Loading...
3627930 E - IN THE CITY OF LA QUINTA, CALIFORNIA IFEdM Cap HYDROLOGY /DRAINAGE REPORT <o QRpFESSIC, \ \ K R /c�� F,yC w m * NO. 35728 U EXP. 6 -30 -11 OF CP,\ � REPORT FOR TRACT 36279 IN THE SE 1/4 OF SECTION 4 , T 6 S, R 7 E, SBM (Last Revised 4/13/2011) UVIE 177 -933 Las Montanas Road, Suite 101 Palm Desert, CA 92211 Tel: (760) 360 -4200 Fax: (760) 360 -4204 Coachella Valley Engineers email: eve @cve.net web: www.cve.net DAVID K. RICE JR. - RCE 35728 - EXPIRES 6 -30 -11 AVENUE 1 50 W OLD ORCHARD I 4- z VISTA O BONIT TRAIL T. 5S. T. 6S. W AVENUE 51 Z 0 AVENUE 52 VICINITY MAP NOT TO SCALE SITE W CIRCLE n ��� ME', I if E--) l APR 19 2011 Citv of La ozurita Planning Deoartmant 'i PEDCORE INVESTMENTS HYDROLOGY AND DRAINAGE FACILITY DESIGN REPORT INDEX .ti Cover Sheet ' I Index Hydrology and Drainage Facility Design Report ') Location Map — Predevelopment Drainage Area Map — Post Development 2007Approved Report Drainage Area Reference Map Retention Basin Storage Summary CLQ Synthetic Unit Hydrograph Analysis for total area CLQ Synthetic Unit Hydrograph Analysis for basins from Approved Report 'l APPROVED AUGUST 2007 HYDROLOGY /DRAINAGE REPORT ' J NWS NOAA Precipitation Forecast Soil Conservation Service Aerial Map Data Appendix 1. Soil Engineer Percolation Report ' 2. Soil Engineer Percolation Report Update 3. CVE & CLQ Comparative Drainage Areas and SUH Storm Volumes ' I 4. CVE Synthetic Unit Hydrograph Analysis — Basins 1 through 15 5. Retention Basin Storage Calculation Sheets ' I 6. CVE Design Calculations 7. SCS Hydrologic Soil Group Table 12 ' 1 8. Calculation of Madison Avenue 10 year and 100 year per EB -16 9. Nuisance Water Evaluation 10.TM 30378.AND TM 33085 Reciprocal Easement & Maintenance Agreement 11. Imperial Irrigation District Utility Easement and "as built drawing AND DISCUSSION Ii'Iareh 21, 2011 HYDROLOGY AND RETENTION BASIN DESIGN FOR TRACT 36279 City Of La Quinta ( Southwest Corner Of Ave 51 and Madison St.) STATEMENT OF AMENDMENT 2010 City of La Quinta has requested an updated Hydrology and Retention Basin Report to be prepared in the 2010 Engineering Procedure for the City of La Quinta as adopted by the city council on December 19, 2006. Said procedure is detailed in City of La Quinta Department of Public Works Engineering Bulletin No. 06 -15 and 06 -16. The original Hydrology and Retention Basin Report was approved on August 8, 2007. This report will review and modify the existing report in the areas which do not conform to the new design criteria of EB No 15 and 16. The 2010 Project residential site layout has amended the lot sizes and deleted the "on site" retention basins. All drainage storm water and irrigation nuisance water will be collected and percolated into the central retention basin with the deep well chambered percolation and hazmat filtering system. These deep wells have WQMD /SWPPP compliant filters for maintaining quality percolation waters. The 2007 Approved Report Drainage Area Reference Map included in the following pages shows the drainage areas and retention basins used in the calculations from the previously approved report. The Retention Basin comparative chart shown on the following page shows which portions of each drainage area correspond with each basin and the calculated volume required for said basin. The current Drainage Area map shows the previous drainage area boundaries to illustrate that the areas are incorporated in the updated configuration. tI DESIGN CRITERIA DIFFERENCES. The City of La Quinta published Engineering Bulletin nos. 15 and 16 addressing the updated ' design criteria for underground retention basins and the hydrology design criteria. For TM 36279 the project acreage per basin is less than 10 acres. Per the Riverside County Flood Control District Design Manual Criteria in Chapter "D" the Rational Method of hydrology forecasting is mandated. Comparable Synthetic Unit Hydrograph analysis has been prepared as requested by City Engineering Staff. Maximum storm water runoff period is the 100 year occurrence twenty -four hour storm. The design of Madison Street shall be predicated on conformance of construction 9 p o to merge to the existing east half of street in the City of Indio. The project 2010 underground retention systems can implement the use of the Deep well i Percolation Chamber and must be dissipated. within 72 hours. By special permission of the City ' Engineer, two (2) maxwell plus structures can be used to accomplish this 72 hour dewatering requirement for the the one (1) basin. ' Pale I of-7 I AND DISCUSSION] March 21, 2011 Percolation tests have been conducted using the double ring infiltrometer ASTM D3385 -88 i (sand litho logy) Sladden Engineering,Ltd 2007 tests are included herewith. The double ring results were not applicable because of existing silt/clay lenses. '! Rainfall Intensities shall be prepared using a locally zoned City map in accordance to the NOAA available forecast data. Project street capacity shall be calculated on the FHWA HEC 22 methodology. PROJECT LOCATION Tract 36279 is located in the City of La Quinta, at the Southwest corner of the intersection of Vista Bonita Trail (VBT), (aka Ave 51) and Madison Street. It is designated as APNs 772 - 270 -011, 012, & 013, and is described as a portion of the NE % of the SE % of Section 4, T6S, R7E, SBB &M. It consists of approximately 10 acres of flat, sandy, former Citrus grove being divided into eight, approximately 1 -acre residential lots. 'I SUMMARY AND DISCUSSION ' The contours on the enclosed portion of USGS topo map (Location Map) indicate that Vista Bonita Trail follows a ridge for approximately 1100 feet, from the Coachella Canal to Madison St. The easterly 900 feet of this street historically drained past and /or into subject site. Subject site cannot obstruct this flow, and must convey it through or past the site, but is not usually required to retain and dispose of offsite flows. However, the development of Tract 36279 has been designed to retain and percolate all rainfall from the site, as well as from all offsite areas that presently drain toward the site. The latter areas consist of the west half of Madison St south of Ave 51 and adjacent to the site, and a strip 900 by 100 feet along Vista Bonita Trail west of Madison St. North of Vista Bonita Trail (Ave 51), Madison St. drains north away from subject site to a culvert flowing east under Madison St. t South of Vista Bonita Trail the west half of Madison St drains south along subject site frontage, and is collected in a curb inlet (cb #1) at Beth Dr., near the southeast corner of the site. The easterly 50 feet of the orchard area to the west of subject site was surveyed by CVE, along with subject site. An existing 1 to 2 foot high berm constructed by the owner of this adjacent ' offsite property prevents all runoff from that property onto subject site. The general elevation of this property 20 feet west of the property line is 518.4. The elevation of the top of this berm is approximately 520.2. (see spot elevations on the rough grading plan). This data demonstrates that this offsite area does not drain into subject site. Instead, the offsite parcel drains south J from Vista Bonita Trail past subject property, and thence southeasterly across the property south of subject to Madison St.. 'i Page2of7 1 [SUMMARY AND DISCUSSION IMarch 21., 201.1 Calculations were made for the 100 year, 1 hour, 3 hour, 6 hour and 24 hour storm data to confirm which storm requires the largest retention volume. The 100 year, 24 hour storm required the largest retention for the designed basins (See the Retention Basin Data Summary attached). Basin 1 has been designed as approximately 6.0 feet deep by 75 foot bottom width trapezoidal with 3 tot side slopes and water depth of approximately 5.0 feet. The shallow depth and flat slopes minimize the physical and visual impact of the basins on landscaping and maintenance activities. Synthetic Unit Hydrograph Analysis of the equivalent area concludes that flood runoff volume of 59,308 CF has been designed for the final construction specifications. (REF 0810812007 RPRT, pg 9). The total design pond volume of Basin 1 is 62,219 CF. ' Basin 1 is designed as one interconnected system to provide sufficient capacity to accommodate the offsite drainage from Vista Bonita Trail and Madison St. This street drainage will flow in graded roadside swales east along Vista Bonita Trail and south along Madison St. to the curb inlet at Beth Circle. (See Street Improvement Plans). It will then be piped into Basin 1. Basins 2 is a very small, temporary retention, pending development to the south of Beth Circle and Old Orchard Lane. The tributary areas for these basins are 100% street pavement. The ` runoff coefficient was adjusted to 90% to insure adequate retention in this temporary basin. This basin have been converted from the original analysis to the catch basin diversion into the "on Site catch basin for TM 36279. ' The existing 6 foot high masonry privacy walls around the site assure privacy and complete control of offsite drainage. The west wall replaces reliance on the existing berm. The north wall ' I assures that the Vista Bonita drainage remains channelized in the existing roadside swale until it reaches Madison St. and can be collected at catch basin # 1 at Beth Circle. The south wall insures that Lot 1 does not drain south onto the neighboring property. The westerly portion of Beth Circle and Lots 1 through 4 drain onto Evangeline Lane (Old Orchard Lane) to the catch basin and then into the basin. In the event of a larger than 100 year storm, this basin will overflow onto Madison Street at elevations at least 1.9 feet lower than the nearest finish floor. The west 1/3 of lots 5 through 1 flow west directly to Old Orchard Ln., then flow south to catch basin #3, then flow into retention basin. ' I The east 2/3 if these lots drain east to individual interconnected drain swales at the east end of i each lot. Each of these swales flows directly to the south and into the main project retention ' ( basin. Vista Bonita Trail drains into Madison St., which drains south to catch basin #1 at Beth Circle. 'I These flows drain through cb #1 into retention basin. Basin is interconnected to provide J adequate storage and percolation capacity. The calculated maximum water surface of the worst 100 -year storm in basin1 is 512.50 with one foot freeboard per CLQ specs.. In the event of system failure or larger than 100 year storm runoff, basin 1 will overflow through catch basin # 1 into Madison St. at elevation 513.50. ' At elevation 513.50 the runoff will overflow the high point in the center of the Beth Circle. ' Pa��e 3 of 7 (SUMMARY AND DISCUSSION] March 21, 2011 spandrel gutter and will flow south along the west gutter /swale of Madison St., which preserves the historical flow pattern. At elevation 513.50, retention storage depth will be increased from r j 5.00 feet to 6.00 feet, increasing the storage capacity to 80,883CF without flooding any lot or structure. The lowest finish floor is elevation 514.8 (Lot 11), and the lowest street gutter flow line is elevation 512.95. All habitation floors are more than 2 feet above the overflow elevation, and the lowest street, (Madison St) will be flooded to a depth of only 0.35 foot at the beginning of emergency overflow. (less than top of curb). The proposed retention storage is more than adequate, and is fail safe in design. I 1' I I I I I ! u � I I I II I I ' I Pace 4 ol' 7 r ' a [SUMMARY AND DISCUSSION.] March 21, 201 l 'I t DESIGN CRITERIA The retention basins are designed per the requirements of the City of La Quinta and the Riverside County Hydrology Manual (RCHM). (See attached enclosures) i The 100 -yr /3 hr storm intensity was extrapolated to be 2.6 inches per hour from plate F -5.2 of the RCHM. The 100 -yr /6 hr storm intensity was extrapolated to be 3.40 inches per hour from plate F -5.4 of the RCHM, and the 100 -yr /24 hr storm intensity was extrapolated to be 4.0 inches i per hour from plate F -5.6 of the RCHM. ' The site consists of Hydrologic Soil Groups A, and B — Lots 1 & 2 are Group A, having high infiltration rates, antecedent moistening condition rating of AMC II, and low runoff potential when ' saturated. The remainder are Group B, having lower infiltration rates and higher runoff potential when saturated. ' I Lots 1 through 4 retain all onsite drainage — the impervious area was calculated to be 23 %. Runoff from Lots 1 & 2 was calculated for soil Group A, and Lots 3 & 4 for soil Group B. Drainage from Lots 5 thru 8 was combined with onsite and offsite street drainage. The ' I impervious area for this total area was calculated to be 41%, and runoff was calculated for soil Group B. Sladden Engineering has prepared a percolation test report for the site. (Project No. 544 -1497 dated 4/15/02 — See Attached). The results of the percolation test were 2.3 inches /hour. However, per City requirements, only 2.0 inches per hour was used as the design percolation ' I rate. CALCULATION PROCEDURE: ' 1 The Hydrologic Soil Group is determined from RCHM maps (C -1.02 thru C- 1.66), Soil Conservation Service maps, or the Soils Engineers Report. i The Site Runoff Index was determined from Plate D -5.5 and D -5.6 of the RCHM to be RC 32 ' for residential landscaping on Group A soils with 20% impervious cover and RC 56 for Group B soils with 41 % impervious cover. (see attached calculation sheets) The data on RCHM plates D -5.2, D -5.4, and D -5.6 was used to determine the total storm runoff in inches, for calculation of retention basin inflow volumes for 3, 6, and 24 hr 100 year storms respectively. The Rainfall Patterns In Percent of each design storm volume per design period were taken from Table E -5.9 of the RCMH, and are shown in the Precipitation % column of the calculations. The design period was arbitrarily chosen as 15 minutes for the 3 and 6 hour ' ! storms, and 1 hour for the 24 hour storm, to provide enough data points to produce a smooth curve in the graph. 'I Page 5of7 ' . a I SUNIMARY AND DISCUSSION] arch 21, 2011 The rainfall intensity I for each period is the product of this % times the total storm volume. The Impervious % C for each period is the calculated instantaneous value from Plate D -5.1, 5.2 or 5.3 of the RCHM for the corresponding calculated intensity, soil type, and development type. Q is the storm runoff rate during each period, in cubic feet per second (cfs), calculated as the product of the intensity, Impervious % / runoff %, and Tributary Area. Inflow volume is the rate 1 of flow Q accumulating during each period. The water depth in each basin at the end of each period is calculated by comparing the volume ' of the basin calculated from the surface area per foot of depth table with the runoff volume accumulated at that time. The water surface area in the basin at that depth is calculated for each period from the depth and surface area per foot of depth table. The percolation volume for each period is calculated. r� ' The percolation volumes for each basin and design storm were calculated for 15 minute or 1- hour intervals, as the product of the percolation rate (in /hr) and the calculated water surface area / percolation area of the basin during that period, using only the flooded surface area of ' each retention basin during that interval. The storm runoff inflow volumes were calculated for these same intervals. The percolation volumes were subtracted from the storm runoff inflow volumes to determine the required depth and water surface area for each retention basin, for each interval, and the maximum required retention for each basin. (See page 2 of the attached calculation result spread sheets). ' I Criteria for the Rational Method design of storm drain inlets and piping were derived by calculating the initial time of concentration for rainfall to begin to run off from the farthest corner ' I of the farthest area: the travel time for flow to stabilize from the back of the lot to the street, and the travel time to flow in the street from the farthest point to the storm drain inlet, (See RCHM plates -D -3 and D -7.7 attached). This time of concentration was then used to determine the design intensity for the storms, the runoff coefficient, and the flow in the streets and in each inlet and pipe. (see attached calculation sheets) The 100 year, 1 hour storm event is the basis for the sizing of the storm drain inlets and piping. JThe required curb opening length for the catch basins is less than 3 feet. Curb Inlets 1, 2 and 3 are all feet wide and 4 feet deep. ( See pg 5 of the attached calculations of August 2007 report) Catch Basin Pipes A and B are all smooth wall corrugated HDPE (N -12). Diameters are: ' J PIPE DIAMETER Q10 A 12" 9.19 cfs ' B 18" 4.77 cfs 't The ivlaxwell Plus Percolation Well shall conform to the City of La Quinta Standard and shall be the ! equivalent to the Deep Well Specified in compliance to Engineering Bulletin no. 16 as published on 11 Page6of7 � I (SUMMARY AND DISCUSSION I Marc h 21, 2011 • r 1� December 19, 2006. Deepwell strata percolation rate is 5.5 inches per hour per square foot per Sladden Report No. as tested at 10 to 45 feet depth. Per discussion with City Staff, the City Engineer has ' approved the use of two percolation wells for dewatering this basin no. 1. l 1► 1� �i 1� 11� i 1.1 Pale 7 of 7 PEDCORE TM 36279 RATIONAL ANALYSIS vs UNIT HYDROGRAPH CITY OF LA QUINTA Pursuant to city of La Quinta staff request for Coachella Valley Engineers to conduct analysis of Rational Hydrology vs. Unit Synthetic Hydrograph. The rational method of analysis is recommended for tracts less than '100 acres and TM 30378 is less than 10 acres. Per staff's request CVE submits the comparative analysis between rational and SUH. Comparative results for the storm water generated using the 100 year occurrence and a ' three hour duration storm with Synthetic Unit Hydrograph analysis and the 24 hour duration storm for the Rational Analysis yields the following comparative storm water volumes: ,I RA ... Maximum Project Volumes..24hr ....... 41.136 SUH... Generated Project volumes..3 hr ...... 37, 560 ` SUH... Generated Project Volumes..24hr .... 41,985 ' For the function of calculation the 100 year storm water retention basin volumes, CVE has used the "less than 10 acre criteria" for utilizing the rational hydrology generating the maximum storm water retention volume of 41,136 CY with no percolation in the basin as shown on the attached Retention Basin Storage Summary Table in this report. The clarification letter on the soils boring analysis as detailed by Sladden Engineering analyzed as of March 30, 2007, supports a percolation rate of 2.0 inches per hour for retention basin no. 9. t 11 TM 36279 OLD ORCHARD PARK NUISANCE WATER EVALUATION Based upon the 2005 CVE Hydrology and Retention Basin report... the nuisance water accumulation formula remains the same. For the subdivision tract and street of Beth circle, Madison Street and orchard Park Street the calculated projection of nuisance water flow is 6.1 CF / HR. The tested Deepwell percolation two chamber facility is capable of percolating 12.57 times 2.00 inches which equals 25.73 inches of nuisance water per hour. i i� •• j I j l i 1 Fly f i �,, us GS `�o�v ���, ►1�,�;, l:lo dCN .scalp-: 111=.5'0011 L 0C-A. T /0A,` i 70 7UQ ll► �� w m1=11 M1 m m m m m m i1� mm mm DRAINAGE AREA MAP STORM DRAIN /RETENTION BASIN EXHIBIT TRACT 36279 itezf, PREVIOUS DRAINAGE I s I- ( I 9 I I AREA BOUNDARY (- LOT E" 25,308 S.F. 4 I I 0.80 AC. 0.58 AC. 29,420 S.F. O I I (34,649 S.F.) PE 515.8 0.68 AC. w I I PE 516 9 I I -. .......... - - __.._ I..I.. a _ a mI =- ......__� I N zI a I _y- Io I AREA BOUNDARY GEI z wI ¢ I I 29,421 S.F. I I 25,309 S.F. I z 0.68 AC, LZ I I I 0.58 AC. I z I PE 516.3 I PE 515.3 I� in - �-- - - w - - - - - w f I I 11 2 I I I CB 2 25,309 S.F. 41 1 29,422 S.F. I I TC 513.50 0.58 AC. PE 516.1 010 =2.83 CFS PE 514.8 I I I I I I 010 =4.38 CFS - - --- CB 3 I I ( 0.51 AC. TOP 513.50 1 (22,047 S.F.) ws 512.50 I 29 423 S F TC 513.50 I BOT 507.50 LANDSCAPE do �� , . k PE 516.1 010 =9.85 CFS I gl I I I a :I I I I .I I TRACT BOUNDARY & WALL LOT "D" 0.51 AC. BETH CIRCLE (22,388 S.F.) (PRNATE STREET - GRAPHIC SCALE 0 50 100 200 ( IN FEET ) 1 inch = 100 ft. K RETENTION BASIN SUMMARY TABLE DRAINAGE AREA (AC) REQ. PONDING VOLUME (CF) MAXIMUM POND WSL RI VALUE RETENTION POND NO. VISTA BON/TA TR4/L \ DESIGNED POND WSL L -- (PRI�/A STREET I l \ - - - (NATANGLUDBD IN TRACT 362F9 REF�ION -BASIN ANAt1fSfS� ` - - - - 59,308 513.50 56 1 62,219 512.50 40 -*@ r "F" I 512.00 56 l 6 0008 C.' 7 90 TOTALS 29,131 S.F. ` (3,537 S.F.) 0.67 AC. LANDSCAPE 25,071 S.F. 0.58 \ PE 517.7 E 516.8 I I I o Q -_ I - - - - - - - - `� 2065 AC. F +/ 0�% I 24,305 S.F. I PE 517.3 I I 0.56 AC. PE 516.3 itezf, PREVIOUS DRAINAGE I s I- ( I 9 I I AREA BOUNDARY (- LOT E" 25,308 S.F. 4 I I 0.80 AC. 0.58 AC. 29,420 S.F. O I I (34,649 S.F.) PE 515.8 0.68 AC. w I I PE 516 9 I I -. .......... - - __.._ I..I.. a _ a mI =- ......__� I N zI a I _y- Io I AREA BOUNDARY GEI z wI ¢ I I 29,421 S.F. I I 25,309 S.F. I z 0.68 AC, LZ I I I 0.58 AC. I z I PE 516.3 I PE 515.3 I� in - �-- - - w - - - - - w f I I 11 2 I I I CB 2 25,309 S.F. 41 1 29,422 S.F. I I TC 513.50 0.58 AC. PE 516.1 010 =2.83 CFS PE 514.8 I I I I I I 010 =4.38 CFS - - --- CB 3 I I ( 0.51 AC. TOP 513.50 1 (22,047 S.F.) ws 512.50 I 29 423 S F TC 513.50 I BOT 507.50 LANDSCAPE do �� , . k PE 516.1 010 =9.85 CFS I gl I I I a :I I I I .I I TRACT BOUNDARY & WALL LOT "D" 0.51 AC. BETH CIRCLE (22,388 S.F.) (PRNATE STREET - GRAPHIC SCALE 0 50 100 200 ( IN FEET ) 1 inch = 100 ft. K RETENTION BASIN SUMMARY TABLE DRAINAGE AREA (AC) REQ. PONDING VOLUME (CF) MAXIMUM POND WSL RI VALUE RETENTION POND NO. DESIGN POND VOLUME (CF) DESIGNED POND WSL IMP % 1 9.75 59,308 513.50 56 1 62,219 512.50 40 -*@ 0.34 2,775 512.00 56 PREVIOUS DRAINAGE 2,791 512.00 90 TOTALS 10.09 62,083 1 65,010 'L r& TOP 512.00 BOT 510.00 (2,791 C.F.) - 4- w W 9 I x oo x x LOT "B" 0.26 AC. (11,458 S.F.) xt�j x LOT "A" 0.06 AC. (2,728 S.F.) (MADISON ST.) x O x x CB #1 TC 513.71 Q10 -4.77 Q 10 -7.38 x x LOT „O" 0.01 AC. (640 S.F.) (MADISON ST.) FL .51285 x i LEGEND f ABBREVIATIONS TC TOP OF CURB WSL WATER SURFACE LEVEL CF CUBIC FEET S.D. STORM DRAIN EQ. PIPE EQUALIZER PIPE BETWEEN BASINS QRETENTION BASIN #1 ODRAINAGE AREA #1 DRAINAGE AREA BOUNDARY LINE �k DRAINAGE AREA DRAINS + TO T.M. 33085 - - -- PREVIOUS DRAINAGE AREA BOUNDARY H.P. t VISTA BONITA TRAIL (PRIVATE STREET) (NOT INCLUDED IN TRACT 30378 RETENTION BASIN ANALYSIS) TC 515.54 R /W, TRACT BOUNDARY & WALL I I �• � � I I w PL E--' PL cn 0 ® 6 I � cn aE J J I I� �r - -- I. m o -- PL 0 � I r I z m I -lo W I IQ10 O o I� P a — I� LL. o - -� - -- 8 II of � Mo O � � Q I II -Iv RETENTION BASIN (TYP) H P. 11 �L H.P. TRACT BOUNDARY & WALL \ 15 H P. 4 __ \` EXISTING R/W J E BETH CIRCLE TC 512.76 2007 APPROVED REPORT DRAINAGE AREA REFERENCE MAP 1' =100' 1� 1� 1' t TRACT 36279 RETENTION BASIN COMPARATIVE CHART BASIN AREA CVE VOLUME CoLQ VOLUME 10 1E 1 + 6;911 7,500 4 2E 2 5,866 5,490 3E 3+ 10 7,355 7,017 4E 4 5,733 5,675 5W 2 2,331 2,536 G 2,331 2,536 6W + 4 4,083 4,349 2 12 H + + 2 7,350 6,559 2 7W 2 2,202 2,277 J 2 2,202 2,277 8W 2 + 4 4,444 4,422 K 2 + 2 + 2 6,584 6,632 9L .16 1,039 1,311 15 .14 877 1,169 140S .34 2,775 2,796 U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 03/29/07 File: VDB24HRMAR24100.out ++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + ++ + + + + + + + + + + ++ -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 --------------------------------------------------------------------- English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format --------------------------------------------------------------------- VANDENBOS CITYOFLAQUINTA COACHELLA VALLEY ENGINEERS D.K.RICE -------------------------------------------------------------------- Drainage Area = 7.08(Ac.) = 0.011 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 3.50(Ac.) _ 0.005 Sq. Mi. USER Entry of lag time in hours Lag time = 0.050 Hr. Lag time = 3.00 Min. 25% of lag time = 0.75 Min. 40% of lag time = 1.20 Min. Unit time = 60.00 Min. Duration of storm = 24 Hour(s) User Entered Base Flow = 0.50(CFS) 2 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1 *2] 3.50 1.30 4.55 100 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1 *2] 3.50 4.00 14.00 STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall = 1.300(In) Area Averaged 100 -Year Rainfall = 4.000(In) 'I RI Point rain (area averaged) = 4.000(In) F Areal adjustment factor = 100.00 (In /Hr) Adjusted average point rain = 4.000(In) i Sub -Area Data: 0.248 0.287 I. Area(Ac.) Runoff Index Impervious ` 2.030 5.050 60.00 56.00 0.700 0.200 Total Area Entered = 7.08(Ac.) 'I RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F 1 AMC2 AMC -1 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 60.0 40.0 0.670 0.700 0.248 0.287 0.071 56.0 36.0 0.706 0.200 0.579 0.713 0.413 H Data Sum (F) = 0.484 Area averaged mean soil loss (F) (In /Hr) = 0.484 Hydrograph Minimum soil loss rate ((In /Hr)) = 0.242 % (for 24 hour storm duration) 1 1.000 Soil low loss rate (decimal) = 0.500 } ,I - -------------------------------------- ,I U n i t H y d r o g r a p h DESERT S -Curve ` I ------------------------------------------------------ Unit H Data - -- Unit time -ydrograph period ----------------------------------------------------- Time % of lag Distribution Unit Hydrograph f - --- (hrs) ------------------- % (CF- 1 1.000 - - - - - 2000.000 -- -Graph ---------------------------- 100.000 7.135 } ,I - -------------------------------------- Sum = 100.000 -- -------- Sum= ------- ------------ 7.135 --- } Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective �I (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 1.00 1.20 0.048 0.840 0.024 0.02 2 2.00 1.30 0.052 0.801 0.026 0.03 3 3.00 1.80 0.072 0.763 0.036 0.04 �i 4 4.00 2.10 0.084 0.726 0.042 0.04 5 5.00 2.80 0.112 0.690 0.056 0.06 6 6.00 2.90 0.116 0.655 0.058 0.06 Jf 7 7.00 3.80 0.152 0.621 0.076 0.08 8 8.00 4.60 0.184 0.588 0.092 0.09 9 9.00 6.30 0.252 0.556 0.126 0.13 } 10 10.00 8.20 0.328 0.525 0.164 0.16 �f 11 11.00 7.00 0.280 0.495 0.140 0.14 12 12.00 7.30 0.292 0.467 0.146 0.15 ` 13 13.00 10.80 0.432 0.439 0.216 0.22 ' I 14 14.00 11.40 0.456 0.414 - -- 0.04 15 15.00 10.40 0.416 0.389 0.03 16 16.00 8.50 0.340 0.366 0.170 0.17 L 17 17.00 1.40 0.056 0.344 0.028 0.03 1 18 18.00 1.90 0.076 0.324 0.038 0.04 19 19.00 1.30 0.052 0.305 0.026 0.03 20 20.00 1.20 0.048 0.288 0.024 0.02 21 21.00 1.10 0.044 0.273 0.022 0.02 22 22.00 1.00 0.040 0.261 0.020 0.02 23 23.00 0.90 0.036 0.250 0.018 0.02 24 24.00 0.80 0.032 0.244 0.016 0.02 Sum = 100.0 Sum = 1.6 Flood volume = Effective rainfall 1.63(In) times area 7.1(Ac.) /[(In) /(Ft.)] = 1.0(Ac.Ft) Total soil loss = 2.37(In) Total soil loss = 1.396(Ac.Ft) Total rainfall = 4.00(In) Flood volume = 41984.5 Cubic Feet Total -------------------------------------------------------------------- soil loss = 60816.4 Cubic Feet Peak -------------------------------------------------------------------- flow rate of this hydrograph = 2.042(CFS) +++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 24 - H O U R S T O R M ----------------------- R u n o f f H y d r o g r a p h Hydrograph --------------------------------------------- in 60 Minute intervals ((CFS)) Time(h+m) ----------------------------------------------------------------------- -------------------------------------------------------------------- Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 1+ 0 0.0555 0767 VQ 2+ 0 0.1121 0.69 I Q 3+ 0 0.1747 0.76 I Q 4+ 0 0.2408 0.80 I QV 5+ 0 0.3152 .0.90 I Q V 6+ 0 0.3907 0.91 I Q V 7+ 0 0.4769 1.04 I Q VI 8+ 0 0.5725 1.16 Q V 9+ 0 0.6881 1.40 ( Q I V 10+ 0 0.8262 1.67 Q I V 11+ 0 0.9501 1.50 I Q I VI 12+ 0 1.0776 1.54 I Q I V 13+ 0 1.2464 2.04 I Q I I V 14+ 0 1.3128 0.80 Q I I V 15+ 0 1.3701 0.69 Q I I V 16+ 0 1.5117 1.71 I Q I I V I 17+ 0 1.5696 0.70 Q I I I V I 18+ 0 1.6333 0.77 I Q I I I V 19+ 0 1.6900 0.69 I Q I I I V 20+ 0 1.7454 0.67 I Q I I I V 21+ 0 1.7997 0.66 I Q I I I V 22+ 0 1.8529 0.64 I Q I I V 23+ 0 1.9048 0.63 I Q I I V 24+ ----------------------------------------------------------------- 0 1.9556 0.61 I Q I I V - - - - -- U n i t H y d r o g r a o n A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VDB13100.out }} t}}}}}}}}}}}. s}}}}}}} t}}}}}}}}}}}} } } } } } } } } }}+} } } } } } } } } } } } } } } }i } }} -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format RB NO. 1 COAHCELLA VALLEY ENGINEERS DKRICE ------------------------------------------------------------------ Drainage Area = 1.28(Ac.) = 0.002 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.25(Ac.) _ 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = 0.090 Hr. Lag time = 5.40 Min. 25% of lag time = 1.35 Min. 40% of lag time = 2.16 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.01(CFS) 2 YEAR Area rainfall data: Area(Ac.) (1] Rainfall(In) (2] 0.25 1.01 100 YEAR Area rainfall data: Area (Ac.) (1) Rainfall (In) (2 0.25 2.50 STORM EVENT (YEAR) = 100.00 Weighting (1 *2] 0.25 Weighting(1 *2) 0.63 i Area Averaged 2 -Year Rainfall = 1.010(In) Area Averaged 100 -`Lear Rainfall = 2.500(In) Point rain (area averaged) = 2.500(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.500(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious 0.250 56.00 0.900 1.030 56.00 0.250 Total Area Entered = 1.28(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 56.0 56.0 0.511 0.900 0.097 0.195 0.019 56.0 56.0 0.511 0.250 0.396 0.805 0.319 Sum (F) _ 0.338 Area averaged mean soil loss (F) (In /Hr) = 0.338 Minimum soil loss rate ((In /Hr)) = 0.169 (for 24 hour storm duration) Soil low loss rate (decimal) = ------------------------------------------------------------------ 0.350 U n i t H y d r o g r a p h DESERT S- Curve ------------------------------------------------------------------ Unit Hydrograph Data Unit time period Time % of lag Distribution Unit Hydrograph Mrs) ------------------------------------------------------------------ Graph % WFS) 1 0.250 277.778 53.610 0.692 2 0.500 555.556 40.205 0.519 3 0.750 833.333 6.185 0.080 ----------------------------------------------------7------------------ Sum = 100.000 Sum= 1.290 Unit Time Pattern Storm Pain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.370 0.338 - -- 0.03 2 0.50 4.80 0.480 0.338 - -- 0.14 3 0.75 5.10 0.510 0.338 - -- 0.17 4 1.00 4.90 0.490 0.338 - -- 0.15 5 1.25 6.60 0.660 0.338 - -- 0.32 6 1.50 7.30 0.730 0.338 - -- 0.39 7 1.75 8.40 0.840 0.333 - -- 0.50 8 2.00 9.00 0.900 0.333 - -- 0.56 9 2.25 12.30 1.230 0.333 - -- 0.89 10 2.50 17.60 1.760 0.333 - -- 1.42 11 2.75 16.10 1.610 0.338 - -- 1.27 12 3.00 4.20 0.420 0.338 - -- 0.08 Sum = 100.0 Sum = 5.9 Flood volume = Effective rainfall 1.49(In) times area 1.3(Ac.) /[(In) /(Ft.)1 = 0.2(Ac.Ft) Total soil loss = 1.01(In) Total soil loss = 0.108(Ac.Ft) Total rainfall = 2.50(In) Flood volume = 6911.4 Cubic Feet Total soil loss = 4704.6 Cubic Feet ------------------------------------------------------------ - - - - -- Peak flow rate of this hydrograph = 2.700(CFS) ------------------------------------------------------------ - - - - -- +++++++++++++++++++++++++++++++++++ + + + ++ + + + + + + + + + + + ++ + + + + ++ + + + ++++ 3 - H O U R S T O R M R u n o f f H y d r o g r a p h ------------------------------------------------------------ - - - - -- Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------ - - - - -- Time(h +m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0213 1.03 V Q 0 +30 0.0446 1.13 VQ 0 +45 0.0695 1.21 Q V 1+ 0 0.0946 1.22 Q V 1 +15 0.1220 1.33 Q V 1 +30 0.1522 1.46 Q I V 1 +45 0.1850 1.59 ( Q V 2+ 0 I 0.2200 1.69 Q VI 2 +15 0.2604 1.96 I Q I V I 2 +30 f 0.3121 2.50 I Q I V I 2 +45 I 0.3679 2.70 I Q I V 3+ 0 0.4060 1.84 I Q I I I V 3 +15 0.4298 1.15 I Q I I I V 3 +30 0.4508 1.02 I Q I I I V ----------------------------------------------------------------- - - - - -- U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGNLi, 1999 - 2004, Version 7.0 Study date 04/18/07 File: vdblotlsuh3100.out ............................................................. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 ------------------------------------------------------------ - - - - -- English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format vandeboselotiSTi-H City of La Quinta DK Rice Coachella Valley engineers ------------------------------------------------------------------ Drainage Area = 1.13(Ac.) = 0.002 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.01(Ac.) _ 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = 0.020 Hr. Lag time = 1.20 Min. 25% of lag time = 0.30 Min. 40% of lag time = 0.48 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 0.20(CFS) 2 YEAR Area rainfall data: Area(Ac.)[1) Rainfall(In)(2) Weighting(1 *2] 0.01 1.10 0.01 100 YEAR, Area rainfall data: Area(Ac.)(1) Rainfall (In) (2) Vie ighting(1 *2] 0.01 2.60 0.03 STORM EVE-"NT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall = 1.100(in) Area Averaged 100 -Year Rainfall = 2.600(In) Point rain (area averaged) = 2.600(in) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.600(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious % 1.130 56.00 0.300 Total Area Entered = 1.13(Ac.) RI RI Irfil. Rate Impervious Adj. Infil. Rate Area% F AJ11C2 1111,IC -1 (In /Hr) (Dec. %) (In /Fir) (Dec.) (In /Hr) 56.0 36.0 0.706 0.300 0.515 1.000 0.515 Sum (F) _ 0.515 Area averaged mean soil loss (F) (In /Hr) = 2.000 Minimum soil loss rate ((In /Hr)) = 0.258 (for 24 hour storm duration) Note: User entry of the f value Soil ------------------------------------------------------------------ low loss rate (decimal) = 0.450 U n i t H y d r o g r a p h ------------------------------------------------------------------ DESERT S -Curve ------------------------------------------------------------------ Unit Hydrograph Data Unit time period Time % of lag Distribution Unit Hydrograph (hrs) ------------------------------------------------------------------ Graph % (CFS) 1 0.250 1250.000 100.000 1.139 ---------------------------7------------------------------------------- Sum = 100.000 Sum= 1.139 Unit Time Pattern Storm Pain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.385 2.000 0.173 0.21 2 0.50 4.80 0.499 2.000 0.225 0.27 3 0.75 5.10 0.530 2.000 0.239 0.29 4 1.00 4.90 0.510 2.000 0.229 0.28 5 1.25 6.60 0.686 2.000 0.309 0.38 6 1.50 7.30 0.759 2.000 0.342 0.42 7 1.75 8.40 0.874 2.000 0.393 0.48 8 2.00 9.00 0.936 2.000 0.421 0.51 9 2.25 12.30 1.279 2.000 0.576 0.70 10 2.50 17.60 1.830 2.000 0.824 1.01 11 2.75 16.10 1.674 2.000 0.753 0.92 12 3.00 4.20 0.437 2.000 0.197 0.24 Sum = 100.0 SUM = 5.7 Flood volume = Effective rainfall 1.- 3(iP.) times area 1.1(Ac.) /[(In) /(Ft.)) = 0.1(Ac.Ft) Total soil loss = 1.17(In) Total soil loss = 0.110(Ac.Ft) Total rainfall = 2.60(In) Flood volume = 5865.7 Cubic Feet Total soil loss = 4799.2 Cubic Feet ------------------------------------------------------------------ Peak flow rate of this hydrograph = 1.347(CFS) ------------------------------------------------------------------ ++++++++++++++ +++++++++++++++++++++ + ++ + + ++ + + + ++ ++++ + + + + + + + + + + + + + ++ ++ 3 - H O U R S T O R M R u n o f f H y d r o g r a p h ------------------------------------------------------------------ Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------------ Time(h +m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0091 0.44 Q 0 +30 0.0197 0.51 I Q V I 0 +45 0.0307 0.53 I Q V I I I ( 1+ 0 0.0414 0.52 I Q V I 1 +15 0.0545 0.63 I Q V 1 +30 0.0684 0.68 I Q I V 1 +45 0.0839 0.75 I Q I V 2+ 0 0.1001 0.79 I Q I V I 2 +15 0.1208 1.00 ( Q I I V 2 +30 0.1486 1.35 I Q I I V 2 +45 0.1745 1.25 I Q I I I V VI 3+ 0 0.1842 0.47 IQ ----------------------------------------------------------------- - - - - -- U n i t H y d r o g r a p h a n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VDB13100.out ............ ..{. +ff1 ........................ t..i. 3......... ..... f - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format RB NO. 1 COAHCELLA VALLEY ENGINEERS DKRICE ------------------------------------------------------------------ Drainage Area = 1.28(Ac.) = 0.002 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.25(Ac.) _ 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = 0.080 Hr. Lag time = 4.80 Min. 25% of lag time = 1.20 Min. 40% of lag time = 1.92 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) 2 YEAR Area rainfall data: Area(Ac.)(1] Rainfall(In)(2] 0.25 1.04 100 YE?P Area rainfall data: Area (Ac. ) (1) Palnfa11 (In) (2) ' ( 0.25 2.54 STORM EVENT (YES?) = 100.00 I i,I weighting(1 *2) 0.26 Weighting (1 *21 0.64 Area Averaged 2 -Year Rainfall = 1.040(In) Area Averaged 100 -Year Rainfall = 2.540(In) Point rain (area averaged) = 2.540(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.540(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious 0.250 56.00 0.900 1.030 56.00 0.300 Total Area Entered = 1.28(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Pate Area% AMC2 APIC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 56.0 56.0 0.511 0.900 0.097 0.195 0.019 0.300 0.319 56.0 56.0 0.511 0.300 0.373 0.805 Sum (F) = F Area averaged mean soil loss (F) (In /Hr) = 0.319 Minimum soil loss rate ((In /Hr)) = 0.160 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.450 ------------------------------------------------------------ - - - - -- ' Unit Time Pattern Storm Rain r e Loss rate(_n. /Hr ) Effective I (Hr.) Percent (In /Hr) Max ( Low (In /Hr) 1 0.25 3.70 0.376 0.319 - -- 0.06 2 0.50 4.80 0.488 0.319 - -- 0.17, 3 0.75 5.10 0.516 0.319 - 0.20 = - 4 1.00 4.90 0.498 0.319 -- 0.18 5 1.25 6.60 0.671 0.319 __- 0.35 6 1.50 7.30 0.742 0.319 _ _ 0,42. 7- Ii 8 2.00 9.00 0.914 0.319 - -- 0.60 I ' f 9 2.25 12.30 1.250 0.319 - -- 0.93 J 10 2.50 17.60 1.788 0.319 - -- 1.47 11 2.75 16.10 1.636 0.319 - -- 1.32 I�� U n i i t H y d r o g r a a p h !I D DESERT Curve - -- -- - Hydrograph Data !I - - -- ------------------------o------------------------------_---------- Unit time period T Time % of lag D Distribution Unit H Hydrograph (hrs) G Graph % ( (CFS) _ ______ ______ ___ _ __ __ ! 1 1 0.250 3 312.500 5 57.461 0 0.741 2 0.500 6 625.000 3 37.948 0 0.490 -------------------------------------------------- - Sum = 1 100.000 Sum = - - -- - -- 1_290 - -- Unit Time Pattern Storm Rain r e Loss rate(_n. /Hr ) Effective I (Hr.) Percent (In /Hr) Max ( Low (In /Hr) 1 0.25 3.70 0.376 0.319 - -- 0.06 2 0.50 4.80 0.488 0.319 - -- 0.17, 3 0.75 5.10 0.516 0.319 - 0.20 = - 4 1.00 4.90 0.498 0.319 -- 0.18 5 1.25 6.60 0.671 0.319 __- 0.35 6 1.50 7.30 0.742 0.319 _ _ 0,42. 7- Ii 8 2.00 9.00 0.914 0.319 - -- 0.60 I ' f 9 2.25 12.30 1.250 0.319 - -- 0.93 J 10 2.50 17.60 1.788 0.319 - -- 1.47 11 2.75 16.10 1.636 0.319 - -- 1.32 I�� I�� 12 3.00 4.20 0.427 0.3319 -- 0.11 Sum = 100.0 Sum = 6.3 Flood volume = Effective rainfall 1.53(in) times area 1.3(Ac.) /((in) /(Ft.)) = 0.2(Ac.Ft) Total soil loss = 0.96(Zn) Total soil loss = 0.102(Ac.Ft) Total rainfall = 2.54(in) Flood volume = 7355.1 Cubic Feet Total ------------------------------------------------------------------ soil loss = 4446.8 Cubic Feet Peak ------------------------------------------------------------------ flow rate of this hydrograph = 2.791(CFS) ..................................... + ............................ 1 + 3 - H O U R S T O R M ------------------------------------------------------------------ R u n o f f H y d r o g r a p h Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------------ Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0224 1.08 V Q 0 +30 0.0470 1.19 Q { I { 0 +45 I 0.0733 1.27 I QV I I I 1+ 0 I 0.0998 1.28 I Q V 1 +15 0.1287 1.40 I Q V 1 +30 0.1604 1.54 i Q I V { 1 +45 { 0.1948 1.66 { Q I V 2+ 0 { 0.2314 1.77 I Q I VI I 2 +15 0.2738 2.05 Q V I 2 +30 0.3279 2.62 I Q I V I 2 +45 0.3856 2.79 IQ I I V 3+ 0 0.4239 1.85 I Q I I I V 3 +15 0.44811 1.17 ( Q I I I d 3 +30 0.4697 1.05 I Q I I I V U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGDi, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VDB43100.out ..... + +T }TT.. . +T.f...... ......f..1.......t..i.{. fT.3..... }........ ......... . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 ------------------------------------------------------------ - - - - -- English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format CITY LA QUINTA COACHELLA VALLEY ENGINEERS DKRICE ------------------------------------------------------------------ Drainage Area = 1.08(Ac.) = 0.002 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.08(Ac.) _ 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = 0.090 Hr. Lag time = 5.40 Min. 25% of lag time = 1.35 Min. 40% of lag time = 2.16 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) 2 YEAR Area rainfall data: Area (Ac.) [1] Rainfall (In) (2) Weighting (1 *2] 0.08 1.04 0.08 100 YEAR Area rainfall data: Area (`_c.) [I] Rainfall (In) (2) Weighting [1 *2] 0.08 2.53 0.20 STORM EVENT (YEAR) = 100.00 Area Averaged 2 -`fear Rainfall = 1 .040 (In) Area Averaged 100 -Year Rainfall = 2.530(In) Point rain (area averaged) = 2.530(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.530(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious s 1.000 56.00 0.300 0.080 56.00 0.200 Total Area Entered = 1.08(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Pate Area% F AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 56.0 56.0 0.511 0.300 0.373 0.926 0.345 56.0 56.0 0.511 0.200 0.419 0.074 0.031 Sum (F) _ 0.376 Area averaged mean soil loss (F) (In /Hr) = 0.376 Minimum soil loss rate ((In /Hr)) = 0.188 (for 24 hour storm duration) Soil ------------------------------------------------------------------ low loss rate (decimal) = 0.350 U n i t H y d r o g r a p h ------------------------------------------------------------------ DESERT S -Curve ------------------------------------------------------------------ Unit Hydrograph Data Unit time period Time % of lag Distribution Unit Hydrograph (hrs) ------------------------------------------------------------------ Graph % WFS) 1 0.250 277.778 53.610 0.584 2 0.500 555.556 40.205 0.436 3 0.750 833.333 6.185 0.067 ----------------------------------------------------------------------- Sum = 100.000 Sum= 1.088 Unit Time Pattern Storm Rain Loss rate(In. /rr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.374 0.376 0.131 0.24 2 0.50 4.80 0.486 0.376 - -- 0.11 3 0.75 5.10 0.516 0.376 - -- 0.14 4 1.00 4.90 0.496 0.376 - -- 0.12 5 1.25 6.60 0.668 0.376 - -- 0.29 6 1.50 7.30 0.739 0.376 - -- 0.36 7 1.75 8.40 0.850 0.376 - -- 0.47 8 2.00 9.00 0.911 0.376 - -- 0.53 9 2.25 12.30 1.245 0.376 - -- 0.87 10 2.50 17.60 1.781 0.376 - -- 1.40 11 2.75 16.10 1.629 0.376 - -- 1.25 12 3.00 4.20 0.425 0.376 - -- 0.05 Sum = 100.0 Sum = 5.8 Flood volume = Effective rainfall 1.46(In) times area 1.1(Ac.) /((In) /(Ft.)) = 0.1(Ac.Ft) Total soil loss = 1.07(In) Total soil loss = 0.096(Ac.Ft) Total rainfall = 2.53(In) Flood volume = 5733.3 Cubic Feet Total soil loss = 4185.3 Cubic Feet ------------------------------------------------------------ - - - - -- Peak flow rate of this hydrograph = 2.445(CFS) ------------------------------------------------------------------ + + 3 - H O U R S T 0 R M R u n o f f H y d r o g r a p h ------------------------------------------------------------------ Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------------ Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0244 1.18 V Q 0 +30 0.0494 1.21 Q 0 +45 0.0739 1.19 Q V 1+ 0 0.0983 1.18 Q VI I 1 +15 0.1246 1.27 Q V I 1 +30 0.1532 1.39 Q I V I 1 +45 0.1841 1.49 Q I V I 2+ 0 I 0.2168 1.58 Q I V 2 +15 0.2543 1.81 I Q I I V 2 +30 0.3013 2.28 I QI I V 2 +45 I 0.3519 2.45 I QI I V 3+ 0 0.3872 1.71 I Q I I I V 3 +15 ( 0.4109 1.15 I Q I I I V 3 +30 0.4324 1.04 I Q I I I V ----------------------------------------------------------------- - - - - -- U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VDBSW13100.out - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 ------------------------------------------------------------------ English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format CITLAQUINTA COACHELLA VALLEY ENGINEERS DKRICE ------------------------------------------------------------------ Drainage Area = 0.87(Ac.) = 0.001 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.07(Ac.) _ 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = 0.080 Hr. Lag time = 4.80 Min. 25W of lag time = 1.20 Min. 40% of lag time = 1.92 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) 2 YEAR Area rainfall data: Area(Ac.)[1) Rainfall(In)(2) Weighting(1 *2) 0.07 1.04 0.07 100 YEAR Area rainfall data: Area (Ac.) [1) Rainfall (in) [2) Weighti na [1 *2) 0.07 2.54 0.18 STORM EVENT (YEAR) = 100.00 U n i t H y d r o g r a p h DESERT S -Curve -- ------ -------- ------- - -- ------ ------------ -- ---- ----- - ---- -- ---- - -- Unit - Hydrograph -Data --- - - - - -- ------------------------------------- ` Unit time period Time % of lag Distribution Unit Hydrograph (hrs) Graph % (CFS) - -------- -------------------------------- -- ----------------- - ----- 1 0.250 312.500 57.461 0.504 2 0.500 625.000 37.948 0.333 I 3 0.750 937.500 4.591 0.040 ----------------------------- - - - - -- -Sum = 100.000 Sum- 0.877 Unit Area Averaged 2 -fear Rainfall = 1.040(In) Storm Rain Loss rate(In. /Hr) Area Averaged 100 -`[ear Rainfall = 2.540(In) (Hr.) Percent Point rain (area averaged) = 2.540(Ir.) Max Low (In /Hr) 1 Areal adjustment factor = 100.00 % 0.376 0.377 0.113 Adjusted average point rain = 2.540(In) 0.50 4.80 Sub -Area Data: 0.377 - -- 0.11 3 Area (Ac.) Runoff Index Impervious % 0.518 0.377 - -- 0.070 56.00 0.200 1.00 4.90 0.000 56.00 0.000 0.12 5 0.800 56.00 0.300 0.671 0.377 - -- Total Area Entered = 0.87(Ac.) 6 1.50 7.30 RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F 7 AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 0.48 8 2.00 56.0 56.0 0.511 0.200 0.419 0.080 0.034 56.0 56.0 0.511 0.000 0.511 0.000 0.000 56.0 56.0 0.511 0.300 0.373 0.920 0.343 Sum (F) _ 0.377 Area averaged mean soil loss (F) (In /Hr) = 0.377 Minimum soil loss rate ((In /Hr)) = 0.188 (for 24 hour storm duration) Soil low loss rate (decimal) = ------------------------------------------------------------ 0.300 - - - - -- U n i t H y d r o g r a p h DESERT S -Curve -- ------ -------- ------- - -- ------ ------------ -- ---- ----- - ---- -- ---- - -- Unit - Hydrograph -Data --- - - - - -- ------------------------------------- ` Unit time period Time % of lag Distribution Unit Hydrograph (hrs) Graph % (CFS) - -------- -------------------------------- -- ----------------- - ----- 1 0.250 312.500 57.461 0.504 2 0.500 625.000 37.948 0.333 I 3 0.750 937.500 4.591 0.040 ----------------------------- - - - - -- -Sum = 100.000 Sum- 0.877 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.376 0.377 0.113 0.26 2 0.50 4.80 0.488 0.377 - -- 0.11 3 0.75 5.10 0.518 0.377 - -- 0.14 4 1.00 4.90 0.498 0.377 - -- 0.12 5 1.25 6.60 0.671 0.377 - -- 0.29 6 1.50 7.30 0.742 0.377 - -- 0.37 7 1.75 8.40 0.853 0.377 - -- 0.48 8 2.00 9.00 0.914 0.377 - -- 0.54 I' 9 2.25 12.30 1.250 0.377 - -- 0.87 10 2.50 17.60 1.788 0.377 - -- 1.41 11 2.75 16.10 1.636 0.377 - -- 1.26 12 3.00 4.20 0.427 0.377 - -- 0.05 1 +30 Sum = 100.0 I Q I V I I Sum = 5.9 0.1786 Flood volume = Effective rainfall 1.48(In) 0.2092 1.48 times area 0.9(Ac.) /[(In) /(Ft.)} = 0.1(Ac.Ft) I Q I I V Total soil loss = 1.06(In) I Q I I V I 2 +45 Total soil loss = 0.077(Ac.Ft) 3+ 0 I 0.3634 Total rainfall = 2.54(In) 0.3863 1.11 Flood volume = 4662.0 Cubic Feet 1.04 I Q I I Total ------------------------------------------------------------ soil loss = 3359.6 Cubic Feet - - - - -- Peak flow rate of this hydrograph = 2.180(CFS) ------------------------------------------------------------------ +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ + + 3 - H O U R S T O R M R u n o f f H y d r o g r a p h ------------------------------------------------------------------ Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------------ Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 I 0.0242 1.17 V Q I I 0 +30 0.0487 1.18 Q 0 +45 0.0726 1.16 Q V 1+ 0 0.0964 1.15 Q VI I 1 +15 I 0.1219 1.23 I Q V I I 1 +30 0.1494 1.33 I Q I V I I 1 +45 0.1786 1.41 I Q I V I 2+ 0 0.2092 1.48 I Q I V 2 +15 I 0.2439 1.68 I Q I I V 2 +30 0.2866 2.06 I Q I I V I 2 +45 0.3316 2.18 I Q I I I V 3+ 0 I 0.3634 1.54 I Q I I I V 3 +15 I 0.3863 1.11 I Q I I I Y 3 +30 0.4079 1.04 I Q I I V -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILC DD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VDB6W3100.out ............................................................... T T T - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 ------------------------------------------------------------------ English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format 6W CITY OF Lk QUINTA COACHELLA VALLEY ENGINEERS DKRICE ------------------------------------------------------------------ Drainage Area = 0.64(Ac.) = 0.001 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.26(Ac.) _ 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = 0.080 Hr. Lag time = 4.80 Min. 25% of lag time = 1.20 Min. 40% of lag time = 1.92 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) 2 YEAR Area rainfall data: Area(AC.) (1) Rainfall (In) [2) Weighting(1 *2) 0.26 1.0^_ 0.27 100 YEAR Area rainfall data: Area (Ac.) (1) Rainfall( n) (2) Wei ahting[1 *2) 0.26 2.54 0.66 STORM EVENT (Y = AR} = 100.00 i I I I ' III I I! i I{ i 1 Area Averaged 2 -Year Rainfall = 1.040(In) Area Averaged 100 -Year Rainfall = 2.540(In) Point rain (area averaged) = 2.540(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.540(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious s 0.260 56.00 0.900 0.380 56.00 0.300 Total Area Entered = 0.64(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 Fj%7C -2 (In /Hr) (Dec.° %) (In /Hr) (Dec.) (In /Hr) 56.0 56.0 0.511 0.900 0.097 0.406 0.039 56.0 56.0 0.511 0.300 0.373 0.594 0.221 Sum (F) _ 0.261 Area averaged mean soil loss (F) (In /Hr) = 0.261 Minimum soil loss rate ((In /Hr)) = 0.130 (for 24 hour storm duration) Soil low loss rate (decimal) = ------------------------------------------------------------------ 0.400 U n i t H y d r o g r a p h DESERT S -Curve -------------------------=---------------------------------------- Unit Hydrograph Data ------------------------------------------------------------------ Unit time period Time % of lag Distribution Unit Hydrograph (hrs) Graph % (CFS) 1 0.250 312.500 57.461 0.371 2 0.500 625.000 37.948 0.245 3 0.750 937.500 4.591 0.030 ----------------------------------------------------------------------- Sum = 100.000 Sum= 0.645 Unit Time Pattern Storm Pain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.376 0.261 - -- 0.12 2 0.50 4.80 0.486 0.261 - -- 0.23 3 0.75 5.10 0.516 0.261 - -- 0.26 4 1.00 4.90 0.498 0.261 - -- 0.24 5 1.25 6.60 0.671 0.261 - -- 0.41 6 1.50 7.30 0.742 0.261 - -- 0.48 7 1.75 8.40 0.653 0.261 - -- 0.59 8 2.00 9.00 0.914 0.251 - -- 0.65 9 2.25 12.30 1.250 0.261 - -- 0.99 10 2.50 17.60 1.788 0.261 - -- 1.53 11 2.75 16.10 1.636 0.261 - -- 1.37 12 3.00 4.20 0.427 0.261 - -- 0.17 Sum = 100.0 Sum = 7.0 Flood volume = Effective rainfall 1.76(In) times area 0.6(Ac.) /((In) /(Ft.)) = 0.1(Ac.Ft) Total soil loss = 0.78(In) Total soil loss = 0.042(Ac.F't) Total rainfall = 2.54(In) Flood volume = 4083.1 Cubic Feet Total soil loss = 1817.9 Cubic Feet ------------------------------------------------------------ - - - - -- Peak flow rate of this hydrograph = 1.953(CFS) ------------------------------------------------------------ - - - - -- ++++++++++++++++++++++++++++++++++++ +++ + +i- + + + + + + + + +++ ++ + + ++ ++ + + + ++ ++ 3 - F O U R S T O R M R u n o f f H y d r o g r a p h ------------------------------------------------------------ - - - - -- Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------ - - - - -- Time(h +m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0224 1.08 V Q 0 +30 0.0462 1.15 Q 0 +45 0.0709 1.19 Q V 1+ 0 0.0956 1.20 Q VI I 1 +15 I 0.1216 1.26 Q V 1 +30 0.1490 1.33 I Q I V I 1 +45 I 0.1777 1.39 I Q I V I 2+ 0 I 0.2075 1.44 I Q I V i 2 +15 I 0.2402 1.58 I Q I I V I 2 +30 0.2788 1.87 I Q I I V I 2 +45 0.3192 1.95 I Q I I V 3+ 0 I 0.3498 1.48 I Q I I I V 3 +15 0.3730 1.12 I Q I I I V 3 +30 0.3946 1.04 I Q I I I V ----------------------------------------------------------------- - - - - -- 1! i 1' U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1939 - 2004, Version 7.0 Study date 05/07/07 File: 'VDB6EKa_DW3 100. out .+..} .{.. T . . . + . ....... . ..t...... . .... .. . 11 i 1 . .1........ . t .}. 11 1 t + T...... {.1 { - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 ------------------------------------------------------------------ English (in -lb) Input Units Used English Rainfall Data (Inches) In-out Values Used English Units used in output format CITY LA QUINTA..6EKLADW CAOCHELLA VALLEY ENGINEERS DKRICE ------------------------------------------------------------------ Drainage Area = 0.95(Ac.) = 0.001 Sa. Mi. Drainage Area for Depth -Area Areal Adjustment 0.44(Ac.) _ 0.001 Sq. Mi. USER Entry of lag time in hours Lag time = 0.080 Hr. Lag time = 4.80 Min. 25% of lag time = 1.20 Min. 40% of lag time = 1.92 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) 2 YEAR Area rainfall data: Area(Ac.) [1] Rainfall(In) (2) 0.44 1.04 100 YEAR Area rainfall data: rea(Ac )(1) 0.00 0.00 0.44 R a- infall (IP.) (2] 2.54 0.41 2.5_, Weighting[1 *2) 0.46 lvieichti ng [1 *2) 0.00 0.00 1.12 .-d STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall = 1.040(In) Area Averaged 100 -Year Rainfall = 2.540(In) Point rain (area averaged) = 2.S40(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.540(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious % 0.440 56.00 0.900 0.510 56.00 0.370 Total Area Entered = 0.95(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Pate Area% F AMC2 AMC -3 (IU M (Dec. %) (In /Hr) (Dec.) (In /Hr) 56.0 74.8 0.305 0.900 0.058 0.463 0.027 56.0 74.8 0.305 0.370 0.204 0.537 0.109 Sum (F) _ 0.136 Area averaged mean soil loss (F) (In /Hr) = 0.136 Minimum soil loss rate ((In /Hr)) = 0.068 (for 24 hour storm duration) Soil low loss rate (decimal) = ------------------------------------------------------------------ 0.350 U n i t H y d r o g r a p h DESERT S -Curve ------------------------------------------------------------------ Unit Hydrograph Data ------------------------------------------------------------------ Unit time period Time % of lag Distribution Unit Hydrograph (hrs) ------------------------------------------------------------------ Graph % (CFS) 1 0.250 312.500 57.461 0.550 2 0.500 625.000 37.948 0.363 3 0.750 937.500 4.591 0.044 ----------------------------------------------------------------------- Sum = 100.000 Sum= 0.957 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.376 0.136 - -- 0,24 2 0.50 4.80 0.488 0.136 - -- 0.35 3 0.75 5.10 0.518 0.136 - -- 0.38 4 1.00 4.90 0.498 0.136 - -- 0.36 5 1.25 6.60 0.671 0.136 - -- 0.53 6 1.50 7.30 0.742 0.136 - -- 0.61 7 1.75 8.40 0.853 0.136 - -- 0.72 8 2.00 9.00 0 -914 0.136 - -- 0.78 9 2.25 12.30 1.250 0.136 - -- 1.11 10 2.50 17.60 1.783 0.136 - -- 1.65 11 2.75 16.10 1.636 0.136 - -- 1.50 12 3.00 4.20 0.427 0.136 -- 0.29 Sum = 100.0 Sum = 8.5 Flood volume = Effective rainfall 2.13(In) times area 0.9(Ac.) /[(In) /(Ft.)) = 0.2(Ac.Ft) Total soil loss = 0.41(In) Total soil loss = 0.032(?.c.Ft) Total rainfall = 2.54(In) Flood volume= 7350.0 Cubic Feet Total ------------------------------------------------------------------ soil loss = 1409.2 Cubic Feet Peak ------------------------------------------------------------------ flow rate of this hydrograph = 2.515(CFS) ++++++++ r++++++++++++++++++++++++++ + + ++++ + +++ + ++ + ++ +++ + ++ + ++ + ++ + ++ + + 3 - H O U R S T O R M ------------------------------------------------------------------ R u n o f f H y d r o g r a p h Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------------ Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0242 1.17 V Q 0 +30 0.0515 1.32 VQ I i 0 +45 0.0802 1.39 QV 1+ 0 0.1090 1.39 Q VI I I 1 +15 I 0.1396 1.48 Q V I 1 +30 0.1723 1.5.8 I Q I V I I 1 +45 I 0.2070 1.68 I Q I V I I 2+ 0 0.2433 1.76 ( Q I V I 2 +15 0.2839 1.97 I Q I I V I 2 +30 I 0.3333 2.39 I QI I V I 2 +45 I 0.3852 2.51 I Q I I V 3+ 0 I 0.4228 1.62 I Q I I I V 3 +15 0.4478 1.21 I Q I I I V 3 +30 0. 4_696 1.05 I Q I V) ------------------------------------------------------ ----------- - - - - -- U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILC ?DD /CIVILDESIGN, 1939 - 2004, V"erSion 7.0 Study date 05/07/07 File: VD873100.out ..... }+ 1111..... ... ..... t......... .+..... .. 7....... .l +.F.l. .'. .. ..... .. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 ------------------------------------------------------------------ English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format .7E CITY OF LA QUINTA �I COCHELLA VALLEY ENGINEERS DKRICE �I I Drainage Area = 0.39(Ac.) = 0.001 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.10(Ac.) _ 0.000 Sq. Mi. I USER Entry of lag time in hours Lag time = 0.080 Hr. Lag time = 4.80 Min. 25% of lag time = 1.20 Min. 40% of lag time = 1.92 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) �I User Entered Base Flow = 1.04(CFS) 1 I 2 YEAR Area rainfall data: (.J Area(Ac.) (1) P.,ainfall(In) (2) Weighting[1 *2] I 0.10 1.10 0.11 j 1 100 YEAR area rainfall data: 1 I Area (.11'.C) I,1) RG1nLa11(ln) (2) vteig1t�ng(1't2) 0.10 2.5.1 0.25 `STORM EVEN_ (YEAR) = 100.00 Area Averaged 2 -Tear Rainfall = 1.100(In) Area Averaged 100 -Year Rainfall = 2.540(In) Point rain (area Areal adjustment Adjusted average Sub -Area Data: Area(Ac.) 0.010 0.380 Total Area Ente averaged) = 2.540(In) factor = 100.00 ° point rain = 2.540(In) Runoff Index Impervious % 56.00 0.300 56.00 0.400 red = 0.39(Ac.) RI RI Infil. Rate Impervious AiMC2 AIMC -2 (In /Hr) (Dec. %) (In /Hr) l 56.0 56.0 0.511 0.300 0.010 56.0 56.0 0.511 0.400 'i 0.319 0.328 Adj. Infil. Rate Area% F (In /Hr) (Dec.) 0.373 0.026 0.327 0.974 Sum (F) = Area averaged mean soil loss (F) (In /Hr) = 0.328 Minimum soil loss rate ((In /Hr)) = 0.164 (for 24 hour storm duration) Soil low ------------------------------------------------------------------ loss rate (decimal) = 0.400 U n i t H y d r o g r a p h ------------------------------------------------------------------ DESERT S -Curve -------------------------------------------------------7---------- Unit Hydrograph Data Unit time period Time % of lag Distribution Unit Hydrograph Mrs) ------------------------------------------------------------------ Graph % (CFS) l1 0.250 312.500 57.461 0.226 2 0.500 625.000 37.948 0.149 3 0.750 937.500 4.591 0.018 i -------------------------------------------------- Sum = 100.000 Sum= --------------------- 0.393 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective I (Hr.) Percent MAN Max Low (In /Hr) 1 0.25 3.70 0.376 0.328 - -- 0.05 2 0.50 4.80 0.488 0.328 - -- 0.16 3 0.75 5.10 0.518 0.328 - -- 0.19 � 4 1.00 4.90 0.496 0.328 --- 0.17 5 1.25 6.60 0.671 0.328 - -- 0.34 6 1.50 7.30 0.742 0.328 - -- 0.41 7 1.75 8.40 0.853 0.328 - -- 0.53 8 2.00 9.00 0.914 0.328 - -- 0.59 9 2.25 12.30 1.250 0.328 --- 0.82 10 2.50 17.60 1.788 0.328 ___ 1.46 11 2.75 16.10 1.636 0.323 1.31 it U! 12 3.00 4.20 0.427 0.328 - -- 0.10 Sum = 100.0 Sum = 6.2 Flood volume = Effective rainfall 1.56(In) times area 0.4(Ac.) /((In) /(7t.)) 0.1(Ac.Ft) Total soil loss = 0.98(In) Total soil loss = 0.032(Ac.Ft) Total rainfall = 2.54(In) Flood volume = 2202.4 Cubic Feet Total soil loss = 1393.4 Cubic Feet Peak flow rate of this hydrograph = 1.570(CFS) ------------------------------------------------------------------ ++ r+++++++++++++++++++++++++++++++++ + + + + + ++ + + + ++ +++ + ++ +it+ +++ + } } + }} +t 3 - H O U R S T O R M R u n o f f H y d r o g r a p h ------------------------------------------------------------------ Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------------ Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0217 1.05 V Q 0 +30 0.0441 1.08 QV 0+45 0.0670 1.11 Q V 1+ 0 0.0899 1.11 Q V 1 +15 0.1136 1.15 Q V 1 +30 0.1381 1.19 Q V 1 +45 0.1635 1.23 Q V 2+ 0 0.1895 1.26 Q V 2 +15 0.2173 1.35 Q V 2 +30 0.2486 1.52 Q V 2 +45 0.2811 1.57 Q V 3+ 0 0.3076 1.28 Q I V 3 +15 0.3299 1.08 Q V 3 +30 0.3514 1.04 Q iJ ------------------------------------------------- ----------- ----- - - - - -- U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILC�DD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: 4Ds7W3100.out ++++++ t+tt+ t++t tt+ t+ t++tt+++++ t + + +tt + + + ++t +t +t + + + + +++ ++ +tt +tt+ +tit+ tt + + +t -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 ------------------------------------------------------ -=---- - - - - -- English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format j CITY LA QUINTA COACHELLA VALLEY ENGINEERS DKRICE ------------------------------------------------------------------ Drainage Area = 0.38(Ac.) = 0.001 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.35(P_c.) _ 0.001 Sq. Mi. USER Entry of lag time in hours Lag time = 0.090 Hr. Lag time = 5.40 Min. 25% of lag time = 1.35 Min. 40% of lag time = 2.16 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) 2 YEAR Area rainfall data: Area (Ac. ) (1) Rainfall (In) (2) 0.30 1.04 0.05 1.04 100 YE?P Area rainfall data. Area (Ac. ) (1) Rainfall (In) (2) 0.05 2.5-' 0.30 2.54 Weighting(1 *2) 0.31 0.05 VI_ighti ng (1 *2) 0.13 0.76 STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall = 1.040(In) Area Averaged 100 -Year Rainfall = 2.540(In) Point rain (area averaged) = 2.540(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.540(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious 0.350 56.00 0.300 0.030 56.00 0.270 Total Area Entered = 0.38(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Areal F AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) ( In/Hr) 56.0 56.0 0.511 0.300 0.373 0.921 0.343 56.0 56.0 0.511 0.270 0.387 0.079 0.031 Sum (F) _ 0.374 Area averaged mean soil loss (F) (In /Hr) = 0.374 Minimum soil loss rate ((In /Hr)) = 0.187 (for 24 hour storm duration) Soil low loss rate (decimal) = ------------------------------------------------------------------ 0.400 U n i t H y d r o g r a p h DESERT S -Curve ------------------------- - ---------------------------------------- Unit Hydrograph Data ------------------------------------------------------------------ Unit time period Time % of lag Distribution. Unit Hydrograph (hrs) ------------------------------------------------------------------ Graph % (CFS) 1 0.250 277.778 53.610 0.205 2 0.500 555.556 40.205 0.154 3 0.750 833.333 6.185 0.024 ----------------------------------------------------------------------- Sum = 100.000 Sum= 0.383 Unit Time Pattern Storm Pain Loss rate(In. /Hr) Effective (Hr.) Percent (In/Hr) Max Low (In /Hr) - 0.25 3.70 0.376 0.374 - -- 0.00 2 0.50 4.80 0.438 0.374 - -- 0.11 3 0.75 5.10 0.518 0.374 - -- 0.14 4 1.00 4.90 0.498 0.374 - -- 0.12 5 1.25 6.60 0.671 0.374 - -- 0.30 6 1.50 7.30 0.742 0.374 - -- 0.37 7 1.75 8.40 0.853 0.374 - -- 0.48 8 2.00 9.00 0.914 0.374 - -- 0.54 9 2.25 12.30 1.250 0.374 - -- 0.88 10 2.50 17.60 1.788 0.374 - -- 1.41 it 2.75 16.10 1.636 0.374 - -- 1.26 12 3.00 4.20 0.427 0.374 - -- 0.05 Sum = 100.0 1.09 Sum = 5.7 Flood volume = Effective rainfall 1.42(In) Q V times area 0.4(Ac.) /[(In) /(Ft.)) = 0.0(Ac.Ft) Total soil loss = 1.12(In) Q I V Total soil loss = 0.036(Ac.Ft) Q I V Total rainfall = 2.54(In) Q ( V Flood volume = 1956.1 Cubic Feet ( Q I I V Total ------------------------------------------------------------ soil loss = 1547.6 Cubic Feet - - - - -- Peak flow rate of this hydrograph = 1.538(CFS) ------------------------------------------------------------ - - - - -- + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 3 - H O U R S T O R M R u n o f f H y d r o g r a p h ------------------------------------------------------------ - - - - -- Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------ - - - - -- Time(h +m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0215 1.04 V Q 0 +30 0.0435 1.06 QV 0 +45 0.0659 1.09 Q V 1+ 0 0.0885 1.09 Q V 1 +15 0.1117 1.12 Q V 1 +30 0.1357 1.16 Q V 1 +45 0.1606 1.20 Q I V 2+ 0 0.1861 1.23 Q I V 2 +15 0.2132 1.31 Q ( V 2 +30 0.2438 1.48 ( Q I I V 2 +45 0.2755 1.54 Q V 3+ 0 0.3019 1.28 Q I I V 3 +15 0.3242 1.08 Q ( V 3 +30 0.3457 1.0^_ Q V ----------------------------------------------------------------- - - - - -- U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VDB8W3100.out } } } } } } } {- } } } } } } } } } } } } } } } } } j. } } . } + } + } {} } } } } -{. ... } } } } } } } } } } } } } } } } } } } . } } - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 ------------------------------------------------------------ - - - - -- English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format CITY OF LA QUINTA COACHELLA VALLEY ENGINEERS DKRIE ------------------------------------------------------------------ Drainage Area = 0.71(Ac.) = 0.001 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.26(Ac.) _ 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = 0.080 Hr. Lag time = 4.80 Min. 25W of lag time = 1.20 Min. 40% of lag time = 1.92 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) 2 YEAR Area rainfall data: Area(Ac.) [1] Rainfall(In) (2J Weighting(1 *2] 0.26 1.04 0.27 100 YEAR Area rainfall data: Area(Ac.) (1) Rainfall (In) (2) WeiShting (1 *2] 0.26 2.54 0.66 STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall = 1.040(In) Area Averaged 100 -Year Rainfall = 2.540(In) Point rain (area averaged) = 2.540(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.540(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious s 0.260 56.00 0.900 0.450 56.00 0.300 Total Area Entered = 0.71(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) ' 56.0 56.0 0.511 0.900 0.097 0.366 0.036 ;I 56.0 56.0 0.511 0.300 0.373 0.634 ' 0.236 Sum (F) _ 0.272 ;I Area averaged mean soil loss (F) (In /Hr) = 0.272 Minimum soil loss rate ((In /Hr)) = 0.136 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.400 ------------------------------------------------------------------ U n i t H y d r o g r a p h ,� ---------- - - - - -- DESERT -S -Curve Unit Hydrograph Data 'I - -- ------------------------- - ---------------------------------------- Unit time period Time % of lag Distribution Unit Hydrograph �I ----( hrs) Graph - (CFS) --------------------- - - - - -- ------------- - - - - -- I1� J 1 0.250 312.500 57.461 0.411 2 0.500 625.000 37.948 0.272 �I 3 0.750 937.500 4.591 0.033 ----------------- - - - - -- ------- - - - - -- Sum - =- 100000 Sum= - - - - - -- ------- 0716 -- - Unit Time Pattern Storm Rain Loss rate(In. /Fir) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.376 0.272 0.10 2 I 0.50 4.80 0.488 0.272 - 0.22 3 0.75 5.10 0.518 0.272 - -- 0.25 4 1.00 4.90 0.498 0.272 - -- 0.23 5 I 1.25 6.60 0.671 0.272 - -- 0.40 6 1.50 7.30 0.742 0.272 - -- 0.47 7 1.75 8.40 0.853 0.272 - -- 0.58 8 2.00 9.00 0.915 0.272 - -- 0. 6'. I) 9 2.25 12.30 1.250 0.272 - -- 0.98 10 2.50 17.60 1.788 0.272 - -- 1.52 „ 11 2.75 16.10 1.636 0.272 - -- 1.36 I1� 12 3.00 4.20 0.427 0.272 - - - 0.15 I Sum = 100.0 Sum = 6.9 I Flood volume = Effective rainfall 1.72(In) I times area 0.7(Ac.) /[(In) /(Ft.)) = 0.1(Ac.Ft) Total soil loss = 0.82(In) Total soil loss = 0.048(Ac.Ft) {i Total rainfall = 2.54(In) i Flood volume = 4444.2 Cubic Feet l Total ----- ---- soil loss - - - - - -- 2102.1 - 2102.1 -Cubic Feet Peak { ------------------------------------------------------------------ flow rate of this hydrograph = 2.045(CFS) 1 1 + + + + + + 1 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + i k 3 - H O U R S T 0 R M R u n o f f H y d r o g r a h p �I - Hydrograph in 15 Minute intervals ((CFS)) --------------------- (! Time(h +m) Volume Ac.Ft --- ------------- ---------- -------- ---------- Q(CFS) 0 2.5 5.0 7.5 10.0 ------------------------------------------------------------------ 1 0 +15 1111 I { 0.0224 1.08 V Q { { { 0 +30 { 0.0463 1.16 { Q { { { (` .I I 0 +45 0.0711 1.20 { Q V { 1+ 0 0.0961 1.21 { Q V{ { { (� 1 +15 { 0.1224 1.27 { Q V { { I1 1 +30 { 0.1503 1.35 Q { V I { L 1 +45 0.1796 1.42 { Q { V { { 2+ 0 0.2101 1.48 { Q I V { 2 +15 0.2439 1.64 { Q I I V 1 2 +30 0.2842 1.95 I Q I V I II 2 +45 0.3265 2.05 I Q I I I V 3+ 0 0.3580 1.52 ( Q I I I V 3+15 � 0.3813 1.13 I Q I I I V !{ y 3 +30 0.4029 1.05 I Q I I I Il I V ----------------------------------------------------------------- - - - - -- U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VAATDB6EPL2_DW3100.out . . .. ..+. ................{' ....l•J_ ................ •L•F•I••F........ F'..... - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format .8EMADW CITY OF LA QUINTA COACHELLEY VALLEY ENGINEERS DKRICE ------------------------------------------------------------------ Drainage Area = 1.02(Ac.) = 0.002 Sa. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.44(Ac.) _ 0.001 Sq. Mi. USER. Entry of lag time in hours Lag time = 0.080 Hr. Lag time = 4.80 Min. 25% of lag time = 1.20 Min. 40% of lag time = 1.92 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) 2 YEAR Area rainfall data: Area (Ac.) [1] Rainfall (Ir_) [2) 0.44 1.04 J100 YEAR Area rainfall data: l Area(`_c.) (i] Rair.fall(In) (2) 0.44 2.54 i i I STORM EVENT (YEPR) = 100.00 Weighting[1 *2] 0.46 Weighting (1 *2) 1.12 l Area Averaged 2 -Year Rainfall = Area Averaged 100 -Year Rainfall = 1.040(In) 2.540(In) 'I Point rain (area averaged) = 2.540(In) !i Areal adjustment factor = 100.00 ' Adjusted average point rain = 2.540(In) Sub -Area Data: rI Area(Ac.) Runoff Index Impervious ' 0.4 40 56.00 0.900 0.580 56.00 0.300 Total Area Entered = 1.02(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) I, ( In /Hr) ! 56.0 56.0 0.511 0.900 0.097 0.431 0.042 �I 56.0 56.0 0.511 0.300 0.373 0.569 0.212 i Sum ( F ) _ 0.254 Area averaged mean soil loss (F) (In /Hr) = 0.254 Minimum soil loss rate ((In /Hr)) = 0.127 • (for 24 hour storm duration) Soil low _loss rate (decimal) = ---- ---------- - -- ----------------------------------- 0.450 U n i t H y d r o g r a p h I� -- DESERT S -Curve ------- - - - - -- ------------------------------------------ -_ Unit -Hydrograph Data --- - - - - -- ----------------------------------------------- - -- Unit time period Time % of lag Distribution Unit Hydrograph ___ -Mrs) ------------------------------------------------------------ Graph % WFS) 1 0.250 312.500 57.461 0.591 2 0.500 625.000 37.948 0.390 t 3 0.750 937.500 4.591 0.047 Sum = 100.000 Sum= 1.028 ------------------------------------------------------- Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) ` 1 0.25 3.70 0.376 0.254 - -- 0.12 2 0.50 4.80 0.488 0.254 - -- 0.23 + 2 0.75 5.10 0.518 0.254 - -- 0.26 4 1.00 4.90 0.498 0.254 - -- 0.24 5 1.25 6.60 0.671 0.254 - -- 0.42 6 1.50 7.30 0.742 0.254 - -- 0.49 `` I 7 1.75 8.40 0.853 0.254 0.60 I�! l 8 2.00 9.00 0.914 0.254 - -- 0.66 9 2.25 12.30 1.250 0.254 - -- 1.00 10 2.50 17.60 1.788 0.254 - -- 1.53 ,I 11 2.75 16.10 1.636 0.254 - -- 1. 38 f �� 1 i 12 3.00 4.20 0.427 0.254 - -- 0.17 Sum = 100.0 Sum 7.1 Flood volume = Effective rainfall 1.78(In) times area I.0 (Ac .) /((In) /(Ft. }] 0.2(.c.Ft) Total soil loss = 0.76(In) Total soil loss = 0.065(= .c.Ft) Total rainfall = 2.54(In) Flood volume = 6584.3 Cubic Feet Total soil loss = 2820.2 Cubic Feet ------------------------------------------------------------ - - - - -- Peak flow rate of this hydrograph = 2.502(CFS) ------------------------------------------------------------ - - - - -- ............. + .............................................. + + + + + + 3 - H O U R S T 0 R M R u n o f f H y d r o g r a p h ------------------------------------------------------------ - - - - -- Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------ - - - - -- Time(h +m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0230 1.11 V Q 0 +30 0.0483 1.23 Q 0+45 0.0750 1.29 QV 1+ 0 0.1018 1.30 Q VI 1 +15 I 0.1306 1.39 I Q V I I 1 +30 I 0.1617 1.50 I Q I V I I 1 +45 0.1948 1.60 I Q I V I I 2+ 0 I 0.2297 1.69 I Q I V I 2 +15 I 0.2693 1.91 I Q I I V I 2 +30 I 0.3182 2.37 I QI I V I 2 +45 I 0.3699 2.50 I Q I I V 3+ 0 I 0.4061 1.75 I Q I I i V 3 +15 0.4303 1.17 ( Q I I I V 3 +30 0.4520 1.05 I Q I V ----------------------------------------------------------------- - - - - -- U n i t r'_ y d r o g r a p h A n a l y s i s Copyright (c) CIVILCL _DD /CIVILDLESIGN, 1989 - 2004, Version 7.0 Study date 05/08/07 File: vdb93I00.out .................. ...... i ................................. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method P.CFC & WCD Manual date - April 1978 Program License Serial Number 6078 ------------------------------------------------------------ - - - - -- English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format ..9 CITYLAQUINTA COACHELLA VALLEY ENGINEERS DKRICE ------------------------------------------------------------------ Drainage Area = 0.16(Ac.) = 0.000 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.01(Ac.) _ 0.000 Sq. Mi. USER. Entry of lag time in hours Lag time = 0.050 Hr. Lag time = 3.00 Min. 25W of lag time = 0.75 Min. 40% of lag time = 1.20 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) 2 YEAR Area rainfall data: Area(Ac.) [1] Rainfall (In) (2] 4ieighting(1 *2] 0.01 1.10 0.01 100 YEA?, Area rainfall data: Area (`.c. ) (1) Rainfall (In) (2] 'rieighting [1 *2] 0.01 2.54 0.03 STORM EVENT (YE A?) = 100.00 Area Averaged,2 -Year Rainfall = 1.100(In) Area Averaged 100 -Year Rainfall = 2.540(In) Point rain (area Areal adjustment Adjusted average Sub -Area Data: Area(Ac.) 0.160 Total Area Ente averaged) = 2.540(In) factor = 100.00 % point rain = 2.540(In) Runoff Index Impervious % 56.00 0.200 red = 0.16(Ac.) ■�I RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F kMC2 AMC -3 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 56.0 74.8 0.305 0.200 0.250 1.000 0.250 Sum (F) _ �i 0.250 Area averaged mean soil loss (F) (In /Hr) = 0.250 Minimum soil loss rate ((In /ur)) = 0.125 I� (for 24 hour storm duration) Soil low loss rate (decimal) = 0.200 ------------------------------------------------------------------ 'I U n i t H y d r o g r a p h DESERT S Curve ---- - - - - -- -- - - -- -= ------------------------------------- �) - - - - - -- - -Unit Hydrograph -Data -------------------------------------------------------- Unit time period Time % of lag Distribution Unit Hydrograph �I (hrs) Graph % (CFS) - -------- -------------------------------- -- ----------------- - ----- ,I 1 0.250 500.000 71.081 0.115 2 0.500 1000.000 28.919 0.047 --------- - - - - -- -Sum = - 100.000 -- ---- Sum=-- - - - - -0 161 - -- --------------- - - - -- ----------------- 1 Unit Time Pattern Storm Pain Loss rate In. Hr Effective ,I (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.376 0.250 0.13 2 0.50 4.80 0.488 0.250 - -- 0.24 3• 0.75 5.10 0.518 0.250 - -- 0.27 4 1.00 4.90 0.498 0.250 --- 0.25 5 1.25 6.60 0.671 0.250 0.42 - - 6 1.50 7.30 0.742 0.250 0.49 7 1.75 8.40 0.853 0.250 - -- 0.60 �I 8 2.00 9.00 0.914 0.250 - -- 0.66 9 2.25 12.30 1.250 0.250 1.00 10 2.50 17.60 1.788 0.250 - -- 1.54 !; I 11 2.75 16.10 1.636 0.250 - -- - 1.39 !� 12 3.00 4.20 0.427 0.250 0.1E Sum Sum 100.0 Su - 7.2 Flood volume = Effective rainfall 1.79(In) i times area 0.2(Ac.) /[(In) /(Ft.)) = 0.0(Ac.Ft) Total soil loss = 0.75(In) Total soil loss = 0.010(Ac.Ft) Total rainfall = 2.54(In) Flood volume = 1038.9 Cubic Feet Total soil loss = 436.3 Cubic Feet ------------------------------------------------------------------ Peak flow rate of this hydrograph = 1.271(CFS) ------------------------------------------------------------------ .................................................... + ............. + + 3 - H O U R S T 0 R M R u n o f f H y d r o g r a p h ------------------------------------------------------------------ Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------------ Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ------------------------------------------------------------------------ 0+15 0.0218 1.05 V Q 0 +30 0.0440 1.07 QV f 0 +45 0.0663 1.08 Q V 1+ 0 0.0886 1.08 I Q V 1 +15 0.1114 1.10 Q V 1 +30 0.1344 1.12 Q V 1 +45 0.1578 1.13 Q V i 2+ 0 0.1814 1.14 Q V 2 +15 0.2059 1.19 Q V 2 +30 0.2320 1.26 ' Q V 2 +45 0.2583 1.27 Q V 3+ 0 0.2815 1.12 Q V 3 +15 0.3032 1.05 Q V ---------------------------------------------- ------------------- - - - - -- U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VDB93100.out T+' FAT +lT.....{...... �"F1��.... TT°. }�'�'�................................ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 ------------------------------------------------------------------ English (in -lb) input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format -------------------9------------------------------------------ I CITYLAQUINTA COACHELLA VALLEY ENGINEERS DKRICE --------------------------------_-------------------- Drainage Area = 0.16(Ac.) 0.000 Sq. Mi. - Drainage Area for Depth -Area Areal Adjustment = 0.01(Ac.) 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = 0.000 Hr. Lag time = 0.00 Min. 25% of lag time = 0.00 Min. 40% of lag time = 0.00 Min. Unit time 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) J 2 YEAR Area rainfall data: Area(Ac.) [1] Rainfall(In) (2) Weighting(1 *2) 0.01 1.0^_ 0.01 100 YEAR Area rain_ =all data: r`- i { A .�( —C.) [1 .r'.a rt'all(1n) �2) $`lelg%ting[1*2] 0.01 2.54 0.03 STORM EVENT E = P, } = 100.00 _I i '1 Area Averaged 2 -Tear Rainfall = 1.040(In) Area Averaged 100 -Year Rainfall = 2.540(In) Point rain (area averaged) = 2.540(in) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.540(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious % 0.010 56.00 0.900 0.150 56.00 0.200 Total Area Entered = 0.16(Ac.) RI RI Infi1. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 56.0 56.0 0.511 0.900 0.097 0.063 0.006 56.0 56.0 0.511 0.200 0.419 0.938 0.393 Sum (F) _ 0.399 Area averaged mean soil loss (F) (In /Hr) = 0.399 Minimum soil loss rate ((In /Hr)) = 0.199 (for 24 hour storm duration) Soil low loss rate (decimal) = ------------------------------------------------------------------ 0.200 U n i t H y d r o g r a p h DESERT S -Curve ------------------------------------------------------------------ Unit Hydrograph Data ------------------------------------------------------------------ Unit time period Time % of lag Distribution Unit Hydrograph (hrs) ------------------------------------------------------------------ Graph % (CFS) 1 0.250 1=0 100.000 0.161 ----------------------------------------------------------------------- Sum = 100.000 Sum= 0.161 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.376 0.399 0.075 0.30 2 0.50 4.80 0.488 0.399 - -- 0.09 3 0.75 5.10 0.518 0.399 - -- 0.12 4 1.00 4.90 0.498 0.399 - -- 0.10 5 1.25 6.60 0.671 0.399 - -- 0.27 6 1.50 7.30 0.742 0.399 - -- 0.34 7 1.75 8.40 0.853 0.399 - -- 0.45 8 2.00 9.00 0.914 0.399 - -- 0.52 9 2.25 12.30 1.250 0.399 - -- 0.85 10 2.50 17.60 1.788 0.399 - -- 1.39 11 2.75 16.10 1.636 0.399 - -- 1.24 12 3.00 4.20 0.427 0.399 - -- 0.03 Sum = 100.0 Sum = 5.7 Flood volume = Effective rainfall 1.42(In) times area 0.2(Ac.) /((In) /(Ft.)] = 0.0(?.c.Ft) Total soil loss = 1.12(In) Total soil loss = 0.015(Ac.Ft) Total rainfall = 2.54(In) Flood volume = 827.4 Cubic Feet Total soil loss = 647.8 Cubic Feet ------------------------------------------------------------ - - - - -- Peak flow rate o= this hydrograph = 1.264(CFS) ------------------------------------------------------------ - - - - -- +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 3 - H O U R S T O R M R u n o f f H y d r o g r a p h ------------------------------------------------------------ - - - - -- Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------ - - - - -- Time(h +m) Volume Ac. Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0225 1.09 VQ 0 +30 0.0443 1.05 Q V 0 +45 I 0.0662 1.06 Q VI I I 1+ 0 0.0880 1.06 Q V I I 1 +15 0.1104 1.08 Q I V I 1 +30 0.1330 1.10 Q I VI 1 +45 0.1560 1.11 Q I V 2+ 0 0.1792 1.12 Q I I V 2 +15 I 0.2035 1.18 Q I I VI 2 +30 0.2297 1.26 I Q I I V 2 +45 0.2553 1.24 I Q I I I V 3+ 0 0.2768 1.04 Q I I I VI ----------------------------------------------------------------- - - - - -- U n i t H y d r o a r a p h A n a l y s i s Copyright (c) CIVILC?DD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 15/07/07 File: VDB3100.out ttttt tttt+=tttttttttt i-+tttt+ttttttttt i -t•itti-ttttttttttttt +tttfttt +t tttttt -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 ------------------------------------------------------------ - - - - -- English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format CITY OF LA QUINTA CITY OF COACHLAA VALLEY ENGINEERS DFRICE ------------------------------------------------------------------ Drainage Area = 0.17(Ac.) = 0.000 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.01(Ac.) _ 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = •0.080 Hr. Lag time = 4.80 Min. 25W of lag time = 1.20 Min. 40% of lag time = 1.92 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.03(CFS) 2 YEAR Area rainfall data: Area (Ac.) [1] Painfall (In) (2) Weighting (1 *2) 0.01 0.04 0.00 100 YEAR Area rainfall data: Area(Ac.) (1) Rainfall(In) (2) Weiahtiig(1 *21 0.01 2.5.4 0.03 STORM EVENT (YEAR) = 100.00 i r Area Averaged 2 -Year Rainfall = 0.040(In) Area Averaged 100 -Year Rainfall = 2.540(In) Point rain (area averaged) 2.540(In) Areal adjustment factor = 100.00 Adjusted average point rain = 2.540(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious 0.010 56.00 0.900 0.160 56.00 0.200 Total Area Entered = 0.17(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Pate Area% F P.MC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 56.0 56.0 0.511 0.900 0.097 0.059 0.006 56.0 56.0 0.511 0.200 0.419 0.941 0.394 Sum (F) _ 0.400 Area averaged mean soil loss (F) (In /Hr) = 0.400 Minimum soil loss rate ((In /Hr)) = 0.200 (for 24 hour storm duration) Soil low loss rate (decimal) = ------------------------------------------------------------------ 0.200 U n i t H y d r o g r a p h DESERT S -Curve ------------------------------------------------------------------ Unit Hydrograph Data ------------------------------------------------------------------ Unit time period Time % of lag Distribution Unit Hydrograph (hrs) Graph % (CFS) 1 0.250 312.500 51.461 0.098 2 0.500 625.000 37.948 0.065 3 0.750 937.500 4.591 0.008 ----------------------------------------------------------------------- Sum = 100.000 Sum= 0.171 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.376 0.400 0.075 0.30 2 0.50 4.80 0.488 0.400 - -- 0.09 3 0.75 5.10 0.518 0.400 - -- 0.12 4 1.00 4.90 0.498 0.400 - -- 0.10 5 1.25 6.60 0.671 0.400 - -- 0.27 6 1.50 7.30 0.742 0.400 - -- 0.34 7 1.75 8.40 0.653 0.400 - -- 0.45 8 2.00 9.00 0.914 0.400 - -- 0.51 9 2.25 12.30 1.250 0.400 - -- 0.85 10 2.50 17.60 1.788 0.400 - -- 1.39 11 2.75 16.10 1.636 0.400 - -- 1.24 12 3.00 4.20 0.427 0.400 - -- 0.03 Sum = 100.0 Sum = 5.7 Flood volume = Effective rainfall 1.42(In) times area 0.2(Ac.) /((In) /(7t.)J = 0.0(Ac.Ft) Total soil loss = 1.12(In) Total soil loss = 0.016(Ac.Ft) Total rainfall = 2.54(In) Flood volume = 877.1 Cubic Feet Total soil loss = 690.3 Cubic Feet ------------------------------------------------------------ - - - - -- Peak flow rate of this hydrograph = 1.249(CFS) ------------------------------------------------------------ - - - - -- ++++++++++++++++++++++ =++++++++++++ +r + + + + + + + + + + ++ + + + + + + + + + + + + + + + ++ ++ 3 - F O U R S T O R M R u n o f f H y d r o g r a p h ------------------------------------------------------------ - - - - -- Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------ - - - - -- Time(h +m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0219 1.06 V Q 0 +30 0.0438 1.06 QV 0 +45 0.0654 1.05 Q V 1+ 0 0.0871 1.05 Q V 1 +15 0.1091 1.06 Q I V 1 +30 0.1314 1.08 Q ( V 1 +45 I 0.1541 1.10 I Q I VI 2+ 0 0.1771 1.11 I Q I V 2 +15 I 0.2009 1.15 I Q I I V I 2 +30 I 0.2262 1.23 I Q I I V I 2 +45 I 0.2520 1.25 Q I I V 3+ 0 0.2753 1.12 I Q I I I V 3 +15 I 0.2968 1.04 _ I Q I I I V 3 +30 0.3181 1.03 ( Q I I V ----------------------------------------------------------------- - - - - -- U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIViLCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VDB143100.out - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit 'Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format CITYLA QUINTA DKRICE ------------------------------------------------------------ - - - --- Drainage Area = 0.34(Ac.) = 0.001 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.03(Ac.) _ 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = 0.080 Hr. Lag time = 4.80 Min. 25% of lag time = 1.20 Min. 40% of lag time = 1.92 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.30(CFS) 2 YEAR Area rainfall data Area(Ac.) [1) Rainfall (In) (2] Weighting[1 *2] 0.03 1.04 0.03 100 YEAR Area rainfall data: rrea {AC. ) [lj Kaln: =11 (In.) (2) Weichtinc; (1 *2 J 0.03 2.54 0.08 STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall = 1.040(In) Area Averaged 100 -`Lear Rainfall = 2.540(In) Point rain (area averaged) = 2.540(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.540(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious % 0.030 56.00 0.900 0.310 56.00 0.900 Total Area Entered = 0.34(Ac.) j RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F P.MC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 56.0 56.0 0.511 0.900 0.097 0.088 0.009 �I 56.0 56.0 0.511 0.900 0.097 0.912 0.088 0.097 Sum (F) _ ' Area averaged mean soil loss (F) (In /Hr) = 0.097 1 Minimum soil loss rate ((In /Hr)) = 0.049 (for 24 hour storm duration) Soil low loss rate (decimal) -- -0_500 -- - - - - -- ---------------------- - - - - -- ------------------ -- -- -- - - -U -n i t H y d r o g r a p h - - -- DESERT S -Curve -------------------------------------------- Unit Hydrograph Data ------------------------------------------------------------------ t I Unit time period Time % of lag Distribution Unit Hydrograph (hrs) Graph % (CFS) ------------------------------------------------------------------ ' I 1 0.250 312.500 57.461 0.197 2 0.500 625.000 37.948 0.130 3 0.750 937.500 4.591 0.016 Sum = 100.000 Sum = ----- 0_343 - -- ------------------------------------------ - - - - - - - - - - - - - - - I' Unit Time Pattern Storm Rain Loss rate(Ir_. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.376 0.097 - -- 0.28 2 0.50 4.80 0.488 0.097 - -- 0.39 3 0.75 5.10 0.518 0.097 - -- 0.42 4 1.00 4.90 0.498 0.097 - -- 0.40 5 1.25 6.60 0.671 0.097 - -- 0.57 6 1.50 7.30 0.742 0.097 - -- 0.64 7 1.75 8.' =0 0.253 0.097 - -- 0.76 I 8 2.00 9.00 0.914 0.097 - -- 0.82 r1! 9 2.25 12.30 1.250 0.097 - -- 1.15 10 2.50 17.60 1.788 0.097 - -- 1.69 I1 11 2.75 16.10 1.636 0.097 - -- 1.54 in + + 12 3.00 4.20 0.427 0.097 - -- 0.33 Sum = 100.0 Sum = 9.0 Flood volume = Effective rainfall 2.25(In) times area 0.3(Ac.) /[(In) / (Ft .)J = 0.1(n.c.Ft) Total soil loss = 0.29(In) Total soil loss = 0.008(A.c.Ft) Total rainfall = 2.54(In) Flood volume = 2775.5 Cubic Feet Total soil loss = 359.3 Cubic Feet ------------------------------------------------------------ - - - - -- Peak flow rate of this hydrograph = 1.841(CFS) ------------------------------------------------------------ - - - - -- + + + + + + + + + + + + + + + + + + + + T + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 3 - H O U R S T 0 R M R u n o f f H y d r o g r a p h ------------------------------------------------------------ - - - - -- Hydrograph in 15 Minute intervals ((CFS)) Time(h +m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0280 1.35 V Q 0 +30 0.0572 1.41 Q 0 +45 0.0869 1.44 Q V 1+ 0 0.1167 1.44 Q V 1 +15 I 0.1471 1.47 Q I V 1 +30 0.1782 1.51 Q V 1 +45 I 0.2101 1.54 Q VI 2+ 0 I 0.2425 1.57 I Q I V I 2 +15 I 0.2765 1.65 I Q I I V I 2 +30 0.3136 1.80 I Q I I V I 2 +45 0.3517 1.84 I Q I I V 3+ 0 I 0.3845 1.59 I Q I I I V 3 +15 I 0.4128 1.37 I Q I I I �1 3 +30 0.4398 1.31 I Q I I V ------------------------------------------------------------ ----- - - - - -- U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VDB3100.out ................................. ..F..... ... ..{. { ................. +fit }�+ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - Aoril 1978 Program License Serial Number 6078 English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format CITY OF LA QUINTA CITY OF COACHLAA VALLEY ENGINEERS DKRICE -------------------------------------------- --------- ------- - - - - -- Drainage Area = 0.14(Ac.) = 0.000 Sa. Mi. Drainage Area for Depth -Area Areal Adjustment 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = 0.080 Hr. Lag time = 4.80 Min. 25% of lag time = 1.20 Min. 40W of lag time = 1.92 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) 2 YEA.r? Area rainfall data: Area(Ac.) [1] Rainfall (In) (2) Weighting [1 *2] 0.03 1.04 0.03 100 YEAR Area rainfall data: Area(Ac.) (1) Rainfal i 0.03 2.5'. 0.08 STORM EVENT (YE"?) = 100.00 0.03(Ac.) _ i Area Averaged 2 -Year Rainfall = 1.040(in) Area Averaged 100 -Year Rainfall = 2.540(In) Point rain (area averaged) = 2.540(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.540(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious 0.110 56.00 0.900 0.030 56.00 0.400 Total Area Entered = 0.14(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 56.0 56.0 0.511 0.900 0.097 0.786 0.076 56.0 56.0 0.511 0.400 0.327 0.214 0.070 Sum (F) _ 0.146 Area averaged mean soil loss (F) (In /Hr) = 0.146 Minimum soil loss rate ((In /Hr)) = 0.073 (for 24 hour storm duration) Soil low loss rate (decimal) = --------------------------------------------------------------=--- 0.500 U n i t H y d r o g r a p h DESERT S -Curve -------------------- - --------------------------------------------- Unit Hydrograph Data ------------------------------------------------------------------ Unit time period Time % of lag Distribution Unit Hydrograph (hrs) ------------------------------------------------------------------ Graph % (CFS) 1 0.250 312.500 57.461 0.081 2 0.500 625.000 37.948 0.054 3 0.750 937.500 4.591 0.006 ----------------------------------------------------------------------- Sum = 100.000 Sum= 0.141 Unit Time Pattern Storm Rain Loss rate(In. /fir) Effective (Hr.) Percent MAO Max Low (In /Hr) 1 0.25 3.70 0.376 0.146 - -- 0.23 2 0.50 4.80 0.488 0.146 - -- 0.34 3 0.75 5.10 0.518 0.146 - -- 0.37 4 1.00 4.90 0:498 0.146 - -- 0.35 5 1.25 6.60 0.671 0.146 - -- 0.52 6 1.50 7.30 0.742 0.146 - -- 0.60 7 1.75 2.40 0.853 0.146 - -- 0.71 8 2.00 9.00 0.914 0.146 - -- 0.77 9 2.25 12.30 1.250 0.146 - -- 1.10 10 2.50 17.60 1.788 0.146 - -- 1.64 11 2.75 16.10 1.636 0.146 - -- 1.49 12 3.00 4..20 0.427 0.146 - -- 0.28 Sum = 100.0 Sum = 8.4 Flood volume = Effective rainfall 2.10(In) times area 0.1(Ac.) /[(In) /(Ft.)) = 0.0(Ac.Ft) Total soil loss = 0.44(In) Total soil loss = 0.005(Ac.Ft) Total rainfall = 2.54(In) Flood volume = 1067.8 Cubic Feet Total soil loss = 223.1 Cubic Feet ------------------------------------------------------------ - - - - -- Peak flow rate of this hydrograph = 1.256(CFS) ------------------------------------------------------------ - - - - -- ++++++++++++++++++i++++++++++++++++ + + + + + ++ + + + +r + + + + + + + + + + + + + + + + + ++ 3 - H O U R S T O R M R u n o f f H y d r o g r a p h ------------------------------------------------------------ - - - - -- Hydrograph in 15 Minute intervals ((CFS)) ----------------------------------------- ------------------- - - - - -- Time(h +m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0219 1.06 V Q 0 +30 0.0442 1.08 QV 0 +45 0.0667 1.09 Q V 1+ 0 0.0892 1.09 Q V 1 +15 0.1120 1.10 Q I V 1 +30 0.1352 1.12 Q V 1 +45 0.1586 1.13 Q VI 2+ 0 I 0.1822 1.14 I Q I V I 2 +15 I 0.2065 1.18 I Q I I V I 2 +30 I 0.2320 1.24 I Q I I V I 2 +45 0.2580 1.26 I Q I I V 3+ 0 i 0.2818 1.15 I Q I I I V 3 +15 0.3038 1.06 I Q I I I V 3 +30 0.3253 1.04 I Q I I I V ------------------------------------------------- ---------------- - - - - -- IN THE CITY OF LA QUINTA, CALIFORNIA HYDROLOGY /DRAINAGE REPORT REPORT FOR TRACT 30378 IN THE SE 1/4 OF SECTION 4 , T 6 S, R 7 E, SBM (Last Revised 7/19/07) ETEL(760)360 -4200 FAX(760)360 -4204 Coachella Valley Engineers 77 -899 Wolf Road, Suite 102, Palm Desert, CA 92211 / QRpFESS / C. K. R /�l �y LU NO. 35728 111, b3MI 9�F CIV1�- I9 a1 DAVID K. RICE JR. — RCE 35728 — EXPIRES 6 -30 -09 AVENUE 1 50 W LO OLD ORCHARD I 4- Z VISTA O BONI T — W TRAIL T. 5S. T. 6S. W Q) AVENUE 51 0 0 AVENUE 52 1 VICINITY MAP NOT TO SCALE %p . . EM W CIRCLE 'I ocv Coachella Valley E ineer� � °8 ■ 1 I May 24, 2007 ■ Mr. Timothy R. Jonasson, P.E. City of La Quinta Public Works Director /City Engineer ■ 78 -495 Calle Tampico La Quinta, California 92253 ■ ' I Dear Mr. Jonasson, P.E., This letter will transmit the 4`h Amended Hydrology and Retention Basin Design Report ■ for TM 30378. Said report has been prepared in accordance with the definitive criteria to l the City Engineering Bulletin No. 16 as set forth by City Staff during the last review meeting. This submittal is in total compliance to the items of conformance as outlined in your May 7, 2007 letter. The Imperial Irrigation District plans for the electrical infrastructure have been approved and a copy included herewith. The IID easement instrument is included herewith. The retention basin and maximum storm volumes based upon the City of La Quinta Design Synthetic Unit Hydrograph Method is included for the 100 year 3 hour storm criteria. Said procedure substantially conforms the Staff s recommended amount of cumulative storm volumes as discussed and reviewed during the meeting. ■ The amended sheet no. 3 of the final map is included with this submittal. Said sheet no.3 1 designates the limits of the utility easements and the storm drainage easement. A copy of the reciprocal use agreement between owners is included herewith. Said agreement grants permission to install the offsite drainage basin for Beth circle and ■' I Madison Street said private property off site of this project. CVE agree to provide this information and we have done so. I trust that you and staff will find this storm water volume storage capacity to be in substantial conformance to the verbal directive comments supplied by Staff during our last meeting. Please review the eport and CVE is looking forward to its subsequent approval. Cly y K. Rice r. Civil Engineer. 77 -899 WOLF ROAD, SUITE 102 PALm DESERT, CA 92211 TELEPHONE (760) 360 -4200 FAX (760) 360 -4204 ' La Quinta Polo Partners - CVE 01 152 - Ave 51 a Madison - Rod Vandenbos LA QUINTA POLO PARTNERS Un OWN3 HYDROLOGY AND DRAINAGE FACILITY DESIGN REPORT INDEX Cover Sheet Index Hydrology and Drainage Facility Design Report Retention Basin Storage Summary Location Map — Predevelopment Drainage Area Map — Post Development NWS NOAA Precipitation Forecast Soil Conservation Service Aerial Map Data Appendix 1. Soil Engineer Percolation Report 2. Soil Engineer Percolation Report Update 3. CVE & CLQ Comparative Drainage Areas and SUH Storm Volumes 4. CVE Synthetic Unit Hydrograph Analysis — Basins 1 through 15 5. Retention Basin Storage Calculation Sheets 6. CVE Design Calculations 7. SCS Hydrologic Soil Group Table 12 8. Calculation of Madison Avenue 10 year and 100 year per EB -16 9. Nuisance Water Evaluation ivlay 24, 2007 10.TM 30378 AND TM 33085 Reciprocal Easement & Maintenance Agreement 11. Imperial Irrigation District Utility Easement and "as built drawing" 12. CLQ approved December 2004 Hydrology and Retention Basin Report w/ Riverside County Hydrology Manual (RCAM) Excerpts: a) 3, 6 and 24 Hr Storm Volume Precipitation Plates b) Rainfall Pattern Table c) 10 and 100 Year Storm Intensity Duration Table d) Pervious Area Runoff Index Table 5/22/2007 CVE 01152 La Quints Polo Partners - CVE 01152 - Ave 51 @ Madison - Rod Vandenbos e) Impervious Cover /Development Table f) Runoff Coefficient Curves g) Initial Sub -area Time Of Concentration Homograph h) Street Velocity Discharge Curve 13. Bureau of Public Roads Curb Inlet Capacity Nomograph 5/22/2007 01152 iNlay 24, 2007 CVE Project'street capacity shall be calculated on the FHWA HEC 22 methodology. HYDROLOGY AND RETENTION BASIN DESIGN I FOR TRACT 30378 ' I City of La Quinta (Southwest Corner of Ave 51 and Madison St.) Statement of Amendment 2007 ' I The City of La Quinta has requested an updated Hydrology and Retention Basin Report to be prepared in the 2007 Engineering Procedure for the City of La Quinta, as adopted by the city council on December 19, 2006. Said procedure is detailed in the City of La I Quinta Department of Public Works Engineering Bulletin No. 06 -15 and 06 -16. The original Hydrology and Retention Basin Report was submitted on August 31, 2004. This report will review and modify the existing report in the areas which do not conform to the ' I new design criteria of EB No 15 and 16. ' I Design Criteria Differences The City of La Quinta published Engineering Bulletin Nos. 15 and 16 addressing the 1 updated design criteria for underground retention basins and the hydrology design criteria. For TM 30378, the project acreage per basin is less than 10 acres. The City of La Quinta has mandated that the Hydrology Study be completed by using the Synthetic I Unit Hydrograph method of storm water runoff. The criteria for the hydrology analysis ' shall be based upon the 100 year storm occurence frequency and a three hour storm duration period with the class AMC II soil and a composite runoff factor of class 56. ' The desi gn of Madison Street shall be predicated on conformance of construction to merge to the existing east half of the street. I The project 2007 underground retention systems can implement the use of the Deepwell Percolation Chamber and must be dissipated within 72 hours. Sand filter calculation ' l rates can be applied to the drywell. Any percolation tests conducted must be done so with the double ring infiltrometer ' l ASTM D3385 -88 (sand lithology). ' l Rainfall Intensities shall be prepared using a locally zoned City map in accordance to the ,I 1 NOAA available forecast data. Project'street capacity shall be calculated on the FHWA HEC 22 methodology. 1 1' Proiect Location 1 Tract 30378 is located in the City of La Quinta, at the southwest corner of the intersection of Vista Bonita Trail (VBT), (aka Ave 51) and Madison Street. It is designated as APNs 1 772 - 270 -011, 012, & 013, and is described as a portion of the NE '/4 of the SE '/4 of Section 4, T6S, R7E, SBB &M. It consists of approximately 10 acres of flat, sandy, former citrus grove being divided into eight, approximately 1 -acre residential lots. 1 Discussion & Summary 1► The contours on the enclosed portion of USGS topo map (Location Map) indicate that Vista Bonita Trail follows a ridge for approximately 1100 feet, from the Coachella Canal to Madison St. The easterly 900 feet of this street historically drained past and /or into 1 subject site. Subject site cannot obstruct this flow, and must convey it through, or past, the site. Typically, development of such sites are not required to retain, and dispose of , offsite flows. 1 North of Vista Bonita Trail (Ave 51), Madison Street drains north, away from the subject Isite to a culvert flowing east under Madison Street. 1 South of Vista Bonita Trail, the west half of Madison Street drains south along subject site frontage, and will be collected in a curb inlet (cb# 1) at Beth Circle, near the southeast 1 corner of this site. The easterly 50 feet of the orchard area to the west of subject site was surveyed by CVE, along with the subject site. An existing 1 to 2 foot high berm constructed by the owner of the adjacent offsite property prevents all runoff from that property from impacting this site. The general elevation of this property 20 feet west of the property line is 518.4. The elevation of the top of this berm is approximately 520.2 (see spot elevations on the rough grading plan). This data demonstrates that this offsite area does not drain into subject site. Instead, the offsite parcel drains south from Vista Bonita Trail past subject property, and thence southeasterly across the property south of subject to Madison Street. Calculations were made for the 100 -year, 1 hour, 3 hour, 6 hour, and 24 hour storm data 1 to confirm which storm requires the largest retention volume. To ensure a fail safe i design, volume calculations were performed utilizing a 0 "/hr percolation factor.This j criteria per City Engineering Bulletin 06 -16, item 9. The 100 year, 3 hour storm required the largest retention for the designed basins (see the 1 i Retention Basin Summary Table attached). All basins have been designed with varying depths ranging from 2' up to 3.8'. As per the 1 ' City of La Quinta design standards, a maximum side slope ratio of 3:1 has been identified for all ponding. Maintenance ramps, with a maximum longitudinal slope of 15% are specified for all permanent ponds. A minimum of 1' of freeboard, defined as the 1 i elevation differential between the 100 -year water surface elevation and the nearest street flowline elevation, has been provided within each permanent retention facility. ' The included Retention Basin Storage Date Table indicates that the total 100 -year cumulative retention volume required is 62,500 cf, while the total storage volume provided with this project is 84,000 cf. Basins 1 through 7 are designed � ed as individual retention facilities accepting runoff waters ' from Lots 1 through 7 respectively. Basins 1 through 4, located along the lot fronts immediately west of Old Orchard Lane are provided with emergency overflow spillways which will discharge to Old Orchard Lane in the event that storm volumes exceed the design storm. Basins 5 through 7, located at the Old Orchard Lane frontage of Lots 5 ' through 8 have emergency overflow spillways at the south end of each facility. In the event of an overflow, excess floodwaters will enter Basins J (11), K(12), & L(13) before spilling into Madison Street via proposed Catch Basin #1, located just north of Beth Circle. t� Basins 8W, K (12) and L(13) have been designed as one interconnected system to maximize storage capacity. During the design event, contributing flows will be generated I from Lot 8, Old Orchard Lane, the northern portion of Beth Circle, and from the west ' half of Madison Street, adjacent to this site. Floodwaters from the previously defined 100' x 900' portion of Vista Bonita Trail will also be intercepted and conveyed via Madison Street Drainage flow through the defined Basin 8 through 10 ponding system via CB 91 located at the intersection of Madison St. and Beth Circle. During a 100 -year storm event, excess waters from Vista Bonita Trail will pass back out the Madison Street catch basin, and continue south within the roadway. Basins 14 and 15 are very small temporary retention ponds, pending development to the south of Beth Circle and Old Orchard Lane. The tributary areas for these basins are 100% street pavement.. The runoff coefficient was adjusted to 90% to ensure adequate retention in these temporary basins. These basins have been converted from the original analysis to the catch basin diversion into the "On Site" catch basin for TM30378 and TM33085.See append& for the reciprocal agreement between TM 30378 and TM 33085. All retention basin 100 year water surface elevation perimeter boundary are within the legal limits of the drainajZe easement. The existing 6 foot high masonry privacy walls around the site assure privacy and ' complete control of offsite drainage. The west wall replaces reliance on the existing berm. The north wall assures that the Vista Bonita Drainage remains channelized in, what is currently, a roadside swale until it reaches Madison Street and can be collected at ' CB #1 at Beth Circle. 1 The south wall insures that Lot 1 does not drain south onto the neighboring property. 'I As stated earlier in the report, runoff from the 100' x 900' section of Vista Bonita Trail, to the immediate north of the site, collects in a v -ditch located along the south right of way line. Collected flows are conveyed east to Madison Street, and then south to CB #1 to be located along the west Madison curb, just north of Beth Circle. Intercepted flows from Vista Bonita Trail will be routed through the interconnected 8 through 10 retention facilities. During a larger event, these excess offsite flows will exit back out CB #1 to Madison Street (CB #1 flow line = 512.50), overtop the high point at the Beth Circle intersection (512.60), and continue south per the historical drainage course. Likewise, if ' a system failure in the interconnected basins 5 through 9 were to occur, or if the site experienced an event larger than the 100 -year, excess floodwaters will follow the same ' path back out CB #1 to Madison Street. The lowest finished floor is at elevation 515.5 (Lot 8), and the lowest street gutter flow ' line is elevation 513.13. A11 designed finished floors are more than 2 feet above the overflow elevation, and the lowest street, (Madison St.) will be flooded to a depth of only 0.35 feet at the beginning of emergency overflow (less than top of curb). Given that, and ' the fact that the designed retention ponding volumes include a zero percolation factor, sufficient storage volumes have been provided with this project to ensure there will be no adverse impact on downstream properties given the development of this site. i r r �i G t,��ild�o�l CV ls�:5) s n I' t � %i ,� I %!' If IE, �Q me- t w -, ft 1 , I; 1 4-:r 5 I' t � %i ,� I %!' If IE, �Q me- t w -, ft 1 , I; 1 77 Rr1 -9v Afli: A VUMm7P h'.• r 4 44 x- JAM --;qe CE- ' H P. 1 IS 1 - 4 AVERAGE OVER--ONE ACRE IN AND RETAIN STORM WATER ON SITE. �4TION BASINS ALONG MADISON' ST. JNKED BY EQUALIZER LINES AND ARE WITHIN EXISTING CITRUS GROVE TO !SIN. THE SOUTH SIDE OF THE ENTRY (IS PART OF THE FUTURE DEVELOPMENT 11E SOUTH AND WILL TEMPORARILY DRAIN THE EXISTING CITRUS GROVE ON THAT' )PERTY. THE REAR OF LOTS 5 -8 DRAIN I DIRECTLY INTO THE LINKED RETENTION BASINS. 1 1 r I 1 - 1 1 1 1 1 - . 1 GRAPHIC SCALE U =0 1CO 200 ■ ( IN FEET ) 1 inch = 100 ft. r I u -- 02g VISTA- T - _ I .07 AC - - - -- VI -- BONITA- _TRAIL (PRIVATE STREET) _ w m 0 z N X Li I I I I R /W, TRACT BOUNDARY -/ [TC 516.5] & WALL TC 516.31 (HOUSE) O _ 47,002 cv - 1.08 AC - S -- -- - - - - -- = PL '----------- - /^� -- 3 LO J - I.c_ 3 37,672 -d 0.86 AC PL 69,386 2.08 Li z 1.59 I I _: -- - O r- m u -'- 1 RETENTION Cr \ BASIN (TYP) O \ Cr 2 f— 45,506 m EQUALIZER yl 1.04 AC u» -- ----- - - - - -- -__ -- LINE - -- P) w 0o z Oz I, Z LIJ Z m TC 513.70 TC 513.66 1 G45 O Ce I OTC 513.70 IN Caoo��00 o TO 45,010 CBIT2I ( ! Q LINE C ►- " N 1.03 AC 0100 =1.25 Cf�, — RETENTION BASIN (TYP) f H P. 7 5 657 8 P► I ,-0- t� ---�. H TRACT BOUNDARY & WALLA ��` %� _ ] % 0 1 EXISTING R/W 11 . �0 h� to N 04 I W O I I Oa, W VOL 1,283 CF. O 1-i Q) M I I ro I 1 _N I O I T�� v 1 VOL 1,902 CF. ZI I O I ©THRU® WS 14,781 SF. I I VT/) 1 - A I H VOL 1,461 CF. I Q I i i I I I Q � I I FUTURE CURB & G U iiER 9 i 5 0 i Q VOL 1,283 CF. I ° I I I WS 2,592 SF. I i I Q I I .I WS 1,834 SF. VOL 1,902 CF. I S.Da1 LINE A RETENTION BASINS WS 2,581 SF. VOL 1,283 CF. A WS 2,592 SF. VOL..1,301 CF.- A WS 1,834 SF. VOL 1,902 CF. A WS 2,210 SF. VOL 2,419 CF. ©THRU® WS 14,781 SF. VOL 16,213 CF. - A WS 2,240 SF. VOL 1,461 CF. A WS 639 SF. VOL 408 CF. D RA]INAGE AREA MAP TORM DRAIN /RETENTION BASIN - EXHIBIT TRACT 30378 ROD" VANDENBOS AND ADJACENT SITES 1 , VISTA BONITA TRAIL I 1 (PRIVATE STREET) (NOT INCLUDED IN TRACT 30378 RETENTION BASIN ANALYSIS) TC 515.54 1 FUTURE CURB & GUTTER R /W, TRACT BOUNDARY TC 516.32 & WALL O 4 2,331 CF® 0 W 2,331 CF W 5,733 CF 4 H Ti PL PL 3 Z 7,350 CF O t O J a 4,088 CF 3 7,355 CF ui m PL 2,202 CF 2,202 CF Q Li Z z p 5,866 CF 'Z N x m ® Q — Q 1 ® z x PL J L16 6,584 CF-,,,, ILL 0 ® 0 PL 4,444 CF 3 6,911 CF 1 \ Q 8 9 — — v O4669 1 O CF v TC 513.70 CB #1 CB 2 1 0100=6.40 CFS Q100 =1.25 CFS o pt S.D. TC 512.74 LINE "C" S.D. LINE A RETENTION BASIN (TYP) 1,039 CF tH P, 11 1,311 CF � H P H.P. TRACT BOUNDARY & WALL `� 15 1200 CF P. _� EXISTING R/W 2,775 CF = BETH CIRCLE TC 512.76 a PROPOSED DRAINAGE AREA ' MAP s 6 1 " =100' 1' 1' TRACT 30378 RETENTION BASIN COMPARATIVE CHART BASIN AREA C. V. E. VOL UME C. L. 0. VOL UME 1E 1 +1Q 6,911 7,500 2E 2 5,866 5,490 3E 3+ m 7, 355 7,017 4E 4 5, 733 5,675 5W 2 2, 331 2,5J6 2 2, 331 2,5J6 6W 2 f 4,08J 4,349 H f 2 + z 7, 350 6,559 7W 2 2,202 2,277 2 2,202 2,277 8W $f4 4,444 4,422 K -6- +12 fi-j 6,584 6,632 9L .16 1, 039 1, 311 15 .14 877 1, 169 140S 34 2775 2,796 r r�71-1PILuuu11 rrequency uata Server Pagel of 5 POINT PRECIPITATION. "Wner, a FREQUENCY ESTIMATES `:- FROM NOAA ATLAS 14 ' California 33.677 N 116.124 W 9 feet Front "Precipitation- Frequency Atlas of the United States" NOAH Atlas 14. Volume I. Version q G.VI. Bonnin. D. Martin. B. Lin. T. Parzybok. M.Yekta. and D. Riley NOAH. National Weather Service, Silver Spring, Maryland. 2006 Extracted: Sat Mar 10 2007 ' L confidence Limits Seasonality Ij Location Maps I� Other Info. 11 GIS data I Maps I Help p Precipitation Frequency Estimates (inches) ARI � 10 15 30 60 120 3 6 Mhr N48 4 7 10 20 30 45 in hr hr h [day] day day da da da da 0.08 F01-2]E] 0.21 0.26 0.35 0.43 0.58 0.71 0.81 0.83 0.91 1.00 1.06 1.18 1.32 1.49 1.59 ' 0.11 0.17 0.21 0.29 0.36 0.49 0.58 0.79 0.97 1.10 1.13 1.24 1.37 1.47 1.63 1.34 2.08 2.23 I 10.19 0.28 0.35 0.47 0.58 0.78 0.91 1.21 1.46 1.68 1.72 1.90 2.10 2.25 2.52 2.82 3.18 3.44 ' 10 0.25 0.38 0.47 0.64 E7fl r1_0 1.18 1.54 1.84 2.14 2.20 2.43 2.67 2.88 3.20 3.58 4.02 4.35 l 25 0.36 0.54 0.67 0.91 1.12 1.42 1_6 01 2.03 I 2.40 2.79 2.91 3.21 3.50 Efl Kfl 4.64 5.19 5.62 { 50 0.46 0.70 0.86 1.16 1.44 1.78 1.96 2.45 2.85 1 3.34 3.52 3.87 4.19 4.53 Efl 5.50 6.12 6.65 0.57 0.88 1.08 Ejfl 1.81 Elfl 2.38 2.91 3.33 3.92 4.20 4.61 4.94 Efl EE 6.43 7.11 7.73 200 0.72 1.09 1.35 1.32 2.25 2.67 2.86 3.42 3.37 4.57 4.95 5.43 5.76 6.25 6.77 7.42 8.15 8.87 ' 500 0.94 1.44 I 1.78 2.40 Efl E4fl 3.61 Kfl 4.64 5.50 6.08 6.64 6.97 7.06 8.12 8.83 9.61 10.49 1000 1.15 1.75 2.17 2.92 3.62 4.11 4.28 4.87 5.30 6.28 7.04 7.67 7.98 8.66 9.23 9.98 10.79 11.79 'Il Text version of table 'These precipitation frequency estimates are based on a partial dur. ation series ARI is the Average Recurrence Interval. Please refer to the documentation for more information. NOTE: Formatting forces estimates near zero to appear as zero. � I � I I Ii 1 littl) ://(Iitiiiei *.ii \vs.iioai.vnv/r pl- hill /liricr` /)vnfriniit norl'Jt�n�a��FR,o< - ..1.P..._; , P...._ 1 11 n,nr1n^ Precipitation Frequency Data Server -n 7 c 6 5 4 CL 0 I d 3 4 5 6 7 8 910 20 30 40 50 80100 140 200 300 Sat Plar 10 13:48:17 2007 Average Recurrence Interval (years) Partial duration based Point Precipitation Frequency EstimateS '...'ers-ion: 4 3 .677 N 116.1-24 1.1 -9 f t Page 2 of 5 500 700 1000 Durat i on rV =5 -,m i n I C 4-dal-I n day -.1 au n 12-hr d au 4 - h lif h-)-.11ri 11111R.1, 11\VCZ linq -1 urii lrr.i 111 , ; 1,1-, 't C.0, :—.— o -_._._ , - fN/nr%r,-7 Precipitation Frequency Data Server Partial duration bas ?d Fain+. Fr ?cii- itatior) Fre<11_lency Est imat ?s .ersion: 4 33.677 N 116.1'2-4 14 9 ft 12 1 1 1 1 1 1 1 I 1 1 11 L •] :j Z Q1 7 a � b O m 5 i•1 4 U N 2 L a 1 0 Page 3 of 5 C ' r ° L L L L L L L L L D1 71 71 ]1 a T. a T a T S >_ I l S t L L C -C t Z -U N .D T M 1a N 2 0 1 I 1 I I -a N M N I I I I 1 1 I I I 3 3 3 3 3 3 I N ('�I V' o W N .1 V- u1 .1 I I I I 1 I I 3 3 3 U7 © 1f7 lD © 1D m .•. .-. N 1n V- () 7 U) n v J, S 1 1 I Duration -- -+ N 0 V• �O Sat P1ar 10 13:43:17 2007 Average Recurrence Interval (uears) 1 t- 1013 - 1 i'• 500 t Confidence Limits - IF- * Upper bound of the 90% confidence interval Precipitation Frequency Estimates (inches) ARI ** 5 10 1� 30 60 120 3 6 12 Mh 48 4 7 10 20 30 Am (years) min ►nin min min min min hr hr hr [hr day day day day day 00 C� 0.10 0.15 0.19 0.26 0.32 0.44 0.52 0.71 0.86 0.96 0.96 1.06 1.17 1.25 1.38 1.54 0.14 0.22 EE 0.37 0.45 0.61 0.71 0.96 1.18 1.31 1.32 1.46 1.60 1.72 1.91 2.15 2.42 2.59 I 10.23 0.35 0.44 Fo- 791 0.73 0.95 1.10 1.47 1.76 2.00 2.00 2.23 2.41 2.63 2.93 3.28 3.71 4.00 10 0.31 0.47 0.59 0.79 0.98 1.25 1.44 1.87 2.22 Efl 2.56 2.85 3.10 3.35 3.72 4.16 4.68 5.05 25 0.44 0.67 0.83 1.12 1.39 1.72 1.94 2.46 2.88 3.31 3.39 3.76 4.07 4.40 4.84 5.40 6.04 6.54 50 0.56 0.86 1.06 1.43 1.77 2.15 2.37 2.97 3.43 3.95 4.10 4.54 4.88 5.28 5.78 6.42 7.14 7.74 100 0.71 1.08 1.34 1.S0 2.23 2.64 2.89 3.54 4.02 4.65 F4- .90 5.43 5.78 6.25 6.80 7.53 3.32 9.03 200 O.SS 1.34 1.66 2.24 2.77 3.24 3.49 4.17 4.68 5.42 5.80 6.42 6.78 7.33 7.92 8.74 9.59 10.40 X00 1.17 1.77 2.20 2.96 3.67 1.19 4.14 5.15 5.65 6.55 7.17 FE Efl 8.92 9.57 10.49 11.39 12.35 1000 1.43 2.1 S Z.70 3.63 4.50 5.06 5.29 6.O1 6.51 7.54 3.35 9.22 9.5=1 10?9 10.96 11.94 12.56 13.99 'The upper bound of the confidence inlenial al qn %rnnfidpnrp la-1 le rho -1- . h„•h soi r the � ;,,.[-A .. .._1..__ __ _ _•_.__ .___ ___ ___ "These precipitation frequency estimates are based on a partial duration series. ARI is the Average Recurrence Interval. Please refer to the iat:;:rront<:Gcrl for more information. NOTc: Formatting prevents estimates near zero to appear as zero. y Lower bound of the 90% confidence interval hrr. ,. / /:1:._._.,.........-.,,,..., /..... 1,.., /1_.1_.n -r.t_... . to rn Precipitation Frequency Data Server Page 4 of 5 Precipitation Frequency Estimates (inches) ARI *x WN�fljX 120 FhrTh 6 Fh 2 24 43 4 7 10 20 30 45 60 nun r r hr hr day day day day day day day C �1 0.07 0.10 0.12 O.17 0.21 OF? fl Efl 0.45 0.59 0.65 0.71 0.7S OF SS ] 0.91 1.00 1.14 1.27 1.35 0 0.09 El 0.17 0.23 Efl 0.40 1 0.45 0.65 0.S0 E9fl 0.97 1.07 1.1 S 1.25 1.39 1.58 1.77 1.89 0.15 Efl Elfl 0.39 Efl 0.64 0.75 1.00 1.20 1.11 1.47 1.63 1.79 Efl 2.14 2.42 2.71 2.91 10 0.20 0.31 0.3S 0.51 0.63 O.S4 0.97 1.26 1.51 1.79 1.8S 2.03 2.27 2.44 2.71 3.05 3.42 3.67 25 0.23 0.43 0.53 0.71 0.88 1.14 1.30 1.65 1.94 2.32 2.46 2.72 2.94 3.18 3.51 3.94 4.39 4.72 50 0.35 0.54 0.67 0.90 1.11 E4E FE 1.97 E2fl Efl ff E 3.25 3.49 3.78 4.16 4.64 5.14 5.55 100 0.44 0.66 0.82 FE 1.37 Efl 1.37 2E 2.65 3.21 3.47 3.81 1 4.03 4.4,1 4.33 5.39 5.93 6.40 200 0.53 0.80 1.00 1.34 1.66 2.02 2.21 2.67 3.03 3.69 4.04 4.43 4.70 5.09 5.56 6.16 6.75 7.28 500 0.67 I 1.02 1.27 1.71 2.12 2.52 2.71 3.21 3.56 4.38 4.86 5.31 5.58 6.05 6.55 7.23 7.86 8.50 U0KEE 1.21 1.50 2.03 2.51 2.95 3.14 3.66 4.01 4.92 5.53 6.04 6.30 6.84 7.35 3.08 8.72 9.46 The lower bound of the confidence interval at 90% confidence level is the value which 5% of the simulated quantile values for a given frequency are less than. - These precipitation frequency estimates are based on a partial duration maxima series. ARI is the Average Recurrence Interval. Please refer to the documentation for more information. NOTE: Formatting prevents estimates near zero to appear as zero. Maps - •1 •t o r"bl a0' "td Ci "ld 701 td These maps were produced using a direct map request from the U. "a..,ensas Eme-:u ba :pping and Cans;_ aphis Tiger Iviap Server. Please rc od di. ;i raim „' far mo/ c inrorulrrria r. 2Z LL: " P- Precipitation Frequency Data Server Iln.7-_W IIAA —W 1.1n.0 -to Other Maps /Photographs - z` ti r- Page 5 of 5 LEGEND — State — Connector — County Stream Indian Resv Military Area Lake /Pond /Ocean National Park — Street Other Park --- Expressway City — Hi ghway o -- Cqurtty 6 S mi Scale 1:228583 io 1. I- 4 10 ,; m *avera;;e- -true scale depencls on monitor resoiutlon View LJSGS digital orthoplioto quadrangle (1)O ). covering this location from TerraServer; USGS Aerial Photograph may also be available from this site. A DOQ is a computer - generated image of an aerial photograph in which image displacement caused.by terrain relief and camera tilts has been removed. It combines the image characteristics of a photograph with the geometric qualities of a map. Visit the USGS for more information. Watershed /Stream Flow Information - Find the Watershed for this location using the U.S. Environmental Protection Agency's site. Climate Data Sources - Precipitation frequency results are based on data fi-orn a variety ofsources, but largely NCDC The following links provide general information about observing sites in the area, regardless of if their data was used in this study. For detailed information about the stations used in this study, please refer to our documentation. Using the National Climatic Data Center's (NC'PQ. station search engine, locate other climate stations within: +/ -30 minutes OR +/ -1 degree of this location (33.677/ - 116.124). Digital ASCII data can be obtained directly from NCDC. Find \IatlaNI Rest�urcz� C_on;en_ation Serrice L \_f:C_S_) SNOTEL (Si`IOwpack TELemetry) stations by visiting the \Western .Regianal. Cl,imate.Center's_ state -..pe itic.ti \'QTF.L sta,tign maps. ' Hpdrometcoroingical Design Studies Center DOONOAAtNational Weather Service 1325 East -\Vest Highsca% I Silver Spring.'%ID ?0910 ' 13 -IGG9 Questions-1: ucslions'.': I Il)tiC.l �,i�•a i�vt>�u r „•ia.c��s lii::clujin�r I ' I 1 I - .— . //.1:._._ -.. -...- . -. -- - .- _..I --: 1-:.. „ , 11 . , .1 - . NiLaILiun rlequeiu y uata server 'I ' I V. =``° POINT PRECIPITATION FREQUENCY ESTIMATES ` FROM NOAA ATLAS'14 California 33.773 N 116.313 W 113 feet from "Precipitation- Frequency Atlas of the United States" NOAA Atlas 14. Volume I, Version 4 G.M. Bonnin. D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley NOAH, National Weather Service, Silver Spring, Maryland, 3006 Extracted: Sat Mar 10 3007 Page 1 of 5 T ext version of table I ' These precipitation frequency estimates are based on a partial duration series ARI is the Average Recurrence Interval. J Please refer to the documentation for more information. NOTE: Formatting forces estimates near zero to appear as zero. blip: / /CI 111nP. t• nw�.IlOaB.vn V /r.oi- bin /hrlcr• /1 „ii lrinllt nPrl�r” „P= „f.P /CPI",PC —...1 P.,.,.: r�— .,r.('. rhn r.. 1„n,'l nn7 Fr,�cipitation FreqUency Data Server part/al duration *aszo point Precipitation rre«ve^ou Estimates version: * 33.773 n 116'315 u /m m '- ^" I I /m q c � . o 4� � / � � o � � 5 + � * � o � z m pu�c2of5 / z o 4 5 a 78 910 co om 40 50 80 100 140 aam xmw 5.00 700 1000 Sat war 10 13:58,05 2007 Average Recurrence Interval (years) ht rn. ,Cnn,n"".,+.,i1,;.x,A..x,.;u=.,...n~.—__�rn..�.._-x^'-�.-_-n'.'. v eclpitatlon I-requency Data Server Partial clur-ation k)ase[1 point PreciPitation Frequency Estimates Version: 4 3 N 115.315 1.1 11.- ft lc 11 1 Il ' a - S 'L 7 a o b m 5 a 4 u y t d 1 0 Page 3 of 5 L L L L L L L :P T T T T n T •• •- ,,• o .c j r r .� L S S S N N N N N M IV =n D, :p tD I I I I I I I I I 3 3 3 3 3 3 U7 0 t9 m tD I I I I I I I M, 3 I .9 M 3 3 I I n © N M 7 M V• In .N-. 0 Duration Cu © Ifi Sat Ptar 10 13:58:05 2007 M V -0 Average Recurrence Interval <jear=) ` 100 — _ 5 0 j —� = - - 1 0 13 -g- Confidence Limits - - -- - - -- °- a W, uic bunurdwU quanme values ror a given Irequency are greater than. These precipitation frequency estimates are based on a partial duration series ARI is the Average Recurrence Interval. Please refer to the docun:enm inn for more information. NOTE: Formatting prevents estimates near zero to appear as zero. Lower bound of the 90% confidence interval hrr„• / /fl1I,r,PI* 11 1%rc "-n - •. — /.-_ I,i" /l,Arn it, '';I'I" .f .. ..I')..... _ -CP. —: _.__lo...._.._— .._o._._.. rrecipitation Frequency Data Server Page 4of5 Precipitation Frequency Estimates (inches) � 10 1� 30 60 120 [-3r 6 Mhr M21 Mhr 4 7 10 20 30 45 60 min min min min min min h hr da y day day day day day day ❑ ❑_ �1 0.07 0.12 O.14 0.19 0.24 0.33 0.39 O.SZ 0.65 0.71 0.79 O.SS 0.97 1.03 1.16 1.30 EE 1.57 �2 0.10 0.16 0.20 0.27 0.33 0.46 0.54 0.71 0.85 0.93 1.07 1.19 1.31 1.10 1.57 1.77 1.95 2.14 0 0.17 0.26 0.33 0.44 0.54 FO 7 21 0.83 1.09 E�fl 1.49 1.56 1.75 1.93 2.05 2.34 2.62 2.95 3.19 10 0.23 0.35 0.43 0.55 0.72 0.95 1.07 1.33 1.67 1.SS 1.96 2.20 2.41 2.61 2.93 3.26 3.67 3.97 25 0.32 0.43 0.60 0.81 1.00 1.28 1 .44 1.80 2.14 2.43 2.53 2.85 3.09 3.35 3.75 4.16 4.65 5.04 50 0.40 0.61 0.75 1.02 1.26 1 1.58 1.74 2.15 2.53 2.88 3.00 1 3.37 3E 3.94 4.41 4.87 5.42 5.38 100 0.49 0.75 0.93 1.25 1.55 ED 2.09 2.52 2.92 3.36 3 7E3 ] 4.21 4.58 5.10 5.61 6.21 6.74 200 0.60 0.91 1.13 1.52 1.88 2.27 2.47 2.92 3.35 3.87 4.05 4.54 4.32 5.25 5.33 6.37 7.01 7.62 500 0.76 1.16 1.44 1.93 2.39 2.83 3.02 3.50 3.94 4.57 4.32 5.41 5.67 6.20 6.82 7.42 8.10 5.82 1000 0.90 1.37 1.70 2.29 2.83 3.31 3.49 3.99 4.42 5.13 5.46 6.12 6.37 6.93 7.62 8.25 8.92 9.76 The lower bound of the confidence interval at 90% confidence level is the value which 5% of the simulated quanlile values for a given frequency are less than. These precipitation frequency estimates are based on a partial duration maxima series ARI is the Average Recurrence Interval. Please refer to the documentation for more information. NOTE: Formatting prevents estimates near zero to appear as zero. Maps - 1 �o�al -110 -til •1 ow-1 -i 9n W �Z _.__._...__z 70.nd These maps were produced using a direct map request from the and CPirk -rapi is Resm.irccs Tiger h1ap Server. Plritse read r,:; ::,ri r..: ja more infornulrion. litre• n"�r¢ fin -I -I rnii /n.ri l.i- /1..1 /1..:1A^''f I.I,...___.. CO. _._J 0...._..__.._O. _._, n-nn'7 Fi LaLlUll r1CL4LIC11C.Y rage 5 of 5 LEGEND — State — Connector = County :Stream Indian Resv Military Area Lake/ Pondl Ocean National Park 1, — Street Other Park -- Expressway i_ _' City - — Highway 0 � ; --- County o Scale 1:226583 i0 I; �� '� 18 I 0 km *avera�e--true scale ciepencTs on monitor resolution 11(, .4"'W 11 F ..i"'W Other Maps /Photographs - 11F.2"w z` t` c� View USGS digital ortliophoto quacir:in- (DOQ). covering this location from TerraServer; USGS Aerial Photograph may also be available from this site. A DOQ is a computer - generated image of an aerial photograph in which image displacement caused by terrain relief and camera tilts has been removed. It combines the image characteristics of a photograph with the geometric qualities of a map. Visit the USGS for more information. Watershed /Stream Flow Information - rind the Watershed for this location using the U.S. Environmental Protection Agency's site. Climate Data Sources - Precipitation fi-eguency results are based on data from a varieq, of sources, but largely NCDC. The following links provide general information about observing sites in the area, regardless of if their data was used in this study. For detailed information about the stations used in this stttdv, please refer to our docrnnentation. Using the National Climatic Dahl C'enter's N'( CDC) station search engine, locate other climate stations within: +/ -30 minutes I ...OR... l +/ -1 degree I of this location (33.773/ - 116.310. Digital ASCII data can be obtained directly from NCDC. Find Natural Resourczs Cunseilatitm_Service...( \RCS SNOTEL (SNOwpack TELemetry) stations by visiting the Western. Regional Climate. C'enter's state -spe. ific.S\UTEL stitign_.rnops. Hydronneteorological Design Studies Center D6C / \0.-1Aa/iNationa1 weather Service 132i East -west Highwi.v Silver Spring, N1 20910 (301) 713 -1669 Questions'.': I tii >tl;iilrirr littp : / /dipper.n\vS.noaa.Uov /c2l*- bin/ IldsC /bllild0Ut.11Frl?rvne =i)f& serif =.= l,ri,f,ltnite= ll.C(R-..etnte . ; /I0/ ?007 ,C)7 le -77 ZV NZ A r vQE, mc -zt E -7- 1� I Di OL f M. A RE . . ......... .. Lit A T:7-77;P� I ---7 o.— new oev" Se Ce IN 4e)` 2t!W C, 2 3 V; 55� N Sl 1:4 r .7 1. . �. J .,' lit' �� ': .. .. :�•/, •� _ •:::�,`._ _ _ .:, - ;,' ly- VE: iFe La Quint- Polo Partners - Cvt: 01152 - ve 51 Cu). iNladisun - Rod Vandenbus 10. LA QUINTA POLO PARTNERS CM WO March 6, 2007 HYDROLOGY AND DRAINAGE FACILITY DESIGN REPORT DATA APPENDIX CV1 O Sladdera Engineering 77 -725 Enfield Lane, Suite 100, Palm Desert, CA 92211 (760) 772 -3593 Fax (760) 772 -3895 6752 Stanton Ave.. Suite A, Buena Park. CA 90621 (714) 523 -0952 Fax (714) 523 -1369 450 Egan Avenue, Beaumont, CA 92223 (951) 845 -7743 Fax (95 1) S45 -SS63 15435 Cholame Road, Suite A, Victorville, CA 92392 (760)962 -1868 Fax (760) 962 -1878 March 27, 2007 Project No. 544 -1497 07 -03 -251 Mr. Rod Vandenbos 74 -785 Highway 111, Suite 100 1 Indian Wells, California 92210 ' Project: Tentative Tract Map 30378 I SWC Avenue 51 and Madison Street La Quinta, California Subject: Supplemental Evaluation for Storm Water Retention System Design ' As requested, this memo has been prepared to provide a summary of our further evaluation of the data obtained during our recent supplemental field exploration performed to evaluate the soil ' conditions within the area of the proposed retention basins. 1 Our supplemental evaluation included a'review of our recent and previous field bore logs to ' I identify silt and clay layers that may impede infiltration within the retention basins. As discussed during our recent meeting at the City of La Quinta, we typically obtain samples at 5 foot intervals as indicated on our previous bore logs. We also monitor the cuttings developed ' during drilling and can identify significant changes in soil types between sampling intervals. The cuttings can provide fairly accurate information within the upper 10 to 15 feet but the accuracy of determining the relative depth of significant layers diminishes with depth. We have enhanced ' the detail on our bore logs within the upper 10 to 15 feet to include significant silt and /or clay layers. The revised bore logs are attached. As indicated on the bore logs, several thin silt and clay layers were noted within the upper 10 to 15 feet and a prominent clay layer was observed at a depth of approximately.15 to 25 feet in each of the borings. The majority of the silt and clay layers noted were found to be quite thin (less than 2 inches thick) and are most likely lenses that are discontinuous in nature. It is our opinion that these generally thin silt and clay layers will not significantly impede the infiltration of surface water within the basins. The water will pass through the thin layers and will migrate tJ laterally around the more prominent lenses that are not contint.tous layers that vary in thickness and are limited in lateral extent. The clay layer encountered at the 15 to 25 foot depth will likely 1 limit deeper infiltration but the penetrations associated with the proposed drywells and other J possible inconsistencies will allow surface water infiltration in isolated areas. March 30, 2007 -2- Project No. 544 -1497 07 -03 -251 If you have any questions regarding this memo, please contact the undersigned. Respectfully submitted, SLADDEN ENGINEERING Nicholas S. Devlin Project Engineer Letter /nd Copies: 2 /Mr. Rod Vandenbos 4 /Coachella Valley Engineers Sludden Engiraeerin e L, Tentative Tract Map 30378 SWC Avenue 51 and Madison Street, La Quinta Date: 1/25/2007 Bore No. I Job Number: 544 -14t U C1.1 '� v U U N C s T O U M Description rn :5 O 2 �Z Remarks 0 ;!t!ih;;;; Graded Soil aiy:bll!!;Ijly Scattered thin silt/clay layers 1/2" to 2" thick 5 liI;I1i!1'!I!1Tili!Ili ,:;I,r;,: 11 ,41 y!; 2/4 Silty Sand: Fine Grained with Sandy Silt Interbedded S1\4 4 41 Greyish Brown in color _ - n�� �ijlrl4 jilil II'!!!II !jiill Ilhdl!Iirl,!i { ll,l Silty Clay layer t" thick - 10 !g 'llliI lli!il .IiGrey i'i 4/5 Silty Sand: Fine Grained with Sandy Silt Interbedded SM 5 46 G in color i I � 15 5/9 Clay CL 37 94 Olive in color - Scattered thin silty sand layers up to 3" thick 20 4/5 Clay CL 36 85 Olive in color 25 Il�il;!l!! lr 5/6 Silty Sand: Fine Grained SM 13 31 Grey in color Ij;� lij!I�Ijl 30 IIIi!H'!iil , yilill,lj!j 5/7 Silty Sand: Fine Grained SM 12 27 Grey in color hili;j!halijl 35 11.11111.11111111 II!�i 11! i!j�'t!ii 5/9 Silty Sand: Fine Grained SM 11 17 Grey in color Y — i — I;i�Frill'i l !!; pil p!Ili; l Vl 40 6/11 Sandy Silt ML 27 66 Olive & Grey in color - Mote: The stratification lines represent the approximate boundaries between the soil 45 Ili 6/10 Silty Sand: Fine Grained SM 9 23 (Grey in color) types; the transition maybe r 14 e;nru Total Depth = 51 Feet 50 II #!il; 4/15 Silty Sand: Fine Grained SI�I 3 l9 Groundwater not encountered I;I: la;:.:.;; (Grey in color) Bedrock not encountered I Tentative Tract Map 30378 1 SWC Avenue 51 and Madison Street, La Quinta Date: 1/25/2007 Bore No. 2 Job Number: J44 -1c cn U Description r° Z Remarks 0 Graded Soil 1 _ = Silty Sand layers -2" to 3" thick 1 - t 5 3/4 Sandy Silt ML 3 71 Greyish Brown in color ' - Silty Sand layer- 4" thick 10 3/6 Silty Sand: Fine Grained ' h SM 4 20 Grey in color IilQi;lll'lllll Scattered thin silt/clay layers up to I/2" thick PiIM !! !i IIIIi��!;�!II� ' I 15 4/5 Clay ------ CL 35 95 Olive in color ' - Scattered thin silty sand layers up to 2" thick 20 4/6 Clay 1 Y CL 29 80 Olive in color' 25 I11111111111111111 11111111111111111 t Sand: Fine Grained �!Iiilj! 5/8 Silty SM 12 23 Grey in color IIill�llli��!I'!i9 — III I III' I, I � lil II',lil! 1 — !ilillllil�!'Iil ! iI II!411i1 I 30 it ;!ry r!I!, 6/6 Silty Sand: Fine Grained S 11 26 Grey in color - I�II!I�Ililili�ll III�IyIl�illi! l,IIUlIl!:i �,!iI 35 I idl il'! li' 5/9 Silt Sand: Fine Grained Y SM 9 23 Grey in color III�III!!i'!!!yi� i! it II,.:i PII. i!IIll�bii!!I!,;! lII l.-II �I!f ��IIII!flll 40 iI'Illgljl4d'i;! !!!il! ii il lli!!!! 8/13 Silty Sand: Fine Grained with Sandy Silt Interbedded S 19 49 Olive & Grey in color 'IGII! {Iri!qul I!Iliijlll!;I , tliiilh!!.!il:� I Note: The stratiticatior, Imes represent the approximate j I 45 !i ill 5/10 Silty Sand: Fine Grained with Silt Interbedded SM 14 56 boundaries between the soil (Greyish Brown in color) types; the transition may be 1 Iiil! i 50 . Total Depth = 51 Feet 3/10 Sand: Fine Grained SP 6 12 Groundwater not encountered (Grey in colon Bedrock not encountered 1 (W Sadden Engineering 77 -725 Enfield Lanc, Suite 100, Palm Desert, CA 92211 (760) 77: -3893 Fax (760) 772 -3895 6732 Stanton Ave., Suite A; Buena Park, CA 90621 (714) i23 -0952 Fax (714) 523 -1369 450 Ewan Avenue, Beawnont, CA 92223 (95 1) 845 -7743 Fax (951) 845 - 8363 15435 Cholame Road, Suite A, Victorville, CA 92392 (760)962 -1868 Fie (760) 962.1878 February 14, 2007 Mr. Rod Vandenbos 74 -785 Highway 111, Suite 100 Tndian Wells, California 92210 Project: Tentative Tract Map 30378 SWC.Avenue 51 and Madison Street La Quinta, California Subject: Supplemental Testing for Storm Water Retention System Design Project No. 544 -1497 07-02 -129 As requested, this memo has been prepared to provide a summary of our supplemental field exploration and infiltration testing performed to evaluate the soil conditions within the area of the proposed retention basins. As part of our evaluation, we have performed infiltration tests on the subject site to determine the infiltration potential of the soil within the vicinity of the proposed retention basins. Infiltration tests were performed within the areas of the proposed retention basins. Infiltration tests were performed on January 30 and 31, 2007. Testing was performed using a double -ring infiltration apparatus in general accordance with ASTM Pest Method D 3385. Testing indicated relatively stable infiltration rates of approximately 21 and 2.3 itches per hour. In addition, 2 exploratory bores were excavated to observe the subsurface soil conditions. The exploratory bores were excavated on January 25, 2007 using a truck mounted drill rig and hollow -stem augers. Samples were obtained within the bores using standard penetration samplers (SPT) at approximately 5 foot intervals. The soil bore logs are attached to this memo. One of our bores was utilized for additional percolation testing. The bore was lined with perforated plastic pipe to a depth of approximately 40 feet. The testing consisted of filling the hole with water and recording the drop over consecutive time intervals. Testing'was performed in general accordance with Riverside County DENS methods for seepage pits. Testing indicated relatively a stable infiltration rate of approximately 17.7 gallons per square foot per day (gal /sq. ft/day). February 14, 2007 -2- Project No. 54=4 -1497 07 -02 -129 [E you have any questions regarding this memo, please contact the undersi;ned. Respectfully submitted, SLADDEN ENGINEERING Nicholas S. Devlin Brett L. AnderWn Project En;ineer Principal Engineer Letter /nd Copies: 2/Mr. Rod Vandenbos �.A r/,Z" U` j No. C 45389 rn I Exp. 9 -30 -2008 OF Sltulden En - ineering 90,000 __..._\.. .------------------ •----- - - - - -- Q�sZ.ac-- ---- -- VISTA nBOs1NIT A_ TRAIL _ NOTEI LOTS 1 - 4 AVERAGE OVER C14E ACRE IN SIZE AND RETAIN STORM WATER ON SITE. RETEI,MoN DASINS ALONG MADISON ST. ARE LINKED 8T EQUAIUZER LINES ANO ME LYING WITHIN EXISTING CRSUS GROVE TO REIAN". TIE GOUI1 GIDE OF THE ENTRY ROAD IS PART OF TIIE FUTURE_ DEVELOPMENT I TO THE SOUTTI AND WILL IEAIPORA(tILY DRAIN INTO THE EXISTING CITRUS GROVE ON THAT PROPERTY, THE REAR OF LOTS 0 -8 DRAIN EAST DIRECTLY INTO TIIE LINKED RETENTION BASINS. , R/W. TRACT BOUNCLRY --I '1 at WALL 1 TC 516.71 (HOUSE} A) 47,002 1.08 AC Z � � A # J7,672 0.86 AC I CRAPHIC SCALE 207 i 4M I lnoh - 100 It. I I F Q 45.52 506 13 -2 n Lls OTC 513.70 45.010 CB) ' 1.03 AC 0100 -1.25 L RETQfT10N BASIN (TYP) —� PI y TRACT BOUNDARY S WMu I CRAPHIC SCALE 207 i 4M I lnoh - 100 It. H EXIFnNG R/W SCALE: AS SHOWN LEGEND NORTH ® Approximate Percolation Test Hole Location FUTURE CURB dt GUTTER I I F Q n RETENTION BASINS Z m WS 2,581 sr. 80;34fi '- I I 68,388 2.08 1.58 • Ur 7 VOL 1.301 CF. 1 1 I R�TDIRon I WS 1 834 SF. VOL 1,002 CF_ 1 BASIN (TIP) — m WS 2.210 SF. I 1 �� EQUALIZER VOL 2,410 CF. i &TT {RU& WS 14.781 SF. � W ' .... Vie..- � mpl_ I O 7 ' ® WS 2,240 SF. TC 51 -3.70 3 TC 513. li i�BCI :i� ... ,- _.I ti -1 I I— H EXIFnNG R/W SCALE: AS SHOWN LEGEND NORTH ® Approximate Percolation Test Hole Location FUTURE CURB dt GUTTER 1 \ tQr- I A I / I� % � A �' II I I 4; I I I DRAINAGE AREA MAP TOM DRAIN /RETENTION BASIN EXHIBTI' FI TRACT 30378 ROD ;II AND ADJACENT VANDENBOS PLAN SOURCE: Client Site Plan and Approximate Test Hole Locations Tentative Tract Map 30378 NWC Avenue 51 and Madison Street La Quinta, California Project Number: 544 -1497 Date: 02 -13 -2007 I I F Q n RETENTION BASINS Z m WS 2,581 sr. I I O 7 i VOL 1,283 CF. i a LL WS 2,592 sr. VOL 1.301 CF. 1 1 I I WS 1 834 SF. VOL 1,002 CF_ 1 m WS 2.210 SF. I 1 �� VOL 2,410 CF. i &TT {RU& WS 14.781 SF. j VOL 16,213 CF. ' ® WS 2,240 SF. VOL 1,461 CF. �1 J [U1 WS 630 Sr. VCL 408 L CF. I �I �I I J 1 \ tQr- I A I / I� % � A �' II I I 4; I I I DRAINAGE AREA MAP TOM DRAIN /RETENTION BASIN EXHIBTI' FI TRACT 30378 ROD ;II AND ADJACENT VANDENBOS PLAN SOURCE: Client Site Plan and Approximate Test Hole Locations Tentative Tract Map 30378 NWC Avenue 51 and Madison Street La Quinta, California Project Number: 544 -1497 Date: 02 -13 -2007 . I0 A TIMS 11!4.; Xplics 1),)Ij!t!JD nmj A-11!S CC INS I11I1p!JD )Il!j :111fre, US y. Mi Aii! if! Xnp) I 1-\ s ,111:l :pIII:s 9';5 Y I� Z jolt„ ul a.•.11G r1 9; � - i ( . JQIO.') lit ),%110 1 A L IN S 111s XIIIII! s II)IN, pll!vj�) '.)Iq :pIrs All!S 01 INS Xplins pZ)iIII!JL) -111!j Xjps pos I 10 11 it U.) cl I (i 1- :.I-,) (Itq. W SLCUf: cll:1•+Li )�r..r.l. �:ylalui.l. i . +' Tentative Tract fMap 30378 ' Datc: 1/25 SWC Avenue 51 and IYladison Street, La Quinta /2U07 Bore No. 2 Job Number: _ — o 544. 1< 0 �c C ' rr U E Description o z 0 0 N I Remarks 1 Graded Soil 3/4 Sandy Silt i N1 3 71 Greyish Brown in color to ^I "fu's' �Ilfll�l;flll� 3/6 Silty Sand: Fine Grained SM 4 20 Grey in color +I � +Ilitli ,I kris, Iri4+�� 11 I �'i iN ';I! �1.1 lla 4/5 Clay . CL 35 95 Olive in color 20 4/6 Clay CL 29 80 Olive in color l 25 �i�ii "'' �'I S/8 Silty Sand: Fine Grained - G 19 �II G,N '' 'il,�IIwII S1\[ 12 23 Grey in color y •i;yr !!I "1 "i M �4h0!•y'II M 30 M� I 6/6 Silty Sand: Fine Grained �M;j I i7 Siv[ l I 26 Grey in color 35 5/9 Silty Sand: Fine Grained SM Nilli�jlaii9� 9 23 Grey in color Ij1� iJIi11� II'tikii'jl7 40 le 'I! II;!t4I; r; IG:.g Y ul 3/13 Silty Sand: Fine Grained with Sand Silt Interbedded SLV[ 19 49 Olive &Grey in color - i 'u "I 15iiil!';ijlr. Note: The stratification lines UUM 45) represent the approximate 5110 Silty Sand: Fine Grained with Silt Interbedded SN1l 14 (Greyish Brown in color) 56 boundaries between the soil types; the transition may be actual. 50 8/10 Sand: Fine Grained Total Depth = 51 Feet SF 6 (Grey in color) 12 Groundwater not encountered i '" JjBedrock not encountered Gradation ASTM C117 &: C136 Project Number: 544 -1497 Project Name: Ave 51 & Madison Sample ID: B -1 1#2 @ 10' Sieve Sieve Percent Size, in Size, mm Passing 1 25.4 100.0 3/4" 19.1. 100.0 1/2" 12.7 100.0 9.53 100.0 #4 4.75 100.0 #8 2.36 100.0 #16 1.18 99.8 #30 0.60 99.7 #50 0.30 95.6 #100 0.15 76.4 #200 0.074 45.6 Tire, February 13, 2007 in ■■■u�nu■■s ■ uu�n■■mn ■■nu�■■n ■■n�m■i� _ ninm�■mun°ii ■■ ��■■■mn� ■ NMI U In mnv■ I off , o i l i„ , of „ „ 1 H.P. VISTA BONITA TRAIL (PRIVATE STREET) ' (NOT INCLUDED IN TRACT 30378 RETENTION BASIN ANALYSIS) TC 515.54 R /W, TRACT BOUNDARY TC 516.32 ' & WALL 2,331 CF® FUTURE CURB I & GUTTER ' O W 5,733 CF 2,331 CF W 4 ' PL � PL 3 7,350 CF O 3 0 4,088 CF 'I 7,355 CF P 1 m PL 2,202 CF Q Z a' 2,202 CF �•• m 5,866 CF h Z N O - o ILLI \ o 2 ~ Z x PL U 6,584 CF 0 Pi o 4,444 CF 3 �. 6,911 CF 1 � Q 8 9 - (� •� O 4669 CF TC (� 1 513.70 0 \ CB #1 CB 2 \ Q100 6.40 CFS 0100 =1.25 CFS �- Pi l S.D. TC 512.74 LINE "C" RETENTION BASIN (TYP) 1,039 CF H P. 11 1,311 � CF S.D. LINE A P H.P. H.P. l TRACT BOUNDARY & WALL \ 15 1200 CF EXISTING R/W l \ 2,775 CF BETH CIRCLE TC 512.76 PROPOSED DRAINAGE AREA MAP 1 " =1 oo' t 1 r �I r I� TRACT 30378 RETENTION BASIN COMPARATIVE CHART BASIN AREA C.V.E. VOLUME C.L.Q. VOLUME 1E 1 +l-Q 6,911 7,500 2E 2 5,866 5,490 3E 3+ � 7, 355 7,017 4E 4 5, 733 5,675 5W 2 2, 331 2,5J6 2 2, 331 2,5J6 6W + 4 4,08J 4, 349 H �+12f2 7,350 6,559 7W -z 2,202 2,277 ✓ 2 2,202 2,277 8W 2 + 4 4,444 4,422 K . 2 2 1z f 5,584 6,6J2 9L .76 1, 039 1, 311 15 .14 877 1,159 14 OS 34 2775 2,796 Hydrology Review - TTM 30378 13 7202 0.88 56 90 14 2796 0.34 56 90 15 1169 0.14 56 90 Total 63,895 10.25 41,075 Delta - 22,820 Missing Storage Temporary Basin - Offsite Approval Necessary Basin 9 within 10 PUE - 5 ft encroachment at north curb of Beth Circle Basin 10 shown without drainage easement (Diamond D) on final map Basin 11 will crest high point with 0.44 ft overflow and does not provide effective 1 ft freeboard Basin 12 within ROW of unimproved Madison Street Basin calculations still shown commingled - separate information per basin was previously requested WS100 City 3 Hr CVE 3 Hr Berm vs. Catch Drainage Required Drainage Retention Required vs.Basin Catch Basin Area Retention Area RI Impervious Basin Retention WS 100 Top Rim Freeboard RI Impervious Basin FL Freeboard .CF Acres CF Elev Elev Ft Elev 1 5413 1.03 56 27 1 4002 511.85 513.50 1.65 Rework Rework 512.87 1.02 2 5490 1.04 56 27 2 4463 512.62 514.00 1.38 Rework Rework 3 4930 0.86 56 37 3 4512 513.47 515.20 1.73 Rework Rework 4 5675 1.08 56 27 4 5628 514.13 515.50 1.37 Rework Rework 5 5071 0.85 56 42 5 2828 514.01 514.40 0.39 Rework Rework 6 4523 0.76 56 42 6 2635 513.56 513.90 0.34 Rework Rework 7 4553 0.77 56 42 7 2673 513.07 513.40 0.33 Rework Rework 8 4669 0.89 56 27 8 12475 510.91 512.00 1.09 Rework Rework 511.91 1.00 9 1311 0.16 56 90 9 Combined 510.91 512.00 1.09 Rework Rework 10 8346 1.02 56 90 10 Combined 510.91 512.00 1.09 Rework Rework 512.87 1.96 11 1356 0.17 56 90 11' 1317 513.00 513.16 0.16 Rework Rework 12 1391 0.26 56 30 12" 542 513.51 513.35 -0.16 Rework Rework 13 7202 0.88 56 90 14 2796 0.34 56 90 15 1169 0.14 56 90 Total 63,895 10.25 41,075 Delta - 22,820 Missing Storage Temporary Basin - Offsite Approval Necessary Basin 9 within 10 PUE - 5 ft encroachment at north curb of Beth Circle Basin 10 shown without drainage easement (Diamond D) on final map Basin 11 will crest high point with 0.44 ft overflow and does not provide effective 1 ft freeboard Basin 12 within ROW of unimproved Madison Street Basin calculations still shown commingled - separate information per basin was previously requested coachclla vallcy EflgificcM Date: 5/8107 To: Coachella Valley Engineers Mark A. Turner Scott Davis Phone: 605 - 761 -0248 Fax: 605 - 761 -0249 From: Coachella Valley Engineers David K. Rice Jr. Phone: 760 - 360 -4200 Fax: 760- 360 -4204 Pages: 2 Subject: Basin summary TM 30378 See attached summary sheet for the SUH on Van De Bos Basins as restructured ... basic design remains to the CLQ minimum as published with the one foot freeboard to street FL and the rough grade pad elevations... and insure that the sewer invert service connections to the house do not cross through the basins. ....you may use the arched HDPE pipe structures for under the driveway....and the west lots 1,2,3,4 do not have utilities in the utility easement ... and the west basins for lots 5,6,7,8 are outside the utility easement but in the "new drainage easement." Looks like that the most likely scenario is the grouping by overflow piping from K basin and J basin....into the L basin... Drainage from basin 14 can be shown in the Madison ROW as a temporary basin and should be designed as an inlet into the Core Homes tract which Joe is presently working on.. �1 U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VDB13100.out +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 ------------------------------------------------------------------ English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format VANDEBOS TM33085 RE NO. 1 COAHCELLA VALLEY ENGINEERS DKRICE ------------------------------------------------------------------ Drainage Area = 1.28(Ac.) = 0.002 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.25(Ac.) _ 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = 0.090 Hr. Lag time = 5.40 Min. 25% of lag time = 1.35 Min. 40% of lag time = 2.16 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.01(CFS) 2 YEAR Area rainfall data: Area (Ac.) [1] Rainfall (In) [2] Weighting [1 *2] 0.25 1.01 0.25 100 YEAR Area rainfall data: Area (Ac. ) [1) Rainfall (In) [2] Weighting [1 *2) 0.25 2.50 0.63 STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall = 1.010(In) Area Averaged 100 -Year Rainfall = 2.500(In) Point rain (area averaged) = 2.500(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.500(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious 0.250 56.00 0.900 1.030 56.00 0.250 Total Area Entered = 1.28(Ac.) RI RI Infil..Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) .56.0 56.0 0.511 0.900 0.097 0.195 0.019 56.0 56.0 0.511 0.250 0.396 0.805 0.319 Sum (F) _ 0.338 Area averaged mean soil loss (F) (In /Hr) = 0.338 Minimum soil loss rate ((In /Hr)) = 0.169 (for 24 hour storm duration) Soil low loss rate ------------------------------------------------------------------ (decimal) = 0.350 U n i t H y d r o g r a p h ------------------------------------------------------------------ DESERT S -Curve Unit ------------------------------------------------------------------ Hydrograph Data Unit time period Time % of lag Distribution Unit Hydrograph (hrs) ------------------------------------------------------------------ Graph % (CFS) 1 0.250 277.778 53.610 0.692 2 0.500 555.556 40.205 0.519 3 0.750 833.333 6.185 0.080 ----------------------------------------------------7------------------ Sum = 100.000 Sum= 1.290 Unit. Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max I Low (In /Hr) 1 0.25 3.70 0.370 0.338 - -- 0.03 2 0.50 4.80 0.480 0.338 - -- 0.14 3 0.75 5.10 0.510 0.338 - -- 0.17 4 1.00 4.90 0.490 0.338 - -- 0.15 5 1.25 6.60 0.660 0.338 - -- 0.32 6 1.50 7.30 0.730 0.338 - -- 0.39 7 1.75 8.40 0.840 0.338 - -- 0.50 8 2.00 9.00 0.900 0.338 - -- 0.56 9 2.25 12.30 1.230 0.338 - -- 0.89 10 2.50 17.60 1.760 0.338 - -- 1.42 11 2.75 16.10 1.610 0.338 - -- 1.27 12 3.00 4.20 0.420 0.338 - - - 0.08 Sum = 100.0 Sum = 5.9 Flood volume = Effective rainfall 1.49(In) times area 1.3(Ac.) /((In) /(Ft.)] = 0.2(Ac.Ft) Total soil loss = 1.01(In) Total soil loss = 0.108(Ac.Ft) Total rainfall = 2.50(In) Flood volume = 6911.4 Cubic Feet Total soil loss = 4704.6 Cubic Feet ---------------------------------------------------------- -- - - - - -- Peak flow rate of this hydrograph = 2.700(CFS) ------------------------------------------------------------------ +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 3 - H O U R S T O R M R u n o f f H y d r o g r a p h ------------------------------------------------------------------ Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------------ Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0213 1.03 V Q 0 +30 0.0446 1.13 VQ 0 +45 0.0695 1.21 Q V 1+ 0 0.0946 1.22 I Q V .� 1 +15 0.1220 1.33 Q V 1 +30 0.1522 1.46 Q I V 1 +45 0.1850 1.59 Q I V 2+ 0 0.2200 1.69 Q I VI 2 +15 I 0.2604 1.96 I Q I V I 2 +30 0.3121 2.50 I Q I V I 2 +45 I 0.3679 2.70 I Q I V 3+ 0 I 0.4060 1.84 I Q I I I V 3 +15 I 0.4298 1.15 I Q I I I V 3 +30 0.4508 1.02 I Q I I I V ----------------------------------------------------------------- - - - - -- U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 04/18/07 File: vdblot1suh3100.out +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 --------------------------------------------------------- --------- English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format -------- ---------------------------------- ------------------------ vandeboselot1SUH City of La Quinta DK Rice Coachella Valley engineers ------------------------------------------------------------------ Drainage Area = 1.13(Ac.) = 0.002 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.01(Ac.) _ 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = 0.020 Hr. Lag time = 1.20 Min. 25% of lag time = 0.30 Min. 40% of lag time = 0.48 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 0.20(CFS) 2 YEAR Area rainfall data: Area(Ac.)[1) Rainfall(In)(2) Weighting[1 *2) 0.01 1.10 0.01 100 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1 *2] 0.01 2.60 0.03 STORM EVENT (YEAR) = 100.00' Area Averaged 2 -Year Rainfall = 1.100(In) Area Averaged 100 -Year Rainfall = 2.600(In) Point rain (area Areal adjustment Adjusted average Sub -Area Data: Area(Ac.) 1.130 Total Area Ente averaged) = 2.600(In) factor = 100.00 % point rain = 2.600(In) Runoff Index Impervious % 56.00 0.300 red = 1.13(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -1 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 56.0 36.0 0.706 0.300 0.515 1.000 0.515 Sum (F) _ 0.515 Area averaged mean soil loss (F) (In /Hr) = 2.000 Minimum soil loss rate ((In /Hr)) = 0.258 (for 24 hour storm duration) Note: User entry of the f value Soil ------------------------------------------------------------------ low loss rate (decimal) = 0.450 U n i t H y d r o g r a p h ------------------------------------------------------------------ DESERT S -Curve ------------------------------------------------------------------ Unit Hydrograph Data Unit time period Time % of lag Distribution Unit Hydrograph (hrs) ------------------------------------------------------------------ Graph % (CFS) 1 0.250 1250.000 100.000 1.139 ----------------------------------------------------------------------- Sum = 100.000 Sum= 1.139 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.385 2.000 0.173 0.21 2 0.50 4.80 0.499 2.000 0.225 0.27 3 0.75 5.10 0.530 2.000 0.239 0.29 4 1.00 4.90 0.510 2.000 0.229 0.28 5 1.25 6.60 0.686 2.000 0.309 0.38 6 1.50 7.30 0.759 2.000 0.342 0.42 7 1.75 8.40 0.874 2.000 0.393 0.48 8 2.00 9.00 0.936 2.000 0.421 0.51 9 2.25 12.30 1.279 2.000 0.576 0.70 10 2.50 17.60 1.830 2.000 0.824 1.01 11 2.75 16.10 1.674 2.000 0.753 0.92 12 3.00 4.20 0.437 2.000 0.197 0.24 Sum = 100.0 Sum = 5.7 Flood volume = Effective rainfall 1.43(In) times area 1.1(Ac.) /[(In) /(Ft.)) = 0.1(Ac.Ft) Total soil loss = 1.17(In) Total soil loss = 0.110(Ac.Ft) Total rainfall = 2.60(In) Flood volume = 5865.7 Cubic Feet Total soil loss = 4799.2 Cubic Feet ------------------------------------------------------------ - - - - -- Peak flow rate of this hydrograph = 1.347(CFS) ------------------------------------------------------------ - - - - -- +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 3 - H O U R S T O R M R u n o f f H y d r o g r a p h ------------------------------------------------------------ - - - - -- Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------ - - - - -- Time(h +m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0091 0.44 Q 0 +30 0.0197 0.51 I Q V ( 0 +45 0.0307 0.53 I Q V 1+ 0 0.0414 0.52 I Q V 1 +15 0.0545 0.63 I Q V 1 +30 0.0684 0.68 I Q V 1 +45 0.0839 0.75 I Q I V 2+ 0 0.1001 0.79 I Q I V 2 +15 0.1208 1.00 I Q V 2 +30 0.1486 1.35 Q I V 2 +45 0.1745 1.25 I Q I I V 3+ 0 0.1842 0.47 IQ VI ----------------------------------------------------------------- - - - - -- U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date' 05/07/07 File: VDB13100.out +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ -- - - - - - - - - -=- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 ------------------------------------------------------------------ English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format ------------------------------------------------------------------ VANDEBOS TM33085 RB NO. 1 COAHCELLA VALLEY ENGINEERS DKRICE ------------------------------------------------------------------ Drainage Area— 1.28(Ac.) = 0.002 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.25(Ac.) _ 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = 0.080 Hr. Lag time = 4.80 Min. 25% of lag time = 1.20 Min. 40% of lag time = 1.92 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) 2 YEAR Area rainfall data: Area(Ac.) [1] Rainfall(In) [2] Weighting[1 *2] 0.25 1.04 0.26 100 YEAR Area rainfall data: Area (Ac.) [1] Rainfall (In) [2] Weighting [1 *2) 0.25 2.54 0.64 STORM EVENT (YEAR) = 100.00 Unit U n Area Averaged 2 -Year Rainfall = 1.040(In) Loss rate(In. /Hr) ,I Area Averaged 100 -Year Rainfall = 2.540(In) (In /Hr) ' --- - - - - -- - -Unit Point rain (area averaged) 2.540(In) 0.25 3.70 ' Unit time period - --- (hrs) -------------------- Areal adjustment factor = 100.00 % Hydrograph (CFS) 4.80 1 0.250 Adjusted average point rain = 2.540(In) - ----- 0.741 t 2 0.500 -Area Data: 37.948 0.490 'OSub 3 0.750 Area(Ac.) Runoff Index Impervious % 0.059 0.18 5 0.250 56.00 0.900 1.290 ;I ----------------------------- 1.030 56.00 0.300 -- ' 0.319 - -- Total Area Entered = 1.28(Ac.) 7 1.75 8.40 0.853 RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F ' 9.00 AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) 9 (In /Hr) 12.30 1.250 0.319 - -- 0.93 56.0 56.0 0.511 0.900 0.097 0.195 1.788 0.319 - -- 0.019 11 2:75 ' 1.636 56.0 56.0 0.511 0.300 0.373 0.805 0.300 Sum (F) _ 0.319 ' Area, averaged mean soil loss (F) (In /Hr) = 0.319 Minimum soil loss rate ((In /Hr)) = 0.160 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.450 ------------------------------------------------------------ - - - - -- Unit U n i t H y d r o g r a p h Loss rate(In. /Hr) 'I DESERT S -Curve Percent (In /Hr) ' --- - - - - -- - -Unit -------------------------------------------------- Hydrograph Data -------------------------------------------------- 0.25 3.70 1 Unit time period - --- (hrs) -------------------- Time % of lag - - - - -- Distribution Unit -Graph % Hydrograph (CFS) 4.80 1 0.250 312.500 -- ------------------ 57.461 - ----- 0.741 t 2 0.500 625.000 37.948 0.490 4 3 0.750 937.500 4.591 0.059 0.18 5 1.25 100.000 Sum= 1.290 0.319 - -- ----------------------------- - - - - -- -Sum -= ------ -- Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.376 0.319 - -- 0.06 2 0.50 4.80 0.488 0.319 - -- 0.17 3 0.75 5.10 0.518 0.319 - -- 0.20 4 1.00 4.90 0.498 0.319 - -- 0.18 5 1.25 6.60 0.671 0.319 - -- 0.35 6 1.50 7.30 0.742 0.319 - -- 0.42 7 1.75 8.40 0.853 0.319 - -- 0.53 8 2.00 9.00 0.914 0.319 - -- 0.60 9 2.25 12.30 1.250 0.319 - -- 0.93 10 2.50 17.60 1.788 0.319 - -- 1.47 11 2:75 16.10 1.636 0.319 - -- 1.32 12 3.00 4.20 0.427 0.319 - -- 0.11 Sum = 100.0 Sum = 6.3 Flood volume = Effective rainfall 1.58(In) times area 1.3(Ac.) /[(In) /(Ft.)) = 0.2(Ac.Ft) Total soil loss = 0.96(In) Total soil loss = 0.102(Ac.Ft) Total rainfall = 2.54(In) Flood volume = 7355.1 Cubic Feet Total ------------------------------------------------------------------ soil loss = 4446.8 Cubic Feet Peak ------------------------------------------------------------------ flow rate of this hydrograph = 2.791(CFS) +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 3 - H O U R S T 0 R M ------------------------------------------------------------------ R u n o f f H y d r o g r a p h Hydrograph in 15 Minute intervals ((CFS)) ------------------------------- Time(h+m) Volume Ac.Ft =---------------------------------- Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0224 1.08 V Q 0 +30 0.0470 1.19 Q 0 +45 0.0733 1.27 QV 1+ 0 0.0998 1.28 Q V 1 +15 0.1287 1.40 Q V 1 +30 0.1604 1.54 I Q I V 1 +45 0.1948 1.66 Q I V 2+ 0 0.2314 1.77 I Q I VI I 2 +15 0.2738 2.05 Q I V I 2 +30 0.3279 2.62 I Q I V 2 +45 0.3856 2.79 I IQ I I V 3+ 0 0.4239 1.85 I Q I I I V 3 +15 I 0.4481 1.17 I Q I I I V 3 +30 0.4697 1.05 I Q I I I V ----------------------------------------------------------------- - - - - -- U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VDB43100.out +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ------------------------------------------------------------ - - - - -- Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 English (in -lb) Input Units Used ' English Rainfall Data (Inches) Input Values Used English Units used in output format VANDEBOS TM 30378 CITY LA QUINTA COACHELLA VALLEY ENGINEERS DKRICE ------------------------------------------------------------------ Drainage Area = 1.08(Ac.) = 0.002 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.08(Ac.) _ 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = 0.090 Hr. Lag time = 5.40 Min. 25% of lag time = 1.35 Min. 40% of lag time = 2.16 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) 2 YEAR Area rainfall data: Area (Ac.) [1] Rainfall (In) [2] 0.08 1.04 100 YEAR Area rainfall data: P_rea (Ac.) (1) Rainfall (In) (2) 0.08 2.53 STORM EVENT (YEAR) = 100.00 Weighting(1 *2] 0.08 Weighting[1 *2] 0.20 I1, r ,I Area Averaged 2 -Year Rainfall = 1.040(In) Area Averaged 100 -Year Rainfall = 2.530(In) Point rain (area averaged) = 2.530(In) ' Areal adjustment factor = 100.00 % Adjusted average point rain = 2.530(In) '(I � Sub -Area Data: Area(Ac.) Runoff Index Impervious 1.000 56.00 0.300 )) 0.080 56.00 0.200 Total Area Entered = 1.08(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F t AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 0.345 56.0 56.0 0.511 0.300 0.373 0.926 ' 56.0 56.0 0.511 0.200 0.419 0.074 0.031 _ ' 0.376 Area averaged mean soil loss (F) (In /Hr) = 0.376 Sum (F) Minimum soil loss rate ((In /Hr)) = 0.188 (for 24 hour storm duration) ' Soil low loss rate (decimal) = 0.350 ------------------------------------------------------------------ 'lU n i t H y d r o g r a p h DESERT S -Curve -------------------------------------------------- 1 -_ ' _- _Unit- Hydrograph Data -- - - - - -- ---------------------------------------------- Unit time period Time % of lag Distribution Unit Hydrograph ' (hrs) _ _Graph %- (CFS) -------------------------- - - - - -- ---------------------- J1 0.250 277.778 53.610 0.584 2 0.500 555.556 40.205 0.438 3 0.750 833.333 6.185 0.067 I--------------------------- - - - - -- Sum - -- 100_000 Sum-------- 1_088 - -- 1 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective ' (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.374 0.376 0.131 0.24 2 0.50 4.80 0.486 0.376 - -- 0.11 3 0.75 5.10 0.516 0.376 0.14 4 1.00 4.90 0.496 0.376 - -- 0.12 5 1.25 6.60 0.668 0.376 0.29 6 1.50 7.30 0.739 0.376 =_= 0.36 ' 7 1.75 8.40 0.850 0.376 0.47 8 2.00 9.00 0.911 0.376 - 0.53 9 2.25 12.30 1.245 0.376 - -- 0.87 10 2.50 17.60 1.781 0.376 - -- 1.40 11 2.75 16.10 1.629 0.376 1.25 12 3.00 4.20 0.425 0.376 - -- 0.05 Sum = 100.0 Sum = 5.8 Flood volume = Effective rainfall 1.46(In) times area 1.1(Ac.) /[(In) /(Ft.)) = 0.1(Ac.Ft) Total soil loss = 1.07(In) Total soil loss = 0.096(Ac.Ft) Total rainfall = 2.53(In) Flood volume = 5733.3 Cubic Feet Total soil loss = 4185.3 Cubic Feet ------------------------------------------------------------ - - - - -- Peak flow rate of this hydrograph = 2.445(CFS) ------------------------------------------------------------ - - - - -- +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 3 - H O U R S T 0 R M R u n o f f H y d r o g r a p h ------------------------------------------------------------ - - - - -- Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------ - - - - -- Time(h +m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0244 1.18 V Q 0 +30 0.0494 1.21 Q 0 +45 0.0739 1.19 Q V 1+ 0 0.0983 1.18 Q VI I 1 +15 I 0.1246 1.27 I Q V I 1 +30 0.1532 1.39 I Q I V I 1 +45 0.1841 1.49 I Q I V I 2+ 0 0.2168 1.58 I Q I V 2 +15 0.2543 1.81 I Q I I V 2 +30 0.3013 2.28 I QI I V I 2 +45 0.3519 2.45 I QI I V 3+ 0 I 0.3872 1.71 I Q I I I V 3 +15 I 0.4109 1.15 I Q I I I V 3 +30 0.4324 1.04 I Q I I I V. ----------------------------------------------------------------- - - - - -- U n i.t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VDB5W13100.out +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used ' English Units used in output format VANDEBOS TM 30378 CITLAQUINTA COACHELLA VALLEY ENGINEERS DKRICE ------------------------------------------------------------ - - - - -- Drainage Area = 0.87(Ac.) = 0.001 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.07(Ac.) _ 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = 0.080 Hr. Lag time = 4.80 Min. 25% of lag time = 1.20 Min. 40% of lag time = 1.92 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) 2 YEAR Area rainfall data: Area (Ac.) [1) Rainfall (In) [2) Weighting [1 *2] 0.07 1.04 0.07 100 YEAR Area rainfall data: Area (Ac.) [1) Rainfall (In) (2) weighting [1 *2) 0.07 2.54 0.18 STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall = 1.040(In)' Area Averaged 100 -Year Rainfall = 2.540(In) Point rain (area averaged) = 2.540(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.540(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious % 0.070 56.00 0.200 0.000 56.00 0.000 0.800 56.00 0.300 Total Area Entered = 0.87(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 56.0 56.0 0.511 0.200 0.419 0.080 0.034 56.0 56.0 0.511 0.000 0.511 0.000 0.000 56.0 56.0 0.511 0.300 0.373 0.920 0.343 Sum (F) _ 0.377 Area averaged mean soil loss (F) (In /Hr) = 0.377 Minimum soil loss rate ((In /Hr)) = 0.188 (for 24 hour storm duration) Soil low loss rate (decimal) = ------------------------------------------------------------------ 0.300 U n i t H y d r o g r a p h DESERT S -Curve ------------------------------------------------------------------ Unit Hydrograph Data -------------------------------------7---------------------------- Unit time period Time % of lag Distribution Unit Hydrograph (hrs) ------------------------------------------------------------------ Graph % (CFS) 1 0.250 312.500 57.461 0.504 2 0.500 625.000 37.948 0.333 3 0.750 937.500 4.591 0.040 ----------------------------------------------------------------------- Sum = 100.000 Sum= 0.877 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.376 0.377 0.113 0.26 2 0.50 4.80 0.488 0.377 - -- 0.11 3 0.75 5.10 0.518 0.377 - -- 0.14 4 1.00 4.90 0.498 0.377 - -- 0.12 5 1.25 6.60 0.671 0.377 - -- 0.29 6 1.50 7.30 0.742 0.377 - -- 0.37 7 1.75 8.40 0.853 0.377 - -- 0.48 8 2.00 9.00 0.914 0.377 - -- 0.54 9 2.25 12.30 1.250 0.377 - -- 0.87 10 2.50 17.60 1.788 0.377 - -- 1.41 11 2.75 16.10 1.636 0.377 - -- 1.26 12 3.00 4.20 0.427 0.377 - -- 0.05 1 +30 Sum = 100.0 I Q I V I Sum = 5.9 0.1786 Flood volume = Effective rainfall 1.48(In) 0.2092 1.48 times area 0.9(Ac.) /[(In) /(Ft.)] = 0.1(Ac.Ft) I Q I I V I Total soil loss = 1.06(In) I Q I I V I 2 +45 Total soil loss = 0.077(Ac.Ft) 3+ 0 0.3634 Total rainfall = 2.54(In) 0.3863 1.11 Flood volume = 4662.0 Cubic Feet 1.04 I Q I I I Total ------------------------------------------------------------ soil loss = 3359.6 Cubic Feet - - - - -- Peak flow rate of this hydrograph = 2.180(CFS) ------------------------------------------------------------------ +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 3 - H O U R S T O R M R u n o f f H y d r o g r a p h ------------------------------------------------------------------ Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------------ Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0242 1.17 V Q 0 +30 0.0487 1.18 Q 0+45 0.0726 1.16 Q V 1+ 0 .0.0964 1.15 I Q VI 1 +15 0.1219 1.23 I Q V I 1 +30 0.1494 1.33 I Q I V I 1 +45 I 0.1786 1.41 I Q I V 2+ 0 0.2092 1.48 I Q I V I 2 +15 I 0.2439 1.68 I Q I I V I 2 +30 0.2866 2.06 I Q I I V I 2 +45 0.3316 2.18 I Q I I I V 3+ 0 0.3634 1.54 ( Q I I I V 3. +15 0.3863 1.11 I Q I I I V 3 +30 0.4079 1.04 I Q I I I V ----------------------------------------------------------------- - - - - -- U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VDB6W3100.out ............ + + + + + +.}. +.. ...'. + +.{..F .{. + + + + + +..... ..+... ..{..} ...... .... .'{... ..}..F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format VAND DE BOS TM 30378 GW CITY OF LA QUINTA COACHELLA VALLEY ENGINEERS DKRICE ------------------------------------------------------------ - - - - -- Drainage Area = 0.64(Ac.) = 0.001 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.26(Ac.) _ 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = 0.080 Hr. Lag time = 4.80 Min. 25W of lag time = 1.20 Min. 40% of lag time = 1.92 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) 2 YEAR Area rainfall data: Area (Ac.) [1] Rainfall (In) [2] Weighting [1 *2] 0.26 1.04 0.27 100 YEAR Area rainfall data: Area (Ac.) [1] Rainfall (In) [2] Weighting [1 *2] 0.26 2.54 0.66 STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall = 1.040(In) Area Averaged 100 -Year Rainfall = 2.540(In) Point rain (area averaged) = 2.540(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.540(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious 0.260 56.00 0.900 0.380 56.00 0.300 Total Area Entered = 0.64(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 56.0 56.0 0.511 0.900 0.097 0.406 0.039 56.0 56.0 0.511 0.300 0.373 0.594 0.221 Sum (F) _ 0.261 Area averaged mean soil loss (F) (In /Hr) = 0.261 Minimum soil loss rate ((In /Hr)) = 0.130 (for 24 hour storm duration) Soil ------------------------------------------------------------------ low loss rate (decimal) = 0.400 U n i t H y d r o g r a p h ------------------------------------------------------------------ DESERT S -Curve ------------------------------------------------------------------ Unit Hydrograph Data Unit time period _ Time % of lag Distribution Unit Hydrograph (hrs) ------------------------------------------------------------------ Graph % (CFS) 1 0.250 312.500 57.461 0.371 2 0.500 625.000 37.948 0.245 3 0.750 937.500 4.591 0.030 ----------------------------------------------------------------------- Sum = 100.000 Sum= 0.645 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max I Low (In /Hr) 1 0.25 3.70 0.376 0.261 - -- 0.12 2 0.50 4.80 0.488 0.261 - -- 0.23 3 0.75 5.10 0.518 0.261 - -- 0.26 4 1.00 4.90 0.498 0.261 - -- 0.24 5 1.25 6.60 0.671 0.261 - -- 0.41 6 1.50 7.30 0.742 0.261 - -- 0.48 7 1.75 8.40 0.853 0.261 - -- 0.59 8 2.00 9.00 0.914 0.261 - -- 0.65 9 2.25 12.30 1.250 0.261 - -- 0.99 10 2.50 17.60 1.788 0.261 - -- 1.53 11 2.75 16.10 1.636 0.261 - -- 1.37 12 3.00 4.20 0.427 0.261 - -- 0.17 Sum = 100.0 Sum = 7.0 Flood volume = Effective rainfall 1.76(In) times area 0.6(Ac.) /[(In) /(Ft.)] = 0.1(Ac.Ft) Total soil loss = 0.78(In) Total soil loss = 0.042(Ac.Ft) Total rainfall = 2.54(In) Flood volume 4083.1 Cubic Feet Total soil loss = 1817.9 Cubic Feet ------------------------------------------------------------ - - - - -- Peak flow rate of this hydrograph = 1.953(CFS) ------------------------------------------------------------ - - - - -- +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 3 - H O U R S T 0 R M R u n o f f H y d r o g r a p h ------------------------------------------------------------------ Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------------ Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0224 1.08 V Q 0 +30 0.0462 1.15 I Q 0 +45 0.0709 1.19 Q V 1+ 0 0.0956 1.20 Q VI 1 +15 0.1216 1.26 I Q V I I 1 +30 0.1490 1.33 I Q I V I I 1 +45 I 0.1777 1.39 I Q I V I I 2+ 0 0.2075 1.44 I Q I V I 2 +15 0.2402 1.58 I Q I I V I 2 +30 0.2788 1.87 I Q I I V.I 2 +45 0.3192 1.95 I Q I I V 3+ 0 0.3498 1.48 I Q I I I V 3 +15 0.3730 1.12 I Q I I I V 3 +30 0.3946 1.04 I Q V ----------------------------------------------------------------- - - - - -- SJ }..o- U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VDB6EMADW3100.out +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format VANDEBOS TM30378 CITY LA QUINTA..6EMADW CAOCHELLA VALLEY ENGINEERS DKRICE ------------------------------------------------------------ - - - - -- Drainage Area = 0.95(Ac.) = 0.001 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.44(Ac.) _ 0.001 Sq. Mi. USER Entry of lag time in hours Lag time = 0.080 Hr. Lag time = 4.80 Min. 25% of lag time = 1.20 Min. 40% of lag time = 1.92 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) 2 YEAR Area rainfall data: Area (Ac.) [1) Rainfall (In) (2) 0.44 1.04 100 YEAR Area rainfall data: Weighting[1 *2) 0.46 Area (Ac.) [1) Rainfall (In) [2) Weighting [1 *2] 0.00 2.54 0.00 0.00 0.44 0.00 0.44 2.54 1.12 STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall = 1.040(In) Area Averaged 100 -Year Rainfall = 2.540(In) Point rain (area averaged) = 2.540(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.540(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious % 0.440 56.00 0.900 0.510 56.00 0.370 Total Area Entered = 0.95(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -3 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 56.0 74.8 0.305 0.900 0.058 0.463 0.027 56.0 74.8 0.305 0.370 0.204 0.537 0.109 Sum (F) _ 0.136 Area averaged mean soil loss (F) (In /Hr) = 0.136 Minimum soil loss rate ((In /Hr)) = 0.068 (for 24 hour storm duration) Soil low loss rate (decimal) = ------------------------------------------------------------ 0.350 - - - - -- U n i t H y d r o g r a p h ---- - - - - -- - - - -- - DESERT S -Curve 1 - ------- - -- - -- --- ------------------------- ----- - - - - -- -Unit Hydrograph Data - -- -------------------------------------------------- Unit time period Time % of lag Distribution Unit Hydrograph ---- (hrs) - - -- Graph % (CFS) ----------------------------------------------------- t 1 0.250 312.500 57.461 0.550 2 0.500 625.000 37.948 0.363 ' 3 0.750 937.500 4.591 0.044 Sum = 100.000 Sum= 0.957 ----------------------------------------------------------------- - - - - -- ■ Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.376 0.136 0.24 ' 2 0.50 4.80 0.488 0.136 - -- 0.35 3 0.75 5.10 0.518 0.136 0.38 4 1.00 4.90 0.498 0.136 __- 0.36 ' S 1.25 6.60 0.671 0.136 0.53 - -- 6 1.50 7.30 0.742 0.136 0.61 7 1.75 8.40 0.853 0.136 - -- 0.72 8 2.00 9.00 0.914 0.136 - -- 0.78 9 2.25 12.30 1.250 0.136 1.11 10 2.50 17.60 1.788 0.136 - -- 1.65 11 2.75 16.10 1.636 0.136 - -- 1.50 12 3.00 4.20 0.427 0.136 - -- 0.29 Sum = 100.0 Hydrograph in Sum = 8.5 Flood volume = Effective rainfall 2.13(In) 0 2.5 5.0 7.5 times area 0.9(Ac.) /[(In) /(Ft.)) = 0.2(Ac.Ft) Total soil loss = 0.41(In) V Q Total soil loss = 0.032(Ac.Ft) VQ Total rainfall = 2.54(In) QV Flood volume = 7350.0 Cubic Feet Q VI Total ------------------------------------------------------------ soil loss = 1409.2 Cubic Feet - - - - -- Peak flow rate of this hydrograph = 2.515(CFS) ------------------------------------------------------------ - - - - -- +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 3 - H O U R S T O R M ------------------------------------------------------------------ R u n o f f H y d r o g r a p h Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------------ Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0242 1.17 V Q 0 +30 0.0515 1.32 VQ 0 +45 0.0802 1.39 QV 1+ 0 I 0.1090 1.39 Q VI 1 +15 0.1396 1.48 I Q V I I 1 +30 0.1723 1.58 I Q I V I I 1 +45 0.2070 1.68 I Q I V I I 2+ 0 0.2433 1.76 I Q I V I 2 +15 i 0.2839 1.97 I Q I I V I 2 +30 0.3333 2.39 I QI I V I 2 +45 0.3852 2.51 I Q I I V 3+ 0 0.4228 1.82 I Q I I I V 3 +15 0.4478 1.21 I Q I I I V 3 +30 0.4696 1.05 I Q I I I VI ----------------------------------------------------------------- - - - - -- `1 U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VDB73100.out +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + ++ + + + + + + + + + + + + ++ ------------------------------------------------------------ - - - - -- Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 ------------------------------------------------------------------ English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format VANDEBOS..TM 30378..7E CITY OF LA QUINTA COCHELLA VALLEY ENGINEERS DKRICE ------------------------------------------------------------------ Drainage Area = 0.39(Ac.) = 0.001 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.10(Ac.) _ 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = 0.080 Hr. Lag time = 4.80 Min. 25% of lag time = 1.20 Min. 40% of lag time = 1.92 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) 2 YEAR Area rainfall data: Area(Ac.) [1] Rainfall(In) [2] Weighting(1 *2] 0.10 1.10 0.11 100 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1 *2] 0.10 2.54 0.25 STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall = 1.100(In) Area Averaged 100 -Year Rainfall = 2.540(In) Point rain (area averaged) = 2.540(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.540(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious 0.010 56.00 0.300 0.380 56.00 0.400 Total Area Entered = 0.39(Ac.) 'I RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) ( 56.0 56.0 0.511 0.300 0.373 0.026 1 �� .0.010 56.0 56.0 0.511 0.400 0.327 0.974 0.319 Sum (F) _ ' 0.328 Area, averaged mean soil loss (F) (In /Hr) = 0.328 I Minimum soil loss rate ((In /Hr)) = 0.164 (for 24 hour storm duration) ' Soil low loss rate (decimal) = 0.400 ------------------------------------------------------------------ U n i t H y d r o g r a p h DESERT S -Curve I-------------------------------------------------- ' _---- - - - - -- -Unit Hydrograph Data -------------------------------------------------- J Unit time period Time % of lag Distribution Unit Hydrograph (hrs) Graph % (CFS) ------------------------------------------------------------------ ' 1 0.250 312.500 57.461 0.226 2 0.500 625.000 37.948 0.149 3 0.750 937.500 4.591 0.018 Sum = 100.000 Sum= -------0.393__- -------------------------------------------------------- 1 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.376 0.328 0.05 j 2 0.50 4.80 0.488 0.328 - -- 0.16 3 0.75 5.10 0.518 0.328 0.19 - -- 4 1.00 4.90 0.498 0.328 0.17 5 1.25 6.60 0.671 0.328 - -- 0.34 6 1.50 7.30 0.742 0.328 __- 0.41 ' 7 1.75 8.40 0.853 0.328 0.53 8 2.00 9.00 0.914 0.328 - -- 0.59 9 2.25 12.30 1.250 0.328 - -- 0.92 10 2.50 17.60 1.788 0.328 - -- 1.46 %.. 11 2.75 16.10 1.636 0.328 - -- 1.31 12 3.00 4.20 0.427 0.328 - -- 0.10 Sum = 100.0 Sum = 6.2 Flood volume = Effective rainfall 1.56(In) times area 0.4(Ac.) /((In) /(Ft.)] = 0.1(Ac.Ft) Total soil loss = 0.98(In) Total soil loss = 0.032(Ac.Ft) Total rainfall = 2.54(In) Flood volume = 2202.4 Cubic Feet Total soil loss = 1393.4 Cubic Feet ------------------------------------------------------------------ Peak flow rate of this hydrograph = 1.570(CFS) ------------------------------------------------------------------ +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 3 - H O U R S T O R M R u n o f f H y d r o g r a p h ------------------------------------------------------------------ Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------------ Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0217 1.05 V Q 0 +30 0.0441 1.08 QV 0 +45 0.0670 1.11 Q V 1+ 0 0.0899 1.11 Q V 1 +15 0.1136 1.15 Q V 1 +30 0.1381 1.19 I Q I V 1 +45 0.1635 1.23 Q I V 2+ 0 0.1895 1.26 Q V 2 +15 0.2173 1.35 Q V 2 +30 0.24.86 1.52 Q I V 2 +45 0.2811 1.57 I Q I I V 3+ 0 0.3076 1.28 Q V 3 +15 0.3299 1.08 Q V I 3 +30 0.3514 1.04 Q V ----------------------------------------------------------------- - - - - -- U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VDB7W3100.0ut +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 ------------------------------------------------------------------ English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format VANDEBOS TM 30378 CITY LA QUINTA COACHELLA VALLEY ENGINEERS DKRICE ------------------------------------------------------------ - - - - -- Drainage Area = 0.38(Ac.) = 0.001 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.35(Ac.) _ 0.001 Sq. Mi. USER Entry of lag time in hours Lag time = 0.090 Hr. Lag time = 5.40 Min. 25% of lag time = 1.35 Min. 40% of lag time = 2.16 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) 2 YEAR Area rainfall data: Area (Ac.) [1] Rainfall (In) [2] 0.30 1.04 0.05 1.04 100 YEAR Area rainfall data: Area (Ac.) [1) Rainfall (In) [2] 0.05 2.54 0.30 2.54 Weighting[1 *2] 0.31 0.05 Weighting[1 *2] 0.13 0.76 STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall = 1.040(In) Area Averaged 100 -Year Rainfall = 2.540(In) Point rain (area averaged) = 2.540(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.540(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious 0.350 56.00 0.300 0.030 56.00 0.270 Total Area Entered = 0.38(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 56.0 56.0 0.511 0.300 0.373 0.921 0.343 56.0 56.0 0.511 0.270 0.387 0.079 0.031 Sum (F) _ 0.374 Area averaged mean soil loss (F) (In /Hr) = 0.374 Minimum soil loss rate ((In /Hr)) = 0.187 (for 24 hour storm duration) Soil low loss rate (decimal) = ------------------------------------------------------------------ 0.400 U n i t H y d r o g r a p h DESERT S -Curve ------------------------------------------------------------------ Unit Hydrograph Data ------------------------------------------------------------------ Unit time period Time % of lag Distribution Unit Hydrograph (hrs) -------------------------------------------------------------=---- Graph % (CFS) 1 0.250 277.778 53.610 0.205 2 0.500 555.556 40.205 0.154 3 0.750 833.333 6.185 0.024 ----------------------------------------------------------------------- Sum = 100.000 Sum= 0.383 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.376 0.374 - -- 0.00 2 0.50 4.80 0.488 0.374 - -- 0.11 3 0.75 5.10 0.518 0.374 - -- 0.14 4 1.00 4.90 0.498 0.374 - -- 0.12 5 1.25 6.60 0.671 0.374 - -- 0.30 6 1.50 7.30 0.742 0.374 - -- 0.37 7 1.75 8.40 0.853 0.374 - -- 0.48 8 2.00 9.00 0.914 0.374 - -- 0.54 9 2.25 12.30 1.250 0.374 - -- 0.88 10 2.50 17.60 1.788 0.374 - -- 1.41 11 2.75 16.10 1.636 0.374 - -- 1.26 12 3.00 4.20 0.427 0.374 - -- 0.05 Sum = 100.0 1.09 Sum = 5.7 Flood volume = Effective rainfall 1.42(In) Q V times area 0.4(Ac.) /[(In) /(Ft.)) = 0.0(Ac.Ft) Total soil loss = 1.12(In) I Q I V Total soil loss = 0.036(Ac.Ft) Q V Total rainfall = 2.54(In) I Q I I V Flood volume = 1956.1 Cubic Feet Q I I V Total ------------------------------------------------------------ soil loss = 1547.6 Cubic Feet - - - - -- .Peak flow rate of this hydrograph = 1.538(CFS) -- - ----- -- ----- -- ----- ------- --- --- - - --- - - - - -- - - - - - -- -- - - - -- - - - - -- +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 3 - H O U R S T O R M R u n o f f H y d r o g r a p h --------------------- --------------------------------------------- in 15 Minute intervals ((CFS)) ------------------------------------------------------------------ Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0215 1.04 V Q 0 +30 0.0435 1.06 QV 0 +45 0.0659 1.09 I Q V 1+ 0 0.0885 1.09 I Q V 1 +15 0.1117 1.12 Q V 1 +30 0.1357 1.16 Q V 1 +45 0.1606 1.20 I Q I V 2+ 0 0.1861 1.23 Q V 2 +15 0.2132 1.31 I Q I I V 2 +30 0.2438 1.48 Q I I V 2 +45 0.2755 1.54 Q I I V 3+ 0 0.3019 1.28 Q I I V 3 +15 0.3242 1.08 Q I I I V 3 +30 0.3457 1.04 Q V --------------------------------------------=-------------------- - - - - -- U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VDB8W3100.out +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC-& WCD Manual date - April 1978 Program License Serial Number 6078 ------------------------------------------------------------------ English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format VANDEBOSTM30378..8W CITY OF LA QUINTA COACHELLA VALLEY ENGINEERS DKRIE ------------------------------------------------------------------ Drainage Area = 0.71(Ac.) = 0.001 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.26(Ac.) _ 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = 0.080 Hr. Lag time = 4.80 Min. 25% of lag time = 1.20 Min. 40% of lag time = 1.92 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) 2 YEAR Area rainfall data: Area (Ac. ) [1) Rainfall (In) [2] Weighting [1 *2] 0.26 1.04 0.27 100 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)(2) Weighting[1 *2) 0.26 2.54 0.66 STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall = 1.040(In) Area Averaged 100 -Year Rainfall = 2.540(In) I Point rain (area averaged) = 2.540(In) Areal adjustment factor = 100.00 % lAdjusted average point rain = 2.540(In) I Sub -Area Data: Area(Ac.) Runoff Index Impervious % 0.260 56.00 0.900 0.450 56.00 0.300 Total Area Entered = 0.71(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2 (In /Hr) (Dec. %)• (In /Hr) (Dec.) (In /Hr) 56.0 56.0 0.511 0.900 0.097 0.366 0.036 56.0 56.0 0.511 0.300 0.373 0.634 0.236 Sum (F) _ 0.272 Area averaged mean soil loss (F) (In /Hr) = 0.272 Minimum soil loss rate ((In /Hr)) = 0.136 (for 24 hour storm duration) Soil ------------------------------------------------------------------ low loss rate (decimal) = 0.400 U n i t H y d r o g r a p h ------------------------------------------------------------------ DESERT S -Curve ------------------------------------------------------------------ Unit Hydrograph Data Unit time period Time % of lag Distribution Unit Hydrograph (hrs) ------------------------------------------------------------------ Graph % (CFS) 1 0.250 312.500 57.461 0.411 2 0.500 625.000 37.948 0.272 3 0.750 937.500 4.591 0.033 ----------------------------------------------------------------------- Sum = 100.000 Sum= 0.716 Unit Time Pattern' Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.376 0.272 - -- 0.10 2 0.50 4.80 0.488 0.272 - -- 0.22 3 0.75 5.10 0.518 0.272 - -- 0.25 4 1.00 4.90 0.498 0.272 - -- 0.23 5 1.25 6.60 0.671 0.272 - -- 0.40 6 1.50 7.30 0.742 0.272 - -- 0.47 7 1.75 8.40 0.853 0.272 - -- 0.58 8 2.00 9.00 0.914 0.272 - -- 0.64 9 2.25 12.30 1.250 0.272 - -- 0.98 10 2.50 17.60 1.788 0.272 - -- 1.52 11 2.75 16.10 1.636 0.272 - -- 1.36 12 3.00 4.20 0.427 0.272 - -- 0.15 Sum = 100.0 Sum = 6.9 Flood volume = Effective rainfall 1.72(In) times area 0.7(Ac.) /[(In) /(Ft.)] = 0.1(Ac.Ft) Total soil loss, 0.82(In) Total soil loss = 0.048(Ac.Ft) Total rainfall = 2.54(In) Flood volume = 4444.2 Cubic Feet Total soil loss = 2102.1 Cubic Feet -------------------------------------- .---------------------- - - - - -- Peak flow rate of this hydrograph = 2.045(CFS) ------------------------------------------------------------------ +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 3 - H O U R S T 0 R M R u n o f f H y d r o g r a p h ----------------------=-------------------------- - ---------------- Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------------ Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ------------------------------------------------------------'----------- 0+15 0.0224 1.08 V Q 0 +30 0.0463 1.16 Q 0 +45 0.0711 1.20 Q V 1+ 0 0.0961 1.21 Q VI 1 +15 0.1224 1.27 I Q V 1 +30 0.1503 1.35 Q I V 1 +45 0.1796 1.42 Q I V 2+ 0 I 0.2101 1.48 I Q I V I 2 +15 I 0.2439 1.64 I Q I I V 2 +30 I 0.2842 1.95 I Q I I V 2 +45 0.3265 2.05 I Q I I I V 3+ 0 0.3580 1.52 I Q I I I V 3 +15 0.3813 1.13 Q I I I V 3 +30 0.4029 1.05 I Q I I V ---------------------------------------- ------------------------- - - - - -- :h. U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VANDB8EMADW3100.out +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format VANDEBOS TM 30399..8EMADW CITY OF LA QUINTA COACHELLEY VALLEY ENGINEERS DKRICE ------------------------------------------------------------ - - - - -- Drainage Area = 1.02(Ac.) = 0.002 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.44(Ac.) _ 0.001 Sq. Mi. USER Entry of lag time in hours Lag time = 0.080 Hr. Lag time = 4.80 Min. 25% of lag time = 1.20 Min. 40% of lag time = 1.92 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) 2 YEAR Area rainfall data: Area (Ac.) [1] Rainfall (In) [2] Weighting [1 *2] 0.44 1.04 0.46 100 YEAR Area rainfall data: Area(Ac.) [1] Rainfall.(In) (2) Weighting[1 *2] 0.44 2.54 1.12 STORM EVENT (YEAR) _. 100.00. Area Averaged 2 -Year Rainfall = 1.040(In) Area Averaged 100 -Year Rainfall = 2.540(In) Point rain (area averaged) = 2.540(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.540(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious 0.440 56.00 0.900 0.580 56.00 0.300 Total Area Entered = 1.02(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 56.0 56.0 0.511 0.900 0.097 0.431 0.042 56.0 56.0 0.511 0.300 0.373 0.569 0.212 Sum (F) _ 0.254 Area averaged mean soil loss (F) (In /Hr) = 0.254 Minimum soil loss rate ((In /Hr)) = 0.127 (for 24 hour storm duration) Soil low loss rate (decimal) = ------------------------------------------------------------------ 0.450 U n i t H y d r o g r a p h ------------------------------------------------------------------ DESERT S -Curve Unit Hydrograph Data ------------------------------------------------------------------ Unit time period Time % of lag Distribution Unit Hydrograph (hrs) ------------------------------------------------------------------ Graph % (CPS) 1 0.250 312.500 57.461 0.591 2 0.500 625.000 37.948 0.390 3 0.750 937.500 4.591 0.047 ----------------------------------------------------------------------- Sum = 100.000 Sum= 1.028 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.376 0.254 - -- 0.12 2 0.50 4.80 0.488 0.254 - -- 0.23 3 0.75 5.10 0.518 0.254 - -- 0.26 4 1.00 4.90 0.498 0.254 - -- 0.24 5 1.25 6.60 0.671 0.254 - -- 0.42 6 1.50 7.30 0.742 0.254 - -- 0.49 7 1.75 8.40 0.853 0.254 - -- 0.60 8 2.00 9.00 0.914 0.254 - -- 0.66 9 2.25 12.30 1.250 0.254 - -- 1.00 10 2.50 17.60 1.788 0.254 - -- 1.53 11 2.75 16.10 1.636 0.254 - -- 1.38 12 3.00 4.20 0.427 0.254 - -- 0.17 Sum = 100.0 _ Sum = 7.1 Flood volume = Effective rainfall 1.78(In) times area 1.0 (Ac.) / [ (In) / (Ft.) ] = 0.2 (Ac. Ft) Total soil loss = 0.76(In) Total soil loss = 0.065(Ac.Ft) Total rainfall = 2.54(In) Flood volume = 6584.3 Cubic Feet Total soil loss = 2820.2 Cubic Feet ------------------------------------------------------------ - - - - -- Peak flow rate of this hydrograph = 2.502(CFS) ------------------------------------------------------------------ +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 3 - H O U R S T O R M R u n o f f H y d r o g r a p h ------------------------------------------------------------------ Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------------ Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0230 1.11 V Q 0 +30 0.0483 1.23 Q 0 +45 0.0750 1.29 QV 1+ 0 0.1018 1.30 Q VI I 1 +15 0.1306 1.39 Q V I 1 +30 0.1617 1.50 I Q I V 1 +45 0.1948 1.60 I Q I V I i 2+ 0 0.2297 1.69 I Q I V 2 +15 0.2693 1.91 I Q I I V I 2 +30 I 0.3182 2.37 I QI I V I 2 +45 0.3699 2.50 I Q I I V 3+ 0 0.4061 1.75 I Q I I I V 3 +15 I 0.4303 1.17 I Q I I I V 3 +30 0.4520 1.05 I Q I I I V ----------------------------------------------------------------- - - - - -- U n i t H y d r o g r a p h A n a l y s i s. Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/08/07 File: vdb93100.out +++++++++++++++++++++.++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format VANDEBOS..TM30378..9 CITYLAQUINTA COACHELLA VALLEY ENGINEERS DKRICE ------------------------------------------------------------ - - - - -- Drainage Area = 0.16(Ac.) = 0.000 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.01(Ac.) _ 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = 0.050 Hr. Lag time = 3.00 Min. 25% of lag time = 0.75 Min. 40% of lag time = 1.20 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) 2 YEAR Area rainfall data: Area (Ac.) [1] Rainfall (In) [2] 0.01 1.10 100 YEAR Area rainfall data: Area (Ac.) [1] Rainfall (In) [2] 0.01 2.54 STORM EVENT (YEAR) = 100.00 Weighting[1 *2] 0.01 Weighting[1 *2] 0.03 Area Averaged 2 -Year Rainfall = 1.100(In) Area Averaged 100 -Year Rainfall = 2.540(In) Point rain (area Areal adjustment Adjusted average Sub -Area Data: Area(Ac.) 0.160 Total Area Ente averaged) = 2.540(In) factor = 100.00 % point rain = 2.540(In) Runoff Index Impervious % 56.00 0.200 red = 0.16(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -3 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 56.0 74.8 0..305 0.200 0.250 1.000 0.250 Sum (F) _ 0.250 Area averaged mean soil loss (F) (In /Hr) = 0.250 Minimum soil loss rate ((In /Hr)) = 0.125 (for 24 hour storm duration) Soil ------------------------------------------------------------------ low loss rate (decimal) = 0.200 U n i t H y d r o g r a p h ------------------------------------------------------------------ DESERT S -Curve ------------------------------------------------------------------ Unit Hydrograph Data Unit time period Time % of lag Distribution Unit Hydrograph (hrs) ------------------------------------------------------------------ Graph' % (CFS) 1 0.250 500.000 71.081 0.115 2 0.500 1000.000 28.919 0.047 ----------------------------------------------------------------------- Sum = 100.000 Sum= 0.161 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.376 0.250 - -- 0.13 2 0.50 4.80 0.488 0.250 - -- 0.24 3 0.75 5.10 0.518 0.250 - -- 0.27 4 1.00 4.90 0.498 0.250 - -- 0.25 5 1.25 6.60 0.671 0.250 - -- 0.42 6 1.50 7.30 0.742 0.250 - -- 0.49 7 1.75 8.40 0.853 0.250 - -- 0.60 8 2.00 9.00 0.914 0.250 - -- 0.66 9 2.25 12.30 1.250 0.250 - -- 1.00 10 2.50 17.60 1.788 0.250 - -- 1.54 11 2.75 16.10 1.636 0.250 - -- 1.39 12 3.00 4.20 0.427 0.250 - -- 0.18 Sum = 100.0 Sum = 7.2 Flood volume = Effective rainfall 1.79(In) times area 0.2(Ac.) /1(In) /(Ft.)) = 0.0(Ac.Ft) Total soil loss = 0.73(In) Total soil loss = 0.010(Ac.Ft) Total rainfall = 2.54(In) Flood volume = 1038.9 Cubic Feet Total soil.loss = 436.3 Cubic Feet ------------------------------------------------------------ - - - - -- Peak flow rate of this hydrograph = 1.271(CFS) ------------------------------------------------------------ - - - - -- +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + ++ + + + + + + + + + + + ++ 3 - H O U R S T O R M R u n o f f H y d r o g r a p h ------------------------------------------------------------------ Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------------ Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0218 1.05 V Q 0 +30 0.04,40 1.07 I QV 0 +45 0.0663 1.08 Q V 1+ 0 0.0886 1.08 Q V 1 +15 0.1114 1.10 Q V 1 +30 0.1344 1.12 Q V 1 +45 0.1578 1.13 Q V 2+ 0 0.1814 1.14 Q I I V 2 +15 0.2059 1.19 I Q I V 2 +30 0.2320 1.26 I Q I V 2 +45 0.2583 1.27 Q I I V 3+ 0 0.2815 1.12 Q I I V 3 +15 0.3032 1.05 Q V ----------------------------------------------------------------- - - - - -- U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VDB93100.out +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ------------------------------------------------------------ - - - - -- Riverside County Synthetic Unit Hydrology Method RCFC '& WCD Manual date - April 1978 Program License Serial Number 6078 English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format VANDEBOS..TM30378..9 CITYLAQUINTA COACHELLA VALLEY ENGINEERS DKRICE ---------------------------------------- -------------------- - - - - -- Drainage Area = 0.16(Ac.) = 0.000 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.01(Ac.) _ 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = 0.000 Hr. Lag time = 0.00 Min. 25% of lag time = 0.00 Min. 40W of lag time = 0.00 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) 2 YEAR Area rainfall data: Area(Ac.) [1] Rainfall (In) [2] 0.01 1.04 100 YEAR Area rainfall data: Area(Ac.) [1] Rainfall (In) (2) 0.01 2.54 STORM EVENT (YEAR) = 100.00 Weighting[1 *2) 0.01 Weighting[1 *2) 0.03 Area Averaged 2 -Year Rainfall = 1.040(In) Area Averaged 100 -Year Rainfall = 2.540(In) Point rain (area averaged) = 2.540(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.540(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious 0.010 56.00 0.900 .0.150 56.00 0.200 Total Area Entered = 0.16(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 56.0 56.0 0.511 0.900 0.097 0.063 0.006 56.0 56.0 0.511 0.200 0.419 0.938 0.393 Sum (F) _ 0.399 Area averaged mean soil loss (F) (In /Hr) = 0.399 Minimum soil loss rate ((In /Hr)) = 0.199 (for 24 hour storm duration) Soil low loss rate ------------------------------------------------------------------ (decimal) = 0.200 U n i t H y d r o g r a p h ------------------------------------------------------------------ DESERT S -Curve Unit Hydrograph Data ------------------------------------------------------------------ Unit time period Time % of lag Distribution Unit Hydrograph (hrs) ------------------------------------------------------------------ Graph % (CFS) 1 0.250 1. #I0 100.000 0.161 ----------------------------------------------------------------------- Sum = 100.000 Sum= 0.161 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.376 0.399 0.075 0.30 2 0.50 4.80 0.488 0.399 - -- 0.09 3 0.75 5.10 0.518 0.399 - -- 0.12 4 1.00 4.90 0.498 0.399 - -- 0.10 5 1.25 6.60 0.671 0.399 - -- 0.27 6 1.50 7.30 0.742 0.399 - -- 0.34 7 1.75 8.40 0.853 0.399 - -- 0.45 8 2.00 9.00 0.914 0.399 - -- 0.52 9 2.25 12.30 1.250 0.399 - -- 0.85 10 2.50 17.60 1.788 0.399 - -- 1.39 11 2.75 16.10 1.636 0.399 - -- 1.24 12 3.00 4.20 0.427 0.399 - -- 0.03 Sum = 100.0 Sum = 5.7 Flood volume = Effective rainfall 1.42(In) times area 0.2(Ac.) /[(In) /(Ft.)) = 0.0(Ac.Ft) Total soil loss = 1.12(In) Total soil loss = 0.015(Ac.Ft) Total rainfall = 2.54(In) Flood volume = 827.4 Cubic Feet Total soil loss = 647.8 Cubic Feet ------------------------------------------------------------ - - - - -- Peak flow rate of this hydrograph = 1.264(CFS) ------------------------------------------------------------------ +++++++++++++++++++++.++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 3 - H O U R S T 0 R M R u n o f f H y d r o g r a p h ------------------------------------------------------------------ Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------------ Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0225 1.09 VQ 0 +30 0.0443 1.05 Q V 0 +45 I 0.0662 1.06 Q VI I 1+ 0 I 0.0880 1.06 I Q V I 1 +15 I 0.1104 1.08 I Q I V I I 1 +30 0.1330 1.10 I Q I VI I 1 +45 0.1560 1.11 I Q I V 2+ 0 0.1792 1.12 ( Q I I V 2 +15 0.2035 1.18 I Q I I VI 2 +30 0.2297 1.26 I Q I I V 2 +45 0.2553 1.24 I Q I I I V 3+ 0 0.2768 1.04 I Q I I I V� ---------------- - ------------------------------------------------ - - - - -- U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VDB3100.out +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 ------------------------------------------------------------------ English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format VANDEBOS CITY-OF LA QUINTA CITY OF COACHLAA VALLEY ENGINEERS DKRICE ------------------------------------------------------------------ Drainage Area = 0.17(Ac.) = 0.000 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.01(Ac.) _ 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = 0.080 Hr. Lag time = 4.80 Min. 25W of lag time = 1.20 Min. 40% of lag time = 1.92 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.03(CFS) 2 YEAR Area rainfall data: Area(Ac.) [1] Rainfall(In) [2J Weighting[1 *21 0.01 0.04 0.00 100 YEAR Area rainfall data: Area (Ac.) [1] Rainfall (In) (2) Weighting [1 *2) 0.01 2.54 0.03 STORM EVENT (YEAR) = 100.00 I EM Area Averaged 2 -Year Rainfall = 0.040(In) Area Averaged 100 -Year Rainfall = 2.540(In) Point rain (area averaged) = 2.540(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.540(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious 0.010 56.00 0.900 0.160 56.00 0.200 Total Area Entered = 0.17(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 56.0 56.0 0.511 0.900 0.097 0.059 0.006 56.0 56.0 0.511 0.200 0.419 0.941 0.394 Sum (F) _ 0.400 Area averaged mean soil loss (F) (In /Hr) = 0.400 Minimum soil loss rate ((In /Hr)) = 0.200 (for 24 hour storm duration) Soil ------------------------------------------------------------------ low loss rate (decimal) = 0.200 U.n i t H y d r o g r a p h ------------------------------------------------------------------ DESERT S -Curve ------------------------------------------------------------------ Unit Hydrograph Data Unit time period Time % of lag Distribution Unit Hydrograph (hrs) ------------------------------------------------------------------ Graph % (CFS) 1 0.250 312.500 5'7.461 0.098 2 0.500 625.000 37.948 0.065 3 0.750 937.500 4.591 0.008 ----------------------------------------------------------------------- Sum = 100.000 Sum= 0.171 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.376 0.400 0.075 0.30 2 0.50 4.80 0.488 0.400 - -- 0.09 3 0.75 5.10 0.518 0.400 - -- 0.12 4 1.00 4.90 0.498 0.400 - -- 0.10 5 1.25 6.60 0.671 0.400 - -- 0.27 6 1.50 7.30 0.742 0.400 - -- 0.34 7 1.75 8.40 0.853 0.400 - -- 0.45 8 2.00 9.00 0.914 .0.400 - -- 0.51 9 2.25 12.30 1.250 0.400 - -- 0.85 10 2.50 17.60 1.788 0.400 - -- 1.39 11 2.75 16.10 1.636 0.400 - -- 1.24 12 3.00 4.20 0.427 0.400 - -- 0.03 Sum = 100.0 Sum = S.7 Flood volume = Effective rainfall 1.42(In) times area 0.2(Ac.) /[(In) /(Ft.)J = 0.0(Ac.Ft) Total soil loss = 1.12(In) Total soil loss = 0.016(Ac.Ft) Total rainfall = 2.54(In) Flood volume = 877.1 Cubic Feet Total soil loss = 690.3 Cubic Feet ------------------------------------------------------------ - - - - -- Peak flow rate of this hydrograph = - -- -- 1.249(CFS) ------------------------------ -------- - - - - -- 1 ++ - - - - n 3 = -H -O U R S T O R M ---------- - - - - -R u o f f- ---- H -y d r o g r a p h ------------------------------- 1 Hydrograph in 15 Minute intervals ((CFS)) ---------------------------------- -------------------------------- Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 -----------------------------------=- 0 +15 0.0219 1.06 V Q 1 0 +30 0.0438 1.06 I QV I 0 +45 0.0654, 1.05 I Q V 1+ 0 0.0871 1.05 ( Q V 1 +15 0.1091 1.06 I Q I V 1 +30 0.1314 1.08 I Q I V 1 +45 0.1541 1.10 I Q I VI I 2+ 0 0.1771 1.11 I Q I V I 2 +15 0.2009 1.15 I Q I I V I 2 +30 0.2262 1.23 I Q I I V I 2 +45 0.2520 1.25 I Q I I V 3+ 0 0.2753 1.12 I Q I I I V I 3 +15 0.2968 1.04 I Q I I V I 3 +30 0.3181 _ 1.03 I Q I I I V ----------------------------------------------------------------- - - - - -- c U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VDB143100.out +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format VANDEBOSBETHCIRCLE CITYLA QUINTA DKRICE ------------------------------------------------------------ - - - - -- Drainage Area = 0.34(Ac.) = 0.001 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.03(Ac.) _ 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = 0.080 Hr. Lag time = 4.80 Min. 25% of lag time = 1.20 Min. 40% of lag time = 1.92 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.30(CFS) 2 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting(1 *2] 0.03 1.04 0.03 100 YEAR Area rainfall data: Area (Ac.) [1] Rainfall (In) [2] Weighting [1 *2] 0.03 2.54 0.08 STORM EVENT (YEAR) = 100.00 CA Area Averaged 2 -Year Rainfall = 1.040(In) Area Averaged 100 -Year Rain fall = 2.540(In) Point rain (area averaged) = 2.540(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.540(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious 0.030 56.00 0.900 0.310 56.00 0.900 Total Area Entered = 0.34(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2 (In /Hr) (De c.%) (In /Hr) (Dec.) (In /Hr) 56.0 56.0 0.511 0.900 0.097 0.088 0.009 56.0 56.0 0.511 0.900 0.097 0.912 0.088 Sum (F) _ 0.097 Area averaged mean soil loss (F) (In /Hr) = 0.097 Minimum soil loss rate ((In /Hr)) = 0.049 (for 24 hour storm duration) Soil ------------------------------------------------------------------ low loss rate (decimal) = 0.500 U n i t H y d r o g r a p h ------------------------------------------------------------------ DESERT S -Curve ------------------------------------------------------------------ Unit Hydrograph Data Unit time period Time % of lag Distribution Unit Hydrograph (hrs) ------------------------------------------------------------------ Graph % (CFS) 1 0.250 312.500 57.461 0.197 2 0.500 625.000 37.948 0.130 3 0.750 937.500 4.591 0.016 ----------------------------------------------------------------------- Sum = 100.000 Sum= 0.343 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.376 0.097 --- 0.28 2 0.50 4.80 0.488 0.097 - -- 0.39 3 0.75 5.10 0.518 0.097 - -- 0.42 4 1.00 4.90 0.498 0.097 - -- 0.40 5 1.25 6.60 0.671 0.097 - -- 0.57 6 1.50 7.30 0.742 0.097 - -- 0.64 7 1.75 8.40 0.853 0.097 - -- 0.76 8 2.00 9.00 0.914 0.097 - -- 0.82 9 2.25 12.30 1.250 0.097 - -- 1.15 10 2.50 17.60 1.788 0.097 - -- 1.69 11 2.75 16.10 1.636 0.097 - -- 1.54 12 3.00 4.20 0.427 0.097 - -- 0.33 Sum = 100.0 Sum = 9.0 Flood volume = Effective rainfall 2.25(In) times area 0.3(Ac.) /[(In) /(Ft.)J = 0.1(Ac.Ft) Total soil loss = 0.29(In) Total soil loss = 0.008(Ac.Ft) Total rainfall = 2.54(In) Flood volume = 2775.5 Cubic Feet Total soil loss = 359.3 Cubic Feet ------------------------------------------------------------ - - - - -- Peak flow rate of this hydrograph = 1.841(CFS) ------------------------------------------------------------------ +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 3 - H O U R S T O R M R u n o f f H y d r o g r a p h Hydrograph in 15 Minute intervals ((CFS)). --.---------------------------------------------------------------- Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0280 1.35 V Q 0 +30 0.0572 1.41 ( Q 0 +45 0.0869 1.44 I Q V 1+ 0 0.1167 1.44 Q V 1 +15 0.1471 1.47 Q I V 1 +30 0.1782 1.51 Q I V 1 +45 I 0.2101 1.54 Q I VI 2+ 0 I 0.2425 1.57 I Q I V I 2 +15 0.2765 1.65 I Q I I V 2 +30 0.3136 1.80 I Q I I V 2 +45 0.3517 1.84 I Q I I V 3+ 0 I 0.3845 1.59 I Q I I I V 3 +15 0.4128 1.37 I Q I I I V 3 +30 0.4398 1.31 I Q I I I V ----------------------------------------------------------------- - - - - -- U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VDB3100.out +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format VANDEBOS CITY OF LA QUINTA CITY OF COACHLAA VALLEY ENGINEERS DKRICE ------------------------------------------------------------ - - - - -- Drainage Area = 0.14(Ac.) = 0.000 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = 0.080 Hr. Lag time = 4.80 Min. 25% of lag time = 1.20 Min. 40% of lag time = 1.92 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) 2 YEAR Area rainfall data: _I Area (Ac.) [l] Rainfall (In) (2l weighting [1 *2) 0.03 1.04 0.03 100 YEAR Area rainfall data: ' Area(Ac.) [1) Rainfall (In) [2] weighting [1 *2) 0.03 2.54 0.08 ' STORM EVENT (YEAR) = 100.00 ,I 0.03(Ac.) _ Area Averaged 2 -Year Rainfall = 1.040(In) Area Averaged 100 -Year Rainfall = 2.540(In) Point rain (area averaged) = 2.540(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.540(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious 0.110 56.00 0.900 0.030 56.00 0.400 Total Area Entered = 0.14(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 56.0 56.0 0.511 0.900 0.09.7 0.786 0.076 56.0 56.0 0.511 0.400 0.327 0.214 0.070 Sum (F) _ 0.146 Area averaged mean soil loss (F) (In /Hr) = 0.146 Minimum soil loss rate ((In /Hr)) = 0.073 (for 24 hour storm duration) Soil low loss rate (decimal) = --------------------------------------------------------------=--- 0.500 U n i t H y d r o g r a p h DESERT S -Curve ------------------------------------------------------------------ Unit Hydrograph Data ------------------------------------------------------------------ Unit time period Time % of lag Distribution Unit Hydrograph (hrs) ------------------------------------------------------------------ Graph % (CFS) 1 0.250 312.500 57.461 0.081 2 0.500 625.000 37.948 0.054 3 0.750 937.500 4.591 0.006 ----------------------------------------------------------------------- Sum = 100.000 Sum= 0.141 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.376 0.146 - -- 0.23 2 0.50 4.80 0.488 0.146 - -- 0.34 3 0.75 5.10 0.518 0.146 - -- 0.37 4 1.00 4.90 0:498 0.146 - -- 0.35 5 1.25 6.60 0.671 0.146 - -- 0.52 6 1.50 7.30 0.742 0.146 - -- 0.60 7 1.75 8.40 0.853 0.146 - -- 0.71 8 2.00 9.00 0.914 '0.146 - -- 0.77 9 2.25 12.30 1.250 0.146 - -- 1.10 10 2.50 17.60 1.788 0.146 - -- 1.64 11 2.75 16.10 1.636 0.146 - -- 1.49 1! ___ 12 3.00 4.20 0.427 0.146 0.28 Sum = 8.4 Sum = 100.0 Flood volume = Effective rainfall 2.10(In) 0 0(Ac.Ft) times area 0.1(Ac.) /[(In) /(Ft.)) _ Total soil loss = 0.44(In) Total soil loss = 0.005(Ac.Ft) Total rainfall = 2.54(In) Flood volume = 1067.8 Cubic Feet Total soil loss = 2.23.1 Cubic Feet ------------------------------ -- - - -- Peak flow rate of this hydrograph = 1.256(CFS) ---------------------------------------- +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 3 - H O U R S T O R M R u n o f f H y d r o g rap h ---------------------------- -------------------------------------- Hydrograph in 15 Minute intervals ((CFS)) ---------------------------------------- Time(h +m) volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 -------------------------- 0+15 0.0219 1.06 V, Q 0 +30 0.0442 1.08 I QV 0 +45 0.0667 1.09 I Q V 1+ 0 0.0892 1.09 I Q v 1 +15 0.1120 1.10 I Q I v 1 +30 0.1352 1.12 I Q I v 1 +45 0.1586 1.13 I Q I VI I 2+ 0 0.1822 1.14 I Q I v 2 +15 0.2065 1.18 I Q I I v I 2 +30 0.2320 1.24 I Q I I v i 2 +45 0.2580 1.26 I Q I I v 3+ 0 0.2818 1.15 I Q I I I V 3 +15 0.3038 1.06 I Q I I I V 3 +30 0.3253 1.04 I Q I V ----------------------------------------------------------------- - - - - -- RETENTION BASIN VOLUME CALCS.- BASIN 1 (35' X 128') Adjacent Road Flowline Grade = 512.79 100 Yr Pond Water Surface Level = 511.79 ELEVATION AREA AREA CHANGE VOL /FT (Avg) CUML VOL SF SF CF CF i 513.00 4,480 798 4,081 12,423 512.00 3,682 798 3,283 8,342 511.00 2,884 799 2,485 5,059 510.00 2,085 798 1,686 2,574 509.00 1,287 798 888 888 508.00 489 0 0 0 100 -Yr WSL Vol. = 7,653cf RETENTION BASIN VOLUME CALCS. - BASIN 2 (35' X 130') Adjacent Road Flowline Elev. = 513.66 100 Yr Water Surface Elev. = 512.66 ELEVATION AREA AREA CHANGE VOL /FT (Avg) CUML VOL SF SF CF CF i 514.00 4,550 807 4,147 12,668 513.00 3,743 806 3,340 8,521 512.00 2,937 807 2,534 5,181 511.00 2,130 806 1,727 2,648 510.00 1,324 807 921 921; 509.00 517 0 0 0 1 100 -Yr WSL Vol. = 7,385cf RETENTION BASIN VOLUME CALCS. - BASIN 3 (35'x 103') Adjacent Road Flowline = 514.40 100 -Yr Water Surface Level = 513.40 ELEVATION AREA AREA CHANGE VOL /FT (Avg) CUML VOL SF SF CF CF 514.40 3,605 269 1,388 9,332 514.00 3,336 675 2,999 7,944 513.00 2,661 675 2,324 4,946 512.00 1,986 675 1,649 2,622 511.00 1,311 675 974 974 510.00 636 0 0 0 100 -Yr WSL Vol. = 6,145cf RETENTION BASIN VOLUME CALCS. - BASIN 4 (35'x 103') Adjacent Road Flowline = 515.14 100 -Yr Water Surface Level = 514.00 ELEVATION AREA AREA CHANGE VOL/FT (Avg) CUML VOL SF SF CF CF 515.00 3,605 671 3,270 9,632 514.00 2,934 672 2,598 6,362 513.00 2,262 672 1,926 3,764 512.00 1,590 671 1,255 1,838 511.00 919 671 584 584 510.00 248 0 0 0 100 -Yr WSL Vol. = 6,362cf 1� �1 I' C' �i RETENTION BASIN VOLUME CALCS. - BASIN 5 (30'x 79') Adjacent Street Flowline = 515.30 100 -Yr Water Surface Level = 514.30 ELEVATION AREA AREA CHANGE VOUFT (Avg) CUML VOL SF SF CF CF 515.30 2,370 220 678 5,424 515.00 2,150 482 1,909 4,747 514.00 1,668 481 1,428 2,838 513.00 1,187 482 946 1,410 512.00 705 482 464. 464 511.00 1 223 0 0 0 100 -Yr WSL Vol. = 3,411cf RETENTION BASIN VOLUME CALCS. - BASIN 6 (30'x 105') Adjacent Street Flowline = 514.54 100 -Yr Water Surface Level = 513.54 ELEVATION AREA AREA CHANGE VOL/FT (Avg) CUML VOL SF SF CF CF 514.54 3,150 320 #VALUE! 514.00 2,830 591 2,535 6,591 513.00 2,239 591 1,944 4,056 512.00 1,648 592 1,352 2,113 511.00 1,056 591 761 761 510.00 465 0 0 0 100 -Yr WSL Vol. = 5,425cf �1 f� 1� 1 RETENTION BASIN VOLUME CALCS. - BASIN 7 (30' X 105') Adjacent Street Flowline = 513.93 100 -Yr Water Surface Elev. = 512.93 ELEVATION AREA AREA CHANGE VOUFT (Avg) CUML VOL SF SF CF CF 0 0 7,231 514.00 3,150 671 2,815 7,231 513.00 2,479 671 2,144 4,416 512.00 1,808 672 1,472 2,273 511.00 1,136 671 801 801 510.00 465 0 0 0 100 -Yr WSL Vol. = 4,266cf RETENTION BASIN VOLUME CALCS. - BASIN 8 (30' X 125') Adjacent Street Flowline = 512.83 100 -Yr Water Surface Level = 511.50 ELEVATION AREA AREA CHANGE VOUFT (Avg) CUML VOL SF SF CF CF 513.00 3,750 792 3,354 8,661 512.00 2,958 793 2,562 5,307 511.00 2,165 792 1,769 2,746 510.00 1,373 793 977 977 509.00 580 0 0 0 100 -Yr WSL Vol. = 4,027cf * BASIN 8 TO BE CROSS - CONNECTED W/ BASINS 12 & 13 1 1' �I �I J RETENTION BASIN VOLUME CALCS. - BASIN 9 (24' X 138') Adjacent Roadway Flowline = 512.85 100 -Yr Pond WSL = 511.85 ELEVATION AREA AREA CHANGE VOUFT (Avg) CUML VOL SF SF CF CF 0 0 7,989 513.00 0 0 1,716 7,989 512.00 3,432 894. 2,985 6,273 511.00 2,538 894 2,091 3,288 510.00 1,644 894 1,197 1,197 509.00 750 0 1 0 0 Vol. @ WSL = 5,825cf �i 1 r rI �I Ord r r r' RETENTION BASIN VOLUME CALCS. a BASIN 10 (24' X 128') Adjacent Roadway Flowline = 512.85 100 -Yr Pond WSL = 511.85 ELEVATION AREA AREA CHANGE VOL/FT (Avg) CUML VOL SF SF CF CF 0 0 7,281 513.00 0 0 1,584 7,281 512.00 3,168 846 2,745 5,697 511.00 2,322 846 1,899 2,952 510.00 1,476 846 1,053 1,053 509.00 630 0 0 0 Vol. @ WSL = 5,285 cf Basin 10 To Be Cross - connected w/ Basin 9 RETENTION BASIN VOLUME CALCS. - BASIN 11 (24'X 128') Adjacent Roadway Flowline = 512.52 100 -Yr Pond WS = 511.52 ELEVATION AREA AREA CHANGE VOUFT (Avg) CUML VOL SF SF CF CF 0 0 7,686 513.00 0 0 1,953 7,686 512.00 3,906 1,256 3,278 5,733 511.00 2,650 1,520 1,890 2,455 510.00 1,130 1,130 565 565 509.00 0 0 0 0 Vol. @ WSL = 4,160cf RETENTION BASIN VOLUME CALCS. - BASIN 12 (24' X 150') Adjacent Roadway Flowline = 512.50 100 -Yr Pond WSL = 511.50 ELEVATION AREA AREA CHANGE VOUFT (Avg) CUML VOL SF SF CF CF 0 0 11,007 513.00 0 0 2,448 11,007 512.00 4,896 1,362 4,215 8,559 511.00 3,534 1,362 2,853 4,344 510.00 2,172 1,362 1,491 1,491 509.00 810 0 0 0 VOL (C_V W5L = 6,452 Ct RETENTION BASIN VOLUME CALCS. - BASIN 13 (24' X 238') Adjacent Roadway Flowline = 512.50 100 -Yr Pond WS = 511.50 ELEVATION AREA AREA CHANGE VOUFT (Avg) CUML VOL SF SF CF CF 0 0 9,227 513.00 0 0 2,115 9,227 512.00 4,230 1,240 3,610 7,112 511.00 2,990 1,239 2,371 3,502 510.00 1,751 1,239 1,132 1,132 509.00 512 0 0 0 Vol. @ WSL = 5,307 cf I' �I 1 t I!� J r RETENTION BASIN VOLUME CALCS. TEMP. BASIN #14 (30' X 78') Adjacent Street Flowline = 512.60 100 -Yr Water Surface Elev. = 511.60 ELEVATION AREA AREA CHANGE VOL /FT (Avg) CUML VOL SF SF CF CF 513.00 2,340 580 2,050 4,410 512.00 1,760 580 1,470 2,360 511.00 1,180 580 890 890 510.00 600 0 0 0 100 -Yr WSL Vol. = 1,772cf RETENTION BASIN VOLUME CALCS. - TEMP. BASIN #15 (32' X 135') Adjacent Street Flowline = 512.78 100 -Yr Water Surface Level = 511.78 ELEVATION AREA AREA CHANGE VOL/FT (Avg) CUML VOL SF SF CF CF 513.00 4,320 1,250 3,695 7,335 512.00 3,070 1,250 2,445 3,640 511.00 11820 1,250 1,195 1,195 510.00 570 0 0 0 1uu -Yr VV5L Vol. = 3,1020 ■ CATCH BASIN # 1 - STORM DRAIN DESIGN PREPARED BY COACHELLA VALLEY ENGINEERS DATE: 5 -15 -07 JOB #: 01152 PROJECT: TR 30378 �! � _ i■w _ w__ w - �■ -- w—, mow- ..1 �w -. _ w - -_ BY: jsd PIPE BASIN GRATE NET EXIT LOSS LOSS AT D.S. STORM DRAIN LINE: "A "- 10year DIA.(IN) Q10(CFS) WS10 OPENING(FT) OPENING(SF) AT GRATE END OF PIPE OUTLET DESIGN (DRY WELL) 1.1HV= 1.2HV= 18 1 1.08 1 510.25 2.00 1.38 0.006 0.007 WS100 IN BASIN VELOCITY IN 18 "PIPE Q= 1.08 0.61 PER SEC. HV= V2 /2G= 0.006 A= 1.77 V =Q /A HGL AT U.S. END STORM DRAIN LINE LENGTH OF PIPE(d) 47.00 MANNING "S INDEX(n) 0.012 TYPE OF PIPE RCP Sf =[ Q n ] 2 K' =0.463 [d 8/3(K')] Hf =L(SO DESIGN FOR CATCH BASIN NO. 1 PROP. WIDTH OF OPENING (W)(FT) 4.00 H /h= 0.36 Sf =[ 0.012960 12= 0.000090 [ 1.366925 ] Hf= HGL AT U.S.END= 1.2HV= 10YR WS IN CB= CURB HEIGHT (IN) 6.00 Q/L= 2.50 (PONDED TO TC) DEPTH OF DEPRESSION (IN) 4.00 DEPTH OF FLOW AT OPENING (H)(FT) 0.30 Q= 1.08 0.43 FOOT WIDE OPENING (MIN) HEIGHT OF OPENING (h)(IN) 10.00 (Q/L) Q10 TO OPENING (CFS) 1.08 TC AT OPENING 513.78 VS HGL 510.27 OK 2.50 USE W(MIN)= 4.00 OK HGL10 510.250 0.006 0.007 510.263 0.0042 510.268 0.007 510.275 ■ � � ....� � _ . �■r �s ._ �. , a� _ s.� ate..., w�___. s� �r- -- � �■■� --, �e - -, CATCH BASIN #1 - STORM DRAIN DESIGN PREPARED BY COACHELLA VALLEY ENGINEERS DATE: 4 -02 -07 47.00 MANNING "S INDEX(n) 0.012 JOB #: 01152 TYPE OF PIPE RCP Sf =[ Q n ] 2 K' =0.463 Sf =[ 0.020040 12= 0.000215 [d 8/3(K')] PROJECT: TR 30378 Hf =L(So Hf= 0.0101 BY: jsd PIPE BASIN GRATE NET EXIT LOSS LOSS AT D.S. HGL100 STORM DRAIN LINE: "A" - 100 Year DIA.(IN) Q1oo(CFS) WS100 OPENING(FT) OPENING(SF) AT GRATE END OF PIPE OUTLET DESIGN (DRY WELL) 1.1 HV= 1.2HV= 18 1 1.67 1 511.50 2.00 1.38 0.015 0.017 WS100IN BASIN 511.500 0.015 VELOCITY IN 18 " PIPE Q= 1.67 0.95 PER SEC. HV= V2 /2G= 0.014 0.017 A= 1.77 V =Q/A HGL AT U.S. END 511.532 STORM DRAIN LINE LENGTH OF PIPE(d) 47.00 MANNING "S INDEX(n) 0.012 TYPE OF PIPE RCP Sf =[ Q n ] 2 K' =0.463 Sf =[ 0.020040 12= 0.000215 [d 8/3(K')] [ 1.366925 ] Hf =L(So Hf= 0.0101 HGL AT U.S.END= 511.542 1.2 H V= 0.017 100YR WS IN CB= 511.559 DESIGN FOR CATCH BASIN NO. 1 PROP. WIDTH OF OPENING (W)(FT) CURB HEIGHT (IN) DEPTH OF DEPRESSION (IN) DEPTH OF FLOW AT OPENING (H)(FT) HEIGHT OF OPENING (h)(IN) Q100 TO OPENING (CFS) TC AT OPENING 4.00 H /h= 0.36 6.00 Q/L= 2.50 • 4.00 0.30 10.00 1.67 513.78 VS HGL (PONDED TO TC) Q= 1.67 0.67 FOOT WIDE OPENING (MIN) (Q/L) 511.56 OK 2.50 USE W(MIN)= 4.00 OK CATCH BASIN #2 - STORM DRAIN DESIGN PREPARED BY COACHELLA VALLEY ENGINEERS DATE: 4 -02 -07 JOB #: 01152 PROJECT: TR 30378 BY: jsd PIPE BASIN GRATE NET EXIT LOSS LOSS AT D.S. STORM DRAIN LINE: "B " -10 year DIA.(IN) Q10(CFS) WS10 OPENING(FT) OPENING(SF) AT GRATE END OF PIPE OUTLET DESIGN (DRY WELL) 1.1 HV= 1.2HV= 18 3.69 1 510.43 2.00 1.38 0.074 0.081 WS10 IN BASIN VELOCITY IN 18 " PIPE Q= 3.69 2.09 PER SEC. HV= V2 /2G= 0.068 A= 1.77 V =Q/A HGL AT U.S. END STORM DRAIN LINE LENGTH OF PIPE(d) 45.00 MANNING "S INDEX(n) 0.012 TYPE OF. PIPE RCP Sf =[ Q n ] 2 K' =0.463 Sf =[ 0.044280 12= 0.001049 [d 8/3(K')] [ 1.366925 ] Hf =L(Sf) Hf= HGL AT U.S.END= 1.2H V= 10YR WS IN CB= DESIGN FOR CATCH BASIN NO. 2 PROP. WIDTH OF OPENING (W)(FT) CURB HEIGHT (IN) DEPTH OF DEPRESSION (IN) DEPTH OF FLOW AT OPENING (H)(FT) HEIGHT OF OPENING (h)(IN) Q10 TO OPENING (CFS) TC AT OPENING 4.00 H /h= 0.36 6.00 Q/L= 2.50 4.00 0.30 10.00 3.69 514.63 VS HGL (PONDED TO TC) Q= 3.69 1.48 FOOT WIDE OPENING (MIN) (Q/L) 510.71 OK 2.50 USE W(MIN)= 4.00 OK HGL10 510.430 0.074 0.081 510.586 0.0472 510.633 0.081 510.714 CATCH BASIN #2 - STORM DRAIN DESIGN PREPARED BY COACHELLA VALLEY ENGINEERS DATE: 5 -15 -07 45.00 MANNING "S INDEX(n) 0.012 JOB #: 01152 TYPE OF PIPE RCP Sf =[ Q n ] 2 K' =0.463 Sf =[ 0.068520 12= 0.002513 [d 8/3(K')] PROJECT: TR 30378 Hf =L(SO Hf= 0.1131 BY: jsd PIPE BASIN GRATE NET EXIT LOSS LOSS AT D.S. HGL100 STORM DRAIN LINE: "C" - 100 year DIA.(IN) Q100(CFS) WS100 OPENING(FT) OPENING(SF) AT GRATE END OF PIPE OUTLET DESIGN (DRY WELL) 1.1 HV= 1.2HV= 18 1 5.71 1 511.85 2.00 1.38 0.178 0.195 WS100 IN BASIN 511.850 0.178 VELOCITY IN 18 " PIPE Q= 5.71 3.23 PER SEC. HV= V2 /2G= 0.162 0.195 A= 1.77 V =Q/A HGL AT U.S. END 512.223 STORM DRAIN LINE LENGTH OF PIPE(d) 45.00 MANNING "S INDEX(n) 0.012 TYPE OF PIPE RCP Sf =[ Q n ] 2 K' =0.463 Sf =[ 0.068520 12= 0.002513 [d 8/3(K')] ( 1.366925 ] Hf =L(SO Hf= 0.1131 HGL AT U.S.END= 512.336 1.2HV= 0.195 100YR WS IN CB= 512.530 DESIGN FOR CATCH BASIN NO. 2 PROP. WIDTH OF OPENING (W)(FT) CURB HEIGHT (IN) DEPTH OF DEPRESSION (IN) DEPTH OF FLOW AT OPENING (H)(FT) HEIGHT OF OPENING (h)(IN) Q100 TO OPENING (CFS) TC AT OPENING 4.00 H /h= 0.36 6.00 Q/L= 2.50 4.00 0.30 10.00 5.30 514.63 VS HGL (PONDED TO TC) Q= 5.30 (Q/L) 2.50 512.53 OK 2.12 FOOT WIDE OPENING (MIN) USE W(MIN)= 4.00 OK CATCH BASIN #3 - STORM DRAIN DESIGN PREPARED BY COACHELLA VALLEY ENGINEERS DATE: 5 -15 -07 JOB #: 01152 PROJECT: TR 30378 BY: jsd PIPE BASIN GRATE NET EXIT LOSS LOSS AT D.S. STORM DRAIN LINE: "C "- 10 year DIA.(IN) Q10(CFS) WS10 OPENING(FT) OPENING(SF) AT GRATE END OF PIPE OUTLET DESIGN (DRY WELL) 1.1 HV= 1.2HV= 18 1 0.34 1 510.25 2.00 1.38 0.001 0.001 WS100 IN BASIN VELOCITY IN 18 " PIPE Q= 0.34 0.19 PER SEC. HV= V2/2G= 0.001 A= 1.77 V =Q/A HGL AT U.S. END STORM DRAIN LINE LENGTH OF PIPE(d) 17.00 MANNING "S INDEX(n) 0.012 TYPE OF PIPE HDPE Sf =[ Q n ] 2 K' =0.463 Sf =[ 0.004080 ]2= 0.000009 [d 8/3(K')] [ 1.366925 ] Hf =L(Sf Hf= HGL AT U.S.END= 1.2HV= 10YR WS IN CB= DESIGN FOR CATCH BASIN NO. 3 PROP. WIDTH OF OPENING (W)(FT) 4.00 H /h= 0.36 CURB HEIGHT (IN) 6.00 Q/L= 2.50 (PONDED TO TC) DEPTH OF DEPRESSION (IN) 4.00 DEPTH OF FLOW AT OPENING (H)(FT) 0.30 Q= 0.34 0.14 FOOT WIDE OPENING (MIN) HEIGHT OF OPENING (h)(IN) 10.00 (Q/L) 2.50 USE W(MIN)= 4.00 Q10 TO OPENING (CFS) 0.34 OK TC AT OPENING 513.70 VS HGL 510:25 OK HGL10 510.250 0.001 0.001 510.251 0.0002 510.251 0.001 510.252 CATCH BASIN #3 - STORM DRAIN DESIGN PREPARED BY COACHELLA VALLEY ENGINEERS DATE: 5 -15 -07 JOB #: 01152 PROJECT: TR 30378 BY: jsd PIPE BASIN GRATE NET EXIT LOSS LOSS AT D.S. HGL100 STORM DRAIN LINE: "C" -100 year DIA.(IN) Q100(CFS) WS100 OPENING(FT) OPENING(SF) AT GRATE END OF PIPE OUTLET DESIGN (DRY WELL) 1.1 HV= 1.2HV= 18 1 0.79 1 511.50 2.00 1.38 0.003 0.004 WS100 IN BASIN 511.500 0.003 VELOCITY IN 18 " PIPE Q= 0.79 0.45 PER SEC. HV= V2 /2G= 0.003 0.004 A= 1.77 V =Q/A HGL AT U.S. END 511.507 STORM DRAIN LINE LENGTH OF PIPE(d) 17.00 MANNING "S INDEX(n) 0.012 TYPE OF PIPE HDPE Sf =[ Q n ] 2 K' =0.463 Sf =[ 0.009480 ]2= 0.000048 [d 8/3(K')] [ 1.366925 ] Hf =L(S0 Hf= 0.0008 HGL AT U.S.END= 511.508 1.2H V= 0.004 100YR WS IN CB= 511.512 DESIGN FOR CATCH BASIN NO. 3 PROP. WIDTH OF OPENING (W)(FT) CURB HEIGHT (IN) DEPTH OF DEPRESSION (IN) DEPTH OF FLOW AT OPENING (H)(FT) HEIGHT OF OPENING (h)(IN) Q100 TO OPENING (CFS) TC AT OPENING 4.00 H /h= 0.36 6.00 Q/L= 2.50 4.00 0.30 10.00 0.79 513.70 VS HGL (PONDED TO TC) Q= 0.79 0.32 FOOT WIDE OPENING (MIN) (Q /L) 511.51 OK 2.50 USE W(MIN)= 4.00 OK CATCH BASIN #4 - STORM DRAIN DESIGN PREPARED BY COACHELLA VALLEY ENGINEERS DATE: 5 -15 -07 JOB #: 01152 PROJECT: TR 30378 BY: jsd PIPE BASIN GRATE NET EXIT LOSS LOSS. AT D.S. HGL10 STORM DRAIN LINE: "D " -10 year DIA.(IN) Q10(CFS) WS10 OPENING(FT) OPENING(SF) AT GRATE END OF PIPE OUTLET DESIGN (DRY WELL) 1.1 HV= 1.2HV= 18 1 0.34 1 509.90 2.00 1.38 0.001 0.001 WS100 IN BASIN 509.900 0.001 VELOCITY IN 18 " PIPE Q= 0.34 0.19 PER SEC. HV= V2 /2G= 0.001 0.001 A= 1.77 V =Q/A HGL AT U.S. END 509.901 STORM DRAIN LINE LENGTH OF PIPE(d) 14.00 MANNING "S INDEX(n) 0.012 TYPE OF PIPE HDPE Sf =[ Q n ] 2 K' =0.463 Sf =[ 0.004080 ]2= 0.000009 [d 8/3(K')] [ 1.366925 ] Hf =L(Sf) Hf= 0.0001 HGL AT U.S.END= 509.901 1.2HV= 0.001 10YR WS IN CB= 509.902 DESIGN FOR CATCH BASIN NO. 4 PROP. WIDTH OF OPENING (W)(FT) CURB HEIGHT (IN) DEPTH OF DEPRESSION (IN) DEPTH OF FLOW AT OPENING (H)(FT) HEIGHT OF OPENING (h)(IN) Q10 TO OPENING (CFS) TC AT OPENING 4.00 H /h= 0.36 6.00 Q/L= 2.50 (PONDED TO TC) 4.00 0.30 Q= 0.34 0.14 FOOT WIDE OPENING (MIN) 10.00 (Q/L) 0.34 513.70 VS HGL 509.90 OK 2.50 USE W(MIN)= 4.00 OK CATCH BASIN #4 - STORM DRAIN DESIGN PREPARED BY COACHELLA VALLEY ENGINEERS DATE: 5 -15 -07 14.00 MANNING "S INDEX(n) 0.012 JOB #: 01152 TYPE OF PIPE HDPE Sf =[ Q n ] 2 K' =0.463 Sf =[ 0.009480 ]2= 0.000048 [d 8/3(K')] PROJECT: TR 30378 I-- If =L(Sf) Hf= 0.0007 BY: jsd PIPE BASIN GRATE NET EXIT LOSS LOSS AT D.S. HGL100 STORM DRAIN LINE: D- "100 YEAR" DIA.(IN) Q100(CFS) WS100 OPENING(FT) OPENING(SF) AT GRATE END OF PIPE OUTLET DESIGN (DRY WELL) 1.1HV= 1.2HV= 18 0.79 511.79 2.00 1.38 0.003 0.004 WS100 IN BASIN 511.790 0.003 VELOCITY IN 18 " PIPE Q= 0.79 0.45 PER SEC. HV= V2/2G= 0.003 0.004 A= 1.77 V =Q/A HGL AT U.S. END 511.797 STORM DRAIN LINE LENGTH OF PIPE(d) 14.00 MANNING "S INDEX(n) 0.012 TYPE OF PIPE HDPE Sf =[ Q n ] 2 K' =0.463 Sf =[ 0.009480 ]2= 0.000048 [d 8/3(K')] [ 1.366925 ] I-- If =L(Sf) Hf= 0.0007 HGL AT U.S.END= 511.798 1.2HV= 0.004 100YR WS IN CB= 511.802 DESIGN FOR CATCH BASIN NO. 4 PROP. WIDTH OF OPENING (W)(FT) 4.00 H /h= 0.36 CURB HEIGHT (IN) 6.00 Q/L= 2.50 (PONDED TO TC) DEPTH OF DEPRESSION (IN) 4.00 DEPTH OF FLOW AT OPENING (H)(FT) 0.30 Q= 0.79 0.32 FOOT WIDE OPENING (MIN) HEIGHT OF OPENING (h)(IN) 10.00 (Q/L) 2.50 USE W(MIN)= 4.00 Q100 TO OPENING (CFS) 0.79 OK TC AT OPENING 513.70 VS HGL 511.80 . OK CATCH BASIN #5 - STORM DRAIN DESIGN PREPARED BY COACHELLA VALLEY ENGINEERS DATE: 5 -15 -07 JOB #: 01152 PROJECT: TR 30378 BY: jsd PIPE BASIN GRATE NET EXIT LOSS LOSS AT D.S. STORM DRAIN LINE: "E "- 10 year DIA.(IN) Q10(CFS) WS10 OPENING(FT) OPENING(SF) AT GRATE END OF PIPE OUTLET DESIGN (DRY WELL) 1.1 HV= 1.2HV= 18 0.26 511.70 2.00 1.38 0.000 0.000 WS1001N BASIN VELOCITY IN 18 " PIPE Q= 0.26 0.15 PER SEC. HV= V2/2G= 0.000 A= 1.77 V =Q/A HGL AT U.S. END STORM DRAIN LINE LENGTH OF PIPE(d) 12.00 MANNING "S INDEX(n) 0.012 TYPE OF PIPE HDPE Sf =[ Q n ] 2 K' =0.463 Sf =[ 0.003120 ]2= 0.000005 [d 8/3(K')] [ 1.366925 ] Hf =L(Sf Hf= HGL AT U.S.END= 1.2HV= 10YR WS IN CB= DESIGN FOR CATCH BASIN NO. 5 PROP. WIDTH OF OPENING (W)(FT) CURB HEIGHT (IN) DEPTH OF DEPRESSION (IN) DEPTH OF FLOW AT OPENING (H)(FT) HEIGHT OF OPENING (h)(IN) Q10 TO OPENING (CFS) TC AT OPENING 4.00 Hlh= 0.36 6.00 Q/L= 2.50 4.00 0.30 10.00 0.26 515.23 VS HGL (PONDED TO TC) Q= 0.26 0.10 FOOT WIDE OPENING (MIN) (Q /L) 511.70 OK 2.50 USE W(MIN)= 4.00 OK HGL10 511.700 0.000 0.000 511.701 0.0001 511.701 0.000 511.701 CATCH BASIN #5 - STORM DRAIN DESIGN PREPARED BY COACHELLA VALLEY ENGINEERS DATE: 5 -15 -07 12.00 MANNING "S INDEX(n) 0.012 JOB #: 01152 TYPE OF PIPE HDPE Sf =[ Q n ] 2 K' =0.463 Sf =[ 0.007320 ]2= 0.000029 [d 8/3(K')] PROJECT: TR 30378 Hf =L(So Hf= 0.0003 BY: jsd PIPE BASIN GRATE NET EXIT LOSS LOSS AT D.S. HG-L100 STORM DRAIN LINE: "E "- 100 year DIA.(IN) 0100(CFS) WS100 OPENING(FT) OPENING(SF) AT GRATE END OF PIPE OUTLET DESIGN (DRY WELL) 1.1 HV= 1.2HV= 18 1 0.61 1 513.40 2.00 1.38 0.002 0.002 WS100 IN BASIN 513.400 0.002 VELOCITY IN 18 " PIPE Q= 0.61 0.35 PER SEC. HV= V2 /2G= 0.002 0.002 A= 1.77 V =Q/A HGL AT U.S. END 513.404 STORM DRAIN LINE LENGTH OF PIPE(d) 12.00 MANNING "S INDEX(n) 0.012 TYPE OF PIPE HDPE Sf =[ Q n ] 2 K' =0.463 Sf =[ 0.007320 ]2= 0.000029 [d 8/3(K')] [ 1.366925 ] Hf =L(So Hf= 0.0003 HGL AT U.S.END= 513.405 1.2 H V= 0.002 100YR WS IN CB= 513.407 DESIGN FOR CATCH BASIN NO. 5 PROP. WIDTH OF OPENING (W)(FT) 4.00 H /h= 0.36 CURB HEIGHT (IN) 6.00 Q/L= 2.50 (PONDED TO TC) DEPTH OF DEPRESSION (IN) 4.00 DEPTH OF FLOW AT OPENING (H)(FT) 0.30 Q= 0.61 0.24 FOOT WIDE OPENING (MIN) HEIGHT OF OPENING (h)(IN) 10.00 (Q/L) 2.50 USE W(MINj= 4.00 Q100 TO OPENING (CFS) 0.61 OK TC AT OPENING 515.23 VS HGL 513.41 OK CATCH BASIN #6 - STORM DRAIN DESIGN PREPARED BY COACHELLA VALLEY ENGINEERS DATE: 5 -15 -07 JOB #: 01152 PROJECT: TR 30378 BY: jsd PIPE BASIN GRATE NET EXIT LOSS LOSS AT D.S. STORM DRAIN LINE: "F "- 10 year DIA.(IN) Q10(CFS) WS10 OPENING(FT) OPENING(SF) AT GRATE END OF PIPE OUTLET DESIGN (DRY WELL) 1.1 HV= 1.2HV= 18 1 0.26 1 511.77 2.00 1.38 0.000 0.000 WS100 IN BASIN VELOCITY IN 18 " PIPE Q= 0.26 0.15 PER SEC. HV= V2/2G= 0.000 A= 1.77 V =Q/A HGL AT U.S. END STORM DRAIN LINE LENGTH OF PIPE(d) 17.00 MANNING "S INDEX(n) 0.012 TYPE OF PIPE HDPE Sf =[ Q n ] 2 K' =0.463 Sf =[ 0.003120 ]2= 0.000005 [d 8/3(K')] [ 1.366925 ] Hf =L(Sf) Hf= HGL AT U.S.END= 1.2HV= 10YR WS IN CB= DESIGN FOR CATCH BASIN NO. 6 PROP. WIDTH OF OPENING (W)(FT) CURB HEIGHT (IN) DEPTH OF DEPRESSION (IN) DEPTH OF FLOW AT OPENING (H)(FT) HEIGHT OF OPENING (h)(IN) Q10 TO OPENING (CFS) TC AT OPENING 4.00 H /h= 0.36 6.00 Q/L= 2.50 4.00 0.30 10.00 0.26 515.37 VS HGL (PONDED TO TC) Q= 0.26 0.10 FOOT WIDE OPENING (MIN) (Q/L) 511.77 OK 2.50 USE W(MIN)= 4.00 OK HGL10 511.770 0.000 0.000 511.771 0.0001 511.771 0.000 511.771 CATCH BASIN #6 - STORM DRAIN DESIGN PREPARED BY COACHELLA VALLEY ENGINEERS DATE: 5 -15 -07 JOB #: 01152 PROJECT: TR 30378 BY: jsd PIPE BASIN GRATE NET EXIT LOSS LOSS AT D.S. STORM DRAIN LINE: "F "- 100 year DIA.(IN) 0100(CFS) WS100 OPENING(FT) OPENING(SF) AT GRATE END OF PIPE OUTLET DESIGN (DRY WELL) 1.1 HV= 1.2HV= 18 1 0.61 1 513.54 2.00 1.38 0.002 0.002 WS100 IN BASIN VELOCITY IN 18 " PIPE Q= 0.61 0.35 PER SEC. HV= V2/2G= 0.002 A= 1.77 V =Q/A HGL AT U.S. END STORM DRAIN LINE LENGTH OF PIPE(d) 17.00 MANNING "S INDEX(n) 0.012 TYPE OF PIPE HDPE DESIGN FOR CATCH BASIN NO PROP. WIDTH OF OPENING (W)(FT) CURB HEIGHT (IN) DEPTH OF DEPRESSION (IN) DEPTH OF FLOW AT OPENING (H)(FT) HEIGHT OF OPENING (h)(IN) Q100 TO OPENING (CFS) TC AT OPENING L Sf =[ Q n ] 2 [d 8/3(K')] Hf =L(So 4.00 H /h= 0.36 6.00 Q/L= 2.50 4.00 0.30 10.00 0.61 515.37 VS HGL K' =0.463 (PONDED TO TC) Q= 0.61 (Q/L) 2.50 513.55 OK Sf =[ 0.007320 ]2= 0.000029 [ 1.366925 ] Hf= HGL AT U.S.END= 1.2HV= 100YR WS IN CB= 0.24 FOOT WIDE OPENING (MIN) USE W(MIN)= 4.00 OK HGL100 513.540 0.002 0.002 513.544 0.0005 513.545 0.002 513.547 MADISON STREET CARRYING CAPACITY Per Offsite Madison Street Storm Flows (TM 33085), the contributing tributaries include 18 acres upstream plus the adjacent Madison Street ROW = 1.76 acres Total Area = 18 acres + 1.76 acres = 19.76 acres Design Q -10 year: C, runoff coefficient = 0.735 (From Plate D -5.7) I, rainfall intensity = 1.79 in/hr (IOyr — From Plate D -4.1) A, drainage area = 19.76 acres Q(10) = 0.735 * 1.79 in/hr * 19.76 acres = 26.00 CFS Since looking @ %2 Madison ROW, Q =13.00 CFS Design Q -100 year: C, runoff coefficient = 0.756 (From Plat D -5.7) I, rainfall intensity = 2.86 in/hr (100yr — From Plate D -4.1) A, drainage area = 19.76 acres Q(100) = 0.756 * 2.86 in/hr * 19.76 acres = 42.72 CFS Since looking @ %2 Madison ROW, Q = 21.36 CFS %2 Madison Street Section: 55' from ROW to centerline, 6" outer curb & gutter, 6" median curb. 34' face to face, Check Spread of Flow per FHWA HEC -22 "Urban Drainage Design Manual" T = [(Q *n)/ ( Ku )(Sx)exp1.67(S1)expo.5]expo.375 Ku = 0.56 n = 0.013 Q = flow rate (cfs) T = width of flow (ft) Sx = cross slope ( ft/ft) Sl = longitudinal slope (ft/ft) 10 - Year: T = [ (13.00cfs * .013) / (.56)(.02)expl.67(.005)exp.5 lexp.375 T = 19.96' Therefore, 10 -year flow extends from face of curb 19.96' into roadway. Flow height at outer curb is .32' 100 — Year: T = [ (21.36cfs * .013) / (. 56) (.02)expl.67(.005)exp.5]exp.375 T = 24.05' Therefore, 100 -year flow extends from face of cub 24.05' into roadway. Flow height at outer curb is 0.48' TIME OF CONCENTRATION: INITIAL FLOW: Ti = k *(L ^3/h) ^.2 where: k = 0.39 L, length of initial flow = 290 h, elevation difference over initial flow = 1.35 STREET CAPACITY: Q= 1.486 *A *R ^2 /3 *S ^1/2 n MADISON STREET CATCH BASIN ft 1 Ti = 11.03 minutes where: A, X- sectional area of street = 8.5 sf Wetted perimeter = 34.5 R = 0.2464 S, slope = 0.0050 ft/ft n, Mannings coefficient = 0.017 Q = 20.65 cfs VELOCITY, in Street: V= Q/A where: Q, capacity, cfs = 20.65 A, area, sf = 8.5 V = 2.43 fps STREET FLOW: Ts = L/V where: L, length of flow = 290 V, street velocity = 2.43 Ts = 119.39 secs 1.99 min. DESIGN Q1o: Q = C *I *A where: C, runoff coefficient = 0.9 (From Plate D -5.7) I, rainfall intensity = 1.79 in /hr (10yr - From Plate D -4.1) A, drainage area = 0.67 AC (Drainage Map) Q = 1.08 cfs DESIGN Qioo: Q = C *I *A where: C, runoff coefficient = 0.9 (From. Plate D -5.7) I, rainfall intensity = 2.77 in /hr (100yr - From Plate D -4.1) A, drainage area = 0.67 AC (Drainage Map) Q = 1.67 cfs TIME OF CONCENTRATION: INITIAL FLOW: Ti = k *(L ^3/h) ^.2 where: k = 0.39 L, length of initial flow = 1200 h, elevation difference over initial flow = 4.2 STREET CAPACITY: Q= 1.486 *A *R ^2 /3 *S ^1/2 n MADISON STREET CATCH BASIN # 2 Ti = 20.60 minutes where: A, X- sectional area of street = 8.5 sf Wetted perimeter = 34.5 R = 0.246 S, slope = 0.0050 ft/ft n, Mannings coefficient = 0.017 Q = 20.63 cfs VELOCITY. in Street: V= Q/A where: Q, capacity, cfs = 20.63 A, area, sf = 8.5 V = 2.43 fps STREET FLOW: Ts = W where: L, length of flow = 1051 V, street velocity = 2.43 Ts = 433.12 secs 7.22 min. DESIGN Q1o: Q = C *I *A where: C, runoff coefficient = 0.9 (From Plate D -5.7) I, rainfall intensity = 1.79 in /hr (10yr - From Plate D -4.1) A, drainage area = 2.29 AC (Drainage Map) . Q = 3.69 cfs DESIGN Qioo: Q = C *I *A where: C, runoff coefficient = 0.9 (From Plate D -5.7) I, rainfall intensity = 2.77 in /hr (100yr - From Plate D -4.1) A, drainage area = 2.29 AC (Drainage Map) Q = 5.71 cfs FLOWRATE TO CATCH BASIN #3 INITIAL FLOW: Ti = k *(L ^3/h) ^.2 where: k = 0.39 L, length of initial flow = 310 h, elevation difference over initial flow = 1.55 Ti = 11.16 minutes STREET CAPACITY: Q= 1.486 *A *R "2 /3 *S ^1/2 n where: A, X- sectional area of street = 9 sf Wetted perimeter = 30.5 R = 0.2951 S, slope = 0.0050 ft/ft n, Mannings coefficient = 0.017 Q = 24.66 cfs VELOCITY. in Street: V= Q/A where: Q, capacity, cfs = 24.66 A, area, sf = 9 V = 2.74 fps STREET FLOW: Ts = LN where: L, length of flow = 310 V, street velocity = 2.74 Ts = 113.16 secs 1.89 min. DESIGN Qio: . Q = C *I *A where: C, runoff coefficient = 0.9 (From Plate D -5.7) I, rainfall intensity = 1.73 in /hr (10yr - From Plate D -4.1) A, drainage area = 0.22 AC (Drainage Map) Q = 0.34 cfs DESIGN Qioo: Q = C *I *A where: C, runoff coefficient = 0.9 (From Plate D -5.7) I, rainfall intensity = 4 in /hr (100yr - From Plate D -4.1) A, drainage area = 0.22 AC (Drainage Map) Q = 0.79 cfs Flowrate to Catch Basin #4 INITIAL FLOW: Ti = k *(L ^3/h) ^.2 where: k = 0.39 L, length of initial flow = 310 h, elevation difference over initial flow = 1.55 Ti = 11.16 minutes STREET CAPACITY: Q= 1.486 *A *R ^2 /3 *S ^1/2 n where: A, X- sectional area of street = 9 sf Wetted perimeter = 30.5 R = 0.2951 S, slope = 0.0050 ft/ft n, Mannings coefficient = 0.017 Q = 24.66 cfs VELOCITY, in Street: V= Q/A where: Q, capacity, cfs = 24.66 A, area, sf = 9 V = 2.74 fps STREET FLOW: Ts = L/V where: L, length of flow = 310 V, street velocity = 2.74 Ts = 113.16 secs 1.89 min. DESIGN Qio: . Q = C *I *A where: C, runoff coefficient = 0.9 (From Plate D -5.7) I, rainfall intensity = 1.73 in /hr (10yr - From Plate D -4.1) A, drainage area = 0.22 AC (Drainage Map) Q = 0.34 cfs DESIGN Qloo: Q = C *I *A where: C, runoff coefficient = 0.9 (From Plate D -5.7) I, rainfall intensity = 4 in /hr (100yr - From Plate D -4.1) A, drainage area = 0.22 AC (Drainage Map) Q = 0.79 cfs FLOWRATE CALCS. TO CATCH BASIN #6 INITIAL FLOW: Ti = k *(L ^3/h) ^.2 where: k = 0.39 L, length of initial flow = 250 h, elevation difference over initial flow = 0.77 Ti = 11.29 minutes STREET CAPACITY: Q= 1.486 *A *R ^2 /3 *S ^1/2 n where: A, X- sectional area of street = 7.7 sf Wetted perimeter = 30.5 R = 0.2525 S, slope = 0.0050 ft/ft n, Mannings coefficient = 0.017 Q = 19.01 cfs VELOCITY, in Street: V= Q/A where: Q, capacity, cfs = 19.01 A, area, sf = 7.7 V = 2.47 fps STREET FLOW: Ts = L/V where: L, length of flow = 250 V, street velocity = 2.47 Ts = 101.26 secs 1.69 min. DESIGN Q1o: Q = C *I *A where: C, runoff coefficient = 0.9 (From Plate D -5.7) I, rainfall intensity = 1.73 in /hr (10yr - From Plate D -4.1) A, drainage area = 0.17 AC (Drainage Map) Q = 0.26 cfs DESIGN Qioo: Q = C *I *A where: C, runoff coefficient = 0.9 (From Plate D -5.7) I, rainfall intensity = 4 in /hr (100yr - From Plate D -4.1) A, drainage area = 0.17 AC (Drainage Map) Q = 0.61 cfs FLOWRATE CALCS. TO CATCH BASIN #6 INITIAL FLOW: Ti = k *(L ^3/h) ^.2 where: k = 0.39 L, length of initial flow = 250 h, elevation difference over initial flow = 0.77 Ti = 11.29 minutes STREET CAPACITY: Q= 1.486 *A *R ^2 /3 *S ^1/2 n where: A, X- sectional area of street = 7.7 sf Wetted perimeter = 30.5 R = 0.2525 S, slope = 0.0050 ft/ft n, Mannings coefficient = 0.017 Q = 19.01 cfs VELOCITY, in Street: V= Q/A where: Q, capacity, cfs = 19.01 A, area, sf = 7.7 V = 2.47 fps STREET FLOW: Ts = W where: L, length of flow = 250 V, street velocity = 2.47 Ts = 101.26 secs 1.69 min. DESIGN Qio: Q = C *I *A where: C, runoff coefficient = 0.9 (From Plate D -5.7) I, rainfall intensity = 1.73 in /hr (10yr - From Plate D -4.1) A, drainage area = 0.17 AC (Drainage Map) Q = 0.26 cfs DESIGN Qloo: Q = C *I *A where: C, runoff coefficient = 0.9 (From Plate D -5.7) I, rainfall intensity = 4 in /hr (100yr - From Plate D -4.1) A, drainage area = 0.17 AC (Drainage Map) Q = 0.61 cfs _7 < > !CVC Bacl -2d: 8 P. 5uil c 3 ?lone- -- - - --- --------- ------------ cdiou: -------------- CAD ------------------ thee-----• -------------- ------------ 11 Caiati. Va ria*r_c: CbD ----------------- a N- 0 me --- -------------- ------- Cimza: czc ------------------ R.Z, 1' Car2i.tzz: C. -:c, Cd C, c "Ic, c k a. s N-ane ------ : -------------- ------------ ------------ CC8 -------------- -Nout --------------------- Car-itas Vamant: • C ms, C n E `Tone - - - - -- -------------- ------------ CLuck:lw--; LIZ: - Ca 0 C.1 3 Gone - - - - -- -- --- --- - -- --- ----- CzP_c*=e;ll: 3, -------------- --- -- - - -- --------- wae ------ i ------ - - - .-RU-10 , %-,e=cs: I D '-OQz ------ 10 ----- ----------- Flu—, rs: I I/ Y�i:-, brief c---- rz------------------- Gilmaa- re -------- ----------- ------------- - -- B-1face ------ -------------- ------------ r,r2.,7e[ pits zad dumps: C P. 1muerial: -------------------- D ror-e ------- -------------- ------------ I,/.: I D HO v e ------ -------------- ------------ Inc 1: �l 1 Imaerial car -- _ --_ -I -laut ------ -------------- --- Gu Ll-ed.lamd per. i. p e:- i a 1: S 1 � icc �: D ------ - ---- --- Im oer:-,l cam Guilied ---- -- i------------- ---------- ------- ------------ L7.1 I -------------- ----------- • l _-1 =t_ I tr(Jnr_a i- i I -i >n••0 -------------- > 6.0 -------------- >6.0 --- >6.0 --------- >6.0 -------------- D--'. 0 Apper2at—_ >6.0 -------------- >6.6 -------------- .>6.0 -------------- -------------- >6.0 -------------- 1.0-4.0 I ADcareac—_ >6.0 -------------- ---- .---- - - - -I- >�O ------------- I , >150 ------------ ------------ - > ------------- 1 -7 ---------- ------------ - ---- ------ =e- Dec__._: -» -J ,rea-Dec.— ------------ >i > OC-Oct - - -- > >60 1 1 >60 I Jan-DP - - - - -1 >60 >60 --------------- ------------ >60 J_ ;O ------------ >` .9 -------------- i i ! I i I I . �a2 ----------------- Vbc----------------- 0=I Eta Ct: OMO ---------------- p.t. I CosLOCt P17t _ Rock outcrop part. j ever -asL: . It ock outcrop: I Ro. : QT`: I Rock outcrop Dart. l i-it! is Tarr!psamce ^-t.3 par. llubble hzci: 2U. I� - alto Sa, =0--------------- Sc O, SP E--- -- ------- Tomorhents: T C1 : To rriorheats pars: Roc! outcrop Dar. Tujuaes' TP- Trl, T-S - - - - -- 1 1� I� �I N. C Noce C ti��� -- C -N- - --- -- C I •I J A \oee__ - -__ `aa = ------ I ____ s I ?norm - --- -- --- -- -- -- I This rlappir.- 'lnit Is Tade'1p OL t.VO Or more o0C[11n3nC i:11a5 Or 5011: C2 Tia ?vin$ un_s description or. the COC1pOS1ti0n aI behavior at the %vi• airs =alooiro unit .__iE I -- - - - - - - - - - -I ».o -- - - - - -i - - - 1 >6.0 j --------- - - - - - I -- ---- -- - - - -.j >a.0 1---- ----- - - ---I - - - - -I >a..o 1--- . ----------- I J as -1Ec__ _ _ -------------------------- ------------- -I - - - - -- - - - -- t > �10 >Aa >50 >60 - - ?p ! t-Pp_ble —:0 1-10 1 card. >60 >60- 1-- - - -- -- L721 c?!L ; and '-I,e months of the ear ch,lt the table con_monlg is hi'rh. Gnlli saturated cones abot 1 de7Jtll of Uz or o -eat are indicated. Z. ! n orr iaL10P_ about the seasonal high ' %v ate'-' tail? lleit75 iP_ a�5255i.P_�- the :1E2!i- =or speC1a11'% QEci`_rT!Ed sour- dadions, rl'Le need sOr 57EC'_?1C l'indc. 01 draina ?e S jslEn'1s, and: iile nEa_ "i � or footin %" drains t0 insure dPi ?!ati0?l LS also neeQEQ t0 dcrid° :1CLg_I?E'_ ')r 10z con 5�T iCLi0. ^. 0. 0252 - ?aunt- i5 .ea51bL iP_C .0 ^_ECp1_' '_!ne !10' ?% SEDt -C tank aosorD on. 2!d5 arc och;: li :ll c'_'� -'Ol =1C i_t5i211a :Gi :� :i'_I I _,inC::0r, 150, 1 01: t.iU � - -I1 coil; :;',lr '.lr= I—,).. azd on oilier obserm -Lions durin, the [r- aoDLn; pl't7 soils. The 1Lnd o" bedroc�: and its t1ald= �ess•as ( to ease of _.:ca-:ation is also sh0':;n �iPPaD1 ?oacac. Can be e::C3 uLcd ' :�'.tn 3 51. I- IE- too�i! ripni �? bedro( L-Ent on a -100-horsepower tractor.. bLi. nar gene!'aLy require_= blastlnQ. Formation, Morphology. and Clas ifccatio rc of the Soils ;r.aj0i => I -ic section- coDi ttrS �da-SCL'iut1G'S 91 tit' =011 =0! -!mac =G 25 cl -= I)CCL_ !s bE (JO�Cnir �OrDit1710' ()_ n 2 r, 11 = -n --7: -.�_. ' 1.1w :mil � �1 ^, r,- :;�tl: •J r: C'�'•C�: I• 1' �I �I MADISON STREET CARRYING CAPACITY Per Offsite Madison Street Storm Flows (TM 33085), the contributing tributaries include 18 acres upstream plus the adjacent Madison Street ROW = 1.76 acres Total Area = 18 acres + 1.76 acres = 19.76 acres Design Q -10 year: C, runoff coefficient = 0.735 (From Plate D -5.7) I, rainfall intensity = 1.79 in/hr (1 Oyr — From Plate D -4.1) A, drainage area = 19.76 acres Q(10) = 0.735 * 1.79 in/hr * 19.76 acres = 26.00 CFS Since looking @' /z Madison ROW, Q =13.00 CFS Design Q -100 year: C, runoff coefficient = 0.756 (From Plat D -5.7) I, rainfall intensity = 2.86 in/hr (100yr — From Plate D -4.1) A, drainage area = 19.76 acres Q(100) = 0.756 * 2.86 in/hr * 19.76 acres = 42.72 CFS Since looking @' /z Madison ROW, Q = 21.36 CFS '/Z Madison Street Section: 55' from ROW to centerline, 6" outer curb & gutter, 6" median curb. 34' face to face, Check Spread of Flow per FHWA HEC -22 "Urban Drainage Design Manual" T = [(Q *n)/ ( Ku )(Sx)expl.67(Sl)expo.5]expo.375 Ku = 0.56 n = 0.013 Q = flow rate (cfs) T = width of flow (ft) Sx = cross slope (ft/ft) Sl = longitudinal slope (ft/ft) 10 - Year: T = [(I 3.00cfs * .013) / (.56)(.02)expl.67(.005)exp.5 ]exp.375 T = 19.96' Therefore, 10 -year flow extends from face of curb 19.96' into roadway. Flow height at outer curb is .32' 100 — Year: T = [ (21.36cfs * .013) / (. 56) (.02)expl.67(.005)exp.5]exp.375 T = 24.05' Therefore, 100 -year flow extends from face of cub 24.05' into roadway. Flow height at outer curb is 0.48' TM 30399 OLD ORCHARD PARK NUISANCE WATER EVALUATION Based upon the 2005 CVE Hydology and Retention Basin report... the nuisance water accumulation formula remains the same. For the subdivision tract and street of Beth circle, Madison Street and orchard Park Street the calculated projection of nuisance water flow is 6.1 CF / HR. The tested Deepwell percolation two chamber facility is capable of percolating 12.57 times 2.00 inches which equals 25.73 inches of nuisance water per hour. A minimum system installation of 20 feet depth is more than fail safe in complying to City of La Quinta retention basin standards for the accumulation of nuisance water. L, Old Orchard - 8 Lots Subdivision CVE Job # 01152 Tract 30375 John W. Cavin REC 16802 Paae 8 of 8 5. Landscape Nuisance Water = 3.41 0--pli/2000 sf = 3.41 (26,744)/2000 = 45.6 gph = 45.6 (.1337) = 6.1 c//hr Lots 5 thru 8 = 0.7 cf /hr Total Nuisance Water = 6.8 c//hr 6. Sand Filter Capacity = 18.4 cf /hr >6.8 7. Leach Chamber Capacity = 2.8 sf /LF (0.25/12 ft/hr) = 0.058 cf/hr/LF Required Length = (6.8 c//hr)/ 0.058 = 117 LF Chambers are 7' Long. Number of chambers = 117/7 = 16.7 Chambers Use two rows of 9 chambers each -18 total. 8. Pipe size from CB #1 to Sand filtration: Q = 6.1 c//hr /3600 sec/hr = 0.0017 cfs Capacity of 6" CPP @ S =.0004 = 0.15 cfs, >0.0017, 4" CPP has capacity but is to easily blocked by trash. SAND FILTER/LEACH FIELD DESIGN - SUTTVMI ARY Calculations #1 1. House Nuisance Water- Lots 5 thru 8: 4 (Front 40 %) (.458 cfhiouse) = 0.73 cf/hr 2. Street landscape Nuisance Water (26.744 so 3.41 gplV2000 sf (0.1337 gal/cf) = 6.1 cf /hr Total: 6.8 c//hr 3. Sand Filter Required = 6.8/18.4 = 0.37 4. Leach Chambers Percolation rate 0.25in/hr = 0.0208 ft/hr Chamber Capacity = (2.8 af/LF) 0.0208 = 0.058 cf/hr/LF Required Chamber Length = (6.8 c9hr) /0.058 = 117.LF Use Two Rows of 9 Chambers each Total Length = 18 (7') = 126.LF Sand Filter Sizing Calculations House and Street Landscape Nuisance Water 6.8 cf/hr Calculation #1 Use One Sand Filter - Capacity 18.4 cf /hr Calculation #2 Use 126 LF of Leach Chambers - (2) rows, (9) - 7 LF Chamber Each. Capacity 126 (.058 cf /hr /LF) = 7.3 cf /hr I i � t Old Orchard - 8 Lots Subdivision CVE Job # 01 152 Tract 30378 Jolin W. Cavin REC 16802 Paae 7 of 8 CB-3 (East side Old Orchard Drive Tributary Area -46 & 7 A =1.72 Ac, Tc = 25 min, I = 2.66 Hil-ir, C = .9 Q100 =AC1 =4.12 cfs+ 1.17 =5.29 cfs Use 18' CPP pipe CB #3 to Sand Filter CB #1 (Westside of Madison Street) Tributary Area 8, 9, 11, 10 = 2.68 Ac Ti - 10 min, Tt = 1520 LF @ 2 fps = 12.7 min, Tc - 23 min I = 2.66 in/hr, C=.9, n =.010, 0 = AC 1 = 2.68 (.9 (2.66) = 6.41 cfs d = 21" HDPE CPP Sf= 0.00092, So = 0.0656, V = 2.65 fps Hf = Sf(L) = 0.04 Hv = V2/29 = 0.11 1.2Hv + H f + Hv = 2.2 (.11) + .04 = 0.28 WS 100 = 512.80 - 0.5 (freebd) - 0.28 = 512.02 in Retention Basin Use 24" RCP CB-91 to-Outlet/Junction Riser Connector Pipes: Pipes from CB #1 & CB #3 flow into Basin 99 Peak inflow = 1.73cfs @ hr 14 of 24 Storm [TA = 5.0 Ac (not 7.080)] (Area 5= 13)= 3.94 cfs @2.5of3 hr = 3.54 cfs @ 5.5 of 6 hr Qp = 3.94 (5.0 Ac /7.08 Ac) = 2.78 cfs (Area 5 thni 12) Q = 3.94, n =.009 (PE pipe) S =.0064 x 25' ='O. 16, V = 5 fps, Hv =.39 Q = 2.78 cfs, n =.009, S = .029, V = 3.5 fps, Hv - 0.19', Hf = 0.16 Use 12" Center line HDPE PCC Connector Pipes Sand Filter Leach Field Design 1. Lots 1 thru 4 retain onsite and do not contribute nuisance water offsite. 2. The back 60% of lots 5 thru 8 also retain onsite and do not contribute nuisance water offsite. 3. The front 40% of Lots 5 thru 8 contribute nuisance water to Old Orchard Drive and to the Sand Filter System Nuisance Water = 0.4 (.458 cf /hs) (4 hrs) = 0.73 cf/hr. 4. Street Landscaping Nuisance Water from Madison and Vista Bonita will contribute nuisance water to the Sand Filter. Beth Drive Landscaping drains directly into the Retention Basin and does not contribute to the Sand Filter. Vista Bonita Landscape (existing) = 592'x 19' = 11,248 sf Madison (Future) = 596' x 26' = 15,496 sf i 1 I Reciprocal Easement an � P d Maintenance Agreement This Agreement is made on 7 13i 06 by Core Homes, LLC, a California limited liability company whose address is 470 South Market Street, San Jose, California 95113 ( "Core "), and La Quinta Polo Orchard Partners LLC, a California limited liability company whose address is 810 North Farrell Drive, Palm Springs, California 92262 ( "LQPOP "), each of whom is a party ( "Party ") to this Agreement. Some times herein after Core and LQPOP and their respective heirs, successors and assign may collectively be referenced as the "Parties ". RECITALS A. Core is the owner of certain real property ( "Core Parcel ") Iocated in the city of La ' Quinta, County of Riverside, State of California, designated as La Quinta Tentative Tract Map 33085 and more particularly described on Exhibit "A" attached hereto and incorporated herein by reference. ! B. LQPOP is the owner of cert ain real property ("LQPOP Parcel" located in the c' ( Q ) city of La Quinta, County of Riverside, State of California, designated as La Quinta Tentative Tract Map 30378 and more particularly described on Exhibit `B" attached hereto and incorporated herein by reference. tC. Core Parcel has been subdivided into a planned unit develop of seven home lots and two (2) common area lots including common area Lot ( "E ") as more particularly set forth in La Quinta Tentative Tract Map No. 33085 a copy of which is attached hereto as ' Exhibit "C" attached hereto and incorporated herein by reference. D. LQPOP Parcel has been subdivided into a planned unit develop of eight 8 home lots and 7 common area lots including common area Lot ( "D ") as more particularly set forth J in La Quinta Tentative Tract Map No. 30378 a copy of which is attached hereto as Exhibit "D" attached hereto and incorporated herein by reference. r I E. Common area Lot(s) ( "E ") and ( "D ") referenced in paragraph(s) "C" and "D" herein above, constitute the common area lots for ingress and egress from the home lots on La Quinta Tentative Tract Map(s) 33085 and 30378 to Madison Street, a public street and 1 right of way in the City of La Quinta. Hereinafter - common area Lot(s) ( "E ") and ( "D ") may be collectively referenced as the "Joint Access Lots ". F. The legal description of the Joint Access Lots is: Lot D of La Quinta Tract Map Number 33085 recorded on Lot E of La Quinta Tract Map Number 30378 recorded on tJG. LQPOP has previously caused street and P Y related utility improvements to be placed upon and along the Joint Access Lots and shall install and bear the cost to install I' �I 1' �I I� landscape, entry feature (if necessary) and entry gate pursuant to plans approved by the City of La Quinta. L.Q.P.O.P. shall pay all costs, charges and expenses incurred in the installation of landscape irrigation, lighting and controls for same. H. By entering into this Agreement, the Parties and their heirs, successors and assigns, including any future owners of the home lots and or home owners' association owners of the common area lots, including the Joint Access Lots for Core Parcel and LQPOP Parcel desire to establish a common, general plan for the joint protection, development, maintenance, and improvement of the Joint Access Lots. To this end, the Core Parcel and the LQPOP Parcel, including all home lots and common area lots thereon, shall be subject to certain protective provisions, covenants, conditions, and restrictions described in this Agreement, for the mutual benefit of the Parties and of the Core Parcel and the LQPOP Parcel. Further, each Party shall grant to the others certain reciprocal easements in, to, over, under, and across the Joint Access Lots. In consideration of the mutual covenants and agreements contained in this Agreement, the Parties agree as follows: ARTICLE 1. TRANSFER LIMITATIONS, RIGHTS, AND OBLIGATIONS 1.01. No Party may transfer or assign any right, power, or obligation created under this Agreement without also transferring its own Parcel or its interest in that Parcel. Further, the transfer or assignment must comply with this Agreement. Any instrument of transfer or assignment shall state that the transfer or assignment is subject to this Agreement and shall refer to and incorporate by reference this Agreement. Any such reference shall recite the recording information for this Agreement, or for any memorandum of this Agreement, including the date and location of recordation and the instrument number. 1.02. Notwithstanding any other provisions of this Article 1, each Parry is and shall remain personally liable to construct all improvements required of it under Article 3. A transfer of any right, title, or interest in a Party's Parcel (whether or not the transfer results in the Party remaining a Party pursuant to the provisions of this Article 1) shall not relieve the Party of its personal liability under this Paragraph. 1.03. This Paragraph applies if a Parry (1) conveys any leasehold interest in its Parcel, or (2) assigns, transfers, or conveys its whole interest in its Parcel without retaining any beneficial interest (other than under the terms of a deed of trust or mortgage), or without simultaneously acquiring a new interest by way of leasehold, life estate, or other possessory interest. In either case, the powers, rights, and interest conferred on that Parry by this Agreement shall be assigned, transferred, or conveyed to the transferee, assignee, grantee, or lessee, and the obligations under this Agreement shall be assumed by the transferee, assignee, grantee, or lessee. 1.04. This Paragraph applies if a Parry (1) assigns, transfers, or conveys its whole interest in its Parcel but simultaneously acquires a new interest in the Parcel under a lease or similar possessory arrangement, or (2) conveys its interest in its Parcel or any part of it by deed of trust or other security instrument as security for indebtedness. In either case, none of the powers or obligations conferred on that Party pursuant to this Agreement shall be assigned, transferred, or conveyed with the interest assigned, transferred, or conveyed by the Party. All of the powers, rights, interests, and obligations provided for under this Agreement shall remain in the transferring Party for so long as that Party, (1) under the first set of circumstances described above, retains the new leasehold or other possessory interest in and to the Parcel; or, (2) under the second set of circumstances described above, remains the beneficial owner of its Parcel. 1.05. (a) This Paragraph applies if at any time during the term of this Agreement a Party conveys or transfers its whole or any portion of its interest in its Parcel so as to vest ownership of the Parcel or any interest in the Parcel in more than one Person. In that case, those Persons, hereafter referred to as "Joint Owners of the Parcel," shall be considered a single Party under this Agreement and shall jointly appoint one of their number to act as Agent on behalf of all of them in carrying out the provisions of this Agreement. The appointment of an Agent pursuant to this Paragraph must be in a writing that is duly executed and acknowledged by each Joint Owner of the Parcel and is recorded in the Office of the Recorder of Riverside County, California. Further, a copy of this writing must be given to every other Party to this Agreement. If an appointed Agent dies, is removed, becomes incapacitated, or is dissolved, the remaining Joint Owners of the Parcel shall promptly appoint a new Agent. If they fail to do so, an Agent shall be appointed pursuant to Subparagraph (d) of this Paragraph. (b) The performance or exercise of rights under this Agreement by the Agent appointed to represent Joint Owners of the Parcel is binding on each Joint Owner of the Parcel and on each Person having an interest in a Joint Owner of the Parcel. So long as the appointment of an Agent remains in effect, each Joint Owner of the Parcel shall act only through its appointed Agent, and the other Parties to this Agreement shall have the right to deal exclusively with and to rely solely on the acts or omissions of the Agent in the performance of this Agreement. However, the appointment of an Agent pursuant to Subparagraph (a) of this Paragraph shall not relieve any Joint Owner of the Parcel from any of the obligations created under this Agreement. (c) In the event an Agent is required to be appointed under the provisions of Subparagraph (a) of this Paragraph but none is appointed, the acts of any Party whose original exclusive interest in a Parcel is subsequently divided shall be binding on all Persons having an interest in the Parcel, whether or not the original Party retains any interest in the Parcel, until such time as written notice of the appointment of an Agent is given in the manner described in Subparagraph (a) of this Paragraph and is recorded in the Office of the Recorder of Riverside County, California. (d) If the Joint Owners of the Parcel do not appoint an Agent within thirty (3 )0) days after they become obligated to make such an appointment, the other Parties to this Agreement, or any one of them if they are unable to act jointly, may appoint an Agent in the manner i required under Subparagraph (a) of this Paragraph. That Agent shall be a Parry to this 1 Agreement for so long as the appointment is in effect. The appointment shall be binding and remain in full force and effect until the Joint Owners of the affected Parcel appoint a new Agent pursuant to Subparagraph (a) of this Paragraph. (e) The Joint Owners of the Parcel may at any time revoke the previous appointment of an Agent and appoint a new one in the manner prescribed in Subparagraph (a) of this Paragraph. (f) An Agent appointed by the Joint Owners of the Parcel shall be the agent of each of its principals. Service of any process, writ, summons, order, or other mandate of any nature relating to any action, suit, or proceeding arising out of this Agreement, or any demand for arbitration relating to this Agreement, may be made on the Agent. Service on the Agent constitutes due and proper service of any matter on each of its principals, provided a copy of the matter is also mailed to each principal at its last address known to the sender. 1.06. (a) If a Party conveys, assigns, sells, or otherwise transfers its entire right, title, and interest in its Parcel, that Party shall be released from any obligations arising under this Agreement subsequent to the date of the transfer, provided the transferring Party has timely performed all of its obligation under this Agreement and delivers written notice of the transfer and a written assumption statement, in recordable form and executed by the transferee, to all other Parties to this Agreement. If the transferring Party is obligated to operate and maintain the Joint Access Lots, that Party shall not be released from its obligations under this Agreement until it also delivers a final summary statement of all costs and expenses for the Joint Access Lots as of the effective transfer date. The written notice of transfer, the assumption statement, and, if applicable, the final summary statement for the Joint Access Lots, shall be delivered prior to or at the time the instrument effecting the transfer is filed for recording with the County of Riverside, . California. The written assumption statement referred to in this Subparagraph shall be executed by the transferee in recordable form, shall contain an express statement that the transferee expressly assumes and agrees to be bound by the covenants and restrictions contained in this Agreement, and shall be delivered to the transferring Party prior to or at the time the instrument effecting the transfer of title or interest is filed for recording. A transferee's failure to comply with these requirements relating to assumption statements constitutes a default under this Agreement by the transferee, but does not modify or negate that transferee's liability under this Agreement or affect the running of any covenants with the land provided for under this Agreement. (b) Any transferee shall not be liable for any default of its transferring Party occurring prior to the time the transferee acquires its right, title, or interest in a Parcel, with the following exception: the acquired right, title, or interest shall be subject to any prior recorded claim of lien. 'I ARTICLE 2. EASEMENTS 2.01. Each Party, as grantor, grants to the other Parties, as grantees, the following nonexclusive easements over, across, in, under, and through the Joint Access Lots of the grantor's Parcel: (a) For ingress and egress over, across, in, and through the Joint Access Lots by vehicular and pedestrian traffic. (b) For the installation, maintenance, removal, and replacement of water mains, telephone lines, gas mains, sewers, electrical systems or conduits, water drainage systems or structures, and other public utilities and services (collectively referred to as "Utility System(s) "). Except when not feasible, all Utility Systems shall be located underground. The location of any Utility System that must be located above ground must be placed so as to not interfere with the use of the Joint Access Lots. (c) For the installation, maintenance, removal and replacement of landscaping, entry guard house and guard gate and related facilities. 2.02. For purposes of the easements granted in Paragraph 2.01 of this Agreement, the Parcels benefited by each easement constitute the dominant estate, and the Parcel burdened by each easement constitutes the servient estate. The grant of an easement to a Parry for that Party's benefit shall also be a grant to and for the benefit of that Party's successors, heirs, assigns, Occupants, and Users. Each easement granted in Paragraph 2.01 of this Agreement is appurtenant to and for the benefit of each Parcel owned by each grantee of the easement. No easement may be transferred, assigned, or encumbered except as an appurtenance to the benefited Parcels. 2.03. Each easement granted under this Article shall continue in effect both as to any Parcel benefited and as to any Parcel burdened by the easement until the use of the easement for the benefit of a particular Parcel is abandoned for a period of at least two years. 2.04. Each Party agrees that during the construction of improvements on the Joint Access Lots as required under this Agreement, certain minor and temporary encroachments on the Core Parcel and the LQPOP Parcel may occur due to the use of equipment in connection with construction, and that these temporary encroachments shall be permitted on the Core Parcel and the LQPOP Parcel for only a limited time and only to the extent necessary for the construction involved. For the same purpose and the same limited time and extent, the Parties further agree that the Joint Access Lots may be used for ingress and egress by construction- related vehicles and personnel and for the temporary storage of construction materials and equipment. 1' ARTICLE 3. BUILDING AND RELATED IMPROVEMENTS 3.01. The Parties agree that a primary purpose of this Agreement is to provide legal and convenient ingress and egress access over and across the Joint Access Lots by the Parties, their heirs successors and assigns, to their respective properties, and to insure the proper ' construction and maintenance of all improvements made and to be made to the Joint Access Lots including but not limited to those landscape, street, sewer, water, dry utilities entry guard house and entry guard gate as approved by the Parties and the City 'I of La Quinta (the "Joint Access Lots Improvement "). To this end, any construction performed by a Party on the Joint Access Lots shall comply with all terms, covenants, l and conditions of this Agreement, and shall be approved by sixty percent (60 %) of the ' residential lots in the Core Parcel, sixty percent (60 %) of Lie residential lots in the LQPOP Parcel and the City of La Quinta. �l' 3.02. All Joint Access Lots Improvement not already constructed on the date of recording of this Agreement shall be approved, in writing, by sixty percent. (60 %) of the residential i lots in the Core Parcel, sixty percent (60 %) of the residential lots in the LQPOP Parcel, ' I and shall be approved by the City of La Quinta. 3.03. All Joint Access Lots Improvement shall be installed and constructed at the sole ' expense of LQPOP and its heirs, successors and assigns without contribution and/or reimbursement from Core and its heirs, successors and assign. The installation and 1 construction of the Joint Access Lots Improvement shall be completed within the time periods as required by the conditions of approval for La Quinta Tentative Tract Map 30378 and La Quinta Tentative Tract Map 33085 (the "Conditions of Approval ") and/or any other requirements of the City of La Quinta. ' 3.04 LQPOP and its heirs, successors and assigns shall at all times keep the � p Joint Access Lots free and clear of liens and claims of liens for labor, services, materials, supplies, or equipment performed on or Runished to the Joint Access Lots in connection with the construction of the Joint Access Lots Improvement performed by LQPOP and its heirs, successors and assigns. LQPOP and its heirs, successors and assigns agree to defend, ' indemnify, and hold the other Parties harmless from any liability, damage, loss, and other costs and expenses relating to claims of lien arising out of any labor, services, materials, supplies, or equipment furnished to the Joint Access Lots in connection with the ' construction performed by LQPOP and its heirs, successors and assigns on the Joint Access Lots. ' 3.05 When construction of improvements for the Joint Access Lots Improvement is substantially complete, LQPOP shall notify each of the Parties in writing. Within twenty (20) days after the date of LQPOP's written notice, the Parties shall inspect the ' improvements and shall prepare a "punchlist" of all items the Parties consider either 1 defective or not completed. Within thirty (30) days after the Parties deliver the punchlist ' to LQPOP, LQPOP shall cause the corrective work to be performed. On perfonrance of the corrective work, the Parties shall accept as complete the construction of improvements for the Joint Access Lots Improvement. This acceptance shall be in 1 1 1 lwriting. If the Parties, or any of them, fail to deliver a punchlist to LQPOP within the time period required by this paragraph, that Party shall be deemed to have inspected the Joint Access Lot Improvement and accepted the improvements as complete. 1 3.06. LQPOP and its heirs, successors and assigns agree that it shall perform construction activities in a manner that will not interrupt or interfere with any other Party's 1 construction activities or use of the Joint Access Lots pursuant to the provisions of this Agreement. 3.07. From the time LQPOP and its heirs, successors and assigns commence construction of the Joint Access Lots Improvement and continuing until completion of the construction, each LQPOP and its heirs, successors and assigns shall procure and maintain, at its sole cost and expense, public liability insurance and fire and extended coverage insurance applicable to the construction work to be performed by it under this Agreement. This coverage shall meet all requirements for insurance set forth in Section 4.3 of this Agreement. Each Parry shall also procure and maintain workers' compensation insurance in the minimum amounts established by law. 1 l 3.08. LQPOP and its heirs, successors and assigns agree to defend, indemnify, and hold each other Parry harmless from any liability, damage, injury, or other costs and expenses 1 l arising from or alleged to have arisen from any act or ommission of the LQPOP and its: heirs, successors and assigns in connection with the construction work to be performed by it on the Joint Access Lots. 1� 3.09 Each Party shall have the right to construct or cause to be constructed, at their own cost, a project identity sign (the "Identity Sign ") on that portion of the Joint Access Lots 1 to which the Party owns fee title. Notwithstanding the foregoing, the Identity Sign may not be constructed in a location or with a design that interferes with Joust Access Improvements of the use of the Joint Access Lots for ingress and/or egress, and the I 1 location and design of the Identity Sign must be approved by the other Party hereto (which approval will not be unreasonably withheld), and by the City of La Quinta. 1 I3.10 The rights and obligations set forth in this Article 3 may be assumed by a Homeowners Association on behalf of either or both the Core Parcels and the LQPOP Parcels. Notwithstanding such assumption, Core and its heirs, successors and assigns and 1 I Bland and its heirs, successors and assigns shall remain subject to the provisions of this Article 3 to the extent the respective Homeowners Association fails to fulfill the required 1 I obligations. 1 ARTICLE 4. OPERATION AND MAINTENANCE OF JOINT ACCESS LOTS 4.01. LQPOP and its heirs, successors and assigns shall manage, maintain, and operate 1 J Joint Access Lots for the benefit of the Parties and their heirs, successors and assigns, and will keep the Joint Access Lots in good condition and repair and clean and free of rubbish and other hazards to the Parties. LQPOP and its heirs, successors and assigns' obligation i to maintain and operate the Joint Access Lots includes the following: (a) Maintenance of the surfaces of all paved portions of the Joint Access Lots, including sidewalks and curbs, so that the surfaces are level, smooth, and evenly covered with the type of surfacing material originally installed or a substitute material that is equal in quality, appearance, and durability. (b) Removal of all papers, debris, filth, and refuse from the Joint Access Lots, and washing or thorough sweeping of paved areas, as required to maintain the Joint Access Lots in a first -class and clean condition. (c) Maintenance and cleaning of all landscaped areas in the Joint Access Lots, including: the regular pruning, weeding, fertilizing, and watering of trees and shrubbery; repair and I replacement of the irrigation system; and maintenance and replacement of seasonal ' bedding plants in designated "color spot" areas of the landscaped areas to maintain blooms in these areas throughout the year. ' I (d) Payment of all electrical, water, nand other utility charges or fees for services furnished to the Joint Access Lots and related appurtenances. ' I (h) Maintenance, cleaning, and repairing of all common utility lines, storm drains, sewers, and other Utility Systems located in the Joint Access Lots. (i) Maintenance, cleaning, and -repairing of the entry landscape feature and/or security gate. 4.02. LQPOP and its heirs, successors and assigns may contract with a third party to perform some or all of its obligations listed in Paragraph 4.01 of this Agreement, provided the contract is in writing and approved by the other Party, which approval shall not be unreasonably withheld. 4.03. LQPOP and its heirs, successors and assigns shall maintain public liability ' insurance for the Joint Access Lots insuring against the risks of bodily injury, property damage, and personal injury liability occurring or arising during the policy period. The I insurance required under this Paragraph shall have a minimum combined single limit of ' I liability of at least $2,000,000.00 and a general aggregate limit of at least $5,000,000.00. The premiums for the public liability policy or policies are a Joint Access Lots 1 Operational Cost (as defined in Paragraph 4.05(b) of this Agreement). Each Parry shall be ' listed as an additional insured on the policy or policies. Each public liability policy or policies shall contain a provision prohibiting cancellation of the policy or policies except on thirty (30) days' prior written notice to each Person listed as an additional insured. ' LQPOP shall furnish each Party with a copy of any policy or policies of public liability insurance described in this Paragraph or a certificate of insurance from the insurer. As required by law, LQPOP shall maintain workers' compensation insurance covering all employees hired or used by LQPOP to fulfill its obligations for maintenance and operation of the Joint Access Lots. r r 4.04 During the period the period December 1 through December 10 of each year LQPOP and its heirs, successors and assigns shall prepare and present to the other Party(s) a proposed budget (the "Proposed Budget ") for the Joint Access Lots Operational Cost for the following Year. The other Party shall have ten (10) days in which to either object or agree to the Proposed Budget for Joint Access Lots Operational Cost (the approval vote of sixty (60 %) of the residential lots of the Core Parcel shall constitute approval). Failure to timely object to the Proposed Budget shall be deemed approval thereof. If the other Party objects to the Proposed Budget, the Parties shall meet and confer regarding the Proposed Budget. Should the Parties fail to agree on the Proposed, the matter shall be resolved by arbitration as provided in Section 5.06. A Proposed Budget that has been approved, either by agreement of the Parties, or by arbitration, shall be deemed the "Approved Budget ". 4.05. (a) LQPOP and its heirs, successors and assigns shall pay, prior to delinquency, all costs, charges, and expenses incurred in managing, operating, and maintaining the Joint Access Lots as required under this Agreement and the Approved Budget. The Parties shall reimburse LQPOP, as herein after provided, an amount equal to that Party's pro rata share of the total costs, charges, and expenses incurred by LQPOP to operate and maintain the Joint Access Lots.. Core Parcel pro rata share of Joint Access Lots Operational Costs shall be calculated on the basis of the Core Parcel being responsible for an amount equal to the total of the Joint Access Lots Operational Cost multiplied by a fraction, the numerator of which shall equal the number of home lots in the Core Parcel and the denominator of which equals the sum of the number of home lots in both the Core Parcel and the LQPOP Parcel. LQPOP Parcel shall be responsible for the balance of the Joint Access Lots Operational Cost. (b) For these purposes, "Joint Access Lots Operational Costs' means the total of all items of direct cost and expense necessarily and reasonably expended by LQPOP for the supervision, operation, maintenance, and repair of the Joint Access Lots required under this Agreement, excluding any real property taxes or assessments which shall be paid by the individual owner of the Joint Access Lots. The term includes costs and expenses for the following: maintenance, replacement, and reconstruction work as required to preserve the condition and status of the Joint Access Lots and its equipment; all rental charges for equipment; the cost of small tools and supplies; all costs for police security protection, traffic direction and control, and parking regulations; costs of cleaning and removal of rubbish, dirt, and debris from the Joint Access Lots; the cost of landscaping, and supplies required for landscaping; all charges for utility services used in connection with the Joint Access Lots; and all premiums for public liability insurance covering the Joint Access Lots. Any repair or replacement of the Joint Access Lots estimated to cost in excess of $10,000.00 shall be considered an extraordinary expense and shall not be made by LQPOP unless and until approved in writing by the other Parties to this Agreement (the approval vote of sixty (60 %) of the residential lots of the Core Parcel shall constitute approval). Extraordinary expenses approved by the Parties shall be considered a Joint Access Lots Operational Cost. Any cost incurred by LQPOP for the operation of its own off ce, .accounting service, or any other service or cost not directly related to operation and maintenance of the Joint Access Lots shall not be considered a Joint Access Lots Operational Cost. 4.06. (a) At the end of each quarter of each Accounting Period, LQPOP shall submit a statement to each Party showing the amount due to LQPOP for that Party's pro rata share of Joint Access Lots Operational Costs. The quarterly statement shall summarize by ' category the amounts expended by LQPOP for the operation and maintenance of the Joint Access Lots during that quarter. Not later than 30 days after the date of the statement, I each Party shall pay to LQPOP the amount set forth on the Party's statement. For these purposes, "Accounting Period" means each calendar year occurring during the term of this Agreement, except that: the first Accounting Period shall begin on the date agreed ' upon by the Parties in writing, and shall end on December 31 of the same year; and if this Agreement terminates on any date other than December 31, the last Accounting Period shall end on the date this Agreement terminates. (b) Not later than 60 days after the end of each Accounting Period, LQPOP shall prepare and submit to each of the Parties an itemized statement of actual Joint Access Lots ' Operational Costs for that entire Accounting Period ( "the Annual Statement "). This statement shall also include actual totals for each quarter in that Accounting Period. LQPOP shall attach to the Annual Statement necessary documentation that will enable ' the Parties to verify the accuracy of the Statement. The Annual Statement shall set forth the amounts actually paid by each Party as its pro rata share of Joint Access Lots Operational Costs for that Accounting Period, and the amounts actually due from each ' Party as its pro rata share of Joint Access Lots Operational Costs for that Accounting Period. If there is any difference between the two amounts for any Party, the following rules will apply: the amount of an underpayment by the Party shall be paid by that Party ' to LQPOP within 30 days after the date of the Annual Statement; an overpayment by the Party will be credited to the amount otherwise payable by that Party for the next quarterly statement, unless the overpayment is noted in the last Annual Statement prepared ' pursuant to this Agreement; and, in the case of an overpayment noted in the last Annual -1 Statement prepared pursuant to this Agreement, the LQPOP shall promptly refund the overpayment to the Party. (c) LQPOP shall maintain complete and accurate books of account and supporting documentation for each and every amount expended for maintaining and operating the Joint Access Lots as required under this Agreement. For each Accounting Period, all books and records shall be kept by LQPOP for at least two years following the end of that Accounting Period. (d) Each Party, at that Party's sole cost and expense, shall have the right to inspect or audit the books and records of LQPOP regarding the Joint Access Lots Operational Costs. Any inspection or audit shall be performed only during reasonable business hours. Further, at least 48 hours before the time the Party wishes to perform the inspection or audit, the Party must provide LQPOP with notice of the election to perform the inspection or audit. i 1 -11 b 1 r I� �I I� 4.07. In carrying out its responsibilities under this Agreement for the maintenance, management, and operation of the Joint Access Lots, LQPOP shall keep the Parcels free and clear from any liens arising out of any work performed, materials furnished, or other obligations incurred by LQPOP. If any lien is imposed, LQPOP shall pay the lien within 30 days after its imposition unless LQPOP elects to contest the lien. LQPOP shall have the right to contest a lien imposed on any Parcel only if LQPOP first records a bond of a responsible corporate surety in an amount sufficient to release the lien from the affected Parcel or Parcels within 30 days after the date the lien is imposed. 4.08 The rights and obligations set forth in this Article 4 may be assumed by a Homeowners Association on behalf of either or both the Core Parcels and the LQPOP Parcels. Notwithstanding such assumption, Core and its heirs, successors and assigns and Bland and its heirs, successors and assigns shall remain subject to the provisions of this Article 4 to the extent the respective Homeowners Association fails to fulfill the required obligations. ARTICLE 5. MISCELLANEOUS 5.01. The covenants, restrictions, conditions, and provisions contained in this Agreement (whether affirmative or negative in nature) (1) are made for the direct, mutual, and reciprocal benefit of each Parcel; (2) shall constitute and be enforceable as mutual equitable servitudes on each Parcel in favor of every other Parcel; (3) shall constitute covenants running with the land; (4) shall bind every person having any fee, leasehold, or other interest in a Parcel, to the extent that the covenants, restrictions, conditions, or provisions apply to the Parcel; and (e) shall inure to the benefit of the Parties and their respective successors and assigns. 5.02. Nothing contained in this Agreement shall be deemed to be a gift or dedication of any portion of the Joint Access Lots to the general public, for the general public or for any public purpose whatsoever, it being the intention of the Parties that this Agreement shall be strictly limited to:and for the purposes expressed in the Agreement. 5.03. This Agreement shall not be construed or deemed to create a relationship of partnership or joint venture among the Parties or between any of them. 5.04. Whenever the approval or consent of any Parry (hereafter referred to as an "approval ") is required under this Agreement, the approval shall not be unreasonably withheld except as otherwise provided in this Agreement. Unless this Agreement requires a particular approval to be made within a specific time period, the approval must be given within 30 days after the date of a written request for the approval. Except as otherwise provided in this Agreement, if a Party fails to indicate, within the foregoing 30 day period, whether or not it approves of a particular matter, the party will be deemed to have Cr its approval. If a Party disapproves a particular matter, the reasons for the disapproval must be stated in writing. 5.05. If any provision of this Agreement is held to be invalid by any court of competent iI i jurisdiction, the remaining provisions shall remain in full force and effect. 5.06. Upon the written demand of either Party, any dispute between the Parties (the "Dispute ") shall be resolved through the procedures established in this Section 5.06. 5.06.1. Arbitration. The Dispute shall be resolved by neutral, binding arbitration. The arbitration procedures specified in this Section 5.06 (the "Procedures ") are to be interpreted and enforced as authorized by Title 9 of the California Code of Civil Procedure (Section 1280 et seq.). 5.06.2. AAA. The arbitration proceedings (the "Proceedings ") shall be conducted by and in accordance with the rules of the American Arbitration Association ( "AAA ") or any successor thereto. 5.06.3. Statutes of Limitation. Except for procedural issues, the Proceedings, the ultimate decisions of the arbitrator, and the arbitrator shall be subject to and bound by existing California case and statutory law including, but not limited, to applicable statutes of limitation. 5.06.4. Selection and Timing. The Proceedings shall be conducted by one (1) qualified arbitrator selected in accordance with the rules of AAA. Each Party agrees to act reasonably to expedite such selection process. The term "qualified" shall mean a retired judge who has experience with the laws governing California real estate transactions or an attorney who has actively practiced law in California for at least fifteen (15) years and who has experience with the laws governing California real estate transactions. 5.06.5. Motions and Remedies. The arbitrator shall have the power to hear and dispose of motions, including motions relating to provisional remedies, demurrers, motions to dismiss, motions for judgment on the pleadings and summary judgment and/or adjudication motions, in the same manner as a trial court judge. In addition, the arbitrator shall have the power to summarily adjudicate issues of fact or law, including the availability of remedies, even if the issue adjudicated could dispose of an entire cause of action or defense. The arbitrator shall have the power to grant provisional remedies including preliminary injunctive relief. Prior to the selection of the arbitrator, any Party shall have the right to petition the Superior Court of Riverside County, California (the "Superior Court") for any necessary provisional remedies. However, after obtaining any provisional remedies (pending selection of the arbitrator) the entire matter shall be referred to AAA for all purposes and the Superior Court shall have no further jurisdiction to monitor or enforce the provisional remedies or to make further determinations or awards or to issue additional provisional remedies. AAA shall have the sole power to enforce, extend, modify or vacate any such provisional remedies. 5.06.6. Discovery. The Parties shall be entitled to limited discovery consisting of- G) witness lists; (ii) expert witness designations; (iii) expert witness reports; (iv) exhibits; (v) reports of testing or inspections, including but not limited to, invasive testing; (vi) arbitration briefs; and (vii) the deposition, under oath, of any designated experts and two other depositions of their choosing without obtaining the consent of the arbitrator. All other discovery shall be permitted by the arbitrator at his discretion upon a showing of good cause or based on the agreement of the Parties. The arbitrator shall oversee discovery and may enforce all discovery orders in the same manner as any trial court judge. 5.06.7. Full Disclosure. Each Party shall make, in good faith, a full disclosure of all issues and evidence to each other Party prior to the hearing. Any evidence or information that the arbitrator determines was unreasonably withheld shall be inadmissible by the Party who withheld it. The initiating Party shall be the first to disclose all of the following, in writing, to each other Party and to the arbitrator: (i) an outline of the issues and its position on each such issue; (ii) a list of all witnesses the Party intends to call; and (iii) copies of all written reports and other documentary evidence, whether written or not or contributed to by its retained experts (collectively "Outline "). The initiating Party shall submit its Outline to each other Party and the arbitrator within thirty (30) days of the final selection of the arbitrator. Each responding Parry shall submit its written response as directed by the arbitrator. 5.06.8. Hearing. The hearing shall be held in Riverside County, California. The. arbitrator shall promptly commence the hearing giving due consideration to the complexity of the issues, the number of Parties and necessary discovery and other relevan t matters. The arbitration shall be conducted as informally as possible. California Evidence Code Section 1152 et seq. shall apply for the purpose of excluding offers, compromises, and settlement proposals from evidence, unless there is agreement by all Parties as to admissibility. The arbitrator shall be the sole judge of the admissibility of and'the probative value of all evidence offered and is authorized to provide all legally recognized remedies whether in law or equity, except as otherwise limited in this Section 5.06. Attorneys are not required and either Party may elect to be represented by someone . other than a licensed attorney. 5.06.9. Decision. The decision of the arbitrator shall be final and binding on the Parties and may be entered as a judgment in any court of the State of California that has jurisdiction and venue (except to the extent there exist grounds for vacation of an award under applicable arbitration statutes). The arbitrator shall(i) cause a complete record of all proceedings to be prepared similar to those kept in the Superior Court, (ii) try all issues of both fact and law, and (iii) issue a written statement of decision consistent with that described in California Code of Civil Procedure Section 643 which shall specify the facts and law relied upon in reaching the arbitrator's decision within twenty (20) days after the close of testimony. A stenographic record of the hearing shall be made which shall remain confidential except as may be necessary for post - hearing motions and appeals. The cost of the record shall be borne equally by the Parties, regardless of the outcome. Should any Party refuse or fail to pay its pro -rata share, the remaining Parties may pay such share, and the Party or Parties which pay such extra share shall be awarded such extra costs by the arbitrator in the arbitrator's decision. i; 5.06. 10. Fees and Costs. The initiating Party shall advance any fee required by AAA to initiate the Proceedings. If there is no prevailing party (as set forth in Section 23), the total cost of the Proceedings, including the advanced initiation fees and other fees of AAA and any related costs and fees incurred by AAA (such as experts and consultants retained by it) shall be borne equally by the Parties. Nothing herein shall be construed to modify or abrogate any duty to defend and/or indemnify a Party pursuant to the terms of a contract between any such Parties. 5.06.11. Judicial Reference. If a court of competent jurisdiction determines that the dispute resolution set forth in this Section 5.06 is void or unenforceable, the entire matter shall proceed as one of judicial reference pursuant to California Code of Civil Procedure Section 638 et seq. The referee shall have the same powers and be subject to the same limitations as set forth in this Section 5.06, unless precluded by law. The rules of procedure, the awarding of fees and costs, the selection of the referee and all .other matters set forth in this Section 5.06, shall be the rules of procedure for the judicial reference proceeding, unless precluded by law. AAA shall hear, try and decide all issues of both fact and law and make any required findings of facts and, if applicable, conclusions of law and report these along with the judgment to the supervising court within twenty (20) days after the close of testimony. A stenographic record of the hearing shall be made which shall remain confidential except as may be necessary for post - hearing motions and appeals. The cost of the record shall be borne equally by the Parties, regardless of the outcome. Should any Party refuse or fail to pay its share, the remaining Parties may pay such share, and the Party or Parties which pay such extra share shall be awarded such extra cost by the. referee in the referee's decision. The decision of the referee shall be binding on the Parties and shall be entered as a judgment in the court of the State of California where the complaint was filed. The decision of the referee shall be subject to appeal in the same manner as if the Dispute had been tried by the court. 5.06.12. Waiver of Jury Trial By agreeing to the easement provided for herein, the Parties give up and waive any right to have any dispute tried before a jury. 5.06.13. Obligation to Cooperate. The Parties shall cooperate in good faith and diligently perform such acts as may be necessary to carry out the purposes of this Section 5.06. SIGNATURES ON FOLLOWING PAGE r Executed at , California, on [date]. La Quinta Polo Orchard Partners, LLC Core Homes, LLC By. By' -box i ' Appendix E fmperital Irrigation District ' 1699 W. Main St. Suite A El Centro, CA 92243 91 -600 Avenue 58 La Quinta CA 92253 ' Owner's Easement Statement The Owner's Easement Statement below shall be recorded on the title sheets of tract andlor applicable parcel maps within city limits: ' Owner, hereby, offers for dedication to the Imperial lrrigation District, an easement over a] I private streets shown on this map and an additional ten (10) feet in width on both sides of and adjacent ' to all private streets and /or public street shown on this map for the excavation, laying, construction, installation, maintenance, operation, inspection, repair, replacement and removal of electrical lines, wires, cables, ducts, supports, fixtures, facilities and appurtenances, with the right of ingress and egress over and within same for maintenance, operation and emergency vehicles. Certificate of Acceptance Govemment Code Section 27281 1 Acceptance No. This is to certify that the interest in real property conveyed by Gran k � dated from ' tv(c.,7, t7t 2007 l 46ye" wAe-� L.1...C. J Narfie ' to imperial Irrigation District, an irrigation district, is hereby accepted by order of the Board of Directors of said District as per Resolution No. 15 -90 dated March 20, 1990, and the grantee consents to lrecordation thereof. ' Dated this day of 200 By Supervisor, Real Estate Section Imperial Irrigation District If the reap has been approved or recorded in advance of this requirement, then the Developer shall advise the District and other arrangements shall be made with the Developer for the District to obtain easements. Any easement requirements, over and above that stated herein, will be requested by separate notice during the project scoping study or as soon as the need is apparent. For further detail on reaps, AutoCAD media, and other correspondence, contact one of the offices listed on the front cover. r r� LI L 1 Order No. Escrow No. Loan No. i WHEN RECORDED MAIL TO: IMPERIAL IRRIGATION DISTRICT 81 -600 Avenue 58 La Quinta, CA 92253 -1080 DOCUMENTARY TRANSFER TAX $ Computed on the consideration or value of property conveyed; OR Computed on the consideration or value less liens or encumbrances remaining at the time of sale. (Space above this line is for Recorders Use) Signature of Declarant or Agent determining tax — Firm Name GRANT OF EASEMENT Public Utility Purposes FOR VALUABLE CONSIDERATION, the receipt of which is hereby acknowledged, CORE HOMES, LLC hereby GRANT (s) to IMPERIAL IRRIGATION DISTRICT, an irrigation district the real property in the City of La Quinta, County of RIVERSIDE, State of California, described as follows: AS SHOWN ON THE ATTACHED EXHIBITS "A" AND "B" WHICH ARE MADE A PART HEREOF BY THIS REFERENCE HEREON. Dated: f�QL� 214 2pq� State of California } Countyof On MQCf 11, aOD7 before me, �. tD t 11 - Notary Public personally appeared --DlV1 ,pa(-e personally known to me ( of sa:+&fa6tGPt-aukl"ce) to be person(bl whose name(9)is /ace subscribed to the within instrument and acknowledged to me that he /shaA4ey executed the same in his /herAheir authorized capacity(ieej, and that by his /her/th& signatures on the instrument the person(91 or the entity upon behalf of which the person(s) acted executed the instrument. WITNESS my hand and official seal, Signature MAIL TAX STATEMENTS TO: By: + David Neale, President 470 South Market Street (Mailing Address) San Jose, CA 95113 (City) (State) (Zip Code) GAIL GtOIU Commlaslon #t 1606719 Notary Publk - CollforNa Santa Clara County OwComm. Expires Sep 16, 2009 (This space for official notarial seal) . . . . . . . . . . . . . . . . . . . . . . r Z rm +a urnr IMPERIAL IRRIGATION DISTRICT DIPERMI. C-11J1'ORHIA 4! L MCCONCAP" . . . . ... .... f14 .20* I ... ..... 4N, ONTIOP �'lzfh` t El: W 1..ILL 6, 1-11 Li _IU-1 t, LE: 1 5-'.C: -L" CATli_--rj: "v.-'s !.",I M AVE. GR . . .. . .... . ....... . .... .. ............. ......... ... —7. THR ouciMIG, I%TrATUS --------- — ----- -------------- . ... . .. crrf IV 1.4 W.vml ... . ............. 605P 41" ...... ... . .......... . 4 4 f I' r �7 p ll�r ()1 4 15[R .. I ri j , I I I pol E L P . . ... ............. . .. lhi 4 2iV j1: i i � r3 ..... . .... . . . . . . . . . . . . . . . . . . . . . . r Z rm +a urnr IMPERIAL IRRIGATION DISTRICT DIPERMI. C-11J1'ORHIA 4! L MCCONCAP" . . . . ... .... f14 .20* I ... ..... 4N, ONTIOP �'lzfh` t El: W 1..ILL 6, 1-11 Li _IU-1 t, LE: 1 5-'.C: -L" CATli_--rj: "v.-'s !.",I M AVE. GR THR ouciMIG, I%TrATUS Underground, Inc. I'N nIF. crrf IV 1.4 W.vml TZ11 ' Order No. Escrow No. ' Loan No. WHEN RECORDED MAIL TO: IMPERIAL IRRIGATION DISTRICT ' 81 -600 Avenue 58 La Quinta, CA 92253 -1080 r r r i DOCUMENTARY TRANSFER TAX $ Computed on the consideration or value of property conveyed; OR Computed on the consideration or value less liens or encumbrances remaining at the time of sale. (Space above this line is for Recorders Use) Signature of Declarant or Agent determining tax — Firm Name GRANT OF EASEMENT Public Utility Purposes FOR VALUABLE CONSIDERATION, the receipt of which is hereby acknowledged, CORE HOMES, LLC hereby GRANT (s) to IMPERIAL IRRIGATION DISTRICT, an irrigation district the real property in the City of La Quinta, County of RIVERSIDE, State of California, described as follows: AS SHOWN ON THE ATTACHED EXHIBITS "A" AND "B" WHICH ARE MADE A PART HEREOF BY THIS REFERENCE HEREON. Dated: U 21, 20o State of California } County-of On Mc'-Ll 0-1. POD7 before me, IDtiI - Notary Public personally appeared _-DOLV t d{ ,pa(' personally known to me ( of s,': � ce) to be person(bl whose name(i)is /ace subscribed to the within instrument and acknowledged to me that he /sheA4ey executed the same in his /her/therr authorized capacity(ies), and that by his /het/thett signatures on the instrument the person( or the entity upon behalf of which the person(9) acted executed the instrument. WITNESS my hand and official seal, Signature MAIL TAX STATEMENTS TO: By: 6_0 David Neale, President 470 South Market Street (Mailing Address) San Jose, CA 95113 (City) (State) (Zip Code) GAIL GICILLI § WIMY Commission # 1606719 Notary Public - California Santa Clara County Comm. Expires Sep 16, 2009 (This space for official notarial seal) 1. 1 PAGE l OF 3 EXHIBIT "All LEGAL DESCRIPTION PUBLIC UTILITY EASEMENT (IMPERIAL IRRIGATION DISTRICT) A PORTION OF PARCEL 3 OF PARCEL MAP NO. 16457, FILED IN PARCEL MAP BOOK 100, PAGE 43, OF OFFICIAL RECORDS (O.R.) COUNTY OF RIVERSIDE, IN THE CITY OF LA QUINTA, COUNTY OF RIVERSIDE, STATE OF CALIFORNIA, BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS: COMMENCING AT THE EAST ONE - QUARTER (EI /4) CORNER OF SECTION 4, TOWNSHIP 6. SOUTH, RANGE 7 EAST OF THE SAN BERNARDINO MERIDIAN, COUNTY OF RIVERSIDE, STATE OF CALIFORNIA, SAID POINT BEING ON THE CENTERLINES OF MADISON STREET, AVENUE 51 AND VISTA BONITA TRAIL; THENCE S00 °10'23 "W ALONG THE EAST LINE OF THE SOUTHEAST QUARTER (SEI /4) OF SAID SECTION 4 AND THE CENTERLINE OF SAID MADISON STREET, A DISTANCE OF 731.99 FEET; THENCE N39 049'37 "W, A DISTANCE OF 50.00 FEET TO THE WESTERLY LINE OF SAID MADISON STREET, SAID POINT BEING 50.00 FEET WESTERLY OF THE CENTERLINE OF SAID MADISON STREET, AS MEASURED AT RIGHT ANGLES THERETO, BEING ALSO THE TRUE POINT OF BEGINNING; THENCE S00 010'23 "W ALONG THE WESTERLY LINE OF SAID MADISON STREET, A DISTANCE OF 17.72 FEET; THENCE N3401 1'38"W, A DISTANCE OF 59.35 FEET; THENCE S89 045'01 "W, A DISTANCE OF 311.64 FEET; THENCE N00 010'30 "E, A DISTANCE OF 40.00 FEET; THENCE N89 045'01 "E, A DISTANCE OF 10.00 FEET; THENCE S00 010'30 "W, A DISTANCE OF 30.00 FEET; THENCE N89 045'01 "E, A DISTANCE OF 306.88 FEET; THENCE S34 01 1'38 "E, A DISTANCE OF 50.05 FEET TO THE POINT OF BEGINNING. SAID PARCEL CONTAINS 0.09 ACRES (3,990 SQUARE FEET), MORE OR LESS, AS SHOWN ON THE ATTACHED EXHIBIT "B ", WHICH IS MADE A PART HEREOF BY THIS REFERENCE HEREON. SUBJECT TO ALL COVENANTS, RIGHTS, RIGHTS OF WAY AND EASEMENTS OF RECORD, IF ANY. 1111 // / AND J _ TO PF U O\ J L.S. 6532 '° N N Era. 60107 - �f 5/17P-007 01152_600_PUEIID X 8SCALE.• 1 60' EXHIBIT "B" 0 PLAT TO ACCOMPANY LEGAL DESCRIPTION N PUBLIC UTILITY EASEMENT v1 0 TR. N0. 14104, M.B. 112/67 -69 114 SECTION LINE N.A.P. — VISTA BONITA TR4/L � S89'45 "01 "W J91.84' °Oi I o I e WE1. 5,y1 N.N.p L5 I I III a PAGE 2 OF j � AVENUE 51 P.O.C. E 114 COR. SEC. 4, T. 6S., R. 7E. S. B. M. R/W FOR DITCHES & _ CANALS REC. 11911955 IN BK 1844 PG 2 OF PATENTS INGRESS /EGRESS & WATERLINE 2 INST NO. 222323, PER P pR�E� REC. 9/12/ 1986, O.R. N.A•p 5" P.M. MO. 16457 BETH CIRCLE N89'45 "0 1 "E 306.88" l S89'45'0 I °W. 31 1.64' 0 P.M.B. 100/48 1.°t „ p„ U PpRCE` 3 lANO ' GRAPHIC SCALE ���1���5 �� N. jU���� 70 0 �- 60 0 30 60 t 20 180 L.S. 6532 r&p. 6 /30/07 ( IN FEET) _9re 00� =��1 1 inch = 60 ft. =�Of CAS/ / / /II PUBLIC UTILITY EASEMENT - IMPERIAL IRRIGATION DISTRICT Prepared by: TEL(760)360_4200 Own e r: THIS DOCUMENT WA P ARED FAX(761)361 4214 S REr Coachella Valley Engineers 77 -899 Wolf Road, Suite 102, PAU1 DESERT, CA 92211 i 01152.11 MAY, 2007 `J N0. DATE CORE HOMES, L.L.C. ATTN: MR. DAVID NEALE 470 S. MARKET STREET SAN JOSE, CA 95113 PH: (408) 292 -7841 BY ME OR UNDER MY DIRECTION, BASED ON RECORD INFORMATION. %�- LZO MARK A. TURNER L. S. 6532 EXP. DATE.• 06/30/07 0 1152_ 600_PUE110_X F� U) 50" o� rn Z o � o . to Ik N O L/ O m O I rn `ti � J� / ^ L1 W 2 J 2 ~ U PpRCE` 3 lANO ' GRAPHIC SCALE ���1���5 �� N. jU���� 70 0 �- 60 0 30 60 t 20 180 L.S. 6532 r&p. 6 /30/07 ( IN FEET) _9re 00� =��1 1 inch = 60 ft. =�Of CAS/ / / /II PUBLIC UTILITY EASEMENT - IMPERIAL IRRIGATION DISTRICT Prepared by: TEL(760)360_4200 Own e r: THIS DOCUMENT WA P ARED FAX(761)361 4214 S REr Coachella Valley Engineers 77 -899 Wolf Road, Suite 102, PAU1 DESERT, CA 92211 i 01152.11 MAY, 2007 `J N0. DATE CORE HOMES, L.L.C. ATTN: MR. DAVID NEALE 470 S. MARKET STREET SAN JOSE, CA 95113 PH: (408) 292 -7841 BY ME OR UNDER MY DIRECTION, BASED ON RECORD INFORMATION. %�- LZO MARK A. TURNER L. S. 6532 EXP. DATE.• 06/30/07 0 1152_ 600_PUE110_X SCALE. 1 "' = 60' 0 ui 0 In 0 EXHIBIT "B" PLAT TO ACCOMPANY LEGAL DESCRIPTION PUBLIC UTILITY EASEMENT LEGEND l PUBLIC UTILITY EASEMENT 34 3 PARCEL LINE P. 0. C. POINT OF COMMENCEMENT T. P. 0. B. TRUE POINT OF BEGINNING P.M. PARCEL MAP P.M.B. PARCEL MAP BOOK 0. R. OFFICIAL RECORDS CO. OF RIV. N.A.P. NOT A PART AREA = 0.09 AC. (3,990 S.F.), f 32 33 AVENUE 5o T.SS. 33 34 3 5 4 T. 65. 4 L2 S00' 10'23 "W VISTA L3 N34' 1 1'J8 "W 59.35' BONITA N00" 10'30 "E W L5 TRAIL 10.00' L 5 SITE 30.00' L7 S34' 1 1'J8 "E 50.05' Z L0 AVENUE 51 O 4 Z W 514 1 413 $ 1 9 AVENUE 52 9 1 1 0 VICINITY MAP SEC. 4, T.6S., R.7E. S.B.M. NTS PAGE 3 OF LINE TABLE LINE I BEARING LENGTH L 1 N89'49'37 "W 50.00' L2 S00' 10'23 "W 17.72' L3 N34' 1 1'J8 "W 59.35' L4 N00" 10'30 "E 40.00' L5 N89'45'O1 'E 10.00' L 5 Soo' 10'30 "N/ 30.00' L7 S34' 1 1'J8 "E 50.05' BASIS OF BEARINGS THE BASIS OF BEARINGS FOR THIS SURVEY IS BASED ON THE EAST LINE OF THE SOUTHEAST QUARTER (SE1 14) OF SECTION 4, T.6S., R.7E. S.B.M., AS SHOWN ON PARCEL MAP NO. 16457, FILED IN P.M.B. 100, PAGE 48, O.R. COUNTY OF RIVERSIDE, STATE OF CALIFORNIA BEING: 500' 10'23 "W 1115IANp s 114 _ = 1� � P • T U = J L.S. 6532 N Ep.6/30/07 9lF Of CAIo(3I� ?l�1 I PUBLIC UTILITY EASEMENT - IMPERIAL IRRIGATION DISTRICT Prepared by: TEL(760)360 -4200 I Owner : FAX(760)360 -4204 II @ Coachella Valley Engineers 177 -899 {'olf Road, Suite 102, PALM DESERT, CA 92211 i 01152.11 MAY, 2007 (,11 NO. DATE CORE HOMES, L. L. C. ATTN.- MR. DAVID NEALE 470 S. MARKET STREET SAN JOSE, CA 95113 PH.' (408) 292 -7841 THIS DOCUMENT WAS PREPARED BY ME OR UNDER MY DIRECTION, BASED ON RECORD INFORMATION. MARK A. TURNER L. S. 6532 EXP. DATE.• 06130107 n t7 ann PSI! Coachella Valley Engineers, Inc. 77 -899 Wolf Road, Suite 102 Palm Desert, CA 92211 (760) 360 -4200 Project No. 01152.11 - Public Utility Easement Closure Parcel name: PUBLIC UTILITY EASEMENT North: 9275.1918 Line Course: S 00 -10 -23 W North: 9257.4767 Line Course: 'N 34 -11 -38 W North: 9306.5642 Line Course: S 89 -45 -01 W North: 9305.2060 Line Course: N 00- 10 -30.E North: 9345.2069 Line Course: N 89- 45. -01 E North:'9345.2505 Line Course: S 00 -10 -30 W North: 9315.2498 Line Course: N 89 -45 -01 E North: 9316.5874 Line Course: S 34 -11 -38 E North: 9275.1918 East : 4661.2595 Length: 17.7151 East : 4661.2060 Length: 59.3460 East : 4627.8539 Length: 311.6350 East 4316.2218 Length: 40.0011 East : 4316.3440 Length: 10.0003 East : 4326.3442 Length: 30.0008 East : 4326.2526 Length: 306.8839 East : 4633.1336 Length: 50.0466 East : 4661.2595 Perimeter: 825.6288 Area: 3,990 sq.ft. 0.09 acres Mapcheck Closure - (Uses listed courses, radii, and deltas) Error Closure: 0.0000 Course: N 52 -16 -15 W Error North: 0.00002 East : - 0.00003 Precision 1: 825,628,800.0000 Page 1 of 1 5/17/2007 IN THE CITY OF LA QUINTA, CALIFORNIA HYDROLOGY /DRAINAGE REPORT REPORT FOR TRACT 36279 IN THE SE 1/4 OF SECTION 4 , T 6 S, R 7 E, S8M (Last Revised 7/19/07) UVIE 77 -933 Las Montanas Road, Suite 101 Palm Desert, CA 92211 Tel: (760) 360 -4200 Far: (760) 360 -4204 Coachella Valley Engineers email: cve @cve.ner web: vvww.cve.net ,goFESS /o K. R /CFl F�c Cj m * NO. 35728 * _ ,f EXP. 6-3411 9'F c/V��- o��\ OF W 0 ot LAJ W DAVID K. RICE JR. — RCE 35728 — EXPIRES 6 -30 -11 AVENUE 1 50 OLD ORCHARD LN. I 4 VISTA BONIT TRAIL T. 5S. T. 6S. LO W AVENUE 51 2 0 AVENUE 52 VICINITY MAP NOT TO SCALE SITE 'H CIRCLE d FEB 16 2011 City of i_a Qdnta Planning Department ' I TM 36279 - CVE 09124 - Ave 51 u Madison PEDCORE INVESTMENTS HYDROLOGY AND DRAINAGE FACILITY DESIGN REPORT INDEX Cover Sheet Index March 31,2010 Hydrology and Drainage Facility Design Report ' I Location Map — Predevelopment Retention Basin Storage Summary ' I Drainage Area Map — Post Development CLQ Synthetic Unit Hydrograph Analysis 'I APPROVED AUGUST 2007 HYDROLOGY /DRAINAGE REPORT ' I NWS NOAA Precipitation Forecast Soil Conservation Service Aerial Map Data Appendix 1. Soil Engineer Percolation Report ' I 2. Soil Engineer Percolation Report Update 3. CVE & CLQ Comparative Drainage Areas and SUH Storm Volumes ',..I 4. CVE Synthetic Unit Hydrograph Analysis — Basins 1 through 15 5. Retention Basin Storage Calculation Sheets 6. CVE Design Calculations 7. SCS Hydrologic Soil Group Table 12 ' 8. Calculation of Madison Avenue 10 year and 100 year per EB -16 9. Nuisance Water Evaluation ' 10.TM 30378 AND TM 33085 Reciprocal Easement & Maintenance Agreement i 11. Imperial Irrigation District Utility Easement and "as built drawing" ' 12. CLQ approved December 2004 Hydrology and Retention Basin Report w/ Riverside County Hydrology Manual (RCAM) Excerpts: a) 3, 6 and 24 Hr Storm Volume Precipitation Plates ' I 4/1/2010 01152 CVE *rM 36279 - CV[ 09124- \ Ave 5 1 u Madison b) Rainfall Pattern Table c) 10 and 100 Year Storm Intensity Duration Table d) Pervious Area Runoff Index Table e) Impervious Cover /Development Table f) Runoff Coefficient Curves g) Initial Sub -area Time Of Concentration Homograph h). Street Velocity Discharge Curve 13. Bureau of Public Roads Curb Inlet Capacity Nomograph 4/l /2010 01152 0 March 31,2010 CVE w [SUNINIARY AND DISCUSSION [M-,i reh 31, 2010 HYDROLOGY AND RETENTION BASIN DESIGN FOR ;) TRACT 36279 City Of La Quinta ( Southwest Corner Of Ave 51 and Madison St.) STATEMENT OF AMENDMENT 2010 ' ( City of La Quinta has requested an updated Hydrology and Retention Basin Report to be prepared in the 2010 Engineering Procedure for the City of La Quinta as adopted by the city council on December 19, 2006. Said procedure is detailed in City of La Quinta Department of Public Works Engineering Bulletin No. 06 -15 and 06 -16. The original Hydrology and Retention Basin Report was approved on August 8, 2007. This report will review and modify the existing report in the areas which do not conform to the new design criteria of EB No 15 and 16. The 2010 Project residential site layout has amended the lot sizes and deleted the "on site" retention basins. All drainage storm water and irrigation nuisance water will be collected and percolated into the central retention basin with the deep well chambered percolation and hazmat filtering system. These deep wells have WQMD /SWPP compliant filters for maintaining quality percolation waters. 'I DESIGN CRITERIA DIFFERENCES. The City of La Quinta published Engineering Bulletin nos. 15 and 16 addressing the updated design criteria for underground retention basins and the hydrology design criteria. For TM ' I 36279 the project acreage per basin is less than 10 acres. Per the Riverside County Flood Control District Design Manual Criteria in Chapter "D" the Rational Method of hydrology forecasting is mandated. Comparable Synthetic Unit Hydrograph analysis has been prepared as requested by City Engineering Staff. Maximum storm water runoff period is the 100 year occurrence three hour storm. The design of Madison Street shall be predicated on conformance of construction to merge to the existing east half of street in the City of Indio. I I The project 2010 underground retention systems can implement the use of the Deep well ■ Percolation Chamber and must be dissipated within 72 hours. Sand filter calculation rates can be applied to the drywell. The calculated percolation volume is 1080CF as percolated within this 72 hour window. Percolation tests have been conducted using the double ring infiltrometer ASTM D3385 -88 sand litho logy ) Sladden Engineering,Ltd 2007 tests are included herewith. Rainfall Intensities shall be prepared using a locally zoned City map in accordance to the NOAA ' available forecast data. Payee 1 of 5 [SUMMARY AND DISCUSSION'lMar•ch 31, 201.0 tProject street capacity shall be calculated on the FHWA HEC 22 methodology. PROJECT LOCATION ' l Tract 36279 is located in the City of La Quinta, at the Southwest corner of the intersection of Vista Bonita Trail (VBT), (aka Ave 51) and Madison Street. It is designated as APNs 772 - 270 -011, 012, & 013, and is described as a portion of the NE % of the SE '/a of Section 4, T6S, R7E, SBB &M. It ' consists of approximately 10 acres of flat, sandy, former Citrus grove being divided into eight, approximately 1 -acre residential lots. SUMMARY AND DISCUSSION 1 The contours on the enclosed portion of USGS topo map (Location Map) indicate that Vista Bonita Trail follows a ridge for approximately 1100 feet, from the Coachella Canal to Madison St. The easterly 900 feet of this street historically drained past and /or into subject site. Subject site cannot obstruct this flow, and must convey it through or past the site, but is not usually required to retain and dispose of offsite flows. However, the development of Tract 36279 has been designed to retain and percolate all rainfall from the site, as well as from all offsite areas that presently drain toward the site. The latter areas consist of the west half of Madison St south of Ave 51 and adjacent to the site, and a strip 900 by 100 feet along Vista Bonita Trail west of Madison St. North of Vista Bonita Trail (Ave 51), Madison St. drains north away from subject site to a culvert flowing east under Madison St. South of Vista Bonita Trail, the west half of Madison St drains south along subject site frontage, and is collected in a curb inlet (cb #1) at Beth Dr., near the southeast corner of the site. The easterly 50 feet of the orchard area to the west of subject site was surveyed by CVE, along with subject site. An existing 1 to 2 foot high berm constructed by the owner of this adjacent offsite property prevents all runoff from that property onto subject site. The general elevation of this property 20 feet west of the property line is 518.4. The elevation of the top of this berm is approximately 520.2. (see spot elevations on the rough grading plan). This data demonstrates that this offsite area does not drain into subject site. Instead, the offsite parcel drains south from Vista Bonita Trail past subject property, and thence southeasterly across the property south of subject to Madison St.. Calculations were made for the 100 year, 1 hour, 3 hour, 6 hour and 24 hour storm data to confirm which storm requires the largest retention volume. ' I The 100 year, 24 hour storm required the largest retention for the designed basins (See the Retention Basin Data Summary attached). ' Basin 1 has been designed as approximately 6.0 feet deep by 43.0 foot bottom width trapezoidal with 3 tot side slopes and water depth of approximately 5.0 feet. The shallow depth and flat slopes minimize the physical and visual impact of the basins on landscaping and maintenance activities. Synthetic Unit Hydrograph Analysis of the equivalent area concludes that flood runoff volume of 57,270 CF has been designed for the final construction specifications. (REF 0810812007 RPRT, pg 9 ) Basin 1 is designed as one interconnected system to provide sufficient capacity to accommodate the 'offsite drainage from Vista Bonita Trail and Madison St. This street drainage will flow in graded roadside 1 Pace 2 of 5 1 �. I) ! [SUMMARY AND ®ISCUSSION]:M.arch 31., 201.0 ' swales east along Vista Bonita Trail and south along Madison St. to the curb inlet at Beth Circle. (See Street Improvement Plans). It will then be piped into Basin 1. Basins 2 and 3 are very small, temporary retention, pending development to the south of Beth Circle and Old Orchard Ln. The tributary areas for these basins are 100% street pavement. The runoff coefficient was adjusted to 90% to insure adequate retention in these temporary basins. These Basins have been converted from the original analysis to the catch basin diversion into the "on Site catch basin for TM 36279 and TM 33085 I The existing 6 foot high masonry privacy walls around the site assure privacy and complete control of offsite drainage. The west wall replaces reliance on the existing berm. The north wall assures that the Vista Bonita drainage remains channelized in the existing roadside swale until it reaches Madison St. and can be collected at catch basin # 1 at Beth Circle. The south wall insures that Lot 1 does not drain south onto the neighboring property. Lots 1 through 4 drain onto Evangeline Lane (Old Orchard Lane) to the catch basin and then into the basin. In the event of a larger than 100 year storm, this basin will overflow onto Madison Street at elevations at least 1.9 feet lower than the nearest finish floor. The west 1/3 of lots 5 through 1 flow west directly to Old Orchard Ln., then flow south to catch basin #3, then flow into retention basin. The east 2/3 if these lots drain east to individual interconnected drain swales at the east end of each lot. Each of these swales flows directly to the south and into the main project retention basin. ' I Vista Bonita Trail drains into Madison St., which drains south to catch basin #1 at Beth Circle. These flows drain through cb #1 into retention basin. Basin is interconnected to provide adequate storage and percolation capacity. The calculated maximum water surface of the worst 100 -year storm in basin1 is 512.50 with one foot freeboard per CLQ specs.. In the event of system failure or larger than 100 year storm runoff, basin 1 t will overflow through catch basin # 1 into Madison St. at elevation 513.50. At elevation 513.50 the runoff will overflow the high point in the center of the Beth Circle. spandrel gutter and will flow south along the west gutter /swale of Madison St., which preserves the historical flow pattern. At elevation 513.50, ' I retention storage depth will be increased from 5.00 feet to 6.00 feet, increasing the storage capacity to 80,883CF without flooding any lot or structure. The lowest finish floor is elevation 514.8 (Lot 11), and the lowest street gutter flow line is elevation 512.95. -All habitation floors are more than 2 feet above the overflow elevation, and the lowest street, (Madison St) will be flooded to a depth of only 0.35 foot at the beginning of emergency overflow. (less than top of curb). ' The proposed retention storage is more than adequate, and is fail safe in design. � j ' I Page 3 of ARY AND DISCUSSION [Ma rch 31,201.0 DESIGN CRITERIA The retention basins are designed per the requirements of the City of La Quinta and the Riverside ' ( County Hydrology Manual (RCHM). (See attached enclosures) The 100 -yr /3 hr storm intensity was extrapolated to be 2.6 inches per hour from plate F -5.2 of the RCHM. The 100 -yr /6 hr storm intensity was extrapolated to be 3.40 inches per hour from plate F -5.4 of the I RCHM, and the 100 -yr /24 hr storm intensity was extrapolated to be 4.0 inches per hour from plate F -5.6 of the RCHM. The site consists of Hydrologic Soil Groups A, and B — Lots 1 & 2 are Group A, having high infiltration ' rates, antecedent moistening condition rating of AMC II, and low runoff potential when saturated. The remainder are Group B, having lower infiltration rates and higher runoff potential when saturated. ' Lots 1 through 4 retain all onsite drainage — the impervious area was calculated to be 23 %. Runoff from Lots 1 & 2 was calculated for soil Group A, and Lots 3 & 4 for soil Group B. ' I Drainage from Lots 5 thru 8 was combined with onsite and offsite street drainage. The impervious area for this total area was calculated to be 41 %, and runoff was calculated for soil Group B. Sladden Engineering has prepared a percolation test report for the site. (Project No. 544 -1497 dated ' I 4/15/02 — See Attached). The results of the percolation test were 2.3 inches /hour. However, per City requirements, only 2.0 inches per hour was used as the design percolation rate. CALCULATION PROCEDURE: ' I The Hydrologic Soil Group is determined from RCHM maps (C -1.02 thru C- 1.66), Soil Conservation Service maps, or the Soils Engineers Report. ' I The Site Runoff Index was determined from Plate D -5.5 and D -5.6 of the RCHM to be RC 32 for residential landscaping on Group A soils with 20% impervious cover and RC 56 for Group B soils with 41% impervious cover. (see attached calculation sheets) The data on RCHM plates D -5.2, D -5.4, and D -5.6 was used to determine the total storm runoff in inches, for calculation of retention basin inflow volumes for 3, 6, and 24 hr 100 year storms respectively. The Rainfall Patterns In Percent of each design storm volume per design period were taken from Table E -5.9 of the RCMH, and are shown in the Precipitation % column of the calculations. The design period was arbitrarily chosen as 15 minutes for the 3 and 6 hour storms, and 1 hour for the 24 hour storm, to provide enough data points to produce a smooth curve in the graph. The rainfall intensity I for each period is the product of this % times the total storm volume. The Impervious % C for each period is the calculated instantaneous value from Plate D -5.1, 5.2 or 5.3 of the RCHM for the corresponding calculated intensity, soil type, and development type. Q is the storm runoff rate during each period, in cubic feet per second (cfs), calculated as the product of the intensity, Impervious % / runoff %, and Tributary Area. Inflow volume is the rate of flow Q accumulating during each period. The water depth in each basin at the end of each period is calculated by comparing the volume of the basin calculated from the surface area per foot of depth table with the runoff volume accumulated at that time. The water surface area in the basin at that depth is calculated for each period from the depth and surface area per foot of depth table. Page 4 o f L'e [SUMMARY AND DISCUSSION I.Ma 1 2010 ' The percolation volume for each period is calculated. 1 The percolation volumes for each basin and design storm were calculated for 15 minute or 1 -hour intervals, as the product of the perc rate (in /hr) and the calculated water surface area / percolation area f the basin during that period, using only the flooded surface area of each retention basin during that ' interval. The storm runoff inflow volumes were calculated for these same intervals. The percolation volumes were subtracted from the storm runoff inflow volumes to determine the required depth and water surface area for each retention basin, for each interval, and the maximum required retention for each basin. (See page 2 of the attached calculation result spread sheets). ' Criteria for the Rational Method design of storm drain inlets and piping were derived by calculating the initial time of concentration for rainfall to begin to run off from the farthest corner of the farthest area: the travel time for flow to stabilize from the back of the lot to the street, and the travel time to flow in the ' street from the farthest point to the storm drain inlet, (See RCHM plates D -3 and D -7.7 attached). This ' time of concentration was then used to determine the design intensity for the storms, the runoff I coefficient, and the flow in the streets and in each inlet and pipe. (see attached calculation sheets) The 100 year, 1 hour storm event is the basis for the sizing of the storm drain inlets and piping. ' The required curb opening length for the catch basins is less than 3 feet. Curb Inlets 1, 2 and 3 are all "feet wide and 4 feet deep. ( See pg 5 of the attached calculations of August 2007 report) ` Catch Basin Pipes A and B are all smooth wall corrugated HDPE (N -12). Diameters are: PIPE DIAMETER Q10 A 12" 9.19 cfs ' B 18" 4.77 cfs 'I 1 I I The Drywell shall conform to the City of La Quinta Standard and shall be the equivalent to the Deep Well Specified in compliance to Engineering Bulletin no. 16 as published on December 19, 2006. Deepwell strata percolation rate is 5.5 inches per hour per square foot per Sladden Report No. as tested at 10 to 45 feet depth ' i Page 5 of 5 PEDCORE TM 36279 RATIONAL ANALYSIS vs UNIT HYDROGRAPH CITY OF LA QUINTA Pursuant to city of La Quinta staff request for Coachella Valley Engineers to conduct analysis of Rational Hydrology vs. Unit Synthetic Hydrograph. The rational method of analysis is recommended for tracts less than '100 acres and TM 30378 is less than 10 acres. Per staff's request CVE submits the comparative analysis between rational and SUH. Comparative results for the storm water generated using the 100 year occurrence and a ' three hour duration storm with Synthetic Unit Hydrograph analysis and the 24 hour duration storm for the Rational Analysis yields the following comparative storm water volumes: ' RA ... Maximum Project Volumes..24hr ....... 41.136 SUH... Generated Project volumes.3 hr ...... 37, 560 SUH... Generated Project Volumes..24hr .... 41,985 ' For the function of calculation the 100 year storm water retention basin volumes, CVE has used the "less than 10 acre criteria" for utilizing the rational hydrology generating the ' maximum storm water retention volume of 4 1, 13 6 CY with no percolation in the basin as shown on the attached Retention Basin Storage Summary Table in this report. The clarification letter on the soils boring analysis as detailed by Sladden Engineering analyzed as of March 30, 2007, supports a percolation rate of 2.0 inches per hour for retention basin no. 9. 1 i� 1.1 TM 36279 OLD ORCHARD PARK NUISANCE WATER EVALUATION Based upon the 2005 CVE Hydrology and Retention Basin report ... the nuisance water accumulation formula remains the same. For the subdivision tract and street of Beth circle, Madison Street and orchard Park Street the calculated projection of nuisance water flow is 6.1 CF / HR. The tested Deepwell percolation two chamber facility is capable of percolating 12.57 times 2.00 inches which equals 25.73 inches of nuisance water per hour. A minimum system installation of 20 feet depth is more than fail safe in complying to City of La Quinta retention basin standards for the accumulation of nuisance water. -7 v7 ad �:5 IS n , J / � /7 .I;i � 1! -41 1A, 7.7 -- -., �''� 11 I i .' it 1 1� �1 17 t 0 1)71,,0,11.1- fig nl. p PU SK -7-77-- Am On • 9. 1 6z= .. ' ^cc �i: ;'rte? - 1°' > "^' �. a. 59 ;-,jl- a IwAs T •f � ij r I j ' Y 7,5. DRAINAGE AREA MAP STORM DRAIN /RETENTION BASIN EXHIBIT TRACT 36279 H. VISTA BON,ITA TRAIL J — (P—R1VATE /STkEET)- - - - - -- `- - - - - -- �--- I — _ _ - - - - - -- - - -- -- - - - - - - -- --- - - - -1- - MOB Ar- 20.17 u. l —F +- < 2&M sr. K S17.7 K 516.8 I 1 2 &4e9 sr. 1183 I PE 17.3 24.303 sr. i R„� I I war °) III p 1 = 0.23 AC.' - - - - -� I 1.111�j I s I I 1 2&303 sr. I 29.420 sr. I i I a3e Mw 04 I I I I- R 31 &0 &8 1 I I ve"" 1 II VW I I I to I I 3 77 Z 2-"3W w I I I 20.421 sr. I I Qi I' I I I I K 51&3 I p°c 116,3 I I I I I I! I 0,10 All I fA 2 13.50 2.83 CFS CB #3 as2 TC 513.50 °E 8 22 u. Q10 =6.36 CFS J —32 � I 1 I I I I K I i I I I 4,1111 I ° 1 I I I I 1 1 Q �"► 180 3512.50 I I I I 0 ua sr. I I 0a� (32a9 U.) 2 iaa Ar- X00 800 - - TRACT BOUNDARY &WALL '2- — �• — — — —' — — — -H — — — _� ° — -- — — — -- - - - -wr �. Mm A BETH CIRCLE GRAPHIC SCALE 100 0 50 100 200 ( IN FEET ) 1 'inch = 100 ft. RETENTION BASIN SUMMARY TABLE 300 DRAINAGE AREA (AC) REQ. PONDING VOLUME (CF) MAXIMUM POND WSL RI VALUE RETENTION POND NO. DESIGN POND VOLUME (CF) DESIGNED POND WSL IMP 1 8.83 62,483 513.50 56 1 62,861 512.50 40. * 2 1.19 1,169 512.66 56 2 7,385 512.66 90 * 3 10.48 1 2,769 1 513.30 56 3 6,145 513.30 90 TOTALS 9.50 1 64,421 1 76,391 CB #1 TC 513.7E Q10 =4.77 LEGEND f ABBREVIATIONS TC TOP OF CURB WSL WATER SURFACE LEVEL CF CUBIC FEET S.D. STORM DRAIN EQ. PIPE EQUALIZER PIPE BETWEEN BASINS QRETENTION BASIN #1 ODRAINAGE AREA #1 DRAINAGE AREA BOUNDARY LINE �k DRAINAGE AREA DRAINS TO T.M. 33085 TRACT 30378 RETENTION BASIN COMPARATIVE CHART BASIN AREA C. V. E. VOL UME C. L. Q. VOL UME iE 1 +-m 4 6,911 7,500 2E 2 5,866 5,490 3E 3 +l-Q 7,355 7,017 4E 4 5, 733 5,675 5W 2 2, 331 2,5J6 G 2 2, 331 2, 536 6W 2 +� 4,083 4,349 H _6_+12+1-1 7,350 6,559 7W 2 2,202 2,277 i 2 2,202 2,277 8W 2+ig 4,444 4,422 K $ + 12 +1-j 6,584 6, 632 9L .16 1, 039 1, 311 15 .14 877 1,169 140S .34 2775 2,796 1 II 1' 1� 1' 1' 1 U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 03/29/07 File: VDB24HRMAR24100.out ++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ----------------------------------------------------------------- - - - - -- Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 --------------------------------------------------------------------- English (in -lb) Input Units Used English Rainfall.Data (Inches) Input Values Used English Units used in output format --------------------------------------------------------------------- VANDENBOS CITYOFLAQUINTA COACHELLA VALLEY ENGINEERS D.K.RICE -------------------------------------------------------------------- Drainage Area = 7.08(Ac.) = 0.011 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 3.50(Ac.) _ 0.005 Sq. Mi. USER Entry of lag time in hours Lag time = 0.050 Hr. Lag time = 3.00 Min. 25% of lag time = 0.75 Min. 40% of lag time = 1.20 Min. Unit time = 60.00 Min. Duration of storm = 24 Hour(s) User Entered Base Flow = 0.50(CFS) 2 YEAR Area rainfall data: Area(Ac.) [1) Rainfall(In) (2) Weighting[1 *2) 3.50 1.30 4.55 100 YEAR Area rainfall data: Area(Ac.)[1) Rainfall(In)[2) Weighting(1 *2) 3.50 4.00 14.00 STORM EVENT (YEAR) = 100.00 i i' .1 i� i 1 i Area Averaged 2 -Year Rainfall = 1.300(In) Area Averaged 100 -Year Rainfall = 4.000(In) Point rain (area averaged) = 4.000(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 4.000(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious % 2.030 60.00 0.700 5.050 56.00 0.200 Total Area Entered = 7.08(Ac.) RI RI Infil. Rate Impervious Adj. Infil AMC2 AMC -1 (In /Hr) (Dec. %) (In /Hr) 60.0 40.0 0.670 0.700 0.248 56.0 36.0 0.706 0.200 0.579 Rate Area% F (Dec.) (In /Hr) 0.287 0.071 0.713 0.413 Sum (F) = 0.484 Area averaged mean soil loss (F) (In /Hr) = 0.484 Minimum soil loss rate ((In /Hr)) = 0.242 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.500 --------------------------------------------------------------- - - - - -- U n i t H y d r o g r a p h DESERT S -Curve -------------------------------------------------------------------- Unit Hydrograph Data --------------------------------------------------------------------- Unit time period Time % of lag Distribution Unit Hydrograph (hrs) --------------------------------------------------------------------- Graph % (CFS) 1 1.000 2000.000 100.000 7.135 ----------------------------------------------------------------------- Sum = 100.000 Sum= 7.135 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max ( Low (In /Hr) 1 1.00 1.20 0.048 0.840 0.024 0.02 2 2.00 1.30 0.052 0.801 0.026 0.03 3 3.00 1.80 0.072 0.763 0.036 0.04 4 4.00 2.10 0.084 0.726 0.042 0.04 5 5.00 2.80 0.112 0.690 0.056 0.06 6 6.00 2.90 0:116 0.655 0.058 0.06 7 7.00 3.80 0.152 0.621 0.076 0.08 8 8.00 4.60 0.184 0.588 0.092 0.09 9 9.00 6.30 0.252 0.556 0.126 0.13 10 10.00 8.20 0.328 0.525 0.164 0.16 11 11.00 7.00 0.280 0.495 0.140 0.14 12 12.00 7.30 0.292 0.467 0.146 0.15 13 13.00 10.80 0.432 0.439 0.216 0.22 14 14.00 11.40 0.456 0.414 - -- 0.04 15 15.00 10.40 0.416 0.389 - -- 0.03 16, 16.00 8.50 0.340 0.366 0.170 0.17 17 17.00 1.40 0.056 0.344 0.028 0.03 j { i ) { r i 1 1 18 18.00 1.90 0.076 0.324 0.038 0.04 19 19.00 1.30 0.052 0.305 0.026 0.03 20 20.00 1.20 0.048 0.288 0.024 0.02 21 21.00 1.10 0.044 0.273 0.022 0.02 22 22.00 1.00 0.040 0.261 0.020 0.02 23 23.00 0.90 0.036 0.250 0.018 0.02 24 24.00 0.80 0.032 0.244 0.016 0.02 Sum = 100.0 Sum = 1.6 Flood volume = Effective rainfall 1.63(In) times area 7.1(Ac.) /[(In) /(Ft.)] = 1.0(Ac.Ft) Total soil loss = 2.37(In) Total soil loss = 1.396(Ac.Ft) Total rainfall = 4.00(In) Flood volume = 41984.5 Cubic Feet Total soil loss = 60816.4 Cubic Feet Peak -------------------------------------------------------------------- - flow rate of - -- this Hydrograph = 2.042(CFS) +++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 24 - H O U R S T O R M R u n o f f H y d r o g r a p h Hydrograph in 60 Minute intervals ((CFS)) -------------------------------------------------------------------- Time(h+m) -------------------------- Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 1+ 0 0.0555 - - - -- - 0.67 VQ - 2+ 0 0.1121 0.69 Q 3+ 0 0.1747 0.76 I Q 4+ 0 0.2408 0.80 QV 5+ 0 0.3152 0.90 I Q V 6+ 0 0.3907 0.91 I Q V 7+ 0 0.4769 1.04 I Q VI 8+ 0 0.5725 1.16 Q V 9+ 0 0.6881 1.40 Q I V 10+ 0 0.8262 1.67 Q I V 11+ 0 0.9501 1.50: Q I VI 12+ 0 1.0776 1.54 I Q I V 13+ 0 1.2464 2.04 I Q I I V 14+ 0 1.3128 0.80 I Q I I V 15+ 0 1.3701 0.69 I Q I I V 16+ 0 1.5117 1.71 I Q I I V 17+ 0 1.5696 0.70 I Q I ( I V 18+ 0 1.6333 0.77 I Q I I I V 19+ 0 1.6900 0.69 I Q I I I V 20+ 0 1.7454 0.67 I Q I I I V 21+ 0 1.7997 0.66 I Q ( I I V 22+ 0 1 ".8529 0.64 I Q I I I V 23+ 0 1.9048 0.63 I Q I I I V - - -24+ 0 ----------------------------------------------------------- 1.9556 0.61 I Q I I I V - -- - -- IN THE CITY OF LA QUINTA, CALIFORNIA HYDROLOGY /DRAINAGE REPORT REPORT FOR TRACT 30378 IN THE SE 1/4 OF SECTION 4 , T 6 S, R 7 E. SBM (Last Revised 7/19/07) ETEL(760)360 -4200 FAX(760)360 -4204 Coachella Valley Engineers 77 -899 Wolf Road, Suite 102, Palm Desert, CA 92211 Q,oFESS /ON Q� p m * NO. 35728 f EXP. 6 -30-09 9fF C/ V 0- o�� DAVID K. RICE JR. — RCE 35728 — EXPIRES 6 -30 -09 OF CP��� AVENUE 50 T. 5S. T. 6S. W 0 LO OLD ORCHARD LN. I AVENUE 51 Z: VIST� -° S 1 T E O BONIT Lo TRAIL BETH CIRCLE C) AVENUE 52 VICINITY MAP NOT TO SCALE Coachella Valley Engineer II I May 24, 2007 ' Mr. Timothy R. Jonasson, P.E. City of La Quinta Public Works Director /City Engineer ' 78 -495 Calle Tampico La Quinta, California 92253 ' Dear Mr. Jonasson, P.E., This letter will transmit the 4`h Amended Hydrology and Retention Basin Design Report t for TM 30378. Said report has been prepared in accordance with the definitive criteria to the City Engineering Bulletin No. 16 as set forth by City Staff during the last review ' meeting. This submittal is in total compliance to the items of conformance as outlined in your May ' 7, 2007 letter. The Imperial Irrigation District plans for the electrical infrastructure have been approved ' and a copy included herewith. The IID easement 'instrument is included herewith. The retention basin and maximum storm volumes based upon the City of La Quinta ` Design Synthetic Unit Hydrograph Method is included for the 100 year 3 hour storm criteria. Said procedure substantially conforms the Staff's recommended amount of cumulative storm volumes as discussed and reviewed during the meeting. ' The amended sheet no. 3 of the final map is included with this submittal. Said sheet no.3 1 designates the limits of the utility easements and the storm drainage easement. ' 1 A copy of the reciprocal use agreement between owners is included herewith. Said agreement grants permission to install the offsite drainage basin for Beth circle and ' Madison Street said private property off site of this project. CVE agree to provide this information and we have done so. I trust that you and staff ' will find this storm water volume storage capacity to be in substantial conformance to the Iverbal directive comments supplied by Staff during our last meeting. ' Please review the eport and CVE is looking forward to its subsequent approval. CncIe'r,ly y 1 ' avid K. Rice r. '. Civil Engineer. 77 -899 WOLF ROAD, SUITE 102 PALm DESERT, CA 92211 TELEPHONE (760) 360 -4200 FAX (760) 360 -4204 i La Quinta Polo Partners - CVE 01152 - Ave 51 C Madison - Rod Vandenbos 1 LA QUINTA POLO PARTNERS Un MOT 1 HYDROLOGY AND DRAINAGE FACILITY DESIGN REPORT INDEX May 24, 2007 2. Soil Engineer Percolation Report Update 1 3. CVE & CLQ Comparative Drainage Areas and SUH Storm Volumes 4. CVE Synthetic Unit. Hydrograph Analysis — Basins 1 through 15 5. Retention Basin Storage Calculation Sheets 1 6. CVE Design Calculations 1 7. SCS Hydrologic Soil Group Table 12 8. Calculation of Madison Avenue 10 year and 100 year per EB -16 1 9. Nuisance Water Evaluation 10. TM 30378 AND TM 33085 Reciprocal Easement & Maintenance Agreement 1 J 11. Imperial Irrigation District Utility Easement and "as built drawing" l12. CLQ approved December 2004'Hydrology and Retention Basin Report w/ 1 Riverside County Hydrology Manual (RCAM) Excerpts: a) 3, 6 and 24 Hr Storm Volume Precipitation Plates 1 b Rainfall Pattern Table I' ) c) 10 and 100 Year Storm Intensity Duration Table 1 d Pervious Area Runoff Index Table 5/22/2007 01152 CVE U Cover Sheet 1 Index i Hydrology and Drainage Facility Design Report �1 Retention Basin Storage Summary Location Map — Predevelopment ' Drainage Area Map — Post Development NWS NOAA Precipitation Forecast ' 1 Soil Conservation Service Aerial Map Data Appendix ' 1. Soil Engineer Percolation Report May 24, 2007 2. Soil Engineer Percolation Report Update 1 3. CVE & CLQ Comparative Drainage Areas and SUH Storm Volumes 4. CVE Synthetic Unit. Hydrograph Analysis — Basins 1 through 15 5. Retention Basin Storage Calculation Sheets 1 6. CVE Design Calculations 1 7. SCS Hydrologic Soil Group Table 12 8. Calculation of Madison Avenue 10 year and 100 year per EB -16 1 9. Nuisance Water Evaluation 10. TM 30378 AND TM 33085 Reciprocal Easement & Maintenance Agreement 1 J 11. Imperial Irrigation District Utility Easement and "as built drawing" l12. CLQ approved December 2004'Hydrology and Retention Basin Report w/ 1 Riverside County Hydrology Manual (RCAM) Excerpts: a) 3, 6 and 24 Hr Storm Volume Precipitation Plates 1 b Rainfall Pattern Table I' ) c) 10 and 100 Year Storm Intensity Duration Table 1 d Pervious Area Runoff Index Table 5/22/2007 01152 CVE U La Quinta Polo Partners - CV[ 01 152 - Ave 51 @ Madison - Rod Vandenbos e) Impervious Cover /Development Table f) Runoff Coefficient Curves g) Initial Sub -area Time Of Concentration Homograph h) Street Velocity Discharge Curve 13. Bureau of Public Roads Curb Inlet Capacity Nomograph 5/22/2007 01152 May 24, 2007 CVE HYDROLOGY AND RETENTION BASIN DESIGN ' FOR TRACT 30378 ' City of La Quinta (Southwest Corner of Ave 51 and Madison St.) Statement of Amendment 2007 The City of La Quinta has requested an updated Hydrology and Retention Basin Report to be prepared in the 2007 Engineering Procedure for the City of La Quinta, as adopted by the city council on December 19, 2006. Said procedure is detailed in the City of La Quinta Department of Public Works Engineering Bulletin No. 06 -15 and 06 -16. The original Hydrology and Retention Basin Report was submitted on August 31, 2004. This report will review and modify the existing report in the areas which do not conform to the new design criteria of EB No 15 and 16. Design Criteria Differences The City of La Quinta published Engineering Bulletin Nos. 15 and 16 addressing the updated design criteria for underground retention basins and the hydrology design criteria. For TM 30378, the project acreage per basin is less than 10 acres. The City of La Quinta has mandated that the Hydrology Study be completed by using the Synthetic Unit Hydrograph method of storm water runoff. The criteria for the hydrology analysis shall be based upon the 100 year storm occurence frequency and a three hour storm duration period with the class AMC II soil and'a composite runoff factor of class 56. The design of Madison Street shall be predicated on conformance of construction to merge to the existing east half of the street. The project 2007 underground retention systems can implement the use of the Deepwell Percolation Chamber and must be dissipated within 72 hours. Sand filter calculation rates can be applied to the drywell. Any percolation tests conducted must be done so with the double ring infiltrometer ASTM D' )3385-88 (sand lithology). Rainfall hitensities shall be prepared using a locally zoned City map in accordance to the NOAA available forecast data. Project street capacity shall be calculated on the FHWA HEC 22 methodology. i Proiect Location Tract 30378 is located in the City of La Quinta, at the southwest corner of the intersection i of Vista Bonita Trail (VBT), (aka Ave 51) and Madison Street. It is designated as APNs ' 772 - 270 -011, 012, & 013, and is described as a portion of the NE ''A of the SE ''A of Section 4, T6S, R7E, SBB &M. It consists of approximately 10 acres of flat, sandy, former citrus grove being divided into eight, approximately I -acre residential lots. ' Discussion & Summary ' The contours on the enclosed portion of USGS topo map (Location Map) indicate that Vista Bonita Trail follows a ridge for approximately 1100 feet, from the Coachella Canal to Madison St. The easterly 900 feet of this street historically drained past and /or into subject site. Subject site cannot obstruct this flow, and must convey it through, or past, the site. Typically, development of such sites are not required to retain, and dispose of , offsite flows. North of Vista Bonita Trail (Ave 51), Madison Street drains north, away from the subjJ ect site to a culvert flowing east under Madison Street. ' South of Vista Bonita Trail, the west half of Madison Street drains south alon g subject J site frontage, and will be collected in a curb inlet (cb #1) at Beth Circle, near the southeast ' corner of this site. The easterly 50 feet of the orchard area to the west of subject site was surveyed by CVE, ' along with the subject site. An existing 1 to 2 foot high berm constructed by the owner of the adjacent offsite property prevents all runoff from that property from impacting this ' site. The general elevation of this property 20 feet west of the property line is 518.4. The elevation of the top of this berm is approximately 520.2 (see spot elevations on the rough f grading plan). This data demonstrates that this offsite area does not drain into ' 1! subject site. Instead, the offsite parcel drains south from Vista Bonita Trail past subject property, and thence southeasterly across the property south of subject to Madison Street. Calculations were made for the 100 -year, 1 hour, 3 hour, 6 hour, and 24 hour storm data to confirm which storm requires the largest retention volume. To ensure a fail safe design, volume calculations were performed utilizing a 0 "/hr percolation factor.This j criteria per City Engineering Bulletin 06 -16, item 9. The 100 year, 3 hour storm required the largest retention for the designed basins (see the i Retention Basin Summary Table attached). All basins have been designed with varying depths ranging from 2' up to 3.8. As per the 1 City of La Quinta design standards, maximum side slope ratio of 3:1 has been identified for all ponding. Maintenance ramps, with a maximum longitudinal slope of 15% are specified for all permanent ponds. A minimum of 1 of freeboard, defined as the :t elevation differential between the 100 -year water surface elevation and the nearest street flowline elevation, has been provided within each permanent retention facility. The included Retention Basin Storage Date Table indicates that the total 100 -year cumulative retention volume required is 62,500 cf, while the total storage volume provided with this project is 84,000 cf. Basins 1 through 7 are designed as individual retention facilities accepting runoff waters from Lots 1 through 7 respectively. Basins 1 through 4, located along the lot fronts immediately west of Old Orchard Lane are provided with emergency overflow spillways which will discharge to Old Orchard Lane in the event that storm volumes exceed the design storm. Basins 5 through 7, located at the Old Orchard Lane frontage of Lots 5 through 8 have emergency overflow spillways at the south end of each facility. In the event of an overflow, excess floodwaters will enter Basins J (11), K(12), & L(13) before spilling into Madison Street via proposed Catch Basin #1, located just north of Beth Circle.. Basins 8W, K (12) and L(13) have been designed as one interconnected system to maximize storage capacity. During the design event, contributing flows will be generated from Lot 8, Old Orchard Lane, the northern portion of Beth Circle, and from the west half of Madison Street, adjacent to this site. Floodwaters from the previously defined 100' x 900' portion of Vista Bonita Trail will also be intercepted and conveyed via Madison Street Drainage flow through the defined Basin 8 through 10 ponding system via CB 91 located at the intersection of Madison St. and Beth Circle. During a 100 -year storm event, excess waters from Vista Bonita Trail will pass back out the Madison Street catch basin, and continue south within the roadway. Basins 14 and 15 are very small temporary retention ponds, pending development to the south of Beth Circle and Old Orchard Lane. The tributary areas for these basins are 100% street pavement. The runoff coefficient was adjusted to 90% to ensure adequate retention in these temporary basins. These basins have been converted from the original analysis to the catch basin diversion into the "On Site" catch basin for TM30378 and TM33085.See appendix for the reciprocal agreement between TM 30378 and TM 33085. All retention basin 100 year water surface elevation perimeter boundary are within the leZal limits of the drainage easement. The existing 6 foot high masonry privacy walls around the site assure privacy and complete control of offsite drainage. The west wall replaces reliance on the existing berm. The north wall assures that the Vista Bonita Drainage remains channelized in, what is currently, a roadside swale until it reaches Madison Street and can be collected at CB #1 at Beth Circle. The south wall insures that Lot 1 does not drain south onto the. neighboring property. i As stated earlier in the report, runoff from the 100' x 900' section of Vista Bonita Trail, to the immediate north of the site, collects in a v -ditch located along the south right of ' way line. Collected flows are conveyed east to Madison Street, and then south to CB #1 to be located along the west Madison curb, just north of Beth Circle. Intercepted .flows ' from Vista Bonita Trail will be routed through the interconnected 8 through 10 retention facilities. During a larger event, these excess offsite flows will exit back out CB #1 to Madison Street (CB #1 flow line 512.50), overtop the high point at the Beth Circle intersection (512.60), and continue south per the historical drainage course. Likewise, if ' a system failure in the interconnected basins 5 through 9 were to occur, or if the site experienced an event larger than the 100 -year, excess floodwaters will follow the same ' path back out CB #1 to Madison Street. The lowest finished floor is at elevation 515.5 (Lot 8), and the lowest street gutter flow ' line is elevation 513.13. All designed finished floors are more than 2 feet above the overflow elevation, and the lowest street, (Madison St.) will be flooded to a depth of only 0.35 feet at the beginning of emergency overflow (less than top of curb). Given that, and ' the fact that the designed retention ponding volumes include a zero percolation factor, sufficient storage volumes have been provided with this project to ensure there will be no adverse impact on downstream properties given the development of this site. 1 'I ILI 4 'Alc)IL V-DU i -j q 41 -t ZD �' . ------------- I- 11 Z 9-1* r, III * C, ��r 1 _1 1 ,. I�r •1 �'�0RAII91i i2= Amory '� .- - „�Zw•. OM. tA M iUs r SZ aT N iit � • '�, , 4.1% H P. CtI (S 1 4 AVERAGE OVEFZ -ONE ACRE IN AND RETAIN STORM WATER ON SITE. !I MON BASINS ALONG MADISON ST. - JNKED BY EQUALIZER LINES AND ARE JG WITHIN EXISTING CITRUS GROVE TO ! \IN. THE SOUTH SIDE OF THE ENTRY (IS PART OF THE FUTURE DEVELOPMENT IE SOUTH AND WILL TEMPORARILY DRAIN THE EXISTING CITRUS GROVE ON THAT' )PERTY. THE REAR OF LOTS 5 -8 DRAIN 1 DIRECTLY INTO THE LINKED RETENTION BASINS. GRAPHIC SCALE S 90; °C VISTA BONITA_ -TRAIL ___ (PRIVATE STREET) R /W, TRACT BOUNDARY TC 51 & WALL ;TC516.31 [ 6- O 4 � - 47,002 C\1 (HOUSE) n _. 1.08 AC T I 1 � ; J ID N I 1 W ' 3 ca r� � r I N '' w M3 Li z I z Z m N U W Q WS 2,592 SF. I L 37,672 0.86 • AC O 45,506 1.04 AC O 45,010 1.03 AC In -- J L-0l _ _I 69,386 2.08 1.59 T RETENTION BASIN (TYP) EQUALIZER 0 � 0 - LINE (TYP) o�. -- ------- - - - - -- - -_- - - - - - -- w - _z _ N J I_� , Q O � Ail w Q Z z O TC 513.70 a TC 513.66 1 0 5 o C Tr 513.70 I a o�� OO G4 10 I I 1 C 0100= 1.25IT / �11� LINE C" RETENTION BASIN (TYP) —_—�_11 II I H - �=� I TRACT BOUNDARY & 'NALL I I ( IN FEET ) 1 inch = 100 ft. 193 --� ;5 �- EXISTING R/W FUTURE CUES & GUTTER I I � ; ID N I 1 W ' ca r� I N '' RETENTION BASINS I WS 2,581 SF. Z VOL 1,283 CF. ® WS 2,592 SF. VOL.1,301 CF. I � � W5 1,834 SF. I I VOL 1,902 CF. I i WS 2,210 SF. VOL 2,419 CF. I i Q ! ®THRU® WS 14,781 SF. I VOL 16,213 CF. I � I A o - WS 2,240 SF. VOL 1,461 CF. II 11 WS 639 SF. a VOL 408 CF, I p nI I L� O i .. • 0 i •' o 1 S.Dj'I LINE A DRAINAGE AREA MAP TORM DR_a_IN /RETENTION B_A_SIN EXHIBIT • TRACT 303 r8 ROD VANDENBOS AND ADJACENT SITES LINE "C° RETENTION BASIN (TYP) 1,039 CF H P. 11 1,311 CF + H. P. H.P. 1 1 TRACT BOUNDARY & WALL `� 1 rJ 1200 CF \` EXISTING R/W le 2,775 CF 3 x BETH CIRCLE TC 512.76 a is PROPOSED DRAINAGE AREA MAP 6 1 " =100' l� VISTA BONITA TRAIL I 1 (PRIVATE STREET) (NOT INCLUDED IN TRACT 30378 RETENTION BASIN ANALYSIS) TC 515.54 1 FUTURE CURB —i & GUTTER R /W, TRACT BOUNDARY TC 516.32 1 & WALL O 4 2,331 CF® © W 2,331 CF W 5,733 CF 4 N i PL � PL 7,350 CF 3 Z O Q 3 4,088 CF Q 7,355 CF Z!l wm PL 1 2,202 CF 2,202 CF Q z z =0 5,866 CF �— cf) x� W m Q rWy UJ O \ 1` .; 0 Q 1 2 Z x PL J 6,584 CF LL. C 1 1 4,444 CF 3 _ 6,911 CF 1 Q 8 4669 9 CF v O O TC 513.70 CB #1 CB 2 0100 6.40 CFS 0100 =1.25 CFS S D TC 512.74 LINE "C° RETENTION BASIN (TYP) 1,039 CF H P. 11 1,311 CF + H. P. H.P. 1 1 TRACT BOUNDARY & WALL `� 1 rJ 1200 CF \` EXISTING R/W le 2,775 CF 3 x BETH CIRCLE TC 512.76 a is PROPOSED DRAINAGE AREA MAP 6 1 " =100' l� r i TRACT 30378 RETENTION BASIN COMPARATIVE CHART BASIN AREA C. V. E. VOL UME C. L. Q. VOLUME 1E 1 +1Q 6,911 7,500 2E 2 5,866 5,490 3E 3+ rQ 7,J55 7,017 4E 4 5, 733 5,675 5W 2 2, 331 2,5J6 G 2 2, 331 2,5J6 6W 2 f 1p 4,08J 4, 349 H -E f 1z +1,� 7,J50 6,559 7W .2 2,202 2,277 7 2 2,202 2,277 8W 2 +4 4,444 4,422 K -6-+12+1-1 6,584 6,632 9L .16 1, 039 1, 3l 1 15 .14 877 1,169 140S 34 2775 2,796 l I t - AtPt«tttuit. rrequency uata Server Page 1 of h�\ POINT PRECIPITATION ' I FREQUENCY ESTIMATES�z FROM NOAA ATLAS 14 California 33.677 N 116.124 W 9 feet ' Rom "Precipitation- Frequency Atlas of the United States" NOAH Atlas 14. Volume I. Version 4 G. I. Bonnin. D. Martin. B. Lin.-T. Parzybok. NI.Yekta. and D. Riley NOAA. National Weather Service, Silver Spring, Maryland, 2006 Extracted: Sat Mar 10 2007 L Confidence Limits Seasonality li Location Maps [ Other Info. I GIS data I Maps I Help ( p Precipitation Frequency Estimates (inches) ' ARI � 10 15 30 60 120 3 6 12 24 M48 4 7 10 20 30 45 in min min min min hr hr hr hr day day day da day dayd 0.03 0.12 0.15 0.21 0.26 0.35 0.43 0.53 0.71 0.81 0.83 0.91 1.00 1.06 1.13 1.32 1.49 1.59 ' 0.11 0.17 0.21 0.29 0.36 0.49 0.58 0.79 0.97 1.10 1.13 1.24 1.37 1.47 1.63 1.34 2.03 2.23 0.19 0.28 0.35 0.47 0.53 0.78 0.9I 1.21 1.46 1.68 1.72 1.90 2.10 2.25 2.52 2.32 3.18 3.44 ' 10 E2fl 0.38 0.47 0.64 0.79 1.03 1.18 1.54 1.84 2.14 2.20 2.43 2.67 2.38 3.20 3.58 4.02 4.35 ZS 0.36 0.54 0.67 0.91 1.12 1.42 1.60 E0fl 2.40 2.79 2.91 3.21 3.50 3.78 4.17 4.64 5.19 5.62 50 0.46 0.70 0.36 1.16 1.44 1.78 1.96 2.45 2.85 3.34 3.52 3.87 4.19 4.53 4.97 5.50 6.12 6.65 ' 100 0.57 0.88 1.08 1.46 1.81 2.19 2.38 2.91 3.33 3.92 4.20 4.61 4.94 5.35 5.84 6.43 7.11 7.73 200 0.72 1.09 1.35 1.32 2.25 Efl 2.36 3.42 3.37 4.57 4.95 5.43 5.76 6.25 6.77 7.42 8.15 8.87 ' 500 0.94 1.44 1.78 EjflE7 fjfl 3.61 4.19 4.64 x.50 6.03 6.64 6.97 7.56 3.12 8.83 9.61 10.49 1000 , 1.15 1.75 2.17 2.92 3.62 4.11 4.28 4.87 5.30 6.23 7.04 7.67 7.98 3.66 9.23 9.93 10.79 11.79 lText version of table f ' These precipiladon frequency estimates are based on a partial duration series ARI is the Average Recurrence Interval. ' + Please refer to the docwnenlalion for more information. NOTE: Formatting forces estimates near zero to appear as zero. t t r 11M)l/chm- ter. my s. noaa. Vn \11r.PI- hIi) /Iirlcr /hiiIIrintit ncrV?tinI. -- ,F.P. .0.....:r - 0. _.,,._ I I -i,n Prc-cipitation •reqUency Data Server Partial duration based Point Precipitation Ft--:jUenCy Estimates 4 313.677 N 116.12'4 W 9 ft Page 2 of 5 I1.1 . .... . ..... J,- Im • 6 L4 I • 4� Ila 5 -- - -- I _ I _ .L__L_ _ __ . ........ I - 1:7-' -!' I—J i r _ _ ' T ^`^� ' ~_� I ^ 4� j" 4 CL 7- T 1-tri-T 1 2 3 4 5 6 7 8910 20 30 40 513 80100 140 200 300 500 700 1000 Sat Plar 10 13:48: 17 20P37 Average Recurrence Interval (years) Duration 5 -min 4 h r 0 4-day .5 7-day 0 - da u + 24 -h _,.!._t.! litin•Yrfi1ln(I.1• 111,vq nr),)q arwle-,,; .. ; IA—,r .- — F.O. -..: — .- .10...._:. - -.._ O. .. '. I I I n1—: rlr,7 � I lPrecipitation Frequency Data Server Page 3 of 5 Partial curation basecl Paint Precil:•itation Frequenoy Estirnates .ersion: 4 33.677 N 116. 12-4 IJ 9 ft 12 I I 1 11 I I? __ I >- Q y 7 a 0 0 5 4 L 3 L a. I a •£ L L L L L L L L L DI ?. 71 71 71 71 71 71 >, T .� .� ..~. ~ • I 1 �' S t -C L L O I I S .17 M N .p .0 .11 .11 "' M N .17 I I I I 1 I I I I I 1 N rrI V- %D OD N N •7' 1 I 3 3 3 ZS 3 3 ID 11D I I I I I I 1 3 1 3 3 1 I -+ N 17 �� Duration - - N 07 v n Sat Mar 10 13:45:17 2007 Average Recurrence Interval Wears) 1 100 - J -F- 10 500 -� Confidence Limits - * Upper bound of the 90% confidence interval Precipitation Frequency Estimates (inches) =MXMINE9 3 6 12 24 48 4 7 10 20 30 45 60 hr hr hr hr hr day day day day day da day � 0.10 0.15 0.19 0.26 0.32 0.52 0.71 0.86 0.96 0.96 1.06 1.17 1.25 1.38 1.54 1.74 1.86 0.14 0.22 0.27 Efl Efl 0.61 EE 0.96 1.18 E3O 1.32 1.46 1.60 1.72 1.91 2.15 2.42 2.59 0.23 0.35 0.44 0.59 0.73 0.95 1.10 1.47 [1E 2.00 2.00 I EE 2.44 2.63 2.93 3.28 3.71 4.00 10 0.31 0.47 0.59 g E 0.98 1.25 1.44 1.37 2.22 1 2.54 2.56 2.85 3.10 3.35 3.72 4.16 4.68 5.05 25 0.44 0.67 0.83 1.12 1.39 1.72 1.94 2.46 2.88 3.31 3.39 3.76 4.07 4.40 4.84 5.40 6.04 6.54 50 0.56 0.86 1.0G 1.43 1.77 2E 2.37 2.97 3.43 3.95 4.10 4.54 4.58 5.28 5.78 6.42 7.14 7.74 100 0.71 1.08 EE 1.80 Efl 2.64 2.89 3.54 4.02 4.65 4.90 5.43 5.78 1 6.25 6.80 1 7.53 K2 j 9.03 200 0.35 1.34 E E 2.24 2.77 1 3.24 3.49 F E 4.63 5.42 I 5.80 E fl 6.78 7.33 7.92 8.74 9.59 10.40 500 1 F1-71 1.77 2.20 2.96 3.67 4.19 4.44 5.15 5.65 6.55 7.17 7.92 3.27 S.92 9.57 10.49 11.39 12.33 1000 1.43 2. I S 2.70 3.63 4.50 5.06 5.29 6.01 6.51 7.54 3.35 9.22 9.54 10.29 10.96 11.94 12.56 13.99 The UpOer bound of the cnnildPnr.P inlPrv--1 nt C1001. rnnfidonro la-1 is rho „ r eh- These precipitation frequency estimates are based on a partial duration series ARI is the Average Recurrence Interval. Please refer to the dIocunlerltalirn for more information. NOT "c: Formatting prevents estimates near zero to appear as zero. Lower bound of the 90% confidence interval I, f.-/1, 1 :._.__..._....-.,n,,....,., /-"; I,..,/1_.1_. I •1.1_...... 1n1 . .. .rn _ - Precipitation Frequency Data Server Pace 4 of 5 Precipitation Frequency Estimates (inches) W[N[�fl[�flX 1�0 3 6 Mhr M24 43 [4j;2 10 20 30 45 60 min rhr]Fh r hr day day day day day �� 0.07 0.10 O.12 0.17 0.21 0.29 0.35 0.48 0.59 0.63 0.71 0.75 O.SS 0.91 I.00 1.14 1.27 1.35 2 0.09 0.14 O.17 0.23 0.29 0.40 0.48 0.65 0.30 0.93 0.97 1.07 1.18 1.25 1.39 1.53 1.77 1.39 0.15 0.23 0.29 0.39 0.48 0.64 0.75 F10-0]E] 147 1.41 . 1.63 1.79 1.92 2.14 2.42 2.71 2.91 10 0.20 0.31 0.33 0.51 0.63 O.S4 0.97 1.26 1.51 1.79 1.8S 2.03 2.27 2.44 2.71 3.05 3.42 3.67 25 0.23 0.43 0.53 0.71 0.88 1.14 1.30 1.65 1.94 2.32 2.46 2.72 2.94 3.18 3.51 3.94 4.39 4.72 50 0.35 0.54 0.67 0.90 1.11 I 1.41 1.57 Efl 2.29 2.75 2.94 3.25 3.49 3.78 4.16 4.64 5.14 5.55 100 0.44 0.66 0.82 1.11 1.37 1.70 1.37 2.31 2.65 3.21 3.47 3.81 4.08 4.4,1 4.33 5.39 5.93 6.40 200 0.53 0.80 1.00 1.34 1.66 2.02 2.21 2.67 3.03 3.69 4.04 4.43 4.70 5.09 5.56 6.16 7.28 X00 0.67 F 021 1.27 1.71 2.12 2.52 2.71 3.21 3.56 4.38 4.86 5.31 5.58 6.05 6.55 7.23 7.86 8.50 1000 0.80 1.21 1.50 2.03 2.51 2.95 3.14 3.66 4.01 4.92 5.53 6.04 6.30 6.S4 7.35 8.08 8.72 9.46 The lower bound of the confidence interval at 90% confidence level is the value which 5% of the simulated quantile values for a given frequency are less than. These precipitation frequency estimates are based on a partial duration maxima series. ARI is the Average Recurrence Interval. Please refer to the documentation for more information. NOTE: Formatting prevents estimates near zero to appear as zero. Maps - , •1 20-w u: Z u •1 1 rld •100 "bl _.._ ....,_ _. „ , , These maps ware produced using a direct map request from the US. TigerCensus =ur2-u f <Isi ;pinr� ar ;l C = ;r:t,ral ;hi^ �: ;yours: _, tciap Server. Please ,•ead rn Pr.�-cipitation Frequency Data Server 11 F, _ T"W 116.1—W •1.1 A .0-1d Other Maps /Photographs - Pale 5 of 5 L EGEND — State — Connector — County Stream Indian Resv Military Area Lake /Pond /Ocean National Park — Street Other Park �— Expressway F-7 C i ty Highway 07 � -- 5 '- Scale 1 : 228583 - 0 ,, -CRuttty i mi 14 ,6 1a I *avera e--true scale depenc7s m on rnonitor resolo utikon z` ,r c- View LJSGS digital orthophoto quadrangle 1()nQ). covering this location from TerraServer; USGS Aerial Photograph may also be available from this site. A DOQ is a computer - generated image of an aerial photograph in which image displacement caused.by terrain relief and camera tilts has been removed. It combines the image characteristics of a photograph with the geometric qualities of a map. Visit the USGS for more information. Watershed /Stream Flow Information - Find the �Vatcrsh�d for this location using the U.S. Environmental Protection Agency's site. Climate Data Sources - Precipitation frequency results are based on data from a variety of sources, but largely NCDC. The following links provide generalinfornration about observing sites in the area, regardless of If their data was used in this studv. For detailed information about the stations used in this study, please refer to our documentation. Using the National Climatic Data C'enter's (N('1M. station search engine, locate other climate stations within: +/ -30 minutes OR +/ -1 degree j of this location (33.677/ - 116.124). Digital ASCII data can be obtained directly from \?CDC. Find \ati.lral Resrturczs Service _LNN:I CS-) SNOTEL (SNOwpack TELemetry) stations by visiting the '' esteln ...Regip.nal- CLimate.Center's _ state- shecilic- SNOT ,F -L_ station rnahs. HYdrometcorological Design Studies Center DOCINOAA/National weather Service 1325 East -1Vcst Highua.y Silver Spring. ID 20910 (301)713 -1669 QueSti011S7: LlliSt•'•r �ur>ti.n. >:ir rn +ci.g„ . l ii::� laim� r r � I l,ttatlun r> eyue►tc;y uata server Page 1 of 5 POINT PRECIPITATION I FREQUENCY ESTIMATES FROM NOAA ATLAS 14 California 33.773 N 116.315 W 118 feet from "Precipitation- Frequency Atlas or the United States" NOAA Atlas 14. Volume 1, Version 4 G.M. Bonnin. D. Martin, B. Lin, T. Parzybok, M.Yekta, and.D. Riley NOAA, National Weather Service, Silver Spring, Maryland, 2006 Extracted: Sat Mar 10 2007 Confidence Limits Seasonality Location Maps Other Info. GIS data Maps Help C Precipitation Frequency Estimates (inches) ARI 10 15 30 60 1_0 3 6 12 24 Nhr 4 7 Z[X 30 45 60 * _ ❑a[day]F oa y (years) min min min min min min hr hr hr hr a da day day 0.09 0.14 0.18 0.24 0.30 0.41 0.48 0.63 0.78 0.86 0.91 1.01 1.12 1.19 1.33 1.48 1.66 1.79 0.13 0.20 0.25 0.33 0.41 0.56 0.65 0.86 1.06 1.18 1.22 1.36 1.50 1.61 1.80 2.01 2.27 2.45 0.21 0.33 0.41 0.55 0.68 0.89 1.01 1.31 1.60 1.79 1.80 2.02 2.23 2.40 2.70 3.00 3.39 3.66 10 0.29 0.44 0.55 0.73 0.91 1.17 ]Efl 1.68 2.02 2.27 Z.27 ]Efl 2.80 3.02 3.39 3.75 4.23 4.58 25 0.41 0.63 0.78 1.05 1.29 1.61 1.78 2.21 2.62 2.96 2.96 3.33 3.62 3.91 4.38 4.80 5.39 5.86 50 0.53 0.80 0.99 1.33 1.65 2.02 2.19 2.67 3.12 3.53 3.55 3.98 4.29 4.65 5.18 5.65 6.31 6.88 100 0.66 1.00 1.24 1.68 2.07 2.48 2.66 3.17 3.65 4.14 4.19 4.71 5.03 5.46 6.05 675 6-1 7.28 7.96 200 0.82 1.25 1.55 2.08 2.58 3.02 3.19 3.73 4.22 4.82 4.90 5.51 5.83 6.33 6.98 7.53 8.29 9.08 500 1.08 1.64 2.03 2.73 3.38 3.88 4.02 Kfl 5.07 Efl 5.96 6.70 6.99 7.61 EE 8.89' 9.69'° 10.65 1000 1.31 2.00 2.47 3.33 4.12 4.64 4.75 5.29 5.79 6.61 6.86 7.71 7.96 8.63 9.40 10.00 10.79 11.89 Text version of table These precipitation frequency estimates are based on a partial duration series. ARI is the Average Recurrence Interval. J Please refer to the documentation for more information. NOTE: Formatting forces estimates near zero to appear as zero. �lttl): / /rlltlllP.l' I1 \VS.I1naA.!r(1V /f .al- hip /hrlcrr /hiiilrinttt npt-I) ,,,a„f,Picariar -...1 P., ..:rte - „�.P. r , n/1)Orl -I J 1E er-,cipitation H-eqUency Data Server Partial ov,otin^ uaszo Point Precipitation rre«uevvu Estimates Version: 4 33.773 n 116.315 u 118 m .. ^" 10 Q c . o � ° CL r � c � o � � 5 � � .� 4 CL o a z m Pa�e2o[5 � z x * n orasuo eo oo 40 50 80 100 140 20 xmn noo pon mnn Average Recurrence Interval (years) Sat war 10 13`58:05 2007 Duration li/tn-Ildi""a,n`,r,nnxn /|a"..,"~.n'`~~—�u�,~.�.._-�«'.�~'_.-«-^-.' `""'`o^-7 li/tn-Ildi""a,n`,r,nnxn /|a"..,"~.n'`~~—�u�,~.�.._-�«'.�~'_.-«-^-.' `""'`o^-7 t�recipltatlon hrequency Data Server L L a U y L d I Partial cll•Ir -ation k?.a_,ec! Paint Pr-ecipitation FreC1u?noij Estimates ?rsion: 4 33.772, N 116.315 1•1 118 ft i r----- ,- g-= .... - -. -: Page 3 of 5 =� I L L L L L L L 7. T T T T T a T a 1 I M 3 �D W I I I 1 1 1 1 I t 1 Cl) `r Sat Mar 10 13:58:05 2007 Average Recurrence Inter_"al 1 -:+- 100 - : � Ij tt --s- II Confidence Limits - * Upper bound of the 90% confidence interval Precipitation Frequency Estimates (inches) ARI 5 [X[XW[�fl[NFir 3 6 12 24 [9hr 4 7 10 20 30 60 min 1 hr hr hr da y day day day day day 1�1 a 0.12 0.18 0.23 0.30 0.38 0.51 0.58 0.77 0.94 1.03 1.05 1.17 1.28 1.37 1.52 1.69 1.90 2.05 1 ` 10 .17 0.26 0.32 0.43 0.53 0.70 0 -SO 1.05 1.23 1.41 1.41 1.58 1.73 1.85 2.07 2.30 2.60 2.80 =5 0.27 0.42 0.52 0.69 0.56 1.09 1.24 1.59 1.93 2.13 2.15 2.34 2.56 2.75 3.09 3.42 3.86 4.18 10 0.36 0.56 0.69 0.93 1.15 1.44 1.60 2.02 2.43 2.70 2.73 2.96 3.21 3.46 3.85 4.28 4.32 5.23 25 0.52 0.78 0.97 1.31 1.62 1.97 2.17 2.66 3.14 3.52 3.55 3.86 4.16 4.49 5.01 5.49 6.14 6.69 SO 0.66 1.00 1.24 1.66 2.06 2.46 2.65 3.20 3.74 4.20 4.24 4.63 4.94 5.34 5.93 6.47 7.20 7.S7 100 0.82 1.25 1.55 2.09 2-SS 3.02 3.22 3.82 4.39 4.94 4.99 5.50 5.82 6.29 6.94 7.55 8.33 9.12 200 1.02 1.55 1.92 2.58 E0 j 3.69 3.59 4.50 E0 1 5.76 E0 6.47 6.73 7.34 5.04 5.71 9.52 10.43 500 1.34 2.04 2.53 3.41 1.22 4.75 1.94 Efl EE 6.96 6.95 7.93 5.22 S.88 9.64 10.35 11.22 12.30 1000 1.64 2.50 3.10 4.17 5.16 5.75 S.S9 6.49 7.05 S.O1 S.OS 9.19 9.41 10.19 11.00 11.75 12.SS 13.32 ' The upper bound of the confidence interval at 90% confidence level is the value whirh 5% of Iha cim Int-I ,,.-61. -1-- r . ese preclpl atlon frequency estimates are based on a partial duration series. ARI is the Average Recurrence Interval. Please refer to the document,{ cn for more information. NOTc: Formatting prevents estimates near zero to appear as zero. II" Lower bound of the 90% confidence interval 11t1- n-Hrirnriar nwc nnn / ...hin /I „I /1. ;1.1 ..� .. ..17:..._ -,CO. __ -._ _r n _ , vrecfpftation Frequency Data Server Page 4 of Precipitation Frequency Estimates (inches) Z 3 6 Mhr M24 -18 20 30 m hr hr hr [;�[QF-0 day day day day da ❑ ❑�C 0.07. 0.12 0.14 0.19 0.24 0.33 0.39 0.52 0.65 0.71 0.79 0 .SS 0.97 1.03 1.16 1.30 1.45 L57 KE 0.16 O I fl 0.27 0.33 0.46 0.54 0.71 0.85 0.93 1.07 1.19 1.31 1.40 1.57 1.77 1.98 2.14 0.17 0.26 0.33 0.44 0.54 0.72 0.83 1.09 1.33 1.49 1.56 1.75 1.93 2.08 2.34 2.62 2.95 3.19 10 0.23 0.35 0.43 0.58 0.72 0.95 1.07 1.38 1.67 1.88 1.96 2.20 2.41 2.61. 2.93 3.26 3.67 3.97 25 0.32 0.48 0.60 0.81 1.00 1.28 1.44 1.80 [2.IE 2E 2.53 2.85 Efl 3.35 3E 4.16 4.65 5.04 50 0.40 0.61 0.75 1.02 1.26 1.58 1.74 2.15 2.53 2.88 3.00 gE Efl 3.94 4.41 4.87 5.42 5.88 100 0.49 0.75 0.93 1.25 I.55 1.91 2.09 2.52 2.92 3.36 3.50 3.93 4.21 4.58 5.10 5.61 6.21 6.74 200 0.60 0.91 1.13 1.52 1.88 2.27 2.47 2.92 3.35 3.87 4.05 4.54 4.82 5.25 5.83 6.37 7.01 7.62 500 0.76 1.16 1.44 1.93 2.39 2.33 3.02 3.50 3.94 4.57 4.82 5.41 5.67 '6.20 6.82 7.42 8.10 8.82 1000 0.90 1.37 1.70 2.29 2.83 3.31 3.49 3.99 4.42 5.13 5.46 6.12 6.37 6.93 7.62 8.25 8.92 9.76 The lower bound of the confidence interval at 90% confidence level is the value which 5 %of the simulated quantile values for a given frequency are less than. These precipitation frequency estimates are based on a partial duration maxima series. ARI is the Average Recurrence Interval. Please refer to the doct!menlalion for more information. NOTE: Formatting prevents estimates near zero to appear as zero. Maps - I i '1 ilJ �rt�f ') � ll vtlf I I I 't QQ" 41 4r�"'tIJ i a) "lJ LL: C ... _.:....._.._ _......__Z� C 70! "Ili These maps were produced using a direct map request from the �. C ;u; Sure-u frlra; ping ;nri Cariocraphic Re:snurct;s Tiger hlap SerJer. P /ruse r-cud r71:;[6riur.: for more in/orrnaliu/r. hftr�• / /rl �.�,�c�r r��vc nn:7 :1 rrnrr /nrr� 1, .., /1. .1�„/1_..: I.I ....� .. ,,.- I •l r.. ..__ -., CP. ... _._�10. .....a,..._ 0 �. n.•.nn'v i� i� �t PI Lau L/tl t -I CLI LICI ICY 11A_ -W 1.1n`_i"td 11Fi.2"W Other Maps /Photographs - rage 5 of 5 LEGEND — State — Connector — County ;.:Stream Indian Resv Military Area Lake /Pond /Ocean National Park Street Other Park — Expressway ?_ —1 City — Highway U Cunty c1. Scale 1:228583 I - I S m i U n *avera:�e-true scale depends on monitor resoiU ut im on Cr. View LJSGS digital ortllopl,oto quallr:ingle (DOQ). covering this location from TerraServer; USGS Aerial Photograph may also be available from this site. A DOQ is a computer - generated image of an aerial photograph in which image displacement caused by.terrain relief and camera tilts has been removed. It combines the image characteristics of a photograph with the geometric qualities of a map. Visit the USES for more information. . Watershed /Stream Flow Information - I-ind the Watershed for this location using the U.S. Environmental Protection Agency's site. Climate Data Sources - Precipitation frequency results are based on data from a varied, of sources, but largely NCDC. The following links provide general information about observing sites in the area, regardless of if their data was used in this study. For detailed information about the stations used in this stutly, please refer to our documentation. Using the vation:ll Climatic Data Center's \( CDC) station search engine, locate other climate stations within: +/ -30 minutes ...OR... + / -1 degree I of this location (33.773/ - 116.315). Digital ASCII data can be obtained directly from \CDC.. Find \antral Resnurczs Constal_atipii Service SNOTEL (SNOwpack TELemetry) stations by visiting the �_�estern Regional_ Climate.Center'sst etc- specific.SNOT ;EL, station lya Hydrometeorological Design Studies Center DOC /NOAA/National weather Service 1321 East -west Highway Silver Spring, :: \ID 20910 (301) 713 -1669 Ques(ions'': I IIiSI'.t httU: / /diooer.nws.noaa.gov /c�ai- bin/ 11CISC/ bLlIICIOLit .DP.[-Ptvne=1)f,2.Se1'i t.c= ll.qR-ctIte. ;/I n / ,)007 fit I—I! %'rd MI'd, ro ur:j h1 °.si - •— , —� -;r � TO 4,1, till i J�,( j;- JJ T;I I, : 1I A m .811±:: i . r J 16 N 1vil rI 11111r.rr...7. 7 � •!_ RA, -T - rvi; ] T u : i T � ➢,��,f f •'� \]: �li' e•i r ,t ` '1 I ,I ^;r7Q�'.I ,.o p 1[,•li :-•�-_ - '\ � 1 '•,�')�Ip \1 - q ���� . r J 1:�- V • ... 444::YYY _ I rj: Y4 Yff C. ...117'. TI : tl OR. 711 I-l'i • _ ( _ ` .!1 -( n " '`:I�i'; � II -rte ?h::J _ .. ,..,, `� .. _'' � •/ � i1:.;4; �'� RV In if AF: I To raVY-M r T I NO V -41 r JA .14 ?Lt W✓ C :10 1. 4::6('41 ij. ro If pl JI'll IVA .1 1 1 �I La Quint- Polo Partners - Cvt:01152 - Ave 51 `t! Madison - Rod Vandenbus 10. LA QUINTA POLO PARTNERS Un o(M March 6, 2007 HYDROLOGY AND DRAINAGE FACILITY DESIGN REPORT 01152 DATA APPENDIX CVE O Sladden Engineering 77 -725 Enfield Lane, Suite 100, Palm Desert. CA 92211 (760) 772 -3593 Fax (760) 772 -3895 6752 Stanton Ave.. Suite A. Buena Park, CA 90621 (714) 523 -0952 Fax (714) 523 -1369 450 Egan Avenue, Beaumont, CA 92223 (95 1) 845 -7743 Fix (95 1 ) S45 -SS63 15438 Cholame Road, Suite A, Victorville. CA 92392 (760)962 -1863 Fax (760) 962 -1 S7S March 27, 2007 Mr. Rod Vandenbos 74 -785 Highway 111, Suite 100 Indian Wells, California 92210 Project: Tentative Tract Map 30378 SWC Avenue 51 and Madison Street La Quinta, California Project No. 544 -1497 07 -03 -251 Subject: Supplemental Evaluation for Storm Water Retention System Design As requested, this memo has been prepared to provide a summary of our further evaluation of the data obtained during our recent supplemental field exploration performed to evaluate the soil conditions within the area of the proposed retention basins. Our supplemental evaluation included a review of our recent and previous field bore logs to identify silt and clay layers that may impede infiltration within the retention basins. As discussed during our recent meeting at the City of La Quinta, we typically obtain samples at 5 foot intervals as indicated on our previous bore logs. We also monitor the cuttings developed during drilling and can identify significant changes in soil types between sampling intervals. The cuttings can provide fairly accurate information within the upper 10 to 15 feet but the accuracy of determining the relative depth of significant layers diminishes with depth. We have enhanced the detail on our bore logs within the upper 10 to 15 feet to include significant silt and /or clay layers. The revised bore logs are attached. As indicated on the bore logs, several thin silt and clay layers were noted within the upper 10 to 15 feet and a prominent clay layer was observed at a depth of approximately.15 to 25 feet. in each of the borings. The majority of the silt and clay layers noted were found to be quite thin (less than 2 inches thick) and are most likely lenses that are discontinuous in nature. It is our opinion that these generally thin silt and clay layers will not significantly impede the infiltration of surface water within the basins. The water will pass through the thin layers and will migrate laterally around the more prominent lenses that are not continuous layers that vary in thickness and are limited in lateral extent. The clay layer encountered at the 15 to 25 foot depth will likely limit deeper infiltration but the penetrations associated with the proposed drywells and other possible inconsistencies will )HOW surface water infiltration in isolated areas. Marcli 30, 2007 -2- Project No. 544 -1497 07 -03 -251 If you have any questions regarding this memo, please contact the undersigned. Respectfully submitted, SLADDEN ENGINEERING Nicholas S. Devlin Project Engineer Letter /nd Copies: 2 /Mr. Rod Vandenbos. 4 /Coachella Valley Engineers Sladden En yincel-ille Date: 1/25/2007 Tentative Tract Map 30373 SWC Avenue 51 and Madison Street, La Quinta Bore No. 1 Job tvumoer: :,",f .1 1 — ) v, >1 > - C v'i U' M Description a - -,Z Remarks U r : "ii. Graded Soil _ 1!�ilyy!!1!Lil Scattered thin silt/clay layers I/2" to 2" thick 5 'jlil! Lli;!;I!li! !!!rli;a!!�l1 2/4 Silty Sand: Fine Grained with Sandy Silt Interbedded Si"1i 4 41 Greyish Brown in color Silty Clay layer l" thick - I�(I!I II!II!i ju�l'Iiih!li !j!I�II!!IIS�!I9 10 4/5 Silty Sand: Fine Grained with Sandy Silt Interbedded SM 5 46 Grey in color I�!!IVlli 15 5/9 Clay CL 37 94 Olive in color Scattered thin silty sand layers up to 3" thick 20 4/5 Clay CL 36 85 Olive in color 25 I1lj!!1;f;j; Tentative Tract Map 30373 SWC Avenue 51 and lkladison Street, La Quinta Date: 1/2 -5/2007 Bore No. 2 Job Number: 544 -1= J r_ rJ zt — ^_ �, V) O U Description r° Z Remarks 0 Graded Soil Silty Sand layers -2" to 3" thick 5 3/4 Sandy Silt NIL S 71 Greyish Brown in color - Silty Sand layer- 4" thick 10 ir�! jf !1 y;;�i;ll 3/6 Silty Sand: Fine Grained SiVI 4 20 Grey in color Illj�l!cii�� Scattered thin silt/clay layers up to 1/2" thick I��GIIG.1!i'::1 15 4/5 Clay CL 35 95 Olive in color - Scattered thin silty sand layers up to 2" thick 20 4/6 Clay CL 29 80 Olive in color' 25 jlh!]jFi!;lllil lu,r)rrl 518 Silty Sand: Fine Grained ne SM 12 28 Grey in color 1�'1 f'JjfI _ I!�Ijl;4!!i� II 6/6 Silty Sand: Fine Grained SM 11 26 Grey in color - IUlip!ihl$!ij! 'Ii;ll�il�niuiu! 35 5/9 Silty Sand: Fine Grained SM 9 23 Grey in color aillG' 9vq'!i;! _ ! P u r: i �II'i4ry�lhl!4!� Il;i!!!15!ti!!i 40 !i;! i; p;,�;�ll 8/13 Silt Sand: Fine Grained with Sand Silt Interbedded Y Y SM 19 49 Olive &Grey in color _ i!gl!u�;r!fii I!!IG! illf jj ai ' �da! Note: The stratification lines represent the approximate 40 ;''! 5110 Silty Sand: Fine Grained with Silt Interbedded SM 14 56 boundaries between the soil (Greyish Brown in color) types; the transition may be --rad u a 1. �i!I�!ii'6�fSi Total Depth = 51 Feet 50 .: S /10 Sand: Fine Grained SP 6 12 Groundwater not encountered (Grey in colon Bedrock not encountered Sledden Engineering 77 -725 Enfield Lane, Suite 100, Faltn desert, CA 92211 (760) 77: -3393 Fax (760) 772 -3895 6732 Stanton Ave., Suite A, Buena Park, CA 90621 (714) j23 -0952 Fax (714) 523 -1369 450 Egxn Avenue, Beaunu)at, CA 92223 (95 1) 845 -7743 Fax (951) 845 -8863 1543fi Chglame Road, Suite A, Victorvillc, CA 92392 (760)962 -1868 Fax (760) 962 -1878 February 14, 2007 Mr. Rod Vandenbos 74 -785 Highway 111, Suite 100 Indian Wells, California 92210 Project: Tentative Tract Map 30378 SWC.Avenue 51 and Madison Street La QuinLi, California Subject: Supplemental Testing for Storm Water retention System Design Project No. 5441-1497 07-02 -129 As requested, this memo has been prepared to provide a summary of our supplemental field exploration and infiltration testing performed to evaluate the soil conditions within the area of the proposed retention basins. As part of our evaluation, we have performed infiltration tests on the subject site to determine the infiltration potential of the soil within the vicinity of the proposed retention basins. Infiltration tests were performed within the areas of the proposed retention basins. Infiltration tests were performed on January 30 and 31, 2007. Testing was performed using a double -ring infiltration apparatus in general accordance with ASTM 'Pest Method D 3385. Testing indicated relatively stable infiltration rates of approximately 2.2 and 2.3 inches per hour. In addition, 2 exploratory bores were excavated to observe the subsurface soil conditions. The exploratory bores were excavated on January 23, 2007 using a truck mounted drill rig and hollow -stem augers. Samples were obtained within the bores using standard penetration samplers (SPT) at approximately 5 foot intervals. Tile soil bore logs are attached to this memo. One of our bores was utilized for additional percolation testing. The bore was lined with perforated plastic pipe to a depth of approximately 40 feet. The testing consisted of filling the hole with water and recording the drop over consecutive time intervals. Testing'was performed in general accordance with Riverside County DENS methods for seepage pits. Testing indicated relatively a stable infiltration rate of approximately 17.7 gallons per square foot per day (gal /sq. ft/day). I'C'I: February 14, 2007 -?- Project No. 544 -1497 07 -02 -129 If you have any questions regarding this memo, please contact the undersi;ned. Respectfully submitted, SLADDEN ENGINEERING Nicholas S. Devlin Project Enjineer Letter /nd Copies: 2/Mr. Rod Vandenbos 11 Brett L. AnderVn Principal Engineer ( No. C 48 189 rn I rn zo }\ Exp. 9 -30 -2008 -1_ OF Sladdeiz fit ineering L�1- ( No. C 48 189 rn I rn zo }\ Exp. 9 -30 -2008 -1_ OF Sladdeiz fit ineering N P r -• D -- — -T-- N eu,oaG -- �... - -- - -- -- - - -- - - - -- - -Q z.nc- - --- -- VISTA_BONITA_TRAIL 11 - -- (PRIVATE SnTE6 NOTEI LUIS 1 - 4 AVERAGE OVER CUE ACRE IN SIZE AND RETAIN STORM WATER ON SRB. RETENTION IIASINS ALONG LUOISOH ST. ARE UNKED BY EQUALIZER LINES AND ARE LYING WMiIN EXISTING CITRUS GROVE TO REIMIN. 11iE 60LIR1 55IDE Or THE EIfTTIY ROAD IS PART OF THE FUTURE DEVELOPMEW 1 TO THE SOURI A14D WILL IEMPORARLLY DRNN INTO THE EXISTING CITRUS GROVE ON THAT PROPEffTY. THE REAR OF LOTS a-8 DRNN EAST DIRECTLY INTO 1HE UNKED RETENTION BASINS. , R/W. TRACT BOUNMARY-/ l h WALL L ( I+GUS o Rol—N;3 m 47,002 VOL 1,285 CF. 1.ua Ac \ _ VOL 1.301 CF. :a ,J 1 0 A 37,672 0.86 AG y m t o � 45.506 B-2 L15� O TC 513.70 45,010 CBj CRAPHIC SCALE ,Cc A 1w 2W I 100 ( IN reer l I inch - 100 !L. SCALE: AS SHOWN .t •1 LEGEND TC 916.71 0 516.5 7 \) �, B n I r z / f i13 j 60,]86 2.08 T. I I 1.58 LCr ; /, j E�d \ f u.r,r! �.0 \LZTIVIf ! I( / RETENTION akSIH (n") I i r� EQUALIZER LINE i11 ?1_ 2..... -'f- �i L. L•.G•. :\t: %TCC111,7�0 TC 513.66 1 63 Cg i� I� _. B -1 L n,r. - ..,T .L7W�,�,�1/II I H 7 -6:657 67060A. I II - 4; ,603. -� EXInNG R/W \\� ® Approximate Percolation Test Hole Location FUTURE CURB k CLMER RETENTION Rol—N;3 m WY 2.581 Sr. VOL 1,285 CF. WJ 2,592 SF. VOL 1.301 CF. WIS 1 874 SF. VOL 1.002 CF. it B SF. VOL l 12 jjTHRU,& N5 14,781 SF. I VOL 18,213 CF. I` ® M5 1,250 SF. VOL 1,461 CF. AK5 070 Sr. VCL 408 CF. I,INE A �I I DRAINAGE AREA MAP �I VM DRAIN /RETENTION BASIN EXHIBIT TRACT 30378 fl ROD VANDENBOS AND ADJACENT . ST'I'ES Ji PLAN SOURCE: Client Site Plan and Approximate Test Hole Locations Tentative Tract Map 30378 NWC Avenue 51 and Madison Street La Quinta, California Project Number: 544 -1497 Date: 02 -13 -2007 (i I''.'. I, ,I Il C]r? ,a1.1 :I'•11C1' i111� i I _ 1 It: :7 111 ;Itl AVIII 1I0IW'.)Ij!II:jI5 NI.I. ills (IV Cc ti! LZ Z I INS I-011puL) 711!j :11111!q XIIIS I'\$ ,ul. :pIII:S Xlps 9':5 If `IL 10 '13 9 1: IN S III TS --)Il!j :I?L[I:S AJI!S E, 1, 0 1 n IN S :11,11!S Xq!S os li Lr. L I.].) N.)Cj 0 lloslpvj.�l pur RLCO d i Tentative Tract tvlap 30373 StVC Avenue 51 and L- Wadison Street, La Quinta kI):ifT25/2UU7 Bore No. 3 Job Number: 0 544-1-- _ o ' — Description 0 Remarks U t _ i Graded Soil 1' > 3/4 Sandy Silt ' i✓IL 3 71 Greyish Brown in color l_ 1 .Iii;:,;:,, 10 r y!�,,y, 316 Silty lt V. y Sand: Fine Grained Sy( 20 4 Grcy in color (5 415 Clay . 1 - CL 35 95 Olive in color 1• - 20 4/6 Clay _ CL 29 80 Olive in color 1_ 1 25 Iti M5? 11 i=i,'I 5/8 Silty Sand: Fine Grained SM 12 23 Grey in color Nil, 1.1 lh� lh' iuq 1 �I Il:i 30 6/6 Silty Sand: Fine Grained Sivl l l 26 Grey in color nli k!1!� 1 i . 41�)ji;tih 'auR�i'� 5/9 Silty Sand: Fine Grained SCI 9 23 Grey in color I Iln�j;i;i!�;I m PM 40 oli N "1 i. j j. ;Ii M N;I 8/13 Silty Sand: Fine Grained with Sandy Silt Interbedded SiM 19 49 Olive & Grey in color r °�!5�i1'I9 IGiI!!':i!!ti!liy; Vote: The stratification lines represent the approximate 5110 Silty Sand: Fine Grained with Silt Interbedded SCI boundaries between the soil 'j'.. 31-i 14 56 Ilt'ry0 (Greyish Brown in color) types; the transition may be .u;:y;lylri lat;,.ti gradual. 50 8 /I0 Sand: Fine Grained Total Depth = 51 Feet 12 Groundwater not encountered � (Grey in color) . Bedrock not encountered I Gradation ASTM C117 & C136 Project Number: 544 -1497 Project Name: Ave 51 & Madison Sample ID: B -1 #2 @ 10' Sieve Sieve Percent Size, in Size, mm Passing 1' 25.4' 100.0 3/4" 19.1 100.0 1/2" 12.7 100.0 9.53 100.0 #4 4.75 100.0 #8 2.36 100.0 #16 1.18 99.8 #30 0.60 99.7 #50 0.30 95.6 #100 0.15 76.4 #200 0.074 45.6 February 13, 2007 " e® MIN nou� nn n nn�uimo�nna���uu�� ' mnun■�iru�u��e °�=m��rmu�� I off �m �I 1' H.P. ' VISTA BONITA TRAIL (PRIVATE STREET) 1 (NOT INCLUDED IN TRACT 30378 RETENTION BASIN ANALYSIS) TC 51 R /W, TRACT. BOUNDARY J TC 516.32 ' & WALL O 2,331 CFh 4 � --- ' 5,733 CF 2,331 CF 4 ' PL PL I 7,350 CIA 3 4,088 CF 11 ,*d 7,355 CF � P m PL 2,202 CF Z a' 2,202 CF� zo M 5,866 CF �- N o X 1w U 1 � 2 � �. PL 6,584 CFA pt 4,444 CF ' V 6,911 CF 1 Q 8 9 O0 4669 CF 1 TC 513:70 CB 2 pt 0100 =1.25 CFS o � �- S.D. LINE "C" j I RE7ENTION BASIN (TYP) 1,039 CF P H.P. 11 TRACT BOUNDARY &WALL 1200 CF H P. ` EXISTING R/W -� I 2,775 CFA BETH CIRCLE T,, C,7 PROPOSED DRAINAGE AREA MAP 1"=100' FUTURE CURB & GUTTER W Q' E--+ z 0 Q ►a � Z - m- O a- J LL o O � V oil mom r 1 r TRACT 30378 RETENTION BASIN COMPARATIVE CHART BASIN AREA C. V. E. VOL UME C. L. Q. VOL UME 1E 1 +10 6,911 7,500 2E 2 5,866 5,490 3E 3+ 4 7, 355 7,017 4E 4 5, 733 5,675 5W 2 2, 331 2,5J6 2 2, 331 2,5J6 6W 2 + 4 4,08J 4, 349 H 2 +� +2 7,350 6,559 7W 2 2,202 2,277 2 2,202 2,277 8W 2 +lp 4, 444 4,422 K . 2 + 2 + 2 6,584 6,632 9L .16 1, 039 1, 311 15 .14 877 1,169 140S .34 2775 2,796 Hydrology Review - TTM 30378 City 3 Hr Drainage Required Drainage Area Retention Area RI Impervious .CF Acres WS100 CVE 3 Hr Berm vs. Catch Retention Required vs.Basin Catch Basin Basin Retention WS 100 Top Rim Freeboard RI Impervious Basin FL Freeboard CF Elev Elev Ft Elev 1 5413 1.03 56 27 1 4002 511.85 513.50 1.65 Rework Rework 512.87 1.02 2 5490 1.04 56 27 2 4463 512.62 514.00 1.38 Rework Rework 3 4930 0.86 56 37 3 4512 513.47 515.20 1.73 Rework Rework 4 5675 1.08 56 27 4 5628 514.13 515.50 1.37 Rework Rework 5 5071 0.85 56 42 5 2828 514.01 514.40 0.39 Rework Rework 6 4523 0.76 56 42 6 2635 513.56 513.90 0.34 Rework Rework 7 4553 0.77 56 42 7 2673 513.07 513.40 0.33 Rework Rework 8 4669 0.89 56 27 8 12475 510.91 512.00 1.09 Rework Rework 511.91 1.00 9 1311 0.16 56 90 9 Combined 510.91 512.00 1.09 Rework Rework 10 8346 1.02 56 90 10 Combined 510.91 512.00 1.09 Rework Rework 512.87 1.96 11 1356 0.17 56 90 11' 1317 513.00 513.16 0.16 Rework Rework 12 1391 0.26 56 30 12' 542 513.51 513.35 -0.16 Rework Rework 13 7202 0.88 56 90 14 2796 0.34 56 90 15 1169 0.14 56 90 Total 63,895 10.25 41,075 Delta - 22,820 Missing Storage ' Temporary Basin - Offsite Approval Necessary Basin 9 within 10 PUE - 5 ft encroachment at north curb of Beth Circle Basin 10 shown without drainage easement (Diamond D) on final map Basin 11 will crest high point with 0.44 ft overflow and does not provide effective 1 ft freeboard Basin 12 within ROW of unimproved Madison Street Basin calculations still shown commingled - separate information per basin was previously requested II r 1 _ �- coachclla Valle 1 j Date: 5/8/07 1 To: Coachella Valley Engineers 1 Mark A. Turner Scott Davis Phone: .605- 761 -0248 1 Fax: 605 -761 -0249 1 I Subject: Basin summary TM 30378 1� See attached summary sheet for the SUH on Van De Bos Basins as restructured... basic design remains to the CLQ minimum as published with the one foot freeboard to street FL and the rough grade pad elevations... and insure that the sewer invert service connections to the house do not cross through the 1 basins ....you may use the arched HDPE pipe structures for under the driveway....and the west lots 1,2,3,4 do not have utilities in the utility 1 easement ... and the west basins for lots 5,6,7,8 are outside the utility easement but in the "new drainage easement." Looks like that the most likely scenario is the grouping b overflow piping from K ' g P g Y PP 9 basin and J basin .... into the L basin... Drainage from basin 14 can be shown in the Madison ROW as a temporary basin and should be designed as an inlet into the Core Homes tract which Joe is �11 presently working on.. l From: Coachella Valley Engineers 1 . David K. Rice Jr. Phone: 760 - 360 -4200 1 Fax: 760 - 360 -4204 Pages: 9 2 1 I Subject: Basin summary TM 30378 1� See attached summary sheet for the SUH on Van De Bos Basins as restructured... basic design remains to the CLQ minimum as published with the one foot freeboard to street FL and the rough grade pad elevations... and insure that the sewer invert service connections to the house do not cross through the 1 basins ....you may use the arched HDPE pipe structures for under the driveway....and the west lots 1,2,3,4 do not have utilities in the utility 1 easement ... and the west basins for lots 5,6,7,8 are outside the utility easement but in the "new drainage easement." Looks like that the most likely scenario is the grouping b overflow piping from K ' g P g Y PP 9 basin and J basin .... into the L basin... Drainage from basin 14 can be shown in the Madison ROW as a temporary basin and should be designed as an inlet into the Core Homes tract which Joe is �11 presently working on.. l 1 U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 2004, Version 7.0 Study date 05/07/07 File: VDB13100.out +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 ------------------------------------------------------------------ English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format VANDEBOS TM33085 RB NO. 1 COAHCELLA VALLEY ENGINEERS DKRICE ------------------------------------------------------------------ Drainage Area = 1.28(Ac.) = 0.002 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.25(Ac.) _ 0.000 Sq.. Mi. USER Entry of lag time in hours Lag time = 0.090 Hr. Lag time = 5.40 Min. 25% of lag time = 1.35 Min. 40% of lag time = 2.16 Min. Unit time = 15.00 Min. Duration . of storm = 3 Hour(s) User Entered Base Flow = 1.01(CFS) 2 YEAR Area rainfall data: Area (Ac. ) [1] Rainfall (In) [2] Weighting [1 *2) 0.25 1.01 0.25 100 YEAR Area rainfall data: Area(Ac.) [1) Rainfall(In) [2] Weighting[1 *2) 0.25 2.50 0.63 STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall = 1.010(In) Area Averaged 100 -Year Rainfall = 2.500(In) Point rain (area averaged) = 2.500(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.500(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious 0.250 56.00 0.900 1.030 56.00 0.250 Total Area Entered = 1.28(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 56.0 56.0 0.511 0.900 0.097 0.195 0.019 56.0 56.0 0.511 0.250 0.396 0.805 0.319 Sum (F) _ 0.338 Area averaged mean soil loss (F) (In /Hr) = 0.338 Minimum soil loss rate ((In /Hr)) = 0.169 (for 24 hour storm duration) Soil ------------------------------------------------------------------ low loss rate (decimal) = 0.350 U n i t H y d r o g r a p h ------------------------------------------------------------------ DESERT S -Curve ------------------------------------------------------------------ Unit Hydrograph Data Unit time period Time % of lag Distribution Unit Hydrograph (hrs) ------------------------------------------------------------------ Graph % (CFS) 1 0.250 277.778 53.610 0.692 2 0.500 555.556 40.205 0.519 3 0.750 833.333 6.185 0.080 ----------------------------------------------------7------------------ Sum = 100.000 Sum= 1.290 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.370 0.338 - -- 0.03 2 0.50 4.80 0.480 0.338 - -- 0.14 3 0.75 5.10 0.510 0.338 - -- 0.17 4 1.00 4.90 0.490 0.338 - -- 0.15 5 1.25 6.60 0.660 0.338 - -- 0.32 6 1.50 7.30 0.730 0.338 - -- 0.39 7 1.75 8.40 0.840 0.338 - -- 0.50 8 2.00 9.00 0.900 0.338 - -- 0.56 9 2.25 12.30 1.230 0.338 - -- 0.89 10 2.50 17.60 1.760 0.338 - -- 1.42 11 2.75 16.10 1.610 0.338 - -- 1.27 12 3.00 4.20 0.420 0.338 - -- 0.08 Sum = 100.0 Sum = 5.9 Flood volume = Effective rainfall 1.49(In) times area 1.3(Ac.) /((In) /(Ft.)] = 0.2(Ac.Ft) Total soil loss = 1.01(In) Total soil loss = 0.108(Ac.Ft) Total rainfall = 2.50(In) Flood volume = 6911.4 Cubic Feet Total soil loss = 4704.6 Cubic Feet ------------------------------------------------------------ - - - - -- Peak flow rate of this hydrograph = 2.700(CFS) ------------------------------------------------------------ - - - - -- +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 3 - H O U R S T O R M R u n o f f H y d r o g r a p h ------------------------------------------------------------------ Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------------ Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0213 1.03 V Q 0 +30 0.0446 1.13 VQ 0 +45 0.0695 1.21 I Q V 1+ 0 0.0946 1.22 Q V 1 +15 0.1220 1.33 Q V 1 +30 0.1522 1.46 I Q I V 1 +45 0.1850 1.59 Q V 2+ 0 0.2200 1.69 Q VI I 2 +15 I, 0.2604 1.96 I Q I V I 2 +30 I 0.3121 2.50 I Q I V 2 +45 I 0.3679 2.70 I Q I V 3+ 0 0.4060 1.84 I Q I I I V 3 +15 0.4298 1.15 I Q I I I V 3 +30 0.4508 1.02 I Q I I V ----------------------------------------------------------------- - - - - -- 1� �I �I U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 04/18/07 File: vdblotisuh3100.out +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ------------------------------------------------------------ - - - - -- Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 -----=------------------------------------------------------------ English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format vandebos_elotlSUH City of La Quinta DK Rice Coachella Valley engineers ------------------------------------------------------------ - - - - -- Drainage Area = 1.13(Ac.) = 0.002 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.01(Ac.) _ 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = 0.020 Hr. Lag time = 1.20 Min. 25% of lag time = 0.30 Min. 40% of lag time = 0.48 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 0.20(CFS) 2. YEAR Area rainfall data: Area(Ac.)[11 Rainfall(In)[21 Weighting[1 *2] 0.01 1.10 0.01 100 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1 *2) 0.01 2.60 0.03 STORM EVENT (YEAR) = 100.00 1 Area Averaged 2 -Year Rainfall = 1.100(In) Area Averaged 100 -Year Rainfall = 2:600(In) Point rain (area averaged) = 2.600(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.600(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious 1.130 56.00 0.300 Total Area Entered = 1.13(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -1 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 56.0 36.0 0.706 0.300 0.515 1.000 0.515 Sum (F).= 0.515 Area averaged mean soil loss (F) (In /Hr) = 2.000 Minimum soil loss rate ((In /Hr)) = 0.258 (for 24 hour storm duration) Note: User entry of the f value Soil ------------------------------------------------------------------ low loss rate (decimal) = 0.450 U n i t H y d r o g r a p h ------------------------------------------------------------------ DESERT S -Curve ------------------------------------------------------------------ Unit Hydrograph Data Unit time period Time % of lag Distribution Unit Hydrograph (hrs) ------------------------------------------------------------------ Graph % (CFS) 1 0.250 1250.000 100.000 1.139 ----------------------------------------------------------------------- Sum = 100.000 Sum= 1.139 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.385 2.000 0.173 0.21 2 0.50 4.80 0.499 2.000 0.225 0.27 3 0.75 5.10 0.530 2.000 0.239 0.29 4 1.00 4.90 0.510 2.000 0.229 0.28 5 1.25 6.60 0.686 2.000 0.309 0.38 6 1.50 7.30 0.759 2.000 0.342 0.42 7 1.75 8.40 0.874 2.000 0.393 0.48 8 2.00 9.00 0.936 2.000 0.421 0.51 9 2.25 12.30 1.279 2.000 0.576 0.70 10 2.50 17.60 1.830 2.000 0.824 1.01 11 2.75 16.10 1.674 2.000 0.753 0.92 12 3.00 4.20 0.437 2.000 0.197 0.24 Sum = 100.0 Sum = 5.7 Flood volume = Effective rainfall 1.43(In) times area 1.1(Ac.) /[(In) /(Ft.)] = 0.1(Ac.Ft) 'I 'I Total soil loss = 1.17(In) Total soil loss = 0.110(Ac.Ft) Total rainfall = 2.60(In) Flood volume = 5865.7 Cubic Feet Total soil loss = 4799.2 Cubic Feet ------------------------------------------------------------ - - - - -- Peak flow rate of this hydrograph = 1.347(CFS) ------------------------------------------------------------ - - - - -- + + + + + + + + + + + + + + + + + + + + + ............................................. + + 3 - H O U R S T O R M R u n o f f H y d r o g r a p h ------------------------------------------------------------ - - - - -- Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------ - - - - -- Time(h +m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0091 0.44 Q 0+30 0. 0.197 0.51 Q V 0 +45 0.0307 0.53 I Q V 1+ 0 0.0414 0.52 Q V 1 +15 0.0545 0.63 Q V 1+30 0.0684 0.68 Q V 1 +45 0.0839 0.75 Q I V 2+ 0 0.1001 0.79 I Q ( V 2 +15 0.1208 1.00 Q I V 2 +30 0.1486 1.35 Q V 2 +45 0.1745 1.25 I Q I I V 3+ 0 0.1842 0..47 IQ VI ----------------------------------------------------------------------- 1 U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VDB13100.out +++++±+++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ -------------------------------------- - --------------------- - - - - -- Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 ------------------------------------------------------------------ English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format VANDEBOS TM33085 RB NO. 1 COAHCELLA VALLEY ENGINEERS DKRICE -- ------------------------------------------------------------------ Drainage Area = 1.28(Ac.) = 0.002 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.25(Ac.) _ 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = 0.080 Hr. Lag time = 4.80 Min. 25% of lag time = 1.20 Min. 40% of lag time = 1.92 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) 2 YEAR Area rainfall data: Area (Ac.) [1] Rainfall (In) [2] Weighting [1 *2) 0.25 1.04 0.26 100 YEAR Area rainfall data: Area (Ac. ) [1) Rainfall (In) (2) Weighting [1 *2] 0.25 2.54 0.64 STORM EVENT (YEAR) = 100.00 I Area Averaged 2 -Year Rainfall = 1.040(In) Area Averaged 100 -`tear Rainfall = 2.540(In) ' Point rain (area averaged) = 2.540(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.540(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious % 0.250 56.00 0.900 j) 1.030 56.00 0.300 ' Total Area Entered = 1.28(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F ' AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) :I 56.0 56.0 0.511 0.900 0.097 0.195 0.0.9 ' 56.0 56.0 0.511 0.300 0.373 0.805 0.300 Sum (F) _ 0.319 ' Area averaged mean soil loss (F) (In /Hr) = 0.319 Minimum soil loss rate ((In /Hr)) = 0.160 (for 24 hour storm duration) ' Soil low loss rate (decimal) = 0.450 ------------------------------------------------------------------ ' U n i t H y d r o g r a p h DESERT S -Curve -------------------------------------------------- 1 Unit Hydrograph Data ------------------------------------------------------------------ t Unit time period Time % of lag - _ -(hrs) --- -------------------------------- Distribution Graph % - a ------ Unit Hydrograph (CFS) 1 0.250 312.500 57.461 0.741 2 0.500 625.000 37.948 0.490 3 0.750 937.500 4.591 0.059 Sum = 100.000 Sum= 1.290 1 _______________________________________________________________________ ' Unit Time Pattern Storm Pain Loss rate(In. /Hr) (Hr.) Percent (In /Hr) Max Low Effective (In /Hr) 1 0.25 3.70 0.376 0.319 0.06 2 3 0.50 4.80 0.488 0.75 5.10 0.518 0.319 - -- 0.319 0.17 0.20 ' 4 1.00 4.90 0.498 0.319 0.18 5 1.25 6.60 0.671 0.319 - -- 0.35 6 1.50 7.30 0.742 0.319 - -- 0.42 I 7 1.75 8.40 0.853 0.319 - -- 0.53 ' 8 2.00 9.00 0.914 0.319 - -- 0.60 9 2.25 12.30 1.250 0.319 - -- 0,. 93 10 2.50 17.60 1.788 0.319 - -- 1.47 ' it 2.75 16.10 1'.636 0.319 - -- 1.32 I♦ I 12 3.00 4.20 0.427 0.319 - -- 0.11 Sum = 100.0 Sum = 6.3 Flood volume = Effective rainfall 1.58(In) times area 1.3(Ac.) /((In) /(Ft.)] = 0.2(Ac.Ft) Total soil loss = 0.96(In) Total soil loss = 0.102(Ac.Ft) Total rainfall = 2.54(In) Flood volume = 7355.1 Cubic Feet Total soil loss = 4446.8 Cubic Feet ------------------------------------------------------------ - - - - -- Peak flow rate of this hydrograph = 2.791(CFS) ------------------------------------------------------------------ 3 - H O U R S T O R M R u n o f f H y.d r o g r a p h ------------------------------------------------------------------ Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------------ Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0224 1.08 V Q 0 +30 0.0470 1.19 Q I i 0 +45 0.0733 1.27 I QV 1+ 0 0.0998 1.28 Q V 1 +15 0.1287 1.40 Q V 1 +30 0.1604 1.54 Q I V 1 +45 0.1948 1.66 Q I V 2+ 0 0.2314 1.77 I Q I VI i 2 +15 0.2738 2.05 Q I V 2 +30 0.3279 2.62 Q V 2 +45 I 0.3856 2.79 IQ I V 3+ 0 0.4239 1.85 I Q I I I V 3 +15 0.4481 1.17 I Q I I I V 3 +30 0.4697 1.05 I Q I I I V ----------------------------------------------------------------- - - - - -- U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCPDD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VDB43100.out -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April.1978 Program License Serial Number 6078 ------------------------------------------------------------ - - - - -- English (in -lb) Input Units Used English Rainfall Data (Inches) Input.Values Used English Units used in output format VANDEBOS TM 30378 CITY LA QUINTA COACHELLA VALLEY ENGINEERS DKRICE ------------------------------------------------------------ - - - - -- Drainage Area = 1.08(Ac.) = 0.002 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.08(Ac.) _ 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = 0.090 Hr. Lag time = 5.40 Min. 25% of lag time = 1.35 Min. 40% of lag time = 2.16 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) 2 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] weighting(1 *2J 0.08 1.04 0.08 100 YEAR Area rainfall data: Area(Ac:)[1) Rainfall(In)[2] Weighting[1 *2] 0.08 2.53 0..20 STORM EVENT (YEAR) = 100.00 1 Area Averaged 2 -Year Rainfall = 1.040(In) Area Averaged 100 -Year Rainfall = 2.530(In) Point rain (area averaged) = 2.530(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.530(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious % 1.000 56.00 0.300 0.080 56.00 0.200 Total Area Entered = 1.08(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 56.0 56.0 0.511 0.300 0.373 0.926 0.345 56.0 56.0 0.511 0.200 0.419 0.074 0.031 Sum (F) _ 0.376 Area averaged mean soil loss (F) (In /Hr) = 0.376 Minimum soil loss rate ((In /Hr)) = 0.188 (for 24 hour storm duration) Soil low loss rate (decimal) = ------------------------------------------------------------------ 0.350 U n i t H y d r o g r a p h DESERT S -Curve ------------------------------------------------------------------ Unit Hydrograph Data ------------------------------------------------------------------ Unit time period Time % of lag Distribution Unit Hydrograph (hrs) ------------------------------------------------------------------ Graph % (CFS) 1 0.250 277.778 53.610 0.584 2 0.500 555.556 40.205 0.438 3 0.750 833.333 6.185 0.067 ------------------------------------------------7---------------------- Sum = 100.000 Sum= 1.088 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.374 0.376 0.131 0.24 2 0.50 4.80 0.486 0.376 - -- 0.11 3, 0.75 5.10 0.516 0.376 - -- 0.14 4 1.00 4.90 0.496 0.376 - -- 0.12 5 1.25 6.60 0.668 0.376 - -- 0.29 6 1.50 7.30 0.739 0.376 - -- 0.36 7 1.75 8.40 0.850 0.376 - -- 0.47 8 2.00 9.00 0.911 0.376 - -- 0.53 9 2.25 12.30 1.245 0.376 - -- 0.87 10 2.50 17.60 1.781 0.376 - -- 1.40 11 2.75 16.10 1.629 0.376 - -- 1.25 12 3.00 4.20 0.425 0.376 - -- 0.05 Sum = 100.0 Sum = 5.8 Flood volume = Effective rainfall 1.46(In) times area 1.1(Ac.) /[(In) /(Ft.)) = 0.1(Ac.Ft) Total soil loss = 1.07(In) Total soil loss = 0.096(Ac.Ft) Total rainfall = 2.53(In) Flood volume = 5733.3 Cubic Feet Total soil loss = 4185.3 Cubic Feet ------------------------------------------------------------ - - - - -- Peak flow rate of this hydrograph = 2.445(CFS) ------------------------------------------------------------------ +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 3 - H O U R S T O R M R u n o f f H y d r o g r a p h ------ ------------------------------------------------------------ Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------------ Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0244 1.18 V Q 0 +30 0.0494 1.21 Q 0 +45 0.0739 1.19 Q V 1+ 0 I 0.0983 1.18 Q VI I 1 +15 0.1246 1.27 I Q V I I 1 +30 I 0.1532 1.39 I Q I V 1 +45 0.1841 1.49 I Q I V I I 2+ 0 0.2168 1.58 I Q I V I 2 +15 0.2543 1.81 I Q I I V I 2 +30 I 0.3013 2.28 I QI I V I 2 +45 0.3519 2.45 I QI I V 3+ 0 0.3872 1.71 I Q I I I V 3 +15 0.4109 1.15 I Q I I I V 3 +30 0.4324 1.04 I Q V ----------------------------------------------------------------- - - - - -- r. Area Averaged 2 -Year Rainfall = 1.100(In) Area Averaged 100 -Year Rainfall = 2.540(In) Point rain (area averaged) = 2.540(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.540(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious 0.010 56.00 0.300 l 0.380 56.00 0.400 Total Area Entered = 0.39(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 56.0 56.0 0.511 0.300 0.373 0.026 0.010 56.0 56.0 0.511 0.400 0.327 0.974 0.319 j Sum (F) _ 0.328 Area averaged mean soil loss (F) (In /Hr) = 0.328 Minimum soil loss rate ((In /Hr)) = 0.164 (for 24 hour storm duration) Soil low loss rate (decimal) = ------------------------------------------------------------------ 0.400 IU n i t H y d r o g r a p h DESERT S -Curve ------------------------------------------------------------------ Unit Hydrograph Data ------------------------------------------------------------------ lUnit time period Time % of lag Distribution Unit Hydrograph (hrs) ------------------------------------------------------------------ Graph % (CFS) 1 0.250 312.500 57.461 0.226 2 0.500 625.000 37.948 0.149 3 0.750 937.500 4.591 0.018 --------------------------------------------- Sum = 100.000 ---Sum= -- ---- 0.393 - -- Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.376 0.328 - -- 0.05 2 0.50 4.80 0.488 0.328 - -- 0.16 1 3 0.75 5.10 0.518 0.328 - -- 0.19 4 1.00 4.90 0.498 0.328 - -- 0.17 5 1.25 6.60 0.671 0.328 - -- 0.34 6 1.50 7.30 0.742 0.328 - -- 0.41 f 7 1.75 8.40 0.853 0.328 - -- 0.53 8 2.00 9.00 0.914 0.328 - -- 0.59 9 2.25 12.30 1.250 0.328 - -- 0.92 10 1 2.50 17.60 1.788 0.328 1.46 11 2.75 16.10 1.636 0.328 - -- 1.31 1! U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCA.DD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VDB73100.out . ...... .....}......{.'{....F'f.. ....+'.E.}' ....... ..F..............F' . .. ..F.'}.. ..E.. ....{.. . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 ------------------------------------------------------------ - - - - -- English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format VANDEBOS..TM 30378..7E CITY OF LA QUINTA COCHELLA VALLEY ENGINEERS DKRICE ------------------------------------------------------------ - - - - -- Drainage Area = 0.39(Ac.) = 0.001 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.10(Ac.) _ 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = 0.080 Hr. Lag time = 4.80 Min. 25% of lag time = 1.20 Min. 40% of lag time = 1.92 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) 2 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1 *2] 0.10 1.10 0.11 100 YEAR Area rainfall data: Area(Ac.) [1] Rainfall (In) [2] Weighting [1 *2] 0.10 2.54 0.25 STORM EVENT (YEAR) = 100.00 10 2.50 17.60 1.788 0.136 - -- 1.65 11 2.75 16.10 1.636 0.136 - -- 1.50 12 3.00 4.20 0.427 0.136 - -- 0.29 Sum = 100.0 Hydrograph in Sum = 8.5 Flood volume = Effective rainfall 2.13(In) 0 2.5 5.0 7.5 times area 0.9(Ac.) /[(In) /(Ft.)) = 0.2(Ac.Ft) Total soil loss = 0.41(In) V Q Total soil loss = 0.032(Ac.Ft) VQ Total rainfall = 2.54(In) I QV Flood volume = 7350.0 Cubic Feet Q VI I Total ------------------------------------------------------------ soil loss = 1409.2 Cubic Feet - - - - -- Peak flow rate of this hydrograph = 2.515(CFS) ----------------------------------------------------- - - - - -- - - - - -- +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 3 - H O U R S T O R M ------------------------------=----------------------------------- R u n o f f H y d r o g r a p h Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------------ Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0 +15 0.0242 1.17 V Q 0 +30 0.0515 1.32 VQ 0 +45 0.0802 1.39 I QV 1+ 0 I 0.1090 1.39 Q VI I 1 +15 I 0.1396 1.48 I Q V I 1 +30 I 0.1723 1.58 I Q I V I 1 +45 0.2070 1.68 Q I V I 2+ 0 I 0.2433 1.76 I Q I V 2 +15 0.2839 1.97 I Q I I V I 2 +30 0.3333 2.39 I QI I V I 2 +45 I 0.3852 2.51 I Q I I V 3+ 0 0.4228 1.82 I Q I I I V 3 +15 I 0.4478 1.21 I Q I I I V 3 +30 0.4696 1.05 I Q I I I VI ----------------------------------------------------------------- - - - - -- STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall = 1.040(In) Time Area Averaged 100 -Year Rainfall = 2.540(In) Loss rate(In. /Hr) Point rain (area averaged) = 2.540(In) 1 Areal adjustment factor = 100.00 % (In /Hr) 0.376 Adjusted average point rain = 2.540(In) ' Sub -Area Data: 0.50 4.80 Area(Ac.) Runoff Index Impervious 0.35 0.440 56.00 0.900 0.75 0.510 56.00 0.370 0.136 - -- Total Area Entered = 0.95(Ac.Y 4 RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -3 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 5 1.25 56.0 74.8 0.305 0.900 0.058 0.463 0.027 6 56.0 74.8 0.305 0.370 0.204 0.537 0.109 0.61 7 1.75 Sum (F) _ 0.136 0.136 - -- 0.72 Area averaged mean soil loss (F) (In /Hr) = 0.136 2.00 Minimum soil loss rate ((In /Hr)) = 0.068 0.136 - -- (for 24 hour storm duration) 9 Soil low loss rate (decimal) = ------------------------------------------------------------------ 0.350 1.250 U n i t H y d r o g r a p h 1.11 DESERT S -Curve ------------------------------------------------------------------ Unit Hydrograph Data ------------------------------------------------------------------ Unit time period Time % of lag Distribution Unit Hydrograph (hrs) ------------------------------------------------------------------ Graph % (CFS) 1 0.250 312.500 57.461 0.550 2 0.500 625.000 37.948 0.363 3 0.750 937.500 4.591 0.044 Sum ----------------------------------------------------------------- = 100.000 Sum= 0.957 - - - - -- 1 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective 1 (Hr.) 0.25 Percent 3.70 (In /Hr) 0.376 Max Low- 0.136 (In /Hr) 0.24 ' 2 0.50 4.80 0.488 0.136 0.35 3 0.75 5.10 0.518 0.136 - -- 0.38 4 1.00 4.90 0.498 0.136 0.36 5 1.25 6.60 0.671 __- 0.136 0.53 6 1.50 7.30 0.742 0.136 - 0.61 7 1.75 8.40 0.853 0.136 - -- 0.72 8 2.00 9.00 0.914 0.136 - -- 0.78 9 2.25 12.30 1.250 0.136 1.11 1 1 U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VDB6EMADW3100.out +++++++++++++++++++++++++++++++++++ + + + + + + + + + + ++ + + + + + + + + + + + + + + + + + ++ -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial.Number 6078 ------------------------------------------------------------------ English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format VANDEBOS TM30378 CITY LA QUINTA..6EMADW CAOCHELLA VALLEY ENGINEERS DKRICE ------------------------------------------------------------------ Drainage Area = 0.95(Ac.) = 0.001 Sq. Mi. Drainage Area for Depth-Area-Areal Adjustment.= 0.44(Ac.) _ 0..001 Sq. Mi. USER Entry of lag time in hours Lag time = 0.080 Hr. Lag time = 4.80 Min. 25% of lag time = 1.20 Min. 40% of lag time = 1.92 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) 2 YEAR Area rainfall data: Area (Ac. ) (1) Rainfall (In) [2] 0.44 1.04 100 YEAR Area rainfall data: Area (Ac.) [1) 0.00 0.00 0.44 Rainfall (In) (2) 2.54 0.44 2.54 Weighting[1 *2) 0.46 Weighting[1 *2] 0.00 0.00 1.12 1 12 3.00 4.20 0.427 0.261 - -- 0.17 Sum = 100.0 Sum = 7.0 Flood volume = Effective rainfall 1.76(In) times area 0.6(Ac.) /((In) /(Ft.)] = 0.1(Ac.Ft) Total soil loss = 0.78(In) Total soil loss = 0.042(Ac.Ft) Total rainfall = 2.54(In) Flood volume = 4083.1 Cubic Feet Total soil loss = 1817.9 Cubic Feet ----------------------=------------------------------------- - - - - -- Peak flow rate of this hydrograph = 1.953(CFS) ------------------------------------------------------------------ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 3 - H O U R S T O R M R u n o f f H y d r o g r a p h ------------------------------------------------------------------ Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------------ Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0224 1.08 V Q 0 +30 0.0462 1.15 Q 0 +45 0.0709 1.19 Q V 1+ 0 I 0.0956 1.20 I Q VI 1 +15 I' 0.1216 1.26 I Q V I 1 +30 0.1490 1.33 I Q I V I 1 +45 0.1777 1.39 I Q I V I 2+ 0 0.2075 1.44 I Q I V 2 +15 0.2402 1.58 I Q I I V I 2 +30 0.2788 1.87 I Q I I. V I 2 +45 0.3192 1.95 I Q I I V 3+ 0 0.3498 1.48 I Q I I I V 3 +15 0.3730 1.12 I Q I I I V 3 +30 0.3946 1.04 I Q I I I V ----------------------------------------------------------------- - - - - -- 1 11 Area Averaged 2 -Year Rainfall = 1.040(In) Area Averaged 100 -Year Rainfall = 2.540(In) Point rain (area averaged) = 2.540(In) Areal adjustment factor = 100.00 Adjusted average point rain = 2.540(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious 0.260 56.00 0.900 0.380 56.00 0.300 Total Area Entered = 0.64(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 56.0 56.0 0.511 0.900 0.097 0.406 0.039 56.0 56.0 0.511 0.300 0.373 0.594 0.221 Sum (F) _ 0.261 Area averaged mean soil loss (F) (In /Hr) = 0.261 Minimum soil loss rate ((In /Hr)) = 0.130 (for 24 hour storm duration) Soil ------------------------------------------------------------------ low loss rate (decimal) = 0.400 U n i t H y d r o g r a p h ------------------------------------------------------------------ DESERT S -Curve ------------------------------------------------------------------ Unit Hydrograph Data Unit time period . Time % of lag Distribution Unit Hydrograph (hrs) ------------------------------------------------------------------ Graph % (CFS) 1 0.250 312.500 57.461 0.371 2 0.500 625.000 37.948 0.245 3 0.750 937.500 4.591 0.030 ----------------------------------------------------------------------- Sum = 100.000 Sum= 0.645 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.376 0.261 - -- 0.12 2 0.50 4.80 0.488 0.261 - -- 0.23 3 0.75 5.10 0.518 0.261 - -- 0.26 4 1.00 4.90 0.498 0.261 - -- 0.24 5 1.25 6.60 0.671 0.261 - -- 0.41 6 1.50 7.30 0.742 0.261 - -- 0.48 7 1.75 8.40 0.853 0.261 - -- 0.59 8 2.00 9.00 0.914 0.261 - -- 0.65 9 2.25 12.30 1.250 0.261 - -- 0.99 10 2.50 17.60 1.788 0.261 - -- 1.53 11 2.75 16.10 1.636 0.261 - -- 1.37 U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VDBGW3100.out +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 ------------------------------------------------------------------ English (ih -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format VAND DE BOS TM 30378 6W CITY OF LA QUINTA COACHELLA VALLEY ENGINEERS DKRICE ------------------------------------------------------------------ Drainage Area = 0.64(Ac.) = 0.001 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.26(Ac.) _ 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = 0.080 Hr. Lag time = 4.80 Min. 25W of lag time = 1.20 Min. 40% of lag time = 1.92 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) 2 YEAR Area rainfall data: Area (Ac.) [1) Rainfall (In) [2) Weighting [1 *2) 1 0.26 1.04 0.27 100 YEAR Area rainfall data: 1 1 Area (Ac.) [1) Rainfall (In) (2) Weighting [1 *2) 0.26 2.54 0.66 1 STORM EVENT (YEAR) = 100.00 1 1 9 2.25 12.30 1.250 0.377 - -- 0.87 10 2.50 17.60 1.788 0.377 - -- 1.41 11 2.75 16.10 1.636 0.377 - -- 1.26 12 3.00 4.20 0.427 0.377 - -- 0.05 1 +30 I Sum = 100.0 Q I V Sum = 5.9 0.1786 Flood volume = Effective rainfall 1.48(In) 0.2092 1.48 times area 0.9(Ac.) /[(In) /(Ft.)j = 0.1(Ac.Ft) I Q I I V Total soil loss = 1.06(In) I Q I I V I 2 +45 Total' soil loss = 0.077(Ac.Ft) 3+ 0 0.3634 Total rainfall = 2.54(In) 0.3863 1.11 Flood volume = 4662.0 Cubic Feet 1.04 I Q I I Total -- - - - - soil loss - - - - - - - - - = 3359.6 Cubic Feet - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Peak flow rate of this hydrograph = 2.180(CFS) ------------------------------------------------------------------ +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 3 - H O U R S T 0 R M R u n o f f H y d r o g r a p h ----- ------------------------------------------------------------- Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------=----------------------- Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0242 1.17 V Q 0 +30 0.0487 1.18 Q 0+45 0.0726 1.16 Q V 1+ 0 0.0964 1.15 Q VI 1 +15 0.1219 1.23 Q V 1 +30 I 0.1494 1.33 Q I V 1 +45 J 0.1786 1.41 Q I V 2+ 0 0.2092 1.48 I Q I V 2 +15 I 0.2439 1.68 I Q I I V 2 +30 0.2866 2.06 I Q I I V I 2 +45 0.3316 2.18 i Q I I I V 3+ 0 0.3634 1.54 I Q I I I V 3 +15 I 0.3863 1.11 I Q I I I V 3 +30 0.4079 1.04 I Q I I V ----------------------------------------------------------------- - - - - -- Area Averaged 2 -Year Rainfall = 1.040(In) Area Averaged 100 -Year Rainfall = 2.540(In) Point rain (area averaged) = 2.540(In) Areal adjustment factor = 100.00 Adjusted average point rain = 2.540(In) Sub -Area Data: 56.0 0.511 Area(Ac.) Runoff Index Impervious% 0.070 56.00 0.200 0.000 56.00 0.000 0.800 56.00 0.300 Total Area Entered = 0.87(Ac.) 56.0 RI RI Infil. Rate Impervious AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) ------- - - - - -- - - - 56.0 56.0 0.511 0.200 0.034 ----- - - - - -- -Unit ------------ 56.0 56.0 0.511 0.000 0.000 Unit time period Time % of 56.0 56.0 0.511 0.300 0.343 ---- (hrs) - - -- ---------- ------------------ Adj. Infil. Rate Area% (In /Hr) (Dec.) 0.419 0.080 0.511 0.373 M N We 0.920 F Sum (F) _ 0.377 Area averaged mean soil loss (F) (In /Hr) = 0.377 Minimum soil loss rate ((In /Hr)) = 0.188 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.300 ------------------------------------------------------------ - - - - -- U n i t H y d r o g r a p h ' ------- - - - - -- - - - -- DESERT S -Curve -------------------------------------------- ----- - - - - -- -Unit ------------ Hydrograph ----- Data ---------------------------------- Unit time period Time % of lag Distribution Unit Hydrograph ---- (hrs) - - -- ---------- ------------------ Graph % -- ----------------- (CFS) - ----- ' 1 0.250 312.500 57.461 0.504 2 0.500 625.000 37.948 0.333 3 0.750 937.500 4.591 0.040 ----------------------------------------------------------------------- Sum = 100.000 Sum= 0.877 ' .� Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) ' J 1 0.25 3.70 0.376 0.377 0.113 0.26 2 0.50 4.80 0.488 0.377 0.11 3 0.75 5.10 0.518 0.377 - -- 0.14 ' i 4 5 1.00 1.25 4.90 6.60 0.498 0.671 0.377 0.377 - -- 0.12 0.29 6 1.50 7.30 0.742 0.377 - -- 0.37 7 1.75 8.40 0.853 0.377 - -- 0.48 8 2.00 9.00 0.914 0.377 - -- 0.54 1� �I �I �I �I �I t' t� U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VDB5W13100.out +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ------------------------------------------------------------------ - - - - -- Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format VANDEBOS TM 30378 CITLAQUINTA COACHELLA VALLEY ENGINEERS DKRICE ------------------------------------------------------------ - - - - -- Drainage Area = 0.87(Ac.) = 0.001 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.07(Ac.) _ 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = '0.080 Hr. Lag time = 4.80 Min. 25% of lag time = 1.20 Min. 40% of lag time = 1.92 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow.= 1.04(CFS) 2 YEAR Area rainfall data: Area (Ac.) [1] Rainfall (In) [2] 0.07 1.04 100 YEAR Area rainfall data: Area(Ac:) [1] Rainfall (In).[2] 0.07 2.54 STORM EVENT (YEAR) = 100.00 Weighting [1 *2] 0.07 Weighting[1 *2] 0.18 i 12 3.00 4.20 0.427 0.328 - -- 0.10 Sum = 100.0 Sum = 6.2 Flood volume = Effective rainfall 1.56(In) times area 0.4(Ac.) /[(In) /(Ft.)] = 0.1(Ac.Ft) Total soil loss '= 0.98(In) Total soil loss = 0.032(Ac.Ft) Total rainfall = 2.54(In) Flood volume = 2202.4 Cubic Feet Total soil loss = 1393.4 Cubic Feet ------------------------------------------------------------ - - - - -- Peak flow rate of this hydrograph -= ----- 1_570(CFS) - -- - ------------------------------ --- - - - - -- + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 3 - H O U R S T.O R M R u n o f f H y d r o g r a p h ------------------------------------------------------ .------------ Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------------ Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0217 1.05 V Q 0+30 0.0441 1.08 QV 0 +45 0.0670 1.11 Q V i 1+ 0 0.0899 1.11 Q V i 1 +15 0.1136 1.15 i Q V 1 +30 0.1381 1.19 i Q ( V 1 +45 0.1635 1.23 Q I V 2+ 0 0.1895 1.26 Q I V i 2 +15 0.2173 1.35 Q V i 2 +30 0.2486 1.52 Q V I 2 +45 0.2811 1.57 I Q I V 3+ 0 0.3076 1.28 Q I i V 3 +15 0.3299 1.08 Q V 3+30 0.3514 1.04 Q V ----------------------------------------------------------------- - - - - -- f. r U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VDB7W3100.out ........ ...... .. .. F.. F........'F.+.'F.....F.{..{..... . .L. . .... . ..T.,..}..}... . . j. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 ------------------------------------------------------------------ English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format VANDEBOS TM 30378 CITY LA QUINTA COACHELLA VALLEY ENGINEERS DKRICE -- ------------------------------------------------------------------ Drainage Area = 0.38(Ac.) = 0.001 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.35(Ac.) _ 0.001 Sq. Mi. USER Entry of lag time in hours Lag time = 0.090 Hr. Lag time = 5.40 Min. 25% of lag time = 1.35 Min. 40% of lag time = 2.16 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) 2 YEAR Area rainfall data: Area (Ac.) [1] Rainfall (In) [2] 0.30 1.04 0.05 1.04 100 YEAR Area rainfall data: Area (Ac. ) [1] Rainfall (In) [2] 0.05 2.54 0.30 2.54 Weighting [1 *2] 0.31 0.05 Weighting [1 *2] 0.13 0.76 1 'i i 'I fl I� 1' III � III � II I STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall = 1.040(In) Area Averaged 100 -Year Rainfall = 2.540(In) Point rain (area averaged) = 2.540(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.540(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious 0.350 56.00 0.300 0.030 56.00 0.270 Total Area Entered = 0.38(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 56.0 56.0 0.511 0.300 0.373 0.921 0.343 56.0 56.0 0.511 0.270 0.387 0.079 0.031 Sum (F) _ 0.374 Area averaged mean soil loss (F) (In /Hr) = 0.374 Minimum soil loss rate ((In /Hr)) = 0.187 (for 24 hour storm duration) Soil low loss rate ------------------------------------------------------------------ (decimal) = 0.400 U n i t H y d r o g r a p h ----------------------------------------------------------------•-- DESERT S -Curve -- Unit ------------------------------------------------------------------ Hydrograph Data Unit time period Time % of lag Distribution Unit Hydrograph (hrs) ------------------------------------------------------------------ Graph % (CFS) 1 0.250 277.778 53.610 0.205 2 0.500 555.556 40.205 0.154 3 0.750 833.333 6.185 0.024 ----------------------------------------------------------------------- Sum = 100.000 Sum= 0.383 Unit Time Pattern Storm Pain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.376 0.374 - -- 0.00 2 0.50 4.80 0.488 0.374 - -- 0.11 3 0.75 5.10 0.518 0.374 - -- 0.14 4 1.00 4.90 0.498 0.374 - -- 0.12 5 1.25 6.60 0.671 0.374 - -- 0.30 6 1.50 7:30 0.742 0.374 - -- 0.37 7 1.75 8.40 0.853 0.374 - -- 0.48 8 2.00 9.00 0.914 0.374 - -- 0.54 9 2.25 12.30 1.250 0.374 - -- 0.88 10 ' 2.50 17.60 1.788 0.374 - -- 1.41 11 2.75 16.10 1.636 0.374 - -- 1.26 12 3.00 4.20 0.427 0.374 - -- 0.05 Sum = 100..0 1.09 Sum = 5.7 Flood volume = Effective rainfall 1.42(In) I Q I V times area 0.4(Ac.) /[(In) /(Ft.)] = 0.0(Ac.Ft) Total soil loss = 1.12(In) I Q V Total soil loss = 0.036(Ac.Ft) Q V Total rainfall = 2.54(In) Q I V Flood volume = 1956.1 Cubic Feet Q I V Total ------------------------------------------------------------ soil loss = 1547.6 Cubic Feet - - - - -- Peak flow rate of this hydrograph = 1.536(CFS) ------------------------------------------------------------------ +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 3 - H O U R S T O R M R u n o f f H y d r o g r a p h -------------------- - --------------------------------------------- Hydrograph in 15 Minute intervals ((CFS)) ------------------------------- -.---------------------------------- Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0215 1.04 V Q 0 +30 0.0435 1.06 QV 0 +45 0.0659 1.09 Q V 1+ 0 0.0885 1.09 I Q V 1 +15 0.1117 1.12 I Q I V 1 +30 0.1357 1.16 Q V 1 +45 0.1606 1.20 I Q V 2+ 0 0.1861 1.23 Q V 2 +15 0.2132 1.31 Q I V 2 +30 0.2438 1.48 Q I V 2 +45 0.2755 1.54 I Q V 3+ 0 0.3019 1.28 Q I I V 3 +15 0.3242 1.08 Q I I V 3 +30 0.3457 1.04 Q ----------------------------------------------------------------- - - - - -- I' U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 2004, Version 7.0 Study date 05/07/07 File: VDB8W3100.out +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format VANDEBOSTM30378..8W CITY OF LA QUINTA COACHELLA VALLEY ENGINEERS DKRIE ------------------------------------------------------------------ Drainage Area = 0.71(Ac.) = 0.001 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.26(Ac.) _ 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = 0.080 Hr. Lag time = 4.80 Min. 25% of lag time = 1.20 Min. 40% of lag time = 1.92 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) 2 YEAR Area rainfall data: Area (Ac.) [1] Rainfall (In) (2) 0.26 1.04 100 YEAR Area rainfall data: Area (Ac.) [1] Rainfall (In) [2] 0.26 2.54 STORM EVENT (YEAR) = 100.00 Weighting[1 *2] 0.27 Weighting[1 *2] 0.66 C-D Area Averaged 2 -Year Rainfall = 1.040(In) Area Averaged 100 -Year Rainfall = 2.540(In) Point rain (area averaged) = 2.540(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.540(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious 0.260 56.00 0.900 0.450 56.00 0.300 Total Area Entered = 0.71(Ac.) ' I RI IRI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 56.0 56.0 0.511 0.900 0.097 0.366 ' 0.036 56.0 56.0 0.511 0.300 0.373 0.634 0.236 Sum (F) _ 0.272 Area averaged mean soil loss (F) (In /Hr) = 0.272 Minimum soil loss rate ((In /Hr)) = 0.136 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.400 ------------------------------------------------------------------ U n i t H y d r o g r a p h DESERT S -Curve I------------------------------------------------------------ -- - - -- ------------------------------------------------------------------ Unit Hydrograph Data Unit time period Time % of lag Distribution Unit Hydrograph (hrs) ------------------------------------------------------------------ Graph % (CFS) 1 0.250 312.500 57.461 0.411 2 0.500 625.000 37.948 0.272 3 0.750 937.500 4.591 0.033 ----------------------------------------------------------------------- Sum = 100.000 Sum= 0.716 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.376 0.272 - -- 0.10 2 0.50 4.80 0.488 0.272 - -- 0.22 3 0.75 5.10 0.518 0.272 - -- 0.25 4 1.00 4.90 0.498 0.272 - -- 0.23 5 1.25 6.60 0.671 0.272 - -- 0.40 6 1.50 7.30 0.742 0.272 - -- 0.47 7 1.75 8.40 0.853 0.272 - -- 0.58 8 2.00 9.00 0.914 0.272 - -- 0.64 9 2.25 12.30 1.250 0.272 - -- 0.98 10 2.50 17.60 1.788 0.272 - -- 1.52 11 2.75 16.10 1.636 0.272 - -- 1.36 12 3.00 4.20 0.427 0.272 - -- 0.15 Sum = 100.0 Sum = 6.9 Flood volume = Effective rainfall 1.72(In) times area 0.7(Ac.) /[(In) /(Ft.)) = 0.1(Ac.Ft) Total soil loss = 0.82(In) Total soil loss = 0.048(Ac.Ft) Total rainfall = 2.54(In) Flood volume = 4444.2 Cubic Feet Total soil loss = 2102.1 Cubic Feet ------------------------------------------------------------ - - - - -- Peak flow rate of this hydrograph = 2.045(CFS) ------------------------------------------------------------ - - - - -- +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 3 - H O U R S T O R M R u n o f f H y d r o g r a p h ------------------------------------------------------------------ Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------------ Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0224 1.08 V Q 0 +30 0.0463 1.16 Q 0 +45 0.0711 1.20 Q V 1+ 0 0.0961 1.21 Q VI I .l 1 +15 0.1224 1.27 I Q V I 1 +30 0.1503 1.35 I Q I V I 1 +45 0.1796 1.42 I Q I V I 2+ 0 0.2101 1.48 I Q I V 2 +15 0.2439 1.64 I Q I I V I 2 +30 I 0.2842 1.95 I Q I I V I 2 +45 0.3265 2.05 I Q I I I V 3+ 0 0.3580 1.52 I Q I I I V 3 +15 I 0.3813 1.13 I Q I I I V 3 +30 0.4029 1.05 I Q I V ----------------------------------------------------------------- - - - - -- U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VANDBBEMADW3100.out +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC'& WCD Manual date - April 1978 Program License Serial Number 6078 English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format ------------------------------------------------------------------ VANDEBOS TM 30399..8EMADW ' CITY OF LA QUINTA COACHELLEY VALLEY ENGINEERS DKRICE l Drainage Area = 1.02(Ac.) = 0.002 Sq. Mi. - ' Drainage Area for Depth -Area Areal Adjustment = 0.44(Ac.) 0:001 Sq. Mi. USER Entry of lag time in hours Lag time = 0.080 Hr. J Lag time = 4.80 Min. 25% of lag time = 1.20 Min. 40% of lag time = 1.92 Min. Unit time = 15.00 Min. ' J Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) 2 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1 *2] 0.44 1.04 0.46 100 YEAR Area rainfall data: 'J Area (Ac.) [1] Rainfall (In) [2] Weighting [1 *2] 0.44 2.54 1.12 STORM EVENT (YEAR) = 100.00 I Unit Time Area Averaged 2 -Year Rainfall = 1.040(In) Loss rate(In. /Hr) Effective ' J Area Averaged 100 -Year Rainfall = 2.540(In) Percent (In /Hr) Point rain (area averaged) _- 2.540(In) Areal adjustment factor = 100.00 % 1 Adjusted average point rain - 2.540(In) 0.376 0.254 0.12 Sub -Area Data: 0.50 4.80 '(l 0.254 - -- Area(Ac.) Runoff Index Impervious 3 4 0.75 1.00 0.440 56.00 0.900 0.254 0.254 - 0.26 0.24 0.580 56.00 0.300 1.25 6.60 ' I Total Area Entered = 1.02(Ac.) 0.42 I III RI RI Infil..Rate Impervious AMC2 AMC -2 (In /Hr) (Dec. %) Adj. Infil. Rate Area% F (In /Hr) (Dec.) 0.742 (In /Hr) 0.49 } 56.0 56.0 0.511 0.900 0.097 0.431 0.254 - -- 0.60 0.042 8 2.00 9.00 0.914 56.0 56.0 0.511 0.300 0.373 0.569 9 2.25 0.212 1.250 0.254 - -- I I 10 Sum (F) _ 17.60 0.254 Area averaged mean soil loss (F) (In /Hr) = 0.254 1.53 ' Minimum soil loss rate ((In /Hr)) = 0.127 16.10 1 __- 0.254 (for 24 hour storm duration) ' Soil low loss rate (decimal) - =- ---------------------------- 0_450- --------------------------- ' U n i t H y d r o g r a p h DESERT S -Curve ' -------------------------------------------------- ----- - - - - -- Unit - Hydrograph Data ' ---------------------------------- Unit time period Time % of lag (hrs) - -------- ------------------------ Distribution o Graph % Unit Hydrograph (CPS) 1 0.250 312.500 - - - - -- - - ----------------- 57.461 - ----- 0.591 2 0.500 625.000 37.948 0.390 3 0.750 937.500 4.591 0.047 = 100.000 Sum = -------------------------- - - - - -- -- -Sum ----------- - - - - -- - - -- - -1.028 - - -- I Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective ' J (Hr.) Percent (In /Hr) Max I Low (In /Hr) 1 0.25 3.70 0.376 0.254 0.12 2 0.50 4.80 0.488 0.254 - -- 0.23 ' 3 4 0.75 1.00 5.10 4.90 0.518 0.498 0.254 0.254 - 0.26 0.24 5 1.25 6.60 0.671 0.254 - -- 0.42 6 1.50 7.30 0.742 0.254 - -- 0.49 7 1.75 8.40 0.853 0.254 - -- 0.60 ' 8 2.00 9.00 0.914 0.254 0.66 9 2.25 12.30 1.250 0.254 - -- 1.00 I 10 2.50 17.60 1.788 0.254 1.53 ' 11 2.75 16.10 1.636 __- 0.254 1.38' 12 3.00 4.20 0.427 0.254 - -- 0.17 Sum = 100.0 Sum = 7.1 Flood volume = Effective rainfall 1.78(In) times area 1.0(Ac.) /[(In) /(Ft.)] = 0.2(Ac.Ft) Total soil loss = 0.76(In) Total soil loss = 0.065(Ac.Ft) Total rainfall = 2.54(In) Flood volume = 6584.3 Cubic Feet Total soil loss = 2820.2 Cubic Feet ---------------------=-------------------------------------- - - - - -- Peak ------------------------------------------------------------------ flow rate of this hydrograph = 2.502(CFS) +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 1 ++ 3 - H O U R S T 0 R M --------------- R -u -n -o f- f------ H -y -d -r o g r a p h ---------------------------- ' Hydrograph in 15 Minute intervals ((CFS)) ----------------------- - ------------------------------------------ Time(h +m) 10.0 Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 1 ------------------------------------------ 0 +15 0 +30 0.0230 0.0483 1.11 V 1.23 ----------------------------- Q Q 0 +45 I 0.0750 1.29 QV 1 1+ 0 0.1018 1.30 Q VI 1 +15 0.1306 1.39 I Q V I 1 1 +30 0.1617 1.50 I Q I V I I I 1 +45 0.1948 1.60 I Q I V I 11 2+ 0 I 0.2297 1.69 I Q I V I I 2 +15 0.2693 1.91 I Q I I V 1' 2 0.3182 +30 2.37 I QI I V I 2 +45 0.3699 2.50 I Q I I V 1 3+ 0 0.4061 1.75 I Q I I I V 1 3 +15 I 0.4303 1.17 I Q I I I V +30 0.4520 1.05 I Q I I I V -- - -3 ------------------------------------------------------------ - - - - -- U n i t H y d r o g r a p h 'A n a 1 y s i s r Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/08/07 File: vdb93100.out +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 ------------------------------------------------------------------ English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used / English Units used in output format VANDEBOS..TM30378..9 CITYLAQUINTA COACHELLA VALLEY ENGINEERS DKRICE ------------------------------------------------------------------ Drainage Area = 0.16(Ac.) = 0.000 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.01(Ac.) _ 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = 0.050 Hr. Lag time = 3.00 Min. 25% of lag time = 0.75 Min. 40% of lag time = 1.20 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) 2• YEAR Area rainfall data: Area (Ac.) [1] Rainfall (In) [2] Weighting [1 *2] 0.01 1.10 0.01 100 YEAR Area rainfall data: Area(AC.) [1] Rainfall(In) [2] Weighting(1 *2] 0.01 2.54 0.03 STORM EVENT (YEAR) = 100.00 I..) 'I Area Averaged 2 -Year Rainfall = 1.100(In) Area Averaged 100 -Year Rainfall = 2.540(In) Point rain (area Areal adjustment Adjusted average Sub -Area Data: Area(Ac.) 0.160 Total Area Ente averaged) = 2.540(In) factor = 100.00 % point rain = 2.540(In) Runoff Index Impervious % 56.00 0.200 red = 0.16(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -3 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 56.0 74.8 0.305 0.200 0.250 1.000 0.250 Sum (F) _ 0.250 Area averaged mean soil loss (F) (In /Hr) = 0.250 Minimum soil loss rate ((In /Hr)) = 0.125 (for 24 hour storm duration) Soil -------------------------------------------------7---------------- low loss rate (decimal) = 0.200 U n i t H y d r o g r a p h ------------------------- DESERT S -Curve - ------------------------------------- --- ------------------------------------------------------------------ Unit Hydrograph Data Unit time period Time % of lag Distribution Unit Hydrograph (hrs) ------------------------------------------------------------------ Graph'% (CFS) 1 0.250 500.000 71.081 0.115 2 0.500 1000.000 28.919 0.047 ----------------------------------------------------------------------- Sum = 100.000 Sum= 0.161 Unit Time Pattern Storm Pain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.376 0.250 - -- 0.13 2 0.50 4.80 0.488 0.250 - -- 0.24 3 0.75 5.10 0.518 0.250 - -- 0.27 4 1.00 4.90 0.498 0.250 - -- 0.25 5 1.25 6.60 0.671 0.250 - -- 0.42 6 1.50 7.30 0.742 0.250 - -- 0.49 7 1.75 8.40 0.853 0.250 - -- 0.60 8 2.00 9.00 0.914 0.250 - -- 0.66 9 2.25 12.30 1.250 0.250 - -- 1.00 10 2.50 17.60 1.788 0.250 - -- 1.54 11 2.75 16.10 1.636 0.250 - -- 1.39 12 3.00 4.20 0.427 0.250 - -- 0.18 Sum = 100.0 Sum = 7.2 Flood volume = Effective rainfall 1.79(In) times area 0.2(Ac.) /((In) /(Ft.)] = 0.0(Ac.Ft) Total soil loss = 0.75(In) Total soil loss = 0.010(Ac.Ft) Total rainfall = 2:54(In) Flood volume = 1038.9 Cubic Feet Total soil loss = 436.3 Cubic Feet ------------------------------------------------------------------ Peak flow rate of this hydrograph = 1.271(CFS) ------------------------------------------------------------------ +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 3 - H O U R S T 0 R M R u n o f f H y d r o g r a p h ------------------------------------------------------------------ Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------------ Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ------------------------------------------------------------------------ 0+15 0.0218 1.05 V Q 0 +30 0.0440 1.07 I QV 0 +45 0.0663 1.08 I Q V 1+ 0 0.0886 1.08 I Q V 1 +15 0.1114 1.10 I Q I V 1 +30 0.1344 1.12 I Q I V 1 +45 0.1578 1.13 I Q I V 2+ 0 0.1814 1.14 I Q I I V 2 +15 0.2059 1.19 I Q I I V 2 +30 0.2320 1.26 I Q I I V I 2 +45 0.2583 1.27 I Q I I I V 3+ 0 0.2815 1.12 I Q I I I V 3 +15 0.3032 1.05 I Q V ----------------------------------------------------------------- - - - - -- i U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VDB93100.out +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 ------------------------------------------------------------ - - - - -- English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format VANDEBOS..TM30378..9 CITYLAQUINTA COACHELLA VALLEY ENGINEERS DKRICE Drainage Area = 0.16(Ac.) = 0.000 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.01(Ac.) _ 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = 0.000 Hr. Lag time = 0.00 Min. 25% of lag time = 0.00 Min. 40% of lag time = 0.00 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) 2 YEAR Area rainfall data: Area(Ac.) [1] Rainfall (In) (2) 0.01 1.04 ' 100 YEAP. Area rainfall data: Area (Ac.) [1] Rainfall (In) (2) 0.01 2.54 STORM EVENT (YEAR) = 100.00 Weighting[1 *2] 0.01 Weighting[1 *2] 0.03 1! 1 Area Averaged 2 -Year Rainfall = 1.040(In) Area Averaged 100 -Year Rainfall = 2.540(In) Point rain (area averaged) = 2.540(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.540(In) Sub -Area Data: Area(Ac.) Runoff Index impervious % 0.010 56.00 0.900 0.150 56.00 0.200 Total Area Entered = 0.16(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 56.0 56.0 0.511 0.900 0.097 0.063 0.006 56.0 56.0 0.511 0.200 0.419 0.938 0.393 Sum (F) _ 0.399 Area averaged mean soil loss (F) (In /Hr) = 0.399 Minimum soil loss rate ((In /Hr)) = 0.199 (for 24 hour storm duration) Soil low loss rate (decimal) = ------------------------------------------------------------------ 0.200 U n i t H y d r o g r a p h DESERT S -Curve ------------------------------------------------------------------ Unit Hydrograph Data ------------------------------------------------------------------ Unit time period Time % of lag Distribution Unit Hydrograph (hrs) ------------------------------------------------------------------ Graph % (CFS) 1 0.250 1. #I0 100.000 0.161 ----------------------------------------------------------------------- Sum = 100.000 Sum= 0.161 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.376 0.399 0.075 0.30 2 0.50 4.80 0.488 0.399 - -- 0.09 3 0.75 5.10 0.518 0.399 - -- 0.12 4 1.00 4.90 0.498 0.399 - -- 0.10 5 1.25 6.60 0.671 0.399 - -- 0.27 6 1.50 7.30 0.742 0.399 - -- 0.34 7 1.75 8.40 0.853 0.399 - -- 0.45 8 2.00 9.00 0.914 0.399 - -- 0.52 9 2.25 12.30 1.250 0.399 - -- 0.85 10 2.50 17.60 1.788 0.399 - -- 1.39 11 2.75 16.10 1.636 0.399 - -- 1.24 12 3.00 4.20 0.427 0.399 - -- 0.03 Sum = 100.0 Sum = 5.7 Flood volume = Effective rainfall 1.42(In) times area 0.2(Ac.) /((In) /(Ft.)) = 0.0(Ac.Ft) Total soil loss = 1.12(In) Total soil loss = 0.015(Ac.Ft) Total rainfall = 2.54(In) Flood volume = 827.4 Cubic Feet Total soil loss = 647.8 Cubic Feet ------------------------------------------------------------ - - - - -- Peak flow rate of this hydrograph = 1.264(CFS) ------------------------------------------------------------ - - - - -- +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 3 - H O U R S T O R M R u n o f f H y d r o g r a p h ------------------------------------------------------------------ Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------ ------------------------ Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0225 1.09 VQ 0 +30 0.0443 1.05 Q V 0 +45 0.0662 1.06 Q VI I 1+ 0 I 0.0880 1.06 I Q V I I 1 +15 0.1104 1.08 I Q I V I I 1 +30 0.1330 1.10 I Q I VI I 1 +45 0.1560 1.11 I Q I V I 2+ 0 0.1792 1.12 I Q I I V I 2 +15 0.2035 1.18 I Q I I VI 2 +30 0.2297 1.26 I Q I I V 2 +45 0.2553 1.24 I Q I I I V 3+ 0 0.2768 1.04 I Q I I I VI ----------------------------------------------------------------- - - - - -- 1 U n i t H y d r o g r a p h A n a.1 y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VDB3100.out +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ ------------------------------------------------------------ - - - - -- Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format VANDEBOS CITY OF LA QUINTA CITY OF COACHLAA VALLEY ENGINEERS DKRICE ------------------------------------------------------------ - - - - -- Drainage Area = 0.17(Ac.) = 0.000 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.01(Ac.) _ 0.000 Sq. Mi.. USER Entry of lag time in hours Lag time = 0.080 Hr. Lag time = 4.80 Min. 25% of lag time = 1.20 Min. 40% of lag time = 1.92 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.03(CFS) 2 YEAR Area rainfall data: Area (Ac.) [1] Rainfall (In) [2] 0.01 0.04 100 YEAP. Area rainfall data: Area (Ac.) [1) Rainfall (In) [2) 0.01 2.54 STORM EVENT (YEAR) = 100.00 Weighting [1 *2] 0.00 Weighting[1 *2) 0.03 Area Averaged 2 -Year Rainfall = 0.040(In) Area Averaged 100 -Year Rainfall = 2..540(In) Point rain (area averaged) = 2.540(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.540(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious 0.010 56.00 0.900 0.160 56.00 0.200 Total Area Entered = 0.17(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 56.0 56.0 0.511 0.900 0.097 0.059 0.006 56.0 56.0 0.511 0.200 0.419 0.941 0.394 Sum (F) _ 0.400 Area averaged mean soil loss (F) (In /Hr) = 0.400 Minimum soil loss rate ((In /Hr)) = 0.200 (for 24 hour storm duration) Soil low loss rate ------------------------------------------------------------------ (decimal) = 0.200 U n i t H y d r o g r a p h ------------------------------------------------------------------ DESERT S -Curve Unit Hydrograph Data -------------------------------=---------------------------------- Unit time period Time % of lag Distribution Unit Hydrograph (hrs) ------------------------------------------------------------------ Graph % (CFS) 1 0.250 312.500 51.461 0.098 2 0.500 625.000 37.948 0.065 3 0.750 937.500 4.591 0.008 ----------------------------------------------------------------------- Sum = 100.000 Sum= 0.171 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.376 0.400 0.075 0.30 2 0.50 4.80 0.488 0.400 - -- 0.09 3 0.75 5.10 0.518 0.400 - -- 0.12 4 1.00 4.90 0.498 0.400 - -- 0.10 5 1.25 6.60 0.671 0.400 - -- 0.27 6 1.50 7.30 0.742 0.400 - -- 0.34 7 1.75 8.40 0.853 0.400 - -- 0.45 8 2.00 9.00 0.914 0.400 - -- 0.51 9 2.25 12.30 1.250 0.400 - -- 0.85 10 2.50 17.60 1.788 0.400 - -- 1.39 11 2.75 16.10 1.636 0.400 - -- 1.24 12 3.00 4.20 0.427 0.400 - -- 0.03 Sum = 100.0 Sum = 5.7 Flood volume = Effective rainfall 1.42(In) times area 0.2(Ac.) /((In) /(Ft.)) = 0.0(Ac.Ft) Total soil loss = 1.12(In) Total soil loss = 0.016(Ac.Ft) Total rainfall = 2.54(In) Flood volume = 877.1 Cubic Feet Total soil loss = 690.3 Cubic Feet ------------------------------------------------------------ - - - - -- Peak flow rate of this hydrograph = 1.249(CFS) ------------------------------------------------------------ - - - - -- + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 3 - H O U R S T O R M R u n o f f H y d r o g r a p h ------------------------------------------------------------------ - - 1 Hydrograph in 15 Minute intervals ((CFS)) Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0219 1.06 V Q 0 +30 0.0438 1.06 QV 0 +45 0.0654 1.05 Q V 1+ 0 0.0871 1.05 ( Q V 1 +15 0.1091 1.06 Q I V 1 +30 0.1314 1.08 I Q I V 1 +45 I 0.1541 1.10 Q I VI 2+ 0 I 0.1771 1.11 I Q V I 2 +15 I 0.2009 1.15 I Q I I V I 2 +30 0.2262 1.23 I Q I I V 2 +45 0.2520 1.25 I Q I I V 3+ 0 0.2753 1.12 I Q I I I V 3 +15 0.2968 1.04 I Q I I I V 3 +30 0.3181 1.03 I Q I I I J ----------------------------------------------------------------- - - - - -- 19 U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VDB143100.out ++++++++++++++++++++++++++++++++++++ + + + + + + + + + + +. + + + + + + + + + + + + + + + + + ++ -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 ------------------------------------------------------------------ English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format VANDEBOSBETHCIRCLE CITYLA QUINTA DKRICE ------------------------------------------------------------------ Drainage Area = 0.34(Ac.) = 0.001 Sq. Mi. Drainage Area for Depth -Area Areal Adjustment = 0.03(Ac.) _ 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = 0.080 Hr. Lag time = 4.80 Min. 25W of lag time = 1.20 Min. 4.0% of lag time = 1.92 Min. Unit time = 15.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 1.30(CFS) 2 YEAR Area rainfall data: Area (Ac.) [1] Rainfall (In) [2] Weighting [1 *2] 0.03 1.04 0.03 100 YEAR Area rainfall data: Area (Ac.) [1'] Rainfall (In) [2] Weighting [1 *2] 0.03 2.54 0.08 STORM EVENT (YEAR) 100.00 Area Averaged 2 -Year Rainfall = 1.040(In) Area Averaged 100 -Year Rainfall = 2.540(In) Unit Time I Point rain (area averaged) = 2.540(In) Loss rate(In/Hr) Effective ' Areal adjustment factor = 100.00 % (In /Hr) Max Low (In /Hr) Adjusted average point rain = 2.540(In) 3.70 0.376 0.097 Sub -Area Data: 2 0.50 4.80 '�) Area(Ac.) Runoff Index Impervious % 3 0.75 5.10 0.518 0.030 56.00 0.310 56.00 0.900 0.900 ' 4 ' 4.90 Total Area Entered = 0.34(Ac.) - 0.097 - - 0.40 5 RI RI Infil. Rate Impervious. Adj. Infil. Rate Area% F' ' 0.097 - -- AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) 7.30 (In /Hr) 0.097 - -- 0.64 7 1.75 56.0 56.0 0.511 0.900 0.097 0.088 0.76 If 0.009 9.00 0.914 0.097 - - 0.82 56.0 56.0 0.511 0.900 0.097 0.912 1.250 0.097 - -- 0.088 10 2.50 17.60 1.788 0.097 - -- Sum (F) _ ,I 11 0.097 16.10 1.636 ' Area averaged mean soil loss (F) (In /Hr) = 0.097 Minimum soil loss rate ((In /Hr)) = 0.049 (for 24 hour storm duration) ' Soil low loss rate (decimal) = --------------------------------------------------------------- 0.500 U n i t H y d r o g r a p h - -- DESERT S -Curve ------------------------------------------------------------------ Unit Hydrograph Data - --------------- ' ----------- ----- ---------------------------------- Unit time period Time % of lag (hrs) Distribution Unit Hydrograph - ---------------------------------------- Graph % (CFS) 1 0.250 312.500 -- ----------------- 57.461 - ----- 0.197 2 0.500 625.000 37.948 0.130 3 0.750 937.500 4.591 0.016 I Sum = 100.000 Sum 0.343 - - - -- ------- - - - - -- - -- - -- -- - -- Unit Time Pattern Storm Rain Loss rate(In/Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.376 0.097 0.28 2 0.50 4.80 0.488 0.097 0.39 3 0.75 5.10 0.518 0.097 =_= 0.42 ' 4 1.00 4.90 0.498 0.097 - - 0.40 5 1.25 6.60 0.671 0.097 - -- 0.57 6 1.50 7.30 0.742 0.097 - -- 0.64 7 1.75 8.40 0.853 0.097 0.76 ' 8 2.00 9.00 0.914 0.097 - - 0.82 9 2.25 12.30 1.250 0.097 - -- 1.15 10 2.50 17.60 1.788 0.097 - -- 1.69 ,I 11 2.75 16.10 1.636 0.097 - -- 1.54 i� 12 3.00 4.20 0.427 0.097 - -- 0.33 Sum = 100.0 Sum = 9.0 Flood volume = Effective rainfall 2.25(In) times area 0.3(Ac.) /((In) /(Ft.)) = 0.1(Ac.Ft) Total soil loss = 0.29(In) Total soil loss = 0.008(Ac.Ft) Total rainfall = 2.54(In) Flood volume = 2775.5 Cubic Feet Total soil loss = 359.3 Cubic Feet ------------------------------------------------------------ - - - - -- Peak flow rate of this hydrograph = 1.841(CFS) ------------------------------------------------------------------ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 3 - H O U R S T 0 R M R u n o f f H y d r o g r a p h ------------------------------------------------------------------ Hydrograph in 15 Minute intervals ((CFS)) --.---------------------------------------------------------------- Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0280 1.35 V Q 0 +30 0.0572 1.41 Q 0 +45 0.0869 1.44 Q V 1+ 0 0.1167 1.44 Q V 1 +15 0.1471 1.47 Q I V 1 +30 0.1782 1.51 Q I V 1 +45 0.2101 1.54 I Q I VI 2+ 0 0.2425 1.57 I Q I V 2 +15 0.2765 1.65 I Q I I V I 2 +3b I 0.3136 1.80 I Q I I V I 2 +45 I 0.3517 1.84 I Q I I V 3+ 0 0.3845 1.59 I Q I I I V 3 +15 I 0.4128 1.37 I Q I I I V 3 +30 0.4398 1.31 I Q I I V ----------------------------------------------------------------- - - - - -- U n i t H y d r o g r a p h A n a l y s i s Copyright (c) .CIVILCADD /CIVILDESIGN, 1989 - 2004, Version 7.0 Study date 05/07/07 File: VDB3100.out .+...} . ..} + + + + + + + + + + + + + + + ++ T + + + + + + +.t. i. {...} .. i..i.... +. + + + ++ T ++ f + + + + + +.... f } - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Program License Serial Number 6078 N ------------------------------------------------------------ - - - - -- English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format --------------------------------------------- ' VANDEBOS CITY OF LA QUINTA CITY OF COACHLAA VALLEY ENGINEERS ' - DK---- - ------------------------------------------------------------------ Drainage Area = 0.14(Ac.) = 0.000 Sq. Mi. - ' Drainage Area for Depth -Area Areal Adjustment = 0.03(Ac.) 0.000 Sq. Mi. USER Entry of lag time in hours Lag time = 0.080 Hr. i+ l Lag time = 4.80 Min. 25% of lag time = 1.20 Min. 11 40% of lag time = 1.92 Min. I Unit time = 15.00 Min. J Duration of storm = 3 Hour(s) User Entered Base Flow = 1.04(CFS) 2 YEAR Area rainfall data: Area (Ac.) [1] Rainfall (In) [2] Weighting [1 *2] 0.03 1.04 0.03 100 YEAR Area rainfall data: Area (Ac.) [1] Rainfall (In) [2] Weighting [1 *2] 0.03 2.54 0.08 STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall = 1.040(In) Area Averaged 100 -Year Rainfall = 2.540(In) Point rain (area averaged). = 2.540(In) Areal adjustment factor = 100.00 % Adjusted average point rain = 2.540(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious % 0.110 56.00 0.900 0.030 56.00 0.400 Total Area Entered = 0.14(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2 (In /Hr) (Dec. %) (In /Hr) (Dec.) (In /Hr) 56.0 56.0 0.511 0.900 0.097 0.786 0.076 56.0 56.0 0.511 0.400 0.327 0.214 0.070 Sum (F) _ 0.146 Area averaged mean soil loss (F) (In /Hr) = 0.146 Minimum soil loss rate ((In /Hr)) = 0.073 (for 24 hour storm duration) Soil low loss rate (decimal) = --------------------------------------------------------------=--- 0.500 U n i t H y d r o g r a p h DESERT S -Curve ------------------------------------------------------------------ --- -Unit Hydrograph Data -- - - - - -- ----------------------------------------------------- Unit time period Time % of lag Distribution Unit Hydrograph (hrs) ------------------------------------------------------------------ Graph % (CFS) 1 0.250 312.500 57.461 0.081 2 0.500 625.000 37.948 0.054 3 0.750 937.500 4.591 0.006 ----------------------------------------------------------------------- Sum = 100.000 Sum= 0.141 Unit Time Pattern Storm Rain Loss rate(In. /Hr) Effective (Hr.) Percent (In /Hr) Max Low (In /Hr) 1 0.25 3.70 0.376 0.146 - -- 0.23 2 0.50 4.80 0.488 0.146 - -- 0.34 3 0.75 5.10 0.518 0.146 - -- 0.37 4 1.00 4.90 0:498 0.146 - -- 0.35 5 1.25 6.60 0.671 0.146 - -- 0.52 6 1.50 7.30 0.742 0.146 - -- 0.60 7 1.75 8.40 0.853 0.146 - -- 0.71 8 2.00 9.00 0.914 0.146 - -- 0.77 9 2.25 12.30 1.250 0.146 - -- 1.10 10 2.50 17.60 1.788 0.146 - -- 1.64 11 2.75 16.10 1.636 0.146 - -- 1.49 12 3.00 4.20 0.427 0.146 - -- 0.28 Sum = 100.0 Sum = 8.4 Flood volume = Effective rainfall 2.10(In) times area 0.1(Ac.) /[(In) /(Ft.)) = 0.0(Ac.Ft) Total soil loss = 0.44(In) Total soil loss = 0.005(Ac.Ft) Total rainfall = 2.54(In) Flood volume = 1067.8 Cubic Feet Total soil loss = 223.1 Cubic Feet ------------------------------------------------------------------ Peak flow rate of this hydrograph = 1.256(CFS) ------------------------------------------------------------ - - - - -- +++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ 3 - H O U R S T O R M R u n o f f H y d r o g r a p h ------------------------------------------------------------------ Hydrograph in 15 Minute intervals ((CFS)) ------------------------------------------------------------------ Time(h+m) Volume Ac.Ft Q(CFS) 0 2.5 5.0 7.5 10.0 ----------------------------------------------------------------------- 0+15 0.0219 1.06 V Q 0 +30 0.0442 1.08 QV 0 +45 0.0667 1.09 Q V 1+ 0 0.0892 1.09 Q V 1 +15 0.1120 1.10 Q. I V 1 +30 0.1352 1.12 Q I V 1 +45 I 0.1586 1.13 Q I VI 2+ 0 I 0.1822 1.14 I Q I V I 2 +15 0.2065 1.18 I Q I I V 2 +30 0.2320 1.24 I Q I I V 2 +45 I 0.2580 1.26 I Q I I V 3+ 0 I 0.2818 1.15 I Q I I I V 3 +15 0.3038 1.06 I Q I I I V 3 +30 0.3253 1.04 I Q i I I J ----------------------------------------------------------------- - - - - -- r 'I ,j 'I I' RETENTION BASIN VOLUME CALCS.- BASIN 1 ( 35'X 128') Adjacent Road Flowline Grade = 512.79 100 Yr Pond Water Surface Level = 511.79 ELEVATION AREA AREA CHANGE VOUFT (Avg) CUML VOL SF SF CF CF 513.00 4,480 798 4,081 12,423 512.00 3,682 798 3,283 8,342 511.00 2,884 799 2,485 5,059 510.00 2,085 798 1,686 2,574 509.00 1,287 798 888 888 508.00 489 0 0 0 100 -Yr W5L Vol. = 7,6530 RETENTION BASIN VOLUME CALCS. - BASIN 2 (35' X 130') Adjacent Road Flowline Elev. = 513.66 100 Yr Water Surface Elev. = 512.66 ELEVATION AREA AREA CHANGE VOUFT (Avg) CUML VOL SF SF CF CF 514.00 4,550 807 4,147 12,668 513.00 3,743 806 3,340 8,521 512.00 2,937 807 2,534 5,181 511.00 2,130 806 1,727 2,648 510.00 1,324 807 921 921 509.00 517 0 0 0 1UU -Yr W5L Vol. = 7,31350 1 ' I, RETENTION BASIN VOLUME CALCS. - BASIN 3 (35'x 103') Adjacent Road Flowline = 514.40 100 -Yr Water Surface Level = 513.40 ELEVATION AREA AREA CHANGE VOL /FT (Avg) CUML VOL SF SF CF CF 514.40 3,605 269 1,388 9,332 514.00 3,336 675 2,999 7,944 513.00 2,661 675 2,324 4,946 512.00 1,986 675 1,649 2,622 511.00 1,311 675 974 974 510.00 636 0 0 1 0 "IUU -Tr VVJL VOL = b,140CT RETENTION BASIN VOLUME CALCS. - BASIN 4 (35'x 103) Adjacent Road Flowline = 515.14 100 -Yr Water Surface Level = 514.00 ELEVATION AREA AREA CHANGE VOL /FT (Avg) CUML VOL SF SF CF CF 515.00 3,605 671 3,270 9,632 514.00 2,934 672 2,598 6,362 513.00 2,262 672 1,926 3,764 512.00 1,590 671 1,255 1,838 511.00 919 671 584 584 510.00 248 0 0 0 - IVV -Tr VVJL VOI. = b,.SbLCT i I I J 11 RETENTION BASIN VOLUME CALCS. - BASIN 5 (30'x 79') Adjacent Street Flowline = 515.30 100 -Yr Water Surface Level = 514.30 ELEVATION AREA AREA CHANGE VOL /FT (Avg) CUML VOL SF SF CF CF 515.30 2,370 220 678 5,424 515.00 2,150 482 1,909 4,747 514.00 1,668 481 1,428 2,838 513.00 1,187 482 946 1,410 512.00 705 482 464 464 511.00 223 0 0 0 'IUU - Tr Mb VOI. _ .5,411 CT RETENTION BASIN VOLUME CALCS. - BASIN 6 (30'x 105') Adjacent Street Flowline = 514.54 100 -Yr Water Surface Level = 513.54 ELEVATION AREA AREA CHANGE VOL /FT (Avg) CUML VOL SF SF CF CF 514.54 3,150 320 #VALUE! 514.00 2,830 591 2,535 6,591 513.00 2,239 591 1,944 4,056 512.00 1,648 592 1,352 2,113 511.00 1,056 591 761 761 510.00 465 0 0 0 'IUU -TP WJL VOL = 5,425CT 1 fl 1! 1 i RETENTION BASIN VOLUME CALCS. - BASIN 7 (30' X 105') Adjacent Street Flowline = 513.93 100 -Yr Water Surface Elev. = 512.93 ELEVATION AREA AREA CHANGE VOL /FT (Avg) CUML VOL SF SF CF CF 0 0 7,231 514.00 3,150 671 2,815 7,231 513.00 2,479 671 2,144 4,416 512.00 1,808 672 1,472 2,273 511.00 1,136 671 801 801 510.00 465 0 0 0 lUU -Yr VVJL VOL = 4,Z66Ct RETENTION BASIN VOLUME CALCS. - BASIN 8 (30' X 125') Adjacent Street Flowline = 512.83 100 -Yr Water Surface Level = 511.50 ELEVATION AREA AREA CHANGE VOL /FT (Avg) CUML VOL SF SF CF CF 513.00 3,750 792 3,354 8,661 512.00 2,958 793 2,562 5,307 511.00 2,165 792 1,769 2,746 510.00 1,373 793 977 977 509.00 580 0 0 0 lUU -Tr VVJL VOL = 4,UZ /CT * BASIN 8 TO BE CROSS - CONNECTED W/ BASINS 12 & 13 RETENTION BASIN VOLUME CALCS. - BASIN 9 (24' X 138') Adjacent Roadway Flowline = 512.85 100 -Yr Pond WSL = 511.85 ELEVATION AREA AREA CHANGE VOL /FT (Avg) CUML VOL SF SF CF CF 0 0 7,989 513.00 0 0 1,716 7,989 512.00 3,432 894 2,985 6,273 511.00 2,538 894 2,091 3,288 510.00 1,644 894 1,197 1,197 509.00 750 0 0 0 VOL L WSL = 5,13250 1 1 t) �I r RETENTION BASIN VOLUME CALCS. - BASIN 10 (24' X 128') Adjacent Roadway Flowline = 512.85 100 -Yr Pond WSL = 511.85 ELEVATION AREA AREA CHANGE VOUFT (Avg) CUML VOL SF SF CF CF 0 0 7,281 513.00 0 0 1,584 7,281 512.00 3,168 846 2,745 5,697 511.00 2,322 846 1,899 2,952 510.00 1,476 846 1,053 1,053 509.00 630 0 0 0 Vol. L VVJL = 0,ZtS0 CT Basin 10 To Be Cross - connected wl Basin 9 RETENTION BASIN VOLUME CALCS. - BASIN 11 (24'X 128') Adjacent Roadway Flowline = 512.52 100 -Yr Pond WSL = 511.52 ELEVATION AREA AREA CHANGE VOL /FT (Avg) CUML VOL SF SF CF CF . 0 .0 7,686 513.00 0 0 1,953 7,686 512.00 3,906 1,256 3,278 5,733 511.00 2,650 1,520 1,890 2,455 510.00 1,130 1,130 565 565 509.00 0 0 0 0 VOL (C_V VVJL = 4,IbUCT RETENTION BASIN VOLUME CALCS. - BASIN 12 (24' X 150') Adjacent Roadway Flowline = 512.50 100 -Yr Pond WSL = 511.50 ELEVATION AREA AREA CHANGE VOUFT (Avg) CUML VOL SF SF CF CF 0 0 11,007 513.00 0 0 2,448 11,007 512.00 4,896 1,362 4,215 8,559 511.00 3,534 1,362 2,853 4,344 510.00 2,172 1,362 1,491 1,491 509.00 810 0 0 0 VOL L WSL = 6,45Z Ct r I 1Y ri I I RETENTION BASIN VOLUME CALCS. - BASIN 13 (24' X 238') Adjacent Roadway Flowline = 512.50 100 -Yr Pond WSL = 511.50 ELEVATION AREA AREA CHANGE VOL /FT (Avg) CUML' VOL SF SF CF CF 0 0 9,227 513.00 0 0 2,115 9,227 512.00 4,230 1,240 3,610 7,112 511.00 2,990 1,239 2,371 3,502 510.00 1,751 1,239 1,132 1,132 509.00 512 0 0 0 VOL (C VVJL = 0,3U! CT RETENTION BASIN VOLUME CALCS. TEMP. BASIN #14 (30'X 78') Adjacent Street Flowline = 512.60 100 -Yr Water Surface Elev. = 511.60 ELEVATION AREA AREA CHANGE VOL /FT (Avg) CUML VOL SF SF CF CF 513.00 2,340 580 2,050 4,410 512.00 1,760 580 1,470 2,360 511.00 1,180 580 890 890 510.00 600 0 0 0 'IUU - Tr VVJL VOL = 1, / /LCT RETENTION BASIN VOLUME CALCS. - TEMP. BASIN #15 (32' X 135') Adjacent Street Flowline = 512.78 100 -Yr Water Surface Level = 511.78 ELEVATION AREA AREA CHANGE VOL /FT (Avg) CUML VOL SF SF CF CF 513.00 4,320 1,250 3,695 7,335 512.00 3,070 1,250 2,445 3,640 511.00 1,820 1,250 1,195 1,195 510.00 570 0 1 0 1 0 "IUU - Tr VVJL VOL = .9,lULCT CATCH BASIN # 1 - STORM DRAIN DESIGN PREPARED BY COACHELLA VALLEY ENGINEERS DATE: 5 -15 -07 JOB #: 01152 PROJECT: TR 30378 BY: jsd PIPE BASIN GRATE NET EXIT LOSS LOSS AT D.S. HGL10 STORM DRAIN LINE: "A "- 10year DIA.(IN) Q10(CFS) WS10 OPENING(FT) OPENING(SF) AT GRATE END OF PIPE OUTLET DESIGN (DRY WELL) 1.1HV= 1.2HV= 18 1 1.08 1 510.25 2.00 1.38 0.006 0.007 WS1001N BASIN 510.250 0.006 VELOCITY IN 18 " PIPE Q= 1.08 0.61 PER SEC. HV= V2 /2G= 0.006 0.007 A= 1.77 V =Q/A HGL AT U.S. END 510.263 STORM DRAIN LINE LENGTH OF PIPE(d) 47.00 MANNING "S INDEX(n) 0.012 TYPE OF PIPE RCP Sf =[ Q n ] 2 K' =0.463 Sf =[ 0.012960 ]2= 0.000090 [d 8/3(K')] [ 1.366925 J Hf =L(Sf Hf= 0.0042 HGL AT U.S.END= 510.268 1.2HV= 0.007 10YR WS IN CB= 510.275 DESIGN FOR CATCH BASIN NO. 1 PROP. WIDTH OF OPENING (W)(FT) CURB HEIGHT (IN) DEPTH OF DEPRESSION (IN) DEPTH OF FLOW AT OPENING (H)(FT) HEIGHT OF OPENING (h)(IN) Q10 TO OPENING (CFS) TC AT OPENING 4.00 H /h= 0.36 6.00 Q/L= 2.50 4.00 0.30 10.00 1.08 513.78 VS HGL (PONDED TO TC) Q= 1.08 0.43 FOOT WIDE OPENING (MIN) (Q/L) 510.27 OK 2.50 USE W(MIN)= 4.00 OK CATCH BASIN #1 - STORM DRAIN DESIGN PREPARED BY COACHELLA VALLEY ENGINEERS DATE: 4 -02 -07 47.00 MANNING "S INDEX(n) 0.012 JOB #: 01152 TYPE OF PIPE RCP Sf =[ Q n ] 2 K' =0.463 Sf =[ 0.020040 12= 0.000215 [d 8/3(K')] PROJECT: TR 30378 Hf =L(Sf) Hf-- 0.0101 BY: jsd PIPE BASIN GRATE NET EXIT LOSS LOSS AT D.S. HGL100 STORM DRAIN LINE: "A" - 100 Year DIA.(IN) Q100(CFS) WS100 OPENING(FT) OPENING(SF) AT GRATE END OF PIPE OUTLET DESIGN (DRY WELL) 1.1HV= 1.2HV= 18 1 1.67 1 511.50 2.00 1.38 0.015 0.017 WS100 IN BASIN 511.500 0.015 VELOCITY IN 18 " PIPE Q= 1.67 0.95 PER SEC. HV= V2 /2G= 0.014 0.017 A= 1.77 V =Q /A HGL AT U.S. END 511.532 STORM DRAIN LINE LENGTH OF PIPE(d) 47.00 MANNING "S INDEX(n) 0.012 TYPE OF PIPE RCP Sf =[ Q n ] 2 K' =0.463 Sf =[ 0.020040 12= 0.000215 [d 8/3(K')] ( 1.366925 ] Hf =L(Sf) Hf-- 0.0101 HGL AT U.S.END= 511.542 1.2HV= 0.017 100YR WS IN CB= 511.559 DESIGN FOR CATCH BASIN NO. 1 PROP. WIDTH OF OPENING (W)(FT) CURB HEIGHT (IN) DEPTH OF DEPRESSION (IN) DEPTH OF FLOW AT OPENING (H)(FT) HEIGHT OF OPENING (h)(IN) Q100 TO OPENING (CFS) TC AT OPENING 4.00 H /h= 0.36 6.00 Q/L= 2.50 4.00 0.30 10.00 1.67 513.78 VS HGL (PONDED TO TC) Q= 1.67 0.67 FOOT WIDE OPENING (MIN) (Q /L) 511.56 OK 2.50 USE W(MIN)= 4.00 OK STORM DRAIN LINE LENGTH OF PIPE(d) 45.00 CATCH BASIN #2 - STORM DRAIN DESIGN MANNING "S INDEX(n) 0.012 PREPARED BY COACHELLA VALLEY ENGINEERS TYPE OF PIPE RCP Sf =[ Q n ] 2 K' =0.463 Sf =[ 0.044280 ]2= 0.001049 DATE: 4 -02 -07 [d 8/3(K')] [ 1.366925 ] JOB #: 01152 Hf =L(Sf) Hf= PROJECT: TR 30378 HGL AT U.S.END= BY: jsd PIPE BASIN GRATE NET EXIT LOSS LOSS AT D.S. HGL10 STORM DRAIN LINE: "B " -10 year DIA.(IN) Q10(CFS) WS10 OPENING(FT) OPENING(SF) AT GRATE END OF PIPE OUTLET DESIGN (DRY WELL) 510.714 DESIGN FOR CATCH BASIN NO. 2 1.1 HV= 1.2HV= 18 1 3.69 510.43 2.00 1.38 0.074 0.081 WS10 IN BASIN 510.430 CURB HEIGHT (IN) 6.00 Q/L= 2.50 0.074 VELOCITY IN 18 " PIPE Q= 3.69 2.09 PER SEC. HV= V2 /2G= 0.068 0.081 A= 1.77 V =Q/A DEPTH OF FLOW AT OPENING (H)(FT) 0.30 Q= HGL AT U.S. END 510.586 STORM DRAIN LINE LENGTH OF PIPE(d) 45.00 MANNING "S INDEX(n) 0.012 TYPE OF PIPE RCP Sf =[ Q n ] 2 K' =0.463 Sf =[ 0.044280 ]2= 0.001049 [d 8/3(K')] [ 1.366925 ] Hf =L(Sf) Hf= 0.0472 HGL AT U.S.END= 510.633 1.2HV= 0.081 10YR WS IN CB= 510.714 DESIGN FOR CATCH BASIN NO. 2 PROP. WIDTH OF OPENING (W)(FT) 4.00 H /h= 0.36 CURB HEIGHT (IN) 6.00 Q/L= 2.50 (PONDED TO TC) DEPTH OF DEPRESSION (IN) 4.00 DEPTH OF FLOW AT OPENING (H)(FT) 0.30 Q= 3.69 1.48 FOOT WIDE OPENING (MIN) HEIGHT OF OPENING (h)(IN) 10.00 (Q /L) 2.50 USE W(MIN)= 4.00 Q10 TO OPENING (CFS) 3.69 OK TC AT OPENING 514.63 VS HGL 510.71 OK CATCH BASIN #2 - STORM DRAIN DESIGN PREPARED BY COACHELLA VALLEY ENGINEERS DATE: 5 -15 -07 JOB #: 01152 PROJECT: TR 30378 BY: jsd PIPE BASIN GRATE NET EXIT LOSS LOSS AT D.S. HGL100 STORM DRAIN LINE: "C" - 100 year DIA.(IN) Q100(CFSj WS1oo OPENING(FT) OPENING(SF) AT GRATE END OF PIPE OUTLET DESIGN (DRY WELL) 1.1HV= 1.2HV= 18 5.71 1 511.85 2.00 1.38 0.178 0.195 WS100 IN BASIN 511.850 0.178 VELOCITY IN 18 " PIPE Q= 5.71 3.23 PER SEC. HV= V2 /2G= 0.162 0.195 A= 1.77 V =Q /A HGL AT U.S. END 512.223 STORM DRAIN LINE LENGTH OF PIPE(d) 45.00 MANNING "S INDEX(n) 0.012 TYPE OF PIPE RCP Sf =[ Q n ] 2 K' =0.463 Sf =[ 0.068520 ]2= 0.002513 [d 8/3(K')] [ 1.366925 ] Hf =L(Sf) Hf= 0.1131 HGL AT U.S.END= 512.336 1.2HV= 0.195 100YR WS IN CB= 512.530 DESIGN FOR CATCH BASIN NO. 2 PROP. WIDTH OF OPENING (W)(FT) 4.00 H /h= 0.36 CURB HEIGHT (IN) 6.00 Q /L= 2.50 (PONDED TO TC) DEPTH OF DEPRESSION (IN) 4.00 DEPTH OF FLOW AT OPENING (H)(FT) 0.30 Q= 5.30 2.12 FOOT WIDE OPENING (MIN) HEIGHT OF OPENING (h)(IN) 10.00 (Q/L) 2.50 USE W(MIN)= 4.00 Q100 TO OPENING (CFS) 5.30 OK TC AT OPENING 514.63 VS HGL 512.53 OK CATCH BASIN #3 - STORM DRAIN DESIGN PREPARED BY COACHELLA VALLEY ENGINEERS DATE: 5 -15 -07 JOB #: 01152 PROJECT: TR 30378 BY: jsd PIPE BASIN GRATE NET EXIT LOSS LOSS AT D.S. HGL10 STORM DRAIN LINE: "C "- 10 year DIA.(IN) Q10(CFS) WS10 OPENING(FT) OPENING(SF) AT GRATE END OF PIPE OUTLET DESIGN (DRY WELL) 1.1 HV= 1.2HV= 18 1 0.34 1 510.25 2.00 1.38 0.001 0.001 WS100 IN BASIN 510.250 0.001 VELOCITY IN 18 " PIPE Q= 0.34 0.19 PER SEC. HV= V2/2G= 0.001 0.001 A= 1.77 V =Q /A HGL AT U.S. END 510.251 STORM DRAIN LINE LENGTH OF PIPE(d) 17.00 MANNING "S INDEX(n) 0.012 TYPE OF PIPE HDPE Sf =[ Q n ] 2 K' =0.463 Sf =[ 0.004080 ]2= 0.000009 [d 8/3(K')] [ 1366925 ] Hf =L(Sf) Hf= 0.0002 HGL AT U.S.END= 510.251 1.2HV= 0.001 10YR WS IN CB= 510.252 DESIGN FOR CATCH BASIN NO. 3 PROP. WIDTH OF OPENING (W)(FT) CURB HEIGHT (IN) DEPTH OF DEPRESSION (IN) DEPTH OF FLOW AT OPENING (H)(FT) HEIGHT OF OPENING (h)(IN) Q10 TO OPENING (CFS) TC AT OPENING 4.00 H /h= 0.36 6.00 Q /L= 2.50 4.00 0.30 10.00 0.34 513.70 VS HGL (PONDED TO TC) Q= 0.34 0.14 FOOT WIDE OPENING (MIN) (Q /L) 510.25 OK 2.50 USE W(MIN)= 4.00 OK CATCH BASIN #3 - STORM DRAIN DESIGN PREPARED BY COACHELLA VALLEY ENGINEERS DATE: 5 -15 -07 JOB #: 01152 PROJECT: TR 30378 BY: jsd PIPE BASIN GRATE NET EXIT LOSS LOSS AT D.S. HGL100 STORM DRAIN LINE: "C" -100 year DIA.(IN) Q100(CFS) WS100 OPENING(FT) OPENING(SF) AT GRATE END OF PIPE OUTLET DESIGN (DRY WELL) 1.1HV= 1.2HV= 18 0.79 1 511.50 2.00 1.38 0.003 0.004 WS1001N BASIN 511.500 0.003 VELOCITY IN 18 " PIPE Q= 0.79 0.45 PER SEC. HV= V2 /2G= 0.003 0.004 A= 1.77 V =Q /A HGL AT U.S. END 511.507 STORM DRAIN LINE LENGTH OF PIPE(d) 17.00 MANNING "S INDEX(n) 0.012 TYPE OF PIPE HDPE Sf =[ Q n ] 2 K' =0.463 Sf =[ 0.009480 12= 0.000048 [d 8 /3(K')] [ 1.366925 ] Hf =L(Sf) Hf= 0.0008 HGL AT U.S.END= 511.508 1.2HV= 0.004 100YR WS IN CB= 511.512 DESIGN FOR CATCH BASIN NO. 3 PROP. WIDTH OF OPENING (W)(FT) 4.00 H /h= 0.36 CURB HEIGHT (IN) 6.00 Q /L= 2.50 (PONDED TO TC) DEPTH OF DEPRESSION (IN) 4.00 DEPTH OF FLOW AT OPENING (H)(FT) 0.30 Q= 0.79 0.32 FOOT WIDE OPENING (MIN) HEIGHT OF OPENING (h)(IN) 10.00 (Q /L) 2.50 USE W(MIN)= 4.00 Q100 TO OPENING (CFS) 0.79 OK TC AT OPENING 513.70 VS HGL 511.51 OK STORM DRAIN LINE LENGTH OF PIPE(d) 14.00 MANNING "S INDEX(n) 0.012 TYPE OF PIPE HDPE Sf =[ Q n ] 2 [d 8 /3(K')] Hf =L(Sf) K' =0.463 Sf =[ 0.004080 12= [ 1.366925 ] DESIGN FOR CATCH BASIN NO. 4 PROP. WIDTH OF OPENING (W)(FT) 4.00 H /h= 0.36 CURB HEIGHT (IN) 6.00 Q /L= 2.50 (PONDED TO TC) DEPTH OF DEPRESSION (IN) 4.00 Hf= 0.0001 HGL AT U.S.END= 509.901 1.2HV= 0.001 10YR WS IN CB= 509.902 CATCH BASIN #4 - STORM DRAIN DESIGN PREPARED: BY COACHELLA VALLEY ENGINEERS DATE: 5 -15 -07 JOB #: ' 01152 PROJECT: TR 30378 BY: jsd PIPE BASIN GRATE NET EXIT LOSS LOSS AT D.S. HGL10 STORM DRAIN LINE: "D "- 10 year DIA.(IN) Q10(CFS) WS10 OPENING(FT) OPENING(SF) AT GRATE END OF PIPE OUTLET DESIGN (DRY WELL) 1.1HV= 1.2HV= 18 1 0.34 509.90 2.00 1.38 0.001 0.001 WS100 IN BASIN 509.900 0.001 VELOCITY IN 18 " PIPE Q= 0.34 0.19 PER SEC. hiV= V2 /2G= 0.001 0.001 A= 1.77 V =Q /A HGL AT U.S. END 509.901 STORM DRAIN LINE LENGTH OF PIPE(d) 14.00 MANNING "S INDEX(n) 0.012 TYPE OF PIPE HDPE Sf =[ Q n ] 2 [d 8 /3(K')] Hf =L(Sf) K' =0.463 Sf =[ 0.004080 12= [ 1.366925 ] DESIGN FOR CATCH BASIN NO. 4 PROP. WIDTH OF OPENING (W)(FT) 4.00 H /h= 0.36 CURB HEIGHT (IN) 6.00 Q /L= 2.50 (PONDED TO TC) DEPTH OF DEPRESSION (IN) 4.00 Hf= 0.0001 HGL AT U.S.END= 509.901 1.2HV= 0.001 10YR WS IN CB= 509.902 DEPTH OF FLOW AT OPENING (H)(FT) 0.30 Q= 0.34 0.14 FOOT WIDE OPENING (MIN) HEIGHT OF;OPENING (h)(IN) 10.00 (Q /L) 2.50 USE W(MIN)= 4.00 Q10 TO OPENING (CFS) 0.34 TC AT OPENING 513.70 VS HGL 509.90 OK OK CATCH BASIN #4 - STORM DRAIN DESIGN PREPARED BY COACHELLA VALLEY ENGINEERS DATE: 5 -15 -07 JOB #: 01152 PROJECT: TR 30378 BY: jsd PIPE BASIN GRATE NET EXIT LOSS LOSS AT D.S. HGL100 STORM DRAIN LINE: D- "100 YEAR" DIA.(IN) Q100(CFS) WS100 OPENING(FT) OPENING(SF) AT GRATE END OF PIPE OUTLET DESIGN (DRY WELL) 1.1 HV= 1.2HV= 18 0.79 1 511.79 2.00 1.38 0.003 0.004 WS100 IN BASIN 511.790 0.003 VELOCITY IN 18 " PIPE Q= 0.79 0.45 PER SEC. IAV= V2 /2G= 0.003 0.004 A= 1.77 V =Q/A HGL AT U.S. END 511.797 STORM DRAIN LINE LENGTH OF PIPE(d) 14.00 MANNING "S INDEX(n) 0.012 TYPE OF PIPE HDPE Sf =[ Q n ] 2 K' =0.463 Sf =[ 0.009480 ]2= 0.000048 [d 8/3(K')] [ 1.366925 ] Hf =L(Sf) Hf= 0.0007 HGL AT U.S.END= 511.798 1.2HV= 0.004 100YR WS IN CB= 511.802 DESIGN FOR CATCH BASIN NO. 4 PROP. WIDTH OF OPENING (W)(FT) CURB HEIGHT (IN) DEPTH OF DEPRESSION (IN) DEPTH OF FLOW AT OPENING (H)(FT) HEIGHT OF OPENING (h)(IN) Q100 TO OPENING (CFS) TC AT OPENING 4.00 H /h= 0.36 6.00 Q /L= 2.50 4.00 0.30 10.00 0.79 513.70 VS HGL (PONDED TO TC) Q= 0.79 0.32 FOOT WIDE OPENING (MIN) (Q /L) 511.80 OK 2.50 USE W(MIN)= 4.00 OK STORM DRAIN LINE LENGTH OF PIPE(d) 12.00 MANNING "S INDEX(n) 0.012 CATCH BASIN #5 - STORM DRAIN DESIGN TYPE OF PIPE HDPE PREPARED BY COACHELLA VALLEY ENGINEERS Sf =[ Q n ] 2 K' =0.463 Sf =[ 0.003120 12= 0.000005 DATE: 5 -15 -07 [d 8/3(K')] [ 1.366925 ] JOB #: 01152 Hf =L(Sf) Hf= 0.0001 PROJECT: TR 30378 HGL AT U.S.END= 511.701 BY: jsd PIPE BASIN GRATE NET EXIT LOSS LOSS AT D.S. HGL10 STORM DRAIN LINE: "E "- 10 year DIA.(IN) Q10(CFS) WS10 OPENING(FT) OPENING(SF) AT GRATE END OF PIPE DESIGN FOR CATCH BASIN NO. 5 OUTLET DESIGN (DRY WELL) 1.1HV= 1.2HV= PROP. WIDTH OF OPENING (W)(FT) 18 1 0.26 511.70 2.00 1.38 0.000 0.000 WS100 IN BASIN 511.700 6.00 Q/L= 2.50 (PONDED TO TC) 0.000 VELOCITY IN 18 " PIPE Q= 0.26 0.15 PER SEC. HV= V2 /2G= 0.000 0.000 A= 1.77. V =Q/A Q= 0.26 0.10 FOOT WIDE OPENING (MIN) HGL AT U.S. END 511.701 STORM DRAIN LINE LENGTH OF PIPE(d) 12.00 MANNING "S INDEX(n) 0.012 TYPE OF PIPE HDPE Sf =[ Q n ] 2 K' =0.463 Sf =[ 0.003120 12= 0.000005 [d 8/3(K')] [ 1.366925 ] Hf =L(Sf) Hf= 0.0001 HGL AT U.S.END= 511.701 1.2HV= 0.000 10YR WS IN CB= 511.701 DESIGN FOR CATCH BASIN NO. 5 PROP. WIDTH OF OPENING (W)(FT) 4.00 H /h= 0.36 CURB HEIGHT (IN) 6.00 Q/L= 2.50 (PONDED TO TC) DEPTH OF DEPRESSION (IN) 4.00 DEPTH OF FLOW AT OPENING (H)(FT) 0.30 Q= 0.26 0.10 FOOT WIDE OPENING (MIN) HEIGHT OF OPENING (h)(IN) 10.00 (Q /L) 2.50 USE W(MIN)= 4.00 Q10 TO OPENING (CFS) 0.26 OK TC AT OPENING 515.23 VS HGL 511.70 OI< CATCH BASIN #5 - STORM DRAIN DESIGN PREPARED BY COACHELLA VALLEY ENGINEERS DATE: 5 -15 -07 JOB #: 01152 PROJECT: TR 30378 BY: jsd PIPE BASIN GRATE NET EXIT LOSS LOSS AT D.S. HGL100 STORM DRAIN LINE: "E "- 100 year DIA.(IN) Q100(CFS) WS100 OPENING(FT) OPENING(SF) AT GRATE END OF PIPE OUTLET DESIGN (DRY WELL) 1.1HV= 1.2HV= 18 0.61 1 513.40 2.00 1.38 0.002 0.002 WS100 IN BASIN 513.400 0.002 VELOCITY IN 18 " PIPE Q= 0.61 0.35 PER SEC. IiV= V2 /2G= 0.002 0.002 A= 1.77 V =Q/A HGL AT U.S. END 513.404 STORM DRAIN LINE LENGTH OF PIPE(d) 12.00 MANNING "S INDEX(n) 0.012 TYPE OF PIPE HDPE Sf =[ Q n ] 2 K' =0.463 Sf =[ 0.007320 ]2= 0.000029 [d 8/3(K')] [ 1.366925 ] Hf =L(Sf) Hf= 0.0003 HGL AT U.S.END= 513.405 1.2HV= 0.002 100YR WS IN CB= 513.407 DESIGN FOR CATCH BASIN NO. 5 PROP. WIDTH OF OPENING (W)(FT) CURB HEIGHT (IN) DEPTH OF DEPRESSION (IN) DEPTH OF FLOW AT OPENING (H)(FT) HEIGHT OF OPENING (h)(IN) Q100 TO OPENING (CFS) TC AT OPENING 4.00 H /h= 0.36 6.00 Q/L= 2.50 4.00 0.30 10.00 0.61 515.23 VS HGL (PONDED TO TC) Q= 0.61 0.24 FOOT WIDE OPENING (MIN) (Q /L) 513.41 OK 2.50 USE W(MIN)= 4.00 OK CATCH BASIN #6 - STORM DRAIN DESIGN PREPARED BY COACHELLA VALLEY ENGINEERS DATE: -15 -07 JOB #: 31152 PROJECT: TR 30378 BY: sd PIPE BASIN GRATE NET EXIT LOSS LOSS AT D.S. HGL10 STORM DRAIN LINE: "F "- 10 year DIA.(IN) Q10(CFS) WS10 OPENING(FT) OPENING(SF) AT GRATE END OF PIPE OUTLET DESI N (DRY WELL) 1.1 HV= 1.2HV= 18 1 0.26 1 511.77 2.00 1.38 0.000 0.000 WS100 IN BASIN 511.770 0.000 VELOCITY IN 18 " PIPE Q= 0.26 0.15 PER SEC. HV= V2 /2G= 0.000 0.000 A= 1.77 V =Q /A HGL AT U.S. END 511.771 STORM DRAINI LINE LENGTH OF PIPE(d) MANNING "S IN DEX(n) TYPE OF PIPE DESIGN FOR CATCH BASIN NO. 17.00 0.012 HDPE Sf =[ Q n ] 2 K' =0.463 Sf =[ 0.003120 ]2= [d 8/3(K')] [ 1.366925 ] PROP. WIDTH F OPENING (W)(FT) CURB HEIGHT (IN) DEPTH OF DE RESSION (IN) DEPTH OF FLOW AT OPENING (H)(FT) HEIGHT OF F. PIENING (h)(IN) Q10 TO OPENING (CFS) TC Al OPENING 6 Hf =L(Sf) 0.000005 Hf-- 0.0001 HGL AT U.S.END= 511.771 1.2 H V= 0.000 10YR WS IN CB= 511.771 4.00 H /h= 0.36 6.00 Q/L= 2.50 (PONDED TO TC) 4.00 0.30 Q= 0.26 0.10 FOOT WIDE OPENING (MIN) 10.00 (Q /L) 2.50 USE W(MIN)= 4.00 0.26 OK 515.37 VS HGL 511.77 OK STORM DRAIN LINE LENGTH OF PIPE(d) MANNING "S INDEX(n) TYPE OF PIPE 17.00 0.012 HDPE Sf =[ Q n ] 2 [d 8/3(K')] Hf =L(Sf) DESIGN FOR CATCH BASIN NO. 6 PROP. WIDTH OF OPENING (W)(FT) CURB HEIGHTI(IN) DEPTH OF DEPRESSION (IN) DEPTH OF FLgW AT OPENING (H)(FT) HEIGHT OF OPENING (h)(IN) Q100 TO OPENING (CFS) TC AT OPENING 4.00 H /h= 0.36 6.00 Q/L= 2.50 4.00 0.30 Q= 10.00 0.61 515.37 VS HGL K' =0.463 Sf =[ 0.007320 ]2= 0.000029 [ 1.366925 ] Hf= HGL AT U.S.END= 1.2HV= 100YR WS IN CB= (PONDED TO TC) 0.61 .0.24 FOOT WIDE OPENING (MIN) (Q /L) 513.55 OK 2.50 USE W(MIN)= 4.00 OK 0.0005 ' 513.545 0.002 513.547 F_ CATCH BASIN #6 - STORM DRAIN DESIGN PREPARED BY COACHELLA VALLEY ENGINEERS DATE: 5-15-07 JOB #: 01152 PROJECT: FR 30378 BY: sd PIPE BASIN: GRATE NET EXIT LOSS LOSS AT D.S. HGL100 STORM DRAIN LINE: "F "- 100 year DIA.(IN) Q100(CFS) WS100I OPENING(FT) OPENING(SF) AT GRATE END OF PIPE OUTLET DESI ' N (DRY WELL) 1.1 HV= 1.2HV= 18 1 0.61 1 513.54 2.00 1.3ti 0.002 0.002 WS100 IN BASIN 513.540 0.002 - VELOCITY IN 18 " PIPE Q= 0.61 0.35 PER SEC. HV= V2 /2G= 0.002 0.002 A= 1.77 V =Q /A HGL AT U.S. END 513.544 STORM DRAIN LINE LENGTH OF PIPE(d) MANNING "S INDEX(n) TYPE OF PIPE 17.00 0.012 HDPE Sf =[ Q n ] 2 [d 8/3(K')] Hf =L(Sf) DESIGN FOR CATCH BASIN NO. 6 PROP. WIDTH OF OPENING (W)(FT) CURB HEIGHTI(IN) DEPTH OF DEPRESSION (IN) DEPTH OF FLgW AT OPENING (H)(FT) HEIGHT OF OPENING (h)(IN) Q100 TO OPENING (CFS) TC AT OPENING 4.00 H /h= 0.36 6.00 Q/L= 2.50 4.00 0.30 Q= 10.00 0.61 515.37 VS HGL K' =0.463 Sf =[ 0.007320 ]2= 0.000029 [ 1.366925 ] Hf= HGL AT U.S.END= 1.2HV= 100YR WS IN CB= (PONDED TO TC) 0.61 .0.24 FOOT WIDE OPENING (MIN) (Q /L) 513.55 OK 2.50 USE W(MIN)= 4.00 OK 0.0005 ' 513.545 0.002 513.547 MADISON STREET CARRYING CAPACITY Per Offsite Madison Street Storm Flows (TM 33085), the contributing tributaries include 18 acres upstream plus the adjacent Madison Street ROW = 1.76 acres Total Area = 18 acres + 1.76 acres = 19.76 acres Design Q -10 year: C, runoff coefficient = 0.735 (From Plate D -5.7) I, rainfall intensity = 1.79 in/lir (10yr — From Plate D -4.1) A, drainage area = 19.76 acres Q(10) = 0.735 * 1.79 in/hr * 19.76 acres = 26.00 CFS Since looking @ %2 Madison ROW, Q = 13.00 CFS Design Q -100 year: j ' I C, runoff coefficient = 0.756 (From Plat D -5.7) I I, rainfall intensity = 2.86 in/hr (100yr — From Plate D -4.1) A, drainage area = 19.76 acres Q(100) = 0.756 * 2.86 in/hr * 19.76 acres = 42.72 CFS Since looking @ %2 Madison ROW, Q = 21.36 CFS %2 Madison Street Section: 55' from ROW to centerline, 6" outer curb & gutter, 6" median curb. 34' face to face, �I 1' 1� 1. �I Check Spread of Flow per FHWA HEC -22 "Urban Drainage Design Manual" T = [(Q *n)/ ( Ku )(Sx)expl.67(Sl)exp0.5]expo.375 Ku = 0.56 n = 0.013 Q = flow rate (cfs) T = width of flow (ft) Sx = cross slope (ft/ft) Sl = longitudinal slope (ft/ft) 10 - Year: T = [ (13.00cfs * .013) / (.56)(.02)expl.67(.005)exp.5 lexp.375 T = 19.96' Therefore, 10 -year flow extends from face of curb 19.96' into roadway. Flow height at outer curb is .32' 100 — Year: T = [ (21.36cfs * .013) / (. 56) (.02)expl.67(.005)exp.5]exp.375 T = 24.05' Therefore, 100 -year flow extends from face of cub 24.05' into roadway. Flow height at outer curb is 0.48' TIME OF CONCENTRATION: MADISON STREET CATCH BASIN # 1 INITIAL FLOW: Ti = k *(L ^3/h) ^.2 where: k = 0.39 L, length of initial flow = 290 h, elevation difference over initial flow = 1.35 Ti = 11.03 minutes STREET CAPACITY: Q= 1.486 *A *R "2 /3 *S ^1/2 n where: A, X- sectional area of street = 8.5 sf Wetted perimeter = 34.5 R = 0.2464 S, slope = 0.0050 ft/ft n, Mannings coefficient = 0.017 Q = 20.65 cfs VELOCITY, in Street: V= Q/A where: Q, capacity, cfs = 20.65 A, area, sf = 8.5 V = 2.43 fps STREET FLOW: Ts = L/V where: L, length of flow = 290 V, street velocity = 2.43 Ts = 119.39 secs 1.99 min. DESIGN Q1o: Q = C *I *A where: C, runoff coefficient = 0.9 (From Plate D -5.7) I, rainfall intensity = 1.79 in /hr (10yr - From Plate D -4.1) A, drainage area = 0.67 AC (Drainage Map) Q = 1.08 cfs DESIGN Qloo: Q = C *I *A where: C, runoff coefficient = 0.9 (From Plate D -5.7) I, rainfall intensity = 2.77 in /hr (100yr - From Plate D -4.1) A, drainage area = 0.67 AC (Drainage Map) Q = 1.67 cfs TIME OF CONCENTRATION: MADISON STREET CATCH BASIN # 2 INITIAL FLOW: Ti = k *(L ^3/h) ^.2 where: k = 0.39 L, length of initial flow = 1200 h, elevation difference over initial flow = 4.2 Ti = 20.60 minutes STREET CAPACITY: Q= 1.486 *A *R ^2 /3 *S ^1/2 n where: A, X- sectional area of street = 8.5 sf Wetted perimeter = 34.5 R = 0.246 S, slope = 0.0050 ft/ft n, Mannings coefficient = 0.017 Q = 20.63 cfs VELOCITY, in Street: V= Q/A where: Q, capacity, cfs = 20.63 A, area, sf = 8.5 V = 2.43 fps STREET FLOW: Ts = W where: L, length of flow = 1051 V, street velocity = 2.43 Ts = 433.12 secs 7.22 min. DESIGN Q1o: Q = C *I *A where: C, runoff coefficient = 0.9 (From Plate D -5.7) I, rainfall intensity = 1.79 in /hr (10yr - From Plate D -4.1) A, drainage area = 2.29 AC (Drainage Map) Q = 3.69 cfs DESIGN Q1oo: Q = C *I *A where: C, runoff coefficient = 0.9 (From Plate D -5.7) I, rainfall intensity = 2.77 in /hr (100yr - From Plate D -4.1) A, drainage area = .2.29 AC (Drainage Map) Q = 5.71 cfs FLOWRATE TO CATCH BASIN #3 INITIAL FLOW: Ti = k *(L ^3/h) ^.2 where: k = 0.39 L, length of initial flow = 310 h, elevation difference over initial flow = 1.55 Ti = 11.16 minutes STREET CAPACITY: Q= 1.486 *A *R ^2 /3 *S ^1/2 n where: A, X- sectional area of street = 9 sf Wetted perimeter = 30.5 R = 0.2951 S, slope = 0.0050 ft/ft n, Mannings coefficient = 0.017 Q = 24.66 cfs VELOCITY. in Street: V= Q/A where: Q, capacity, cfs = 24.66 A, area, sf = 9 V = 2.74 fps STREET FLOW: Ts = LN " where: L, length of flow = 310 V, street velocity = 2.74 Ts = 113.16 secs 1.89 min. DESIGN Q1o: Q = C *I *A where: C, runoff coefficient = 0.9 (From Plate D -5.7) I, rainfall intensity = 1.73 in /hr (10yr - From Plate D -4.1) A, drainage area = 0.22 AC (Drainage Map) Q = 0.34 cfs DESIGN Qloo: Q = C *I *A where: C, runoff coefficient = 0.9 (From Plate D -5.7) I, rainfall intensity = 4 .in /hr (100yr - From Plate D -4.1) A, drainage area = 0.22 AC (Drainage Map) Q = 0.79 cfs Flowrate to Catch Basin #4 INITIAL FLOW: Ti = k *(L ^3/h) ^.2 where: k = 0.39 L, length of initial flow = 310 h, elevation difference over initial flow = 1.55 Ti = 11.16 minutes STREET CAPACITY: Q= 1.486 *A *R ^2 /3 *S ^1/2 n where: A, X- sectional area of street = 9 sf Wetted perimeter = 30.5 R = 0.2951 S, slope = 0.0050 ft/ft n, Mannings coefficient = 0.017 Q = 24.66 cfs VELOCITY. in Street: V= Q/A where: Q, capacity, cfs = 24.66 A, area, sf = 9 V = 2.74 fps STREET FLOW: Ts = L/V where: L, length of flow = 310 V, street velocity = 2.74 Ts = 113.16 secs 1.89 min. DESIGN Qio: Q = C *I *A where: C, runoff coefficient = 0.9 (From Plate D -5.7) I, rainfall intensity = 1.73 in /hr (10yr - From Plate D -4.1) A, drainage area = 0.22 AC (Drainage Map) Q = 0.34 cfs DESIGN Qioo: Q = C *I *A where: C, runoff coefficient = 0.9 (From Plate D -5.7) I, rainfall intensity = 4 in /hr (100yr - From Plate D -4.1) A, drainage area = 0.22 AC (Drainage Map) Q = 0.79 cfs FLOWRATE CALCS. TO CATCH BASIN #6 INITIAL FLOW: Ti = k *(L ^3/h) ^.2 where: k = 0.39 L, length of initial flow = 250 h, elevation difference over initial flow = 0.77 Ti = 11.29 minutes STREET CAPACITY: Q= 1.486 *A *R ^2 /3 *S ^1/2 n where: A, X- sectional area of street = 7.7 sf Wetted perimeter = 30.5 R = 0.2525 S, slope = 0.0050 ft/ft n, Mannings coefficient = 0.017 Q = 19.01 cfs VELOCITY. in Street: V= Q/A where: Q, capacity, cfs = 19.01 A, area, sf = 7.7 V = 2.47 fps STREET FLOW: Ts = L/V where: L, length of flow = 250 V, street velocity = 2.47 Ts = 101.26 secs 1.69 min. DESIGN Q1o: Q = C *I *A where: C, runoff coefficient = 0.9 (From Plate D -5.7) I, rainfall intensity = 1.73 in /hr (10yr - From Plate D -4.1) A, drainage area = 0.17 AC (Drainage Map) Q = 0.26 cfs DESIGN Qioo: Q = C *I *A where: C, runoff coefficient = 0.9 (From Plate D -5.7) I, rainfall intensity = 4 in /hr (100yr - From Plate D -4.1) A, drainage area = 0.17 AC (Drainage Map) Q = 0.61 cfs FLOWRATE CALCS. TO CATCH BASIN #6 INITIAL FLOW: Ti = k *(L ^3/h) ^.2 where: k = 0.39 L, length of initial -flow = 250 h, elevation difference over initial flow = 0.77 Ti = 11.29 minutes STREET CAPACITY: Q= 1.486 *A *R ^2 /3 *S ^1/2 n where: A, X- sectional area of street = 7.7 sf Wetted perimeter = 30.5 R = 0.2525 S, slope = 0.0050 ft/ft n, Mannings coefficient = 0.017 Q = 19.01 cfs VELOCITY. in Street: V= Q/A where: Q, capacity, cfs = 19.01 A, area, sf = 7.7 V = 2.47 fps STREET FLOW: Ts = L/V where: L, length of flow = 250 V, street velocity = 2.47 Ts = 101.26 secs 1.69 min. DESIGN 01o: Q = C *I *A where: C, runoff coefficient = 0.9 (From Plate D -5.7) 1, rainfall intensity = 1.73 in /hr (10yr - From Plate D -4.1) A, drainage area = 0.17 AC (Drainage Map) Q = 0.26 cfs DESIGN Qloo: Q = C *I *A where: C, runoff coefficient = 0.9 (From Plate D -5.7) I, rainfall intensity = 4 in /hr (100yr - From Plate D -4.1) A, drainage area = 0.17 AC (Drainage Map) Q = 0.61 cfs i 7D= fj 17 N 7- < yscL^ tee: ' i Ear-7- o i tz .3 p 3 c '= ------------------ ------ -------------------------- ca ion: Ca D__ N o a d ------ -------------- --- Caiou Varac • CbD -----ia--: ----------- Nome --- -------------- ------- ------- -------------- ------------- C=C ------------- Cax2i.taz: c 'None ------ ------ --- --- -- -- --- -- -- - - - CC8 -------------- Yon --__ ------------------------------- ' , C-:C, C, , c �:, C, 8 ca-mita-- Variant: L---------- `Tone - - - - -- ------- - - - -- -- ------ - - -- -- CL,L,ckz-;7-;2z: CZ-8, c I D c.qc, C., CE. 3 iout! -------------------- -------------- ------------- --------------- ------------ z lu-, Ec , uezcs: Ver; 10az ----- -------------------- euts I'D ()CcjomLLi__ rz ------------------- =_ Gilman: G d S g 2, C-,:�.. B - Ra re -------- --------------------------- _:C/-�., B "fore - -- - -- -------------- ------------ 0 ra,7et of is and d— as: C- P. icioer al: rrort -- - ---- -------------- ------------ -------------------- j -------------------- D r a a e ------ -------------- - --------- -- ImC 1: -------- I.m.perial carp -- - - - - -I -Iont! ------ ----------------- G u i _U e d . I an d a tL c-,-. ceriat: cc 1: 13 --------- ----------- C-LLed I,- . md pzL7.-.. ... .. a, --------- 3 --------- ..........• F, -------------- ----------- at. . -------------- ------- > 0 >6.0 >6.0 >6.0 0 >n:0• ------------- - -- -- - - -- -- -------------- - ----------- --- --------------- ------------ >do --------------- ------------ • >60 -------------- ------------- >6cj >60 ------------ 6-20 >60 >60 Jap_-Dec____: >60 >,;a - ------------ -------------- I - - -- - - - - -- >6.1) 1 --------------- > -------------- -------- >60 >80 >60 >60 >,30 >60 60 >60 > 60 l; 1�� rl IM'! 0 Na----- - ----------- Nbi3 ----------------- Ono ---------------- '� CJ C35 to C - P 2. rr OULZroo pa:z. t ock- outcrop:' RC. R 7 1: Rock outcrop oar:. Lit!:ic Rubble lI) Rl!. �Zelto=: Sd, Sb --------------- Z-0000a: --c'D, SPE ------------ TC Tornort_heat3 par-,.' Rack- o LIZCND can. 11 7- L) 1 7 .7L. -Null! C �-ijce C Nine C I Naue ------ C DN-0--e- D > L- ----------- 2 _-!2 ------ • A - - parenc-__ >6.0 1-- -- --- - - ----- >6.0 1------ ----- --- >6•-0 I--- .--- -- - --- -- - - - - - - - - - - - - - - - - - I >W ---------- --------- ------------ - >60 ------------ 20 111"o 0 a. b I a > 6.0 1 - - - - -- ------------------- o I 0 card. '60 --------- Tujuna_-': -- ------- 1 >60'1 -------- P E', _Ir�-, T, -- -- --- - - -- - -- --- ioce ------ --------------- I -- - -- ------- ------- I �h. compositian ar OT_ Bod: See mazzin.- Lmit description for. This niapping unit is made UD OZ. ZWO Or more dominant kiLds o- b,h,liior of the whole_ =a-onirg Lini�. Lt Lhe qpijjCr Of r _r cz:: an -1- ,anions duri L d on other obse ! L _.L; a-rid -LIle L, L .1nontis of tli� year - at Che -15 relit: nly hi.-TH. a ae b e nd its 0 i= Coj_ -ed zones abol;;r soils. T, Bind o.L -rock a: bedroc L_njo On!7i satur-L r 0 5 E 0 f e -cavation. is a 150. sh 0,"7-. deptL!i of or 6 --feet, ar-2 indic-atEd. 1E,400th ri�Pilll�'; atzacl -ca-aic - --,vitb a sing ,y Eri T �,te C_,jj oe e:. nfo r-r-q alLibri- aboutL tLlie seasona! hir-rh `ra - . - i * h,.i rrl bedrOc C 200-horSEUONVEr Zzac�_or. buL 1 deSi—Ed Men; on nei,os 1r, 10i7 sUec-13. C1 n rezuires blas t ounrdat:lons, tuhe need or spec-inc ^-i Ti ": 0 -L* 575tems, Lind: �hc -.,=Ed --or -:oo--_j irains 'to insure r-ir--,r L, - - I _- L -- - �,: , L, C,- 'n-ormation i5 a!S0 veer,,ed L60 a e C 1 C1 e L L 'Isibiz, Fo7-mation. Morpl-Lology- el: D-C noz con­ruc�--,Ori 0-f bazz-r-nelit'Z 15` LE I _L an d :,o r; in the Soi' e o • zpotc a'b*sor_-Di--on. �=;dz a 14 Clas.jz"ficatiort j LS 10, 0 thE U111 2: -7 17 0 L: at'r; n S VV -C IS SEC71OD. ()7 Ztt= Co:1 a_ase o f J I -'i -a or-- f Soil -fo=ai`o�. as t t., occur in ',n L! Z r: Ilk Jrr' 7l . 7 7 f: C T­ ()7 r.- .7L. -Null! C �-ijce C Nine C I Naue ------ C DN-0--e- D > L- ----------- 2 _-!2 ------ • A - - parenc-__ >6.0 1-- -- --- - - ----- >6.0 1------ ----- --- >6•-0 I--- .--- -- - --- -- - - - - - - - - - - - - - - - - - I >W ---------- --------- ------------ - >60 ------------ 20 111"o 0 a. b I a > 6.0 1 - - - - -- ------------------- o I 0 card. '60 --------- Tujuna_-': -- ------- 1 >60'1 -------- P E', _Ir�-, T, -- -- --- - - -- - -- --- ioce ------ --------------- I -- - -- ------- ------- I �h. compositian ar OT_ Bod: See mazzin.- Lmit description for. This niapping unit is made UD OZ. ZWO Or more dominant kiLds o- b,h,liior of the whole_ =a-onirg Lini�. Lt Lhe qpijjCr Of r _r cz:: an -1- ,anions duri L d on other obse ! L _.L; a-rid -LIle L, L .1nontis of tli� year - at Che -15 relit: nly hi.-TH. a ae b e nd its 0 i= Coj_ -ed zones abol;;r soils. T, Bind o.L -rock a: bedroc L_njo On!7i satur-L r 0 5 E 0 f e -cavation. is a 150. sh 0,"7-. deptL!i of or 6 --feet, ar-2 indic-atEd. 1E,400th ri�Pilll�'; atzacl -ca-aic - --,vitb a sing ,y Eri T �,te C_,jj oe e:. nfo r-r-q alLibri- aboutL tLlie seasona! hir-rh `ra - . - i * h,.i rrl bedrOc C 200-horSEUONVEr Zzac�_or. buL 1 deSi—Ed Men; on nei,os 1r, 10i7 sUec-13. C1 n rezuires blas t ounrdat:lons, tuhe need or spec-inc ^-i Ti ": 0 -L* 575tems, Lind: �hc -.,=Ed --or -:oo--_j irains 'to insure r-ir--,r L, - - I _- L -- - �,: , L, C,- 'n-ormation i5 a!S0 veer,,ed L60 a e C 1 C1 e L L 'Isibiz, Fo7-mation. Morpl-Lology- el: D-C noz con­ruc�--,Ori 0-f bazz-r-nelit'Z 15` LE I _L an d :,o r; in the Soi' e o • zpotc a'b*sor_-Di--on. �=;dz a 14 Clas.jz"ficatiort j LS 10, 0 thE U111 2: -7 17 0 L: at'r; n S VV -C IS SEC71OD. ()7 Ztt= Co:1 a_ase o f J I -'i -a or-- f Soil -fo=ai`o�. as t t., occur in ',n L! Z r: Ilk Jrr' 7l . 7 7 f: C T­ ()7 r.- C L MADISON STREET CARRYING CAPACITY Per Offsite Madison Street Storm Flows (TM 33085), the contributing tributaries include 18 acres upstream plus the adjacent Madison Street ROW = 1.76 acres Total Area = 18 acres + 1.76 acres = 19.76 acres Design Q -10 year: ' I C, runoff coefficient = 0.735 (From Plate D -5.7) I, rainfall intensity = 1.79 in/hr (1 Oyr — From Plate D -4.1) A, drainage area = 19.76 acres Q(10) = 0.735 * 1.79 in/hr * 19.76 acres = 26.00 CFS Since looking @' /2 Madison ROW, Q =13.00 CFS Design Q -100 year: C, runoff coefficient = 0.756 (From Plat D -5.7) ' I, rainfall intensity = 2.86 in/hr (100yr — From Plate D -4.1) A, drainage area = 19.76 acres Q(100) = 0.756 * 2.86 in/hr * 19.76 acres = 42.72 CFS Since looking @' /2 Madison ROW, Q = 21.36 CFS ' I '/2 Madison Street Section: 55' from ROW to centerline, 6" outer curb & gutter, 6" median curb. l 34' face to face, Check Spread of Flow per FHWA HUC -22 "Urban Drainage Design Manual" T = [(Q *n)/ ( Ku )(Sx)exp1.67(Sl)expo.5Iexpo.375 Ku = 0.56 n = 0.013 Q = flow rate (cfs) T = width of flow (ft) Sx = cross slope (ft/ft) S1= longitudinal slope (ft/ft) 10 - Year: T = [ (13.00cfs * .013) / (.56)(.02)expl.67(.005)exp.5 lexp.375 T = 19.96' Therefore, 10 -year flow extends from face of curb 19.96' into Iroadway. Flow height at outer curb is .32' 100 — Year: T = [ (21336cfs * .013) / (. 56) (.02)exp1.67(.005)exp.5]exp.375 T = 24.05' Therefore, 100 -year flow extends from face of cub 24.05' into roadway. Flow height at outer curb is 0.48' . TM 30399 OLD ORCHARD PARK NUISANCE WATER EVALUATION Based upon the 2005 CVE Hydology and Retention Basin report... the nuisance water accumulation formula remains the same. For the subdivision tract and street of Beth circle, Madison Street and orchard Park Street the calculated projection of nuisance water flow is 6.1 CF / HR. The tested Deepwell percolation two chamber facility is capable of percolating 12.7 times 2.00 inches which equals 2.73 inches of nuisance water per hour. . A minimum system installation of 20 feet depth is more than fail safe in complying to City of La Quinta retention basin standards for the accumulation of nuisance water. Old Orchard - 8 Lots Subdivision CVE Job # 01152 Tract 30378 John W. Cavin REC 16802 Pave 8 of 8 5. Landscape Nuisance Water= 3.'! 1 ph/2000 sf = 3.41 (26,744)/2000 = 45.6 gph = 45.6 (.1337) = 6.1 c//hr Lots 5 thru 8 = 0.7 cf /hr Total Nuisance Water = 6.8 c//hr 6. Sand Filter Capacity = 18.4 cf /hr >6.8 7. Leach Chamber Capacity = 2.8 sf /LF (0.25/12 ft/hr) = 0.058 c f/hr /LF Required Length = (6.8 cf/hr)/ 0.058 = 117 LF Chambers are 7' Long. Number of chambers = 117/7 = 16.7 Chambers Use two rows of 9 chambers each - 18 total. S. Pipe size from CB #1 to Sand filtration: Q = 6.1 cf/hr /3600 sec/hr = 0. 00 17 cfs Capacity of 6" CPP @ S = .0004 = 0.15 cfs, >0.0017, 4" CPP has capacity but is to easily blocked by trash. SAND FILTER/LEACH FIELD DESIGN - SUMMARY Calculations rl I. House Nuisance Water- Lots 5 thru 8: 4 (Front 40 %) (.458 cf /house) = 0.73 cf /hr 2• Street landscape Nuisance Water (26.744 sf) 3.41 gph/2000 sf (0.1337 gal /co = 6.1 cf /hr Total: 6.8 cf /hr 3. Sand Filter Required= 6.8/18.4 =0.37 4. Leach Chambers Percolation rate 0.25in/hr = 0.0208 ft/hr Chamber Capacity = (2.8 of /LF) 0.0208 = 0.058 cf /hr /LF Required Chamber Length = (6.8 cf/hr) /0.058 = 117.LF Use Two Rows of 9 Chambers each Total Length = 18 (7') = 126.LF Sand Filter Sizing ; Calculations House and Street Landscape Nuisance Water 6.8 cf/hr Calculation rl Use One Sand Filter - Capacity 18.'! cf /hr Calculation #2 Use 126 LF of Leach Chambers - (2) rows, (9) - 7 LF Chambers Each. Capacity 126 (.058 c[/hr/LF) = 7.3 cf /hr r t� Old Orchard - 8 Lots Subdivision CVE Job # 01 152 Tract 30378 John W. Cavin RFC 16802 Paae 7 of 8 CB'-.') (East side Old Orchard Drive Tributary Area 6 & 7 A =1.72 Ac, Tc = 25 min, I = 2.66 inv'lu, C = .9 Q100 =AC1 =4.12 cfs+ 1.17 =5.29 cfs Use 18' CPP pipe CB #) to Sand Fitter CB; 1 (Westside of Madison Street) Tributary Area 8, 9, 11, 10 = 2.68 Ac Ti - 10 min, Tt = 1520 LF @ 2 fps = 12.7 min, Tc - 23 min I = 2.66 in/hr, C= .9, n=.010, 0 = AC 1 = 2.68 (:9 (2.66) = 6.41 cfs d = 21" HDPE CPP Sf= 0.00092, So = 0.0656, V = 2.65 fps Hf = Sf(L) = 0.04 Hv = V2/29 = 0.11 1.2Hv + Hf + Hv = 2.2(.11) + .04 = 0.28 WS 100 = 512.80-0.5 (freebd) -0.28 = 512.02 in Retention Basin Use 24" RCP CB 41 to Outlet/Junction Riser Connector Pipes: Pipes from CB #1 & CB #3 flow into Basin #9 Peak inflow = 1.73cfs @ hr 14 of 24 Stomz [TA = 5.0 Ac (not 7.080)] (Area 5- 13) = 3.94 cfs @ 2.5 of 3 hr = 3.54 cfs @ 5.5 of 6 hr Qp = 3.94 (5.0 Ac /7.08 Ac) = 2.78 cfs (Area 5 thni 12) Q = 3.94, n =.009 (PE pipe) S = .0064 x 25' = 0. 16, V = 5 fps, Hv =.39 Q = 2.78 cfs, n = .009, S =.029, V = 3.5 fps, Hv - 0.19', Hf = 0.16 Use 12" Center line HDPE PCC Connector Pipes Sand Filter Leach Field Design 1. Lots 1 thm 4 retain onsite and do not contribute nuisance water offsite. 2. The back 60% of lots 5 thru 8 also retain onsite and do not contribute nuisance water offsite. 3. The front 40% of Lots 5 thm 8 contribute nuisance water to Old Orchard Drive and to the Sand Filter System Nuisance Water = 0.4 (.458 cf /hs) (4 hrs) = 0.73 cf/hr. 4. Street Landscaping Nuisance Water from Madison and Vista Bonita will contribute nuisance water to the Sand Filter. Beth Drive Landscaping drains directly into the Retention Basin and does not contribute to the Sand Filter. Vista Bonita Landscape (existing) = 592'x 19' = 11,248 sf Madison (Future) = 596' x 26' = 15,496 sf I I IReciprocal Easement and Maintenance Agreement ' This Agreement is made on 7 by Core Homes, LLC, a 1 California limited liability company whose address is 470 South Market Street, San Jose, ' l California 95113 ( "Core "), and La Quinta Polo Orchard Partners LLC, a California limited liability company whose address is 810 North Farrell Drive, Palm Springs, 1 California 92262 ( "LQPOP "), each of whom is a party ( "Party ") to this Agreement. 1 Some times herein after Core and LQPOP and their respective heirs, successors and assign may collectively be referenced as the "Parties ". tRECITALS A. Core is the owner of certain real property ( "Core Parcel ") located in the city of La ' Quinta, County of Riverside, State of California, designated as La Quinta Tentative Tract Map 33085 and more particularly described on Exhibit "A" attached hereto and ' incorporated herein by reference. B. LQPOP is the owner of certain real property ( "LQPOP Parcel ") located in the city of ' La Quinta, County of Riverside, State of California, designated as La Quinta Tentative Tract Map 30378 and more particularly described on Exhibit ` 137 attached hereto and i incorporated herein by reference. C. Core Parcel has been subdivided into a planned unit develop of seven home lots and l two (2) common area lots including common area Lot ( "E ") as more particularly set forth ' in La Quinta Tentative Tract Map No. 33085 a copy of which is attached hereto as Exhibit "C" attached hereto and incorporated herein by reference. D. LQPOP Parcel has been subdivided into a planned unit develop of eight 8 home lots and 7 common area lots including common area Lot ( "D ") as more particularly set forth in La Quinta Tentative Tract Map No. 30378 a copy of which is attached hereto as Exhibit "D" attached hereto and incorporated herein by reference. E. Common area Lot(s) ( "E ") and ( "D ") referenced in paragraph(s) "C" and "D" herein ' above, constitute the common area lots for ingress and egress from the home lots on La Quinta Tentative Tract Map(s) 33085 and 30378 to Madison Street, a public street and right of way in the City of La Quinta. Hereinafter - common area Lot(s) ( "E ") and ( "D ") ' may be collectively referenced as the "Joint Access Lots ". F. The legal description of the Joint Access Lots is: ' J Lot D of La Quinta Tract Map Number 33085 recorded on Lot E of La Quinta Tract Map Number 30378 recorded on G. LQPOP has previously caused street and ' P Y related utility improvements to be placed upon and along the Joint Access Lots and shall install and bear the cost to install landscape, entry feature (if necessary) and entry- gate pursuant to plans approved by the City of La Quinta. L.Q.P.O.P. shall pay all costs, charges and expenses incurred in the installation of landscape irrigation, lighting and controls for same. H. By entering into this Agreement, the Parties and their heirs, successors and assigns, including any future owners of the home lots and or home owners' association owners of the common area lots, including the Joint Access Lots for Core Parcel and LQPOP Parcel desire to establish a common, general plan for the joint protection, development, maintenance, and improvement of the Joint Access Lots. To this end, the Core Parcel and the LQPOP Parcel, including all home lots and common area lots thereon, shall be subject to certain protective provisions, covenants, conditions, and restrictions described in this Agreement, for the mutual benefit of the Parties and of the Core Parcel and the LQPOP Parcel. Further, each Party shall grant to the others certain reciprocal easements in, to, over, under, and across the Joint Access Lots. In consideration of the mutual covenants and agreements contained in this Agreement, the Parties agree as follows: ARTICLE 1. TRANSFER LIMITATIONS, RIGHTS, AND OBLIGATIONS 1.01. No Party may transfer or assign any right, power, or obligation created under this Agreement without also transferring its own Parcel or its interest in that Parcel. Further, the transfer or assignment must comply with this Agreement. Any instrument of transfer or assignment shall state that the transfer or assignment is subject to this Agreement and shall refer to and incorporate by reference this Agreement. Any such reference shall recite the recording information for this Agreement, or for any memorandum of this Agreement, including the date and location of recordation and the instrument number. 1.02. Notwithstanding any other provisions of this Article 1, each Party is and shall remain personally liable to construct all improvements required of it under Article 3. A transfer of any right, title, or interest in a Party's Parcel (whether or not the transfer results in the Party remaining a Party pursuant to the provisions of this Article 1) shall not relieve the Party of its personal liability under this Paragraph. 1.03. This Paragraph applies if a Party (1) conveys any leasehold interest in its Parcel, or (2) assigns, transfers, or conveys its whole interest in its Parcel without retaining any beneficial interest (other than under the terms of a deed of trust or mortgage), or without simultaneously acquiring a new interest by way of leasehold, life estate, or other possessory interest. In either case, the powers, rights, and interest conferred on that Party by this Agreement shall be assigned, transferred, or conveyed to the transferee, assignee, grantee, or lessee, and the obligations under this Agreement shall be assumed by the transferee, assignee, grantee, or lessee. V 1.04. This Paragraph applies if a Party (1) assigns, transfers, or conveys its whole interest in its Parcel but simultaneously acquires a new interest in the Parcel under a lease or similar possessory arrangement, or (2) conveys its interest in its Parcel or any part of it by deed of trust or other security instrument as security for indebtedness. In either case, none of the powers or obligations conferred on that Party pursuant to this Agreement shall be assigned, transferred, or conveyed with the interest assigned, transferred, or conveyed by the Party. All of the powers, rights, interests, and obligations provided for under this Agreement shall remain in the transferring Party for so long as that Parry, (1) under the first set of circumstances described above, retains the new leasehold or other possessory interest in and to the Parcel; or, (2) under the second set of circumstances described above, remains the beneficial owner of its Parcel. 1.05. (a) This Paragraph applies if at any time during the term of this Agreement a Party conveys or transfers its whole or any portion of its interest in its Parcel so as to vest ownership of the Parcel or any interest in the Parcel in more than one Person. In that case, those Persons, hereafter referred to as "Joint Owners of the Parcel," shall be considered a single Party under this Agreement and shall jointly appoint one of their number to act as Agent on behalf of all of them in carrying out the provisions of this Agreement. The appointment of an Agent pursuant to this Paragraph must be in a writing that is duly executed and acknowledged by each Joint Owner of the Parcel and is recorded in the Office of the Recorder of Riverside County, California. Further, a copy of this writing must be given to every other Party to this Agreement. If an appointed Agent dies, is removed, becomes incapacitated, or is dissolved, the remaining Joint Owners of the Parcel shall promptly appoint a new Agent. If they fail to do so, an Agent shall be appointed pursuant to Subparagraph (d) of this Paragraph. (b) The performance or exercise of rights under this Agreement by the Agent appointed to represent Joint Owners of the Parcel is binding on each Joint Owner of the Parcel and on each Person having an interest in a Joint Owner of the Parcel. So long as the appointment of an Agent remains in effect, each Joint Owner of the Parcel shall act only through its appointed Agent, and the other Parties to this Agreement shall have the right to deal exclusively with and to rely solely on the acts or omissions of the Agent in the performance of this Agreement. However, the appointment of an Agent pursuant to Subparagraph (a) of this Paragraph shall not relieve any Joint Owner of the Parcel from any of the obligations created under this Agreement. (c) In the event an Agent is required to be appointed under the provisions of Subparagraph (a) of this Paragraph but none is appointed, the acts of any Party whose original exclusive interest in a Parcel is subsequently divided shall be binding on all Persons having an interest in the Parcel, whether or not the original Parry retains any interest in the Parcel, until such time as written notice of the appointment of an Agent is given in the manner described in Subparagraph (a) of this Paragraph and is recorded in the Office of the Recorder of Riverside County, California. (d) If the Joint Owners of the Parcel do not appoint an Agent within thirty- (30) days after they become obligated to make such an appointment, the other Parties to this Agreement. or any one of them if they are unable to act jointly, may appoint an Agent in the manner ( required under Subparagraph (a) of this Paragraph. That Agent shall be a Pa to this ' � P g ttY Agreement for so long as the appointment is in effect. The appointment shall be binding and remain in full force and effect until the Joint Owners of the affected Parcel appoint a ' new Agent pursuant to Subparagraph (a) of this Paragraph. i (e) The Joint Owners of the Parcel may at any time revoke the previous appointment of ' I an Agent and appoint a new one in the manner prescribed in Subparagraph (a) of this Paragraph. ' (f) An Agent appointed by the Joint Owners of the Parcel shall be the agent of each of its principals. Service of any process, writ, summons, order, or other mandate of any nature ' relating to any action, suit, or proceeding arising out of this Agreement, or any demand for arbitration relating to this Agreement, may be made on the Agent. Service on the l Agent constitutes due and proper service of any matter on each of its principals, provided ' a copy of the matter is also mailed to each principal at its last address known to the sender. 1.06. (a) If a Party conveys, assigns, sells, or otherwise transfers its entire right, title, and interest in its Parcel, that Party shall be released from any obligations arising under this Agreement subsequent to the date of the transfer, provided the transferring Party has timely performed all of its obligation under this Agreement and delivers written notice of the transfer and a written assumption statement, in recordable form and executed by the transferee, to all other Parties to this Agreement. If the transferring Party is obligated to operate and maintain the Joint Access Lots, that Party shall not be released from its obligations under this Agreement until it also delivers a final summary statement of all costs and expenses for the Joint Access Lots as of the effective transfer date. The written notice of transfer, the assumption statement, and, if applicable, the final summary statement for the Joint Access Lots, shall be delivered prior to or at the time the instrument effecting the transfer is filed for recording with the County of Riverside, California. The written assumption statement referred to in this Subparagraph shall be executed by the transferee in recordable form, shall contain an express statement that the transferee expressly assumes and agrees to be bound by the covenants and restrictions contained in this Agreement, and shall be delivered to the transferring Party prior to or at the time the instrument effecting the transfer of title or interest is filed for recording. A transferee's failure to comply with these requirements relating to assumption statements constitutes a default under this Agreement by the transferee, but does not modify or negate that transferee's liability under this Agreement or affect the running of any covenants with the Iand provided for under this Agreement. (b) Any transferee shall not be liable for any default of its transferring Party occurring prior to the time the transferee acquires its right, title, or interest in a Parcel, with the following exception: the acquired right, title, or interest shall be subject to any prior recorded claim of lien. L II t I r ARTICLE 2. EASEMENTS 2.01. Each Party, as grantor, grants to the other Parties, as grantees, the following nonexclusive easements over, across, in, under, and through the Joint Access Lots of the grantor's Parcel: (a) For ingress and egress over, across, in, and through the Joint Access Lots by vehicular and pedestrian traffic. (b) For the installation, maintenance, removal, and replacement of water mains, telephone lines, gas mains, sewers, electrical systems or conduits, water drainage systems or structures, and other public utilities and services (collectively referred to as "Utility System(s) "). Except when not feasible, all Utility Systems shall be located underground. The location of any Utility System that must be located above ground must be placed so as to not interfere with the use of the Joint Access Lots. (c) For the installation, maintenance, removal and replacement of landscaping, entry guard house and guard gate and related facilities. 2.02. For purposes of the easements granted in Paragraph 2.01 of this Agreement, the Parcels benefited by each easement constitute the dominant estate, and the Parcel burdened by each easement constitutes the servient estate. The grant of an easement to a Parry for that Party's benefit shall also be a grant to and for the benefit of that Party's successors, heirs, assigns, Occupants, and Users. Each easement granted in Paragraph 2.01 of this Agreement is appurtenant to and for the benefit of each Parcel owned by each grantee of the easement. No easement may be transferred, assigned, or encumbered except as an appurtenance to the benefited Parcels. 2.03. Each easement granted under this Article shall continue in effect both as to any Parcel benefited and as to any Parcel burdened by the easement until the use of the easement for the benefit of a particular Parcel is abandoned for a period of at least two years. 2.04. Each Party agrees that during the construction of improvements on the Joint Access Lots as required under this Agreement, certain minor and temporary encroachments on the Core Parcel and the LQPOP Parcel may occur due to the use of equipment in connection with construction, and that these temporary encroachments shall be permitted on the Core Parcel and the LQPOP Parcel for only a limited time and only to the extent necessary for the construction involved. For the same purpose and the same limited time and extent, the Parties further agree that the Joint Access Lots may be used for ingress and egress by construction- related vehicles and personnel and for the temporary storage of construction materials and equipment. ARTICLE 3. BliILDING AND RELATED INIT f rROVEl\iT ENTS 3.05 When construction of improvements for the Joint Access Lots Improvement is substantially complete, LQPOP shall noti , each of the Parties in writing. Q fS Within t-,veriy 'l (20) days after the date of LQPOP's written notice, the Parties shall inspect the improvements and shall prepare a "punchlist" of all items the Parties consider either defective or not completed. Within thirty (30) days after the Parties deliver the punchlist ' to LQPOP, LQPOP shall cause the corrective work to be performed. On performance of the corrective work; the Parties shall accept as complete the construction of improvements for the Joint Access Lots Improvement. This acceptance shall be in 3.01. The Parties agree that a primary purpose of this Agreement is to provide 1egal and convenient ingress and egress access over and across the Joint Access Lots by the Parties, 1 their heirs successors and assigns, to their respective properties, and to insure the proper construction and maintenance of all improvements made and to be made to the Joint ' Access Lots including but not limited to those landscape, street, sewer, water, dry utilities, entry guard house and entry guard gate as approved by the Pa'-ties and the City ' of La Quinta (the "Joint Access Lots Improvement "). To this end, any construction performed by a Party on the Joint Access Lots shall comply with all terms, covenants, l and conditions of this Agreement, and shall be approved by sixty percent (60 %) of the ' I residential lots in the Core Parcel, sixty percent (60 %) of the residential lots in the LQPOP Parcel and the City of La Quinta. 1 3.02. All Joint Access Lots Improvement not already constructed on the date of recording of this Agreement shall be approved, in writing, by sixty percent. (60 %) of the residential lots in the Core Parcel, sixty percent (60 %) of the residential lots in the LQPOP Parcel, I ' I and shall be approved by the City of La Quinta. 3.03. All Joint Access Lots Improvement shall be installed and constructed at the sole ' expense of LQPOP and its heirs, successors and assigns without contribution and/or reimbursement from Core and its heirs, successors and assign. The installation and construction of the Joint Access Lots Improvement shall be completed within the time 1 ' 1 periods as required by the conditions of approval for La Quinta Tentative Tract Map 30378 and La Quinta Tentative Tract Map 33085 (the "Conditions of Approval ") and/or any other requirements of the City of La Quinta. ' 3.04 LQPOP and its heirs, successors and assigns shall at all times keep the Joint Access Lots free and clear of liens and claims of liens for labor, services, materials, supplies, or ' equipment performed on or furnished to the Joint Access Lots in connection with the construction of the Joint Access Lots Improvement performed by LQPOP and its heirs, successors and assigns. LQPOP and its heirs, successors and assigns agree to defend, ' indemnify, and hold the other Parties harmless from any liability; damage, loss, and other costs and expenses relating to claims of lien arising out of any labor, services, materials; supplies, or equipment furnished to the Joint Access Lots in connection with the ' corstn.:ction performed by LQPOP and its heirs, success ^rs and assigns on he Joint Access Lots: 3.05 When construction of improvements for the Joint Access Lots Improvement is substantially complete, LQPOP shall noti , each of the Parties in writing. Q fS Within t-,veriy 'l (20) days after the date of LQPOP's written notice, the Parties shall inspect the improvements and shall prepare a "punchlist" of all items the Parties consider either defective or not completed. Within thirty (30) days after the Parties deliver the punchlist ' to LQPOP, LQPOP shall cause the corrective work to be performed. On performance of the corrective work; the Parties shall accept as complete the construction of improvements for the Joint Access Lots Improvement. This acceptance shall be in writing. If the Parties, or any of them, fail to deliver a punchlist to LQPOP within the time period required by this paragraph, that Party shall be deemed to have inspected the Joint Access Lot Improvement and accepted the improvements as complete. 3.06. LQPOP and its heirs, successors and assigns agree that it shall perform construction activities in a manner that will not interrupt or interfere with any other Party's construction activities or use of the Joint Access Lots pursuant to the provisions of this Agreement. 3.07. From the time LQPOP and its heirs, successors and assigns commence construction of the Joint Access Lots Improvement and continuing until completion of the construction, each LQPOP and its heirs, successors and assigns shall procure and maintain, at its sole cost and expense, public liability insurance and fire and extended coverage insurance applicable to the construction work to be performed by it under this Agreement. This coverage shall meet all requirements for insurance set forth in Section 4.3 of this Agreement. Each Party shall also procure and maintain workers' compensation insurance in the minimum amounts established by law. 3.08. LQPOP and its heirs, successors and assigns agree to defend, indemnify, and hold each other Party harmless from any liability, damage, injury, or other costs and expenses arising from or alleged to have arisen from any act or ommission of the LQPOP and its heirs, successors and assigns in connection with the construction work to be performed by it on the Joint Access Lots. 3.09 Each Party shall have the right to construct or cause to be constructed, at their own cost, a project identity sign (the "Identity Sign ") on that portion of the Joint Access Lots to which the Party owns fee title. Notwithstanding the foregoing, the Identity Sign may not be constructed in a location or with a design that interferes with Joint Access Improvements of the use of the Joint Access Lots for ingress and/or egress, and the location and design of the Identity Sign must be approved by the other Party hereto (which approval will not be unreasonably withheld), and by the City of La Quinta. 3.10 The rights and obligations set forth in this Article 3 may be assumed by a Homeowners Association on behalf of either or both the Core Parcels and the LQPOP Parcels. Notwithstanding such assumption, Core and its heirs, successors and assigns and Bland and its heirs, successors and assigns shall remain subject to the provisions of this Article 3 to the extent the respective Homeowners Association fails to fulfill the required obligations. ARTICLE 4. OPERATION AND MAINTENANCE OF JOINT ACCESS LOTS 4.01. LQPOP and its heirs, successors and assigns shall manage, maintain, and operate ' Joint Access Lots for the benefit of the Parties and their heirs, successors and assigns, and will keep the Joint Access Lots in good condition and repair and clean and free of rubbish and other hazards to the Parties. LQPOP and its heirs, successors and assigns' obligation 1i to maintain and operate the Joint Access Lots includes the following: (a) Maintenance of the surfaces of all paved portions of the Joint Access Lots, including sidewalks and curbs, so that the surfaces are level, smooth, and evenly covered with the type of surfacing material originally installed or a substitute material that is equal in quality, appearance, and durability. (b) Removal of all papers, debris, filth, and refuse from the Joint Access Lots, and washing or thorough sweeping of paved areas, as required to maintain the Joint Access Lots in a first -class and clean condition. (c) Maintenance and cleaning of all landscaped areas in the Joint Access Lots, including: the regular pruning, weeding, fertilizing, and watering of trees and shrubbery; repair and replacement of the irrigation system; and maintenance and replacement of seasonal bedding plants in designated "color spot" areas of the landscaped areas to maintain blooms in these areas throughout the year. (d) Payment of all electrical, water, and other utility charges or fees for services furnished to the Joint Access Lots and related appurtenances. (h) Maintenance, cleaning, and repairing of all common utility lines, storm drains, sewers, and other Utility Systems located in the Joint Access Lots. (i) Maintenance, cleaning, and -repairing of the entry landscape feature and/or security gate. 4.02. LQPOP and its heirs, successors and assigns may contract with a third party to perform some or all of its obligations listed in Paragraph 4.01 of this Agreement, provided the contract is in writing and approved by the other Party, which approval shall not be unreasonably withheld. 4.03. LQPOP and its heirs, successors and assigns shall maintain public liability insurance for the Joint Access Lots insuring against the risks of bodily injury, property damage, and personal injury liability occurring or arising during the policy period. The insurance required under this Paragraph shall have a minimum combined single limit of liability of at least $2,000,000.00 and a general aggregate limit of at least $5,000,000.00. The premiums for the public liability policy or policies are a Joint Access Lots Operational Cost (as defined in Paragraph 4.05(b) of this Agreement). Each Party shall be listed as an additional insured on the policy or policies. Each public liability'policy or policies shall contain a provision prohibiting cancellation of the policy or policies except on thirty (30) days' prior written notice to each Person listed as an additional insured. LQPOP shall furnish each Party with a copy of any policy or policies of public liability insurance described in this Paragraph or a certificate of insurance from the insurer. As required by law, LQPOP shall maintain workers' compensation insurance covering all employees hired or used by LQPOP to fulfill its obligations for maintenance and operation of the Joint Access Lots. 1� 4.04 During the period the period December 1 through December 10 of each year LQPOP and its heirs, successors and assigns shall prepare and present to the other ' Party(s) a proposed budget (the "Proposed Budget ") for the Joint Access Lots Operational Cost for the following Year. The other Party shall have ten (10) days in ' which to either object or agree to the Proposed Budget for Joint Access Lots Operational Cost (the approval vote of sixty (60 %) of the residential lots of the Core Parcel shall constitute approval). Failure to timely object to the Proposed Budget shall be deemed approval thereof. If the other Party objects to the Proposed Budget, the Parties shall meet ' and confer regarding the Proposed Budget. Should the Parties fail to agree on the -1 Proposed, the matter shall be resolved by arbitration as provided in Section 5.06. A ' I Proposed Budget that has been approved, either by agreement of the Parties, or by arbitration, shall be deemed the "Approved Budget ". ' l 4.05. (a) LQPOP and its heirs, successors and assigns shall pay, prior to delinquency, all costs, charges, and expenses incurred in managing, operating, and maintaining the Joint Access Lots as required under this Agreement and the Approved Budget. The Parties ' shall reimburse LQPOP, as herein after provided, an amount equal to that Party's pro rata share of the total costs, charges, and expenses incurred by LQPOP to operate and maintain the Joint Access Lots. Core Parcel pro rata share of Joint Access Lots ' Operational Costs shall be calculated on the basis of the Core Parcel being responsible for an amount equal to the total of the Joint Access Lots Operational Cost multiplied by a l fraction, the numerator of which shall equal the number of home lots in the Core Parcel and the denominator of which equals the sum of the number of home lots in both the Core Parcel and the LQPOP Parcel. LQPOP Parcel shall be responsible for the balance of the Joint Access Lots Operational Cost. ' (b) For these oses "Joint Access Lots Pm'P � o s Operational Costs means the total of all items of direct cost and expense necessarily and reasonably expended by LQPOP for the supervision, operation, maintenance, and repair of the Joint Access Lots required under this Agreement, excluding any real property taxes or assessments which shall be paid by the individual owner of the Joint Access Lots. The term includes costs and expenses for t the following: maintenance, replacement, and reconstruction work as required to preserve the condition and status of the Joint Access Lots and its equipment; all rental charges for equipment; the cost of small tools and supplies; all costs for police security protection, ' traffic direction and control, and parking regulations; costs of cleaning and removal of rubbish, dirt, and debris from the Joint Access Lots; the cost of landscaping, and supplies ' required for landscaping; all charges for utility services used in connection with the Joint Access Lots; and all premiums for public liability insurance covering the Joint Access 1 Lots. Any repair or replacement of the Joint Access Lots estimated.to cost in excess of $10,000.00 shall be considered an extraordinary expense and shall not be made by LQPOP unless and until approved in writing by the other Parties to this Agreement (the approval vote of sixty (60 %) of the residential lots of the Core Parcel shall constitute ' approval). Extraordinary expenses approved by the Parties shall be considered a Joint Access Lots Operational Cost. Any cost incurred by LQPOP for the operation of its own office, accounting service, or any other service or cost not directly related to operation ■ and maintenance of the Joint Access Lots shall not be considered a Joint Access Lots Operational Cost. 4.06. (a) At the end of each quarter of each Accounting Period, LQPOP shall submit a statement to each Party showing the amount due to LQPOP for that Party's pro rata share of Joint Access Lots Operational Costs. The quarterly statement shall summarize by category the amounts expended by LQPOP for the operation and maintenance of the Joint Access Lots during that quarter. Not later than 30 days after the date of the statement, each Party shall pay to LQPOP the amount set forth on the Party's statement. For these purposes, "Accounting Period" means each calendar year occurring during the term of this Agreement, except that: the first Accounting Period shall begin on the date agreed upon by the Parties in writing, and shall end on December 31 of the same year; and if this Agreement terminates on any date other than December 31, the last Accounting Period shall end on the date this Agreement terminates. (b) Not later than 60 days after the end of each Accounting Period, LQPOP shall prepare and submit to each of the Parties an itemized statement of actual Joint Access Lots Operational Costs for that entire Accounting Period ( "the Annual Statement "). This statement shall also include actual totals for each quarter in that Accounting Period. LQPOP shall attach to the Annual Statement necessary documentation that will enable the Parties to verify the accuracy of the Statement. The Annual Statement shall set forth the amounts actually paid by each Party as its pro rata share of Joint Access Lots Operational Costs for that Accounting Period, and the amounts actually due from each Party as its pro rata share of Joint Access Lots Operational Costs for that Accounting Period. If there is any difference between the two amounts for any Party, the following rules will apply: the amount of an underpayment by the Party shall be paid by that Party to LQPOP within 30 days after the date of the Annual Statement; an overpayment by the Party will be credited to the amount otherwise payable by that Party for the next quarterly statement, unless the overpayment is noted in the last Annual Statement prepared pursuant to this Agreement; and, in the case of an overpayment noted in the last Annual Statement prepared pursuant to this Agreement, the LQPOP shall promptly refund the overpayment to the Party. (c) LQPOP shall maintain complete and accurate books of account and supporting documentation for each and every amount expended for maintaining and operating the Joint Access Lots as required under this Agreement. For each Accounting Period, all books and records shall be kept by LQPOP for at least two years following the end of that Accounting Period. (d) Each Party, at that Party's sole cost and expense, shall have the right to inspect or ' audit the books and records of LQPOP regarding the Joint Access Lots Operational Costs. Any inspection or audit shall be performed only during reasonable business hours. Further, at least 48 hours before the time the Party wishes to perform the inspection or audit, the Party must provide LQPOP with notice of the election to perform the inspection or audit. I I id 'I 4.07. In carrying out its responsibilities under this Agreement for the maintenance, management, and operation of the Joint Access Lots, LQPOP shall keep the Parcels free and clear from any liens arising out of any work performed, materials furnished, or other obligations incurred by LQPOP. If any lien is imposed, LQPOP shall pay the lien within 30 days after its imposition unless LQPOP elects to contest the lien. LQPOP shall have the right to contest a lien imposed on any Parcel only if LQPOP first records a bond of a responsible corporate surety in an amount sufficient to release the lien from the affected Parcel or Parcels within 30 days after the date the lien is imposed. 4.08 The rights and obligations set forth in this Article 4 may be assumed by a Homeowners Association on behalf of either or both the Core Parcels and the LQPOP Parcels. Notwithstanding such assumption, Core and its heirs, successors and assigns and Bland and its heirs, successors and assigns shall remain subject to the provisions of this Article 4 to the extent the respective Homeowners Association fails to fulfill the required obligations. ARTICLE 5. MISCELLANEOUS 5.01. The covenants, restrictions, conditions, and provisions contained in this Agreement (whether affirmative or negative in nature) (1) are made for the direct, mutual, and reciprocal benefit of each Parcel; (2) shall constitute and be enforceable as mutual equitable servitudes on each Parcel in favor of every other Parcel; (3) shall constitute covenants running with the land; (4) shall bind every person having any fee, leasehold, or other interest in a Parcel, to the extent that the covenants, restrictions, conditions, or provisions apply to the Parcel; and (e) shall inure to the benefit of the Parties and their respective successors and assigns. 5.02. Nothing contained in this Agreement shall be deemed to be a gift or dedication of any portion of the Joint Access Lots to the general public, for the general public or for any public purpose whatsoever, it being the intention of the Parties that this Agreement shall be strictly limited to and for the purposes expressed in the Agreement. 5.03. This Agreement shall not be construed or deemed to create a relationship of partnership or joint venture among the Parties or between any of them. 5.04. Whenever the approval or consent of any Party (hereafter referred to as an "approval ") is required under this Agreement, the approval shall not be unreasonably withheld except as otherwise provided in this Agreement. Unless this Agreement requires a particular approval to be made within a specific time period, the approval must be given within 30 days after the date of a written request for the approval. Except as otherwise provided in this Agreement, if a Party fails to indicate, within the foregoing 30 day period, whether or not it approves of a particular matter, the parry will be deemed to have given its approval. If a Parry disapproves a particular matter, the reasons for the disapproval must be stated in writing. 5.05. If any provision of this Agreement is held to be invalid by any court of competent jurisdiction, the remaining provisions shall remain in full force and effect. 5.06. Upon the wYitten demand of either Party, any dispute between the Parties (the "Dispute ") shall be resolved through the procedures established in this Section 5.06. 5.06.1. Arbitration. The Dispute shall be resolved by neutral, binding arbitration. The arbitration procedures specified in this Section 5.06 (the "Procedures ") are to be interpreted and enforced as authorized by Title 9 of the California Code of Civil Procedure (Section 1280 et seq.). 5.06.2. AAA. The arbitration proceedings (the "Proceedings ") shall be conducted by and in accordance with the rules of the American Arbitration Association ( "AAA ") or any successor thereto. 5.06.3. Statutes of Limitation. Except for procedural issues, the Proceedings, the ultimate decisions of the arbitrator, and the arbitrator shall be subject to and bound by existing California case and statutory law including, but not limited, to applicable statutes of limitation. 5.06.4. Selection and Timing. The Proceedings shall be conducted by one (1) qualified arbitrator selected in accordance with the rules of AAA. Each Party agrees to act reasonably to expedite such selection process. The term "qualified" shall mean a retired judge who has experience with the laws governing California real estate transactions or an attorney who has actively practiced law in California for at least fifteen (15) years and who has experience with the laws governing California real estate transactions. 5.06.5. Motions and Remedies. The arbitrator shall have the power to hear and dispose of motions, including motions relating to provisional remedies, demurrers, motions to dismiss, motions for judgment on the pleadings and summary judgment and/or adjudication motions, in the same manner as a trial court judge. In addition, the arbitrator shall have the power to summarily adjudicate issues of fact or law, including the availability of remedies, even if the issue adjudicated could dispose of an entire cause of action or defense. The arbitrator shall have the power to grant provisional remedies including preliminary injunctive relief. Prior to the selection of the arbitrator, any Party shall have the right to petition the Superior Court of Riverside County, California (the "Superior Court") for any necessary provisional remedies. However, after obtaining any provisional remedies (pending selection of the arbitrator) the entire matter shall be referred to AAA for all purposes and the Superior Court shall have no further jurisdiction to monitor or enforce the provisional remedies or to make further determinations or awards or to issue additional provisional remedies. AAA shall have the sole power to enforce, extend, modify or vacate any such provisional remedies. 5.06.6. Discovery. The Parties shall be entitled to limited discovery consisting of- (1) witness lists; (ii) expert witness designations; (iii) expert witness reports; (iv) exhibits; (v) reports of testing or inspections, including but not limited to, invasive testing; (vi) arbitration briefs; and (vii) the deposition, under oath, of any designated experts and two other depositions of their choosing without obtaining the consent of the arbitrator. All other discovery shall be permitted by the arbitrator at his discretion upon a showing of good cause or based on the agreement of the Parties. The arbitrator shall oversee discovery and may enforce all discovery orders in the same manner as any trial court judge. 5.06.7. Full Disclosure. Each Party shall make, in good faith, a full disclosure of all issues and evidence to each other Party prior to the hearing. Any evidence or information that the arbitrator determines was unreasonably withheld shall be inadmissible by the Party who withheld it. The initiating Party shall be the first to disclose all of the following, in writing, to each other Parry and to the arbitrator: (i) an outline of the issues and its position on each such issue; (ii) a list of all witnesses the Party intends to call; and (iii) copies of all written reports and other documentary evidence, whether written or not or contributed to by its retained experts (collectively "Outline "). The initiating Party shall submit its Outline to each other Party and the arbitrator within thirty (30) days of the final selection of the arbitrator. Each responding Parry shall submit its written response as directed by the arbitrator. 5.06.8. Hearing. The hearing shall be held in Riverside County, California. The'. arbitrator shall promptly commence the hearing giving due consideration to the complexity of the issues, the number of Parties and necessary discovery and other relevan t matters. The arbitration shall be conducted as informally as possible. California Evidence Code Section 1152 et seq. shall apply for the purpose of excluding offers, compromises, and settlement proposals from evidence, unless there is agreement by all Parties as to admissibility. The arbitrator shall be the sole judge of the admissibility of and*the probative value of all evidence offered and is authorized to provide all legally recognized remedies whether in law or equity, except as otherwise limited in this Section 5.06. Attorneys are not required and either Party may elect to be represented by someone other than a licensed attorney. 5.06.9. Decision. The decision of the arbitrator shall be final and binding on the Parties and may be entered as a judgment in any court of the State of California that has jurisdiction and venue (except to the extent there exist grounds for vacation of an award under applicable arbitration statutes). The arbitrator shall (i) cause a complete record of all proceedings to be prepared similar to those kept in the Superior Court, (ii) try all issues of both fact and law, and (iii) issue a written statement of decision consistent with that described in California Code of Civil Procedure Section 643 which shall specify the facts and law relied upon in reaching the arbitrator's decision within twenty (20) days after the close of testimony. A stenographic record of the hearing shall be made which shall remain confidential except as may be necessary for post - hearing motions and appeals. The cost of the record shall be borne equally by the Parties, regardless of the outcome. Should any Party refuse or fail to pay its pro -rata share, the remaining Parties may pay such share, and the Parry or Parties which pay such extra share shall be awarded such extra costs by the arbitrator in the arbitrator's decision. r� �I 5.06. 10. Fees and Costs. The initiating Party shall advance any fee required by AAA to initiate the Proceedings. If there is no prevailing parry (as set forth in Section 23), the total cost of the Proceedings, including the advanced initiation fees and other fees ' of AAA and any related costs and fees incurred by AAA (such as experts and consultants retained by it) shall be borne equally by the Parties. Nothing herein shall be construed to ' modify or abrogate any duty to defend and/or indemnify a Party pursuant to the terms of a contract between any such Parties. ' 5.06.11. Judicial Reference. If a court of competent jurisdiction determines that the dispute resolution set forth in this Section 5.06 is void or unenforceable, the entire r l matter shall proceed as one of judicial reference pursuant to California Code of Civil ' I Procedure Section 638 et seq. The referee shall have the same powers and be subject to the same limitations as set forth in this Section 5.06, unless precluded by law. The rules of procedure, the awarding of fees and costs, the selection of the referee and all other matters set forth in this Section 5.06, shall be the rules of procedure for the judicial ' reference proceeding, unless precluded by law. AAA shall hear, try and decide all issues of both fact and law and make any required findings of facts andJf applicable, ' conclusions of law and report these along with the judgment to the supervising court within twenty (20) days after the close of testimony. A stenographic record of the hearing shall be made which shall remain confidential except as may be necessary for post- ' hearing motions and appeals. The cost of the record shall be borne equally by the Parties, regardless of the outcome. Should any Party refuse or fail to pay its share, the remaining Parties may pay such share, and the Party or Parties which pay such extra share shall be ' awarded such extra cost by the.referee in the referee's decision. The decision of the referee shall be binding on the Parties and shall be entered as a judgment in the court of f the State of California where the complaint was filed. The decision of the referee shall be ' I subject to appeal in the same manner as if the Dispute had been tried by the court. 5.06.12. Waiver of Jury Trial. By agreeing to the easement provided for herein, the Parties give up and waive any right to have any dispute tried before a jury. 5.06.13. Obligation to Cooperate. The Parties shall cooperate in good faith and ' diligently perform such acts as may be necessary to carry out the purposes of this Section 5.06. SIGNATURES ON FOLLOWING PAGE Executed at , California, on [date]. La Quinta Polo Orchard Partners, LLC By: Core Homes, LLC -bo-ML By: -bM t5'(tfa't Appendix E Imperial Irrigation District 1699 W. Main St. Suite A El Ceatro, CA 92243 81 -600 Avenue 56 La Quinta CA 92253 Owner's Easement Statement The Owner's Easement Statement below shall be recorded on the title sheets of tract andlor applicable parcel maps within city limits: Owner, hereby, offers for dedication to the Imperial Irrigation District, an easement over all private streets shown on this reap and an additional ten (10) feet in width on both sides of and adjacent to all private streets and /or public street shown on this map for the excavation, laying, construction, installation, maintenance, operation, inspection, repair, replacernent and removal of electrical lines, wires, cables, ducts, supports, fixtures, facilities and appurtenances, with the right of ingress and egress over and within same for maintenance, operation and emergency vehicles. Certificate of Acceptance Government Code Section 27281 Acceptance No. This is to certify that the interest in real property conveyed by Gran dated from '` ^z„tal, i7t Z-07 G PYe, .one, � _ L. t,.. C. . Narfie to Imperial Irrigation District, an irrigation district, is hereby accepted by order of the Board of Directors of said District as per Resolution No. 15 -90 dated March 20, 1990, and the grantee consents to recordation thereof. Dated this day of By , 200 Supervisor, Real Estate Section Imperial Irrigation District \ if the reap has been approved or recorded in advance of this requirement, then the Developer shall advise the District and other arrangements shall be made with the Developer for the District to obtain easements. Any easement requirements, over and above that stated herein, will be requested by separate notice during the project scoping study or as soon as the need is apparent. For farther deiail on maps, AutoCAD media, and other correspondence, contact one of the offices listed on the front cover. 'I j.1 Order No. Escrow No. t ' Loan No. WHEN RECORDED MAIL TO: IMPERIAL IRRIGATION DISTRICT ' 1 81 -600 Avenue 58 La Quinta, CA 92253 -1080 1 f , 1� �i r 11 DOCUMENTARY TRANSFER TAX $ (Space above this line is for Recorders Use) Computed on the consideration or value of property conveyed; OR Computed on the consideration or value less liens or encumbrances remaining at the time of sale. Signature of Declarant or Agent determining tax - Firm Name GRANT OF EASEMENT Public Utility Purposes FOR VALUABLE CONSIDERATION, the receipt of which is hereby acknowledged, CORE HOMES, LLC hereby GRANT (s) to IMPERIAL IRRIGATION DISTRICT, an irrigation district the real property in the City of La Quinta, County of RIVERSIDE, State of California, described as follows: AS SHOWN ON THE ATTACHED EXHIBITS "A" AND `B" WHICH ARE MADE A PART HEREOF BY THIS REFERENCE HEREON. Dated: Aa q 214 200 State of California } Countyof_, tL 0.C[Ar'1. { On M6t-!l 11, x007 before me, It) t l) - Notary Public personally appeared-:Dmv t a personally known to me ( of sat+sfaGterjauidence) to be person($) whose name(4)is /ace subscribed to the within instrument and acknowledged to me that he /shag ey executed the same in his/her/their authorized capacity(ipA, and that by his /her/thett signatures on the instrument the person(l) or the entity upon behalf of which the person(s) acted executed the instrument. WITNESS my hand and official seal, Signature MAIL TAX STATEMENTS TO: By: bAx9yD, David Neale, President 470 South Market Street (Mailing Address) San Jose, CA 95113 (City) (State) (Zip Code) GAIL GIOLU _ Commission # 1606719 Notary Public - California Santa Clara County 01MV Comm. Expires Sep 16, 2009 W. (This space for official notarial seal) Is! _... i II 3� P I i I I! I� I; rl 40' 1 i �V, 7 . ......... . ii w-' 7'� Il 17 0 0', r., i I , .1 ,, 0 POLL a i. M2 �'! 422-4133 M14 Jsic LA " 6 DO Pi- ;"P!f'4 4.SiAU IR C. PP A 1. L f; . ..... ........ — . ......... I..... . . . . . . . . ....... . . . ......... . . . . ........ . ........ . . . .. .. ....... -7 .. ............ . ... . ... ..... . . . . ......... ROTI. Kit., U, ,I ;"I., Vat 57 to fj _r_! }:::� If yin — L E: L'OCATRI'jtj.: Ul a i- 11131d01S il 1.11:81.11 CA M MUNMIN) (:.�TAMR 1.11, 111E .. . . . ........... CITY OF LA ....... ...... . .. . .......... M2 �'! 422-4133 M14 Jsic LA " 6 DO Pi- ;"P!f'4 4.SiAU IR C. PP A 1. L f; . ..... ........ — . ......... I..... . . . . . . . . ....... . . . ......... . . . . ........ . ........ . . . .. .. ....... -7 .. ............ . ... . ... ..... . . . . ......... ROTI. Kit., U, ,I ;"I., Vat 57 to fj _r_! }:::� If yin — L E: L'OCATRI'jtj.: GR...... 1.11:81.11 CA M MUNMIN) (:.�TAMR 1.11, 111E CITY OF LA ' DOCUMENTARY TRANSFER TAX $ (Space above this line is for Recorders Use) Computed on the consideration or value of property conveyed; OR Computed on the consideration or value less liens or encumbrances remaining at the time of sale. Signature of Declarant or Agent determining tax — Firm Name ' t GRANT OF EASEMENT Public Utility Purposes FOR VALUABLE CONSIDERATION, the receipt of which is hereby acknowledged, CORE HOMES, LLC hereby GRANT (s) to IMPERIAL IRRIGATION DISTRICT, an irrigation district t the real property in the City of La Quinta, County of RIVERSIDE, State of California, described as follows: 4 AS SHOWN ON THE ATTACHED EXHIBITS "A" AND `B" WHICH ARE MADE A PART HEREOF BY THIS REFERENCE HEREON. ti Dated: V�QI� 21� 2.D1}� By: i David Neale, President 'I stateofcalifornia } 470 South Market Street ' county-of (Mailing Address) Onn! M� 11 7 before me, San Jose, CA 9SI13 c au i( . I it) II ' Notary Public (City) (State) (Zip Code) personally appeared_j:MV t G4 .GCCI� personally known to me ( of saus:a�d ce) to be person($) whose name(g)is/.c- subscribed to the within instrument and acknowledged to GAIL GIOLLI t me that he /sheAheq executed the same in his /he-ftherr Commission # 1606719 authorized capacity(ies7, and that by his /hetfthett signatures , -m Notary Public - California on the instrument the person(l) or the entity upon behalf of Santa Clara County — which the person(s) acted executed the instrument. My Comm. Expires Sep 16, 2009 I WITNESS my hand and official seal, Signature (This space for official notarial seal) 1 MAIL TAX STATEMENTS T0: i Order No. Escrow No. ' Loan No. VVHEN RECORDED MAIL TO: 'IMPERIAL IRRIGATION DISTRICT 81 -600 Avenue 58 La Quinta, CA 92253 -1080 ' DOCUMENTARY TRANSFER TAX $ (Space above this line is for Recorders Use) Computed on the consideration or value of property conveyed; OR Computed on the consideration or value less liens or encumbrances remaining at the time of sale. Signature of Declarant or Agent determining tax — Firm Name ' t GRANT OF EASEMENT Public Utility Purposes FOR VALUABLE CONSIDERATION, the receipt of which is hereby acknowledged, CORE HOMES, LLC hereby GRANT (s) to IMPERIAL IRRIGATION DISTRICT, an irrigation district t the real property in the City of La Quinta, County of RIVERSIDE, State of California, described as follows: 4 AS SHOWN ON THE ATTACHED EXHIBITS "A" AND `B" WHICH ARE MADE A PART HEREOF BY THIS REFERENCE HEREON. ti Dated: V�QI� 21� 2.D1}� By: i David Neale, President 'I stateofcalifornia } 470 South Market Street ' county-of (Mailing Address) Onn! M� 11 7 before me, San Jose, CA 9SI13 c au i( . I it) II ' Notary Public (City) (State) (Zip Code) personally appeared_j:MV t G4 .GCCI� personally known to me ( of saus:a�d ce) to be person($) whose name(g)is/.c- subscribed to the within instrument and acknowledged to GAIL GIOLLI t me that he /sheAheq executed the same in his /he-ftherr Commission # 1606719 authorized capacity(ies7, and that by his /hetfthett signatures , -m Notary Public - California on the instrument the person(l) or the entity upon behalf of Santa Clara County — which the person(s) acted executed the instrument. My Comm. Expires Sep 16, 2009 I WITNESS my hand and official seal, Signature (This space for official notarial seal) 1 MAIL TAX STATEMENTS T0: i J 1 it 1 'I i PAGE I OF 3 EXHIBIT "All LEGAL DESCRIPTION PUBLIC UTILITY EASEMENT (IMPERIAL IRRIGATION DISTRICT) A PORTION OF PARCEL 3 OF PARCEL MAP NO. 16457, FILED IN PARCEL MAP BOOK 100, PAGE 48, OF OFFICIAL RECORDS (O.R.) COUNTY OF RIVERSIDE, IN THE CITY OF LA QUINTA, COUNTY OF RIVERSIDE, STATE OF CALIFORNIA, BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS: COMMENCING AT THE EAST ONE - QUARTER (E 1/4) CORNER OF SECTION 4, TOWNSHIP 6 SOUTH, RANGE 7 EAST OF THE SAN BERNARDINO MERIDIAN, COUNTY OF RIVERSIDE, STATE OF CALIFORNIA, SAID POINT BEING ON THE CENTERLINES OF MADISON STREET, AVENUE 51 AND VISTA BONITA TRAIL; THENCE S00 °10'23 "W ALONG THE EAST LINE OF THE SOUTHEAST QUARTER (SEl /4) OF SAID SECTION 4 AND THE CENTERLINE OF SAID MADISON STREET, A DISTANCE OF 731.99 FEET; THENCE ' N89 °49'37W, A DISTANCE OF 50.00 FEET TO THE WESTERLY LINE OF SAID MADISON STREET, SAID POINT BEING 50.00 FEET WESTERLY OF THE CENTERLINE OF SAID MADISON STREET, AS MEASURED AT RIGHT ANGLES THERETO, BEING ALSO THE TRUE POINT OF BEGINNING; THENCE S00 010'23 "W ALONG THE WESTERLY LINE OF SAID MADISON STREET, A DISTANCE OF 17.72 FEET; THENCE N34 01 1'38 "W, A DISTANCE OF 59.35 FEET; THENCE S89 045'01 "W, A DISTANCE OF 311.64 FEET; THENCE N00 °10'30 "E, A DISTANCE OF 40.00 FEET; THENCE N89 045'01 "E, A DISTANCE OF 10.00 FEET; THENCE S00 010'30 "W, A DISTANCE OF 30.00 FEET; THENCE N89 045'01 "E, A DISTANCE OF 306.88 FEET; THENCE S34 0I 1'38 "E, A DISTANCE OF 50.05 FEET TO THE POINT OF BEGINNING. SAID PARCEL CONTAINS 0.09 ACRES (3,990 SQUARE FEET), MORE OR LESS, AS SHOWN ON THE ATTACHED EXHIBIT "B ", WHICH IS MADE A PART HEREOF BY THIS REFERENCE HEREON. SUBJECT TO ALL COVENANTS, RIGHTS, RIGHTS OF WAY AND EASEMENTS OF RECORD, IF ANY. 1I1it/ VAND J P TO 1p F J L.S. 6532 N N i xp.6130107 _TfF C�:1111 OF CA`�F /!ll 5/17/2007 01 152_600_PU E I l D_X I I I � 1 I i 1 1 1 u SCALE. 1 = 60' 0 0 N u� o. 114 SECTION LINE 4 O W ZOO EXHIBIT "B" PLAT TO ACCOMPANY LEGAL DESCRIPTION PUBLIC UTILITY EASEMENT TR. N0. 14104, M.B. 112/67 -69 N.A.P. VISTA BONITA TR4IL -� 41 — — — S89'45 '01 W 391.84' I �I �n RIW FOR DITCHES & _ CANALS REC. 11911955 IN BK. 1844, PG. 2 OF PATENTS OZ�`�co \� a � cv INGRESS /EGRESS & W Q ~ N \ WATERLINE EASM'T PER 2 INST. N0. 222323, P pROE P N'p' ? 2 REC. 911211986, O.R. 1 � 5 P.M. N0. K pp' L5 BETH CIRCLE J N89'45 "01 "E 306.88" S89'45'0I W. 311.64' P.M.B. 16457 n 0 n 9 100/43 PAGE 2 OF 3 q AVENUE 51 P.O.C. E 114 COR. SEC. a T 6S., R. 7E. S. 2.1.1. 1 T� W I F� co 50' rn rn Z � � o � g I� N _O O I m orn O q' cc N 2 L1 2 — — O N 1= l A N 0 s GRAPHIC SCALE \������� P - 70�ti�, `4 60 0 30 60 120 180 A \ 0 L.S. 6532 Exp. 6/30/07 \\ ( IN FEET) ' 1 inch = 60 ft. `// PUBLIC UTILITY EASEMENT - IMPERIAL IRRIGATION DISTRICT Prepared 360 -4200 e p a r e d b y: TEL 760 () Owner: THIS DOCUMENT WAS PREPARED FAX(760)360 -4204 CAE ' I Coachella Valley Engineers J 77 -899 Wolf Rcad, Suite 102, PALS{ DESERT, CA 92211 ,I 1 01152.11 MAY, 2007 NO. DATE CORE HOAVIE S, L.L.C. ATTN.- MR. DAVID NEALE 470 S. MARKET STREET SAN. JOSE, CA 95113 PH: (408) 292 -7841 BY ME OR UNOEP, MY DIRECTION, BASED ON RECORD INFORMATION. MARK A. TURNER L.S. 6532 EXP. DATE.• 06130107 01152 _ 600_ PUE110 -X i1 v SCALE. 1 '" = 60' 0 0 0 EXHIBIT "B" PLAT TO ACCOMPANY LEGAL DESCRIPTION PUBLIC UTILITY EASEMENT LEGEND i PUBLIC UTILITY EASEMENT 5 PARCEL LINE P. 0. C. POINT OF COMMENCEMENT T. P. 0. B. TRUE POINT OF BEGINNING P.M. PARCEL MAP P. M. B. PARCEL MAP BOOK O.R. OFFICIAL RECORDS CO. OF RIV. N.A.P. NOT A PART AREA = 0.09 AC. (3,990 SF.), f 32 33 AVENUE 50 T.SS. 33 34 5 4 T. 6S. 4 3 L2 SOO' 10'23 "W VISTA L3 N34' 1 1,38"W 59.35' BONITA N00"10'30'E 40.00' L5 TRAIL 10.00' L 6 S1:rE 30.00' L7 S34'1 138'E 50.05' � Z V) AVENUE 51 4 0 W 5 4 4 3 $ Q AVENUE 52 9 10 VICINITY MAP SEC. 4, T.6S., R.7E. S.B.M. NTS PAGE 3 OF 3 LINE TABLE LINE BEARING LENGTH L 1 N89'49'37 "W 50.00' L2 SOO' 10'23 "W 17.72' L3 N34' 1 1,38"W 59.35' L4 N00"10'30'E 40.00' L5 N89'45'0 1 "E 10.00' L 6 SOO' 10'30 "W 30.00' L7 S34'1 138'E 50.05' BASIS OF BEARINGS THE BASIS OF BEARINGS FOR THIS SURVEY IS BASED ON THE EAST LINE OF THE SOUTHEAST QUARTER (SE1 14) OF SECTION 4, T.6S., R.7E. S.B.M., AS SHOWN ON PARCEL MAP NO. 16457, FILED IN P.M.B. 100, PAGE 48, O.R. COUNTY OF RIVERSIDE, STATE OF CALIFORNIA BEING: S00' 10'23 V 1/// LAND SO _ J L.S. 6532 N N A EXP.6 /30/07 \\ PUBLIC UTILITY EASEMENT - IMPERIAL IRRIGATION DISTRICT Prepared by: TEL(760)360 -4200 W rl e r : THIS DOCUMENT WAS PREPARED (.4X(760)360 -4204 1 'Coachella Valley Engineers I77 -899 Wolf Road, Suite 102, PAU1 DESERT, CA 92211 r01152.11 MAY, 2007 ( N0. DATE CORE HOMES, L.L.C. ATTN.- MR. DAVID NEALE 470 S. MARKET STREET SAN JOSE, CA 95113 PH: (408) 292 -7841 BY ME OR UNDER MY DIRECTION, BASED ON RECORD INFORMATION. MARK A. TURNER L. S. 6532 EXP. DATE.• 06130107 01152 _ 600_ PW Coachella Valley Engineers, Inc. 77 -899 Wolf Road, Suite 102 Palm Desert, CA 92211 (760) 360 -4200 Project No. 01152.11 - Public Utility Easement Closure Parcel name: PUBLIC UTILITY EASEMENT North: 9275.1918 East : 4661.2595 Line Course: S 00 -10 -23 W Length: 17.7151 North: 9257.4767 East : 4661.2060 Line Course: N 34 -11 -38 W Length: 59.3460 North: 9306.5642 East : 4627.8539 Line Course: S 89 -45 -01 W Length: 311.6350 North: 9305.2060 East : 4316.2218 Line Course: N 00 -10 -30 E Length: 40.0011 North: 9345.2069 East : 4316.3440 Line Course: N 89- 45. -01 E Length: 10.0003 North: 9345.2505 East : 4326.3442 Line Course: S 00 -10 -30 W Length: 30.0008 North: 9315.2498 East : 4326.2526 Line Course: N 89 -45 -01 E Length: 306.8839 North: 9316.5874 East : 4633.1336 Line Course: S 34 -11 -38 E Length: 50.0466 North: 9275.1918 East : 4661.2595 ' Perimeter: 825.6288 Area: 3,990 sq.ft. 0.09 acres Mapcheck Closure - (Uses listed courses, radii, and deltas) l Error Closure: 0.0000 Course: N 52 -16 -15 W ' Error North: 0.00002 East : - 0.00003 Precision 1: 825,6281800.0000 11 f Page 1 of 1 5/17/2007 0 1� �I 1 1 �I La Quinta Polo Partners - Cve 01 152 - Ave 51 r \Madison -Rod Vandenbos LA QUINTA POLO PARTNERS VE OUT December 07, 2004 HYDROLOGY AND DRAINAGE FACILITY DESIGN REPORT 2/16/2007 01152 DATA APPENDIX CVE IN THE CITY OF L,. QUI�ITA, CALIFORNIA 'i FIR11 DO I, 1 i 11 1 C( C C -) [I n A\cy o �� 79 IN THE SE 1/4 OF SECTION 4 , T 6 S, P, 7 S, SaM CVE. TEL(760)360 -4200 \ FAX(760)360 -4204 Coachella Valley Engineers 77 -899 Wolf Road, Suite 102, Palm Desert, CA 92211 ssfoy. W c rn C- I a�C? V 2E (n G U-) W L V / JQ N WELLS CA VIN - RCE C -16802 - EXPIRES 6 -30 -05 AVcNUE 1 50 /.55. \/ICINI I Y MAP ,VOF FO SCALE T. 65, 4.1 OLD ORC,�RD LN. AVENUE 51 4 VISTAS 23 a c BE<H CIRCLE 0 0 \/ICINI I Y MAP ,VOF FO SCALE Old Orc:.3rd Lone - Ave _5 1 (5. Madison - Rod vand:nbos Tract RETENTION BASIN DESIGN FOR TRACT 30373 City 01 La Quinta ( Southwest Corner Of Ave 51 and Madison St.) Location �us, J I , ' -00' ve Oilz_- Tract 30378 is located in the City of La Quinta, at the Southwest corner of the intersection of Vista Bonita Trail (VBT), (aka Ave 51) and Madison Street. It is designated as APNs 772- 270 -011, 012, & 013, and is described as a portion of the NE' /, of the SE' /, of Section 4, T6S, R7E, SBB &Ib1. It consists of approximately 10 acres of flat, sandy, former Citrus grove being divided into eight, approximately 1 -acre residential lots. SUMMARY AND DISCUSSION The contours on the enclosed portion of USGS topo map (Location Map) indicate that Vista Bonita Trail follows a ridge for approximately 1100 feet, from the Coachella Canal to Madison St. The easterly 900 feet of this street historically drained past and /or into subject site. Subject site cannot obstruct this flow, and must convey it through or past the site, but is not usually required to retain and dispose of offsite flows. However, the development of Tract 3037OU has been designed to retain and percolate all rainfall from the site, as well as from all offisite areas that presently drain toward the site. The latter areas consist of the west half of Madison St south of Ave 51 and adjacent to the site, and a strip 900 by 100 feet along Vista Bonita Trail west of Madison St. North of Vista Bonita Trail (Ave 51), N12dison St. drains north av/ay from subject site to a culvert flowing east under. Madison St. South of Vista Bonita Trail, the west half of Madison St drains south along subject site frontage, and is collected in a curb inlet (cb�`1) at Beth Dr., near the southeast corner of the site. The easterly 50 feet of the orchard area to the ,vest of subject site was sun /eyed by CVE, along with subject site. An existing 1 to 2. foot high berm constructed by the owner of this adjacent offsite property prevents all runoff from that property onto subject site. The general elevation of this property 20 feet west of the property line is 5*18.4. The elevation of the top of this berm is approximately 520.2. (see spot elevations on the rough grading plan). This data demonstrates that this offsite area does not drain into subject site. Instead, the offsite parcel drains south from Vista Bonita Trail past subject property, and thence southeasterly across the property south of subject to Madison St.. Calculations were made for the 100 year, 3 hour, 6 hour and 24 hour storm data to confirm which storm requires the largest retention volume. The 100 year, 3 hour storm required the largest retention for basins in Soil Group "A" (Lots 1 and 2), while the 100 year, 24 hour storm required the largest retention for the basins in the Soil Group "B" area. (The remainder of the site). (See the Retention Basin Data Summary attached). All basins have been designed as approximately 2 to 2.5 foot deep by 20 or 21 foot wide trapezoidal ditches �,vith 3 to-I to =! to 1 side slopes, 4 ft or ,vider bottoms, and water depth of approximately .9 to 2 feet. The shallc%,,i depth and flat slopes minimi the physical and visual impact of the basins on landscaping and main tenar ice activities. P 'J,2c l o l l Old Orchard Lane - An 51 Z. -[adisein - Rod Vandeaoos August 31, -004 Tract :0''3 C•:e 0i Ii' - Basins 5 through 9 are designed as one interconnected system to provid sufficient capacity to acCOmmodate the ofislte drainage Irom Vista Bonita Trail and Madison St. This street dralnaGe will flow in graded roadside svvales east =long Vi=_ta Bonita i rail and south along MMadison St. to the curb inlet at Beth Lane. (See Street Improvement Plans). It will then be piped into basin 9 and distributed by 12 inch diameter pipes to basins 5 through 3. Basins 10 and 11 are very small, temporary retention, pending development to the south of Beth Ln and Old Orchard Ln. The tributary areas for these basins are 100% street pavement. The runoff coefficient was adjusted to 90% to insure adequate retention in these temporary basins. The existing 6 foot high masonry privacy walls around the site assure privacy and complete control of offsite drainage. The ,vest wall replaces reliance on the existing berm. The north wall assures that the Vista Bonita drainage remains channelized in the existing roadside Swale until it reaches Madison St. and can be collected at catch basin - 1 at Beth Lane. The south wall insures that Lot 1 does not drain south onto the neighboring property. Lots 1 through 4 drain to individual retention basins with 4:1 side slopes, adjacent to Old Orchard Lane. In the event of a larger than 100 year storm, these basins will overflow into Old Orchard Lane at elevations at least 1.9 feet lower than the nearest finish floor; flow south to catch basin 12, flow into retention basin rt 9, and then flow into retention basins 8 through 5. The west 1/3 of lots 5 through 8 flow ,vest directly to Old Orchard Ln., then flow south to catch basin -#3, then flow into retention basin t 9, and then flow into retention basins 8 through 5. The east 2/3 if these lots drain east to individual interconnected. retention basins at the east end of each lot. Each of these basins is larger than required for the drainage from the individual lot. The excess capacity is provided for the runoff from the offsite streets. Vista Bonita Trail drains into Nladison St., which drains south to catch basin -1 at Beth Ln. These flows drain through cb -1 into retention basin 9. Basin 9 is not large enough to store the flow from these offsite streets, so basins 5 through 9 are interconnected to provide adequate storage and percolation capacity. The calculated maximum water surface of the worst 100 -year storm in basins 5 through 9 is 512.02. In the event of system failure or larger than 100 year storm runoff, basins 5 through 9 will overflow through catch basin T 1 into Madison St. at elevation 512.80. At elevation 513.48 the runoff will overflow the high point in the center of the Beth Ln. spandrel gutter and will flow south along the ,vest gutter /swale of Madison St., which preserves the historical floral pattern. At elevation 513. 48, retention storage depth will be increased from 2.02 feet to 3.48 feet, more than doubling the storage capacity without flooding any lot or structure. The lowest Finish floor is elevation 515.5 (Lot US), and the lowest street gutter flow line is elevation 513.13. All habitation floors are more than 2 feet above the overflow elevation, and the lowest street, (N-ladison St) will be flooded to a depth of only 0.35 foot at the beginning of emergency overflow. (less than top Of curb). The proposed retention storage is more than adequate, and is fail safe in design. P a ,r u t''_ Old Orchard Lar._ - Avc :I !a! :Madison - Rod vandenbus T rrcc =0373 DESIGN CRITERIA AU S- -U5i J 1, 2004 C. /C 01 lJ? - The retention basins are designed per the requirements of the City of La Quinta and the Riverside County Hydrology Manual (RCHNI). (See attached enc!osuras) The 100 -yr /3 hr storm intensity was extrapolated to be 2.0 inches per hour from plate F -5.2 of the RCHM. The 100 -yr /6 hr storm intensity was extrapolated to be 2.25 inches per hour from plate F -5.4 of the RCHM, and the 100 -yr /24 hr storm intensity was extrapolated to be 4.5 inches per hour from plate F -5.6 of the RCHfvI. The site consists of Hydrologic Soil Groups A, and B — Lots 1 & 2 are Group A, having high infiltration rates, antecedent moistening condition rating of AN1C II, and low runoff potential when saturated. The remainder are Group'B, having lower infiltration rates and higher runoff potential when saturated. Lots 1 through 4 retain all onsite drainage — the impervious area was calculated to be 23 %. Runoff, from Lots 1 & 2 was calculated for soil Group A, and Lots 3 & 4 for soil Group B. Drainage from Lots 5 thru 8 was combined with onsite and offsite street drainage. The impervious area for this total area was calculated to be 41%, and runoff was calculated for soil Group B. Sladden Engineering has prepared a percolation test report for the site. (Project No. 544 -1497 dated 4/15/02 — See Attached). The results of the percolation test were 12 to 16 inches /hour. However, per City requirements, only 2.0 inches per hour was used as the design percolation rate. CALCULATION PROCEDURE: The Hydrologic Soil Group is determined from RCHM maps (C -1.02 thru C- 1.66), Soil Conservation Serf, /ice maps, or the Soils Engineers Report. The Site Runoff Index was determined from Plate D -5.5 and D -5.6 of the RCHNI to be RC 32 for residential landscaping on Group A soils with 20% impervious cover and RC 56 for Group B soils with. 41% impervious cover. (see attached calculation sheets) The data on RCHM plates D -5.2, D -5.4, and D -5.6 was used to determine the total storm runoff in inches, for calculation of retention basin inflow volumes for 3, 6, and 24 hr 100 year storms respectively. The Rainfall Patterns In Percent of each design storm volume per design period were taken from Table E -5.9 of the RCINIH, and are shown in the Precipitation % column of the calculations. The design period was arbitrarily chosen as 15 minutes for the 3 and 6 hour storms, and 1 hour for the 24 hour storm, to provide enough data points to produce a smooth curve in the graph. The rainfall intensity I for each period is the product of this % times the total storm volume. The Impervious % C for each period is the calculated instantaneous value from Plate D -5.1, 5.2 or 5.3 of the RCHNI for the corresponding calculated intensity, soil type, and development type. Q is the storm runoff rate during each period, in cubic feet per second (cfs), calculated as the product of the intensity, Impervious % / .runoff %, and Tributary Area. Inflow volume is the rate of flow Q accumulating during each period. The water depth in each basin at the end of each period is calculated by comparing the volume of the basin calculated from the surface area per foot of depth table with the runoff, volume accumulated at that time. The water surface area in the basin at that depth is calculated for each period from the depth and surface area per foot of depth table. The percolation VrIUme for each period is calculated. The percolation /Glumes fOr each basin and design stornh were calculated for '15 minute or 1 -hour inter• /als, as the product Of the pert rate (in/hr) and the CaICUlated water surface area / percolation area P a!,c 3 p t 3 Old orchard Lane - Ave 5I CW -"Iadison - Rod Vandenbos august 31, ?pp: Traci 30173 Cie 01 I5? - of the basin during that period, using only the flooded surface area of each retention basin during that Inter/al. The storm runoff Inflow I /OlumeS were CaICJlated for these same inter /als. The percolation volumes were subtracted from the storm runoff inflcw volumes to determine the required dc"�fh and .'later Surat;, area for each retention basin, for each Iniardal, and the maximum required ret entlon for e ch basin. (See page 2 of the attached calculation result spread Sheets). Criteria for the Rational Nlethod design of storm drain inlets and piping were derived by calculating the initial time of concentration for rainfall to begin to run off from the fay Chest comer of the farthest area: the travel time for flD,v to stabilize from the back of the lot to the street, and the travel time to flow in the street from the farthest point to the storm drain inlet, (See RCHNI plates D -3 and D -7.7 attached). This time of concentration was then used to determine the design intensity for the storms, the runoff coefficient, and the flow in the streets and in each inlet and pipe. (see attached calculation sheets) The 100 year, 1 hour storm event is the basis for the sizing of the storm drain inlets and piping. The required curb opening length for the catch basins is less than 3 feet. Curb Inlets 1, 2 and 3 are all 4 feet wide and 4 feet deep. ( See pg 5 of the attached calculations) Inlet Pipes A, B, and C and equalizer pipes D are all smooth wall corrugated HDPE (N -12). Diameters are: PIPE DIAMETER Q100 A 21 " 6.4 cfs B 12" 1.2 cfs C 18" 5.3 cfs D 12" 2.78 cfs DrfNells 1 and 2 shall conform to the City of La Quinta Standard. Pau-- J- 0L Noll V-Do -7 1(20c ,= 1 v--j --3 ell m a Q Ile YA4 IJ Il J `':1 1A, ff �` :__.:.-- ___ -•- � �_• _____ _ -- X11 DATE: 5/13/04 JOB it 01152 Tract 30378 - Madison & Ave 51 REF: ILOT 5 thru 8 & Streets - 6 Hr /100Yr - Trapezoid Retention -20x Top, 4:1 Sideslope RETENTION BASIN STORAGE AND DEPTH CALCULATIONS (FT) NSF) CHANGE (SF) (Avg) 9) (CF) VOL (CF) MPERV RET AREA (SF) 0.00 WATER WATER SURFACE D= 4' -5' D= 3'-4' D= 2' -3' D =5.00' D =4.00• D =3.00' D =2.00' D =1.00' D =0.00' 20204 13632 7699 2406 0 -20204 6572 5933 5293 0 10102 16918 10666 5053 0 42738 42738 32636 15718 5053 0 ELEVATION DATA FF Lot 8 515.50 Top 513.00 GFL at CB #1 512.80 WS 100 511.26 Bottom 510.00 BY: JWC rCrciuu WATER DEPTH WATER WATER SURFACE D= 4' -5' D= 3'-4' D= 2' -3' D= 1' -2' D= 0' -1' DEPTH AREA ELEV. (FIR) (FT) (FT) (FT) (FT) (FT) (FT) (SF) (SF) (FT) 1 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.045 0.049 0.04 0.05 2643.00 2643.00 510.04 2664.42 2664.42 510.05 INC 3 4 5 6 7 0 9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.070 0.083 0.115 0.136 0.199 0.294 0.476 0.07 0.08 0.12 0.14 0.20 0.29 0.48 2775.35 2775.35 510.07 INC 2845.00 2845.00 510.08 INC 3016.47 3016.47 510.12 INC 3125.79 3125.79 510.14 INC 3457.28 3457.28 510.20 INC 3962.79 3962.79 510.29 INC 4927.36 6422.96 7204.90 13785.51 4927.36 6422.96 510.48 510.76 INC INC 10 11 12 13 14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.118 0.228 0.759 0.907 0.000 0.000 0.000 0.76 0.91 1.02 1.12 1.23 7204.90 510.91 INC 13785.51 511.02 INC 14406.78 15129.04 14406.78 511.12 INC 15129.04 15505.49 15368.78 511.23 511.29 511.26 INC PEAK DEC 15 I6 7000 0.000 0.000 0.000 0.000 TO-0 _0T 0.285 0.264 0.000 0.000 1.29 1.26 15505.49 15368.78 17 18 19 20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.049 0.000 0.000 0.000 0.000 0.718 0.562 0.429 1.05 0.72 0.56 0.43 13955.18 6204.17' • 5379.34 4677.11 13955.18 511.05 DEC 6204.17 5379.34 4677.11 510.72 j DEC 510.56 510.43 DEC DEC 21 0.000 0.000 0.000 0.000 0.316 0.32 4076.32 4076.32 510.32 DEC 22 0.000 0.000 0.000 0.000 0.218 0.22 3559.53 3559.53 510.22 C23 0.000 0.000 0.000 0.000 0.133 0.13 3112.32 3112.32 510.13 �DE C 24 0.000 0.000 0.000 0.000 0.060 0.06 2722.80 2722.80 510.06 #REF! "�x DRAINAGE AREA MAP STORM DRAIN /RETENTION BASIN EXHIBIT TRACT 30378 ROD VANDENBOS AND ADJACENT SITES H.P. VISTA BONITA TRAIL (PRIVATE STREET) (NOT INCLUDED IN TRACT 30378 RETENTION BASIN ANALYSIS) TC 515.5 S.D. LINE "D" 1 PL 1 TRACT BOUNDARY & WALL 3' CURB OPENING i.32 -� R /W, TRACT BOUNDARY MAXIMUM POND WLS OLOT 5 RETENTION POND NO. DESIGN POND VOLUME (CF) DESIGNED POND WSL & WALL O 1.29 > 511.79 56 Al 7,653 I EQ. PIPE 2 1.04 LOT 4 PL ' 2 7,385 �13 6 TC 515.37 1.08 ACRES � O 7,012 513.30 56 y O a 1�0 0.76 ACRES 1.08 PL 513.50 ' 4 6,362 513.50 27 5 Q 2,331 LIJ O 0.77 ACRES 10 -- CB #5 3,411 514.30 37 6 0.38 TC 515.2T----' I x 6 �- PL -� J O 0100 =0.61 CFS U 0.40 2,202 3 LOT 3 4,266 100 =039 CFS 35 Ad 0.86 ACRES 8 511.50 56 0.89 ACRES awl -� S.D. LINE "E" PL 82 Q a m 511.85 56 g 01 511.85 0 o i EQ. PIPE 4,150 I 56 N W U 511.52 32 * 11 0.19 1,169 512.60 56 ' 511.60 90 *@ LOT 2 1.04 ACRES 12 OI 56 3,102 511.78 90 TOTALS 8 64,416 1 1 RETENTION BASIN (TYP) I I PL -� CB #4 TC 513.70 1 O 0100 =0.79 CFS I LOT 1 I 1.03 ACRES S.D. LINE "D" 1 PL 1 TRACT BOUNDARY & WALL 3' CURB OPENING i.32 -� REQ. PONDING VOLUME (CF) MAXIMUM POND WLS OLOT 5 RETENTION POND NO. DESIGN POND VOLUME (CF) DESIGNED POND WSL 0.85IACRES O 1.29 > 511.79 56 Al 7,653 I EQ. PIPE 2 1.04 �- PL 56 2 7,385 �13 6 TC 515.37 28 3 0100= 0.61'CFS 7,012 513.30 56 © LOT 6 O 513.30 1�0 0.76 ACRES 1.08 5,874 513.50 S.D. LINE "F" PL 4 6,362 513.50 27 5 0.38 2,331 LIJ O 0.77 ACRES 10 5 3,411 514.30 37 6 0.38 4,083 513.54 56 6 �- PL -� 513.54 CBS -_ 0.40 2,202 TC 513.70 56 4,266 100 =039 CFS 35 8 LOT 8 8 511.50 56 0.89 ACRES awl 511.50 82 Sn_ IINF "C" a 11,100 511.85 BETH CIRCLE GRAPHIC SCALE 100 0 50 100 200 ( IN FEET ) 1 inch = 100 ft. RETENTION BASIN SUMMARY TABLE EQ. PIPE MAXWELL -� 300 DRAINAGE AREA (AC) REQ. PONDING VOLUME (CF) MAXIMUM POND WLS RI VALUE RETENTION POND NO. DESIGN POND VOLUME (CF) DESIGNED POND WSL IMP 1 1.29 7,500 511.79 56 Al 7,653 511.79 40 2 1.04 5,866 512.66 56 2 7,385 512.66 28 3 1.08 7,012 513.30 56 3 6,145 513.30 41 4 1.08 5,874 513.50 56 4 6,362 513.50 27 5 0.38 2,331 514.30 56 5 3,411 514.30 37 6 0.38 4,083 513.54 56 6 5,425 513.54 37 7 0.40 2,202 512.93 56 4,266 512.93 35 8 1.07 12,365 511.50 56 g 15,786 511.50 82 @) 1.68 11,100 511.85 56 g 11.110 511.85 56 10 0.43 4,150 511.52 56 4,160 511.52 32 * 11 0.19 1,169 512.60 56 1,772 511.60 90 *@ 1 0.48 2,769 1 511.78 56 3,102 511.78 90 TOTALS 110.251 64,416 1 1 1 76,577 EXISTING R/W 15 I E O Z O S. 1-� \,,,. Z 0 a z .j LL, 11,16 0 V FUTURE CURBI & GUTTER CB #2 TC 514.63 0100 =5.71 CFS I CB #1 TC 513.78 Q100 =1.67 CFS "A" LEGEND/ABBREVIATIONS TC TOP OF CURB WSL WATER SURFACE LEVEL CF CUBIC FEET S.D. STORM DRAIN EQ. PIPE EQUALIZER PIPE BETWEEN BASINS QRETENTION BASIN #1 ODRAINAGE AREA #1 DRAINAGE AREA BOUNDARY LINE �k DRAINAGE AREA DRAINS TO T.M. 33085 (0u L- - 091 ) 11776 2lu!eJijz:) '_ZSDC) JU �1c p Ll � l? c -F2 pa!ed.-Jd- � �" Q NV I S 3 n 1\13 A 11 ,I I 0a -,j 77 tot' V, h v, - pe T;.jrM f� L I I 'D n ( 2 _ -.: 1 On sit.'_ ii, or,.r ir ,vahiliz [I,= in ii i�ra c. c La n i I a c, s; C) i I s ha otrccila. Fm,rit". fllciu�d be 17 d" a if-, ra;" tpr reial,.[jr 'n is rpquirad. It Ij i G r m via, and inc; d-isi on-sircp- IS Our W-1011"T 0 proposed to L runolff vvthin -hallow r•r.ncion basinj -vithin the Sout, Lor-cion of the hir-11cration testing performed •vitilill 3 to d Fe2c dzzp test holes t:•-cavated in dirtz locations an the L IL sitc. Th-t appro'..'.nnzte --esr hole locations are indicated on 'lie attached site plan. Percolation t--sting w22- performed on March 27. '1001. Testng involved 511is iia test holes with VF Lar and recording the drop in the water s' `h° with time. ivfeasuremcni:3 were taken In appro;.,imately 10- 17-1.11112172 increments. testing Indicated r--lativ.-k; szablz infilicration r:-:Cp-s ot to 16.4 inches o--.- hour within =h oic the test holes. As determined by the field -=,.-Ploraclon outlined in the referenced rapori, the site soils in the southern pol-ion of the site -consist prim=rily of silty Fin _?rained =ands. Tha Infiltration rat=-7 de'.!rmined durinc CLI 1' 1! S', 19 g --p-P as.r Fai rl v r_prt-_C:iCaCIVe of ill ille s u rface lolls in -dipi F -'Its an- e�,posed ir Pr2s.- nt cond; I 1 -1 %-pect diii, rhe ratanncn ba--in area =, subrtantially low !r jjFjltrcj'rjjj i-at=,z should be e zd. TiM co It -houiol be nottd die, the in --1--1011 ErtS Le�=-,-mnlned b--1: zesiinc -.0 o rO*--';F1-1- 0 iricnes Del hour) are ultimate upon r2hor, di-1-- ,.ion rield, test results. ri zP-Cro.rll;2[2 Sal--.-.y factor should o accoUn-7 Tor .0 51.1C, be prior �-:) -..!zp in 0-0-51 -le r-omc—cr:on �elzt-d zra -n-, and pct•_n[ s'17inz of the perzola flit_ g soils. Th-- sa--o,; [-acmr should deter-mined vvith.: -,a.- Fn des*Lml, (nv-*culark ��iormtvvater Volume co'nside.-acion to cithe. Caccor3 in stcm-n%vz. J.": c IS P I _:t : �L. WiTI, mat-S) and .0- safe,,--/ 1-actor" :Is 0 1 tho-ze dasign components. I =zip- V. _77! ,07 n I;j GT -f;. 77 : % %' /o/e., i-02 01 nv Lie � Pei- R;S_ rct Ilk, Dili XZEE -7m Z! l", f Pew lu_ rc,i5h•. �.• � '�' ' _ _ .,� -•-- � ,. •, \..� ;',�° --fir j \ , •:�..•, i. , � �' �.._. ,ate ?' °'�t!�!I�)� I,\ ice. �: y % i .,,`srr `__ - J.. �. �-�•�1 I' zz, el Sl LI �, mr Jill N.t.: m m [113en= If MM i:1777 "n's-Hedy The S77 < 8F. "low, and ------------ 9c`--------- --- - - - --- 3- Cava: :actt a a ---------- Eca zi=e 1-.6 Cava variaac: cb D ------------ -------------- F ccc------------------ >6..0 -------------- -------------- 8F. 301 TrOl: ------------ 9c`--------- --- - - - --- 3- Cava: Cs D----------- - - - - -• Cava variaac: cb D ------------ -------------- ca 7..-*. =0 : - ccc------------------ ca.,2i taz: C.--:C, Ca E, CNC, C k 8 c: E -------------- C-r.!itas Cm 8, C n L ---------- >6.0 --------------- --- - -- - -- -- COICAW - - -- -- NOW! ------- 3 C. _`-- __._. -_I J D rl ------ -------------- 7, . U -. 9a ts Fe------------------- -------------- ------------ - >6.0 .0 ---- ---- -- - - >60 G ra—, el OiZ3 and du=.ps: >6.0 impehal: ------------ > acy ------- 1111-4 DI I rnC t: 2.G '.0 !moer.,.al D GuiHed.laaci ptLr_ ------ Wpeval: -------------- .icc" ": D Imcer.,=1 par. -- -.-- !--ad � a,—,. rkio: Ir ------- ----------- - ------------------- ..Le LR >6.0 L k ArKwOMM par"; ------------ >6..0 -------------- -------------- >io Noat! ------ -------------- ------------ -------------- ------------ >60 >6.0 --------------- --- - -- - -- -- >Ao - - - -- -- NOW! ------- -------------- -------------- --------- -------------- ------------ - >6.0 - - ----- -------- - ---- ---- -- - - >60 >6.0 --------- ------------ > acy ------- None ------ ------ - ----- -- ------------ 2.G '.0 p >60 ------ "Out! ------ -------------- -------- >6.0 ---"----- ----- ------------ 6--So , R:Ppa Note------ --------------- : ---------- -------------- ------------ >60 ------ Toa.! ------ -------------- ------------ - Ome --------------- - ---------- - > 60 >60 ------ '-Focie :::::: ------------ 7e7­,,' !Ocg ----- 0. 5-2. 0: >60 ------ .>6.0 -------------- ---- 7- >60 ------------ >6.0 -------------- -------------- >60 ------ -------- -------------- 3. rj-3*. 0 -',fore ------ -------------------------- >60 >6.0 -------------- ------------ >n-0 -- ---- - -------------- ------- ----- 1. 0-:;. 0 Noce------I ------ ------ - >6.0 ---------- ------- ----- �.ior t ------ -------------------------- .: -a.0 Sin-Dan -------------- -- - ----- I >60 ------------- - ----------- - >6.0 3A -------------- ------------- >,0I_._. !e ion....... ------------- ............ ............. Z:O-- 7. — ST..' .'i= - nd f 'e cOmPos' ee unit desc `Dtion -or. 0�' 301" T' or more 00= his rrapi:irt.- unit is made u.P a' ber,P--,ior oz t*.-.'e'Nvho1E- :. -1-at the and ti-l-e mont'ns O-Z L,1 L U.- tabis cor-o-mmily is high. or L ,!y Saturated zones abov.2 a de7ptij o--'*' S or r1j =-2et are indic-,lt2d- -OL:� �'.-,e EEL, table i1eilDs in assessing the 7-eetl lor 5'02Ciaily - .- - --: -Il - Toundadlons, the need for sD=-ci7,,c !,-,--nC!s. o! dra-i. n z (-r a: o 5 '0 ;nz:u27E an 37S-LemnS: and, the ae-ed for ?0 batzenn = s. �' - L: c1 - o r on i- also ---- LO CECI(e is zeasi -317 110t c07--zz-.'-UCr-10n, r, — - .1 % a -. d 0 r-. ar!Q rO j107i -cED -,..:LC t"7 ;Cnz L . . . L. - "! `-,- - c r. c I-Trour. C. i z e e b r Z =q`= n ^a - :'.o-!. 0 C. L, 7 7 r'17 L a on -m t; 3 Ll r z in. of the r,Ur:r 7 L -1 � ons _ ;_,L L -aP a ja 0�,,=r he rr . Pi on, L,. - - Eoor. —F a k: :i d of beciroclr and itZ irl-'! -rd-no-55 �o -,,ja.�jor, is also sho,,,,-,-i RirP"0IE.bpAroC;-: 1� ease se 07 ;: -,7C _ 6 - . ' - i " * " ' '-3c ca-in be e:,-c--nvat--zd -,,vitr a In -.*-ji)'. -., -7- oot, r be,2. rock '100 ..orS2:;0v;Er ZZ rn e n on a actor. blit. 11ar v -ac.uir--s blaELL-0 z e n e -1*-,l t I - - -- .1. F(Drmadbml Afor-photogy. and CLas.5-iTication of the S01zS 5=CU0-1 CCn - Tz rcz,- z r - SZ 0 i i L) :C�l I. 7 Z 1: M. 1) 7L C Li C n f -- 1;;z F G 0 - - - - - - - - - - - -_ - - - - - - - - - - - - > Flo - - - - - - - - - - - - - - - 141 � ----- ------------- V--- ------ -------------- ------------ - -- Noze > .5. 0 ------- -- ------ >60 --------- !M d C ------ ----------------------- -, 0 ;a--D e C---- >60 Nb E ----------------- dune -------------------- --------- IN a u a > 6 0 --------------------------- �120 Ripp2.bte. ----------------- --------------------- ------------ 0 r '-Gae > a 0 -------------------------- GmStort N -------------------- - --- -------- RCC• oulce.-00 7 U lock OLtcrou: RO. Ro c k outc oa o=�. C D— N" one -------------------- ------------ >6.0 -------------- ------- -- - - - - a 7 Rubble tizd: RU. S -00 - --- D ''o=`---------------------------------- ^_.0 -S.0 j_- .- Dec - -- - >60 ----------- > 6. .0 >60 --------- Z- ---------- A -Cat ------ -------------- -- TO'.: Tornomhent-t pa�.* .,Ock ouzcnp tier. Ncne >6.0 ------------- --------- >60 - --------- Tp-'--, TrC, A ------ -------------- ------------ nd f 'e cOmPos' ee unit desc `Dtion -or. 0�' 301" T' or more 00= his rrapi:irt.- unit is made u.P a' ber,P--,ior oz t*.-.'e'Nvho1E- :. -1-at the and ti-l-e mont'ns O-Z L,1 L U.- tabis cor-o-mmily is high. or L ,!y Saturated zones abov.2 a de7ptij o--'*' S or r1j =-2et are indic-,lt2d- -OL:� �'.-,e EEL, table i1eilDs in assessing the 7-eetl lor 5'02Ciaily - .- - --: -Il - Toundadlons, the need for sD=-ci7,,c !,-,--nC!s. o! dra-i. n z (-r a: o 5 '0 ;nz:u27E an 37S-LemnS: and, the ae-ed for ?0 batzenn = s. �' - L: c1 - o r on i- also ---- LO CECI(e is zeasi -317 110t c07--zz-.'-UCr-10n, r, — - .1 % a -. d 0 r-. ar!Q rO j107i -cED -,..:LC t"7 ;Cnz L . . . L. - "! `-,- - c r. c I-Trour. C. i z e e b r Z =q`= n ^a - :'.o-!. 0 C. L, 7 7 r'17 L a on -m t; 3 Ll r z in. of the r,Ur:r 7 L -1 � ons _ ;_,L L -aP a ja 0�,,=r he rr . Pi on, L,. - - Eoor. —F a k: :i d of beciroclr and itZ irl-'! -rd-no-55 �o -,,ja.�jor, is also sho,,,,-,-i RirP"0IE.bpAroC;-: 1� ease se 07 ;: -,7C _ 6 - . ' - i " * " ' '-3c ca-in be e:,-c--nvat--zd -,,vitr a In -.*-ji)'. -., -7- oot, r be,2. rock '100 ..orS2:;0v;Er ZZ rn e n on a actor. blit. 11ar v -ac.uir--s blaELL-0 z e n e -1*-,l t I - - -- .1. F(Drmadbml Afor-photogy. and CLas.5-iTication of the S01zS 5=CU0-1 CCn - Tz rcz,- z r - SZ 0 i i L) :C�l I. 7 Z 1: M. 1) 7L C Li C n f -- 1;;z RETENTION BASIN STORAGE DATA FOR 100 YEAR / 3, 6, and 24 HR STORMS. PREPARED BY COACHELLA VALLEY ENGINEERS REF: DATE: JOB it DY: 8/3-1/04 0 *1152 JWC RETENTION BASIN DATA SUMMARY Tract 30378 - Madison & Ave 51 - Vandenbos ' ELEVATIONS Lot Basin Tributary Retention Volume ( CF) Finish Floor Top Sdslp Highest Basin Ult 11 # it Acres 3 Hr 6 I-Ir 24 I -Ir WS 100 Depth Bottom Overflow ( Dalza Computed for 2 inch / Hour Percolation ) I I .1 1.03 1283.00 1115.00 895.00 515.90 514.00 513.34 1.34 5'12.00 5,111.00 2 2 2 1.05 1301.00 NA NA 516.10 514.20 513.56 -1.36. 512.20 511.16 3 3 3 0.87 1469.00 789.00 1837.00 516.90 515.00 514.88 1.88 513.00 514.97 1. 4 4 1.08 1 1831.00 NA 2341.00 517.90 515.80 515.49 1.99 513.50 5.15.65 5 1111'u 8 5 Thru 9 5 lhru 13 7.08 .11964.00 9725.00 15035.00 515.50 513.00 511.93 1.93 510.00 5"13.L18 Madison So '10 14 0.36 1461.00 NA 1215.00 515.50 513.16 512.75 1.25 511.90 513.00 Norris cb1/2 1-1 15 0.11 408.00 NA 329.00 515.90 513.50 513.31 0.81 512.50 513.50 i i STORAG E HYDROGRAPH FOR 100 YEAR 1 3 FIR STORM RETENTION BASIN. PREPARED BY COACHELLA VALLEY ENGINEERS REF: l- �-� .I - 3 tlrl100Yr - Trapezoid Retention - 20x'1'10 Top, 4:1 Sicleslope DAT[ =: 511310 -I EL,U it 0-1152 Tract 30378 - Maclison & Ave 5.1 1-4V- JWC I TRIl3 AREA= PERC.RATF STORM VOLUME= PERIOp PRECI ('I :7111111) yin 3.7 2 =1.0 I X1.9 14.b I 6.6 6 63. 0 7 8.•I t1 9.0 9 12.3 10 -17.6 24.3 i. 0.0 12 1 4.2 -1.0330 ' .00 r '),00 INTO- NSITY 1 .100 (IN /- 15mi11) 0.074 0.006 0.-102 0.090 0.132 0.146 0.'168 0.'I 80 0.246 0.352 0.322 0.00 -I ACRES IN/FIR IN 113/ - R C RC= 20 ",'u 0.229 233 0.234 0.234 0.2 =10 0.213 217 0.249 0.262 0.202 _ 0 276 13 0.5 INI15 Min) SOIL GROUP �?, R•C• =?3'; , P A inn FAR 3 I-I UR . LOW Q CFS OUTFLOW I RETENI ION INFLOW VOLI'15 Mill CUML VOL OTHER PER 115Min OTHER RE DI CUML VOL (CF) (CF) (CF) (CF) SI I=L=T -1 OF 9_ 10.5 II I_0 14.b I 0.070 63.0 63. 0 0.0 21.3 � 0.0 IOG.�i 0.093 83.3 .I� _ 0.0 24.3 i. 0.0 171.1 �- 0.099 08.0 195.1 --5A 0.0 27.0 10.o ___-- 220.3 0.005 05.1 256.3 0.0 31.0 �- �- 3- 0. --- 13'1 117.9 34 7.2 0.0 35.5 1 0.0 `I I ' `' 0.146 131.8 '147.9 0.0 40.7 - - -- - 10.0 ,�_ �_ 0.171 154.3 �- r G6. - 0.0 ---- -- �IG.3 - -�- 1 0.0 6 =16.0 0.'185 168.8 692.9 0.0 01'0 I o 792.1 -- 6 0.266 239.4 806.0 �- 0'0 - 101.1 -_ 10.0 10`59.7 - -- 0.110 369.0 I.1 G 1.1 0.0 107.5 ;_ 0.0 12E42.9 0.367 330.7 1390.4 0.0 106.6 _ ':. 0.0 1210.1 0.080 72.1 13 0.0 i SI I=L=T -1 OF 9_ I Y: Jwc JOB // 01.152 Tract 30378 - Madison & Ave 51 REF: LOT 'I - 3 1- I0-100W - Trapezoid Retention - 20x'1'10 Top, 4:1 Sideslope RETENTION BASIN STORAGE AND DEPTH CALCULATIONS PEAKSTORACE D= '1.00' 122 -1 t1 -10 800 800 WS "100 5'13.34 .. 2..:;3 a a D a i 10 11 12 D =o.00' :376 0 n Bottom 5-12.00_1 - -- PERIOD WATER DEPTH WATER SURFACE IMPERV RET D= 3' -4' 1200.0 I 1 CHANGE (Avg) ..VOL AREA ELEV. 0.0 (1 -T) (S1 =) (SF-) (C) (CF) (SF-) (F'f) (SF) 000.0 ,80. - - - 0.00 800.0 600.0. D =5.00' 0 0 6916 - 2 0.00 OA0 -330.1 1652 6916 ELEVATION DATA O.OB 0.16 .400.0 D =3.00' 3:i1i•I '1104 2752 52(31 FF Lot1 5'15.[9.0 0.00 0.00 200.0 D =2.00' 2"(10 076 1712 2512 Top 5'14.00 0.00 0.00 DD D= '1.00' 122 -1 t1 -10 800 800 WS "100 5'13.34 .. 2..:;3 a a D a i 10 11 12 D =o.00' :376 0 n Bottom 5-12.00_1 - -- PERIOD WATER DEPTH WATER SURFACE ' D= 3' -4' D= 2' -3' I 1 F1= 0' -'I' DEPTI I AREA ADJ.AREA ELEV. D= '1.00' 122 -1 t1 -10 800 800 WS "100 5'13.34 .. 2..:;3 a a D a i 10 11 12 D =o.00' :376 0 n Bottom 5-12.00_1 - -- PERIOD WATER DEPTH WATER SURFACE D= X -5' D= 3' -4' D= 2' -3' D= 'I' -2' F1= 0' -'I' DEPTI I AREA ADJ.AREA ELEV. (I =l) (FT) (FT) (F -F) (F'f) (SF) (S1=) - - - - 2 0.00 OA0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.113 O.OB 0.16 1142.82 511.52 4,12.82 511.52 512.06 512.115 IIJC 3 11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.2 =1 0.32 0.24 0.32 583.17 1347.66 583.17 617.66 5'12.2 -1 512.32 IIIC: IPdC 5 G 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.43 O.Cifi 0.43 0.50 713.08 850.82 713.98 850.82 512.,13 512.56 11�1C Ihdi 7 0.00 0.00 0.00 0.00 0.71 0.71 976.77 076.77 512.71 IIAC, 8 0.00 0.00 0.00 0.00 0.87 0.87 1110.41 1110.44 5'12.87 1111C: 0 '10 I'I 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.21 0.3.1 0.00 0.00 0.00 .1.05 1.21 '1.34 2255.49 2432.83 2580.73 2255.40 2132.83 2580.73 513.05 513.21 • 5'13.31 I1•IC: II.-IC PEAK 12 0.110 0.00 0.00 0.32 0.00 1.32 2557.91 2557.91 513.32 SHEET 2 01= 2 i i i i P, .,AGE HYDROGRAPH FOR 100 YEAR/ 6 HR STORM RETENTION BASIN. REPARED BY COACHELLA VALLEY ENGINEERS REF: LOT 1 - G Flr /'I OOYr - Trapezoid Retention - 20x1'10 Top, i•:'1 Sicleslope DATE: � 5; 1310 -1 .10011 01 152 Tract 30374 - Madison & Ave 5"1 IIY: JWC TRIB AREA 1.0330 AC;NL-5 IN /1-113 (0.5 IN /15 Min) IN /61-IR 100 YEAR/ G {-TOUR PLATE E -5.1 SOIL GROUP "A ", AMCII, R.I.= 32, R.C.= 2�1' %�, PERC.RATE STORM VOLUME 2.00 2.95 OTHER (CF) OUTFLOW PERC /15Min (CF) OTHER (C1=) REl L= NTIO�1 REC)O CUML (C1 =) VOL PERIOD (ISrninl PI:ECIP "4. INTENSITY 1 100 (IN /15min) IMPERV C ' FLOW Q (CFS) INFLOW VOL/15 Min CUML VOL (Cl =) (CF) RC =20 %. 0.222 0.223 0.224 0.221 0.225 0.035 0.039 0.0-- 0.0 .15 0.050 31.6 35.5 39. : 4.1.3 45.2 3.1.6 50.0 71.5 9.1.0 119.4 0.0 0.0 0.0 0.0 0.0 17.1 17.9 18.4 19.0 20.9 0.0 0.0 0.0 0.0 0.0 1 32. I 1 3 1.7 1.9 2I . ? 2 - 2.:1 0.038 0.0.13 0. 17 O.Q�iO 0.05 -1 '` / 7 1.2 _ -I 5 1213 I I:1.0 0.225 0.225 02E 0.226 0.227 0.227 0.228 0.229 0.050 0.050 052 0.055 0.057 0.059 0.064 0.068 45.2 45.2 143.7 166.9 0.0 0.0 22.0 23.0 G 2. -1 7 ?.•I '17.2 49.2 51.2 53.2 57.2 61.2 '19'I.1 215.2 2 -12.1 269.0 290.6 331.0 0.0 0.0 U.0 0.0 0.0 00 24.1 25.2 2G. =1 27.5 28.9 30.3 1;o I!)I.(1 2-11.1 11 10 'I 12 13 2.5 2.ti 2.7 2.8 3.0 3.2 2!0.C!J5-1 O.OGI 0.063 0.0158 0.072 21i'J. 3011.7 0230 0.233 0.235 0.238 0.242 0.214 0.217 0.250 0.277 0.230 0.219 0077 0.093 0.103 0.120 0.139 0.157 0.172 0.257 0.373 69.4 84.0 02.`i 107.6 125.3 141.2 370.1 422.0 '180.2 550.9 636.2 733.6 0.0 0.0 0.0 0.0 0.0 0.0 32.0 3 =1.3 36.9 40.0 43.0 48.1 0.0 0.0 0.0 0.0 0.0 3311.1 1 :1 '15 1 ii -17 18 3.0 4.3 1.7 5. =1 6.2 0.081 0.097 0.106: n.122 0.110 387 7 1 13.:1 511s.t) 59"2.1 G85.:i 19 GA 0.155 155.0 230.9 336.1 840.5 970.7 1210.3 0.0 0.0 0.0 92.8 95.5 102.9 0.0 0.0 0.0 717.8 2q 21 7.5 10.5 0.1159 0.239 1182.2 -Ti 15.4 2'2 1 =1.5 0.326 0.073 0.020 G5.3 18.3 1180.7 1097.1 0.0 101.9 0.0 99.5 OA 1071.1.11 n.0 30%.5 23 2.1 3.:1 1.0 0.077 0.023 SHL1= 1 1 UI- z n � O I V ( '4 G ' C 0 r. N I LO C O Q .Q O N � U I a L CO + � O C' r+ L = ro-i L LL Z c i W L7 Q G H N u IL Y) , Z 0 F" Q J U J Q U l d LU 0 0 z Q LU Q 0 v/ z m co Q z 0 z LL L!J C , I + I V 7 n a D P N co o d vi C3 w 0 I �d,� I I gk� klL Q O C� G O 'S N C C N Cl! N Q Ln M O N W ^ --) O N C11 2 -C CSI r-- W 0 LC , L'o Lo Ln N N N C'I CV N N N > LU N CV 0 CI N C J C7 Ch C'7 C 7 C) U J L. T C W Q O C O O O O O ac_ C O r > r...7 O C 0 0 0 0 0 0 Q w U J L-n L-1) O in L'i lt: W L'7 Li L7 Ln L7 L"7 lrl U- C!1 L7 m J Q 1 co CD ` N O C C U (D D LO N > LL o LNn tr) -1 °c c Qo —rrcc LU z U G C LID b Q U) O �v Q r7 0 0 0 r.l — O oo��oo O Ll C G f) O N O O O •� L O II II II II II C: O II 0. m h N— I �d,� I I gk� klL Ln C7 1'� N N 7 O w L7 O N C:J L'1 C7 G1 U i r L� r L'i 4 C7 f'] C G7 O C7 C�] Ln C� LO cl, L✓ (/; O a) r Ln N Ca N CD Ln N- N O O cn I t:7 Q O N t!'1 h• O N Liz ` C C`7 C C7 N O N CC Lf7 L O N M L'7 -T C7 Ln to L!i L7 LD C' CD h h CO b L7 r N N N N N 014 I I I I I I�ICD o c, o C) aI M- I0iCla 0l °I °INI�IT 0 o G c C ^m' m r C C C O C O i_ ^_ C 0 - - - Cl! Cl! Cl! 111c C') C^; -7 O C C C C O C cm to - C - N Cl! N CJ C, C7 O C^ ^ --) O N C11 C -C CSI r-- W _ W C' CN N^ - N N N C'I CV N N N �I N CV C'I CI N C J C7 Ch C'7 C 7 C) U J L. T C O O C O O O O O C O r 0 r...7 O C 0 0 0 0 0 0 Q w L-n L-1) L^, in L'i lt: L. L'7 Li L7 Ln L7 L"7 lrl L7 C!1 L7 L7 1 J Q r7 0 0 0 O C 0 O c c c CO l7 O c N N h O C: O ^ O 0. m h N— O o Ln L O N u7 M Co C C r— C'7 — O L7 C7 M LC, rG- N h C l0 O C L L, c h La L'7 C'1 v'7 - r C r C O - 0 0 0 G M :O Ln C7 L'7 r- Q 4 C) _ Ln N co CI O Ln N _ CI (a C Ch Ln G1 — Ln N r t7 G7 O N L'i h O N L', h C C`1 Co C, L N O co u) G7 Ln L'7 Lo L7 LD CL7 fD C:7 r r N N N N N Q Ln C7 1'� N N 7 O w L7 O N C:J L'1 C7 G1 U i r L� r L'i 4 C7 f'] C G7 O C7 C�] Ln C� LO cl, L✓ (/; O a) r Ln N Ca N CD Ln N- N O O cn I t:7 Q O N t!'1 h• O N Liz ` C C`7 C C7 N O N CC Lf7 L O N M L'7 -T C7 Ln to L!i L7 LD C' CD h h CO b L7 r N N N N N 014 I I I I I I�ICD o c, o C) aI M- I0iCla 0l °I °INI�IT 0 o G c C ^m' m r C C C O C O i_ ^_ C 0 - - - Cl! Cl! Cl! 111c C') C^; -7 O C C C C G O IiJ C Iclmlo C G C C O O O C O O O O G C O C G O G c O C G o 0 0 O C O C O O G C O C O O O O O O O C C'7 L O G C C C O O O G O O O O O G O C C c 0 0 0 11 O C O O O C G C O O O G O O O O G C G O C O 0 0 C G O C O O - G O G O O C G C O ^ G C O O O O C C O O = O G O G C O G O O G C O v 0 0 0 0 O 0 0 C •� O ^ ILh �= G O C O O G O C C O O C G C C O CIC 0 0 0 0 0 - LI L7 h o c7 c - �+ fn N N CI CI N I_ O u LU co O C "" ^ O '"' O C O C O O C^ 0 0 0 Z _ F O C C^ O O C O O C '...� O O G C O O O C O C C O C O O C ..., O O O O O O O O O O N C- CC CV -" II v C C O O C O O O O O C O 0 0 r...7 O C 0 0 0 0 0 0 rte, f] J Q r7 0 0 0 O C 0 O c c c CO O c c c O C5 C: O ^ O 0. c CD c O O O O. O O O G O O C O C A O C C O O O O O C O C O C O 0 0 0 0 0 O O O O G O IiJ C Iclmlo C G C C O O O C O O O O G C O C G O G c O C G o 0 0 O C O C O O G C O C O O O O O O O C C'7 L O G C C C O O O G O O O O O G O C C c 0 0 0 11 O C O O O C G C O O O G O O O O G C G O C O 0 0 C G O C O O - G O G O O C G C O ^ G C O O O O C C O O = O G O G C O G O O G C O v 0 0 0 0 O 0 0 C •� O ^ ILh �= G O C O O G O C C O O C G C C O CIC 0 0 0 0 0 - LI L7 h o c7 c - �+ fn N N CI CI N I_ O u LU co STORAGE HYDROGRAPH FOR 100 YEAR 124 HR STORM RETENTION BASIN. PREPARED BY COACHELLA VALLEY ENGINEERS REF: ILOT 'I - 24 Hr /100Yr - Ti-apezoici Retention - 20x1'10 Top, 4:1 Siciesiope JOB H 01.152 Tract 30378 - Madison & Ave 51 BY: IWC TRIB AREA 1.0330 ACRES PERC.RATE 2.00 IN /1-IR SOIL GROUP "A ", AMCII, R.I.= 32, R.C.= 231. -,,, STORM VOLUME :1..50 IN /211-IR 100YEAR124HOUR P - -5.1 PERIOD PRECIP INTENSITY IMPERV FLOW INFLOW OUTFLOW RETENTION I '10(1 C Q VOL /lAr CUML VOL OTHER PERC /Hr OTHER REOD CUML VOL (CFS) (CF) (CF) (CF) (CF) (CF) (C1=) 1 1.2 0.05 -1 0.225 0.013 =15.2 =15.2 0.0 70.7 0.0 0.0 3 '1.3 0.059 0.226 0.01.1 19.2 49.2 0.0 71.1 0.0 0.0 3 1.8 0.081 0.230 0.0119 69.4 69.1 0.0 74.9 0.0 0.0 -1 2.'1 0.095 0.233 0.023 8.1.9 81.9 0.0 77.1 0.0 1.7 5 2.11 CIA 26 0.239 0.031 '112.0 1,16.7 0.0 83.3 0.0 33.-,1 u 2.0 0.'13'1 0.240 0.032 11GA 119.8 0.0 89.1 0.0 60.7 7 3.8 0.171 0.217 0.011 '157.4 218.0 0.0 101.2 0.0 1 '16.9 13 -1.6 0.207 0.254 0.054 195.8 3'12.6 0.0 117.9 0.0 19.1.7 9 6.3 0.28 -1 0.269 0.079 283.5 478.2 0.0 147.1 0.0 331.0 10 8.2 0.369 0.285 0.109 391.2 722.3 0.0 '100.3 0.0 532.0 'I'1 7.0 0.3'15 0.275 0.089 322.0 854.0 0.0 372.5 0.0 481.5 '12 7.3 0.329 0.277 0.094 338.9 1320.4 0.0 368.9 0.0 -1511.5 13 10.8 0.486 0.307 0.154 555.5 '1007.0 0.0 380.9 0.0 618.'1 '1 =1 '1 IA 0.513 0.312 0.1166 596.1 '1214.2 0.0 41 1.2 0.0 803.0 '15 '10.4 0.468 0.304 0.'1 =17 526.9 '1332.0 0.0 423.8 0.0 0013.1 16 13.5 0.383. 0.288 0.111 109.2 1317.3 0.0 122.3 0.0 895.1 '17 1.4 0.063 0.227 0.015 53.2 948.2 0.0 382.6 0.0 5(i5.6 111 1.9 0.08G 0.23'1 0.020 73.5 639.2 0.0 175.6 0.0 4G3.6 '19 1.3 0.059 0.226 0.014 19.2 512.8 0.0 153.3 0.0 359.5, 20 1.2 0.054 0.225 0.013 15.2 40.1.7 0.0 131.2 0.0 270.6 2'1 22 I.'I '1.0 0.050 0.045 0.22 -1 0.22 =1 0.0111 0.0'10 =11.3 37.4 3'11.9 231.5 0.0 0.0 117.8 103.6 0.0 0.0 1411.1 120.0 23 2 -1 0.9 0.6 0.0-11 O.U3G 0.223 11 0,222 0.009 0.008 33.5 20.7 161.5 100.0 0.0 0.0 91.2 80.3 0.0 70.3 0.0 '10.7 SHEET 'I OF 2 un7 E: - ' 1 :3�u 1� ;� - - -- - - - J013 0'1152 Tract 30378 - Madison & Ave 51 REF: LOT -1 - 24 1-1 t-/-1 OOYr - Trapezoid Retention - 20x•l10 Top, 4:1 Sideslope RETENTION BASIN STORAGE AND DEPTH CALCULATIONS PEAK STORAGE -1000.0 I I I I I I! I I I 900.0 I I I 600.0 700.0 600.0 500.0 400.0• - -- 300.0-- - -- - -I- 200.0 100.0 _ 1 2'3'•4'5`6 7 0 9 1011121314151617161'0 20 21 22 23 24 PERIOD WATER DEPTH CHANGE (Avg) VOL IMPERV RET AREA (FT) (SF) (SF) (CF) (CF) (SF) (Fr) (1=T) (FT) (FT) (FT) 0.00 D =5.00' (SF) U 0 6916 D =4.00' 1 -330 -1 1652 69'16 ELEVATION DATA D =3.00' a:]0I 110 -1 2752 526.1 FF Lot1 515.90 n =2.00' 1 22,00 976 1712 2512 Top 5'11.00 D =1.00' I %_ I 848 800 800 WS '100 513.31 D =0.00' 428.14 428.14 0 0 Bottom 512.00 PEAK STORAGE -1000.0 I I I I I I! I I I 900.0 I I I 600.0 700.0 600.0 500.0 400.0• - -- 300.0-- - -- - -I- 200.0 100.0 _ 1 2'3'•4'5`6 7 0 9 1011121314151617161'0 20 21 22 23 24 PERIOD WATER DEPTH WATER SURFACE D= -1' S' D= 3' -4' D= 2' -3' D= ,I' -2' D= 0' -"I' DEPTH AREA ADJ.AREA ELEV. (Fr) (1=T) (FT) (FT) (FT) (FT) (SF) (SF) (FT) I 0.000 0.000 0.000 0.000 0.057 O.OG 423.95 - 123.95 512.06 2 0.000 0.000 0.000 0.000 0.061 0.06 428.14 428.14 512.06 INC 3 0.000 0.000 0.000 0.000 0.087 0.09 4,19.56 4,19.56 512.09 11.•1 C 4 0.000 0.000 0.000 0.000 0.102 0.10 462.78 462.78 512.10 uvC 5 0.000 0.000 0.000 0.000 0.146 0.15 499.70 490.70 512.15 INC 6 0.000 0.000 0.000 0.000 0.187 0.19 534.77 531.77 512.19 INC 7 0.000 0.000 0.000 0.000 0.273 0.27 607.12 607.12 512.27 INC 8 0.000 0.000 0.000 0.000 0.391 0.39 707.39 707.39 512.39 INC 9 0.000 0.000 0.000 0.000 0.598 0.60 882.89 882.89 512.60 1111 '10 0.000 0.000 0.000 0.000 0.903 0.90 1141.62 1141.62 5'12.90 INC II 0.000 0.000 0.000 0.032 0.000 1.03 2234.81 2234.81 5'13.03 IDEAK •12 0.000 0.000 0.000 0.012 0.000 1,01 22'13.16 22'13.16 513.0'1 DF -C •13 0.000 0.000 0.000 0.121 0.000 1.12 2333.50 2333.50 513.12 INC '14 0.000 0.000 0.000 0.2 -12 0.000 1.24 2467.1'1 2 =167.'11 5,13.2-1 II•IC '15 0.000 0.000 0.000 0.311 0.000 1.31 2543.05 2543.05 513.31 PEAK 'I6 17 0.000 0.000 0.000 0.000 0.000 0.000 0.302 0.007 0.000 0.000 1.30 1.09 2533.61 2295.59 2533.61 2295.59 513.30 5'13.09 D[.0 DEC '18 '19 E20 21 22 23 0.0.00 0.000 Wo.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0.799 0.64 *1 0.506 0.390 0.209 0.202 0.135 0.80 0.64 0.51 0.39 0.29 0.20 0.13 1053.51 919.5.1 005.03 706.60 621.42 547.19 482.00 1053.51 919.511 005.03 706.60 621.42 547.19 482.00 512.00 512.64 5'12.51 512.39 512.20 512.20 512.13 DLC DEC DEC DEC DEC DCc: iil�r_r! 2 -t STORAGE HYDROGRARH FOR 100 YEAR / 3 HR STORM RETENTION BASIN. PREPARED BY COACHELLA VALLEY ENGINEERS REF; LOT 2 3 1- 111-100Yr - Trapezoid Retention -20x'1 10 Top, 4:1 Sides lope DATE: 1310 -I 1013 ;/ 0'I 152 Tract 30378 - Madison &.Ave 5'1 Jwc TRIB AREA= 1.0450 ACRES PERC.RATE ''.00 IN /I IR (0.5 IN /'15 Nlin) SOIL GROUP "A ", AMCII, R.I.= 32, R.C.= 23`;o, STORM VOLUME 2.00 IN /31 -IR 100 YEAR 3 H UR PAT -5.1 PERIOD PRECIP INTENSITY 1 '100 IMPERV C FLOW Q VOL /15 Min INFLOW CUML VOL OTHER OUTFLOW PERC /'15Min OTHER RETENTION READ CUML VOL (CFS) (CF) (CF) (CF) (CF) (CF) (C I---) (15min) °i�� (IN /�15min) RC =20`5 I 3.7 11.8 0.074 0.096 0.229 0.233 0.071 0.09 -1 63.8 0 =1.2 63.0 120.5 0.0 0.0 18.5 21.4 0.0 0.0 X15.3 108.1 2 0.100 0.096 89.9 86.1 '198.1 259.8 0.0 0.0 24.4 27.1 0.0 0.0 173.7 232.(; 3 1 5.1 4.J 0.•102 0.098 0.234 0.23.1 119.2 351.9 0.0 31.2 0.0 320.7 5 6.6 0.132 0.240 0.132 ii 7 8 0 I () I'I 7.3 6. =1 9.0 12.3 '17.6 16.1 O.1 IG 0."1,38 0.180 0.246 0.352 0.322 0.243 0.247 0.240 0.262 0.282 0.276 0.1 18 0.173 0.•187 0.260 0.415 0.372 '133.3 1,6.1 F, 2 -12.2 373.3 334.6 454.0 r 574.3 702.0 897.6 1 "176.6 1409.3 0.0 0.0 0.0 0.0 0.0 0.0 35.7 41.0 4G.% 94.3 101.8 108.0 0.0 0.0 0.0 0.0 0.0 0.0 I Iti.3 .`33.3 655.4 f10:).3 '1074.11 1301.3 0.081 73.0 1374.3 0.0 107.1 0.0 126%.'? 12 1.2 0.08 =1 0.23'1 SI-IEC -T 'I OF 2 131': JWC D Al- E: :i/ 13/04 Ji_t1:3 1/1 0.1-152 Tract 30378 - Madison & Ave 51 REF: LOT 2 - 3 I- Ir /-I00Yr - Trapezoid Retention - 20x110 Top, 4:1 Sideslope PEAK STORAGE 1400.0 1200.0 1000.0 800.0 - soo.o - 400.0 200.0 0.0 �•-- r 1. 2, 3 4 5 6 7 0 ti) It 12 [RETENTION BASIN STORAGE AND DEPTH CALCULATIONS WATER SURFACE D= 4' -5' D= T -4' - CHANGE (Avg) VOL IMPERV RET AREA (FT) (sl :) (SF) (CF-) (CF-) (SF) (FT) (FT) (FT) (FT) (S1=) (SF) (FT) 0.00 D =5.00' 0 0 6916 D =4.00' - 3:304 1652 6916 ELEVATION DATA FF Lot -I 51 6.10 0.00 0=3.00' 3:30--1 1,104 2752 5264 D =2.00' ?_C.10 976 1712 2512 To) 5'14.20 0.00 D =1.00' I I 8-18 BOU 513.56 3 n =n nn, 1176 0.00 0 0 Bottom 5.12.20 585.95 PEAK STORAGE 1400.0 1200.0 1000.0 800.0 - soo.o - 400.0 200.0 0.0 �•-- r 1. 2, 3 4 5 6 7 0 ti) It 12 SHEET PE=RIOD WATER DEPTH WATER SURFACE D= 4' -5' D= T -4' D= 2' -3' i I , D= 0' 'I' DEPTH AREA PE=RIOD WATER DEPTH WATER SURFACE D= 4' -5' D= T -4' D= 2' -3' D= 'I' -2' D= 0' 'I' DEPTH AREA ADJ.AREA ELEV. (Ln;) (FT) (FT) (FT) (FT) (FT) (FT) (S1=) (SF) (FT) I 0.00 0.00 0.00 0.00 0.011 0.08 443.59 443.59 512.20 2 0.00 0.00 0.00 0.00 O.-IG O.IG 513.29 513.29 512.36 INC 3 0.00 0.00 0.00 0.00 0.25 0.25 585.95 585.95 512.45 •I 0.00 0.00 0.00 0.00 0.32 0.32 651.37 651.37 5'12.52 INC; 5 0.00 0.00 0.00 0.00 0.14 0.11.1 7=18.`18 748.98 5'12.6.1 IhlC 6 0.00 0.00 0.00 0.00 0.57 0.57 857.22 057.22 512.77 RIC 7 0 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.72 0.88 0.72 0.08 964.70 1120.16 00.1.70 1'120.16 512.92 513.011 INC II,IC 9 10 U.QO 0.00 0.00 0.00 0.00 0.00 OA6 0.22 0.00 0.(10 1A6 1.22 2262.93 2= 142.8 =1 2262.93 2412.8 =1 513.26 513.42. Ilac IIIC 11 0.00 0.00 0.00 0.36 0.00 1.36 2592.94 2592.94 513.56 PEnK 12 O.00 0.00 0.00 0.3.1 0.00 '1.3.1 2570.34 2570.34 513.54 2 OF STORAGE HYDROGRAPH FOR 100 YEAR / 24 I-IR STORM RETENTION' BASIN. "REPARED BY COACHELLA VALLEY ENGINEERS ��L =I =: r LOT 3 - 2�> I-Ir /'IOOYr - Trapezoid Retention -21x 86 Toll, 3:•1 Sicieslope 1• i4� ii o 1 152 Tact 30378 - Madison & Ave 51 r; r: Ivvc. TRI -BA REA 0.8650 ACRES PERC..RATE 2.00 IN/FIR SOIL GROUP "G ", AMC H, R.1:= 56, P.C. =dl °•;, STORM VOLUME= 1.50 ICI /2 =11 -IR 100 AR R -5.6 PER10D PRECIP INTENSITY IMPERV FLOW INFLOW OUTFLOW RETENTION 1 100 C Q VOI_ll Ir CUML VOL OTHER PERC /Hr OTHER RCQD CUIVIL. VOL 1111'1 �„ (11 (CFS) (Cl:) (CF) (CF) (CF) (CF) ((-F) 4 1.2 0.05 -1 02 -17 0.012 =11.5 11.5 0.0 115.0 0.0 0.0 2 1.a 0.050 0.219 0.013 I!i.I 15.4 0.0 1'15.3 0.0 0.0 3 '1.8 0.081 0.261 0.010 G5.7 65.7 0.0 117.3 0.0 0.0 I 2'I 0.095 0.267 0.022 %8.6 70.0 0.0 110.5 0.0 r1.p 5 2.8 0.126 0.283 0.03'1 '111.0 111.0 0.0 121.0 0.0 0.0 0.131 0.205 0.032 1.15.0 1,45.9 0.0 '122.'1 0.0 0.0 7 3.6 0.171 0.306 0.045 '1 162.7 0.0 126.5 0.0 3 6. 2 8 1.G 0.207 0.33.1 0.058 200.5 244.7 0.0 13.1.3 0.0 '11(1.3 6.3 0.20.1 0.362 0.080 310.4 =129.7 0.0 '152.0 0.0 IU 0.2 0.:369 0.405 0.129 4(i4.8 742.5 0.0 '101.(1 0.0 560.7 11 7.0 0.315 0.378 0.103 370.3 931.0 0.0 100.8 -- 731.2 1 2 7.3 0.329 0.384 0.109 393.1 '112.1.2 0.0 3111.5 0.0 805.7 I:', 10.8 0.486 0.-163 0.195 700.7 15U6.•I 0.0 353.5 0.0 '1152.9 0.513 0. =177 0.2'1'1 7(.11.2 1914.1 0.0 390.9 0.0 '152:3.2 '10.4 0.•168 0.454 0.184 661.6 2'16 =1.9 0.0 1'15. % 0.0 '17(102 16 8.5 0.383 0.1'11 0.136 489.8 2259.•1 0.0 422.5 0.0 '111361.61 I . =1 OAG3 0.252 0.01 -1 49.3 1885.0 0.0 388.3 0.0 1.197.7 'Ill '1.9 0.086 0.263 0.0'19 70.0 '1567.0 0.0 350.1 0.0 1208.5 _ Il '1.3 0.059 0.219 0.0'13 =15.1 12'139 0.0 330.�I 0.0 ?'I _3 _ 1.2 I.I 1.0 0.9 0.054 0.050 0.0 -15 0.0 -11 0.247 0.215 0.213 0.210 0238 0.012 0.010 0.009 O.00tI 0.007 41.5 37.7 34.0 30.3 211.7 965.0 698.8 555.1 1x1.5 297.0 0.0 303.9 0.0 661.1 0.0 177.7 0.0 _121.2 0.0 164.0 0.0 38'1.2 0.0 151.2 0.0 2";0.3 0.0 130.3 0.0 ICi %.(� ?.1 O.0 0.030 SI -IFr=T '1 of 2 r-� 101 ii u1152 Tract 30378 - Madison & Ave 51 REF: LOT 3 - 24 I-Ir /•I ooYr - Trapezoid Retention -21 x 86 Top, 3:1 Sidesfope RETENTION BASIN STORAGE AND DEPTH CALCULATIONS PEA1 ;sTORACE - WATER DEPTH CHANGE (Avg) VOL IMPERV RET AREA - (FT) (SF) (SF) (CF) (CF) (SF) 0.00 0-T) (FT) (FT) (1 =T) (F1') (Fl -) (SF) (SF) 0 0 5071 ELEVATION DATA -26:32 131G 597'1 D =3.00' _��; >'' 826 2210 4655 FF Lot 3 5'16.90 1)= 2.011' 1606 606 1503 2136 Tap 515.00 D= 1.11x.1 I ^01; 53.1 033 933 WS 100 _ 5*14.88 D =o.on' 66;6 513.05 0 0 Bottom 5'13.00 2000.0 inoo.o I....I . 512000 ..1000.0 • -I- -'- - -I I.- - ._. _• 1....I.._.... ..:. � � I i i I T- - 1 4`5'6 7 8'0 1011'1213'14151617'11119211'1 _''2321 fI I:IuD WATER DEPTH WATER SURFACE D= T -4' D= 2' -3' D= ,I' -2' D= 0' -1' DEPTH AREA ADJ.AREA ELEV. (I 11:1 0-T) (FT) (FT) (1 =T) (F1') (Fl -) (SF) (SF) 1 0.000 0.000 0.000 0.000 0.045 0.04 689.77 689.77 513.01 0.000 0.000 0.000 0.000 0.049 0.05 691.99 691.99 513.05 If-IC 3 1).000 0.000 0.000 0.000 0.070 0.07 703.61 703.6.1 513.07 INC 1 000;1 0.000 0.000 0.000 0.00.1 0.08 711.01 71'1.01 5.13.08 IIdC 5 0.000 0.000 0.000 0.000 0.'119 0.12 729.55 729.55 513.12 IP1C 6 0.000 0.000 0.000 0.000 0.12 -1 0.12 732.35 732.35 513.12 IIIC 7 0.000 0.000 0.000 0.000 0.•171 0.17 759.11 759.1'1 513.17 II•IC 8 ti.11no 0.000 n.000 0.000 0.262 0.26 806.05 806.05 513.26 IIIC 9 0.000 0.000 0.000 0.000 0.461 0.46 911.9.1 911.94 513.46 1140 -10 0.000 0.000 0.000 0.000 0.796 0.80 1090.97 1090.97 5.13.80 IhIC 1 'I 0.000 0.000 0.000 0.000 0.9911 '1.00 1 '198.84 '1198.811 514 A0 I f4 C '12 0.000 0.000 0.000 0.127 0.000 1.13 191'1.10 '1911.10 511.13 II•IC. '13 0.000 0.000 0.000 0.302 0.000 1.36 2'12'1.1.1 2'12'1.'1.1 514.:i8 II'IC I I 0.000 0.000 0.000 0.653 0.000 I.G5 2315.'10 23=15.18 :1'14.65 IIdC I S 0.000 0.006 0.000 0.833 0.000 1.83 2493.99 2493.99 5.14.83 1111C I6 I7 lil 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.882 0.63-1 0.422 0.000 0.000 0.000 •1.88 1.63 1.42 2534.76 2329.70 2154.76 2534.76 2329.70 2154.76 5'14.00 514.63 51 =1.•12 I'EAI< D1.0 DEC 0.000 0.000 0.213 0.000 0.000 0.021 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.7.19 0.595 0.452 1.21 '1.02 0.75 O.GO 0.45 1982.35 1823.60 1065.97 903.73 907.24 1982.35 '1823.60 1065.97 983.73 907.24 51 -1. %1 511.02 5'13.75 5 "13.60 5'13.45 DI_C ni- -c DEC IUEC i..) 19 20 21 22 O.OUO 0.000 0.000 0.000 0.000 '13 0.3'18 0.32 835.97 035.97 513.32 NI��LI-. 2.1 I 0.000 STORAGE HYDROGRAPI -I FOR 100 YEAR 13 FIR STORM RETENTION BASIN. PF:L=1'/11:1 =D 13Y COACHELLA VALLEY ENGINEERS LOT 3 - 3 1-Ir /-IOOYi- - Tral)ezoicl Retention - 2'1x86 Tol3, 3:1 Sicleslol)e 1i il1 it 01 1521 Tract 30376 - Madison & Ave 51 JV11C TRIB AREA= 0.6650 ACRES PERC.RATE 2.00 IN /1 -IR ( 0.5 IN/15 Mir SOIL GROUP "13 ", AMCII, R.I.= 32, R.C. =23 %,, STORM VOLUME 2.00 IN /31 -IR 100YEAR13HOUR -0. PL =I:IOD PRECIP INTENSITY 1 100 IMPERV C FLOW Q VOI-11 � Min INFLOW CU ML VOL OTHER OUTFLOW PERCI'15Min OTHER RETE=NTION REQD Cl.1ME VOL (1;in1i11) `� (INN5min) (CFS) (CF) (CF) (CF) (CF) (CI =) (CI -) -- -- - RC =20 0 :1.7 0.07 -1 0.257 0.066 519.2 50.2 0.0 20.2 0.0 30.1 - -1.8 0.096 0.268 0.089 81.1 110.2 0.0 30.4 0.0 70.11 3 -1 5.1 4.9 0.102 0.098 0.271 0.260 0.006 0.091 1in.1 82.1 165.9 216.3 0.0 0.0 31.7 32.9 0.0 0.0 I a =1.2 -Ili`;.4 1i 6 6.G 7.3 0.I 0.0 0.132 0.'14G 0.1168 0.1100 0.2116 0.293 0.30.1 0.310 0.131 0.1-10 0.171 0.193 -1'17.6 133.2 150.0 '173.0 300.9 399.2 521.0 654.6 0.0 0.0 0.0 0.0 34.9 37.3 40.2 4 3.4 0.0 0.0 0.0 0.0 2,j(i.0 `Ili'I `) If10.(3_ G 1 1.2 9 10 12.3 '17.6 0.2.16 0.352 0.343 0.396 0.292 0.482 262.8 431.1 073.9 '1259.4 0.0 0.0 110.6 02.7 0.0 0.0 02'x. =1 1176.7 I I 16.1 0.3?'? 0.381 0.421 3Q2.0 1550.7 0.0 09.6 0.0 '1,16;9.2 12 1.? 0.00.1 0.262 0.07G 68.5 1537.7 0.0 89.1 0.0 ►- 1113.6; SI- 11 =E1' 1 OF 2 .Iwc I;�;l-1_: 7r1:v13:1 .Mrs ji o I I Tact 30374 -Madison &Ave 5'I REF: LOT 3 - 3 1 -1 - /-10oYr - Trapezoid Retention -2 I xBG Top, 3:1 Sicleslohe DETENTION BASIN STORAGE AND DEPTH CALCULATIONS PEAKSTORA.GE FIL-RIOD D= -1' -5' (FT) 0.00 0.00 o.uo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 U.00 0.00 D= 3'- l- (FT) 0.00 0.00 o.no _ (3.00 0.00 _ 0.00 0.00 o.no 0.00 0.00 0.00 0.00 WATER DEPTH CHANGE - (Avcj) VOL IMPERV RET AREA (I= i) (sl=) (SF) (CF) (CF) (Sr) 0.00 0.00 0.00 0.00 0.00 0.00 1:) =5.00 0 0 5971 n I �t11' ;'632 -1316 597.1 ELEVATION DATA D=3.001 ?i;a2 t12u 2210 =1655 FF LoM 516.90 _ 0 =1.00' 121:) GOG 531 1503 933 2136 033 Top WS 100 515.00 514.12 iiuh '1085.39 2.149.88 0 o Bc]ltonl 5'13.00 FIL-RIOD D= -1' -5' (FT) 0.00 0.00 o.uo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 U.00 0.00 D= 3'- l- (FT) 0.00 0.00 o.no _ (3.00 0.00 _ 0.00 0.00 o.no 0.00 0.00 0.00 0.00 WATER DEPTH D= 2' -3' (FT) D= 1' -2' (FT) ELEV. 0.00 0.00 0.00 0.00 o.o0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.42 0.-10 D= 0' -1' O.0 ii 0.'1 0.10 0.2:3 0.32 0.:13 ll.'a t3 0.70 0.1.1 0.00 0.00 0.00 DEPTH (FT) 0.06 0.12 0.•18 0.23 0.32 0.43 0.56 0.70 0.94 -1.22 •1.42 1.40 •jfip0.0 ia00.0 - 1200.0' - :i 0(10.0 .- ; .eoo.o: "400:0 °• 200.4 3.. ') 5 6%.., • 7 WATER SURFACE AREA ADIAREA ELEV. G99.90 699.90 3.06 729.06 729.06 5'13.'12 F51 760.94 7G0.94 X13.'10 700.78 709.78 513.23 030.23 830.23 5'13.3'2 09 =I.I1) 09 =1.40 513. =13 964.17 964.17 '2'13.526 10 =10.63 1040.63 513.711 1 •1 G6.20 11G6.20 513.94 1085.39 2'149.88 '1085.39 2.149.88 5'14.2 "2 5'14.42 2.130.3'1 2130.3.1 F 'I `I.4 0 0 . 9 11) 'II 12 Ir•Ic It.lc: 11 I c IHC II IC II ti; - I r�r -Al< SHEET ') OF 2 0 �� to ' V I it M �1 X 1 CV I 1 r C ! to U N N r L CO I o O r � F-- .�I f J J C. = 12� z 0 I- Q J U J Q U L H IL W Z Q W CD Q L' O Z Q r- u I- ry F 1 O ocGlC-- C^ G C a Q�a C� co� Lr)MC- lu u O C C :") C ^, .^ ." I ,_' 1: l: "• :� ._. ='1 C C - ^! - O N 1- C1! N- - N - L'i c U I I _� r C ci C C G c'i C O C c G M. C C h r. .. --- C') r r � ._ f� C � i I -i C--i LJ j t f <^i L7 1, '7 O Lo LO '_ Ch u7 U,, l: L') 0 , O L: n LO tf! L: n N l'i l7 c 0 .. O o' o•' d o d':c o 0 o 0.0. m t•. b ..1n• -M. 0. ci .c z 0 I- Q J U J Q U L H IL W Z Q W CD Q L' O Z Q r- u I- ry .- N U7 L7 O Co CD Q cr) L7 O r c r C C C M �- •c r, r t` Q C (J C- N N u7 C O lr� O lA t7 Ly (n E�l G1 — N C n N — 0 C7 O m N r- - — ti O U'7 — -r _ N co C O m M C O C- C'! C'I - Co co - -T O C'7 Co (7 L rD 0 L7 0 0 � o o c) � all- OI OI GI c- CI CI cI CI c: CI GI CI cI OI OIOICIOICIOI OICIC L yl f'7 O C Ic-,i lmlr-- lcolr- C- co C`1 O y1 CC - 1 ^ C O C L! .... G C C C` I T i` N� cn O L: C. C'.. C., _ — C`.1 CJ Cl! - '' 7 CO C O C o =- c c clo c coc c occ c o o c c c c �. c c c .c cV C O ocGlC-- C^ G C a Q�a C� co� Lr)MC- lu u O C C :") C ^, .^ ." I ,_' 1: l: "• :� ._. ='1 C C - ^! - O N 1- C1! N- - N - L'i G C C G1 '-' 7 Cr LI L>I U H O C C G c'i C O C c G M. C C h r. .. --- C') r r � ._ f� C � ri -i C--i LJ L f <^i L7 1, '7 O Lo LO '_ Ch u7 U,, l: L') 0 , O L: n LO tf! L: n N l'i l7 O U- LL d , J O - n - ti L ^ .0 L: C'] N t'7 C U LO Lo L= i c) C- U c C'1 Ln c Q O — C••1 c G O W C ^ O C c c O o Z C G O o N O C C Q Lo C cn CD L7 o C o O C O O O G U o c c o r_ o c o c o 0 o i 10 =-1 C. Of uj h O m- N .y N C C O N O O co r L: O N U7 CJ LO W C� '� L') T -- 0 C In O o G7 Ln o_� L7 !-.. Q n r �1 - r C C•) r` ^ C7 c'7 C L7 rl _ Ch _ fl- r, O C•") - I 7 CJ v O o LC O Q U U O t` `I t` o f` co O O O m = - -- Q .- N U7 L7 O Co CD Q cr) L7 O r c r C C C M �- •c r, r t` Q C (J C- N N u7 C O lr� O lA t7 Ly (n E�l G1 — N C n N — 0 C7 O m N r- - — ti O U'7 — -r _ N co C O m M C O C- C'! C'I - Co co - -T O C'7 Co (7 L rD 0 L7 0 0 � o o c) � all- OI OI GI c- CI CI cI CI c: CI GI CI cI OI OIOICIOICIOI OICIC L yl f'7 O C Ic-,i lmlr-- lcolr- C- co C`1 O y1 CC - 1 ^ C O C L! .... G C C C` I T i` N� cn O L: C. C'.. C., _ — C`.1 CJ Cl! - '' 7 CO C O C o =- c c clo c coc c occ c o o c c c c �. c c c .c cV C O ocGlC-- C^ G C a Q�a C� co� Lr)MC- O c 0 O C C O^ o 0 0 o 0 w — o �.� c G LL" 3 c G o C o O c C o O C c C o C >LU o O c C o o O C c O C C c O C C LL O O O O O O W Q C Q c O C O a o O. O C O C C O C O Ch C - c c L u C J W O U- LL d , J O - n - ti L ^ .0 L: C'] N t'7 C U LO Lo L= i c) C- U c C'1 Ln c Q O — C••1 c G O W C ^ O C c c O o Z C G O o N O C C Q Lo C cn CD L7 o C o O C O O O G U o c c o r_ o c o c o 0 o i 10 =-1 C. I it it .- N U7 L7 O Co CD Q cr) L7 O r c r C C C M �- •c r, r t` Q C (J C- N N u7 C O lr� O lA t7 Ly (n E�l G1 — N C n N — 0 C7 O m N r- - — ti O U'7 — -r _ N co C O m M C O C- C'! C'I - Co co - -T O C'7 Co (7 L rD 0 L7 0 0 � o o c) � all- OI OI GI c- CI CI cI CI c: CI GI CI cI OI OIOICIOICIOI OICIC L yl f'7 O C Ic-,i lmlr-- lcolr- C- co C`1 O y1 CC - 1 ^ C O C L! .... G C C C` I T i` N� cn O L: C. C'.. C., _ — C`.1 CJ Cl! - '' 7 CO C O C o =- c c clo c coc c occ c o o c c c c �. c c c .c cV C O O C^ O G C O^^ O c 0 O C C O^ o 0 0 o 0 C C o G — c o c G O c C c G o C o O c C o O C c C o C O o O c C c O o O C c O C C c O C C LL O O O O O O C C C C7 c O C O 0 o O. O C O C C O C O O O C J O c G O c C ^ O C c c O o o C C G O o N O C C C G C O C o C o O C O O O G o c c o o c o c o 0 o G o c C c ° O C C n Co ` oo°c o GCc0 ° ° ° n^ o O c c c _ II_I- 1.11,1 =i -I =I_ nI_IL =IL I�iC` ^ICC`IIC,I +r� ,y ^I �•I L iv u W a O C O O C O o O 0 0� G° c p C^ C O c C C C C C C C 0 O 0 C 0 C G O C C O C C o C 0 0 O C J ° O C C n Co ` oo°c o GCc0 ° ° ° n^ o O c c c _ II_I- 1.11,1 =i -I =I_ nI_IL =IL I�iC` ^ICC`IIC,I +r� ,y ^I �•I L iv u W a STORAGE HYDROGRAPH FOR 100 YEAR / 24 HR STORK RETENTION -BASIN. PREPARED BY COACHELLA VALLEY ENGINEERS 1'-\'E F: LOT 4 - 24 1--Ir /100Yr - Trapezoid Retention - 2.1x100 Top, 3:1 Sicleslope, 2 ft max clepll) .)t-113 11 o I I_i'' Tract 30373 - Madison & Ave 51 TRIG AREA 1.0790 AC;I-<L5 ., SOIL GROUP ".C.= PERC.RATE �.00 IN/1111 R ", AMCII, R.I. = 5G, I STORM VOLUME -1.50 IN /2 =11-IR 10 0 Y ffA-R-72- I - - PLA I -5.6 PERIOD PRECIP INTENSITY IMPERV FLOW INFLOW OUTFLOW RE- TI= trrio(,1 1,100 C Q VOLII-Ir CUML VOL OTHER PERCII Ir p"', IER R( F) CUML VOL (CFS) (CF) (CF) (CF) (CF) F) (CF) 0 .0 0.0 1.3 0.051 0.050- 0.247 0.219 0.0'14 0.OIfi 5'1.0 • 56.6 5'1.0 516.6 0.0 0.0 136.0 137.3 I.0 0.081 0.U05 0.1'26 0.261 0.267 0.203 0.023 0.027 0.030 02.0 '138.5 02.0 9U.1 130.5 0.0 0.0 0.0 139.7 1 -11.2 145.0 0.0 U.0 0.0 U.0 0.0 0.0 0.205 0.040 '1-1.1.6 144.6 0.0 115.5 0.0 0.0 E J 0.131 0.306 0.321 0.362 0.1(15 0.370 0.30.1 0.163 0.477 0.-15=1 0.�1 "I 'I 0.252 0.263 0.2-19 O.OSG 0.072 0.'1'11 U.' 61 0.'120 0.136 0.213 0.264 0.229 0.1170 0.0'17 0.02 =1 0.0'16 202.J 260.1 390A 5579.8 =IG 1.9 -190.3 071.'1 825.3 G1 •I.0 G I.�i 07.3 56.6 202.9 312.1 549.2 9'15.6 1107.1 13'19.0 '102=1.7 2360.7 2725.5 2f144.0 2,102.6 2025.6 IG5'I.'1 0.0 0.0 0.0 0.0 0.0 0.0 0..0 0.0 0.0 0.0 0.0 0.0 0.0 151.0 1 G 1.2 103.1 220.5 357.6 369.2 4'13.5 460.5 .192.5 502.9 4G =1.2 431.'1 390.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 51.0 1:iU.0 7259 72`i.2 1120.5 9!iO.G 14'1 "1.2 rd2 'I I 12 1.) 3.0 1.G G.3 0.2 7.0 7.3 10.0 0.'171 0.207 0.20 -1 0.369 0.3'15 0.329 O. =IOG 1-1 11 ..1 10. -I 0.5 1.1 '1.9 '1.3 0.5'13 0.-1613 0.303 0.063 0.046 0.059 15 I u I % 19 0.0'14 0.013 0.012 51.0 :17.'1 12.4 '1301.7 903.9 002.2 0.0 0.0 0.0 367.9 224.0 207.0 0.0 0.0 0.0 =,J 1 1.2 1.1 0.051 0.050 0.247 0.215 0.24 3 . 595.2 I.0 0.0 =15 37.p 33.3 633.0 175.0 0.0 0.0 "191.2 176. =1 0.0 n.o 2�,o.r, ? 3 0.9 O.0 I1 0.2 10 4.0'10 2..1 0.0 0.036 0.230 0.009 SI•IEE -I- -I OF 2 I A1'1_: 7 /_J /l) li -)Ll If cil 152 Tract 30378 - Madison & Ave 5.1 RE(=: LOT =1 - 2�! I-Irl IOOYr - Trapezoid Retention - 21x'100 Top, 3:1 Sideslohe, 2 ft nlax ciehtil RETENTION BASIN STORAGE AND DEPTH CALCULATIONS PEAKSroRAGE 2500,0 _ H 0.000 - 3 - IMPERV RET CI-IA14GE (Avg) VOL AREA G 0.000 (SF) (CF) (CF) O.i)00 0.00 0.000 In 0.000 - I 0.000 .12 0.000 1:1 F.noo 0 6930 ELEVATION DATA 0.000 16 -3021 1512 6930 FF Lot 11. 517.90 n= -1.no' 19 0.000 2562 5.118 To D 5.15.30 - 1 2.1) 0' :' IOii 690 -1755 2856 WS "100 5'15.49 omo 6111 1 101 '1101 Boltol)1 5'13.50 [I= 1.61 I -1111 _ I'L- -1:101 -.1 D= -1• -5' 0 =T) O.ono - 2 0.000 - 3 - (1.0110 -- 1 0.01)1) 5 0.000 G 0.000 - 7 0.000 8 O.i)00 I' i 0.000 In 0.000 - I 0.000 .12 0.000 1:1 F.noo I •i 0.000 -15 0.000 16 0.000 17 0.000 13 0.000 19 0.000 ?0 0.000 2 1 0.000 2 0.000 23 0.000 omo D= T - -1 (1=T) WATER Ut1' 1 1-1 D= 2' -3' D= 'I' -2' (F r) (FT) - DEPTI I (FT) r (FT) ?000'o - 1500.0 1 000.0 �� 5011.0 Fl 1-1 !' • • �0.0 `:.1:.•?:i3'4':5.6 .7, a- 9'10. 1112.131!1 15'16'17'10 I9 _i131 __'2324 WATER SURFACE AREA ADJ.AREA ELEV. (SF) I (SF) (F1') O.00p O.00n o.0nO 0.000 O.OnO 0.000 0.000 0.000 (1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 O.ODU 0.000 0.(1 ►7 0.051 0.07-1 0.06(1 0.-13'1 n.o5 0.05 0.07 0.09 0.'13 n,l3 0.18 0.28 0.50 0.a6 1.05 1.12 I.•I'I '1.72 1.93 •1,99 1.7:1 5' 1.�3 1.31 '1.'12 0.69 0.73 0.57 0.43 621.08 823.79 038.01 8 :17.06 869.75 873.1(1 905.90 967.•16 -1100.29 1322.79 2115.32 2215.22 248 "1.02 2763.23 2955.39 3017.67 2785.28 2506.01 2309.61 2207.23 131<I.25 1242.20 11�I7.20 1050.63 821.08 023.79 030.01 8.1 .06 1169.75 873.IG _ X05.90 967.16 1100.29 -1322.79 2145.32 2215.22 0.05 005 0.07 o.n3 O.Ia 0.18 0•' -0 0.50 0.86 -1.05 _1.'12 IIdC 11 IC - II ir. IIIC II-IC - II`IC - II •IC (hIC IrIC IIdC 0.000 0.000 0.000 0.181 0.000 0.000 0.000 0._?L13 _ O.000 0.000 0. 4199 0.000 - --- 0.000 0.000 0.000 0.W.')9 0.000 0.000 0.019 0.000 0.000 0.000 0.125 0.000 2,18 1.02 I.'I'I 1.72 1.93 5'15.119 -1.7.1 1.53 .1.3'1 0'09 0.73 0.�I3 111111 0.000 0.000 0.:1.12 0.000 0.000 0.000 0.7'10 0.000 ).000 0.000 0.926 0.000 0.000 0.000 0.993 0.000 0.000 0.000 0.712 0.000 -- 0.000 0.000 0.527 0 (101) 0.000 0.000 0.313 0.000 0.000 0.000 0.1-16 0.000 _ 0.000 0.000 0.000 0.n9 =1 0.000 0.000 0.000 0.%29 0.000 0. 00 0 0.000 0.575 0.000 0.000 0.000 0.•13'1 I' i -T - `:.1:.•?:i3'4':5.6 .7, a- 9'10. 1112.131!1 15'16'17'10 I9 _i131 __'2324 WATER SURFACE AREA ADJ.AREA ELEV. (SF) I (SF) (F1') O.00p O.00n o.0nO 0.000 O.OnO 0.000 0.000 0.000 (1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 O.ODU 0.000 0.(1 ►7 0.051 0.07-1 0.06(1 0.-13'1 n.o5 0.05 0.07 0.09 0.'13 n,l3 0.18 0.28 0.50 0.a6 1.05 1.12 I.•I'I '1.72 1.93 •1,99 1.7:1 5' 1.�3 1.31 '1.'12 0.69 0.73 0.57 0.43 621.08 823.79 038.01 8 :17.06 869.75 873.1(1 905.90 967.•16 -1100.29 1322.79 2115.32 2215.22 248 "1.02 2763.23 2955.39 3017.67 2785.28 2506.01 2309.61 2207.23 131<I.25 1242.20 11�I7.20 1050.63 821.08 023.79 030.01 8.1 .06 1169.75 873.IG _ X05.90 967.16 1100.29 -1322.79 2145.32 2215.22 0.05 005 0.07 o.n3 O.Ia 0.18 0•' -0 0.50 0.86 -1.05 _1.'12 IIdC 11 IC - II ir. IIIC II-IC - II`IC - II •IC (hIC IrIC IIdC 0.000 0.000 0.000 0.181 0.000 0.000 0.000 0._?L13 _ O.000 0.000 0. 4199 0.000 - --- 0.000 0.000 0.000 0.W.')9 0.000 0.000 0.019 0.000 0.000 0.000 0.125 0.000 2,18 1.02 I.'I'I 1.72 1.93 5'15.119 -1.7.1 1.53 .1.3'1 0'09 0.73 0.�I3 II'IC II IC: I( -A P(-AK 1�1 =C I)EC D[-.c L 1 L =c, ICI -1, DCc 17L C fII:Cr! 0.000 0.000 0.:1.12 0.000 0.000 0.000 0.7'10 0.000 ).000 0.000 0.926 0.000 0.000 0.000 0.993 0.000 0.000 0.000 0.712 0.000 -- 0.000 0.000 0.527 0 (101) 0.000 0.000 0.313 0.000 0.000 0.000 0.1-16 0.000 _ 0.000 0.000 0.000 0.n9 =1 0.000 0.000 0.000 0.%29 0.000 0. 00 0 0.000 0.575 0.000 0.000 0.000 0.•13'1 2763.23 2955.29 3017.G7 2785.28 2586.0'1 23a9.f; =1 2207.23 13- 11.25 12.12.20 1'14 %.20 . 1058.63 -AM. -AM Jm _lam Am _� _ �•- �.- . _ STORAGE I-IYDROGRAPH FOR 100 YEAR / 3 HR STORM RETENTION BASIN. PREPARE=D HY COACT IELLA VALLEY ENGINEERS REF-: [LOT 4- 3 1- 111.100Yr - Trapezoid Retention -21 x'I00 Top, 3:1 Sides lope I;ir'; -I (_: 71'_x: ;fi•I 01'152 Tract 30378 - Madison & Ave 5-1 Jvvc TR113 AREA= 1.0790 ACRES PERC.RAI E 2.00 II1J1 -IR (0.5 IN /15 Mill) SOIL GROUP "U ", AMCII, R.I.= 32, R.C. = 23`10, STORM VOLUME 2.00 IN /31 -IR 100 EAR 3 HOOT—( - -5 PERIOD I'RECIP INTENSITY IMPERV FLOW IN OUTFLOW RETENTION 1.100 C Q VOL /15 Min CUML VOL OTHER PERC /•15Min OTHER I:CQII CUML VOL (I!ornin) (IN /15min) (CFS) (CF) (CF) (CF) (CF) (CF) (CI ) RC =20 1 3.7 0.07 -1 0.257 0.002 73.9 73.9 0.0 34.7 0.0 39.1 1.0 0.096 0.2613 0.1,1.1 99.9 139.1 0.0 36.3 0.0 •I f)''211 :1 5.1 0.'102 0.27'1 0.119 '1117.1 210.2 0.0 37.9 0.0 •17_'.:f -1.9 0.090 0.269 0.11=1 •102.=1 27,1.7 0.0 39. =1 0.0 2.10.0 •I _ 5 6.6 0.'132 0.206 0.163 "1:18.6 301.9 0.0 41.9 0.0 3.1(1.0 0.1 =113 0.293 0.105 '166.2 506.•1 0.0 1.1.0 0.0 1(;1.:5 7 11. -1 0.'160 0.361 0.220 '198.=1 659.7 0.0 CI O.1 0.0 6'I1.::f rl 9.0 0.100 0.3'10 0.241 216.7 020.0 0.0 52.4 0.0 775.6 1'?.3 0.246 0.3 =13 0.36=1 327.0 •1103.4 0.0 07.5 0.0 IOIt;.fi Tit I7.G 0.352 0.398 O.G02 5 -11.5 '1557.3 0.0 97.5 0.0 1.150.8 1 1 1 6 1 0.322 0.301 0.529 =176.5 1936.3 0.0 105.0 0.0 I t( )0.5 12 . 1.2 0.00-1 0.262 0.095 05.5 1916.0 0.0 •105.-1 0.0 •10 1 0.( SI1( =[:-1- 1 0 I: 2 I♦ IMI I,'r: JtiVi. 7 /_8 lti l I(-) 1.1 it 01.15 Tract 30378 - Madison & Ave 51 hF1= LOT .1- 3 1-Ir /'I OOYi- - Tral)ezoicl Retention -2'I x•100 Tol), 3:'I Sicieslol3c PEAK STORAGF RETENTION BASIN STORAGE AND DEPTH CALCULATIONS z000.0 JI_1- .... -- - CHANGE (Avg) I. VOL 5,13.57 (SF) (SF) - (CF) (CF) 946.18 __..... i.. 0 0 69 30 F1= S.U(1' - - -- 3 02 -1 '1512 6930 n=- 1.rto' 6 7 c1 9.1 2562 5118 U =3.00' 2529.10 690 -1 /55 2856 I) ='- 00' _ -- 2 I 110, D =0.00' ic.? 0 -- WATER DEPTH hl_f:1011 D= 3'_.I' D= 2' -3' D= I' 2' -I,_5' -71 0.00 0.00 0.00 0.00 - -� 0.00 0.00 - 0.00 -- :) - 0-('C) 0.00 0.00 0.00 - -,1 0.00 0.00 0.00 0A0 - 0- tl0 0.00 0.00 0.00 6 0.00 0.00 0.00 0.00 7 - 0.00 - 0.00 0.00 0.00 p 0.100 0.00 0. 00 0.00 9 0.00 O.UU 0.00 0.00 I- 0.00 0.00 0.26 II 0.00 O.OU 0. -I8 - 0.p0 0.00 0.00 0.46 M PERV RET AREA (sl =) 0.00 1 ELEVATION DATA FF Lot 4 517.90 Told 5'15.80 WS "100 5 "14.98 BoI.Lon1 5.13.50 n= o---i- 0.07 0.1:1 0.25 _ 0.35 0.46 0.60 0.75 0.00 0.00 0.00 0.00 DEPTH -0 07 0.113 0.1'0 0.25 0.35 � 1G 0.60 0.75 1.00 1.26 .1.4 11 1.46 t oo0.0 16x10.0, • -- - - -- -• ._... _...._ . 833.47 5,13.57 870.07 513 G3 1000.0 - 946.18 __..... i.. '6no.o' -- - - ;'goo.o • - - - -.. I... 200.0' -•. -._. 1 1256.77 514.2:) 2101.26 6 7 AREA (SF-) 033.-17 870.07 00'9.99 9116.18 1006.37 1076.10 '1 162.29 1256.77 2.101.26 23. 10.24 2539.80 2529.10 WATER SURFACE ADJ.AHEA - -RV. 833.47 5,13.57 870.07 513 G3 909.99 15 13.G9 946.18 513.75 1006.37 5 .1076A0 513.96 11G2.29 51 1.10 1256.77 514.2:) 2101.26 514.50 2340.2 -1 5 2539.80 5.14.98 2529.10 5'1 -1.9ti ! 'I I � l I 1 i I I -1 2 HIC II IC; II IC II II:: u is IPJC II•IC__ II•Ic, f CA1C SI °IL =C- 12 OF 2 STORAGE HYDROGRAPH FOR 100 YEAR / 24 HR STORM RETENTION BASIN.. PREPARED BY COACHELLA VALLEY ENGINEERS REF: l OT 5 tl)rU 8 & Streets- 24 i-Ir /100W -Trapezoid Retention -21x Tole, 3:1 Sideslope 7;28!0 -1 11 =Ju /t O'1 1 0- Tact 30378 - Madison & Ave 5.1 TR1t3 AREA 7.08 ACRES {'ERC.RATE ''.00 IN/HR SOIL GROUP "H ", AMCII, R.I.= 503, -CH-GU STORM VOLUME `4.50 IN /2 41-IR - OTHER (CF) RETENTION REQD CUML VOL (CF) PEI:IOD PRECIP 0% INTENSITY 1 100 pl /1 -11'� IMPERV C Lots &St 'FLOW Q (CFS) INFLOW VOL/Hr CUML VOL OTHER (CF) (CF) (CF) OUTFLOW PERC /1-Ir (CF -) 1 ;3 !i I.? 1.3 I.8 i.l ?.0 0.05 =I 0.059 0.081 0.095 0.126 0.247 0.240 0.261 0.267 0.283 0.285 0.091 0.103 0.'1=19 0.'179 0.252 U.2G =1 :340.0 371.6 !137.13 G 113.7 901.1.9 9-18.8 3.10.0 37.1.6 537.8 G =13.% 908.9 9 =18.0 0.0 0.0 OA 0.0 0.0 0.0 851.6 857.9 875.3 886.3 914.1 9'18.2 O.0 0.0 0.0 0.0 0.0 O.0 (1.0 0.0 0.0 0.0 (1.0 30.6 u _�.9 0.13'1 7 ;; {) 10 I'I 3.8 16 6.3 t3..' 7.0 0.17'1 0.207 0.28 -1 0.369 0.3'15 0.3003 0.32=1 0.362 0. -105 0.378 0.370 0,174 0.72G 1.057 0.0-12 133'1.5 - 1706.8 261.1.0 3110 =1. -1 30:1(1.(1 E3621 71336.9 0.0 O.0 0.0 0.0 0.0 961.5 1039.4 120 I.1 1 =176.1 2178.2 0.0 0.0 0.0 0.0 0.0 100.6 1068.0 21%%.13 18011.1 53511.8 0.384 0.463 U. =177 0. -15 =1 0.=11'1 _ 0.252 0.263 0.80.1 1.593 1.73'1 1.504 '1.111 0.112 0.159 32'17.3 5735.3 6330.=1 54'15.5 =1009.3 403.8 572.6 857(i.0 1'1775.0 1512'17.4 1757-1.1 '18339.3 '15438.6 12935.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2536.3 2788.0 3050.6 3244.2 3301.3 3076.2 2879.2 0.0 0.0 0.0 0.0 0.0 0.0 U.0 ('03`3•% 1,) 12'I!it3.G 11330.0 15035.0 1? 103'?.[; 10056.0 12 13 I•I 15 17 1 t1 7.3 '10.8 I'I. -1 10.4 3.5 1.4 1.0 0.329 0.486 0.5'13 0. =1030 0.333 0.063 0.086 1!j 20 1.3 1.21 0.050 0.054 0.249 0.2 -17 0.103 0.091 0.086 0.077 37 -1.G 340.0 308.13 278.1 10427.6 8085.6 5896.7 1739.'1 0.0 0.0 0.0 0.0 2682.0 2 -197.7 1435.8 13'14.7 0.0 0.0 0.0 (3.() 7745.7 550 7.9 3.12 =1.-I 21 1.1 0.050 0.245 ?'? 1.0 0.0 -15 0.2-13 210.0 2'18. -1 351%2. =I 2687.6 0.0 U.0 1203.'1 1100.1 0.0 0.0 1587.3 1507.5 ".I (1.0 0.8 0.0 -1 '1 0.036 0.240 U. ^38 0.069 0.06'1 SI-IEE1 1 OF 2 JOE] H 01152 Tract 30378 - Madison & Ave 51 REF: LOT 5 thru 8 & Streets - 24 hlrh00Yr - Trapezoid Retention -21x Top, 3:1 Sideslope I�E1:101) RETENTION BASIN STORAGE AND DEPTH CALCULATIONS DEPTH WATER SURFACE D= •I' -5' D= 3' - -1' D= 2' -3' D= ,I' -2' D= 0' -'I' = CHANGE (Avg) VOL IMPERV RET AREA (FT) (SF) (SF) (CF) (CF) (SF) 0.00 (SF) (SF) (FT) D=5.00' 0 0 =16610 ELEVATION DATA D =4.00' 2 - 2020 -1 10102 Lot 3 5"5.50 0.05 0.05 0.08 0.09 0.13 0.13 0.19 0.29 0.5'1 0.88 1.06 1.12 1.39 1.67 D =3,00' 'll'1.1 -I 5654 17377 365'17 Top] !i "14.00 0.000 0.000 0.000 0.000 0.000: D =2.00' I- I`,:�11 51 -12 [E� 979 19'140 DepFL CB111 5'12.83 1946-1.92 1982G.08 18457.06 '17275.39 16091.83 14986.41 8614.55 7888.07 7218.00 D =1.00' i -Iii:3 I -19.1 61 7161 WS 100 512.03 0.000 n n = nrr - 1"11.1 0.000 ()0000 0.000 0 0 Bottom 5'10.10 I�E1:101) WATER DEPTH WATER SURFACE D= •I' -5' D= 3' - -1' D= 2' -3' D= ,I' -2' D= 0' -'I' DEPTI I AREA AD.I.AREA ELEV. (1.11-q (1_.I.) (('T) (Fl -) (FT) (FT) (FT) (SF) (SF) (FT) 2 (1.06-0 0.000 i).000 11.000 0.0110 0.01(1 0.0(10 0.000 0.000 0.1100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.1100 0.000 0.000 0.000 00000 0.000 0.000 0.0011 0.000 0.000 0.000 0.000 0.000 0.000 O.ODO 0.000 0.000 0.05G 0.1118 0.385 O.G73 0.047 0.052 0.075 0.090 0.127 0.132 0.190 0.29.1 0.5'11 0.1177 0.000 0.000 0.000 0.000 0.05 0.05 0.08 0.09 0.13 0.13 0.19 0.29 0.5'1 0.88 1.06 1.12 1.39 1.67 5'I 27.35 5 "147.23 5251.51 5317.97 5. 184.36 5509.43 5768.78 6236053 7224.65 8856.47 14869.03 15217.87 16727.75 18352.56 5127.35 5147.23 5251.51 53.17.97 5= 184.30 5509.43 57G8.7B 6236.53 7224.65 8856.17 14869.03 15217.87 'IG727.75 16352.56 510.'15 510.15 510.10 5.10.19 5'10.23 510.23 5 "10.29 510.39 510.61 5'10.98 5111.16 511.22 511.49 15 111 .77 INC Ild(: INC INC, 1111C IIdC II,IC 1 1111 C INC INC II•di_ II.-IC 3 I 5 G 7 8 9 10 -- 1 •12 13 -I 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000: 15 -Ili -17 '18 0.000 11.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.8G9 0.933 0.69'1 0.482 0.273 0.077 0.000 0.000 0.000 0.000 0.000 0.000 0.00(1 0.000 0.000 00823 0.GG2 0.5'13 1.87 1.93 1.69 1. 016 1.27 1.08 0.82 0.66 0.51 1946-1.92 1982G.08 18457.06 '17275.39 16091.83 14986.41 8614.55 7888.07 7218.00 19- 161.92 -19826.08 18457.06 17275.39 160901.83 14986.4'1 861 =1.55 78813.07 7218.66 51'1.97 5'12.03 51'1.79 511.58 5 "11.37 5'11.1 F1 510.92 510.76 510.61 IIIC PEAK DEC DEC DEC D1C DI -C DEC '19 0.000 0.000 20 0.000 0.000 21 22 23 0.000 ()0000 0.000 0,000 0.000 0.000 0.000 00000 0.000 DI.0 fll:l °I =! 0.000 0.375 0.38 6600.68 6600.60 5'10.48 :1 0.000 2 0 0.000 0.000 STORAGE HYDROGRAPI-I FOR 100 YEAR 13 HR STORM RETENTION BASIN. PREPARED BY COACHELLA VALLEY ENGINEERS REF: I_OT 5 ti-II-L1 8 and Streets - 3 I-Ir /•I00Yr - Trapezoid Retention -2,Ix To 1), 3:1 Sides Iope J013 .1i it 1 152 Tract 30378 - M,clison & Ave 51 DY: JVVc TR143 AREA= 7.0800 ACRES PERC.RATE '?.I)0 11\14-113 (0.5 IN /-15 Min) SOIL GROUP "l3 ", AMCII, R.I.= 56, R.C. = 41911,, STORM VOLUME 2.00 IN /3 E PLATE -5.2 R : PERIOD PRECIP INTENSITY IMPERV FLOW INFLOW OUTFLOW RETENTION 1 100 C Q VOL /'15 Min CUML VOL OTHER PERC /15MIn OTf 4ER READ CUML VOL (15t��in) io (IN /�15min) Lot &St (CFS) (CF) (CF) (CF) (CF) (CF) (CI =) Composite 0.257 0.2G8 0.271 0.269 0.539 0.729 0.71)3 0.7 =47 48 -1.7 G55.0 704.5 67'1.9 484.7 923.1 13'J0.7 1029.3 0.0 0.0 0.0 0.0 217.4 228.0 2 =11.3 252.6 0.0 0.0 0.0 0.0 267.4 69:1.'2 115 %. -1 I:i7G.% 1 3.7 4.8 0.074 0.096 3 5."1 I.9 0.102 0.000 1.069 062.2 2538.9 0.0 271.'1 0.0 2267.0 G.6 0.132 0.23G 1.21'1 "1090.3 3350."1 0.0 292.E 0.0 301i`.i.G a 6 7.3 0.1'16 0.293 7 8.•1 0. .168 0.304 1.446 1301.7 4367.3 0.0 318.9 0.0 1-122.2 2.'150.6 3552.4 3126.9 5 =170.6 7273.4 10217.8 '12678.3 0.0 0.0 0.0 0.0 347.8 600.5 GM4 7111.8 0.0 0.0 U.0 0.0 5121,2.11 (i(ifi•1.9 055,1A 119G3.6 Ct lit 9.0 I. -.3 'f 7.6 0.180 0._ IG 2 0.352 0.310 0.343 0.396 1.500 �. 2 300 3.948 3. 47 4 0.322 0.381 560.9 12524.5 0.0 7 1 1.7 0.0 1 'I !)12.8 0.08 -1 0.262 0.623 SI-IEL= -I" 'I OF 2 1.3`1': .IWC DATE=: 7/28/0-1 .100 it o 1 152 Tract 30378 - Mattison & Ave 51 REF: l_OT 5 t11ru 8 and Streets - 3 1- Ir /100Yr - Trapezoicl Retention -21x Top, 3:-1 SiclesIo13 e RETENTION BASIN STORAGE AND DEPTH CALCULATIONS WATER DEPTH _T57T ll - IMPERV RET CHANGE (Avg) VOL AREA (FT) (SF) (SF) (CF) (CF) 0.00 (SF) ADJ.AREA ELEV. (SF) (SF) (` r) n Iri D =5.Ew (FT) 0 0 -.10619 ELEVATION DATA q =4.00' - 2020.1 10102 =16619 FF Lot 8 515.50 D =3.00' _'0 20 -1 505.1 173 77 36517 Top 5 'I LI.00 0.07 0.13 D =2.00: 1 -1550 5112 11979 191 -10 FL at CB-11-1 5.12.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0-i(Pi 4 -19 -1 7 10'1 7 161 WS 100 511.56 INC INC. INC II•Ir II•IC INC D-0 00' I�i1 I 0 0 Bottom 5 "10."10 PEAK STORAGE 14000.0. .12000.0 l0000.o I 1 0000.0 0000.0 -- - - -- - ........... . .. . 4000.0 I 2000.0 • - - - - - - 0.0 r� -- 1.' 2 3 I 5 G 7 C J 10 1'I 12 I,ERIC.)D WATER DEPTH WATER SURFACE 5= --r5' D= T -4' D= 2' -3' D= V -2' D= 0' --I' DEPTH AREA ADJ.AREA ELEV. (SF) (SF) (` r) n Iri cl- r) (FT) (Fr) (Fi -) (FT) (FT) I 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.13 0.07 0.'13 52'18.20 5493.20 52'18.20 5493.20 5'10.17 510.23 INC 3 1 G 7 8 0.00 0.00 0.00 (1.00 _0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.26 0.46 0.115 0.20 0.26 0.35 0.47 0.61 0.70 0.00 0.00 0.00 Q.00 0.20 0.20 0.35 0.47 0.6 1 0.70 1.01 1.20 •1.46 1.45 5791.79 6062.01 6507.35 7021.-15 765.1.76 8347.'15 14603.05 15992.77 17'154.13 1700'1.53 5791.79 6062.01 G507.35. 7021.45 7654.76 8347.15 11603.05 15992.77 17.154.13 17001.53 510.36 510.30 510.45 51Oi7 510.71 amd INC INC. INC II•Ir II•IC INC 9 •I G, I'I •12 0.00 0.00 0.00 0.00 SHEET 2 01= 2 r - r ■r r . r r . r r r r . rr r r _ �r . r_ r» r _ r- . _ r STORAGE HYDROGRAPH FOR 100 YEAR / 6 HR STORM RETENTION BASIN. PREP ARLD BY COACI IELLA VALLEY ENGINEERS REF: LOT 5 t11► ua & Streets - 6 Hill00Yr - Trapezoid Retention -21x Top, 3:1 Sideslope JOB 4 01152 Tract 30378 - Madison & Ave 51 .I W c TRI -BA RE A 7.0000 ACRES 1. PERC.RATE 100 IN /I-IR ( 0.5 IN/15 Min) SOIL GROUP "G ", AMCII, R.I. = 56, S-1 .05M VOLUME -9.'' , N/61-IR 100 YEAR 6 HOUR ( PLATE E -5.4) PERIOD f RECIP INTENSITY 1 100 IMPERV C FLOW Q INFLOW VOL /15 Min CUML VOL OTHER OUTFLOW PERC115Min OTHER RETENTION REOD CUML VOL (IN/15min) Lot &S1 (CFS) (CF)- (CF) (CF) (CF) (CF) (CF) Composile I 2 1.7 1.'3 _ 0.038 O.0 -13 0.239 0.241 0.259 0.292 233.1 263.0 233.'1 285.3 0.0 0.0 210.8 213.3 0.0 0.0 22.3 73.1 ;;, '2.1 0.0 -17 0.050 0.2.1.1 0.245 0.326 0.313 293.4 308.0 366.5 IG0.9 0.0 0.0 214.3 2'16.0 0.0 0.0 152.1 21 >1.1 n 7 ;3 _ j 2..1 '. -I 2.5 2.6 2.7 Q051 0.051 0.05 -1 0.056 0.059 0.061 0.2 =17 0.217 0.2-17 0.2-18 0.219 0.250 0.370 0.378 0.378 0.395 _ 0.413 0.131 310.0 3 =10.0 340.0 355.7 371.(1 387.7 58 -I.1 704.0 820.8 950.3 1002.4 13 -16.0 0.0 0.0 0.0 0.0 0.0 0.0 220.0 223.2 226.2 2?�J.6 233.3 237.1 0.0 0.0 0.0 0.0 0.0 0.0 36 -1.1 480.9 59 -1.6 7 ^_0.7 0541.1 IOO�.a _ 10 _ 11 1.2 11 I.5 16 17 I fl 19 .'I 2.8 3.0 3.2 3.6 1.3 -1.7 5.4 13.'2 6.9. 7.5 I�.ii I 0.033 0.068 0.072 0.0011 0.007 0.103 0.'122 0.1 -117 0.155 0.16] 0.239 0.326 0.252 0.254 0.256 0.26'1 0.268 0.373 0.201 0.290 0.298 0.30 -I 0.339 0.303 0.449 0.185 0.522 0.598 0.735 0.017 0.966 1.14 5 1.309 1. -155 2.29'1 3.540 103.0 436.6 1139.0 537.11 661.0 735.5 869A 1030.'1 1177.7 13019.1 206•• ^_.3 3185.9 '1 -113.3 11308.1 '1831.1 2'1'16.3 2518.0 2982.9 3569.6 4 301.7 51 G2.2 6131.6 7028.8 •103'95.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 211.7 246.8 252.6 260.'1 270.6 282.7 298.1 317.2 339.7 365.1 619.4 0139.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 '1171.5 1361.3 1570.5 18'56.2 22 -17.4 2700.2 3271.5 390 =1.5 4822.5 5766.5 %209. -1 97 5. =1 22 2.1 -1.5 3. -1 1.0 0.077 0.023 0.258 0.231 0.559 0.1-17 503.ri 132.E 10220.9 9695.0 0.0 U.0 GG6.G 0.0 9562. -1 656.1 0.0 9038.9 2.1 SHEET 1 OF 2 IiY: Jwc DATE: 7i2d:0 -I Ju13 ; +! o 1 152 Tract 30378 - Madison & Ave 5,1 REF: LOT 5 Illru8 & Streets - G I-Ir /'I00Yr - Trapezoid Retention -2,Ix Top, 3:1 Sideslope RETEIJTION [3AS1�! STORAGE AND DEPTH CALCULATIONS PEAK STORAGE 12000.0 10000.0 0000.0 Vlff6000.0. _... _.... .-• - - 4000.0. 2000.0 _.....- .._ . 0.0 • - , -r-+ -� ' 1 2 3 4 5.6 7.-B 9 10 11 12 13 14 15 1G 17 1819 20 21 22 23 24 ,ion WATER DEPTI'I CHANGE (Avg) fL VOL IMPERV RET AREA (FT) (SF) (SF) (CF) (CF-) 0.00 (SF-) ;IIr;► (I=f) (FT) (FT) (FT) (F-I -) 0=5.()O' (SF) 0 0 466.19 EVATION DATA D =.1.00 ?1,20 -I 10102 46619 FF Lot 8 5'15.00 0.0110 0.000 5155.1 17377 36517 TO) 514. 0 0 n= 2.011' 1.1-,51.1 51 -12 11979 191.10 FL at C13#'I 5.12.83 17= I.OU' X1.103 4.19.1 7161 7'161 WS 100 511.37 I:)= 11.1111' I ,'I I 0.000 0 0 Bottom 5'10.10 PEAK STORAGE 12000.0 10000.0 0000.0 Vlff6000.0. _... _.... .-• - - 4000.0. 2000.0 _.....- .._ . 0.0 • - , -r-+ -� ' 1 2 3 4 5.6 7.-B 9 10 11 12 13 14 15 1G 17 1819 20 21 22 23 24 ,ion WATER DEPTI'I WATER SURFACE D= -1' -5' D= 3'-1' 11= 2' -3' D= 'I' -2' D= 0' -'I' DEPTH AREA ADJ.AREA I ELEV. ;IIr;► (I=f) (FT) (FT) (FT) (F-I -) (FT) (SF) (SF) (F1') I 0.0110 0.000 0A00 0.000 0.033 0.03 5060.30 5060.30 510.13 2 0.000 0.000 0.000 0.000 0.0 -I0 0.0.1 5093.04 . 5093.04 510.1.1 INC _ 3 0.000 0.000 0.000 0.000 _ 0.05'1 0.05 5143.99 5143.99 5'10.15 IIIC -1 0.000 0.000 0.000 0.000 0.0G -1 O.Ot'i 5203.27 59-03.27 510.16 INC 5 0.000 0.000 0.000 0.000 0.002 0.08 5280.55 5280.55 510.18 II,IC G 0.000 0,000 0.000 0.000 0.098 0.10 5355.82 5355.82 510.20 INC 7 0.000 0.000 0.000 0.000 0.115 0.11 5429.12 5429.12 510.21 - INC 8 9.000 0.000 0.000 0.000 0.133 013 5510.41 5510.41 510.23 INC 9 0.000 0.000 0.000 0.000 0.153 0.15 5599.55 5590.55 510.25 INC -10 0.000 0.000 0.000 0.000 0.17.1 017 5696.42 5696.42 510.27 114C 1'I 0.000 0.000 0.000 0.000 0.197 0.30 5800.91 5800.91 510.30 IPIC '12 0.000 0.000 0.000 0.000 0.235 0.22 592319 5923.19 510.3? IIIC '13 0.000 0.000 0.000 0.000 0.2515) 0.26 6063.1 4 6063.1 =1 510.36 11-IC 1.1 0.000 0.000 0.000 0.000 0.296 0.30 6242.11 62.12.11 510.40 INC '15 0.0011 0.000 0.000 0.000 0.352 0.35 649 -1.21 6.19 -1.21 510.45 IIlIC 'IG 0.000 0.000 0.000 0.000 0.-117 0.42 6785.97 67115.97 510.52 INC '17 18 -10 20 21 22 0.0011 0.000 0.000 0,000 0.0rio 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.056 0.270 0.498 0.601 0.721 0.056 0.000 0.000 0.50 ().GO 0.72 0.86 1.011 1.27 7154.14 7613.61 0153.61 8761.98 14865.19 16076.55 7'154.14 7G1 3.61 8153.G1 0761.98 14865.19 16076.55 510.60 510.70 510.82 510.96 511.16 511.37 INC IIdC IIlIC II'•IC IFIC PEAIC .13 O.O110 0.000 0.000 0.256 0.000 1.26 15998.05 15098.05 511.3G DEC 2.1 0.000 0.000 0.000 0.213 15746.02 157 -16.02 511.31 iII:CF! SHEET 2 OF 2 STORAGE HYDROGRAPH FOR 100 YEAR / 3 HR STORM RETENTION BASIN. PREPARED BY COACHELLA VALLEY ENGINEERS REF: 3 I- Ir /l00Yr - Retention 10- Madison St Roadside, 3:1 Sicleslohe IJ.•`-.TL: 5; I.jl0-1 JCtF-{ 1F 01 15_ Tract 303713 - Madison & Ave 51 BY: JbVC TRIB AI:EA= PERC.RATE STORM VOLUME 0.3600 ACRES 2.00 IN /I -IR 2.00 IN /3HR ( 0.5 IN /15 Min) - I SOIL GROUP "B ", AMCII, R.I.= 56, R.C. =00 -Inn VGAta I Z u I IR t PI ATP --, ') PERIOD PRECIP INTENSITY IMPERV FLOW INFLOW OUTFLOW RETENTION I '100 C Q VOL /15 Min CUML VOL OTHER PERC /15Min OTHER READ CUML VOL (l5min) `,S, - (- IN /15min) (CFS) (CF) (CF) (CF) (CF) (CF) (CF) RC =20°'u 1 3.7 0.074 0.817 0.087 78.3 711.3 0.0 36.0 0.0 4 2.3 - -1.0 0.095 0.818 0.1.13 101.7 '1.14.'1 0.0 37.5 0.0 106.` .1 5.1 0.102 0.818 0.120 .108.1 211.7 0.0 39.2 0.0 175.5 - 1 4.9 0.098 0.81113 0.1'15 '103.9 279.3 0.0 40.8 0.0 2311.6 5 6.6 0.132 0.820 0.156 140.2 378.8 0.0 43.'1 0.0 3:.35.7 (3 7.3 0.'1.16 0.820_ 0.172 155.2 190.9 0.0 15.8 0.0 .145.1 7 CIA 0.168 0.821 0.199 170.n 623.9 0.0 X18.9 0.0 575.0 11 9.0 0.'180 0.822 0.2'13 191.8 766.8 0.0 52.3 0.0 7'I -1. -1 9 '12.3 0.246: 0.825 0.292 263.1 977.5 0.0 57.3 0.0 020.2 10 _ 17.6 0.352 0.831 0. -12.1 378.9 1299.1 0.0 1 90.3 0.0 1208.8 'II '16.'1 0.322 0.1129 0.384 316.0 1554.8 0.0 93.3 0.0 -1.16,1.4 1 ? -1.2 0.084 0.817 0.099 80.0 1550.4 0.0 93.3 0.0 'I ,I 57.1 SI-iEE'r 1 OF 2 rr: .1wc IAA rC: 5 /1.3ifm -JOB 01152 Tract 30378 - Madison & Ave 51 REF: Trio 14 - 3 Hr /100 r - Retention '10- Madison St Roadside, 3:1 Sidesl RETENTION BASIN STORAGE AND DEPTH CALCULAT ope IONS (FT) ( (SF) D =5.00' - -�- D =3.00' D= 'I.nn- i i 1-.2 0= 0.00' - -., 1:•1 PERIOD D= 4' -5' 0.00 3 1 0 00 0 5 0 0.00 G p p 0.()0 8 0 00 I0 0 0 11 0.00 PEAK STORAGE IMPERV RET CHANGE 1600.0 °`- (Avg) -VOL AREA 1400.o . - -- (gF) (CF) (CF) (s1 =) -- ---- -_ -_- _ ---�_- . '1a0o0o0..o 0 _ ---- 0.00 -2632 1316 - - -- - • - - -- - -- - --- ..._ .-.- ._ - .. -- 6639 ELEVATION DATA 507 237J ;, ___ .: 600.6 ,323 FF Lot 8 515.50 400.0. -..__ __.__ __• -. _ G--- 53_ 1 29 =I =1 FLEnd ofG r' 200.0 - I -- 653 1 .1 :1 G - ---- -- 5 1_ 3. •� G 0 WS '100 5.13.13 0.o I 0 Bottom 51 .. .. 1 ..+ z: . 3:: - s. WATER DEPTH DDS_ D= 2' -3' D= AREA 1 _2 WATER SURFACE ______ D= 0' -'i' DEPTH l (P�) (FT) (FT) (Fl -) ---- -_ ADJ.AREA ELEV. 0.00 U.Du (FT) (SF) 0.07 0.07 - -__ 0 (- 3� 0.00 863.65 (363.65 511.97 0.00 0.13 0.13 90.1.14 0.00 0.00 0.19 90'1.1 -1 512.03 INC 0.00 0.00 0.00 0.19 941.38 941.3© r. ---- -- 0.2=1 1 2.09 0.2:1 ---- Ill C: 0.00 0.00 978.21 978.21 ---- ---_ 0.00 0.33 512.14 I(•JC O.0- 0.00 0.00 0.33 1031.93 1031.93 512.23 -- U.43 0.43 INC 0.0- �- 0.00 0.00 r ----�_ 1098.83 '1098.133 5-12.33 � -- 0.00 0"� I 0.5 =1 1171.68 IIdC 0.00 0.00 0.67 r 1'171.66 5'12.11 IV•IC 0.00 0.00 0.67 1256.09 1256.09 -'-- -- 0.00 0.85 r 512.5r INC 0.00 0.00 0.05 '1376.25 1 376.25 5-12.75 - �- _ 0.09 0.00 1.09 2168.30 IMC 0.00 00 0 0,23 2168.30 512.gg (!•0 0.00 �- O.UO 1.23 2240.37 2240.37 INC 0.23 0.00 513.13 PEAK '1.23 2239.13 2239.13 5-13.13 �- SHEET 2 OF 2 I I 12 SHEET 2 OF 2 I I 12 r . _- _ �.. _ ■� rte■ rr r it r rw____ r�__, rte.= r_ ; �- - H Y��-r ` ��'n�iPf1 F"OR 100 YEAR / 24 HR STORM PREPARED DY COACNELLA VALLEY ENGINEERS RETENTION BASIN CTrih - 24 1-11- - Retention Basin , 3: 1 Sicl�. DATE: I.'. ;'n -I slope JC,ri 1/ n 11:,.' Tact 30378 - Madison &Ave 51 1.31': JWC TRIO AREA 0.3600 PERC.RATE ACRES STOI:M VOLUME ..00 IN /1-113 =1.50 IN /24HR 00 EAR 24 SOIL GROUP "(" AMC", 5G PERIOD R - -5 PF:ECIP INTENSITY IMPERV 'FLOW 11100 C - INFLOW ��� ) Q Vim_ CUML VOL OTHER OUTFLOW RETE�ITIO�1 (iN /I-Ir (CFS) (CI- PERC /Hr OTHER ) (CF) - (CF) READ CUML VOL 12 0.054 °--- I� ----- (CF) (CF) (C�) 0.0116 1.J 0.059 57.-1 57.1 3 I.0 0.816 0.0'17 61.0 °.° 1 =11.9 _ O.0 °.08.1 0.817 - ----__ 61.9 0.0 0.0 1 0.021 05.8 I`I� `I 0.0 2.'I 0.095 .� 0.818 - -� 85.8 0.O 0 .176 0.028 100.'1 100. 1 U.0 1`14.6 0 9.9 0.819 0.03 7 0.0 0.0 0.131 133.8 1 13.8 I =16.0 0.0 138.6 0.0 0.171 0.820 0.039 �- 'I =19.2 0.0 �- �� --- ti 0.822 '138.6 U.0 0.0 =1.6 - 0.0� I 1(12. I �I 9.7 0.207 0.8.3 1 1132.1 0.0 0.0 0.0 'j 6.3 0.061 77 r. 153.8 - -_ 1i) 0.28.1 -�_ 2.19.2 �- 0.0 213.3 -�- G_-'__ 0.369 0.027 0.08 =! 303.�I 3�� 0.0 IG0.2 0.0 ------ - ---_ -- I I 7.0 0.8.3 I 0. 'I 10 3- - J 7 G 0.0 173.8 0.0 �- -- ---- -- I.� 0.:315 0.829 616.7 19.1 7.3 0.320 0.094 0.0 195.1 33r3.a r 13 0.829 c 7..9.9 0.0 ------ 20 12 -I.6 1_0.t1 _ O.OJO 353.1 � 208.7 0. I8G 90 -1.3 I 0.837 0.1 =1G 0.0 0.0 5 = =_ -- I I.•I 527. =1 , 222. ! 0.0 ------ -_ 0.5'13 1209.3 ci81.9 I.., 10.4 0.839 0.'155 557.6 0.0 357.2 0.0 852. - - 0.468 0.836 - 1,109.7 0.0 366.6 1 l7 8.5 0.383 0.832 0.111 507.3_ 1550.•1 0.0 10 =13.'1 �- 17 - 0.115 0 0 373.2 O.Uti3 0.8-16 --- ' '1589.7 0.0 �- I8 _ 0.019. G6.G 0.0 375.0 �_ 0.006 '120.1.3 0.0 0 0 '12.14.7 1 J 0.8'17 0.025 r 360.5 ?�l _ 0.059 0.816 0.0'17 90.6 '10'11.3 0.0 �-- 0.0 920.13 61.9 232.6 1 - ---- -_ 0.05.1 0.8IG 0.0'16 8'10.6-- 0.0 �. 0.0 7711.8 IG.1 _7 --_! _ 0.050 0.015 0.0'15 . / 1 68'1.3 O.0 624.3 �- '1.0 r 5Z.3 201.2 ---- -- 23 0.015 0.815 47.5 5J2.4 _O.p 187.1 U.o =l r�-- U. J 0.013 392. ., I --�_ 0.0.11 0.815 0.012 9 0.0 '173.8 �- 3 �.,.,t 0.8 0.036 0.8 - 0.011 38.0 3G 1.8 0.0 161.4 0.0 ?�- 38.0 138.5 0.0 149.% 1- 0.5 0.0 0.0 SI-1L=ET '1 01: 2 _REF: -• -- - -- - _ Tri1J -1 =1 - 24 1-lr /'I00yr - Retention Basin 10 3-'I Side s aloe RETENTION 13ASIN STORAGE AND DEPTH CALCULATIONS IMPERV RE AREA (SF) 0.00 ELEVATION DA FF Lot 8 �0 FLGutter ,�10i WS .100 5,13_15 Bott-- _._O1f1 51-1.90 • 1400.0 PEAK STORAGE - ' I� I I 1200,0 .1000.0. .0 I I x,:800.0 . •- - -• - - - -- -- -- -� - .000.0 • ..._ .._ ._ _ _I I i i I 400.0 :.200.0 ::. 0.0 1 2 3.' 5 6 7 0 9 10 71 12 73 7q g lG 17 '1a 10 222 -� � 23 _; 1 CHANGE (AvJ) vv� VOL (FT) (SF) (SF) (CF) (CF) D =5.00' _ (F ) (SF) (SF) D= -I.OU' �- 0 0 GG39 -85-1.54 - ---__ 0.05 2632 13'16 6639 85� 1.26 8��1.26 5 26 507 2379 5323 D= 1.00' 1.17 653 1799 2944 D =0.00' 0•'102 ,. 653 '1'1 -.16 11 IG II�- - 0.121 0.12 0 0 PERIOD INC ---- 0.16 898.01 898.01 0.12 -- INC WATER DEPTH (I III) 922.79 - � ---- 9G 1.03 c J22.79 -- D= 2'-3' D= .I. -2. 0.313 (r�) (F I) (FT) (FT) - ; -- 0.000 ------ 0.000 0.000 0.000 3 o.ono 0.000 0.000 0.000 11 5 1252.20 0.000 0.000 0.000 0.000 1371.53 0.000 __ 0.000 0.000 0.000 6 0.000 0.000 0.000 0.000 8 0 000 0.000 0.000 0.000 8 0__ 0- 00 0.000 0.000 - - 0.000 9 0.000 0.000 0.000 0�- I0 �UI� 0.000 0.000 0.000 II n 0.000 0.000 0.000 0.88 0.000 0.000 0.000 0.000 1� (1. n0 0 -___ 0.000 0.000 0.000 _ 1.1 0.(100 _ 0.0(10 0.000 _ 0.035 15 0.000 - - -- 0.000 0.000 0.14 7 'I G _ 0.000 0.000 0.0 00 - 0._25 17 0.000 0.000 0.000 - U ­4 7 '18 0.000 0.000 ---- 0.000 - 0- 076 .I 9 ((.000 - 0.000 ---- 0.000 _ 0.000 zo 0--- 001 0.000 0.000 _ 0.000 0.000 0.000 0.000 o-- �oo_ 22 0.0oo -'-- 0.000 0.000 0.000 0.000 0.000 0.000 _ 0.000 23 0.000 U.000 0.000 - 0.000 24 0.000 0.000 0.000 - 0.000 IMPERV RE AREA (SF) 0.00 ELEVATION DA FF Lot 8 �0 FLGutter ,�10i WS .100 5,13_15 Bott-- _._O1f1 51-1.90 • 1400.0 PEAK STORAGE - ' I� I I 1200,0 .1000.0. .0 I I x,:800.0 . •- - -• - - - -- -- -- -� - .000.0 • ..._ .._ ._ _ _I I i i I 400.0 :.200.0 ::. 0.0 1 2 3.' 5 6 7 0 9 10 71 12 73 7q g lG 17 '1a 10 222 -� � 23 _; 1 WATER SURFACE �- (FT) DEPTH -) AREA ADJ.AREA ELEV. _ (F ) (SF) (SF) (FT) ----- 0.050 0- 4 p - 8- -85-1.54 - ---__ 0.05 0.07� r 0.Oa 0.07 85� 1.26 8��1.26 5 26 - - 0.05 INC II IC �- 0.087 867.80 867.89 p INC 0--- 117 0•'102 876.09 0 - II�- - 0.121 0.12 895.27 895.27 0.12 INC ---- 0.16 898.01 898.01 0.12 -- INC 0.210 0.22 922.79 - � ---- 9G 1.03 c J22.79 -- �' I� - INC 0.313 0.3.1 1012.97 961.03 0.22 INC 0.538 1'r0.a5 104 2.97 0.31 INC 0.6 - -- O.GG 1_52.20 11 5 1252.20 0.51 INC �- 0.789 - 0.79 1371.53 1334.53 O.G6 11- 0.000 ----- 1 04 2112.99 2142.99 0.79 111.1 C �0.000 .'1 r .=10 2-199.48 1.0•I �- INC - -- 0.000 '1.23 2239.15 �- 2250.3 1.1 `' 1_ I IC_ 0.000 '1.25 2250.23 2250.23 1 73 1 -- (.1.001.) ----- 1.00 21 2'i 63.29 513.15 PEAK 0.883 0.73 =I 0.88 1395.53 '1395.53 1.08 08 0.08 DEC 0.595 0.73 '1298.20 1298.20 0.73 DEC 1-: 0.4 0.59 0.46 � 1_07.40 �- - DEC 0.343 - 0.3.1 11202.5'0 1'122.51 0.:16 DrC �� 0.2_9 0.23 1042.96 1042.96 0.31 - -- DEC 0.121 0.'12 968.26 968._6 0.23 E- 897.94 897.01 0.12 //REF! STORAGE 1- 1YpROGRAPH FOR 100 PREPARED GY COACHELLA VALLEY ENGINEERS YEAR � 3 IiR STORM RETENTION BASIN. REF: Trila -I5 - 3 1 IrIf I O ' - DATr_: �;, Retention ' 3:1 Sideslope BY: 01 152 Tract 30378 - IMadisorl 8 Ave J7 JwC TRIe AREA= PERC.RATC 0 "1'100 ACRES STORM VOLUME IN /F R <.00 (0.5 IN /IS Min) SOIL GROUP IN /31-IR 100 EAR 3 UR PERIOD PRECIP AMCII, R.I.= 58 R C.= �--- -- INTENSITY F A - -5.2 90 /„ - --____ 1100 IMPERV FLOW (I5111i11) u, C INFLOW Q _ 0 (IN /15min) VOL /'15 Min CUML VOL OUTFLOW - REreNrlonl (CFS) (CF) (CF) (CF) PERC /15Min OTHER I �_ IBC =20% (CF) (CF) REQD CUML VOL -� 0.07:1 0 -�1 -- ) (CF) (CF) I.tl 0.027 0.096 0.818 �- 23.0 23.9 �-- � 0.102 0.035 � -- 1 0.818 3 '1.1 --_-- 0.0 1 6 1 - -' 0.037 38.9 0.0 �- 5 0.098 0.8.18 33.0 ,�_ 0.0 IG.S 7.11 G.6 0.035 Ju•� 0. 0.0 1.i ---�_ 0.'132 ., 3'1.7 0 •IG.O 22.1 �- 7.3 7 ---- -- 0.1.16' -- 0-�_ :12•lj 70.3 0.0 17.3 0.0 ��- r jL1..7 t3 _ 0.161] 0.8_0 .0.053 '17.-1 9.x.8 0.0 - .0 0.180 �82-� _ O.OG1 �1 '125.3 '17.9 0.0 0 12.3 �-I.G 0.0 .18.7 77.0 I i)_ 0.2.16 0.82 0.065 58.6 161.3 0.0 0.0 '10 P,�- 17.6 0.825 0.089 200.2 19.6 I I 0.352 110.•1 0.0 0.0 �- 0.83'I 20.6 1 =1I.G -�""- Iu.1 0.322 0.121 I.IS.B �G0.0 0.0 0.0 �-- 0.829 353.6 22.1 1� :I.? 0.08 ={ 0.'117 0.817 0.030 105.7 �I�- 0.0 24.5 0.0 2 -- 7.0 ---�- 27.2 0.0 26.6 329. -1 1135..-1 0.0 4 011.2 -"_-- 2G.G 0.0 - 101:1.1.1 -- SHEET 1 01= '-�, Jwc Joo 011',2 Tract 30378 - Moclison & Ave 51 REF: Trib '15 - 3 Hr/100Yr - Retention 1•I - 3 ;•� Sicleslohe RETENTION , L3ASIN STORgGE AND DEPTH CALCULATIONS 450.0 - PEAK STORAGC _ - 400.0 -_.._ _....._._.._ 350.0 - - 300.0 250.0 • -._... _. . 150.0 100.0 ..50.0 • - -_ __ -- I- _._ - - -� -_ .. ... � 2 3 5 G 7 �- q 0 WATER SURFACE AREA ADJ.AREA (sr - -) ELEV. (sr -) (F�) 386.6),8 386.68 �- 395.86 5 12.5.1 395.86 r. 406.01 512'57 IhIC �IOG.Q1 51 <I15.10 II,IC: 4 15.10 512.63 12.63 430.77 '-130.77 - �. 1--- ��IC 12.68 4= 18.8.1 INC '1-18.8:1 r. 117 12.73 1NCl 470.89 �12.eo 491.78 494.78 Iliac. 53 5'12.87 53 1-- 531.=1=1 5 588.87 12.98 r IVC � 88.8 7 513.1 G �--'- G38.G5 11 -IC 638.65 513.3-1 639.00 INC U 513.31 ------ I I I _I I 10 �� 12 SHEET 2 OF 2 CHANGE C ` U",ulL IMPERV RET (SF) (CF) -- L AREA D= -).nn• -- (CF) (SF) ----- D= -1.00' �- �- -� 0 '1370 0 -- - 3?88 0.00 D =3.00' D IJ7U 33J r ------ M 3�8t) 6 ELEVATION DATA =2.no' ---- 103 1 330 101 2603 _____ FF Lot 1 -- �- _ i l03 FLGu(teI• 5'15,00 X37 WS 100 5�5 r�Er lo D 0 Bottom .5.12.,50 WATER DEPTH (I -T) - 0'_ 1 DEPTI __ -- 'I -_ (F1') lr -T) I 0.00 (FT) ? ---__ 0. ou 0.00 0.0o ---- 0.00 0.04 �- 3_ 0.00 0.00 0.00 0.07 ------- r 0. t)0 0.00 n.00 0.00 0.1(1 0.07 0.110 0.00 ---_ 0.00 O.UO 0.00 0.13 n.uo ---_ ------ 0.00 0.00 0 0.00 �-- 0.-18 r--- -) i3 7 0.00 -) 0.00 0.00 0.00 0.23 0.18 �--- -- D ----- n- t U.OU 0.00 O.OU 0.37 ---- 0�_ �� l.) 00 o.o0 =0= 0.00 0.37 •10 _ 11.00 0.00 0.00 0.00 0. =18 -� .11 0.00 0.0() 0.00 Q 0.00 0.6G 0.'18 O.GG 0.00 0.00 0.00 0.00 0.81 0.81 Q.00 0.81 0.81 450.0 - PEAK STORAGC _ - 400.0 -_.._ _....._._.._ 350.0 - - 300.0 250.0 • -._... _. . 150.0 100.0 ..50.0 • - -_ __ -- I- _._ - - -� -_ .. ... � 2 3 5 G 7 �- q 0 WATER SURFACE AREA ADJ.AREA (sr - -) ELEV. (sr -) (F�) 386.6),8 386.68 �- 395.86 5 12.5.1 395.86 r. 406.01 512'57 IhIC �IOG.Q1 51 <I15.10 II,IC: 4 15.10 512.63 12.63 430.77 '-130.77 - �. 1--- ��IC 12.68 4= 18.8.1 INC '1-18.8:1 r. 117 12.73 1NCl 470.89 �12.eo 491.78 494.78 Iliac. 53 5'12.87 53 1-- 531.=1=1 5 588.87 12.98 r IVC � 88.8 7 513.1 G �--'- G38.G5 11 -IC 638.65 513.3-1 639.00 INC U 513.31 ------ I I I _I I 10 �� 12 SHEET 2 OF 2 Z. Jo I. 13-:11-Is NOLL.ND-Lga MOIS aH f7Z / aVD SN3A3-31-IDVOD AU Cl---IaV,,J3-8d 0 0 � H Q' H d-;-q E) o- M-m Not- 0,0 Z,cg 0*0 0,0 0*0 ET9 0*0 I-T I. 9* 1. L COO'O -I-00-0 U'O 9co,o Wo (-- o Wo 9'1.-9 0'0 S'SZ -SID'o 0' I. L 0,0 COL 0'0 1700*0 0 Ci I - 0' 0 FZ L-99 0,0 9*9t 0,0 0,91. 1:00-0 C; 1. 13' 0 O(JO'O 1." 1, Z L 0,0 Z'Co 0,0 • 9'ZOZ OJO0,0 91.U'O 1°900 I.E. Wo CCJJ 0 6 0'0 Z'GLZ 900,0 91-9,0 Grio 0 t:' I. * 0,0 0*0 C, G P F z 000,C) L I. P'0 OD'o G'I. G RZ F 0*0 P,5clI 1 4. u Z 900'0 17,1 0'0 C, 1;0 0 9T I. I- 0,9zl., -951. SCO'O C oc " 0 9' 9 0,0 0*0 U c 1. 0,0 CO'O 0917,0 1.1,9111. C,06 1.•L /_Z 1• Z 1,0-0 6CU'o c I- (J'O 0*0 C'Zg 0'0 Z'OCJ I. I.'1.91• 91.-0'0 Ml'o c )Gl.-•o 6 0,0 C*Gt 0*0 9,691. UCO'O Gza'o GZC'O C'Z --- 90 0,0 9,9L 0,0 C)zo.o GZO'O ------ 5 1. UO O'Z E. I. ------- 0,0 9' 1 0,0 G*Z6 I-CU'O 69c,o Z' P Wo 0'0 6139 0*0 C*L9 G,eG 1 9zo,o L Z wo ITZ'o 0 1. 0'0 0,0 LI 9 0*0 i 9' 9 S, 9 ( 'C'( G 1. 0 FETO tDE•o (Yo 0,0 C'99 0*0 1,'Z ly 9 -ij s 1. 0** ZZU, u 0, F O'Cl 0 Z'99 0,0 G*() 1, DUI. ' Z 1. o OZD'O 0*0 0'() 0'0 TOP 1.1-0,0 G I. 9'0 9z ro IVZ 0*0 0'0 t, P-9 0'0 600,0 DI-O•D 960,0 --z-- S Wo 0*0 GT9 0,0 6,01. Z'OZ ZOO' 0 L 1.0*0 190*0 - - ----- 0 .0 O'C9 0 17'L I. (3,01. 900,0 gi-Q-0 GCJO'O S00•0 ,oA -ivvno (So) N 0 1 -L 14 :-1 -L:-] d /O�J3dl a31 0 -10A -ivvnO --j MO-TJ.Lno A AOIJ-NI -(D 001• I �j dinodo -,jos mnni4 i77/MW711 00 di 09'17 JDLI :-mmOA N�JO-Ls 0.7 (- �i V �Y d S3J3V 001.6'0 El I J1 1.9 any Y& LIOSII)LIVV- RLCOC 1012IJ OAAF 1: of S @ LIISLI (10111LIalaa :.--J. 1. v a J)"Oo 7- 1-/JVI 17, 9 1, c, L' . 11 :--4 A d NOLL.ND-Lga MOIS aH f7Z / aVD SN3A3-31-IDVOD AU Cl---IaV,,J3-8d 0 0 � H Q' H d-;-q E) o- M-m Not- �• `- -' rI ' -' � - 2=►- ►= rrI-IOCIY"- Retention Basin 3:• RETENTION BASIN STORAGE AND DEPTH CALCULATIONS I SI�Ieslol)c I CHANGE --• `'" ""� IMPERVRET ('4v9) (FT) (S (sr - -) (CF) VOL AREA D =5.00' �� 0.000 0.000 (CF) (SF) 0.00 D =.I.aw -- - -- 0 -=_ -.1370 G 3208 ELE VATION DATA n =3.00' 1';71) 39 Gas 32813 FF Lot 1 r 5'1'1.90 0=2.00' �- 11.1:31 --- 330 1201 -_ 866 2603 �- �- FLG(1tte1' 5'13.35 D =0.00' () I -� 17_ 3'9 - 537 11103 537 WS '100 �_- 51� 13�_ Bottol» '1'12.50 ---- -- 0.000 �-"- Q U 0.000 PERIOD 13 0.000 0.909 0.000 I,1 WATER DE fa 3'_11' (I III) F T D= 2' 3' D= 2 0.000 -- _ 0.000 ---_ -- X00 0.000 0.000 0.000 0.000 i 0.000 0.000 0.000 0.000 0-000 0.000 0.000 G 0.000 0.000 0.000 7 0.000 - 0.009 397 07 8 ---- u.o00 0.000 0.000 9 0.000 0.000 - 0.000 I p 0.000 0.000 0.000 I I 0-_ 0.000 �-"- 12 0.000 0.000 �- 13 0.000 0.909 0.000 I,1 0.000 0.000 - - -� 00 5 p.1 0.000 5=11.92 ---_ '16 -- U. f_ 0.000 0.000 17 ().()00 0.000 -'- - 0.000 0-000 _ 0.000 � 10 0-- _ 0.000 586.18 20 0.000 - - 0.000 0.000 21 0l-�� p 0.000 22 0 0.000 -- --'000 _ 0.000 23 0.000 0.000 0.000 2.) 0.000 -�_� 0.000 0.000 387.66 0.000 0.000 0.000 D= 0'- i DEPTII 350.0 PEAK STORAGE - I 20.0'. • •- - -- -- . I 266.0.- I ...I 150.0 100.0 50.0 - •_. - 2-P . 12 13 14 15 G 1 17113 192021222) 2 :1 WATER SURFACE AREA . ADJ.AREA (SF) E-- _ 9.999 o.p- 3,)- 0 03 -- 0.000 0 388.07 1 382.70 - -- 0._000 .03'1 ----- 0--- 9 0.0 =1 383.59 0.000 0.057 Q.05 388. 07 �-' 0.000 0.076 0.06 300.77 -� 0.000 U�- 0.00 397 07 0.000 --- 0.110 -1 0 00 397.97 ��- 0.000 p •j 26 0.10 `I �G• 1? 0.000 0.'173 0.13 1113.39 �,_ 0.000 0--- 2- G6 0.'17 429.61 0.00 _ U.3 -I6 0.27 �159.G 1 0.000 -�- 0.369 0.32 47x.03 0.000 0.51E 0.37 193.511 0. p0 0 0- b-�_ 0.52 5=11.92 0.000 per_ 0.67 59 - 591.01 0.000 0.812 0'77 625.66 0.000 0.651 0.8.1 639.01 0.000 0.520 0.65 586.18 -- 0.000 0.387 r 0.52 543.21 0.000 0._61 0.39 499.3-1 -- 0_000 0.152 0.26 458.97 0_000 0.048 0.15 42'1.87 0.000 0.02.1 r 0.05 387.66 - -- 0.000 0.022 0.02 380.02 0.02 _ 379.12 82.70 383.59 0 0.0 ;1 - ----- 388.07 1 0.05 1111C 0 i I 0.06 I II,,IC 397.07 0 0. - II \jC 397.97 0 0.00 IIdC �� - is � :,:. ' •;�__tl:.:, -' •: :...._ 1...JIG'i 0 I lob 0 C, a r� - �' /d. :.; ,-t�. .-:,:.:. -. .- - _•Ir �I r,prJrr.I• •.F.L ^'' -��I. - �•'� "':1 `.'.''.- - J.IIr :': - •i. •y r... � .. Vii. Ir .�' is i' '' I � 1 '�•�.l •^�F:•. _-r -r •• .�_ :•.:�^ - \ "ar- ' • _ ' Jii•' ..� . � I I ' ' ` I •'f• _. 1 ~ll. i,r � ,.I /� :�:�':9.:..:�' -- � :� • ,�. _�• •...., 1. - ,'/ II'o.lJ-j, ,� ,. . - :.I r.3-- ._.y.cL1.C1 �. -... . :: .., c:�: -•,,\ J^.'; frr- :>.;`� �V� -. -•�-- - \\ ' _ I '���, FF.a --uuom� ��� .:��:�.`�Sr_'- gy5{j��,.��'Q''` .•.- �,:.;;;,.:. *_'• _- __•'..r`.,- .- .^r'.�•-yy�:�:._ -i_ ° -• '�'• '�' t'`. •'. SiuhGl 1 / I .` f7 'fj :.... {. a.�;•. _ _ ,•• -F. _ 'L' { _,•l.. �_ ��: L.S' .; J. .. `I •�j..�ji •�':. ': •� ,:c:. :.. �:::. � :�1� -��` .1.7 .. r•vi•I;llrr - •fi i r!` il1Tr•.r•.,,f'., .lT.:` ',t's.` `1' - I' -.� • /y� :•nt)o. aJ I �� i:r 7a.ip „tiuuo 1 7�'1 ' _ �y. I �� - ' . ! j• •.. - y,_'' :-C:`v�: ' l�urtin`Nr,':- �7� •.- �.`/0!�;�!fL L. 4.•,.� '- 1 • '1)`[:- :'.�•= . i._�J1.< �- �'flr -., ��' 1• :', - 1'�, _I: . J � .F i '.e._.1 •.�,'. I:`.S rr., o,,, �I a•' . _ F• ` y =`:JJ[ ^i'Y, yly''i.. s..44 , ':J, :.•:'�.. _^.,• I L -1 ln. ! : °:.•. :r•;..•:. !•n._: c:'P'Z... Y,." •n:m �. r -. �lr.:: '� •r, rrr v,, '--.`: _ "' � , %.� • y:,':i .lvL .-c. _ 'l . � i i'ik„ :'r•.. ' r';a "'E• . -�7; :. _ J4z � . rte: �..j'�'�� � _� '.i. �� I/:�. °:1 -,� . � y °L_'c?•= _.:+ - - - „- - �{._.id•_`F: - �` f: �,•p.� % -.. Wwa� �v, 5'�:�._:•. 'Ir't =zt• - _ •.1:� ^ -'i' - I., � .� �•u•�r.• •.E : +1:::4,J.- '..:.. �.:'� :„i �..�:• _ �i.lr,� •, i.+iY• '' � '!4�.•:ii �.� -� .`• \+''.li. . � J , _ :``,. :I.: :..! •. ,1 , :;l . _ . _ iii ;f`rF:. :Jti-�ri � '�� '.f' �— .,• _ _ _ .ji.�•::`;:�;' `lir .�:_ ::J+..)Sr: . I'. - . , 1 -, I N'a;�5�..: -'-.�" - 'v- `:'�Ji -� ,C,?�,•.i:��_• ^: _rn:rt �: � 1 17, �.�,q,'_L-:,ri__- •- ^��� = .�•_ -; �•r�: 'f :.t - .� _ :i; =:�Z _ ''.i I \. -_ Jam•, - - ,r f.r=. �- _v?`, vY: �J7� .r •i. ;i '\ - - :_.tr,1` ''— •e_ -••• � - _F• •'•1 } ^N. -.. z�im /�j _ '' ` _. n.•� : ..'2) _ - Il , I - a- :�.'.�� �1 J i• �' J:N'• -_ y��� _ _ �i - . 1 : '•1'i:': -- _'L�4,- ;j•, ••' l-.:r_ _ 1IV _ _ � /� ' � :1 , :.vY.�tiiJ•• _ -i :.. I '.' �<.�fi � - {:.n�l. :::(;� _ : :^i� �� i_i', ` %'• - 4l'` L...1 UFrYy�. -: _c�i !"V,�: � .i y •{ . . ::. ' . {- .�:•�- �• ', :.•. I. ' • '' '\•Ins. �.\ _ , .. _` - ..� ° _ y_ :'. :..•s. '.. ��,1:[.!5•:•r :1: ,� 1 4: : ix "'^ , is � • � ` T, 'r!:I: t : ,.acw --1" :v..: •.r `1' ° .'''' . _ l ::fir,}..::. �;' � ,. �• r: �� >.. ... -,tom _1`r•:y -• �_�,t _ -: a -:., 1,1•,tl� �. , ::,!Yule.,.:• ., -y '.a�''�`- `. i:. ._ .. -4 _-� • ' \� �`. i _ I' q'f .:=• _:�• / >,��J..3, " +'('. .; , --- +^.;5,•j,'-/'• a;:. _ i _ mil' _ :I'. :tom.,''• ,- 1 r -1_ `'•.0 =.-__F ,,,.� . .�;_ 1 - ..�!• r ., Lam- .!�;•.- : Fi..° zzl _1; N ::.• fl -' .., "—=may• __ __ _ _ '+ � •� -,t.. __ _ Nol � ,i01 • /{c?�I�;OJ �_ 1'114 5�'1.:::. ,:.l..i�- - .,'•.^ , _ - :�._:_,_ ,� :� -. o 0 0 0 i0d11'JOD GOG1� 11NinO� 013=2 /11c' {*'�••, _ :;:;::.:.;� ;'�� -. \ _J :• /• ta^. 3-�''�� :� ^l�•Z..„'::y,'i• }.'._'.,� _ �.�.., - /: _ '1_ _:�' r , rJ lllll•' ��..... •'r'r - t.:r�, ♦:'ffl.Y::; I_!�:rC•:+rv; c3 otl Gl• J1. ;t�� •r.Y:?. �_�.'' -' .i'a' ' -.: _ _ I' - - hlri 1 i V Lri u0 I ' is , J ' y �n �r ,.� ,�.Y,. •�..'� b: 1.5 :9: i 1� ' >noOr °i 1 :''f :, raC: ''1,:7•Jr. 1: ^i •.T"'t`:-": ?.r.., :�.: •. -,r-. :. i � , C _ d 4i•IOra r.,rllr..,. . �__I (_' '`�!:S.'''f-. -..9th - .I,a::i. _ _ ' �•Ly'+::'.2a..!-r�- ,:;<;- ':ryal � '.�• .�'_ : {I �; !- I'• :_�D �•;. 41, ,�;� i •�i�.: ,' � I' ,r•e vi�- _ _ _ -;'r"1 :'�'_ti. '4, r.i� 1+... .I ,�,:' .. •... a++;ti.';ia., ;.nl." ` "�.'- ,S = r'';.. :J hY :F\ •'i;.0 ='� �. .I'. � '''1 I '•n'c;3ih /,'• >: c: _ _'1 ' „Itr _I, r.: 7t p::,. :'� . .•�, _ :ri�:�'lld::... ,, �'uer"�:�j• ._ - - F I �! I• 17.-a "'' iiY'-'�-•'•.�::jn:•,/�• {A. r'-7 :.; '` ”' ' .. (.:_,b,- LIT:' a •�• ,lY J' ,l: ":- I�,_•i tij� °: -� i`f..:::•llr. "cl._- �:�::� �: "_'_ 1 r�;i•. ;# - .�. .r. .? �: 'rn.gr. �`Ca,•.., 1 "� -: `J�a•'•v "' �'�' � "" �l. � IrT:.' IJ /'•t� .�M ' ? %�, :'.` - I`'}. `'slbar., r 'S - - ;'�: - 'i" 1.;;s � /�' x'11 y.:•` •-C'��— •_;J'a`i, - it T � I I • _ �'/ I .,, , trr:a'.i.yr:. - - Z''`"/. �'- _y''. "`. - - '• i�' -_I_. - r.:,_•F�a. ,ft- ice- y`�1. '- �.•,�:.,� �.=' � _ iii J1 'l' - _ � :_ �:a[•�.�ir',:: l.,.li.,. :.r.' - ' 7.i "'' r, n .;.J."T : ••'�? ".'. I,.lilu= I'-,•= t -�`:a o;° ;�,; � w� 'F '6`- ,�.� W,o � _ ;4;;4'i: ::' • 4-.. Jl�` -.J1~ •,. -.� _ _ _ `�T^-• i�l•Iv �t{.! - P. - .,,•r. t.. \`�`r� I; - •d•r.,,,,,, 'r.i' -,ice - - - •i. c- ::l v- �L^.',w ' ^' I �.j •_\ 't _ : -%•.•. `IL�:ii�- �.L�+`..l _.1�:.,.H..;�7•' u.y.. t`. �1.�- •.f '- /r , �� "ter`,'• :.•r�S•.: '�L�t7,'!h'��iQrrr:��''� .,�;ar -,• 5.. 1 .•.lt,�•Iw_T�..�r�•�" :1.._..,d.'.= ;yam.:+ I!. '- `.,Tr) '•I%�l•1 i5��` i.�cyt`.'.� - r r_�� ,'.� C - w: ?-�1, _ _- .ailL�yti. ' � - -�t�1 - 'aV I .r.~.� �. :.- \``�' >i GEC r• — _�f11� ^\I: _ .al: -,� :1 '.d•�._._�i r F•_ '`i• 1-�yJ �� �;+,'el'' {:�..1� [;• -;�_- !:' - :�- •- -;�iy: ..� -.'rs� .�ti. _ Ile r ' n "� e- „•Irn /(j�'� _ r.,- l'., ^:''T:: ��r. _ _ ;v::r.. . ('... � F =[;. , ,,+��,!'_ •.t •, �i, +-r Ir_ _ - r � `'• �� . N.' r' ,•,ir.: `�: �1! a•v,r Fvr �''. _ YI' ^•�'.. '' L •.I:'{� r... r' . d. »;; µ'. "r• - 9 ..: '�`:� _ • \'• -'�I: p. �♦ �rr.::. .,: 1� _. �� Ir _ r�r't' IrdY:: 'ti'L L�..._..i ��„� -v ..F -�'J •;.;�: '• :' lY:.� T•4,::I:•s - - ,'may _ -' r•.U. ( -f:r . =�:�� -� y-, _�' _,). `•' ! 'tti!'�'a' �r',• ^i - - :. -J•': - :''•'. _ -•,% �'' - , :�` �. m �v_`i. �/'=•1 ,.3�- ,eFi.7•,� .:: .ai3w7'ci.J �" - ' +' -:rr -��r -� �:`7.' .. ,''�•.,'.- - -- tS;,::E' (.ZL�.,•'- -'1;-. -:��„y ^Jt;• 1. !rin.q _°•^ - t°.' .^� ::r�' _ � I i � .'- �r` �:';•; +';.::ar. ... •ti.. •ii1.,. . �'� 4r�: :'.��C'.. M,�l _ � TJ Y• rrr` 1J?'. ^;.%:rM:r '.t. 'y:: Pa. :- r'r'�'••. ',y.' t. L'�� t• _ -tom �'�,z . I> e• _' ;' _” 't- ::'I.-. _ ,'�r I�.�tY r: •_ 1 '� �, I::I' �:.._ _ .,_' :� .\:J ;I. F.n:' __.b` _-... ( _.._ •.• .: -•• .i °•:i' :,ti): J:' ',- ,-ill ��' _ ^l' c�y:-,:t.: ::vim.:. ':.1�`Z. ^::.: 1 1 •!••: •ice I _r{•,l,' a =•• - ~_ _,l1 L' J. - -- — :i;. y 1•. • _ -- - - -- • _. _ may_ _ :' -�- �'•1 _ •'•. - ••.P�,!- - ' - - `••yam -J __ � - �.. - - �I:,: _ c -� 3!b�d r, it _ 1 .\. :U ,;11'. y:r;:'1•:: •i p IJ r .: .s7�. is rt_•:. \, r •�', - 000 f _ I '.. •• , �0 - - .J•� - -, 1..;.;,: .:I;;; �•L:�.:J: -'`�. �; >-'�� - _ _I ; :'''. \'� I � ; ,{nom: - _ \ _ = '.I . • ��•. I - _ _y .. - '-�„ - - -.'> ^ally., '. 1 •'I.. _J (j •y.\ 1 - `• -uYri SitlUGI p1U9Q' pDry_•,—'` -C� . . nu,•'- ^I?l�s= r ;i J T'. Gon_n:::. ;ii'.i'• Ly - l'i _atI Z, , 1 ..;..-- til.:.. ::`,!]:(. - - -:. r. I rl: is - -' ll •1 � ;: (- •-"-_. VVON7:iro:�i "slo'ta 'i o_s ,'_ - }; _ — �: _ •'-, -, 1,rll� J1 /'. - �1_ -: -� _ .f.l'� _ ,:•i :l� %+' f. �-, "'+r""� �1. �,__ u t I , I, S, III, ..I r,•�O�y _ I ' : ' _ :.i/t L i. .f _ r101:r _ I_ i- .r.l-r L I y 1 - _1,Ir7y Y,•1 � =1 `. _,_�i_ ,�- �i',.;•!t -.: / ��._..��111��',•-•... y -' �` _ = 1 'i - _i: _ _ SgntlO: I •K•- .y. __.'j I,,,V1i.•_ - •.Ji -i`�' 1- ec[t: -yluv .j /- ••.` - ' man _`._.i.^ - _vrJr_'.. '-! j (6� ' - -i::i,! `' ,:'1• ly `Sy _ _ _ -.� - f V "'. { ^nc �iTi..° '�'��- I :1 `Ia•. � -ff"•,�S 1y1},,1ry�- 1_ �i:'�`•'f�,^C�°%'•• ':�' "''•-t-.1 -_ - - - -1 -_-L -•':___ �i I , OG)U bL t,,,,7 n 53 tlu Dlr - .v`�:;,.r -V �';] ^� -'l -rn :. :�' i_ ;�-• �;. .�'�!'' Ytl:•• 1�- [•, .. . a~ -- -F- 1::• � � - ' .:' �•. .j ., r + •.tell 'may Fu,lt' I uDo I .,.710.]' V�1 ,`.� 1 •,1 \�.y::: �,�: ~',::i.... - -1 J In.:/:i hl. • - - . /h:.: Z•.• _ .:\' -Z. - I I• f 1 .t I •�i: 'L" _ tiry:. _ ••a��,;i.;� ••�_. ' {'* ;;I "�� _'"•"i � ,:1.:• - 7 '1 e� ->'. � /, _ : \. ,o'ah -���- L. =''Irt ' :�:i ..�.: -_`: r:: �i�� •:;!k lam' �_9 _ '- i • ) •' /• I _ c_� �. � , r.:�:.!'•Iw Iv - ��F:• F _ ,a��J.I�••' "] `tr � - = ".• ^i�1•I� iti .�,• •' _ '•i. ,r.\ .I, •.'(:_ .l '.�O.1J'•. i - l 1 r ( /':1 °i�:.J•�, - :L_.. .�g_iJ.r...�� - - ,n '1 %: `I' J1:_��':•' ] -- ' -7�i 'r •••� ,li.... _ r� - ^_'' •, I� :'• ..''II .. � -L„�c, I: - _.S?: 1 r :.,....p ,.:i�' _ - - i 1 c��- •'':..':� - 1:.r,: •� : r. Cc1..0 �...,.�r' ^. �� ' `<•. III L J`�DID 4(�:_- r � n1U:uF: r� . \� � _ � I.:. •• _ .�.�. .CIWr• _ _ _ LEI -1 . ,`F.. �. 'll �_ l'1: !(1�l P, is •_• fit` -J _ _ �� .I.l`�� ..y •i �•: �-- -, i:�� �3?�:� -i . -- { \�=1 ,..y... r,y <..J •�+• -� ;is.:..::�� - ^/ j'. -_'� ' \� ],Frs^ 1,�1- _ _i �� : _ �.•i e '�:•..r '��' _ _ `� _. ___�,a. 1 �M :.10.!.car_Y:i.F1 _I.ti� •ii� :.I'; '1. r' 'ice n �_ ..::: J�q. ,i��_., ^, FT, :Jr"c' !!; dd7'.�.:•:r. ;�:.�'.:il ` �..i�:�ia.... ,���. - • � - - ',' -••Ir 110,'.✓ ,� :•1.. - ��� -:.% 'J'• -`•i ="_1.,1,,�':e�' _ :,, IL: .�i,t -' i" •1:.i i� I I � � :. Lrt_ _ .�1�: i:,��'rj'. ' }� :•,/_�..7 �/. '.!', /: � •.1(s. ': A�: :. .'% ^rp ll•••!{'y: J' � - � ?+�J.�. ?'_ � n - - %1.�:. _"�-:, ,i �. :-,."R -' i� �`i`!�'�4 •t, .. _ 7.'.+\: °�: '. ..41 +./ , ,I. ,,�rs�3LL.:Fri,::f�".r'ryT.`Yv. .`• -'f: ��, , .��`! •:%1...y -1 � 11 u ?.. VM1 '.,p:N. � �: .�1 .k. I ,1,�:�� '_ter._. -:T'• 7.1 ?. ''r ."` .•,Lr.. 1_'` -�l: Try= �',- ..������1�[,r,.._�;: '�j�-•••�\ ... _1� \ u,rll.n ,.:_ —�— ..lrf .:' =t'^' ��..d '„�1 - -�6. �`•s.;:'n,e[ i •y:' .,+y � .- v%�!•,�o .1 - -1 �\ ,, . _,P_.y /t.: "'- :• - \ "t" - �1.IL I ^y.• -1 r '�:r�'�f' h � ,�i�'...C�'':`:. ��, f � \�\:.:-- 'v','?�. :a��' l- ` ii✓.r'J.:.,,. � ,'L.'.;. rv:u• r_.. - I' � 1- - �Liu1, G•' ,u . J i�.ut,'`�. 1. �, _ =�• ,:Y:: _.Ki•;,;' ' �. - ' �� -. -_;:,�• _ r•; _;i_._.. :.�':' _ 2, ,!� :.L•�� .�-�'i -T' %.�^ u.'1' - .'. �'1 --f-- .jam- �j�_�_' ='•� •. '° ' ;L.. �:.� . _ V / .�. _J T��' _ 1 :�,,�� . •.. �i,•1. .. _ _. Mme.. _ ��I ;�_• \.,..- -j,aq J - A. ,, ''',:.'. ��VEa __- •'"�.- '�:�\ � `� -� ^` - `�., -j� _ i _ �, L hR'`1y /. ..' �.. __ x.�_ .• ":7• .=•: .:, '.yT- i.IF�Y..^.� Sk ~' I ` 7a -�'c n-1• �(^1 O:' \.. - ,'xr`h: + _ -�•�_`F . - _ , � _ i'. I',; : f_�,.,',� ^'' � � • s _ _ ', I 1 nJ..: 4 - l! - ,..,, -:1 -fir' -1 - _� �.i _:T,.• - Imo; .iii% '~::'_ ,•I :m i.! , �. _ - ,•1"''`I'I .� ` \'I :.) '... .1 +.' zT4' .:i: ,; 1" _ _ - _ '0�� +:• f.. -b: -'' •,t'� �I jy:J -'i :. .�} �•: %. _ LI i1�:' _ � �� . L' _ , _..'I:`.. -' \ i,c _ %, _'4r`d:; :'ria' ! `.r_- IJI ^'+, '�:7i "._ :�• y [t^:, . I: - _ I} i7: r ;fir` �+f_•. -] -, t9 F."Z yr -1' `! DO i _1> z _-0 i • 1 7 C�^ )-� 1`I z -I C) LJ .lJ 1> -7 1- J -I _I Fri m RAINFALLa. PATTERNS IN PERCENT 3 - HOUR STORM I1 '•C '- 11• I0-1111 /•r'1 11111. 1•rR 100 1`r "ion -M 111 1 70-01 t1 nIJD PERIOD t.e 10.0 5.1 17•'1 t.9 17.1 6.6 29.9 7.] 20•] e.l 9.0 12.) 11.6 I L1 1 .,2. 6 -HOUR STORM 111L PER 100 a -1111 P[nIon 10-1111 P[111011 115 -••11 I PrnlDt 1 1.1 7•] 7 6 .1 1 .L I.1 2.2 I.o p I.e I.0 e 1 11 l0 I•] �•1 II I.L L.1 •1 I.L 2.5 q 1 I•L 11 2.2 n.5 1] 7.2 I•.I Ir• 2.0 11.1 ID •L t.5 I1 .n 1 '1 7.2 11 20 2.1 ].A 21 .1.) I.e •.] le .e 27 2.q It .n ].0 ].0 le .e z.0 2e I.z •e 7.1 L.7 z0 Zn ]. 1,) 2•) L.O z. ] ]0 1.7 5•] ]0 ] 1 ZI .7 ].L 1.0 25 D 7.! 26 In f. 1.0 -M 111 1 70-01 t1 nIJD PERIOD t.e 10.0 5.1 17•'1 t.9 17.1 6.6 29.9 7.] 20•] e.l 9.0 12.) 11.6 I L1 1 .,2. 6 -HOUR STORM 111L PER 100 a -1111 P[nIon 10-1111 P[111011 115 -••11 I PrnlDt 7 6 .1 1 .L I.1 2.2 I.o 7 7 I.0 e 1 11 7 .1 I•L 2.t p •1 I.L 2.5 q 1 I•L 2.6 10 .1 1•e z.l II .i I.L 2.e ID •L t.5 I1 .n I.7 7.2 11 .0 I•e ].A IS .D I.e •.] le .e I•e 1,1 It .n i.o ].0 le .e z.0 •..z 19 •e 7.1 L.7 z0 .D 1. 2 1,) 21 .0 z. ] ID.h 1.0 5•] ]0 ] 1 ZI .7 ].L 1.0 25 D 7.! 26 .9" i.7 1.0 zl .7 •z ] 7 to .9 t.s 27 .9 t,D ]0 2.2 ) ]1 .9 4.2 J2 .9 6.1 .]] 1.0 10.] 1y ]t 1.0 x.D ] 5 1.0 I.1 1 ]6 1.0 •] ]1 I.0 ]a 1•I ]9 I.1 11 1.2 12 1.7 1] I.1 11 1.1 t! I J to I.5 17 1.6 ie I.a rCA100 ].e t.e 5.] 5.6 L.n 7.0 Il.a 11.1 tS.l PLn14 Prn100 19 1.1 SO 1.0 )I l•� st z.D 57 2.1 51 2.1 51 2.1 50 2.t 39 2.5 LO 2.6 L ].I G2 ]•e L] ]•9 Lt 4.2 GD S.e 61 1.9 Ln 9 69 e l0 .5 I 11 •7 12 .L I•I C T C- S 1. , and 6 -I1ou1 pollerns based on 111e Indio area Illllnderslorm of September 24,1939. ,2 2.1- I10,lr pollerns bused on Ilse general slulnl al March 2 R 3,1930. 24 -HOUR STORM 1110 Pcn100 15 -1111 PL 11100 ]0-1111 rLit 1 ca i •t .1 L ] I.o 7 7 I.0 p 1 11 l0 1 1.5 11 •] I•) 12 I7 .5 I.D 11 ! 2.0 IS .5 2.1 ID •L t.5 le •1 )•] Lp .e .•] ZZ i 1,0 t] a ].0 z1 .0 ].) 2] •v ].1 21 zo I.o t.e z9 1.0 5•] ]0 ] 1 ]2 ] ] 71 1.0 ] 7 ]D ]Y ie 2.2 ) 11 7.0 .5 1y 1.Y •] ,1 11 1 to In 1 I.t 1.1 I.6 2.1 z.e 2 . '1 ].O t.e A.] 0.i 1.0 1.1 10.e 11.1 10.1 0.; 1.1 1.7 1.2 I.1 I.o 'I ,D 11'1, Prnlno .9 )0 ]I ]2 51 ,t ] f• ,1 5 Y' LO L1 62 L 1 L] LL LI L0 b9 l0 11 12 17 1. 1, IL 11 1n 19 a0 el Oi n] u. 0] DL �1 eo ov v0 •1 i 7: v7 v1 V) vL 15 -111 PLPIt � � �w . w _ w� .._ � ,_ � __� . ■■i _... � w .. w . s . w� , .w � w� ww_, w� . ww ._ w_.- 'O I T� ill L1 P f�) O t?1 i L� L7 G< -7" 1` •1: m ri (--) F TI C m _cj� v-) i _! m I cf) E� 0 L ,U J.> CA111EDRAL Cl IT DUBAI IOil FREOUEIICY III till IE5 10 100 YEAR YEAR 5 G 7 8 9 10 11 12 13 14 15 T6 I'/ 18 19 22 24 26 2 11 30 32 34 36 ]0 40 45 50 55 60 65 70 75 110 115 4.14 6.16 3,73 6.00 3,41 5.56 3.15 5.15 2.95 4.81 2,77 4.52 2.62 4.28 2,49 4.07 2.30 3.88 2.20 3.12 y tl 2.11 ].44 2,04 3.32 1,97 3.22 1.91 3.12 1.85 3.03 1.75 2.86 1.67 2.72 1.59 2.60 1.52 2.49 1,46 2.39 1.41 2.30 1.36 2.22 1.32 2.15 1.28 2.09 1.24- 2.02 1.16 1.89 1 . o') 1 .78 1.0] 1.60 90 1.60 94 1.53 90 1.46 ,O6 1.41 83 1.35 ,00 1.31 SLOPE - .560 RAINFALL INTENSITY- INCHES PER HOUR CI1EnnY VALLEY OUR AIIOil FREOUE'ICT NINIIIES 10 100 YEAn YEAn 5 6 7 8 9 l0 11 12 13 14 15 IG 17 IB 19 2 0' 22 24 26 2n 30 32 34 36 3B 40 45 So 55 60 65 70 75 B0 05 3. AS 5.49 3.]0 5.91 3.03 4.56 2.02 4.24 2.64 3.')1 2.49 3.75 2.36 3.56 2.25 3.39 2.11, 3.25 2.07 3.12 1.99 ].On 1.92 2.90 1.06 2.60 I.an 2.71 1.75 2.61 1 T 2.56 1.61 2.43 1.51 2.32 1.41 2.2'2 1.41 2.13 1.76 2.05 1.31 1.90 1.27 .1.91 1.2.3 1,05 '1.2u I.Oo 1.16 1.75 1.09 1.64 1.03 1.55 99 1.47 97 1.411 09 1.34 05 1.29 82 1.24 ••19 1 .20 .77 1.16 SLOPE - .550 CORONA OUR A71off FREDUEIICT HI till IES l0 100 YEAR YEAR 5 3.10 4.18 6 2.04 4.30 7 2.64 4.07 0 2.47 3.R1 9 2.34 3.60 10 2.22 3.43 11 2.12 3'27 12 2.04 3.14 I3 1.96 3.02 14 .. 1.89 2.92 15 1.113 2.82 16 1.77 2,73 17 1.72 2.66 10 1.68 2.50 19 1.63 2.52 20 1.59 2.46 22 1.52 2.35 24 1,46 2.25 26 1.40 2.17 28 1.36 2.09 30 1.31 2.02 32 1.27 1.96 34 1.23 1.90 36 1.20 1.85 38 1.17 1.81 46 1.14 1.76 45 1.08 1.66 So 1.03 1.58 55 .99 1.51 60 .94 1.45 65 .90 1.40 In .07 1.35 75 .04 1.30 00 .02 1.26 05 .00 1.23 SLOPE - .480 DESEMI 1101 SPIMIGS OUnAI ►oll FnEnUENCY HIIIIIIES 10 100 Y EAI1 Y C A R 5 6. 7 tl 9 10 II 12 1] 14 15 16 17 1 1 19 20 22 24 26 20 30 32 34 36 30 40 45 50 55 60 65 70 75 00 85 4.39 6.16 3.95 1..00 3.62 5.56. 3.35 5.15 ]•13 4.u1 2.94 4.52 2.78 4.20 2.65 4.0r 2.53 3.1111 2.42 3.72 2.32 3.511 2. 24 3.44 2.16 3.32 2.09 3.22 2.03 3.12 1.91 3.03 1.u6 2.06 1.77 2.72 1.69 2.60 1.62 2.49 1.55 2. 3') 1.50 2.30 1.45 2.22 1.40 2.15 1.36 2.09 1.32 2.02 1.2] 1.09 1.16 1.70 1.09 1.6n 1.04 I.Lo 99 1.53 95 1.46 91 1.41 80 I.35 85 1 ..31 SLOPE - .500 L I.S II,n 11 wILUD 4A 11 111111 AI lull FnCOUEuCY HIIIUIC5 l0 ;00 1'1.An YEAI 7.23 G 2•')6 4.5. 1 2.15 4.2 ].7 10 '.32 3.5 11 x.21 3.3 12 2.12 3.2 I] 2.04 3.I 14 1.91 3.0 15 1.91 2.9 I6 I.uS 2.0 17 1.60 2.7 1 I.75 2.6 19 1,tu 2.1 20 1 .1.6 2.. �2 1.5) 2.4 L+ 1.52 2•- 26 1.16 2.i 2u 1.41 2.1 30 1.31 2•� .12 1.33 2.4 34 1.29 1.` 36 1.25 1.`. 311 1.22 1•r 4 0 45 I.I] 1• ;0 1.01 1• ;5 1.02 I 60 .911 I 65 ,94 1• 10 .91 7- 75 U6 1• eo 115 I• 05 .03 SL1)I'I. -. .480 311 -Id v Z 0 0 9 S r N1 , ; dnoH Cad S3H:)NI i I ! �� 1 � I � • c��wnN �ON (zc I 0Nnb) ! ? -^W d f Nt��n- , 1,1 i!]AOD i i! 9NId�OSOt,jC-j v, dl, f�J 20 'TO dm 2o n I! I 1 1 I I I I l i ^^S \� N3101AA1i A�ONmO ! i l l( t��n� ! 1 I' S� Z' I IIII! lil!II Illllllllllillllili 1 1 1 1 '• I! i i l l i :: I I I I ). 1 , i l i i 1 1 1 1 1 I 1 1 1, l 1 I! I I I I l I l i 1 1 1 1 i 1! I I 1 1 1 1 1 1 A I I I �• I, I I I I I! I I 1 i Ell l l l l i '�' I I I i l l I I ! 11 u� 0 pDVI N� SnAA 38144 ���di 1} 1 1 OI 1 1 1 I I I ( I I I I I I I )• I I!( I i l i i l l l l t i l l l l i l l l l l i l l l l l i l l l 1 1 1 1 1 1 1 1 11 i l I I'I I I I I! I llol 1 1 1! 1 1 1 I l l l l l l l l l i l l l l l l l l l l l l l l l l! 1 i l l l l l l l l l l i i 'I � "il�R�(1 i?.Ifl '7 G] �,� 1 1!! 1 1! 1 1 1 1 1 toe, I i l i i l l 1 1 1 I l l l l l l l i r• ! I l l l i I l l l ,3��'I' t l!• 1 j jl!I11111 O 1 I !!Ilr`illilllllll m 1 1 1 1 1 1 I I I I I I I �• i l l! I 1 1 , 1 1 1 • 1, , 1 , , I: I i I . • I l i l l l i l l 1 i! I I' , !, 1 1 1 1 1 1 1 1 I f ^ I 11 y l y " J I I I 1 I I ; I 1 I I S z I I i i I I I I l I l l: I I I I!! I I 1 I!; I I 1 I I•: I I I 1 I I 1 I Ill ! l l l i l i!, I l l i l , I! I i i I l i l l l i l l l l l l l i l l l l l l: : I l I l l l l l i l .�' I l l l i i l i •.\ 11 1 1!! i l ' • 1� I O ' -TI lill'IIIII 11IIIIIi1111 1 111111 II ;il I; 11:1!,,'1 9 ' :`II�Ilil !I 1!I II tlllllllllil!111 lu•II I O •�_' i l l I i i i l l ,; I l l l l l l( i A l i i l l •� I 1' i I'� � ; I i 1 I 1 ; ' ' I! I I I�' I l i l l 1 1 1, l l� l l i l. l' '"� ' L 1 111'1 1 j 1 '' .: I � it L• !I 1' I11!i!III II Ili!1�111II�� ' l l l l l i l I 1 1! 1 1!! 1 • I 1 1 1 1! I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I l i l! I I I I li . :111!1 '11111 I n 1 I! :IIII! ' 111111111111ij1111!Ililil I l i l i j! I 1 1 1 1 1! I, 1 1 1 '� ' I I I I I I I l l i 1 1 I I 1' • I l !� V- I I I I I I' 13 • I I I! 1 1, 1 i I I lilllll p• 11:111:1 , 11, li�lllIIII! Nit- I I � t 1 • I 1' ' 1 I I I!, i � , I 1 I I 1 � •, 1 I I 'I 1 II •j I •, ` ! 'i 'I �I I I; i •; 1 � I 1 11 j I �� 1 1 I � I -. Old Orchard — 8 Lots Subdivision CVE Job m 01152 Tract 30378 SW Corner Madison and Avenue 51 (V.ista Bonita Trail) By: John W. Cavin RCE 16802 General Information: Location: SW Corner Madison and Avenue 51 — La Quinta Latitude: 116 degree 15" W 33 degree 40.1' N Soil: SCS Survey MdB — Soil Group A — Lots 1 & 2 GbA — Soil Group B — Remainder of Site Rainfall — Storm Volume 100 year — 1 hr — 1.6 in RCFCD Plate D -4.4 100 year — 3 hr — 2.0 in Plate E -5.2 100 year — 6 hr — 2.25 in NOASA Atlas 2, Vo I XI 100 year - 24 hr — 4.5 in Atlas 2, Vol XI Intensity Duration = Cathedral City RCFCD Plate D -4.1 Time of Concentration Dependent Patterns of Rainfall RCFCD Plate E -5.9 Percolation Rate Per Soils Report — 12 to 16 in/hr Sladden Engineering Project 544 -1497 (April 15, 2002) Per City of La Quinta — 2 in/hr maximum (Used for Design) Impervious Cover: Lots 1 to 4: 1. Have not offsite drainage — drain form West to East 2. Have individual retention basins for onsite percolation 3. Impervious areas: Residence 3600 sf Driveways — (25' x 105') + (30 x 22) 3285 Hardscape — (25 x 40 + 20 x 40) (pool, deck, patio) 1800' S 1dewalk — 40 x 100 400 Out Bldgs — 30 x 30 900 Approx Total /Lot (use 10,000 sf /lot0 9985 sf 4. Tributary Area of Lots 1 thru 4 — (280' x 632') 176,960 sf 5. Percent Impervious Cover 10,000 (4 Lots) 177,000 = 22.6% Lots 1 & 2: Use Runoff Coeff Curve for Soil Group "A ", ' Single Family — 1 Acre Lot — 23% Impervtot1s Interplate from: RCRCD Plate D -5.1 Old Orchard — 8 Lots Subdivision CVE Job # 01152 f 1 ; Tract 30378 tI John W. Cavin REC 16802 i Page 3 of 8 r I ' ' 13. Total Tributary Area (See Drainage Area N/fap) Tributary 5 20,550 Tributary 6 69,386 ' Tributary 7 5,657 1 Tributary 8 90,000 'I Tributary 9 34,650 Tributary 10 8,005 Tributary 11 11,239 1 Tributary 12 8,972 Tributary 13 90,546 339,005 sf Tributary Area 'I I 14. Lots 5 thru 8 (Retention Basins 5 thni 9) Percent Impervious Cover 140,000/339,000 = 41.3% lI 15. Use Runoff Coefficient Curve for Soil -Soil Group `B" Single Family — % Acre Lots — 41% Impervious Interpolate In: RCFCD Plate 17 — 7.2 Inlet and Pipe Design: 1. Curb Inlet No. 1 Time of Concentration: Use longest Flood Path Longest Flood Path is along Vista Bonita Trail, (VBT) and Madison Street to the Curb Inlet at Madison/Norris. a.) Initial Time for Runoff to start — Assume Ti = 6.6 min b.) Time to travel VBT roadside swale to Madison Elevation @ West end of VBT — Approx 521 per USGS Elevation @ East end of VBT — Approx 516 per Survey DH= 5' Length of VBT Tributary Area L =950' Use Plate RCFCD D -3: H = 5, L= 950, 50% Impervious for possible Landscaping and curb /pavement = 17.5 min Or use V =2 2.4 fps in future curb and -Litter = 950 = 6.6 min (Plate D -7, 8), S = 5/950 =.0053 2.4 x 60 Use Most Conservative Tt = 6.6 min c.) Travel Time along Madison future curb /utter Slope = 515.59 — 513.54 = 2.05 = 0.0023 1/1 2725 — 3619 894 II 6" curb face, 43' from centerline to curb @ 2% crosslope 'l Madison flowing 6' deep at curb Full Street, Q = 11.8 cfs % Street Capacity = 6 cfs, Velocity P s = 1.5 f _I Time of Travel = 894 " /1.5 x 60 = 9.9 mill 10 min d). Total Time for Inlet (cb -1) 22 min Plate D- 4.1 100 year Storm Intensify for Tc = 23 min (plate D -4.1) 2.86 in/hr Tributary Area= Areas 3,9,10, 11 = 3.30 Acre i �l 'j I� ,I Old Or,-hard — 8 Lots Subdivision CVE Job # 01152 Tract 30378 John W. Cavin REC 16802 Page 4 of 8 Runoff C for Soil Group "B ", 41% Impervious, 1 =28, C =0.746 Q 100 =AC 1 = 3.3 (.7=16) (2.79) = 6.87 cfs 6.87 cFs Plate D — 7.8 1/2 Street Capacity @ 6" TC depth = 12/2 = 6 cfs Plate D — 7.8 1/2 Street Capacity @ 0.69' depth to Right of Way = 36/2 18 cfs Madison Street has adequate Capacity for Q100 @ D =0.52' 2. Curb Inlet c.b. #1 @ Madison: Q 100 = 6.9 cfs, Flow depth = 0.52' Continuous Slope @ S = .0023 1/1 6" Curb Height, 4" Curb Depression, Curb Opening = 10" = 0.83' Set Fl of Cross gutter @ Centerline of Beth @ Same elevation as TC at Inlet #1, to create Low Point and insure all offsite flow into Retention Basin System. Water Depth @ Inlet = TC elevation = 6" + 4" = 10" = 0.83' = H Opening height = 6 + 4 = 0.83 ( RCFCD — Local Depression #2) H/h = 0.83/0.83 = 1.0 Inlet Capacity @ Sag = 2.5 cfs /lf Required Length =-Q1 00 /Qc = 6.9/2.5 = 2.76 Use Standard RCFCD Catch Basin No.1 L -4.0' = W V= Depth from Tc to Outlet Flow line = 4.0' = V V' = Slope of bottom of CB = = 0.5' = V1 Use RCFCD Local Depression No. 2 Case B 3. Storm Drain Pipe Design: Pipe Flows out of Curb Inlet into dry-well below the bottom of the Retention Basin. Small nuisance flows percolate away in the Drywell. Larger flows fill the Drywell and overflow out the grate of the top of the Drywell and collect in the Retention Basins and Percolate into the bottom and sides of the Basins. Q100 = 6.4cfs, N = 0.010 (Smooth HDPE (N -12 Pipe) (18" has excessive HGL losses) (Fields Calculator) Use 21" HDPE @ S pipe = 0.0656 into Drywell HGL Slope (SO = .00092 1 /1, V = 2.7 fps HGL Losses: a) Loss @ CB = 1.2 V2/29 = 0.13 b) Friction Loss = .00092 (47') = 0.04 c) Loss @ Dry-well Outlet = 1.0 V2/29 = 0.11 0.28 Old Orchard - 8 Lots Subdivision CVE Job # 01152 Tract 30378 John W. Cavin REC 16802 Pase 5 o f 8 HGL Losses = 0.28 Elevation Summary @ Madison Street: Retention Basin WS 100 = 512.3 - 0.08 (ivlax) 512.02 Curb Inlet WS 100 - 512.80 + 0.5 = 512.30 512.30 Curb Inlet TC /Street Flow WS 100 = 513.65 Inlet Depression Flow Line 512.80 Actual conditions are not as tight as the calculations appear: L The tested perc rate is 12 to 16 in/hr. Using 12/2 = 6 in/hr gives a safety factor of at lease 3. 2. Using 6" per hour gives a Retention Basin Volume 100 = 6300 cf instead of 16,213 cf using 2in/hr per City Requirement. 3. The peak water surface remains for less than 1 hour, Floods Madison to a curb depth of 0.52, and floods 21:5 feet of the 4' ) ft street %z width. This leaves one Lane open for traffic under even the worst conditions, with a Total Safety Factor of at least 2 x 2.5 - 5 (SF) Design - Inlets 2 and 3 a) Time of Concentration - Orchard Street and Lots 5 thni 8 Initial Ti - Flat, sandy soil, start ninoff. 10 min RCFCD Plate D -3 Initial Sub area (Lot 5) DH = 516.30 - 515.88 = 1.58 L = .95' 6.7 min Old Orchard Gutter Travel: S = .005 1 /1, N = 0.015, 6" Curb Height L= 515 LF RCFCD Plate D -7.8 Peak Full St flow @ TC = 17.7 cfs, V = 2.3 fpd Tt = 515/2.3(60) = 3.7 min Tc = Total time of Concentration 20.4 min RCFCD Plate D -41 b) Intensity I 100 = 3.03 in/hr I 100 = 3.03 in/hr c) Tributary Area = 6 + 7 = 1.59 + 0.13 = 1.72 Ac A= 1.72 Ac d) Runoff Coefficient - (SGB, 41% Impervious, I = 3.03) C = 0.76 Q100 = ACI 100 = 1.72 (.76)().03) = 3 = 3.96 cfs (East % of Orchard Lane West % is less since lots 1 - 4 do not drain to street) RCFCD Plate D 7.8 Street % St capacity frill to Crown exceeds 20 cfs CBT3 Street Flow West %z Old Orchard Street: CB -3 [Q100= 3.96 cfs , d =0.4', V= 1.9 fps CB -2 Street Flow West %z Old Orchard Street: CB_2 A= Area 5 = 0.47 Acres I100 = 3.03 in/hr Old Orchard - 8 Lots Subdivision CVE Job #01152 Tract 30378 John W. Cavin REC 16802 Paae6of3 C = 0.88 (90% Runoff - all Pavement) Q100 = AC1 +.47 (.88)(3.03) RCFCD Plate D 7.8 d= 0.30', V = 1.35 fps Water can be allowed to Pond in the street to TC elevation at both curb inlet for efficiency. CB #2 and 3 therefore have same capacity as CB #1 on Madison Street. Q/L = 2.5 cfs /LF (see page 5) Required length of each is the than 2'. CB #2 and CB #3 Use standard RCFCD CB #1 Use local depression No. 2 Case B HGL Losses: L= 4.0'= W V = 4.0' = Depth to Outlet Flow V 1 = 0.5'= Slope.to CB Bottom Loss in upstream CB #2 = 1.2 V2/29 = (V= 1.55fps) 0.01 Friction Loss SD #B =.00012(62') = 0.01 Loss in CB #3(Inlet) = 1.2 V2/29 = 0.01 Outlet loss in CB #3 = 1.2 V2/29 = (V =1.6 fps) 0.01 Friction Loss SD #C = .00043(33') 0.01 Outlet Loss in Drywell = 1.2 V2/29 = 0.01 EHGL 0.06 Elevation Summary @ Old Orchard Lane CB-"4?- & CB #3: Top of curb (TC) Elevation @ CB #2 513.70 CB Depression Elevation 512.87 Max Depth of Street Flow (CB #3) .40 W.S. in CB #2 (Upstream) (512.16 + 0.08) 512.24 W.S. in CB #3 (Downstream) (512.02 + 0.14) 512.76 W.S. in Retention Basin 512.03 Note: CB inlet depressions are 0.5 above the Highest Water Surface in either CB, and will be free flowing into the CB WS 100 is at least 1.0' below normal flow of ;utter. CB 4rr'2 (West side of Old Orchard) Tributary Area 1#5 = 0.49 Ac Tc = 25 min, 1= 2.66 in/hr, C =0.9 Q100 = 1.17 cfs Use HDPE, CPP, n= 0.010, S f= 0.00065, d = 12" Pipe slope So = .005, V = 1.5fps (From Field Calculator) Hf =.04, V2/29 =.035 Use 12" CPP pipe CB-7'r--2 to CB #3 - 1.2 hr + Hf = 0.004 + .04 = .08 Old Orchard - 8 Lots Subdivision CVE Job # 01 152 Tract 30378 John W. Cavin REC 16802 Page 7 of 8 CB'-,f") (East side Old Orchard Drive Tributary. Area # 6 & 7 A =1.72 Ac, Tc = 25 min, I = 2.66 in/hr, C =.9 Q100 =AC1 =4.12 cfs+ 1.17 =5.29 cfs Use 18' CPP pipe CB #3 to Sand Filter CB #1 (Westside of Madison Street) Tributary Area 8, 9, 11, 10 = 2.68 Ac Ti - 10 min, Tt = 1520 LF @ 2 fps = 12.7 min, Tc - 2' ) min I = 2.66 in/hr, C=.9, n =.010, 0 = ACl = 2.68 (.9 (2.66) = 6.41 cfs d = 21" HDPE CPP Sf = 0.00092, So = 0.0656, V = 2.65 fps Hf = Sf(L) = 0.04 Hv = V2/29.= 0.11 1.2Hv + Hf + Hv = 2.2(.11) + .04 = 0.28 - WS 100 = 512.80 - 0.5 (freebd) - 0.28 = 512.02 in Retention Basin Use 24" RCP CB #1 to Outlet/Junction Riser Connector Pipes: Pipes from CB #1 & CB #3 flow into Basin #9 Peak inflow = 1.73cfs @ hr 14 of 24 Storm [TA = 5.0 Ac (not 7.080)] (Area 5- .13)= 3.94 cfs @2.5of3hr 3.54 cfs @5.5of6hr Qp = 3.94 (5.0 Ac /7.08 Ac) = 2.78 cfs (Area 5 thru 12) Q = 3.94, n =.009 (PE pipe) S =.0064 x 25'= 0.16, V = 5 fps, Hv =.39 Q = 2.78 cfs, n = .009, S =.029, V = 3.5 fps, Hv - 0.19', Hf = 0.16 se 12" Center line HDPE PCC Connector Pipes Sand Filter Leach Field Design L Lots 1 thru 4 retain onsite and do not contribute nuisance water offsite. 2. The back 60% of lots 5 thru 8 also retain onsite and do not contribute nuisance water offsite. 3. The front 40% of Lots 5 thru 8 contribute nuisance water to Old Orchard Drive and to the Sand Filter System Nuisance Water= 0.4 (.458 cf/hs) (4 hrs) = 0.73 cf /hr. 4. Street Landscaping Nuisance Water from Madison and Vista Bonita will contribute nuisance water to the Sand Filter. Beth Drive Landscaping drains directly into the Retention Basin and does not contribute to the Sand Filter. Vista Bonita Landscape (existing) = 592'x 19' = 11,248 sf Madison (Future) = 596' x 26' = 15,496 sf I'! �f �I I. Old Orchard - 8 Lots Subdivision CVE Job # 01152 Tract 30378 John W. Cavin REC 16802 Page 8 of 8 5. Landscape Nuisance Water = 3.41 o--ph/2000 sf = 3.41 (26,744)/2000 = 45.6 gph = 45.6 (.1337) = 6.1 cf/hr Lots 5 thru 8 = 0.7 cf/hr Total Nuisance Water = 6.8 cf/hr 6. Sand Filter Capacity = 18.4 cf/hr >6.8 7. Leach Chamber Capacity = 2.8 sf /LF (0.25/12 ft/hr) = 0.058 cf/hr/LF Required Length = (6.8 cf/hr)/ 0.058 = 117 LF Chambers are 7' Long. Number of chambers = 117/7 = 16.7 Chambers Use two rows of 9 chambers each - 18 total. 8. Pipe size from CB 1rr1 to Sand filtration: .Q = 6.1 cf/hr /3600 sec/hr = 0.0017 cfs Capacity of 6" CPP @ S =.0004 = 0.15 cfs, >0.0017, 4" CPP has capacity but is to easily blocked by trash. SAND FILTER/LEACH FIELD DESIGN - SUMMARY Calculations #1 1. House Nuisance Water - Lots 5 thru 8: 4 (Front 40 %) (.458 cf/house) = 0.73 cf/hr 2. Street landscape Nuisance Water (26.744 so 3.41 gph/2000 sf (0.1337 gal /cf) = 6.1 cf/hr Total: 6.8 cf /hr 3. Sand Filter Required = 6.8/18.4 = 0.37 4. Leach Chambers Percolation rate 0.25in/hr = 0.0208 ft/hr Chamber Capacity = (2.8 af/LF) 0.0208 = 0.058 cf/hr /LF Required Chamber Length = (6.8 cf/hr) /0.058 = I I7.LF Use Two Rows of 9 Chambers each Total Length = 18 (7') = 1261F Sand Filter Sizing Calculations House and Street Landscape Nuisance Water 6.8 cf /hr Calculation #1 Use One Sand Filter - Capacity 18.4 cf/hr Calculation #2 Use 126 LF of Leach Chambers - (2) rows, (9) - 7 LF Chambers Each. Capacity 126 (.058 cf /hr /LF) = 7.3 cf /hr Tc' LIMITATIONS L 100 I. mG -.1mum length = 1000' is 1007 90 2. mommum crew = 10 Acr a \ X00 "0 c ! cu H 70 ° :' 800 _ _�0 , X00 r ; .- Q goo c�' 700 200 \ 7 aaj c ry E 100 600 50 0` 0 60 8 0 0 50 i a c a, 40 cu > E c, `" 30 v cu CL 20 > 5 00 ct, ( I) > u cu cu ;' cu 10 10 ;_- u 55 a a) 8 'o CD m 6 j'`r - u- K Ai a: (I) I'1 3 Q, e 400 0 30 Undeveloped 0 m 2j` 12 c — Good Cover m ill CD 350 H 25 Undeveloped 0 ; 18 a o` C3 c Fair Cover .6 14 E .4 cn a_ 300 Undeveloped, .0 c ; X21 IS .e 20 Poor Cover -',, o _2 16 c _ 18 Single Fami�f 5> ch E ci 250 .1 (I/4' Acre) °'� 18 (6- /� 19 15 .Commercial, -0 m 20 L — 14 (Frave� y c o ` m o w 200 ' 13� ` —` � 12 cu cu 0 �� KEY r � 150 E 9`, fa ` L--;-I Tc —K —Tc 30 ° co t— E 8 EXAMPLE: 1— '7 (1) L =550', H =5.0', K =Single Family (1/4 Ac.) 35 G,7 xw-4 Development , Ic = 12 -6 min. 6 40 (2) L = 550 , H =5.0 , K = Commercial 100 Development, Tc= 9.7 min. 5 RC S w c D rjY0F0L0GY Reference: Bibliography item No. 35• TIM _T-I.G N-- -- FOR INITIAL SUBAREA PLATE D -3 .............. _ .......... - '- -' -' -- '--- - - - -'- - - - - -- - 70' P /4V I S z.. lz• z ' • `i I � I 2% 2% Va"c_r!1. ' I n -0.015 II TYPICAL SECTION l I 40 :0 60 60 100 I_`O 200 300 400 90O GCO 9C0 1000 ' ] a 9 6 6 10 19 20 2 9 30 — 40 i I 30 ! z0 ' 10 9 6 l 7 ' 8 9 a ' 3 I 2 It I . 0.9 o.e ' 0.7 0.6 l0.9 I 0.4 .... _.__._—'_'_-'__ _—'— '_'__- 2 3 4 9 6 6 10 15 t0 29 30 40 90 60 00 100 150 200 300 400 900 600 900 10 °° DISCHARGE- C.F. S. (TOTAL FLOW IN STREET) 'J RIVERSIDE COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT VELOCITY' DISCHARGE CURVES 1,I R CF C B W C D 521 ROADWAY 611 a 811 CURBS 11 !-IYnZOi n(-7v \1/1AN1U�I 1 I P1 8 TF- D -7. 8 --- r- - - ^__. NE IITI:_LI ,1: r•' •.I ' I ^'•: , fir_ - - :I. !.I n.• I,:I rT •1- — +���(;' I.. ;L, .111:•' .h ^�`.I ��, •_•I I11 11 —j 1 1. 1 : I I ! !Il:. it 1 1 itlitlrJ�il'1 ::•III' ,i +� IL:II: LI,. T •: 1 1• 1 I.:• I:11.�, I: .'I :'1 : I I .. "1 ,: I... !� —�;I! : I 1 1 1 1 1 1 I 1 I; I11 11 : :1' I I! , I I i ! ; i 1 1 .I'• I I I;I II'I:II I,,,�:;; I:II :y: II .I. ' . • I �l:i:' '— ^�T `_• I , I' ' I — L, -1. :: I I I' :I•i tl' I!Iill!III I'•:i I... Iii: �•, :_i'!iili 1 II r :1 1'il 1. 1 :I I Ili E:I it IL it I __— .- .^�. ^.�_'_� — •-- :_rte -. r'���_ _- — �_ - - MM • 1 -� �,I�I "!- •1 .. I�1,1 y. '1, 11. ' I �. r N •k/ I''; L.; rM-! .', Ir I_I_ I I 1 I I_I1: i. Er7Pa�itlTCi1 I: � y I:' !I Il;hld1 ..J'... • I II u • 1 II I I I II _L, J: .1 :'' I I` ! i II •' 1�7 •!1' �1• il� .I•' I —, —� , ! I 1 _ I' )� T•,: I i'I II lil II' .III I .jjiT -`. ,I;IiTi�l'.II it ;I! ill „r,: ! 1 I ., I, I Ilia :I I ilii Ir;T MI. I':' I 1111' :11'1,11. � ' Il l i :il'TI' I II ;!:. III. 1 r.— �— CI_C " =— 1 _ r: .Ii .•-: �J: _ ;mil ?�.:__' 0.4 .... _.__._—'_'_-'__ _—'— '_'__- 2 3 4 9 6 6 10 15 t0 29 30 40 90 60 00 100 150 200 300 400 900 600 900 10 °° DISCHARGE- C.F. S. (TOTAL FLOW IN STREET) 'J RIVERSIDE COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT VELOCITY' DISCHARGE CURVES 1,I R CF C B W C D 521 ROADWAY 611 a 811 CURBS 11 !-IYnZOi n(-7v \1/1AN1U�I 1 I P1 8 TF- D -7. 8 0-7 3--o 5.0 3.0 6.0- O.0 L 1-1 2.0 9 L 0.7-- 8 1.5 L 7.5 2.0- w - 0.6 7 6.5 1.0 1.0-- CO 0.9 -= , --�, I\- -�;. 0.5 6 0 O.S= t-- - 0.8 0 i -- S2 0.6- N" - 0.7 Ln 0.4- ui 4 EL 0 4.5 :3 - LL- 0. 0 ( . LLJ Li 02 0.5 . 4. Li ce- u 0.-- L Z-- 0.-4 3. O 0 L-- 0.1 0 0 0.03 Lu 00.25 J 0.3 0 0 - - - - -- " :' I t• r u 0 J- < 0.04-- a- 0.25 2.5 0.2- 0.03 0.02 o.2 2 0.1 0.01- 0.15 1 L CURB. ERII NN!" MEM 0.1 OR 0.1 r 1. h (OPENING HEIGHT) LOCAL DEPRRESSION (C.) H (.f-)cPTH OF FLI, OOG'FH FOR CAPACIT( OF CURE C,.-"ZF-D (DIN THE E3UPEI"U OF PUBLIC POADS MMF. 9-,:IPICIMLE7S ATI LOW POINTS DIVISN W W O TO , ASH.. D.C. Op CATCH BASIN - STORM DRAIN DESIGN PREPARED BY COACHELLA VALLEY ENGINEERS DATE: 6 -30 -03 JOB #: 01152 PROJECT: TR 30378 BY: AMG PIPE STORM DRAIN LINE: "B" DIA.(IN) BASIN Q100(CFS) WS100 GRATE NET EXIT LOSS LOSS AT D.S. I IGL100 OUTLET DESIGN (DRY WELL) OPENING(FT) OPENING(SF) AT GRATE END OF PIPE 1.iHV= 1.2HV= - 1 24 9.05 512.61 2.00 1.38 0.142 0.155 512.610 VELOCITY IN 24 " PIPE Q= 9.05 2.88 PER SEC. HV= V2/2G= 0.129 0.142 A= 3.14 V =Q /A 0.155 HGL AT U.S. END 512.906 STORM DRAIN LINE DESIGN LENGTH OF PIPE(d) 29.09 MANNING "S INDEX(n) 0.012 TYPE OF PIPE CPP(N -12) Sf =[ Q n ] 2 W =0.463 Sf =[ 0.108600 12= 0.001358 CONFLU.ADJ.(CFS) -0.14 [d 8/3(1 <')] [ 2.946667 ] Hf =L(Sf) - HI= 0.0395 HGL AT U.S.END= 512.946 1.1 HV= 0.142 100YR WS IN CB= 513.088 DESIGN FOR CATCH BASIN NO. 3 PROP. WIDTH OF OPENING (W)(FT) 4.00 H /h= 0.48 CURB HEIGHT (IN) 6.00 Q /L= 2.50 (PONDED TO TC) DEPTH OF DEPRESSION (IN) 4.00 DEPTH OF FLOW AT OPENING (H)(FT) 0.40 Q= 7.50 3.00 FOOT WIDE OPENING (MIN) HEIGHT OF OPENING (h)(IN) 10.00 (Q /L) 2.50 USE W(MIN)= 4.00 OK Q100 TO OPENING (CFS) 7.50 TC AT OPENING 513.70 VS HGL 513.09 OI< SHEET 1 OF 2 STORM DRAIN LINE: "B" LENGTH OF PIPE(d) 62.00 MANNING "S INDEX(n) 0.012 TYPE OF PIPE CPP(N -12) Sf =[ Q n ] 2 Q100 (CFS) 1.139 [d 8/3(K')] DIA OF PIPE(IN) 18.00 Hf =L(Sf) 1<' =0.463 Q= 1.69 A= 1.77 HV= V2 /2G= 0 014 Sf =[ 0.020280 12= [ 1.366925 ] V =Q /A= 0.96 0.000220 Hf= HGL AT U.S.END= DESIGN FOR CATCH BASIN NO. 2 1.2HV= 100YR WS IN CB= PROP. WIDTH OF OPENING (W)(FT) 4.00 H /h= 0.30 CURB HEIGHT (IN) 6.00 Q /L= 2.50 (PONDED TO TC) DEPTH OF DEPRESSION (IN) 4.00 DEPTH OF FLOW AT OPENING (H)(FT) 0.25 Q= 1.69 :0.68 FOOT WIDE OPENING (MIN) HEIGHT OF OPENING (h)(IN) 10.00 (Q /L) 2.50 USE W(MIN)= 4.00 OK Q100 TO OPENING (CFS) 1.69 TC AT OPENING 513.70 VS HGL 513.12 OK DATE: 01152 JOB #: TR 30378 PROJECT: AMG BY: 0.000 SHEET 2 OF 2 0.0136 513.101 0.017 513.118 RATIONAL METHOD CALCULATION FORM PROJECT: JOB NO: 01152 DATE: 06 -30 -03 COACHELLA VALLEY ENGINEERS FEQUENCY: 100YR /24FIR CLIENT: VANDENBOS BY: AG DRAINAGE AREA SOIL & A l C A Q E Q SLOPE SECTION V L T E T REMARKS DEV. TYPE ACRES IN /HR CFS CFS % FPS FT MIN 1 90 -B 0.42 4.52 0.89 1.69 10.50 INITIAL AREA L =510' H =2.61' 1.69 0.50 18 "PIPE - 0.9G 62.00 1.08 11.58 2 50 -B 2.33 3.88 0.84 7.60 13.50 INITIAL AREA L =510' H =2.61' 7.60 3 75.8 1.14 4.07 0.87 4.04 12.50 INITIAL AREA L =550' H =2.84' 4.04 CONFLUENCE t 8. 2 13.50 9.05 0.45 24 "PIPE 2.88 31.09 0.18 13.68 SHEET 1 i i i i PIPE VALUES 4.14 18 "= 0.00 24"= 0.00 30 "= 0.00 3G "= 0.00 42 "= 0.00 40 "= 0.00 BASE C VALUES 10 I-r•„ C =0.9( Ai+ I Ap) 50 % TYPE A: 0.026 4.28 50 %TYPE B: 0.049 2.49 75 %TYPE A: 0.8G3 13 75 %TYPE B: 0.075 3.88 90 %TYPE A: 0.085 2.28 90 % TYPE B: 0.090 15 INTENSITY IN /HR (0.58 SLOPE) PER PLATE D -4.1 (CATH.CITY) inva , 5 4.14 6.76 G 3.73 6.08 7 3.41 5.56 0 3.15 5.15 9 2.95 4.81 10 2.77 4.52 11 2.62 4.28 12 2.49 4.07 13 2.38 3.88 14 2.28 3.72 15 2.19 3.58 16 2.11 3.44 17 2.04 3.32 18 1.97 3.22 19 1.91 3.12 20 1.85 3.03 22 1.75 2.86 24 1.67 2.72 26 1.59 2.60 28 1.52 2.49 30 1.46 2.39 32 1.41 2.30 34 1.36 2.22 36 1.32 2.15 38 1.28 2.09 40 1.24 2.02 45 1.16 1.89 50 1.09 1.78 55 1.03 1.68 60 0.98 1.60 65 0.94 1.53 70 0.90 1.46 75 0.86 1.41 80 0.83 1.35 85 0.801 1.31 t. t; 'd .it 5 a' THIS CHART IS BASED ON THE STREET FLOWING BOTH SIDES FLOW IN STREET PFR Pt eT= n_� Q 2 3 4 5 G 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 -2 23 24 0.40 1.55 1.65 1'87 1.92 1.95 2.00 2.01 2.02 2.03 2.05 2.07 2.09 2.11 2'12 2.17 2.15 2.18 2.20 2.23 2.26 ..2.66 2.35 2.40 0.50 1.73 1.90 2'03 2.12 J2.�S 2.30 2.31 2.32 2.33 2.35 2.37 2.39 2.41 2.44 2.48 2.56 2.60 - - 0.60 1.85 2.00 2.15 2.30 2.34 2.37 2.41 2.44 2.48 2.49 2.50 2.51 2.52 2.53 2.54 2.55 2.56 2.58 2.60 2.63 2.69 2.72 0.70 1.95 2.05 2.20 2.35 2.55 2.57 2.59 2.61 2.63 2.fi5 2.67 2.69 2.70 2.72 2.74 2.76 2.78 2.80 2.82 2.84 2.86 2.88 2.90 1.00 2.20 2.38 2.56 2.74 2.92 - 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.19 3.21 3.23 3.26 3.28 3.31 3.33 -3- .36 3.38 3.41 3.43 ur-muc I 2.00 190 3.08 3.25 3.43 3.60 3.78 3.95 4.13 4.30 4.32 4.33 4.35 4.36 4.38 4.39 4.41 4.42 4.44 4.45 4.47 4.48 4.50 4.51 %) 3.00 3.45 3.61 3.76 3.91 4.07 4.22 4.38 4.53 4.69 4.84 5.00 5.15 5.17 5.20 5.22 5.24 5.27 5.29 5.31 - 5.33 5.3G 5.38 5.40 4.00 3.90 4.07 5.00 4.30 4.47 4.23 4.40 4.65 4.82 4.56 4.99 4.73 5.17 4.89 5.06 5.22 5.39 5.55 5.72 5.80 6.05 6.06 6.07 6.00 6.08 6.09 6.10 6.11 6.12 6.13 5.34 5.51 5.69 5.86 6.03 6.21 6.38 6.55 6.73 6.90 6.91 6.92 6.93 6.94 6.95 6.96 6.96 25 2.45 2.64 2.75 2.92 3.46 4.53 5.43 6.14 6.97 26 27 2.50 2.55 2.68 2.72 2.78 2.81 2.94 2.96 3.48 3.50 4.54 4.56 5.45 5.47 6.14 6.15 6.98 6.99 28 2.60 2.76 2.84 2.98 3.53 4.57 5.50 6.1 6 7.00 29 2.65 2.80 2.87 3.00 3.55 4.59 5.52 6.17 7.01 30 2.70 2.84 2.90 3.02 3.58 4.60 5.54 6.18 1 7.02 31 2.73 2.87 2.93 3.06 3.60 4.62 5.56 6.19 7.03 32 2.75 2.89 2.96 3.10 3.63 4.64 5.59 6.20 7.04 33 2.78 2.92 2.99 3.13 3.65 4.65 5.61 6.20 7.05 34 2.80 2.94 3.02 3.17 3.68 4.68 5.63 6.21 7.06 35 2.83 2.97 3.05 3.21 3.70 4.70 5.66 6.22 7.06 36 2.85 2.99 3.08 3.25 3.73 4.73 5.68 6.23 7.07 37 2.88 3.02 3.11 3.29 3.77 4.76 5.70 6.24 7.08 38 2.90 3.04 3.14 3.32 3.80 4.78 5.72 1 6.25 7.09 39 7.93 3.07 3.17 3.36 3.83 4.81 5.75 6.26 7.10 40 2.95 3.09 3.20 3.40 3.87 4.84 5.77 6.26 7.11 41 2.98 3.12 3.23 3.44 3.90 1 4.86 5.79 6.27 7.12 42 3.00 3.15 3.26 3.48 3.93 4.89 5.02 6.28 7.13 43 3.03 3.18 3.29 3.52 3.97 4.92 5.84 6.29 7.14 44 3.05 3.21 3.32 3.56 4.00 4.94 5.56 6.30 1 7.15 45 3.08 3.25 3.35 3.60 4.03 4.97 5.09 6.3'1 7.16 46 3.10 3.28 1 3.39 3.64 4.07 4.99 1 5.91 6.32 7.16 47 3.13 3.31 3.43 3.68 4.10 5.02 5.93 6.32 7.17 48 3.15 3.34 3.47 3.72 4.13 5.05 5.95 6.33 7.18 49 3.18 3.37 3.52 3.76 4.17 5.07 5.98 3.64 7.19 50 3.20 3.40 3.60 3.80 4.20 5.10 6.00 6.35 7.20 STORAGE HYDROGRAPH FOR 100 YEAR STORM RETENTION BASIN PREPARED BY COACHELLA VALLEY ENGINEERS BY: AMG DATE: 10 -27 -03 JOB # 0'1'152 REF: LOT 1 SOIL GROUP "B" - AMCII -R.1.= 56 R.C. = 50% PERC.RATE _ RAINFALL FOR 100 YEAR 24 HOUR STORM (SEE PLATE E -5.6)= 3.50 "/2 HR TRIBUTARY 1.03 ACRES PERIOD (HR) % 1 (100) 0.042 0.046 0.063 0.074 0.098 0.102 0.133 0.161 0.221 0.287 0.245 0.256 0.378 0.399 0.364 0.298 0.049 0.067 0.046 0.042 0.039 0.035 0.032 0.028 C (AVG) 0.463 0.464 0.469 0.472 0.479 0.480 0.490 0.498 0.516 0.536 0.524 0.527 0.563 0.570 0.559 0.539 0.465 0.470 0.464 0.463 0.462 0.461 0.459 0.458 Q (CFS) 0.020 0.022 0.030 0.036 0.048 0.050 0.067 0.083 0.117 0.158 0.132 0.139 0.219 0.234 0.210 0.165 -70.023 0.032 0.022 0.020 0.018 0.017 0.015 0.013 ACCUM. VOL(CF) 72.0 78.2 109.5 128.7 174.2 191.1 267.2 392.1 630.0 994.5 1230.3 1342.2 1737.0 2157.2 2459.8 2581.2 2183.7 1845.5 1493.5 1160.0 970.8 792.9 625.5 467.4 ADDITIONAL FLOWS(CF)* 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 PERC.(CF) 154.5 155.1 158.0 159.7 163.9 165.5 172.5 184.1 206.1 239.8 387.0 394.9 422.6 452.2 473.4 482.0 454.0 430.3 405.5 255.1 237.6 221.2 205.7 191.0 ADDITIONAL LOSSES(CF)" 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ADJUSTED ACCU.VOL(CF) 0.0 0.0 0.0 0.0 10.3 25.6 94.6 208.0 424.0 754.7 843.2 947.3 1314.3 1705.0 1986.3 2099.2 1729.6 1415.2 1087.9 904.9 733.2 571.8 419.8 276.3 AC -FT 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.005 0.010 0.017 0.019 0.022 0.030 0.039 0.046 0.048 0.040 0.032 0.025 0.021 0.017 0.013 0.010 0.006 I 2 3 1.2 1.3 1.8 4 2.1 5 G 7 2.8 2.9 3.8 8 9 10 4.6 6.3 8.2 11 12 13 14 15 7.0 7.3 10.8 11.4 16 8.5 8.5 17 18 1.4 1.9 19 20 21 22 23 24 1.3 1.2 1.1 1.0 0.9 0.8 SHEETA OF 2 RETENTION BASIN STORAGE AND DEPTH CALCULATIONS D= 4' -5' D= 3' -4' DEPTH AREA(SF) DIFF.AREA(SF) AVG.VOUFT(CF ACCUM.VOL(CF) IMP AREA IN BASIN D= 0' -1' 1 0.000 BASIN(SF) ELEV. D= 5.00' 4971 947.000 4498 13983 0 0.00 D =4.00' 4024 883.000 3583 9486 D =3.00' 3141 820.000 2731 5903 D =2.00' 2321 753.000 1945 3172 D =1.00' 1568 681.000. 1228 1228 D =0.00' 887 0 0 PERIOD D= 4' -5' D= 3' -4' D= 2' -3' D= V -2' JOB tF D= 0' -1' 1 0.000 0.000 0.000 0.000 0.053 2 0.000 0.000 0.000 0.000 0.06, 3 0.000 0.000 0.000 0.000 0.083 4 0.000 0.000 0.000 0.000 0.10', 5 0.000 0.000 0.000 0.000 0.14: 6 0.000 0.000 0.000 0.000 0.15E 7 0.000 0.000 0.000 0.000 0.21f 8 0.000 0.000 0.000 0.000 0.31 � 9 0.000 0.000 0.000 0.000 0.51; 10 0.000 0.000 0.000 0.000 0.81( 11 0.000 0.000 0.000 0.001 0.00( 12 0.000 0.000 0.000 0.059 0.00( 13 0.000 0.000 0.000 0.262 0.00( 14 0.000 0.000 0.000 0.478 0.000 15 0.000 0:000 0.000 0.634 0.00( 16 0.000 0.000 0.000 0.696 0.00c 17 0.000 0.000 0.000 0.492 0.00c 18 0.000 0.000 0.000 0.318 0.000 19 0.000 0.000 0.000 0.137 0.000 20 0.000 0.000 0.000 0.000 0.945 21 0.000 0.000 0.000 0.000 0.791. 22 0.000 0.000 0.000 0.000 0.646 23 0.000 0.000 0.000 0.000 0.510 24 0.000 0.000 0.000 0.000 0.381 BY: AMG DATE: 10 -27 -03 JOB tF 01152 REF: LOT 1 .5{kgEi �;L �'�'-^+ ° e� l �p _. ice- ° �i$:..; 4�t�':. -P.EAK STORAGE ��A °4�N!. y -t:., :;�. -' ..� -ioY'L �•`.� �.: .Q..Z..e - i -:J.� i �C.tx:.�•:�..- �,�,Y. is �' fit•.- r' <�.•'. °._ . ,�` 926.97 926.97 0.06 1 0.06 930.40 930.40 0.06 INC 0.09 947.77 947.77 0.09 2000'0 0.10 958.37 958.37 0.10 INC '. 0.14 983.65 983.65 0.14 INC i 0.16 993.01 MY 0.16 INC I 0.22 1035.23 1035.23 0.22 INC 0.32 1104.55 x(500 =0� 0.32 INC 0.51 1236.54 1236.54 0.51 INC 0.81 1438.72 1438.72 0.81 INC 1.00 2322.17 2322.17 1.00 INC 1.06 2369.36 2369.36 1.06 INC 1.26 2535.84 2535.84 1.26 INC 1.48 'L r nit 1 •2 3 4 b `x� 2840.65 .2 .�ji Via. ar` k 1.4.151. 17,18 }19 2012;1 2 i�23-•24.St 2891.86 2891.86 1.70 PEAK 1.49 S ^•.' 2724.21 1.49 tr�S Lin .t^fil 1 NTO:IFTV,iiS�JSGUR 2581.61 DEPTH W.S. AREA ADJ.AREA W.S. ELEV. 0.06 926.97 926.97 0.06 1 0.06 930.40 930.40 0.06 INC 0.09 947.77 947.77 0.09 INC 0.10 958.37 958.37 0.10 INC '. 0.14 983.65 983.65 0.14 INC i 0.16 993.01 993.01 0.16 INC I 0.22 1035.23 1035.23 0.22 INC 0.32 1104.55 1104.55 0.32 INC 0.51 1236.54 1236.54 0.51 INC 0.81 1438.72 1438.72 0.81 INC 1.00 2322.17 2322.17 1.00 INC 1.06 2369.36 2369.36 1.06 INC 1.26 2535.84 2535.84 1.26 INC 1.48 2713.05 2713.05 1.48 INC 1.63 2840.65 2840.65 1.63 INC 1.70 2891.86 2891.86 1.70 PEAK 1.49 2724.21 2724.21 1.49 DEC 1.32 2581.61 2581.61 1.32 ' DEC 1.14 2433.15 2433.15 1.14 DEC 0.94 1530.54 1530.54 0.94 DEC 0.79 1425.57 1425.57 0.79 DEC 0.65 1326.91 1326.91 0.65 DEC 0.511 1233.991 1233.90 0.51 DEC 0.38 1146.30 1146.30 0.38 DEC SHEET 2 OF 2 STORAGE HYDROGRAPH FOR 100 YEAR STORM RETENTION BASIN PREPARED BY COACHELLA VALLEY ENGINEERS BY: AMG DATE: 6 -30 -03 JOB # 01152 REF: LOTS 5 -8 & STREETS SOIL GROUP "B" - AMCII -R.1.= 56 R.C. = 50% PERC.RATE = 2.00 " /HR TRIBUTARY RAINFALL FOR 100 YEAR 24 HOUR STORM (SEE PLATE E -5.6)= 3.50 '724HR AREA= 5.59 ACRES PERIOD ACCUM. ADDITIONAL ADDITIONAL ADJUSTED AC -FT (HR) % I(loo) C (AVG) Q (CFS) VOL(CF) FLOWS(CF)` PERC.(CF) LOSSES(CF)" ACCU.VOL(CF) 1 .2 3 4 1.2 1.3 1.8 0.042 0.046 0.063 0.463 0.464 0.469 0.109 0.118 0.165 391.0 424.5 594.5 0.0 0.0 0.0 1168.2 1171.1 0.0 0.0 0.000 0.0 0.0 0.000 1185.9 0.0 0.0 0.000 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2.1 2.8 2.9 3.8 4.6 6.3 8.2 7.0 7.3 10.8 11.4 10.4 8.5 1.4 1.9 1.3 1.2 1.1 1.0 0.074 0.098 0.102 0.133 0.161 0.221 0.287 0.245 0.256 0.378 0.399 0.364 0.298 0.049 0.067 0.046 0.042 0.039 0.035 0.472 0.479 0.480 0.490 0.498 0.516 0.536 0.524 0.527 0.563 0.570 0.559 0.539 0.465 0.470 0.464 0.463 0.462 0.461 0.194 0.263 0.273 0.364 0.448 0.636 0.860 0.717 0.752 1.190 1.271. 1.138 0.897 0.127 0.175 0.118 0.109 0.099 0.090 698.2 945.4 981.4 1311.2 1677.7 2688.2 4417.0 5480.8 6579.0 9159.9 11805.7 14199.2 15637.2 14252.5 13089.1 11763.9 10453.7 9158.0 7553.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1194.9 1216.3 1219.4 1248.0 1279.8 1367.4 1517.3 1609.6 1704.8 1928.6 1702.8 1790.4 1843.0 1792.3 1749.7 1701.2 1653.3 1928.4 1789.3 0.0 0.0 0.000 0.0 0.0 0.000 0.0 0.0 0.0 63.2 0.000 0.001 0.0 397.8 0.009 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1320.8 0.030 2899.7 0.067 3871.2 0.089 4874.2 7231.3 10103.0 0.112 0.166 0.232 12408.8 13794.2 12460.2 11339.3 10062.7 8800.4 7229.5 5764.5 0.285 0.317 0.286 0.260 0.231 0.202 0.166 0.132 23 0.9 0.032 0.459 0.081 6055.81 0.0 1659.4 0.0 4396.3 0.101 24 0.8 0.028 0.458 0.072 4654.61 0.0 1537.9 0.01 3116.71 0.072 SHEET 1 OF 2 RETENTION BASIN STORAGE AND DEPTH CALCULATIONS DEPTH AREA(SF) DIFF.AREA(SF) AVG. VOL /FT(CF-ACCUIdI.VOL(CF) IMP AREA IN D =5.00' 16944 2536.000 15676 59495 BASIN(SF) 0 D =4.00' 14408 2432.000 13192 43819 D =3.00' 11976 2332.000 10810 30627 D =2.00' 9644 - 1948.000 10618 19817 D =1.00' '11592 4786.000 9199 9199 D =0.00' 6806 0.000 0 0 PERIOD D= 4' -5' D= 3' -4' D= 2' -3' D= 1' -2' JOB It D= 0' -1' 1 0.000 0.000 0.000 0.000 0.04, 2 0.000 0.000 0.000 0.000 0.04E 3 0.000 0.000 0.000 0.000 0.06: 4 0.000 0.000 0.000 0.000 0.07E 5 0:000 0.000 0.000 0.000 0.10: 6 0.000 0.000 0.000 0.000 0.10-4 7 0.000 0.000 0.000 0.000 0.14: 8 0.000 0.000 0.000 0.000 0.18: 9 0.000 0.000 0.000 0.000 0.29: 10 0.000 0.000 0.000 0.000 0.48( 11 0.000 0.000 0.000 0.000 0.59E 12 0.000 0.000 0.000 0.000 0.71: 13 0.000 0.000 0.000 0.000 0.99E 14 0.000 0.000 0.000 0.245 0.00( 15 0.000 0.000 0.000 0.47.1 0.00( 16 0.000 0.000 0.000 0.606 0.00( 17 0.000 0.000 0.000 0.476 0.00( 18 0.000 0.000 0.000 0.366 0.00( 19 0.000 0.000 0.000 0.242 0.00( 20 0.000 0.000 0.000 0.118 0.00( 21 0.000 0.000 0.000 0.000 0.99E 22 0.000 0.000 0.000 0.000 0.821 23 0.000 0.000 0.000 0.000 0.656 24 0.000 0.000 0.000 0.000 0.506 BY: AMG DATE: 6 -30 -03 JOB It 01152 REF: LOTS 5 -8 & STREETS BASIN ELEV. 511.00 DEPTH 0.04 7009.42 7009.42 511.04 0.05 7026.88 7026.88 511.05 INC 0.06 7115.29 7115.29 511.06 INC 0.08 7169.26 7169.26 511.08 INC 0.10 7297.89 7297.89 511.10 INC 0.11 7316.58 7316.58 511.11 INC 0.14 7488.19 7488.19 511.14 INC 0.18 7678.84 7678.84 511.18 INC 0.29 8204.59 8204.59 511.29 INC 0.48 9104.07 9104.07 511.48 INC 0.60 9657.49 9657.49 511.60 INC 0.72 10228.90 10228.90 511.72 INC 1.00 11571.67 11571.67 512.00 INC 1.25 10216.50 10216.50 512.25 INC 1.47 10742.17 10742.17 512.47 INC 1.61 11058.01 11058.01 512.61 PEAK 1.48 10753.88 10753.88 512.48 DEC 1.37 10498.36 10498.36 512.37 DEC 1.24 10207.32 10207.32 512.24 DEC 1.12 9919.56 9919.56 512.12 DEC 1.00 11570.66 11570.66 512.00 DEC 0.82 10736.09 10736.09 511.82 DEC 0.6611 9956.67 9956:67 511.66 DEC 0.511 9227.69 9227.691 511.51 DEC SHEET 2 OF 2 ■� � .... w. __.... �_. -._■i � � r• � w . � l� i - � _ fir, �w _ � � STORAGE I-IYDROGRAPI-I FOR 100 YEAR / G HR STORM RETENTION BASIN. PREPARED 13Y COACHELLA VALLEY ENGINEERS 1:\'E F: LOT 3 - G Hill00Yr - Trapezoid Retention - 2.10,10 Top, 3:1 Sideslol,e IOM 1, 111153 Tract 30378 - Madison 8, Ave 5.1 MIC TRIB AREA 0.8650 ACRCS PERC.RATE �.00 IN/HR (0.5 INI /'15 Min) SOIL GROUP "A ", AMCII, 13.1.= 32, R.C. = 20,11", STORM VOLUME 2.25 IN /6I-IR 10 0 Y C-AlUT) -FM PLATE E-5.4) PEI 100 PRECIP INTENSITY IMPERV . FLOW INFLOW OUTFLOW I:ETCHTION 1.100 C Q VOLI'15 Min CUML VOL OTHER PERC /15Min OTHER REO1:1 CUML. VOL - (I'Sini11) n: (III /15rnin) (CFS) (CF) (CF) (Cl =) (CF) (CF) (C.:I ) RC= 201% - 1 1.7 0.030 0.190 0.026 23.6 23.6 0.0 2ff.3 0.0 0.0 2 1.9 0.043 0.199 0.029 2e.5 2G.S 0.0 20.-1 0.0 0.0 3 2.1 0.0.17 0.200 0.033 _9.5 20.5 0.0 28.5 0.0 1.i) _ •I 2 _' 0.050 0.201 0.03.1 31.0 32.0 0.0 213.5 0.0 3.S 'i 2A 0.051 0.202 0.038 33.9 37.4 0.0 28.6 u 2.11 0.05 -1 0.202 0.038 :13.9 12.7 0.0 23.0 0.0 _14.0 -- , I 0.(15 I 0.202 0.030 33.9 =17.9 0.0 20.9 ci.c'� 1 s,.n r; 2.5 0.o5G 0.202 0.039 35.1 5 -1.5 0.0 29.0 O.n ?f;.l 9 _'.0 0.059 0.203 0.0 =I 'I 37.0 rig. l 0.0 219.2 0.6 :f :1. I - - 1(1 0.0611 0.203 0.0 =13 38.5 71.6 0.0 29.5 OA a ; ' 11 2.8 0.063 0.204 0.0:14 -10.0 82.1 0.0 29.7 0.0 ;'_'.�I 3.0 0.0 0 0.205 0.048 13.1 95.5 0.0 30.0 0.0 c;�.5 -- 3 3.2 0.072 0.206) 0.051 -16.2 '111.6 0.0 30.4 on I -I 3.6 0.031 0.208 0.058 133.6 0.0 30.9 0.0 10:_7 -- I:i -1.3 0.097 0.211 0.071 633 166.3 0.0 3'1.7 0.0 1 :1.I.6 16 -1.7 0.106 0.2'13 0.078 70.2 20 =1.9 0.0 32.6 0.0 I %•2.'2 - 17 5.4 0.122 0.217 0.091 82.0 251.2 0.0 33.8 0.0 2219. -I IJ I ] 30 6.2 6.9 7.5i 0.140 0.'155 0.'169 0.239 0.326) 0.221 0.22=1 0.227 0.212 0.262 0.107 0.120 0.'133 0.200 0.295 95.9 108.4 119.4 100.1 36)5.9 3'1 G.3 389.1 = 17'1.7 612.8 836).3 0.0 0.0 0.0 0.0 0.0 35.3 37.0 39.0 42.4 �I7.7 0.0 0.0 0.0 n.o 0.0 281.0 3•: +'�.:1 - �I:1 "_'.7 7n. -1 %fIILIi ? I �? 10.b I -L�i -- 9 •2.1 3.4 '1.0 0.077 0.023 0.207 0.'195 0.055 0.015 49.3 '13.7 037.9 803.8 0.0 �I7.7 0.0 %9i).3 7!i(i.9 SI ILI= I 'I OF