 0.03 Hydraulic Analysis - Coral Mountain Trails 5 0 o • • Watershed L (mi) Lca (mile) Slope ( ft/mi) - :, Mannings n ° 'SLAG (hr) C4 0.136 0.098 264.0 0.04 0.06 C5 0.323 0.157 190.1 0.04 0.11 C6 0.267 0.137 528.0 0.04 0.08 C7 0.404 0.254 141.0 0.04 0.16 D1 0.229 0.122 583.4 0.04 0.07 Proposed Watershed: The calculated lag time varies between 2 min to 8 min. The hydrological parameters such as slope, longest watercourse length and the length along the watercourse to the centroid of the area were summarized in Table 2. Manning's n -value of 0.04 for undeveloped areas and 0.03 for developed area were utilized for this analysis. Table 2 - Calculated Lag Time (hour) Watershed L (ft) L (mi) Lca Lca (mi) Elev Diff Slope (ft/mi) Mannings n LAG (hr) Al 1099 0.208 418 0.079 349 1676.7 0.04 0.05 A2 1407 0.266 723 0.137 390 1463.5 0.04 0.07 A3 358 0.068 177 0.034 19 280.2 0.04 0.03 A4 1093 0.207 201 0.038 45 217.4 0.025 0.03 A4 1 509 0.096 152 0.029 13 134.9 0.025 0.03 A5 1 1514 0.287 624 0.118 52 181.3 0.025 0.06 AS 2 610 0.116 160 0.030 269 2328.4 0.04 0.03 A5 3 943 0.179 539 0.102 235 1315.8 0.04 0.05 A5 4 842 0.159 436 0.083 297 1862.4 0.04 0.04 A6 1121.8 0.212 663 0.126 ' 375 1765.0 0.04 0.06 B4 2325 0.440 1421 0.269 83 188.5 0.025 0.10 C1 1 1140 0.216 652 0.123 25 115.8 0.04 0.10 C1 2 1412 0.267 727 0.138 46 172.0 0.04 0.10 C2 2172 0.411 828 0.157 197 478.9 0.04 0.10 C3 1303 0.247 797 0.151 294 1191.3 0.04 0.07 C4 644 0.122 264 0.050 196 1607.0 0.04 0.03 C5 892 0.169 541 0.102 30 177.6 0.025 0.05 C6 1100 0.208 465 0.088 50 240.0 0.025 0.05 C7 938 0.178 505 0.096 320 1801.3 0.04 0.05 C8 1613 0.305 869 0.165 180 589.2 0.04 0.09 C9 1752 0.332 722 0.137 60 180.8 0.025 0.07 C10 827 0.157 307 0.058 26.5 169.2 0.025 0.04 C11 770 0.146 462 0.088 20 137.1 0.04 0.07 C12 1808 0.342 979 0.185 64 186.9 0.025 0.08 C13 1 684 0.130 382 0.072 119 918.6 0.04 0.04 C13 2 1545 0.293 950 0.180 221 755.3 0.04 0.09 C14 1478 0.280 815 0.154 219 782.4 0.025 0.05 C14 1 1225 0.232 556 0.105 16 69.0 0.025 0.07 D1 1211 0.229 645 0.122 134 584.2 0.04 0.07 Hydraulic Analysis - Coral Mountain Trails 6 O e _- 3. The point precipitation data utilized for the development of the rainfall runoff curves were obtained from the Riverside County Hydrology Manual Isohyetal maps shown on Plates E -5.1 through E -5.6 and NOAA website. The Isohyetal maps are based upon National Oceanic and Atmospheric Administration (NOAA) Atlas -2 Volume XI precipitation data compiled in 1973. In February of 2005, NOAA published NOAA Altas-14 precipitation data, which includes 32 additional years of data for southern California. Riverside County has not updated its hydrology manual to include this data to date. The NOAA Altas -14 precipitation data were obtained from NOAA website and utilized in this report. This study analyzed the following storm runoff hydrographs resulting from the 3 -, 6 -, and 24- hour storm patterns for the 100 -year storm frequency (See Appendix A for NOAA Precipitation data and also rainfall intensity Distributions) The precipitation data are: 100 year -24 hr is 3.91 inches 100 year -6 hr is 3.08 inches 100 year -3 hr is 2.59 inches 4. Standard project flood of 6.45 inches in 6 -hour storm were analyzed for both existing and proposed conditions. The rainfall pattern for SPF was obtained from CVWD. Refer to Appendix A for SPF Rainfall Distribution for SPF storm pattern and copy of section of USACOE WWR Feasibility Report for Flood Control and Allied Purposes San Bernardino and Riverside Counties that discusses development of the SPF Storm Pattern. The precipitation data are: SPF -6 hr is 6.45 inches is 5: No areal reduction was applied to the point rainfall values. The project watershed area is less than 5 square miles (See Plate E -5.8). • 6. The hydrologic soil information for the project site was derived from National Resources Conservation Service website. The data for Riverside County soils were obtained from NRCS website as a GIS shape file. The sub -basin maps were overlaid onto the Soil map. Figure 4 and 5 will illustrate the soil maps for both existing and proposed watersheds. Hydrologic soil "D" were assumed for the areas where soil maps are not available. 7. The SCS loss rate method was adopted for this analysis. The runoff index (curve number) is a unitless number that reflects the rainfall runoff potential reflected in various land use types and takes into account the soil type, cover type, and antecedent moisture condition (AMC). The 100 -year storm uses an AMC -III to reflect saturated soils with the highest runoff potential. The runoff index number is then adjusted for AMC -III per Plate E -6.2. Existing Condition: The existing project site is an arid region with poor natural land cover. Land use was assumed as barren from Plate E- 6.1. The runoff index number is then adjusted for AMC -III per Plate E- 6.2. Percentage of imperviousness was assumed to be 5% based on Plate E- 6.3, Table 3 summarizes the loss values. Hydraulic Analysis - Coral Mountain Trails 7 - o ® _ . • • • Table 3 - Average Adjusted Loss Rate for Existing Condition AMC II AMC III Watershed Area (AC) CN la CN la % Imperviousness Ai 7.26 93 0.15 98 0.04 5 A2 20.43 92 0.17 98 0.04 5 A3 16.05 92 0.16 98 0.04 5 A4 7.54. 86 0.32 94 0.13 5 A5 32.69 91 0.19 97 0.06 5 A6 9.39 87 0.30 95 0.11 5 B1 28.56 89 0.25 96 0.08 5 B2 7.17 83 0.40 93 0.15 5 B3 10.96 86 0.32 94 0.13 5 C1 18.75 85 0.35 94 0.13 5 C2 14.54 81 0.47 92 0.17 5 C3 5.32 78 0.56 90 0.22 5 C4 5.58 78 0.56 90 0.22 5 C5 24.62 78 0.56 90 0.22 5 C6 18.51 78 0.56 90 0.22 5 C7 17.20 78 0.55 90 0.22 5 D1 20.63 89 0.24 96 0.08 5 Total 265.21 Proposed Condition: The proposed project site land use plans were based on Tentative Tract Map # 33344. The proposed development includes 219 single - family residences along with roads and dedicated open space. The runoff index for pervious areas was obtained from Plate E- 6.1. The runoff index number was then adjusted for AMC -III per Plate E -6.2. Percentage of imperviousness was assumed to be 98% for roads and 5% for open space and undeveloped watershed areas per Plate E- 6.3. The imperviousness for the single - family residential as determined per typical lot size is 50 %. GIS tools were used to determine the weighted CN values and imperviousness for each sub - watershed, Table 4 summarizes the loss values. (See Figure 6 for land use map). Hydraulic Analysis - Coral Mountain Trails 8 O v • • Table 4 - Average Adjusted Loss Rate for Proposed Condition AMC II AMC III Watershed Area AC) CN S la CN S la . Imperviousness Al 7.1 93 0.75 0.15 98 0.20 0.04 5 A2 12.8 93 0.73 0.15 98 0.20 0.04 5 A3 2.8 92 0.84 0.17 97 0.31 0.06 8 A4 3.3 91 0.95 0.19 97 0.31 0.06 59 A4_1 1.9 89 1.26 0.25 96 0.42 0.08 51 A5_1 7.7 85 1.80 0.36 94 0.64 0.13 55 A5_2 4.4 93 0.75 0.15 98 0.20 0.04 5 A5_3 6.9 93 0.75 0.15 98 0.20 0.04 5 A5 4 13.8 89 1.24 0.25 96 0.42 0.08 5 A6 8.5 88 1.36 0.27 95 0.53 0.11 5 B4 23.4 80 2.47 0.49 91 1 0.99 0.20 58 C1_1 8.2 91 1.01 0.20 97 0.31 0.06 8 C1_2 7.4 93 0.75 0.15 98 0.20 0.04 5 C11 7.3 75 3.32 0.66 88 1.36 0.27. 5 C12 17.5 66 5.15 1.03 82 2.20 0.44 46 C13_1 4.6 76 3.20 0.64 89 1.24 0.25 5 C132 7.5 78 2.75 0.55 90 1.11 0.22 5 C14 7.0 68 4.61 0.92 84 1.90 0.38 54 C14_1 2.7 58 7.18 1.44 76 3.16 0.63 5 C2 28.8 89 1.26 0.25 96 0.42 0.08 5 C3 12.6 86 1.63 0.33 94 0.64 0.13 5 C4 ' 6.3 75 3.35 0.67 88 1.36 0.27 5 C5 7.9 73 3.78 0.76 87 1.49 0.30 50 C6 6.6 64 5.51 1.10 81 1 2.35 0.47 44 C7 5.4 81 2.29 0.46 92 0.87 0.17 5 C8 14.3 80 2.50 0.50 91 0.99 0.20 5 C9 8.3 71 4.11 0.82 86 1.63 0.33 45 D1 20.63 89 1.19 0.24 96 0.42 0.08 5 8. There is no base flow for the conveyance courses in this watershed. 9. Delineation of sub -areas was based on the site topography, proposed grading, and changes in conveyance. 6 Debris Production Consideration of debris loads carried by streams below mountain and foothill areas is essential in design of flood control facilities. Many factors affect the debris production characteristics of a watershed • including slope of the stream channels, condition of ground cover, soil types, type of ground cover, recent fires in the watershed or burn history, storm pattern and intensity, etc. The LAACOE embarked on a study of all available information on debris deposition at alluvial cones and debris inflow at reservoirs and Hydraulic Analysis - Coral Mountain Trails 9 = existing debris basins in the Los Angeles area and comparable areas in the southwest determine the storage: requirements for a debris basin. Four factors were determined to have the most significant effect on debris production 1) drainage area, 2) slope, 3) three hour rainfall, and 4) burn effect. The debris yield was determined by using the Los Angeles District Method of the U.S. Army COE Los Angeles District (USCOE, Los Angeles District, 2000, Los Angeles Method for Prediction of Debris Yield. It was assumed that the onsite development area will not produce any significant volume of debris and was therefore not considered in the calculation of debris volume. Debris production shall be considered for the undeveloped watersheds. Where: Log Dy .85(Log Q) +.53(Log RR) +.04(Log A) +.22(FF) ' Dy = Unadjusted Unit Debris Yield (Yd3 /mi2) RR = Relief Ratio (ft / mi) A = Drainage Area (Ac) FF = Non- dimensional Fire Factor Q = Unit Peak Runoff (csf /mi2) Adjusted - Transposition (A -T) Factor - The above factors result in a calculation of the maximum debris potential for the watershed. These are then adjusted using correction / reduction factors developed on basis of four basin parameters (1) Surficial geology, (2) Soils, (3) channel geomorphology, and (4) hill slope geomorphology. A numerical factor between 0.05 to 0.25 is assigned to each of these parameters according to the characteristics of each of these basin parameters in Table B -1 LADCOE Debris Method manual. The proposed Basins 1, 2, 3, and 4 were required to be sized to handle the debris volumes. The debris yield has been calculated for each individual watershed and summarized in Table 5 below and also figure • 8 will ilustrate the debris production areas for each Basin and the debris production volumes. Table 5 - Debris Volume Calculation Debris Volume Calculation Computed Debris Peaking Basin Debris Production Factors Correction Factors Bulking Production Rate 3 � o m '-a . C w C C y .1 d V O .2 41 0 m 4) w ° o a4 v` e0 Ud � o J V !0 L v . 3 Of .0.. t0 9 C:� �w My ` R N C N -y d LL �+ r� ` LL c.r- ` a Q n0 40 ca } p .0 d = H 0? V a J U m °c U = o at Q. (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (13) (15) Al Pond 1 7 1838.8 17 3.0 0.259 0.05 0.15 0.15 0.15 0.5 0.130 1.317 A3 Pond 1 2.6 1025.5 6.45 3.0 0.069 0.05 0.15 0.15 0.15 0.5 0.035 1.232 C1 1 Pond 1 8.3 172 19 3.0 0.084 0.05 0.15 0.15 0.15 0.5 0.042 0.206 1.087 C1 2 Pond 2 7 143 16 3.0 0.064 0.05 0.15 0.15 0.15 0.5 . 0.032 1.078 C2 Pond 2 28.8 479 64.8 3.0 0.518 0.05 0.15 0.15 0.15 0.5 0.259 0.301 1.155 C3 Pond 3 12.8 1191.3 29 3.0 0.363 0.05 0.15 0.15 0.15 0.5 0.182 1.244 C4 Pond 3 6.4 1607 13 3.0 0.189 0.05 0.15 0.15 0.15 0.5 0.095 1.254 Hydraulic Analysis - Coral Mountain Trails 10 m _ • �J • Debris Volume Calculation Computed Debris Peaking Basin Debris Production Factors Correction Factors Production Bulking Rate v Im -° �d d O r d O t O d 3 d w Q v O E N A LL 7 d N O O R m 41 �' r N U OL 3 Of M J 13 m y m t O y LL LL QQ M O 3 co w- LL c.c 42 d a Q ao a° ° �� a L H U U o J �m 0o U = � a U 4 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (13) (15) C7 Pond 3 5.1 1801 11.7 3.0 0.176 0.05 0.15 0.15 0.15 0.5 0.088 0.364 1.295 C8 Pond 4 14.1 589 29 3.0 0.255 0.05 0.15 0.15 0.15 0.5 0.128 1.156 C11 Pond 4 7 137 13.3 3.0 0.053 0.05 0.15 0.15 0.15 0.5 0.027 1.065 C13 -1 Pond 4 3.8 919 8.21 3.0 0.086 0.05 0.15 0.15 0.15 0.5 0.043 0.197 1.193 A2 '. Outlet 114 1464 30 3.0 0.421 0.05 0.15 0.15 0.15 0.5 0.211 1.269 A5 2 Outlet 4.5 2328 11.37 3.0 0.191 0.05 0.15 0.15 0.15 0.5 0.096 1.368 A5 3 Outlet 7 2301 17.28 3.0 0.296 0.05 0.15 0.15 0.15 0.5 1 0.148 1.362 A5 4 Outlet 13.4 1862 33 3.0 0.518 0.05 1 0.15 0.15 0.15 0.5 0.259 1.332 A6 Outlet 8.3 1765 19 3.0 0.288 0.05 1 0.15 0.15 0.15 0.5 0.144 0.713 1.297 Assume Peak Bulking Factor = 1.370 6.1 Riverside County Bulking Factor Debris volumes equal to the clear water volume have been recorded during major floods in Los Angeles County. This would be a 100% bulking or a factor of 2. The peak bulking rate is applied to the peak flowrate where the entire drainage area contributes debris. LA County Flood Control District (LACFCD) developed a procedure for relating the peak bulking rate to the debris production volume by assigning the maximum observed bulking factor of 2 to the maximum observed single storm debris production rate of 120,000 -cubic yards for a one square mile area. The peak rate - bulking factor is then expressed by: Fb = 1 + [D/120, 000] Where: D = the design storm debris production rate for the study watershed in cubic yards per square mile. See Page F -5 of the Riverside County Hydrology Manual. The bulking factor calculated for the debris producing watershed tributaries are ranging from 1.106 to 1.368. The bulking factor of 1.370 is adopted for all the channels for this project. See Table 5 in previous page. The bulking factor is calculated to provide a percentage increase in the Clearwater peak flowrate in a channel or conveyance facility to account for debris contained within the flow. The increase in peak flowrate is intended to result in an increased minimum size of the conveyance facility to accommodate debris -laden flows. The bulking factor can be used in -lieu of providing a debris basin to remove debris, from the runoff. Hydraulic Analysis - Coral Mountain Trails 11 o v 0 7 Debris Basins Basins 1 and 2 were exclusively designed to function as debris basins. Basins 3 and 4 were designed to provide a dual function as both a detention basin and a debris basin. The sizing of debris /detention basin outlet facilities and spillways was based on the SPF storm event. The debris volume for the debris basins (1 and 2) was calculated using the 100 -year 3 -hr storm as discussed in Section 6. The outlet facilities for each basin were designed and sized using the FHWA culvert sizing charts. The culvert sizing calculation was based upon and dependant upon the stage tailwater calculation in the downstream tributary channel. For ea-::h basin outlet a rating curve was developed for the downstream channel to determine the tailwater for each outlet. As described in Section -5.1 each channel was assumed to have an 6 -ft base width, 4:1 side slopes, and an N -value of 0.030. The channel tailwater, riser outlet, and riser weir calculations are provided for each basin in Appendix -C. The outlet structures for Basins 1 and 2 were designed to release clear -water flow from a single -stage weir (overflow spillway) outlet. The outlet weir elevation was set at the maximum debris stage. The outlet weir was designed for the SPF discharge with a minimum of one -foot freeboard to the top of the basin. (Figure 14) Basins 3 and 4 were designed to main outlet pipe/ culvert to release the peak flow. The berm was created to separate the outlet pipe & debris deposit. The berm elevation is set at the maximum debris stage for each basin. Since these two basins are surrounded by residential development pads, the emergency spillway will be provided by a roadway depression along the downstream boundary of the basin. In an emergency release from either basin the maximum water surface over the spillway will provide a minimum of 1 -ft of freeboard to the residential pads. The max flow depth over the roadway depression weir will be 6- inches. The spillway was designed for the SPF peak flowrate tributary to the basin. (Figure -15) • Hydrologic Modeling: The HEC -HMS computer program is designed to simulate the rainfall /runoff characteristics of a basin by representing the basin as an interconnected system of hydrologic and hydraulic components such as channels and detention basins. In the HEC -HMS program, streamflow routings and storage routings are performed by hydrologic routing methods. These routing methods cannot consider the effects of backwater on the movement of the flood wave through the system. There`ore, stage- discharge curve was generated for each individual basin by utilizing normal depth calculations on the downstream conveyance channel. Headwater depth or Stage verses discharge relationship was computed by using FHA hydraulic Design of Highway Culverts Manual "Chart No 1." These values were imported into HEC -HMS to calculate the stage - storage - discharge relationship used in flood routing for the stormwater system. Appendix C summarizes the detailed Stage- Discharge curve for basins 1, 2, 3, and 4. The Stage- Storage- Discharge relationships are also provided in Table 1 to 4 shows. in Appendix -C • Table 6 - Unit Hydrograph Hydrology Summary Table for Existing Condition Hydraulic Analysis - Coral Mountain Trails 12 O e � _ . 100 Year SPF WS 3hr 6hr 24hr 6hr Q cfs Vol ac.ft Q cfs Vol ac.ft Q cfs Vol ac.ft Q cfs Vol ac.ft Al 17 1.39 13 1.68 4 2.16 18 3.65 A3 36 3.16 28 3.81 9 4.92 41 8.3 B1 63 5.22 49 6.38 15 8.31 73 14.41 C1 42 3.07 32 3.8 10 5.05 48 8.93 J A4 118 9.88 90 11.95 27 15.46 132 26.27 J A5 191 16.06 145 19.45 44 25.2 216 42.91 J A6 211 17.72 162 21.49 49 27.88 240 47.62 Hydraulic Analysis - Coral Mountain Trails 12 O e � _ . • • • - -.WS 100 Year SPF 3 Hour 3hr 6hr 24hr 6hr 6 Hour Q cfs Vol ac.ft Q cfs Vol ac.ft Q cfs Vol ac.ft Q cfs Vol ac.ft J B2 77 6.33 60 7.77 19 10.2 91 17.73 J B3 309 23.19 242 28.97 75 38.91 377 70.08 J B4 308 23.19 242 28.97 75 38.9 377 70.08 J C4 96 6.81 74 8.52 22 11.45 113 20.61 J C5 143 10.19 112 12.8 34 17.3 173 31.44 J C6 180 12.76 141 16.06 43 21.77 219 39.71 J D1 48 3.71 36 4.53 11 5.93 53 10.24 Outlet- Discharge to Dike #2 Retention Basin 518 40.92 403 50.47 124 66.79 617 117.7 Table 7 - Hydrology Summary Table for Proposed Condition WS 100 Year SPF 3 Hour 6 our 24 Hour 6 Hour Q cfs Vol acft Q cfs Vol acft Q cfs Vol acft Q cfs Vol acft J Al 36 2.97 27 3.60 8 4.65 40 7.90 Pond 1 46 3.92 36 4.77 11 6.23 54 10.69 J A4 77 6.83 61 8.29 19 10.74 91 18.33 J -A5 1 105 9.11 82 11.03 25 14.28 121 24.30 J AS 155 13.02 119 15.79 36 20.48 176 34.95 J A6 174 14.46 133 17.56 41 22.81 197 39.03 J B4 225 18.83 173 22.87 53 29.71 257 50.89 Pond 2 78 6.32 60 7.76 19 10.21 91 17.77 J C3 40 2.89 31 3.60 9 4.80 46 8.53 Pond 3 113 9.83 92 12.20 30 16.24 147 28.84 J C5 127 11.10 104 13.77 34 18.31 165 32.49 J C8 41 2.94 32 3.70 10 5.02 51 9.19 J C10 179 15.35 148 19.08 48 25.48 234 45.54 R -C4 216 19.19 180 23.96 60 32.11 299 58.01 C12 34 2.54 27 3.16 8 4.24 43 7.70 C13 -2 16 1.06 13 1.35 4 1.85 20 3.42 Pond4 224 19.38 185 24.15, 61 32.33 302 58.20 J C14 249 21.59 206 26.91 68 36.03 337 64.91 J_C14_1- At Jefferson Crossing 251 21.78 208 27.16 68 36.39 342 65.75 Outlet- Dischage to Dike #2 Retention Basin 462 40.60 378 50.03 121 66.10 595 116.64 Hydraulic Analysis - Coral Mountain Trails 13 ORKM 0 8 Onsite Hydrology All hydrologic calculations for the design of the onsite sub -surface storm drain facilities associated with the Coral Mountain Trails Project were preformed in accordance with the guidelines established in the Riverside County Hydrology Manual, dated April 1978 and subsequent addenda. Using the Riverside County Rational Method, design discharges were computed for the 10 -year 1 -hour, and 100 -year 1 -hour storms. The drainage facilities associated with the proposed Coral Mountain Trails Project were designed for the 10 -year storm runoff. The 100 -year hydrologic analyses have been included for documentation and to provide verification of in -tract pad elevations compared to 100 -year water surface elevations due to surcharged storm flow in street sections. The 100 -year rational method peak flow rates are not provided for design of any proposed conveyance facilities, only for verification. The site has several soil classifications ranging from type "A" to type "D" as indicated in the Riverside County Hydrology Manual, Hydrologic Classification of Soils Riverside County, California (April 1978) Plate B, a land use designated as "Medium Density Residential 4 units per acre" was used in the hydrologic computations. An analysis was performed on the delineated subareas using the Riverside County Rational Method via Advanced Engineering Software (AES) programs. 8.1 Methodology The standard rational method procedures were used to determine subarea runoff and time of concentration for each of the subareas within the watershed. Calculations of the 10 -year design discharge at critical points (nodes) along the study reach were performed using the Riverside County specific criteria. The "rational' equation is based on the assumption that the peak flow rate is directly proportional to the drainage area, rainfall intensity, and a runoff coefficient "C" which is related to land use and soil type. The following assumptions and guidelines were applied for use of the rational method: 1. The Rational Method hydrology includes the effects of infiltration caused by soil surface • characteristics. The hydrologic maps from the Riverside County Hydrology Manual indicate that the study area is composed of several soil types ranging from type A to D; Figure 11 will illustrate the soil maps for the project site. Hydrologic soil. "D" were assumed for the areas where soil maps are not available. 2. The infiltration rate is also affected by the percentage of impervious surfaces. The development plan consists entirely of medium density residential development at approximately 4 -units per acre including landscape buffers, green belts, a community park, flood control detention basins, and asphalt concrete paved streets. Based on this land use and Riverside County criteria, percentage of imperviousness was assumed to be 98% for roads and 5% for open space and undeveloped watershed areas per Plate E- 6.3. The imperviousness for the single - family residential as determined per typical lot size is 50% (See Figure 12 for land use map and Table 9 for the summary of detailed land use calculations). 3. Delineation of subareas was based on the site grading, changes in conveyance, and lateral entry to conveyance systems obtained from Stantec proposed grading plan (Exhibit 10). The results of the hydrologic calculations are included in Appendices A and B. The hydrology map delineates the onsite tributary areas to each inlet/concentration point. Hydraulic Analysis - Coral Mountain Trails 14 OR, _ • • • Table 8 - Summary Table for Rational Method Hydrology Using AES Software Node ID Proposed Pipe Elevation (ft) 10 year Runoff (cfs) 100 year Runoff (cfs) 100 year Time of Concentration Tc (100) (min) 5 619 49 95 11.4 10 618 63 123 12.24 15 616.2 67 131 12.49 20 602 80 158 1 14.02 25 590.3 102 201 14.75 30 584 138 276 15.14 40 555 149 300 16.26 50 591 3 7 10.49 55 576 17 33 11.02 60 563 22 43 11.46 65 562 29 58 11.87 70 560.5 36 72 12.28 80 549 191 385 16.31 110 679 4 9 16 115 670.8 12 25 1 18.26 125 720 18 36 11.3 130 691 38 76 12.31 135 664 63 130 13.66 145 697 21 42 8.99 147 655 42 86 9.26 150 630 52 108 9.86 155 629.9 114 230 14.38 175 635 9 18 12.54 180 634 122 1 247 14.59 215 636 13 29 11.28 220 612 151 312 15.46 240 621 23 46 9.86 245 609 30 1 59 10.35 250 604 174 359 15.46 265 601 16 32 11.31 270 578 32 64 11.88 290 566.9 222 466 16.71 305 580 8 18 10.35 310 558 231 487 17.27 315 548 233 493 19.35 320 440 400 839 19.46 Hydraulic Analysis - Coral Mountain Trails 15 ORMS C, • • Table 9 - Onsite Hydrology Land Use Calculations Watershed Total Shed Area Soils Type Land Use Area in Ac Al 6.2 D BARREN 6.2 Al Total 6.2 A2 -1 6.5 D BARREN 6.5 A2 -1 Total 6.5 A2 -2 6.7 D BARREN 6.7 A2 -2 Total 6.7 A3 3.2 D RESIDENTIAL 0.2 A3 3.2 D BARREN 2.6 A3 3.2 D ROAD 0.4 A3 Total 3.2 A4 -1 2.4 D ROAD 1.1 A4 -1 2.4 D RESIDENTIAL 1.6 A4 -1 Total 2.7 A4 -2 1.9 A ROAD 0.2 A4 -2 1.9 D ROAD 0.2 A4 -2 1.9 A BARREN 0.1 A4 -2 1.9 D BARREN 0.3 A4 -2 1.9 D RESIDENTIAL 1.0 A4 -2 1.9 A RESIDENTIAL 0.1 A4 -2 Total 1.9 A5 -1 7.5 A BARREN 0.2 A5 -1 7.5 D BARREN 1.4 A5 -1 7.5 A RESIDENTIAL 1.1 A5 -1 7.5 D RESIDENTIAL 3.0 A5 -1 7.5 A ROAD 0.7 A5 -1 7.5 D ROAD 1.1 A5 -1 Total 7.5 A5 -2 10.8 A BARREN 1.4 A5 -2 10.8 D BARREN 9.4 A5 -2 Total 10.8 A5 -3 6.9 D BARREN 6.9 A5 -3 Total 6.9 A5-4 13.7 A BARREN 3.6 A5-4 13.7 D BARREN 10.1 A5-4 Total 13.7 A6 4.4 D BARREN 8.4 A6 Total 8.4 64 -1 1.6 A OPENSPACE 0.8 64 -1 1.6 D OPENSPACE 0.2 64 -1 1.6 A ROAD 0.3 134 -1 1.6 D ROAD 0.3 134 -1 Total 1.6 64 -2 1.1 D RESIDENTIAL 0.6 64 -2 1.1 D OPENSPACE 0.2 64 -2 1.1 D ROAD 0.3 642 Total 1.1 64 -3 4.6 D OPENSPACE 0.4 64 -3 4.6 A OPENSPACE 0.2 64 -3 4.6 D RESIDENTIAL 2.5 64 -3 4.6 A RESIDENTIAL 1.0 64 -3 4.6 D ROAD 0.4 64 -3 4.6 A ROAD 0.1 1343 Total 4.6 Hydraulic Analysis - Coral Mountain Trails 16 OROM- Table 9 (continued) - Onsite Hydrology Land Use Calculations • • 0 134-4 D OPENSPACE 0.1 64-4 A OPENSPACE 1.2 64-4 A ROAD 0.6 134-4 A RESIDENTIAL 0.7 134-4 Total 2.6 84 -5 3.6 A OPENSPACE 0.1 134 -5 3.6 A RESIDENTIAL 2.9 134 -5 3.6 A ROAD 0.6 134-5 Total 3.6 134-6 0.9 A RESIDENTIAL 0.7 134-6 0.9 A ROAD 0.2 134-6 Total 0.9 134 -7 2.8 A RESIDENTIAL 1.7 134 -7 2.8 D RESIDENTIAL 0.7 64 -7 2.8 A OPENSPACE 0.1 64 -7 2.8 A ROAD 0.3 647 Total 2.8 64 -8 4.4 A OPENSPACE 0.2 64 -8 4.4 D OPENSPACE 1.1 134 -8 4.4 D RESIDENTIAL 0.2 134 -8 4.4 A ROAD 1.2 134 -8 4.4 D ROAD 1.7 64-8 Total 4.4 64 -9 1.8 A OPENSPACE 0.2 64 -9 1.8 D OPENSPACE 0.2 134 -9 1.8 A ROAD 0.3 64 -9 1.8 D ROAD 1.1 64 -9 Total 1.8 134 -10 2.7 A OPENSPACE 2.7 13410 Total 2.7 C1 -1 2.4 D BARREN 2.4 C1 -1 Total 2.4 C1 -2 13.1 D BARREN 5.0 C1 -2 Total 5.0 C2 -1 7.9 D BARREN 7.9 C2 -1 Total 7.9 C2 -2 10.1 A BARREN 2.0 C2 -2 10.1 D BARREN 8.1 C2 -2 Total 10.1 C2 -3 10.9 D BARREN 5.7 C2 -3 10.9 A BARREN 5.2 C2 -3 Total 10.9 C3 -1 8.3 A BARREN 1.1 C3 -1 8.3 D BARREN 7.2 C3 -1 Total 8.3 C3 -2 4.3 D BARREN 0.1 C3 -2 4.3 A BARREN 4.2 C3 -2 Total 4.3 C4 6.4 A RESIDENTIAL 0.2 C4 6.4 A BARREN 6.1 C4 Total 6.3 Hydraulic Analysis - Coral Mountain Trails 17 0 o • • Table 9 (continued) - Onsite Hydrology Land Use Calculations C5 -1 3.5 A ROAD 0.6 C5 -1 3.5 A. RESIDENTIAL 2.9 C5 -1 Total 3.5 C6 -1 5.8 A ROAD 1.6 C6 -1 5.8 A RESIDENTIAL 4.2 C6 -1 Total 5.8 C6 -2 0.9 A OPENSPACE 0.9 C6 -2 Total 0.9 C7 5.4 D BARREN 1.4 C7 5.4 A BARREN 4.0 C7 Total 5.4 C8 -1 8.3 D BARREN 2.0 C8 -1 8.3 A BARREN 6.0 C8 -1 Total 8.0 C8 -2 6.0 D BARREN 0.9 C8 -2 6.0 A BARREN 5.3 C8 -2 Total 6.2 C9 -1 A OPENSPACE 1.2 C9 -1 D OPENSPACE 1.0 C9 -1 A RESIDENTIAL 2.7 C9 -1 D RESIDENTIAL 1.7 C9 -1 A ROAD 1.4 C9 -1 D ROAD 0.5 C9 -1 Total 8.5 C9 -2 A RESIDENTIAL 1.0 C9 -2 A ROAD 0.2 C9 -2 A OPENSPACE 0.1 C9 -2 Total 1.3 C9 -3 1.9 A RESIDENTIAL 1.6 C9 -3 1.9 A ROAD 0.3 C9 -3 Total 1.9 C9 -4 1.1 A OPENSPACE 0.1 C9-4 1.1 A RESIDENTIAL 0.8 C9 -4 1.1 A ROAD 0.2 C9-4 Total 1.1 C11 7.3 A BARREN 7.3 C11 Total 7.3 C12 -1 A RESIDENTIAL 4.6 C12 -1 D RESIDENTIAL 0.5 C12 -1 A OPENSPACE 1.4 C12 -1 A ROAD 1.2 C12 -1 Total 7.7 C12 -2 3.3 A RESIDENTIAL 2.0 C12 -2 3.3 A ROAD 0.6 C12 -2 3.3 A OPENSPACE 0.7 C12 -2 Total 3.3 C12 -3 5.1 A RESIDENTIAL 3.8 C12 -3 5.1 A ROAD 0.5 C12 -3 5.1 A OPENSPACE 0.8 C12 -3 Total 5.1 C12 -4 1.3 A OPENSPACE 1.3 C12-4 Total 1.3 C13-1 4.6 A BARREN 4.6 C13-1 Total 4.6 C13-2 5.3 A BARREN 5.3 C13-2 Total 1 1 5.3 Hydraulic Analysis - Coral Mountain Trails 18 O e _ • Table 9 (continued) - Onsite Hydrology Land Use Calculations C14-1 3.1 A OPENSPACE 0.5 C14-1 3.1 A ROAD 0.7 C14-1 3.1 A RESIDENTIAL 1.9 C14-1 Total 3.1 C14-2 3.5 A OPENSPACE 0.1 C14-2 3.5 A ROAD 0.8 C14-2 3.5 A RESIDENTIAL 2.6 C14-2 Total 3.5 C14-3 2.0 A BARREN 2.0 C14-3 Total I I 1 2.0 Grand Total I I I 240.4 9 Channel Hydraulics A HEC -RAS hydraulic model was prepared to model both the existing and proposed condition of the north boundary channel. Only the channel along the north boundary of the project has been hydraulically modeled to determine the water surface profile. All other channels are considered minor and therefore have not been hydraulically modeled with HEC -RAS. HEC -RAS was developed by the U.S. Army Corps of Engineers (COE). The computational procedure is based on the solution of the one - dimensional energy equation. Energy losses are evaluated by friction ( Manning's equation) and contraction /expansion (coefficient multiplied by the change in velocity head). The momentum equation is utilized in situations where the water surface profile is rapidly varied (bridges, culverts, etc.). The "mixed flow" option was used to accommodate the potential for subcritical and supercritical flow regimes along the North Boundary Channel. The downstream and upstream water • surface controls used for this analysis are critical depth. Critical depth was chosen because of the great undulation and irregularity of the natural stream sections at the downstream and upstream limits of the model. 9.1 North Boundary Channel (Quarry Ranch Channel) The existing channel located at the north boundary of the site will be improved as a part of the proposed site development plan. The existing channel has an approximate trapezoidal section with a base width varying from 24 ft to 15 ft, side slopes of 2:1 and 3:1, and an average depth of 2 -3 -ft. The Manning's N- value used in the existing condition analysis was 0.035. The proposed condition channel extends the width of the development area. It will be an incised reinforced concrete trapezoidal channel with a 6 -ft basewidth and 1.5:1 side slopes with a flow depth ranging from 3 to 5 -ft. The Manning's N -value used for the proposed condition hydraulic model was 0.015 for the concrete bottom and side slopes. The minimum toe -down proposed extension of Jefferson Road requires the construction of a roadway culvert where the roadway intersects the proposed channel. The proposed culverts are 4 -48" RCP pipes. These pipes will convey the SPF storm flow (359 cfs) from the west side of the Jefferson Road extension to the east side of Jefferson with approximately 0.5 -ft of freeboard to the road surface at the culvert headwall. The 100 -year 3 -hr storm flow (260 cfs) would have approximately 1.13 -ft of freeboard at the headwall. The channel upstream of the culverts will have a minimum of 1.0 -ft of freeboard to the proposed pad elevation in the SPF event. The cross sections analyzed of the channel were taken (cut) every 50 -ft using GeoHEC -RAS. The model workmaps have been prepared for both the existing and proposed conditions (see Exhibits 16, 17, and Appendix D for HEC -RAS results). There is a proposed emergency access road connection to the existing Quarry Ranch Road between lots 34 and 41 (see Figure -13). This road will extend across the North Boundary Channel and will require 4- 36" diameter culverts. The culverts were sized to provide a minimum of 1 -ft of freeboard to the proposed pad elevations that will be adjacent to the culvert crossing. A 100 -ft channel transition is proposed • upstream of the culvert crossing. In this reach the channel section will transition from trapezoidal to rectangular at the culvert headwall. The channel basewidth will increase from 6 -ft to 22.5 -ft. On the Hydraulic Analysis - Coral Mountain Trails 19 - o ® _ downstream side of the proposed culvert(s) there will be a 50 -ft transition from rectangular back to • trapezoidal. The rectangular channel reaches and transition will be constructed from reinforced concrete. The hydraulic model utilized a Manning's N -value of 0.015 for these channel reaches. • • There is an existing garden wall along the north bank of the existing channel. This garden wall will remain in -place during construction of the proposed channel improvements. Portions of the garden wall will require reconstruction because of grading for the proposed channel improvements. The proposed Quarry Ranch channel was designed such that the maximum SPF water surface would be below the footing of the existing wall. The proposed channel will be incised below the invert grade of the existing channel to prevent creating a floodwall condition and to keep the water surface below the grade of the existing Quarry Ranch Road adjacent to the north boundary of the channel with a minimum of .4 -ft of freeboard in for the SPF event. Downstream of the culverts, on the east side of the Jefferson Road Extension a rip -rap transition structure will be provided to the culverts will be graded to drain back to the existing The results of the existing and proposed condition SPF storm hydraulic analyses are provided in the Table 10 shown below. Table 10 - Coral Mountain Trails North Channel (SPF) HEC -RAS Hydraulic Model Results Existing Condition Proposed Condition Chnl Sta Inv Elev. (ft) Wat Surf Elev. (ft) Exist Strt Elev. (ft) Fboard (ft) Vel (fps) Chnl Sta Inv Elev. (ft) Wat Surf Elev. (ft) Prop Pad Elev. ft Fboard (ft) Vel (fps) 3400 570 571.78 570 -1.78 7.96 3399 563.79 567.4 569.3 1.9 0.68 3350 569 570.55 570 -0.55 6.51 3349 563.54 567.4 569.3 1.9 0.57 3300 568 569.16 569.68 0.52 6.79 3299 563.29 567.4 569.3 1.9 0.49 3250 566.05 568.06 568.34 0.28 3.23 3249 563.04 567.4 569.3 1.9 0.42 3200 566 567.32 567.47 0.15 5.61 3199 562.79 567.4 569.3 1.9 1 0.37 3150 564.1 566.43 567 0.57 3.47 3148 562.54 567.4 569.3 1.9 0.32 3135 564 566.44 567 0.56 2.62 3134 562.47 567.4 569.3 1.9 0.31 3100 564 566.36 566 -0.36 2.45 3098 562.29 567.4 569.3 1.9 0.29 3088 564 566.29 565.72 -0.57 2.7 3085 562.22 567.4 567.8 0.4 0.28 3050 564 566.17 565.72 -0.45 2.45 3048 562.04 567.4 567.8 0.4 0.26 3028 564 565.97 565.19 -0.78 3.47 3025 561.92 567.4 567.8 0.4 0.25 3000 564 565.82 565.19 -0.63 3.09 2998 561.79 567.4 567.8 0.4 0.23 2950 563 565.38 565 -0.38 3.87 2948 561.54 567.4 567.8 0.4 0.21 2935 563 565.28 565 -0.28 3.59 2934 561.47 565.95 567.8 1.85 0.21 2900 562 564.88 564.7 -0.18 4.19 2898 1 561.29 565.95 567.8 1 1.85 7.26 2850 562 564.17 564.41 0.24 4.35 2848 561.04 565.83 568.4 2.57 7.21 2800 561 563.44 563.5 0.06 5.13 2798 560.79 565.63 568.2 2.57 7.1 2750 560.83 563.03 563 -0.03 3.83 2748 560.54 565.41 568.2 2.79 8.23 2700 560 562.78 562.5 -0.28 3.3 2698 560.02 565.11 568.2 3.09 9.43 2650 559.21 1 562.11 561.7 -0.41 5.87 2648 559.33 564.71 568.4 3.69 1 10.06 2600 559 561.9 561 -0.9 5.13 2598 558.65 564.24 569 4.76 10.07 2550 559 561.02 560.55 -0.47 7.41 2548 557.97 563.72 569 5.28 10.15 2500 558 560.62 1 560 -0.62 5.8 2498 557.29 563.17 1 568.8 5.63 10.15 2450 557.84 1 559.76 560 0.24 7.32 1 2448 1 556.61 562.59 568.8 6.21 10.11 2400 557 559.14 559.36 0.22 6.03 2398 555.93 561.99 569 7.01 10.19 Hydraulic Analysis - Coral Mountain Trails 20 &® _ • • • Existing Condition Proposed Condition Chnl Sta Inv Elev. (ft) Wat Surf Elev. (ft) Exist Strt Elev. (ft) Fboard (ft) Vel (fps) Chnl Sta Inv Elev. (ft) Wat Surf Elev. (ft) Prop Pad Elev. ft Fboard (ft) Vel (fps) 2350 557 558.41 558.8 0.39 6.6 2348 555.25 561.38 569 7.62 10.01 2300 556 557.94 558.57 0.63 5.63 2298 554.57 560.75 567.6 6.85 10.03 2250 555 557.31 558 0.69 6.35 2248 553.9 560.1 567.4 7.3 10.18 2231 555 556.87 557.31 0.44 7.18 2229 553.63 559.86 567.4 7.54 9.69 2211 554 556.96 557.31 0.35 4.93 2209 553.36 559.6 567.4 7.8 9.88 2200 554 556.96 557.31 0.35 4.42 21981 553.22 559.46 567.4 7.94 10 2150 553 556.88 557 0.12 3.58 2148 552.54 558.82 567.4 8.58 9.99 2100 553 556.72 556.73 0.01 3.41 2098 551.86 558.16 567.4 9.24 10.15 2050 553 556.05 556 -0.05 5.87 2048 551.18 557.47 567.4 9.93 10.73 2000 553 555.62 555.8 1 0.18 4.93 1998 550.17 556.68 565.1 8.42 11.66 1986 552.99 555.47 555.54 0.07 4.76 1984 550 556.44 565.1 8.66 11.51 1950 552 555.44 555.54 0.1 3.7 1950 549 555.78 565.1 9.32 11.91 1900 552 554.39 555 0.61 7.84 1900 548 554.8 565.1 10.3 1 11.36 1859 552 554.22 555 0.78 4.78 1859 547 553.93 565.1 11.17 11.59 1850 552 554.2 555 0.8 4.16 1850 547 553.69 564.6 10.91 10.56 1834 552 554.06 555 0.94 4.23 1834 546 553.31 564.6 11.29 12.11 1800 552 553.91 554.82 0.91 3.57 1800 545.05 552.54 564.6 12.06 11.38 1766 551.95 553.1 553.66 0.56 5.34 1 1766 1 544.21 1 551.33 1 564.6 13.27 12.77 1750 551 552.46 552 0.46 6.49 1750 543.53 548.11 564.6 16.49 2 3400 570 571.78 570 -1.78 7.96 3399 563.79 567.4 I 569.3 1.9 0.68 Slope protection toe down results estimated based on the LAFCD Hydraulic Design Manual consisted of determining HEC -RAS velocities for the SPF event and identifying the appropriate toe -down depth according to the Cut -Off Depths Levee Criteria table found on page F -31 of the LAFCD Hydraulic Design Manual. The identified toe -down depths were based upon cut -off depths assuming values found in the "Straight Reaches" column. The proposed improved reach of channel exhibits flow velocities ranging from 6 to 11.5 -fps in the SPF event. Therefore, the concrete channel side slopes burial depth will vary according to the channel cross section model flow velocity. The range of depth will be a minimum of 8 -ft below the proposed channel flowline to a maximum of 10 -ft. 9.2 Jefferson Road Culvert The proposed culverts at Jefferson Road will be 4 -48" RCPs. The culverts are designed to convey the SPF storm flow tributary to Jefferson Road at the North Boundary Channel. The culverts will convey the SPF flow with less than 1.0 -ft of freeboard to Jefferson Road. However, the nearby existing Quarry Ranch residential pad will have a minimum of 8.6 ft of freeboard to the Basined SPF flowrate at the culvert headwall. HEC -RAS uses the Federal Highway Administration (FHWA) culvert analysis nomographs to perform culvert analysis based upon the FHWA Hydraulic Engineering Circular No. 5 methodology. The results of the analysis are provided in Table 12 shown below and also preliminary grading of the North Channel shown in Exhibit 18. Hydraulic Analysis - Coral Mountain Trails 21 - o s • Table 11 - Coral Mountain Trails Culvert Hydraulic Model Results Storm U/S Inv HW Depth HW Elev. Culvert Flow Depth Culvert D/S Inv TW TW Elev. (ft) (ft) (ft) (ft) Vel (fps) Elev. (ft) Depth (ft) Elev. (ft) SPF 543.22 1 4.82 1 548.04 1 1.92 1 14.52 1 540.41 1 2.52 542.32 100 yr -3 hr 543.22 1 3.92 1 547.04 1 1.59 1 13.51 1 540.41 1 2.13 543.86 10 Summary The 365 acre Coral Mountain watershed is located just downstream of the Devil Canyon Dike (Guadalupe Dike) in the Devil Canyon Watershed. The Guadalupe Dike provides flood protection to the Coral Mountain site by diverting runoff from a 10- square mile watershed of the Devil Canyon Watershed to the Bureau of Reclamation Dike #4 impoundment area. Prior to construction of the Guadalupe Dike, the 10- square mile watershed was tributary to the area now occupied by Bureau of Reclamation Dike #2. Construction of the Guadalupe Dike has made development in the Coral Mountain area possible. There were two main goals in designing the Coral Mountain Development flood control system. The first was to design a system that controls runoff by capturing and conveying flows from the upstream tributary watershed and thereby provides 100 -year flood protection to the proposed improvements and residential development. The second was to design a system that mitigates any increase in runoff volume and flowrate due to the proposed development for the 100 -year storm; therefore, the project watershed was analyzed for both the existing and proposed condition. The system was then designed so that at the downstream boundary of the watershed the proposed condition runoff from the developed watershed is less than or equal to the existing condition runoff flowrate and volume. This design parameter requirement is necessary to ensure that downstream conveyance and retention (BOR Dike #2) facilities • are not exceeded as a result of the Coral Mountain development. The SPF event was also analyzed to ensure that the storm volume and flowrate were not increased from existing condition as well. However, the system was designed for the 100 -year storm frequency. The basins were hydrologically designed for the 100 -year 24 -hour storm event and the conveyance facilities were designed for the 100 -year 3 -hour storm event. All analyses and results are provided in the following appendices as well as summarized in Table 6 and Figure 8 for Existing Condition and Table 7 and Figure 9 for Proposed Condition respectively. L] A 10 -year Rational Method Analysis was performed to provide peak design flowrates for the proposed in- Tract storm drain system. A peak value was determined at each inlet to the tract storm drain system. The design values for each inlet are provided in Table 8 and Figure 10 and 13. Hydraulic Analysis - Coral Mountain Trails 22 = o e _ 50 25 0 50 100 16iiia Miles SCALE �. � DESIGNED AD ANCFQ C.ECKE. CIVIL _—. ENGINEERING JOBNO Pga West Resoil Golf Course Lake Cahuilla Recreation Area CORAL CANYON PROJECT BOUNDARY' Quinta egg -J Santa Rosa Mountain Range viii Salton Sea CORALCANYON TITLE TrH # 33444 EflAT@nm@nW RE090MAL WMN97V MAP Amemmeffl Hydv@P@gy La QUINTA - RIVERSIDE COUNTY CA QUARRY RETENTION BASIN B ,W DIKE # 2 RETENTION E... BASIN A w .' t I � z QUARRY RANCH l ) ° (EXISTING) ' WI TOM FAZ10 LN __ - - - � �/ } ' - 1 . E -- Outlet r ������� E` I �uwR - R�NCF�RtD ■B4 5y 1� Z < J_A6 C6 Area = 17.2 ac A6 Area = 18.5 ac L =2132 ft Area = 9.4 ac ♦ L =1411 It ♦ Lca =725 ft Lca =1340 It 1122 ft 5 =528 ft/mi S =141 ft/mi Lca=-- ft Lag =5 min Lag =9 min l =1807 ft/m' �! Hp = 614 t Lag =3 min HP = 800 Lp = 552 A Hp - 954 i Lp = 559 63 Lp = 5 5 �- 5 Area ac ' L =1.703 It ic-'a'=992 ft S= 192ft/m' A5 Lag =7 din Area = 32.7 ac Hp= 623 L =1684 ft Lp = 545 Lca =833 ft CORAL C,4NYON C5 S =781 ft/mi Area - 24.6 ac Lag -5 min (PROPOSED) L =1704 It ( Hp = 1025 TTM # 33444 Lca =829 ft JB2 J_A3 Lp =572 S =189 ft/mi Lag =7 min A4 Hp =815 Area =7.5ac Lp = 587 L =1299 It C4 Lca =581It S =211 ft/m' C2 Lag =5 min Area = 14.5 ac Hp = 72 A2 L =1412 ft 4 Lp = 6014 Area 020.4 ac Lca =740 ft Area - .6 ac B?. L =1407 ft S =669 ft/mi -71 ft Area = 7+ ac Lca -723 ft Lag =5 min Lca =51� ft =1408 ft S =1595 ft/mi Hp = 920 S� 265 fftt i LIca =818 ft Lag 4 min Lp = 620 �kag =4 min S+ 191 ft/mi Hp 1053 1 } Hp = 736 1g=* in Lp 604 a CP L•p 6.20 Hp - 677 C3 Lp� 614 t I it ea = 5.3 ac A Al Al 5v L =726 ft 11 1' i4* 3 Lca =173.5 It B1 ret = 7.3 A � 1W 1- 1�099It S =1418 ft/mi V CC)RAL CANYON PROPER Y T.INT-7 Lca =8 ft .. ... �_ w 41Lag =2.m n H 839+ S=1677 ft/ C1 P - Lp = 6 AS Lag =3 min Area = 18.8 ac 3`4 = L =1336 It Area = 16 ac Hp Lp = 101 01 Lca =765 ft L =1492 ft S =1162 ft/mi B1 Lca =674 It D1 Lag =4 min Area = 28.6 ac S =209 ft/mi Area = 20.6 ac It 2183 = La g=6 min HP = 998 L 9= L =1211 It L P= 650 Lca =1045 It Hp = 728 Lca =645 ft 1 S =479 ft/mi Lp = 656 S =584 ft/mi Lag =7 min Lag =4 min HP = 963 Hp = 887 Lp =665 Lp =660 pEVIL CANYON DIKE (EXISTING) oy x s? ii E xI # DEVIL' CANYON Legend Hydrology Abbreviations (� Concentration Point (Hec -HMS) Area = Area of sub watershed l; Length of loogest watercourse (ft) --i►— Flowpath Lca = length of longest watercourse measured upstream to the centroid (ft) Exsiting Watershed (Color Varies) S =Slope of the longest watercourse (ft /mi) 250 0 250 500 lag= Lag tune in Minutes Feet I Ip= Elevation I ligh Point within sub watershed (ft) Lp I"levation _-,0W P"attwithu -k sub watershed (ft) TI SCALE JOB TITLE 0 � y M�G7 M COM OMOM DESIGNED M SP CORAL � U � DRAWING I� �I /' !t J Fi —2ExH droMa PC01 070306 ��I1,` /�1 yy- ��i�l�� �j�n/]�jpOj�( �(�{�r�1� MY HYDROOG°�LaPH ll CJ PACIFIC ADVANCED CHECKED 11CN 7T `�.P ll LI V Il ll llll 1111 II 11�1CC�11 CIVIL ENGINEERING p���Q��Q�� �M��O�O�MN�`�jDD G°30I�Oo C�� [M�IQp 175ZO NEW HOPE STREET SUITE 200 DATE 2l �l FOUNTAIN VALLE�, CA 92708 0310$106 PH (714) 401.7300 FAX (714) 401-7- JOB NO RS�AF I La QUINTA, RIVERSIDE COUNTY CA P:\8528E\6-GIS\mxds\Review-032607\8528E—Figurel 3_ProposedAES—PC7-032607.mxd -n SCALE 1 150' G) c DESIGNED SP DRAWING CD PACIFIC ADVANCED CHECKED SP CIVIL ENOINEERINO 17520 NEWHOPE STREET, SUITE 200 DATE FOUNTAIN VALLEY, CA 92708 PH (71 4) 481-7300 FAX (71 4) 481-7299 03126107 JOB Na. 8528E 0601 IRWIN IM 2 w g IN MoRTO-TWERS ME111MC ill; limmm"immi T 11 DMWMFAMIMIFMMTET No MbEeMBE 'KMNTT/' I Ll File: P:18528EI*mxds%Review_ 1128061 8528E_ Figure03 _PrHydroMapPC2_112806.mxd . QUARRY RETENTION BASIN B x- TOM FAZIO LN 1 €t � PROPI .l. "Il" I.INi:: C13_2 tE'(Et � � Ir` C7 L =938 ft Lca =505 ft L =1545 ft ( I #s S =1801 ft/mi Lca =950 ft f +i #It Lag =3min S =755 ft/mi r{1: t11?�t3 Hp = 990 ft Lp = 669.5 ft Lag =5.4 min ►OUNTA1N VALLEY, OA •0700 0687310 r rN <'f 14) A01•'1�00 FAX (9117 401.700• oBNO 8528E Lp =562 ft - C13_1 L =684 ft Lca =382 ft S =919 fumi Lag =2.4 min Hp =783 ft Lp =584 ft C10 =827 ft L --a =307 ft S =172 ft/mi Lag =4min Hp = 635.5 ft Lp = 608.4 ft C6 =537 It 3 =326 ft 147 ft/mi g =3min =6375f 620.7 ft C8 L =1613 ft Lca =869 ft S =589 ft/mi _ag =6min Hp =920ft Lp = 616.4 ft ("(WAL CANYON ME AMMONS ME MW MM � PROPI .l. "Il" I.INi:: CESI3NED SP c� 5,11 C7 L =938 ft Lca =505 ft Lca =77Tft "" ( I #s S =1801 ft/mi C3� L =�03 ft f +i #It Lag =3min �ca =797 ft r{1: t11?�t3 Hp = 990 ft Lp = 669.5 ft 5 =1131 ft/mi �%% Lag =4min ►OUNTA1N VALLEY, OA •0700 0687310 Hp = 397.8 ft rN <'f 14) A01•'1�00 FAX (9117 401.700• oBNO 8528E Lp = 653.4 ft 250 0 250 500 Feet 11 t7 C M ._.� SCALE 1 w500' CESI3NED SP CRAWING CD L =591 ft Lca =77Tft "" t PACIFIC ADVANCED CHECKED is C1_2 L =1412 ft CIVIL ENGINEERING CATE Lp = 675 11000 NEWHOP-M ■TOEET, ELITE MOO Hp =598.5 ft ►OUNTA1N VALLEY, OA •0700 0687310 Lp = 545 ft rN <'f 14) A01•'1�00 FAX (9117 401.700• oBNO 8528E C11 L =770 ft Lca =462 ft S =137 ft/mi Lag =4min ip = 800.5 1 �p =568ft ', ,11 ... -FT I 3 ,. o QUARRY RANCH RD. J_ 1 -1 J -E �' iL =1051 ft Lca =851ft S =50 ft/mi Lag =7 min POND4Hp- =•5847 ft -- C13_1 Lp = 559 ft FrM2� I C12 L =1705 ft Lca =891ft S =149 ft/mi Lag =7min Hp = 629.3 ft Lp = 568 ft J_C8 . C9 Lca =781fr S =174 ft/mi Lag =7min, ip = 655.9 ft -p 609.2 ft POND3 C4 > ?L =753 ft Lca =159 ft S =1353 ft/mi O� Lag =2 min -Hp = 839pp• ft I n = R'idi� ft C2 L =2172 ft Lca =828 ft S =479 ft/mi Lag =6min Hp= 962.6ft Lp = 662.6 ft C5 L =785 ft Lca =303 ft `5 =215 ft/mi Lag =3min Hip 678.9 ft ft Lp 6 B4 r A5_1 " L =2020 ft 1 L =591 ft Lca =77Tft "" t Lca =256 ft S =124 ft/mi C1_2 L =1412 ft S =152 ft/mi Lag =8min Lp = 675 Lag =1.8 min Hp =598.5 ft �� Hp 603 ft Lp = 545 ft L� A" / Lp 586 ft EISM"M G �A4 �1 LAll9ft Lca =724 ft t = ��1.6 ft/ mla =3.6 m L 842 ft L=436 ft S= 1862.4 ft/mi lag= 0.04min Hp = 875 ft J -A5 1 Lp = 578 ft A4 L -382 ft Lca =204 -ft A2 S =207fUmi L i °407 ft La mini Lca .,,23 ft g S 1464 fU Hp = 639�ft miN Lip = 61 ft Lag. =4min Hp = 1052.7 ft qt3 Lp 604 ft L =514 ft POND1 Lca =268 ft' 1 3 =154 ft/mi Lag =3 mi tip =7 Np 26 �.62<5'ft J_A1 CANYON DIKE (EXISTING NN� ",O�'�3 j VO`K:ft_,, �' x'.���. }.`• �", �,.`��'rs� �I�� .�+ff�•i.�;4`., fh�, �� i t� f.��x }t t �z DEVIL CANYON Legend • Concentration Point 01I �"C -IIMS QProposed Subarea Boundary ® Watershed Boundary —Do Flow Path JOB /1 (`/�`,', /(\ �`,', 1M( 'O "AL V lJ O Ll V TTM # 33444 Enwo ron man W ABOSS lfC�lf CAM Hydvo0o0 t_ =awo n Lca =539 ft S= 1315.8 ft/mi Lag =0.05 min Hp =821 ft y Lp =586 ft Hydrology Abbreviations Area = Area of sub watershed I, Length of longest watercourse (ft) I ca= Length of longest watercourse measured upstream to the centroid (ft) S =Slope of the longest watercourse (ft /rni) Lag= Lag time in Minutes I tp= Iaevation High Point within sub watershed (ft) Lp= Elevation Low Point within sub watershed (ft) TITLE PROPOSED CONDITION UNET HYDROOG APH LA QUINTA, RIVERSIDE COUNTY CA HVIDROLD(MY MAP C1_1 1140 f L ca =652 S =115.8 ft Liag =0.10 C1_2 L =1412 ft Hp = 70 _ca =727 ft =172.0 fermi Lp = 675 ig= 0.10,min Hp =715 ft� CANYON DIKE (EXISTING NN� ",O�'�3 j VO`K:ft_,, �' x'.���. }.`• �", �,.`��'rs� �I�� .�+ff�•i.�;4`., fh�, �� i t� f.��x }t t �z DEVIL CANYON Legend • Concentration Point 01I �"C -IIMS QProposed Subarea Boundary ® Watershed Boundary —Do Flow Path JOB /1 (`/�`,', /(\ �`,', 1M( 'O "AL V lJ O Ll V TTM # 33444 Enwo ron man W ABOSS lfC�lf CAM Hydvo0o0 t_ =awo n Lca =539 ft S= 1315.8 ft/mi Lag =0.05 min Hp =821 ft y Lp =586 ft Hydrology Abbreviations Area = Area of sub watershed I, Length of longest watercourse (ft) I ca= Length of longest watercourse measured upstream to the centroid (ft) S =Slope of the longest watercourse (ft /rni) Lag= Lag time in Minutes I tp= Iaevation High Point within sub watershed (ft) Lp= Elevation Low Point within sub watershed (ft) TITLE PROPOSED CONDITION UNET HYDROOG APH LA QUINTA, RIVERSIDE COUNTY CA HVIDROLD(MY MAP a • • • a • T SCALE JOB TITLE CO AL CAN M N M Y D O LOWC DESIGNED SP I 77V 3VV` EUV � O s MM -�0 GROUPS DRAWNG CD PACIFIC ADVANCED : V CHECKED S P CIVIL ENGINEERING 17110 NEWHOPE ■TRETT, ■IJITL■OD o �� III��' a IR H\�/dOrdogy Aassa r�` Q�f ��) 0011VD� U �� UV llVLlrllr DATE FOUNTAIN VAL-, - •170■ 06/03106 U 2/ CCN��IIJ ■N (714) 4W1-7.00 FAX (7141 4.1 -789• JOB NO La QUINTA, RIVERSIDE COUNTY --A eezae File: P:18528alSimxdslFeview_ 11280618528E_ Figure05_SoilsMapPC3_112806.mxd Legend Debris Flow Direction Proposed Drainage Basement IMProposed Debris Pond __ - -; Proposed Watershed (Color Varies) Existing Dikes Assume Peak Bultdng Factor = 1.370 T j® 1 ____ • SCALE 1" =500' JOB OLI �011 CANYON TITLE Debris Volume Calculation SP LLAL LJ �.1 DRAWING CD 77t1VU EIl ����\:J��D U l:l V- V'Zf -ZI' u'�/�IJO11111J11 �1sIJ C)14�� O p C)CE3G>��� �l�C[�D dap CHECKED SP 72�2�- C 7-2� 01 G O (p V) N 0 1011 NO 8528E t6 _ la LA QUINTA, RIVERSIDE COUNTY CA 'a d U 0- C `1 v v a 3 S o v o m o a o u ° v Z3 w `m ° N a 2 E a v a a LL g v > o N o p N �a ii c W �o m a- O /n L O v� O _� JL Q O 0Q. O N 4 > U N m D pu (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (13) (15) Al Pond 1 7 1838.8 17 30 0.259 005 0 15 0 15 0 15 0 5 0 130 1 317 A3 Pond 1 2.6 1025.5 6.45 3.0 0.069 005 0.15 015 015 0.5 0.035 1.232 C1_1 Pond 1 8.3 172 19 30 0 084 005 0 15 0 15 0 15 0 5 0 042 0.206 1 087 C1_2 Pond 2 7 143 16 10 0.064 0.05 0.15 0.15 0.15 0.5 0.032 1.078 C2 Pond 2 28.8 479 64 8 30 0 518 005 0 15 0 15 0 15 0 5 0259 0.301 1 155 C3 Pond 3 1 12.8 1191.3 1 29 3.0 1 0.363 0.05 1 0,151 0.15 015 0.5 0.182 1.244 C4 Pond 3 64 1607 13 30 1 0 189 005 0.15 0 15 0 15 0 5 0 095 1 254 C7 Pond 3 51 1801 11.7 3.0 0.176 0.05 0.15 0.15 0.15 0.5 0.088 0.364 1.295 C8 Pond 4 14.1 589 29 3.0 0255 0.05 0 15 0 15 0 15 0 5 0 128 1 156 C11 Pond 4 7 137 13.3 3.0 0.053 0,05 0.15 0.15 0.15 0.5 0.027 1.065 C13 -1 Pond 4 18 919 8.21 30 0.086 0.05 0.15 0 15 0.15 0.5 0043 0.197 1.193 A2 Outlet 13.4 1464 30 3.0 0.421 0.05 0.15 0.15 0.15 0.5 0.211 1.269 Outlet 4.5 2328 11 37 3 D 0 '91 0.05 0 15 0 15 0 15 0 5 0 09fi Outlet 7 2301 1228 3 0 0296 OAS 0.5 0:948 *36 EA54 Outlet 13.4 1862 33 3 D 0 518 0.05 0 15 0 15 0.15 0.5 0.259 Outlet 1 8.3 1 1765 19 1 3.4 „_ Assume Peak Bultdng Factor = 1.370 T j® 1 ____ • SCALE 1" =500' JOB OLI �011 CANYON TITLE DESIGNED SP LLAL LJ �.1 DRAWING CD 77t1VU EIl ����\:J��D P ACIFIC ADVANCE-13 l:l V- V'Zf -ZI' u'�/�IJO11111J11 �1sIJ C)14�� O p C)CE3G>��� �l�C[�D dap CHECKED SP CIVIL ENGINEERING j 1 j�1�jj M�\y /} /(�jjj� M Aaaaa a d dag 1'1820 NEWNO F[ ETRKCT, ■UITE 200 FOUNTAIN VALLEY, OA 9:70■ DATE MOM6 f If � �f Ly u (7 \�, \�) U [/ 1011 NO 8528E rN ('1141 411 -'1]00 F"(714)4 �1•'lY LA QUINTA, RIVERSIDE COUNTY CA C1 C2 Legend O Concentration Point (TTec -TTMS) --►- Flowpath I xsiting Watershed (Color Varies) [N] 250 0 250 500 Feet WS r 3hr 6hr 24hr MOW Q cfs Vol ac.ft Q cfs Vol ac.fil Q cfs Vol ac.ft Q `cfs' Vol ac.ft Al 15.99 1.28 11.95 1.57 3.80 2.19 18 z-2 3.65 A3 33.52 2.91 25.98 3.57 8.53 4.97 4104 8.30 B1 58.00 4.77 45.71 5.95 15.21 8.44 7327 -4.41 C1 38.39 2.79 29.96 3.53 9.65 1 5.11 4765 8.93 C3 10.43 0.64 8.03 0.83 2.51 1.25 13-3 2.28 J A3 109.06 9.07 84.18 11.19 27.40 15.63 131 83 26.27 J A5 176.02 14.74 136.24 18.20 44.79 25.48 215 27 42.90 J A6 193.33 16.25 151.14 20.10 49.79 28.20 23957 47.60 J B2 71.39 5.78 56.48 7.24 18.80 10.32 9099 -7.73 J B4 277.94 20.96 224.76 26.82 7 5.2 5 39.39 376 49 70.06 J C4 88.29 6.16 69.44 7.89 22.20 11.59 '12.53 20.60 J C5 130.69 9.18 103.96 11.83 34.16 17.52 '72 71 31.44 J C6 1 162.48 11.49 131.15 14.84 43.17 22.05 218.59 39.70 J D1 1 43.88 3.39 33.79 4.23 10.88 6.00 52.91 10.24 Outlet F 470.41 37.21 375.89 46.92 1 125.14 1 67.60 615.82 117.67 SCALE JOB TITLE ® DESIGNED IAL CAM M � 0 $P E M STM :MD VD CO I J # 33444 [EmM J m Mad U SUMMARY AVANCE0 CHECKED M �)L \\M CIVIL ENGINEERING p�ss (somQ�� Hydrdogy l o 1')640 NEWHOPE STREET, BU17E 100 DATE ✓ A l� c p FOUNTAIN VALLEY, CA 41'/08 03 106 106 J�i (!-�.1 PH (714) 481 •7300 FAX 1714) 481.7199 JOB ND. eszee La QUINTA, RIVERSIDE COUNTY CA i ,"',:1862$EI,6-GISlmxdsIReview.-II2806=28E-FigureO9-.PrHydroSumMapPC3-112806.mx11 J� A6 Q(3 hr) = 174 cfs Vol (241-1r) = 22.81 acft 3 4 s s 7 A 6� 2 62 8.5 AC am aaa g 64 J A5 d(3 hr) 155 cfs R-C4 Vol (24Hr) 20.48 acft 82 ")tl, hr) 216 ct 2 32.11 acft 63 74 62 70 F, c 73 I 72 0� J, Q(3 h = A 34 v cfs 71 M Vol (24H r) 4.24 acft 71 NT 216 / Y. 3 100 01 M Z 7S 2, q, 57 81 94 213 d0l J 93 k, 212 D7 �4 82 211 17*% 218 -4, 102 103 104 123 a. 219 124 f t e.e A? 1w 122 log 206 108 k 121 J A4 Q(3 hr) 77 Ids k "2�&"'_ 107 297 j/ JN�' Vol (24H r) 10.74 acft 741 "w I �7z y 12D M A27 I 112 11 km 114 i C8 lie 4� 7 177 179 C'? acft i y 4 204 141 198 176 lie i3a f ­1 ' 1 11 , 00 I1W / W J C5 Q {3 hr) = 127 1 e 191 -7, 202 Vol (241-1r) 18. 31 acft 174 140 33 134 FII 19W7 139 fill 94 C B� Al M AM AS 4.3 J% .j J_ A5_ 1 Q(3 hr) =105 cfti Vol (241-1r) =14.28 acft AS 3 6.9 AC ........ ...... FIN. Rv. rRIMIN N ti (: 5.4 AC ) -4e ( Dy a, CANYON DIKE (EXISTING) D (vty ATI J_ 134 Q(3 hr) = 225 efs Vol (241-1r) = 29.71 acft J� A6 Q(3 hr) = 174 cfs Vol (241-1r) = 22.81 acft 3 4 s s 7 A 6� 2 62 8.5 AC am aaa g 64 J A5 d(3 hr) 155 cfs R-C4 Vol (24Hr) 20.48 acft 82 ")tl, hr) 216 ct 2 32.11 acft 63 74 62 70 F, c 73 I 72 0� J, Q(3 h = A 34 v cfs 71 M Vol (24H r) 4.24 acft 71 NT 216 / Y. 3 100 01 M Z 7S 2, q, 57 81 94 213 d0l J 93 k, 212 D7 �4 82 211 17*% 218 -4, 102 103 104 123 a. 219 124 f t e.e A? 1w 122 log 206 108 k 121 J A4 Q(3 hr) 77 Ids k "2�&"'_ 107 297 j/ JN�' Vol (24H r) 10.74 acft 741 "w I �7z y 12D M A27 I 112 11 km 114 i C8 lie 4� 7 177 179 C'? acft i y 4 204 141 198 176 lie i3a f ­1 ' 1 11 , 00 I1W / W J C5 Q {3 hr) = 127 1 e 191 -7, 202 Vol (241-1r) 18. 31 acft 174 140 33 134 FII 19W7 139 fill 94 C B� Al M AM AS 4.3 J% .j J_ A5_ 1 Q(3 hr) =105 cfti Vol (241-1r) =14.28 acft AS 3 6.9 AC ........ ...... FIN. Rv. rRIMIN N ti (: 5.4 AC ) -4e ( Dy a, CANYON DIKE (EXISTING) D (vty -n 1 °' 200' JOB TITLE z DESIGNED SP > m 00 M A L (C A M YOO M (a 1p D IF ID 0 N 10 7 0 DRAWING lh� CD 113-)9 - I cc-YEA10-) UMF 11 # U9 PACIFIC Ak DVA hl"dIE CHECKED SP CIVIL ENOINEERINO f 10 D L 00 "Y rc, -)W M M A'R 17520 NEWHOPE STREET, SUITE 200 FOUNTAIN VALLEY, CA 92708 DATE 05102107 1�1_ D n­ bly&Nogy PH(714)48 l-7300 FAX(714)481 -7299 JOB N 8528E La QUINTA, RIVERSIDE COUNTY CA ATI -Pond 2 I I EE/!ii^ �� J C14 1-A1 Jefferso I — — Crossing Outiet- Dischage to Dike #2 Retention Basin -n 1 °' 200' JOB TITLE z DESIGNED SP > m 00 M A L (C A M YOO M (a 1p D IF ID 0 N 10 7 0 DRAWING lh� CD 113-)9 - I cc-YEA10-) UMF 11 # U9 PACIFIC Ak DVA hl"dIE CHECKED SP CIVIL ENOINEERINO f 10 D L 00 "Y rc, -)W M M A'R 17520 NEWHOPE STREET, SUITE 200 FOUNTAIN VALLEY, CA 92708 DATE 05102107 1�1_ D n­ bly&Nogy PH(714)48 l-7300 FAX(714)481 -7299 JOB N 8528E La QUINTA, RIVERSIDE COUNTY CA A \ - I SCALE 1"= 400' oa TITLE PROPOSED D C�ONDD FNoms DESIGNED SP m \ _ —� o o CORAL CANYON R ATWM ALA METHOD D FLOO � HATE DFAW NG CD HYDROLOGY SUMMARY MAP CHECKED sP PACIFIC ADVANCED CIVIL ENGINEERING TrG ��444 M rydpOOg y Rudy FOR �H TA CT DATE 8528E ] 17520 NEWHOPE STREET, SUITE 200 FOUNTAIN VALLEF 47 92709 PH (714)481-7300 FAx1714148, -7299 ° ^.( M SYSTEM STORM DIl AA H JOB NO La QUINTA, RIVERSIDE COUNTY CA 8528E 0 0 File: P:\ 8528E1 6- GIS1eev�ew_1005C61 8523E _Figurel2_LandJse2_10C506.n.::d • if 3 -v O I m c c v s U t -r. 0 z1 03 N L0 00 a� 3 Z ¢ J al N c c v s U 0 Z I 04 N 00 3 w I J J I N to co of 3 v W J O 0_ I c c v s U s 0 zl 00 N Lo co 3 O M X N Y J I w N 00 3 v I co O I M II m c rn V CD ^ U U Qi FN 3 C3 N O O J V) I N N 7D ¢ II ¢I � X w v I U 00 ¢ N 00 II o 0 3 0 V N O D_ z Li-i (UI o � II c v 0 0 � U U � 0 O z O I to 00 it Ln N 00 ° U `r- rn U X CD a: L a W H Q V) Z O_ U) W ; PROPOSE CKA NEE INVERT ! ......_. ,. ...tom_.__.... ...._._... .._............ _...... .�..._ _�_ ... ..........._...._....._ __�__._.._........_._..®_.. _. _____.r �.._..... ....._..___.I �— w . _......... _... _. r � r r � _ � € I � — a RA __- _ - o TT- i _ I � ® 41 Z ---- T T It jj E LQ co I I 0 0 Ld 3 +00 13 +50 14 +00 14 +50 15 +00 15 +50 16 +00 16 +50 17 +00 17 +50 18 +00 18 +50 19 +00 19 +50 20 +00 20 +50 21 +00 21 +50 22 +00 22 +50 23 +00 23 +50 24 +00 24 +50 25 +00 25 +50 26 +00 26 +50 27 +00 27 +50 28 +00 28 +50 29 +00 29 +50 30 +00 30 +50 31 +00 31 +50 32 +00 32 +50 33 +00 33 +50 34 +00 34 +50 w Z Z Y z 0 w � i Q 0° (n 0 0 0 0 O--5 NORTH PERIMETER CHANNEL PROFILE HORIZ. SCALE. 1' - 6, VERi. SCALE: 1 " =60' 1101 Rom 1 1 /Q J !0- tln JOB NO. 0 Eg CA D aE C= 1� a� Qn �J Q c WZ UN � 40 5ry VI F Q I� > Lu X �L i� Z ® >� u z Id Z O 07) ���Lr Cc n 8528 -E z z ¢o z ~' _ U p � W I— U (n Z fn O O U ril w rz w O G:f II W p m W O (cn Z J p _j W Q a- 2 m c/) Q p V) Z � Q (n • J U Z Q =D n. Z L.,-. O_ O U F-- r W N w Z O O � U W O I— W W Lt l Q =D cn m Lr- z � � o z p W W z W Z Q C I-- L 7 d- O v CD O O N M 0 0 c 0 U 7 Y 0 a m T J .a I- I o+ 3 V c c v t U U N s= d 0 zl w N Lo / s x W v 0 c� c .0 N .0 C / w co N 00 / WE PONIVI WS ELEV 622.50' 7 ws WS ELEV 62231'— ELEV 622.12' ws ELEV 663.30' WS ELEV 621.04' --------------- POND 2 WS ELEV 664.00' - — — - — - — - — - — - — - — WS ELEV 661.49 DEBRIS/SPILLWAY — — — — — — ELEV 6-60.54 — — FIGURE 14 BASIN SCHEMATIC PACIFIC ADVANCED CIVIL E N 01 NEE RINO ELEV 623. DEBRIS/SPILLWAY ELEV 620.35' ELEV 619.00' BOTTOM OF BASIN ITIT10190911111-olWa ELEV 665.00' ws ELEV 663.03' ELEV 658.00' BOTTOM OF BASIN LEGEND WSE-MAXIMUM WSE-SPF WSE-100YR (24 HRS) WSE-100YR (3 HRS) 0 11 - — - — - — --- SL. — - — - — - — DEBRIS ELEV 632.13' ELEV 630\00' ELEV 631.13' BOTTOM OF BASIN FIGURE 15 BASIN SCHEMATIC PACIFIC ADVANCED CIVIL EMOINEERIM43 -1- WS ELEV 635.60' - - - - - - - - - - - - - WS ELEV 634.75' WS ELEV 633.95' WS ELEV 632.16' ELEV 631.00' . WS ELEV 564.60' . . . WS ELEV 563.81'. WS ELEV 562.82' DEBRIS ELEV 561.00' WS ELEV 561.00' ELEV -56-1-.00' 8' X 3' RCB 4 - 5' X 2' RCB q zlel 4,'l • WSE-MAXIMUM - • - - - • - WSE-SPF - - - - WSE-100YR (24 HRS) - - - - WSE-100YR (3 HRS) - - - -- 567.3' AI itl OUR IC Feet 1 inch equals 200 feet 1�11mm�&1111 �LAMMM LlG O O O NMI O LUZ U Z E LU Uzi U RGME 0 lu ul ^� O nn n� Iu ul o a � ng W d r r Q �9 � � d Q � � d z CC) o � w a N a LLI Z a z oW W Z w � O a D o U WZ_ ZR W QW : > g�6 9 �W � e U- FIGURE FIGURE Xrefs: Watersheds.dwg; 8041E TBLK 60x36v.dwg; MON_CL.dwg; 8041— USGS.dwg x x Dimscale = 40; Ill = 0.5; PSitscale = 1; Acad Ver. = 16.2s (LMS Tech); Visretain = 1 _ _ 1 m 1 2007 at 0 .51 10 506.dw R 2 B. s otukucht an Apr. 8 # Tab. WATERSHED FIGURE 2 FIGURE 2 & 3 2 G abaiExhEbits 8041E DIKE p P: 8528E En �neer�n f P � � 9 9� \ g � P ,... , :..... x... THESE DRAWINGS ARE THE PROPERTY OF P.A.C.E. AND SHALL NOT BE REPRODUCED IN ANY ... : MANNER NOR BE USED FOR CONSTRUCTION UNLESS STAMPED :.. . x x. y xr :. u �.. m rw� - - .. .:. '.. .. # .: .. .... .. .. .... .... x �..#* . ....... .........5$...x. .. .. .. ..... x. ... .. ri. .x ..x.. x .... x .... �x ... .: .x #.'t#' �x..,,. .i#..... x. ... .. 3 .. xi. ,. .... ..: }.....:: .�..3 ., .. ... x .x . ......... ... ._ ..r .. ......... .. .. ........... ...., ..... .. ....... .... .. .. .. .... .. # ..... . .......... # # ..... .. .... x ...x... t ... ....... ...:. ... : #. . .. ...... f... ..: .... ... 'x .... ...... ....x.. ... .. ... .... �. ...., .�s .x.. .. .. x. .. .. .... ..... .... .... #. ...: x .... �#.... .... ... r: n ......... ..., n ... ..} .... .. ....... ........ ...... ... ... #... ..... ..:. ... .. .. :.�... x ... .... .. ..::, .. .. ,. ..: ... : . ..... . ... .. .. ... .ti. x .. v ..... ..} .. #. x : Ea # ..... : ¥x.. .E ... ::. E z' x #:x �. #x. ........ #, a'.. 'i. .....'X# � # . #. ::. '¢�� t.. ,., <:, .. ... #: #. .3....... .. #' ... ... .. ... �x i .. f. zs.x# .:# E, ... Rx .. .. ....... ..____ -.M'. a 3 .3 ... .,,,. #... .. .jj .r #. ti.. .., .. ..:, . F.., ....,.. ,.... 'rl ..X# . L......_..... ax ..fir... #... �......... a i. :... .# ..x x... .., .. �...w� �_ �k s 3.n.. �... �._ � � x. rm_.x €.Y � ��:....� 3i. �� J #i#h�E A . #,,E• ix A-011 € .x..a..... �_. _ .....: _... t.. _......_.. h_ x...._....._.. ....5� ..�#i x_�i__.x _ x .... ..... _.....� a x_.: nn.. � . z. _....� �; _....� _. .�.. .� „, __� _. .r: E t x w.. u.x x .... _..�._.._� ®.. .. �r... x w .._... ..x� � x ...� _.. .....r.._xx_. w. I III Coral Canyon • 0 0 December 2006 #8528E Existing Condition Synthetic Unit Hydrograph (HEC - HMS) 100- Year. (24-hour duration) PACIFIC ADVANCED CIVIL ENGINEERING, INC. • • • Existing Condition 100YR - 24 Hour Hydrologic Element Drainage Area (M12) Peak Discharge (CFS) . Time of Peak Volume (AC -FT) Al 0.0110 3.76 01Jan2000, 13:15 2.16 A2 .0.0320 10.93 01 Jan2000, 13:15 6.29 A3 0.0250 8.50 01 Jan2000, 13:15 4.92 A4 0.0120 3.94 01 Jan2000, 13:15 2.09 A5 0.0510 17.25 01 Jan2000, 13:15 9.74 A6 0.0150 5.00 O1 Jan2000, 13:15 2.69 131 ..0.0450 15.05 01Jan2000, 13:15 8.34 B2 0.0110 3.55 01 Jan2000, 13:15 1.86 B3 0.0160 5.22 01 Jan2000, 13:15 2.79 C1 0.0290 9.55 01Jan2000, 13:15 5.05 C2 0.0230 7.35 01 Jan2000, 13:15 3.78 C3 '0.0080 2.48 01 Jan2000, 13:15 1.23 C4 0.0090 2.79 01 Jan2000, 13:15 1.39 C5 0.0380 11.67 01 Jan2000, 13:15 5.85 C6 0.0290' 8.95 01 Jan2000, 13:15 4.47 C7 0.0270 8.17 01 Jan2000, 13:15 4.16 D1 0.0320 10.77 01Jan2000, 13:15 5.93 J_A4 0.0800 27.12 01 Jan2000, 13:15 15.46 J_A5 0.1310 44.34 01 Jan2000, 13:15 25.20 J_A6 0.1460 49.31 01 Jan2000, 13:15 27.88 J_B2 0.0560 18.60 01 Jan2000, 13:15 10.20 J_B3 0.2350 74.61 01 Jan2000, 13:15 38.91 J_B4 0.2350 74.58 01 Jan2000, 13:15 38.90 J_C4 0.0690 22.15 01 Jan2000, 13:15 11.45 J_C5 0.1070 33.79 01 Jan2000, 13:15 17.30 J_C6 0.1360 42.71 01 Jan2000, 13:15 21.77 J_D1 0.0320 10.77 01Jan2000, 13:15 5.93 Outlet 0.3810 123.90 01 Jan2000, 13:15 66.79 R_A1 0.0110 3.76 01 Jan2000, 13:17 2.16 R_A2 0.0800 27.10 01 Jan2000, 13:16 15.46 R_A3 0.1310 44.32 01 Jan2000, 13:16 25.19 R_B3 0.2350 74.58 01 Jan2000, 13:15 38.90 R_C1 0.0290 9.54 01Jan2000, 13:16 5.05 R_C2 0.0080 2.48 01 Jan2000, 13:16 1.23 R_C3 0.0690 22.14 01 Jan2000, 13:16 11.45 R_C4 0.1070 33.78 01 Jan2000, 13:16 17.30 • • C7 Existing Condition 100YR - 24 Hour Hydrologic Element Drainage Area (M12) Peak Discharge (CFS) Time of Peak Volume (AC -FT) R_C5 0.1360 42.68 101,lan2000, 13:17 1 21.76 • 0 Proposed Condition Synthetic Unit Hydrograph (HEC - HMS) 100 -Year (24 -hour duration) PACIFIC ADVANCED CIVIL ENGINEERING, INC. • • Project: Coral_Apri12007 Simulation Run: PR- 100- 24 -upd Peak Discharge (CFS) Time of Peak End of Run: Execution Time: Model, _ 02Jan2000, 00:00 Meteorologic Model: 100YR -2 02May2007, 14:21:10 Control Specifications: 1 minite 0.0110 3.76 Volume Units: AC -FT Hydrologic Element Drainage Area (M12) Peak Discharge (CFS) Time of Peak Volume (AC -FT) Al 0.0110 3.76 01 Jan2000, 13:15 2.16 A2 0.0200 6.83 01 Jan2000, 13:15 3.93 A3 0.0040 1.36 01 Jan2000, 13:15 0.77 A4 0.0050 1.71 01 Jan2000, 13:15 1.00 A4 -1 0.0030 1.02 01 Jan2000, 13:15 0.59 A5_1 0.0120 4.05 01 Jan2000, 13:15 2.31 A5_2 0.0070 2.39 01 Jan2000, 13:15 1.38 A5_3 0.0110 3.76. 01 Jan2000, 13:15 2.16 A5_4 0.0210 7.08 01 Jan2000, 13:15 3.89 A6 0.0130 4.34 01 Jan2000, 13:15 2.33 B4 0.0370 12.17 01 Jan2000, 13:15 6.90 C11 0.0110 3.25 01 Jan2000, 13:15 1.59 C12 0.0270 7.97 01 Jan2000, 13:15 4.24 C13 -1 0.0070 2.13 01 Jan2000, 13:15 1.04 C13 -2 0.0120 3.72 01 Jan2000, 13:15 1.85 C14 0.0110 3.41 01 Jan2000, 13:15 1.86 C14_1 0.0040 0.87 01 Jan2000, 13:15 0.38 C1-1 0.0130 4.39 01 Jan2000, 13:15 2.49 C1_2 0.0110 3.74 01 Jan2000, 13:15 2.16 C2 0.0450 15.09 01 Jan2000, 13:15 8.34 C3 0.0200 6.58 01 Jan2000, 13:15 3.49 C4 0.0100 2.99. 01 Jan2000, 13:15 1.45 C5 0.0120 3.79 01 Jan2000, 13:15 2.07 C6 0.0100 2.89 01 Jan2000, 13:15 1.53 Panes 1 • n U 0 Hydrologic Element Drainage Area (M12) Peak Discharge (CFS) Time of Peak Volume (AC -FT) C7 0.0080 2.57 01 Jan2000, 13:15 1.31 C8 0.0220 6.90 01 Jan2000, 13:15 3.49 C9 0.0130 4.03 01 Jan2000, 13:15 2.16 D1 0.0320 10.77 01 Jan2000, 13:15 5.93 J -A5_1 0.0740 25.13 01 Jan2000, 13:15 14.28 J_A1 0.0240 8.15 01 Jan2000, 13:15 4.65 J_A4 0.0560 18.98 01 Jan2000, 13:15 10.74 J_A5 0.1070 36.26 01 Jan2000, 13:15 20.48 J_A6 0.1200 40.57 01 Jan2000, 13:15 22.81 J_64 0.1570 52.74 01 Jan2000, 13:15 29.71 J_C10 0.1510 47.68 01 Jan2000, 13:15 25.48 J_C14 0.2190 67.58 01 Jan2000, 13:16 36.03 J_C14_1 0.2230 68.35 01 Jan2000, 13:17 36.39 J_C3 0.0280 9.15 01 Jan2000, 13:15 4.80 J_C5 0.1060 33.98 01 Jan2000, 13:16 18.31 J_C8 0.0320 9.78 01 Jan2000, 13:15 5.02 J_D1 0.0320 10.77 01Jan2000, 13:15 5.93 Outlet 0.3800 120.91 01 Jan2000, 13:16 66.10 Pond 1 0.0330 11.19 01 Jan2000, 13:15 6.22 Pond 2 0.0560 18.72 01 Jan2000, 13:16 10.21 Pond 3 0.0940 30.24 01 Jan2000, 13:17 16.24 Pond4 0.1960 60.65 01 Jan2000, 13:16 32.33 R -A1 0.0330 11.18 01 Jan2000, 13:19 6.22 R -A3 0.1070 36.25 01 Jan2000, 13:16 20.48 R -C1 0.0560 18.71 01 Jan2000, 13:16 10.21 R -C2 0.1060 33.96 01 Jan2000, 13:17 18.30 R -C3 0.1510 47.64 01 Jan2000, 13:16 25.47 R -C4 0.1960 60.64 01 Jan2000, 13:17 32.32 R -05 10.2190. 67.53 01 Jan2000, 13:17 136.01 Page 2 Coral C Hydroh II • • • December 2006 #8528E Existing Condition Synthetic Unit Hydrograph (HEC - HMS) 100 -Year (6 -hour duration) 6 • r 1 L_J • Existing Condition 100YR - 6 Hour Hydrologic Element Drainage Area (M12) Peak Discharge (CFS) Time of Peak Volume (AC -FT) Al 0.0110 12.70 01Jan2000, 05:15 1.68 A2 0.0320 36.42 01 Jan2000, 05:15 4.88 A3 0.0250 27.61 01 Jan2000, 05:15 3.81 A4 0.0120 12.93 01 Jan2000, 05:15 1.57 A5 0.0510 56.51 01 Jan2000, 05:15 7.50 A6 0.0150 16.87 01 Jan2000, 05:15 2.04 131 0.0450 48.65 01 Jan2000, 05:15 6.38 B2 0.0110 11.50 01 Jan2000, 05:15 1.39 B3 0.0160 16.79 01 Jan2000, 05:15 2.10 C1 0.0290 31.95 01 Jan2000, 05:15 3.80 C2 0.0230 24.45 01 Jan2000, 05:15 2.80 C3 0.0080 8.60 101,lan2000, 05:15 0.90 C4 0.0090 9.49 101,lan2000, 05:15 1.01 C5 0.0380 37.97 01 Jan2000," 05:15 " 4.28 C6 0.0290 29.90 01 Jan2000, 05:15 3.26 C7 0.0270 25.47 01 Jan2000, 05:15 3.04 D1 0.0320 35.96 01 Jan2000, 05:15 4.53 J_A4 0.0800 89.56 01 Jan2000, 05:15 11.95 J_A5 0.1310 145.37 01 Jan2000, 05:15 19.45 J_A6 0.1460 161.52 01 Jan2000, 05:16 21.49 J_B2 0.0560 60.15 01 Jan2000, 05:15 7.77 J_B3 0.2350 241.93 01 Jan2000, 05:15 28.97 J_B4 0.2350 241.88 01 Jan2000, 05:16 28.97 J_C4 0.0690 74.31 01 Jan2000, 05:15 8.52 J_C5 0.1070 111.66 01 Jan2000, 05:15 12.80 J_C6 0.1360 140.95 01 Jan2000, 05:15 16.06 J_D1 0.0320 35.96 01Jan2000, 05:15 4.53 Outlet 0.3810 403.40 01 Jan2000, 05:16 50.47 R_A1 0.0110 12.65 01Jan2000, 05:17 1.68 R_A2 0.0800 89.18 01 Jan2000, 05:16 11.95 R_A3 0.1310 145.14 01 Jan2000, 05:16 19.45 R_B3 0.2350 241.88_ O1Jan2000, 05:16 28.97 R_C1 0.0290 31.83 01Jan2000, 05:16 3.80 R_C2 0.0080 8.57 01 Jan2000, 05:16 0.90 R_C3 0.0690 74.01 01 Jan2000, 05:16 8.52 R_C4 0.1070 111.56 01 Jan2000, 05:16 12.80 • • Existing Condition 100YR - 6 Hour Hydrologic Element Drainage Area (M12) Peak Discharge (CFS) Time of Peak Volume (AC -FT) R_C5 0.1360 1 140.76 101,lan2000, 05:17 1 16.07 i tl 0 C7 Proposed Condition Synthetic Unit Hydrograph (HEC - HMS) . 100 -Year (6 -hour duration) PACIFIC ADVANCED CIVIL ENGINEERING, INC. 0 • • Project: Coral_Apri12007 Simulation Run: PR- 100 -6 -UPD Peak Discharge (CFS) Time of Peak Start ol Run, End of Run: Execution Time: 0 1 jan2uOu, 00.00 Basin Model, PH:Amcl 02Jan2000, 00:00 Meteorologic Model: 100Yr -6H 02May2007, 14:17:22 Control Specifications: 1 minite 0.0110 12.70 Volume Units: AC -FT Hydrologic Element Drainage Area (M12) Peak Discharge (CFS) Time of Peak Volume (AC -FT) Al 0.0110 12.70 01 Jan2000, 05:15 1.68 A2 0.0200 22.76 01 Jan2000, 05:15 3.05 A3 0.0040 4.65 01 Jan2000, 05:15 0.59 A4 0.0050 5.84 01 Jan2000, 05:15 0.78 A4 -1 0.0030 3.49 01 Jan2000, 05:15 0.46 A5_1 0.0120 13.62 01 Jan2000, 05:15 1.78 A5_2 0.0070 8.17 01 Jan2000, 05:15 1.07 A5_3 0.0110 12.70 01 Jan2000, 05:15 1.68 A5_4 0.0210 24.07 01 Jan2000, 05:15 2.98 A6 0.0130 14.62 01 Jan2000, 05:15 1.77 B4 0.0370 39.66 01 Jan2000, 05:15 5.30 C11 0.0110 10.70 01 Jan2000, 05:15 1.14 C12 0.0270 26.93 01 Jan2000, 05:15 3.16 C13 -1 0.0070 7.40 01 Jan2000, 05:15 0.76 C13 -2 0.0120 12.72 01 Jan2000, 05:15 1.35 C14 0.0110 11.62 01 Jan2000, 05:15 1.40 C14_1 0.0040 .3.09 01 Jan2000, 05:15 0.25 C1-1 0.0130 14.28 01 Jan2000, 05:15 1.92 C1_2 0.0110 12.26 01 Jan2000, 05:15 1.68 C2 0.0450 49.49 01 Jan2000, 05:15 6.38 C3 0.0200 22.04 01 Jan2000, 05:15 2.62 C4 0.0100 10.32 01 Jan2000, 05:15 1.04 C5 0.0120 12.74 01 Jan2000, 05:15 1.56 C6 0.0100 9.68 01 Jan2000, 05:15 11.13 Pang 1 • • Hydrologic Element Drainage Area (M12) Peak Discharge (CFS) Time of Peak Volume (AC -FT) C7 0.0080 8.79 01 Jan2000, 05:15 0.97 C8 0.0220 22.77 01 Jan2000, 05:15 2.57 C9 0.0130 13.77 01 Jan2000, 05:15 1.62 D1 0.0320 35.96 01 Jan2000, 05:15 4.53 J -A5_1 0.0740 81.58 01 Jan2000, 05:15 11.03 J_A1 0.0240 26.98 01 Jan2000, 05:15 3.60 J_A4 0.0560 60.70 01 Jan2000, 05:15 8.29 J_A5 0.1070 119.27 01 Jan2000, 05:15 15.79 J_A6 0.1200 133.10 01 Jan2000, 05:15 17.56 J_64 0.1570 172.76 01 Jan2000, 05:15 22.87 J_C10 0.1510 147.67 01Jan2000, 05:16 19.09 J_C14 0.2190 205.92 01 Jan2000, 05:16 26.91 J_C1 4_1 0.2230 207.80 01 Jan2000, 05:17 27.16 J_C3 0.0280 30.82 01 Jan2000, 05:15 3.60 J_C5 0.1060 103.52 01 Jan2000, 05:17 13.77 J_C8 0.0320 32.45 01 Jan2000, 05:15 3.70 J_D1 0.0320 35.96 01Jan2000, 05:15 4.53 Outlet 0.3800 378.37 01 Jan2000, 05:16 50.03 Pond 1 0.0330 35.96 01 Jan2000, 05:16 4.77 Pond 2 0.0560 60.29 01 Jan2000, 05:16 7.76 Pond 3 0.0940 91.60 01 Jan2000, 05:17 12.20 Pond4 0.1960 185.25 01 Jan2000, 05:17 24.16 R -A1 0.0330 35.81 01 Jan2000, 05:19 4.78 R -A3 0.1070 118.74 01 Jan2000, 05:16 15.80 R•C1 0.0560 60.27 01 Jan2000, 05:17 7.76 R -C2 0.1060 103.28 01 Jan2000, 05:17 13.77 R -C3 0.1510 147.52 01 Jan2000, 05:17 19.09 R -C4 0.1960 185.12 01 Jan2000, 05:18 24.16 R -05 0.2190 1205.17 01 Jan2000, 05:17 126.92 Page 2 I II II • Proposed Condition Synthetic Unit Hydrograph (HEC - HMS 100 -Year (3 -hour duration) PACIFIC ADVANCED CIVIL ENGINEERING, INC. • • • Project: Coral_Apri12007 Simulation Run: PR- 100 -3 -UPD Peak Discharge (CFS) Time of Peak End of Run: Execution Time: Model, _ 02Jan2000, 00:00 Meteorologic Model: ' 100Yr -3hr 27Apr2007, 15:15:04 Control Specifications: 1 minite 0.0110 17.28 Volume Units: AC -FT Hydrologic Element Drainage Area (M12) Peak Discharge (CFS) Time of Peak Volume (AC -FT) Al 0.0110 17.28 01 Jan2000, 02:30 1.39 A2 0.0200 30.35 01 Jan2000, 02:31 2.53 A3 0.0040 6.45 01 Jan2000, 02:30 0.49 A4: 0.0050 8.13 01 Jan2000, 02:30 0.65 A4 -1 0.0030 4.84 01 Jan2000, 02:30 0.38 A5_1 0.0120 18.20 01 Jan2000, 02:31 1.47 A5_2 0.0070. 11.37 01 Jan2000, 02:30 0.89 A5_3 0.0110 17.28 01 Jan2000, 02:30 1.39 A5_4 0.0210 32.83 01 Jan2000, 02:30 2.44 A6 0.0130 19.42 01 Jan2000, 02:31 1.44 B4 0.0370 51.25 01 Jan2000, 02:32 4.37 C11 0.0110 13.19 01 Jan2000, 02:33 0.89 C12 0.0270 33.96 01 Jan2000, 02:31 2.54 C13 -1 0.0070 9.77 01Jan2000, 02:30 0.59 C13 -2 0.0120 16.49 01 Jan2000, 02:30 1.06 C14 0.0110 15.19 01 Jan2000, 02:30 1.14 C14_1 0.0040 3.55 01 Jan2000, 02:31 0.18 C1_1 0.0130 18.67 01Jan2000, 02:32 1.58 C1 _2 0.0110 16.18 01 Jan2000, 02:32 1.39 C2 0.0450 64.80 01 Jan2000, 02:32 5.22 C3 0.0200 28.80 01 Jan2000, 02:31 2.12 C4 0.0100 13.33 01 Jan2000, 02:30 0.81 C5 10.0120 16.43 01 Jan2000, 02:31 1.27 C6 0.0100 12.06 01 Jan2000, 02:32 0.91 Pans 1 • • Hydrologic Element Drainage Area (M12) Peak Discharge (CFS) Time of Peak Volume (AC -FT) C7 0.0080 11.70 01 Jan2000, 02:30 0.78 C8 0.0220 28.86 01 Jan2000, 02:32 2.04 C9 0.0130 17.97 01 Jan2000, 02:30 1.31 D1 0.0320 47.55 01 Jan2000, 02:31 3.71 J -A5_1 0.0740 104.65 01 Jan2000, 02:31 9.11 J_A1 0.0240 35.66 01 Jan2000, 02:31 2.97 J_A4 0.0560 77.20 01 Jan2000, 02:32 6.83 J_A5 0.1070 155.26 01 Jan2000, 02:31 13.02 J_A6 0.1200 173.70 01 Jan2000, 02:31 14.46 J_134 0.1570 224.69 01 Jan2000, 02:32 18.83 J_C10 0.1510 179.31 01 Jan2000, 02:33 15.35 J_C14 0.2190 249.23 01 Jan2000, 02:36 21.59 J_C14_1 0.2230 251.33 01 Jan2000, 02:37 21.78 J_C3 0.0280 40.37 01 Jan2000, 02:31 2.89 J_C5 0.1060 126.97 01 Jan2000, 02:36 11.10 J_C8 0.0320 40.93 01 Jan2000, 02:32 2.94 J_D1 0.0320 47.55 01 Jan2000, 02:31 3.71 Outlet 0.3800 462.06 01 Jan2000, 02:32 40.60 Pond 1 0.0330 46.21 01 Jan2000, 02:33 3.92 Pond 2 0.0560 77.45 01 Jan2000, 02:34 6.32 Pond 3 0.0940 113.55 01 Jan2000, 02:37 9.83 Pond4 0.1960 224.56 01 Jan2000, 02:36 19.38 R -A1 0.0330 46.08 01 Jan2000, 02:36 3.92 R -A3 0.1070 154.33 01 Jan2000, 02:32 13.03 R -C1 0.0560 77.29 01 Jan2000, 02:34 6.32 R -C2 0.1060 126.87 01 Jan2000, 02:37 11.10 R -C3 0.1510 179.12 01 Jan2000, 02:34 15.36 R -C4 0.1960 224.27 01 Jan2000, 02:37 19.38 R -05 0.2190 248.72 01 Jan2000, 02:37 21.60 Page 2 Coral ,Canyon December 2006 Hydrologic Analysis #8528E i� I' i li �I Proposed Condition Coral Canyon-, j Synthetic Unit Hydrograph (HEC - HMS) 100 -Year 3 -hour duration PACIFIC ADVANCED CIVIL ENGINEERING, INC. U • U Project: Coral- Nov2006 Simulation Ru.n: PR- 100 -3 -UPD Start of Hun. 0 1 Jan200O, 00.00 Basin Model. Ph-Amcli End of Run: 02Jan2000, 00:00 Meteorologic Model: 100Yr -3hr Execution Time: 14Dec2006, 13:29:57 Control Specifications: 1 minite Volume Units: AC -FT Hydrologic Element Drainage Area (M12) Peak Discharge (CFS) Time of Peak Volume (AC -FT) Al 0.0110 17.28 01 Jan2000, 02:30 1.39 A2 0.0200 30.35 01 Jan2000, 02:31 2.53 A3 0.0040 6.45 01 Jan2000, 02:30 0.49 A4 0.0050 8.13 01 Jan2000, 02:30 0.65 A4 -1 0.0030 4.84 01 Jan2000, 02:30 0.38 A5_1 0.0120 18.20 01 Jan2000, 02:31 1.47 A5_2 0.0070 11.37 01 Jan2000, 02:30 0.89 A5_3 0.0110 17.28 01 Jan2000, 02:30 1.39 A5_4 0.0210 32.83 01 Jan2000, 02:30 2.44 A6 0.0130 19.42 01 Jan2000; 02:31 1.44 B4 0.0370 51.25 01 Jan2000, 02:32 4.37 C11 0.0110 13.19 01 Jan2000, 02:33 0.89 C12 0.0270 33.96 01 Jan2000, 02:31 2.54 C13 -1 0.0070 9.77 01 Jan2000, 02:30 0.59 C13 -2 0.0120 16.49 O1Jan2000, 02:30 1.06 C14 0.0110 15.19 01 Jan2000, 02:30 1.14 C14_1 0.0040 3.55 01 Jan2000, 02:31 0.18 C1-1 0.0130 18.67 01 Jan2000, 02:32 1.58 C1-2 0.0110 16.18 01 Jan2000, 02:32 1.39 C2 0.0450 64.80 01 Jan2000, 02:32 5.22 C3 0.0200 28.80 01 Jan2000, 02:31 2.12 C4 0.0100 13.33 01 Jan2000, 02:30 0.81 C5 0.0120 16.43 01 Jan2000, 02:31 1.27 C6 0.0100 12.06 01 Jan2000, 02:32 0.91 Pariin 1 • • • Hydrologic Element Drainage Area (M12) Peak Discharge (CFS) Time of Peak Volume (AC -FT) C7 0.0080 11.70 01 Jan2000, 02:30 0.78 C8 0.0220 28.86 01 Jan2000, 02:32 2.04 C9 0.0130 17.97 01 Jan2000, 02:30 1.31 D1 0.0320 47.55 01Jan2000, 02:31 3.71 J -A5_1 0.0740 106.86 01 Jan2000, 02:31 9.11 J_A1 0.0240 35.66 01 Jan2000, 02:31 2.97 J_A4 0.0560 79.23 01 Jan2000, 02:32 6.83 J_A5 0.1070 157.47 01 Jan2000, 02:31 13.02 J_A6 0.1200 175.98 01 Jan2000, 02:31 14.46 J_B4 0.1570 226.74 01 Jan2000, 02:32 18.83 J_C10 0.1510 185.41 01 Jan2000, 02:33 15.32 J_C14 0.2190 251.27 01 Jan2000, 02:36 21.11 J_C14_1 0.2230 253.55 01 Jan2000, 02:37 21.30 J_C3 0.0280 40.37 01 Jan2000, 02:31 2.89 J_C5 0.1060 131.22 01 Jan2000, 02:36 11.06 J_C8 0.0320 40.93 01 Jan2000, 02:32 2.94 J_D1 0.0320 47.55 01 Jan2000, 02:31 3.71 Outlet 0.3800 471.74 01 Jan2000, 02:32 40.13 Pond 1 0.0330 47.53 01 Jan2000, 02:32 3.92 Pond 2 0.0560 77.59 01 Jan2000, 02:34 6.32 Pond 3 0.0940 117.42 01 Jan2000, 02:36 9.79 Pond4 0.1960 226.84 01 Jan2000, 02:37 18.90 R -A1 0.0330 47.28 01 Jan2000, 02:35 3.92 R -A3 0.1070 156.56 01 Jan2000, 02:31 13.03 R -C1 0.0560 77.42 01 Jan2000, 02:34 6.32 R -C2 0.1060 131.19 01 Jan2000, 02:36 11.06 R -C3 0.1510 185.28 01 Jan2000, 02:34 15.32 R -C4 0.1960 1226.78 01 Jan2000, 02:37 18.91 R -CS 10.2190 1250.94 01 Jan2000, 02:37 21.12 Page 2 ii Coral Canyon 0 0 October 2006 #8528E Existing Condition Synthetic Unit Hydrograph (HEC - HMS) SPF PACIFIC ADVANCED CIVIL ENGINEERING, INC. • • 0 Existing Condition 100YR - SPF Hydrologic Element Drainage Area (M12) Peak Discharge (CFS) Time of Peak Volume (AC -FT) Al 0.0110 18.42 01 Jan2000, 05:16 3.65 A2 0.0320 53.12 01 Jan2000, 05:17 10.62 A3 0.0250 41.04 01 Jan2000, 05:18 8.30 A4 0.0120 19.57 101,lan2000, 05:18 3.70 A5 0.0510 83.93 01 Jan2000, 05:18 16.63 A6 0.0150 24.83 01 Jan2000, 05:16 4.71 131 0.0450 73.27 01 Jan2000, 05:19 14.41 B2 0.0110 17.72 01 Jan2000, 05:19 3.33 B3 0.0160 25.77 01 Jan2000, 05:19 4.93 C1 0.0290 47.65 01 Jan2000, 05:17 8.93 C2 0.0230 37.32 01 Jan2000, 05:17 6.82 C3 0.0080 13.13 01 Jan2000, 05:15 2.28 C4 0.0090 14.55 01 Jan2000, 05:16 2.57 C5 0.0380 60.22 01 Jan2000, 05:19 10.83 C6 0.0290 46.52 01 Jan2000, 05:17 8.27 C7 0.0270 42.07 01 Jan2000, 05:21 7.70 D1 0.0320 52.91 01 Jan2000, 05 :17 10.24 J_A4 0.0800 131.94 01 Jan2000, 05:17 26.27 J_A5 0.1310 215.60 01 Jan2000, 05:18 42.91 J_A6 0.1460 239.86 01 Jan2000, 05:19 47.62 J_B2 0.0560 90.99 01 Jan2000, 05:19 17.73 J_B3 0.2350 377.20 01 Jan2000, 05:20 70.08 J_B4 0.2350 377.20 01 Jan2000, 05:20 70.08 J_C4 0.0690 112.54 01 Jan2000, 05:17 20.61 J_C5 0.1070 172.61 01 Jan2000, 05:18 31.44 J_C6 0.1360 218.80 01 Jan2000, 05:18 39.71 J_D1 0.0320 52.91 01Jan2000, 05:17 10.24 Outlet 0.3810 616.83 01 Jan2000, 05:20 117.70 R_A1 0.0110 18.38 01 Jan2000, 05:19 3.65 R_A2 0.0800 131.85 01 Jan2000, 05:19 26.28 R_A3 0.1310 215.46 01 Jan2000, 05:19 42:91 R_B3 0.2350 377.20 01 Jan2000, 05:20 70.08 R_C1 0.0290 47.60 01 Jan2000, 05:18 8.93 R_C2 0.0080 13.10 01 Jan2000, 05:16 2.28 R_C3 0.0690 112.47 01 Jan2000, 05:18 20.61 R_C4 0.1070 172.58 01 Jan2000, 05:19 31.45 • • i. • Existing Condition 100YR - SPF Hydrologic Element Drainage Area (M12) Peak Discharge (CFS) Time of Peak Volume (AC -FT) R C5 0.1360 1 218.74 101,lan2000, 05:20 1 39.72 0 Proposed Condition Synthetic Unit Hydrograph (HEC - HMS) SPF PACIFIC ADVANCED CIVIL ENGINEERING, INC. r� u • Proposed Condition Synthetic Unit Hydrograph (HEC - HMS) SPF PACIFIC ADVANCED CIVIL ENGINEERING, INC. • n U • Project: Coral_Apri12007 Simulation Run: PR- SPF- SCS -UPD Peak Discharge (CFS) Time of Peak Start ol hun. End of Run: Execution Time: 0 1 jan2000, 00.00 Basin Model. Ph-Amcl 02Jan2000, 00:00 Meteorologic Model: SPF 02May2007, 14:24:19 Control Specifications: 1 minite 0.0110 18.42 Volume Units: AC -FT Hydrologic Element Drainage Area (M12) Peak Discharge (CFS) Time of Peak Volume (AC -FT) Al 0.0110 18.42 01 Jan2000, 05:16 3.65 A2 0.0200 33.20 01 Jan2000, 05:17 6.64 A3 0.0040 6.75 01 Jan2000, 05:15 1.31 A4 0.0050 8.45 01 Jan2000, 05:15 1.68 A4 -1 0.0030 5.06 01 Jan2000, 05:15 1.00 A5_1 0.0120 19.92 01 Jan2000, 05:16 3.92 A5_2 0.0070 11.83 01 Jan2000, 05:15 2.32 A5_3 0.0110 18.42 01 Jan2000, 05:16 3.65 A5_4 0.0210 35.18 01 Jan2000, 05:15 6.72 A6 0.0130 21.52 01 Jan2000, 05:16 4.08 B4 0.0370 60.12 01 Jan2000, 05:18 11.85 C11 0.0110 17.27 01 Jan2000, 05:18 3.01 C12 0.0270 42.50 01 Jan2000, 05:17 7.70 C13 -1 0.0070 11.42 01 Jan2000, 05:15 1.95 C13 -2 0.0120 19.50 01 Jan2000, 05:16 3.42 C14 0.0110 17.78 01 Jan2000, 05:16 3.29 C14_1 0.0040 5.66 01Jan2000, 05:16 0.83 C1-1 0.0130 21.31 01 Jan2000, 05:18 4.25 C1-2 0.0110 18.13 01 Jan2000, 05:18 3.65 C2 0.0450 73.88 01 Jan2000, 05:18 14.41 C3 0.0200 32.86 01 Jan2000, 05:17 6.16 C4 0.0100 16.11 01 Jan2000, 05:15 2.74 C5 0.0120 19.41 01 Jan2000, 05:17 3.65 C6 0.0100 15.55 01 Jan2000, 05:17 2.80 Panes 1 • • • Hydrologic Element Drainage Area (M12) Peak Discharge (CFS) Time of Peak Volume (AC -FT) C7 0.0080 13.20 01 Jan2000, 05:15 2.37 C8 0.0220 35.38 01 Jan2000, 05:18 6.39 C9 0.0130 21.06 01 Jan2000, 05:16 3.86 D1 0.0320 52.91 01Jan2000, 05:17 10.24 J -A5_1 0.0740 120.67 01 Jan2000, 05:17 24.30 J_A1 0.0240 39.59 01 Jan2000, 05:17 7.90 J_A4 0.0560 91.14 01 Jan2000, 05:20 18.33 J_A5 0.1070 175.71 01 Jan2000, 05:16 34.95 J_A6 0.1200 197.12 01 Jan2000, 05:17 39.03 J_64 0.1570 257.13 01 Jan2000, 05:17 50.89 J_C10 0.1510 234.23 01 Jan2000, 05:22 45.54 J_C14 0.2190 336.64 01 Jan2000, 05:25 64.91 J_C14_1 0.2230 342.02 01 Jan2000, 05:26 65.75 J_C3 0.0280 46.01 01 Jan2000, 05:16 8.53 J_C5 0.1060 165.08 01 Jan2000, 05:29 32.49 J_C8 0.0320 50.92 01 Jan2000, 05:18 9.19 J_D1 0.0320 52.91 01 Jan2000, 05:17 10.24 Outlet 0.3800 594.84 01 Jan2000, 05:22 116.64 Pond 1 '0.0330 53.84 01 Jan2000, 05:20 10.69 Pond 2 0.0560 90.88 01 Jan2000, 05:21 17.77 Pond 3 0.0940 146.74 01 Jan2000, 05:30 28.84 Pond4 0.1960 301.61 01 Jan2000, 05:26 58.20 R -A1 0.0330 53.83 01 Jan2000, 05:23 10.69 R -A3 0.1070 175.63 01 Jan2000, 05:17 34.95 R -C1 0.0560 90.86 01 Jan2000, 05:21 17.77 R -C2 0.1060 165.08 01 Jan2000, 05:30 32.49 R -C3 0.1510 234.22 01 Jan2000, 05:23 45.54 R -C4 0.1960 301.60 01 Jan2000, 05:26 58.20 R -05 0.2190 336.62 01 Jan2000, 05:26 64.92 Page 2 Coral Ca nyon December 2006 Hydrologic Analysis li #R52RF 0 White water Average S - Graph PACIFIC ADVANCED CIVIL ENGINEERING, INC. • • Percentage Curves: S -Curve Percent ( %) Percent ( %) 0.0 0.0 34.000 5.0000 50.000 10.0000 60.000 15.000 66.000 20.000 70.000 25.000 75.000 30.000 80.000 35.000 87.000 40.000 94.000 45.000 100.000 50.000 105.00 55.000 123.00 60.000 138.00 65.000 158.00 70.000 180.00 75.000 213.00 80.000 269.00 85.000 324.00 90.000 434.00 95.000 785.00 100.000 • 1I 1I u a a..varaww..a vaa a av�uv41V' LULLL VVl Y Vl rage 1 of � POINT PRECIPITATION` - FREQUENCY ESTIMATES t W05;FROM NOAA ATLAS 14 California 33.6178 N 116.2706 W 22 feet from "Precipitation- Frequency Atlas of the United States" NOAA Atlas 14, Volume 1, Version 4 G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley NOAA, National Weather Service, Silver Spring, Maryland, 2006 I Extracted: Thu Sep 14 2006 Confidence Limits Seasonality Location Map Other Info. GIS data Maps Help Precipitation Frequency Estimates (inches) ARI* 5 10 15 30 60 120 3 6 12 P211 48 4 7 10 20 30 45 60 min min min min min min hr hr hr hr day day day day day day day ❑ ❑❑ 1 0.10 0.15 0.19 0.25 0.31 0.44 0.50 0.66 0.81 0.85 0.87 0.93 1.03 1.10 1.21 1.33 1.50 1.61 0.14 0.21 0.26 0.35 0.43 0.59 0.68 0.88 1.09 1.15 1.17 1.26 1.40 1.50 1.65 1.82 2.06 2.21 0 0.22 0.33 0.41 0.55 0.68 0.91 1.02 1.32 1.61 1.72 1.75 1.89 2.09 2.25 2.50 2.73 3.09 3.33 10 0.29 0.44 0.54 0.73 0.90 1.19 1.32 1.67 2.01 2.17 2.22 2.39 2.63 2.84 3.15 3.43 3.86 4.18 25 0.40 0.61 0.76 1.02 1.26 1.61 1.76 2.17 2.59 2.81 2.91 3.13 3.42 3.70 4.08 4.40 4.93 5.36 50 0.51 I 0.77 Efl 1.29 1.60 2.00 I 2.15 2.61 3.06 3.34 3.49 3.76 4.08 4.41 4.84 5.19 5.78 6.29 100 0.63 0.96 E2fl 1.61 1.99 2.44 2.59 3.08 3.57 3.91 4.14 4.46 4.79 5.18 5.65 6.04 6.66 7.28 200 0.78 1.19 1.48 1.99 2.46 1 2.96 3.09 3.61 4.12 4.54 4.86 5.23 5.56 6.02 6.53 6.93 7.58 8.31 500 1.02 1.55 1.92 2.59 3.21 3.76 3.87 4.40 4.92 5.44 5.94 6.37 6.68 7.25 7.79 8.19 8.86 9.75 1000 1.24 1.88 2.33 3.14 3.89 4.48 4.55 5.08 5.59 6.18 6.86 7.34 7.62 8.28 8.83 9.23 9.87 10.89; Text version of table *These precipitation frequency estimates are based on a Partial duration series. ARI is the Average Recurrence Interval. �:.- . T.,., -:__. ,..•_, _ • . please refer to the documentation for more information. NOTE: Formatting forces estimates near zero to appear as zero. `1 http: / /dipper.nws.noaa. gov /cgi- bin / hdsc /buildout.perl ?type=pf &,scries=pd &units =us &state... 9/14/2006 I �• • • i •vvari�u�a Vaa 11V1.11AV11V �' L4LCL UVl VIJl F. t Q v a 0 M .Q U N L a 11 10 9 8 7 6 5 4 3 2 1 0 Partial duration based Point Precipitation Frequency Estimates Version: 4 33.6178 N 116.2706 W 2 2 ft rage t or n IN 1 2 3 4 5 6 7 8 910 20 30 40 50 80 100 140 200 300 500 700 1000 Thu Sep 14 19:34:36 2006 Average Recurrence Interval (years) Duration 5 -min - -r; -W- 4 46 -hr 3 30 -day - - le- min -e- 3 3 -hr -w 4 4- day. �- 6 65 -c!aL --� 15 -min + 6 6 -hr --- 7 7 -da y -e 6 60- day o 30 -min s- 1 12 -hr 1 10 -dau - 60 -min 2 24 -hr --a- 2 25 -dal --a-. 1 2 3 4 5 6 7 8 910 20 30 40 50 80 100 140 200 300 500 700 1000 Thu Sep 14 19:34:36 2006 Average Recurrence Interval (years) Duration 5 -min - -r; -W- 4 46 -hr 3 30 -day - - le- min -e- 3 3 -hr -w 4 4- day. �- 6 65 -c!aL --� 15 -min + 6 6 -hr --- 7 7 -da y -e 6 60- day o 30 -min s- 1 12 -hr 1 10 -dau - 60 -min 2 24 -hr --a- 2 25 -dal --a-. http: / /dipper.nws.noaa. gov/ cgi- bin/hdsc/buildout.perl ?type=pf &series =pd &units =us &state... 9/14/2006 • 11 5 9 .. 8 ++ 7 SZ d a 6 L O i 5 M •Q 4 v 3 a 2 1 0 L L L L E E E E I I I I U7 (D M f9 -� M Thu Sep 14 19:34:36 2006 Partial duration based Point Precipitation Frequency Estimates Version: 4 33.6178 N 116.2706 W 22 ft rdL;C;Dvi-) L L E L L L L L L L L L T T T T T T T T T T I •E 5 C t -C wc S t S S M M M M M M M M M M m 1 1 1 1 1 1 1 1 1 'a -a -0 Z NMI -a -0 -0 -a •a I 1 Cu 1i V to co N OD V 10 40 I I 1 1 I I I I 1 I m t9 .-� N M V M V N n 111I In m 0 .1 t9 `a as Duration - - N M V 0 INMEMIN mom L L E L L L L L L L L L T T T T T T T T T T I •E 5 C t -C wc S t S S M M M M M M M M M M m 1 1 1 1 1 1 1 1 1 'a -a -0 Z -a -a -0 -0 -a •a I 1 Cu 1i V to co N OD V 10 40 I I 1 1 I I I I 1 I m t9 .-� N M V M V N n 0 In m 0 .1 t9 `a as Duration - - N M V 0 Average Recurrence Interval < uears) 1 -Mi 2 9 100 - 5 0 200 - 10 -a 500 + 25 -+�- 1000 --a- Confidence Limits - * Upper bound of the 90% confidence interval Precipitation Frequency Estimates (inches) ARI ** 5 10 15 30 60 120 [-3r] 6 12 F24 �hr 8 4 7 10 20 30 45 60 min min min min min min h hr hr day day day day day day day I 10.12 0.19 0.23 0.32 0.39 0.54 0.61 0.80 0.97 1.01 1.01 1.09 1.20 1.28 1.41 1.54 1.74 1.86 u 0.17 0.26 0.33 0.44 0.55 0.73 0.83 1E 1.31 E3fl 1.37 1.48 1.63 1.74 1.93 2.11 2.39 2.56 0.27 0.41 0.51 0.69 0.85 1.12 1.24 1.60 1.93 2.04 2.06 2.21 2.43 2.61 2.90 3.16 3.57 3.85 10 0.36 0.55 0.68 0.91 Efl Efl 1.60 EE 2.41 EE 2.58 2.80 3.06 3E 3.65 3.97 4.46 4.82 25 0.50 0.76 0.94 1.26 1.57 1.96 2.13 2.63 3.10 3.33 3.38 3.67 3.98 4.29 4.72 5.10 5.70 6.18 50 0.63 0.96 1.19 1.60 1.98 2.42 2.59 3.15 3.67 3.95 4.07 4.41 4.74 5.12 5.61 6.02 6.69 7.28 100 077 81 Efl F.4fl 1.99 Efl 2.96 3.13 3.73 Efl 4.63 4.85 5.25 5.59 6.03 6.57 7.03 7.75 8.44 200 0.96 1.47 1.82 2.45 3.03 3.59 3.76 4.38 4.97 5.38 5.71 6.19 6.53 7.04 7.62 8.12 8.86 9.66 500 1.26 1.92 2.38 3.20 3.96 4.61 4.74 5.38 5.96 648 7.02 7.60 7.92 8.53 9.15 9.68 10.43 11.40 1000 1.54 2.34 2.90 3.90 4.83 5.51 5.62 6.24 6.83 7.41 8.14 8.82 9.10 9.79 10.44 10.97 11.69 12.81 'The upper bound of the confidence interval at 90% confidence level is the value which 5% of the simulated ouantile values for a aiven freauencv are areater than 1 nese precipitation frequency estimates are based on a partial duration series ARI is the Average Recurrence Interval. • Please refer to the documentation for more information. NOTE: Formatting prevents estimates near zero to appear as zero. * Lower bound of the 90% confidence interval http: // dipper. nws. noaa. gov /cgl- bin /hdsc/buiIdout.perl ?type�f &series =pd &units =us &state... 9/14/2006 • rabc�rvt� The lower bound of the confidence interval at 90% confidence level is the value which 5% of the simulated quantile values for a given frequency are less than. These precipitation frequency estimates are based on a partial duration maxima series. ARI is the Average Recurrence Interval. Please refer to the documentation for more information. NOTE: Formatting prevents estimates near zero to appear as zero. Maps - These maps were produced using a direct map request from the U.S. Census Bureau Mapping and Cartographic Resources Tiger Mao Server. Please read disclaimer for more information. LEGEND L 1 detailed map — State Connector — County Stream :gG Indian Resv ; Military Area LakelPond /Ocean National Park — Street wl Other Park Expressway City -- Highway County • Scale 1:228583 0 _ 'a 'fi r8 mi *averaRe- -true scale derjencT on monitor resolution http : / /dipper.nws.lioaa.gov /cgi- bin/ hdsc /buildout.perl ?type=pf &, series=pd &units =us &state... 9/14/2006 r1ct:11J1LaUV11 rrCtluvuuy Ldtd 3Crvt;r Other Maps /Photographs - rage D or :) •V iev` LiSGS digital ortho hp oto quadrangle D( M covering this location from TerraServer; USGS Aerial Photograph may also be available from this site. A DOQ is a computer - generated image of an aerial photograph in which image displacement caused by terrain relief and camera tilts has been removed. It combines the image characteristics of a photograph with the geometric qualities of a map. Visit the USGS for more information. Watershed /Stream Flow Information - Find the Watershed for this location using the U.S. Environmental Protection Agency's site. Climate Data Sources - Precipitation frequency results are based on data from a variety of sources, but largely NCDC. The following links provide general information about observing sites in the area, regardless of if their data was used in this study. For detailed information about the stations used in this study, please refer to our documentation. Using the National Climatic Data Center's (NCDC) station search engine, locate other climate stations within: L minutes _; ...OR.. +/ -1 degree of this location (33.6178/ - 116.2706). Digital ASCII data can be obtained directly from NCDC. Find Natural Resources Conservation Service (MRCS) SNOTEL (SNOwpack TELemetry) stations by visiting the • Western Regional Climate Center's state - specific SNOTEL station mans. Hydrometeorological Design Studies Center DOC /NOAA/National Weather Service 1325 East -West Highway Silver Spring, MD 20910 (301) 713 -1669 Quest ions ?: HDSC.Questions(a-)noaa.gov Disclaimer http: // dipper. nws. noaa. gov /cgi- bin/ hdsc ibuildout.perl ?type=pf &series=pd &units =us &state... 9/14/2006 V r- m M 1 io • 3-HOUR RAINFALL PATTERNS STORM 6 -HOUR STORM G-/i2fc /Cj /In CFCt.JCj D . IN PERCENT 24 -HOUR STORM ►� TIME PER10D S -NIN P[R I00 10 -MIN PERI00 1S -M1N 30t MIN TjNE PCRIOD PERI00 PERIOD 5 -MIN PERIOD 30 -MjN 15 -4I4 'JO -MIN TIME PERIOD PERI00 PERI00 PERIOD S- MI PERIOD TIME PER l00 IS -MjN PERIOD 70 -MIN 60 -MIN PER100 PER100 TIME PERIOD IS-7N PER100 D A 1 . 1.3 2.6 ].7 6.5 1 •S ' 1.1 1.7 3.6 49 1.7 1 .2 �.5 1.2 ♦9 2•S ` , 2 ] 1.3 1,1 2.6 ].] ♦.e 10.0 2 3.1 17.9 3 .6 .6 1.2 l.9 4.3 50 l.] 2.l 4.0 51 l•e 1.9 2 J •3 •3 .7 •6 1.3 l.e 50 SI 2.6 2•e t. ® • 1.S 3.] ♦.9 17.4 4.6 l.♦ 2.2 4.9 52 2.0 4 .4 .7 2.1 52 S3 2.9 3 D 5 6 1•S 1.6 ].3 3.4 6.6 29.9 S 7.1 20.39 6 6 .T 1.4 2.4 S.J 53 I.S 2.♦ S.e 54 2.1 2.l 5, 6 .3 .3 a 1.0 2.6 2.9 54 3. r-- 7 0 1.5 1.6 4.4 4.2 0.4 7 9.0 a .7 •1 1.6 2.4 6.e 55 1.6 2.5 9.0 56 2.2 2.3 7 a .3 .4 1.0 1.1 3.e 4.6 55 56 2.3 2.3 9 1.6 5.3 12.39 9 .7 1.6 2.6 11.6 ST 2.4 9 .4 1.3 6.3 57 2.7 10 I.S 5.1 17.2; 10 .7 1.6 2.T 14.4 Se 2.4 10 .♦ I.S e.t SB 2.6 - 11 I.6 6.4 16.1 11 .7 1.6 2.e 25.1 59 2.5 11 .S 1.3 1.0 59 2.6 12 1.6 5.9 4.2 12 .e 1.7 7.0 ••� 60 2.6 12 .5 1.6 7.3 60 2.5 13 2.2 T.] 17 .e 1.7 3.2 61 7.l IJ .S 1.8 10.0 61 2.4 14 IS 2.2 2.2 6.S 14.1 14 1S .e 1.0 3,6 62 l.6 �•] 7.6 14 IS .S .S 2.0 2.1 11.4 10.4 62 63 2.3 l.9 16 2.0 14.1 16 .e .e 63 1.6 4.7 64 3.9 4 2 16 .6 2.S 6.S 6♦ 1.4 ' 17 l6 2.6 2.T 3.6 2�4 17 le .d 2.0 S.♦ 65 2.0 6.2 ♦.7 IT le •6 .7 ].0 3.39 1.• 1.9 65 66 •4 .• 19 2.4 19 .e .e 66 2.1 6.9 67 5.6 1.9 19 .1 3.9 1,3 67 .3 20 21 2.T 7.3 20 21 .0 .0 2.2 7.5 6e 2.5 10.6 ,9 20 21 .e •6 4 :3 3.0 1.2 1.1 6e 69 �3 •S 22 23 3.1 2.9 22 23 .e .6 2.e 14.5 TO 3.0 1.4 7l ,5 .J 23 •e l.e ,9 70 11 •S .S 24 2S 3.0 3.1 24 25 .9 .e 3.2 1.0 72 3•S .2 2• 2S .e .9 3.S 5.1 .e 72 T3 ,♦ .♦ 26 27 4.2 5.0 26 27 .9 .9 3.9 4.2 26 27 •9 1.0 5.7 6.6 74 TS •4 •3 26 29 3.S 6.6 26 29 .9 .9 4.S 4.e 20 29 1.0 1.0 1.6 5.3 76 77 •2 .3 30 31 7.] e•2 30 31 .9 .9 S.l 6.1 .30 31 1.1 1.2 S.1 4.7 7e 79 .4 •3 _ 32 33 5.9 2.0 32 33 .9 1.0 0.1 10.3 32 33 l.3 1.5 3.e .e 00 6I .2 .3 Z z �q 1` 34 33 1.6 1.0 34 3S 1.0 1.0 2.6 1.1 34 35 1.5 1.6 1.7 •6 1.0 9 92 BJ .3 .3 Ir� 76 .6 36 37 1.0 `1 .0 .5 36 37 1.9 •e e5 .3 1 3e 39 1.1 1.1 3e 399 2.0 2.l .S .T e6 B7 .2 •] T V ♦0 1.t 40 2.2 .5 ee 2 M 41 •2 1.2 l.J 41 42 1•S 1.5 •6 .S B9 90 •3 .2 � 43 1.4 43 44 2.0 2.0 .S .S 91 92 •2 .2 / ♦ / 44 45 1.4 1.5 •S 1.7 .i 93 •2 M 46 47 1.5 1.6 ♦6 47 1.9 1.7 .4 .4 94 95 .2 .2 ♦e 1.6 46 1.e .4 96 •2 rn z - C NOTES: 1. 3 and 6 -hour patterns based on the Ifidio area thunderstorm of September 24,1939. 2. 24 -hour patterns based on the general storm of March 2 8. 3,1938. Rainfall Intensity Distribution for 100 year - 3 hour Storm ® Rainfall Pattern was based on RCFC & WCD Hydrology Manual PLATE E -5.9 Precipitation data from NOAA Atlas 14 is = 2.59 Inches 0 Time Rainfall Patterns Precipitation min ( Percent) (inches) 0:00 0:05 0.00 0.0000 0.0337 1.30 0:10 1.30 0.0337 0:15 1.10 0.0285 0:20 1.50 0.0389 . 0:25 1.50 0.0389 0:30 1.80 0.0466 0:35 1.50 0.0389 0:40 1.80 0.0466 0:45 1.80 0.0466 0:50 1.50 0.0389 0:55 1.60 0.0414 1:00 1.80 0.0466 1:05 2.20 0.0570 1:10 2.20 0.0570 1:15 2.20 0.0570 1:20 2.00 0.0518 1:25 2.60 0.0673 1:30 2.70 0.0699 1:35 2.40 0.0622 1:40 2.70 0.0699 1:45 3.30 0.0855 1:50 3.10 0.0803 1:55 2.90 0.0751 2:00 3.00 0.0777 2:05 3.10 0.0803 2:10 4.20 0.1088 2:15 5.00 0.1295 2:20 3.50 0.0907 2:25 6.80 0.1761 2:30 7.30 0.1891 2:35 8.20 0.2124 2:40 5.90 0.1528 2:45' 2.00 0.0518 2:50 1.80 0.0466 2:55 1.80 0.0466 3:00 0.60 1 0.0155 100.00 11 2.59 100Yr -3Hr PAGE 1 10 Rainfall Intensity Distribution for 100 year - 6 hour Storm Rainfall Pattern was based on RCFC & WCD Hydrology Manual PLATE E -5.9 Precipitation data from NOAA Atlas 14 is = 3.08 Inches Time Rainfall 'Patterns Precipitation min) ( Percent) (inches) 0:00 0.00 0.0000 0:05 0.50 0.0154 0:10 0.60 0.0185 0:15 0.60 0.0185 0:20 0.60 0.0185 0:25 0.60 0.0185 0:30 0.70 0.0216 0:35 0.70 0.0216 0:40 0.70 0.0216 0:45 0.70 0.0216 0:50 0.70 0.0216 0:55 0.70 0.0216 1:00 0.80 0.0246 1:05 0.80 0.0246 1:10 0.80 0.0246 1:15 0.80 0.0246 1:20 0.80 0.0246 1:25 0.80 0.0246 1:30 0.80 0.0246 1:35 0.80 0.0246 1:40 0.80 0.0246 1:45 0.80 0.0246 1:50 0.80 0.0246 1:55 0.80 0.0246 2:00 0.90 0.0277 2:05 0.80 ' 0.0246 2:10 0.90 0.0277 2:15 0.90 0.0277 2:20 0.90 0.0277 2:25 0.90 0.0277 2:30 0.90 0.0277 2:35 0.90 0.0277 2:40 1.00 0.0308 2:45 1.00 0.0308 2:50 1.00 0.0308 2:55 1.00 0.0308 3:00 1.00 0.0308 3:05 1.00 0.0308 3:10 1.10 0.0339 3:15 1.10 0.0339 3:20 1.10 0.0339 3:25 1.20 0.0370 3:30 1.20 0.0370 100Yr -6Hr PAGE 1 L'I El� Time Rainfall Patterns Precipitation (min) (.Percent) (inches) 3:35 1.40 0.0431 3:40 1.40 0.0431 3:45 1.50 0.0462 3:50 1.50 0.0462 3:55 1.60 0.0493 4:00 1.60 0.0493 4:05 1.70 0.0524 4:10 1.80 0.0554 4:15 1.90 0.0585 - 4:20 2.00 0.0616 4:25 2.10 0.0647 4:30 2.10 0.0647 4:35 2.20 0.0678 4:40 2.30 0.0708 4:45 2.40 0.0739 4:50 2.40 0.0739 4:55 2.50 0.0770 5:00 2.60 0.0801 5:05 3.10 0.0955 5:10 3.60 0.1109 5:15 3.90 0.1201 5:20 4.20 0.1294 5:25 4.70 0.1448 5:30 5.60 0.1725 5:35 1.90 0.0585 5:40 0.90 0.0277 5:45 0.60 0.0185 5:50 0.50 0.0154 5:55 0.30 0.0092 6:00 0.20 0.0062 100.00 3.08 100Yr -6Hr PAGE 2 ® Rainfall Intensity Distribution for 100 year - 24 hour Storm Rainfall Pattern was based on RCFC & WCD Hydrology Manual PLATE E -5.9 Precipitation data from NOAA Atlas 14 is = 3.91 Inches Time Rainfall Patterns Precipitation min ( Percent) (inches) 0.00 0.00 0.0000 0:15 0.20 0.0078 0:30 0.30 0.0117 0:45 0.30 0.0117 1:00 0.40 0.0156 1:15 0.30 0.0117 1:30 0.30 0.0117 1:45 0.30 0.0117 2:00 0.40 0.0156 2:15 0.40 0.0156 2:30 0.40 0.0156 2:45 0.50 0.0196 3:00 0.50 0.0196 3:15 0.50 0.0196 3:30 0.50 0.0196 3:45 0.50 0.0196 4:00 0.60 0.0235 4:15 0.60 0.0235 4:30 0.70 0.0274 4:45 0.70' 0.0274 5:00 0.80 0.0313 5:15 0.60 0.0235 5:30 0.70 0.0274 5:45 0.80 0.0313 6:00 0.80 0.0313 6:15 0.90 0.0352 6:30 0.90 0.0352 6:45 1.00 0.0391 7:00 1.00 0.0391 7:15 1.00 0.0391 7:30 1.10 0.0430 7:45 1.20 0.0469 8:00 1.30 0.0508 8:15 1.50 0.0587 8:30 1.50 0.0587 8:45 1.60 0.0626 9:00 1.70' 0.0665 9:15 1.90 0.0743 9:30 2.00 0.0782 9:45 2.10 0.0821 10:00 2.20 0.0860 10:15 1.50 0.0587 10:30 1.50 0.0587 10:45 2.00 0.0782 11:00 2.00 0.0782 11:15 1.90 0.0743 11:30 1.90 0.0743 100Yr -24Hr PAGE 1 0 Time Rainfall Patterns Precipitation min ( Percent) (inches) 11:45 1.70 0.0665 12:00 1.80 0.0704 12:15 2.50 0.0978 12:30 2.60 0.1017 12:45 2.80 0.1095 13:00 2.90 0.1134 13:15 3.40 0.1329 13:30 3.40 0.1329 13:45 2.30 0.0899 14:00 2.30 0.0899 14:15 2.70 0.1056 14:30 2.60 0.1017 14:45 2.60 0.1017 15:00 2.50 0.0978 15:15 2.40 0.0938 15:30 2.30 0.0899 15:45 1.90 0.0743 16:00 1.90 0.0743 16:15 0.40 0.0156 16:30 0.40 0.0156 16:45 0.30 0.0117 17:00 0.30 0.0117 17:15 0.50 0.0196 17:30 0.50 0.0196 17:45 0.50 0.0196 18:00 0.40 0.0156 18:15 0.40 0.0156 18:30 0.40 0.0156 18:45 0.30 0.0117 19:00 0.20 0.0078 19:15 0.30 0.0117 19:30 0.40 0.0156 19:45 0.30 0.0117 20:00 0.20 0.0078 20:15 0.30 0.0117 20:30 0.30 0.0117 20:45 0.30 0.0117 21:00 0.20 0.0078 21:15 0.30 0.0117 21:30 0.20 0.0078 21:45 0.30 0.0117 22:00 0.20 0.0078 22:15 0.30 0.0117 22:30 0.20 0.0078 22:45 0.20 0.0078 23:00 0.20 0.0078 23:15 0.20 0.0078 23:30 0.20 0.0078 23:45 0.20 0.0078 0:00 0.20 1 0.0078 100.00 3.91 100Yr -24Hr PAGE 2 • • PRELIMINARY DRAFT WHITEWATER RIVER BASIN FEASIBILITY. REPORT FOR FLOOD CONTROL AND ALLIED PURPOSES SAN BERNARDINO AND RIVERSIDE COUNTIES, CALIFORNIA APPENDIX 1 HYDROLOGY U.S. Army Engineer District, Los Angeles Corps of Engineers May 1980 NOT FOR PUBLIC RELEASE y: oil curve of observed rainfall during the 24 September 1939 storm at Indio (see Pl. 6). A typical local storm precipitation- intensity pattern is shown on plate 16. 4 -03. STANDARD PROJECT STORM, GENERAL TYPE. a. Hydrologic data indicate that for major portions of the Whitewater River basin, the flood- producing characteristics of the 1927 and 1938 storms were among the most severe of any storms that may reasonably be expected to occur over the general area. It is believed that a reasonable general type standard project storm for the area is one that would embrace the greatest 24 -hour precipitation for each of the 1927 and 1938 storms. Isohyets which embrace the maximum 24 -hour precipitation during each of the 1927 and 1938 storms are shown on plate 7. The resulting hypothetical general storm will hereinafter be referred to as the composite storm. b. The time distribution for the composite storm, expressed as a percentage a of maximum 24-hour P 9 h ur precapatataon, was assumed to be the average of the actual time distribution at the Hurley Flat station during the 1927 storm and at the Raywood Flat station during the 1.938 storm. The percentage pattern thus derived was applied to the average maximum 24 -hour precipitation,. determined for each subarea from plate 7 by the isohyetal method, to obtain hourly rainfall intensities. Prior precipitation was assumed to condition the ground for runoff. A typical general storm precipitation- intensity pattern is shown on plate 17. 23 • FIGURE 7:. COCHEL.LA VALLEY COUNTY WATER DISTRICT SPF HYDROGRAPHS FOR WEST DIKE. 35MO. 30060. -- --- — 1 TORO CAWON COMBINED BASINS 1. 2, AND 3 .......... 2 MIDDLE BASIN 3 DEVIL CANYON 25000: — BASIN 4 T U 20000. O 15000. Standard Project Flood 10000. Hydrograph • From: Flood Studies for East and West Dikes in Coachella Valley Area ' By Bechtel, 1991 10 2.0 9.0 610 6.0 10.0 12 0 TIME -- hours i j � PLATE 6 Rainfall Intensity Distribution for Standard Project Flood • Rainfall Pattern was based upon the USA COE Report "Whitewater River Basin Feasibility Report For Flood Control And Allied Purposes San Bernardino And Riverside Counties, California • Precipitation of 6.45 Inches SPF PAGE 1 5 t 0.00 0.00 0:05 0.02 0:10 0.03 0:15 0.04 0:20 0.06 0:25 0.07 0:30 0.09 0:35 0.10 0:40 0.12 0:45 0.14 0:50 0.15 0:55 0.18 1:00 0.20 1:05 0.22 1:10 0.25 1:15 0.27 1:20 0.30 1:25 0.33 1:30 0.35 1:35 0.39 1:40 0.42 1:45 0.46 1:50 0.50 1:55 0.54 2:00 0.59 2:05 0.64 2:10 0.69 2:15 0.75 2:20 0.81 2:25 0.87 2:30 0.94 2:35 1.00 2:40 1.07 2:45 1.15 2:50 1.23 2:55 1.31 3:00 1.40 3:05 1.49 3:10 1.58 SPF PAGE 1 SPF PAGE 2 3:15 1.68 3:20 1.78 3:25 1.88 3:30 1.98 3:35 -2.10 3:40 2.22 3:45 2.33 3:50 2.46 3:55 2.59 4:00 2.73 4:05 2.89 4:10 .3.05 4:15 3.20 4:20 3.37 4:25 3.54 4:30 3.70 4:35 3.88 4:40 4.06 4:45 4.25 4:50 4.43 4:55 4.61 5:00 4.80 5:05 5.01 5:10 5.22 5:15 5.44 5:20 5.65 5:25 5.85 5:30 6.05 5:35 6.18 5:40 6.29 5:45 6.38 5:50 6.42 5:55 6.44 6:00 6.45 SPF PAGE 2 Coral •. 0 0 December 2006 #8528E HEC - HMS Meteorologic Model for 100Yr 24 -Hour PACIFIC ADVANCED CIVIL ENGINEERING, INC. • L_J • Meteorologic Models: 100YR - 24Hr Subbasin Name Gage Total Depth (IN) Al 24 -hour Storm 3.91 A2 24 -hour Storm 3.91 A3 24 -hour Storm 3.91 A4 24 -hour Storm 3.91 A5 24 -hour Storm 3.91 A5-1 24 -hour Storm 3.91 A6 24 -hour Storm 3.91 B1 24 -hour Storm 3.91 B2 24 -hour Storm 3.91 B3 24 -hour Storm 3.91 B4 24 -hour Storm 3:91 C1 24 -hour Storm 3.91 C10 24 -hour Storm 3:91 C11 24 -hour Storm 3.91 C12 24 -hour Storm 3.91 C13 -1 24 -hour Storm 3.91 C13 -2 24 -hour Storm 3.91 C14 24 -hour Storm 3.91 C2 24 -hour Storm 3.91 C3 24 -hour Storm 3.91 C4 24 -hour Storm 3.91 C5 24 -hour Storm 3.91 C6 24 -hour Storm 3.91 C7 24 -hour Storm 3.91 C8 24 -hour Storm 3.91 C9 24 -hour Storm 3.91 D1 24 -hour Storm 3.91 i . • • Precipitation Gages Data: 24 -Hour Storm Time (ddMMMYYYY, HH:mm) F Precipitation (IN inc) 01 Jan2000, 00:00 0.20000 01 Jan2000, 00:15 0.30000 01 Jan2000, 00:30 0.30000 01 Jan2000, 00:45 0.40000 01 Jan2000, 01:00 0.30000 01 Jan2000, 01:15 0.30000 01 Jan2000; 01:30 0.30000 01 Jan2000, 01:45 0.40000 01 Jan2000, 02:00 0.40000 01 Jan2000, 02:15 0.40000 01 Jan2000, 02:30 0.50000 01 Jan2000, 02:45 0.50000 01 Jan2000, 03:00 0.50000 01 Jan2000, 03:15 0.50000 01 Jan2000, 03:30 0.50000 01 Jan2000, 03:45 0.60000 01 Jan2000, 04:00 0.60000 01 Jan2000, 04:15 0.70000 01 Jan2000, 04:30 0.70000 O1 Jan2000, 04:45 0.80000 01 Jan2000, 05:00 0.60000 01 Jan2000, 05:15 .0.70000 01 Jan2000, 05:30 0.80000 01 Jan2000, 05:45 0.80000 01 Jan2000, 06:00 0.90000 01 Jan2000, 06:15 0.90000 01 Jan2000, 06:30 1.00000 01 Jan2000, 06:45 1.00000 01 Jan2000, 07:00 1.00000 01 Jan2000, 07:15 .1.10000 • • Precipitation Gages Data: 24 -Hour Storm Time (ddMMMYYYY, HH:mm) T Precipitation (IN inc) 01 Jan2000, 07:30 1.20000 01 Jan2000, 07:45 1.30000 01 Jan2000, 08:00 1.50000 01 Jan2000, 08:15 1.50000 01 Jan2000, 08:30 1.60000 01 Jan2000, 08:45 1.70000 01 Jan2000, 09:00 1.90000 01 Jan2000, 09:15 2.00000 01 Jan2000, 09:30 2.10000 01 Jan2000, 09:45 2.20000 01 Jan2000, 10:00 1.50000 01 Jan2000, 10:15 1.50000 01 Jan2000, 10:30 2.00000 01 Jan2000, 10:45 2.00000 01 Jan2000, 11:00 1.90000 01 Jan2000, 11:15 1.90000 01 Jan2000, 11:30 1.70000 01 Jan2000, 11:45 1.80000 01 Jan2000, 12:00 2.50000 01Jan2000, 12:15. 2.60000 01 Jan2000, 12:30 2.80000 01 Jan2000, 12:45 2.90000 01 Jan2000, 13:00 3.40000 01Jan2000, 13:15 3.40000 01Jan2000, 13:30 _ 2.30000 01 Jan2000, 13:45 2.30000 01 Jan2000, 14:00. 2.70000 01 Jan2000, 14:15 2.60000 01 Jan2000, 14:30 2.60000 01 Jan2000, 14:45 2.50000 • i Precipitation Gages Data: 24 -Hour Storm Time (ddMMMYYYY, HH:mm) Precipitation (IN inc) 01 Jan2000, 15:00 2.40000 01 Jan2000, 15:15 2.30000 01 Jan2000, 15:30 1.90000 01 Jan2000, 15:45 1.90000 01 Jan2000, 16:00 0.40000 01 Jan2000, 16:15 0.40000 01 Jan2000, 16:30 0.30000 01 Jan2000, 16:45 0.30000 01 Jan2000, 17:00 0.50000 01 Jan2000, 17:15 0.50000 01 Jan2000, 17:30 0.5 0000 01 Jan2000, 17:45 0.40000 01 Jan2000, 18:00 0.40000 01 Jan2000, 18:15 0.40000 01 Jan2000, 18:30 0.30000 01 Jan2000, 18:45 0.20000 01 Jan2000, 19:00 0.30000 01 Jan2000, 19:15 0.40000 01 Jan2000, 19:30 0.30000 01 Jan2000, 19:45 0.20000 01 Jan2000, 20:00 0.30000 01 Jan2000, 20:15 0.30000 01 Jan2000, 20:30 0.30000 01 Jan2000, 20:45 0.20000 01 Jan2000, 21:00 0.30000 01Jan2000, 21:15 0.20000 01 Jan2000, 21:30 0.30000 01 Jan2000, 21:45 0.20000 01 Jan2000, 22:00 0.30000 01 Jan2000, 22:15 0.20000 • Precipitation Gages Data: 24 -Hour Storm Time (ddMMMYYYY, HH:mm) Precipitation (IN inc) 01 Jan2000, 22:30 0.20000 01 Jan2000, 22:45 0.20000 01 Jan2000, 23:00 0.20000 01 Jan2000, 23:15 0.20000 01 Jan2000, 23:30 0.20000 01 Jan2000, 23:45 0.20000 02Jan2000, 00:00 0.00000 lie lu 11, l Canyon Decem'ber 2006 — - #8528E HEC - HMS I Meteoro logic Model for 100yr 6-Hour PACIFIC ADVANCED CIVIL ENGINEERING, =EI41NO, INC. �. Meteorologic Models: 100YR - 6Hr • Subbasin Name Gage Total Depth (IN) • Precipitation Gages Data: 6 -Hour Storm Time (ddMMMYYYY, H;7mm)F Precipitation (IN inc) 01 Jan2000, 00:00 1.7000 01 Jan2000, 00:15 1.9000 01Jan2000, 00:30 2.1000 01Jan2000, 00:45 2.2000 01 Jan2000, 01:00 2.4000 01 Jan2000, 01:15 2.4000 01 Jan2000, 01:30 2.4000 01 Jan2000, 01:45 2.5000 01 Jan2000,' 02:00 2.6000 01 Jan2000, 02:15 2.7000 01 Jan2000, 02:30 2.8000 01 Jan2000, 02:45 3.0000 01 Jan2000, 03:00 3.2000 01 Jan2000, 03:15 3.6000 01 Jan2000, 03:30 4.3000 01 Jan2000, 03:45 4.7000 01 Jan2000, 04:00 5.4000 01 Jan2000, 04:15 6.2000 01 Jan2000, 04:30 6.9000 01Jan2000, 04:45 7.5000 01 Jan2000, 05:00 10.600 01 Jan2000, 05:15 14.500 01 Jan2000, 05:30 3.4000 01 Jan2000, 05:45 1.00000 01 Jan2000, 06:00 0.0 Coral Canyon 10 19 [7 December 2006 #8528E HEC - HMS Meteorologic Model for 100Yr .3-Hour y� PACIFIC ADVANCED CIVIL ENGINEERING, INC. • • Meteorologic Models: 100YR - 3Hr Subbasin WameT Gage Total Depth (IN) Al 3 -hour Storm 2.59 A2 3 -hour Storm 2.59 A3 3 -hour Storm 2.59 A4 3 -hour Storm 2.59 A5 3 -hour Storm 2.59 A5-1 3 -hour Storm 2.59 A6 3 -hour Storm 2.59 B1 3 -hour Storm 2.59 B2 3 -hour Storm 2.59 B3 3 -hour Storm 2.59 B4 3 -hour Storm 2.59 C1 3 -hour Storm 2.59 C10 3 -hour Storm 2.59 .C11 3 -hour Storm 2.59 C12 3 -hour Storm 2.59 C13 -1 3 -hour Storm 2.59 C13 -2 3 -hour Storm 2.59 C14 3 -hour Storm 2.59 C2 3 -hour Storm 2.59 C3 3 -hour Storm 2.59 C4 3 -hour Storm 2.59 C5 3 -hour Storm 2.59 C6 3 -hour Storm 2.59 C7 3 -hour Storm 2.59 C8 3 -hour Storm 2.59 C9 3 -hour Storm 2.59 D1 3 -hour Storm 2.59 • f • Precipitation Gages Data: 3 -Hour Storm . Time (ddMMMYYYY, HH:mm) Precipitation (IN inc) 01 Jan2000, 0.0:00 1.30000 01 Jan2000, 00:05 1.30000 01Jan2000, 00:10 1.10000 01 Jan2000, 00:15 • 1.50000 01 Jan2000, 00:20 1.50000 01 Jan2000, 00:25 1.80000 01 Jan2000, 00:30 1.50000 01 Jan2000, 00:35 1.80000 01 Jan2000, 00:40 1.80000 01 Jan2000, 00:45 1.50000 01 Jan2000, 00:50 1.60000 01 Jan2000, 00:55 1.80000 01 Jan2000, 01:00 2.20000 01 Jan2000, 01:05 2.20000 01 Jan2000, 01:10 2.20000 01 Jan2000, 01:15 2.00000 01 Jan2000, 01:20 2.60000 01Jan2000, 01:25 2.70000 01 Jan2000, 01:30 2.40000 01 Jan2000, 01:35 2.70000 01Jan2000, 01:40 3.30000 01Jan2000, 01:45 3.10000 01 Jan2000, 01:50 2.90000 01 Jan2000, 01:55 3.00000 01Jan2000, 02:00 3.10000 01 Jan2000, 02:05 4.20000 01 Jan2000, 02:10 5.00000 01 Jan2000, 02:15 3.50000 01 Jan2000, 02:20 6.80000 01 Jan2000, 02:25 7.30000 • • Precipitation Gages Data: 3 -Hour Storm Time (ddMMMYYYY, HH:mm) Precipitation (IN inc) 01 Jan2000, 02:30 8.20000 01 Jan2000, 02:35 ' 5.90000 01 Jan2000, 02:40 2.00000 01 Jan2000, 02:45 1.80000 01 Jan2000, 02:50 1.80000 01 Jan2000, 02:55 0.60000 01 Jan2000, 03:00 0.00000 Coral Canyon December 2006 Hydrologic Analysis #8528E • .0 HEC - HMS Meteorologic Model for 100Yr- SPF r PACIFIC ADVANCED CIVIL ENGINEERING, INC. • • f 's Meteorologic Models: SPF Subbasin Name Gage Total Depth (IN) Al SPF A2 SPF A3 SPF A4 SPF A5 SPF A5_1 SPF A6 SPF B1 SPF B2 SPF B3 SPF B4 SPF C1 SPF C10 SPF C11 SPF C12 SPF C13 -1 SPF C13 -2 SPF C14 SPF C2 SPF C3 SPF . C4 SPF C5 SPF C6 SPF C7 SPF C8 SPF C9 SPF D1 SPF • Precipitation Gage Data: SPF Time (ddMMMYYYY, HH:mm) Precipitation (IN cum) 01 Jan2000, 00:00 0.0000000 01Jan2000, 00:05 0.0200000 01 Jan2000, 00:10 0.0300000 01 Jan2000, 00:15 0.0400000 01 Jan2000, 00:20 0.0600000 01 Jan2000, 00:25 0.0700000 01 Jan2000, 00:30 0.0900000 01 Jan2000, 00:35 0.1000000 01 Jan2000, 00:40 0.1200000 01 Jan2000, 00:45 0.1400000 01Jan2000, 00:50 0.1500000 01 Jan2000, 00:55 0.1800000 01 Jan2000, 01:00 0.2000000 01 Jan2000, 01:05 0.2200000 01 Jan2000, 01:10 0.2500000 01 Jan2000, 01:15 0.2700000 01 Jan2000, 01:20 0.3000000 01 Jan2000, 01:25 0.3300000 01 Jan2000, 01:30 0.3500000 01 Jan2000, 01:35 0.3900000 01 Jan2000, 01:40 . 0.4200000 01 Jan2000, 01:45 0.4600000 01 Jan2000, 01:50 0.5000000 01 Jan2000, 01:55 0.5400000 01 Jan2000, 02:00 0.5900000 01 Jan2000, 02:05 0.6400000 01 Jan2000, 02:10 0.6900000 01 Jan2000,. 02:15 0.7500000 01 Jan2000, 02:20 0.8100000 01 Jan2000, 02:25 0.8700000 • • I • Precipitation Gage Data: SPF Time (ddMMMYYYY, HH:mm) Precipitation (IN cum) 01 Jan2000, 02:30 0.9400000 01 Jan2000, 02:35 1.0000000 01 Jan2000, 02:40 1.0700000 01 Jan2000, 02:45 1.1500000 01 Jan2000, 02:50 1.2300000 01 Jan2000, 02:55 1.3100000 01 Jan2000, 03:00 1.4000000 01 Jan2000, 03:05 1.4900000 01 Jan2000, 03:10 1.5800000 01 Jan2000, 03:15 1.6800000 01 Jan2000, 03:20 1.7800000 01 Jan2000, 03:25 1.8800000 01 Jan2000, 03:30 1.9800000 01 Jan2000, 03:35 2.1000000 01 Jan2000, 03:40 2.2200000 01 Jan2000, 03:45 2.3300000 01 Jan2000, 03:50 2.4600000 01 Jan2000, 03:55 2.5900000 01 Jan2000, 04:00 2.7300000 01 Jan2000, 04:05 2.8900000 01 Jan2000, 04:10 3.0500000 01 Jan2000, 04:15 3.2000000 01 Jan2000, 04:20 3.3700000 01 Jan2000, 04:25 3.5400000 01 Jan2000, 04:30 3.7000000 01 Jan2000, 04:35 3.8800000 01Jan2000, 04:40 4.0600000 01 Jan2000, 04:45 4.2500000 01 Jan2000, 04:50 4.4300000 01 Jan2000, 04:55 4.6100000 • • Precipitation Gage Data: SPF Time (ddMMMYYYY, HH:mm) I - Precipitation (IN cum) 01 Jan2000, 05:00 4.8000000 01 Jan2000, 05:05 5.0100000 01 Jan2000, 05:10 5.2200000 01 Jan2000, 05:15 5.4400000 01 Jan2000, 05:20 5.6500000 01 Jan2000, 05:25 5.8500000 01 Jan2000, 05:30 6.0500000 01 Jan2000, 05:35 6.1800000 01 Jan2000, 05:40 6.2900000 01 Jan2000, 05:45 6.3800000 01 Jan2000, 05:50 6.4200000 01 Jan2000, 05:55 6.4400000 01 Jan2000, 06:00 6.4500000 01 Jan2000, 06:05 01 Jan2000, 06:10 01 Jan2000, 06:15 01 Jan2000, 06:20 01 Jan2000, 06:25 01 Jan2000, 06:30 01 Jan2000, 06:35 01 Jan2000, 06:40 01 Jan2000, 06:45 01 Jan2000, 06:50 01 Jan2000, 06:55 01 Jan2000, 07:00 01 Jan2000, 07:05 01 Jan2000, 07:10 01 Jan2000, 07:15 01 Jan2000, 07:20 01 Jan2000, 07:25 Coral Canyon Hydrologic Analysis 10 December 2006 #8528E HEC - HMS Basin Model for Existing Condition . A �w PACIFIC ADVANCED CIVIL ENGINEERING, INC. • • Existing Condition - Subbasin Area Subbasin Area (MI2).,.::.,...... Al 0.0110 A2 0.0320 A3 0.0250 A4 0.0120 A5 0.0510 A6 0.0150 B 1 0.0450 B2 0.0110 B3 0.0160 Cl 0.0290 C2 0.0230 C3 0.0080 C4 0.0090 C5 0.0380 C6 0.0290 C7 0.0270 .Dl 0.0320 • Existing Condition - Curve Number Loss Subbasin Initial Abstraction (IN)' Curve Number Impervious M Al 0.04 98 5 A2 0.04 98 5 A3 0.04 98 5 A4 0.13 94 5 A5 0.06 97 5 A6 0.11 95 5 B1 0.08 96 5 B2 0.15 93 5 B3 0.13 94 5 C1 0.13 94 5 C2 0.17 92 5 C3 0.22 90 5 C4 0.22 90 5 C5 0.22 90 . 5 C6 0.22 90 5 C7 0.22 90 5 ID1 0.08 96 5 • Existing Condition - User Specified S -Graph Transform Subbasin S -Graph Table Lag Time (HR) Al S_Cu rve 0.05 A2 S Curve 0.07 A3 S_Curve 0.10 A4 S Curve 0.09 A5 S Curve 0.09 A6 S_Curve 0.06 61 S Curve 0.11 B2 S Curve 0.11 B3 S Curve 0.12 C1 S Curve 0.07 C2 S_Cu rve 0.08 C3 S_Curve 0.03 C4 S Curve 0.06 C5 S_Curve 0.11 C6 S_Curve 0.08 C7 S Curve 0.16 D1 S Curve 0.07 Existing Condition - Kinematic Wave Channel Routing ,I Reach Length (FT) Slope (FT /FT) Manning's n Subreaches Shape Diameter (FT) Width (FT) Side Slope (xH:iV) R_A1 1340 0.02 0.03 2 Trapezoid 4 4 R A2 1550 0.04 0.03 2 Trapezoid 4 4 R_A3 968 0.027 0.03 2 Trapezoid 4 4 R B3 261.5 0.026 0.03 2 Trapezoid 10 4 R_C1 726 0.042 0.03 2 Trapezoid 4 4 R C2 725 0.02 0.03 2 Trapezoid 4 4 R_C3 1137 0.029 0.03 2 Trapezoid 4 4 IRI _C4 801 0.034 0.03 2 Trapezoid 4 4 _ C5 8281 0.0091 0.031 2 Trapezoid 101 4 • 0 Coral Canyon October 2006 Hydrologic Analysis #8528E HEC - HMS Basin Model for Proposed Condition PACIFIC ADVANCED CIVIL ENGINEERING, INC. • 0 HEC -HMS 3.0.0 [PA8528E \Engineering \Doc & Calcs \Hydrology \HEC - HMS \Nov... Subbasin Initial Abstraction (IN) Curve Number Impervious N Al 0.04 98 5 A2 0.04 98 5 A3 0.06 97 8 A4 0.06 97 59 A4 -1 0.08 96 51 A5-1 0.13 94 55 A5_2 0.04 98 5 A5-3 0.04 98 5 A5_4 0.08 96 5 A6 0.11 95 5 B4 0.2 91 58 C1-1 0.06 97 8 C1-2 0.04 98 5 C11 0.27 88 5 C12 0.44 82 46 C13-1 0.25 89 5 C13-2 0.22 90 5 C14 0.38 84 54 C 14 1 0.63 76 5 C2 0..08 96 5 C3 0.13 94 5 C4 0.27 88 5 C5 0.3 87 50 C6 0.47 81 44 C7 0.17 92 5 C8 0.2 91 5 C9 0.33 86 45 D 1 0.08 96 5 • • HEC -HMS 3.0.0 [P: \8528E \Engineering \Doc & Calcs \Hydrology \HEC - HMS \Nov... Subbasin S -Graph Table Lag Time (HR) Al S Curve 0.05 A2 S Curve 0.07 A3 S Curve 0.03 A4 S Curve 0.03 A4 -1 S Curve 0.03 A5_1 S Curve 0.06 A5_2 S Curve 0.03 A5_3 S Curve 0.05 A5_4 S Curve 0.04 A6 S Curve 0.06 B4 S Curve 0.10 C1_1 S Curve 0.10 C1__2___ S Curve 0.09 C11 S Curve 0.10 C12 S Curve 0.07 C13 -1 S Curve 0.03 C13 -2 S Curve 0.05 C14 S Curve 0.05 C141 S Curve 0.05 C2 S Curve 0.09 C3 S Curve 0.07 C4 S Curve 0.04 C5 S Curve 0.07 C6 S Curve 0.08 C7 S Curve 0.04 C8 S Curve 0.09 C9 S Curve 0.05 D1 S Curve 0.07 • • HEC -HMS 3.0.0 [P: \8528E \Engineering \Doc & Calcs \Hydrology \HEC - HMS \Nov... Reach Length (FT) Slope (FT /FT) Manning's n Subreaches Shape Diameter (FT) Width (FT) Side Slope (xH:1V) R -A1 - - -- 0.0135 0.03 2 Trapezoid 8 4 R -A3 0.026 0.03 2 Trapezoid 8 4 R -Ci 0.06 0.03 2 Trapezoid 8 4 R -C2 M1462 0.03 0.03 2 Trapezoid 8 4 R -C3 0.048 0.03 2 Trapezoid 8 4 R C4 0.005 0.03 2 Trapezoid 6 1.5 R -05 0.0151 0.031 2 ITrapezoid 1 6 1.5 0 Coral Canyon December 2006 Hydrologic Analysis #8528E Typical Channel Cross Section Details and Channel Hydraulics Oi� PACIFIC ADVANCED CIVIL ENGINEERING, INC. • Coral Canyon October 2006 Hydrologic Analysis #8528E Typical Channel Cross Section Details and Channel Hudraulics PACIFIC ADVANCED CIVIL ENGINEERING, INC. • a • ############################################# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # ## » »CHANNEL INPUT INFORMATION «« CHANNEL ZI(HORIZONTAL/VERTICAL) = 1.50 Z2(HORIZONTALIVERTICAL) = 3.00 ' BASEWIDTH(FEET) = 6.00 CONSTANT CHANNEL SLOPE(FEET /FEET) = 0.040000 UNIFORM FLOW(CFS) = 100. OOf -FFE-Ff-FE- E- E- FE- f-E- FFFFFE -FE E E- FLOWRATE MANNINGS FRICTION FACTOR = 0.0350 NORMAL -DEPTH FLOW INFORMATION: » »> NORMAL DEPTH(FEET) = 1. 34E- f- FE-FFFFE- FE- E- E-f-FFE-f-FFFFLOW DEPTH FLOW TOP- WIDTH(FEET) = 12.05 FLOW AREA(SQUARE FEET) _ . 12.14 HYDRAULIC DEPTH(FEET) _ . 1.01 FLOW AVERAGE VELOCITY(FEET /SEC.) = 8.24E -f-f-E-E-FE- FFf- FE-E- E-FLOW VELOCITY UNIFORM FROUDE NUMBER = 1.447 PRESSURE + MOMENTUM(POUNDS) = 2049.03 AVERAGED VELOCITY HEAD(FEET) = 1.054 SPECIFIC ENERGY(FEET) = 2.399 CRITICAL -DEPTH FLOW INFORMATION: CRITICAL FLOW TOP- WIDTH(FEET) = 13.45 CRITICAL FLOW AREA(SQUARE FEET) = 16.10 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 1.20 CRITICAL FLOW AVERAGE VELOCITY(FEET /SEC.) = 6.21 CRITICAL DEPTH(FEET) = 1.66 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 1929.09 AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 0.599 CRITICAL FLOW SPECIFIC ENERGY(FEET) = 2.255 { » »CHANNEL INPUT INFORMATION«« • CHANNEL Zl HORIZONTAL/VERTICAL = 1.50 Z2(HORIZONTAL/VERTICAL) = 3.00 BASEW[DTH(FEET) = 6.00 CONSTANT CHANNEL SLOPE(FEET/FEET) = 0.040000 UNIFORM FLOW(CFS) = 200.00 E- E- E- E- E- E- E- E- E- E- E- E- E- E- E- E- E- E- E- E- E- E-E-E- FLOWRATE MANNINGS FRICTION FACTOR = 0.0350 NORMAL -DEPTH FLOW INFORMATION: » »> NORMAL DEPTH(FEET) = 1.9300 ff -E- FE-E- Ff- E-E-E-FE- E- f- FFE-FFE -FLOW DEPTH FLOW TOP- WIDTH(FEET) = 14.69. FLOW AREA(SQUARE FEET) = 19.99 HYDRAULIC DEPTH(FEET) = 1.36 FLOW AVERAGE VELOCITY(FEET /SEC.) = 10 .00E- E-E- E- E- E- E- E- E- E- E- E- E- E-FLOW VELOCITY UNIFORM FROUDE NUMBER = 1.511 PRESSURE + MOMENTUM(POUNDS) = 4913.65 AVERAGED VELOCITY HEAD(FEET) = 1.554 SPECIFIC ENERGY(FEET) = 3.486 CRITICAL -DEPTH FLOW INFORMATION CRITICAL FLOW TOP- WIDTH(FEET) = 16.85 CRITICAL FLOW AREA(SQUARE FEET) = 27.56 CRITICAL FLOW HYDRAULIC DEPTH(FEET) =. 1.64 CRITICAL FLOW AVERAGE VELOCITY(FEET /SEC.) = 7.26 CRITICAL DEPTH(FEET) = 2.41. CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 4558.21 • AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 0.818 CRITICAL FLOW SPECIFIC ENERGY(FEET) = 3.230 » »CHANNEL INPUT INFORMATION«« CHANNEL ZI(HORIZONTAL/VERTICAL) = 1.50 Z2(HORIZONTAL/VERTICAL) = 3.00 BASEWIDTH(FEET) = 6.00 CONSTANT CHANNEL SLOPE(FEET /FEET) = 0.040000 UNIFORM FLOW(CFS) = 300. 00E- E- E- E- E- E- E- E- E- E- E- E- E- E- E- E- E- E- FFE -FFF FLOWRATE MANNINGS FRICTION FACTOR = 0.0350 NORMAL -DEPTH FLOW INFORMATION: » »> NORMAL DEPTH(FEET) = 2 37FE- FE -E-E-FE-FFFFFFE-E- FE-E-E- f-FLOW DEPTH FLOW TOP- WIDTH(FEET) = 16.65 FLOW AREA(SQUARE FEET) = 26.81 HYDRAULIC DEPTH(FEET) = 1.61 FLOW AVERAGE VELOCITY(FEET /SEC.) = 11 .19E- E- E- E- E- E- E- E- E- E- E- E- E- E-FLOW VELOCITY UNIFORM FROUDE NUMBER = 1.554 PRESSURE + MOMENTUM(POUNDS) = 8175.30 AVERAGED VELOCITY HEAD(FEET) = 1.945 SPECIFIC ENERGY(FEET) = 4.312 CRITICAL -DEPTH FLOW INFORMATION CRITICAL FLOW TOP- WIDTH(FEET) = 19.41 CRITICAL FLOW AREA(SQUARE FEET) = 37.84 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 1.95 CRITICAL FLOW AVERAGE VELOCITY(FEET /SEC.) = 7.93 CRITICAL DEPTH(FEET) =' 2.98 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 7507.51 AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 0.976 • CRITICAL FLOW SPECIFIC ENERGY(FEET) = 3.955 17 • • » »CHANNEL INPUT INFORMATION -< CHANNEL ZI(HORIZONTAL/VERTICAL) = 1.50 Z2(HORIZONTAL/VERTICAL) = 3.00 BASEWIDTH(FEET) = 6.00 CONSTANT CHANNEL SLOPE(FEET /FEET) = 0.040000 UNIFORM FLOW(CFS) = 450. OOF(- (- f-F(- FF(- FFF(- Ff- FFFF(- FE-E -F FLOWRATE MANNIIVGS FRICTION FACTOR = 0.0350 NORMAL -DEPTH FLOW INFORMATION: » »> NORMAL DEPTH(FEET) = 2.89 (--FLOW DEPTH FLOW TOP- WIDTH(FEET) = 19.00 FLOW AREA(SQUARE FEET) = 36.13 HYDRAULIC DEPTH(FEET) = 1.90 FLOW AVERAGE VELOCITY(FEE'T /SEC.) = 12 .46(- (-F(- (- (-(- (-Ff- (- F( -FFLOW VELOCITY UNIFORM FROUDE NUMBER = 1.592 PRESSURE + MOMENTUM(POUNDS) = 13555.15 AVERAGED VELOCITY HEAD(FEET) = 2.409 SPECIFIC ENERGY(FEET) = 5.299 CRITICAL -DEPTH FLOW INFORMATION: CRITICAL FLOW TOP-WIDTH(FEET) = 22.46 CRITICAL FLOW AREA(SQUARE FEET) = 52.07 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 2.32 CRITICAL FLOW AVERAGE VELOCITY(FEET /SEC.) = 8.64 CRITICAL DEPTH(FEET) = 3.66 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 12334.25 AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 1.160 CRITICAL FLOW SPECIFIC ENERGY(FEET) = 4.818 - » »CHANNEL INPUT INFORMATION«« _ CHANNEL ZI(HORIZONTAL/VERTICAL) = 1.50 Z2(HORIZONTAL/VERTICAL) = 3.00 BASEWIDTH(FEET) = 6.00 CONSTANT CHANNEL SLOPE(FEET/FEET) = 0.040000 UNIFORM FLOW(CFS) = 100.00E-FE-f -E-f-E f- f- FFFFFFE- FFFFFFE -E- FLOWRATE MANNINGS FRICTION FACTOR = 0.0350 NORMAL -DEPTH FLOW INFORMATION: » »> NORMAL DEPTH(FEET) = 1.34E- E- E- E- E- FFFFFFFE- E- FFFE- E-f-FFLOW DEPTH FLOW TOP- WIDTH(FEET) = 12.05 FLOW AREA(SQUARE FEET) = 12.14 HYDRAULIC DEPTH(FEET) = 1.01 FLOW AVERAGE VELOCITY(FEET /SEC.) = 8. 24E- E- E- E- E- E- E- E- E- E- E- E- E- E-FLOW VELOCITY UNIFORM FROUDE NUMBER = 1.447 PRESSURE + MOMENTUM(POUNDS) = 2049.03 AVERAGED VELOCITY HEAD(FEET) = 1.054 SPECIFIC ENERGY(FEET) = 2.399 CRITICAL -DEPTH FLOW INFORMATION: CRITICAL FLOW TOP- WIDTH(FEET) = 13.45 CRITICAL FLOW AREA(SQUARE FEET) = 16.10 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 1.20 CRITICAL FLOW AVERAGE VELOCITY(FEET /SEC.) = 6.21 CRITICAL DEPTH(FEET) = 1.66 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 1929.09 • AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 0.599 CRITICAL FLOW SPECIFIC ENERGY(FEET) = 2.255 • » »CHANNEL INPUT INFORMATION «« CHANNEL Zl(HORIZONTAL/VERTICAL) = 1.50 Z2(HORIZONTAL/VERTICAL) = 3.00 BASEWIDTH(FEET) = 6.00 CONSTANT CHANNEL SLOPE(FEET/FEET) = 0.040000 UNIFORM FLOW(CFS) = 200. 004- E-E- E-E- E- E- E- E- E- E- E-E-<- E- (- FE -E-E -E (-- E- FLOWRATE MANNINGS FRICTION FACTOR = 0.0350 NORMAL -DEPTH FLOW INFORMATION: >>> NORMAL DEPTH(FEET) = 1. 93E- E- E- E- E- E- E- E- FE- E- E- E- E- E- E- E- E= FE- E-FLOW DEPTH FLOW TOP- WIDTH(FEET) = 14.69 FLOW AREA(SQUARE FEET) = 19.99 HYDRAULIC DEPTH(FEET) = 1.36 FLOW AVERAGE VELOCITY(FEET /SEC.) = 10. 00E -E- E- E-E-E- E-E- Ff- FE- E- E-FLOW VELOCITY UNIFORM FROUDE NUMBER = 1.511 PRESSURE + MOMENTUM(POUNDS) = 4913.65 AVERAGED VELOCITY HEAD(FEET) = 1.554 SPECIFIC ENERGY(FEET) = 3.486 CRITICAL -DEPTH FLOW INFORMATION: CRITICAL FLOW TOP- WIDTH(FEET) = 16.85 . CRITICAL FLOW AREA(SQUARE FEET) = 27.56 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 1.64 CRITICAL FLOW AVERAGE VELOCITY(FEET /SEC.) = 7.26 CRITICAL DEPTH(FEET) = 2.41 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 4558.21 • AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 0.818 CRITICAL FLOW SPECIFIC ENERGY(FEET) = 3.230 • » »CHANNEL INPUT INFORMATION «« CHANNEL ZI(HORIZONTAL/VERTICAL) = 1.50 Z2(HORIZONTAL/VERTICAL) = 3.00 BASEWIDTH(FEET) = 6.00 CONSTANT CHANNEL SLOPE(FEET /FEET) = 0.040000 UNIFORM FLOW(CFS) = 300. OOE- FE-f-E -FFE E-E-E-E-E- FFf- E-E-FFFFFF FLOWRATE MANNINGS FRICTION FACTOR = 0.0350 NORMAL -DEPTH FLOW INFORMATION: » »> NORMAL DEPTH(FEET) = 2.37FE-Ff-f-FE E-f- E- FFf-E-f-FFFE- FFFLOW DEPTH FLOW TOP- WIDTH(FEET) = 16.65 FLOW AREA(SQUARE FEET) = 26.81 HYDRAULIC DEPTH(FEET) = 1.61 FLOW AVERAGE VELOCITY(FEET /SEC.) = 11.19E-Ff- E- FFE- E-E-FFFE-FFLOW VELOCITY UNIFORM FROUDE NUMBER = 1.554 PRESSURE + MOMENTUM(POUNDS) = 8175.30 AVERAGED VELOCITY HEAD(FEET) = 1.945 SPECIFIC ENERGY(FEET) = 4.312 CRITICAL -DEPTH FLOW INFORMATION: CRITICAL FLOW TOP- WIDTH(FEET) = 19.41 CRITICAL FLOW AREA(SQUARE FEET) = 37.84 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 1.95 CRITICAL FLOW AVERAGE VELOCITY(FEET /SEC.) = 7.93 CRITICAL DEPTH(FEET) = 2.98 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 7507.51 • AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 0.976 CRITICAL FLOW SPECIFIC ENERGY(FEET) = 3.955 • » »CHANNEL INPUT INFORMATION«« CHANNEL ZI(HORIZONTAL/VERTICAL) = 1.50 Z2(HORIZONTAL/VERTICAL) = 3.00 BASEWIDTH(FEET) = 6.00 CONSTANT CHANNEL SLOPE(FEET /FEET) = 0.040000 UNIFORM FLOW(CFS) = 450. OOf- f- E- FE -E- FFf- f= FFE-.E- FFE-E- E- E-E -FFF FLOWRATE MANNINGS FRICTION FACTOR = 0.0350 NORMAL -DEPTH FLOW INFORMATION: » »> NORMAL DEPTH(FEET) = 2.89FFFE-f-f -FFFf FFFE-E'F'E'E'E'E'FFLOW DEPTH FLOW TOP- WIDTH(FEET) = 19.00 FLOW AREA(SQUARE FEET) = 36.13 HYDRAULIC DEPTH(FEET) = 1.90 FLOW AVERAGE VELOCITY(FEET /SEC.) = 12.46FFE E- E-FE- E- E- Ff-E-E-E-FLOW VELOCITY UNIFORM FROUDE NUMBER = 1.592 PRESSURE + MOMENTUM(POUNDS) = 13555.15 AVERAGED VELOCITY HEAD(FEET) = 2.409 SPECIFIC ENERGY(FEET) = 5.299 CRITICAL -DEPTH FLOW INFORMATION: CRITICAL FLOW TOP- WIDTH(FEET) = 22.46 CRITICAL FLOW AREA(SQUARE FEET) = 52.07 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 2.32 CRITICAL FLOW AVERAGE VELOCITY(FEET /SEC.) = 8.64 CRITICAL DEPTH(FEET) = .3.66 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 12334.25 AVERAGED CRITICAL FLOW VELOCITY HEAD(FEET) = 1.160 CRITICAL FLOW SPECIFIC ENERGY(FEET) = 4.818 • 0' � ]l :• Coral Canyon December 2006 Hydrologic Analysis #8528E SCS Method Loss Rate, Calculations from GIS .Date for Existing Conditions x PACIFIC ADVANCED CIVIL ENGINEERING, INC. Coral • 0 r �J J December 2006 #8528E SCS Method Loss Rate Calculations from GIS Date for Proposed Conditions PACIFIC ADVANCED CIVIL ENGINEERING, INC. A4_1 1.9 D ROAD 0.2 98 98 13 13 A4_1 Total 1 1.9 89 51 A5_1 7.7 1 A OS 0.3 58 5 2 0 D1 Total 20.63 89.34 5.00 Coral � 0 � 0 is December 2006 -#8528E Proposed Condition Orisite Hydrology Using Rational Method - AES 10 - Year PACIFIC ADVANCED CIVIL ENGINEERING, INC. ...............r :rrr r.r....r.rrrrrrr r•r.... *..... r...........r...x..r :x rr.rr RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC &WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982 -2006 Advanced Engineering Software (aes) (Rational Tabling Version 6.OD) Release Date: 06/01/2005 License ID 1527 Analysis prepared by: ---------------------------------------------------------------------------- FILE NAME: CORA10T.DAT TIME /DATE OF STUDY: 13:45 03/20/2007 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 2 -YEAR, 1 -HOUR PRECIPITATION(INCH) = 0.430 100 -YEAR, 1 -HOUR PRECIPITATION(INCH) = 1.990 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 10.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.083 SLOPE OF INTENSITY DURATION CURVE = 0.6000 RCFC &WCD HYDROLOGY MANUAL "C "- VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC &WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES 'USER - DEFINED STREET - SECTIONS FOR COUPLED.PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0 67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)-(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *. r...... r.. r...: r.rr xr...: rr.. x. x.« xr« r• r.r rre ..r.r.....r.. «.....xxx«rxr ««. FLAW PROCESS FROM NODE 1.00 TO NODE 1.50 IS CODE = 21 ---------------------------------------------------------------------------- » ­­RATIONAL METHOD INITIAL SUBAREA ANALYSIS « « ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER TC = K *((LENGTH * *3) /(ELEVATION CHANGE)) * *.2 INITIAL SUBAREA FLAW- LENGTH(FEET) = 1210.00 UPSTREAM ELEVATION(FEET) = 1017.55 DOWNSTREAM ELEVATION(FEET) = 620.00 ELEVATION DIFFERENCE(FEET) = 397.55 TC = 0.533 *(( 1210.00' *3) /( 397.55)) * *.2 = 11.381 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.935 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7816 SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF(CFS) 14.22 TOTAL AREA(ACRES) = 6.20 TOTAL RUNOFF(CFS) = 14.22 FLOW PROCESS FROM NODE 1.10 TO NODE 1.50 IS CODE = 81 ------------------------------------ »» ADDITION OF SUBAREA TO MAINLINE PEAK FLOW­ ­ 10 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.935 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT .7816 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 6.90 SUBAREA RUNOFF(CFS) = 15.83 TOTAL AREA(ACRES) = 13.10 TOTAL RUNOFF(CFS) = 30.05 TC(MIN.) = 11.38 r.. x .................... rrrrrr rrr rrrxr.....r..r.....r.. « « ««....r FLOW PROCESS FROM NODE 1.20 TO NODE 1.50 IS CODE = 81 ---------------------------------------------------------------- » ­­ADDITION OF SUBAREA TO MAINLINE PEAK FLOW­ ­< 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.935 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8408 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOFF(CFS) = 1.73 TOTAL AREA(ACRES) = 13.80 TOTAL RUNOFF(CFS) = 31.78 TC(MIN.) = 11.38 rrxrr rx« rxrx rxxr «. «x.x..«.r.r.......r. see r.rr rx«rxrr........r.rr FLOW PROCESS FROM NODE 1.30 TO NODE 1.50 IS CODE = 81 ---------------------------------------------------------------- »» ADDITION OF SUBAREA TO MAINLINE PEAK FLAW< «< 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.935 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7816 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = 1.38 TOTAL AREA(ACRES) 14.40 TOTAL RUNOFF(CFS) = 33.16 TC(MIN.) = 11.38 ' rrx:xr•xrrrr «rr rr..•.rr.....xrr......r....rr . rxr.:.....r.r...... FLOW PROCESS FROM NODE 1.50 TO NODE 5.00 IS CODE = 51 »> »COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< » » TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « « ELEVATION =DATA UPSTREAM(FEET) 620.00 DOWNSTREAM(FEET) = 619.00 = CHANNEL LENGTH THRU SUBAREA(FEET) 10.00 CHANNEL SLOPE - 0.1000 CHANNEL BASE(FEET) = 6.00 "Z" FACTOR = 1.500 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00 CHANNEL FLAW THRU SUBAREA(CFS) = 33.16 FLOW VELOCITY(FEET /SEC.) = 9.22 FLAW DEPTH(FEET) = 0.53 • • • TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) = 11.40 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 5.00 = 1220.00 FEET. FLOW PROCESS FROM NODE 2.00 TO NODE 5.00 IS CODE = 81 ---------------------------------------------------------------- » -ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-- 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.932 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7815 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 2.60 SUBAREA RUNOFF(CFS) = 5.96 TOTAL AREA(ACRES) = 17.00 TOTAL RUNOFF(CFS) = 39.11 TC(MIN.) = 11.40 ............. xw. x. w.......... .x..x.x................x..xxxxw r.wx FLOW PROCESS FROM NODE 2.00 TO NODE 5.00 IS CODE = 81 --------------------- --------------------- --- - ---------- » -ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« <<< 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.932 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8882 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.40 SUBAREA RUNOFF(CFS) = 1.04 TOTAL AREA(ACRES) = 17.40 TOTAL RUNOFF(CFS) = 40.16 TC(MIN.) = 11.40 FLOW PROCESS FROM NODE 2.00 TO NODE 5.00 IS CODE = 81 ---------------------------------------------------------------- » -ADDITION OF SUBAREA TO MAINLINE PEAK FLOW- -< 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.932 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8408 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.20 SUBAREA RUNOFF(CFS) 0.49 TOTAL AREA(ACRES) = 17.60 TOTAL RUNOFF(CFS) - 40.65 TC(MIN.) = 11.40 .............................:... ..................... :......... FLOW PROCESS FROM NODE 3.00 TO NODE 5.00 IS CODE = 81 ---------------------------------------------------------------- » -ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« << 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.932 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .8585 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOFF(CFS) = 1.76 TOTAL AREA(ACRES) 18.30 TOTAL RUNOFF(CFS) = 42.41 TC(MIN.) = 11.40 ......................+...................... ..... :...r.....r..e...e........ FLOW PROCESS FROM NODE 3.00 TO NODE 5.00 IS CODE = 81 ---------------------------------------------------------------------------- » -ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-- 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.932 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT - .8408 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 1.60 SUBAREA RUNOFF(CFS) = 3.94 TOTAL AREA(ACRES) = 1,9.90 TOTAL RUNOFF(CFS) = 46.36 TC(MIN.) = 11.40 .............. ....... :... ..... ..... ....... rw+r..rx........r.r... FLOW PROCESS FROM NODE 3.00 TO NODE 5.00 IS CODE = 81 ---------------------------------------------------------------- » -ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.932 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8882 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = 2.86 TOTAL AREA(ACRES) = 21.00 TOTAL RUNOFF(CFS) = 49.22 TC(MIN.) = 11.40 ..... rx..... w. r. w. r. w. x.:.... x. wx .x ...............r..r..x.rw..xx FLOW PROCESS FROM NODE 5.00 TO NODE 10.00 IS CODE = 51 »» >COMPUTE TRAPEZOIDAL CHANNEL FLOW« « < » -TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « - ELEVATION DATA: UPSTREAM(FEET) 619.00 DOWNSTREAM(FEET) = 618.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 223.00 CHANNEL SLOPE = 0.0045 CHANNEL BASE(FEET) = 6.00 "Z" FACTOR = 1.500 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00 CHANNEL FLOW THRU SUBAREA(CFS) = 49.22 FLOW VELOCITY(FEET /SEC.) = 3.64 FLOW DEPTH(FEET) = 1.61 TRAVEL TIME(MIN.) = 1.02 TC(MIN.) = 12.42 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 10.00 = 1443.00 FEET. ................................. ......wx..xwxx..x...... :....... FLOW PROCESS FROM NODE 6.00 TO NODE 10.00 IS CODE = 81 ------------------------- ------------------------------- - - -- -- > >>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-- 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.785 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7761 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 6.50 SUBAREA RUNOFF(CFS) = 14.05 TOTAL AREA(ACRES) = 27.50 TOTAL RUNOFF(CFS) = 63.27 TC(MIN.) = 12.42 ........ w. w+..... wx ..x.w....w..w ................r. r...xxx.x.x... FLOW PROCESS FROM NODE 10.00 TO NODE 15.00 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW « « - » » >TRAVELTIME THRU SUBAREA - (EXISTING ELEMENT) « < ELEVATION DATA: UPSTREAM(FEET) = 618.00 DOWNSTREAM(FEET) = 616.20 CHANNEL LENGTH THRU SUBAREA(FEET) = 110.00 CHANNEL SLOPE = 0.0164 CHANNEL BASE(FEET) = 6.00 "Z" FACTOR = 1.500 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00 CHANNEL FLOW THRU SUBAREA(CFS) - 63.27 FLOW VELOCITY(FEET /SEC.) = 6.17 FLOW DEPTH(FEET) = 1.29 0 .0 . 0 TRAVEL TIME(MIN.) = 0.30 TC(MIN.) = 12.72 ' LONGEST FLOWPATH FROM NODE 1.00 TO NODE 15.00 = 1553.00 FEET. .«...:. rrr.. r.... w. r««.«.«:. r:... ..r..r.r...r......r....rw.e.w.r FLOW PROCESS FROM NODE 11.00 TO NODE 15.00 IS CODE = 81 ---------------------------------------------------------------- » - ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« - 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.746 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4430 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.12 TOTAL AREA(ACRES) = 27.60 TOTAL RUNOFF(CFS) = 63.39 TC(MIN.) = 12.72 .............« xrx. xrr. xx .r...r.r.. «.. «x «.xxxrrxxrxrxrxr rr.r re.r. FLOW PROCESS FROM NODE 11.00 TO NODE 15.00 IS CODE = 81 ---------------------------------------------------------------- - -ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« << 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.746 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT .7746 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.30 SUBAREA RUNOFF(CFS) = 0.64 TOTAL AREA(ACRES) 27.90 TOTAL RUNOFF(CFS) = 64.03 TC(MIN.) = 12.72 ...................... ww..r.........«....... « «x.xx.xx FLOW PROCESS FROM NODE 11.00 TO NODE 15.00 IS CODE - 81 ---------------------------------------------------------------- » - ADDITION OF SUBAREA TO MAINLINE PEAK.FLOW« - 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.746 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .6715 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.18 TOTAL AREA(ACRES) = 28.00 TOTAL RUNOFF(CFS) = 64.22 TC(MIN.) = 12.72 x .....................x.x rrx..... .r.r.r.ww.rr..... «........« «xx. FLOW PROCESS FROM NODE 11.00 TO NODE 15.00 IS CODE = 81 ------------------------------- ------------------------------- - - >>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW< «< 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.746 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT - .8875 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.20 SUBAREA RUNOFF(CFS) 0.49 TOTAL AREA(ACRES) = 28.20 TOTAL RUNOFF(CFS) = 64.70 TC(MIN.) = 12.72 ........... wrrw....... rxx.. rr....... r.. r.r..r.....r.........rw.wrw.... «. w... FLOW PROCESS FROM NODE 11.00 TO NODE 15.00 IS CODE = 81 ---------------------------------------------------------------------------- --ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-- 10 YEAR RAINFALL= INTENSITY (INCH /HOUR) = 2.746 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8543 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.20 SUBAREA RUNOFF(CFS) = 0.47 TOTAL AREA(ACRES) = 28.40 TOTAL RUNOFF(CFS) = 65.17 TC(MIN.) = 12.72 ................r....r..rr.r FLOW PROCESS FROM NODE 11.00 TO NODE 15.00 IS CODE = 81 ---------------------------------------------------------------- » >> ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.746 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8373 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 2.30 TOTAL AREA(ACRES) 29.40 TOTAL RUNOFF(CFS) = 67.47 TC(MIN.) = 12.72 FLOW PROCESS FROM NODE 15.00 TO NODE 20.00 IS CODE = 51 --COMPUTE TRAPEZOIDAL CHANNEL FLOW-- - »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) - - ELEVATION DATA: UPSTREAM(FEET) 616.20 DOWNSTREAM(FEET) = 602.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 742.00 CHANNEL SLOPE = 0.0191 CHANNEL BASE(FEET) - 6.00 "Z" FACTOR = 1.500 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00 CHANNEL FLOW THRU SUBAREA(CFS) = 67.47 FLOW VELOCITY(FEET /SEC.) = 6.66 FLOW DEPTH(FEET) = 1.28 TRAVEL TIME(MIN.) - 1.86 TC(MIN.) = 14.57 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 20.00 2295.00 FEET. ...........rrr.r.r FLOW PROCESS FROM NODE 16.00 TO NODE 20.00 IS CODE = 81 -- ------------------------------- - -------------------- - --- -- » »> ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « c 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.530 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT .7655 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 6.70 SUBAREA RUNOFF(CFS) = 12.98 TOTAL AREA(ACRES) = 36.10 TOTAL RUNOFF(CFS) = 80.45 TC(MIN.) = 14.57 .......... FLOW PROCESS FROM NODE 20.00 TO NODE 25.00 IS CODE = 51 ---------------------------------------------------------------------------- --COMPUTE TRAPEZOIDAL CHANNEL FLOW« << >> -TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< ELEVATION DATA UPSTREAM(FEET) 602.00 DOWNSTREAM(FEET) == 590.30 = CHANNEL LENGTH THRU SUBAREA(FEET) = 427.00 CHANNEL SLOPE = 0.0274 CHANNEL BASE(FEET) = 6.00 "Z" FACTOR = 1.500 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00 CHANNEL FLOW THRU SUBAREA(CFS) - 80.45 FLOW VELOCITY(FEET /SEC.) = 7.94 FLOW DEPTH(FEET) = 1.28 17_� TRAVEL TIME(MIN.) = 0.90 TC(MIN.) = 15.47 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 25.00 = 2722.00 FEET. xrx ....... :...xx.x..r..w.r.w...... r.r......wxrrrx rxr rxr :rx rwxx rr FLOW PROCESS FROM NODE 22.00 TO NODE • 25.00 IS CODE = 81 ---------------------------------------------------------------- » ­­ADDITION OF SUBAREA TO MAINLINE PEAK FLOW­ ­ 10 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.441 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7614 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 6.93 SUBAREA RUNOFF(CFS) = 12.88 TOTAL AREA(ACRES) = 43.03 TOTAL RUNOFF(CFS) - 93.33 TC(MIN.) - 15.47 , .....x.rxrxrwrrwxrwrr rrrxxxxr rr rxr ..w..w....r.xxrxrwrx rrxrrxrrrw FLOW PROCESS FROM NODE 23.00 TO NODE 25.00 IS CODE = 81 ---------- ----------------------------------------------------- »» ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-­ 10 YEAR RAINFALL INTENSITY(INCH /HOUR) 2.441 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7614 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 4.40 SUBAREA RUNOFF(CFS) = 8.18 TOTAL AREA(ACRES) = 47.43 TOTAL RUNOFF(CFS) = 101.51 TC(MIN.) = 15.47 FLOW PROCESS FROM NODE 25.00 TO NODE 30.00 IS CODE = 51 ­­COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< »» TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< ELEVATION DATA: UPSTREAM(FEET) = 590.30 DOWNSTREAM(FEET) = 584.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 237.00 CHANNEL SLOPE = 0.0266 CHANNEL BASE(FEET) = 6.00 "Z" FACTOR = 1.500 MANNING'.S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00 CHANNEL FLOW THRU SUBAREA(CFS) = 101.51 FLOW VELOCITY(FEET /SEC.) = 8.43 FLOW DEPTH(FEET) = 1.47 TRAVEL TIME(MIN.) = 0.47 TC(MIN.) = 15.94 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 30.00 = 2959.00 FEET. rx. rx .... ........................x..xxr: rrwxx..xr..x r.r..xr.x.xr FLOW PROCESS FROM NODE 26.00 TO NODE 30.00 IS CODE = 81 ---------------------------------------------------------------- » -ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«« 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.398 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7593 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 1.40- SUBAREA RUNOFF(CFS) = 2.55 TOTAL AREA(ACRES) = 48.83 TOTAL RUNOFF(CFS) = 104.06 TC(MIN.) = 15.94 ................w . wxr rxr...a.rrx.xr.xr . xr . rr.xxrr. rx. rx.x rx. r.. r.x rx.r...xrr FLOW PROCESS FROM NODE 26.00 TO NODE 30.00 IS CODE - 81 ---------------------------------------------------------------------- - - - - -- ­­ADDITION ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.398 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4126 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.20 SUBAREA RUNOFF(CFS) 0.20 TOTAL AREA(ACRES) = 49.03 TOTAL RUNOFF(CFS) = 104.26 TC(MIN.) = 15.94 rr.x rxrxr....r ww w..wr..e rr rr rr rr.r.x.r.....rr rr rrx.....w.rr.x... FLOW PROCESS FROM NODE . 26.00 TO NODE 30.00 IS CODE = 81 ---------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.398 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .6563 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = 1.73 TOTAL AREA(ACRES) 50.13 TOTAL RUNOFF(CFS) = 105.99 TC(MIN.) - 15.94 rrwxxxrxw..w.r +www.w...x.x rxrr rxxwrx .....w.rx.xrx............x.. FLOW PROCESS FROM NODE 26.00 TO NODE 30.00 IS CODE = 81 ----------------- - ----------- --------------------------------- »» ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.398 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8296 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 3.00 SUBAREA RUNOFF(CFS) = 5.97 TOTAL AREA(ACRES) = 53.13 TOTAL RUNOFF(CFS) = 111.96 TC(MIN.) = 15.94 wx..wwrx.rx rr rr r. rr rx rx rr rx rxxx.x..w.. w.r..e.xx: rxr.x...w.ww.x rr FLOW PROCESS FROM NODE 26.00 TO NODE 30.00 IS CODE = 81 ---------------------------------------------------------------- » -ADDITION OF SUBAREA TO MAINLINE PEAK FLAW« «< 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.398 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8513 _SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOFF(CFS) = 1.43 TOTAL AREA(ACRES) = 53.83 TOTAL RUNOFF(CFS) = 113.39 TC(MIN.) = 15.94 x.r.xx.rrxrxrx.xxx.x... +..ww.wr rx. :. rxxrx.x.....rrx..xxxx.....wr FLOW PROCESS FROM NODE 26.00 TO NODE 30.00 IS CODE = 81 --------------------- ------ ------ »»,ADDITION OF SUBAREA TO MAINLINE PEAK FLOW­ << 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.398 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT - .8859 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) 2.34 TOTAL AREA(ACRES) 54.93 TOTAL RUNOFF(CFS) = 115.73 TC(MIN.) - 15.94 FLOW PROCESS FROM NODE 27.00 TO NODE 30.00 IS CODE = 81 - - ----------- ----------------------------------------------- , >>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.398 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4126 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) 3.70 SUBAREA RUNOFF(CFS) 3.66 TOTAL AREA(ACRES) = 58.63 TOTAL RUNOFF(CFS) = 119.39 TC(MIN.) = 15.94 FLOW PROCESS FROM NODE 27.00 TO NODE 30.00 IS CODE - 81 _________________________________ _____ ____ _____ __________ _ ______ ­­ADDITION ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-­< 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.398 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7593 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 10.10 SUBAREA RUNOFF(CFS) = 18.39 TOTAL AREA(ACRES) = 68.73 TOTAL RUNOFF(CFS) = 137.78 TC(MIN.) = 15.94 • x.. r....... r.. ra ............. wr. .. *....w..x«r.......x..xx.xx :.r FLOW PROCESS FROM NODE 30.00 TO NODE 40.00 IS CODE = 51 --COMPUTE TRAPEZOIDAL CHANNEL FLOW -« » » TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « « ELEVATION DATA UPSTREAM(FEET) = 570.00 DOWNSTREAM (FEET) = 555.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 614.00 CHANNEL SLOPE = 0.0244 CHANNEL BASE(FEET) = 8.00 "Z" FACTOR = 4.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00 CHANNEL FLOW THRU SUBAREA(CFS) = 137.78 FLOW VELOCITY(FEET /SEC.) = 7.52 FLOW DEPTH(FEET) - 1.36 TRAVEL TIME(MIN.) = 1.36 TC(MIN.) = 17.30 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 40.00 - 3573.00 FEET. ..........................*...... .«. ««x...«x «x.x..x « « :...xa«x «.« FLOW PROCESS FROM NODE 36.00 TO NODE 40.00 IS CODE = 81 --------------------------------- ---- ----- -- --- -- --------- - - - --- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-­ 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.283 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4016 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 2.60 SUBAREA RUNOFF(CFS) = 2.38 TOTAL AREA(ACRES) = 71.33 TOTAL RUNOFF(CFS) = 140.16 TC(MIN.) = 17.30 FLOW PROCESS FROM NODE 36.00 TO NODE 40.00 IS CODE = 81 --------------- ------------------ ------- - - - - -- - ---------------------- --- -- -m-ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « -_ -_10 YEAR RAINFALL INTENSITY(INCH /HOUR) == 2.283 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7533 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) 5.00 SUBAREA RUNOFF(CFS) = 8.60 TOTAL AREA(ACRES) 76.33 TOTAL RUNOFF(CFS) = 148.76 TC(MIN.) - 17.30 ................................. ...........rx.r..........x...r. FLOW PROCESS FROM NODE 40.00 TO NODE 75.00 IS CODE - 31 ­­COMPUTE COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«« ,> »USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) << < ELEVATION DATA: UPSTREAM(FEET) = 555.00 DOWNSTREAM(FEET) - 550.00 FLOW LENGTH(FEET) = 50.00 MANNING'S N - 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 24.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 31.11 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) - 148.76 . PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 17.33 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 75.00 = 3623.00 FEET. ........................:....... r ........x.....w...r....rr...... FLOW PROCESS FROM NODE 40.00 TO NODE 75.00 IS CODE = 1 ---------------------------------------------------------------- - -DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE-­ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 17.33 RAINFALL INTENSITY(INCH /HR) = 2.28 TOTAL STREAM AREA(ACRES) - 76.33 PEAK FLOW RATE(CFS) AT CONFLUENCE = 148.76 FLOW PROCESS FROM NODE 45.00 TO NODE 50.00 IS CODE = 21 _____________________________________________ ________ ____ __ _____ ___ ___ ___ _ __ »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS« « ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH(FEET) = 329.00 UPSTREAM ELEVATION(FEET) = 603.00 DOWNSTREAM ELEVATION(FEET) = 591.00 ELEVATION DIFFERENCE(FEET) = 12.00 TC = 0.533 *(( 329.00 * *3) /( 12.00)] * *.2 - 10.493 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.082. UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4689 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF(CFS) = 1.16 TOTAL AREA(ACRES) = 0.80 TOTAL RUNOFF(CFS) = 1.16 FLOW PROCESS FROM NODE 45.00 TO NODE 50.00 IS CODE = 81 ---------------------------------------------------------------------------- » ­­ADDITION OF SUBAREA TO MAINLINE PEAK FLOW­­« • • • 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.082 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7866 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.20 SUBAREA RUNOFF(CFS) = 0.48 TOTAL AREA(ACRES) = 1.00 TOTAL RUNOFF(CFS) = 1.64 TC(MIN.) = 10.49 ..................:.... r... r.». x. ..x.x.....we................... FLOW PROCESS FROM NODE 45.00 TO NODE 50.00 IS CODE = 81 ----------- --------------- - ---------------------------------- » »-ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.082 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8569 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.30 SUBAREA RUNOFF(CFS) = 0.79 TOTAL AREA(ACRES) = 1.30 TOTAL RUNOFF(CFS) 2.43 TC(MIN.) = 10.49 .........................:... w... ..r....................r....... FLOW PROCESS FROM NODE 45.00 TO NODE 50.00 IS CODE = 81 ---------------------------------------------------------------- ... -ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.082 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8887 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.30 SUBAREA RUNOFF(CFS) = 0.82 TOTAL AREA(ACRES) = 1.60 TOTAL RUNOFF(CFS) = 3.25 TC(MIN.) = 10.49 ».: rr. r. r. r...:.. x..• xw: xx. r..... .r.......xxxxxxwwxw.x.......r.r FLOW PROCESS FROM NODE 50.00 TO NODE 55.00 IS CODE = 31 ­-COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< >> »-USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW)< « ELEVATION DATA: UPSTREAM(FEET) = 588.00 DOWNSTREAM(FEET) = 576.00 FLOW LENGTH(FEET) = 319.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.9 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 8.29 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES - 1 PIPE- FLOW(CFS) = 3.25 PIPE TRAVEL TIME(MIN.) = 0.64 TC(MIN.) = 11.13 LONGEST FLOWPATH FROM NODE 45.00 TO NODE 55.00 = 648.00 FEET. FLOW PROCESS FROM NODE 51.00 TO NODE 55.00 IS CODE = 81 --------------------------------------------------------------------7------- - -ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«« - - - -10 YEAR RAINFALL INTENSITY(INCH /HOUR) = = -2 974=== = =_____________________ UNDEVELOPED WATERSHED RUNOFF COEFFICIENT .7830 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) 0.20 SUBAREA RUNOFF(CFS) = 0.47 TOTAL AREA(ACRES) = 1.80 TOTAL RUNOFF(CFS) = 3.72 TC(MIN.) = 11.13 ........................... x..... ........... ».r....x.x..... »rr.. FLOW PROCESS FROM NODE 51.00 TO NODE 55.00 IS CODE = 81 --------- ------ - ------ --- -------------------- --------------- - »»-ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-< << 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.974 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8415 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) 1.50 TOTAL AREA(ACRES) 2.40 TOTAL RUNOFF(CFS) = 5.22 TC(MIN.) = 11.13 FLOW PROCESS FROM NODE 51.00 TO NODE 55.00 IS CODE = 81 ---------------------------------------------------------------- > »-ADDITION OF SUBAREA TO MAINLINE PEAK FLOW- - 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.974 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8883 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.30 SUBAREA RUNOFF(CFS) = 0.79 TOTAL AREA(ACRES) = 2.70 TOTAL RUNOFF(CFS) = 6.01 TC(MIN.) = 11.13 ...................:...: x: xa. w... .....x. »rrrr...x.x.a.x......r.r FLOW PROCESS FROM NODE 52.00 TO NODE 55.00 IS CODE = 81 ---------------------------------------------------------------- >>>>> ADDITION OF SUBAREA TO MAINLINE PEAK FLOW< «< 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.974 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4609 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) 0.20 SUBAREA RUNOFF(CFS) = 0.27 TOTAL AREA(ACRES) 2.90 TOTAL RUNOFF(CFS) = 6.29 TC(MIN.) = 11.13 ..... ............................... xw.x ..... ...r....r..... :.... FLOW PROCESS FROM NODE 52.00 TO NODE 55.00 IS CODE = 81 ---------------------------------------------------------------- » >> ADDITION OF SUBAREA TO MAINLINE PEAK FLOW- ­< 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.974 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT .7830 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.40 SUBAREA RUNOFF(CFS) = 0.93 TOTAL AREA(ACRES) 3.30 TOTAL RUNOFF(CFS) _ 7.22 TC(MIN.) - 11.13 FLOW PROCESS FROM NODE 52.00 TO NODE 55.00 IS CODE = 81 ---------------------------------------------------------------------------- » >> ADDITION OF SUBAREA TO MAINLINE PEAK FLOW­ ­ 10 - - =_10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2,974 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .6805 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 2.02 TOTAL AREA(ACRES) = 4.30 TOTAL RUNOFF(CFS) 9.24 TC(MIN.) = 11.13 FLOW PROCESS FROM NODE 52.00 TO NODE 55.00 IS CODE = 81 ---------------------------------------------------------------- »»> ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-­' 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.974 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT - .8415 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) _. 2.60 SUBAREA RUNOFF(CFS) = 6.51 TOTAL AREA(ACRES) = 6.90 TOTAL RUNOFF(CFS) = 15.75 TC(MIN.) = 11.13 ................................. ...r........................... FLOW PROCESS FROM NODE 52.00 TO NODE 55.00 IS CODE = 81 ------ - ------------ ------------------------------------------ , -ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« << 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.974 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8561 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.25 TOTAL AREA(ACRES) = 7.00 TOTAL RUNOFF(CFS) = 16.01 TC(MIN.) - 11.13 FLOW PROCESS FROM NODE 52.00 TO NODE 55.00 IS CODE = 81 -------------------------- ---------------- ------------- -- ---- » »,ADDITION OF SUBAREA TO MAINLINE PEAK FLOW­- 10 YEAR RAINFALL INTENSITY(INCH /HOUR) - 2.974 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8883 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.40 SUBAREA RUNOFF(CFS) = 1.06 TOTAL AREA(ACRES) = 7.40 TOTAL RUNOFF(CFS) = 17.06 TC(MIN.) = 11.13 ............................... . ... x...x. :... :.ax...• :....r..x.r FLOW PROCESS FROM NODE 55.00 TO NODE 60.00 IS CODE = 31 ­-COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«« » »,USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) «« ELEVATION DATA: UPSTREAM(FEET) = 576.00 DOWNSTREAM(FEET) = 563.00 FLOW LENGTH(FEET) = 382.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.4 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 12.10 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 17.06 PIPE TRAVEL TIME(MIN.) = 0.53 TC(MIN.) = 11.66 LONGEST FLOWPATH FROM NODE 45.00 TO NODE 60.00 = 1030.00 FEET. FLOW PROCESS FROM NODE 56.00 TO NODE 60.00 IS CODE = 81 -- ------------------------------------------------------------- » »,ADDITION OF SUBAREA TO MAINLINE PEAK FLOW­ ­ 10 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.893 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4547 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 1.20 SUBAREA RUNOFF(CFS) = 1.58 TOTAL AREA(ACRES) = 8.60 TOTAL RUNOFF(CFS) = 18.64 TC(MIN.) = 11.66 . :x...w...r... ewe............ xx.. ...r.r..........xxx............ FLOW PROCESS FROM NODE 56.00 TO NODE 60.00 IS CODE = 81 _________________________________ ___ __ _____ ______ ___ ______ _ ___ __ »»,ADDITION OF SUBAREA TO MAINLINE PEAK FLOW­ <<< 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.893 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7801 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.23 TOTAL AREA(ACRES) = 8.70 TOTAL RUNOFF(CFS) = 18.87 TC(MIN.) = 11.66 ................................. ..........x.wx....r.....x.x.... FLOW PROCESS FROM NODE 56.00 TO NODE 60.00 IS CODE - 81 ________________________________________________________________ ­­ADDITION OF SUBAREA TO MAINLINE PEAK FLOW << < 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.893 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .6773 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) 0.70 SUBAREA RUNOFF(CFS) = 1.37 TOTAL AREA(ACRES) = 9.40 TOTAL RUNOFF(CFS) = 20.24 TC(MIN.) - 11.66 FLOW PROCESS FROM NODE 56.00 TO NODE 60.00 IS CODE = 81 ---------------------------------------------------------------- » »,ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.893 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8555 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = 1.48 TOTAL AREA(ACRES) 10.00 TOTAL RUNOFF(CFS) = 21.72 TC(MIN.) = 11.66 FLOW PROCESS FROM NODE 60.00 TO NODE 65.00 IS CODE = 31 ______________________________________________ ____ __ ___ __ __ ___ ____ ____ _ __ ___ » »> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< >> »,USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « <<< = ELEVATION DATA: UPSTREAM(FEET) = 563.00 DOWNSTREAM(FEET) __= 562 00 FLOW LENGTH(FEET) - 189.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 21.9 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 6.29 • ESTIMATED PIPE DIAMETER(INCH) - 27.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 21.72 PIPE TRAVEL TIME(MIN.) = 0.50 TC(MIN.) = 12.16 LONGEST FLOWPATH FROM NODE 45.00 TO NODE 65.00 = 1219.00 FEET. .......... «..........«.... w. r.«.. ........ + + ++ +.x. + :....r...... .. FLOW PROCESS FROM NODE 61.00 TO NODE 65.00 IS CODE = 81 ----- ------------------------------- --------------------------- »» ADDITION OF SUBAREA TO MAINLINE PEAK FLOW- < 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.821 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4490 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.13 TOTAL AREA(ACRES) 10.10 TOTAL RUNOFF(CFS) = 21.85 TC(MIN.) = 12.16 ..+ .. : «r........ +x..+. +..x« «..r.r. r.......r.. +.x...ww.xrr«. « «r.r. FLOW PROCESS FROM NODE 61.00 TO NODE 65.00 IS CODE = 81 ­­ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.821 SINGLE- .FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT - .6745 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 2.90 SUBAREA RUNOFF(CFS) = 5.52 TOTAL AREA(ACRES) = 13.00 TOTAL RUNOFF(CFS) - 27.37 TC(MIN.) = 12.16 «. wr ................«« x«« «rr.....r.. +.. ««+..w« :.x ««w.r«. FLOW PROCESS FROM NODE 61.00 TO NODE 65.00 IS CODE = 81 ________________________________________________________________ --ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 10 YEAR RAINFALL INTENSITY(INCH /HOUR) - 2.821 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8549 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = 1.45 TOTAL AREA(ACRES) 13.60 TOTAL RUNOFF(CFS) = 28.81 TC(MIN.) = 12.16 .... r........+..+..... w.... rrr ....+.. +... +.. +...ww«wr«....... rrr FLOW PROCESS FROM NODE 65.00 TO NODE 70.00 IS CODE = 31 ­-COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« « » »>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « « ELEVATION DATA: UPSTREAM(FEET) = 562.00 DOWNSTREAM(FEET) = 560.50 FLOW LENGTH(FEET) = 218.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 21.6 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 7.61 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 28.81 PIPE TRAVEL TIME(MIN.) = 0.48 TC(MIN.) = 12.64 LONGEST FLOWPATH FROM NODE 45.00 TO NODE 70.00 = 1437.00 FEET. FLOW PROCESS FROM NODE 66.00 TO NODE 70.00 IS CODE = 81 ________________________________________________________________ »> >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«< < 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.756 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .6719 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOFF(CFS) = 1.30 TOTAL AREA(ACRES) = 14.30 TOTAL RUNOFF(CFS) = 30.11 TC(MIN.) = 12.64 ' ......................... rr :r.. FLOW PROCESS FROM NODE 66.00 TO NODE 70.00 IS CODE = 81 ------------------------------------------------------ >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.756 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8544 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) 0.20 SUBAREA RUNOFF(CFS) = 0.47 TOTAL AREA(ACRES) = 14.50 TOTAL RUNOFF(CFS) = 30.58 TC(MIN.) - 12.64 r« w«.« ww« w «r...w.. «.. + +. + +. + +. +. +....r.. r..... «w.w...... + +...xr. FLOW PROCESS FROM NODE 67.00 TO NODE 70.00 IS CODE = 81 _________________________________ ___________________ ____________ »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.756 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4438 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.12 TOTAL AREA(ACRES) = 14.60 TOTAL RUNOFF(CFS) = 30.70 TC(MIN.) = 12.64 FLOW PROCESS FROM NODE 67.00 TO NODE 70.00 IS CODE = 81 _________________________________ ___ ___ __________________ _ _ _ _ ___ >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«< < 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.756 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .6719 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 1.70 SUBAREA RUNOFF(CFS) = 3.15 TOTAL AREA(ACRES) = 16.30 TOTAL RUNOFF(CFS) = 33.85 TC(MIN.) = 12.64 FLOW PROCESS FROM NODE 67.00 TO NODE 70.00 IS CODE = 81 ______________________________________________ ___________ ___ ______ __________ ­­ADDITION >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« < 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.756 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8375_ SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOFF(CFS) = 1.62 TOTAL AREA(ACRES) = 17.00 TOTAL RUNOFF(CFS) = 35.47 • TC(MIN.) = 12.64 xrxrrxx«rr.«***************.**..* .. *...r * *r * *.x*xr... *..r.r ***.* FLOW PROCESS FROM NODE 67.00 TO NODE 70.00 IS CODE = 81 __________________ _________ _________ ____ _________ »-ADDITION OF SUBAREA TO MAINLINE PEAK FLOW- <<< 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.756 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8544 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) 0.30 SUBAREA RUNOFF(CFS) = 0.71 TOTAL AREA(ACRES) 17.30 TOTAL RUNOFF(CFS) = 36.17 TC(MIN.) = 12.64 FLOW PROCESS FROM NODE 70.00 TO NODE 75.00 IS CODE = 31 ­­COMPUTE COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA­« » >>USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « « ELEVATION DATA: UPSTREAM(FEET) = 560.60 DOWNSTREAM(FEET) = 550.00 FLOW LENGTH(FEET) = 504.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 18.7 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 12.30 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 36.17 PIPE TRAVEL TIME(MIN.) = 0.68 TC(MIN.) = 13.32 LONGEST FLOWPATH FROM NODE 45.00 TO NODE 75.00 = 1941.00 FEET. *.*..** w* w* w ....... ........r.... «r....x «xx «rx.xrx. rxrr. r. r.x «ax. FLOW PROCESS FROM NODE 71.00 TO NODE 75.00 IS CODE - 81 _________________________________ _______________________________ »-ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-­ 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.671 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4367 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.12 TOTAL AREA(ACRES) = 17.40 TOTAL RUNOFF(CFS) = 36.29 TC(MIN.) = 13.32 ...................... r.x.. ««.. *rrx «rx.*r*. *rr *..w... FLOW PROCESS FROM NODE 71.00 TO NODE 75.00 IS CODE = 81 _________________________________ _______________________________ »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW- << 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.671 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7716 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.22 SUBAREA RUNOFF(CFS) = 0.45 TOTAL AREA(ACRES) 17.62 TOTAL RUNOFF(CFS) - 36.74 TC(MIN.) - 13.32 FLOW PROCESS FROM NODE 71.00 TO NODE 75.00 IS CODE = 81 _____________________________________________ _______________________________ --ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-« 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.671 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8537 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.30 SUBAREA RUNOFF(CFS) = 0.68 TOTAL AREA(ACRES) = 17.92 TOTAL RUNOFF(CFS) = 37.43 TC(MIN.) = 13.32 rx...w.....w...*.r...rxrr rxxr.....w... **.w. «.r :r......w..r. « «. «. FLOW PROCESS FROM NODE 71.00 TO NODE 75.00 IS CODE - 81 _________________________________ _______________________________ ­­ADDITION ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.671 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT - .8872 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) 1.10 SUBAREA RUNOFF(CFS) = 2.61 TOTAL AREA(ACRES) 19.02 TOTAL RUNOFF(CFS) = 40.03 TC(MIN.) = 13.32 FLOW PROCESS FROM NODE 70.00 TO NODE 75.00 IS CODE = 1 ­-DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« « » >>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<< « TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.32 RAINFALL INTENSITY(INCH /HR) = 2.67 TOTAL STREAM AREA(ACRES) = 19.02 PEAK FLOW RATE(CFS) AT CONFLUENCE - 40.03 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH /HOUR) (ACRE) 1 148.76 17.33 2.281 76.33 2 40.03 13.32 2.671 19.02 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC4WCD FORMULA OF PLATE D -1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 154.41 13.32 2.671 2 182.95 17.33 2.281 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 182.95 TC(MIN.) = 17.33 TOTAL AREA(ACRES) - 95.35 i LONGEST FLOWPATH FROM NODE 1.00 TO NODE 75.00 = 3623.00 FEET. .........•. rw•.. e.• .............. ............................... FLOW PROCESS FROM NODE 75.00 TO NODE 80.00 IS CODE = 31 > >> COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLAW) « c<< ELEVATION DATA: UPSTREAM(FEET) = 550.00 DOWNSTREAM(FEET) = 549.00 FLOW LENGTH(FEET) - 35.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 45.0 INCH PIPE IS 34.0 INCHES PIPE -FLAW VELOCITY(FEET /SEC.) = 20.46 ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 182.95 PIPE TRAVEL TIME(MIN.) = 0.03 TC(MIN.) = 17.35 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 80.00 = 3658.00 FEET. FLOW PROCESS FROM NODE 76.00 TO NODE 80.00 IS CODE = 81 _________________________________ _______ ___ _____________________ ,>>,> ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-­ 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.279 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4012 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.20 SUBAREA RUNOFF(CFS) 0.18 TOTAL AREA(ACRES) = 95.55 TOTAL RUNOFF(CFS) - 183.13 TC(MIN.) = 17.35 .................. .....*.*** ........ ** .... *** ...... ..x..xxxw. :.. FLOW PROCESS FROM NODE 76.00 TO NODE 80.00 IS CODE = 81 _________________________________ _______________________________ ­­ADDITION OF SUBAREA TO MAINLINE PEAK FLOW­ <<< 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.279 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7531 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = 1.89 TOTAL AREA(ACRES) = 96.65 TOTAL RUNOFF(CFS) = 185.02 TC(MIN.) = 17.35 • ........ .....................x•w•. :.... •....................... FLOW PROCESS FROM NODE 76.00 TO NODE 80.00 IS CODE = 81 _________________________________ ______________ ___ ________ ______ » »,ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-­ 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.279 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8266 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.19 TOTAL AREA(ACRES) = 96.75 TOTAL RUNOFF(CFS) - 185.21 TC(MIN.) = 17.35 ...... ..................*..................... .w.w.....*.*...*. :..•....*...*. FLOW PROCESS FROM NODE 76.00 TO NODE 80.00 IS CODE = 81. ______________________________________________ ___ ___ __ ________ ______________ ­­ADDITION ,ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.279 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8501 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 1.20 SUBAREA RUNOFF(CFS) = 2.32 TOTAL AREA(ACRES) = 97.95 TOTAL RUNOFF(CFS) = 187.54 TC(MIN.) = 17.35 FLOW PROCESS FROM NODE 76.00 TO NODE 80.00 IS CODE = 81 _________________________________ _______________________________ »,,,ADDITION OF SUBAREA TO MAINLINE PEAK FLOW - «< 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.279 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8853 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 1.70 SUBAREA RUNOFF(CFS) = 3.43 TOTAL AREA(ACRES) = 99.65 TOTAL RUNOFF(CFS) - 190.96 TC(MIN.) - 17.35 FLOW PROCESS FROM NODE 80.00 TO NODE 320.00 IS CODE = 10 _____________________________________________ ________________ __ _____________ »»,MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK # 1 « «c FLAW PROCESS FROM NODE 105.00 TO NODE 110.00 IS CODE = 21 ------------------------------- ------------------------------- - » »,RATIONAL METHOD INITIAL SUBAREA ANALYSIS«« ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT'IS: UNDEVELOPED WITH POOR COVER TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)) * *.2 INITIAL SUBAREA FLOW- LENGTH(FEET) = 963.00 UPSTREAM ELEVATION(FEET) = 715.50 DOWNSTREAM ELEVATION(FEET) = 679.00 ELEVATION DIFFERENCE(FEET) = 36.50 TC = 0.533 *[( 963.00 * *3) /( 36.50)) * *.2 = 16.000 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.393 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7590 SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF(CFS) = 4.36 TOTAL AREA(ACRES) = 2.40 TOTAL RUNOFF(CFS) = 4.36 FLOW PROCESS FROM NODE 110.00 TO NODE 115.00 IS CODE = 51 ­­COMPUTE TRAPEZOIDAL CHANNEL FLOW« « »>,>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) - << ELEVATION DATA: UPSTREAM(FEET) = 679.00 DOWNSTREAM(FEET) = 670.80 CHANNEL LENGTH THRU SUBAREA(FEET) = 450.00 CHANNEL SLOPE = 0.0182 CHANNEL BASE(FEET) = 6.00 "Z" FACTOR = 1.500 MANNING'S FACTOR - 0.030 MAXIMUM DEPTH(FEET) = 4.00 CHANNEL FLOW THRU SUBAREA(CFS) = 4.36 FLOW VELOCITY(FEET /SEC.) = 2.60 FLOW DEPTH(FEET) = 0.26 s • • TRAVEL TIME(MIN.) = 2.89 Tc(MIN.) = 18.89 LONGEST FLOWPATH FROM NODE 105.00 TO NODE 115.00 = 1413.00 FEET. ................ r.. rx« xrr. rrrrr.. *«..er...................er..e. FLOW PROCESS FROM NODE 110.00 TO NODE 115.00 IS CODE = 81 ---------------------------------------------------------------- » ,>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-- 10 YEAR RAINFALL INTENSITY(INCH /HOUR) 2.166 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7468 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 5.00 SUBAREA RUNOFF(CFS) = 8.09 TOTAL AREA(ACRES) = 7.40 TOTAL RUNOFF(CFS) - 12.45 TC(MIN.) = 18.89 ..r..r..... r.... r....... r. rrr .. ..................r.r.r......r. r. FLOW PROCESS FROM NODE 115.00 TO NODE 135.00 IS CODE = 51 --COMPUTE TRAPEZOIDAL CHANNEL FLOW-- --TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 670.80 DOWNSTREAM(FEET) = 664.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 395.00 CHANNEL SLOPE = 0.0172 CHANNEL BASE(FEET) = 6.00 "Z" FACTOR = 1.500 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00 CHANNEL FLOW THRU SUBAREA(CFS) = 12.45 FLOW VELOCITY(FEET /SEC.) - 3.70 FLOW DEPTH(FEET) = 0.50 TRAVEL TIME(MIN.) = 1.78 Tc(MIN.) = 20.67 LONGEST FLOWPATH FROM NODE 105.00 TO NODE 135.00 = 1808.00 FEET. * .................r. ......rx............r.rr.rr..:. rrr.rx«.xrr.x FLOW PROCESS FROM NODE 115.00 TO NODE 135.00 IS CODE = 1 _________________________________ _______________________________ --DESIGNATE »DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«« < TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 20.67 RAINFALL INTENSITY(INCH /HR) = 2.05 TOTAL STREAM AREA(ACRES) = 7.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 12.45 ..r. r..r..r........ x«« r......«...........«.« x .« «xr«x «r « :« «r «.x.« «.rx. «. «. «.« FLOW PROCESS FROM NODE 120.00 TO NODE 125.00 IS CODE = 21 ---------------------------------------------------------------------------- » - RATIONAL METHOD INITIAL SUBAREA ANALYSIS -- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH(FEET) = 1015.00 UPSTREAM ELEVATION(FEET) - 963.00 DOWNSTREAM ELEVATION(FEET) = 720.00 ELEVATION DIFFERENCE(FEET) = 243.00 TC = 0.533 *(( 1015.00 * *3) /( 243.00)) * *.2 - 11.302 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2:947 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7821 SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF(CFS) = 18.21 TOTAL AREA(ACRES) = 7.90 TOTAL RUNOFF(CFS) = 18.21 FLOW PROCESS FROM NODE 125.00 TO NODE 130.00 IS CODE = 51 »> »COMPUTE TRAPEZOIDAL CHANNEL FLOW-- »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <- ELEVATION DATA: UPSTREAM(FEET) 720.00 DOWNSTREAM(FEET) - 691.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 535.00 CHANNEL SLOPE = 0.0542 CHANNEL BASE(FEET) = 6.00 "Z" FACTOR - 1.500 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.765 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7754 SOIL CLASSIFICATION IS "D" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 26.90 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 7.02 AVERAGE FLOW DEPTH(FEET) = 0.56 TRAVEL TIME(MIN.) = 1.27 TC(MIN.) = 12.57 SUBAREA AREA(ACRES) = 8.10 SUBAREA RUNOFF(CFS) = 17.37 TOTAL AREA(ACRES) = 16.00 PEAK FLOW RATE(CFS) = 35.58 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.66 FLOW VELOCITY(FEET /SEC.) = 7.72 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 130.00 = 1550.00 FEET. ................... e.......... xrxrxx«..+r.r.. ....xa. «......r.r.r....r..xx... FLOW PROCESS FROM NODE 125.00 TO NODE 130.00 IS CODE 81 _____________________________________________ ___________ ____________________ --ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« <<< =10 YEAR RAINFALL INTENSITY(INCH /HOUR) 2.765 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT .4445 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 2.00 SUBAREA RUNOFF(CFS) = 2.46 TOTAL AREA(ACRES) = 18.00 TOTAL RUNOFF(CFS) = 38.03 TC(MIN.) = 12.57 FLOW PROCESS FROM NODE 130.00 TO NODE 135.00 IS CODE - 51 »»> COMPUTE TRAPEZOIDAL CHANNEL FLOW<< - --TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<< «< ELEVATION DATA: UPSTREAM(FEET) 691.00 DOWNSTREAM(FEET) = 662.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 734.00 CHANNEL SLOPE - 0.0388 CHANNEL BASE(FEET) = 6.00 "Z" FACTOR = 1.500 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00 10 YEAR RAINFALL INTENSITY(INCH /HOUR) 2.564 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4276 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 41.16 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 7.27 AVERAGE FLOW DEPTH(FEET) - 0.79 TRAVEL TIME(MIN.) = 1.68 TC(MIN.) = 14.25 SUBAREA AREA(ACRES) = 5.70 SUBAREA RUNOFF(CFS) = 6.25 TOTAL AREA(ACRES) - 23.70 PEAK FLOW RATE(CFS) = 44.28 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.82 FLOW VELOCITY(FEET /SEC.) = 7.46 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 135.00 = 2284.00 FEET. .• + +........*r +•rr.rr rrrrrr rrwr. w .w.w +•+ + + +• + + + + ++ + + + + + +• +w... ++ FLOW PROCESS FROM NODE 130.00 TO NODE 135.00 IS CODE = 81 ________________________________________________________________ --ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-- 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.564 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7670 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) 5.20 SUBAREA RUNOFF(CFS) = 10.23 TOTAL AREA(ACRES) 28.90 TOTAL RUNOFF(CFS) = 54.51 TC(MIN.) = 14.25 . .................+.x+.+..x•xr•x rrr rrr r. rr.rrr rrrr r.r r.r rr rrr rrr FLOW PROCESS FROM NODE 130.00 TO NODE 135.00 IS CODE = 1 --DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< . --AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<< «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.25 RAINFALL INTENSITY(INCH /HR) = 2.56 TOTAL STREAM AREA(ACRES) = 28.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 54.51 •* CONFLUENCE DATA ** STREAM RUNOFF TC INTENSITY AREA NUMBER (CPS) (MIN.) (INCH /HOUR) (ACRE) 1 12.45 20.67 2.052 7.40 2 54.51 14.25 2.564 28.90 wwxrrr.xrxr.rr rr.r.rw.. +.. +. * * * * *WARNINGx rxx rxrxrxx «xrxrxrxrrr . r rrrrxxrxr. IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFCSWCD FORMULA OF PLATE D -1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. •• PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 63.09 14.25 2.564 2 56.07 20.67 2.052 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 63.09 TC(MIN.) = 14.25 TOTAL AREA(ACRES) = 36.30 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 135.00 = 2284.00 FEET. 0 0 .•r••••.r••.•.• +•••«rr rrr r «r.•r•r•. ••rrr r.rr r + : : +....wwrr rr.rrrx FLOW PROCESS FROM NODE 135.00 TO NODE 155.00 IS CODE = 51 »»> COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « <<< ELEVATION DATA: UPSTREAM(FEET) = 662.50 DOWNSTREAM(FEET) = 630.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 529.00 CHANNEL SLOPE = 0.0614 CHANNEL BASE(FEET) = 6.00 "Z" FACTOR = 1.500 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00. CHANNEL FLOW THRU SUBAREA(CFS) = 63.09 FLOW VELOCITY(FEET /SEC.) = 9.77 FLOW DEPTH(FEET) = 0.88 TRAVEL TIME(MIN.) = 0.90 TC(MIN.) = 15.16 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 155.00 = 2813.00 FEET. «x.r•«rx + +•ww.«.rrr rr.r rr r.r :x. +..wr.wrrrr r.. .x.x + + + + + + + + +. « + + : ++ +++ + + + +rx +. FLOW PROCESS FROM NODE 135.00 TO NODE 155.00 IS CODE = 1 ____________________________________________________________________________ --DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE-<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 15.16 RAINFALL INTENSITY(INCH /HR) = 2.47 TOTAL STREAM AREA(ACRES) = 36.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 63.09 + x. ww+ rrrrrrrrrr. r •r•rrr•r.x..rw.e.rrrr•rx.....ww rrr•rrxxx +. * +..rx.xrx.r...r FLOW PROCESS FROM NODE 140.00 TO NODE 145.00 IS CODE = 21 ____________________________________________________________________________ >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS-- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)) * *.2 INITIAL SUBAREA FLOW- LENGTH(FEET) = 744.00 UPSTREAM ELEVATION(FEET) = 998.00 DOWNSTREAM ELEVATION(FEET) = 697.00 ELEVATION DIFFERENCE(FEET) = 301.00 TC = 0.533 *[( 744.00• *3) /( 301.00)) * *.2 - 8.987 10 YEAR RAINFALL INTENSITY(INCH /HOUR) 3.382 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT .7955 SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF(CFS) = 19.37 TOTAL AREA(ACRES) = 7.20 TOTAL RUNOFF(CFS) = 19.37 rrr rr rr rr r .rr +. +rrr r••••r.. *.. * «. r. err +• +. +..w..wr..r rr. +• +x * +. *.....rx..... FLOW PROCESS FROM NODE 140.00 TO NODE 145.00 IS CODE = 81 _____________________________________________ __ __ ____ ___ ___ _____ ______ _ _ ____ --ADDITION OF SUBAREA TO MAINLINE PEAK FLOW -<< 10 YEAR RAINFALL INTENSITY(INCH /HOUR) 3.382 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4897 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = 1.82 TOTAL AREA(ACRES) = 8.30 TOTAL RUNOFF(CFS) = 21.19 • TC(MIN.) = 8.99 FLOW PROCESS FROM NODE 145.00 TO NODE 147.00 IS CODE = 51 ->-COMPUTE TRAPEZOIDAL CHANNEL FLOW« << >»»TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) -<< ELEVATION DATA: UPSTREAM(FEET) 697.00 DOWNSTREAM(FEET) = 655.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 217.00 CHANNEL SLOPE = 0.1935 CHANNEL BASE(FEET) = 6.00 "Z" FACTOR = 1.500 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.305 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4846 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 24.56 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 10.33 AVERAGE FLOW DEPTH(FEET) = 0.36 TRAVEL TIME(MIN.) = 0.35 Tc(MIN.) = 9.34 SUBAREA AREA(ACRES) = 4.20 SUBAREA RUNOFF(CFS) = 6.73 TOTAL AREA(ACRES) = 12.50 PEAK FLOW RATE(CFS) _ . 27.92 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.39 FLOW VELOCITY(FEET /SEC.) = 10.81 LONGEST FLOWPATH FROM NODE 140.00 TO NODE 147.00 = 961.00 FEET. ..• x. x..:< w. r.. .....r.r...r......xw.wx...x...r r...rr.r.........r FLOW PROCESS FROM NODE 145.00 TO NODE 147.00 IS CODE = 81 -----------------------------" " - ----------------------------- » >> ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-- 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.305 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7933 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.26 TOTAL AREA(ACRES) = 12.60 TOTAL RUNOFF(CFS) = 28.18 TC(MIN.) = 9.34 ................ xx•. rrw. r........ ........rrrr......«w..x.x«.w«x« FLOW PROCESS FROM NODE 146.00 TO NODE 147.00 IS CODE = 81 _________________________________ _______________________________ --ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-- 10 YEAR RAINFALL INTENSITY(INCH /HOUR) 3.305 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7933 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 4.00 SUBAREA RUNOFF(CFS) = 10.49 TOTAL AREA(ACRES) = 16.60 TOTAL RUNOFF(CFS) = 38.67 TC(MIN.) = 9.34 ........ wxr. wr. rr ♦.rrrrrrr..r.w...w..xxxw.r«.r.e r. rr.rrrrr r.rrrrri.rr.rr..rr FLOW PROCESS FROM NODE 146.00 TO NODE 147.00 IS CODE - 81 _____________________________________________ _______________________________ --ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-- 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.305 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7933 40 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 1.40 SUBAREA RUNOFF(CFS) = 3.67 TOTAL AREA(ACRES) = 18.00 TOTAL RUNOFF(CFS) = 42.34 TC(MIN.) - 9.34 ... er.. r. •r.r.r :r. :.r..r....rr..r...r.r. r... :.. :.......r.r.r..•w FLOW PROCESS FROM NODE 147.00 TO NODE 150.00 IS CODE = 51 »> »COMPUTE TRAPEZOIDAL CHANNEL FLOW-- - -TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) -<< ELEVATION DATA: UPSTREAM(FEET) = 655.00 DOWNSTREAM(FEET) = 630.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 400.00 CHANNEL SLOPE = 0.0625 CHANNEL BASE(FEET) - 6.00 "Z" FACTOR = 1.500 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00 10 YEAR RAINFALL INTENSITY(INCH /HOUR) 3.156 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4742 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 47.06 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 8.90 AVERAGE FLOW DEPTH(FEET) n 0.74 TRAVEL TIME(MIN.) = 0.75 TC(MIN.) = 10.09 SUBAREA AREA(ACRES) = 6.30 SUBAREA RUNOFF(CFS) = 9.43 TOTAL AREA(ACRES) = 24.30 PEAK FLOW RATE(CFS) = 51.77 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.78 FLOW VELOCITY(FEET /SEC.) = 9.22 LONGEST FLOWPATH FROM NODE 140.00 TO NODE 150.00 = 1361.00 FEET. ..:..... r.......: x. r. xw. xr... r... .r... :..x«xx « «..r....r.rr.wx«.. FLOW PROCESS FROM NODE 150.00 TO NODE 155.00 IS CODE = 51 --COMPUTE TRAPEZOIDAL CHANNEL FLOW<< «< » > >TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « - ELEVATION DATA: UPSTREAM(FEET) = 630.00 DOWNSTREAM(FEET) = 629.90 CHANNEL LENGTH THRU SUBAREA(FEET) = 372.00 CHANNEL SLOPE = 0.0003 CHANNEL BASE(FEET) = 6.00 "Z" FACTOR = 1.500 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00 CHANNEL FLOW THRU SUBAREA(CFS) = 51.77 FLOW VELOCITY(FEET /SEC.) = 1.33 FLOW DEPTH(FEET) = 3.47 TRAVEL TIME(MIN.) = 4.65 TC(MIN.) = 14.74 LONGEST FLOWPATH FROM NODE 140.00 TO NODE 155.00 = 1733.00 FEET. ............ r .r.rr : :.x.w...rrrr.a.r...r.r.r. •.....r.rrr.r.r..x.x FLOW PROCESS FROM NODE 150.00 TO NODE 155.00 IS CODE = 1 --DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE-- >, -AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.74 RAINFALL INTENSITY(INCH /HR) = 2.51 TOTAL STREAM AREA(ACRES) - 24.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 51.77 • ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH /HOUR) (ACRE) 1 63.09 15.16 2.471 36.30 2 51.77 14.74 2.513 24.30 .w.w..w.rwww «ww..ww«wrrwrw w.w.ww wWARNINGww« «w. «w«r «w•rx ««w.wrrr :r.rrw«xwxr IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC &WCD FORMULA OF PLATE D -1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. . ww w.. w.ww «ww «www.w. «rr.x..wrww.ww.ww www w.ww «rw «w rw.xw. «r.x «rwr.r :.rrrrr rr RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 113.12 14.74 2.513 2 114.00 15.16 2.471 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 114.00 TC(MIN.) = 15.16 TOTAL AREA(ACRES) = 60.60 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 155.00 = 2813.00 FEET. w ««.ww «w « «w «ww « «x « «wr rww.wr.wwww www « «w «ww.. «ww «w«w«rrrrr: wr rrwr w.w rr.rwrwwww FLOW PROCESS FROM NODE 155.00 TO NODE 180.00 IS CODE = 51 - _------ ------------------------------------------------------------------- >» »COMPUTE TRAPEZOIDAL CHANNEL FLOW<c << » -TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)< «< ELEVATION DATA: UPSTREAM(FEET) = 635.00 DOWNSTREAM(FEET) _ 634.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 93.00 CHANNEL SLOPE = 0.0108 CHANNEL BASE(FEET) = 6.00 "Z" FACTOR = 1.500 MANNING'S FACTOR - 0.030 MAXIMUM DEPTH(FEET) = 4.00 CHANNEL FLOW THRU SUBAREA(CFS) = 114.00 FLOW VELOCITY(FEET /SEC.) = 6.32 FLOW DEPTH(FEET) = 2.00 TRAVEL TIME(MIN.) = 0.25 TC(MIN.) = 15.40 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 180.00 = 2906.00 FEET. «w.wwxw.w « «wxrxx.ww.ww.w www ww « «www«w « :x «xrwrwwr wrwrw.ww.wr wrew.r FLOW PROCESS FROM NODE 155.00 TO NODE 180.00 IS CODE = 1 _________________________________ ______ ___ ___ ___________________ »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« « TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 15.40 RAINFALL INTENSITY(INCH /HR) = 2.45 TOTAL STREAM AREA(ACRES) = 60.60 ' PEAK FLOW RATE(CFS) AT CONFLUENCE = 114.00 w.««.w wrw.w.w www «w « «ww«ww :««rw «wwr.ww w.w ww www w.wewwwwww www w.ww «ww «www «w wwrw« FLOW PROCESS FROM NODE 170.00 TO NODE 175.00 IS CODE = 21 -------------------------------------------------------------------------- »-PATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< s • ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC - K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH(FEET) - 988.00 UPSTREAM ELEVATION(FEET) = 664.00 DOWNSTREAM ELEVATION(FEET) = 635.00 ELEVATION DIFFERENCE(FEET) = 29.00 TC = 0.393 *[( 988.00 * *3) /( 29.00)] **.2 = 12.541 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.769 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .6724 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF(CFS) 7.45 TOTAL AREA(ACRES) = 4.00 TOTAL RUNOFF(CFS) - 7.45 www... :.rr•wrr• :r• :x :rrr«rr rwwwww.wwwe w.w wr rw: rrr rx«ww «w r.w www.x FLOW PROCESS FROM NODE 170.00 TO NODE 175.00 IS CODE = 81 ________________________________________________________________ >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.769 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8545 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = 1.42 TOTAL AREA(ACRES) = 4.60 TOTAL RUNOFF(CFS) = 8.87 TC(MIN.) = 12.54 ww.wwr.ww.r rw rr :wr : :.xrr.rr «wxw « «xww «w. www..wwrrr «: r«w « «« «w «w :w. FLOW PROCESS FROM NODE 170.00 TO NODE 175.00 IS CODE = 81 _________________________________ ________________ ______ __ _______ »»-ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.769 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7755 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.21 TOTAL AREA(ACRES) = 4.70 TOTAL RUNOFF(CFS) = 9.08 'TC(MIN.) - 12.54 w «wwwwww. www www www rrwr rx rrrx «x« www «w.ww.www.xwwwr «x «.w.w « « « «rwx. FLOW PROCESS FROM NODE 175.00 TO NODE 180.00 IS CODE = 31 »»-COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA-- »»-USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) - 634.00 DOWNSTREAM(FEET) = 633.90 FLOW LENGTH(FEET) - 130.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.7 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 2.52 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 9.08 PIPE TRAVEL TIME(MIN.) = 0.86 TC(MIN.) = 13.40 LONGEST FLOWPATH FROM NODE 170.00 TO NODE 180.00 = 1118.00 FEET. xr rrxr rw urrw «. «www w. w.www.r rrrrrrrrrw«w. « «ww «wr. wwrwx.ww wwww wwwwx. rx. wwrw «w FLOW PROCESS FROM NODE 175.00 TO NODE 180.00 IS CODE - 1 _____________________________________________ _____________ _______ ___________ • » ,>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE < - - --AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES.<- _____________________________________________________________________ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.40 RAINFALL INTENSITY(INCH /HR) - 2.66 TOTAL STREAM AREA(ACRES) = 4.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.08 xx CONFLUENCE DATA .r STREAM RUNOFF TC INTENSITY AREA NUMBER (CPS) (MIN.) (INCH /HOUR) (ACRE) 1 114.00 15.40 2.448 60.60 2 9.08 13.40 2.661 4.70 xxrx. xx. x. x.. x. r. rx... wrr.e..xr.xWARNING :.x....x.xr.x xxxxex...rx.xr. xx.xex IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D -1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. xw PEAK FLOW RATE TABLE xx STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 108.26 13.40 2.661 2 122.35 15.40 2.448 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 122.35 TC(MIN.) = 15.40 TOTAL AREA(ACRES) = 65.30 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 180.00 = 2906.00 FEET. xxxxxxxxxxxxxx xxx :xx.xx xrrxr xrr.x....xxxxxxxxx . x xxxxxx• :x.xxx x.xxrxxxxx xx FLOW PROCESS FROM NODE 180.00 TO NODE 220.00 IS CODE = 51 --COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< » -TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<< «< ELEVATION DATA: UPSTREAM(FEET) = 634.00 DOWNSTREAM(FEET) _ 612.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 628.00 CHANNEL SLOPE = 0.0350 CHANNEL BASE(FEET) = 6.00 "Z" FACTOR = 1.500 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00 10 YEAR RAINFALL INTENSITY(INCH /HOUR) 2.351 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4082 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 122.79 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) - 9.81 AVERAGE FLOW DEPTH(FEET) - 1.51 TRAVEL TIME(MIN.) = 1.07 Tc(MIN.) = 16.47 SUBAREA AREA(ACRES) 0.90 SUBAREA RUNOFF(CFS) = 0.86 TOTAL AREA(ACRES) = 66.20, PEAK FLOW RATE(CFS) = 123.22 END OF SUBAREA CHANNEL FLOW HYDRAULICS: .0 • DEPTH(FEET) - 1.51 FLOW VELOCITY(FEET /SEC.) - 9.84 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 220.00 = 3534.00 FEET. xxwxx.xxx.x....r....xrx..x..x xxxxxww..wxx xx xx xx.x.r.r..w :.xrrxr. FLOW PROCESS FROM NODE 180.00 TO NODE 220.00 IS CODE = 1 _________________________________ ___ ___ __ __ _____ __ ____ __ __ ____ __ --DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE-- TOTAL NUMBER OF STREAMS - 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 16.47 RAINFALL INTENSITY(INCH /HR) = 2.35 TOTAL STREAM AREA(ACRES) = 66.20 PEAK FLOW RATE(CFS) AT CONFLUENCE - 123.22 FLOW PROCESS FROM NODE 210.00 TO NODE 215.00 IS CODE = 21 -------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS-- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER TC = Kx[(LENGTHxx3) /(ELEVATION CHANGE))-x.2 INITIAL SUBAREA FLOW- LENGTH(FEET) = 1075.00 UPSTREAM ELEVATION(FEET) = 927.00 DOWNSTREAM ELEVATION(FEET) - 636.00 ELEVATION DIFFERENCE(FEET) = 291.00 TC = 0.533x[( 1075.00••3)/( 291.00)1x'.2 = 11.284 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.950 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4591 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF(CFS) = 7.72 TOTAL AREA(ACRES) = 5.70 TOTAL RUNOFF(CFS) = 7.72 xxxxxxxx +x...r......e........ xxx. x.x.xxxxxxxxxwxxxx xxx•..... xxrx FLOW PROCESS FROM NODE 210.00 TO NODE 215.00 IS CODE = 81 _________________________________ ______ __ ___ __ __ ___ _______ _ _ _ _ __ >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOWc« « 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.950 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7822 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 2.30 SUBAREA RUNOFF(CFS) = 5.31 TOTAL AREA(ACRES) = 8.00 TOTAL RUNOFF(CFS) = 13.03 TC(MIN.) = 11.28 ...........x. xrrxr xxx.xu xxxx.xxxxxxxxx.x.e...x xr xxxx.xxxxx.rxx. FLOW PROCESS FROM NODE 215.00 TO NODE 220.00 IS CODE = 51 >>>>> COMPUTE TRAPEZOIDAL CHANNEL FLOW« <<< >> - TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « - ELEVATION =DATA: =UPSTREAM(FEET) = 636.00 DOWNSTREAM(FEET) _ = =612 00 CHANNEL LENGTH THRU SUBAREA(FEET) = 690.00 CHANNEL SLOPE = 0.0348 CHANNEL BASE(FEET) = 6.00 "Z" FACTOR = 1.500 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.647 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4347 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 16.20 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 5.14 AVERAGE FLOW DEPTH(FEET) = 0.47 TRAVEL TIME(MIN.) = 2.24 Tc(MIN.) = 13.52 SUBAREA AREA(ACRES) = 5.50 SUBAREA RUNOFF(CFS) = 6.33 TOTAL AREA(ACRES) = 13.50 PEAK FLOW RATE(CFS) = 19.35 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.52 FLOW VELOCITY(FEET /SEC.) = 5.45 LONGEST FLOWPATH FROM NODE 210.00 TO NODE 220.00 = 1765.00 FEET. ww ww. wwwwwwwxwwwxww...•...rr....w.w. www.. ww..xwx.w...xw.x.xxw.x. FLOW PROCESS FROM NODE 215.00 TO NODE 220.00 IS CODE - 81 ________________________________________________________________ --ADDITION >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.647 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7706 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOFF(CFS) = 1.43 TOTAL AREA(ACRES) = 14.20 TOTAL RUNOFF(CFS) = 20.78 TC(MIN.) = 13.52 rw•.•. w• ............... xx.x rwx xr•r•.••••.••.••r•.•..•.•.•.e•. ••r FLOW PROCESS FROM NODE 215.00 TO NODE 220.00 IS CODE = 1 --DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE-- --AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES-<- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 13.52 RAINFALL INTENSITY(INCH /HR) = 2.65 TOTAL STREAM AREA(ACRES) = 14.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 20.78 - CONFLUENCE DATA •• STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH /HOUR) (ACRE) 1 123.22 16.47 2.351 66.20 2 20.78 13.52 2.647 14.20 ... r..•... r......... w.. w.. xrwwx. xWARNING••• •••••••••••••••••••r.•.•r•..•.. IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC &WCD FORMULA OF PLATE D -1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. .. w.. w. wwxw.....• ........... ...x..xwxx•••.xx•x.....•...•... •wx.....•.••r.• RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. w" PEAK FLOW RATE TABLE w* STREAM RUNOFF Tc INTENSITY NUMBER (CPS) (MIN:) (INCH /HOUR) 1 121.94 13.52 2.647 141.68 16.47 2.351 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 141.68 Tc(MIN.) = 16.47 TOTAL AREA(ACRES) = 80.40 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 220.00 = 3534.00 FEET. .•r•rrrr•r•rr wr..........•....•r rx r :w.w :.w..w.......w. «w..w.... FLOW PROCESS FROM NODE 200.00 TO NODE 220.00 IS CODE = 81 ---------------------------------------------------------------- >>>,>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-- 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.351 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .6541 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 4.20 SUBAREA RUNOFF(CFS) = 6.46 TOTAL AREA(ACRES) = 84.60 TOTAL RUNOFF(CFS) = 148.14 TC(MIN.) = 16.47 •.••• r ••r• :rr•xrw......e....•...•rxwr wrrw.....•. r•r rr.w.w....•.. FLOW PROCESS FROM NODE 200.00 TO NODE 220.00 IS CODE = 81 ------------------------- ------------------------------- ------ »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-< << 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.351 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8508 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOFF(CFS) _ 1.60 TOTAL AREA(ACRES) = 85.40 TOTAL RUNOFF(CFS) = 149.74 TC(MIN.) - 16.47 rxww.•.•. ee•.•.•.••• r••: r• xxx.......•.••.••r.•rx......•.. rr.r.r. FLOW PROCESS FROM NODE 200.00 TO NODE 220.00 IS CODE - 81 ________________________________________________________________ »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW--< 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.351 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8508 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) 0.80 SUBAREA RUNOFF(CFS) = 1.60 TOTAL AREA(ACRES) = 86.20 TOTAL RUNOFF(CFS) = 151.34 TC(MIN.) - 16.47 .•••••.•.•••.•.• r••• r.•• r. w...... ..•......••.rww...w....•..xxx :w FLOW PROCESS FROM NODE 220.00 TO NODE 250.00 IS CODE = 1 ---------------------------------------------------------------- --DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE-- TOTAL NUMBER OF STREAMS - 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 16.47 RAINFALL INTENSITY(INCH /HR) - 2.35 TOTAL STREAM AREA(ACRES) = 86.20 PEAK FLOW RATE(CFS) AT CONFLUENCE - 151.34 ..... : ................. .w wrw...www........w.ww...w....w. ww....rw w....w...... FLOW PROCESS FROM NODE 230.00 TO NODE 235.00 IS CODE - 21 • - - -- ------------------------------------------------------ » -RATIONAL METHOD INITIAL SUBAREA ANALYSIS ­<< << ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K *[(LENGT14. *3) /(ELEVATION CHANGE)) * *.2 INITIAL SUBAREA FLOW- LENGTH(FEET) = 1117.00 UPSTREAM ELEVATION(FEET) = 665.00 DOWNSTREAM ELEVATION(FEET) = 626.30 ELEVATION DIFFERENCE(FEET) = 38.70 TC = 0.303 *(( 1117.00 * *3) /( 38.70)) * *.2 = 9.837 10 YEAR RAINFALL INTENSITY(INCH /HOUR) - 3.203 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8578 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF(CFS) = 3.85 TOTAL AREA(ACRES) = 1.40 TOTAL RUNOFF(CFS) = 3.85 FLOW PROCESS FROM NODE 230.00 TO NODE 235.00 IS CODE = 81 _________________________________ ___ ___________ _____ ____ ______ __ ­­ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-« 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.203 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4776 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 1.20 SUBAREA RUNOFF(CFS) = 1.84 TOTAL AREA(ACRES) = 2.60 TOTAL RUNOFF(CFS) = 5.68 TC(MIN.) = 9.84 ............:. sr. r..*.....+.. w: r. ....r.... * .............. +. + +... FLOW PROCESS FROM NODE 230.00 TO NODE 235.00 IS CODE = 81 -- - ------------------ --- ------------------------------------- » ».ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.203 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7903 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 2.53 TOTAL AREA(ACRES) = 3.60 TOTAL RUNOFF(CFS) = 8.21 TC(MIN.) = 9.84 .............* .....w...... *............... *.. «.«.. «w... *.w...... FLOW PROCESS FROM NODE 230.00 TO NODE 235.00 IS CODE = 81 ---------------------------------------------------------------- » -ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-­ 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.203 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .6888 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 2.70 SUBAREA RUNOFF(CFS) = 5.96 TOTAL AREA(ACRES) = 6.30 TOTAL RUNOFF(CFS) - 14.17 TC(MIN.) - 9.84 FLOW PROCESS FROM NODE 230.00 TO NODE 235.00 IS CODE = 81 _____________________________________________ ____________ __ __ ___ __ ____ _ _ ____ » »> ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« <<< 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.203 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8452 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 1.70 SUBAREA RUNOFF(CFS) = 4.60 TOTAL AREA(ACRES) = 8.00 TOTAL RUNOFF(CFS) = 18.77 TC(MIN.) = 9.84 FLOW PROCESS FROM NODE 230.00 TO NODE 235.00 IS CODE = 81 ------- - --------- --------------------------------------------- »» ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«« 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.203 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8890 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 1.42 TOTAL AREA(ACRES) = 8.50 TOTAL RUNOFF(CFS) = 20.20 TC(MIN.) - 9.84 ......................•........ x. x.wr. «.. +.......r..... *wx.x.. +* FLOW PROCESS FROM NODE 235.00 TO NODE 240.00 IS CODE = 31 >>>» .COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« << » >>USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) <<< < ELEVATION DATA: UPSTREAM(FEET) = 623.30 DOWNSTREAM(FEET) = 621.00 FLOW LENGTH(FEET) - 25.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.6 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 18.71 ESTIMATED PIPE DIAMETER(INCH) - 18.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 20.20 PIPE TRAVEL TIME(MIN.) = 0.02 TC(MIN.) = 9.86 LONGEST FLOWPATH FROM NODE 230.00 TO NODE 240.00 = 1142.00 FEET. ............................... .. .....xx. +. * ++........... **. * * ** FLOW PROCESS FROM NODE 236.00 TO NODE 240.00 IS CODE = 81 »»> ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.199 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .6886 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) _ 1.00 SUBAREA RUNOFF(CFS) = 2.20 TOTAL AREA(ACRES) = 9.50 TOTAL RUNOFF(CFS) - 22.40 TC(MIN.) - 9.86 FLOW PROCESS FROM NODE 236.00 TO NODE 240.00 IS CODE = 81 --------------------------------------------- ---- -- --- -- ------ ---- --- - - - - - -- »»> ADDITION OF SUBAREA TO MAINLINE PEAK FLOW -c 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.199 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8577 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.20 SUBAREA RUNOFF(CFS) = 0.55 TOTAL AREA(ACRES) = 9.70 TOTAL RUNOFF(CFS) = 22.95 • TC(MIN.) = 9.86 FLOW PROCESS FROM NODE 236.00 TO NODE 240.00 IS CODE 81 ----------------------------- ------------------------------- --: ­­ADDITION OF SUBAREA TO MAINLINE PEAK FLOW- ­< 10 YEAR RAINFALL INTENSITY(INCH /HOUR) 3.199 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4773 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.15 TOTAL AREA(ACRES) = 9.80 TOTAL RUNOFF(CFS) = 23.10 TC(MIN.) = 9.86 .............................. r.. ...... :.............. :......rx. FLOW PROCESS FROM NODE 240.00 TO NODE 245.00 IS CODE = 31 ... - COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA-­ ­­USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « « ELEVATION DATA: UPSTREAM(FEET) = 621.00 DOWNSTREAM(FEET) - 609.00 FLOW LENGTH(FEET) = 427.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 15.5 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 12.17 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 23.10 PIPE TRAVEL TIME(MIN.) = 0.58 TC(MIN.) = 10.44 LONGEST FLOWPATH FROM NODE 230.00 TO NODE 245.00 = 1569.00 FEET. .......................... wx». x. r :.wx.x. :..w.....x.r............ FLOW PROCESS FROM NODE 241.00 TO NODE 245.00 IS CODE = 81 ________________________________________________________________ ­-ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-« 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.090 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .6848 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 1.60 SUBAREA RUNOFF(CFS) = 3.39 TOTAL AREA(ACRES) = 11.40 TOTAL RUNOFF(CFS) = 26.49 TC(MIN.) = 10.44' FLOW PROCESS FROM NODE 241.00 TO NODE 245.00 IS CODE = 81 » >> ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-« 10 YEAR RAINFALL INTENSITY(INCH /HOUR) - 3.090 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT - .8570 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.30 SUBAREA RUNOFF(CFS) 0.79 TOTAL AREA(ACRES) _ 11.70 TOTAL RUNOFF(CFS) = 27.28 TC(MIN.) - 10.44 ...................... w. x ....x.xa..a.....wa.w........... w...w......a.w...... FLOW PROCESS FROM NODE 242.00 TO NODE 245.00 IS CODE = 81 ----------------------------------------------- --- -- ---- -- -- ------ --- -- - -- -- »> ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<c << 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.090 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4695 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.20 SUBAREA RUNOFF(CFS) = 0.29 TOTAL AREA(ACRES) 11.90 TOTAL RUNOFF(CFS) = 27.57 TC(MIN.) = 10.44 FLOW PROCESS FROM NODE 242.00 TO NODE 245.00 IS CODE = 81 ________________________________________________________________ ­-ADDITION -ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « < 10 YEAR RAINFALL INTENSITY(INCH /HOUR) - 3.090 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT - .6848 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOFF(CFS) = 1.69 TOTAL AREA(ACRES) = 12.70 TOTAL RUNOFF(CFS) = 29.27 TC(MIN.) = 10.44 FLOW PROCESS FROM NODE 242.00 TO NODE 245.00 IS CODE = 81 ________________________________________________________________ » >>> ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« <<< 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.090 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8570 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.20 SUBAREA RUNOFF(CFS) = 0.53 TOTAL AREA(ACRES) = 12.90 TOTAL RUNOFF(CFS) = 29.80 TC(MIN.) = 10.44 FLOW PROCESS FROM NODE 245.00 TO NODE 250.00 IS CODE - 31 »»-COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« « » »-USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « « ELEVATION DATA: UPSTREAM(FEET) - 609.00 DOWNSTREAM(FEET) = 604.00 FLOW LENGTH(FEET) = 194.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.9 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 12.63 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) - 29.80 PIPE TRAVEL TIME(MIN.) - 0.26 TC(MIN.) = 10.70 LONGEST FLOWPATH FROM NODE 230.00 TO NODE 250.00 = 1763.00 FEET. .................. x. rw..... r......... ww.. r... .w..xwxx.w.......rxw........xwx FLOW PROCESS FROM NODE 245.00 TO NODE 250.00 IS CODE = 1 ____________________________________________________________________________ »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « « >>>,>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES-­ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.70 RAINFALL INTENSITY(INCH /HR) = 3.05 TOTAL STREAM AREA(ACRES) = 12.90 __________________________________°°_________ _______________________•______� PEAK FLOW RATE(CFS) AT CONFLUENCE = 29.80 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.254 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .3988 CONFLUENCE DATA ** SOIL CLASSIFICATION IS "A" STREAM RUNOFF TC INTENSITY AREA SUBAREA AREA(ACRES) = 4.60 SUBAREA RUNOFF(CFS) = 4.14 NUMBER (CFS) (MIN.) (INCH /HOUR) (ACRE) TOTAL AREA(ACRES) = 111.00 TOTAL RUNOFF(CFS) _ .185.04 1 151.34 16.47 2.351 86.20 TC(MIN.) = 17.67 2 29.80 10.70 3.046 12.90 ` .+ . + + +...x +rrx «+ + « +.. +.. + +..+x•x. WARNING•** +' * + + +• +• + +• + +• +•• + +•• +• + +•• +•+ FLOW PROCESS FROM NODE 250.00 TO NODE 285.00 IS CODE = 1 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ---------------------------------------------------------------------------- ON THE RCFC &WCD FORMULA OF PLATE D -1 AS DEFAULT VALUE. THIS FORMULA » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « - WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ________________________ ... __________________ _____________________,_________ w+++++..+...++..+++ w++•++++.++...+ . + +.... +..+..• : +•. ++ +«w +w«w :.•. _ + : + « ++ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO TIME OF CONCENTRATION(MIN.) = 17.67 CONFLUENCE FORMULA USED FOR 2 STREAMS. RAINFALL INTENSITY(INCH /HR) - 2.25 TOTAL STREAM AREA(ACRES) = 111.00 *+ PEAK FLOW RATE TABLE ** PEAK FLOW RATE(CFS) AT CONFLUENCE = 185.04 STREAM RUNOFF TC INTENSITY NUMBER (CPS) (MIN.) (INCH /HOUR) .+++++.++.+ +. +. +.e + + ++.+ +.+ + « +• «w+. + + + +. +. +.+. ++ +w« «++ +. + + +« + +. + +. + + +++x+ 1 128.12 10.70 3.046 FLOW PROCESS FROM NODE 260.00 TO NODE 265.00 IS CODE - 21 2 174.34 16.47 2.351 -------------------------- - ---------------------- ------------------------ »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 174.34 TC(MIN.) = 16.47 ASSUMED INITIAL SUBAREA UNIFORM TOTAL AREA(ACRES) = 99.10 DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) LONGEST FLOWPATH FROM NODE 120.00 TO NODE 250.00 = 3534.00 FEET. TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH(FEET) = 792.00 +. r++....+:++.+...+.+ x•. x.. +. ++r +... +.. +. +. +r +•+• ++ + ««x ++x«r +. + +w + +++++ + +r +. UPSTREAM ELEVATION(FEET) = 626.00 FLOW PROCESS FROM NODE 250.00 TO NODE 285.00 IS CODE = 51 DOWNSTREAM ELEVATION(FEET) = 601.00 -----------_-_______________________________ _______________________________ ELEVATION DIFFERENCE(FEET) _ 25.00 --COMPUTE TRAPEZOIDAL CHANNEL FLOW-- TC = 0.393 *[( 792.00 * *3) /( 25.00)] *'.2 = 11.314 »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « - 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.946 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .6794 ELEVATION DATA: UPSTREAM(FEET) = 604.00 DOWNSTREAM(FEET) = 567.00 SOIL CLASSIFICATION IS "A" CHANNEL LENGTH THRU SUBAREA(FEET) = 850.00 CHANNEL SLOPE = 0.0435 SUBAREA RUNOFF(CFS) 9.61 CHANNEL BASE(FEET) = 6.00 "Z" FACTOR = 1.500 TOTAL AREA(ACRES) 4.80 TOTAL RUNOFF(CFS) = 9.61 MANNING'S FACTOR = 0.030. MAXIMUM DEPTH(FEET) = 4.00 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.254 +.•x+.+++...+ e.++..++++++.+«++ r«« x«+ x+++++.+ rer + + + + «xax•+++ + + ++ + ++. +.r+rx +x+ UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .3988 FLOW PROCESS FROM NODE 260.00 TO NODE 265.00 IS CODE - 81 SOIL CLASSIFICATION IS "A" _____________________________________________ ___________________ ____________ TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 177.63 --ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<< - TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) - 11.82 _____________________________________________ _______________________________ AVERAGE FLOW DEPTH(FEET) = 1.74 TRAVEL TIME(MIN.) = 1.20 10 YEAR RAINFALL INTENSITY(INCH /HOUR) - 2.946 Tc(MIN.) = 17.67 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8410 SUBAREA AREA(ACRES) = 7.30 SUBAREA RUNOFF(CFS) = 6.56 SOIL CLASSIFICATION IS "D" TOTAL AREA(ACRES) = 106.40 PEAK FLOW RATE(CFS) = 180.91 SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 1.24 TOTAL AREA(ACRES) 5.30 TOTAL RUNOFF(CFS) = 10.84 END OF SUBAREA CHANNEL FLOW HYDRAULICS: TC(MIN.) _ .11.31 DEPTH(FEET) = 1.76 FLOW VELOCITY(FEET /SEC.) = 11.90 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 285.00 = 4384.00 FEET. .+x+.+.+.+ ...... .+.++++«..«+ w«««++++...++++.+ + + +«x ++ + + + + + ++ + + +. + + + « ++.+ +. * +. +.+.+++....+++ x+««+.++....+.+.+.+.....+....++ + + + + + ++ + «wx«w•w « «w « + + +« «w +.w «w« FLOW PROCESS FROM NODE 260.00 TO NODE 265.00 IS CODE - 81 - ----------- FLOW PROCESS FROM NODE 280.00 TO NODE 285.00 IS CODE = 81 --------------------------------- ------------------------------ << »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW -<< _____________________________________________ _______________________________ --ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-- 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.946 • UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4587 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 1.40 SUBAREA RUNOFF(CFS) = 1.89 TOTAL AREA(ACRES) = 6.70 TOTAL RUNOFF(CFS) = 12.74 TC(MIN.) - 11.31 FLOW PROCESS FROM NODE 260.00 TO NODE 265.00 IS CODE = 81 ---------------------------------------------------------------- » ­­ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-­ 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.946 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8559 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 1.20 SUBAREA RUNOFF(CFS) = 3.03 TOTAL AREA(ACRES) = 7.90 TOTAL RUNOFF(CFS) = 15.76 TC(MIN.) = 11.31 FLOW PROCESS FROM NODE 265.00 TO NODE 270.00 IS CODE = 31 » >>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< ­­USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « « ELEVATION DATA: UPSTREAM(FEET) = 597.00 DOWNSTREAM(FEET) = 578.00 FLOW LENGTH(FEET) - 508.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.1 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 12.44 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 15.76 PIPE TRAVEL TIME(MIN.) = 0.68 TC(MIN.) = 11.99 LONGEST FLOWPATH FROM NODE 260.00 TO NODE 270.00 - 1300.00 FEET. .......... +.. + ... x.xxxxxxxxx.x ....... ........... ..rr..rxr.xxxxxx FLOW PROCESS FROM NODE 266.00 TO NODE 270.00 IS CODE = 81 ---------------------------------------------------------------- » -ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.844 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .6754 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 2.00 SUBAREA RUNOFF(CFS) = 3.84 TOTAL AREA(ACRES) = 9.90 TOTAL RUNOFF(CFS) = 19.60 TC(MIN.) - 11.99 ............... x:. x. r.++.+... e... ... ... ..+ +.x.x +...x. +,.x + + + +. ++ FLAW PROCESS FROM NODE 266.00 TO NODE 270.00 IS CODE = 81 ---------------------------------------------------------------- » -ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-­ 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.844' COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT - .8551 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = 1.46 TOTAL AREA(ACRES) 10.50 TOTAL RUNOFF(CFS) = 21.06 TC(MIN.) - 11.99 • • FLOW PROCESS FROM NODE 266.00 TO NODE 270.00 IS CODE = 81 ---------------------------------------------------------------- >> »>ADDITION OF SUBAREA TO MAINLINE PEAK FLAW« « 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.844 . UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4509 SOIli CLASSIFICATION IS "A" SUBAREA AREA(ACRES) _ .0.70 SUBAREA RUNOFF(CFS) = 0.90 TOTAL AREA(ACRES) = 11.20 TOTAL RUNOFF(CFS) = 21.96 TC(MIN.) - 11.99 FLOW PROCESS FROM NODE 267.00 TO NODE 270.00 IS CODE = 81 ---------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW­ << 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.844 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .6754 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 3.80 SUBAREA RUNOFF(CFS) = 7.30 TOTAL AREA(ACRES) = 15.00 TOTAL RUNOFF(CFS) = 29.26 TC(MIN.) - 11.99 ................. .... ... .. x. xrx.. ......,.....,xxx.. +.. +r.rr..... FLOW PROCESS FROM NODE 267.00 TO NODE 270.00 IS CODE = 81 ---------------------------------------------------------------- » >>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-­ 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.844 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8551 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) = 1.22 TOTAL AREA(ACRES) 15.50 TOTAL RUNOFF(CFS) = 30.48 TC(MIN.) - 11.99 ..:. ......x.:xxx.x....r.,.,.r..,... ,. ,...x....x... +rrr,.e...xxx. FLOW PROCESS FROM NODE 267.00 TO NODE 270.00 IS CODE = 81 ---------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW­- 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.844 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT .4509 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOFF(CFS) = 1.03 TOTAL AREA(ACRES) = 16.30 TOTAL RUNOFF(CFS) = 31.50 TC(MIN.) = 11.99 rx........... r.. x. x. xx. x.. xx.. x.. r. rr........ x..........rr....r........ +.... FLOW PROCESS FROM NODE 270.00 TO NODE 285.00 IS CODE = 31 ---------------------------------------------------------------------------- »» >COMPUTE PIPE -FLAW TRAVEL TIME THRU SUBAREA- -c ­­USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW)­- ­­ « ELEVATION DATA: UPSTREAM(FEET) - 578.00 DOWNSTREAM(FEET) = 567.00 FLOW LENGTH(FEET) = 542.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.2 INCHES • PIPE -FLOW VELOCITY(FEET /SEC.) = 11.81 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 31.50 PIPE TRAVEL TIME(MIN.) = 0.76 TC(MIN.) = 12.76 LONGEST FLOWPATH FROM NODE 260.00 TO NODE 285.00 = 1842.00 FEET. FLOW PROCESS FROM NODE 270.00 TO NODE 285.00 IS CODE = 81 _________________________________ ____ ____ ____ __ ___ __ ____________ » » ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-­ 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.741 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4425 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 1.40 SUBAREA RUNOFF(CFS) = 1.70 TOTAL AREA(ACRES) = 17.70 TOTAL RUNOFF(CFS) = 33.20 TC(MIN.) = 12.76 +. a.+.++ aaaaaa +ware.aarr..r + ++a.a +.«a++aaxxaa as as aaa.aaaa..aeraa FLOW PROCESS FROM NODE 270.00 TO NODE 285.00 IS CODE - 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE-­ ­­AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<< «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.76 RAINFALL INTENSITY(INCH /HR) = 2.74 TOTAL STREAM AREA(ACRES) - 17.70 PEAK FLOW RATE(CFS) AT CONFLUENCE - 33.20 xr CONFLUENCE DATA xs STREAM RUNOFF TC INTENSITY AREA NUMBER (CPS) (MIN.) (INCH /HOUR) (ACRE) 1 185.04 17.67 2.254 111.00 2 33.20 12.76 2.741 17.70 a. aaa.. r. r. r.er +ra +a«a «+x «xx +axaaWARNINGaa aaaaw.aawaa aarrr.rrr..+ +s. ++ +awe IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC &WCD FORMULA OF PLATE D -1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. «« PEAK FLOW RATE TABLE -- STREAM RUNOFF TC INTENSITY NUMBER (CPS) (MIN.) (INCH /HOUR) 1 166.82 12.76 2.741 2 212.35 17.67 2.254 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 212.35 Tc(MIN.) = 17.67 TOTAL AREA(ACRES) = 128.70 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 285.00 4384.00 FEET. aereaaaaaaa.aaaaaaaa aaaaxa aax.•a +re a..aaaaaaaaaaau ..ra...ww +....aa +aa.a aa.a FLOW PROCESS FROM NODE 285.00 TO NODE 290.00 IS CODE = 51 ____________________________________________________________________________ ­-COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< ELEVATION DATA: UPSTREAM(FEET) 567.00 DOWNSTREAM(FEET) - 566.90 CHANNEL LENGTH THRU SUBAREA(FEET) = 151.00 CHANNEL SLOPE = 0.0007 CHANNEL BASE(FEET) = 6.00 "Z" FACTOR = 1.500 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00 == -WARNING: FLOW IN CHANNEL EXCEEDS CHANNEL CAPACITY( NORMAL DEPTH EQUAL TO SPECIFIED MAXIMUM ALLOWABLE DEPTH). AS AN APPROXIMATION, FLOWDEPTH IS SET AT MAXIMUM ALLOWABLE DEPTH AND IS USED FOR TRAVELTIME CALCULATIONS. CHANNEL FLOW THRU SUBAREA(CFS) - 212.35 FLOW VELOCITY(FEET /SEC.) = 4.42 FLOW DEPTH(FEET) = 4.00 TRAVEL TIME(MIN.) = 0.57 TC(MIN.) = 18.24 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 290.00 = 4535.00 FEET. axe «axes.•.. w+a+a + +ar.araa.e. :area. +a«+ +r +rrraa :aaa+a.«« « « +. axax FLOW PROCESS FROM NODE 286.00 TO NODE 290.00 IS CODE = 81 -------------------- ---------------------- --------- - ----------- » >>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« << 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.212 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .6473 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) 2.00 SUBAREA RUNOFF(CFS) = 2.86 TOTAL AREA(ACRES) = 130.70 TOTAL RUNOFF(CFS) = 215.21 TC(MIN.) = 18.24 FLOW PROCESS FROM NODE 286.00 TO NODE 290.00 IS CODE = 81 ------------------------- ----------------- -------------- ------- » -ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«« 10 YEAR RAINFALL INTENSITY(INCH /HOUR) - 2.212 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT - .8495 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOFF(CFS) = 1.32 TOTAL AREA(ACRES) 131.40 TOTAL RUNOFF(CFS) = 216.53 TC(MIN.) - 18.24 ............... sa as axxxx+ «+ « +e +r .....areas• + +++ «r +rr aea.axa+ FLOW PROCESS FROM NODE 286.00 TO NODE 290.00 IS CODE = 81 ________________________________________________________________ >> »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-­ 10 YEAR RAINFALL INTENSITY(INCH /HOUR) 2.212 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .3946 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) 0.50 SUBAREA RUNOFF(CFS) = 0.44 TOTAL AREA(ACRES) 131.90 TOTAL RUNOFF(CFS) = 216.96 TC(MIN.) = 18.24 r.. ........w.aw..rww.a..rr....r.r. w..w..a.:a.wr.r « : « :r . rrrrrr rrr FLOW PROCESS FROM NODE 287.00 TO NODE 290.00 IS CODE = 81 _________________________________ ____________________ _______ __ __ --ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-- 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.212 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .6473 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 2.70 SUBAREA RUNOFF(CFS) = 3.87 TOTAL AREA(ACRES) = 134.60 TOTAL RUNOFF(CFS) = 220.83 TC(MIN.) = 18.24 ... a...... a.... xr..r.....r..aa.......x....xr.. r.r.r..r.. r.wwwa.a FLOW PROCESS FROM NODE 287.00 TO NODE 290.00 IS CODE = 81 __________________________________ _________________________ _____ --ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-- 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.212 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8495 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOFF(CFS) = 1.50 TOTAL AREA(ACRES) = 135.40 TOTAL RUNOFF(CFS) = 222.33 TC(MIN.) = 18.24 .......... r rxr.. ..... .r....waawa..rxr.r.r. rrwe.. wr.w..a. wa.aw..x FLOW PROCESS FROM NODE 287.00 TO NODE 290.00 IS CODE = 81 _________________________________ _________________ __ _______ _____ --ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-- 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.212 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .3946 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.09 TOTAL AREA(ACRES) = 135.50 TOTAL RUNOFF(CFS) = 222.42 TC(MIN.) = 18.24 .. a.. awawaw. a« xraxr.. r.. r. ew.ra.a.x.warxrrx..rrxrrr ««. :.. rrr..rr FLOW PROCESS FROM NODE 290.00 TO NODE 310.00 IS CODE = 51 » >> COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< » >>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « - ELEVATION DATA UPSTREAM(FEET) 560.00 DOWNSTREAM(FEET) _ = 558.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 330.00 CHANNEL SLOPE = 0.0061 CHANNEL BASE(FEET) = 6.00 "Z" FACTOR = 1.500 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00 CHANNEL FLOW THRU SUBAREA(CFS) = 222.42 FLOW VELOCITY(FEET /SEC.) = 6.16 FLOW DEPTH(FEET) = 3.30 TRAVEL TIME(MIN.) = 0.89 TC(MIN.) = 19.13 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 310.00 = 4865.00 FEET. ............ a.. a. x. ...w..r..rwww.w.a.a.wa...rrr.x. rr.r. r.e.rrr.r......r.e... FLOW PROCESS FROM NODE 290.00 TO NODE 310.00 IS CODE = 1 _____________________________________________ ___ ________ _______ _____________ » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE-- TOTAL NUMBER OF STREAMS - 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 19.13 RAINFALL INTENSITY(INCH /HR) = 2.15 TOTAL STREAM AREA(ACRES) - 135.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 222.42 x. rrrxw wawa. ww. awr.. ww.. r..... r. r. r. r. rx..:. rw .a...a...r....x.r... :.......w. FLOW PROCESS FROM NODE 300.00 TO NODE 305.00 IS CODE = 21 ---------------------------------------------------------------------------- » -RATIONAL METHOD INITIAL SUBAREA ANALYSIS--< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER TC = K- ((LENGTH - -3) /(ELEVATION CHANGE)] - -.2 INITIAL SUBAREA FLOW- LENGTH(FEET) = 848.00 UPSTREAM ELEVATION(FEET) = 800.00 DOWNSTREAM ELEVATION(FEET) = 580.00 ELEVATION DIFFERENCE(FEET) = 220.00 TC - 0.533•(( 848.00•-3)/( 220.00)]•'.2 = 10.350 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.107 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4707 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF(CFS) = 7.75 TOTAL AREA(ACRES) = 5.30 TOTAL RUNOFF(CFS) = 7.75 xr.xrxww.xxwx wawaaw.a.waw.w...r..rr rr.x. :.x.awa...a....r.r..xxxx FLOW PROCESS FROM NODE 305.00 TO NODE 310.00 IS CODE = 51 --COMPUTE TRAPEZOIDAL CHANNEL FLOW-- »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « - ELEVATION DATA: UPSTREAM(FEET) = 580.00 DOWNSTREAM(FEET) = 559.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 640.00 CHANNEL SLOPE = 0.0328 CHANNEL BASE(FEET) = 6.00 "Z" FACTOR = 1.500 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.716 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .4405 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CPS) _ - 9.25 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 4.10 AVERAGE FLOW DEPTH(FEET) - 0.35 TRAVEL TIME(MIN.) = 2.60 Tc(MIN.) - 12.95 SUBAREA AREA(ACRES) = 2.50 SUBAREA RUNOFF(CFS) = 2.99 TOTAL AREA(ACRES) - 7.80 PEAK FLOW RATE(CFS) = 10.74 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.38 FLOW VELOCITY(FEET /SEC.) - 4.34 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 310.00 - 1488.00 FEET. ww.. r. r. r.. r. r. r. rr. re...: rr. r• r. xr .xa...awr....rr....xa...wa..w. r...x... : «x FLOW PROCESS FROM NODE 305.00 TO NODE 310.00 IS CODE - 1 ------------------------------------------------------- _-------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE-- »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « - TOTAL NUMBER OF STREAMS = 2 • CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.95 RAINFALL INTENSITY(INCH /HR) = 2.72 TOTAL STREAM AREA(ACRES) = 7.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.74 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CPS) (MIN.) ' (INCH /HOUR) (ACRE) 1 222.42 19.13 2.149 135.50 2 10.74 12.95 2.716 7.80 wwrrr.rrrrrrr rwr wr.r.rrrrwrwr rxwrWARNINGxrx w.www.x x..w xx..x xwwwx xr :xwwxwxw IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC &WCD FORMULA OF PLATE D -1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. .rrr wwrrwwxwrrwwrrrr wrr wrrrrwwrrr. wwx xwwwwxwxwwww wwww ww wxwxwww xww wwxww xw wr RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 161.34 12.95 2.716 2 230.92 19.13 2.149 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 230.92 Tc(MIN.) = 19.13 TOTAL AREA(ACRES) - 143.30 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 310.00 = 4865.00 FEET. rr rrrwrrrrrwr rrrrrwrwrwwrwr wwxxxwxww .wwxwwwxwrwwrrwwwrrrrwwrrrrrxrr rr rrr rrr FLOW PROCESS FROM NODE 310.00 TO NODE 315.00 IS CODE = 51 ­-COMPUTE TRAPEZOIDAL CHANNEL FLOW« « . » » TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ­<< << ELEVATION DATA: UPSTREAM(FEET) = 559.00 DOWNSTREAM(FEET) = 548.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 1125.00 CHANNEL SLOPE = 0.0098 CHANNEL BASE(FEET) = 6.00 "Z" FACTOR = 1.500 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 5.50 10 YEAR RAINFALL INTENSITY(INCH /HOUR) = 1.995 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .3719 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 231.92 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 7.41 AVERAGE FLOW DEPTH(FEET) = 2.99 TRAVEL TIME(MIN.) - 2.53 Tc(MIN.) = 21.66 SUBAREA AREA(ACRES) = 2.70 SUBAREA RUNOFF(CFS) = 2.00 TOTAL AREA(ACRES) = 146.00 PEAK FLOW RATE(CFS) = 232.92 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) - 2.99 FLOW VELOCITY(FEET /SEC.) = 7.44 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 315.00 = 5990.00 FEET. • • FLOW PROCESS FROM NODE 315.00 TO NODE 320.00 IS CODE = 31 » >>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA- <<< ­­USING > USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « « < ELEVATION DATA: UPSTREAM(FEET) _= 448.00 OOWNSTREAM(FEET) = 440.00 FLOW LENGTH(FEET) = 193.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 45.0 INCH PIPE IS 35.7 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 24.76 ESTIMATED PIPE DIAMETER(INCH) = 45.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 232.92 PIPE TRAVEL TIME(MIN.) - 0.13 TC(MIN.) = 21.79 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 320.00 = 6183.00 FEET. wwxw rw wrwxx.x.wwewwxx :wxxxw xwwwrwx.xww xxw :wxr :rxx ww ww.wx :xxxrrrr.wxrxwwxrrx. FLOW PROCESS FROM NODE 80.00 TO NODE 320.00 IS CODE = 11 ----- ;---------------------------------------------------------------------- ­-CONFLUENCE MEMORY BANK # 1 WITH THE MAIN- STREAM MEMORY-­ MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH /HOUR) (ACRE) 1 232.92 21.79 1.988 146.00 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 320.00 = 6183.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH /HOUR) (ACRE) 1 190.96 17.35 2.279 99.65 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 320.00 3658.00 FEET. xw xw xwx xxww xwrww.rxxwx rrrrxrxwWARNZNGr.r wwwww xxww.xrrrrr wwww. ww. :..rrr. IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC &WCD FORMULA OF PLATE D -1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. wxxwx.x.xw.w.wwxxx xx: ww xxwrwx rexexww wwwxxwxxrrxrr xwwrwwwxxrrrrrrwrwrw..wrr ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CPS) (MIN.) (INCH /HOUR) 1 376.47 17.35 2.279 2 399.51 21.79 1.988 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 399.51 Tc(MIN.) = 21.79 TOTAL AREA(ACRES) - 245.65 rw. sere xr w.w :x.xwwxwx wr.wrwrwwrwww.w . xww . rr . rrrwrw . wwwww rwrrrr.rrrw.r rwrrrrw FLOW PROCESS FROM NODE 80.00 TO NODE 320.00 IS CODE - 12 --------------------------------------- ------------------------------------ »-CLEAR MEMORY BANK # 1 « «< END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 245.65 TC(MIN.) = 21.79 PEAK FLOW RATE(CFS) = 399.51 0 l Coral Canyon December 2006 Hydrologic Analysis #8528E �I a Proposed Condition Onsite Hydrology Using Rational Method - AES 100 - Year • PACIFIC ADVANCED CIVIL ENGINEERING, INC. • ru....... r.•.......• u..••. r....• r•.. u..... • .................r.r.........• RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL 6 WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982 -2006 Advanced Engineering Software (sea) (Rational Tabling Version 6.OD) Release Date: 06/01/2005 License ID 1527 Analysis prepared by: _____________________________________________ _______________________________ FILE NAME: CORAl00T.DAT TIME /DATE OF STUDY: 11:58 03/20/2007 _____________________________________________ _______________________________ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INPORMATIO14: _____________________________________________ _______________________________ USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE v 0.95 2 -YEAR, 1 -HOUR PRECIPITATION(INCH) = 0.430 100 -YEAR, 1 -HOUR PRECIPITATION(INCH) - 1.990 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT - 100.00 1 -HOUR INTENSITY(INCH /HOUR) - 1.990 SLOPE OF INTENSITY DURATION CURVE - 0.6000 RCFC&WCD HYDROLOGY MANUAL "C "- VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCPC6:WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES •USER - DEF INS D STREET- SECTIONS FOR COUPLED PIPEPLOW AND STREETPLOW MODEL - HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Plow -Depth - 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)-(Velocity) Constraint - 6.0 (FT•PT /S) •SIZE PIPE WITH A PLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.- ....•..... 1 ................................• ....a........................... FLOW PROCESS FROM NODE 1.00 TO NODE 1.50 IS CODE - 21 _____________________________________________ _____ __________________________ > »RATIONAL METHOD INITIAL SUBAREA ANALYSES«« ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER TC - Ka((LENGTHrr3) /(ELEVATION CHANGE)]-r.2 INITIAL SUBAREA PLOW- LENGTH(FEET) - 1210.00 UPSTREAM ELEVATION(FEET) = 1017.55 DOWNSTREAM ELEVATION(PEET) = 620.00 ELEVATION DIFFERENCE(FEET) 397.55 TC = 0.533'(( 1210.00••3)/( 397.55)1••.2 = 11.381 100 YEAR RAINFALL INTENSITY(INCH /HOUR) 5.395 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .8315 SOIL CLASSIFICATION IS "D" • • SUBAREA RUNOFF(CFS) - 27.82 TOTAL AREA(ACRES) - 6.20 TOTAL RUNOFF(CPS) 27.82 PLOW PROCESS PROM NODE 1.10 TO NODE 1.50 IS CODE - 81 _________________________________ _____________________ __________ »---ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«e 100 YEAR RAINFALL INTENSITY(INCH /HOUR), = 5.395 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT .8315 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 6.90 SUBAREA RUNOPF(CFS) - 30.96 TOTAL AREA(ACRES) 13.10 TOTAL RUNOFF(CFS) - 58.77 TC(MIN.) 11.38 ................. rr......•....... r.......•♦.• •.............................. PLOW PROCESS PROM NODE 1.20 1'0 NODE 1.50 IS CODE = _______________________________ 61 _____________________________________________ » >> ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«« 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.395 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8658 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOPF(CFS) - 3.27 TOTAL AREA(ACRES) = 13.80 TDTAL RUNOFF(CFS) _ .62.04 TC(MIN.) - 11.38 • .................. a.. r•♦.............. r...:.• .............................. PLOW PROCESS PROM NODE 1.30 TO NODS 1.50 IS CODE = ___________________ 81 -------------- ________________________------------------- »»-ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « = 100 =YEAR RAINFALL INTENSITY(INCH /HOUR) = == 5.39S UNDEVELOPED WATERSHED RUNOFF COEFFICIENT .8315 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CPS) = 2.69 TOTAL AREA(ACRES) - 14.40 TOTAL RUNOPF(CFS) = 64.73 TC(MIN.) = 11.38 ............................................• ............. :................. FLOW PROCESS FROM NODE 1.50 7'O NODE 5.00 IS CODE - _______________________________ 51 _____________________________________________ »»-COMPUTE TRAPEZOIDAL CHANNEL FLOW-« > - ITRAVELTIME THRU SUBAREA (EXISTING ELEMENT)« « = ELEVATION DATA: UPSTREAM(PEET) == = 620.00 DOWNSTREAM(FEET) - 619.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 10.00 CHANNEL SLOPE = 0.1000 CHANNEL BASE(FEET) v 6.00 "Z" FACTOR = 1.500 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) - 4.00 CHANNEL PLOW THRU SUBAREA(CPS) = 64.73 FLOW VELOCITY(FEET /SEC.) - 11.56 FLOW DEPTH(FEET) = 0.78 TRAVEL TIME(MIN.) = 0.01 TC(MIN.) = 11.40 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 5.00 = 1220.00 FEET. u...... .................... u...... ................................ PLOW P*******;R OCESS OM NODE 2.00 TO NODE 5.00 IS CODE = 81 >> -ADDITION OF SUBAREA TO MAINLINE PEAK PLOW«e 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.391 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .8315 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 2.60 SUBAREA RUNOFF(CFS) - 11.65 TOTAL AREA(ACRES) 17.00 TOTAL RUNOPF(CFS) - 76.39 TC(MIN.) - 11.40 ................................. ............................... FLOW PROCESS FROM NODE 2.00 TO NODE 5.00 IS CODE - 81 _________________________________ _______________________________ ... -ADDITION OF SUBAREA TO MAINLINE PEAR FLOW-- 100 YEAR RAINFALL INTENSITY(INCH /HOUR) - 5.391 618.00 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT - .8931 0 4 5 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) - 0.40 SUBAREA RUNOFF(CFS) - 1.93 TOTAL AREA(ACRES) 17.40 TOTAL RUNOFF(CPS) = 78.31 TC(MIN.) = 11.40 .. ........................................... ..............................• FLOW PROCESS FROM NODE 2.00 TO NODE 5.00 IS _______________________________ CODE = 81 _____________________________________________ -- ADDITION OF SUBAREA TO MAINLINE PEAR PLOW« «< FEET. 100 YEAR RAINFALL INTENSITY(INCHIHOUR) = 5.391 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT - .8657 SOIL CLASSIFICATION IS "D" ' 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.164 SUBAREA AREA(ACRES) - 0.20 SUBAREA RUNOFF(CPS) = 0.93 TOTAL ARRA(ACRES) - 17.60 TOTAL RUNOFF(CFS) v 79.25 TC(MIN.) = 11.40 SUBAREA AREA(ACRES) - 6.50 SUBAREA RUNOFP(CFS) = 27.82 ............................................. ............................... FLOW PROCESS FROM NODE 3.00 TO NODE 5.00 IS CODE = 81 :::»ADDITION OF SUBAREA TO MAINLINE PEAR PLOW -- TC(MIN.) = 12.24 = = =100 YEAR RAINFALL= INTENSITY(INCH /HOUR) =vc =5 =391 ............................................. ............................... FLOW PROCESS FROM NODE 10.00 TO NODE 15.00 IS CODE - 51 _______________________________ CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT - .8760 _____________________________________________ » »:COMPUTE TRAPEZOIDAL CHANNEL FLOW... - SOIL CLASSI P ICATION IS "D" > TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) - - =vv =616.20 SUBAREA AREA(ACRES) 0.70 SUBAREA RUNOFF(CFS) = 3.31 TOTAL AREA(ACRES) _ 18.30 TOTAL RUNOFF(CPS) _ 82.55 TC(MIN.) = 11.40 CHANNEL BASE(PEET) = 6.00 Z. FACTOR 1.500 • ............................................ ............................... PLOW PROCESS PROM NODE 3.00 TO NODE 5.00 IS _______________________________ CODE = 81 ----- __----- _________________________________ --ADDITION OF SUBAREA TO MAINLINE PEAR FLOW-- CHANNEL FLOW THRU SUBAREA(CFS) - 123.14 = =100v YEAR =RAINFALL =INTENSITY (INCH /HOUR) = == 5.391 FLOW VELOCITY(FEET /SEC.) - 7.51 FLOW DEPTH(FEET) = 1.86 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8657 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 1.60 SUBAREA RUNOFP(CFS) v 7.47 TOTAL AN'A (ACRES ) 19..90 TOTAL RUNOFF(CFS) - 90.02 TC(MIN.) v 11.40 ................................ ...u........................... PLOW PROCESS FROM NODE 3.00 TO NODE 5.00 IS CODE v 81 _________________________________ _______ ________________________ :::::ADDITION OF SUBAREA TO MAINLINE PEAR FLOW-- 100 YEAR RAINFALL INTENSITY(INCH /HOUR) - 5.391 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT - .8931 SOIL CLASS PICATION IS "D" SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFP(CFS) - 5.30 TOTAL AREA(ACRES) = 21.00 TOTAL RUNOFF(CPS) - 95.32 TC(MIN.) v 11.40 • ................................. ............................... PLOW PROCESS PROM NODE 5.00 TO NODE 10.00 IS CODE = 51 »»:COMPUTE TRAPEZOIDAL CHANNEL FLOW-- >1 TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « - ELEVATION DATA: UPSTREAM(FEET) - 619.00 DOWNSTREAM(FEET) = 618.00 CHANNEL LENGTH THRU SUBAREA(FEET) _ *223.00 CHANNEL SLOPE = 0.0 0 4 5 CHANNEL BASE(FEET) - 6.00 "Z" FACTOR = 1.500 MANNING'S FACTOR v 0.030 MAXIMUM DEPTH(FEET) - 4.00 CHANNEL FLOW THRU SUBARRA(CFS) - 95.32 FLOW VELOCITY(FEET /SEC.) = 4.39 FLOW DEPTH(FEET) = 2.30 TRAVEL TIME(MIN.) = 0.85 TC(MIN.) = 12.24 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 10.00 = 1443.00 FEET. ............................................. ............................... FLOW PROCESS FROM NODE 6.00 TO NODE 10.00 IS CODE = 81 ______ _________________________ _____________________________________________ »:-> ADDITION OF SUBAREA TO MAINLINE PEAR FLOW- - 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.164 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .8287 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) - 6.50 SUBAREA RUNOFP(CFS) = 27.82 TOTAL AREA(ACRES) = 27.50 TOTAL RUNOFF(CFS) = 123.14 TC(MIN.) = 12.24 ............................................. ............................... FLOW PROCESS FROM NODE 10.00 TO NODE 15.00 IS CODE - 51 _______________________________ _____________________________________________ » »:COMPUTE TRAPEZOIDAL CHANNEL FLOW... - > TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) - - =vv =616.20 = = = ELEVATION =DATA: UPSTREAM(FEET) = = = = == 618.00= =DOWNSTREAM(FEET) = CHANNEL LENGTH THRU SUBAREA(PEET) = 110.00 CHANNEL SLOPE - 0.0164 CHANNEL BASE(PEET) = 6.00 Z. FACTOR 1.500 MANNING'S FACTOR - 0.030 MAXIMUM DEPTH(FEET) = 4.00 CHANNEL FLOW THRU SUBAREA(CFS) - 123.14 FLOW VELOCITY(FEET /SEC.) - 7.51 FLOW DEPTH(FEET) = 1.86 TRAVEL TIME(MIN.) - 0.24 'TC(MIN.) - 12.49 LONGEST PLOWPATH FROM NODE 1.00 TO NODE '15.00 = 1553.00 FEET. ............................................. ............................... PLOW PROCESS FROM NODE 11.00 TO NODE 15.00 IS CODE = 81 _________________________________ :::::ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-- 100 YEAR. RAINFALL INTENSITY(INCH /HOUR) = 5.103 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT .5787 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) - 0.10 SUBAREA RUNOFF(CFS) = 0.30 TOTAL AREA(ACRES) = 27.60 TOTAL RUNOFP(CFS) = 123.43 TC(MIN.) - 12.49 ............................................. ..............................• FLOW PROCESS FROM NODE 11.00 TO NODE 15.00 IS CODE = 81 _______________________________ _____________________________________________ »... ADDITION OF SUBAREA TO MAINLINE PEAR FLOW-- ' = = =100 YEAR =RAINFALL INTENSITY(INCH /HOUR) = == UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .8279 SOIL CLASSIFICATION IS "D' SUBAREA AREA(ACRES) - 0.30 SUBAREA RUNOFF(CPS) - 1.27 0 ,mAL==(ACREm . 27.90 noALnUNvFF(CFS) . o..m ~``^```~^`^^`^~~^```````^`~^``````~~~``~`^^~~``~^`~^` == PROCESS FROM =DE 11.00 `"~= 15-0" IS CODE ' 81 -------------------------------- --ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-- ""=AR RAINFALL ==°,='INCH*"=` ' "=, "IN"LE'°M`",'1^ ACRE LOT) RUNOFF COEFFICIENT ' .7394 SOIL CLASSIFICATION IS '"' ~`^^^````~^```^````~``^```````^^`````~^^````^'^````^```^^`'``^`'```^^``` FLOW PROCESS FROM NODE 16.00roNODE 20.00 IS CODE. s SUBAREA AREA(ACRES) ~ 0.10 SUBAREA "°°, '"~` . ".," TO`==EAv^s"w . 28.00 zIDTALoUNvFF(CPS) . 125.08 =r'MIN^ . u"v UNDEVELOPED WATERSHED RUNOFF COEFFICIENT ' = `````~``~~~^~````````^~```````^^``^^`^~````~^``^````^`~^```````^`~ FLOW PROCESS FROM NODE 11.00 "v== o.00 ="= ' = -------------------------------------- .,�^ADDITION OF SUBAREA TO MAINLINE "EA.K FLOW-- "=AREA=='"CR""` - ""v nm.R="�",'c=` ' =.= 100 YEAR RAINFALL """"=='INm*vUR, . 5.103 `m=.^�"~"" , ' ,«^" `OT= "="PF'"=` ' ~`"" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT ' .892" zc(MIN.) . ".m SOIL CLASSIFICATION IS 'D^ ~`^^^```~````````````^`````^```````^^^````````^^`~``^```^`^`````'^^`~`^^ FLOW PROCESS FROM NODE 20.00`nNODE zs.mIS.CO=. a "�="===A�=` ' ".= ="=="="='"=` ' "."` �=L=�v*"�, ' m."o `�="�v�p,w ^ 125.99 `z(MI".) ^ 12^9 ........... 602.00 DOWNSTREAM(FEET) . ``^^``^``````````^~^^``~``````````^~~`^``~````````~~``^``~`````~~~~ FLOW PROCESS FROM NODE 11.00 TO NODE a.00 IS CODE. oz -------------------------------------- �... ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-- "�°=""="',�, ' """ '"' ,=�"' `.�" "° YEAR RAINFALL =="mTY,INCH/HOUR` ^ ,�uo °�p=^'vrmzo .o.mo =""MUM"EPTH',RE` . 4.00 �°o"c,="�"�,°�T"mm""c�,,c,�o~ um, CHANNEL FLOW THRUnUB"RE.o,w ' u".m =,^"^=",,,=`,""='"' "LO°VET.Oc=`',EE,SEo., . v.m ,LO°"=TH',=` ^ `.o, "�===�'=�"", ' ".= "=�="=",'o=, ^ ".." �r=mv�*c=o, . xo^" ,n=""�v�'os' . 126.87 ,=(MIN^ ^ u^, `^`~```^^`~```~^^~`````````^^^`~````^^````~`^`^`~````````^^`````^'~` FLOW PROCESS FROM NODE 22.00zvNODE 25.00 IS CODE. m ````^`^^^`'`~`````^``~~``''``^```^`^^^^^~`~`~~```^~``~~ FLOW PROCESS FROM NODE o.00,nNODE 15.00 IS CODE. 81 -------------------------------- .... >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-- zoo YEAR RAINFALL o,TE"ITY'INCH*vUR, ^ ,.m` SINGLE-FAMILY(1/4 ACRE "OT, RUNOFF COEFFICIENT ^ .8640 SOIL CLASSIFICATION = .". "UB"=="RE"="RE" . `.� "="�""�"=p=` ' .^` ,�==�,==" ' m^" TO=="=oFFp=` . 131.28 ,z^IN.,^ 12^9 ^``~~```~``~~ L�=��n ��� a00zn�� -------------------------------------- ^^^^^CO°°"" TRAPEZOIDAL CHANNEL "=°^~^~ . ... ~TRAV"LT,°""HRUSUBAREA '=oSTINnEL"ME=,".... ELEVATION DATA: m~oTR"AM',"=,. 616.20 DOWNSTREAM(FEET) ~ 602.00 "=NN= LENGTH ,HR""UB=='=" , ' ,.,�"" "=== om" ' o.o`,` cm"=o o�"'"�` . 6�� ^x^ =urn" . 1.mo u°==o'o"m"o". o.mo mX"°m"EPTH°"ET, ^ ..m . ="=" ,�°,�""====,m ' "".," ,�°.�o��woET*u ., . 8.08 ,LO°oEPTH'rEE` . z.m 0 ,RA.EL`IME*IN., . l.0 ``(PiLN-) . ".m "�v�'�v�^����� z.�ro�� m.00. 2295.00 FEET. ~`^^^````~^```^````~``^```````^^`````~^^````^'^````^```^^`'``^`'```^^``` FLOW PROCESS FROM NODE 16.00roNODE 20.00 IS CODE. s -------------------------------------- , ���������!���"����- loo m"m;IN,ALuam""=z(=m*vUR) ^ 4.761 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT ' = SOIL CLASSIFICATION IS 'D' "=AREA=='"CR""` - ""v nm.R="�",'c=` ' =.= `m=.^�"~"" , ' ,«^" `OT= "="PF'"=` ' ~`"" zc(MIN.) . ".m ~`^^^```~````````````^`````^```````^^^````````^^`~``^```^`^`````'^^`~`^^ FLOW PROCESS FROM NODE 20.00`nNODE zs.mIS.CO=. a -------------------------------------- .....CO"=TE TRAPEZOIDAL CHANNEL ,=°^~~^ ^^~^T^°~=IM"`HR" SUBAREA (EXISTING ="MENT`^^^`~ ........... 602.00 DOWNSTREAM(FEET) . ,,om CHANNEL LENGTH n"mom°REA',EE`, . ^,,"" CHANNEL SLOPE ^ o",,^ "�°=""="',�, ' """ '"' ,=�"' `.�" °�p=^'vrmzo .o.mo =""MUM"EPTH',RE` . 4.00 CHANNEL FLOW THRUnUB"RE.o,w ' u".m "LO°VET.Oc=`',EE,SEo., . v.m ,LO°"=TH',=` ^ `.o, ,m°" zIMn*=.` ^ 0.73 n,(MIN.) . 14.75 "ONoESTmOWPATH FROM NODE `.00zvNODE �.00. 2722.00 FE= `^`~```^^`~```~^^~`````````^^^`~````^^````~`^`^`~````````^^`````^'~` FLOW PROCESS FROM NODE 22.00zvNODE 25.00 IS CODE. m -------------------------------------- ,,~,~°,IT=°,, SUBAREA ," MAINLINE PEAK ="W,,,, um YEAR RAINFALL """°SITY'INCH*"UR, ~ 4.618 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT . .mm SOIL CLASSIFICATION IS ,, SUBAREA ,=","�" ` - o.", "�=�"="�'c�, ' =.,` �r�=EMvC"ES, . 43.03 =OT=xUNv=(Crm . 183.82 ,z'm=., ~ 14.75 `~````~^`````````^`````~`````^^```~```^^^```````^^```````^^````^^^^````` FLOW PROCESS FROM NODE ,3.00=nNODE 25.00 IS CODE^ m -------------------------------------- ,,..moDI`m°m, SUBAREA ,o MAINLINE PEAK FL"=~.. um YEAR RAINFALL "=°xcm'INm*oUR, ^ 4.618 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT ^ .mm SOIL CLASSIFICATION IS '"' SUBAREA AREvC"m` . ^^o m"m"�"m�" o,q . �.00 `n=^�==rmw . .,^, nn="UNvFFo"q . "m.m zc(MIN^ . 14.75 FLOW PROCESS FROM NODE 25.00 TO NODE 30.00 IS CODE ~ 51 -------------------------------------- ,~,~C"MP,= TRAPEZOIDAL CHANNEL ,=°~,,, ... ."""°=`IM"`HR"SUBAREA v"=`=""LE"ENn....^ ELEVATION DATA: UPSTREAM(FEET) = 590.30 DOWNSTREAM(FEET) - 584.00 CHANNEL LENGTH THRU SUBAREA(FEST) = 237.00 CHANNEL SLOPE . 0.0266 ===",="(F"ET` ' 6.00 'Z' FACTOR - 1.500 °AN°"NG'v "ury . 0.030 °=oom"EPTH(FEE, ) . 4.00 CHANNEL. FLOW ,HR""UB==(CFS) . 200.50 ,�°=�:=o',�`mC./ m.~ o F�°" ��'r�r ^ 2.13 ,��^r�"��./ ~ 0.38 , ^ 1 5 �14 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 30.00 . 2959.00 FEET. ^```````^`^`^^~`````````^^~``````^~````~```^``^~````^``~~` ���"������ ��`��� �oo���' � -------------------------------- --ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-- ,00 YEAR RAINFALL aTENn,='INCH/HoUR` ^ ..,^, UNDEVELOPED WATERSHED RUNOFF COEFFICIENT . .mo SUBAREA "RE"vC== ' `= "=""="="=n=` ' ".22 TO=^"="vo�", - .o.� =n=^"="== . "�.� zc(MIN.) ^ 15.14 ^'^`````^^`^^```~`~``~^^^~~~~^`~~~~^^^```^`~~```~~`~~^`~``' FLOW PROCESS FROM NODE 26.00 TO NODE m,� IS CODE ~ o` ----- -------------------�-------------- ^^^^>A"DI`"ON"~^= "�"~"="="="=~^ um,=°==mmu=`�o�"'��/��` ' ..m, "�"==��°="=�""�"��"�=""T ' .�� "�^"=" `"=="ON IS `` S��=�" '"�=` ' "."" ="="�"°°='"=/ . "."" `�="�"'�="` ' ^""" �=^"�"�'"=` ~ ,"".= ,c*IN., . 15.14 `^`````````````^~^`````````~^~^`~~`^`~``~`~`~`^^`~`^`~^``````~`~ FLOW PROCESS FROM NODE 26.00=n� m,���^ m ----- -------------------�---------�----- -.�ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-� um YEAR RAINFALL "NTENx,o'INCH/HvUR, . ..,^, sINGL",AMIL,(1*ACRE LO* RUNOFF COEFFICIENT . .7272 SOIL CLASSIFICATION IS �� "�===",^�"",' `.`° =°"�A"°m,,'",",' ,.m ,�="�"v=="` ' "".`, =�="�"='"~` ' ="= ,c(Mm.`^ IS." ^``~````~~`````````'`^````~`^^^`~````~`^`~~~```~`````~ FLOW PROCESS FROM NODE 26.00`O NODE 30 , 00 IS CODE^ 81 -------------------------------- ... -ADDITION OF SUBAREA TO 14AINLINE PEAK FLOW-- uw YEAR RAINFALL """°ITY'INCH/HOUR, . ..s^, oINoLE'°MIL°'*w ACRE LOT) RUNOFF COEFFICIENT ^ .00, SOIL CLASSIFICATION IS .r "U13=="RE"'^CR""` ' ,"° °=="="="FF'"~` ' ``", `OT===*"RE", ' ",.o ",TA^"UN"='o=, ' ,,`."" ,c*IN./ ^ 15.14 '`~`^^^`````````'```~`^`^~`~^^``^``~``^^~```````^``~``~ �= �v�� �OM NODE 26.00 70 NODE m.� ��� ^ o` -------------------------------------- ,~~^,DI,"ON,, SUBAREA ,° MAINLINE PEAK FL,=~,, um YEAR RAINFALL o��o=,'��/��, ^ 4.547 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT ^ .=" SOIL CLASS `FI"ATIO"IS 'A' SUBAREA AREMACRES) - 0.70 SUBAREA RUNOPF(CFS) - 2.75 `OT="=EA*cRRw ' "`.m TO=L"UN"FF(C,w'^ "°.= zc(MIN.) . a." ';° ,Oy"O." ��� rvm�o m�0- c .o . oz -------------------------------- --ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-- um YEAR RAINFALL ""oomTY'INCM*vUR, ~ ^.,., COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT ~ .8920 SOIL CLASS IFICATION IS 'D" "==EA=RE"wcREm ' `.m "=AR="UNv=p=, . .^" `===KA"ACR=, ' 54.93 `=="UN"FF(CFm - 228.80 ,c~IN.,. o.`. ~`^^``^~`````^~``~```~~```````^`^^```^~^``^`^^````^~``~````````^`^` ��mmCESS YROM NODE 27.00rvNODE m.00o CODE ^ m -------------------------------------- ,,,,"="IT=°", SUBAREA `" MAINLINE PEAK "=°~,,, UNDEVELOPED WATERSHED RUNOFF COEFFICIENT .5545 SOIL CLASSIFICATION IS-`, "="RE""="(A"RE"` ' """ ="=="�"='"~` - ".,, °=^==��m ' =�� `�="="��� ' "�.� ,z*=^^ `,= ^�^`^`^�="C.SS ``~~^``^``^^````~`~~``^`'``^``~````^```` �� =n NODE 30.00 IS CODE. m -------------------------------------------------- uw YEAR RAINFALL o""°SITY'INm*vUR) ^ ..~" UNDEVELOPED WATERSHED RUNOFF COEFFICIENT - .8199 SOIL CLASSIFICATION IS '"' ,"AR=AREM=RE,` ~ ,,.,, S�=="="�,"~` ' 37.65 n�=vm=vC�u . oo.n r��u�v�orm . za.m zc*IN., ^ 15.14 ~^``~`^`^^``~`^^^``~``~``````~```~````~``````````^````~`^```^`````` FLOW PROCESS FROM NODE m.00`vNODE 40.00 IS CODE^ s -------------------------------------- --COMPUTE '~~~~~AL CHANNEL '~'--- ,,,.="°~u mo�" xmm�" 'o�,�" "�°�,^.".. ^^---^^`----^~----^^-^-``^^~~`-`-----`---`--`--- ELEVATION DATA: o.o""=.,,"°`/^ "`o"" DOWNSTREAM(FEET) ^ 555. 00 CHANNEL LENGTH =��omxR=',�`` . o`..00 CHANNEL SLOPE ' ".o=^ ou�m""�"'"�` . o�� ^o^ =c�". ."oo °�~�:'o,=ro ^ ".m" °AX"MUM"EPTH',=, ^ 4.00 CHANNEL FLOW THRUmUBAREA(CFw. 275.79 FLOW VELOCITY ',�roo., ^ ,.o, ,�°="�',�` ^ `."" ,m"~"`�"*=., ~ `.o ,"(M°.) ^ 16�� "mv"�,�°=� FROM NODE `.� ,m�" 40.00 . 3S73~ FEET. ^```~`~```~``~~`~``````~``~`^~~^~````~^`^'^``^```'``^``'````````` FLOW PROCESS FROM NODE 36 , 00 TO NODE 40.00 IS CODE ^ "` -------------------------------------- ....~°"ITm" OF ="=EA"" MAINLINE "=AK "LO° ^~`` YEAR RAINFALL °"ENSoz'=m*vUR, . ^.o, UNDEVELOPED WATERSHED RUNOFF COEFFICIENT . .5453 SOIL CLASSIFICATION ='"' SUBAREA AREMACRES) - 2.60 SUBAREA RUNOFF(CFS) - 6.17 TOTAL AREA(ACRES) _ -71.33 TOTAL RUNOFF(CPS) = 281.96 TC(MIN.) = 16.26 •........... u...•....• u..... u• .........................i..r.. PLOW PROCESS PROM NODS 36.00 T'0 NODE 40.00 IS CODE = 81 _________________________________ _______________________________ »».ADDITION OF SUBAREA TO MAINLINE PEAR FLOW­- 100 YEAR RAINFALL INTENSITY(INCH /HOUR) 0 4.355 - UNDEVELOPED WATERSHED RUNOFF COEFFICIENT n .8167 SOIL CLASSIFICATION IS °D° SUBAREA AREA(ACRES) 5.00 SUBAREA RUNOFF(CPS) - 17.78 TOTAL AREA(ACRES) 76.33 TOTAL RUNOFF(CFS) = 299.74 TC(MIN.). = 16.26 .................•.....•u..•.. ue.......u..................0 a u........• FLOW PROCESS FROM NODE 40.00 TO. NODE 75.00 IS CODE - 31 _____________________________________________ ____ ___________________________ ».COMPUTE PIPE -PLOW TRAVEL TIME THRU SUBAREA�c : »»USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW)c< .. = = ELEVATION DATA: UPSTREAM(FEET) = 555. = e 00 DOWNSTREAM(FEET)- == =550 00 = FLOW LENGTH(FEET) - 50.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 42.0 INCH PIPE IS 33.2 INCHES PIPE -FLOW VELOCITY(PEET /SEC.) n 36.72 ESTIMATED PIPE DIAMETER(INCH) - 42.00 NUMBER OF PIPES = 1 PIPE-FLOW ( CFS) - 299.74 PIPE TRAVEL TIME(MIN.) = 0.02 TC(MIN.) - 16.29 LONGEST PLOWPATH FROM NODE 1.00 TO NODE 75.00 - 3623.00 FEET. ................ rr...... r....... s •.............................. PLOW PROCESS PROM NODE 90.00 1'O NODE 75.00 IS CODB v 1 ----------- _____----- __ ___________ ----- ____ ---- ______ --DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE-­ TOTAL NUMBER OF STREAMS 2 CONFLUENCE VALUES USED FOR INDEPENDENT STRRAM 1 ARE: TIME OF CONCENTRATION(MIN.) - 16.29 RAINFALL INTENSITY(INCH /HR) - 4.35 TOTAL STREAM AREA(ACRES) = 76.33 PEAR FLOW RATE(CPS) AT CONFLUENCE - 299.74 ............................................. ..........r.................... PLOW PROCESS FROM NODE 45.00 TO NODE 50.00 IS CODE - 21 _____________________________________________ _______________________________ » >>RATIONAL METHOD INITIAL SUBAREA ANALYSIS« « ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER TC = R -[( LENGTH - -3) /(ELEVATION CHANGE)] - -.2 INITIAL SUBAREA PLOW- LENGTH(FEET) c 329.00 UPSTREAM ELEVATION(FEET) - 603.00 DOWNSTREAM ELEVATION(FEST) - 591.00 ELEVATION D IFFERENCE(FBET) n 12.00 TC = 0.533 -[( 329.00••3)/( 12.00)1••.2 = 10.493 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.665 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .5999 SOIL CLASSIFICATION IS -A° SUBAREA RUNOFF(CFS) 2.72 TOTAL AREA(ACRES) - 0.80 TOTAL RUNOFF(CFS) = 2.72 • --------------------------------------------------- »» ADDITION OF SUBARRA TO MAINLINE PEAR FLOW-­ 100 YEAR RAINFALL INTENSITY(INCH /HOUR) 5.665 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .8345 SOIL CLASSIFICATION IS °D° SUBAREA AREA(ACRES) - 0.20 SUBAREA RUNOFF(CPS) - 0.95 TOTAL AREA(ACRES) = 1.00 TOTAL RUNOFF(CPS) - 3.66 TC(MIN.) = 10.49 ............................................. ............................... PLOW PROCESS PROM NODE 45.00 TO NODE 50.00 IS CODE = 81 -------------------------------- _ ---------- _-------------------------------- .....ADDITION OF SUBAREA TO MAINLINE PEAR FLOW«< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.665 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8700 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) n 0.30 SUBAREA RUNOFF(CFS) = 1.48 TOTAL AREA(ACRES) = 1.30 TOTAL RUNOFF(CFS) - 5.14 TC(MIN.) n 10.49 ............................................. ............................... FLOW PROCESS FROM NODE 45.00 TO NODE 50.00 IS CODE - 81 _____________________________________________ _______________________________ __ADDITION OF SUBAREA TO MAINLINE PEAR FLOW-­ 0 YEAR RAINFALL INTENSITY(INCH /HOUR) - 5.665 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8935 SOIL CLASSIFICATION IS °D" SUBAREA AREA(ACRES) = 0.30 SUBAREA RUNOFF(CFS) = 1.52 TOTAL AREA(ACRES) 1.60 TOTAL RUNOFF(CFS) - 6.66 TC(MIN.) - 10.49 ............................................. .......:....................... PLOW PROCESS FROM NODE 50.00 TO NODE 55.00 IS CODE = 31 _____________________________________________ _______________________________ ­­COMPUTE PIPE -PLOW TRAVEL TIME THRU SUBAREA «« » >> USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE PLOW)­- .... ===== avvnnn=====_===== v= nn========= n= n=== = =v = ==== == = = =n == == == =v=== = =____ ELEVATION DATA: UPSTREAM(FEET) = 588.00 DOWNSTREAM(FEET) a 576.00 FLOW LENGTH(FEET) = 319.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.2 INCHES PIPE -FLOW VELOCITY(PEET /SEC.) = 10:12 ESTIMATED PIPE DIAMETER(INCH) n 18.00 NUMBER OF PIPES = 1 PIPE- FLOW(CPS) - 6.66 PIPE TRAVEL TIME(MIN.) = 0.53 TC(MIN.) = 11 :02 LONGEST PLOWPATH FROM NODE 45.00 TO NODE 55.00 = 648.00 FEET. ........... ..................... ........u...................... FLOW PROCESS FROM NODE 51.00 TO NODE 55.00 IS CODE = 81 _________________________________ _______________________________ »».ADDITION OF SUBAREA TO MAINLINE PEAR PLOW -« 100. YEAR RAINFALL INTENSITY(INCH /HOUR) 5.502 UNDEVELOPED WATERSHED RUNOPF•COEFPICIENT v .8327 SOIL CLASSIFICATION IS "D° SUBAREA AREA(ACRES) n 0.20 SUBAREA RUNOFF(CPS) = 0.92 TOTAL AREA(ACRES) 1.80 TOTAL RUNOFF(CFS) - 7.58 TC(MIN.) a 11.02 ............................................. ............................... PLOW PROCESS PROM NODE 45.00 TO NO 50.00 IS CODE _ 81 ------ `--- '--------- - - ......... ...... ........................ FLOW PROCESS FROM NODE =00`"== =, 00= CODE ' 81 -------------------------------- .... 'ADDITION m, SUBAREA ""14A"=,NE PEAK "LO"~~~ `"""EAR==,=" "."°oTY'INCH/=UR` ' 5"02 "IN"=',AM="'1* ACRE LOT) RUNOFF COEFFICIENT ' .8664 SOIL CLASSIFICATION =^D' SO==ASm,==v o^� "="="ARFA'=RE"` ' 0.6" "�"=""="='"S` ' ".= �=^=�v�"=` ' 2^" �TO=""="='"~, ' 10.44 rc*=.` . u.m `c��.,. ``.m �^^^.,.^,.,,,,.,^.,^^^,,,,_,,_,^,,_~,,,~,,,,~�.,,^_..,,,,.,,,,,~~^, ==PROCESS FROM NODE 51.00n,NODE 55.00 IS CODE. m -------------------------------------- ^^^^AD"IT"ON= SUBAREA `" MAINLINE PEAK "LO°-~^ -------------------------------------- -ADDITION OF SUBAREA TO MAINLINE "EA" FL"W^�^ 100 YEAR RAINFALL =,="=='INCH/HO=, . ".a" m IN,="""""SITrY'INCH*nUR, . ,.,m COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT ~ ."",, COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT ^ = ===SS IFIC== IS .D' SOIL CLASSIFICATION ,,~, SUB== "="'"="/ ' ".= "==="UN"='"=` ' `^, `"=^=='"=" ` ' ".� `�="�"=��` ' `,."` `c*IN., ^ 11.02 ,z(MIN.) . u.m ``^`^^`^^~`^^`^~```~^`~```^`~~^^^`^`^~~~^`````~^`^`^~^ =OW PROCESS FROM NODE m.00roNODE 55.00 IS CODE~ m -------------------------------- --ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-­ zoo YEAR RAINFALL INoNozo'INCHmvUR, ^ ,am UNDEVELOPED WATERSHED RUNOFF COEFFICIENT ' .5=1 SOIL CLASSIFICATION IS ,~ Sm.mEAvmu'^CRou, ~ 0.20 SUBAREA "mw, 'oS) ^ 0.65 �n*vm�vo�o, . ,.� =�="�v�'o�, ^ 12.57 ,"(MIN.) ^ 11.02 ~```~~^``^`~^^~^``~````^^`^^`^~^~````~``~~``~~`~`` FLOW PROCESS FROM NO= 52.00,"NODE ==IS CO=' 81 -------------------------------- ,,',~°DI`IO~= SUBAREA =° MAINLINE PEAK ,LO°-~, =" YEAR RAINFALL =,ENSITY'INCH/HO=` . ,.502 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT ' .m, SOIL CLASSIFICATION �'� "="�"�=,=�", . "^" "=�="�"m=~, ' `.", ,�==�v=="` ' ,.," `�="�°�'�~, ' °."" `c(MIN.) . 11.02 ^``^~~ NODE 52 00 DOE SS .0 CODE ­­ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-- .... `oo"o�=�r�^ "=�oI='��/��` ^ ".,� �°�o'r��,'z^ ^om"�`Ro�" m"=�"mT^ =,o om"CLASS zscATm" IS `, "="RE""~EM"CR"` . `"" "=="="�"='"S` . "^` �`=�='"�", . ..m n�mo�v='c=, ^ `o.,` zr~m., . u-m ^`~``^^```^`^``~^```^^`````````^`^`^^```~~~``````````^`~^~``~^~~``` LOW PROCESS FROM NODE o.o"°oNODE 55.00 IS CODE ^ = -------------------------------------- --ADDITION OF SUBAREA TO MAINLINE PEJUK PLOW-­ 0 100 INFALL INTENSITY(rNCH/HOUR 5-502 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFF ICIENT . .8664 SO==ASm,==v o^� o�="=="=*"�u` . ^.w SUBAREA "°O, 'CFS/ ^ 12.= zOTA=AREMv��. o.� ,�Lm����^ m.� `c��.,. ``.m == PROCESS FROM== =.00 `"NO= 55.00 is CO= ' 81 -------------------------------------- -ADDITION OF SUBAREA TO MAINLINE "EA" FL"W^�^ m IN,="""""SITrY'INCH*nUR, . ,.,m COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT ^ = SOIL CLASSIFICATION ,,~, sm"R=mvm'"CR", . 0.10 ,UB="mxUNoFF'oS, ^ o^o �=^°""vx�m, ~ ,.� `"=^"="�'os, ' ,`.," ,z(MIN.) . u.m FLOW PROCESS FROM NODE o.00`nNODE 55.00 IS CODE^ m -------------------------------------- ADDITION SUBAREA MAINLINE ~'~~~ 'OF. 'TO' 'PEAK ~FLOW-­um"oR RAIN,AL""=ENoIT,,INCH/H"UR, . ,.an COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT . .o,o SOIL CLASSIFICATION IS "D^ SUBAREA ,==,^CR. ` . "^" "=AR="UN"=/cm, ~ `."` TO`=vREMvoREo, . ,"o rmm°mUNuFF'cm, . o.,^ ,r(MIs) ^ 11.02 ```````~~`````^^`~````'``````^^```````~`^~````'````````~````^```'````` FLOW PRoCEPS FROM NODE 55.00n,NODE 60.00 IS CODE. 31 -------------------------------------- ­"­COMPUTE PIP~FLO°TRAVEL TIME THRU"=REA~~` ,,..mooG COMPUTER-ESTIMATED vmo zoo (NON'»REamnm=v `"^."" ELEVATION DATA: "mST=AM',EEn ^ rm"" DO=oTR=°*o=` ' ,63.00 ,LO""°oTH',=` . 382.00 °="INv'a". 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS u., INCHES "IP",=°=LO"IT,'"=`/S=.` ' =^" "="°="""�"="�"="'�=` ' =�00 NUMBER = PIPES . ` ,om',LO°'om, ^ o.,. "�o==�"`"��N.,. o^. ``�N.,. o^6 u�mz=�=����� .,.00rvNODE m.00. 1030.00 FEET. ```````~``~^``````````````````````^``````^`^`^```````^```^```^`````^`````^ FLOW PROCESS FROM NODE 56.00rvNODE 60.00 IS CODE ^ 81 -------------------------------------- ,,,,^"DI,"ON,, SUBAREA ," MAINLINE PEAK ,LO°­~,, uw,m=mIN,AL"INomarTY(INCH*vUR` ^ ,.zw UNDEVELOPED WATERSHED RUNOFF COEFFICIENT ^ ".", SOIL CLASSIFICATION IS`' "UB"=^"RE^,""="` . `.,o "===."="�'",n ^ 3.8" ,anL�" wc�o) . 8.60 rnm°"�v�'os, . ,..0 "r~IN.`^ "..o FLOW PROCESS FROM NODE 56.00=nNODE 60.00 IS CODE . m -------------------------------- ­>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-- `00 YEAR RAINFALL ",='==/HOUR` . ,."° UNDEVELOPED WATERSHED RUNOFF COEFFICIENT ^ .8312 =,^==",,,=,,"°,""D. "UB"="==w"=", ' ".� "==�"�"='"=/ ' °"" "�=��v=°" ' ".� `"�^"="��=` . ,`= `cw=°.`~ zz^o `^```~~`~`^``~~^~^`^..~~`^^`~``^^^^``````~``~^~^~`~```````^^`~ FLOW PROCESS FROM NO= 56 , 00,°== m.00= CODE ' 81 -------------------------------------- ^^^'""°IT=N"" SUBAREA `" MAINLINE PEAK "==^^~^ "m"EA"RA="=^""=",TY'INCH/==` ' ".z° ",=='FAM,^"'1* ACRE LOT) RUNOFF COEFFICIENT ' "^^" =�"=" ,,=��" � ,, "==EA"=^'Ao"", ' """ "="=""="�'"=, ~ """ �`��=*c�"` ' "^° `�="="�'o~, ' .".,. ,c��., ^ ".� `````^`~`~~````~``^``^`^^^`~^```````~~^^^```^```~``````^^`..`^^^`^`^ FLOW PROCESS FROM NODE 56.00""NODE 60.00 IS CODE^ 81 -------------------------------------- ~..A"DI,m"= SUBAREA =" MAINLINE PEAK "LO°~~^ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) - 5.374 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT ^ .."o, SOIL CLASS IFICATIO" IS �' "�== �" '"oE"/ ' ""° SUBAREA "UN"FF'C""` ' "."" `OT="RE"*==` ' 10= "OT="==='on, ' .,^" `c(MI".)^ 11.46 ^`````````'^~'`^`^`````'`^```^```^^~`^```^`````~```````~~~^`~``~~^`` FLOW PROCESS FROM NODE m.00`nNODE 65.00 IS CODE^ u -------------------------------------- ...~CO°PU= PIPE-FLOW TRAVEL TIME `=""UBAR"A~~~ ... -USING CO°PUTE"=`"°=""PI==,`" w"N-"RE"=RE="*^^~^ ELEVATION DATA: �o==�',�n . so.� mm~o="�',�r . so.� r�°u�o�p"ET/ ~ um.m °m"INo'o". 0.013 DEPTH "" FLOW IN ""." INCH "`""� 27.0 INCHES "�",�°=^��,r"��"c` ' 7.58 ESTIMATED PIPE ""M"TE"'INCH, ' =.00 NUMBER n, PIPES ^ , ,"~'=o 'o�, ^ .3^o "�",=�",�"*�., . "^" ,"*=.` . u.m LONGEST FLOWPATH FROM NODE 45.00 TO NODE 65.00 - 1219.00 FEET. ^^'_.^^^,^,,_.,,.,°~.,,...^~,,^^^^^^�^^^.,._.,,,,,,_,. ��mv�m���� ��,n�� �����. m -------------------------------- --ADDITION OF SUBAREA TO MAINLINE PEAK FLOW­­ z00 YEAR RAINFALL omomIo'INc*umm . 5.260 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT ^ .."." SOIL CLASSIFICATION IS =~ xmvREA=='"CR"o, . 0.10 omomo smmr,'�S) ^ 0.31 `*=L"�"p��,, . =.� =�"^"="�'om, ' ",.SO ,c(MIN.) ^ 11.87 ,,,.,,,~~~,,,~~,,,,~_._,,_,,,_.,,~,., ... ,,_., .... ~~.,_,__,,, FLOW PROCESS FROM NODE 61.00 70 NODE 65.00 IS CODE' "` -------------------------------------- >>>,,ADDITION OF SUBAREA TO MAINLINE PEAK FLOW­- `"",�"==,=" "==aI�'=�*"=, ' ". =" ^o�"°,�=,'^^ �" �� "�"=r�, zo"�. .,=, "�"CLASSIFICATION IS ~` ==""A =""'""E"` . "�"" "=��"�"�'"=` ' �``.,, TOTAL AREA ~ `,.ov ,�="�vap=, ~ �.", `c��.` . =.m FLOW PROCESS FROM NODE' a.00rvNODE 65.00 IS "OD" ^ o` -------------------------------------- ....°°"�=" OF o=.==,m="~�" ,�, =vW.~~ ��'��^����'^��������^����^^��'����^�'��^��' `"o YEAR RAINFALL ""���='��*v�` . ,."«° COMMERCIAL DEVELOPMENT COEFFICIENT . ."m" SOIL CLASS `""==° IS `' SUBAREA AR='""RE"` ' °"" "="�""�" ,'=°` ' ""^ =�="�"*"�" . o."" `m,° "�v"'"=, ' "`.", rc~IN., . u.m FLOW PROCESS FROM NODE o.00`nNODE m.00���^ o -------------------------------------- ­­COMPUTE PIPE-FLOW TRAVE TIME "HRU"UBAREA­.. ­,,w,INo COMPUTER-ESTIMATED "IPsIZr "vN-vRE,onmFLvW)..., DEPTH OF FLOW IN 39.0 INCH PIPE IS 27.9 INCHES PIPE-FLOW , . ,.m =,"°""" "IP"=AM°TE"'INCH` ' =.00 "UM=""" PIPES ' ` pIP"',LOn'CFS, ^ 57.57 PIPE TRAVEL `IM"(MIN^ . o^" ,"�~.` . �.� �,��,==="���� ^,.00,nNODE 70.00 . =37.00 FEET. `````^```````````````~`````^`^^^^~`~````^^``````'~`^`````^^^^^``^`~~`^ FLOW PROCESS FROM NO= 6^.00,nNODE =00 IS CODE ^ "` -------------------------------------- ,.,., ADDITION OF SUBAREA `n MAINLINE PEAK rLO°~". um"="=IN,="IN,ENooY,INm*vUR, ^ ,.ca SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT ' .,^m SOIL CLASSIFICATION IS `` SUBAREA =" '=CR" ` . o"o "",°" ""m, 'c"o, . ,.m ,m`L"�"^ou�/ . z..m TOTAL "UNvFF'oa` . m.". ,z(MINJ . 12.28 `~~`````~``~~~```````^``^^``````^```````~^^^```^```^^`^^``^^```^``'```^ =OW PROCESS FROM NODE 66.00zvNODE 70.00 IS CODE^ m -------------------------------------- ....""DDITIO"o" SUBAREA `"14A"=IN" "EA" FLOW-­ 10 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT ^ .mmz SOIL CLASSIFICATION IS ,, sUB"===SA(ACRo,) . o.m ,�="="�"='oo, ^ 0.90 �,="�"v��o` . =.m z,=" "�v='ao, ^ m.z^ ,c(MIN.) ^ 12.28 ^^~``^~^^^^^~~`^^`^~^````^`~^~`~````^``^^^`^`````^`^``````````^^````` FLOW PROCESS PROM NO= m.00`nNODE m.00m CODE . m -------------------------------------- ­>>ADDITION OF SUBAREA TO MAINLINE PEAK PLOW­- 0 0 100 YEAR RAINFALL INTENSITY(INCA /HOUR) = 5.156 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .5808 SOIL CLASSIFICATION IS 'A" SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.30 TOTAL AREA(ACRES) = 14.60 TOTAL RUNOFF(CPS) = 61.43 TC(MIN.) - 12.28 ............................................. ............................... PLOW PROCESS FROM NODE 67.00 TO NODE 70.00 IS ___________ CODE = 81 _____________ __ __ ___ _____________________________________________ a»ADDITION OF SUBAREA TO MAINLINE PEAR PLOW « «< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) - 5.156 SINGLE- PAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT - .7404 SOIL CLASSIFICATION IS 'A' SUBAREA AREA(ACRES) = 1.70 SUBAREA RUNOFF(CFS) = 6.49 TOTAL AREA(ACRES) 16.30 TOTAL RUNOFF(CFS) v 67.93 TC(MIN.) v 12.28 ................................. ............................... FLOW PROCESS FROM NODE 67.00 TO NODE 70.00 IS CODE v 81 _________________________________ ___________________ __ ___ _______ »---ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-­ 100 YEAR RAINFALL INTENSITY(INCH /HOUR) - 5.156 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8643 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) - 0.70 SUBAREA RUNOFF(CPS) - 3.12 TOTAL AREA(ACRES) = 17.00 TOTAL RUNOFF(CPS) - 71.04 TC(MIN.) = 12.28 .................. ............. ................................. PLOW PROCESS FROM NODE 67.00 TO NODE 70.00 IS CODE - 81 ________________________________________________________________ --ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-­ 100 YEAR RAINFALL INTENSITY(INCH /HOUR) - 5.156 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8681 SOIL CLASS PICATION IS "A" SUBAREA AREA(ACRES) - 0.30 SUBAREA RUNOFF(CPS) - 1.34 TOTAL AREA v 17.30 TOTAL RUNOFF(CFS) - 72.39 TC(MIN.) = 12.28 PLOW PROCESS FROM NODE 70.00 TO NODE 75.00 IS CODE = 31 _____.________________________________________ ___ ______________________ _ ___ __ :-»:COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA­- US COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE PLOW)<ccc< =ELEVATION DATA: UPSTREAM (FEET) _= 560.60 DOWNSTREAM(FEET) == = 550.00 FLOW LENGTH(FEET) = 504.00 MANNING'S N = 0.013 DEPTH OF PLOW IN 33.0 INCH PIPE IS 26.2 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) - 14.34 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = 1 PI PE-FLOW ( CFS) = 72.39 PIPE TRAVEL TIME(MIN.) _ '0.59 TC(MIN.) - 12.86 LONGEST PLOWPATH FROM NODE 45.00 TO NODE 75.00 = 1941.00 FEET. ............................................ ........................u...... PLOW PROCESS FROM NODE 71.00 TO NODE 75.00 IS CODE - 81 _____________________________________________ ________ ______ ___ ___ ___________ »»-ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « 100 YEAR RAINFALL INTENSITY(INCH /HOUR) v 5.014 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT - .5750 SOIL CLASSIFICATION IS "A" SUBAREA ARRA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.29 TOTAL AREA(ACRES) = 17.40 'TOTAL RUNOFF(CFS) - 72.68 TC(MIN.) = 12.86 ....... ...................................... ............................... FLOW PROCESS FROM NODE 71.00 TO NODE 75.00 IS __ ____ ___ ___ CODE = 81 ___ ______ _____ _ __ __ _____________________________________________ >->-aADDITION OF SUBAREA TO MAINLINE PEAR FLOW- = =100 YEAR RAINFALL INTENSITY(LNCH /HOUR) == =5.014 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .8267 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.22 SUBAREA RUNOPP(CFS) = 0.91 TOTAL AREA(ACRES) = 17.62 TOTAL RUNOFF(CFS) v 73.59 TC(MIN.) = 12.86 ' FLOW PROCESS FROM NODE 71.00 TO NODE 75.00 IS CODE = 81 ____________________________________________________________________________ »»>ADDITION OF SUBAREA TO MAINLINE PEAR FLOW« « ' 100 YEAR RAINFALL INTENSITY(INCH /HOUR) - 5.014 L DEVELOPMENT RUNOFF COEFFICIENT v .8675 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) - 0.30 SUBAREA RUNOFF(CFS) = 1.30 TOTAL AREA(ACRES) = 17.92 TOTAL RUNOFF(CFS) c 74.89 TC(MIN.) - 12.86 ' PLOW PROCESS FROM NODE 71.00 TO NODE 75.00 IS _________________ CODE = 81 __ _____ _ _____ ______________________________________________ OF SUBAREA TO MAINLINE PEAK FLOW«« = == v == ==== =_-- =___ -___- _:::-ADDITION 100 YEAR RAINFALL INTENSITY(INCH /HOUR) =- = 5.014= _v COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8927 SOIL CLASSIFICATION IS 'D" SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) - 4.92 TOTAL ARRA(ACRES) v 19.02 TOTAL RUNOFF(CPS) - 79.82 TC(MIN.) = 12.86 PLOW PROCESS FROM NODE 70.00 TO NODE 75.00 IS __ _________ CODE = 1 _________ ___ ____ _ ___ _____________________________________________ , »>DESIGNAT'E INDEPENDENT STREAM FOR .CONFLUENCE «c« -»»AND COMPUTE VARIOUS CONPLUENCED STREAM VALUES -c = = = = =_______________________ _ TOTALNUMBER OF STREAMS =c 2= v_==_=__=_= == v CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) - 12.86 RAINFALL INTENSITY(INCH /HR) - 5.01 TOTAL STREAM AREA(ACRES) - 19.02 PEAK PLOW RATE(CPS) AT CONFLUENCE _ .79.82 •' CONFLUENCE DATA •• STREAM RUNOFF TC INTENSITY AREA NUMBER (CPS) (MIN.) (INCH /HOUR) (ACRE) 1 299.74 16.29 4.351 76.33 2 79.82 12.86 5.014 19.02 • .. ............................... WARNING... ............•....,............. IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D -1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN TR8 MAXIMUM VALUE OP PEAR PLOW. ............... r..,...........•......•..... ,.,.........•....,............. RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. •• PEAR FLOW RATE TABLE •• STREAM RUNOFF Tc INTBNSITY NUMBER (CPS) (MIN.) (INCH /HOUR) 1 316.50 12.86 5.014 2 369.01 16.29 4.351 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 369.01 Tc(MIN.) - 16.29 TOTAL AREA(ACRES) 95.35' LONGEST FLOWPATH FROM NODE 1.00 TD NODE 75.00 3623.00 FEET. •.....•..........•...•.•..•.•.... .•,.........• .................. FLOW PROCESS FROM NODE 75.00 TO NODE 80.00 IS CODE - 31 »COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« « » -USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE PLOW) « « _______===== as-- ----------= ='__ = = = = =vva.7 -- -- _____________===== aaa......a= ELEVATION DATA: UPSTREAM(PEET) v 550.00 DOWNSTREAM(FEET) = 549.00 FLOW LENGTH(FEET) - 35.00 MANNING'S N = 0.013 DEPTH OF PLOW IN 57.0 INCH PIPE IS 46.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 24.07 ESTIMATED PIPE DIAMETER(INCH) a 57.00 NUMBER OF PIPES n 1 PIPE- FLOW(CPS) a 369.01 PIPE TRAVEL TIME(MFN.) = 0.02 TC(MIN.) v 16.31 LONGEST FLOWPATH PROM NODE 1.00 TO NODE 80.00 - 3658.00 FEET. ....•......•...•.........•..•.• .. ...........•................•.. FLOW PROCESS FROM NODE 76.00 TO NODE 80.00 IS CODE - 81 _________________________________ _______________ __ ______________ »» ADDITION OF SUBAREA TO MAINLINE PEAR FLOW« « 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.348 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT .5449' SOIL CLASSIFICATION IS °A" SUBAREA AREA(ACRES) v 0.20 SUBAREA RUNOFF(CFS) - 0.47 TOTAL AREA(ACRES) 95.55 TOTAL RUNOFF(CFS) a 369.49 TC(MIN.) = 16.31 ..........., u.....•....•...... .............. ........................r..,.., FLOW PROCESS PROM NODE 76.00 TO NODE 80.00 IS CODE - 81 _____________________________________________ ______ _________________________ ,, » ADDITION OF SUBAREA TO MAINLINE PEAR PLOW« « aaa==°"=°_°__'_=='==a a= aaaa°°'==°___°_____'= __ == a =an °= nna= naaa= = = = =________ 100 YEAR RAINFALL INTENSITY(INCH /HOUR) 4.348 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .8165 SOIL CLASSIFICATION IS "D• SUBAREA AREA(ACRES) - 1.10 SUBAREA RUNOFF(CFS) a 3.90 TOTAL AREA(ACRES) v 96.65 TOTAL RUNOPP(CFS) - 373.39 TC(MIN.) n 16.31 ............................................. ......................•........ PLOW PROCESS PROM NODE 76.00 TO NODE 80.00 IS CODE - 81 _____________________________________________ _______________________________ », > ADDITION OP SUBAREA TO MAINLINE PEAK FLOW- - • • 100 YEAR RAINFALL INTENSITY(INCH /HOUR) - 4.348 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT - .8583 SOIL CLASSIFICATION IS •D• SUBAREA AREA(ACRES) - 0.10 SUBAREA RUNOFF(CPS) = 0.37 TOTAL AREA(ACRES) = 96.75 TOTAL RUNOPF(CFS) 373.77 TC(MIN.) a 16.31 ' PLOW PROCESS PROM NODE 76.00 TO NODE 80.00 __ ____ _________ IS CODE = 81 __________ _ _ ___ ______________________________________________ -- ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « == =a= vv_= =aa =_a=_a=_v = = = = =___ a==== an===== a== aa== a= a= na===== aa== v===.==avac== 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.348 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8645 SOIL CLASSIFICATION IS "A• SUBAREA AREA(ACRES) = 1.20 SUBAREA RUNOFF(CFS) 4.51 TOTAL AREA(ACRES) = 97.95 TOTAL RUNOFF(CFS) = 378.28 TC(MIN.) = 16.31 .....................•..... .r..,......,..,....,..,......,. FLOW PROCESS FROM NODE 76.00 TO NODE 80.00 _________ ,...........•..... IS CODE = 81 __ ________ ______ ______ _____________________________________________ , »> ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « cv______________ === aa= v== = =aa= a == = = = == acv====== aan= a========= c= a=== =a__===== 100 YEAR RAINFALL INTENS T=Y(INCH /HOUR) = 4.348 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8917 SOIL CLASSIFICATION IS °D" SUBAREA AREA(ACRES) = 1.70 SUBAREA RUNOFF(CFS) n 6.59 TOTAL AREA(ACRES) = 99.65 TOTAL RUNOFF(CFS) - 384.87 TC(MIN.) = 16.31 FLOW PROCESS PROM NODE 80.00 TO NODE 320.00 IS CODE = 10 _________________________________ _______ ____ ___________ _____ ____ ,> >KAIN- STREAM MEMORY COPIED ONTO MEMORY BANK 8 1 « «< ••...........• ........................•...... •............r................. FLOW PROCESS FROM NODE 105.00 TO NODE 110.00 IS CODE - 21 ____________________________________________________________________________ » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS«« = = = = =vvvv .SLIMED INITIAL. SUBAREA ... FORM===== = == vv = =v =_= v_ =vvvv__ =_v_cca=_ == DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER TC - K•((LENGTH••3) /(ELEVATION CHANGE))••.2 INITIAL SUBAREA PLOW- LENGTH(FEET) - 963.00 UPSTREAM ELEVATION(FEET) - 715.50 DOWNSTREAM ELEVATION(FEET) - 679.00 ELEVATION DIFFERENCE(PEET) a 36.50 TC a 0.533•[( 963.00•'3)/( 36.50))••.2 - 16.000 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.398 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT v .8174 SOIL CLASSIFICATION IS "D• SUBAREA RUNOPF(CPS) v 8.63 TOTAL AREA(ACRES) n 2.40 TOTAL RUNOFF(CFS) v 8.63 FLOW PROCESS PROM NODE 110.00 TO NODE 115.00 IS CODE n 51 _____________________________________________ ______ ___ _________ ___ ____ __ _ _ __ » »> COMPUTE TRAPEZOIDAL CHANNEL PLOW«« »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) - - • ELEVATION DATA: UPSTREAM(PEET) - 679.00 DOWNSTREAM(FEET) - 670.80 CHANNEL LENGTH THRU SUBAREA(FEET) - 450.00 CHANNEL SLOPE - 0.0182 CHANNEL BASE(FEET) = 6.00 •Z" FACTOR - 1.500 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(PEET) - 4.00 CHANNEL FLOW THRU SUBAREA(CPS) = 8.63 PLOW VELOCITY(FEET /SEC.) - 3.32 FLOW DEPTH(PEET) - 0.39 TRAVEL TIME(MIN.).- 2.26 TC(MIN.) - 18.26 LONGEST FLOWPATH FROM NODE 105.00 TO NODE 115.00 = 1413.00 FEET. ................................. ............................... FLOW PROCESS FROM NODE 110.00 TO NODE 115.00 IS CODE - 81 _________________________________ ____________ ___ ____________ ____ --ADDITION OF SUBAREA TO MAINLINE PEAR FLOW -- 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.063 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT .8113 SOIL CLASSIFICATION IS °D° SUBAREA AREA(ACRES) - 5.00 SUBAREA RUNOFF(CPS) - 16.48 TOTAL AREA(ACRES) = 7.40 TOTAL RUNOFF(CFS) = 25.11 TC(MIN.) - 18.26 ................................• ............................... FLOW PROCESS FROM NODE 115.00 TO NODE 135.00 IS CODE - 51 ..-COMPUTE TRAPEZOIDAL CHANNEL FLOW- - » -TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) -- ELEVATION DATA UPSTREAM(FEET) =v == -670.80 DOWNSTREAM(FEET) vvv 664.00 = CHANNEL LENGTH THRU SUBAREA(FEET) = 395.00 CHANNEL SLOPE = 0.0172 CHANNEL BASE(FEET) = 6.00 °Z" FACTOR - 1.500 MANNING'S FACTOR - 0.030 MAXIMUM DEPTH(FEET) - 4.00 CHANNEL FLOW THRU SUBAREA(CPS).= 25.11 FLOW VELOCITY(FEET /SEC.) - 4.70 FLOW DEPTH(PEET) = 0.75 TRAVEL TIME(MIN.) = 1.40 TC(MIN.) = 19.66 LONGEST FLOWPATH FROM NODE 105.00 TO NODE 135.00 = 1808.00 FEET. ................................. ............................... FLOW PROCESS FROM NODE ' 115.00 TO NODE 135.00 IS CODE c 1 __________________________________ _______ __ ____________________ __ - -DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE-- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) - 19.66 RAINFALL INTENSITY(INCH /HR) = 3.89 TOTAL STREAM AREA(ACRES) - 7.40 PEAR FLOW RATE(CFS) AT CONFLUENCE,- 25.11 ................................••.......... ....u.............••........... FLOW PROCESS FROM NODE 120.00 TO NODE 125.00 IS CODE - 21 _____________________________________________ _____ ___ ____ _______ ____________ >>-RATIONAL METHOD INITIAL SUBAREA ANALYSIS- - ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER TC = X•[(LENGTHa'3) /(ELEVATION CHANGE)] *••2 INITIAL SUBAREA PLOW- LENGTH(FEET) - 1015.00 UPSTREAM ELEVATION(FEET) - 963.00 DOWNSTREAM ELEVATION(FEET) _ ' 720.00 ELEVATION DIFFERENCE(FEET) = 243.00 TC - 0.533•[( 1015.00• *3) /( 243.00)1••.2 = 11.302 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.418 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT v .8318 1* 0 SOIL CLASSIFICATION IS °D° SUBAREA RUNOFF(CPS) c 35.60 TOTAL AREA(ACRES) - 7.90 TOTAL RUNOFF(CFS) 35.60 FLOW PROCESS FROM NODE 125.00 70 NODE 130.00 IS CODE - 51 .,-COMPUTE TRAPEZOIDAL CHANNEL FLOW -- » »>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) -- - v = v . ELEVATION DATA: UPSTREAM(FEET)v =720. . v 00 DOWNSTREAM(FEET) = = 691.00 CHANNEL LENGTH THRU SUBAREA (FEET) = 535.00 CHANNEL SLOPE = 0.0542 CHANNEL BASE(FEET) = 6.00 "Z" FACTOR - 1.500 MANNING'S FACTOR - 0.030 MAXIMUM DEPTH(PEET) - 4.00 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.146 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .8285 SOIL CLASSIFICATION IS "D" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 52.88 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) - 8.81 AVERAGE PLOW DEPTH(PEET) - 0.83 TRAVEL TIME(MIN.) = 1.01 TC(MIN.) 12.31 SUBAREA AREA(ACRES) = 8.10 SUBAREA RUNOFF(CFS) = 34.53 TOTAL AREA(ACRES) - 16.00 PEAR PLOW RATE(CFS) = 70.14 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.97 PLOW VELOCITY(PEET /SEC.) = 9.65 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 130.00 = 1550.00 FEET. FLOW PROCESS FROM NODE 125.00 TO NODE 130.00 IS CODE 81 ____________________________________________________________________________ .->ADDITION OF SUBAREA TO MAINLINE PEAR FLOW-- 100 YEAR RAINFALL INTENSITY(INCH /HOUR) 5.146 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT .5804 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 2.00 SUBAREA RUNOFF(CFS) = 5.97 TOTAL AREA(ACRES) = 18.00 TOTAL RUNOFF(CFS) _ 76.11 TC(MIN.) - 12.31 ............................................. ............................... FLOW PROCESS FROM NODE 130.00 TO NODE 135.00 IS CODE = 51 _____________________________________________ ___ ______ ________ ________ _ _____ -- COMPUTE TRAPEZOIDAL CHANNEL FLOW- - --TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) -- ELEVATION DATA: UPSTREAM(FEET) _ .691.00 DOWNSTREAM(FEET) - 662.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 734.00 CHANNEL SLOPE = 0.0388 CHANNEL BASE(FEET) - 6.00 "Z" FACTOR - 1.500 MANNING'S FACTOR - 0.030 MAXIMUM DEPTH(PEET) - 4.00 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.836 'UNDEVELOPED WATERSHED RUNOFF COEFFICIENT v .5675 SOIL CLASSIFICATION IS °A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 83.94 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) - 9.09 AVERAGE FLOW DEPTH(FEET) - 1.19 TRAVEL TIME(MIN.) = 1.35 TC(MIN.) - 13.66 SUBAREA AREA(ACRES) = 5.70 SUBAREA RUNOFF(CFS) = 15.64 TOTAL AREA(ACRES) - 23.70 PEAR FLOW RATE(CFS) 91.75 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 1.25 FLOW VELOCITY(FEET /SEC.) - 9.34 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 135.00 - 2284.00 FEET. • a•••.•. a.. a.... r....•.. a.....••.•• •...a.ar...•.•......,.......•.. PLOW PROCESS PROM NODE 130.00 TO NODE 135.00 IS CODS 81 _________________________________ _____________________________ » ... ADDITION OF SUBAREA TO MAINLINE PEAR FLOW-- 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.836 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .8242 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 5.20 SUBAREA RUNOFF(CFS) = 20.73 TOTAL AREA(ACRES) = 28.90 TOTAL RUNOFF(CFS) - 112.48 TC(MIN.) - 13.66 ar a• a.♦..•.••.• aaa•. r...•.....•.•••....•..+. ar •.•.a.a..•.•.•aaaa..•.r.•.a.a. PLOW PROCESS PROM NODE 130.00 10 NODE 135.00 IS CODE = 1 _____________________________________________ _______________________________ »> DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< »»>AND COMPUTE VARIOUS CONFLUENCSD STREAM VALUES « «< =';;;Z NUMBER OF STREAMS v 2=v. CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 13.66 RAINFALL INTENSITY(INCH /HR) = 4.84 TOTAL STREAM AREA(ACRES) c 28.90 PEAR FLOW RATE(CFS) AT CONFLUENCE - 112.48 •• CONFLUENCE DATA •- STREAM ' RUNOFF TC INTENSITY AREA NUMBER (CPS) (MIN.) (INCH /HOUR) (ACRE) 1 25.11 19.66 3.887 7.40 2 112.48 13.66 4.836 28.90 ............................... a. WARNING.a• a....•••••aaaa...•.•.....a..... IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS EASED ON THE RCFC6WCD FORMULA OF PLATE D -1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OP PEAR PLOW. •. aa......• a• aaa.....a. :.aa.....••ru.•aa.r.. u•..•.a•..•......0 su a..... RAINFALL INTENSITY AND TIME OF'CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. •• PEAR FLOW RATE TABLE;* STREAM RUNOFF TC INTENSITY NUMBER (CPS) (MIN.) (INCH /HOUR) 1 1]9.93 13.66 4.836 2 115.52 19.66 3.887 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) c 129.93 Tc(MIN.) = 13.66 TOTAL AREA(ACRES) - 36.30 LONGEST PLOWPATH FROM NODE 120.00 TO NODE 135.00 - 2284.00 FEET. •aFLOW aPROCESS • FROM •NODE ••••135.00•TO• NODE r••• 155'00• IS• CODE • =a.51aa.......r _____________________________________________ _______________________________ » »:COMPUTE TRAPEZOIDAL CHANNEL FLOW-- »» >TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) -- = = 'ccvvv662.50 == = = == =630.00vc ELEVATION DATA : UPSTREAM(FEET) DOWNSTREAM(FEET) CHANNEL LENGTH THRU SUBAREA(FEET) - 529.00 CHANNEL SLOPE v 0.0614 CHANNEL BASE(FEET) - 6.00 "Z" FACTOR - 1.500 MANNING'S FACTOR v 0.030 MAXIMUM DBPTH(PEST) - 4.00 CHANNEL PLOW THRU SUBAREA(CPS) - 129.93 FLOW VELOCITY(FEET /SEC.) = 12.19 FLOW OEPTH(PEET) = 1.33 TRAVEL TIME(MIN.) c 0.72 TC(M IN.) = 14.38 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 155.00 2813.00 FEET. ....••••..a••••. a•a•a...•• ••a.. .aa•a. • •.r aa.•.•.• ................... PLOW PROCESS PROM NODE •135.00 10 NODE •• 155.00 IS CODE = 1 _____________________________________________ _______________________________ --DESIGNATE INDEPENDENT STREAM FOR CONPLUENCE« - _====== cc====cvcc======c v= _____vcv___ == v =__ =____ =______ TOTAL NUMBER OP STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TINS OF CONCENTRATION(MIN.) = 14.38 RAINFALL INTENSITY (INCH/HR) - 4.69 TOTAL STREAM AREA(ACRES) = 36.30 PEAR FLOW RATE(CPS) AT CONFLUENCE = 129.93 .•..•... a......•••....•a. aa. ..• .............. ♦aa.. .... aa.•u • :r.a.....•a u.. FLOW PROCESS FROM NODE 140.00 TO NODE 145.00 IS CODE = 21 _____________________________________________ ________________________ _______ »».RATIONAL METHOD INITIAL SUBAREA ANALYSIS-- == cc = = == cv== vvvcv===== vcvc===== cvc== = == =ccc= =_ =vc= __ "==== __vcv___v =ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER TC v R•((LENGTH••3) /(ELEVATION CHANGE)1••.2 INITIAL SUBAREA PLOW- LENGTH(FEET) = 744.00 UPSTREAM ELEVATION(FEET) 998.00 DOWNSTREAM ELEVATION(FEET) = 697.00 ELEVATION DIFFERENCE( FEET) = 301.00 TC - 0.533•[( 744.00••3)/( 301.001••.2 = 8.967 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 6.217 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .8400 SOIL CLASSIFICATION IS "D" SUBAREA RUNOPF(CFS) = 37.60 TOTAL AREA(ACRES) 7.20 TOTAL RUNOFF(CFS) = 37.60 FLOW PROCESS PROM NODE 160.00 TO NODE 145.00 IS CODE = 81 ____________________________________________________________________________ --ADDITION OF SUBAREA TO MAINLINE PEAR FLOW- - vc=v====v======c==========vcc======== cvv==== =vc === == =ac___=_ °_____ °______ "- 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 6.217 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .6182 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CPS) = 4.23 TOTAL AREA(ACRES) = 8.30 TOTAL RUNOFF(CFS) v 41.82 TC(MIN.) - 8.99 .. u..•. a.... a.... ...•.a.........•a.aar.•.aaa.... uau.. ua....•.aa.a••. u.• FLOW PROCESS FROM NODE 145.00 TO NODE 147.00 IS CODE = 51 _____________________________________________ _______________________________ »».COMPUTE TRAPEZOIDAL CHANNEL FLOW << - »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)-- == ccv= c==== ccccc====== cccvcvv=== = = = =vcc =vv = = = = =ccvv= = = =c= v = = = == vvv = == =cvv = == ELEVATION DATA: UPSTREAM (FEET) = 697.00 DOWNSTREAM(FEET) = 655.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 217.00 CHANNEL SLOPE = 0.1935 CHANNEL BASE(FEET) = 6.00 "Z" FACTOR = 1.500 MANNING 'S FACTOR - 0.030 MAXIMUM DEPTH(PEET) c 4.00 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 6.106 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .6147 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED PLOW(CFS) = 49.71 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.)'= 13.18 AVERAGE FLOW DBPTR(FERT) - 0.55 TRAVEL TIME(MIN.) = 0.27 • Tc(MIN.) - 9.26 SUBAREA AREA(ACRES) = 4.20 SUBAREA RUNOFF(CFS) v 15.76 TOTAL ARSA(ACRES) - 12.50 PEAR FLOW RATE(CFS) = 57.59 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(PERT) = 0.60 PLOW VELOCITY(FEET /SEC.) - 13.91 LONGEST FLOWPATH FROM NODE 140.00 TO NODE 147.00 - 961.00 FEET. ••......•..••.••....... ........ .......••........................ PLOW PROCESS PROM _ ____ NODH 145.00 _ 1'O _ ____ NODE 147.00 _IS _CODE ___81 ----------------- ____------ ______ ------ __ ---- ___ ­­ADDITION OF SUBAREA TO MAINLINE PEAR PLOW«c 100 YEAR RAINFALL INTENSITY(INCH /HOUR) v 6.106 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .8389 SOIL CLASSIFICATION IS "D" SUBAREA. AREA(ACRES) - 0.10 SUBAREA RUNOFF(CFS) = 0.51 TOTAL AREA(ACRES) = 12.60 TOTAL RUNOPF(CPS) = 58.10 TC(MIN.) = 9.26 ..........• ...................... ........•....•................. FLOW PROCESS FROM NODE 146.00 TO NODE 147.00 IS CODE - 81 ­­ADDITION OF SUBAREA TO MAINLINE PEAR FLOW­- 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 6.106 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT v .8389 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) - 4.00 SUBAREA RUNOFF (CPS) - 20.49 TOTAL ARRA(ACRES) v 16.60 TOTAL RUNOPF(CFS) = 78.59 TC(MIN.) - 9.26 FLOW PROCESS FROM NODE 146.00 TO NODE 147.00 IS CODE - 81 »ADDITION OF SUBAREA TO MAINLINE PEAR PLOW«« = = =________ === = = 100 YEAR RAINFALL INTENSITY( INCH / HOUR) = =e= 6.106 = = vv = = = =vv UNDEVELOPED WATERSHED RUNOFF COEFFICIENT v .8389 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 1.40 SUBAREA RUNOPF(CPS) = 7.17 TOTAL AREA(ACRES) = 18.00 TOTAL RUNOFF(CFS) v 85.76 TC(MIN.) - 9.26 .••a.........•.•.•.•..•.• u..•.. .• .......................u.•... PLON PROCESS PROM NODS 147.00 1'O NODE 150.00 IS CODE 51 ­­COMPUTE TRAPEZOIDAL CHANNEL FLOW­ » >TRAVELTIME THRU SUBAREA (EXISTING v ELBMENT)C TREAM(PEET) =e =v= =630.00 = n SELEVATION DATA T == CHANNEL LENGTH THRU SUBAREA(FEET) v 400.00 CHANNEL SLOPE v 0.0625 CHANNEL BASE(FEET) = 6.00 "Z" FACTOR - 1.500 MANNING'S FACTOR v 0.030 MAXIMUM DEPTH(FEET) - 4.00 100 YEAR RAINFALL INTENSITY(INCH /HOUR) v 5.882 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .6074 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) - 97.02 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) v 11.20 AVERAGE PLOW DEPTH(FEET) v 1.13 TRAVEL TIMB(MIN.) - 0.60 TC(MIN.) - 9.86 SUBAREA AREA(ACRES) v 6.30 SUBAREA RUNOFF(CFS) - 22.51 TOTAL AREA(ACRES) - 24.30 PEAK PLOW RATE(CFS) v 108.27. END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) v 1.20 PLOW VELOCITY(FEET /SEC.) - 11.56 LONGEST PLOWPATH FROM NODE 140.00 TO NODE 150.00 = 1361.00 FEET. •.• aaa••..•• aa••.......•♦... ... ...•:......... • ................a...•..•.....• PLOW PROCESS FROM NODE 150.00 TO NODE 155.00 IS CODE - 51 _____________________________________________ _______________________________ »»> COMPUTE TRAPEZOIDAL CHANNEL FLOW­ » >>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)c< = v= ELEVATION DATA: UPSTREAM( FEET)= -v = == 630.00== DOWNSTREAM (FEET) = == 629.90 CHANNEL LENGTH THRU SUBAREA(FEET) = 372.00 CHANNEL SLOPE = 0.0003 CHANNEL BASE(FRET) - 6.00 "Z" FACTOR = 1.500 MANNING 'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00 , = =»WARNING: PLOW IN CHANNEL EXCEEDS CHANNEL CAPACITY( NORMAL DEPTH EQUAL TO SPECIFIED MAXIMUM ALLOWABLE DEPTH). AS AN APPROXIMATION, FLOWDEPTH IS SET AT MAXIMUM ALLOWABLE DEPTH AND IS USED FOR TRAVELTIME CALCULATIONS. CHANNEL FLOW THRU SUBAREA(CFS) = 108.27 PLOW VELOCITY(FEET /SEC.) - 2.26 FLOW DEPTH(PEST) - 4.00 TRAVEL TIME(MIN.) = 2.75 Tc(MIN.) = 12.61 LONGEST FLOWPATH FROM NODE 140.00 TO NODE 155.00 v 1733.00 FEET. FLOW PROCESS FROM NODE 150.00 TO NODE 155.00 IS CODE v 3 _____________________________________________ _______________________________ »»DESIGNATE INDEPENDENT STREAM FOR CONPLUENCEcc >> » AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES­- ............ 7­­­ ...... .TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) v 12.61 RAINFALL INTENSITY(INCH /HR) - 5.07 TOTAL STREAM AREA(ACRES) v 24.30 PEAR FLOW RATE(CFS) AT CONFLUENCE - 108.27 •• CONPLVENCB DATA •- STREAM RUNOFF Tc INTENSITY AREA NUMBER (CPS) (MIN.) (INCA /HOUR) (ACRE) 1 129.93 14.38 4.688 36.30 2 108.27 12.61 5.075 24.30 •••• .......•. •..........•....a.• WARNING... ......•...•.a.a...•............ IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D -1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OP PEAK PLOW. RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. •• PEAR FLOW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 222.13 12.61 5.075 2 229.95 14.38 4.688 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CPS) v 229.95 TC(MIN.) v 14.38 • TOTAL AREA(ACRES) = 60.60 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 155.00 v 2813.00 FEET. ..... aa.•.......• u........• a .............• a. aa......a... :......aiaa.......a PLOW PROCESS PROM NODS 155.00 - NODE 180.00 IS CODE = 51 __________________________________ _______ ____________________-------------- »COMPUTE TRAPEZOIDAL CHANNEL PLOW - »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< veELEVATION DATA: vUPSTREAM(FEET) = 635.00 = =DOWNSTREAM(FEET) = - = =.634 00 CHANNEL LENGTH THRU SUBAREA(FEET) = 93.00 CHANNEL SLOPE = 0.0108 CHANNEL RASE(PEET) 6.00 "Z" FACTOR - 1.500 MANNING 'S FACTOR - 0.030 MAXIMUM DEPTH(FEET) = 4.00 CHANNEL FLOW THRU SUBAREA(CFS) n 229.95 FLOW VELOCITY(FEET/SEC. ) = 7.68 PLOW DEPTH(FEET) = 2.90 TRAVEL TIME(MIN.) - 0.20 Tc(MIN.) 14.59 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 180.00 = 2906.00 FEET. ....... a ............. .....................a......... a.a. .......•. uaa..♦ FLOW PROCESS FROM NODE 155.00 TO NODE 180.00 IS CODE - 1 _____________________________________________ _______________________________ -- DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE- ­TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.59 RAINFALL INTENSITY(INCH /HR) - 4.65 TOTAL STREAM AREA(ACRES) = 60.60 PEAK FLOW RATE(CPS) AT CONFLUENCE n 229.95 ............................ FLO PROCESS FROM NODE 170. • aa•• .....a. 00 TO NODE 175.00` ISaCODE• =•, 21aa. _____________________________________________ _______________________________ » >>RATIONAL METHOD INITIAL SUBAREA ANALYSIS­- .... SUMED INITIAL...===== UHI PO EMvvv== = = =_=_ = = =v_=_ = == nn= n= = = DEVELOPMENT IS SINGLE FAMILY (1/4 ACRE) TC - Ka[( LENGTH• "3) /(ELEVATION CHANGE)). ".2 INITIAL SUBAREA PLOW- LENGTH(FEET) = 988.00 UPSTREAM ELEVATION(FEET) = 664.00 DOWNSTREAM ELEVATION(PEET) = 635.00 ELEVATION DIPFERENCE(FEET) = 29.00 TC = 0.393•[( 988.00 " "3) /( 29.00))•'.2 - 12.541 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.090 SINGLE- FAMILY ACRE LOT) RUNOFF COEFFICIENT = .7391 SOIL CLASSIFICATION IS "A° SUBAREA RUNOFF(CFS) v 15.05 TOTAL AREA(ACRES) v 4.00 TOTAL RUNOFP(CFS) - 15,.05 ...................... ............................... a.. ........ ............ PLOW PROCESS FROM NODE 170.00 TO NODE 175.00 IS CODE - 81 _____________________________________________ _______________________________ »» .ADDITION OF SUBAREA TO MAINLINE PEAK PLOW<c == =100 YEAR RAINFALL INTENSITY( INCH / HOUR) = = =v5 =050 == = == = == nvavv = = == v == = = = = =n COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8678 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CPS) = 2.65 TOTAL AREA(ACRES) 4.60 TOTAL RUNOPF(CFS) = 17.70 TC(MIN.) = 12.54 u.....•........aaa ua .a ................. - ....... ...0 aa....a.........u.. FLOW PROCESS FROM NODE 170.00 TO NODE 175.00 IS CODE v 81 46 0 ------------------------------------------------- -- » ... ADDITION OF SUBAREA TO MAINLINE PEAR FLOW«« 100 YEAR RAINFALL INTENSITY(INCH /HOUR).' 5.090 UNDEVELOPED WATERSHED RUNOFF.COEFFICIENT v .8277 SOIL CLASSIFICATION IS "D° SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF (CPS) = 0.42 TOTAL AREA(ACRES) 4.70 TOTAL RUNOFF(CPS) = 18.12 TC(MIN.) = 12.54 ••PLOW PROCESS•PROWNODB••a•175fOOaTO• NODE ,•'•1BO.00•ISaCODBf =••31••a••' _____________________________________________ _______________________________ » »:COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««c > us ING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE PLOW) «« = =ELEVATION DATA:nUPSTREAM(PEET) = 634.00 DOWNSTREAM(FEET) = = 633.90 FLOW LENGTH(FEET) - 130.00 MANNING' S N n 0.013 DEPTH OF PLOW IN 39.0 INCH PIPE IS 26.7 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 3.00 ESTIMATED PIPE DIAMETER(INCH) - 39.00 NUMBER OF PIPES = 1 PIPE-FLOW(CPS) v l 8.12 PIPE TRAVEL TIME(MIN.) - 0.72 Tc(MIN.) = 13.26 LONGEST FLOWPATH FROM NODE 170.00 TO NODE 180.00 = 1118.00 FEET. •.....a....... aaa....••• aa... aaaa....• aa ..... ............................... PLOW **********;ROM NODE 175.00 TO NODE 180.00 IS CODE = 1 _____________________________________________ _______________________________ ::-DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE. - -AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< TOTAL ..2 ... OP STREAMS ===.v= v CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: .TIME OF CONCENTRATION(MIN.) - 13.26 RAINFALL INTENSITY(INCH /HR) - 4.92 TOTAL STREAM AREA(ACRES) = 4.70 PEAK FLOW RATE(CFS) AT CONFLUENCE - 18.12 ** CONFLUENCE DATA "" STREAM RUNOFF Tc INTENSITY AREA (INC NUMBER (CPS) (MIN.H /HOUR) (ACRE) 1 229.95 14.59 4.649 60.60 2 18.12 13.26 4.922 4.70 •......a..a......a.......... aaa.. WARNING••• "• " " "a.a....aa.a...aa.........a IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS EASED ON THE RCFC6WCD FORMULA OF PLATE D -1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OP PHAR PLOW. •..aa..... aaa......•• aaa.......•..••....• a . ..............aaaa....a.a...... RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. - PEAR FLOW RATE TABLE a" STREAM RUNOFF TC INTENSITY NUMBER (CPS) (MIN.) (INCH /HOUR) 1 227.23 13.26 4.922 2 247.07 14.59 4.649 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) v 247.07 Tc(MIN.) - 14.59 TOTAL AREA(ACRES) = 65.30 LONGEST FLOWPATH PROM NODE 120.00 TO NODE 180.00 = 2906.00 FEET. PLOW PROCESS PROM NODS 180.00 1'0 NODS 220.00 IS CODE = 51 -- COMPUTE TRAPEZOIDAL CHANNEL FLOW - - »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) - - - =ELEVATION DATA: =UPSTREAM(PEBT) == = =634.00 =DOWNSTREAM (FEET). = = == =612 OOvv CHANNEL LENGTH THRU SUBAREA(FEBT) v 626.00 CHANNEL SLOPE _ 0.0350 CHANNEL BASE(PEST) . 6.00 "Z" FACTOR = 1.500 MANNING 'S FACTOR - 0.030 MAXIMUM DEPTH(FEET) . 4.00 100 YEAR RAINFALL INTENSITY(INCH /HOUR) v 4.490 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT . .5518 SOIL CLASSIPICATION IS 'A° TRAVEL TIME COMPUTED USING ESTIMATED PLOW(CFS) = 248.19 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) v 12.02 AVERAGE FLOW DEPTN(PEET) . 2.22 TRAVEL TIME(MIN.) - 0.87 TC(MIN.) v 15.46 SUBAREA AREA(ACRES) = 0.90 SUBAREA RUNOFF(CPS) - 2.23 TOTAL AREA(ACRES) = 66.20 PEAK FLOW RATE(CFS) - 249.30 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 2.22 FLOW VELOCITY(FEET /SEC.) v 12.06 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 220.00 - 3534.00 FEET. .. a ..............•. a............ w. a.•.. a....• •.......a...................... FLOW PROCESS FROM NODE 180.00 TO NODE 220.00 IS CODE - 1 _____________________________________________ _______________________________ --DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 15-.46 RAINFALL INTENSITY(INCH /HR) - 4.49 TOTAL STREAM ARRA(ACRES) . 66.20 PEAR FLOW RATE(CFS) AT CONFLUENCE - 249.30 ..... a.. a.......w. a....... a......w.w.w a... aaa ............................... PLOW PROCESS PROM NODH ____ 210.00 _TO _ ___ _ NODE 215.00 _IS _CODE ___21 _____________________________________________________________ --RATIONAL METHOD INITIAL SUBAREA ANALYSIS« - .......... ASSUMED INITIAL =SUBAREn USIYORM...__ === _______ __ =e_= DEVELOPMENT IS: UNDEVELOPED WITH.POOR COVER TC Kw[( LENGTH "3) /(ELEVATION CHANGE))aa.2 INITIAL SUBAREA FLOW- LENGTH(FEET) - 1075.00 UPSTREAM ELEVATION(FEET) - 927'.00 DOWNSTREAM ELEVATION(FEET) - 636.00 ELEVATION DIFFERENCE(FEET) v 291.00 TC - 0.533'[( 1075.00••3)/( 291.00)1••.2 - 11.284 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.423 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .5912 SOIL CLASSIFICATION IS "A• SUBAREA RUNOFF(CPS) _ . 18.27 TOTAL ARRA(ACRES) v 5.70 TOTAL RUNOFF(CFS) = 18.27 ................ u..... ...a.a..........- - ........*......a........... u..• FLOW PROCESS FROM NODE 210.00 TO NODE 215.00 IS CODE - 81 _____________________________________________ _______________________________ »»>ADDITION OF SUBAREA TO MAINLINE PEAR FLOW« - _______====. vv= .... = v= = ... ____. = =.=.v... =._________.= =..vvvv. =. = =_____=. =..v 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.423 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT .8318 SOIL CLASSIFICATION IS °D. SUBAREA AREA(ACRES) a 2.30 SUBAREA RUNOFF(CFS) = 10.38 TOTAL AREA(ACRES) _ 8.00 TOTAL RUNOFF(CFS) - 28.65 TC(MIN.) = 11.28 PLOW PROCESS PROM NODE 715.00 TO NODE aao.00 IS CODE = 51 -- COMPUTE TRAPEZOIDAL CHANNEL FLOW -- -> >TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) -- ELEVATION DATA: UPSTREAM(FEET) 636.00 DOWNSTREAM(FEET) . 612.00 CHANNEL LENGTH THRU SUBAREA(PEET) = 690.00 CHANNEL SLOPE = 0.0348 CHANNEL BASE(FEET) v 6.00 "Z" FACTOR - 1.500 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00 100 YEAR RAINFALL INTENSITY(INCH /HOUR) v 4.983 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .5738 SOIL CLASSIFICATION IS "A° TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 36.53 TRAVEL TIME T XU SUBAREA BASED ON VELOCITY(FEET /SEC.) - 6.73 AVERAGE PLOW DEPTH(PEET) - 0.76 TRAVEL TIME(MIN.) = 1.71 TC(MIN.) 12.99 SUBAREA AREA(ACRES) 5.50 SUBAREA RUNOFF(CFS) = 15.73 TOTAL AREA(ACRES) v 13.50 PEAR FLOW RATE(CFS) = 44.38 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) .. 0.85 FLOW VELOCITY(FEET /SEC.) - 7.16 LONGEST FLOWPATH FROM NODE 210.00 TO NODE 220.00 = 1765.00 FEET. .............. u....••......•.••.. ....... +a......... .. ........ au. ........• PLOW PROCESS FROM NODE 215.00 TO NODE 220.00 IS CODE = 81 _____________________________________________ _______________________________ --ADDITION OF SUBAREA TO MAINLINE PEAK FLOW- - 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.983 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT .8263' SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOFP(CFS) - 2.88 TOTAL AREA(ACRES) = 14.20 TOTAL RUNOFF(CFS) = 47.26 TC(MIN.) = 12.99 ..............•...w.......................... ............................... FLOW PROCESS FROM NODE 215.00 TO NODE 220.00 IS CODE - 1 _____________________________________________ _______________________________ --DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE-- < » » >AND COMPUTE VARIOUS CONPLUENCED STREAM VALUES-- = = =. =.v TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) = 12.99 RAINFALL INTENSITY(INCH /HR) = 4.98 TOTAL STREAM AREA(ACRES) = 14.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 47.26 a= CONFLUENCE DATA " STREAM RUNOFF TC INTENSITY AREA NUMBER (CPS) (MIN.) (INCH /HOUR) (ACRE) 1 249.30 15.46 4.490 66.20 2 47.26 12.99 4.983 14.20 ............... ... ......... .aa ... WARNING......... . ... .... aa.a .... .a....... IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC6WCD FORMULA OF.PLATE D -1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NHCESSARILY RESULT IN THE MABIMUM VALUE OP PEAR PLOW. ........ u... u.... ....ru...0 ..................... u.................... RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. •• PEAR PLOW RATE TABLE •• STREAM RUNOFF TC INTENSITY NUMBER (CPS) (MIN.) (INCA /HOUR) 1 256.82 12.99 4.983 2 291.88 15.46 4.490 COMPUTED CONFLUENCE ESTIMATES -ARE AS FOLLOWS: PEAR FLOW RATE(CPS) - 291.88 TC(MIN.) n 15.46 TOTAL AREA(ACRES) - So LONGEST PLOWPATH PROM NODE 120.00 TO NODE 220.00 = 3534.00 FEET. .... ... ........ ........ .......... ........r............ •........• FLOW PROCESS FROM NODE 200.00 TO NODE 220.00 IS CODE n 81 _________________________________ _______________________________ --ADDITION OF SUBAREA TO MAINLINE PEAR FLOW-- 100 YEAR RAINFALL INTENSITY(INCH /HOUR) n 4.490 SINGLE- PAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT - .7259 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 4.20 SUBAREA RUNOFF(CPS) - 13.69 TOTAL AREA(ACRES) = 84.60 TOTAL RUNOFF(CFS) - 305.57 TC(MIN.) = 15.46 ................................ ................................ PLOW PROCESS FROM NODE 200.00 TO NODE 220.00 IS CODE n 81 _________________________________ _______________________________ » »)ADDITION OF SUBAREA TO MAINLINE PEAR FLOW-- 100 YEAR RAINFALL INTENSITY(INCH /HOUR) - 4.490 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT - .8652 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) - 0.80 SUBAREA RUNOFF(CFS) 3.11 TOTAL A( AREACRES) n 85.40 TOTAL RUNOPP(CFS) n 308.68 TC(MIN.) = 15.46 ........... u......... a .......... ............................... FLOW PROCESS PROM NODE 200.00 TO NODS 220.00 IS CODE 81 _________________________________ _________ ______________________ --ADDITION OF SUBAREA TO MAINLINE PEAR FLOW -- 100 YEAR RAINFALL INTENSITY(INCH /HOUR) - 4.490 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT - .8652 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOPP(CFS) = 3.11 TOTAL AREA(ACRES) 86.20 TOTAL RUNOFF(CFS) - 311.79 TC(MIN.) = 15.46 FLOW PROCESS FROM NODE 220.00 TO NODE 250.00 IS CODE v 1 _____________________________________________ _______________________________ - -DESIGNATE INDEPENDENT STREAM FOR CONPLUENCE-- __===== nn= c= c= ccv== ev=====___===== nn=== ec =v__ =__v_ ==_ = =__n ==c_= = = =____ TOTAL NUMBER OP STREAMS 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) - 15.46 RAINFALL INTENSITY(INCH /HR) n 4.49 TOTAL STREAM AREA(ACRES) n 86.20 PEAR FLOW RATE(CPS) AT CONFLUENCE = 311.79 •............a......... ........ ................................. PLOW PROCESS PROM NODE 230.00 TO NODS 235.00 IS CODH = 21 -------------------------------------------------- ____ ---- ______ --RATIONAL METHOD INITIAL SUBAREA ANALYSIS-- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = R•[(LENGTH••3) /(ELEVATION CHANGE))••.2 INITIAL SUBAREA FLOW- LENGTH(FEET) = 1117.00 UPSTREAM ELEVATION(FEET) v 665.00 DOWNSTREAM ELEVATION(FEET) n 626.30 ' ELEVATION DIFFERENCE( PE ET) - 38.70 TC - 0.303•[( 1117.00••3)/( 38.70))••.2 - 9.837 100 YEAR RAINFALL INTENSITY(INCH /HOUR) - 5.889 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT v .8708 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF(CPS) v 7.18 TOTAL AREA(ACRES) = 1.40 TOTAL RUNOFF(CFS) = 7.18 FLOW PROCESS FROM NODE 230.00 TO NODE 235.00 IS _______________________________ CODE = 81 _____________________________________________ »»)ADDITION OF SUBAREA TO MAINLINE PEAR FLOW -- ==== c= c= _n = = =_ = =n =c°°= = =_________ _ _ __ =eves= 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.889 ____c___== UNDEVELOPED WATERSHED RUNOFF COEFFICIENT .6076 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) - 1.20 SUBAREA RUNOFF(CFS) - 4.29 TOTAL AREA(ACRES) 2.60 TOTAL RUNOFF(CFS) = 11.47 TC(MIN.) = 9.84 • ............... r.............www............ ............•......... PLOW PROCESS FROM NODE 230.00 TO NODE 235.00 IS _______________________________ :.....aw. CODE - 81 _____________________________________________ --ADDITION OF SUBAREA TO MAINLINE PEAR FLOW-- 100 YEAR RAINFALL INTENSITY(INCH /HOUR) 5.889 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT n .8368 SOIL CLASSI PICATION IS "D" SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CPS) 4.93 TOTAL AREA(ACRES) 3.60 TOTAL RUNOFF(CPS) _ '16.40 A( TC(MIN.) = 9.84 PLOW PROCESS FROM NODE 230.00 TO NODE 235.00 IS _______________________________ CODE 81 _____________________________________________ ,,-ADDITION OF SUBAREA TO MAINLINE PEAR FLOW-- = = =________________ nc= c========= c=====_________ __ = = = = =c =c = 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.889 = SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT - .7538 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) - 2.70 SUBAREA RUNOFF(CFS) = 11.99 TOTAL AREA(ACRES) = 6.30 TOTAL RUNOFF(CPS) = 28.39 TC(MIN.) - 9.84 FLOW PROCESS FROM NODE 230.00 TO NODE 235.00 IS CODE = 81 _________________________________ _______________________________ » -ADDITION OF SUBAREA TO MAINLINE PEAR FLOW-- 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.889 • SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .8684 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) = 1.70 SUBAREA RUNOFF(CFS) v 8.69 TOTAL AREA(ACRES) 8.00 TOTAL RUNOFF(CFS) = 37.08 TC(MIN.) v 9.84 . a...... a.. au.....•.. a... a..... ••.. ... .....a.......a........u• FLOW PROCESS FROM NODE 230.00 TO NODE 235.00 IS CODE v 81 _________________________________ ___________ _________ ____ _______ »»:ADDITION OF SUBAREA TO MAINLINE PEAR FLOW­- 100 YEAR RAINFALL INTENSITY(INCH /HOUR) - 5.889 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT - .8937 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) n 0.50 SUBAREA RUNOPP(CFS) a 2.63 TOTAL AREA(ACRES) = 8.50 TOTAL RUNOFF(CFS) v 39.71 TC(MIN.) = 9.84 **;LOW PLOW PROCESS FROM NODE 235.00 TO NODS 240.00 IS CODE - 31 ­­COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA«« » >> USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE FLOW)<c = ELEVATION =DATA UPSTREAM(FRET) = v623 30 = DOWNSTREAM(FEET)a =a 621.00 a FLOW LENGTH(FEET) n 25.00 MANNING'S N v 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 14.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 21.85 ESTIMATED PIPE DIAMETER(INCH) v 21.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) - 39.71 PIPE TRAVEL TIME(MIN.) = 0.02 TC(MIN.) v 9.86 LONGEST FLOWPATH FROM NODE 230.00 TO NODE 240.00 - 1142.00 FEET. a. a.......... a ............. a..aa........... a. aaaa.a.........a..........a...• FLOW PROCESS FROM NODE 236.00 TO NODE 240.00 IS CODE = 81 _____________________________________________ _____________ __ ________________ ­­ADDITION OF SUBAREA TO MAINLINE PEAR FLOW­- ........... = 100a YEAR °RAINFALL °INTENSITY (INCH /HOUR)a = =a5 882vvvv=== = = =v = = == SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT n ,7537 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) v 1.00 SUBAREA RUNOFF(CFS) - 4.43 TOTAL AREA(ACRES) = 9.50 TOTAL RUNOFF(CFS) v 44.14 TC(MIN.) - 9.86 ..• a. a......•.....••.. a.....aa ..............• .....i......................... PLOW PROCESS FROM NODE 236.00 T'O NODE 240.00 IS CODE = 81 _____________________________________________ _______ ________________________ »»,ADDITION OF SUBAREA TO MAINLINE PEAK FLOW -« v vvn= vv= vv=== = °` " =......vv° ° 100 YEAR RAINFALL INTENSITY(INQ;HOUR) v 5.882 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8707 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) - 0.20 SUBAREA RUNOFF(CFS) = 1.02 TOTAL AREA(ACRES) = 9.70 TOTAL RUNOFF(CPS) = 45.17 TC(MIN.) v 9.86 FLOW PROCESS FROM NODE 236.00 TO NODE 240.00 IS CODE = 81 _________________________________ _________________________ ______ --ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« RAINFALL INTENSITY(INCH /HOUR) = 5.882 • • UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .6074 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) - 0.10 SUBAREA RUNOFF(CPS) v 0.36 TOTAL = TOTAL RUNOFF(CFS) = 45.53 TC(MIN.) = 9.86 ...........•.a..•..aa. a... a. aaaa. ....aa....ua ..................a FLOW PROCESS FROM NODE 240.00 70 NODE 245.00 IS CODE - 31 »»:COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA­- >> USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE FLOW) «« ELEVATION DATA UPSTREAM(FEET) = a °621 00 DOWNSTREAM(FEET) v 609.00 =vn FLOW LENGTH(FEET) 427.00 MANNING'S N v 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 20.0 INCHES PIPS -FLOW VELOCITY(FEET /SEC.) = 14.40 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 45.53 PIPE TRAVEL TIME(MIN.) v 0.49 TC(MIN.) = 10.35 LONGEST FLOWPATH FROM NODE 230.00 TO NODE 245.00 - 1569.00 FEET. .....•.........a..•�..•...♦..0 u... a. i:.... a.....aa .............aa.a...... FLOW PROCESS FROM NODE 241.00 TO NODE 245.00 IS CODE - 81 _________________________________.____________ _____________- ____- ____________ »»:ADDITION OF SUBAREA TO MAINLINE PEAR FLOW -« 100 YEAR RAINFALL INTENSITY(INCH /HOUR) n 5.712 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT = .7508 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) - 1.60 SUBAREA RUNOFF(CFS) - 6.86 TOTAL AREA(ACRES) = 11.40 TOTAL RUNOPF(CFS) = 52.39 TC(MIN.) = 10.35 FLOW PROCESS FROM NODE 241.00 TO NODE 245.00 IS CODE = 81 _____________________________________________ ___ ___________ _____________ ____ » »:ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« « 100 YEAR RAINFALL INTENSITY(INCH /HOUR) v 5.712 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8702 SOIL CLASSIFICATION IS "A" SUBAREA AREAIACRES) = 0.30 SUBAREA RUNOFF(CFS) v 1.49 TOTAL AREA(ACRES) 11.70 TOTAL RUNOFF(CFS) = 53.88 TC(MIN.) v 10.35 ....aa asa.•.•. aa.a...••. a. a......• aa. a•a...• a .••...a .............a.........• FLOW PROCESS FROM NODE 242.00 TO NODE 245.00 IS CODE = 81 _____________________________________________ ______________________ _________ »». ADDITION OF SUBAREA TO MAINLINE PEAK FLOW­ 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.712 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .6016 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) - 0.20 SUBAREA RUNOPF(CFS) v 0.69 TOTAL AREA(ACRES) = 11.90 TOTAL RUNOFF(CFS) = 54.56 TC(MIN.) v 10.35 FLOW PROCESS FROM NODE 242.00 TO NODE 245.00 IS CODE = 81 ________________________________________________________________ --ADDITION OF SUBAREA TO MAINLINE PEAK PLOW-< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) - 5.712 SINGLE- PAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT - .7508 SOIL CLASSIFICATION IS "A• SUBAREA AREA(ACRES) v 0.80 SUBAREA RUNOFF(CPS) - 3.43 TOTAL AREA(ACRES) = 12.70 TOTAL RUNOPF(CPS) - 58.00 TC(MIN.) = 10.35 •........aaaaaaaa.. .............. ......,...... +s... u..... +...... FLOW PROCESS FROM NODE 242.00 TO NODE 245.00 IS CODE v 81 ________________________________________________________________ ­­ADDITION OF SUBAREA TO MAINLINE PEAR FLOW-­ 100 YEAR RAINFALL INTENSITY(INCH /HOUR) - 5.712 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT v .8702 SOIL CLASSIFICATION IS "A• SUBAREA AREA(ACRES) - 0.20 SUBAREA RUNOFF(CFS) = 0.99 TOTAL AREA(ACRES) = 12.90 TOTAL RUNOFF(CFS) - 58.99 TC(MIN.) n 10.35 FLOW PROCESS FROM NODE 245.00 TO NODE 250.00 IS CODE = 31 » »,COMPUTE PIPE -FLOW TRAVEL TIME TERM SUBAREA- , > USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE PLOW) «e ELEVATION DATA:vUPSTREAM(PEE7 =v609n00 == DOWNSTREAM(PEBT ) v = == =604 00 = = == FLOW LENGTH(FEHT) - 194.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 22.7 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) v 14.83 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES - 1 PIPE- FLOW(CFS) - 58.99 PIPE TRAVEL TIME(MIN.) - 0.22 TC(MIN.) v 10.57 LONGEST FLOWPATH FROM NODE 230.00 TO NODE 250.00 - 1763.00 FEET. ............ a.. a ................• ................a....a...a..... FLOW PROCESS FROM NODE 245:00 TO NODE 250.00 IS CODE n 1 »DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE «« » »: AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES -e EROF STREAMS CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.57 RAINFALL INTENSITY(INCH /HR) v 5.64 TOTAL STREAM AREA(ACRES) = 12.90 PEAR FLOW RATE(CFS) AT CONFLUENCE = 58.99 as CONFLUENCE DATA - STREAM RUNOFF TC INTENSITY AREA NUMBER (CPS) (MIN.) (INCH /HOUR) (ACRE) 1 311.79 15.46 4.490 86.20 . 2 58.99 10.57 5.641 12.90 IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D -1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK PLOW. RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. -a PEAK FLOW RATE TABLE ** STREAM RUNOFF TC INTENSITY NUMBER (CPS) (MIN.) (INCH /HOUR) 1 272.17 10.57 5.641 2 358.75 15.46 4.490 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CPS) - 358.75 Tc(MIN.) = 15.46 TOTAL AREACRES) = 99.10 A( LONGEST FLOWPATH FROM NODE 120.00 TO NODE 250.00 3534.00 FEET. •• PLOW PROCESS•FROM•NODB• �•250•OO•T0•NODHa•••285•00 IS, CODE aeaa51..aaaa.... ________________ ______ ____ _____ _____________________________________________ » »:COMPUTE TRAPEZOIDAL CHANNEL FLOW - » »>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) «« ELEVATION DATA: UPSTREAM(FEET) _= 604.00 DOWNSTREAM(FEET) = 567.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 850.00 CHANNEL SLOPE 0.0435 CHANNEL BASE (FEET) v 6.00 "Z" FACTOR = 1.500 MANNING'S FACTOR­ 0.030 MAXIMUM DEPTH(FEET) - 4.00 100 YEAR RAINFALL INTENSITY(INCH /HOUR) 4.328 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .5439 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) v 367.34 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) - 14.47 AVERAGE FLOW DEPTH(FEET) - 2.57 TRAVEL TIME(MIN.) - 0.98 T.(MIN.) = 16.44 SUBAREA AREA(ACRES) = 7.30 SUBAREA RUNOFF(CPS) = 17.18 TOTAL AREA(ACRES) = 106.40 PEAR FLOW RATE(CFS) v 375.93 END OF SUBAREA CHANNEL PLOW HYDRAULICS: DEPTH(FBET) v 2.60 PLOW VELOCITY(FEET /SEC.) - 14.57 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 285.00 = 4384.00 FEET. .......... - .... . a. a ............. aa........................u..... a FLOW PROCESS FROM NODE 280.00 TO NODE 285.00 IS CODE = 81 _______ ____ _____ ____ ___ ...... a. ________ _____________________________________________ »»:ADDITION OP SUBAREA TO MAINLINE PEAR FLOW« « = = = == == =c_ =__ =_______________ === vv======= v========== n== v======= v== v======= =n 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.328 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .5439 , SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) - 4.60 SUBAREA RUNOFF(CFS) v 10.83 TOTAL AREA(ACRES) 111.00 TOTAL RUNOFF(CFS) = 386.76 TC(MIN.) - 16.44 FLOW PROCESS FROM NODE 250.00 TO NODE 285.00 IS CODE = 1 _________ __________ ____ ______ _____________________________________________ __ »»-DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE-­ TOTAL NUMBER OF STREAMS 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) - 16.44 RAINFALL INTENSITY(INCH /HR) = 4.33 'TOTAL STREAM AREA(ACRES) - 111.00' ' PEAR FLOW RATE(CFS) AT CONFLUENCE v 386.76 PLOW PROCESS FROM NODE 260.00 TO NODE 265.00 IS CODE _ -21 _________________________________ ____ ___________ ______ __________ a >>RATIONAL METHOD INITIAL SUBAREA ANALYSIS­ ASSUMED INITIAL SUBAREA UNIFORM • DEVELOPMENT IS SINGLE FAMILY (1 /4 ACRE) TC v K•[(LENGTH••3) /(ELEVATION CHANGEH'.. 2 INITIAL SUBAREA PLOW- LENGTH(PERT) - 792.00 UPSTREAM ELEVATION(PEET) n 626.00 DOWNSTREAM ELEVATION(PEET) a 601.00 ELEVATION DIFFERENCE ( FEET) = 25.00 TC - 0.393•[( 792.00••3)1( 25.00))•••2 = 11.314 100 YEAR RAINFALL INTENSITY(INCH /HOUR) - 5.415 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT - .7454 SOIL CLASSIFICATION IS "A° SUBAREA RUNOPP(CFS) = 19.37 TOTAL AREA(ACRES) - 4.80 TOTAL RUNOFF(CFS) = 19.37 PLOW PROCESS FROM NODE 260.00 TO NODE 265.00 IS CODE - 81 ------------------ _----------------------------------- _--------- ­­ADDITION OF SUBAREA TO MAINLINE PEAR FLOW« « 100 YEAR RAINFALL INTENSITY(INCH /HOUR) - 5.415 7.81 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT v .8659 SOIL CLASSIFICATION IS •D" TC(MIN.) - 11.88 SUBAREA AREA(ACRES) - 0.50 SUBAREA RUNOFF(CFS) v 2.34 TOTAL AREA(ACRES) v 5.30 'TOTAL RUNOPF(CPS) = 21.72 TC(MIN.) n 11.31 100 YEAR RAINFALL INTENSITY(INCH /HOUR) - 5.258 ............................................. ............................... FLOW PROCESS FROM NODE 260.00 TO NODE 265.00 IS CODE n 81 ____________ ______________________________________________ __________________ » >>ADDITION OF SUBAREA TO MAINLINE PEAR PLOW -« SOIL CLASSIFICATION IS "A" 100 YEAR RAINFALL INTENSITY(INCH /HOUR) v 5.415 SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .5908 TOTAL AREA(ACRES) a 10.50 TOTAL RUNOFF(CFS) v SOIL CLASSIFICATION IS "A" TC(MIN.) a 11.88 ' SUBAREA AREA(ACRES) - 1.40 SUBAREA RUNOFF(CPS) 4.48 TOTAL AREA(ACRES) 6.70 TOTAL RUNOFF(CFS) v 26.20 TC(MIN.) v 11.31 100 YEAR RAINFALL INTENSITY(INCH /HOUR) 5.258 .... ...... ....:.................... ..... ...... ... ............. .. FLOW PROCESS FROM NODE 260.00 TO NODE 265.00 IS CODE - 81 _________________________________ _______________________________ » >>ADDITION OF SUBAREA TO MAINLINE PEAR FLOW-- 100 YEAR RAINFALL INTENSITY(INCH /HOUR) - 5.415 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8691 SOIL CLASSIFICATION IS =A" SUBAREA ARRA(ACRES) - 1.20 SUBAREA RUNOFF(CFS) - 5.65 TOTAL AREA(ACRES) v 7.90 TOTAL RUNOFF(CFS) a 31.84 TC(MIN.) = 11.31 ................................. ............................... FLOW PROCESS FROM NODE 265.00 TO NODE 270.00 IS CODE - 31 »COMPUTE PIPE -FLOW TRAVEL TIME THEM SUBAREA «« » >>USING COMPUTER- ESTIMATED PIPESIZE (NON - PRESSURE FLOW) ­ EL EVATIONnDATA:nUPSTREAM (F88T) = = == =597 00 nDOWNSTRBAM (PEBT)- = = = =578v00vvca FLOW LENGTH(PEET) v 508.00 MANNING'S N n 0.013 DEPTH OF PLOW IN 24.0 INCH PIPE IS 15.5 INCHES PIPE -PLOW VELOCITY(FEET /SEC.) = 14.88 ESTIMATED PIPE DIAMETER(INCH) a 24.00 NUMBER OF PIPES v 1 PIPE- FLOW(CPS) - 31.84 PIPE TRAVEL TIME(MIN.) a 0.57 TC(MIN.) - 11.88 LONGEST FLOWPATH FROM NODE 260.00 TO NODE 270.00 n 1300.00 FEET. • • ......... u......... u ........... ............................... PLOW PROCESS PROM NODE 266.00 TO NODE 270.00 IS CODE - 81 _________________________________ _____________________________ __ --ADDITION OF SUBAREA TO MAINLINE PEAR PLOW«< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) n 5.258 SINGLE- PAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT n .7424 SOIL CLASSIFICATION IS °A° SUBAREA AREA(ACRES) = 2.00 SUBAREA RUNOFF(CFS) - 7.81 TOTAL AREA(ACRES) 9.90 TOTAL RUNOFF(CFS) - 39.65 TC(MIN.) - 11.88 ............................................. ........................... PLOW PROCESS FROM NODE 266.00 10 NODE 270.00 IS _______________________________ :... CODE - 81 _____________________________________________ ,.-ADDITION OF SUBAREA TO MAINLINE PEAR FLOW-- 100 YEAR RAINFALL INTENSITY(INCH /HOUR) - 5.258 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8685 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = 2.74 TOTAL AREA(ACRES) a 10.50 TOTAL RUNOFF(CFS) v 42.39 TC(MIN.) a 11.88 ' ............................................. ............................... FLOW PROCESS FROM NODE 266.00 TO NODE 270.00 IS _______________________________ CODE = 81 _____________________________________________ » >>ADDITION OF SUBAREA TO MAINLINE PEAR FLOW -c ' 100 YEAR RAINFALL INTENSITY(INCH /HOUR) 5.258 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT .5848 SOIL CLASSIFICATION IS "A^ SUBAREA AREA(ACRES) = 0.70 SUBAREA RUNOFF(CFS) = 2.15 , TOTAL AREA(ACRES) 11.20 TOTAL RUNOFF(CFS) v 44.54 TC(MIN.) n 11.88 ............................................. ............................... FLOW PROCESS FROM NODE 267.00 TO NODE 270.00 IS _____________ CODE = 81 __________________ _____________________________________________ ­­ADDITION OF SUBAREA TO MAINLINE PEAK FLOWcc = a = = =v = =______` = vvn= n====== nvv==== n===== v= vavv= n===== v== eccnn = = = = =a =n= 100 YEAR RAINFALL INTENSITY(INCH /HOUR) - 5.258 "'_'_ ' SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT v .7424 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) - 3.80 SUBAREA RUNOFF(CFS) - 14.83 TOTAL AREA(ACRES) n 15.00 TOTAL RVNOFF(CPS) = 59.38 TC(MIN.) a 11.88 ............................................. ............................... PLOW PROCESS FROM NODE 267.00 TO NODE 270.00 IS _______________________________ CODE a 81 _____________________________________________ ­­ADDITION OF SUBAREA TO MAINLINE PEAK FLOW -c 100 YEAR RAINFALL INTENSITY(INCH /HOUR) - 5.258 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8685 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 0.50 SUBAREA RUNOFF(CFS) a 2.28 TOTAL AREA(ACRES) = 15.50 TOTAL RUNOFF(CFS) = 61.66 TC(MIN.) = 11.88 ............................................. ............................... FLOW PROCESS FROM NODE 267.00 TO NODE 270.00 IS CODE - 81 • • _____________________________________________ __________ _____________________ »»:ADDITION OF SUBAREA TO MAINLINE PEAR FLOWccc« ==100 YEAR RAINFALL =INTENSITY (INCH /EOUR) _= UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .5848 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) - 0.80 SUBAREA RUNOFF(CPS) = 2.46 TOTAL AREA(ACRES) = 16.30 TOTAL RUNOFF(CPS) = 64.12 TC(MIN.) - 11.88 •..........•• ........................•...... ................................ FLOW PROCESS FROM NODE 270.00 TO NODE 285.00 IS CODE v 31 _____________________________________________ _______________________________ »COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA - >:>: :USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW)­- ELEVATION DATA: UPSTREAM(FEET) = 578.00 DOWNSTREAM(PEET) = 567.00 FLOW LENGTH(FEET) - 542.00 MANNING'S N = 0.013 DEPTH OF PLOW IN 33.0 INCH PIPE IS 23.9 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) - 13.93 ESTIMATED PIPE DIAMETER(INCH) - 33.00 NUMBER OF PIPES - 1 PIPE- FLOW(CFS) - 64.12 PIPE TRAVEL TIME(MIN.) - 0.65 TC(MIN.) - 12.53 LONGEST FLOWPATH FROM NODE 260.00 TO NODE 285.00 = 1842.00 FEET. .......................................... .................................. PLOW PROCESS PROM NODE 270.00 TO NODE 285.00-IS-CODE-=--81 ------------------------ ____------ ____ ---- ___ _------ __ ---- _ ------------ ­­ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-­4 = = =__ » >== > =v = =tee = 100 YEAR RAINFALL =INTENSITY (INCH /HOUR)v - = =5 093 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT .5783 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) - 1.40 SUBAREA RUNOFF(CFS) - 4.12 TOTAL AREA(ACRES) = 17.70 TOTAL RUNOFF(CPS) - 68.24 TC(MIN.) = 12.53 • ............................................ ............................... PLOW PROCESS FROM NODE 270.00 TO NODE- 285.00 IS CODE v 1 _____________________________________________ _______________________________ »DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE-- AND COMPUTE VARIOUS CONPLUENCED STREAM VALUESccccc = =TOTAL =NUMBER OP STREAMS====i===== __ >__ = = = == a = = = = =____________________ = =_ =e CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) - 12.53 RAINFALL INTENSITY(INCH /HR) - 5.09 TOTAL STREAM AREA(ACRES) - 17.70 PEAK PLOW RATE(CFS) AT CONFLUENCE = 68.24 .. CONFLUENCE DATA •• STREAM RUNOFF Tc INTENSITY AREA NUMBER (CPS) (MIN.) (INCH /HOUR) (ACRE) 1 386.76 16.44 4.328 111.00 2 68.24 12.53 5.093 17.70 ....•...........• ............... WARNING... ............................... IN THIS COMPUTER�PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE 0-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THB MAXIMUM VALUE OP PEAR PLOW. RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO • CONFLUENCE FORMULA USED FOR 2 STREAMS. •• PEAR PLOW RATE TABLE •• STREAM RUNOFF Tc INTENSITY NUMBER (CPS) (MIN.) (INCH /HOUR) 1 363.11 12.53 5.093 2 444.75 16.44 4.328 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CPS) = 444.75 Tc(MIN.) = 16.44 TOTAL ARRACRES) = 128.70 A( LONGEST FLOWPATH FROM NODE 120.00 TO-NODE 285.00 = 4384.00 FEET. PLOW PROCESS FROM NODE 285.00 TO NODE 290.00 IS CODE - 51 _______ ______ ________ _________ ______________________________________________ »:COMPUTE TRAPEZOIDAL CHANNEL PLOWCC »»> TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)ccccc ELEVATION DATA: UPSTREAM(FEET) - 567.00 DOWNSTREAM(PEST) = 566.90 CHANNEL LENGTH THRU SUBAREA(FEET) - 151,00 CHANNEL SLOPE - 0.0007 CHANNEL BASE(FEET) v 6.00 "Z" FACTOR = 1.500 MANNING 'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00 ==»WARNING: FLOW IN CHANNEL EXCEEDS CHANNEL CAPACITY( NORMAL DEPTH EQUAL TO SPECIFIED MAXIMUM ALLOWABLE DEPTH). AS AN APPROXIMATION, FLOWDEPT'H IS SET AT MAXIMUM ALLOWABLE DEPTH AND IS USED FOR TRAVELTIME CALCULATIONS. CHANNEL FLOW THRU SUBAREA(CFS) - 444.75 PLOW VELOCITY(FEET /SEC.) - 9.27 FLOW DEPTH(FEET) - 4.00 TRAVEL TIME(MIN.) - 0.27 Tc(MIN.) = 16.71 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 290.00 a 4535.00 FEET. •.........• ............•....a..♦.......... u.. u... a.... u... u..••...... FLOW PROCESS FROM NODE 286.00 TO NODE 290.00 IS CODE = 81 _______________________________ •' _____________________________________________ »... ADDITION OF SUBAREA TO MAINLINE PEAK FLOW­- 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.285 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT - .7209 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 2.00 SUBAREA RUNOFF(CFS) = 6.18 TOTAL AREA(ACRES) - 130.70 TOTAL RUNOFF(CFS) = 450.93 TC(MIN.) - 16.71 • ................................•........... ..............................• FLOW PROCESS FROM NODE 286.00 TO NODE 290.00 IS CODE = 81 ________ _____________________________________________ _______________________ ­> 'ADDITION OF SUBAREA TO MAINLINE PEAR FLOW-­ 100 YEAR RAINFALL INTENSITY(INCHIROUR) = 4.285 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8642 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) - 0.70 SUBAREA RUNOFF(CFS) - 2.59 TOTAL AREA(ACRES) v 131.40 TOTAL RUNOFF(CFS) - 453.52 TC(MIN.) 16.71 FLOW PROCESS FROM NODE 286.00 TO NODE 290.00 IS CODE v 81 _________________________________ ______ _________________________ » >> ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-­ • 100 YHAR RAINFALL INTENSITY(INCH /HOUR) 4.285 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .5418 SOIL CLASSIFICATION IS SUBAREA AREA(ACRES) 0.50 SUBAREA RUNOPF(CFS) v 1.16 TOTAL ARSA(ACRES) a 131.90 TOTAL RUNOFF(CPS) - 454.68 TC(MIN.) a 16.71 FLOW PROCESS FROM NODE 287.00 TO NODE 290.00 IS CODE = 81 »». ADDITION OF SUBAREA TO MAINLINE PEAR FLOW-- .......... 100 YEAR RAINFALL INTENSITY (INCH /HOUR) - 4.285 SINGLE- FAMILY(1 /4 ACRE LOT) RUNOFF COEFFICIENT - .7209 SOIL CLASSIFICATION IS "A ". SUBAREA AREA(ACRES) = 2.70 SUBAREA RUNOFF(CFS) a 8.34 TOTAL AREA(ACRES) - 134.60 TOTAL RUNOFF(CPS) - 463.03 TC(MIN.) = 16.71 ........................*...*.*** *.***. ***... ** ** *r* *... *.. *.... PLOW PROCESS FROM NODE 287.00 TO NODE 290.00 IS CODE = 81 _________________________________ _______________________________ ­­ADDITION OF SUBAREA TO MAINLINE PEAR FLOW -« 100 YEAR RAINFALL INTENSITY(INCH /HOUR) a 4.aes COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8642 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) - 0.80 SUBAREA RUNOFF(CPS) - 2.96 TOTAL AREA(ACRES) = 135.40 TOTAL RUNOFF(CFS) = 465.99 TC(MIN.) - 16.71 FLOW PROCESS FROM NODE 287.00 TO NODE 290.00 IS CODE - 81 _________________________________ _______________________________ »»> ADDITION OF SUBAREA TO MAINLINE PEAR FLOW-­ 100 YEAR RAINFALL INTENSITY(INCH /HOUR) a 4.285 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT .5418 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) a 0.10 SUBAREA RUNOFF(CFS) - 0.23 A( TOTAL AREA(ACRES) = 135.50 TOTAL RUNOFF(CPS) = 466.22 TC(MIN.) = 16.71 ........................... ** ........ .*...*.. . *..***... **.........r.*r*r.rrr FLOW PROCESS FROM NODS 290.00 TO NODE 310.00 IS CODE = 51 ______________________________________________ ______________________________. ­­COMPUTE TRAPEZOIDAL CHANNEL FLOW-« »» TRAVELTIME TRRU SUBAREA (EXISTING ELEMENT)­- ­ ELEVATION DATA: UPSTREAM (FEET) = 560.00 DOWNSTREAM(FEET) - 558.00 CHANNEL LENGTH THRU SUBARRA(FEET) - 330.00 CHANNEL SLOPE - 0.0061 CHANNEL BASE(FEET) = 6.00 "Z" FACTOR - 1.500 MANNING '$ FACTOR - 0.030 MAXIMUM DEPTH(FEET) = 4.00 ==»WARNING: FLOW IN CHANNEL EXCEEDS CHANNEL CAPACITY( NORMAL DEPTH EQUAL TO SPECIFIED MAXIMUM ALLOWABLE DEPTH). AS AN APPROXIMATION, FLOWDEPTH IS SET AT MAXIMUM ALLOWABLE DEPTH AND IS USED FOR TRAVELTIME CALCULATIONS. CHANNEL FLOW THRU SUBAREA(CFS) - 466.22 PLOW VELOCITY(FEET /SEC.) - 9.71 PLOW DEPTH(FEET) - 4.00 • • TRAVEL TIME(MIN.) = 0.57 Tc(MIN.) = 17.27 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 310.00 a 4865.00 FEET. ♦....**.*** u..**..*... u...**.**...*.r*r. r ..*...*....*r *................... PLOW PROCESS PROM NODE 290.00 TO NODE 310.00 IS CODE = 1 ---------------------------------------------------- ____ ---- _____----------- »».DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« « TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 17.27 RAINFALL INTENSITY(INCH /HR) = 4.20 TOTAL STREAM AREA(ACRES) a 135.50 PEAR FLOW RATE(CFS) AT CONFLUENCE = 466.22 * ***....*...♦r.♦r... *r*** ****.** .r**.*r.**** *r *....** ...................... FLOW PROCESS PROM NODE 300.00 T'0 NODE 305.00 IS CODE = 21 _____________________________________________ _______________________________ »» :RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< ___===== v=== a========= v=====_=AREA.=====_ _==== =v= _____ =_a__ =____________ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH POOR COVER TC a X*(( LENGTH * *3) /(ELEVATION CHANGE)] '•.2 INITIAL SUBAREA FLOW-LENGTH(FEET) n 848.00 UPSTREAM ELEVATION(FERT) = 800.00 DOWNSTREAM ELEVATION(FEET) = 580.00 ELEVATION DIFFERENCE(FEET) - 220.00 TC - 0.533 *[( 848.00* *3) /( 220.00)1• *.2 = 10.350 100 YEAR RAINFALL INTENSITY(INCH /HOUR) v 5.712 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT .6016 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF(CFS) - 18.21 TOTAL AREA(ACRES) - 5.30 TOTAL RUNOFF(CFS) = 18.21 FLOW PROCESS FROM NODE 305.00 TO NODE 310.00 IS CODE - 51 »».COMPUTE TRAPEZOIDAL CHANNEL FLOW-« »»>TRAVBLTIME THRU SUBAREA (EXISTING ELEMENT) « «< ELEVATION DATA:= UPSTREAM(FEET) 7 == 580.00 DOWNSTREAM(FEET) - 559.00 CHANNEL LENGTH THRU SUBAREA(FEET) - 640.00 CHANNEL SLOPE - 0.0328 CHANNEL BASE(FEET) v 6.00 "Z" FACTOR - 1.500 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 4.00 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.158 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT .5809 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED PLOW(CFS) - 21..96 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) - 5.56 AVERAGE FLOW DEPTH(FEET) - 0.58 TRAVEL TIME(MIN.) = 1.92 Tc(MIN.) - 12.27 SUBAREA AREA(ACRES) a 2.50 SUBAREA RUNOFF(CFS) = 7.49 TOTAL AREA(ACRES) - 7.80 PEAR FLOW RATE(CFS) = 25.70 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(PEET) = 0.63 PLOW VBLOCITY(FEET /SEC.) - 5.87 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 310.00 a 1488.00 FEET. ...***rr*........**..r* r***..........**...** .*......**.u..**... *r * *.....ar. FLOW PROCESS FROM NODE 305.00 70 NODE 310.00 IS CODE = 1 _____________________________________________ _______________________________ --DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« « » >>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES - == v=== nn== vv== n== = = = =vn = = === =vv_==_=__=v =vvn_ = =_ vvvnn___v_v_=n_ =_____ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.27 RAINFALL INTENSITY(INCH /HR) = 5.16 TOTAL STREAM AREA(ACRES) = 7.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 25.70 •• CONFLUENCE DATA •• STREAM RUNOFF Tc INTENSITY AREA NUMBER (CPS) (MIN.) (INCH /HOUR) (ACRE) 1 466.22 17.27 4.201 135.50 2 25.70 12.27 5.158 7.80 •• ••• + ........................... WARNING ...... ............................ IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCPC&WCD FORMULA OF PLATE D -1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OP PHAR PLOW. ••..•.+••++• ............................... •...•........e................. RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS- ** PEAK FLOW RATE TABLE +• STREAM RUNOPP TC INTENSITY NUMBER (CPS) (MIN.) (INCH /HOUR) 1 356.80 12.27 5.158 2 487.15 17.27 4.201 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CPS) - 487.15 TC(MIN.) n 17.27 TOTAL AREA(ACRES) n 143.30 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 310.00 = 4865.00 FEET. PLOW PROCESS FROM NODE 310.00 TO NOD. 315.00 IS CODE = 51 »»:COMPUTE TRAPEZOIDAL CHANNEL FLOW«« >>> TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) «« ELEVATION DATA: nUPSTREAM(FEET)nnn == =559 00 DOWNSTREAM(FEET) = =vv= =548=00 CHANNEL LENGTH THRU SUBAREA(FEET) = 1125.00 CHANNEL SLOPE = 0.0098 CHANNEL BASE(FEET) n 6.00 "Z. FACTOR n 1.500 MANNING 'S FACTOR = 0.030 MAXIMUM DEPTH(PEET) = 5.50 100 YEAR RAINFALL INTENSITY(INCH /HOUR) 3.924 UNDEVELOPED WATERSHED RUNOPP COEFFICIENT = .5226 SOIL CLASSIFICATION IS "A• TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) - 489.92 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) n 9.04 AVERAGE PLOW DEPTH(FEET) n 4.34 TRAVEL TIME(MIN.) v 2.08 TC(MIN.) = 19.35 SUBAREA AREA(ACRES)2.70 SUBAREA RUNOFF(CPS) n 5.54 TOTAL AREA(ACRES) - 146.00 PEAK PLOW RATE(CFS) = 492.69 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) n 4.35 FLOW VELOCITY(PEET /SEC.) = 9.06 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 315.00 - 5990.00 FEET. •.•..+..•..•..•....•...•...•..•....•...+.•+.. .•.••.......• +...••••.•.....•.. PLOW PROCESS FROM NODE 315.00 TO NODE 320.00 IS CODE - 31 _____________________________________________ _________ ______________________ ..-COMPUTE PIPE -FLOW TRAVEL TIME THOU SUBAREA -« > »> USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « « = ELEVATION =DATA: UPSTREAM(FEET)= =-_-448 00 DOWNSTREAM(PEET) = vv440 00 - = -_ FLOW LENGTH (FEET) n 193.00 MANNING'S N - 0.013 DEPTH OF FLOW IN 60.0 INCH PIPE IS 46.8 INCHES PIPE -PLOW VELOCITY(FEET /SEC.) = 29.96 ESTIMATED PIPE DIAMETER(INCH) v 60.00 NUMBER OF PIPES 1 PIPE- FLOW(CPS) - 492.69 PIPE TRAVEL TIME(MIN.) - 0.11 TC(MIN.) - 19.46 LONGEST PLOWPATH FROM NODE 120.00 TO NODE 320.00 = 6183.00 FEET. PLOW PROCESS FROM NODE 80.00 TO NODE 320.00 IS CODE _ = __11 ---------------------------------------------------------- ___ , »> CONFLUENCE MEMORY BANK p 1 WITH THE MAIN - STREAM MEMORY ««< •+ MAIN STREAM CONFLUENCE DATA •• STREAM RUNOFF TC INTENSITY AREA NUMBER (CPS) (MIN.) (INCH /HOUR) (ACRE) 1 492.69 19.46 3.911 146.00 LONGEST FLOWPATH FROM NODE 120.00 TO NODE 320.00 = 6183.00 FEET. +• MEMORY BANK p 1 CONFLUENCE DATA •• STREAM RUNOFF TC INTENSITY AREA NUMBER (CPS) (MIN.) (INCH /HOUR) (ACRE) 1 384.87 . 16.31 4.348 99.65 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 320.00 = 3658.00 FEET. . +•..••.• •..... +•......•...... WARNING.•. . +. + +....••..+. +..•.....••... +• IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D -1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUH OF PEAK PLOW. •• PEAK FLOW RATE TABLE •• STREAM RUNOFF TC INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 797.93 16.31 4.348 3 838.93 19.46 3.911 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CPS) = 838.93 TC(MIN.) n 19.46 TOTAL AREA(ACRES) - 245.65 PLOW PROCESS FROM NODE 80.00 TO NODE 320.00 IS CODE n 12 _____________________________________________ __ _____________________________ ­-CLEAR MEMORY BANK p 1 « «< ==vvv=== vv=== n== ovve =nn== ovv=av_ =_ = =v = =nneee = =vv= =nee = = =v =nn = =_v v 8ND OF STUDY SUMMARY: TOTAL AREA(ACRES) = 245.65 TC(MIN.) 19.46 PEAK FLOW RATE(CFS) = 838.93 END OF RATIONAL METHOD ANALYSISv = = =n 0 Coral Canyon Hydrologic Analysis #8528E Proposed Condition Pond 1 PACIFIC ADVANCED • CIVIL ENGINEERING, INC. Stage Dischage Curve for POND 1 Emeraencv SaillwaV Stage Storage Ac -ft Spillway Head (ft) Length (ft) Spillway Discharge 04 cfs hfeA hoard (ft) 619 0.000 0 6 0 4.0 620 0.148 0 6 0 3.0 620.35 0.206 0 6 0 2.6 621 0.328 0.65 6 10 2.0 622 0.543 1.65 6 41 1.0 623 0.793 2.65 6 83 ,:- - -Debri Volume/Spillway @ 620.3 -t-- -Max WSE @ 622 -:-- -Top of the Basin @ 62: Stage Discharge Curve 623.5 623 �- 622.5 622 621.5 621 y 620.5 620 619.5 619 618.5 0 10 20 30 40 50 60 70 80 90 Discharge 0 (cfs) Coral Canyon Hvdrolo_gic AI • 0 • #8528E Proposed Condition Pond 2 PACIFIC ADVANCED CIVIL ENGINEERING, INC. Stage Dischage Curve for POND 2 Snillwav Stage Storage Ac -ft Spillway Head (ft) Length (ft) rge 304�cfs ay Free Buaid (ft) 658 0.000 0 6 0 7.0 659 0.106 0 6 0 6.0 660 0.228 0 6 0 5.0 660.5 0.301 0 6 .0 4.5 661.5 0.448 1 6 19 3.5 662 0.527 1.5 6 35 3.0 663 0.712 2.5 6 76 2.0 664 0.920 3.5 6 126 1.0 665 1.164 c —Debri Volume/ Spillway @ 660.5 c =Max WSE @ 664 -:—Top of the Basin @ 665 Stage Dischage Curve 666 665 664 663 662 tM 661 uJ 660 659 658 657 - - -- -- 0 20 40 60 80 100 120 140 Discharge Q (cfs) 17J Coral Canyon Hydrologic Analysis #8528E Proposed Condition 9 Pond 3 k PACIFIC ADVANCED CIVIL ENGINEERING, INC. 0 0 • 0 Stage Dischage Curve for POND 3 Autiat Any r 1f1VPrt Finarnpnr_v SniUwav Stage Storage Ac -ft Outlet Box Culvert ft Outlet Box Culvert (ft) size Outlet Pipe Discharge (cfs) 1 04 Spillway Spillway (ft) th (ft) Length Spillway Discharge Q7(cfs) Total Q = Q3 +Q4 +Q5 (cfs) Free Board (ft) 630 0.000 0 8 x3 0 0 50 0.00 0 6.6 631 0.197 0 8 -x3 0 0 50 0.00 0.00 5.6 631.54 0.379 0.54 8 x3 10 0 50 0.00 10.00 5.1 632 0.534 1 8 x3 24 0 50 0.00 24.00 4.6 633 0.991 2 8 x3 64 0 50 0.00 64.00 3.6 634 1 1.531 3 8 x3 116 0 50 0.00 116.00 2.6 635 2.152 4 8 x3 157 0 1 50 1 0.00 157.00 1 1.6 635.6 4.6 8 x3 180 0.6 50 74.36 254.36 1.0 636.6 c----- Outlet Box Culvert Invert @ 631 c ------ Debri Volume 631.54 c - - - - -- Emergency Spillway a@ 635 c - - - -- -Max WSE 635.6 - - -- -PAD Elevation a@ 636.6 i Stage- Dischage Curve 637 -- 636 635 634 633 Cn 632 631 630 629 0 50 100 150 200 250 300 Dischage Q (cfs) • BOX CULVERT ANALYSIS COMPUTATION OF PERFORMANCE CURVE Enter Flow Rate and Tailwater, or Press the <Esc> Key to End is Culvert Span (Width of Opening) (feet) 8 Culvert Rise (Height of Opening) (feet) 3 FHWA Chart Number (8,9,10,11,12 or 13) 8 Scale Number on Chart (Type of Culvert Entrance) 1 Manning's Roughness Coefficient (n- value) 0.013 Entrance Loss Coefficient of Culvert Opening 0.5 Culvert Length (feet) 50 Culvert Slope (feet per foot) 0.1 Flow Rate Tailwater ..Headwater (ft).. Normal Critical Depth at Outlet (cfs) Depth(ft) In.Ctrl. Out.Ctrl. Depth(ft) Depth(ft) Outlet(ft) Vel.(fps) 25.00 4.00 1.04 -0.97 0.24 0.67 0.24 13.29 24.00 4.00 1.01 -0.97 0.23 0.65 0.23 13.08 64.00 4.00 1.99 -0.81 0.42 1.26 0.42 19.02 120.00 4.00 3.08 -0.33 0.62 1.91 0.62 24.02 11.00 4.00 0.59 -0.99 0.14 0.39 0.14 9.66 119.00 4.00 3.06 -0.34 0.62 1.90 0.62 23.95 118.00 4.00 3.04 -0.36 0.62 1.89 0.62 23.87 116.00 4.00 3.01 -0.38 0.61 1.87 0.61 23.72 158.00 4.00 4.04 0.16 0.74 2.30 0.74 26.52 • 157.00 4.00 4.01 0.14 0.74 2.29 0.74 26.45 180.00 4.00 4.58 0.50 0.81 2.51 0.81 27.78 Enter Flow Rate and Tailwater, or Press the <Esc> Key to End is • Coral Canyon Hydrelogic Analysis #8528E Proposed Condition Pond 4 o PACIFIC ADVANCED • CIVIL ENGINEERING, INC. I• �1 40 �J Qf.-- 1'9:c. k- t.-- noun • - Stage Dischage Curve - - -- Outlet Box Culvert Invert @ 560 --- -Debri Volume @ 560.41 ------ Emergency Spillway - -- -Max WSE - - -- -PAD Elevation @ 567.3 568 - - - 567 - - 566 565 564 tM 563 N 562 561 560 559 558 0 50 100 150 200 250 300 350 400 450 500 Dischage Q (cfs) Outlet Box Culvert Emergency Spillway ^ Stage Storage Ac -ft Head for Weir Outlet Culvert (ft) Outlet Box Culvert Diameter Outlet Pipe Discharge Q4(cfs) 1 Spillway Head (ft) Length (ft) Spillway p Y Discharge QS (cfs) Total Q = Q3 +QS +Q6 (cfs) Free Board (ft) 559 0.000 0 4-5X2 0 0 50 0 0 8.3 560 0.196 0 4 -5 X 2 0 0 50 0 0 7.3 560.41 0.300 0.41 4 -5 X 2 16 0 50 0 16 6.9 562 0.762 2 4 -5 X 2 156 0 50 0 156 5.3 563 1.139 3 4 -5 X 2 240 0 50 0 240 4.3 564 1.581 4 4 -5 X 2 316 0 50 0 316 3.3 564.5 1.83 4.5 4 -5 X 2 344 0 50 0 344 2.8 564.6 2.079 4.6 4 -5 X 2 376 0 50 0 376 2.7 565 5 4 -5 X 2 416 0.4 50 40 456 2.3 567.3 Stage Dischage Curve - - -- Outlet Box Culvert Invert @ 560 --- -Debri Volume @ 560.41 ------ Emergency Spillway - -- -Max WSE - - -- -PAD Elevation @ 567.3 568 - - - 567 - - 566 565 564 tM 563 N 562 561 560 559 558 0 50 100 150 200 250 300 350 400 450 500 Dischage Q (cfs) CJ BOX CULVERT ANALYSIS for Pond 4 In.Ctrl. Out.Ctrl. Depth(ft) Depth(ft) Outlet(ft) Vel.(fps) COMPUTATION OF PERFORMANCE CURVE Culvert Span (Width of Opening) (feet) 5 Culvert Rise (Height of Opening) (feet) 2 FHWA Chart Number (8,9,10,11,12 or 13) 8 Scale Number on Chart (Type of Culvert Entrance) 1 Manning's Roughness Coefficient (n- value) 0.013 Entrance Loss Coefficient of Culvert Opening 0.5 Culvert Length (feet) 50 Culvert Slope (feet per foot) 0.01 Flow Rate Tailwater ..Headwater (ft).. Normal Critical Depth at Outlet (cfs) Depth(ft) In.Ctrl. Out.Ctrl. Depth(ft) Depth(ft) Outlet(ft) Vel.(fps) f 4.00 4.00 0.42 3.50 0.21 0.27 2.00 0.40 39.00 4.00 2.00 3.94 0.90 1.24 2.00 3.90 60.00 4.00 3.01 4.55 1.21 1.65 2.00 6.00 79.00 4.00 4.02 5.33 1.46 2.00 2.00 7.90 • 86.00 4.00 4.47 5.66 1.55 2.00 2.00 8.60 94.00. 4.00 5.02 6.08 1.65 2.00 2.00 9.40 104.00 4.00 5.78 6.66 1.78 2.00 2.00 10.40 ` 110.00 4.00 6.28 7.04 1.85 2.00 2.00 11.00 Enter Flow Rate and Tailwater, or Press the <Esc> Key to End is r Coral Canyon 11 - - • � 0 n u December 2006 #8528E Hydraulics HEC -RAS Analysis for Existing Condition - for North Channel 4�� PACIFIC AOVANCEO CIVIL ENGINEERING, INC. WCr_DAQ Dl- cvlcf:nn r,... 04 -- Alrh .... I Rnnrh• 1 Reach River Sta. Profile. Q.T.otal Min Ch. E1 .:: Wt:: Bev Crit W S.; .' . :E`.G:'EI "ev E:G: § lope:,, ;'VeI Chnl ;:.'.Flow Area.. =. Top Wdth Froude # Chi :.. •(ft) : _ - . '.r(ft) :.._ , '.' (ft):;:: " .r ;_:'_(ft): :(ft/ft) ,.'; ; :. (mss) ._ (SCj.ft) •.;' :' (ft) . . 1 3695 100YR -:3 Hr. _(cfs) 180.00 579.58 580.17 580.13 580.39 0.007802 1.73 57.47 104.52 0.54 1 . 3695 100YR. =.24 Hr 43.00 579.58 579.41 579.21 579.56 0.010688 13.82 21.61 0.00 1 • 3695 .. :. SPF 219.00 579.58 580.29 580.22 580.50 0.007017 2.00 70.13 107.22 0.54 1 3650 100YR,- 3 Hr. :. 180.00 578.00 579.47 579.47 579.83 0.021289 4.81 37.43 54.24 1.02 1 3650. 100YR - 24 Hr 43.00 578.00 578.60 578.60 578.88 0.022199 4.21 10.20 18.54 1.00 1' 3650 SPF 219.00 578.00 579.58 579.58 579.97 0.020533 5.04 43.41 56.99 1.02 1 3600 100YR - 3 Hr 180.00 576.00 577.38 577.69 578.34 0.040204 7.88 22.85 25.14 1.46 1 3600, 100YR. - :24 Hr 43.00 576.00 576.491 576.67 577.10 0.062389 6.26 6.87 14.92 1.63 1. 3600. SPF 219.00 576.00 577.55 577.86 578.53 0.039072 7.96 27.50 29.15 1.45 1 3550 100YR.- 3 Hr 180.00 574.33 576.37 576.40 576.80 0.022346 5.26 34.25 44.80 1.06 1 3550 100YR -.24 Hr 43.00 574.33 575.34 575.34 575.66 0.021870 4.56 9.44 14.99 1.01 1 3550:. SPF ... 219.00 574.33 576.51 576.54 576.961 0.021475 5.37 40.78 50.15 1.05 1. 3500 100YR - 3 Hr: 180.00 573.00 574.18 574.52 575.19 0.046105 8.04 22.391 26.69 1.55 1 . 3500 100YR.= 24 Hr ,:,, 43.00 573.00 573.46 573.60 573.97 0.056577 5.69 7.55 17.69 1.54 1 3500 SPF' . 219.00 573.00 574.34 574.67 575.37 0.046589 8.18 26.79 31.43 1.56 1 . 3450 100YR - 3 Hr 180.00 572.00 573.671 573.67 574.14 0.018559 5.50 32.74 34.65 1.00 1. 3450. 100YR - 24 Hr. 43.00 572.00 572.64 572.64 572.95 0.022505 4.45 9.66 16.23 1.02 1 3450 SPF 219.00 572.00 573.90 573.90 574.32 0.019114 5.201 42.11 49.75 1.00 1 3444 100YR - 3 Hr 180.00 571.25 572.99 573.31 573.96 0.027039 7.90 22.78 18.26 1.25 1 3444 100YR - 24 Hr 43.00 571.25 571.98 572.20 572.68 0.073766 6.73 6.39 14.15 1.77 1. 3444 SPF 219.00 571.25 573.301 573.57 574.15 0.026541 7.36 29.75 26.36 1.22 1 3436 11 001''R - 3 Hr. 180.00 571.00 572.90 573.14 573.74 0.022953 7.37 24.43 19.27 1.15 1 3436 100YR = 24 Hr . 43.00 571.00 571.98 572.04 572.36 0.028224 4.93 8.72 14.91 1.14 1 3436 SPF 219.00 571.00 573.25 573.45 573.94 0.025113 6.67 32.85 32.55 1.17 1 3412 160YR - 3 Hr 180.00 570.81 572.291 572.64 573.05 0.033999 6.99 25.74 29.91 1.33 1 3412 100YR - 24 Hr 43.00 570.81 571.451 571.51 571.82 0.031961 4.88 8.81 16.84 1.19 1 3412 SPF.: 219.00 570.81 572.48 572.73 573.19 0.039476 6.74 32.96 74.15 1.40 1. 3400 100YR - 3 Hr 180.00 570.00 571.49 571.82 572.59 0.037109 8.40 21.43 20.10 1.43 1 3400 100YR - 24 Hr 43.00 570.00 570.68 570.86 571.27 0.059550 6.18 6.96 14.92 1.59 1 3400 SPF 219.00 570.00 571.78 572.30 572.771 0.027405 7.96 27.50 22.22 1.26 0 W. W) HFr.-RA3 Plan- Pvicfinn Cnn River IVChnnnel Reach• 1 ICnntinuedl Reach Riv&.Sta Ptofile Q Total . .Min Ch EI' .., W:S- Elev Cnt W S " - ";; : E:G: Elev '. EG. Slope_ Vel,Chnl'. ; 'Flow A[ea :.' Top Wdtli Fronde # Chl (cfs) ,. -(ft) (ft) :. :• .° _. (ft) (flf- (sq:ft) eft)' 1 3350 100YR - 3 Hr 180.00 569.00 570.53 570.71 570.99 0.022218 5.471 32.93 43.35 1.07 1... 3350 100YR - 24 Hr 43.00 569.00 569.63 569.61 569.89 0.019948 4.101 10.49 18.30 0.95 1 3350` SPF 219.00 569.00 570.55 570.80 571.20 0.031355 6.51 33.75 45.50 1.27 1 3300 1 60Y - 3. Hr 180.00 568.00 569.08 569.28 569.70 0.029920 6.83 35.75 110.92 1.26 1 3300 100YR -.24 Hr 43.00 568.00 568.58 568.58 568.83 0.022540 4.05 10.62 20.80 1.00 1 3300 SPF. : ' . 219.00 568.00 569.16 569.34 569.72 0.026661 6.79 44.84 111.09 1.21 1 3250 100YR'- 3 Hr 180.00 566.05 567.93 567.63 568.08 0.006883 3.07 58.54 71.29 0.60 1 3250. ': 100YR - 24. Hr 43.00 566.05 567.29 567.11 567.36 0.006845 2.06 20.83 45.94 0.54 1 3250.. SPF' . 219.00 566.05 568.06 567.73 568.22 0.006662 3.23 67.97 77.34 0.60 1 3200 100YR' -.3 Hr 180.00 566.00 567.20 567.20 567.57 0.014527 5.34 39.51 53.66 0.90 1 3200. ", 100YR� ,24 Hr .` . 43.00 566.00 566.521 566.52 566.77 0.023104 4.00 10.74 21.75 1.00 1 3200 ..;...'_' SPF;. 219.00 566.00 567.32 567.32 567.73 0.014179 5.61 46.29 58.10 0.90 1 3150 100YR''- 3 Hr :.' :. 180.00 564.10 566.30 565.52 566.45 0.003371 3.11 57.96 40.46 0.46 1' . 3150 ,.. 100YR = 24 Hr.. 43.00 564.10 565.27 564.82 565.32 0.002416 1.80 23.86 29.55 0.35 1 3150 SPF 219.00 564.101 566.43 565.66 566.61 0.004123 3.47 63.08 43.33 0.51 1 3135 '. 100YR'- 3 Hr 180.00 564.00 566.32 566.40 0.001570 2.32 77.54 47.05 0.32 1 3135 100YR - 24 Hr 43.00 564.00 565.28 565.30 0.000638 1.14 37.79 34.20 0.19 1 "..' 3135:. '. SPF ,' 219.00 564.00 566.44 566.55 0.001958 2.62 83.56 49.91 0.36 1 3100. ;' 100YR'- 3 Hr:. 180.00 564.00 566.24 566.32 0.003716 2.31 77.85 91.38 0.44 1 3100 100YR = .24-Hr 43.00 564.00 565.24 565.27 0.001044 1.36 31.51 31.37 0.24 1 3100 SPF 219:00 564.001 566.36 566.451 0.003596 2.451 89.21 93.36 0.44 1 3088 100YR , 3 W 180.00 564.00 566.16 566.27 0.004818 2.56 70.41 86.24 0.50 1 3088 t OOYR - 24 Hr . 43.00 564.00 565.23 565.25 0.000869 1.33 32.39 29.09 0.22 1 3088 SPF 219.00 564.00 566.29 566.40 0.004495 2.70 81.22 87.14 0.49 1 3050 100YR - 3 Hr 180.00 564.00 566.04 566.12 0.002859 2.27 79.40 79.02 0.40 1 3050 100YR - 24 Hr 43.00 564.00 565.19 565.221 0.001256 1.361 31.52 36.08 0.26 1 3050 SPF . 219.00 564.00 566.17 566.26 0.002885 2.45 89.47 79.88 0.41 1 3028 t 00YR - 3 Hr. 180.00 564.00 565.85 566.02 0.007511 3.25 55.37 66.13 0.63 1 3028 100YR - 24 Hr 43.00 564.00 565.10 565.17 0.003319 2.03 21.16 27.53 0.41 1 3028 SPF 219.00 564.00 97 565. 566.15 0.0074461 3.47 63.18 68.08 0.63 • f i HEC -RAS Plan: Existinq Con River: NChannel Reach: 1 (Continued) Reach River Sta .• Profile Q;Total .: , : Mih-Ch•EI, ev : E G: Slope -Vel CFirif... Flow Area.,:. 'Top Width, Froude # Chl (cfs)' (ft).. ` (ft/ft) z •> :: (ft/s)' ` ` (sq ft), (ft)'. T 1 3000. 1 OOYR - 3. Hr 180.00 564.00 565.71 565.83 0.005206 2.87 62.70 68.61 0.53 1 3000 1OOYR: 24 Hr 43.00 564.00 564.68 564.68 564.96 0.021971 4.23 10.16 18.22 1.00 1 3000'.' SPF ". 219.00 564.00 565.82 565.97 0.005263 3.09 70.83 69.90 0.54 1 2950. 100Yfj - 3 Hr .. 180.00 563.00 565.27 565.47 0.010265 3.61 49.84 63.79 0.72 1 2950. 100YR'- 24 Hr 43.00 563.00 564.25 563.81 564.38 0.004675 2.81 15.28 15.41 0.50 1 2950 SPF.-.: .. 219.00 563.00 565.38 565.61 0.010028 3.87 56.63 64.23 0.73 1 " 2935 '; 100YR.-' 3 Hr. . 180.00 563.00 565.18 1 565.35 0.006167 3.241 55.51 57.19 0.58 1 2935: 100YR!'7 24 Hr, 43.00 563.00 564.11 564.28 0.009776 3.28 13.10 18.43 0.69 1 2935 SPF 219.00 563.00 565.28 565.48 0.006880 3.59 61.04 58.64 0.62 1 29U0 : f .100YR - 3'Hr' 180.001 562.00 564.55 564.55 564.96 0.020184 5.10 35.28 43.82 1.00 1. 2900 100Y.R- •24• Hr. , 43.00 562.00 563.41 563.41 563.75 0.024002 4.61 9.32 14.92 1.03 1. 2900" .' SPF :.: -'. 219.00 562.00 564.88 565.15 0.012130 4.19 52.21 59.86 0.79 1 2850. , '. 100YR = 3.Hr 180.00 562.00 563.76 563.47 564.20 0.009506 5.32 33.81 21.89 0.75 1 ,' 2850 "_ 100YR'= 24•H.r 43.00 562.00 562.87 562.59 562.99 0.005927 2.77 15.53 19.23 0.54 1 ' •' .' 2850. ': SPF-,-. `:' ; :;. 219.00 562.00 564.17 563.66 564.461 0.015922 4.35 50.38 67.41 0.89 1 . , 2800.. _ 10OYR - 3' Hr 180.00 561.00 562.95 562.95 563.54 0.018689 6.15 29.26 25.69 1.02 1 2800 1 OOYR;- 24 Hr: 43.00 561.00 562.18 562.18 562.44 0.025775 4.03 10.68 22.87 1.04 1 ,. 2800 SPF' 219.00 561.00 563.44 563.85 0.009452 5.13 42.66 29.50 0.75 1 2750 100YR = 3. Hr': 180.00 560.83 562.74 562.17 562.97 0.004765 3.86 46.64 29.87 0.54 1 . 2750 100Y - 24 Hr 43.00 560.83 561.65 561.46 561.761 0.007503 2.66 16.20 26.02 0.59 1 . 2750 SPF 219.00 560.83 563.03 563.26 0:011998 3.83 57.24 75.54 0.77 1 2700 100YR -.3 Hr.. 308.00 560.00 562.48 562.67 0.006415 3.49 88.33 84.08 0.60 1 2700 100YR - 24 Hr 75.00 560.00 561.00 561.22 0.012972 3.83 19.57 27.38 0.80 1 2700 SPF 377.00 560.00 562.78 562.95 0.004205 3.30 114.15 85.77 0.50 1 2650 100YR - 3 Hr 308.00 559.211 561.83 561.37 562.30 0.007308 5.51 55.87 28.88 0.70 1 2650 100YR : 24 Hr 75.00 559.21 560.48 560.27 560.68 0.008927 3.64 20.58 23.45 0.69 1 2650 SPF 377.00 559.21 562.11 561.62 562.651 0.007294 5.87 64.21 30.07 0.71 1 2600 100YR - 3 Hr 308.00 559.00 561.63 560.84 561.97 0.004640 4.73 65.11 29.84 0.56 1 2600 100YR -'24 Hr 75.001 559.00 560.301 559.75 560.41 0.003118 2.59 28.981 24.77 0.42 1 2600 .. SPF 377.001 559.001 561.90 561.09 562.31 0.004871 5.13 73.54 30.89 0.59 0 0 : W) HFC -RAR Plan- Fristinn ('nn River- NChannel Rearh: 1 (Confinuedl Reach. V River Sta -.: Profile. :, . Q.Total:. -..! Min Ch'EI .., VV.S Elev:, ;,Cnt W S .;: E G;Elev ?;:. 'EiG .Slope: :..:::.Vel'Chnl Flow Area.:: .. Tbp.Wdth Froude # Chl (c) (ft(s) �sq ft) 1 2550 1 60Y -.3.Hr 308.00 559.00 560.78 560.78 561.54 0.015957 7.00 43.99 28.74 1.00 1 2550..' . .. 100YR - -�24 Ht 75.00 559.00 559.72 559.72 560.06 0.021093 4.68 16.04 23.98 1.01 1 2550 SPF 377.00 559.00 561.02 561.02 561.87 0.015475 7.41 50.90 29.80 1.00 1 2500 100Yk. 3 Hr 308.00 558.00 560.38 559.93 560.83 0.007234. 5.37 57.33 30.69 0.69 1 2500.. 100YR - 24 Hr 75.00 558.00 559.23 558.89 559.38 0.005536 3.02 24.81 26.14 0.55 1 2500' SPF 377.00 558.00 560.62 560.17 561.15 0.007476 5.80 64.96 31.66 0.71 1 2450 1 OOYR = 3 Hr 308.00 557.84 559.53 559.53 560.27 0.016501 6.93 44.44 30.24 1.01 1 2450 .: 100YR = 24 Hr 75.00 557.84 558.54 558.54 558.86 0.022255 4.57 16.42 26.51 1.02 1 2450 SPF ... 377.00 557.84 559.76 559.76 560.591 0.015799 7.32 51.47 31.10 1.00 1 2400. 100YR' -. &Hr 308.00 557.00 558.96 558.60 559.42 0.008164 5.43 56.69 32.67 0.73 1 2400 100YR-= 24 Hr . 75.00 557.00 558.01 557.64 558.13 0.004595 2.74 27.42 29.09 0.50 2400,:' SPF':' 377.00 557.00 559.14 558.82 559.70 0.009076 6.031 62.57 33.36 0.78 1 . 2350 110 0YR:- 3 Hr 308.00 557.00 558.24 558.24 558.83 0.017246 6.17 49.88 42.02 1.00 1 _ 2350 ;.: t 00YR _ 24'Hr .. 75.00 557.00 557.56 557.49 557.74 0.014765 3.43 21.88 40.08 0.82 1 2350 .. SPF .. 377.00 557.00 558.41 558.41 559.09 0.016785 6.60 57.10 42.55 1.00 1 2300 100YR -.3' Hi 308.00 556.00 557.69 557.42 558.14 0.009352 5.37 57.40 37.67 0.77 1 2300 t 00YR - 24 Hr 75.00 556.00 556.58 556.58 556.85 0.021714 4.18 17.94 32.62 0.99 1 2300 SPF. 377.00 556.00 557.94 557.63 558.44 0.008703 5.63 66.92 38.57 0.75 1 22501. 100YR:- 3 Hr 308.00 555.00 557.091 556.79 557.631 0.010577 5.90 52.17 32.16 0.82 1 2250 ' 1'OOYR - 24 Hr 75.00 555.00 556.041 555.72 556.191 0.006159 3.17 23.63 24.93 0.57 1 2250 SPF 377.00 555.00 557.311 557.09 557.94 0.010777 6.35 59.41 33.28 0.84 1 2231 100YR'- 3 W 308.00 555.00 556.65 556.65 557.37 0.016318 6.79 45.37 31.74 1.00 1 2231 100YR - 24 Hr 75.00 555.00 555.67 555.67 555.98 0.021015 4.48 16.73 26.63 1.00 1 2231 ' SPF 377.00 555.00 556.87 556.871 557.67 0.015813 7.18 52.51 32.92 1.00 1 2211 100YR - 3 Hr 308.00 554.001 556.70 556.04 557.031 0.005098 4.58 67.25 35.09 0.58 1 2211 100YR - 24 Hr 75.00 554.00 555.18 554.89 555.35 0.006873 3.31 22.63 24.39 0.61 1 2211 SPF 377.00 554.00 556.96 556.26 557.34 0.005188 4.93 76.47 36.11 0.60 1 2200 100YR - 3 Hr 308.00 554.00 556.71 556.96 0.003408 4.05 76.03 35.27 0.49 1 2200 100YR - 24 Hr 75.00 554.00 555.16 555.28 0.004284 2.78 26.97 26.48 0.49 1 2200 SPF . 377.00 554.001 556.96 5 57.27 0.003610 4.42 85.30 36.13 0.51 HFC -RAS Plan- FYictinn Cnn River- NChannel Reach• 1 Mnntinuedl .Reach. . River Sta Profile Q Tot81 .. Min.Ch El`:, .W:S; Elev_ Cnt W S . EG';_Elev E- G`..Slope. _ ;:VeI Chnl. FlowRrea , .. -Top Width.,. Fr6ude # Chl' (cfs).. ( §q g) :. (ft) •'• ' ` 1 2150 •. 160YR - 3 Hr• .. 308.00 553.00 556.62 555.23 556.79 0.002487 3.32 92.66 45.82 0.41 1 2150: 100YR -24 Hr 75.00 553.00 555.09 554.21 555.15 0.001329 1.87 40.16 29.73 0.28 1 2150 .. • SPF' 377.00 553.00 556.88 555.46 557.08 0.002829 3.58 105.29 51.39 0.44 1 2100 100YR = 3 Hr 308.00 553.00 556.45 556.63 0.004264 3.38 91.21 66.35 0.51 1 2160' 106YR.- .24:Hr 75.00 553.00 554.97 555.06 0.002521 2.28 32.84 28.82 0.38 1 2100 SPF 377.00 553.00 556.72 556.90 0.004052 3.41 110.55 76.44 0.50 1. 2050. 100YR - 3 Hr.: 308.00 553.00 555.91 556.33 0.007703 5.20 59.26 34.23 0.70 1 2050.. 100YR =,24 Hr 75.00 553.00 554.55 554.80 0,0123751 4.04 18.57 22.55 0.78 1 2056- SPF': 377.00 553.00 556.05 555.70 556.58 0.009007 5.87 66.05 77.13 0.76 1 - 2000 - 100YR = 3 He 308.00 553.00 555.53 555.83 0.011043 4.42 69.76 69.45 0.78 1 2000 - 100YR - 24 Hr 75.00 553.00 554.13 553.87 554.31 0.007345 3.35 22.37 24.46 0.62 1 2000 SPF 377.00 553.00 555.62 555.48 556.00 0.012661 4.93 76.46 71.47 0.84 1 1986 ; . 100YR =; 3 Hr 308.00 552.99 555.20 555.20 555.62 0.019424 5.19 59.33 71.28 1.00 1 1986 .. 100YR : 24' Hr 75.00 552.99 553.77 553.77 554.13 0.020692 4.80 15.61 22.06 1.01 1 1986 SPF 377.00 552.99 555.47 555.82 0.011992 4.76 79.17 75.38 0.82 1 1950 100YR - 3 Hr 308.00 552.00 555.06 553.73 555.27 0.002275 3.681 86.32 79.40 0.40 1 1950 100YR - 24 Hr 75.00 552.00 553.58 552.72 553.64 0.001343 1.921 39.16 27.71 0.28 1 1950 SPF.. 377.00 552.00 555.44 555.64 0.001995 3.70 116.71 82.21 0.38 1 1900 100YR -3 Hr 308.00 552.00 554.21 554.11 554.99 0.013389 7.07 43.55 24.19 0.93 1 1900. 100YR -.24 Hr' 75.00 552.00 553.38 552.871 553.52 0.004174 3.02 24.83 20.84 0.49 1 1900 SPF 377.00 552.001 554.39 554.39 555.35 0.015074 7.84 48.08 24.94 1.00 1 1859 1 WAR - 3 Hr 308.00 552.00 554.08 553.82 554.38 0.009630 4.44 69.36 62.44 0.74 1 1859 100YR -24 Hr 75.00 552.00 553.23 552.75 553.33 0.004381 2.57 29.14 32.89 0.48 1 1859 SPF 377.00 552.00 554.22 553.98 554.57 0.010941 4.78 78.80 69.83 0.79 1 1850 100YR - 3 Hr 308.00 552.00 554.05 553.63 554.281 0.007586 3.86 79.84 74.39 0.66 1 1850 100YR -'24 Hr 75.00 552.00 553.20 552.72 553.28 0.004675 2.28 32.87 46.86 0.48 1 1850 SPF 377.00 552.00 554.20 553.79 554.46 0.007629 4.16 90.65 75.74 0.67 1 1834 100YR - 3 Hr 308.00 552.00 553.92 553.52 554.16 0.007746 3.92 78.68 74.28 0.66 1 1834 100YR - 24 Hr 75.00 552.00 553.14 552.66 553.21 0.003764 2.13 35.14 47.13 0.44 1 1834 SPF 377.00 552.00 554.06 553.68 554.34 0.0076971 4.231 89.72 80.10 0.68 tJCr_DAQ Dt- r..., o:,,e.. nirh .... I Poly 1 ir'- fin. -A Reach. River Sta . Profile Q.TotaL Mint. EI: , _ _1N:S:;E -.. -'-.. C 1. VU S. ` E,G:;Elev ;E:G *Slope!. VeI Chnl ,::.Flow Area. ;Top Width Froude # Chl (cis) .. : {ft) (ft) >:'- . ~ , (ft) :... (ft) -.. ".(tUtt) .= (ff%s) (59 1 1800 100YR - 3 Hr . ` 308.00 552.00 553.76 553.31 553.93 0.004871 3.27 94.05 80.56 0.53 1 1800 1b0YR'- .24.Hr- 75.00 552.00 553.03 552.59 553.08 0.003604 1.85 40.48 65.09 0.41 1 1800 .. SPF . 377.00 552.00 553.91 553.44 554.10 0.005206 3.57 105.58 83.47 0.56 1 1766 :• 100YR - 3 Hr 308.00 551.95 552.97 552.97 553.37 0.019440 5.07 60.82 78.88 1.00 1 1766 100YR - 24 Hr 75.00 551.95 552.42 552.42 552.60 0.024935 3.41 21.99 60.50 1.00 1 ' ' 1766. SPF. 377.00 551.95 553.10 553.10 553.54 0.017700 5.34 71.08 82.18 0.98 1 1750 100YR - 3.Hr 308.00 551.00 552.38 552.52 552.94 0.036180 6.00 51.31 79.74 1.32 1 1750. 100YR-24 Hr 75.00 551.00 551.84 551.90 552.15 0.030181 4.43 16.95 36.28 1.14 1 1750 SPF .:.,..• 377.00 551.00 552.46 552.63 553.12 0.037148 6.49 58.10 81.95 1.36 1 1700 100YR; 3 Hr 308.00 549.22 551.01 551.01 551.20 0.010635 3.51 87.75 121.55 0.73 1 1700 , 100YR - 24 Hr 75.00 549.22 550.54 550.55 550.82 0.023619 4.20 17.88 34.28 1.02 1 1700 SPF • :. 377.00 549.22 551.02 551.02 551.30. 0.015434 4.25 88.66 121.77 0.88 1 1650 t00YR.- 3 Hr 308.00 546.95 547.84 548.31 549.70 0.151883 10.95 28.13 52.11 2.63 1 1650 100YR •.24 Hr. 75.00 546.95 547.48 547.70 548.27 0.166246 7.15 10.48 39.38 2.44 1 1650 SPF , 377.00 546.95 548.04 548.39 549.36 0.173070 9.20 40.99 108.87 2.64 1 1600 100YR - 3 Hr 518.00 545.57 547.84 545.36 547.85 0.000162 0.61 487.28 194.02 0.10 1 .1600 100YR - 24 Hr. 124.00 545.57 546.73 544.64 546.73 0.000041 0.23 296.86 168.36 0.05 1 1600 SPF 617.00 545.57 547.97 545.49 547.99 0.000199 0.67 513.54 201.30 0.11 1 1567 100YR - 3 Hr 518.00 543.131 547.36 547.36 547.79 0.018938 5.32 97.44 111.68 1.00 1 1567 ..' 100YR - 24 H'r 124.00 543.131 546.44 546.44 546.70 0.022344 4.14 29.96 56.78 1.00 1 1567 SPF- 617.00 543.13 547.56 547.56 547.94 0.019534 4.91 125.561 165.77 1.00 1 1550 100YR - 3 Hr 518.00 544.76 545.78 546.24 547.14 0.069336 9.36 55.33 72.07 1.88 1 1550 100YR - 24 Hr . 124.00 544.76 545.23 545.44 545.92 0.116832 6.70 18.50 58.94 2.11 1 1550 SPF 617.00 544.76 545.92 546.39 547.29 0.058386 9.41 65.55 74.45 1.77 1 1500 100YR - 3 Hr 518.00 540.51 542.51 542.86 543.61 0.068823 8.43 61.481 91.32 1.81 1 1500 100YR - 24 Hr ' 124.00 540.51 541.53 541.74 542.26 0.050316 6.82 18.18 28.92 1.52 1 1500 SPF 617.00 540.51 542.56 543.00 543.901 0.079316 9.29 66.41 94.77 1.96 1 1450 100YR - 3 Hr 518.00 539.70 541.04 541.10 541.54 0.023744 5.57 91.85 113.78 1.11 1 1450 100YR - 24 Hr 124.00 539.70 540.41 540.41 540.63 0.024645 3.74 33.41 79.92 1.02 1 1450 " SPF 617.00 539.70 541.16 541.23 541.70 0.023497 5.81 10 4.81 120.78 1.11 HFC -PA3 Plan- Fvietinn (.nn Rivpr• NChannpl Ppach• 1 lrnntinupol Reach • River Sta Profile.;. .. : ::Q Total: Min`_ h El ' .: W 3 'Elev. . ;. Crit W S;....- ; E G. EfeV , .; ,ESG'z:Slope'= r =Vel Chnh -° Flow Area ' . Top. Width .FPoude # Chl Y .(ft� §) (sgft)• . (ft) 1 1400 .. -;. 100.YRr.3 Hr;.. , .i 518.00 537.84 539.15 539.52 540.11 0.032933 6.14 70.65 80.49 1.28 1400 I OOYR•:- 24.Hr 124.00 537.84 538.41 538.59 539.00 0.042444 3.86 22.22 49.67 1.26 1 1400 SPF. ; '.'.; • : 617.00 537.84 539.29 539.62 540.29 0.031673 6.37 81.98 86.95 1.28 1 . .1350 ".. `'., 100YR'= ,3' -Hr.:. 518.00 536.50 537.71 537.89 538.54 0.028437 5.14 77.421 95.12 1.16 1: 1350_. 100YR --'24 Hr 124.00 536.50 537.04 537.11 537.39 0.023146 2.91 28.31 57.63 0.93 1 1350 - SPF:r'``;. !: - 617.00 536.50 537.80 537.91 538.74 0.029726 5.58 86.76 99.57 1.21 1 1300> ". 100YR - 3 Hr : 518.00 535.68 536.33 536.65 537.22 0.024514 2.69 87.55 178.87 0.93 1 1300 100YR = 24 Hr - =. 124.00 535.68 535.33 535.48 535.97 0.033946 19.30 24.53 0.00 1 1300' , SPF = 617.00 535.68 536.41 536.73 537.35 0.025622 3.03 102.91 201.40 0.98 1 1250. .., :. 100YR -,3 Hr:. 518.00 534.00 534.59 534.78 535.32 0.062056 4.69 86.78 235.91 1.52 1.; 1250 250.: .100YR;- 124.Hr .;: 124.00 534.00 534.31 534.36 534.54 0.020836 2.18 37.95 120.49 0.83 1 ..:. 1250 SPF; .`' 617.00 534.00 534.64 534.85 535.39 0.061621 5.10 99.29 243.90 1.55 1. Y200:: ;' . , : 1.60YR•. 3 H[;'.: 518.00 532.00 532.91 532.95 533.21 0.027547 4.24 117.77 240.12 1.09 1 12W0. 100YR? =-24 Hr..-.'... 124.00 532.00 532.49 532.59 532.75 0.073153 3.67 31.05 155.68 1.52 1 1200 SPF; , . 617.00 532.00 532.96 533.02 533.31 0.027099 4.53 131.71 240.82 1.11 1 1150 100YR,'- Hr:. ` - 518.00 529.93 530.901 531.06 531.41 0.047847 5.99 94.06 240.81 1.47 .1 1150 , 100YR -:24 Hr 124.00 529.93 530.51 530.59 530.78 0.050800 4.13 29.90 104.76 1.37 1 1.150 SPF; 617.00 529.93 530.95 531.12 531.51 0.048470 6.29 107.11 253.98 1.49 1. .. 1100... 1.00YR - 3 Hr . 518.00 527.43 529.02 529.10 529.38 0.033252 4.10 110.08 241.45 1.16 1 1100 100YR - 24 Hr 124.00 527.43 528.55 528.58 528.77 0.032239 3.17 33.26 99.31 1.08 1 1100 SPF • 617.00 527.43 529.07 529.16 529.48 0.033244 4.44 123.131 244.14 1.19 1 1050 1100YR - 3 Hr 518.00 525.10 526.51 526.70 527.15 0.061144 6.60 82.12 187.27 1.65 1 1050 100YR - 24 Hr 124.00 525.10 526.13 526.25 526.48 0.069394 4.85 26.89 108.49 1.60 1 1050 SPF 617.00 525.10 526.56 526.77 527.271 0.059730 6.97 92.99 191.19 1.65 1 1000 100YR - 3 Hr 518.00 522.05 524.37 524.53 524.88 0.033990 5.87 93.00 181.83 1.28 1 1000 100YR 24 Hr . 124.00 522.05 523.33 523.52 523.95 0.037664 6.36 19.51 28.32 1.35 1 1000 SPF 617.00 522.05 524.43 524.62 525.01 0.034312 6.24 106.281 199.07 1.30 F- r- 0 .6 W Y• • Coral CanyonNorth Channel— 10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS =I 000 - Section AA r Legend . --- .............._ ..,.._......................... Crit SPF .............. _ ... ....... .a. ........ ...... _........... Crit 100YR - 3 Hr WS SPF WS 100YR - 3 Hr _ ............._.._... _...A...._....- ..............._ Crit 100YR - 24 Hr WS 100YR - 24 Hr Ground Bank Sta 0 200 400 600 800 1000 Station (ft) • Z I 0 0 m a� w F_ C 0 CU W Coral CanyonNorthChannel _10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 1100 Section AA ............ -._ ....... _.T ...... _........... -- Crit SPF _ .................... _ }............ ....... _. Crit 100YR - 3 Hr WS SPF V V 0 I UV T R- a Il l ....--•- ....__.A......_.- ....-- _....... Crit 100YR - 24 Hr WS t00YR - 24 Hr Ground • Bank Sta 0 100 200 300 400 500 600 Mo. Station (ft) Coral Ca nyonNorthChannel_10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 1050 Section AA .................. ............ ................... _ ..... .. Crit SPF ._ ........ ............ ,.... _ ..... _......... Crit 100YR - 3 Hr WS SPF WS 100YR - 3 Hr ............ _ ............ _A ....... - .-.._ ............. Crit 100YR - 24 Hr WS 100YR - 24 Hr Ground • Bank Sta 0 200 400 600 800 Station (ft) (A6- WC 0 .0 w r c 0 d w • CoralCanyonNorthChannel _10252006 Plan: Existing Condition 10_20_2006 ' 10/26/2006 Geom: Existing Flow: Existing Flow River= NChannel Reach = 1 RS = 1300 Section AA 0 100 200 300 Station (ft) CoralCanyonNorthChannel _10252006 Plan: Existing Condition 10_20_2006 Geom: Existing Flow: Existing Flow River= NChannel Reach = 1 RS = 1250 Section AA 400 Crit SPF ...... ..... _ ..... -+ - - Crit 100YR - 3 Hr WS SPF WS 100YR - 3 Hr .............. __ ....... _1 ................... _.. Crit 100YR - 24 Hr WS 100YR - 24 Hr Ground • Bank Sta 10/26/2006 0 100 200 300 400 Station (ft) Legend .......... _ ........... I ............. -- ........ Crit SPF .... _ .... _ ....... _.. .................. _.... Crit 100YR - 3 Hr WS SPF VVJ 1 UU r K - d tir ............. .......... A .... ... _ ...... ....... _. Crit 100YR - 24 Hr WS 100YR - 24 Hr ■ Ground • Bank Sta F- 1 ID W x 0 C a� w c � 0 CoralCanyonNorth Channel _10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 1500 Section AA Legend __.._ .__.._.�.__._ ...... ............ Crit SPF ...... .... _........... . ................ _ ..... _ Crit 100YR - 3 Hr — -- ......... .....__..__...._.__... Crit t00YR - 24 Hr WS 100YR - 24'Hr Ground • Bank Sta 0 100 200 300 400 Station (ft) CoralCanyonNorthChannel _10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 1450 Section AA Legend _ .................. .__....I....._....._._...._.._. Crit SPF WS SPF _ .......... .......... .._ ......... _............ WS 100YR - 24 Hr - ... ............ ........ A. .... _.............. Crit 100YR - 24 Hr Ground Ban• k Sta 0 100 200 300 400 Station (ft) c 0 .ci a� w I c 0 a� W • CoralCanyonNorthChannel _10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River= NChannel Reach = 1 RS = 1200 Section AA .... _ ... _ ........ . .._T ......... _ ................. Crit SPF WS SPF ......... ... - ........ �_._...._.__.._...... Crit 100YR - 3 Hr WS 100YR - 3 Hr ........ .... ........... A ...... _ ........... _ ... .... Crit 100YR - 24 Hr WS 100YR - 24 Hr Ground • Bank Sta 0 100 200 300 400 Station (ft) CoralCanyonNorthChannel _10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 1150 Section AA 0 100 200 300 400 500 600 700 Station (ft) Legend ........ ............. _._ ,r ....... _.._ ....... ..... _. . Crit SPF ... ... _............ ......... ..... ._ Crit 100YR - 3 Hr WS SPF V V V I V V I I \- J 111 ......... _ ........... _A ....... .............. ..... Crit 100YR - 24 Hr WS 100YR - 24 Hr Ground • Bank Sta • c 0 a� W iR c 0 a� w CoralCanyonNorth Channel— 10252006 Plan: Existing Condition 10_20_2006 10/26/2006 I Geom: Existing Flow: Existing Flow River= NChannel Reach = 1 RS = 1567 Section AA WS SPF ......... _ ...... .._... ......................... Crit SPF WS 100YR - 3 Hr __...-- .-- +--- .......... ....... Crit 100YR - 3 Hr WS 100YR - 24 Hr . .... ._ .... . ............. A ..... ............ --- Crit 100YR - 24 Hr Ground Levee Bank Sta 0 100 200 300 400 Station (ft) Coral CanyonNorthChannel_10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 1550 Section AA 0 .100 200. 300 400 Station (ft) Legend .......... _ ....... ....... T ........ _ .... ... .......... Crit SPF .. ............. _.._ .... . + ......... _ ..... ........... Crit 100YR - 3 Hr WS SPF vva IVVTm - ani _ ...... __ .............. ............. _ .......... _. Crit 100YR - 24 Hr WS 100YR - 24 Hr Ground Levee • Bank Sta el C 0 (D w 4. F .CUc w 0 0) Coral CanyonNorthChannel_10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 1400 Section AA Legend Crit SPF ....... _. ... ....... ... _ ............. ......... Crit 100YR - 3 Hr WS SPF WS 100YR - 3 Hr ___ ....... _.._.__...__....__.._....... Crit 100YR - 24 Hr WS 100YR - 24 Hr Ground Bank Sta 0 100 200 300 400 Station (ft) Coral CanyonNorthChannel _10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 1350 Section AA 0 100 200 300 400 Station (ft) ... _ ........ _ ..... _...�..._._.__._..._._ Crit SPF ._._----- _ ...... -+ _.... - Crit 100YR - 3 Hr ..--- _.___..._.._A.._ ....... __ ------ Crit 100YR - 24 Hr WS t00YR - 24 Hr Ground • Bank Sta i� P_ c 0 a� W ie c w0 .cu d CoralCanyonNorthChannel_10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 1850 Section AA Legend WS SPF VVQ ivv n -vr�i ... _. .......... _...._ .. .................... ........ Crit SPF _.... _._.._._,.-_................... Crit 100YR - 3 Hr WS 100YR - 24 Hr _ ... _ ....... _..... _ A..__.._._ ............. Crit 100YR - 24 Hr Ground Levee • Bank Sta 0 50 100 150 200 Station (ft) CoralCanyonNorthChannel_10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River= NChannel Reach = 1 RS = 1834 Section AA WS SPF V V J I V V - J 111 ..... ....... ......... I ....... ...... ......... Crit SPF ..... .... .......... 4 ............... __........ Crit 100YR - 3 Hr WS 100YR - 24 Hr .._._...._. ....-...A ............... -_..... Crit 100YR - 24 Hr Ground Levee • Bank Sta 0 50 100 150 200 Station (ft) (6 0 c. 0 m W iK C 0 (U W 0 Coral CanyonNorthChannel _10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 2211 Section AA 0 50 100 iau Station (ft) Coral CanyonNorthChannel _10252006 Plan: Existing Condition 10_20_2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 2200 Section AA Legend WS SPF VVJ I UU T K - ) M .................. ...... _.T ... ................ ......... Crit SPF _._..- - -.... -+- ............. --- Crit t OOYR - 3 Hr WS 100YR - 24 Hr .... _ ... ..... ........... A ....... _ .................... Crit 100YR - 24 Hr Ground Bank Sta Luu 10/26/2006 WS SPF WS 100YR - 3 Hr WS 100YR - 24 Hr ■ Ground • Bank Sta 0 50 100 15u ZO0 Station (ft) 7 i A .*Ad C-] iE 0 a� w F_ c 0 a� W Coral CanyonNorthChannel_10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River= NChannel Reach = 1 RS = 1650 Section AA Legend ....................... _ _..; ....... ......... _.......... Crit SPF - -- --- -- .------ .. — .. ....------- __.. Crit 100YR - 3 Hr WS SPF VVO iuvrM - J of :..: ............. .... _J.. .................... _.... Crit 100YR - 24 Hr WS 100YR - 24 Hr Ground Levee • Bank Sta 0 100 200 300 400 Station (ft) CoralCanyonNorthChannel_10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 1600 Section AA 0 100 200 300 400 Station (ft) WS SPF V VJ I UU i R- J r-11 WS 100YR - 24 Hr Crit SPF ...... _ .... __._ ......... +............ _ ........ _. Crit 100YR - 3 Hr - - - -. _..... -. _.... -- ------------ - -- Crit 100YR - 24 Hr ■ Ground • Bank Sta a c 0 m W i iK c 0 d w CoralCanyonNorthChannel_10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow . River = NChannel Reach = 1 RS = 1750 Section AA Legend ......... _._.._......... .I ............................. Crit SPF __... .._.�... _ ........ _ ........... _. Crit 100YR - 3 Hr WS SPF YVJ IVVIII -J111 ___...._._... .__._�... _ .... .... ....... _..... Crit 100YR - 24 Hr WS 100YR - 24 Hr Ground Levee • Bank Sta 0 100 200 300 400 Station (ft) Coral Canyon NorthChannel_10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 1700 Section AA 0 100 200 300 400 Station (ft) Legend WS SPF - ........ _ ...... ..._.1 .... ..... _. ....... ,...._. Crit SPF WS 100YR - 3 Hr .-- .................... +........... __........... Crit 100YR - 3 Hr ..... ._.. ... ............. . ....... ............... __. Crit 100YR - 24 Hr WS 100YR - 24 Hr Ground Levee • Bank Sta F c 0 a� W C 0 aD w Coral Canyon NorthChannel _10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow. River = NChannel Reach = 1 RS = 1800 Section AA Legend WS SPF VVJ I UV T K- 3 n r .._ ............. _ ...... ...T ..... ..... _._........... Crit SPF ....... ............ ... _, ....... __ ............. - Crit 100YR - 3 Hr WS 100YR - 24 Hr ..... ................... .A.... ........................ Crit 100YR - 24 Hr Ground Levee • Bank Sta 0 50 100 150 200 Station (ft) CoralCanyonNorthChannel _10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River= NChannel Reach = 1 RS = 1766 Section AA WS SPF ............................................. . Crit SPF 0 100 200 300 400 Station (ft) VVJ I UU T R- 3 n 1 .......... _ ........ _. ........ .... _ ........ - Crit 100YR - 3 Hr WS 100YR - 24 Hr ..... ....... _ ..... _A ........ ............ _ ... _. Crit 100YR - 24 Hr Ground Levee • Bank Sta � (6 0 0 .0 d WC E c 0 CU CD 0 CoralCanyonNorthChannel _10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River= NChannel Reach = 1 RS = 1900 Section AA 0 50 100 150 Station (ft) CoralCanyonNorthChannel_10252006 Plan: Existing Condition 10_20_2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 1859 Section AA WS SPF .... ..... -- ...... _... _T. ... _ ........ ......... Crit SPF 200 vva 1 uur n - s nr _......_ ....... . ...... .... _..__...._. Crit 100YR - 3 Hr WS 100YR - 24 Hr .... .. ..................... A ..... _ ........ _ ..... ..... Crit 100YR - 24 Hr • Ground Levee • Bank Sta 10/26/2006 Legend WS SPF VVJ 1 uuT K - 3 rir _. ........ _.__.....�..... ........... __... Crit SPF _ ... ........... ........ � . ............. __............ Crit 100YR - 3 Hr WS 100YR - 24 Hr ..... .................. A .... _ .... _ .............. Crit 100YR - 24 Hr Ground Levee • Bank Sta 0 50 100 150 200 Station (ft) Co iE c 0 m d W E 0 .ci m w c L• Coral Canyon NorthChannel_10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow ' f River = NChannel Reach = 1 RS = 1986 Section AA Legend WS SPF _...._..._...__ ._....�_._.................... Crit 100YR - 3 Hr vv0 1 vv r rN - a ni ........ ......... ... - -------..- ._.. -... Crit 100YR - 24 Hr WS 100YR - 24 Hr Ground • Bank Sta 0 50 100 150 200 Station (ft) Coral CanyonNorthChannel_10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 1950 Section AA WS SPF V YJ l wv f r _O "I _ .......... _- .._.._I —-.._............... Crit 100YR - 3 Hr WS 100YR - 24 Hr ..------ ..--- •.._...---- .. -. ---- Crit 100YR - 24 Hr Ground Bank! Sta 0 50 100 150 200 Station (ft) r E WC 0 .0 m w • FS c 0 m a� w • CoralCanyonNorthChannel _10252006 Plan: Existing Condition 10_20_2006 10/26/2006 , Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 2050 Section AA WS SPF WS 100YR - 3 Hr ....... .... .-. ........ I ........ __............. Crit SPF WS 100YR - 24 Hr Ground • Bank Sta 0 50 100 150 200 Station (ft) CoralCanyonNorthChannel _10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 2000 Section AA 0 50 100 150 200 Station (ft) WS SPF ,............ Crit SPF WS 100YR - 24 Hr ........... --- ........ _A ................. _..._ Crit 100YR - 24 Hr Ground • Bank Sta to CoralCanyonNorthChannel_10252006 Plan: Existing Condition 10_20_2006 10/26/2006 { Geom: Existing Flow: Existing Flow River = NChannel . Reach = 1 RS = 2150 Section AA WS SPF WS t OOYR - 3 Hr ..................... .... -,r .............. ....... - Crit SPF --- ......... ,._..... -- - Crit 100YR - 3 Hr WS 100YR - 24 Hr ._._ .......... _.._._......................... Crit 100YR - 24 Hr Ground Levee • Bank Sta 0 6/2006 WS 100YR - 24 Hr Ground • Bank Sta s� 0 m ca) W 0 C 0 m W CoralCanyonNorthChannel _10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River= NChannel Reach = 1 RS = 2350 Section AA 0 50 100 15u Station (ft) CoralCanyonNorthChannel _10252006 Plan: Existing Condition 10_20_2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 2300 Section AA i WS SPF .... _...... . . ......................... Crit SPF WS 100YR - 3 Hr ............ .. ........ _..+.._ .................... ... Crit 100YR - 3 Hr WS 100YR - 24 Hr .... _. .......... _ ......... A ......... _ ............ _._. Crit 100YR - 24 Hr Ground Levee • Bank Sta zuu 10/26/2006 WS SPF WS 100YR - 3 Hr .......... __ ......... _.T ....... ................ Crit SPF _ ... ...... _.. ........ +...__ ............. _._. Crit 100YR - 3 Hr ............. ._ ......... A ......... ...... ......... Crit 100YR - 24 Hr WS 100YR - 24 Hr Ground E3 _ Levee • Bank Sta 0 50 100 150 NO Station (ft) r .i F_ .0 WC 0 aD w F_ c 0 m a� W CoralCanyonNorthChannel_10252006 ' Pian: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 2250 Section AA WS SPF _...._ -- - -...- • — - Crit SPF vv0 I UU I rX a rt ..._._.__.. ._......._...t.:_...- -'----.._. Crit 100YR - 3 Hr WS 100YR - 24 Hr Crit 100YR - 24 Hr Ground Levee • Bank Sta 0 50 100 150 200 Station (ft) Coral CanyonNorthChannel _10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 2231 Section AA Legend WS SPF ... _.. ........ ............ T..... -- ......_.._._ Crit SPF 0 50 100 150 200 Station (ft) Crit 100YR - 3 Hr WS 100YR - 24 Hr .......... .--- ............ A ........... _ .......... _._. Cnt 100YR - 24 Hr Ground Levee • Bank Sta B C 2 m a� w ,. F_ c 0 a>i W 0 Coral Canyon North Channel 10252006 Plan: Existing Condition 10_20_2006 10/2612006 Geom: Existing Flow: Existing Flow River= NChannel Reach = 1 RS = 2450 Section AA 0 50 100 150 Station (ft) CoralCanyon North Channel _10252006 Plan: Existing Condition 10_20_2006 Geom: Existing Flow: Existing Flow River= NChannel Reach = 1 RS = 2400 Section AA Legend WS SPF _ ..... _ ... _......... - - -- - -- Grit SPF VVJ IUUTK -a MU _._...._.._....__� ....... -- ..... _...._ Crit 100YR - 3 Hr WS 100YR - 24 Hr ...... ..._.._..__ -... .............. ..... ........ Crit. 100YR - 24 Hr Ground Levee • Bank Sta 200 10/26/2006 WS SPF WS 100YR - 3 Hr ..... _... ......... . ..... _ .... ............ .._ Crit SPF Crit 100YR - 3 Hr WS t OOYR - 24 Hr Crit 100YR - 24 Hr Ground B Levee • Bank Sta 0 50 100 150 200 Station (ft) s c 0 W i• s� C 0 a� W CoralCanyonNorthChannel_10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 2550 Section AA 0 50 100 150 Station (ft) Coral CanyonNorthChannel_10252006 Plan: Existing Condition 10_20_2006 Geom: Existing Flow: Existing Flow River= NChannel Reach = 1 RS = 2500 Section AA Legend WS SPF ... .... ........... — T..... Crit SPF VVJ IUUTK-0 MF ...... _.... - ..._�_.__..._..__.._. Crit 100YR - 3 Hr WS 100YR - 24 Hr ..... ..... _ ......... .... -- - - -.. Crit 100YR - 24 Hr Ground Levee • Bank Sta 200 10/26/2006 WS SPF WS 100YR - 3 Hr ........ _ ......... ..._.__...__......_._ Crit SPF ............. _ ......... +...-- .............. Crit 100YR - 3 Hr WS 100YR - 24 Hr ------ _ ..... - ... ---- - -------------- Crit 100YR - 24 Hr ■ Ground Levee • Bank Sta 0 50 100 150 200 Station (ft) 01- IID W e ICj CoralCanyonNorthChannel _10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 2650 Section AA WS SPF V VJ I UU T I _J111 ............. .... _ ...... _V ....... _ ............. _..... Crit SPF -......_ ...._.. ....................... Crit 100YR - 3 Hr WS 100YR - 24 Hr ................. ­A........._.._.__._._. Crit 100YR - 24 Hr Ground Levee • Bank Sta' 0 50 100 150 200 Station (ft)' ~ Coral CanyonNorthChannel _10252006 plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 2600 Section AA WS SPF WS 100YR - 3 Hr ... _ . . . . . . . . . . . . . . . . . .. ... .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Crit SPF ..... ....... .......... .............. ...... Crit 100YR - 3 Hr 4 WS t OOYR - 24 Hr ....__... _ .... _ .... ...__....__._...._..._ Crit 100YR - 24 Hr Ground 1-, Levee • Bank Sta 0 50 100 150 200 Station (ft) c 0 a. w E C 0 m W 1• CoralCanyonNorthChannel_10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 2750 Section AA 0 50 100 150 Station (ft) CoralCanyonNorthChannel_10252006 Plan: Existing Condition 10_20_2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 2700 Section AA WS SPF vva i uu Y n ­5 nr . ...... _ .... ............. +.......... ......... _.. Crit 100YR-- 3 Hr WS 100YR - 24 Hr ........... ... _.......... A.......... _ ........ _.. Crit 100YR - 24 Hr Ground • Bank Sta 200 10/26/2006 0 50 100 150 200 Station (ft) WS SPF WS 100YR - 3 Hr WS 100YR - 24 Hr Ground • Bank Sta f6 ie 0 .cu a� w c Z WC 0 .0 w w CoralCanyonNorthChannel _10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 3000 Section AA 0 50 100 150 Station (ft) CoralCanyonNorthChannel _10252006 Plan: Existing Condition 10_20_2006 Geom: Existing Flow: Existing Flow River = NChannel ' Reach = 1 RS = 2950 Section AA WS SPF VVJ 1 UU T K - 3 r1r .... ......... _ ..... ... A ..... __ ..... _ .... ..... Crit 100YR - 24 Hr WS 100YR - 24 Hr Ground Bank Sta 200 10/26/2006 Legend WS SPF VV,'.) 1 UU T K - s nr WS 100YR - 24 Hr .... _...... _ ...... ..... A..... _.. .......... ........ Crit 100YR - 24 Hr Ground • Bank Sta 0 50 100 150 200 Station (ft) It ie I c 0 m w W i E 0 m a� W i• CoralCanyonNorthChannel_10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 2850 Section AA WS SPF vvl� ivvTn-anI .... ......... _. .. ...... T ...... ................ Crit SPF Crit 100YR - 3 Hr WS 100YR - 24 Hr Crit 100YR - 24 Hr Ground • Bank Sta 0 50 100 150 200 Station (ft) Coral Canyon NorthChannel _10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River= NChannel Reach = 1 RS = 2800 Section AA WS SPF ............ __ ....... + ...._.. - - Crit 100YR - 3 Hr WS 100YR - 3 Hr _._ ..... __ ....... _........— ...._.... Crit 100YR - 24 Hr WS 100YR - 24 Hr Ground • Bank Sta 0 50 100 150 200 Station (ft) F- c 0 m w r C 0 a� W 0 CoralCanyonNorthChannel_10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 3050 Section AA Legend WS SPF WS 100YR - 3 Hr a WS 100YR - 24 Hr Ground - • Bank Sta . Station (ft) Coral CanyonNorthChannel_10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River= NChannel Reach = 1 RS = 3028 Section AA 0 50 100 150 200 Station (ft) Legend WS SPF WS 100YR - 3 Hr WS 100YR - 24 Hr ■ Ground • Bank Sta E c 0 .cu m w E C 0 d W CoralCanyonNorthChannel _10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River= NChannel Reach = 1 RS = 2935 Section AA 0 50 100 150 Station (ft) Coral CanyonNorthChannel _10252006 Plan: Existing Condition 10_20_2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 2900 Section AA 200 WS SPF V VJ I U U 1 R- J rl f WS 100YR - 24 Hr Ground • Bank Sta 10/26/2006 VVS SPF -- ....... .......... . .._ ......... _.......... Crit 100YR - 3 Hr 0 50 100 150 200 Station (ft) Wo _i uur K - s nr Crit 100YR - 24 Hr WS 100YR - 24 Hr Ground • Bank Sta F_ IWC I iC c 0 is m w KI Coral Canyon North Channel_10252006 Plan: Existing Condition 10.202006 10/26/2006 Geom: Existing Flow: Existing Flow River= NChannel Reach = 1 RS = 3100 Section AA WS 100YR - 24 Hr Ground • Bank Sta 0 50 100 150 200 Station (ft) Coral CanyonNorthChannel_10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River= NChannel Reach = 1 RS = 3088 Section AA 0 50 100 150 200 Station (ft) Legend WS SPF WS t OOYR - 3 Hr WS 100YR - 24 Hr Ground • Bank Sta i E ID w t�• Z c 0 m W LI CoralCanyonNorthChannel_10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 3150 Section AA 0 50 100 150 Station. (ft) Coral CanyonNorthChannel_10252006 Plan: Existing Condition 10_20_2006 Geom: Existing Flow: Existing Flow River= NChannel Reach = 1 RS = 3135 Section AA Legend WS SPF WS 100YR - 3 Hr ........... _ ..... .... _.T..-.._ ...... _....__... Crit SPF ........ ..- ........... . ... + - .._...... _.......... Crit 100YR - 3 Hr WS 100YR - 24 Hr ..... -- .. .......... ...... ...- ­_- Crit 100YR 7.24 Hr Ground • Bank Sta 200 10/26/2006 0 50 100 150 200 Station (ft) Legend WS SPF vvoiuurn -snr WS 100YR - 24 Hr Ground • Bank Sta F- c 0 .0 CD WC is E c 0 �I > a� W 0 CoralCanyon North Channel _10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 3250 Section AA Legend WS SPF VVJ 1MYK -a Mr ..... _. ..... _ ........ T_.__ ......... ......... _. Crit SPF _ ..... _ .- ------- ._._.__ ............... Crit 100YR - 3 Hr a WS 100YR - 24 Hr Crit 100YR - 24 Hr Ground • Bank Sta 0 50 100 150 200 Station (ft) CoralCanyonNorthChannel_10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 3200 Section AA 0 50 100 150 200 Station (ft) WS SPF -- .... .... ........... I ... ..... _.. ..... _..... Crit SPF WS 100YR - 3 Hr ... . ...... _ ........... +..__ .... ......... _..... Crit 100YR - 3 Hr a WS 100YR - 24 Hr ...... ..... __. - • - - .._....._. Crit 100YR - 24 Hr Ground Levee • Bank Sta � (40 Z 0 .0 a� w c 0 E c 0 a� W 0 Coral CanyonNorthChannel _10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow . River= NChannel Reach = 1 RS = 3350 Section AA Crit SPF Crit 100YR - 3 Hr WS SPF V VJ I UU T R- J n I WS 100YR - 24 Hr _ ... .. .......... ......... .._ ---------- _......._ Crit 100YR - 24 Hr Ground • Bank Sta 0 50 100 150 luu Station (ft) Coral CanyonNorthChannel _10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River= NChannel Reach = 1 RS = 3300 Section AA Legend ._ ..... .... _ _ ............ T_.. ......... -.... - Crit SPF .. ......... _ ... ........ +._._.. .................. Crit 100YR - 3 Hr WS SPF VVJ I uu y m- a n f WS 100YR - 24 Hr ...... - ._ ..... __.... - - - -= Crit 100YR - 24 Hr Ground Bank Sta 0 50 100 150 z00 Station (ft) IF c 0 d W Z C 0 CD W 0 CoralCanyonNorthChannel _10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 3412 Section AA 0 50 100 150 Station (ft) Coral CanyonNorthChannel _10252006 Plan: Existing Condition 10_20_2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 3400 Section AA Legend Crit SPF _._._....._.._..*........ _- ...... - ----- Crit 100YR - 3 Hr WS SPF 200 vvo iuv1m -oni Crit 100YR - 24 Hr WS 100YR - 24 Hr Ground • Bank Sta 10/26/2006 0 50 100 150 200 Station (ft) - -- - .�..-------- -- - - --- Crit SPF ..... ................... _.....__...._...........__.. Crit 100YR - 3 Hr WS SPF VV,'.) 1 UU T K- 3 m r Crit 100YR - 24 Hr WS 100YR - 24 Hr Ground Levee • Bank Sta CoralCanyonNorthChannel_10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 3444 Section AA E c 0 m iR c 0 d W 0 CoralCanyonNorthChannel _10252006 Plan: Existing Condition 10_20_2006 10/2612006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 3500 Section AA 0 50 100 150 Station (ft) CoralCanyonNorthChannel_10252006 Plan: Existing Condition 10_20_2006 Geom: Existing Flow: Existing Flow River= NChannel Reach = 1 RS = 3450 Section AA -------- ----- Crit SPF Crit 100YR - 3 Hr WS SPF WS 100YR - 3 Hr ..... ... _._.._.—...-.._.._-...----.. Crit 100YR - 24 Hr WS 100YR - 24 Hr Ground • Bank Sta 200 10/26/2006 0 50 100 150 200 Station (ft) WS SPF ...... ................. . ...... - ....... ........ Crit SPF WS 100YR - 3 Hr .. . .......... ... _ ........ 4 ............... ......... Crit 100YR - 3 Hr WS 100YR - 24 Hr ..._.._...._ .......... A .... ................... Crit 100YR - 24 Hr Ground Levee Bank Sta Z c 0 .r CD w E r- 0 a� W 0 Coral Ca nyonNorthChannel _10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River = NChannel Reach = 1 RS = 3600 Section AA Legend Crit SPF Crit 100YR - 3 Hr WS SPF YYV I VV 1 1\ - J 111 Crit 100YR - 24 Hr WS 100YR - 24 Hr Ground • Bank Sta 0 50 100 150 200 Station (ft) Coral Canyon NorthChannel _10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River= NChannel Reach = 1 RS = 3550 Section AA 0 50 100 150 200 Station (ft) _..._._. .._._._.__�.._...__._._......_. Ut SPF WS SPF - — ....._. � ................... . .. Crit 100YR - 3 Hr Y YJ I V V I m- J rl l WS 100YR - 24 Hr -- --------- ..._...._...__....__.. Cdt 100YR - 24 Hr Ground Bank Sta E c 0 a� W d• F- c 0 a� w • Coral CanyonNorthChannel _10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River = NChannel Reach= 1 RS = 3695 Section AA 0 50 100 150 200 WS SPF ___._... _...._._..�-- ..._-------------- Crit SPF WS 100YR - 3 Hr Crit 100YR - 3 Hr WS 100YR - 24 Hr Crit 100YR - 24 Hr Ground • Bank Sta Station (ft) CoralCanyonNorthChannel_10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow River= NChannel Reach = 1 RS = 3650 Section AA 0 50 100 150 200 Station (ft) WS SPF ....... _. ............... I......._......_.._........ Crit SPF WS 100YK - 3 Hr Crit 100YR - 3 Hr WS 100YR - 24 Hr .._ ._ ....... _ .... __..._.__........ -- Crit 100YR - 24 Hr • Ground • Bank Sta L--] LI CoralCanyonNorthChannel _10252006 Plan: Existing Condition 10_20_2006 10/26/2006 Geom: Existing Flow: Existing Flow Section AA NChannel 1 590 Legend Crit SPF Existing SPF WSE ■ Existing North Channel 580- 570 560 - E: 0 a� W 550- 540 530 O '0 O O 0 O O O O O O O O O O o (D O to O t0 O to O to O to O to O r N N M M V' to to M (D 1`� f� � � � � O 'Ira) O O m O o O O .- O cM to O M to O M OD 00 00 C1) O m O N N r' N N N N N O O O O O O o O O O O O O41) O "' O to O to O to O to O In O M M CO V' V' t() to O W I- N 00 00 O O N N N N N N N N N N N N N N O co O N O O M M 0 to M M O r M CO o 0 0 O O to O U) N N M M M M M M O to O O O o to O M O K) O u) O V' V' LC) W) to W co CO M M CO M M co 520 1000 1500 2000 2500 3000 3500 4000 Main Channel Distance (ft) r Coral Canyon December 2006 Hydrologic Analysis #8528E P i, • IM -. r Hydraulics HEC -RAS Analysis for Proposed Condition Y P for North Channel • PACIFIC ADVANCED' CIVIL ENGINEERING, INC. • PrpNorthChannell20606 Plan:' PropWith5- 3X2Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow, PropNChannel120606 Section AA Prop Channel 1 580 Legend Cent SPF_ i__J__J______I___L__ 1__1______1___1___1__1__ __J __J___I___I___ __L__1__J___I______L _L __L__1 _ -_ - - -I -_I- 11 I I I 1 - I I t I. - __I-- I- _I.___ - - -, - -- -'- - - -, -. -, - - -; -- -- -- -, - - -' -- - -, -- Crit 100 Y ; , ---- ,-- ; , , ,-- ;--- ,--- ,- - 1 I 1 1 • I 1 I I 1' I 1 I I I I 1' I I t - I I I 1 I I I - I� I • -,- r,- -.r-- -- 1-- ---- r- -r-- r,- -,-r -- - - - I--- I--- r -`r -- - -1 - - -1 - r - -r - - - - - r -- - --i n - - - - - - r -- r -- r - --r - - WS SPF I I I I l I 1 '1 � I 'r 1 1 I I• I� I - 'I � i 1 I. .I 1 'I I 570 —+ --+- -- 1 -- -�-- — - — I 1.___; .__ J___- -_L L -,_1__1 __ _.__1___1_•__1__1__ __J_,_J__J___1_ -_ __1__1_- J__J_._ __L __L __L__1___ Ground I Y l ( I I I 1 t 1 I I 1 I I I I I 1 II -"- r--7 ^----'- 1- -----f'---.r'-r---i--'---1�-�r -r - - r�- - ^-I- -�.:.> - ,- _- -- --.- -I-- .-r -'-r - - -r - -- - i i• 1 I I "1 I I 1 I I I I I I 1 I I •f;'.. . 560 .. -: t I 1 1 t 1 1 I 11 I I i 1 1 1 I I t f 1 I I �' ^,,r• 1 I 1 I J. 1 1 1 1 I I I I I I I �. 1 I •1':•'r'� -- i I I I -- -1 I 1 1 I I I M� I 1 1 �---r---r -- --r---r---I----i------r--r--'r--.-r--- ' I� •! i'�•" I I I I I i I 1 1 k_._1 4 - _- - - _ ^__ ,� _ - - - _41 ._ _I -_ -I ___ -1 __+ _ --y - � ,,•• , �_' ___ L.__1__J.__J___.:^- 4_,L__L -,1_; •`� i-- '---'---L-- - ^J-- ^'-'-- '---'--- --L--�--J-= J------L--L--L--1--- � 550 I j - "-I= ^n---I-- -r-- ^-r---r---r---1------r—r-`r---r--- W . - +_'--- -i ---a - "+'_- " "'_ -1-' : .--V -- -- •- 1- '-- I--- I - - -L -- -- '!- ._'J--- I- - -I - -- --+---- 4-- -1--- I- --- ---- I'- '- N- '+- ` --+ - -' 1 I 1 1 I I i 1 1 1 1 1 I I I I I t 1 1 - -..1_-1`--1 .- �--_._- •.' ' 1-' 1 '---I I I- - - - - L ' 1-- J---- --1- `-L- -L--J -._ 1 1 t 1 I I I I 1 1 1 I I 1 i i I 1 1 t I I , I I -- -t— - --, -- 540 __.- t-- _._,-- --r --- - _ - -r---- ,--- r - ---,— -- r--- •1 —,—' --, -- I t - r-- t _ � _ - J _ _ -1 _ _ _ I_ - _ _ _ 1 _ . 1 _ _ J _ _ _ _ _ _ _ - 4 - - L -. _ _ _ .: _ - - "-•�------'--'-1-- -1--1--- - - -'- ' ' L-'- --1I ---'---'---'--- --L--1- ' I- _...- --I---L--L.'- 1--- I I 1 I I I I I I i I 1 I I I I - 1 I 1 1 I - - -r -- i_------ i r-- r-- r'-- - -r-- '-- -I- -- r- '- 1 - - -r -- - -- (--- 1- --1- --1--- - - r --T- - ti - - - t------r--r--r--"t--- 530 1 1 1 -'- „ _ i _ - ' - _ I - - _ - _ I _ _ 1 I 1 -. 1 - I 1 I I ' 1 i 1 L. � 1 ' I 1 . I I 1 1 1 11 1 I I 1 I I• t 1 1 1 I '- r -- "r- '-I-- -1------ ,- - - r- - r - - -I -- -- -, - - -; -- - -r -- --- r--- I--- I--- i----- r-- �-- ---- 1------ r--- r-- r- --r --- - _ -I-- -r -- r-- -- ---- -1 - - -r -- - -r - -Y-- - - - -- - - -r -- r-- +-- * -- I 1__J__J__-- __1__1__1__1 520-1 1000 1500 2000 2500 3000 3500 4000 Main Channel Distance (ft) r� U x C 0 a� w E C 0 m ar W PrpNorthChannel120606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChannel120606 River = Prop Channel Reach = 1 RS = 1150 Section AA RS = 1100 Section AA 035 .035 .035 {0 ._ , 1 1 i. Legend �.. L 1 ...............•............... ,0 T- -r r• r r r r r r r • r T T T rr +r rr L. t CritSPF _I .1 , L I— L 1 1 J y r ! T 1 ............ ............ + �0 • ._ - 4r O Crit 1 YR - ; r Crit SPF r r T i `I ' 1' 1 T T 7 l 1 I'" r— r' r r r, WS SPF • 0- + +1 1 —r + — + +r++ i0 ) J J 1 + J F J�� J, WS 100 YR 0 T r- f t'i } ,Ground w 10 1 a' • Crit 100YR 'rTT7 11 'r r i-1 r Tr Il''I'. "rr TT l' ;0 • 11 ~I , —I r r- r + 1 y 1 1 I I 1r j + + 1 1 I !• I I + - + - 5 0 1 L 1�, 0 100 200 300 400 500 600 700 Station (ft) PrpNorthChannel120606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChanne1120606 River = Prop Channel Reach = 1 RS = 1050 Section AA .035 4 .035-41.035I r Legend r Lr t + Crit SPF 1 1 r F ........ _ ....... � .................. Crit 100 YR r WS SPF t _ 1. t ... WS 100 YR r r Ground + .i .. r r r r e }• r Bank Sta t ' t 0 200 400 600 800 Station (ft) PrpNorthChannel120606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChannel120606 River = Prop Channel Reach = 1 RS = 1100 Section AA 035 .035 Legend _ L 1 1 —1 _I .1 , L I— L 1 1 J 7 1 1 L 1 1 1 J 5 I- 1 L. L J ! 1 1 J J I • ._ - -;- - ; Crit SPF r r T i `I ' 1' 1 T T 7 l 1 I'" r— r' r 'r i l l +- I f r T?-1— • 0- + +1 1 —r + — + +r++ + + + -• SPF - -" Crit 100YR 'rTT7 11 'r r i-1 r Tr Il''I'. "rr TT l' ° r + + i , —I r r- r + 1 y ! - r + + 1 1 I !• I I + - + - 5 1 L 1�, �� �� .� WS 100 YR j r rrT rT i r` r r7rT— r l r rrr r Ground r+ —1 r r r r r r j •j r r�+ + I r r r r+ • Bank Sta 0.'_ j �r r+ i 111 r r r+ 1 r +, r 1 t 5 0 100 200 300 400 500 600 700 Station (ft) • x C 0 m W Z C a� W 0 PrpNorthChanne1120606 Plan: PropWith5- 3X2 Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChannel1206O6 River= Prop Channel Reach = 1 RS = 1350 Section AA PrpNorthChanne1120606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: ProNChannel- Concrete _5x36pipe Flow. PropNChannel120606 River = Prop Channel Reach = 1 RS = 1300 Section AA Station (ft) PrpNorthChanne1120606 Plan: PropWith5- 3X2 Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChanne1120606 River = Prop Channel Reach = 1 RS = 1200 Section AA 035 035 .035 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChannel120606 River = Prop Channel Reach = 1 RS = 1250 IE .035 .035 .035 555 __ Legend 6 4 g f I. + -: , ! r + , - r ,- - 5, 1- t 1 }. L_ L- a. 1 .i -1 1. 1. -i 1 l. 1 1. 1 1. Legend WS SPF � - - 555 , , J_ - - + + - - 1_ I 1 i L- - -,� + -. 1 ti J r r t_ egend - .- .... -..... I ....... .... - Crit SPF 2 0 - r r , T I , . =. -i • '1' r r-, T+ + ,,. >. i 1 ." t r 7 �._1 T 1 -+" r a L ........... _........ Crit SPF Crit 100 YR 0 -- r -' � T i i T r f r I _ l , "T - I- r ........_.. ............ Crit YR 8 t l l r i i t "r t T J r 1 T T T WS R .. I r Bank Sta r T'I T'rI ( r I T l r -r -r T' WS SPF 6 2 . + - r r + 1 _ i r r i t r 1 ,- _ r r + r ; ..... .............+................. Crit 100 YR G • Bank Sta °- W 545 540 .1 1 1_� 1_I 1 1 —i r , r J. _ .. + ,. r• r , r . �. , ..r _ _, + WS 100 YR Ground • 8j. 535 6 0 100 200 300 0 40 500 0 100 200 300 400 500 Station (ft) PrpNorthChanne1120606 Plan: PropWith5- 3X2 Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChanne1120606 River = Prop Channel Reach = 1 RS = 1200 Section AA Station (ft) 035 PrpNorthChannel120606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChannel120606 River = Prop Channel Reach = 1 RS = 1250 Section AA 035 .035 .035 555 __ Legend i L 1 L t L 1- .. •' L 1 � - - Crit SPF 550 , � ' WS SPF , ............ ........... 545 = . Crit 100 YR -I 1 . J ( .� r WS 100 YR ° 580 r, r + r t r r 540 + 1 i t + + Ground UJ I r Bank Sta 535 • 1 1 -1 530 I r 0 100 200 300 400 500 Station (ft) Station (ft) PrpNorthChanne1120606 Plan: PropWith5- 3X2 Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChanne1120606 River = Prop Channel Reach = 1 RS = 1200 Section AA Station (ft) 600 Legend Crit SPF WS SPF ................. i . . . . . . . . . . . . . . . . . . Crit 100 YR WS 100 YR Gr —� • Bank Sta 035 .035 .035 590 r T ., .. __ i L 1 L t L 1- .. •' L 1 � - - r '; � � . F , r 0 100 200 300 400 500 -I 1 . J 580 r, r + r t r r t r+ r r r r+ I r r + I 570 Station (ft) 600 Legend Crit SPF WS SPF ................. i . . . . . . . . . . . . . . . . . . Crit 100 YR WS 100 YR Gr —� • Bank Sta {t+ r T ., .. __ i L 1 L t L 1- .. L 1 I L L 1 t. , r ' r Y •, t T f r '1 r -r r '; F , r 0 100 200 300 400 500 Station (ft) 600 Legend Crit SPF WS SPF ................. i . . . . . . . . . . . . . . . . . . Crit 100 YR WS 100 YR Gr —� • Bank Sta � ' ` ` ' ' PrpNofthChanne1120606 Plan: PropVVith5-3X2Pipe, 5/2/2007 River = Prop Channel Reach = 1 RS 1550 Section AA 547 546 545 � «4 � 543 om .035 035 .035 Legend WS SPF WS 100 YR WS 100 YR 5- Bank Sta Crit 100 YR Ground Levee � ' o oo 100 150 000 Station (ft) PrpmorthCxonne1120806 Plan pe 5/2/2007 oovm:pmwcxonnw|'ovnoate_oxnopipo F|mmpmpmcxennunumaoo River = Prop Channel Reach = I RS = 1450 Section AA 543. s*o. � 542, o+1, cc Fu 541. s*o' 0 50 100 150 200 250 300 Station (ft) PrpNuuhChonmeI120608 Plan: PmpWith5-3X2Pipe 5/2/2007 ' aovm:Pm 'xon rmwpmpwohonmy1oo*os River ~ Prop Channel Reach ~1 na=1noo Section AA mm 544 � 543 � mu w 541 540 E WS SPF WS 100 YR 5- Crit 100 YR Ground Levee 0 50 100 150 200 250 300 Station (ft) PrpNuuhChonmeI120608 Plan: PmpWith5-3X2Pipe 5/2/2007 ' aovm:Pm 'xon rmwpmpwohonmy1oo*os River ~ Prop Channel Reach ~1 na=1noo Section AA mm 544 � 543 � mu w 541 540 E o _ ' -50, 100 150 ` 200 � Station (ft) � 120606, Plan: 0000nr ' 000m: Pro mcxannel-ooncrete_uxosppo rwwPmpmoxonmvnoosoa ` River ~ Prop Channel Reach ~1 mo~1*oV Section AA no Legend WS 100 YR Levee o _ ' -50, 100 150 ` 200 � Station (ft) � 120606, Plan: 0000nr ' 000m: Pro mcxannel-ooncrete_uxosppo rwwPmpmoxonmvnoosoa ` River ~ Prop Channel Reach ~1 mo~1*oV Section AA no u oo 100 150 oon zon xno xxn *oo ~ Station (ft) ' Legend Ground 545-- Bank Sta u oo 100 150 oon zon xno xxn *oo ~ Station (ft) ' • Z C 0 d w C 0 cc 0) W PrpNorthChannel120606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: Pro NChannel- Concrete_5x36pipe Flow. PropNChanne1120606 River = Prop Channel Reach = 1 RS = 1750 Section AA 035 .015 .015 2 Legend O + WS SPF 8 T i r r t r r r r - r r r r 6 WS 100 YR .1 t a .� q r r ., r +, , r Crit SPF x rt « T .. } .y • ............... ................. C r _ _ .� +_ 1 2 + Crit 1 0 YR — •O N 0 Ground + - , + f • W 8 Bank Sta • f. 6 4 ; t } 0 50 100 150 200 250 300 Station (ft) PrpNorthChanne1120606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36 pipe Flow: PropNChannel1206O6 River = Prop Channel Reach = 1 RS = 1656.1 Culv Section AA .035 .01 .015 . 4 ; } . Legend B WS SPF ............. A ................. i r Crit SPF T , 4 ,t + T , 't 1 } r r TF ; .•t., . _ I Y- T{ rr F + r . : r , . T . r,; .{ t1 � T+ r r r T r �r I t T r t•, i WS 10 0 YR 2 ._.+ ............. _. 100 YR . , „ . , . Ground w g Bank Sta r C 2 0 50 100 150 200 250 300 350 Station (ft) PrpNorthChannel120606 Plan: PropWith5- 3X2 Pipe 5/2/2007 Geom: Pro NChannel- Concrete_5x36pipe Flow. PropNChanne1120606 River = Prop Channel Reach = 1 RS = 1730 Section AA 035 .01 .015 560 III -{11 Legend 558 WS SPF 556 111��i ���t �}�1�• 1� WS 100 YR I 554 - ..... ............................... Crit SPF ` 552 l + _ ................ .......... ..... Crit 100 YR 550 �- +,� -- Ground 548 �. - _ ) + ' - + • j • , } • , , Bank Sta 546 , , ; } + +_ 544 542 0 50 100 150 200 250 300 350 Station (ft) PrpNorthChannel120606 Plan: PropWith5- 3X2 Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36 pipe Flow: PropNChannel1206O6 River = Prop Channel Reach = 1 RS = 1656.1 Culv Section AA .035 -1* .035 .035 552-1 r Legend { i ` F F .................. A ......... ....... 550 r' + t r r r Crit SPF ....... _....... Crit 100 YR 548 : -+ +:_r -$ WS SPF 546 ' —` r - ( WS 100 YR r r Ground 544-1 y .............. � ' F A } _ F Ba k Sta 54Z !!! 540 0 50 100 150 200 Station (ft) • C 0 a� uJ x C 0 w PrpNorthChanne1120606 Plan: PropWith5- 3X2 Pipe 5/2/2007 Geom: Pro NChannel- Concrete_5x36pipe Flow. PropNChanne1120606 River= Prop Channel Reach = 1 RS = 1800 Section AA .035 .035 S Legend -r •• r 111' y +- i- ,., ,..,_ +- r 555-, r i Crit SPF y 0 { + + + + y - -+ -+ Crit 100 YR • ( WS SPF + r r t j I r r 5 i. t WS 100 YR , I _ • > Ground w t.. T • 1 i ` Bank Sta 0 t t + r } + L , 5 . 0 50 100 150 200 250 PrpNorthChannel120606 Plan: PropWith5- 3X2 Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChannel120606 River = Prop Channel Reach = 1 RS = 1799 Section'AA .035 .035 Legend 555= r. 1 , Crit SPF ..1 r -i r T - r' T r T - r - 1 T - f' .T - !- 1 - r 0 �' + Crit 100 YR I ( ; r • • WS SPF 5 L 1 ..�. J a t.. .,. _F WS 100 YR T { r r Ground { 0 + } Bank Sta 0 50 100 150 200 250 Station (ft) PrpNorthChannel120606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: Pro NChannel- Concrete_5x36pipe Flow. PropNChannel120606 River = Prop Channel Reach = 1 RS = 1766 Section AA 035 .035 T Y Legend T .5 5 5 r ...............•............... T i r.1 r .i -r r , r -� , r • T + , r r + r Crit SPF ,0 - r 7 -+ 'Y T. ` r 1 T Y T r .......... • T r r r -I r r I ,- r i I }' Crit 100 YR WS SPF i5 'r- T- T+ r+ 1 1 Y t r r WS 100 YR 0 -1 r r T 4 T T t r r r r '+ Y Ground �+ � T 1 i r T 1 $ r i r T t Bank Sta 5 T7 ,t -T T ', r, 1+ t - _- T I r' f .I rT ..T .' a 1 0 0 50 100 150 200 250 300 Station (ft) Station (ft) PrpNorthChannel120606 Plan: PropWith5- 3X2 Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChanne1120606 River= Prop Channel Reach = 1 RS = 1771 Section AA .035 1 Ij .035 Legend 5 5 5 ... .............•................. 0 r +, + 1+ T t T r+ Crit SPF Crit 100 YR 5 • T + WS SPF r WS 100 YR °- . t I (Q 0 Ground r i r t r I( r t r Y r T w + T r T + ; Levee 5 +. Bank Sta 0 r t 0 50 100 150 200 250 300 Station (ft) PrpNorthChannel120606 Plan: PropWith5- 3X2 Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChannel120606 River = Prop Channel Reach = 1 RS = 1799 Section'AA .035 .035 Legend 555= r. 1 , Crit SPF ..1 r -i r T - r' T r T - r - 1 T - f' .T - !- 1 - r 0 �' + Crit 100 YR I ( ; r • • WS SPF 5 L 1 ..�. J a t.. .,. _F WS 100 YR T { r r Ground { 0 + } Bank Sta 0 50 100 150 200 250 Station (ft) PrpNorthChannel120606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: Pro NChannel- Concrete_5x36pipe Flow. PropNChannel120606 River = Prop Channel Reach = 1 RS = 1766 Section AA 035 .035 T Y Legend T .5 5 5 r ...............•............... T i r.1 r .i -r r , r -� , r • T + , r r + r Crit SPF ,0 - r 7 -+ 'Y T. ` r 1 T Y T r .......... • T r r r -I r r I ,- r i I }' Crit 100 YR WS SPF i5 'r- T- T+ r+ 1 1 Y t r r WS 100 YR 0 -1 r r T 4 T T t r r r r '+ Y Ground �+ � T 1 i r T 1 $ r i r T t Bank Sta 5 T7 ,t -T T ', r, 1+ t - _- T I r' f .I rT ..T .' a 1 0 0 50 100 150 200 250 300 Station (ft) • 5 5 v 5 5. 0 5 w 5 x C 0 a� w 54 • • PrpNorthChannell20606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe F Flow. PropNChannel1206O6 River = Prop Channel Reach = 1 R RS = 1900 Section AA 035 . .035 16 L Legend PrpNorthChannel120606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: Pro NChannel- Concrete_5x36pipe Flow. PropNChannel120606 River = Prop Channel Reach = 1 RS = 1859 Section AA 035 .035 0 - Legend 555,' . ................ 5 - t f - , _. ............ ............ + +.... Crit 100 YR - I I I WS SPF 0 __ _ f WS 100 YR 5 t i a Ground Bank Sta to T" T t I -1 LC.�C:. 0 50 100 150 200 250 Station (ft) PrpNorthChannel1206O6 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChanne1120606 River = Prop Channel Reach = 1 RS = 1834 Section AA 035 .035 5 Legend 9 j5 5 5 , .................. A................. Crit SPF ,0 - ' Crit 100 YR i WS SPF 5 WS 100 YR i Ground Bank Sta 0 50 100 150 200 250 Station (ft) 0 0 0 E c 0 m m w Z 0 .; m w PrpNorthChanne1120606 Plan: PropWith5- 3X2Pipe 562007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChannel120606 River = Prop Channel Reach = 1 RS = 1998 Section AA Legend Crit SPF ...... . .......... . ................. Crit 100 YR WS SPF c WS 100 YR °- Ground 0 w Bank Sta 0 50 100 150 200 Station (ft) PrpNorthChanne1120606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: Pro NChannel- Concrete_5x36pipe Flow. PropNChanne1120606 River= Prop Channel Reach = 1 RS = 1952 Section AA 0 50 100 150 200 Station (ft) Legend ........... . . . . . . .1................. Crit SPF ............. _ .. i.............. _ .. Crit 100 YR WS SPF WS 100 YR ° ■ C Ground °1 0 w Bank Sta PrpNorthChannel120606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChannel120606 River = Prop Channel Reach = 1 RS = 1984 Section AA .035 .035 '6 Legend 4 T T r- r + r 5 5 .5 t T- �- �` .A ................. Crit SPF 2 t + Crit 100 YR ,0 WS SPF ,8 + t + WS 100 YR 6 r +. Ground i Bank Sta 4 2 + r 0 0 50 100 150 200 Station (ft) PrpNorthChannel120606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChannel120606 River = Prop Channel Reach = 1 RS = 1950 Section AA .035 .035 6 Legend A5 5.5 + ........... ....... A................. Crit SPF ................. i.................. Crit 100 YR r WS SPF WS 100 YR r Ground Bank Sta 0 50 100 150 200 Station (ft) 0 0 PrpNorthChannel120606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: Pro NChannel- Concrete_5x36pipe Flow. PropNChanne1120606 River = Prop Channel Reach = 1 RS = 2198 Section AA .035 .035 568- 568 111. Legend Legend 1 1 1 566 .................. A................. 566 - � . . t r `555 r r + f .................. A................. Crit SPF 564 } ------- ------ +.__.._......_ Crit 100 YR Crit SPF r 566 564 x .562 .. ;_.. .. WS SPF 564 560 , + F _ .I. - Crit 100 YR WS 100 YR - Crit 100 YR w 558 .. _, a —.._. , . _ Ground w Levee + + j 556 • 558 Bank Sta WS SPF 554 r , 560 Levee 552 + WS 100 YR c °- > 0 50 100 150 200 PrpNorthChannel120606 Station (ft) PrpNorthChannell20606 Plan: PropWith5- 3X2 Pipe 5/2/2007 Geom: Pro NChannel- Concrete_5x36pipe Flow. PropNChanne1120606 River = Prop Channel Reach = 1 RS = 2098 Section AA .035 .035 Geom: Pro NChannel- Concrete_5x36pipe Flow. PropNChannel120606 568- River = Prop Channel 111. RS = 2148 Section AA Legend 566 .035 5 5 5 , .................. A................. Legend Crit SPF 566 564 -,5 5 -5,-- r r r--+ r r- r r + 564 ... _ ........... .+ .................. Crit 100 YR - Crit 100 YR 562 .. _, a —.._. , . _ 562 : . , .; - _ WS SPF + + j v WS 100 YR 558 WS SPF c °— 560 Levee 556 + WS 100 YR c °- > 558 i Bank Sta � > °1 552 . Ground w 556 0 50 100 150 200 w Station (ft) PrpNorthChannel120606 +•- 3X2Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Levee River = Prop Channel 554 RS = 2048 Section AA , • .035 566- Bank Sta Legend 552 r r t 564 r r t r, 5 .5, 5. :. r 550 - •• . ............... . Crit SPF 562 r .- + . + � - ' 10_............ Crit 1 0 YR 560 _, _ _ _ .. 0 50 100 150 200 WS 100 YR 556 Station (ft) Ground PrpNorthChannel120606 Plan: PropWith5- 3X2 Pipe 5/2/2007 Geom: Pro NChannel- Concrete_5x36pipe Flow. PropNChannel120606 River = Prop Channel Reach = 1 RS = 2148 Section AA .035 .035 568 Legend - 566 —r- r •- r '1 -r t— -,5 5 -5,-- r r r--+ r r- r r �'-- Crit SPF 564 Crit 100 YR 562 .. _, a —.._. , . _ ; _ + . r - : . , .; - _ WS SPF 560 j - 1 WS 100 YR 558 Ground ...... Levee 556 + t... - Bank Sta 554 ) 552 . . 0 50 100 150 200 Station (ft) PrpNorthChannel120606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow: PropNChanne1120606 River = Prop Channel Reach = 1 RS = 2048 Section AA .035 .035 566- Legend 564 r r t r, 5 .5, 5. :. r r - •• . ............... . Crit SPF 562 r .- + . + � - ' 10_............ Crit 1 0 YR 560 _, _ _ _ .. WS SPF 558 t WS 100 YR 556 } Ground Levee 554 E +. Y Bank Sta 552 ; 550 0 50 100 150 200 Station (ft) 0 0 0 c 0 m w 0 cc 4) I CO PrpNorthChannel120606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChanne1120606 River = Prop Channel Reach = 1 RS = 2298 Section AA Legend ........... . . . . . . .. ................. Crit SPF --------- ------ ___. Crit 100 YR WS SPF WS 100 YR °— Ground w Levee • Bank Sta 0 50 100 150 200 Station (ft) PrpNorthChanne1120606 Plan: PropWith5- 3X2 Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChannel1206O6 River= Prop Channel Reach = 1 RS = 2229 Section AA .035 .035 8 1 1 1 Legend -.-...........A.--.-.....-- Crit SPF 6 5 5 5 4 . . . . . . . . . . .. . . . . . + . . . . . . . .... . . . . . . Crit 100 YR 2 . . . . WS SPF 0 c 2 WS 100 YR r > Ground w 8 Levee 6 • 4 Bank Sta 0 50 100 150 200 Station (ft) PrpNorthChanne1120606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow: PropNChanne1120606 River = Prop Channel Reach = 1 RS = 2248 Section AA Legend Crit SPF ................. _ , . .... - . . . . . . . . . . . Crit 100 YR WS SPF WS 100 YR Ground E Levee • Bank Sta 0 50 100 150 200 Station (ft) PrpNorthChanne1120606 Plan: PropWith5- 3X2 Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChannel1206O6 River = Prop Channel Reach = 1 RS = 2209 Section AA Legend Crit SPF - ............ - _,.._ .............. Crit 100 YR WS SPF WS 100 YR t Ground Levee • Bank Sta 0 50 100 150 200 Station (ft) • F- r- .2 d w c 0 m w 5 55 r • PrpNorthChannel120606 P Plan: PropWith5- 3X2 Pipe 5 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe F Flow. PropNChannel120606 River = Prop Channel R Reach = 1 R RS = 2498 Section AA 035 . .035 -. . '5 5 K L Legend r - i 5 ' ' C 18 r r r r r ' _ . Crit SPF r' - -r- .... ............................... Crit 100 YR r W WS SPF PrpNorthChannel120606 Plan: PropWith5- 3X2 Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChannel120606 River = Prop Channel Reach = 1 RS = 2448 Section AA .035 .035 570-. 1 +1 Legend L' i- i- 5 515 * T, 1: i i. L i ................•...._......... 568 -. -. Crit SPF � _ f ., f .. r _ r - -- r - • .... ............i.................. f - Crit 100 YR 566 - r r -r -r-} —,-- -r � --t t— t -r � - - r - r -r r - WS SPF 564 - - -r 4-f -r -• - WS 100 YR 562-.- _ - +' + +• + -+ + " +- I + r r r Ground .:. Levee 560 _ i. � .. � .:. +. _ 1 i _ � ,_ ._, , r j _ r r r - r- _ r. Bank Sta 556-1 0 50 100 150 200 Station (ft) PrpNorthChannell206O6 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: Pro NChan nel-Concrete_5x36pipe Flow. PropNChanne1120606 River = Prop Channel Reach = 1 RS = 2348 Section AA 035 .035 570 i Legend r r r r r r r 5 5 5,-,-, r -r -r r r `r - Cri..SPF 4 ................. + ............ 566 *- + - -- * + + - - _�__ +_ .� -+ _ Crit 100 YR 564 _ a �. + WS SPF 562 y - F ' y - * r WS 100 YR i + r r 560-1 - t - t - • - - t 1 ; _ Ground y ....r•.. r� r r r -� � r -� 558 - ......+ - Levee ' I t Bank Sta 556 554 0 50 100 150 200 Station (ft) • • C 0 a� w c 0 d w PrpNorthChannell20606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChanne1120606 River = Prop Channel Reach = 1 RS = 2698 Section AA .035 .035 0 1 1 1' � r r . r Legend RS = 2648 Section AA ..... .............A................. r r 5 5 5 - r - 3X2 Pipe 5/2/2007 t r ; Reach = 1 Crit SPF .035 g• , t T Y �.. __. Legend .035 — �--�—r t ... ............................... 0 'Grit SPF + r Legend $ r' T ' = Crit 100 YR 5 5 5 ; 566-- +• ............. ................. T r I r.` x WS SPF r Crit SPF ' t t 564 h • � r T T r r r 1 Wt S 100 YR c -W ° Crit 100 YR r r , , • } m Ground 4 T T _ a> � WS SPF 4 i Levee WS 100 YR c °- ', r r Levee , t ! r ! l 562 ' Bank Sta • i r r r 560 0 50 100 150 200 River = Prop Channel Station (ft) RS = 2648 Section AA PrpNorthChannel120606 Plan: PropWith5- 3X2 Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow, PropNChanne1120606 River = Prop Channel Reach = 1 RS = 2598 Section AA .035 Legend .035 — �--�—r t r 0 'Grit SPF I i i Legend $ r' T ' = r r r 5 5 5 ; 566-- ............. ................. 8 - t r , - - r r r t- r + r Crit SPF ' t t 564 h ........._..._........_.... + , 1" -f - - WS 100 YR C Crit 100 YR r 6 t _ :. t } l..._. WS SPF 4 i Levee WS 100 YR c °- ', • i T r Y r F r , � Ground > °' 2 .....J..... i e ,p 1 .! ..-L l _� W r , . ,. +.. r r .1.... _ _.I . • _ � Levee r � f ..' 0 r t r Bank Sta 0 50 • + Station (ft) 8 PrpNorthChannel120606 0 50 100 150 200 River = Prop Channel Station (ft) RS = 2548 Section AA • PrpNorthChannel120606 Plan: PropWith5- 3X2 Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow, PropNChannel120606 River = Prop Channel Reach = 1 RS = 2648 Section AA .035 .035 570 '5:5 Legend 568 — �--�—r t r .5, r r —� -r- r- r r .I t r. r 'Grit SPF _ ;• ' $ r' T ' = r r r Crit - Gt 1 00 YR 566-- f r WS SPF 564 -� l...y_�_� �- _� , 1" -f - - WS 100 YR - T r - Ground 562 l..._. Levee 560 — - ' - r 1 r `- Bank Sta • r , . ,. r r .1.... _ _.I . • _ � , f r r r � f ..' 558 0 50 100 150 200 Station (ft) PrpNorthChannel120606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChannel1206O6 River = Prop Channel Reach = 1 RS = 2548 Section AA 035 .035 570 5l5 5 r t - r r r Legend 568 i L .- _ - - ..... .......... Crit SPF 566 -* T. T + - , r $ F- r t ....... Crit 100 YR 4 WS SPF 564 r , + r +- . WS 100 YR 562 -f + t + � -r _ + 4 �— Ground 560 Levee - r Bank Sta 558 - y r rr` 556 0 50 100 150 200 Station (ft) C7 O m w E c 0 a� w 9 0 PrpNorthChanne1120606 Plan: PropWith5- 3X2 Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChanne1120606 River = Prop Channel Reach = 1 RS = 2898 Section AA .035 .035 D08 Legend 5 5 5 G 567 WS SPF r F WS 100 YR .................. 1 ... ............. 566 - - r Crit SPF ^ x 565 i ♦ . . ± ... ..1.............. v 00 Crit 100 YR 2 564 Ground w 563 Levee Bank Sta 562 r • � � r s • 561 0 50 100 150 200 Station (ft) PrpNorthChanne1120606 Plan: PropWith5- 3X2 Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChanne1120606 River = Prop Channel Reach = 1 RS = 2798 Section AA 0 50 100 150 200 Station (ft) Legend ........... . . . . . . .. ....... _ . . . . . . . . Crit SPF WS SPF ...... . .......... � . ................. Crit 100 YR c WS 100 YR ° Ground El w Levee • Bank Sta PrpNorthChanne1120606 Plan: PropWith5- 3X2 Pipe 5/2/2007 Geom: Pro NChannel- Concrete_5x36pipe Flow. PropNChanne1120606 River = Prop Channel Reach = 1 RS = 2848 Section AA 035 .035 '9 Legend g T r T r T5.55 r • WS SPF .............._..........___... 7 + + +- r Crit SPF 6 t 1 , WS 100 YR ..... ...........�. ........ _._.. 5 . i . . . Crit 100 YR 4 Ground Levee 3 + • 2 + Bank Sta r 561 0 50 100 150 200 Station (ft) PrpNorthChanne1120606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChannel120606 River = Prop Channel Reach = 1 RS = 2748 Section AA 0 50 100 150 200 Station (ft) Legend .................. A ................. Crit SPF WS SPF ................. + . . . . . . . . . . . . . . . . . Crit 100 YR WS 100 YR Ground E Levee • Bank Sta • Z c 0 a� w Z m n 56 56 • 0 PrpNorthChanne1120606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChanne1120606 River = Prop Channel Reach = 1 RS = 2965 Section AA .035 .035 .035 569 9 _ 4 Legend r r 8 r r r,� .5 5 5—, 568 5,5.5' WS SPF 567-[ 7 r -r - - + - +- +-+ + -+ + -* - WS 100 YR t WS SPF 566-- +- 6 + Crit SPF Crit SPF 565 - 5 I y - Crit 100 YR °- Ground 1 4 t - .- - , - i- Ground w 3 t ;- ± - -- - Levee • I i Bank Sta 562 - Bank Sta 1 561 0 50 100 150 200 200 Station (ft) PrpNorthChannel120606 Plan: PropWith5- 3X2 Pipe 5/2/2007 Geom: ProNChannel- Concrete - 5x36pipe Flow: PropNChanne1120606 River = Prop Channel Reach = 1 RS = 2938 Culv Section AA .035 .035 568-. �` 8 , Legend 5 5 5 , 5 5 5 7 x 567 WS 100 YR 6 ;- 566 WS SPF • ............ .... � T T- r - ♦ . f ....... ... ....... Crit SPF 5 + 565 �- _ - �- ............................ Crit 100 YR - q . + Crit .l o 0 YR 564 ■ > r �— Ground Ground w - 563 3 ` Levee t ,- , - Levee I t - CC ! Bank Sta 562 Ban! Sta 1 , 2 y • r I� _r 561 0 50 100 150 200 Station (ft) 0 50 100 150 200 Station (ft) PrpNorthChanne1120606 Plan: PropWth5- 3M Pipe 5/2/2007 Geom: ProNC ha n n el-Concrete-5x36 pipe Flow: PropNChannel120606 River= Prop Channel Reach = 1 RS = 2938 Culv Section AA .035 .035 569 Legend 1 1- L. L- L. 568 5,5.5' WS 100 YR 567-[ - - � - - - WS SPF 566-- +- - T Crit SPF 565 - Crit 100 YR 564 Ground 1 - Levee _ • I ; Bank Sta 562 - 561 0 50 100 150 200 Station (ft) PrpNorthChannel120606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: ProNChannel - Concrete_ 5x36pipe Flow. PropNChannel120606 River = Prop Channel Reach = 1 RS = 2910 Section AA EE 035 .035 568-. �` � Legend kk 5 5 5 567 _, 1 WS SPF 566 : • r T I T � � T T- r - WS 100 YR • ..... .............................. Crit SPF 565 �- _ - �- ............................ Crit .l o 0 YR 564 r �— Ground 563 L i L; Levee . I t - CC ! Bank Sta 562 1 , • r I� 561 0 50 100 150 200 Station (ft) • E WC 0 .; a� w Z, C 0 a� W PrpNorthChannel120606 Plan: PropWith5- 3X2 Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChannel120606 River = Prop Channel Reach = 1 RS = 3085 Section AA Legend WS SPF WS 100 YR ... - . . . . . . . . . . . . .. ............ - . . . Crit SPF . .�. ..........- ............... c Crit 100 YR o Ground a) w Levee • Bank Sta • • 0 50 100 150, 200 Station (ft) PrpNorthChannel120606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChanne1120606 River = Prop Channel Reach = 1 RS = 3025 Section AA 035 .015 .035 8 Legend 7 WS SPF 6 WS 100 YR ........... . . . . . . . A ................. Crit SPF 5 * ........_... Crit 100 YR c o 4 t > Ground 0 —B- w 3 Levee 2 Bank Sta 0 50 100 150 200 Station (ft) PrpNorthChannel120606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChannel120606 River = Prop Channel Reach = 1 RS = 3048 Section AA Legend WS SPF WS 100 YR •.. . ............. Crit SPF . ......... --- Crit 100 YR Ground Levee • Bank Sta 0 50 100 150 200 Station (ft) PrpNorthChannel120606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. Prop NChannel120606 River = Prop Channel Reach = 1 RS = 2998 Section AA Legend WS SPF WS 100 YR . . . . . . . . . . . . . . . . . .. ................. Crit SPF ................. . � . . . . . . . . . . . . . . . . . Crit 100 YR Ground Levee • Bank Sta 0 50 100 150 200 Station (ft) 0 0 0 x 0 .; a� w c E c 0 a� u► PrpNorthChannel120606 Plan: PropWith5- 3X2 Pipe 5/2/2007 Geom: Pro NChannel- Concrete_5x36pipe Flow. PropNChanne1120606 River = Prop Channel Reach = 1 RS = 3199 Section AA Legend WS SPF WS 100 YR Crit SPF x ...........+ ............... . c Crit 100 YR ° Ground w Levee • Bank Sta 0 50 100 150 200 Station (ft) PrpNorthChannel120606 Plan: PropWith5- 3)(2 Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChannel120606 River = Prop Channel Reach = 1 RS = 3134 Section AA 0 50 100 150 200 Station (ft) Legend WS SPF WS 100 YR ............... . .. A . . . . . . . . . . . . . . . . . Crit SPF ...... ........... . ................. c Crit 100 YR ° Ground °1 v W Levee • Bank Sta PrpNorthChannel120606 Plan: PropWith5- 3X2 Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChannel120606 River = Prop Channel Reach = 1 RS = 3148 Section AA .035 .035 '2 FA7 1 Legend 5 5 5i .r WS SPF 4, f 1 .. r WS 100 YR 8 ' + r f ___.._ ...... I.............. Crit SPF Crit 100 YR 16 r Ground Levee q + _ t Bank Sta 2 0 50 100 150 200 Station (ft) PrpNorthChannel120606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChannel120606 River = Prop Channel Reach = 1 RS = 3098 Section AA 0 50 100 150 200 Station (ft) Legend WS SPF WS 100 YR .............. _ .1. . . . . ........... Crit SPF ................. . + . . . . . . . . . . . . . . . . . Crit 100 YR F Ground E3 Levee • Bank Sta • c .o 1 m U1 • PrpNorthChanne1120606 Plan: PropWith5- 3X2Pipe 5/2/2007 PrpNorthChannel120606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: ProNChannel- Concrete - 5x36pipe Flow. PropNChanne1120606 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChannel1206O6. River = Prop Channel Reach = 1 RS = 3399 Section AA River = Prop Channel Reach = 1 RS = 3349 Section AA ;F r- .2 1 m W .035 -035 0 .50 100 150 200 576 -1- _ •- .035 578- _ =C -L.. L. 1 PrpNorthChannel120606 Plan: PropWith5- 3X2Pipe 5/2/2007 -- - - - • WS SPF .. Geom: ProNChannel- Concrete - 5x36pipe Flow. PropNChannel1206O6 - - -- -- 5 -5 5,11 -.- -- -i - -i - - + - 4 - + - + - - x- - H - H -1, - I- - River = Prop Channel Reach = 1 RS = 3299 Section AA ,_,_ _.,._ }_ - -1 -'- -I-- I-- Legend g 035 576 1 i i I 1 I1 5 5 5 Ground -- - -1 - 576 - -I -�- - - - i- + - + -�- - -1 -�- --- I - -' -- 570--F' 70 WS SPF - - -- r-r -r- ' _ _. 1.. _ � , _ WS 100 YR 574- Legend 9 568 _rrr- r-I' ^- - - -+-�- _ - - - -- -I- _ I.......... _......1••• ........... _ 572 '- -•L~ "1- --L- _;1___,. -L -i, _.. __L�J._ ��-• -1- - +- +.. +_,_._ _ �. ._�_r-- 1 - -I -- ,.- Crit SPF :I:D ` - - - -r -r -r --- - -r-�- ; -',- T- r -r -r- - r -r -r -r - 564 570 -- -- -- 1-- - '1 - -_ -'- - .�_.�. -� -'-- Cri t 100 Y 1 I I I 1. 1 1 1 7 t 1 I I I -r r ... -- -_-r -_ -_ -- r-- T- r_ -_-_- i- i - r_.r'r'- - r- I_- I - -1 -- � _l �. .J_J� _J- 1_1_L_ _L _L _r__I__ —� --I--1- -I-- 1._L- I_ -�.__, Ground -1 -- - +- +- + -1"-_ - 1-- .1-- t- -1' --. Ground v Bank Sta 566 • t_ " i_. •- 7." -i - "_ -' - -y . ^1 _ 7 .- 1 I 1 r - r r - r __ I - r - I_ ' I - -I __ - Bank Sta c I I 1 1 1 ( 1 { I I I I _1_plY._t,=lo_ ^ 564 I i 1 1 1 I .1 1 1 1 I 1 1 1 T- i _ L _ L _ L _ °- -r- 4+ 562 -a -a + --- y ;F r- .2 1 m W 0 50 100 150 2uu Station (ft) PrpNorthChanne1120606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChannel1206O6 River = Prop Channel Reach = 1 RS = 3249 Section AA .035 -035 0 .50 100 150 200 576 -1- _ •- Station (ft) I--- -- , - - -1 -1 1 L_ _ =C -L.. L. 1 PrpNorthChannel120606 Plan: PropWith5- 3X2Pipe 5/2/2007 -- - - - • WS SPF .. Geom: ProNChannel- Concrete - 5x36pipe Flow. PropNChannel1206O6 - - -- -- 5 -5 5,11 -.- -- -i - -i - - + - 4 - + - + - - x- - H - H -1, - I- - River = Prop Channel Reach = 1 RS = 3299 Section AA ,_,_ _.,._ }_ - -1 -'- -I-- I-- - -' -�- a- - - 1-i -i -L- 035 -- 1--- -1 --1- -1 7T - T - r -r -r- .035 Ground -- - -1 - 576 - -I -�- - - - i- + - + -�- - -1 -�- --- I - -' -- 570--F' 70 - - 1"-- -t - - - -- r-r -r- ' _ _. 1.. _ � , _ _. _I _ .! J _ J 1 1 •_1 _L 1 _ 1 _ L ._ - _ L _. L_ _ L. _ I_. _ Legend 9 568 _rrr- r-I' ^- - - -+-�- - i._J.- - - - -- -I- _ T _ r - l - - : 7 - T _ T _ r _ r _ - - 574-- '- -•L~ "1- --L- _;1___,. -L -i, _.. __L�J._ ��-• -1- - +- +.. +_,_._ _ �. ._�_r-- 1 - -I -- WS SPF .... .......•.........••••••........ :I:D ` - - - -r -r -r --- - -r-�- ; -',- T- r -r -r- - r -r -r -r - 564 -- 1' -- -- 1-- - '1 - -_ -'- - .�_.�. -� -'-- --- ' - -' -- WS 100YR 1. 572 - r- t_-- -_ -r -_ -r r ... -- -_-r -_ -_ -- r-- T- r_ -_-_- 562 -- 1-- 1- '- 1 °- 1---- 1- �- I- "I --r- - +- + - + - +- __ ..L_.I._I _I _l �. .J_J� _J- 1_1_L_ _L _L _r__I__ —� --I--1- -I-- 1._L- I_ -�.__, 1--1'--1--'1- - -1 -- - +- +- + -1"-_ - 1-- .1-- t- -1' --. Ground v Bank Sta 564 - =- '_!'_- I_Iv= :�- _- -T- Tyr =r_ -r�r-r r- c 570-- 70 _ L _ I_ . I _l.. -.._ . _I _ . A - . J J _. _1_plY._t,=lo_ ^ + Bank Sta - rQ lO y568 _ °- -r- 4+ - - - - r - -a-- -a -a + --- y r.- .1..._r 1- i -_� -_ -r-_r __r -r r__-r__- u� - .- L _ I- _.1_ _ 1 _ _ _- _ _-r_ _ _I'_ _I _ J ._ . r L !. _ L ._ L _ _- _ I- -. I . _ 1_ _ I_ _ LU 566'- 6 6 r" ..,, r _- I _ -_ -_ - -t - l °, .. , . T - T - r - 1• - - .. I �. 1_ i _ _ I _ - _ .! .. _ J .. _I 1 _ .L ... L _ L -. _ k - L -. -1- -1- --- I °� -2 -,1 r r -r -r - - - - -r- r-r-r- 564 _ - -r -r --1- -r-- 1--9- -I --I- -r-T-r -_r_-_ -r_- °-_r_-r- __,1__L..�1'_I_�__J_:J_J. _- -J_ l� i._ L___ _r L _ L_ 1__I__. 562 0 50 100 150 200 Station (ft) 0 50 100 150 2uu Station (ft) PrpNorthChanne1120606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChannel1206O6 River = Prop Channel Reach = 1 RS = 3249 Section AA .035 -035 035 576 -1- _ •- -.- -- .-- I--- -- , - - -1 -1 1 L_ _ =C -L.. L. 1 Legend -- - - - • WS SPF .. 574 - - -- -- 5 -5 5,11 -.- -- -i - -i - - + - 4 - + - + - - x- - H - H -1, - I- - WS 100 Y ,_,_ _.,._ }_ - -1 -'- -I-- I-- - -' -�- a- - - 1-i -i -L- -L -1 _1_ -1 .- -- 1--- -1 --1- -1 7T - T - r -r -r- - r- 1-- 1 - -I -- Ground -- - -1 - --- 1-- 1-- 1-- -- r- r- ---- - -I -�- - - - i- + - + -�- - -1 -�- --- I - -' -- 570--F' 70 - - 1"-- -t - - - -- r-r -r- '- r- r-I-- 1--- -I_y -2 i- _T- ,--_..- _- r- I- -i, - -- Bank Sta 568 _rrr- r-I' ^- - - -+-�- _- r- r -I-�r- 570 _ T _ r - l - - : 7 - T _ T _ r _ r _ - - 66, - _ L _ 1_ _ I_ _ 1_ _ _ _ _I _ J _ J _ -1 _ "1 1- L _ _ L __ L .... .......•.........••••••........ :I:D ` - - - D: D-- i - -L- - r- r- -I -_- Crit100YR 564 -- 1' -- Ground -r- r- r- 1 ° "-�-'�-'�-'- -- r-r- I-- I----'i- -a -,--1 1. L -I- -I- _I_ __J_J_J_J_ _ _1_'l� L_ L_ _L _L- f__1 -_ 562 -- 1-- 1- '- 1 °- 1---- 1- �- I- "I --r- - +- + - + - +- - I- -I- -1 - -I -- _ 1. _ I_ _L_ J� _ 0 50 100 150 2uu Station (ft) PrpNorthChanne1120606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChannel1206O6 River = Prop Channel Reach = 1 RS = 3249 Section AA 0 50 100 15o zuu Station (ft) 035 -035 576 -1- _ •- - _ , _ _,_ _, i_ I Legend _ L _ r _ - -r-. �-r- 1- - �J_ r4�' - _ J _ J J _ J L _ L ._ L _ L _ 1 1 -1 --1 -, , --t-.t .- r- r -r -r- - -- - 5_5 -5 - r -r_ -- _ 1- _ _ _ ..1 _ _ - r.-r- I- �-i -.- - - - -r r- � 574 ,_,_ _.,._ }_ :_ ,, _ WS SPF -- 1--- -1 --1- -1 7T - T - r -r -r- - r- 1-- 1 - -I -- -- - -1 - -' --'- '- - -'- - -' -- - - - ' - -1 -- WS 100YR 572 - - 1"-- -t - - - -- r-r -r- _ _ . _ _ _ _ _ _ _ .. _ I- _ 1 _ _ I - . _ _ -2- _ _ . _ _ _ _ _ _ ._ _ _ _ -- _ J _ J _ . _ 1 _ 1 1 _ L _ L _ _ _ _ _. _ _ _- _ _ .. L _ I_ --1- _ 1 _ _ ... .• ................. - -1- -1- - I - - - -I - -i - - -1 - - - � 4 - + - F - r- - - 1- -1- - I - - I - - C ri t SPF 570 _ r- r= r -r - -- -� -- 1_ - T- r -r -r- - r- r- r - -r_,. L- I_ _ 1_ _I _ _ _ J .- J _ J _I _ .,..L _. L -_ 1- - L _. _ _ L _ i_ _ I_ .. I _ _. .... .......•.........••••••........ - r- r_- 1- -_-_r- -, -, ,•- - r -r -r -. - r- r- -I -_- Crit100YR _- _I-- _I-- -+- - -- _r--- _ Ground -r- r- r- 1 ° "-�-'�-'�-'- 1. 566 — -_j Levee _ - L -1'_ _ _I _ J _ 1 _ 1 _ L _ L _ _ 1. _ I_ _L_ J� _ --I--1- -I-- 1._L- I_ -�.__, 1--1'--1--'1- - _r_r-C :1 : D -D -i -I r - r -r -r -' - - -r' -- 1 - -1-- - - -r -=� Bank Sta 564 1 =� ,- ,- I- �J�L , _1_plY._t,=lo_ + - r- -1- -1- -1- - - 562 0 50 100 15o zuu Station (ft) 10 r- 0 m w 0 ,u w • PrpNorthChannel120606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChannel120606 River = Prop Channel Reach = 1 RS = 3448 Section AA 035 .035 Geom: Pro NChannel- Concrete_5x36pipe Flow. PropNChanne1120606 584 035 .035 Legend '- - n 582 ._ -' S 5 �5 r r r r : r _ ._.......---- A ................. -� y ` River = Prop Channel 1 + t , 1 T - Crit SPF r - r i' ..I .. 5$0 � r - �- T - . _ T +- r- - r ............ ........._. T - T - r -r -r t Crit 100 YR 582 - ��_ _ i i L + i a WS SPF 578 + T c ,5 45 r r t ! - T T T r -, WS 100 YR °- 576 ' i + + + Ground � .' _ t + 4 • w 574 } {( i r r - Bank Sta ..... _ r - r - r !- 'r T r T r 572 �— Ground 576 570 + -- r r 00 WS 1 YR - L .i ! .� 1. a 0 50 100 150 200 y i T.r r r } - Station (ft) . ? k� r I PrpNorthChanne1120606 Plan: PropWith5- 3X2Pipe 5/2/2007 T - r - T - 7 Geom: ProNChannel- Concrete_5x36pipe + r r - r i- T Flow. PropNChanne1120606 572 River = Prop Channel Reach = 1 RS = 3435 Section AA T r 035 .01 .035 ' -r T ..I ..; .� ..� �. �T..T. �.. T -I 582 + . r Legend 70 5701-- 0 50 100 150 200 55 • 580 r r t i r+ r , r+ r , WS SPF , + L , WS100 YR 578 t + . . + + .r + +- . + .. .............•................. • 200 r { nt SPF k 576 .... ............ .+._ .............. Crit 100 YR o 2 }= + r Ground w I 574 t t - • i Bank Sta + 572 r } ... 570 0 50 100 150 200 Station (ft) • PrpNorthChannel120606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: Pro NChannel- Concrete_5x36pipe Flow. PropNChanne1120606 River = Prop Channel Reach = 1 RS = 3442 Section AA 035 .035 584 '- � Legend River = Prop Channel I L 035 _ + 5 5_ J- �� 1 ................ ............ __ • 582 - ��_ _ _ !- + . _ .., ,- ' Crit SPF Legend 580 ,5 45 r r t ! Crit100YR •_ {{ WS SPF � .' 1 t + 578 T .. i + T r Zr r i A. WS 100 YR ..... _ r - r - r !- 'r T r T r Crit SPF �— Ground 576 -r r ? + -- r r 00 WS 1 YR - L .i ! .� 1. a . i - .. • 574:. y i T.r r r } - Bank Sta . ? k� r I Crit 100 YR 574-.---r T - r - T - 7 � . .f T T + r r - r i- T r 572 T T r 3 Levee 572 ' -r T ..I ..; .� ..� �. �T..T. �.. T -I ~ + . r , 70 5701-- 0 50 100 150 200 Station (ft) Station (ft) PrpNorthChanne1120606 Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: Pro NChannel- Concrete_5x36pipe Flow. PropNChanne1120606 River = Prop Channel Reach = 1 RS = 3411 Section AA 035 .035 580 Legend ,5 45 r r t ! i I •_ {{ � .' WS SPF 578 - -r t f T , ..... 'r T r T r I Crit SPF 576 + r r tt T r -F T r 00 WS 1 YR r r r- T T , ... .............+................. • . ? Crit 100 YR 574-.---r T - r - T - 7 � . .f T T + r r - r i- T r -�— Ground T T r 3 Levee 572 ' -r T ..I ..; .� ..� �. �T..T. �.. T -I T y f .. ;. f r. T r r r � , • Bank Sta r -1 570 0 50 100 150 200 Station (ft) E c 0 a� W 5 5 5 5 5 c 0 °' 5 ED PrpNorthChanne1120606 P Plan: PropWith5- 3X2Pipe 5/2/2007 Geom: ProNChannel- Concrete - - 5x36pipe F Flow. PropNChanne1120606 River = Prop Channel R Reach = 1 R RS = 3648 Section AA .035----+ . .035 . .035 13 , , , r : r r r l legend • r I 1 1 r � - r r ... -t" � 12- r r, ' 'T } T r r r T — —r r r W Crit SPF r 1 r - r f W WS 100 YR PrpNorthChanne1120606 Plan: PropWith5- 3X2 Pipe 5/2/2007 Geom: Pro NChannel- Concrete_5x36pipe Flow. PropNChanne1120606 River = Prop Channel Reach = 1 RS = 3598 Section AA .035 .035 .035 584 { Legend J { ! -- . � L L L 1 1 1 Crit SPF T r i r -r .............................. 582 + + t + -+ - � +- --I + +- + -r + r + - crit 100 YR WS SPF 1 T - t r r- t r , 580 y i -t - -� 1 WS 100 YR Ground I_ . 578 1 t _ Bank Sta t 7- r 576 0 50 100 150 200 Station (ft) PrpNorthChanne1120606 Plan: PropWith5- 3X2 Pipe 5/2/2007 Geom: ProNChannel- Concrete_5x36pipe Flow. PropNChanne1120606 River = Prop Channel Reach = 1 RS = 3498 Section AA It 035 .035 .035 584-. Legend _- .. .. . ..... .............�................. J -1 Crit SPF 582- -+- --, , + r , r r • . .r . t t T WS SPF 580 ........_.....r....._......... Crit 100 YR r- r 1 578 ..� t i. L L_ WS 100 YR } F r r . - "r -i - r - r r..- 1 -, - r-- Ground 576 . • Bank Sta 574- _i - -i 572 r r r r 0 50 100 150 200 Station (ft) Y > >. 0 Y GENERALNOTES �, ...� ....r� ......r. ��.......�...�... ...� � .�.._.. — ..�, __. .�.... �,...�., ...._.�........ ._ . 1. ALL WORK SHALL BE DONE IN ACCORDANCE WiTH THE LATEST EDITION OF THE STANDARD PLANS OF THE CiTY OF LA QUANTA AND THE LATEST EDITION OF THE STANDARD SPECIFICATIONS FOR PUBLIC WORKS CONSTRUCTION. IN � CITY ��j „j, LA QUINTA, COUNTY OF RIVERSIDE, STATE OF CALIFORNIA 2. IT SU L BE THE RESPONSIBILITY OF THE DEVELOPER /OWNER OR CONTRACTOR TO APPLY TO THE CiTY OF LA QUANTA PUBLIC WORKS DEPARTMENT FOR THE NECESSARY PERMITS AND TO BE RESPONSIBLE FOR SATISFACTORY COMPLIANCE WITH ALL CURRENT ENVIRONMENTAL REOULA71ONS DURING THE LIFE OF CONSTRUCTION ACi1WES FOR THIS PROJECT. ADDITIONAL STUDIES AND /0R PERMITS MAY BE REQUIRED. mr 3. IT SHALL BE THE RESPONSIBILITY OF THE DEVELOPER OR CONTRACTOR TO APPLY TO THE CALIFORNIA DEPARTMENT OF TRANSPORTATION (CALTRANS) FOR M ENCROACHMENT PERMIT FOR ALL WORK P N PERFORMED WITHIN THE STATE RIGHT OF WAY. WE Sa 4. THE CONTRACTOR SIW1 OBTAIN ALL PERMITS AS REQUIRED BY THE COY OF LA QUANTA OR OTHER GOVERNING AGENCIES. C �,...�CAT-s�Y01N"p-,_," �A 5 THE CONTRACTOR SHALL NOTIFY THE CRY PUBLIC WORKS DEPARTMENT 48 HOURS PRIOR TO ANY GRADING, BRUSHING OR CLEARING ALVD EACH PHASE OF CONSTRUCTION AT {760) 777 -7075 ANO 48 HOURS PRIOR T4 REQUIRING INSP(�CiLONS. 6. THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES ARE SHOWN IN M APPROXIMATE WAY ONLY. THE CONTRACTOR SHALL, DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILIT£S BEFORE LOCATED IN A PORTION O F THE NORTH 1/2 O F SECTION 29, T . 6 S . , R. 7 E . , S.B.M. COMENCING WORK. HE AGREES TO BE FUMY RESPONSSILE FOR ANY AND ALL DAMAGES WHICH FIGHT BE OCCASIONED BY HIS FAILURE 70 EXACTLY LOCATE AND PRESERVE ANY AND ALL UIILiTI1 V , �. t f , /---' . JAM V, tnl ,.ti i : �.: 1 1 ' • a 1 �•T � x 7 � 1 • • 3 1 1 1 1 • 1 ! .t. L. <! � fit. �.< j" �c"-�, t�1 ��� L c. � '�: :� `l � Pwa�1`v.r%✓b�'�!t'5��:�v" -ice "'��� I.r.wlza�lr„a.r � ~ a 1 a a a • 1 . f% , �'' ' "j....�^"'.o_••^ -• ?�„'•"�..n'., rl`l�r.' i4 R� t i_r�i ►._.'v ..,..i ^ = .c- '- !'�^vi; a aa• a ► ► a a a•+. ► / M`/ %� .- ...,.,....- .��....__..,.r]r .1 �I� �*�'1,• �' :1 ^ - .r.�.,Y , . .rrr_• ,r � �, .:� .,: -�.F a�, i ^"'*y!.+..,.�.. _ ,•, Ni�-,•rA!*/.4aC:'.�� ['3--•w.iwrf''^' - '.- .- .,.- "- - - -.,. hl• 1' 1 I � / 1• r r l /' 1 1 1 ,Gs.� llrwJ ►:i•1:��1�L�'r.:�.�:.w.wlGi 111 y .7>Zl7aa.�t.'�u.�>.•re�.r...... : a' : a / 1 • •, N ./ ��. �(I•� � - .f.:3i"�.,,,1>)<_ rd's .-.r9 �- 'c._.- -._.�. .----- +•- .off -�-""' a• a, t • a r r • a • a a ! ► � (� � ,;tt � Y ,rin. �'•- ..,..�i �! � '- •► * �}`'`dxm -ter •� a 33• a a► , :y ► • ► rf� 1.�f, / /I�i.l►w'� �IIICT•".w rl..___-_�•+w ♦ - w..+•. r�. 4,, �i, C/. a•. c�•'. ..- ,.A_LT.:GZ".'^^.+r�:..�'.9.. - �:l j7 : y�',ii� //' ,.t.'•N'• '� i�'R•,'}ta �'••. °�ri�- -firs. /37'••�1rS� a"'— :S+i+.:, -� -__ •�_•7,� =r =� •.'"_ -�'.r -. � •,'�'.� • f t 1 1 ' a' 1 1 3 1 1 7 , ► ► 1 I I ,;. 1r,�11� ,' ��j '!- '' ^• � "L +�i�vt,� sue.' /� fi��J! �'�`ir��� '-'� r= ••-- = -�,:': ,;,_: • 3• 1 • a, r ► •,; • 3•, 1 ! / / � d1i ��', 4 � QVV�t / �:,: �! ���is�.td-�o" ��a t4 ,.�/�"` r t;i�:� ,i' � / ► ! 11 1 1 1 .i4I ' 7 04 � '1 1 1 !• 1' 1 1a' 1 r• N :- rlr- �. °;��.`�: L.;:'J:`• ?;:5���." * � i.�1, �f f'% r a ! h a, ! • / ► ► 1 , , x• 1 ► 1 a • a. 1 • r 1 • 1 1 ► 1 1 ,, ► 1[t�� <���� � �� � °'A s ! � 4 '1 �a'I jt� f � /ff {� ±�j�'���'_�.c;���� ' 1 •1 ► .t.a. ., a, 1 ! f 1' i h , 1 �. !' 1 •a' 1' ► \�• �•'� � �• ��► � � .,��i� �� �� `•"a� =' ��r � !1 1 • / 1 : 1 • 1 ► 1 1 a • ► 5. a' t' 3'n 1 a / • 3' / ► 1 w �`,'7Rra!►••.. .�r. r ',M' � � Y �� •�1 / `t / ► h 1 a 1 X' t a. / '1 :l•-1 ",a' 1' x' •1, 1 ", x ► •. 1 1 /• ,.• '� \• -. _ 1+� 1 • ► t `t 1 �, `` 7 3' /• al a 1 •/ ► •►, •i i •f t 't 'f' ! 1' a• •► '"• �``r~M�M��y+"�.� '!� � �, � (/ Itli�'1i,��� r'�'r�f r � �� � . 'f / , 1 }. :. 1 3 ► •► •'E1• / hl 1 1 •1 a a 1 1 3,1 t_- ...�:.:,� � � .,(fr,�'A4a, 9>; •3 •1 � a 3- 3r h r• .�. � � '� 1 •r a 7 •►•1•a► a. 1• � ► � �` ,�':y. � � e \�`- .:�•��:;,�It'' � �% i!t 1 r� ir, t i. rl 1 ► •1 t ? 3a1 a as 1 • 1 { • 1 • t a � ' / /' 1 • ''t. 1 3► ' ! • �, v y;.y..; �M :`;'`•.': •:�` �;� (�•;,4'+ i���t,• { ! SON a. 31 ► a. al / • 1 • i / 1 1 `�� ! y � rl.�, G�,.�%f'- ;:�,..i,� !:� //'� /i':., +} � . f '�` <��.:� ^: � ;; `s .,•_^....�,���!�!�:5� {:� ail ' 1 _� �� S. ! , i ! 1 1 y. , , / •.. �:� fit On 1 1 a' 1 1 �. , a a al >,�.• aa•. `� - �; ��'+., 7`! �''. %,. �`'•��, �`.'�' ``�\ ��� � j}j��1�� �.` - 1 J 5..., � ..a. { / .�' � �:.�.i -.. �• {.'•.�\ w� "' ' 11� � ��1 � L N it ,� ;w r ` \ 1 1 9 3 • t • 1 3 • ► 1 ► • 1 • ► t ► � _ o,� ��5� �'��„14�j; !/1% � 1��', '- :'"":,:��.�..;< ...�_ � �� � � �j ,� �``'; •i i � � �: .a a' ► ' 37 : 1 1 1 31 1 t -'"' -�A'�. ��•. ;�� 1��%'':%;` \�, `.`� ``, �`.�y ► I A � , l hl - 3' t ► 1 1 �� \ �:..... h� `�..�y\,. N •�'vYfN� � ��.�i.c�.:; Y • � ,\ �' �` I) � - � � ' t� 1 ', 1 a' h1 '.. i 1 f I 'f 1��,'1,►a• ,, ��-� f%` �ji%�� :'i' � � v'r'� �� �,�C '�' "` 1� f a I hl '1. 1 .� 1 5 1 / ► 'al 1 �, �ti:.`\ �~" " \� �,:�� \'�..,7p^ '��il /LI''(�!!•,%:c'�%,,� � 1'�Al��� a ►� Iti 1,.`e`i' �:��` � �� \ . / ! ! 1 •a► a ►• 1• / ► � 3 a 1 /•y• r �'' •� ���"'►- ��'t<y.'\��,� +�,..i'�, ,/ �>� •�L��i,� \��ti•`���� � � � � ! 1 • ► • • 1 ! , • 1 • / ► ! 1. ! a 'rhw �'`"�;: `' ` �:; .�- : � '`... •..a•' .> '� j . q t _`.`J,' \ +.`..:.� o f'f' NI ► • 3 t ► / a a ► / r • ► >. 1 • r : 1 a r 1 �� n11� �`� r, i';:,:�a Z !•' 'ti._ �"- ;,\�!'*... �'\ « /�•��.; � /.rte\ � • :•• �� � t ik h l a l 1 � a a 1 f '+. i�+w wwc.rr- �""- -.. � j 1 /,? � {l�rw� �•ir � , j j. , . � � \ `' �. • �. � e, °yl ,r• '"`;!�'�'v \"�;•:���c1'�`\'��,�� �I ttttffft �1��\� '.,�`,�,,�' �J • 1 •1' 1 '1 1 ► •►•'i N 1 1 1 •! :/ t ! al 1 1 1 -~ �} �' �� � \ \�', 'bas �h�4,^ • * v ''�;; �• ��. � �� '� '! a 3 t �>, 'f a 1 /' a' 1' ! � aa' 1 1 r -�' 1 1 'al 1 1 ♦ >� >�.:,.,I,� � � �.• .,! � p e� ;� �1 n� • �� '•�t� ���,� \ /�,► ' �` t •1 • � 1 ' a• 1 ! al a! :.17i► , 1 1�,7 •. SK :."__" �= .._v�.>�.-- • -_..., ` �. \� 1 \ _ . �•. � 1 a • 13. a' 3 a 1 1 1 F�•,I �•�a..•';�•t..• ;~'�.\, - �..•�7,r""..,=rc-�,.,�1.�;: _,;� _ ��,t ,�5.� ;�1 �1•r", ��,7!'� t� � F • \`��:>, '� �� 1 �� __�- �,,.�\ ��•,r ;.:;�- a"�`'�`��,`::", % �t'i�;- c•>Ilil��� III � �'��'i���y�r * ��`' -''�:. \ �F-. /y /� al 1 • • a► ► a• a• 1 1 1 1 1 • a• 1 , � 'ter••" '• •�-� ,, \ . �r�yt `�t� 1. .1 a. ::..�1 �� ,t -":.', ..�, }:. •,: � �. �� S�t�.ZL'It,l M� '* '`�� `\ \ \.'�: `�Jlj' ^� ��e. s IN A � � i1.�+!�`t.�lG�1�r -� sr �� � / /F���y''� " �'..`:'�it �� � \ •1� Y� �� \\., \:`;'.t�,y _ � �� ► h ► 1 -t " 1 Y '.. • Y : � / a 1 t f ' '(f �� � - `�• � s b.7{i/f �J �� •.�• �.'� t 1 Y� �`7 'f yy1� `��� i� �"7 \��i,.�\ '`�, �% • ► t • 1 hl 1 1 • / a a , 1 1' {, I i, 7!`'/ / , .�',•' ;�ifi �� ', ,V k`.. 1 � ' y ► a a : as xl h / • • 1 , (( (((( !! �� ' rte. •,-': -;� t ,,; ►,. yv�� �-''; vp al h / -1 a. 1.•► a► h ! a• 1�J �11t�t1> NX;:- ..:,; ♦/;t� ��. _ A .� ).f M) �. al ' 1 a ] ► , p t• 1 , i' h ' 1 al ►' h 1 - 1 �► / y h a:. ����� ,' /.. K'* � ►oa• ;5;".`.�:�``��� !1!!�;���r� �� �! t � is � i �� + .t t '`' 1 t 't a a 1 h ' a► ��,g��\� ,, � fy (�j1�;�5' "!mot _- `^% : =.r •�.•i' : -rt �� + f� � � � 1 t a.� F � ► ' • : 1' ' f .� � ,•, „1. � � � � \�� � _.� i..�(,�, .•i/' *i + �1 i I � � l� � >i�- �• :tiqi �`�- , \\ �, � . f �'�+' ,tit,, r• �. � �' �•/' \ „• , �•� . ..✓. 1 • , : ! 1. ► . ! , h ! . • ► ,• h 1. , . ,.. fill, 1 a! 1• ! a' ! hl 1 • ' ! 31 1 /�,.� �. �\ �. 1.�._v'r c` `•�.`)'},It, dr' - •�7 'j! i /�..�� `•y` . \\ `;: \. ,. 7, a• a• • 3 a• • 3r 1 ! • • ! h 1 / ! • • ► 1 a• a, •al��;t `, ..,. (� � 1 ����� , � � � } \ \> �, ,�`�, •a al a a a• ► r a a• a a ► / 11 1 f• 1 •► t 0. 1 r ►t )` _ [ ;�” \� � .. ,., . }�� ,`ti� \�` i'` ��•��' .A I !,� 1'1, �j .� ` � t�` . ..� - \''\ ' , 1. 1 ,,'t� ' 3 a t•a I ti N 1 ! a N h 1•' • 1 1 1 P3 3 f. . a 1 h h / • /' � t!� � u ���:. +',�1..;.: _, ' rtrt .L+ 1 �. ����,�t' .� �,:... ��,. \ f 1 \, . � ''�. a 1 ' ! 1 ! a 1 �Y/,r�� w r � ♦ ♦`'�'� .t.: \,�. ^� ,�O'" IJ•X � � �� �,�,j �M� .�. 1« (\ �t �,. 1' •F a M 1 .r�,rc.�i+r'" ll' �. '�.;':; e -r'=�� "a!�I�� : , �lll, �1 � 1, r ��.1 ' ?,\ � \� ,.'t`���. � �� i ti �, �r �. ? <�`, .�. r,,� � •(i,{�J`jr � - ��;: � y '.Us � '� , '. ,rl�' /,C,.:� l� ', c , y:ct . ``J �3! 3 3 a' ° H 1 1 1 1 ti 1 1 ! 1 �• : / a 1 3 , , ` i��`` ,i�, �� t• , hl 1 • i • # ti ► ! 1 1 1 1 ,• •« t a , ,�� VON S��; 1.�� ! , a' t • r ar 1 • a a• F`�17�• 1 al 1 hl • 1 ' a► 3', • :•1 ► • ! 1 1 ' 1 ti r a al al 1 a y ; „':�`*. vi- !f..MM- •6�i"•- !LLS``,ti'_-�".n'"�'' ' �j',�j, �, ?' �' � �1 -•'1•. a � \ _ ai:` r'� +'�..'1'�:i= "`"`:..�c� ����,- ^- �,r•"•�!'i%�i }:�.....!�:,,��,� `1 q I� � �� i �, /, /' ^s'S 'V r`'- '--- .....�•''::•/"; -, ,t.^v�'- �i11 {�l:r� y f ► ` ,- lr. �.? /,�. ,in'-- •'_..” �`V,l `�•.w/.i;:,� , \.\ ti - •, • ! a a ra ► ! ! a a a• w 1 • ht , , ,1 1 /''< � t 1' , , ��• ;, f ••�'�� �`�' '/ ~'.,� � �'^c "% _ ..: '.r^r. ,,;. �f •.:J 41 t ` '� � �l � � � /I�L\'�..,"_�.. /.' l .q �� - - • _---% °� � � - '���'tif . � j /���,j, .�ff:s��lJ�/ } I � 1 , � w �/ r„ t � ;� , � �,1��.,/.,.� �; . � ��. i r3:', 'a ► /'a' / / a► 1' r h1 /' 4 h 1 •1 •a' / 1 •1•a' ! M3 /����i -�.�`•^••y, ) �'�:..:. :�t �� 'tile( �, •.,,, ... ���.�I= /„�.,,n�•���, � ti�\1:�:�;, \` . ��+..•�'� /7 a11. : i`F" !' � �M SS � r /} Iy t!'�, ���. /"'4.•�. .� i:�.i, i/ r,;: ``�v�':'• " +; 1: �' 1 la:' '1 1: al•' '� 1 1 1 ► ►, 1 1 1 ►' la:' •1•., , • ''"1�.. � �.�1 �� i � a�` :�...a j _ �*+.: ^: a 1�._.._ e!'• ,5._f; i� r�l 1 � i/ rw � � �`�.���.. . `�`'?�; J7', Wes"' r.:r '�,',. �, �\`';:�.�:ti • >, • 7 f a► h aa• 1' N ' 1 .�' h a - ��! �- _..:.. ='' ��xt� � {.,� �r. � _,�.^^•�_ J t Ir t,l �- •�' ��.; 1�l \�� - .�.it� �'%]j ,: t!f ��{ �{11(j(��i ' 4 �� �i --." \`��� '``:� %ys+14 ;, r--�" •�i71 i� i •, . � \ � 1 �\ ' 1 a. a ti ►' � ' ► ' a / 1 • 3' 1. , ti 1 , • , iii \ Ly � �r . �"`•' �y a h l' � • 1 / ► / r - • 1 � • h ► ', • a, , r = �� '�� {� 1 � ' ��� � � � ; �/ y,}; Jl ;;���lr�\ ��, �\�l^�`��..�;i •„ '1 ,� '� s ••., � � t ��. ''� lam. �� j`r\,; ,.,;.,t �, ' ., i • a. • 1 . o• 1 -. r• ca ! • a. 1 ► a• a!• • , r 1 • ► a t : a• 1 ► ra 1 1 • , � � ��I. �'' � .'�� '' ':i;` ":I�fi � ��,r "e . t \ \��.: �',� 1 , a, ► • • ! h 1 r • a t • lat a , t• ' // �� -, : ,. '�,v ,7.,. ,�� ,. � f'� ./" •� ;, �� :;� , \ \..t:. � \� Ifr...,�.. 3 (i' t a . 1 • 1 ► a` i / • • 1 a/ ► � 1 31 a 1 • 1 1 a 3' t ► • � • t • ► � .r.rw- r.'..,.......+ .�' � •✓♦ter . ¢ r �I/ i%: ���I11� ,f •' '•�Z:•> ,,.�„�"r� •, .mac+! rr++wl�•�+w ••-• -- 'J+r++�r. ww.wM/ ✓'r�t.� %.,.!. � ' �'.. �! ••r(� + � J�"`- .f � � ,'.t:,��' 'I t• ! • t\ • a' � 1 • / h y► 1 � y. 1 3' ti / al *•.•""'o ,... -- r•�'+- .... -.�... •.� �fb .� � 1 ' ��1 J.�f� � ! : .- _.:,.. .i �� :v`�/. ,..�...-- „..:.- r- ;•'. - - -.. .d.a...,air,w� �...,�..�_.,._._- ;.•;c... -... 1 �A�., >I•. 'Z,��..r'.” � /r (�1 =-•� r:)�'- r:�''1� ( ., ►.;i,.tt;:. +� \ „•. • 7' t' 1 a' a t ► 1 1 ' h / • , ,,,,:,;..: +. 1: •- ..r'�`•+MII`s� ��,.yt� I1 .1 11(. .: �\.. �I�� � � jjff%%ff//I � , , , 1 • / 1 ► i ► 1 , .,�riw� M. I � fs . ��tlllf I I� \i1�1,���� �� �, ` `, •. J, .� h / h/ 1- ► �.�! r”. a:rr7.il�r�.1 •. P-•, ���.,..tlt;t�,i / ✓. , /,;III�}� �; �, I.F- ^' I' a• a• r • .i ! i 1 r• 1• .1n f y • a I' i . ter►. �,.�r1� �- SRI -`ASV �; ► • / al h r a• ! a• . a f • 1 ► ► It � � � „ f f � � ili � Ir}�� f'� •:,a�.,. � .. �i•F.�s� � -,. •� _... ' a' a • 1 / h "� t• y• c , a' a /. / • ► / , � M lr'/''fn'•-- 1� til>� l� ,. , �a .J NTS LA QUINTA LAKE CAHUILJA t QUARRY PROJECT LOCATION z per_ S z x 0 Y PGAWEST IIAVE VICINITY MAP NOT TO SCALE i X CATCH BASIN.... I ......... CB 7ss- ago —o SH766-020-004, 005 &007 THRU 009 POST. y AL.TIItNAT1!!E STATIONING......... ALT ROMWAY CUT 6,624 CY SCALE: - i "-~200, 3 c� 8 NO. INIT. 0P'UD DATE REVISIONS BASIS OF BEARINGS: THE BEARINGS SHOWN HEREON ARE BASED ON THE GRID BEARING "N58'38'44 "VV' BETWEEN CALIFORNIA COOPERATIVE "CORS'(CONTINIOUSLY OPERATING REFERENCE ' STATIONS) TMAP" AND SGPS" AS PER THE CALIFORNIA SPATIAL REFERENCE CENTER wEBSITI". NATIONAL GEODETIC SURVEY SANCTIONED EPOCH: 2004.0 BENCHMARK: BENCHMARK No. 466 USSR BEr CH RS RK DESCRIPTION H•) AUSBR DISC IN CONC POST(NOT STAMPED) AT SW COP. OF MONROE do 58TH. ELEVATION: -- -- 64.955 ROADWAY FILL 106,331 CY BORROW CUT 106,366 CY ENGINEER'S NOTE THE EXISTENCE AND L:OCMON OF ANY UNDERGROUND UTILITY PIPES OR PAVING LEGEND STRUCTURES SHOWN ON THESE: PLANS WERE OBTAINED BY A SEARCH OF AVAILABLE RECORDS. THESE LOCATIONS ARE APPROXIMATE. IT SHAD. BE THE CONSTRUCT PAVEMENT PER PLAN ' f .. CONTRACTOR'S RESPONSIBILITY- TO VERIFY THE LOCATION OF ALL. UTTI.mES OR STRUCTURES ABOVE OR BELOW' 1 GROUND, SHOWN OR NOT SHOWN ON THESE PLANS. THE ENGINEER IS TO BE; NOTIFIED OF ANY DISCREPANCIES SO THAT ANY NECESSARY ADJUSTMENT CAN BE :MADE IN THE ALIGNMENT AND /OR GRADE OF CONSTRUCT CONCRETE PER PLAN THE PROPOSED IMPROVEMENTS.' THE CONTRACTOR IS REQUIRED TO TAKE °• ... PRECAUTIONARY MEASURES TO PR07ECT ANY UTILITY LINES SHOWN, AND ANY ` OTHER LINES NOT OF RECORD, AND /OR NOT SHOWN ON THESE PUNS. THE CONTRACTOR WILL BE HELD RESPONSIBLE FOR ALL DAMAGE TO ANY UTILITIES OR REMOVE EXISTING PAVEMENT PER PLAN STRUCTURES CAUSED BY IVES OPERATION. its fm LATITI o CAI. AT IJEAST Iwo PREPARED UNDER THE SUPERVISION OF: Oat BEFt7RE WORKING DAYS PRIOR gRt1FESS)p� DU DIG! TO EXCAVATING 1- 800' - ••227 -• -2600 - 1� w No. x1887 BROOKS D. FRANKUN, P.E. DATE UNDERGROUND SERVICE ALERT OF SOUL M c+WFORNiA . 9/3 %7 R.C.E. No, 61887, EXP. 9/30/2007 Exp C1V1L BEFORE EXCAVATING, THE CONTRACTOR SHALL VERIFY THE P� or DRAWN BY., CHECKED BY: DATE: LOCATION UNDERUNDERGROUND VICE ALERT AT CONTACTING -2-2600 SJS J.R.J. AUG. 2006 5 J 0 PHASE I IMPROVEMENTS CENTERLINE ............... TYP SOILS ENGINEER PHASE 11 IMPROVEMENTS Q UANTITIES TITLE SHEET EXISTING CONTOURS ......... -- 50-- -- CONSTRUCTION NOTES INTERIM TOTAL UTI -o FAMES 1 CONSTRUCT 4• AC PAVEMENT OVER Ir CLASS II AGGREGATE BASE 215,112 SQ.FT. 265,139 SQ.FT. SLADDEN ENGINEERING ` se SEWER 2 CONSTRUCT 8' CURB do GUTTER PER LA QUANTA SID, NO. 201 1,710 LF. 8,626 V. 3 4 .JEFFERSON: STREET STA 19+00:00 TO 29 +OD00 JEFFERSON STREET STA 29+0000 TO 38 +00. oAYILGHr LINE .. • ......... -•' -'• •- -- CUT /FILL LINE ............ 3 CONSTRUCT If MEDIAN CURB PER LA QUANTA STD. NO. 210 1,866 LF. 11866 LF. COACH VALLEY WATER DISTRICT v 398 -•2651 5 JEFFERSON STREET STA 38+00.00 TO 45+06.8? PROPERTY LINE . ...... • .... -- �"--- r-�- -- (760) 772 -3893 GamFC 4 CONSTRUCT DRIVEWAY APPROACH PER LA QUANTA STD. N0. 221 1 FA. 3 EA. 6 JEFFI9iSON STREET SIGNING AND STRIPING STA 10+OO.OD TO 30+00,00 FLOW GRADE ............. _.. % 5 CONSTRUCT 8' MEANDERING SIDEWALK PER LA QUANTA SID. NO. 245 -- LF. 3,488 L> YERIZON 800 483• -1312 6 CONSTRUCT 10' MULTI-PURPOSE TRAIL PER L►1 QUINTA $TD. NO. 260 -- LF. 31316 LF. REVIEWED BY THE UNDERSIGNED AND IS IN GENEWtt. CONFORMANCE WITH THE RECOMMENDATIONS CONTAINED OUR _ 7 CONSTRUCT CROSS GUTTER PER LA QUANTA STD. NO. 230 2,025 SQ.FT. 3,698 SQ.FI•, 340 -1312 8 CAHUiWt PARK ROM STA 1Q+0000 TO 18+3206 8 CONSTRUCT CURB INLET CATCH BASIN NO. 1 PER CITY OF IA QUIMA STD. 300.& 330 4 EA, USA GRADING as 9 CONSTRUCT 48r R.C.P. (D -LOAD = 1500) 776 LF. CAHUIL.LA PARK ROM SIGNING AND STRIPING STA 10 +00.00 TO 18 +32.06 EXISTING IRRIGATION LINE ...... 10 CONSTRUCT 18' R.C.P. (0 -LOAD 2000) 59 LF. 11 CONSTRUCT CONCRETE FLARED END SECTION PER CAL.TRANS STD D948 (TYPE 8) 2 EA. • � 12 CONSTRUCT KEYSTONE HEADWALL PER MANUFACTURERS SPECIFICATIONS, (SITE SHOW ON PLANS) 203 LF. ep 13 SAWCUT EXIST. PAVEMENT PER DETAIL ON SHEET 12 810 LF 12 14 6• DiA GROUTED RiPRAP, MIN THICKNESS = 12•. 17,679 SQ.FT. ( 15 ADJUST WATER VALVE TO GRADE xk FA , SIGNING & STRIPING OFF-SITE STORM DRAIN PLAN AND PROFILE TOP OF FOOTING ............ TF PUBLIC UTILITY EASEMENT PUE CONSTRUCTION• NOTES RUANTITLES ` Q PAINT DOUBLE YELLOW STRIPE W/ PAVEMENT MARKERS PER MUICD FIGURE JA-104(CA) DETAIL 22. 5,110 LF: C PAINT T SOLID YELLOW LINE. 280 LF BREIT ANDERSON DATE Q PAINT DASHED WHITE STRIPE W /- PAVEMENT MARKERS PER MUTCD FIGURE 3A-- 102(CA) DETAIL 11. 70,121 LF t Q INSTALL SIGN AS SHOWN PER MUTCD STANDARDS. 9 EA, Q PAINT "STOP" LEGEND PER CALTRANS . STD A24D - THERMOPLASTIC. 1 EA. PAINT LIMIT LINE PER CALTRANS STD DWG A24E. 1 Eq, APPROVED BY CITY OF 1A QUINTA: _ Q PAINT LEFT TURN ARROW (`TYPE -IV) PER MUTCD FIGURE 38- 21(CA) •- THERMOPLASTIC. 4 FA Q PAINT Cr SOLID WHITE LINE PER MUTCD FIGURE 3A- 112(CA) DETAIL 39. 6,627 L.F. I PAINT 4" SOLID WHITE CHANNEUZING LINE. 392 LF. 10 PAiNT MEDIAN ISLAND PER MUTCD FIGURE 3A- 107(CA) DETAIL 28. 4,377 LF. 11 INSTALL TRAIL CROSSING SIGN PER DETAIL HEREON, 4 EA. Q APPLY THERMOPLASTIC LANE REDUCTION ARROW PER MUTCD FIGURE 38- 21(CA) DETAIL F. 3 FA SUITE 00 LEGEND & ABBREVIATIONS OWNER f DEVELOPER MAP CORAL. MOUNTAIN TRAILS, MC to a 1 DESCRIPTION PROPOSED EXLSTiNG FUTURE 74001 RESERVE DR. INDIAN WELLS, CA 92210 N < TOP OF CURB ........ ..... TC (TO E [YC (760) 674 -,2212 staltbecponl FLOWLINE ................ FL (FL ELE1f7 [FI• ELEV1 CONTACT: TOM CULUNAN • FINISHED SURFACE ........... Fs (FS ELI:v) [FS ELEV] FEMA DESTGNATTON FINISHED GRADE ............. FG (FO ELEV) [FG EL£VJ g EDGE OF PAVEMENT .......... EP LAMR IS CURRENiY BEING PROCESSED THROUGH f'EMA LOCATED IN A PORTION OF THE NORTH 1 /2 1 HIGH POINT .............. HP LEGAL DESCRIPTION LAW POINT ...... GRADE BREAK ............. ........ LP PARGEL.=S) 1,43 AND 4 AND LEMED LOT B THROUGH C. INCLUSIVE OF GB PARCEL PUBLIC WORKS DIRECTOR /CITY ENGINEER RCE•_1i0:`- ..458#3•"°_' W.- DATE 12/31/06 FOR: & ��P"aN %woUNAL MAP N4.28617, IN THE CITY OF LA OUNI'A. AS SHOWN BY MAP ON ' RIGHT OF WAY . . . . . . . . . . . . R/W F1L.E IN BOOK 201, PAGE(S) 80, 81, 82 AND 83 OF PARCEL MAPS, IN PROPERTY LINE ............ PL IN THE OFFICE OF THE .COUNTY RECORDER OF RIVERSIDE COUNTY, CALIFORNIA TYPICAL, , ............... TYP ASSESSOR PARCEL NUMBER i X CATCH BASIN.... I ......... CB 7ss- ago —o SH766-020-004, 005 &007 THRU 009 POST. y AL.TIItNAT1!!E STATIONING......... ALT ROMWAY CUT 6,624 CY SCALE: - i "-~200, 3 c� 8 NO. INIT. 0P'UD DATE REVISIONS BASIS OF BEARINGS: THE BEARINGS SHOWN HEREON ARE BASED ON THE GRID BEARING "N58'38'44 "VV' BETWEEN CALIFORNIA COOPERATIVE "CORS'(CONTINIOUSLY OPERATING REFERENCE ' STATIONS) TMAP" AND SGPS" AS PER THE CALIFORNIA SPATIAL REFERENCE CENTER wEBSITI". NATIONAL GEODETIC SURVEY SANCTIONED EPOCH: 2004.0 BENCHMARK: BENCHMARK No. 466 USSR BEr CH RS RK DESCRIPTION H•) AUSBR DISC IN CONC POST(NOT STAMPED) AT SW COP. OF MONROE do 58TH. ELEVATION: -- -- 64.955 ROADWAY FILL 106,331 CY BORROW CUT 106,366 CY ENGINEER'S NOTE THE EXISTENCE AND L:OCMON OF ANY UNDERGROUND UTILITY PIPES OR PAVING LEGEND STRUCTURES SHOWN ON THESE: PLANS WERE OBTAINED BY A SEARCH OF AVAILABLE RECORDS. THESE LOCATIONS ARE APPROXIMATE. IT SHAD. BE THE CONSTRUCT PAVEMENT PER PLAN ' f .. CONTRACTOR'S RESPONSIBILITY- TO VERIFY THE LOCATION OF ALL. UTTI.mES OR STRUCTURES ABOVE OR BELOW' 1 GROUND, SHOWN OR NOT SHOWN ON THESE PLANS. THE ENGINEER IS TO BE; NOTIFIED OF ANY DISCREPANCIES SO THAT ANY NECESSARY ADJUSTMENT CAN BE :MADE IN THE ALIGNMENT AND /OR GRADE OF CONSTRUCT CONCRETE PER PLAN THE PROPOSED IMPROVEMENTS.' THE CONTRACTOR IS REQUIRED TO TAKE °• ... PRECAUTIONARY MEASURES TO PR07ECT ANY UTILITY LINES SHOWN, AND ANY ` OTHER LINES NOT OF RECORD, AND /OR NOT SHOWN ON THESE PUNS. THE CONTRACTOR WILL BE HELD RESPONSIBLE FOR ALL DAMAGE TO ANY UTILITIES OR REMOVE EXISTING PAVEMENT PER PLAN STRUCTURES CAUSED BY IVES OPERATION. its fm LATITI o CAI. AT IJEAST Iwo PREPARED UNDER THE SUPERVISION OF: Oat BEFt7RE WORKING DAYS PRIOR gRt1FESS)p� DU DIG! TO EXCAVATING 1- 800' - ••227 -• -2600 - 1� w No. x1887 BROOKS D. FRANKUN, P.E. DATE UNDERGROUND SERVICE ALERT OF SOUL M c+WFORNiA . 9/3 %7 R.C.E. No, 61887, EXP. 9/30/2007 Exp C1V1L BEFORE EXCAVATING, THE CONTRACTOR SHALL VERIFY THE P� or DRAWN BY., CHECKED BY: DATE: LOCATION UNDERUNDERGROUND VICE ALERT AT CONTACTING -2-2600 SJS J.R.J. AUG. 2006 CENTERLINE ............... TYP SOILS ENGINEER 1 TITLE SHEET EXISTING CONTOURS ......... -- 50-- -- BREIT ANDERSON UTI -o FAMES 2 JEFFERSON STREET STA it] +DD.00 To 19400.00 PROPOSED CONTOURS ........ —50-- SLADDEN ENGINEERING se SEWER COACHIRIA VALLEY WATER DISTRICT COACHEUA VALLEY WATER DISTRICT 64 780 398 -2651 398 -2651 3 4 .JEFFERSON: STREET STA 19+00:00 TO 29 +OD00 JEFFERSON STREET STA 29+0000 TO 38 +00. oAYILGHr LINE .. • ......... -•' -'• •- -- CUT /FILL LINE ............ ' 39 725 GARAND LANE, SUITE G" PALM DESERT, CA 92211 IRRIGATION COACH VALLEY WATER DISTRICT 760 398 -•2651 5 JEFFERSON STREET STA 38+00.00 TO 45+06.8? PROPERTY LINE . ...... • .... -- �"--- r-�- -- (760) 772 -3893 GamFC IMPERIAL � IRRIGA� DISTRICT 033••' 6 JEFFI9iSON STREET SIGNING AND STRIPING STA 10+OO.OD TO 30+00,00 FLOW GRADE ............. _.. % THi5 PLAN HAS BEEN TELEPHONE YERIZON 800 483• -1312 7 JEFFERSON STREET SIGNING AND STRIPING STA 30+00.00 TO 45+06.87 TOP OF STORE ............ REVIEWED BY THE UNDERSIGNED AND IS IN GENEWtt. CONFORMANCE WITH THE RECOMMENDATIONS CONTAINED OUR T.V. TIME -W ER CABLE 760 340 -1312 8 CAHUiWt PARK ROM STA 1Q+0000 TO 18+3206 TOS 4F SLOPE ............ IN GEOTECHNIC4AL. � USA GRADING UNDERGROUND SERVICE ALERT' CITY OF lA QUANTA -PUBLIC WORKS 760 61i 227 -2600 777 -7075 9 CAHUIL.LA PARK ROM SIGNING AND STRIPING STA 10 +00.00 TO 18 +32.06 EXISTING IRRIGATION LINE ...... INVESTIGATION REPORT, DATED 01/26/05, AND OUR UPDATE LERER DATED 05/12/06. WE MAKE NO REPRESENTATION AS TO THE ACCURACY OR � 10 11 JEFFERSON STREET /C{WUILtA PARK ROM LNIERSECItON DETAILS iNTERLACHEN STA 10 +0000 Td-.12+•14.98 PAD 1�kYAT10N ............ PE DIMENSIONS, MEASUREMENTS, CALCULATIONS OR ANY PORTION OF THE DESIGN. 12 » : TYPICAL. SECTIONS AND DETAILS SCALE 1 = 200 TOP OF WALL ............. 7Y1 13 OFF-SITE STORM DRAIN PLAN AND PROFILE TOP OF FOOTING ............ TF PUBLIC UTILITY EASEMENT PUE - ► t a idol 200 Qoa ! ....... 600 BREIT ANDERSON DATE STADDEN ENGINEERING APPROVED BY CITY OF 1A QUINTA: CITY OF` LA OUINT,A SHEET NO. STANTEC CONSULTING INC. ' 73-733 FRED WARING DRIVE v OFF- --SITE STREET PLANS OF I SUITE 00 MAP 33 to a PALM DESERT, CA 92260 N S q%C 760.346.9844 staltbecponl TITLE SHEET FILE: ST2015033713'01 TIMOTHY R. JONASSON, P.E. DATE: LOCATED IN A PORTION OF THE NORTH 1 /2 OF SEC 29, T6S, R7E, SBM DRAWING N0: PUBLIC WORKS DIRECTOR /CITY ENGINEER RCE•_1i0:`- ..458#3•"°_' W.- DATE 12/31/06 FOR: & ��P"aN %woUNAL � ld r k a CITY OR LA Qt/lNTA, COUNTY OR RlVER0jC0=, STATQ 430 IF CALIP'ORNIA TEN T--A- T-l-VE J`RAC MA-17-`33444 P,4RCEL(5) >, 2, 3 AND 4 AND LETTERED LOTS B THROUGH E, INCLUSIVE OF PARCEL MAP N0. 28617, IN THE CITY OF LA QU /NTA, AS SHOWN BY MAP ON FILE IN BOOK 201, PAGES) 80 THROUGH 83 OF PARCEL MAPS, IN THE OFF /CE OF THE' COUNTY RECORDER OF RISERS /DE COUN7Y, CALIFORN/A i ° QUARRY RANCH 766- 020 -002 ; • TRACT NO. 30651 1 USA 761 MB 346/62 -68 I I I ' LOT'E.E' LOT FF' I • - - N88'08 50'1' 3025,54' f N88'OB 50$ 74.64' .NOJSJ'JO'W 102.29 - -,ke 46 _ -.4T8 ^ 4> 38 35 -30. 2T ?Z 19 �4 I Y3 12 LOT'8BIB "y163 `�` \47 I _ N86'48' 'W ' Na• 58 ' \ 43 $ 28 23 f8 15 10 89.7 �1�••� N; N76'50' 6 �?�;� t ' .366 . 0r 42 "40 33 ,v Y5 24 17 16 I I`'OkOk ! NJ96.65, e�. 19 ♦' / �y�k \ �' 50 \ _ r. 51 ^ OT 'R' 8. I `airy .663 3'F 9 �`�'b IA9M1 �s2?$% 52 . ?� 1 2 3 4 5 6 7' �0 1g9• iey�j�?y �35�� R-QJ35 ` \ 53 4� 54 55 56 LOT'X" , ' - Nfij•JZ� \ LOT" • LOT'SS" r� ! 8729 \ LOT'GGG" .(' I I \ 82 VO 68 67 66 65 83 81 , \ 89 64 ,I / ,' Ir , EXISTING PARCEL UNE 80 O 70 73 74 63 '' ` 5) ' ' 85 98 99 79 / 62 / 78 71 75 / �`y , ` 217 r 97 100 72 I 1 77 0 o s0 ' /, ' 216 ' a ,, 6 101 I 95 76 57 59 ^' LOT 7 102 �Or 58 /, �y (,' 215 A, I LOT "Y' y'� 214 I ! / LOT'AA" SOT o yOC; ' 213 I ' 93 LO LOT "WW'LOT'NN' 212 218 103 104 105 // / 21f I N 92 LOT 108 219 , LOT'EEE' 107 loT / / / ' y 210 128 v0 >23 111 ` / � / �// 1 127 122 110 109 fOB 1 '� 766 - ---020 -0.03 112 :. �0 208_ USA 7 61 , LoT I I Sze 121 Y, L >3 ' • �. ' I \ i�4 Zo7 f29 / . v/ ' 206 ` 30 , 3o' • X177/ 179 \ f19 I 130131 118 117 T �~ � , e r r 205 / 201 200 199 180 116 V , I ' I 204 15. 132 �, �U ` l EOr . V , O 181 / X74 ��•' 141 133 r� 134 135 I I - << 182 140 202 I 198 � \ 173 f83 139 , ' 195 , l 138 ' 194 , I I ` 172 . 137 , 193 30' I i 30 ' ,� f84 142 143 144 88 138 ; ; 187 1 / r I ` 171 , '��„�` 145 I (i - 189 I 170 f63 162 161 �� 146 147 148 I Q I �. 190 1 I v 160 14� E. , ' l •� , 191 , I ' lf9 ^'65 164 LOT' W 159 i� ' % 192 \ 158 r IGN i ° 1 ' ! ' 151 LOT "FFF' :1671 I l . 157 150 156 152 I' ( -1, , 11 EXISTING PARCEL UNE ' 1 r ) LOT'DDD" X155 M L, i I ----------- ---- - - - - -- - ----------- - - - - -- ,-------------- - - - - -- - - --------------- - - - - -- 0- 7/------------------- - - - - -- L 1�CCC -_ L�54 `�� 1 186 -- - - - - - - -� L - - - - - - _ _ _ _ - - - - - - 3136 TTFi�iVENU �^ - ---� i - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - N -J 94W.0Q'------- - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - .. • I I I 1 I ° I I I I . TOPOGRAPHY BY: DIGITAL HARPING, ING GIS PHOTOGRAMMETRIC SERVICES 21062 Brookhurst St, Suite 101 Huntington Beach, CA 92646 Te1d714)968 -5459 FaxK710968 -2429 e -mail: admiGadma .com IZIGHT GATE: APRIL, 2004 z o z Z Z PGAWEST AVE 5 His LA QUITA LAKE CAHUILLA AVE 5 QUARRY z 'AVE 8 PROJECT LOCATION AVE 62 ' VICIN9 MAP STREET DETAIL R/W 100' R/W 20' P 50' 50' vmw VT PROPOSED FUNRE EASEMI 11' 32' 32. 11' . PROP. BASE -j (ANDS LAPEO -r COUPAM IIEDUW • 6' WIDE NEANDERINO SIDEWALK TYPICAL SECTION JEFFERSON STREET N.T.S. LEGAL - DESCRIPTION: PARCE(S) 1, ,2, 3 AND 4 AND LETTERED L073 B THROUGH E, INCLUSNE OF PARCEL W NO .28617, IN THE C17Y.OF LA QUINTA, AS SHOWN"BY MAP ON FILE IN BOOK 201,. PAGE(S) 80,.. 81, 82 AND 89 OF PARCEL MAPS, IN I-HE OFFICE OF 771E COUNTY RECORDER OF RNERS/DE C007Y, C4UFORNM BASIS OF BEARING: >THE BEARINGS HEREON ARE &ISED., ON TH£ GRID BEARING "NORTH 58'3844' WEST" BETWEEN ARPONAL 00aO SURWr HORIZONTAL CpNIROL STATIONS 7W ' AND 'SGPS' AS PER, THE NM7ONAL 0000 SURVEY DATA SHEETS BENCH MARK: '1466 USER (20 ENGRS 1941 RN. CO.) AUSRR 0 /SC -SET IN A CONC POST (NOT STAMPED) AT THE SW CORNER OF MONROE Sr. AND 58th AYE. a&..= - 64.955. GRAPHIC SCALE SCALE 1`4W 100 260 600 SHEET 1 OF 3 SHEETS IN THE CITY OF LA QUINTA RIVERSIDE COUNTY, CALIFORNIA TEN TA T1VE TRACT MAP 33444 OWNER /APPLICANT: CORAL MOUNTAIN TRAILS, LLC 74001 RESERVE DR. IND14N WELLS, CA 92210 (760)674 -2212 TOM CULLINAN ENGINEER /MAP PREPARER: THE KE7TH COMPANIES, INC. 73 -733 FRED,OARING OR, S7F 100 PALry DESERT, C4 92260 PHONE (760) .346 -9844 CONTACT ANGELA OORF A.P.N. 766 - 020 -004, 005 k 007 7HRU 009 ZONING: EXISANG AND PROPOSED ZONING - RL - LOW DENSITY RESIDENTIAL DIS1RlCT LAND USE E (ISANG - YAW PROPOSED - RESIDENTIAL EARTHWORK --( RAW) CUT = 267,100 C.Y, FILL = 239,500 CX, RAW EXPORT = 27,600 C.Y. SERVICES: POWER /ELEC7R07Y IMPERIAL IRRIGATION DISTRICT 81600 AVE.58 LA QUINTA CITY, C4 92253 PHONE (760) 398 -5811 SOUTHERN CAL/FORNM GAS COMPANY 75 -095 MAYFAIR DRNE PALM DESERT CA 92211 PHONE (760) 941 -4594 WATER /SEWER COACHELLA VALLEY WATER DISTRICT P.O. BOX 1058 0046HELL4 CA 92236 PHONE (760) J98-2651 TELEPHONE VERIZON 295 N. SUNRISE WAY PALM SPRINGS, C4 92262 PHONE (760) 778 -3627 TIM£ WARNER OWE 41 -725 COOK STREET PALM DESERT, C4 92260 PHONE (760) 340 -1312 SCHOOL OIS7R/Cr COACHELLA VALLEY UNIFIED SCHOOL DISTRICT 87 -225 CHURCH STREET THERMAL, C4 92274 PHONE (760) 399 -5137 GENERAL NOTES I. LAND lS NOT SUBJECT 70 OIL Row,, INUNQ4TlON OR FL000 LIAZWD - ROOD ZONE X (OUTBID£ 500M FL000 PLAIN) 2 MANG LAND USE - VAC.ANT 3, PROPOSED LAND USE - SINGLE FAMILY RESIDENTAAL 4. ACREAGE - 31766t ACRES, GROSS 5 SMACE D /SPOS9L ANO WATER SUPPLY &N BE PR0l9DED BY C,V.W.D. 6 LOr R;UINNOFF 70 B£ RETAINED OFF -SA£ - 0/00, 24 -1101IR NUMBER I OF: RES14ENTig LOTS 101.0 PAD ELEVATION The Keith Companies m 1 73-733 FW Watg Dries SZrite 104 Palm Powt CA 92260 -2590 (760) 346• -9844 TENTA77VE M4CT MAP NO. ,33444 FEBRUARY, 2005 O O N m U- M 0 z z w a CL z U-1 a^ c: Y A k CITY 00 IF LA QUINTA, COUNTY OPr MIMR011COE■ aTATW OR CALNINORNIA TENT--AT--1rV--ETRAC MAJILE-333444 PARCE(S) 7, 2, 3 AND 4 AND LE7TERE0 LOTS B THROUGH E, /NCLUSR/E OF PARCEL MAP N0. 28617 IN THE C /IY OF LA QUINTA, AS SHOWN BY MAP ON F /LE IN BOOK 207, PAGE(S) 80 THROUGH 83 OF PARCEL MAPS, IN THE OFF /CE OF THE COUNTY RECORDER OF RIVERSIDE COUNTY, CALIFORNIA ' 1 QUARRY RANCH E;aG°"� TRACT NO. 30651 I ' or "EE" AccESS MB 346/62 -68 iWO �SGIPE AREA) ' N88'0850r 5J09.71' 110' 1 1 b tto' ff0• ,. 107 90 , 55� 55 -55 _ -, 58^ - - - y37 69- ry - - - - - - - - - - - ^ \ 1 f3� rBQB" 210 Aj$ �,� d� 163' « 68 ° - 69' - -- -- - - - - - - -r68' _ - - -- - - - -- - -- - --- - -f2 --... N 1 i LOT 6 '�A °- 45 - -- - - -- - - - - -_- -_ - -- - - - -- - -- - -- - -- - __ - -- - - 13 I .20 b 0 1 1 (COMMON AREA) __ -- -- ¢ - - - -- - - -- -_- - - -- ^4 / - -t - -- - "37 0 36- 30 29- N 28 ,2T 22 2� - l9 14 11 1 IM M IH 1 - - - - - ' - 70%- - m, - - 70.1 I 38 35 70.7 70.7 °} 72.0 72.0 °' �N ",�� °' (73.4 72.2 73.6 ^ • \ 47 '�,_ ��. 4 68' 68' . 68' y� . (PRIVATE STREET) (PRIVATE STREET) I (PRIVATE S7REE7) 2' 68' 69 �q2 70.1 �� �• �, I n se' DT "U ". z` LUT'7" ? 68' s9' LOTS I 1 1 48 �� 95' g 95 95 �� . �g 95' 95' `ta �g 18 9515 11 d '� 31 26 23 s9�7. u°'• 43 ( (0! 39 71.2 71.2 72.5 72,5 73,9' 1� 2� 70.0 18 6969.8 69.8 ' � 120' 120 181\ 1 1 1 '� 42 ; I c� ' ° `-� 120' 120 120 ( I 9 \ 49 . Oar 120 , 120 1 24 17 16 �. 1 ZO' Q `: 73.0 6 4 ° I 40 se.s 33 32 ? 3 � 71.6 �0 68.9 70.3 � 9 5 f 19 1 1 1 AlNACE .. 39 �' 95' 3 `9' 95 95 , I 1 � 95 r 1 50 ♦ k w� , CULVERT �A `rte • 951 P 95' - _ - 8 �69. s 95 - _ �� � b 51 0�1 174 68 �&5' 65 65 62 7' 4l 1 35 72.6 'Tr \ �h i5• 14'' ':19' S7 66 �� 1 � � k3 `p h ! /A \ 6688.88 52 1 2 3 4 5 6 7 �. `'^�- -,..., to- 53 ! r �1 �► \ r c� ory 54 55 56 t A 72.6 1 1q 68.6 68.3 v r " " 1�` 70.8 71.1 Q `� 71.4 71.8 LOT MM o �'- (RECREA710N FACILITY) 1; 65' 67' 96' 5� \ 1Gt5' " " 471' \ 66. 54 160. /v 0� LOT 8S (p) 8" SEWER N! I �., 1 178 LOS.. " (COMMON SPACE] � I' 1 \ (COMMON AREA) N. Q� / y1 ,IQ 43 78 f01 76 \ " " I r,{{i09 v \ LOT GGG =aye' 120 R o ' �y74' I 1 1 (OPEN SPACE) '"�0'�/ 87 66 �• , ,r 0 O ' , , 1 1 68 65 \ 83 N 81 EXIS7INC. PARCEL , 6 +. 135:5 � .: . s 9 1 ♦ � 2 � 84.1 w 84 , 1 6 i 80 ♦ L , '�� V ?�' �$� 48 33 Q+ • .127' - 87.9 m 16.5 {-! h 7�1a w N r , , f 1 ♦,+j / ?S• 60 ,�16+ ♦t'.o.� `�' .^^ 70 4' /'S� 0 74 / 63 30• 1 LOT IEEE' 1 85 ��� �� `r es.7 h I �� 73 , `�1 86.8 .,'�° . ' LOT "U&ff * X25' (OPEN SPACE) l 90.5 98 99 79 86.8 Ak q,`pryo0 ,? , ' ,/ r MMON AREA) 1 1 o, o yp �I `+ 86.7 �h ♦ `,' ?o' ,` r o,}. 1 1 1\ °• v 90 3 `! w 128 ' ♦ i 1 �'i�s '? 90.5 91.5 �` V 71 62 ' 186 , g' " m �: ♦ 88.3 ' r l� , ��` , 1 r 3.1 iB.�• . ~"' ''', 12 78 88.8 �� 75 �s, ' ?s� ry �, `,' $�C 2f7 , h - ♦6.,g• �' r � h `� k ` 4� v� 86.7 1 )ys• ^ �, 97 104 N, 92.2 tZBN 93,1 ♦6S, 61 h 100 r 9 1 7 1 � � � 72 :h 89.9 ' / / •�• 1 766 - 020 -007 i 93.1 s2.2 n 1ZT -,� o m 92.8 per' / ry '.�• 1y , , 91 PARCEL NO. 28 617 w 1 ;, N '' 3s °�'o 60 / , ' 9,' 216 �+ ; 1�S' 96 95.0 `� N o PMB 201/80-83 ' " 101 v `� h 91.2 ,� ' 9° 1 O ^ 138' 5 ? J I ♦ ♦s, ^ ,' /,' / 88.3 d R 1 8 95.4 h R �! s• ry ,l9 • . 9 • �' '�' , h , '�s�• �. <'a 1 8.4 �' ! 12�• _ 76 �,� 57 59 1/1 • 99.2 � � L �Q � 2�5 95 f f9 '!�1 102 H 93.1 58• 91.4 �'� " ,' . V� `7 .� 91.3 �0 1 ( Q� ' . `o' / , ,,�9, ,�•� 0 (011.1 � � l,�c. 99.2 ti29 �� . 3� �,�. os• 92.0 6�, - �-¢�', ` g�'1, J�J� / ^�'' .ZT4 l , 15• ! n 94 133 d ,. ?ss. car Oo V 94.3 tih I 1 It % i 4' 3 ♦ (GU.4R0 HOUSE) 95 :LOT "Y � � , Z,�� � 1 °scAPE AR ). LDT "AA" ,�; �• , Nom, k ( 5 b LOT Z 1 1 213 (UWOSCAPE AREg1 , h g+ OT NN 20��0%` , ,' �4 19 97,3 l 1 140' `� 93 . ej ' �y1 LOT "WAN." (UN1D NOOSE) ' f',o�2.9 N7T� rr' t�'. / , ♦� 'o I 1 6� • ti (COMMON AREA) •.>r. �. s., �j°+ h:` ♦ ?�, E4J � ' �� 6� / � 0 ' �9. ^ / ♦ 1 1 by ,. '105.7; � Rmr7o• t,�12ac, u,s? ♦e 46 '' 1, 2/2 N 1 1 6 74 1os' s �•tr^2 !moo• = s;. 9 , . 218 y 4 r. '� ;. : .. .• :. .. U ; , •100.4 � 15.7 -ss. .•..... ;. r s. 9. I i 9. 3 . 75. E. . . 4 118 �N � 12 �'o• � j .. ,��, .�' � � ' 2�1�� / � 1 w 1 \ ¢6, tih 107.8 - 11x.4 115 a . �.J ss• I 1 `• 114.7 , . , - ( 92 to • LOT "X" �� 115.0 kti ok' �' '. ♦ �`° , �/ w i_ , 108.0 , .. ?9, � 116 , i SCALE 1 -80 1 � 6, � 125 .�- 't. � �. 8 .� s1� . , ti� 1 �y 1y s ?• 115.5 '� 107 ,' �P *.i9• o , ♦ ?109.9 k, �,v 115.8 , / .211: �,o �� 4g 75 0 40 80 260 240 I a ?? e' w ' 1 1 123 1 °LOT "Yh' 29. Pr• �.j �, toe 8 o 'ss• 126. � h/1 ♦`' . � � Q �� � ' I j 0T IMP m n ` 110 ! 8 ',` ;' ,' 209 1(OPEN SPACE) i 1 1 / 109 R" ' t (CO MOM AR ) 122 1 1 / 127 108 135' 112 .124° 208 /. !v'` i� I I ,' � PL 33, PL TYPICAL STREET SECTION N.T.S. 80' (MIN) 8,232 SF 61 9,37.5 SF 75 (MIN) 181 14995 SF A 6.25 AC 2. ` 8,060: SF ; 62.. $3118 SF: 122. 11, SF : . 182:11,49J SF I I 0.14 AC P,U.E. I I I I I "' 123 11;811 SF 183. 12,801 SF.....C...1.OZ I I � I SETBACK .4 906O,..SF._ i uSL'7&1CK I A I >B¢.1s7903,Sf' -'D ^ B 15, ;v 5' MIN 65 12,42,7.SF ' MINI MINI REQUIRED LOT I E 0.41 AC 1 REQUIRED LOT I MIN I ME 71900 I ;66;'14'522 SF 126 10,603 SF I SIZE 91000 1 S.F. M/N I I 1.29 AC 7 I S.F. MIN I L.- 127 10,603 SF 187 14446 SF L.-._ -J N� Z c: 11,287 SF N� R/)Y 188 10380 SF .H R11W w N 8,595 SF W£OGE CURB WEDGE CURB TYPICAL LOT SETBACKS LOT- DESIGNATIONS & AREAS 1 8,232 SF 61 9,37.5 SF 121 11,533 SF 181 14995 SF A 6.25 AC 2. ` 8,060: SF ; 62.. $3118 SF: 122. 11, SF : . 182:11,49J SF B 0.14 AC P,U.E. ­8 SF 63 % 9,889,5'F "' 123 11;811 SF 183. 12,801 SF.....C...1.OZ SQUARE FOOTAGE AC .4 906O,..SF._ .; -64 -11 „i25.SF . 124 10,1B5,SF.:..: >B¢.1s7903,Sf' -'D 0.26 AC 5 8,060 :SF 65 12,42,7.SF ' 125: 9,71.3 SF 185:16597 SF. E 0.41 AC 6 8,0,9 :S,W ;66;'14'522 SF 126 10,603 SF 186 14,408. SF F 1.29 AC 7 10,058 SF 67 9,484 SF 127 10,603 SF 187 14446 SF G 028 AC 8.. 11,287 SF 6$ 11,046 SF 128 10,603 SF 188 10380 SF .H 0.43 AC '9 8,595 SF 69 11,1801 SF 129 10,603 SF 189 11,011 SF / 0,33 AC 10 8,859 SF 70 11,180 SF 130 10,603 SF 190 11,051 SF J 440 AC 11 11,471 SF 71 14253 SF 131 10,265 SF 191 10,270 SF K 065 AC 12 8,011 SF 72 10,474 SF 132 9,424 SF 192 17,030 SF L 036 AC 13 8,011 SF 73 14509 SF 133 9,530 SF 193 14,388 SF M 095 AC 14 8,905 SF 74 9,399 SF 134 101837 SF 194 10,250 SF N 0.45 AC 15 8,026 SF 75 9,542 SF 135 10935 SF 195 9,715 SF 0 074 AC 16 7,919 SF 76 10,336 SF 136 9,578 SF 196 10,373 SF P 0.53 AC 17 8,026 SF 77 9,866 SF 137 10,452 SF 197 9,67J SF Q 025 AC 18 8,026 SF 78 9,398 SF 138 10,724 SF 198 14,608. SF R 1.44 AC 19 8,905 SF 79 9,375 SF 139 9,679 SF 199, 14,064 SF S 0.22 AC 20 8,011 SF 80 11,085 SF 140 9,348 SF 200 11,327 SF T 0.22 AC 21 8,011 SF 81 11,453 SF 141 9,724 $F 201 10,869 SF U . 0.22 AC 22 8,905 SF 82 11,265 SF 142 10,303 SF 202 13,241 SF V 0.18 AC 23 8,026 SF 83 11,265 SF 143 9,758 SF 203 11,418 SF W 009 AC 24 8,026 SF 84 11,265 SF 144 9,867 SF 204 11,418 SF X 009 AC 25 8,026 SF 85 13,883 SF 145 10,543 SF 205 11,418 SF i' 040 AC 26 8,026 SF 86 13,125 SF 146 12,257 SF 206 11,418 SF Z 0.36 AC 27 8,905 SF 87 13,125 SF 147 13,182 SF 207 11,002 SF AA 0.01 AC 28 8,011 SF 88 13,125 SF 148 11,338 SF 208 10,842 SF 88 0.09 AC 29 8,011 SF 89 13,125 SF 149 11,547 SF 209 10,842 SF, CC 0.03 AC 3O 8,905 SF 90 15,207 SF 150 15,359 SF 210 10,749 SF DD 003 AC 31 8,026 SF 91 18,483 SF 151 13856 SF 211 10,495 SF EE 0.22 AC 32 8.,026 SF 92 21,366 SF 152 10,737 SF 212 10,495 SF FF 1.37 AC 33 8,026 SF 93 11,869 SF 153 14,673 SF 213 10,495 SF GG 0.50 AC 34 8,026 SF 94 10,122' SF 154 30,865 SF 214 14495 SF HH 0.37 AC ,34' 8,905 SF 95 9,803 SF 155 10,167 SF 215 10,495 SF 1I 031 AC 36 8,011 SF 96 9,247 SF 156 12,055 SF 216 12,433 SF III 0,27 AC 37 8,011 SF 97 9,139 SF 157 73,614 SF 217 16,209 SF KK 0.28 AC ,38 8,905 SF 98 11,928 SF 158 13,870 SF 218 17,060 SF LL 0.03 AC 39 8,026 SF 99 13,325 SF 159 14445 SF 219 21,140 SF MM 085 AC 40 8,026 SF 100 9,071 SF 160 11,912 SF NN 006 AC 41 13513 SF 101 9,037 SF 161 10,346 SF 00 002 AC 42 10,092 SF 102 9,154 SF 162 10,165 SF PP 0.15 AC 43 10,,069. - SF 103 11,321 SF 163 11,385 SF . QQ 0-36 AC 44 1052 : Sf 1 104• � >2:` l9' �. . 40 SF 164 03 . 1 46 SF RR. -OlS` AC 45 10618 S. F 105 12 4 S 1 799 F , ... S - SS: e 46' :12 72 :: 2 SF :'.106;40,905:SF�'• ... -166 '.12,367SF 47: 8,074 SF 107 10,737 SF 167 15,448.5F UU 0.74 AC 48 .8,052 SF 108 9,953 SF 168 11,254 SF W 0.50. AC 49 9,072 SF 109 10,208 SF 169 12,727 SF W 1.25 AC 50 10,550 SF 110 10,6011 SF 170 13,530 SF XX 110 AC 51 13,154 SF 111 11,148 SF 171 14,853 SF YY 055 AC 52 9,945 SF 112 10,956 SF 172 16,266 SF ZZ 2,85 AC 53 9,106 SF 113 12,218 SF 173 19,564 SF A44 1.02 AC 54 9,893 SF 114 12,053 SF 174 16,471 SF BBB 422 AC 55 8,052 SF 115 11,111 SF 175 12,717 SF CCC 054 AC 56 8,096 SF 116 10,39A SF 176 11,745 SF DOD 5.65 AC 57 14606 SF 117 11,511 SF 177 13,009 SF EEE 204.74 AC 58 1, 373 SF 118 10,520 SF 178 14,852 SF FFF 1092 AC 59 9,483 SF 119 10,825 SF 179 11,983 SF GGG 0.91 AC 60 9,073 SF 120 11,178 SF 180 11,448 SF Im 074 AC -LOTS 1-219 (RESIDENTIAL LOTS) -LOT A' (PUBIC STREET) BNDY 31266 AC -LOTS 1? -V" (PRIYA)F STREET) -LOU 1/1= ?L" (LANDSCAPE AREA) -LOT vm" (RECREATION FACILITY) -LOT I - "00" (GUARV HOUSE) -LOTS "PP" -'RR" (DRAANCE CHANNEL) -L07S "SS"- "BBB" (COMMON AREA) -LOTS VX -71HH" (OPEN SPACE) SHEET 2 OF 3 SHEETS IN THE CITY OF LA QUINTA RIVERSIDE COUNTY, CALIFORNIA TEN TA T1 VE TRACTMAP 33444 EASEMENTS: 1 0 INDICATE A 3000 FOOT WIDE EASEMENT FOR RIGHT OF WAY PURPOSES AS SHOWN ON PARCEL MAP NO 28617, PMB 201180 -83. (TO BE VACATED ON RNAL MAP) A2 INDICATE A 10.00 FOOT WIDE EASEMENT FOR PUBLIC UALI7Y PURPOSES AS SHOWN ON PARCEL MAP NO 28617, PMB 201180 -83. (TO 8E VACATED ON RIVAL MAP) © INDICATE AN EASEMENT FOR DRAINAGE PURPOSES: INDICATE AN EASEMENT FOR INGRESS AND EGRESS PURPOSES: © IN907F AN EASEMENT FOR CONSERVATION PURPOSES: * © /ND/C4IE.4 ZO.00 FOOT fY /OE EASE,f1ENT FOR. LANDSCAPE PURPOSES. AS SHOWN ON PARCEL. MAP NO. 28617 PUB 201180 -8J. (TO 8E MAW ON RML MAP) © INDICATE A 10.00 FOOT WIDE EASEMENT FOR EQUESTRIAN PURPOSES AS SHOWN ON PARCEL MAP NO. 28617, PMB 201 /80 -83. (TO BE VACATED ON FINAL MAP) * NOT TO B£ DISTURBED EXCEPT FOR WEEDING. REWMAT£ W17H NAW MATERIALS. SUMMARY OF ACREAGES: LEGEND 219 DRAINAGE EASEMENT AREA --- - - - - -- EASEMENT --0 0- 800 HOFF: TRAIL 10 ABBREVIATIONS ? CEMMI -INE (E) E•YISTING P,U.E. PUBIC U77LI7Y EASEMENT R R40 /US SF SQUARE FOOTAGE S/W SIDEWALK TYP. 7YPIC4 (P) PROPOSED EASEMENTS: 1 0 INDICATE A 3000 FOOT WIDE EASEMENT FOR RIGHT OF WAY PURPOSES AS SHOWN ON PARCEL MAP NO 28617, PMB 201180 -83. (TO BE VACATED ON RNAL MAP) A2 INDICATE A 10.00 FOOT WIDE EASEMENT FOR PUBLIC UALI7Y PURPOSES AS SHOWN ON PARCEL MAP NO 28617, PMB 201180 -83. (TO 8E VACATED ON RIVAL MAP) © INDICATE AN EASEMENT FOR DRAINAGE PURPOSES: INDICATE AN EASEMENT FOR INGRESS AND EGRESS PURPOSES: © IN907F AN EASEMENT FOR CONSERVATION PURPOSES: * © /ND/C4IE.4 ZO.00 FOOT fY /OE EASE,f1ENT FOR. LANDSCAPE PURPOSES. AS SHOWN ON PARCEL. MAP NO. 28617 PUB 201180 -8J. (TO 8E MAW ON RML MAP) © INDICATE A 10.00 FOOT WIDE EASEMENT FOR EQUESTRIAN PURPOSES AS SHOWN ON PARCEL MAP NO. 28617, PMB 201 /80 -83. (TO BE VACATED ON FINAL MAP) * NOT TO B£ DISTURBED EXCEPT FOR WEEDING. REWMAT£ W17H NAW MATERIALS. SUMMARY OF ACREAGES: 219 RESIDEN774L LOTS 55,54 AC 6 OPEN SPACES 22350 AC 10 COMMON AREAS 14.62 AC 1 PUBLIC SMEN 625 AC 21 PRIVATE STREETS 11,77 AC 1 RECREATION FACMY 085 AC 16 LANDSCAPE AREAS 4.45 AC 3 DRAINAGE CIMNNELS 0.66 AC 2 GUARD HOUSE 0.08 AC TOTAL AREA 317.72 AC A' DRAINAGE EASEMENT: � K - Th't3' ' E F�3E,I! ENTS,LO AaOCENT 70'111USIQE SLOPES" ARE IOR CO. NYLYAV,-E OF STORM WATER• 1Y17H A MIN /MIN WIDTH OF 10 F/.' TOTAL AREA : 2,79 AC The Keith Companies In<c 73-7JU Fred M'ain9 a* We 100, Pdm Coot CA 92260 -2590 (760) 346 -9844 7ENTA77V£ TRACT MAP NO. 33444 FEBRUARY, 2005 In 0 N E9 M M O Z Q d a w CL r- 6 cr- ca L-71 A a' 4", A, a J. c U.NJ 20 4 D �� t 1� m �� r ql►' D #1U0.-1Di I LJI Ufa e I da -tom✓: in: ill _ A A • Zi'vv` ME i wwww�w��rw.wwwbiuinww�w�� CALL AT MST TWO TO REXCAVA' DAYS PRIOR 1- 800 -227 -2600 UNDERGROUND SIE N(CE ALERT A" 11.ujv 2 i A.f Mlf�Y1 r1 IF s 1 1 • ■ 1 � r it w i 0 uu { • R ■ WHO, AM ON Nam A NMI NMI IL so now Jim NMI 1111 mill 11 11 rr • �w i r ' DATE: AUG. Ar I� �� � �Y : is •.;�,. B, �. �, w !�� M 49 Th w ya! D r DRAWING N0: