Loading...
3396003b ( ... ..... ..... .. . -- HYDROLOGY=/ HYDRAULIC'!� REPORT xr Project Site: KOMAR DESERT CENTER La Quinfa, CA Prepared for: KOMAR INVESTMENTS 23 Corporate Plaza, #247 Newport Beach, CA 92660 Project Manager: Bob Strong, P.E. RCE No. 28300 Date Prepared: June 2007 JN: 687.07.01 1�Wkt-- -TZF-F1k>Xr---� I-WA 33q(.Vr.) N 'k Prepared by: F 111 E N r N R I N G 16795 Von Karman Avenue, Suite 100 Irvine, CA 92606 (949) 474-1960 www.fuscoe.com Hydrology/Hydraulic Report June 2007 • Prepared by: FUSCOE ENGINEERING, INC. 16795 Von Karman Avenue, Suite 100 Irvine, California 92606 (949) 474 -1960 Project Number: 687.01.0.1 0 Supervising Engineer Bob Strong RCE No. 28300 Date Prepared: June 2007 a .M Komar. Development, La Quinta � h "} • Hydrology/Hydraulic Report June 2007 Table of Contents Tableof Contents ...........:...................................... ............................... l I. Introduction ...........: ................................ ..............................1 GeographicSetting ...........................:...... ..............................1 Purpose of This Report .............................. ............................... 1 References ..................... :..................... ............ ...........................:... 1 Project Site. Location Map ......:................. ..............................2 II. Existing Topographic & Hydrologic Conditions ................. 3 Existing Drainage Pattern ........................ ............................... 3 Existing Storm Drain Facilities ................... ............................... 3 III. Proposed Drainage ................................ .... ... :.......................: 3 IV. Hydrology Study ..................................... ............................... 3 • Storm Frequency • VDesign Criteria ........................................ ..............................3 VI. Results and Conclusions ....................... ............................... 4 VII. Appendices ..... . .......... :.................. :.. ....... . ............... :............... 4 Appendix 1 - Plates from RCFCD Hydrology Manual Appendix 2 - 100 Year Hydrology Study Appendix 3 - Catch Basin Design Appendix 4 - 100 Year Hydraulics Calculation Appendix 5 - Hydrology Map Pre - Construction (In Pocket) Appendix 6 - Hydrology /Catch Basin Map Post Construction (In Pocket) Komar Development, La Quinta Hydrology /Hydraulic Report June 2007 4 Introduction Geographic Setting The project site is approximately 9.2 acres which consists of Parcels 3 and 4 of PM 33960 located near the southwest corner of Jefferson Street and Highway 1 1 1. The site is presently undeveloped and is bounded on the east by an undeveloped parcel in the City of Indio, on the west by an undeveloped parcel, on the north by Highway 111 and on the south by PM 33960 (Costco Plaza) and the La . Quinta Evacuation Channel. Purpose of This Report The purpose of this report is to accomplish the following objectives.- 1. To determine the storm water discharge generated within the project. • 2. To provide required flood protection for all structures from the 100 year storm. References • Riverside County Flood Control Hydrology Manual • Hydrology /Hydraulics Report for PM 33960 (Costco Plaza) • AES Pipe Flow Hydraulics • AES catch basin design, based on Bureau of Public Roads - 177 Komar Development, La Quinta Hydrology /Hydraulic Report Project Site Location Map June 2007 Thomas Brothers, 2001 - 2 - Komar Development, La Quinta Hydrology /Hydraulic Report June 2007 IL Existing Topographic & Hydrologic Conditions Existing Drainage Pattern The site drains in a southerly direction to the La Quinta Evacuation Channel where the flow enters the channel from the top and continues northerly in the channel to White Water River approximately 2500' to the north. Existing Storm Drain Facilities There is an existing Stormdrain system from PM 33960 ( Costco Plaza) Project. This existing Stormdrain system was designed to accommodate the runoff from this project. Specifically this existing Stormdrain system has allotted 2 connection points to facilitate proposed runoff a 24 inch connection for parcel 4 and a 36" connection for parcel 3. III. Proposed Drainage • The ro osed drainage p p g of the site consists of catch basins to collect on- site drainage. The site storm drain will be designed to intercept flow at specific locations within the project in accordance with the proposed grading. Once collected, flow will be conveyed to the existing Costco Plaza Stormdrain system and then to the La Quinta Evacuation Channel. IV. Hydrology Study Storm Frequency A 100 -year storm frequency was used to analyze and design 100 -year flood protection for all structures and or maintain 1 foot of separation from all existing and proposed structures. This option is consistent with the design criteria presented in Section v of this report. This site uses a prorated Qioo based on PM 33960 hydrology report. Y. Design Criteria The proposed storm drain system will be designed to be consistent with the following goals and guidelines: • A. All buildings shall *be protected by a minimum of 1 foot from flooding during a 100 -year frequency storm. - 3 - Komar Development, La Quinta • Hydrology /Hydraulic Report June 2007 B. Design storm frequency is in accordance with the Riverside County Hydrology Manual. C. Nuisance water will be directed to a sand filter /dry well via the existing Costco Plaza Stormdrain system and will not discharge to the evacuation channel. VI. Results and Conclusions The buildings will be protected from 100 year flows. All storm flows will discharge directly to the La Quinta Evacuation Channel using a conventional system of pipe and inlets,. VII. Appendices Appendix 1— Plates from RCFCD Hydrology Manual • Appendix 2 —100 Year Hydrology Study Calculations Prorated U Appendix 3 — Catch Basin Design Calculations Appendix 4 —100 Year Hydraulic/Pipe Calculations Appendix S — Hydrology Map Pre- Construction(In Pocket) Appendix 6 — Hydrology and Catch Basin Hydrology Map Post Construction (In Pocket) - 4 - Komar Development, La Quinta Hydrology /Hydraulic Report June 2007 • Catch Design Methodology Flows from each major subarea are prorated using the tributary area to each catch basin. Catch basin sizing was checked using the subarea .catch basin Q and AES catch basin design software. Grate Inlet Design Max head on grate: H =3" (.25') Perimeter of 12" grate: P =4' Q /P= 3.OH3i2 Qmax = 0.80 cfs Discharge per foot of perimeter =.35 cfs per nonograph • assuming 25% Clogging Qmax = 1.4 cfs for a 12 grate & 25% clogging Qmax = 2.8 cfs for a 24" grate & 25 %clogging Use 24: x 24" grates & 0.80 cfs Max OK at greater than 50% clog, inq C Komar Development La Quinta • F- L-1 C7 Pre Development Estimate Per Costco Hydrology Report Parcel 4, PM 33960 Discharge =10.08 cfs Area= 2.5 ac Discharge =4.03 cfs /ac Post Development Parcel 4, PM 33960 Hydrology Calculation Komar Desert Center Parcel 3, PM 33960 Discharge =26.48 cfs Area= 7.3 ac Discharge =3.63 cfs /ac Concentration Point Area Designation Area (Acres) Q Notes Subarea Total Subarea Total CB #14 A5 -1 1.2 1.20 4.84 4.84 10' CB -Sump CB #18 A5 -2 0.7 1.90 2.82 7.66 5' CB -Sump CB #13 A5 -3 0.08 1.98 0.32 7.98 24" GRATE -Sump CB #12 A5 -4 & A5 -7 0.13 2.11 0.52 8.50 24" GRATE -Sump CB #15 A5 -5 0.08 2.19 0.32 8.83 24" GRATE -Sump CB #16 A5 -6 0.18 2.37 0.73 9.55 24" GRATE -Sump CB #17 A5 -8 0.11 2.48 0.44 9.99 24" GRATE -Sump CB #9 D -8 0.11 5.71 0.40 20.73 24" GRATE -Sump Post Development Parcel 3, PM 33960 Concentration Point Area Designation Area (Acres) Q Notes Subarea Total Subarea Total CB #1 D -1 1.44 1.44 5.23 5.23 10' CB -Sum CB #2 D -2 0.61 2.05 2.21 7.44 5' CB -Sump CB #7 D -3 0.11 2.16 0.40 7.84 24" GRATE -Sump CB #3 D -4 1.48 3.64 5.37 13.21 10' CB -Sump CB#4 D -5 0.64 4.28 2.32 15.54 10' CB -Sum CB #6 D -6 0.22 4.50 0.80 16.34 24" GRATE -Sump CB #5 D -7 1.10 5.60 3.99 20.33 10' CB -Sump CB #9 D -8 0.11 5.71 0.40 20.73 24" GRATE -Sump CB #10 D -9 0.11 5.82 0.40 21.13 24" GRATE -Sump CB #11 D -10 0.13 5.95 0.47 21.60 24" GRATE -Sump CB #8 A -9 0.151 0.15 0. 541 0.54 24" GRATE -Sump • • Page — of Project: Designer: Location /Street: Date: Inlet # CURB OP EN ING (SUMP Plan Sketch Given: (a) Discharge Q = CFS (b) Curb type "A -2" "L� 4" Rolled 6" Rolled Solution: 4V H (depth at opening) = 4 inches h (height of opening) = O inches H /h= From Nomograph (Figure 5 -13): Q/L = cfs /ft. L required = Q/ (Q /L) USE L = 1 0 ft. Secondary overflow /release location: Sump Calculation Form 5 -44 Figure 5 -14 40 /2 5 io 4 . 9 8 i /O 6 3 .8 9 4 2 .7 3 w 8 _ w /.5 7.S Z 0 i 5 S 6 w i' o • . ,Lg 9 S.J a Q� ' v .8 .6 •' r a S U) w / 0 4 w O 45 N � 3 6 a) / a) a) 0 s a i 0 0 .+ i a. / / w / O 0 .23 rn � a 0 v o6 .0 • 3 0 0 3 w O w O w 0 w J-) 3 .04 -25 ' .2 2 0 .03 Q) x x w a 02 44 .2 0 U � yi t0 ./S a U a { �... - L Curb Height /Local 7-A O.J H Depression (a) Street Grade Bureau of Public Roads 0t ev .-b Division Two, Wash., D.C. qOCpiiY in /eft a/ low Figure 5 -13 5 -43 » »SUMP TYPE BASIN INPUT INFORMATION «« CATCH BASIN #1 Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 5.23 BASIN OPENING(FEET) = 0.50 DEPTH OF WATER(FEET) = 0.33 » »CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 8.94 USE 10' (TWO SIDED 5' BASIN) 0. >>SUMP TYPE BASIN INPUT INFORMATION «« CATCH BASIN #2 Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 2.21 BASIN OPENING(FEET) = 0.50 DEPTH OF WATER(FEET) = 0.33 » »CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 3.78 USE 5' • » »SUMP TYPE BASIN INPUT INFORMATION «« CATCH BASIN #3 Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 5.37 BASIN OPENING(FEET) = 0.50 DEPTH OF WATER(FEET) = 0.33 » »CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 9.18 USE 10' (TWO SIDED 5' BASIN) • » »SUMP TYPE BASIN INPUT INFORMATION «« CATCH BASIN # 4 Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 2.32 BASIN OPENING(FEET) = 0.50 DEPTH OF WATER(FEET) = 0.33 » »CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 3.96 USE 10' (TWO SIDED 5' BASIN) C� » »SUMP TYPE BASIN INPUT INFORMATION «« CATCH BASIN #5 Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 3.99 BASIN OPENING(FEET) = 0.50 DEPTH OF WATER(FEET) = 0.33 » »CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 6.82 USE 10' (TWO SIDED 5' BASIN) • » »SUMP TYPE BASIN INPUT INFORMATION «« ------------------------------------- CATCH BASIN # 14 Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 4.84 BASIN OPENING(FEET) = 0.50 DEPTH OF WATER(FEET) = 0.33 » »CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 8.27 USE 10' (TWO SIDED 5' BASIN) • • » »SUMP TYPE BASIN INPUT INFORMATION «« CATCH BASIN #18 Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 2.82 BASIN OPENING(FEET) = 0.50 DEPTH OF WATER(FEET) = 0.33 » »CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 4.82 USE 5' C7 :.. • a .T i • _ w;�. w -- b p= (a A = s a w r _� r I � r r r i x,,,1:;.,,....1.,.. „ ,,,,,;,,,,;,,,;� .r� .� -tT ;- I I I J I I I I---, , _U3 C,'�P 13]OW i z FFF I Ii—i o.t , 1' I El ( f 11 1 i( J f i t f I t l l 1 t 1 i I I I l l 1 I I l I I I t l I I I 11 I I I I I t HEAPS Ulr 1'® IQ ,CU RfVi<�(41 ' ' IS I I I I I I I { HEADS Ab OVE I 4 6AVEICb4 1' I ES I ( I II I H EADS B E54 6.j at L�4s MA �' 11T.104 (I S EC'iOP. a .RA`1"J`',0 N { IS ',N t t` IN TAE( I I ! I J—I I r g L) DISC RCS P� ;FO O P RIM �E t r r ; �` � , . I , •, �..,.i .•.A. ., � � . ,.. � R � LIS H 411-.11 .4 .s .6 .7 :8.9 Lo a R 3 I i 4 3 6 7 9 9 to BUREAU OF PUSLIC ROADS CAPACITY OF GRATE INLET IN SUM AlYls[ONTwo WASH&D.C.' WATER PONDED ON GRATE. ASiUME 25 96 CLOGGING • ' -59- ° I If LEGEND: (@ -I. - HYDRAULIC TABLE Line Reach Stations Diameter Q100 Velocit Down Stream Down Stream Down Stream U Stream Up Stream U Stream (in) (cfs) (ft/s) HGL FS Free Board HGL FS Free Board- A-5 1+00.00 to 1+59.63 24" 7.17 3.10 55.08 57.00 1.92 55.15 56.5 1.35 A -5 1+59.63 to 2 +08.00 18" 5.48 3.10 55.15 56.50 1.35 55.390 58.05 2.66 A -5 2 +08 to 2 +95.90 18" 4.84 2.73 55.39 58.05 2.66 55.71 58.00 2.29 A -5A 1 +00.00 to 1+28 12" 1.17 1.50 55.15 56.5 1.35 55.22 56.5 1.28 A -5A 1+28 to 1+45.41 12" 0.73 0.94 55.22 56.5 1.28 55.29 57.38 2.09 A -5B 1 +00.00 to 1+50.24 12" 0.32 0.41 55.39 58.05 2.66 55.40 58.62 3.22 D 3 +73.18 to 5 +02.50 30" 21.59 4.40 49.610 54.90 5.29 50.14 54.49 4.35 D 5 +06.50 to 5 +67.50 24" 16.36 5.21 50.14 54.49 4.35 50.81 55.19 4.38 D 5 +72.50 to 5 +94.63 24" 14.15 4.50 50.81 55.19 4.38 50.94 55.5 4.56 D 5 +94.63 to 6 +98.50 24' 13.75 4.38 50.94 55.5 4.56 51.67 54.63 2.96 D 7 +02.50 to 7 +74.52 18" 8.38 4.74 51.67 54.63 2.96 52.27 56.27 4.00 D 7 +74.52 to 8 +22.73 18" 7.58 4.29 52.27 56.27 4.00 52.90 55.29 2.39 D 8 +26.73 to 8 +87.73 18" 5.26 2.98 52.90 55.29 2.39 53.44 55.29 1.85 D 8 +91.73 to 10 +04 12" 1.27 1.62 53.44 55.29 1.85 54.39 56.86 2.47 D 10 +04 to 10 +79 12" 0.87 1.41 54.39 56.86 2.47 54.61 56.96 2.35 D 10 +79 to 11 +44' 12" 0.47 0.93 54.61 56.96 2.35 55.28 56.89 1.61 D 1 A 1 +00.00 to 3 +10.60 10" 0.40 0.74 50.94 55.500 4.56 54.08 56.74 2.66 D1 B 1 +00.00 to 2 +76.26 10" 0.80 1.48 52.27 56.270 1 4.00 52.55 56.38 I:J ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982 -2006 Advanced Engineering Software (aes) Ver. 13.0 Release Date: 06 /01/2006 License ID 1355 Analysis prepared by: Fuscoe Engineering 16795 Von Karman #100, Irvine, CA 92606 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * LINE A -5 * * * * * ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ** FILE NAME: C:\ aes2006 \hydrosft \ratscx \LQK5.hg1 TIME /DATE OF STUDY: 13:29 04/11/2007 ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** 110.00- 9.08* 1615.68 0.60 138.96 } FRICTION 120.00- 7.23* 1253.07 0.95 Dc 104.59 } JUNCTION 120.00- 7.24* 748.82 0.54 109.22 } FRICTION 130.00- 5.37* 542.19 0.82 80.54 } JUNCTION 130.00- 5.47* 546.01 0.51 91.78 } FRICTION 140.00- 2.32* 198.71 0.85 Dc 67.47 } CATCH BASIN 140.00- 2.46* 188.43 0.85 Dc 23.21 ------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES ------------------------------------------------------------------------ USED IN EACH PROFILE = 15 NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 110.00 FLOWLINE ELEVATION = 46.00 PIPE FLOW = 7.17 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 55.080 FEET ---------------------------------------------=-------------------------- NODE 110.00 : HGL = < 55.080 >;EGL = < 55.161 >; FLOWLINE = < 46.000> ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** FLOW PROCESS FROM NODE 110.00 TO NODE 120.00 IS CODE = 1 UPSTREAM NODE 120.00 ELEVATION = 47.91 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.17 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 60.00 FEET MANNING'S N = 0.01300 SF= (Q /K) * *2 = (( 7.17)/( 226.230)) * *2 = 0.00100 HF =L *SF = ( 60.00) *(0.00100) = 0.060 ------------------------------------------------------------------------ NODE 120.00 : HGL = < 55.140 >;EGL = < 55.221 >; FLOWLINE = < 47.910> ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 120.00 TO NODE 120.00 IS CODE = 5 UPSTREAM NODE 120.00 ELEVATION = 47.91 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES).(DEGREES) ELEVATION DEPTH(FT.) (FT /SEC) UPSTREAM 5.48 18.00 0.00 47.91 0.90 3.101 DOWNSTREAM 7.17 24.00 - 47.91 0.95 2.282 LATERAL #1 1.17 12.00 90.00 47.95 0.46 1.490 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.52 = = =Q5 EQUALS BASIN INPUT = == JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00272 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00100 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00186 JUNCTION LENGTH = 2.00 FEET FRICTION LOSSES = 0.004 FEET ENTRANCE LOSSES = 0.016 FEET JUNCTION LOSSES = (TRANSITION LOSS) +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.060) +( 0.004) +( 0.016) = 0.080 • - --------- ------- -- -- --------- --------- ------- -- -------- ---------- - - - - -- . NODE 120.00 : HGL = < 55.152 >;EGL = < 55.302 >; FLOWLINE = < 47.910> ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** FLOW PROCESS FROM NODE 120.00 TO NODE 130.00 IS CODE = 1 UPSTREAM NODE 130.00 ELEVATION = 49.92 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.48 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 50.00 FEET MANNING'S N = 0.01300 SF= (Q /K) * *2 = (( 5.48)/( 105.043)) * *2 = 0.00272 HF =L *SF = ( 50.00) *(0.00272) = 0.136 ------------------------------------------------------------------------ NODE 130.00 : HGL = < 55.288 >;EGL = < 55.438 >; FLOWLINE = < 49.920> ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** FLOW PROCESS FROM NODE 130.00 TO NODE 130.00 IS CODE = 5 UPSTREAM NODE 130.00 ELEVATION = 49.92 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT /SEC) UPSTREAM 4.84 18.00 0.00 49.92 0.85 2.739 DOWNSTREAM 5.48 18.00 - 49.92 0.90 3.101 LATERAL #1 0.32 12.00 90.00 49.95 0.23 0.407 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.32 = = =Q5 EQUALS BASIN INPUT = == JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00212 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00272 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00242 JUNCTION LENGTH = 2.00 FEET FRICTION LOSSES = 0.005 FEET ENTRANCE LOSSES = 0.030 FEET JUNCTION LOSSES = (TRANSITION LOSS) +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.033) +( 0.005) +( 0.030) = 0.067 ------------------------------------------------------------------------ NODE 130.00 : HGL = < 55.389 >;EGL = < 55.505 >; FLOWLINE = < 49.920> ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** FLOW PROCESS FROM NODE 130.00 TO NODE 140.00 IS CODE = 1 UPSTREAM NODE 140.00 ELEVATION = 53.25 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------ - - - - -- CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 4.84 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 85.00 FEET MANNING'S N = 0.01300 SF= (Q /K) * *2 = (( 4.84)/( 105.044)) * *2 = 0.00212 HF =L *SF = ( 85.00) *(0.00212) = 0.180 ------------------------------------------------------------------ - - - - -- NODE 140.00 : HGL = < 55.569 >;EGL = < 55.686 >; FLOWLINE = < 53.250> ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** FLOW PROCESS FROM NODE 140.00 TO NODE 140.00 IS CODE = 8 UPSTREAM NODE 140.00 ELEVATION = 53.25 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 4.84 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 2.74 FEET /SEC. VELOCITY HEAD = 0.116 FEET CATCH BASIN ENERGY LOSS = .2 *(VELOCITY HEAD) = .2 *( 0.116) = 0.023 ------------------------------------------------------------------ - - - - -- NODE 140.00 : HGL = < 55.709 >;EGL = < 55.709 >; FLOWLINE = < 53.250> ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 140.00 FLOWLINE ELEVATION = 53.25 ASSUMED UPSTREAM CONTROL HGL = 54.10 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS • ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982 -2006 Advanced Engineering Software (aes) Ver. 13.0 Release Date: 06/01/2006 License ID 1355 Analysis prepared by: Fuscoe Engineering 16795 Von Karman #100, Irvine, CA 92606 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * LINE A5 -A * * * * * ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ** FILE NAME: C:\ aes2006 \hydrosft \ratscx \LQK5A.hgl TIME /DATE OF STUDY: 13:41 04/11/2007 ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** 120.00- 7.24* 333.70 0.40 12.08 ) FRICTION 150.00- 6.98* 321.07 0.46 Dc 11.79 CATCH BASIN 150.00- 7.02* 323.10 0.24 0.88 FRICTION 160.00- 5.25* 235.94 0.46 Dc 11.79 ) CATCH BASIN 160.00- 5.29* 234.59 0.46 Dc 4.16 ------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 15 ------------------------------------------------------------------------ NOTE: STEADY.FLOW HYDRAULIC HEAD =LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION * * * * ** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 120.00 FLOWLINE ELEVATION = 47.91 PIPE FLOW = 1.17 CFS PIPE DIAMETER = 12.00 INCHES 0 ------ ASSUMED DOWNSTREAM CONTROL HGL - = - - -- 55.150 FEET NODE 120.00 : HGL = < 55.150 >;EGL = < 55.184 >;FLOWLINE = < 47.910> ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** FLOW PROCESS FROM NODE 120.00 TO NODE 150.00 IS CODE = 1 UPSTREAM NODE 150.00 ELEVATION = 48.20 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.17 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 30..00 FEET MANNING'S N = 0.01300 SF= (Q /K) * *2 = (( 1.17)/( 35.628)) * *2 = 0.00108 HF =L *SF = ( 30.00) *(0.00108) = 0.032 ------------------------------------------------------------------ - - - - -- NODE 150.00 : HGL = < 55.182 >;EGL = < 55.217 >;FLOWLINE = < 48.200> ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** FLOW PROCESS FROM NODE 150.00 TO NODE 150.00 IS CODE = 8 UPSTREAM NODE 150.00 ELEVATION = 48.20 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 1.17 CFS PIPE DIAMETER = 12.00 INCHES FLOW VELOCITY = 1.49 FEET /SEC. VELOCITY HEAD = 0.034 FEET CATCH BASIN ENERGY LOSS = .2 *(VELOCITY HEAD) = .2 *( 0.034) = 0.007 ------------------------------------------------------------------------ NODE 150.00 : HGL = < 55.224 >;EGL = < 55.224 >;FLOWLINE = < 48.200> ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** FLOW PROCESS FROM NODE 150.00 TO NODE 160.00 IS CODE = 1 UPSTREAM NODE- 160.00 ELEVATION = 50.00 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.17 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 20.00 FEET MANNING'S N = 0.01300 SF= (Q /K) * *2 = (( 1.17)/( 35.628)) * *2 ='0.00108 HF =L *SF = ( 20.00) *(0.00108) = 0.022 ------------------------------------------------------------------ - - - - -- NODE 160.00 : HGL = < 55.245 >;EGL = < 55.280 >;FLOWLINE = < 50.000> ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** FLOW PROCESS FROM NODE 160.00 TO NODE 160.00 IS CODE = 8 UPSTREAM NODE 160.00 ELEVATION = 50.00 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 1.17 CFS PIPE DIAMETER = 12.00 INCHES FLOW VELOCITY = 1.49 FEET /SEC. VELOCITY HEAD = 0.034 FEET CATCH BASIN ENERGY LOSS = .2 *(VELOCITY HEAD) _ .2 *( 0.034) = 0.007 -------------------------------------------- °--------------------------- NODE 160.00 : HGL = < 55.287 >;EGL = < 55.287>;FLOWLINE= < 50.000> ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 160.00 FLOWLINE ELEVATION = 50.00 ASSUMED UPSTREAM CONTROL HGL = 50.46 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS • • * * * * ** PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982 -2006 Advanced Engineering Software (aes) Ver. 13.0 Release Date: 06/01/2006 License ID 1355 Analysis prepared by: Fuscoe Engineering 16795 Von Karman #100, Irvine, CA 92606 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * LINE A5 -B * * * * * ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ** FILE NAME: C:\ aes2006 \hydrosft \ratscx \LQK5B.hgl TIME /DATE OF STUDY: 13:45 04/11/2007 ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** 130.00- 5.47* 243.83 0.12 3.70 ) FRICTION 170.00- 1.02* 25.93 0.23 Dc 2.25 CATCH BASIN 170.00- 1.03* 25.83 0.46 4.16 ------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 15 ------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 130.00 FLOWLINE ELEVATION = 49.92 PIPE FLOW = 0.32 CFS PIPE DIAMETER = 12.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 55.390 FEET ------------------------------------------------------------------ - - - - -- NODE 130.00 : HGL = < 55.390 >;EGL = < 55.393>;FLOWLINE= < 49.920> ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** FLOW PROCESS FROM NODE 130.00 TO NODE 170.00 IS CODE = 1 UPSTREAM NODE 170.00 ELEVATION = 54.37 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------ - - - - -- CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.32 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 50.00 FEET MANNING'S N = 0.01300 SF= (Q /K) * *2 = (( 0.32)/( 35.634)) * *2 = 0.00008 HF =L *SF = ( 50.00) *(0.00008) ------------------------.------------------------------------------ - - - - -- NODE 170.00 : HGL = < 55.394 >;EGL = < 55.397 >; FLOWLINE = < 54.370> ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** FLOW PROCESS FROM NODE 170.00 TO NODE 170.00 IS CODE = 8 UPSTREAM NODE 170.00 ELEVATION = 54.37 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 0.32 CFS PIPE DIAMETER = 12.00 INCHES FLOW VELOCITY = 0.41 FEET /SEC. VELOCITY HEAD = 0.003.FEET CATCH BASIN ENERGY LOSS = .2 *(VELOCITY HEAD) _ .2 *( 0.003) = 0.001 ------------------------------------------------------------------ - - - - -- • NODE 170.00 HGL = < 55.397 >;EGL = < 55.397 >; FLOWLINE = < 54.370> ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 170.00 FLOWLINE ELEVATION = 54.37 ASSUMED UPSTREAM CONTROL HGL = 54.83 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS • ************* ... ************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982 -2006 Advanced Engineering Software (aes) Ver. 13.0 Release Date: 06/01/2006 License ID 1355 Analysis prepared by: Fuscoe Engineering 16795 Von Karman #100, Irvine, CA 92606 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * LINE D * * * * * ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ** FILE NAME: C:\ aes2006 \hydrosft \ratscx \LQKD.hgl TIME /DATE OF STUDY: 15:56 04/11/2007 ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** 2,10.00- 7.44* 2080.05 1.32 436.61 ) FRICTION 220.00- 6.51* 1794.73 1.58 Dc 416.50 } JUNCTION 220.00- 6.66* 1275.59 1.18 329.86 } FRICTION 230.00- 6.13* 1170.92 1.46 Dc 310.73 } JUNCTION 230.00- 6.44* 1189.22 1.19 261.93 ) FRICTION 240.00- 6.29* 1161.01 1.35 Dc 255.44 } JUNCTION 240.00- 6.34* 1162.50 1.14 254.39 ) FRICTION 250.00- 5.68* 1034.67 1.34 Dc 245.81 } JUNCTION 250.00- 147.45 6.03* 659.25 0.93 1 FRICTION 260.00- 5.52* 602.82 1.12 Dc 140.39 } JUNCTION 260.00- 5.66* 604.10 0.96 124.24 } FRICTION 270.00- 5.44* 579.88 1.07 Dc 122.47 } JUNCTION 270.00- 5.81* 588.30 0.58 95.28 } FRICTION 280.00- 4.04* 393.45 0.88 Dc 75.26 } JUNCTION 280.00- 4.42* 196.09 0.29 17.63 } FRICTION } HYDRAULIC JUMP 290.00- 0.48 *Dc 13.11 0.48 *Dc 13.11 } JUNCTION 290.00- 0.73* 14.96 0.39 Dc 8.05 } FRICTION 300.00- 0.45* 8.34 0.39 Dc 8.05 } JUNCTION 300.00- 0.61* 9.19 0.26 Dc 3.71 } FRICTION } HYDRAULIC JUMP 310.00- 0.28 *Dc 3.67 0.28 *Dc 3.67 } CATCH BASIN 310.00- -0.09 0.01 0.28 *Dc 1.33 ------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 15 ------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 210.00 FLOWLINE ELEVATION = 42.17 PIPE FLOW = 21.59 CFS PIPE DIAMETER = 30.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 49.610 FEET ------------------------------------------------------------------------ NODE 210.00 : HGL = < 49.610 >;EGL = < 49.910>;FLOWLINE= < 42.170> ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** FLOW PROCESS FROM NODE 210.00 TO NODE 220.00 IS CODE = 1 UPSTREAM NODE 220.00 ELEVATION = 43.47 (FLOW IS UNDER PRESSURE) CALCULATE FRI PIPE FLOW PIPE LENGTH = SF= (Q /K) * *2 = HF =L *SF = ( --------------- NODE 220.00 43.470> CTION LOSSES(LACFCD): 21.59 CFS PIPE DIAMETER = 30.00 INCHES 133.00 FEET MANNING'S N = 0.01300 (( 21.59)/( 410.173)) * *2 = 0.00277 133.00) *(0.00277) = 0.368 ------------------------------------------------- HGL = < 49.978 >;EGL = < 50.279 >; FLOWLINE = < ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** FLOW PROCESS FROM NODE 220.00 TO NODE 220.00 IS CODE = 5 UPSTREAM NODE 220.00 ELEVATION = 43.47 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00523 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00277 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00400 JUNCTION LENGTH = 5.00 FEET FRICTION LOSSES = 0.020 FEET ENTRANCE LOSSES = 0.060 FEET JUNCTION LOSSES = (TRANSITION LOSS) +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.197) +( 0.020) +( 0.060) = 0.277 ------------------------------------------------------------------------ NODE 220.00 : HGL = < 50.135>;EGL= < 50.556 >; FLOWLINE = < 43.470> ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** FLOW PROCESS FROM NODE 220.00 TO NODE 230.00 IS CODE = 1 UPSTREAM NODE 230.00 ELEVATION = 44.37 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 16.36 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 70.00 FEET MANNING'S N = 0.01300 SF= (Q /K) * *2 = (( 16.36)/( 226.224)) * *2 = 0.00523 HF =L *SF = ( 70.00) *(0.00523) = 0.366 ------------------------------------------------------------------------ NODE 230.00 : HGL = < 50.501 >;EGL = < 50.922 >; FLOWLINE = < 44.370> (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT /SEC) UPSTREAM 16.36 24.00 0.00 43.47 1.46 5.208 DOWNSTREAM 21.59 30.00 - 43.47 1.58 4.398 LATERAL #1 0.00 3.00 0.00 43.47 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 QS 5.23 = = =Q5 EQUALS BASIN INPUT = == JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00523 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00277 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00400 JUNCTION LENGTH = 5.00 FEET FRICTION LOSSES = 0.020 FEET ENTRANCE LOSSES = 0.060 FEET JUNCTION LOSSES = (TRANSITION LOSS) +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.197) +( 0.020) +( 0.060) = 0.277 ------------------------------------------------------------------------ NODE 220.00 : HGL = < 50.135>;EGL= < 50.556 >; FLOWLINE = < 43.470> ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** FLOW PROCESS FROM NODE 220.00 TO NODE 230.00 IS CODE = 1 UPSTREAM NODE 230.00 ELEVATION = 44.37 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 16.36 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 70.00 FEET MANNING'S N = 0.01300 SF= (Q /K) * *2 = (( 16.36)/( 226.224)) * *2 = 0.00523 HF =L *SF = ( 70.00) *(0.00523) = 0.366 ------------------------------------------------------------------------ NODE 230.00 : HGL = < 50.501 >;EGL = < 50.922 >; FLOWLINE = < 44.370> * * ** ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * FLOW PROCESS FROM NODE 230.00 TO NODE 230.00 IS CODE = 5 UPSTREAM NODE 230.00 ELEVATION = 44.37 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT /SEC) UPSTREAM 14.15 24.00 0.00 44.37 1.35 4.504 DOWNSTREAM 16.36 24.00 - 44.37 1.46 5.208 LATERAL #1 0.00 3.00 0.00 44.37 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 2.21 = = =Q5 EQUALS BASIN INPUT = == JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00391 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00523 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00457 JUNCTION LENGTH = 2.00 FEET FRICTION LOSSES = 0.009 FEET ENTRANCE LOSSES = 0.084 FEET -- JUNCTION LOSSES = (TRANSITION LOSS) +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.106) +( 0.009) +( 0.084) = 0.199 ---------------=---------------------------------------------------- NODE 230.00 : HGL = < 50.806 >;EGL = < 51.121 >; FLOWLINE = < 44.370> ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** FLOW PROCESS FROM NODE 230.00 TO NODE 240.00 IS CODE = 1 UPSTREAM NODE 240.00 ELEVATION = 44.60 (FLOW IS UNDER PRESSURE) -----------7------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 14.15 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 22.00 FEET MANNING'S N = 0.01300 SF= (Q /K) * *2 = (( 14.15)/( 226.224)) * *2 = 0.00391 HF =L *SF = ( 22.00) *(0.00391) = 0.086 ------------------------------------------------------------------------ NODE 240.00 : HGL = < 50.892 >;EGL = < 51.207 >; FLOWLINE = < 44.600> ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** FLOW PROCESS FROM NODE 240.00 TO NODE 240.00 IS CODE = 5 UPSTREAM NODE 240.00 ELEVATION = 44.60 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT /SEC) UPSTREAM 13.75 24.00 0.00 44.60 1.34 4.377 DOWNSTREAM 14.15 24.00 - 44.60 1.35 4.504 LATERAL ##1 0.40 10.00 90.00 45.18 0.28 0.733 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00 = = =Q5 EQUALS BASIN INPUT = == JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00369 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00391 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00380 JUNCTION LENGTH = 2.00 FEET FRICTION LOSSES = 0.008 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS) +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES ------------------------------------------=----------------------------- = ( 0.018) +( 0.008) +( 0.000) = 0.025 NODE 240.00 : HGL = < 50.935 >;EGL = < 51.233 >; FLOWLINE = < 44.600> * * * * ** FLOW PROCESS FROM NODE 240.00 TO NODE 250.00 IS CODE = 1 UPSTREAM NODE 250.00 ELEVATION = 45.64 (FLOW IS UNDER PRESSURE) 7----------------------------------------------------------------------- CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 13.75 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 105.00 FEET MANNING'S N = 0.01300 SF= (Q /K) * *2 = (( 13.75)/( 226.225)) * *2 = 0.00369 HF =L *SF = ( 105.00) *(0.00369) = 0.388 ------------------------------------------------------------------------ NODE 250.00 : HGL = < 51.323 >;EGL = < 51.621 >; FLOWLINE = < 45.640> ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** FLOW PROCESS FROM NODE 250.00 TO NODE 250.00 IS CODE = 5 UPSTREAM NODE 250.00 ELEVATION = 45.64 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT /SEC) UPSTREAM 8.38 18.00 0.00 45.64 1.12 4.742 DOWNSTREAM 13.75 24.00 - 45.64 1.34 • 4.377 LATERAL #1 0.00 3.00 0.00 45.64 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 5.37 = = =Q5 EQUALS BASIN INPUT = == JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00636 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00369 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00503 JUNCTION LENGTH = 5.00 FEET FRICTION LOSSES = 0.025 FEET ENTRANCE LOSSES = 0.059 FEET JUNCTION LOSSES = (TRANSITION LOSS) +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.314) +( 0.025) +( 0.059) = 0.399 ------------------------------------------------------------------------ NODE 250.00 : HGL = < 51.670 >;EGL = < 52.019 >;FLOWLINE = < 45.640> ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** FLOW PROCESS FROM NODE 250.00 TO NODE 260.00 IS CODE = 1 UPSTREAM NODE 260.00 ELEVATION = 46.61 (FLOW IS UNDER PRESSURE) ------------=----------------------------------------------------------- CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 8.38 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH 72.00 FEET MANNING'S N = 0.01300 SF= (Q /K) * *2 = (( 8.38)/( 105.043)) * *2 = 0.00636 H - -- --- - ( 72.00) (0.00636)-- - - - - -- 0.458 ------------------------ *--- - - - - -- ------------------- - - - - -- NODE 260.00 : HGL = < 52.128 >;EGL = < 52.478 >;FLOWLINE = < 46.610> ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** FLOW PROCESS FROM NODE 260.00 TO NODE 260.00 IS CODE = 5 UPSTREAM NODE 260.00 ELEVATION = 46.61 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY JUNCTION•ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00521 • DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00636 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00579 (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT /SEC) UPSTREAM 7.58 18.00 0.00 46.61 1.07 4.289 DOWNSTREAM 8.38 18.00 - 46.61 1.12 4.742 LATERAL #1 0.80 12.00 90.00 46.94 0.37 1.019 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00 = = =Q5 EQUALS BASIN INPUT = == JUNCTION•ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00521 • DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00636 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00579 ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** JUNCTION LENGTH = 2.00 FEET FRICTION LOSSES = 0.012 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS) +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES ------------------------------------------------------------------------ = ( 0.064) +( 0.012) +( 0.000) = 0.075 NODE 260.00 : HGL = < 52.267 >;EGL = < 52.553 >;FLOWLINE = < PIPE FLOW 46.610> VELOCITY ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** (INCHES) (DEGREES) ELEVATION DEPTH(FT.) FLOW PROCESS FROM NODE 260.00 TO NODE 270.00 IS CODE = 1 UPSTREAM NODE ' 270.00 ELEVATION = 47.09 (FLOW IS UNDER 18.00 0.00 47.09 0.88 PRESSURE) ------------------------------------------------------------------------ 2.977 CALCULATE FRICTION LOSSES(LACFCD): DOWNSTREAM 7.58 PIPE FLOW = 7.58 CFS PIPE DIAMETER = 18.00 INCHES 4.289 PIPE LENGTH = 50.00 FEET MANNING'S N = 0.01300 LATERAL #1 0.00 SF= (Q /K) * *2 = (( 7.58)/( 105.044)) * *2 = 0.00521 0.000 HF =L *SF = ( ------------------------------------------7----------------------------- 50.00) *(0.00521) = 0.260 LATERAL #2 0.00 NODE 270.00 : HGL = < 52.527>;EGL= < 52.813 >;FLOWLINE = < 0.000 47.090> ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** FLOW PROCESS FROM NODE 270.00 TO NODE 270 -.00 IS CODE = 5 UPSTREAM NODE 270.00 PRESSURE) ELEVATION = 47.09 (FLOW IS UNDER ------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT /SEC) UPSTREAM 5.26 18.00 0.00 47.09 0.88 2.977 DOWNSTREAM 7.58 18.00 - 47.09 1.07 4.289 LATERAL #1 0.00 3.00 0.00 47.09 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 2.32 = = =Q5 EQUALS BASIN INPUT = == JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00251 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00521 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00386 JUNCTION LENGTH = 5.00 FEET FRICTION LOSSES = 0.019 FEET ENTRANCE LOSSES = 0.057 FEET JUNCTION LOSSES = (TRANSITION LOSS) +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.148) ------------------------------------------------------------------------ +( 0.019) +( 0.057) = 0.225 NODE 270.00 :'HGL = < 47.090> 52.900 >;EGL = < 53.038 >;FLOWLINE = < ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** FLOW PROCESS FROM NODE 270.00 TO NODE 280.00 IS CODE = 1 UPSTREAM NODE 280.00 ELEVATION = 49.02 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.26 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 65.00 FEET MANNING'S N = 0.01300 SF= (Q /K) * *2 = (( 5.26)/( 105.044)) * *2 = 0.00251 HF =L *SF = ( 65.00) *.(0.00251) = 0.163 ------------------------------------------------------------------------ NODE 280.00 : HGL = < 53.063 >;EGL = < 53.201 >;FLOWLINE = < 49.020> ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** FLOW PROCESS FROM NODE 280.00 TO NODE 280.00 IS CODE = 5 UPSTREAM NODE 280.00 ELEVATION = 49.02 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00127 DOWNSTREAM: MANNING'S N- 0.01300; FRICTION SLOPE = 0.00251 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00189 JUNCTION LENGTH = 5.00 FEET FRICTION LOSSES = 0.009 FEET ENTRANCE LOSSES = 0.028 FEET JUNCTION LOSSES = (TRANSITION LOSS) +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.243) +( 0.009) +( 0.028) = 0.280 ------------------------------------------------------------------------ NODE 280.00 : HGL = < 53.440 >;EGL = < 53.481 >;FLOWLINE = < 49.020> * * * * ** FLOW PROCESS FROM NODE 280.00 TO NODE 290.00 IS CODE = 1 UPSTREAM NODE 290.00 ELEVATION = 53.66 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 1.27 CFS PIPE DIAMETER = 12.00 INCHES (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT /SEC) UPSTREAM 1.617 1.27 12.00 0.00 49.02 0.48 DOWNSTREAM 5.26 18.00 49.02 0.88 2.977 LATERAL #1 0.00 3.00 0.00 49.02 0.00 0.002 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 .3.99 = = =Q5 EQUALS BASIN INPUT = == JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00127 DOWNSTREAM: MANNING'S N- 0.01300; FRICTION SLOPE = 0.00251 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00189 JUNCTION LENGTH = 5.00 FEET FRICTION LOSSES = 0.009 FEET ENTRANCE LOSSES = 0.028 FEET JUNCTION LOSSES = (TRANSITION LOSS) +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.243) +( 0.009) +( 0.028) = 0.280 ------------------------------------------------------------------------ NODE 280.00 : HGL = < 53.440 >;EGL = < 53.481 >;FLOWLINE = < 49.020> * * * * ** FLOW PROCESS FROM NODE 280.00 TO NODE 290.00 IS CODE = 1 UPSTREAM NODE 290.00 ELEVATION = 53.66 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 1.27 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = ------------------------------------------------------------------------ 115.00 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ------------------------------------------------------------------------ ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.29 CRITICAL DEPTH(FT) = 0.48 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.48 GRADUALLY VARIED ------------------------------------------------------------------------ FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT /SEC) ENERGY(FT) MOMENTUM (POUNDS) 0.000 0.476 3.446 0.660 13.11 0.020 0.463 3.568 0.661 13.12 0.085 0.450 3.700 0.663 13.17 0.203 0.438 3.841 0.667 13.25 0.385 .0.425 3.993 0.673 13.37 0.647 .0.412 4.157 0.681 13.52 1.006 0.400 4.334 0.691 13.72 1.488 0.387 4.526 0.705 13.97 2.131 0.374 4.735 0.722 14.26 2.989 0.361 4.961 0.744 14.61 4.144 0.349 5.209 0.770 15.02 5.738 0.336 5.480 0.803 15.50 8.037 0.323 5.778 0.842 16.06 11.637 0.311 6.106 0.890 16.70 18.452 0.298 6.470 0.948 17.43 115.000 0.295 6.564 0.964 17.63 ------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 4.42 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) PRESSURE HEAD(FT) VELOCITY (FT /SEC) SPECIFIC PRESSURE+ ENERGY(FT) MOMENTUM (POUNDS) 0.000 4.420 1.617 4.461 196.09 87.517 1.000 1.617 1.041 28.48 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.00 GRADUALLY VARIED ------------------------------------------------------------------------ FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT /SEC) ENERGY(FT) MOMENTUM (POUNDS) 87.517 1.000 1.617 1.041 28.48 88.386 0.965 1.634 1.007 26.82 89.233 0.930 1.668 0.973 25.23 90.065 0.895 1.712 0.941 23.70 90.881 0.860 1.767 0.909 22.24 91.682 0.825 1.831 0.877 • 20.86 92.464 0.790 1.907 0.847 19.56 93.225 0.755 1.995 0.817 18.36 93.961 0.720 2.096 0.789 17.25 94.665 0.685 2.213 0.762 16.25 95.329 0.651 2.347 0.736 15.37 95.940 0.616 2.503 0.713 14.61 96.482 0.581 2.684 0.693 13.99 96.930 0.546 2.897 0.676 13.52 97.247 0.511 3.147 0.665 13.21 97.371 0.476 3.446 0.660 13.11 115.000 0.476 3.446 0.660 13.11 ----------------- - - - - -- -END OF HYDRAULIC JUMP ANALYSIS------------------------ PRESSURE +MOMENTUM BALANCE OCCURS AT 93.84 FEET UPSTREAM OF NODE 280.00 DOWNSTREAM DEPTH = 0.726 FEET, UPSTREAM CONJUGATE DEPTH = 0.298 FEET • ------------------------------------------------------------------------ NODE 290.00 : HGL = < 54.136 >;EGL = < 54.320 >;FLOWLINE = < 53.660> FLOW PROCESS FROM NODE 290.00 TO NODE 290.00 IS CODE = 5 UPSTREAM NODE 290.00 ELEVATION = 53.66 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT /SEC) UPSTREAM 0.87 12.00 0.00 53.66 0.39 1.410 DOWNSTREAM 1.27 12.00 - 53.66 0.48 3.447 LATERAL #1 0.00 3.00 0.00 53.66 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.40 = = =Q5 EQUALS BASIN INPUT = == JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00076 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00603 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00339 JUNCTION LENGTH = 2.00 FEET FRICTION LOSSES = 0.007 FEET ENTRANCE LOSSES = 0.037 FEET • -- JUNCTION LOSSES = (TRANSITION LOSS) +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.060) +( 0.007) +( 0.037) = 0.104 NODE 290.00 : HGL = < 54.393 >;EGL = < 54.424 >; FLOWLINE = < 53.660> FLOW PROCESS FROM NODE 290.00 TO NODE 300.00 IS CODE = 1 UPSTREAM NODE 300.00 ELEVATION = 54.00 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.87 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 75.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------ •NORMAL DEPTH(FT) = 0.42 CRITICAL DEPTH(FT) = 0.39 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.73 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT /SEC) ENERGY(FT) MOMENTUM (POUNDS) •14.96 0.000 0.733 1.409 0.764 5..106 0.712 1.454 0.745 14.24 10.230 0.691 1.502 0.726 13.54 15.378 0.670 1.555 0.708 12.88 20.554 0.649 1.613 0.689 12.25 25.766 0.628 1.676 0.671 11.66 31.025 0.607 1.745 0.654 11:11 •36.342 0.585 1.820 0.637 10.59 41.737 0.564 1.904 0.621 10.12 47.235 0.543 1.995 0.605 9.68 52.878 0.522 2.097 0.590' 9.29 58.736 0.501 2.209 0.577 8.95 64.939 0.480 2.335 0.565 8.66 71.783 0.459 2:475 0.554 8.41 75.000 0.451 2.532 0.550 8.34 ------------------------------------------------------------------------ NODE 300.00 : HGL = < 54.451 >;EGL = < 54.550 >;FLOWLINE = < 54.000> FLOW PROCESS FROM NODE 300.00 TO NODE 300.00 IS CODE = 5 UPSTREAM NODE ------------------------------------------------------------------------ 300.00 ELEVATION = 54.00 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT /SEC) UPSTREAM 0.47 12.00 0.00 54.00 0.28 0.933 DOWNSTREAM 0.87 12.00 - 54.00 0.39 2.533 LATERAL #1 0.00 3.00 0.00 54.00 0.00 0:002 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.40 = = =Q5 EQUALS BASIN INPUT = == JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00036 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00342 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00189 JUNCTION LENGTH = 2.00 FEET FRICTION LOSSES = 0.004 FEET ENTRANCE LOSSES = 0.020 FEET JUNCTION LOSSES = (TRANSITION LOSS) +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.052) +( 0.004) +( 0.020,) = 0.075 NODE 300.00 HGL = < 54.612 >;EGL = < 54.626 >;FLOWLINE = < 54.000> ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 300.00 TO NODE 310.00 IS CODE = 1 UPSTREAM NODE 310.00 ELEVATION = 54.50 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.47 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = ---------------------------------- 65.00 FEET MANNING'S N = 0.01300 ------------------------------ - ------- HYDRAULIC JUMP: ---'--------------------------------------------------------------------- DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.26 CRITICAL DEPTH(FT) = 0.28 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.28 GRADUALLY VARIED ------------------------------------------------------------------------ FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT /SEC) ENERGY(FT) MOMENTUM (POUNDS) 0.000 0.284 2.559 0.386 3.67 0.007 0.282 2.578 0.386 3.67 0.031 0.281 2.597 0.386 3.67 0.073 0.280 2.615 0.386 3.67 0.137 0.278 2.635 0.386 3.67 0.227 0.277 2.654 0.386 3.68 0.349 0.275 2.674 0.386 3.68 0.510 0.274 2.694 0.386 3.68 0.721 0.272 2.714 0.387 3.68 0.997 0.271 2.734 0.387 3.68 1.361 0.269 2.755 0.387 3.69 1.855 0.268 2.776 0.388 3.69 2.552 0.266 2.797 0.388 3.70 3.621 0.265 2.819 0.388 3.70 3.71 5.601 0.264 2.841 0.389 65.000 0.263 2.853 0.389 3.71 ------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.61 GRADUALLY ------------------------------------------------------------------------ VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT /SEC) ENERGY(FT) MOMENTUM (POUNDS) 0.000 0.612 0.933 0.626 9.19 2.825 0.590 0.974 0.605 8.55 5.642 0.568 1.020 0.584 7.95 8.450 0.546 1.070 0.564 7.38 11.247 0.525 1.126 0.544 6.85 14.030 0.503 1.188 0.525 16.794 0.481 1.258 0.505 5.35 5.89 19.536 0.459 1.336 0.487 5.46 22.249 0.437 1.424 0.469 5.08 24.921 0.415 1.524 0.451 4.73 27.539 0.393 1.638 0.435 4.43 30.078 0.371 1.769 0.420 4.17 32.499 0.350 1.921 0.407 3.96 34.727 0.328 2.099 0.396 3.81 36.592 0.306 2.309 0.389 3.71 37.554 0.284 2.559 0.386 3.67 65.000 0.284 2.559 0.386 3.67 ----------------- - - - - -- -END OF HYDRAULIC JUMP ANALYSIS ------------------------ PRESSURE +MOMENTUM BALANCE OCCURS AT 36.72 FEET UPSTREAM OF NODE 300.00 DOWNSTREAM DEPTH = 0.306 FEET, UPSTREAM CONJUGATE DEPTH = 0.263 FEET iNODE ------------------------------------------------------------------------ 31Q.00.: HGL = < 54.784 >;EGL = < 54.886 >;FLOWLINE = < 54.500> ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 310.00 TO NODE 310.00 IS CODE = 8 UPSTREAM NODE 310.00 ELEVATION = 55.00 (FLOW IS SUBCRITICAL) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) ------------------------------------------------------------------ - - - - -- CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 0.47 CFS PIPE DIAMETER = 12.00 INCHES FLOW VELOCITY = 11.31 FEET /SEC. VELOCITY HEAD = 1.986 FEET CATCH BASIN ENERGY LOSS = .2 *(VELOCITY HEAD) _ .2 *( 1.986) = 0.397 ------------------------------------------------------------------ - - - - -- NODE 310.00 : HGL = < 55.283 >;EGL = < 55.283 >; FLOWLINE = < 55.000> ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 310.00 FLOWLINE ELEVATION = 55.00 ASSUMED UPSTREAM CONTROL HGL = 55.28 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS • F 7 • ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * ** PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) (c) Copyright 1982 -2006 Advanced Engineering Software (aes) Ver. 13.0 Release Date: 06/01/2006 License ID 1355 Analysis prepared by: Fuscoe Engineering 16795 Von Karman #100, Irvine, CA 92606 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * LINE D1 -A * * * * * ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ** FILE NAME: C:\ aes2006 \hydrosft \ratscx \LQKD1A.hgl TIME /DATE OF STUDY: 16:08 04/11/2007 NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 240.00 FLOWLINE ELEVATION = 45.18 PIPE DIAMETER(INCH) = 10.00 PIPE FLOW(CFS) = 0.40 ASSUMED DOWNSTREAM CONTROL HGL = 50.940 FULL INTEGRATION EQUATION IS USED FOR JUNCTION ANALYSIS NODE 240.00 : HGL= < 50.940 >;EGL = < 50.948 >;FLOWLINE = < 45.180> PRESSURE FLOW PROCESS FROM NODE 240.00 TO NODE 320.00 IS CODE _ 1 UPSTREAM NODE 320.00 ELEVATION = 53.24 ------------------------------------------------------------------------ CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 0.40 CFS PIPE DIAMETER = 10.00 INCHES PIPE LENGTH = 210.00 FEET MANNINGS N = 0.01300 SF= (Q /K) * *2 = (( 0.40)/( 21.910)) * *2 = 0.0003333 HF =L *SF = ( 210.00) *( 0.0003333) = 0.070 NODE 320.00 : HGL= < 51.010 >;EGL = < 51.018 >;FLOWLINE = < 53.240> PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 3.06 NODE 320.00 : HGL= < 54.073>;EGL= < 54.082 >;FLOWLINE = < 53.240> PRESSURE FLOW PROCESS FROM NODE 320.00 TO NODE 320.00 IS CODE _ 8 UPSTREAM NODE 320.00 ELEVATION = 53.24 ------------------------------------------------------------------------ CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS) = 0.40 PIPE DIAMETER(INCH) = 10.00 PRESSURE FLOW VELOCITY HEAD = 0.008 CATCH BASIN ENERGY LOSS = .2 *(VELOCITY HEAD) _ .2 *( 0.008) = 0.002 NODE 320.00 : HGL= < 54.083 >;EGL = < 54.083 >;FLOWLINE = < 53.240> _________________________________________ _______________________________ 'END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM • ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982 -2006 Advanced Engineering Software (aes) Ver. 13.0 Release Date: 06/01/2006 License ID 1355 Analysis prepared by: Fuscoe Engineering 16795 Von Karman #100, Irvine, CA 92606 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * LINE D1 -B * * * * * ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ** FILE NAME: C:\ aes2006 \hydrosft \ratscx \LQKDlB.hgl TIME /DATE OF STUDY: 16:16 04/11/2007 ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** 260.00- 5.33* 169.49 0.28 8.97 FRICTION 330.00- 1.16* 27.44 0.40 Dc 7.52 ) CATCH BASIN 330.00- 1.20* 26.53 0.40 Dc 2.65 ------------------------------------------------------------------ - - - - -- MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 15 ------------------------------------------------------------------ - - - - -- NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 260.00 FLOWLINE ELEVATION = 46.94 PIPE FLOW = 0.80 CFS PIPE DIAMETER = 10.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 52.270 FEET ------------------------------------------------------------------ - - - - -- NODE 260.00 : HGL = < 52.270 >;EGL = < 52.303 >;FLOWLINE = < IS46.940> ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** FLOW PROCESS FROM NODE 260.00 TO NODE 330.00 IS CODE = 1 UPSTREAM NODE 330.00 ELEVATION = 51.35 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------ - - - - -- CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.80 CFS PIPE DIAMETER = 10.00 INCHES PIPE LENGTH = 177.00 FEET MANNING'S N = 0.01300 SF= (Q /K) * *2 = (( 0.80)/( 21.910)) * *2 = 0.00133 HF =L *SF = ( 177.00) *(0.00133) = 0.236 ------------------------------------------------------------------ - - - - -- NODE 330.00 : HGL = < 52.506 >;EGL = < 52.539 >; FLOWLINE = < 51.350> ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** FLOW PROCESS FROM NODE 330.00 TO NODE 330.00 IS CODE = 8 UPSTREAM NODE 330.00 ELEVATION = 51.35 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 0.80 CFS PIPE DIAMETER = 10.00 INCHES FLOW VELOCITY = 1.47 FEET /SEC. VELOCITY HEAD = 0.033 FEET CATCH BASIN ENERGY LOSS = .2 *(VELOCITY HEAD) = .2 *( 0.033) = 0.007 ------------------------------------------------------------------ - - - - -- NODE 330.00 : HGL = < 52.546 >;EGL = < 52.546 >; FLOWLINE = < 51.350> ***************************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 330.00 FLOWLINE ELEVATION = 51.35 ASSUMED UPSTREAM CONTROL HGL = 51.74 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS • | -- --------- . . . . . - ---- ---- ---- ---- ----- ---- ---- ---- ---- ---- ----' ----- ---- ` , | | | / \ ' / � ( ^ ! ` ` ' | | ' ' ROPOSED 110 TRANSFORMER \ . � { ` � ' � ^ ' . . ~~ � ' � 87Q+ - T--�-------r� - � - 878+00 -r---- ---T-- R774-0D --' --|--------- -- -- . . 876+00 87.5+00 8744-0. HW W Ill | � w----- '- /---'��-- ---' �---'�--'--- �--- ---`' -�r--- --- --- r---- --- --' r---- --- -- �---' ---- --- r--- '--- -- r'---'�-- ---' ,--- '--' --- �--T� --- ---- ' --- ---- --- r--- --- --- �--- '--- --- `--- --- --- �--- --- - / | \ ----�- --------�---- '-~~-~==~ u===�- �--- --- ---� y --- --- ---- v--- ----- CD � � � CL L' c L d �l Q n Qo CD et Q O ci G X w Qo I Cl- J c� a C> z X O co CO 9 Q G. iJ O !x G1 N m W W W. f uscoe. coo C' cc a.