Loading...
33960 (2)096�� Project Site: COSTCO PLAZA La Quinta, CA Prepared for: COSTCO WHOLESALE COMPANY 999 Lake Drive Issaquah, WA 98027 Project Manager. Bob Strong, PE Date Prepared: March 2006 JN: 156.93.01 Prepared by: E N G I N E E R I N G 16795 Von Karman Avenue, Suite 100 Irvine, CA 92606 (949) 474 -1960 www.fuscoe.com Hydrology /Hydraulic Report March 2006 IL Existing Topographic & Hydrologic Conditions Existing Drainage Pattern The site drains in a southerly direction to the La Quinta Evacuation Channel where the flow enters the channel from the top and continues northerly in the channel to White Water River approximately 2500' to the north. Existing Storm Drain Facilities There are no existing storm drain facilities onsite. III. Proposed Drainage The proposed drainage of the Costco Plaza consists of catch basins to collect on -site drainage. The site storm drain will be designed to intercept flow at specific locations within the project in accordance with the proposed grading. Once collected, flow will be conveyed to the La Quinta Evacuation Channel via the on -site storm drain system. _1_�Q 4OW VS16< In o- P-�- &-'zA k i's wce4 s U-Fac -e y gy stuay 1-15"Z Cs�n ��o�eJ ���� IV. H �rolo � Storm Frequency► A 100 -year frequency was used to analyze the 100 -year flood protection for all structures. This option is consistent with the design criteria presented in Section v of this report. V. Design Criteria The proposed storm drain system will be designed to be consistent with the following goals and guidelines: A. All buildings shall be protected from flooding during a 100 -year frequency storm. B. Design storm frequency is in accordance with the Riverside County Hydrology Manual. C. Nuisance water will be directed to a sand filter and will not discharge to the evacuation channel. - 3 - Costco Plaza La Quinta • Hydrology/Hydraulic Report March 2006 Prepared by: FUSCOE ENGINEERING, INC. 16795 Von Karman Avenue, Suite 100 Irvine, California 92606 (949) 474 -1960 Project Number 156.9301 Supervising Engineer: Bob Strong RCE No. 28300 Date Prepared: March 2006 Na 28300 m EV. sago 8 CM1. OF CAS \F� Costco Plaza La Quinta HydroloVlHydraulic Report March 2006 • Table of Contents Tableof Contents ................................................... ..............................1 I. Introduction ............................................ ..............................1 GeographicSetting .................................. ..............................1 Purpose of This Report .............................. ............................... l References................................................. ............................... 1 Project Site Location Map ....................... ............................... 2 II. Existing Topographic & Hydrologic Conditions .................3 Existing Drainage Pattern ........................ ............................... 3 Existing Storm Drain Facilities .................... ..............................3 III. Proposed Drainage ................................ ............................... 3 IV. Hydrology Study ...................................... ..............................3 • Storm Frequency ........................................ ..............................3 V. Design Criteria ........................................ ..............................3 VI. Results and Conclusions ....................... ............................... 4 VII. Appendices ............................................. ............................... S Appendix 1 - Plates from RCFCD Hydrology Manual Appendix 2 - 100 Year Hydrology Study Appendix 3 - Catch Basin Design Appendix 4 - 100 Year Hydraulics Calculation Appendix 5 - Hydrology Map (In Pocket) Appendix 6 - Catch Basin Hydrology Map (In Pocket) Appendix 7 - La Quinta Evacuation Channel Control Water Surface (In Pocket) Costco Plaza La Quinta Hydrology /Hydraulic Report March 2006 L Introduction Geographic Setting The project site is approximately 27 acres located near the southwest corner of Jefferson Street and Highway 111. The site is presently undeveloped and is bounded on the east by an undeveloped parcel in the City of Indio, on the west by an undeveloped parcel, on the north by Highway 111 and on the south by La Quinta Evacuation Channel. Purpose of This Report The purpose of this report is to accomplish the following objectives: 1. To determine the storm water discharge generated within the project.. 2. To provide required flood protection for the buildings from the 100 • year storm. References • Riverside County Flood Control Hydrology Manual • AES Software • -1- Costco Plaza La Quinta Hydrology /Hydraulic Report 0 Project Site Location Map � 0 Uw March 2006 Thomas Brothers, 2001 2- Costco Plaza La Quinta Hydrology /Hydraulic Report March 2006 IL Existing Topographic & Hydrologic .Conditions Existing Drainage Pattern The site drains in a southerly direction to the La Quinta Evacuation Channel where the flow enters the channel from the top and continues northerly in the channel to White Water River approximately 2500' to the north. Existing Storm Drain Facilities There are no existing storm drain facilities onsite. III. Proposed Drainage The proposed drainage of the Costco Plaza consists of catch basins to collect on -site drainage. The site storm drain will be designed to intercept flow at specific locations within the project in accordance with the proposed grading. Once collected, flow will be conveyed to the La Quinta Evacuation Channel via the on -site storm drain system. IV. Hydrology Study Storm Frequency A 100 -year frequency was used to analyze the 100 -year flood protection for all structures. This option is consistent with the design criteria presented in Section v of this report. V. Design Criteria The proposed storm drain system will be designed to be consistent with the following goals and guidelines: A. All buildings shall be protected from flooding during a 100 -year frequency storm. B. Design storm frequency is in accordance with the Riverside County Hydrology Manual. C. Nuisance water will be directed to a sand filter and will not • discharge to the evacuation channel. - 3 - Costco Plaza La Quinta • • Hydrology /Hydraulic Report March 2006 VI. Results and Conclusions The buildings will be protected from 100 year flows. All storm flows will discharge directly to the La Quinta Evacuation Channel using a conventional system of pipe and inlets. A sand filter and dry well will be used to intercept low flows. - 4 - Costco Plaza La Quinta Hydrology /Hydraulic Report March 2006 VII. Appendices Appendix I — Plates from RCFCD Hydrology Manual Appendix 2 —100 Year Hydrology Study Appendix 3 — Catch Basin Design Appendix 4 —100 Year Hydraulic Calculations Appendix S — Hydrology Map: Post Construction (In Pocket) Appendix 6 — Catch Basin Hydrology Map (In Pocket) • Appendix 7 — La Quinta Evacuation Channel Control Water Surface (In Pocket) - 5 - Costco Plaza La Quinta ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC &WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982 -2002 Advanced Engineering Software (aes) (Rational Tabling Version 5.9D) Release Date: 01/01/2002 License ID 1355 Analysis prepared by: Fuscoe Engineering, Inc 16795 Von Karman Suite 100, Irvine Ca 92606 DESCRIPTION OF STUDY Costco La Quinta Precise Grading Hydrology GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.00 TO NODE 20.00 IS CODE = 21 • >> >>> RATIONAL - METHOD_ INITIAL - SUBAREA- ANALYSIS<< « <- ---- -- ------ ----- - - - - -- ASSUMED INITIAL SUBAREA UNIFORM ---------------------------------------------------------------------------- FILE NAME: C:\ aes2002\ hydrosft \ratscx \QUINTA2.DAT❑❑❑❑❑❑❑❑❑❑❑❑ TIME /DATE OF STUDY: 14:31 04/01/2006 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ----------------7----------------------------------------------------------- USER SPECIFIED STORM EVENT(YEAR) _ 100.00 (• SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 2 -YEAR, 1 -HOUR PRECIPITATION(INCH) = 0.500 100 -YEAR, 1 -HOUR PRECIPITATION(INCH) = 1.600 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1 -HOUR INTENSITY(INCH /HOUR) = 1.600 SLOPE OF INTENSITY DURATION CURVE = 0.5900 SPECIFIED CONSTANT RUNOFF COEFFICIENT = 0.850 NOTE: CONSIDER ALL CONFLUENCE STREAM COMBINATIONS FOR ALL DOWNSTREAM ANALYSES *USER- DEFINED STREET - SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT - /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth) *(Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.00 TO NODE 20.00 IS CODE = 21 • >> >>> RATIONAL - METHOD_ INITIAL - SUBAREA- ANALYSIS<< « <- ---- -- ------ ----- - - - - -- ASSUMED INITIAL SUBAREA UNIFORM • DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW - LENGTH = 440.00 UPSTREAM ELEVATION = 59.60 DOWNSTREAM ELEVATION = 56.80 ELEVATION DIFFERENCE = 2.80 TC = 0.303 *[( 440.00 * *3) /( 2.80)] * *.2 = 9.511 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.743 *USER SPECIFIED(GLOBAL): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SUBAREA RUNOFF(CFS) = 3.14 TOTAL AREA(ACRES) = 0.78 TOTAL RUNOFF(CFS) = 3.14 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 81 ---------------------------------------------------------------------------- >> >>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<< <<< ------------------------------=-=------------------------------------------- ---------------------------------------------------------------------------- 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.743 *USER SPECIFIED(GLOBAL): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SUBAREA AREA(ACRES) = 2.50 SUBAREA RUNOFF(CFS) = 10.08 TOTAL AREA(ACRES) = 3.28 TOTAL RUNOFF(CFS) = 13.22 TC(MIN) = 9.51 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 20.00 TO NODE 30.00 IS CODE = 81 >> >>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<< <<< ------------------------------------------------- 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.743 *USER SPECIFIED(GLOBAL): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SUBAREA AREA(ACRES) = 0.94 SUBAREA RUNOFF(CFS) = 3.79 TOTAL AREA(ACRES) = 4.22 TOTAL RUNOFF(CFS) = 17.01 TC(MIN) = 9.51 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 30.00 TO NODE 40.00 IS CODE = 81 ---------------------------------------------------------------------------- >> >>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<< <<< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.743 *USER SPECIFIED(GLOBAL): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SUBAREA AREA(ACRES) = 3.96 SUBAREA RUNOFF(CFS) = 15.97 TOTAL AREA(ACRES) = 8.18 TOTAL RUNOFF(CFS) = 32.98 TC(MIN) = 9.51 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 40.00 TO NODE 50.00 IS CODE = 81 ---------------------------------------------------------------------------- >> >>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<< <<< • 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.743 *USER SPECIFIED(GLOBAL): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 l• SUBAREA AREA(ACRES) = 1.05 SUBAREA RUNOFF(CFS) = 4.23 TOTAL AREA(ACRES) = 9.23 TOTAL RUNOFF(CFS) = 37.21 TC(MIN) = 9.51 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 50.00 TO NODE 60.00 IS CODE = 31 ---------------------------------------------------------------------------- >> >>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA <<<<< >> >>>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW) <<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ELEVATION DATA: UPSTREAM(FEET) = 53.20 DOWNSTREAM(FEET) = 53.00 FLOW LENGTH(FEET) = 240.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 48.0 INCH PIPE IS 36.3 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 3.65 ESTIMATED PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 37.21 PIPE TRAVEL TIME(MIN.) = 1.10 Tc(MIN.) = 10.61 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 60.00 = 680.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 60.00 TO NODE 60.00 IS CODE = 10 ---------------------------------------------------------------------------- >> >>>MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK # 1 « «< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 70.00 TO NODE 80.00 IS CODE = 21 • ------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW - LENGTH = 320.00 UPSTREAM ELEVATION = 59.60 DOWNSTREAM ELEVATION = 57.60 ELEVATION DIFFERENCE = 2.00 TC = 0.303 *[( 320.00 * *3) /( 2.00)] * *.2 = 8.404 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.103 *USER SPECIFIED(GLOBAL): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SUBAREA RUNOFF(CFS) = 2.60 TOTAL AREA(ACRES) = 0.60 TOTAL RUNOFF(CFS) = 2.60 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 80.00 TO NODE 82.00 IS CODE = 81 ---------------------------------------------------------------------------- >> >>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<< <<< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.103 *USER SPECIFIED(GLOBAL): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SUBAREA AREA(ACRES) = 0.30 SUBAREA RUNOFF(CFS) = 1.30 TOTAL AREA(ACRES) = 0.90 TOTAL RUNOFF(CFS) = 3.90 • TC(MIN) = 8.40 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 80.00 TO NODE 90.00 IS CODE = 21 ---------------------------------------------------------------------------- >> >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 590.00 UPSTREAM ELEVATION = 56.60 DOWNSTREAM ELEVATION = 53.60 ELEVATION DIFFERENCE = 3.00 TC = 0.303 *[( 590.00 * *3) /( 3.00)] * *.2 = 11.186 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.310 *USER SPECIFIED(GLOBAL): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SUBAREA RUNOFF(CFS) = 2.42 TOTAL AREA(ACRES) = 0.66 TOTAL RUNOFF(CFS) = 2.42 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 90.00 TO NODE 90.00 IS CODE = 11 ---------------------------------------------------------------------------- r• - ->> >>> CONFLUENCE- MEMORY- BANK -## -2- WITH - THE - MAIN - STREAM- MEMORY<< <<<---- - - - - -- ** MAIN STREAM CONFLUENCE DATA ** STREAM FLOW PROCESS FROM NODE 82.00 TO- NODE 8200 CODE = 10 (MIN.) ------------------------------- >> >>>MAIN- STREAM MEMORY ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- - - - - -- COPIED ONTO - - MEMORY -IS - -- BANK # 2 --------------------- <<<<< ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 80.00 TO NODE 90.00 IS CODE = 21 ---------------------------------------------------------------------------- >> >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 590.00 UPSTREAM ELEVATION = 56.60 DOWNSTREAM ELEVATION = 53.60 ELEVATION DIFFERENCE = 3.00 TC = 0.303 *[( 590.00 * *3) /( 3.00)] * *.2 = 11.186 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.310 *USER SPECIFIED(GLOBAL): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SUBAREA RUNOFF(CFS) = 2.42 TOTAL AREA(ACRES) = 0.66 TOTAL RUNOFF(CFS) = 2.42 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 90.00 TO NODE 90.00 IS CODE = 11 ---------------------------------------------------------------------------- r• - ->> >>> CONFLUENCE- MEMORY- BANK -## -2- WITH - THE - MAIN - STREAM- MEMORY<< <<<---- - - - - -- ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH /HOUR). (ACRE) . 1 2.42 11.19 4.310 0.66 LONGEST FLOWPATH FROM NODE 80.00 TO NODE 90.00 = 590.00 FEET. ** MEMORY BANK # 2 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH /HOUR) (ACRE) 1 3.90 8.40 5.103 0.90 LONGEST FLOWPATH FROM NODE 70.00 TO NODE 90.00 = 320.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 5.72 8.40 5.103 2 5.72 11.19 4.310 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 5.72 Tc(MIN.) = 8.40 TOTAL AREA(ACRES) = 1.56 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 90.00 TO NODE 90.00 IS CODE = 12 ------------------------------------------------------------------ (. » » >CLEAR MEMORY BANK ## 2 ««< FLOW PROCESS FROM NODE 90.00 TO NODE 98.00 IS CODE = 31 ---------------------------------------------------------------------------- >> >>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA <<<<< >>>>>USING COMPUTER - ESTIMATED PIPESIZE (NON - PRESSURE FLOW)<< <<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ELEVATION DATA: UPSTREAM(FEET) = 54.00 DOWNSTREAM(FEET) = 53.00 FLOW LENGTH(FEET) = 250.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.1 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 4.14 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 5.72 PIPE TRAVEL TIME(MIN.) = 1.01 Tc(MIN.) = 9.41 LONGEST FLOWPATH FROM NODE 80.00 TO NODE 98.00 = 840.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 98.00 TO NODE 98.00 IS CODE = 10 ---------------------------------------------------------------------------- >>>>>MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 95.00 TO NODE 96.00 IS CODE = 21 ---------------------------------------------------------------------------- >> >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<< <<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- �• ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW - LENGTH = 530.00 UPSTREAM ELEVATION = 58.00 DOWNSTREAM ELEVATION = 56.00 ELEVATION DIFFERENCE = 2.00 TC = 0.303 *[( 530.00 * *3) /( 2.00)] * *.2 = 11.375 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.268 *USER SPECIFIED(GLOBAL): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SUBAREA RUNOFF(CFS) = 26.48 TOTAL AREA(ACRES) = 7.30 TOTAL RUNOFF(CFS) = 26.48 FLOW PROCESS FROM NODE 96.00 TO NODE 96.00 IS CODE = 11 ---------------------------------------------------------------------------- >> >>> CONFLUENCE MEMORY BANK # 2 WITH THE MAIN- STREAM MEMORY <<<<< ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH /HOUR) (ACRE) 1 26.48 11.37 4.268 7.30 LONGEST FLOWPATH FROM NODE 95.00 TO NODE 96.00 = 530.00 FEET. ** MEMORY BANK # 2 CONFLUENCE DATA ** el STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH /HOUR) (ACRE) 1 5.72 9.41 4.773 1.56 2 5.72 12.19 4.097 1.56 LONGEST FLOWPATH FROM NODE 80.00 TO NODE 96.00 = 840.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 27.63 9.41 4.773 2 31.81 11.37 4.268 3 31.14 12.19 4.097 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 31.81 Tc(MIN.) = 11.37 TOTAL AREA(ACRES) = 8.86 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 96.00 TO NODE 60.00 IS CODE = 81 ---------------------------------------------------------------------------- >> >>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.268 *USER SPECIFIED(GLOBAL): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SUBAREA AREA(ACRES) = 3.10 SUBAREA RUNOFF(CFS) = 11.25 TOTAL AREA(ACRES) = 11.96 TOTAL RUNOFF(CFS) = 43.06 TC(MIN) = 11.37 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** C• - -FLOW PROCESS FROM NODE 60.00 TO NODE 60.00 IS CODE = 11 >> >>> CONFLUENCE MEMORY BANK # 1 WITH THE MAIN- STREAM MEMORY<< <<< ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH /HOUR) (ACRE) 1 40.21 9.41 4.773 11.96 2 43.06 11.37 4.268 11.96 3 41.93 12.19 4.097 11.96 LONGEST FLOWPATH FROM NODE 80.00 TO NODE 60.00 = 840.00 FEET. ** MEMORY BANK # 1-CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH /HOUR) (ACRE) 1 37.21 10.61 4.448 9.23 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 60.00 = 680.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 73.23 9.41 4.773 2 77.37 10.61 4.448 3 78.77 11.37 4.268 4 76.21 12.19 4.097 �• COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 78.77 Tc(MIN.) = 11.37 TOTAL AREA(ACRES) = 21.19 FLOW PROCESS FROM NODE 60.00 TO NODE 70.00 IS CODE = 31 ---------------------------------------------------------------------------- >> >>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<< <<< >> >>>USING COMPUTER - ESTIMATED PIPESIZE (NON- PRESSURE FLOW)<< <<< ELEVATION DATA: UPSTREAM(FEET) = 53.00 DOWNSTREAM(FEET) = 52.30 FLOW LENGTH(FEET) = 170.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 48.0 INCH PIPE IS 34.8 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 8.06 ESTIMATED PIPE DIAMETER(INCH) = 48.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 78.77 PIPE TRAVEL TIME(MIN.) = 0.35 Tc(MIN.) = 11.73 LONGEST FLOWPATH FROM NODE 80.00 TO NODE 70.00 = 1010.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 70.00 TO NODE 70.00 IS CODE = 10 ---------------------------------------------------------------------------- >>>>>MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK ## 3 <<<<< ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 110.00 TO NODE 120.00 IS CODE = 21 ---------------------------------------------------------------------------- >> >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K *[(LENGTH * *3) /(ELEVATION CHANGE)] * *.2 INITIAL SUBAREA FLOW- LENGTH = 450.00 UPSTREAM ELEVATION = 55.00 DOWNSTREAM ELEVATION = 54.50 ELEVATION DIFFERENCE = 0.50 TC = 0.303 *[( 450.00 * *3) /( 0.50)] * *.2 = 13.606 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.840 *USER SPECIFIED(GLOBAL): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SUBAREA RUNOFF(CFS) = 8.98 TOTAL AREA(ACRES) = 2.75 TOTAL RUNOFF(CFS) = 8.98 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 120.00 TO NODE 130.00 IS CODE = 81 ---------------------------------------------------------------------------- >> >>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ------ - - - - -- 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.840 *USER SPECIFIED (GLOBAL): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SUBAREA AREA(ACRES) = 1.18 SUBAREA RUNOFF(CFS) = 3.85 TOTAL AREA(ACRES) = 3.93 TOTAL RUNOFF(CFS) = 12.83 TC (MIN) = 13.61 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** • - -FLOW PROCESS FROM NODE 130.00 TO NODE 70.00 IS CODE = 81 ---------------------------------------------------------------------- >> >>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW <<<<< \\ 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.840 *USER SPECIFIED(GLOBAL): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SUP-AREA AREA(ACRES) = 3.45 SUBAREA RUNOFF(CFS) = 11.26 TOTAL AREA(ACRES) = 7.38 TOTAL RUNOFF(CFS) = 24.09 TC(MIN) = 13.61 0 0 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 70.00 TO NODE 70.00 IS CODE = 11 ---------------------------------------------------------------------------- >> >>> CONFLUENCE MEMORY BANK # 3 WITH THE MAIN- STREAM MEMORY<< <<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH /HOUR) (ACRE) 1 24.09 13.61 3.840 7.38 LONGEST FLOWPATH FROM NODE 1110.00 TO NODE 70.00 = 450.00 FEET. ** MEMORY BANK # 3 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH /HOUR) (ACRE) 1 73.23 9.77 4.667 21.19 2 77.37 10.96 4.363 21.19 3 78.77 11.73 4.192 21.19 4 76.21 12.55 4.028 21.19 LONGEST FLOWPATH FROM NODE 80.00 TO NODE 70.00 = 1010.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 90.53 9.77 4.667 2 96.77 10.96 4.363 3 99.53 11.73 4.192 4 98.42 12.55 4.028 5 96.73 13.61 3.840 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 99.53 Tc(MIN.) = 11.73 TOTAL AREA(ACRES) = 28.57 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 28.57 TC(MIN.) = 11.73 PEAK FLOW RATE(CFS) = 99.53 * ** PEAK FLOW RATE TABLE * ** Q (CFS) Tc (MIN. ) 1 90.53 9.77 2 96.77 10.96 3 99.53 11.73 4 98.42 12.55 5 96.73 13.61 END OF RATIONAL METHOD ANALYSIS Hydrology/Hydraulic Report 0 Catch Design Methodology March 2006 Flows from each major subarea are prorated using the tributary area to each catch basin. Catch basin sizing was checked using the subarea catch basin Q and AES catch basin design software. Grate Inlet Design Max head on grate: H=3" (.25') Perimeter of 12" grate: P=4' Q/P=3.OH3/2 am,41 -- /.-49 C F5 Foy re USE 24 ' 2-4 j�rg X r�-S /.98cis AA.4,< 0 Temporary Riser Design C v -:-- -4. 0 / 0 1-5, / C-f 5 Costco La Quinta 0 (0 0 Hydrology /Hydraulic Report March 2006 w�y s goo 32 ' goo s�2 -.5�7 Costco La Quinta • r] Catch Basin Area Summary Costco Plaza Area Number Tributary Area Q Notes Subarea Total A -1 0.78 3.14 3.14 4.03 cfs per Ac A -1 a 0.63 2.54 2.54 A -1 b 0.15 0.60 3.14 4.03 cfs per Ac Total 0.78 A -2 0.94 3.79 A -2a 0.22 0.89 0.89 A -2b 0.36 1.45 2.34 A -2c 0.36 1.45 3.79 4.03 cfs per Ac Total 0.94 A -3 3.96 15.97 A -3a 0.08 0.32 0.32 A -3b 0.68 2.74 3.06 A -3c 0.52 2.10 5.16 A -3d 0.67 2.70 7.86 A -3e 1.15 4.63 12.49 A -3f 0.08 0.32 12.82 A -3g 0.08 0.32 13.14 4.03 cfs per Ac A -3h 0.7 2.82 15.96 Total 3.96 A-4 1.05 4.23 3.63 cfs per Ac A -4a 1.05 4.23 4.23 Total 1.05 A -5 3.1 11.25 3.63 cfs per Ac A -5a 1.43 5.19 5.19 A -5b 1.39 5.05 10.24 A -5c 0.28 1.02 11.25 Total 3.1 A -6 0.9 3.90 4.33 cfs per Ac A -7 0.66 2.42 3.67 cfs per Ac A -8 2.75 8.98 3.26 cfs per Ac A -8a 0.78 2.54 2.54 A -8b 0.82 2.67 5.22 A -8c 0.21 0.68 5.90 A -8d 0.4 1.30 7.20 A -8e 0.54 1.761 8.97 Total 2.75 A -9 1.18 3.85 3.26 cfs per Ac A -9a 0.25 0.82 0.82 A -9b 0.33 1.08 1.89 A -9c 0.6 1.96 3.85 Total 1.18 A -10 3.45 11.26 3.26 cfs per Ac A -10a 0.79 2.58 2.58 A -1 0b 1.05 3.42 6.00 A -10c 1.5 4.89 10.89 A -1 0d 0.11 0.36 11.25 Total 3.45 • • C� Catch Basin Sizing Costco Plaza Area -T Number Catch Basin Number Use Q A -1 A -1 a 13 2.54 5' Catch Basin A -1 b 14 0.60 24 "x24" Grate A -2 A -2a 12 0.89 24"x24" Grate A -2b 7 1.45 4' Catch Basin A -2c 8 1.45 4' Catch Basin A -3 A -3a 9 0.32 24 "x24" Grate A -3b 3 2.74 7' Catch Basin A -3c 4 2.10 5' Catch Basin A -3d 5 2.70 7' Catch Basin A -3e 6. 4.63 10' Catch Basin A -3f 10 0.32 4' Catch Basin A -3g 11 0.32 24 "x24" Grate A -3h 11a 2.82 7' Catch Basin A -4 A -4a 2 4.23 10' Catch Basin A -5 A -5a 18 6.51 12' Catch Basin A -5b 17 6.19 12' Catch Basin A -5c 16 1.21 12"x12" Grate A -6 A -6b 20 3.90 8' Catch Basin A -7 A -7a 19 2.42 5' Catch Basin A -8 A -8a Roof Drains 2.54 A -8b Roof Drains 2.67 A -8c Truck Dock 0.68 Trench Grate A -8d 25 1.30 4' Catch Basin A -8e 24 1.76 4' Catch Basin A -9 A -9a 23 0.82 24"x24" Grate A -9b 22 1.08 24 "x24" Grate A -9c Temp Riser 1.96 18" Riser A -10 A -10a Roof Drain 2.58 A -1 0b Roof Drain 3.42 A -1 0c 1 4.89 10' Catch Basin A -1 0d 21 0.36 24 "x24" Grate » »SUMP TYPE BASIN INPUT INFORMATION «« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 2.00 BASIN OPENING(FEET) = 0.50 DEPTH OF WATER(FEET) = 0.33 » »CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 3.42 USE 3.5' <j /M /Al Peg C 1 T y s 7-0. • • » »SUMP TYPE BASIN INPUT INFORMATION «« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 2.68 BASIN OPENING(FEET) = 0.50 DEPTH OF WATER(FEET) = 0.33 » »CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) _ - 4.58 USE 5' 1. 0, l.. » »SUMP TYPE BASIN INPUT INFORMATION «« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 3.66 BASIN OPENING(FEET) = 0.50 DEPTH OF WATER(FEET) = 0.33 » »CALCULATED ESTIMATED SUMP BASIN WIDTH (FEET) = 6.25 USE 7' 1. 0 » »SUMP TYPE BASIN INPUT INFORMATION «« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 3.90 BASIN OPENING(FEET) = 0.50 DEPTH OF WATER(FEET) = 0.30 » »CALCULATED ESTIMATED SUMP.BASIN WIDTH(FEET) = 7.69 USE 8' i. • » »SUMP TYPE BASIN INPUT INFORMATION «« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 5.53 BASIN OPENING(FEET) = 0.50 DEPTH OF WATER(FEET) = 0.33 » »CALCULATED ESTIMATED SUMP BASIN WIDTH (FEET) = 9.45 USE 10' (• 0 » »SUMP TYPE BASIN INPUT INFORMATION «« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 7.00 BASIN OPENING(FEET) = 0.50 DEPTH OF WATER(FEET) = 0.33 » »CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 11.96 USE 12' 61, 10 1 i l 11 I { t Itll:{11�.u•1.11. Il V-'.. 1!111j,t "Fir. '1 ri j i �. -• t I I 1 I T •Il —` • �� � I ( I I � � I w - ---: ' b I - P <2(a b) Z I I I• . A -haw • 1.0 11 11 '/�/ltl,tl.t.11.t•Ir:• tl:;l�tnl..1•t.'•r�•� -'I I I I l i 1 I 1 1 I I J I I I I I I I' - I •1 1 1 1 1 I I! I I I I.. � lal. . - I - i. = l 744 w i l t I 1 _ UA I i 4 t i I I• I I (� i I I . ' c/p f _ 1 1 � .• ma 1 1 .i 1 1 �! 1 1 1 I I t i( 1 k 1 1 k 1 1 1( 1 1 9 t 1 I 11 1 1 t i t •� I I I I i I t l 11 I I I I t t HEAPS Ulf' r:0 10.4 1cjRVEl(d-) WiPLIFES 1 •1 1 1 1 1 I i 1 1 1 1 HEA65 AbCVE 14 "OVEIM (LIES I I I HEADS BT EEN bt $1�4, 1'' is1' t lON I I ' I I i S ECTOR la OP E'PAtli3O N 1 IS -N 11 I1f TIE I A it I ' c - � I f If I f f• �R. • •• • f ff� - DISC 4,7 G P�c.�!R jjFOA O p INF- U EQ` ( 1S H R.9E Pet (/`O� I. I..I';.r1•i .�., I. .It .110 .11'1. •1 "t..I I I 1 1 1 t.l.l •1. •1't" !Il fl!•��. "t. i.. TRICT .3 .i .7 .S.9 L.0 2 3 4 S 67 S 910 BUREAU OF PUBLIC ROADS CAPACITY OF GRATE INLET IN SUM 'PlylSIONTWO WAS RdD.C. WATER PONDED ON GRATE ' AStUME 2596 CLOGGING z - -59- :7 0 • L__ • _ - - Y "_i�f -" _--- _ - - -_- - -_- -. - .__ �-_. - - -- - -- - -- - - - ��= - - - _� -• - _ _ _ - -_ _ " - � - -_ ' �_:L :-+ : � �� �.,:;�1 —'�' I _ — (1r--�"_r'- � '1 .,; '' —___ - __ ___ .L- - -_ _____ —_ _ -� -_�\ .— .�� \�� == ;mac � = �•� -� I- ���r��.�'.'ri - �.T .�� ��� —I. i- � I I •t. \' \ \�t -' 7` ,'.-_•';-- '���' -_ Y \�,1 , �i� ^.l `�I� `,�: �:;1 = - -- - —�-"' i'•� /' �.�f. � � \(� /'� °SP. -J,l�� Ij i i411 ,'�w /' ( i+J `,�.'\,1•, Jr�1,P. `•i\`� i�i - _ - ���' i Irr• ,rr '� I .i. �`c" / /'SL,l _ r_— ''•t- ('j!iJ'Ei'I :q;,.P. ,('` ^ ' -_._ ._- '� 1,. ..\ . fir.•, � './ / LEGEND: - -� \. :�'t- - \ I. . ) 1 \., j .,;, \'• - - I` i. I' ;; r' %) '/. I.1 ,('� "� '`\ i �.i'• _j}rr`7f 'I ii r"" -- -- _ � i' :.\Ir •".F�' 1,I I(''�• ii�'.��j� j, 1 ( ' ( ', 1 � >ylt.:.) 41. •---- `r--^. 'j (' l ^, :6'�';i/�� :�'�7 ��� I _ �'� I � J � �;�7 IL- jl 1 � Id,j!r I IIi /'•; iI`I � 'j � 1 C � \ _ r IJ � i I1 .1 IV I _' -_ . -_'7 L , � •:. (.� I I. IL .! 'I r• /`t.:.l I!I I:I,' � ® m'onwuc eooe J(,r;,, v! %I i./ 1/ f � \� \.. '�'( 'i / \`\ \�. �` `�\ /'``11 '<, is -'!'a ' vj _ � C� �'•.r,, !" -'� 't �l � �' —I I v.�'iL.i II: � ji i�l;'a' �_a_L }, ..\ 1' \•��;,, I, ,,'I'•j. \\\ `tC•s'j�'�ti �, �'i• i - ... - •- '' ?�li LI�� Ii I !I 1...�- ;.' { {(, i \ \i `„ �•` 24" `� (' ',! i. % ( �,{._ —�.. •`�I,� �•i ��,'. "'' ..•`- ( �J.__ �— -- .. - �,i.''r ��,jr 'tu II, I`jl i!L�;f:�E ._ 1 "�^ 'L\ i .0 � \,. •`�{ {I� _ �\ "wl 1' I '—._ _' r,` i r '`I'. � '� '_�,l,J}l lj ,''��'fIt{ [ , %%' —1— ..( r 4 \ , I �,� �c �X`�: ^.. - �"'� n 1'` _ i >'J' ti;1:14��?: —,) / {, �' I \ - •�/ ',- ;I °(I ',_ "' Y � �• '• ?\ ``,� i j :\ 120 y;I, ly' ! l i �, �•':c ,' I:! l (� _�� •sa /.,:.I i�I ' ,I ' ' 1I (.," 1' �0'. -(. '* �;\.:• ,< < _N? ,II `,1' : ' ti, - � ( 1 ` -\ _ , I 'i ! . I -' )it2`•.`,.. �} '� '� /: 1 Lj. i•, .1L , t �,\ :.1 \ 1 1{ _ `i . i Ji('(' i /a` / ^ 6'ft•',; �.i ! _r �.� / / /'�'II CC•I _ {/ �,. t' „s 9- l r ^/ "t... / .l J �!,•� I i' - r ', !G _ %�5''' /, it , i LU LL () 1' I r ;' .1 y \ jl� 1;r/ �./ �i!'1 LLJ_• I 1� `, ,,,`I'•.i. v'(,,," —� - r`t✓'�`_'•- 'c -t-L' '1 (1 % 8 // \) ,'d E.:.- l.`--' ,i �;�/, /./ �_•`s:;5�i'':`,:: / i.lt ,7,'( I "'t�`'�% '! ,�< <,y r•_ _ \ h �'11i 1��f I . ., Y ��! -i- .l j' '�` + , ! ' 1 �('`� -_<\'- i! . n,T. ,`�` \ L. � \ — .t,h ( •`1i' ?1 '1 x ��• I I, I�. � +�, .f j/.".' � r /f /W" •'} ' .a_� � I (.1. '�I it I� ,� ��Ilii�� [. -_� i{._- ";�� 1 c 1'. % q\i`n. � (• J `r'„i � - _ (, 'i % • /' %i'- %' ,•i /''. = - , ..'i :% I 'd '• \', �x --' -/ � II ' i �• � =/, ' - - (''-'v� c% G 1)+ �•� • .i /: // ' -' 'f '.;!% ,_]I a iI C ` I .:i. -- ,.` \-E ?. z'•' - - ?% vim' - / - - I !�� � ��1'' %/� � i.� �' %ii, ��l'' ^'�': %/ r, }i I:'., _ I I "�,ir. i' _. qq F' � ' �-� •%Y "�'i' ' -....T -_ 0 .., /._ I ��) : %�:: .IT; "• _ _ r I, /� , ;V:;':.<• %�� .. r / �; �.i I F 11.� il�ci'.a•° - Z ,. ;. 1 N�if r L 1 / sY 512 'J 1 1',' 1` .;°•.::i %''% r /i; #'I ( j ___/ �- IV +h � y� J t� 5,1 :i. .li i�+'.`•' '' "i l ,::. "''i %' '% I li �� q:�I ��i� L•Or �i ! -\ •: _ —...1, _ - -. -_ _ _ - --`-1. ,,�I IN _ Jul i .!�'`.:'.' ! .'i',• '� f•:,'% /.,i /' „ \ I : i d I J `n 2 i I .yf1,j� ,� _ .OfS` :`l" �r O 1 _� _� -•.1 •�I /\. �V� %� ^� •',1 -1� ��'- 7 . ° { i �` `, t, z �� I I f f � ,I ; i'' i � /i;./ /i ; I' ; I � .j I !� 0= 5.32 CFS Ull Of H F J I u+ LE 1' �� r �;= -- --- 4Si..ik;i. i. X, —r .AF- -�.�_z 4 CFS/ .54 C S CONF •J_.� it .:% '�' i )1 1 %WI (j���p�;d: r JF�p.11 tl.i" l::.r, , i ,.,�i. .•n� /i �t .ice• - _ / 'u %•:., _, ,.fit. .1` �`,;' -\ :1 �`:ia nJ '�Il• ,I U:. (. A'i:' � _.�`•�,' /'' .� �/' r, l'i' jl'" _.�I : \ ,_`..1 {•.( i r, .� I y '1 .1 515:87 CFSCONF ��.� � = •�'�._ � ) _ it _ \ i:.` f@ . I rtI l_,� o J 1I r % I . \` _;��\`'`• \,.1 X0;1 j . I�l ^•�_�- �'✓'��i qji .j jAj 11 c(i 11 j• .� i X. PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) (c) Copyright 1982 -2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1355 Analysis prepared by: Fuscoe Engineering, Inc 16795 Von Karman Suite 100, Irvine Ca 92606 ---------------------------------------------------------------------------- FILE NAME: P:\ Projects\ 156 \93 \Eng \Admin \Reports \Hydrology \AES TIME /DATE OF STUDY: 15:51 04/04/2006 LINE A ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 10.00 FLOWLINE ELEVATION = 32.40 • PIPE DIAMETER(INCH) = 48.00 PIPE FLOW(CFS) = 99.53 ASSUMED DOWNSTREAM CONTROL HGL = 45.800 FULL INTEGRATION EQUATION IS USED FOR JUNCTION ANALYSIS ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- NODE 10.00 : HGL= < 45.800 >;EGL = < 46.774 >;FLOWLINE = < 32.400> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 10.00 TO NODE 20.00 IS CODE.= 1 UPSTREAM NODE 20.00 ELEVATION = 37.67 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 99.53 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 125.00 FEET MANNINGS N = 0.01300 SF= (Q /K) * *2 = (( 99.53)/( 1436.431)) * *2 = 0.0048011 HF =L *SF = ( 125.00) *( 0.0048011) = 0.600 NODE 20.00 : HGL= < 46.400 >;EGL = < 47.374 >;FLOWLINE = < 37.670> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 20.00 TO NODE 20.00 IS CODE = 5 UPSTREAM NODE 20.00 ELEVATION = 37.67 CALCULATE PRESSURE FLOW JUNCTION LOSSES:. NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 78.8 48.00 12.566 6.268 0.000 0.610 2 99.5 48.00 12.566 7.920 -- 0.974 3 15.9 30.00 4.909 3.233 90.000 - • 4 4.9 12.00 0.785 6.226 90.000 5 0.0 = = =Q5 EQUALS BASIN INPUT = == �• LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00301 DOWNSTREAM FRICTION SLOPE = 0.00480 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00390 JUNCTION LENGTH(FEET) = 10.00 FRICTION LOSS = 0.039 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 0.728+ 0.610- 0.974 +( 0.039) +( 0.000) = 0.403 NODE 20.00 : HGL= < 47.167 >;EGL = < 47.777 >;FLOWLINE = < 37.670> PRESSURE FLOW PROCESS FROM NODE 20.00 TO NODE 30.00 IS CODE = 1 UPSTREAM NODE 30.00 ELEVATION = 38.21 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 78.77 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 10.00 FEET MANNINGS N = 0.01300 SF= (Q /K) * *2 = (( 78.77)/( 1436.431)) * *2 = 0.0030071 HF =L *SF = ( 10.00) *( 0.0030071) = 0.030 NODE 30.00 HGL= < 47.197 >;EGL = < 47.807 >;FLOWLINE = < 38.210> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 30.00 TO NODE 30.00 IS CODE = 5 UPSTREAM NODE 30.00 ELEVATION = 38.21 ---------------------------------------------------------------------- - - - - -- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 77.8 48.00 12.566 6.187 0.000 0.594 2 78.8 48.00 12.566 6.268 -- 0.610 3 1.0 12.00 0.785 1.299 90.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS.N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00293 DOWNSTREAM FRICTION SLOPE = 0.00301 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00297 JUNCTION LENGTH(FEET) = 1.00 FRICTION LOSS = 0.003 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 0.031+ 0.594- 0.610 +( 0.003) +( 0.000) = 0.019 • NODE 30.00 : HGL= < 47.232 >;EGL = < 47.826 >;FLOWLINE = < 38.210> �• PRESSURE FLOW PROCESS FROM NODE 30.00 TO NODE 40.00 IS CODE = 1 UPSTREAM NODE 40.00 ELEVATION = 38.80 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 77.75 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 158.85 FEET MANNINGS N = 0.01300 SF= (Q /K) * *2 = (( 77.75)/( 1436.431)) * *2 = 0.0029298 HF =L *SF = ( 158.85) *( 0.0029298) = 0.465 NODE 40.00 : HGL= < 47.697 >;EGL = < 48.291 >;FLOWLINE = < 38.800> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE = 5 UPSTREAM NODE 40.00 ELEVATION = 38.80 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 37.2 36.00 7.069 5.264 0.000 0.430 2 77.8 48.00 12.566 6.187 -- 0.594 3 40.5 36.00 7.069 5.735 45.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00311 DOWNSTREAM FRICTION SLOPE = 0.00293 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00302 JUNCTION LENGTH(FEET) = 4.00 FRICTION LOSS = 0.012 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 0.382+ 0.430- 0.594 +( 0.012) +( 0.000) = 0.230 NODE 40.00 : HGL= < 48.091 >;EGL = < 48.521 >;FLOWLINE = < 38.800> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 40.00 TO NODE 50.00 IS CODE = 1 UPSTREAM NODE 50.00 ELEVATION = 41.29 CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 37.21 CFS PIPE DIAMETER = 36.00.INCHES PIPE LENGTH = 235.00 FEET MANNINGS N = 0.01300 SF= (Q /K) * *2 = (( 37.21)/( 666.983)) * *2 = 0.0031124 HF =L *SF = ( 235.00) *( 0.0031124) = 0.731 NODE 50.00 : HGL= < 48.822 >;EGL = < 49.253 >;FLOWLINE = < 41.290> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 50.00 TO NODE 50.00 IS CODE = 2 • -- UPSTREAM - NODE - - -- 50.00 ELEVATION = 41.29 - - - -- CALCULATE PRESSURE FLOW MANHOLE LOSSES(LACFCD): • PIPE FLOW = 37.21 PRESSURE FLOW AREA = FLOW VELOCITY = 5.26 VELOCITY HEAD = 0.430 HMN = .05 *(VELOCITY HE NODE 50.00 : HGL= < CFS PIPE DIAMETER = 36.00 INCHES 7.069 SQUARE FEET. FEET PER SECOND �D) = .05*( 0.430) = 0.022 48.844 >;EGL = < 49.274>;FLOWLINE= < 41.290> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 50.00 TO NODE 60.00 IS CODE = 1 UPSTREAM NODE 60.00 ELEVATION = 41.77 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 37.21 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 34.00 FEET MANNINGS N = 0.01300 SF= (Q /K) * *2 = (( 37.21)/( 666.983)) * *2 = 0.0031124 HF =L *SF = ( 34.00) *( 0.0031124) = 0.106 NODE 60.00 HGL= < 48.950 >;EGL = < 49.380 >;FLOWLINE = < 41.770> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 60.00 TO NODE 60.00 IS CODE = 5 UPSTREAM NODE 60.00 ELEVATION = 41.77 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 33.0 36.00 7.069 4.666 0.000 0.338 2 37.2 36.00 7.069 5.264 -- 0.430 • 3 4.2 8.00 0.349 12.118 90.000 4 0.0 0.00 0400 0.000 0.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00244 DOWNSTREAM FRICTION SLOPE = 0.00311 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00278 JUNCTION LENGTH(FEET) = 1.00 FRICTION LOSS = 0.003 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 0.185+ 0.338- 0.430 +( 0.003) +( 0.000) = 0.095 NODE 60.00 : HGL= < 4.9.137 >;EGL = < 49.475 >;FLOWLINE = < 41.770> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 60.00 TO NODE 70.00 IS CODE = 1 UPSTREAM NODE 70.00 ELEVATION = 42.40 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 32.98 CFS PIPE DIAMETER = 36.00 INCHES . PIPE LENGTH = 62.00 FEET MANNINGS N = 0.01300 SF= (Q /K) * *2 = (( 32.98)/( 666.983)) * *2 = 0.0024450 HF =L *SF = ( 62.00) *( 0.0024450) = 0.152 • NODE 70.00 : HGL= < 49.289 >;EGL = < 49.627 >;FLOWLINE = < 42.400> PRESSURE FLOW PROCESS FROM NODE 70.00 TO NODE 70.00 IS CODE = 5 UPSTREAM NODE 70.00 ELEVATION = 42.40 -----------------------------7---------------------------------------------- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 30.2 36.00 7.069 4.278 0.000 0.284 2 33.0 36.00 7.069 4.666 -- 0.338 3 2.7 8.00 0.349 7.850 90.000 - .4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00206 DOWNSTREAM FRICTION SLOPE = 0.00244 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00225 JUNCTION LENGTH(FEET) = 1.00 FRICTION LOSS = 0.002 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 0.108+ 0.284- 0.338 +( 0.002) +( 0.000) = 0.056 l" NODE 70.00 HGL= < 49.399 >;EGL = < 49.683 >;FLOWLINE = < 42.400> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 70.00 TO NODE 80.00 IS CODE = 1 UPSTREAM NODE 80.00 ELEVATION = 42.44 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 30.24 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 9.96 FEET MANNINGS N = 0.01300 SF= (Q /K) * *2 = (( 30.24)/( 666.983)) * *2 = 0.0020556 HF =L *SF = ( 9.96) *( 0.0020556) = 0.020 NODE 80.00 HGL= < 49.419 >;EGL = < 49.703 >;FLOWLINE = < 42.440> PRESSURE FLOW PROCESS FROM NODE 80.00 TO NODE 80.00 IS CODE = 5 UPSTREAM NODE 80.00 ELEVATION = 42.44 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 20.8 24.00 3.142 6.624 90.000 0.681 2 30.2 36.00 7.069 4.278 -- 0.284 3 9.4 24.00 3.142 3.002 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=( Q2* V2- Q1* V1 *COS(DELTAI)- Q3 *V3 *COS(DELTA3)- • Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00846 DOWNSTREAM FRICTION SLOPE = 0.00206 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00526 JUNCTION LENGTH(FEET) = 4.00 FRICTION LOSS = 0.021 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 0.615+ 0.681- 0.284 +( 0.021) +( 0.000) = 1.033 NODE 80.00 HGL= < 50.055 >;EGL = < 50.736 >;FLOWLINE = < 42.440> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 80.00 TO NODE 90.00 IS CODE = 1 UPSTREAM NODE 90.00 ELEVATION = 43.58 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 20.81 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 50.00 FEET MANNINGS N = 0.01300 SF= (Q /K) * *2 = (( 20.81)/( 226.224)) * *2 = 0.0084619 HF =L *SF = ( 50.00) *( 0.0084619) = 0.423 NODE 90.00 HGL= < 50.478 >;EGL = < . 51.159 >;FLOWLINE = < 43.580> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- • PRESSURE FLOW PROCESS FROM NODE 90.00 TO NODE 90.00 IS CODE = 5 UPSTREAM NODE 90.00 ELEVATION = 43.58 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 17.0 24.00 3.142 5.414 0.000 0.455 2 20.8 24.00 3.142 6.624 -- 0.681 3 3.8 12.00 0.785 4.838 90.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00565 DOWNSTREAM FRICTION SLOPE = 0.00846 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00706 JUNCTION LENGTH(FEET) = 4.00 FRICTION LOSS = 0.028 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 0.452+ 0.455- 0.681 +( 0.028) +( 0.000) = 0.254 NODE 90.00 : HGL = < 50.958 >;EGL = < 51.414>;FLOWLINE= < 43.580> • PRESSURE FLOW PROCESS FROM NODE 90.00 TO NODE 100.00 IS CODE = 1 UPSTREAM NODE 100.00 ELEVATION = 44.15 CALCULATE PRE PIPE FLOW = PIPE LENGTH = SF= (Q /K) * *2 = HF =L *SF = ( NODE 100.00 3SURE FLOW FRICTION LOSSES(LACFCD): 17.01 CFS PIPE DIAMETER = 24.00 INCHES 100.00 FEET MANNINGS N = 0.01300 (( 17.01)/( 226.224)) * *2 = 0.0056537 100.00) *( 0.0056537) = 0.565 HGL= < 51.524 >;EGL = < 51.979 >;FLOWLINE = < 44.150> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 100.00 TO NODE 100.00 IS CODE = 5 UPSTREAM NODE 100.00 ELEVATION = 44.15 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 14.1 24.00 3.142 4.491 0.000 0.313 2 17.0 24.00 3.142 5.414 -- 0.455 3 2.9 12.00 0.785 3.692 90.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 • UPSTREAM FRICTION SLOPE = 0.00389 DOWNSTREAM FRICTION SLOPE = 0.00565 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00477 JUNCTION LENGTH(FEET) = 1.00 FRICTION LOSS = 0.005 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 0.284+ 0.313- 0.455 +( 0.005) +( 0.000) = 0.147 NODE 100.00 : HGL= < 51.813 >;EGL = < 52.126 >;FLOWLINE = < 44.150> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 100.00 TO NODE 110.00 IS CODE = 1 UPSTREAM NODE 110.00 ELEVATION = 45.44 ---------------------------------------------------------------------- - - - - -- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 14.11 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 330.00 FEET MANNINGS N = 0.01300 SF= (Q /K) * *2 = (( 14.11)/( 226.224)) * *2 = 0.0038903 HF =L *SF = ( 330.00) *( 0.0038903) = 1.284 NODE 110.00 : HGL= < 53.096 >;EGL = < 53.410 >;FLOWLINE = < 45.440> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE = 5 UPSTREAM NODE 110.00 ELEVATION = 45.44 ---------------------------------------------------------------------- - - - - -- CALCULATE PRESSURE FLOW JUNCTION LOSSES: • NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 10.1 24.00 3.142 3.209 90.000 0.160 2 14.1 24.00 3.142 4.491 -- 0.313 • 3 3.1 12.00 0.785 3.998 0.000 - 4 0.9 12.00 0.785 1.133 90.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00199 DOWNSTREAM FRICTION SLOPE = 0.00389 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00294 JUNCTION LENGTH(FEET) = 4.00 FRICTION LOSS = 0.012 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 0.502+ 0.160- 0.313 +( 0.012) +( 0.000) = 0.361 NODE 110.00 : HGL= < 53.610 >;EGL = < 53.770 >;FLOWLINE = < 45.440> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 110.00 TO NODE 120.00 IS CODE = 1 UPSTREAM NODE 120.00 ELEVATION = 46.50 ---------------------------------------------------------------------- - - - - -- CALCULATE PRE PIPE FLOW = PIPE LENGTH = HF =L *SF = ( NODE 120.00 SSURE FLOW FRICTION LOSSES(LACFCD): 10.08 CFS PIPE DIAMETER = 24.00 INCHES 70.00 FEET MANNINGS N = 0.01300 (( 10.08)/( 226.224)) * *2 = 0.0019854 70.00) *( 0.0019854) = 0.139 HGL= < 53.749 >;EGL = < 53.909 >;FLOWLINE = < 46.500> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 120.00 TO NODE 120.00 IS CODE = 8 UPSTREAM NODE 120.00 ELEVATION = 46.50 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS) = 10.08 PIPE DIAMETER(INCH) = 24.00 PRESSURE FLOW VELOCITY HEAD = 0.160 CATCH BASIN ENERGY LOSS = .2 *(VELOCITY HEAD) _ .2 *( 0.160) = 0.032 NODE 120.00 : HGL= < 53.941 >;EGL = < 53.941 >;FLOWLINE = < 46.500> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM 0 PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) (c) Copyright 1982 -2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1355 Analysis prepared by: Fuscoe Engineering, Inc 16795 Von Karman Suite 100, Irvine Ca 92606 ---------------------------------------------------------------------------- FILE NAME: P:\ Projects\ 156 \93 \Eng \Admin \Reports \Hydrology \AES TIME /DATE OF STUDY: 15:58 04/04/2006 LINE B ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 80.00 FLOWLINE ELEVATION = 43.35 PIPE DIAMETER(INCH) = 24.00 PIPE FLOW(CFS) = 9.43 ASSUMED DOWNSTREAM CONTROL HGL = 50.060 FULL INTEGRATION EQUATION IS USED FOR JUNCTION ANALYSIS ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- NODE 80.00 : HGL= < 50.060 >;EGL = < 50.200 >; FLOWLINE = < 43.350> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 80.00 TO NODE 200.00 IS CODE = 1 UPSTREAM NODE 200.00 ELEVATION = 47.12 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 9.43 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 55.00 FEET MANNINGS N = 0.01300 SF= (Q /K) * *2 = (( 9.43)/( 226.224)) * *2 = 0.0017376 HF =L *SF = ( 55.00) *( 0.0017376) = 0.096 NODE 200.00 : HGL= < 50.156 >;EGL = < 50.295 >; FLOWLINE = < 47.120> PRESSURE FLOW PROCESS FROM NODE 200.00 TO NODE 200.00 IS CODE = 5 UPSTREAM NODE 20.0.00 ELEVATION = 47.12 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 7.3 24.00 3.142 2.333 0.000 0.085 2 9.4 24.00 3.142 3.002 -- 0.140 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 2.1 = = =Q5 EQUALS BASIN INPUT = == • LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) • UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00105 DOWNSTREAM FRICTION SLOPE = 0.00174 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00139 JUNCTION LENGTH(FEET) = 4.00 FRICTION LOSS = 0.006 ENTRANCE LOSSES = 0.028 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 0.111+ 0.085- 0.140 +( 0.006) +( 0.028) = 0.089 NODE 200.00 : HGL= < 50.300>;EGL= < 50.384 >;FLOWLINE = < 47.120> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 200.00 TO NODE 210.00 IS CODE = 1 UPSTREAM NODE 210.00 ELEVATION = 47.96 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 7.43 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 70.00 FEET MANNINGS N = 0.01300 SF= (Q /K) * *2 = (( 7.43)/( 226.224)) * *2 = 0.0010787 HF =L *SF = ( 70.00) *( 0.0010787) = 0.076 NODE 210.00 HGL= < 50.373 >;EGL = < 50.460 >;FLOWLINE = < 47.960> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 5 UPSTREAM NODE 210.00 ELEVATION = 47.96 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 4.6 24.00 3.142 1.474 0.000 0.034 2 7.4 24.00 3.142 2.365 -- 0.087 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 2.8 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00042 DOWNSTREAM FRICTION SLOPE = 0.00108 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00075 JUNCTION LENGTH(FEET) = 4.00 FRICTION LOSS = 0.003 ENTRANCE LOSSES = 0.017 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 0.106+ 0.034- 0.087 +( 0.003) +( 0.017) = 0.073 • NODE 210.00 : HGL= < 50.500 >;EGL = < 50.533 >;FLOWLINE = < 47.960> • PRESSURE FLOW PROCESS FROM NODE 210.00 TO NODE 220.00 IS CODE = 1 UPSTREAM NODE 220.00 ELEVATION = 48.65 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW 4.63 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 65.00 FEET MANNINGS N = 0.01300 SF= (Q /K) * *2 = (( 4.63)/( 226.224)) * *2 = 0.0004189 HF =L *SF = ( 65.00) *( 0.0004189) = 0.027 NODE 220.00 HGL= < 50.527 >;EGL = < 50.561 >;FLOWLINE = < 48.650> ---------------------------------------------------------------------------- PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 0.12 NODE 220.00 : HGL= < 50.650 >;EGL = < 50.684 >;FLOWLINE = < 48.650> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 220.00 TO NODE 220.00 IS CODE = 8 UPSTREAM NODE 220.00 ELEVATION = 48.65 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS) = 4.63 PIPE DIAMETER(INCH) = 24.00 PRESSURE FLOW VELOCITY HEAD = 0.034 CATCH BASIN ENERGY LOSS = .2 *(VELOCITY HEAD) _ .2 *( 0.034) = 0.007 NODE 220.00 : HGL= < 50.690 >;EGL = < 50.690 >;FLOWLINE = < 48.650> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM fl PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) (c) Copyright 1982 -2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1355 Analysis prepared by: Fuscoe Engineering, Inc 16795 Von Karman Suite 100, Irvine Ca 92606 ---------------------------------------------------------------------------- FILE NAME: P:\ Projects\ 156 \93 \Eng \Admin \Reports \Hydrology \AES TIME /DATE OF STUDY: 16:07 04/04/2006 LINE C ---------------------------------------------------------------------------- NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 20.00 FLOWLINE ELEVATION = 39.17 • PIPE DIAMETER(INCH) = 30.00 PIPE FLOW(CFS) = 19.19 ASSUMED DOWNSTREAM CONTROL HGL = 47.170 FULL INTEGRATION EQUATION IS USED FOR JUNCTION ANALYSIS ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- NODE 20.00 : HGL= < 47.170 >;EGL = < 47.407 >; FLOWLINE = < 39.170> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 20.00 TO NODE 300.00 IS CODE = 1 UPSTREAM NODE 300.00 ELEVATION = 40.31 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 19.19 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 230.00 FEET MANNINGS N = 0.01300 SF= (Q /K) * *2 = (( 19.19)/( 410.171)) * *2 = 0.0021889 HF =L *SF = ( 230.00) *( 0.0021889) = 0.503 NODE 300.00 : HGL= < 47.673 >;EGL = < 47.911 >; FLOWLINE = < 40.310> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 300.00 TO NODE 300.00 IS CODE = 5 UPSTREAM NODE 300.00 ELEVATION = 40.31 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 13.2 30.00 4.909 2.687 45.000 0.112 2 19.2 30.00 4.909 3.909 -- 0.237 3 6.0 12.00 0.785 7.639 45.000 - 4 • 0.0 0.00 0.000 0.000 0.000 5 0.0 = = =Q5 EQUALS BASIN INPUT = == • LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00103 DOWNSTREAM FRICTION SLOPE = 0.00219 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00161 JUNCTION LENGTH(FEET) = 4.00 FRICTION LOSS = 0.006 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 0.111+ 0.112- 0.237 +( 0.006) +( 0.000) = -0.008 ** CAUTION: TOTAL ENERGY LOSS COMPUTED USING (PRESSURE +MOMENTUM) IS NEGATIVE. ** COMPUTER CHOOSES ZERO ENERGY LOSS FOR TOTAL JUNCTION LOSS. NODE 300.00 : HGL= < 47.799 >;EGL = < 47.911 >;FLOWLINE = < 40.310> PRESSURE FLOW UPSTREAM NODE --------------- CALCULATE PRE PIPE FLOW = PIPE LENGTH = SF= (Q /K) * *2 = • HF =L *SF = NODE 310.00 ---------------------------------------------------------- ---------------------------------------------------------- PROCESS FROM NODE 300.00 TO NODE 310.00 IS CODE = 1 310.00 ELEVATION = 42.27 ---------------------------------------------------------- 3SURE FLOW FRICTION LOSSES(LACFCD): 13.19 CFS PIPE DIAMETER = 30.00 INCHES 155.00 FEET MANNINGS N = 0.01300 (( 13.19)/( 410.171)) * *2 = 0.0010341 155.00) *( 0.0010341) = 0.160 HGL= < 47.959 >;EGL = < 48.071 >;FLOWLINE = < 42.270> PRESSURE FLOW PROCESS FROM NODE 310.00 TO NODE 310.00 IS CODE = 5 UPSTREAM NODE 310.00 ELEVATION = 42.27 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 12.8 30.00 4.909 2.614 90.000 0.106 2 13.2 30.00 4.909 2.687 -- 0.112 3 0.4 12.00 0.785 0.458 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00098 DOWNSTREAM FRICTION SLOPE = 0.00103 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00101 JUNCTION LENGTH(FEET) = 1.00 FRICTION LOSS = 0.001 ENTRANCE LOSSES = 0.000 • JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 0.223+ 0.106- 0.112 +( 0.001) +( 0.000) = 0.218 NODE 310.00 : HGL= < 48.183 >;EGL = < 48.289 >;FLOWLINE = < 42.270> 0 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 310.00 TO NODE 320.00 IS CODE = 1 UPSTREAM NODE 320.00 ELEVATION = 43.51 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 12.83 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 60.00 FEET MANNINGS N = 0.01300 SF= (Q /K) * *2 = (( 12.83)/( 410.171)) * *2 = 0.0009784 HF =L *SF = ( 60.00) *( 0.0009784) = 0.059 NODE 320.00 HGL= < 48.242 >;EGL = < 48.348 >;FLOWLINE = < 43.510> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 320.00 TO NODE 320.00 IS CODE = 5 UPSTREAM NODE 320.00 ELEVATION = 43.02 ---------------------------------------------------------------------- - - - - -- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 10.9 18.00 1.767 6.151 0.000 0.588 2 12.8 30.00 4.909 2.614 -- 0.106 3 2.0 12.00 0.785 2.496 90.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: • DY=(Q2*V2-Ql*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((Al +A2) *16.1) UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.01071 DOWNSTREAM FRICTION SLOPE = 0.00098 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00584 JUNCTION LENGTH(FEET) = 1.00 FRICTION LOSS = 0.006 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = - 0.310+ 0.588- 0.106 +( 0.006) +( 0.000) = 0.177 NODE 320.00 : HGL= < 47.938 >;EGL = < 48.525 >;FLOWLINE = < 43.020> ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 320.00 TO NODE 330.00 IS CODE = 1 UPSTREAM NODE 330.00 ELEVATION = 43.51 ---------------------------------------------------------------------- - - - - -- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 10.87 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 50.00 FEET MANNINGS N = 0.01300 SF= (Q /K) * *2 = (( 10.87)/( 105.043)) * *2 = 0.0107084 HF =L *SF = ( 50.00) *( 0.0107084) = 0.535 NODE 330.00 HGL= < 48.473 >;EGL = < 49.061 >;FLOWLINE = < 43.510> • PRESSURE FLOW PROCESS FROM NODE 330.00 TO NODE 330.00 IS CODE = 5 UPSTREAM NODE 330.00 ELEVATION = 43.51 LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((Al +A2) *16.1) UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00869 DOWNSTREAM FRICTION SLOPE = 0.01071 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00970 JUNCTION LENGTH(FEET) = 1.00 FRICTION LOSS = 0.010 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 0.222+ 0.477- 0.588 +( 0.010) +( 0.000) = 0.121 NODE 330.00 : HGL= < 48.705 >;EGL = < 49.181 >;FLOWLINE = < 43.510> ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 330.00 TO NODE 340.00 IS CODE = 1 • -- UPSTREAM -NODE - -- 340.00 - - - -- ELEVATION - = - - -- 45.69 ------------------------------------------------------------ CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 9.79 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 115.00 FEET MANNINGS N = 0.01300 SF= (Q /K) * *2 = (( 9.79)/( 105.043)) * *2 = 0.0086862 HF =L *SF = ( 115.00) *( 0.0086862) = 0.999 NODE 340.00 : HGL= < 49.703 >;EGL = < 50.180 >;FLOWLINE = < 45.690> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 340.00 TO NODE 340.00 IS CODE = 5 UPSTREAM NODE 340.00 ELEVATION = 45.69 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. CALCULATE PRESSURE FLOW JUNCTION LOSSES: DIAMETER AREA NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1.767 1 9.8 18.00 1.767 5.540 0.000 0.477 1.767 2 10.9 18.00 1.767 6.151 -- 0.588 0.785 3 1.1 12.00 0.785 1.375 90.000 - 0.000 4 0.0 0.00 0.000 0.000 0.000 - BASIN INPUT = == 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((Al +A2) *16.1) UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00869 DOWNSTREAM FRICTION SLOPE = 0.01071 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00970 JUNCTION LENGTH(FEET) = 1.00 FRICTION LOSS = 0.010 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 0.222+ 0.477- 0.588 +( 0.010) +( 0.000) = 0.121 NODE 330.00 : HGL= < 48.705 >;EGL = < 49.181 >;FLOWLINE = < 43.510> ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 330.00 TO NODE 340.00 IS CODE = 1 • -- UPSTREAM -NODE - -- 340.00 - - - -- ELEVATION - = - - -- 45.69 ------------------------------------------------------------ CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 9.79 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 115.00 FEET MANNINGS N = 0.01300 SF= (Q /K) * *2 = (( 9.79)/( 105.043)) * *2 = 0.0086862 HF =L *SF = ( 115.00) *( 0.0086862) = 0.999 NODE 340.00 : HGL= < 49.703 >;EGL = < 50.180 >;FLOWLINE = < 45.690> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 340.00 TO NODE 340.00 IS CODE = 5 UPSTREAM NODE 340.00 ELEVATION = 45.69 CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 9.0 18.00 1.767 5.076 0.000 0.400 2 9.8 18.00 1.767 5.540 -- 0.477 3 0.8 12.00 0.785 1.044 90.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*Vl*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = 0.01300 • DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00729 DOWNSTREAM FRICTION SLOPE = 0.00869 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00799 JUNCTION LENGTH(FEET) = 1.00 FRICTION LOSS = 0.008 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 0.153+ 0.400- 0.477 +( 0.008) +( 0.000) = 0.084 NODE 340.00 HGL= < 49.864 >;EGL = < 50.265 >;FLOWLINE = < 45.690> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 340.00 TO NODE 350.00 IS CODE = 1 UPSTREAM NODE 350.00 ELEVATION = 47.64 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 8.97 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 205.00 FEET MANNINGS N = 0.01300 SF= (Q /K) * *2 = (( 8.97)/( 105.043)) * *2 = 0.0072920 HF =L *SF = ( 205.00) *( 0.0072920) = 1.495 NODE 350.00 : HGL= < 51.359>;EGL= < 51.759>;FLOWLINE= < 47.640> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 350.00 TO NODE 350.00 IS CODE = 5 UPSTREAM NODE 350.00 ELEVATION = 47.64 ---------------------------------------------------------------------- - - - - -- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 6.4 18.00 1.767 3.639 0.000 0.206 2 9.0 18.00 1.767 5.076 -- 0.400 3 �• 2.5 8.00 0.349 7.277 90.000 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00375 DOWNSTREAM FRICTION SLOPE = 0.00729 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00552 JUNCTION LENGTH(FEET) = 1.00 FRICTION LOSS = 0.006 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 0.389+ 0.206- 0.400 +( 0.006) +( 0.000) = 0.200 NODE 350.00 : HGL= < 51.754 >;EGL = < 51.959 >;FLOWLINE = < 47.640> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 350.00 TO NODE 360.00 IS CODE = 1 UPSTREAM NODE 360.00 ELEVATION = 48.51 ---------------------------------------------------------------------- - - - - -- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 6.43 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 90.00 FEET MANNINGS N = 0.01300 SF= (Q /K) * *2 = (( 6.43)/( 105.043)) * *2 = 0.0037470 HF =L *SF = ( 90.00) *( 0.0037470) = 0.337 • NODE 360.00 : HGL= < 52.091 >;EGL = < 52.297>;FLOWLINE= < 48.510> 370.00 ELEVATION = 48.40 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 360.00 TO NODE 360.00 IS CODE = 5 4.67 CFS PIPE DIAMETER = 18.00 INCHES UPSTREAM NODE 360.00 ELEVATION = 48.51 SF= (Q /K) * *2 = ---------------------------------------------------------------------- CALCULATE PRESSURE FLOW JUNCTION LOSSES: - - - - -= 70.00) *( 0.0019765) = 0.138 NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV IS CODE = 5 1 4.7 18.00 1.767 2.643 0.000 0.108 NO. DISCHARGE DIAMETER AREA VELOCITY DELTA 2 6.4 18.00 1.767 3.639 -- 0.206 18.00 1.767 2.643 -- 3 1.8 12.00 0.785 2.241 90.000 - 0.00 0.000 0.000 0.000 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS 'N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00198 DOWNSTREAM FRICTION SLOPE = 0.00375 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00286 JUNCTION LENGTH(FEET) = 1.00 FRICTION LOSS = 0.003 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 0.194+ 0.108- 0.206 +( 0.003) +( 0.000) = 0.100 NODE 360.00 : HGL= < 52.288 >;EGL = < 52.397 >;FLOWLINE = < 48.510> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE • 360.00 TO NODE 370.00 IS CODE = 1 UPSTREAM NODE 370.00 ELEVATION = 48.40 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 4.67 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 70.00 FEET MANNINGS N = 0.01300 SF= (Q /K) * *2 = (( 4.67)/( 105.043)) * *2 = 0.0019765 HF =L *SF =.( 70.00) *( 0.0019765) = 0.138 NODE 370.00 HGL= < 52.427>;EGL= < 52.535 >;FLOWLINE = < 48.400> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 370.00 TO NODE 370.00 IS CODE = 5 UPSTREAM NODE 370.00 ELEVATION = 48.40 ---------------------------------------------------------------7------------ CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 2.0 18.00 1.767 1.132 0.000 0.020 2 4.7 18.00 1.767 2.643 -- 0.108 3 2.7 8.00 0.349 7.649 90.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == • LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=( Q2* V2- Q1* V1 *COS(DELTAI)- Q3 *V3 *COS(DELTA3)- • Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00036 DOWNSTREAM FRICTION SLOPE = 0.00198 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00117 JUNCTION LENGTH(FEET) = 1.00 FRICTION LOSS = 0.001 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 0.177+ 0.020- 0.108 +( 0.001) +( 0.000) = 0.090 NODE 370.00 : HGL= < 52.605 >;EGL = < 52.625 >;FLOWLINE = < 48.400> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 370.00 TO NODE 380.00 IS CODE = 1 UPSTREAM NODE 380.00 ELEVATION = 48.53 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 2.00 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 60.00 FEET MANNINGS N = 0.01300 SF= (Q /K) * *2 = (( 2.00)/( 105.043)) * *2 = 0.0003625 HF =L *SF = ( 60.00) *( 0.0003625) = .0.022 NODE 380.00 HGL= < 52.627 >;EGL = < 52.647 >;FLOWLINE = < 48.530> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 380.00 TO NODE 380.00 IS CODE = 5 UPSTREAM NODE 380.00 ELEVATION = 48.53 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 1.3 18.00 1.767 0.741 0.000 0.009 2 2.0 18.00 1.767 1.132 -- 0.020 3 0.7 12.00 0.785 0.879 90.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((Al +A2) *16.1) UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00016 DOWNSTREAM FRICTION SLOPE = 0.00036 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00026 JUNCTION LENGTH(FEET) = 1.00 FRICTION LOSS = 0.000 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 0.023+ 0.009- 0.020 +( 0.000) +( 0.000) = 0.012 NODE 380.00 : HGL= < 52.650 >;EGL = < 52.658 >;FLOWLINE = < 48.530> PRESSURE FLOW PROCESS FROM NODE 380.00 TO NODE 390.00 IS CODE = 1 UPSTREAM NODE 390.00 ELEVATION = 48.90 • CALCULATE PRE PIPE FLOW = PIPE LENGTH = SF= (Q /K) * *2 = HF =L *SF = ( NODE 390.00 0 • ---------------------------------------------------------- 3SURE FLOW FRICTION LOSSES(LACFCD): 1.31 CFS PIPE DIAMETER = 18.00 INCHES 70.00 FEET MANNINGS N = 0.01300 (( 1.31)/( 105.043)) * *2 = 0.0001555 70.00) *( 0.0001555) = 0.011 HGL= < 52.660 >;EGL = < 52.669 >;FLOWLINE = < 48.900> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 390.00 TO NODE 390.00 IS CODE = 8 UPSTREAM NODE 390.00 ELEVATION = 48.90 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS) = 1.31 PIPE DIAMETER(INCH) = 18.00 PRESSURE FLOW VELOCITY HEAD = 0.009 CATCH BASIN ENERGY LOSS = .2 *(VELOCITY HEAD) _ .2 *( 0.009) = 0.002 NODE 390.00 : HGL= < 52.671 >;EGL = < 52.671 >;FLOWLINE = < 48.900> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM • ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) (c) Copyright 1982 -2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1355 Analysis prepared by: Fuscoe Engineering, Inc 16795 Von Karman Suite 100, Irvine Ca 92606 ---------------------------------------------------------------------------- FILE NAME: P:\ Projects\ 156 \93 \Eng \Admin \Reports \Hydrology \AES TIME /DATE OF STUDY: 15:42 04/04/2006 LINE D NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 40.00 FLOWLINE ELEVATION = 39.30 PIPE DIAMETER(INCH) = 36.00 PIPE FLOW(CFS) = 42.04 �• ASSUMED DOWNSTREAM CONTROL HGL = 47.860 FULL INTEGRATION EQUATION IS USED FOR JUNCTION ANALYSIS NODE 40.00 : HGL= < 47.860 >;EGL = < 48.409 >; FLOWLINE = < 39.300> PRESSURE FLOW PROCESS FROM NODE 40.00 TO NODE 400.00 IS CODE = 1 UPSTREAM NODE 400.00 ELEVATION = 39.74 ---------------------------------------------------------------------- - - - - -- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 42.04 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 48.00 FEET MANNINGS N = 0.01300 SF= (Q /K) * *2 = (( 42.04)/( 666.983)) * *2 = 0.0039728 HF =L *SF = ( 48.00) *( 0.0039728) = 0.191 NODE 400.00 HGL= < 48.051 >;EGL = < 48.600 >; FLOWLINE = < 39.740> PRESSURE FLOW PROCESS FROM NODE 400.00 TO NODE 400.00 IS CODE = 5 UPSTREAM NODE 400.00 ELEVATION = 39.74 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 37.0 36.00 7.069 5.233 0.000 0.425 2 42.0 36.00 7.069 5.947 -- 0.549 3 5.1 12.00 0.785 6.430 90.000 - 4 • 0.0 0.00 0.000 0.000 0.000 5 0.0 = = =Q5 EQUALS BASIN INPUT = == • LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00308 DOWNSTREAM FRICTION SLOPE = 0.00397 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00352 JUNCTION LENGTH(FEET) = 1.00 FRICTION LOSS = 0.004 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 0.248+ 0.425- 0.549 +( 0.004) +( 0.000) = 0.128 NODE 400.00 : HGL= < 48.302 >;EGL = < 48.728 >;FLOWLINE = < 39.740> LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00227 DOWNSTREAM FRICTION SLOPE = 0.00308 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00267 JUNCTION LENGTH(FEET) = 1.00 FRICTION LOSS = 0.003 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 0.222+ 0.314- 0.425 +( 0.003) +( 0.000) = 0.114 • NODE 410.00 : HGL= < 48.713 >;EGL = < 49.028 >;FLOWLINE = < 40.380> PRESSURE FLOW PROCESS FROM NODE 400.00 TO NODE 410.00 IS CODE = 1 UPSTREAM NODE 410.00 ELEVATION = 40.38 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 36.99 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 60.65 FEET MANNINGS N = 0.01300 SF= (Q /K) * *2 = (( 36.99)/( 666.983)) * *2 = 0.0030757 HF =L *SF = ( 60.65) *( 0.0030757) = 0.187 NODE 410.00 HGL= < 48.489 >;EGL = < 48.914 >;FLOWLINE = < 40.380> • PRESSURE FLOW PROCESS FROM NODE 410.00 TO NODE 410.00 IS CODE = 5 UPSTREAM NODE 410.00 ELEVATION = 40.38 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 31.8 36.00 7.069 4.499 0.000 0.314 2 37.0 36.00 7.069 5.233 -- 0.425 3 5.2 12.00 0.785 6.608 90.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00227 DOWNSTREAM FRICTION SLOPE = 0.00308 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00267 JUNCTION LENGTH(FEET) = 1.00 FRICTION LOSS = 0.003 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 0.222+ 0.314- 0.425 +( 0.003) +( 0.000) = 0.114 • NODE 410.00 : HGL= < 48.713 >;EGL = < 49.028 >;FLOWLINE = < 40.380> • PRESSURE FLOW PROCESS FROM NODE 410.00 TO NODE 420.00 IS CODE = 1 UPSTREAM NODE 420.00 ELEVATION = 42.12 --------------------------------------------------------------7------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 31.80 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 165.00 FEET MANNINGS N = 0.01300 SF= (Q /K) * *2 = (( 31.80)/( 666.983)) * *2 = 0.0022731 HF =L *SF = ( 165.00) *( 0.0022731) = 0.375 NODE 420.00 : HGL= < 49.088 >;EGL = < 49.403 >;FLOWLINE = < 42.120> PRESSURE FLOW PROCESS FROM NODE 420.00 TO NODE 420.00 IS CODE = 5 UPSTREAM NODE 420.00 ELEVATION = 42.12 ---------------------------------------------------------------------- - - - - -- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 26.5 36.00 7.069 3.746 0.000 0.218 2 31.8 36.00 7.069 4.499 -- 0.314 3 5.3 18.00 1.767 3.010 90.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) ' �• UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00158 DOWNSTREAM FRICTION SLOPE = 0.00227 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00192 JUNCTION LENGTH(FEET) = 4.00 FRICTION LOSS = 0.008 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 0.193+ 0.218- 0.314 +( 0.008) +( 0.000) = 0.104 NODE 420.00 : HGL= < 49.289 >;EGL = < 49.507 >;FLOWLINE = < 42.120> PRESSURE FLOW PROCESS FROM NODE 420.00 TO NODE 430.00 IS CODE = 1 UPSTREAM NODE 430.00 ELEVATION = 42.80 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 26.48 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 75.00 FEET MANNINGS N = 0.01300 SF= (Q /K) * *2 = (( 26.48)/( 666.983)) * *2 = 0.0015762 HF =L *SF = ( 75.00) *( 0.0015762).= 0.118 NODE 430.00 HGL= < 49.407 >;EGL = < 49.625>;FLOWLINE= < 42.800> PRESSURE FLOW PROCESS FROM NODE 430.00 TO NODE 430.00 IS CODE = 8 • -- UPSTREAM NODE 430.00 ELEVATION = 42.80 -------------------------------------------------------------------- CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): • 1• • PIPE FLOW(CFS) = 26.48 PIPE DIAMETER(INCH) = 36.00 PRESSURE FLOW VELOCITY HEAD = 0.218 CATCH BASIN ENERGY LOSS = .2 *(VELOCITY HEAD) _ .2 *( 0.218) = 0.044 NODE 430.00 : HGL= < 49.669 >;EGL = < 49.669 >;FLOWLINE = < 42.800> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) (c) Copyright 1982 -2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1355 Analysis prepared by: Fuscoe Engineering, Inc 16795 Von Karman Suite 100, Irvine Ca 92606 ---------------------------------------------------------------------------- FILE NAME: P:\ Projects\ 156 \93 \Eng \Admin \Reports \Hydrology \AES TIME /DATE OF STUDY: 16:15 04/04/2006 LINE E ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM.THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 90.00 IFLOWLINE ELEVATION = 44.32 • PIPE DIAMETER(INCH) = 18.00 PIPE FLOW(CFS) = 3.78 ASSUMED DOWNSTREAM CONTROL HGL = 50.960 FULL INTEGRATION EQUATION IS USED FOR JUNCTION ANALYSIS ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- NODE 90.00 : HGL= < 50.960>;EGL= < 51.031 >; FLOWLINE = < 44.320> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 90.00 TO NODE 500.00 IS CODE = 1 UPSTREAM NODE 500.00 ELEVATION = 44.68 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 3.78 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 35.00 FEET MANNINGS N = 0.01300 SF= (Q /K) * *2 = (( 3.78)/( 105.043)) * *2 = 0.0012949 HF =L *SF = ( 35.00) *( 0.0012949) = 0.045 NODE 500.00 : HGL= < 51.005 >;EGL = < 51.076 >; FLOWLINE = < 44.680> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 500.00 TO NODE 500.00 IS CODE = 5 UPSTREAM NODE 500.00 ELEVATION = 44.68 ---------------------------------------------------------------------- - - - - -- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 3.5 18.00 1.767 1.958 0.000 0.060 2 3.8 18.00 1.767 2.139 -- 0.071 • 3 4 0.3 0.0 8.00 0.00 0.349 0.000 0.917 0.000 90.000 - 0.000 5 0.0 = = =Q5 EQUALS BASIN INPUT = == • LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00108 DOWNSTREAM FRICTION SLOPE = 0.00129 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00119 JUNCTION LENGTH(FEET) = 1.00 FRICTION LOSS = 0.001 - ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 0.023+ 0.060- 0.071 +( 0.001) +( 0.000) = 0.013 NODE 500.00 : HGL= < 51.030 >;EGL = < 51.089 >;FLOWLINE = < 44.680> LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00089 DOWNSTREAM FRICTION SLOPE = 0.00108 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00099 JUNCTION LENGTH(FEET) = 1.00 FRICTION LOSS = 0.001 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 0.017+ 0.049- 0.060 +( 0.001) +( 0.000) = 0.008 • NODE 510.00 : HGL= < 51.189 >;EGL = < 51.238 >;FLOWLINE = < 44.110> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 500.00 TO NODE 510.00 IS CODE = 1 UPSTREAM NODE 510.00 ELEVATION = 46.11 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 3.46 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 130.00 FEET MANNINGS N = 0.01300 SF= (Q /K) * *2 = (( 3.46)/( 105.043)) * *2 = 0.0010850 HF =L *SF = ( 130.00) *( 0.0010850) = 0.141 NODE 510.00 : HGL= < 51.171 >;EGL = < 51.230 >;FLOWLINE = < 46.110> ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 510.00 TO NODE 510.00 IS CODE = 5 UPSTREAM NODE 510.00 ELEVATION = 44.11 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 3.1 18.00 1.767 1.777 0.000 0.049 2 3.5 18.00 1.767 1.958 -- 0.060 3 0.3 8.00 0.349 0.917 45.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00089 DOWNSTREAM FRICTION SLOPE = 0.00108 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00099 JUNCTION LENGTH(FEET) = 1.00 FRICTION LOSS = 0.001 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 0.017+ 0.049- 0.060 +( 0.001) +( 0.000) = 0.008 • NODE 510.00 : HGL= < 51.189 >;EGL = < 51.238 >;FLOWLINE = < 44.110> • PRESSURE FLOW PROCESS FROM NODE 510.00 TO NODE 520.00 IS CODE = 1 UPSTREAM NODE 520.00 ELEVATION = 47.90 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 3.14 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 160.00 FEET MANNINGS N = 0.01300 SF= (Q /K) * *2 = (( 3.14)/( 105.043)) * *2 = 0.0008936 HF =L *SF = .( 160.00) *( 0.0008936) = 0.143 NODE 520.00 : HGL= < 51.332 >;EGL = < 51.381 >;FLOWLINE = < 47.900> PRESSURE FLOW PROCESS FROM NODE 520.00 TO NODE 520.00 IS CODE = 5 UPSTREAM NODE 520.00 ELEVATION = 47.90 ---------------------------------------------------------------------- - - - - -- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 2.8 18.00 1.767 1.596 0.000 0.040 2 3.1 18.00 1.767 1.777 -- 0.049 3 0.3 8.00 0.349 0.917 90.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) • UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00072 DOWNSTREAM FRICTION SLOPE = 0.00089 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00081 JUNCTION LENGTH(FEET) = 1.00 FRICTION LOSS = 0.001 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 0.019+ 0.040- 0.049 +( 0.001) +( 0.000) = 0.010 NODE 520.00 : HGL= < 51.352 >;EGL = < 51.391 >;FLOWLINE = < 47.900> PRESSURE FLOW PROCESS FROM NODE 520.00 TO NODE 530.00 IS CODE = 1 UPSTREAM NODE 530.00 ELEVATION = 48.17 ---------------------------------------------------------------------- - - - - -- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 2.82 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 30.00 FEET MANNINGS N = 0.01300 SF= (Q /K) * *2 = (( 2.82)/( 105.043)) * *2 = 0.0007207 HF =L *SF = ( 30.00) *( 0.0007207) = 0.022 NODE 530.00 HGL= < 51.373 >;EGL = < 51.413 >;FLOWLINE = < 48.170> PRESSURE FLOW PROCESS FROM NODE 530.00 TO NODE 530.00 IS CODE = 8 • -- UPSTREAM - NODE 530.00 ELEVATION = 48.17 -- CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS) = 2.82 PIPE DIAMETER(INCH) = 18.00 PRESSURE FLOW VELOCITY HEAD = 0.040 CATCH BASIN ENERGY LOSS = .2 *(VELOCITY HEAD) _ .2 *( 0.040) = 0.008 NODE 530.00 : HGL= < 51.421 >;EGL = < 51.421 >;FLOWLINE = < 48.170> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) (c) Copyright 1982 -2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1355 Analysis prepared by: Fuscoe Engineering, Inc 16795 Von Karman Suite 100, Irvine Ca 92606 ---------------------------------------------------------------------------- FILE NAME: P:\ Projects\ 156 \93 \Eng \Admin \Reports \Hydrology \AES TIME /DATE OF STUDY: 15:47 04/04/2006 LINE F ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 420.00 FLOWLINE ELEVATION = 42.12 • PIPE DIAMETER(INCH) = 18.00 PIPE FLOW(CFS) = 6.32 ASSUMED DOWNSTREAM CONTROL HGL = 49.290 FULL INTEGRATION EQUATION IS USED FOR JUNCTION ANALYSIS ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- NODE 420.00 : HGL= < 49.290 >;EGL = < 49.489 >; FLOWLINE = < 42.120> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 420.00 TO NODE 440.00 IS CODE = 1 UPSTREAM NODE 440.00 ELEVATION = 44.32 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 6.32 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 220.00 FEET MANNINGS N = 0.01300 SF= (Q /K) * *2 = (( 6.32)/( 105.043)) * *2 = 0.0036199 HF =L *SF = ( 220.00) *( 0.0036199) = 0.796 NODE 440.00 : HGL= < 50.086 >;EGL = < 50.285 >; FLOWLINE = < 44.320> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 440.00 TO NODE 440.00 IS CODE = 5 UPSTREAM NODE 440.00 ELEVATION = 44.32 ---------------------------------------------------------------------- - - - - -- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 3.9 12.00 0.785 4.966 90.000 0.383 2 6.3 18.00 1.767 3.576 -- 0.199 3 2.4 12.00 0.785 3.081 0.000 - 4 • 0.0 0.00 0.000 0.000 0.000 5 0.0 = = =Q5 EQUALS BASIN INPUT = == • LACFCD AND OCEMA PRESSURE.FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.01198 DOWNSTREAM FRICTION SLOPE = 0.00362 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00780 JUNCTION LENGTH(FEET) = 1.00 FRICTION LOSS = 0.008 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 0.369+ 0.383- 0.199 +( 0.008) +( 0.000) = 0.561 NODE 440.00 : HGL= < 50.463 >;EGL = < 50.846 >;FLOWLINE = < 44.320> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 440.00 TO.NODE 450.00 IS CODE = 1 UPSTREAM NODE 450.00 ELEVATION = 46.00 ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 3.90 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 130.00 FEET MANNINGS N = 0.01300 SF= (Q /K) * *2 = (( 3.90)/( 35.628)) * *2 = 0.0119825 HF =L *SF = ( 130.00) *( 0.0119825) = 1.558 NODE 450.00 : HGL= < 52.020 >;EGL = < 52.403 >;FLOWLINE = < 46.000> Vo ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 450.00 TO NODE 450.00 IS CODE = 8 UPSTREAM NODE 450.00 ELEVATION = 46.00 ---------------------------------------------------------------------- - - - - -- CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW(CFS) = 3.90 PIPE DIAMETER(INCH) = 12.00 PRESSURE FLOW VELOCITY HEAD = 0.383 CATCH BASIN ENERGY LOSS = .2 *(VELOCITY HEAD) _ .2 *( 0.383) = 0.077 NODE 450.00 : HGL= < 52.480 >;EGL = < 52.480 >;FLOWLINE = < 46.000> -----=---------------------------------------------------------------------- ---------------------------------------------------------------------------- END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM • � :.. ' . {. ., z. 't ..i , : , t , ' �1 � i , i , � , i 't I • I 1 � , , i .. , _ ... . F , 1._ .. t. ( t E A 1� 11,1 T! • � �' �4�V�1%'�; 4 , - , I . �..' f�F li \✓ �- ill I 4 1 '` - _. ... .. } _._ . .. .. ..._ .. ...- ..__.... - _ __. ... ......... _. _._. ;..:._......._ .. _ t t ��c Stan `. ✓: �, I '�' , . 5450 rfs .......... _.__ . ` , e , . : , k .I. • \i t�'� �. t ' t ' f , t , , !J ►. E , , i 'OI ~/ , (�� % , -• 't _E �_ , . . ; . . . ��, 1 : ; ► , . . . . . I I I r r , v ! , , ` ; , } t : : �-•iY . 't�W/ ! �O V/ i ! i r r .,.. _ : V'ar�.�..:r..a ,3.}-. �;� z :� 5..3 .:gyp _ / { , f.?epth " l�ctrr'es! &doe � ; . � : ' .: :. � .... `. '. ' D��o�h �� � Shor+�rr �•� �, :.: ::..: ::. : , , i 10 7144 �' C-302 , :. ; 70- N-j �HjO D- JIM 1 t �' ' t :75:,U 0 -C f s 1n. �C �lS V1t � t .60 .r _ _ . , _..._ , . ._._ .. _ I Ir Q 0 t "'1• , :_ O t 4r , Itt C :f � � �:�� s ! i t .'1 i , , i I � � " • ' , ��..— •� ' rt. ; °'� vi 0 �V A. . . . . . . . . . .. I''• . ' ; . . .. . ��,• ' ) . ... Boa 72; 7-0 � i S �" v 6. r ' Cr � e k '"C h cn r� rr� ;l t a t f o n� Ol e a �. d e r- v6 ir' t 1 -i- 1_. . r . . . _..... •_. ._ }.. ( .. . .... __.... .. .. �_ a ... _ ._ate_.+. _i _aL_! .. ._,..__.. _ ..__. . a fu ea r C.-j Q °c W . . 0% O - • G s I ryd • • , %OR f `, 1 rr r , NA • C •. CL 0 • ter t C/SWC Sta /23 7t Qp, r ., ♦ � . • -• � , .. ;: ..._. } � ,• , . In Sec �vn Levee, 4b�" v �� ' , , •. • ,-- ::::: • - -- intersection C 1/S WC Sea /22 7 -.30 ` C �} // �/ ` : • • • • •_ ` •1• • , ' ' ' ,r r ,..1 , -2 •'•'••:'.: ,. •,, r U to n�uwrr Hr 5.'1 ICY a ' N rF, ' `7 O ' ' _ vet;:: p s. y _. , CDP t O • `,_ f �, ;,` , ,' ' ;' '•, ' - _. . .� �" O r ,,� I ,' ....: j�b,arnnruuu,r ruUUr n F' R I r r 'a vl ' ,o c Ij /i eh A • \ i • b v •• {' ° go �% . p'' �, . C 80 Issued for Client Approval vN sT 60v A • •• • • • • �� • • � • /f3I 7 fSSUC(9� Tor Approvo/ /tp "or- C 11*6nt Revery ol '° • ♦ . • • o :' ' I . • • • • • • • ,i: ' �•• • •, O 'r ... -- - . , -, Q e-13 ,13 , r • �, // /• •• j N•. = f- � Sams a �Ao R HoR tttSVt�lONts tir ONIm plot �� AMR vERr, oxaalm '4 ..Di � a / ONAWK& Se It ze aalt ,.4),,� CD • • • • • '• •I GZ- 1VZ -9A Lr PL. A /V' Sca /e : /" =/000' 41,// �i • /, J „ B E 0 N T E L SAN FRANCISCO COACHELLA VALLEY COUNTY WATER DISTRICT Coachella, California LA QUINTA STORMWATER PROJECT WATER SURFACE PROFILE 10o No. DRAWINA.Ne. REV. 10 714 10 714 - C - 4.01 C n x 34 ur s1zE - __." -I, j j � ­­*-, ­��)!�e-___�l I — " - -- � I __ I '�!�J, I -,, . v I I �­ , - I I _.F -- -- I I I I I I I � I - - ) �,_., / 11 I I I , J, � � _L 11 I I 1 ,4 \� ,�� .A �—_­77=-<­7 ------- ­­-, ­V--, -­��-­_,�- - _-I- )�, / , �) 11 I \ N, -> -a - �_', _1 �_�^ ___;,/ _. , �L I J/ ,// , I . I ��,�,_ - � , , - 1. I - 1u_j I - - � .-- --.----- -- __.- I ,; _.— �� L'- � , - - .1-7, �, � -1, , � " . _11'.. . "� � I I -­---­-___. , -_��, , � _L .: � ->.-- -,-- -_ �� 1. �_, -",-,- I I Z��"� _,_i��,:= -----,— . �_-�- -------,--- — - I _��_ . I . , I I -.- I _:�� . -:- _____.__­ I 1_--L__ --,. --- , I - I ,— - ­__,� 4 i7�:,­ - _�­­,,' , , --- - � __1 -_ I -; _�---- i I + � � I := - :� --I I . I I - ( ...... �11 I . I I � I , � -.---, - ,� 4_��"___'___.. i__­1 . -- r- _____­ -4 * �� . � 11 ­-a- I - --i -_ - - .*�� " __ __ ' I - -_________.___'__.. ___`�­ —7 - - _-T - ; I I I- 1­1 1w lj�,,4� w­rw,17� ,,.� -- -ji ,Z:,,:� � 1-i ,�sr ',�.,I` ', k �,� , - � 7 'I � 7 1 1�rj, , _, � `::;�::�_�_,, _. I -, . - I- ,_ / I \ _� ____f _�5 �,:_ I I I - �---;-, _ , — - `­�' --' " -1 - 14 -, I 11 1_/' . _,�sf ....... _j I -4 I _� _ ._ _ �,__ 1_._j � , - ______ � ­1 = 'I -----,. , � — - ,� --------I:- - _� ­_ __�/ . I _"o -----,.---------- . — I � � � — --.--- — — - �;____/ . --- , ", + � , _a - ,L_ - -_ y \ I . I io � ,--,, , ­­_ - _ - _ ________-----­ .... ... --. __..:�:: I ___Ir ____ _____f ­� 1___� ­��,=V=et,L��= --- -, --- . - I I I . I I ,�.�. 0 I I I I ,-.------. ._­__= _�_ ___ ______.__.__.____.___, ____ - _.__ - - --", -�--.-----,---.--.-----.,--"------:7--------.-.--.-----.--�== ._w___-7.--­-._____­___ - - - - - - �_�__ ._____._____=��_­,� _� ------. - -_ - � _._____ ___. ­­ ,7--. --y-a--n'.­�� -- 7 ,_:,_!� , - , - _ I � - - I I . I � __._ f _- 11 -/-"-----,. -1 � I I � � - 1, � � I � I � I I . � � � 1 I I I - 11 r­-Z- � - --, I __� — I I I � I , ��__ . - , , , _ _= � I � - - � � 7=11 =;==Z=:::::��=_,� I � � � , I � - ----:::�- - � I I . - - I - � " ------- . � I � - - I 1 - . _,� 7 , � , ,- � � ­___ � ­ - 1. ­ I , - , L"� I ­ I - - - ­ , - - - - I � I - ­ _ 1 I , ­ . -, - - - - I -_ ­.- .- - - -_ , .1.1 1-1--l- I - _ � — --- - I ­=_ - j - I I I I - — I � I I I I I . I — =­ = , — � I " -L . -_ ___­ ___­ - -,-I.___L_, __I__� -.L---J- . I I — - ---".",. 11 � - � ­_. _ ­­- I _. I I =� -_ - . , , ­� ­ - _. � — _ ._.s.- - —1 I I I , _­ ­ — --- -,-- — — �7_ .µ_, ____ _,_­_� I _�___�__ 11�1_ _�,_�,_� -, -. . — - --- - - I V -----z-- --:= -_,— .. -- ­-, _____, ­��_____, , - , , , I _ _ ' ----, ".­__ �1; I I I I _-I_-:- w � _L_ �: _� -�, -=.' - ,--- -_ - _181L__ -_ V__ _. -_ ,-= - -:=, ,,v k;_ ----I._ - � I _13. 1LZ---=-`d_- - - ,Z�.::�_,_ Z__� ______._jc___ w ­ -_ -_ W -_ —_ - v --- -- — — - I �V_ -1 .- — - -.zz_- --f:D . - � - - : I � I � -_ I I . I I ---,------�---.--�------.--�---,��-�— _i_.:�______ — --- - . \ Y_ -- — . ____ ___. ­Z��­­ Z:::�_ I I ____ I _1� _�_ - -sa_,- I I I I I --- I - ,,, _�_ I I I _ _ -_ -.- --- _ 4 . I I I . . I I I I __ 11",�', I , � _', 1\ -'--- - - i" "I's ___�­ , __- I � 1_� � -- I - � I � � — 1__­ I I � . -1 � . � , I 1 ��,�4 ----.---- — _�.___ ­­­ =___ -----, - — -_ I'll, - -.--- — , ___:: I __1ZZ_77______ . '­_ � - I I I I I I � � � I ____ �_____ - - --- ­_ - . - - I I ___________.__ -Z __ - - , - -- -_ I I . - -.,- Zz.­_ '\\ ----.- 1, 866� 1 ________________, -------��-�-,�;�--�ft----,!-!�'-�-,-�-,880-+Ocl-.,--- I -Ii�, -� at+oo 869+00 865+00 867+w __�___ � _7,c7.______,_ � 877-,00 876ROO B75+00 _'-� 874+00 _--�K- 8734,0 872+00 8 71 + (if) -, I I " . ,_ lz�� - , 5+..58.74T- 1 -----863+00""�---'-'--"��-'-- ­­­ - "' ' ­_ '382:FQ(T---'---*----------89t-�FOry------- . _,Z�1_1 578+00 , �.1- . - I I t T6 .1 I I I I I I I- - - �_-�� -- � I I I -I----- I � � - . I I I I I I __.. , I I I I . -_ - 1 17 -.-- �,­� "I'll I I I � i , I I 11 I I I . - + ------,--.--,--�--�".-.��---------.--Ii.�------,--�------I�----- __ I :�J: ��- I I ­�­*I,. I ---- -- __ - __ _ F I I I "I'll ...... I I I I I V, - __ __ ---- __ I I I , _­ � - Z__-__= �, - I I � .,� ----, - � I I - __ , - ) _ - - // � .­_,� ­�_ I 1_�_ � I I � I iw - -----A I " - I ____+ ____ __ r - ____­. , __ _w-y J-1 � Z::� __ _ ___ __ - � . --- - - -_ -_ ____ --- - -_ -_ - - - - _t I --- --- -- - - -_ -----:�-___ _ - _. ----- � -.- ­ ­ . _____�_.____ ,--- -_ -_ -_ � ____ -_ , a +,- � I , - I ­�__ --- - 1, ­_ � , - - - -- - - - --- � - ____ -_ ____ ­_ --- - ­ --- -_ - - / I I :_�__.______ I � I I I I ---------.--.,- I I ill* I � ... �__._.._ � I , I , 01c - � � ..--. --:::L �� ____ -_ --.' I'-:_,_ .._ ...... -_ -_ =_ ------,--, � I I , . -60, --�6 -a Q = 2,61- , :___::� I .___ 1 FS -_ _ --- ___ , . I . __ :;=s=­_­ �_- -- ______ .------ - f------------- ­11..­1._.1__ __________________f--___ I _______.­ .____ - ___' ­ __'. ------=-- --:__ ____.____.____._________._ ___.__ ____ _____:�:= � ___ � ___ I - _.��_TQG_�;�=_ ,� ­_�:� I �� _­ . _��:Z�� = � ­"r -1 -- . I _� I �; �_ --- -,-- I - ___ ­­ I ­ _____ - z F,-­----- - -- G­ I - 11 ---7- ;:--13,* kip­ --,-. 6 r ,� _ ____ G ____ - C '. --- -." -r4i� - - =_ - ,;,�----".CT--f�%n�,-----�-.-O�-�*)-----------&-,---.. -----. ---- ___ - C; -----,-�f�- _=- - 1::;�� _i5____ ____L---- --- - -�� -­- -- --- G - I- -- j -- - - I - , - - . __ — 11 __ — __ — - - __ V_____ ___ ____ w ;;;;:- -=- --- V — ____ __ 'I, � _ - - ­�\, =-=--j-==7 �=�­.-J---------- .- __ ­�- =-Z=Z-- ---=----I-=�--�=--==nT----=�--7--�-=�-=-�=-�--)--=:�---�------- 'i ­ ­� --- - - , - , I I I , I . . "I ::=]EE�-��=��__ I I "I <,--- - �?_ I I � . � I I � , - ,c it -7 - 'Z_=�7- . :z::== ___ ­_ --.-�-:�����c��-.------------�------------,-------,.��-�---"...-.--.---;��-7-=--L � I 5 ___ , --- -- ­­=r� -c� ­� -v,:_--_=_­ I== = =__: I ­ , - __ ­ , ­5 ;:==w,�t---;, - 11V1 __ _�:5_- -�-,_ G ____ ___. ____ G --- ­--c), tip-­­ -.- ci ____ - _... ,Arjo- � . __ - ----I-- G ___=� ---- -,: ,,� 4T­ I- - - ��i�­-- - F�;n��,- " -7- = X7 - .... ____1 ___ --..- V___ _______1Iy , --�Za) - - llt�t���', --=- - .- �.­ ­­ - --- "--I- - 0. -- - F - ­ _.].'V��,=-___: -r-- ,-,I,- - ��_ f - I? 71 - - -_ - � ,- - " __ _ T :�, - I , - ' =1/_4fN==L__=_ `-'7 --`f- I --- _ 1 . - T ____ - ____ ____._ ­_ ._1 .___ F _4� --- '_,�_ _f =�_ ,- � - i V �_ --- - -4 --- I . I I - . � .- I . I . , - -1 -0 � - -,-_,, I �, - - - �, -7� , 7 - -,---- ---- ----- _?��_:�=7__;_:ft�­ - - . ___� . �� -_ � _<�, a -_ I'll - _r I I �1 - -----�7z-.---'-P�-"--------=:�:-1:7;�r_-_z�--�E.-�:=,--,t-- - __,�___ _ _�Zr - ,:- 7?�: ---I --__1 , � _1 ­­ _ - il, I - e--,;-- -) - 11 "I - _�= � _____________,,__,_ :::�, , , � ­ i - - I i 41N I I - :7 zz= 1:. - - . t 11 / 41 C-90-T I I j -1 �!_ - - 11 I � __ ___ __ -1 -11 __ - r __ 7 ' '_ _:�: --- I, I - -7 �� -_ I -1 - - - I 1 9 IF, I 0 ,11 I , - . --- \,(r "I - / 1 -1114 I . .-..----, 11 - - , , - - ,-- - I ­­ ..'. � .. �_, - _­__ - � -.--- I - . . ... - - , . ?_ ­ - -_ � .:----.--...---., _ ---- k- ...__­,­-�:;;,,=_ � _,_,­� \ �­­1�, - -, ��r , -- -, - -r- I . k, -) I I +1 I %_j " � 4, i. I I I I / I - � - _-,.�_-_ �___-­-. __ -4 /� - ... " ------ ,­, ­_�,,��_*� I I - __ __ I - - - 1 _�.�7 �. - - - _ " - 0 ­.-Ir.. ­_ -_ Q ------T- - ZV TF - - - 11 0 I I . z - __ I-, ­­_ �­��_­c __ __ - r-T- - _� .M'S � - --- (-�-__.�. - � __ : �_ -11 �­ z021 - _____�5 -_ ,-- *f_ __Z�_. - _.­ � I­ v I , .�( )4 - - - I � - -, , I I - ____.___­____ �J-)-- -_ 11 -, " '_ ­� -_ I -1k I I � - I _­ / , 5 - -) �--l-, ____, - - � -I-- _7_� ----- -- . - �___, ------- ,�-�-�-.-�-.------.,----�---,�,---�---:�:--,==,�-z7=:::: - ------- - --"-,-- \% B­ , - ,�� --' ,----- 1, J/ I - I ­� ______,��_- .-- _'_=�=__ --' -- &------ __ _-_�__Z��,�= , , -r�- ,­`= - __�> V- -- c - , N_ , :��,_ ( - - t7­7 _..._ ,- __al� ei. r - ____ r� " -_ 77 j ��Ld - 1-h I I I j _�_ :70" - - , ­_� ­_­­�_ -.---, ,P,--e::�_-_-D., =_."'? -7- 4/:�,_____L__��_�=__:�_,_'�_ :��_�: - � . , , I " �� - , - I - , , , ��:=77_,_=___ �­__,_ � 1 __ ", - 4t I) � -- / . \ (�_. / , t! / I, � --v - � \� '. _�__,__ �:_ "TT - =__ - 7 - � ) � ;;:: __= 1__1:.__�­-_1 "., 1:+ , , ,,, I I �_ __�, - I � 1- _4�' � _._ _,�� � -. - , �_ . Z, Ii7-1/_ /_ - - �4� -----,- Qww . , I- , I Z��z --------- I 11 , � 1.1, - ��_ � __ I _�,�, �_ I L :��_ � . __ _;___ T =__:� F� __ I _._ - - , I - _____ ____/ ­, -,, III _1;1 - __ _T _1 _ - ..._­­ N 'L, .- �r _� 4­r � ==- --_Z:==---�="7­7 ==­��= __. - __11 Z'�T _%��_-T__f::= -,-- -- - —4 T­­_­11 I �;__ , . 7 ._____ __ _�_ -r � __._� —_ r� \ I I � — — -:= - -- r \ 1 -(--4 t- - - a-TI I . � I _\Zll �'� 1_1 P � . -,I _­ I 11 I � f____�e7 -_I - \ ) I � I --,, - - � N - "I 1_1� -,. ------- - _11--4:�Im \ I \ \ f �_, . -74-- / __�_-- -- \ _ � - \1 ) / I ____ �.\ 1 /I �w I 1\ \, I 1--Jr, 47Y-T , � .I, ,,/ I t�, ,z , , , .1 I ,_ N I f7 '� I - - '11'��'s I , � I I 1� _ \'. I U-� � j \ ii� \,\ � - I ', , / , , I (, -.--------, 11-1 / / s� 1 1 1 1 F, �, I ( / f I _i�= "'� -, - \ I , l . \ \, I �, 11, - _�:_ -11. �) T - ­­ , 11 / .1 I , ., , . 1, , - � -- - � __ __ - , __ , - I / - - - - - - \ ! 1 "i'l 'I ::� A \ I It . . - I , . �_ - � --,---- -, - � .:�­ � — .� , / / / ,,��-�,, . ,,- - , " 5 " �, ._/ I - - I ,_ +1 ) V­-­,� - A \ 4-f-l-r- --, ---) I N 1/1 I--,--\, I -I----. I ...... " — _� - I I / . . ;� - I -1 I I 1, x x __\Z1_(___,:� _____ ___ \7 A, I j � . � , � � , , � � __ � I I � / -_ --.--* — __ I , , _____ / , ,;�,,' ,,, 1, �/ � I I I � / i I / � - .r� I , I I ,-/ �, \ ,-,- � \ I - + _ �m_ - ,u \1 _____�67 1 / ��I � \ , 1 1 I "' 1 ! ,,, � .v I .11 I � -) I I 1i I j I ,�� �� \ ) \� � ,1 % � -, j � I I q , I --- ­-___.­_ � \ � I ell �1� ��,,, " . - 'k, I 11 \� I z I I -----'-.---,,- -, I I I — - ", '� , I � I i , 1, _,� I- t, I 'i -,---, I- - -- - __ � I �, i \ I / ) --�., " �) ( ,� -,\, " � 1, \, \ - X "-. -i - I - \ \ - I I I \ I I'T"I , -1 � I 0.10 __X --- \ I \ I I I I I I � "I, \.�, ", - � I t I I /11 ­_ "',J ; , . ,.- \ , � _�, - \_ � \ \ llil� I I I . li,\ -- , ,_/ - I),.--- \..�', I � '- 1, , Em 11 -- "I � ,,- -'--,'t I \ I", I ., I I , I / " \ � � `\� 1 1 1 1 ) � !, \��____ - __ --- ­_ - "<,, N \ �,) ! ) 00 a - � n ) \ " I " I \ �, ` `- U EGoam I \ , I " jj I -\ .� ) ) I", � i .1 ll _ r - i I / \ 11 ;; 1/1 - 11 I 11,� / ") �,v � II - I \� � � I", t , I I �,___ � I ------ '\ , -1 / 11 I i "I­­-A __._._­_­__,.,,, ­% -"\ �", I - . I/ I ,_ �_ " I / I I i 'I 'I M t I �, \ /1"" ,,,-' __�-.r ,,,�� I � I r 1� I \ / t I ­ )/ ) I 'I " ­_71\11"' -- /' f /I �`�-- ,- I i�k ; / I I 1 1 I , " \ __ ", )i \1 I , ) 11 )/ k , - � , , ) � __ __._� I � � I J � I, \ " I -- � I I , . ( " i__ I 1� \ �, _,, \ ,I - \ 100= I' I / I I - / _1 I I , , � ! \ I ­11 _1j 1, j ,_a. j ,,, I �_,._ I �� I I I _-, I r 11 - __ ,1 ( , ) I . � \ -, ) 1\ � \ , � , -,----�/ 1 141- I . � I - � 5 9 � �..' 4-C � ",: v ­­ ,­_ - I , , I - �,N I ) I - I \ 1� t' : - i I �, I I " � � � - I I , I \ k ! " �,, ", [__ " I I .. IN : /I *", , r I - �, I I . . � 1­1 . i ) ,-� J, - I �, j f ) \ 1. " I e I i I �, � I I I/ I \ I __ �, " ,� - 1% � � \1 I I j I 1 1 � ___� \ , __­ "­ , \ I i 11 / i _, awma me wo =1111111111" BOUNDARY \, , , ; -, � , �� 1 "", I' `I , ... I­ -.-"- , \ `�� I 1, - i"11�1 --' / -- ( I 1�11 _f - 11 _ \, / � ) , I --,-\ I 1i i � . � / .-, I � \ ( f; . , _ , I I , i " \ I '� � \ �. " /I , , � " .11 �_ \ -I,"- 11, ��!,,­,-, I .B I � I \ � CB #1 - � / I ) \ \� �, \, � � \,�,,,,�\,\ i (' I I . �\. . . j / — I . , """ ­-­_ —1 I � I .,�, -, , _ I .i I.J..1. `1 C B--# 1 4 / \ 55 ) 11 \', \ C__­ , V\ I' , , , j / � ,� I � I 11 I I )) , \ \ t \ , I . I . A'. I -, 1 -1 \ ! \ . I , I I , __ , , �.5 r---,, ** *11 \ �, ", ; 11 1\ t 11 '\ 1 - - -11, ! I � "I I 1 1" 'I " , / �_, 1,1 I I .� , P , � I 1 1 I V_ I ) 1,11 f - , ­1 1 I � '� i - I ------ � � \ -t—f-11 � 1, \\111 'I I ,�) I it �,_­� I , (-\ � , -,, \ d � \ � \ � i,� i �, /,�, \ t � ; 1.1-1 __ I (" � I.. , \ � \ % I \ V A I -, ; "",- % % ( S_ ,)I ... I ( , 1� , , - i / ; Ill � 'N / \ j r,,-,.,,-.., , \ N — " � _ , I , , . � .1 - I 1�1, I � / I -1 i � 58"- , I , I "' __1/ ___ ", ',� \ 0, / / fi, � I I/ � ­ I I '�-_�, ! A , � I ,--j- � � , , I I i "I 11 % __7 - I - I j I I �11 . COMPONENT AREA NUMBER I'll, I I ,_. , � I � � I I I/ / I, 'i � ", I­ _�_, . I I , " %� 1 1 , .--"- \ I f 11 � I \ � _� - I : f �/ I - / \\ \ \ ,_1­ '1� _.�i. I \ I -, " - , � I j -_­ I ,_ - _. __>� _ � ,)-li�-'t'-', , I -, , I 11 � % \ � - . 'I � " ,-_j c t I i I I � ­,­.,.­,_-_­_,_ _ / 1� v � Q'\, �, -= \1 ,P8 CFS C B #­ 11 � " -, \"----J, I i,i, I I I! .,� ACREAGE I'll- � \ if il -1 �X I, 'r 15, . ) 1, —) ( , 1,\\'---.-- I 1) , I , , ,F yli� ,\ I, _1 1, .,. / \ I .11 1, :Qu, \ ­� , "I 1 . - I - , � \ I,, � 11. '' dr I . � 1V . ,�11 \� I " I " � I I , 11 I/ / t ,'I __. ,--I , -- I mm /11, 1-11 'y I .) � �v if �,l , 11-, \ -N\ . 7.30AC" �L/ ��_,_� ; I 1, �o�'_ ) I I : - _ , \111 � \ I 11 � I �­ ,\. 'N: . 110, � , " ______.� /. 1.11, ) __ t , , I i_ q - f I , i -1, " . : I , , - I 1_',1 - 'I , ') . f � 11, I \ / ( , I I, ill ,�k it 11 _ I (") \ j 1(<, I � I J, , " ) , ; . ' Lo / - �* , , FLOW 1 " KI I - I \ ---.-, , / , 1 4 I N� -"'�._ ,�, -1 - , � I 1 ] ',,--,,)' A I I 411 , j ) 11 I Q - 1- I I / .� V I I � (CFS) . / " f�; . _\ I '\�, -11 111. ) � 19 � ,I i I I I 1, � : - � ! i . , `( -11 . , 1, , I , ; 11 I . t - ,..•. I 100 I I' _j I.) - '1� � \ \ � I i, I V'k ' �� ", CB #12 W, \ : - I / I I � I , rll,� �' -, . � � � I I. f/ X'. I , �� - , , N V, I I , i I ­ "; . , I , , - I ­ I 11 � - - , , 10 ­..'_ � '�k­ 11 I I _,-�-:L,.,,�--�,-- 1� i I r \ V )I !.. 1�'._ -1 i � I, - I." . .- ".- W) v \ Lr) \ \ , - -,I , CFS CUBIC FOOT PER SECOND 'I,- _"_,� � , � \, ,-/ �,, I "I I I I , - 1,11, _�._:,_ -"-. � -1--11 , , -, "" '_ ----,-,-- f" ,, I /1 " �, , " - - _7 , �, )r �, / \11 '� ! I , , I - "., / -, - 1) K, � � . '\ ;I , ,� . � - A k I., , - :fz�, "", :--.,. \ - - _._ 1. - 11, I \ . I I I I - I—_ -­ I % 1, I, . . - --- "" 1. I t_., , - , " ', d , ... .... �_-­ I ? " ::� ,, , r,­� , Il- , "r "'I'-, /__ ""', ,_ __ "' , �' / _�', : ? I" . I , Pv:�,z� - _._�X:" ", ­ .- \ , I i " .11 � 1 � � ) "I \ � " ��:�, � II , ­ I __ .. I � t - . I , , . I " -.1 , I � 1) t I 1, I ,. - , , U i / 11 , ,,,- 'i i � I -,-, , __ 11 � �­, f , ., \ /110 ) I ����� I ,:', ". . 1;� , I .,,', " j � , . , I 11_.�, ` - I � ­ ,� , � '� -" ----- ;'ll . I . 11". i � � 11 � / " ., � �, �__ _g_) ,11',, m "�, N\ ill 1, I , 1" ., � , N, -1 _­ '�_�\\ I ", , , 1'. 11 I � 1. -1 , . I ". ,,, I I . "ll I 11 tll ) i, I ,, I �, .1 " , . U � I I ) _� , , '�.,\ . ". � � 1 � ,. 1 ­ ;I ) """ (, I / , VN \ \ " 11, , - � � 11 , " ,,­,,,, � 1, � � I , - - , "� , 1�. 6-1) \ " I ) �t '' ) I . ) , \ 1% -, 'I", \ / * � i I I FLOW DIRECTION . z � , � � /_ �', '. I I/ 1. I ,I � \ """"."...", � 11 I � � ) A - -1 I.. __ � � �, , ! I ", ­­ , I- r'­ _� . I .. i ,1 ? " - . t _�51n� �, I /, �` I" . 1� " , � " - !� 3 1 I _�� , I.-,, - 11 I "I" ��', "_'--,,� ,�', \ � 1 - _ I I I ( I ,t,(, 11 i . " +_.<..._. -,.- 1 _,Ll ! ,. t , " I ­I _1 � !, �,`,�."_ , I , . \ - I ." � �; J:,' ., I 1 1 11 T � x j 4 I I � .1,�"'r­_ _,_ I I / 4, ) "I h. I I " I i - ., - " I \ � / I �l , 4, "." \ I- ; � i � 'i " ­ -.1 , - . " i I ,,, /. I i I 1, ., '_ , 04 __ ; ", , .- � , - , ,� , \, \,� - __ - � , I I \ I 1 pl, I 41 j I I- I . , C �,, IN ,,, � k -,.-- -,-. , � I / , , , , " i ,. ; 1"), " -,, P \ I , , 'I iv ) I I - , , . / " 6 ( I , � - ­, I \­­1 �,I. 1 I/ I � I \ -, " "I ----- - i - , I I , !, t I \ � . t " �% ­ : III 1, �, .11.­ I , �', " , , :;�I_,,� 11 .1 I , I � � k I I . I ill A ) �j,� I V " ­� __ ', '-----,, "N I I- 11 , . " . ! . ,� / , �\ � �., I � , , , I . , - \ - ": a " - - - l � . , I "�! i , ... , I .; . \ \ / I f, , ! N I "". " 1,-.1 ! \1 , , I I I �\, 11. I" 1_� 11 i � 1 " � N, 11 1, 11 , I , -, z \ � I .iJ, ; , .1 jj �_, , �, ) t - I � N �. \ , I HYDRAULIC NODE I I i, 1, )_. J � I I r \ 1) I , I I 1-".-..- -- I � �._, 11, 1 , .. , � 1-1 I / . ;1 I .�! I I `At�.,.`. �, I r -1 �- ". .-i� , , 11:_ '11.,� A % I I I] I f - ­, ! � " i, i�, \1 1, �, '� 1_0 -1 , 11 � I I 1 , , )Ili � �., I i I I I—— 1 W r . � 7 ? - % ­1 I - � _. r ,_ i � i I I I-, 11 , z I i 11 � � ,�, , . . - i I . , , I \ �, t, / ,.� ; I I , *, ,, r, � , 'k ., 04 I . ) � I � /% 1� --.,, , ;; , I " - I !,% \ 11 I 1, Ili i " . I � i , � ! I �'.._� � / / 11 i � A � " .1 I . / ; I ,� I � 11 !.1 .. 1�� 1 , , � I , '. - _ * \k, 1% , � I I � I -,,,.- - -1 1! I e It 1 �11 ! , I I 11 Q,\�' / 1. ( , , I � � , , , , ­1 , 1� , � �, , , , I I ,Kl/ ... ".. " � , I 11. , - , , �. / 11 " � "I / �, I I I " , I f 4 ­_­-­� ,,, ,tul i- 0.33AC , , , , I , , - .1 I '�/ /. /,,.' .. � -1 I , i , ,,,� , /,-� "', ,, v. "'� , .�. � .� I - � , I ) / x ,I i .,) , " � ,� ,,,�",-, ', 11 /el , 11 ,�, / / I , I I ­1 ­ 1i 'I ) / " r '. )" ,//, ) , I ,?(),�­�I,w\ i ,�,� I. . , � � I " � "" e 1 ./ 1 ,� , / , I ! r, , . I " I , I � ! f , = 1-1. ,�' " I ". . I I . // 1, , S �'CFS I " ­ - /, /1.." � .. , , I I . . � I- , � I '1� I., . I , �,, 1­1­ , , - / 11� I � , /I r � ; � . I � .1 ­ " , , , , � � ,"', I .. I �, I �i /,�"' / � li!, � � � j I 1 i 6 ,� I � "I � 11 , . � 4 , � . I I - I , ,/1 1� , 1, � I - I "I I , . , 1, I I I I I / � / I I �, ,� � /" , 1 �i�,�,,�,*-,,, ` 160 � I i I " I , I I , -",;, I I � / 1; � I , �./' � , t ,� '-,s� � - ; 1\ I 11 .� // , I-` I ,� -,e-, I , - I 11 ,I I i : � � I I .� �, . I �� I ,�i 7 � " " , � ,,!�v / # I 1'� 11� I , I � , ! i , �, � 1\ I I"' ., , , /�� ". . I ­�, ., 1 I/ 4 �- 1— I - 1 i � I ,-. , , 1�11 , , t , , �, . I . I '/ ,;,`/' / // I / "" I I ,­1 �"- 1, ', ­f " I I ! H 11 I / / /�. " 'I, '' .,/, / _­,I 4 �_, 1, I I I � I � I 1, : 1, 11 -, ,.� 1� " �, , " ", ,,,�", " / , � � , I" 1 � �� , :� /,- I /,,,�,, -,, " � I : r '� � �� ,,-,., � � / , , /%. " : � t ,; '/ , . , " ,,4 ­ , / ._;�///� , ,/ / /,�/ , . I � ! ''I )I I � Ij ,�z , w , . / - I ,,, . ;1 � ,,�,. " ,I i !� :11 \. ", "_ 11, ,/ ,11. ./ / , -, � / , I , I � 1 4 ; � I I , , - , I - - - 1 ,_: �. / // � /// '1/ . I I I I'll /,/ / r, ., , f : , , 11 \ � I . / I , � J � I I �. i I 1, I I . 11, / I / �/ �. I , a I ; � , I , I I il ; i I I � i� , �, . I � .". ,-, �1� '/ I / " " � 1 : � I __ � � I . i I I t .� " I '. '), I I% , I . 1, t , - / " I - " � � ! � � 1 - / i" - . 4 . , I " , - I t� , � " , ./ .� , � " I I ; � - � � / ,1 , , I i , , I / ,� � - ­ I I . � . . , ,­1 / , . - ,� �.,.. , I - I I ,".,.� "I., I 1� ; 1� r _;-, I" I "I I I I., I � I I j ! I � I ­ , , I �,��_­,� !� , .1 I , �. " � , - .1 ,� ,­ " I ,� � , ,I i , � 0 , " . �1_ : -1 �, . I . . �, I ",� I I � , / I _­� . � I . , I I `11 � � I I I � 'O 60AC , I'' / ,_ , � 11 , , /e I/ 1, .11 � I I , , I ., : I , I_ � �11111 I 1� " � I ... , `,_� I i *. I , I'll- 1, � , \ , I / .� , I 11 I I I L ­ I I I � -1 . - ,�, - 11�11 " / ,_ I 11 I I I I � I • I � I I , ) I" I , , "" , 41 7 % /I / / ,1 � )11 , �: t — . I lq I_ � ; 1. �'., . IF _,� i­: ,." I I , " I _ t', I 11 i � , 1, � : .� ; I 11 ", , , " I ,,, - , 1�_ /, I" * "_ / / ". , , /,. 1, I 11 /� I'' I j � - I I : I "; " I I I 1� I !t I I i " I r I , 11 I I I I I . ,_�� I "<";11", /I ." ; ,�` I 1, / :// Ir, / � ') _� " 11 .) 11 11 I I I � _ . I �g � 11� - I , , . 1, " ,o , " '. I _ �� "I I I I � 11 .1 I 11 /� / ,- ,/ - , ; . I , ,� . ., I / I / �, / " I I , e I r / I I 1\ 111-1i I z ; 1.11 I / /. "I "' / ./// / ///// _.Vf -111, : I I ill i i � I Fv I .... .. � 1, //// ,�/ /,//'I / / 1, I I / I I ,I /I /."/,// // ///,,// I -- X/,�,,; ��,\. , k�i , 1'. \ 1 !I ; !! -- , " I __ . . " ,, �/ /��/ , �: 1 , , It . � , "), , I !// / ,� I I : I � / / f / I // " - ,J / / /- / , i, ,4 - " i ; 1 I, I : : . . � I I -I , ­ � . ,r / / ,,, I �. - " , , , . 1-1--, 1 I i I �. I / /* // ,..,/ // // /, r % � I 1; � ,/",- - I � , / , I - . _ �,, " / / j�111 " I / //`1 // 1/ �,, // , ,/ / I / / / ,//", // / " " // .� \ 1_1 ��; i i; 11,j , -J I 'i I I] � I!; I� / � - i � . I I , . � 1� I , / 1, . I , , I , / , i . � I - I I, !I , I i I ,,, , 1, 11 i I I , i IM 'I I /, /, I/ � A, im `- I , , I , , ,_ .., _.- 'J. I " - � 1, , .1 , r I-/ - ... b:.7 -, 3 , I , 1� /__,.._ , , / - � , - 1,/,/,� ,/ /,' __. J ; I I-. _._ : / .1 i f , - � /'I. I I . I ; li i � ,; I / ,:J 1, I , / , , // . '/ i ""; , : I � ,, ,�', .1 I " / , . � �� . " ' . "/" ' , I , , � - i I , I % -, I I' / �'g � ,�� �" , �, " , i � i ,j I j , I "', I , , //,.", 11, I ! I , , 11) / , 11 I '. , " " I , , � I / / "' " _� , / , , I � " , I . , I . I � !� � 1. / " , � i I-,, .,,.,/, �.,. 'I, '. 1, .I . e � �. . . , �, ,;: I ; � I : � 1, � , ., —, ". , , , , � �, � , �, , " I.. ,� r, . I . ,J�t. . I � , . I — � �; , l I : , � � I f f" I I -, " , " I � I 1�i_ . , , I . I , I - I __ , � � I I , f � / , � . I I - I I . � CB #19 ........ I � I -11 � / I Mt L_ I , ! .., . / � 1. � I � I ­1. � .. 4.1 I I 11 � U 1 I � -�:V " , _ . � I 1. I , �, - � , ___ _. _ _,J � , 1 , I ; _.. -'� ,r / . " �', 11 * I , I I ,,, ""','"" I 11 __ ... . .... . -------!r ,, I J . I �L_ ,�� , "; "' 11 �' , ", .� 0� " ''/,t / .111,111",`/ ; " .: il : 'I' :. I 1, d , , 1, %.- / " I � , /.�. " I I I . � . � - .; . I , . I � � , . ­ I . 1 A, ". I 11 I '' ­11 I � �/ , � I �1 IF- " - - I I I . ­ I I­ � t : � I I I, 1. . I I : 11 I 1 �1 '-' . / � , - - I . / , - � I . __ , I I I - �. : ,� I- _"," �. ; - 1 1 L j— - IJ7 — � I I �[ �, '. I , 1�,, 1, , I I ... � 11 I - I , , �� , I - // , '. " , � ; , , � , � I � , , � 1� . I , " , I , . , � ,�- I / Z I I /� . f 1 I I ", - ; .- " "I ) i � I : ) I ! I I I I �1- z : I I . / i ! I I x, , , . , �, I — ­ -,- , � , , I I j .1�, �.z .� 1, . , ." 1 ; i / "I "'. � 1� I 1 , I , I I . , , , I", % I ? I � I / .1 I I I I " I � , . 11 . I - " �, I . , � / ; / I ) I / � . . , , �, / , I / / , I � I I I / / 1, I "'� ' , " I I �o � I I " % I I , I - 11 11-1 I , .1 I � : - ,�/��.-, I . I . .., -11 I I .", .1/1, �� r I - ��. - � I I I` ; I ,� 1. .. I I I I 11 I / , �. � , I I I " . , . � I . I I " � I i � I - I � I . I I • I � ,; I , " : i 11 11 I '' � i % I r- - t I . 1; i �, . � ,� � . � , . --rrt, IF, I � ; , I I 1i . I I . I )1i I I . I I 1 1 /', l- CB #17 I � . I 1, I., ." I "" �. ; , I - I 11 � 1 1 - , :,00 .- �, �. I -. 1 , . � � '. I b I I I I I I . .1.1 , - , "', I ... .- I . 41 - -1 ­'. , , '' , -1 - , .1 I ; , ,-I.- / . ` .. - I - � \ I - � � I . I., � � I i , I -1 " . i' I — r- ,�, � - , - . , I , \ � � " '. "Ill' '­ I'll 11 " ,2 � i I " � -I . I , I � , /, �.. .,/"/, . . 1 I I � 7 I � "I '. .11,­_1 - , I :i, .. . , I . I - .� ." � � : /), i�, . , s, I I , I .., I , " , � -1 /.,",-:.'.� , � . .1 ,/ , � I 11 I "I , , , , '/ 1, I � , , '-' — I'll I I . , , . , "'� , I . ,,, r - ,1/1,1� I , , . .1 .1, - �'. I " ". . I 1. 11,11' / I , , � " , , I /�', ( � . ,V ',­�`,/,/�/� " I ._. I � . . / / � �, � -11 I I \,,," " - , � . , , I I ";/ "s, , - : " K" N o . '. I .I..'_', "I ,.r � . I . / 11 . I ,."//'.'/ 1 , 0�,� I ­ , I j I., 11 , .e , /.1' = 1.02 c CB. ,6N, �'_ I . A , , . ,/ I " , I / I "I .,,/ , �'..,,/%�"-' / I.". . 11 ­ I ., , �. ". "_ , I" I , "", I , , - . , �_ , I �,� / "I., I � 01 11 , , . " � , f X / - , � I , "' /, ,., ,,, , . , , I ) -, , , , , , I , / I .''.1 � , / ,": , " - "I'll - If , I � I I , ,,.�,. , _, , �F,` , 1, , I :� 11 " � ��, ," � , ,,� ,. 1. r I- � . �11 �' , . -, -11, I // " -, I I - J-11L I ._­ --, 11 '/�, , , " � , " ., � , , " '' &- ... - Q * 11 � " , , " , . , 1/1 " I , ,. -- �1'1 , '_­,'/ L. I 'f z." /,.". I � .� . .,�'', ,�'/ I " I I , I . I , . � � . �'. I" �', -1 I � � I � . I -1 , I 11 1. i 11 .,.,/ , -, `." I 11 �� -�" '..", , . - I/'- ../ .11, ."",�',,�', �/' // ,,-- - ""'. / �, ��, ��, . I , .,,-//,�, / _/,Z /, / '.1 I ­ ,,,,,, / / " /,. " � � / , I 1� I I "I - -1. 1. , , '- , , r I , , , ", , , I 11 , , :4' : '. '._1 , I / � , I I 11 _1 , � I ;��,' -�,,` '/' 1 51 I // f//// ,/ z ( 1, , , " ,,, ", I /( " 1, , � " , I< I "'s', ,, " - "'I"', ,' / ,/ Al, I I /. , �, I s I , e�/ , /, /., / , I , .�/ , ", ,_'�, � ",/­ 1� "I / I , I/ �- . , , 4. �, - I , , I I" I , , •{' ,,, . I / e , " I , , , I / - I __ y � w , T �, � I , - , / / " , - / ,� I I .1 I � / �/�/ 1�/ I __ � 10) �;,�, / . .1 I _ / I '. I I / I �'�/ )J .1, �/,'.,.� , , / I I I/ "I I /I 11 I , . I I" - / I I " , , , / f ti' .1 ,,, , ,- / /X 11 /:cl / I " , .11 , , , 1� / / I , I , I � , - , - , � I , I , , I / '/ I " .` . �,, ,N , , . , �.,� ,. 11 / /. , , � I I / / / ,& .� �. ,,�t, , I / "I ". I "'.... " , "" ..,',.,I , � Po/ , ,� . .1 I 11 11 I � 11 , , . I I J, .11 " / �� I / 1.1�e. / . , z � . / I , I 11 I I .//, " ', � /,�, (,--, , 1� 1, ��' 1 I ,. N / , 1. " . 11 , , , ,',,* ,� , - "I /. sr,'� / , ,,, " / ­ , / , . . , , - , � / / / ,; , v "I , 0 _ 1, z . � I I - - , " , " : _�, � I ., " �, I . , , I 11 , . , , I I I , , 11 � , 1, I , , / �1..'� �, , . '­ I I , . , ., , ,,, , / ,,�,, ,,,,�(�, I / / " ., I I . ,Ile' I � I .//1 / /, 11 � ", / � - I , 11 I I I � r, /' I ✓ .1 I i , , X, "" -;,' / / I " / -1. " 1, � ,.� , " 11 � I , ", ,,, / ., , I / , � ,� � , , 1�'k " 'il __1 I I I , "" " , , '� I- , / ,�­ 1-1 I ' / - , / �1 ,Z , __ - ,r- .1 Z ­ ./ _�. I / / " '. / ,_ , """ �,�', �,, "// , �, / " - _� / // � , , , , - , x/ ,/, "" .�*/ - , , � , � , ` " ", " / ,---- , . -� 11 / , ,� ,,- ", I , , 11 -1 I "I I ,,, " �' "', /.� _."��_-,� I / /, -11 .1 "'I' / I /I I - , ,,,, , , . I _�'/ I , I - I . / , . s ., �, ,, � / IX '. .. I ,.,. , I � I . , I ",-`/",. - I I � /-. , '! �; s, , " `- 1�1 I,- �, , " I � . 60 0 30 60 120 . ., I , / I ,:,, ,- / ,/" 1. - /- , '. "", " , ,�/ �­ /I . � ; I GRAPHIC SCALE' � /// / / . V. - // " I , I I- " �, I I �, / / ,� I � , - :- -, - ,,, " ''/ , / , , , I - , , i " , / : I , 14�1 I/ "I, // I . , 11 I / 1, , /// I � " I - / ./ ,,�� S,., " " .,�":,/_, I/ - '/ � I I ( RV FEET ) 1, .". 1/1 ,"/ -, .. / / / I I s � , I "/ / 1, _,r/1/"'11 "�', :,-, ­ I. I inch = 60 f t. � I I I " , / , . I / , ", , ,r � , � . � I '/ " ��, , � '� �/ , / , , " -, I - � , I f// / , X � / X , I . � I I / � , ///X / / 4 1 1 w I , ,/ / , - i%lil .1 I " � , , , I/ / I , ­-, I_ - . I `/1' / / 1� / /11 ,/ 1-1 1 I I I , A DD -i n en),mint- — I • A 14 /_VvV . . .. - � N r - 8 0 .2 - f.1 ,6 � 0 z � 11 CJ co N 03 ca Q I N I It (Z) ­ 9 q Q CQ 4 V) C) CL I a Qf S2 Z I I >< n cy) (r) In (2 LQIJ ) 0 n- it 0- , a , a r , s , F , r 1 r } t4 1 US > _., _.. _ , VM ... , ..__ .._. -_, ___�._.:....._> ,# , r< l - .�_ _ 1. r, _,:. .- .._ •. ._.. ._._, _ _.. a .. . i , _ _ x r,_.,�.._._._._ _ ,._ ._.. «_., .__.- .,...__.._,,. >. ..,___:._,_ ♦rte r.,> , t s J , 1 e > r _ v. _ .. _.._ .a._.. .�,. .—._, > _,__.� - .__.._....r �.. _ �.�:. ---•— -- ^ -�*"'„ tee..._ __T , i,__, s, _. - r r , i . -_ all, ! , i mot" 3 r t. r , _. .:...., . —•v._ �_ , ... -- -.-' -. __..._.„._..,_.r_._ .. .�. ... ,,,- !'_ , ,. .. _..._. _ 7 _- tt- _t.. __-. , , ; r , _ r , , AV wr , i s' : r t - i r .s r , f F F r' i e «• It , _ REVISIONS Plans prepared by: � L Orel I SHEET NO OF r f, R pFESSt 1 �. � _ DESIGN BY: AK , ' 33 rto.2soo DRAWN BY: AK -. m trap. �/31/200fi � Alma lk0sr DATE: 01106106 I R i N S 16795 Von Korman, Suite 100 DWG FILE: eI�r CtYiL �� \� � Irvine, (California 92606 DATE BY NO. INT DESCRIPTION APP- APPR DATE or catij4° tel 949.474.19 60 0 fax 949.474.5315 www.fuscoe.com FOR: COSTCO LA QUINTA JOB NUMBER: 156.93.01