Loading...
3464241 IE HYDROLOGY REPORT For Property Located In a portion of Section 15, T6S., RM, SBM La Quinta, California Griffin Ranch Saddle Club July 19, 2007 Prepared for: Trans West Housing 47120 Dune Palms Road, Suite C La Quinta, CA 92253 -2051 JN 1721 MSA CONSULTING, INC. PLnrnMO ■ CPM Bxon�r MMq ■ LAND SURVEMO 34200 BoB Hope DRm ■ R" mo MMAGE ■ CA 92270 T MMMOM (760) 320 -9W ■ PAX (760) 323 -7893 HYDROLOGY RE --PORT For Property Located In a portion of Section 15, US, 117E., SBM La Quinta, California Griffin Ranch Saddle Club July 19, 2007 Prepared for: Trans West Housing 47120 Dune Palms Road, Suite C La Quinta, CA 92253 -2051 JN 1721 QROf ESSIp\ a. DE i .'4! J N0. 43880 jawf- (0 -30'� �lgrf �,C 4 F'���\�,. MSA CONSULTING, INC. PLA10Ma ■ C EM ENGRiM tnva ■ LAND SuRvnwco I.. D 34200 BoB HOPE DRm ■ RANCHO MRAGE ■ CA 92270 1mxmom (760) 320 -98U ■ FAx (760) 323 -7893 • 0 Project Description The Griffin Ranch Saddle Club is located Street in the city of La Quinta, California, park (see Vicinity Map). Existing Conditions south of Avenue 54 and west of Monroe and will consist of a 15 acre equestrian Flood Rate Map: The project area is covered by FIRM Panel No. 060245 2300 B, revised March 22, 1983, which shows that the project area lies within Zone C, indicating the area is subject to minimal flooding (see FEMA map). On -Site: The site is relatively flat and slopes gradually toward the southeast with storm runoff generally characterized as sheet flow. Off -Site: The Griffin Ranch improvements under development to the west and the proposed Griffin Ranch improvements to the north of the project prevent off -site storm runoff from entering the project site except from an existing 1.5 acre residence bordering on the north side of the project. Flood Control Requirements The drainage for this project site falls under the jurisdiction of the City of La Quinta. The project design shall provide for the capture and storage of all storm runoff generated on -site in a 100 -year storm, as well as that generated in the adjacent street frontage of Monroe Street. Proposed Hydrology and Flood Control Improvements On -site storm runoff will be conveyed via swales and storm drain pipes to retention basins, as shown on the attached hydrology maps. The horse arena at the southeast corner of the project will also serve as a large, shallow retention basin. A portion of this area will be depressed to allow for runoff storage in smaller storm events without inundation of the fenced arenas. Runoff from a 100 -year storm will inundate the entire retention area. Adjacent to the east end of this large retention area will be a separate, smaller retention basin which receives runoff primarily from off -site streets. Curb - opening catch basins in Monroe Street will intercept the storm runoff generated in the adjacent street frontage and it's tributary area for conveyance via storm drain pipes to the retention basins. Each retention basin will be sized to retain its entire tributary runoff volume from a 100 -year storm event. An emergency overflow route was established, allowing overflow from the large retention basin to spill to the smaller retention basin and subsequently into Monroe Street (see hydrology maps). Run -Off Analysis The Synthetic Unit Hydrograph, Shortcut Method, as prescribed in the RCFC &WCD Hydrology Manual, was used to determine the runoff volumes created from the proposed improvements in a 100 -year storm event, analyzing 3 -hour, 6 -hour and 24- hour storm durations. Since an overall land use type for this project is not readily categorized for determination of Runoff Index (RI) numbers per Plate E -6.1 of the Hydrology Manual, a composite RI number was determined by identifying tabled land use types and computing an average RI number weighted by the respective areas, as shown below. Impervious area percentages were determined by measuring • actual areas of buildings, pavement, hardscape and other impervious features, then dividing by total tributary area. Catch basin capacities were determined using HEC- 22 methodology. The data used in the Synthetic Unit Hydrograph calculations are as follows: Soil Group: B, AMC -II Runoff Index Number: Cover Type Area RI Pasture /Dryland 1.5 acres 61 Fallow 1.0 acres 85 Residential /Commercial 15.1 acres 56 Weighted Average RI Number = 58 Infiltration Rate (Fp): 0.49 in /hr Impervious Area (A;): Area A: 2.3 acres _ 16.4 acres =14% (actual) Area B: 0.7 acres = 1.3 acres = 54% Constant Loss Rate (F): Area A: 0.49[1 - 0.9(14 %)] = 0.43 in /hr 1.37 ac -ft Area B: 0.49[1 - 0.9(54 %)] = 0.25 in /hr Low Loss Rate: Area A: 90% — (0.8 X 14 %) = 79% in /hr Area B: 90% — (0.8 X 57 %) = 45% in /hr Storm Frequency: 100 -Year Total Adjusted Rainfall: 24 -Hour: 4.0 inches • 6 -Hour: 3 -Hour: 3.1 inches 2.6 inches Results and Conclusions The Synthetic Unit Hydrograph analysis yielded the following 100 -year storm runoff volumes: 24 -Hour 6 -Hour 3 -Hour Drainage Area A: 1.89 ac -ft 1.72 ac -ft 1.14 ac -ft Drainage Area B: 0.20 ac -ft 0.22 ac -ft 0.23 ac -ft Total: 2.09 ac -ft 1.94 ac -ft 1.37 ac -ft As shown, the 3 -hour storm produces the largest total runoff volume. The hydrology maps delineate the tributary areas used in the analyses, as well as the flow patterns, flow rates, impervious areas and other pertinent information. illustrates the storm runoff volume of the tributary areas and the storage capacities of the proposed retention basins. The catch basins are shown in the Catch Basin Capacity Calculations to be of sufficient size to accept the entirety of their respective peak flows. The Retention Basin Volume Calculations demonstrate the capacity of the retention basins to store their respective 100 -year storm runoff volumes. In consideration of the foregoing, it is therefore concluded that the proposed development of the Griffin Ranch Saddle Club meets the hydrologic requirements set forth by the City of La Quinta. • • • VICINITY MAP • VICINITY MAP N.T.S. • ` LLI w z it N U N 51 AVENUE — J 77N e32979 AVENUE AVENUE 501 52 AVENUE 53 AVENUE 54 AVENUE Nw o N 55 AVENUE BLVD • RETENTION BASIN VOLUME CALCULATIONS RETENTION BASIN VOLUME CALCULATIONS • BASIN A BASIN B DEPTH VOLUME CUM. VOL. ELEVATION AREA (SF) AREA (AC) (FT) (AC -FT) (AC -FT) 463.5 102,525.50 2.354 0.00 ,�.. `".�.�..- 463.0 0.5 1.16 �...-- ---- ---- -� 98,915;28. .2:271. 1.16 r BASIN SUB A TOTAL(A & SUB A)= 1.91 BASIN B DEPTH VOLUME CUM. VOL. ELEVATION AREA (SF) AREA (AC) (FT) (AC -FT) (AC -FT) 463.0 34,632.90 0.795 AREA (AC) (FT) (AC -FT) 0.00 E_,462. 30,323.08 0.696 ' 0- 0.37 :. 0.37 462.0 25,964.72 0.596 -5_ r _ - =6- 3= 0.69 _ 24,685.00. 0.567 0.1 0.06 0.75. TOTAL(A & SUB A)= 1.91 is BASIN B • DEPTH VOLUME CUM. VOL. ELEVATION AREA (SF) AREA (AC) (FT) (AC -FT) (AC -FT) 461.7 7,000.14 0.161 0.00 _461.0. � _ 5,32 1.07 0.7 0.10 �� - 0.122 x1.0 0.10 ----- ---+ 0.10 460.0 3,159.15 0.073 0.20 is • • CATCH BASIN CAPACITY CALCULATIONS • • Catch Basin Capacity Calculations The following equation used for grate inlet catch basins in sump conditions is taken from the Federal Highway Administration's Hydraulic Engineering Circular No. 22 (HEC -22). All maximum allowable depths are within the range for which the grates operate as weirs, so HEC -22 Equation 4 -26 is used. Q = CwPd'.5 where: Q = maximum storm flow in one inlet (cfs) Cw = weir coefficient = 3.0 P = perimeter of the grate (ft2)(50% clogging factor assumed): For 18 "x18" grate: A =1.5' x 1.5' x 50% = 1. 13 ft2 P= 1.13''x4 =4.25ft For 24 "x24" grate: A= 2'x 2'x 50% = 2 ft2 P= 2"" x4 =5.66ft For 36 "x36" grate: A= 3' x 3' x 50% = 4.5 ft2 P= 4.5'x4 =8.49ft d = depth of water over grate • Node 20 From HEC -22, using 24 "x24" grate and Q= 5.0 cfs: d= (Q _ (CwP))0.67 d= (5 = (3.0 x 5.66))o.s� = 0.40 ft Maximum depth allowed = 0.6 ft Node 40 From HEC -22, using 24 "x24" grate and Q= 4.4 cfs: d= (Q _ (CwP))0.67 d= (4.4 = (3.0 x 5.66))o.6� = 0.40 ft Maximum depth allowed = 0.6 ft Node 60 From HEC -22, using 18 "x18" grate and Q= 1.9 cfs: d= (Q _ (CwP))0.67 d= (1.9 _ (3.0 x 4.25))0.67 = 0.28 ft Maximum depth allowed = 0.5 ft Node 80 From HEC -22, using 36 "x36" grate and Q= 5.6 cfs: d= (Q _ (CwP))0.67 d= (5.6 _ (3.0 x 8.49))0.67 = 0.36 ft Maximum depth allowed = 0.8 ft 1�1 u • Node 100 From HEC -22, using 18 "x18" grate and Q= 3.2 cfs: d= (Q = (CWp))0.67 d= (3.2 _ (3.0 x 4.25))0.67 = 0.40 ft Maximum depth allowed = 0.5 ft Node 120 From HEC -22, using 24"x24" grate and Q= 3.3 cfs: d= (Q _ (CWp))o-s' d= (3.3 _ (3.0 x 5.66))°'6' = 0.33 ft Maximum depth allowed = 0.6 ft Node 200 From HEC -22, using 36"x36" grate and Q= 7.0 cfs: d= (Q T (CwP))0.67 d= (7.0 _ (3.0 x 8.49))o.s� = 0.42 ft Maximum depth allowed = 0.8 ft • 40 • CATCH BASIN SIZING The grades used for calculating the offsite street catch basins are preliminary grades which may be subject to change. Catch Basin No. 1 HEC -22 Equation 4 -25 is used to size catch basins on grade. The catch basins have local depressions 4' wide and 4" (0.33') deep, per La Quinta standards. Using peak flows as shown on the Rational Method Hydrology Map exhibit, and street flow depths and spreads from the Street Flow Capacity Charts, the required curb opening lengths are determined as follows: (EQ. 4 -25) Lt = Kt QO.az SLO .s [1/(n S.)]0.6 where: Q = maximum storm flow in one inlet (cfs) Lt = length of curb opening for total intercept (ft) Kt = units conversion factor = 0.6 SL = longitudinal slope (ft/ft) n = Manning's roughness coefficient = 0.015 Se = equivalent street cross slope (see below) (EQ. 4 -24) Se = S. + S'WEo where: SX = normal street cross slope (ft/ft) • S'W = gutter cross slope measured from pavement cross slope = SW – SX SW = cross slope of the depressed gutter (ft/ft) Eo = ratio of gutter flow to total flow (see below) (EQ. 4 -4) Eo = 1 + SW /SX r 11+ SW /SX Y.67 –1 T /W -1 where: T = total spread of water (ft) (see Street Flow Capacity Charts) W= width of depressed gutter = 4' 10 -Year Storm: Q,o = 1.9 cfs SL = 0.0039 SX = 0.02 SW = [0.16' + 0.33' + 2'(0.02)]/2' = 0.1325 S'W = 0.1325 – 0.02 = 0.1125 W=4' T= 11.00' (T is less than 20' maximum —okay to proceed) • E° _ 1 _ 1 1+ S "/SX 1+ 0.1325/0.02 =0.91 C1 S,,, /Sx lzb� -1 1+ 0.1325 /0.02 267.1 T /W -1 ( 11.00/4 -1 ) Se = SX + S',NEo = 0.02 + [0.1125(0.91)]= 0.12 Lt = Kt Qo.42 SLO .3 [1 /(nSe)]0.6 = 0.6 (1.9)0.42 (0.0039 )0_3 [1/(0.015(0.12))]0.6 = 6_6' 100 -Year Storm: Q100 = 3.1 cfs T= 13.50' _ 1 _ 1 E° SW l SX 0.1325/0.02 = 0.84 1+ 1+ S,,, /Sx 267 —1 1+ 1+ 0.1325 /0.02 z'67 —1 T /W -1) C 13.50/4 -1 ) Se = SX + S',,,,Eo = 0.02 + [0.1125(0.84)]= 0.11 Lt = Kt Qo.a2 S� .3 [1/(n )]0.6 = 0.6 (3.1)0.42 (0.0039)0.3 [1/(0.015(0.11))]0.6 = 8_5' is Use minimum 9' curb opening. • • Catch Basin No. 2 Catch Basin No. 9 has a configuration similar to Catch Basin No. 2, so it's capacity is calculated using the same methodology: • • 10 -Year Storm: Q,o = 2.0 cfs SL = 0.0039 T= 12.00' (T is less than 20' maximum —okay to proceed) 1 _ 1 E° _ 1+ S,,,/S., 1+ 0.1325/0.02 =0.88 Cl+ S,,, /Sx 1z6� –1 1+ 0.1325 /0.02 267 –1 T /W -1 ( 12.00/4 -1 ) Se = SX + S',HEo = 0.02 + [0.1125(0.88)]= 0.12 Lt = Kt Qo.42 SLO .3 [1/(nSe)]0.6 = 0.6 (2.0)0.42 (0.0039)0.3 [1/(0.015(0.12))]0.6 = 6_7, 100 -Year Storm: Q100 = 3.4 cfs T= 14.00' _ 1 _ 1 E° 1 + S,, / Sx 1+ 0.1325 / 0.02 Cl + Sw / SX 12.67 –1 Cl + 0.1325/0.02 2.67 T /W -1 l 14.00/4-1) Se = SX + S',NEo = 0.02 + [0.1125(0.82)]= 0.11 –1 = 0.82 Lt = Kt Qo.42 SL0.3 [1 /(nSe)]0.6 = 0.6(3.4 )0-42 (0.0039 )0.3 [1/(0.015(0.11))]0.6 = 8 -9' Use minimum 10' curb opening. • • • SYNTHETIC UNIT HYDROGRAPH SHORTCUT METHOD CALCULATIONS • • • R C F C& W C D "SHORTCUT METHOD" G0V nOO 1 @V SYNTHETIC UNIT HYDROGRAPH METHOD H, IMML Unit Hydrograph and Effective Rain Calculation Form Project 1721 Developed Areas - Drainage Area B Sheet By RRR Date Checked Date [1) CONCENTRATION POINT - -- [3) DRAINAGE AREA -ACRES 1.3 [5] UNIT TIME - MINUTES 30 (7] UNIT TIME - PERCENT OF LAG (100'[5]/[61) - -- [9] STORM FREQUENCY & DURATION 100 -YR, 24 -HR [11) VARIABLE LOSS RATE (AVG)- INCHES /HOUR - -- 13 CONSTANT LOSS RATE- INCHES /HOUR 0.25 [2] AREA DESIGNATION - -- [4] ULTIMATE DISCHARGE - CFS - HRS /IN (645'[3]) - -- [6] LAG TIME - MINUTES - -- [8) S -CURVE - -- [10] TOTAL ADJUSTED STORM RAIN- INCHES 4.0 [12) MINIMUM LOSS RATE (FOR VAR. LOSS) -IN /HR - -- [141 LOW LOSS RATE- PERCENT 47 7� UNIT HYDROGRAPH EFFECTIVE RAIN FLOOD HYDROGRAPH [15] UNIT TIME PERIOD M [16] TIME PERCENT OF LAG [7]'[151 [17] CUMULATIVE AVERAGE PERCENT OF ULTIMATE DISCHARGE (S- GRAPH) [16] DISTRIB GRAPH PERCENT [17]m- [17]m -1 [17] UNIT HYDROGRAPH CFS - HRS /IN 14' 18 100.000 [20] PATTERN PERCENT (PL E -5.9) [21] STORM RAIN IN /HR 601`101120 1 100[5] [22] LOSS RATE IN /HR [23] EFFECTIVE RAIN IN /HR [21]_[22] [24] FLOW CFS MAX LOW 1 0.5 0.040 0.250 0.019 0.021 0.028 2 0.7 0.056 0.250 0.026 0.030 0.039 3 0.6 0.048 0.250 0.023 0.025 0.033 4 0.7 0.056 0.250 0.026 0.030 0.039 5 0.8 0.064 0.250 0.030 0.034 1 0.044 6 1.0 0.080 0.250 0.038 0.042 0.056 7 1.0 0.080 0.250 0.038 0.042 0.056 8 1.1 0.088 0.250 0.041 0.047 0.061 9 1.3 0.104 0.250 0.049 0.055 0.072 10 1.5 0.120 0.250 0.056 0.064 0.083 11 1.3 0.104 0.250 0.049 0.055 0.072 12 1.6 0.128 0.250 0.060 0.068 0.089 13 1.8 0.144 0.250 0.068 0.076 0.100 14 2.0 0.160 0.250 0.075 0.085 0.111 15 2.1 0.168 0.250 0.079 0.089 0.117 16 2.5 0.200 0.250 0.094 0.106 0.139 17 3.0 0.240 0.250 0.113 0.127 0.167 18 3.3 0.264 0.250 0.124 0.140 0.183 19 3.9 0.312 0.250 0.147 0.165 0.217 20 4.3 0.344 0.250 0.162 0.182 0.239 21 3.0 0.240 0.250 0.113 0.127 0.167 22 4.0 0.320 0.250 0.150 0.170 0.222 23 3.8 0.304 0.250 0.143 0.161 0.211 24 3.5 0.280 06250 0.132 0.148 0.195 25 5.1 0.408 0.250 0.192 0.216 0.283 26 5.7 0.456 0.250 0.214 1 0.242 0.317 27 6.8 0.544 0.250 0.256 1 0.294 0.385 28 4.6 0.368 0.250 0.173 1 0.195 0.256 29 5.3 0.424 0.250 0.199 1 0.225 0.295 30 5.1 0.408 0.250 0.192 1 0.216 0.283 31 4.7 0.376 0.250 0.177 1 0.199 0.261 32 3.8 0.304 0.250 0.143 1 0.161 0.211 33 0.8 0.064 0.250 0.030 1 0.034 0.044 34 0.6 0.048 0.250 0.023 1 0.025 0.033 35 1.0 0.080 0.250 0.038 1 0.042 0.056 36 0.9 0.072 0.250 0.034 0.038 0.050 37 0.8 0.064 0.250 0.030 0.034 0.044 38 0.5 0.040 0.250 0.019 0.021 0.028 39 0.7 0.056 0.250 0.026 0.030 0.039 40 0.5 0.040 0.250 0.019 0.021 0.028 41 0.6 0.048 0.250 0.023 0.025 0.033 42 0.5 0.040 0.250 0.019 0.021 0.028 43 0.5 0.040 0.250 0.019 0.021 0.028 44 0.5 0.040 0.250 0.019 0.021 0.028 45 0.5 0.040 0.250 0.019 0.021 0.028 46 0.4 0.032 0.250 0.015 0.017 0.022 47 0.4 0.032 0.250 0.015 0.017 0.022 48 0.4 0.032 0.250 0.015 0.017 0.022 TOTALS 100.0 1 4.246 1 5.565 EFFECTIVE RAIN = 2.123 INCHES TOTAL RUNOFF VOLUME = 0.23 AC -FT • C R C F C& W C D "SHORTCUT METHOD" MVpQ @d@ V SYNTHETIC UNIT HYDROGRAPH METHOD 1G��]MQd Unit Hydrograph and Effective Rain Calculation Form Project 1721 Developed Areas - Drainage Area B Sheet By RRR Date Checked Date [1] CONCENTRATION POINT - -- [3] DRAINAGE AREA -ACRES 1.3 [5] UNIT TIME - MINUTES 10 [7] UNIT TIME - PERCENT OF LAG (100•[5]/[6]) - -- [9] STORM FREQUENCY & DURATION 100 -YR, 6 -HR [11] VARIABLE LOSS RATE (AVG)- INCHES /HOUR - -- 13 CONSTANT LOSS RATE- INCHES /HOUR 0.25 [2] AREA DESIGNATION - -- [4] ULTIMATE DISCHARGE - CFS - HRS /IN (645'[3]) - -- [6] LAG TIME - MINUTES - -- [8] S -CURVE - -- [10] TOTAL ADJUSTED STORM RAIN- INCHES 3.1 [12] MINIMUM LOSS RATE (FOR VAR. LOSS) -IN /HR - -- 14 LOW LOSS RATE- PERCENT 47 UNIT HYDROGRAPH EFFECTIVE RAIN FLOOD HYDROGRAPH [15] UNIT TIME PERIOD M [16] TIME PERCENT OF LAG [7]•[15] [17] CUMULATIVE AVERAGE PERCENT OF ULTIMATE DISCHARGE (S- GRAPH) [16] DISTRIB GRAPH PERCENT [17]m- [17]m -1 [17] UNIT HYDROGRAPH CFS - HRS /IN f41*1181 100.000 [20] PATTERN PERCENT (PL E -5.9) [21] STORM RAIN IN /HR 60 10 20 100[5] [22] LOSS RATE IN /HR [23] EFFECTIVE RAIN IN /HR [21] -[22] [24] FLOW CFS MAX LOW 1 1.1 0.205 0.250 0.096 0.108 0.142 2 1.2 0.223 0.250 0.105 0.118 0.155 3 1.3 0.242 0.250 0.114 0.128 0.168 4 1.4 0.260 0.250 0.122 0.138 0.181 5 1.4 0.260 0.250 0.122 1 0.138 0.181 6 1.5 0.279 0.250 0.131 1 0.148 0.194 7 1.6 0.298 0.250 0.140 1 0.158 0.207 8 1.6 0.298 0.250 0.140 0.158 0.207 9 1.6 0.298 0.250 0.140 0.158 0.207 10 1.6 0.298 0.250 0.140 0.158 0.207 11 1.6 0.298 0.250 0.140 0.158 0.207 12 1.7 0.316 0.250 0.149 0.168 0.220 13 1.7 0.316 0.250 0.149 0.168 0.220 14 1.8 0.335 0.250 0.157 0.177 0.233 15 1.8 0.335 0.250 0.157 1 0.177 0.233 16 1.8 0.335 0.250 0.157 1 0.177 0.233 17 2.0 0.372 0.250 0.175 1 0.197 0.258 18 2.0 0.372 0.250 0.175 1 0.197 0.258 19 2.1 0.391 0.250 0.184 1 0.207 0.271 20 2.2 0.409 0.250 0.192 0.217 0.284 21 2.5 0.465 0.250 0.219 0.246 0.323 22 2.8 0.521 0.250 0.245 0.276 0.362 23 3.0 0.558 0.250 0.262 0.308 0.404 24 3.2 0.595 0.250 0.280 0.345 0.452 25 3.5 0.651 0.250 0.306 0.401 0.526 26 3.9 0.725 0.250 0.341 0.475 0.623 27 4.2 0.781 0.250 0.367 0.531 0.696 28 4.5 0.837 0.250 0.393 0.587 0.769 29 4.8 0.893 0.250 0.420 0.643 0.843 30 5.1 0.949 0.250 0.446 0.699 0.916 31 6.7 1.246 0.250 0.586 0.996 1.306 32 8.1 1.507 0.250 0.708 1.257 1.647 33 10.3 1.916 0.250 0.900 1.666 2.184 34 2.8 0.521 0.250 0.245 0.276 0.362 35 1.1 0.205 0.250 0.096 0.108 0.142 36 0.5 0.093 0.250 0.044 0.049 0.065 TOTALS 100.0 12.117 15.884 EFFECTIVE RAIN = 2.020 INCHES TOTAL RUNOFF VOLUME = 0.22 AC -FT .7 • R C F C& W C D "SHORTCUT METHOD" NVpR@L0 V SYNTHETIC UNIT HYDROGRAPH METHOD 1Q�1NJG�1(� Unit Hydrograph and Effective Rain Calculation Form Project 1721 Developed Areas - Drainage Area B Sheet By RRR Date Checked Dater [1] CONCENTRATION POINT - -- [3] DRAINAGE AREA -ACRES 1.3 [5] UNIT TIME - MINUTES 5 [71 UNIT TIME - PERCENT OF LAG (100'[5]/[6]) - -- [9] STORM FREQUENCY & DURATION 100 -YR, 3 -HR [11] VARIABLE LOSS RATE (AVG)- INCHES /HOUR - -- 13 CONSTANT LOSS RATE- INCHES /HOUR 0.25 [2] AREA DESIGNATION [4] ULTIMATE DISCHARGE - CFS - HRS /IN (645'[3]) - -- [61 LAG TIME - MINUTES ___ [8] S -CURVE ___ [10] TOTAL ADJUSTED STORM RAIN- INCHES 2.6 [12] MINIMUM LOSS RATE (FOR VAR. LOSS) -IN /HR - -- [141 LOW LOSS RATE- PERCENT 47 UNIT HYDROGRAPH EFFECTIVE RAIN FLOOD HYDROGRAPH 1151 UNIT TIME PERIOD M [16] TIME PERCENT OF LAG [7]'[15] [17] CUMULATIVE AVERAGE PERCENT OF ULTIMATE DISCHARGE (S- GRAPH) 1161 DISTRIB GRAPH PERCENT [17]m- [17]m -1 [17] UNIT HYDROGRAPH CFS - HRS /IN j411181 100.000 [20] PATTERN PERCENT (PL E -5.9) [21] STORM RAIN IN /HR 601f 0Ir201 100[5] [22] LOSS RATE IN /HR [23] EFFECTIVE RAIN IN /HR [21]_[22] [241 FLOW CFS MAX LOW 1 0.406 0.250 0.191 0.215 0.282 2 0.406 0.250 0.191 0.215 0.282 3 0.343 0.250 0.161 0.182 0.238 4 W15 0.468 0.250 0.220 0.248 0.325 5 0.468 0.250 0.220 0.248 0.325 6 0.562 0.250 0.264 0.312 0.408 7 0.468 0.250 0.220 0.248 0.325 8 1.8 0.562 0.250 0.264 0.312 0.408 9 1.8 0.562 0.250 0.264 0.312 0.408 10 1.5 0.468 0.250 0.220 0248 0.325 11 1.6 0.499 0.250 0.235 0.265 0.347 12 1.8 0.562 0.250 0.264 0.312 0.408 13 2.2 0.686 0.250 0.323 0.436 0.572 14 2.2 0.686 0.250 0.323 0.436 0.572 15 2.2 0.686 0.250 0.323 0.436 0.572 16 2.0 0.624 0.250 0.293 0.374 0.490 17 2.6 0.811 0.250 0.381 0.561 0.736 18 2.7 0.842 0.250 0.396 0.592 0.777 19 2.4 0.749 0.250 0.352 0.499 0.654 20 2.7 0.842 0.250 0.396 0.592 0.777 21 3.3 1.030 0.250 0.484 0.780 1.022 22 3.1 0.967 0.250 0.455 0.717 0.940 23 2.9 0.905 0.250 0.425 1 0.655 0.858 24 3.0 0.936 0.250 0.440 0.686 0.899 25 3.1 0.967 0.250 0.455 0.717 0.940 26 4.2 1.310 0.250 0.616 1.060 1.390 27 1 5.0 1.560 0.250 0.733 1.310 1.717 28 3.5 1.092 0.250 0.513 0.842 1.104 29 6.8 2.122 0.250 0.997 1.872 2.453 30 7.3 2.278 0.250 1.070 2.028 2.658 31 8.2 2.558 0.250 1.202 2.308 3.026 32 5.9 1.841 0.250 0.865 1.591 2.085 33 2.0 0.624 0.250 0.293 0.374 0.490 34 1.8 0.562 0.250 0.264 0.312 0.408 35 1.8 0.562 0.250 0.264 0.312 0.408 36 0.6 0.187 0.250 0.088 0.099 0.130 TOTALS 100.0 1 22.705 1 29.762 EFFECTIVE RAIN = 1.892 INCHES TOTAL RUNOFF VOLUME = 0.20 AC -FT • • • R C F C& W C D "SHORTCUT METHOD" SYNTHETIC UNIT HYDROGRAPH METHOD a�roaoaocr� �IQaN�ad Unit Hydrograph and Effective Rain Calculation Form Project 1721 Developed Areas - Drainage Area A Sheet � ] By ----ERR Date Checked Date [1] CONCENTRATION POINT - -- [3] DRAINAGE AREA -ACRES 16.3 [5] UNIT TIME - MINUTES 30 [7] UNIT TIME - PERCENT OF LAG (100'[5]/[6]) - -- [9] STORM FREQUENCY & DURATION 100 -YR, 24 -HR [11] VARIABLE LOSS RATE (AVG)- INCHES /HOUR - -- [131 CONSTANT LOSS RATE- INCHES /HOUR 0.43 [2] AREA DESIGNATION - -- [4] ULTIMATE DISCHARGE - CFS - HRS /IN (645•[3]) - -- [6] LAG TIME - MINUTES - -- [8] S -CURVE - -- (10] TOTAL ADJUSTED STORM RAIN- INCHES 4.0 [12] MINIMUM LOSS RATE (FOR VAR. LOSS) -IN /HR --- [141 LOW LOSS RATE- PERCENT 79 UNIT HYDROGRAPH EFFECTIVE RAIN FLOOD HYDROGRAPH [15] UNIT TIME PERIOD M [16] TIME PERCENT OF LAG [7]'[15] [17] CUMULATIVE AVERAGE PERCENT OF ULTIMATE DISCHARGE (S- GRAPH) [16] DISTRIB GRAPH PERCENT [17]m- [17]m -1 [17] UNIT HYDROGRAPH CFS - HRS /IN 1`41 "1`181 100.000 [20] PATTERN PERCENT (PL E -5.9) [21] STORM RAIN IN /HR 6011011`201 100[5] [22] LOSS RATE IN /HR [23] EFFECTIVE RAIN IN /HR [21] -[22] [24] FLOW CFS MAX LOW 1 0.5 0.040 0.430 0.032 1 0.008 0.138 2 0.7 0.056 0.430 0.044 1 0.012 0.193 3 0.6 0.048 0.430 0.038 0.010 0.166 4 0.7 0.056 0.430 0.044 0.012 0.193 5 068 0.064 0.430 0.051 0.013 0.221 6 1.0 0.080 0.430 0.063 0.017 0.276 7 1.0 0.080 0.430 0.063 0.017 0.276 8 1.1 0.088 0.430 0.070 0.018 0.304 9 1.3 0.104 0.430 0.082 0.022 0.359 10 1.5 0.120 0.430 0.095 0.025 0.414 11 1.3 0.104 0.430 0.082 0.022 0.359 12 1.6 0.128 0.430 0.101 0.027 0.442 13 1.8 0.144 0.430 0.114 0.030 0.497 14 2.0 0.160 0.430 0.126 0.034 0.552 15 2.1 0.168 0.430 0.133 0.035 0.580 16 2.5 0.200 0.430 0.158 0.042 0.690 17 10 0.240 0.430 0.190 0.050 0.828 18 3.3 0.264 0.430 0.209 0.055 0.911 19 3.9 0.312 0.430 0.246 0.066 1.077 20 1 4.3 0.344 0.430 0.272 0.072 1.187 21 3.0 0.240 0.430 0.190 0.050 0.828 22 4.0 0.320 0.430 0.253 0.067 1.104 23 3.8 0.304 0.430 0.240 0.064 1.049 24 3.5 0.280 0.430 0.221 0.059 0.966 25 5.1 0.408 0.430 0.322 0.086 1.408 26 5.7 0.456 0.430 0.360 0.096 1.574 27 6.8 0.544 0.430 0.430 0.114 1.878 28 1 4.6 0.368 0.430 0.291 0.077 1.270 29 5.3 0.424 0.430 0.335 0.089 1.463 30 5.1 0.408 0.430 0.322 0.086 1.408 31 4.7 0.376 0.430 0.297 0.079 1.298 32 3.8 0.304 0.430 0.240 0.064 1.049 33 0.8 0.064 0.430 0.051 0.013 0.221 34 0.6 0.048 0.430 0.038 0.010 0.166 35 1.0 0.080 0.430 0.063 0.017 0.276 36 0.9 0.072 0.430 0.057 0.015 0.249 37 0.8 0.064 0.430 0.051 0.013 0.221 38 0.5 0.040 0.430 0.032 0.008 0.138 39 0.7 0.056 0.430 0.044 0.012 0.193 40 0.5 0.040 0.430 0.032 0.008 0.138 41 0.6 0.048 0.430 0.038 0.010 0.166 42 0.5 0.040 0730 0.032 0.008 0.138 43 0.5 0.040 0.430 0.032 0.008 0.138 44 0.5 0.040 0.430 0.032 0.008 0.138 45 0.5 0.040 0.430 0.032 0.008 0.138 46 0.4 0.032 0.430 0.025 0.007 0.110 47 0.4 0.032 0.430 0.025 0.007 0.110 48 0.4 0.032 0.430 0.025 0.007 0.110 TOTALS 100.0 1 1 1.680 27.612 EFFECTIVE RAIN = 0.840 INCHES TOTAL RUNOFF VOLUME = 1.14 AC -FT • • • R C F C& W C D "SHORTCUT METHOD" GJw(]R d @ @V SYNTHETIC UNIT HYDROGRAPH METHOD ]Q(nl�Jad Unit Hydrograph and Effective Rain Calculation Form Project 1721 Developed Areas - Drainage Area A Sheet By RRR Date Checked Date [1] CONCENTRATION POINT - -- [3] DRAINAGE AREA -ACRES 16.3 [5] UNIT TIME - MINUTES 10 [7] UNIT TIME - PERCENT OF LAG (100'[5]1[6]) - -- [9] STORM FREQUENCY & DURATION 100 -YR, 6 -HR [11] VARIABLE LOSS RATE (AVG)- INCHES /HOUR - -- 13 CONSTANT LOSS RATE- INCHES /HOUR 0.43 [2] AREA DESIGNATION [4] ULTIMATE DISCHARGE - CFS - HRS /IN (645'[3]) - -- [6] LAG TIME - MINUTES ___ [8] S -CURVE - -- [10] TOTAL ADJUSTED STORM RAIN- INCHES 3.1 [12] MINIMUM LOSS RATE (FOR VAR. LOSS) -IN /HR [141 LOW LOSS RATE- PERCENT 79 7 UNIT HYDROGRAPH EFFECTIVE RAIN FLOOD HYDROGRAPH [1 5] UNIT TIME PERIOD M [16] TIME PERCENT OF LAG [7]'[15] [17] CUMULATIVE AVERAGE PERCENT OF ULTIMATE DISCHARGE (S- GRAPH) [16] DISTRIB GRAPH PERCENT [17]m- [17]m -1 [17] UNIT HYDROGRAPH CFS - HRS /IN 4' 18 100.000 [20] PATTERN PERCENT (PL E -5.9) [21] STORM RAIN IN /HR 60 10 20 100[5] [22] LOSS RATE IN /HR [23) EFFECTIVE RAIN IN /HR [21] -[22] [24] FLOW CFS MAX LOW 1 1.1 0.205 0.430 0.162 1 0.043 0.706 2 1.2 0.223 0.430 0.176 1 0.047 0.770 3 1.3 0.242 0.430 0.191 1 0.051 0.835 4 1.4 0.260 0.430 0.206 0.055 0.899 5 1.4 0.260 0.430 0.206 0.055 0.899 6 1.5 0.279 0.430 0.220 0.059 0.963 7 1.6 0.298 0.430 0.235 0.062 1.027 8 1.6 0.298 0.430 0.235 0.062 1.027 9 1.6 0.298 0.430 0.235 0.062 1.027 10 1.6 0.298 0.430 0.235 0.062 1.027 11 1.6 0.298 0.430 0.235 0.062 1.027 12 1.7 0.316 0.430 0.250 0.066 1.091 13 1.7 0.316 0.430 0.250 0.066 1.091 14 1.8 0.335 0.430 0.264 0.070 1.156 15 1.8 0.335 0.430 0.264 0.070 1.156 16 1.8 0.335 0.430 0.264 0.070 1.156 17 2.0 0.372 0.430 0.294 0.078 1.284 18 2.0 0.372 0.430 0.294 0.078 1.284 19 2.1 0.391 0.430 0.309 0.082 1.348 20 2.2 0.409 0.430 0.323 0.086 1.412 21 2.5 0.465 0.430 0.367 0.098 1.605 22 2.8 0.521 0.430 0.411 0.109 1.798 23 3.0 0.558 0.430 0.441 0.128 2.104 24 3.2 0.595 0.430 0.470 0.165 2.715 25 3.5 0.651 0.430 0.514 0.221 3.632 26 3.9 0.725 0.430 0.573 0.295 4.855 27 4.2 0.781 0.430 0.617 0.351 5.772 28 4.5 0.837 0.430 0.661 0.407 6.689 29 1 4.8 0.893 0.430 0.705 0.463 7.607 30 1 5.1 0.949 0.430 0.749 0.519 8.524 31 1 1 6.7 1.246 0.430 0.984 0.816 13.415 32 1 8.1 1.507 0.430 1.190 1.077 17.695 33 1 10.3 1.916 0.430 1.513 1.486 24.420 34 2.8 0.521 0.430 0.411 0.109 1.798 35 1.1 0.205 0.430 0.162 0.043 0.706 36 0.5 0.093 0.430 0.073 0.020 0.321 TOTALS 1 100.0 7.596 124.841 EFFECTIVE RAIN = 1.266 INCHES TOTAL RUNOFF VOLUME = 1.72 AC -FT 0 • RCFCBWCD "SHORTCUT METHOD" Nw SYNTHETIC UNIT HYDROGRAPH METHOD DG30dOO C��l (a(til�Qd Unit Hydrograph and Effective Rain Calculation Form Project 1721 Developed Areas - Drainage Area A Sheet 1 1 Br RRR Date Checked Date [1] CONCENTRATION POINT - [3] DRAINAGE AREA -ACRES 16.3 (5] UNIT TIME - MINUTES 5 [7] UNIT TIME - PERCENT OF LAG (100'[5]/[6]) -- [9] STORM FREQUENCY & DURATION 100 -YR, 3 -HR [11] VARIABLE LOSS RATE (AVG)- INCHES /HOUR - -- 13 CONSTANT LOSS RATE- INCHES /HOUR 0.43 [2] AREA DESIGNATION [4] ULTIMATE DISCHARGE - CFS - HRS /IN (645•[3]) - -- [6] LAG TIME - MINUTES ___ [8] S -CURVE --- [10] TOTAL ADJUSTED STORM RAIN- INCHES 2.6 11121 MINIMUM LOSS RATE (FOR VAR. LOSS) -IN /HR - -- [141 LOW LOSS RATE- PERCENT 79 UNIT HYDROGRAPH EFFECTIVE RAIN FLOOD HYDROGRAPH [151 UNIT TIME PERIOD M [16] TIME PERCENT OF LAG [7]•[15] [17] CUMULATIVE AVERAGE PERCENT OF ULTIMATE DISCHARGE (S- GRAPH) [16] DISTRIB GRAPH PERCENT [17]m- [17]m -1 [171 UNIT HYDROGRAPH CFS - HRS /IN 1`411181 100.000 [20] PATTERN PERCENT (PL E -5.9) [21] STORM RAIN IN /HR 601f 01x201 100[5] [22] LOSS RATE IN /HR [23] EFFECTIVE RAIN IN /HR [21] -[22] [24] FLOW CFS MAX LOW 1 1.3 0.406 0.430 0.320 0.085 1.400 2 1.3 0.406 0.430 0.320 0.085 1.400 3 1.1 0.343 0.430 0.271 0.072 1.185 4 1.5 0.468 0.430 0.370 0.098 1.615 5 1.5 0.468 0.430 0.370 0.098 1.615 6 1.8 0.562 0.430 0.444 0.132 2.163 7 1.5 0.468 0.430 0.370 0.098 1.615 8 1 1.8 0.562 0.430 0.444 0.132 2.163 9 1.8 0.562 0.430 0.444 0.132 2.163 10 1.5 0.468 0.430 0.370 0.098 1.615 11 1.6 0.499 0.430 0.394 0.105 1.723 12 1.8 0.562 0.430 0.444 0.132 2.163 13 2.2 0.686 0.430 0.542 0.256 4.214 14 2.2 0.686 0.430 0.542 0.256 4.214 15 2.2 0.686 0.430 0.542 0.256 4.214 16 10 0.624 0.430 0.493 0.194 3.189 17 16 0.811 0.430 0.641 0.381 6.265 18 2.7 0.842 0.430 0.665 0.412 6.778 19 2.4 0.749 0.430 0.592 0.319 5.240 20 1 2.7 0.842 0.430 0.665 0.412 6.778 21 3.3 1.030 0.430 0.813 0.600 9.855 22 3.1 0.967 0.430 0.764 0.537 8.829 23 2.9 0.905 0.430 0.715 0.475 7.804 24 3.0 0.936 0.430 0.739 0.506 8.317 25 3.1 0.967 0.430 0.764 0.537 8.829 26 4.2 1.310 0.430 1.035 0.880 14.470 27 5.0 1.560 0.430 1.232 1 1.130 18.572 28 3.5 1.092 0.430 0.863 0.662 10.881 29 6.8 2.122 0.430 1.676 1.692 27.803 30 7.3 2.278 0.430 1.799 1.848 30.367 31 8.2 2.558 0.430 2.021 2.128 34.982 32 5.9 1.841 0.430 1.454 1.411 23.188 33 2.0 0.624 0.430 0.493 0.194 1189 34 1.8 0.562 0.430 0.444 0.132 2.163 35 1.8 0.562 0.430 0.444 0.132 2.163 36 0.6 0.187 0.430 0.148 0.039 0.646 TOTALS 100.0 16.657 1 273.770 EFFECTIVE RAIN = 1.388 INCHES TOTAL RUNOFF VOLUME = 1.89 AC -FT • • RATIONAL METHOD ANALYSIS 100 -YEAR • • Riverside County Rational Hydrology Program CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2005 Version 7.1 Rational Hydrology Study Date: 09/02/07 File:1721SC100.out ------------------------------------------------------------------------ 1721 Saddle Club 100 Year Storm ------------------------------------------------------------------------ ********* Hydrology Study Control Information * * * * * * * * ** English (in -lb) Units used in input data file ------------------------------------------------------------------------ Program License Serial Number 6091 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 Standard intensity- duration curves data (Plate D -9.1) For the [ Cathedral City ] area used. 10 year storm 10 minute intensity = 2.770(In /Hr) 10 year storm 60 minute intensity = 0.980(In /Hr) 100 year storm 10 minute intensity = 9.520(In /Hr) 100 year storm 60 minute intensity = 1.600(In /Hr) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.600(In /Hr) Slope of intensity duration curve = 0.5800 Process from Point /Station 10.000 to Point /Station 20.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 262.000(Ft.) Top (of initial area) elevation = 966.200(Ft.) Bottom (of initial area) elevation = 969.800(Ft.) Difference in elevation = 1.900(Ft.) Slope = 0.00539 s(percent)= 0.53 TC = k(0.980) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 12.676 min. Rainfall intensity = 3.992(In /Hr) for a 100.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.799 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 5.048(CFS) Total initial stream area = 1.710(Ac.) Pervious area fraction = 0.800 +++++++++++++++++++++++++++++++++++++++ + + + ++ + + + + + + + + ++ + + + + + + + + + + + + + + ++ Process from Point /Station 20.000 to Point /Station 90.000 * * ** PIPEFLOW TRAVEL TIME (User specified size) * * ** Upstream point /station elevation = 962.500(Ft.) Downstream point /station elevation = 960.900(Ft.) Pipe length = 959.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.098(CFS) • Given pipe size i 1ipe flow - Calculated individual pipe flow 5.098(CFS) • Normal flow depth in pipe = 12.33(In.) Flow top width inside pipe = 16.72(In.) Critical Depth = 10.36(In.) Pipe flow velocity = 3.91(Ft /s) Travel time through pipe = 1.96 min. Time of concentration (TC) = 14.63 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + ++ + + + + + + + ++ ++ Process from Point /Station 20.000 to Point /Station 40.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 1.710(Ac.) Runoff from this stream = 5.048(CFS) Time of concentration = 14.63 min. Rainfall intensity = 3.627(In /Hr) Program is now starting with Main Stream No. 2 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + +++ + + + + + + + + + + + + + + + + ++ Process from Point /Station 30.000 to Point /Station 40.000 * * ** INITIAL AREA EVALUATION * * ** +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 30.000 to Point /Station 40.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** Initial area flow distance = 193.000(Ft.) Top (of initial area) elevation = 465.700(Ft.) Bottom (of initial area) elevation = 464.700(Ft.) Difference in elevation = 1.000(Ft.) Slope = 0.00518 s(percent)= 0.52 TC = k(0.480) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 11.287 min. Rainfall intensity = 4.217(In /Hr) for a 100.0 year storm SINGLE FAMILY (1 Acre Lot) • Runoff Coefficient i 0.757 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 4.435(CFS) Total initial stream area = 1.390(Ac.) Pervious area fraction = 0.800 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 30.000 to Point /Station 40.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.390(Ac.) Runoff from this stream = 4.435(CFS) Time of concentration = 11.29 min. Rainfall intensity = 4.217(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 5.048 14.63 3.627 2 4.435 11.29 4.217 Largest stream flow has longer time of concentration Qp = 5.048 + sum of Qb Ia /Ib 4.435 * 0.860 = 3.815 Qp = 8.863 Total of 2 main streams to confluence: Flow rates before confluence point: 5.048 4.435 Area of streams before confluence: • 1.710 1.390 • Results of confluence: Total flow rate = 8.863(CFS) Time of concentration = 14.633 min. Effective stream area after confluence = 3.100(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + ++ + + + + + + +++ + + + ++ Process from Point /Station 40.000 to Point /Station 60.000 * * ** PIPEFLOW TRAVEL TIME (User specified size) * * ** Upstream point /station elevation = 960.900(Ft.) Downstream point /station elevation = 959.100(Ft.) Pipe length = 179.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 8.863(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 8.863(CFS) Normal flow depth in pipe = 12.52(In.) Flow top width inside pipe = 16.57(In.) Critical Depth = 13.82(In.) Pipe flow velocity = 6.76(Ft /s) Travel time through pipe = 0.93 min. Time of concentration (TC) = 15.06 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + ++ + + + + + + ++ Process from Point /Station 90.000 to Point /Station 60.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 3.100(Ac.) Runoff from this stream = 8.863(CFS) Time of concentration = 15.06 min. Rainfall intensity = 3.567(In /Hr) • Program is now starting with Main Stream No. 2 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + +++ + + + ++ ++ + + + + + + + + + + + ++ Process from Point /Station 50.000 to Point /Station 60.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 114.000(Ft.) Top (of initial area) elevation = 966.100(Ft.) Bottom (of initial area) elevation = 969.700(Ft.) Difference in elevation = 1.900(Ft.) Slope = 0.01228 s(percent)= 1.23 TC = k(0.480) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 7.699 min. Rainfall intensity = 5.266(In /Hr) for a 100.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.781 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 1.850(CFS) Total initial stream area = 0.950(Ac.) Pervious area fraction = 0.800 +++++++++++++++++++++++++++++++++++++++ ++ + + + + +++ + + + + + ++ + + + + + + + + + + + + + ++ Process from Point /Station 50.000 to Point /Station 60.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.950(Ac.) Runoff from this stream = 1.850(CFS) • Time of concentration = 7.69 min. • Rainfall intensity = 5.266(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 8.863 15.06 3.567 2 1.850 7.69 5.266 Largest stream flow has longer time of concentration Qp = 8.863 + sum of Qb Ia /Ib 1.850 0.677 = 1.253 Qp = 10.116 Total of 2 main streams to confluence: Flow rates before confluence point: • 8.863 1.850 Area of streams before confluence: 3.100 0.950 Results of confluence: Total flow rate = 10.116(CFS) Time of concentration = 15.062 min. Effective stream area after confluence = 3.550(Ac.) +++++++++++++++++++++++++++++++++++++++ + + +++ + + + + + ++ + + ++ + + + + + +++ + ++ + + ++ Process from Point /Station 60.000 to Point /Station 65.000 * * ** PIPEFLOW TRAVEL TIME (User specified size) * * ** Upstream point /station elevation = 959.100(Ft.) Downstream point /station elevation = 958.600(Ft.) Pipe length = 153.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 10.116(CFS) Given pipe size = 29.00(In.) Calculated individual pipe flow = 10.116(CFS) Normal flow depth in pipe = 15.98(In.) Flow top width inside pipe = 22.69(In.) • Critical Depth 13.67(In.) Pipe flow velocity = 9.56(Ft /s) Travel time through pipe = 0.56 min. Time of concentration (TC) = 15.62 min. +++++++++++++++++++++++++++++++++++++++ + + + + ++ + + + + ++ + + + + + + + + + + + + + + + + + ++ Process from Point /Station 60.000 to Point /Station 65.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 3.550(Ac.) Runoff from this stream = 10.116(CFS) Time of concentration = 15.62 min. Rainfall intensity = 3.992(In /Hr) Program is now starting with Main Stream No. 2 +++++++++++++++++++++++++++++++++++++++ + + ++++ + + + + +++ + + + + + + + +++ + + + + + + ++ Process from Point /Station 110.000 to Point /Station 120.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 278.000(Ft.) Top (of initial area) elevation = 966.100(Ft.) Bottom (of initial area) elevation = 969.700(Ft.) Difference in elevation = 1.900(Ft.) Slope = 0.00509 s(percent)= 0.50 TC = k(0.980) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 13.135 min. Rainfall intensity = 3.861(In /Hr) for a 100.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.796 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 • Decimal fraction soil group D = 0.000 • RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 3.343(CFS) Total initial stream area = 1.160(Ac.) Pervious area fraction = 0.800 +++++++++++++++++++++++++++++++++++++++ ++ + + + + + + + ++ + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 120.000 to Point /Station 100.000 * * ** PIPEFLOW TRAVEL TIME (User specified size) * * ** Upstream point /station elevation = 462.200(Ft.) Downstream point /station elevation = 460.800(Ft.) Pipe length = 225.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.343(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.343(CFS) Normal flow depth in pipe = 7.96(In.) Flow top width inside pipe = 17.88(In.) Critical Depth = 8.37(In.) Pipe flow velocity = 4.44(Ft /s) Travel time through pipe = 0.84 min. Time of concentration (TC) = 13.98 min. ++++++++++++++++++++++t++++++++++++++++ + ++ + + + + + + + + + + + + + + + + + + + + ++ + + + + ++ Process from Point /Station 120.000 to Point /Station 100.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 1.160(Ac.) Runoff from this stream = 3.343(CFS) Time of concentration = 13.98 min. Rainfall intensity = 3.724(In /Hr) Process from Point /Station 90.000 to Point /Station 100.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 134.000(Ft.) Top (of initial area) elevation = 465.700(Ft.) Bottom (of initial area) elevation = 464.800(Ft.) Difference in elevation = 0.900(Ft.) Slope = 0.00672 s(percent)= 0.67 TC = k(0.480) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 9.261 min. Rainfall intensity = 4.729(In /Hr) for a 100.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.769 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 3.239(CFS) Total initial stream area = 0.890(Ac.) Pervious area fraction = 0.800 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + +++ + + + + + ++ Process from Point /Station 90.000 to Point /Station 100.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.890(Ac.) Runoff from this stream = 3.239(CFS) Time of concentration = 9.26 min. Rainfall intensity = 4.729(In /Hr) is Summary of stream data: • Stream Flow rate TC Rainfall Intensity Top (of initial area) elevation = 466.200(Ft.) No. (CFS) (min) (In /Hr) 1 3.343 13.98 3.724 Slope = 0.00581 s(percent)= 0.58 2 3.239 9.26 4.729 Largest stream flow has longer time of concentration Rainfall intensity = 4.058(In /Hr) for a 100.0 year storm Qp = 3.343 + sum of SINGLE FAMILY (1 Acre Lot) Qb Ia /Ib Decimal fraction soil group A = 0.000 3.239 * 0.788 = 2.550 Decimal fraction soil group B = 1.000 Qp = 5.893 Decimal fraction soil group D = 0.000 Total of 2 streams to confluence: RI index for soil(AMC 2) = 56.00 Flow rates before confluence point: • Initial subarea runoff = 5.648(CFS) Total initial stream area = 1.850(Ac.) 3.343 3.239 Area of streams before confluence: 1.160 0.890 Results of confluence: Total flow rate = 5.893(CFS) Time of concentration = 13.980 min. Effective stream area after confluence = 2.050(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + ++++ + + + + + ++ + + + + + + + + + + + + + ++ Process from Point /Station 100.000 to Point /Station 80.000 * * ** PIPEFLOW TRAVEL TIME (User specified size) * * ** Upstream point /station elevation = 460.800(Ft.) Downstream point /station elevation = 459.100(Ft.) Pipe length = 325.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.893(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 5.893(CFS) Normal flow depth in pipe = 9.96(In.) Flow top width inside pipe = 23.65(In.) Critical Depth = 10.29(In.) Pipe flow velocity = 4.78(Ft /s) • Travel time through pipe = 1.13 min. Time of concentration (TC) = 15.11 min. +++++++++++++++++++++++++++++++++++++++ + + + + ++ + + + + ++ + + ++ + + + + + + + + + +++ + ++ Process from Point /Station 100.000 to Point /Station 80.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 2.050(Ac.) Runoff from this stream = 5.893(CFS) Time of concentration = 15.11 min. Rainfall intensity = 3.560(In /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + ++ + + + + + ++ + ++ + + ++ Process from Point /Station 70.000 to Point /Station 80.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 241.000(Ft.) Top (of initial area) elevation = 466.200(Ft.) Bottom (of initial area) elevation = 464.800(Ft.) Difference in elevation = 1.400(Ft.) Slope = 0.00581 s(percent)= 0.58 TC = k(0.480) *[(length ^3) /(elevation change)) ^0.2 Initial area time of concentration = 12.057 min. Rainfall intensity = 4.058(In /Hr) for a 100.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.752 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 • Initial subarea runoff = 5.648(CFS) Total initial stream area = 1.850(Ac.) • Pervious area fraction = 0.800 Process from Point /Station 70.000 to Point /Station 80.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 1.850(Ac.) Runoff from this stream = 5.648(CFS) Time of concentration = 12.06 min. Rainfall intensity = 4.058(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 5.893 15.11 3.560 2 5.648 12.06 4.058 Largest stream flow has longer time of concentration Qp = 5.893 + sum of Qb Ia /Ib 5.648 * 0.877 = 4.954 Qp = 10.848 Total of 2 streams to confluence: Flow rates before confluence point: 5.893 5.648 Area of streams before confluence: 2.050 1.850 Results of confluence: Total flow rate = 10.848(CFS) Time of concentration = 15.113 min. Effective stream area after confluence = 3.900(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + ++++ + + + + ++ + + + + + + + ++ + + + ++ ++ • Process from Point /Station 80.000 to Point /Station 65.000 * * ** PIPEFLOW TRAVEL TIME (User specified size) * * ** Upstream point /station elevation = 459.100(Ft.) Downstream point /station elevation = 458.600(Ft.) Pipe length = 78.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 10.848(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 10.848(CFS) Normal flow depth in pipe = 13.38(In.) Flow top width inside pipe = 23.84(In.) Critical Depth = 14.16(In.) Pipe flow velocity = 6.02(Ft /s) Travel time through pipe = 0.22 min. Time of concentration (TC) = 15.33 min. +++++++++++++++++++++++++++++++++++++++ + + ++ + + + + + + + + + + + ++++ + + + + + + + +++ ++ Process from Point /Station 80.000 to Point /Station 65.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 3.900(Ac.) Runoff from this stream = 10.848(CFS) Time of concentration = 15.33 min. Rainfall intensity = 3.531(In /Hr) Program is now starting with Main Stream No. 3 +++++++++++++++++++++++++++++++++++++++ + + + + + ++ + + + + + + + + +++ + + + + ++ + + + + + ++ Process from Point /Station 130.000 to Point /Station 140.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 450.000(Ft.) Top (of initial area) elevation = 472.100(Ft.) isBottom (of initial area) elevation = 464.000(Ft.) • Difference in elevation = 8.100(Ft.) Slope = 0.01800 s(percent)= 1.80 TC = k(0.480) *[(length ^3) /(elevation change)] ^0.2 Stream flow area = 2.170(Ac.) Initial area time of concentration = 12.399 min. Rainfall intensity = 4.003(In /Hr) for a 100.0 year storm SINGLE FAMILY (1 Acre Lot) Time of concentration = 12.41 min. Runoff Coefficient = 0.751 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Summary of stream data: Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 Intensity RI index for soil(AMC 2) = 56.00 No. (CFS) (min) Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 6.521(CFS) Total initial stream area = 2.170(Ac.) 2 10.848 15.33 3.531 Pervious area fraction = 0.800 +++++++++++++++++++++++++++++++++++++++ ++ + + + + + + + + + ++ + + ++++ + + + ++ + + + + + ++ Process from Point /Station 140.000 to Point /Station 65.000 * * ** PIPEFLOW TRAVEL TIME (User specified size) * * ** Upstream point /station elevation = 462.450(Ft.) Downstream point /station elevation = 0.000(Ft.) Pipe length = 192.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.521(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 6.521(CFS) Normal flow depth in pipe = 2.78(In.) Flow top width inside pipe = 10.13(In.) Critical depth could not be calculated. Pipe flow velocity = 47.23(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 12.41 min. is Process from Point /Station 140.000 to Point /Station 65.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 2.170(Ac.) Runoff from this stream = 6.521(CFS) Time of concentration = 12.41 min. Rainfall intensity = 3.990(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 10.116 15.62 3.492 2 10.848 15.33 3.531 3 6.521 12.41 3.990 Largest stream flow has longer or shorter time of concentration Qp = 10.848 + sum of Qa Tb /Ta 10.116 * 0.981 = 9.926 Qb Ia /Ib 6.521 * 0.885 = 5.770 Qp = 26.543 Total of 3 main streams to confluence: Flow rates before confluence point: 10.116 10.848 6.521 Area of streams before confluence: 3.550 3.900 2.170 Results of confluence: Total flow rate = 26.543(CFS) Time of concentration = 15.328 min. Effective stream area after confluence = 9.620(Ac.) End of computations, total study area = 9.62 (Ac.) The following figures may be used for a unit hydrograph study of the same area. • Area averaged pervious area fraction(Ap) = Area averaged RI index number = 56.0 0.800 • Riverside County Rational Hydrology Program CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2005 Version 7.1 Rational Hydrology Study Date: 06/07/07 File:1721sc2100.out ------------------------------------------------------------------------ ********* Hydrology Study Control Information * * * * * * * * ** English (in -lb) Units used in input data file ------------------------------------------------------------------------ Program License Serial Number 6041 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 Standard intensity- duration curves data (Plate D -4.1) For the [ Cathedral City ] area used. 10 year storm 10 minute intensity = 2.770(In /Hr) 10 year storm 60 minute intensity = 0.980(In /Hr) 100 year storm 10 minute intensity = 4.520(In /Hr) 100 year storm 60 minute intensity = 1.600(In /Hr) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.600(In /Hr) Slope of intensity duration curve = 0.5800 0 Process from Point /Station 150.000 to Point /Station 160.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 300.000(Ft.) Top (of initial area) elevation = 466.100(Ft.) Bottom (of initial area) elevation = 464.300(Ft.) Difference in elevation = 1.800(Ft.) Slope = 0.00600 s(percent)= 0.60 TC = k(0.300) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 8.172 min. Rainfall intensity = 5.085(In /Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.885 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 3.104(CFS) Total initial stream area = 0.690(Ac.) Pervious area fraction = 0.100 +++++++++++++++++++++++++++++++++++++++ + ++ + + + + + + +++ + + + + + ++ + + + + + + + ++ + ++ Process from Point /Station 160.000 to Point /Station 200.000 * * ** PIPEFLOW TRAVEL TIME (User specified size) * * ** Upstream point /station elevation = 459.500(Ft.) Downstream point /station elevation = 458.800(Ft.) Pipe length = 87.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.104(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.104(CFS) Normal flow depth in pipe = 7.11(In.) • Flow top width inside pipe = 17.60(In.) • Critical Depth = 8.09(In.) Pipe flow velocity = 9.78(Ft /s) Travel time through pipe = 0.30 min. Time of concentration (TC) = 8.98 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 160.000 to Point /Station 200.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 0.690(Ac.) Runoff from this stream = 3.109(CFS) Time of concentration = 8.98 min. Rainfall intensity = 9.979(In /Hr) Program is now starting with Main Stream No. 2 +++++++++++++++++++++++++++++++++++++++ + + + ++ + + + + + + + + + + + + + + + + + + ++ + + + + ++ Process from Point /Station 190.000 to Point /Station 200.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 559.000(Ft.) Top (of initial area) elevation = 971.000(Ft.) Bottom (of initial area) elevation = 969.000(Ft.) Difference in elevation = 7.000(Ft.) Slope = 0.01252 s(percent)= 1.25 TC = k(0.980) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 19.977 min. Rainfall intensity = 3.650(In /Hr) for a 100.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.739 Decimal fraction soil group A = 0.000 • Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 7.017(CFS) Total initial stream area = 2.600(Ac.) Pervious area fraction = 0.800 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + ++ + + + + + + + + + + + + + + ++ Process from Point /Station 190.000 to Point /Station 200.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 2.600(Ac.) Runoff from this stream = 7.017(CFS) Time of concentration = 19.98 min. Rainfall intensity = 3.650(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 3.109 8.98 9.979 2 7.017 19.98 3.650 Largest stream flow has longer time of concentration Qp = 7.017 + sum of Qb Ia /Ib 3.109 * 0.733 = 2.275 Qp = 9.292 Total of 2 main streams to confluence: • Flow rates before confluence point: 3.109 7.017 • Area of streams before confluence: 0.690 2.600 Results of confluence: Total flow rate = 9.292(CFS) Time of concentration = 19.977 min. Effective stream area after confluence = 3.290(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + +++ + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 170.000 to Point /Station 180.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 569.000(Ft.) Top (of initial area) elevation = 965.500(Ft.) Bottom (of initial area) elevation = 963.100(Ft.) Difference in elevation = 2.900(Ft.) Slope = 0.00926 s(percent)= 0.93 TC = k(0.300) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 11.268 min. Rainfall intensity = 9.221(In /Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.882 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 3.351(CFS) Total initial stream area = 0.900(Ac.) Pervious area fraction = 0.100 End of computations, total study area = 9.19 (AC.) • The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.539 Area averaged RI index number = 56.0 • • • • RATIONAL METHOD ANALYSIS 10 -YEAR • Riverside County Rational Hydrology Program CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2005 Version 7.1 Rational Hydrology Study Date: 09/02/07 File:1721SC10.out ------------------------------------------------------------------------ 1721 Saddle Club 10 Year Storm ----------------------------------------------------------------------- * * * * * * * ** Hydrology Study Control Information * * * * * * * * ** English (in -lb) Units used in input data file ---------------------------------------------- Program License Serial Number 6091 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 Standard intensity- duration curves data (Plate D -9.1) For the [ Cathedral City ] area used. 10 year storm 10 minute intensity = 2.770(In /Hr) 10 year storm 60 minute intensity = 0.980(In /Hr) 100 year storm 10 minute intensity = 9.520(In /Hr) 100 year storm 60 minute intensity = 1.600(In /Hr) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.980(In /Hr) Slope of intensity duration curve = 0.5800 0 Process from Point /Station 10.000 to Point /Station 20.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 262.000(Ft.) Top (of initial area) elevation = 966.200(Ft.) Bottom (of initial area) elevation = 969.800(Ft.) Difference in elevation = 1.900(Ft.) Slope = 0.00539 s(percent)= 0.53 TC = k(0.980) *((length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 12.676 min. Rainfall intensity = 2.919(In /Hr) for a 10.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.682 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 2.816(CFS) Total initial stream area = 1.710(Ac.) Pervious area fraction = 0.800 +++++++++++++++++++++++++++++++++++++++ + + + +++ + + + + + ++ + + + + + + + + + + + + + + + + ++ Process from Point /Station 20.000 to Point /Station 90.000 * * ** PIPEFLOW TRAVEL TIME (User specified size) * * ** Upstream point /station elevation = 962.500(Ft.) Downstream point /station elevation = 960.900(Ft.) Pipe length = 959.00(Ft.) Manning's N = 0.013 No.. of pipes = 1 Required pipe flow = 2.816(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 2.816(CFS) Normal flow depth in pipe = 8.51(In.) • Flow top width inside pipe = 17.97(In.) • Critical Depth = 7.64(In.) Pipe flow velocity = 3.42(Ft /s) Travel time through pipe = 2.23 min. Time of concentration (TC) = 14.91 min. +++++++++++++++++++++++++++++++++++++++ + + ++ + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 20.000 to Point /Station 40.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 1.710(Ac.) Runoff from this stream = 2.816(CFS) Time of concentration = 14.91 min. Rainfall intensity = 2.198(In /Hr) Program is now starting with Main Stream No. 2 +++++++++++++++++++++++++++++++++++++++ + + + + + +++ + + + + + + + + + + + + + + + + + + + ++ ++ Process from Point /Station 30.000 to Point /Station 40.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 193.000(Ft.) Top (of initial area) elevation = 465.700(Ft.) Bottom (of initial area) elevation = 464.700(Ft.) Difference in elevation = 1.000(Ft.) Slope = 0.00518 s(percent)= 0.52 TC = k(0.480) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 11.287 min. Rainfall intensity = 2.583(In /Hr) for a 10.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.692 Decimal fraction soil group A = 0.000 . Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 2.485(CFS) Total initial stream area = 1.390(Ac.) Pervious area fraction = 0.800 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + ++ + + + + + + + + + + + + + +++ Process from Point /Station 30.000 to Point /Station 40.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.390(Ac.) Runoff from this stream = 2.485(CFS) Time of concentration = 11.29 min. Rainfall intensity = 2.583(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 2.816 14.91 2.198 2 2.485 11.29 2.583 Largest stream flow has longer time of concentration Qp = 2.816 + sum of Qb Ia /Ib 2.485 * 0.851 = 2.114 Qp = 4.931 Total of 2 main streams to confluence: Flow rates before confluence point: 2.816 2.485 Area of streams before confluence: 1.710 1.390 Results of confluence: • Total flow rate = 4.931(CFS) • Time of concentration = 19.910 min. - Effective stream area after confluence 3.100(Ac.) +++++++++++++++++++++++++++++++++++++++ +++ + + + + ++ + + + + + + + + + ++ + + + ++ + + + +++ Process from Point /Station 90.000 to Point /Station 60.000 * * ** PIPEFLOW TRAVEL TIME (User specified size) * * ** Upstream point /station elevation = 960.900(Ft.) Downstream point /station elevation = 959.100(Ft.) Pipe length = 179.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 9.931(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 9.931(CFS) Normal flow depth in pipe = 8.59(In.) Flow top width inside pipe = 17.98(In.) Critical Depth = 10.25(In.) Pipe flow velocity = 5.92(Ft /s) Travel time through pipe = 0.99 min. Time of concentration (TC) = 15.90 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +++ Process from Point /Station 0.000 to Point /Station 60.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 3.100(Ac.) Runoff from this stream = 9.931(CFS) Time of concentration = 15.90 min. Rainfall intensity = 2.157(In /Hr) Program is now starting with Main Stream No. 2 Process from Point /Station 50.000 to Point /Station 60.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 119.000(Ft.) Top (of initial area) elevation = 966.100(Ft.) Bottom (of initial area) elevation = 969.700(Ft.) Difference in elevation = 1.900(Ft.) Slope = 0.01228 s(percent)= 1.23 TC = k(0.980) *((length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 7.699 min. Rainfall intensity = 3.225(In /Hr) for a 10.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.723 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 1.050(CFS) Total initial stream area = 0.950(Ac.) Pervious area fraction = 0.800 +++++++++++++++++++++++++++++++++++++++ + + + + + + + ++ + + + + + + + ++ + + ++ + + + + + ++ ++ Process from Point /Station 50.000 to Point /Station 60.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.950(Ac.) Runoff from this stream = 1.050(CFS) Time of concentration = 7.69 min. Rainfall intensity = 3.225(In /Hr) is Summary of stream data: • Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 9.931 15.90 2.157 2 1.050 7.69 3.225 Largest.stream flow has longer time of concentration Qp = 9.931 + sum of Qb Ia /Ib 1.050 * 0.669 = 0.702 Qp = 5.633 Total of 2 main streams to confluence: Flow rates before confluence point: 9.931 1.050 Area of streams before confluence: 3.100 0.950 Results of confluence: • Total flow rate = 5.633(CFS) Time of concentration = 15.900 min. Effective stream area after confluence = 3.550(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + ++ + + + + +++ + + + + + +++ ++ Process from Point /Station 60.000 to Point /Station 65.000 * * ** PIPEFLOW TRAVEL TIME (User specified size) * * ** Upstream point /station elevation = 959.100(Ft.) Downstream point /station elevation = 958.600(Ft.) Pipe length = 153.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.633(CFS) Given pipe size = 29.00(In.) Calculated individual pipe flow = 5.633(CFS) Normal flow depth in pipe = 11.07(In.) Flow top width inside pipe = 23.93(In.) Critical Depth = 10.05(In.) Pipe flow velocity = 3.97(Ft /s) • Travel time through pipe = 0.69 min. Time of concentration (TC) = 16.09 min. +++++++++++++++++++++++++++++++++++++++ + + + ++ + + + + + + ++ + + + + + + + ++ + + + + + + + ++ Process from Point /Station 60.000 to Point /Station 65.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is liste In Main Stream number: 1 Stream flow area = 3.550(Ac.) Runoff from this stream = 5.633(CFS) Time of concentration = 16.09 min. Rainfall intensity = 2.106(In /Hr) Program is now starting with Main Stream No. 2 +++++++++++++++++++++++++++++++++++++++ + + + + + + +++ + + + + +++ + + + + + + + +++ + + + ++ Process from Point /Station 110.000 to Point /Station 120.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 278.000(Ft.) Top (of initial area) elevation = 966.100(Ft.) Bottom (of initial area) elevation = 969.700(Ft.) Difference in elevation = 1.900(Ft.) Slope = 0.00509 s(percent)= 0.50 TC = k(0.980) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 13.135 min. Rainfall intensity = 2.365(In /Hr) for a 10.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.679 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 • Pervious area fraction = 0.800; Impervious fraction = 0.200 • Initial subarea runoff = 1.863(CFS) Total initial stream area = 1.160(Ac.) Pervious area fraction = 0.800 +++++++++++++++++++++++++++++++++++++++ +++ + + + + + + + + + + + + ++ ++ + + + + + + + + + + ++ Process from Point /Station 120.000 to Point /Station 100.000 * * ** PIPEFLOW TRAVEL TIME (User specified size) * * ** Upstream point /station elevation = 462.200(Ft.) Downstream point /station elevation = 460.800(Ft.) Pipe length = 225.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.863(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.863(CFS) Normal flow depth in pipe = 5.80(In.) Flow top width inside pipe = 16.82(In.) Critical Depth = 6.16(In.) Pipe flow velocity = 3.78(Ft /s) Travel time through pipe = 0.99 min. Time of concentration (TC) = 14.13 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + ++ + + + + + + ++ Process from Point /Station 120.000 to Point /Station 100.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 1.160(Ac.) Runoff from this stream = 1.863(CFS) Time of concentration = 14.13 min. Rainfall intensity = 2.267(In /Hr) 0 Process from Point /Station 90.000 to Point /Station 100.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 134.000(Ft.) Top (of initial area) elevation = 465.700(Ft.) Bottom (of initial area) elevation = 464.800(Ft.) Difference in elevation = 0.900(Ft.) Slope = 0.00672 s(percent)= 0.67 TC = k(0.480) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 9.261 min. Rainfall intensity = 2.897(In /Hr) for a 10.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.709 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 1.827(CFS) Total initial stream area = 0.890(Ac.) Pervious area fraction = 0.800 +++++++++++++++++++++++++++++++++++++++ + + ++ + + ++ + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 90.000 to Point /Station 100.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.890(Ac.) Runoff from this stream = 1.827(CFS) Time of concentration = 9.26 min. Rainfall intensity = 2.897(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) • 1 1.863 19.13 2.267 2 1.827 9.26 2.897 Largest stream flow has longer time of concentration Qp = 1.863 + sum of Qb Ia /Ib 1.827 0.783 = 1.930 QP = 3.293 Total of 2 streams to confluence: Flow rates before confluence point: 1.863 1.827 Area of streams before confluence: 1.160 0.890 Results of confluence: Total flow rate = 3.293(CFS) Time of concentration = 19.127 min. Effective stream area after confluence = 2.050(Ac.) +++++++++++++++++++++++++++++++++++++++ ++ + + ++ + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 100.000 to Point /Station 80.000 * * ** PIPEFLOW TRAVEL TIME (User specified size) * * ** Upstream point /station elevation = 960.800(Ft.) Downstream point /station elevation = 959.100(Ft.) Pipe length = 325.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.293(CFS) Given pipe size = 29.00(In.) Calculated individual pipe flow = 3.293(CFS) Normal flow depth in pipe = 7.30(In.) Flow top width inside pipe = 22.08(In.) Critical Depth = 7.59(In.) Pipe flow velocity = 9.07(Ft /s) Travel time through pipe = 1.33 min. Time of concentration (TC) = 15.96 min. Process from Point /Station 100.000 to Point /Station 80.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 2.050(Ac.) Runoff from this stream = 3.293(CFS) Time of concentration = 15.96 min. Rainfall intensity = 2.152(In /Hr) +++++++++++++++++++++++++++++++++++++++ ++ + + + + + + + + + + + + ++ + + + + + + + + + + + + + ++ Process from Point /Station 70.000 to Point /Station 80.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 291.000(Ft.) Top (of initial area) elevation = 966.200(Ft.) Bottom (of initial area) elevation = 969.800(Ft.) Difference in elevation = 1.900(Ft.) Slope = 0.00581 s(percent)= 0.58 TC = k(0.980) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 12.057 min. Rainfall intensity = 2.986(In /Hr) for a 10.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.687 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 3.157(CFS) Total initial stream area = 1.850(Ac.) • Pervious area fraction = 0.800 Process from Point /Station 70.000 to Point /Station 80.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 1.850(Ac.) Runoff from this stream = 3.157(CFS) Time of concentration = 12.06 min. Rainfall intensity = 2.986(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 3.293 15.96 2.152 2 3.157 12.06 2.986 Largest stream flow has longer time of concentration Qp = 3.293 + sum of Qb Ia /Ib 3.157 * 0.866 = 2.733 Qp = 6.026 Total of 2 streams to confluence: Flow rates before confluence point: 3.293 3.157 Area of streams before confluence: 2.050 1.850 Results of confluence: Total flow rate = 6.026(CFS) Time of concentration = 15.956 min. Effective stream area after confluence = 3.900(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + ++ + + + ++ + + + + + + + + + + + + + + + + ++ Process from Point /Station 80.000 to Point /Station 65.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 3.900(Ac.) Runoff from this stream = 6.026(CFS) Time of concentration = 15.71 min. Rainfall intensity = 2.132(In /Hr) Program is now starting with Main Stream No. 3 +++++++++++++++++++++++++++++++++++++++ + ++ + + + + + + + + + + + + + + + + ++ + + + + + + + + ++ Process from Point /Station 130.000 to Point /Station 190.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 950.000(Ft.) Top (of initial area) elevation = 972.100(Ft.) Bottom (of initial area) elevation = 969.000(Ft.) Difference in elevation = 8.100(Ft.) • Slope = 0.01800 s(percent)= 1.80 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + ++ + + + + + + + + + + + ++ Process from Point /Station 80.000 to Point /Station 65.000 * * ** PIPEFLOW TRAVEL TIME (User specified size) * * ** • Upstream point /station elevation = 959.100(Ft.) Downstream point /station elevation = 958.600(Ft.) Pipe length = 78.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.026(CFS) Given pipe size = 29.00(In.) Calculated individual pipe flow = 6.026(CFS) Normal flow depth in pipe = 9.53(In.) Flow top width inside pipe = 23.99(In.) Critical Depth = 10.91(In.) Pipe flow velocity = 5.18(Ft /s) Travel time through pipe = 0.25 min. Time of concentration (TC) = 15.71 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + ++ + + + ++ + + + + + + + + + + + + + + + + ++ Process from Point /Station 80.000 to Point /Station 65.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 3.900(Ac.) Runoff from this stream = 6.026(CFS) Time of concentration = 15.71 min. Rainfall intensity = 2.132(In /Hr) Program is now starting with Main Stream No. 3 +++++++++++++++++++++++++++++++++++++++ + ++ + + + + + + + + + + + + + + + + ++ + + + + + + + + ++ Process from Point /Station 130.000 to Point /Station 190.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 950.000(Ft.) Top (of initial area) elevation = 972.100(Ft.) Bottom (of initial area) elevation = 969.000(Ft.) Difference in elevation = 8.100(Ft.) • Slope = 0.01800 s(percent)= 1.80 • TC = k(0.480) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 12.399 min. Rainfall intensity = 2.452(In /Hr) for a 10.0 year storm Stream flow area = 2.170(Ac.) SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.684 Decimal fraction soil group A = 0.000 Time of concentration = 12.42 min. Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 Summary of stream data: RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Intensity Initial subarea runoff = 3.642(CFS) No. (CFS) (min) Total initial stream area = 2.170(AC.) Pervious area fraction = 0.800 +++++++++++++++++++++++++++++++++++++++ + + ++++ + + + + + ++ + + + + + ++ + + + +++ + + + ++ Process from Point /Station 140.000 to Point /Station 65.000 * * ** PIPEFLOW TRAVEL TIME (User specified size) * * ** Upstream point /station elevation = 462.450(Ft.) Downstream point /station elevation = 0.000(Ft.) Pipe length = 192.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.642(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 3.642(CFS) Normal flow depth in pipe = 2.09(In.) Flow top width inside pipe = 9.10(In.) Critical Depth = 9.76(In.) Pipe flow velocity = 39.81(Ft /s) Travel time through pipe = 0.08 min. Time of concentration (TC) = 12.42 min. 0 Process from Point /Station 140.000 to Point /Station 65.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 2.170(Ac.) Runoff from this stream = 3.642(CFS) Time of concentration = 12.42 min. Rainfall intensity = 2.443(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 5.633 16.04 2.106 2 6.026 15.71 2.132 3 3.642 12.42 2.443 Largest stream flow has longer or shorter time of concentration Qp = 6.026 + sum of Qa Tb /Ta 5.633 * 0.979 = 5.516 Qb Ia /Ib 3.642 * 0.873 = 3.179 Qp = 14.721 Total of 3 main streams to confluence: Flow rates before confluence point: 5.633 6.026 3.642 Area of streams before confluence: 3.550 3.900 2.170 Results of confluence: Total flow rate = 14.721(CFS) Time of concentration = 15.707 min. Effective stream area after confluence = 9.620(Ac.) End of computations, total study area = 9.62 (AC.) The following figures may be used for a unit hydrograph study of the same area. • Area averaged pervious area fraction(Ap) = Area averaged RI index number = 56.0 0.800 • Riverside County Rational Hydrology Program CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2005 Version 7.1 Rational Hydrology Study Date: 06/07/07 File:1721sc210.out ------------------------------------------------------------------------ * * * * * * * ** Hydrology Study Control Information * * * * * * * * ** English (in -lb) Units used in input data file ------------------------------------------------------------------------ Program License Serial Number 6091 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 Standard intensity- duration curves data (Plate D -9.1) For the [ Cathedral City ] area used. 10 year storm 10 minute intensity = 2.770(In /Hr) 10 year storm 60 minute intensity = 0.980(In /Hr) 100 year storm 10 minute intensity = 9.520(In /Hr) 100 year storm 60 minute intensity = 1.600(In /Hr) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.980(In /Hr) Slope of intensity duration curve = 0.5800 0 Process from Point /Station 150.000 to Point /Station 160.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 300.000(Ft.) Top (of initial area) elevation = 966.100(Ft.) Bottom (of initial area) elevation = 969.300(Ft.) Difference in elevation = 1.800(Ft.) Slope = 0.00600 s(percent)= 0.60 TC = k(0.300) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 8.172 min. Rainfall.intensity = 3.115(In /Hr) for a 10.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.877 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 1.885(CFS) Total initial stream area = 0.690(Ac.) Pervious area fraction = 0.100 +++++++++++++++++++++++++++++++++++++++ + + + + ++ + + + + + + + + +++ + + + + ++++ + + + + ++ Process from Point /Station 160.000 to Point /Station 200.000 * * ** PIPEFLOW TRAVEL TIME (User specified size) * * ** Upstream point /station elevation = 959.500(Ft.) Downstream point /station elevation = 958.800(Ft.) Pipe length = 87.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.885(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.885(CFS) Normal flow depth in pipe = 5.96(In.) • Flow top width inside pipe = 16.55(In.) • Critical Depth = 6.20(In.) Pipe flow velocity = 9.16(Ft /s) Travel time through pipe = 0.35 min. Time of concentration (TC) = 8.52 min. +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + +++ + + + + + + + + + + + + + + + ++ Process from Point /Station 160.000 to Point /Station 200.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 0.690(Ac.) Runoff from this stream = 1.885(CFS) Time of concentration = 8.52 min. Rainfall intensity = 3.090(In /Hr) Program is now starting with Main Stream No. 2 +++++++++++++++++++++++++++++++++++++++ + + + + +++ + + + + + + ++ + + + + +++ + + + + + ++ ++ Process from Point /Station 190.000 to Point /Station 200.000 * * ** INITIAL AREA EVALUATION * * ** +++++++++++++++++++++++++++++++++++++++ ++ ++ + + + + + +++ + + + + ++ + + ++ + + ++ + + + ++ Process from Point /Station 190.000 to Point /Station 200.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 2.600(Ac.) Runoff from this stream = 3.896(CFS) Time of concentration = 19.98 min. Rainfall intensity = 2.235(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 1.885 8.52 3.090 2 3.896 19.98 2.235 Largest stream flow has longer time of concentration Qp = 3.896 + sum of Qb Ia /Ib 1.885 0.735 = 1.386 Qp = 5.282 Total of 2 main streams to confluence: Flow rates before confluence point: • 1.885 3.896 Initial area flow distance = 559.000(Ft.) Top (of initial area) elevation = 971.000(Ft.) Bottom (of initial area) elevation = 969.000(Ft.) Difference in elevation = 7.000(Ft.) Slope = 0.01252 s(percent)= 1.25 TC = k(0.980) *[(length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 19.977 min. Rainfall intensity = 2.235(In /Hr) for a 10.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.670 Decimal fraction soil group A = 0.000 • Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 3.896(CFS) Total initial stream area = 2.600(Ac.) Pervious area fraction = 0.800 +++++++++++++++++++++++++++++++++++++++ ++ ++ + + + + + +++ + + + + ++ + + ++ + + ++ + + + ++ Process from Point /Station 190.000 to Point /Station 200.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 2.600(Ac.) Runoff from this stream = 3.896(CFS) Time of concentration = 19.98 min. Rainfall intensity = 2.235(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 1.885 8.52 3.090 2 3.896 19.98 2.235 Largest stream flow has longer time of concentration Qp = 3.896 + sum of Qb Ia /Ib 1.885 0.735 = 1.386 Qp = 5.282 Total of 2 main streams to confluence: Flow rates before confluence point: • 1.885 3.896 • Area of streams before confluence: 0.690 2.600 Results of confluence: Total flow rate = 5.282(CFS) Time of concentration = 19.977 min. Effective stream area after confluence = 3.290(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + ++ + + ++ + + + ++t + + ++ + + + +++ + + ++ Process from Point /Station 170.000 to Point /Station 180.000 * * ** INITIAL AREA EVALUATION * * ** Initial area flow distance = 569.000(Ft.) Top (of initial area) elevation = 965.500(Ft.) Bottom (of initial area) elevation = 963.100(Ft.) Difference in elevation = 2.900(Ft.) Slope = 0.00926 s(percent)= 0.93 TC = k(0.300) *((length ^3) /(elevation change)] ^0.2 Initial area time of concentration = 11.268 min. Rainfall intensity = 2.585(In /Hr) for a 10.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.879 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 2.034(CFS) Total initial stream area = 0.900(Ac.) Pervious area fraction = 0.100 End of computations, total study area = 9.19 (AC.) • The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.539 Area averaged RI index number = 56.0 • • STREET FLOW CAPACITY CHARTS is ENTRANCE TO TO SADDLE CLUB 0.5' m W \ UL< D= 0.50'________ I/D =0.47' WEDGE 2.5' CURB 20' W z J W' W z W U DEPTH (FT) A (SF) P (FT) Q (CFS) HALF STREET FULL STREET 0.70 9.60 30.58 439.29 S)6 878.59 S% 0.69 9.30 30.08 421.26 S)6 842.51 Sm 0.68 9.00 29.58 403.34 S31 806.67 S% 0.67 8.71 29.08 1 386.27 S% 772.55 S% 0.66 8.42 28.58 1 369.32 S% 738.65 SA 0.65 8.14 28.08 1 353.21 S% 706.43 Sh 0.64 7.86 27.58 337.21 S% 674.42 S% 0.63 7.59 27.08 322.03 S% 644.06 S% 0.62 7.32 26.58 306.96 S% 613.91 S% 0.61 7.06 26.08 292.68 S% 585.37 S% 0.60 6.80 25.58 278.51 S% 557.02 S% 0.59 6.55 25.08 265.12 S% 530.24 Sm 0.58 6.30 24.58 1 251.83 S)5 503.66 0.57 6.06 24.08 1 239.30 S)6 478.60 S% 0.56 5.82 23.58 1 226.87 S36 453.73 S36 0.55 5.59 23.08 1 215.17 S 430.35 Sh 0.54 5.36 22.58 203.57 S% 407.15 S% 0.53 5.14 22.08 192.69 S36 385.39 Sm 0.52 4.92 21.58 181.90 SX 363.80 S% 0.51 4.71 21.08 171.81 Sh 343.62 S% 0.50 4.50 20.58 161.80 Sh 323.60 S% 0.49 4.30 20.54 150.19 S% 300.38 S% 0.48 4.09 20.49 138.39 S% 276.78 Sh 0.47 3.89 20.45 127.46 S36 254.92 Sm 0.46 3.69 19.91 118.83 S% 237.66 S% 0.45 3.49 19.37 110.29 S% 220.59 S% 0.44 3.30 18.83 102.38 S 204.76 Sh 0.43 3.12 18.29 95.07 S% 190.14 S 0.42 2.94 17.75 87.84 S% 175.69 Sh 0.41 2.76 17.21 80.71 S36 161.42 S% 0.40 2.59 16.66 74.18 S% 148.37 Sh 0.39 2.43 16.12 68.19 Sh 136.37 S% 0.38 2.27 15.58 62.27 S% 124.53 S% 0.37 2.12 15.04 56.88 S% 113.77 Sh 0.36 1 1.97 14.50 51.58 S 103.15 Sh _ S= 0.00523 MAX Q =11.7 CFS - FOR SIDE OF STREET 0.1 1 ' ADJACENT TO SADDLE CLUB ENTRANCE DEPTH (FT) A (SF) P (FT) Q (CFS) HALF STREET FULL STREET 0.35 1.83 13.96 46.78 Sm 93.57 Sh 0.34 1.70 13.42 42.48 S% 84.96 S% 0.33 1.57 12.87 38.26 S% 76.51 Sm 0.32 1.44 12.33 34.08 Sh 68.17 S% 0.31 1.32 11.79 30.38 Sh 60.75 Sh 0.30 1.20 11.25 26.74 S 53.48 S% 0.29 1.10 10.71 23.90 S% 47.80 S% 0.28 0.99 10.17 20.75 Sh 41.51 S% 0.27 0.89 9.63 18.02 Sh 36.05 S% 0.26 0.80 9.09 15.68 S% 31.36 96 0.25 0.71 8.54 13.40 Sh 26.80 SK 0.24 0.63 8.00 11.47 S% 22.93 S% 0.23 0.55 7.46 9.58 S 19.16 S% 0.22 0.48 6.92 8.03 SK 16.06 S% 0.21 0.42 6.38 6.78 Sh 13.57 Sh 0.20 0.35 5.84 5.31 S% 10.62 Sh 0.19 0.30 5.30 4.38 S% 8.76 S% 0.18 0.25 4.75 3.48 S% 6.96 S% 0.17 0.21 4.21 2.82 Sh 5.64 S% 0.16 0.17 3.67 2.17 S% 4.34 Sh 0.15 0.13 3.13 1.54 S% 3.09 S% 0.14 0.10 2.59 1.13 S% 2.26 S% 0.13 1 0.08 2.05 1 0.91 Sh 1.82 S% 0.12 0.06 1.51 1 0.69 Sh 1.38 S% 0.11 0.05 0.97 0.69 SK 1.37 Sh 0.10 0.04 0.88 0.50 S% 1.01 S% 0.09 0.03 0.79 0.34 S% 0.67 Si 0.08 0.03 0.70 0.36 S% 0.73 S% 0.07 0.02 0.61 0.20 Sh 0.41 96 0.06 0.02 0.53 0.22 S% 0.45 V 0.05 0.01 0.44 0.08 S% 0.16 S% 0.04 0.01 0.35 0.09 S% 0.19 S% 0.03 0.00 0.26 0.00 S% 0.00 S% 0.02 0.00 0.18 0.00 Sh 0.00 Sh 0.01 0.00 0.09 0.00 S% 0.00 S% VALUES FOR Q CALCULATED FROM MANNING'S EQUATION: Q = 1. n86 A (A /P)% S% WHERE Q = RATE OF FLOW IN STREET (CFS) n = ROUGHNESS COEFFICIENT = 0.015 A = CROSS- SECTIONAL AREA OF FLOW (SF) P = WETTED PERIMETER OF FLOW (FT) S = LONGITUDINAL SLOPE OF STREET (FT /FT) STREET FLOW CAPACITY CHART MACBETH STREET r :7 • I 0� 12' 1 43' 6' _ 14' BIKE LANE! LANE T =20' AT MAX Dio T = FLOW SPREAD MEASURED FROM CURB FACE _ _ _ _ _ S MAX Dioo_0.91'_ ® 51.4 CFS 290 MAX Dio =0.52' _ �� =�Z C FS UU 1 0.12' I 0.16' �I 2' GUTTER DEPTH (FT) A (SF) P (FT) Q (CFS) T (FT) 0.91 16.86 46.80 51.4 34.00 0.90 16.40 46.29 49.5 34.00 0.89 15.95 45.77 47.6 34.00 0.88 15.50 45.26 45.7 34.00 0.87 1 15.06 44.75 43.9 34.00 0.86 114.62 44.24 42.1 34.00 0.85 14.19 43.73 40.4 34.00 0.84 13.76 43.22 38.7 34.00 0.83 13.34 42.71 37.0 34.00 0.82 12.92 42.20 35.4 34.00 0.81 12.51 41.69 33.8 34.00 0.80 1 12.10 41.18 32.2 34.00 0.79 111.70 40.18 31.0 33.50 0.78 11.31 39.18 29.8 33.00 0.77 10.93 38.18 28.6 32.50 0.76 10.56 37.18 27.5 32.00 0.75 10.20 36.18 26.4 31.50 0.74 9.85 35.18 25.4 31.00 0.73 9.51 34.181 24.4 30.50 0.72 9.18 33.181 23.5 30.00 0.71 8.86 32.181 22.6 29.50 0.70 8.55 31.181 21.7 29.00 0.69 8.25 30.18 20.9 28.50 0.68 7.96 29.18 20.2 28.00 0.67 7.68 28.18 19.5 27.50 0.66 7.41 27.67 18.6 27.00 0.65 7.14 27.16 17.7 26.50 0.64 6.88 26.65 1 16.8 26.00 0.63 6.62 126.141 0.41 16.0 25.50 0.62 6.37 125.631 0.27 15.2 25.00 14' INSIDE LANE DEPTH (FT) A (SF) P (FT) Q (CFS) T (FT) 0.61 6.12 25.12 14.4 24.50 0.60 5.88 24.61 13.6 24.00 0.59 5.64 24.10 12.9 23.50 0.58 5.41 23.59 12.2 23.00 0.57 5.18 23.08 11.5 22.50 0.56 4.96 22.57 10.9 22.00 0.55 4.74 22.06 10.2 21.50 0.54 4.53 21.55 9.7 21.00 0.53 4.32 21.04 9.1 20.50 0.52 4.12 20.53 8.5 120.00 0.51 3.92 20.02 8.0 19.50 0.50 1 3.73 19.51 7.5 19.00 0.49 1 3.54 19.00 7.0 18.50 0.48 1 3.36 1 18.49 6.5 18.00 0.47 3.18 17.98 6.0 17.50 0.46 3.01 17.47 1 5.6 17.00 0.45 2.84 16.96 5.2 16.50 0.44 2.68 16.45 4.8 16.00 0.43 2.52 15.94 4.4 15.50 0.42 2.37 15.43 4.1 15.00 0.41 2.22 14.92 3.8 14.50 0.40 2.08 1 14.41 3.4 14.00 0.39 1.94 1 13.90 3.1 13.50 0.38 1.81 13.39 2.9 1 3.00 0.37 1.68 12.88 2.6 12.50 0.36 1.56 12.37 2.4 12.00 0.35 1.44 11.86 2.1 11.50 0.34 1.33 11.35 1.9 11.00 0.33 1 1.22 110.84, 0.41 1.7 10.50 0.32 1 1.12 110.331 0.27 1.5 10.00 D U DEPTH (FT) I A (SF) P (FT) Q (CFS) T (FT) 0.31 1.02 9.82 1.4 9.50 0.30 0.93 9.31 1.2 9.00 0.29 0.84 8.80 1.1 8.50 0.28 0.76 8.29 0.9 8.00 0.27 0.68 7.78 0.8 7.50 0.26 0.61 7.27 0.7 7.00 0.25 0.54 6.76 0.6 6.50 0.24 0.48 6.25 0.5 6.00 0.23 0.42 5.74 0.4 5.50 0.22 0.37 5.23 0.4 5.00 0.21 0.32 4.72 0.3 4.50 0.20 0.28 4.21 0.3 4.00 0.19 0.24 3.70 0.2 3.50 0.18 0.21 3.19 0.2 3.00 0.17 0.18 2.68 0.2 2.50 0.16 0.16 2.17 0.2 2.00 0.15 0.14 2.03 0.1 1.87 0.14 0.12 1.90 0.1 1.75 0.13 0.11 1.76 0.1 1.62 0.12 0.09 1.62 0.1 1.50 0.11 0.08 1.49 0.1 1.37 0.10 0.06 1.35 0.0 1.25 0.09 0.05 1.22 0.0 1.12 0.08 0.04 1.08 0.0 1.00 0.07 0.03 0.95 0.0 0.87 0.06 0.02 0.81 0.0 0.75 0.05 0.02 0.68 0.0 0.62 0.04 0.01 0.54 0.0 0.50 0.03 0.01 0.41 0.0 0.37 0.02 0.00 0.27 0.0 0.25 VALUES FOR Q CALCULATED FROM MANNING'S EQUATION: Q = 1.4186 A (A /P)% S'% WHERE Q = RATE OF FLOW IN STREET (CFS) n = ROUGHNESS COEFFICIENT = 0.015 A = CROSS- SECTIONAL AREA OF FLOW (SF) P = WETTED PERIMETER OF FLOW (FT) S = LONGITUDINAL STREET SLOPE = 0.0037 STREET FLOW CAPACITY CHART FOR CB No.1 MONROE STREET � • � 0 I � 12' 1 43.4' 16' 14.4' DEPTH (FT) A (SF) OUTSIDE LANE Q (CFS) INSIDE LANE 0.91 16.33 T =20' 537 30.40 0.90 15.91 AT MAX Dio v 30.40 0.89 T = FLOW SPREAD MEASURED Z a 49.8 30.40 FROM CURB FACE o 41.74 1 47.9 30.40 0.87 14.68 41.23 AMAX Dloo =0.91' 30.40 2q 14.28 ® 53.4 CFS 44.5 30.40 0.85 13.88 MAX Dio =0.52' 42.8 �� 0.84 13.49 _ - ®8.5CFS 2% OU 0.83 L 39.19 39.5 30.40 0.82 12.72 38.68 38.0 30.40 0.12' I 38.17 1 36.4 0.16' 0.80 111.97 �I 2' GUTTER 34.9 DEPTH (FT) A (SF) P (FT) Q (CFS) T (FT) 0.91 16.33 43.27 537 30.40 0.90 15.91 42.76 51.6 30.40 0.89 15.50 42.25 49.8 30.40 0.88 15.08 41.74 1 47.9 30.40 0.87 14.68 41.23 46.2 30.40 0.86 14.28 40.72 44.5 30.40 0.85 13.88 40.21 42.8 30.40 0.84 13.49 39.70 41.2 30.40 0.83 13.10 39.19 39.5 30.40 0.82 12.72 38.68 38.0 30.40 0.81 12.34 38.17 1 36.4 30.40 0.80 111.97 37.66 34.9 30.40 0.79 11.61 37.15 33.5 30.40 0.78 11.24 36.64 32.0 30.40 0.77 10.89 36.13 30.7 30.40 0.76 10.54 35.61 29.3 30.40 0.75 10.19 35.10 28.0 30.40 0.74 9.85 34.59 1 26.7 30.40 0.73 9.51 34.08 25.4 30.40 0.72 9.18 33.18 24.4 30.00 0.71 8.86 32.18 23.4 29.50 0.70 8.55 31.18 22.6 29.00 0.69 8.25 30.18 21.8 28.50 0.68 7.96 29.18 1 21.0 28.00 0.67 7.68 28.181 20.2 27.50 0.66 7.41 27.67 19.3 27.00 0.65 7.14 27.16 18.4 26.50 0.64 6.88 26.65 17.5 26.00 0.63 6.62 26.14 16.6 25.50 0.62 6.37 25.63 15,8 125.001 0.00 DEPTH (FT) A (SF) P (FT) Q (CFS) T (FT) 0.61 6.12 25.12 14.4 24.50 0.60 5.88 24.61 13.6 24.00 0.59 5.64 24.10 12.9 23.50 0.58 5.41 23.59 12.2 23.00 0.57 5.18 23.08 11.5 22.50 0.56 4.96 22.57 10.9 22.00 0.55 4.74 22.06 10.2 21.50 0.54 4.53 21.55 9.7 21.00 0.53 4.32 21.04 9.1 20.50 0.52 4.12 20.53 8.5 1 20.00 0.51 3.92 20.02 8.0 119.50 0.50 3.73 19.51 7.5 119.00 0.49 3.54 19.00 7.0 18.50 0.48 3.36 18.49 6.5 18.00 0.47 3.18 17.98 6.0 17.50 0.46 3.01 17.47 5.6 17.00 0.45 2.84 16.96 5.2 16.50 0.44 2.68 16.45 4.8 16.00 0.43 2.52 15.94 4.4 15.50 0.42 2.37 15.43 4.1 15.00 0.41 2.22 14.92 3.8 14.50 0.40 2.08 14.41 3.4 14.00 0.39 1.94 13.90 3.1 13.50 0.38 1.81 1 13.39 2.9 13.00 0.37 1.68 12.88 2.6 12.50 0.36 1.56 12.37 2.4 12.00 0.35 1.44 11.86 2.1 11.50 0.34 1.33 11.35 111.00 0.50 0.33 1.22 10.84 0.0 10.50 0.32 1.12 10.33 0.0 0.00 DEP TH (FT) I A (SF) P (FT) Q (CFS) T (FT) 0.31 1.02 9.82 1.4 9.50 0.30 0.93 9.31 1.2 9.00 0.29 0.84 8.80 1.1 8.50 0.28 0.76 8.29 0.9 8.00 0.27 0.68 7.78 0.8 7.50 0.26 0.61 7.27 0.7 7.00 0.25 0.54 6.76 0.6 6.50 0.24 0.48 6.25 0.5 6.00 0.23 0.42 5.74 0.4 5.50 0.22 0.37 5.23 0.4 5.00 0.21 0.32 1 4.72 0.3 4.50 0.20 0.28 1 4.21 0.3 4.00 0.19 0.24 3.70 0.2 3.50 0.18 0.21 3.19 0.2 3.00 0.17 0.18 2.68 0.2 2.50 0.16 0.16 2.17 0.2 1 2.00 0.15 0.14 2.03 0.1 1.87 0.14 0.12 1 1.90 0.1 1.75 0.13 0.11 1 1.76 0.1 1.62 0.12 0.09 1.62 0.1 1.50 0.11 0.08 1.49 0.1 1.37 0.10 0.06 1.35 0.0 1.25 0.09 0.05 1.22 0.0 1.12 0.08 0.04 1.08 0.0 1.00 0.07 0.03 0.95 0.0 0.87 0.06 0.02 0.81 0.0 0.75 0.05 0.02 0.68 0.0 0.62 0.04 0.01 1 0.54 0.0 1 0.50 0.037 0.01 1 0.41 0.0 0.37 0.02 0.00 1 0.27 0.0 0.25 VALUES FOR Q CALCULATED FROM MANNING'S EQUATION: Q = 1.486 A (A /P)% S% WHERE Q = RATE OF FLOW IN STREET (CFS) n n = ROUGHNESS COEFFICIENT = 0.015 A = CROSS- SECTIONAL AREA OF FLOW (SF) P = WETTED PERIMETER OF FLOW (FT) S = LONGITUDINAL STREET SLOPE = 0.0037 STREET FLOW CAPACITY CHART FOR CB No.2 MONROE STREET • • FEMA MAP 0-1 ZONE C SITE ii i - z NE.B w w =: '. Wil ZII ol� V ;: a - III _ AVENUE 54 I� APPROXIMATE SCALE 2000 0 2006 -FEET NATIONAL FLOOD INSURANCE PROGRAM FIRM FLOOD INSURANCE RATE MAP RIVERSIDE COUNTY, CALIFORNIA UNINCORPORATED AREA PANEL 2300 OF 3600 (SEE MAP INDEX FOR PANELS NOT PRINTED) COMMUNITY -PANEL NUMBER 060245 2300B MAP REVISED: MARCH 22, 1983 Federal Emergency Management Agency This is an official copy of a portion of the above referenced flood map. It was extracted using F -MIT On -Line. This map does not reflect changes or amendmerns which may have been made subsequent to the date on the title dock. For the latest product Information about National Flood Insurance Program flood maps check the FEMA Flood Map Store at www.msc.fema.gc • Ig SOIL SURVEY MAP I tie, ,R I .; RUN aR 7, 7 m! Wf W, I . ane. . r 6ki sil' G . g,; P: j., p gg 40' 7" DA_ Vii. M V -7 71" A FFF.1 GeA G � 0 GbA 14 1 At1; V$ iV Is el go 161 WIMIF • _­­1 N, .!2,;A%;iCA AMY,_ k RM M W- 94 iTh I ; .r`': .., A, G_­ RP W. niw Nt 111C v* K z L Atl 26. i P3(•" 116*15, This soil survey was compiled in 1978 by the U.S. Department of Agriculture. Soil Conservation Service and cooperating • agencies 12'30• R. 7 E. R. 8 E. (loins shoot 74) I ii 3161 Y. 0 5000 4000 3000 2000 1000 Scale 1:24000 RIVERSIDE COUNTY, CALIFORNIA, COACHEL RIVERSIDE COUN.TY, CALIFORNIA 77 TABLE 12. —Soil and water features WAbsence of an entry indicates the feature is not a concern. See text for descriptions of symbols and such terms as "rare," "brief," and "perched." The symbol < means less than; > means greater than] Hydro- Soil name and logic Flooding High water table Bedrock map symbol group Frequency Duration Months Depth Bind Months Depth Hardness Ft r. Badland: BA. Borrow pits: BP. Bull Trail: BtE----------------- Caion: eD----------------- Ca'on Variant: Cb D----------------- Carriso CcC ----------------- Carsitas CdC, Cd E, C hC, C k B. CfB ------------------ Carsitas Variant: CmB, CmE_________- Chuckawalla: Co B, Col), C nC, C n E, •Coachella: - CpA, CpB, CsA ------ CrA ------ - -- - - -- - Fluvaquents: Fe------------------- Fluvents: Fe------------------- Gilma Ge BGb B, GeA. GcA, , GfA------ GravPel pits and dumps: Imperial: IeA------------------ IfA------------------ ImC1: Imperial part_ _ _ _ _ _ _ Gullied land part. Imppeerial: IoC t: Imperial part _ _ _ _ _ _ _ Gullied land part. Indio: Ip, Is --------------- Ir, It ---------------- Lithic Torripsamments: L Rt: Lithic Torripsamments part: Rock outcrop part. • B A A A A A C B B B D A/D !M None -- -- -- ---- ---- - - - --- - ----- - - - - -- None------ -------- - - - - -- - ---- - - - - -- None------ -------- -- - - -- ----- - - - - -- Rare------- ------- - - - - --- --- --- - - -- -- None------ ------- - - --- -- --- --- -- - - -- None------ -- ------ - - - --- --- --- - - - - -- None------ ----- --- - - - - -- -- ---- --- - -- None------ - -- ----- - - - --- ----- - - - -- -- None------ --- ----- - - - - -- ------ - - - - -- None------ - ------- - - - - -- ------------ Frequent --- Very long----- Apr - Sep---- Occasional__ Very brief _ _ _ _ Jan-Dec____ Rare- - - - - -- - -- -- - - None- - - -- -------- - - - - -- >6.0 -- ------ - - - --- -- -- -- - - - - -- >60 >6.0 -------- - - - - -- -- ---- - -- - -- >60 ---- --- - -- > 6.0 -------- - - - - -- -- ---- - - - - -- >60 ---- - - - --- > 6.0 ----- --- - - - - -- ----- - - -- - -- >60 ---- - --- -- > 6.0 -------------- --- --- - - - - -- >0 --- - - - - --- 2.011.0 Apparent - - - -- Jan - Dec - - -- >60 - --- - - -- -- > 6.0 -------- - -- - -- ------ - - - - -- 6-20 Rippable. >6.0 --- -- --- - -- - -- ------ -- ---- >0 >6.0 -------------- --- --- - - - - -- >0 - --- - - -- -- 3.0-5.0 Apparent _____ Jan-Dec ---- >60 __________ 0.5 -2.0 Apparent_____ Jan- ,Dec____ >0 ---------- > 6.0 - ------- - - - - -- ------ - - ---- >60 >6.0 ------ --- - - - -- ------ - - - --- >60 3.0 -5.0 A - --- - -- - -- PParent----- Apr-Oct > 0 ---- - - -- -- ...D None - - - -- - - - -- - - -- -- - - -- >6.0 D None - - - - -- ------- -- - - - -- ------ - --- -- 1.0 -3.0 DNone- - - - -- -------- - - - - -- ------ - - - - -- >6.0 D B B D None______ None - - - - -- - - -- - - - -- ------------ None -- - -- - -- - - - - - - - I ----- - - - - - -- None---- -- I-- --- -- -- -- - - -I- -- - - - -I - -- - - -- ----------- >. - - 60 Apparent_____ Jan- Dec____ > 60 1.5 -5.0 I APParent- - - - -I Jan-Dec____1 >0 3.0 -5.0 I APParent_____I Jan- Dec____I >60 I >6.0 1-------------- 1---- --- - - - --1 1 -10.1 Hard. I • • 78 SOIL SURVEY TABLE 12. Soil and water features — Continued Soil name and map symbol Hydro- logic group Flooding High water table Bedrock Frequency Duration Months Depth Kind Months Depth Hardness FO In Myoma: MaB, MaD----- -- - --- A None - - - - -- -------- -- - - -- ------ - - - - -- >6.0 ------------ - - >60 McB- --- ------ - -- - -- A None - - - --- - -- ---- - -- - - -- --- --- -- - - -- 1.5 -5.0 Apparent------- - Jan - Dec - >60 ---- - - - - -- ---- - - - - -- Niland: NaB------- ---- -- - - -- C None- - - - -- ---- ---- - --- -- --- --- - - - - -- >6.0 - --- --- - - - - - -- ----- - - >60 NbB ----------------. C None - - -- -- -------- - - - - -- ------ - - - - -- 1.5 -5.0 Apparent - - - -- - --- Jan - Dec - - -- >60 ---- - - - - -- --- - - - - - -- Omstott: OmD- --- ----- - - - - - -- C None - - - - -- ------- - - - - - -- ------ - - - - -- >6.0 -- ------ - - -- -- ----- - ---- -- 4-20 Rippable. Or': Omstott part - - - -- -. Rock outcrop part. C None - - -- -- ---- -- -- -- - --- --- --- - - - - -- >6.0 - -- - - -- - -- 4-20 Rippable. Riverwash: RA. Rock outcrop: RO. RTI: Rock outcrop part. Lithic Torripsamments part. D None _ _____ _ ___ ____ __ _ _ __ -------------- ------------ 1 -10 Hard. Rubble land: RU. Salton: Sa, Sb--------- - - - - -- D None - - - --- --- --- -- - - - - -- ----- -- - - - -- 2.0 -5.0 Apparent - - - -- Jan- Dec- - -- >60 Soboba: Sol), SpE------ - - - - -- A None - - - - -- - ------- - - - - -- ------ - - - - -- >6.0 -------------------------- >60 ---- - - - - -- Torriorthents: TO 1: Torriorthents part. Rock outcrop part. Tujnnga: TpE, TrC, TsB- - - - - -- A None - - - - -- -- --- --- - - -- -- ---- -- - - - --- >6.0 ------ -- - - - - -- - ----- - - - - -- >60 ---- - - - - -- 'This mapping unit is made up of two or more dominant kinds of soil. See mapping unit description for the composition and behavior of the whole mapping unit. parent; and the months of the year that the water table commonly is high. Only saturated zones above a depth of 5 or 6 feet are indicated. Information about the seasonal high water table helps in assessing the need for specially designed foundations, the need for specific kinds of drainage systems, and the need for footing drains to insure dry basements. Such information is also needed to decide whether or not construction of basements is feasible and to determine how septic tank absorption fields and other underground installations will function. Also, a seasonal high water table affects ease of excavation. Depth to bedrock is shown for all soils that are underlain by bedrock at a depth of 5 to 6 feet or less. For many soils, the limited depth to bedrock is a part of the definition of the soil series. The depths shown are based on measurements made in many soil borings and on other observations during the mapping of the soils. The kind of bedrock and its hardness as related to ease of excavation is also shown. Rippable bedrock can be excavated with a single -tooth ripping attach- ment on a 200 - horsepower tractor, but hard bedrock generally requires blasting. Formation, Morphology, and Classification of the Soils This section contains descriptions of the major fac- tors of soil formation as they occur in the Coachella Valley Area, a summary of significant morphological characteristics of the soils of the Area, an'explanation of the current system of classifying soils by categories broader than the series, and a table showing the clas- KI • U � Are z j�S ta.tes Deprtment of Agriculture nservation Service m cooperation with .University of California Agricultural Experiment Station L J • PRECIPITATION MAPS • ; -Fi6,E ; - �—�k E, R8E r.'', � ~ Y jawxTSO , r r -,.: -- t .max ,,- �,C ?�... s:' ...,,.. ,l+Y "� °r. "✓'�M d r,Pi 3:..< �^;� '`-�,, .- ,':'n�At: - �;,: -y -t o."m -Tree ._. 1- I 01, r .•„ar.�' -` z, y � ..,�zc '�;4a.� ,±,.tix '� sar � '2T �� ..1 I � �.,.__ �„w- a ---"<s _., �- t..,. ty�N� ir^ Y• �.1�:.C_c- ,'�.g7 {'Y. '} 1 r ._.Ln" t- !3'�Li.�. �S�F _._._.___ -L. -_ S _ -__ '- va�w'-`- WFF��• Zr_ � ,I �l r :. �� 1 ,.. 1 '_ a, _ }__ ,�,.__�J ,' ( (N� ;(•; f.Cpf•41a ADt0a � a r �.,� r a-� ti. �-\ L':Y��� vlxe Y ! � ''Ji�'•:c }t�'1�•.;�,� _.T -. ilotg •L �Ky `viv � h b I •l` :ea'- :C:.�, p-:� � ��.f,..�. ..,.c,. 1 '1,•\�.. ,. i r' agl +?c-� Q fir •q•��..-r' ''' t�a� •;r::: "a::rs- �..�'� , "� `� u'!f , i .J,7 l 4�.,. � . a.7 �...:� <a- :� tC: ;'.:•o. =. r... - ``,,^� .,'.. _.I', lY .r- •ply ..gr' _ .>.ti, 'V.:u_..M;�_ *' i...'�`V _ '_�' !r; •r* 1'r.:: °o 'tr K -•�M :i. - t�, �.i:- t 4 �"�``�• r a- :�3a'':::�� �•' i � *''`�.,. �A ��' '.=E; � N••7� T�f�O t7;R- :0 N -:tj. Ni � �r+:r�'.C; d �- ti, _; or.:': _h �.i? :•' s' i t. _,{'?4'i�,a` { ✓yr 3':�r .l'- �; �b QU fr t.:f. . = 1�Ir. �;:•.. _,a.;,:(��f.� `_:r�{r __'� �7�a �� .uaUpr •, •� - Y ~'b• \� /S Y� _ .l '� F'i Ll'.� �•4 V` S"'.'.' 'y^ I) .1a. \ a 'SA ERNAFOINO;. :''�,• _ ,f >` y _�i S- S ♦ R y' + i '1:.:.1 f t f '-�\' IVE51W COLT' ;`' S ..'nIE` ' '.� 'rv,i , t..e � ,� �1 \ � .a.?i Ss' f a}' r`°Uas�sx' a it bs t � x � t , `'�•'T �v • � w.j� uwi + � �: , Vic:. >• * -� ti- �E _•at -. .nYi i -` r a, `°' ,(r - L �r ' �:7f' v ti .- r 1 T2;� >•� (r J�, Y sfi.M,'a r� e M- �yy j {,_ { {v.l..lrs U':_sJ1¢r.'nI'-a. ?F�,;4 oA•J!ra'. ior+ t -'Sc.: - F\ t,: rr,i✓'..g�.artr:4 _'/'e`3^ --"-i- F b rZ - v.!- �{{ ^ S �'- "3 1%•,i7iti t\ - �'l tp'3 , j,'.!,!•. 1a s `_ .... � j _ ! tl yt�o'O� `�E_Lr; .4 L � ��____. �,:� ``( I 1 <y� .° JP �it:a.� � \ r+• .- �.. 4. r'_- ,e�i. - Y ._r n: -tv �w,j _- i� �,5 � -- 1 r�rS '"! �� �,,, SC °•� ^'" .� �':� �� Tt 7 f _ -' , � :a � i'� tr 6 :r�" {t t 'r � . r ti•' ^.�y� �u'y - � g �, � C y UR c(1. 5 :. - r±,•_`'._ c. ,:.,,.T' - ..+'TM`r,°.°Ra 4 Y^` _ r iII t•r 4�•�_k�nct :�fim.rt �`ti.:%..�. <_ /. :.; - r,,,;� j• �R 1 � -!r... r. tla�n- c r -1C �T '� s�„ Y���`'x a � `•Y:. a,. .F - " `µ�q'`, rrK .L M'y '•�• ,, � .`�, --- l� . ' .'-. f � s, t`3 . ' ^.., n, Ctw.so r1 .9 c . v. -� ��3 F`yy.�y 1..;_ ��' / %�'- •••`•��:� • •• + !y `� T Y?_.�r_ > T . _ �- _ f�a' ap , i� �,.� ..•.Ara - y! - `� �` r'".. 'wch0�rrut �f. k. -_� �t %�CiDIM` J t.' �- ;J�*;. • f`.�� nax� c'���+� R I .:� a A�� _ _ ('`. �� a • ��J. e-�r ��t� �' S :•' \'� �� � /� \' Si9b� J 's. k � i� � p,'.ti .ate _ 't. Y� �x»�'r',Aflt �' .. ...r• `� ��� . } �Yx"'� - � _ t .� � ..t � a L^' ,�. �.. I . � . tI { ;.� i tq� • 1��'aj� I" r - Y u � �n ' ., _ ....�.....a,.a�y..,� __�iti� 'T. b' S ✓ � � � � � -. a 11. J f� .'Y ` F- C;'=���s"j' -•` y /, Y�c. F :�I,• {rP .�_ _T , �_� • 1 � :.a �. yy.,r�•;T7 `' r ..cr♦NPi: • J4 C ii: ♦ • - t _f!c �,'Y+•..y`pl^..1+ '' i,,y`t '.{ ) - �' ��IY::f t., it 4R 1 •' j'Ili t • '�� !� �.Il�_ .G7`=1r �'�C � �'le '�'!'� `� }I'" tLq� r^ 't` _ n�n ..s >i- h- ,�^ r�r _. �, F'r> 1 �.o _�S. r��. � � \���• ♦ a .;� ?;;. 1 ltit - ,. �s. •+I�.+ +.w4 -'^ ���j�11� �- �`s- �.- t^�..'.' �".'.'r .- '•' �tb. '' •� � e. -`.� � x+i•. Y / `� - �. � f ��� _ + -� y � df -H� ,�j.'�"�_ _ � � �� 7 ` .��r _T� ' "'� •�C' . u;5,s� u � ^:. .r }}a . .: �' �;.a . L � '\I � . � r. Lf+� .p�l y� �T�'I'i,. -J !- S ; �.....0 t �'� ` ij I L A, �i .� „•. ~ � �1 ._ I �:� ^Fr .�`- ::.�� \�� ''o� ° yY �I R+aa"t xv , �•. .i}�$P�t 1, n.'1 -,,.. :'-y. � ..�,i�,� .�5 `'��, � �.FR � •..o >♦�. I �- ��»(•,i ,, ,e-, N .: ti: � 'x�E�ex il.,a ;h :, �: f�Jl ! ,\ti( .•��i,\ �J. + , � ^`''ii• - rne' .11 •L_' r rc t . Y' - iJrniu �`' f'S,•r A JB19N� \. Ra fe'adpBV �. �� 1. �rR C3\.. �.�. o.• I ` � Y ,^ � i�!�(. a .It.. J T � t EBEd�y t � A AGa i`F -� • O 'r✓� . . > ' i •off a-re ..+ _ "` -P � ' f. /� e � 3 �-f . � 6r+ � ...hi.s . �;.,.:. "? s��i '.�� ,: �!: f = +r � ... y�cd• .g9�i t9�,�tti�6 -i�f_. -: _ :.,"_" -i7.'^ 1� �1 � 4 - `' � e I -i,4� .I '�..ti( 1riAW rf 1 +$(\ .i' i'� n•�' F. -. - '.t:� 1 TORFCS '_ JiaT14F M1if CY�. bij _ QA�I'� 'Y `f y,.,: ::"�' "•grey.. ya t,ti :,,�; i `` ° # ¢-' ��OKf110 • ?YQ 'Tfr i- ;...d ';9.. ,..•;= I ..ra Y +.,. r ^'fn- ..t `lR S_/ w I;a. T • lB :�t :',rte '> `�J � CANUlllff :NU:AK9J.SB9' 1 !S'�, 1� � i. 'y?`?t.� '� �.,-'.' "? '' ^fle?I°� /•,�' - _� -.. �I�o' Y� �_i -, 1a ._.'r .✓, - >- "1' - 'I T l- 1� } 5 •jsl:� i.I _ 1T . v Ga.J k ."F'> ..: Z r.... ..p,,,y,,, •i. �'?'^ ,...' -. t. '.- aB7� uias+� r � � �'`Yx \ � ': - r 'Yd3. _ c - v7 !>•'� 1T08aE5 IIQA �:_ Co r .- 7 J T r �� `� ��"''v"t� _ 6!- ,''Se_�"�`a. _ a� ♦• - ,.�•,•, �✓i``� �/- _.h YI �... �1.` "C t °. 4 f'`; :r,E '� ^ .y. ,7 ti" `• ♦♦ .'�% < ...�' RIVER' Ei' Ei CR ,RIVE COIIN RIVERSIDE COUNTY FLOOD CONTROL • t'.L -•-; ;• l._ {t„ ('• _._1 r' fe?va,' • _ .� `j..._' �ir'� A N D f NOTE: Extended isoh • m WATER CONSERVATION DISTRICT 1 Y etals were created fro 1.,,overlay of NOAA Atlas 2 map upon which this A�RCFC Precipitation Map was based. 100-YEAR 6 —HOUR aI, _ PR Cl.E�E -LFOR MhflOteAD � _ ✓••„+,� {sp"� � '/� PRECIPITATION N, FOREST ;,• •RAE =:_,- r� � ° - . •r-. ''�� . --'rr: - °-,t� o.. e. R..a o...,. o.. rt . � t'..\ :�J` &f 1' W �:' tw „4 - l f �i„. � (/ c y� . .a. :i p �_,., wy t � r -: � v\.F'.. � - .. i ' r I - i ,t' e. w - .. yt'x . *4� , � � - r ! j � -5 v r:c - g s Y �, " rf � lL 7 , x•F\ s , \a> `„y- l'' Pf � L �n Z �' ' �� � '} i '. .� i ' 1� � `t- -+ 1 -. , ' r 7. � r 9 a�..M : . 'f ^ r � ( I �1 .G . � ._-1, D � �i ;- + , I` . � . . .� r .�` i .i_. �,vti ; 7+� � • 1 I .a- � : r I - �� . r � '�o' C ,'`. `� ..� y .�.�) c•. �.� : ' 6 _ �� - .+ .� L •a "� ; 7 C , ' � , � Pf ' , '_ �\ ' , � xS h'� �� > . . -” . f . � q� . - P � I ,� _r `.y} ?_ , • � / !� �;/ ti h j .-lqv '>:I . r Etr I lu_ . } p r m. - DR a l�k - \ .� ra r +��ari�. }\ f ,� l I.. °dNtit .^.� l ^_ V. J• .' �< ny ' 1 .r- � ^s G� ' a, ,� �r'.P :,' c° ., =` 5y.�t..1?> :� . -• yT.• ' l. • k. ' ', ,'1 OJ - . _ r ` � • �I�t=w r � ., .tiat ' � ,� A "Fv 1 .w 7 iT r /� 2 " , ;ii� i. _ ; r �dJ r •.,r yA • ,l,, ` ti �- .�!_ +.: E iJ � ` :'�� j ' " '/ _- . ,�-.� _�� V�. E `- .�+ �y 10 , ; . -'/ -' _ .\c ' . �-� I_a + ." � ��rr i `1s� " . �- J r� '?a . a7 u ' � �i'� t - : M '� '(, ° ,' , . e L , ,J . . " A J yl r � r_ _ � U � � .r : . � _ :} c .- r .tA+- � _ L ifea'j J / �•.R - T .� � `- r "l+�i� r.�. (1 ja x_ �x i T • I n ,L� a � , ' r��� * '�.„ �v�'t � �a n e T �u_'k ' g•e\ "a � tj �i vJ �„�h ��w f y d�' �/�a.-�\ � er k" --i,` � - r � ,.s „FA: .9 , ttt ? t \� ._ . •f ,Pr_C � � g'T "�i � ' a� ' _ `'. �C .,„+ L .irua'. L t',, _: . � .� T. ad, y `i r` r ,: " ,>.j� �' r�u` . : ; � .. .. * *- _ S � R ^ A a��F4b ; a a � ,, . '>�= � " � r� V . f zJ _ . � ` � 1 _ �? rR „ ^ .> ' Jt ` .,�Y . �1i 7 +° t'�' ��,j a�0 r Vc .d, p '� - > . i �" j t � c` E� '' � y� `a V':� > 1 �j • z B�� o. 5 ; J ' 4' ��_ - p 1i� , ' . ' ' " a�A�*�p 'n.s� . �M � ..> 4� e i . ° 1a ti�N . <c c � t . A .\� : te- , "1 - �' ; `. : ..- "y': `� q" C. t � / ,� gy'♦ 't. k`�Sa " sr ti ," r �{' c. ' f `' • � 4 g k 4.•-J l� � .r r � ' i h - ,oa 'D� �e , ` �� : ` x,: �n . 'T y ' =} .'. y + WL i I J.� (L '� ' - � 7 L �a e - �i � �� A� ,�1 l �� � p � i � 'f ) �ae- j p � . v ° � . -. . 'i i t � 3 . .' :z .; ,�� A ¢X � ' � M sr � �:- ► t a_ ? `. hg F � � i� % L . : � � a -N i�': - - . i `- „” ;. ° r �: x"� I�- '� �l:.� s , Ui C \ t � �T'� F r'� '�� - -J 'h ,� ai �' i t -` ty � w 4 nt �`1� ei j S7 . !� 5` � _ f 'r t�1 M � r �=i ' t`r� � 1 +�� =, �� s 4D\ c 4. 'di. p'L l i:- r .{ � - .t f ~ ,'u1,� ; r+�r�,.'i :d { ;� jiY1C w , d ` ,. i^,- � ( ^ .J,, , � Q� i, rxe� -,i� i Ki�_ ^o-�-' r : �n p� kf R . `�I� t k:,�� .' l �! ��s 'Y � I ?rM. . . . M �. � .'x� - . .hr� r � ' �., -i E; _ "'{f '' y �-- x '; �� � . " ' ' . �, j• 1 iAS' � -. 7 R 1� [ :,� � O�s+? ' I -,.m c.•' rr � r .t µ � �FA .�" u �u- o� . s .' . •�c .t t . 1 �•vk f/ �� i -� n m � -W At" - l ' '1� ,�tI � b` �V - �rti JV ScGCm - " ' '_ r ? i � w ^ 0 w1 , M j '!-_ , �3.` 1, `r '7 :'• � \ s � l } z _ / ;J j • � & : \,y i r rt> . l s � .!i I I ' , 'i - mr ,� St ' w � v � - � y I � � � l{y .i. .-: - „ t `�n. " ex' : ` . ', � . r q E ? s SF� x . ' \ ' S _ X a ,� t t 'n ,a s 5- :- r ^ 6,I .yA � � i ! � � �i 4i-`� � ` , I.� " 5 , F ,° "3"i '- � 4 .r L s ?` i_ ,, • Y � �` - vce 7! �r i I -% 1'\ ' _ t- ' 1 � _ , � "X 'V f� r '. i- l h� "t: �1` is, a <!Y 1 - . 1 ' � - da �>_ .. � r t ; � r I :~�' r i a� � d ? : "' a u -P N ' Ya r ,( a. t s � Y ; �te ' �, � k _ �� � k j�o � '\ J - ` _ � s o C '. .v „a � l ? a.. , V ��'� � r,ti � r4 i �r' `� s_ - ��_„� -� •r � �} a �' �� - w �vn: h�- , � -u1� .'� ��¢:J . 'c' _eJ' � _1�. < a - 'p: �. " 1 , a !_.. , ! , ?• j � ' � � •.,�.,, :,:Y.'Y . , �+ �d �i c t�Lt, � � • . - K+ � T"?jK� y .� a r r ''-gr .n .tb, � � � ; j ' e h. -- iw - . � Cf_ ''4i �M TtV°• - ';a~ . i °.'C 9 �l t } ( . �r f- n� ! ' v. • r+I� � � ' 1 ' j -J rJz. _ t t 7 i. \� , � , . , - ' .b ,, � 1 ,:/ "y ,_•'W.- - . �: ♦ , ` -� o` r.y �•; . ; xi b_ms' ' c na .�ia r � �.,, • '` E'- . i.- . \� p ' ;, � t ,�` : c S i: l� :i. ; r ,. ' - . . t'i , •hzR, � _.�y� . . ,<.sh 'w,K n 5 C � \�> �:': � �. ,f i �°, . f ,' r ' -�, i � \ . :T + ',- a. 7 • :.. v. � � � . L •�.I•'�i "i1�t. ' ."'�, . , �a r 4. •E , '� y , . ,xa, v f,- �a a�� aL •3.' ' .? -.S(ry � ..�Y 4 X ftt.� /J. r= �/ � -., _ 8�� a , ., :` 5U'.� r ' .,,.a•; \-�•. , '+ ,�(`•L " � :� w� •',l 1f . :+:- J ^.> i-�' � � �^�::� f.L � '' .. �'.�. :� °�:. .p . . k ., 'a.�. . A' 5h i ° ,� , j . , • j > � e : ', t y � .� , } _ . .: �' ,� �,: �ra>,' 'tlYt. � _ t E �� r'-.:..4 � .\ .�3 �.„� - ;, C.1u� , �, b" .ly � . ` 2": -`i '- ^, t n ,.^ ` �"�F y -+�,i♦ .�� � � � f ., 'r ,ls ' � j -r c ;' 1 '� i'y � 49 x*� } �^ '6� y �f jR+. ��f ' \ `� ��S ,l , - -ry J ..�•-/.� ^r r.p � �' ,, T�� �; 9. � Uv- ' .j' .' .. � '4 � �- _ -r�.{ :�`>: '` ` ' ,v'e, v ',� ��ti'r . ,' - . 's a : . _'�� +S .- RRRe \ <� 'r j � �-'3 . �� fi+ j . .' j�-° � .� i I � � 1 .d_ V�' �"Ep E .- ' . \� `�� ' �1 � F 'K .r ^ s � \z I -. ' . , - y aI � - � �1j1 .0 � }4• � 4 I . 'r: 9 *af . - .E � l,! � c. °� }� h�f • I : -��� r ;g t, V l��- .�-J , *� r I i t 4.t .*1 .� '. , � ° :• -- 3' ��._ •� .x •�l, s` =' y�. p '- y' r.• ? . � { t�- . i 3- j, - < . � _ �e.. ' � _ � : -S i�� : ':{ ; i _ r' .U� i j \ j �• _ .3 � ' . : �� , .-, � •M , �._ I " � * '; � •'' � �a� � .- . t � +S �`..� :. -- � t . / � .'� " .' .. � � 'P: ' \ , r� . \ ,._ / �. �- n - i>, i - • �jJ't ,� �` . r : ' ' am . -� , t. 1� _�{o•k .a .\• . ,r;_;r. �< ;`>.`o�.i` + ` _ di . �a" . t . � , : • . � i a - � r > • .'io�. � c ! � �. t I ,.A o � ,� � ' - , ,f 1. 6I' \ ,_ \ r V�I;4� r ^ ly� �.< �'ti1c ^s,f� ; . . �f • _r� . lD1 � �- 4 � � a '. -\�iy �' 1 � r �e k-.;-' t T `I.�t Nw ��'. "L. L . ... .. i` T y r At � D t -1 A M�,_ "_�: � � c �.O ' --��dN ', n_ � � • ; �_ � .l' i p fiT , 'M1: � c : 'a '� i p. T•7 ',1 T'l •. a '+ = nR�c . \ ; .` 4� y0 l7 : ' \ , • i" :+ F E .". �- � _ � r R�"_ , , - < '' \:' � �,t�Y 'm, •, +.' �- �E_ } • „ - rym . . � f �w \ ' °a."Z�, pR _ r �a , � 'x ��aI : �� •-� h� �� , M , ''. hro e 3,c '�1. � .1 T8;r. '� aI. O0s / y -"I,\ ,. : ��• T o � . N . ��a� .no- 5ar I• �_ X• Ht° _ � a —I �NA• i•� -. ' tewv .i .�.' I- •d L In • .�(. 1a• .N)IA� T4CPUL r • - A��n .i`'. , l,+' � Of 'S e,' N �'` � Rr 'd._ ' -:,.", • :M ' $ ' _.:9y � _r rrvt I' L ,' 1.4I �}- •N T m �� _,;' ', .-i d} •- _-Aa • � `�k �1{ 1� . 7r It 1 r I J5 � �� 1'�vY�. 'te_'.>� �` rz,:�Q•' ,tjr ,f ` 7 RIVERSIDE COUNTY FLOOD CONTROL WATER CONSERVATION DISTRICT Extended isohyetals were created from ;._,"Vzff o+ViLteJs• 'i i .. -� �� ��. ;• e" ,� . - 1 . .in•,,�. �I ? ti' i , . - . . . � . �, _r >a . r:: 5overlay of NOAA Atlas 2 map upon which this 100- YEAR -24 -HOUR ., RCFC Precipitation Map was based. PRECIPITATION .. I.> �� .,f ORE6r YJ >� !y� t• 10 @ f?7�. �z J'' t. 4ri9, -;�� e” � _ .�1, ; ��' •v�-"� 1 6'� ✓I t,' � � l . l � 'tfEiAr :.-n �~�r;_. � � � o...,. e. e.... o `�^> '` �'� a. \'r, "` �j 'a. �,-i. =r' fu+JVMfit.. Y* '�5�1f'aV+ �.. ; ,.... r.•aca.•.. •I1�G - ./ ', Yr t•,',.E1 w :�'S. �: rS'.. \- ¢ o..aeV o.n o..b., n. r� u 0 • RCFC &WCD HYDROLOGY MANUAL REFERENCE PLATES • • RUNOFF INDEX NUMBERS OF HYDROLOGIC SOIL -COVER COMPLEXES FOR PERVIOUS AREAS -AMC II Cover Type (3) Quality of Cover (2) Soil Group A B C D NATURAL COVERS - Barren 78 86 91 93 (Rockland, eroded and graded land) Chaparrel, Broadleaf Poor 53 70 80 85 (Manzonita, ceanothus and scrub oak) Fair 40 63 75 81 Good 31 57 71 78 Chaparrel, Narrowleaf Poor 71 82 88 91 (Chamise and redshank) Fair 55 72 81 86 Grass, Annual or Perennial Poor 67 78 86 89 Fair 50 69 79 84 Good 38 61 74 80 Meadows or Cienegas Poor 63 77 85 88 (Areas with seasonally high water table, Fair 51 70 80 84 principal vegetation is sod forming grass) Good 30 58 72 78 Open Brush Poor 62 76 84 88 (Soft wood shrubs - buckwheat, sage, etc.) Fair 46 66 77 83 Good 41 63 75 81 Woodland Poor 45 66 77 83 (Coniferous or broadleaf trees predominate. Fair 36 60 73 79 Canopy density is at least 50 percent) Good 28 55 70 77 Woodland, Grass Poor 57 73 82 86 (Coniferous or broadleaf trees with canopy Fair 44 65 77 82 density from 20 to 50 percent) Good 33 58 72 79 URBAN COVERS - Residential or Commercial Landscaping Good 32 69 75 56 (Lawn, shrubs, etc.) Turf Poor 58 74 83 87 (Irrigated and mowed grass) Fair 44 65 77 82 Good 33 58 72 79 AGRICULTURAL COVERS - Fallow 76 85 90 92 and plowed but not tilled or seeded) R C F C a w C p RUNOFF INDEX NUMBERS HYDROLOGY 1N /JANUAL FOR PERVIOUS AREAS PLATE E-6.1 0 of 2) r 1 L I • C RUNOFF INDEX NUMBERS OF HYDROLOGIC SOIL -COVER COMPLEXES FOR PERVIOUS AREAS -AMC II Quality of Soil Group Cover Type (3) Cover (2) A B C D AGRICULTURAL COVERS (cont.) - 158 Legumes, Close Seeded Poor 66 77 85 89 (Alfalfa, sweetclover, timothy, etc.) Good 72 81 85 Orchards, Deciduous See Note 4 (Apples, apricots, pears, walnuts, etc.) Orchards, Evergreen Poor 57 73 82 86 (Citrus, avocados, etc.) Fair 44 65 77 82 Good 33 58 72 79 Pasture, Dryland Poor 67 78 86 89 (Annual grasses) Fair 50 69 79 84 Good 38 61 74 80 Pasture, Irrigated Poor 58 74 83 87 (Legumes and perennial grass) Fair 44 65 77 82 Good 33 58 72 79 Row Crops Poor 72 81 88 91 (Field crops - tomatoes, sugar beets, etc.) Good 67 78 85 89 Small Grain Poor 65 76 84 88 (Wheat, oats, barley, etc.) Good 63 75 83 87 Vineyard See Note 4 Notes: 1. All runoff index (RI) numbers are for Antecedent Moisture Condition (AMC) II. 2. Quality of cover definitions: Poor- Heavily grazed or regularly burned areas. Less than 50 per- cent of the ground surface is protected by plant cover or brush and tree canopy. Fair - Moderate cover with 50 percent to 75 percent of the ground sur- face protected. Good -Heavy or dense cover with more than 75 percent of the ground surface protected. 3. See Plate C -2 for a detailed description of cover types. 4. Use runoff index numbers based on ground cover type. See discussion under "Cover Type Descriptions" on Plate C -2. 5. Reference Bibliography item 17. R C F C a w C D RUNOFF INDEX NUMBERS HYDROLOGY MANUAL FOR PERVIOUS AREAS PLATE E -6.1 (2of 2) • • ACTUAL IMPERVIOUS COVER Recommended Value Land Use (1) Range- Percent For Average Conditions- Percent(2 Natural or Agriculture 0 - 10 0 Single Family Residential: (3) 40,000 S. F. (1 Acre) Lots 10 - 25 20 20,000 S. F. (� Acre) Lots 30 - 45 40 7,200 - 10,000 S. F. Lots 45 - 55 50 Multiple Family Residential: Condominiums 45 - 70 65 Apartments 65 - 90 80 Mobile Home Park 60 - 85 75 Commercial, Downtown I 80 -100 I 90 Business or Industrial Notes: 1. Land use should be based on ultimate development of the watershed. Long range master plans for the County and incorporated cities should be reviewed to insure reasonable land use assumptions. 2. Recommended values are based on average conditions which may not apply to a particular study area. The percentage impervious may vary greatly even on comparable sized lots due to differences in dwelling size, improvements, etc. Landscape practices should also be considered as it is common in some areas to use ornamental grav- els underlain by impervious plastic materials in place of lawns and shrubs. A field investigation of a study area should always be made, and a review of aerial photos, where available may assist in estimat- ing the percentage of impervious cover in developed areas. 3. For typical horse ranch subdivisions increase impervious area 5 per- cent over the values recommended in the table above. RCFC IS WCD rJYDROLOGY MANUAL IMPERVIOUS COVER FOR DEVELOPED AREAS PLATE E -6.3 • C • Table 5 -1. Manning's Roughness Coefficients. ** Lining Category Lining Type n - Value for Given Depth Ranges 0 -0.15 m (0 -0.5 ft) 0.15 -0.60 m (0.5 -2.0 ft) >0.60 m ( >2.0 ft) Rigid Concrete 0.015 0.013 0.013 Grouted Riprap 0.040 0.030 0.028 Stone Masonry 0.042 0.032 0.030 Soil Element 0.025 0.022 0.020 Asphalt 0.018 0.016 0.016 Unlined Bare Soil 0.023 0.020 0.020 Rock Cut 0.045 0.035 0.025 Temporary* Woven Paper Net 0.016 0.015 0.015 Jute Net 0.028 0.022 0.019 Fiberglass Roving 0.028 0.021 0.019 Straw with Net 0.065 0.033 0.025 Curled Wood Mat 0.066 0.035 0.028 Synthetic Mat 0.036 0.025 0.021 Gravel Riprap 25 mm (1 in) D50 0.044 0.033 0.030 50 mm (2 in) D50 0.066 0.041 0.034 Rock Riprap 150 mm (6 in) D50 0.104 0.069 0.035 300 mm (12 in) D50 j 0.078 0.040 Note: Values listed are representative values for the respective depth ranges. Manning's roughness coefficients, n, vary with the flow depth. * Some "temporary" linings become permanent when buried. ** Table reproduced from HEC- 15(34) • 5 -6 • 7 -22 HANDBOOK OF HYDRAULICS Values of n to Be Used with the Manning Equation Surface Best I Good I Fair I Bad Uncoated cast -iron pipe .............. 0.012 0.011 0.013 0.0120 Coated cast -iron pipe......... Commercial wrought -iron pipe, black... 0.012 0.013 Commercial wrought -iron pipe, galva- 0.013 0.014 nized ... .. ... Smooth brass and glass pipe........... 0.009 0.010 Smooth lockbar and welded "OD" pipe 0.010 0.013 0.011* 0.015" Riveted and spiral steel pipe.......... 0.030 0.035* Vitrified sewer pipe .................. 0.010 0.011 J J 0.013• Common clay drainage tile............ 0.011 0.012' Glazed brickwork...... .. ....... 0.011 0.012 Brick in cement mortar; brick sewers... 0.012 0.013 Neat cement surfaces ................. 0.010 0.011 Cement mortar surfaces ............. 0.011 0.012 Concrete pipe ...................... 0.012 0.013 W d tare ; e ...... 0.010 0.011 0os p p ............... Plank Flumes: Planed........................ Unplaned......................... With battens. ............. . Concrete -lined channels ............... Cement - rubble surface ................ Dry - rubble surface ................... Dressed - ashlar surface.......... Semicircular metal flumes, smooth.... . Semicircular metal flumes, corrugated. . JMOCK Cuts, amuuVU auu Rock cuts, jagged and irregular..... . Winding sluggish canals........... . Dredged earth channels......... . Canals with rough stony beds, weeds on earth banks. ... • • • • Earth bottom, rubble sides..........' Natural Stream Channels: (1) Clean, straight bank, full stage, no rifts or deep pools........ . (2) Same as (1), but some weeds and stones.. • (3) Winding, some pools and shoals, clean........................... ......... (4) Same as(3),lower stages, more ineffective slope and sections...... . (5) Same as (3), some weeds and stones.. • • • (6) Same a.s (4), stony sections.... . . (7) Sluggish river reaches, rather weedy weedy or with very deep pools. (8) Very weedy reaches ............. • I • Values commonly used in designing. 0.010 0.011 0.012 0.012 0.017 0.025 0.013 0.011 0.0225 0.012* 0.013* 0.015* 0.014* 0.020 0.030 0.014 0.012 0.025 0.014 0.013• 0.014 0.015 0.011 0.013• 0.017• 0.015 0.014• 0.013' 0.015' 0.012 0.013• 0.015* 0.012 0.013 0.014 0.016 0.016' 0.025 0.033 0.015 0.013 0.0275 0.015 0.015 0.017 0.013 0.017 0.017 0.015 0.017 0.013 0.015 0.016 0.013 0.014 0.015 0.018 0.030 ? 0.035 0.017 0.015 0.030 VIVAIV 0.035 W.vvv 0.040 - •• 0.045 -- - -- 0.030 0.0225 0.025* 0.0275 0.030 .: 0.025 0.0275* 0.030 0.033 0.050 0.025 0.030 0.035* 0.040 0.050 0.028 0.030* 0.033• 0.035.::: 0.050 0.025 0.0275 0.030 0.033' 0.030 0.033 0.035 0.040 0.033 0.035 0.040 0.045 0.040 0.045 0.050 0.055 0.035 0.040 0.045 0.050 0.045 0.050 0.055 0.060 0.050 0.060 0.070 0.080 0.075 0.100 0.125 0:150 • 10 8 6 5 4 9 �i W 1 H 3 0.8 0 F 0.6 c 0.5 0.4 0.3 0.2 CHART 9B HIMMINEEM MINNOWS . GRATE OPENING RATIO P-1-7/8-4 0.8 Reticuline 0.8 Curved vane 0.35 30* tilt-bar 0.34 Tested I I I I - WANIFANW, F Wu A � t I,'I! 1j1wAAVAA1jVjFAfA =MMNIM 0WRIEV'AN1101 A =CLEAR OPENING AREA P=2W+L (WITH CURB) e7m. 0. Mao 100000 POP MAO pg 2 3 4 5 6 8 10 20 30 40 50 60 80 100 DISCHARGE D (FT 3/S) Grate Inlet Capacity in Sump Conditions - English Units • A -19 • The use of depressed inlets and combination inlets enhances the interception capacity of the inlet. Example 4 -7 determined the interception capacity of a depressed curved vane grate, 0.6 m by 0.6 m (2 ft by 2 ft), example 4 -9 for an undepressed curb opening inlet, length = 3.0 m (9.8 ft) and a depressed curb opening inlet, length = 3.0 m (9.8 ft), and example 4 -10 for a combination of 0.6 m by 0.6 m (2 ft by 2 ft) depressed curve vane grate located at the downstream end of 3.0 m (9.8 ft) long depressed curb opening inlet. The geometries of the inlets and the gutter slopes were consistent in the examples and table 4 -6 summarizes a comparison of the intercepted flow of the various configurations. Table 4 -6. Comparison of Inlet Interception Capacities. Inlet Type Intercepted Flow, Q; Curved Vane - Depressed 0.033 m3 /s (1.2 ft3 /s) (example 4 -7) Curb Opening - Undepressed 0.031 m3 /s (1.1 ft3 /s) (example 4 -9 (1)) Curb Opening - Depressed 0.045 m3 /s (1.59 ft3 /s) (example 4 -9 (2)) Combination - Depressed 0.049 m3 /s (1.76 ft3 /s) (example 4 -10) From table 4 -6, it can be seen that the combination inlet intercepted approximately 100 percent of the total flow whereas the curved vane grate alone only intercepted 66 percent of the total flow. The depressed curb opening intercepted 90 percent of the total flow. However, if the curb opening was undepressed, it would have only intercepted 62 percent of the total flow. • 4.4.5. Interception Capacity of Inlets In Sag Locations Inlets in sag locations operate as weirs under low head conditions and as orifices at greater depths. Orifice flow begins at depths dependent on the grate size, the curb opening height, or the slot width of the inlet. At depths between those at which weir flow definitely prevails and those at which orifice flow prevails, flow is in a transition stage. At these depths, control is ill - defined and flow may fluctuate between weir and orifice control. Design procedures presented here are based on a conservative approach to estimating the capacity of inlets in sump locations. The efficiency of inlets in passing debris is critical in sag locations because all runoff which enters the sag must be passed through the inlet. Total or partial clogging of inlets in these locations can result in hazardous ponded conditions. Grate inlets alone are not recommended for use in sag locations because of the tendencies of grates to become clogged. Combination inlets or curb - opening inlets are recommended for use in these locations. 4.4.5.1. Grate Inlets in Sags A grate inlet in a sag location operates as a weir to depths dependent on the size of the grate and as an orifice at greater depths. Grates of larger dimension will operate as weirs to greater depths than smaller grates. The capacity of grate inlets operating as weirs is: • 4 -58 • Qi = CW P d 1.5 (4 -26) where: f P = perimeter of the grate in m (ft) disregarding the side against the curb i d CW = 1.66 (3.0 in English units) di d = average depth across the grate; 0.5 ( d, + dz), m (ft) d = d' + d2 2 Figure 4 -17. Definition of depth. The capacity of a grate inlet operating as an orifice is: Qi = Co A9 (2 g d)0-5 (4 -27) where: Co = orifice coefficient = 0.67 A9 = clear opening area of the grate, m2 (ft2) g = 9.81 m /s2 (32.16 ft/s2) • Use of equation 4 -27 requires the clear area of opening of the grate. Tests of three grates for the Federal Highway Administration (27) showed that for flat bar grates, such as the P- 50x100 and P -30 grates, the clear opening is equal to the total area of the grate less the area occupied by longitudinal and lateral bars. The curved vane grate performed about 10 percent better than a grate with a net opening equal to the total area less the area of the bars projected on a horizontal plane. That is, the projected area of the bars in a curved vane grate is 68 percent of the total area of the grate leaving a net opening of 32 percent, however the grate performed as a grate with a net opening of 35 percent. Tilt -bar grates were not tested, but exploration of the above results would indicate a net opening area of 34 percent for the 30- degree tilt -bar and zero for the 45- degree tilt -bar grate. Obviously, the 45- degree tilt -bar grate would have greater than zero capacity. Tilt -bar and curved vane grates are not recommended for sump locations where there is a chance that operation would be as an orifice. Opening ratios for the grates are given on chart 9. Chart 9 is a plot of equations 4 -26 and 4 -27 for various grate sizes. The effects of grate size on the depth at which a grate operates as an orifice is apparent from the chart. Transition from weir to orifice flow results in interception capacity less than that computed by either the weir or the orifice equation. This capacity can be approximated by drawing in a curve between the lines representing the perimeter and net area of the grate to be used. Example 4 -11 illustrates use of equations 4 -26 and 4 -27 and chart 9. • 4 -59 • Example 4 -11 Given: Under design storm conditions a flow to the sag inlet is 0.19 m3 /s (6.71 ft 3 1s). Also, SX = SW = 0.05 m/m (ft/ft) n = 0.016 Tall..ble = 3 m (9.84 ft) Find. Find the grate size required and depth at curb for the sag inlet assuming 50% clogging where the width of the grate, W, is 0.6 m (2.0 ft). Solution: Sl Units Step 1. Determine the required grate perimeter. Depth at curb, d2 d2 = T S. = (3.0) (0.05) d2 = 0.15m Average depth over grate d = d2 - (W 12) S d = 0.15 - (0.612) (. 05) d = 0.135 m is From equation 4 -26 or chart 9 P = Q; / [CW dl.5] P = (0.19)/((1.66)(0.135)' -5] P = 2.31 m English Units Step 1. Determine the required grate perimeter. Depth at curb, d2 d2 = T S„ = (9.84) (0.05) d2 = 0.49 ft Average depth over grate d = d2 - (W 12) Sw d = 0.49 - (2.012)(.05) d = 0.44 ft From equation 4 -26 or chart 9 P = Q; / [CK, d'.s] P = (6.71)1((3.0)(0.44)1.5] P = 7.66 ft Some assumptions must be made regarding the nature of the clogging in order to compute the capacity of a partially clogged grate. If the area of a grate is 50 percent covered by debris so that the debris - covered portion does not contribute to interception, the effective perimeter will be reduced by a lesser amount than 50 percent. For example, if a 0.6 m by 1.2 m (2 ft by 4 ft) grate is clogged so that the effective width is 0.3 m (1 ft), then the perimeter, P = 0.3 + 1.2 + 0.3 = 1.8 m (6 ft), rather than 2.31 m (7.66 ft), the total perimeter, or 1.2 m (4 ft), half of the total perimeter. The area of the opening would be reduced by 50 percent and the perimeter by 25 percent. Therefore, assuming 50 percent clogging along the length of the grate, a 1.2 m by 1.2 m (4 ft by 4 ft), 0.6 m by 1.8 m (2 ft by 6 ft), or a .9 m by 1.5 m (3 ft by 5 ft) grate would meet requirements of a 2.31 m (7.66 ft) perimeter 50 percent clogged. Assuming 50 percent clogging along the grate length, • 4 -60 • • • HYDROLOGY MAPS LL \ � . \ / / \ ' / ) ' / /- - PROPOSED RES0009H kL DEWELOPHEKY ' ��U�6k���� ��0�- �U���^��� ) ~ ~ """""»«" ""~°" ~"-�~"-�"~ ----- / - -------- ,/ | \ ' \ \ ^/ / | - �-------------|--------' | | L------------- ` | \ \ | � | | � / ! � \ \ | � ---- \ \ \ ` / ` � . \ \-- | \ ` 66.1 � | ` �» �ovo �o0u�n"o"n�� \ ~ /~ ----------- --1 \ \ / \ | // \ --�~- `- °- ^- ^- ^- ^- STALLS -^ - -` | | - \ � U �( U � � \ , ` Y--' �ZLi]------ � | \ � Al \ \ ' I— — — — — — — — — — — — — — w Li 0 Of of ui HIGHWAY 111 ^, 0.20 0 1.91 0.20 0 AIRPORT c,"-cl COVER ��i��U��U���� ������ VICINITY " '°"^"" N.T.S. C> | ,� m EXISTING STRUCTURES | " | / TO REMAIN / PROPERTY , | | | BOUNDARY - _ o o o�o o o 000 o 0 o oo ' / ~~ EMERGENCY " lu_____�� OVERFLOW � � ~p \/ � RETENTIO 9 / BASIN BT �� WSloo 461.7 BOTTOM = 460.0 LUWE/uu= 0.20 AC-PT -\}. Ar cl , " " ° "'sp " ° ^ ^ " " ^ ° " \ " | Jp " � " . " ° " " " ° " " " ° ° ° ^ " " " " a5,* - w Li 0 Of of ui HIGHWAY 111 ^, 0.20 0 1.91 0.20 0 AIRPORT BLVD - _ o o o�o o o 000 o 0 o oo ' / ~~ EMERGENCY " lu_____�� OVERFLOW � � ~p \/ � RETENTIO 9 / BASIN BT �� WSloo 461.7 BOTTOM = 460.0 LUWE/uu= 0.20 AC-PT -\}. Ar cl , " " ° "'sp " ° ^ ^ " " ^ ° " \ " | Jp " � " . " ° " " " ° " " " ° ° ° ^ " " " " a5,* t-1 I AVENUE 49 wi AVENUE 50 DRAINAGE AREA A w Li 0 Of of ui HIGHWAY 111 ^, t-1 I AVENUE 49 wi AVENUE 50 ::3W | AVENUE 52 AVENUE 53 DRAINAGE AREA A Ld AVENUE 54 lk� AVENUE 51 ui 0 1.89 0.20 ::3W | AVENUE 52 AVENUE 53 RUNOFF VOLUME DRAINAGE AREA A Ld AVENUE 54 0 1.89 0.20 0 1.91 0.20 0 AIRPORT BLVD ��i��U��U���� ������ VICINITY " '°"^"" N.T.S. RUNOFF VOLUME DRAINAGE AREA A DRAINAGE AREA B 3 HR RUNOFF VOLUME (AC—FT) 1.89 0.20 RETENTION BASIN CAPACITY (AC—FT) 1.91 0.20 "+ � - _ —DRAINAGE �U�|�� ]� ��num~�n �� 1.3 �n �d� ~� .7 AC IMPERVIOUS) "° w" RUNOFF INDEX NUMBER CALCULATION COVER TYPE ACRES RI PASTURE/DRYU\ND 1.5 01 FALLOW 1.0 85 RESIDENTIAL 15.1 56 WEIGHTED RI NUMBER= 58 LEGEND. DRAINAGE DIRECTION DRAINAGE AREA BOUNDARY PROPOSED STORM DRAIN SYSTEM IMPERVIOUS AREA WATER SURFACE FOR BASIN SUB A WATER SURFACE OR � � � C n Q Z D Q C= � 1 Q - I PF II III II I II II II I II II II I II II II I U- - - -- �� - - - --1 i ,T ,r- �4. \ \ 464.8 FL j� 460_8 I� � � � =w. ° ° Q�loo;-5.9 � a \ / \ /,0 =3.3 ' / EXISTING \ (TOTAL FLOW) _ 657 STRUCTURE TO REMAI \ / - SURFACE FLOW A -7 G 1 ° L-450 ci A °2.17 PROPERTY \ 46,4- FL / / -- - - - - - -- - - - - - - - 465.7 P ,- a .�. BOUNDARY 462.2 INV FS 90 120 Q,00 =3.3 -------- Qio =1. -- / ' L -278 I e - - - - -- ----- --- - -- - -- STALLS SPLIT RAIL FENCE T -- - -- - -- ---------- - - - - -_j I (TYP.) 464.0 FL 10 466.1 `�� ;� .. l Q 6 r% 1 a I I it II I I II II I I II II BLDG I {: BLDGI I� I� L II -1 BLDG I T 30 465.7 I a /�4 �6.2 -- - - -- �. _, _ -- /�� SURF E FLO4 10 �` FL ,00 =5 CFS o- ---- - - - - -- �- - - -- --- - - - - -- / T 8 459.1 �N Q Quo =3. CFS Q,00 =10.8 1� I (TOTAL FLO�V 464.8 FL ( ) 462.5 INV 20 A-6 Qloo =5.0 ZZ Q,o =2.8 L -241 A -1 A -1.85 � \� L -262 � ' S FACE Fy I' A -1.71 ? s 'z i . o� •, '�9'� r Q+' =1.9 CFS A -2 T F� I //' ill I Qlo =1.1 CFS L -193 A -1'39 COVERED ARENA S 4 CFS 4 _ i ooR --.OW -- - Q �- L b Qio =2.5 CFS 464.7 FL 40 460.9 INV Q,o =4.9 4- (TOTAL FLOW) J., NOTES: ALL CATCH BASINS INTERCEPT 100% OF TRIBUTARY STORM RUNOFF, EXCEPT AS NOTED. SEE HYDROLOGY REPORT FOR QUANTIFIED CATCH BASIN CAPACITIES AND OVERFLOW RATES. t4.7 FL 1I .59.1 INV PI )100 =10.1 )io =5.6 TOTAL FL 466.1 50 f� dm GZfiIIt,, TURNOUT PASTURES J i I I 1 z z 0 67.4 Ln Li f + }i o O aE J� HIGHWAY 1 1 N DR. CARREON I I - AVENUE 48 L AVENUE 49 N 66.2 ` \ AVENUE 50 w 3 w z � AVENUE 51 _ v J I °. t Iii Z Li _ � W z� C w C AVENUE 52 C - - AVENUE 53 150 46�� 0 1 66.1 k { _- 1 I 1 I v~i AVENUE 54 1 h w �' w V) z Z Z U O Y o AIRPORT BLVD a VICINITY MAP N.T.S. - -- --- - - - - -- - - - - - -- -- -- EARTH CHANNEL STREET - - -- --- - - - - -- --- .____..__ - - - - -- 19' I _ 18' 28' y B -♦ 1 INLET FLOW WATER SURFACE FOR BASIN SUB A 464.0 FL L -559 200 462.0 INV A -2.6 Qloo =7.0 CFS DRAINAGE AREA BOUNDARY Qio =3.9 CFS DRAINAGE SUB -AREA BOUNDARY SEE STREET DRAINAGE SUB -AREA ID o-� C.ApAr rry - Q QI L -123 465.5 170 AT RIGHT q FS A -4.567 d0l LEGEND C, EMERGEN RETENTION BASIN B WSioo = 461.7 T_' BOTTOM = 460.0 -�- V LUMEloo 0.20 AC -FT 3' �l =h-t i X56 0. I� ° I I I 3 a N3. 3 TURNOUT 65.4 PASTURE •• j 464.3 FL` 459.5 IM Q,00 =3.1 Q10 =1.9 463.1 1 458.2 I Q,00 =3.! Q,o =2.0 DECOMPOSED GRANITE - n= 0.025 (SEE HYDROLOGY REPORT FOR REFERENCE) DECOMPOSED GRANITE n= 0.025 (SEE HYDROLOGY REPORT FOR REFERENCE) 9.0' D= 0.40'05.0 CFS 1 4.` 3- 46' DRAINAGE SWALE CAPACITY (ENTRANCE DRIVE AT MONROE STREET, SECTION A -A) N.T.S. Q,00 INTO INLET AT NODE 200 = 7.0 CFS AREA- WEIGHTED ESTIMATE OF MAXIMUM CHANNEL FLOW WEST OF INLET = 5 CFS FROM ITERATIVE CALCULATION: AT 5 CFS, D= 0.40' A= 3.40 SF P= 17.00 SF V = 1.486 (A/ P)/' S� n 0.025 (3.40/17.00) (0.0050)' = 1.44 FPS Q = VA Q = 1.44 (3.40) = 5 CFS uo V.­ AVE. 55 ■ WETTED PERIMETER P= 27.65' I FLOW AREA =7.17 SF 1.56' 2' I 24' 0. 1.0 DRAINAGE STREET SWALE STREET DRAINAGE SWALE CAPACITY (MOST CONSTRICTED SECTION, MINIMUM SLOPE) N.T.S. V = 1.486 (A /P)� S"' n = 0.025 (7.17/27.65) (0.005) = 1.71 FPS Q = VA Q = 1.71 (7.17) = 12.3 CFS 'i'Owxx R 0' 60' 120' SCALE 1"=60' ■ FIRM WATER SURFACE FOR BASIN SUB A WATER SURFACE DRAINAGE DIRECTION DRAINAGE AREA BOUNDARY DRAINAGE SUB -AREA BOUNDARY 2A-1 DRAINAGE SUB -AREA ID L -123 FLOW TRAVEL LENGTH (FT) A -4.567 AREA (AC) 123.4 FL 567.8 INV NODE ELEVATIONS 123 5.678 NODE ID NUMBER Qio =1.234 TOTAL FLOW RATES AT NODE (CFS) C, EMERGEN RETENTION BASIN B WSioo = 461.7 T_' BOTTOM = 460.0 -�- V LUMEloo 0.20 AC -FT 3' �l =h-t i X56 0. I� ° I I I 3 a N3. 3 TURNOUT 65.4 PASTURE •• j 464.3 FL` 459.5 IM Q,00 =3.1 Q10 =1.9 463.1 1 458.2 I Q,00 =3.! Q,o =2.0 DECOMPOSED GRANITE - n= 0.025 (SEE HYDROLOGY REPORT FOR REFERENCE) DECOMPOSED GRANITE n= 0.025 (SEE HYDROLOGY REPORT FOR REFERENCE) 9.0' D= 0.40'05.0 CFS 1 4.` 3- 46' DRAINAGE SWALE CAPACITY (ENTRANCE DRIVE AT MONROE STREET, SECTION A -A) N.T.S. Q,00 INTO INLET AT NODE 200 = 7.0 CFS AREA- WEIGHTED ESTIMATE OF MAXIMUM CHANNEL FLOW WEST OF INLET = 5 CFS FROM ITERATIVE CALCULATION: AT 5 CFS, D= 0.40' A= 3.40 SF P= 17.00 SF V = 1.486 (A/ P)/' S� n 0.025 (3.40/17.00) (0.0050)' = 1.44 FPS Q = VA Q = 1.44 (3.40) = 5 CFS uo V.­ AVE. 55 ■ WETTED PERIMETER P= 27.65' I FLOW AREA =7.17 SF 1.56' 2' I 24' 0. 1.0 DRAINAGE STREET SWALE STREET DRAINAGE SWALE CAPACITY (MOST CONSTRICTED SECTION, MINIMUM SLOPE) N.T.S. V = 1.486 (A /P)� S"' n = 0.025 (7.17/27.65) (0.005) = 1.71 FPS Q = VA Q = 1.71 (7.17) = 12.3 CFS 'i'Owxx R 0' 60' 120' SCALE 1"=60' ■ .a� HYDROLOGY & HYDRAULICS -S REPORT Located in a portion of the North 1/2 of Section 15, Township 6 South, Range 7 East. S.B.M. County of Riverside, California GRIFFIN RANCH TRA CT 34642 AUGUST 20, 2013 Prepared for ADC VENTURE 2011 -2, L.L. C. 4675 MacArthur Court, Suite 1550 Newport Beach, CA 92660 MSA Job Number: 1721 MSA CONSULTING, INC. PL.AMWO ■ C M BNGMMMWG ■ LAND SuRVwwo 34200 BoH Hors DRm ■ RANCHO MmAms ■ CA 92270 TmzmoNS (760) 320 -98U ■ FAx (760) 323 -7893 r '. Worksheet for Trapezoidal Channel - CB 2/3 MEN(` 'r �:r:•: -t,^...+Y� ny •�}::r.^ :'G's3�',r.7�., :ni �f v�' .f�..a• . Pro�eet Friction Method Manning Formula �... Solve For Normal Depth M:��i.'�s=w�= ��CY'�",.z.� -r;-- er;Y's': �i�ib'- '�i�....:- _"'�a",`y"ui'r f>„�"1.'__ ;,�... F;y�x,�,�.;;� u:. ._,r�;� - '.Y�'a- ..:.,_..., ::r•.� - :t_;.:,..: -. InDUt Data ..n_ `w,_ ,j ,5�' -, _�yn•<. t °`'.,a. ,.. £i'�,3'k.�- s7ff?6' Muir.,. u .:�'.�.'�w.�'�4'.- ax- ..1'ti.';'i �',9'e`'�,Ei a. ° »:'1::'..�r "�''Y`~`"i. �i'j ;r�4���'P'i;'`.•�.Y�.�' ^_ k'{�•� s�,."��"�,3y�' .. ,�:» �.s�..+.- �r`.if4:ti- rf..c•P.�v.- „��r'�s''�rr.�£ �5�'; greF.=.' fs��;*+„ �' a; �'. 7 .�,��'�,s''�i�..`���.'t� "�,,.'. .c?�` ":.a. Roughness Coefficient 0.035 Channel Slope 0.00970 ft/ft Left Side Slope 2.00 ft/ft (H:V) Right Side Slope 2.00 ft/ft (H:V) Bottom Width 6.00 ft Discharge 30.00 ft /s �:iyL�. ,- M1„s'.. ^`;xos4:�.Y •�. +�- :r��t�'e ;';%�4s�';'"x^ :1j-� °'ice +, "$> ....- :d••F •y�r• -ter_. ra : �xdc•- N'4wr „��e._, l "��':rri'�.d ':4t.•ref ���,.w .- n+ >' .�., -3"jY: 'a.+�i LL �i's�S �>.�....4..1A� x'' �A'1: iv3�aYiil� .i`.A�:{R�.i�.�ii��',�. n' Normal Depth 1.04 ft Flow Area 8.40 ft= Wetted Perimeter 10.65 ft Top Width 10.16 ft Critical Depth 0.83 ft Critical Slope 0.02140 ft/ft Velocity 3.57 ft/s Velocity Head 0.20 ft ' Specific Energy 1.24 ft Froude Number 0.69 Flow Type Subcritical h�.;=�':,r`a�e'?'•r��Y� • -)t`.: _ _ _:;y. ^.A. _ . ya.,. "v;it`fKrs:,,. - ' =27A-• Pfi• '- %'tGt,. _ _ Pros. •u.rv'< °.:_ 14 � fX4 ? y�'`S'1 R} �f•Y �.ct�'.31"- +�.�i•b }i t +�r9�.L.�ry�J�� e � ����'uif''�•' {" =5��ri� 4°.�yt Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 Y.Ei:rj!:4a�!: W �^�l P "�rYS"'°�%ir °~ '�yNFi 3:f' i;{.'e{"1' �1h'.�"�„i° %Ey=. � �•- :.�. .�ti! - ti'=]5 •'RNJ': . ^ry ;• t- f�.�'•4t GVF�Output!Data�- ;�,:���.j ���,,� g�.�.'�-..��'_ ��Jb � �� �a-�' - � � �i. °�•[��b:�. � � �• `d t, •Z JF `�. � �enS.�':i �� � �ii �' �� -�1� tli'MS'4 i�1 Ci Sjt'F }Ra7" '•�.Y`' .�%�'v�r�..'ESAlcl :5.1.......�.w'Y ��iw d;'jE�� rYS e�� .a.- ;?..+. Y+.N xa'F: J . _u ... -:.v; -th5.' �..� Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft } Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 1.04 ft Critical Depth 0.83 ft Channel Slope 0.00970 ft/ft Critical Slope 0.02140 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.066.001 i i 6/6/2013 12:07:61 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06796 USA +1 -203- 765.1666 Page 1 of 1 Worksheet for Trapezoidal Channel - CS 617 Friction Method Manning Formula Solve For Normal Depth Roughness Coefficient 0.035 Channel Slope 0.00930 ft/ft Left Side Slope 2.00 ft/ft (H:V) Right Side Slope 2.00 ft/ft (H:V) Bottom Width 6.00 ft Discharge 24.40 ft3/s res RAISED-- Normal Depth 0.94 ft Flow Area 7.39 ft2 Wetted Perimeter 10.19 ft Top Width 9.75 ft Critical Depth 0.73 It Critical Slope 0.02210 ft/ft Velocity 3.30 ft/s Velocity Head 0.17 ft Specific Energy 1.11 It Froude Number 0.67 Flow Type Subcritical Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 NO Upstream Depth Profile Description Profile Headloss Downstream Velocity Upstream Velocity Normal Depth Critical Depth Channel Slope Critical Slope 61612013 1210:06 PM 0.00 It 0.00 It Infinity ft/s Infinity ft/s 0.94 ft 0.73 ft 0.00930 ft/ft 0.02210 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster (08.01.066.00] 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-766.1666 Page 1 of 1 RETURN PERIOD vs. ACCELERATION BOORS ET AL. (1997) SOIL (310)1 10000 1000 a� a� 100 0.00 0.25 0.50 0.75 1.00 1.25 1.50 Acceleration (q) RETURN PERIOD vs. ACCELERATION 100000 10000 0 ®- 1000 a� T4 100 CAMP. & BOZ. (1997 Rev.) AL 1 0.00 0.25 0.50 0.75 1.00 1.25 1.50 Acceleration W 1ZETURN PERIOD vs. ACCELERATION SADIGH ET AL. (1997) DEEP SOIL 1 100000 10000 Pei a� c- 1000 a� 7 100 0.00 0.25 0.50 0.75 1.00 1'.25 1.50 Acceleration (q) RETURN PERIOD vs. ACCELERATION ABRAHAMSON & SILVA (1997) SOIL 1 100000 10000 a 0 a� ®- 1000 L WR 0.00 0.25 0.50 0.75' 1.00 1.25 1.50 Acceleration (g) APPENDIX D Liquefaction Analyses LIQUETYPRO Output Data LIQUEFACTION ANALYSIS SWC Avenue 54 & Monroe Street, La Quinta Hole No.=B-1 Water Depth=25 ft Magnitude=7.4 Acceleration=0.588 -Shaar skess-Pallo �Fbctb?bf Sdrit Y SetUemenf , ,coo —.30 1 .. r 50 16 Shaded Zone has Liquefaction Potentfal 01 . 5, .0 On), .11 I I I I F I I I I I I $ =,2-8-1. Sladden Engineering 544-06120 Graphic A 544 - 06126 -1 ca{-0. n. aa..aa aa* a{ Ga{ aaxkaaxtrx -0ax....araaaaarGRaaaaareRtra rax-0 aaaraana -0akRtrtr,rxekaRkaAaRAa aa,•ax LIQUEFACTION ANALYSIS CALCULATION SHEET copyright by CivilTech software -, civiltech.com (425) 453 -6488 Fax (425) 453 -5848 trstAxxGk *k {k�r {xAxx{R RaxxxxxRk {aR ahRtrRGtrnRxxRxRx* Rk• x 4xn *RaRA -0tr *tr *aa -0AAAS: t4 nRRCfxaRRkxAkx* *4adR { ;*a {.ar *Ox Licensed to 4/17/2006 5:07'28 Pm Input File Name: H: \ndevlin \sladden \544 - 06120 -1.liq Title: SWC Avenue 54 & Monroe street, La Quinta Subtitle: 544 -06120 Input Data: surface Elev.- Hole ND.=B -1 Depth of Hole -50.0 ft water Table during Earthquake= 25.0 ft Water Table during In -Situ Testing= 49.0 ft max. Acceleration =0.58 gg Earthquake magnitude -7.4 Earthquake magnitude =7.4 2. settlement Analysis method: ishihara / Yoshimine- 3. Fines correction for Liquefaction: stark /olson et al.- 4. Fine correction for settlement: During Liquefaction- s. settlement calculation in: All zones - 6. Hammer Energy Ratio, ce =1.25 •7. Borehole Diameter, cb -1 8. sampel'ing Method, cs =1.2 fs =1, Plot one CSR (fs =1) 10. use curve smoothing: Yes - - Recommended Options In -SitU Test Data: Depth SPT Gamma Fines ft pcf % 0:0 0.0 88.0 79.0 3.0 18.0 88.0 79.0 5.0 24.7 85.0 97.0 10.0 18.7 102.0 16.0 15.0 10.7 102.0 26.0 20.0 18.0 105.0 16.0 22.5 10.0 105.0 37.0 25.0 10.7 81.0 94.0 27.5 11.0 81.0 73.0 30.0 43.3 98.0 15.0 32.5 15:0 98.0 80.0 35.0 36.7 119.0 7.0 37.5 24.0 119.0 22.0 40.0 26.7 94.0 68.0 42.5 26.0 94.0 44.0 45.0 7.3, 87.0 92.0 50.0 19.0 87.0 69.0 output Results: calculation segment, dz =0.050 ft user defined,Print Interval, dp =1.00 ft CSR calculation: Depth gamma sigma gamma. sigma' rd CSR fs CSRfs ft pcf is pcf is (user) w /fs 0.00 88.0 0.000 88.0 0.000 1.00 0.38 1.0 ' 0:38 1.00 88.0 0.044 88.0 0.044 1.00 0.38 1.0 0.38 2.00 88.0 0.088 88.0 0.088 1.00 0.38 1.0 0.38 3.00 88.0 0.132 88.0 0.132 0.99 0.37 1.0 0.37 4.00 86.5 0.176 86.5 0.176 0.99 0.37 1.0 0.37 5.00 85.0 0.219 85.0 0.219 0.99 0.37 1.0 0.37 6.00 88.4 0.262 88.4 0.262 0.99 0.37 1.0 0.37 7.00 91.8 0.307 91.8 0.307 0.98 0.37 1.0 0.37 8.00 95.2 0:354 95.2 0.354 0.98 0.37 f.0 0.37 9.00 98.6 0.402 98.6 0.402 0.98 0.37 1.0 0.37 10.00 102.0 0.452 102.0 0.452 0.98 0.37 1.0 0.37 11.00 102.0 0.503 102.0 0.503 0.97 0.37 1.0 0.37 12.00 102.0 0.554 102.0 0.554 0.97 0.37 1.0 0.37 13.00 102.0 0.605 102.0 0.605 0.97 0.37 1.0 0.37 14.00 102.0 0.656 102.0 0.656 0.97 0.36 1.0 0.36 15.00 102.0 0.707 102.0 0.707 0.97 0.36 1:0 0.36 16.00 102.6 0.758 102.6 0.758 0.96 0.36 1.0 0.36 17.00 103.2 0.810 103.2 0.810 0.96 0.36 1.0 0.36 18.00 103.8 0.861 103.8 0.861 0.96 0.36 1.0 0.36 19.00 104.4 0.913 104.4 0.913 0.96 0.36 1.0 0.36 20.00 105.0 0.966 105.0 0.966 0.95 0.36 1.0 0.36 21.00 105.0 1.018 105.0 1.018 0.95 0.36 1.0 0,36 22.00 105.0 1.071 105.0 1.071 0.95 036 1.0 0.36 23.00 100.2 1.123 100.2 1.123 0.95 0.36 1.0 0.36 24.00 90.6 1.171 90.6 1.171 0.94 0.36 1.0 0.36 25.00 81.0 1.214 81.0 1.214 0.94 0.36 1.0 0.36 26.00 81.0 1.254 18.6 1.224 0.94 0.36 1.0 0.36 27.00 81.0 1.295 18.6 1.234 0.94 0.37 1.0 0.37 28.00 84.4 1.335 22.0 1.243 0.93 0.38 1.0 0.38 29.00 91.2 1.379 28.8 1.256 0.93 0.39 1.0 0.39 30.00 98.0 1.427 35.6 1.272 0.93 0.39 1.0 0.39 31.00 98.0 1.476 35.6 1.290 0.92 . 0.40 1.0 0.40 32.00 98.0 1.525 35.6 1.308 0.91 0.40 1.0 0.40 33.00 102.2 1.574 39.8 1.326 0.91 0.41 1.0 0.41 34.00 110.6 1.627 48.2 1.348 0.90 0.41 1.0 0.41 35.00 11.9.0 1.684 56.6 1.374 0.89 0.41 1.0 0.41 36.00 119:0 1.744 56.6 1.402 0.88 0.41 1.0 0.41 37.00 119.0 1.803 56.6 1.431 0.87 0.41 1.0 0.41 38.00 114.0 1.862 51.6 1.458 0.86 0.42 1.0 0.42 39.00 104.0 1:917 41.6 1.482 0.86 6.42 1.0 0.42 40.00 94.0 1.967 31.6 1.500 0.85 0.42 1.0 0.42 Page 1 CSR is based on water table at 25.0 during earthquake CRR calculation from Depth SPT Cebs ft 0.00 0:00' 1.50 1.00, 6..00 1.50 2,00 1200. 1.50 3:00 m oo 1.50 4.00 21.33 1.50 S.:00 24.67 1.50 6.00 23:47 1.50 7.00 22.27 1.50 B'; 00 21.07 1.S0 9'.00 19.87 1.50 i0.00 '18.67 1.50 WT0re cr 0.75, 0.75 7-5 035 ,0:75 0.75 :0':75 0.75 0.75 0.85 OAS PT data: Siq�ma' is 0.000 0'044, 0.088 0.132 0.176. 0.219' 0:262• 0.307 0.354 0,402 0.452 cn (N1)60 Fines 1.,70 0.0.0' 19. 00 1.70. 11.48 79.00, 1.70 22.95• 79:00. 1,70 34:42 79:00. 1.70 40.80 S8;00 1.70 47 :18. 97.00 1.70 44:.89 80.80 1.70 42.59 64.60' 1 :6S 39.86 48.40 1.58 .39.96 32.20. 1.49 35.40 16.00 d (N1; 7:20 7:20 7,20 7.20 7:20 7:20 7:20 7.20 7.26 6.53 2.64 60 (N1)60f CRR7.5 Wo 0, 08 8' 0.20 30:15. 2.00 41.62 2,00 48,00 .2.00 54.38 2.00 S2.09 2.00 49.79 :2.00 47.06 2.00 46,49- 2.00 38.04' 2.00 13:00 .13:87 1150' 0.85 0.605 L.:M 22.73 2.2:00 4;08 26.81 0.32 14,00 12.27 1.50 O:SS 0 :6S6 1.23 19.31 24.00 '4.56 23:87 0.27. 15:00- 10.67 1.SO .0:95 01:707 1.19 18.08 26.00 5.04 23.12 0.25 16:,00 12:34 1.50 0 95 0.758 1.15' 19.86 24.00: 4.S6 24'.42' 0.27. 17:00 13.60 1x50 0.'95 0:810 3:11 '21.5.4 22.00' .4;:08 25:62 Or29 ,18*.', 00 15.07 1.SO 0.95 0,861, 1:08- 23.13 20:00, 3:60 26.73 0.31 19:00 16.53 1.50, 0:95 0.913 LOS 2.4..65 18 .'00. 3': >12 27.77 0.34 20:00 18.00 1.50 0.95 i0,.966 LO2 26.10 16..00: 2.64 28:74 0.37 21.00 14:80 1:50' 0.95 1:018 0:99 20.90 2446 4.66 25;56: 0.29 •22:00 11.60 - 1.50• 0.9S 1.071 0.97 15.97 32':80 "6.67 22:65. 0.25 .23.00 10.13 1:50 0.95, 1.123 0:94 13.63 48-40' 7.'20 20.83 0.23 24:00 10.40 1:50 0.95. 1.171 0:92 13 '70 ,71:20' 7.20 20.90 0.23 .25.00 10.67 1.;50 0.95. 1.214 0.91 13.80 94.00 '7:20 21.00 0.23 26:00 10.80 1:50 0:95' 1.254 0.89 13.75 85;60 7.20 WAS 0.23 27.00 10.93, 1:50, 0.95 1.295 0.88' 13..69 77.:20 7.20. 20.89 0.23 48:00 17.46 1.50. 1.00' 1:335 0..87 22.67, 61.40 7.20 29.87 0.44. 29.00 30.40 1•.50 1.00 1.379 6.85 38.82. 38.20, 7.20 46.02 2.00 30.00 43.33 1.50' 1.00 1.427 '0.84 54.42 15:'00. 2.40 56.82 2.00' 31.00 32.00 1.50, 1.00 1.476 0.82 39.52 41.'00 7:20 46.72 2..00 32:00 20.67- 1.50 L 00 :1:52$ ,0:81 25:11 66.99 7.20 32.31 2.;00 33,00 19.33, 1 ".50 1:00 1.574 0:80 23.11 65.41 7.20 30:31 2.00 34.00 28.00 1.' 50 1.00 '1.627 0.78 32.93 36:21 7.20 40.13 2.00 35:00 36.67. 1:0 1.00 1.684 .0 77 42'.38 ? 01 0.48 •42.86 2'.00 36.00. 31.60 1.50 1.00 1.744 0.76 35:90 13.00 1.92 37:82 2:00. 3.7.00. 26:54, '_1:50 1,#0' 1.803 0:74 29.:64 19.•00 3.36 33.00 2':00 38.00 24.53 1.50 1.00 1.862 0.73 26.97 31.19 6:29, 33•::25 2:00 39.00 25.60, 1.50 1':00 1.917 ,0:72 27.24 49.59 7:20 34.9.4 2.00 40.00 2667 1.'50 1.00 1.967 .0.,71 28:53 67:99 7.20 35..73 2.0,0, 41:00 26.40 1.% 1:00. 2.014 0.10 2.7:91 58.40 7.20 35.11 2 :0.0 42.00, 26.13 ,1,50 V OO 2.061 0:70 27.31 '48.;80 7.20 34:51 2:60' 43:.00` 22.27 1.50 1.00 2307 0.69 23.01 5339 7.20' 30.21 2.00 44.00 14:80 1.50 1.00, 2.153 0.68 15,.13 72.79 7.20. 22.33 0.24 45.00 7.33 1.50 1.00 2.197 '0 :67 7:42, 11.99 7.20, 14.62 0:16 46.00 9.66 1.50 1.00 2.241 .0.67 9:68 87:40 7.20 16.88 •0.18 47.00. 12..00 1.50 L 00 2.284 0.66 11.91 82.80 7.20 19.11 0:21 48:00 1433 LSO 1.00 2'.328 0.66 14:09 78.20 7.20, 21.29 0:23' 49.00 36.66 1.50 1.00- 2:371, 0.65 16:23 73.60 7.20 23.43. 0.26 50:00' ;19.00 Y.SO 1:00 2.385 0.65 18:45 69.:00 7.20 25.6S 0.29' CRR - isbased on water table at 49.0 during in -situ Testing Factor of Safety, - earthquake Magn Depth siggC', CRR7.5 KSigma CRRV ft tsf tsf 0.00 0.00 0.08 1.00 0.08 1.00 0.03 0.20 1.00 0.20 2.00 0.06 2.00 1.00 2.00 3.00 0.09 2.00 1.00 2.00 4.00 0.11 2.00 1.00 2.00 5.00 0.14 2.00 1.00 2.00 6.00 0.17 2.00 1.00 2.00 7,00 0.20 2.00 1.00 2.00 8.00 0.23 2.00 1.00 2.00 9.00 0.26 2.00 1.00 2.00 10.00 0.29 2.00 1.00 2.00 11.00 0.33 2.00 1.00 2.00 12.00 0.36 0.49 1.00 0.49 13.00 0.39 0.32 1.00 0.32 14.00 0.43 0.27 1.00 0.27 15.00 0.46 0.25 1.00 0.25 16.00 0.49 0.27 1.00 0.27 17,00 0.53 0.29 1.00 0.29 18.00 0.56 0.31 1.00 0.31 19.00 0.59 0.34 1.00 0.34 20.00 0.63 0.37 1.00 0.37 21.00 0.66 0.29 1.00 0.29 22.00 0.70 0.25 1.00 0.25 23.00 0.73 0.23 1.00 0.23 24.00 0.76 0.23 1.00 0.23 25.00 0.79 0.23 1.00 0.23 26.00 0.82 0.23 1.00 0.23 27.00 0.84 0.23 1.00 0.23 28.00 0.87 0.44 1.00 0.44 29.00 0.90 2.00 1.00 2.00 30.00 0.93 2.00 1.00 2.00 tude. 7.4: MSF CRRM 1.03 0.08 1.03 0.21 1.03 2.07 1.03 2.07 1.03 2.07 1.03 2.07 1.03 2.07 1.03 2.07 1.03 2.07 1.03 2.07 1.03 2.07 1.03 2.07 1.03 0.50 1.03 0.33 1.03 0.27 1.03 0.26 1.03 0.28 1.03 0.30 1.03 0.32 1.03 0.35 1.03 0.38 1.03 0.30 1.03 0.26 1.03 0.23 1.03 0.23 1.03 0.24 1.03 0.24 1.03 0.23 1.03 0.45 1.03 2.07 1.03 2.07 CSRfS F.S. w /fs CRRm /CSRfs 038 5.00 0.38 5.00 0.38 5.00 0.37 5.00 0.37 5.00 0.37 5.00 0.37 5.00 0.37 5.00 0.37 S.00 0.37 5.00 0.37 5.00. 0.37 5.00 0.37 5.00 0.37 5.00 0.36 5.00 0.36 5.00 0.36 5.00 0.36 S.00 0.36 5.00 0.36 5.00 0.36 S.00 0.36 5.00 0.36 5.00 0.36 5.00 0.36 5.00 0.36 5.00 0.36 0.65 ° 0.37 0.63 " 0.38 1.19 0.39 5.00 0.39 5.00 Page 2 S44-06120-1 41.00 94.0 2.014 31.6 1.516 0.84 0.42 1.0 0.42 42.00 94.0 2.061 31.6 1.532 0.83 0.42 1.0 0.42 43.00 92.6 2.107 30.2 1.547 0.82 0.42 1.0 0.42 44.00 89.8 2.153 27.4 1.562 0.82 0.42 1.0 0.42 45.00 87.0 2.197 24.6 1.575 0.81 0.42 1.0 0.42 46.00 87.0 2.241 24.6 1.587 0.80 0.43 1.0 0.43 47.00 87.0 2.284 24.6 1,599 0.79 0.43 1.0 0.43 48.00 87.0 2.328 24.6 1.612 0.78 0.43 1.0 0.43 49.00 87.0 2.371 24.6 1.624 0.78 0.43 1.0 0.43 50.00 87.0 2.415 24.6 1.636 0.77 0.43 1.0 0.43 CSR is based on water table at 25.0 during earthquake CRR calculation from Depth SPT Cebs ft 0.00 0:00' 1.50 1.00, 6..00 1.50 2,00 1200. 1.50 3:00 m oo 1.50 4.00 21.33 1.50 S.:00 24.67 1.50 6.00 23:47 1.50 7.00 22.27 1.50 B'; 00 21.07 1.S0 9'.00 19.87 1.50 i0.00 '18.67 1.50 WT0re cr 0.75, 0.75 7-5 035 ,0:75 0.75 :0':75 0.75 0.75 0.85 OAS PT data: Siq�ma' is 0.000 0'044, 0.088 0.132 0.176. 0.219' 0:262• 0.307 0.354 0,402 0.452 cn (N1)60 Fines 1.,70 0.0.0' 19. 00 1.70. 11.48 79.00, 1.70 22.95• 79:00. 1,70 34:42 79:00. 1.70 40.80 S8;00 1.70 47 :18. 97.00 1.70 44:.89 80.80 1.70 42.59 64.60' 1 :6S 39.86 48.40 1.58 .39.96 32.20. 1.49 35.40 16.00 d (N1; 7:20 7:20 7,20 7.20 7:20 7:20 7:20 7.20 7.26 6.53 2.64 60 (N1)60f CRR7.5 Wo 0, 08 8' 0.20 30:15. 2.00 41.62 2,00 48,00 .2.00 54.38 2.00 S2.09 2.00 49.79 :2.00 47.06 2.00 46,49- 2.00 38.04' 2.00 13:00 .13:87 1150' 0.85 0.605 L.:M 22.73 2.2:00 4;08 26.81 0.32 14,00 12.27 1.50 O:SS 0 :6S6 1.23 19.31 24.00 '4.56 23:87 0.27. 15:00- 10.67 1.SO .0:95 01:707 1.19 18.08 26.00 5.04 23.12 0.25 16:,00 12:34 1.50 0 95 0.758 1.15' 19.86 24.00: 4.S6 24'.42' 0.27. 17:00 13.60 1x50 0.'95 0:810 3:11 '21.5.4 22.00' .4;:08 25:62 Or29 ,18*.', 00 15.07 1.SO 0.95 0,861, 1:08- 23.13 20:00, 3:60 26.73 0.31 19:00 16.53 1.50, 0:95 0.913 LOS 2.4..65 18 .'00. 3': >12 27.77 0.34 20:00 18.00 1.50 0.95 i0,.966 LO2 26.10 16..00: 2.64 28:74 0.37 21.00 14:80 1:50' 0.95 1:018 0:99 20.90 2446 4.66 25;56: 0.29 •22:00 11.60 - 1.50• 0.9S 1.071 0.97 15.97 32':80 "6.67 22:65. 0.25 .23.00 10.13 1:50 0.95, 1.123 0:94 13.63 48-40' 7.'20 20.83 0.23 24:00 10.40 1:50 0.95. 1.171 0:92 13 '70 ,71:20' 7.20 20.90 0.23 .25.00 10.67 1.;50 0.95. 1.214 0.91 13.80 94.00 '7:20 21.00 0.23 26:00 10.80 1:50 0:95' 1.254 0.89 13.75 85;60 7.20 WAS 0.23 27.00 10.93, 1:50, 0.95 1.295 0.88' 13..69 77.:20 7.20. 20.89 0.23 48:00 17.46 1.50. 1.00' 1:335 0..87 22.67, 61.40 7.20 29.87 0.44. 29.00 30.40 1•.50 1.00 1.379 6.85 38.82. 38.20, 7.20 46.02 2.00 30.00 43.33 1.50' 1.00 1.427 '0.84 54.42 15:'00. 2.40 56.82 2.00' 31.00 32.00 1.50, 1.00 1.476 0.82 39.52 41.'00 7:20 46.72 2..00 32:00 20.67- 1.50 L 00 :1:52$ ,0:81 25:11 66.99 7.20 32.31 2.;00 33,00 19.33, 1 ".50 1:00 1.574 0:80 23.11 65.41 7.20 30:31 2.00 34.00 28.00 1.' 50 1.00 '1.627 0.78 32.93 36:21 7.20 40.13 2.00 35:00 36.67. 1:0 1.00 1.684 .0 77 42'.38 ? 01 0.48 •42.86 2'.00 36.00. 31.60 1.50 1.00 1.744 0.76 35:90 13.00 1.92 37:82 2:00. 3.7.00. 26:54, '_1:50 1,#0' 1.803 0:74 29.:64 19.•00 3.36 33.00 2':00 38.00 24.53 1.50 1.00 1.862 0.73 26.97 31.19 6:29, 33•::25 2:00 39.00 25.60, 1.50 1':00 1.917 ,0:72 27.24 49.59 7:20 34.9.4 2.00 40.00 2667 1.'50 1.00 1.967 .0.,71 28:53 67:99 7.20 35..73 2.0,0, 41:00 26.40 1.% 1:00. 2.014 0.10 2.7:91 58.40 7.20 35.11 2 :0.0 42.00, 26.13 ,1,50 V OO 2.061 0:70 27.31 '48.;80 7.20 34:51 2:60' 43:.00` 22.27 1.50 1.00 2307 0.69 23.01 5339 7.20' 30.21 2.00 44.00 14:80 1.50 1.00, 2.153 0.68 15,.13 72.79 7.20. 22.33 0.24 45.00 7.33 1.50 1.00 2.197 '0 :67 7:42, 11.99 7.20, 14.62 0:16 46.00 9.66 1.50 1.00 2.241 .0.67 9:68 87:40 7.20 16.88 •0.18 47.00. 12..00 1.50 L 00 2.284 0.66 11.91 82.80 7.20 19.11 0:21 48:00 1433 LSO 1.00 2'.328 0.66 14:09 78.20 7.20, 21.29 0:23' 49.00 36.66 1.50 1.00- 2:371, 0.65 16:23 73.60 7.20 23.43. 0.26 50:00' ;19.00 Y.SO 1:00 2.385 0.65 18:45 69.:00 7.20 25.6S 0.29' CRR - isbased on water table at 49.0 during in -situ Testing Factor of Safety, - earthquake Magn Depth siggC', CRR7.5 KSigma CRRV ft tsf tsf 0.00 0.00 0.08 1.00 0.08 1.00 0.03 0.20 1.00 0.20 2.00 0.06 2.00 1.00 2.00 3.00 0.09 2.00 1.00 2.00 4.00 0.11 2.00 1.00 2.00 5.00 0.14 2.00 1.00 2.00 6.00 0.17 2.00 1.00 2.00 7,00 0.20 2.00 1.00 2.00 8.00 0.23 2.00 1.00 2.00 9.00 0.26 2.00 1.00 2.00 10.00 0.29 2.00 1.00 2.00 11.00 0.33 2.00 1.00 2.00 12.00 0.36 0.49 1.00 0.49 13.00 0.39 0.32 1.00 0.32 14.00 0.43 0.27 1.00 0.27 15.00 0.46 0.25 1.00 0.25 16.00 0.49 0.27 1.00 0.27 17,00 0.53 0.29 1.00 0.29 18.00 0.56 0.31 1.00 0.31 19.00 0.59 0.34 1.00 0.34 20.00 0.63 0.37 1.00 0.37 21.00 0.66 0.29 1.00 0.29 22.00 0.70 0.25 1.00 0.25 23.00 0.73 0.23 1.00 0.23 24.00 0.76 0.23 1.00 0.23 25.00 0.79 0.23 1.00 0.23 26.00 0.82 0.23 1.00 0.23 27.00 0.84 0.23 1.00 0.23 28.00 0.87 0.44 1.00 0.44 29.00 0.90 2.00 1.00 2.00 30.00 0.93 2.00 1.00 2.00 tude. 7.4: MSF CRRM 1.03 0.08 1.03 0.21 1.03 2.07 1.03 2.07 1.03 2.07 1.03 2.07 1.03 2.07 1.03 2.07 1.03 2.07 1.03 2.07 1.03 2.07 1.03 2.07 1.03 0.50 1.03 0.33 1.03 0.27 1.03 0.26 1.03 0.28 1.03 0.30 1.03 0.32 1.03 0.35 1.03 0.38 1.03 0.30 1.03 0.26 1.03 0.23 1.03 0.23 1.03 0.24 1.03 0.24 1.03 0.23 1.03 0.45 1.03 2.07 1.03 2.07 CSRfS F.S. w /fs CRRm /CSRfs 038 5.00 0.38 5.00 0.38 5.00 0.37 5.00 0.37 5.00 0.37 5.00 0.37 5.00 0.37 5.00 0.37 S.00 0.37 5.00 0.37 5.00. 0.37 5.00 0.37 5.00 0.37 5.00 0.36 5.00 0.36 5.00 0.36 5.00 0.36 S.00 0.36 5.00 0.36 5.00 0.36 S.00 0.36 5.00 0.36 5.00 0.36 5.00 0.36 5.00 0.36 5.00 0.36 0.65 ° 0.37 0.63 " 0.38 1.19 0.39 5.00 0.39 5.00 Page 2 544- 06120 -1 31.00 0.96 2.00 1.00 2.00 1.03 2.07 0.40 5.00 32.00 0.99 2.00 1.00 2.00 1.03 2.07 0.40 5.00 33.00 1.02 2.00 1.00 2.01 1.03 2.07 0.41 5.00 34.00 1.06 2.00 1.00 1,99 1.03 2.06 0.41 5.00 35.00 1.09 2.00 0.99 1.98 1.03 2.05 0.41 4.99 36.00 1.13 2.00 0.99 1.97 1.03 2.04 0.41 4.94 37.00 1.17 2.00 0.98 1.96 1.03 2.03 0.41 4.89 38.00 1.21 2.00 0.97 1.95 1.03 2.01 0.42 4.84 39.00 1.25 2.00 0.97 1.94 1.03 2.00 0.42 4.80 40.00 1.28 2.00 0.96 1.93 1.03 1.99 0.42 4.76 41.00 1.31 2.00 0.96 1.92 1.03 1.99 0.42 4.72 42.00 1.34 2.00 0.95 1.91 1.03 1.96 0.42 4.68 43.00 1.37 2.00 0.95 1.901 1.03 1.97 0.42 4.65 44.00 1.40 0.24 0.95 0.23 1.03 0.24 0.42 0.56 4S.00 1.43 0.16 0.94 0.15 1.03 0.15 0.42 0.36 46.00 1.46 0.18 0.94 0.17 1.03 0.18 0.43 0.42 " 47.- 00 1.48 0.21 0.93 0.19 1.03 0.20 0.43 0.47 48.00 1.51 0.23 0.93 0.22 1.03 0.22 0.43 0.52 ° 49.00 1.54 0.26 0.93 0.24 1.03 0.25 0.43 0.58 50.00 1.55 0.29 0.93 0.27 1.03 0.28 0.43 0.66 •F.s.<1: Liquefaction Potential zone. (If above water table: F: s.=5 (F.S. is limited to 5, CRR is limited to 2, CSR is limited to 2) CPT convert to SPT for settlement Analysis: Fines correction for settlement analysis: Depth is qC /N60 tsf (N1)60 %Fines d(N1)60 (N1)60s 1.00 - - 18.68 79.0 0.00 18.68 2.00 - - - 30.15 79.0 0.00 30.15 3.00 - - 41.62 79.0 0.00 41.62 4.00 - - 48.00 88.0 0.00 48.00 5.00 _ - - 54.38 97.0 0.00 54.38 6.00 - - 52.09 80.6 0.00 52.09 7.00 - - 49.79 64.6 0.00 49.79 8.00 - - 47.06 48.4 0.00 47.06 9.00 - = - 46.49 32.2 0.00 46.49 10.00 7 - - 38.04 16.0 0.00 38.04 11.00 - - - 33.80 18.0 0.00 33.80 12.00 - 30.10 20.0 0.00 30.10 13.00 = - - 26.81 22.0 0.00 26.81 14.00 - - - 23.87 24.0 0.00 23.87 15.00 - - - 23.12 26.0 0.00 23.12 16.00 -- - 24.42 24.0 0.00 24.42 17.00 7 - 25.62 22.0 0.00 25.62 18.00 - - 26.73 20.0 0.00 26.73 19.00 - - - 27.77 18.0 0.00 27.77 20.00 - - - 28.74 16.0 0.00 28.74 21.00 - - 25.56 24.4 0.00 25.56 22.00 - = - 22.65 32.8 0.00 22.65 23.00 - - - 20.83 48.4 0.00 20.83 24.00 - - - 20.90 71.2 0.00 20.90 25.00 - 21.00 94.0 0.00 21.00 26.00 - - 20.95 85.6 0.00 20.95 27.00 - - - 20.89 77.2 0.00 20.89 28.00 - - - 29.87 61.4 0.00 29.87 29.00 - - - 46.02 38.2 0.00 46.02 30.00 - - - 56.82 15.0 0.00 56.82 31.00 - 46.72 41.0 0.00 46.72 32.00 - - 32.31 67.0 0.00 32.31 33.00 - - - 30.31 65.4 0.00 30.31 34.00 - - 40.13 36.2 0.00 40.13 35.00 .- - - 42.86 7.0 0.00 42.86 36.00 - - - 37.82 13.0 0.00 37.82 37.00 •- - - 33.00 19.0 0.00 33.00 38.00 - - - 33.25 31.2 0.00 33.25 39.00 - -- - 34.94 49.6 0.00 34.94 40.00 -- - - 35.73 68.0 0.00 35.73 41.00 - - - 35.11 58.4 0.00 35.11 42.00 - - 34.51 48.8 0.00 34.51 43.00 -. - 30.21 53.6 0.00 30.21 44.00 - - - 22.33 72:8 0.00 22.33 45.00 - - 14.62 92.0 0.00 14.62 46.00 - - - 16.88 87.4 0.00 16.88 47.00 - - - 19.11 82.8 0.00 19.11 48.00 - - - 21.29 78.2 0.00 21.29 49.00 - 23.43 73.6 0.00 23.43 50.00 - - - 25.65 69.0 0.00 25.65 (Ni)60s has been fines corrected in liquefaction analysis, therefore d(N1)60 =0. Fines =NoLiq means the soils are not liquefiable. settlement of saturated sands: settlement Analysis method: ishihara / voshimine- Depth CSRfs F.S. Fines (N1)60s Or ec ft w /fs % % % 49'.95 O.4 0;65 69.2' '2S.54 80.•76 1.497 49 0.0- 0 "43 0;SO .73'16 23:43 76:77 T. A8= '0 43 O.S2 78.2 21.29 72:86 2.062 47:`00 0.43 0.47 82.8 19.11 68:91: 2:261 46.00 0.43 0.42 87.4 16.88 64.86 2.509 45.00 0.42 0.36 92.0 14.62 60.53 2.772 44.00 0.42 0.56 72.8 22.33 74.75 1.958 43.00 0.42 4.65 53.6 30.21 90.53 0.000 42.00 0.42 4.68 48.8 34.51 100.00 0.000 41.00 0.42 4.72 58.4 35.11 100.00 0.000 40.00 0.42 4.76 68.0 35.73 100.00 0.000 39.00 0.42 4.80 49.6 34.94 100.00 0.000 38.00 0.42 4.84 31.2 33.25 97.92 0.000 37.00 0.41 4.89 19.0 33.00 97.27 0.000 36.00 0.41 4.94 13.0 37.82 100.00 0.000 dsz dsp s in. in. in. 9 0E =3 0,:009, 0 .'009 1 1E-2 0.194 0:203 1:2E -'2 0.236 0.438 1.4E =2 0.259 0.698 1.SE -2 0.287 0.984 1.7E -2 0.317 1.302 1.2E -2 0.279 1.581 O.OEO 0.146 1.727 O.OEO 0.000 1.727 O.OEO 0.000 1.727 O.OEO 0.000 1.727 O.OEO 0.000 1.727 O.OEO 0.000 1.727 O.OEO 0.000 1.727 O.OEO 0.000 1.727 Page 3 544- 06120 -1 35.00 0.41 4.99 7.0 42.86 100.00 0.000 0.OEO 0.000 1.727 34.00 0.41 5.00 36.2 40.13 100.00 0.000 0.OEO 0.000 1.727 33.00 0.41 5.00 65.4 30.31 90.77 0.000 0.OEO 0.000 1.727 32.00 0.40 5.00 67.0 32.31 95.53 0.000 0.OEO 0.081 1.808 31.00 0.40 5.00 41.0 46.72 100.00 0.000 O.OEO 0.000 1.808 30.00 0.39 5.00 15.0 56.82 100.00 0.000 O.OEO 0.000 1.808 29.00 0.39 5.00 38.2 46.02 100.00 0.000 0.OEO 0.000 1.808 28.00 0.38 1.19 61.4 29.87 89.76 0.275 1.6E -3 0.002 1.810 27.00 0.37 0.63 77.2 20.89 72.15 2.052 1.2E -2 0.204 2.014 26.00 0.36 0.65 85.6 20.95 72.24 2.032 1.2E -2 0.245 2.259 25.05 0.35 0.66 93.6 21.00 72.34 2.011 1.2E -2 0.230 2.489 Settlement of satOrated•SandsQ'.489 in. qcl and (N1)60 is after fines correction in liquefaction analysis dsz is per each segment, dz =0.05 ft dsp is per each print interval, dp=1.00 ft S is cumulated settlement at this depth settlement of Dry sands: Depth siggma' stggC' (N1)60s CSRfs Gmax g•Ge /Gm g_eff ee7.5 cee, ec dsz dsp s ft tsf tsf w /fs tsf It - %' in. in. in. 24.00 1.17 0.76 20.90 0:36 1073:5 3.9E -4 0.1041 0.0968 1.03. 0.1000 1.[OE- s;p:ut9 V.VLO 23.00 1.12 0.73 20.:83 0'.36: 1050.1 3.8E -4 0.2242 0.2094 1.03 0.2162 2..S9E =3 0.043 0.068 22.00 1.07 0.70 22'65 0.,36; 1054'.,5 3.6E -4 0.1799 0.1507 1.03 0.1556 1.87E - .3,0:046' 0.115 21.00 1.02 0.66 25.56 0.36' 1070.5 3.4E -4 0.1388 0.0991 1.03 0.1024 1 ;23E- 3'0.03,0 0.145 20.00 0.97 0.63 28.74 0,:3.6• 1084:2 3.2E -4 0.1095 0.0664 1.03' 0.0686 8.23E -4 0.020 0.165 19.00 0.91 0.59 27.77 0.36 104.2.4 3.2E -4 0.1042 0.0664 1.03. 0.0686 8.23E-4.0.,016, 0.181 18.00 0.86 0.56 26.73 0:36' 999.5, 3.1E -4 0.0992 0.0667 1:03' 0.0688 '8:26 &.4 0.016. 0.198 17.00 0.81 0.53 25.62 0.'36` .955,.4 3.1E -4 0.0945 0.0673 1:03 0.0695 .8.34E -4 ;0.017 0.214 16.00 0.76 0.49 24.42 036' 909.9 3.0E -4 0.0901 0.0684 1,03 0:0706 8.47E =4 0.017; 0.231 15.00 0.71 0.46 23.12 0;36 862.8 3.0E -4 0.0860 0.0701 1.03: 0.0724 8.69E -4 0.017. 0.248 14.00 0.66 0.43 23.87 036: 840.0 2.8E -4 0.0747 0.0584 1.03. 0.0603 7.24E -4 0.012 0.265 13.00 0.61 0.39 26.81 0:37 838.5 2.6E -4 0.0602 0.0403 1.03 0.0416 4,.:S§Ert 4;0.012 0.277 12.00 0.55 0.36 30.10 .0.37 833.9 2.4E -4 0.0493 0.0279 1;03' 0.0288 3.46E-4'0.008 0.285 11.00 0.50 0.33 33.80 0:37 825,9 2.2E -4 0.0486 0.0227 .1.03 0.0234 2.81E -4 0.00,7 0.292 10.00 0.45 0.29 38.04 0.37 814.4' 2.0E -4 0.0401 0.0145 '1:03 0.0150 1,79E -4 0.004 0.296 9.00 0.40 0.26 46.49 6.31 820.9 1.8E -4 0.0342 0.0108 1:03 0.0112 1.34E -4 0.003 0.299 8.00 0.3S 0.23 47.06 ,0.37 773.1 1.7E -4 0.0312 0.0099 1.03 0.0102 1".22E -4 0:003' 0.302 7.00 0.31 0.20 49.79 0.37 733.8 1.6E -4 0.0277 0.0088 1.03 0.0090 1' ;09E -4 0.002 0.304 6.00 0.26 0.17 52.09 '0:37 688:1 1.4E -4 0.0246 0.0078 1.03 0.0080 .9 63E =S 0.002: 0.306 5.00 0.22 0.14 54.38 •0:37. 637.7 1.3E -4 0.0236 0.0075 1.03., 0.0077 9.25E -S 0:002' 0.308 4.00 0.18 0.11 48.00 •0:37" 548.5. 1.2E -4 0.0257 0.0081 1:03 0.0084 1.01E -4 0:002' 0.310 3.00 0.13 0.09 41.62 0 ".37 453.4 1.1E -4 0.0227 0.0072 1:03'; 0.0074 8.91E -5 0.002, 0.312 2.00 0.09 0.06 30.15 0:38 332.5; 9.9E -S 0.0197 0.0111 1.03 0.0115 138E -4 0.002 0.314 1.00 0.04 0.03 18.68 0.38 200:5. 8.3E -5 0.0147 0.0158 1.03 0.0163 1.9.6E -4 0.00.3 0.317 0.00 0.00 1 0.00 7.20 0.38 2.2. 1.7E -6 0.0010 0.0034 1.03• 0.0035 4.23E =5 0.004' 0.321 Settlement of Dry Sands =0.321 in. dsz is per each segment, dz =0.05 ft dsp is per each print interval, dp =1.00 ft s is cumulated settlement at this depth Total settlement of saturated and Dry sands =2.810 in. Differential settlement -1.405 to 1.855 in. units Depth = ft, Stress or Pressure = tsf (atm), unit weight = pcf, settlement = in. SPT 'Field data' :trom'standard Penetration Test ksrr7 ePT 'Field data from Becker Penetration Test (8PT) qc Field data from cone Penetration Test (CPT) fc Friction from CPT testing gamma Total unit Weight of soil gamma' Effective unit weight of soil Fines Fines content (%] 050 Mean grain size Dr Relative Density sigma Total vertical stress (ts sigma' Effective vertical stress tsf] sigc' Effective .'confining„ pressure .(tsf]. rd stress reduction coefficient CSR Cyclic stress ratio ihdu¢ed by, earthquake _ fs user re4uest= factor..of. safety; appl.x'to'.`CSR' w /fs with user request factor .of safety inside csRfs CSR with user,,request factor "of safety CRR7.5 Cyclic resistapce [atio,(t4.7.5) Ksigma Overburden stress correction factor.for'CRR7.5 CRRV CRR after ;Overburden !tress C6&ectidh, CRRV- CRR7.5 •''KSigma MSF Mdgnitude, staling factor for CRR (md 5,) ' CRRM after maQnitude' scaling.,correction : :cRRm =CgRV •'MSF. F.S. Factoi safety•agaihst I ig4efiCtidn` F'. S;=CRRm /CSRfs, F.S. User lnputed Fattor.Of. safety cebs Energy. - Ratio, eOro ole 0ia.; and sample Method Corrections Cr Rod`tenggth ¢orrectidns cn Overburden Pressure correction - (N1)60 SPT after corrections. (Nl)60^SPT'• Cr + Cn • Cebs. d(N1)60 Fines correction of sPT (N1)60f (N1)60 after fines corrections, (N1)60f= (N1)60 + d(N1)60 Cq overburden stress correction factor qcl cPr after overburden, stress correction qcl fines'correctign of.CPT gclf '&T after Pines and. overburden correction, gclf =-qcl + dgcl gcln CPT after normalization in Robertson's method KC Fine correction fa"etor in Robertson's Method gclf CPT after pines correction in Robertson's Method lc Soil. type index in. :Suzuki - -'s and Robertson's Methods (N1)60s 0066'after, seattlerbent_ fines corrections ec volumetric strain•for saturated sands dz Calculation 'segment, dz =0:050 ft dsz settlement in each segment dz dp user defined print interval dsp Settlement in each print interval, dp Gmax Shear Modulus at low strain g_eff gamma_eff, Effective shear strain g -Ge /Gm gamma_eff • G_eff /G1max, strain- modulus ratio Page 4 544- 06120 -1 ec7.5 volumetric strain for magnitude =7.5 - cec Magnitude correction factor for any magnitude ec volumetric strain for dry sands, ee eec ° ec7.5 NOLiq NO-LigUefy soils References: ' 1.'NCEEA Wo.- shop' On- Evalua$ i011. Of' Ci. gU2f8ct, 0i1'RC ;i5ta11[2Of`50115..Y.OUd� _Ta:'�•andIdri55, I.M., eds., Technical Report NCEER 97 -0022. SP117. southern California Earthquake Center. Recommended Procedures for Implementation of DMG special Publication 117, Guidelines for Analyzing and Mitigating Liquefaction in California. university of southern California. March 1999,. 2. RECENT ADVANCES IN SOIL LIQUEFACTION ENGINEERING AND SEISMIC SITE RESPONSE EVALUATION, Paper No. SPL -2, PROCEEDINGS: Fourth International conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, CA, March, 2001 Page 5 RETURN PERIOD vs. ACCELERATION BOORE ET AL. (1997) SOIL (310)1 10000 a 0 1000 a� a� cj� 100 0. UU 0.25 0.50 0.75 1.00 1.25 1.50 Acceleration (q) RETURN PERIOD vs. ACCELERATION 100000 cn 10000 L O ®- 1000 L 4- a) It 100 CAMP. & BOZ. (1997 Rev.) AL 1 0.00 0.25 0.50 0.75 1.00 1.25 1.50 Acceleration (q) i® RETURN PERIOD vs. ACCELERATION SADIGH ET AL. (1997) DEEP SOIL 1 100000 10000 K a� �- 1000 a� 100 0.00 0.25 0.50 0.75 1.00 1.25 1.50 Acceleration (g) RETURN PERIOD vs: ACCELERATION ABRAHAMSON & SILVA (1997) SOIL 1 100000 10000 0 a� ®- 1000 a� 100 0.00 0.25 0.50 0.75' 1.,00 1.25 1.50 Acceleration (g) APPENDIX D Liquefaction Analyses LIQUEPYPRO Output Data LIQUEFACTION ANALYSIS SWC Avenue 54 & Monroe Street, La Quinta Holeft.=B-1 Water Depth =25 ft Magnitude=7.4 Acceleration=0.588 'heqr.!ress-Raflo � 50 1 401 (IRP Shaded Zone has Liquefaction Potential —6d 6: 11 'S = 2-01 Sladden Engineering 544-06120 Graphic A 544- 06120 -1 nsRattaan »aaseeeaaee»dtes44tt »teas »etneaanan.eaa a as »natdt.e»d» »toe sea :•aseRna »nesat:eddnada4aastaad4 »etas LIQUEFACTION ANALYSIS CALCULATION SHEET Copyright by CivilTech Software vane. ci viltech. com (425) 453 -6488 Fax (425) 453 -5848 a »RC4taRaR: ^.CtaRt�. RCtt4ttaaR::d 4ReRa4ARta4RaRRRttaaaadddtiaadd4d4aaaeaa,: Rand4tdatd tRaaRaf d4dddat ftY.taa04 Licensed to 4/17/2006 5:07'28 Pm input File Name: H: \ndevlin \sladden \544- 06120 -1.liq Title: SWC Avenue 54 & Monroe Street, La Quints Subtitle: 544 -06120 Input Data: surface Elev.- Hole No.=B -1 Depth of Hole-50.0 ft water Table during Earthquake- 25.0 ft water Table during in -Situ Testing= 49.0 ft Max. Acceleration -0.58 yy Earthquake Magnitude =7.4 Earthquake Magnitude =7.4 2. settlement Analytis Method: Ishihara / Yoshimine* 3. Fines correction for Liquefaction: stark /oison et al.* 4. Fine correction for settlement: During Liquefaction* S. Settlement calculation in: All zones" 6. Hammer Energy Ratio, ce =1.25 17. Borehole Diameter, cb =1 S. sampel'ing Method, cs =1.2 fs =1, Plot one CSR (fs =1) 10. use curve smoothing: Yes- * Recommended Options In -Situ Test Data: Depth SPT Gamma Fines ft pcf % 0:0 0.0 88.0 79.0 3.0 18.0 88.0 79.0 5.0 24.7 85.0 97.0 10.0 18.7 102.0 16.0 15.0 10.7 102.0 26.0 20.0 18.0 105.0 16.0 22.5 10.0 105.0 37.0 25.0 10.7 81.0 94.0 27.5 11.0 81.0 73.0 30.0 43.3 98.0 15.0 32.5 15:0 98.0 80.0 35.0 36.7 119.0 7.0 37.5 24.0 119.0 22.0 40.0 26.7 94.0 68.0 42.5 26.0 94.0 44.0 45.0 7.3 87.0 92.0 50.0 19.0 87.0 69.0 Output Results: Calculation segment, dz =0.050 ft user defined Print interval, dp =1.00 ft CSR Calculation: Depth gamma siggma gamma' siggma' rd ft pcf tsf pcf tsf 0.00 88.0 0.000 88.0 0.000 1.00 1.00 88.0 0.044 88.0 0.044 1.00 2.00 88:0 0.088 88.0 0.088 1.00 3.00 88.0 0.132 88.0 0.132 0.99 4.00 86.5 0.176 86.5 0.176 0.99 5.00 85.0 0.219 85.0 0.219 0.99 6.00 88.4 0.262 88.4 0.262 0.99 7.00 91.8 0.307 91.8 0.307 0.98 8.00 95.2 0.354 95.2 0.354 0.98 9.00 98.6 0.402 98.6 0.402 0.98 10.00 102.0 0.452 102.0 0.452 0.98 11.00 102.0 0.503 102.0 0.503 0.97 12.00 102.0 0.554 102.0 0.554 0.97 13.00 102.0 0.605 102.0 0.605 0.97 14.00 102.0 0.656 102.0 0.656 0.97 15.00 102.0 0.707 102.0 0.707 0.97 16.00 102.6 0.758 102.6 0.758 0.96 17.00 103.2 0.810 103.2 0.810 0.96 18.00 103.8 0.861 103.8 0.861 0.96 19.00 104.4 0.913 104.4 0.913 0.96 20.00 105.0 0.966 105.0 0.966 0.95 21.00 105.0 1.018 105.0 1.018 0.95 22.00 105.0 1.071 105.0 1.071 0.95 23.OD 100.2 1.123 100.2 1.123 0.95 24.00 90.6 1.171 90.6 1.171 0.94 25.00 81.0 1.214 81.0 1.214 0.94 26.00 81.0 1.254 18.6 1.224 0.94 27.00 81.0 1.295 18.6 1.234 0.94 28.00 84.4 1.335 22.0 1.243 0.93 29.00 91.2 1.379 28.8 1.256 0.93 30.00 98.0 1.427 35.6 1.272 0.93 31.00 98.0 1.476 35.6 1.290 0.92 32.00 98.0 1.525 35.6 1.308 0.91 33.00 102.2 1.574 39.8 1.326 0.91 34.00 110.6 1.627 48.2 1.348 0.90 35.00 119.0 1.684 56.6 1.374 0.89 36.00 119.0 1.744 56.6 1.402 0.88 37.00 119.0 1.803 56.6 1.431 0.87 38.00 114.0 1.862 51.6 1.458 0.86 39.00 104.0 1.917 41.6 1.482 0.86 40.00 94.0 1.967 31.6 1.500 0.85 CSR fs C5Rfs (user) w /fs 0.38 1.0 0.38 0.38 1.0 0.38 0.38 1.0 0.38 0.37 1.0 0.37 0.37 1.0 0.37 0.37 1.0 0.37 0.37 1.0 0.37 0'.37 1.0 0.37 0.37 1.0 0.37 0.37 1.0 0.37 0.37 1.0 0.37 0.37 1.0 0.37 0.37 1.0 0.37 0.37 1.0 0.37 0.36 1.0 0.36 0.36 1.0 0.36 0.36 1.0 0.36 0.36 1.0 0.36 0.36 1.0 0.36 0.36 1.0 0.36 0.36 1.0 0.36 0.36 1.0 0.36 0.36 1.0 0.36 0.36 1.0 0.36 0.36 1.0 0.36 0.36 1.0 0.36 0.36 1.0 0.36 0.37 1.0 0.37 0.38 1.0 0.38 0.39 1.0 0.39 0.39 1.0 0.39 0.40 1.0 0.40 0.40 1.0 0.40 0.41 1.0 0.41 0.41 1.0 0.41 0.41 1.0 0.41 0.41 1.0 0.41 0.41 1.0 0.41 0.42 1.0 0.42 0.42 1.0 0.42 0.42 1.0 0.42 Page 1 CSR is based on water table at 25.0 during earthquake CRR Calculation from SPT 01 BPT data: Depth sPT Cebs Cr si ma' Cn (N1)60 Fines d(N1)60 (Nl)60f CRR7.5 ft is % 0.00 0.00 1.50 0.75 0.000 1.70 0.00 79.00' 7.20 7.20 0,08 1.00 6.00 1.50 0.75 0.044 1.10 11.48 79.00, 7.20, 18.68' 0.20 2.00 12.00 1.50 0.75 0.088 1.70 22.9S 79.00 7.20 30.15, 2.00 3.00 18.00 1.50 0.75 0.132 1.70 34.42 79,00 7.20, 41,62 2 :00 4.00 21.33 1.50 0,75 0.176. 1.70 40.80 88.00 7.20 48.00 2.00 5.00 24.67 1.50 0.75 0.219 1.70 47.18 97.00 7.20 54.38 2.00 6.00 23.47 1.50 0.75 0.262 1.70 44.89 80.80 7.20 52.09 2.00 7.00 22.27 1.50 0.75 0.307 1.70 42.59 64.60 7:20 49.79 2.00 8:00 21.07 1.50 0.75 0,354 1.68 39.86 48.40 7.20 47.06 2.00 9.00 '19.87 1,50 0.85 0.402 1.58 39.96 32.20 6.53 46.49 2.00 10.00 18..67 1.50 0.85 0.452 1.49 35.40 16.00 2.64 38.04 2.00 11.00 17.07 1.50 0.85 0.503 1.41 30.68 18.00 3.12 33.60 2.00 12.00 15.47 1.50 0.85 0.554 1.34 26.50 20.00 3.60 30.10 0.49 13.00 13.87 1.50 0.85 0.60S 1.29. 22.73 2.2.00 4.08 26.81 0.32 14.00' 12.27 1.50 0.85 0:6S6 1.23 19.31 24.00 4.S6 23.87 0.27 15.00 10.67 1.50 0.95 0,707 1.19 18.08 26:00 5.04 23•.12 0.25 16.00 12.14 1.50 0.95 0.758 L IS 19.86 24.00 4:56 24.42 0.27. 17:,00 13.60 LSO OAS 0:810 1.11 21.54 22.,00 4.08 25.62 0.29 18.00 15.07 1.50 0.95 0.861. 1.08 23.13 20.00 3.60 26.73 0.31 19.00 16.53 1.50 0,95 0.913 1.05 24. 65 18.00 3.12 27.77 0.34 20.00 18.00 1.50 0.95 0,966 1.02 26.10 16.00 2.64 28:74 0.37 21. 00 14.80 LSO 0.95 1.018 0,99 20.90 24.40 4.66 25.56 0.29 22.00 71.60 1. 0.95 1.071 0.97 15.97 32.80 6.67 22.65 0.2S 23.00. 10.13 1.50 0.95 1.123 0.94 13.63 48.40 7.20 20.63 0.23 24.00 10.40 1.'50 0.95 1.171 0.92 13.70 71.20 7.20 20.90 0.23 25.00 10.67 1.50 0.95, 1.214 0.91 13.80 94.00 '7.20 21.00 0.23 26.00 10.80 1.5.0 0.95 1.254 0.89 13.75 85.60 7.,20 20'.95 0,23 27.00 10.93 1:50 0.95 1.295 0.88 13..69 77.20 7.20 20'.89 0.23 28:00 17.46 1.50 1.00 1.335 0.87 22.67 61.40 7.20 29.87 0.44. 29.00 30.40 1.50 1.00 1.379 0.85 38.82 38.20, 7.20 46.02 2.00 30.00 43.33 1.50' 1.00 1.427 0.84 S4.42 15:00 2.40 56.82 2.00 31.00 32.00 1.50 1.00 1.476 0.62 39.52 '41.00 7.20 46.72 2.00 32:00 20.67 1.50 1.00 1.525 0:81 25.11 66.99 7.20 32.31 2.00 33,00 19.33, 1.50, 1.00 1.574 0.80 23.11 65.41 7.20 30.31 2.00 34.00 28.00 1.50 1.00 1.627 .0.78 32.93 36:21 7.20 40.13 2.00 .5 35.00 36.67 10 1.00 L 684 0.77 42.38 7.01 0.48 42.86 2.00 36.00 31.60 1.50 1.00, 1.744 0.76 35.90 13.00 1.92 37.82 2.00 37.00 26.54 1.50 1.00 1.803 , 0.74 29.64 19-..00 3.36 33.00 2.00 38.00 24.53 1.50 1:00 1:862 0.73 26.97 31.19 6.29 33.25 2.00 39.00 25.60 1.50 1:00 1.917 0:72 27.74 49.59 7.20 34.94 2.00 40.00 26.67 1.'50 1.00 1.967 0.71 28.53 67.99 7.20 35.73 2.00 41.00 26.40 1.50 1.00 2.014 0.70 27.91 58.40 7.20 35.11 2.00 42.00 26:13 1.50 1.00 2.061 0.70 27.31 48.80 7.20 34.51 2.00 43.00 22.27 1.50 1.00 2.107 0.69 23.01 5339 7.20' 30.21 2.00 44.00 14.80 1.50 1;00 2.153 0.68 15.13 72.79 7.20 22.33 0.24 45:00 7.33 LSO 1.00 2.197 0:67 7:42- 91.99 7.20 14.62 0.16 46.00 9.66 LSO 1.00 2.241 0.67, 9.68 87.40 7.20 16.88 X0.18 47.00 12..00 1.50 1,00 2.284 0.66 71.91 82.80 7.20 19.11 0:21 48.00 14.33 1.50 1.60 2.328 0.66 14:09 78.20 7.20 21.29 0:23 49.00 16.66 1.50 1.00 2.371 OAS 16.23 73.60 7.20 23.43: 0,26 50.00 '19.00 1.50 1.00 2.385 0.65 18.45 69,00 7.20 25.65 0.29 CRR is based on water table at 49.0 during In -situ Testing Factor of safety, - Earthguake Magnitude. 7.4: Depth si9gC'. CRR7.5 KSlgma CRRV MS CRRM CSRfS F.S. ft tsf tsf w /f5 CRRm /CSRfS 1.00 0.03 0.20 1.00 0.20 1.03 0.21 544- 06120 -1 41.00 94.0 2.014 31.6 1.516 0.84 0.42 1.0 0.42 42.00 94.0 2.061 31.6 1.532 0.83 0.42 1.0 0.42 43.00 92.6 2.107 30.2 1.547 0.82 0.42 1.0 0.42 44.00 89.8 2.153 27.4 1.562 0.82 0.42 1.0 0.42 45.00 87.0 2.197 24.6 1.575 0.81 0.42 1.0 0.42 46.00 87.0 2.241 24.6 1.587 0.80 0.43 1.0 0.43 47.00 87.0 2.284 24.6 1.599 0.79 0.43 1.0 0.43 48.00 87.0 2.328 24.6 1.612 0.78 0.43 1.0 0.43 49.00 87.0 2.371 24.6 1.624 0.78 0.43 1.0 0.43 50.00 87.0 2.415 24.6 1.636 0.77 0.43 1.0 0.43 CSR is based on water table at 25.0 during earthquake CRR Calculation from SPT 01 BPT data: Depth sPT Cebs Cr si ma' Cn (N1)60 Fines d(N1)60 (Nl)60f CRR7.5 ft is % 0.00 0.00 1.50 0.75 0.000 1.70 0.00 79.00' 7.20 7.20 0,08 1.00 6.00 1.50 0.75 0.044 1.10 11.48 79.00, 7.20, 18.68' 0.20 2.00 12.00 1.50 0.75 0.088 1.70 22.9S 79.00 7.20 30.15, 2.00 3.00 18.00 1.50 0.75 0.132 1.70 34.42 79,00 7.20, 41,62 2 :00 4.00 21.33 1.50 0,75 0.176. 1.70 40.80 88.00 7.20 48.00 2.00 5.00 24.67 1.50 0.75 0.219 1.70 47.18 97.00 7.20 54.38 2.00 6.00 23.47 1.50 0.75 0.262 1.70 44.89 80.80 7.20 52.09 2.00 7.00 22.27 1.50 0.75 0.307 1.70 42.59 64.60 7:20 49.79 2.00 8:00 21.07 1.50 0.75 0,354 1.68 39.86 48.40 7.20 47.06 2.00 9.00 '19.87 1,50 0.85 0.402 1.58 39.96 32.20 6.53 46.49 2.00 10.00 18..67 1.50 0.85 0.452 1.49 35.40 16.00 2.64 38.04 2.00 11.00 17.07 1.50 0.85 0.503 1.41 30.68 18.00 3.12 33.60 2.00 12.00 15.47 1.50 0.85 0.554 1.34 26.50 20.00 3.60 30.10 0.49 13.00 13.87 1.50 0.85 0.60S 1.29. 22.73 2.2.00 4.08 26.81 0.32 14.00' 12.27 1.50 0.85 0:6S6 1.23 19.31 24.00 4.S6 23.87 0.27 15.00 10.67 1.50 0.95 0,707 1.19 18.08 26:00 5.04 23•.12 0.25 16.00 12.14 1.50 0.95 0.758 L IS 19.86 24.00 4:56 24.42 0.27. 17:,00 13.60 LSO OAS 0:810 1.11 21.54 22.,00 4.08 25.62 0.29 18.00 15.07 1.50 0.95 0.861. 1.08 23.13 20.00 3.60 26.73 0.31 19.00 16.53 1.50 0,95 0.913 1.05 24. 65 18.00 3.12 27.77 0.34 20.00 18.00 1.50 0.95 0,966 1.02 26.10 16.00 2.64 28:74 0.37 21. 00 14.80 LSO 0.95 1.018 0,99 20.90 24.40 4.66 25.56 0.29 22.00 71.60 1. 0.95 1.071 0.97 15.97 32.80 6.67 22.65 0.2S 23.00. 10.13 1.50 0.95 1.123 0.94 13.63 48.40 7.20 20.63 0.23 24.00 10.40 1.'50 0.95 1.171 0.92 13.70 71.20 7.20 20.90 0.23 25.00 10.67 1.50 0.95, 1.214 0.91 13.80 94.00 '7.20 21.00 0.23 26.00 10.80 1.5.0 0.95 1.254 0.89 13.75 85.60 7.,20 20'.95 0,23 27.00 10.93 1:50 0.95 1.295 0.88 13..69 77.20 7.20 20'.89 0.23 28:00 17.46 1.50 1.00 1.335 0.87 22.67 61.40 7.20 29.87 0.44. 29.00 30.40 1.50 1.00 1.379 0.85 38.82 38.20, 7.20 46.02 2.00 30.00 43.33 1.50' 1.00 1.427 0.84 S4.42 15:00 2.40 56.82 2.00 31.00 32.00 1.50 1.00 1.476 0.62 39.52 '41.00 7.20 46.72 2.00 32:00 20.67 1.50 1.00 1.525 0:81 25.11 66.99 7.20 32.31 2.00 33,00 19.33, 1.50, 1.00 1.574 0.80 23.11 65.41 7.20 30.31 2.00 34.00 28.00 1.50 1.00 1.627 .0.78 32.93 36:21 7.20 40.13 2.00 .5 35.00 36.67 10 1.00 L 684 0.77 42.38 7.01 0.48 42.86 2.00 36.00 31.60 1.50 1.00, 1.744 0.76 35.90 13.00 1.92 37.82 2.00 37.00 26.54 1.50 1.00 1.803 , 0.74 29.64 19-..00 3.36 33.00 2.00 38.00 24.53 1.50 1:00 1:862 0.73 26.97 31.19 6.29 33.25 2.00 39.00 25.60 1.50 1:00 1.917 0:72 27.74 49.59 7.20 34.94 2.00 40.00 26.67 1.'50 1.00 1.967 0.71 28.53 67.99 7.20 35.73 2.00 41.00 26.40 1.50 1.00 2.014 0.70 27.91 58.40 7.20 35.11 2.00 42.00 26:13 1.50 1.00 2.061 0.70 27.31 48.80 7.20 34.51 2.00 43.00 22.27 1.50 1.00 2.107 0.69 23.01 5339 7.20' 30.21 2.00 44.00 14.80 1.50 1;00 2.153 0.68 15.13 72.79 7.20 22.33 0.24 45:00 7.33 LSO 1.00 2.197 0:67 7:42- 91.99 7.20 14.62 0.16 46.00 9.66 LSO 1.00 2.241 0.67, 9.68 87.40 7.20 16.88 X0.18 47.00 12..00 1.50 1,00 2.284 0.66 71.91 82.80 7.20 19.11 0:21 48.00 14.33 1.50 1.60 2.328 0.66 14:09 78.20 7.20 21.29 0:23 49.00 16.66 1.50 1.00 2.371 OAS 16.23 73.60 7.20 23.43: 0,26 50.00 '19.00 1.50 1.00 2.385 0.65 18.45 69,00 7.20 25.65 0.29 CRR is based on water table at 49.0 during In -situ Testing Factor of safety, - Earthguake Magnitude. 7.4: Depth si9gC'. CRR7.5 KSlgma CRRV MS CRRM CSRfS F.S. ft tsf tsf w /f5 CRRm /CSRfS 1.00 0.03 0.20 1.00 0.20 1.03 0.21 0.38 5.00 2.00 0.06 2.00 1.00 2.00 1.03 2.07 0.38 5.00 3.00 0.09 2.00 1.00 2.00 1.03 2.07 0.37 5.00 4.00 0.11 2.00 1.00 2.00 1.03 2.07 0.37 5.00 S.00 0.14 2.00 1.00 2.00 1.03 2.07 0.37 5.00 6.00 0.17 2.00 1.00 2.00 1.03 2.07 0.37 5.00 7.00 0.20 2.00 1.00 2.00 1.03 2.07 0.37 5.00 8.00 0.23 2.00 1.00 2.00 1.03 2.07 0.37 5.00 9.00 0.26 2.00 1.00 2.00 1.03 2.07 0.37 S.00 10.00 0.29 2.00 1.00 2.00 1.03 2.07 0.37 5.00. 11.00 0.33 2.00 1.00 2.00 1.03 2.07 0.37 5.00 12.00 0.36 0.49 1.00 0.49 1.03 0.50 0.37 5.00 13.00 0.39 0.32 1.00 0.32 1.03 0.33 0.37 5.00 14.00 0.43 0.27 1.00 0.27 1.03 0.27 0.36 5.00 15.00 0.46 0.25 1.00 0.25 1.03 0.26 0.36 5.00 16.00 0.49 0.27 1.00 0.27 1.03 0.28 0.36 5.00 17.00 0.53 0.29 1.00 0.29 1.03 0.30 0.36 5.00 18.00 0.56 0.31 1.00 0.31 1.03 0.32 0.36 5.00 19.00 0.59 0.34 1.00 0.34 1.03 0.35 0.36 5.00 20.00 0.63 0.37 1.00 0.37 1.03 0.38 0.36 5.00 21.00 0.66 0.29 1.00 0.29 1.03 0.30 0.36 5.00 22.00 0.70 0.25 1.00 0.25 1.03 0.26 0.36 5.00 23.00 0.73 0.23 1.00 0.23 1.03 0.23 0.36 5.00 24.00 0.76 0.23 1.00 0.23 1.03 0.23 0.36 5.00 25.00 0.79 0.23 1.00 0.23 1.03 0.24 0.36 5.00 26.00 0.82 0.23 1.00 0.23 1.03 0.24 0.36 0.65 ° 27.00 0.84 0.23 1.00 0.23 1.03 0.23 0.37 0.63 28.00 0.87 0.44 1.00 0.44 1.03 0.45 0.38 1.19 29.00 0.90 2.00 1.00 2.00 1.03 2.07 0.39 5.00 30.00 0.93 2.00 1.00 2.00 1.03 2.07 0.39 5.00 Page 2 544- 06120 -1 31.00 0.96 2.00 1.00 2.00 1.03 2.07 0.40 5.00 32.00 0.99 2.00 1.00 2.00 1.03 2.07 0.40 5.00 33.00 1.02 2.00 1.00 2.01 1.03 2.07 0.41 5.00 34.00 1.06 2.00 1.00 1.99 1.03 2.06 0.41 5.00 35.00 1.09 2.00 0.99 1.98 1.03 2.05 0.41 4.99 36.00 1.13 2.00 0.99 1.97 1.03 2.04 0.41 4.94 37.00 1.17 2.00 0.98 1.96 1.03 2.03 0.41 4.89 38.00 1.21 2.00 0.97 1.95 1.03 2.01 0.42 4.84 39.00 1.25 2.00 0.97 1.94 1.03 2.00 0.42 4.80 40.00 1.28 2.00 0.96 1.93 1.03 1.99 0.42 4.76 41.00 1.31 2.00 0.96 1.92 1.03 1.99 0.42 4.72 42.00 1.34 2.00 0.95 1.91 1.03 1.98 0.42 4.68 43.00 1.37 2.00 0.95 1.90, 1.03 1.97 0.42 4.65 44.00 1.40 0.24 0.95 0.23 1.03 0.24 0.42 0.56 ' 45.00 1.43 0.16 0.94 0.15 1.03 0.15 0.42 0.36 46.00 1.46 0.18 0.94 0.17 1.03 0.18 0.43 0.42 " 47.00 1.48 0.21 0.93 0.19 1.03 0.20 0.43 0.47 ° 48.00 1.51 0.23 0.93 0.22 1.03 0.22 0.43 0.52 e 49.00 1.54 0.26 0.93 0.24 1.03 0.25 0.43 0.58 50.00 1.55 0.29 0.93 0.27 1.03 0.28 0.43 0.66 • F.S. <1: Liguefaction Potential Zone. (if above water table: F.S.=S (F.S. is limited to 5, CRR is limited to 2, CSR is limited to 2) CPr convert to SPr for settlement analysis: Fines correction for settlement analysis: is qc /N60 qsf (N1)60 d(N1)60 (N1)60s Depth %Fines 0.00 - - - 7.20 79.0 0.00 _ 7.20 1.00 -. - 18.68 79.0 0.00 18.68 2.00 - - - 30.15 79.0 0.00 30.15 3.00 - - 41.62 79.0 0.00 41.62 4.00 - 48.00 88.0 0.00 48.00 5.00 _ - - 54.38 97.0 0:00 54.38 6.00 - - 52.09 80.8 0.00 52.09 7.00 - - - 49.79 64.6 0.00 49.79 8.00 - - - 47.06 48.4 0.00 47.06 9.00 - - 46.49 32.2 0.00 46.49 10.00 - - 38.04 16.0 0.00 38.04 11.00 '> - - 33.80 18.0 0.00 33.80 12.00 30.10 20.0 0.00 30.10 13.00 - - - 26.81 22.0 0.00 26.81 14.00 - - - 23.87 24.0 0.00 23.87 15.00 - - - 23.12 26.0 0.00 23.12 16.00 - - 24.42 24.0 0.00 24.42 17.00 - - 25.62 22.0 0.00 25.62 18.00 - 26.73 20.0 0.00 26.73 19.00 - - - 27.77 18.0 0.00 27.77 20.00 - -• - 28.74 16.0 0.00 28.74 21.00 - - - 25.56 24.4 0.00 25.56 22.00 - - - 22.65 32.8 0.00 22.65 23.00 - - 20.83 48.4 0.00 20.83 24.00 = - - 20.90 71.2 0.00 20.90 25.00 - - - 21.00 94.0 0.00 21.00 26.00 - _ - 20.95 85.6 0.00 20.95 27.00 - - 20.89 77.2 0.00 20.89 28.00 - - 29.87 61.4 0.00 29.87 29.00 c -. - 46.02 38.2 0.00 46.02 30.00 - - 56.82 15.0 0.00 56.82 31.00 - - - 46.72 41.0 0.00 46.72 32.00 - - - 32.31 67.0 0.00 32.31 33.00 - - - 30.31 65.4 0.00 30.31 34.00 - - - 40.13 36.2 0.00 40.13 35.00 - - - 42.86 7.0 0.00 42.86 36.00 .- - - 37.82 13.0 0.00 37.82 37.00 •= - - 33.00 19.0 0.00 33.00 38.00 - 33.25 31.2 0.00 33.25 39.00 - - - 34.94 49.6 0.00 34.94 40.00 - - 35.73 68.0 0.00 35.73 41.00 - - - 35.11 58.4 0.00 35.11 42.00 -_ - - 34.51 48.8 0.0.0 34.51 43.00 - - 30.21 53.6 0.00 30.21 44.00 - - - 22.33 72.8 0.00 22.33 45.00 - - 14.62 92.0 0.00 14.62 46.00 - - - 16.88 87.4 0.00 16.88 47.00 - - - 19.11 82.8 0.00 19.11 48.00 - - - 21.29 78.2 0.00 21.29 49.00 - - 23.43 73.6 0.00 23.43 50.00 - - - 25.65 69.0 0.00 25.65 (N1)60s has been fines corrected in liquefaction analysis, therefore d(N1)60 =0. Fines =NoLiq means the soils are not liquefiable. settlement of saturated Sands: settlement Analysis Method: ishihara / voshimine' Depth CSRfs F.S. Fines (N1)60s Or ec ft w /fs % % % 49:95 0.43; 0:;65 69.2. 2S-.54 W.16` !1.;497 49.'00 0:43 0':58 71'6 2343 76.77. '1:847 48.00 0'.43 0.52 78.2 21.29 72.86: 47:00 0.43 0.47 82.8 19.11 68:'91' 2.261 46.00 0.43 0.42 87.4 16.88 64.86 2.509 45.00 0.42 0.36 92.0 14.62 60.53 2.772 44.00 0.42 0.56 72.8 22.33 74.75 1.958 43.00 0.42 4.65 53.6 30.21 90.53 0.000 42.00 0.42 4.68 48.8 34.51 100.00 0.000 41.00 0.42 4.72 58.4 35.11 100.00 0.000 40.00 0.42 4.76 68.0 35.73 100.00 0.000 39.00 0.42 4.80 49.6 34.94 100.00 0.000 38.00 0.42 4.84 31.2 33.25 97.92 0.000 37.00 0.41 4.89 19.0 33.00 97.27 0.000 36.00 0.41 4.94 13.0 37.82 100.00 0.000 dsz dsp 5 in in. in. `9".W-3+ 0:009, '0.009 -1.16 -2 0.194 0:203 1:2E =2 0.236 0.438 1.4E -2 0.259 0.698 1.5E -2 0.287 0.984 1.7E -2 0.317 1.302 1.2E -2 0.279 1.581 O.OEO 0.146 1.727 O.OEO 0.000 1.727 O.OEO 0.000 1.727 O.OEO 0.000 1.727 O.OEO 0.000 1.727 O.OEO 0.000 1.727 O.OEO 0.000 1.727 O.OEO 0.000 1.727 Page 3 544- 06120 -1 35.00 0.41 4.99 7.0 42.86 100.00 0.000 O.OEO 0.000 1.727 34.00 0.41 5.00 36.2 40.13 100.00 0.000 0.OEO 0.000 1.727 33.00 0.41 5.00 65.4 30.31 90.77 0.000 O.OEO 0.000 1.727 32.00 0.40 5.00 67.0 32.31 95.53 0.000 O.OEO 0.081 1.808 31.00 0.40 5.00 41.0 46.72 100.00 0.000 O.OEO 0.000 1.808 30.00 0.39 5.00 15.0 S6.82 100.00 0.000 O.OEO 0.000 1.808 29.00 0.39 5.00 38.2 46.02 100.00 0.000 O.OEO 0.000 1.808 28.00 0.38 1.19 61.4 29.87 89.76 0.275 1.6E -3 0.002 1.810 27.00 0.37 0.63 77.2 20.89 72.15 2.052 1.2E -2 0.204 2.014 26.00 0.36 0.65 85.6 20.95 72.24 2.032 1.2E -2 0.245 2.259 25.05 0.35 0.66 93.6 21.00 72.34 2.011 1.2E -2 0.230 2.489 Settlement of saturated sands-Z..489 in. qcl and (N1)60 is after fines correction in liquefaction analysis dsz is per each segment, dz =0.05 ft dsp is per each print interval, dp =1.00 ft s is cumulated settlement at this depth settlement of Dry, sands: depth siggma' s ggc' (N1)60s csafs Gmax g*Ge /Gm g_eff ec7.S Cec ec dsz dsp s ft tsf tsf w /fs t5f 7K % in. in. in. 24.00 1.17 0.76 26.90 0.56 1073.5 3.9E -4 0.1041 0.0968 3.03 0.1000 '1.20E -3 0.024 0.026 23.00 1.12 0.73 20..83 0.36. 1050.1 3.8E -4 0.2242 0.2094 1.03 0.2162 2.59E -3 0.043 0.068 22.00 1.07 0.70 22.65 0.36 1054'.5 3.6E -4 0.1799 0.1507 1.93 0.1556 1.87E -3 0.046 0.115 21.00 1.02 0.66 25.56 0.36' 1070.5 3.4E -4 0.1388 0.0991 1.03 0.1024 1:23E -3 0.030 0.145 20.00 0.97 0.63 28.74 0.3.6 108442 3.2E -4 0.1095 0.0664 1.03 0.0686 8.23E -4 0.020 0.165 19.00 0.91 0.59 27.77 0.36 1042.4 3.2E -4 0.1042 0.0664 1.03 0.0686 8.23E -4 0.016 0.181 18.00 0.86 0.56 26.73 0.36 999.5 3.1E -4 0.0992 0.0667 1.03 0.0688 8.26E =4 0.016 0.198 17.00 0.81 0.53 25.62 0.36 955.4 3.1E -4 0.0945 0.0673 1.03 0.0695 8.34E -4 0.017 0.214 16.00 0.76 0.49 24.42 0.36 909.9 3.0E -4 0.0901 0.0684 1.03 0:0706 8.47E -4 0.017 0.231 15.00 0.71 0.46 23.12 0.36 862.8 3.0E -4 0.0860 0.0701 1.03, 0.0724 8.69E -4 0.017 0.248 14.00 0.66 0.43 23.87 0.36 840.0 2.8E -4 0.0747 0.0584 1.03. 0.0603 7.24E -4 0.017 0.265 13.00 0.61 0.39 26.81 0.3 7 , 838.5 2.6E -4 0.0602 0.0403 1.03 0.0416 4.99E-4 0.012 0.277 12.00 O.SS 0.36 30.10 0.37 833.9 2.4E -4 0.0493 0.0279 1.03 0.0288 3.46E -4 0.008 0.285 11.00 0.50 0.33 33.80 0.37 825.9 2.2E -4 0.0486 0.0227 1.03 0.0234 2.81E -4 0.007 0.292 10.00 0.45 0.29 38.04 0.37 814.4 2.0E -4 0.0401 0.0145 1.03 0.0150 1.79E -4 0.004 0.296 9.00 0.40 0.26 46.49 0.37 820.9 1.8E -4 0.0342 0.0108 1.03 0.0112 1.34E -4 0.003 0.299 8.00 0.35 0.23 47.06 0.37 773.1 1.7E -4 0.0312 0.0099 1.03 0.0102 1.22E -4 0.003 0.302 7.00 0.31 0.20 49.79 0.37 733.8 1.6E -4 0.0277 0.0088 1.03 0.0090 1.09E -4 0.002 0.304 6.00 0.26 0.17 52.09 0.37 688.1 1.4E -4 0.0246 0.0078 1.03 0.0080 9.63E -5 0.002 0.306 5.00 0.22 0.14 54.38 0.37 637.7 1.3E -4 0.0236 0.0075 1.03 0.0077 9.25E -5 0.002 0.308 4.00 0.18 0.11 48.00 0.37 548.5 1.2E -4 O.OZ57 0.0081 1.03 0.0084 7,.01E -4 0.002 0.310 3.00 0.13 0.09 41.62 0,.37 459.4 1.1E -4 0.0227 0.0072 1.03 0.0074 8.91E -5 0.002 0.312 2.00 0.09 0.06 30.15 0.38 332.5 9.9E -5 0.0197 0.0111 1.03 0.0115 1.38E -4 0.002 0.314 1.00 0.04 0.03 18.68 0.38 200.5 8.3E -5 0.0147 0.0158 1.03 0.0163 1.96E -4 0,.003 0.317 0.00 0.00 _ 0.00 7.20 0.38 2.2 1.7E -6 0.0010 0.0034 1.03 0.0035 4.23E =5 0.004 5 .004 0.321 settlement of Dry sands =0.321 in. dsz is per each segment, dz =0.05 ft dsp is per each print interval dp =1.00 ft s is cumulated settlement at tAis depth Total settlement of saturated and Dry Sands =2.810 in Differential settlement -1.405 to 1.855 in. units SPT BFT K gamma gamma' Fines D50 Or sigma sigma' sigC' rd CSR fs w /fs CSRfS CRR7.5 Ksigma CRRV MSF CRRm F.S. F. S* cebs Cr Cn (NI) 60 d(N1) 60 (N1)60f Cq V gcln KC gcLf IC (NI)60S eC d dsz d dsp Gmax gGe /Gm Depth = ft, stress or Pressure = tsf (atm), unit weight = pcf, settlement - in. Field data from BeCKer Penetration Test kuvTJ Field data from Cone Penetration Test (CPT) Friction from CPT testing Total unit weight of soil Effective unit weight of soil Fines Content [%] Mean grain size Relative Density Total vertical stress [tsf] Effective vertical stress tsf] Effective confining pressure [tsf] stress reduction coefficient cyclic stress ratio induced by earthquake user request factor of safety, apply to CSR With user request factor of safety inside CSR With User request factor of safety cyclic re§istance ratio (M.7.5) overburden stress correction factor for CRR7.5 CAR after overburden stress correction, CRRv -"R7.5 * xsigma Magnitude, scaling; factor for' CRR (M•73) After ma gntitud! scaling correction CRRm.CRRV • MSF Factor of Safety against liquefaction F,.S,.CRRm /CSRfs User inputed Factor of safety Energy Ratio, sorehole nia., and sample Method Corrections overburden Pressure Correction sPT after - corrections, (N7)60.SPT * Cr * Cn * Cebs Fines correction Of SPT (NI)60 after fines corrections, (NS)60f= (NI)60 + d(NI)60 Overburden stress correction factor CPT after overburden stress correction Fines 'correction of CPT CPT after pines and Overburden correction, gclf =qcl + dgcl CPT after normalization in Robertson's method Fine correction factor in Robertson's Method CPT after Fines correction in Robertson's Method Soil type index in Suzuki's and Robertson's Methods (Ni)60 after seattlement fines corrections volumetric strain for saturated sands Calculation segment, dz.0.050 ft settlement in each segment dz user defined print interval settlement in each print interval, dp shear Modulus at low strain gamma_eff, Effective shear strain gamma_eff * G- eff /G.max, strain- modulus ratio Page 4 544- 06120 -1 ec7.5 volumetric strain for magnitude =7.S cec Ma nitude correction factor for any magnitude ec Volumetric strain for dry sands, ec=eec " ec7.5 NoLiq No- Liquefy soils References: 1.'INCEER WO shop':on,�EValuation?of ,Ci_quefaction:`Res, Stance of soi s.; 5Ud, _T- and'Idriss, I.M., eds., Technical Report NCEER 22 97- 00. sPil7. southern California Earthquake Center. Recaomended Procedures for Implementation of oNG special Publication 717, Guidelines for Analyzing and Mitigating Liquefaction in California. university of southern California. March 1999. 2. RECENT ADVANCES IN SOIL LIQUEFACTION ENGINEERING AND SEISMIC SITE RESPONSE EVALUATION, Paper No. SPL -2, PROCEEDINGS: Fourth International conference on Recent Advances in Geotechnical Earthquake Engineering and soil Dynamics, san Diego, CA, March, 2001 Page 5 • • • HYDROLOGY � HY ©RAULIC�S REPORT Located in a portion of the North 1/2 of Section 15, Township 6 South, Range 7 East. S.B.M. County of Riverside, California GRIFFIN RANCH TRACT 34642 AUGUST 20, 2013 Prepared for: ADC VENTURE 2011 -2, L.L.C. 4675 MacArthur Court, Suite 1550 Newport Beach, CA 92660 MSA Job Number: 1721 MSA CONSULTING, INC. PLANMO ■ LWM ENOwsat wo ■ LAND SvRvnwo ID 34200 BoB Horn DRm ■ Rmcno MmAoB ■ CA 92270 Tmmwom (760) 320 -98U ■ FAx (760) 323 -7893 • TABLE OF CONTENTS PROJECTLOCATION ........................................................... ..............................1 EXISTINGCONDITIONS ....................................................... ..............................1 FloodRate Map .......................................................................... ............................... 1 National Cooperative Soil Survey .................................... :....................................... 1 Existing Topography............. ..... 1 PROPOSED FLOOD CONTROL REQUIREMENTS ............. ..............................1 HYDROLOGY ANALYSIS DESIGN CRITERIA ..................... ..............................2 HydrologicSoil Group ............................................................... ............................... 2 Antecedent Moisture Condition ................................................ ............................... 2 Land Use Classifications and Runoff Index Numbers ............. ............................... 2 Precipitation Frequency Estimates ........................................... ............................... 2 SiteInfiltration ............................................................................ ............................... 3 SUMMARY of SYNTHETIC UNIT (SHORTCUT METHOD) ANALYSES ............ 3 SUMMARY of RCFCD RATIONAL METHOD PEAK FLOWS ............................ 4 ProposedLand Use: ................................................................................................. 4 Rational Method Peak Flows: ................................................................................... 5 100 Year Storm Event .............................................................................. ............................... 5 10 Year Storm Event ................................................................................ ............................... 5 HYDRAULIC ANALYSES ...................................................... ..............................5 Catch Basins & Street Capacity Anal ysis ................................. ............................... 5 StormDrain Pipes ...................................................................... ............................... 7 PRELIMINARY WQMP ANALYSIS ...................................... ............................... 8 • RESULTS AND CONCLUSIONS ........................................... ..............................8 • • LIST OF APPENDICES: A. RIVERSIDE COUNTY TLMA VICINITY MAP B. NFIP FLOOD INSURANCE RATE MAP C. USDA NCSS HYDROLOGIC SOILS MAP D. NOAA ATLAS 14 & RCFCD REFERENCE PLATES E. SLADDEN ENGINEERING — DRAFT INFILTRATION TEST RESULTS F. PROPOSED LAND USE SUMMARY WORKSHEETS G. RCFCD SYNTHETIC UNIT (SHORTCUT METHOD) HYDROGRAPHS H. RCFCD RATIONAL METHOD ANALYSIS COMPUTER RUNS I. HYDRAULIC CALCULATIONS J. RCWQMP (White Water River Region) EXHIBIT C WORKSHEETS K. HYDROLOGY EXHIBITS • C Griffin Ranch — Tract 34642 Hydrology S Hydraulics Report • PROJECT LOCATION The proposed project site is located on approximately 40 acres located on the southwest corner of Avenue 54 and Monroe Street in La Quinta, Riverside County. The site is described as being in a portion of the North '/z of Section 15, Township 6 South, Range 7 East, SBM and has been assigned Tract Number 34642. A vicinity map obtained from the Riverside TLMA website is included as Appendix A. EXISTING CONDITIONS Flood Rate Map The project area is covered by FIRM Panel Number 06065C2263G, revised August 28 2008. This particular panel is currently unavailable for preview on the FEMA website. A review of the surrounding panels and the outdated panel for the subject area (06024523008, Revised March 22, 1983) all indicate the project area lies within Zone X (C) which is defined as `areas determined to be outside the 0.2% annual chance floodplain" The panels are included in Appendix B. National Cooperative Soil Survey The existing soil is categorized primarily as hydrologic soil group B as shown on the attached National Cooperative Soil Survey exhibits in Appendix C. Existing Topography The site is relatively flat and slopes gradually towards the southeast with storm runoff generally characterized as sheet flow. The crown and side swales of the existing Avenue 54, as well as improvements recently constructed to the west boundary of the of the project prevent off -site storm • runoff from entering the project site from the north and west. The soil underlying the site consists primarily of fine - grained silty sand with scattered prominent sandy clay and sandy silt layers. As is typical for the area, the silty sand and sandy silt layers are inconsistently interbedded and vary in thickness. Groundwater was encountered at a depth of approximately 49 -feet below the existing ground surface. PROPOSED FLOOD CONTROL REQUIREMENTS Drainage requirements for this project fall under the jurisdiction of the City of La Quinta. The project design shall provide for the capture and storage of the 100 -year storm event that produces the most runoff reaching the storm basin. Runoff and retention calculations shall be prepared utilizing Riverside County Flood Control and Water Conservation District (RCFCD) Hydrology Manual. Storm runoff is directed to the on -site streets and conveyed to the retention basins via sub - surface storm drain systems. Off -site storm runoff, adjacent to the project, is captured in catch basins and conveyed to the retention basin via a sub - surface storm drain line. In accordance with Riverside County Ordinance Number 460.151 Article XI, the 10 -year discharge shall be contained within the tops of curbs, and the 100 -year discharge shall be contained within the street right -of -way. • • • Griffin Ranch - Tract 34642 Hydrology & Hydraulics Report HYDROLOGY ANALYSIS DESIGN CRITERIA Storm run -off volumes for the 100 -year event were obtained utilizing the Synthetic Unit (Shortcut Method) Hydrograph, as described in the RCFC &WCD Hydrology Manual. The shortcut method is useful for evaluating those areas less than 200 acres in size. Peak storm flows for the 100 -year and 10 -year events were obtained utilizing the Rational Method, as described in the RCFC &WCD Hydrology Manual. The hydrologic data used for the calculations are as follows: Hydrologic Soil Group Soil Group B is defined by .RCFCD as — "those soils having moderate infiltration rates. These soils consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission." Antecedent Moisture Condition AMC II — Moderate runoff potential, an intermediate condition. Per RCFC & WCD Hydrology Manual (Dated: April, 1978): "For the purposes of design hydrology using District methods, AMC II should normally be assumed for both the 10 year and 100 year frequency storm ". Land Use Classifications and Runoff Index Numbers Runoff Index Numbers were obtained from RCFCD Plate D -5.5 and are summarized below: Proposed Conditions — Commercial Landscaping 56 Proposed open space areas as identified from the site plan were assumed to be 10% impervious. Percent of Impervious Cover (RCFCD Plate E -6.3): '/< Acre Lots 50% Paving /Hardscape 100% Proposed Landscaping 10% Low Loss Rates: 85% (100 year storm) Precipitation Frequency Estimates Precipitation depths were obtained from NOAA Atlas 14: 2 Year - 1 Hour Precipitation: 0.34 inches 100 Year — 1 Hour Precipitation: 1.35 inches 100 Year — 3 Hour Precipitation: 2.08 inches 100 Year - 6 Hour Precipitation 2.72 inches 100 Year — 24 Hour Precipitation 4.37 inches Slope of Intensity Duration Curve: 0.52 See Appendix D for the NOAA Atlas 14 Point Precipitation Frequency Estimates and respective RCFCD Plates. Griffin Ranch - Tract 34642 Hydrology & Hydraulics Report • Site Infiltration Several percolation tests performed by Sladden Engineering indicated a reasonable infiltration rate for the surface soils. Groundwater was encountered at depths of approximately 49 -feet below existing ground surface. • • For the purposes of this report, a basin percolation factor of 0.5 inches /hour was used in the calculations. A soils update letter is included as Appendix E. SUMMARY of SYNTHETIC UNIT (SHORTCUT METHOD) ANALYSES The total hydrologic area under consideration of 40.65 acres is less than the 200 -acre limit guideline for utilization of the shortcut method. It should be noted that the peak flow for the 1 -hour storm is not necessarily representative. Per RCFCD peak discharges from the 3 -hour storm should normally compare well with rational peaks. Proposed land use worksheets are included in Appendix F; the synthetic unit worksheets are included in Appendix G; and the Synthetic Unit Exhibit is included in Appendix K. PROPOSED LAND USE SUMMARY Duration Land Use Drainage Area acres RI Number AMC II Infiltration Rate in /hr Impervious Percent '/4 Acre Residential Lots 24.51 56 0.51 .50 Pavin /Hardsca a 1 8.19 56 0.51 100 Landscaping/Detention 7.95 56 0.51 10 Total Area 40.65 463.0 STORM EVENT SUMMARY - DEVELOPED CONDITION Duration 1 -HOUR 3 -HOUR 6 -HOUR 24 -HOUR Effective Rain in 1.08 1.28 1.29 1.32 Flood Volume (cu -ft) acre -ft 159,355 3.66 189,101 4.34 190,044 4.36 194,704 4.47 Peak Flow cfs n/a 72.83 63.85 14.83 Basin 'A' Characteristics: ELEVATION ft DEPTH ft) CONTOUR AREA (sf ) VOLUME (cu -ft acre -ft 459.0 0.0 25,815 1 0 0.00 460.0 1.0 36,855 31,172 0.72 461.0 2.0 50,130. 74,494 1.71 462.0 3.0 67,735 133,206 3.06 463.0 4.0 89,760 211,696 4.86 464.0 5.0 105;850 309,391 7.10 465.0 6.0 123,930 424,162 9.74 Griffin Ranch - Tract 34642 Hydrology & Hydraulics Report • Basin 'A' Sizin Results: Required Storage (cu -ft) 155,842 178,716 171,510 141,129 acre -ft 3.58 4.10 3.94 3.24 Storage Provided (cu -ft) 424,162 acre -ft 9.74 Factor of Safety' 2.72 2.37 2.47 3.01 Maximum WSEL (ft) 462.29 462.58 462.49 462.10 Depth ft 3.29 3.58 3.49 3.10 As illustrated above, the basin has sufficient capacity to retain the flood volume for all 100 year storm events. SUMMARY of RCFCD RATIONAL METHOD PEAK FLOWS Catch basins and proposed underground storm drain systems were sized based on peak flows as determined by the Rational Method as described in the RCFCD Hydrology Manual. Basin Stage Storage analyses were performed in accordance with HEC -22. To account for storm run -off not directly tributary to the proposed inlets, synthetic unit hydrographs for the 1 hour storm were analyzed to determine the total flood volume directed to the retention basin. The rational method computer runs for both the 100 year and 10 year storm events are included in Appendix H. The Rational Method Exhibit is included in Appendix K. Proposed Land Use: The proposed site was divided into six (6) main drainage areas corresponding to their respective catch points. User input of soil data was used in the rational calculations. The decimal percent of • pervious area was calculated based on each sub - area's respective land use. Shown below is a summary of the proposed land use: • DA Designation DA Total Area (acres) DA Impervious (acres) DA Pervious (acres) Area Pervious (decimal) A.01 5.15 3.01 2.15 0.42 A.02 7.58 4.49 3.10 0.41 A.03 2.90 1.78 .1.12 0.38 DA Subtotal 15.63 9.27 6.36 0.41 B.01 . 0.91 0.54 0.38 0.41 B.02 2.09 1.25 0.84 0.40 DA Subtotal 3.00 1.78 1.22 0.41 C.01 5.78 3.34 2.44 0.42 C.02 4.07 2.35 1.72 0.42 C.03 1.46 0.84 0.62 0.42 DA Subtotal 11.31 6.53 4.78 0.42 'D.01 1.50 0.89 0.61 0.41 D.02 0.84 0.51 0.33 0.40 DA Subtotal 2.34 1.40 0.95 0.40 E.01 1.35 0.72 0.63 0.47 DA Subtotal 1.35 0.72 0.63 0.47 F.01 1.64. 1.00 0.64 0.39 DA Subtotal 1.64 1.00 0.64 0.39 Total Area 35.27 20.70 14.57 0.41 Factor of safety is based on the storage provided compared to the total flood volume. 4 Griffin Ranch - Tract 34642 Hydrology & Hydraulics Report • Rational Method Peak Flows: Summaries of the RCFCD Rational Runs for the 100 year and 10 year storm events are shown below: 100 Year Storm Event DA Designation Catch Basin Q100 cfs Tc min Intensity in /hr Area acres DA -A 2/3 30.04 22.19 2.27 15.63 DA -B 4/5 7.64 11.90 3.13 3.00 DA -C 6/7 24.49 15.68 2.71 11.31 DA -D 8 4.92 18.60 2.48 2.34 DA -E 9 2.95 14.92 2.78 1.35 DA -F 10 3.65 15.06 2.77 1.64 10 Year Storm Event DA Designation Catch Basin Q10 cfs Tr min Intensity in /hr Area acres DA -A 2/3 15.54 23.37 1.24 15.63 DA -B 4/5 4.05 11.90 1.76 3.00 DA -C 6/7 12.91 15.68 1.52 11.31 DA -D 8 2.58 19.10 1.37 2.34 DA -E 9 1.54 14.92 1.56 1.35 DA -F 10 1.93 15.06 1.55 1.64 • HYDRAULIC ANALYSES Catch basins and the associated storm drain pipes were analyzed in accordance with Hydraulic Engineering Circular No. 22, utilizing Bentley Systems Inc. Flowmaster (catch basins) and StormCad (storm drain systems) software. Catch Basins & Street Capacity Analysis Curb inlet catch basins are per City of La Quinta Standard 300. Inlet sizing worksheets and StormCAD pipe sizing worksheets are included in Appendix I, with locations shown on the Proposed Storm Drain System Exhibit included in Appendix K. Per City of La Quinta guidelines the 10 -year storm runoff shall be contained within the curbs and the 100 -year runoff shall be contained within the street right -of -way. For the private on -site streets the 10 -foot public utility easement (PUE) is also dedicated as a drainage easement. Onsite private street allowable gutter depths: 100 Year 8.4 inches (6" curb face + 10' PUE @ 2 %) 10 Year 6.0 inches Public street allowable gutter depths: 100 Year 10.8 inches (8" curb face + 12' R/W @ 2 %) 10 Year 8.0 inches Also, per the La Quinta standards, the maximum spread of runoff in arterial streets must leave a clear lane of travel during a 10 -year storm event. On both Avenue 54 and Monroe Street the allowable spread is 18 -feet (12 -foot travel lane and a 6 -foot bicycle lane). • • • Griffin Ranch - Tract 34642 Hydrology & Hydraulics Report Summaries of the proposed inlets for each of the storm events are shown below: 100 Year Storm Inlet No W ft Intercepted Flow cfs Bypassed Flow cfs Gutter Depth in CB -2/3 8 15.02 -0- 8.28 CB -4/5 4 3.82 -0- 4.81 -0- 7 12.25 -0- 7.69 B -8 15 4.86 0.06 4.47 rCCB-6/7 B -9 10 2.94 0.01 4.26 B -10 11 3.63 1 0.02 4.58 10 Year Storm Inlet No W ft Intercepted Flow cfs Bypassed Flow cfs Gutter Depth in Spread ft CB -2/3 8 7.77 -0- 5.85 20.73 CB -4/5 4 2.03 -0- 3.66 3.95 CB -6/7 7 6.46 -0- 5.52 19.17 CB -8 15 2.58 -0- 3.72 9.50 CB -9 10 1.54 -0- 3.54 8.75 CB -10 11 1.93 -0- 3.81 9.89 In the event storm drain lines 130 and 220 become clogged or fail, emergency overflow channels have been proposed to convey the storm flow from the streets to the retention basin. The channels are to be trapezoidal with 2:1 side slopes. Channel characteristics are summarized below with worksheets included in Appendix I: Line 130 Q100 30.00 cfs Bottom Width (minimum) 6 feet Average Slope 0.97% Normal Depth 1.04 feet Average Velocity 3.57 ft/s Line 220 Q100 24.40 cfs Bottom Width (minimum) 4 feet Average Slope 0.93% Normal Depth 0.94 feet Average Velocity 3.30 ft/s 11 Griffin Ranch - Tract 34642 Hydrology & Hydraulics Report • C • Storm Drain Pipes Storm drain pipes located within the public right -of -way are proposed to be RCP, Manning's n -value of 0.013 while all on -site storm drain pipe is proposed to be HDPE (or approved equal), Manning's n -value of 0.012. Water surface elevations from the basin stage storage worksheets at the corresponding system travel time were used as the beginning HGL at the outlet structures. Summaries of the main line pipe characteristics for each of the tributary drainage areas are shown below: Pipe No. Pipe Diameter in ) Material Full Capacity (cfs) System Flow (cfs) Slope (ft/ft Average Velocity ft/s P- 130.01 24 HDPE 38.78 29.94 0.0250 9.53 P- 130.02 24 HDPE 17.54 15.02 0.0051 4.78 P- 220.01 24 HDPE 32.69 24.39 0.0178 7.76 P- 220.02 18 HDPE 16.67 12.25 0.0215 6.93 P- 470.01 24 HDPE 37.06 14.81 0.0229 4.72 P- 470.02 24 HDPE 19.37 9.63 0.0062 6.16 P- 470.03 24 RCP 17.83 6.85 0.0062 5.30 P- 470.04 24 RCP 13.67 6.93 0.0037 4.37 P- 470.05 18 RCP 6.80 4.52 0.0042 4.12 P- 470.06 18 RCP 5.10 4.85 0.0024 3.28 L- 470A.01 18 HDPE 15.14 7.59 0.0177 8.57 L- 470A.02 18 HDPE 7.75 3.82 0.0046 4.37 L- 4706.01 18 RCP 9.13 3.64 0.0076 4.88 L470C.01 18 RCP 11.29 3.00 0.0116 5.40 100 Year Storm - Pipe Hydraulics and Pressure Profile Descriptions Pipe Number Upstream FG HGL ft ft Downstream FG HGL ft ft Profile Description P- 130.01 466.01 463.66 459.30 460.38 Pressure P- 130.02 466.01 464.13 466.01 463.97 Pressure P- 220.01 465.95 462.23 459.30 459.85 Pressure P- 220.02 465.90 463.13 465.95 462.55 Pressure P- 470.01 465.60 461.40 459.30 460.56 Pressure P- 470.02 467.00 462.01 465.60 461.47 Composite S1 /S2 P- 470.03 468.40 463.73 467.00 462.11 Composite S1 /S2 P- 470.04 468.80 465.01 468.40 463.93 M2 P- 470.05 470.00 466.63 468.80 465.32 M2 P- 470.06 471.17 467.79 470.00 466.79 M2 L- 470A.01 466.15 462.57 465.60 461.47 Composite S1 /S2 L- 470A.02 466.19 462.94 466.15 462.74 1 S2 L- 47013.01 466.51 463.04 467.00 462.26 S2 L- 4 70C.01 468.91 465.42 468.80 465.17 Composite S1 /S2 • • • Griffin Ranch — Tract 34642 Hydrology & Hydraulics Report PRELIMINARY WQMP ANALYSIS Preliminary design volume and flow for BMP measures were based on Worksheets 1 and 2 from the Riverside County - Whitewater River Region Water Quality Management Plan. Impervious areas for the tributary drainage areas are derived from the proposed site plan. A summary of the design flow and volumes is presented below with the worksheets attached as Appendix J. Drainage Total Area Impervious Design Design Flow Area Area Volume (cfs) acres acres cu -ft On -Site 40.65 21.24 20,889 4.23 RESULTS AND CONCLUSIONS As the above narrative and summaries confirm, the proposed project meets the hydrologic and hydraulic conditions as set forth by the City of La Quinta. 8 Griffin Ranch — Tract 34642 Hydrology & Hydraulics Report • Appendix A Riverside County TLMA Vicinity Map 0 C7 • • Riverside County GIS GRIFFIN RANCH Page 1 of 1 'IMPORTANT' Maps and data are to be used for reference purposes only. Map features are approximate, and are not necessarily accurate to surveying or engineering standards. The County of Riverside makes no warranty or guarantee as to the content (the source is often third party), accuracy, timeliness, or completeness of any of the data provided, and assumes no legal responsibility for the information contained on this map. Any use of this product with respect to accuracy and precision shall be the sole responsibility of the user. REPORT PRINTED ON...Fri Jan 04 12:05:24 2013 Version 121101 MSA JOB 1721 LATITUDE: 33.6532 LONGITUDE: - 116.2374 http: / /www3.tlma.co. riverside. ca .us /pa/rclis/NoSelectionPrint.htm 1/4/2013 Griffin Ranch — Tract 34642 Hydrology & Hydraulics Report • Appendix B NFIP Flood Insurance Rate Map 0 • • • wen Lu 4 w Z S I' MAP SCALE 1" = 500' ONE so 0 500 1000 .. ►� ► �' t, , . FEET METE t� • � v�4ae i.,w r.`•�� �' `� ,� ,. - PANEL 2261G FIRM R� +7 a •t Z: q7 a FLOOD INSURANCE RATE MAP f RIVERSIDE COUNTY, _ ® CALIFORNIA AND INCORPORATED AREAS y:�; , -w T , . f� •9�' PANEL 2261 OF 3805 (SEE MAP INDEX FOR FIRM PANEL LAYOUT) CONTAINS: - L ' �.:. :: e' y r ' - - �: - �e COMMUNITY NUMBER PANEL SUFFIX INDIO. CRY OF 060254 2261 G 060709 7161 G _ L777 1 RI ERSIDEC LINTY RIVERSIDE COUNTY 06025 2261 G AMP : Notice to User. The Map Number shovm below should be rf`�'444���/},fff� tl'} _ •- '�'/ L ® used when daring map orders; he Community Number ahovm above should be used on insurance applications for the -y ti7 subject community. a }ill, = ( ; - a MAP NUMBER 06065C2261G r . ® f tND SEO EFFECTIVE DATE AUGUST 28, 2008 Federal Emergency Management Agency s�' a.'• - �y d ;••' ;ii,i::.._.. 4.: :�y - T;'...+L: +a .i tea. :« 7� >>', •.. 25 JOINS PANEL 2263 57,) 000M This is an official copy of a portion of the above referenced flood map. It was extracted using F-MIT On -Line. This map does not reflect changes or amendments which may have been made subsequent to the date on the title block. For the latest product information about National Flood Insurance It Program flood maps check the FEMA Flood Map Store at www.msc.fema.gov M® ZONE C AVENUE 54 SITE ZONE, B APPROXIMATE SCALE 2000 O 2000 FEET This Is an o>nciel copy of a portion of the above referenced flood map. tt was extracted using F-MFT On -Une. This map does not refleet changes or amendmente which may have been made subsequent to the date on the title dock. For the latest product infbrmation about National Flood Insurance Program flood mope check the FEMA Flood Map Store at www.msc.fema.gov ® NATIONAL FLOOD INSURANCE PROGRAM FIRM FLOOD INSURANCE RATE MAP RIVERSIDE COUNTY, CALIFORNIA UNINCORPORATED AREA PANEL 2300 OF 3600 IEEE MAP INDEX FOR PANELS NOT PRINTED) COMMUNITY -PANEL NUMBER 060245 2300 B MAP REVISED: MARCH 22, 1983 Federal Emergency Management Agency This Is an o>nciel copy of a portion of the above referenced flood map. tt was extracted using F-MFT On -Une. This map does not refleet changes or amendmente which may have been made subsequent to the date on the title dock. For the latest product infbrmation about National Flood Insurance Program flood mope check the FEMA Flood Map Store at www.msc.fema.gov • DEFINITIONS OF FEMA FLOOD ZONE DESIGNATIONS • Moderate to Low Risk Areas In communities that participate in the NFIP, flood insurance is available to all property owners and renters in these zones: ZONE DESCRIPTION Areas of 0.2% annual chance flood; areas of 1% annual chance flood X (Shaded) with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood. Insurance purchase is not required in these zones. (X� ((Areas determined to be outside the 0.2% annual chance flood lain. High Risk.Areas In communities that participate in the NFIP, mandatory flood insurance purchase requirements apply to all of these zones: ZONE DESCRIPTION Areas with a 1% annual chance of flooding and a 26% chance of A flooding over the life of a 30 -year mortgage. Because detailed analyses are not performed for such areas; no depths or base flood elevations are shown within these zones. Areas with a 1% annual chance of flooding and a 26% chance of AE flooding over the life of a 30 -year mortgage. In most instances, base flood elevations derived from detailed analyses are shown at selected intervals within these zones. Areas with a 1% annual chance of shallow flooding, usually in the form of a pond, with an average depth ranging from 1 to 3 feet. These areas AH have a 26% chance of flooding over the life of a 30 -year mortgage. Base flood elevations derived from detailed analyses are shown at selected intervals within these zones. River or stream flood hazard areas, and areas with a 1% or greater chance of shallow flooding each year, usually in the form of sheet flow, AO with an average depth ranging from 1 to 3 feet. These areas have a 26% chance of flooding over the life of a 30 -year mortgage. Average flood depths derived from detailed analyses are shown within these zones. For areas of alluvial fan flooding, velocities are also determined. Areas with a temporarily increased flood risk due to the building or restoration of a flood control system (such as a levee or a dam). AR Mandatory flood insurance purchase requirements will apply, but rates will not exceed the rates for unnumbered A zones if the structure is built or restored in compliance with Zone AR floodplain management regulations. Areas with a 1% annual chance of flooding that will be protected by a A99 Federal flood control system where construction has reached specified legal requirements. No depths or base flood elevations are shown within these zones. High Risk — Coastal Areas In communities that participate in the NFIP, mandatory flood insurance purchase requirements apply to all of these zones: ZONE DESCRIPTION Coastal areas with a 1% or greater chance of flooding and an additional V hazard associated with storm waves. These areas have a 26% chance of flooding over the life of a 30 -year mortgage. No base flood elevations are shown within these zones. Coastal areas with a 1 % or greater chance of flooding and an additional hazard associated with storm waves. These areas have a 26% chance VE of flooding over the life of a 30 -year mortgage. Base flood elevations derived from detailed analyses are shown at selected intervals within these zones. Undetermined Risk Areas ZONE DESCRIPTION Areas with possible but undetermined flood hazards. No flood hazard D analysis has been conducted. Flood insurance rates are commensurate with the uncertainty of the flood risk. Griffin Ranch —Tract 34642 Hydrology & Hydraulics Report • Appendix C USDA NCSS Hydrologic Soils Map C 0 'If,>: f E' L L` l rl 151 sou h n HIS ff . ,:�.. •`- x„� __h. `' I i-ilm r}!.Y ors,. t 3 �' Ise "_���Si�_��twR.. ��r_,.;,,� ► , . • ti' -- . RIB la/nel it - -�.; -- .-r yL t y, ,:k 4 � -. ` * � ��- �j•}•.••3 -' firs, rI � } .,... ''•:yl . } %i ,d ls!Ile ON J, ,� - :..;,•9 OL eo As y M' J4 -i� i1'•• �YY I }�►� 11 I 0 1 � •�} y III � _ - �•-•� 4eM6ijaWJI) VdD J yyt W is e!qejv Hydrologic Soil Group - Riverside County, Coachella Valley Area, California (GRIFFIN RANCH) MAPLEGEND MAP INFORMATION Area of Interest (A01) Map Scale: 1:16,200 if printed on A size (8.5" • 11 ") sheet. O Area of Interest (AOI) The soil surveys that comprise your A01 were mapped at 1:24,000. Soils Please rely on the bar scale on each map sheet for accurate map Q Soil Map Units measurements. Sol] Ratings Source of Map: Natural Resources Conservation Service (] A Web Soil Survey URL: hftp : /twebsoilsurvey.nres.usda.gov O AID Coordinate System: UTM Zone 11N NAD83 ® B This product is generated from the USDA -NRCS certified data as of the version date(s) listed below. Q BID Soil Survey Area: Riverside County, Coachella Valley Area, O California ® C/o Survey Area Data: Version 5, Jun 1, 2012 0 D Date(s) aerial images were photographed: 5/31/2005 ` Not rated or not available The orthophoto or other base map on which the soil lines were `-' compiled and digitized probably differs from the background Political Features imagery displayed on these maps. As a result, some minor shifting 0 Cities of map unit boundaries may be evident. Q PLSS Township and Range Q PLSS Section Water Features e— Streams and Canals Transportation Rails N Interstate Highways iv US Routes Major Roads N Local Roads jLrA) Natural Resources Web Soil Survey 1/412013 Hydrologic Soil Group — Riverside County, Coachella Valley Area, California • Hydrologic Soil Group • GRIFFIN RANCH Hydrologic Soil Group— Summary by Map Unit — Riverside County, Coachella Valley Area, California (CA680) Map unit symbol Map unit name Rating Acres in AOI Percent of AOI CpA Coachella fine sand, 0 to 2 percent slopes A 126.31 13.5% GbA Gilman fine sandy loam, 0 to 2 percent slopes B 646.51 69.1% GcA Gilman fine sandy loam, wet, 0 to 2 percent slopes B 0.21 0.0% GeA Gilman silt loam, 0 to 2 percent slopes ( B 12.5 j 1.3% 1 Ip Indio fine sandy loam B ( 52.0 1 5.6% (Ir Indio fine sandy loam, wet B 1.41 0.1% , Is Indio very fine sandy loam B 47.4 I 5.1% MaB Myoma fine sand, 0 to 5 percent slopes A 46.91 5.0% W Water 2.2 ; 0.2% Totals for Area of Interest 935.41 100.0% 11. SDA Natural Resources Web Soil Survey 1/4/2013 Conservation Service National Cooperative Soil Survey Page 3 of 4 Hydrologic Soil Group — Riverside County, Coachella Valley Area, California Description Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long- duration storms. The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (AID, B /D, and C /D). The groups are defined as follows: Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission. Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink -swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. If a soil is assigned to a dual hydrologic group (A/D, B /D, or C /D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. Rating Options Aggregation Method: Dominant Condition Component Percent Cutoff. None Specified Tie -break Rule: Higher GRIFFIN RANCH Natural Resources Web Soil Survey 1/4/2013 Conservation Service National Cooperative Soil Survey Page 4 of 4 Griffin Ranch — Tract 34642 Hydrology & Hydraulics Report • Appendix D NOAA Atlas 14 RCFCD Reference Plates 0 0 Precipitation Frequency Data Server NOAA Atlas 14, Volume 6, Version 2 • Location name: La Quinta, California, US* Coordinates: 33.6556, - 116.2353 Qv Elevation: -27ft" 'source: Google Maps POINT PRECIPITATION FREQUENCY ESTIMATES Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitada, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypauc, Dale Unruh, Fenglin Yen, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, LI•Chuan Chen, Tye Parzybok, John Yarchoan NOAH, National Weather Service, Silver Spring, Maryland PF tabular I PF graohical I Maps & aerials • • PF tabular PDS -based point precipitation frequency estimates with 90% confidence intervals (in inches)' Average recurrence in0ears000�� Duration 1 0000 2 5 10 25 50 100 200 500 1000 0.063 0098 0.149 0.195 0.263 0.322 0.387 0.461 0.574 7 f 0.674 5 -min 1(0.053-0.076)1(0.082-0.119)1(0.124-0.181) (0.161 - 0.239) (0.210 - 0.334) (0.251 - 0.417) (0.295 - 0.514) (0.341 - 0.630) (0.407 - 0.819) (0.461- 0.996) 0.090 0.141 0.214 0.279 0.378 0.462 0.555 0.661 -O.-8-2-3-7F-O-.9-67-7 10 -min (0.075 - 0.109) (0.118 - 0.171) (0.178 - 0.260) (0.230 - 0.342) (0.301 - 0.479) (0.360 - 0.598) (0.422 - 0.737) 0.489 - 0.904) (0.583 -1.17) (0.661 -1.43) 0.109 0.170 0.259 0.338 0.457 0.558 0.671 0.800 0.995 1.17 15 -min (0.091 -0.132 ) ( 0.142 - 0.206) (0.215 - 0.315) (0.279 - 0.414) (0.364 - 0.579) (0.435- 0.723) (0.511 - 0.892) (0.591 -1.09) (0.705 -1.42) (0.799 -1.73 ) 0.157 0.245 0.372 0.486 0.656 0.802 0.965 1.15 1.43 1.68 30 -min (0.131 - 0.190) (0.204 - 0.297) (0.310 - 0.452) (0.400 - 0.595) (0.523 - 0.832) (0.626 -1.04) (0.734 -1.28) (0.849 -1.57) 1 (1.01 -2.04) 1 (1.15 -2.48) 60 -mtn F-6-.226----1F--5343 (0.184 - 0.266) . (0.286 - 0.416) 0.522 (0.434 - 0.633) 0.680 (0.561 - 0.833) 0.920 , (0.733 -1.17) 1.12 (0.877 -1.46) 1.35 1.03 -1.80 1.61 (1.19 -2.20) 11 2.01 (1.42 -2.86) 2.35 (1.61 -3.48) 0.305 0.452 0.671 0.871 1.18 1.45 1.75 2.10 2.64 3.12 2 -hr (0.255- 0.369) (0.377- 0.547) (0.558 - 0.814) (0.718 -1.07) (0.940 -1.50) 1 (1.13 -1.88) 1 (1.33 -2.33) 1 (1.55 -2.88) 1 (1.87 -3.77) 1 (2.13 -4.61) 0.369 0.536 0.789 1.02 1.39 1.71 2.08 2.51 -1-17-T--3.76---j 3 hr 1(0.308-0.446)1(0.447-0.649)1(0.656-0.958)1(0.843-1.25) 1 (1.11 -1.76) 1 (1.33 -2.22) 1.58 -2.76 (1.85 -3.42) (2.24 -4.52) (2.57 -5.55) 0.467 0.701 1.03 1.33 1.81 2.23 3.29 4.18 4.98 6 -hr 1(0.407-0.590)1(0.585-0.849)1(0.854-1.25) 1 (1.10 -1.63) 1 (1.44 -2.29) (1.74 -2.89) 2.07 -3.61 (2.43 -4.49) (2.96 -5.96) (3.40 -7.35) 0.586 0.863 1.28 1.66 2.26 2.78 3.37 4.06 5.13 6.08 12 -hr (0.490 - 0.709) (0.720 -1.05) 1 (1.06 -1.55) 1 (1.37 -2.03) 1 (1.80 -2.86) (2.17 -3.60) (2.57 -4.48) (3.00 -5.55) 1 (3.63 -7.32) (4.16 -8.98) 24 -hr 0.736 1(0.652-0.849)1(0.987-1.29) 1.12 1.68 (1.48 -1.94) 2.18 (1.91 -2.55) 2.95 (2.50 -3.56) 3.62 (3.01 -4.45) 4.37 3.54 -5.49 5.21 (4.12 -6.74) 6.50 (4.94 -8.75) 7.63 (5.60 -10.6) 0.848 1.31 1.97 2.56 3.44 4.19 5.01 5.94 7.32 8.49 2 -day (0.751 - 0.978) (1.15 -1.51) 1 (1.74 -2.28) 1 (2.24 -2.99) 1 (2.92 -4.14) (3.48 -5.15) (4.07 -6.31) (4.69 -7.67) (5.55 -9.84) (6.24 -11.8) 0.910 1.41 2.13 -2.76--]F--3.-70- 3.70 -4.-49-7F-5-36---- 536 6.33 776 8.98 3 -day (0.806 -1.05) 1 (1.25 -1.63) 1 (1.87 -2.46) .76 1 (2.41 -3.22) 1 (3.14 -4.46) .49 1 (3.73 -5.52) 1 (4.35 -6.75) 1 (5.00 -8.18) 1 (5.89 -10.4) 1 (6.59 -12.5) 0.963 1.49 2.25 2.92 3.90 4.73 5.64 6.64 8.13 9.39 4 day (0.852 -1.11) 1 (1.32 -1.72) 1 (1.98 -2.60) 1 (2.55 -3.40) 1 (3.31 -4.70) 1 (3.93 -5.82) 1 (4.57 -7.09) 1 (5.25 -8.58) 1 (6.17 -10.9) 1 (6.89 -13.0) 1.02 1.58 2.37 3.06 4.09 4.95 5.88 6.91 8.43 9.70 7 -da y (0.905 -1.18) 1 (1.39 -1.82) 1 (2.09 -2.74) 1 (2.68 -3.58) 1 (3.47 -4.93) 1 (4.11 -6.08) 1 (4.77 -7.40) 1 (5.46 -8.93) 1 (6.39 -11.3) (7.12 -13.5) 1.05 1.62 7 F 2.44 3.15 4.20 507 602 757 8.61 9.90 10 -day (0.932 -1.22) 1 (1.43 -1.87) 1 (2.15 -2.82) 1 (2.75 -3.67) 1 (3.56 -5.06) (4.21 -6.23) 1 (4.89 -7.58) 1 (5.58 -9.14) 1 (6.53 -11.6) (7.26 -13.8) 1'12 1.75 2.64 3.42 4.57 5.52 6.54 7.67 9.30 10.7 20 -day (0.994 -1.30) 1 (1.55 -2.02) 1 (2.33 -3.06) 1 (2.99 -3.99) 1 (3.87 -5.50) 1 (4.58 -6.78) 1 (5.31 -8.23) 1 (6.05 -9.91) 1 (7.06 -12.5) . 1 (7.82 -14.8) 1.17 1186 2.84 3.69 4.95 5.99 7.11 8.33 10.1 11.5 30 -day (1.04 -1.35) 1.27 (1.64 -2.14) 2.04 (2.50 -3.28) 3.15 (3.23 -4.31) 4.13 (4.20 -5.97) 5.56 (4.98 -7.37) 6.75 (5.77 -8.94) 8.01 (6.58 -10.8) 9.38 (7.65 -13.6) 11.4 (8.46 -16.0 13.0 45 -da y (1.12 -1.46) (1.81 -2.36) (2.78 -3.65) (3.61 -4.82) (4.71 -6.70) (5.60 -8.29) (6.50- 10.1) (7.41 -12.1) (8.61 -15.3) (9.51 -18.0) 1.34 -2.1-8---IF--3.40 4.47 6.04 7.34 8.73 10.2 12.4 14.1 60 -day (1.18 -1.54) (1.93 -2.52) (3.00 -3.94) (3.91 -5.22) (5.12 -7.27) (6.09 -9.02) (7.08 -11.0) (8.07 -13.2 ) ( 9.38 -16.6) (10.3 -19.6 ) Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS). Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence Interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5 %. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information. http: //hdsc.nws.noaa. gov/hdse /pfds /pfds _printpage.html ?lat = 33.6556 &lon =- 116.2353 &data... 1/4/2013 NOAA ATLAS 14 INTENSITY - DURATION WORKSHEET PROJECT NAME GRIFFIN RANCH _ TR 34642 PROJECT NUMBER 1721 (in/hr) STORM EVENT 100_yr 4.75 0.40 DATE: April 3, 2013 0.55 15 2.68 DATA FROM NOAA ATLAS 14 20 MINUTES RAINFALL RAINFALL 2.06 0.86 INTENSITY DEPTH 0.93 35 (in/hr) in 40 5 4.64 0.39 1.51 10 3.33 0.56 1.19 15 2.68 0.67 60 30 1.93 0.97 1.25 60 1.35 1.35 1.40 120 0.88 1.75 10.00 -- --- - -- - - I I 1.00 6x. •5: o- 1 0 I i i 0.10 INTENSITY VALUES FROM GRAPH CONSTANT FROM GRAPH 10.96 EXPONENT FROM GRAPH 1 -0.52 MINUTES RAINFALL RAINFALL INTENSITY DEPTH (in/hr) (in) 5 4.75 0.40 10 3.31 0.55 15 2.68 0.67 20 2.31 0.77 25 2.06 0.86 30 1.87 0.93 35 1.73 1.01 40 1.61 1.07 45 1.51 1.14 50 1.43 1.19 55 1.36 1.25 60 1.30 1.30 65 1.25 1.35 70 1.20 1.40 75 1.16 1.45 80 1.12 1.50 85 1.09 1.54 90 1.06 1.58 95 1.03 1.63 ,100 1.00 1.67 105 0.97 1.71 110 0.95 1.74 115 0.93 1.78 120 0.91 1.82 • • • RUNOFF INDEX NUMBERS OF HYDROLOGIC SOIL -COVER COMPLEXES FOR PERVIOUS AREAS -AMC II Cover Type (3) Quality of Cover (2) Soil Group A I B I C D NATURAL COVERS - Barren 78 86 91 93 (Rockland, eroded and graded land) Chaparrel, Broadleaf Poor 53 70 80 85 (Manzonita, ceanothus and scrub oak) Fair 40 63 75 81 Good 31 57 71 78 Chaparrel, Narrowleaf Poor 71 82 88 91 (Chamise and redshank) Fair 55 72 81 86 Grass, Annual or Perennial Poor 67 78 86 89 Fair 50 69 79 84 Good 38 61 74 80 Meadows or Cienegas Poor 63 77 85 88 (Areas with seasonally high water table, Fair 51 70 80 84 principal vegetation is sod forming grass) Good 30 58 72 78 Open Brush Poor 62 76 84 88 (Soft wood shrubs - buckwheat, sage, etc.) Fair 46 66 77 83 Good 41 63 75 81 Woodland Poor 45 66 77 83 (Coniferous or broadleaf trees predominate. Fair 36 60 73 79 Canopy density is at least 50 percent) Good 28 55 70 77 Woodland, Grass Poor 57 73 82 86 (Coniferous or broadleaf trees with canopy Fair 44 65 77 82 density from 20 to 50 percent) Good 33 58 72 79 URBAN COVERS - Residential or Commercial Landscaping Good 32 69 75 56 (Lawn, shrubs, etc.) Turf Poor 58 74 83 87 (Irrigated and mowed grass) Fair 44 65 77 82 Good 33 58 72 79 AGRICULTURAL COVERS - Fallow 76 85 90 92 (Land plowed but not tilled or seeded) R C F C a W C D RUNOFF INDEX NUMBERS 1-JYOROLOGY MANUAL FOR PERVIOUS AREAS PLATE E -6.1 0 of 2) RUNOFF INDEX NUMBERS OF HYDROLOGIC SOIL-COVER-COMPLEXES FOR PERVIOUS AREAS -AMC II Quality of Soil Group Cover Type (3) Cover (2) A B C I D AGRICULTURAL COVERS (cont.) - Legumes, Close Seeded Poor 66 77 85 89 (Alfalfa, sweetclover, timothy, etc.) Good 58 72 81 85 Orchards, Deciduous See Not 4 (Apples, apricots, pears, walnuts, etc.) Orchards, Evergreen Poor 57 73 82 86 (Citrus, avocados, etc.) Fair 44 65 77 82 Good 33 58 72 79 Pasture, Dryland Poor 67 78 86 89 (Annual grasses) Fair 50 69 79 84 Good 38 61 74 80 Pasture, Irrigated Poor 58 74 83 87 (Legumes and perennial grass) Fair 44 65 77 82 Good 33 58 72 79 Row Crops Poor 72 81 88 91 (Field crops - tomatoes, sugar beets, etc.) Good 67 78 85 89 Small Grain Poor 65 76 84 88 (Wheat, oats, barley, etc.) Good 63 75 83 87 Vineyard ISee Note 4 Notes: 1. All runoff index (RI) numbers are for Antecedent Moisture Condition (AMC) II. 2. Quality of cover definitions: Poor - Heavily grazed or regularly burned areas. Less than 50 per- cent of the ground surface is protected by plant cover or brush and tree canopy. Fair - Moderate cover with 50 percent to 75 percent of the ground sur- face protected. Good -Heavy or dense cover with more than 75 percent of the ground surface protected. 3. See Plate C -2 for a detailed description of cover types. 4. Use runoff index numbers based on ground cover type. See discussion under "Cover Type Descriptions" on Plate C -2. 5. Reference Bibliography item 17. R C F C 15 W C D RUNOFF INDEX NUMBERS FOR rJ`IDROUflGY ]MANUAL PERVIOUS AREAS PLATE E- 6.1(2of 2) ACTUAL IMPERVIOUS COVER Recommended Value :Land Use (1) Range- Percent For Average Conditions- Percent(2 Natural or Agriculture 0 - 10 0 Single Family Residential: (3) 40,000 S. F. (1 Acre) Lots 10 - 25 20 20,000 S. F. (1i Acre) Lots 30 - 45 40 7,200 - 10,000 S. F. Lots 45 - 55 50 Multiple Family Residential: Condominiums 45 - 70 65 Apartments 65 - 90 80 Mobile Home Park 60 - 85 75 Commercial, Downtown I 80 -100 I 90 Business or Industrial Notes: 1. Land use should be based on ultimate development of the watershed. Long range master plans for the County and incorporated cities should be reviewed to insure reasonable land use assumptions. 2. Recommended values are based on average conditions which may not apply to a particular study area. The percentage impervious may vary greatly even on comparable sized lots due to differences in dwelling size, improvements, etc. Landscape practices should also be considered as it is common in some areas to use ornamental grav- els underlain by impervious plastic materials in place of lawns and shrubs. A field investigation of a study area should always be made, and a review of aerial photos, where available may assist in estimat- ing the percentage of impervious cover in developed areas. 3. For typical horse ranch subdivisions increase impervious area 5 per- cent over the values recommended in the table above. RCFC e► WCD f-JYDROLOGY MANUAL IMPERVIOUS COVER FOR DEVELOPED AREAS PLATE E -6.3 Griffin Ranch — Tract 34642 Hydrology & Hydraulics Report • Appendix E Sladden Engineering — Soils Update Letter 0 Sladden Engineering • 77 -725 Enfield Lane, Suite 100 Palm DeseM CA 92211 760 772 -3893 Fax 760 772 -3895 6782 Stanton Ave., Suite A, Bucna Park, CA 90621 (714) 523 -0952 Fax (714) 523 -1369 450 Egan Avenue, Beaumont, CA 92223 (951) 845 -7743 Fax (951) 845 -8863 15438 Cholame Ruad, Suite A. Vietorville, CA 92392 (760)9112 -1868 Fax (760) 962 -1878 May 3, 2007 Project No. 544 -4402 07- 06-430 Trans West Housing 47 -120 Dune Palms Road, Suite C La Quinta, California 92253 Attention: Ms. Marty Butler Project Griffin Ranch Saddle Club SWC of Monroe Street and Avenue 54 La Quinta, California Subject: On -Site Storm Water Retention Considerations This memo has been prepared to provide a brief summary of our recent discussions with Mr. Bruce Kassler of MSA Consulting regarding the design of on -site storm water retention basins for • the Griffin Ranch Saddle Club. The storm water runoff will be stored in shallow retention basins that will also be utilized as pasture areas. Because the basins will also be utilized for horse pasturing, the design consists of shallow (generally less than 1 foot in depth) and level basins. The majority of the nuisance water will be collected within drywells located within various locations. It is our understanding that the basins have been sized based upon a zero percolation rate and the drywells will be used for long -term dissipation of significant storm water events. .Although a zero percolation rate was used in the sizing of the basins for the storage of storm water runoff, previous testing did indicate reasonable infiltration rates for the surface soil. The minimal amounts of storm water remaining on the surface due to the level slope should be expected to infiltrate into the basin surface fairly rapidly. Significant sloping towards the drywells is in our opinion unnecessary If you have questions regarding this memo, please do not hesitate to call. Respectfully submitted, SLADDEN ENGINEERING Brett L. Anderson Principal Engineer I.,etter /pc Copies: 2/Trans West Housing • 2/MSA Consulting Griffin Ranch — Tract 34642 Hydrology & Hydraulics Report • Appendix F Proposed Land Use Summary Worksheets r� L GRIFFIN RANCH - 40 ACRE • MSA JOB #1721 PROPOSED LAND USE AREAS - SYNTHETIC UNIT April 10, 2013 HYDROLOGIC SOIL GROUP B DRAINAGE AREA AREA IMPERVIOUS 1/4 ACRE LOTS OPEN SPACE TOTAL RI =56 RI =56 RI =56 (acres) (acres) (acres) (acres) PROJECT SITE 8.193 24:507 7.954 40.654 AREA RECONCILIATION SURVEY BOUNDARY AREAS PROJECT AREA - SURVEYED BOUNDARY 45.776 ADD: 1.888 SUBTRACT: 7.010 TOTAL HYDRO AREA • • 40.654 GRIFFIN RANCH - TRACT 34642 MSA JOB #1721 PROPOSED LAND USE AREAS - RATIONAL METHOD April 10, 2013 DRAINAGE LENGTH HIGH LOW STREETS AREA PERVIOUS NODE ELEVATION NODE ELEVATION 1/4 ACRE DECIMAL Ai =10% Ai =100% LOTS (acres) (acres) (acres) (acres) Ai =50% (ft) 0.86 (ft) 2.15 (ft) (acres) A.01 1,000 ft 100 480.1 ft 110 470.8 ft 4.29 A.02 965 ft 110 470.8 ft 130 466.0 ft 6.19 A.03 550 ft 120 470.4 ft 130 466.0 ft 2.16 SUBTOTAL 0.91 0.41 0.07 0.46 1.25 12.64 B.01 245 ft 200 468.9 ft 220 466.2 ft 0.75 B.02 450 ft 210 469.1 ft 220 466.2 ft 1.56 SUBTOTAL 0.63 2.35 1.72 4.07 0.42 2.31 C.01 1,000 ft 300 474.4 ft 330 466.1 ft 4.88 C.02 780 ft 310 472.3 ft 330 466.1 ft 3.44 C.03 330 ft 320 469.1 ft 330 466.1 ft 1.24 SUBTOTAL 0.40 1.05 1.29 1.40 0.95 9.56 D.01 840 ft 400 478.0 ft 410 472.9 ft 0.00 D.02 390 ft 410 472.9 ft 420 470.5 ft 0.00 SUBTOTAL 20.70 14.57 35.27 0.41 5.38 0.00 E.01 600 ft 500 470.5 ft 510 468.0 ft 0.00 F.01 630 ft 600 468.0 ft 610 465.6 ft 0.00 TOTAL 24.51 ADD: BASIN AREA 0.00 TOTAL AREA 24.51 RATIONAL INPUT OPEN STREETS IMPERVIOUS PERVIOUS TOTAL Ap SPACE HARDSCAPE DECIMAL Ai =10% Ai =100% (acres) (acres) (acres) (acres) (acres) 0.00 0.86 3.01 2.15 5.15 0.42 0.00 1.39 4.49 3.10 7.58 0.41 0.04 0.70 1.78 1.12 2.90 0.38 0.04 2.95 9.27 6.36 15.63 0.41 0.00 0.16 0.54 0.38 0.91 0.41 0.07 0.46 1.25 0.84 2.09 0.40 0.07 0.62 1.78 1.22 3.00 0.41 0.00 0.90 3.34 2.44 5.78 0.42 0.00 0.63 2.35 1.72 4.07 0.42 0.00 0.22 0.84 0.62 1.46 0.42 0.00 1.75 6.53 4.78 11.31 0.42 0.68 0.82 0.89 0.61 1.50 0.41 0.37 0.47 0.51 0.33 0.84 0.40 1.05 1.29 1.40 0.95 2.34 0.40 0.70 0.65 0.72 0.63 1.35 0.47 0.71 0.93 1.00 0.64 1.64 0.39 2.57 8.19 20.70 14.57 35.27 0.41 5.38 0.00 5.38 7.95 8.19 40.65 GRIFFIN RANCH - TRACT 34642 STORM DRAIN LINE 130 April 10, 2013 100 YEAR STORM DRAINAGE DATA FROM RATIONAL RUNS STORM CAD INPUT STORM CAD RESULTS AREA 0100 Tc Intensity Composite Area 0100 Tc Intensity Composite Intercepted External System System System System Flow Runoff Intercepted Runoff CA CA CA Tc Intensity (cfs) (min) ( in/hr) Coefficient (acres) (its) (min) (in/hr) Coefficient (acres) (acres) (acres) (min) ( in/hr) (its) Flow to CB2 External Piped Flow 0.000 Flow to Inlet DA -A 15.018 22.189 2.265 0.848 7.815 15.018 22.189 2.265 0.8417 6.578 Total Intercepted Flow 7.815 6.578 22.189 2.265 15.018 Flow to CB3 External Piped Flow 0.000 _ Flow to Inlet DA -A 15.018 22.189 2.265 0.848 7.815 15.018 22.189 2.265 0.8417 6.578 Total Intercepted Flow 7.815 6.578 22.189 2.265 15.018 TOTALS - LINE 130 15.630 13.155 0.000 13.155 10 YEAR STORM DRAINAGE DATA FROM RATIONAL RUNS STORM CAD INPUT STORM CAD RESULTS AREA 0100 Tc Intensity Composite Area 0100 Tc Intensity Composite Intercepted External System System System System Flow Runoff Intercepted Runoff CA CA CA Tc Intensity (its) (min) (in/hr) Coefficient (acres) (its) (min) ( in/hr) Coefficient (acres) (acres) (acres) (min) ( in/hr) WS) Flow to CB2 External Piped Flow 0.000 Flow to Inlet DA -A 7.769 23.371 1.236 0.804 7.815 7.769 23.371 1.236 0.7979 6.236 Total Intercepted Flow 7.815 6.236 23.371 1.236 7.769 Flow to CB3 External Piped Flow 0.000 Flow to Inlet DA -A 7.769 23.371 1.236 0.804 7.815 7.769 23.371 1.236 0.7979 6.236 Total Intercepted Flow 7.815 6.236 23.371 1.236 7.769 TOTALS - LINE 130 15.630 12.471 0.000 12.471 GRIFFIN RANCH - TRACT 34642 STORM DRAIN LINE 220 April 10, 2013 100 YEAR STORM DRAINAGE DATA FROM RATIONAL RUNS STORM CAD INPUT STORM CAD RESULTS AREA Q100 Tc Intensity Composite Area Q100 Tc Intensity Composite Intercepted External System System System System Flow Runoff Intercepted Runoff CA CA CA Tc Intensity (ds) (min) (in/hr) Coefficient (acres) (cfs) (min) (in/hr) Coefficient (acres) (acres) (acres) (min) (in/hr) (ds) Flow to CB6 External Piped Flow 0.000 Flow to Inlet DA-C 12.247 15.675 2.713 0.798 5.655 12.247 15.675 2.713 0.7919 4.478 Total Irltertepted Fluw 5.655 4.478 18.678 2.713 12.247 Flow to CB7 External Piped Flow 0.000 Flow to Inlet DAL 12.247 15.675 2.713 0.798 5.655 12.247 15.675 2.713 0.7919 4.478 Total Intercepted Flow 5.655 4.478 15.675 2.713 12.247 TOTALS - LINE 220 11.310 8.956 0.000 8.956 10 YEAR STORM DRAINAGE DATA FROM RATIONAL RUNS STORM CAD INPUT STORM CAD RESULTS AREA 0100 Tc Intensity Composite Area Q100 Tc Intensity Composite Intercepted External System System System System Flow Runoff Intercepted Runoff CA CA CA Tc Intensity (ds) (min) (in/hr) Coefficient (acres) ids) (min) ( in/hr) Coefficient (acres) (acres) (acres) (min) ( in/hr) (ds) Flow to CB6 External Piped Flow 0.000 Flow to Inlet DA-C 6.457 15.675 1.522 0.750 5.655 6.457 15.675 1.522 0.7442 4.208 Total Intercepted Flow 5.655 4.208 15.675 1.522 6.457 Flow to C87 External Piped Flow 0.000 Flow to Intel DAL 6.457 15.675 1.522 0.750 5.655 6.457 15.675 1.522 0.7442 4.208 Total Intercepted Flow 5.655 4.208 15.675 1.522 6.457 TOTALS - LINE 220 11.310 8.417 0.000 8.417 GRIFFIN RANCH - TRACT 34642 STORM DRAIN LINE 470 April 10, 2013 • • 100 YEAR STORM DRAINAGE DATA FROM RATIONAL RUNS STORM CAD INPUT STORM CAD RESULTS AREA 0100 Tc Intensity Composite Area 0100 Tc Intensity Composite Intercepted External System System System System Flow Runoff Intercepted Runoff CA CA CA Tc Intensity (cfs) (min) (in /hr) Coefficient (acres) (cfs) (min) ( in/hr) Coefficient (acres) (acres) (acres) (min) (in/hr) (ds) Flow to CB4 External Piped Flow 0.000 Flow to Inlet DA -B 3.818 11.896 3.132 0.8126 1.500 3.818 11.896 3.132 0.8061 1.209 Total Intercepted Flow 1.500 1.209 11.896 3.132 3.82 Flow to CBS External Piped Flow 0.000 Flow to Inlet DA -B 3.818 11.896 3.132 0.8126 1.500 3.818 11.896 3.132 0.8061 1.209 Total Intercepted Flow 1.500 1.209 11.896 3.132 3.82 Flow to CBS External Piped Flow 0.000 Flow to Inlet DA -D 4.918 18.600 2.482 0.8468 2.340 4.918 18.600 2.482 0.8401 1.966 Total Intercepted Flow 2.340 1.966 18.600 2.482 4.92 Flow to CB-9 External Piped Flow 0.000 Flow to Inlet DA -E 2.947 14.924 2.783 0.7844 1.350 2.947 14.924 2.783 0.7782 1.051 Total Intercepted Flow 1.350 1.051 14.924 2.783 2.95 Flow to CB -10 External Piped Flow 0.000 Flow to Inlet DA -F 3.650 15.065 2.770 0.8035 1.640 3.650 15.065 2.770 0.7971 1.307 Total Intercepted Flow 1.640 1.307 15.065 2.770 3.65 TOTALS 8.330 6.742 0.000 6.742 10 YEAR STORM DRAINAGE DATA FROM RATIONAL RUNS STORM CAD INPUT STORM CAD RESULTS AREA 0100 Tc Intensity Composite Area 0100 Tc Intensity Composite Intercepted External System System System System Flow Runoff Intercepted Runoff CA CA CA Tc Intensity (cfs) (min) (in /hr) Coefficient (acres) - (ds) (min) (nlhr) Coefficient (acres) (acres) (acres) (min) (in/hr) (cfs) Flow to CB4 External Piped Flow 0.000 Flow to Inlet DA -B 2.027 11.896 1.757 0.7689 1.500 2.027 11.896 1.757 0.7628 1.144 Total Intercepted Flow 1.500 1.144 11.896 1.757 2.03 Flow to CBS External Piped Flow 0.000 Flow to Inlet DA -B 2.027 11.896 1.757 0.7689 1.500 2.027 11.896 1.757 0.7628 1.144 Total Intercepted Flow 1.500 1.144 11.896 1.757 2.03 Flow to CBS External Piped Flow 0.000 Flow to Inlet DA -D 2.580 19.100 1.373 0.8030 2.340 2.580 19.100 1.373 0.7967 1.864 Total Intercepted Flow 2.340 1.864 19.100 1.373 2.58 Flow to CB-9 External Piped Flow 0.000 Flow to Inlet DA -E 1.539 14.924 1.561 0.7303 1.350 1.539 14.924 1.561 0.7245 0.978 Total Intercepted Flow 1.350 0.978 14.924 1.561 1.54 Flow to CB -10 External Piped Flow 0.000 Flow to Inlet DA -F 1.933 15.065 1.554 0.7585 1.640 1.933 15.065 1.554 0.7524 1.234 Total Intercepted Flow 1.640 1.234 15.065 1.554 1.93 TOTALS 8.330 6.365 0.000 6.365 Griffin Ranch — Tract 34642 Hydrology & Hydraulics Report • Appendix G RCFCD Synthetic Unit (Shortcut Method) Hydrographs 0 RCFCD SYNTHETIC UNIT HYDROGRAPH - SHORTCUT METHOD DATA INPUT SHEET DATE Au ust 20, 2013 LENGTH TO POINT OPPOSITE CENTROID (Lca) • 1 110 ft WORKSHEET PREPARED BY: DLS r 462.0 It PROJECT NAME GRIFFIN RANCH - TR 34642 465.0 ft PROJECT NUMBER 11721 " 0.02 STORM FREQUENCY (YEAR) CONCENTRATION POINT DESIGNATION IBASIN LOW LOSS RATE (100 YEAR STORM ONLY) AREA DESIGNATION ISITE AMC NUMBER 0 1 -HOUR Low Loss Conditions: X= Existing; D= Developed; BS= Retention 3-HOUR AREA SOIL TRIBUTARY AREAS ACRES LOW LOSS RI DESIG GROUP 2 1 B PAVING /HARDSCAPE 8.19 CONDITION D NUMBER 56 5 1 B SF - 1/4 ACRE 24.51 D 56 9 B LANDSCAPING 7.95 I D 56 LENGTH OF WATERCOURSE (L) 2,215 ft LENGTH TO POINT OPPOSITE CENTROID (Lca) • 1 110 ft ELEVATION OF HEADWATER 461:0 ft 480.1 ft 462.0 It ELEVATION OF CONCENTRATION POINT 463.0 ft 465.0 ft 464.0 It AVERAGE MANNINGS'N' VALUE 0.02 STORM FREQUENCY (YEAR) .1 LOW LOSS RATE (100 YEAR STORM ONLY) 8s %. POINT RAIN FROM NOAA ATLAS 14 1 -HOUR 1.35 in 3-HOUR 2.08 in 6-HOUR 2.72 in 24 -HOUR 4.37 in BASIN CHARACTERISTICS: ELEVATION AREA, PERCOLATION RATE (in/hr) 459.0 ft 25,815s 460.0 ft 36,855 sf 461:0 ft 50,130 sf 462.0 It 67 735 sf 463.0 ft 89,760 sf 464.0 It 105,850 sf 465.0 ft 123,930 sf PERCOLATION RATE (in/hr) 1 0.5 inthr DRYWELL DATA RATE NUMBER USED 0.51 PERCOLATION RATE 0.15 cfs LOWEST FLOWLINE ELEVATION 465.5 LOWEST PAD ELEVATION 468.1 • AMC II INFILTRATION IMPERVIOUS RATE PERCENT 0.51 1.00 0.51 0.50 0.51 0.10 Data Input Sheet Page 1 of 13 RCFC & WCD G` MR@[L@ V M MUQd SYNTHETIC UNIT HYDROGRAPH METHOD BASIC DATA CALCULATION FORM PROJECT: GRIFFIN RANCH - TR 34642 Job No.: 1721 BY: DLS DATE: 8/20/13 PHYSICAL DATA [11 CONCENTRATION POINT BASIN [21 AREA DESIGNATION SITE [31 AREA - ACRES 40.65 4 L -FEET 2215 5 L -MILES 0.420 6 La -FEET 1110.00 La -MILES 0.210 [81 ELEVATION OF HEADWATER 480.1 [91 ELEVATION OF CONCENTRATION POINT 465 10 H -FEET 15.1 1'l S- FEET/MILE 36.0 [1121 SAo.5 6.00 13 L•LCA/SA0.5 0.015 [141 AVERAGE MANNINGS'N' 0.02 1151 LAG TIME -HOURS 0.10 [161 LAG TIME - MINUTES 5.8 1 100% OF LAG- MINUTES 5.8 [18] 200% OF LAG- MINUTES 11.6 RAINFALL DATA [1] AMC II [2] FREQUENCY -YEARS 100 FROM NOAA ATLAS 14 [3] STORM DURATION: Point Rain 1 -HOUR 1.35 in 3-HOUR 2.08 in 6-HOUR 2.72 in 24 -HOUR 4.37 in STORM EVENT SUMMARY STORM DURATION 1 -HOUR 3-HOUR 6 -HOUR 24 -HOUR EFFECTIVE RAIN (in) 1.08 1.28 1.29 1.3 FLOOD VOLUME (cu -ft) (acre -ft) 159,355 3.66 189,101 4.34 190,044 4.36 194,7 4.47 REQUIRED STORAGE (cu -ft) (acre -ft) FACTOR OF SAFETY 155,842 3.58 2.72 178,716 4.10 1 2.37 171,510 3.94 1 2.47 141,129 3.24 1 3.01 STORAGE PROVIDED (cu -ft) (acre -ft) 424,162 9.74 PEAK FLOW (cfs) n/a 1 72.831 63.851 14.83 MAXIMUM WSEL (ft) DEPTH ft 462.291 3.291 462.681 3.681 462.49 3.49 462.10 3.10 LOWEST FLOWLINE ELEVATION DIFFERENCE (ft) 465.50 3.21 1 2.92 1 3.01 3.40 LOWEST PAD ELEVATION DIFFERENCE (ft 468.10 5.81 5.52 5.61 6.00 ESTIMATED TIME TO DEWATER BASIN Based on Total Flood Volume 8 vera a Percolation Rate da 1.9 2.2 2.5 2.3 NOTE: PEAK FLOW FOR THE 1 -HOUR STORM IS NOT REPRESENTATIVE. PER RCFCD PEAK DISCHARGES FROM THE 3 -HOUR STORM SHOULD NORMALLY COMPARE WELL WITH RATIONAL PEAKS. Plate E -2.1 Page 2 of 13 • • • RCFC & WCD NMp @d @@V SYNTHETIC UNIT HYDROGRAPH METHOD BASIC DATA CALCULATION FORM AMC II PROJECT: GRIFFIN RANCH - TR 34642 Job No.: 1721 BY: DLS DATE: 8/20/13 AVERAGE ADJUSTED LOSS RATE SOIL GROUP Plate C -1 LAND USE RI NUMBER Plate E-6.1 PERVIOUS AREA INFILTRATION RATE (in/hr) Plate E -6.2 DECIMAL PERCENT OF AREA IMPERVIOUS Plate E -6.3 ADJUSTED INFILTRATION RATE (in /hr) AREA AREA WEIGHTED AVERAGE MAX AVERAGE ADJUSTED INFILTRATION RATE ( in/hr) LOW LOSS CONDITION LOW LOSS RATE PER RCFC /2322 MIN AVERAGE ADJUSTED INFILTRATION RATE B PAVING /HARDSCAPE 56 0.51 100% 0.05 8.19 0.202 0.0103 DEVELOPED 0.1000 0.0202 B SF - 1/4 ACRE 56 0.51 50% 0.28 24.51 0.603 0.1691 DEVELOPED 0.5000 0.3014 B LANDSCAPING 56 0.51 10% 0.46 7.95 0.196 0.0908 DEVELOPED 0.8200 0.1604 SUM 40.65 SUM 0.2702 _ 0.4820 VARIABLE LOSS RATE HOUR STORM ONLY) Fm= 0.135085206 _ NOTE: Low loss rates established per RCFC /2322 (Dated: May-30-95) C= 0.00250 For Storms Less than the 100 Year Event F,= C(24-(T/60)) 11.55 +F, = 0.00250 (24- (T/60))A1.55 + 0.14 in /hr Undeveloped Condition: Low Loss = 90% CONSTANT LOSS RATE (3 & 6 HOUR STORMS) = 0.2702 Developed Condition: Low Loss = 0.9 - (0.8 • %Impervious) LOW LOSS RATE = 0.8500 Basin Site: Low Loss = 10% Where: For 100 Year Stone - Low Loss should be between 80 %& 90% T =Time in minutes. To get an average value for each unit time period, Use T =1/2 the unit time for the first time period, of the Rainfall Rate T =1 1/2 unit time for the second period, etc. Plate E -2.1 Page 3 of 13 RCFC & WCD EFFECTIVE RAIN 1.08 in FLOOD VOLUME SYNTHETIC UNIT HYDROGRAPH METHOD FLOOD VOLUME PROJECT: GRIFFIN RANCH -TR 34642 3.58 ac-ft rlli m n @IL@ @b 155,842 cu -ft AX WSEL 462.29 It PEAK FLOW RATE SHORTCUT METHOD VERAGE PERCOLATION RATE 58.56 cuft/min Job No.: 1721 M U °L 1 -HOUR STORM BY: DLS DATE 8120/13 UNIT HYDROGRAPH and EFFECTIVE RAIN CALCULATION FORM DRAINAGE AREA -ACRES 40.65 Basin Percolation Rate 0.5 in/hr UNIT TIME- MINUTES 5 LAG TIME - MINUTES 5.79 Maxwell Drywells UNIT TIME - PERCENT OF LAG 86.3 Number 3 TOTAL ADJUSTED STORM RAIN- INCHES 1.35 Drywall Percolation Rate 0.15 ds 27.00 cfm CONSTANT LOSS RATE -in/hr 0.27 LOW LOSS RATE - PERCENT 85.00% Unit Time Time Pattern Storm Loss Rate Effective Flood Volume Basin Percolation Percolation Total In Basin Period Minutes Hours Percent Rain Rain Hydrograph In Volume Area Out Basin WSEL in/hr in/hr Flow Plate E -5.9) Max Low in/hr cfs cu-ft cu -ft at cu -ft cu -fl ac-ft It 1 5 0.08 3.6 1 0.58 0.27 0.50 0.31 12.83 3,850 3,850 27,178 229 3,620 0.08 459.12 2 10 0.17 4.2 0.68 0.27 0.58 0.41 16.82 5,045 8,665 28,884 235 8,430 0.19 459.27 3 15 0.25 4.4 0.71 0.27 0.61 0.44 18.14 5,443 13,873 30,728 242 13,632 0.31 459.44 4 20 033 4.6 0.75 0.27 0.63 0.48 19.47 5,842 19,473 32,712 249 19,225 0.44 459.62 5 25 0.42 5.0 0.81 0.27 0.69 0.54 22.13 6.639 25,864 34,975 256 25,607 0.59 459.82 6 30 0.50 5.6 0.91 0.27 0.77 0.64 26.11 7,834 33,441 37,550 265 33,176 0.76 460.05 7 35 0.58 6.4 1.04 0.27 0.88 0.77 31.43 9,428 42,604 40,358 275 42,329 0.97 460.26 8 40 0.67 8.1 1.31 0.27 1.12 1.04 42.72 12,815 55,143 44.200 288 54,855 1.26 460.55 9 45 0.75 13.1 2.12 0.27 1.80 1.85 75.92 .22,776 77,631 51,071 312 77,319 1.77 461.05 10 50 0.83 34.5 5.59 0.27 4.75 5.32 218.03 65,410 142,729 70,407 379 142,350 3.27 462.12 11 55 0.92 6.7 1.09 0.27 0.92 0.82 33.42 10,026 152,375 73,114 389 151,986 3.49 462.24 12 60 1.00 3.8 0.62 0.27 0.52 0.35 1 14.16 4,248 1 156,234 74,197 393 1 155,842 1 3.58 462.29 EFFECTIVE RAIN & FLOOD VOLUMES SUMMARY EFFECTIVE RAIN 1.08 in FLOOD VOLUME 3.66 ac -ft FLOOD VOLUME 159,355 cu -ft REQUIRED STORAGE 3.58 ac-ft REQUIRED STORAGE 155,842 cu -ft AX WSEL 462.29 It PEAK FLOW RATE 218.03 cis VERAGE PERCOLATION RATE 58.56 cuft/min Plate E -2.2 1 -Hour Storm Page 4 of 13 RCFC & WCD 0Mn@1, @@V t�QG�M�id SYNTHETIC UNIT HYDROGRAPH METHOD SHORTCUT METHOD 3 -HOUR STORM UNIT HYDROGRAPH and EFFECTIVE RAIN CALCULATION FORM PROJECT: GRIFFIN RANCH -TR 34642 Job No.: 1721 BY: DLS DATE DRAINAGE AREA -ACRES 40.65 UNIT TIME - MINUTES 5 LAG TIME - MINUTES 5.79 UNIT TIME - PERCENT OF LAG 86.3 TOTAL ADJUSTED STORM RAIN (in) 2.08 CONSTANT LOSS RATE ( in/hr) 0.27 LOW LOSS RATE - PERCENT 85.00% Basin Percolation Rate 0.5 in/hr Maxwell Drywells Number 3 Drywall Percolation Rate 0.15 cfs 27.00 cfm Unit Time Period Time Minutes. Hours Pattern Percent Plate E -5.9) Storm Rain in /hr Loss Rate in /hr Max Low Effective Rain in/hr Flood Hydrograph Flow cfs Volume In cu-ft Basin Volume cu-ft Percolation Area sf Percolation Out cu -ft Total In Basin cu -ft ac -ft Basin WSEL ft 1 5 0.08 1.3 0.32 0.27 0.28 0.05 2.23 668 668 26,052 225 442 0.01 459.01 2 10 0.17 1.3 0.32 0.27 0.28 0.05 2.23 668 1,110 26,208 226 884 0.02 459.03 3 15 0.25 1.1 0.27 0.27 0.23 0.00 0.18 54 938 26,147 226 713 0.02 459.02 4 20 0.33 1.5 0.37 0.27 0.32 0.10 4.27 1,282 1,994 26,521 227 1,767 0.04 459.06 5 25 0.42 1.5 0.37 0.27 0.32 0.10 4.27 1,282 3,049 26,895 228 2,821 0.06 459.09 6 30 0.50 1.8 0.45 0.27 0.38 0.18 7.34 2,203 5,023 27,594 231 4,793 0.11 459.15 7 35 0.58 1.5 0.37 0.27 0.32 0.10 4.27 1,282 6,074 27,966 232 5,842 0.13 459.19 8 40 0.67 1.8 0.45 0.27 0.38 0.18 7.34 2,203 8,045 28,664 235 7,810 0.18 459.25 9 45 0.75 1.8 0.45 0.27 0.38 0.18 7.34 2,203 10,013 29,361 237 9,776 0.22 459.31 10 50 0.83 1.5 0.37 0.27 0.32 0.10 4.27 1,282 11,058 29,731 238 10,820 0.25 459.35 11 55 0.92 1.6 0.40 0.27 0.34 0.13 5.30 1,589 12,408 30,210 240 12,169 0.28 459.39 12 60 1.00 1.8 0.45 0.27 0.38 0.18 7.34 2,203 14,371 30,905 242 14,129 0.32 459.45 13 65 1.08 2.2 0.55 0.27 0.47 0.28 11.43 3,430 17,559 32,034 246 17,313 0.40 459.56 14 70 1.17 2.2 0.55 0.27 0.47 0.28 11.43 3,430 20,744 33,162 250 20,493 0.47 459.66 15 75 1.25 2.2 0.55 0.27 0.47 0.28 11.43 3,430 23,924 34,288 254 23,670 0.54 459.76 16 80 1.33 2.0 0.50 0.27 0.42 0.23 9.39 2,817 26,486 35,196 257 26,229 0.60 459.84 17 85 1.42 2.6 0.65 0.27 0.55 0.38 15.53 4,658 30,888 36,754 263 30,625 0.70 459.98 18 90 1.50 2.7 0.67 0.27 0.57 0.40 16.55 4,965 35,590 38,209 268 35,323 0.81 460.10 19 95 1.58 2.4 0.60 0.27 0.51 0.33 13.48 4,044 39,367 39,366 272 39,095 0.90 460.18 20 100 1.67 2.7 0.67 0.27 0.57 0.40 16.55 4,965 44,061 40,804 277 43.784 1.01 460.29 21 105 1.75 3.3 0.82 0.27 0.70 0.55 22.69 6,807 50,591 42,805 284 50,307 1.15 460.44 22 110 1.83 3.1 0.77 0.27 0.66 0.50 20.64 6,793 56,500 44,616 290 56,210 1.29 460.58 23 115 1.92 2.9 0.72 0.27 0.62 0.45 18.60 5,579 61,790 1 46,237 1 296 61,494 1 1.41 1 460.70 24 120 2.00 1 3.0 0.75 0.27 0.64 0.48 19.62 5,886 1 67,380 1 47,950 1 301 67,079 1 1.54 460.83 Plate E -2.2 3 -Hour Storm Page 5 of 13 RCFC & WCD EFFECTIVE RAIN 1.28 in SYNTHETIC UNIT HYDROGRAPH METHOD 4.34 ac -ft PROJECT: GRIFFIN RANCH - TR 34642 HV@n@Li @1y 4.10 ac -ft REQUIRED STORAGE 178,716 cu -ft MAX WSEL SHORTCUT METHOD PEAK FLOW RATE 72.83 cfs -AVERAGE PERCOLATION RATE Job No.: 1721 IAG° bM L 3 -HOUR STORM BY: DLS DATE UNIT HYDROGRAPH and EFFECTIVE RAIN CALCULATION FORM DRAINAGE AREA -ACRES 40.65 Basin Percolation Rate 0.5 in/hr UNIT TIME - MINUTES 5 LAG TIME - MINUTES 5.79 Maxwell Drywells UNIT TIME - PERCENT OF LAG 86.3 Number 3 TOTAL ADJUSTED STORM RAIN (in) 2.08 Drywall Percolation Rate 0.15 cfs 27.00 cfm CONSTANT LOSS RATE (in/hr) 0.27 LOW LOSS RATE - PERCENT 85.00% Unit Time Time Storm Loss Rate Effective Flood Volume Basin Percolation Percolation Total In Basin Period Minutes Hours Rain Rain Hydrograph In Volume Area Out Basin WSEL in/hr in/hr Flow ;(PlateE-5.9). Max Low in/hr cfs cu -ft cu -ft sf cu -ft cu -ft ac -ft ft 25 125 2.08 0.77 0.27 0.66 0.50 20.64 6,193 73,272 49,755 308 72,964 1.68 460.96 26 130 2.17 1.05 0.27 0.89 0.78 31.90 9,570 82,534 52,541 317 82,216 1.89 461.13 27 135 2.25 1.25 0.27 1.06 0.98 40.08 12,025 94,241 56,051 330 93,912 2.16 461.33 28 140 2.33 3.5 0.87 0.27 0.74 0.60 24.74 7,421 101,333 58,178 337 100,996 2.32 461.45 29 145 2.42 6.8 1.70 0.27 1.44 1.43 58.50 17,550 118,546 63,339 355 118,191 2.71 461.74 30 150 2.50 7.3 1.82 0.27 1.55 1.55 63.62 19,085 137,276 68,877 374 ,902 3.14 462.05 31 155 2.58 8.2 2.05 0.27 1.74 1.78 72.83 21,848 158,750 74,903 395 ,355 3.64 462.32 32 160 2.67 5.9 1.47 0.27 1.25 1.20 49.29 14,788 173,143 78,942 409 ,734 3.97 462.50 33 165 2.75 2.0 0.50 0.27 0.42 0.23 9.39 2,817 175,550 79,617 411 ,139 LA 4.02 462.53 34 170 2.63 1.8 0.45 0.27 0.38 0.18 7.34 2,203 177,341 80,120 413 ,928 4.06 462.56 35 175 2.92 1.8 0.45 0.27 0.38 0.18 7.34 2,203 179,131 80,622 415 716 4.10 462.58 36 180 3.00 0.6 0.15 0.27 0.13 0.02 0.92 276 178,992 80,583 415 ,577 4.10 462.58 EFFECTIVE RAIN & FLOOD VOLUMES SUMMARY EFFECTIVE RAIN 1.28 in FLOOD VOLUME 4.34 ac -ft FLOOD VOLUME 189,101 cu -ft REQUIRED STORAGE 4.10 ac -ft REQUIRED STORAGE 178,716 cu -ft MAX WSEL 462.58 ft PEAK FLOW RATE 72.83 cfs -AVERAGE PERCOLATION RATE 58.47 cuft /min Plate E -2.2 3 -Hour Storm Page 6 of 13 • • • RCFC & WCD D rbq@Q @d @@V (AMU °M SYNTHETIC UNIT HYDROGRAPH METHOD SHORTCUT METHOD 6 -HOUR STORM UNIT HYDROGRAPH and EFFECTIVE RAIN CALCULATION FORM PROJECT: GRIFFIN RANCH -TR 34642 Job No.: 1721 BY: DLS DATE 8/20/13 DRAINAGE AREA -ACRES 40.65 UNIT TIME - MINUTES 5 LAG TIME - MINUTES 5.79 UNIT TIME - PERCENT OF LAG 86.3 TOTAL ADJUSTED STORM RAIN (in) 2.72 CONSTANT LOSS RATE (in /hr) 0.27 LOW LOSS RATE - PERCENT 85.00% Basin Percolation Rate 0.5 in /hr Maxwell Drywells Number 3 Drywell Percolation Rate 0.15 cfs 27.00 cfm Unit Time Period Time Minutes Hours Pattern Percent (Plate E -5.9 )1 Storm Rain in /hr Loss Rate in /hr Max Low Effective Rain in /hr Flood Hydrograph Flow cfs Volume In cu -ft Basin Volume cu -ft Percolation Area sf Percolation Out cu-ft Total In Basin cu -ft ac -ft Basin WSEL ft 1 5 0.08 0.5 0.16 0.27 0.14 0.02 1.00 301 301 25,922 225 76 0.00 459.00 2 10 0.17 0.6 0.20 0.27 0.17 0.03 1.20 361 437 25,970 225 212 0.00 459.01 3 15 0.25 0.6 0.20 0.27 0.17 0.03 1.20 361 573 26,018 225 348 0.01 459.01 4 20 0.33 0.6 0.20 0.27 0.17 0.03 1.20 361 709 26,066 226 484 0.01 459.02 5 25 0.42 0.6 0.20 0.27 0.17 0.03 1.20 361 845 26,114 226 619 0.01 459.02 6 30 0.50 0.7 0.23 0.27 0.19 0.03 1.40 421 1,041 26,184 226 815 0.02 459.03 7 35 0.58 0.7 0.23 0.27 0.19 0.03 1.40 421 1,236 26,253 226 1,010 0.02 459.03 8 40 0.67 0.7 0.23 0.27 0.19 0.03 1.40 421 1,432 26,322 226 1,205 0.03 459.04 9 45 0.75 0.7 0.23 0.27 0.19 0.03 1.40 421 1,627 26,391 227 1,400 0.03 459.04 10 50 0.83 0.7 0.23 0.27 0.19 0.03 1.40 421 1,822 26,460 227 1,595 0.04 459.05 11 55 0.92 0.7 0.23 0.27 0.19 0.03 1.40 421 2,016 26,529 227 1,789 0.04 459.06 12 60 1.00 0.8 0.26 0.27 0.22 0.04 1.61 482 2,271 26,619 227 2,043 0.05 459.07 13 65 1.08 0.8 0.26 0.27 0.22 0.04 1.61 482 2,525 26,709 228 2,297 0.05 459.07 14 70 1.17 0.8 0.26 0.27 0.22 0.04 1.61 482 2,779 26,799 228 2,551 0.06 459.08 15 75 1.25 0.8 0.26 0.27 0.22 0.04 1.61 482 3,033 26,889 228 2,804 0.06 459.09 16 80 1.33 0.8 0.26 0.27 0.22 0.04 1.61 482 T286 26,979 229 3,057 0.07 459.10 17 85 1.42 0.8 0.26 0.27 0.22 0.04 1.61 482 3,539 27,068 229 3,310 0.08 459.11 18 90 1.50 0.8 0.26 0.27 0.22 0.04 1.61 482 3,792 27,158 229 3,562 0.08 459.11 19 95 1.58 0.8 0.26 0.27 0.22 0.04 1.61 482 4,044 27,247 230 3,814 0.09 459.12 20 100 1.67 0.8 0.26 0.27 0.22 0.04 1.61 482 4,296 27,337 230 4,066 0.09 459.13 21 105 1.75 0.8 0.26 0.27 0.22 0.04 1.61 482 4,548 27,426 230 4,318 0.10 459.14 22 110 1.83 0.8 0.26 0.27 0.22 0.04 1.61 482 4,799 27,515 231 4,569 0.10 459.15 23 115 1.92 0.8 0.26 0.27 0.22 0.04 1.61 482 5,051 27,604 231 4,820 0.11 459.15 24 120 2.00 0.9 0.29 0.27 0.25 0.02 0.97 290 5,110 27,625 231 4,879 0.11 459.16 25 125 2.08 0.8 0.26 0.27 0.22 0.04 1.61 482 5,361 27,714 231 5,129 0.12 459.16 26 130 2.17 0.9 0.29 0.27 0.25 0.02 0.97 290 5,419 27,734 231 5,188 0.12 459.17 27 135 2.25 0.9 0.29 0.27 0.25 0.02 0.97 290 5,478 27,755 231 5,247 0.12 459.17 28 140 2.33 0.9 0.29 0.27 0.25 0.02 0.97 290 5,537 27,776 231 5,305 0.12 459.17 29 145 2.42 0.9 0.29 0.27 0.25 0.02 0.97 290 5,596 27,797 232 5,364 0.12 459.17 30 150 2.50 0.9 0.29 0.27 0.25 0.02 0.97 290 5,654 27,818 232 5,423 0.12 459.17 31 155 2.58 0.9 0.29 0.27 0.25 0.02 0.97 290 5,713 27,838 232 5,481 0.13 459.18 32 160 2.67 0.9 0.29 0.27 0.25 0.02 0.97 290 5,771 27,859 232 5,539 0.13 459.18 33 165 2.75 1.0 0.33 0.27 0.28 0.06 2.31 692 6,231 28,022 232 5,999 0.14 459.19 34 170 2.83 1.0 0.33 0.27 1 0.28 0.06 2.31 692 6,690 28,184 233 6,457 0.15 459.21 Plate E -2.2 6-Hour Storm Page 7 of 13 RCFC & WCD rl''i IMQ ILIPW fKu � HUB L SYNTHETIC UNIT HYDROGRAPH METHOD SHORTCUT METHOD 6 -HOUR STORM UNIT HYDROGRAPH and EFFECTIVE RAIN CALCULATION FORM PROJECT: GRIFFIN RANCH -TR 34642 Job No.: 1721 BY: DLS DATE 8/20/13 DRAINAGE AREA -ACRES 40.65 UNIT TIME - MINUTES 5 LAG TIME - MINUTES 5.79 UNIT TIME - PERCENT OF LAG 86.3 TOTAL ADJUSTED STORM RAIN (in) 2.72 CONSTANT LOSS RATE (in/hr) 0.27 LOW LOSS RATE - PERCENT 85.00% Basin Percolation Rate 0.5 in /hr Maxwell Drywells Number 3 Drywell Percolation Rate 0.15 cfs 27.00 cfm Unit Time Period Time Minutes Hours Pattern Percent Plate E -5.9 Storm Rain in /hr Loss Rate in /hr Max Low Effective Rain in/hr Flood Hydrograph Flow cfs Volume In cu -ft Basin Volume cu -ft Percolation Area sf Percolation Out cu -ft Total In Basin cu -ft ac -ft Basin WSEL ft 35 175 2.92 1.0 0.33 0.27 0.28 0.06 2.31 692 7,149 28,347 233 6,915 0.16 459.22 36 180 3.00 1.0 0.33 0.27 0.28 0.06 2.31 692 7,607 28,509 234 7,373 0.17 459.24 37 185 3.08 1.0 0.33 0.27 0.28 0.06 2.31 692 8,064 28,671 235 7,830 0.18 459.25 38 190 3.17 1.1 0.36 0.27 0.31 0.09 3.64 1,093 8,923 28,975 236 8,687 0.20 459.28 39 195 3.25 1.1 0.36 0.27 0.31 0.09 3.64 1,093 9,780 29,279 237 9,543 0.22 459.31 40 200 3.33 1.1 0.36 0.27 0.31 0.09 3.64 1,093 10,636 29,582 238 10,399 0.24 459.33 41 205 3.42 1.2 0.39 0.27 0.33 0.12 4.98 1,494 11,893 30,027 239 11,654 0.27 459.37 42 210 3.50 1.3 0.42 0.27 0.36 0.15 6.32 1,896 13,549 30,614 241 13,308 0.31 459.43 43 215 3.58 1.4 0.46 0.27 0.39 0.19 7.66 2,297 15,605 31,342 244 15,361 0.35 459.49 44 1 220 3.67 1.4 0.46 0.27 0.39 0.19 7.66 2,297 17,658 32,069 246 17,412 0.40 459.56 45 225 3.75 1.5 0.49 0.27 0.42 0.22 9.00 2,699 20,111 32,938 249 19,861 0.46 459.64 46 230 3.83 1.5 0.49 0.27 0.42 0.22 9.00 2,699 22,560 33,805 252 22,307 0.51 459.72 47 235 3.92 1.6 0.52 0.27 0.44 0.25 10.33 3,100 25,407 34,813 256 25,151 0.58 459.81 48 240 4.00 1.6 0.52 0.27 0.44 0.25 10.33 3,100 28,251 35,821 259 27,992 0.64 459.90 49 245 4.08 1.7 0.55 0.27 0.47 0.28 11.67 3,501 31,493 36,954 263 31,230 0.72 460.00 50 250 4.17 1.8 0.59 0.27 0.50 0.32 13.01 3,903 35,133 38,069 267 34,865 0.80 460.09 51 255 4.25 1.9 0.62 0.27 0.53 0.35 14.35 4,304 39,170 39,306 271 38,898 0.89 460.18 52 260 4.33 2.0 0.65 0.27 0.55 0.38 15.69 4,706 43,604 40,664 276 43,327 0.99 460.28 53 265 4.42 2.1 0.69 0.27 0.58 0.42 17.02 5,107 48,434 42,145 281 48,153 1.11 460.39 54 270 4.50 2.1 0.69 0.27 0.58 0.42 17.02 5,107 53,260 43,623 286 52,974 1.22 460.50 55 1 275 4.58 2.2 272 0.27 0.61 0.45 18.36 5,508 58,482 45,223 292 58,190 1.34 460.62 56 280 4.67 2.3 0.75 0.27 0.64 0.48 19.70 5,910 64,100 46,945 298 63,802 1.46 460.75 57 285 4.75 2.4 0.78 0.27 0.67 0.51 21.04 6,311 70,113 48,787 304 69,808 1.60 460.89 58 290 4.83 2.4 0.78 0.27 0.67 0.51 21.04 6,311 76,119 50,617 311 75,809 1.74 461.02 59 295 4.92 2.5 0.82 0.27 0.69 0.55 22.38 6,713 82,521 52,537 317 82,204 1.89 461.13 60 300 5.00 2.6 0.85 0.27 0.72 0.58 23.71 7,114 89,318 54,575 324 88,993 2.04 461.25 61 305 5.08 3.1 1.01 0.27 0.86 0.74 30.40 9,121 98,114 57,213 334 97,781 2.24 461.40 62 310 5.17 3.6 1.18 0.27 1.00 0.90 37.09 11,128 108,909 60,449 345 108,564 2.49 461.58 63 315 5.25 3.9 1.27 0.27 1.08 1.00 41.11 12,332 120,896 64,044 357 120,539 2.77 461.78 64 320 5.33 4.2 1.37 0.27 1.17 1.10 45.12 13,536 134,075 67,979 371 133,704 3.07 462.01 65 325 5.42 4.7 1.53. 0.27 1.30 1.26 51.81 15,543 149,247 72,236 386 148,861 3.42 462.20 66 330 5.50 5.6 1.83 0.27 1.55 1.56 63.85 19,156 168,018 77,503 404 167,613 3.85 462.44 67 335 5.58 1.9 0.62 0.27 0.53 0.35 14.35 4,304 171,918 78,598 408 171,510 3.94 462.49 68 1 340 5.67 0.9 0.29 0.27 0.25 0.02 • 0.97 290 171,800 78,565 408 171,392 1 3.93 1 462.49 Plate E -2.2 6-Hour Storm Page 8 of 13 RCFC & WCD EFFECTIVE RAIN 1.29 in SYNTHETIC UNIT HYDROGRAPH METHOD 4.36 ac -ft PROJECT: GRIFFIN RANCH -TR 34642 REQUIRED STORAGE 3.94 ac -ft REQUIRED STORAGE SHORTCUT METHOD MAX WSEL 462.49 ft PEAK FLOW RATE 1' Job No.: 1721 53.66 cuft/min 6 -HOUR STORM BY: DLS DATE 8/20/13 UNIT HYDROGRAPH and EFFECTIVE RAIN CALCULATION FORM DRAINAGE AREA -ACRES 40.65 Basin Percolation Rate 0.5 in /hr UNIT TIME- MINUTES 5 LAG TIME - MINUTES 5.79 Maxwell Drywells UNIT TIME - PERCENT OF LAG 86.3 Number 3 TOTAL ADJUSTED STORM RAIN (in) 2.72 Drywell Percolation Rate 0.15 cfs 27.00 dm CONSTANT LOSS RATE (in /hr) 0.27 a, LOW LOSS RATE - PERCENT 85.00% Unit Time Time Pattern Storm Loss Rate Effective Flood Volume Basin Percolation Percolation Total In Basin Period Minutes Hours Percent Rain Rain Hydrograph In Volume Area Out Basin WSEL in /hr in /hr Flow (Plate E-5.9)1 Max Low in /hr cfs cu -ft cu -ft' sf cu -ft cu -ft ac -ft It 69 345 5.75 0.6 1 0.20 0.27 0.17 0.03 1.20 361 171,753 78,552 408. 171,345 3.93 462.49 70 350 5.83 0.5 0.16 0.27 0.14 0.02 1.00 301 171,647 78,522 408 171,239 3.93 462.48' 71 355 5.92 -0.3 0.10 0.27 0.08 0.01 0.60 181 171;420 78,458 407 171,012 3:93 462.48 72 360 6.00 0.2 0.07 0.27 0.06 0.01 0.40 120 171,133 78,377 1 407 1 170,725 3.92 462.48 EFFECTIVE RAIN & FLOOD VOLUMES SUMMARY EFFECTIVE RAIN 1.29 in FLOOD VOLUME 4.36 ac -ft FLOOD VOLUME 190,044 cu -ft REQUIRED STORAGE 3.94 ac -ft REQUIRED STORAGE 171,510 cu -It MAX WSEL 462.49 ft PEAK FLOW RATE 1' 63.85 cfs [AVERAGE PERCOLATION RATE 53.66 cuft/min Plate E -2.2 6-Hour Storm Page 9 of 13 RCFC & WCD NM92@d @ ®1y HMMM SYNTHETIC UNIT HYDROGRAPH METHOD SHORTCUT METHOD 24 -HOUR STORM UNIT HYDROGRAPH and EFFECTIVE RAIN CALCULATION FORM PROJECT: GRIFFIN RANCH -TR 34642 Job No.: 1721 BY: DLS DATE 820/13 DRAINAGE AREA -ACRES 40.65 UNIT TIME - MINUTES 15 LAG TIME - MINUTES 5.79 UNIT TIME - PERCENT OF LAG 259% TOTAL ADJUSTED STORM RAIN in 4.37 VARIABLE LOSS RATE (AVG) IN/HR Fm = Minimum value on loss curve ( in/hr) 0.14 C 0.00250 Low Loss Rate (percent) 85.00% Basin Percolation Rate 0.5 in/hr Maxwell Drywells Number 3 Drywell Percolation Rate 0.15 cfs 27.00 dm Unit Time Period Time Minutes Hours Pattern Percent (Plate E -5.9) Storm Rain in /hr Loss Rate in/hr Max Low Effective Rain in/hr Flood Hydrograph Flow cfs Volume In Cu-ft Basin Volume cu -ft Percolation Area sf Percolation Out cu -ft Total In Basin cu -ft ac -ft Basin WSEL ft 1 15 0.25 0.2 0.035 0.477 0.030 0.01 0.21 193 193 25,884 675 0 0.00 459.00 2 30 0.50 0.3 0.052 0.472 0.045 0.01 0.32 290 290 25,918 675 0 0.00 459.00 3 45 0.75 0.3 0.052 0.466 0.045 0.01 0.32 290 290 25,918 675 0 0.00 459.00 4 1 60 1.00 0.4 0.070 0.461 0.059 0.01 0.43 1 387 387 1 25,952 675 0 0.00 459.00 5 75 1.25 0.3 0.052 0.455 0.045 0.01 0.32 290 290 25,918 675 0 0.00 459.00 6 90 1.50 0.3 0.052 0.450 0.045 0.01 0.32 290 290 25,918 675 0 0.00 459.00 7 105 1.75 0.3 0.052 0.444 1 0.045 0.01 0.32 290 290 25,918 675 0 0.00 459.00 8 120 2.00 0.4 0.070 0.439 0.059 0.01 0.43 387 387 25,952 675 0 0.00 459.00 9 135 2.25 0.4 0.070 0.434 0.059 0.01 0.43 387 387 25,952 675 0 0.00 459.00 10 150 2.50 0.4 0.070 0.428 0.059 0.01 0.43 387 387 25,952 675 0 0.00 459.00 11 165 2.75 0.5 0.087 0.423 0.074 0.01 0.54 484 484 25,986 676 0 0.00 459.00 12 180 3.00 0.5 0.087 0.418 0.074 0.01 0.54 484 1 484 25,986 676 0 0.00 459.00 13 1 195 3.25 0.5 0.087 0.413 0.074 0.01 0.54 484 484 25,986 676 0 0.00 459.00 14 210 3.50 0.5 0.087 0.408 0.074 0.01 0.54 484 484 25,986 676 0 0.00 459.00 15 225 3.75 0.5 0.087 0.403 0.074 0.01 0.54 484 484 25,986 676 0 0.00 459.00 16 240 4.00 0.6 0.105 0.398 0.089 0.02 0.64 580 580 26,021 676 0 0.00 459.00 17 255 4.25 0.6 0.105 0.392 0.089 1 0.02 0.64 580 580 26,021 676 1 0 0.00 459.00 18 270 4.50 0.7 0.122 0.387 0.104 0.02 0.75 677 677 26,055 676 1 0.00 459.00 19 285 4.75 0.7 0.122 0.383 0.104 0.02 0.75 677 678 26,055 676 1 0.00 459.00 20 300 5.00 1 0.8 0.140 0.378 0.119 0.02 0.86 774 775 26,090 677 99 0.00 459.00 21 315 5.25 0.6 0.105 0.373 0.089 0.02 0.64 580 679 26,055 676 3 0.00 459.00 22 330 5.50 0.7 0.122 0.368 0.104 0.02 0.75 677 680 26,056 676 3 0.00 459.00 23 345 5.75 0.8 0.140 0.363 0.119 0.02 0.86 774 777 26,090 677 100 0.00 459.00 24 360 6.00 0.8 0.140 0.358 0.119 0.02 0.86 774 874 26,125 677 197 0.00 459.01 25 375 6.25 0.9 0.157 0.353 0.134 0.02 0.97 871 1,068 26,193 678 390 0.01 459.01 26 390 6.50 0.9 0.157 0.349 0.134 0.02 1 0.97 871 1,261 1 26,261 679 582 0.01 459.02 27 405 6.75 1.0 0.175 0.344 0.149 0.03 1.07 967 1,549 26,364 680 870 0.02 459.03 28 420 7.00 1.0 0.175 0.339 0.149 0.03 1.07 967 1,837 26,466 681 1,156 0.03 459.04 29 435 7.25 1.0 0.175 0.335 0.149 0.03 1.07 967 2,124 26,567 682 1,442 0.03 459.05 30 450 7.50 1.1 0.192 + 0.330 0.163 0.03 1.18 1,064 2,506 26,703 683 1,823 0.04 459.06 31 465 7.75 1.2 0.210 0.326 0.178 0.03 1.29 1,161 2,984 26,672 685 2,299 0.05 459.07 32 480 8.00 1.3 0.227 0.321 0.193 0.03 1.40 1,258 3,556 27,075 687 2,869 0.07 459.09 33 495 8.25 1.5 0.262 0.317 1 0.223 0.04 1.61 1,451 4,320 27,345 690 3,631 0.08 1 459.12 34 510 8.50 1.5 0.262 0.312 0.223 0.04 1.61 1,451 5,082 27,615 693 4,389 0.10 459.14 35 525 8.75 1.6 0.280 0.308 0.238 0.04 1.72 1,548 5,937 27,918 696 5,241 0.12 459.17 36 540 9.00 1.7 0.297 0.304 0.253 0.04 1.83 1,644 6,885 28,254 699 6,186 0.14 459.20 37 555 9.25 1.9 0.332 0.299 0.282 0.03 1.34 1,209 7,395 28,434 701 6,694 0.15 459.21 38 570 9.50 2.0 1 0.350 0.295 0.297 0.05 2.23 2,011 8,706 28,898 1 706 8,000 0.18 459.26 39 585 9.75 2.1 0.367 0.291 0.312 0.08 3.12 2,812 10,811 29,644 714 10,098 0.23 459.32 40 600 10.00 2.2 0.385 0.287 0.327 0.10 4.01 3,611 13,709 30,670 724 12,984 0.30 459.42 41 615 10.25 1.5 0.262 0.263 0.223 0.04 1.61 1,451 14,435 30,927 727 13,708 0.31 459.44 Plate E -2.2 24 -Hour Storm Page 10 of 13 • • • RCFC & WCD U"i MQ @d @ ®1y AMMO L SYNTHETIC UNIT HYDROGRAPH METHOD SHORTCUT METHOD 24 -HOUR STORM UNIT HYDROGRAPH and EFFECTIVE RAIN CALCULATION FORM PROJECT: GRIFFIN RANCH -TR 34642 Job No.: 1721 BY: DLS DATE 8/20/13 DRAINAGE AREA -ACRES 40.65 UNIT TIME - MINUTES 15 LAG TIME - MINUTES 5.79 UNIT TIME - PERCENT OF LAG 259% TOTAL ADJUSTED STORM RAIN in 4.37 VARIABLE LOSS RATE (AVG) IN /HR Fm = Minimum value on loss curve (in/hr) 0.14 C 0.00250 Low Loss Rate (percent) 85.00% Basin Percolation Rate 0.5 in/hr Maxwell Drywells Number 3 Drywell Percolation Rate 0.15 cfs 27.00 cfm Unit Time Period Time Minutes Hours Pattern Percent (Plate E -5.9 ) Storm Rain in /hr Loss Rate in/hr Max I Low Effective Rain in/hr Flood Hydrograph Flow cfs Volume In cu-ft Basin Volume cu -ft Percolation Area sf Percolation Out cu -ft Total In Basin cu -ft ac -ft Basin WSEL ft 42 630 10.50 1.5 0.262 0.278 0.223 0.04 1.61 1,451 15,159 31,184 730 14,429 0.33 459.46 43 645 10.75 2.0 0.350 0.274 0.297 0.08 3.08 2.775 17,204 31,908 737 16,467 0.38 459.53 44 660 11.00 2.0 0.350 0.270 0.297 0.08 3.25 2,923 19,389 32,682 745 18,644 0.43 459.60 45 675 11.25 1.9 0.332 0.266 0.282 0.07 2.69 2,425 21,069 33,277 752 20,317 0.47 459.65 46 690 11.50 1.9 0.332 0.262 0.282 0.07 2.86 2,570 22,887 33,921 758 22,128 0.51 459.71 47 705 11.75 1.7 0.297 0.259 0.253 0.04 1.58 1,423 23,551 34,156 761 22,791 0.52 459.73 48 720 12.00 1.8 0.315 0.255 1 0.267 0.06 2.46 2,210 25,001 34,669 766 24,235 0.56 459.78 49 735 12.25 2.5 0.437 0.251 0.371 0.19 7.63 6,865 31,099 36,829 789 30,311 0.70 459.97 50 750 12.50 2.6 0.454 0.247 0.386 0.21 8.50 7,648 37,959 38,935 811 37,148 0.85 460.14 51 765 12.75 2.8 0.489 0.243 0.416 0.25 10.08 9,075 46,223 41,467 837 45,386 1.04 460.33 52 780 13.00 2.9 0.507 0.240 0.431 0.27 10.95 9,855 55,241 44,231 866 54,376 1.25 460.54 53 795 13.25 3.4 0.594 0.236 0.505 0.36 14.68 13,214 67,589 48,014 905 66,684 1.53 460.82 54 810 13.50 3.4 0.594 0.233 0.505 0.36 14.83 13,346 80,030 51,790 944 79,085 1.82 461.08 55 825 13.75 2.3 0.402 0.229 0.342 0.17 7.09 6,382 85,467 53,420 961 84,506 1.94 461.17 56 840 14.00 2.3 0.402 1 0.226 0.342 0.18 7.23 6,511 91,016 55,084 979 1 90,038 2.07 461.26 57 855 14.25 2.7 0.472 0.222 0.401 0.25 10.24 9,217 99,255 57,554 1,005 98,250 2.26 461.40 58 870 14.50 2.6 0.454 0.219 0.386 0.24 9.66 • 8,697 106,947 59,861 1,029 105,919 2.43 461.54 59 885 14.75 2.6 0.454 0.215 0.386 0.24 9.80 8,821 114,740 62,198 1,053 113,687 2.61 461.67 60 900 15.00 2.5 0.437 0.212 0.371 0.22 9.22 8,297 121,984 64,370 1,076 120,909 2.78 461.79 61 915 15.25 2.4 0.420 0.209 0.357 0.21 8.64 7,772 128,681 66,378 1,096 127,584 2.93 461.90 62 930 15.50 2.3 0.402 0.206 0.342 0.20 8.05 7,245 134,830 68,190 1,115 133,714 3.07 462.01 63 945 15.75 1.9 0.332 0.203 1 0.282 0.13 5.31 4,782 138,496 69,219 1 1,126 137,370 3.15 462.05 64 960 16.00 1.9 0.332 0.199 0.282 0.13 5.44 4,896 142,266 70,277 1,137 141,129 1 3.24 462.10 65 975 16.25 0.4 0.070 0.196 0.059 0.01 0.43 387 141,516 70,067 1,135 140,381 3.22 462.09 66 990 16.50 0.4 0.070 0.193 0.059 0.01 0.43 387 140,768 69,857 1,133 139,635 3.21 462.08 67 1005 16.75 0.3 0.052 0.190 0.045 0.01 0.32 290 139,925 69,620 1,130 138,795 3.19 462.07 68, 1020 17.00 0.3 0.052 0.188 0.045 0.01 0.32 290 139,085 69,385 1,128 137,957 3.17 462.06 69 1 1035 17.25 0.5 0.087 0.185 0.074 0.01 0.54 484 138,441 69,204 1,126 137,315 3.15 462.05 70 1050 17.50 1 0.5 0.087 0.182 0.074 0.01 0.54 484 137,799 69,024 1,124 136,675 3.14 462.04 71 1065 17.75 0.5 0.087 0.179 0.074 0.01 0.54 484 137,159 68,844 1,122 136,036 3.12 462.04 72 1080 18.00 0.4 0.070 0.177 0.059 0.01 0.43 367 136,423 68,638 1,120 135,303 3.11 462.03 73 1095 18.25 0.4 0.070 0.174 0.059 0.01 0.43 387 135,690 68,432 1,118 134,573 3.09 462.02 74 1110 18.50 0.4 0.070 0.171 0.059 0.01 0.43 387 134,959 68,227 1,116 133,844 3.07 462.01 75 1125 18.75 0.3 0.052 0.169 0.045 0.01 0.32 290 134,134 67,995 1,113 133,021 3.05 462.00 76 1140 19.00 0.2 0.035 0.167 0.030 0.01 0.21 193 133,214 67,737 1,111 132,104 3.03 461.98 77 1155 19.25 0.3 0.052 0.164 0.045 0.01 0.32 290 132,394 67,491 1,108 131,286 3.01 461.97 78 1170 19.50 0.4 0.070 0.162 0.059 0.01 0.43 387 131,673 67,275 1,106 130,567 3.00 461.96 79 1185 19.75 0.3 0.052 0.160 0.045 0.01 0.32 290 130,857 67,031 1,103 129,754 2.98 461.94 80 1200 20.00 0.2 0.035 0.158 0.030 0.01 0.21 193 129,947 66,758 1,100 128,847 2.96 461.93 81 1215 20.25 0.3 0.052 0.156 0.045 0.01 0.32 290 129.137 66,515 1,098 128,039 2.94 461.91 82 1230 20.50 0.3 0.052 0.153 0.045 0.01 0.32 290 128,330 66,273 1,095 127,234 2.92 1 461.90 Plate E -2.2 24 -Hour Storm Page 11 of 13 RCFC & WCD �`i'i MR@L @ ®V M J(�. U L SYNTHETIC UNIT HYDROGRAPH METHOD SHORTCUT METHOD 24 -HOUR STORM UNIT HYDROGRAPH and EFFECTIVE RAIN CALCULATION FORM PROJECT: GRIFFIN RANCH -TR 34642 Job No.: 1721 BY: DLS DATE 8/20113 DRAINAGE AREA -ACRES 40.65 UNIT TIME - MINUTES 15 LAG TIME - MINUTES 5.79 UNIT TIME - PERCENT OF LAG 259% TOTAL ADJUSTED STORM RAIN in 4.37 VARIABLE LOSS RATE (AVG) IN /HR Fm = Minimum value on loss curve (in/hr) 0.14 C 0.00250 Low Loss Rate (percent) 85.00% Basin Percolation Rate 0.5 in/hr Maxwell Drywells Number 3 Drywall Percolation Rate 0.15 cfs 27.00 dm Unit Time Period Time Minutes Hours Pattern Percent (Plate E -5.9) Storm Rain in /hr Loss Rate in/hr Max Low Effective Rain in/hr Flood Hydrograph Flow ds Volume In cu-ft Basin Volume cu -ft Percolation Area sf Percolation Out cu -ft Total In Basin cu -ft ac -ft Basin WSEL ft 83 1245 20.75 0.3 0.052 0.152 0.045 0.01 0.32 290 127,524 66,031 1,093 126,432 2.90 461.88 84 1260 21.00 0.2 0.035 0.150 0.030 0.01 0.21 193 126,625 65,762 1,090 125,535 2.88 461.87 85 1275 21.25 0.3 0.052 0.148 0.045 0.01 0.32 290 125,825 65,522 1,088 124,738 2.86 461.86 86 1 1290 21.50 1 0.2 0.035 0.146 0.030 0.01 0.21 1 193 124,931 65,254 1,085 123,846 2.84 461.84 87 1305 21.75 0.3 0.052 0.145 0.045 0.01 0.32 290 124,137 65,015 1,082 123,054 2.82 461.83 88 1320 22.00 0.2 0.035 0.143 0.030 0.01 0.21 193 123,248 64,749 1,079 122,168 2.80 461.81 89 1335 22.25 0.3 0.052 0.142 0.045 031 0.32 290 122,459 64,512 1,077 1 121,382 2.79 461.80 90 1350 22.50 0.2 0.035 0.140 1 0.030 0.01 0.21 193 121,575 64,247 1,074 120,501 2.77 461.78 91 1365 22.75 0.2 0.035 0.139 0.030 0.01 0.21 193 120,694 63,983 1,071 119,623 2.75 461.77 92 1380 23.00 0.2 0.035 0.138 0.030 0.01 0.21 193 119,816 63,720 1,069 118,748 2.73 461.75 93 1395 23.25 0.2 0.035 0.137 0.030 0.01 0.21 193 1 118,941 63,457 1,066 117,875 2.71 461.74 94 1410 23.50 0.2 0.035 0.136 0.030 0.01 0.21 193 118,068 63,196 1,063 117,005 2.69 461.72 95 1425 23.75 0.2 0.035 0.136 0.030 0.01 0.21 193 117 199 62 935 1 061 116,138 2.67 461.71 96 1440 24.00 0.2 0.035 0.135 0.030 0.01 0.21 193 116,332 1 62,675 1,058 115,274 2.65 461.69 EFFECTIVE RAIN & FLOOD VOLUMES SUMMARY EFFECTIVE RAIN 1.32 in FLOOD VOLUME 4.47 ac-ft FLOOD VOLUME 194,704 cu -ft REQUIRED STORAGE 3.24 ao-ft REQUIRED STORAGE 141,129 cu -ft MAX WSEL 462.10 ft PEAK FLOW RATE 14.83 ds VERAGE PERCOLATION RATE 58.43 cuft/min Plate E -2.2 24 -Hour Storm Page 12 of 13 • BASIN VOLUME WORKSHEET PROECT GRIFFIN RANCH - TR 34642 JOB No. 1721 BASIN DESIGNATION: BASIN BASIN CHARACTERISTICS CONTOUR ELEVATION DEPTH INCR TOTAL (ft) (ft) AREA INCR TOTAL (so (sf) VOLUME INCR TOTAL (cuft) (cult) (acre -ft) 459 0 0 25,815 0 0 0.00 460 1 1 11,040 36,855 31,172 31,172 0.72 461 1 2 13,275 50,130 43,323 74,494. 1.71 462 1 3 17,605 67,735 58,712 133,206 3.06 463 1 4 22,025 89,760 78,490 211,696 4.86 464 1 5 16,090 105,850 97,695 309,391 7.10 465 1 6 18,080 123,930 114,771 424,162 9.74 WHERE: v= 3 (El — E2)(A, +Az+ A,A2) • • Basin Volume Worksheet Page 13 of 13 Griffin Ranch — Tract 34642 Hydrology & Hydraulics Report • Appendix H RCFCD Rational Method Worksheets 0 • Riverside County Rational Hydrology Program CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2005 Version 7.1 Rational Hydrology Study Date: 04/03/13 File:1721TR34642YR100.out GRIFFIN RANCH - TRACT 34642 MSA JOB NUMBER 1721 100 YEAR STORM EVENT * * * * * * * ** Hydrology Study Control Information********** English (in -lb) Units used in input data file Program License Serial Number 6041 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.343(ln.) 100 year, 1 hour precipitation = 1.350(In.) Storm event year = 100.0 Calculated rainfall intensity data: • 1 hour intensity = 1.350(In /Hr) Slope of intensity duration curve = 0.5200 Process from Point /Station 100.000 to Point /Station 110.000 ****INITIAL AREA EVALUATION * * ** DA -A.01 Initial area flow distance = 1000.000(Ft.) Top (of initial area) elevation = 480.100(Ft.) Bottom (of initial area) elevation = 470.800(Ft.) Difference in elevation = 9.300(Ft.) Slope = 0.00930 s(percent)= 0.93 TC = k(0.379) *[(length ^3) /(elevation change )] ^0.2 Initial area time of concentration = 15.322 min. Rainfall intensity = 2.745(ln /Hr) fora 100.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.796 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.420; Impervious fraction = 0.580 Initial subarea runoff = 11.249(CFS) Total initial stream area = 5.150(Ac.) Pervious area fraction = 0.420 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 110.000 to Point /Station 130.000 ****STREET FLOW TRAVEL TIME+ SUBAREA FLOW ADDITION * * ** DA -A.02 Top of street segment elevation = 470.800(Ft.) End of street segment elevation = 466.000(Ft.) Length of street segment = 965.000(Ft.) Height of curb above gutter flowline = 6.0(ln.) Width of half street (curb to crown) = 20.500(Ft.) Distance from crown to crossfall grade break = 17.500(Ft.) Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 3.000(Ft.) Gutter hike from flowline = 1.500(ln.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 18.023(CFS) Depth of flow = 0.452(Ft.), Average velocity = 2.342(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 19.365(Ft.) Flow velocity = 2.34(Ft /s) Travel time = 6.87 min. TC = 22.19 min. Adding area flow to street USER INPUT of soil data for subarea Runoff Coefficient= 0.783 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.410; Impervious fraction = 0.590 Rainfall intensity = 2.265(In /Hr) for a 100.0 year storm Subarea runoff = 13.445(CFS) for 7.580(Ac.) Total runoff = 24.694(CFS) Total area = 12.730(Ac.) Street flow at end of street = 24.694(CFS) Half street flow at end of street = 12.347(CFS) Depth of flow = 0.497(Ft.), Average velocity = 2.596(Ft/s) Note: depth of flow exceeds top of street crown. Flow width (from curb towards crown)= 20.500(Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 110.000 to Point /Station 130.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 12.730(Ac.) Runoff from this stream = 24.694(CFS) Time of concentration = 22.19 min. Rainfall intensity = 2.265(ln /Hr) Program is now starting with Main Stream No. 2 Process from Point /Station 120.000 to Point /Station 130.000 ****INITIAL AREA EVALUATION * * ** DA -A.03 Initial area flow distance= 550.000(Ft.) Top (of initial area) elevation = 470.400(Ft.) Bottom (of initial area) elevation = 466.000(Ft.) Difference in elevation = 4.400(Ft.) Slope = 0.00800 s(percent)= 0.80 TC = k(0.374) *[(length A3) /(elevation change)]A0.2 Initial area time of concentration = 12.257 min. Rainfall intensity = 3.083(ln /Hr) fora 100.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.813 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.380; Impervious fraction = 0.620 Initial subarea runoff = 7.272(CFS) Total initial stream area = 2.900(Ac.) Pervious area fraction = 0.380 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 120.000 to Point /Station 130.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** 40 The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 2.900(Ac.) Runoff from this stream = 7.272(CFS) Time of concentration = 12.26 min. Rainfall intensity = 3.083(ln /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 24.694 22.19 2.265 2 7.272 12.26 3.083 Largest stream flow has longer time of concentration Qp = 24.694 + sum of Qb la /lb 7.272 * 0.734 = 5.341 Qp = 30.035 Total of 2 main streams to confluence: Flow rates before confluence point: 24.694 7.272 Area of streams before confluence: 12.730 2.900 Results of confluence: Total flow rate = 30.035(CFS) Time of concentration = 22.189 min. • Effective stream area after confluence = 15.630(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 200.000 to Point /Station 220.000 ****INITIAL AREA EVALUATION * * ** DA -B.01 Initial area flow distance= 245.000(Ft.) Top (of initial area) elevation = 468.900(Ft.) Bottom (of initial area) elevation = 466.200(Ft.) Difference in elevation = 2.700(Ft.) Slope = 0.01102 s(percent)= 1.10 TC = k(0.378) * [(length A3) /(elevation change )] ^0.2 Initial area time of concentration = 8.409 min. Rainfall intensity = 3.751(In /Hr) fora 100.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.819 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.410; Impervious fraction = 0.590 Initial subarea runoff = 2.797(CFS) Total initial stream area = 0.910(Ac.) Pervious area fraction = 0.410 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 200.000 to Point /Station 220.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 0.910(Ac.) Runoff from this stream = 2.797(CFS) Time of concentration = 8.41 min. Rainfall intensity = 3.751(In /Hr) Program is now starting with Main Stream No. 2 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 210.000 to Point /Station 220.000 ****INITIAL AREA EVALUATION * * ** DA -B.02 Initial area flow distance= 450.000(Ft.) Top (of initial area) elevation= 469.100(Ft.) Bottom (of initial area) elevation = 466.200(Ft.) Difference in elevation = 2.900(Ft.) Slope = 0.00644 s(percent)= 0.64 TC = k(0.377) *[(length A3) /(elevation change &0.2 Initial area time of concentration= 11.896 min. Rainfall intensity = 3.132(In /Hr) for a 100.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.810 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.400; Impervious fraction = 0.600 Initial subarea runoff = 5.300(CFS) • Total initial stream area = 2.090(Ac.) Pervious area fraction = 0.400 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 210.000 to Point /Station 220.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 2.090(Ac.) Runoff from this stream = 5.300(CFS) Time of concentration = 11.90 min. Rainfall intensity = 3.132(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 2.797 8.41 3.751 2 5.300 11.90 3.132 Largest stream flow has longer time of concentration Qp = 5.300 + sum of Qb la /lb 2.797 * 0.835 = 2.335 Qp = 7.635 Total of 2 main streams to confluence: Flow rates before confluence point: 2.797 5.300 • Area of streams before confluence: 0.910 2.090 Results of confluence: Total flow rate = 7.635(CFS) Time of concentration = 11.896 min. Effective stream area after confluence = 3.000(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 300.000 to Point /Station 330.000 ****INITIAL AREA EVALUATION * * ** DA -C.01 Initial area flow distance = 1000.000(Ft.) Top (of initial area) elevation = 474.400(Ft.) Bottom (of initial area) elevation = 466.100(Ft.) Difference in elevation = 8.300(Ft.) Slope = 0.00830 s(percent)= 0.83 TC = k(0.379) *((IengthA3) /(elevation change)]A0.2 Initial area time of concentration = 15.675 min. Rainfall intensity = 2.713(ln /Hr) fora 100.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.795 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.420; Impervious fraction = 0.580 Initial subarea runoff = 12.462(CFS) • Total initial stream area = 5.780(Ac.) Pervious area fraction = 0.420 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 300.000 to Point /Station 330.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 5.780(Ac.) Runoff from this stream = 12.462(CFS) Time of concentration = 15.67 min. Rainfall intensity = 2.713(ln /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 310.000 to Point /Station 330.000 ****INITIAL AREA EVALUATION * * ** DA -C.02 Initial area flow distance= 780.000(Ft.) Top (of initial area) elevation = 472.300(Ft.) Bottom (of initial area) elevation = 466.100(Ft.) Difference in elevation = 6.200(Ft.) Slope = 0.00795 s(percent)= 0.79 TC = k(0.379) *[(IengthA3) /(elevation change)]A0.2 Initial area time of concentration = 14.315 min. Rainfall intensity = 2.844(ln /Hr) fora 100.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.798 Decimal fraction soil group A = 0.000 Decimal fraction soil group B =1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.420; Impervious fraction = 0.580 Initial subarea runoff = 9.240(CFS) Total initial stream area = 4.070(Ac.) Pervious area fraction = 0.420 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 310.000 to Point /Station 330.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 4.070(Ac.) Runoff from this stream = 9.240(CFS) Time of concentration = 14.32 min. Rainfall intensity = 2.844(ln /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 12.462 15.67 2.713 2 9.240 14.32 2.844 Largest stream flow has longer time of concentration Qp = 12.462 + sum of Qb la /lb 9.240 * 0.954 = 8.814 Qp = 21.277 Total of 2 streams to confluence: • Flow rates before confluence point: 12.462 9.240 Area of streams before confluence: 5.780 4.070 Results of confluence: Total flow rate = 21.277(CFS) Time of concentration = 15.675 min. Effective stream area after confluence = 9.850(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 330.000 to Point /Station 330.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 9.850(Ac.) Runoff from this stream = 21.277(CFS) Time of concentration = 15.67 min. Rainfall intensity = 2.713(In /Hr) Program is now starting with Main Stream No. 2 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 320.000 to Point /Station 330.000 ****INITIAL AREA EVALUATION * * ** DA -C.03 Initial area flow distance = 330.000(Ft.) Top (of initial area) elevation = 469.100(Ft.) Bottom (of initial area) elevation = 466.100(Ft.) Difference in elevation = 3.000(Ft.) • Slope = 0.00909 s(percent)= 0.91 TC = k(0.379) *[(length ^3) /(elevation change )) ^0.2 Initial area time of concentration = 9.879 min. Rainfall intensity = 3.449(ln /Hr) fora 100.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.812 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.420; Impervious fraction = 0.580 Initial subarea runoff = 4.089(CFS) Total initial stream area = 1.460(Ac.) Pervious area fraction = 0.420 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 320.000 to Point /Station 330.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.460(Ac.) Runoff from this stream = 4.089(CFS) Time of concentration = 9.88 min. Rainfall intensity = 3.449(In /Hr) Summary of stream data: • Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 21.277 15.67 2.713 2 4.089 9.88 3.449 Largest stream flow has longer time of concentration Qp = 21.277 + sum of Qb la /lb 4.089 * 0.787 = 3.216 Qp = 24.493 Total of 2 main streams to confluence: Flow rates before confluence point: 21.277 4.089 Area of streams before confluence: 9.850 1.460 Results of confluence: Total flow rate = 24.493(CFS) Time of concentration = 15.675 min. Effective stream area after confluence = 11.310(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 400.000 to Point /Station 410.000 ****INITIAL AREA EVALUATION * * ** DA -D.01 Initial area flow distance= 840.000(Ft.) Top (of initial area) elevation = 478.000(Ft.) Bottom (of initial area) elevation= 472.900(Ft.) Difference in elevation = 5.100(Ft.) Slope = 0.00607 s(percent)= 0.61 TC = k(0.378) * [(length A3) /(elevation change)]A0.2 Initial area time of concentration= 15.508 min. Rainfall intensity = 2.728(In /Hr) fora 100.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.798 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.410; Impervious fraction = 0.590 Initial subarea runoff = 3.264(CFS) Total initial stream area = 1.500(Ac.) Pervious area fraction = 0.410 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 410.000 to Point /Station 420.000 ****STREET FLOW TRAVEL TIME +SUBAREA FLOW ADDITION * * ** DA -D.02 Top of street segment elevation = 472.900(Ft.) End of street segment elevation = 470.500(Ft.) Length of street segment = 390.000(Ft.) Height of curb above gutter flowline = 8.0(ln.) Width of half street (curb to crown) = 48.000(Ft.) Distance from crown to crossfall grade break = 46.000(Ft.) Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 • Street flow is on [1] side(s) of the street Distance from curb to property line = 20.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(ln.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.135(CFS) Depth of flow = 0.398(Ft.), Average velocity = 2.103(Ft /s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 13.563(Ft.) Flow velocity = 2.10(Ft /s) Travel time = 3.09 min. TC = 18.60 min. Adding area flow to street USER INPUT of soil data for subarea Runoff Coefficient = 0.793 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.400; Impervious fraction = 0.600 Rainfall intensity = 2.482(In /Hr) fora 100.0 year storm Subarea runoff = 1.654(CFS)for 0.840(Ac.) Total runoff = 4.918(CFS) Total area = 2.340(Ac.) Street flow at end of street = 4.918(CFS) Half street flow at end of street = 4.918(CFS) • Depth of flow = 0.418(Ft.), Average velocity = 2.192(Ft /s) Flow width (from curb towards crown)= 14.550(Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 500.000 to Point /Station 510.000 ****INITIAL AREA EVALUATION * * ** DA -E.01 Initial area flow distance= 600.000(Ft.) Top (of initial area) elevation = 470.500(Ft.) Bottom (of initial area) elevation = 468.000(Ft.) Difference in elevation = 2.500(Ft.) Slope = 0.00417 s(percent)= 0.42 TC = k(0.386) *[(length 113) /(elevation change )] ^0.2 Initial area time of concentration= 14.924 min. Rainfall intensity = 2.783(ln /Hr) for a 100.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.784 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.470; Impervious fraction = 0.530 Initial subarea runoff = 2.947(CFS) Total initial stream area = 1.350(Ac.) Pervious area fraction = 0.470 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 600.000 to Point /Station 610.000 ****INITIAL AREA EVALUATION**** DA -F.01 Initial area flow distance= 630.000(Ft.) Top (of initial area) elevation = 468.000(Ft.) Bottom (of initial area) elevation = 465.600(Ft.) Difference in elevation = 2.400(Ft.) Slope = 0.00381 s(percent)= 0.38 TC = k(0.375) * [(length A3) /(elevation change)]A0.2 Initial area time of concentration = 15.065 min. Rainfall intensity = 2.770(ln /Hr) fora 100.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.804 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.390; Impervious fraction = 0.610 Initial subarea runoff = 3.650(CFS) Total initial stream area = 1.640(Ac.) Pervious area fraction = 0.390 End of computations, total study area = 35.27 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.413 Area averaged RI index number = 56.0 • is Riverside County Rational Hydrology Program CIVILCADD /CIVILDESIGN Engineering Software,(c) 1989 - 2005 Version 7.1 Rational Hydrology Study Date: 04/03/13 File: 1721TR34642YR10.out GRIFFIN RANCH - TRACT 34642 MSA JOB NUMBER 1721 10 YEAR STORM EVENT * * * * * * * ** Hydrology Study Control Information********** English (in -lb) Units used in input data file Program License Serial Number 6041 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.343(ln.) 100 year, 1 hour precipitation = 1.350(ln.) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.757(In /Hr) Slope of intensity duration curve = 0.5200 ++++++++++++++++++++++±++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station .100.000 to Point /Station 110.000 ""INITIAL AREA EVALUATION * * ** DA -A.01 Initial area flow distance = 1000.000(Ft.) Top (of initial area) elevation = 480.100(Ft.) Bottom (of initial area) elevation = 470.800(Ft.) Difference in elevation = 9.300(Ft.) Slope = 0.00930 s(percent)= 0.93 TC = k(0.379) * [(length A3) /(elevation change )]A0.2 Initial area time of concentration= 15.322 min. Rainfall intensity = 1.540(In /Hr) for a 10.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.747 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.420; Impervious fraction = 0.580 Initial subarea runoff = 5.924(CFS) Total initial stream area = 5.150(Ac.) Pervious area fraction = 0.420 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 110.000 to Point /Station 130.000 ****STREET FLOW TRAVEL TIME +SUBAREA FLOW ADDITION * * ** DA -A.02 Top of street segment elevation = 470.800(Ft.) End of street segment elevation = 466.000(Ft.) Length of street segment = 965.000(Ft.) Height of curb above gutter flowline = 6.0(ln.) Width of half street (curb to crown) = 20.500(Ft.) Distance from crown to crossfall grade break = 17.500(Ft.) Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutterwidth= 3.000(Ft.) Gutter hike from flowline = 1.500(ln.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 9.410(CFS) Depth of flow = 0.365(Ft.), Average velocity= 1.998(Ft /s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 15.024(Ft.) Flow velocity = 2.00(Ft /s) Travel time = 8.05 min. TC = 23.37 min. Adding area flow to street USER INPUT of soil data for subarea Runoff Coefficient = 0.731 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.410; Impervious fraction = 0.590 Rainfall intensity = 1.236(In /Hr) fora 10.0 year storm Subarea runoff = 6.849(CFS) for 7.580(Ac.) Total runoff = 12.773(CFS) Total area = 12.730(Ac.) Street flow at end of street = 12.773(CFS) Half street flow at end of street = 6.387(CFS) Depth of flow = 0.404(Ft.), Average velocity= 2.153(Ft /s) Flow width (from curb towards crown)= 16.939(Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 110.000 to Point /Station 130.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 12.730(Ac.) Runoff from this stream = 12.773(CFS) Time of concentration = 23.37 min. Rainfall intensity = 1.236(In /Hr) Program is now starting with Main Stream No. 2 Process from Point /Station 120.000 to Point /Station 130.000 ****INITIAL AREA EVALUATION * * ** DA -A.03 Initial area flow distance = 550.000(Ft.) Top (of initial area) elevation = 470.400(Ft.) Bottom (of initial area) elevation = 466.000(Ft.) Difference in elevation = 4.400(Ft.) Slope = 0.00800 s(percent)= 0.80 TC = k(0.374) * [(length A3) /(elevation change )]A0.2 Initial area time of concentration= 12.257 min. Rainfall intensity = 1.730(ln /Hr) fora 10.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.771 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.380; Impervious fraction = 0.620 Initial subarea runoff = 3.867(CFS) Total initial stream area = 2.900(Ac.) Pervious area fraction = 0.380 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 120.000 to Point /Station 130.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** • The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 2.900(Ac.) Runoff from "this stream = 3.867(CFS) Time of concentration = 12.26 min. Rainfall intensity = 1.730(In /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 12.773 23.37 1.236 2 3.867 12.26 1.730 Largest stream flow has longer time of concentration Qp = 12.773 + sum of C!b la /lb 3.867 * 0.715 = 2.765 Qp = 15.538 Total of 2 main streams to confluence: Flow rates before confluence point: 12.773 3.867 Area of streams before confluence: 12.730 2.900 Results of confluence: Total flow rate = 15.538(CFS) Time of concentration = 23.371 min. • Effective stream area after confluence = 15.630(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 200.000 to Point /Station 220.000 ****INITIAL AREA EVALUATION * * ** DA -B.01 Initial area flow distance= 245.000(Ft.) Top (of initial area) elevation = 468.900(Ft.) Bottom (of initial area) elevation = 466.200(Ft.) Difference in elevation = 2.700(Ft.) Slope = 0.01102 s(percent)= 1.10 TC = k(0.378) * [(length A3) /(elevation change ))A0.2 Initial area time of concentration = 8.409 min. Rainfall intensity = 2.104(In /Hr) for a 10.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.777 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.410; Impervious fraction = 0.590 Initial subarea runoff = 1.488(CFS) Total initial stream area = 0.910(Ac.) Pervious area fraction = 0.410 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 200.000 to Point /Station 220.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 0.910(Ac.) Runoff from this stream = 1.488(CFS) Time of concentration = 8.41 min. Rainfall intensity = 2.104(ln /Hr) Program is now starting with Main Stream No. 2 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 210.000 to Point /Station 220.000 ****INITIAL AREA EVALUATION * * ** DA -B.02 Initial area flow distance = 450.000(Ft.) Top (of initial area) elevation= 469.100(Ft.) Bottom (of initial area) elevation = 466.200(Ft.) Difference in elevation = 2.900(Ft.) Slope = 0.00644 s(percent)= 0.64 TC = k(0.377) * [(length A3) /(elevation change)]A0.2 Initial area time of concentration= 11.896 min. Rainfall intensity = 1.757(In /Hr) for a 10.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.766 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.400; Impervious fraction = 0.600 Initial subarea runoff = 2.811(CFS) Total initial stream area = 2.090(Ac.) Pervious area fraction = 0.400 Process from Point /Station 210.000 to Point /Station 220.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 2.090(Ac.) Runoff from this stream = 2.811(CFS) Time of concentration = 11.90 min. Rainfall intensity = 1.757(ln /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1.488 8.41 2.104 2 2.811 11.90 1.757 Largest stream flow has longer time of concentration Qp= 2.811 +sum of Qb la /lb 1.488 * 0.835 = 1.243 Qp = 4.053 Total of 2 main streams to confluence: Flow rates before confluence point: 1.488 2.811 Area of streams before confluence: 0.910 2.090 • Results of confluence: Total flow rate = 4.OS3(CFS) Time of concentration = 11.896 min. Effective stream area after confluence = 3.000(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 300.000 to Point /Station 330.000 ****INITIAL AREA EVALUATION**** DA -C.01 Initial area flow distance = 1000.000(Ft.) Top (of initial area) elevation = 474.400(Ft.) Bottom (of initial area) elevation = 466.100(Ft.) Difference in elevation = 8.300(Ft.) Slope = 0.00830 s(percent)= 0.83 TC = k(0.379) *[(length ^3) /(elevation change) ] ^0.2 Initial area time of concentration= 15.675 min. Rainfall intensity = 1.522(ln /Hr) for a 10.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.746 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.420; Impervious fraction = 0.580 Initial subarea runoff = 6.561(CFS) Total initial stream area = 5.780(Ac.) Pervious area fraction = 0.420 • +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 300.000 to Point /Station 330.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 5.780(Ac.) Runoff from this stream = 6.561(CFS) Time of concentration = 15.67 min. Rainfall intensity = 1.522(ln /Hr) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 310.000 to Point /Station 330.000 ****INITIAL AREA EVALUATION * * ** DA -C.02 Initial area flow distance= 780.000(Ft.) Top (of initial area) elevation = 472.300(Ft.) Bottom (of initial area) elevation = 466.100(Ft.) Difference in elevation = 6.200(Ft.) Slope = 0.00795 s(percent)= 0.79 TC = k(0.379) *[(IengthA3) /(elevation change)]A0.2 Initial area time of concentration = 14.315 min. Rainfall intensity = 1.595(ln /Hr) fora 10.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.750 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.420; Impervious fraction = 0.580 Initial subarea runoff = 4.871(CFS) Total initial stream area = 4.070(Ac.) Pervious area fraction = 0.420 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 310.000 to Point /Station 330.000 * * ** CONFLUENCE OF MINOR STREAMS * * ** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 4.070(Ac.) Runoff from this stream = 4.871(CFS) Time of concentration = 14.32 min. Rainfall intensity = 1.595(ln /Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 6.561 15.67 1.522 2 4.871 14.32 1.595 Largest stream flow has longer time of concentration Qp = 6.561 + sum of Qb la /lb 4.871 * 0.954 = 4.647 Qp = 11.208 • Total of 2 streams to confluence: Flow rates before confluence point: 6.561 4.871 Area of streams before confluence: 5.780 4.070 Results of confluence: Total flow rate = 11.208(CFS) Time of concentration = 15.675 min. Effective stream area after confluence = 9.850(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 330.000 to Point /Station 330.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 9.850(Ac.) Runoff from this stream = 11.208(CFS) Time of concentration = 15.67 min. Rainfall intensity = 1.522(ln /Hr) Program is now starting with Main Stream No. 2 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 320.000 to Point /Station 330.000 ****INITIAL AREA EVALUATION * * ** DA -C.03 Initial area flow distance= 330.000(Ft.) Top (of initial area) elevation = 469.100(Ft.) • Bottom (of initial area) elevation = 466.100(Ft.) Difference in elevation = 3.000(Ft.) Slope = 0.00909 s(percent)= 0.91 TC = k(0.379) * [(length A3) /(elevation change )]A0.2 Initial area time of concentration = 9.879 min. Rainfall intensity = 1.935(ln /Hr) fora 10.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.767 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.420; Impervious fraction = 0.580 Initial subarea runoff = 2.167(CFS) Total initial stream area = 1.460(Ac.) Pervious area fraction = 0.420 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + +t + + + + + + + + + + ++ Process from Point /Station 320.000 to Point /Station 330.000 * * ** CONFLUENCE OF MAIN STREAMS * * ** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.460(Ac.) Runoff from this stream = 2.167(CFS) Time of concentration = 9.88 min. Rainfall intensity = 1.935(ln /Hr) Summary of stream data: C, Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In /Hr) 1 11.208 15.67 1.522 2 2.167 9.88 1.935 Largest stream flow has longer time of concentration Ctp = 11.208 + sum of Qb la /lb 2.167 * 0.787 = 1.705 Qp = 12.913 Total of 2 main streams to confluence: Flow rates before confluence point: 11.208 2.167 Area of streams before confluence: 9.850 1.460 Results of confluence: Total flow rate = 12.913(CFS) Time of concentration = 15.675 min. Effective stream area after confluence = 11.330(Ac.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 400.000 to Point /Station 410.000 ****INITIAL AREA EVALUATION * * ** DA -D.01 Initial area flow distance= 840.000(Ft.) Top (of initial area) elevation = 478.000(Ft.) Bottom (of initial area) elevation = 472.900(Ft.) Difference in elevation = 5.100(Ft.) Slope = 0.00607 s(percent)= 0.61 TC = k(0.378) *[(length ^3) /(elevation change )] ^0.2 Initial area time of concentration = 15.508 min. Rainfall intensity = 1.530(ln /Hr) for a 10.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.750 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.410; Impervious fraction = 0.590 Initial subarea runoff = 1.722(CFS) Total initial stream area = 1.500(Ac.) Pervious area fraction = 0.410 +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 410.000 to Point /Station 420.000 ****STREET FLOW TRAVEL TIME +SUBAREA FLOW ADDITION * * ** DA -D.02 Top of street segment elevation = 472.900(Ft.) End of street segment elevation = 470.500(Ft.) Length of street segment = 390.000(Ft.) Height of curb above gutter flowline = 8.0(ln.) Width of half street (curb to crown) = 48.000(Ft.) Distance from crown to crossfall grade break = 46.000(Ft.) Slope from gutter to grade break (v /hz) = 0.020 Slope from grade break to crown (v /hz) = 0.020 • Street flow is on [1] side(s) of the street Distance from curb to property line = 20.000(Ft.) Slope from curb to property line (v /hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(ln.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.178(CFS) Depth of flow = 0.334(Ft.), Average velocity= 1.809(Ft /s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 10.379(Ft.) Flow velocity = 1.81(Ft /s) Travel time = 3.59 min. TC = 19.10 min. Adding area flow to street USER INPUT of soil data for subarea Runoff Coefficient = 0.744 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.400; Impervious fraction = 0.600 Rainfall intensity = 1.373(ln /Hr) fora 10.0 year storm Subarea runoff = 0.858(CFS)for 0.840(Ac.) Total runoff = 2.580(CFS) Total area = 2.340(Ac.) Street flow at end of street = 2.580(CFS) Half street flow at end of street = 2.580(CFS) Depth of flow = 0.350(Ft.), Average velocity = 1.881(Ft /s) Flow width (from curb towards crown)= 11.158(Ft.) +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 500.000 to Point /Station 510.000 ****INITIAL AREA EVALUATION * * ** DA -E.01 Initial area flow distance= 600.000(Ft.) Top (of initial area) elevation = 470.500(Ft.) Bottom (of initial area) elevation = 468.000(Ft.) Difference in elevation = 2.500(Ft.) Slope = 0.00417 s(percent)= 0.42 TC = k(0.386) * [(length A3) /(elevation change )]A0.2 Initial area time of concentration = 14.924 min. Rainfall intensity = 1.561(ln /Hr) for a 10.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.730 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.470; Impervious fraction = 0.530 Initial subarea runoff = 1.539(CFS) Total initial stream area = 1.350(Ac.) Pervious area fraction = 0.470 • +++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 600.000 to Point /Station 610.000 ****INITIAL AREA EVALUATION * * ** DA -F.01 Initial area flow distance = 630.000(Ft.) Top (of initial area) elevation = 468.000(Ft.) Bottom (of initial area) elevation = 465.600(Ft.) Difference in elevation = 2.400(Ft.) Slope = 0.00381 s(percent)= 0.38 TC = k(0.375) * [(length A3) /(elevation change )]A0.2 Initial area time of concentration = 15.065 min. Rainfall intensity = 1.554(ln /Hr) for a 10.0 year storm USER INPUT of soil data for subarea Runoff Coefficient = 0.759 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.390; Impervious fraction = 0.610 Initial subarea runoff = 1.933(CFS) Total initial stream area = 1.640(Ac.) Pervious area fraction = 0.390 End of computations, total study area = 35.27 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.413 Area averaged RI index number = 56.0 Griffin Ranch — Tract 34642 Hydrology & Hydraulics Report • Appendix Hydraulic Calculations Flowmaster Inlet Sizing Worksheets StormCad Storm Drain Sizing Worksheets Flowmaster Emergency Overflow Channels • • • Worksheet for Curb Inlet In Sag - CB 2_3 (100 Year Storm) �K.�.•,.�y.y.3sr""�,y'�•?�,. -': f���.�ry^2�. � �{:r ��S,p�[e.>c �^n�.. �„ .,�, ..,.,,v ti,�.?�ti�";'". .iAd - �k.��'h3y :Pro ect.Descrl � t1011 ". �rr�- e; ?����� x z�� �`�.��n 'tF". �x`�`;� r•�'�,•��',- `"`��° �,F,- ar.•Yt� �.,y 9� t"�.,_F., ra' r' a1v... Lri:[ k:..^ �.. v..: sv. sv'•_ a. L:. c+ ttyt: 4C" n... xra....^ t... rtCai .'i..a..s'�'k�.<p.V.'f.'�'.va. ?9�L:af, :.+-? :':a..: ,...%;�����.j�yv,1.;: it�L 3 "._$4 „.: e ��'. i.,��.,.tn P.r�i Solve For Spread �In - wt�Data �' "- x ��;�:.�;..a;d�.�x _� ".��a -:,� ��4 J�'� �., . 0.:. , �' -• �F <�r m>:2tmtvs. -r... �tti' _ ... >,..,5_.. .x z k >�` � c .�• .t''�� e.':..�% s^n ,tz .�'z?'8�','.�4 �:?a,� "�Y.zo�= �.if'�'�r?y...z Discharge 15.02 ft /s Gutter Width 2.00 ft Gutter Cross Slope 7.8125 % Road Cross Slope 1.7700 % Curb Opening Length 8.00 ft Opening Height 8.77 in Curb Throat Type Inclined Local Depression 4.00 in Local Depression Width 4.00 ft Throat Incline Angle 66.00 degrees r'�`s�'i' t rr 4" o,C ;x .: fi.x � � !• � v4'n� x k E Fz» �' "'hr °'.St 1453' L.� �u:. y'". t n.;i.Y,Y. ?�•-. Spread 32.17 ft Depth 8.28 in Gutter Depression 1.45 in Total Depression • 5.45 in • Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.066.00] 4/4/2013 12:43:12 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1.203- 766 -1666 Page 1 of 11 Worksheet for Curb Inlet In Sag - CB 4_5 (100 Year Storm) !* Solve For Spread Discharge 3.82 ft3 /s Gutter Width 2.00 ft Gutter Cross Slope 7.8125 % Road Cross Slope 1.7700 Curb Opening Length 4.00 ft Opening Height 8.77 in Curb Throat Type Inclined Local Depression 4.00 in Local Depression Width 4.00 ft Throat Incline Angle 66.00 degrees Yy7gyT,.za; +'a`;��' ��"`.°r9�t.:. "9.`,`•�asy "�:fa rr.;% �;?:$ 3�' �' �°. �u? satr< 'i'•.fy'iy'.y„F�2:t,{ ";ii{;.., �:' �F�`:v�fTi >Si��:?jvi•5'�r!o °.�ti��..KS �'&�^?�.S:rs:.,, ,?5�:• ;Results ,r; � �- �x.Al���°pY �fr.�r~-�����.fi f<- ,.�"-`' ..•$` � eS�%w;:� �`.�3'{��'Y'��,'``� � �� .., e� + K1< sz+. nC�r7. e °.:rs'r- ��s�{�4LlC`y?+Ey:i�Pyh c ° %>Y: �i'�'�i. 'ia. :.�:a��.w�:.'s....� .+.r�.•C:��:.c•T� �`'�.V� . �' �` y'. os.'. av��i� "af' ✓..cG'�a>�.�?!�Y�:4:f... �av Spread 15.83 ft Depth 4.81 in Gutter Depression 1.45 in Total Depression 5.45 in Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.066.001 4/4/2013 12:44:13 PM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -203- 755 -1666 Page 1 of 1 • • • Solve For Worksheet for Curb Inlet In Sag - CB 67 (100 Year Storm) Spread Discharge 12.25 ft3/s Gutter Width 2.00 ft Gutter Cross Slope 7.8125 % Road Cross Slope 1.7700 % Curb Opening Length 7.00 ft Opening Height 8.77 in Curb Throat Type Inclined Local Depression 4.00 in Local Depression Width 4.00 ft Throat Incline Angle 66.00 degrees Spread 29.38 ft Depth 7.69 in Gutter Depression 1.45 in Total Depression 5.45 in Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.066.00] 4141201312:45:51 PM 27 Slemons Company Drove Suite 200 W Watertown, CT 06795 USA +1.203. 755 -1666 - Page 1 of 1 Worksheet for Curb Inlet On Grade - CB -8 (100 Year) Project °Description _ Solve For Input Data Discharge Slope Gutter Width Gutter Cross Slope Road Cross Slope Roughness Coefficient Curb Opening Length Local Depression Local Depression Width Results' Efficiency Intercepted Flow Bypass Flow Spread Depth Flow Area Gutter Depression Total Depression Velocity Equivalent Cross Slope Length Factor Total Interception Length Efficiency 4.92 ft3 /s 0.00777 ft/ft 2.00 ft 8.0000 % 2.0000 0.015 15.00 ft 4.00 in 4.00 ft 98.87 4.86 ft /s 0.06 ft' /s 12.63 ft 4.47 in 1.71 ft' 1.44 in 5.44 in 2.87 ft /s 0.07262 ft/ft 0.92 16.35 ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster 108.01.066.00] 41412013 2:20:08 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA i1- 203 - 755 -1666 Page 1 of 1 • • a Worksheet for Curb Inlet On Grade - CB -9 (100 Year Storm) Solve For Efficiency 11 MINIM Discharge 2.95 W/s Slope 0.00393 ft/ft Gutter Width 2.00 it Gutter Cross Slope 8.0000 Road Cross Slope 2.0000 . Roughness Coefficient 0.015 Curb Opening Length 10.00 ft Local Depression 4.00 in Local Depression Width 4.00 ft Fee sYIt� �, y-c Efficiency Intercepted Flow Bypass Flow Spread Depth Flow Area Gutter Depression Total Depression Velocity Equivalent Cross Slope Length Factor Total Interception Length 99.67 % 2.94 ft' /s 0.01 ft /s 11.74 ft 4.26 in 1.50 ft2 1.44 in 5.44 in 1.97 ft/s 0.07631 ft/ft 0.96 10.44 ft • Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.066.00] 4/4/2013 2:21:12 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 - 755 -1666 Page 1 of 1 Worksheet for Curb Inlet On Grade - CB -10 1100 Year Storm) Solve For Efficiency Discharge 3.65 ft3 /s Slope 0.00364 ft/ft Gutter Width 2.00 ft Gutter Cross Slope 8.0000 ft Road Cross Slope 2.0000 % Roughness Coefficient 0.015 ft2 Curb Opening Length 11.00 ft Local Depression 4.00 in Local Depression Width 4.00 ft �'a"`P'.'�'y�s �3. t�- a� =:�s•; �°.'-S � �X�^w „�.� ^r��•"� �s.'� r 'E" ;y -��,' mix ^� r,��.-"' £,r �s Efficiency 99.44 % Intercepted Flow 3.63 ft /s Bypass Flow 0.02 ft /s Spread 13.06 ft Depth 4.58 in Flow Area 1.83 ft2 Gutter Depression 1.44 in Total Depression 5.44 in Velocity 2.00 ft/s Equivalent Cross Slope 0.07096 ft/ft Length Factor 0.94 Total Interception Length 11.65 ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster 108.01.066.00] 4/4/2013 2:22:02 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -203- 755 -1666 Page 1 of 1 • • • Worksheet for Curb Inlet In Sag - CB 23 (10 Year Storm) Solve For Spread Discharge 7.77 ft /s Gutter Width 2.00 ft Gutter Cross Slope 7.8125 % Road Cross Slope 1.7700 % Curb Opening Length 8.00 ft Opening Height 8.77 in Curb Throat Type Inclined Local Depression 4.00 in Local Depression Width 4.00 ft Throat Incline Angle 66-00 degrees n. A Spread 20.73 ft Depth 5.85 in Gutter Depression 1.45 in Total Depression 5.45 in Bentley Systems, Inc. Haestad Methods Solution Center Bentley I'lowMaster [08.01,066.00] 4/4/2013 12:43:31 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +11-203-755-1666 Page 1 of 1 Worksheet for Curb Inlet In Sag - CB 4_5 (10 Year Storm) w.r <tpTS =�GSSr as' m<1`h,F; >;y *':L +.ia::z.:, .. S ' <': v>Y s-4i:: - ;7't' _ tee^•!• .r'c'.':�_ -MV.i : r�:'C't..,rr �• a :,,s.�.j;rl��t ; ; ?k��r'^< iPrO�eCt?DesGrlpt�on�� .,�+�a;����� -3�z;� €� -3 ;:ti�.r�•r'r``•�:�= . =ar;:" ��; �c�, h. „,e:,. :'��S.� "�u',a`.t�'..s:;c 1. �•:ti,::nLr` °;w':%- '� � �.fv'.:.��r n3. 3�. �.: m�•,..'+, r:: e,. atia.__. n. �_ R.. Y• z�y. �,• irr3. s_:. �i..t r.- r�:.!. xvl�xfi`+ �.....- r�...... rji?�k?._ Y._ :!t3s- m- aL�...r.�n- ..'t�.� "..,. .a .�... ..ic:..:.,..� .r..a.vnl, .t". r�i•c:....:.....a. a.. ;. Solve For Spread °� �.� N. :Y �.% ./'Stitt ✓ <. f" �'�� •'�':�- �.r ' ^l+f�tin:�:�' `f •f,h�_Y.'�'�t'.`S•�ti•?. .b In ut�Data Hs 7. �;f: ��.s��: . n” °`��; f��=� � -��. ��� �a .r� - �.•��rx',-��, -,�7 ��; -� .��� -.9� ":; • r. sx `' � ^.,; 'y;=4 '�"�` •��, .v.:�. e_ >� . f'� �����.•'���.'.'�2�<.�5u �z ��.2��t^ vst�s���'.�% ,::pa,es.u.:..,.rg : r.. 4r r. r,. -.. i e.sn._a.. ::�.s���^,t .�, :�kr. �: �: a .,.�.._'�t:.it2t• <s��'.x�•?�iax Discharge 2.03 ft3 /s Gutter Width 2.00 ft Gutter Cross Slope 7.8125 % Road Cross Slope 1.7700 Curb Opening Length 4.00 ft Opening Height 8.77 in Curb Throat Type Inclined Local Depression 4.00 in Local Depression Width 4.00 ft Throat Incline Angle 66.00 degrees Spread 3.95 ft Depth 3.66 in Gutter Depression 1.45 in Total Depression 5.45 in Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.066.00] 4/4/2013 12:44:37 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -203- 755 -1666 Page 1 of 1 • • e4 Worksheet for Curb Inlet In Sag'- CS 6_7 (10 Year Storm) �P�,GO•_Jeet&�; Des�er�Ipt�Ora� `s�.- '�,�•`.£��,a�'" � :'���`z''�•��t3��t�: �a>i+t- �" 'F` '��'.�• .,.�,�u' 9 �Ip Solve For Spread yam: ��r^"et.$ a°.$':,r:��Y!:...;t '�i:' �!::- .ry5..�:.✓W'tx GrFSbY:r. "L '.� "'r•'` �Fr?F'.ui:S':T..`•�n�; ' ktK-" i'I' :fry. >VJ:d :.,��,- - �:�.?c .'; '..":+E ?ci''.^v:. s5'> i � . .� .;� ,'ax,,r, j `b.y;.3��a:.. .,� ,t'1•.'. >4�'�'%t.�;yfi.. >. �•.. _ t � „sas:•" �,::...'t�:...�rFY'rtt�i.tr ..:n- �,. , �`vi"° �; ;r^.`; •.x= 9.`: "'..1.1."L'r ,Ir1• wt Data�� ��;�.,,��,.� : ;;� ;�'�,.:�v,. �;,�,,'�=- 4 °;ar�;a '.�:. �:,� �, �� , ;�:: �'..;•. -;.�� t, ,;.,� J.... �: . ✓,. p,:s�.;x*P.,«� �-xa �. v�:i^i' "'".�;.'... %•�`.%s.. .�,�""[ � ,t;?�eK�, �:.r'.....•s.� .�.� '^•�.�s�'— '•�`•"`r` "':r" ,.� ��},�• �7•>�$��t��r.,��•L1�,�G, �y3„ZVi.x� t h���jj,••,�;�A ��„yrgq;,•. Discharge 6.46 ft /s Gutter Width 2.00 ft Gutter Cross Slope 7.8125 % Road Cross Slope 1.7700 Curb Opening Length 7.00 ft Opening Height 8.77 in Curb Throat Type Inclined Local Depression 4.00 in Local Depression Width 4.00 ft Throat Incline Angle 66.00 degrees Spread 19.17 ft Depth 5.52 in Gutter Depression 1.45 in Total Depression 5.45 in • Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.066.00] 4/4/2013 12:45:25 PM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -203- 755 -1666 Page 1 of. 1 Worksheet for Curb Inlet On Grade - CB -8 (10 Year Storm) wigwa_v�r -r s' , ski r ?: Project Descr;,iptlon � � � y � � � �- iev-Hr� _,.sr...�v%..actra asi.aw:c::•_ .Y�'�.�.. .0 t :::us'? Solve For Efficiency Discharge 2.58 ft /s Slope 0.00777 ft/ft Gutter Width 2.00 ft Gutter Cross Slope 8.0000 ft Road Cross Slope 2.0000 in Roughness Coefficient 0.015 ft2 Curb Opening Length 15.00 ft Local Depression 4.00 in Local Depression Width 4.00 ft Efficiency 100.00 Intercepted Flow 2.58 ft3 /s Bypass Flow 0.00 ft /S Spread 9.50 ft Depth 3.72 in Flow Area 1.02 ft2 Gutter Depression 1.44 in Total Depression 5.44 in Velocity 2.53 ft is Equivalent Cross Slope 0.08771 ft/ft Length Factor 1.35 Total Interception Length 11.13 ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [06.01.066.00] 4/4/2013 2:20:27 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203. 755 -1666 Page 1 of 1 • Worksheet for Curb Inlet On Grade - CB-9 (10 Year Storm) ffir qifflet,1 56 s 8 Er t On , V4 Solve For Efficiency Discharge 1.54 ft /s Slope 0.00393 ft/ft Gutter Width 2.00 ft Gutter Cross Slope 8.0000 % Road Cross Slope 2.0000 % Roughness Coefficient 0.015 Curb Opening Length 10.00 ft Local Depression 4.00 in Local Depression Width 4.00 ft L :Q7 AP& Efficiency 100.00 % Intercepted Flow 1.54 W/s Bypass Flow 0.00 W/s Spread 8.75 ft Depth 3.54 in • Flow Area 0.88 ft' Gutter Depression 1.44 in - Total Depression 5.44 in Velocity 1.74 ft/s Equivalent Cross Slope 0.09231 ft/ft Length Factor 1.41 Total Interception Length 7.09 ft • Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.066.001 414/2013 2:21:33 PM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-765-1666 Page 1 of 1 Worksheet for Curb Inlet On Grade - CB -10 (10 Year Storm) ' •'i...13A.y� Jll'k:�au''�cf`F��' i' M1'd?:�M,i'vF,,,h'r •fiefi ,7 ^g9C i -n,. ,Project ©escription .t.ra� 1' J _ ... ' 1 s m Solve For Discharge Slope Gutter Width Gutter Cross Slope Road Cross Slope Roughness Coefficient Curb Opening Length Local Depression Local Depression Width Efficiency 1.93 ft /s 0.00364 ft/ft 2.00 ft 8.0000 % 2.0000 0.015 11.00 ft 4.00 in 4.00 ft :.r'!1ii��?^�:!'^ TZ�?x"-";;�- �3';•.k'�`��';�"�"4. c}z c; ••��,,aa.mx> '?" g T. •» i�'x 7 �"�5„':v:.�t, Y ...�, ,�.�SJ� '�: ffra��^�.) R @SU�tB�?' >1�.,r.lfis��t_?'� %�� a:`fe9J`�.' c"�fY,� ,r�a?iRxe'. ,� "�A;e,( .:s:.♦ %'` � .i�.L��cq�"r 4y1 xt°_ h�� �� =F�?i LK .,sj,.:wsmx•,x:.: ..,......i,...a,>. -i._ �...�: i�*cz:x%3k. <.��- s,a�.�.... �. ��� `�'�.�..�...�����dc?E'.Wadre3n f'w� L.3.`�'z - L'£iy+E�.rw.:..�',�`af.�,Y.,� >• .,hua�.' -.�� •.�_ Efficiency 100.00 Intercepted Flow 1.93 ft' /s Bypass Flow 0.00 ft 3/S Spread 9.89 ft Depth 3.81 in Flow Area 1.10 ft2 Gutter Depression 1.44 in Total Depression 5.44 in Velocity 1.76 ft/s Equivalent Cross Slope 0.08545 ft/ft Length Factor 1.38 Total Interception Length 7.98 ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster 108.01.066.001 4/4/2013 2:22:28 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA ;1- 203 - 755 -1666 Page 1 of 1 0 0 40 Scenario: Base 0 -130 U3- -1 Title: Gd9in Ranh - Tact 34642 ` Prolecl Enpinaer. dls r1...1Denll sto- IN1721 line 130 yr 100.oan SIamCAC v5.9 (05.06.012.00] 09!20113 11:00:18 AM ®6enUey Systems, Ina Hoestod Methods Solution Center Watertown, CT 00795 USA •1- 203-755-1666 Page 1 of 1 Calculation Results Summary .................................. ............................... Scenario: Ease >»> Info: Subsurface Network Rooted by: 0 -130 »» Info: Subsurface Analysis iterations: 2 »» Info: Convergence was achieved. CALCULATI@7 SUMMARY FOR SURFACE NETWORKS Label I Inlet I Inlet I Total I Total I Capture I Gutter I Gutter 1 Type i i Intercepted I Bypassed I Efficiency ( Spread I Depth 1 Flow 1 (t) I (ft) 1 (ft) I I I I (cfs) 1 (cfa) I I I I I I------------ I---------------------- I------------- I---------- I---------- -- I------- -I--- - - - - - I CB -2 I curb Inlet I Curb COR STD 300 -6CF 1 15.02 1 0.00 I 100.0 1 32.17 1 0.69 1 CE -3 I Curb Inlet I Curb COR STD 300 -6CF 1 15.02 I 0.00 I 100.0 1 32.17 1 0.69 1 _____________________________________________________________________________________________________ CALCULATION SUMMARY FOR SUBSURFACE NETWORK WITH ROOT: 0 -130 Label I Number I Section I Section I Length I Total I Average I Hydraulic I Hydraulic 1 I of I Size I Shape I (ft) I System I Velocity I Grade I Grade 1 I I Sections I I I I Flow 1 (ft /s) I Upstream I Downstream 1 I I I I I I (cfe) I I (ft) 1 (ft) 1 I---------- I---------- I--------- I---------- I-------- I-------- I----- ---- -I----- -- ----I----- -- -- -- - I P- 130.01 1 1 1 24 inch I Circular 1 220.00 I 29.94 1 9.53 I 463.66 I 460.30 1 P- 130.02 1 1 1 24 inch I Circular 1 41.00 I 15.02 I 4.78 ( 464.13 1 463.97 1 ___________________________________________________________________ __________ ______ _____ ____ __ _ _ __ I Label I Total I Ground I Hydraulic I Hydraulic 1 I System.1 Elevation I Grade I Grade 1 Flow 1 (ft) I Line In I Line Out 1 I I (cfe) I I (ft) I (ft) 1 I I-------- I ----- -- ---- I- ---------- I----- - - - -- - I 1 0 -130 1 29.68 1 459.30 1 460.38 1 460.38 1 CB -3 1 29.94 1 466.01 1 463.97 I 463.66 1 CB -2 1 15.02 1 466.01 1 464.19 1 464.13 1 ____________________________ ______________ ______ __ ____ .... sae..... see....« ... .................................. ...�.�. Completed: 08/20/2013 11:00:40 AM Title: GrDDn Ranch - Tract 34642 Project Engineer. dte 0802013 1 :01.03adt172t line 130 yr 1 ODStm StormCAD VS.S (05.08.012.00) OB20l13 11:01:03 AM O Banaey Syetmne, Inc. Haestad Mathe0.a Solution Gender Watertown, CT 08795 USA t1- 203 - 7551868 Page 1 of 1 • • • Scenario: Base Inlet Report Label trial dogging Factor Curb Opening Orate Length Ground �BVatltM Rim Qev Sump Elev Depth. Depth Area rd I "let Int Cm Fxt System System System System Total HGL HGL Gutter M Length (it) (it) (k) (ft) (IQ (acres) (rrdn) ( "01r) C Ratbnal CA Tc CN Fbw Tine IMensBy Ralbnel Fbw " Out Ditch lttl Fbw (acres) - (min (acres) (min) (Whr) Flow WS) (it) (10 Depth (cte) (cfa) (tt) CB-2 Curb CDR STD 300.6CF 8.00 468.01 465b1 460.72 629 7.815 22.19 2.285 0.8417 15.02 0.000 D.00 8.578 22,19 2.286 15.02 15.02 464.19 484.13 0.69 CS -3 Curb CDR STD 30D -6CF 8.00 488.01 484.61 460.01 6.00 7.816 22.19 2.265 0.8417 15.02 0.000 0.00 13.158 2233 2.256 29.94 29.94 463.97 463.66 D.fi9 Title: GAM Ranch - Tract 34642 M..lbentley stonncao11721 One 130 yr t 00xtrn Project Eng1m=. Me 0820/13 11:0131 AM 0 Bentley Systems, Inc Haestad Methods Sotutlon Center Watertown, CT 06795 USA ♦1. 203 -755 -1666 SrormCAD rS.B (06.00.01 of I Scenario: Base Node Report Label Area (acres) TC (Mn) Loral Imensity Intel C Local Rational System system Total Rim Sump Structure Hydraulic Hydraulic System (i1/hr) Flow Intensity Rational Fbw System evallon Elevation Depth Grade Gmtlo Flow Time (hlhr) Fbw (1Q (R) (f0 Una In Une Out (Mn) lots) lots) (Cfs) (f0 (0) CB -2 7.815 22.19 2.265 0.8417 15.02 2.265 15.02 16.02 465.51 460.72 5.29 464.19 464.13 22.19 CB-3 7.615 22.19 2.265 0.8417 15.02 2.258 29.94 29.94 465.51 450.01 6.00 463.97 483.68 22.33 0 -130 2.238 29.68 29.68 459.80 453.31 5.99 460.38 460.38 22.72 Tate: Griffin Ranch - Tract 34642 r% -AbenlJOY 6tolmCed11721 Ilse 130 yr 100.atm Project Engineer. tlls 08/20113 11:01: m Bentley Systems, Inc. Haestad Wlhods So er Watertown, CT 06795 USA .1.203. 755.1666 v5.6 I peg. I of 1 • • • Scenario: Base Pipe Report Label Material Manninge Section Leng01 Full Total Excess Up Down Slope Avg Up HGL Down HOL n Size I (f) capacity System Full Irw Inv OVID Val FG In FO Out Flow Profile Cepacly Bev FJev (ft) (h) (fU (NI (tt) Tone Descrtpibn (cfs) (Cis) (N) (N) (MN P- 130.01 PVC 0.012 241nch 220.00 38.78 29.94 8.84 460.01 454.60 0.0250 9.53 468.01 463.68 459.30 460.38 22.33 Pressure P- 130.02 PVC 0.012 24 Inch 41.00 17.54 15.02 2.52 460.72 460.51 0.0051 4.78 466.01 464.13 4fi6.01 453.97 22.191 Pressure Ties: Gn1Rn Ranch - Tract 34642 stormcetlt1721 Tina 130 yr 100.sun Project Engineer. re3 0820x13 11:01:57 AM m Bentley Systems. Inc. Haestatl Methods Solution Center Watertown. CT 06705 USA +1.203- 755 -1866 StormCAD v5.6 [O5. 8900 12.11 • • • Scenario: Base WOMM IIWA V�LLV We; Or0M Ranch - Tract 34862 r:%..UM%Uey eWffw., A1721 Una 220 yi 100.stm Pmlect Engtmer. ds 08M13 11:0232 AM m BenOey Systems, Inc. Hae=d Me0ntt9 Sotutbn Center Watertown CT OgMS USA r1. 203.7551666 9torrnCAO v5.6 [O8.tag. I of 1 Page 1 011 Calculation Results Summary .............. Scenario: Race »» Info: Subsurface Network Rooted by: 0 -220 »» Info: Subsurface Analysis iterations: 2 >- Info: Convergence was achieved. CALCULATION SUMMARY FOR SURFACE NETWORKS I Label I Inlet I Inlet I Total I Total I Gutter I Gutter I I Type I I Intercepted I Bypassed I Efficiency I Spread I Depth I I I I Plow I Flow 1 (t) I (ftl I (in) 1 I I I (cfs) I (cfs) I I I I I------------ I---------------------- I------------- I---------- I- ---- -------I--------I-------- I CB -7 I Curb Inlet I Curb COR STD 300 -6CP 1 12.25 1 0.00 1 100.0 I 29.38 I 7.69 1 I CB -6 I Curb Inlet I Curb CDR STD 300 -6CP 1 12.25 1 0.00 1 100.0 I 29.38 I 7.69 --------------------------------------------------------------------------- -------------------- - - - --- CALCULATION SUMMARY FOR SUBSURFACE NETWORK WITH ROOT: 0 -220 Label I Number I Section I Section I Length I Total I Average I Hydraulic I Hydraulic 1 I of I Sire I Shape 1 (ft) I System I Velocity I Grade I Grade 1 I Sections I I I I Flow I (ft /s) I Upstream I Downstream 1 I (cfs) I 1 (ft) i (ft) 1 ---- __-- _- ---------- --------- I---------- I-------- I-------- I----- -----I----------- I------- - -_ -- I P- 220.01 1 1 1 24 inch I Circular 1 240.00 1 24.39 1 7.76 I 462.23 I 459.85 1 1 P- 220.02 I 1 1 18 inch I Circular I 50.32 I 12.25 I 6.93 I 463.13 I 462.55 1 -------------------------------------------------------------------------------------------------- Label I Total I Ground I Hydraulic I Hydraulic 1 System I Elevation I Grade I Grade Flo. I (ft) I Line In I Line Out I I (cfal I 1 (ft) I (ft) I I I I----- ---- -- I- -- --- ----- I-- ---- - -- - - I 1 0 -220 I 23.96 I 459.30 I 459.85 i 459.85 1 CB -6 I 24.39 I 465.95 I 462.55 1 462.23 1 CB -7 I 12.25 1 465.90 I 463.25 I 463.13 1 ------------------------------------------------------ _ .......... __ c .................... ............................... Completed: 08/20/2013 11:02:58 AM Title: Griffin Ranch - Tram 34842 Project Engineer: dls rA \benUey etOMMM1721 line 220 yr 100.9tm StonnCAD v5.6 (05.06012.00) 08120113 11:03:11 AM 41 BBn0ey SY8Wret, Inc. Maestad Methods SOIWon Center Watertown, CT 06795 USA +1. 203 - 755.1666 Page 1 at 1 Scenario: Base Inlet Report Label Inlet CloggGtg Curb Grab Ground Film Sump Struc -M Area Te 1 Inlet Int Ezt 6t Syatom System System System Total HOL HGL Garter Factor Opening Length I Eleva0on I E16v I Elev I Depth ( aeres) 1 (Mn) (tnO1r) C Rational CA TC G1 Fbw TFne lmensit Rational Flow In Out Ditch ( %) Length (fl) (it) (h) (0) (IQ Fbw (acres) (min) (acres) (mtn) (In hr) Flow We) ((q (h) Do IN (cls) (cts) (In) CB-6 Curb CDR STD 300 -6CF 7.00 455.95 465.95 458.87 7.08 5.655 15.68 2.713 0.7919 12.25 0.000 0.00 8.958 15.80 2.702 24.39 24.39 462.55 482.23 7.69 CB-7 Curb CDR STD 300 -6CF 7.00 465.90 465.90 460.45 5.45 5.855 15.68 2.713 0.7918 12.25 0.000 0.001 4.478 15.681 2.7131 12.251 12.251 463.261 463.13 7.69 Title: Griffin P mch - Tmct 34642 rl..t Project Enpineer. cgs bartlley, stortnead11721 One 220 yr t00strn Stom1CAD x5.6105.06.012.00) 08720x13 11:03:29 AM C Ben0ey Systems. Nc. Hassled Methods Solution Center Watertown, CT 06795 LISA .1- 203 - 755.1666 Pape 1 of t Scenario: Base Node Report Label Area TC Local Inlet Local System System Total Rim Sump Structure Hydraulic Hydraulic system (acres) (Mn) Intensity c Rational Intensity Rational System Elevation Elavadon Depth Grade Grade Flow Timo (InRr) Flow (Mr) Flow Flow (11) (8) (ft) Line In Line Cut (Mn) (cfs) (C Is) Ids) (n) (9) CB -6 5.655 15.68 2.713 0.7919 12.25 2.702 24.39 24.39 486.95 458.87 7.08 462.55 462.23 15.80 CB-7 5.655 16.68 2.713 0.7919 12.25 2.713 12.25 12.25 465.90 460.45 5.45 463.25 463.13 15.66 0-220 2.654 23.96 23.96 459.80 453.83 5.47 459.85 459.85 16.31 Title: Griffin Ranch - Tract 34642 ProJaM Engineer. the r\..1,pentley stormcacAl 721 line 220 yr t00.stm 5 - - - - "- 6.6 (05.O o14.00] 0&20/13 11:03:4 ®8endey systems, Inc. Hasstad Methods Solu Watertown, CT 06795 USA +1- 203 - 755.1666 Page i of 1 Scenario: Base Pipe Report Label Material Ma ^ings SedZen Length Full Total Excess UP Down Sops Avg Up HGL Down HGL (h) Capachy System Full Inv Irn (ftm Val FG In FG Out Fbw Thne Pr0fit (eis) Flow Cap Elev dev WS) (h) (N (N (N Oesc4p8on (cis) (cis) (N t) (min) P- 220.01 PVC 0.012124 Inch 240.00 32.69 24.39 8.30 458.87 454.60 0.0178 7.78 465.95 462.23 459.30 459.85 15.80 Pressure P•220.02 PVC 0.072 IS Inch 60.32 16.67 12.25 4.42 460AS 459.37 0.0215 6.93 465.90 463.13 485.95 462.55 15.68 Pressure Title: Griffin Rench - Tract 34642 r.% lbemley stormcad%1721 line 220 yr 100.stm Pro]ew Engineer. ces SlonnCAD v5.6 [05.06.012.00] 0SO x13 11:03:51 AM O8en0ey Systems, Ina. Hassled Methods Solution Center Watertown, CT 06795 USA r1. 203 - 7551666 Page 1 of 1 E. Scenario: Base L- 470B.01 MH- 470.02 P- 470.03 - P- 470.04 MH- 470.04 MH- 470.05 '- 470.06 7100: GAM Ranch - Tract 34642 r.\..01entley stomrcad11721 line 470 yr t OD.sun Project Engines: ma /20/ 0613 11:0420 AM m Bontley Systems. Inc. Hassted Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 StormCAD K.8105 so. ; of I Calculation Results Summary ......n a .......................... .........a.........._.......... Scenario: Base »» Info: CB -10 No bypass target specified. Bypass is assumed to travel to 0 -470. > Info: Subsurface Network Rooted by: 0 -470 > » Info: Subsurface Analysis iterations: 3 >- Info: Convergence was achieved. CALCULATION SUMMARY FOR SURFACE NETWORKS I Label I Inlet I Inlet I Total I Total I Capture I Gutter I Gutter I I I Type I I Intercepted I Bypassed I Efficiency I Spread I Depth I I I I I Plow I Flow 1 (t) I (ft) 1 (ft) I I I I I (cfs) 1 (cts) I I I I ------------ I---------------------- I------------- I---------- CB -4 I Curb Inlet I Curb COR STD 300 -6CP 1 3.82 I ------------ 1-------- I-------- I I CB -5 I Curb Inlet I Curb COB STD 300 -6CF I 3.82 1 0.00 1 0.00 I 100.0 1 15.82 1 0.40 I 100.0 I 15.82 I 0.40 I CB -10 I Curb Inlet I Curb COB STD 300 -6CP ( 3.64 ( 0.03 I 99.3 I 13.12 I 0.38 I CS -9 I Curb Inlet I Curb COB STD 300 -6CP I 3.00 I 0.02 I 99.3 I 11.88 I 0.35 CB -s I Curb Inlet I Curb COB STD 300 -6CF 1 4.85 1 ______________________________________________________________________ 0.06 1 _______ 98.7 I 12.65 1 0.37 1 __ __ ________ ____________ CALCULATION SUH14ARY FOR SUBSURFACE NETWORK WITH ROOT: 0 -470 I Label I Number I Section Section I Length I Total I Average I Hydraulic I Hydraulic I I of I Size I Shape I (ft) I System I Velocity I Grade I Grade I I I Sections I I I I Flow I (ft /s) I Upstream I Downstream I I I I I I I We) I ----------- I---------- I--------- 1 (ft) I (ft) 1 I---------- I-------- I- --- ---- I----- P- 470.01 1 1 1 24 inch I Circular 1 230.00 I 14.81 I - - ---1 4.72 I -- -------- I---- -- --- - - -I 461.40 I 460.56 1 L- 470A.01 I 1 1 18 inch I Circular I 92.68 I 7.59 I 8.57 I 462.57 I 461.47 1 1 P- 470.02 I 1 1 24 inch I Circular 1 230.55 I 9.63 1 6.16 I 462.01 1 461.47 I 1 L- 470A.02 I 1 1 18 inch I Circular 1 41.00 1 3.82 I 4.37 I 462.94 I 462.74 I I P- 470.03 I 1 1 24 inch I Circular 1 273.65 1 6.85 I 5.30 I 463.73 1 462.11 I 1 L- 470B.01 1 1 1 18 inch I Circular I 93.90 1 3.64 I 4.88 I 463.04 I 462.26 I P- 470.04 1 1 1 24 inch I Circular 1 273.65 I 6.93 1 4.37 I 465.01 I 463.93 I 1 P- 470.05 I 1 1 18 inch I Circular 1 296.00 1 4.52 1 4.12 I 466.63 I 465.32 I L- 470C.01 I 1 1 18 inch I Circular 1 22.50 1 3.00 I 5.40 I 465.42 I 465.17 1 1 P- 470.06 1 1 1 16 inch I Circular 1 292.98 1 4.85 I ____________________________________________________________________ 3.28 I _______ 467.79 I 466.79 i _____________________ ___ 1 Label I Total 1 Ground I Hydraulic I Hydraulic I I 1 System 1 Elevation I Grade I Grade 1 I 1 Flow I (ft) I Line In I Line Out 1 I I (cfe) I I (ft) 1 (ft) I I----------- I-------- I----------- 1----------- I----------- I 1 0 -470 1 14.53 I 459.30 1 460.56 1 460.56 I 1 NH- 470.01 I 14.61 1 465.60 I 461.47 I 461.40 1 1 CB -5 I 7.59 1 466.15 I 462.72 1 462.57 1 I MH- 470.02 I 9.63 I 467.00 I 462.11 1 462.01 1 CB -4 I 3.82 1 466.19 I 462.98 1 462.94 I 1 MH- 470.03 I 6.85 1 468.40 I 463.85 1 463.73 1 1 CB -30 1 3.64 I 466.51 1 463.09 1 463.04 I MH- 470.04 1 6.93 I 468.80 I 465.17 I 465.01 I 1 MH- 470.05 I 4.52 I 470.00 I 466.73 1 .466.63 I 1 CB-9 I 3.00 I 468.91 I 465.46 1 465.42 1 CB -a 1 4.85 I 471.17 I 467.81 I 467.79 1 ___________________________ ___________ ____________ _____ _ __ .................................. ............................... Completed: 08/20/2013 11:08:17 AM Tole: Griffin Ranch . Tract 34642 Project Frglnesr: ft r.1. %G.n0ey slomtcaN1721 Tina 470 yr 100.a1 SwffrcAD v5.6 (05.06.012.00) O820/13 11:08:32 AM O BWUay Systsms, tna. Haaatao Methods So4Non Centel Watertown, CT 08795 USA ♦1. 203. 755.1666 Page 1 of 1 • • • Scenario: Base Inlet Report Label Inlet Clogging Curb Grate Ground Rim Sump Structure Area TC I Inlet Int Ext Factor Opening Length Elevation Elev, Elev 0 yth (acres) Win) (hA1r) C Rational CA Et System System System System Total HGL HGL Gutter (16) Length (b) (h) (It) (0) (10 I Flow Tc CA Flow Time Intensity Rational Flow In Out Ditch (tt) (acres) (ridn) (acres) (ndn) On/hr) Flow (CIS) (h) (it) Dept! CB-4 Curb CDR STD 300.6CF 4.00 466.19 466.19 462.19 4.00 1.500 11.90 3.132 0.8061 (CIS) 3.82 0.000 0.00 (ens) (10 CB-5 Curb CDR STD 300.6CF 4.00 466.15 466.15 46150 4.65 1.500 11.90 3.132 0.8081 1.209 11.80 3.132 3.82 3.82 46288 482.94 0.40 CB-8 Curb COR STD 300 -6CF 15.00 471.17 471.17 486.83 4.54 2340 18.60 2.482 0.8401 3.82 0.000 0.00 2.418 12.05 3.114 7.59 7.59 48272 462.57 0.40 CB-9 Curb COR STD 300-6CF 10.00 468.91 488.91 464.76 4.15 1.350 14.92 2.783 0.7782 4.85 0.000 0.00 1.941 18.60 2.482 4.85 4.85 487.81 467.79 0.37 CB-10 Curb COR STD 30D4iCF 11.00 466.51 468.51 482.31 4.20 1.640 15.07 3.00 0.000 0.00 1.069 14.92 2.783 3.00 3.00 465.46 465.42 0.35 2.770 0.7971 3.64 0.000 0.00 1.305 15.07 2.7701 3.641 3.641 463.091 463.041 0.38 TWO: Griffin Ranh - Tract 34642 eY stormcao11721 Una 470 yr 100.60n Pre)eel Engbwer. ms 0820/13 11:08:49 AM 0 Bentley Systems. Inc. Hassled Methods Solution Center Watertown, CT 06795 USA +1-203-7551666 Sto-CAD v6.6 (05. 6.0 1 01 01) Scenario. Base Node Report Label Area (acres) TC (min) Local Intensity (hum) Inlet C Local Rational Flow Iola) System Intensity MAO System Rational Flow (cis) Total System Flow Rim FJevallon (to Sump 9avation (0) Structure Depth (6) Hydraulic Grade Une In (It) Hydraulic Grade Une Out (8) System Flow Tlme (min) CS-4 1.500 11.90 3.132 0.8081 3.82 3.132 3.82 3.82 3.82 466.19 462.19 4.00 462.98 462.94 11.90 CBS 1.500 11.90 3.132 0.8061 3.82 3.114 7.59 7.59 466.15 461.50 4.65 462.72 462.57 12.05 C" 2.340 18.60 2.482 0.8401 4.92 2.482 4.65 4.85 471.17 465.63 4.54 467.81 467.79 18.60 CS-9 1.350 14.92 2.783 0.7782 2.95 2.783 3.00 3.00 468.91 464.76 4.15 485.46 465.42 14.92 CB-10 1.640 15.07 2.770 0.7971 3.65 2.770 3.64 3.64 466.51 462.31 4.20 463.09 463.04 15.07 MN -470M 2.183 14.81 14.81 465.60 459.26 6.34 461.47 461.40 23.81 MH- 470.02 2.214 9.63 9.63 467.00 460.60 0.40 462.11 462.01 23.19 MH- 470.03 2.256 6.85 6.85 468.40 462.80 5.60 463.85 463.73 22.33 MH- 470.04 2.284 6.93 6.93 468.80 464.00 4.80 465.17 465.01 21.29 MI-1,170.05 2.308 4.52 4.52 470.00 465.74 4.26 466.73 466.63 20.09 0.470 2.142 14.53 14.53 459.80 453.60 5.70 460.56 460.66 24.63 Ties: Griffin Ranch - Tract 34642 f. ntley elonnr2d11721 Ilrte 470 yr 100.stm Project Engineer: dta 08/20/13 11:09: 0 BMUey Systems. Inc. Hassled Methods Sol v Watertown. CT 08795 USA +1.203.7557866 r5.6 (05.06.012.00) Page 1 011 • • • Scenario: Base Pipe Report Label Material Mannings n Section Size Length (to Full Capacity (cls) Total system Flow (Cis) EKcess Full Capacity (CIe) Up Im Bev (8) Down Inv Bev (n) Slope MA) Avg Vel OVS) Up FG (8) HGL In l9) Down FG (h) HGL Oul (it) Flow Tine (min) Prattle DPottle "Option L- 470A.01 PVC 0.012 18 inch 92.68 15.14 7.59 7.55 461.50 459.86 0.0177 8.67 466.16 462.57 465.60 461.47 12.05 COmpoWIe Pressure Si S2 L -470A.02 PVC 0.012 18 Inch 41.00 7.75 3.82 3.93 482.19 462.00 0.0046 4.37 466.19 462.94 456.15 462.74 11.90 S2 L-4708.01 Concrete 0.013 18 inch 93.90 9.13 3.64 5.49 462.31 481.60 0.0076 4.86 466.51 463.04 467.00 46226 15.07 S2 L- 470C.01 Concrete 0.013 18 inch 22.50 11.29 3.00 829 464.78 464.50 0.0116 5.40 468.91 465.42 46890 465.17 14.92 Composite S1 S2 P -070.01 PVC 0.012 24 Inch 230.00 37.06 14.81 2225 459.26 454.00 0.0229 4.72 465.60 461.40 45930 460.56 23.81 Pressure P -070.02 PVC 0.012 24 Inch 230.55 19.37 9.63 9.74 460.90 459.46 0.0082 6.16 467.00 462.01 465.60 481.47 23.18 Composite Pressure S1 S2 P- 470.03 Concrete 0.013 24 inch 273.65 17.83 6.85 10.98 462.80 461.10 0.0062 6.30 468.40 463.73 467.00 462.11 22.33 Composite S1 S2 P- 470.04 Concrete 0.013 241nch 273.65 13.67 6.03 6.75 464.00 483.00 0.0037 4.37 468.80 465.01 488.40 463.93 21.29 M2 P- 470.06 Concrete 0.013 IBInch 296.00 6.80 4.52 228 465.74 464.50 0.0042 4.12 470.00 466.63 466.80 465.32 20.09 M2 P -070.06 Concrete 0.013 181nch 292.98 5.10 4.85 024 466.69 465.94 0.0024 3.28 471.17 467.79 470.00 466.79 18.60 M2 Tite: Gn81n Ranch - Tract 34642 rl..lbertttey slortn Project Engineer. cite teci17721 line 470 yI t00.stm StonnCAD .5.6 105.06.012.001 0620/13 11A827 AM O Bentley Systems, Inc. Heestatl M60100s Solution Center Waterto -. CT 06795 USA ♦1- 203766.1666 Pape l of l Profile Classification Page 1 of 1 • Profile Classification The gradually varied flow profile classification is simply a combination of the slope classification and the zone classification. For example, a pipe with a hydraulically mild slope and flow in zone 1 would be considered a Mild -1 profile (M1 for short). The program will analyze most profile types, but will not analyze certain flow profile types that occur rarely in conventional sewer system such as H3, M3, and S3. • • Profile Classification ZONE 1: ACTUAL FLOW DEPTH IS ABOVE BOTH NORMAL DEPTH & CRITICAL DEPTH ZONE 2: ACTUAL FLOW DEPTH IS BETWEEN NORMAL DEPTH & CRITICAL DEPTH ZONE 3: ACTUAL FLOW DEPTH IS BELOW BOTH NORMAL DEPTH & CRITICAL DEPTH ?one 1 Profile 1om2 Profs= ?onea Profile Y�•Y:Y >Y YYY�v orY Y'<Y:YK'! e WTI a W° j r,a .....................y........ o. ,..,.......,.. C1 C2 llrulab le Cd y, • Y, . ...,{. „ Y . .. 5. Y„ • . , i MEN= S1 ---------- 52 sa o . `. "" . i Hl (lone N7 H3 e.�• .................. .�...�,�..,.,.................. ,�• .......,,........ .............,.,.........o..... y. ........,....... ....................y.......... Al (lone A2 -------- Q ZONE 1: ACTUAL FLOW DEPTH IS ABOVE BOTH NORMAL DEPTH & CRITICAL DEPTH ZONE 2: ACTUAL FLOW DEPTH IS BETWEEN NORMAL DEPTH & CRITICAL DEPTH ZONE 3: ACTUAL FLOW DEPTH IS BELOW BOTH NORMAL DEPTH & CRITICAL DEPTH • PERCOLATION RATE y -int 90.89547202 VOLUME IN 159,355 cuft TOTAL AREA 40.65 acres INTENSITY 2.27 in /hr C -VALUE 0.71 UNDERGROUND STORAGE VOLUME BOTTOM AREA PERCOLATION RATE GACIN rWAGArTP:P1QT1f C NOTE: TRIANGULAR HYDROGRAPH BASED ON: TOTAL FLOOD VOLUME FROM SYNTHETIC UNIT HYDROGRAPH (1 -HOUR STORM) OPEm FROM RCFCD RATIONAL ANALYSES • • TIME OF CONCENTRATION FROM RCFCD RATIONAL ANALYSES tuft sf 0.00 cf /min l CONTOUR ELEVATION , Project Name: GRIFFIN RANCI VOLUME INCR TOTAL cult cult acre -ft Job # 1721 0.0 Basin Designation RETENTION BA 25,815 L 100 YEAR - 1 HOUR • Date: August 20, 2013 460.0 DATA INPUT - INFLOW 1.0 TRIANGULAR HYDROGRAPH 36,855 FLOW 65.88 cfs 31,172 Tc 22.19 min 2.0 Ts 80.63 min 50,130 Rising Slope 0.049481749 74,494 Declining Slope - 0.01878885 • PERCOLATION RATE y -int 90.89547202 VOLUME IN 159,355 cuft TOTAL AREA 40.65 acres INTENSITY 2.27 in /hr C -VALUE 0.71 UNDERGROUND STORAGE VOLUME BOTTOM AREA PERCOLATION RATE GACIN rWAGArTP:P1QT1f C NOTE: TRIANGULAR HYDROGRAPH BASED ON: TOTAL FLOOD VOLUME FROM SYNTHETIC UNIT HYDROGRAPH (1 -HOUR STORM) OPEm FROM RCFCD RATIONAL ANALYSES • • TIME OF CONCENTRATION FROM RCFCD RATIONAL ANALYSES tuft sf 0.00 cf /min l CONTOUR ELEVATION , DEPTH INCR TOTAL ft ft AREA INCR TOTAL s s VOLUME INCR TOTAL cult cult acre -ft TOTAL VOLUME cult acre -ft 459.0 0.0 0.0 25,815 5.9 0 0.00 0 0.00 460.0 1.0 1.0 11040 36,855 31,172 31,172 0.72 31,172 0.72 461.0 1.0 2.0 13275 50,130 43,323 74,494 1.71 74,494 1.71 462.0 1.0 3.0 17605 67,735 58,712 133,206 3.06 133,206 3.06 463.0 1.0 4.0 22025 89 760 78,490 211 696 4.86 211 696 4.86 464.0 1.0 5.0 16090 105,850 97,695 309,391 7.10 309,391 7.10 465.0 1.0 6.0 18080 123,930 114,771 424,162 9.74 424,162 9.74 • 0.5 in /hr 0.0007 fUmin DRYWELLS # cfs 3 0.151 0.45 cfs 27.00 cumin EMERGENCY SPILLWAY WEIR OVERFLOW CONTOUR 464.9 b 1 10 h(min) 5.9 RISER DATA CREST ELEVATION ft GRATE CLEAR AREA sf ADDITIONAL BELOW GRATE ORIFICES sf CENTROID ELEVATION ft NUMBER OF RISERS CLOGGING FACTOR Maximum Flow In 65.88 cfs Total Volume In 159,355 cubic feet Max Water Surface Elevation 462.27 ft Maximum Riser Outflow 0.00 cfs Maximum Spillway Outflow 0.00 cfs Maximum Flow Out 0.00 cfs Total Volume Out 0 cubic feet Total Volume Retained 159,355 cubic feet Raetl N-: GRIFFIN RANCH • TRACT 34842 Jot C 1721 DATE August 20, 2013 FTFNT[1N A <fN •4' TIME Mn FLOW IN cfs UPSTREAM FLOW d. VOLUME W cuff TOTAL 04 BASIN art1 PERC AREA PERC OUT cu0 TOTAL IN BASIN (CUR) BASIN WSEL 8 RISER FLOW OUT D WEIR FLOW OUT cPo TOTAL FLOW OUT Us TOTAL VOLUME O cu0 BALANCE IN BASIN cum .-a 0 1 2.97 0.00 178 178 25.878 44.97 133 459.00 0.00 0.00 0.00 0 133 0.00 1 2 5.94 0.00 356 489 25,988 45.0.5 444 459.01 0.00 0.00 0.00 0 444 0.01 2 3 8.91 0.00 534 979 26.162 45.17 934 459.03 0400 0.00 0.00 0 934 OJ12 3 4 11.88 0.00 713 1,646 26.398 45.33 1,601 459.05 0.00 0.00 0.00 0 1.601 0.04 4 5 14484 0.00 891 2,491 26.697 45.54 2,446 459.08 0.00 0.00 0.00 0 2,446 0.06 5 6 17.81 0.00 1,069 3.515 27,060 45.79 3.469 459.11 0.00 0.00 0600 0 3.469 0.08 6 7 20.78 0.00 1,247 4.716 27,485 46.09 4.670 459.15 0.00 0.00 0.00 0 4.670 0.11 7 8 23.75 0.00 1,42.5 6.095 27,974 46.43 6.048 459.19 0.00 0.00 0.00 0 6.048 0.14 8 9 26.72 0.00 1,603 7,652 28,525 46.81 7,605 45924 0.00 0.00 0.00 0 7,605 0.17 9 10 29.69 0.00 1,781 9.386 29.139 4724 9.339 459.30 0.00 0.00 0.00 0 9.339 021 10 11 32.66 0.00 1,959 11,298 29,817 47.71 11.251 459.36 0.00 0.00 0.00 0 11251 0.26 11 12 35.67 0.00 2,738 13.388 30,557 48.22 13.340 659.63 0.00 0.00 0.00 0 73.340 0.31 12 13 38.60 0.00 2.316 13.656 31.360 48.78 15.607 449.50 0.00 0.00 0.00 0 15.607 0.36 13 14 41.56 0.00 2.494 18.101 32226 49.38 18.052 459.58 0.00 0.00 0.00 0 18.052 0.47 14 15 44.53 0.00 2672 20.720 33.155 50.02 20.674 459.66 0.00 0.00 0.00 0 20,674 0.47 15 16 4750 0.00 2.850 23.524 34.146 50.71 23,473 459.75 0.00 0.00 0.00 0 23.473 054 16 17 50.47 0.00 3,028 26,501 35.201 51AS 26,450 459.85 0.00 0.00 0.00 0 26.450 0.61 17 18 53.44 0.00 3.206 29.656 36.318 52.22 29.604 459.95 0.00 0.00 0.00 0 29.604 0.68 18 19 56.41 0.00 3.385 32.989 37.412 52.98 32,936 460.04 0.00 0.00 0.00 0 32.936 0.76 19 20 59.38 0.00 3,563 36,498 38,487 53.73 36,445 460.12 0.00 0.00 0.00 0 36,445 0.84 20 21 62.35 0400 3,741 40,185 39,617 54.51 40.131 460.21 0.00 0.00 0.00 0 40.131 0.92 21 22 65.32 0.00 3,919 44.050 40.801 55.33 43,995 460.30 0.00 0.00 0.00 0 43.995 7.07 22 23 64.97 0.00 3.898 47.893 41.979 56.15 47,836 460438 0.00 0.00 0.00 0 47,836 1.70 23 24 63.84 0.00 3.830 51,667 43.135 56.95 51,610 460,47 0.00 0.00 0.00 0 51,610 1.18 24 25 62.71 0.00 3,763 55.373 44,271 57.74 55.315 460.56 0.00 0.00 0.00 0 55.315 127 25 26 67.58 0.00 3.695 59.010 45.385 58.52 58.951 460.64 0.00 0.00 0.00 ol 58.951 1.34 26 27 60.46 0.00 3.627 62.52- 46.479 59.281 62.520 460.721 0.00 0.00 0.00 0 62.52111 1.44 27 28 59.33 0.00 3.560 66,079 47.551 60.02 66,019 460.8D 0.00 0.00 0.00 0 66.019 152 28 29 5820 0.00 3.492 69.512 48.603 60.75 69.451 460.88 0.001 0.00 0.00 0 69.451 1.59 29 30 57.08 0.00 3.425 72.875 49.634 61.47 72.814 460.96 0.00 0.00 0.00 0 72,814 1.67 30 31 55.95 0.00 3.357 76.171 50.633 62.16 76.109 461.03 0.00 0.00 0.00 0 76.109 1.75 31 32 54.82 0.00 3,289 79.398 51,600 62.83 79,335 461.08 0.00 0.00 0.00 0 79.335 1.82 32 33 53.69 0.00 3.222 82.557 52,547 63A9 82,493 461.14 0.00 0.00 0.00 0 82,493 1.69 33 34 52.57 0.00 3.154 1 95.647 53.474 64.13 85.583 461.19 0.00 Moo 0.001 0 85,583 1.96 34 35 51.44 0.00 3. 066 88 .669 54.380 64.76 88,605 461.24 0.00 0.00 0.00 0 88.605 2.03 35 1 36 50.31 0.00 3.019 91.623 55266 65.381 91,558 461.29 0.00 0.00 0.00 01 91,558 2.10 36 37 49.18 0.00 2951 94.509 56.131 65.98 94.443 461.34 0.00 0.00 0.00 0 94.443 2.17 37 38 48.06 0.00 2.883 97.326 56,976 66.57 97,260 461.391 0.00 0.00 0.00 0 97,260 223 38 39 46.93 0.00 2.816 100.076 57.801 67.14 1009008 461 .43 0.00 0.00 0.00 0 100,008 2.30 39 40 45.80 0.00 2.748 102.757 58.604 67.70 10209 461.48 0.00 0.00 0.00 0 102.689 2.36 40 41 44.67 0.00 2.680 105,369 59.388 6824 105.301 461.52 0.00 0.00 0.00 0 105.301 2.42 41 42 43.55 0.00 2,613 107,914 60.151 68.77 107,845 461.57 0.00 0.00 0400 0 107.845 2.48 42 43 42.42 0.00 4545 110,390 60,894 69.29 110.321 461.61 0.00 0.00 0.00 0 110.321 2.53 43 44 4129 0.00 2.478 112.799 61.616 69.79 112.729 461.65 0.00 0.00 0.00 0 112,729 2.59 44 1 45 40.17 0.00 2.410 115,1391 62,317 70.281 115.069 461.69 0.00 0.00 O.OD 01 115.069 2.64 45 46 39.04 0.00 2.342 117.411 62,999 70.75 117.340 461.73 0.00 0.00 O.OD 0 117,340 2.69 46 47 37.91 0.00 2.275 119.615 63,659 7121 119,544 461.77 0.00 0.00 0.00 0 119.544 2.74 47 48 36.78 0.00 2.207 121.751 64.300 71.65 121.679 461.80 0.001 0.00 0.00 0 121,679 2.79 48 49 35.66 0.00 2,139 123,818 64.920 72.08 123.746 461.84 0.00 0.00 0.00 0 123,746 2.64 49 50 34653 0.00 21072 125.818 65.520 72.50 125.745 461.87 0.00 0.00 0.00 0 125.745 2.89 50 51 33.40 0.00 2,004 127.749 66,099 72.90 127,677 461.91 0.00 0.00 0.00 0 127,677 2.93 51 52 32.27 0.001 1,936 129,613 66,658 73.29 129.540 461.94 0.00 0.00 0.00 0 129,540 2.97 52 53 31.15 0.00 1.869 131.409 67196 73.66 131,335 461.97 0.00 0.00 000 0 131.335 37 53 54 30.02 0.00 1,801 133,136 67.7141 74.02 133.062 462.00 0.00 0.00 0.00 0 133.062 3.05 54 55 28.89 0.00 1,734 134.7% 68,181 74.35 134.721 462.02 0.00 0.00 0.00 01 134.721 3.09 55 56 27.76 0.00 1,666 136.387 68,628 74.66 136.3121 462.04 0.00 0.00 0.00 0 136.312 3.13 56 57 26.64 0.00 1,598 137,911 69.055 74.95 137,836 462.6 0.00 0.00 0.00 0 137,836 3.16 57 58 25451 0600 1,531 139.366 69.464 75.24 139.291 462.08 0.001 0.00 0.00 0 139,291 320 SB 59 24.38 0.0 1,463 140.754 694853 75.51 140.679 462.10 0.00 0.00 0.00 0 140,679 323 59 60 23.26 0.00 1.395 142,074 70223 75.77 141.998 462.11 0.00 0.00 0.00 0 141,998 126 60 61 22.13 0.00 10328 143.326 70.575 76.01 143.250 462.13 0.00 0.001 0.00 0 141250 329 61 62 21.00 0.00 10260 144,510 70.907 7624 144.434 462.74 0.00 0.001 0.00 0 144,434 132 62 63 19.87 0.00 1.192 145,626 71,220 76446 145.550 46216 0.00 0.00 0.00 0 145.550 3.34 63 1 64 18.75 0.00 1.1251 146.674 71.5141 76.66 146,598 462.17 0.00 0.00 0.00 0 146,598 3437 64 65 17.62 0.00 1,057 147,655 71.789 76.95 147.578 462.18 0.00 0.00 0.00 ol 147,578 339 65 66 16.49 0.00 989 148,568 72,045 77.03 148.4911 462.19 0.00 0.00 0.00 0 148.491 3.47 66 67 15.36 0.00 922 149.412 72.283 77.20 149.335 46221 0.00 0.00 0.00 0 149,335 3.43 67 68 1424 0.00 854 150,109 72,501 77.35 150,112 462.22 0.00 0.00 0.00 0 150.112 3.45 68 69 13.11 0.00 787 150.899 72,700 77.49 150,821 462.22 0.00 0.00 0.00 0 150,821 3.46 69 70 11.981 0.00 719 151.540 72,880 77.61 151.462 46223 0.00 0.00 0.00 0 151,462 3.48 70 71 10.85 0.00 651 142,114 73,041 7772 152.036 46224 0.00 0.00 0.00 0 152,036 3A9 71 72 9.73 0.00 584 152,620 734183 77.82 152,542 462.25 0.00 owool 0.00 0 152,542 150 72 1 73 8460 0.001 516 153.0581 73.306 77.91 152,980 46225 0.00 0.00 0.00 0 152,980 3.51 73 74 7A7 0.00 448 153.428 73409 77.98 153.350 46226 0.00 0.00 0.001 0 153,350 352 74 75 6.35 0.00 381 153,731 73.494 78.04 153.653 462.26 0.00 0.00 0.00 0 153.6531 3.53 75 76 5.22 0.00 313 153,966 73,560 78.08 153.888 462.26 0.00 0.00 0.00 0 153.888 3.53 76 77 4.09 0.00 245 154.134 73.607 78.12 154,055 46227 0.00 0600 0.00 0 154.055 3.54 77 78 2.96 0.00 178 154,233 73.635 78.14 154,1651 462.27 0.00 0.00 0.00 0 154,155 3.54 78 79 1.84 0.00 110 154265 73.644 78.14 154,187 462.27 0.00 0.00 0.00 0 154,187 3.54 79 80 0.71 0.0 43 154230 734634 78.13 154,152 46227 0.00 0.00 0.00 0 154,152 354 80 81 D.00 0.00 154.152 73.612 78.12 154.073 462.27 0.00 0.00 0.00 0 154.073 3.54 81 82 0.00 0.00 154,073 73.591 1 78.10 153.995 462.26 0.001 0.00 0.00 0 153.995 3.54 82 83 0.00 0.00 153,995 73,569 78.09 153.917 46226 0.00 0.00 0.00 0 153,917 3.53 83 84 0.00 0.00 153.917 73.547 78.07 153,839 462.26 0.00 0.001 0400 01 153.839 3.53 84 85 0.00 0.00 153,839 73,525 78.06 153,761 462.26 0.00 0.00 O.OD ol 153.7611 3.53 85 86 0.00 0.00 153.767 73.503 78.04 153.683 46226 0.00 0.00 0.00 0 153.683 3.53 86 67 0.00 0.00 153,683 73,481 78.03 153,605 46226 0.00 0.00 0.00 0 153,605 3.53 87 88 0.00 0.00 153.605 73.459 78.01 153,627 462.26 0.00 0.00 0.00 0 153,527 3.52 88 89 0.00 0.00 153,527 73.437 78.00 153.449 462.26 0.00 0000 0.00 0 153.449 3.52 89 90 0.00 0.00 153.449 73.415 77.98 1 153.3711 462.26 0.00 0.00 0.00 0 153,371 3.52 • Pmledi Name: GRIFFIN RANCH - TRACT 34642 J400 1721 DATE Aug4447 20.2013 14wtln ne.M�.1w.• • Ll TIME min FLOW IN Ids) UPSTREAM FLOW Ga VOLUME du0 TOTAL IN BASIN du0 PERC AREA 4 PERC OUT can TOTAL IN BASIN dull BASIN WSEL 0 RISER OUT FLOW OUT 8 WEIR FLOW OUT cft TOTAL FLOW OUT di TOTAL TOTAL WS BALANCE IN BASIN dub ene-0 90 91 0.00 0.00 153,371 73.393 77.97 153293 462.26 0.00 0.00 0.00 0 153.2931 3.52 91 92 0400 0.00 151293 71372 77.95 151215 46225 0.00 0.00 0.00 0 153.2151 3.52 92 93 0.00 0.00 143215 73.350 77.94 151137 46225 0.00 0.00 0.00 0 153,137 3.52 93 94 0.00 0.00 153.137 73,328 77.92 153.059 462.25 0.00 0.00 0.00 0 153.049 3.51 94 95 0.00 0.00 - 151059 71306 7751 152,981 46225 0600 0.00 0.00 0 1521%7 3.51 95 96 0.00 0.00 152.981 73284 77.89 152.964 46215 0.00 0.00 0.00 0 152,904 3.51 96 97 0.001 0.00 1 132.904 1 73262 77.88 152.8261 462.25 0.001 0.00 0.00 0 152.826 3.511 97 98 0.001 0.00 152.826 73.240 7726 152.748 46225 0.00 0.00 0.00 0 152,748 151 98 99 0600 0.00 152748 73.219 77485 152.670 46225 0.00 0.00 0.00 0 152,670 3.50 99 1 100 0.00 0600 152.670 73,197 77.83 152.592 462.25 0.00 0.00 0.00 0 152,592 3.50 100 101 0.00 0.00 152.592 73,175 77.82 152,514 46215 0.00 0.00 0.00 01 152,514 3.50 101 102 0.00 0.00 152314 71153 77.90 152.436 46225 0.00 0.00 0.00 0 152.436 3.50 102 103 0.00 0.00 152,436 73,131 77.79 152.359 46224 0.00 0.00 0.00 0 152,339 3.50 103 104 0.00 0.00 152,359 736109 77.77 152281 462.24 0.00 0.00 0.00 0 152,281 3.50 104 105 0.00 0.00 152.281 73.087 77.76 152.203 46224 0.00 0.00 0.00 0 iS2,203 3.49 105 106 0000 0.00 154203 73.066 77.74 152.1251 462.24 0.00 0.00 0.00 0 152.125 3.49 106 107 0.00 0000 152,125 73.044 77.72 15ZO48 462.24 0.00 0.00 0.00 0 152.048 3.49 107 108 0.00 0.00 152.048 73.022 77.71 151,970 46224 0.00 0.00 0.00 0 751.970 3.49 108 109 0.00 0.00 151,970 73.000 77.69 151,892 46224 0.00 0.00 0.00 0 151.892 3.49 109 110 0.00 0.00 151.892 72,978 77068 151.815 462.24 0.00 0.00 0.00 0 151,815 3.49 110 111 0600 0.00 151,815 72947 77.66 1516737 46224 0.00 0.00 0.00 0 151,737 3.48 111 112 0.00 0.00 151.737 72,935 77.65 151.659 462.24 0.00 0.00 0.00 0 151,659 3.48 112 113 0.00 0.00 141.659 72.913 77.63 151,582 462.23 0.00 0.00 0.00 0 151,582 3.48 113 114 0.00 0.00 141,582 72.891 77.62 151,504 46213 0.00 0.00 0.00 0 151,504 3.48 114 115 0.00 0.00 151.504 72869 77.60 151.426 ' 46223 0.00 0.00 0.00 0 151.426 3.48 115 116 0.00 0.00 151.426 72,848 77.59 151,349 462.23 0.00 0.00 0.00 0 151.349 347 116 117 0.00 0.00 151.349 72,826 77.57 151271 46213 0.00 0400 0.00 0 151271 3.47 177 118 0.00 0.00 151271 72,804 77.56 151,194 46223 0.00 0.00 0.00 0 151,194 3.47 118 119 ODD 0.00 151,194 72.782 77.44 151.116 462.23 0.00 0.00 0.00 0 1510116 3.47 119 120 0.00 0.00 151,116 72.761 77.63 151,039 46223 0.00 0.00 0.00 0 151,039 3A7 120 121 0.00 0.00 151.039 72739 77.51 150. %1 462.23 0.00 0.00 0.00 0 150• %1 3.47 121 122 0.00 0.00 150. %1 72,717 77.30 150.884 462.23 0.00 0.00 0.00 0 150,884 3.46 172 123 0.00 0.00 150.884 720695 77.48 150.806 46222 0.00 0.00 0.00 0 1504806 3.46 123 124 0.00 0.00 1 150.806 72.674 77.47 150.729 46222 0.00 0.00 0.00 0 150.729 3.46 124 125 0.00 0.00 150,729 72.652 77,14 150,651 462.221 0.00 0.001 0.00 0 150,631 3.46 125 126 0.00 0.00 - 150.651 72,630 77.44 150,574 46222 0.00 0.00 0400 0 150.574 146 126 127 0.00 0.00 150.574 72,608 77.42 15OA96 46222 0.00 0600 0.0D 0 150.496 3.45 727 128 0.00 0.00 150,496 72.587 77.41 150.419 46222 0000 0.00 0.00 2 150.4191 3.45 128 129 0.00 0.00 150,419 72.565 77.39 150.342 462.22 0.00 0.00 0.00 0 150,342 3.45 129 1 130 0.00 0.00 150.342 72.543 77.38 150264 462.22 0.00 0.00 0000 0 150•2S4 3,45 130 131 0.00 0.00 150.264 72.522 77.36 150,187 462.22 0.00 0.00 0.00 0 150,187 3.45 131 132 0.00 0.00 150.187 72,500 77.35 150,110 462.22 0.00 0.00 0.00 0 150.110 3.45 132 133 0.00 O.DO 150.110 72,478 77.33 150.032 46221 0.00 0.00 0.00 0 150.032 3.44 133 134 0.00 0.00 150.032 72.456 77.32 149,955 46221 0.00 0.00 0.00 0 149.945 3.61 134 135 0.00 0000 149.955 72,435 77.30 149.878 46221 0.00 0.00 0.00 - 0 149.878 3.44 135 136 0.00 0.00 149,878 72.473 77.29 149.600 46221 0.00 0.00 0.00 0 149,800 344 136 137 0.00 0000 149,800 72.391 77.27 149,723 46221 0.00 0.00 0.00 0 149,723 3.44 137 138 0.00 0.00 1496723 72.370 77.26 149.646 46211 0.00 0.00 0.00 0 149,646 3.44 138 139 0.00 0.00 149.646 72.348 77.24 149.568 46221 0.00 0.00 0.00 0 1 149,568 3.43 139 140 0.00 0.00 1496568 72.326 7723 149491 46221 0.00 0.00 0.00 0 149491 143 140 141 0.00 0.00 149.491 72.305 77.21 149.414 462.21 0.00 0.001 0.00 0 149.414 343 141 142 0.00 0.00 149.414 72.283 77.20 149.337 46221 0.00 0.00 0.00 0 149.337 3.43 142 143 0.001 0.00 149.337 72.261 77.18 149.260 46220 0.00 0.00 0.00 0 149.260 3.43 143 144 020 0.00 149,260 72.240 77.17 1 149.183 46220 0.00 0.00 0.00 0 149,183 3.42 144 145 0.00 0.00 149.783 72.218 77.15 149.105 46220 0.00 0.00 0.00 0 149.105 3.42 145 146 0.00 0.00 149.105 72.196 77.14 149.0281 46220 0.00 0.00 0.00 0 149.028 3,12 146 147 0.00 0.00 149,028 72.175 77.12 148.951 462.0 0.00 0.00 0.00 0 148,951 3.42 147 148 0.00 0.00 148. 951 72.153 77.11 148.874 46220 0.00 0.00 0.00 0 148,874 3.42 148 1 149 0.00 0.00 148,974 72.131 77.09 148.797 46220 0.00 0.00 0.00 111 148,797 3.42 149 150 0.00 0.00 148,797 72,110 77.08 148.720 46210 0.00 0.00 0.00 0 148,72D 341 150 151 0.00 0.00 148,720 72.088 77.06 148.643 46220 0.00 owool 0.00 0 148.643 341 151 152 0.00 0.00 148.643 72,067 77.05 148.566 46210 0.00 0.001 0.00 0 148.566 3.41 152 153 0.00 0.00 148.566 72,045 77.03 148.489 462.19 0.00 0400 0.00 0 148.489 3,41 153 154 0.00 0.00 148.489 72,023 77.02 148,412 462.19 0.00 0.00 0.00 0 148,412 3.41 154 155 0.00 0.00 148.412 72.002 77.001 148.335 46119 0.00 0.00 0.00 0 148.335 3.41 155 156 0.00 0.00 148.335 71,980 76.99 148258 462.19 0400 0000 0.00 0 148.258 340 156 157 0.00 0.00 148258 71,959 76.97 1486181 462.19 0.00 0000 0.00 0 148.181 3.40 157 158 0.00 0.00 1486181 71,937 76.96 148,104 462.19 0.00 0.00 0.00 0 148.104 3.40 158 159 0.00 0400 148104 71,915 76.94 148.027 462.19 0.00 0.00 0.00 111 148.027 3,10 159 160 0.00 0.00 148.027 71,694 76.93 147,950 462.19 0.00 0.00 0.00 0 147,950 3.40 160 161 0.00 0.00 147,950 71,872 76.91 147,873 462.19 0.00 0.00 0.00 0 147,873 3.39 161 162 0.00 0.00 147.873 71,851 76.90 147,796 462.19 0.00 0.001 0.00 0 147,795 139 162 163 0.00 0.00 147.796 71,829 76.68 147,719 462.78 0.00 0.001 0.00 0 147,719 3.39 163 164 0.00 0.00 1476719 71,807 76.87 147.642 462.18 0.00 0.00 0.00 0 147,642 3.39 164 165 0000 0.00 147,642 71,786 76.85 f 147,565 462.18 0400 0.00 0.00 0 147565 139 165 166 0.00 0.00 147.565 71,764 76.84 147.489 462.18 0.00 0.00 0.00 0 147,489 3.39 166 167 0.00 0.00 147.4891 71,743 76.82 147.412 462.18 0.00 0.00 0.00 0 147,412 3.38 167 1 168 0.00 0.00 147412 71.721 76.81 1470335 462.18 0.00 0.00 0.001 0 1470335 3.38 168 169 0.00 0.00 - 147,335 71,700 76.79 147,258 462.18 0.00 0.00 0.00 0 147,258 3.38 169 170 0.00 0.00 147.258 716678 76.78 147,181 462.18 0.00 0.00 0.00 0 147,181 3.38 170 171 0.00 0.00 147,181 71,657 76.76 147,105 462.18 0.00 0.00 0.00 0 147.105 3.38 171 172 0.00 0.00 147.105 71,635 76.75 147,028 462.18 0.00 0.00 0.00 0 1470028 3.38 172 173 0.00 0.00 147.028 71,613 76.73 146.951 462.18 0.00 0.00 0.00 0 146, 951 3.37 173 174 0.00 0.00 146.951 71.5921 76.72 1 146.8741 462.171 0.00 0.00 0.00 0 146,874 3.37 174 175 0.00 0.00 146.874 71,5701 76.701 146.798 462.17 0.00 0.00 0.00 0 146.798 3.37 175 176 0.00 0.00 146.798 71,549 76.69 146.721 - 46177 0.00 0.00 0.00 0 146.721 3.37 176 177 0.00 0.00 146.721 71,527 76.67 146.644 462.17 0.00 0.00 0.00 0 146.644 3.37 177 178 0.00 0.00 146,644 71,506 76.66 146.568 462.17 0.00 0.00 0.00 0 146,568 3.36 178 179 0.00 0.00 146,568 714&1 76.64 146.491 662.77 0.00 0.00 0.00 0 1d6.497 3.36 179 180 0.00 0.00 746.497 71.463 76.63 146,415 462.17 0.00 0.00 0.00 0 146,415 3.36 • Worksheet for Trapezoidal Channel - CB 2/3 Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.035 1.04 Channel Slope 0.00970 ft/ft Left Side Slope 2.00 ft/ft (H:V) Right Side Slope 2.00 ft/ft (H:V) Bottom Width 6.00 ft Discharge 30.00 fP /s Results ft ft/ft GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss Normal Depth 1.04 ft Infinity Flow Area 8.40 ft2 ft/s Wetted Perimeter 10.65 ft Critical Depth Top Width 10.16 ft 0.00970 Critical Depth 0.83 ft ft/ft Critical Slope 0.02140 ft/ft Velocity 3.57 ft/s is Velocity Head 0.20 ft Specific Energy 1.24 ft Froude Number 0.69 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 1.04 ft Critical Depth 0.83 ft Channel Slope 0.00970 ft/ft Critical Slope 0.02140 ft/ft is Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.066.001 6/5/2013 12:07:51 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -203- 755 -1666 Page 1 of 1 Worksheet for Trapezoidal Channel - CB 6/7 Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.035 ft Channel Slope 0.00930 ft/ft Left Side Slope 2.00 ft/ft (H:V) Right Side Slope 2.00 ft/ft (H:V) Bottom Width 6.00 ft Discharge 24.40 ft' /s Results 3.30 ft/s Normal Depth 0.94 ft Flow Area 7.39 ft' Wetted Perimeter 10.19 ft Top Wdth 9.75 ft Critical Depth 0.73 ft Critical Slope 0.02210 ft/ft Velocity 3.30 ft/s Velocity Head 0.17 ft Specific Energy 1.11 ft Froude Number 0.67 Flow Type. Subcritical LGVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 iGVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 0.94 ft Critical Depth 0.73 ft Channel Slope 0.00930 ft/ft Critical Slope 0.02210 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster (08.01.066.00] 6/5/2013 12:10:06 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 - 755 -1666 Page 1 of 1 Griffin Ranch — Tract 34642 Hydrology & Hydraulics Report Appendix J RCWQMP Exhibit C Worksheets 0 • Riverside County - Whitewater River Region Water Quality Management Plan Exbibit C • • Worksheet 1 Design Procedure for BMP Design Volume Designer: DLS Company: MSA Consulting Inc. Date: April 10, 2013 Project: GRIFFIN RANCH - TRACT 34642 Drainage Area: SITE 1. Determine the Tributary Area to the BMP (Ab;b) Ab;b= 40.65 acres 1 2. Determine the impervious area ratio (i) a. Determine the impervious area within AtOb A;mp 21.24 acres (2) b. Calculate I = A;mP Amb = (2)/(1) i= 0.52 3 3. Determine Runoff Coefficient C C= 0.858 *i3 - 0.78 *i2 +0.774 *i +0.04 C= 0.35 (4) C = 0.858 *(3)3 - 0.78'(3)2+0 .774*(3)+0.04 4. Determine Unit Storage Volume (V„) V„= 0.40 *C =.0.40 *(4) V„= 0.14 acre -in /acre 5 5. Determine Design Storage Volume VBMP = Vu * Aft = (5) *(1) VBMp= 5.75 acre -in VBMP = (6)/12 VBMP= 0.48 acre -ft (7) VBMp = (7) *43560 VBMp= 20,889 cubic ft 8 Notes: • Riverside County - Whitewater River Region Water Quality Management Plan Exbibit C 41 Worksheet 2 Design Procedure for BMP Design Flow Uniform Intensity Design Flow Designer: DLS Company: MSA Consulting Inc. Date: April 10, 2013 Project: GRIFFIN RANCH - TRACT 34642 Drainage Area: SITE 1. Determine the Tributary Area to the BMP (At„b) Atftb 40.65 acres (1) 2. Determine the impervious area ratio (i) a. Determine the impervious area within At,;b AtmP 21.24 acres b. Calculate I = AtmP Atdb (Note: Rounded to nearest 5 %) i= 50% (2) 3. Determine Runoff Coefficient C Use Table 4 and impervious % (2) A Soil Runoff Coefficient Ca 0.48 (3) B Soil Runoff Coefficient Cb= 0.52 (4) C Soil Runoff Coefficient - C�= 0.56 (5) D Soil Runoff Coefficient Cd= 0.59 (6) 4. Determine the Area Decimal Fraction of Each Soil Type A. Area of Soil Type 'A' / (1) 0.00 acres Aa= 0.00 (7) A. Area of Soil Type'B' / (1) 40.65 acres Ab= 1.00 (8) A. Area of Soil Type 'C' / (1) 0.00 acres Ac= 0.00 (9) A. Area of Soil Type 'D' / (1) 0.00 acres Ad= 0.00 (10) 5. Determine Runoff Coefficient C = (3)x(7) + (4)x(8) + (5)x(9) + (6)x(10) = C= 0.52 (11) 6. Determine BMP Design Flow QBMP = C'I'A = (11) x 0.2 x (1) QBMP= 4.23 cfs (12) Notes: Riverside County - Whitewater River Region Water Quality Management Plan Exhibit C Table 4 Runoff Coefficients for an Intensity = 0.2 in /hr for Urban Soil Types Impervious % 0 (Natural) 5 10 15 20 (1 -Acre) 25 30 35 40 (1/2 -Acre) 45 50 (1/4 -Acre) 55 60 65 (Condominiums) 70 75 (Mobilehomes) 80 (Apartments) 85 90 (Commercial) 95 100 A Soil B Soil C Soil D Soil RI =32 RI =56 RI =69 RI =75 0.06 0.14 0.23 0.28 0.10 0.18 0.23 0.31 0.14 0.22 0.29 0.34 0.19 0.26 0.33 0.37 0.23 0.30 0.36 0.40 0.27 0.33 0.39 0.43 0.31 0.37 0.43 0.47 0.35 0.41 0.46 0.50 0.40 0.45 0.50 0.53 0.44 0.48 0.53 0.56 0.48 0.52 0.56 0.59 0.52 0.56 0.60 0.62 0.56 0.60 0.63 0.65 0.61 0.64 0.66 0.68 0.65 0.67 0.70 0.71 0.69 0.71 0.73 0.74 0.73 0.75 0.77 0.78 0.77 0.79 0.80 0.81 0.82 0.82 0.83 0.84 0.86 0.86 0.87 0.87 0.90 0.90 0.90 0.90 Griffin Ranch — Tract 34642 Hydrology & Hydraulics Report • Appendix K Hydrology Exhibits Proposed Conditions - Synthetic Unit Hydrology Exhibit Proposed Conditions - Rational Method Hydrology Exhibit Proposed Conditions - Inlet and Storm Drain Exhibit n LJ is TRACT 32:79 LEGEND DRAINAGE FLOW TRIBUTARY AREA BOUNDARY DRAINAGE SUB -AREA ID FLOW TRAVEL LENGTH (FT) AREA (AC) LAND USE LEGEND IMPERVIOUS (STREETS; HARDSCAPE) 1/4 ACRE LOTS OPEN SPACE (LANDSCAPE; RETENTION) TRACT BOUNDARY / HYDROLOGY BOUNDARY RECONCILIATION HYDROLOGY BOUNDARY 40.65 AC SURVEYED TRACT BOUNDARY 45.78 AC ADD 1.89 AC SUBTRACT 7.01 AC RECONCILED AREA 40.65 AC DEVELOPED LAND USE SUMMARY LAND USE DA -A AREA (acres) RI NUMBER AMC II INFILTRATION RATE (in /hr) IMPERVIOUS PERCENT (DECIMAL) PAVING /HARDSCAPE 8.19 56 0.51 1.00 1/4 ACRE LOTS 24.51 56 0.51 0.50 LANDSCAPING / BASINS 7.95 56 0.51 0.10 TOTAL AREA 1 40.65 FACTOR OF SAFETY STORM EVENT SUMMARY DEVELOPED CONDITIONS DURATION 1 -HOUR 3 -HOUR 6 -HOUR 24 -HOUIR EFFECTIVE RAIN (in) 1.08 1.28 1.29 1.32 FLOOD VOLUME (cu -ft) (acre -ft) 159,355 3.66 189,101 4.34 190,044 4.36 194,704 4.47 REQUIRED STORAGE (cu -ft) (acre -ft) 155,842 3.58 178,716 4.10 171,510 3.94 141,129 3.24 STORAGE PROVIDED (cu -ft) (acre -ft) 424,162 9.74 FACTOR OF SAFETY 2.72 2.37 2.47 3.011 PEAK FLOW (cfs) N/A 72.83 63.85 14.83 MAXIMUM WSEL (ft) DEPTH (ft) 462.29 3.29 462.58 3.58 462.49 3.49 462.10 3.10 PRELIMINARY WQMP SUMMARY DRAINAGE TOTAL IMPERVIOUS DESIGN DESIGN AREA AREA AREA VOLUME FLOW (acres) (acres) (cu -ft) (cfs) SITE 40.65 21.24 20,889 4.23 d w� OR 0' 80' 160' 240' 320' SCALE 1"=80' LOT 11a PE 472.0 AVENUE 54 / PE 469.9 � � /� \-TRACT BOUNDARY LOT 79 / PE 469.4 i NOTE: RUNOFF FROM LOTS 21 -29 AND 77 -82 • ARE ACCOUNTED FOR PER THE PREVIOUSLY I APPROVED HYDROLOGY REPORT FOR TRACT 32879 I eAll TRACT BOUNDARY w w cc f-- w 0 cc z 0 2 i TRACT @2 LEGEND DRAINAGE FLOW TRIBUTARY AREA BOUNDARY DRAINAGE SUB -AREA ID FLOW TRAVEL LENGTH (FT) AREA (AC) NODE NUMBER ELEVATION LAND USE LEGEN IMPERVIOUS (STREETS; HARDSCAPE) 1/4 ACRE LOTS OPEN SPACE (LANDSCAPE; RETENTION) ,','.' PROPOSED LAND USE SUMMARY TRIBUTARY FLOW TO INLETS DA LAND USE PERVIOUS AREA (acre) IMPERVIOUS AREA (acre) TOTAL AREA (acre) Ap DECIMAL A.01 USER INPUT 2.15 3.01 5.15 0.42 A.02 USER INPUT 3.10 4.49 7.58 0.41 A.03 USER INPUT 1.12 1.78 2.90 0.38 B.01 USER INPUT 0.38 0.54 0.91 0.41 B.02 USER INPUT 0.84 1.25 2.09 0.40 C.01 USER INPUT 2.44 3.34 5.78 0.42 C.02 USER INPUT 1.72 2.35 4.07 0.42 C.03 USER INPUT 0.62 0.84 1.46 0.42 D.01 USER INPUT 0.611 0.89 1.50 0.41 D.02 USER INPUT 0.33 0.51 0.84 0.40 E.01 USER INPUT 0.63 0.72 1.35 0.47 F.01 USER INPUT 0.64 1.00 1.64 0.39 TOTAL 14.57 20.70 35.27 0.41 NOTES: TO ACCOUNT FOR THOSE AREAS NOT DIRECTLY TRIBUTARY TO THE INLETS, FLOOD VOLUMES FROM THE 100 YEAR - 1 HOUR SYNTHETIC UNIT HYDROGRAPH WERE UTILIZED IN THE BASIN STAGE STORAGE ANALYSIS. OPEN SPACE AREAS WERE ASSUMED TO HAVE A IMPERVIOUS FACTOR OF 10 %. PER THE RCFCD HYDROLOGY MANUAL THE MINIMUM DECIMAL VALUE FOR PERVIOUS AREA EQUALS 0.01. OwXX 0' 80' 160' 240' 320' SCALE 1"=80' D.01 LOT 79 \ / ' • PE 469.4 / • / TRACT BOUNDARY • NOTE: RUNOFF FROM LOTS 21 -29 AND 77 -82 ARE ACCOUNTED FOR PER THE PREVIOUSLY I APPROVED HYDROLOGY REPORT FOR TRACT 32879 I �/ I TRACT BOUNDARY D.02 L -390 w_n nw CB 9 Q1oo =2.95 CFS Qto =1.54 CFS f�OO T 76 PE too., LOT 76 PE 479.8 PROPOSED INLET SUMMARY LOT 77 LOT 78 LOT 79 LOT 800 [LOST 81 PE 479.4 PE 478.8 PE ua.,q PE 477.7 pG 477.2 LOOT 97 PE 47 0.8 TRA INLET NO. INLET TYPE 100 YEAR STORM INTERCEPTED BYPASSED FLOW FLOW (cfs) (cfs) GUTTER DEPTH (in) 10 INTERCEPTED FLOW (cfs) YE BY CB-2/3 CLQ STD DWG 300 W =8' 15.02 -0- 8.28 7.77 38.78 CB-4/5 CLQ STD DWG 300 W =4' 3.82 -0- 4.81 2.03 24 CB-6/7 CLQ STD DWG 300 W =7' 12.25 -0- 1 7.69 6.46 464.' CB -8 CLQ STD DWG 300 W =15' 4.86 0.06 4.47 2.58 7.761 CB -9 CLQ STD DWG 300 W =10' 2.94 0.01 4.26 1.54 12.25 CB -10 CLQ STD DWG 300 W =11' 1 3.63 0.02 4.58 1 1.93 HDPE PROPOSED PIPE SUMMARY PIPE NO. PIPE 0 (in) MATERIAL FULL CAPACITY (cfs) SYSTEM FLOW (cfs) SLOPE (ft /ft) AVERAGE VELOCITY (ft /s) UPSTREAM FG (ft) HGL (ft) P- 130.01 24 HDPE 38.78 29.94 0.0250 9.53 466.01 463.E P- 130.02 24 1 HDPE 17.54 15.02 0.0051 4.78 466.01 464.' P- 220.01 24 HDPE 32.69 24.39 0.0178 7.761 465.95 462.: P- 220.02 18 HDPE 16.67 12.25 0.0215 6.93 465.90 463.' P- 470.01 24 HDPE 37.06 14.81 0.0229 4.72 465.60 461.1 P- 470.02 24 HDPE 19.37 9.63 0.0062 6.16 467.00 462.1 P- 470.03 24 RCP 17.83 6.85 0.0062 5.30 468.4'0 463.; P- 470.04 24 RCP 13.67 6.93 0.0037 4.37 468.80 465.1 P- 470.05 18 RCP 6.80 4.52 0.0042 4.12 470.00 466.E P- 470.06 18 RCP 5.10 4.85 0.0024 3.28 471.17 467., L- 470A.01 18 HDPE 15.14 7.59 0.0177 8.57 466.15 462.1 L- 470A.02 1 18 1 HDPE 1 7.751 3.82 0.0046 4.37 466.119 462.E L- 470B.01 18 RCP 1 8.471 3.641 0.0076 4.61 466.51 463.( L- 470C.01 18 RCP 1 11.291 3.001 0.01161 5.401 468.91 465:, WELL SITE TRACT BOUNDARY AVENUE 54 CB 8 Qioo =4.92 CFS • Qio =2.58 CFS • =--- 17 - - - -- -- - - - - -- = I � LOT 20 II LOT 19 II LOT 18 LOT 17 LOT 16 LOT 14 LOT' 13 LOT 12 LOT 11 PE 475.6 II PE 474.4 II PE 473.4 PE 473.9 PE 474.4 LOT 15 PE 473.5 PE 472.8 PE 472.1 PE 471.4 LOT 10 �� I II II PE 474.3 PE 470.8 P- 470.06 HAFLINGER WAY _ _ \ LOT 9 \\� PE 470.2 a � I I LOT 47 LOT 21 11 LOT 40 LOT 41 LOT 42 LOT 43 LOT 44 LOT 45 PE 4718 �// LOT 46 PE 475.8 11 PE 472.9 PE 473.9 PE 474.3 PE 474.4 PE 473.9 PE 473.2 PE 472.5 MH 470.05 11 LOT 48 I • PE 470.8 LOT 8 PE 469.6 LOT 22 I I LOT 39 = - - - - \\ P- 470.05 PE 475.1 I 1 PE 472.0 LOT 52 LOT 51 LOT 50 1 1 LOT 56 LOT 55 LOT 54 LOT 53 PE 470.4 PE 469.7 PE 469.1 - - PE 471.9 PE 472.3 PE 471.8 PE 471.1 LOT 7 I LOT 49 PE 469.0 II \ LOT 38 - - - - �\ PE 468.5 LOT 23 II PE 471.4 DAMASCUS WAY _ _ _ \ \ � _ _ LOT 6 I Q op 2.95 CFS PE 474.5 U PE 468.5 I Q,o =1.54 CFS 1 Z LOT 60 LOT 61 L- 470C.01 II LOT 59 II LOT 37 a LOT 57 LOT 58 PE 471.7 PE 471.0 PE 470.3 62 // CB s P- 220.02 W PE 472.1 PE 469.6 /�/ Qlo 61462 CFS MH- 470.04 PE 470.9 J PE 472.1 LOT 63 Q oo= 12.25 CFS LOT 24 II = // PE 468.5 i� Q,o =s.4s CFS PE 47'3.9 � �_� i LOT 5 F... / Q,00 4 4 cfs ANNEL PE 468.2 W II i t LOT 69 PE 470.4 II LOT 25 PE 473.3 II LOT 35 PE 469.9 LOT 26 I i PE 472.8 I { \ II � I1 LOT 34 I I PE 469.5 11 LOT 27 I�\ PE 472.3 \\ \\ LOT 33 \� PE 469.3 LOT 28 \\ PE 472.0 �\ i 465---_ LOT 73 II I I i 11 J l PE 470.0 TOG 459.5 LOT 72 �� RETENTION BASIN PE 469.4 MAX WVSEL - 462.58 100 YR - 3 HR STORM TOG 459.5 TOG 459.5 LOT 32 PE 469.1 LOT 71 4, PE 468.6 46 LOT 70 PE 468.1 �/ \ VERFLC Q100=30.0 cfs B =6' DN =1.04' fps LOT 9 130.02 LOT LOT 31 PE 470.0 LOT 30 c6 2 � � Qloo =15.02 CFS PE 470.8 G Q10 =7.77 CFS LOT 74 PE 468.7 O LOT 29 P M P / PE 470.8 E 469.5 � NOTE: MANNING'S n- VALUES LOT 119 LOT 76 / E • RCP= 0.032 P� 470a�3 PE 470.4 LOT 83 LOT 77 PE 470.2 • PE 470.7 LOT 82 PE 470.4 LOT 78 PE 470.5 LOT 81 . • PE 470.4 LOT 130 MPG • PE 47003 LOT 80 / PE 469.9 / LOT 7;) { PE 469.A / �• TRACT BOUNDARY LO 4 131 . • PE 468.8 . . • / NOTE: RUNOFF FROM LOTS 21 -29 AND 77 -82 ARE ACCOUNTED FOR PER THE PREVIOUSLY APPROVED HYDROLOGY REPORT FOR TRACT 32879 LOOT 144 I PE 408.6 . 01 ��(� R 0' 80' 160' 240' 320' SCALE 1"=80' 3 `15.02 CFS = .77CFS LOT 85 PE 468.8 LOT 84 PE 469.3 -- 1 B =4' DN =0.9 ' V =3.30 s P- 220.01 \ LOT 64 \ PE 468.5 1 { LOT 65 PE 469.1 I II /I I LOT 67 I r LOT 68 pE 468.9 I \ PE 468.9 CB 5Il _ .82 CFS Qio =2.03 CFS LOT 86 1 LOT 87 LOT 88 PE 468.7 PE 468.9 PE 468.6 LOT 66 PE 469.1 r- P- 470.01 4 -4 LOT 4 PE 469.0 LOT 3 PE 469.0 LOT 2 PE 469.0 LOT 1 70.01, PE 468.5 r- P- 470.02 MH- 470.02 -\ CB 4 Q,00= .82 CFS Q10 =2 03 CFS LOT 89 LOT 90 PE 468.0 PE 468.6 CB 10 Qloo =3.65 CFS I Qlo =1.93 CFS I cc O Z O 2 P- 470.04 - 470.03 03 UI �} L- 4708.01 I s ■